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Preface

This volume is an attempt to provide a graduate level introduction to various aspects
of stochastic geometry, spatial statistics and random fields, with special emphasis
placed on fundamental classes of models and algorithms as well as on their appli-
cations. This book has a strong focus on simulations and includes extensive code
in Matlab and R, which are widely used in the mathematical community. It can be
seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics,
where other issues of stochastic geometry, spatial statistics and random fields were
considered with a focus on asymptotic methods.

The present volume comprises selected contributions to the Summer Academy
on Stochastic Analysis, Modelling and Simulation of Complex Structures (cf.
http://www.uni-ulm.de/mawi/summer-academy-2011.html) which took place dur-
ing September 11-24, 2011 at the Söllerhaus, an Alpine conference center of the
University of Stuttgart and RWTH Aachen, in the village of Hirschegg (Klein-
walsertal). It was organized by the Institute of Stochastics of Ulm University. In
contrast with previous summer schools on this subject (Sandbjerg 2000, Martina
Franca 2004, Sandbjerg 2007, Hirschegg 2009), the focus of this summer school
was on models and algorithms from stochastic geometry, spatial statistics and ran-

plex point patterns and networks which appear in advanced functional materials
and whose geometrical structures are closely related to the (macroscopic) physical
properties of the underlying technical and biological materials.

This summer school hosted 43 young participants from 8 countries (Australia,
Czech Republic, Denmark, France, Germany, Russia, Switzerland, UK). Fourteen
international experts gave lectures on various aspects of stochastic geometry, spatial
statistics and random fields. In addition, students and young researchers were able
to give their own short talks.

As stated above, this volume is focused on fundamental classes of models and
algorithms from stochastic geometry, spatial statistics and random fields as well
as on their applications to the analysis, modelling and simulation of geometrically

dom fields which can be used for the analysis, modelling and simulation of ge
metrically complex microstructures. Examples of such microstructures are com-

o-
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Preface

complex objects like points patterns, tessellations, graphs, and trees. It reflects recent
progress in these areas, with respect to both theory and applications.

Point processes play an especially important role in many parts of the book.
Poisson processes, the most fundamental class of point processes, are considered in
Chapter 1 as approximations of other (not necessarily Poisson) point processes. In
Chapter 2, they are used as a basic reference model when comparing the clustering
properties of various point processes and, in Chapters 3 and 5, they are used in
order to construct some basic classes of random tessellations and Boolean random
functions, respectively. Several further classes of point processes considered in this
book can be seen as generalizations of Poisson processes and are derived in various
ways from Poisson processes. For example, Gibbs processes (Chapters 1 and 2),
Poisson cluster processes (Chapters 2, 4 and 13), Cox processes (Chapters 2, 4, 7
and 13), and hard-core processes (Chapters 2 and 4).

From another perspective, point processes can be seen as a special class of ran-
dom closed sets, which are also fundamental objects in stochastic geometry. In ad-
dition to point processes, a number of other classes of random closed sets are con-
sidered in the book; in particular, germ-grain models (Chapters 2, 4 and 5), random
fiber processes (Chapters 4 and 6), random surface processes (Chapter 5), random
tessellations (Chapters 3 and 6), random spatial networks (Chapters 2 and 4) and
isotropic convex bodies (Chapter 8). Random marked closed sets (Chapter 6) – in
particular, random marked point processes (Chapter 13) – also play an important
role in the book.

Another focus of the book is on various aspects of random fields. In Chapter 5,
a class of random fields is considered which can be seen as a generalization of
random closed sets and, in particular, of germ-grain models. In Chapter 6, random
fields are used in order to construct random marked sets. Some basic ideas of princi-
pal component analysis for random fields are discussed in Chapter 9. Genetic mod-
els involving random fields are considered in Chapter 10. Chapter 11 deals with
extrapolation techniques for two large classes of random fields: square-integrable
stationary random fields and stable random fields. In addition, various simulation
algorithms for random fields are discussed in Chapters 12 and 13, in particular for
Gaussian Markov random fields, fractional Gaussian fields, spatial Lévy processes
and random walks.

The book is organized as follows. The first four chapters deal with point pro-
cesses, random tessellations and random spatial networks, with a number of dif-
ferent examples of their applications. Chapter 1 gives an introduction to Stein’s
method, a powerful technique for computing explicit error bounds for distributional
approximation. The classical case of normal approximation is used as an initial mo-
tivation. Then, the main part of the chapter is devoted to presenting the key concepts
of Stein’s method in a much more general framework, where the approximating
distribution and the space it lives on can be almost arbitrary. This is particularly
appealing for distributional approximation of various point-process models consid-
ered in stochastic geometry and spatial statistics. Chapter 2 reviews examples, meth-
ods, and recent results concerning the comparison of clustering properties of point
processes. The approach is founded on the observation that void probabilities and
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moment measures can be used as two complementary tools for capturing cluster-
ing phenomena in point processes. Various global and local functionals of random
geometric models driven by point processes are considered which admit more or
less explicit bounds involving void probabilities and moment measures. Directional
convex ordering of point processes is also discussed. Such an ordering turns out
to be an appropriate choice, combined with the notion of (positive or negative) as-
sociation, when comparison to the Poisson point process is considered. Chapter 3
introduces various tessellation models and discusses their application as models for
cellular materials. First, the notion of a random tessellation is introduced, along with
the most well-known model types (Voronoi and Laguerre tessellations, hyperplane
tessellations, STIT tessellations), and their basic geometric characteristics. Assum-
ing that a cellular material is a realization of a suitable random tessellation model,
characteristics of these models can be estimated from 3D images of the material. An
explanation is given of how such estimates are obtained and how they can be used to
fit tessellation models to the observed microstructure. In Chapter 4, three classes of
stochastic morphology models are presented. These describe different microstruc-
tures of functional materials by means of methods from stochastic geometry, graph
theory and time series analysis. The structures of these materials strongly differ
from one another. In particular, the following are considered: organic solar cells,
which are anisotropic composites of two materials; nonwoven gas-diffusion layers
in proton exchange membrane fuel cells, which consist of a system of curved carbon
fibers; and, graphite electrodes in Li-ion batteries, which are an isotropic two-phase
system (i.e., consisting of a pore and a solid phase). The goal of this chapter is to
give an overview of how models from stochastic geometry, graph theory and time
series analysis can be applied to the stochastic modeling of functional materials and
how these models can be used for material optimization with respect to functional-
ity.

The three following chapters deal with Boolean random functions, random
marked sets and space-time models in stochastic geometry. In Chapter 5, the notion
of Boolean random functions is considered. These are generalizations of Boolean
random closed sets. Their construction is based on the combination of a sequence
of primary random functions using the operations of supremum or infimum. Their
main properties are given in the case of scalar random functions built on Poisson
point processes. Examples of applications to the modeling of rough surfaces are
also given. In Chapter 6, random marked closed sets are investigated. Special models
with integer Hausdorff dimension are presented based on tessellations and numer-
ical solutions of stochastic differential equations. Statistical analysis is developed
which involves the random-field model test and estimation of first and second or-
der characteristics. Real data analyses from neuroscience (track modeling marked
by spiking intensity) and materials research (grain microstructure with disorienta-
tions of faces) are presented. Dimension reduction of point processes with Gaussian
random fields as covariates, a recent development, is generalized in three different
ways. Chapter 7 deals with space-time models in stochastic geometry which are
used in many applications. Most such models are space-time point processes. Other
common models are based on growth models of random sets. This chapter aims to
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present more general models, where time is considered to be either discrete or con-
tinuous. In the discrete-time case the authors focus on state-space models and the
use of Monte Carlo methods for the inference of model parameters. Two applica-
tions to real situations are presented: evaluation of a neurophysiological experiment
and models of interacting discs. In the continuous-time case, the authors discuss
space-time Lévy-driven Cox processes with different second-order structures.

The following four chapters are devoted to different issues of spatial statistics
and random fields. Chapter 8 contains an introduction to rotational integral geome-
try. This is the key tool in local stereological procedures for estimating quantitative
properties of spatial structures. In rotational integral geometry, the focus is on inte-
grals of geometric functionals with respect to rotation invariant measures. Rotational
integrals of intrinsic volumes are studied. The opposite problem of expressing in-
trinsic volumes as rotational integrals is also considered. An explanation is given
of how intrinsic volumes can be expressed as integrals with respect to geometric
functionals defined on lower dimensional linear subspaces. The rotational integral
geometry of Minkowski tensors is briefly discussed as well as a principal rotational
formula. These tools are then applied in local stereology leading to unbiased stereo-
logical estimators of mean intrinsic volumes for isotropic random sets. At the end of
the chapter, emphasis is put on how these procedures can be implemented when au-
tomatic image analysis is available. Chapter 9 gives an introduction to the methods
of functional data analysis. The authors present the basics from principal compo-
nent analysis for functional data together with the functional analytic background
as well as the data analytic counterpart. As prerequisites, they give an introduction
into presentation techniques for functional data and some smoothing techniques. In
Chapter 10, a challenging statistical problem in modern genetics is considered: how
to identify the collection of factors responsible for increasing the risk of specified
complex diseases. Enormous progress in the field of genetics has made possible the
collection of very large genetic datasets for analysis by means of various comple-
mentary statistical tools. Thus, one has to operate with data of huge dimensions and
this is one of the main difficulties in detection of genetic susceptibility to common
diseases such as hypertension, myocardial infarction and others. In this chapter, the
author concentrates on the multifactor dimensionality reduction method. Modifica-
tions and extensions are also discussed. Recent results on the central limit theorem
related to this method are provided as well. In addition, the main features of lo-
gistic regression are discussed and simulated annealing for stochastic minimization
of functions defined on a graph with forests as vertices is tackled. Chapter 11 in-
troduces basic statistical methods for the extrapolation of stationary random fields.
The problem of extrapolation (prediction) of random fields arises in geosciences,
mining, oil exploration, hydrosciences, insurance, and many other fields. The tech-
niques to solve this problem are fundamental tools in geostatistics that provide sta-
tistical inference for spatially referenced variables of interest. Examples of such
quantities are the amount of rainfall, concentration of minerals and vegetation, soil
texture, population density, economic wealth, storm insurance claim amounts, etc.
For square integrable fields, kriging extrapolation techniques are considered. For
(non–Gaussian) stable fields, which are known to be heavy-tailed, further extrapo-
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lation methods are described and their properties are discussed. Two of them can be
seen as direct generalizations of kriging.

The book concludes with two chapters which deal with algorithms for Monte
Carlo simulation of random fields. The generation of random spatial data on a com-
puter is an important tool for understanding the behavior of spatial processes. Chap-
ter 12 describes how to generate realizations of the main types of spatial processes,
including Gaussian and Markov random fields, point processes (including the Pois-
son, compound Poisson, cluster, and Cox processes), spatial Wiener processes, and

is to exemplify construction of selected coupling-from-the-past algorithms, using
simple examples and discussing code which can be run in the statistical scripting

ing boundaries; a very basic continuous state-space Markov chain; the Ising model
with external field; and, a random walk with negative drift and a reflecting boundary
at the origin. In parallel with this, a discussion is given of the relationship between
coupling-from-the-past algorithms on the one hand, and uniform and geometric er-
godicity on the other.

The authors of this book have tried to present many different methods developed
in various fields of stochastic geometry, spatial statistics and random fields that merit
communication to a broader audience. All chapters contain introductory sections
which are easily accessible for non-specialists who want to become acquainted with
modern techniques of stochastic geometry, spatial statistics and random fields. New
results, which have been obtained only recently, are also presented. Each chapter
provides a number of exercises which will help the reader to use the stochastic
models and algorithms considered in this book autonomously.

Ulm Volker Schmidt
December 2013

Lévy fields. Concrete Matlab code is also provided. The purpose of Chapter 13

language R. The simple examples are the symmetric random walk with two reflect-
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Chapter 1

Stein’s Method for Approximating Complex

Distributions, with a View towards Point

Processes

Dominic Schuhmacher

Abstract We give an introduction to Stein’s method, a powerful technique for com-
puting explicit error bounds for distributional approximation. The classical case of
normal approximation is provided for initial motivation. Then the main part of this
chapter is devoted to presenting the key concepts of Stein’s method in a much more
general framework, where the approximating distribution Q and the space S it lives
on can be almost arbitrary. This is particularly appealing for distributional approxi-
mation in stochastic geometry and spatial statistics.
Rather than providing many concrete results, the emphasis of this chapter lies on
conveying the techniques for developing Stein’s method on new state spaces S and
for new approximating distributions. These techniques are elaborated in detail for
the case where S is a space of point patterns and Q is the distribution of a Poisson
process or a more general Gibbs process. Questions on how to measure distances
between probability distributions on complicated spaces are also addressed. It is
convenient if S is equipped with a suitable metric. We present several ideas and
examples about performing statistical analyses on metric spaces.

1.1 Introduction

A basic fact that any statistician will realize quite early in her/his career is that
most probability distributions appearing in the wild are terribly complicated. This
is true for distributions on R, and even more so for distributions of random objects
considered in stochastic geometry and spatial statistics.

The most fundamental step in any statistical analysis is the approximation of
the complicated real life distribution with a comparatively simple familiar one that
can be handled more or less easily. This typically happens on two different levels.

Dominic Schuhmacher
University of Göttingen, Institute for Mathematical Stochastics, 37077 Göttingen, Germany, e-
mail: dominic.schuhmacher@mathematik.uni-goettingen.de

1© Springer International Publishing Switzerland 2015
 V. Schmidt

Lecture Notes in Mathematics 2120, DOI 10.1007/978-3-319-10064-7_1 
,  Stochastic Geometry, Spatial Statistics and Random Fields        (ed.),

mailto:dominic.schuhmacher@mathematik.uni-goettingen.de


2

First, when making modelling assumptions, we cast the real world problem into
a simplified model (Pθ )θ∈Θ . Then, when doing inference about the posited model
and the distributions involved are too complicated, we resort to inference based on
simpler distributions that apply asymptotically.

For illustration consider data from a stress test of some brittle material under var-
ious combinations of covariates, such as type of material, structural features, stress
applied, temperature, humidity, and so on. We might assume that the results of the
stress tests of individual specimens are independent and that the fracture probability
can be expressed as a logistic function of a linear combination of the covariates. This
is usually not entirely correct, but it allows us to formulate an approximative logistic
regression model for our data. We might then compute a likelihood ratio test in this
model in order to show that one material is more stress resistant than the other using
the asymptotic χ2-distribution of the likelihood ratio statistic, which would be the
second time we approximate.

Note that neither of these approximation steps is very well controlled from a
quantitative point of view. For formulating the model, the statistician relies on his
experience, intuition and common sense to ensure that not too much can go wrong.
For asymptotic inference a limit theorem is quoted that typically applies as the sam-
ple size n goes to infinity, and in simpler cases there is maybe also a rule of thumb,
usually based on simulation studies or heuristic arguments, to make plausible that
the approximation is good enough for the finite sample size n available.

However, what is really of interest in almost all applied situations are explicit
bounds on the error committed in performing these approximations. This is by no
means an easy task, but the only way to ensure that the statistical inference per-
formed is valid.

This chapter is about a powerful technique to obtain such explicit bounds for
the comparison of two probability distributions, called Stein’s method [375]. Stein’s
method is known by many probabilists as a tool for proving variants of the central
limit theorem and giving good rates for the approximation. What is less commonly
known is that it can also be used in much more general approximation settings,
especially if the probability distributions involved live on more complicated spaces,
as is often the case in stochastic geometry and spatial statistics.

We start out in Sect. 1.2 by giving a tour d’horizon of the basic ideas of Stein’s
method for normal approximation. In Sect. 1.3 we present a general recipe for
Stein’s method and a very successful variant called the generator approach in the
abstract setting of approximation by arbitrary distributions. Sect. 1.4 to 1.6 elabo-
rate on these ideas in the case of point process approximation. Sect. 1.4 also contains
ideas and concrete examples about statistical analyses on metric spaces.

1.2 Normal Approximation

In order to start with a concrete situation that every reader can relate to, we give an
overview of the central ideas used in the normal approximation case and apply them
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to obtain a rate for various versions of the central limit theorem (CLT). In passing
we encounter many important concepts that are discussed in Sect. 1.3 on a more
abstract level and in much greater generality.

1.2.1 Two Important Lemmas

The following two lemmas are crucial for the development of Stein’s method for
normal approximation.

Lemma 1.1. Let ϑ :R→R be a bounded measurable function. Then the differential
equation

d
dz

g(z)− zg(z) = ϑ(z) (1.1)

(for Lebesgue almost every z) has as solution the function g(ϑ) : R→ R with

g(ϑ)(z) = exp(z2/2)
∫ z

−∞
ϑ(x) exp(−x2/2) dx. (1.2)

If
∫ ∞
−∞ϑ(x) exp(−x2/2) dx= 0, then g(ϑ) is bounded and its derivative is essentially

bounded.

Proof. Multiplying equation (1.1) by e−z2/2 and integrating yields
∫ u

−∞
ϑ(z)e−z2/2 dz =

∫ u

−∞
(g(z)e−z2/2)′ dz+ c

= g(u)e−u2/2 + c,

and hence the particular solution for c = 0 is

g(ϑ)(z) = ez2/2
∫ z

−∞
ϑ(x)e−x2/2 dx (1.3)

as claimed. The inequality in [147] about Mills’s ratio of a standard normal random
variable says that

1
z+1/z

<
1−Φ(z)
ϕ(z)

<
1
z

(1.4)

for every z > 0. By the upper bound we obtain that g(ϑ)(z) = O(1/|z|) as z→−∞,
and if

∫ ∞
−∞ϑ(x)e−x2/2 dx = 0 also g(ϑ)(z) = O(1/z) as z → ∞. Thus g(ϑ) and

[z �→ zg(ϑ)(z)] are bounded, because they are continuous. Furthermore we obtain
by d

dz g(ϑ)(z) = zg(ϑ)(z)+ϑ(z) almost everywhere that the derivative of g(ϑ) is es-
sentially bounded, since both functions on the right hand side are bounded. �

The above lemma is used for the proof of the following important characteriza-
tion of the normal distribution, and also in a more general way for solving the Stein
equation (1.6) further below.
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Lemma 1.2 (Stein’s lemma). A random variable Z is standard normally dis-
tributed if and only if

E(Zg(Z)) = Eg′(Z) (1.5)

for every bounded and absolutely continuous function g : R → R that satisfies
E|g′(Z)|< ∞, where g′ = d

dz g denotes the derivative of g.

Proof. If Z ∼ N(0,1) and g is as specified, then equation (1.5) holds by a short cal-
culation using integration by parts for absolutely continuous functions. More pre-
cisely

Eg′(Z) =
1√
2π

∫ ∞

−∞
g′(z)e−z2/2 dz

=
1√
2π

g(z)e−z2/2|∞−∞ +
1√
2π

∫ ∞

−∞
zg(z)e−z2/2 dz = E(Zg(Z)),

using that g is bounded. Conversely, assume that Eg′(Z) = E(Zg(Z)) for every g as
specified. We apply Lemma 1.1 in the special case

ϑa(z) = 1{z≤ a}−Φ(a).

Note that
∫ ∞
−∞ϑa(z) exp(−z2/2) dz = 0 for every a, so that the corresponding solu-

tion ga = g(ϑa) given by (1.2) has the required properties.
Hence by the prerequisite

0 = E
(
g′a(Z)−Zga(Z)

)
= P(Z ≤ a)−Φ(a)

for every a ∈ R. Thus Z ∼ N(0,1). �

1.2.2 Independent Random Variables

For n ∈ N assume that Y1 = Y (n)
1 , . . . ,Yn = Y (n)

n are i.i.d. random variables that are
normalized so that EY1 = 0, EY 2

1 = 1/n. Write W =Wn = ∑n
i=1 Yi and Z ∼ N(0,1).

In order to show the classical CLT, we would like to establish

E f (Wn)−→ E f (Z) as n→ ∞

for every f ∈ F , where F is a rich enough class of functions f : R→ R. For the
time being we assume thatF is the class of bounded Lipschitz continuous functions,
which we denote by F (∞)

BL .
Stein’s lemma suggests that it might be a good idea to check if Eg′(W )−

E(W g(W )) ≈ 0 in order to show that the distributions of W and Z are approxi-
mately equal, i.e. W ≈D Z. To turn this to our advantage we re-express for arbitrary
f ∈ F (∞)

BL
f (w)−E f (Z) = g f

′(w)−wg f (w), (1.6)
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which we may do by setting ϑ(w) = f (w)−E f (Z) in Lemma 1.1 and then taking
g f = g(ϑ). Equation (1.6) is usually called the Stein equation. Its solution g f is not so
easy to deal with. Fortunately it is enough to have a handle on certain derivatives of
g f . Note that g f has a second derivative almost everywhere, because f is Lipschitz
continuous and hence equation (1.1) yields that g f

′ is Lipschitz continuous on every
compact set. In fact we may show that |g f

′′| cannot get too large. Denote by ‖·‖∞
the L∞-norm. The proof of the following lemma is based on the explicit form of
the solution obtained in Lemma 1.1, but is quite technical. We therefore refer to the
more general Lemma 2.4 in [68].

Lemma 1.3. If f ∈ F (∞)
BL , then it holds that

‖g f ‖∞ ≤ 2‖ f ′‖∞, ‖g f
′‖∞ ≤

√
2
π
‖ f ′‖∞, and ‖g f

′′‖∞ ≤ 2‖ f ′‖∞.

Plugging in the random variable W and taking expectations in the Stein equa-
tion (1.6), we have

∣∣E f (W )−E f (Z)
∣∣= ∣∣Eg f

′(W )−E
(

Wg f (W )
)∣∣.

Writing W (i) = ∑n
j=1, j �=i Yj =W −Yi, we obtain

E
(
Wg f (W )

)
=

n

∑
i=1

E
(
Yig f (W )

)

= nE
(
Y1g f (W (1) +Y1))

= n
[
E
(
Y1g f (W (1))

)
+E

(
Y 2

1 g f
′(W (1))

)
+ r

]

= Eg f
′(W (1))+nr

(1.7)

by Taylor approximation and the fact that Y1 and W (1) are independent, where |r| ≤
1
2‖g f

′′‖∞E|Y1|3. Thus in total for every f ∈ F (∞)
BL∣∣E f (W )−E f (Z)

∣∣= ∣∣Eg f
′(W )−E

(
Wg f (W )

)∣∣
≤ ∣∣Eg f

′(W )−Eg f
′(W (1))

∣∣+ n
2
‖g f
′′‖∞E|Y1|3

≤ ‖g f
′′‖∞E|Y1|+ n

2
‖g f
′′‖∞E|Y1|3

≤ ‖ f ′‖
( 2√

n
+nE|Y1|3

)
(1.8)

by Lemma 1.3 and E|Y1| ≤
√

EY 2
1 = 1/

√
n.

As a weak consequence we obtain immediately that ∑n
i=1 Yi

D−→ N(0,1) if
E|Y1|3 = o(1/n) as n → ∞. This implies for unnormalized i.i.d. random vari-
ables X1,X2, . . . with EX1 = μ , varX2

1 = σ2, and E|X1|3 < ∞ that by setting Yi =
(Xi−μ)/(√nσ) we recover the CLT
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1√
n

n

∑
i=1

Xi−μ
σ

D−→ N(0,1) as n→ ∞.

Note that unlike in the classical CLT we require a third moment for Y1. In fact
we will see in Theorem 1.1 that this is not necessary. But even so, we are richly
rewarded by the above approach, as we do not only have convergence for n→ ∞,
but an explicit result about the goodness of the approximation for any finite n in
terms of arbitrary functions f ∈ F (∞)

BL .
It is convenient and customary to express such results in terms of probability

metrics, i.e. metrics ρ on spaces of probability distributions, of the form

ρ(PW ,PZ) = sup
f∈F
|E f (W )−E f (Z)|,

where PW ,PZ denote the distributions of W and Z, respectively. So far we have used
bounded Lipschitz continuous functions f and may therefore say something about
the metric based on

F = FBW =
{

f : R→ [0,1] ; | f (x)− f (y)| ≤ |x− y| for all x,y ∈ R
}
.

Other common choices for the function class F include

FW =
{

f : R→ R ; | f (x)− f (y)| ≤ |x− y| for all x,y ∈ R
}
,

FK =
{

1(−∞,t] ; t ∈ R
}
,

FTV =
{

1A ; A⊂ R measurable
}
.

We distinguish the metrics based on these function classes by subscripting ρ with
the corresponding letters, and then refer to ρTV , ρK , ρW and ρBW as total variation,
Kolmogorov, Wasserstein and bounded Wasserstein metric, respectively. Of these
four metrics the bounded Wasserstein metric (also known as bounded Lipschitz
metric) is the only one that exactly metrizes weak convergence, i.e. for which
ρ(PXn ,PX )→ 0 is equivalent to Xn converging to X in distribution for arbitrary ran-
dom variables; see [107], Theorem 11.3.3. The other metrics are in general stronger
in the sense that convergence in the metric is sufficient but not necessary for con-
vergence in distribution. The Kolmogorov metric achieves exact metrization for ab-
solutely continuous limiting random variables.

So what we have proved until now implies

ρBW (PW ,PZ)≤ 2√
n
+nE|Y1|3.

With some more work one may replace ρBW by ρW at no additional cost. The fol-
lowing theorem shows what is possible for the CLT in the case of independent but
not necessarily identically distributed random variables when the proof strategy pre-
sented above is refined.
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Theorem 1.1 (Independent case). Let Y1, . . . ,Yn be independent random variables
with EYi = 0 and ∑n

i=1 EY 2
i = 1. Then for W = ∑n

i=1 Yi it holds that

ρW
(
PW ,N(0,1)

)≤ n

∑
i=1

E|Yi|3

and

ρW
(
PW ,N(0,1)

)≤ 4
n

∑
i=1

Emin(Y 2
i , |Yi|3).

Proof. See [68], Theorems 3.1 and 3.2, and Corollary 4.2.

Note that the second result of Theorem 1.1 does not require the existence of third
moments in order to be useful.

Exercise 1.1. Show under the conditions above that for every ε > 0,

n

∑
i=1

Emin(Y 2
i , |Yi|3)→ 0

if and only if the Lindeberg condition holds, i.e.

n

∑
i=1

E
(
Y 2

i 1{|Yi|> ε})−→ 0 .

1.2.3 Dependent Random Variables

A particular strength of Stein’s method is that it is quite easily adaptable to situations
where the approximated random variable W incorporates a substantial dependence
structure. In such situations many other proof strategies break down completely.

For demonstration purposes we consider the simplest case of a stationary se-
quence (Yi)1≤i≤n that is (strictly) locally dependent. To avoid boundary effects we
identify the index set {1, . . . ,n− 1,n} with the cyclic group Z/nZ = {[1], . . . , [n−
1], [0]}, i.e. we “join the ends” of the index set. By local dependence we mean that
there is a set A⊂Z/nZ such that with Ai = i+A= {i+a ; a∈A}we have that Yi and
{Yj ; j ∈ Ac

i } are independent. This implies [0] ∈ A. So far local dependence means
no restriction on the joint distribution of the Yis. However, for the upper bound in
equation (1.10) to be small, it will be necessary that the cardinality of A is small too.

We still assume normalization of the Yi, meaning here EY1 = 0 and varW = 1.
With a little bit of extra effort we may now mimic the computations in formulae (1.7)
and (1.8). Write Ui = ∑ j∈Ai Yj and W (i) = ∑ j∈Ac

i
Yj =W −Ui, and note that by local

dependence

E(YiUi) = ∑
j∈Ai

E(YiYj) =
n

∑
j=1

E(YiYj) = E(YiW ) =
1
n
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because of stationarity and EW 2 = 1. Then

E
(
Wg f (W )

)
= nE

(
Y1g f (W (1) +U1))

= n
[
E
(
Y1g f (W (1))

)
+E

(
Y1U1g f

′(W (1))
)
+ r

]
= Eg f

′(W (1))+nr+nE
[(

Y1U1−E(Y1U1)
)
g f
′(W (1))

] (1.9)

by Taylor approximation and the fact that Y1 and W (1) are independent, where |r| ≤
1
2‖g f

′′‖∞E(|Y1|U2
1 ). Thus for every f ∈ F (∞)

BL∣∣E f (W )−E f (Z)
∣∣

=
∣∣Eg f

′(W )−E
(

Wg f (W )
)∣∣

≤ ∣∣Eg f
′(W )−E

(
g f
′(W (1))

)∣∣+ n
2
‖g f
′′‖∞E(|Y1|U2

1 )

+n
∣∣E[(Y1U1−E(Y1U1)

)
g f
′(W (1))

]∣∣
≤ ‖g f

′′‖∞E|U1|+ n
2
‖g f
′′‖∞E(|Y1|U2

1 )+‖g f
′‖∞ nE

∣∣Y1U1−E(Y1U1)
∣∣

≤ ‖ f ′‖∞

(
2m√

n
+nE(|Y1|U2

1 )+

√
2
π

nE
∣∣Y1U1−E(Y1U1)

∣∣)

(1.10)

by Lemma 1.3, where m = |A| denotes the cardinality of A.

Exercise 1.2. Let I1, . . . , In be i.i.d. indicators with expectation p. Define Xi = IiIi+1
for i = 1,2, . . . ,n− 1 and Xn = InI1. Let furthermore Sn = ∑n

i=1 Xi and W = (Sn−
ESn)/sd(Sn). Give an upper bound for ρBW (PW ,N(0,1)) based on the above calcu-
lations.

With more careful arguments one may again obtain a better bound in a more
general setting. The following result is for a stronger local dependence condition
with nested dependence neighbourhoods that is often satisfied in applications. We
use the symbol ⊥⊥ to denote independence of collections of random variables.

Theorem 1.2 (Locally dependent case). Let Y1, . . . ,Yn be random variables with
EYi = 0, EY 2

i < ∞, and var∑n
i=1 Yi = 1. Suppose further that the following depen-

dence condition holds: for every i there are sets Ai ⊂ Bi ⊂ {1,2, . . . ,n} such that
Yi ⊥⊥ {Yj ; j ∈ Ac

i } and {Yj ; j ∈ Ai} ⊥⊥ {Yk ; k ∈ Bc
i }.

Then for W = ∑n
i=1 Yi it holds that

ρW
(
PW ,N(0,1)

)

≤ 2
n

∑
i=1

(
E|YiUiVi|+ |E(YiUi)|E|Vi|

)
+

n

∑
i=1

E|YiU2
i |,

where Ui = ∑ j∈Ai Yj and Vi = ∑k∈Bi Yk.

Proof. See [68], Theorem 4.13.
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For independent random variables Yi we may put Ai = Bi = {i} in Theorem 1.2.
Then Ui = Vi = Yi and we recover the first statement in Theorem 1.1 with a con-
stant of 5 instead of 1. Note that EY 2

i E|Yi| ≤ E|Yi|3 follows by two applications
of Hölder’s inequality or by a single application of the Fortuin–Kasteleyn–Ginibre
(FKG) inequality (see e.g. Theorem 3.3 in Chap. 7 of [29]).

1.2.4 Kolmogorov Distance

Stein’s method is known to often give the optimal rates and in many situations also
very good constants. This however needs not always be the case and in particular
for probability metrics based on “non-smooth” functions certain standard techniques
for bounding the right-hand side of the Stein equation (1.6) may break down.

This is what happens for approximation in terms of the Kolmogorov metric,
where a more complicated argument is needed and the optimal rate can only be
obtained at the cost of a somewhat large constant. The big advantage of Stein’s
method to lend itself to various generalizations remains, especially when it comes
to relaxing the independence condition.

The following result demonstrates the state of the art for independent random
variables.

To the best of our knowledge, the constant of C = 4.1 is also the smallest one
that has ever been obtained by Stein’s method in the classical Berry–Esseen bound
with third moments [35, 113], i.e. in

ρK
(
PW ,N(0,1)

)≤C
n

∑
i=1

E|Yi|3.

In contrast, other methods were able to improve this constant quite substantially
to C = 0.56, cf. [366, 398]. For identically distributed random variables a further
improvement to C= 0.4785 is possible [398]. In [114] it has been shown that even
in the i.i.d. case the constant cannot be better than 0.4097.

Theorem 1.3 (Chen and Shao). Let Y1, . . . ,Yn be independent random variables
with EYi = 0 and ∑n

i=1 EY 2
i = 1. Then for W = ∑n

i=1 Yi it holds that

ρK
(
PW ,N(0,1)

)
= sup

x∈R

∣∣P(W ≤ x)−Φ(x)
∣∣ ≤ 4.1

n

∑
i=1

Emin(Y 2
i , |Yi|3),

where Φ : R → [0,1] denotes the distribution function of the standard normal dis-
tribution.

Proof. See [69], Theorem 2.1.
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1.3 Approximation by General Distributions

The fundamental ideas employed in Sect. 1.2 for the normal approximation of a
sum of random variables can be put to use in almost arbitrary generality. Suppose
that on some measurable space S we would like to approximate a distribution P
by a reasonably nice distribution Q in terms of a probability metric ρ . The present
section describes abstractly the main ingredients of Stein’s method to go about such
an approximation.

1.3.1 The Key Steps of Stein’s Method

Let P and Q be probability measures on a measurable space S. We assume that Q
is a “distinguished” probability measure that is typically more tractable than the
measure P. We will also refer to Q as the approximating measure. Let furthermore
F be the class of “test functions” that we build our probability metric on, such as
indicators, or Lipschitz functions if S is a metric space.

Our goal is to find an upper bound for

ρ(P,Q) = sup
f∈F

∣∣∣∣
∫

f dP−
∫

f dQ
∣∣∣∣.

By definition ρ is at least a pseudometric. Typically we want the class F to be rich
enough so that it is a metric, i.e. that also ρ(P,Q) = 0 implies P = Q.

We first present an overview of the general procedure suggested by Stein’s
method for attaining this goal, before discussing the individual steps in more de-
tail.

1. Set up the Stein equation. For f ∈ F , write

f (x)−
∫

f dQ = A g(x), (1.11)

where A is an operator on a space of functions g : S→ R that characterizes
the distribution Q in the sense that Z∗ ∼Q if and only if EA g(Z∗) = 0 for “all”
functions g.

2. Solve the Stein equation. Given f , find g f that satisfies (1.11).

3. Bound the right-hand side.

(a) Find bounds on differences/derivatives of g f . These depend on Q, but not
on P. So these bounds will be useful for approximation by the measure Q in
general.
(b) Bound

∣∣∫ A g(x)P(dx)
∣∣. This is based on the results from (a). It is only here

that more specific knowledge about P enters.
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This recipe has been applied to many approximating distributions Q, such as
the Poisson, compound Poisson, binomial, hypergeometric, negative binomial (in-
cluding geometric), discrete Gibbs, normal, gamma (including χ2 and exponential),
beta, multivariate normal, Poisson process, compound Poisson process, Gibbs pro-
cess, and Wiener process distributions.

The following are a few examples of successful Stein operators for various dis-
tributions Q:

Pois(λ ) A g( j) = λg( j+1)− jg( j), j ∈ Z+

NBinom(r, p) A g( j) = (r+ j)(1− p)g( j+1)− jg( j), j ∈ Z+

N(μ,σ2) A g(x) = σ2g′(x)− (x−μ)g(x), x ∈ R

Gamma(a,λ ) A g(x) = xg′(x)+(a−λx)g(x), x ∈ R+

All these distributions have the characterizing property described in step 1 of the
recipe. The negative binomial distribution is parametrized here such that X ∼
NBinom(r, p) is a random variable on Z+ with P(X = k) =

(k+r−1
k

)
pr(1− p)k for

every k ∈ Z+, i.e. if r is an integer, X describes the number of failures before the
r-th success in a Bernoulli experiment with success probability p.

But how do we find a good Stein operator? Originally such operators were found
by careful study of the approximating distribution Q. However it is much more
appealing to have a general recipe also for obtaining a proposal for a Stein operator.
In [376] it is suggested, if Q is a distribution on R with a density q that satisfies
certain conditions and in particular has itself a derivative q′, then we may use

A g(x) = g′(x)+
q′(x)
q(x)

g(x) (1.12)

as a promising operator. This has become known as the density approach and may
to some degree be extended to more general distributions Q. For example if Q is a
distribution on Z with probability mass function q we may consider analogously

A g( j) = g( j+1)−g( j)+
q( j)−q( j−1)

q( j)
g( j) = g( j+1)− q( j−1)

q( j)
g( j). (1.13)

We sweep problems of division by zero under the rug here. The above proposal
works directly if there exists a j0 ∈ Z such that q( j)> 0 for every j ≥ j0 and we set
0/0 = 0.

Exercise 1.3. Show that equivalent forms of the four Stein operators above may
be obtained by (1.12) and (1.13). Hint: For NBinom(r, p) plug in the transformed
function g( j) = ( j + r− 1)g̃( j) in (1.13); for Gamma(a,λ ) plug in g(x) = xg̃(x)
in (1.12).

For approximation problems on more complicated spaces the density approach
is usually not applicable or at least less clear-cut. We therefore concentrate in what
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follows on a somewhat less automatic, but much more universal method, which may
yield a useful Stein operator for virtually any approximating distribution Q. This
technique has been dubbed the generator approach for reasons that will become
obvious in a moment.

1.3.2 The Generator Approach

Barbour’s generator approach [26] suggests to use as the operator A in step 1 of
our recipe the infinitesimal generator G of a Markov process Z that has Q as its
stationary initial distribution. We recall here just the basic definitions of continuous-
time Markov process theory, which is all that will be needed later on, avoiding
any discussion of technical problems. For more comprehensive treatments, see the
standard reference [115] or the introduction [255].

It is generally assumed that S is a complete, separable metric space equipped
with its Borel σ -algebra B(S).
Definition 1.1. Let Z = {Z(t), t ≥ 0} be an S-valued stochastic process.

(a) Z is called a (time-homogeneous) Markov process if

P
(
Z(t + r) ∈ A

∣∣ {Z(s), s≤ t})= P
(
Z(t + r) ∈ A

∣∣ Z(t)
)
= P

(
Z(r) ∈ A

∣∣ Z(0)
)

for all t,r ≥ 0 and all A ∈ B(S). We refer to PZ(0) as the initial distribution of
the process.

(b) If Z is a Markov process, its infinitesimal generator is defined as the functional
G : dom(G )→ R

S given by

G h(x)=
d
dt

[
E
(
h(Z(t))

∣∣Z(0)= x
)]

t=0
= lim

t→0

1
t

(
E
(
h(Z(t))

∣∣Z(0)= x
)−h(x)

)
,

where dom(G ) consists of all h : S→ R for which the limit above exists.
(c) If Z is a Markov process, a stationary distribution Q is defined as any probability

distribution on S for which
∫
S

P
(
Z(r) ∈ A

∣∣ Z(0) = x
)

Q(dx) = Q(A)

for all r ≥ 0 and all A ∈ B(S).
Intuitively for a Markov process the distribution of its future path depends just

on the present state, regardless of any of its past or of the time on the clock. Hence,
technicalities aside, it is just a continuous-time analogue of a discrete-time Markov
chain. The generator describes the stochastic evolution of the Markov process in
an “infinitesimal time step”. The stationary distribution is such that, if chosen as
initial distribution of the process, it is maintained for all times. Under very general
conditions the stationary distribution Q may be characterized by
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∫
S
G h(x) Q(dx) = 0 (1.14)

for “enough” functions h : S→ R; see Theorem 9.2 in Chap. 4 of [115]. Intuitively
this makes good sense, as it means that under the stationary distribution there is no
stochastic evolution. Note that (1.14) is exactly the property required for our Stein
operator A with respect to the approximating distribution Q. The reason why the
functions are now called h instead of g will become clear in the examples.

Example 1.1 (Normal approximation). Let Z be an Ornstein–Uhlenbeck process,
more precisely the solution of the stochastic differential equation

Z(t) =−Z(t)dt +
√

2dB(t),

which can be roughly thought of as a Brownian motion {B(t), t ≥ 0} with a pull
towards the origin. It is well known that N(0,1) is the stationary distribution of this
process. Its generator G is given by

G h(x) = h′′(x)− xh′(x),

which is exactly our usual Stein operator for the normal distribution, but with g
replaced by h′.

Example 1.2 (Pois(λ )-approximation). Let Z be an immigration-death process
with immigration rate λ > 0 and unit-per-capita death rate. This is a pure-jump
Markov process on Z+ whose evolution may be described as follows. Given Z(t)= j
(“there are j individuals at time t”), the process stays in the state j for an Exp(λ+ j)-
distributed time, after which it jumps to j+1 with probability λ/(λ+ j) (“an immi-
gration occurs”) or it jumps to j−1 with probability j/(λ + j) (“a death occurs”).
This process has Pois(λ ) as its stationary distribution; see Sect. 6.11 in [153]. Its
generator is

G h( j) = λ
[
h( j+1)−h( j)

]
+ j

[
h( j−1)−h( j)

]
.

If we write g( j) = h( j)−h( j−1) for j ≥ 1, we have exactly our Stein operator for
the Poisson distribution from Sect. 1.3.1, i.e. A g( j) = λg( j+1)− jg( j).

Like in these examples, the generator approach often yields an interesting can-
didate for the operator A needed for step 1 of our recipe. If we use this operator,
we also have a default form for the solution of the corresponding Stein equation, as
required for step 2. Denote by Zx = {Zx(t), t ≥ 0} an arbitrary Markov process with
generator G that is started in state x, meaning Z(0) = x almost surely.

Proposition 1.1. Choose A = G as the Stein operator and let the function f : S→
R be such that

ϑ : R+→ R, t �→ E f (Zx(t))

is continuous at 0 for every x. Suppose that the function h f : S→ R given by
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h f (x) =−
∫ ∞

0

[
E f (Zx(t))−E f (Z∗)

]
dt,

where Z∗ ∼ Q, is well-defined. Then h f solves the Stein equation

f (x)−
∫

f dQ = A h(x). (1.15)

Proof. Writing μ(s)
x for the distribution of Zx(s), we can compute the expectation

of the random variable Y = E( f (Z(t))
∣∣ Z(0) = ·)◦Zx(s) by the Markov property as

EY =
∫
S

E
(

f (Z(t))
∣∣ Z(0) = z

)
μ(s)

x (dz)

=
∫
S

E
(

f (Zx(s+ t))
∣∣ Zx(s) = z

)
μ(s)

x (dz)

= E f (Zx(s+ t)).

Hence

1
s

(
Eh f (Zx(s))−h f (x)

)
=

1
s

(
−
∫ ∞

0

[
E f (Zx(s+ t))−E f (Z∗)

]
dt

+
∫ ∞

0

[
E f (Zx(t))−E f (Z∗)

]
dt
)

=
1
s

∫ s

0

[
E f (Zx(v))−E f (Z∗)

]
dv

= f (x)−E f (Z∗)+
1
s

∫ s

0

[
E f (Zx(v))− f (x)

]
dv,

substituting v = s+ t for the second equality. Note that the well-definedness of h f
guarantees that all of the above integrals exist. Letting s→ 0 on both sides yields

G h(x) = f (x)−E f (Z∗)

as required.

Whether the function h f is well-defined depends only on the speed of the con-
vergence E f (Zx(t))→ E f (Z∗) as t → ∞. If the space S is not too complicated a
promising strategy both for proving well-definedness of h f and for bounding differ-
ence terms of h f (following step 3(a) of the recipe) is by constructing a “rapid” cou-
pling (Zx,Zy) of two Markov processes Zx and Zy with generator G started in states
x and y, respectively. This coupling strategy is demonstrated in detail in Sect. 1.5.1.

From here on many further ramifications of Stein’s method will depend on more
detailed knowledge about the space S and the approximating distribution Q. For the
rest of this chapter we therefore focus on the special case where S= N̄ is the set of
finite point patterns on a compact subset of Rd , and Q is typically a Poisson process
distribution.
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Step 3 of our general recipe is only demonstrated in this setting, because it of-
fers a nice structure and has been rather well studied in the literature. Nevertheless
it should be stressed that there is no fundamental obstacle in sight to developing
Stein’s method also for obtaining distance bounds between distributions of more
complicated random geometric objects such as line processes, random tesselations,
or germ-grain models.

1.4 Point Processes

From now on we consider for S the space (N̄ ,N̄) of finite counting measures (“point
patterns”) on a compact metric space (W,ρ0), where N̄ is the canonical σ -algebra
generated by the sets {ψ ∈ N : ψ(A) = n} for all n ∈ Z+ and A ∈ B. Here B de-
notes the family of Borel sets on W . In what follows we always take W ⊂ R

d with
non-empty interior, and use Lebesgue measure whenever a reference measure is re-
quired. All the results hold in the more general setting and for an arbitrary reference
measure, with the proviso that for some purposes this measure has to be diffuse.

Unlike in many other treatments on spatial statistics, we allow for the possibility
of multipoints at a single location in W . We may write any element ψ ∈ N̄ in the
formψ =∑n

i=1 δxi where n∈Z+ and x1, . . . ,xn ∈W may contain repeats. If x1, . . . ,xn
are pairwise different we speak of a simple point pattern and tacitly identify ψ with
the set {x1, . . . ,xn}. Denote byN the subset of N̄ of simple point patterns. Working
with the space N̄ has the major technical advantage that by the compactness of
W the vague and the weak topology commonly considered on spaces of measures
coincide and N̄ is complete in this topology, which we simply denote by T .

A point process Ψ is just a random element of N̄ . We call Ψ simple if P(Ψ ∈
N ) = 1. For a simple point process we ignore the null set N̄ \N as long as only
distributional properties are concerned. Thus we use notation like {X1, . . . ,XN} for
the random set of its points.

We briefly summarize some basic concepts about point processes and present
some important models. Note the much more detailed treatment of these materials
in the previous volume [373] of these lecture notes, see e.g. Chap. 3 of [373]. We
start with a concept that is an analogue to the expectation of a real-valued random
variable.

Definition 1.2. LetΨ be a point process on W . The measure Λ = EΨ on W that is
given by Λ(A) = EΨ(A) for every A ∈ B is called the expectation measure of Ψ .
If it is finite, we say the expectation measure exists. If it exists and has a density
λ : W → R+, we call λ the intensity (function) ofΨ .

The Poisson process is arguably the most important point process model, al-
though not necessarily the most interesting one. Its high degree of independence
allows for many explicit computations and makes it an ideal null model against
which we may test if a given point pattern has any dependence structure. It is fur-
thermore the basic building block from which we may construct by one or the other
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technique a large number of much more complicated point-process models; see [21],
Sect. 3.1.4. One such technique is by defining a density with respect to a Poisson
process, leading to the important class of Gibbs processes.

Definition 1.3. (a) Let Λ be a finite measure on W . A Poisson process Π =ΠΛ on
W with expectation measureΛ is characterized by the following two properties.

1. ΠΛ (A)∼ Pois(Λ(A)) for every A ∈ B;
2. ΠΛ (A1),ΠΛ (A2), . . . ,ΠΛ (Ak) are independent for disjoint A1, . . . ,Ak ∈ B.

We denote the distribution of ΠΛ by πΛ . If Λ has a density λ , we may also
write Πλ and πλ . In particular π1 denotes the distribution of the Poisson pro-
cess whose expectation measure is Lebesgue measure νd . Such a process can be
obtained by scattering a Pois(νd(W )) number of points uniformly and indepen-
dently over W . It is therefore simple. We often use π1 as a reference measure on
N .

(b) A point processΨ on W is called a Gibbs process if it has a density u :N →R+

with respect to π1 that is hereditary in the sense that u(ψ) = 0 implies u(ϕ) = 0
whenever ψ ⊂ ϕ .

(c) A Gibbs process is called a pairwise interaction process if its density is of the
form

u(ψ) = α
(

∏
x∈ψ

ϑ1(x)
)(

∏
{x,y}⊂ψ

ϑ2(x,y)
)

for ϑ1 : W →R+ and symmetric ϑ2 : W×W →R+, where α > 0 is a normaliz-
ing constant. We refer to ϑ1 as the activity function and to ϑ2 as the (pairwise)
interaction function.

Sect. 3.1.5 in [21] discusses various concrete Gibbs process models in detail,
many of which are pairwise interaction processes. One of the most elementary mod-
els is the stationary Strauss process, where

ϑ1(x) = β , ϑ2(x,y) =

{
γ if ‖x− y‖ ≤ R,
1 otherwise,

with parameters β ,R > 0 and γ ∈ [0,1]. See Figs. 3.20 and 3.21 in [21] for some
realizations. For this as for most other processes the normalizing constant α cannot
be calculated explicitly.

For Gibbs processes we can define a very appealing descriptive function.

Definition 1.4. LetΨ be a Gibbs process on W with density u. We call the function
β ∗ : W ×N → R+, which is given by

β ∗(x;ψ) =
u(ψ+δx)

u(ψ)
,

the conditional intensity (function) ofΨ , where we put 0/0 = 0.
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In fact the conditional intensity characterizes the Gibbs process distribution, as
it is possible to recover from β ∗ the density u recursively at larger and larger point
patterns ψ . Intuitively β ∗(x;ψ) may be interpreted as the intensity at x (“expected
number of points in an infinitesimal ball around x”) given Ψ is equal to ψ every-
where else.

The conditional intensity β ∗ satisfies the Georgii–Nguyen–Zessin equation,

E

(∫
W

h(x,Ψ −δx)Ψ(dx)
)
=

∫
W

E
(
h(x,Ψ)β ∗(x;Ψ)

)
dx (1.16)

for every measurable h : W ×N → R+. This equation may be thought of as the
Swiss Army knife of point process statistics. We make vital use of it in the sequel.

For the Strauss process above we obtain β ∗(x;ψ) = βγψ(BR(x)), where BR(x)
denotes the closed ball in R

d with centre at x ∈ R
d and radius R > 0. Note that for

any Gibbs process the unpleasant normalizing constant α in the density u cancels,
and the conditional intensity β ∗ is then usually known explicitly.

1.4.1 Distances between Point Patterns

In order to study distributional approximation for point processes, we need a metric
between probability measures on N̄ . We may always use the total variation metric
on any measurable space S, but especially on complicated spaces it may be very
strong and sometimes too strong to be useful. Often a better choice, if there is a
reasonable metric structure on S, is the bounded Wasserstein metric. It will give
a smaller approximation error while exactly metrizing convergence in distribution,
and it captures the underlying topological structure of the state space.

This raises the question what might be an appropriate metric on N̄ . Among var-
ious possibilities proposed in the literature, we concentrate here on the metric in-
troduced in [357]. On the one hand this metric has the very desirable property that
it metrizes the topology T , and on the other hand it reflects well human intuition
about how similar or distinct two point patterns are. The second point is especially
important for statistical applications, two of which are presented in Sect. 1.4.2 be-
low.

We denote by Σn the set of permutations of {1,2, . . . ,n} and choose for c > 0 any
upper bound on diam(W ). For two point patterns ψ,ϕ ∈ N̄ with representations
ψ = ∑m

i=1 δxi and ϕ = ∑n
i=1 δyi , where max(1,m)≤ n, we set

ρ1(ψ,ϕ) =
1
n

(
min
σ∈Σn

m

∑
i=1
ρ0(xi,yσ(i))+ c(n−m)

)
. (1.17)

This is readily extended to a metric on N̄ by symmetrizing and setting ρ1( /0, /0) to
zero.
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In words, the ρ1-distance is obtained by pairing the points of the smaller point
pattern with an equally sized subpattern of the larger point pattern in such a way
that the average pairing distance in terms of ρ0 is minimal. The actual ρ1-distance is
then the average over all pairing distances including a penalty of c for each unpaired
point. See Fig. 1.1 for an evident and a less evident example of such pairings in the
case where ρ0 is the Euclidean metric.

Exercise 1.4. Prove the following statement that is nicely illustrated in the right-
hand panel of Fig. 1.1. Suppose that ψ and ϕ are point patterns in W ⊂ R

2 that are
jointly in general position, i.e. there is no straight line in R

2 passing through more
than two points at once. Furthermore take ρ0 to be the Euclidean metric. Then the
lines connecting the points of ψ to the points of ϕ in an optimal ρ1-pairing do not
cross.

Fig. 1.1 The point pairing underlying the ρ1-metric. Left: Two small point patterns with 7 and 8
points; right: two larger point patterns with 250 and 280 points.

An important feature is the fact that an optimal pairing of two point patterns can
be found efficiently. First we can get rid of the second summand in (1.17) by adding
an element to the space W that is at distance c from all the locations in W . Let
W̃ =W ∪{x∞}, where x∞ is an arbitrary element not contained in W , and extend ρ0
by setting ρ0(x,x∞) = c for every x ∈W . Note that the extended ρ0 is still a metric.
We then replace the smaller point pattern ψ in (1.17) by ψ̃ =ψ+(n−m)δx∞ , so that
it has the same number of points as ϕ and the n−m new points can only be paired
at distance c. Any pairing of the points of ψ with a subpattern of ϕ corresponds to a
full pairing between ψ̃ and ϕ in the sense that the total costs of the pairings are the
same. Therefore also ρ1(ψ,ϕ) = ρ1(ψ̃,ϕ).

The problem of finding an optimal pairing between ψ̃ and ϕ is the classical as-
signment problem from operations research: Given n workers, n tasks and a matrix
C = (ci j)1≤i, j≤n, where ci j ≥ 0 is the cost incurred for assigning worker i to task
j, find a 1-1 assignment σ ∈ Σn (the set of permutations defined above) of work-
ers to tasks that minimizes the total cost ∑n

i=1 ci,σ(i). A first algorithm that solves
this problem in polynomial time was already given in 1865 in a posthumously pub-
lished article by Carl Gustav Jacobi [182], where the problem arose in the context
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of determining the order of a system of differential equations. However, when faced
with the assignment problem in the economical context, people where unaware of
the previous work, and a solution in polynomial time was rediscovered in [238]
and called the Hungarian method to acknowledge the contribution of the Hungarian
mathematicians Kőnig and Egerváry. The Hungarian method was later improved to
a time complexity of O(n3) independently in [110] and [396]. A presentation of this
method is beyond the scope of these lecture notes, but detailed descriptions can be
found in many books on linear programming or combinatorial optimization, see e.g.
[309], Sect. 11.2.

The readers may experiment for themselves with point pairings and ρ1-distance
computations by using the function pppdist in the package spatstat [19] con-
tributed to the statistical computing environment R [323]. In fact not only the order
of complexity, but also real computation times are reasonably low. E.g. finding the
pairing in the right-hand panel of Fig. 1.1 required slightly less than a second on a
reasonably modern laptop.

1.4.2 Statistical Applications of Distances between Point Patterns

Modern statistics often studies data that is most fruitfully thought of as elements in
a more complex space than just R or R

d , including functional data, shape data,
or structural data. The present lecture notes volume gives numerous examples.
Analysing such data can be very challenging as there are many modelling choices
and simplifications to be made, and a good compromise between the physical reality
(of which our knowledge may be very limited) and the computational feasibility of
the problem is not always easy to find.

In this section we take a rather minimalistic approach by saying that if our data
space has a reasonable metric, i.e. one that reflects well an intuitive concept by
which we would like to group or separate their elements in view of the statistical
problem at hand, then there is a number of methods which we may try and which
should do reasonably well.

In what follows we give two applications for the metric space (N̄ ,ρ1). Tradition-
ally in point process statistics there is just one data point pattern. Several examples
for this situation can be found e.g. in [21]. However, recent technological advances,
such as in medical imaging or destructive and non-destructive sampling in materials
science, produce an increasing amount of multi-observation point patterns. These in-
clude independent replicates of a single point process, groups of independent repli-
cates stemming from several point processes, or realizations from a point process
that depends on a covariate, possibly time.

Our first application uses simulated point patterns that could have been obtained
as the result of a medical screening procedure (or of a sampling technique in ma-
terials science). The task is to distinguish between “healthy” and “pathological”
samples. The second application uses image data from a real ant colony. The task is
to learn something about the collective activity pattern in the colony.
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1.4.2.1 Discrimination and Classification in Medical Testing

Suppose that we have point pattern data from two groups of patients. Such data may
for example give the positions of cells of a certain type in tissue samples of some
organ. For simplicity we just refer to one group as “healthy tissue” and the other
group as “pathological tissue”.

Fig. 1.2 gives a simulated example of such data on W = [0,1]2, which we will
study further. The healthy tissue in the first row has been generated from a stationary
Poisson process with intensity λh(x,y) = 30, the pathological tissue in the second
row from a Poisson process with intensity λp(x,y) = 45e−1.5x/(1− e−1.5). Both
processes have the same expected number of points in W = [0,1]2. Note that it is
not so easy to spot the difference between the two rows by eye.

Fig. 1.2 Simulated data for cells in “healthy tissue” (top row) and in “pathological tissue” (bottom
row). See text for simulation details.

We start with a permutation test for the discrimination of the pathological from
the healthy tissue. There are several statistics that perform well for such a test. De-
noting the healthy sample by ψ1, . . . ,ψm and the pathological sample by ϕ1, . . . ,ϕn,
we use

T = T (ψ1, . . . ,ψm;ϕ1, . . . ,ϕn)

=
1

mn

m

∑
i=1

n

∑
j=1
ρ1(ψi,ϕ j)

− 1
m(m−1) ∑

1≤i< j≤m
ρ1(ψi,ψ j)− 1

n(n−1) ∑
1≤i< j≤n

ρ1(ϕi,ϕ j),

which is in the same spirit as the statistic studied in [28] for two samples in R
d . We

base the ρ1-metric now on the metric ρ0(x,y) = min(‖x− y‖,0.3), and the penalty
c for extra points is correspondingly set to 0.3. This is rather arbitrary, but reflects
our vague idea that in an optimal pairing with about 30 points in each pattern the
pairing distances are typically still below 0.3.

Since we have only 10 patterns in each group, we can easily compute a de-
terministic p-value by finding the rank r of the observed value of T among the(20

10

)/
2 = 92,378 total values obtained by pooling the 20 patterns in Fig. 1.2, re-

splitting them into two groups of 10, and computing T based on the new split. Note
that the distance matrix between the point patterns has to be computed only once.
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For much larger samples of point patterns we may still proceed by taking a random
(uniform) subsample of all possible splits. This still yields an exact p-value, but one
that is random, as it depends on the concrete subsample picked. In any case the
p-value is given by

ϑ +2− r
ϑ +1

,

where ϑ is the number of other splits considered (in our case 92,377). For the above
data we obtain a p-value of 0.00296, so we have quite a clear discrimination of the
healthy from the pathological group.

We next turn to the classification problem. We use the data shown in Fig. 1.2 as
our training data, for which we know the true group membership. Suppose that we
would like to assign new tissue samples reliably either to one or the other group.
In a real medical context it might be the case that there is an invasive procedure
that can decide for sure if the patient has a certain disease or not, and on which our
knowledge of the group membership in the training data is based. Our goal might
be to create a rapid test based solely on some imaging procedure.

Since we have a reasonable metric, a natural approach is k-nearest neighbour
classification. This simply means that faced with a new point pattern we compute
the ρ1-metric to all of the training patterns. Then we determine the k closest patterns
and do a majority vote among them to decide which group we assign it to. To avoid
ties we only consider odd values of k.

Table 1.1 Misclassification rates for various choices of k.
1 3 5 7 9 11 13 15

total rate 0.279 0.246 0.242 0.225 0.210 0.204 0.210 0.218
false positive rate 0.190 0.150 0.153 0.155 0.150 0.151 0.160 0.175
false negative rate 0.089 0.096 0.089 0.070 0.060 0.053 0.050 0.043

Table 1.1 gives the misclassification rates for various values of k based on 1000
test samples, each generated with probability 1/2 from the healthy or pathological
population. In practical applications, where we cannot afford a reasonably large test
set, we may for example proceed by cross-validation in order to determine a good
value of k.

1.4.2.2 Activity in an Ant Colony

In this example real data is considered. A whole colony of ants of the species Tem-
nothorax albipennis has been placed in an artificial nest between two glass plates
seperated by pieces of cardboard. The nest dimensions were 45× 30× 1 mm, with
an entrance so that the ants were able to leave and re-enter the nest at will. Pho-
tographs were taken at 5 minute intervals over the course of about 19 hours, from
which the positions of the adult worker ants were converted to point pattern data.
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Fig. 1.3 shows a short sequence of 1.5 hours from the data set. The experiment was
carried out by Thomas Richardson at the Bristol Ant Lab, under the supervision of
Ana Sendova-Franks. More details and various analyses conducted with this and
similar data sets can be found in [331].

Fig. 1.3 A sequence of 18 point patterns of worker ants recorded at 5 minute intervals (by row).

Our main goal here is to demonstrate that the ρ1-metric is an interesting tool for
measuring overall activity in the ant colony. A natural measurement for this activity
is the sum (or the average) of the velocities of the individual ants. We cannot track
individual ants in our data set, because they have not been marked in the real world,
but we may still compute the ρ1-distance between subsequent pictures, hoping that
this gives a reasonable approximation of this sum. For the ρ0-metric we choose a
sensibly cut off Euclidean metric again.

The plot of the ρ1-distances as a function of the time in hours is given in
Fig. 1.4. We see an interesting oscillating activity pattern that is known from other
ant species, but is usually visible only with data recorded at much higher temporal
(and sometimes also spatial) resolutions. Fig. 1.5 gives a slightly smoothed peri-
odogram suggesting a period of about 50-70 minutes (corresponding to the dotted
lines) for the main oscillation.

Note that a time gap of 5 minutes between subsequent point patterns is rather
large, and we cannot hope that the point pairings found as part of the ρ1-distance
computation will allow us to track individual ants with any reliability. This, however,
would be another interesting application of the ρ1-distance in the case of unmarked
ant data recorded at higher time resolutions.

1.4.3 Distances between Point Process Distributions

We define the total variation metric between the distributions of point processesΨ
and Φ in the analogous way as for distributions on R, namely as
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Fig. 1.4 Overall activity in the ant colony as determined by the ρ1-distance between subsequent
point patterns. The x-axis is in hours; the grey vertical lines mark the time window from which the
sequence in Fig. 1.3 was taken.

Fig. 1.5 Periodogram of the time series in Fig. 1.4 with vertical lines at 50 and 70 minutes.

ρTV (PΨ ,PΦ) = sup
A∈N̄
|P(Ψ ∈ A)−P(Φ ∈ A)|

= sup
f∈F∗
|E f (Ψ)−E f (Φ)|, (1.18)

where F∗ denotes the set of all measurable functions f : W → [0,1]. The second
equality follows by a standard extension argument.

We base the definition of the Wasserstein metric on the metric ρ1 introduced in
Sect. 1.4.1. For the simplicity of presentation we assume that ρ0 ≤ 1, which may
always be arranged by scaling the problem, and set the penalty parameter c = 1.
Then

ρW (PΨ ,PΦ) = sup
f∈F̄W

|E f (Ψ)−E f (Φ)|

= sup
f∈F̄BW

|E f (Ψ)−E f (Φ)|,

where F̄W =
{

f : N̄ → R ; | f (ψ)− f (ϕ)| ≤ ρ1(ψ,ϕ) for ψ,ϕ ∈ N̄}
and F̄BW ={

f ∈ F̄W ; f (N̄ )⊂ [0,1]
}

. The second equality follows from the fact that ρ1≤ c= 1.
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Since F̄BW ⊂ F∗, we have ρW ≤ ρTV . Furthermore, since ρ1 metrizes the topol-
ogy T on N̄ and since ρW can be interpreted as the bounded Wasserstein metric with
respect to ρ1, it follows by Theorem 11.3.3 in [107] that ρW metrizes convergence
in distribution of point processes.

An upper bound on the Wasserstein distance ρW (PΨ ,PΦ) gives us control over
expressions of the form 1

� |E f (Ψ)−E f (Φ)| for ρ1-Lipschitz continuous functions
f with an arbitrary Lipschitz constant �. Such functions include the average nearest
neighbour distance

f (ψ) =
1
n

n

∑
i=1

min
j �=i

ρ0(xi,x j)

for ψ = ∑n
i=1 δxi and the average edge length of the minimum spanning tree

f (ψ) = min
(V,E) tree

V=ψ

1
|E| ∑
{x,y}∈E

ρ0(x,y),

where the minimum is taken over all trees with vertex set V = ψ and |E| denotes
the cardinality of the edge set E; see [357], Sect. 3, for further examples.

A bound on the total variation distance on the other hand gives us control over
all expressions of the form |E f (Ψ)−E f (Φ)|, and in particular over |P(Ψ ∈ A)−
P(Φ ∈ A)|. This, however, comes at the price that the total variation distance may
be very large, and sometimes too large to be useful. For example if we approximate
a point process Ψ on a grid G ⊂W by a continuous point process Φ , we always
have ρTV (PΨ ,PΦ)≥ P(Φ �= /0), no matter how fine the grid gets.

Exercise 1.5. Show the following more general result. Suppose that Ψ and Φ are
point processes, and there is a set G ∈ B such that P(Ψ(Gc)> 0) = P(Φ(G)> 0) =
0. Then ρTV (PΨ ,PΦ) = max

(
P(Ψ �= /0),P(Φ �= /0)

)
.

1.5 Poisson Process Approximation of Point Process

Distributions

In this section we derive some concrete upper bounds using the general procedures
presented in Sect. 1.3 for the case S = N̄ and Q = π = πΛ , i.e. the default ran-
dom element Z∗ is Π =ΠΛ . Note however that the emphasis remains on presenting
techniques rather than results. More detailed upper bounds for Poisson process ap-
proximation can be found in [27, 70, 355, 357, 421].

Write ρ for either of the metrics ρTV or ρW between point process distributions.
We are interested then in bounding ρ(PΨ ,πΛ ) for some finite measure Λ . Denote
the total mass of any finite measure by absolute value bars, thus |Λ | = Λ(W ) and
likewise |ψ| = ψ(W ). For setting up the Stein equation (1.15) via the generator
approach we choose
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A h(ψ) =
∫

W

[
h(ψ+δx)−h(ψ)

]
Λ(dx)+

∫
W

[
h(ψ−δx)−h(ψ)

]
ψ(dx), (1.19)

which is the generator of a spatial immigration-death process on W with immigra-
tion measure Λ and unit per-capita death rate. This is a pure-jump Markov pro-
cess on N̄ that is a natural generalization of the immigration-death process used
for approximation by a Poisson random variable on Z+ in Sect. 1.3.2. Such a pro-
cess evolves as follows. Given it is at ψ ∈ N̄ it stays there for an Exp(|Λ |+ |ψ|)-
distributed time, after which a point is added to it with probability |Λ |/(|Λ |+ |ψ|)
or removed with probability |ψ|/(|Λ |+ |ψ |). If added, the position of the point fol-
lows the distribution Λ/|Λ |; if removed, the point is chosen uniformly at random
from all the points in ψ .

If the measure Λ has a density λ , we obtain immediately by the Georgii–
Nguyen–Zessin equation and the fact that for a πλ -process the conditional intensity
is β ∗(·;ψ) = λ (see (1.16), Example 3.9 in [21]) that EA h(ΠΛ ) = 0. By (1.14) this
is equivalent to πλ being the stationary distribution of the spatial immigration–death
process above.

1.5.1 The Coupling Strategy

We are now ready to present the coupling strategy announced at the end of Sect. 1.3.
Its key idea is to find a general method for coupling two copies of the “characteriz-
ing” Markov process started at different states in such a way that they will meet “as
soon as possible”.

For the spatial immigration-death process such couplings are quite natural by
virtue of the following lemma; see [421], Proposition 3.5, for a proof.

Lemma 1.4. The immigration-death process Zψ = {Zψ(t), t ≥ 0} with immigration
measure Λ and unit per-capita death rate started at ψ = ∑n

i=1 δxi can be decom-
posed as

Zψ(t)
D
= Z /0(t)+Dψ(t), (1.20)

where Z /0 = {Z /0(t), t ≥ 0} is an immigration-death process started at the empty
point pattern, and Dψ = {Dψ(t), t ≥ 0} is a pure-death process started at ψ
that is independent of Z /0. Moreover, it can be shown that Z /0(t) is a Poisson pro-
cess with expectation measure (1− e−t)Λ and that Dψ may be represented as
Dψ(t) = ∑n

i=1 1{Ui > t}δxi for independent standard exponentially distributed ran-
dom variables U1, . . . ,Un.

Suppose that ψ = ∑n
i=1 δxi , ϕ = ∑m

j=1 δy j , χ = ∑l
k=1 δzk ∈ N̄ , where ϕ and χ

are mutually singular, i.e. {y1, . . . ,ym} ∩ {z1, . . . ,zl} = /0. The goal is to couple
immigration-death processes started at ψ + ϕ and ψ + χ , respectively. We base
the construction on the process Zψ . Let V1, . . . ,Vm,W1, . . . ,Wl be i.i.d. Exp(1)-
distributed random variables that are independent of Zψ . We may then define
Zψ+ϕ(t) = Zψ(t)+∑m

j=1 1{Vj > t}δy j and Zψ+χ(t) = Zψ(t)+∑l
k=1 1{Wk > t}δzk .
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By Lemma 1.4 it can be seen that the two processes Zψ+ϕ and Zψ+χ have the right
distributions.

It is now easy to compute the distribution of their coupling time

τψ+ϕ,ψ+χ = inf{t > 0; Zψ+ϕ(t) = Zψ+χ(t)}.

Note that once the processes Zψ+ϕ and Zψ+χ have met, they will be equal for all
times.

Lemma 1.5. The coupling time τψ+ϕ,ψ+χ is independent of Zψ and has the same
distribution as ∑m+l

i=1 Ei, where E1, . . . ,Em+l are independent random variables with
Ei ∼ Exp(i). Its distribution function is given by F(t) = (1− e−t)m+l for t ≥ 0.

Proof. We have Zψ+ϕ(t) = Zψ+χ(t) if and only if by time t all the points of ϕ
and all the points of χ have died. Thus, writing Dϕ+χ(t) = ∑m

j=1 1{Vj > t}δy j +

∑l
k=1 1{Wk > t}δzk , we have

τψ+ϕ,ψ+χ = inf{t > 0; Dϕ+χ(t) = 0}.

By construction the lifetimes Vj and Wk are all independent of Zψ , so τψ+ϕ,ψ+χ is
independent of Zψ as well. Since Dϕ+χ is a pure-jump Markov process, the inter-
event times are independent and the time from the jump to i points until the jump
to i− 1 points is just the minimum of i standard exponentially distributed random
variables and hence Exp(i)-distributed. This yields the equality in distribution to
∑m+l

i=1 Ei. The distribution function is obtained as

F(t) = P(τψ+ϕ,ψ+χ ≤ t) = P(Vj ≤ t for all j, Wk ≤ t for all k)

=

( m

∏
j=1

P(Vj ≤ t)
)( l

∏
k=1

P(Wk ≤ t)
)
= (1− e−t)m+l ,

which completes the proof. �

We may now invoke Proposition 1.1 to find the solution to the Stein equa-
tion (1.15).

Proposition 1.2. Let A be given by (1.19) and let f : N̄ →R be bounded and mea-
surable. Then the function h f : N̄ → R given by

h f (ψ) =−
∫ ∞

0

[
E f (Zψ(t))−E f (Π)

]
dt

is well-defined and solves the Stein equation (1.15), i.e.

f (ψ)−E f (Π) = A h(ψ).

Proof. In order to show the well-definedness of h f , consider the coupling construc-
tion presented above for the immigration-death processes Zψ and Zπ , where the
latter is started with distribution π = πΛ , so that PZπ (t) = π for every t ≥ 0. Denote
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the corresponding coupling time by τψ,π . Writing |ψ| for the total number of points
in ψ , we have by Lemma 1.5 that Eτψ,ϕ ≤ |ψ |+ |ϕ| for any ϕ ∈ N̄ . Thus

Eτψ,π =
∫
N̄

Eτψ,ϕ π(dϕ)≤ E(|ψ|+ |Π |) = |ψ|+ |Λ |< ∞.

Hence
∫ ∞

0

∣∣E f (Zψ(t))−E f (Π)
∣∣ dt ≤

∫ ∞

0
E
∣∣ f (Zψ(t))− f (Zπ(t))

∣∣1{τψ,π > t} dt

≤ 2‖ f‖∞

∫ ∞

0
P(τψ,π > t) dt

= 2‖ f‖∞E(τψ,π)< ∞.

It remains to show that ϑ : R+→ R, t �→ E f (Zψ(t)) is continuous at 0 for every ψ .
Since Zψ is a pure-jump Markov process, we have P(Zψ(t) �= ψ) = O(t) as t → 0.
Thus

E f (Zψ(t)) = f (ψ)P(Zψ(t) = ψ)+E
(

f (Zψ(t))
∣∣ Zψ(t) �= ψ

)
P(Zψ(t) �= ψ)

= f (ψ)+O(t)

because f is bounded. Hence ϑ is continuous at 0 and Proposition 1.1 yields the
statement.

Next we proceed to step 3(a) of our general recipe stated in Sect. 1.3.1. We set-
tle for considering only the first differences of h f for functions f from the classes
underlying the metrics ρTV and ρW presented in Sect. 1.4.3.

Lemma 1.6. It holds that

Δh f = sup
ψ∈N̄ ,x∈W

|h f (ψ+δx)−h f (ψ)| ≤
⎧⎨
⎩

1 if f ∈ F∗,
min

(
1, log(|Λ |)+γ+e−|Λ |/|Λ |

|Λ |
)

if f ∈ F̄W ,

where γ ≈ 0.57722 is the Euler–Mascheroni constant.

Proof. Using the coupling introduced after Lemma 1.4 with ϕ = /0 and χ = δx, we
obtain for any f ∈ F∗ that

∣∣h f (ψ+δx)−h f (ψ)
∣∣

=

∣∣∣∣
∫ ∞

0

[
E f (Zψ+δx(t))−E f (Π)

]
dt−

∫ ∞

0

[
E f (Zψ(t))−E f (Π)

]
dt
∣∣∣∣

=

∣∣∣∣
∫ ∞

0
E
[

f (Zψ(t)+δx)− f (Zψ(t))
]

1{τψ,ψ+δx > t} dt
∣∣∣∣

=

∣∣∣∣
∫ ∞

0
e−t E

[
f (Zψ(t)+δx)− f (Zψ(t))

]
dt
∣∣∣∣

≤
∫ ∞

0
e−t = 1,
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where the third equality follows from Lemma 1.5. If f ∈ F̄W , we still have | f (ψ)−
f (ϕ)| ≤ c = 1 for all ψ,ϕ ∈ N̄ , and thus obtain the same bound as above. However,
we may proceed in a more subtle way and bound

∣∣E[ f (Zψ(t)+δx)− f (Zψ(t))
]∣∣= E

(
1

|Zψ(t)|+1

)

≤ E

(
1

|Z /0(t)|+1

)
=

1− exp(−|Λt |)
|Λt | ,

by Lemma 1.4, whereΛt = (1−e−t)Λ . Hence with the substitution s = |Λ |(1−e−t)
we obtain

∣∣h f (ψ+δx)−h f (ψ)
∣∣≤

∫ ∞

0
e−t 1− exp(−|Λt |)

|Λt | dt =
1
|Λ |

∫ |Λ |
0

1− e−s

s
ds.

It may now be seen by standard formulae, see [2], Items 5.1.39 and 5.1.19, that the
last integral is bounded by log(|Λ |)+ γ+ e−|Λ |/|Λ |.

1.5.2 Two Upper Bounds for Poisson Process Approximation

It remains to work out step 3(b) of our general recipe in Sect. 1.3.1. If we restrict
ourselves to the approximation of Gibbs processes, this step is straightforward. We
obtain the following theorem.

Theorem 1.4. LetΨ be a Gibbs process with conditional intensity β ∗, and let Λ be
a finite measure on W with density λ . Denote by ρ either ρTV or ρW . Then

ρ(PΨ ,πΛ )≤ c(Λ)
∫

W
E|β ∗(x;Ψ)−λ (x)| dx, (1.21)

where

c(Λ) =

⎧⎨
⎩

1 if ρ = ρTV ;

min
(

1, log(|Λ |)+γ+e−|Λ |/|Λ |
|Λ |

)
if ρ = ρW .

Proof. By the Georgii–Nguyen–Zessin equation (1.16) we obtain that
∣∣E f (Ψ)−E f (Π)

∣∣
=
∣∣EA h f (Ψ)

∣∣
=

∣∣∣∣E
∫

W

[
h f (Ψ +δx)−h f (Ψ)

]
Λ(dx)+E

∫
W

[
h f (Ψ −δx)−h f (Ψ)

]
Ψ(dx)

∣∣∣∣
=

∣∣∣∣E
∫

W

[
h f (Ψ +δx)−h f (Ψ)

]
(λ (x)−β ∗(x;Ψ)) dx

∣∣∣∣.
This implies that
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∣∣E f (Ψ)−E f (Π)
∣∣≤ Δh f

∫
W

E|β ∗(x;Ψ)−λ (x)| dx.

Thus the claim follows by Lemma 1.6.

Note that in Theorem 1.4 we make no assumption about the relation between
β ∗ and Λ . If Λ is the expectation measure ofΨ , the Georgii–Nguyen–Zessin equa-
tion (1.16) with h(x,ψ) = 1{x∈ A} yields thatΛ has the density λ (x) = Eβ ∗(x,Ψ).
So the right-hand side of (1.21) describes the variability of β ∗(x,Ψ).

We consider the special case whereΨ is a pairwise interaction process; see Def-
inition 1.3. For the sake of simplicity we restrict ourselves further to stationary in-
hibitory point processes.

Corollary 1.1. Suppose thatΨ is a stationary, inhibitory pairwise interaction pro-
cess, i.e. ϑ1(x) = β is constant and ϑ2(x,y) = ϑ2(x− y) ≤ 1 depends only on the
difference of the locations. Then, if Λ = βνd , it holds that

ρ(PΨ ,πΛ )≤ c(Λ)β E|Ψ |
∫
Rd
(1−ϑ2(z)) dz, (1.22)

where c(Λ) is the same quantity as in Theorem 1.4.

Proof. Denote again by β ∗ the conditional intensity of Ψ . For ψ = ∑n
i=1 δyi ∈ N

we have

|β ∗(x;ψ)−β |= β
∣∣∣∣

n

∏
i=1
ϑ2(x,yi)−1

∣∣∣∣
= β

∣∣∣∣
n

∑
j=1

( j

∏
i=1
ϑ2(x,yi)−

j−1

∏
i=1

ϑ2(x,yi)

)∣∣∣∣

= β
∣∣∣∣

n

∑
j=1

(
ϑ2(x,y j)−1

) j−1

∏
i=1

ϑ2(x,yi)

∣∣∣∣
≤ β

∫
W
(1−ϑ2(x,y)) ψ(dy),

since ϑ2 ≤ 1. It then follows by Theorem 1.4 that

ρ(PΨ ,πΛ )≤ c(Λ)
∫

W
E|β ∗(x;Ψ)−β | dx

≤ c(Λ)β
∫

W
E

(∫
W
(1−ϑ2(x,y))Ψ(dy)

)
dx

= c(Λ)β
∫

W

∫
W
(1−ϑ2(x,y)) (EΨ)(dy) dx

≤ c(Λ)β E|Ψ |
∫
RD

(1−ϑ2(z)) dz

using Campbell’s formula, i.e. E(
∫

g(y)Ψ(dy)) =
∫

g(y)(EΨ)(dy) and the transfor-
mation z = x− y.
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In general, in the upper bound given in (1.22) we cannot compute E|Ψ | explic-
itly. However, we may always bound it rather crudely by β . Also there are good
approximations to E|Ψ | ifΨ is still reasonably close to a Poisson process, see [18]
and [385].

1.6 Gibbs Process Approximation of Point Process Distributions

The abstract procedures for developing Stein’s method presented in the earlier sec-
tions are not limited to the very simple approximating distributions, although the
fact that such a distribution has many nice properties is of enormous help.

To hint at the possibilities in more complicated settings, we present a result for
the comparison of two pairwise interaction processes in the total variation metric
that generalizes Corollary 1.1 considerably. For simplicity we concentrate on the
situation where the approximating process Φ is in the “low activity, high tempera-
ture” regime. The latter terminology comes from statistical physics and means that
the constant ε given in (1.24) is reasonably small.

Even in this simpler case computing an upper bound on the first difference term
as we did in Lemma 1.6 becomes much more difficult, although it works along ex-
actly the same lines. The main difference is that the immigration-death process used
in Sect. 1.5.1 has to be replaced by a more general birth-death process, in which the
arrival of new points depends on the current point pattern. Correspondingly there
is no simple decomposition as in Lemma 1.4, so that the coupling has to be con-
structed in a more complicated way and the coupling time is much more difficult to
deal with.

For a detailed proof of the following and more general results about Gibbs pro-
cess approximation we refer to [356].

Theorem 1.5. Suppose thatΨ and Φ are both stationary, inhibitory pairwise inter-
action processes with activity β , and with interaction functions ϑ2(x,y) = ϑ2(x−
y)≤ 1 and ϑ̃2(x,y) = ϑ̃2(x− y)≤ 1, respectively. Then

ρTV (PΨ ,PΦ)≤ 1+ ε
ε

log
( 1

1− ε
)
β E|Ψ |

∫
RD
|ϑ2(z)− ϑ̃2(z)| dz, (1.23)

where
ε = β

∫
Rd
(1− ϑ̃2(z)) dz. (1.24)

For ε = 0 the upper bound in (1.23) is to be interpreted in the limit sense. Note
that limε↓0 1+ε

ε log
( 1

1−ε
)
= 1. So if Φ is a Poisson process with constant intensity

β , we have ϑ̃2 ≡ 1 and Theorem 1.5 is reduced to Corollary 1.1.
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Chapter 2

Clustering Comparison of Point Processes, with

Applications to Random Geometric Models

Abstract In this chapter we review some examples, methods, and recent results
involving comparison of clustering properties of point processes. Our approach is
founded on some basic observations allowing us to consider void probabilities and
moment measures as two complementary tools for capturing clustering phenomena
in point processes. As might be expected, smaller values of these characteristics in-
dicate less clustering. Also, various global and local functionals of random geomet-
ric models driven by point processes admit more or less explicit bounds involving
void probabilities and moment measures, thus aiding the study of impact of clus-
tering of the underlying point process. When stronger tools are needed, directional
convex ordering of point processes happens to be an appropriate choice, as well
as the notion of (positive or negative) association, when comparison to the Pois-
son point process is considered. We explain the relations between these tools and
provide examples of point processes admitting them. Furthermore, we sketch some
recent results obtained using the aforementioned comparison tools, regarding perco-
lation and coverage properties of the germ-grain model, the SINR model, subgraph
counts in random geometric graphs, and more generally, U-statistics of point pro-
cesses. We also mention some results on Betti numbers for Čech and Vietoris-Rips
random complexes generated by stationary point processes. A general observation
is that many of the results derived previously for the Poisson point process gen-
eralise to some “sub-Poisson” processes, defined as those clustering less than the
Poisson process in the sense of void probabilities and moment measures, negative
association or dcx-ordering.
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2.1 Introduction

On the one hand, various interesting methods have been developed for studying
local and global functionals of geometric structures driven by Poisson or Bernoulli
point processes (see [271, 314, 427]). On the other hand, as will be shown in the
following section, there are many examples of interesting point processes that occur
naturally in theory and applications. So, the obvious question arises how much of
the theory developed for Poisson or Bernoulli point processes can be carried over to
other classes of point processes.

Our approach to this question is based on the comparison of clustering properties
of point processes. Roughly speaking, a set of points in R

d clusters if it lacks spatial
homogeneity, i.e., one observes points forming groups which are well spaced out.
Many interesting properties of random geometric models driven by point processes
should depend on the “degree” of clustering. For example, it is natural to expect
that concentrating points of a point process in well-spaced-out clusters should neg-
atively impact connectivity of the corresponding random geometric (Gilbert) graph,
and that spreading these clustered points “more homogeneously” in the space would
result in a smaller critical radius for which the graph percolates. For many other
functionals, using similar heuristic arguments one can conjecture whether increase
or decrease of clustering will increase or decrease the value of the functional. How-
ever, to the best of our knowledge, there has been no systematic approach towards
making these arguments rigorous.

The above observations suggest the following program. We aim at identifying a
class or classes of point processes, which can be compared in the sense of clustering
to a (say stationary) Poisson point process, and for which — by this comparison —
some results known for the latter process can be extrapolated. In particular, there
are point processes which in some sense cluster less (i.e. spread their points more
homogeneously in the space) than the Poisson point process. We call them sub-
Poisson. Furthermore, we hasten to explain that the usual strong stochastic order
(i.e. coupling as a subset of the Poisson process) is in general not an appropriate
tool in this context.

Various approaches to mathematical formalisation of clustering will form an im-
portant part of this chapter. By formalisation, we mean defining a partial order on the
space of point processes such that being smaller with respect to the order indicates
less clustering. The most simple approach consists in considering void probabilities
and moment measures as two complementary tools for capturing clustering phenom-
ena in point processes. As might be expected, smaller values of these characteristics
indicate less clustering. When stronger tools are needed, directionally convex (dcx)
ordering of point processes happens to be a good choice, as well as the notion of neg-
ative and positive association. Working with these tools, we first give some useful,
generic inequalities regarding Laplace transforms of the compared point processes.
In the case of dcx-ordering these inequalities can be generalised to dcx functions of
shot-noise fields.

Having described the clustering comparison tools, we present several particu-
lar results obtained by using them. Then, in more detail, we study percolation in
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the germ-grain model (seen as a random geometric graph) and the SINR graph.
In particular, we show how the classical results regarding the existence of a non-
trivial phase transition extend to models based on additive functionals of various
sub-Poisson point processes. Furthermore, we briefly discuss some applications of
the comparison tools to U-statistics of point processes, counts of sub-graphs and
simplices in random geometric graphs and simplicial complexes, respectively. We
also mention results on Betti numbers of Čech and Vietoris-Rips random complexes
generated by sub-Poisson point processes.

Let us conclude this short motivating introduction by citing an excerpt from a
standard reference book on stochastic comparison methods by Müller and Stoyan
[289]: ”It is clear that there are processes of comparable variability. Examples of
such processes are a stationary Poisson process and a cluster process of equal in-
tensity or two hard-core Gibbs processes of equal intensity and different hard-core
distances. It would be fine if these variability differences could be characterized by
order relations ... [implying], for example, reasonable relationship[s] for second or-
der characteristics such as the pair correlation function.”; cf [289, page 253]. We
believe that the results reported in this chapter present one of the first answers to
this question, although “Still much work has to be done in the comparison theory
for point processes.” (ibid.)

The present chapter is organised as follows. In Sect. 2.2 we recall some examples
of point processes. The idea is to provide as many as possible examples which ad-
mit various clustering comparison orders, described then in Sect. 2.3. An extensive
overview of applications is presented in Sect. 2.4.

2.2 Examples of Point Processes

In this section we give some examples of point processes, where our goal is
to present them in the context of modelling of clustering phenomena. Note that
throughout this chapter, we consider point processes on the d-dimensional Eu-
clidean space R

d , d ≥ 1, although much of the presented results have straightfor-
ward extensions to point processes on an arbitrary Polish space.

2.2.1 Elementary Models

A first example we probably think of when trying to come up with some spatially
homogeneous model is a point process on a deterministic lattice.

Definition 2.1 (Lattice point process). By a lattice point process ΦL we mean
a simple point process whose points are located on the vertices of some deter-
ministic lattice L. An important special case is the d-dimensional cubic lattice
ΔZd = {Δ(u1, . . . ,ud),ui ∈ Z} of edge length Δ > 0, where Z denotes the set of
integers. Another specific (two-dimensional) model is the hexagonal lattice on the
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complex plane given by ΔH = {Δ(u1 + u2eiπ/3), u1,u2 ∈ Z}. The stationary ver-
sion Φ st

L of a lattice point process ΦL can be constructed by randomly shifting the
deterministic pattern through a vector U uniformly distributed in some fixed cell of
the lattice L, i.e. Φ st

L =ΦL+U. Note that the intensity of the stationary lattice point
process is equal to the inverse of the cell volume. In particular, the intensity λΔZd of
Φ st
ΔZd is equal to λΔZd = 1/Δ d , while that of Φ st

ΔH is equal to λΔH = 2/(
√

3/Δ 2).

Lattice point processes are usually considered to model “perfect” or “ideal” struc-
tures, e.g. the hexagonal lattice on the complex plane is used to study perfect cellular
communication networks. We will see however, without further modifications, they
escape from the clustering comparison methods presented in Sect. 2.3.

When the “perfect structure” assumption cannot be retained and one needs a
random pattern, then the Poisson point process usually comes as a natural first mod-
elling assumption. We therefore recall the definition of the Poisson process for the
convenience of the reader, see also the survey given in [21].

Definition 2.2 (Poisson point process). Let Λ be a (deterministic) locally finite
measure on the Borel sets of Rd . The random counting measure ΠΛ is called a Pois-
son point process with intensity measureΛ if for every k = 1,2, . . . and all bounded,
mutually disjoint Borel sets B1, . . . ,Bk, the random variables ΠΛ (B1), . . . ,ΠΛ (Bk)
are independent, with Poisson distribution Pois(Λ(B1)), . . . ,Pois(Λ(Bk)), respec-
tively. In the case when Λ has an integral representation Λ(B) =

∫
Bλ (x)dx, where

λ : Rd → R+ is some measurable function, we call λ the intensity field of the Pois-
son point process. In particular, if λ is a constant, we call ΠΛ a stationary Poisson
point process and denote it by Πλ .

The Poisson point process is a good model when one does not expect any “in-
teractions” between points. This is related to the complete randomness property of
Poisson processes, cf. [93, Theorem 2.2.III]. Furthermore, the stationary Poisson
point process is commonly considered as a reference model in comparative studies
of clustering phenomena.

2.2.2 Cluster Point Processes — Replicating and Displacing Points

We now present several operations on the points of a point process, which in con-
junction with the two elementary models presented above allow us to construct
various other interesting examples of point processes. We begin by recalling the
following elementary operations.

Superposition of patterns of points consists of set-theoretic addition of these
points. Superposition of (two or more) point processes Φ1, . . . ,Φn, defined as ran-
dom counting measures, consists of adding these measures Φ1 + · · ·+Φn. Superpo-
sition of independent point processes is of special interest.

Thinning of a point process consists of suppressing some subset of its points.
Independent thinning with retention function p(x) defined on R

d , 0 ≤ p(x) ≤ 1,
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consists in suppressing points independently, given a realisation of the point process,
with probability 1− p(x), which might depend on the location x of the point to be
suppressed or not.

Displacement consists in, possibly randomised, mapping of points of a point pro-
cess to the same or another space. Independent displacement with displacement
(probability) kernel X (x, ·) from R

d to R
d′ , d′ > 1, consists of independently map-

ping each point x of a given realisation of the original point process to a new, random
location in R

d′ selected according to the kernel X (x, ·).
Remark 2.1. An interesting property of the class of Poisson point processes is that
it is closed with respect to independent displacement, thinning and superposition,
i.e. the result of these operations made on Poisson point processes is a Poisson
point process, which is not granted in the case of an arbitrary (i.e. not independent)
superposition or displacement, see e.g. [93, 94].

Now, we define a more sophisticated operation on point processes that will allow
us to construct new classes of point processes with interesting clustering properties.

Definition 2.3 (Clustering perturbation of a point process). LetΦ be a point pro-
cess on R

d andN (·, ·), X (·, ·) be two probability kernels from R
d to the set of non-

negative integers Z+ and R
d′ , d,d′ ≥ 1, respectively. Consider the following subset

of Rd′ . Let

Φpert =
⋃

X∈Φ

NX⋃
i=1

{YiX} , (2.1)

where, given Φ ,

1. (NX )X∈Φ are independent, non-negative integer-valued random variables with
(conditional) distribution P(NX ∈ ·|Φ) =N (X , ·),

2. YX = (YiX ; i = 1,2, . . .), X ∈Φ are independent vectors of i.i.d. random elements
of Rd′ , with YiX having the conditional distribution P(YiX ∈ ·|Φ) = X (X , ·).
Note that the inner sum in (2.1) is interpreted as /0 when NX = 0.

The random set Φpert given in (2.1) can be considered as a point process on R
d′

provided it is a locally finite. In what follows, we will assume a stronger condition,
namely that the itensity measure of Φpert is locally finite (Radon), i.e.

∫
Rd

n(x)X (x,B)α(dx)< ∞, (2.2)

for all bounded Borel sets B⊂ R
d′ , where α(·) = EΦ(·) denotes the intensity mea-

sure of Φ and

n(x) =
∞

∑
k=1

kN (x,{k}) (2.3)

is the mean value of the distribution N (x, ·).
Thus, clustering perturbation of a given parent processΦ consists in independent

replication and displacement of the points of Φ , with the number of replications of
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a given point X ∈ Φ having distribution N (X , ·) and the replicas’ locations having
distribution X (X , ·). The replicas of X form a cluster.

For obvious reasons, we call Φpert a perturbation of Φ driven by the replication
kernelN and the displacement kernel X . It is easy to see that the independent thin-
ning and displacement operations described above are special cases of clustering
perturbation. In what follows we present a few known examples of point processes
arising as clustering perturbations of a lattice or Poisson point process. For simplic-
ity we assume that replicas stay in the same state space, i.e. d = d′.

Example 2.1 (Binomial point process). A (finite) binomial point process has a
fixed total number n<∞ of points, which are independent and identically distributed
according to some (probability) measure Λ on R

d . It can be seen as a Poisson point
process ΠnΛ conditioned to have n points, cf. [93]. Note that this property might be
seen as a clustering perturbation of a one-point process, with deterministic number
n of point replicas and displacement distribution Λ .

Example 2.2 (Bernoulli lattice). The Bernoulli lattice arises as independent thin-
ning of a lattice point process; i.e., each point of the lattice is retained (but not
displaced) with some probability p ∈ (0,1) and suppressed otherwise.

Example 2.3 (Voronoi-perturbed lattices). These are perturbed lattices with dis-
placement kernel X , where the distribution X (x, ·) is supported on the Voronoi cell
V(x) of vertex x ∈ L of the original (unperturbed) lattice L. In other words, each
replica of a given lattice point gets independently translated to some random loca-
tion chosen in the Voronoi cell of the original lattice point. Note that one can also
choose other bijective, lattice-translation invariant mappings of associating lattice
cells to lattice points; e.g. associate a given cell of the square lattice on the plane R2

to its “south-west” corner.
By a simple perturbed lattice we mean the Voronoi-perturbed lattice whose

points are uniformly translated in the corresponding cells, without being replicated.
Interestingly enough, the Poisson point process ΠΛ with some intensity measure Λ
can be constructed as a Voronoi-perturbed lattice. Indeed, it is enough to take the
Poisson replication kernel N given by N (x, ·) = Pois(Λ(V(x))) and the displace-
ment kernel X with X (x, ·) = Λ(· ∩V(x))/Λ(V(x)); cf. Exercise 2.1. Keeping the
above displacement kernel and replacing the Poisson distribution in the replication
kernel by some other distributions convexly smaller or larger than the Poisson distri-
bution, one gets the following two particular classes of Voronoi-perturbed lattices,
clustering their points less or more than the Poisson point process ΠΛ (in a sense
that will be formalised in Sect. 2.3).

Sub-Poisson Voronoi-perturbed lattices are Voronoi-perturbed lattices such that
N (x, ·) is convexly smaller than Pois(Λ(V(x))). Examples of distributions convexly
smaller than Pois(λ ) are the hyper-geometric distributions HGeo(n,m,k), m,k ≤
n, km/n = λ and the binomial distributions. Binom(n,λ/n), λ ≤ n, which can be
ordered as follows:

HGeo(n,m,λn/m)≤cx Binom(m,λ/m)≤cx Binom(r,λ/r)≤cx Pois(λ ), (2.4)
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for λ ≤ m ≤ min(r,n); cf. [413]. Recall that Binom(n, p) has the probability mass
function pBinom(n,p)(i) =

(n
i

)
pi(1− p)n−i (i = 0, . . . ,n), whereas HGeo(n,m,k) has

the probability mass function pHGeo(n,m,k)(i) =
(m

i

)(n−m
k−i

)
/
(n

k

)
(max(k−n+m,0)≤

i≤ m); cf. Exercise 2.2.
Super-Poisson Voronoi-perturbed lattices are Voronoi-perturbed lattices with

N (x, ·) convexly larger than Pois(Λ(V(x))). Examples of distributions convexly
larger than Pois(λ ) are the negative binomial distribution NBionom(r, p) with
rp/(1− p) = λ and the geometric distribution Geo(p) distribution 1/p− 1 = λ ,
which can be ordered in the following way:

Pois(λ ) ≤cx NBionom(r2,λ/(r2 +λ ))≤cx NBionom(r1,λ/(r1 +λ ))
≤cx Geo(1/(1+λ ))≤cx ∑

j
λ j Geo(p j) (2.5)

with r1 ≤ r2, 0 ≤ λ j ≤ 1, ∑ j λ j = 1 and ∑ j λ j/p j = λ + 1, where the largest
distribution in (2.5) is a mixture of geometric distributions having mean λ . Note
that any mixture of Poisson distributions having mean λ is in cx-order larger
than Pois(λ ). Furthermore, recall that the probability mass functions of Geo(p)
and NBionom(r, p) are given by pGeo(p)(i) = p(1− p)i and pNBionom(r,p)(i) =(r+i−1

i

)
pi(1− p)r, respectively.

Example 2.4 (Generalised shot-noise Cox point processes). These are clustering
perturbations of an arbitrary parent point process Φ , with replication kernel N ,
whereN (x, ·) is the Poisson distribution Pois(n(x)) and n(x) is the mean value given
in (2.3). Note that in this case, given Φ , the clusters (i.e. replicas of the given parent
point) form independent Poisson point process Πn(X)X (X ,·), X ∈ Φ . This special
class of Cox point processes (cf. Sect. 2.2.3) has been introduced in [285].

Example 2.5 (Poisson-Poisson cluster point processes). This is a special case of
the generalised shot-noise Cox point processes, with the parent point process being
Poisson, i.e. Φ = ΠΛ for some intensity measure Λ . A further special case is often
discussed in the literature, where the displacement kernel X is such that X (X , ·) is
the uniform distribution in the ball Br(X) of some given radius r. It is called the
Matérn cluster point process. If X (X , ·) is symmetric Gaussian, then the resulting
Poisson-Poisson cluster point process is called a (modified) Thomas point process.

Example 2.6 (Neyman-Scott point process). These point processes arise as a
clustering perturbation of a Poisson parent point process ΠΛ , with arbitrary (not
necessarily Poisson) replication kernel N .

2.2.3 Cox Point Processes— Mixing Poisson Distributions

We now consider a rich class of point processes known also as doubly stochastic
Poisson point process, which are often used to model patterns exhibiting more clus-
tering than the Poisson point process.
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Definition 2.4 (Cox point process). Let L be a random locally finite (non-null)
measure on R

d . A Cox point process CoxL on R
d generated by L is defined as point

process having the property that CoxL conditioned on L = Λ is the Poisson point
process ΠΛ . Note that L is called the random intensity measure of CoxL. In case
when the random measure L has an integral representation L(B) =

∫
B ξ (x)dx, with

{ξ (x),x ∈ R
d} being a random field, we call this field the random intensity field of

the Cox process. In the special case that ξ (x) = ξλ (x) for all x ∈ R
d , where ξ is a

(non-negative) random variable and λ a (non-negative) deterministic function, the
corresponding Cox point process is called a mixed Poisson point process.

Note that Cox processes may be seen as a result of an operation transforming
some random measure L into a point process CoxL, being a mixture of Poisson
processes.

In Sect. 2.2.2, we have already seen that clustering perturbation of an arbitrary
point process with Poisson replication kernel gives rise to Cox processes (cf. Ex-
ample 2.4), where Poisson-Poisson cluster point processes are special cases with
Poisson parent point process. This latter class of point processes can be naturally
extended by replacing the Poisson parent process by a Lévy basis.

Definition 2.5 (Lévy basis). A collection of real-valued random variables {Z(B),B∈
B0}, where B0 denotes the family of bounded Borel sets in R

d , is said to be a Lévy
basis if the Z(B) are infinitely divisible random variables and for any sequence {Bn},
n ≥ 1, of disjoint bounded Borel sets in R

d , Z(B1),Z(B2), . . . are independent ran-
dom variables (complete independence property), with Z(

⋃
n Bn) = ∑n Z(Bn) almost

surely provided that
⋃

n Bn is bounded.

In this chapter, we shall consider only non-negative Lévy bases. We immedi-
ately see that the Poisson point process is a special case of a Lévy basis. Many
other concrete examples of Lévy bases can be obtained by “attaching” independent,
infinitely divisible random variables ξi to a deterministic, locally finite sequence
{xi} of (fixed) points in R

d and letting Z(B) = ∑i ξi1(xi ∈ B). In particular, clus-
tering perturbations of a lattice, with infinitely divisible replication kernel and no
displacement (i.e. X (x, ·) = δx, where δx is the Dirac measure at x) are Lévy bases.
Recall that any degenerate (deterministic), Poisson, negative binomial, gamma as
well as Gaussian, Cauchy, Student’s distribution are examples of infinitely divisible
distributions.

It is possible to define an integral of a measurable function with respect to a Lévy
basis (even if the latter is not always a random measure; see [170] for details) and
consequently consider the following classes of Cox point processes.

Example 2.7 (Lévy-driven Cox process). Consider a Cox point process CoxL
with random intensity field that is an integral shot-noise field of a Lévy basis, i.e.
ξ (y) =

∫
Rd k(x,y)Z(dx), where Z is a Lévy basis and k : Rd ×R

d → R+ is some
non-negative function almost surely integrable with respect to Z⊗dy.

Example 2.8 (Log-Lévy-driven Cox process). These are Cox point processes with
random intensity field given by ξ (y) = exp(

∫
Rd k(x,y)Z(dx)), where Z and k satisfy

the same conditions as above.
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Both Lévy- and log-Lévy-driven Cox processes have been introduced in [170],
where one can find many examples of these processes. We still mention another
class of Cox point processes considered in [284].

Example 2.9 (Log-Gaussian Cox point process). Consider a Cox point process
whose random intensity field is given by ξ (y) = exp(η(y)) where {η(y)} is a Gaus-
sian random field.

2.2.4 Gibbs and Hard-Core Point Processes

Gibbs and hard-core point processes are two further classes of point processes,
which should appear in the context of modelling of clustering phenomena.

Roughly speaking Gibbs point processes are point processes having a density
with respect to the Poisson point process. In other words, we obtain a Gibbs point
process, when we “filter” Poisson patterns of points, giving more chance to appear
for some configurations and less chance (or completely suppressing) some others. A
very simple example is a Poisson point process conditioned to obey some constraint
regarding its points in some bounded Borel set (e.g. to have some given number of
points there). Depending on the “filtering” condition we may naturally create point
processes which cluster more or less than the Poisson point process.

Hard-core point processes are point process in which the points are separated
from each other by some minimal distance, hence in some sense clustering is “for-
bidden by definition”.

However, we will not give precise definitions, nor present particular examples
from these classes of point processes, because, unfortunately, we do not have yet
interesting enough comparison results for them, to be presented in the remaining
part of this chapter.

2.2.5 Determinantal and Permanental Point Process

We briefly recall two special classes of point processes arising in random matrix
theory, combinatorics, and physics. They are “known” to cluster their points, less or
more, respectively, than the Poisson point process.

Definition 2.6 (Determinantal point process). A simple point process on R
d is

said to be a determinantal point process with a kernel function k : Rd ×R
d → C

with respect to a Radon measure μ on R
d if the joint intensities ρ(�) of the factorial

moment measures of the point process with respect to the product measure μ⊗�
satisfy ρ(�)(x1, . . . ,x�) = det

(
k(xi,x j)

)
1≤i, j≤� for all �, where

(
ai j
)

1≤i, j≤� stands for
a matrix with entries ai j and det denotes the determinant of the matrix.

Definition 2.7 (Permanental point process). Similar to the notion of a determi-
nantal point process, one says that a simple point process is a permanental point
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process with a kernel function k : Rd ×R
d → C with respect to a Radon measure

μ on R
d if the joint intensities ρ(�) of the point process with respect to μ⊗� satisfy

ρ(�)(x1, . . . ,x�) = per
(
k(xi,x j)

)
1≤i, j≤� for all �, where per

( · ) stands for the perma-
nent of a matrix. From [33, Proposition 35 and Remark 36], we know that each
permanental point process is a Cox point process.

Naturally, the kernel function k needs to satisfy some additional assumptions for
the existence of the point processes defined above. We refer to [34, Chap. 4] for
a general framework which allows to study determinantal and permanental point
processes, see also [33]. Regarding statistical aspects and simulation methods for
determinantal point processes, see [246].

Here is an important example of a determinantal point process recently studied
on the theoretical ground (cf. e.g. [144]) and considered in modelling applications
(cf. [275]).

Example 2.10 (Ginibre point process). This is the determinantal point process on
R

2 with kernel function k((x1,x2),(y1,y2)) = exp[(x1y1 + x2y2) + i(x2y1− x1y2)],
x j,y j ∈ R, j = 1,2, with respect to the measure μ(d(x1,x2)) = π−1 exp[−x2

1 −
x2

2]dx1dx2.

Exercise 2.1. Let Φ be a simple point process on R
d . Consider its cluster perturba-

tionΦpert defined in (2.1) with the Poisson replication kernelN (x, ·)=Pois(Λ(V(x))),
where V(x) is the Voronoi cell of x in Φ , and the displacement kernel X (x, ·) =
Λ(·∩V(x))/Λ(V(x)), for some given deterministic Radon measure Λ on R

d . Show
that Φpert is Poisson with intensity measure Λ .

Exercise 2.2. Prove (2.4) and (2.5) by showing the logarithmic concavity of the ratio
of the respective probability mass functions, which implies increasing convex order
and, consequently, cx-order provided the distributions have the same means.

2.3 Clustering Comparison Methods

Let us begin with the following informal definitions. A set of points is spatially
stationary if approximately the same numbers of points occur in any spherical re-
gion of a given volume. A set of points clusters if it lacks spatial stationarity; more
precisely, if one observes points arranged in groups being well spaced out.

Looking at Fig. 2.1, it is intuitively obvious that (realisations of) some point pro-
cesses cluster less than others. However, the mathematical formalisation of such
a statement appears not so easy. In what follows, we present a few possible ap-
proaches. We begin with the usual statistical descriptors of spatial stationarity, then
show how void probabilities and moment measures come into the picture, in par-
ticular in relation to another notion useful in this context: positive and negative
association. Finally we deal with directionally convex ordering of point processes.

This kind of organisation roughly corresponds to presenting ordering methods
from weaker to stronger ones; cf. Fig. 2.2. We also show how the different examples
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Cox point process

Fig. 2.1 From left to right : patterns sampled from a simple perturbed lattice (cf. Example 2.3),
Poisson point process and a doubly stochastic Poisson (Cox) point process, all with the same mean
number of points per unit area.

presented in Sect. 2.2 admit these comparison methods, mentioning the respective
results in their strongest versions. We recapitulate results regarding comparison to
the Poisson process in Fig. 2.3.

2.3.1 Second-order Statistics

In this section we restrict ourselves to the stationary setting.

2.3.1.1 Ripley’s K-Function

One of the most popular functions for the statistical analysis of spatial stationar-
ity is Ripley’s K-function K : [0,∞)→ [0,∞) defined for stationary point processes
(cf. [73]). Assume that Φ is a stationary point process on R

d with finite intensity
λ = EΦ([0,1]d). Then

K(r) =
1

λνd(B)
E ∑

Xi∈Φ∩B
(Φ(BXi(r))−1) ,

where νd(B) denotes the Lebesgue measure of a bounded Borel set B⊂R
d , assum-

ing that νd(B)> 0. Due to stationarity, the definition does not depend on the choice
of B.

The value of λK(r) can be interpreted as the average number of “extra” points
observed within the distance r from a randomly chosen (so-called typical) point.
Campbell’s formula from Palm theory of stationary point processes gives a precise
meaning to this statement. Consequently, for a given intensity λ , the more one finds
points of a point process located in clusters of radius r, the larger the value of K(r) is,
whence a first clustering comparison method follows. In other words, larger values
K(r) of Ripley’s K-function indicate more clustering “at the cluster-radius scale”
r. For the (stationary) Poisson process Πλ on R

d , which is often considered as a
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“reference model” for clustering, we have K(r) = κdrd , where κd is the volume of
the unit ball in R

d . Note here that K(r) describes clustering characteristics of the
point process at the (cluster radius) scale r. Many point processes, which we tend
to think that they cluster less or more than the Poisson point process, in fact are not
comparable in the sense of Ripley’s K-function (with the given inequality holding
for all r ≥ 0, neither, in consequence, in any stronger sense considered later in this
section), as we can see in the following simple example.

The following result of D. Stoyan from 1983 can be considered as a precursor to
our theory of clustering comparison. It says that the convex ordering of Ripley’s K-
functions implies ordering of variances of the numbers of observed points. We shall
see in Remark 2.2 that variance bounds give us simple concentration inequalities for
the distribution of the number of observed points. These inequalities help to control
clustering. We will develop this idea further in Sections 2.3.2 and 2.3.3 showing that
using moment measures and void probabilities one can obtain stronger, exponential
concentration inequalities.

Proposition 2.1 ([383, Corollary 1]). Consider two stationary, isotropic point pro-
cesses Φ1 and Φ2 of the same intensity, with Ripley’s functions K1 and K2, respec-
tively. If K1 ≤dc K2 i.e.,

∫ ∞
0 f (r)K1(dr) ≤ ∫ ∞

0 f (r)K2(dr) for all decreasing convex
functions f : [0,∞)→ [0,∞) then var(Φ1(B)) ≤ var(Φ2(B)) for all compact and
convex sets B in R

d .

Exercise 2.3. For the stationary square lattice point process on the plane with inten-
sity λ = 1 (cf. Definition 2.1), compare K(r) and πr2 for r = 1,

√
2,2.

From Exercise 2.3, one should be able to see that though the square lattice is pre-
sumably more homogeneous (less clustering) than the Poisson point process of the
same intensity, the differences of the values of their K-functions alternate between
strictly positive and strictly negative. However, we shall see later that (cf. Exam-
ple 2.18) this will not be the case for some perturbed lattices, including the simple
perturbed ones and thus they cluster less than the Poisson point process in the sense
of Ripley’s K-function (and even in a much stronger sense). We will also discuss
point processes clustering more than the Poisson processes in this sense.

2.3.1.2 Pair Correlation Function

Another useful characteristic for measuring clustering effects in stationary point
processes is the pair correlation function g : Rd ×R

d → [0,∞). It is related to the
probability of finding a point at a given distance from another point and can be
defined as

g(x,y) =
ρ(2)(x,y)

λ 2 ,

where λ = EΦ
(
[0,1]d

)
is the intensity of the point process and ρ(2) is its joint

second-order intensity; i.e. the density (if it exists, with respect to the Lebesgue mea-
sure) of the second-order factorial moment measure α(2)(d(x,y)) (cf. Sect. 2.3.2).
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For stationary point processes the following relationship holds between the func-
tions g and K:

K(r) =
∫

Br(o)
g(o,y)dy ,

which simplifies to

K(r) = dκd

∫ r

0
sd−1g(o,s)ds ,

in the case of isotropic processes; cf. [73, Eq. (4.97) and (4.98)].
Similarly as for Ripley’s K-function, we can say that larger values g(x,y) of the

pair correlation function indicate more clustering “around” the vector x− y. For a
Poisson point process Πλ , we have that g(x,y) ≡ 1. Again, it is not immediate to
find examples of point processes whose pair correlation functions are ordered for all
values of x,y. Examples of such point processes will be provided in the following
sections.

Exercise 2.4. Show that ordering of pair correlation functions implies ordering of
Ripley’s K-functions, i.e., for two stationary point processesΦ1,Φ2 with ρ(2)

1 (x,y)≤
ρ(2)

2 (x,y) for almost all (x,y) ∈ R
2d , it holds that K1(r)≤ K2(r) for all r ≥ 0.

Though Ripley’s K-function and the pair-correlation function are very simple to
compute, they define only a pre-odering of point processes, because their equality
does not imply equality of the underlying point processes. We shall now present
some possible definitions of partial ordering of point processes that capture cluster-
ing phenomena.

2.3.2 Moment Measures

Recall that the measure αk : Bkd → [0,∞] defined by

αk(B1×·· ·×Bk) = E
k

∏
i=1
Φ(Bi)

for all (not necessarily disjoint) bounded Borel sets Bi (i = 1, . . . ,k) is called the
k -th order moment measure of Φ . For simple point processes, the truncation of the
measure αk to the subset {(x1, . . . ,xk) ∈ (Rd)k : xi �= x j, for i �= j} is equal to the
k -th order factorial moment measure α(k). Note that α(k)(B×·· ·×B) expresses the
expected number of k-tuples of points of the point process in a given set B. Bear-
ing this interpretation in mind we can say that in the class of point processes with
some given intensity measure α =α1, larger values αk(B) and α(k)(B) of the (facto-
rial) moment measures αk and α(k), respectively, indicate point processes clustering
more in B⊂R

d . A first argument we can give to support the above statement is con-
sidered in Exercise 2.5 below.
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Exercise 2.5. Show that comparability of α(2)(B) for all bounded Borel sets B im-
plies a corresponding inequality for the pair correlation functions and hence Ripley’s
K-functions. Hint. For stationary point processes of a given intensity, see [40] for
details.

Remark 2.2. For a stronger justification of the relationship between moment mea-
sures and clustering, we can use concentration inequalities, which give upper bounds
on the probability that the random counting measure Φ deviates from its intensity
measure α . Smaller deviations can be interpreted as supportive for spatial stationar-
ity. To be more specific, using Chebyshev’s inequality we have

P(|Φ(B)−α(B)| ≥ a)≤ (α2(B)− (α(B))2)/a2

for all bounded Borel sets B, and a > 0. Thus, for point processes with the same
mean measure, second moments measures or Ripley’s functions (via Proposition
2.1) allow to compare their clustering. Similarly, using Chernoff’s bound, we get
that

P(Φ(B)−α(B)≥ a)≤ e−t(α(B)+a)EetΦ(B) = e−t(α(B)+a)
∞

∑
k=0

tk

k!
αk(B) (2.6)

for any t,a > 0. Both concentration inequalities give smaller upper bounds for the
probability of the deviation from the mean (the upper deviation in the case of Cher-
noff’s bound) for point processes clustering less in the sense of higher-order moment
measures. We will come back to this idea in Propositions 2.2 and 2.4 below.

In Sect. 2.4 we will present results, in particular regarding percolation properties
of point processes, for which it its enough to be able to compare factorial moment
measures of point processes. We shall note casually that restricted to a "nice" class
of point processes, the factorial moment measures uniquely determine the point pro-
cess and hence the ordering defined via comparison of factorial moment measures
is actually a partial order on this nice class of point processes.

We now concentrate on comparison to the Poisson point process. Recall that for
a general Poisson point processΠΛ we have α(k)(d(x1, . . . ,xk)) =Λ(dx1) . . .Λ(dxk)
for all k≥ 1, whereΛ = α is the intensity measure ΠΛ . In this regard, we define the
following class of point processes clustering less (or more) than the Poisson point
process with the same intensity measure.

Definition 2.8 (α-weakly sub-Poisson point process). A point process Φ is said
to be weakly sub-Poisson in the sense of moment measures (α-weakly sub-Poisson
for short) if

E
k

∏
i=1
Φ(Bi)≤

k

∏
i=1

EΦ(Bi), (2.7)

for all k ≥ 1 and all mutually disjoint bounded Borel sets B1, . . . ,Bk ⊂ R
d . When

the reversed inequality in (2.7) holds, we say that Φ is weakly super-Poisson in the
sense of moment measures (α-weakly super-Poisson for short).
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In other words, α-weakly sub-Poisson point processes have factorial moment
measures α(k) smaller than those of the Poisson point process with the same in-
tensity measure. Similarly, α-weakly super-Poisson point processes have factorial
moment measures larger than those of the Poisson point process with the same in-
tensity measure. We also remark that the notion of sub- and super-Poisson distribu-
tions is used e.g. in quantum physics and denotes distributions for which the vari-
ance is smaller (respectively larger) than the mean. Our notion of α-weak sub- and
super-Poissonianity is consistent with (and stronger than) this definition. In quan-
tum optics, e.g. sub-Poisson patterns of photons appear in resonance fluorescence,
where laser light gives Poisson statistics of photons, while the thermal light gives
super-Poisson patterns of photons; cf. [415].

Exercise 2.6. Show that α-weakly sub- (super-) Poisson point processes have mo-
ment measures αk smaller (larger) than those of the corresponding Poisson point
process. Hint. Recall that the moment measures αk : Bkd → [0,∞] of a general point
process can be expressed as non-negative combinations of products of its (lower-
dimensional) factorial moment measures (cf. [93] Exercise 5.4.5, p. 143).

Here is an easy, but important consequence of the latter observation regarding
Laplace transforms “in the negative domain”, i.e. functionals LΦ(− f ), where

LΦ( f ) = Eexp
(
−
∫
Rd

f (x)Φ(dx)
)
,

for non-negative functions f on R
d , which include as a special case the func-

tional EetΦ(B) appearing in the “upper” concentration inequality (2.6). By Taylor
expansion of the exponential function at 0 and the well-known expression of the
Laplace functional of the Poisson point process with intensity measure α which can
be recognised in the right-hand side of (2.8), the following result is obtained.

Proposition 2.2. Assume that Φ is a simple point process with locally bounded in-
tensity measure α and consider f ≥ 0. If Φ is α-weakly sub-Poisson, then

Eexp
(∫

Rd
f (x)Φ(dx)

)
≤ exp

(∫
Rd
(e f (x)−1)α(dx)

)
. (2.8)

If Φ is α-weakly super-Poisson, then the reversed inequality is true.

The notion of weak sub(super)-Poissonianity is closely related to negative and
positive association of point processes, as we shall see in Sect. 2.3.4 below.

2.3.3 Void Probabilities

The celebrated Rényi theorem says that the void probabilities v(B) = P(Φ(B) = 0)
of point processes, evaluated for all bounded Borel Sets B characterise the distri-
bution of a simple point process. They also allow an easy comparison of clustering
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properties of point processes by the following interpretation: a point process hav-
ing smaller void probabilities has less chance to create a particular hole (absence
of points in a given region). Thus, in the class of point processes with some given
intensity measure, larger void probabilities indicate point processes with stronger
clustering.

Remark 2.3. Using void probabilities in the study of clustering is complementary
to the comparison of moments considered in the previous section. An easy way to
see this consists in using again Chernoff’s bound to obtain the following “lower”
concentration inequality (cf. Remark 2.2)

P(α(B)−Φ(B)≥ a)≤ et(α(B)−a)Ee−tΦ(B), (2.9)

which holds for any t,a > 0, and noting that

Ee−tΦ(B) =
∞

∑
k=0

e−tkP(Φ(B) = k) = P
(
Φ ′(B) = 0

)
= v′(B)

is the void probability of the point process Φ ′ obtained from Φ by independent
thinning with retention probability 1− e−t . It is not difficult to show that ordering
of void probabilities of simple point processes is preserved by independent thinning
(cf. [44]) and thus the bound in (2.9) is smaller for point processes less clustering in
the latter sense. We will come back to this idea in Propositions 2.3 and 2.4. Finally,
note that limt→∞ Ee−tΦ(B) = v(B) and thus, in conjunction with what was said above,
comparison of void probabilities is equivalent to the comparison of one-dimensional
Laplace transforms of point processes for non-negative arguments.

In Sect. 2.4, we will present results, in particular regarding percolation properties,
for which it is enough to be able to compare void probabilities of point processes.
Again, because of Rényi’s theorem, we have that ordering defined by void probabil-
ities is a partial order on the space of simple point processes.

2.3.3.1 v-Weakly Sub(Super)-Poisson Point Processes

Recall that a Poisson point process ΠΛ can be characterised as having void proba-
bilities of the form v(B) = exp(−Λ(B)), with Λ being the intensity measure of Φ .
In this regard, we define the following classes of point processes clustering less (or
more) than the Poisson point process with the same intensity measure.

Definition 2.9 (v-weakly sub(super)-Poisson point process). A point process Φ
is said to be weakly sub-Poisson in the sense of void probabilities (v-weakly sub-
Poisson for short) if

P(Φ(B) = 0)≤ e−EΦ(B) (2.10)

for all Borel sets B ⊂ R
d . When the reversed inequality in (2.10) holds, we say

that Φ is weakly super-Poisson in the sense of void probabilities (v-weakly super-
Poisson for short).
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In other words, v-weakly sub-Poisson point processes have void probabilities
smaller than those of the Poisson point process with the same intensity measure.
Similarly, v-weakly super-Poisson point processes have void probabilities larger
than those of the Poisson point process with the same intensity measure.

Example 2.11. It is easy to see by Jensen’s inequality that all Cox point processes
are v-weakly super-Poisson.

By using a coupling argument as in Remark 2.3, we can derive an analogous
result as in Proposition 2.2 for v-weakly sub-Poisson point processes.

Proposition 2.3 ( [44]). Assume that Φ is a simple point process with locally
bounded intensity measure α . Then Φ is v-weakly sub-Poisson if and only if (2.8)
holds for all functions f ≥0.

2.3.3.2 Combining Void Probabilities and Moment Measures

We have already explained why the comparison of void probabilities and moment
measures are in some sense complementary. Thus, it is natural to combine them,
whence the following definition is obtained.

Definition 2.10 (Weakly sub- and super-Poisson point process). We say that Φ
is weakly sub-Poisson if Φ is α-weakly sub-Poisson and v-weakly sub-Poisson.
Weakly super-Poisson point processes are defined in the same way.

The following remark is immediately obtained from Propositions 2.2 and 2.3.

Remark 2.4. Assume that Φ is a simple point process with locally bounded inten-
sity measure α . If Φ is weakly sub-Poisson then (2.8) holds for any f of constant
sign ( f ≥ 0 or f ≤ 0). If Φ is weakly super-Poisson, then in (2.8) the reversed in-
equality holds for such f .

Example 2.12. It has been shown in [45] that determinantal and permanental point
process (with trace-class integral kernels) are weakly sub-Poisson and weakly super-
Poisson, respectively.

Other examples (admitting even stronger comparison properties) will be given in
Sect. 2.3.4 and 2.3.5.

As mentioned earlier, using the ordering of Laplace functionals of weakly sub-
Poisson point processes, we can extend the concentration inequality for Poisson
point processes to this class of point processes. In the discrete setting, a similar re-
sult is proved for negatively associated random variables in [106]. A more general
concentration inequality for Lipschitz functions is known in the case of determinan-
tal point processes ([313]).

Proposition 2.4. Let Φ be a simple stationary point process with unit intensity
which is weakly sub-Poisson, and let Bn ⊆ R

d be a Borel set of Lebesgue measure
n. Then, for any 1/2 < a < 1 there exists an integer n(a)≥ 1 such that for n≥ n(a)

P(|Φ(Bn)−n| ≥ na)≤ 2exp
(−n2a−1/9

)
.
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Exercise 2.7. Prove Proposition 2.4. Hint. Use Markov’s inequality, Propositions 2.2
and 2.3 along with the bounds for the Poisson case known from [314, Lemmas 1.2
and 1.4].

Note that the bounds we have suggested to use are the ones corresponding to the
Poisson point process. For specific weakly sub-Poisson point processes, one expects
an improvement on these bounds.

2.3.4 Positive and Negative Association

Denote covariance of (real-valued) random variables X ,Y by cov(X ,Y ) = EXY −
EXEY .

Definition 2.11 ((Positive) association of point processes). A point process Φ is
called associated if

cov( f (Φ(B1), . . . ,Φ(Bk)),g(Φ(B1), . . . ,Φ(Bk)))≥ 0 (2.11)

for any finite collection of bounded Borel sets B1, . . . ,Bk ⊂R
d and f ,g : Rk→ [0,1]

(componentwise) increasing functions; cf. [61].

The property considered in (2.11) is also called positive association, or the FKG
property. The theory for the opposite property is more tricky, cf. [312], but one can
define it as follows.

Definition 2.12 (Negative association). A point process Φ is called negatively
associated if

cov( f (Φ(B1), . . . ,Φ(Bk)),g(Φ(Bk+1), . . . ,Φ(Bl)))≤ 0

for any finite collection of bounded Borel sets B1, . . . ,Bl ⊂ R
d such that (B1∪ ·· ·∪

Bk)∩ (Bk+1∪·· ·∪Bl) = /0 and f ,g increasing functions.

Both definitions can be straightforwardly extended to arbitrary random measures,
where one additionally assumes that f ,g are continuous and increasing functions.
Note that the notion of association or negative association of point processes does
not induce any ordering on the space of point processes. Though association or neg-
ative association have not been studied from the point of view of stochastic ordering,
it has been widely used to prove central limit theorems for random fields (see [57]).

The following result has been proved in [45]. It will be strengthened in the next
section (see Proposition 2.12)

Proposition 2.5. A negatively associated, simple point process with locally bounded
intensity measure is weakly sub-Poisson. A (positively) associated point process with
a diffuse locally bounded intensity measure is weakly super-Poisson.

Bart omiej Błaszczyszyn and Dhandapani Yogeshwaranł



2 Clustering comparison of point processes 49

Exercise 2.8. Prove that a (positively) associated point process with a diffuse locally
bounded intensity measure is α-weakly super-Poisson. Show a similar statement for
negatively associated point processes as well.

Example 2.13. From [61, Th. 5.2], we know that any Poisson cluster point process
is associated. This is a generalisation of the perturbation approach of a Poisson
point process Φ considered in (2.1) having the form Φcluster = ∑X∈Φ(X +ΦX ) with
ΦX being arbitrary i.i.d. (cluster) point processes. In particular, the Neyman-Scott
point process (cf. Example 2.6) is associated. Other examples of associated point
processes given in [61] are Cox point processes with random intensity measures
being associated.

Example 2.14. Determinantal point processes are negatively associated (see [137,
cf. Corollary 6.3]).

We also remark that there are negatively associated point processes, which are not
weakly sub-Poisson. A counterexample given in [45] (which is not a simple point
process, showing that this latter assumption cannot be relaxed in Proposition 2.5)
exploits [210, Theorem 2], which says that a random vector having a permutation
distribution (taking as values all k! permutations of a given deterministic vector with
equal probabilities) is negatively associated.

Exercise 2.9. Show that the binomial point process (cf. Example 2.1) and the simple
perturbed lattice (cf. Example 2.3) are negatively associated.

2.3.5 Directionally Convex Ordering

2.3.5.1 Definitions and Basic Results

In this section, we present some basic results on directionally convex ordering of
point processes that will allow us to see this order also as a tool to compare clustering
of point processes.

A Borel-measurable function f : Rk→ R is said to be directionally convex (dcx)
if for any x ∈ R

k,ε,δ > 0, i, j ∈ {1, . . . ,k}, we have that Δ i
εΔ

j
δ f (x) ≥ 0, where

Δ i
ε f (x) = f (x+ εei)− f (x) is the discrete differential operator, with {ei}1≤i≤k de-

noting the canonical basis vectors of Rk. In the following, we abbreviate increasing
and dcx by idcx and decreasing and dcx by ddcx (see [289, Chap. 3]). For random
vectors X and Y of the same dimension, X is said to be smaller than Y in dcx order
(denoted X ≤dcx Y ) if E f (X) ≤ E f (Y ) for all f being dcx such that both expecta-
tions in the latter inequality are finite. Real-valued random fields are said to be dcx
ordered if all finite-dimensional marginals are dcx ordered.

Definition 2.13 (dcx-order of point processes). Two point processes Φ1 and Φ2
are said to be dcx-ordered, i.e. Φ1 ≤dcx Φ2, if for any k ≥ 1 and bounded Borel sets
B1, . . . ,Bk in R

d , it holds that (Φ1(B1), . . . ,Φ1(Bk))≤dcx (Φ2(B1), . . . ,Φ2(Bk)).
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The definition of comparability of point processes is similar for other orders, i.e.
those defined by idcx,ddcx functions. It is enough to verify the above conditions for
B1, . . . ,Bk mutually disjoint, cf. [40]. In order to avoid technical difficulties, we will
consider only point processes whose intensity measures are locally finite. For such
point processes, the dcx-order is a partial order.

Remark 2.5. It is easy to see that Φ1 ≤dcx Φ2 implies the equality of their intensity
measures, i.e: EΦ1(B) = EΦ2(B) = α(B) for any bounded Borel set B⊂R

d as both
x and −x are dcx functions.

We argue that, dcx-ordering is also useful in clustering comparison of point pro-
cesses. Point processes larger in dcx-order cluster more, whereas point processes
larger in idcx-order cluster more while having on average more points, and point
processes larger in ddcx-order cluster more while having on average less points.

The two statements of the following result were proved in [40] and [45], re-
spectively. They show that dcx-ordering is stronger than comparison of moments
measures and void probabilities considered in the two previous sections.

Proposition 2.6. Let Φ1 and Φ2 be two point process on R
d . Denote their moment

measures by αk
j (k ≥ 1) and their void probabilities by v j , j = 1,2, respectively.

1. If Φ1 ≤idcx Φ2 then αk
1(B)≤ αk

2(B) for all bounded Borel sets B⊂ (Rd)k, pro-
vided that αk

j is σ -finite for k ≥ 1, j = 1,2.
2. If Φ1 ≤ddcx Φ2 then v1(B)≤ v2(B) for all bounded Borel sets B⊂ R

d .

Exercise 2.10. Show that ∏i(xi ∨ 0) is a dcx-function and (1− x)∨ 0 is a convex
function. Using these facts to prove the above proposition.

Note that the σ -finiteness condition considered in the first statement of Proposi-
tion 2.6 is missing in [40]; see [425, Proposition 4.2.4] for the correction. An im-
portant observation is that the operation of clustering perturbation introduced in
Sect. 2.2.2 is dcx monotone with respect to the replication kernel in the following
sense; cf. [45].

Proposition 2.7. Consider a point process Φ with locally finite intensity measure
α and its two perturbations Φpert

j ( j = 1,2) satisfying condition (2.2), and hav-
ing the same displacement kernel X and possibly different replication kernels N j ,
j = 1,2, respectively. If N1(x, ·) ≤cx N2(x, ·) (which means convex ordering of the
conditional distributions of the number of replicas) for α-almost all x ∈ R

d , then
Φpert

1 ≤dcx Φ
pert
2 .

Thus clustering perturbations of a given point process provide many examples of
point process comparable in dcx-order. Examples of convexly ordered replication
kernels have been given in Example 2.3.

Another observation, proved in [40], says that the operations transforming some
random measure L into a Cox point process CoxL (cf. Definition 2.4) preserves the
dcx-order.
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Proposition 2.8. Consider two random measures L1 and L2 on R
d . If L1≤dcx(resp. idcx)

L2 then CoxL1 ≤dcx(resp. idcx) CoxL2 .

The above result, combined with further results on comparison of shot-noise
fields presented in Sect. 2.3.5.2 will allow us to compare many Cox point processes
(cf. Example 2.15).

2.3.5.2 Comparison of Shot-Noise Fields

Many interesting quantities in stochastic geometry can be expressed by additive or
extremal shot-noise fields. They are also used to construct more sophisticated point
process models. For this reason, we state some results on dcx-ordering of shot-noise
fields that are widely used in applications.

Definition 2.14 (Shot-noise fields). Let S be any (non-empty) index set. Given a
point process Φ on R

d and a response function h(x,y) : Rd×S→ (−∞,∞] which is
measurable in the first variable, then the (integral) shot-noise field {VΦ(s),s ∈ S} is
defined as

VΦ(y) =
∫
Rd

h(x,y)Φ(dx) = ∑
X∈Φ

h(X ,y), (2.12)

and the extremal shot-noise field {UΦ(s),s ∈ S} is defined as

UΦ(y) = sup
X∈Φ
{h(X ,y)}. (2.13)

As we shall see in Sect. 2.4.2 (and also in the proof of Proposition 2.11) it is not
merely a formal generalisation to take S being an arbitrary set. Since the composi-
tion of a dcx-function with an increasing linear function is still dcx, linear combi-
nations of Φ(B1), . . . ,Φ(Bn) for finitely many bounded Borel sets B1, . . . ,Bn ⊆ R

d

(i.e. ∑m
i=1 ciΦ(Bi) for ci ≥ 0) preserve the dcx-order. An integral shot-noise field can

be approximated by finite linear combinations of Φ(B)’s and hence justifying con-
tinuity, one expects that integral shot-noise fields preserve dcx-order as well. This
type of important results on dcx-ordering of point processes is stated below.

Proposition 2.9. ( [40, Theorem 2.1]) Let Φ1 and Φ2 be arbitrary point processes
on R

d . Then, the following statements are true.

1. If Φ1 ≤idcx Φ2, then {VΦ1(s),s ∈ S} ≤idcx {VΦ2(s),s ∈ S}.
2. IfΦ1≤dcx Φ2, then {VΦ1(s),s∈ S}≤dcx {VΦ2(s),s∈ S}, provided that EVΦi(s)<

∞, for all s ∈ S, i = 1,2.

The results of Proposition 2.9, combined with those of Proposition 2.8 allow the
comparison of many Cox processes.

Example 2.15 (Comparable Cox point processes). Let Z1 and Z2 be two Lévy-
bases with mean measures α1 and α2, respectively. Note that αi ≤dcx Zi (i = 1,2).
This can be easily proved using complete independence of Lévy bases and Jensen’s
inequality. In a sense, the mean measure αi “spreads” (in the sense of dcx) the mass
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better than the corresponding completely independent random measure Zi. Further-
more, consider the random fields ξ1 and ξ2 on R

d given by ξi(y) =
∫
Rd k(x,y)Zi(dx),

i = 1,2 for some non-negative kernel k, and assume that these fields are a.s. locally
Riemann integrable. Denote by Coxξi and Coxexp(ξi) the corresponding Lévy-driven
and log-Lévy-driven Cox point process. The following inequalities hold.

1. If Z1 ≤dcx (resp. idcx) Z2, then Coxξ1
≤dcx (resp. idcx) Coxξ2

provided that, in case of
dcx, E

∫
B ξi(y)dy < ∞ for all bounded Borel sets B⊂ R

d .
2. If Z1 ≤idcx Z2, then Coxexp(ξ1) ≤idcx Coxexp(ξ2).

Suppose that {Xi(y)}, i = 1,2 are two Gaussian random fields on R
d and denote

by Coxexp(Xi), (i = 1,2) the corresponding log-Lévy-driven Cox point processes.
Then the following is true.

3. If {X1(y)} ≤idcx {X2(y)} (as random fields), then Coxexp(X1) ≤idcx Coxexp(X2).

Note that the condition in the third statement is equivalent to EX1(y) ≤ EX2(y)
for all y ∈ R

d and cov(X1(y1),X1(y2)) ≤ cov(X2(y1),X2(y2)) for all y1,y2 ∈ R
d .

An example of a parametric dcx-ordered family of Gaussian random fields is given
in [274].

Let Φ1, Φ2 be two point processes on R
d and denote by Cox1, Cox2 the gener-

alised shot-noise Cox point processes (cf. Example 2.4) being clustering perturba-
tions ofΦ1,Φ2, respectively, with the same (Poisson) replication kernelN and with
displacement distributions X (x, ·) having density X ′(x,y)dy for all x ∈ R

d . Then,
the following result is true.

4. If Φ1 ≤dcx (resp. idcx) Φ2, then Cox1 ≤dcx (resp. idcx) Cox2 provided that, in case of
dcx,

∫
Rd X ′(x,y)α(dx) < ∞ for all y ∈ R

d , where α is the (common) intensity
measure of Φ1 and Φ2.

Proposition 2.9 allows us to compare extremal shot-noise fields using the fol-
lowing well-known representation P(U(yi)≤ ai,1≤ i≤ m) = Ee−∑i Ûi where Ûi =

∑n− log1(h(Xn,yi)≤ ai) is an additive shot-noise field with response function tak-
ing values in [0,∞]. Noting that e−∑i xi is a dcx-function, we get the following result.

Proposition 2.10 ( [40, Proposition 4.1]). Let Φ1 ≤dcx Φ2. Then for any n≥ 1 and
for all ti ∈ R,yi ∈ S,1≤ i≤ n, it holds that

P(UΦ1(yi)≤ ti,1≤ i≤ n)≤ P(UΦ2(yi)≤ ti,1≤ i≤ n).

An example of application of the above result is the comparison of capacity func-
tionals of germ-grain models, whose definition we recall first, see also Chapter 5.

Definition 2.15 (Germ-grain model). Given (the distribution of) a random closed
set Y and a point process Φ , a germ-grain model with the point process of germs Φ
and the typical grain Y , is given by the random set C(Φ ,Y ) =

⋃
Xi∈Φ{Xi+Yi}, where

x+A= {x+a : a∈A}, a∈Rd , A⊂R
d and {Yi} is a sequence of i.i.d. random closed

sets distributed as Y . We call Y a fixed grain if there exists a (deterministic) closed
set B⊆R

d such that Y = B a.s. In the case of spherical grains, i.e. B = Bo(r), where
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o is the origin of Rd and r ≥ 0 a constant, we denote the corresponding germ-grain
model by C(Φ ,r).

A commonly made technical assumption about the distributions of Φ and Y is
that for any compact set K ⊂ R

d , the expected number of germs Xi ∈ Φ such that
(Xi +Yi)∩K �= /0 is finite. This assumption, called “local finiteness of the germ-
grain model” guarantees in particular that C(Φ ,Y ) is a random closed set in R

d .
The germ-grain models considered throughout this chapter will be assumed to have
the local finiteness property.

Proposition 2.11 ([43, Propostion 3.4]). Let C(Φ j,Y ), j = 1,2 be two germ-grain
models with point processes of germs Φ j , j = 1,2, respectively, and common distri-
bution of the typical grain Y . Assume that Φ1 and Φ2 are simple and have locally
finite moment measures. If Φ1 ≤dcx Φ2, then

P(C(Φ1,Y )∩B = /0)≤ P(C(Φ2,Y )∩B = /0)

for all bounded Borel sets B⊂ R
d . Moreover, if Y is a fixed compact grain, then

the same result holds, provided v1(B) ≤ v2(B) for all bounded Borel sets B ⊂ R
d ,

where vi(B) denotes the void probabilities of Φi.

2.3.5.3 Sub- and Super-Poisson Point Processes

We now concentrate on dcx-comparison to the Poisson point process. To this end,
we define the following classes of point processes.

Definition 2.16 (Sub- and super- Poisson point process). We call a point process
dcx sub-Poisson (respectively dcx super-Poisson) if it is smaller (larger) in dcx-
order than the Poisson point process (necessarily of the same mean measure). For
simplicity, we will just refer to them as sub-Poisson or super-Poisson point process
omitting the phrase dcx.

Proposition 2.12. A negatively associated point processes Φ with convexly sub-
Poisson one-dimensional marginal distributions, Φ(B) ≤cx Pois(EΦ(B)) for all
bounded Borel sets B, is sub-Poisson. An associated point processes with convexly
super-Poisson one-dimensional marginal distributions is super-Poisson.

Proof (sketch). This is a consequence of [75, Theorem 1], which says that a neg-
atively associated random vector is supermodularly smaller than the random vector
with the same marginal distributions and independent components. Similarly, an as-
sociated random vector is supermodularly larger than the random vector with the
same marginal distributions and independent components. Since supermodular or-
der is stronger than dcx order, this implies dcx ordering as well. Finally, a vector
with independent coordinates and convexly sub-Poisson (super-Poisson) marginal

ables.
distributions is dcx smaller (larger) than the vector of independent Poisson vari-
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Example 2.16 (Super-Poisson Cox point process). Using Proposition 2.8 one can
prove (cf. [40]) that Poisson-Poisson cluster point processes and, more generally,
Lévy-driven Cox point processes are super-Poisson.

Also, since any mixture of Poisson distributions is cx larger than the Poisson dis-
tribution (with the same mean), we can prove that any mixed Poisson point process
is super-Poisson.

Example 2.17 (Super-Poisson Neyman-Scott point process). By Proposition 2.7,
any Neyman-Scott point process (cf. Example 2.6) with mean cluster size n(x) = 1
for all x ∈ R

d is super-Poisson. Indeed, for any x ∈ R
d and any replication kernel

N satisfying ∑∞
k=1 kN (x,{k}) = 1, we have by Jensen’s inequality that δ1(·) ≤cx

N (x, ·), i.e. it is convexly larger than the Dirac measure on Z+ concentrated at 1.
By the well-known displacement theorem for Poisson point processes, the clustering
perturbation of the Poisson (parent) point process with this Dirac replication kernel
is a Poisson point process. Using kernels of the form mentioned in (2.5) we can
construct dcx-increasing super-Poisson point processes.

Example 2.18 (Sub- and super-Poisson perturbed lattices). Lattice clustering
perturbations provide examples of both sub- and super-Poisson point process, cf.
Example 2.3. Moreover, the initial lattice can be replaced by any fixed pattern of
points, and the displacement kernel needs not to be supported by the Voronoi cell of
the given point. Assuming Poisson replication kernels we still obtain (not necessar-
ily stationary) Poisson point processes. Note, for example, that by (2.4) considering
binomial replication kernels Binom(r,λ/r) for r ∈ Z+, r ≥ λ one can construct
dcx-increasing families of sub-Poisson perturbed lattices converging to the Pois-
son point process Πλ . Similarly, considering negative binomial replication kernels
NBionom(r,λ/(r+λ ) with r ∈Z+, r≥ 1 one can construct dcx-decreasing families
of super-Poisson perturbed lattices converging to Πλ . The simple perturbed lattice
(with Binom(1,1), and necessarily λ = 1) is the smallest point process in dcx-order
within the aforementioned sub-Poisson family.

Example 2.19 (Determinantal and permanental processes). We already men-
tioned in Example 2.12 that determinantal and permanental point processes are
weakly sub- and super-Poisson point processes, respectively. Since determinantal
point processes are negatively associated (Example 2.14) and have convexly sub-
Poisson one-dimensional marginal distributions, cf [45, proof of Prop. 5.2], Propo-
sition 2.12 gives us that determinantal point processes are dcx sub-Poisson. The
statement for permanental processes can be strengthened to dcx-comparison to the
Poisson point process with the same mean on mutually disjoint, simultaneously ob-
servable compact subsets of Rd ; see [45] for further details.

Exercise 2.11. Prove the statement of Example 2.11.

Exercise 2.12. Using Hadamard’s inequality prove that determinantal point pro-
cesses are α-weakly sub-Poisson.
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dcx ordering

dcx-functions of (Φ(B1), . . . ,Φ(Bk))
and shot-noise fields, in particular

LΦ ( f ) for f ≤ 0 or f ≥ 0

negative & positive association

comparison with respect to the Poisson
point process

LΦ ( f ) for f ≤ 0 or f ≥ 0

comparison of void

probabilities

LΦ ( f ) for f ≥ 0

comparison of moment

measures

LΦ ( f ) for f ≤ 0

statistical comparison

pair correlation function,
Ripley’s K-function

with marginals cx ordered to Poisson

Fig. 2.2 Relationships between clustering comparison methods, and some characteristics that
allow to compare them. Smaller in any type of comparison means that the point process clusters
less. Recall, LΦ ( f ) := Eexp [−∫

Rd f (x)Φ(dx)].

strongly (dcx)

Voronoi perturbed lattices with
replication kernel N ≤cx Pois, in
particular binomial, determinantal

negatively associated

binomial, simple perturbed lattice,
determinantal

weakly (voids and moments)

dcx sub-Poisson, negatively associated

sub-Poisson processes
strongly (dcx)

Poisson-Poisson cluster, Lévy-driven
Cox, mixed Poisson, Neyman-Scott
with mean cluster size 1, Voronoi
perturbed lattices with replication

kernel N ≥cx Pois.

associated

Poisson cluster, Neyman-Scott, Cox
driven by associated intensity measure.

weakly (voids and moments)

dcx super-Poisson, associated,
permanental

super-Poisson processes

Fig. 2.3 Some point processes comparable to the Poisson point process using different comparison
methods.
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2.4 Some Applications

So far we introduced basic notions and results regarding ordering of point processes
and we provided examples of point processes that admit these comparability prop-
erties. However, it remains to demonstrate the applicability of these methods to ran-
dom geometric models which will be the goal of this section. Heuristically speaking,
it is possible to easily conjecture the impact of clustering on various random geo-
metric models, however there is hardly any rigorous treatment of these issues in
the literature. The present section shall endeavour to fill this gap by using the tools
of stochastic ordering. We show that one can get useful bounds for some quanti-
ties of interest on weakly sub-Poisson, sub-Poisson or negatively associated point
processes and that in quite a few cases these bounds are as good as those for the
Poisson point process. Various quantities of interest are often expressed in terms
of moment measures and void probabilities. This explains the applicability of our
notions of stochastic ordering of point processes in many contexts. As it might be
expected, in this survey of applications, we shall emphasize breadth more than depth
to indicate that many random geometric models fall within the purview of our meth-
ods. However, despite our best efforts, we would not be able to sketch all possible
applications. Therefore, we briefly mention a couple of omissions. The notion of
sub-Poissonianity has found usage in at least a couple of other models than those
described below. In [173], connectivity of some approximations of minimal span-
ning forests is shown for weakly sub-Poisson point processes. Sans our jargon, in
[92], the existence of the Lilypond growth model and its non-percolation under the
additional assumption of absolutely continuous joint intensities is shown for weakly
sub-Poisson point processes.

2.4.1 Non-trivial Phase Transition in Percolation Models

Consider a stationary point process Φ in R
d . For a given “radius” r ≥ 0, let us con-

nect by an edge any two points of Φ which are at most at a distance of 2r from each
other. Existence of an infinite component in the resulting graph is called percola-
tion of the graph model based on Φ . As we have already mentioned in the previous
section, clustering of Φ roughly means that the points of Φ are located in groups
being well spaced out. When trying to find the minimal r for which the graph model
based on Φ percolates, we observe that points belonging to the same cluster of Φ
will be connected by edges for some smaller r but points in different clusters need
a relatively high r for having edges between them. Moreover, percolation cannot
be achieved without edges between some points of different clusters. It seems to
be evident that spreading points from clusters of Φ “more homogeneously” in the
space would result in a decrease of the radius r for which the percolation takes place.
In other words, clustering in a point process Φ should increase the critical radius
rc = rc(Φ) for the percolation of the graph model on Φ , also called Gilbert’s disk
graph or the germ-grain model with fixed spherical grains.
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Fig. 2.4 Mean fractions of nodes in the two largest components of the sub- and super-Poisson
germ-grain models C(Φ pert

Binom(n,1/n),r) and C(Φ pert
NBionom(n,1/(1+n)),r) , respectively, as functions of

r. These families of underlying point processes converge to the Poisson point process Φλ with
intensity λ = 2/(

√
3) = 1.154701 as n tends to ∞; cf. Example 2.18. The dashed vertical line

corresponds to the radius r = 0.5576495 which is believed to be close to the critical radius rc(Φλ ).

We have shown in Sect. 2.3.5 that dcx-ordering of point processes can be used to
compare their clustering properties. Hence, the above discussion tempts one to con-
jecture that rc is increasing with respect to dcx-ordering of the underlying point pro-
cesses; i.e. Φ1 ≤dcx Φ2 implies rc(Φ1) ≤ rc(Φ2). Some numerical evidences gath-
ered in [44] (where we took Fig. 2.4 from) for a dcx-monotone family of perturbed
lattice point processes, were supportive for this conjecture.

But it turns out that the conjecture is not true in full generality and a counterexam-
ple was also presented in [44]. It is a Poisson-Poisson cluster point process, which is
known to be super-Poisson (cf. Example 2.16) whose critical radius is rc = 0, hence
smaller than that of the corresponding Poisson point process, for which rc is known
to be positive. In this Poisson-Poisson cluster point process, points concentrate on
some carefully chosen larger-scale structure, which itself has good percolation prop-
erties. In this case, the points concentrate in clusters, however we cannot say that
clusters are well spaced out. Hence, this example does not contradict our initial
heuristic explanation of why an increase of clustering in a point process should
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increase the critical radius for the percolation. It reveals rather that dcx-ordering,
while being able to compare the clustering tendency of point processes, is not ca-
pable of comparing macroscopic structures of clusters. Nevertheless, dcx-ordering,
and some weaker tools introduced in Sect. 2.3, can be used to prove nontrivial phase
transitions for point processes which cluster less than the Poisson process. In what
follows, we will first present some intuitions leading to the above results and moti-
vating our special focus on moment measures and void probabilities in the previous
sections.

2.4.1.1 Intuitions — Some Non-Standard Critical Radii

Consider the radii rc,rc, which act as lower and upper bounds for the usual critical
radius: i.e. rc ≤ rc ≤ rc. We show that clustering acts differently on these bounding
radii: It turns out that

rc(Φ2)≤ rc(Φ1)≤ rc(Φ1)≤ rc(Φ1)≤ rc(Φ2)

for Φ1 having smaller voids and moment measures than Φ2. This sandwich inequal-
ity tells us that Φ1 exhibits the usual phase transition 0 < rc(Φ1)< ∞, provided Φ2
satisfies the stronger conditions 0 < rc(Φ2) and rc(Φ2)< ∞. Conjecturing that this
holds if Φ2 is a Poisson point process, one obtains the result on (uniformly) non-
trivial phase transition for all weakly sub-Poisson processes Φ1, which has been
proved in [44] and will be presented in the subsequent sections in a slightly differ-
ent way.

Let Φ be an arbitrary point process in R
d . Let Wm = [−m,m]d and define hm,k :

(Rd)k → {0,1} to be the indicator of the event that x1, . . . ,xk ∈ (Φ ∩Wm)
k, |x1| ≤

r, infx∈∂Wm |x−xk| ≤ r,maxi∈{1,...,k−1} |xi+1−xi| ≤ r, where ∂Wn denotes the bound-
ary of set Wn. Let Nm,k(Φ ,r) = ∑�=X1,...,Xk∈Rd hm,k(X1, . . . ,Xk) denote the number of

distinct self-avoiding paths of length k from the origin o ∈ R
2 to the boundary of

the box Wm in the germ-grain model and Nm(Φ ,r) = ∑k≥1 Nm,k(Φ ,r) to be the total
number of distinct self-avoiding paths to the boundary of the box. We define the
following “lower” critical radius

rc(Φ) = inf{r : lim inf
m

ENm(Φ ,r)> 0} .

Note that rc(Φ) = inf{r : limm→∞ P(Nm(Φ ,r)≥ 1)> 0}, with the limit existing be-
cause the events {Nm(Φ ,r)≥ 1} form a decreasing sequence in m, and by Markov’s
inequality, we have that indeed rc(Φ)≤ rc(Φ) for a stationary point process Φ .

It is easy to see that ENm(Φ ,r) can be expressed in terms of moment measures,
i.e. ENm(Φ ,r) = ∑k≥1 ENm,k(Φ ,r) and

ENm,k(Φ ,r) =
∫
(Rd)k

hm,k(x1, . . . ,xk)α
(k)
j (dx1, . . . ,dxk).
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The following result is obtained in [45].

Proposition 2.13. Let Cj =C(Φ j,r), j = 1,2 be two germ-grain models with simple
point processes of germs Φ j , j = 1,2, and σ -finite k-th moment measures αk

j for all

k ≥ 1 respectively. If α(k)
1 (·) ≤ α(k)

2 (·) for all k ≥ 1, then rc(Φ1) ≥ rc(Φ2). In par-
ticular, for a stationary, α-weakly sub-Poisson point process Φ1 with unit intensity,
it holds that κdrc(Φ1)

d ≥ 1 where κd is the volume of the unit ball in R
d .

In order to see void probabilities in action it is customary to use some discrete
approximations of the continuum percolation model. For r > 0,x ∈ R

d , define the
following subsets of Rd . Let Qr = (− 1

2r ,
1
2r ]

d and Qr(x) = x+Qr. We consider the
following discrete graph parametrised by n ∈ N. Let L∗dn = (Zd

n ,E
∗d
n ) be the usual

close-packed lattice graph scaled down by the factor 1/n. It holds that Zd
n =

1
nZd for

the set of vertices and E∗dn = {〈zi,z j〉 ∈ (Zd
n)

2 : Q
n
2 (zi)∩Q

n
2 (z j) �= /0} for the set of

edges, where Z denotes the set of integers.
A contour in L∗dn is a minimal collection of vertices such that any infinite path in

L∗dn from the origin has to contain one of these vertices (the minimality condition
implies that the removal of any vertex from the collection will lead to the exis-
tence of an infinite path from the origin without any intersection with the remain-
ing vertices in the collection). Let Γn be the set of all contours around the origin
in L∗dn . For any subset of points γ ⊂ R

d , in particular for paths γ ∈ Γn, we define
Qγ =

⋃
z∈γ Qn(z).

With this notation, we can define the “upper” critical radius rc(Φ) by

rc(Φ) = inf
{

r > 0 : for all n≥ 1, ∑
γ∈Γn

P
(
C(Φ ,r)∩Qγ = /0

)
< ∞

}
. (2.14)

It might be seen as the critical radius corresponding to the phase transition when the
discrete model L∗dn = (Zd

n ,E
∗d
n ), approximating C(Φ ,r) with an arbitrary precision,

starts percolating through the Peierls argument. As a consequence, rc(Φ) ≥ rc(Φ)
(see [43, Lemma 4.1]). The following ordering result follows immediately from the
definitions.

Corollary 2.1. Let Cj = C(Φ j,r), j = 1,2 be two germ-grain models with simple
point processes of germs Φ j , j = 1,2. If Φ1 has smaller voids probabilities then Φ2,
then rc(Φ1)≤ rc(Φ2).

Remark 2.6. The finiteness of rc is not clear even for Poisson point process and
hence Corollary 2.1 cannot be directly used to prove the finiteness of the critical
radii of v-weakly sub-Poisson point processes. However, the approach based on void
probabilities can be refined, as we shall see in what follows, to conclude the afore-
mentioned property.

2.4.1.2 Percolation of Level-Sets of Shot-Noise Fields

Various percolation problems, including the classical continuum percolation model
considered in the previous section, can be posed as percolation of some level sets
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of shot-noise fields. We say that a level set percolates if it has an unbounded con-
nected subset. We now present a useful lemma that can be used in conjunction with
other methods, in particular the famous Peierls argument (cf. [152, pp. 17–18]), to
exhibit percolation of the level sets of shot-noise fields for an appropriate choice of
parameters. We sketch these arguments in the simple case of the germ-grain model
and the application to the SINR model in the subsequent sections. The proofs rely
on coupling of a discrete model with the continuum model and showing percolation
or non-percolation in the discrete model using the above bounds.

In what follows we will be interested in level-sets of shot-noise fields, i.e. sets
of the form {y ∈ S : VΦ(y) ≥ a} or {y ∈ S : VΦ(y) ≤ a} for some a ∈ R, where
{VΦ(y),y ∈ S} is a shot-noise field generated by some point process Φ with a non-
negative response function h as introduced in Definition 2.14. For proving results on
percolation of level-sets, we rely heavily on the bounds from the following lemma.

Lemma 2.1 ([44, Lemma 3.2]). Let Φ be a stationary point process with positive
and finite intensity λ . Then the following statements are true.

1. If Φ is α-weakly sub-Poisson, then

for any y1, . . . ,ym ∈ S and s > 0.

Proof. Observe that ∑m
i=1 VΦ(yi) = ∑X∈Φ ∑m

i=1 h(X ,yi) is itself a shot-noise field
driven by the response function ∑m

i=1 h(.,yi). Thus if (2.15) and (2.16) are true for
m = 1, we can derive the general case as well. Using Chernoff’s bound, we have
that P(VΦ(y)≥ a)≤ e−saEesVΦ (y) and P(VΦ(y)≤ a)≤ esaEe−sVΦ (y). The two state-
ments now follow from Propositions 2.2 and 2.3 respectively.

2.4.1.3 k-Percolation in the Germ-Grain Model

By k-percolation in a germ-grain model, we understand percolation of the subset of
the space covered by at least k grains of the germ-grain model; cf. Definition 2.15.
Our aim is to show that for sub-Poisson point processes (i.e. point processes that
are dcx-smaller than the Poisson point process) or negatively associated point pro-
cesses, the critical connection radius r for k-percolation of the germ-grain model is
non-degenerate, i.e., the model does not percolate for r too small and percolates for r
sufficiently large. As will be seen in the proof given below, the finiteness of the crit-
ical radius r for k = 1 (i.e. the usual percolation) holds under a weaker assumption
of ordering of void probabilities.

P

(
min

i∈{1,...,m}
VΦ(yi) ≥ a

)
≤ e−sma exp λ

∫
Rd

(es∑m
i=1 h(x,yi) −1)dx (2.15)

for any y1, . . . ,ym ∈ S and s > 0.
2. If Φ is v-weakly sub-Poisson then,

P

(
max

i∈{1,...,m}
VΦ(yi) ≤ a

)
≤ e −sma exp

(
λ
∫

Rd
(e s∑m

i=1 h(x,yi) −1)dx
)

(2.16)

( )
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Given a point processes of germsΦ on R
d , we define the coverage field {VΦ ,r(x),

x ∈ R
d} by VΦ ,r(x) = ∑X∈Φ 1(x ∈ Br(X)), where Br(x) denotes the Euclidean ball

of radius r centred at x. The k-covered set is defined as the following level set. Let
Ck(Φ ,r) = {x ∈ R

d : VΦ ,r(x)≥ k}. Note that C1(Φ ,r) =C(Φ ,r) is the usual germ-
grain model. For k ≥ 1, define the critical radius for k-percolation as

rk
c(Φ) = inf{r : P(Ck(Φ ,r) percolates)> 0} ,

where, as before, percolation means existence of an unbounded connected subset.
Clearly, r1

c(Φ)= rc(Φ)≤ rk
c(Φ). As in various percolation models, the first question

is whether 0 < rk
c(Φ)< ∞ ? This is known for the Poisson point process ([141]) and

not for many other point processes apart from that. The following result is a first step
in that direction answering the question in affirmative for many point processes.

Proposition 2.14 ( [44, Proposition. 3.4]). Let Φ be a stationary point processes
with intensity λ . For k ≥ 1,λ > 0, there exist constants c(λ ) and C(λ ,k) (not de-
pending on the distribution of Φ) such that 0 < c(λ ) ≤ r1

c(Φ) provided Φ is α-
weakly sub-Poisson and rk

c(Φ)≤C(λ ,k)< ∞ provided Φ is v-weakly sub-Poisson.
Consequently, for Φ being weakly sub-Poisson, combining both the above state-
ments, it turns out that

0 < c(λ )≤ r1
c(Φ)≤ rk

c(Φ)≤C(λ ,k)< ∞.

Remark 2.7. The above result not only shows non-triviality of the critical radius
for stationary weakly sub-Poisson processes but also provides uniform bounds. Ex-
amples of particular point processes for which this non-triviality result holds are
determinantal point processes with trace-class integral kernels (cf. Definition 2.6
and Example 2.12) and Voronoi-perturbed latices with convexly sub-Poisson repli-
cation kernels (cf. Example 2.3). For the case of zeros of Gaussian analytic functions
which is not covered by us, a non-trivial critical radius for continuum percolation
has been shown in [138], where uniqueness of infinite clusters for both zeros of
Gaussian analytic functions and the Ginibre point process is also proved.

Sketch of Proof (of Proposition 2.14). A little more notation is required. For r >
0,x ∈R

d , define the following subsets of Rd . Let Qr = (−r,r]d and Qr(x) = x+Qr.
Furthermore, we consider the following discrete graph. Let T∗d(r) = (rZd ,E∗d(r))
be a close-packed graph on the scaled-up lattice rZd ; the edge-set is given by
E∗d(r) = {〈zi,z j〉 ∈ (rZd)2 : Qr(zi)∩Qr(z j) �= /0}. Recall that by site-percolation
in a graph one means the existence of an infinite connected component in the
random subgraph that remains after deletion of sites/vertices as per some random
procedure. In order to prove the first statement, let Φ be α-weakly sub-Poisson
and r > 0. Consider the close-packed lattice T∗d(3r). Define the response function
hr(x,y) = 1(x ∈ Q3r/2(y)) and the corresponding shot-noise field V r

Φ(.) on T∗d(3r).
Note that if C(Φ ,r) percolates then {z : V r

Φ(z) ≥ 1} percolates on T∗d(3r) as well.
We shall now show that there exists a r > 0 such that the latter does not hold true.
To prove this, we show that the expected number of paths from o of length n in the
random subgraph tends to 0 as n→∞ and Markov’s inequality gives that there is no
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infinite path (i.e. no percolation) in T∗d(3r)∩{z : V r
Φ(z) ≥ 1}. There are (3d − 1)n

paths of length n from o in T∗d(2r) and the probability that a path zi ∈ rZd ,1≤ i≤ n
is open can be bounded from above as follows. Using (2.15) and some further cal-
culations, we get that

P

(
min

i∈{1,...,n}
V r
Φ(zi)≥ 1

)
≤ (exp{−(s+(1− es)λ (3r)d)})n.

So, the expected number of paths from o of length n in T∗d(3r)∩{z : V r
Φ(z) ≥ 1}

is at most ((3d − 1)exp{−(s+(1− es)λ (3r)d)})n. This term tends to 0 as n→ ∞
for r small enough and s large enough. Since the choice of r depends only on λ ,
we have shown that there exists a constant c(λ ) > 0 such that c(λ ) ≤ r1

c(Φ). For
the upper bound, let Φ be ν-weakly sub-Poisson and consider the close-packed
lattice T∗d( r√

d
). Define the response function hr(x,y) = 1(x ∈ Q r√

d
(y)) and the

corresponding additive shot-noise field V r
Φ(·). Note that if the random subgraph

T∗d( r√
d
)∩{z : V r

Φ(z) ≥ k} percolates, then C(Φ ,r) also percolates. Then, the fol-
lowing exponential bound is obtained by using (2.16) and some more calculations:

P( max
i∈{1,...,n}

V r
Φ(zi)≤ k−1)≤ (exp{−((1− e−s)λ (

r√
d
)d− s(k−1))})n.

It now suffices to use the standard Peierls argument (cf. [152, pp. 17–18]) to com-
plete the proof.

For k = 1; i.e., for the usual percolation in the germ-grain model, we can avoid
the usage of the exponential estimates of Lemma 2.1 and work directly with void
probabilities and factorial moment measures. This leads to improved bounds on the
critical radius.

Proposition 2.15 ( [44, Corollary 3.11]).

For a stationary weakly sub-Poisson point process Φ on R
d , d ≥ 2, it holds that

0 <
1

(λκd)1/d ≤ rc(Φ)≤
√

d
(

log(3d−2)
λ

)1/d

< ∞,

where κd is the volume of the unit ball in R
d . The lower and the upper bounds hold,

Remark 2.8. Applying the above result to an α-weakly sub-Poisson point processes

with unit intensity we observe that rc(Φ) ≥ κ−
1
d

d → ∞ as d → ∞. This means that
in high dimensions, it holds that rc(Φ)� rc(Zd) = 1

2 , i.e. like the Poisson point
process and even sub-Poisson point processes percolate much worse compared to
the Euclidean lattice in high dimensions.

However, the question remains open whether the initial heuristic reasoning say-
ing that more clustering worsens percolation (cf. p. 56) holds for sub-Poisson point
processes. As we have seen and shall see below, sub-Poisson point processes are
more tractable than super-Poisson point processes in many respects.

respectively, for α-weakl ν-weakly sub-Poisson processes.y and
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2.4.1.4 SINR Percolation

For a detailed background about this model of wireless communications, we refer
to [42] and the references therein. Here we directly begin with a formal introduction
to the model. We shall work only in R

2 in this section.
The parameters of the model are the non-negative numbers P (signal power), N

(environmental noise), γ , T (SINR threshold) and an attenuation function � : R2
+→

R+ satisfying the following assumptions: �(x,y) = l(|x− y|) for some continuous
function l :R+→R+, strictly decreasing on its support, with l(0)≥ T N/P, l(·)≤ 1,
and

∫ ∞
0 xl(x)dx < ∞. These are exactly the assumptions made in [105] and we refer

to this article for a discussion on their validity.
Given a point processes Φ , the interference generated due to the point processes

at a location x is defined as the following shot-noise field {IΦ(x),x ∈ R
d}, where

IΦ(x) = ∑X∈Φ\{x} l(|X− x|). Define the signal-to-noise ratio (SINR) as follows :

SINR(x,y,Φ ,γ) =
Pl(|x− y|)

N + γPIΦ\{x}(y)
. (2.17)

Let ΦB and ΦI be two point processes. Furthermore, let P,N,T > 0 and γ ≥ 0.
The SINR graph is defined as T(ΦB,ΦI ,γ) = (ΦB,E(ΦB,ΦI ,γ)) where

E(ΦB,ΦI ,γ) = {〈X ,Y 〉 ∈ Φ2
B : min{SINR(Y,X ,ΦI ,γ),SINR(X ,Y,ΦI ,γ)}> T}.

The SNR graph (i.e. the graph without interference, γ = 0) is defined as T(ΦB) =
T(ΦB, /0,0) and this is nothing but the germ-grain model C(ΦB,rl) with 2rl =
l−1(T N

P ).
Recall that percolation in the above graphs is the existence of an infinite con-

nected component in the graph-theoretic sense. Denote by λc(r)= λ (rc(Φλ )/r)2 the
critical intensity for percolation of the germ-grain model C(Πλ ,r). There is much
more dependency in this graph than in the germ-grain model where the edges de-
pend only on the two corresponding vertices, but still we are able to suitably modify
our techniques to obtain interesting results about non-trivial phase-transition in this
model. More precisely, we are showing non-trivial percolation in SINR models with
weakly sub-Poissonian set of transmitters and interferers and thereby considerably
extending the results of [105]. In particular, the set of transmitters and interferers
could be stationary determinantal point processes or sub-Poisson perturbed lattices
and the following result still guarantees non-trivial phase transition in the model.

Proposition 2.16 ( [44, Propositions 3.9 and 3.10]). The following statements are
true.

1. Let λ > λc(rl) and let Φ be a stationary α-weakly sub-Poisson point process
with intensity μ for some μ > 0. Then there exists γ > 0 such that T(Πλ ,Φ ,γ)
percolates.

2. Let Φ be a stationary, γ-weakly sub-Poisson point processes and let ΦI be a
stationary α-weakly sub-Poisson point process with intensity μ for some μ > 0.
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Furthermore, assume that l(x)> 0 for all x ∈R+. Then there exist P,γ > 0 such
that T(Φ ,ΦI ,γ) percolates.

Exercise 2.13. Two related percolation models are the k-nearest neighbourhood
graph (k-NNG) and the random connection model. Non-trivial phase transitions for
percolation is shown for both models when defined on a Poisson point process in
[126, Sect. 2.4 and 2.5]. We invite the reader to answer the challenging question of
whether the methods of [126] combined with ours could be used to show non-trivial
phase transition for weakly sub-Poisson point processes, too. Hint. The results of
[92] on the Lilypond model could be useful to show non-percolation for 1-NNG.

2.4.2 U-Statistics of Point Processes

Denote by Φ (k)(d(x1, . . . ,xk)) = Φ(dx1)(Φ \δx1)(dx2) . . .
(
Φ \∑k−1

i=1 δxi

)
(dxk) the

(empirical) k-th order factorial moment measure of Φ . Note that this is a point pro-
cess on R

dk with mean measure α(k). In case when Φ is simple, Φ (k) is simple too
and corresponds to the point process of ordered k-tuples of distinct points of Φ .

In analogy with classical U-statistics, a U-statistic of a point process Φ can be
defined as the functional F(Φ) = ∑X∈Φ(k) f (X), for a non-negative symmetric func-
tion f ([330]). In case when Φ is infinite one often considers F(Φ ∩W ), where
W ⊂ R is a bounded Borel set. The reader is referred to [330] or [358, Sect. 2]
for many interesting U-statistics of point processes of which two — subgraphs in
a random geometric graph ([314, Chap. 3]) and simplices in a random geometric
complex (see [427, Sect. 8.4.4]) — are described below.

2.4.2.1 Examples

Example 2.20 (Subgraphs counts in a random geometric graph). Let Φ be a
finite point process and r > 0. The random geometric graph T(Φ ,r) = (Φ ,E(Φ ,r))
is defined through its vertices and edges, where the edge set is given by E(Φ ,r) =
{(X ,Y ) ∈ Φ : |X −Y | ≤ r}. For a connected subgraph Γ on k vertices, define h :
R

dk→ {0,1} by hΓ ,r(x) = 1(T(x,r)∼= Γ ), where ∼= stands for graph isomorphism.
Now, the number of Γ -induced subgraphs in Φ is defined as

Gr(Φ ,Γ ) =
1
k! ∑

X∈Φ(k)

hΓ ,r(X).

Clearly, Gr(Φ ,Γ ) is a U-statistic of Φ . In the special case that |Γ | = 2, then
Gr(Φ ,Γ ) is the number of edges.

Example 2.21 (Simplices counts in a random geometric simplex). A non-empty
family of finite subsets Δ(S) of a set S is an abstract simplicial complex if for ev-
ery set X ∈ Δ(S) and every subset Y ⊂ X , we have that Y ∈ Δ(S). We shall from
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now on drop the adjective “abstract”. The elements of Δ(S) are called faces resp.
simplices of the simplicial complex and the dimension of a face X is |X |−1. Given
a finite point process Φ , one can define the following two simplicial complexes
: The Čech complex Ce(Φ ,r) is defined as the simplicial complex whose k-faces
are {X0, . . . ,Xk} ⊂ Φ such that ∩iBr(Xi) �= /0. The Vietoris-Rips complex V R(Φ ,r)
is defined as the simplicial complex whose k-faces are {X0, . . . ,Xk} ⊂ Φ such that
Br(Xi)∩Br(X j) �= /0 for all 0≤ i �= j ≤ k. The 1-skeleton (i.e. the subcomplex con-
sisting of all 0-faces and 1-faces) of the two complexes are the same and it is nothing
but the random geometric graph T(Φ ,r) of Example 2.20. Also, the Čech complex
Ce(Φ ,r) is homotopy equivalent to the germ-grain model C(Φ ,r). The number of
k-faces in the two simplicial complexes can be determined as follows:

Sk(Ce(Φ ,r)) =
1
k! ∑

X∈Φ(k)

1(X is a k-face of Ce(Φ ,r))

and similarly for Sk(V R(Φ ,r)). Clearly, both characteristics are examples of U-
statistics of Φ .

Note that a U-statistic is an additive shot-noise of the point process Φ (k) and
this suggests the applicability of our theory to U-statistics. Speaking a bit more

field {F(Φ)}F∈K indexed by K. Why do we consider such an abstraction? Here is
an obvious example.

Example 2.22. Consider K= {FB,FB(Φ)=∑X∈Φ(k) 1( f (X)∈B)}B∈B0(R+) for some
given non-negative symmetric function f defined on R

k. Then the additive shot-
noise field onΦ (k), indexed by bounded Borel sets B∈R+, defined above is nothing
but the random field characterising the following point process on R+ associated to
the U-statistics of Φ :

η( f ,Φ) = { f (X) : X ∈Φ (k)}
in the sense that FB(Φ) = η( f ,Φ)(B). (Note that if | f−1([0,x])| < ∞ for all x ∈ R+,
then ηΦ is indeed locally finite and hence a point process and we always assume
that f satisfies such a condition.) This point process has been studied in [358], in
the special case when Φ = Πλ is a stationary Poisson point process. It is shown
that if λ → ∞, then η( f ,Φ) tends to a Poisson point process with explicitly known
intensity measure.

For any U-statistic F and for a bounded window W ⊂ R
d , we have that

EF(Φ ∩W ) =
1
k!

∫
W

f (x1, . . . ,xk)α(k)d(x1, . . . ,xk).

Similarly, we can express higher moments of the shot-noise field {F(Φ)}F∈K by
those of Φ . With these observations in hand and using Proposition 2.9, we can state
the following result.

Kgenerally, consider a  family of U-Statistics and define an additive shot-noise
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Proposition 2.17. Let Φ1,Φ2 be two point processes with respective factorial mo-
ment measures α(k)

i , i = 1,2 and let W be a bounded Borel set in R
d . Consider a

family K of U-statistics. Then the following statements are true.

1. If α( j)
1 (·)≤ α( j)

2 (·) for all 1≤ j ≤ k, then

E(F1(Φ1∩W )F2(Φ1∩W ) . . .Fk(Φ1∩W ))

≤ E(F1(Φ2∩W )F2(Φ2∩W ) . . .Fk(Φ2∩W ))

for any k-tuple of U-statistics F1, . . . ,Fk ∈ K. In particular, for any given
F ∈ K based on a non-negative symmetric function f it holds that α(k)

η( f ,Φ1)
(·)≤

α(k)
η( f ,Φ2)

(·), where α(k)
η( f ,Φi)

is the k-th order factorial moment measure of η( f ,Φi).
2. If Φ1 ≤dcx Φ2, then {F(Φ1∩W )}F∈K ≤idcx {F(Φ2∩W )}F∈K and in particular
η( f ,Φ1) ≤idcx η( f ,Φ2).

2.4.2.2 Some Properties of Random Geometric Graphs

The subgraph count Gr(·, ·) considered in Example 2.20 is only a particular example
of a U-statistic but its detailed study in the case of the Poisson point process (see
[314, Chap. 3]) was the motivation to derive results about subgraph counts of a
random geometric graph over other point processes ([426]). Here, we explain some
simple results about clique numbers, maximal degree and chromatic number that
can be deduced as easy corollaries of ordering of subgraph counts known due to
Proposition 2.17.

Slightly differing from [314], we consider the following asymptotic regime for a
stationary point processΦ with unit intensity. We look at the properties of T(Φn,rn),

n≥ 1, where Φn = Φ ∩Wn with Wn = [− n
1
d
2 , n

1
d
2 ]d and a radius regime rn. To com-

pare our results with those of [314], replace the rd
n factor in our results by nrd

n . De-
tailed asymptotics of Gn(Φn,Γ ) =Grn(Φn,Γ ) for general stationary point processes
have been studied in [426, Sect. 3].

Let Cn = Cn(Φ),Δn = Δn(Φ),Xn = Xn(Φ) denote the size of the largest clique,
maximal vertex degree and chromatic number of T(Φn,rn), respectively. Heuristic
arguments for these quantities say that they should increase with more clustering in
the point process. We give a more formal statement of this heuristic at the end of
this section.

Let Γk denote the complete graph on k vertices and Γ ′1 , . . . ,Γ
′

m be the maxi-
mum collection of non-isomorphic graphs on k vertices having maximum degree
k−1. Then for k ≥ 1, we have the following two equalities and the graph-theoretic
inequality that drive the result following them: {Cn < k} = {Gn(Φn,Γk) = 0},
{Δn < k−1}= ∩m

i=1{Gn(Φn,Γ
′

i ) = 0}, Cn ≤Xn ≤ Δn +1.

Corollary 2.2. Let Φ be a stationary α-weakly sub-Poisson point process with unit
intensity. If nrd(k−1)

n → 0, then
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lim
n→∞

P(Cn < k) = lim
n→∞

P(Δn < k−1) = lim
n→∞

P(Xn < k) = 1.

Sketch of Proof. To prove the result for Cn, due to Markov’s inequality and the fact
that EGn(Φn,Γ ) ≤ EGn(Π1n ,Γ ) (see Proposition 2.17), it suffices to show that
EGn(Π1n ,Γ )→ 0 for nrd(k−1)

n → 0 and any graph Γ on k vertices. This is already
known from [314, Theorem 6.1]. The proof for Δn is similar and it also proves the
result for Xn.

Note that if k = 2, the results of Corollary 2.2 implies that limn→∞ P(Cn = 1) =
1 by using the trivial lower bound of Cn ≥ 1, and analogously for the other two
quantities. To derive a similar result for k ≥ 2, we need variance bounds for Gn(·, ·)
to use the standard second moment method. These variance bounds for Gn(·, ·) are
available in the case of negatively associated point processes (see [426, Sect. 3.4]).

Further, for point processes with α(k) admitting a continuous density α(k)(d(x1, . . . ,
xk)) = ρ(k)(x1, . . . ,xk)dx1, . . . ,dxk in the neighbourhood of (0, . . . ,0), such that
ρ(k)(0, . . . ,0) = 0 (for example, α-weakly sub-Poisson point processes such as the
Ginibre point process, perturbed lattice, zeros of Gaussian analytic function et al.)
we know from [426, Sect. 3.2] that EGn(Φn,Γk)

nrd(k−1)
n

→ 0. Using this result, we can show

that limn→∞ P(Cn < k)→ 1 even for nrd(k−1)
n → λ > 0. This is not true for the Pois-

son point process (see [314, Theorem 6.1]). Thus, we have the following inequality
for point processes with ρ(k)(0, . . . ,0) = 0:

lim
n→∞

P(Cn(Π1)< k)≤ lim
n→∞

P(Cn(Φ)< k). (2.18)

This inequality can be easily concluded from the fact that for radius regimes with
nrd(k−1)

n → λ ≥ 0, the expression on the right-hand side of (2.18) is equal to 1 while
for the radius regime nrd(k−1)

n → ∞, the expression on the left-hand side of 2.18
is equal to 0 (see [314, Theorem 6.1]). In vague terms, we can rephrase the above
inequality as that Cn(Π1) is “stronger ordered” than Cn(Φ) in the limit, i.e., the
Poisson point process is likely to have a larger clique number than a point process
with ρ(k)(0, . . . ,0) = 0. Similar “strong ordering” results for Δn’s andXn’s matching
well with heuristics can also be derived.

2.4.3 Random Geometric Complexes

We have already noted in Example 2.21 that the number of k-faces in Čech and
Vietoris-Rips complexes on point processes are U-statistics. In this section we will
further describe the topological properties of these random geometric complexes.
In the same manner as simplicial complexes are considered to be topological exten-
sions of graphs, so are random geometric complexes to random geometric graphs.
Random geometric graphs on Poisson or binomial point processes are a well-
researched subject with many applications (see [314]). Motivated by research in
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topological data analysis ([64, 139]) and relying on results from random geometric
graphs, random geometric complexes on Poisson or binomial point processes have
been studied recently [214]. In [426], the investigation of the topology of random
geometric complexes has been extended to a wider class of stationary point pro-
cesses using tools from stochastic ordering of point processes. However, we shall
content ourselves with just explaining one of the key phase-transition results given
in [426].

One of the first steps towards the understanding of Čech and Vietoris-Rips com-
plexes is to understand the behaviour of their Betti numbers βk(·),k ≥ 0 as func-
tions of r. Informally speaking, the k-th (k ≥ 1) Betti number counts the number of
k+ 1-dimensional holes in the appropriate Euclidean embedding of the simplicial
complex. The 0-th Betti number is the number of connected components in the sim-
plicial complex, β1 is the number of two-dimensional or "circular" holes, β2 is the
number of three-dimensional voids, etc. If β0(·) = 1, then we say that the simplicial
complex is connected. Unlike simplicial counts, Betti numbers are not U-statistics.

Regarding the dependence of the Betti number βk(r) of Čech complexes on r,
for k ≥ 1, unlike in earlier percolation models, there are two phase-transitions hap-
pening in this case: βk(r) goes from zero to positive (the complex “starts creating”
k+ 1-dimensional holes) and, alternatively, it goes from positive to zero (the holes
are “filled in”). If one were to think about the relative behaviours of the Betti num-
bers βk(·), k ≥ 1, of the Čech complexes on two point process Φ1,Φ2 where Φ1
is "less clustered" than Φ2, then it should be possible that the first threshold de-
creases with clustering and the second threshold increases with clustering. Indeed,
depending on the strength of the result we require, weak sub-Poissonianity or neg-
ative association turn out to be the right notion to prove the above heuristic more
rigorously.

Let Φ be a stationary weakly sub-Poisson point process with unit intensity and
let Wn = n1/d [− 1

2 ,
1
2 ]

d . Let rn ≥ 0,n ≥ 1 be the corresponding radius regime with
limn rn ∈ [0,∞]. Based on whether limn rn is 0,∞ or a constant between 0 and ∞,
we shall get different scaling limits for the Betti numbers. Under certain technical
assumptions, there is a function f k(·) depending on the joint intensities of the point
process ( f k(r)→ 0 as r→ 0 for point processes for which ρ(k)(0, . . . ,0) = 0 and
otherwise f k(·)≡ 1) such that the following statements hold for k ≥ 1. 1. If

rd(k+1)
n f k+2(rn) = o(n−1) or rd

n = ω(logn),

then with high probability βk(Ce(Φ ∩Wn,rn)) = 0. 2. Let Φ be negatively associ-
ated. If

rd(k+1)
n f k+2(rn) = ω(n−1) and rd

n = O(1),

then with high probability βk(Ce(Φn,rn)) �= 0.
To see how the above statements vindicate the heuristic described before, con-

sider the first threshold for the appearance of Betti numbers (with high probability).
In the Poisson case ( f k(·) ≡ 1) this threshold is exactly rn → 0 and nrd(k+1)

n → ∞,
whereas for weakly sub-Poisson point processes with ρ(k)(0, . . . ,0) = 0 ( f k(r)→ 0
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as r→ 0), this is at least rn → 0 and nrd(k+1)
n → ∞, i.e., the threshold is larger for

these weakly sub-Poisson point processes. For specific point processes such as the
Ginibre point process or the zeros of Gaussian analytic functions ( f k(r) = rk(k−1)),
this threshold is only at rn→ 0 and nr(k+1)(k+2)

n →∞ which is much larger than that
of the Poisson point process.

Now if we consider the second threshold, when Betti numbers vanish, then for the
Ginibre point process or the zeros of Gaussian analytic functions, with high proba-
bility βk(Ce(Φ ∩Wn,rn)) = 0 for rd

n = ω(
√

logn). This is of strictly smaller order
compared to the Poisson case where rd

n = ω(logn). For other weakly sub-Poisson
point processes, the above results imply that the order of the radius threshold for
vanishing of Betti numbers cannot exceed rd

n = ω(logn), i.e. that of the Poisson
point process. Hence, this second threshold is smaller for weakly sub-Poisson point
processes. Negative association just assures positivity of Betti numbers for the inter-
mediate regime of rn→ r ∈ (0,∞). Now if we consider the second threshold, when
Betti numbers vanish, then for the Ginibre point process or the zeros of Gaussian an-
alytic functions, with high probability βk(Ce(Φ ∩Wn,rn)) = 0 for rd

n = ω(
√

logn).
This is of strictly smaller order compared to the Poisson case where rd

n = ω(logn).
For other weakly sub-Poisson point processes, the above results imply that the order
of the radius threshold for vanishing of Betti numbers cannot exceed rd

n = ω(logn),
i.e. that of the Poisson point process. Hence, this second threshold is smaller for
weakly sub-Poisson point processes. Negative association just assures positivity of
Betti numbers for the intermediate regime of rn→ r ∈ (0,∞).

Barring the upper bound for the vanishing of Betti numbers, similar results hold
true for the Vietoris-Rips complex, too. One can obtain asymptotics for Euler char-
acteristic of the Čech complex using the Morse-theoretic point process approach.
This and asymptotics for Morse critical points on weakly sub-Poisson or negatively
associated point processes are also obtained in [426].

Furthermore, analogous to percolation in random geometric graphs, one can
study percolation in random Čech complexes by defining the following graph. Any
two k-faces of the Čech complex are said to be connected via an edge if both of
them are contained in a (k+1)-face of the complex. In the case of k = 0, the graph
obtained is the random geometric graph. The existence of non-trivial percolation
radius for any k ≥ 1 is guaranteed by Proposition 2.14 provided the point process
Φ is weakly sub-Poisson. This question was raised in [214, Sect. 4] for the Poisson
point process.

2.4.4 Coverage in the Germ-Grain Model

pects of the germ-grain model. Yet another aspect of the germ-grain model that has
been well studied for the Poisson point process is coverage [163]. Here, one is con-
cerned with the volume of the set Ck(Φ ,r) defined in Sect. 2.4.1.3. The heuristic is
again that the volume of the 1-covered region should decrease with clustering, but

In previous sections of this chapter, we looked at percolation and connectivity as-
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the situation would reverse for the k-covered region for large enough k. We are in a
position to state a more formal statement once we introduce still another definition.
We say that two discrete random variables X ,Y are ordered in uniformly convex
variable order (UCVO)(X ≤uv Y ) if their respective density functions f ,g satisfy
the following conditions: supp( f )⊂ supp(g), f (·)/g(·) is an unimodal function but
their respective distribution functions are not ordered, i.e. F(·) � G(·) or vice-versa
(see [413]) and where supp(·) denotes the support of a function.

Proposition 2.18 ( [45, Proposition 6.2]). Let Φ1 and Φ2 be two simple, stationary
point processes such that Φ1(BO(r))≤uv Φ2(BO(r) for r≥ 0. Then there exists k0 ≥
1 such that for any bounded Borel set W ⊂ R

d it holds that

Eνd(Ck(Φ1,r)∩W )≥ Eνd(Ck(Φ2,r)∩W ) for all k : 1≤ k ≤ k0,

and

Eνd(Ck(Φ1,r)∩W )≤ Eνd(Ck(Φ2,r)∩W ) for all k > k0, .

For Φ1, we can take any of the sub-Poisson perturbed lattices presented in Ex-
ample 2.3 or a determinantal point process (see Definition 2.6) and Φ2 as a Poisson
point process. We can also take Φ1 to be a Poisson point process and Φ2 to be any
of the super-Poisson perturbed lattices presented in Example 2.3 or a permanental
point process (see Definition 2.7).

Note that for a stationary point process Φ , we have that

Eνd(Ck(Φ ,r)∩W ) =
∫

W
P(Φ(Bx(r))≥ k)dx = νd(W )P(Φ(BO(r))≥ k).

It is easy to derive from the above equation that the expected 1-covered region of ν-
weakly sub-Poisson point processes is larger than that of the Poisson point process
[40, Sect. 6.1].

The question of coverage also arises in the SINR model of Sect. 2.4.1.4. We shall
not delve further into this question other than remarking that in a certain variant of
the SINR model, it has been shown that the coverage and capacity which is defined
as log(1+SINR) increase with increase in dcx-ordering [425, Sect. 5.2.3].

2.5 Outlook

Let us mention some possible directions for future work. While several examples of
point processes comparable to the Poisson point process were presented, a notable
absentee from our list are Gibbs point processes, which should appear in the context
of modelling of clustering phenomena. In particular, some Gibbs hard-core point
processes are expected to be sub-Poisson. Bounds for the probability generating
functionals with estimates for Ripley’s K-function and the intensity and higher order
correlation functions for some stationary locally stable Gibbs point process are given
in [385]. Also, some geometric structures on specific Gibbs point processes have

Bart omiej Błaszczyszyn and Dhandapani Yogeshwaranł



2 Clustering comparison of point processes 71

already been considered (see e.g. [84, 352]), and these processes perhaps could serve
as new reference processes, replacing in this role the Poisson point process. As for
today we are not aware of any such results.

The question of other useful orders for comparison of point processes also is wor-
thy of investigation. In [425, Sect. 4.4], it has already been shown that related orders
of supermodularity and componentwise convexity are not suitable orders whereas
convexity could be useful. It might be interesting to study convex ordering of point
processes.

Though we have presented applications to various geometric models, there are
many other questions such as the ordering of critical radii for percolation, unique-
ness of giant component in continuum percolation (see Remark 2.7), concentration

for more general functionals (see Proposition 2.4), asymptotic analysis
of other U-statistics along the lines of Sect. 2.4.3 and 2.4.2.2, etc., are investi-
gated.

Acknowledgements This chapter is based on research supported in part by Israel Science Foun-
dation 853/10, AFOSR FA8655-11-1-3039 and FP7-ICT-318493-STREP and was written while DY
was a post-doc at Technion, Israel.
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Chapter 3

Random Tessellations and their Application to

the Modelling of Cellular Materials

Claudia Redenbach and André Liebscher

Abstract This chapter introduces various tessellation models and discusses their ap-
plication as models for cellular materials. First, the notion of a random tessellation,
the most well-known model types (Voronoi and Laguerre tessellations, hyperplane
tessellations, STIT tessellations), and their basic geometric characteristics are intro-
duced. Assuming that a cellular material is a realisation of a suitable random tessel-
lation model, these characteristics can be estimated from 3D images of the material.
It is explained how estimates are obtained and how these characteristics can be used
to fit tessellation models to the observed structure. All analysis and modelling steps
are illustrated using the example of an open cell aluminium foam.

3.1 Introduction

The construction of vehicles, machines and buildings nowadays includes tasks such
as energy saving, lightweight construction and heat insulation. Consequently, the
materials used for these purposes are more and more optimised for the particular
applications. An important element in this optimisation is the understanding of the
influence of a material’s microstructure on its macroscopic properties. The rapid de-
velopment of image acquisition techniques and computing power allows for a vir-
tual design of materials which provides a promising alternative to the construction
and experimental testing of prototype materials. 3D images obtained for instance
by micro computed tomography (μCT) capture the full spatial information on the
microstructure geometry. Hence, geometric characteristics of a material can be es-
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timated from the image data. Subsequently, these characteristics can be used to fit a
model from stochastic geometry to the material. Changing the model parameters, re-
alisations with altered microstructure can be generated. Prediction of macroscopic
properties of these realisations then allows to study microstructure-property rela-
tions.

Random closed sets are classical models from stochastic geometry which can be
used to describe the microstructure of materials (see [73, 267, 305]). The variety of
these models makes them applicable for a wide range of of materials. Processes of
lines or cylinders are used to model fibrous materials [340]. Systems of balls are
used for porous materials as they appear in the beginning of the sinter process [243]
or the system of grains and pores in concrete ([24] and [213], respectively). Boolean
models with various kinds of grain shapes are used for example for cast iron (line
segments, [73]), calcium ferrite (quadrangles, [361, Chap. XIII]) or the pore phase
in carbonate rock (ellipsoids, [7]).

In this chapter we focus on cellular materials whose microstructure is charac-
terised by a system of nearly polyhedral cells (see Fig. 3.1). In particular, we will
describe the analysis and modelling of open foams. These materials consist of an
open pore space whose cells are separated by a connected system of struts. Their
microstructure will be modelled using random tessellations, i.e. space-filling col-
lections of non-overlapping cells. Several random tessellation models have been
introduced in the literature [73, 347]. Among these, Laguerre tessellations, a special
type of weighted Voronoi tessellations, are of particular interest for the modelling
of cellular materials. In the following, we will introduce several random tessellation
models and their basic geometric characteristics. We will describe how these char-
acteristics can be estimated from 3D images of open foams and how they can be
used to fit tessellation models to the observed structure. All analysis and modelling
steps are illustrated using the example of an open aluminium foam.

3.2 Random Tessellations

3.2.1 Definitions

Definition 3.1 (Point process). Let E be a locally compact space with countable
basis and Borel σ -algebra B. Denote by N(E) the set of all locally finite counting
measures on E. Equip N(E) with the σ -algebra N generated by the mappings ϕ �→
ϕ(B) for B ∈ B. Then a point process is a random variable Φ on a probability space
(Ω ,A,P) taking values in the measurable space (N(E),N). The support ofΦ forms
a locally finite collection of points of E which is identified with Φ .

If E =R
d×M, where M is a locally compact space with countable basis, we call

Φ a marked point process with mark space M. In this case, a point (x,m) ∈ Φ is
interpreted as a point x ∈ R

d to which a mark m ∈M is attached.
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Definition 3.2 (Stationarity and isotropy). A point process on R
d is called sta-

tionary if its distribution is invariant under translations and isotropic if it is invariant
under rotations.

Exercise 3.1. Give examples of point processes which are 1. stationary, but not
isotropic, 2. isotropic, but not stationary, 3. neither stationary nor isotropic.

Definition 3.3 (Intensity measure). For any point process Φ on R
d , its intensity

measure Λ : B → [0,∞] is defined by

Λ(B) = EΦ(B), B ∈ B.

For stationary point processes we have Λ = λνd , where λ = EΦ([0,1]d) is the
intensity of Φ and νd denotes the d-dimensional Lebesgue measure.

Definition 3.4 (Stationary Poisson process). A stationary Poisson process Φ on
R

d with intensity λ > 0 is characterised by the following properties:

1. The number of points Φ(B) contained in a bounded Borel set B ∈ B has a Pois-
son distribution with parameter λνd(B).

2. For arbitrary k ∈ N, the numbers of points in k disjoint Borel sets are indepen-
dent random variables.

Definition 3.5 (Tessellation). A tessellation of R
d is a locally finite collection

T = {Ci : i ∈ N} of compact convex sets Ci with interior points such that int(Ci)∩
int(Cj) = /0 for i �= j and

⋃
i∈N

Ci = R
d . Locally finite means that #{C ∈ T : C∩B �=

/0}< ∞ for all bounded B⊂ R
d . The sets Ci ∈ T are the cells of the tessellation T .

Fig. 3.1 Visualisations of μCT images of a closed polymer foam (left sample: ROHACELL
WIND-F RC100, image: Fraunhofer ITWM, 6003 voxels, voxel edge length 2.72 μm) and an open
nickel-chromium foam (right sample: Recemat International, image: RJL Micro & Analytic, 5003

voxels, voxel edge length 8.93 μm).
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By [347, Lemma 10.1.1], the cells are bounded d-dimensional polytopes. In the
literature, also tessellation models with non-convex cells are investigated (for exam-
ples see [306]). Here, however, we will restrict attention to convex cells.

Definition 3.6 (k-faces). The faces of a convex polytope P are the intersections of P
with its supporting hyperplanes [346, Sect. 2.4]. Let P be a d-dimensional polytope
and k ∈ {0, . . . ,d− 1}. A k-dimensional face of P is called a k-face. Then the 0-
faces of P are the vertices, the 1-faces the edges, and the (d− 1)-faces the facets.
For convenience, the polytope P is considered as a d-face. Write Δk(P) for the set
of k-faces of a polytope P and Δk(T ) =

⋃
C∈T Δk(C) for the set of k-faces of all cells

C of T . Furthermore, let

F(y) =
⋂

C∈T,y∈C

C, y ∈ R
d ,

be the intersection of all cells of the tessellation containing the point y. Then
F(y) is a finite intersection of d-polytopes and, since it is non-empty, F(y) is a
k-dimensional polytope for some k ∈ {0, . . . ,d}. Therefore, we may introduce

Fk(T ) = {F(y) : dimF(y) = k,y ∈ R
d}, k = 0, . . . ,d,

the set of k-faces of the tessellation T . A k-face H ∈ Δk(T ) of a cell C of T is the
union of all those k-faces F ∈ Fk(T ) of the tessellation contained in H.

Definition 3.7 (Face-to-face and normal tessellation). A tessellation T is called
face-to-face if the faces of the cells and the faces of the tessellation coincide, i.e. if
Δk(T ) = Fk(T ) for all k = 0, . . . ,d. For k = 0 and k = d this is always true. In the

set of k-faces of a cell C of T . A tessellation T is called normal if it is face-to-face
and every k-face of T is contained in the boundary of exactly d− k + 1 cells for
k = 0, . . . ,d−1.

Exercise 3.2. Construct examples of tessellations which are 1. normal, 2. face-to-
face, but not normal, 3. not face-to-face.

We write T for the set of all tessellations in R
d . It is equipped with the σ -algebra

T generated by the sets
{
{Ci}i :

[⋃
i

∂Ci
]∩K �= /0

}
, K ⊂ R

d compact.

Definition 3.8 (Random tessellation). A random tessellation in R
d is a random

variable X on a probability space (Ω ,A,P) with range (T,T ). It is called normal
and face-to-face if its realisations are almost surely normal and face-to-face, respec-
tively.

The translation and the rotation of a tessellation T ∈ T are defined via

case of face-to-face tessellations we will unify the notation by  writing Fk (C) for the
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T + y = {C+ y : C ∈ T}, y ∈ R
d , and

ϑT = {ϑC : C ∈ T}, ϑ ∈ SOd .

A random tessellation is called stationary if its distribution is invariant under trans-
lations and isotropic if it is invariant under rotations.

Stationary random tessellations contain infinitely many cells. For the definition
of geometric tessellation characteristics, a finite subsample of the aggregate of cells
is investigated. For this purpose, only cells with centroid in a given reference set are
considered.

Definition 3.9 (Centroid of a compact set). Write C′ for the system of compact
non-empty sets in R

d . Let c : C′ → R
d be a measurable function such that

c(C+ y) = y+ c(C), y ∈ R
d , C ∈ C′. (3.1)

The point c(C) is called the centroid of the set C ∈ C′.
Typical choices of centroids are the centre of gravity of the set C, the centre of

its surrounding ball, or the “extreme" point of C with respect to a given direction.

where Hk is the k-dimensional Hausdorff measure. In the stationary case, their in-
tensities

μk = E

(
∑

C∈Fk(X)

Hk(C∩ [0,1]d)
)
, k = 0, . . . ,d,

can be interpreted as the mean total k-content of the k-faces of the tessellation per
unit volume.

Let ck k-faces of a random tessell-
ation X . Then we can define the point process Φk of centres of the k-faces of X
as

Φk(X) = ∑
F∈Fk(X)

δck( ) .

Stationarity of the random tessellation X and property (3.1) imply stationarity of the
point processes Φk(X). The intensity γk of Φk is given by the formula

γk = E

(
∑

F∈Fk(X)
1[0,1]d (ck(F))

)
, k = 0, . . . ,d,

and can be interpreted as the mean number of k-faces per unit volume. The value of
γk does not depend on the choice of the centroid function ck [278, 347].

Further random measures induced by a random tessellation are the measures Mk :
B → [0,∞] given by

Mk(B) = ∑
F∈Fk(X)

Hk(F ∩B), k = 0, . . . ,d, B ∈ B,

denote a centroid function acting on the set of

F
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The above characteristics carry some information on the aggregate of the tessel-
lation’s cells. In applications it is often interesting to investigate characteristics of
single cells and their faces leading e.g. to the distributions of cell volumes or edge
lengths. This is formalised using the typical k-face of the stationary tessellation X
which is defined by means of Palm theory [347].

Nkl - the expected number of l-faces adjacent to the typical k-face, k, l ∈ {0,1,2,3},
e. g. N13 denotes the expected number of cells neighbouring the typical edge,

L1 - the expected length of the typical edge,
L2 - the expected perimeter of the typical face,
A2 - the expected area of the typical face,
B3 - the expected mean width of the typical cell,
L3 - the expected total edge length of the typical cell,
S3 - the expected surface area of the typical cell,
V3 - the expected volume of the typical cell.

These characteristics are related to each other. For example, for a planar normal
random tessellation in R

2 they can be expressed by μ0(= γ0) and μ1. In R
3, γ3,

μ0(= γ0), μ1, and μ2 are required [269].

3.2.2 Tessellation Models

Various models for random tessellations can be found in the literature. Two common
construction principles are the division of space by hyperplanes and tessellations of

Definition 3.10 (Typical k-face). Let Pk denote the space of k-dimensional poly-
topes in Rd . The typical k-face Ck of a random stationary tessellation is a Pk-valued
random variable such that for every bounded, measurable, and translation invariant
function f : Pk → R and every Borel set B ∈ B with 0 < νd(B) < ∞ we have

E f (Ck) =
1

γkνd(B)
E

(
∑

{C∈Fk :ck(C)∈B}
f (C − ck(C))

)
. (3.2)

The typical k-face can be interpreted as a k-dimensional polytope picked at ran-
dom from the system of k-faces of the tessellation.

Exercise 3.3. Show that the distribution of Ck is rotation invariant if X is isotropic
and ck(ϑC) = ϑck(C) for all ϑ ∈ SOd , C ∈ C′. Give examples of centroid functions
with this property.

Besides by the characteristics γk and μk a random tessellation can be described by
geometric characteristics of its typical k-faces:
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the Voronoi type which are generated by a point process with respect to a given
distance measure.

3.2.2.1 Tessellations Constructed by Hyperplanes

Definition 3.11 (Hyperplane tessellation). Let H be a locally finite set of hyper-
planes in R

d . Then the connected components of R
d \⋃h∈H h form a system of

open subsets of Rd . Their closures build the hyperplane tessellation induced by H.

If H is given by a Poisson hyperplane process, i.e., a Poisson process on the space
of hyperplanes in R

d , then the special case of a Poisson hyperplane tessellation is
obtained. These tessellations are face-to-face but not normal. In the stationary case,
this model depends on the intensity of the Poisson hyperplane process (which corre-
sponds to μd−1) and the distributionR of normal directions of the hyperplanes. A vi-
sualisation of a three-dimensional isotropic Poisson hyperplane tessellation, where
R is the uniform measure on S2, is shown in Fig. 3.2. See [347 , Sect. 10.3] for a
summary of analytic results for this model.

Definition 3.12 (STIT tessellation). A random STIT tessellation in any bounded
Borel set W ⊂ R

d with (finite) volume νd(W ) > 0 is obtained by the following
spatio-temporal construction. First, a random life-time is assigned to W which is
exponentially distributed with parameter related to the mean width of W . After this
life time, a uniformly distributed random hyperplane with normal direction drawn
from a distribution R is thrown onto W . This hyperplane splits W into two new
cells W+ and W−. On these, the cell splitting process starts anew and develops in-
dependently in W+ and W−. This procedure is continued until a given time t > 0 is
reached.

It can be shown that there exists a tessellation on the whole space R
d which

extends the tessellation constructed by the algorithm described above [270]. In the
stationary case, model parameters are the stopping time t of the construction process
(which corresponds to μd−1) and the distribution R of normal directions of the
hyperplanes.

The name STIT stems from the fact that these tessellations are STable with re-
spect to ITeration [296]. Several first-order properties of this model in the planar
and three-dimensional case were obtained in [297], [298], and [391]. Second-order
theory for STIT tessellations was developed in [351].

Due to the separate splitting of their cells, STIT tessellations are not face-to-
face. A visualisation of a three-dimensional isotropic STIT tessellation is shown in
Fig. 3.2.

It has been shown that the interiors of the typical cells of a Poisson hyperplane
tessellation and a STIT tessellation with the same parameters have the same distri-
bution [296]. A comparison of second order properties and the arrangement of cells
in these models has been discussed in [328] and [329], respectively.
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Fig. 3.2 Realisations of isotropic Poisson hyperplane (left) and STIT (right) tessellations in R
3.

3.2.2.2 Tessellations of Voronoi Type

Definition 3.13 (Voronoi tessellation). Let ϕ be a locally finite subset of Rd . The
Voronoi cell C(x,ϕ) of x ∈ ϕ is defined as

C(x,ϕ) = {y ∈ R
d : ||y− x|| ≤ ||y− x′|| for all x′ ∈ ϕ.}

The Voronoi tessellation of ϕ is the set V (ϕ) = {C(x,ϕ) : x ∈ ϕ}.
IfΦ is a Poisson process in R

d , the special case of a Poisson-Voronoi tessellation
is obtained. Realisations of this model in R

2 and R
3 are shown in Fig. 3.3.

Fig. 3.3 Realisations of stationary Poisson-Voronoi tessellations in R
2 (left) and R

3 (right).
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For a stationary Poisson-Voronoi tessellation in R
d with intensity λ , the densities

μk are given by

μk =
2d−k+1π

d−k
2

d(d− k+1)!

Γ
(

d2−kd+k+1
2

)
Γ
(
1+ d

2

)d−k+ k
d Γ

(
d− k+ k

d

)
Γ
(

d2−kd+k
2

)
Γ
( d+1

2

)d−kΓ
( k+1

2

) λ
d−k

d , (3.3)

see [347, Theorem 10.2.4]. A summary of further analytical results for this model
including formulae for the edge length distribution and contact distance distributions
can be found in [306].

The range of cell structures which can be realised by Voronoi tessellations is lim-
ited as the boundary between cells is always located at equal distance between the
generators. In order to produce more flexible models, several approaches of weight-
ing Voronoi tessellations have been introduced. Some of these, e.g. the Johnson-
Mehl tessellation [279], can contain non-convex cells. Here, we will concentrate on
Laguerre tessellations which have convex polyhedral cells.

Definition 3.14 (Laguerre tessellation). Let ϕ be a locally finite subset of Rd×R+.
The Laguerre cell of (x,r) ∈ ϕ is defined as

L((x,r),ϕ) = {y ∈ R
d : ||y− x||2− r2 ≤ ||y− x′||2− r′2 for all (x′,r′) ∈ ϕ.}

The Laguerre tessellation of ϕ is the set L(ϕ) = {L((x,r),ϕ) : (x,r) ∈ ϕ}. The
’distance’ pow((x,r),y) = ||y− x||2− r2 is called the power of y w.r.t. (x,r).

A generator (x,r) ∈ ϕ can be interpreted as a ball with centre x and radius r. If
all radii are equal, the special case of a Voronoi tessellation is obtained.

Exercise 3.4. Show that the section of a Laguerre tessellation on R
d with a k-

dimensional plane L ⊂ R
d is a Laguerre tessellation in L. Hint: In this case, imagi-

nary balls, i.e. balls with radius ir (i =
√−1, r ≥ 0) have to be allowed.

While each cell of a Voronoi tessellation contains its generating point this is no
longer true for Laguerre tessellations (see Fig. 3.4, left). In fact, there may be points
which do not generate a cell at all. However, if the system of generators consists
of non-overlapping balls, then each ball is completely contained in its cell. Under
certain regularity assumptions on the set ϕ , L(ϕ) is a normal random tessellation.
An important reason to choose this model is the fact that for d ≥ 3 each normal
tessellation of Rd is a Laguerre tessellation [14, 245].

In [245] integral formulae for the intensities μk of the Laguerre tessellation gen-
erated by a stationary, independently marked Poisson process Φ in R

d with in-
tensity λ and mark distribution Q with finite d-th moment are given. Due to the
lack of symmetries in the Laguerre tessellation these formulae are less explicit than
the ones for the Poisson-Voronoi tessellation: For m ∈ N and x0, . . . ,xm ∈ R

m let
Δm(x0, . . . ,xm) be the m-dimensional volume of the convex hull of x0, . . . ,xm in R

m.
For w0, . . . ,wm ≥ 0 define
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Fig. 3.4 Realisations of a stationary Poisson-Laguerre tessellation in R
2 (left) and the edge system

of a Laguerre tessellation generated by a ball packing in R
3 (right) with some of the generating

balls.

Vm,k(w0, . . . ,wm) = (m!)k+1
∫

Sm−1

. . .
∫

Sm−1

Δ k+1
m (w0u0, . . . ,wmum)σ(du0) . . .σ(dum),

where σ is the surface measure on Sd−1. Furthermore, let

p(t) = exp
(
−λκd

∞∫
0

(
[t + r2]+

) d
2 Q(dr)

)
,

where t+ = max{t,0} and κd is the volume of the d-dimensional unit ball. Then
p(t) is the probability that the power from the origin to each point of Φ exceeds t.

The intensities μk,0 < k < d, are given by the formula

μk =
λm+1

4(m+1)!
cdmσk

∞∫
0

. . .

∞∫
0

∞∫

−min
i

r2
i

m

∏
i=0

(t + r2
i )

m−2
2 Vm,k

(
(t + r2

0)
1
2 , . . . ,(t + r2

m)
1
2

)

×
∞∫

0

p(s+ t)s
k−2

2 dsdt Q(dr0) . . .Q(drm),

(3.4)

where m = d−k, σk is the surface area of Sk−1, and cdm =
σd−m+1...σd
σ1...σm

. For k = d we
have μd = 1, and for k = 0,
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μ0 =
λ d+1

2(d +1)!

∞∫
0

. . .

∞∫
0

∞∫

−min
i

r2
i

d

∏
i=0

(t + r2
i )

d−2
2 Vd,0

(
(t + r2

0)
1
2 , . . . ,(t + r2

d)
1
2

)
p(t)dt

×Q(dr0) . . .Q(drd).

For the Poisson-Voronoi tessellation, obviously γd = λ . For Poisson-Laguerre
tessellations no explicit formula for γd is known for general dimension. Neverthe-
less, for d = 2, the cell intensity can be computed via γ2 = μ0/2. For d = 3, an
explicit formula for γ3 would be of particular interest as γ3 is one of the four param-
eters determining the mean value characteristics of the tessellation, see Sect. 3.2.1.

For these and further results on Laguerre tessellations as well as analytic formu-
lae for geometric characteristics of Poisson-Laguerre tessellations we refer to [245].
A detailed overview of results on Voronoi tessellations as well as their weighted
generalisations can be found in [306].

3.3 Estimation of Geometric Characteristics of Open Foams

from Image Data

Random tessellations are suitable models for a wide variety of structures. In the
following we restrict attention to an application in materials science and discuss the
analysis and modelling of open foams.

For our analyses we assume that the solid component of the foam is the parallel
set of the edge system of a stationary random tessellation. In order to fit a tessella-

which are estimated from volume images of the material. Mean values of certain
geometric characteristics can be computed from the densities of the intrinsic vol-
umes which are estimated in a binary image of the foam structure. Furthermore, the
reconstruction of the foam cells allows for the estimation of empirical distributions
of the cell characteristics.

The techniques are illustrated by the example of an open aluminium foam. For
the analysis of the material we use a μCT image with a size of 820× 820× 278
voxels and a voxel size of 64.57 μm. Hence, the sample corresponds to 52.95 mm
× 52.95 mm × 17.95 mm of material. A visualisation of the tomographic image is
shown in Fig. 3.5.

tion model to a foam sample, we use geometric characteristics of the foam structure
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Fig. 3.5 3D visualisation (a) and a sectional image (b) of the open aluminium foam. Sample: M-
Pore GmbH. Imaging: Fraunhofer IZFP.

3.3.1 Characteristics based on Intrinsic Volumes

Let K denote the system of compact and convex sets (convex bodies) in R
d . For

K ∈ K, the intrinsic volumes Vk(K), k = 0, . . . ,d, can be defined using the Steiner
formula

νd(K⊕b(0,r)) =
d

∑
k=0

κkVd−k(K)rk, r ≥ 0,

where κk is the volume of the k-dimensional unit ball. Recall that ⊕ denotes
Minkowski addition, i.e., A⊕B = {a+ b : a ∈ A,b ∈ B} for A,B ∈ B. For d = 3
the intrinsic volumes are – up to constant factors – the volume V = V3, the surface
area S = 2V2, the integral of mean curvature M = πV1, and the Euler characteristic
χ =V0, see e. g. [346 , p. 210].

Exercise 3.5. Show that for k = 0, . . . ,d, the functional Vk is k-homogeneous in the
sense that

Vk(rK) = rkVk(K),K ∈ K,r > 0.

Exercise 3.6. Use the Steiner formula to compute the intrinsic volumes of a ball of
radius r > 0 in R

d and a cube with edge length a > 0 in R
2 and R

3.

Important characteristics for stationary random closed sets Ξ are the densities of
the intrinsic volumes. They are defined as the limits

VV,k(Ξ) = lim
r→∞

EVk(Ξ ∩ rW )

Vd(rW )
, k = 0, . . . ,d, (3.5)

where W ∈ K is a convex body with Vd(W )> 0 serving as an observation window.
A sufficient condition for the existence of the limit is that Ξ is almost surely locally

(a) (b)
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polyconvex, i.e., for K ∈ K the set Ξ ∩K can almost surely be written as a finite
union of convex bodies, and satisfies E2N(Ξ∩[0,1]d)< ∞ [347, Theorem 9.2.1]. Here
N(X) denotes the smallest number m such that X = K1∪ . . .∪Km with K1, . . . ,Km ∈
K.

The intrinsic volumes and their densities can be estimated efficiently from bi-
nary volume images using discrete versions of the Crofton formula and the Euler-
Poincaré formula as described in [305, 339].

For open foams further characteristics can be derived from the densities of the
intrinsic volumes [341]. In particular,

p – the porosity 1−VV ,
LV – the specific strut length (mean total strut length per unit volume)

LV ≈ MV

π (1−VV )
, (3.6)

γ0 – the intensity of nodes γ0 =−χV
u – the mean strut perimeter u = SV

LV
,

b – the mean diameter of the struts b = SV
π LV

, and

a – the mean cross section area of the struts a = VV
LV
.

These formulae are based on the assumption that the strut system is formed by
a cylinder system obtained via dilation of the tessellation’s edges. Therefore, an
increasing strut thickness results in an increasing overlap of these cylinders at the
nodes. Division by the porosity in (3.6) is an attempt to correct for this overlap.

For the open aluminium foam data, we obtained that VV = 14.624%, SV = 0.840
1/mm, MV = 0.880 1/mm2, and χV =−0.220 1/mm3. This yields p = 0.854, LV =

0.328 1/mm2, γ0 = 0.220 1/mm3, u = 2.559 mm, b = 0.815 mm, and a = 0.445
mm2.

3.3.2 Model-based Mean Value Analysis

Throughout the rest of this chapter we assume that d = 3 and the characteristics
introduced in the previous section describe the random closed set X formed by the
strut system of the foam. Assuming that this is the dilated edge system of a station-
ary random tessellation T allows to further characterise the foam using geometric
characteristics of the typical cell of T . Hence, let T be a random tessellation which
is stationary, normal and whose edge-skeleton Z1(T ) =

⋃
F∈F1(T ) F is topologically

equivalent to X in the sense that

χV (Z1(T )) = χV (X)

and such that X can be modelled as the dilated system of the edges of T . The for-
mulae given above imply that the node-intensity is γ0 =−χV (Z1(T )) =−χV (X).
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Now assume that the typical cell of the tessellation T is – up to a scaling factor
c – distributed like the typical cell of a given tessellation model M. Then knowing c
the characteristics of the typical cell can be derived immediately. The scaling factor
is determined from the binary image of a realisation of X by using

χV (X) =
1
c3 χV (M), (3.7)

where the model structure M is normalised to V3(M) = 1. Cell and node densities as
well as the mean total facet area per unit volume are deduced from the corresponding
quantities for the chosen model, i.e.

γ3(T ) =
1
c3 γ3(M), γ0(T ) =

1
c3 γ0(M), μ1(T ) =

1
c2 μ1(M), and μ2(T ) =

1
c
μ2(M).

Similarly we get for the means of volume, surface area, mean width, edge length,
and number of faces of the typical cell that

V3(T ) = c3, S3(T ) = c2S3(M), B3(T ) = cB3(M),

L3(T ) = cL3(M), N32(T ) = N32(M).

In [341], the above quantities were determined for several tessellation models:
the Poisson-Voronoi tessellation, a hardcore Voronoi tessellation generated by a
Matérn hardcore process, and two Laguerre tessellation models generated by dense
packings of balls with lognormal volume distribution, a packing fraction of 60%,
and coefficients of variation of ball volumes of cv = 0.2 and cv = 2.0. The geomet-
ric characteristics of the typical cell of these models are given in Table 3.1. Sectional
images of model realisations are shown in Fig. 3.6.

Fig. 3.6 Planar sections of three-dimensional random tessellation models with the same cell inten-
sity: a Poisson-Voronoi tessellation (a), a hardcore Voronoi tessellation (b), and Laguerre tessella-
tions of ball packings with low (c) and high (d) variation of ball volume.

The characteristics of the typical cell of the open aluminium foam data were
estimated under all four model assumptions. The results given in Table 3.2 show
that the influence of the model assumption on these parameters is relatively small.
This is not surprising given the strong relations between the mean values in random

(a) (b) (c) (d)
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Table 3.1 Geometric characteristics of the typical cell of the Poisson Voronoi (PV), the Matérn
hardcore Voronoi (HCV), and two Laguerre tessellations generated by ball packings (L1 with cv =
0.2 and L2 with cv = 2.0), normalised to V3 = 1, γ3 = 1.

PV HCV L1 L2

γ0 6.768 6.668 6.072 5.686
μ1 5.832 5.728 5.436 5.064
μ2 2.910 2.852 2.684 2.454

N32 15.535 15.335 14.145 13.371
L3 17.496 17.178 16.302 15.186
S3 5.821 5.703 5.368 4.908
B3 1.458 1.432 1.359 1.266
f1 0.728 0.772 0.850 0.800

tessellations. In fact, the simulation study in [244] shows that the error due to the
wrong model assumption is negligible compared to the error due to discretisation
effects and insufficient resolution. As a consequence, higher order moments should
also be considered when fitting tessellation models to real data.

Table 3.2 Geometric characteristics of the open aluminium foam data estimated under several
model assumptions. The models are Poisson Voronoi (PV), the Matérn hardcore Voronoi (HCV),
and two Laguerre tessellations generated by ball packings (L1 with cv = 0.2 and L2 with cv = 2.0)

unit PV HCV L1 L2

γ3 mm−3 0.033 0.033 0.036 0.039
V3 mm3 30.763 30.308 27.604 25.844
S3 mm2 57.150 55.438 49.029 42.902
B3 mm 4.568 4.465 4.107 3.743
γ2 mm−3 0.252 0.253 0.256 0.259
A2 mm2 3.679 3.615 3.466 3.209
γ1 mm−3 0.440 0.440 0.440 0.4400
γ0 mm−3 0.220 0.220 0.220 0.220

3.3.3 Cell Reconstruction

The densities of the intrinsic volumes only obtain information on the mean values
of certain geometric characteristics. The results of the previous section indicate that
for the model fit they should be complemented by higher order moments or even
distribution functions of the cell characteristics. For their estimation, the pore space
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of the foam has to be divided into cells whose edges coincide with the struts of the
foam. Such a reconstruction of the foam cells can be obtained using the following
image processing chain:

1. Binarisation yielding the strut system of the foam,
2. Euclidean distance transform on the pore space,
3. inversion, i.e. each voxel gets as new grey value the difference between the

maximal grey value and its old value,
4. smoothing to remove superfluous local minima and avoid oversegmentation,
5. watershed transform.

Sectional images obtained during this procedure are shown in Fig. 3.7. To avoid
oversegmentation, the h-minima transform, the height adaptive h-minima transform
[372, Chap. 6] or a preflooded watershed transform [389] can be used. For details on
the choice of the smoothing method and its parameters we refer to [341]. Although
the resulting cells are obviously not convex, the deviation from convexity is often
not very pronounced such that the cell system can be modelled by a tessellation
consisting of convex polytopes.

Fig. 3.7 Foam reconstruction: Planar sections of the original 3D image (a), the binarisation (b),
the inverted distance image (c), and the reconstructed foam cells (d).

The definition of the typical cell in (3.2) suggests to estimate distributions of
characteristics of the typical cell from the sample of cells with centroid in a given
observation window.

In practice, neither the characteristics nor the centroid can be determined cor-
rectly if a cell hits the boundary of the image. Simply removing all boundary cells
from the analysis induces a bias since large cells intersect the boundary with higher
probability. Weighting with the reciprocal of the probability of being observed
(Horvitz-Thompson procedure, see [20, 2.4]) is one way to correct for this bias. In
our context that means weighting with the fraction of the volume of the whole sam-
ple and the volume of the sample reduced by the bounding box of the cell (Miles-
Lantuejoul correction, see [361, p. 246]). If the sample is large enough, minus sam-
pling is an alternative: Reduce the observation window such that all cells with cen-
troid inside this sub-window are contained completely in the original observation
window.

(a) (b) (c) (d)
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Exercise 3.7. Assume that the observation window is a cuboid. Compute the maxi-
mum window for minus sampling.

3.4 Stochastic Modelling of Cellular Materials

The assumption that the foam is the dilated edge system of a random tessellation
suggests a two-step modelling procedure: First, a random Laguerre tessellation is
fitted to the reconstructed cell system. In a second step, the system of edges of the
tessellation is dilated to form the struts of the foam.

3.4.1 Modelling of the Cell System

For the first modelling step, we assume that the cell system of the foam is a reali-
sation of a stationary and isotropic random tessellation. In practice, however, often
anisotropies, measured e.g. by deviations of the mean cell diameters in the three
coordinate directions, are observed. In this case, the anisotropies are removed by a
suitable transformation of the cell system, e.g. the axes are scaled such that all three
mean diameters are equal. Then, an isotropic model is fitted to the transformed mi-
crostructure. An appropriate transformation of this isotropic model finally yields a
model for the original material.

Since the cells of real foams often show a high degree of regularity, the same
should be true for their models. Tessellations generated by marked Poisson pro-
cesses are typically too irregular for this application (see Fig. 3.6). A more suit-
able choice are tessellations generated by random systems of non-overlapping balls
which can be simulated by random sequential adsorption (RSA, [179, p. 132]) or
dense packing algorithms such as the force-biased algorithm [38] . Besides their
regularity, these models have the advantage that each Laguerre cell completely con-
tains its generating ball. Consequently, to a certain degree, the volume distribution
of the balls may be used to control the volume distribution of the cells. A drawback
of these models, however, is that no analytic formulae for their geometric charac-
teristics exist, which means that they have to be studied by simulation. Fortunately,
efficient algorithms for the generation of Laguerre tessellations are available [386].

The deviation of the models from the real foam data is measured using the relative
distance measure

ρ(ĉ,c) =

√
n

∑
i=1

(ci− ĉi

ĉi

)2
, (3.8)

where the entries of ĉ = (ĉ1, . . . , ĉn) and c = (c1, . . . ,cn) are given by suitable geo-
metric characteristics of the cells of the original foam and the model, respectively. In
our case, these characteristics are the means and standard deviations of the volume
v, the surface area s, the number of facets FC, and the diameter (mean width) b̄ of
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the cells. They have been chosen for the following reasons: For fixed cell intensity
γ3, the mean cell volume is given by V3 =

1
γ3

, the mean values of S3 and B3 are pro-
portional to μ2 and μ1, respectively, and the mean value of FC only depends on γ0.
Hence, all four characteristics determining the mean values of the tessellation are
covered.

In practice, typically a parametric tessellation model is chosen by fixing the gen-
erating process and a parametric distribution for the ball volumes. Then the value
of ρ(ĉ,c) in (3.8) is minimised on the parameter space of the model by repeated
simulation of the model. An approach avoiding the time-consuming simulation was
presented in [327] for Laguerre tessellations of dense packings of balls with log-
normal and gamma distributed volumes. These models are of particular interest for
the modelling of foam structures due to their regularity. Furthermore, the volume
distribution in cellular materials is often assumed to be a lognormal or a gamma dis-
tribution. Hence, model realisations for various packing fractions τ and coefficients
of variation c of the volume distribution were generated. Subsequently, polynomi-
als in c were fitted to the estimated geometric characteristics for each value of τ .
Using these results, the minimisation of the value of ρ(ĉ,c) in (3.8) reduces to the
minimisation of a polynomial which allows for a quick and easy model fit.

Here, this technique is applied to the open aluminium foam. The best fit for the
lognormal distribution was obtained with τ = 60% and c = 0.172. For the gamma
distribution the optimal parameters were τ = 60% and c = 0.169. To obtain an
isotropic structure, the foam cells were scaled by 0.92 along the z-axis. The geomet-
ric characteristics estimated from the cell reconstruction and the respective charac-
teristics in the best-fit model are shown in Table 3.3.

Table 3.3 Estimated mean values and standard deviations of the cell characteristics of the alu-
minium foam and the best fit models for the lognormal and gamma distribution.

scaled data lognormal gamma

lognormal mean std mean deviation std deviation mean deviation std deviation

v[mm3] 20.174 2.751 20.174 ±0.0% 2.751 ±0.0% 20.174 ±0.0% 2.704 −1.7%
s[mm2] 41.015 3.671 39.854 −2.8% 3.423 −6.8% 39.858 −2.8% 3.368 −8.9%
d[mm] 3.649 0.174 3.705 +1.5% 0.179 +2.9% 3.705 +1.5% 0.176 +1.1%
FC 13.838 1.203 14.164 +2.4% 1.298 +7.9% 14 .165 +2 .4% 1 .288 +7 .1%
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3.4.2 Modelling of Open Foams

The previous section explains how to fit a random tessellation model to the cell
system of a foam. A model for the solid component of the foam can now be obtained
via dilation of the edge system of this tessellation. A typical feature of real foams,
however, is that their struts are significantly thicker near the vertices than at their
centres. Therefore, we propose the use of locally adaptable dilations [91], where the
size of the structuring element, a ball in our case, may vary locally. An illustration
is shown in Fig. 3.8.

Fig. 3.8 Locally adaptable dilation: A part of a real foam (a), the edge system of a random tessel-
lation (b), its dilation with a ball of constant size (c), and a locally adaptable dilation (d).

The size at a particular voxel is stored in a size map, a second image of the
same size where the voxel grey values correspond to size information. To determine
the size map, the thickness profiles of the struts are estimated from the image data
as described in [253]. The first step is to compute the skeleton of the foam. By
skeleton, we mean a one voxel thick subset of the solid component Y of the foam
that has the same topology as Y and that is centred w. r. t. the Euclidean distance. It
is obtained by iteratively removing points from Y that are not necessary to preserve
the topology of Y . The skeleton is then decomposed into its topological components,
namely curve segments (struts) and curve junctions (nodes).

Let us denote by Y0 the particle process (i.e., a point process on C′) forming the
decomposed skeleton of Y . Each strut of the foam contributes a curve segment Z ∈Y0
whose length is denoted by �. The local strut thickness at a point x ∈ Z is defined
as the radius of the largest ball with centre x inscribed in Y . It may be parametrised
using the distance ξ = ξ (x) ∈ [−�/2, �/2] of x to the strut centre yielding a function
pZ(ξ ). The spherical contact profile PY (ξ , �) for the entire foam is obtained as the
mean thickness at distance ξ of all struts with length �. In practice, the local strut
thickness is computed by a Euclidean distance transform [305] on the strut system.

The size map is computed by first normalising the spherical contact profile
PY (ξ , �) by the mid-span thickness PY (0, �) and the strut length � to yield a scale
free representation of the strut thickness. Let us denote by ξ̃ = ξ/� the distance
from the strut centre normalised by length �. Then the strut thickness is modelled

(a) (b) (c) (d)
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by a polynomial in ξ̃ which is fitted to the normalised thickness. Since the shape of
the strut profiles is highly dependent on the strut length �, the polynomial is fitted
separately to the length classes qi, j = (xi,x j] formed by the successive deciles xi and
x j of the strut length distribution. In [253], various choices for the polynomial were
compared. The initial model was chosen as

p̃2468(ξ̃ ) = a4ξ̃ 8 +a3ξ̃ 6 +a2ξ̃ 4 +a1ξ̃ 2 +1, a1, . . . ,a4 ∈ R,

where the indices denote the exponents of ξ̃ that are included. The odd exponents
were not considered since the thickness profiles turned out to be symmetric about
the strut centre. The intercept of one is caused by the normalisation of the data. Via
all-subset regression of p̃2468 guided by the MCp-statistic [97, 130] the generally

aluminium foam considered here, albeit the profiles of struts smaller than x4 were
slightly better reproduced by p̃268.

Table 3.4 Parameters of the polynomial model p̃248 individually fitted to the length classes qi, j .

a1 a2 a4

q0,1 1.9463 4.4753 −152.5598
q1,2 2.7510 3.5818 −127.8460
q2,3 3.2397 3.6990 −116.8598
q3,4 3.1954 4.7320 −96.8980
q4,5 2.7230 1.1191 −156.3740
q5,6 2.3683 12.7177 −158.7181
q6,7 1.7256 18.6126 −221.9740
q7,8 1.2100 2.8316 −29.4988
q8,9 0.4753 24.4270 −218.3543
q9,10 −0.7547 28.5711 −188.2299

The size map for the adaptable dilation of the edge system is now chosen accord-
ing to the edge length classes given by qi, j. To get a smooth transition from one strut

fixed to the mean node radius rN = 0.36 mm. This is achieved by multiplication of
all polynomials with the factor P0 = rN/p̃248(0.5). A visualisation of the original
foam along with its model is shown in Fig. 3.9.

Table 3.5 shows the average deviation of the intrinsic volumes computed over 25
realisations of the best fit lognormal and gamma model from the aluminium foam.
Both models exhibit the same behaviour. They only differ by less than three per cent
in VV and SV . However, for MV and χV we observed a deviation of around 20 %.
In case of MV this could be explained by the different cross-sectional shape of the
struts. The deltoidal shape of the aluminium foam exposes less curvature than the
circular shape used in the model. The deviation in χV is caused by closed faces in
the aluminium foam that increase the density of χV . These were not reproduced in
the model.

best fit polynomial model was found to be p̃248 . In general, the same holds for the

to another, the maximal value of each polynomial (the thickness in the nodes) was
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Fig. 3.9 Visualisation of the real foam and a realisation of the model. Visualised are 2773 voxels.

Table 3.5 Deviation of the intrinsic volumes of the best fit models for the lognormal and gamma
distribution from the aluminium foam averaged over 25 realisations.

Data Dev. lognormal Dev. gamma

VV 14.624 −1.41% −1.56%
SV [mm−1] 0.840 +2.94% +2.87%
MV [mm−2] 0.880 +20.11% +20.21%
χV [mm−3] −0.220 +23.68% +23.54%



Chapter 4

Stochastic 3D Models for the Micro-structure of

Advanced Functional Materials

Volker Schmidt, Gerd Gaiselmann and Ole Stenzel

Abstract Optimization of functional materials is a challenging task. Thereby,
stochastic morphology models can provide helpful methods. Three classes of stochas-
tic models are presented describing different micro-structures of functional materi-
als by means of methods from stochastic geometry, graph theory and time series
analysis. The structures of these materials strongly differ from each other, where we
consider organic solar cells being an anisotropic composite of two materials, non-
woven gas-diffusion layers in proton exchange membrane fuel cells consisting of
a system of curved carbon fibers, and graphite electrodes in Li-ion batteries which
are built up by an isotropic two-phase system (i.e., consisting of a pore and a solid
phase). The goal is to give an overview how the stochastic modeling of functional
materials can be organized and to provide an outlook how these models can be used
for material optimization with respect to functionality.

4.1 Introduction

Often, the micro-structure of materials is closely related to their functionality mak-
ing the study of morphology an important and growing research field. Thus, to pro-
duce materials with improved properties, the morphology of the material under con-
sideration has to be optimized with regard to its functionality. In general, however,
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a systematic understanding of the influence of the 3D micro-structure on functional
properties is missing. Stochastic morphology models, fitted to experimental 3D (im-
age) data of these materials, can help to elucidate the correlation between processing
parameters, 3D micro-structure, and functional properties. Furthermore, stochastic
simulation models can be applied to virtual materials design, that is, to detect micro-
structures with improved functional properties. Such a design of virtual materials
can be obtained by simulating a broad range of virtual structures according to the
stochastic model (using different values for model parameters) and analyzing their
functional properties using numerical (transport) calculations.

In this chapter, we present three stochastic morphology models for different func-
tional materials: the 3D morphology of hybrid-organic solar cells (Fig. 4.1 (left)),
the 3D micro-structure of non-woven gas-diffusion layers (GDL, used in fuel cells,
Fig. 4.1 (center)), and the 3D micro-structure of graphite electrodes (used in Li-ion
batteries, Fig. 4.1 (right)).

Fig. 4.1 Left: example of morphology of the active layer of polymer-ZnO solar cells (yellow phase:
ZnO, transparent: P3HT), center: non-woven GDL (yellow phase: system of carbon fibers), right:
graphite electrode (yellow phase: graphite, transparent: pore phase)

The general procedure for our stochastic simulation models is to first understand
the functionality of the material and - if already identified - its correlation to the
micro-structure, such that the most important aspects are reflected by the stochastic
morphology model. Secondly, we aim to gain some information about the structure
of the material. Therefore, we consider 3D high-resolution (tomographic) image
data. A good quality of image acquisition plays an important role in stochastic mod-
eling: what is not present in image data, cannot be modeled adequately. In the next
step, we structurally segment the 3D image data of functional materials in order
to simplify the fitting of model parameters. More precisely, we represent materials
e.g. by unions of spheres (applied for the solar cells), by a system of 3D polygonal
tracks (applied for GDL), or by a spatial 3D network (applied for the graphite elec-
trode). Then, we develop a parametric stochastic model which is able to describe
the micro-structure of a material sufficiently well. Next, these models are fitted to
the experimentally measured 3D image data. Thus, the stochastic models, which are
established in the three-dimensional Euclidean space, are discretized on a voxel grid
in order to be compared to the image data by morphological characteristics. In short,
the model is fitted by choosing the parameters such that the agreement between ex-
perimental data and synthetic (i.e., simulated) data with respect to morphological
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characters is maximized. Finally, we validate the stochastic model by comparing
characteristics relevant for the functionality computed for experimental 3D image
data, and for realizations sampled from the stochastic model.

In agreement with this general procedure, the outline for all three morphology
examples (solar cells, GDL, graphite electrodes) is the same. Thus, in each section,
we first describe data and functionality, then we deal with data preprocessing, with
the description of the stochastic model, with model fitting, and finally with model
validation.

In the following. we shortly present the stochastic models for three different func-
tional materials (hybrid organic solar cells, non-woven GDL of proton exchange
membrane fuel cells (PEMFC) and graphite electrodes in Li-ion batteries).

In Sect. 4.3, a spatial stochastic model is developed that describes the 3D mor-
phology of anisotropic composite materials, being blends of two different solid
phases with an uniaxial anisotropy. The model is flexible enough to describe mor-
phologies with a high degree of structural complexity. It is based on a multi-scale
approach, where the complexity of the morphology is split into two different length
scales: a macro-scale model describing the main morphological aspects and a micro-
scale model including morphological details omitted in the macro-scale model. The
basic idea of the macro-scale model is to describe the main morphological aspects,
i.e., the large clusters of the two phases, by a system of overlapping spheres, where
the midpoints are modeled by a stack of 2D point processes with a suitably cho-
sen correlation structure and where the radii are added such that they are positively
correlated. The model is fitted to 3D image data describing the morphology of pho-
toactive layers of hybrid organic solar cells consisting of poly(3-hexylthiophene)
(P3HT) as electron-donor and ZnO as electron-acceptor. Such a solar cell consists
of a blend of electron-donor and electron-acceptor materials. Here, roughly speak-
ing, the two materials have been mixed by spin-coating (i.e., rotating the two ma-
terials on a plate). The model is fitted to several different solar cell morphologies
fabricated with different processing conditions (varying spin coating velocities), see
Fig. 4.1 (left) for an example of such a morphology. Polymer (hybrid) solar cells
are a promising alternative to silicon-based solar cells since they offer the prospect
of being cheap to produce and ecological. Despite enormous improvements, they
still stuffer from relatively low efficiencies. Therefore, enormous efforts are under-
taken to increase power conversion efficiency. One approach is to optimize solar cell
morphology since there is a close relationship between morphology and efficiency,
see [307]. The model is validated by comparing physically relevant characteristics
of experimental and simulated data, like the efficiency of exciton quenching, which
is important for the generation of charges. Finally, a scenario analysis is performed
where 3D morphologies are simulated for different values of model parameters such
that we mimic the results of the spin-coating process.

In Sect. 4.4 a stochastic 3D model is developed describing the micro-structure of
non-woven GDL in PEMFC which consist of strongly curved and non-overlapping
fibers, see Fig. 4.1 (center). Fuel cells are an attractive instrument for electrical
power generation due to their high efficiency and environment-friendly emissions.
Moreover, due to their weight, compactness and quick startup time they are ideal for
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the application in automotive industry. One of their components is the gas-diffusion
layer (GDL) which is mainly responsible for the supply of the electrodes with gas
and water storage / evacuation within the GDL. Stochastic models can help to quan-
titatively predict physical properties for a given 3D GDL micro-structure only by
means of computer experiments. The model that we propose is based on ideas from
stochastic geometry and multivariate time series analysis. It is constructed by a two-
stage approach, in which we first introduce a system of overlapping fibers by means
of a germ-grain model, where the germs form a 3D Poisson point process and the
grains are given by random 3D polygonal tracks describing single fibers in terms of
multivariate time series. Secondly, we transform the germ-grain model into a sys-
tem of non-overlapping random fibers using an iterative procedure leaned on the
so-called force-biased algorithm. This model is validated by comparing transport-
relevant characteristics computed for experimental 3D synchrotron data, and for
realizations sampled from the stochastic model.

In Sect. 4.5, a flexible stochastic 3D model for simulation of isotropic 2-phase
materials is presented. The model is fitted to a 3D image displaying graphite elec-
trodes used for in Li-ion batteries. Their applications are widely spread ranging from
smart phones, laptops, electric cars, etc. These batteries are built up of an anode, a
cathode and an electrolyte. During discharging, Li atoms release an electron at the
anode and the so-formed Li-ions then diffuse from the anode to the cathode via the
electrolyte. The electrons also move from the anode to the cathode. During charg-
ing, Li-ions move back to the anode and are embedded in the graphite phase. For
more details on functionality of Li-ion batteries, we refer to [95]. It is well-known
that the morphology of the graphite anode of Li-ion batteries is strongly related to
the electrochemical performance of the battery, e.g. for a large capacity as well as
a high performance, a high specific surface area of the graphite electrode as well as
a large total volume are beneficial. The analysis of the micro-structure of graphite
electrodes by our stochastic modeling approach helps to provide more inside into the
relationship between micro-structure and functionality. The stochastic 3D model is
based on a hybrid-approach where two well-established stochastic approaches are
combined: spatial random networks and simulated annealing. The basic idea of this
modeling approach can be summarized as follows. First, a spatial random network
model is developed which describes the main structural features of the simulated
micro-structure. Then, a realization drawn from the network model is discretized on
a voxel grid, where voxels representing the edges of the network are colored ‘white’,
and the remaining ones ‘black’. Subsequently, the discretized network is combined
with simulated annealing in a second step. Therefore, the set of white voxels is filled
up with further white voxels around the edges of the network in order to get a suit-
able initial configuration for the simulated annealing algorithm. Thus, in the initial
configuration, the white voxels tend to cluster along the edges of the network. Note
that the initial white voxels that represent the edges of the network are not changed
by simulated annealing and, therefore, they serve as a backbone for the simulated
micro-structure. Thus, via the structural properties of the network, it is possible to
govern properties of the resulting morphology.
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4.2 Point Process Models and Time Series

The stochastic models developed in the present chapter are mostly based on tools
from point processes and time series models. We therefore give a short introduction
to the corresponding mathematical background in order to provide the reader with
the basic concepts, notation and definitions used in this chapter, see also [21] and
Chap. 2.

In the following, let Qd be the family of all (bounded) half-open cuboids in R
d ,

i.e.,

Qd =
{

B⊂ R
d : B = (a1,b1]× . . .× (ad ,bd ],ai,bi ∈ R,ai ≤ bi for all i = 1, . . . ,d

}
.

Furthermore, let B(Rd) denote the Borel σ -algebra on R
d and let B0(R

d) be the
family of all bounded Borel sets on R

d .
To begin with, we introduce the notion of random counting measures, which are

used to formally describe point processes.

Definition 4.1.

1. Let N be the family of all locally finite counting measures ϕ : B(Rd) →
{0,1, . . . ,}∪{∞}, i.e., ϕ(B)< ∞ for all B∈Qd and ϕ (

⋃∞
n=1 Bn) = ∑∞

n=1ϕ (Bn)
for pairwise disjoint B1,B2 . . . ∈ B(Rd).

2. Furthermore, let N be the smallest σ−algebra of subsets of N such that the
mapping ϕ → ϕ(B), for B ∈ B(Rd), is (N ,B(R))-measurable.

3. A random counting measure N : Ω → N is a random variable over a certain
probability space (Ω ,A,P), whose values are in the measurable space (N,N ).
A random counting measure N can thus be interpreted as a set-indexed stochas-
tic process

{
NB,B ∈ B(Rd)

}
such that

{
NB(ω),B ∈ B(Rd)

}
is a locally finite

counting measure for each ω ∈Ω .

4.2.1 Point Processes

Definition 4.2. Let S1,S2, . . . :Ω →R
d∪{∞} be a sequence of random vectors over

some probability space (Ω ,A,P) such that

#{n : Sn ∈ B}< ∞ for all B ∈ B0(R
d).

Then the sequence {Sn,n≥ 1} is called a point process in R
d . The point process is

called simple if P(Si �= S j for all i �= j) = 1.

Remark 4.1. Let {Sn,n≥ 1} be a random point process in R
d and

{
NB,B ∈ B(Rd)

}
be defined by

NB = #{n : Sn ∈ B} for all B ∈ B(Rd).
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Then,
{

NB,B ∈ B(Rd)
}

is a random counting measure. Thus, each point process
{Sn,n≥ 1} can be assigned a corresponding random counting measure and an alter-
native approach is to consider point processes as random counting measures.

We are interested in the first moments of random point processes, which leads to
the following definition of the so-called intensity measure.

Definition 4.3. Let {Sn,n≥ 1} be a random point process with corresponding ran-
dom counting measure

{
NB,B ∈ B(Rd)

}
. The function μ : B(Rd) → [0,∞] with

μ(B) = ENB for B∈B(Rd) is called intensity measure. In the following, we assume
that μ is locally finite, i.e., μ(B) < ∞ for all B ∈ B0(R

d). If μ is absolutely con-
tinuous with respect to the d-dimensional Lebesgue measure νd , i.e., there exists a
Borel-measurable function λ : Rd → [0,∞), such that

μ(B) =
∫

B
λ (x)dx

for all B ∈ B0(R
d), then the function λ : Rd → [0,∞) is called intensity function.

Definition 4.4. Let μ be a locally finite measure on R
d which is diffuse, i.e.

μ({x}) = 0 for all x ∈ R
d . A simple point process {Sn,n≥ 1} is called a Poisson

process with intensity measure μ if for the corresponding random counting measure{
NB,B ∈ B(Rd)

}
it holds that

1. NB1 , . . . ,NBn are independent random variables for any pairwise disjoint
B1, . . . ,Bn ∈ B0(R

d), n≥ 1, and
2. NB is Poisson-distributed with parameter μ(B) for each B ∈ B0(R

d).

The Poisson process {Sn,n≥ 1} is called stationary if its intensity measure μ is
proportional to the d-dimensional Lebesgue measure νd , i.e., there exists a constant
λ ∈ (0,∞) (called intensity), such that μ(B) = λνd(B) for all B ∈ B0(R

d).

Realizations of a stationary and an non-stationary Poisson process are given in
Fig. 4.2.

In the following, we define two general invariance properties of point processes,
stationarity and isotropy. Stationarity means that the point process, more precisely,
its finite-dimensional marginal distributions are invariant under affine translations,
where isotropy refers to a corresponding invariance under rotations around the ori-
gin.

Definition 4.5. A point process {Sn,n≥ 1} is called stationary if for the corre-
sponding random counting measure

{
NB,B ∈ B(Rd)

}
it holds that

(NB1 , . . . ,NBn)
D
= (NB1+x, . . . ,NBn+x) for all n≥ 1,B1, . . . ,Bn ∈ B(Rd) and x ∈ R

d ,

where D
= means equality in distribution. The point process {Sn,n≥ 1} is called

isotropic if
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Fig. 4.2 Left: realization of stationary Poisson process, right: realization of non-stationary Poisson
process with intensity function given by λ (x1,x2) = 1000exp(−5|x1−0.5|) for (x1,x2) ∈ R

2

(NB1 , . . . ,NBn)
D
=
(
Nδ (B1), . . . ,Nδ (Bn)

)
for all B1, . . . ,Bn ∈ B(Rd)

and for arbitrary rotations δ : Rd → R
d around the origin.

Exercise 4.1. Let {Sn,n≥ 1} be a stationary point process with random counting
measure

{
NB,B ∈ B(Rd)

}
. The spherical contact distribution function H : [0,∞)→

[0,1] of {Sn,n≥ 1} is then defined by H(r) = 1−P(NB(o,r) = 0) for r ≥ 0, where
B(x,r) denotes the d-dimensional sphere with center x ∈Rd and radius r≥ 0. Show
that

H(r) = 1− exp(−λκdrd)

if {Sn,n≥ 1} is a stationary Poisson process with intensity λ and κd = νd(B(o,1))
denotes the volume of the d-dimensional unit sphere.

Definition 4.6.

1. Let {Sn,n≥ 1} be a stationary Poisson process with intensity λ0 ∈ (0,∞). Fur-
thermore, let {Ln,n≥ 1} be a sequence of independent and identically dis-
tributed (iid) random variables with L1 ∼Unif[0,1] and let {Ln,n≥ 1} be inde-
pendent of {Sn,n≥ 1}.

2. Then, for a fixed rh ∈ (0,∞), the point process
{

S̃n,n≥ 1
}

with

S̃n =

{
Sn if Ln < Mn,

∞, else,
(4.1)

where

Mn =

{
mink �=n:0<|Sk−Sn|≤rh

Lk, if #{k �= n : 0 < |Sk−Sn| ≤ rh}> 0,
1, else,
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is called a Matérn hard-core process with hard-core radius rh.

A realization of a Matérn hard-core process is given in Fig. 4.3 (left).

Exercise 4.2. Show that the Matérn hard-core process introduced in Definition 4.6
is a stationary point process whose intensity λ is given by

λ =
1− exp(κdλ0rd

h)

κdrd
h

,

where κd = νd(B(o,1)) denotes the volume of the d-dimensional unit sphere.

Fig. 4.3 Left: realization of Matérn-hardcore process; right: realization of elliptical Matérn cluster
process

In the following, we introduce the notion of Cox processes, also known as doubly
stochastic Poisson processes, which are a generalization of Poisson processes, where
the intensity measure itself is a stochastic process.

Definition 4.7. Let Λ =
{
ΛB,B ∈ B(Rd)

}
be a random measure which is locally

finite with probability 1. A point process {Sn,n≥ 1} is called a Cox process if for
the corresponding random counting measure

{
NB,B ∈ B(Rd)

}
it holds that

P(NB1 = k1, . . . ,NBn = kn) = E

(
n

∏
i=1

Λ ki
Bi

ki!
exp(−ΛBi)

)

for all n≥ 1 and pairwise disjoint B1, . . . ,Bn ∈ B0(R
d).

Remark 4.2. Note that

P(NB1 = k1, . . . ,NBn = kn |{Λ}= μ ) =
n

∏
i=1

μ(Bi)
ki

ki!
exp(−μ(Bi)) (4.2)

for all n≥ 1 and pairwise disjoint B1, . . . ,Bn ∈ B0(R
d). Thus, given a realization μ

of the intensity random measure
{
ΛB,B ∈ B(Rd)

}
, the Cox process has the same
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distribution as a Poisson process with intensity measure μ . In other words, a Cox
process can be interpreted as a mixture of Poisson processes since

P(NB1 = k1, . . . ,NBn = kn) =
∫

P(NB1 = k1, . . . ,NBn = kn |{Λ}= μ )PΛ (dμ)

=
∫ n

∏
i=1

μ(Bi)
ki

ki!
exp(−μ(Bi))PΛ (dμ)

for all n ≥ 1 and pairwise disjoint B1, . . . ,Bn ∈ B0(R
d), where PΛ denotes the dis-

tribution of the random measure Λ .
Equation (4.2) also suggests a simulation approach in some bounded observation

window W ∈ B0(R
d): In a first stage, a random intensity measure Λ is generated

in W , say μ(· ∩W ) and then, in a second stage, a Poisson process is simulated
according to the intensity measure μ(·∩W ).

The following theorem relates stationarity of Cox processes to stationarity of
their random intensity measures.

Theorem 4.1. Let {Sn,n≥ 1} be a Cox process. Then, {Sn,n≥ 1} is stationary if
and only if its random intensity measure

{
ΛB,B ∈ B(Rd)

}
is stationary, i.e.,

(ΛB1 , . . . ,ΛBn)
D
= (ΛB1+x, . . . ,ΛBn+x)

for all n≥ 1, B1, . . . ,Bn ∈ B0(R
d) and x ∈ R

d .

Exercise 4.3. Provide a proof of Theorem 4.1.

In the following, we introduce an example of doubly stochastic processes, the
class of modulated Matérn hard-core point process, which exhibits repulsion of
points for small distances while clustering of points for medium distances. In Fig. 4.4
the principle idea of the modulated Matérn hard-core point process is displayed.

Fig. 4.4 Construction of modulated Matérn hard-core point process (displayed in 2D). First:
realization of random sphere system Ξ (left); second: realization of Matérn hard-core process
{S(1)n ,n≥ 1} (center); third: only points inside sphere system are considered, i.e. {S(1)n ,n≥ 1}∩Ξ
(right)
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Definition 4.8.

1. Let {Sn,n≥ 1} be a stationary Poisson process with intensity λ0 ∈ (0,∞).
2. Let Ξ be the random sphere system that evolves by assigning each point Sn

the sphere B(Sn,Rn) with iid random radii Rn ∼ F following some distribution
function F : [0,∞)→ [0,1], i.e.,

Ξ =
∞⋃

i=1

B(Sn,Rn),

and let {Rn,n≥ 1} be independent of {Sn,n≥ 1}.
3. Let

{
S(1)n ,n≥ 1

}
be a Matérn hard-core process with intensity λ1 and hard-core

radius rh, which is independent of {Rn,n≥ 1} and {Sn,n≥ 1}.
4. Then the point process

{
S(2)n ,n≥ 1

}
given by

{
S(2)n ,n≥ 1

}
=
{

S(1)n ,n≥ 1
}
∩

Ξ is called a modulated Matérn hard-core process.

Remark 4.3. The modulated Matérn hard-core process introduced in Definition 4.8,
is referred to as being modulated since a Matérn hard-core process is generated
according to the (random) intensity function

{
λ (2)

x ,x ∈ R
d
}

given by

λ (2)
x =

{
λ1E(νd(Ξ)∩ [0,1]d), if x ∈ Ξ ,
0, if x /∈ Ξ .

Moreover, the definition of a 2D elliptical Matérn cluster process is given.

Definition 4.9.

1. Let {Sn,n≥ 1} be a stationary Poisson process with intensity λ0 ∈ (0,∞).
2. Let {ψn,n≥ 1} be a sequence of independent and identically distributed (iid)

angles withψ1∼Unif[0,π), independent of {Sn,n≥1}, and let
{
Ea,b(o,ψn),n≥1

}
be a sequence of ellipses with semi-axes a,b with a > b > 0 with random rota-
tion ψn around the origin o.

3. Let
{

S(1)k , k≥1
}
,
{

S(2)k , k≥1
}
, . . . be a sequence of independent and identi-

cally distributed Cox processes with random intensity measures
{
Λ (n)

B ,B ∈ B(Rd)
}

,
n≥ 1, independent of {Sn,n≥ 1} with

Λ (n)
B = λ1ν2(B∩Ea,b(o,ψn)) for n≥ 1 ,

where λ1 ∈ (0,∞) is some positive intensity.
4. Then the point process

{
S̃n,n≥ 1

}
=
⋃∞

n=1

({
S(n)k ,k ≥ 1

}
+Sn

)
is called a 2D

elliptical Matérn cluster process.

Remark 4.4. The point process introduced in Definition 4.9 can be interpreted as
follows: Each point process

{
S(n)k ,k ≥ 1

}
, n ≥ 1, can be interpreted as a Poisson
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process whose points a released in an ellipse with random orientation and determin-
istic semi-axes a,b. Since each point process

{
S(n)k ,k ≥ 1

}
, n≥ 1, is then translated

by Sn, the stationary Poisson process {Sn,n≥ 1} serves as cluster centers (i.e. cen-
ters of the ellipses). Consequently, the intensity λ0 is the intensity of clusters.

A realization of a 2D elliptical Matérn cluster process is given in Fig. 4.3 (right).
Next, we recall the notion of marked point processes, see also [169]. The idea is

to assign each point Sn of some point process {Sn,n≥ 1} an additional information
Ln, called mark.

Definition 4.10. Let {Sn,n≥ 1} be a point process as described above. Further-
more, let {Ln,n≥ 1} be a sequence of random variables Ln : Ω → L, where
(Ω ,A,P) is the same probability space as for the point process, and (L,L) be an
arbitrary measurable space. Then the sequence {(Sn,Ln) ,n≥ 1} is called a marked
point process.

4.2.2 Multivariate Time Series

Time series techniques deliver powerful and well-established methods for the anal-
ysis and modeling of data measured typically at successive points in time in equidis-
tant time intervals. In particular, the widespread application of time series analysis
can be found in the fields of financial mathematics, weather forecast, etc.

In this chapter, ideas from time series analysis are used to describe 3D polygonal
tracks. They are incorporated into stochastic 3D models for fiber-based materials.

4.2.2.1 Basic Definitions

A time series is understood to be a realization (or trajectory) of a (time-)discrete
stochastic process. In general, stochastic processes can be defined as follows.

Definition 4.11. Let (Ω ,A,P) be an arbitrary probability space and let T and E be
arbitrary sets called index set and image space, respectively. Moreover, (E,E) is a
measurable space called state space, where E is an arbitrary σ -algebra of E. Then, a
stochastic process is a family {Yt , i∈ T } of random variables Yt :Ω → E defined on
the probability space (Ω ,A,P). If the index set T of a stochastic process countable,
e.g., T = Z or T = N, then {Yt , i ∈ T } is called a discrete stochastic process.

Recall that a random counting measure {N(B), B ∈ B(Rd)} is also a stochastic
process where T = B(Rd) and E = {0,1, . . .}. Furthermore, for each ω ∈ Ω the
function {Yt(ω), t ∈ T } is called trajectory of {Yt}. A stochastic process {Yt} is
uniquely determined by its finite-dimensional distributions P(Yt1 ∈ B1, . . . ,Ytn ∈ Bn)
for all n≥ 1, t1, . . . , tn ≥ 0, and B1, . . . ,Bn ∈ E . In the following, we always consider



106 Volker Schmidt, Gerd Gaiselmann and Ole Stenzel

discrete stochastic processes with state space (Rd ,B(Rd)), where we speak about
an univariate process if d = 1 and a multivariate process if d > 1.

Stochastic processes are characterized by their moments. Since Yt is a random
vector for each t ∈ T , the moments of the process are given in dependence of t. Of
particular interest in terms of stochastic processes are their mean-value, variance,
and covariance functions.

Definition 4.12. Let us consider a stochastic process {Yt , t ∈ T } with T ⊂ R.

1. The mean-value function μ : T → R
d of the process {Yt , t ∈ T } is defined by

μ(t) = EYt for all t ∈ T .
2. The variance function σ : T → R

d of the process {Yt , t ∈ T } is defined by
σ(t) = varYt for all t ∈ T .

3. The covariance function c : T ×T →R
d×d of the process {Yt , t ∈ T } is defined

by c(t,s) = E
(
(Yt −EYt)(Ys−EYs)

�
)

for all t,s ∈ T .

Definition 4.13. A stochastic process {Yt , t ∈ T } with T ⊂ R is said to be weakly
stationary if it holds that μ(t) = μ for all t ∈ T and c(t,s) = c(t+h,s+h) (and thus
σ(t) = σ ) for all t, s ∈ T and h ∈ R such that t +h ∈ T and s+h ∈ T . In this case,
μ and σ are called process mean and process variance, respectively.

After having introduced some basic properties of stochastic processes, we state
the notion of a time series.

Definition 4.14. Let {Yt , t ∈ T } be a discrete stochastic process. Then, any finite
trajectory {yt , t ∈ T ′} where T ′ ⊂ T and |T ′|< ∞, is called a time series.

Typical examples of time series are the daily stock prices of a stock corporation
given for the last two years, or the daily mean temperature measured at the same
location over the last 5 years, etc.

The main goal of time series analysis is the prediction of future values of the
time series based on the values from the past. A promising approach of forecasting
future values is to fit a stochastic process to the observed data and compute predic-
tions based on this model. In the following, we introduce a specific class of discrete
stochastic processes (i.e., time series models).

4.2.2.2 Vectorial Autoregressive Processes

In this section, we focus on a discrete stochastic process {Yi}, where Yi is a linear
combination of its foregoing variables and a random error term.

q≥ 0 and dimension d ≥ 1 is given by

Yi = η+A1 Yi−1 + . . .+Aq Yi−q + εi for each i ∈ Z, (4.3)

Definition 4.15. The vectorial autoregressive {Yi, i ∈ Z} of order(VAR) process
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where η ∈ R
d denotes the intercept vector of the process, and A1, . . . ,Aq ∈ R

d×d

are the coefficient matrices. The errors {εi , i ∈ Z} are assumed to form a sequence
of d-dimensional random vectors which are independent and identically distributed
with vanishing mean vector Eεi = o and some (non-singular) covariance matrix
Σ = E(εiε�i ). If {εi, i ∈Z} is a Gaussian process where εi ∼N(o,Σ) is multivariate
normal distributed with zero mean and covariance matrix Σ , the {Yi, i ∈ Z} is called

Remark 4.5. Let us deonte the d-dimensional unit matrix by Id . If it holds that
det

(
Id− (A1 z+ . . .+Aq zq)−1

) �= 0 for all z ∈Rd with ||z||< 1, then it follows that
{Yi, i ∈ Z} is weakly stationary [258, p. 25].

Exercise 4.4. Show that alternatively to formula (4.3) of Definition 4.15, a station-
ary VAR process of order q ≥ 0 and dimension d ≥ 1 can be represented by its
mean-adjusted form, i.e.,

Yi−μ = A1 (Yi−1−μ)+ . . .+Aq (Yi−q−μ)+ εi for each i ∈ Z, (4.4)

where μ = EYi ∈ R
d is the process mean which can be expressed by means of the

intercept vector η of the process, i.e., μ = (Id−A1− . . .−Aq)
−1η .

4.3 Stochastic 3D Model for Organic Solar Cells

In the following, we present a stochastic model to describe the 3D morphology of
the photoactive layer of hybrid P3HT-ZnO solar cells. The aim is to construct a
parameterized stochastic model that can be fitted to a variety of experimental 3D
morphologies, which have been processed with different processing conditions, see
Fig. 4.5. Note that the structure exhibits an anisotropy in z−direction, see Fig. 4.6.
This anisotropy is to be captured by the stochastic model.

Organic and hybrid solar cells are a promising alternative to classical silicon
solar cells as they offer the prospect of being cheap in production and ecological.
However, despite enormous improvements, they still suffer from relatively low ef-
ficiencies. Up to now, the most efficient organic solar cells reach power conversion
efficiencies of about 10-12%. One approach to optimize efficiency is by optimiz-
ing their morphology. To better understand the relation between morphology and
efficiency, we present a spatial stochastic simulation model for the morphology of
organic solar cells described in [378].

4.3.1 Data and Functionality

In organic solar cells, for a good efficiency, the electron-donor and electron-acceptor
materials need to be finely mixed and continuous percolation pathways need to exist

a Gaussian VAR .process
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Fig. 4.5 Photoactive layers of P3HT-ZnO solar cells fabricated for different spin coating velocities
(resulting in different layer thicknesses). ZnO appears yellow, P3HT transparent. Left: spin coating
velocity ω = 5000 rpm (57 nm layer thickness), center: ω = 1500 rpm (100 nm layer thickness),
right: ω = 1000 rpm (167 nm layer thickness)

Fig. 4.6 Left: example of solar cell morphology; right: enlarged cutout from the left image

to transport charges towards the electrodes. Upon exposure to light, photons are ab-
sorbed in the polymer phase and so-called excitons, i.e., photoexcited electron-hole
pairs, evolve. Excitons are neutral quasiparticles which diffuse inside the polymer
phase within a limited lifetime; see [365]. If an exciton reaches the interface to the
ZnO phase, it is split up into a free electron (negative charge) in the ZnO and a
hole (positive charge) in the polymer phase. This process is commonly referred to
as quenching. Provided that the electrons in the ZnO phase and the holes in the
polymer phase reach the electrodes at the top and bottom of the photoactive layer,
respectively, current is generated. A schematic illustration of the morphology of
photoactive layers in hybrid polymer-ZnO solar cells is shown in Fig. 4.7, where
the electrodes are supposed to be parallel to the x-y-plane. For further information
about polymer solar cells and the physical processes therein we refer e.g. to [47].

The stochastic model, presented in this section, is based on a rather complex
random sphere system with spheres on different length scales. Thus, we call the
model multi-scale sphere model (MSM). The model is fitted to high-resolution
three-dimensional data, gained by electron tomography (ET), describing the mor-
phology of photoactive layers consisting of poly(3-hexylthiophene)-ZnO solar cells.
In particular, we fit the parameters of the stochastic model to three photoactive layers
produced with different production parameters, called 57, 100, and 167 nm films.
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Fig. 4.7 Schematic layout of a polymer-ZnO thin film solar cell, showing the percolation of pho-
togenerated holes (+) and electrons (−)

For each of the three different layer thicknesses, the 3D ET images are given as
stacks of 2D grayscale images (being parallel to the x-y-plane, say), which are
numbered according to their location in z-direction. The sizes of these images in
the x-y-plane are 934×911 voxels for the 57 nm film, and 942×911 voxels for the
100 nm film and the 167 nm film. Each voxel represents a cube with side length of
0.71 nm. Binarization has been executed by local thresholding, to compensate for
varying brightnesses, see [392].

4.3.2 Data Preprocessing

First, the complexity of the solar cell morphology data - to which the model will
be fitted - is split into two different length scales, the macro- and the micro-scale
(Fig. 4.8a). The macro-scale, which is obtained by morphological smoothing, con-
tains the main structural features of the ZnO phase. The micro-scale consists of all
details that were omitted on the macro-scale.

Fig. 4.8 a) Original image split up into structural components at two different length scales (macro-
scale and micro-scale), b) schematic 2D representation of a ZnO domain by union of circles
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The smoothed ZnO phase (Fig. 4.8a) is then represented by a union of over-
lapping spheres, such that the agreement is 99 %, see Fig. 4.8b) for a cartoon ex-
ample in 2D. For more information on this sphere-putting algorithm, the reader is
referred to [392]. The sphere representation of the macro-scale allows to interpret
the smoothed ZnO phase as a realization of a suitable marked point process model,
where the marks are the radii and the points the corresponding sphere centers.

4.3.3 Description of Stochastic Model

macro- and the micro-scale. By this partitioning of complexity, a very flexible model
is obtained. The composition of the models for the macro- and the micro-scale is the
final 3D simulation model, which we call a multi-scale sphere model (MSM).

4.3.3.1 Simulation Model for the Macro-Scale

The basic idea is to represent the ZnO domains on the macro-scale as a system of
overlapping spheres. Therefore, a sphere-putting algorithm is applied to the experi-
mental image data [392]. It represents the morphologically smoothed ZnO domains
in an efficient way by unions of overlapping spheres as schematically illustrated in
Fig. 4.8b.

This representation allows interpreting the ZnO domains as a realization of a
marked point process, where the points are the sphere centers and the marks the
corresponding radii. For more information on marked point processes, see [179].
After a thorough analysis of the point patterns for the 57, 100, and 167 nm films, a
suitable point process model has been developed which is parameterized and suffi-
ciently flexible to represent all three film thicknesses, i.e., the model type is the same
for all three film thicknesses with varying parameters indicating different morpho-
logical structures. In particular, it turned out that the point patterns in subsequent
z-slices exhibit a strong similarity, which is due to the anisotropy of the solar cell
morphologies.

Since the solar cell morphologies exhibit an uniaxial anisotropy in z-direction,
the stochastic model should also be anisotropic. In more detail, to include an uni-
axial anisotropy into the morphology, say, in z-direction, we propose a multi-layer
approach consisting of sequences of correlated 2D point processes to model the 3D
point pattern of midpoints. In particular, the 2D point processes, being parallel to the
x-y-plane, are described by elliptical Matérn cluster processes, see Definition 4.9.
To model the 3D point patterns of midpoints, a Markov chain with stationary initial
distribution is constructed, which consists of highly correlated Matérn cluster pro-
cesses. It can be seen as a stationary point process in 3D.

A stochastic simulation model is developed for each scale individually, i.e., for the
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Point Process Model

The aim is to simulate a 3D point process {{S̃(z)n }, z ≥ 1} of correlated 2D point
processes {S̃(z)n }, where {S̃(z)n } is a 2D point process in the plane (or ‘slice’) R×
R×{z}. Such a correlation is obtained by constructing a Markov chain of 2D point
processes, i.e. given the point process {S̃(z)n }, the point process {S̃(z+1)

n } is obtained
as a stochastic modification of {S̃(z)n }. For an overview of the construction of the
point process, see Fig. 4.9. As 2D point processes we consider elliptical Matérn
cluster processes, where the cluster points are scattered in ellipses of uniformly
distributed orientation around their cluster centers, see Definition 4.9.

Fig. 4.9 a) First 2D slice of points, b) displacement of clusters, including spatial birth and death,
c) resulting 3D point pattern, d) 3D morphology by union of overlapping spheres

Initial 2D Point Process

In the following, we introduce the notation required for the ‘initial’ point process
{S̃(0)n }.
1. Let

{
S(0)n ,n≥ 1

}
be a stationary Poisson process with intensity λ0 ∈ (0,∞).

2. Let
{
ψ(z)

n ,n≥ 1
}

, z ≥ 0, be sequences of independent and identically dis-

tributed angles with ψ(0)
1 ∼ Unif[0,π) and let

{
Ea,b(o,ψ

(z)
n ),n≥ 1

}
, z ≥ 0, be

sequences of ellipses with semi-axes a,b with a > b > 0 with random rotation
ψ(z)

n around the origin o.
3. Let

{{
S(1),(z)k ,k ≥ 1

}
,
{

S(2),(z)k ,k ≥ 1
}
, . . .

}
, z ≥ 0, be sequences of indepen-

dent and identically distributed Cox processes with random intensity measures{
Λ (n),(z)

B ,B ∈ B
}

, n≥ 1, z≥ 1, where

Λ (1),(0)
B = λ1ν2(B∩Ea,b(o,ψ

(0)
1 )),

and λ1 ∈ (0,∞) is some positive intensity.

With these definitions, the ‘initial’ point process {S̃(0)n } in the plane R×R×{0}
can be introduced as follows:

{
S̃(0)n ,n≥ 1

}
=

∞⋃
n=1

({
S(n),(0)k ,k ≥ 1

}
+S(0)n

)
.
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This initial 2D (elliptical) Matérn cluster process {S̃(0)n } in R
2 can be described by

a vector of four parameters: (λ0,λ1,a,b), where λ0 is the intensity of the stationary
Poisson point process {S(0)n , n ≥ 1} of cluster centers, a and b with a > b > 0 are
the semi-axes of (random) ellipses Ea,b(o,ψ

(0)
n )⊂ R

2, and λ1 is the intensity of the
stationary Poisson processes {S(n),(0)k , k≥ 1} of cluster members within the random
ellipses.

Transitions of the Markov Chain

To obtain a (vertical) correlation structure between consecutive 2D point processes,
we model a 3D point process by a Markov chain of 2D Matérn cluster processes.
In particular, the transition from

{
S̃(z)n ,n≥ 1

}
to
{

S̃(z+1)
n ,n≥ 1

}
is organized such

that small displacements of clusters can be included, as well as ‘births’ and ‘deaths’
of clusters. In other words, we consider a certain class of spatial birth-and-death
processes with random displacement of points, see e.g. [287].

In the following, we introduce some notation that is required for the construction
of the Markov chain.

1. Let {B(z)
n , n ≥ 1}, z ≥ 1, be sequences of independent stationary Poisson point

processes in R
2 with intensity λ ′0 such that 0 < λ ′0 < λ0. The point process

{B(z)
n , n≥ 1}, z≥ 1 models the cluster centers of new clusters (‘birth’).

2. Let {δ (z)n , n≥ 1}, z≥ 1, be sequences of independent and identically distributed
Bernoulli random variables, which are independent of {B(z)

n }, where P(δ (z)n =

1) = p for some p ∈ (0,1). Note that {δ (z)n } will be used in order to model
‘deaths’ of complete clusters.

3. Let {D(z)
n }, z ≥ 1, be sequences of random displacement vectors with values

in R
2, which are independent of {B(z)

n } and {δ (z)n }. We assume that the ran-
dom vectors D(z)

1 ,D(z)
2 , . . . are uniformly distributed in the set B(o,r′′)\B(o,r′),

where r′ and r′′ denote the size of minimum and maximum displacement, re-
spectively; 0 < r′ < r′′.

Then, a Markov chain {{S̃(z)n }, z ≥ 0} of Matérn cluster processes can be con-
structed as follows. For z = 0, let {S̃(0)n } be a 2D elliptical Matérn cluster process as
introduced above, i.e.,

{
S̃(0)n ,n≥ 1

}
=

∞⋃
n=1

({
S(n),(0)k ,k ≥ 1

}
+S(0)n

)
.

The subsequent point process
{

S̃(1)n ,n≥ 1
}

is given by
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{
S̃(1)n ,n≥ 1

}
=

∞⋃
n=1,δ (1)n =1

({
S(n),(0)k ,k ≥ 1

}
+S(0)n +D(1)

n

)

∪
(

∞⋃
n=1

({
S(n),(1)k ,k ≥ 1

}
+B(1)

n

))
.

This transition from
{

S̃(0)n ,n≥ 1
}

to
{

S̃(1)n ,n≥ 1
}

can be described as follows: All

clusters from
{

S̃(0)n ,n≥ 1
}

with index n with δ (1)n = 0 are deleted. The surviving

clusters are translated by the random displacement vector D(1)
n . In addition, some

new clusters are born. The cluster centers of these new clusters follow the Pois-
son process {B(1)

n , n ≥ 1}. The clusters members have the same distribution as in{
S̃(0)n ,n≥ 1

}
.

The subsequent point processes
{

S̃(z)n ,n≥ 1
}

, z ≥ 2 follow analogously. Since
we want to obtain a stationary point process, it is necessary that all 2D point pro-
cesses have the same distribution. Note that all clusters

{
S(n),(z)k ,k ≥ 1

}
, n≥ 1,z≥ 0

are independent and identically distributed. Thus, it must be assured that the inten-
sity of clusters is equal for all z ≥ 0. The intensity of clusters of

{
S̃(1)n ,n≥ 1

}
is

given by λ0 p+ λ ′0 (intensity of surviving clusters plus intensity of new clusters).
Thus, we require that the ‘birth rate’ λ ′0 and the ‘survival probability’ p satisfy

λ0 p+λ ′0 = λ0, (4.5)

where λ0 is the intensity of the Poisson process {S(0)n } of cluster centers.

Exercise 4.5. Show that the Markov chain
{

S̃(z)n , z≥ 0
}

is stationary if and only if
(4.5) holds.

The Markov chain {{S̃(z)n }, z≥ 0} of Matérn cluster processes introduced above
can be seen as point process in 3D. Note that this point process is stationary in 2D,
but not (yet) stationary in 3D since points can only occur in the slices R×R×{z}.
To obtain a stationary 3D point process, we shift each point in z-direction uniformly
in the interval [−0.5,0.5), i.e., as final point process we use

{{S′(z)n },z≥ 1}= {{S̃(z)n +(0,0,U (z)
n )},z≥ 1},

where {U (z)
n ,n,z≥1} is a sequence of iid random variables withU(z)

n ∼Unif(−0.5,0.5].
The point process {{S′(z)n },z ≥ 1} has points scattered not only in thin slices
R×R×{z}, but with continuous z-component. The point process {{S′(z)n },z≥ 1} is
stationary in 3D. It possesses seven (free) parameters: λ0,λ1,a,b of the ‘initial’ point
process {{S̃(0)n },z ≥ 1}, and p,r′,r′′ describing the transitions from step to step,
whereas the ‘birth intensity’ λ ′0 of (new) cluster centers is given by λ ′0 = λ0 (1− p)
(due to (4.5)).
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Modeling of Radii

Our aim is to model the radii of spheres such that they are possitively correlated in
space. Therefore, the radii of spheres are modeled by a Gamma distribution, where
the radii of spheres are not modeled just by independent marking, but by the follow-
ing moving-average procedure, see Fig. 4.10.

Fig. 4.10 Modeling idea for correlated radii: First, each point is assigned a ‘small’ random radius.
Then, to obtain correlated radii, for each point, the radius is modeled as sum of its own (small)
radius and the (small) radii of a fixed number of nearest neighboring points

Let {{S′(z)n },z ≥ 0} be a configuration of midpoints and let {R(z)
n , n ≥ 1,z ≥

0} be the radii associated with these midpoints. For some k ≥ 1, let {R̃(z)
n , n ≥

1,z ≥ 0} be an iid sequence of Γ (q/k,θ)-distributed random variables, and let
(z1,n1), . . . ,(zk,nk) for each index (z,n) denote the indices of the k nearest neighbors
S′(z1)

n1 , . . . ,S′(zk)
nk of S′(z)n (including the point S′(z)n itself). Then, the radius R(z)

n =
√

3+
R̃(z1)

n1 + . . .+ R̃(zk)
nk is assigned to the midpoint S′(z)n . The reduced radius R(z)

n −
√

3
obtained in this way is Γ (q,θ)-distributed. Note that it is reasonable to require a
minimum radius of

√
3 since spheres with radii smaller than

√
3 only cover a single

voxel or zero voxels when the model is discretized on a voxel grid for later applica-
tions.

4.3.3.2 Simulation Model for the Micro-Scale

The simulation model for the micro-scale is used to reinsert all details omitted on the
macro-scale. In particular, we differentiate three types of micro-scale components:

1. outer misspecifications (typically small isolated ZnO particles in the polymer
phase),

2. interior misspecifications (isolated areas of polymer in the ZnO phase), and
3. boundary misspecifications (typically thin branches of ZnO at the phase bound-

ary).

For each of these components, a suitable model is developed. First, outer mis-
specifications are modeled by a marked point process (sphere systems), see Fig. 4.11a
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and 4.11b. Secondly, the boundary misspecifications are modeled by an erosion in
dependence of the outer misspecifications (Fig. 4.11c). Finally, interior misspecifi-
cations are added by a marked point process (Fig. 4.11d). For details, see [378].

Fig. 4.11 Modeling of micro-scale. a) macro-scale (cutout), b) outer misspecifications added, c)
boundary misspecifications corrected, d) interior misspecifications added

4.3.4 Model Fitting

To fit the point process model described in Sect. 4.3.3 to experimental data and de-
termine the parameters of the model we use a minimum contrast method which
is widely applied in the literature [73, 179]. Therefore, morphologies are simu-
lated in dependence of a parameter vector λ = (λ1, . . . ,λn) for some n ≥ 1. Subse-
quently, image characteristics F(λ ) of simulated data are compared to their empir-
ical counterparts F̂ estimated from experimental image data. The parameter vector
λ which minimizes the discrepancy between these image characteristics, defined
as the norm ||F(λ )− F̂ ||, is chosen as a so-called minimum-contrast estimate, i.e.
λ̂ = {λ : ||F(λ )− F̂ ||minimal}.

4.3.5 Model Validation

Fig. 4.12 shows a cutout of the experimental data accompanied by a corresponding
simulation and gives a visual impression of the goodness-of-fit that the multi-scale
sphere model offers. It is important to note that because we consider a stochastic
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simulation model it is not intended to match the experimental data, but to match
their structural characteristics.

Fig. 4.12 Volume images of P3HT-ZnO. Left: experimental 3D morphology of the 57 nm film
(cutout), right: simulated 3D morphology of fitted model for the 57 nm film (cutout). In the images
the ZnO volume is yellow and P3HT is transparent against a black background.

Before the model can be applied to improve the understanding of solar cells, it
must be assured that it reflects physical properties sufficiently well. Therefore, we
compute physically relevant characteristics, like exciton quenching efficiency (rela-
tive frequency of excitons being quenched) and connectivity (defined as the fraction
of ZnO material connected with the electron collecting top metal electrode), for ex-
perimental and simulated data, respectively. In addition, we compute the relative
mobility for the P3HT and the ZnO phase, respectively, where relative mobility is
the quotient of (electron or hole) mobility in the blend material and mobility in a neat
material (consisting of a single phase). Thus, different two-phase morphologies will
have different relative mobilities. Note that mobility, in general, is the quotient of
the velocity by which charges traverse the system of molecules (in the direction of
an electric field) and strength of the electric field. The results displayed in Table 4.1
reveal an excellent correspondence between the experimental and simulated (MSM)
morphologies for most of the considered characteristics, where ’±’ describes the
standard error. Only the values for the mobility in the simulated ZnO phase for the
100 nm and 167 nm films and the connectivity for the 57 nm film differ from the
original values computed for experimental image data.

4.3.6 Scenario Analysis

The developed simulation model is fully parameterized. This means that a given
solar cell morphology is characterized by the corresponding parameter vector of the
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Table 4.1 Characteristics of experimental and simulated (MSM) morphologies

film thickness connectivity exciton quenching relative mobility relative mobility
(polymer phase) (ZnO phase)

57 nm Exper. 0.97 0.43 0.88 0.32
57 nm MSM 0.93 ± 0.01 0.42 ± 0.03 0.89 ± 0.01 0.31 ± 0.01

100 nm Exper. 0.98 0.80 0.76 0.16
100 nm MSM 0.98 ± 0.01 0.81 ± 0.01 0.76 ± 0.02 0.19 ± 0.01

167 nm Exper. 0.97 0.81 0.77 0.15
167 nm MSM 0.96 ± 0.01 0.83 ± 0.01 0.73 ± 0.01 0.11 ± 0.01

model. In extension of the three solar cell morphologies considered so far, the model
is fitted to three more solar cell morphologies with film thicknesses of 87 nm (ω =
4000 rpm), 89 nm (ω = 2000 rpm) and 124 nm (ω = 1500 rpm). Thus, altogether
the model has been fitted to six different solar cell morphologies fabricated with
varying spin coating velocities, and keeping all other experimental parameters fixed.
We now fit regression curves fi for each component λi individually, see Fig. 4.13
for an example of the parameters for the macro-scale.

The benefit of the regression curves is that morphologies can be simulated with
arbitrary spin coating velocity. Thus, a series of morphologies is simulated for dif-
ferent spin coating velocities (from 500 rpm to 5250 rpm), using the stochastic sim-
ulation model (MSM), where the parameters are chosen according to the regression
models fi. Since the layer thickness decreases with increasing spin coating veloc-
ity ω , a regression model is fitted to describe layer thicknesses in dependence of
ω [379]. The series of virtually simulated morphologies is analyzed in terms of ex-
citon quenching efficiency, see Fig. 4.13
decreasing with increasing ω , whereas the decrease is quite profound for ω > 4000
rpm. In agreement with experimental image data, there is a general trend for the
morphology to become coarser (i.e., larger separated domains of both polymer and
ZnO) for increasing ω , especially for ω > 4000 rpm, see Fig. 4.14

4.4 Stochastic 3D Modeling of Non-woven GDL

In this section, we present a parametric stochastic 3D model that describes systems
of strongly curved and non-overlapping 3D fibers, where, in addition, some super-
structures within the fiber system can be included. The stochastic model describing
fiber-based materials is applied to non-woven gas-diffusion layers (GDL) in proton
exchange membrane fuel cells (PEMFC). More precisely, the parameters of this
model are fitted to 3D synchrotron image data of non-woven GDL.

Before discussing the details of this stochastic modeling approach, we first ex-
plain the functionality of GDL in PEMFC and the available data.

. It is found that quenching efficiency is
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Fig. 4.14 Cutouts of simulated P3HT-ZnO morphologies for ω = 1000,2500,4000 and 5000 rpm
(from left to right) and window size 355×355 nm2. Layer thickness varies with ω . In the images
the ZnO volume is yellow and P3HT is transparent against a white background.

Fig. 4.13 Top: Regression of model parameters of the macro-scale. Bottom: Quenching  efficiency
in dependence of spin-coating velocity. The open symbols display the regression curves, where the
estimated parameters from the experimental data are added by solid symbols
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4.4.1 Data and Functionality

PEMFC are an attractive device for electrical power generation due to their high
efficiency and environment-friendly emissions. Moreover, due to their weight, com-
pactness and quick start-up time they are ideal for applications in automobile indus-
try. A key component of PEMFC is their GDL, which has to provide many functions
for an efficient operation of the fuel cell: supply of the electrodes with gas, water
storage and evacuation, mechanical support of membrane, thermal and electrical
conductivity, etc. For further details concerning the functionality of GDL in fuel
cells we refer e.g. to [166, 209, 268]. The micro-structure of GDL is closely related
to their functionality. For example the porosity of GDL influences several transport
processes like the gas flux through the GDL.

Thus, we develop a stochastic 3D micro-structure model for non-woven GDL.
The overall goal of this stochastic modeling approach is to provide a methodol-
ogy which can be used to improve the understanding of the relationship between
microstructural characteristics (like porosity, pore size distribution, etc.) and func-
tionality (e.g. mass flow, mechanical stability, etc.).

In our case, we concentrate on the GDL type H2315 produced by the company
Freudenberg FFCCT which is a non-woven, carbon fiber-based material where the
fibers mainly run in horizontal direction, see Fig. 4.15.

Fig. 4.15 Cut-out of 3D synchrotron data of GDLH2315 (left) where its super-structure (right) is
highlighted in red

In order to fit the stochastic model such that it describes non-woven GDL, some
information about the real micro-structure is needed. Therefore, we consider 3D
synchrotron image data of non-woven GDL, see Fig. 4.16 (left). The 3D image data
represents a domain of 1250× 1250× 200 μm3 where the voxel size is equal to
0.833 μm3. In particular, to adequately fit the parameters of the stochastic model
to experimental image data of non-woven GDL, we use the following algorithm to
extract single fibers from the 3D synchrotron image data.
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4.4.2 Data Preprocessing

We briefly describe an algorithm to automatically detect single fibers from 3D to-
mographic data of fiber-based materials. It is described in detail in [132] and we
only describe its basic idea. This algorithm combines tools from image processing
and stochastic optimization.

In a first processing step the 3D image is binarized (by global thresholding).
Then we focus on the extraction of center lines of single fibers from the binarized
image. Due to irregularities like noise or binarization artefacts it is only possible to
extract relatively short fragments of the center lines. We thus discuss a stochastic
algorithm to accurately connect these parts of the center lines to each other, in order
to reconstruct the complete fibers in such a way that the curvature properties of the
fibers are represented correctly.

In Fig. 4.16, the result which has been obtained by our extraction algorithm is
displayed. The experimental data and the system of fibers extracted from it are in
good visual accordance. The detected fibers, represented as polygonal tracks, will
be the data basis for fitting the single-fiber model introduced in Sect. 4.4.3.

Fig. 4.16 Cut-out (830×830×200 μm3) of experimental data gained by synchrotron tomography
(left) and extracted fibers (right)

4.4.3 Description of Stochastic Model

The idea for the construction of the stochastic micro-structure model is based on a
two-stage approach (c.f. Fig. 4.17), where in a first step, a germ-grain model is used
to generate a system of overlapping 3D fibers, see Fig. 4.17 (a). Thereby, the single
3D fibers are modeled by 3D VAR processes describing 3D polygonal tracks, see
Section 4.2.2 for the definition of the VAR processes. The germs form a stationary
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Poisson point process in 3D and the grains are given by the spherically dilated 3D
single-fiber model. In the second step, this system of potentially overlapping fibers
is transformed into a system of non-overlapping fibers in the following way: First the
fibers are iteratively translated such that they are evenly spread in space (Fig. 4.17,
(b,c)). Secondly, as proposed in [4], an iterative avoidance algorithm is applied to the
translated fiber system in order to eliminate overlaps between the fibers (Fig. 4.17,
(d)).

Fig. 4.17 (a) generation of 3D fiber system, (b) iterative translation of fibers such that they are
evenly spread in space, (c) cut-out of (b), (d) de-overlapping of fibers

To begin with, we first introduce a stochastic single-fiber model, which describes
the typical course of those fibers that have been extracted from 3D synchrotron data
using the extraction algorithm described in Sect. 4.4.2. Recall that the extracted
fibers are available as polygonal tracks. Thus, our idea for modeling the courses of
strongly curved fibers is to consider random polygonal tracks which are based on
multivariate time series.

4.4.3.1 Modeling of Single Fibers and Bundles

The following incremental representation of polygonal tracks is useful. Instead of
describing a polygonal track p = {p0, p1, . . . , pn} by the endpoints pi, pi+1 ∈ R

3

of its line segments (pi, pi+1) we consider an angle-length representation, where we
regard the first line segment (p0, p1), separately. The further segments of the polygo-
nal track p can then be described by the lengths �1, �2, . . . of the consecutive line seg-
ments and the angles α1,α2, . . . and β1,β2, . . ., where αi (βi) denotes the change of
direction from the i-th to the (i+1)-th segment with respect to the azimuthal (polar)
angle. Thus, under the condition that the first line segment is given, a polygonal track
is uniquely described by the sequence of vectors (α1,β1, �1)

�,(α2,β2, �2)
�, . . ., see

Fig. 4.18.
Based on the incremental representation of polygonal tracks, we introduce the

single-fiber model. The main idea for stochastic modeling of single fibers is to de-
scribe polygonal tracks (representing the fibers) by means of a stationary 3D VAR
processes (c.f. Definition 4.15) By the usage of multivariate time series we are in a
position to include cross-correlations of consecutive line segments into the single-
fiber model.

Regarding the incremental representation of a polygonal track, some natural reg-
ularity conditions have to be assured, i.e., the changes of directions of consecu-
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Fig. 4.18 Planar fiber (red) represented by a 2D polygonal track

tive line segments have to be in the interval [−π,π) and the lengths of line seg-
ments have to be non-negative. Thus, we do not directly consider a VAR process
as the incremental representation of a random polygonal track, but a modified ver-
sion {Fi, i ≥ 1} of it where these conditions are assured, i.e., Fi =Ψ(F̃i), i ≥ 1,
where {F̃i, i≥ 1} is a weakly stationary 3D VAR process of order q with parameters
η ,A1, . . . ,Aq and Σ and the functionΨ : R3→ [−π,π)2×R is given by

Ψ(r,s, t) = (r−2k1π,s−2k2π,max{0, t}) (4.6)

if (2k1−1)π ≤ r < (2k1+1)π and (2k2−1)π ≤ s < (2k2+1)π for some k1,k2 ∈Z.
Thus, the incremental representation of the random polygonal track is given by

the modeling components F0, and {Fi, i≥ 1} where F0 = (F01,F02,F03) is the start-
ing line segment �start given in spherical coordinates and {Fi, i ≥ 1} represents the
changes of directions and the lengths of the successive line segments.

By means of F0, and {Fi, i ≥ 1}, the 3D single-fiber model is provided. It is
defined by a finite sequence of dilated line segments FS = {FS

0 , . . . ,F
S
N} in R

3 repre-
senting a random 3D fiber of length � and fiber radius r. In other words, the single-
fiber model FS = {FS

0 , . . . ,F
S
N} with N = min{k : F03 +∑k

i=1 Fi3 > �} is considered,
where its dilated line segments FS

i are given by

FS
i =

{
(o,L1)⊕B(o,r) , if i = 0 ,
(Li,Li+1)⊕B(o,r) , else , (4.7)

with L1 = TEuclidean(F0), Li+1 = Li+TEuclidean

(
∑i

j=0 Fj1,∑i
j=0 Fj2,Fi3

)
for i≥ 1 and

TEuclidean(ϕ,θ ,s) = (ssin(θ)cos(ϕ),ssin(θ)sin(ϕ),scos(θ))� being the transfor-
mation from spherical to Euclidean coordinates.

In addition, we introduce a model for bundles of fibers where a fiber-bundle
FB consists of a set of parallel single fibers on the basis of the single-fiber model
FS = {FS

0 , . . . ,F
S
N} described above. It is defined by
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FB =
M⋃

k=0

(
FS +δk

)
, (4.8)

where M indicates the random number of parallel fibers with respect to FS which is
assumed to have a Poisson distribution with some parameter κ . Furthermore, we as-
sume that δ0 = (0,0,0)� and that the distribution of the random vector (δ1, . . . ,δM)
is constructed by considering independent and uniformly distributed random vec-
tors δ1,δ2, . . . on the boundary of the disc with midpoint o and radius 2r under the
condition that

min
{
δi−δ j : i, j ∈ {1, . . . ,M}, i �= j

}≥ 2r , (4.9)

where the disc is orthogonally orientated with respect to the first line segment FS
0 of

the single fiber FS. Note that the condition considered in (4.9) can be fulfilled with
high probability provided that κ is small. It ensures that fibers within bundles do
not overlap. If it is not possible to sample δ j for any j ∈ {1, . . . ,M} such that there
occurs no overlapping within the fiber bundle, the radius of the disc is iteratively
increased until all M fibers can be placed without overlapping.

4.4.3.2 Stochastic Model for Non-woven GDL

Based on the bundle model introduced in Sect. 4.4.3.1, we now develop a stochastic
micro-structure model for the morphology of non-woven GDL. First, we consider
a system of overlapping fibers generated by a germ-grain model, where the germs
form a stationary Poisson point process in 3D (c.f. Definition 4.4) and the grains are
given by the bundle model. Since it is physically impossible that fibers in non-woven
GDL overlap mutually, we transform the system of overlapping fibers into a system
of spatially regularly distributed, non-overlapping fibers by an iterative translation
procedure.

The construction of the 3D micro-structure model for non-woven GDL is mo-
tivated by the two-phase superstructure of the experimental GDL data, which is
shown in Fig. 4.19 (left). We can clearly see that there is a superlattice of hori-
zontally oriented fibers running parallel to the x-axis in periodic distances. Thus,
we subdivide the micro-structure in fiber-channels with some width h where the
fibers proceed randomly, and in fiber-bars with some width b where the fibers are
mainly running parallel to the x-axis. The basic modeling idea is to first consider
a uniformly distributed random variable U on the interval [0,b+ h] indicating the
location of the starting point of the periodic sequence of fiber-channels and fiber-
bars. Then, a stationary Poisson process {Si, i ≥ 1} is generated in 3D describing
the locations of fibers. Subsequently, each point Si is marked either with a bundle
of fibers drawn from the bundle model introduced in (4.8) if Si is located in a fiber-
channel, or with line segments parallel to the x-axis if Si is located in a fiber-bar.
Note that this is just an approximation of the experimental fiber morphology within
the fiber-bars. However, as shown in Sect. 4.4.5, the complete model describes the
important morphological and physical characteristics sufficiently well.
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Fig. 4.19 Cut-out of 3D synchrotron data (left), basic idea of bar-channel modeling (right)

The system of overlapping fibers featured with a superlattice is described by a
germ-grain model which is given by the set union

Ξ =
∞⋃

i=1

(
X (i) +Si

)
, (4.10)

where the germs Si = (Si1,Si2,Si3) form a Poisson point process {Si} in R
3 with

some intensity λ > 0. The grains X (i) are given by

X (i) =

{
FB,i , if Si2 ∈⋃

j∈Z[U + j(b+h)−h,U + j(b+h)) ,

FC,i , else ,

where the FB,i are independent copies drawn from the bundle model FB introduced
in (4.8). Furthermore, we define FC,i by

FC,i =
M(i)⋃
j=0

(
C+Si +δ

(i)
j

)
,

where C is the line segment C = [−(l/2,0,0)�,(l/2,0,0)] and M(i) as well as δ (i)k
are independent copies of M and δk considered in (4.8).

Thus, besides the parameters of the bundle model considered in Sect. 4.4.3.1, the
model for the system of overlapping fibers has three further parameters λ , b and h
which have to be specified.

Subsequently, the transformation of the systemΞ of these potentially overlapping
fibers into a system of non-overlapping fibers is discussed. Since the fibers of non-
woven GDL are extremely regularly distributed in space, i.e., there exist no large
volumes without fibers, we first have to improve the spatial formation of the fibers
in Ξ to reduce the amount of vacant volumes in Ξ . This is done by an iterative
translation procedure, described in detail in [134].
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The resulting fiber system is further transformed to a system of non-overlapping
fibers. Therefore, we apply the iterative avoidance algorithm introduced in [4]. The
set union Ξ̃ of the final system of non-overlapping fibers within the sampling win-
dow W is denoted by Ξ̃ ∩W .

4.4.4 Model Fitting

The parameters of the VAR process {F̃i, i ∈ Z} describing the courses of single
fibers are estimated by the maximum-likelihood technique, introduced in [133] and
further analyzed in [131]. Following the AIC criterion, which is widely applied to
estimate the order q of autoregressive processes, see also [131], we obtain q = 2
which yields

η =

⎛
⎝ 0.003

0.0008
23.5

⎞
⎠ , A1 =

⎛
⎝ 0.214 0.061 −0.0002
−0.00004 −0.091 0.00002
−0.53 1.569 0.114

⎞
⎠ ,

A2 =

⎛
⎝ 0.106 0.039 0.0002
−0.001 −0.11 −0.00005
−0.321 3.846 0.025

⎞
⎠ and Σ =

⎛
⎝ 0.08 0.00007 −0.02

0.00007 0.0018 −0.016
−0.02 −0.016 207

⎞
⎠ .

Furthermore, from the production process of the considered type of non-woven
GDL it is known that r = 4.75 μm and � = 50,000 μm. The initial line segment �0
is chosen equal to �0 = (0,1,0)�. Additionally, it is known from the manufacturer
that the width of the fiber-channels is given by h = 500μm, and the width of the
fiber-bars by b = 70μm. Moreover, it is known that the porosity is 0.765 and, con-
sequently, the volume fraction of the fiber system is 0.235. Based on the extracted
fiber system, see Sect. 4.4.2, the expected number of parallel fibers κ is put to κ = 2
as it is explained in details in [133]. We choose the intensity λ of the 3D Poisson
point process representing the locations of fiber-bundles such that the volume frac-
tion of the fiber system Ξ̃ ∩W coincides with the known volume fraction of 0.235.
Therefore, the minimum-contrast method is used in order to estimate the intensity
λ of fiber-bundles, i.e.,

λ = argminλ

∣∣∣∣∣
ν3(Ξ̃ ∩W )

ν3(W )
−0.235

∣∣∣∣∣ ,

where we get that λ = 1.65×10−7.
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4.4.5 Model Validation

In Fig. 4.20 (right) a realization of the fitted GDL model is shown. The synchrotron
data, see Fig. 4.20 (left), shows clews of fibers in horizontal direction. They are
represented in the stochastic GDL model by horizontal fiber bundles as shown in
Fig. 4.20 (right). Although, the fiber-bars modeled by straight fiber bundles are a
simplification of the micro-structure of non-woven GDL, the visual agreement be-
tween the simulated and experimental images is quite good given the complexity of
the fiber system.

Fig. 4.20 3D synchrotron data (left) and simulated non-woven GDL (right)

We now check more formally if the stochastic 3D model describes the micro-
structure of the non-woven GDL sufficiently well. Therefore, we consider transport-
relevant characteristics computed for the 3D image gained by synchrotron tomog-
raphy, and for realizations of the non-woven GDL model. The goal is to show that
this type of characteristics which have not been used for model fitting match those
of the (real) synchrotron image.

As an example of a transport-relevant characteristic, the spherical contact distri-
bution function H : [0,∞]→ [0,1] is computed for experimental and simulated data
where H(r) denotes the probability that the minimum distance from a randomly
chosen location of the pore phase to the fiber phase is not larger than r. The results
of these calculations are given in Fig. 4.21, where we clearly see that there is a quite
good accordance between the results obtained for experimental and simulated data.
In other words, we see that our model adequately represents this structural charac-
teristic. In [134], further image characteristics are taken into account for model val-
idation, where each characteristic is accurately described by our stochastic model.
Thus, the stochastic GDL model proposed in the present section provides a reason-
able fit to the experimentally measured 3D image of the GDL., see also [134].
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Fig. 4.21 Distribution function of spherical contact distances for experimental data (black) and
simulated data (red) drawn from the fitted GDL model

Finally, a stochastic model is presented for efficient simulation of isotropic three-
dimensional morphologies consisting of two different phases. We apply this stochas-
tic simulation model to graphite electrodes in Li-ion batteries. In particular, we fit
its parameters to 3D image data gained by synchrotron tomography that describes
the micro-structure of such graphite electrodes. The model is based on a hybrid
approach, where in a first step a random network model is developed using ideas
from stochastic geometry. Subsequently, the two-phase morphology model is built
by applying simulated annealing to the network model which kind of ‘dilates’ the
network.

4.5.1 Data and Functionality

Li-ion batteries can store electrochemical energy and consist, simplified, of an an-
ode, a cathode and an electrolyte. During discharging, Li atoms release an electron
at the anode and the so-formed Li-ions then diffuse from the anode to the cathode
via the electrolyte. The electrons also move from the anode to the cathode. During
charging, Li-ions move back to the anode and are embedded in the graphite phase.
This connection is called intercalation. For more details on functionality of Li-ion
batteries, we refer to [95].

In particular, the morphology of the anode of Li-ion batteries - as the graphite
electrode being studied - is strongly correlated to the electrochemical performance

4.5 Stochastic 3D Model for Uncompressed Graphite Electrodes

in Li-Ion Batteries
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of the battery. For a large capacity as well as a high performance, a high specific
surface area of the graphite electrode as well as a large total volume of the graphite
phase are beneficial.

We consider as experimental data a 3D tomographic image data displaying the
micro-structure of a graphite electrode in Li-ion batteries, see Fig. 4.22 (left). The
considered experimental data set has a size of 624× 159× 376 voxels where each
voxel represents 215 nm3. Thereby, the considered electrode material consisted of
about 95% of graphite and of about 5% of a mixture of conductive carbon and PVDF
(polyvinylidendifluoride) as binder material. Note that we model the morphology of
the electrode as a two-phase system consisting of solid phase and pore-phase. Thus,
we do not distinguish between graphite and binder. Instead, as simplification, we
just speak of ‘graphite-phase’ and ‘pore-phase’, where the ‘graphite-phase’ always
refers to the material combination consisting of graphite and binder. The overall
thickness of the measured sample was about 113 μm, i.e., the anode material had
a thickness of about 50 μm on both sides of the copper foil. The material was not
loaded with lithium, i.e., raw material. The copper foil was not removed for the
measurement in order to avoid any influence caused by sample preparation. For
more information, we refer to [380].

4.5.2 Data Preprocessing

In order to fit the stochastic model for two-phase micro-structures introduced in
this section to the micro-structure of the tomographic image data described in
Sect. 4.5.1, we first extract a 3D network from this data set. Subsequently, we fit the
parameters of the stochastic network model that we will introduce to the properties
of the extracted network. The network extraction has been performed by a skele-
tonization tool of Avizo Standard (version 6.3), see [124, 406], using the default
settings. Its idea is to change voxels representing the graphite-phase to pore-phase
voxels such that a thin line with thickness one remains. Furthermore, the skele-
tonization is homotopic, i.e., connectivity-preserving. In a next step, the skeleton is

Fig. 4.22. These polygonal tracks are systems of line segments. The representation
by systems of line segments can be interpreted as a spatial network, where the start-
and endpoints of the line segments form the set of vertices V and the line segments
themselves the set of edges E. Note that for analysis purposes, an edge correction
has been performed, where only those line segments are considered whose start- and
endpoints are both contained within the image (bounding box).

transformed into vector data, i.e., it is  approximated by polygonal tracks, see also
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Fig. 4.22 3D image of experimental data (left) and extracted network (right)

4.5.3 Description of Stochastic Model

4.5.3.1 Spatial Random Network Model

The basic idea of the modeling approach is to first consider a class of random 3D
networks which describes the essential structural properties of 3D micro-structures
consisting of two different phases, and then to ‘dilate’ the network by simulated
annealing. A spatial random network G = (V,E) can be described by a random set
of vertices V = {Sn,n≥ 1}, where Si is the random location of the ith vertex in
R

3, and a random set of edges E =
{
(Si1 ,S j1) ,(Si2 ,S j2) , . . .

}
describing the line

segments between two adjacent vertices.
The network model is constructed by a two-stage approach, where in the first

step, a point process model is used to describe the random positions of the vertices
and in a second step, the vertices are connected via edges to form a 3D network.

Stochastic Modeling of Vertices

In this section, a point process model for the vertices of the network is introduced.
Note that the random network shall describe the main structural aspects of the
morphology, wherefore the network should exhibit some phase separation. Conse-
quently, an appropriate point process model should also separate the two-phase mor-
phology by a corresponding arrangement of points. Thus, the point process model
must exhibit a clustering of points which yields a ‘rough’ phase-separation when
connecting neighboring points to form a network. Besides this clustering property,
the point process model should also exhibit some repulsion of points for small dis-
tances. Thus, it is desirable that the edges, put between neighboring points, have
a minimum length. Also note that edges whose lengths are smaller than the voxel
resolution, when discretizing the model on a voxel grid, cannot be displayed. Thus,

included in the model. To display both properties, repulsion of points for small dis-
tances and clustering of points for medium distances, a modulated Matérn hard-core
point process appears suitable, see also Definition 4.8.

some sort of minimum distance between pairs of points (hard-core distance) should be
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We choose the following version of the modulated Matérn hard-core point pro-
cess. First, a random sphere system Ξ =

⋃∞
n=1 B(S(0)n ,Rn) is considered, where{

S(0)n ,n≥ 1
}

is a stationary Poisson process in R
3 with intensity λ0 > 0 and

{Rn,n≥ 1} are independent and identically distributed random radii following some
distribution function F : (0,∞)→ [0,1]. In our case, we assume that {Rn,n≥ 1}
are uniformly distributed random variables with parameters 0 < r1 < r2 < ∞, i.e.,
Rn ∼Unif(r1,r2). The union of this random sphere system defines the random area
in which points of a stationary Matérn hard-core process

{
S(1)n ,n≥ 1

}
in R

3 with
intensity λ1 and hard-core radius rh > 0 are released. The modulated Matérn hard-
core process {Sn,n≥ 1} is then given by

{Sn,n≥ 1}=
{

S(1)n ,n≥ 1
}
∩Ξ .

For the intensity λ of {Sn,n≥ 1}, it holds that

λ = λ1
(
1− exp(−λ0

4
3
π(r4

2− r4
1))

)
. (4.11)

In this way, a clustering of points for medium distances is achieved, while a re-
pulsion of points for small distances is assured. The parameters of this point pro-
cess model are given by λ ,λ1,r1,r2 and rh. The intensity λ0 of the Poisson process{

S(0)n ,n≥ 1
}

is then computed as the solution of (4.11).

Exercise 4.6. Prove formula (4.11).

Stochastic Modeling of Edges

So far, we developed a stochastic model for the random set of vertices V =
{S1,S2, ...}. Now we introduce a stochastic model for to put edges between adja-
cent vertices. The model is similar to an � nearest-neighbor network where for each
vertex Sn and � ∈ {1,2, . . .}, edges are put between Sn and its � nearest neighboring
points. However, we modify the � nearest-neighbor network, such that it is possible
to control the angles between edges emanating from the same vertex. More pre-
cisely, assume that {(Sn,Sn1), . . . ,(Sn,Snk(n) )} are edges emanating from Sn, where
k(n) is the number of these edges. For all pairs of these edges, we consider their
angle. Let Xn be the minimum angle, then we define the minimum angle distribution
as distribution of Xn. The aim is that the edge model has some control on the distri-
bution of these minimum angles. We therefore propose the following model to put
edges.

For each vertex Sn ∈V , we consider its �≥ 1 nearest neighbors {Sn,(1), ...,Sn,(�)},
where Sn,(i) denotes the ith nearest neighbor of Sn, ordered according to their in-
creasing distance to Sn. We then put edges between Sn and (some of) its � nearest
neighbors according to the following rule, where En denotes the set of accepted
edges, see also Fig. 4.23.

1. Accept the shortest edge (Sn,Sn,(1)) and put En = {(Sn,Sn,(1))}.
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Fig. 4.23 First stage of modeling of edges: connect each point (here: red point) with its nearest �
neighbors (here: �= 5), starting with nearest neighbor, where no edge is put if the angle undercuts
a preset threshold (see red, dahsed line)

2. Consider the next nearest neighbor Sn,(2). If the angle between (Sn,Sn,(2)) and ev-
ery edge in En is larger than a certain threshold γ1, with γ ∈ (0,π), then (Sn,Sn,(2))
is accepted and added to En, otherwise rejected.

3. Iteratively, repeat step 2 for Sn,(3),Sn,(4), . . . ,Sn,(�).

This procedure is accomplished for every vertex Sn, which yields the set E =⋃∞
n=1 En of edges. As we want to implement periodic boundary conditions for the

simulated annealing algorithm, this is already done for the network model. There-
fore, instead of considering the usual Euclidean distance, a modulo distance is used
for computing the distance between two vertices. This means that edges hitting the
boundary of the observation window are continued on the opposite site.

In addition to this rule for putting edges as described above, we still perform a
certain post-processing of edges, see Fig. 4.24. Such a post-processing is reasonable
since edges have been placed independently. Thus, an edge (Si,S j)∈Ei that has been
put from the point of view of the vertex Si, may interfere with other edges that have
been placed from vertex S j.

To solve this problem we consider the following thinning of edges. Let (Si,S j) ∈
E be an arbitrary (undirected) edge. Then we perform a Bernoulli experiment in
order to decide whether (Si,S j) is added to a list L of edges that are going to be
deleted. Thus, putting L = /0 at the beginning, we proceed as follows.

1. The angles between (Si,S j) and all edges of the form (Si,S f ) and (S j,Sg) ∈ E,
where f �= i,g �= j, are calculated.
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Fig. 4.24 Second stage of modeling of edges: perform postprocessing of edges, where edges that
create angles smaller than a certain threshold, are deleted with some probability p

2. If at least one of these angles is less than a certain threshold γ2, then (Si,S j) is
added to L with probability of p ∈ (0,1).

3. Repeat steps 1 and 2 for each edge (Si,S j) ∈ E.
4. Take E∗ = E \L as the final edge set.

4.5.3.2 Network-based Simulated Annealing

Simulated annealing is a well-established stochastic optimization algorithm with a
wide field of applications, such as the traveling-salesman problem, image segmen-
tation, and network partitioning; see [237] for an introduction to this field. It is also
a standard method to generate two-phase (or multiple-phase) morphologies on a
voxel lattice that are often used as input of physical simulations, see e.g. [409] for
an application to organic solar cells. In this section, we briefly describe the basic
idea of the simulated annealing algorithm and its specific implementation for the
generation of 3D morphologies.

Standard Algorithm

The basic idea of standard simulated annealing is to start with a random distribution
of black and white voxels (representing the respective phases of the micro-structure)
on a voxel lattice W , e.g. W = {1,2, . . . ,100}3, with a specified volume fraction of
white voxels. Given this initial configuration, a Markov chain Monte Carlo (MCMC)
algorithm, see e.g. [237], is used to coarsen the morphology such that a certain value
of an image characteristic is met.

In this section, the MCMC algorithm is used to coarsen the morphology such
that the specific surface area of the foreground phase matches the specific surface
area of some experimental image data. The image characteristic that is used for
the coarsening of the blend of black and white voxels is called cost function. The

are picked at random and exchanged or swapped and the values of the cost function
before and after the swap are computed. If the cost function decreases due to the

MCMC algorithm works as follows, see Chap. 13: two (normally neighboring) voxels
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exchange, i.e., the morphology is coarsened, the exchange is accepted, otherwise it
is only accepted with a certain acceptance probability. The acceptance probability
decreases with time such that swaps that ‘refine’ the morphology instead of coars-
ening it (i.e., an increase of the value of the cost function) become less likely. This
decrease of the acceptance probability is interpreted as cooling of the material and
specified by a so-called cooling schedule, which is a triple (T,M,c) consisting of an
initial temperature T and the number of steps M after which the temperature is de-
creased by a factor c. The great benefit of simulated annealing – in general – is that it
allows changes that temporarily ‘worsen’ the simulation. But thereby, it is possible
to escape from local minima. The coarsening by the MCMC algorithm leads to a
structure where voxels are ordered in a special way depending mostly on the chosen
cost function but also on the cooling schedule.

x0,x1, . . . following some probability function π : A → [0,1] for some arbitrary,
but finite state space A. This is accomplished by constructing a Markov chain
{Xn,n≥ 0} with state space A and an (aperiodic and irreducible) transition prob-
ability matrix such that π is the limiting distribution of the ergodic Markov chain
{Xn,n≥ 0}, see [50]. After simulating the trajectory of the Markov chain for a larger
number of steps, say N, one can assume that XN is approximately distributed accord-
ing to π . Given this general setting, simulated annealing, used for the generation of
micro-structures, can be specified as follows. Let W ⊂ Z3 be a voxel lattice with a
finite number |W | of voxels, and {0,1}W be the set of all binary images on W , where
0 represents a black and 1 a white voxel. A binary image x ∈ {0,1}W is then given
by x = (x(v),v ∈W ) with x(v) ∈ {0,1}. Furthermore, let β (x) be the specific sur-
face area given the configuration of black and white voxels x and let β0 > 0 be some
reference value for the specific surface area. For the computation of the (specific)
surface area on the voxel grid, an algorithm described in [304] is used. Furthermore,
let po ∈ [0,1]∩( 1

|W |Z) be some reference value for the volume fraction of white vox-
els. Then the state space A is given by A = {(x(v),v ∈W ) : ∑v∈W x(v) = po|W |}.
The aim of simulated annealing is to generate a configuration of black and white
voxels such that the specific surface area matches some references value β0. Let
A′ = {x ∈ A : β (x) = β0}, then the goal is to simulate a configuration x′ ∈ A′.

Given an initial configuration x ∈ A, let β (x) denote the corresponding specific
surface area and let po(x) = 1

|W | ∑v∈W x(v) be the volume fraction of white voxels

of x. We denote xa,b = (xa,b(v),v ∈W ) where xa,b(a) = x(b),xa,b(b) = x(a), and
xa,b(v) = x(v) for v �= a,b. Given this notation, simulated annealing can be described
as follows.

1. Generate an initial configuration x0 ∈ A: Define x0 = (x0(v) = 0,v ∈W ). While
po(x) < po, pick a random voxel v ∈W , and put x0(v) = 1. This generates an
initial configuration of black and white voxels where the specific surface area is
typically much higher than the reference value β0.

2a. Put q = 1 and repeat steps 2b to 2d until q = M.
2b. Pick two neighboring voxels v,w ∈W at random such that x(v) �= x(w)

In general, an MCMC algorithm is used to generate pseudo random elements
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2c. Let xn ∈ A be the current state. If β (xv,w
n )−β (xn)≤ 0, update xn by xn+1 = xv,w

n .
If β (xv,w

n )− β (xn) > 0, put xn+1 = xv,w
n only with probability exp(−(β (xx,y)−

β (x))/T ), otherwise put xn+1 = xn. Put n = n+1.
2d. Put q = q+1 and continue with step 2b
2e. After M steps, put T = c ·T . Go to step 2a if β (x)> β0.

Note that especially for larger window sizes run-times are rather large and sim-
ulated annealing only provides a limited control of the resulting micro-structure.
Therefore, with standard simulated annealing, only small cut-outs of 3D micro-
structures can be simulated with reasonable computational effort and improvements
of the algorithm are desirable. In the next section, we propose an approach which
enables us to simulate 3D micro-structures for window sizes of 100× 100× 100
voxels much faster than this is possible with standard simulated annealing.

Combination of Network Model and Simulated Annealing

Standard simulated annealing as described above, can be used to generate 3D mor-
phologies, but run-times are rather large. Moreover, since only two parameters can
be adjusted (the values po and β0 of volume fraction and cost function, here: specific
surface area, respectively), this algorithm offers only limited control of the resulting
morphology of white and black voxels.

We therefore propose another, more efficient approach, which we call network-

as explained in Sect. 4.5.3.1, which is then combined with simulated annealing.
Thereby the network describes the essential morphological aspects of the micro-
structure and serves as a backbone for the simulated annealing algorithm.

Initial Configuration

Instead of throwing uniformly distributed white voxels into the sampling window W ,
an initial configuration of white voxels is constructed with the previously simulated
network. The idea is as follows: The simulated 3D network is discretized on the
lattice W , i.e., we put x(v) = 1 for those voxels v ∈W that belong to the network,
and x(v) = 0 for those voxels that do not belong to the network. This discretized
network indicates voxels around which further white voxels will be located until the
volume fraction po is reached.

To take the most important advantage of our network-based approach into ac-
count, we require that each white voxel of the initial configuration is connected to
the network. Therefore, we first choose a voxel v ∈W at random. Then, we choose
a random direction, either in positive or negative x-, y-, or z-direction. Thus, there
are six directions where each of them can be chosen with probability 1/6. Along the
selected direction, we move from v ∈W until we either reach a white voxel repre-
senting the network or another (white) voxel that has been placed there in an earlier
step (and therefore is connected to the network). If v does not hit another white
voxel, which may indeed occur, it is rejected and the procedure is repeated with
another random voxel w ∈W . Finally, we put the voxel at the currently reached
location to ‘white’. This procedure is continued until 1

|W | ∑v∈W x(v) = po.

based simulated annealing ( BSA), where first a random 3D network is simulatedN
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In this way, we get an initial admissible configuration where every white voxel is
connected to the network. In Fig. 4.25, we can see the difference to the initial con-
figuration of the standard simulated annealing algorithm, where voxels are thrown
completely at random into the window according to the uniform distribution.

Fig. 4.25 Initial configuration of standard (left) and network-based (right) simulated annealing

Note that the value of the cost function corresponding to the initial configura-
tion described above is typically much closer to the value β0 of the cost function
corresponding to some experimental image data than the value of the cost function
corresponding to a purely random initial configuration. This is the main reason why
network-based simulated annealing is much faster than the standard version of this
algorithm.

Description of Network-Based Algorithm

Besides the different ways to create initial, admissible configurations, there are
two further important differences between standard and network-based simulated
annealing. First, (white) voxels representing the discretized network may not be
changed. Therefore, the discretized network serves as ‘rock’ and white voxels tend
to cluster around it, where the network forms the skeleton of the morphology to
be simulated. In this way, i.e., first simulating a random 3D network and then ap-
plying simulated annealing, one can nicely control the properties of the resulting
morphology.

Consider a window W (here: W = 100× 100× 100), and x = (x(v),v ∈W ) a
binary image on W which displays the network, i.e., x(v) = 1 if v belongs to the
network and x(v) = 0 otherwise. Furthermore, let po be the volume fraction (white
voxels) of some experimental image data, and β0 the specific surface area (which
we use as cost function). Analogously, let po(x) be the volume fraction of image
x ∈ A and β (x) the specific surface area. As initial temperature we choose a value
(e.g. T = 0.3), such that enough changes are accepted. The number M of iterations
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per step is chosen proportional to the window size (in our case M = 0.1 · |W |), and
the cooling factor c for the temperature T is put equal to c = 0.98 [239].

Finally, as used above for the standard simulated annealing algorithm, we write
xa,b = (xa,b(v),v ∈W : xa,b(a) = x(b),xa,b(b) = x(a),xa,b(v) = x(v) for v �= a,b).
Then, the network-based simulated annealing algorithm can be described as follows:

1. Generate an admissible configuration x0 ∈ A as described above, i.e., a configu-
ration x0 = (x0(v),v ∈W ) with volume fraction po such that all white voxels are
connected to the network.

2a. Put q = 1, β ′ = β (xn), and repeat steps 2b to 2d until q = M.
2b. Pick two neighboring voxels v,w ∈W at random such that x(v) �= x(w) and such

that neither of the voxels belong to the network.
2c. Let xn ∈ A be the current state. If β (xv,w

n )−β (xn)≤ 0, update xn by xn+1 = xv,w
n .

If β (xv,w
n )− β (xn) > 0, put xn+1 = xv,w

n only with probability exp(−(β (xx,y)−
β (x))/T ), otherwise put xn+1 = xn. Put n = n+1.

2d. Put q = q+1 and continue with step 2b
2e. After M steps, put T = c ·T if (β ′−β (xn))/β ′< 5 ·10−6. Go to step 2a if β (xn)>

β0.

Note that in contrast to the standard simulated annealing algorithm, we pos-
tulate a slightly different condition for the decrease of the temperature T . It is
not necessarily changed after M steps but only if the additional condition that
(β ′ − β (xn))/β ′ < 5 · 10−6 is fulfilled [239]. Recall that periodic boundary con-
ditions are implemented, i.e., swaps over the boundary of the sampling window W
are possible. Note that in each iteration step, the surface area has to be calculated
to evaluate if a swap of voxels is desired. Here, it is sufficient to only calculate the
surface area for a small cut-out, which considerably enhances run-time.

4.5.4 Model Fitting

4.5.4.1 Fitting of Vertex Model

We interpret the vertices of the extracted network as a realization of a stochastic 3D
point process, see also Fig. 4.26 for a visualization of the set of vertices.

Hence, the parameters of the vertex model are fitted by choosing appropriate pa-
rameters of the modulated hard-core point process {Sn} considered in Sect. 4.5.3.1.
In total, five parameters have to be estimated: λ ,λ1,r1,r2 and rh. The intensity λ
can be easily estimated using the consistent estimator

λ̂ =
total number of extracted vertices

volume of sampling window
,

see also [179] for statistical properties of this kind of estimators. Since rh is the
minimum distance between point pairs, we put this model parameter equal to the
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Fig. 4.26 3D extracted network (left) and corresponding vertices (right)

smallest distance between two vertices of the extracted network. The remaining
three parameters λ1,r1,r2 are estimated by the minimum-contrast method with re-
spect to the pair-correlation function, i.e., λ1 and r1,r2 are chosen such that the dis-
crepancy

∫ r′′
r′ (g(u)−g(λ1,r1,r2)(u))

2 du between the pair-correlation function g com-
puted for the extracted vertices and its model counterpart g(λ1,r1,r2) is minimized,
where (r′,r′′) = (1.2,16) is a suitably chosen interval. Note that the value g(r) of
the pair-correlation function is proportional to the relative frequency of point pairs
with distance r compared to a stationary Poisson process with the same intensity,
see e.g. [21] and Chap. 2. The pair-correlation function g of the point patterns have
been computed using a Gaussian kernel density estimator with a bandwidth of 0.04,
see Fig. 4.27. The values of the parameters of the fitted point process are given by
λ = 1,34 ·10−4,λ1 = 1.94 ·10−4,r1 = 5,r2 = 6,rh = 2. For small values r, the peak
of the estimated pair-correlation function g(r) of the fitted point process is not as
high as for the experimental data set. This peak indicates strong clustering of points
with medium distances from each other. Nevertheless, the pair-correlation function
of the fitted point process is in a good accordance to the experimental one.

4.5.4.2 Fitting of Edge Model

The stochastic edge model introduced in Sect. 4.5.3.1 has four parameters: �,γ1,
γ2, and p, which have been determined using the minimum-contrast method with
respect to the distributions of edge lengths, edge angles, coordination numbers and
spherical contact distances. As result we obtain � = 10,γ1 = π/2,γ2 = 8/18π and
p = 0.05.
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Fig. 4.27 Estimated pair-correlation function for the fitted point process model (red) and extracted
vertices (black)

Fig. 4.28 Initial configuration (left) and final result (both center) of network-based simulated
annealing and underlying network (right); in the first two images on the left-hand side, only the
structures at the boundary of the cube are visualized, whereas in the third and fourth image, the
whole structures is visualized (using a transparent pore-phase)

4.5.5 Model Validation

The goal of network-based simulated annealing is to efficiently simulate the micro-
structure of graphite electrodes as displayed in Fig. 4.29 (left). We therefore com-
bined the simulation of random 3D networks with simulated annealing, where we
were matching the volume fraction po and the specific surface area β0 of the exper-
imental image data.

As explained before, the network model can be used to create an improved initial
configuration for the simulated annealing algorithm. In Fig. 4.28 an initial config-
uration of network-based simulated annealing is compared with the corresponding
(final) image obtained by this algorithm. We see that in the final simulation result,
the clusters of the graphite-phase are at the same locations as in the initial config-
uration. Thus, the network does indeed serve as backbone of the micro-structure.
Furthermore, it is clearly visible in Fig. 4.28 that the network-based algorithm has
nicely coarsened the initial configuration. For a visual impression of the goodness-
of-fit of network-based simulated annealing, see Fig. 4.29.
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Fig. 4.29 Experimental data (left) and 3D micro-structure obtained by network-based simulated
annealing (right)

To formally validate the result of network-based simulated annealing with re-
spect to the 3D morphology of graphite electrodes, we compare several structural
characteristics for both experimental and simulated data. To begin with, we compute
the distribution functions of spherical contact distances from the pore-phase to the
foreground, and vice versa, c.f. Sect. 4.4.5. These characteristics describe the spatial
extent of the pore-phase and graphite-phase, respectively. The results displayed in
Fig. 4.30 (left and center) show an excellent agreement between experimental and
simulated data.

Fig. 4.30 Distribution function of spherical contact distances from pore-phase to foreground (left)
and vice versa (center) for simulated (red) and experimental (black) data. Right: spherical contact
distances from the edges of the network to the pore-phase

Next, we compare the distribution functions of spherical contact distances from
the network to the boundary of the graphite-phase. More precisely, for each (white)
voxel from the network, we compute the distance to the nearest pore-phase (i.e.,
black) voxel. Thus, we describe the spatial extent of the micro-structure, from the
point of view of the network. The results in Fig. 4.30 (right) show that the overall



140 Volker Schmidt, Gerd Gaiselmann and Ole Stenzel

agreement is quite good, only large distances are slightly underestimated by the
model.

Last but not least, for the application of the stochastic simulation model to the
micro-structure of graphite electrodes, it must be assured that the network-based
simulated annealing resembles the main connectivity properties of the considered
material. Note that the solid phase of the graphite electrode is completely connected.
In the 3D image data, however, it can occur that bridges between graphite particles
are smaller than the resolution and therefore, isolated clusters may appear. Also,
isolated clusters at the boundary may be connected with the electrode via bridges
outside of the observation window. Therefore, we made a cluster analysis for both,
a cut-out of 130× 130× 130 voxels of the 3D experimental image data and for
a corresponding simulation. It turns out that 95.54% of experimental 3D graphite
electrode is connected, in comparison to 100% for the stochastic model. Note that
the underlying spatial random network is connected (with respect to cyclic boundary
conditions), as unconnected realizations are rejected. Applying simulated annealing
to this connected network will yield a 3D morphology that exhibits values of con-
nectivity close to 100%.

4.5.6 Further Numerical Results

Network-based simulated annealing, as proposed in this chapter, enhances run-time
compared to standard simulated annealing. To analyze the difference in computa-
tional effort, we consider the surface area of the simulated micro-structure in depen-
dence of the number of iterations used in the algorithm. This is reasonable since the
generation of the random network as well as the initial configuration take a negli-
gible amount of time and thus, the coarsening of the morphology is the main factor
driving run-time. The results, displayed in Fig. 4.31, show that the network-based
simulated annealing reduces the computational effort mainly by the improved ini-
tial configuration. Network-based simulated annealing reduces computational effort
(given the desired value for the surface area) to 5.89% of the effort required by the
standard simulated annealing algorithm.

4.6 Conclusion

This chapter gave an overview how the stochastic 3D modeling of functional mate-
rials can be organized. Thereby, three classes of stochastic models are presented
describing the micro-morphology of functional materials by means of methods
from stochastic geometry. The structure of these materials strongly differ where
we consider organic solar cells being a composite of two materials, non-woven gas-
diffusion layers in proton exchange membrane fuel cells consisting of a system of
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Fig. 4.31 Surface area of simulated micro-structure vs. the number of steps in the algorithm for
standard simulated annealing (black) and network-based simulated annealing (red). On both axes,
a log-scale is applied

curved carbon fibers and graphite electrodes in Li-ion batteries which consists of a
porous two-phase micro-structure.

Since the power of computers increases day by day, simulation-based analysis
will be a key aspect in research in the next years. Among other things, functional
materials optimization will play a major role in future. We have provided an outlook
how spatial stochastic models can be used for material optimization with respect to
its functionality.
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Chapter 5

Boolean Random Functions

Dominique Jeulin

Abstract The notion of Boolean random functions is considered which is a gener-
alization of Boolean random closed sets. Their construction is based on the combi-
nation of a sequence of primary random functions by the operation ∨ (supremum)
or ∧ (infimum), and their main properties (among which the supremum or infimum
infinite divisibility) are given in the case of scalar random functions built on Pois-
son point processes. Examples of applications to the modeling of rough surfaces are
given.

5.1 Introduction

This chapter reviews a family of random functions (RF), the so-called Boolean ran-
dom function (BRF) which is an extension of the binary Boolean model and of wide
use for applications.

This family owns the interesting property of supremum (or infimum, accord-
ing to the chosen type of construction) infinite divisibility. Note that these models
are particularly interesting for applications in physics, such as in fracture statis-
tics [193, 197, 198]. The basic idea of the BRF was born about the modelling of
rough surfaces in 1979, by a generalization of the Boolean model of G. Matheron,
where the first presentations and applications are given in [204, 361]. In [190] an
anisotropic version of the BRF is developed. Out of the field of materials science,
other examples of applications are given e.g. for biomedical images [315, 316, 344],
for scanning electron microscope images [364], and for solving problems of ex-
ploitation of oceanographic reserves [67]. The first theoretical studies of the BRF
are given in [190, 204, 361, 362]. In [363, 364], a general BRF model has been intro-
duced, connected to a non stationary Poisson point process in R

d+1. In [315, 317],
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some characteristic properties of the BRF have been proved, which are useful for the
identification of a model from images. Finally, a generalization of the BRF at two
levels was proposed [192, 193]: the introduction of Boolean varieties RF (including
the Poisson point process as a particular case), and of the multivariate case.

In what follows, a reminder on random closed sets and on semi-continuous RF is
given. Then we review the properties of the Boolean RF model. Finally we end this
chapter by some practical applications of this model and of some extended models
to the simulation of the topography of real rough surfaces.

5.2 Some Preliminaries

The heterogeneity of materials can be handled through a probabilistic approach,
which enables us to generate models and simulations of the microstructures. Two-
phase media can be modelled by realizations of random closed sets. More general
microstructures involve the use of random functions.

5.2.1 Random Closed Sets

When considering two-phase materials (for instance a set of particles A ⊂ R
d em-

bedded in a matrix Ac), we use the model of a random closed set (RACS) A, see
e.g. [73, 196, 265, 267, 277, 361], fully characterized from a probabilistic point of
view by its Choquet capacity T (K) defined on the family of compact sets K ⊂ R

d ,
see (5.1) below, where P denotes a probability measure:

T (K) = P(K∩A �= /0) = 1−Q(K) = 1−P(K ⊂ Ac). (5.1)

In the Euclidean space R
d , the Choquet capacity is related to the dilation operation

A⊕ Ǩ, where A⊕ Ǩ = {x− y : x ∈ A,y ∈ K}. We have

T (Kx) = P(Kx∩A �= /0) = P
(
x ∈ A⊕ Ǩ

)

where Kx = K+x. In practice, if d = 2 or d = 3, T (K) can be estimated by area frac-
tion measurements on 2D images, or from volume fraction estimation on 3D images
(from true microstructures, or from simulations), after a morphological dilation of
the set A by the set K [196, 265, 267, 361], or calculated for a given theoretical
model. Equation (5.1) can be used for the identification of a model (estimation of
its parameters, and test of its validity). Particular cases of morphological properties
expressed in terms of T (K) are the volume fraction Vv, the covariance (a useful tool
to detect the presence of scales or anisotropies), the distribution of distances of a
point in Ac to the boundary of A. The access to 3D images of microstructures by
means of X-ray microtomography [98] makes it possible to use 3D compact sets K
(like balls B(r) with various radii r) to characterize the random set.
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5.2.2 Upper Semi-Continuous Random Functions

We consider semi-continuous (upper, lower) random functions {Z(x),x ∈ R
d}, for

which the changes of supports by ∨ (supremum) or by ∧ (infimum) provide random
variables [266]:

Z∨(K) = ∨x∈K{Z(x)},
Z∧(K) = ∧x∈K{Z(x)}.

Note that the domain of a random function can be an arbitrary Borel set E ⊂R
d .

Random functions (RF) and random sets are related by means of their subgraph and
their overgraph.

Definition 5.1. The subgraph Γ ϕ of the function ϕ : E → R is made of the pairs
{x,z}, x ∈ E ⊂ R

d , z ∈ R, with z ≤ ϕ(x). The overgraph Γϕ is made of the pairs
{x,z}, x ∈ E, z ∈ R, with z≥ ϕ(x).

We have the following results connecting semi-continuous functions and closed
sets [74].

Proposition 5.1. The function ϕ is lower semi-continuous (lsc) if and only if its
overgraph Γϕ is a closed set in E×R; ϕ is upper semi-continuous (usc) if and only
if its subgraph Γ ϕ is a closed set in E×R.

Theorem 5.1. An upper semi-continuous random function Z(x) defined in R
d is

characterized by its Choquet capacity T (g) defined over lower semi-continuous
functions g : Rd → R with a compact support K, where

T (g) = P(x ∈ DZ(g)) = 1−Q(g), (5.2)

DZ(g)c = {x ∈ R
d : Z(x+ y)< g(y) for all y ∈ K}.

Particular cases of the Choquet capacity are obtained from (5.2), depending on
the choice of the test function g.

1. Let g(xi) = zi for xi (i = 1,2, ...,d), and g(x) = +∞ else, then we have

T (g) = 1−P(Z(x1)< z1, ...,Z(xd)< zd) ,

where 1−T (g) gives the spatial law. In what follows, by AZ(z) we denote the
random closed set obtained by thresholding the RF Z(x) at level z, i.e.

AZ(z) = {x ∈ R
d , Z(x)≥ z}.

2. Let g(x) = z if x ∈ K, and g(x) = +∞ if x /∈ K, and

DZ(g)c = {x ∈ R
d : Z(x+ y)< z for all y ∈ K}= [

AZ∨(K)(z)
]c
.

Then, we have
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Z∨(K)(x)< z iff Kx ⊂ (AZ(z))
c iff x ∈ AZ(z)c� Ǩ

and
Z∨(K)(x)≥ z iff x ∈ (AZ(z)c� Ǩ)c = AZ(z)⊕ Ǩ

and therefore
AZ∨(K)(z) = DZ(g) = AZ(z)⊕ Ǩ.

For this type of test function g, we have that

T (g) = P(x ∈ DZ(g)) = 1−Q(g) = 1−P(Z∨(K)< z) .

The Choquet capacity gives the probability distribution of the RF Z(x) after a
change of support by ∨ over the compact set K.

Let Z1(x) and Z2(x) be two upper semi-continuous RF and Z(x) = Z1(x)∨Z2(x).
Then, we have

(DZ1∨Z2(g))
c = DZ(g)c = {x ∈ R

d : Z1(x+ y)∨Z2(x+ y)< g(y) for all y ∈ K}
= {x ∈ R

d : Z1(x+ y)< g(y) and Z2(x+ y)< g(y) for all y ∈ K}
= DZ1(g)

c∩DZ2(g)
c.

Therefore
DZ1∨Z2(g) = DZ1(g)∪DZ2(g) (5.3)

and

TZ1∨Z2(g) = P(x ∈ DZ(g)) = 1−Q(g) = P(x ∈ DZ1(g)∪DZ2(g)) , (5.4)
Q(g) = P(x ∈ DZ1(g)

c∩DZ2(g)
c) . (5.5)

Furthermore we have that

Ac
Z(z) = {x ∈ R

d : Z(x)< z}= {x ∈ R
d : Z1(x)∨Z2(x)< z}

= {x ∈ R
d : Z1(x)< z, Z2(x)< z}= Ac

Z1
(z)∩Ac

Z2
(z),

and
AZ1∨Z2(z) = AZ1(z)∪AZ2(z). (5.6)

If the RF Z1(x) and Z2(x) are independent, then the random sets DZ1(g) and
DZ2(g) are also independent, and (5.5) writes as

Q(g) = P(x ∈ DZ(g)c) = P(x ∈ DZ1(g)
c∩DZ2(g)

c)

= P(x ∈ DZ1(g)
c)P(x ∈ DZ2(g)

c) = Q1(g)Q2(g).

More generally, if Z(x) = ∨i=d
i=1Yi(x) and if the Yi(x) are independent copies of the

same RF Y (x) with P(x ∈ DY (g)c) = QY (g), we get that
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QZ(g) = P(x ∈ DZ(g)c) = P
(

x ∈ ∩i=d
i=1DYi(g)c

)
= QY (g)d . (5.7)

5.2.3 Principle of Random Sets and of Random Function Modeling

The main steps to go when designing a random structure model are as follows:

1. Choice of basic assumptions,
2. Computation or estimation of the Choquet’s capacity functionnal T (K).

The functionals T (K) and T (g) are obtained as functions depending on

1. the assumptions,
2. the parameters of the model,
3. the compact set K or the function g.

For a given model, the functional T is obtained by theoretical calculations or sta-
tistically, either on simulations, or on real structures. This gives access to a possible
estimation of the parameters from the ”experimental” T , and to tests of the validity
of assumption for model identification.

5.3 Boolean Random Functions

In what follows, we review the main properties of the BRF built on Poisson point
processes.

5.3.1 Construction of the BRF

We are concerned in this section by BRF with support in the Euclidean space Rd . By
μd(dx) and θ(dt) we denote the Lebesgue measure in R

d and a σ−finite measure
on R (such that

∫
B θ(dt) remains finite for every bounded Borel set B in R). We

consider:

1. a Poisson point process P , with the intensity measure μd(dx)⊗ θ(dt) in R
d×R;

2. a family of independent lower semi-continuous primary RF {Z′t(x),x∈Rd}, with
a subgraph Γ Z′t = A′(t) having almost surely compact sections AZ′t (z).

Definition 5.2. The Boolean random function (BRF) with the primary function
Z′t(x) and with the intensity μd(dx) ⊗ θ(dt) is the RF {Z(x),x ∈ R

d} obtained by

Z(x) = ∨(tk,xk)∈P{Z′tk(x− xk)}. (5.8)
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We can notice the following points.

1. This definition, given in [193], is more general than the one proposed by J. Serra
in [363, 364]; it covers the previous definitions:

1.1. the Boolean islands, for which the measure θ(dt) is the Dirac distribution
concentrated in a point t of R: θ(dt) = θδ0(t) [190, 204, 361];

1.2. the ”generalized” BRF, where we have Z′t(x) = Y ′t (x) + t, where Y ′t (x) is a
family of primary RF. The addition of t comes from a definition of the BRF
as a non stationary Boolean RACS in R

d+1 with Poisson germs in R
d+1 and

with primary random sets A′(t) defined at the origin (o,o) of the coordinates
of Rd+1. To introduce BRF on more general lattices, where the addition is not
necessarily defined, this construction process cannot be used.

2. The parameter t, which can be assimilated to z in the definition [363, 364], as for
the examples given in Sect. 5.3.8, can also be interpreted as a time, leading to
the notion of sequential RF. In these conditions, for the time interval (t, t +dt) is
defined an infinitesimal BRF.

3. It is possible to parametrize the primary functions by t ∈ R
k, with a σ−finite

measure θ(dt) on R
d−k.This enables us to introduce a primary function depend-

ing on several indexes. Instead of Rk, an abstract space E and a measure θ defined
on E can be chosen. Similarly, the Lebesgue measure on R

d can be replaced by a
σ -finite measure θ(dx) on R

d , dropping the stationarity in R
d . This process can

be used to build multiscale RF, as illustrated in Sect. 5.4.
4. From (5.8), we get that the ”floor” value of Z(x) is −∞. This value can be

bounded (z0) by use of primary functions such that AZ′t (z0) = R
d , or by taking

Y (x) = z0∨Z(x).
5. From lower semi-continuous primary functions Z′(t) (with overgraph ΓZ′t ), it is

possible to build a ∧ BRF [193], by replacing in (5.8) the operation ∨ by ∧, and
starting from a +∞ ceiling value of Z(x). It is equivalent to build a ∨ BRF Y from
the primary RF Y ′t (x) = −Z′t(x) and to consider as a ∧ BRF Z(x) = −Y (x). For
this reason, we limit this presentation mainly to the ∨ BRF given by (5.8).

6. From the point of view of subgraphs (closed in R
d+1 for lower semi-continuous

functions), the relation (5.8) involves:

Γ Z = ∪(tk,xk)∈PA′(tk)xk . (5.9)

By definition, Γ Z is a Boolean RACS in R
d with primary grain A′(t).

For illustration, some examples of simulations of BRF are shown in Fig. 5.1.

5.3.2 BRF and Boolean Model of Random Sets

Using (5.6) and (5.8), we have for the BRF Z(x) that



5 Boolean Random Functions 149

Fig. 5.1 Examples of realizations of a Boolean random function with cone primary functions
(left), and built from Poisson lines (right).

AZ(z) = ∪(tk,xk)∈PAZ′tk
(z)xk .

As a consequence, we obtain the following result.

Proposition 5.2. Every RACS AZ(z) obtained by thresholding a BRF {Z(x),x∈Rd}
at level z is a Boolean random set with primary grain AZ′t

(z).

This property will be useful for the identification of BRF models, since available
tools for the Boolean model can be used for this purpose.

5.3.3 Choquet Capacity of the BRF

As mentioned in Theorem 5.1, we can characterize a BRF by means of the functional
T (g) defined on lower semi-continuous functions g with a compact support K, i.e.,

T (g) = P(x ∈ DZ(g)) ;DZ(g)c = {x ∈ R
d : Z(x+ y)< g(y) for all y ∈ K}.

Since DZ1∨Z2(g) = DZ1(g)∪DZ2(g), we get for a BRF Z(x) that

DZ(g) = ∪(tk,xk)∈PDZ′tk
(g)xk (5.10)

and DZ(g) is a Boolean RACS with the primary grain DZ′t (g). Since DZ(g) cor-
responds to the event Ac(Z) = {Z(x+ y) ≥ g(y) for some y ∈ R

d}, the following
results are true.
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Theorem 5.2. Consider a BRF {Z(x),x ∈ R
d} and a lower semi-continuous func-

tion g translated in x. The number of primary functions Z′t for which the event Ac(Z′t)
is satisfied, follows a Poisson distribution with parameter

∫
R

μd(DZ′t (g)) θ(dt).

Theorem 5.3. The Choquet capacity of the BRF {Z(x),x ∈ R
d} is given by

1−T (g) = Q(g) = exp
(
−
∫
R

μd(DZ′t (g)) θ(dt)
)
. (5.11)

For the Boolean islands model with θ(dt) = θδ0(t) and Z′0 = Z′, it holds that

1−T (g) = Q(g) = exp(−θμd(DZ′(g)) ) . (5.12)

As particular functions g, let us examine the following cases:

1. If g(xi) = zi for points xi (i= 1,2, ...,n), and g(x) =+∞ else, we obtain the spatial
law of the BRF with

1−T (g) = P(Z(x1)< z1, ...,Z(xd)< zd)

= exp
(
−
∫
R

μd(AZ′t (z1)x1 ∪ ...∪AZ′t (zd)xd ) θ(dt)
)
. (5.13)

For a single point x, the cumulative distribution function F(z) is obtained, where

F(z) = P(Z(x)< z) = exp
(
−
∫
R

μd(AZ′t (z)) θ(dt)
)
. (5.14)

For two points x and x + h, formula (5.13) gives the bivariate distribution
F(h,z1,z 2) as a function of the cross geometrical covariogram K(h,z1,z2,t) between
the two sets AZ′t (z1) and AZ′t (z2), where

F(h,z1,z2) = P(Z(x)< z1,Z(x+h)< z2)

= exp
(
−
∫
R

μd(AZ′t (z1)∪AZ′t (z2)−h) θ(dt)
)

= F(z1)F(z2)exp
(∫

R

μd(AZ′t (z1)∩AZ′t (z2)−h) θ(dt)
)

= F(z1)F(z2)exp
(∫

R

K(h,z1,z2, t) θ(dt)
)
.

From (5.15), it is clear that for the BRF we always have F(h,z1,z2)≥F(z1)F(z2),
so that no negative correlation can occur.

2. If g(x) = z for x ∈ K and g(x) = +∞ else, K being a compact set, formula (5.11)
enables us to calculate the distribution of Z(x) after a change of support by the
operator ∨ taken over the compact set K (Z∨(x) = ∨x∈K{Z(x)}); we have in that
case DZ′t (g) = AZ′t (z)⊕ Ǩ and
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P(Z∨(K)< z) = exp
(
−
∫
R

μd(AZ′t (z)⊕ Ǩ) θ(dt)
)
. (5.15)

From (5.8) and (5.10), the following result is obtained.

Proposition 5.3. The RF {Z∨(x),x ∈ R
d} is a BRF with the primary function

{Z′∨(x),x ∈ R
d}.

All previous results can be specialized to the Boolean islands version of the
model, when θ(dt) = θδ0(t) and Z′0 = Z′. Starting form the Choquet capacity given
in (5.12), for the spatial law we have that

1−T (g) = P(Z(x1)< z1, ...,Z(xd)< zd)

= exp
(−θμd(AZ′(z1)x1 ∪ ...∪AZ′(zd)xd ) θ(dt)

)
.

The bivariate distribution is given by

F(h,z1,z2) = F(z1)F(z2)exp(θK(h,z1,z2))

and the change of support by the operator ∨ follows

P(Z∨(K)< z) = exp
(−θμd(AZ′(z)⊕ Ǩ)

)
.

5.3.4 Supremum Stability and Infinite Divisibility

Let Z1(x) and Z2(x) be independent BRF with the primary functions Z′1t and Z′2t ,
and the intensities θ1(t) and θ2(t). From (5.9) we get that

Γ Z = Γ Z1 ∪Γ Z2 = ∪(tk,xk)∈P1A′1(tk)xk ∪(tk,xk)∈P2 A′2(tk)xk ,

and therefore Γ Z is a Boolean model in R
d+1; as a consequence, Z(x) is a BRF with

intensity θ(t) = θ1(t)+θ2(t) and with a mixture of primary functions.

Proposition 5.4. Every supremum of a family of independent BRF Zi(x) is a BRF
with intensity θ(t) = ∑i θi(t). The BRF is stable with respect to the supremum.

The supremum stability property in Proposition 5.4 of the BRF is shared with
more recent RF models, namely so-called max-stable processes.

As a consequence of the infinite divisibility of the Boolean model with respect to
∪, we get the following result.

Theorem 5.4. Every BRF Z(x) is infinite divisible for ∨, i.e., for all n ≥ 1 it holds
that Z(x) ≡ ∨k=d

k=1Zk(x) where the Zk are independent and identically distributed
BRF.
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This results immediately from the expression for the Choquet capacity of the
BRF given in (5.11) and from the Choquet capacity of ∨k=d

k=1Zk(x) derived from
(5.7): for any integer d, we have

1−T (g) = Q(g) = exp
(
−
∫
R

μd(DZ′t (g))
θ(dt)

d

)d

.

5.3.5 Characteristics of the Primary Functions

Some characteristics of the pair (intensity, primary function) can be determined from
information on the BRF Z(x). These characteristics are directly deduced from the
Choquet capacity given in (5.11) and from the derived properties in (5.13-5.15).

5.3.5.1 Transformation by Anamorphosis

Let ϕ be an anamorphosis transformation (namely a monotonous non-decreasing
transformation mapping the real line R into R).

Proposition 5.5. Every anamorphosis transformation Y = ϕ(Z) of a BRF Z with
primary function Z′, is a BRF with the same intensity θ(t) and with the primary
function Y ′ = ϕ(Z′).

Proof. We have

Aϕ(Z)(z) = {x ∈ R
d : ϕ(Z(x))≥ z}

= {x ∈ R
d : Z(x)≥ ϕ−1(z)}

= AZ(ϕ−1(z))

= ∪(tk,xk)∈PAZ′tk
(ϕ−1(z))xk

= ∪(tk,xk)∈PAY ′tk
(z)xk

= AY (z). �

This result enables us to restrict our study to strictly positive BRF, since it is
always possible to transform any function Z into a positive function Y = ϕ(Z) (con-
sider for instance the anamophosis obtained by an exponential transformation).

5.3.5.2 Moments of Z′∨(K) and Mathematical Expectation of the

Anamorphosed of Z′∨(K)

We now consider positive BRF.

Proposition 5.6. It holds that



5 Boolean Random Functions 153

M(i,K) = −
∫
R

zi−1 log(P(Z∨(K)< z)) dz (5.16)

=
1
i

∫
R+

E

(∫
Rd
(Z′t∨(K)(x))i dx

)
θ(dt). (5.17)

Let Φ(z) a strictly positive function with Φ(z) =
∫ z

0
ϕ(u) du. Then,

−
∫
R

ϕ(z) log(P(Z∨(K)< z)) dz

=
∫
R+

E

(∫
Rd
Φ(Z′t∨(K)(x)) dx

)
θ(dt).

(5.18)

Proof. By 1Z′t≥z(x), we denote the indicator function of the set AZ′t (z) at point x
(i.e. 1Z′t≥z(x) = 1 if Z′t(x)≥ z, and 1Z′t≥z(x) = 0 else). For a given realization of the
primary function we have that

μd(AZ′t (z)) =
∫
Rd

1Z′t≥z(x) dx

and ∫
R+

zi−11Z′t≥z(x) dz =
∫ Z′t (x)

0
zi−1dz =

(Z′t(x))i

i

By integration over Rd we obtain

∫
Rd

(Z′t(x))i

i
dx =

∫
R+

zi−1μd(AZ′t (z)) dz

and, by taking the mathematical expectation,

E

(∫
Rd

(Z′t(x))i

i
dx
)
=

∫
R+

zi−1μd(AZ′t (z)) dz.

The moment M(i) is deduced by integration of the last expression with respect to
the measure θ(dt), and similarly for the moment M(i,K) after replacing Z and Z′
by Z∨(K) and by Z′∨(K). Similarly, we have

∫
R+
ϕ(z)1Z′t≥z(x) dz =

∫ Z′t (x)

0
ϕ(z) dz =Φ(Z′t(x))

and, by integration over Rd ,
∫
R+
ϕ(z)μd(AZ′t (z)) dz =

∫
Rd
Φ(Z′t(x)) dx.

After taking the mathematical expectation and after integration over θ(dt) the ex-
pression in (5.18) is immediate for Z and for Z∨(K). �
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5.3.5.3 Geometrical Covariogram of the Primary Function

Starting from the bivariate distribution given in (5.15), for z = z1 = z2 we obtain for
a positive RF {Z(x),x ∈ R

d}, that
∫ ∞

0
log

(
P(Z(x)< z,Z(x+h)< z)/(F(z))2

)
=

∫
R

∫ ∞

0
K(h,z,z, t)θ(dt) dz =

∫
R

K(h, t)θ(dt)
(5.19)

with the notation K(h, t) = μd+1(A′+(t)∩A′+(t)−h) for the geometrical covariogram
in R

d+1 of the positive part of the subgraph of Z′t , A′+(t). Formula (5.19) may be
useful for the identification of primary functions from K(h, t), often simpler for
calculations than the bivariate distribution deduced from the cross geometrical co-
variogram K(h,z1,z2, t).

5.3.6 Some Stereological Aspects of BRF

As for the Boolean model, a BRF defined in R
d , generates by section in R

k (k < d),
a BRF with induced intensity and primary functions. This is a property connected
to the Poisson point process. For some families of primary functions (for instance
when the positive part of the subgraph is made in R

d+1 of spheres, similar cylinders,
or similar parallelepipeds,...), it is possible to estimate the properties of the primary
functions (up to the intensity), from the sole bivariate distribution known on profiles,

through the function
∫
R

K(h, t)θ(dt). As far as these primary functions are well

suited to real data, it can be relatively easy to implement them in applications.

5.3.7 BRF and Counting

In this section, we consider digital images with support in R
2, modelled by Boolean

island BRF.
As in [363, 364], we assume that the integral V =

∫ ∞

0
μ2(AZ′(z)) dz is known

from a preliminary study. When considering a topographical surface in R
3, V is

the volume covered by the primary function Z′. We wish to estimate θ for images
considered as realizations of BRF with intensity θ . From the distribution function
F(z), we get that

−
∫ ∞

0
log(F(z))dz = θV. (5.20)

This counting algorithm is very convenient, since it does not require any segmen-
tation or any choice of a threshold. Well suited to Boolean textures, it is weakly
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sensitive to noise, but it is sensitive to illumination conditions (through V ), which
should remain strictly constant between a standard experiment (to estimate V ) and
an image acquisition for counting.

5.3.8 Identification of a BRF Model

To identify a BRF from data, both the family of primary function Z′t(x) and the mea-
sure θ(dt) must be known. However, the Choquet capacity given in (5.11), experi-
mentally estimated from realizations of BRF, depends on the product of two factors:
the intensity and a measure on the primary function. It is therefore not possible to
know these two terms separately from their product, so that we have to face an in-
determination. To raise it, we rely on the following results proved by M. Schmitt
and F. Preteux [316, 317, 345]. We note (Z′t ,θ ) the BRF defined by a choice of the
primary function Z′t and of the intensity θ(dt).

Proposition 5.7 (Characterization of BRF). Consider a BRF (Z′t ,θ ). If θ(R) =
θ < ∞, then the BRF admits a unique representation as a Boolean island (Z′,θδ ),
where Z′ is centered on the projection on the plane z = 0 of the center m of the
sphere in R

d+1 circumscribing the maxima of the primary function. If θ(R) = +∞,
then the BRF can be uniquely represented by (Z′t ,θ ), where the Z′t are centered in m
and where Z(x) = ∨(tk,xk)∈P{Z′tk(x− xk)+ tk}.

From experimental data, we always access to a bounded range of variation for
Z(x). We can therefore mostly consider Boolean islands. It will be the same situation
for simulations. However, at the level of a theoretical model, it is often interesting to
consider the case ii) with θ(R) = +∞. For instance we can use the following BRF:

1. The Weibull model is obtained by implantation of primary functions Z′t(x) with
a point support (Z′t(x) = tδ (x), δ (x) being the Dirac distribution in R

d) and
θ(dt) = θm(z0− t)m−1 for t ≤ z0 ≤ 0. With this definition, the BRF differs from
−∞ on points of a Poisson process. It cannot be characterized by its spatial law,
which is equal to zero. Use must be made of the Choquet capacity given in (5.11)
for functions g having a support with non zero measure in R

d . For instance, the
distribution function of Z∨(K) can be derived from (5.15):

P(Z∨(K)< z) = exp
(
−
∫ z0

−∞
θm(z0− t)m−1μd(AZ′t (z)⊕ Ǩ) dt

)

with AZ′t (z)⊕ Ǩ = Ǩ for t ≥ z, else AZ′t (z)⊕ Ǩ = /0. We thus get that

P(Z∨(K)< z) = exp(−θ(z0− z)mμd(K)) (5.21)

In fracture statistics, the variable of interest is Z > 0 (the fracture stress), and
use is made of the BRF Y (x) = −Z(x), which can be directly obtained with the
intensity θ(dt) = θm(t− z0)

m−1dt (t ≥ z0), by means of the operator ∧ instead
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of ∨, and starting from the value +∞ outside of the Poisson point process in R
d .

For z≥ z0

P(Z∧(K)≥ z) = exp(−θ(z− z0)
mμd(K)) (5.22)

2. The Pareto model is obtained with the same construction as the Weibull model,

with the intensity θ(dt) =
−θdt

t
for t ≤ z0 ≤ 0, and θ(dt) = 0 else. We have

P(Z∨(K)< z) = exp
(∫ z0

−∞
θμd(AZ′t (z)⊕ Ǩ)

dt
t

)
(5.23)

= exp
(
θμd(K)

∫ −z0

−z

dt
t

)
=

(
z0

z

)θμd(K)

. (5.24)

Using the operator ∧ instead of ∨, and starting from the value +∞ outside of the
Poisson point process in R

d . For z≥ z0

P(Z∧(K)≥ z) =
(

z0

z

)θμd(K)

. (5.25)

Exercise 5.1 (BRF with cylindrical primary random functions). Consider a pri-
mary RF defined in two steps: start with a compact random set A′0. To every real-
ization of A′0 a random variable Z′ with distribution function G(z) = P(Z′ < z) is
associated. A Boolean islands RF Z(x) with intensity θ is built from this cylinder
primary function. 1. Show that the univariate and bivariate distribution functions of
Z(x) are given by

F(z) = P(Z(x)< z) = exp
(−θμd(A

′
0)(1−G(z))

)

and

F(h,z1,z2) = P(Z(x)< z1,Z(x+h)< z2)

= F(z1)F(z2)F(z1∧ z2)
−r(h),

where r(h) =
μd(A

′
0∩A′0−h)

μd(A
′
0)

. 2. Show that the distribution function of Z∨(K) for this
model is given by

P(Z∨(K)< z) = exp
(−θμd(A

′
0⊕ Ǩ)(1−G(z))

)

= F(z)
μd (A

′
0⊕Ǩ)

μd (A
′
0) .
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5.3.9 Tests of BRF

Procedures proposed for testing the BRF model are derived from tests proposed for
the Boolean model. In a first step, it is possible to work on sets obtained by applying
thresholds on Z(x) at different levels zi, which are Boolean models with intensity∫
R

(1−Gt(zi))θ(dt), where Gt(z) is the distribution function of the maximum of

Z′t(x). Other tests can be directly applied to the function Z(x). They involve the
following criteria: convexity of the sections AZ′t (z), change of support on convex
sets [193].

5.3.9.1 Convexity of AZ′t (z)

This is the most often used test used in applications until now. It is based on
an additional assumption, the convexity of the sections of the primary function,
AZ′t (z). This is not satisfied in the general case. The test makes use of the Steiner
formula to the distribution function P(Z∨(K)< z) given in (5.15) when K is a
compact convex set. Under these conditions, log(P(Z∨(λK)< z)) and similarly∫
R

log(P(Z∨(λK)< z)) dz are polynomials of degree k in λ for K ⊂ R
k.

It is easy to implement these tests, since they only require the estimation of the
distribution functions after change of support by the operator ∨ on convex sets with
increasing sizes λK. The first test, based on a threshold z, is the same as for the
Boolean random set model. The second test may be the source of numerical diffi-
culties, since we may obtain P(Z∨(λK)< z)� 0 for small values of z. In that case,
we have to set a lower value z0 for the numerical integration of the integral.

Examples of applications of these tests are given in [67, 19 , 20 , 31 , 3 , 36 ].
In [19 ], the test was satisfactory for change of support on segments with increasing
lengths; primary functions of different shapes were used for the simulation of the
rough surface of steel plates: cylinders, paraboloids, cones.

5.3.9.2 Change of Support on Convex Sets

Again we consider Z∨(λK) with K convex, and λ is chosen in such a way that
μd(λK)� μd(AZ′t (z)). We do not need to make any assumption about the convexity
of AZ′t (z) for the proposed asymtotic tests [205].

Let z be such that ∨t{Gt(z)} < 1 and consider two convex sets K1 ⊂ R
d1 , K2 ⊂

R
d2 with d1 ≤ d, d2 ≤ d. Then we have that

H(λ1,λ2) =
log(P(Z∨(λ1K1)< z))
log(P(Z∨(λ2K2)< z))

=

∫
R

μd(AZ′t (z)⊕λ1Ǩ1)θ(dt)∫
R

μd(AZ′t (z)⊕λ2Ǩ2)θ(dt)
. (5.26)

0 4 5 16 4
0
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For λ1→+∞ and λ2→+∞, from (5.26) we get that

H(λ1,λ2) =
λ d1

1

λ d2
2

μd1(K1)

μd2(K2)
(5.27)

For instance in R
3, the following formulae are true.

1. If K1 is the cube with edge length 1 and if K2 is the square with edge length 1,
then

H(λ1,λ2) =
λ 3

1

λ 2
2

and H(λ ,λ ) = λ .

2. If K1 is the cube with edge length 1 and if K2 is a segment with length 1, then

H(λ1,λ2) =
λ 3

1
λ2

and H(λ ,λ ) = λ 2.

3. If K1 is the square with edge length 1 and if K2 is a segment with length 1, then

H(λ1,λ2) =
λ 2

1
λ2

and H(λ ,λ ) = λ .

In practice, it is also possible to set λ1 and λ2 constant and to vary z. The
two curves log(P(Z∨(λ1K1)< z)) and log(P(Z∨(λ2K2)< z)) must be proportional,
with a slope equal to H(λ1,λ2).

These tests, not based on the assumption of convexity of the sections AZ′t (z), can
be implemented after a first change of support over a non convex set K (for instance
{x,x+h}, or K made of any number of points), provided that λ stays larger than the
range of Y (x), deduced from Z(x) by this first transformation.

5.3.10 BRF and Random Tessellations

Boolean random functions can be used for the generation of models of random
tessellations [202]. A large class of random tessellation models combines a point
process and a distance to the points. For instance, attaching to every Poisson point
xk a primary random function Z′k(x) defined according to the Euclidean distance,
the standard Voronoi model can be deduced from a ∧ BRF with primary function
made of an increasing paraboloid of revolution, i.e.

Z(x) = ∧kZ′k(x− xk). (5.28)

Sections of primary functions at level z are balls defined by the corresponding
metric. Define

B′k(z) = {x ∈ R
d : Z′k(x)< z}.

From (5.28) we have
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B(z) = {x ∈ R
d : Z(x)< z}= ∪xk B′k(z)xk . (5.29)

By (5.29), B(z) is a Boolean random set with convex primary grains B′k(z). Con-
sider a compact set K and the infimum Z∧(K) = ∧y∈K{Z(y)}. Then, for the station-
ary case, we have that

P(Z∧(K)≥ z) = exp
(−θE(μd(B′k(z)⊕ Ǩ))

)
. (5.30)

More general random tessellations can be generated in the same way, starting from
a BRF with any primary random function Z′(x). We consider that the realization k
of Z′(x) owns simply connected compact sections B′k(z), such that B′k(z1) ⊂ B′k(z2)
for z2 > z1. We consider primary random functions reaching their minimum Z′(o)
for x = 0. We associate to Z′k(x) the floor set A′k defined by

A′k = {x ∈ R
d : Z′k(x) = Z′k(o)}. (5.31)

If we have A′ = {o}, we can define the class Ck of the random tessellation, generated
by the germ xk and the primary random function Z′(x) by

Ck = {x ∈ R
d ,Z′k(x− xk)< Z′l(x− xl),xk ∈ P,xl ∈ P, l �= k}. (5.32)

For the simulation of random tessellations, we just need to simulate realizations
of the Boolean random function with primary functions Z′k corresponding to the
model. The boundaries of the tessellation are provided by the crest lines of the ran-
dom functions, obtained by the watershed of the random function using as markers
apparent markers. By construction of the Boolean random functions, the location of
crest lines, and therefore the boundaries of the classes of the resulting tessellation
are invariant by a non decreasing transformation Φ (anamorphosis) of the values of
Z′k(x) (for instance using Z′pk (x) instead of Z′k(x)), that is compatible with the order
relationship, namely such that z1 < z2 implies Φ(z1)<Φ(z2).

An alternative extraction of classes is given by their labels Ck. Starting from the
simulation, and from the germs xk, we generate in each point x a set of labels L(x),
i.e.

L(x) = {k,Z(x) = Z′k(x− xk)}. (5.33)

Points x with the single label k generate the interior of cell Ck. Points with two
labels k and l are on the boundaries between cells Ck and Cl . In R

3, points with three
labels are on the edges of the tessellation, and points with four labels are its vertices.
More details about the properties of such random tessellations are given in [202].

5.4 Multiscale Boolean Random Functions

In many practical situations, there is a non-homogeneous dispersion of objects in a
matrix, and possibly arrangement of aggregates at different scales [199, 200, 201].
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A convenient way to account for theses situations is to replace the Poisson point
process by a Cox process, generating a multi scale Cox BRF.

In a first step, we can replace in the construction of the BRF the intensity measure
μd(dx) ⊗ θ(dt) in R

d ×R by the intensity θ(dx,dt), dropping the stationarity of
the Poisson point process. In a second step, we use for θ(dx,dt) a realization of a
positive random function, generating a Cox point process. The Choquet capacity is
then given by

T (g) = 1−Eθ

(
exp(−E(Z

′
t){

∫
R

θ(DZ′t (g),dt)})
)
= 1−ϕg(1)

with ϕg(λ ) the Laplace transform of the positive random variable

EZ′t

(∫
R

θ(DZ′t (g),dt)
)

and EZ′t being the expectation with respect to the random function Z′t .
A typical example is given by a constant intensity θ inside a first random set A1

(such as a stationary Boolean model of spheres with a large radius R). We keep the
points of a Poisson point process contained in A1, as germs for centers of primary
RF. We have θ(dx) = θ1A1(x)dx, where 1A1(x) is the indicator function of the set
A1. Then

T (g) = 1−ϕg(θ)

where ϕg(λ ) is the Laplace transform of the positive random variable

EZ′t

(∫
R

μd(DZ′t (g)∩A1) θ(dt)
)
.

For a deterministic primary function grain Z′t , we have to use the change of support
of the random set A1 over the compact set DZ′t (g)), which is easily estimated from
simulations. In [200, 201] use is made of the Beta distribution for the Cox-Boolean
model.

For the test function g(x) = z if x ∈ K, and g(x) = +∞ if x /∈ K, we obtain the
distribution of the supremum Z∨(K) of Z(x) over the compact set K, i.e.

1−T (K,z) = ϕK(z,1)

where ϕK(z,λ ) is the Laplace transform of the positive random variable

EZ′t

(∫
R

μd(AZ′t (z)⊕ Ǩ∩A1) θ(dt)
)
.

An alternative way to generate multiscale BRF is to use a hierarchical model
built from a random tessellation.

Exercise 5.2 (Hierarchical BRF model). Consider a RF Z which is built in two
steps. A random stationary tessellation π of the space R

d delimits classes Ci. In
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every class Ci a stationary Boolean island Zi is considered with primary RF Z′(x)
and with the random intensity Yi. For two classes Ci and Cj the random vectors
(Zi,Yi) and (Z j,Yj) are independent. Consider the RF Z as a function of the statistical
properties of π and of the Laplace transform Φ of the positive random variable Y .
1. Show that the distribution function F(z) = P(Z(x)< z) is given by

F(z) =Φ(μd(AZ′(z))).

Hint. Note that F(z) = P(x ∈ AZ(z)). The restriction of AZ(z) to every class Ci is a
Boolean random set with primary grain AZ′(z) and with intensity Yi. Given Yi = y, it
holds that

F(z) = exp(−yμd(AZ′(z)).

2. Show that the bivariate distribution function F(h,z1,z2) is given by

F(h,z1,z2) = r(h)Φ(μd(AZ′(z1)∪AZ′(z2)h))

+(1− r(h))Φ(μd(AZ′(z1)))Φ(μd(AZ′(z2))).

Hint. For x ∈ Ci and x + h ∈ Ci, consider the bivariate distribution of the BRF
with the intensity Yi. If x ∈ Ci and x + h ∈ Cj (with i �= j), the random vari-
ables Z(x) and Z(x + h) are independent, with univariate distribution functions
F(z1) = exp(−y1μd(AZ′(z1)) and F(z2) = exp(−y2μd(AZ′(z2)). Denote the proba-
bility of x ∈Ci and x+h ∈Ci. After deconditioning over π and over Y , the assertion
follows by

r(h) =
μd(C∩C−h)

μd(C)
.

5.5 Application of BRF to Modeling of Rough Surfaces

The original idea of the BRF model is coming from the simulation of rough surfaces.
We illustrate this model by some industrial applications to rough surfaces provid-
ing simulations of textures with support in R2. The first example is a simulation of
the shot peening process [203]. The second one simulates the transfer of roughness
on steel sheets during the rolling process [208]. Finally, the third example repro-
duces the EDT (electro discharge texture) roughness of rolls used in steel industry
[206, 207], where it is shown that deviations from the BRF have to be implemented
for realistic simulations of this type of texture. Further details and other models of
random surfaces are also available in [195].
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5.5.1 Simulation of the Evolution of Surfaces and of Stresses
during Shot Peening

We consider the changes of surface morphologies during deformation process
(like shot peening, or indentation). These aspects can be explored by means of mod-
els involving simulations on a computer. Shot peening is a process involving random
impacts of high velocity particles on metallic surfaces. By shot peening, it is possi-
ble to generate residual stresses on the surface, to increase the fatigue life of parts.
In a simplified study of this process [203], it was possible to propose a model simu-
lating the mechanical effect of the random impacts on a surface of an elastic-plastic
material. This type of simulations brings information on a possible heterogeneity of
residual stresses at a small scale.

Since the impacts by the particles are generated at random, the covered area
forms a Boolean random set model with discs as primary grains, see Fig. 5.2. This
has been tested with respect to the covariance of the image, for various processing
times and metallic surfaces with different hardnesses [203].

Fig. 5.2 Microscopic image of the surface obtained by shot peening. The dark zone was covered
by random impacts.

Moreover, in the simulation we map the maximum Hertz elastic pressure gen-
erated by the penetration of spherical particles and the plastic deformation of the
surface. This leads to a Boolean random function with spheroid primary functions,
see Fig. 5.3, assuming a quasi-static approach due to low velocities involved in the
process [211]. The radius a of the zone in contact at the maximal depth of the ball
and the maximum contact pressure p0 are obtained from the Hertz theory of the
elastic contact between a ball and a plane [96]. For a ball of radius Rb , E being the
effective stiffness of the combination ball-surface, and ρb the mass per unit volume
of the ball, we have that
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a = 1/(
5
2
πρb

V 2

E
)1/5Rb (5.34)

and
p0 = (

5
2
πρbV 2E4)1/5. (5.35)

From the Hertz theory, the distribution of the pressure contact within the contact
zone is ellipsoidal, according to

p(r) = p0(1− (r/a)2)1/2. (5.36)

The sizes and shapes of the spheroid primary functions are deduced from (5.34) –
(5.36).

Fig. 5.3 Simulation by a BRF of shot peening; results after 3000 impacts: maximal pressure

For every pixel of the impact, the plastic deformation is obtained from the avail-
able local inelastic energy, accounting for the local hardening in the stress-strain
relation. This results in a model which is a non linear transformation of a dilution
random function, where the supremum operator used in the construction of the BRF
is replaced by an addition.

From the obtained maps of local mechanical properties, as in Fig. 5.3, statistical
information such as the evolution of the distribution functions of the maximal pres-
sures and of the plastic deformations, are available. The evolution with the number
of impacts of the corresponding empirical distribution function of maximum pres-
sures is given in Fig. 5.4. This is in agreement with the prediction of the theory, see
(5.13), which can also predict higher order statistics . A validation of this model
could be obtained from experimental maps of micro-hardness measurements made
on specimens.
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Fig. 5.4 Empirical probability density functions of the local maximum contact pressure estimated
from simulations similar to Fig. 5.3.

5.5.2 Simulation of the Roughness Transfer on Steel Sheets

The evolution of the topography of surfaces was simulated during the rolling process
[208]. The roughness of steel sheets used in the automotive industry is a consider-
ation for their quality. Therefore it is important to control the roughness transfer
during a cold rolling operation like the skin-pass. This involves a complex inden-
tation process during the penetration of the roll cylinder. Micro mechanical models
of indentation are limited to single indenters with a simple geometry. A morpho-
logical model for the simulation of the roughness transfer from the cylinder to the
steel sheet was developed according to the following steps. For every increment of
the cylinder penetration, new indenters (peaks of the cylinder topography) come in
contact, while previous indenters generate rims with an overall conservation of the
volume, assuming a purely plastic deformation of the steel. At the distance r from
the boundary of an indentation, the vertical displacement in the rim, B(r), is given
by:

B(r) = kr exp(−β r2) (5.37)

The parameter β of this primary function depends on the volume of the
indentation. The parameter k, depending on every indentation, insures the conserva-
tion of volume. The displacements produced by neighboring indentations are cumu-
lated according to (5.37). The law of evolution of β was determined from punching
experiments, and maps obtained at the same location for increasing pressures. The
model is implemented in an incremental way, for a progressive indentation of the
sheet by the roll, generating a modified BRF to account for the conservation of the
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volume. An excellent agreement was found between simulations and punching ex-
periments, as illustrated in [208].

5.5.3 Modeling of Electro Discharge Textures (EDT)

The above mentionned skin-pass operation has to be carefully monitored in order
to ensure a roughness corresponding to the further use of steel sheets. The EDT
(electro discharge texturing) process engraves a controlled roughness by electrical
discharges between an electrode and the roll. They create craters during the heating
of the surface which are made of spherical cavities surrounded by a rim (Fig. 5.5).

Fig. 5.5 Schematic profile of an EDT crater.

Mappings of the surface are obtained with a 3D stylus instrument, using a
5 μm diameter sensor that records height variations. The mappings are presented
as 512×512×16 bits digital images (Fig. 5.6). On the edge of the roll, the density
of impacts is so low that we could map non overlapping craters that were stored in
a library. Their average diameter is about 100 μm and their depth can reach 5 μm.
The mappings of craters are used as primary functions in random function models
simulating the EDT process in a simplified way [195, 206, 207].

The texture of the roll is the result of a combination of elementary patterns made
by craters and rims. Their implantation on the surface is made at random by dis-
charges. In a first step, a Poisson point process is a good candidate to model these
locations of impacts.

The first model to be tested is the Boolean random function (BRF). An example
of a realization obtained by the supremum of craters taken with a uniform proba-
bility in the library is shown in Fig. 5.7 (left). Its negative is the corresponding ∧
BRF (Fig. 5.7, right). A high intensity of Poisson points was used to cover the field
of the simulation, since the EDT process is stopped after engraving the full surface
of the roll. It is clear from this simulation that the Boolean texture is not correct for
this process: the rims are enhanced in the supremum version, while the craters are
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Fig. 5.6 Topographical map of an EDT texture.

enhanced in the infimum version. Moreover, the rims can cover cavities and the cav-
ities can cover rims, which is not observed in reality. As seen later, these overlaps
can be prevented by modification of the point process with a repulsion distance.

Fig. 5.7 Realization of a ∨ BRF (left) and its negative (∧ BRF on the right), using experimental
topographic images of craters.

The second version of the model is based on the dead leaves random function
(DLRF) [191]. For this model, the primary functions are introduced sequentially,
and cover the previous ones. In Fig. 5.8 (left) the texture in a realization of a DLRF
is shown which is obtained for a long time sequence (t→+∞). From a visual com-
parison, it is clear that it looks more similar to the real texture than the texture in
Fig. 5.7. However discontinuities appear on the boundaries of the primary functions,
which are not in agreement with the physical process.
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A third version of the model is an alternating sequential RF ([189, 193, 194]),
combining deposition and abrasion of matter. To take a better account of the rims
surrounding the craters, we can split the primary function in two parts: craters and
rims. They can be sequentially combined in two different ways: craters Z′1t are im-
planted on Poisson points xk by the infimum, and rims Z′2t on the same points xk by
the supremum:

Zt+dt(x) = [Zt(x)
∧

Z′1tk(x− xk)]
∨

Z′2tk(x− xk) (5.38)

Iterations of this process simulate the formation of cavities by the electrical arcs
and of rims in a sequential way. In fact, replacing the operator

∨
by an addition

gives better results in the present case by simulating the deposition of molten metal.
The final model is given by

Zt+dt(x) = [Zt(x)
∧

Z′1tk(x− xk)]+Z′2tk(x− xk) (5.39)

A realization of this model is shown in Fig. 5.8 (right). Visual inspection shows that
the obtained structure is closer to the actual texture of the roll than the results of
previous models.

Fig. 5.8 Realization of a dead leaves RF (left) and of an alternate sequential RF (right)

The parameters of the model are as follows:

1. the intensity of the Poisson point process
2. the frequency distribution of the primary functions

To validate the model more formally, we can use e.g. the following criteria: com-
parison between the actual and the simulated texture, from the statistical height
distribution, and the variogram. Additional probabilistic properties can be used: bi-
variate distribution, trivariate distribution, and more generally the Choquet capacity.

In particular, to make a step further in the comparison between simulated and
actual textures, we use the variogram γ(h) as a structural tool:
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2γ(h) = E
(
(Z(x+h)−Z(x))2) (5.40)

In the stationary case and for a finite variance of the RF Z(x), the variogram is
deduced from the covariance C(h) = E(Z(x)Z(x+h)):

γ(h) =C(0)−C(h)

In Fig. 5.9 (left) the experimental variogram of the surface presents values above its
sill, meaning the presence of negative correlations between Z(x) and Z(x+ h) for
some specific distance. As already said before, this effect cannot be observed for a
standard BRF based on the Poisson point process. In the present case, this is the re-
sult of a repulsion effect between elementary patterns that prevents a perfect overlap
to occur. This ”hole” effect can be reproduced by a repulsion distance (hard-core) in
the simulations. The location of the maximum of the variogram is an indication on
the average size of primary grains which is useful for the choice of the distribution
function of the primary functions in the simulations. Together with the experimen-
tal distribution function of the heights of the surface, it was used to monitor the size
distribution of the grains in the simulation. The final model makes use of a size dis-
tribution favouring largest craters and of a grain depending repulsion distance, equal
to the diameter of the grains. The variogram of the final model (Fig. 5.9, right) is
close to the variogram of the surface. A simulated texture is shown on Fig. 5.10,
which is very similar to the real surface (Fig. 5.6).

Fig. 5.9 Variogram of the EDT surface (left) and of a realization of the random model (right)

To conclude this section on rough surfaces, note that the BRF model and its
modifications provide a versatile collection of random function models to generate
random textures where some random motif (the primary function) appears at differ-
ent locations. This generalization of grain models already known for random set is
very flexible to handle real data.
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Fig. 5.10 Realization of the model of EDT texture.
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order characteristics. Real data analyses from neuroscience (track modeling marked
by spiking intensity) and materials research (grain microstructure with disorienta-
tions of faces) are presented. Dimension reduction of point processes with Gaussian
random fields as covariates was recently studied in the literature. In the present
chapter this research is generalized in three different ways. Marked fibre and sur-
face processes with covariates are subject to dimension reduction, where we restrict
to the sliced inverse regression method. Slicing is suggested based on geometrical
marks. In a refined model for dimension reduction the second-order central sub-
space is analyzed. Numerical results on estimation and testing the central subspace
are presented based on simulations.
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6.1 Preliminaries

Let (Rd ,Bd) be the d-dimensional Euclidean space with Borel σ -algebra, and B0
the subsystem of bounded Borel sets in R

d . For A ∈ B0 its Lebesgue measure is
denoted by |A|. By Br(x) = {y ∈ R

d , ||x− y|| ≤ r}, we denote the d-dimensional
ball with centre at x ∈ R

d and radius r > 0, where ||.|| is the Euclidean norm, and
ωd = |B1(o)| denotes the volume of the unit ball.

6.1.1 Random Measures and Random Marked Closed Sets

Let (Ω ,F ,P) be a probability space. LetMd be the set of all locally finite measures
on (Rd ,Bd) equipped with the smallest σ -algebra Md which makes the mapping
μ �→ μ(A), μ ∈Md , measurable for all A ∈ Bd . Furthermore, let Ψ : Ω ×Bd →
(Md ,Md) be a random measure on R

d and Λ(·) = EΨ(·) is the intensity measure
ofΨ . The Campbell measure C on R

d×Md is defined as

C(A×U) = E(Ψ(A)1U (Ψ)) ,

where A ∈ B0,U ∈Md . For z ∈ R
d , let tz denote the shift operator onMd defined

by
tzμ(B) = μ(B− z), B ∈ Bd .

The random measureΨ is called stationary if tzΨ has the same distribution asΨ for
any z ∈ R

d .
LetHk be the Hausdorff measure of order k in R

d. In [428] the concept of random
Hk-sets in R

d was introduced as random closed sets which are Hk-rectifiable. A
random Hk-set Y such thatΨY (.) =Hk(Y ∩ .) is a locally finite random measure in
R

d will be called a point, fibre, or surface process for k = 0,1,d−1, respectively.
The l-th moment measure μ(l) of a random measureΨ is given by

μ(l)(A1×·· ·×Al) = E(Ψ(A1) . . .Ψ(Al))

for A1, . . . ,Al ∈ B0. The l-th order intensity function λl is defined by

μ(l)(ds1×·· ·×dsl) = λl(s1, . . . ,sl)ds1 . . .dsl (6.1)

provided that it exists. In the case k = 0 (point processes) there is the l-th factorial
moment measure μ(l)! (see [73]) on the left hand side of (6.1) instead of μ(l) . The
notation λ = λ1 will be used. In doubly stochastic models the intensity measures
(functions) are random, in this case they are called driving intensity measures (func-
tions), respectively. E.g. conditionally given a realization λ of a driving intensity λ̃
of a Cox point process, we have a Poisson point process with intensity function λ ,
see e.g. [404].

Following [25] define
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Φusc = {(X , f ) : X ⊂ R
d is closed, f : X → R is upper semi− continuous},

Ucl = {A⊂ R
d×R closed, for all x ∈ R

d for all t ∈ R : (x, t) ∈ A =⇒
{x}× [−∞, t]⊂ A}. Then

τ :Φusc→Ucl , (X , f ) �→ {(x, t) ∈ X×R : t ≤ f (x)}

is a bijection. Let (Y,Γ ) :Ω →Φusc be a mapping such that

{ω ∈Ω : τ(Y,Γ )∩B �= /0} ∈ F

for each compact B ∈ R
d ×R. Then (Y,Γ ) is called a random marked closed set

(RMCS). It can be viewed as a random function Γ defined on a random domain Y.
A RMCS is called stationary if

P(τ(Y,Γ )+(x,0) ∈ .) = P(τ(Y,Γ ) ∈ .)

for all x ∈ R
d . It is isotropic if

P(θτ(Y,Γ ) ∈ .) = P(τ(Y,Γ ) ∈ .)

for all θ ∈ SOd+1 (group of rotations on R
d+1) with θ(Rd×{0}) = R

d×{0}.
A concept closely related to RMCSs is that of a weighted random measure (see

[73]). Let Ψ be a random measure in R
d , C its Campbell measure, W be a locally

compact space and w a measurable mapping (weight function)

w : supp C →W

(consider the product σ -algebra on the support supp C ⊂ R
d ×Md). Then we call

the tuple (Ψ ,w) a weighted random measure (WRM) in R
d with weight space W . A

weighted random measure induces a random measure Ψ̃ on R
d×W which is given

by
Ψ̃(B×D) =Ψ{x ∈ B : w(x,Ψ) ∈ D}, B ∈ Bd , D ∈ B(W ).

We say that WRM (Ψ ,w) is stationary ifΨ is stationary and w(x,μ) = w(x+z, tzμ)
for any (x,μ) ∈ supp C and z ∈ R

d . The relation between RMCS and WRM for a
Hk-set y⊂ R

d is expressed by the following diagram

Φusc = {(y, f )}
↑ ↘

(Ω ,F) → ξ = {(ψy,w)}

which commutes for ψy(.) =Hk(y∩ .) and w(x,ψy) = f (x) on y. Thus for a random
marked Hk-set (Y,Γ ), k = 0,1,d− 1 we have the notions of a marked point, fibre
or surface process, respectively.
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A random field is a stochastic process on R
d . For more information about random

fields the reader is referred to Chapter 11. An important concept is the random-field
model which is related to a special class of RMCSs. Let Γ ′ be an upper semicon-
tinuous random field on R

d and RMCS (Y,Γ ) be such that Γ = Γ ′ on Y (often we
denote Γ and Γ ′ by the same letter). If Y and Γ ′ are stochastically independent then
RMCS (Y,Γ ) is called a random-field model. If a given RMCS is a random-field
model then separate investigation of Y and Γ is possible which leads to a substantial
reduction of effort in statistical inference.

6.1.2 Second-order Characteristics

The reduced second moment measure K of a stationary random measureΨ can be
expressed as

K(B) = 1
λ 2|A|E

(∫
A
Ψ(B− x)Ψ(dx)

)
, (6.2)

where the value of the expression in (6.2) does not depend on A ∈ B0, |A|> 0. The
K-function is defined as K(r) = K(Br(0)). The concept of second-order intensity
reweighted stationarity introduced for point processes (cf. [179]) can be generalized
to random measures. Let Ψ be a random measure in R

d with intensity function
λ > 0. Put

M(D,B) = E

(∫
D

Ψ(dy)
λ (y)

∫
B

Ψ(dy)
λ (y)

)
, B,D ∈ Bd .

We say thatΨ is second-order intensity reweighted stationary (SOIRS) if

M(D,B) = M(D+ x,B+ x)

for all x ∈ R, B,D ∈ Bd . Then define an inhomogeneous reduced second moment
measure

Kinhom(B) =
1
|A|E

(∫
A

∫
1B(x− y)
λ (x)λ (y)

Ψ(dx)Ψ(dy)
)
.

A class of second-order characteristics of a RMCS (Y,Γ ), for x,y ∈ R
d , is intro-

duced as follows ([25]). For ε > 0 define a random field Kinhom by the random field
{Zε(x),x ∈ R

d} by

Zε(x) =

⎧⎪⎨
⎪⎩

maxy∈Y∩Bε (x)Γ (y), if x ∈ Y⊕ε ,

0 else.

For a right-continuous function f : R2 �→ R define

κ f (x,y) = lim
ε↓0

E( f (Zε(x),Zε(y))|x,y ∈ Y⊕ε) (6.3)
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whenever P(x,y ∈ Y⊕ε)> 0 for all ε > 0. Otherwise κ f is undefined. Here

Y⊕ε = Y ⊕Bε(0)

for Minkowski addition ⊕. In the case when Γ is a restriction of a random field Γ ′
on R

d then we do not use Zε and put f (Γ ′(x),Γ ′(y)) instead of f (Zε(x),Zε(y)) in
(6.3).

Common choices of f are

e(u,v) = u, c(u,v) = uv, ν(u,v) = u2.

Then define the conditional mean mark and the mark covariance function by

E(x) = κe(x,y), CY (x,y) = κc(x,y)−κe(x,y)κe(y,x).

Furthermore the mark correlation function is given by

cor(x,y) =
κc(x,y)−κe(x,y)κe(y,x)

(κν(x,y)−κe(x,y)2)1/2(κν(y,x)−κe(y,x)2)1/2

and the mark variogram by γ(x,y) = 1
2 (κν(x,y)+κν(y,x))−κc(x,y). Another char-

acteristics is Stoyan’s kmm-function given by

kmm(x,y) = m̄−2κc(x,y), m̄ = E(Γ (x)|x ∈ Y ) .

6.2 Statistical Methods for RMCS

In this section basic statistical inference for a RMCS (Y,Γ ) is developed under
various assumptions. We assume that a single realization of (Y,Γ ) (which we denote
by the same letters) is observed in a bounded window W ⊂ R

d .

6.2.1 Random-field Model Test

Consider statistical testing of the null-hypothesis

H0 : (Y,Γ ) is a random field model (6.4)

against the alternative hypothesis

HA : (Y,Γ ) is not a random field model .

In [343] such tests are developed for stationary marked point processes. The test
based on the mark-weighted K-function KΓ is generalized here to RMCS (Y,Γ )
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with random Hk-set Y, 0 ≤ k < d, nonnegative mark Γ and the corresponding ran-
dom measureΨY being second-order intensity reweighted stationary with intensity
function λ . The algorithm consists of the following steps:

1. choose n test points xi ∈Y ∩W, evaluateΓ (xi), i= 1, . . . ,n, Γ̄ (W ) = 1
n ∑n

i=1Γ (xi),

2. evaluate an estimate λ̂ of the intensity λ ,
3. evaluate

K̂Γ (r) =
1

n|W | ∑xi

Γ (xi)

Γ̄ (W )

∫
Y

1(||xi − y|| < r)
λ (xi)λ (y)

Hk(dy), (6.5)

4. random reallocation: in step 3 make q random permutations of {Γ (xi), i =
1, . . .n}, evaluate K̂Γ (r) for each permutation, denote K̂max, K̂min the pointwise max-
imum and minimum from all permuted cases, respectively.

5. transform to L-function: L̂. =
(

K̂.
ωd

) 1
d
, draw envelopes

L̂max(r)− L̂Γ (r), L̂min(r)− L̂Γ (r). (6.6)

If the horizontal axis lies between the envelopes, the null hypothesis cannot be re-
jected on an approximate significance level 2

q+1 . This holds only for fixed r, whereas
a global test is suggested in [149].

In order to determine K̂Γ (r) consider a partition of Y ∩W into disjoint subsets
B j, points z j ∈ B j, j = 1,2, . . . ,e (typically e > n) and let Hk(B j) = �k

z j
. Then the

estimator K̂Γ (r) of KΓ (r) is approximately given by

K̂Γ (r) ≈ 1
n|W | ∑xi

Γ (xi)

Γ̄ (W ) ∑
j

�k
z j

1(||xi − z j|| < r)

λ̂ (xi)λ̂ (z j)

and it suffices to estimate λ at the points xi,z j, e.g. using a kernel estimator.

6.2.2 Estimation of Characteristics

For a stationary and isotropic RMCS (Y,Γ ) the second-order characteristics depend
on the scalar r = ||x−y|| only, for any pair (x,y) ∈ R

2d . To estimate them let ε > 0,
consider the extension (Y⊕ε ,Γ ) and let U ⊂ W be a finite test set (e.g. a fixed grid
of points). Let r > 0 be such that

Nε
U (r) = {(x,y) ∈ (Y⊕ε ∩U)2 : ||x− y|| = r} (6.7)

is nonempty. Then we suggest an estimator of κ f (x,y) = κ f (r) of the form

κ̂ f (r) =
1

|Nε
U (r)| ∑

(x,y)∈Nε
U (r)

f (Γ (x),Γ (y)). (6.8)

The following result holds.
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Lemma 6.1. For a random-field model (Y,Γ ), r,ε > 0 such that P(Nε
T (r) �= /0)> 0

it holds that

Eκ̂ f (r) = E( f (Γ (x),Γ (y))|x,y ∈ Y⊕ε) , ||x− y||= r.

Proof. It holds that

Eκ̂ f (r) = E
1

|Nε
U (r)| ∑

(x,y)∈Nε
U (r)

f (Γ (x),Γ (y))

= E[E

⎛
⎝ 1
|Nε

U (r)| ∑
(x j ,y j)∈Nε

U (r)

f (Γ (x j),Γ (y j))|Nε
U = {(x1,y1) . . . ,(xk,yk)}

⎞
⎠]

= E

(
1
k

k

∑
j=1

f (Γ (x j),Γ (y j))

)

=
∫

f (m1,m2)Qε;x,y(d(m1,m2))

= E( f (Γ (x),Γ (y))|x,y ∈ Y⊕ε) ,

where Qε;x,y is the two-point mark distribution of the weighted random measure
(Ψε ,Γ ), andΨε = |.∩Y⊕ε |, is the random volume measure associated with Y⊕ε , see
[25]. �

6.3 Modeling of RMCS; Simulation Results

In order to build RMCS models with dependence between the random set and its
mark we start with a simple example. We assume that d = 2 throughout this section.

Example 6.1. Consider the ball A = B1(0) in R
2, let Y be a union of two radius

segments in A with independent random orientations ϕ,ψ uniformly distributed on
[0,2π). Then the smaller angle between segments )<(ϕ,ψ) = V is uniformly dis-
tributed on [0,π). Let Γ be given by a random variable V uniformly distributed on
[0,c], c > 0, and the dependence of Γ on Y be completely described by a bivariate
distribution on [0,c]× [0,π) with marginals V and V. In the following, we will con-
sider three cases: independence between V and V , and the functional dependences

V = c− c
π

V, V =
c
π

V (6.9)

which are called lower and upper Frechet-Hoeffding bounds (LFHB, UFHB, respec-
tively), cf. [129]. Thus three models of RMCS (Y, Γ ) are obtained.

Exercise 6.1. Consider the previous example, and evaulate the characteristics E(x)=
κe(x,y), CY (x,y) and kmm(x,y) for all three models of the RMCS (Y,Γ ). Show that
the following formulae hold
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E(x) CY (x,y) kmm(x,y)

UFHB ca
π 0 4

( a
π
)2

LFHB c
(
1− a

π
)

0 4
(
1− a

π
)2

independence c
2

c2

12
4
3

where x= (t cosα, t sinα),y= (scosβ ,ssinβ ), 0< s, t ≤ 1, and a denotes the angle
)<(α,β ) in radians.

More complex models of RMCS with dependencies between the random Hk-
set in R

d and the mark are hardly tractable analytically. For k = d the level sets of
Gaussian random fields are studied in [25]. Simulation based results for k < d are
presented in the following, cf. [374].

6.3.1 Tessellation Models

For some integer p ≥ 2, consider a stationary Gaussian random field

X(s) = (X1(s), . . . ,Xp(s)), s ∈ R
2 (6.10)

with independent components of zero mean. The covariance function of each com-
ponent is equal to

Ri(s, t) = α exp(−σ ||s− t||), α,σ > 0, i = 1, . . . , p.

Let λ (s) = aexp(X1(s)), a > 0, be the driving intensity function of a Cox point
process ([170]) Φ ∈ R

2 and Y be the union of edges of the 2D Voronoi tessellation
generated by Φ . In Fig. 6.1a.,b., the simulated realizations of RMCSs (Y,Xi), i =
1,2, are shown, and in Fig. 6.1c.,d., there are RMCSs (Y⊕ε ,Xi). Since Y depends
on X1 we observe small edges in the areas of high values of X1 and vice versa in
Fig.6.1a). This is not the case in Fig. 6.1b. where Y does not depend on X2.

Furthermore, we consider a nonnegative mark Γi = expXi, i = 1,2. Numerical
results of the estimation of characteristics are shown in Fig. 6.2. We observe a higher
conditional expectation and a more rapid decrease of the covariance function in the
dependent case. Further in Fig. 6.3 results of the random-field test are presented. The
results are as expected, in the dependent case a) i = 1 the random-field hypothesis
is rejected which is not the case in the independent case b) i = 2.

Exercise 6.2. Modify the random-field model test according to [149] to achieve a
global envelope test. Simulate the tessellation model with Gaussian random field
described above. In step 4 of the algorithm described in Sect. 6.2.1 put
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Fig. 6.1 Tessellation models: Simulated realizations of RMCS’s (Y,Xi), a) i= 1, b) i= 2, c) RMCS
(Y⊕ε ,X1), d) RMCS (Y⊕ε ,X2), ε > 0. Random field values are increasing from black to white grey
level.

K̂max(r) = max{K̂1(r), . . . , K̂q(r)}, K̂min(r) = min{K̂1(r), . . . , K̂q(r)}

for each r > 0. Let s denote the number of those j-th permutations such that there
exists r with K̂max(r) = K̂ j(r) or K̂min(r) = K̂ j(r). When the horizontal axis lies
between the envelopes built in step 5, the null hypothesis cannot be rejected on
an approximate significance level s

q . How large q should be in order to achieve
significance level 0.1?
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(a) (b)

Fig. 6.2 Tessellation models: Graphs of estimated RMCS characteristics for (Y,Γ1) (solid line) and
(Y,Γ2) (dotted line). a): Conditional mean mark E(x), b): Mark covariance function CY (x,y).

(a) (b)

Fig. 6.3 Tessellation models: Results of the random-field test for (Y,Γi), i = 1,2. a) (i = 1): Hor-
izontal axis lies outside the envelopes, H0 in (6.4) is rejected. b) (i = 2): Horizontal axis between
normalized L-function envelopes, therefore we do not reject H0.

6.3.2 Fibre Process Based on Diffusion

As a model of a H1-set in R
2, we will consider numerical solutions of a stochastic

differential equation (SDE) for Yt = (Y (1)
t ,Y (2)

t ) ∈ R
2, t ≥ 0. Let

dY (1)
t =− a

2
Y (1)

t dt +b(Y (1)
t ,Y (2)

t )h(Y (1)
t ,Y (2)

t )dW (1)
t , (6.11)

dY (2)
t =− a

2
Y (2)

t dt +b(Y (1)
t ,Y (2)

t )h(Y (1)
t ,Y (2)

t )dW (2)
t ,

where
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b(y) = b1 exp(b2g(y)) , b1,b2 ∈ R, g : R2 → R, (6.12)

h(y) = (1−||y||k), y ∈ R
2

and Wt = (W (1)
t ,W (2)

t ) is the two-dimensional Brownian motion. In this subsection
let C = B1(0)⊂R

2. The conditions under which the solution of (6.11) remains in C
are known.

Theorem 6.1. Let the function g : R2 → R be bounded on C. Then for an arbitrary
initial condition y0 ∈C, there exists a solution {Yt , t ≥ 0} of (6.11) such that Y0 = y0
and {Yt , t ≥ 0} ⊂C almost surely. Moreover, if g : R2 → R is Lipschitz continuous
on B1+ε(0) for some ε > 0 then {Yt , t ≥ 0} ⊂ C almost surely for an arbitrary
solution of (6.11) with initial condition Y0 = y0 ∈C.

Proof. See [405].

Exercise 6.3. Let Lt = (Y (1)
t )2 +(Y (2)

t )2 = ||Yt ||2. Use Itô’s formula to compute the
stochastic differential dLt . What is the effect of the relation between the obtained
differential dLt and the statement of Theorem 6.1?

Consider two probability spaces (Ωi,Fi,Pi), i = 1,2, the two-dimensional Brow-
nian motion Wt = (W (1)

t ,W (2)
t ) on (Ω1,F1,P1) and Xi, i = 1,2, random fields in R

2

on (Ω2,F2,P2). Denote by (Ω ,F ,P) = (Ω1 ×Ω2,F1 ⊗F2,P1 ⊗P2) the product
probability space, and for all ω2 ∈ Ω2, let Yt = (Y (1)

t ,Y (2)
t ) be a solution of the

stochastic differential equation given in (6.11). Further, denote by

Yα
t = (Yα,(1)

t ,Yα,(2)
t ) = (Y (1)

t ,Y (2)
t )

(
cosα sinα
−sinα cosα

)

the α-rotation of the process Y , and analogously, Xα
i is α-rotation of the field Xi;

α ∈ R.
Now we show that the RMCS (Y,Xi) is isotropic.

Theorem 6.2. Let X be an isotropic random field. Then for arbitrary α ∈ R, (Y,X)
and (Yα ,Xα) have the same distribution.

Proof. Let ω2 ∈Ω2. Then by the Itô formula we get that

dYα,(1)
t = cos(α)dY (1)

t − sin(α)dY (2)
t

=−a
2
(cos(α)Y (1)

t − sin(α)Y (2)
t )dt +b(Yt)h(Yt)(cos(α)dW (1)

t

− sin(α)dW (2)
t )

=−a
2

Yα,(1)
t dt +b(Yt)h(Yα

t )dWα,(1)
t =−a

2
Yα,(1)

t dt +bα(Yα
t )h(Yα

t )dWα,(1)
t

dYα,(2)
t =−a

2
Yα,(2)

t dt +bα(Yα
t )h(Yα

t )dWα,(2)
t ,

where bα(y) = b1 exp(b2Xα(y,ω2)). Since Wα is also a Brownian motion, (Y |X)
and (Yα |Xα) have the same distribution. Finally, since X and Xα have the same
distribution, the proof is complete.
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In the following we assume that g(s), s ∈ C, is a linear combination LX of re-
alizations of the components of a vector Gaussian random field {X(s), s ∈ C}, see
(6.10). In order to simulate a realization of the random set Y ∈ C we first simulate
g(s) and then simulate a trajectory Y = {Yt , 0≤ t ≤ T} of the SDE solution by means
of the Euler method (conditionally on g = LX ). From Theorem 6.1 we get that the
theoretical solution of SDE remains in the circular region. However, the numerical
solution may cross the boundary, therefore a condition is added that in this case the
trajectory is projected on the boundary. Simulated RMCS’s (Y,Xi) , i = 1,2, where
g = X1, are shown in Fig. 6.4. In the dependent case the high values of X1 imply
higher speeds of the motion and longer segments in the numerical solution.

(a) (b)

Fig. 6.4 Gaussian random fields a) X1 and b) X2, and simulated fibre process Y (a numerical
solution of the SDE given in (6.11) given g = X1). In a) the high values of X1 (tending to white)
imply higher speed of the motion and longer segments in the numerical solution.

Let x,y ∈ R
2 such that ‖x‖ = ‖y‖ = r > 0. From the isotropy of (Y,Xi) proved

in Theorem 2, the second-order characteristics based on (6.3) depend only on the
angle α between vectors x and y. Thus, we will write k f (r,α),E(r,α) and CY (r,α).
To estimate the second-order characteristics from a realization of RMCS in C using
a finite test set U, ε > 0, let NU in (6.7) have form

Nε
U (r,α) = {(x,y) ∈ (Y⊕ε ∩U)2 : ‖x‖= r, xα = y or x−α = y}

and the estimator of κ̂ f (r,α) be given as in (6.8).
We can study the temporal evolution of the characteristics κ f (r,α) in this model.

To do this, we define Y (t, .) as a union of n = 100 different trajectories {Ys, t ≤ s ≤
t +δ t}, where δ t = 0.5. The estimated characteristics are shown in Fig.6.5 at times
t = 0 and t = 10 and with r = 0.3 and r = 0.7.

All dotted lines in Fig.6.5 describe characteristics for a random-field model,
therefore they correspond to properties of the Gaussian random field (zero mean).
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The decrease of the mark covariance function in Fig.6.5a is more rapid than in
Fig.6.5c, which is explained by the fact that the radius r is larger in (a) than in
(c) and the horinzotal axis is in radians. Concerning the dependent case (full lines)
for the conditional mean mark in Figs. 6.5b and 6.5d the larger times (heavy full
line) emphasize smaller values of the mark than smaller times do. This is because
the former yields more time to reach the circle with given radius r even at small
values of the random field than the latter. This difference is more considerable from
larger r, therefore the conditional mean mark in (b) is larger than in (d).
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Fig. 6.5 Spatio-temporal model. Plots of estimated RMCS characteristics for (Y, X1) (solid line)
and (Y, X2) (dotted line). Thick lines describe characteristics at time t = 10, thin lines describe
characteristics at time t = 0. The characteristics are a) the mark covariance function CY (r,α) with
fixed r = 0.7, b) the conditional mean mark E(r,α) with fixed r = 0.7, c) the mark covariance
function CY (r,α) with fixed r = 0.3 and d) the conditional mean mark E(r,α) with fixed r = 0.3.
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6.4 Real Data Analyses

Throughout this section we again assume that d = 2. Two applications of RMCS in
neurophysiology and materials science are presented, where the models are similar
to those simulated above. First a track of a rat is described by a planar fibre pro-
cess marked by the spiking intensity in a neurophysiological experiment, see [52]
for more about track modelling. Secondly the random tessellation of the grain mi-
crostructure in granular materials is marked by the disorientation in a crystallo-
graphic sense.

6.4.1 Random-field Model Test in a Neurophysiological
Experiment

(a) (b)

Fig. 6.6 A neurophysiological experiment. a) The lines describe the track Y of a rat moving in
a circular area A and points (spikes) are locations where the neuron fired. b) The mark Γ is the
estimate given in (6.13) of spiking intensity decreasing in grey level (white is the largest value). Its
domain A′ ⊂A lies outside the black area.

A real data specimen from [128] which involves a planar fibre system is analyzed.
A spatio-temporal point pattern of action potentials (called spikes) of a cell place
of hippocampus of a rat looking for food in a circular area A ⊂ R

2 is shown in
Fig. 6.6a. The experiment lasted T = 614 seconds, altogether 1096 spikes were
recorded. The location of the rat was recorded each 1

60 sec, so that we observe a
track, which is modelled by a random H1-set Y. Even if there is a temporal element
in the experiment, we solve a purely spatial problem within our context.
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Fig. 6.7 Test of the random-
field model in the neurophys-
iological experiment. Here Y
is the track and Γ the spiking
intensity. After n = 39 per-
mutations the horizontal axis
lies inside the envelopes given
in (6.6), therefore we do not
reject the hypothesis of the
random-field model.

The aim is to find out whether there is a significant dependence between the
spiking activity of the neuron and the track of the rat. A RMCS (Y,Γ ) is considered,
where

Γ (s) =
∑si∈A k(||s− si||)

λ̂ (s)
, s ∈ A′ (6.13)

is the planar spiking intensity kernel estimate, si is the location of the i−th spike,
and A′ ⊂ A denotes the domain, see Fig. 6.6b. The kernel function is given by

k(r) =

{
(b2 − r2) 2

πb4 , if r ≤ b
0, if r > b.

A kernel estimator of the (track) intensity λ of the random measureΨY is given
by

λ̂ (s) = ∑
ti∈H

k(||s−Y (ti)||)t ,

s ∈ A′, H is a set of equidistant times, t = ti+1 − ti, and Y (t) is the location of the
rat at time t.

Fig. 6.6b shows the spiking intensity estimate Γ , where the bandwidth was cho-
sen b = 10. The result of the random-field test from Sect. 6.2.1 is visualized in

6.4.2 Second-order RMCS Analysis of Granular Materials

In microstructural research of crystallic materials, it is an interesting task to find
the link between the granular microstructure and macroscopical properties of the
material. Second-order analysis is a useful tool for characterizing the spatial distri-
bution of grain boundaries. In what follows we deal with data from two-dimensional

Fig. 6.7. The hypothesis of independence of the spiking activity and the random
track cannot be rejected at significance level 0.05 for each fixed r.
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electron backscatter diffraction (EBSD) which is a progressive method allowing to
directly measure the crystallic orientations at the surface of the material ([325]).

During an automatic scanning procedure three Euler angles characterizing the
crystal lattice orientation are measured at each grid point. The difference in orien-
tations of two neighbouring points can be expressed in angle/axis notation - one
orientation can be transformed to another by rotation around an axis [uvw] by an
angle θ . Because of non-uniqueness of this transformation we only consider the
solution with minimum angle θ and we call it disorientation of two lattice points.
Grain boundaries are then identified as interfaces where the disorientation angle
between two neighbouring points exceeds a given limit.

Fig. 6.8 EBSD images of grain structure with darkness of the boundaries corresponding to the
disorientation angle: θmin ≈ white, θmax ≈ black. Samples of copper processed by eight ECAP
passes and annealed for 10h in a) 373K, b) 423K.

It is well known that physical properties of ultrafine-grained materials are related
to the distribution of different grain boundary types. The grain boundary network in
a planar section can be considered as a marked fibre process with marks related to
disorientations of the boundaries. The simplest way of marking is that one which is
based on the disorientation angle θ ∈ (θmin,θmax) where the lower bound is chosen
conventionally as θmin = 5◦ and the upper bound is given by crystal lattice sym-
metries; in our case of material with cubic crystal symmetry it is θmax ≈ 62.8◦. In
Fig. 6.8 the grain boundaries in two samples are visualized with respect to their
disorientation angle - the larger is the angle, the darker is the corresponding line.
Consider the RMCS (Y,Γ ) where Y is the fibre process given by intersection of the
grain boundaries with a 2D section (surface of the sample) and Γ is the restriction
of the disorientation angle on Y. Fig. 6.9 compares the mark correlation function
and mark variogram of pure copper processed by eight passes of equal-channel an-
gular pressing (ECAP is a production method based on pressing, cf. [180]) and two
different times of subsequent annealing.

(a) (b)
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Fig. 6.9 Mark correlation function (a) and mark variogram (b) of disorientation angles of grain
boundaries in Cu after 8 ECAP passes with two different temperatures of subsequent annealing.

The behaviour of the functions near zero is influenced by the fact that the disori-
entation angle is nearly constant along an edge. However, for larger distances we can
observe differencies related to the origin of the samples. While in the first sample
(373K) the correlation function remains near the zero level, in the second sample
(423K) the marks are positively correlated even for larger distances and they em-
body smaller variability expressed by the variogram.

6.5 Dimension Reduction

The dimension reduction problem in statistics concerns the situation where we have
a response Y (random variable) which depends on a p−dimensional random column
vector of covariates X and the aim is to reduce the number of covariates in order to
use only the most significant ones. For vector data, [251] suggested using the sliced
inverse regression (SIR) method. The idea to regress X on Y inversely instead of
the direct regression of Y on X stems from the fact that in such a way we obtain p
univariate regressions instead of a multivariate one. Further methods of dimension
reduction are described in e.g. [82, 249, 250].

The dimension reduction problem for point processes was formulated by [156].
In our setting, Y is a random point, fibre or surface process in R

d and X is a p-
dimensional stationary Gaussian random field in R

d , d = 2,3. Without loss of gen-
erality, we assume that X is standardized, i.e. EX(s) = o and covX(s) = Ip for each
s ∈ R

d , where Ip is the unit matrix of order p. Let A� be the transponse of a real-
valued matrix A and S(A) the linear subspace spanned by the columns of A.

Definition 6.1. Let Y be conditionally independent of X given B�X for a p× c ma-
trix B, c ≤ p. Then S(B) is called a sufficient dimension reduction subspace. Let
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SY |X be the intersection of all such subspaces. Assume that SY |X is also a sufficient
dimension reduction subspace, which is then called the central subspace.

The above definition says that B�X = {B�X(s), s ∈R
d} contains all information

of X about Y. Let c be the dimension of the central subspace.
A refined analysis of dimension reduction is based on the following definition.

Assume that the l−th order intensity functions, cf. (6.1), exist for all l ≥ 1 (depend-
ing on X , and being random functions).

Definition 6.2. Let l ∈ N and assume that the relation

λl(s1, . . . ,sl) = fl(B�X(s1), . . . ,B�X(sl)), (6.14)

holds for some measurable function fl and a p× c matrix B, c ≤ p. Then Sl(B)
is called the l−th order sufficient intensity dimension reduction subspace and the
intersection of all such subspaces Sl = ∩Sl(B) is called the l−th order central in-
tensity subspace (if it is also an l−th order sufficient intensity dimension reduction
subspace).

The central subspace defined above can be expressed as

SY |X = ∪l≥1Sl ,

cf. [157]. The aim is to investigate the structure of the k−th order sufficient intensity
dimension reduction subspaces.

We concentrate mostly on the sliced inverse regression (SIR) method, which can
be described in the following steps: (i) slicing the random set Y according to a
suitable mark Γ , (ii) finding the slice means of the random field X , (iii) applying the
principal components analysis of slice means.

The first c directions from (iii) generate the central subspace of the corresponding
order. Notice that Y plays a role in step (i) only.

6.6 Theoretical Results

We start with a lemma needed for the refined analysis of the dimension reduction.

Lemma 6.2. Let C ⊂ R
d be a compact convex set. a) Assume that (6.14) holds for

l = 1. Then ∫
C

E(X(s)λ (s))ds = E

∫
s∈Y∩C

X(s)Hk(ds).

b) Assume that (6.14) holds for l = 2. Then
∫

C

∫
C

E
(

X(s)X(t)�λ2(s, t)
)

dsdt = E

∫
s,t∈Y∩C

X(s)X(t)�Hk(ds)Hk(dt).

Proof. Assertions a) and b) follow from the first and second order Campbell theo-
rem, respectively, see e.g. [73]. For a) we have
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E

∫
s∈Y∩C

X(s)Hk(ds) =
∫ ∫

s∈Y∩C
x(s)Hk(ds)P(dψ)

=
∫ ∫ ∫

s∈Y∩C
x(s)Hk(ds)PΛ (dψ)Q(dΛ)

=
∫ ∫

C

∫
x(s)Λ(d(x,s))Q(dΛ)

=
∫

C

∫ ∫
x(s)λ (s)Ms(dx)Q(dΛ)ds

=
∫

C
E(X(s)λ (s))ds,

where P is the distribution of the marked process (Y,X(s)) with random intensity
measure

Λ(d(x,s)) = λ (s)Ms(dx)ds = f (B�x(s))Ms(dx)ds

and the distribution Ms of the mark X(s) at a point s. Note that Q is the distribution
of Λ and PΛ is the conditional distribution of the marked process given Λ .

For k = 0 and a point process Y we have

E ∑
s∈Y∩C

X(s), E

�=
∑

s,t∈Y∩C
X(s)X(t)�,

on the right-hand sides of the formulas in Lemma 6.2 in a), b), respectively.

6.6.1 Investigation of S1

In this section we assume that for each s ∈ R
d it holds that

λ (s) = f (B�X(s)) (6.15)

for a matrix B of size p× c, c ≤ p. Let the range of the real-valued mark Γ of Y
be divided into m disjoint intervals J1, . . . ,Jm called slices. This induces a partition
of Y into m disjoint subsets (Y 1, . . . ,Y m) which are assumed to be random Hk-sets
again. Alternatively, we may consider the Y i as processes with first-order intensities
λ (i), where ∫

A
λ (i)(s)ds = EΨY i(A), A ∈ Bd , i = 1, . . . ,m, (6.16)

respectively, corresponding to each slice, so that λ = ∑m
i=1λ (i).

Lemma 6.3. Consider the mark Γ (s) = g(B�X(s)) for a measurable function g.
Then

λ ( j)(s) = f j(B�X(s))
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for some nonnegative measurable functions f j, j = 1, . . . ,m.

Proof. For |ds| ↓ 0 we have

λ ( j)(s)|ds| = E
(
Y j(ds)|X(s)

)
= E

(
Hk({y ∈ Y ∩ds; Γ (y) ∈ Jj})|X(s)

)

= E
(
Hk({y ∈ Y ∩ds; Γ (y) ∈ Jj})|B�X(s)

)

= f j(B�X(s))|ds|

Consider a convex compact window C ⊂ R
d and the statistic

V̂1 =
1

ΨY (C)

m

∑
j=1

1
ΨY j(C)

∫
Y j∩C

X(s)Hk(ds)[
∫

Y j∩C
X(s)Hk(ds)]�. (6.17)

Assume that Y and {X(s), s ∈ Y} are ergodic. Then, from Lemma 6.3, for each
j = 1, . . . ,m we get that

1
ΨY j(C)

∫
Y j∩C

X(s)Hk(ds)→
∫
Rd Eλ ( j)(s)X(s)ds∫
Rd E

(
λ ( j)(s)

)
ds

(6.18)

in probability when C ↑ Rd . This limit is defined as ratio of the limits

lim
C↑Rd

1
|C|

∫
C

E
(
λ ( j)(s)X(s)

)
ds, lim

C↑Rd

1
|C|

∫
C

Eλ ( j)(s)ds.

Their finiteness can be verified easily e.g. in our case when X is a stationary random
field. Then the limit in (6.18) is equal to

E
(
λ ( j)(.)X(.)

)
Eλ ( j)(.)

. (6.19)

Let the theoretical counterpart of the expression given in (6.17) be

V1 =
1∫

Rd Eλ (s)ds

m

∑
j=1

∫
Rd E

(
λ ( j)(s)X(s)

)
ds

∫
Rd E

(
λ ( j)(s)X(s)

)�
ds∫

Rd Eλ ( j)(s)ds
. (6.20)

Theorem 6.3. Under the above assumptions it holds that S(V1)⊂ S1.

Proof. Let B be a matrix with S(B) = S1 and j ∈ {1, . . . ,m}. From Lemma 6.3 we
have that λ ( j)(s) = f j(B�X(s)) for some measurable function f j. It is enough to
show that

S(
∫

E
(

f j(B�X(s))X(s)
)

ds
∫

E
(

f j(B�X(s))X(s)
)�

ds)⊂ S1.
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Using the argument given in [157], p.385, (A.1), for the projection matrix PB =
B(B�B)−1B� we obtain

∫
E
(

f j(B�X(s))X(s)
)

ds
∫

E
(

f j(B�X(s))X(s)
)�

ds

= PB

∫
E
(

f j(B�X(s))X(s)
)

ds
∫

E
(

f j(B�X(s))X(s)
)�

dsPB.

Since this holds for each j = 1, . . . ,m, we have S(V1)⊂ S(B) = S1.

From the proof of Theorem 6.3, it can be seen that for each j-th slice, j =
1, . . . ,m, the vector given in (6.19) belongs to S1. Principal component analysis
is applied to find c vectors among them. Define the slice means as conditional ex-
pectations

m j = E(X(s) | s ∈ Y j) (6.21)

and let p j = P(x ∈ Y j | x ∈ Y ), j = 1, . . . ,m. The weighted covariance matrix

V =
m

∑
j=1

p jm jm�
j (6.22)

of size p× p has eigenvalues ξ1 ≥ ·· · ≥ ξp. Then the eigenvectors ηl of V cor-
responding to the c largest eigenvalues form the columns of the matrix B. When
dealing with data observed in a compact window C, the matrix V can be estimated
by

V̂1 =
m

∑
j=1

ΨY j(C)

ΨY (C)

∫
Y j∩C X(s)Hk(ds)

ΨY j(C)

(∫
Y j∩C X(s)Hk(ds)

)�
ΨY j(C)

,

c.f. (6.17) and (6.22). For more information on the estimation of V , see Sect. 6.7.

6.6.2 Investigation of S2

Let l = 2 in Definition 6.2 and assume that

λ2(s, t) = f2(B�X(s),B�X(t)) (6.23)

for a matrix B of size p× c, c ≤ p. The aim is to estimate the subspace S2 = S(B).
Assume that Y and {X(s)X(t)�, s, t ∈ Y} are ergodic, C ⊂ R

d is a convex compact
window. Then from Lemma 6.3 we get that

M̂2 =

∫
s,t∈Y∩C X(s)X(t)�Hk(ds)Hk(dt)

ΨY (C)2 →
∫ ∫

E
(
λ2(s, t)X(s)X(t)�

)
dsdt∫ ∫

Eλ2(s, t)dsdt
= M2

(6.24)
in probability when C ↑Rd , where the limit in (6.24) is defined as ratio of the limits
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lim
C↑Rd

1
|C|2

∫
C

∫
C

E
(
λ2(s, t)X(s)X(t)�

)
dsdt, lim

C↑Rd

1
|C|2

∫
C

∫
C

Eλ2(s, t)dsdt.

(6.25)
Their finiteness can be verified e.g. in the case when X is a stationary or a stationary
and isotropic random field. Then the integrands depend only of the difference of the
variables and on the modul of the difference of the variables, respectively.

For a point process (k = 0) we consider the estimator

M̂2 =
∑�=

s,t∈Y∩C X(s)X(t)�

ΨY (C)(ΨY (C)−1)
.

Theorem 6.4. Let QB = Ip −PB. Then it holds that

M2 = MP
2 +MQ

2 =
PB

∫ ∫
E
(

f2(B�X(s),B�X(t))X(s)X(t)�
)

dsdtPB∫ ∫
E( f2(B�X(s),B�X(t)))dsdt

(6.26)

+

∫ ∫
E
(

f2(B�X(s),B�X(t))
)

E
(
QBX(s)X(t)�QB

)
dsdt∫ ∫

E( f2(B�X(s),B�X(t)))dsdt
.

Proof. Write X(s) = PBX(s)+QBX(s). Then

E
(
λ2(s, t)X(s)X(t)�

)
= E

(
E[ f2(B�X(s),B�X(t))

(
PBX(s)X(t)�PB

+PBX(s)X(t)�QB +QBX(s)X(t)�PB

+QBX(s)X(t)�QB

)
|PBX(s),PBX(t)]

)

= PBE
(

f2(B�X(s),B�X(t))X(s)X(t)�
)

PB

+E
(

f2(B�X(s),B�X(t))PBX(s)E
(

X(t)�QB|PBX(s),PBX(t)
))

+E
(

f2(B�X(s),B�X(t))E[QBX(s)|PBX(s),PBX(t)]X(t)�PB

)

+E
(

f2(B�X(s),B�X(t))E
(

QBX(s)X(t)�QB|PBX(s),PBX(t)
))

.

The inner expectation in the second and third term is equal to zero by the assump-
tions, and

E
(

QBX(s)X(t)�QB|PBX(s),PBX(t)
)
= E

(
QBX(s)X(t)�QB

)
.

Thus the assertion follows.

If the second term MQ
2 on the right-hand side of (6.26) were zero, then

S(M2M�
2 )⊂ S(M2)⊂ S2. (6.27)
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We are interested in situations where MQ
2 is negligible w.r.t. MP

2 , i.e.

||MQ
2 ||<< ||MP

2 || (6.28)

for the Euclidean matrix norm. This means that approximately S2 can be estimated
by the SIR method applied to M2M�

2 . Typically

E
(

QBX(s)X(t)�QB

)

is negligible for ||s− t|| → ∞, while in some models (e.g. repulsive point processes)
λ2(s, t) is close to zero for ||s− t|| small. Moreover, when there is a positive corre-
lation between PBX(s)X(t)�PB and λ2(s, t), then intuitively (6.28) may hold.

We make this reasoning precise in the following two examples, where we con-
sider the Gaussian random field X = (X1,X2) in R

2 with independent components
of correlation functions

ζ (s, t) = exp(−||s− t||2).
Furthermore, let B = (1,0)�, so that λ2(s, t) = f2(X1(s),X1(t)). Note that the 2×2
matrix functions

PBE
(
λ2(s, t)X(s)X(t)�

)
PB (6.29)

and
E(λ2(s, t))E

(
QBX(s)X(t)�QB

)
(6.30)

are the integrands in the numerators of (6.26). Nonzero elements of these matrices
are in the upper left and lower right corner, respectively. These elements are eval-
uated as functions of the variable z = ||s− t||. The expectations are evaluated w.r.t.
the bivariate Gaussian probability density

g(x,y) =
1

2π
√

1−ζ (s, t) exp
(
− 1

2(1−ζ (s, t)) (x
2 + y2 −2xy

√
ζ (s, t))

)
, x,y ∈ R.

Example 6.2. Consider a stationary Poisson point processΦ with intensity ρ . Let Y
be a simple inhibition point process such that each pair of points s, t ∈Φ satisfying

max(Z(s),Z(t))≥ ||s− t|| (6.31)

is removed, where Z(s) = g(X1(s)) is a nonnegative function of X1. The process Y
has second-order intensity given by (cf. [102])

λ2(s, t) =

{
ρ2 exp(−ρU(Z(s),Z(t))), if max(Z(s),Z(t))≤ ||s− t||,
0, else,

where U(Z(s),Z(t)) is the area of the union of balls centered in s and t with
radii Z(s) and Z(t), respectively. In this case the assumption (6.23) holds with
B = (1,0)�. Put

Z(s) = a+b1[X1(s)<0], a,b > 0. (6.32)
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It holds that λ2(s, t) = 0 if either [X1(s)< 0∨X1(t)< 0]∧||s− t||< a+b or
[X1(s) ≥ 0∧X1(t) ≥ 0]∧ ||s− t|| < a. In the opposite case there are the following
variants:

X1(s)≥ 0, X1(t)≥ 0, ||s− t|| ≥ a, λ2(s, t) = ρ2e−ρU2(s,t,a,a),

X1(s)≥ 0, X1(t)< 0, ||s− t|| ≥ a+b, λ2(s, t) = ρ2e−ρU2(s,t,a,a+b),

X1(s)< 0, X1(t)≥ 0, ||s− t|| ≥ a+b, λ2(s, t) = ρ2e−ρU2(s,t,a+b,a),

X1(s)< 0, X1(t)< 0, ||s− t|| ≥ a+b, λ2(s, t) = ρ2e−ρU2(s,t,a+b,a+b).

See also Fig. 6.10a for illustration.
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Fig. 6.10 Comparison of nonzero elements of the matrix functions of variable z = ||s− t|| given in
(6.29) (dashed line) and (6.30) (solid line); (a) Example 6.2 (simple inhibition) for a = b = ρ = 1.
(b) Example 6.3 (determinantal process) for α = 1. Values of the dashed graph are much larger
than those of the solid one in both cases.

Example 6.3. The stationary determinantal point process Y has second-order inten-
sity equal to the determinant

λ2(s, t) =
C0(0) C0(s− t)
C0(t − s) C0(0)

where C0 is a covariance function. For parameters α,ρ > 0 we use a covariance
function with finite range α , where

C0(x) =
2ρ
π

⎛
⎝arccos

||x||
α

− ||x||
α

√
1−

( ||x||
α

)2
⎞
⎠1[||x||<α ].

The parameter ρ is randomized and it depends on the first component of X , where

ρ =
4

π2α2 (arctan(X1(s)X1(t))+
π
2
).
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Under this scaling, given X the determinantal process always exists, cf. [246]. See
also Fig. 6.10b for illustration.

Exercise 6.4. Construct a RMCS model where the first and the second order suf-
ficient intensity dimension reduction subspaces will be different (which is not the
case in the previous example). Hint: Consider again the determinantal point pro-
cess ([246]) with suitable randomization of each parameter α,ρ by components of
Gaussian random fields.

Theorem 6.4 also enables us to understand the availability of a slicing procedure
in the analysis of S2. In this case, the Cartesian product Y ×Y should be marked.
Let

Y = Y ×Y, ΨY(C) =ΨY (C)2, if k > 0,
Y = {(s, t);s ∈ Y, t ∈ Y,s �= t},ΨY(C) =ΨY (C)(ΨY (C)−1), if k = 0. (6.33)

Consider a mark Γ : Y → R which is a measurable symmetric function, i.e.
Γ (s, t) = Γ (t,s) for each (s, t) ∈ Y . Let the range of Γ be divided into m disjoint
intervals called slices. This induces a (random) partition of Y into m disjoint subsets
(Y1, . . . ,Ym). Let

ΨY j(C) =
∫ ∫

Y j∩C2
Hk(ds)Hk(dt).

Define the conditional expectation matrices (slice means)

o j = E(X(s)X(t)�|(s, t) ∈ Y j) (6.34)

and let q j = P((s, t) ∈ Y j|(s, t) ∈ Y), j = 1, . . . ,m. The matrix U2 = ∑m
j=1 q jo jo�j is

then subject to the principal component analysis. An empirical version of the matrix
U2 calculated from data is given by

Û2 =
1

ΨY(C)

m

∑
j=1
ΨY j(C)M̂ j

2[M̂
j
2]
� (6.35)

=
1

ΨY(C)

m

∑
j=1

1
ΨY j(C)

∫ ∫
Y j∩C2

X(s)X(t)�Hk(ds)Hk(dt)

×[
∫ ∫

Y j∩C2
X(s)X(t)�Hk(ds)Hk(dt)]�.

In the special case k = 0 we can express M̂ j
2 as

M̂ j
2 =

1
ΨY j(W ) ∑

Y j∩C2

X(s)X(t)�.
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6.7 Statistical Methods

When we deal with simulated or real data, the theoretical quantities from Sect. 6.6
are estimated by their empirical analogues. Furthermore, the dimension c of the
central subspace is not known and hypotheses on this quantity are tested.

6.7.1 Estimation

Generally, for a stationary Gaussian p-dimensional random field X̃ observed in a
bounded window C ⊂ R

d with Lebesgue measure |C|, put

X̄ =
1
|C|

∫
C

X̃(s)ds, Σ =
1
|C|

∫
C
[X̃(s)− X̄ ][X̃(s)− X̄ ]�ds.

Then the standardized p-dimensional random field X is given by

X(s) = Σ−1/2[X̃(s)− X̄ ].

Based on the observation of the random field X on a set of grid points G, the empir-
ical analogues of X̄ and Σ are given by

̂̄X =
1

card G ∑
s∈G

X̃(s)ds, Σ̂ =
1

card G ∑
s∈G

[X̃(s)− ̂̄X ][X̃(s)− ̂̄X ]�ds

and the empirical standardized random field X̂ at an arbitrary point s ∈C is given by

X̂(s) = Σ̂−1/2[X̃(sG)− ̂̄X ]

where sG ∈ G is the nearest grid point to s.
The characteristics of Hk-sets can be estimated by choosing a finite set

T = {ti}n
i=1 ⊂ Y ∩C (6.36)

of random test points. Generally, samples Tp of complementary dimension d−k are
used to get test points as intersections T = Tp ∩Y ∩C, cf. [73]. Let

Tj = T ∩Y j, j = 1, . . . ,m, n j = card Tj

and (cf. (6.33))

T = {(s, t) ∈ T ×T, s �= t}, T j = T ∩Y j,

l j = cardT j, ∑m
j=1 l j = n(n−1). We have the estimators
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p̂ j =
n j

n
, q̂ j =

l j

n(n−1)
, (6.37)

m̂ j =
1
n j

∑
t∈Tj

X(t), ô j =
1
l j

∑
(s,t)∈T j

X(s)X(t)�. (6.38)

Using these estimates, we put

V̂ =
m

∑
j=1

p̂ jm̂ jm̂�
j , Û =

m

∑
j=1

q̂ jô jô�j . (6.39)

The eigenvectors η̂l of V̂ and Û corresponding to the c largest eigenvalues are eval-
uated and transformed to

β̂l = Σ̂−1/2η̂l , l = 1, . . . ,c. (6.40)

The vectors β̂l form the columns of an estimator B̂ of the matrix B for the dimension
reduction problem of (X̃ , Y ) under the assumptions (6.15) and (6.23), respectively.

Exercise 6.5. Sliced average variance estimation (SAVE) [82] is another inverse re-
gression method based on the matrix MSAVE = (Σ − Ip)

2, where

Σ = cov(X(s) | s ∈ Y ) =
∫

E
(
λ (s)X(s)X�(s)

)
ds∫

Eλ (s)ds
−BSIRBT

SIR

and BSIR =
∫

E(λ (s)X(s))ds∫
Eλ (s)ds . Write down an estimator M̂SAVE based on slices. Prove

that when X is a p-dimensional stationary Gaussian random field, then under stan-
dard ergodicity assumptions it holds that S(MSAVE)⊂ S1, cf. [157].

Exercise 6.6. Recently, in [249], a directional regression method (DR) has been de-
veloped which combines SIR and SAVE. In the spatial setting, cf. [157], it is based
on the use of the p× p matrix

MDR = 2E
(

E2(X(s)X(s)�− Ip|s ∈ Y )
)
+2E2

(
E(X(s)|s ∈ Y )E(X(s)�|s ∈ Y )

)
(6.41)

+2E
(

E(X(s)�|s ∈ Y )E(X(s)|s ∈ Y )
)

E
(

E(X(s)|s ∈ Y )E(X(s)�|s ∈ Y )
)
,

where Ip is the unit matrix of order p. Write down an estimator M̂DR based on slices.
Show that from the c0 largest eigenvectors η̂l of M̂DR the estimator of the matrix B
as in (6.40) is obtained.

Note that in [157] the following estimation error

(B, B̂) = ||B(B�B)−1B�− B̂(B̂�B̂)−1B̂�||max (6.42)

has been suggested to compare the estimated and true matrix of the central subspace,
where ||A||max denotes the maximum of the absolute singular value of a matrix A.
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Having n data sets and getting the estimators β̂ i
l , i = 1, ..,n, from (6.40) we want

to obtain an estimator of βl , l = 1, . . . ,c, which uses this information. In fact, the
directions of the vectors are crucial. Consider an arbitrary unit vector w ∈ R

d and
let β̂ 1, ..., β̂ n be iid unit random vectors. Let 〈., .〉 be the inner product and

β̂ = argmax
v:||v||=1,〈w,v〉≥0

n

∑
i=1

|〈β̂ i,v〉|. (6.43)

This estimator is unbiased in the following sense.

Proposition 6.1. Let the distribution of β̂ i be symmetric with respect to the axis
given by β̃ , i.e. β̂ i has the same distribution as −β̂ i + 2β̃ 〈β̃ , β̂ i〉. Then there exists
a ∈ [0,1] such that

Eβ̂ = aβ̃ .

Proof. Without loss of generality, consider β̃ = (1,0, ..,0). Furthermore, introduce
sv = (v1,−v2, ...,−vd), sβ̂ = (β̂1,−β̂2, ...,−β̂d) and sβ̂ i = (β̂ i

1,−β̂ i
2, ...,−β̂ i

d) for all
i = 1, ...,n. Then β̂ i and sβ̂ i have the same distribution. Obviously, |sv| = |v| = 1,
〈sv, β̃ 〉= 〈v, β̃ 〉 and 〈sv,s β̂ i〉= 〈v, β̂ i〉. Therefore β̂ and sβ̂ have the same distribution,
and hence Eβ̂ = aβ̃ for some a ∈ [0,1].

6.7.2 Statistical Testing

Generally, the dimension c of the central subspace is not known. A starting point
would be the test of the null hypothesis

H0 : c = 0 vs. HA : c > 0 (6.44)

where by c = 0 we mean the independence of X and Y . Consider the coefficient (cf.
[251])

R2 = R2(β̂1) = max
β∈SY |X

(β̂�
1 β )

2

β̂�
1 β̂1β�β

, (6.45)

where β̂1 is given by (6.40). From the independence of X and Y it follows that
R2 = 0. Therefore, if we reject the null hypothesis of orthogonality

H0 : R2 = 0 vs. HA : R2 > 0, (6.46)

then also the null hypothesis in (6.44) has to be rejected. The test of orthogonality
for a known distribution of X can proceed in the following steps:
1. calculate R2 from observed data Y and X ,
2. calculate R2 from observed Y and each of n independently simulated realizations
of X , thus we have R2

j, j = 1, . . . ,n,

3. the p-value of the test is card{R2
j≥R2}+1

n+1 .
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In practice, we cannot simulate independent realizations of X since its distribu-
tion is unknown. On a rectangular or circular region W ⊂R

2 we can use this testing
algorithm with the assumption that under H0 the joint distribution of Y and X is in-
variant w.r.t. translation and rotation of Y, respectively. Then instead of independent
realizations of X we use n systematic translations and rotations, respectively, of X
w.r.t. fixed Y. For translations, the window is wrapped on a cylinder.

For complete estimation of the dimension c, the statistics

Λ̂c = n
p

∑
i=c+1

ξi (6.47)

might be of use, where ξ1 ≥ ξ2 ≥ .. ≥ ξp are the eigenvalues of the weighted co-
variance matrix V̂ or Û given by (6.39). The number of slices m must be chosen
larger then c+1. To estimate c we start with c0 = 0. If the null hypothesis in (6.44)
is rejected, we increase c0 = c0+1 and repeat the same procedure sequentially until

H0 : c = c0 vs. HA : c > c0

is not rejected or c0 = p. Under the validity of H0, it has been proved in [81] that
Λ̂c asymptotically has a chi-square distribution with (p−c0)(m−c0−1) degrees of
freedom when X(ti), i = 1, . . . ,n are iid. This is not the case for Gaussian random
fields, so the test is an approximate one here and can be tried only when the ti are
rather sparse. An analogous reasoning is necessary when thinking of other sampling
properties of SIR (consistency, etc.) as summarized in [250] for iid observations of
random vectors X .

6.8 Simulation Studies

Three simulation studies are presented to demonstrate the sliced inversed regression
method for dimension reduction in stochastic geometry models with covariates. Nu-
merical results are presented and interpreted.

6.8.1 Description of the Simulation

Let X = (X1, X2, X3) be a threedimensional Gaussian random field in R
d with inde-

pendent components which have zero mean and covariance function given by

ζ (s, t) = exp(−γ||s− t||α), s, t ∈ R
d , 1 ≤ α ≤ 2, γ > 0. (6.48)

The method GaussRF from the RandomFields library in software R was used for
generating realizations X = {X(s), s ∈ Jd = [0,1]d} for either d = 2 or d = 3. A
random set Y is simulated so that it depends on a linear combination LX of com-
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ponents of the Gaussian random field X . Obviously, for LX = ∑3
i=1 eiXi, ei ∈ R we

have that
λ (s) = f (B�X(s)), B = (e1,e2,e3)

�

and the dimension of the central subspace is c = 1. Slicing of Y is based on its
geometrical properties.

In the simulation study I given the Gaussian random field X we consider an non-
stationary Poisson point process Yp with intensity

λ (s) = aexp(LX (s)), s ∈ Jd , a > 0, d = 2 or 3. (6.49)

Note that Yp is in fact the log-Gaussian Cox process ([287]), the slicing is based on
the nearest neighbour distance as the mark Γp. Furthermore a Poisson-Voronoi tes-
sellation is simulated in Jd with germs corresponding to events of Yp, cf. Fig. 6.1a
for d = 2. In R

2 the system of edges forms a random fibre process Y. A piecewise
constant mark Γ at a point of Y is the length of the corresponding edge (H1-a.s.
unique). In R

3, the system of faces forms a random surface process Y. A piece-
wise constant mark Γ at a point of Y is the area of the corresponding face (H2-a.s.
unique). For the estimation, test points T are centroids of edges and faces randomly
chosen with probability proportional to the length of the edge and the surface area of
the face, respectively. Besides the basic dependent case as in Fig. 6.1a we consider
n−1 independent cases where the same realization of Y is sampled independent of
each component of X , cf. Fig. 6.1b. The whole procedure is repeated in order to get
a number q of simulated sets of data.

In the simulation study II given the Gaussian random field X we evaluate a fibre
process Y based on diffusion from Sect. 6.3.2. The linear combination g(s) =LX (s)
enters in (6.12). In the numerical solution of (6.11) using the Euler method with
fixed temporal step the curve Y (a fibre process) is formed by segments whose
length is proportional to the speed of the motion, cf. Fig. 6.4a. In any point of Y
the length of the corresponding segment is the mark Γ (H1-a.s. unique). In each of
q simulations of X ,Y a number of n systematic rotations of X are taken in angular
steps 2π j

n , j = 0,1, . . . ,n−1. The number of test points along Y is equal to s (taken
equidistantly in time).

The simulation study III corresponds to the theoretical Example 6.2 in Sect. 6.6.2.
Given the Gaussian random field X a simple inhibition point process Y with second-
order intensity λ2 as in (6.32) was simulated on J2. We consider two choices of Z, let
(Z1) be given by Z1(s) = a(arctg(X1(s))+ π

2 ), a > 0, and (Z2) as in (6.32). Slicing
is performed in the same way as explained in (6.33), where the criterion for slicing
(the mark) is the theoretical second-order intensity λ2(s, t). Its value is calculated
for each pair of points and the range is divided into several slices with approxi-
mately equal cardinality. Finally the matrix Û2 described in (6.35) is a subject for
the principal components method.
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Fig. 6.11 The SIR method, histograms of p-values for the orthogonality test for the number of
slices m = 1 (first column), m = 2 (second column), m = 4 (third column), based on q = 100, n =
20, p = 3, B = (1,0,0). From simulation study I we present a marked point process of tessellation
generators in R

2 (first row), a fibre process of tessellation edges in R
2 (second row), a surface

process of tessellation faces in R
3 (third row) and from simulation study II a fibre process based

on diffusion (fourth row). The mean number of generators is 1000 in R
2 and 10000 in R

3.
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6.8.2 Numerical Results

In Fig. 6.11 the histograms of p−values for the test of orthogonality considered in
(6.46) are presented for both simulation studies I and II. Each row represents one
type of a random marked set, namely a point, fibre (twice) and surface process. We
observe how the power of the test increases with the number of slices (from left to
right). This is more apparent in the upper two rows.

The question of an optimal number of slices arises. It was investigated by means
of the estimation errors criterion given in (6.42). The following table summarizes
the results for five models of random marked sets. By (B1), (B2) we denote the
choice B= (1,0,0)�, B= (1,1,0)�, respectively. Two different values of parameter
b2 in (6.12) are considered in simulation study II. Both alternatives (Z1) with a =
0.02 and (Z2) with a = b = 0.04, ρ = 100 are considered for the Simulation III. In
each case q = 100 simulations were realized and the sample means of (B, B̂) with
different numbers of slices were computed. The results vary, while in simulation
study I optimal values are below 10, in simulation studies II and III the opposite is
true, as can be seen in Tab. 6.1.

Table 6.1 Sliced inverse regression. The error of estimation of central subspace, dependence on
the number of slices.

Simulation I Simulation II Simulation III
slices points in R

2 edges in R
2 faces in R

3 b2 = 0.3 b2 = 0.9 Z1 Z2
B1 B2 B1 B2 B1 B2 B1 B1 B1 B1

1 0.296 0.243 0.418 0.329 0.640 0.538 0.543 0.390 0.582 0.463
2 0.236 0.216 0.214 0.220 0.341 0.346 0.504 0.352 0.343 0.407
4 0.231 0.212 0.211 0.207 0.309 0.315 0.426 0.336 0.195 0.405
8 0.227 0.212 0.212 0.208 0.309 0.307 0.408 0.331 0.167 0.385

16 0.230 0.214 0.220 0.210 0.318 0.309 0.406 0.331 0.159 0.378
32 0.244 0.220 0.231 0.215 0.340 0.318 0.435 0.345 0.160 0.361

The estimators β̂1 from (6.43) based on simulation study II are presented graph-
ically in Fig. 6.8.2. The centre of the circle represents the true vector B, each vector
β̂ i

1 is represented by a point x, its distance from the centre corresponds to the angle
between β̂ i

1 and B. We observe that the spread of x′s is smaller when the depen-
dence between X1 and Y is bigger, cf. Figs 6.29a and b. The method works also for
the general vector B considered in Fig. 6.29c. The triangle represents β̂1, which in
each case is closely located to the true vector.

In order to demonstrate the estimation of the dimension c of the central subspace
using the statistic Λ̂c given in (6.47), in simulation study II we made q = 50 simu-
lations of X with α = 1 and Y as above (without rotations). The number of slices
was chosen m = 4, since p = 3, the maximal value of c0 we can use for testing
H0 : c = c0 vs. HA : c > c0 is c0 = 2, whereas the true value is c = 1. The numbers of
accepted hypotheses for different cases are given in Tab. 6.2. It turns out that for a
larger number s of test points as well as for a smaller coefficient γ in the covariance
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(a) (b) (c)

Fig. 6.12 Simulation II: Figures (a) and (b) show estimators of B= (1,0,0), where we have weaker
(b2 = 0.3 in (a)) and stronger (b2 = 0.9 in (b)) dependence between X1 and Y . Figure (c) presents
b2 = 0.9 and estimators of B = ( 1

2 ,−1, 1
2 ). Points correspond to 50 simulations (estimators given

by (6.40)), the triangle is the final estimator given in (6.43).

Table 6.2 Testing the dimension of the central subspace.

γ = 1.666 γ = 10
s = 50 s = 100 s = 50 s = 100

c = 1 39 31 41 37
c = 2 11 19 9 13

function given in (6.48), the test points involve more dependence and the conclusion
is false. In the opposite case their dependence decreases and the approximative test
yields better results.
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Chapter 7

Space-Time Models in Stochastic Geometry

Viktor Beneš, Michaela Prokešová, Kateřina Staňková Helisová and Markéta
Zikmundová

Abstract Space-time models in stochastic geometry are used in many applications.
Mostly these are models of space-time point processes. A second frequent situation
are growth models of random sets. The present chapter aims to present more general
models. It has two parts according to whether the time is considered to be discrete
or continuous. In the discrete-time case we focus on state-space models and the use
of Monte Carlo methods for the inference of model parameters. Two applications
to real situations are presented: a) evaluation of a neurophysiological experiment,
b) models of interacting discs. In the continuous-time case we discuss space-time
Lévy-driven Cox processes with different second-order structures. Besides the well-
known separable models, models with separable kernels are considered. Moreover
fully nonseparable models based on ambit processes are introduced. Inference for
the models based on second-order statistics is developed.
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7.1 Discrete-Time Modelling

In this section we describe the state-space model in a Bayesian setting and introduce
the problem of the estimation of posterior distributions. Sequential Monte Carlo
methods [104] are described, namely the particle filter and the particle Markov chain
Monte Carlo (MCMC) [5]. In the following sections these methods are used for the
estimation of parameters of space-time models in stochastic geometry.

7.1.1 State-space Models and Sequential Monte Carlo

Let Rd be the d-dimensional Euclidean space, N the set of integers, N0 = N∪{0}.
For any Borel set A ⊂ R

d let |A| = νd(A) denote its d-dimensional Lebesgue mea-
sure. Furthermore, let (Ω ,F ,P) be an arbitrary probability space. The notation
X0:t = {X0, . . . ,Xt} will be used for a sequence of t + 1 random vectors with val-
ues in R

d , analogously for non-random x0:t .
Consider the following state-space model. Let

X = {Xt , t ∈ N0} (7.1)

be a Markov process with state space R
d , initial distribution with density p(x0),

transition probability density p(xt | xt−1). The index t is interpreted as time. As-
sume that instead of X we observe the random variables {Yt , t ∈ N0} which are
conditionally independent given {Xt , t ∈ N0}. The aim is to draw samples from the
posterior distribution p(x0:t | y0:t), and to evaluate expectations of functions ft on
R

d(t+1) of the form
E ft =

∫
ft(x0:t)p(x0:t | y0:t)dx0:t .

Recall that by the Bayes theorem we have that

p(x0:t | y0:t) =
p(y0:t | x0:t)p(x0:t)∫

p(y0:t | x0:t)p(x0:t)dx0:t
.

Using this formula we obtain that the so-called filtering density p(xt | y0:t) satisfies
the recursion equations

p(xt | y0:t−1) =
∫

p(xt | xt−1)p(xt−1 | y0:t−1)dxt−1 (7.2)

and

p(xt | y0:t) =
p(yt | xt)p(xt | y0:t−1)∫

p(yt | xt)p(xt | y0:t−1)dxt
,

since we have p(x0:t | yt ,y0:t−1) ∝ p(yt | x0:t)p(x0:t | y0:t−1) from the assumed con-
ditional independence.
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Analytical evaluation of the equation system (7.2) for large t is impossible.
Therefore Monte Carlo methods were developed. Among them the importance sam-
pling is a basic tool. Let q(x0:t | y0:t) be a proposal distribution such that for its
support supp{p(x0:t | y0:t)} ⊂ supp{q(x0:t | y0:t)} holds. Then

E ft =
∫

ft(x0:t)w(x0:t)q(x0:t | y0:t)dx0:t∫
w(x0:t)q(x0:t | y0:t)dx0:t

,

where

w(x0:t) =
p(x0:t | y0:t)

q(x0:t | y0:t)

is the importance weight. Simulating M independent identically distributed (iid)
particles {X i

0:t , i = 1, . . . ,M} according to q(x0:t | y0:t), we obtain the Monte Carlo
estimate

ÊM ft =
M

∑
i=1

ft(X i
0:t)w̃

i
t , (7.3)

with normalized importance weights

w̃i
t =

w(X i
0:t)

∑M
j=1 w(X j

0:t)
, i = 1, . . . ,M.

Sequential Monte Carlo (SMC) methods enable us to draw samples from the
posterior recursively and thus to evaluate long time-series data. Among these meth-
ods we will use the particle filter (PF) which is described below as Algorithm 7.1.
The convention is that whenever the index k is used, we mean that it stands for all
k = 1, . . . ,M, where M is the number of particles. Furthermore, w̃t = (w̃1

t , . . . , w̃
M
t )

are normalized importance weights at time t, F(. | w̃t) is a discrete probability dis-
tribution with atoms proportional to the weights w̃t and Ak

t−1 represents the index
of the parent at time t −1 of particle Xk

0:t for t ≥ 2. Typically a finite time sequence
t = 1,2, . . . ,T is considered.

Algorithm 7.1 (PF)

1. Sample x0 ∼ p(x).
2. At time t = 1:

a. sample Xk
1 ∼ q(. | y1),

b. compute and normalize weights

w(Xk
1 ) =

p(Xk
1 | x0)p(y1 | Xk

1 )

q(Xk
1 | y1)

, w̃k
1 =

w(Xk
1 )

∑M
m=1 w(Xm

1 )
.

3. At times t = 2, . . . ,T :

a. sample Ak
t−1 ∼F(. | w̃t−1),
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b. sample Xk
t ∼ q(. | yt ,X

Ak
t−1

t−1 ) and put Xk
0:t = (X

Ak
t−1

0:t−1,X
k
t ),

c. compute and normalize weights

w(Xk
0:t) =

p(Xk
t | X

Ak
t−1

t−1 )p(yt | Xk
t )

q(Xk
t | yt ,X

Ak
t−1

t−1 )
, w̃k

t =
w(Xk

0:t)

∑M
m=1 w(Xm

0:t)
. (7.4)

In the case when the proposal density q in the denominator of (7.4) is chosen
equal to the transition density, we have in particular that wt(Xk

0:t) = p(yt | Xk
t ). When

the algorithm is completed, (7.3) applies.

7.1.2 The PMMH Method

The state-space models can be used in stochastic geometry to describe the time

tion of both x0:T and θ . Here we describe the particle marginal Metropolis-Hastings
(PMMH) algorithm, where the parameters are estimated iteratively using MCMC
and the proposal distribution of x0:t is generated by means of the particle filter.

The state-space model is considered with transition density pθ (xt | xt−1) depend-
ing on an unknown auxiliary parameter θ . The PMMH algorithm can sample from
the joint posterior density p(θ ,x0:t | y0:t) as follows, see [5].

Algorithm 7.2 (PMMH)

1. Initialization: i = 0,

a. put θ(0) arbitrarily,
b. run the sequential Monte Carlo (SMC) Algorithm 7.1 targeting pθ(0)(x0:t |

y0:t), use the estimator p̂θ(0)(. | y0:t) to sample X0:t and let p̂θ(0)(y0:t) denote
the marginal likelihood estimate.

2. For iteration i ≥ 1:

a. sample θ ∗ ∼ q(. | θ(i−1)),
b. run the sequential Monte Carlo (SMC) Algorithm 1.1 targeting pθ∗(x0:t |

y0:t),
c. sample X∗

0:t ∼ p̂θ∗(. | y0:t) and let p̂θ∗(y0:t) denote marginal likelihood es-
timate,

d. with probability

1∧ p̂θ∗(y0:t)p(θ ∗)
p̂θ(i−1)(y0:t)p(θ(i−1))

q(θ(i−1) | θ ∗)
q(θ ∗ | θ(i−1))

evolution of random sets. The corresponding space-time models usually depen
θ . A class ofon further auxiliary parameters, where we denote their vector by

PMCMC (particle Markov chain Monte Carlo) algorithms can be used for the estima-

d
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put θ(i) = θ ∗, X0:t(i) = X∗
0:t and p̂θ(i)(y0:t) = p̂θ∗(y0:t), otherwise put

θ(i) = θ(i−1), X0:t(i) = X0:t(i−1) and p̂θ(i)(y0:t) = p̂θ(i−1)(y0:t).

Here p(θ) is a prior density, and q(θ | θ ∗) a proposal density for θ . The estimate
of the marginal likelihood pθ (y0:t) is given by

p̂θ (y0:t) = p̂θ (y0)
T

∏
t=1

p̂θ (yt | y0:t−1), p̂θ (y j | y j−1) =
1
M

M

∑
k=1

w(Xk
0: j).

After a large enough number of iterations the algorithm is stopped.

7.2 Application: Firing Activity of Nerve Cells

Space-time models in stochastic geometry are used in many applications. Mostly
these are models of space-time point processes, cf. the review papers [101, 348]. A
second frequent situation are growth models of random sets [212]. In the following
real data application, the state-space model represents the evolution of parameters
of the conditional intensity of a temporal point process [112]. Since the events of
the point process are monitored in a bounded planar set, the space-time nature of
the experiment follows.

7.2.1 Space-Time Model and Particle Filter

Experimental data of occurence times of action potentials (spikes) of a hippocampal
neuron together with the track of a rat in a circular arena S ⊂R

2 are investigated, see
Fig. 7.1. Spatial receptive fields of neurons in the CA1 region of the rat hippocampus
evolve as the animal executes a spatial learning task and the aim is to detect this
evolution.

The conditional intensity λ ∗ of a temporal point process Nt for t ∈ [0,T ] is de-
fined by (see [93])

λ ∗(t | N0:t) = lim
h→0

1
h

P(Nt+h −Nt = 1 | N0:t),

where Nt is the random number of spikes in (0, t] and

N0:t = {u1, . . . ,u j; 0 < u1 < · · ·< u j ≤ t}

are the spike times.
In discrete time let K ∈ N, K = T

 for a step size > 0. Denote

N1:k = {N1, . . . ,Nk}, Jk = ((k−1),k], k = 1, . . .K,
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Fig. 7.1 Neurophysiological experiment, see [128]. Left: rat’s track (line) and spikes (points) in an
arena S (cf.Fig. 6.6), right: temporal evolution of the total number of spikes Nt counted from some
time t0

Fig. 7.2 The time interval of data from Fig. 7.1 is split in two halfs and the conditional intensity
function (increasing with grey level) is computed in each half from the average in time of the
coefficients ψ l

k

where Nk = 0 or 1 being the indicator of a spike lying in Jk. For an observation of
N0:t we choose  small enough such that there is at most one event (spike) in each
subinterval Jk.

Denote the position of the rat in S at time t by vt . In discrete time we shortly write
vk for time k. A parametric model for the conditional intensity suggested in [112]
is given by

λ ∗
k = λ ∗(k | ψk,N1:k−1) = exp

(
6

∑
l=1

ψ l
kZl(vk)

)
, (7.5)
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where the state vector ψk = (ψ l
k) is to be estimated and in polar coordinates v =

(r,ϕ) we have

Z(v) = (Zl(v))6
l=1 = (1, r cosϕ, r sinϕ, 2r2 −1, r2 cos2ϕ, r2 sin2ϕ).

The transition density is modeled by a Gaussian random walk

ψk = ψk−1 +ηk, ηk ∼ N(0,σ2I),

with I being the unit matrix of size 6, and ψ0, σ2 are chosen fixed. The likelihood
is approximated by

p(Nk | ψk,N1:k−1)≈ exp(Nk log(λ ∗
k )−λ ∗

k ).

Then the particle filter described in Algorithm 7.1 can be used for the numerical
evaluation of the posterior. Given the estimated coefficients ψ, a planar plot of the
conditional intensity given in (7.5) can be obtained, see Fig. 7.2. It is interpreted as
a measure of firing activity in space and time, a slight change in time is apparent.

7.2.2 Model Checking

The justification of the model can be based on residual analysis (cf. [94]). For C ⊂ S
and a predictable random function h in continuous time consider the scaled innova-
tion

VC =
∫ T

0
1C(vt)h(t)[N(dt)−λ ∗

t dt].

Then it holds that

varVC = E

(∫ T

0
1C(vt)h(t)2λ ∗

t dt
)
.

In particular for the Pearson innovation for D ⊂ [0,T ] we put h(t) = 1D(t)[λ ∗
t ]

− 1
2 ,

getting

VC =
∫

D
1C(vt)([λ ∗

t ]
− 1

2 N(dt)− [λ ∗
t ]

1
2 dt)

with varVC = |{t ∈ D; vt ∈C}|. The estimator of the Pearson residual at time k in
C ⊂ S is given by

R̂P(k,C) = ∑
j≤k

Nj=1,v j∈C

[λ̂ ∗
j ]
− 1

2 −
k

∑
j=1

1C(v j)[λ̂ ∗
j ]

1
2 . (7.6)

Note that Pearson residuals can be plotted as a diagnostic tool at times k,k =
1, . . . ,K. When R̂P(k,C) lies within the bounds 2σk where
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σk = |{t ∈ R, 0 < t ≤ k, yt ∈C}| 1
2 , (7.7)
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Fig. 7.3 Left: Conditional intensity model (7.5) evaluated in time by means of the particle filter,
right: Residual analysis based on the graph of Pearson residuals (7.6) with bounds (7.7) for C = S

7.3 Systems of Interacting Discs

In this section, a space-time germ-grain model where the state-space model presents
the evolution of parameters of a probability density is investigated. While in the lit-
erature mostly growth models of random sets are presented, the model of interacting
discs enables us to describe the temporal evolution of various geometrical proper-
ties. Among those derived from Minkowski functionals of integral geometry, we
consider the volume, surface area (perimeter) and connectivity in the following.

7.3.1 Background in Space

Let S ⊂R
2 be a bounded region, Ỹ a germ-grain model with grain centres z ∈ S and

circular grains Br(z) with random radii r > 0. Denote by y = {Br1(z1), . . . ,Brm(zm)}
a configuration of m discs and Uy the corresponding union of these discs. In [283] a
probability density

(7.8)

is considered with respect to a given reference Poisson point process Ψ of discs
with centres in S and intensity measure λ (z)dzQ(dr), where Q is a probability mea-
sure on R+, and λ a non-negative function. Here x = (x(1), . . . ,x(d)) is a vector of
unknown real parameters, cx a normalizing constant, G(Uy) ∈ R

d is a vector of ge-

analysis of the present neurophysiological data are shown in Fig. 7.3.
we say that the model fits well. Numerical results for the filtering and residual

p(y | x) = c−1
x exp(〈x,G(Uy)〉),
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G(Uy) = (A(Uy),L(Uy),χ(Uy)), (7.9)

G(Uy) = (A(Uy),L(Uy),Ncc(Uy),Nh(Uy)), (7.10)

respectively, where A is the total area, L the total perimeter, χ the Euler–Poincaré
characteristic, Ncc the number of connected components and Nh the number of holes
(recall that it holds χ = Ncc −Nh). If d = 2, then under a technical regularity con-
dition, the expression given in (7.8) with the canonical sufficient statistics given in
(7.9) is a regular exponential family with parameter space

{x = (x(1),x(2)) ∈ R
2 :

∫
exp(πx(1)r2 +2πx(2)r)Q(dr)< ∞}. (7.11)

Exercise 7.1. Show that under condition (7.11), the density given in (7.8) is well
defined.

An MCMC method for the simulation of Ỹ and a maximum likelihood method
(ML) for the estimation of parameter x have been developed in [276]. The ML
method using MCMC simulations is based on finding x̂ = argmaxx∈Rd p(y | x),
where the data y are represented by the vector G(Uy). However, since cx has no
explicit expression, p(y | x)/p(y | x0) for fixed x0 ∈ R

d is maximized instead, be-
cause in that case, we can use importance sampling for the approximation of the
ratio of normalizing constants. The log-likelihood ratio is then given by

lx0(x) = log
p(y | x)
p(y | x0)

= (x− x0) ·G(Uy)− log
cx

cx0

≈ (x− x0) ·G(Uy)− log
1
n

n

∑
i=1

exp{(x− x0) ·G(Uzi)}, (7.12)

where zi, i = 1, . . . ,n for some n, are realizations drawn from p(. | x0) by MCMC
simulations. The function given in (7.12) has a simple analytical form, so the maxi-
mum likelihood estimate is obtained as

x̂ = argmax lx0(x). (7.13)

Exercise 7.2. By G j and x j denote the j-th component of the vector G and x, respec-
tively. Show that 1. if G j(Uy) ≤ G j(Uzi) for all i = 1, . . . ,R and G j(Uy) < G j(Uzi)
for at least one i, then lx0(x) is decreasing function in x j, 2. if G j(Uy) ≥ G j(Uzi)
for all i = 1, . . . ,R and G j(Uy)> G j(Uzi) for at least one i, then lx0(x) is increasing
function in the item x j.

ometrical characteristics of Uy and 〈., .〉 denotes the inner product in R
d . For exam-

ple, for d = 3 and d = 4 let
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7.3.2 Space-Time Model

A generalization of the germ-grain model Ỹ considered in Section 7.3.1 to a space-
time random set in discrete time is given by

Y = {Ỹ0:T}. (7.14)

Here Ỹt , 0≤ t ≤ T, are germ-grain models with density given in (7.8) where the d-
dimensional parameter x is developing in time so that it is a realization of a Markov
process X0:t in R

d , cf. (7.1). More precisely, let Xt ∈ R
d develop as

Xt = Xt−1 +ηt , t = 1, . . . ,T, (7.15)

where X0 (deterministic or random) is given and ηt are iid Gaussian random vari-
ables with distribution N(a,σ2Id). Here we consider θ = (x0,a,σ) ∈ R

2d+1 as the
unknown auxiliary parameter.

For d = 3, a simulated realization of the space-time model Y with canonical
statistics given in (7.9) is shown in Fig. 7.4. We start the simulation of the time
evolution of the process Y so that we choose a fixed x0, and according to (7.15),
we simulate parameter vectors xt , t = 1,2 . . . ,T. Furthermore, using the birth-death
Metropolis-Hastings algorithm [286], we simulate a realization y0 of the process
Ỹ0 which is given by the density (7.8) where we put x = x0. In this part of the
simulation, if y( j)

0 is the state at iteration j, we generate a proposal which is either a
"birth" y( j)

0 ∪{b} of a new disc b with center z and radius r, or a "death" y( j)
0 \{bi} of

an existing disc bi ∈ y( j)
0 . In case of a birth-proposal, z and r are independent, z has

a density proportional to the intensity function ρ(z) and r follows the distribution
Q of the reference process. In case of a death-proposal, bi is a uniformly selected
disc from y( j)

0 , and each of these two proposals may happen with equal probability
α = 1/2. Acceptance depends on the Hastings ratio Hx(y

( j)
0 ,b) or Hx(y

( j)
0 \{bi},bi),

respectively. Then, for t = 1,2 . . . ,T , we simulate realizations yt of the processes
Yt which are given by the density (7.8) with x = xt . Here the Yt are conditionally
independent given Xt , 0≤ t ≤ T.

In the next step the canonical sufficient statistics are extracted from simulations
using a computer program from [283]. The aim is to suggest an estimator of all
parameters x0:t and θ . Besides individual ML estimators at each time, in [429] the
state-space model was considered with the parameter x0:t and inference was based
on the particle filter with identity function ft in (7.3). The auxiliary parameter θ
was estimated with the help of individual ML estimators and regression techniques.
Below we present numerical results from [430] where also the Algorithm 1.2 with
the posterior mean estimator was investigated.

There is a possibility to involve temporal dependence in the random set within
its simulation algorithm as follows. Again the birth-death Metropolis-Hastings al-
gorithm described above is used, but with the difference that when adding a disc
it also depends on the previously simulated configuration yt−1. This dependence is



7 Space-Time Models in Stochastic Geometry 215

Fig. 7.4 Simulated evolution of the germ-grain model in times t = 0,5,10,15,20,25, x0 =
(1,−0.5,−1), a = (−0.07,0.035,0.07), σ2 = 0.001, where S is a square of size 10× 10. Ob-
serve that the first negative component of a forces the total volume to be decreasing in time, while
the other positive components imply increasing total perimeter and Euler number

ensured so that the proposal distribution Propt at time t is a mixture

Propt = (1−β ) ·Prop(RP) +β ·Prop(emp)
t−1 , β ∈ (0,1),

where Prop(RP) is the distribution of the reference process and Prop(emp)
t−1 is the em-

pirical distribution obtained from the configuration yt−1.
This method evokes the question how to determine the probability α of adding

a disc for t = 1, . . . ,T. With probability β , we choose a disc from a finite set of
discs and it may happen that the disc has already been involved in the configuration
y( j−1)

t , so adding such a disc in the j-th iteration does not change the configuration.

α( j) =
1

2−
(
β n( j)

used discs
nyt−1

) , (7.16)

where n( j)
used discs is the number of discs from the configuration yt−1 which are already

obtained in the configuration y( j)
t in the j-th iteration and nyt−1 is the total number

of discs in the configuration yt−1.

Proof. See [429].

Lemma 7.1. The choice of α in the j-th iteration so that the probabilities of proposing
to delete a disc and that of proposing to add a disc are the same is given by
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Fig. 7.5 The envelopes for all estimators based on 19 realizations. The full lines denote the true
evolution, dotted lines envelopes for MLE, dashed lines for PF and dot-dashed lines for PMMH.
The left plot corresponds to the parameter x(1), the middle one to x(2) and the right plot corresponds
to x(3).

7.3.3 Model Checking

The model fit can be based on two summary statistics, the contact distribution func-
tion and the covariance. Given a compact convex set B⊂R

2 and a germ-grain model
Ỹ define

D = inf{r ≥ 0 : Ỹ ∩ rB �= /0},
Assuming that P(D > 0) > 0, the contact distribution function HB : [0,∞]→ [0,1]
with structuring element B is given by

HB(r) = P(D≤ r | D > 0), r ≥ 0.

A non-parametric estimator of HB for stationary Ỹ including edge-effect correction
is given by

ĤB(r) =
∑u∈L 1[u /∈ Ỹ , u+ rB⊂ S, (u+ rB)∩ Ỹ �= /0]

∑u∈L 1[u /∈ Ỹ , u+ rB⊂ S]
,

where L is a regular lattice of test points in R
2.

Recall that the following covariance of a planar random set Z̃ is defined as

Csp(u,v) = P(u ∈ Z̃, v ∈ Z̃), u,v ∈ R
2.

Additionally, one can consider a covariance function of two temporal arguments of
a space-time random set Z = {Z̃0:T} :

Cti(s, t) = P(u ∈ Z̃s, u ∈ Z̃t) s, t ∈ {0, . . . ,T}. (7.17)

Assuming planar stationarity of each Z̃t , the function given in (7.17) does not depend
on the choice of u∈R2. An unbiased estimator of the covariance Cti(s, t) considered
in (7.17) using the lattice L as above is given by
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Ĉti(s, t) =
∑u∈L 1[u ∈ Zs,u ∈ Zt ]

|L| . (7.18)

The checking of model fit using the contact distribution function is done for
several different times separately. On the contrary the covariance function given
in (7.17) is evaluated with respect to all pairs of times. In the case of conditional
independence the covariance is useless since then it is simply equal to the product
of area fractions at times s and t.

Finally the mean integrated square error (its theoretical counterpart is the squared
L2-distance)

MISE =
1
l

l

∑
j=1

T

∑
i=0

(x̂(m)
i, j − x(m)

i,true)
2, m = 1, . . . ,d, (7.19)

is a criterion for quality of any estimator x̂0:t of x0:t , where xi,true is the true value at
time i and l is the number of simulated realizations of Y (7.14).

Table 7.1 Square root of MISE computed for all three methods (MLE, PF and PMMH) used in
the simulation study. The estimates are based on l = 19 sets of characteristics

x(1) x(2) x(3)

MLE 2.646 1.086 1.551
PF 4.010 2.530 2.504

PMMH 1.081 0.936 0.593

7.3.4 Simulation Study

In a simulation study the suggested estimation methods MLE, PF and PMMH are
compared for systems of interacting discs. Let S be a square window of size 10×10,
ρ = 1 and let the distribution Q be uniform on [0.2,0.7]. Here 19 realizations of
the process Y = {Ỹ0:25} were simulated (with conditional independence) using the
model given in (7.9) with x0 = (1,−0.5,−1), a = (−0.07,0.035,0.07) and σ2 =
0.001. A typical simulation run is shown in Fig. 7.4.

In Table 7.1 the values of the MISE (7.19) for the methods based on PMMH, PF
and MLE are given. Here it is obvious that the best results are obtained by PMMH
which gives the smallest MISE for all parameters x(1), x(2) and x(3).

It can be seen in Fig. 7.5 that except for a few cases (x(2) at later times), all
the envelopes (given by the pointwise maximum and minimum of estimates over
19 realizations) cover the true evolution of parameters and the envelopes given by
PMMH are the narrowest. This means that the PMMH method gives the best results
in the sense of estimation variability.
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Fig. 7.6 Simulation with PMMH estimates. The full lines denote the estimate of the spherical con-
tact distribution function obtained from the realization R. The envelopes for the spherical contact
distribution function at times t = 0,5,10,15,20,25 are based on additional 19 realizations Rnew.

In order to check the model we used the PMMH estimation of x0:25 for a sin-
gle realization R from Fig. 7.4 to simulate a set Rnew of 19 new realizations of
{Ỹ0:25}. ForR the estimator ĤB(r) of the spherical contact distribution function was
computed at times t = 0,5,10,15,20 and 25. Edge-effects were avoided by the us-
ing subwindow [0.7,9.3]× [0.7,9.3]. The envelopes of ĤB(r), obtained from Rnew,
given by taken the pointwise maximum and minimum are presented in Fig. 7.6.

7.4 Continuous-Time Modelling

In this section we discuss a flexible class of space-time point process models with
continuous time: Lévy-driven Cox point processes. The driving field (i.e. the random
intensity function) of these processes can be expressed in terms of an integral of a
weight function with respect to a Lévy basis [170]. Depending on our choice of the
ingredients of the model we can obtain a wide range of stationary and nonstationary,
separable, partially separable and nonseparable models.

7.4.1 Space-Time Point Processes

First we recall the basic notions for space-time point processes. A more detailed
information on space-time point processes can be found in [101]. We consider a
space-time point process Y without multiple points as a random locally finite subset
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of R2×R, where a point (u, t)∈Y corresponds to an event u∈R2 in space occurring
at a time t ∈ R. We assume that the process Y has well defined first- and second-
order intensity functions λ and λ (2), i.e., for any non-negative Borel functions h1 on
R

2×R and h2 on (R2×R)× (R2×R) it holds that
∫

h1(u, t)λ (u, t)d(u, t) = E ∑
(u,t)∈Y

h1(u, t) ,

∫ ∫
h2((u, t),(v,s))λ (2)((u, t),(v,s))d(u, t)d(v,s) = E

�=
∑

(u,t),(v,s)∈Y
h2((u, t),(v,s)).

We call a space-time process Y stationary if its distribution is invariant with re-
spect to shifts in R

2×R, i.e., by stationarity we really mean space-time stationarity.
We will also consider nonstationary processes fulfilling the second-order intensity
reweighted stationarity assumption (SOIRS) introduced in [22], i.e., processes for
which the (non-stationary) pair correlation function

g((u, t),(v,s)) =
λ (2)((u, t),(v,s))
λ (u, t)λ (v,s)

, (7.20)

depends only on the difference (v−u,s− t). This is the most common type of non-
stationarity used for point processes [318].

The simplest way to obtain a SOIRS point process is to use location dependent
thinning. In particular let Y be a stationary point process on a domain D ⊂ R

d and
f : D→ [0,1] an non-stationarity function. Define the thinned point process Ỹ =
{y ∈ Y : Zy < f (y)} where the Zy are i.i.d. random variables uniformly distributed
on [0,1]. Then Ỹ is SOIRS with intensity function λ proportional to f and the same
pair correlation function g as the stationary process Y .

Exercise 7.3. Show that Ỹ is a SOIRS point process with intensity function λ pro-
portional to f and the same pair correlation function g as the stationary process
Y .

Besides the g-function we will also need the K-function in the sequel. The space-
time K-function [282] is defined by

K(r, t) =
∫

1(‖u‖ ≤ r, |s| ≤ t)g(u,s)duds, (7.21)

where ‖u|| denotes the length of the vector u. Thus for the stationary space-time
process Y , the K-function determines the number of further points of the process in
the ”cylinder" neighbourhood Br(u)× [s− t,s+ t] of a point of Y at the space-time
location (u,s) normalized by the intensity. For nonstationary SOIRS processes the
influence of the nonstationary first order intensity function is compensated by the
normalization of the g-function considered in (7.20). If Y is a Poisson process (i.e.
a Cox process with a nonrandom driving field, see Section 7.4.2) then g = 1 and
K(r, t) = 2πr2t.
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7.4.2 Space-Time Lévy-Driven Cox Point Processes

Cox point processes are natural models for clustered point patterns, see also [404].
A Cox point process on a set A ⊆ R

d is a doubly-stochastic process which condi-
tionally on the realization of the random driving field {Λ(x),x ∈ A} is a Poisson
process with intensity function Λ . Lévy-driven Cox point processes have a driving
field of the form

Λ(x) =
∫

A
k(x,y)L(dy),

where k is a kernel function and L is a nonnegative Lévy basis, i.e. an independently
scattered infinitely divisible random measure. For ease of exposition we restrict our-
selves to the case of a Lévy jump basis since in this case Λ has an equivalent shot-
noise representation [280]. A more detailed introduction into Lévy-driven Cox point
processes can be found in [170].

Thus a space-time Lévy-driven Cox point process (or a shot-noise Cox point
process) Y is a Cox process whose driving field Λ given by

Λ(u, t) = ∑
(r,v,s)∈ΠU

r k((u, t),(v,s)), (u, t) ∈ R
2×R, (7.22)

where ΠU is a Poisson measure on R
+×R

2×R with intensity measure U and k
is a smoothing kernel, i.e., a non-negative function integrable in both coordinates.
Under some basic integrability assumptions the driving field Λ considered in (7.22)
is an almost surely locally integrable field and Y is a well-defined Cox process (see
[170, 280] for details).

The shot-noise Cox process Y is a stationary space-time process if the kernel k is
just a function of the difference of the two arguments, i.e., k((u, t),(v,s)) = k((v−
u,s− t)), and the measure U has the form U(d(r,v,s)) = cμV (dr)d(v,s) where cμ >
0 and V may be an arbitrary measure on R

+ satisfying the integrability assumption∫
R+ min(1,r)V (dr)< ∞.

Exercise 7.4. Show that under the above stated assumptions, Y is a stationary space-
time process.

Since the class of stationary shot-noise Cox processes is still a very broad class
of models, let us discuss three particular examples suitable for parametric modelling
(for further examples see e.g. [170, Sect. 4]).

Example 7.1 (Poisson cluster process). If V (dr) = δ1(dr) is the Dirac measure
concentrated at 1, then Y is a Poisson cluster process with cluster centers forming a
stationary Poisson process on R

2×R with intensity cμ (given byΠU ). Conditionally
on the positions of the cluster centers the particular clusters are independent with
Poisson distributed numbers of points (with mean value

∫
k(v,s)d(v,s)), and the

points within the clusters are distributed independently according to the normalized
density k around the cluster center. Thus in this case we get a class of Neyman-Scott
processes (see e.g. [179, Sect. 6.3.2]). An example of a realization of such a point
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Fig. 7.7 Examples of realizations of different planar shot-noise Cox processes.

process (in the plane) can be seen in the left panel of Fig. 7.7. It is the well-known
Thomas process [393].

In fact all shot-noise Cox processes can be viewed as generalized cluster pro-
cesses. The measure V determines the distribution of the weight (i.e. the mean num-
ber of points) of the clusters. By choosing an appropriate measure V we can obtain
much more variable clustered point patterns than in Example 7.1.

Example 7.2 (Gamma shot-noise Cox process). Let V correspond to the gamma
Lévy basis V (dr) = r−1 exp(−θr) where θ > 0 is some parameter. Note that V is
not integrable in the neighbourhood of 0. Thus the corresponding shot-noise Cox
process Y is not a cluster process in the classical sense [179, Sect. 6.3] since the
number of "clusters" in any compact set is infinite. However because the weights
of the majority of the clusters are very small, Y is still a well-defined Cox process.
A realization of such a point process (in the plane) is shown in the middle panel of
Fig. 7.7. It has the same kernel k like in Example 7.1, but the higher variability in
the distribution of clusters is obvious.

Example 7.3 (Inverse-Gaussian shot-noise Cox process). Let V correspond to the
inverse-Gaussian Lévy basis V (dr) = 1√

π r−
3
2 exp(−θr) where θ > 0 is some para-

meter. Then we obtain even more variable point patterns as exemplified in the right
panel of Fig. 7.7.

The moments of shot-noise Cox processes are easily available [170, Sect. 4], in
particular for the intensity function we have

λ (u, t) = cμ
∫
R+

rV (dr)
∫
R2×R

k((u, t),(v,s))dvds, (7.23)

and for the pair correlation function
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g((u, t),(v,s))= 1+
cμ

∫
R+ r2V (dr)

∫
R2×R

∫
R2×R k((u, t),(w,τ))k((v,s)(w,τ))dwdτ
λ (u, t)λ (v,s)

.

(7.24)
For the parametric examples considered above both integrals with respect to V from
(7.23) and (7.24) are simple functions of the model parameters. To simplify the
notation we will write V1 =

∫
R+ rV (dr) and V2 =

∫
R+ r2V (dr) in the sequel.

Exercise 7.5. Derive the formulas (7.23) and (7.24).

When we apply the location dependent thinning with non-stationarity function
f (u, t) to a stationary space-time shot-noise Cox process specified by cμ ,V and k, a
new SOIRS shot-noise Cox process is obtained with the same cμ and V and a new
kernel function given by k̃((u, t),(v,s)) = f (u, t)k(v−u,s−t)). In the sequel we will
consider such SOIRS shot-noise Cox processes and we will prefer the parametri-
sation by the stationary kernel k(v− u,s− t) and the non-stationarity function f
(instead of using the non-stationarity kernel k̃).

7.5 Separability and Space-Time Point Processes

When it comes to statistical analysis of space-time point processes, separability is
a popular assumption. The obvious reason is the simplification of the inference: if
the process (or at least its moment measures) is separable the inference about the
quite complicated space-time model can be based on the properties of the lower
dimensional and easier to handle spatial and temporal marginal processes.

7.5.1 Separability

The strongest separability property may be defined by the requirement that the dis-
tribution of the space-time point process is equal to the product of the distributions
of the marginal processes. However this separability is equal to space-time indepen-
dence in the point process and does not provide very interesting models. Weaker
notions of separability are characterized by the product form of the factorial mo-
ment measures or, equivalently, by the product form of the intensity functions (of
different orders) when they are well-defined. This separability does not generally
imply independence of the spatial and temporal marginal processes however it can
still simplify inference. An excellent discussion of the meaning and testing of this
kind of separability can be found in [282].

Inspired by an example from [282] we define a nonstationary space-time shot-
noise Cox process with separable first-order intensity function but nonseparable
second-order intensity function. Thus the process has nontrivial space-time depen-
dencies but still the statistical inference may be based on the marginal spatial and
temporal processes, see Sect. 7.7.
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Thus let W × [0,T ] be a space-time observation window, where W ⊂ R
2 is a

compact set with area |W |> 0 and [0,T ] is a bounded time interval of length T > 0.
Let Y be a space-time SOIRS shot-noise Cox process observed on W × [0,T ] spec-
ified by the constant cμ > 0, the measure V on R

+, the non-stationarity function
f : W × [0,T ]→ [0,1] and the stationary kernel k(u, t) on R

2×R such that k inte-
grates to 1 (i.e., k is a probability density on R

2×R).
We assume that f (u, t) = f1(u) f2(t) where f1 : W → [0,1] is the spatial non-

stationarity function and f2 : [0,T ]→ [0,1] is the temporal non-stationarity function.
Moreover we assume maxW f1 = 1 = max[0,T ] f2, which implies that maxW×[0,T ] f =
1 and prevents overparametrisation of the model. Then for the (first order) intensity
function it follows from (7.23) that

λ (u, t) = f1(u) f2(t)cμV1, (u, t) ∈W × [0,T ], (7.25)

i.e., the intensity function is separable since it is a product of a function depending
on t and a function depending on u.

Furthermore, we assume a product structure of the kernel k, i.e., k(u,v) =
k1(u)k2(v) where k1 and k2 are density functions on R

2 and R, respectively.
From (7.24) it follows that

g((u, t)(v,s)) = 1+
V2

cμ(V1)2

∫
R2

k1(u−w)k1(v−w)dw
∫
R

k2(t− τ)k2(s− τ)dτ,
(7.26)

for (u, t),(v,s)∈W × [0,T ]. Obviously, neither g nor λ (2) have a space-time product
structure and the process Y has nontrivial spatio-temporal interactions.

7.5.2 Spatial and Temporal Projection Processes

Let us now investigate projections of the process Y onto the spatial and temporal
coordinates:

Yspace = {u : (u, t) ∈ Y ∩ (W × [0,T ])}, Ytime = {t : (u, t) ∈ Y ∩ (W × [0,T ])}.
(7.27)

Since we assume Y to be observed on a compact window W × [0,T ] the projection
processes are sufficient for the inference. We prefer to use Yspace and Ytime instead of
the full marginal processes on R

2 and R, respectively, since the marginal processes
may not have well-defined first- and second-order properties. On the other hand
from the existence of λ (2) it follows that for any pair of distinct points (u, t) �= (v,s)
from Y we have u �= v and s �= t with probability 1. Thus the processes considered
in (7.27) are well-defined almost surely simple point processes.

Moreover the intensity functions of the projection processes are obtained easily
from the intensity functions of Y by integration. Namely under our model assump-
tions it holds that
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λtime(t) = cμV1 f2(t)
∫

W
f1(w)dw, λspace(u) = cμV1 f1(u)

∫ T

0
f2(τ)dτ. (7.28)

For the pair correlation functions we get that

gtime(t,s) = 1+Ctime
V2

cμ(V1)2

∫
R

k2(t− τ)k2(s− τ)dτ, (7.29)

gspace(u,v) = 1+Cspace
V2

cμ(V1)2

∫
R2

k1(u−w)k1(v−w)dw, (7.30)

where the constants Ctime, Cspace are defined by

Cspace =
1

(
∫ T

0 f2(τ)dτ)2

∫ T

0

∫ T

0

∫
R

f2(s) f2(t)k2(s− τ)k2(t− τ)dτdsdt. (7.32)

Thus, eventhough neither λ (2) nor g of Y are separable, our model assumptions
imply an important simplification for gspace and gtime. The pair correlation function
of the temporal projection process depends on the "spatial" part of the model (i.e.
f1 and k1) only through the constant Ctime and, analogously, the pair correlation
function of the spatial projection process depends on f2 and k2 only through Cspace.

Formulas for the corresponding K-functions of the projection processes

Kspace(r) =
∫
‖u‖≤r

gspace(u)du, Ktime(s) =
∫ s

−s
gtime(t)dt,

are obtained by plugging-in formulas (7.29) and (7.30).

Exercise 7.6. Check the validity of formulas (7.28) – (7.32).

7.6 Ambit Sets and Nonseparable Kernels

Besides the separable kernel k(u, t) = k1(u)k2(t) introduced in Sect. 7.5.2, which
is popular mainly in epidemiological applications, a different class of space-time
Lévy-driven Cox processes may be defined by using so-called ambit sets. The idea
of ambit sets was used before e.g. in Lévy modelling of turbulence fields or in
growth models [212]. The dependency on the past at time t ∈R and position u ∈R2

may be modelled using an ambit set At(u) satisfying

(u, t) ∈ At(u) and At(x)⊆ R
2× (−∞, t].

See Fig. 7.8 for an illustration of the idea. The space-time processΛ(u, t) (the ambit
process) is then for each point (u, t) defined as an integral of the kernel k̃((u, t),(v,s))
over an attached ambit set At(u) with respect to the Lévy basis, i.e.

Ctime =
1

(
∫

W f1(w)dw)2

∫
W

∫
W

∫
R2

f1(u) f1(v)k1(u−w)k1(v−w)dwdudv, (7.31)



7 Space-Time Models in Stochastic Geometry 225

Fig. 7.8 Illustration of the
idea of an ambit set. Two
ambit sets At1 (u1), At2 (u2) are
shown.

t1

t2

u1 u2 R2

R

Λ(u, t) =
∫

At (u)
k̃((u, t),(v,s))L(d(v,s)).

Thus the ambit set At(u) determines the part of L that influences the behaviour of
the driving field Λ at (u, t). In the special case when At(u) = {(v,s) : (v−u,s− t) ∈
A0(0)} for all (u, t) the family of ambit sets is stationary.

Now, if we denote

k((u, t),(v,s)) = 1((v,s) ∈ At(u)) k̃((u, t),(v,s)), (7.33)

we have the same shot-noise Cox representation like in (7.22). When the ambit sets
are stationary and k̃ is a function of the difference (v− u,s− t), only so is k and
we obtain a stationary shot-noise Cox processes. The main difference between this
model and the one considered in Sect. 7.5.2 is, unless that A0(0) is a cylinder, the
kernel k cannot be a product of a spatial and a temporal kernel. On the other side, the
variety of dependence structures which can be modelled by using kernel functions
on ambit sets is much wider than what we can obtain by using separable kernels
from Sect. 7.5.1.

Example 7.4. Let the ambit sets be stationary and let k̃((u, t)(v,s)) = 1/|A0(0)|.
Then from (7.24) we get that

g((u, t),(v,s)) = 1+
V2

cμ(V1)2
|At(u)∩As(v)|
|A0(0)|2 ,

and in particular, g((u, t),(v,s)) = 1 when At(u)∩As(v) = /0.

The general formula for the pair correlation function of the SOIRS shot-noise
Cox process with kernel (7.33) is
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g((u, t),(v,s))= 1+
V2

cμ(V1)2

∫
A0(0)∩As−t (v−u)

k̃(w,τ)k̃(w−(v−u),τ−(s−t))d(w,τ),

(7.34)
and it is not possible to derive formulas similar to (7.29) and (7.30) which could be
used for estimation based on the projection processes. A formula for the K-function
is obtained by integration, using equation (7.21).

7.7 Estimation Procedures

For Lévy driven Cox processes (like for any other spatial or space-time Cox pro-
cesses) the likelihood function does not have a tractable form, but the moment cha-
racteristics have a much simpler form (cf. [286]). The preferred method for SOIRS
nonstationary Poisson cluster processes and also for Lévy-driven Cox processes is
thus a two-step estimation procedure with minimum contrast estimation based on
the g- or K-function in the second step [282, 319, 407].

In this section we discuss such an estimation procedure based on the space-time
K-function. The quality of the obtained estimates of course strongly depends on the
quality of the estimated empirical K-function. Because of the high dimensionality
of the space-time K-function this could be a problem for general SOIRS shot-noise
Cox processes like those in Sect. 7.6, where the nonparametric estimate of the K-
function is highly variable unless we use a very large amount of data. For the model
considered in Sect. 7.5.1 a better method was developed in [319] which uses the
particular structure of the model and thus enables to base the estimation on the
lower dimensional characteristics of the projection processes.

Let Y be a space-time SOIRS shot-noise Cox process observed on a window
W × [0,T ]. We assume that the measure V is parametrized by the parameter θ ∈
Θ ⊂R and the stationary kernel function k is parametrized by the (vector) parameter
ω ⊂ R

p and k integrates to 1. Furthermore, we assume separability of the non-
stationarity function f , i.e., f (u, t) = f1(u) f2(t) with maxW f1 = 1 = max[0,T ] f2.

The two-step estimation procedure goes as follows: In the first step the non-
stationary intensity function λ is estimated (either parametrically or nonparametri-
cally) and, in the second step, conditionally on the knowledge of λ the space-time
K-function is estimated from the data and used for the minimum contrast estimation.

7.7.1 Estimation of the Space-Time Intensity Function

For estimation of the space-time intensity function we may take advantage of the
separability (7.25) of the first-order intensity function. Namely from (7.25) and
(7.28) we get the equation
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λspace(u)λtime(t)= λ (u, t) ·
∫

W

∫ T

0
cμV1 f1(v) f2(s)dsdv= λ (u, t) ·E|Y ∩(W× [0,T ])|

(7.35)
for any (u, t) ∈W × [0,T ]. A natural (unbiased) estimator of the mean number of
points in Y ∩(W× [0,T ]) is the actual observed number of points in Y ∩(W× [0,T ]).
Therefore we define the estimate of the space-time intensity function λ̂ by

λ̂ (u, t) =
λ̂space(u)λ̂time(t)
|Y ∩ (W × [0,T ])| , (u, t) ∈W × [0,T ], (7.36)

where λ̂space and λ̂time are estimators of the intensity functions of the projection
processes. Thus the dimensionality of the problem is reduced and, moreover, λ̂ is a
ratio-unbiased estimator of λ if λ̂space and λ̂time are unbiased.

The intensities λ̂space and λ̂time may be estimated either nonparametrically or a
model for the thinning functions f1 and f2 may be specified. The nonparametric
estimation is usually implemented by the kernel estimate

λ̂space(u) = ∑
y∈Yspace

hb(u− y)/wb,W (y), u ∈W, (7.37)

where hb(u) = h( u
b )b−2 is a kernel with bandwidth b > 0, i.e., h is a given probabil-

ity density function. Then edge correction factors wb,W are defined by

wb,W (y) =
∫

W
hb(u− y)du,

so that
∫

W λ̂space(u)du = |Yspace| which implies the approximate unbiasedness of the
estimator λ̂space. An analogous kernel estimator can be used for λ̂time. For further
information about kernel estimation for point processes see e.g. [286, Sect. 4.3].

A disadvantage of kernel estimation is its dependence on the choice of the band-
width b — for different values of b we get estimators of different quality. The ac-
curacy of λ̂ , λ̂space and λ̂time is not important just for its own sake, but even more
because the inverted values of the intensity functions are used in the estimators of
the non-stationary pair-correlation function or the K-function in the second step.
High variability of the estimator of λ may make the estimators of the second-order
characteristics too unstable to provide good estimators of the model parameters in
the minimum contrast estimation of the second estimation step. Therefore it is rec-
ommendable to use the more stable parametric estimator of λ when possible (see
[22] for detailed discussion of this issue).

The most popular log-linear form of intensity function may be parametrized by

λspace(u) = λspace(cspace,βspace;u) = cspace exp(βspace ·Z(u)), (7.38)
λtime(t) = λtime(ctime,βtime; t) = ctime exp(βtime ·Z(t))), (7.39)
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where Z(u),u ∈ W, and Z(t), t ∈ [0,T ], are the spatial and temporal covariates,
βspace,βtime are the vector parameters and cspace,ctime > 0. When ignoring the inter-
actions in the first estimation step the non-stationarity parameters βspace,βtime may
be estimated by means of the Poisson likelihood score estimating function like in
[407]. For Yspace the Poisson loglikelihood score function is given by

U(cspace,βspace) = ∑
u∈Yspace

λ ′space(cspace,βspace;u)
λspace(cspace,βspace;u)

−
∫

W
λ ′space(cspace,βspace;v)dv,

(7.40)
where ρ ′space denotes the vector of first derivatives with respect to (cspace,βspace). The
estimators are obtained as solutions of the equation U(βspace,cspace) = 0. Analogous
formulas are used to estimate ctime and βtime. For further details, see e.g. Chap. 3.3.4
in [21].

7.7.2 Estimation by Means of the Space-Time K-Function

Having obtained an estimator of the intensity function λ̂ we are ready to estimate the
K-function. An approximately unbiased non-parametric estimator of the K function
is given by

K̂(r, t) =
1

|W ||T |∑
�=
(u,τ),(v,s)∈Y∩W×[0,T ]

1(‖u− v‖ ≤ r, |τ− s| ≤ t)

w1(u,v)w2(τ,s)λ̂ (u,τ)λ̂ (v,s)
, (7.41)

where ∑�= means the sum over pairs of distinct points and w1,w2 are edge correc-
tion factors. For the planar case w1 can be either the translation |W |∩|W+(u−v)|

|W | or an
isotropic edge correction factor (see [179, Chap. 4.3.3]). The temporal edge correc-
tion factor w2(τ,s) was defined in [103] as

w2(τ,s) = |{τ−|τ− s|,τ+ |τ− s|}∩ [0,T ]|/2.

Exercise 7.7. Show that even if we knew the intensity function λ exactly, then

K̂∗(r, t) =
1

|W ||T |∑
�=
(u,τ),(v,s)∈Y∩W×[0,T ]

1(‖u− v‖ ≤ r, |τ− s| ≤ t)
w1(u,v)w2(τ,s)λ (u,τ)λ (v,s)

,

would not be an unbiased estimator of K. How large is the "approximation error"
with which K̂∗(r, t) would be unbiased?

Let us denote α = V2
cμ (V1)2 . Assume moreover that the K-function is isotropic in

space, i.e., K(u, t) = K(‖u‖, t) (this is a quite frequent assumption in the literature).
Like in the purely spatial case (cf. [407]) the parameters ω and α may be estimated
as arguments of minima of the contrast
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∫ tmax

0

∫ rmax

0

((
K(r,s)

)1/2− (K̂(r,s)
)1/2

)2
drds. (7.42)

Here tmax, rmax are user-specified constants which determine the scale at which the
behaviour of K is of interest. They should be chosen close to the (assumed or ob-
served) interaction range of the point process, since using K for larger values only
increases variability of the estimators (of course the values of tmax and rmax will be
generally different). The exponent 1/2 is used for variance stabilization.

Since the parameters of the Lévy basis cμ , θ are nonidentifiable from a single
value α̂ we need to use the intensity (7.23) of the point process to get a second
equation. Namely the equation for the total number of points

|Y ∩W × [0,T ]|= cμV1

∫
W

f̂1(u)du
∫
[0,T ]

f̂2(t)dt. (7.43)

Here the estimates of the non-stationary functions f1 and f2 are obtained naturally
from the estimators of the intensity functions in the first step. Namely,

f̂1(u) = λ̂space(u)
/(

max
v∈W

λ̂space(v)
)
, f̂2(t) = λ̂time(t)

/(
max

s∈[0,T ]
λ̂time(s)

)
.

The advantage of the presented method is that it is simple and applicable to any
model described in Sect. 7.5 and 7.6. The disadvantage is that a very large amount
of data is needed to make the estimator of the space-time K-function stable enough
for the method to be practically useable. Therefore for the special model Sect. 7.5.1
the method discussed in Sect. 7.7.3 is preferable.

7.7.3 Estimation by Means of Projection Processes

For the model considered in Sect. 7.5.1, a more practical estimation procedure was
suggested in [319]. The first step of the estimation procedure is the same as above
but in the second step the projection processes are used for the estimation.

We assume the same parametrization as above and, moreover, let ω = (ω1,ω2)
where ω1 parametrizes the spatial kernel k1 and ω2 parametrizes the temporal kernel
k2. For the minimum contrast estimation the functions Ktime and gspace are used.
They are estimated from the data as follows:

K̂time(t) =
1
|T |

�=
∑

τ,s∈Ytime

1(|τ− s| ≤ t)

w2(τ,s)λ̂time(τ)λ̂time(s)
, (7.44)

and

ĝspace(u) =
�=
∑

z,y∈Yspace

hb(u− z+ y)

w1(z,y)λ̂space(z)λ̂space(y)
, (7.45)



230 Viktor Beneš, Michaela Prokešová et al.

where hb is a suitable kernel function with bandwidth b > 0 and w1,w2 are the same
edge correction factors as above.

The disadvantage of using ĝ is the necessity of choosing the bandwith b > 0. No
bandwiths are necessary for the estimation of K. This is the reason why minimum
contrast estimation with the K-function is more popular (see e.g. [282, 407]). How-
ever it was shown in [109, 155] that for the planar Neyman-Scott cluster processes
(both stationary and non-stationary) minimum contrast estimation with the pair cor-
relation function provides better estimators of the cluster parameters than minimum
contrast estimation with the K-function. Therefore the spatial clustering parameters
are estimated by minimizing the contrast

∫ rmax

0

((
gspace(u)

)1/2− (ĝspace(u)
)1/2

)2
du. (7.46)

Here rmax is a user-specific parameter and it is again preferable to choose it close
to the (expected) range of interaction of the underlying point process. Note that the
pair correlation function gspace has the same form as the pair-correlation function of
a Neyman-Scott process, see (7.30), and we minimize (7.46) with respect to ω1 and
the constant α1 =Cspace

V2
cμ (V1)2 .

For estimation of the temporal clustering parameters the minimum contrast esti-
mation with the K-function proved more stable than with the g-function, see [319].
Therefore ω2 and the constant α2 = Ctime

V2
cμ (V1)2 is estimated by minimizing the

contrast ∫ tmax

0

((
Ktime(s)

)1/2− (K̂time(s)
)1/2

)2
ds. (7.47)

The same holds for tmax like for rmax considered above.
With the knowledge of the estimators ω̂1 and ω̂2 we can plug them into formulas

(7.31), (7.32) and obtain an estimator of α = V2
cμ (V1)2 . Finally, estimators for θ and

cμ are obtained from α̂ and equation (7.43) for the total number of observed points.
Note that we can actually obtain two different estimators of α – one by using

α̂1 and Ĉspace and another by using α̂2 and Ĉtime. From the simulation results stated
in [319] it follows that α̂1 is more stable than α̂2 and consequently it leads to sub-
stantially better estimators of cμ and θ .

Example 7.5 (Estimation of non-stationary space-time gamma shot-noise Cox

processes). A SOIRS gamma shot-noise Cox process was simulated on the unit cube
W × [0,T ] = [0,1]3. The non-stationarity functions were log-linear, i.e.,

f1(u) ∝ exp(0.5u1−u2), f2(t) ∝ exp(0.7t),

the spatial kernel k2 was the density function of a zero-mean bivariate radially sy-
metric normal distribution N(o,σ2I) with scale parameter σ = ω2 and the temporal
kernel was rectangular, i.e., k1(t) = 1

t0
1(t ∈ [0, t0]) with scale parameter t0 =ω1. For

the gamma basis we have V1 = 1/θ and V2 = 1/θ 2. Thus α = 1/cμ .
Different values of the Lévy-basis parameters θ ∈ {1/20,1/30,1/40},
cμ ∈{50,75,100}, and of the kernel parameters σ ∈{0.01,0.02}, t0 ∈{0.015,0.03}
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were used. The average number of observed points ranged from 350 to 1400. The
estimation procedure described above with parametric estimation of the intensity
function was used.
For the three models with the maximal, minimal and moderate number of observed
points, Table 7.2 shows the results, the relative biases and relative mean squared
errors (MSE) of the estimated parameters (by relative we mean normalized by the
true value of the parameter). The full version of the simulation study can be found
in [319].

Table 7.2 Relative biases and MSE of the estimator of the non-stationary space-time gamma shot-
noise Cox process

true values rel bias rel MSE
cμ θ t0 σ ĉμ θ̂ t̂0 σ̂ ĉμ θ̂ t̂0 σ̂

50 1/20 0.015 0.01 0.169 0.104 -0.028 0.099 0.188 0.247 0.022 0.088
0.02 0.181 0.192 -0.033 -.0.047 0.116 0.325 0.021 0.010

0.03 0.01 0.179 0.110 -0.047 0.094 0.103 0.285 0.036 0.079
0.02 0.155 0.215 -0.062 -0.042 0.099 0.365 0.042 0.011

75 1/30 0.015 0.01 0.109 0.107 -0.027 0.087 0.045 0.189 0.015 0.073
0.02 0.122 0.167 -0.028 -0.043 0.070 0.209 0.014 0.011

0.03 0.01 0.097 0.116 -0.048 0.088 0.045 0.193 0.028 0.070
0.02 0.136 0.177 -0.054 -0.043 0.074 0.215 0.032 0.008

100 1/40 0.015 0.01 0.081 0.087 -0.031 0.017 0.032 0.144 0.013 0.032
0.02 0.089 0.117 -0.024 -0.031 0.057 0.164 0.012 0.010

0.03 0.01 0.070 0.105 -0.046 0.036 0.029 0.128 0.029 0.040
0.02 0.124 0.126 -0.054 -0.041 0.060 0.154 0.027 0.010

Exercise 7.8. For the situation of Example 7.5, determine estimators for the non-
stationarity parameters βspace,1, βspace,2, βtime? Derive formulas for Kspace, Ktime, as
functions of the parameters ω1,ω2,α . Hint. Compare the solution with [319].

We see from Table 7.2 that it is easier to estimate the kernel parameters t0 and
σ (they are estimated with higher precision) than the Lévy-basis parameters cμ and
θ . The quality of the estimates improves with a higher number of observed points
(i.e. intensity). It is interesting to note that the quality of the estimators of cμ , θ is
better for tighter spatial clusters (i.e. smaller σ ). But this is not so clear-cut for the
tightness of the temporal clusters (i.e. the value of t0). Related to this issue is the
question what is lost if we are using only the projection processes for inference, not
the whole space-time process? The problem is the overlapping of distinct clusters
when we only use projections. Thus pairs of points which in the space-time setting
could be far apart from each other may get very close in one or the other projection
process. This is where we loose efficiency when using only projection processes.
And the problem could be more serious for Xtime since we reduce two dimensions
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by the projection. Nevertheless, despite this problem, according to the simulation
results the estimators perform very well.
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Chapter 8

Rotational Integral Geometry and Local

Stereology - with a View to Image Analysis

Eva B. Vedel Jensen and Allan Rasmusson

Abstract This chapter contains an introduction to rotational integral geometry that
is the key tool in local stereological procedures for estimating quantitative prop-
erties of spatial structures. In rotational integral geometry, focus is on integrals of
geometric functionals with respect to rotation invariant measures. Rotational inte-
grals of intrinsic volumes are studied. The opposite problem of expressing intrinsic
volumes as rotational integrals is also considered. It is shown how to express in-
trinsic volumes as integrals with respect to geometric functionals defined on lower
dimensional linear subspaces. Rotational integral geometry of Minkowski tensors
is shortly discussed as well as a principal rotational formula. These tools are then
applied in local stereology leading to unbiased stereological estimators of mean in-
trinsic volumes for isotropic random sets. At the end of the chapter, emphasis is
put on how these procedures can be implemented when automatic image analysis
is available. Computational procedures play an increasingly important role in the
stereological analysis of spatial structures and a new sub-discipline, computational
stereology, is emerging.

8.1 Rotational Integral Geometry

Although the chapter is self-contained, it can also be read as a continuation of [230].
In particular, the notation used in [230] has been adopted in the majority of cases.
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Let Kd
conv denote the set of convex bodies (compact and convex sets) in R

d . In
this chapter, we will consider geometric identities of the following general form

∫
α(K∩L)dL = β (K), (8.1)

where α,β are geometrical functionals to be defined more precisely below, K ∈
Kd

conv is the spatial object of interest, L is the probe (line, plane, sampling window,
...) and dL is the element of a rotation invariant measure on the set of probes L. We
will mainly focus on geometric identities for k-dimensional planes L in R

d passing
through the origin o (L is a k-dimensional linear subspace in R

d , called a k-subspace
in the following). The choice of origin is an important question in applications; in
biomedicine, K is typically a cell and o is the nucleus or a nucleolus of the cell.

8.1.1 Rotational Integrals of Intrinsic Volumes

In this section, rotational integrals of intrinsic volumes will be studied. So α is an
intrinsic volume, determined on K ∩ L, cf. (8.1), and the aim is to find the corre-
sponding β . As we shall see, β involves weighted curvature measures.

Recall that for K ∈ Kd
conv , we can define d + 1 intrinsic volumes Vk(K), k =

0, . . . ,d. We have

Vd(K) = volume (Lebesgue measure) of K

Vd−1(K) = 2−1× surface area of K

V0(K) = the Euler-Poincaré characteristic of K

The interpretation of Vd−1(K) holds if K has non-empty interior. For non-empty
K ∈ Kd

conv , V0 is identically equal to 1. The intrinsic volumes can be extended to
larger set classes for which V0 contains interesting topological information.

The intrinsic volumes are examples of real-valued valuations on R
d . They are

motion invariant and continuous with respect to the Hausdorff metric. Recall that a
real-valued valuation on R

d is a mapping f :Kd
conv → R satisfying

f (K∪M)+ f (K∩M) = f (K)+ f (M),

whenever K,M,K∪M ∈ Kd
conv . Hadwiger’s famous characterization theorem states

that any motion invariant, continuous valuation is a linear combination of intrinsic
volumes. For more details, see [230, 347] and references therein.

For k = 0, . . . ,d−1, Vk(K) can be expressed as integral with respect to principal
curvatures. Assume for simplicity of presentation that K is a compact d-dimensional
C2 manifold with boundary. Then, for k = 0, . . . ,d−1,

Vk(K) =
1

ωd−k

∫
∂K

∑
|I|=d−1−k

∏
i∈I
κi(x)Hd−1(dx), (8.2)
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where ωk = 2πk/2/Γ (k/2) is the surface area of the unit sphere in R
k, ∂K is the

boundary of K, the sum runs over all subsets {1, . . . ,d − 1} with d − 1− k ele-
ments, κi(x), i = 1, . . . ,d− 1, are the principal curvatures at x ∈ ∂K and Hd−1 is
(d−1)-dimensional Hausdorff measure. For k = d−1, (8.2) reduces to Vd−1(K) =
1
2Hd−1(∂K).

The classical Crofton formula relates intrinsic volumes defined on k-dimensional
affine subspaces to intrinsic volumes of the original set

∫
Ed

k

Vj(K∩E)dE = ck,d−k+ j
j,d Vd−k+ j(K), 0≤ j ≤ k ≤ d, (8.3)

cf. [230, Theorem 2.4]. Here, Ed
k is the set of k-dimensional affine subspaces in R

d ,
called k-flats in the following. Any E ∈ Ed

k is of the form E = x+L, where L is the
parallel k-subspace and x ∈ L⊥. Furthermore, dE = νd−k(dx)dL, where dL is the
element of the rotation invariant probability measure on the set Ld

k of k-subspaces
in R

d and νd−k is the Lebesgue measure on L⊥. The explicit form of the known
constant is

ck,d−k+ j
j,d =

k!τk (d− k+ j)!τd−k+ j

j!τ j d!τd
,

where τd = πd/2/Γ (1+ d
2 ) is the volume of the unit ball in R

d, cf. [230, formula
(2.3)]. Note that for j = k, the Crofton formula relates Lebesgue measure on sections
K∩E to Lebesgue measure of the original set K. Likewise, for j = k−1, sectional
surface area is related to the surface area of K.

Note that in order to ease the reading of this chapter as a continuation of [230],
we use above and throughout this chapter the normalized version of the rotation
invariant measure on Ld

k which is a probability measure.

Exercise 8.1. Show that for d = 2 and k = 1, (8.3) reduces to
∫
E2

1

1(K∩E �= /0)dE =
1
π

length(∂K),

for j = 0, and ∫
E2

1

length(K∩E)dE = area(K),

for j = 1.

In rotational integral geometry, the interest is in rotational averages of intrinsic
volumes, i.e., integrals of the following form

∫
Ld

k

Vj(K∩L)dL, 0≤ j ≤ k ≤ d (8.4)

are considered. These integrals are valuations on R
d . They are rotation invariant, but

typically not translation invariant.
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Let us first consider the case j = k. This is the simplest case where Lebesgue
measure is determined on the section. For k = 1, . . . ,d, we have

∫
Ld

k

Vk(K∩L)dL =
Γ (d/2)

π(d−k)/2Γ (k/2)

∫
K
|x|−(d−k) νd(dx). (8.5)

The proof of this result is based on the Blaschke-Petkantschin formula. This formula
exists in many versions. Generally, the Blaschke-Petkantschin formula concerns a
decomposition of a product of Hausdorff measures, see [185, Theorem 5.6]. Here,
we only need the decomposition of a single copy of Lebesgue measure. In this case,
the Blaschke-Petkantschin formula takes the following form

∫
Rd

f (x)νd(dx) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫
Ld

k

∫
L
|x|d−k νk(dx)dL,

for any non-negative measurable function f on R
d, see [18 , Proposition 4.5]. For

k = 1 (line sections), the Blaschke-Petkantschin formula is simply polar decompo-
sition in R

d , see also [230, Sect. 2.1.2]. Note that for j = k = 0, (8.4) reduces to
∫
Ld

0

V0(K∩L)dL = 1K(o).

Example 8.1. For d = 3 and k = 2, we get, cf. (8.5),
∫
L3

2

area(K∩L)dL = β (K),

where

β (K) =
1
2

∫
K
|x|−1 ν3(dx).

The situation is much more complicated, when j < k. Assume for simplicity of
the presentation that K is a compact d−dimensional C2 manifold with boundary.
Then, under mild regularity conditions,

∫
Ld

k

Vj(K∩L)dL =
∫
∂K
|x|−(d−k) ∑

|I|=k−1− j
wI,k, j(x)∏

i∈I
κi(x)Hd−1(dx), (8.6)

0≤ j < k≤ d. The sum runs over all subsets of {1, . . . ,d−1}with k−1− j elements
and the wI,k, js are weight functions involving hypergeometric functions. This result
has been published in [187]. Here, the result was established for the more general set
class consisting of sets with positive reach. The proof involves extensive geometric
measure theory.

Very recently, the explicit form of the weight functions wI,k, j has been published
([12]). If K is a ball centred at the origin o, then the wI,k, js are constant and |x| is

5
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also constant when x ∈ ∂K. Generally, the wI,k, js depend on the angle between x
and the outer unit normal u(x) at x ∈ ∂K, and the angle between x and the subspace
spanned by the principal directions with indices outside I. In [12], it is shown for
j < k that

∫
Ld

k
Vj(K∩L)dL can also be expressed as an integral with respect to flag

measures.
The special case j = k− 1 gives rise to some simplifications of (8.6), see e.g.

[187, Section 4.1]. When j = k− 1, I = /0, the sum on the right-hand side of (8.6)
has only one element and the curvature product disappears. The following result
holds for the rotational average of the sectional surface area

∫
Ld

k

Vk−1(K∩L)dL

=
1
2

Γ (d/2)
π(d−k)/2Γ (k/2)

∫
∂K
|x|−(d−k)F− 1

2 ,
d−k

2 ; d−1
2
(sin2β (x))Hd−1(dx), (8.7)

where F is a hypergeometric function and β (x) is the angle between x ∈ ∂K and
the unique outer unit normal u(x) to the boundary at x ∈ ∂K (unique because of the
smoothness condition).

The class of hypergeometric functions is parametrized by three parameters and
has well-known series expansions as well as integral representations. In particular,
we have for 0 < β < γ the following integral representation

Fα,β ;γ(z) =
1

B(β ,γ−β )
∫ 1

0
(1− zy)−αyβ−1(1− y)γ−β−1dy. (8.8)

Example 8.2. For d = 3 and k = 2, we find, using (8.8),

F− 1
2 ,

d−k
2 ; d−1

2
(sin2β (x)) =

2
π

∫ π/2

0
(1− sin2β (x)sin2ϕ)1/2dϕ

=
2
π

E(|sinβ (x)|,π/2),

where E is the elliptic integral of the second kind. We find, cf. (8.7),
∫
L3

2

length(∂K∩L)dL = β (K),

where
β (K) =

1
π

∫
∂K
|x|−1E(|sinβ (x)|,π/2)H2(dx).

8.1.2 Intrinsic Volumes as Rotational Integrals

In this section, we want to study the ’opposite/inverse’ problem of determining the
measurement in the section with rotational integral equal to a given intrinsic volume.
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So now β is an intrinsic volume and the aim is to find α such that (8.1) is satisfied.
This problem has been studied in detail in [11, 154].

More specifically, we want to find a functional αk, j, satisfying the following ro-
tational integral equation

∫
Ld

k

αk, j(K∩L)dL =Vd−k+ j(K), (8.9)

k = 1, . . . ,d, j = 1, . . . ,k. From an applied point of view, this question is more in-
teresting than the one studied in the previous section, because αk, j is then the mea-
surement to be performed in the section. This measurement has a rotational average
equal to the intrinsic volume considered and can be used to estimate the intrinsic
volume in question. Further details will be given in Sect. 8.2.

Let us first consider a simple example in R
2 with d = 2 and j = k = 1. The aim

is then to find a functional α1,1 such that
∫
L2

1

α1,1(K∩L)dL = area(K). (8.10)

It is easy to find a solution to this problem. Consider an infinitesimal neigh-
bourhood of x ∈ X of area ν2(dx). Transforming to polar coordinates in R

2, x =
(r cosθ ,r sinθ), gives us the following decomposition of area measure in the plane

ν2(dx) = |r|dr dθ , (8.11)

r ∈ R, θ ∈ [0,π). Identifying θ with the line L passing through the origin, having
an angle θ with a fixed axis, we have dL = dθ/π , and (8.11) can equivalently be
expressed as

ν2(dx) = π |x|ν1(dx)dL.

It follows that
α1,1(K∩L) = π

∫
K∩L
|x|ν1(dx)

is a solution to (8.10).
A solution to the general problem of finding a functional αk, j satisfying (8.9) can

be derived by combining the classical Crofton formula with another version of the
Blaschke-Petkantschin formula, see [230, Theorem 2.7],

∫
Ed

r

f (E)dE =
ωd−r

ωk−r

∫
Ld

k

∫
EL

r

f (E)d(o,E)d−k dE dL, (8.12)

where 1 ≤ r < k ≤ d−1, f is a non-negative measurable function on Ed
r and EL

r is
the set of r-flats contained in L ∈ Ld

k .
The general solution to (8.9) is given in the proposition below.

Proposition 8.1 ([11]; [154]). Let M ∈ KL
conv be a compact and convex subset of

L ∈ Ld
k . Then, for k = 1, . . . ,d, j = 1, . . . ,k, the functional
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αk, j(M) =
ωd−k+1

ω1
(ck−1,d−k+ j

j−1,d )−1
∫
EL

k−1

d(o,E)d−kVj−1(M∩E)dE

is a solution to (8.9).

Proof. Using the Blaschke-Petkantschin formula (8.12), we find
∫
Ld

k

αk, j(K∩L)dL

=
ωd−k+1

ω1
(ck−1,d−k+ j

j−1,d )−1
∫
Ld

k

∫
EL

k−1

d(o,E)d−kVj−1(K∩L∩E)dE dL

=
ωd−k+1

ω1
(ck−1,d−k+ j

j−1,d )−1
∫
Ld

k

∫
EL

k−1

d(o,E)d−kVj−1(K∩E)dE dL

= (ck−1,d−k+ j
j−1,d )−1

∫
Ed

k−1

Vj−1(K∩E)dE

=Vd−k+ j(K).

At the last equality sign, we have used the Crofton formula (8.3). �

Exercise 8.2. Show that for d = 3 and j = k = 2, (8.9) reduces to
∫
L3

2

α2,2(K∩L)dL = ν3(K),

where, according to Proposition 8.1,

α2,2(K∩L) = π
∫
EL

1

d(o,E) length(K∩E)dE.

Show also that for d = 3, j = 1 and k = 2, (8.9) takes the form
∫
L3

2

α2,1(K∩L)dL =
1
2

surface area(K),

where, according to Proposition 8.1,

α2,1(K∩L) = 2π
∫
EL

1

d(o,E)1{K∩E �= /0}dE.

It was shown in [11] that for j = k and j = k− 1 the functional αk, j can be
considerably simplified and given in more explicit form. The result is presented in
the corollary below.

Corollary 8.1. Let the situation be as in Proposition 8.1. Suppose that M ∈KL
conv is

a compact k-dimensional C2 manifold with boundary. Then,

αk,k(M) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫
M
|z|d−k νk(dz)
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and

αk,k−1(M) =
1
2
π(d−k)/2Γ (k/2)

Γ (d/2)

∫
∂M
|z|d−kF− 1

2 ,− d−k
2 ; k−1

2
(sin2(β (z)))Hk−1(dz),

where β (z) is the angle between z ∈ ∂M and the unique outer unit normal u(z) to
the boundary of M at z ∈ ∂M.

Proof. Using that E = L+ x, where x ∈ L⊥, we find

Γ ((d− k+1)/2)
π(d−k+1)/2 αk,k(M)

=
∫
EL

k−1

d(o,E)d−kVk−1(M∩E)dE

=
∫
Lk

k−1

∫
L⊥
|x|d−kVk−1(M∩ (L+ x))ν1(dx)dL

=
∫
Lk

k−1

∫
L⊥

∫
M∩(L+x)

|x|d−k νk−1(dy)ν1(dx)dL

=
∫
Lk

k−1

∫
M
|p(z|L⊥)|d−k νk(dz)dL

=
∫

M
|z|d−k

(∫
Lk

k−1

|p(z|L⊥)|d−k

|z|d−k dL

)
νk(dz)

=
∫

M
|z|d−k

(
1

B( 1
2 ,

k−1
2 )

∫ 1

0
y

d−k−1
2 (1− y)

k−3
2 dy

)
νk(dz).

At the last equality sign, we have used [185, Proposition 3.9]. The result concern-
ing αk,k now follows immediately. The result concerning αk,k−1 is more difficult to
show. The details can be found in [11]. Let us here just give a proof sketch. In [11],
it is shown that

Γ ((d− k+1)/2)
π(d−k+1)/2 · ck−1,d−1

k−2,d ·αk,k−1(M)

=
1
2

∫
∂M

∫
Lk

k−1

|p(u(z)|L)| |p(z|L⊥)|d−k dLHk−1(dz).

The result now follows if we use the following result proved in [11]. For x and y unit
vectors in L ∈ Ld

k and non-negative integers n,m, we have
∫
Lk

k−1

|p(x|L)|m |p(y|L⊥)|ndL

=
ωk−1

ωk
B(

n+1
2

,
m+ k−1

2
)F−m

2 ,− n
2 ; k−1

2
(sin2∠(x,y)). �
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In this section we have found a functional αk, j satisfying the rotational integral
equation (8.9). A natural question to ask is whether αk, j is unique. If a solution is
seeked among rotation invariant functionals only, this is indeed the case for j = k =
1, cf. [231]. It is an open question whether uniqueness holds for general j and k.

8.1.3 Rotational Integral Geometry of Minkowski Tensors

In this section, we will extend the results obtained so far to tensor valuations. These
results are very recent ([13]). We will define so-called integrated Minkowski ten-
sors for which a genuine rotational Crofton formula holds. As we shall see, using
integrated Minkowski tensors, the two problems of finding (1) rotational averages
of intrinsic volumes and (2) expressing intrinsic volumes as rotational integrals can
be given a common formulation.

For non-negative integers r and s, k = 0, . . . ,d−1, the Minkowski tensors are

Φk,r,s(K) =
ωd−k

r!s!ωd−k+s

∫
Rd×Sd−1

xrusΛk(K,d(x,u)) (surface tensor)

Φd,r,0(K) =
1
r!

∫
K

xr νd(dx) (volume tensor)

Here, xr is the symmetric tensor of rank r determined by x, while xrus is the sym-
metric tensor product of xr and us. Furthermore, Λk(K, ·) is the kth support measure
or generalized curvature measure of K, k = 0, . . . ,d− 1. The support measure Λk
is concentrated on the normal bundle NorK of K which consists of all pairs (x,u)
where x ∈ ∂K and u is an outer unit normal vector of K at x. The rank of Φk,r,s(K)
is r+ s. If K is smooth such that there is a unique outer unit normal u(x) for each
x ∈ ∂K, then the surface tensors can be expressed as follows

Φk,r,s(K) =
1

r!s!ωd−k+s

∫
∂K

xru(x)s ∑
|I|=d−1−k

∏
i∈I
κi(x)Hd−1(dx),

k = 0, . . . ,d−1, r,s non-negative integers.
For r = s = 0, we have Φk,0,0(K) =Vk(K), the kth intrinsic volume, k = 0, . . . ,d.

Otherwise,Φk,r,s(K) carries information about the position, shape and orientation of
K, cf. e.g. [31, 32, 353, 354]. The normalized rank 1 tensorΦd,1,0(K)/νd(K) is equal
to the usual centre of gravity of K while Φd−1,1,0(K)/Vd−1(K) is a boundary centre
of gravity. Minkowski tensors of rank two and higher provide additional information
about the shape and the orientation of K. For further details, see [188] and references
therein.

For the development of rotational integral geometry of Minkowski tensors, we
will now introduce the integrated Minkowski tensors. These tensors are weighted
integrals of Minkowski tensors defined on lower-dimensional k-flats.
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Definition 8.1. For 0 ≤ j < k < d, t > k− d and non-negative integers r and s, the
integrated Minkowski tensors are

Φk,t
j,r,s(K) =

∫
Ed

k

Φ (E)
j,r,s(K∩E)d(o,E)t dE,

and
Φk,t

k,r,0(K) =
∫
Ed

k

Φ (E)
k,r,0(K∩E)d(o,E)t dE,

where the integrands Φ (E)
j,r,s(K∩E) and Φ (E)

k,r,0(K∩E) are calculated relative to E.

The condition t > k− d ensures that Φk,t
j,r,s(K) is well-defined. The integrated

Minkowski tensors defined in [13] are identical to those given in Definition 8.1, up
to multiplication by the constant

cd,k = ωd · · ·ωd−k+1/[ωk · · ·ω1].

There are a number of interesting special cases of integrated Minkowski tensors.
Using Definition 8.1 for r = s = t = 0 we have

Φk,0
j,0,0(K) = ck,d−k+ j

j,d Vd−k+ j(K), 0≤ j ≤ k < d (classical Crofton formula)

More generally, using [176, Theorem 2.4 and 2.5], we find

Φk,0
j,r,s(K) = cd,k, j,sΦd−k+ j,r,s(K), 0≤ j < k < d,s = 0,1, (8.13)

Φk,0
k,r,0(K) =Φd,r,0(K), 0 < k < d. (8.14)

Here,
cd,k, j,s = ck,d−k+ j

j,d
ω j+2

ω j+s+2

ωd−k+ j+s+2

ωd−k+ j+2
.

In [176], it is also shown for arbitrary non-negative integers s that Φk,0
j,r,s is a linear

combination of Minkowski tensors.
The integrated Minkowski tensors obey a genuine rotational Crofton formula.

Proposition 8.2 (Rotational Crofton formula). For 0 ≤ j < k < p ≤ d, t > k− d
and non-negative integers r and s, it holds that

Φk,t
j,r,s(K) =

ωd−k

ωp−k

∫
Ld

p

Φk,d−p+t
j,r,s (K∩L)dL. (8.15)

For j = k, (8.15) holds for s = 0.

Proof. We use (8.12) with r = k and k = p and find
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Φk,t
j,r,s(K) =

∫
Ed

k

Φ (E)
j,r,s(K∩E)d(o,E)t dE

=
ωd−k

ωp−k

∫
Ld

p

∫
EL

k

Φ (E)
j,r,s(K∩E)d(o,E)d−p+t dE dL

=
ωd−k

ωp−k

∫
Ld

p

Φk,d−p+t
j,r,s (K∩L)dL.

The second statement is proved in exactly the same manner. �

By choosing the parameters in the rotational Crofton formula appropriately, ei-
ther the left-hand side or the right-hand side of the formula becomes a classical
Minkowski tensor.

Corollary 8.2 (Rotational averages of Minkowski tensors). For s ∈ {0,1} and
t = p−d, it holds that

∫
Ld

p

Φ (L)
m,r,s(K∩L)dL = c−1

p,p−q,m−q,s
ωq

ωd−(p−q)
Φ p−q,p−d

m−q,r,s (K), (8.16)

for 0 < q≤ m < p≤ d. If m = p, then s = 0, and
∫
Ld

p

Φ (L)
p,r,0(K∩L)dL =

ωq

ωd−(p−q)
Φ p−q,p−d

p−q,r,0 (K), (8.17)

for 0 < q < p≤ d.

Proof. Combining (8.13) and (8.15), we find
∫
Ld

p

Φ (L)
m,r,s(K∩L)dL = c−1

p,p−q,m−q,s

∫
Ld

p

Φ p−q,0
m−q,r,s(K∩L)dL

= c−1
p,p−q,m−q,s

ωq

ωd−(p−q)
Φ p−q,p−d

m−q,r,s (K).

The second statement is proved in exactly the same manner. �

Note that for r = s = 0, the left-hand sides of (8.16) and (8.17) are rotational aver-
ages of intrinsic volumes, see Sect. 8.1.1 and [12, 187].

As we shall see, it is more interesting for applications in local stereology to try
to find the functional defined on the subspace Lp whose rotational average equals a
given classical Minkowski tensor. This problem can again be solved for s ∈ {0,1}
by combining the rotational Crofton formula with equations (8.13) and (8.14).

Corollary 8.3 (Minkowski tensors as rotational averages). For s ∈ {0,1} and t =
0, it holds that

Φd+m−p,r,s(K) = c−1
d,p−q,m−q,s

ωd−(p−q)

ωq

∫
Ld

p

Φ p−q,d−p
m−q,r,s (K∩L)dL, (8.18)
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for 0 < q≤ m < p≤ d. If m = p, then s = 0, and

Φd,r,0(K) =
ωd−(p−q)

ωq

∫
Ld

p

Φ p−q,d−p
p−q,r,0 (K∩L)dL, (8.19)

for 0 < q < p≤ d.

Proof. Combining (8.13) and (8.15), we find
∫
Ld

p

Φ p−q,d−p
m−q,r,s (K∩L)dL =

ωq

ωd−(p−q)
Φ p−q,0

m−q,r,s(K)

=
ωq

ωd−(p−q)
cd,p−q,m−q,sΦd+m−p,r,s(K).

The second statement is proved in exactly the same manner. �

Exercise 8.3. Show that for r = s = 0 and q = 1, the result in Corollary 8.3 reduces
to (8.9) with αk, j given in Proposition 8.1.

It is clearly of interest to study what kind of geometric information the integrated
Minkowski tensors carry about the original set K. In the proposition below, we give
such geometric interpretation for Φk,t

k,r,0 and Φd−1,t
d−2,r,0. For a proof, the reader is re-

ferred to [13].

Proposition 8.3. For 0 < k < d, t > k− d and any non-negative integer r, it holds
that

Φk,t
k,r,0(K) =

1
r!
Γ ( t+d−k

2 )Γ ( d
2 )

Γ ( t+d
2 )Γ ( d−k

2 )

∫
K

xr|x|t νd(dx). (8.20)

Furthermore, if K is a compact d-dimensional C2 manifold with boundary, then for
t > 0 and a non-negative integer r

Φd−1,t
d−2,r,0(K) =

ωd−1

2r!ωd
B
( t+1

2 , d
2

)

×
∫
∂K

xr|x|tF− 1
2 ,−

t
2 ; d−1

2
(sin2β (x))Hd−1(dx). (8.21)

Exercise 8.4. Show that the functional αk, j specified in Proposition 8.1 is a special
case of an integrated Minkowski tensor

αk, j(M) =
ωd−k+1

ω1
(ck−1,d−k+ j

j−1,d )−1Φk−1,d−k
j−1,0,0 (M),

M ∈ KL
conv , L ∈ Ld

k . Furthermore, show that if in Proposition 8.3 we insert these
parameter values, we get the result in Corollary 8.1.
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8.1.4 A Principal Rotational Formula

To the best of our knowledge, a principal rotational formula is still not available in
the literature. Focusing on intrinsic volumes, such a formula involves integrals of
the form ∫

SOd

Vk(K∩RM)dR, (8.22)

k = 0, . . . ,d, where SOd is the special orthogonal group in R
d , K and M are convex

and compact subsets of Rd , and dR is the element of the unique rotation invariant
probability measure on SOd . From an applied point of view such a formula is in-
teresting. Here, K is the unknown spatial structure of interest while M is a known
’sampling window’ constructed by the observer. The aim is to get information about
K from observation of the intersection of K with a randomly rotated version of M.
For k = d, (8.22) is equal to

1
ωd

∫ ∞

0
r−(d−1)Hd−1(K∩ rSd−1)Hd−1(M∩ rSd−1)dr.

To see this, we use that
∫

SOd

Vd(K∩RM)dR =
∫

SOd

∫
Rd

1K∩RM(x)νd(dx)dR

=
∫
Rd

1K(x)
[∫

SOd

1RM(x)dR
]
νd(dx).

Since
∫

SOd

1RM(x)dR =
∫

SOd

1M(R−1x)dR

=
∫

SOd

1M(Rx)dR

= Hd−1(M∩|x|Sd−1)/Hd−1(|x|Sd−1)

= |x|−(d−1)ω−1
d Hd−1(M∩|x|Sd−1),

we obtain
∫

SOd

Vd(K∩RM)dR

=
1
ωd

∫
K
|x|−(d−1)Hd−1(M∩|x|Sd−1)νd(dx)

=
1
ωd

∫ ∞

0
r−(d−1)Hd−1(K∩ rSd−1)Hd−1(M∩ rSd−1)dr.

At the last equality sign, we have used spherical coordinates and
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∫

Sd−1
1K(ru)Hd−1(du) = r−(d−1)Hd−1(K∩ rSd−1).

A result of a similar form involving two terms can be obtained for k = d− 1. The
case of general k is still open.

Exercise 8.5. Suppose that

Hd−1(∂ (K∩RM)) =Hd−1(∂K∩RM)+Hd−1(K∩R∂M),

for almost all R. Show under this assumption that
∫

SOd

Vd−1(K∩RM)dR =
1

2ωd
[
∫
∂K
|x|−(d−1)Hd−1(M∩|x|Sd−1)Hd−1(dx)

+
∫
∂M
|x|−(d−1)Hd−1(K∩|x|Sd−1)Hd−1(dx)].

8.2 Local Stereology

Local stereology is the branch of stereology, dealing with inference about K ∈Kd
conv

from sections K ∩ L, L ∈ Ld
k , 0 < k < d. Usually, the set class considered is not

restricted to compact and convex subsets of Rd , but we will here focus on such sets
for the sake of simplicity of presentation. A model example of application of local
stereology is the case when K is a biological cell, studied via sections of the cell
with planes passing through a reference point, usually taken to be the cell nucleus
or a nucleolus. In the following, we identify the reference point with the origin o.

The monograph [185] is an introduction to local stereology, where the focus is
on Hausdorff measures rather than on intrinsic volumes. In [185], the local stereo-
logical procedures are mainly presented from a design-based point of view, where
K is regarded as fixed, while the k-subspace L is isotropic random. See also the re-
cent publication [188] where this point of view is taken in relation to estimation of
Minkowski tensors.

In this chapter, we will take the dual model-based point of view. We let Z be an
isotropic random convex body in R

d and let V̄j(Z) = EVj(Z), j = 0, . . . ,d, denote its
mean intrinsic volumes. One of our aims is to use the rotational integral geometric
identities, developed in the previous section, to derive unbiased local stereological
estimators of the mean intrinsic volumes.

The results in Sect. 8.1.1 can be used to relate mean intrinsic volumes V̄j(Z∩L)
on a k-subspace L to properties of the original random set Z. For this purpose, let

Φ̄d(Z,A) = Eνd(Z∩A), A ∈ B(Rd),

Λ̄ j(Z,A×B) = EΛ j(Z,A×B), A ∈ B(Rd),B ∈ B(Sd−1),

j = 0, . . . ,d− 1. Here, Λ̄ j(Z, ·) is the mean jth support measure associated with Z.
Note that Φ̄d(Z, ·) has the following simple expression
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Φ̄d(Z,A) =
∫

A
pZ(x)νd(dx), A ∈ B(Rd),

where pZ(x) = P(x ∈ Z), x ∈ R
d . Using (8.5), we find for L ∈ Ld

k ,

V̄k(Z∩L) =
∫
Ld

k

EVk(Z∩M)dM

= E

∫
Ld

k

Vk(Z∩M)dM

= E
Γ (d/2)

π(d−k)/2Γ (k/2)

∫
Z
|x|−(d−k) νd(dx)

=
Γ (d/2)

π(d−k)/2Γ (k/2)

∫
Rd
|x|−(d−k) Φ̄d(Z,dx).

At the first equality sign, we have used that Vk and the distribution of Z is invariant
under rotations. Likewise, we find for L ∈ Ld

k , using (8.7),

V̄k−1(Z∩L)

=
Γ (d/2)

π(d−k)/2Γ (k/2)

∫
Rd×Sd−1

|x|−(d−k)F− 1
2 ,

d−k
2 ; d−1

2
(sin2∠(x,u))Λ̄d−1(Z,d(x,u)).

The result (8.6) can be used to get a general expression for V̄j(Z∩L), j = 0, . . . ,k−1,
as an integral with respect to Λ̄d−1(Z, ·).
Example 8.3. For d = 3 and k = 2, we get

area(Z∩L) =
1
2

∫
R3
|x|−1 Φ̄3(Z,dx)

and

length(∂Z∩L) =
2
π

∫
R3×S2

|x|−1E(|sin∠(x,u)|,π/2)Λ̄2(Z,d(x,u)),

see also Examples 8.1 and 8.2.

In order to derive unbiased local stereological estimators of mean intrinsic vol-
umes of the original set Z, we need the rotational integral geometric identities de-
rived in Sect. 8.1.2. Using Proposition 8.1, we find for L ∈ Ld

k

V̄d−k+ j(Z) =
ωd−k+1

ω1
(ck−1,d−k+ j

j−1,d )−1
∫
EL

k−1

d(o,E)d−kV̄j−1(Z∩E)dE, (8.23)

k = 1, . . . ,d, j = 1, . . . ,k. In the particular case j = k, we get, using Corollary 8.1,
the more explicit expression

V̄d(Z) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫
L
|x|d−k Φ̄k(Z∩L,dx). (8.24)
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Fig. 8.1 The nucleator esti-
mator requires the measure-
ment of the distances along
the line L1 from the origin
o to the boundary points x+
and x−. Here, a planar section
Z ∩ L of Z with a plane L,
containing L1, is shown.

Z L
L

1

It follows that

m(Z∩L) =
π(d−k)/2Γ (k/2)

Γ (d/2)

∫
Z∩L
|x|d−k νk(dx) (8.25)

is an unbiased estimator of V̄d(Z).

Example 8.4 (Local estimation of volume in R
3). Let d = 3 and k = 1. It follows

from (8.25) that for L1 ∈ L3
1

m(Z∩L1) = 2π
∫

Z∩L1

|x|2 ν1(dx) (8.26)

is an unbiased estimator of the mean volume V̄3(Z) of Z. This estimator is called the
nucleator in the applied literature ([159]) and will here be denoted by mcl1(Z ∩L1)
(the index cl1 stands for classical nucleator based on observation along 1 line). If
o ∈ Z, Z ∩L1 = [x−,x+] is a line segment containing the origin and (8.26) reduces
to

mcl1(Z∩L1) =
2π
3
(|x+|3 + |x−|3),

cf. Figure 8.1. Note that if Z is a ball centred at the origin o with random radius,
then mcl1(Z ∩ L1) is identically equal to the volume of Z. The estimator based on
observation along two perpendicular lines L1 and L′1 through o,

mcl2 =
1
2 [mcl1(Z∩L1)+mcl1(Z∩L′1)],

is widely used and highly cited in the biosciences.
For d = 3 and k = 2, (8.25) leads to an unbiased estimator of V̄3(Z) based on mea-

surements in a plane L through o. The estimator is called the integrated nucleator,
cf. [165], and takes the following form

mint(Z∩L) = 2
∫

Z∩L
|x|ν2(dx).

The reason why the estimator is called the integrated nucleator is the following result

x-

o

x+
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Fig. 8.2 For θ ∈ [0,2π), the
value hZ∩L(θ) of the support
function is the distance from
the origin o to the touching
dashed line.

Z L

mint(Z∩L) =
∫
LL

1

mcl1(Z∩L1)dL1, (8.27)

that can be shown, using polar decomposition in the plane L. Recently, in [90],
it has been shown that the integrated nucleator is identical to the so-called wedge
estimator. A discretized version of mint(Z ∩ L), called the isotropic rotator, was
introduced already in [186] together with another local stereological estimator of
volume, the so-called vertical rotator.

Example 8.5 (Local estimation of surface area in R
3). Let d = 3 and consider

estimators of the mean surface area S̄(Z) = 2V̄2(Z). Using (8.23) with d = 3, k = 2
and j = 1, we find that

V̄2(Z) = 2π
∫
EL

1

d(o,E)V̄0(Z∩E)dE.

It follows that
m(Z∩L) = 4π

∫
EL

1

d(o,E)1{Z∩E �= /0}dE

is an unbiased estimator of S̄(Z). If o ∈ Z, we can express m(Z ∩ L) in a simple
way by means of the support function hZ∩L of Z∩L. (The definition of the support
function is illustrated in Fig. 8.2.) We find

m(Z∩L) = 4π
∫ π

0

∫ hZ∩L(θ)

−hZ∩L(θ+π)
|r|dr

dθ
π

= 4
∫ π

0

[∫ hZ∩L(θ)

0
r dr+

∫ hZ∩L(θ+π)

0
r dr

]
dθ

= 2
∫ 2π

0
hZ∩L(θ)2 dθ .

This representation shows that m(Z∩L) is equal to four times the area of the flower
set associated with Z∩L, defined by

h ( )

o

Z L
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F(Z∩L) = {r(cosθ ,sinθ) |0≤ r ≤ hZ∩L(θ)}.

This result was first published in [87]. The estimator has accordingly been called
the flower estimator. In [88, 89], a discretization of m(Z∩L) based on measurement
of the support function in both directions along two perpendicular lines is further
discussed. The resulting discretized estimator is called the pivotal estimator and is
very efficient, see [10 ]. An alternative representation of m(Z∩L) may be obtained
by using the second result of Corollary 8.1 for d = 3 and k = 2 and the fact that

F− 1
2 ,− 1

2 ; 1
2
(sin2∠(x,u)) = cos∠(x,u)+∠(x,u)sin∠(x,u),

cf. e.g. [185, p. 146]. Using this, the close relation to another estimator of surface
area, the surfactor ([184]), may be seen. For further details, see [188, Section 5.1.4].

Using the results presented in Sect. 8.1.3, we can derive local stereological esti-
mators of Minkowski tensors. For simplicity, we will here focus on the case of vol-
ume tensors. A more comprehensive treatment is given in [188]. Combining (8.19)
and (8.20), we find for L ∈ Ld

k

Φ̄d,r,0(Z) =
π(d−k)/2Γ (k/2)

Γ (d/2)
1
r!

∫
L

xr |x|d−k Φ̄k(Z∩L,dx). (8.28)

For r = 0, the result reduces to (8.24). Using (8.28), we can construct local stere-
ological estimators of centres of gravity (r = 1) and volume tensors of rank two
(r = 2) that can be used to obtain information about orientation and shape of Z.
Below, we only consider the case r = 1.

Example 8.6 (Local estimation of centre of gravity in R
3). Let d = 3, r = 1 and

k = 1. Then, we find, using (8.28),

Φ̄3,1,0(Z) = 2π
∫

L
x |x|2 Φ̄1(Z∩L,dx).

It follows that
m(Z∩L) = 2π

∫
Z∩L

x |x|2 ν1(dx)

is an unbiased estimator of Φ̄3,1,0(Z). If o ∈ Z, then Z∩L is a line segment [x−,x+],
containing o. If e is a unit vector spanning L and pointing in the same direction as
x+, then

m(Z∩L) =
π
2
(|x+|4−|x−|4)e.

Note that if Z is centrally symmetric around o, then m(Z∩L) = o, always.

The local stereological estimators can be used to analyze a particle population,
using local sectional data, thereby providing information about the size, position,
orientation and shape of the particles. Let us assume that the particles may be de-
scribed by a stationary germ-grain model ∪∞

i=1(xi +Zi), where {xi} is a stationary

8
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Fig. 8.3 Sampling of particles with reference point in W . Sampled particles are shown grey.

point process in R
d and {Zi} are i.i.d. nonempty, compact and convex random sub-

sets of Rd , independent of {xi}. We let Z0 be a random set with the common distri-
bution of the Zis, denoted by Q. We will assume that Q is invariant under rotations
in R

d .
Our aim is to estimate the distribution of β (Z0) from local sectional data where

β may be an intrinsic volume or, more generally, a Minkowski tensor. Available for
observation is a sample of particles {xi +Zi : xi ∈W} collected in a d-dimensional
sampling window W , see Fig. 8.3. We will focus on the situation in optical mi-
croscopy, where it is possible to perform measurements on any virtual section Zi∩L,
L ∈ Ld

k . If α is a rotation invariant functional, satisfying
∫
Ld

k

α(K∩L)dL = β (K),

for any K ∈ Kd
conv , then

ᾱ(Z0∩L) =
∫
Ld

k

ᾱ(Z0∩M)dM

= E

(∫
Ld

k

α(Z0∩M)dM
)

= E(β (Z0)) = β̄ (Z0).

If we let N be the number of particles sampled in W , then

∑
xi∈W

α(Zi∩L)/N

xi

xi+Zi

W
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is a ratio-unbiased estimator of β̄ (Z0). If several sections are used per particle Zi, one
may estimate β (Zi) precisely and use the empirical distribution of {β̂ (Zi) |xi ∈W}
as an estimate of the distribution of β (Z0).

Local stereology of spherical particles with non-centrally placed reference point
has recently been studied in [395].

8.3 Variance Reduction Techniques

In the previous section, we have used rotational integral geometric identities to
develop local stereological procedures for estimating quantitative properties of a
spatial structure. The local stereological estimators can be applied without specific
shape assumptions but may have a large variance. In this section, we will discuss
procedures for reducing the variance of the estimators. Some of the procedures re-
quire the use of automatic image analysis. We will focus on the local stereological
estimators presented in Examples 8.4 and 8.5 of the previous section.

So, in this section, Z will be an isotropic random convex body in R
3. Let us first

consider estimation of the mean volume V̄3(Z) as described in Example 8.4. We let
L ∈ L3

2 be a plane through the origin and L1,L′1 ∈ LL
1 two perpendicular lines in L

through the origin. Since mcl1(Z ∩L1) and mcl1(Z ∩L′1) are identically distributed,
we have

varmcl2 = var( 1
2 [mcl1(Z∩L1)+mcl1(Z∩L′1)])

= 1
2 [varmcl1 + cov(mcl1(Z∩L1),mcl1(Z∩L′1))]

≤ varmcl1 .

It follows that the variance of the classical nucleator based on observation along
two perpendicular lines is smaller than or equal to the variance obtained when just
observing along one line.

Because of (8.27), the integrated nucleator mint may be regarded as a classical
nucleator based on measurements along an infinite number of lines. As a conse-
quence, the variance of mint is expected to be smaller than or equal to the variance
of mcl1 (and mcl2 ). A formal argument for this result goes as follows. The identity
(8.27) may be regarded as a conditional mean value result, viz.

mint = E(mcl1(Z∩L1) |Z),

where the mean value is conditional on Z and with respect to an isotropic line L1 in
the plane L through o, independent of Z. It follows that

varmcl1 = var(E(mcl1(Z∩L1) |Z))+E(var(mcl1(Z∩L1) |Z))
= varmint +E(var(mcl1(Z∩L1) |Z))
≥ varmint .
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Similarly, varmcl2 ≥ varmint .
Because of these variance relations, it appears as an obvious idea to use mint

instead of mcl1 or mcl2 . In contrast to the two latter estimators that requires a few
distance measurements by an expert, mint needs automatic segmentation of Z ∩L.
Let Z̃2 be an estimate of the section Z∩L, obtained by computerized image analysis.
The automatic nucleator is now defined as

maut = mint(Z̃2).

Since the segmentation may not be precise in all cases, an intermediate version may
be preferable. An expert supervises the process. If the segmentation is judged satis-
factory, maut is used, otherwise the expert intervenes and determine mcl2 manually.
This estimator is called the semi-automatic nucleator and is denoted msemi, cf. [165].

The estimators mcl1 , mcl2 and mint are unbiased while maut and msemi may be
biased. In fact, maut may be heavily biased if the segmentation is generally unsat-
isfactory while the bias of msemi is expected to be small because the segmented
section Z̃2 is only used when the segmentation is judged satisfactory by an expert.
Also, msemi is expected to be more precise (for instance, in terms of mean square er-
ror) than the best manual estimator mcl2 , because msemi only differs from mcl2 when
the segmentation is satisfactory and in these cases, the more precise estimator mint
is used.

In a concrete study of somastatin positive inhibitory interneurons from transgenic
GFP-GAD mice hippocampi, cf. [165], it was found that maut had a bias of 32%
while msemi only 0.4%. The relative error (

√
MSE / mean) was 0.58, 0.61 and 0.69

for mint , msemi and mcl2 , respectively.
A similar comparative investigation has been performed in [108] for the local

stereological estimators of mean surface area presented in Example 8.5. The esti-
mator that requires automatic segmentation of the planar section Z ∩L is here the
flower estimator. Semi-automatic estimation based on two types of discretizations
of the flower estimator, namely the pivotal estimator and the surfactor, has been in-
vestigated in [108]. For ellipsoidal particles, it is shown that the flower estimator is
equal to the pivotal estimator based on support function measurements along four
perpendicular rays. This makes the pivotal estimator a powerful approximation to
the flower estimator. An important decrease in workload may be obtained by using
the semi-automatic approach.

8.4 Computational Stereology

Stereology provides information about quantitative properties of spatial structures
from observations in lower-dimensional sections of the spatial structure under study.
A stereological procedure typically involves the following steps: (1) sampling of
blocks to be analyzed, (2) generation of sections through the blocks and (3) analysis
of the sampled sections ([17, Chap. 12]).
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Until recently, stereology has mainly been a ’manual’ discipline. Each of the
three steps mentioned above has been performed manually by experts and tech-
nicians. However, during the last decades, computers have become an increas-
ingly important tool in the stereological analysis of spatial structures, and a new
sub-discipline of stereology, computational stereology, is emerging. Computational
stereology may be defined as the sub-discipline of stereology that deals with the
design of computational procedures that can substitute manual procedures in one of
the three steps mentioned above ([326]).

It is expected that computational stereology will influence the practice in the lab-
oratory. For instance, computational stereology may imply faster execution times
compared to existing manual procedures or more efficient probes that require re-
liable automatic segmentation. Eventually, computational stereology may also af-
fect the advance of theoretical stereology. Computational procedures thus open up
the possibility for developing new stereological methods for estimating more com-
plicated quantities than scalar quantities such as volume, surface area, length and
number. One obvious example is the Minkowski tensors. On the other hand, a clear
definition of computational stereology may make developers of computational im-
age analysis tools realize the importance of 3D interpretations of 2D sections.

Before, images were typically recorded by systematically moving the microscope
stage and taking photographs (micrographs) of the generated fields of view in the
microscope. Subsequently, the analysis was performed manually on the generated
micrographs. Nowadays, computers are used in the acquisition of the images to be
analyzed by stereological methods. Such digital images are a prerequisite for any
procedure in computational stereology.

The appearance of whole slide scanners has been a major advance for compu-
tational stereology. Here, the operator delineates the region of interest (ROI) of the
sampled section and the whole slide scanner then generates a digital representation
of the ROI. It is important that the scanning and storage of the digital images of the
sampled sections can be performed without interference by the operator. As a con-
sequence, the operator has the freedom to choose an appropriate time for analysis
of the digital images, using developed software.

With digital representations of the sampled sections, it is possible to (1) extend
the class of stereological estimators that can be implemented and (2) develop effi-
cient subsampling of the sections under study.

An example of issue 1 relates to the disector that is used for estimating particle
number ([230, p. 41 - 42]). It is here needed to identify particles in pairs of sections.
The manual alignment of the pair of sections may be very time consuming. It is
therefore an important advance that this alignment can be performed automatically
on the basis of a digital representation of the two sections.

With a digital representation of the sampled sections, it is also possible to im-
plement intelligent non-uniform sampling of fields of view within the section that
may result in an important reduction in the variance of stereological estimators (is-
sue 2). The standard procedure has until recently been to use systematic uniform
random sampling of fields of view. If the particles (cells) of interest are distributed
in an inhomogeneous pattern in the sampled section, this approach may, however,
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be rather inefficient. In such cases, many fields of view will contain no or very few
cells, if systematic uniform random sampling is used. The idea is to use instead non-
uniform sampling of fields of view with a probability of selecting a particular field
of view that is roughly proportional to the number of cells seen in the field of view.
Let the ith field of view contain yi cells, i = 1, . . . ,N, where N is the total number of
fields of view. Let S⊂ {1, . . . ,N} be the random sample of fields of view and pi the
probability that the ith field of view is included in the sample. Provided that pi > 0
whenever yi > 0,

∑
i∈S

yi/pi

is an unbiased estimator of the total number of the cells in the section. Typically, the
sampling probability pi is determined automatically from a scan of the section at
low magnification, using a colour proportion that is roughly proportional to yi while
the actual counts in the sampled fields of view are determined by an operator at high
magnification. If pi is exactly proportional to yi, this estimator always gives the right
answer. In empirical studies, increase in efficiencies of a factor of 10 compared
to ordinary systematic uniform random sampling has been found, see [164] and
references therein. In the applied stereological literature, the estimator is called the
proportionator.

Until recently, there have only been limited interactions between researchers in
stereology and image analysis. One exception is [305]. This situation is very unfor-
tunate, at least for the stereologists, because image analysis may actually be required
for implementation of advanced stereological procedures. One example is the semi-
automatic procedures described in the previous section of this chapter.
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Chapter 9

An Introduction to Functional Data Analysis

Ulrich Stadtmüller and Marta Zampiceni

Abstract In this chapter we will give an introduction to the methods in functional
data analysis. We will present the basics from principal component analysis for
functional data together with the functional analytic background as well as the data
analytic counterpart. As prerequisites we give an introduction to presentation tech-
niques of functional data and some smoothing techniques. A few asymptotic results
are presented as well.

9.1 Some Fundamental Tools

The aim of this contribution is to introduce into techniques which are helpful if
one wants to work with models which use data consisting of functions or paths of
stochastic processes. As further reading we suggest the book [324]. In particular the
question of presenting this type of data and to do some descriptive statistics is well
presented there and omitted in this short presentation.

9.1.1 Basic Statistics

Let {X(t), t ∈ T } be a stochastic process over a probability space (Ω ,A,P) and
an index set being a compact interval T ⊂ R (or T ⊂ R

d for some d > 1). We
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call a realization of a stochastic process a path. In the following, we will focus on
stochastic processes with continuous paths, satisfying the following basic condition:

∫
T

E(X2(t)) dt < ∞ , (9.1)

which implies that almost all paths are square integrable functions.
Property (9.1) allows us to define mean-value, variance and covariance function

of such stochastic processes. For s, t ∈ T , we will use the following notation:

μ(t) = μX (t) = EX(t),

σ2(t) = σ2
X (t) = varX(t),

C(s, t) = covX (s, t) = cov(X(s),X(t)),

corrX (s, t) =
C(s, t)
σ(s)σ(t)

=
covX (s, t)
σX (s)σX (t)

.

These are the basic quantities we want to work with. To do statistical analy-
sis we assume throughout this chapter that there are given n independent copies
X1(t), . . . ,Xn(t), t ∈ T of the process {X(t)}. Based on these, the previously intro-
duced moment-functions can be estimated (for s, t ∈ T ) by the well-known standard
estimators

1
n

n

∑
i=1

Xi(t) (9.2)

σ̂2(t) =
1

n−1

n

∑
i=1

(Xi(t)− X̄(t))2 (9.3)

Ĉ(s, t) =
1

n−1

n

∑
i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t)) (9.4)

ĉorr(s, t) =
Ĉ(s, t)
σ̂(s)σ̂(t)

. (9.5)

The first, obvious, problem with functional data is intrinsic in its nature: it is im-
possible to record the whole graph of a continuous function. So we do actually not
observe the realization of {Xi(t)}, but rather a vector

Xi = (Xi(ti,1), . . . ,Xi(ti,mi))
� ∈ R

mi (9.6)

of measurements of {Xi(t)} taken at the “time points"
If we are lucky, the recording times are the same for the whole sample of func-

tional data (paths) X1(t), . . . ,Xn(t). In this case, one can compute the estimators
considered in (9.2) - (9.5) pointwise at the given, common, time points and then re-
construct the whole functions by linear interpolation or some smoothing technique.
We will briefly discuss some of these techniques in Sect. 9.1.2.

(t) = (t) =μ̂ X̄

t , . . . , t ii,1 i,m .
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Often, the measurements can be affected by some additive noise. The recordings
would then have the following form

Yi, j = Xi(ti, j)+ εi, j, j = 1, . . . ,mi i = 1, . . . ,n . (9.7)

For j = 1, . . . ,mi and i = 1, . . . ,n ,, we assume that the noise terms εi, j are i.i.d.
random variables, all independent of Xi, and such that Eεi, j = 0 and varεi, j = σ2

ε .
For the moment let us focus on the case with noise where all the n paths of a

stochastic process are recorded at t1, . . . , tm and take a closer look at the (pointwise)
estimators of mean and covariance. Of course, we will have somewhat different
situations, depending on whether the measurements were altered by some error or
not.

For the estimator of the mean, one obtains

μ̂X (t j) =
1
n

n

∑
i=1

Xi(t j), j = 1, . . . ,m,

μ̂Y (t j) =
1
n

n

∑
i=1

Yi, j, j = 1, . . . ,m.

in the cases considered in (9.6) and (9.7), respectively. Both estimators are consis-
tent, since

E μ̂X (t j) = μX (t j), var μ̂X (t j) =
1
n
σ2

X (t j)
n→∞−→ 0,

E μ̂Y (t j) = μX (t j), var μ̂Y (t j) =
1
n
(σ2

X (t j)+σ2
ε )

n→∞−→ 0.

The discrete estimator of the covariance function can be computed for k, l =
1, . . . ,m as follows. Let

ĉovX (tk, tl) =
1

n−1

n

∑
i=1

(Xi(tk)− μ̂X (tk))(Xi(tl)− μ̂X (tl)) ,

ĉovY (tk, tl) =
1

n−1

n

∑
i=1

(
Yi,k− μ̂Y (tk)

)(
Yi,l− μ̂Y (tl)

)
.

Exercise 9.1. Show that E ĉovY (tk, tl) = covX (tk, tl)+ δk,lσ2
ε +O(1/n), where δk,�

denotes Kronecker’s delta.

The result of Exercise 9.1 implies that this estimator for the covariance function
is asymptotically unbiased only in the first case.

Remark 9.1. A covariance function C : T 2 → R is a positive semidefinite kernel
function (see Sect. 9.2.1 below). Therefore, for each m ∈ N and for all the points
t1, . . . , tm ∈ T , the matrix C = (C(tk, tl))

m
k,l=1 is positive semidefinite as well. The

same holds for the empirical covariance function, and for the matrix
(
Ĉ(ti, t j)

) ∈
R

m×m. However, if we reconstruct a covariance function from the latter using some
smoothing approach we are no longer sure that this property still holds.
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9.1.2 Smoothing Techniques

A common problem in statistics is the following: Let us assume that the data
(y1, t1), . . . ,(yk, tk) are given, representing the values of an unknown, smooth func-
tion m at points ti (i = 1, . . . ,k ). Furthermore, the values yi contain some additive
noise. We are then in the framework of a nonparametric regression model

Yi = m(ti)+ εi , i = 1, . . . ,k. (9.8)

The design points ti may be deterministic (if the experimenter can control the
design), in this case we assume that Eεi = 0 and E(εiε�) = σ2 δi,� in particular
EYi = m(ti) , or random, then the regression curve m(·) is the conditional expecta-
tion m(t) = E(Y | X = t), with ε = Y −E(Y | X) and hence E(ε | X) = Eε = 0 and
var(ε | X = t) = σ2(t) and typically it is assumed that (Yi,Xi)

n
i=1 are iid random

variables and E(Y 2)< ∞ . In either case it is assumed that m(·) is a smooth function
on some interval I and the task is to estimate m(·) from the data.

In functional data analysis, too, the first step is generally to reconstruct smooth
functions (paths) from underlying discrete observations. We will now discuss some
possible approaches to handle this situation.

9.1.2.1 Kernel Estimators

A first classical approach to estimate a function f or its derivatives f (ν) is based on
kernel approximation operators.

Definition 9.1. For any given μ,ν ∈ N, μ > ν , the function K : R→ R is called a
kernel function of order (ν ,μ) if K(x) ∈ L1(R)∩L2(R) , xμK(x) ∈ L1(R) and the
following equations hold for �≤ μ:

∫
R

x�K(x)dx =

⎧⎪⎨
⎪⎩

0, if 0≤ � �= ν < μ,
(−1)ν ν!, if �= ν ,
cμ ∈ R\{0}, if �= μ,

The index ν refers to the derivative one is interested in, μ is connected with
the smoothness of the function to be considered. Though there are some kernel
functions defined on the whole real line, the most common ones are polynomials
with compact support [−1,1]. Let us consider some examples, see also Fig. 9.1.

1. Kernel functions of order (0,2)

a. K(x) = 1
2 1[−1,1](x) (uniform kernel);

b. K(x) = 3
4 (1− x2)1[−1,1](x) (Epanechnikov kernel);

c. K(x) = 15
16 (1− x2)21[−1,1](x) (biweight kernel);

d. K(x) = 1√
2π

e−
1
2 x2

, the density function of the standard normal distribution.
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Fig. 9.1 Examples of kernel functions

Exercise 9.2. Consider the function f (x) = 15
32 (3+ ax2 + 7x4)1[−1,1](x). For which

values of a is it a kernel function? What is its order (ν ,μ) then?

Given an appropriate real function f ∈ L2(R), the use of kernel functions allows
to obtain an approximation for the function itself and its derivatives, sharing smooth-
ness properties of the kernel function. Using a kernel function of order (ν ,μ) and
some parameter h > 0 (the bandwidth) we consider the approximation

f̄ (ν)(x;h) =
1

hν+1

∫
R

K
(

x− t
h

)
f (t)dt

for the ν−th derivative f (ν) .

Example 9.1. Let (X1, . . . ,Xn) be a sample of size n for a distribution with density
function f being μ−times differentiable. Then one can estimate the density function
by f̂n or its ν−th derivative, using a kernel estimator of order (0,μ) or (ν ,μ) resp.,
in the following way:

f̂ (ν)n (x;h) =
1

hν+1

∫
R

K
(

x− t
h

)
dF̂n(t) =

1
nhν+1

n

∑
j=1

K
(

x−X j

h

)
.

Lemma 9.1. Let K be a kernel function of order (ν ,μ) with compact support and
let f ∈Cμ ((x0− ε,x0 + ε)) for some ε > 0 (i.e.: f has μ continuous derivatives in

some ε-neighbourhood of x0). Then, E f̂ (ν)n (x;h) = f̄ (ν)(x;h) and, as h→ 0+,

2. Kernel function of order (1,3): a. (x)  = 15
4 (x3 − x)1[−1,1](x) K
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(9.9)

For details, see e.g. Sect. 4.1 in [290], or Chap. 3.3 in [369]. As a consequence,
we see that the estimator f̂ (ν)n (x;h) is biased but asymptotically unbiased as h→ 0+ .
However, the variance is increasing with h→ 0+ since as n→∞ and h is depending

Let us go back to the regression problem (9.8) stated at the beginning of this
section. A possible way to deal with it is to use kernel-based estimators. These are
linear estimators with respect to the data, having the form ∑n

j=1 Wj,n(x)Yj, and the
weights Wj,n depend on some kernel function and a smoothing parameter. Let us
focus on two examples.

The Gasser-Müller estimator. Suppose that 0 ≤ t1 < .. . < tn ≤ 1 are fixed time
points, known a priori. Put s0 = 0, sn = 1 and s j = (t j+1 + t j)/2 for j = 1, . . . ,n−1.
By choosing the weights

Wj,n(x;h) =
1
h

∫ s j

s j−1

K
(

x− t
h

)
dt,

with a kernel function K of order (0,μ), one obtains the so-called Gasser-Müller
estimator for the regression function m, i.e.

m̂n(x;h) =
n

∑
j=1

1
h

∫ s j

s j−1

K
(

x− t
h

)
dt ·Yj. (9.10)

The Nadaraya-Watson estimator. We will explain this estimator in the case of a
random design. Let the recording time points X j be i.i.d., where. X1 ∼ Unif(0,1).
Recall that, in this case, m(x) = E(Y | X = x). Then, taking the weights

Wj,n =
K
(

x−X j
h

)

∑n
ν=1 K

( x−Xν
h

) ,
leads to the Nadaraya-Watson estimator

m̂n(x;h) =
∑n

j=1 K
(

x−X j
h

)
Yj

∑n
ν=1 K

( x−Xν
h

) , (9.11)

see also Fig. 9.2.
For both estimators the bandwidth h > 0 has to be chosen appropriately.

Theorem 9.1 ([290]). Let K be a kernel function of order (0,2) and m a real-valued
function in C2([0,1]) (twice continuously differentiable on the compact interval
[0,1]). Suppose to have n equidistant deterministic recording times on the inter-

f̄ (ν)(x;h) = f (ν)(x)+ cμ
f (μ)

μ!
(−1)μhμ−ν +o(hμ−ν) .

on n such that h = hn with hn → 0+ but nh → 0, then var f̂ (x;h) ∼ c/nh2ν+1

c > 0 . In practice, the difficulty is to choose h appropriately.with an explicit constant

2ν+1

(x)
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Fig. 9.2 Left panel: Original curve. Right panel: Nadaraya-Watson kernel estimator with Gaussian
kernel and bandwidth h = 0.75 (thick line) and quadratic least squares regression line (thin)

val [0,1] and a positive null-sequence h = (hn)n∈N such that nhn→∞ as n→∞. Let
m̂n be the Gasser-Müller estimator. Then, for x ∈ (0,1) and n→ ∞,

E m̂n(x;hn) = m(x)+
1
2

m′′(x) · c2 ·h2
n +o

(
h2

n
)
+O

(
1
n

)
,

var m̂n(x;hn) = σ2
ε
‖K‖2

2
nhn

+o
(

1
nhn

)
.

It is also possible to obtain the corresponding expansion of the expectation and
variance of the Nadaraya-Watson estimator.

Both estimators depend heavily on a suitable choice of the bandwidth. Further-
more, both estimators are in general not consistent at the boundary points x ∈ {0, 1}
and for a finite sample size one has to pay attention in a neighborhood of these
points.

9.1.2.2 Local Polynomials

Linear regression is the simplest regression model. Then, the function m in problem
(9.8) is assumed to be a straight line β0+β1x , and the unkwown coefficients β0 and
β1 can be estimated for instance via the method of least squares. Since any smooth
function looks locally almost like a straight line, we can use linear regression but
just locally in almost every situation.

Suppose we have a random design, X1, . . . ,Xn, with iid measuring points Xi ∼ f
and supp( f ) = I. Then we can perform local linear regression by using a kernel K
of order (0,2) with a bandwidth h > 0 to select and weight the local observations
around each point x ∈ I, where we solve the minimization problem
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argmin

{
β0,β1 ∈ R :

n

∑
j=1

(Yj−β0−β1(x−X j))
2 K

(
x−X j

h

)}
,

and receive the estimators β̂0(x;h) and β̂1(x;h) which, again, depend on the band-
width h . For fixed x ∈ I we have the estimates m̂(x;h) = β̂0(x;h) and m̂′(x;h) =
−β̂1(x;h).

Another possibility is to use local polynomials of higher order than one, see Fig.
9.3. Then, one solves the following problem

argmin

{
β0, . . . ,βp ∈ R :

n

∑
j=1

(Yj−β0−β1(x−X j)
1− . . .

−βp(x−X j)
p)2K

(
x−X j

h

)}
,

obtaining approximations for the first p derivatives of m (if they exist), by

m̂(ν)(x;h) = (−1)νν!β̂ν(x;h) ν = 0, . . . , p.

For a fixed x ∈ I the previous minimization problem is a weighted least-squared
minimization problem with weight matrix

Wx = diag
(

K
(

x−X1

h

)
, . . . ,K

(
x−Xn

h

))
∈ R

n×n

and design matrix

Ax =

⎛
⎜⎝

1 (x−X1) . . . (x−X1)
p

...
...

...
1 (x−Xn) . . . (x−Xn)

p

⎞
⎟⎠ ∈ R

n×(p+1).

Minimizing (Y−Axβ )�Wx(Y−Axβ ) with respect to the parameter vector β ∈Rp+1,
one obtains the estimator

β̂ = (A�x WxAx)
−1A�x WxY,

if A�x WxAx is invertible. Therefore, the estimators of the first p derivatives of m

are again linear in Y , as m̂(ν)(x;h) = (−1)νe�ν ν!β̂ = e�ν SxY , ν = 0, . . . , p with the
corresponding matrix Sx . Let us take a closer look at the two most common cases.

Exercise 9.3. Show that, if p = 0, then β̂0(x;h) is the Nadaraya-Watson estimator
given in (9.11). Hint. Show first that

(A�x WxAx)
−1 =

(
n

∑
i=1

K
(

x−Xi

h

))−1

and A�x WxY =
n

∑
i=1

K
(

x−Xi

h

)
Yi.
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Exercise 9.4. Show that if p = 1, then

m̂(x;h) =
1

nh

n

∑
j=1

(
s2,n(x;h)− s1,n(x;h)(x−X j)

)
K
(

x−X j
h

)
Yj

s2,n(x;h)s0,n(x;h)− s2
1,n(x;h)

,

where sν ,n(x;h) = 1
nh ∑n

j=1(x−X j)
νK

(
x−X j

h

)
is the so-called ν−th local empirical

moment.

Fig. 9.3 Local polynomial regression line for different orders, compared with the actual function
m (thin line). From top left to bottom right, the order of the polynomial regression is 0,1,3 and 6,
while the bandwidth is h = 0.2,0.2,0.4 and 0.7. A Gaussian kernel was used for all the estimators.

Theorem 9.2 ([370]). Let p = 1 , fX ,Y ∈C2(R
2), E | X |,E | Y 2 |< ∞, K be a kernel

of order (0,2) and x0 such that fX (x0)> 0. Then with hn as before it holds as n→∞
that

E(m̂n(x0;hn) | Xν = xν , ν = 1, . . . ,n) = m(x0)+
1
2

m(2)(x0) · c2 ·h2
n +o

(
h2

n
)
,

var(m̂n(x0;hn) | Xν = xν , ν = 1, . . . ,n) = σ2(x0)
‖K‖2

2
nhn fX (x0)

+o
(

1
nhn

)
.
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Besides the simple idea they are based on, local polynomials present another big
advantage: if the function f has a compact support I, the estimators they provide are
consistent, even at the boundary points of I which is not the case for e.g. the kernel
estimators presented above.

Note that the variance also depends on fX (x)−1, and so will the optimal value
of a locally chosen optimal bandwidth hn. The choice of the polynomial’s degree p
and more important of the bandwidth h are two main issues in the application of this
approach.

Choice of p. A larger value of the polynomial order p allows for more flexibility,
so that also strongly fluctuating (but smooth) functions can be well approximated.
Moreover, it leads to better asymptotic results, provided h is chosen wisely, too. The
estimators’ bias is O(hp+2) for an even p and O(hp+1) if p is uneven. The constants
involved grow as the degree p increases, this matters for finite sample size. There-
fore, p is usually chosen as either 1, 2 or 3. Also, the bias for p uneven is better
than the ones for p even. The choice of p (and of the kernel K) is, however, less
important than the choice of the bandwidth h. As before, a large bandwidth leads to
a large bias but smaller variance, and a small one to a small bias but larger variance.

Choice of h. This is the main practical challenge when working with local polyno-
mials. The idea is to select a proper h by minimizing some error measure. Global
measures of accuracy of m̂ are, for instance, the mean integrated squared error,
MISE(m̂n(·;h) | X = x) or the asymptotic mean integrated squared error. Unfor-
tunately, those depend also on the unknown function m and on its derivatives. That
is why one uses some estimation techniques to approximate these quantities.

1. Cross-validation: ĥn = argmin h>0{CV (h)}, where

CV (h) =
1
n

n

∑
j=1

(Yj− m̂n,− j(X j;h))2

and mn,− j is the local polynomial estimator based on the observations without
(X j,Yj). This procedure is time expensive, and it tends towards undersmoothing.

2. Plug-in estimation: instead of using the theoretical values in the MISE(h) or
in the asymptotic MISE(h), one uses estimated values, see also Fig. 9.4. This
procedure requires some caution, see Sect. 6.3 in [370] or Sect. 7.4 in [290] for
a thorough discussion of the topic.

For more details, see, e.g., [11 ] or Chap. 5 in [37 ].

9.1.2.3 Orthogonal Series Expansion

Let us consider the Hilbert space L2(T ) (with the usual scalar product) over a com-
pact interval T . A sequence (ϕk)

∞
k=1 ∈ L2(T ) is called

6 0
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Fig. 9.4 Local linear regression with Gaussian kernel and different bandwidths. Top left: original
function m. Top right: bandwidth selected by plug-in estimation (h = 0.2141). Bottom left: h =
0.05. Bottom right: h = 1.50

1. complete if each function f ∈ L2(T ) can be approximated in the sense of the
norm by a linear combination of the functions ϕk, and

2. minimal if no function from (ϕk)
∞
k=1 can be approximated - in the sense of the

norm - by the remaining ones, i.e, for every m ∈ N,

ϕm /∈ span{ϕk, k �= m}.

Definition 9.2. A sequence (ϕk)
∞
k=1 ⊂ L2(T ) is called a Schauder basis of L2(T ) if,

for every f ∈ L2(T ), exists a unique sequence of scalars (ck)
∞
k=1 so that

lim
n→∞

∥∥∥∥∥ f −
n

∑
k=1

ckϕk

∥∥∥∥∥
2

= 0.

In this case, we can write f (x)=∑∞
k=1 ckϕk(x), but we note that in general we will

only have L2-convergence but not pointwise convergence.We can then approximate
every function f ∈ L2(T ) by “cutting” its Schauder basis expansion at some level �,
i.e.,
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f (x)�
�

∑
k=1

ckϕk(x) .

Note that every Schauder basis is complete and minimal, but not all complete
and minimal sequences of functions in L2(T ) are Schauder bases. Some examples
of Schauder bases are

1. monomials on T = [a,b], ϕk(t) = tk−1,k ∈ N,
2. Fourier functions on [0,T ], ϕk(t) = 1, sin

( 2πkt
T

)
, cos

( 2πkt
T

)
, k ∈ N,

3. spline bases,
4. wavelet bases.

More convenient are special classes of bases, so-called orthonormal ones, where for
two functions ϕk, ϕ� we have that the inner product satisfies 〈ϕk, ϕ�〉= δk,� . Then,
the following result holds.

Theorem 9.3. Given an orthonormal basis (ϕk)
∞
k=1 ⊂ L2(T ), we have for every

function f ∈ L2(T ) it holds that

1. if ck = 〈 f ,ϕk〉 for k ∈ N, then f = ∑∞
k=1 ckϕk in the L2−sense,

2. for every � ∈ N

∥∥∥∥∥ f −
�

∑
k=1

ckϕk

∥∥∥∥∥
2

≤
∥∥∥∥∥ f −

�

∑
k=1

dkϕk

∥∥∥∥∥
2

for all d1, . . . ,d� ∈ R.

Let us go back to the regression problem (9.8) stated at the beginning of Sect.
9.1.2. Given the data (yi, ti) for i = 1, . . . ,n, one would like to estimate the function
m of the model Yi = m(ti)+ εi, where εi is some noise with zero expectation and
covariances E(εiε j) = δi jσ2

ε . We can also suppose that the function m belongs to
L2(T ), so that, for a given orthonormal basis, m(·) = ∑∞

k=1 ckϕk(·) or, for large �,

m(·)�
�

∑
k=1

ckϕk(·) .

The orthonormal basis is given, as well as the value of � (for the moment), while the
coefficients c = (c1, . . . ,c�)� are unknown. As stated in Theorem 9.3, the method
of least squares is a clever way to determine c. We will consider the minimization
problem

argmin

⎧⎨
⎩c ∈ R

� :
n

∑
j=1

(
Yj−

�

∑
k=1

ckϕk(t j)

)2

= ‖Y −Φc‖2
2

⎫⎬
⎭ ,

with Y = (Y1, . . . ,Yn)
� and the matrix Φ = (ϕk(t j))

n,�
j=1,k=1 ∈ R

n×�, which plays the
role of the design matrix in a typical regression problem. The solution, provided
Φ�Φ is regular, is then uniquely determined as

ĉ = (Φ�Φ)−1Φ�Y .
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The vector (m̂(t1), . . . , m̂(tn))� can be represented as Φĉ = Φ(Φ�Φ)−1Φ�Y =: SY ,
where the matrix S is an orthogonal projection matrix with trace(S) = � expressing
the degree of freedom in the estimator. The empirical residuals are ε̂ = (In−S)Y and
the residual variance can be estimated by (1/n)‖ε̂‖2 . Furthermore we can estimate
the whole function m by

m̂(t) =
�

∑
k=1

ĉkϕk(t) , t ∈ T .

Suppose that the noises ε1, . . . ,εn are correlated and that we know the corre-
lation matrix, covε = Σε . Then, if the matrix Φ�Σ−1

ε Φ is regular, the estimator
ĉ = (Φ�ΣεΦ)−1Φ�Σ−1

ε Y is unbiased and has minimal variance among all linear
estimators (which follows from the classical Gauss-Markov theorem). The matrix
Φ(Φ�ΣεΦ)−1Φ�Σ−1

ε is still an orthogonal projection but with respect to the ap-
propriate inner product.

9.1.2.4 Method of Least-Squares with Penalty Term

If we would try to fit a smooth function trough a scatterplot minimizing the squared
distance at the data points, i.e.

n

∑
i=1

(Yi−m(ti))
2 ,

we would get a solution interpolating each point. As the number of observations
increases (and the distance between the observation times decreases), these interpo-
lating functions will oscillate more and more, since they have to catch every obser-
vation point. To avoid this, one can discourage roughness by adding a penalty term
to the original problem as, for instance, Pen =

∫
T (m

(2)(t))2dt. The new quantity to
minimize is then

PENSSE(λ ) =
n

∑
i=1

(Yi−m(ti))
2 +λPen. (9.12)

The parameter λ > 0 has to be chosen by the statistician. It controls the smoothness
of the minimizing function m: if λ is close to zero, m is rougher, while it is smoother
for larger values of λ . Hence λ is a smoothing parameter like the bandwidth in ker-
nel estimators. The curve that minimizes the expression in (9.12) is a cubic spline.
In practice one uses order four B-splines basis functions (Bk(.)) and minimizes
with respect to the coefficients. Again we approximate by f (t) = ∑�

k=1 ckϕk(t) , with
ϕk(t) = Bk(t). Minimizing ∑i(Yi− f (ti))2 + λ Pen2 leads to the task to minimize

(Y −Φ c)�(Y −Φ c) + λc�Rc,

where Ri j =
∫

T B(2)
i (t)B(2)

j (t)dt. The solution is given by
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ĉ = (Φ�Φ+λ lR)−1ΦY .

Furthermore we have

Ŷ =Φ (Φ�Φ+λR)−1ΦY = SR Y,

which is a linear operation again. But SR is no longer an orthogonal projection since
SR SR �= SR . For further details see e.g. [324] and the references therein.

9.2 Principal Components Analysis (PCA)

9.2.1 PCA for Multivariate Data

Let us consider the multivariate regression problem

Yi = 〈(X (i)
1 , . . . ,X (i)

p )�, β 〉+ εi i = 1 . . .n (9.13)

with the unknown parameter vector β ∈ R
p, the covariables X (1), . . . ,X (n) ∈ R

p

building the design matrix A ∈R
n×p in the linear model Y = Aβ +ε and with some

noise vector ε = (ε1, . . . ,εn)
�.

Suppose that the dimension of the covariable vectors X (i) is big in comparison to
the sample size. A problem like that is hard to handle, in particular if there are more
unknown parameters β1, . . . ,βp than sample values. In consequence, one has to re-
duce the dimension of X (i) in a clever way. If we simply would ’take less covariates’,
a lot of information could get lost. Therefore, we will look for linear combinations of
the covariables containing as much information as possible or, in other terms, having
maximal variance. This task can be seen as the following maximization problem

{
var(ρ�X) = ρ� (covX)ρ = ρ�Cρ →max
‖ρ‖= 1 .

(9.14)

The constraint | ρ |= 1 ensures the existence of a solution, since we are maximizing
a continuous function over the unit sphere S1(o) ∈ R

p, which is compact, and the
solution is unique up to the sign. The maximizing vector, ρ1, represents the coeffi-
cients of the linear combination of covariates with maximal variance.
By maximizing the same function, var(ρ�X), over the set S1(o) ∩ ρ⊥1 , where
ρ⊥1 = {ρ ∈Rp : ρ ⊥ ρ1} , we obtain the “second best” linear combination of covari-
ates, the vector ρ2. Furthermore, the random variable ρ�2 X is, by construction, un-
correlated to ρ�1 X . In the next step we maximize over the set S1(o)∩ span{ρ1,ρ2}⊥
etc.. If we proceed we obtain for some r ∈ N that in step r+1≤ p the maximum is
zero for the first time. Then (span(ρ1, . . . ,ρr))

⊥ = ker(C) and we have an orthonor-
mal basis {ρ1, . . . ,ρr} of ker(C)⊥. In the special case that C has full rank we end
with r = p and an orthonormal basis {ρ1, . . . ,ρp} of Rp .
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This task is strictly connected with solving the eigenvalue problem

Cy = λy , λ ∈ C , y ∈ Cp ,

where C is, as before, the covariance matrix of X , and therefore symmetric and posi-
tive semidefinite. Thus the eigenvalues and eigenvectors are real and the eigenvalues
are non-negative, so that it is possible to order them as: λ1 ≥ . . .≥ λp ≥ 0. If C has
rank r , the corresponding eigenvectors y1, . . . ,yr are without any loss of generality
an orthonormal basis of ker(C)⊥ . In case the matrix C has full rank, i.e., r = p we
have an orthonormal basis of Rp. Then we can decompose every vector x ∈ R

p as
x = ∑p

i=1〈x,yi〉yi = ∑p
i=1 ciyi. Moreover, every unit vector x ∈ R

p has coefficients in
this expansion with norm one, i.e., ∑p

i=1 c2
i = 1. Let us go back to the maximization

problem (9.14), which is equivalent to
{

∑p
i, j=1 ciy�i Cc jy j = ∑p

i=1 c2
i λi→max ,

∑p
i=1 c2

i = 1 .

Since the eigenvalues of C are ordered from the biggest to the smallest, the maxi-
mum is attained for |c1|= 1,c2 = . . .= cp = 0. The maximizing vector ρ1 is there-
fore equal (modulo the sign) to the first eigenvector y1. The second maximization
step would identify ρ2 with y2 and so on.

A random vector X taking values in R
p, with EX = μ and covX = C can then

be written as

X =
p

∑
ν=1

Cνρν +μ .

The coefficients Cν = 〈X − μ,ρν〉 are called the principal components of the ran-
dom variable X . They are random variables themselves, with the following moment
property. For any ν ,k = 1, . . . , p, it holds that

ECν = 0 ,
varCν = E(ρ�ν (X−μ)(X−μ)�ρν) = ρ�ν Cρν = λν ,

cov(Cν ,Ck) = E(ρ�ν (X−μ)(X−μ)�ρk) = ρ�ν Cρk = 0 , ν �= k.

By taking � < p one obtains an approximation of X denoted by X� = ∑�
ν=1 Cνρν +

μ . The error made by this approximation is then minimal among all orthonormal
expansions of order �, and it equals:

E
(‖X−X�‖2)= E

⎛
⎝
∥∥∥∥∥

p

∑
ν=�+1

Cνρν

∥∥∥∥∥
2
⎞
⎠=

p

∑
ν=�+1

E(C2
ν) =

p

∑
ν=�+1

λν .

Usually, one is satisfied having covered the information up to a small percentage α
as e.g. α = 5% and then � is chosen as the smallest value � such that ∑p

ν=�+1λν ≤
0.05∑p

ν=1λν .
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9.2.2 PCA for Functional Data

Let us move back to the framework anticipated in Sect. 9.1.1, where we considered
a stochastic process {X(t), t ∈ T } on a compact set T such that

∫
T E(X(t)2)dt =

κ < ∞. This means in particular that for s, t ∈ T , the following moment functions
exist:

μX (t) = EX(t) ,

C(s, t) = covX (s, t) .

We also suppose that these functions are continuous on their support. First, we will
focus on the one dimensional case, where T is a compact interval. Later on in this
section we will discuss the multidimensional case.

Let us consider the Hilbert space L2(T ) (with the usual scalar product), and the
operator C on L2(T ) that maps f into

∫
T C(·, t) f (t)dt, i.e., C ◦ f (s) =

∫
T C(s, t) f (t)dt

for s ∈ T .

Theorem 9.4. The operator C has the following properties.

1. C is a linear, self-adjoint, non negative and continuous operator from L2(T )
onto itself.

2. As kernel operator, C is a Hilbert-Schmidt operator (and therefore compact).

Proof. Without loss of generality we assume that EX(t)≡ 0. The Cauchy- Schwarz
inequality implies that

∫
T

(∫
T

C(s, t) f (t)dt
)2

ds ≤
∫

T

(∫
T

√
E(X2

s )E(X2
t ) f (t)dt

)2

ds

≤
∫

T
E(X2

s )ds
∫

T
E(X2

t )dt
∫

T
f 2(v)dv

≤ κ2
∫

T
f 2(v)dv

≤ κ2‖ f‖2.

Thus, C is an endomorphism on L2(T ), and it is bounded. Moreover, C is obviously
linear and, being bounded, it is continuous. It is also self-adjoint (because of the
symmetry of C), where

〈g,C ◦ f 〉 =
∫

T
g(s)

∫
T

C(s, t) f (t)dt ds =
∫

T

∫
T

g(s)C(t,s) f (t)dt ds

= 〈C ◦g, f 〉 .

Furthermore, C is non-negative, as for all f ∈ L2(T ),

〈 f ,C ◦ f 〉 =
∫

T
f (s)

∫
T

C(s, t) f (t)dt ds = E

((∫
T

X(t) f (t)dt
)2

)
≥ 0 .
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Since C is uniformly continuous on T ×T , for every ε > 0 there is a δ > 0 such that
for s1,s2 ∈ T with |s1−s2| ≤ δ it holds that |C(s1, t)−C(s2, t)| ≤ ε for all t ∈ T . Let
F ⊂ L2(T ) be the family of functions f with | f |= 1. Then the Cauchy-Schwartz
inequality impies that, for any f ∈ F and ε > 0,

|C( f )(s1)−C( f )(s2)| ≤
∫

T
|(C(s1, t)−C(s2, t)) f (t)|dt

≤ | f |
(∫

T
|C(s1, t)−C(s2, t)|2dt

)1/2

≤ kε ,

provided that |s1 − s2| ≤ δ , where k is some constant. Thus, C(F) is uniformly
equicontinuous. The Arzelà-Ascoli theorem ensures then that C is a compact op-
erator, i.e. for every bounded sequence {gn} ⊂ L2(T ), the sequence of the images
{C ◦gn} has a convergent sub-sequence.

Note that a compact operator between Hilbert spaces is such that for every se-
quence { fn}n∈N in the given space such that ‖ fn‖ ≤ 1 for all n ∈N, the sequence of
the images {C ◦ fn} has a convergent subsequence.

Theorem 9.5 (Spectral theorem, see e.g. [80]). Let C be defined as above. Consider
the eigenequation

C ◦ f = λ f .

Then, the eigenvalues are real, discrete and non negative, (so it is possible to write
λ1 ≥ λ2 ≥ . . . ≥ 0). There are countably many eigenvalues but their sum is finite.
Moreover, the eigenspaces corresponding to different eigenvalues are orthogonal
one to another and, as long as the corresponding eigenvalues are not equal to zero,
the eigenspaces are finite-dimensional. Therefore, there is a basis {ϕn} of ker(C)⊥
consisting of orthonormal eigenfunctions corresponding to the positive eigenvalues
of C.

Let f be in L2(T ). Then, if cν denotes the projection of f onto the eigenspace
generated by ϕν , we have that

(C ◦ f )(s)
L2(T )
=

∞

∑
ν=1

λνcνϕν(s) . (9.15)

If C is such that
∫

T C2(s, t)dt = M < ∞ on T , we also have pointwise and uniform
convergence on the right-hand side of (9.15). Moreover, every function f ∈ ker(C)⊥
can be decomposed (again, in the L2(T ) sense) as f (·) = ∑∞

ν=1 cνϕν(·).
A stochastic process {X(t), t ∈ T } as considered at the beginning of this sec-

tion with moments μ(t) = EX(t) and C(s, t) = cov(X(s),X(t)) can be decomposed
according to the eigenfunctions of its covariance function, i.e.,

X(t) = μ(t)+
∞

∑
ν=1

ξνϕν(t). (9.16)
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The coefficients ξν in this expansion are computed, as usual, as ξν = 〈X−μ,ϕν〉L2(T ).
Note that the ξν are random variables with Eξν = 0. As for their covariance struc-
ture, we have

cov(ξν ,ξμ) = E(ξνξμ) = E

(∫
T

∫
T
(X(t)−μ(t))(X(s)−μ(s))ϕν(t)ϕμ(s)dtds

)

=
∫

T

∫
T

C(s, t)ϕν(t)ϕμ(s)dtds

=
∫

T
λνϕν(t)ϕμ(t)dt = λνδν ,μ .

Approximating the process {X(t)} by its �-truncated expansion, we get that

X(t)� μ(t)+
�

∑
ν=1

ξνϕν(t) =: X�(t).

The error ‖X−X�‖ is minimal over all the orthonormal basis expansions truncated
at the level �.

Exercise 9.5. Show that

E
(‖X(t)−X�(t)‖2)= ∞

∑
ν=�+1

λν .

Since the result of Exercise 9.5 holds for d = 0 as well, we also know that

E
(‖X(t)−μ(t)‖2)=

∫
T

varX(t)dt =
∞

∑
ν=1

λν .

Note that, as in the multivariate case, the eigenfunctions ϕν are defined only up to
the sign.

Example 9.2. Let {W (t), t ∈ [0,1]} be a Wiener process. Then, for s, t ∈ [0,1],
EW (t) ≡ 0, while cov(W (s),W (t)) = min{s, t}. In this very special case, it is pos-
sible to explicitely compute eigenfunctions and eigenvalues of the operator C(s, t).
The eigenequation is given by

∫ 1

0
min{s, t}ϕ(s)ds = λϕ(t), t ∈ [0,1] ,

and if we differentiate this equation twice we obtain the following differential equa-
tion of second order with constant coefficients:

λϕ(2)(t) =−ϕ(t) , (9.17)

whose general solution is well known. Namely, ϕ(t) = c1 sin t√
λ
+ c2 cos t√

λ
.
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Exercise 9.6. Show that the solutions of (9.17) statisfying the initial conditions and
the fact that we are looking for eigenfunctions with unitary norm (see Fig. 9.5) are
given by

λν =
4

π2(2ν−1)2 ,

ϕν(t) =
√

2sin
(
(2ν−1)

π
2

t
)
, ν = 1,2, . . .

Fig. 9.5 First four eigenfunctions of CW (s, t)

Note that in Exercise 9.6 and in Fig. 9.5, as well, we have picked the eigenfunc-
tions ϕν so that they start positive. Thus, the Wiener process can be defined as the
following infinite sum (pointwise a.s. convergence follows from Kolmogorov’s ci-
terion, see e.g. [160], Thm.6.5.2, but even uniform convergence in [0,1] holds true,
see [181])

W (t) =
∞

∑
ν=1

ξν
√

2sin
(
(2ν−1)

π
2

t
)
.

Usually, one only knows that the scores ξν , ν ∈ N, have expectation equal to zero,
variance equal to λν (the ν-th eigenvalue of the covariance matrix), and are uncor-
related. In this special case, we also know that they are normally distributed as

ξν ∼ N(0,λν) ν = 1,2, . . .

and independent. This observation is useful, for instance, to simulate realizations of
a Wiener process. Then, chosen a certain truncation level for the approximation,
one just has to generate for ν = 1, . . . � the random variables ξν (which have a known
distribution) to obtain the weights of the corresponding eigenfunctions (see Fig 9.6).
Note that this is exactly the reverse of what we usually do. The typical situation is:
given n independent realizations of a stochastic process X , which we do not know a
priori, we look for the eigenfunctions and eigenvalues of the (estimated) covariance
function of X . This example is peculiar also for another reason: the paths of a Wiener
process are nowhere differentiable, and we approximate them using very smooth

�
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functions. That is why we need so many eigenfunctions to obtain something which
“looks like a Wiener process”. We will soon see how to extend this procedure to the

Fig. 9.6 Simulations of the paths W�, representing the truncation at level � of a Wiener process
realization for �= 5,21,204,406, respectively.

d− dimensional case, and more in detail, to the 2−dimensional case, see Example
9.3 below.

Since we know both the mean integrated squared error for a truncation X� and the
mean variance of X , we obtain by ∑∞

ν=�+1 λν
∑∞
μ=1 λμ

a measure of the “relative” error commit-

ted by truncating to the level �. Moreover, λν/∑∞
μ=1λμ tells us which percentage

of the expected variance the ν−th eigenfunction could explain. For instance, the
eigenfunctions from Fig. 9.5 account for 81.057%, 9.006%, 3.242% and 1.654% of
the total variation, respectively.

On the other hand, the “relative” mean squared integrated errors for the paths in
Fig. 9.6 are approssimately: 4.040% (< 5%), 0.965%(< 1%), 0.099% (< 0.1%) and
0.0499% (< 0.05%).

We can apply exactly the same reasoning concerning PCA in a higher-dimensional
setting. Suppose that the process {X(t)} is indexed by a compact set T in R

d , with
d > 1. It is still possible to consider the Hilbert space L2(T ) with the usual scalar
product 〈 f ,g〉= ∫

T f (t)g(t)dt, given by the d-dimensional integral.
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Condition (9.1) ensures the existence of the covariance function of {X(t)}, so that
it is still possible to define the covariance operator C, which has all the properties

The basic idea thus does not change, but as the dimension d increases, the
eigenequation becomes more and more difficult to solve. Let us go back to Example
9.2, and see what happens if d = 2.

Fig. 9.7 Two realizations of a Wiener sheet

Example 9.3. Let {W (t), t ∈ [0,1]2} be a Wiener sheet with EW (t)≡ 0 and

cov(W (s),W (t)) = min{s1, t1} ·min{s2, t2}

for s=(s1,s2)
�, t =(t1, t2)� ∈ [0,1]2. It is still possible to write down the eigenequa-

tion ∫ 1

0

∫ 1

0
min{s1, t1}min{s2, t2}ϕ(s1,s2)ds1ds2 = λϕ(t1, t2) , (9.18)

for t ∈ [0,1]2. Equation (9.18) can be solved, with a little effort, and the resultig
eigenvalues and corresponding eigenfunctions are analogous to the ones from Ex-
ample 9.2, namely

λn = ∏
k=1,2

(
2

π(2nk−1)

)2

,

ϕn(t) = 2 ∏
k=1,2

sin
(
(2nk−1)

π
2

t
)
, n = (n1,n2) ∈ N×N.

As we see, the eigenspaces and eigenvalues are given by all possible composi-
tions of the one-dimensional eigenvalues and eigenfunctions. This time, though,
one has to pay more attention, since many eigenspaces have dimension higher than

we can obtain eigenvalues and eigenspaces of    C
states in Theorem 9.4. Then, the spectral theorem (see Theorem 9.5) applies, and
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one. For instance λ(1,2) = λ(2,1) = 16
9π4 . This means that the eigenspace correspond-

ing to the eigenvalue 16
9π4 is generated by the two functions ϕ(1,2) and ϕ(2,1), i.e.,

L{ϕ(1,2)(t),ϕ(2,1)(t)}. A clever way to rewrite the solution is the following: If we

Fig. 9.8 Top left: Eigenspace corresponding to the largest eigenvalue, λ = 16
π4 . Top right and bot-

tom left: The two eigenfunctions corresponding to the second largest eigenvalue, λ = 16
9π4 .

take M = (2n1−1)2(2n2−1)2 for n1,n2 ∈ N, then we have

λM =
16
π4M

EM(t) = L{ϕ(n1,n2)(t) : (2n1−1)2(2n2−1)2 = M},

and we can recognize eigenspaces of higher dimension easier.

Exercise 9.7. Summarize the features of the eigenspaces corresponding to the largest
six eigenvalues: fill in the table for the third up to the sixth eigenspace.

.

Eigenspace no. M λM dim(EM) n

1 1 16
π4 1 (1,1)

2 9 16
9π4 2 (1,2), (2,1)

Hint. See Sect. 3.2 in [3] for further examples.
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9.3 Statistical Models for Functional Data

9.3.1 Linear Regression

Let us briefly recall the typical setup in multivariate linear regression. Given a scalar
response variable Y and a random vector X ∈ R

p of explanatory variables, one as-
sumes that there is a linear relationship between Y and X . Namely,

Y = α̃+ 〈X ,β 〉+ ε = α+ 〈X−μ,β 〉+ ε , (9.19)

with the usual scalar product in R
p. The term α allows us to assume that the co-

variates have expectation equal to zero. The random variable ε is assumed to be
independent of X , and such that Eε = 0 and varε = σ2, while the vector β ∈ R

p,
the parameter vector, contains the unkown coefficients for the explanatory variables.
If there are n observations, (Yi,Xi), one usually writes the n equations of the form
(9.19) into a cumulative vector equation

Y = α̃+Xβ + ε ,

where X is now a n× p matrix, α a vector in R
n, and the random vector ε is such

that Eε = o, covε = σ2In, with In denoting the identity matrix in R
n×n. Provided

that (X�X)−1 exists, we can solve the regression problem and obtain

α̂ = Ȳ ,

μ̂ = X̄ ,

β̂ = (X�X)−1X�Y ,

ˆ̃α = α̂− μ̂�β̂ .

We can extend this setup to functional data. Instead of having a random vector X
as explanatory variable, we will consider a stochastic process {X(t), t ∈ T }. In the
following, we suppose that {X(t)} has the properties stated in Sect. 9.2.2.

The most natural idea is to reduce this problem to a known one and, more pre-
cisely, to multivariate linear regression. Of course, the functional covariate X(t) can
be discretized, and thus transformed in a random vector X = (X(t1), . . . ,X(tp))

�.
This approach does, however, not use the continuity of the processes.

Another option is to use the fact that L2(T ), the space of the paths of the stochas-
tic process {X(t)}, has a canonical scalar product. Then, we can consider a func-
tional linear model which works similarly to the multivariate case stated in (9.19):

Y = α+ 〈X(·)−μ(·),β (·)〉+ ε . (9.20)

The unknown parameter function β ∈ L2(T ) gives the weights for the stochastic
process {X(t)} at every time point t ∈ T .

Suppose that we know C(s, t), the covariance function of {X(t)}, or its estima-
tor Ĉ(s, t) (see Sect. 9.3.2 below). Then we can also compute its eigenvalues and
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eigenfunctions, λk and ϕk for k ∈ N, and write the stochastic process {X(t)} as

X(t) = μ(t)+
∞

∑
k=1

ξkϕk(t) .

Even if β (t) itself does not belong to ker(C)⊥ ⊂ L2(T ), it is decomposable as β (t) =
β0(t)+β1(t), with β0 ∈ kern(C) and β1(t) ∈ kern(C)⊥. Then,

E(〈β0(·),X(·)〉2) = E

(∫
T

∫
T
β0(s)X(s)X(t)β0(t)dtdt

)

=
∫

T

∫
T
β0(s)C(s, t)β0(t)dtdt = 0 .

erality, that for the parameter function β it holds that β ∈ ker(C)⊥. Then β (t) =
∑∞

k=1〈β ,ϕk〉ϕk(t) = ∑∞
k=1βkϕk(t).

With these decompositions, we get that

〈X(·)−μ(·),β (·)〉 =
∫

T
X(t)β (t)dt =

∫
T

∞

∑
k=1

ξkϕk(t)
∞

∑
j=1
β jϕ j(t)dt

=
∞

∑
k, j=1

ξkβ j〈ϕk,ϕ j〉=
∞

∑
k=1

ξkβk.

This relationship allows us to reformulate the functional regression problem (9.20)
as

Y = α+
∞

∑
k=1

ξkβk + ε . (9.21)

We want to evaluate the parameters α and {βk}k∈N.
Given n observations (Yi,Xi(t)), i = 1, . . . ,n, it is possible to proceed in an anal-

ogous way as for the multivariate case, i.e., we can summarize the n equations

Yi = α+
∞

∑
k=1

ξ (i)k βk + εi , i = 1, . . . ,n

by
Y = α+Aβ + ε ,

with some design matrix A∈Rn×∞ and parameter sequence β ∈ �2 (i.e β = {βk}k∈N
is a sequence such that ∑∞

k=1 | βk |2< ∞). We have reduced the problem’s dimension
from an uncountable to a countable (but still infinite) dimension. The problem con-
sidered in (9.21) can be approximated and regularized by fixing a truncation level
p ∈ N. One typically chooses p� n. Then,

Thus, the term β0(t) term is irrelevant and we can assume, without loss of gen-
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Yi � α+
p

∑
k=1

ξ (i)k βk + ε , i = 1, . . . ,n

which becomes Yi �∑p
k=0 ξ

(i)
k βk +ε if one puts ξ (i)0 = 1 and β0 = α . We thus obtain

a finite-dimensional problem of the form

Y =

⎛
⎜⎝

Y1
...

Yn

⎞
⎟⎠�

⎛
⎜⎜⎝

1 ξ (1)1 . . . ξ (1)p
...

...
...

...
1 ξ (n)1 . . . ξ (n)p

⎞
⎟⎟⎠

︸ ︷︷ ︸
A∈Rn×(p+1)

·

⎛
⎜⎜⎜⎝
α
β1
...
βp

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
β∈Rp+1

+

⎛
⎜⎝
ε1
...
εn

⎞
⎟⎠ .

The theory of linear models assures that the estimators α̂, β̂1, . . . , β̂p are consis-
tent. The final regression model is given by

Ŷ = A · β̂ = A(A�A)−1A�Y = SY

The parameter function β̂ (t) can be reconstructed via β̂ (t) = ∑p
k=1 β̂kϕk(t). We can

apply standard tools from linear regression to evaluate the goodness of our model,
for instance:

1. We can study the residuals, ε̂i = Yi− Ŷi.
2. We can look at the R2−statistic, which is defined as

R2 = 1− ∑n
i=1(Ŷi−Yi)

2

∑n
i=1(Yi− Ȳ )2 ∈ [0,1] .

An R2−value close to 1 means that the regression model is meaningful, in the sense
that it contains much information and can describe the object Y well.

An interesting point is, as usually, the choice of p. That can be done, for instance,
via generalized cross-validation if we denote the matrix in equation (9.22) by Sp, and
by Ŷ (p)

i the fitted values for Y . We want to find the value of p which minimizes the
quantity

GCV(p) =
n

∑
i=1

(
Yi− Ŷ (p)

i
1−Sp

)
.

9.3.2 Estimation, a Second Look

Let {X(t), t ∈ T } be a stochastic process as in Sect. 9.2.1, and let μ(t), C(s, t) be its
mean and covariance functions (for s, t ∈ T ). Without loss of generality, we can take
T = [0,1]. As stated in the introduction of this chapter, there are three possibilities
(three different stages):



282 Ulrich Stadtmüller and Marta Zampiceni

1. One could observe the whole paths in continues time, i.e.,

{Xi(t), t ∈ T } i = 1, . . . ,n . (9.22)

2. Each realization is measured at discrete time points, i.e.,

Xi(ti1), . . . ,Xi(timi) i = 1, . . . ,n . (9.23)

3. Each realization is recorded at discrete time points and contains independent
measuring errors,i.e.,

Xi j = Xi(ti j)+ηi j i = 1, . . . ,n and j = 1, . . . ,mi , (9.24)

where the ηi j are i.i.d. random variables, with Eηi j = 0 and E(η2
i j) = σ2

η .

Let us start with the easiest case, which is given in (9.22). The estimators for
mean and covariance functions are then exactly the ones from Sect. 9.1.1. Namely,

μ̂(t) =
1
n

n

∑
i=1

Xi(t) = X̄(t) ,

Ĉ(s, t) =
1

n−1

n

∑
i=1

(Xi(s)− X̄(s))(Xi(t)− X̄(t)) .

The estimator μ̂(t) is unbiased and its variance is varμ̂(t) = C(t, t)/n for t ∈ T .
Note that μ̂(t) is also a consistent estimator, in the sense that

E

(∫
T
(μ̂(t)−μ(t))2 dt

)
=

∫
T

E(μ̂(t)−μ(t))2 dt =

=
1
n

∫
T

C(t, t)dt
︸ ︷︷ ︸

σ2

=
1
n

∫
T

varX(t)dt =
σ2

n
,

i.e., the mean integrated squared error has order O(1/n). The quantity σ2 allows
us to obtain pointwise confidence intervals. Furthermore, since

√
n(μ̂(t)−μ(t)) D→

N(0,C(t, t)), a global asymptotic confidence interval can be obtained from

n‖μ̂(t)−μ(t)‖2
2

D→
∫

t
G2(t)dt ,

where {G(t)} is a Gaussian process with mean zero and cov(G(s),G(t)) =C(s, t) .
Note that Ĉ(s, t) is unbiased, too, and its variance is of order O(1/n), provided that
EX4(t)< ∞.

The previous situation is rather uncommon, because usually the measurements
are taken at discrete time points. Recall from the introduction: if the recording times
are the same for the whole sample, and if they are dense enough, then the best way
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to approximate the mean and covariance functions is to find their point estimators
(at the given time points t1, . . . , tm) and to interpolate. However, in this case, the
estimated covariance function is not necessarily positive semidefinite.

Fig. 9.9 Left: Growth curves of 93 children from Berkeley Growth Study data. The dotted vertical
lines indicate the measuring timepoints. Right: The thick points are the computed mean values, the
line represents the simplest possible interpolation: piecewise linear.

Example 9.4 (Growth curve data). Consider the data set shown in Fig. 9.9, ob-
tained from the Berkeley Growth Study data (see [397]). In this study, the heights
of 93 children were measured at 31 stages, from 1 to 18 years. The measuring
times are common to all the observations, the measurement errors are negligi-
ble. By computing individually mean and covariance for all the known recording
times t1, . . . , t31, we obtain a vector μ̂ = (μ̂(t1), . . . , μ̂(t31))

� ∈ R
31 and a matrix

Ĉ = (Ĉ(ti, t j)) ∈ R
31×31. In this case, as the recordings are actually very smooth

per se, we do not need any further smoothing. As shown in Fig. 9.9 and in Fig.
9.10, already local linear interpolation provides satisfactory results. The scores of
the eigenfunctions (see Fig. 9.12) provide useful information, as well. For instance,
one could have realizations of two (or more) different stochastic processes in the
same dataset. Then the scores will probably be different, depending on which real-
ization of which process is considered. In this case, for instance, plotting ξ (i)1 against
ξ (i)2 for all the realizations (i= 1, . . . ,n= 93) as in Fig. 9.12 suggests that the record-
ings could be separated into two groups. This seems to be reasonable, as the study
contains growth data from girls and from boys. Thus, this is a possible tool for the
classification of such stochastic processes (see [72], or [183] for more details and
more advanced procedures).
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Fig. 9.10 Estimation of covariance function for the growth data. Since the recordings are very
smooth it is sufficient to compute the covariance matrix Ĉ ∈ R

31×31 and estimate the covariance
function via piecewise linear interpolation.

If the observation points are sparse (low frequency data), if they are not the same
for all the paths, if there are multiple measurements, or in presence of errors, a
smoothing method is required. For instance, if one is interested in estimating μ(t)
the following local least squares procedure would work, considering

argminα,β

{
n,mi

∑
i, j=1

(
Xi(ti j)−α−β (t− ti j)

)2

K
(

t− ti j

h1

)}
.

The solution (α∗(t),β ∗(t)) contains an estimation of the mean-value function, as
μ̂(t) = α∗(t) for all t ∈ T . Estimating the covariance function is, of course, more
laborious. Let us define an auxiliary quantity C̃i(ti j, tik) by

C̃i(ti j, tik) = (Xi(ti j)− μ̂(ti j))(Xi(tik)− μ̂(tik)) .

Then one can solve the minimization problem
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Fig. 9.11 First two eigenfunctions for the growth data: they explain 80.36% and 14.06% of the
total variation, respectively. A common procedure to show the effects of an eigenfunction consists
in adding (and subtracting) a suitable multiple of it to the mean function. In this case, we took
2
√
λi as a factor.

argminα,β ,γ

{
n,mi,mi

∑
i, j,k=1

(
C̃i(ti j, tik)−α−β (t− ti j)− γ(s− tik)

)2

K
(

t− ti j

h2

)

K
(

s− tik
h2

)}

in the error-free case (9.23). Otherwise, see (9.24), the minimization problem
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Fig. 9.12 Left: Scatterplot of the first two functional principal components scores. Right: same
scatterplot with gender indications.

argminα,β ,γ

⎧⎪⎨
⎪⎩

n,mi,mi

∑
i, j,k=1

j �=k

(
C̃i(ti j, tik)−α−β (t− ti j)− γ(s− tik)

)2

K
(

t− ti j

h2

)

K
(

s− tik
h2

)}

can be considered. In both cases, the optimal value of α , α∗(s, t), is the sought
estimator of the covariance function at the point (s, t) ∈ T 2.

Theorem 9.6. In the case considered in (9.22), under appropriate moment condi-
tions, the following results hold:

sup
t∈T
|μ̂(t)−μ(t)| = Op

(√
logn

n

)
,

sup
s,t∈T

|Ĉ(s, t)−C(s, t)| = Op

(
logn√

n

)
.

In the cases considered in (9.23) and (9.24), under appropriate conditions (see
[424]), the following results hold:

sup
t∈T
|μ̂(t)−μ(t)| = Op

(
1√
nh1

)
,

sup
s,t∈T

|Ĉ(s, t)−C(s, t)| = Op

(
1√
nh2

2

)
.
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Once we have Ĉ, we can plug it into the equation
∫

T
Ĉ(s, t)ϕ(t)dt = λϕ(s) , s ∈ T , (9.25)

and obtain estimators of the eigenvalues and eigenfunctions. Let us study the numer-
ical aspects of this procedure in more detail. First, we will make a discretization step,
by taking a sufficient large number of evenly spaced points in T , τ1, . . . ,τNn , having
(constant) distance Δ = ΔNn , and focus on the estimation of the covariance function
restricted to the chosen discretization points, i.e., C̃ =

(
C̃(i, j)

)
=
(
Ĉ(τi,τ j)

)
. We

can then discretize the equation (9.25) by

C̃Δϕ̃ = λ̃ ϕ̃ resp. C̃ϕ̃ =
λ̃
Δ
ϕ̃,

solve it, and obtain, for i = 1, . . . ,Nn, the eigenvalues λ̃i/Δ and the corresponding
eigenvectors ϕ̃i ∈ R

Nn . The i−th eigenvector is the discrete approximation of the
i−th eigenfunction, evaluated at τ1 . . . ,τNn (with an appropriate scaling).

Exercise 9.8. Find out which scaling would be appropriate.

Note that the eigenvectors are orthogonal but the smoothed or interpolated eigen-
functions are not necessarily orthogonal to each other. Since we can choose a rel-
atively fine discretization grid, the discretization error is not particularly relevant.
The approximation error made by solving (9.25) instead of the original problem is
more relevant.

Theorem 9.7. If, for p ∈ N, λ1 > .. . > λp and

‖Ĉ−C‖2 = Op(an) , sup
s,t∈T

|Ĉ(s, t)−C(s, t)|= Op(bn)

for two zero-sequences (an) and (bn), then, for k = 1, . . . , p,

|λ̂k−λk|= Op(an) , ‖ϕ̂k−ϕk‖2 = Op(an) ,

‖ϕ̂k−ϕk‖∞ = Op(bn) .

The proof is based on the following well-known result from functional analysis
(see Chapt. X of [171]):

Theorem 9.8.

1. If C is a kernel operator with kernel K ∈ L2(T ×T ) (without sign restrictions),
then

‖C‖ ≤ ‖C‖H = ‖K‖2 ,

and,
‖C‖= |λ |max ,

where |λ |max is the largest absolute value of an eigenvalue of C Furthermore,
for every eigenvalue λ of C, it holds that
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−‖C‖H ≤−‖C‖ ≤ λ ≤ ‖C‖ ≤ ‖C‖H .

2 (Weyl’s inequality). If Cg, C1 and C2 are kernel operators as above such that

Cg ≤ C1 +C2, then, if
{
λ (g,+)

k

}
,
{
λ (1,+)

k

}
and

{
λ (2,+)

k

}
are their positive (or-

dered) eigenvalues, the inequality

λ (g,+)
k ≤ λ (1,+)

k +λ (2,+)
k

holds for every k ∈ N.

9.3.3 More General Regression Models

9.3.3.1 Linear Regression with Functional Response

Suppose now that not only the explanatory variable X , but also the response vari-
able Y are stochastic processes (over some compact intervals T and S respec-
tively). We will call CX the covariance function of {X(t)}, CY the covariance func-
tion of {Y (s)}. Furthermore, we consider the cross-covariance function CXY (t,s) =
cov(X(t),Y (s)) =CY X (s, t) for t ∈ T and s ∈ S . In this setup it is possible to define
two different models.

1. If the whole explanatory variable has to be included in the model, we will have

Y (s) = α(s)+
∫

T
(X(t)−EX(t))β (s, t)dt + ε(s) , s ∈ S ,

with a residual process {ε(s)} such that E(ε(s)|X(t), t ∈ T )≡ 0.
2. If only the current value of the covariate is of interest, then

Y (s) = α(s)+X(s)β (s)+ ε(s) , s ∈ S ,

with a residual process such that E(ε(t)|X(t))≡ 0.

We will focus on the first case. We have two covariance operators, CY and
CX , with their eigenvalues {ν j} j∈N and {λk}k∈N and eigenfunctions {ψ j} j∈N and
{ϕk}k∈N. If we define μX (t) = EX(t) for t ∈ T and μY (s) = EY (s) for s ∈ S , then
we can put

ζ j = 〈Y −μY ,ψ j〉, ξk = 〈X−μX ,ϕk〉,
and decompose Y and X into

Y (s) = μY (s)+
∞

∑
j=1
ζ jψ j(s) , s ∈ S ,

X(t) = μX (t)+
∞

∑
k=1

ξkϕk(t) , t ∈ T .
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Furthermore, we can expand the functions α(s) and β (t,s) from equation (9.26)
with respect to these orthonormal bases, too. Namely,

α(s) =
∞

∑
j=1
α jψ j(s) , s ∈ S ,

β (s, t) =
∞

∑
j,k=1

β j,kψ j(s)ϕk(t) , (s, t) ∈ S ×T ,

where α j = 〈α,ψ j〉 and β j,k =
∫

S
∫

T β (s, t)ψ j(s)ϕk(t)dtds. We can apply the least-
squares method to find approximations for α and β , where we look for functions
which minimize

E

(∫
S

(
Y (s)−α(s)−

∫
T
(X(t)−μX (t))β (s, t)dt

)2

ds

)
. (9.26)

We can exploit the previous decompositions and rewrite it in a more suitable way.
Since

∫
T
(X(t)−μX (t))β (s, t)dt =

∞

∑
k=1

ξk

∞

∑
j,l=1

β j,lψ j(s)
∫

T
ϕk(t)ϕl(t)dt

︸ ︷︷ ︸
δk,l

=
∞

∑
j,k=1

ξkβ j,kψ j(s) ,

the expression in (9.26) is equal to

E

⎛
⎝∫

S

(
∞

∑
j=1

(
ζ j−α j−

∞

∑
k=1

ξkβ j,k

)
ψ j(s)

)2

ds

⎞
⎠ ,

and it is minimal whenever

E

⎛
⎝ ∞

∑
j=1

(
ζ j−α j−

∞

∑
k=1

ξkβ j,k

)2
⎞
⎠

is minimal.
Suppose that we have n observations {Yi(s),Xi(t),s ∈ S, t ∈ T }. Then we have

to minimize the empirical counterpart of (9.26) with respect to α and β , i.e. we
consider the expression

n

∑
i=1

(∫
S

(
Yi(s)−α(s)−

∫
T
(Xi(t)− X̄(t))β (s, t)dt

)2

ds

)
.
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We can still plug in the previous expansions of X , Y , α and β and, if we take trunca-
tions to some levels p and q instead of the whole expansions, we obtain the following
minimization problem:

n

∑
i=1

⎛
⎝ p

∑
j=1

(
ζ (i)j −α j−

q

∑
k=1

ξ (i)k β j,k

)2
⎞
⎠ −→ min

α j ,β j,k
(9.27)

and, equivalently,

n

∑
i=1

(
ζ (i)j −α j−

q

∑
k=1

ξ (i)k β j,k

)2

−→ min
α j ,β j,1...β j,q

j = 1, . . . , p,

which is a standard least squares problem for every fixed j. Its solutions, α̂ j and β̂ jk
(for j = 1 . . . p and k = 1 . . .q) allow us to estimate the functions α and β by

α̂(s) =
p

∑
j=1
α̂ jψ j(s), β̂ (s, t) =

p

∑
j=1

q

∑
k=1

β̂ jkψ j(s)ϕk(t) .

In practice, the eigenfunctions {ψ j} and {ϕk} have to be estimated as discussed
in the previous sections, using the estimators of the autocovariance functions. In the
end, we obtain predictions in the form

Ŷi(s) = α̂(s)+
p,q

∑
j,k=1

ξ (i)k β̂ jkψ̂ j(s) i = 1, . . . ,n .

Remark 9.2. 1. A first model check involves the residual processes {Yi(s)−
Ŷi(s), s ∈ S}.

2. The choice of p,q is, as usual, difficult. Cross-validation techniques could prove
useful, but they are very laborious, too. Otherwise, AIC-like procedures, as min-
imizing the expression in (9.27) plus a term like pq+1 could help.

3. Let {λk} denote the eigenvalues of the covariance function CX . Then, since

∞

∑
j=1
ζ jψ j(s) = α(s)+

∞

∑
j,k=1

ξkβ jkψ j(s)+ ε(s) ,

we get that

E

(∫
T
ξk0ψ j0(s)ds

∞

∑
j=1
ζ jψ j(s)

)

E

(∫
T
ξk0ψ j0(s)ds

(
α(s)+

∞

∑
j,k=1

ξkβ jkψ j(s)+ ε(s)

))
,

which is equivalent with
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E(ξk0ζ j0) = 0+β j0,k0E(ξ 2
k0
)+0 = β j0,k0λk0

and

β j0k0 =
E(ζ j0ξk0)

λk0

,

respectively. Thus, we can estimate the coefficients β jk using the estimated cor-
relation between the random variables ζ j and ξk. More precisely,

Ê(ζ jξk) =
∑n

i=1(ζ
(i)
j − ζ̄ j)(ξ

(i)
k − ξ̄k)√

∑n
i=1

(
ζ (i)j − ζ̄ j

)2
∑n

l=1

(
ξ (l)k − ξ̄k

)2
,

β̂ jk =
Ê(ζ jξk)

λ̂k
j,k = 1,2, . . .

9.3.3.2 Generalized Linear Model

Suppose that the covariate still has a functional form, while the response variable Y
is dichotomous. If we have n samples, the generalized linear model will be

Yi ∼ Binom(1, pi), where pi = EYi = g(ηi) = μi, i = 1, . . . ,n ,

with a linear predictor ηi and logit- link- function g given by

g(x) =
ex

1− ex .

The random variables Yi have variance varYi = pi(1− pi) = μi(1− μi) = σ2(μi).
Since we are working with a functional covariate, the linear predictors have the
usual form

ηi = α+ 〈Xi(·)−μ(·),β (·)〉= α+
∞

∑
k=1

ξ (i)k βk , (9.28)

approximated by the truncated expansion α +∑p
k=1 ξ

(i)
k βk. We can find the vector

β ∈ R
p by the maximum-likelihood method. In fact, the probability mass function

of the vector Y is given by
n

∏
i=1

pYi
i (1− pi)

1−Yi .

Then the log-likelihood is given by

l(Y ;β ) =
n

∑
i=1

(
Yi log

pi

1− pi
+ log(1− pi)

)

=
n

∑
i=1

(Yiηi− log(1+ eηi)) .
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Recall that we are approximating ηi by α +∑p
k=1 ξ

(i)
k βk. At the point of l(Y ;β )’s

maximum (with respect to the vector β ), the gradient has to vanish, i.e.

∇β l(Y ;β ) =

(
n

∑
i=1

Yiξ
(i)
k −

1
1+ eηi

eηiξ (i)k

)p

k=0

=

(
n

∑
i=1

Yiξ
(i)
k − piξ

(i)
k

)p

k=0

= A�(Y −μ) !
= (9.29)

provided that the matrix A ∈ R
n×(p+1) is defined as usually, by

A =
(

1,ξ (k)1 , . . . ,ξ (k)p

)n

k=1
.

Note that the system of equations (9.29) is not linear in β , since the vector μ
depends on it, as well. The system (9.29) is convex, though, i.e., it can be solved
using the Newton algorithm. Using the resulting solution β̂ , one can obtain the linear
predictors ηi and the probabilities pi of Yi (and expectations, as well) for i= 1, . . . ,n.
If we want to test whether the covariate has an influence on Y , the null-hypothesis
is given by

H0 : β = β0 = 0 .

In this setup, the matrix A�A/n is a random one. We know that, under the null

hypothesis, A�A P→ Γp+1, and, if pn→ ∞ slowly, we get that

β̂n
T
Γpn β̂n− (pn +1)√

2(pn +1)
D−→ N(0,1)

under H0. For more details, see [291].

Exercise 9.9. Suppose that the response variable Y is Poisson distributed. In this
case, if we have n samples, the GLM is given by

Yi ∼ Poi(λi), with λi = EYi = μi = g(ηi),

where ηi is a linear predictor as in (9.28) and g(x) = ex. Compute the log-likelihood
function l(Y ;β ) and show that, also in this case,

∇β l(Y ;β ) = A�(Y −μ), with A =
(

1,ξ (k)1 , . . . ,ξ (k)p

)n

k=1
.

,0



Chapter 10

Some Statistical Methods in Genetics

Alexander Bulinski

Abstract A challenging problem in modern genetics is to identify the collection
of factors responsible for increasing the risk of specified complex diseases. The
progress in the human genome reading permitted to collect the genetic datasets for
analysis by means of various complementary statistical tools. The intensive stud-
ies in this research domain are carried out in leading research centers all over the
world. One has to operate with data of huge dimensions and this is one of the main
difficulties in detection of genetic susceptibility to common diseases such as hy-
pertension, myocardial infarction and others. In this chapter, we concentrate on the
multifactor dimensionality reduction method, and we also discuss its modifications
and extensions. Our recent results on the central limit theorem related to this method
are provided as well. Moreover, we explain the main features of the logic regression
where we tackle the simulated annealing for stochastic minimization of functions
defined on a graph with forests as vertices. Finally, we mention several important
research directions which are out of the scope of the present chapter.

10.1 Introduction

There is a number of deep mathematical results related to problems in genetics. We
mention the fundamental contributions by J.B.S. Haldane (1892-1964), R.H. Fisher
(1890-1962) and S.G. Wright (1889-1988) made in the first half of the 20-th cen-
tury. One can say that these scientists created the domain of population genetics,
which deals with the complex issues of genotype involving many alleles, over long
periods of time and under different modes of mating (for basic concepts in genetics
we refer, e.g., to [23] and [48]). Further development of this branch of investiga-
tions is considered, e.g., in [39]. The discovery of the DNA structure in 1953 by
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F.H.C. Crick (1916-2004) and J.D.Watson was a milestone determining many fea-
tures of modern molecular biology. Moreover, the situation has radically changed
at the beginning of the 21-st century when the laboratory methods (especially the
microchip technology) permitted to obtain data concerning the individual genetic
code.

According to the information provided by the World Health Organization (see
http://www.who.int/topics), in 2030 more than 23 million people will die due to
cardiovascular diseases and more than 13 million will be the victims of the onco-
logical ones. Thus it is not surprising that in research centers all over the world
intensive studies are devoted to detection of genetic susceptibility of individuals to
complex diseases, mentioned above as well as others. This research direction called
the genome-wide association study (GWAS) involves specialists in medicine, biol-
ogy, chemistry, informatics and mathematical statistics. The successes in the human
genome reading led to the creation of data sets in the framework of several interna-
tional projects, see, e.g., http://www.gwascentral.org/. Note that GWAS is of great
importance as the diagnostics, prophylaxis and therapy of complex diseases could
be improved. The ultimate goals are to develop new drugs for their treatment and
create a personalized medicine. A review of investigations in GWAS during the last
five years is provided in [403].

One uses the term simple (or Mendelian) disease when it is related to one mu-
tation in a specified segment (locus) of the DNA molecule. A classical example of
such disease is sicklemia. In contrast many other diseases, e.g., Altzheimer’s dis-
ease or schizophrenia, are provoked by mutations in different parts (loci) of the
DNA molecule which are engaged in the formation of certain proteins. Diseases of
the latter type are called complex.

In genetic data analysis the single nucleotide polymorphism (SNP) plays an im-
portant role among other markers. SNP means a small variation in the genetic code,
namely, the change of a specific nucleotide (denoted as A, T, C and G, that is Ade-
nine, Thymine, Cytosine and Guanine) in a strand of the double helix of DNA.
More exactly such changes or “damages” must occur in a certain percent of popu-
lation (not less than 5% in general). The problem of detection of the collections of
SNP which have the impact on specified phenotype properties is a challenging one
as here one needs to create new biological approaches, in combination with new
tools in statistics and informatics, to the analysis of data having huge dimension-
ality. Recall that the human genom contains about 6 milliard letters (nucleotides)
A,T,C and G.

In this chapter, we will discuss various statistical methods of genetic and non-
genetic (environmental) data analysis. The corresponding papers published in such
journals as Advances in Genetics, American Journal of Human Genetics, Biometrika,
Bioinformatics, Biostatistics, Briefings in Bioinformatics, Human Heredity and oth-
ers demonstrate that modern investigations in GWAS include the construction of
algorithms for data analysis, their computer implementation as well as applications
to simulated and real data. The statisticians employ sophisticated models described,
e.g., by means of hidden Markov processes (or fields) and spatial point processes.
Various methods are used, for instance, simulated annealing, Markov chain Monte
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Carlo (MCMC) as well as Bayesian inference and machine learning techniques.
However, this scenario does not imply that each time rigorous proofs of mathemat-
ical results are provided.

The present chapter is organized as follows. After the brief introduction in Sect.
10.2, we consider the problem of identification of the most significant factors which
could increase the risk of complex diseases. To this end we treat the multifactor
dimensionality reduction (MDR) method and its modifications and extensions. In
Sect. 10.3 we dwell on logistic and logic regression, as well as on stochastic opti-
mization techniques. Section 10.4 is devoted to some models involving random

10.2 The MDR method and its Modifications

In this section we concentrate on the development of the multifactor dimensional-
ity reduction (MDR) method. It has been introduced in [332]. One can say that this
method is a constructive induction that seeks to identify combinations of multi-locus
genotypes that are associated with either high or low risk of disease. The construc-
tive induction described in [273] is a general process of defining a new attribute as
a function of two or more other attributes. A comprehensive survey concerning the
MDR method is provided in [333]. Some new results which are not in the scope of
the latter paper are tackled as well. We are interested in the “dimensionality reduc-
tion” of the whole collection of factors describing the response variable. Therefore,

tables (to specify zones of low and high risk) presented in [332] and various subse-
quent works, we choose another way.

10.2.1 Implementation of the MDR Method

Assume that all random variables under consideration are defined on a probability
space (Ω ,F ,P). Let Xi : Ω → {0,1, . . . ,q} be a random variable where i = 1, . . . ,n
(q and n are some positive integers), and let X = (X1, . . . ,Xn). Hence the random vec-
tor X with components Xi takes values in X = {0,1, . . . ,q}n. Consider a random (re-
sponse) variable Y : Ω → {−1,1} depending on the factors (explanatory variables)
X1, . . . ,Xn. For example in medical studies such response variable Y can describe the
health state, e.g., Y = 1 or Y = −1 means “sick” or “healthy” (one says also “case”
or “control”), and X1, . . . ,Xm and Xm+1, . . . ,Xn are genetic and non-genetic factors,
respectively. Usually Xi (1 ≤ i ≤ m) characterizes a single nucleotide polymorphism
(SNP) in a specified locus of the DNA molecule. In this case one considers such Xi
having three values, for instance, 0,1 and 2 according to genotypes aa, aA and AA,
see, e.g., [54]. It is convenient to suppose that the other Xi (m+1 ≤ i ≤ n) also take
values in {0,1,2}. For instance the domain of blood pressure can be partitioned in

research directions which deserve special attention.
fields. Sect. 10.5 contains some concluding remarks. We also tackle some other 

we use the term “MDR method”. However instead of considering the contingency
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zones of low, normal and high values. However, in the following, we will suppose
that all factors take values in an arbitrary finite set. Assume that there are N indi-
viduals. Let X j = (X j

1 , . . . ,X
j

n ) and Y j be (random) factors and the response variable
for the j-th individual ( j = 1, . . . ,N). As usual we write small letters for realizations

First of all we recall the details of the original MDR method [332]. Its implemen-
tation involved balanced case-control studies. There are six steps inherent to this
method. At step one, the dataset consisting of N individuals is (randomly) divided
into K pair-wise disjoint parts (groups) G1, . . . ,GK for cross-validation to avoid
over-fitting. Usually K = 10. In the case of ten-fold cross-validation, the training
set is given by 90 percent of the data, whereas the testing set comprise
maining 10 percent of the data. For cross-validation see, e.g., [6]; further we
explain how to modify the procedure if N is not divisible by K. We start to deal with
group G1 as testing set whereas the training set V1 =

⋃K
t=2 Gt . In step two, for a given

integer r (1 ≤ r < n), a set of genetic and/or environmental factors Xm1 , . . . ,Xmr is se-
lected among X1, . . . ,Xn. Clearly, there exist

(n
r

)
subsets {m1, . . . ,mr} ⊂ {1, . . . ,n}.

In step three one introduces cells (multifactor classes) in Rr for all possible values
of the vector (Xm1 , . . . ,Xmr). For example, for two loci with three genotypes each,
there are nine possible twolocus-genotype combinations. Then for each individual
j belonging to the training dataset we consider the vector (x j

m1 , . . . ,x
j
mr), choose the

corresponding cell and write down into it the value y j of Y j. Then, for each cell
we find the number of controls and cases. In other words one constructs a contin-
gency table. The ratio of the number of cases to the number of controls is calculated
within each cell. We formally put 0/0 = 0 and C/0 = ∞ for C > 0 (another pos-
sibility is to introduce empty cells). After that, in step four each cell is labeled as
“high risk” if the cases to controls ratio exceeds some threshold (say, 1) and as “low
risk” otherwise. Thus we get a reduction of the multidimensional space in which
the vector (Xm1 , . . . ,Xmr) takes values to the simple “one dimensional” case of two
labels “high” or “low”. In Fig.1 of [332] the dark-shaded cells represent high-risk
genotype combinations, whereas the light-shaded cells correspond to low-risk geno-
type combinations and the white cells indicate empty cells without observations.
We make predictions about the disease status of each individual belonging to the
testing group G1. If the value of the observation vector with components labeled
by m1, . . . ,mr belongs to “high risk” cells we predict the value 1 for the response
variable and −1 otherwise. The proportion of individuals for which an incorrect
prediction was made is an estimator of the prediction error. Then, in step five, steps
three and four are repeated for each possible cross-validation interval. Namely, each
time we take the group Gt as testing set and the union of other groups as training set,
t = 1, . . . ,K. Thus the K-fold cross-validation is repeated K times and the prediction
errors are averaged. Finally, in step six, we get a list of the averaged prediction er-
rors for all possible combinations Xm1 , . . . ,Xmr and choose among them one or more
combinations having the minimum value of this error.

The procedure described above is summarized in Table 10.1 where for x =
(x1, . . . ,xn) and Λ = {m1, . . . ,mr} ⊂ {1, . . . ,n} we put xΛ = (xm1 , . . . ,xmr). For A ⊂
D we consider the indicator function

of random variables (or vectors).

s the re- 
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1{A}(x) =
{

1, if x ∈ A,
0, if x ∈ D\A ,

with 1 but with the global ratio of cases over controls in the particular genotype
combination being evaluated. Also there are several characteristics which can be
derived from the number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) in the test set, describing the performance of classi-
fication model. For example the notion of accuracy (Acc), specificity (SP) and true
positive rate or sensitivity (TPR) are defined as follows:

Note that in step four one could compare the ratio R (z) (see Table 10.1) not

where we write 1{A} instead of 1D{A} when the choice of D is clear.  

Table 10.1 Implementation of the MDR method

Step 1 Step 2

Fix K ∈ N, r ∈ {1, . . . ,n−1}. Choose
Let {1, . . . ,N} = ∪K

t=1Gt , Λ = {m1, . . . ,mr} ⊂ {1, . . . ,n}
Gs ∩Gt = ∅, s �= t,

Vt = {1, . . . ,N}\Gt . and take t = 1.

Step 3 Step 4

For z ∈ {0,1,2}r , t ∈ {1, . . . ,K} put Let Ft(z) = 1{Rt(z) > 1}−1{Rt(z) ≤ 1},

x j
Λ = (x j

m1 , . . . ,x
j
mr ), z �→ high risk if Ft(z) = 1,

M+
t (z) = ∑ j∈Vt :x

j
Λ=z 1{y j = 1}, z �→ low risk if Ft(z) = −1.

M−
t (z) = ∑ j∈Vt :x

j
Λ=z 1{y j = −1}, For Gt calculate the prediction error

Rt(z) = M+
t (z)/M−

t (z). Et(Λ) = 1
|Gt | ∑ j∈Gt 1{y j �= Ft(x

j
Λ )}.

Step 5 Step 6

Make cross-validation, i.e. Repeat steps 2 to 5 for each
take t +1 instead of t, Λ = {m1, . . . ,mr}.
repeat steps 3 and 4,

calculate Et+1(Λ) until t +1 ≤ K. Choose Λ
Find corresponding to

average error AEK(Λ) = 1
K ∑K

t=1 Et(Λ). minimal AEK(Λ)

|G|Further
stands for the cardinality of a finite set G.

t
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Acc =
TP+TN

TP+TN+FP+FN
, SP =

TN
FP+TN

, TPR =
TP

TP+FN
.

Note that we do not tackle the problem of balanced or unbalanced samples (see, e.g.,
[402]), since below we do not need to distinguish these cases. Later on we return to
the problem of finding r factors among n used for further detailed analysis and the
estimation of the disease risk.

10.2.2 Prediction Algorithm

Now we are interested in the approximation ofY by means of f (X)where f : X→{−1,1}
is a non-random function. In this way one can justify the choice of a reduced
collection of factors to describe the response variable. Using a penalty function
ψ : {−1,1}→ R+ (the trivial case ψ ≡ 0 is excluded) the quality of such approxi-
mation is defined by

(10.1)

In other words we ascribe, in general, different weights to the approximation of
values 1 and −1 taken by Y . Introduce M = {x ∈ X : P(X = x)> 0} and

F(x) = ψ(−1)P(Y =−1 | X = x)−ψ(1)P(Y = 1 | X = x), x ∈M.

Exercise 10.1. Prove that solutions of the problem Err( f )→ inf have the form

f = 1{A}−1{A}, A ∈ A, (10.2)

where 1{∅}= 0 and A consists of the sets A = {x ∈M : F(x)< 0}∪B∪C. Here B
is an arbitrary subset of {x ∈M : F(x) = 0} and C is any subset of X\M.

We say that f is an optimal function when it belongs to the class of functions
described in (10.2).

If we choose A∗= {x∈M : F(x)< 0}, then A∗ has the minimal cardinality among
all subsets of A. Taking into account that ψ(−1)+ψ(1) �= 0 we can write

A∗ = {x ∈M : P(Y = 1 | X = x)> γ(ψ)},
(10.3)

Note that we can rewrite (10.1) as

Err( f ) = 2 ∑
y∈{−1,1}

ψ(y)P(Y = y, f (X) �= y). (10.4)

The distribution of the random vector (X ,Y ) is unknown and we cannot calculate
the value Err( f ). Therefore statistical inference on the quality of approximation of Y
by means of f (X) is based on an estimator of Err( f ) involving i.i.d. random vectors
ξ 1,ξ 2, . . . with the same distribution as that of vector (X ,Y ). We consider all vectors

Err( f ) = E( Y − f (X)|ψ(Y )) .|

γ(ψ) = ψ(−1)
ψ(−1)+ψ(1)

.
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as column ones and to simplify notation we write (X ,Y ) instead of (X�,Y )� where
� stands for transposition.

To approximate Err( f ) as N → ∞ we use a prediction algorithm. It involves a
function fPA = fPA(x,ξN) with values {−1,1} which is defined for x ∈ X and ξN =
(ξ 1, . . . ,ξN). More exactly we use a family of functions f m

PA(x,vm) defined for x ∈X
and vm ∈ Vm where Vm = (X×{−1,1})m, m ∈ N, m≤ N. To simplify the notation
we write fPA(x,vm) instead of f m

PA(x,vm).
For S = { j1, . . . , js} where 1≤ j1 < .. . < js ≤ N put ξN(S) = (ξ j1 , . . . ,ξ js) and

let S = {1, . . . ,N}\{ j1, . . . , js}. For K ∈N (K > 1) consider a partition of {1, . . . ,N}
formed by the sets

Sk(N) = {(k−1)[N/K]+1, . . . ,k[N/K]1{k < K}+N1{k = K}} (10.5)

where k = 1, . . . ,K and [a] denotes the integer part of a ∈ R. Obviously, for the
cardinality |Sk(N)| of the finite set Sk(N) it holds that |Sk(N)| = [N/K] for index
k = 1, . . . ,K−1, and [N/K]≤ |SK(N)|< [N/K]+K.

10.2.3 Estimated Prediction Error

Generalizing [54] we can construct an estimator of Err( f ) using a sample ξN , a
prediction algorithm with fPA and a K-fold cross-validation where K ∈ N, K > 1.
Namely, let

ÊrrK( fPA,ξN) =

2 ∑
y∈{−1,1}

1
K

K

∑
k=1

∑
j∈Sk(N)

ψ̂(y,Sk(N))1{Y j =y, fPA(X j,ξN(Sk(N))) �=y}
|Sk(N)| , (10.6)

where for each k = 1, . . . ,K the random variables ψ̂(y,Sk(N)) are strongly consistent
estimators (as N→∞) ofψ(y), y∈{−1,1}, constructed by the data {Y j, j∈ Sk(N)}.
We call ÊrrK( fPA,ξN) an estimated prediction error.

We now formulate a result which is important for statistical applications.

Theorem 10.1 ([58]). Let fPA define a prediction algorithm for f : X→{−1,1}.
Assume the existence of a set U ⊂ X such that for each x ∈U and any k = 1, . . . ,K
it holds that

fPA(x,ξN(Sk(N)))→ f (x) a.s., for N→ ∞. (10.7)

Then
ÊrrK( fPA,ξN)→ Err( f ) a.s., for N→ ∞, (10.8)

if and only if, for N→ ∞, the following relation holds a.s.

K

∑
k=1

(
∑

x∈X+

1{ fPA(x,ξN(Sk(N)))=−1}L(x)− ∑
x∈X−

1{ fPA(x,ξN(Sk(N)))=1}L(x))→ 0,

(10.9)
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where X
+ = (X \U)∩{x ∈ M : f (x) = 1}, X− = (X \U)∩{x ∈ M : f (x) = −1}

and

L(x) = ψ(1)P(X = x,Y = 1)−ψ(−1)P(X = x,Y =−1), x ∈ X. (10.10)

The above criterion for the validity of (10.8) shows that condition (10.9) plays the
key role (when U does not coincide with X) to ensure that (10.8) holds. As usually,
a sum over the empty set is put equal to 0.

We will use still another statement with an easily verifiable condition.

Corollary 10.1 ([58]). Let fPA define a prediction algorithm for f : X→ {−1,1}.
Suppose that there exists a set U ⊂X such that for each x ∈U and any k = 1, . . . ,K
relation (10.7) is true. If

L(x) = 0 for x ∈ (X\U)∩M (10.11)

then (10.8) is satisfied.

Note also that Remark 4 from [58] explains why the natural choice of a penalty
function is the one proposed in [402], i.e.,

ψ(y) = c(P(Y = y))−1, y ∈ {−1,1}, c > 0. (10.12)

Further discussion and examples can be found in [58].

10.2.4 Dimensionality Reduction

We now turn to the foundations of the multifactor dimensionality reduction (MDR)
method. In many situations it is reasonable to suppose that the response variable
Y depends only on some subcollection Xk1 , . . . ,Xkr of the explanatory variables
X1, . . . ,Xn, where {k1, . . . ,kr} ⊂ {1, . . . ,n} (1 ≤ r < n). This means that for any
x ∈M

P(Y = 1 | X1 = x1, . . . ,Xn = xn) = P(Y = 1 | Xk1 = xk1 , . . . ,Xkr = xkr). (10.13)

In the framework of complex disease analysis it is natural to assume that only a
part of the risk factors could provoke that disease and the impact of the others can
be neglected. Relation (10.13) can arise in many other situations, e.g., pertinent to
pharmacology (in this context the response variable describes the efficiency or non-
efficiency of a drug).

Any collection {k1, . . . ,kr} implying (10.13) is called significant. If {k1, . . . ,kr}
is significant then any collection {m1, . . . ,mi} such that {k1, . . . ,kr} ⊂ {m1, . . . ,mi}
is significant as well. For a set D⊂ X we define its “projection”

πk1,...,kr D = {u = (xk1 , . . . ,xkr) : x = (x1, . . . ,xn) ∈ D}.
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For B⊂ Xr where Xr = {0,1, . . . ,q}r, let us introduce in X= Xn the cylinder

Ck1,...,kr(B) = {x = (x1, . . . ,xn) ∈ X : (xk1 , . . . ,xkr) ∈ B}.

If B= {u}where u= (u1, . . . ,ur)∈Xr, we write Ck1,...,kr(u) instead of Ck1,...,kr({u}).
Clearly, for

u = πk1,...,kr{x}, i.e. ui = xki , for i = 1, . . . ,r, (10.14)

we have

P(Y = 1 | Xk1 = xk1 , . . . ,Xkr = xkr)≡ P(Y = 1 | X ∈Ck1,...,kr(u)). (10.15)

If (10.13) holds then the optimal function f ∗ introduced in (10.2) with A = A∗
defined in (10.3) has the form

f k1,...,kr(x) =

{
1, if P(Y = 1 | X ∈Ck1,...,kr(u))> γ(ψ), x ∈M,

−1, otherwise,
(10.16)

where u and x satisfy (10.14) because P(X ∈ Ck1,...,kr(u)) ≥ P(X = x) > 0 for
x ∈ M. Hence, for each significant {k1, . . . ,kr} ⊂ {1, . . . ,n} and any collection
{m1, . . . ,mr} ⊂ {1, . . . ,n} we have

Err( f k1,...,kr)≤ Err( f m1,...,mr). (10.17)

For C ⊂ X, N ∈ N and WN ⊂ {1, . . . ,N}, we put

P̂WN (Y = 1 | X ∈C) =
∑ j∈WN 1{Y j = 1,X j ∈C}

∑ j∈WN 1{X j ∈C} . (10.18)

Furthermore, we formally put 0/0 = 0, and write P̂WN (Y = 1) when C = X in
(10.18). According to the strong law of large numbers for arrays (SLLNA), see,
e.g., [388], for any C ⊂ X with P(X ∈C)> 0 one can claim that

P̂WN (Y = 1 | X ∈C)→ P(Y = 1 | X ∈C) a.s., if |WN | → ∞ as N→ ∞. (10.19)

Let γ̂WN (ψ) be a strongly consistent estimator of γ(ψ) constructed by means
of ξN(WN). For arbitrary {m1, . . . ,mr} ⊂ {1, . . . ,n}, x ∈ X, v = πm1,...,mr{x} and a
penalty function ψ we consider the prediction algorithm with a function f̂ m1,...,mr

PA
such that

f̂ m1,...,mr
PA (x,ξN(WN))=

{
1, if P̂WN (Y = 1 | X ∈Cm1,...,mr(v))> γ̂WN (ψ), x ∈M,

−1, otherwise.
(10.20)

Let
U={x∈M : P(Y =1 | X ∈Cm1,...,mr(v)) �=γ(ψ)}. (10.21)

Then, Corollary 10.1 (with Examples 1 and 2 of [58]) yields that
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ÊrrK( f̂ m1,...,mr
PA ,ξN)→ Err( f m1,...,mr) a.s., as N→ ∞. (10.22)

Therefore relations (10.17) and (10.22) imply that, for each δ > 0, any significant
collection {k1, . . . ,kr} ⊂ {1, . . . ,n} and an arbitrary set {m1, . . . ,mr} ⊂ {1, . . . ,n}, it
holds that

ÊrrK( f̂ k1,...,kr
PA ,ξN)≤ ÊrrK( f̂ m1,...,mr

PA ,ξN)+δ a.s. (10.23)

when N is large enough.
Thus, according to results established in [58], we come to the following conclu-

sion. For a given r = 1, . . . ,n− 1, in view of (10.23) it is natural to choose a col-
lection Xk1 , . . . ,Xkr among the factors X1, . . . ,Xn leading to the smallest estimated
prediction error ÊrrK( f̂ k1,...,kr

PA ,ξN). After that it is desirable to employ the permuta-
tion tests (see, e.g., [54] and [145]) to validate the prediction power of the selected
factors. We do not tackle the choice of r (usually r is significantly smaller than n),
some recommendations can be found in [333].

Remark 10.1. It is worth to emphasize that for each {m1, . . . ,mr} ⊂ {1, . . . ,n}
we have constructed strongly consistent estimators of Err( f m1,...,mr) and we can
compare these estimators on an event having probability one. If we had only the
convergence in probability instead of a.s. convergence in (10.22) then to com-
pare ÊrrK( f̂ m1,...,mr

PA ,ξN) for different subsets {m1, . . . ,mr} of {1, . . . ,n} one must
take into account the Bonferroni corrections. This is not reasonable when the sets
{m1, . . . ,mr} form a large class.

10.2.5 Central Limit Theorem

The next natural problem is to estimate the convergence rate in (10.22). We provide
a quite recent result proven in [59]. For this purpose let us further consider a function
ψ having the form (10.12). In this case γ(ψ) =P(Y = 1). Then due to (10.3) without
loss of generality we can put c = 1 in (10.12). Define the events

AN,k(y) = {Y j =−y, j ∈ Sk(N)}

and the random variables

ψ̂(y,Sk(N)) =
1{AN,k(y)}

P̂Sk(N)(Y = y)
, for N ∈ N, k = 1, . . . ,K, y ∈ {−1,1}, (10.24)

where the trivial cases P(Y = y) ∈ {0,1} are excluded (recall that 0/0 = 0).
For {m1, . . . ,mr} ⊂ {1, . . . ,n} we define functions which can be viewed as

the regularized versions of the estimators f̂ m1,...,mr
PA of f m1,...,mr (see (10.20) and

(10.16)). Namely, for x ∈ X, v = πm1,...,mr x, N ∈ N, WN ⊂ {1, . . . ,N} and ε =
(εN)N∈N where the non-random εN → 0 as N→ ∞, we put
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f̂ m1,...,mr
PA,ε (x,ξN(WN))=

{
1, if P̂WN (Y =1|X ∈Cm1,...,mr(v))> γ̂WN (ψ)+εN , x∈M,

−1, otherwise.
(10.25)

In other words we use γ̂WN (ψ)+ εN instead of the threshold γ̂WN (ψ) in (10.20).
Take now U as defined in (10.21). Applying Corollary 10.1 once again (and Ex-

amples 1 and 2 of [58]) we can claim that statements analogous to (10.22) and
(10.23) are valid for the estimators introduced in (10.25). However in this case we
have the following more precise result.

Theorem 10.2 ([59]). Let εN→ 0 and N1/2εN→∞ as N→∞. Then, for each K ∈ N,
any subset {m1, . . .mr} of {1, . . . ,n} (r ∈ N), f = f m1,...,mr and a prediction algo-
rithm defined by a function fPA = f̂ m1,...,mr

PA,ε the following central limit theorem holds:

√
N(ÊrrK( fPA,ξN)−Err( f )) D−→ Z ∼ N(0,σ2), as N→ ∞. (10.26)

Here the estimators considered in (10.24) are those used in the construction of
ÊrrK( fPA,ξN), and σ2 = varV where

V = 2 ∑
y∈{−1,1}

1{Y = y}
P(Y = y)

(1{ f (X) �= y}−P( f (X) �= y | Y = y)) . (10.27)

Recall that for a sequence of random variables (ηN)N∈N and a sequence (aN)N∈N
of positive numbers one writes ηN = oP(aN) if ηN/aN

P→ 0, N→ ∞.

Remark 10.2. Clearly one can interpret the central limit theorem (CLT) as a result
describing the rate of approximation for the random variables under consideration.
Thus Theorem 10.2 implies that

ÊrrK( fPA,ξN)−Err( f ) = oP(aN), N→ ∞, (10.28)

where aN = o(N−1/2), and this is an optimal estimator if σ2 �= 0, i.e., one cannot
take aN = O(N−1/2) in (10.28).

Exercise 10.2. Let {ζN}N∈N be a sequence of random variables. Assume that for

some sequence of real numbers {bN}N∈N it holds that bNζN
D−→ ζ , as N→∞, where

ζ is a random variable with continuous distribution function. Prove that bN �= 0 for
all N large enough and ζN = oP(cN) as N→ ∞, for any cN = o(1/bN). Show that if
one takes cN = O(1/bN), as N→ ∞, then the relation ζN = oP(cN) is not true.

Proofs and further discussion including a multidimensional CLT and its statistical
version with self-normalization can be found in [59]. The generalizations for a non-
binary response variable Y are obtained in [55].
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10.2.6 Modifications of the MDR Method

Now we consider modifications of the MDR-method. In [54] a new version of the
MDR method has been introduced and called the MDR method with independent
rule. The idea is to combine the MDR method with an approach proposed in [310]
to classify a large array of binary data. Namely, for certain C =Cm1,...,mr(v), the use
of the estimator P̂WN (Y = 1 | X ∈C) introduced in (10.18) could be unreasonable.
In fact the number of non-zero summands in the nominator and denominator of the
fraction appearing in (10.18) could be rather small (or zero) for some cells, even for
large N and large sample WN . Due to Bayes’ formula we have

P(Y = 1 | X ∈C) =
P(X ∈C | Y = 1)P(Y = 1)

P(X ∈C | Y = 1)P(Y = 1)+P(X ∈C | Y =−1)P(Y =−1)
.

In [310] it was shown that for some class of models, P(X ∈ Cm1,...,mr(v) | Y = y)
admits the estimate

P̂WN (X ∈Cm1,...,mr(v)|Y = y) =
r

∏
i=1

∑ j∈WN 1{X j
mi = xmi ,Y

j = y}
∑ j∈WN 1{Y j = y} , y ∈ {−1,1}.

Obviously, the sum ∑ j∈WN 1{Y j = y} has regular behavior for large WN .
Note that to reduce the time for searching significant combinations of factors,

two-step procedures are used. At the first step one chooses the subset of all factors
for further detailed analysis performed at the second step. For this purpose a certain
function is introduced to characterize the dependence between Y and a collection of
variables Xm1 , . . . ,Xmr where {m1, . . . ,mr} ⊂ {1, . . . ,n}. The collections with speci-
fied values of this function are rejected. After that other collections are considered.

In [288] the following approach based on the Shannon entropy was employed.
For response variable Y and each factor Xk introduce the information

I(Xk) = H(Xk)+H(Y )−H(Xk,Y ), (10.29)

where, for a random variable (or vector) Z : Ω → {z1, . . . ,zm} such that the proba-
bility P(Z = zk) is positive, k = 1, . . . ,m, the Shannon entropy is defined by

H(Z) =−
m

∑
k=1

P(Z = zk) log2 P(Z = zk). (10.30)

The value of I(Xk) characterizes the interrelation between Y and Xk. If Y and Xk
are independent then I(Xk) = 0. One can say that if I(Xk) > I(Xq) then the interre-
lation between Xk and Y is stronger than that between Y and Xq. Furthermore, one
can characterize the relation between Y and the pairs (Xk,Xq) where k,q = 1, . . . ,n.
Namely, put
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I(Xk,Xq) = −H(Xk)−H(Xq)−H(Y )

+H(Xk,Xq)+H(Xk,Y )+H(Xq,Y )−H(Xk,Xq,Y ). (10.31)

Now, similar to the MDR method, one uses estimators of I(Xk) and I(Xk,Xq) for
inference. Thus, for H(Z) appearing in (10.30) take

(10.32)

where

P̂(Z = zk) =
1
N

N

∑
j=1

1{Z j = zk}, k = 1, . . . ,m,

and Z1, . . . ,ZN are i.i.d. copies of Z (in other words we employ X j
1 , . . . ,X

j
n and Y j

with j = 1, . . . ,N). For a given s ∈ N

with i belonging to the set of indices k which correspond to the s largest values
of Î(Xk) = Ĥ(Xk) + Ĥ(Y )− Ĥ(Xk,Y ) or to the set of indices k,q which describe
the s largest values of Î(Xk,Xq) (one uses (10.32) to estimate the right-hand side of
(10.31)). However, the first step with the choice based only on the s largest values
of Î(Xk) would not be convincing as the liaison between Y and single factors could
be small (the absence of the main effect) whereas the dependence between Y and

Measures of dependence for a collection of random variables more general than
those defined in (10.29) and (10.31) are considered in [66]. For random variables Xi,
i = 1, . . . ,n, and X = (X1, . . . ,Xn) write XJ = (X j1 , . . . ,X jd ) where J = { j1, . . . , jd}
is a subset of G = {1, . . . ,n}. Put

where H(X∅) = 0. Furthermore, define

ν(X) =
n

∑
i=1

H(Xi)−H(X), τ(X) = ν(X ,Y )−ν(X).

The generalized MDR (GMDR) method employs the framework of generalized
linear models for scoring in conjunction with MDR [257]. GMDR enables inclusion
of covariants and handles both discrete and continuous traits in population-based
study designs. GMDR utilizes the same riskpooling, dimensionality reduction strat-

−Ĥ(Z) =
m

∑
k=1

P̂(Z = zk) log2 P(Z = zk)

μ(X) = ∑
J⊂G

(−1) G\J H(XJ)
| |

we can take the factors Xifor further analysis

a certain combination of factors could be rather strong.

According to [66] the functions μ , ν and τ are called n-way interaction information
(nWII), total correlation information (TCI) and phenotype-associated information
(PAI), respectively. The goals of [66] were 1) to develop a novel metric PAI that
is robust to the confounding effects of factors, 2) demonstrate that the PAI is a
useful information-theoretic metric for effectively screening gene-gene and gene-
environment interactions, and 3) develop the algorithm AMBIENCE that employs
the PAI metric to identify the variables involved in the strongest interactions.

.
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egy as MDR and yields the original MDR as a special case. However, despite avail-
ability of a more efficient implementation based on parallel computing (see [62]),
MDR and its variants, including GMDR, are computationally intensive. We also
mention the model-based MDR (MB-MDR) method proposed in [63] which allows
a more flexible definition of risk cells than the application of MDR techniques. Fur-
thermore, we refer to the MDR pedigree disequilibrium test (MDR-PDT) considered
in [111] and MDR in structured populations (MDR-SP) proposed in [300].

In [303] the following Gene-MDR method has been introduced. First, MDR
analysis is applied for combining multiple SNPs from the same gene. Second,
between-gene MDR analysis then performs interaction exploration using the sum-
marized gene effects from within-gene MDR analysis. This method was applied to
bipolar disorder (BD) GWAS data from Welcome Trust Case Control Consortium
(WTCCC). The results demonstrate that Gene-MDR is capable of detecting high
order gene-gene interactions associated with BD. Thus reducing the dimension of
genome-wide data from SNP level to gene level, Gene-MDR efficiently identifies
high order gene-gene interactions. Therefore, according to [303] Gene-MDR can
provide the key to understand complex disease etiology.

A robust MDR method (RMDR) has been introduced in [158] to perform con-
structive induction using Fisher’s exact Test rather than a predetermined threshold.
According to [158] the advantage of this approach is that one considers in the MDR
analysis only those genotype combinations which are determined to be statistically
significant. The RMDR method is applied to the detection of gene-gene interactions
in genotype data from a population-based study of bladder cancer in New Hamp-
shire.

To complete this section we mention that a deep problem is to choose and study
the measure characterizing the importance of certain collections of factors. In this
regard we refer to [360].

10.3 Logic Regression and Simulated Annealing

Consider now a model in which the factors X1, . . . ,Xn are binary random variables
taking values 0 or 1. In the framework of SNP studies we can assume, e.g., that
SNP at locus labeled by i is characterized by the random variable Xi where Xi = 0
for recessive genotype (aa) and Xi = 1 for dominant one (AA or Aa). It is natural
to assume that certain logic combinations of these factors can determine the value
of the response variable Y showing the state of the health of the individual under
consideration.
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10.3.1 Logic Trees

We use the operators ∧ (AND), ∨ (OR), c (NOT). Thus Xi ∧ X j = min{Xi,X j},
Xi ∨X j = max{Xi,X j} and Xc

i (the conjugate of Xi) means “not Xi”, that is Xc
i = 1

whenever Xi = 0 and Xc
i = 0 whenever Xi = 1. In other words, Xc

i = 1−Xi. For the
functions Xi = Xi(ω) these operations are carried out at each point ω ∈Ω . As usual
one can consider the values 1 and 0 corresponding to the logic statements “true”
and “false”. With the variables X1, . . . ,Xn and the operators mentioned above we
can construct a Boolean function (or expression) L. For example,

L = [(X1∨X2)∧Xc
5 ]∧ (X7∨X9). (10.33)

Note that any Boolean function can be written in the “disjunctive normal form”, that
is as L1∨ . . .∨Lm where Lk = Zi1(k)∧ . . .∧Zi j(k)(k) and Zi is equal to Xi or to Xc

i for
i = 1, . . . ,n, here {i1(k), . . . , i j(k)(k)} ⊂ {1, . . . ,n}, k = 1, . . . ,m, m ∈ N.

Exercise 10.3. Show that expression (10.33) can be written in the disjunctive nor-
mal form

L = (X1∧Xc
5 ∧X7)∨ (X2∧Xc

5 ∧X7)∨ (X1∧Xc
5 ∧X9)∨ (X2∧Xc

5 ∧X9).

Thus the same logic function admits different representations. Clearly any logic
function introduced above can be represented by means of a certain tree (also non-
uniquely). We mention in passing that logic trees as well as classification and re-
gression trees (CART) share some similarities, although they are different.

Below we list the standard terminology for logic trees under consideration (see
[359]).

1. At each knot of the tree there is a single element (Xi or Xc
i , operators

2. Every knot has either zero or two subknots (children of the parent knot).
3. The subknots are each other’s siblings.
4. A knot devoid of parent knot is called a root.
5. The knots having no children are called leaves.
6. Leaves can only be occupied by variables, all other knots by operators.

The expression L defined in (10.33) can be represented, e.g., by the tree in
Fig. 10.1.

10.3.2 Logic Regression

Let X = (X1, . . . ,Xn) be a predictor vector with binary components. For a response
variable Y and specified link function g we consider the model

g(E(Y | X)) = β0 +
s

∑
j=1
β jL j(X), (10.34)

∧ or ∨).
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Fig. 10.1 Example of logic tree

where L j ( j = 1, . . . ,s) is a Boolean expression in the predictors X1, . . . ,Xn and
β = (β0, . . . ,βs) is a vector of real-valued coefficients. Following [335] the model
introduced by (10.34) is called the logic regression. The above framework includes,
for example, linear regression, when g(x) = x, x ∈ R, and L j(X) = X j, j = 1, . . . ,n
(s = n). For the latter choice of L j ( j = 1, . . . ,n) we come to the definition of logis-
tic regression when Y is a binary variable with P(Y = 1 | X) = p, p = p(X), and
g(x) = λ (x) = log(x/(1−x)), x ∈ (0,1). Namely, in this case E(Y | X) = p and we
have the formula

log

(
p

1− p

)
= β0 +

n

∑
j=1
β jX j. (10.35)

Note that one can rewrite (10.35) as

p =Λ(β0 +
n

∑
j=1
β jX j) ,

where the logistic function Λ is given by

Λ(x) =
ex

1+ ex , x ∈ R.

For every model type we define a score function which reflects the "quality" of
the studied model. For example, for linear regression the score could be the resid-
ual sum of squares and for logistic regression the score could be the binomial de-
viance. Assume that (10.34) holds with g = λ . Let (X j,Y j) be i.i.d. copies of (X ,Y ),
j = 1, . . . ,N and ξN = (X1,Y 1, . . . ,XN ,Y N). Introduce the normalized logarithmic
likelihood function
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L(h,ξN) =
1
N

N

∑
j=1

1{Y j = 1} log(Λ(h(X j
1 , . . . ,X

j
n ))

+
1
N

N

∑
j=1

1{Y j =−1} log(1−Λ(h(X j
1 , . . . ,X

j
n ))), (10.36)

where h belongs to a certain class of functions M. We will search for a function
ĥM(N) = argmaxh∈ML(h,ξN).

Due to the SLLN for i.i.d. random vectors one has that a.s.

L(h,ξN)→L(h) = E(1{Y = 1}) logΛ(h(X))+E(1{Y =−1}) log(1−Λ(h(X))),

as N→ ∞, whenever E logΛ(h(X)) and E log(1−Λ(h(X))) exist.
Let μ and ν be two probability measures on a measurable space (S,B). Introduce

the Kullback–Leibler divergence or relative entropy D(μ||ν) of ν with respect to μ
as follows:

D(μ||ν) =
{

Eμ

(
dν
dμ

)
, if ν << μ,

∞, otherwise.

Here Eμ stands for the expectation with respect to the probability measure μ on
(S,B), ν << μ means that ν is absolutely continuous with respect to μ , and, in this
case, dν/dμ is the corresponding Radon–Nykodym derivative.

Exercise 10.4. For any probability measures μ and ν on (S,B) show that the Gibbs
inequality holds, i.e. D(μ||ν)≥ 0, with equality if and only if μ = ν .

In view of the Gibbs inequality the function L attains its maximum at h0(x) =
λ (P(Y = 1 | X = x)), x ∈X, where λ is the inverse function toΛ . Thus, in this way,
one can justify the use of the score-functions introduced in (10.36).

There are various modifications and extensions of the logic regression (LR). We
note for example multinomial LR, trio LR, Monte Carlo LR and logic FS (feature
selection). In this regard we refer to [359] (part III) and references therein. In [54]
the ternary logic regression was introduced and employed.

10.3.3 Operations on Logic Trees

In the framework of logic regression it is practically impossible to use in (10.34)
arbitrary combinations of logic expressions. We have to restrict our collection. We
will interpret the logic expression L j from (10.34) as a tree . Thus the right-hand
side of formula (10.34) is defined by a vector of coefficients β and a forest F =
{L1, . . . ,Ls} (any forest is a collection of trees). Let us introduce some notion of
complexity C(T ) of a tree T and let the complexity C(F) of a forest be given by
C(F) = maxk=1,...,s C(Tk) where Tk is a tree corresponding to Lk. For instance one
can define C(T ) as the number of leaves in the tree (another possibility is to consider
the height of the tree).
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We try to find the maximum of the function L(h,ξN) given in (10.36) over all β
and F appearing in (10.34) (such that C(F) ≤ q for a given positive q). In general
it is an easy problem to find the maximum over all β ∈ Rn. However, the subse-
quent search of the maximum over all F in a certain class is very hard when the
cardinality of this set is huge. Instead of exhaustive search one uses the stochastic
maximization. To employ this procedure we have to indicate for each point of a set
S its neighbors (or in an equivalent way to define a graph (S,E)).

Following [335] we say that a tree T2 is a neighbor of a tree T1 if T2 can be
obtained from T1 by means of one of the following six operations.

1. Alternating a leaf. We pick a leaf with some Xi inside, change it by X j or Xc
j .

However to avoid tautologies one cannot have X j or Xc
j in the leaf being sibling of

that where we changed the variable. For example, in Fig. 10.2 (A), X1 in the leaf
of Fig. 10.1 was replaced with X3.

2. Changing operators. Any “∧” can be replaced by a “∨”, and vice versa
(e.g., the operator at the root of the initial tree in Fig. 10.1 has been changed in
Fig. 10.2 (B)).

3. Growing. At any knot that is not a leaf, one allows a new branch to grow. This
is done by declaring the subtree starting at this knot to be the right side branch of
the new subtree at this position, and the left side branch to be a leaf representing any
predictor Xi. These two side trees are connected by a “∧” or “∨” at the location of
the knot. An example of this operation is given in Fig. 10.2 (C).

4. Pruning. A leaf is trimmed from the existing tree, and the subtree starting at
the sibling of the trimmed leaf is "shifted" up to start at the parent of the trimmed
leaf. This is illustrated in Fig. 10.2 (D).

5. Splitting. Any leaf can be split by creating a sibling, and determining a parent
for those two leaves. For example, in Fig. 10.2 (E) the leaf containing X9 from the
initial tree (see Fig.10.1) has been split, with leaf containing X6 as its new sibling.

6. Deleting. One can delete a leaf in a pair of siblings which are both leaves, see
Fig. 10.2 (F), where X1 has been deleted from the initial tree.

Clearly these operations can be inverted. Thus the relation of neighboring is sym-
metric.

Exercise 10.5. Show that one can manage with only four operations instead of six.

However, a wider class of possibilities “to move” from one tree to another could
provide more rapid convergence for the stochastic optimization algorithm discussed
in Sect. 10.3.4 below. Note that in some situations we do not use all possible moves
introduced above. For instance, if we impose a restriction on the model size, i.e. the
total number of binary variables in the logic trees, then any move that increases the
model size (splitting a leaf, growing a branch) could not be permitted.

One says that the forests F1 and F2 are neighbors if they admit the representation
F1 = {T1,T2, . . . ,Ts} and F2 = {T̃1,T2, . . . ,Ts} where the trees T1 and T̃1 are neigh-
bors. This definition is convenient as the neighboring of two forests is determined
only by the two trees.
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Fig. 10.2 Operations with logic trees

Before considering the optimization problem related to logic regression we men-
tion that there exists free software which can be downloaded as package LogicReg
from the The Comprehensive R Archive Network (http://cran.r-project.org/).

http://cran.r-project.org/
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10.3.4 Simulated Annealing

Let J be a real-valued objective (or cost) function defined on a finite set S. We
write S∗ = argminJ, i.e., a subset of S consisting of the points where J attains its
minimum value on S. Clearly the problem to find the set S̃ = argmaxJ is reduced
to the search of the points where the function −J attains its minimum. Assume that
S∗ �= S, that is, J does not take a constant value all over S. For each i∈ S we introduce
a neighborhood S(i)⊂ S\{i} in such a way that j ∈ S(i) if and only if i ∈ S( j). An
equivalent approach is to define a graph G = (S,E) and suppose that there exists an
edge connecting the vertices i and j if and only if j ∈ S(i).

Consider a matrix Q = (qi j) with nonnegative entries such that for any i ∈ S

∑
j∈S

qi j = 1.

We also define the temperature T as a function T : Z+→ (0,1). Here T (t) is inter-
preted as the temperature at time t ∈ Z+, where Z+ = {0,1, . . .}.

Now we describe the classical simulated annealing algorithm which gives the
possibility to find the set S∗ with probability close to one. For this purpose we
introduce the following Markov chain U = {U(t), t ∈ Z+}. Let U(0) = x0 where
x0 ∈ S is called the initial state. Let U(t) = i for t ∈ Z+ and i ∈ S. Then we take
j ∈ S(i) with probability qi j. The state of the Markov chain at time t + 1 now
is defined as follows. If J( j) ≤ J(i) we put U(t +1) = j. If J( j) > J(i) we put
U(t + 1) = j with probability exp{−(J( j)− J(i))/T (t)}, and U(t + 1) = i with
probability 1− exp(−(J( j)− J(i))/T (t)). Namely,

P(U(t+1)= j|U(t)=i)=

{
qi, j exp

(−T (t)−1 max{J( j)− J(i),0}) , if j∈S(i),
0, if j /∈S(i)∪{i}.

Put
P(U(t +1) = i | U(t) = i) = 1−∑

j �=i
P(U(t +1) = j | U(t) = i).

Recall that a (homogeneous) Markov chain X = {Xn,n ∈ Z+} with transition
matrix P = (pi j) is called irreducible if for any i, j ∈ S (the state space) there exists
n = n(i, j)∈N such that pi, j(n)> 0. Here pi, j(n) is an element of the matrix Pn, that
is probability of transition from i to j in n steps. Let Di = {n ∈ N : pi,i(n) > 0} for
each i ∈ S. Denote by gcd(Di) the greatest common divisor of elements belonging
to Di. One says that a Markov chain is aperiodic if gcd(Di) = 1 for each i ∈ S.

Let us explain the idea of using the Markov chain U . Consider a special case of
a homogeneous Markov chain UT defined above where T (t) = T for each t ∈ Z+. If
UT is irreducible and aperiodic and if it holds that

qi, j = q j,i, i, j ∈ S, (10.37)
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then there exists (even under more general conditions) a unique invariant (initial)
distribution PT of UT (0) which is given by

PT ({i}) = 1
ZT

exp
(
−J(i)

T

)
, i ∈ S, (10.38)

where ZT = ∑i∈S exp(−J(i)/T ) is a normalizing constant, see, e.g. [1], Chap. 3.
It is not difficult to show that the probability measure PT will eventually be con-

centrated on S∗ as T ↓ 0. In fact, take J∗ = J( j) where j ∈ S∗. Obviously,

lim
u→0+

exp(a/u) =

⎧⎪⎨
⎪⎩

0, if a < 0,
1, if a = 0,
∞, if a > 0.

Therefore, for each i ∈ S it holds that

lim
T↓0

PT ({i}) = lim
T↓0

exp((J∗ − J(i))/T )
∑ j∈S exp((J∗ − J( j))/T )

= lim
T↓0

exp((J∗ − J(i))/T )
∑ j∈S exp((J∗ − J( j))/T )

1{i ∈ S∗}

+ lim
T↓0

exp((J∗ − J(i))/T )
∑ j∈S exp((J∗ − J( j))/T )

1{i ∈ S\S∗}

=
1
|S∗|1{i ∈ S∗}+ 0

|S∗|1{i ∈ S\S∗}

=
1
|S∗|1{i ∈ S∗}.

We have briefly described the classical Metropolis algorithm (proposed initially
to study physical systems) permitting to find (asymptotically) the Gibbs distribu-
tion (10.38). Further improvement of this algorithm is due to W.K.Hastings. Also
note that in [233] the simulated annealing has been developed in the framework of
optimization problems. As to our minimization problem we will choose the set S∗
with high probability if the choice is done according to the distribution PT given in
(10.38) with small positive T .

It is worth to mentioned that to perform the algorithm in a logic regression study
we need a data set, an annealing cooling scheme, a link function g appearing in
(10.34), an objective function J, the maximum complexity of forests and the number
of iterations used in the annealing.

To formulate the general result of this section we need some more notation. A
path from vertex i1 to vertex in (where an integer n≥ 2) in S is a (directed) collection
of vertices i1, . . . , in such that ik and ik+1 are connected by an edge (from E) for each
k = 1, . . . ,n− 1. One says that a vertex i communicates with S∗ by a path of the
height h≥ 0 if for some n ∈ N there is a path i1, . . . , in with the following property:
i1 = i, in ∈ S∗ and
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max
k=1,...,n

J(ik)≤ J(i)+h.

Let d∗ be the smallest number such that each i ∈ S communicates with S∗ by a path
of height d∗ (see Fig. 10.3).

Fig. 10.3 Path of height h

Theorem 10.3 ([162]). The relation

lim
t→∞

P(U(t) ∈ S∗) = 1 (10.39)

holds if and only if limt→∞ T (t) = 0 and

∞

∑
t=1

exp
(
− d∗

T (t)

)
= ∞. (10.40)

According to (10.40) one chooses d > d∗ and T (t) = d/ log t for t > 1. The num-
ber d∗ can be viewed as a characteristic of complexity for the Markov chain U to
reach S∗ escaping the local minimum of J. In [359] a typical cooling scheme starts
at T = 10zstart and then the temperature is lowered to T = T zend where zend < zstart,
in equal decrements on the log10-scale. Note also that there are various modifi-
cations of the simulated annealing algorithm. For example, to study the function
defined on a collection of trees (i.e. the vertices of a graph were trees) the follow-
ing algorithm was employed in [54]. If U(t) = i, then take a random arrangement
of vertices belonging to the set S(i) and obtain { j1, . . . , jR(i)}, here R(i) = |S(i)|.
Furthermore calculate J( jq) for q = 1, . . . ,K(i) where K(i) = [R(i)/e] and take
k ∈ {K(i)+1, . . . ,R(i)} at random. If

J( jk)< J(i)∧ min
1≤q≤K(i)

J( jq),
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put U(t + 1) = jk (as usual a∧ b = min{a,b} for a,b ∈ R). In the opposite case
introduce D(i,k) = { j1, . . . , jK(i)}∪{ jk}∪{i} and perform at time t +1 the transi-
tion to the state j belonging to D(i,k) with probability 1

Zi,k
exp(−J( j)/T (t)) where

Zi,k = ∑v∈D(i,k) exp(−J(v)/T (t)). Simulation experiments showed that this algo-
rithm was efficient when the vertices of the graph were trees and the corresponding
concept of neighbors involved the operations 1.−6. introduced in Sect. 10.3.1.

Note in passing that various versions of simulated annealing have been devel-
oped, for example fast annealing and very fast simulated reannealing (VFSR) or
adaptive simulated annealing (ASA). See also [76] for simulated annealing and ge-
netic algorithms.

10.4 Models Involving Random Fields

Among the new statistical methods we also mention kernel-machine-based models,

describes the trait similarity as a function of genetic similarity. Recently, in [16 ] a
genetic random field model (GenRF) has been proposed to test the joint association
of multiple genetic variants. This approach is motivated by the progress of spatial
statistics. GenRF, in contrast to SKAT and SIMreg, regresses the response of one
subject on responses of all other subjects.

Let the trait or phenotype Yi of the i-th individual (i = 1, . . . ,N) of a given region
be described by the vectors of covariates Gi (characterizing the genotype by means
of p variables, e.g., SNPs) and Xi (consisting of q nongenetic variables such as age,
gender and others). Note that SKAT is a semiparametric linear model of the form

Yi = α�Xi +h(Gi)+ εi, i = 1, . . . ,N, (10.41)

where Yi is a continuous variable, α ∈ R
q, h is a real-valued nonparametric func-

tion belonging to the functional space generated by a positive semidefinite kernel
function K(·, ·). Then, for this model, testing for the joint association is equivalent
to testing the hypothesis H0 : h(Gi) = 0, i = 1, . . . ,N, see, e.g., [256]. As explained
in [420], the kernel function K(Gi,Gj) can be interpreted as a measure for genetic
similarity in the region of interest between the i-th and j-th subjects, where the
kernel function better capturing the similarity between individuals and the causal
variant effects can increase the power of the test. SIMreg explicitly defines a mea-
sure for trait similarity and directly regresses the trait similarity between each pair
of subjects on genetic similarity. Note that SKAT and SIMreg lead to analogous test
statistics, see [399].

The key idea of the GenRF studied in [168] is the following. If the genetic vari-
ants are jointly associated with a trait, then the genetic similarity across subjects
will contribute to the trait similarity. Namely, for centered random variables Yi the
conditional distribution of Yi given all other responses has the following form

is developed in the framework of a random effect model and SIMreg directly
8

known as SKAT (see [419, 420]) and similarity regression (SIMreg) [399]. SKAT
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Yi|Y−i ∼ γ∑
j �=i

s(Gi,G j)Yj + εi, i = 1, . . . ,N. (10.42)

Here Y−i stands for the vector of all Yj’s without Yi, whereas s(·, ·) is a known weight
function, γ is a nonnegative parameter and the εi’s are i.i.d. random errors. One can
test the joint association of genetic variants with the trait by testing the null hy-
pothesis H0 : γ = 0. Thus, in the framework of (10.42), we can view responses as
realization of a random field defined on a p-dimensional space of genetic variants
(one can write YGi1,...,Gip ). The responses from locations that are “closer” in the ge-
netic space are expected to be more similar if the genetic association exists. Models
like (10.42) have been introduced in [37] for random fields. The GenRF model is
closely related to the conditional auto-regressive model in spatial statistics, see [86].

Suppose that each component of Gi records the number of minor alleles in a
single locus and takes values in the set {0,1,2} corresponding to three possibilities
{AA,Aa,aa}. In [419] the so-called identity-by-state (IBS) measure of similarity
has been defined:

s(Gi,G j) =
p

∑
k=1

wk(2−|Gik−G jk|)

where the wk’s are some weights. Another choice of the function s is discussed in
[252]. Note that in [419] the following generalization of (10.42) has been considered

Yi|Y−i,Xi ∼ β�Xi + γ∑
j �=i

s(Gi,G j)(Yj−β�X j)+ εi, i = 1, . . . ,N, (10.43)

where the Yj’s are not assumed to be centered, β ∈ R
q.

For the Gaussian scenario when εi ∼ N(0,σ2), i = 1, . . . ,N, the model given in
(10.43) means that the conditional distribution of Yi, given the responses from all
other subjects and the covariates X = (X�1 , . . . ,X�N )�, is normal with mean β�Xi +
γ∑ j �=i s(Gi,G j)(Yj−β�X j) and variance σ2. Thus, assuming that β is known, one
can find the maximum pseudo-likelihood estimator for γ , namely,

γ̃ =
(Y −Xβ )�S(Y −Xβ )
(Y −Xβ )�S2(Y −Xβ )

.

Here Y = (Y1, . . . ,YN)
� and the N ×N matrix S has zero diagonal elements and

Si j = s(Gi,G j) for i �= j. Intuitively one expects that a large value of γ̃ would lead
to rejecting the null hypothesis H0 : γ = 0. However, in practice β is unknown and,
therefore, the authors of [168] propose to replace β by the least squares estimator
β̂ = (X�X)−1X�Y . Then we obtain the test statistic

γ̂ =
Y�BSBY
Y�BS2BY

where B = I−X(X�X)−1X� and I stands for the identity matrix. Taking into ac-
count that BS2B is positive-definite we can write, for any real t, the following equal-
ity
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PH0(γ̂ > t)=PH0((BY )�(S−tS2)BY > 0)=P(Z�(S−tS2)Z > 0)=P

(
N

∑
i=1
λiΦi > 0

)

where Z ∼ N(0,B2), the Φi’s are independent and χ2
1 -distributed random variables

and the λi’s are the eigenvalues of B(S− tS2)B. The final p-value can be found in
a way similar to calculations used in [420] for SKAT statistics. Note that asymp-
totically the proposed test is robust with respect to distributions others than normal.
Indeed, in [148] an upper bound has been provided for

sup
x∈R
|PH0((BY )�ABY < x)−PH0(Z

�AZ < x)|

where A = S− tS2. This leads to the robustness of the GenRF test as long as BY
has zero mean under null hypothesis which is true as the least squares estimator
X(X�X)−1X�Y is unbiased for the mean of Y within the GenRF model when γ = 0.
In [168] a simulation study is considered and applications are given as well.

Now we briefly discuss the hidden Markov random field model for GWAS.
Assume that we have m cases and n controls that are genotyped over a set S =
{1, . . . , p} of p SNPs. The problem is to determine which SNPs in S are associated
with the studied disease. Let Y = (Y1, . . . ,Yp) be the observed genotype data and
Ys = (ys,1, . . . ,ys,m+n) with ys,i being the observed genotype for the i-th individual
at the s-th SNP. In [252] it is proposed to develop a Markov random field (MRF)
model to take into account the linkage disequilibrium (LD) information in identify-
ing the disease-associated SNPs. Regarding LD see, e.g., [240, Sect. 5.4.]. First of
all a weighted undirected LD graph G is constructed based on pairwise LD informa-
tion derived from the data (or from the HapMap project). An edge between SNPs s
and s′ is drawn with weight ws,s′ = 1{r2

s,s′ > τ}r2
s,s′ if ws,s′ �= 0. Here r2

s,s′ measures
the LD between the SNPs s and s′ (r is the Pearson coefficient of correlation for
allele frequencies), τ is a fixed threshold (e.g. τ = 0.4 as in [252]). For s = 1, . . . , p,
we introduce the random variable

Xs =

{
1 if SNP s is associated with the disease,
0 otherwise.

One expects that Xs and Xs′ are dependent if s and s′ are linked on the LD graph.
The joint probability function of X = (X1, . . . ,Xp) is defined as for discrete Markov
random fields (see, e.g., [373, Sect. 9.3]). Put Φ = (γ,β ) ∈ R

2
+ and

P(X = x;Φ) = Z−1 exp

{
γ

p

∑
s=1

xs +β ∑
s∼s′

ws,s′I{xs = xs′ }
}

(10.44)

where s ∼ s′ means that there exists an edge between s and s′ in the LD graph and
Z is a normalizing factor. In [252] it is supposed that, given any realization of X ,
the random variables Y1, . . . ,Yp are conditionally independent. Moreover, involving
a Dirichlet prior with parameter α = (α1,α2,α3) for genotype frequencies at the
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s-th SNP (for genotype values 0, 1 and 2) in the case population and the control
population, the following relationships have been obtained in [252]:

P(Ys|Xs = 0) =
Γ (∑3

j=1α j)∏3
j=1Γ (α j + ys+, j + ys−, j)

∏3
j=1Γ (α j)Γ (∑3

j=1(α j + ys+, j + ys−, j)
(10.45)

and

P(Ys|Xs = 1)=
Γ (∑3

j=1α j)∏3
j=1Γ (α j + ys+, j)

∏3
j=1Γ (α j)Γ (∑3

j=1(α j + ys+, j))
· Γ (∑

3
j=1α j)∏3

j=1Γ (α j + ys−, j)

∏3
j=1Γ (α j)Γ (∑3

j=1(α j + ys−, j))
.

(10.46)
Here ys+ = (ys+,1,ys+,2,ys+,3) denotes, for SNP s, the observed genotype for data
in m cases and the vector ys− has an analogous meaning for n controls. The combi-
nation of the probability models given in (10.44)–(10.46) defines a hidden Markov
random field (HMRF) model where X is the vector of the hidden states that follows
a discrete MRF. An efficient iterative conditional mode (ICM) algorithm is provided
to estimate the parameters and a Gibbs sampling approach is employed for estimat-
ing the posterior probabilities. The latter probabilities can be used to define a false
discovery rate (FDR) controlling procedure in order to select the relevant SNPs. The
developed approach is applied in [252] to the analysis of case-control neuroblastoma
(NB) data set.

In [168] a genetic random field model has been applied to the analysis of the
Multi-Ethnic Study of Atherosclerosis (MESA). A novel statistical approach has
been proposed in [168], called the longitudinal genetic random field (LGRF) model,
to test the joint association between a set of genetic variants and a phenotype mea-
sured repeatedly during the course of an observational study. Moreover, an improved
version of LGRF (robust-LGRF) is developed to enhance the robustness to misspec-
ification of the within-subject correlation and hence to avoid type-I error inflation.
A fast version of LGRF (fast-LGRF), as a further extension of robust-LGRF, is con-
sidered to improve the computational efficiency when the total number of repeated
measurements in the sample is large.

According to [411] an important problem is to identify genes that show different
expression profiles over time and pathways that are perturbed during a given bio-
logical process. In [168] a hidden spatial-temporal Markov random field (hstMRF)-
based method has been developed for identifying genes and subnetworks that are
related to biological processes, where the dependency of the differential expression
patterns of genes on the networks are modeled over time and over the network of
pathways.

Important applications of HMRF can be found also in spatial population genet-
ics, see, e.g., [125], where the natural neighborhood structure obtained from the
Dirichlet tiling is used. Let {s1, . . . ,sn} represent the set of observation sites (in R

2)
for n individuals. For each si, the Dirichlet cell (also called Voronoi cell, see e.g.
Definition 3.13) consists of all points that are closer to si than to any other sampling
site. Two sampling sites are neighbors if their cells have a common edge. The Potts-
Dirichlet model is the Potts model (see, e.g., [151, Sect. 7.3]) built on the Dirichlet
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tiling generated by sampling sites. Let ci be the cluster from which the individual i
originates. We assume that there exist at most Kmax clusters. The Potts model is de-
scribed by the probability distribution on the set of cluster configurations. Namely,
given n observation sites, we consider the probabilities

π(c) =
eψU(c)

Z(ψ,Kmax)
, c ∈ {1, . . . ,Kmax}n,

where ψ is a nonnegative (interaction) parameter, U(c) = ∑i∼ j δci,c j , i ∼ j means
that i and j are neighbors, δci,c j is the Kronecker symbol, Z(ψ,Kmax) is a normaliz-
ing constant called the partition function. Clearly, this model possesses the Markov
property.

In [125] the hierarchical Bayes model based on an HMRF is studied. More-
over, in [125] deviations from the Hardy-Weinberg (HW) equilibrium are consid-
ered which are caused by inbreeding. Let L be the number of loci, Jl be the number
of alleles at locus l, and z be the collection of all genotypes (the data). Given that
the individual i originates from the cluster ci = k and given the allele frequencies fk·
in this cluster, the conditional probability of observing the genotype zl

i = (al
i ,b

l
i) at

locus l is Lk( fklal
i
, fklbl

i
) where Lk( f , f ) = f 2 +ϕk f and Lk( f ,g) = 2 f g(1−ϕk) for

f �= g. Diploidy is also assumed. The set of parameters θ = (ψ,c, f ,ϕ) where ψ is
the interaction parameter, c is the cluster configuration, f = ( fkl j), k = 1, . . . ,Kmax,
l = 1, . . . ,L, j = 1, . . . ,Jl , are the allele frequencies and ϕ = (ϕ1, . . . ,ϕKmax) gives
the inbreeding coefficients in each subpopulation. The priors on allele frequencies
are Dirichlet distributions D(α, . . . ,α). The prior distributions on the ϕk’s are beta
B(λ ,μ) distributions. The hierarchy of the model is reflected by

π(θ) = π(ϕ)π(ψ|ϕ)π(c|ϕ,ψ)π( f |c,ψ,ϕ) = π(ϕ)π(ψ)π(c|ψ)π( f |c).

Assuming linkage equilibrium between loci, the likelihood is defined as follows:

π(z|θ) =
n

∏
i=1

L

∏
l=1
Lci( fcilal

i
, fcilbl

i
).

Inference on θ is carried out by simulating the posterior distribution π(θ |z)
through a Markov chain Monte Carlo (MCMC) sampling algorithm. In contrast to
previous work, in [125] the so-called regularization approach is employed to es-
timate the number of clusters. Some real data analysis (e.g., for the Scandinavian
brown bear population) is provided as well.

10.5 Concluding Remarks

In this chapter we mainly discussed statistical problems concerning the identifica-
tion of significant factors (among X1, . . . ,Xn) having an essential impact on a binary
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random response variable Y . Such analysis is important for various applications,
e.g., in medicine and biology. Note that spatial problems arise here as we have to
consider random functions (random fields) defined on graphs with vertices repre-
senting some trees. So, we provided basic information concerning stochastic opti-
mization problems. We considered and applied the simulated annealing techniques.
Special attention was paid to a new version of the MDR method using a certain al-
gorithm to estimate the prediction error (for approximation of Y ) involving a penalty
function and a cross-validation procedure. Here we mention our criterion of strong
consistency of the estimators under consideration and the CLT for regularized ver-
sions of such estimators. We concentrated on rigorous results established for random
functions.

To complete the chapter we mention several vast research directions related to
model selection, having applications to the analysis of factors provoking complex
diseases, which deserve special books or surveys. We draw the attention to classifi-
cation theory and machine learning, Bayesian networks, graphical models including
(hidden) Markov random fields and conditional random fields, see., e.g., [41], [50],
[56], [167], [295], [336].

Furthermore, it is reasonable to compare the employment of different modern
techniques for data analysis. In this respect we refer, e.g., to [54] where genetic
and environmental risk factors for coronary heart disease and myocardial infarction
were considered.

Acknowledgements This work is partially supported by RFBR grant 13-01-00612.



Chapter 11

Extrapolation of Stationary Random Fields

Evgeny Spodarev, Elena Shmileva and Stefan Roth

Abstract We introduce basic statistical methods for the extrapolation of stationary
random fields. For square integrable fields, we consider kriging extrapolation tech-
niques. For (non–Gaussian) stable fields, which are known to be heavy-tailed, we
describe further extrapolation methods and discuss their properties. Two of them
can be seen as direct generalizations of kriging.

11.1 Introduction

In this chapter, we consider the problem of extrapolation (prediction) of random
fields arising mainly in geosciences, mining, oil exploration, hydrosciences, insur-
ance, etc. The techniques to solve this problem are one of the fundamental tools in
geostatistics that provide statistical inference for spatially referenced variables of
interest. Examples of such quantities are the amount of rainfall, concentration of
minerals and vegetation, soil texture, population density, economic wealth, storm
insurance claim amounts, etc.

The origins of geostatistics as a mathematical science can be traced back to
the works of L. Gandin (1963) [135], B. Matérn (1960) [262], and G. Matheron
(1962-63) [263, 264]. However, the mathematical foundations were already laid by
A.N.Kolmogorov (1941) [234] as well as by N.Wiener (1949) [414], where the ex-
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trapolation of stationary time series was studied, whereas their practical application
is known since 1951 due to mining engineer D. G. Krige [236]. Typical practical
problems to solve are e.g. plotting the contour concentration map of minerals (inter-
polation), inference of the mean areal precipitation and evaluation of the accuracy
of estimators from spatial measurements (averaging), selection of locations of new
monitoring points so that e.g. the concentration of minerals can be evaluated with
sufficient accuracy (monitoring network design).

The remainder of this chapter is divided into three sections. Sect. 11.2 contains
preliminaries about distributional invariance properties and the dependence struc-
ture of random fields. In Sect. 11.3, we concentrate on kriging, which is a widely
used probabilistic extrapolation technique for fields with finite second moment.
Sect. 11.4 contains recent results on the extrapolation of heavy tailed random fields
with infinite variance, namely of stable random fields.

In Sect. 11.2 and 11.3 we mainly follow the books [71, 86, 373, 408]. Sect. 11.4
is based on [221], it also contains some new results for stable fields with infinite first
moment, see Sect. 11.4.4.

11.2 Basics of Random Fields

Let (Ω ,F ,P) be an arbitrary probability space.

Definition 11.1. A random field X = {X(t), t ∈ R
d} is a random function on

(Ω ,F ,P) indexed by the elements of Rd or of some subset I ⊂ R
d , where d ∈ N is

an arbitrary integer, i.e., X is a measurable mapping X :Ω ×R
d → R.

For an introduction into the theory of random functions see e.g. [373, Chap. 9].

11.2.1 Random Fields with Invariance Properties

A random field whose finite-dimensional distributions are invariant with respect
to the action of a group G of transformations of R

d is called G-invariant in the
strict sense. In case if this invariance is given only for the first two moments of
the field, which are assumed to be finite we speak about the G–invariance in wide
sense. Thus, if G is the group of all translations of Rd , then one calls such random
fields stationary (in the respective sense). For G being the group of rotations SOd
one claims the random field to be isotropic. If G is the group of all rigid motions
in R

d then such field is called motion invariant. The same notions of invariance
can be transferred to the increments of random fields. In this case, the property of
stationarity is often called intrinsic. The intrinsic stationarity in the wide sense is
called intrinsic stationarity of order two. For more details on invariance properties
confer [373, Sect. 9.5].
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Exercise 11.1. Show that the mean value function (if it exists) of any process (d = 1)
with stationary increments is a linear function, i.e., EX(t) = at + c for all t ∈ R,
where a ∈ R and c ∈ R are some constants.

A popular class of random fields are Gaussian fields.

Definition 11.2. A random field X = {X(t), t ∈ R
d} is called Gaussian if its finite

dimensional distributions are Gaussian.

The use of Gaussian fields for modelling purposes in applications can be ex-
plained mainly by the simplicity of their construction and analytic tractability com-
bined with the normal distributions of marginals which describes many real phe-
nomena due to the central limit theorem.

By Kolmogorov’s theorem, the probability law of a Gaussian random field is
uniquely defined by its mean value and covariance functions; see [373, Sect. 9.2.2]
for more details. If the mean value function EX(t), t ∈ R

d is identically zero we
call X to be centered. Without loss of generality we tacitly assume all random fields
considered in this chapter to be centered.

Exercise 11.2. Show that for Gaussian random fields stationarity (isotropy, motion
invariance) in the strict sense and stationarity (isotropy, motion invariance) in the
wide sense are equivalent. In this case we call a Gaussian field just stationary
(isotropic, motion invariant).

11.2.1.1 Examples: Gaussian Random Fields

In this section we briefly discuss several examples of Gaussian processes and Gaus-
sian random fields.

1. Ornstein-Uhlenbeck Process. A centered Gaussian process X = {X(t), t ∈ R}
with the covariance function E(X(s)X(t)) = e−|s−t|/2, s, t ∈R is called an Ornstein-
Uhlenbeck process. It has been shown in [49, p. 350] that X is the only stationary
Markov Gaussian process which is stochastically continuous. Additionally, it has
short memory, i.e.,

X(t) D
= e−t/2X(0)+V (t), t > 0,

where V (t) is independent of the past {X(s),s ≤ 0}, cf. [254, Example 2.6, p.11].
Defined on R+, X = {X(t), t ≥ 0} is the strong solution of the Langevin stochastic
differential equation

dX(t) =−1/2X(t)dt +dW (t)

with initial value X(0)∼ N(0,1), where W = {W (t), t ≥ 0} is the standard Wiener
process, see e.g. [60, Chap. 8, Theorem 7]. It holds also that

X D
=
{

e−t/2W
(
e t) , t ∈ R

}
,
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cf. [60, Chap. 3, p.107].

2. Gaussian Linear Random Function. A Gaussian linear random function X =
{X(t), t ∈ l2} is defined by X(t) = 〈N, t〉2, t ∈ l2, where N = {Ni}∞

i=1 is an i.i.d.
sequence of N(0,1)-distributed random variables, and l2 is the Hilbert space of
sequences t = {ti}∞

i=1 such that ‖t‖2
2 = ∑∞

i=1 t2
i < ∞ with scalar product 〈s, t〉2 =

∑∞
i=1 siti, s, t ∈ l2. Since N is not an element of l2 a.s., the expression 〈N, t〉2 is un-

derstood formally as the series ∑∞
i=1 Niti which converges in the mean square sense,

i.e.,

E

∣∣∣∣∣
m

∑
i=n

Niti

∣∣∣∣∣
2

=
m

∑
i=n

t2
i → 0, as n,m→ ∞.

It holds that

X(t)∼ N(0,‖t‖2
2), X(t)−X(s) = X(t− s), E(X(s)X(t)) = 〈s, t〉2, s, t ∈ l2.

The variogram γ(h) = 1/2E
(
(X(t +h)−X(t))2

)
can be computed as

γ(h) =
1
2

E
(
X2(h)

)
=
‖h‖2

2
2

, h ∈ l2,

see Sect. 11.2.2.3 for more details on variograms. Here we have γ(h)→∞ as ‖h‖2→
∞. Transferring the notions of stationarity from the index space R

d to l2, it is clear
that X is intrinsic stationary of order two but not wide sense stationary. Confer [177]
for the general theory of Gaussian random functions on Hilbert index spaces. A
random field Y = {Y (s),s ∈ R

d} on R
d can be derived from X by setting

Y (s) = X((s1, . . . ,sd ,0,0, . . .)�), s = (s1, . . . ,sd)
� ∈ R

d ,

i.e., consider sequences in l2 for which only the first d components are not equal to
zero. In this case all sums considered above are finite.

3. Fractional Brownian Fields. A fractional Brownian field X = {X(t), t ∈ R
d} is

a centered Gaussian field with covariance function

E(X(s)X(t)) =
1
2
(‖s‖2H +‖t‖2H −‖s− t‖2H) , s, t ∈ R

d

for some H ∈ (0,1] where ‖ · ‖ is the Euclidean norm in R
d (see Sect. 11.2.2.1 for

more details on covariance functions). The parameter H (often called Hurst index)
is responsible for the regularity of the paths of X . The larger H is, the smoother
are the paths. For d = 1, X is called the fractional Brownian motion, including the
two–sided Wiener process (defined on the whole real line R) where H = 1/2. In the
case d > 1, X is called the Brownian Lévy field if H = 1/2 (see, e.g., [252, Sect. 2]).
It is easy to check that X is intrinsically stationary of order two and isotropic. Its
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variogram γ(h) = 1/2 · ‖h‖2H is clearly motion invariant. However, this field is not
wide-sense stationary as its variance is not constant.

Exercise 11.3. Show that a fractional Brownian field X

1. has stationary increments, which are positively correlated for H ∈ (1/2,1) and
negatively correlated for H ∈ (0,1/2),

2. is H–self-similar, i.e., X(λ t) D
= |λ |HX(t) for all λ ∈ R and t ∈ R

d ,
3. has a version with a.s. Hölder-continuous paths of any order β ∈ (0,H),
4. has nowhere differentiable paths for any H ∈ (0,1),
5. is a linear process for d = H = 1, i.e., X(t) D

= tX0, for all t ∈R and some random
variable X0 ∼ N(0,1).

11.2.1.2 Examples: Non-Gaussian Random Fields

We now discuss several examples on non-Gaussian random fields.

1. Lévy Processes with Finite Second Moments. Let X = {X(t), t ≥ 0} be a Lévy
process with finite second moments. It is usually defined via the Lévy–Khinchin
triplet coding its jump structure, see e.g. [338] and Chapter 13. It is clear that X is
intrinsic stationary of order two, but not wide-sense stationary. For these processes
one can calculate the variance of its increments and the variogram. For example, we
have

γ(h) = 1/2 ·E(
(X(t +h)−X(t))2)= λh/2, h, t ≥ 0

for the stationary Poisson point process with intensity λ > 0.

2. Poisson Shot-Noise Fields. A Poisson shot-noise field X = {X(t), t ∈ R
d} is

defined by

X(t) = ∑
Xi∈Φ

f (t−Xi) =
∫
Rd

f (t− x)Φ(dx), t ∈ R
d ,

where Φ is a stationary Poisson point process on R
d with intensity λ , f ∈ L1(Rd).

It follows from [373, Exercise 9.10] that X is strictly stationary. Furthermore, it can
be shown that

EX(t) = λ
∫
Rd

f (x)dx, t ∈ R
d ,

and, if additionally f ∈ L2(Rd), then

cov(X(s),X(t)) = λ
∫
Rd

f (t− s+ x) f (x)dx, s, t ∈ R
d

i.e., the Poisson shot-noise field is also wide-sense stationary (cf. [373, Exercise
9.29]). If f is rotation invariant then X is isotropic of order two. See Fig. 11.1(a) for
a typical realization of X .
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(a) Gaussian random field with Whittle-
Matérn–type covariance function (see Sect.
11.2.2.1, Example 6), a = 2, b = ν = 1

(b) Poisson shot-noise field with λ = 1 and
f (x) = 1

2π
(
1− 1

4‖x‖2
)

1(‖x‖ ≤ 2)

Fig. 11.1 Simulated realizations of (strictly and wide-sense) motion invariant random fields.

3. Boolean Random Functions. Let {Zt(x), x ∈ R
d}t∈R be a family of indepen-

dent lower semi-continuous random functions with subgraphs having almost surely
compact sections (see Chap. 5) and Π = {(Xi,Ti)}∞

i=1 be a Poisson point process in
R

d ×R with intensity measure νd ⊗θ , where νd denotes the Lebesgue measure on
R

d and θ is a σ -finite measure on R. The random function Z = {Z(x), x∈Rd} with

Z(x) = sup
(Xk,Tk)∈Π

ZTk(x−Xk), x ∈ R
d

is called a Boolean random function. The functions Zt are referred to as primary
functions.

11.2.2 Elements of Correlation Theory for Square Integrable
Random Fields

Recall the following basic concepts.

Definition 11.3. A symmetric function f : Rd ×R
d → R is called positive semi–

definite if for any n ∈ N, w1, . . . ,wn ∈ C and any t1, . . . , tn ∈ R
d it holds that

n

∑
i, j=1

wiw j f (ti, t j)≥ 0,

where w j denotes the complex conjugate of w j.

Definition 11.4. A symmetric function f : Rd×R
d→R is called positive definite if

for any n ∈ N, w1, . . . ,wn ∈ C such that (w1, . . . ,wn)
� �= o ∈ Cn and any t1, . . . , tn ∈

R
d it holds that
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n

∑
i, j=1

wiw j f (ti, t j)> 0.

Definition 11.5. A symmetric function f : Rd×R
d→R is called conditionally neg-

ative semi–definite if for any n ∈ N, w1, . . . ,wn ∈ C such that ∑n
i=1 wi = 0 and any

t1, . . . , tn ∈ R
d it holds that

n

∑
i, j=1

wiw j f (ti, t j)≤ 0.

Exercise 11.4. Prove that the functions cos(ax), a ∈ R and e−|x|p , p ∈ (0, 2] are
positive semi–definite, whereas e−|x|p , p > 2, |cosx| and a2 +cos2 x, a ∈R are not.

Exercise 11.5. Find a positive semi-definite function with discrete support.

11.2.2.1 Covariance function

Definition 11.6. For a random field X = {X(t), t ∈ R
d} with EX2(t) < ∞, t ∈ R

d ,
the function C : Rd×R

d → R given by

C(s, t) = cov(X(s),X(t)) = E(X(s)−EX(s))(X(t)−EX(t)) , s, t ∈ R
d

is called the covariance function of X .

If X is wide-sense stationary (motion invariant), then C(s, t) depends only on s−t
(‖s−t‖, respectively), s, t ∈Rd . For further properties of the covariance function see
[373, Sect. 9.4-9.6]. We mention just a few.

1. Generic property. A function f : Rd×R
d→R is a covariance function of some

square integrable random field if and only if it is positive semi–definite.

Exercise 11.6. Prove this fact. Hint. Calculate the variance of the linear combi-
nation ∑n

i=1 xiX(ti) for arbitrary n ∈ N, ti ∈ R
d , xi ∈ R.

2. Spectral representation. By the Bochner-Kchinchin theorem (see, e.g., [46] or
[373, Theorem 9.6]), any positive semi–definite function f : Rd → R which is
continuous at the origin is a Fourier transform of some symmetric finite measure
μ f on R

d . Thus for a wide-sense stationary and mean- square continuous field
X we have

cov(X(s),X(t)) =C(s− t) =
∫
Rd

ei〈x,s−t〉 μC(dx).

Here 〈·, ·〉 is the Euclidean scalar product in R
d . The measure μC is called

a spectral measure of X . If μC is absolutely continuous with respect to the
Lebesgue measure, then its density is called a spectral density. The above field
X itself has the spectral representation
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X(t) =
∫
Rd

ei〈x,t〉Λ(dx), (11.1)

where Λ is a complex-valued orthogonal random measure with EΛ(A) = 0
and E

(
Λ(A)Λ(B)

)
= μC(A∩B) for any Borel sets A,B ⊂ R

d . The integral in
(11.1) is understood in the mean-square sense, i.e., its integral sums converge
in L2(Ω ,F ,P). For more details on the spectral representation of stationary
processes see [60, Sect. 7, §9, §10], [71, Sect. 2.3.3] or [254, Sect. 3.2, pp. 20-
21], [412, Sect. 4.2, p. 90]. The spectral representation is used e.g. to simulate
stationary Gaussian random fields approximating the integral in (11.1) by its
finite integral sums with respect to a Gaussian white noise measure Λ .

11.2.2.2 Examples: Parametric Families of Covariance Functions

In this section, we discuss some examples of parametric families of covariance func-
tions.

1. White Noise Model. For any s, t ∈ R
d , let

C(s, t) =

{
σ2, if s = t,
0, if s �= t .

This is the covariance function of a random field X = {X(t), t ∈ R
d} consisting of

independent random variables X(t), with variance σ2 > 0, for any fixed d ≥ 1.

2. Normal Scale Mixture. For any s, t ∈ R
d , let

C(s, t) =
∫ ∞

0
e−x‖s−t‖2 μ(dx),

for some finite measure μ on [0,∞). This is the covariance function of a motion
invariant random field for any d ≥ 1 (see [349]).

3. Bessel Family. For some constants a,b > 0 and any s, t ∈ R
d , d ≥ 1, let

C(s, t) = b(a‖s− t‖)−νJν(a‖s− t‖),

where ν = d−2
2 and

Jν(r) =
∞

∑
j=0

(−1) j

j!Γ (ν+ j+1)

( r
2

)ν+2 j
, r ∈ R,

which is the Bessel function of the 1st kind of order ν (cf. [259]). The positive
semi–definiteness of C is proven in [424, p. 367]. The spectral density of C is given
by
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f (h) =
b(a2−h2)ν−

d
2

2νπ
d
2 a2νΓ (ν+1− d

2 )
1[0,a](h).

The special case of d = 3, i.e., ν = 1
2 , yields the so-called hole-effect model, where

C(s, t) = b
sin(a‖s− t‖)

a‖s− t‖ , s, t ∈ R
d . (11.2)

The function C in (11.2) is a valid covariance function if and only if d ≤ 3.

4. Cauchy Family. For some constants a,b,ν > 0 and any s, t ∈ R
d , let

C(s, t) =
b

(1+(a‖s− t‖)2)ν
.

Up to scaling, this function is positive semi-definite as a normal scale mixture with
μ(dx) = cxν−1e−xdx for some constant c > 0.

5. Stable Family. For some ν ∈ (0,2] and any s, t ∈ R
d , let

C(s, t) = be−a‖s−t‖ν .

This function is positive semi-definite for all d ≥ 1 since it is made by substitu-
tion θ �→ ‖s− t‖ out of the characteristic function of a symmetric ν-stable ran-
dom variable, cf. Definition 11.11. In the special case ν = 2 the stable family
yields a Gaussian model with C(s, t) = be−a‖s−t‖2 . Its spectral density is equal to

f (h) = b
√

a
2 he−

ah2
4 .

6. Whittle-Matérn Family. For any s, t ∈ R
d , s �= t, let

C(s, t) =Wν(‖s− t‖) = b21−ν(a‖s− t‖)νKν(a‖s− t‖),

where ν ,a,b > 0, d ≥ 1 and Kν is the modified Bessel function of third kind, also
called the Macdonald function, which is given by

Kν(r) =
π

2sin(πν)
(ei π2 νJ−ν(rei π2 )− e−i π2 νJν(re−i π2 )), r ∈ R, ν �∈ N.

For ν = n ∈ N the above definiton of Kν is understood in the sense of a limit as
ν → n, see [2 , p. 69]. For s = t, we put C(t, t) = b. The spectral density of C is
given by

f (h) = b
2Γ (ν+ d

2 )

Γ ( d
2 )Γ (ν)

(ah)d−1

(1+(ah)2)ν+
d
2

1I(0,∞)(h).

If ν = 2d+1
2 , then a random field with covariance function C is d times differentiable

in mean-square sense. If ν = 1
2 , then the exponential model is obtained with

59
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C(s, t) = be−a‖s−t‖, s, t ∈ R
d ,

which is an important special case. Note that the covariance function of the expo-
nential model belongs to the stable family for ν = 1. Fi. 11.1 shows a realization of
a centered Gaussian random field X with Whittle-Matérn type covariance function.

7. Spherical Model. For 1≤ d ≤ 3, some constants a,b > 0 and any s, t ∈ R
d , let

C(s, t) = b
(

1− 3
2
‖s− t‖

a
+

1
2
‖s− t‖3

a3

)
1(‖s− t‖ ≤ a). (11.3)

If d = 3, then (11.3) yields the volume of B a
2
(o)∩B a

2
(x0), where Br(x) denotes the

closed ball with center x ∈ R
d and radius r > 0, and xo ∈ R

3 is chosen such that,
‖x0‖ = ‖s− t‖. This is exactly the way how (11.3) can be generalized to higher
dimensions: For any d ≥ 3, let

C(s, t) = bνd

(
B a

2
(0)∩B a

2
(s− t)

)
, s, t ∈ R

d ,

where νd is the d-dimensional Lebesgue measure. The advantage of spherical mod-
els is that they have a compact support.

8. Geometric Anisotropy It is easy to see that all covariance models considered
above are motion invariant. An example of a stationary but anisotropic covariance
structure can be provided by rotating and stretching the argument of a motion in-
variant covariance model. Let C0(‖h‖), h ∈Rd be a covariance function of a motion
invariant field where C0 : R+→R

+. Then, for a positive definite (d×d)–matrix Q,

C(h) =C0(
√

h�Qh), h ∈ R
d

is a covariance function of some wide-sense stationary anisotropic random field (see
[408, Chap. 9]).

9. Cyclone Model For d = 3 and for any s, t ∈ R
3, let

C(s, t) =
23/2det(Ss)

1/4det(St)
1/4√

det(Ss +St)
Wν

(√
(s− t)�Ss(Ss +St)−1St(s− t)

)
, (11.4)

where Ss = I3 + ss� and I3 is the (3× 3)–identity matrix and Wν is the Whittle-
Matérn model. In [342, Theorem 5, Example 16], it is shown that C is a valid
covariance function belonging to a more general class of covariances that mimic
cyclones.

Exercise 11.7. Show that C given in (11.4) is the covariance function of an isotropic
but not wide-sense stationary random field, i.e., C(s, t) =C(Rs,Rt) for any R∈ SO3,
but C(s, t) does not only depend on s− t, s, t ∈ R

3.
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For more sophisticated covariance models including spatio–temporal effects see,
e.g. [342] and references therein.

11.2.2.3 Variogram

Definition 11.7. For a random field X = {X(t), t ∈ R
d} the function

γ(t,s) =
1
2

E
(
(X(t)−X(s))2) , s, t ∈ R

d

is called the variogram of X whenever it is finite for any s, t ∈ R
d .

Note that for square-integrable random fields X , it obviously holds that

γ(s, t) =
1
2

varX(s)+
1
2

varX(t)− cov(X(t),X(s))+
1
2
(EX(s)−EX(t))2. (11.5)

If the field X is intrinsic stationary of order two (motion invariant) then γ(s, t)
depends only on the difference s− t (‖s− t‖, respectively). With slight abuse of
notation, in these cases we write γ(s− t) and γ(‖s− t‖) for functions γ : Rd →
R and γ : R+ → R, respectively. For a wide-sense stationary random field X with
covariance function C formula (11.5) reads

γ(h) =C(0)−C(h), h ∈ R
d . (11.6)

Basic Properties of Variograms

Let X be a random field with covariance function C and variogram γ . Then the
following properties hold

1. γ(t, t) = 0 for all t ∈ R
d .

2. Symmetry: γ(t,s) = γ(s, t) for all s, t ∈ R
d .

3. Characterization of variograms

(a) A function γ : Rd ×R
d → R+ is a variogram of some random field if γ is

conditionally negative semi–definite, see, for example, [142, Theorem 1] or
[71, Sect. 2.3.3, p.61].

Exercise 11.8. Prove that the variogram of any intrinsic stationary random
field X is a conditionally negative semi–definite function.
Hint. Compute var(∑n

i=1λiX(ti)) applying (11.5) with ∑n
i=1λi = 0.

(b) A continuous even function γ : Rd → R+ with γ(0) = 0 is a variogram of
a wide-sense stationary random field if e−λγ(h) is a covariance function for
all λ > 0, cf. [352].

4. Stability. If γ1,γ2 are variograms, then γ = γ1 + γ2 is a variogram as well.
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Exercise 11.9. Prove this fact. Show in particular that the function γ given by
γ(h) = γ1(hi)+ γ2(h j), is a variogram, where h = (h1, . . . ,hd)

� ∈ R
d and γ1, γ2

are univariate variograms.

5. Mixture. Let γx : Rd → R+ be a variogram of an intrinsic stationary (of order
two) random field for any x ∈ R. Then the function γ given by

γ(h) =
∫
R

γx(h)μ(dx), h ∈ R
d

is the variogram of some random field provided that μ is a measure on R and
the above integral exists for any h ∈ R

d , see [71, Sect. 2.3.2, pp. 60-61].
6. If X is wide-sense stationary and C(∞) = lim‖h‖→∞ C(h) = 0, then it follows

from (11.6) that there exists the so-called sill γ(∞) = lim‖h‖→∞ γ(h) =C(0).
7. If X is mean-square continuous, then γ(h)≤ c‖h‖2, for some constant c > 0 and

for all h ∈ R
d with sufficiently large ‖h‖, see [422, pp. 397-398].

8. If X is mean-square differentiable, then lim‖h‖→∞
γ(h)
‖h‖2 = 0, see [423, pp. 136-

137].
9. Let γ : R → R+ be an even twice continuously differentiable function with
γ(0) = 0. Then γ is a variogram if and only if the second derivative γ(2) is a
covariance function, cf. [142, Theorem 7].

Exercise 11.10. Show that for a variogram γ the function eλγ(h) is a variogram for
any λ > 0.

Exercise 11.11. Let the function γ : Rd → R+ be bounded and the variogram of
some random field X which is intrinsic stationary of order two. Consider the func-
tion C(s, t) = γ(s)+γ(t)−γ(s− t), s, t ∈Rd . Show that C is the covariance function
of a random field Z such that Z(o) = 0 a.s.

Parametric Families of Variograms

Most parametric models for variograms of stationary random fields, which are
widely used in applications, can be constructed from the corresponding families
of covariance functions (such as those described in Sect. 11.2.2.1) by applying the
formula (11.6). Most models of variograms inherit their names from the correspond-
ing covariance models (e.g., exponential, spherical one, etc.). One of few exceptions
is the variogram γ(h) = a(1−1{0}(‖h‖)), h ∈ R

d corresponding to the white noise,
where the jump size a > 0 is called a nugget effect.

The stability property of variograms mentioned above can be also used to create
different anisotropy effects, for instance, the so-called purely zonal anisotropy. To
explain this on an example, let γ(h) = aγ1(hx)+bγ2(hy)+cγ3(hz), h = (hx,hy,hz)∈
R

3, a,b,c ≥ 0, where γi i = 1,2,3 are variograms in dimension d = 1. Then γ is a
variogram in dimension d = 3 which allows for different dependence ranges in the
directions of the three different axes. An example of a mixed anisotropy models is
given by
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γ(h) = γ1(‖h‖)+ γ2

(√
h2

x +h2
y

)
+ γ3(hz), h = (hx,hy,hz) ∈ R

3.

This is a mixture of a 3D-isotropic variogram γ1, a 2D-isotropic (in the xy-plane)
variogram γ2 and a 1D-variogram γ3. The addition of a linear combination of γ2 and
γ3 creates anisotropy in the direction of the z-axis. For more details on variograms,
see [71, Chap. 2].

11.2.2.4 Statistical Estimation of Covariances and Variograms

There are numerous approaches to estimate covariance functions and variograms.
They are well described in the literature and therefore will not be reviewed here.
The interested reader can consult e.g. [71, Sect. 2.2] and [373, Sect. 9.8] as well as
the references therein. We just present two illustrating examples.

Example 11.1. Consider microscopic steel data (see Fig. 11.2(a)). This data can be
interpreted as a realization of an isotropic stationary random field with two possi-
ble values: zero for white pixels and one for black pixels of the image. Fig. 11.2(b)
shows estimates for the corresponding variogram. For this purpose Mathéron’s esti-
mator γ̂ given by

γ̂(h) =
1

2N(h) ∑
i, j:ti−t j≈h

(X(ti)−X(t j))
2

(see [373, p. 325]) was calculated for different directions and 0 ≤ h ≤ 0.5, where
ti− t j ≈ h means that ti− t j belongs to a certain neighborhood of h and N(h) denotes
the number of such pairs (ti, t j), i, j = 1, . . . ,n. The directions can be distinguished
by the color of their plots. Since the estimates differ not too much from each other,
the data can be assumed to be isotropic .

Example 11.2. For d = 2, construct an example of a zonally anisotropic variogram,
in which the value of the sill depends on the direction of the input vector h. Consider

γ(h) = γ1(h)+ γ2(h) (11.7)

where γ1 is an isotropic variogram given by

γ1(h) = 1− e−||h||, h ∈ R
2,

and γ2 is a geometric anisotropic variogram given by model

γ2(h) = 1− e−
√

hT Q2h
5 , h ∈ R

2,

with Q =
√
Λ · R. Here R is a rotation matrix with rotation angle α = 2 and

Λ = diag(5,1) is a diagonal matrix. Fig. 11.3(a) shows a realization of a Gaussian
random field on [−1,1]2 with variogram γ given by (11.7). Fig. 11.3(b) illustrates
the elliptic form of the contour lines of the Matheron estimator of the correspond-



334 Evgeny Spodarev, Elena Shmileva and Stefan Roth

(a) Microscopic image of a steel surface. (b) Estimates for the x-direction (red), y-
direction (green), all directions (black) for
values 0≤ h≤ 0.5.

Fig. 11.2 Microscopic steel image (left) and its empirical variogram estimated in different direc-
tions (right)

ing zonally anisotropic variogram and Fig. 11.3(c) shows the theoretical variogram
function γ .

11.2.3 Stable Random Fields

In this section, we review some basic notions of the theories of stable distributions,
random measures and fields. A very good reference which covers most of these
topics is [337], see also [301], [338, Chap. 3] and [431].

11.2.3.1 Stable Distributions

Let n∈N be an arbitrary integer. We begin with the definition of stability for random
vectors.

Stable Random Vectors

Definition 11.8. A random vector X = (X1, . . . ,Xn)
T in R

n is called stable if for
each m≥ 2 there exist c = c(m)> 0 and k = k(m) ∈ R

n such that

X (1) +X (2) + ...+X (m) D
= cX + k,
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(a) Realization of an anisotropic
Gaussian random field with vari-
ogram γ given by (11.7), rotation
angle α = 114.59◦ and scaling fac-
tors λ1 = 5, λ2 = 1.

(b) Contour lines of the empirical
variogram of the simulation shown
in Fig. 11.3(a) for values of ‖h‖ be-
tween 0 and 1.6.

(c) Theoretical variogram function
γ = γ1 + γ2.

Fig. 11.3 Realization of an anisotropic Gaussian random field with the corresponding empirical
and theoretical variograms.

where {X (i)}m
i=1 are independent copies of X .

It can be shown that c = m1/α for some 0 < α ≤ 2 which is called the stability
index, see [337, Theorem 2.1.2]. There is an equivalent definition of stable vectors
which is often used in mathematical practice to check stability.

Definition 11.9. Let α ∈ (0,2]. We say that a random vector X = (X1, . . . ,Xn)
T in

R
n is α-stable if its characteristic function ϕX is given by

ϕX (θ) =

{
e−

∫
Sn−1 |〈θ ,s〉|α(1−isign(〈θ ,s〉) tan πα

2 )Γ (ds)+i〈θ ,μ〉, if α �= 1,

e−
∫
Sn−1 |〈θ ,s〉|(1+i 2

π sign(〈θ ,s〉) ln |〈θ ,s〉|)Γ (ds)+i〈θ ,μ〉, if α = 1,
(11.8)

where Γ is a finite measure on the unit sphere Sn−1 of R
n and μ is an arbitrary

vector in R
n.
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The pair (μ,Γ ) gives a unique parametrization of the distribution of α-stable
random vectors for α ∈ (0,2), and we write X ∼ Sα(μ,Γ ). This means that there
is no other pair (μ ′,Γ ′) yielding the same characteristic function ϕX in (11.8). The
measure Γ is called the spectral measure of X . It contains all information about the
dependence between the vector components Xi (see also Exercise 11.15). The vector
μ reflects the shift with respect to the origin.

Definition 11.10. A random vector X =(X1, . . . ,Xn)
� is called singular if ∑n

i=1 ciXi =
0 a.s. for some (c1, . . . ,cn)

T ∈ R
n \{0}. Otherwise, it is called full-dimensional.

If α = 2, then Definition 11.8 yields a Gaussian random vector which is equiva-
lently defined via its characteristic function given by

ϕX (θ) = exp
(

i〈θ ,μ〉− 1
2θ

TΣθ
)
. (11.9)

Here μ ∈ R
n is the mean value of X and Σ is the symmetric, positive semi–definite

(n×n)–covariance matrix of X . The matrix Σ has the entries σi j = E(Xi−μi)(X j−
μ j), where Xi and μi are the components of vectors X and μ , respectively. It is easy
to see that if detΣ = 0 then the Gaussian random vector X is singular.

Exercise 11.12. Prove that

1. Definition 11.8 is equivalent to Definition 11.9 for α ∈ (0,2), and
2. it is equivalent to the definition of a Gaussian random vector via formula (11.9)

for α = 2.

Exercise 11.13. Show that for X ∼ Sα(μ,Γ ) the relation between the drift k in Def-
inition 11.8 and the shift μ in Definition 11.9 is given by k(m) = μ(m−m1/α).
Hint. Show first that ∑m

i=1 X (i) ∼ Sα(mμ,mΓ ) and m1/αX + k(m) ∼ Sα(m1/αμ +
k(m),mΓ ).

Remark 11.1. For α = 2, the characteristic function considered in (11.8) has the
form

ϕ(θ) = exp
(
−
∫

Sn−1
〈θ ,s〉2Γ (ds)+ i〈θ ,μ〉

)
. (11.10)

In this case it is easy to find two different finite measures Γ1 and Γ2 on Sn−1 yielding
the same function ϕ .

Exercise 11.14. Check that the following finite measures Γ1 and Γ2 on the unite
sphere in R

2

Γ1(ds) = δ(√2/2,
√

2/2)(ds)+δ(−√2/2,−√2/2)(ds),

Γ2(ds) = 2δ(√2/2,
√

2/2)(ds)

and any shift μ ∈ R
2 yield the same expression in (11.8) if α = 2, n = 2. Here δx

is the Dirac measure concentrated at x ∈R2. Verify that this expression corresponds
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to the characteristic function of a Gaussian vector with mean value vector μ and
covariance matrix

Σ =

(
2 2
2 2

)
.

A random vector X in R
n is called symmetric if P(X ∈ A) = P(−X ∈ A) for any

Borel set A ⊂ R
n. For symmetric α-stable (SαS) distributions, we use the standard

abbreviation SαS.

Lemma 11.1 ([337], Theorem 2.4.3). An α–stable random vector X is symmetric
if and only if μ = 0 and its spectral measure Γ is symmetric.

Exercise 11.15. Let n = 2 and X = (X1,X2)
� be an α-stable random vector, α ∈

(0,2), with spectral measure Γ . Let supp(Γ ) be the support of Γ . Show that

1. X1 is independent of X2 if and only if supp(Γ ) lies within the intersection of the
unit sphere with the coordinate axes,

2. X1 = c ·X2 a.s. for some c∈R (i.e. the vector X is singular) if and only if supp(Γ )
is a subset of the unit circle intersected by a line.

Real-valued Stable Random Variables

If n = 1 we deal with stable random variables whose distributions are determined
by four parameters α , σ , β , and μ .

Definition 11.11. The random variable X : Ω → R is called α-stable if its charac-
teristic function ϕX has the form

ϕX (θ) =

{
exp

(−σα |θ |α (1− iβ (sign(θ)) tan πα
2

)
+ iμθ

)
, if α ∈ (0,2],α �= 1,

exp
(−σ |θ |(1+ iβ 2

π (sign(θ)) ln |θ |)+ iμθ
)
, if α = 1,

(11.11)
where we write X ∼ Sα(σ ,β ,μ).

In comparison to representation (11.8), two new parameters σ ≥ 0 and β ∈
[−1,1] have been introduced in (11.11) instead of the spectral measure Γ . They
are interpreted as scale and skewness parameters, respectively.

Exercise 11.16. Show that the spectral measure Γ of X ∼ Sα(σ ,β ,μ) is given by

Γ (ds) =
σα

2
(1+β )δ1(ds)+

σα

2
(1−β )δ−1(ds).

Hence, it holds that

σα = Γ ({1})+Γ ({−1}), β =
Γ ({1})−Γ ({−1})
Γ ({1})+Γ ({−1}) .
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Remark 11.2. Stable distributions are absolutely continuous. Nevertheless, their
densities are not known in closed form except for the cases α = 1/2, α = 1 and
α = 2. A random variable X ∼ Sα(σ ,±1,μ) is called totally skewed.

Example 11.3. Show that

1. X ∼ S2(σ ,0,μ) is a Gaussian random variable with mean μ and variance 2σ2.
2. If α ∈ [1,2) then X ∼ Sα(σ ,±1,μ) attains values everywhere in R. On the

contrary, if α ∈ (0,1) and μ = 0, then X ≥ 0, (X ≤ 0) a.s. when β = 1 (β =−1),
respectively.

Exercise 11.17. Show that the characteristic function of an SαS-distributed random
variable X is given by ϕX (θ) = exp{−σα |θ |α}, i.e., X ∼ Sα(σ ,0,0) for some σ >
0.

Tails and Moments

Non–Gaussian stable distributions are heavy-tailed. In particular, they belong to
a subclass of heavy-tailed distributions with especially slow large deviation be-
havior. For more details on heavy-tailed distributions, see e.g. [122], [261]. For
X ∼ Sα(σ ,β ,μ) with α ∈ (0,2) there exists c > 0 such that

P(|X |> x)∼ cx−α , as x→ ∞. (11.12)

Here and in what follows we say that ax ∼ bx if limx→∞
ax
bx

= 1. As a consequence
of (11.12), the absolute moments of X behave like

E(|X |p) =
∫ ∞

0
P{|X |> x1/p}dx≤ c1

∫ ∞

1
x−α/pdx,

for some c1 > 0. They are finite if p ∈ (0,α) and infinite for any p ∈ [α,∞).

Exercise 11.18. Show that the following statements are true.

1. The normal distribution X ∼ N(μ,σ2) is not heavy-tailed (this is equivalent to
the statement that the tails are exponentially bounded), i.e.,

P(X <−x) = P(X > x)∼ 1√
2πσx

e−x2/(2σ2), x→ ∞.

2. For X ∼ Sα(σ ,β ,0), α ∈ (0,2), α �= 1 it holds that

(E(|X |p))1/p = cα,β (p)σ (11.13)

for every p ∈ (0,α). Here cα,β (p) = (E(|ξ |)p)1/p with ξ ∼ Sα(1,β ,0). If α = 1
then (11.13) holds only for β = 0.

3. For any α-stable random vector X = (X1,X2) the sum aX1 + bX2, a,b ∈ R is
again α-stable. In particular, the components Xi of a stable vector X = (X1,X2)∼
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Sα(μ,Γ ) are stable, and it holds that σaX1+bX2 =
∫
S1 |as1 + bs2|αΓ (ds1,ds2) for

any a,b ∈ R.

Simulation of stable random variables is extensively described in [301].

11.2.3.2 Integration with Respect to Stable Random Measures

Let (E,E ,m) be an arbitrary measurable space with σ -finite measure m and E0 =
{A ∈ E : m(A)< ∞}. Let β : E→ [−1,1] be a measurable function.

Definition 11.12. A random function M = {M(A), A ∈ E0} is called an indepen-
dently scattered random measure (random noise) if

1. for any n∈N and pairwise disjoint sets A1,A2, . . . ,An ∈ E0 the random variables
M(A1), . . . ,M(An) are independent,

2. M(
⋃∞

j=1 A j) = ∑∞
j=1 M(A j) a.s. for arbitrary pairwise disjoint sets A1,A2, . . . ∈

E0 with
⋃∞

j=1 A j ∈ E0.

Definition 11.13. An independently scattered random measure M on (E,E0) is
called α-stable if for each A ∈ E0

M(A)∼ Sα

(
(m(A))1/α ,

∫
Aβ (x)m(dx)

m(A)
,0
)
.

The measure m is called the control measure of M, and β is the skewness function
of M.

Our goal is to define the integral
∫

E f (x)M(dx) of a measurable function f : E→
R with respect to an α-stable random measure M. For a simple function f (x) =
∑n

i=1 ci1Ai(x), where {Ai}n
i=1 ⊂ E0 is a sequence of pairwise disjoint sets, we put

∫
E

f (x)M(dx) =
n

∑
i=1

ciM(Ai).

It can be shown that the integral
∫

E f (x)M(dx) defined in this way does not depend
on the representation of f as a simple function, see [337, Sect.3.4]. For an arbitrary
f : E → R such that

∫
E | f (x)|αm(dx) < ∞ we consider a pointwise approximation

of f by simple functions f (n), where we put
∫

E
f (x)M(dx) = P-limn→∞

∫
E

f (n)(x)M(dx).

Here P-lim denotes the limit in probability. Note that this definition is independent
of the choice of the approximating sequence { f (n)}, cf. [337, Sect. 3.4] for more
details.

Lemma 11.2. Let X =
∫

E f (x)M(dx), where M is an α-stable random measure with
control measure m and skewness function β . Then X is an α-stable random variable
with zero shift, scale parameter
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σαX =
∫

E
| f (x)|αm(dx), (11.14)

and skewness parameter

βX =

∫
E f (x)<α>β (x)m(dx)∫

E | f (x)|α m(dx)
,

where a<p> = sgn(a) · |a|p and sgn(a) denotes the sign of a.

For a proof see [337, Sect.3.4]. Notice that if β (x) = 0 for all x∈ E, then the integral
X is a SαS-distributed random variable.

In case of stable vectors with an integral representation, we have the following
criterion of their full–dimensionality and singularity, respectively.

Lemma 11.3. Consider an n–dimensional α–stable random vector X =(X1, . . . ,Xn)
T

with 0 < α ≤ 2 and integral representation

X =

(∫
E

f1(x)M(dx), . . . ,
∫

E
fn(x)M(dx)

)T

.

Then X is singular if and only if ∑n
i=1 ci fi(x) = 0 m–almost everywhere for some

vector (c1, . . . ,cn)
T ∈ R

n \{0}.
The proof of Lemma 11.3 immediately follows from Definition 11.10 and the fact
that σα∑n

i=1 ciXi
=

∫
E |∑n

i=1 ci fi(x)|α m(dx), see (11.14).

Remark 11.3. A more universal criterion of singularity for stable random vectors
can be given in terms of their spectral measure. If the measure Γ (ds) on Sn−1 is the
spectral measure of an α-stable vector X in R

n which is concentrated on the inter-
section of Sn−1 with an (n−1)–dimensional linear subspace, then the random vector
X is singular. Otherwise, X is full–dimensional. For a proof of these statements, see
[220].

11.2.3.3 Stable Random Fields with Integral Spectral Representation

Definition 11.14. A random field X is called α-stable if its finite-dimensional dis-
tributions are α-stable.

Consider a random field X = {X(t), t ∈ R
d} of the form

X(t) =
∫

E
ft(x)M(dx), t ∈ R

d , (11.15)

where ft : E → R is a measurable function such that
∫

E | ft(x)|αm(dx) < ∞ and,
if α = 1,

∫
E | f (x)β (x) ln | f (x)||m(dx) < ∞ for any t ∈ R

d . Here M is an α-stable
random measure on E with control measure m and skewness function β . Obviously,
the marginals of the random field X given in (11.15) are α-stable. If β (x) = 0 for all
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x ∈ E then the finite-dimensional distributions of X are symmetric α-stable. Thus
we call X to be a SαS random field.

A natural question is which stable fields allow for an integral representation
(11.15). A necessary and sufficient condition for this is the condition of separability
of X in probability, see [337, Theorem 13.2.1].

Definition 11.15. A stable random field X = {X(t), t ∈ I}, I ⊆R
d is called separa-

ble in probability if there exists a countable subset I0⊆ I such that for every t ∈ I and
any sequence {tk}k∈N ⊂ I0 with tk→ t as k→∞ it holds that X(t) = P-limk→∞X(tk).

In particular, all stochastically continuous α-stable random fields are separable
in probability.

11.2.4 Dependence Measures for Stable Random Fields

The relationship between two α-stable random variables cannot be described by
using the notion of covariance because of the absence of the second moments if
α < 2. We consider two different ways of measuring the degree of dependence of
two stable random variables.

Covariation

Definition 11.16. Let X = (X1,X2)
� be an α-stable random vector with α ∈ (1,2]

and spectral measure Γ . The covariation [X1,X2]α of X1 on X2 is given by

[X1,X2]α =
∫

S1
s1s<α−1>

2 Γ (d(s1,s2)).

Theorem 11.1 (Properties of covariation). Let (X1,X2,X3)
� be an α-stable ran-

dom vector with α ∈ (1,2]. Then the following properties hold.

1. Linearity in the first entry. For any a,b ∈ R it holds that

[aX1 +bX2,X3]α = a[X1,X3]α +b[X2,X3]α .

2. If X1 and X2 are independent, then [X1,X2]α = 0.
3. Gaussian case. For α = 2, it holds that [X1,X2]2 = 1/2 · cov(X1,X2).
4. Covariation and mixed moments. Let 1 < α < 2 and Γ be spectral measure of

(X1,X2)
� with X1 ∼ Sα(σ1,β1,0) and X2 ∼ Sα(σ2,β2,0). Then, for 1≤ p < α , it

holds that

E
(

X1X<p−1>
2

)
E|X2|p =

[X1,X2]α(1− c ·β2)+ c · (X1,X2)α
σα2

, (11.16)
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where (X1,X2)α =
∫
S1 s1|s2|α−1Γ (d(s1,s2)) and

c =
tan(απ/2)

1+β 2
2 tan2(απ/2)

[
β2 tan(απ/2)− tan

( p
α

arctan(β2 tan(απ/2))
)]

.

Proof. 1. The linearity in the first argument is obvious. However, note that the co-
variation is not symmetric, so that there is no linearity in the second argument. 2. To
see this, use Exercise 11.15. 3. This assertion (together with the useful relationship
varXi = 2

∫
S1 s2

i Γ (d(s1,s2)), i= 1,2) follows from the comparison of the representa-
tions (11.9) and (11.10) of the characteristic function ϕ(θ) of the Gaussian random
vector (X1,X2)

�. 4. See [221]. �

Remark 11.4. If X2 is symmetric, i.e. β2 = 0, then c = 0 and formula (11.16) has
the following simple form

E
(

X1X<p−1>
2

)
E|X2|p =

[X1,X2]α
σα2

,

which allows for the estimation of [X1,X2]α via empirical mixed moments of X1 and
X2.

For a stable random field X with integral representation (11.15), the covariation
[X(t1),X(t2)]α can be written in the form

[X(t1),X(t2)]α =
∫

E
ft1(x)( ft2(x))

<α−1>m(dx). (11.17)

Note that the proof of (11.17) given in [337, Proposition 3.5.2] for the SαS case
holds true for skewed random fields as well.

Codifference

Drawbacks of the covariation are the lack of symmetry and the impossibility to
define it for α ∈ (0,1]. The following measure of dependence does not have these
drawbacks. That is however compensated by a mathematically less convenient form.

Definition 11.17. Let (X1,X2)
� be an α-stable random vector. The codifference

τ(X1,X2) of X1 and X2 is given by

τ(X1,X2) = σX1 +σX2 −σX1−X2 ,

where σY is the scale parameter of an α-stable random variable Y .

Theorem 11.2 (Properties of Codifference). Let (X1,X2)
� be an α-stable random

vector. Then the following properties hold.

1. Symmetry. τ(X1,X2) = τ(X2,X1).
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2. If X1 and X2 are independent then τ(X1,X2) = 0. The inverse statement holds only
for α ∈ (0,1).

3. Gaussian case. For α = 2, it holds that τ(X1,X2) = cov(X1,X2).
4. Let (X1,X2) and (X ′1,X

′
2) be SαS-distributed vectors such that σX1 = σX2 = σX ′1 =

σX ′2 . If τ(X1,X2)≤ τ(X ′1,X ′2) then for any c > 0

P(|X1−X2|> c)≥ P(|X ′1−X ′2|> c),

i.e., the larger the codifference, the greater the degree of dependence.

Proof. 1. The symmetry is obvious. 2. Use Exercise 11.18 to see the first part of the
statement. Now let τ(X1,X2) = 0. It holds σX1 +σX2 = σX1−X2 if and only if

∫
S1
|s1|αΓ (ds)+

∫
S1
|s2|αΓ (ds) =

∫
S1
|s1− s2|αΓ (ds).

We know however that |s1− s2|α = |s1|α + |s2|α if and only if α < 1 and s1s2 = 0.
3. It holds τ(X1,X2) = 1/2(varX1 + varX2− var(X1−X2)) = cov(X1,X2). 4. See
[337, Property 2.10.6]. �

11.2.5 Examples of Stable Processes and Fields

1. Stable Lévy Processes. Let X = {X(t), t ≥ 0} be a process defined by X(t) =
M ([0, t]), t ∈ R+, where M is an α-stable random measure on R+ with skewness
function β and Lebesgue control measure multiplied by σ > 0. Then X has rep-
resentation (11.15) with ft(x) = 1(x ∈ [0, t]). It obviously holds that X(0) = 0 a.s.
Moreover, X has independent and stationary increments.

Depending on β the skewness of the process may vary. For instance, for α < 1
and β ≡ 1 we obtain a stable Lévy process with non-decreasing sample paths, the
so–called stable subordinator. To see this use the one-to-one correspondence be-
tween infinitely divisible distributions and Lévy processes, i.e., X(1) ∼ Sα(σ ,1,0)
corresponds to a Lévy process with the triplet (0,0, σα

Γ (1−α)cos(πα/2)
dx

xα+1 1(x > 0)),
which has positive integrable jumps, see also [338, Examples 21.7 and 24.12].

2. Stable Moving-Average Random Fields. An α-stable moving-average random
field X = {X(t), t ∈ R

d} is defined by

X(t) =
∫
Rd

f (t− s)M(ds), t ∈ R
d ,

where f ∈ Lα(Rd) is called a kernel function and M is an α–stable random measure
with Lebesgue control measure. It can be easily seen that X is strictly stationary.
See Fig. 11.4(a) and (b) for simulated realizations of moving-average random fields
in R

2, with the bisquare and the cylindric kernels.
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(a) Bisquare kernel f (x) =
15
16

(
1−‖x‖2

)2
1(x ∈ B1(o))

(b) Cylindric kernel f (x) =
1(x ∈ B1(o)) , x ∈ R

2.

Fig. 11.4 Continuous (left) and discontinuous (right) realization of a 0.8-stable moving average
random field with SαS-distributed random measure M.

For d = 1, the stable Ornstein–Uhlenbeck process is a stable moving-average
process with X(t) =

∫ t
−∞ e−λ (t−s)M(ds), t ∈ R where M is a SαS-distributed ran-

dom measure on R with Lebesgue control measure. Note that the stable Ornstein–
Uhlenbeck process X = {X(t), t ∈ R} is strictly stationary.

3. Linear Multifractional Stable Motions. A linear multifractional stable motion
X = {X(t), t ∈ R} is given by

X(t) =
∫
R

((t− x)H(t)−1/α
+ − (−x)H(t)−1/α

+ )M(dx), t ∈ R,

where M is an α-stable random measure with skewness function β and Lebesgue
control measure, α ∈ (0,2], H : R→ (0,1) is a continuous function which is called
a local scaling exponent, and (x)+ = max{x,0}. It is known that X is a locally self–
similar random field, see e.g. [381, 382] for more details. In case α = 2 we have a
Gaussian process called multifractional Brownian motion, cf. [311]. For a constant
H ∈ (0,1), we get the usual linear fractional stable motion which has stationary
increments and is H–self–similar (see [373, Sect. 9.5]).

Stable Riemann–Liouville Processes Let X = {X(t), t ≥ 0} be given by X(t) =∫ t
0(t− s)H−1/αM(ds), t ∈ R+, where M is an α-stable random measure on R+ and

H > 0. This is a family of H–self–similar random processes. Note that X has no
stationary increments, unless H = 1/α . For α = 2 we get the Gaussian Riemann–
Liouville process, see e.g. [254, Example 3.4].

5. Sub–Gaussian Random Fields Sub-Gaussian random fields are random fields
X = {X(t), t ∈ R

d} of the form

X D
= {A1/2G(t), t ∈ R

d}, (11.18)
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where A ∼ Sα/2((cos(πα/4))2/α ,1,0) and G = {G(t), t ∈ R
d} is a a zero mean

Gaussian random field with a positive definite covariance function which is inde-
pendent of A. The following lemma (cf. [337, Proposition 3.8.1]) shows that X is
α-stable.

Lemma 11.4. If A ∼ Sα/2((cos(πα/4))2/α ,1,0) and ξ ∼ N(0,2σ2), where A and
ξ are independent, then X = A1/2ξ ∼ Sα(σ ,0,0).

To prove lemma 11.4, it suffices to determine the characteristic function of X
using the conditional expectation provided that A is fixed.

If the Gaussian random field G considered in (11.18) is stationary then the result-
ing sub–Gaussian field X is strictly stationary as well. However, a strictly stationary
sub–Gaussian random field X with a mean-square continuous Gaussian component
G is not ergodic since it differs from G by a random scaling. A sufficient condition
for the ergodicity of G is that its spectral measure has no atoms, see [390, Theorem
A].

11.3 Extrapolation of Stationary Random Fields

Let X = {X(t), t ∈Rd} be a stationary (in the appropriate sense to be specified later)
random field. We are looking for a linear predictor X̂(t) of the unknown random
value X(t) of the field X at location t ∈Rd based on the observations X(t1), . . . ,X(tn)
at locations t1, . . . , tn, n ∈ N, which has the form

X̂(t) =
n

∑
i=1
λi(t)X(ti)+λ0(t). (11.19)

The weights λ0, . . . ,λn are functions of t, t1, . . . , tn, which may depend on the dis-
tribution of X . For simplicity of notation, we omit all their arguments except for
t. These weights λ0, . . . ,λn have to be determined in a way (which depends on the
integrability properties of X) such that the predictor X̂(t) is in some regard close to
X(t).

Definition 11.18. A linear predictor X̂(t) for X(t) is called

1. exact if X̂(t) = X(t) a.s. whenever t = ti for any i ∈ {1, . . . ,n}. In this case, the
predictor X̂(·) is an extrapolation surface for X with knots t1, . . . , tn,

2. unbiased if E|X(0)|< ∞ and E(X̂(t)−X(t)) = 0 for all t ∈ R
d ,

3. continuous if the weights λi, i = 0, . . . ,n are continuous functions with respect
to t, i.e., any realization of X̂ = {X̂(t), t ∈ R

d} is continuous in t ∈ R
d .
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11.3.1 Kriging Methods for Square Integrable Random Fields

If the field X = {X(t), t ∈ R
d} has finite second moments, then the most popular

prediction technique for X in geostatistics is the so–called kriging. It is named after
D.G. Krige who first applied it (in 1951) to gold mining. Namely, he predicted the
size of a gold deposit by collecting the data of gold concentration at some isolated
locations. Apart from kriging, there are many other prediction techniques such as
inverse distance, spline and nearest neighbor interpolation, and triangulation. For
details see [86, Sect. 5.9.2], [410, Chap. 3] and [367]. However, the latter methods
ignore the correlation structure contained in the spatial data; see [86, Sect. 3.4.5,
p.180; Chap. 5.9], [127], and [242] for their comparison.

The main idea of kriging is to compute the prediction weights λi by minimizing
the mean-square error between the predictor and the field itself, i.e., to solve the
minimization problem

E
(
(X(t)− X̂(t))2

)
→ min

λ0,...λn
(11.20)

under some additional conditions on the λi for each fixed t ∈ R
d .

Depending on the assumptions on X , numerous variants of kriging are avaliable.
We mention just few of them and refer the interested reader to the vast literature.

1. Simple kriging. For square integrable random fields X with known mean value
function EX(t) = m(t), t ∈ R

d , see Sect. 11.3.2.
2. Ordinary kriging. For second order intrinsic stationary random fields X (with

unknown but constant mean), see Sect. 11.3.3.
3. Kriging with drift. EX(t)= a+b‖t‖, where the constants a, b∈R are unknown,

see [71, Sect. 3.4.6] for details.
4. Universal kriging. The unknown mean value function EX(t) =m(t) �= const be-

longs to some parametric family of functions, see [71, 408]. Note that ordinary
kriging and kriging with drift are special cases of universal kriging.

11.3.2 Simple Kriging

Let X = {X(t), t ∈Rd} be a square-integrable random field with known mean value
function m. It is easy to see that the minimum of the mean square error

E
(
(X(t)− X̂(t))2

)
= var(X(t)− X̂(t))+(E(X(t)− X̂(t)))2

is attained exactly when the predictor X̂(t) is unbiased, i.e. if EX̂(t) = EX(t). This
yields that λ0(t) = m(t)−∑n

i=1λi(t)m(ti) and

X̂(t) =
n

∑
i=1
λi(t)(X(ti)−m(ti))+m(t).
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It follows from the above relation that the knowledge of the mean value function m
leads to centering the field X (subtracting m) in the prediction.

Taking derivatives of the objective function in (11.20) with respect to λi, we
obtain

n

∑
i=1
λi(t)cov(X(ti),X(t j)) = cov(X(t),X(t j)), j = 1, . . . ,n. (11.21)

The matrix form of this system of equations is

Σ ·λ (t) = σ(t),

where Σ = (cov(X(ti),X(t j)))
n
i, j=1 is the covariance matrix of the random vector

(X(t1), . . . ,X(tn))�, λ (t) = (λ1(t), . . . ,λn(t))�, and

σ(t) = (cov(X(t),X(t1)), . . . ,cov(X(t),X(tn)))�.

If Σ is non-degenerate then the solution of (11.21) exists and is unique. The covari-
ance matrix Σ is non-degenerate if the covariance function of X is positive definite
and all ti, i = 1, . . . ,n are distinct.

Exercise 11.19. Let the random field X = {X(t), t ∈ R
d} be as above. Show that

the random vector (X(t1), . . . ,X(tn))� is singular if and only if detΣ = 0. Hint.
A symmetric matrix is positive definite (positive semi–definite) if and only if its
eigenvalues are positive (non–negative).

Finally, we get the following form of the predictor X̂(t) for X(t):

X̂(t) = X̄�Σ−1σ(t), (11.22)

where X̄ = (X(t1), . . . ,X(tn))�.

Properties of Simple Kriging

1. Exactness. To see that X̂(t j) = X(t j) for any j, put t = t j and check that λi(t j) =
δi j, i, j = 1, . . . ,n is the solution of (11.21), where δi j = 1(i = j) denotes the
Kronecker delta.

2. Continuity and smoothness. Rewrite (11.22) as X̂(t) = b�σ(t) with b = Σ−1X̄
which means that sample path properties of the extrapolation surface such as
continuity and smoothness directly depend on the properties of σ(t). Thus if
the covariance function is continuous and smooth, so is the extrapolation sur-
face.

3. Shrinkage property. The mean prediction error E
(
(X̂(t)−X(t))2

)
can be de-

termined directly from (11.21). Thus
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E((X̂(t)−X(t))2) = varX(t)−varX̂(t). (11.23)

Equation (11.23) yields the following shrinkage property

varX̂(t)≤ varX(t) for all t ∈ R
d , (11.24)

i.e., the simple kriging predictor is less dispersed than the original random field.
In a sense, kriging performs linear averaging (or smoothing) and does not per-
fectly imitate the trajectory properties of the original random field.

4. Geometric interpretation. The predictor X̂(t) for any fixed t can be seen as a
metric projection of X(t) onto the linear subspace Ln = span{X(t1), . . . ,X(tn)}
of the Hilbert space L2(Ω ,F ,P) with scalar product 〈X ,Y 〉= E(XY ) for X ,Y ∈
L2(Ω ,F ,P). That is,

X̂(t) = ProjLn
X(t) = argmin ξ∈Ln〈X(t)−ξ ,X(t)−ξ 〉. (11.25)

It is known from Hilbert space theory that this projection is unique if the vector
(X(t1), . . . ,X(tn))� is not singular (cf. Definition 11.10).

5. Orthogonality. The above projection is also orthogonal, i.e., 〈X̂(t)−X(t),ξ 〉=
0 for all ξ ∈ Ln. In particular, it holds that

〈X̂(t)−X(t),X(ti)〉= 0 for all i = 1, . . . ,n (11.26)

which rewrites as a dependence relation

E(X̂(t)X(ti)) = E(X(t)X(ti)) for all i = 1, . . . ,n

yielding
cov(X̂(t)−X(t), X̂(s)) = 0, s, t ∈ R

d .

Exercise 11.20. Prove (11.23) via the Pythagorean theorem.

6. Gaussian case. Under the assumptions that X is Gaussian and Σ non–singular
it is easy to show that

X̂(t) = E(X(t) | X(t1), . . . ,X(tn)) , t ∈ R
d . (11.27)

Exercise 11.21. Prove (11.27) using the uniqueness of the kriging predictor and
the following properties the conditional expectation and of the Gaussian multi-
variate distribution.

1. E((η−E(η | ξ ))h(ξ ))= 0 for arbitrary random variables ξ ,η ∈ L1(Ω ,F ,P)
and any measurable function h : R→ R.

2. If η ,ξ1, . . . ,ξn are jointly Gaussian then there exist real numbers {ai}n
i=1 such

that E(η | ξ1, . . . ,ξn) = ∑n
i=1 aiξi.

In the Gaussian case, simple kriging has additional properties.
Conditional unbiasedness. E

(
X(t)|X̂(t)

)
= X̂(t) a.s. for any t ∈ R

d , cf. [71,
p. 164]. This property is important in practice for resource assessment prob-
lems and selective mining.
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Homoscedasticity. The conditional mean-square estimation error does not de-
pend on the data, i.e.,

E
((

X̂(t)−X(t)
)2 | X(t1), . . . ,X(tn)

)
= E

(
X̂(t)−X(t)

)2 a.s. for any t ∈ R
d .

11.3.3 Ordinary Kriging

When the mean value function m of a square-integrable random field X is constant
but unknown then ordinary kriging can be applied. We are looking for a predictor
of the form (11.19). For an arbitrary (but fixed) location t ∈ R

d , the mean-square
prediction error is given by

E

((
X̂(t)−X(t)

)2
)
= var(X̂(t)−X(t))+

(
λ0 +

(
n

∑
i=1
λi−1

)
m

)2

.

Assuming that

λ0 = 0,
n

∑
i=1
λi = 1, (11.28)

we get the smallest possible error together with unbiasedness, i.e. EX̂(t) = EX(t).
The ordinary kriging predictor writes then

X̂(t) =
n

∑
i=1
λiX(ti), t ∈ R

d .

The prediction error can be computed as

E

((
X̂(t)−X(t)

)2
)

=
n

∑
i, j=1

λiλ jcov(X(ti),X(t j))

−2
n

∑
i=1
λicov(X(ti),X(t))+varX(t).

One should minimize this error under the constraint (11.28). Taking partial deriva-
tives of the Lagrange function

L(λ ,μ) = E
(
(X̂(t)−X(t))2

)
+2μ

(
n

∑
i=1
λi−1

)

with respect to λi = λi(t), i = 1, . . . ,n, and μ = μ(t) and putting them equal to zero,
we obtain the following system of n+1 linear equations

∑n
i=1λicov(X(ti),X(t j))+μ = cov(X(t j),X(t)), j = 1, . . . ,n,

∑n
i=1λi = 1
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for each t ∈ R
d . The solution (λ1, . . . ,λn,μ)� of this system is unique if and only if

the covariance matrix of
(
X(t1), . . . ,X(tn)

)� is non–singular.
The above linear system of equations can be rewritten in terms of the variogram

γ . From (11.5) we immediately get the following ordinary kriging system of equa-
tions with respect to the weights λi, i = 1, . . . ,n, and μ:

n
∑

i=1
λiγ(ti, t j)+μ = γ(t j, t), j = 1, . . . ,n,

n
∑

i=1
λi = 1.

The corresponding mean-square prediction error is given by

σ2
OK = E

((
X̂(t)−X(t)

)2
)
=

n

∑
i=1
λiγ(ti, t)+μ.

Exercise 11.22. Show that μ =−(1−e�Γ−1γ)/e�Γ−1e, where e is the unit vector,
γ = (γ(t1, t), . . . ,γ(tn, t))� and Γ = (γ(ti, t j))i, j=1,...,n.

The main advantage of this way of posing the problem is that it is solvable even
if the variance of X(t) is infinite whereas the variogram is finite, e.g., if X is intrinsic
stationary of order two.

Properties of Ordinary Kriging

1. Exactness. For t = t j, note that λi(t j) = δi j, i, j = 1, . . . ,n, and μ(t j) = 0 is a
solution of the ordinary kriging system.

2. Orthogonality. For any real weights ai, i = 1, . . . ,n with ∑n
i=1 ai = 1 it holds that

〈
X̂(t)−X(t),

n

∑
i=1

aiX(ti)
〉
= 0.

3. Conditional unbiasedness. The ordinary kriging predictor reduces the condi-
tional bias E(X(t) | X̂(t))− X̂(t). To see this, check the following formula show-
ing that the minimum of the kriging error corresponds to the minimum of the
conditional bias error:

E
(
(E

(
X(t) | X̂(t)

)
− X̂(t))2

)
= E

(
(X̂(t)−X(t))2

)
−E

(
var(X(t) | X̂(t))

)
,

cf. [71, p.185]. To prove this formula, the following law of total variance can
be used

varY = var(E(Y |Z))+E(var(Y |Z))
as well as E(Y E(Z|Y )) = E(Y Z) for any Y, Z ∈ L1(Ω ,F ,P).

Example 11.4. A simulated realization of a centered stationary isotropic Gaussian
random field X = {X(t), t ∈ [0,10]2} with Whittle–Matérn–type covariance func-
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tion C(s, t) = 21(s = t)+ 21(s �= t)‖s− t‖K1(2‖s− t‖) exhibiting a nugget effect
of height 1 is observed on the grid {(3i,2 j), i, j ∈ N∩ [0,3]}, see Fig. 11.5(a). The
corresponding theoretical variogram together with the Matheron estimator (given in
[373, formula (9.67)]) are shown in Fig. 11.6. A Whittle–Matérn–type variogram
model with nugget effect σ2, i.e.,

γ(s, t) = 1(s �= t)
(
σ2 +b−b21−ν(a‖s− t‖)νKν(a‖s− t‖)) , s, t ∈ R

d ,

was fitted to the estimated variogram by the ordinary least-squares method yielding
the parameter estimates σ̂2 = 0.933, â = 1.967, b̂ = 1.067. An extrapolation by
ordinary kriging with the fitted variogram model γ is shown in Fig. 11.5(b).

(a) Simulated realization of a stationary
Gaussian random field with nugget effect.

(b) Extrapolation by ordinary kriging.

Fig. 11.5 Application of ordinary kriging to simulated data from Example 11.4

Fig. 11.6 Theoretical vari-
ogram (red), estimated (green)
and fitted variogram (black)
for the realization given in
Fig. 11.5(a), see Example
11.4
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11.4 Extrapolation of Stable Random Fields

Let X = {X(t), t ∈ R
d} be an α-stable random field admitting the integral repre-

sentation
X(t) =

∫
E

ft(x)M(dx), t ∈ R
d , (11.29)

see (11.15). If α ∈ (1,2], we assume that the field X is centered. If α ∈ (0,1], then
the mean value of X(t) does not exist. We are looking for a predictor X̂(t) of X(t)
based on the random vector (X(t1), . . . ,X(tn))� which has the form

X̂(t) =
n

∑
i=1
λiX(ti). (11.30)

For each j ∈ N let Tj = {t j,1, . . . , t j,n j} be a sequence of locations such that
dist(Tj,{t})→ 0 as j→ ∞, where dist(A,B) = inf{‖x− y‖ : x ∈ A, y ∈ B} is the
Euclidean distance between two arbitrary sets A,B ⊂ R

d . The predictor X̂ j(t) =

∑
n j
i=1λ

( j)
i X(t j,i) is said to be weakly consistent if X̂ j(t)

P−→
j→∞

X(t) for any t ∈Rd . Fur-

thermore, X̂ j(t) is called stochastically continuous if X̂ j(s)
P−→

s→t
X̂ j(t) for any j ∈ N

and t ∈ R
d . Let

‖ f‖α =

(∫
E
| f (x)|αm(dx)

)1/α
(11.31)

denote the norm of f ∈ Lα(E,E ,m), α ≥ 1.

Theorem 11.3. Let the α–stable random field X given in (11.29) be stochastically
continuous, α ∈ (1,2]. If the predictor X̂ j(t) defined above exists and if it is unique,
exact and stochastically continuous, then X̂ j(t) is weakly consistent.

Proof. Fix an arbitrary t ∈ R
d. By [337, Proposition 3.5.1], to prove weak consis-

tency it is sufficient to show that σX̂ j(t)−X(t)→ 0 as j→∞. Let s j ∈ Tj be the point at
which dist({s j},{t}) = dist(Tj,{t}) for any j ∈ N. It is clear that s j→ t as j→ ∞.
Since X̂ j(t) is exact, it holds that X̂ j(s j) = X(s j) for any j. Thus we have

σX̂ j(t)−X(t) = ‖
n j

∑
i=1
λ ( j)

i ft j,i − ft‖α ≤ ‖ fs j − ft‖α + ‖
n j

∑
i=1
λ ( j)

i ft j,i − fs j‖α → 0

as j→ ∞ by [337, Proposition 3.5.1]), using the stochastic continuity of X(t) and
X̂ j(t) as well as exactness of X̂ j(t). �

11.4.1 Least Scale Linear Predictor

For α ∈ (0,2], consider the following optimization problem
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σα
X̂(t)−X(t)

=
∫

E
| ft(x)−

n

∑
i=1
λi fti(x)|αm(dx) → min

λ1,...,λn
. (11.32)

It is clear that the solution of this optimization problem (if it exists and is unique)
will be an extrapolation. To see this, put t = t j and λi(t j) = δi j, i, j = 1, . . . ,n.

The predictor X̂(t) based on a solution of (11.32) is called least scale linear (LSL)
predictor. Note that this approach is similar of the least mean-square error property
(11.20) of kriging.

If α ∈ (1,2], then it is easy to see that any solution of (11.32) is also a solution
of the following system of equations

∫
E

ft j(x)

(
ft(x)−

n

∑
i=1
λi fti(x)

)<α−1>

m(dx) = 0, j = 1, . . . ,n, (11.33)

or equivalently
[

X(t j),X(t)−
n

∑
i=1
λiX(ti)

]
α

= 0, j = 1, . . . ,n, (11.34)

where [·, ·]α denotes the covariation, see Definition 11.16.

Exercise 11.23. Show that any solution of (11.32) solves also the system of equa-
tions (11.33) or (11.34). Hint. Use the dominated convergence theorem.

Notice that the expression in (11.32) is nonlinear in λ1, . . . ,λn if α < 2 because
the covariation is not linear in the second argument (cf. Sect. 11.2.4). Thus, numer-
ical methods have to be applied to solve the optimization problem (11.32).

Properties of the LSL Predictor

Assume that 1 < α ≤ 2. For the case 0 < α ≤ 1, see Sect. 11.4.4.

Theorem 11.4. The LSL predictor exists. If the random vector (X(t1), . . . ,X(tn))�
is full–dimensional, then the LSL predictor is unique.

Proof. We are using the properties of the best approximation in Lα(E,m)-spaces
for 1 < α ≤ 2. Let L = span{ ft1 , . . . , ftn}. This is a finite dimensional space. Put,
for simplicity, f = ft and E( f ) = infx∈L ‖ f − x‖α . We show that this infimum is
attained in L. Consider {xm}m∈N such that xm ∈ L for each m ∈N and ‖xm− f‖α →
E( f ) as m→ ∞. By the triangle inequality ‖xm‖α ≤ ‖ f‖α +‖ f − xm‖α , we get that
{xm}m∈N is a bounded sequence in a finite-dimensional subspace. Thus, there exists
a convergent subsequence {m j} j∈N and f0 ∈ L such that ‖xm j− f0‖α → 0 as j→∞.
Since ‖ f − xm j‖α → ‖ f − f0‖α and ‖ f − xm j‖α → E( f ) as j → ∞, it holds that
E( f ) = ‖ f − f0‖α . Thus, f0 is the best approximation. To show uniqueness, we use
the strict convexity property. If α > 1, then the space Lα(E,m) is strictly convex (see
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e.g. [99, p. 59]), i.e. for all g1,g2 ∈ Lα(E,m) such that ‖g1‖α = ‖g2‖α = 1, g1 �= g2

it follows that ‖βg1 +(1−β )g2‖α < 1 for any β ∈ (0,1). Take y j = ∑n
i=1λ

( j)
i fti ∈

L, j = 1,2 such that y1 �= y2 and ‖ f − y1‖α = ‖ f − y2‖α = E( f ). Then, by strict
convexity we have

E( f )≤
∥∥∥∥ f − 1

2
(y1 + y2)

∥∥∥∥
α
=

∥∥∥∥1
2
( f − y1)+

1
2
( f − y2)

∥∥∥∥
α
< E( f ).

This leads to a contradiction, and, therefore, y1 = y2 = f0. By the full–dimensionality
of the random vector X and by Lemma 11.3 one can easily see that the set of weights
λi in the representation f0 = ∑n

i=1λi fti is unique. �

Theorem 11.5 ([221]). Let the α-stable random field X given in (11.29) be stochas-
tically continuous. If the random vector

(
X(t1), . . . ,X(tn)

)� is full–dimensional,
then the LSL predictor is continuous.

11.4.2 Covariation Orthogonal Predictor

Throughout this section, we assume that α ∈ (1,2]. The linear predictor considered
in (11.30) with weights λ1, . . . ,λn that are a solution of

[
X(t)−

n

∑
i=1
λiX(ti),X(t j)

]
α
= 0, j = 1, . . . ,n (11.35)

is called a covariation orthogonal linear (COL) predictor . If the solution of (11.35)
exists and is unique, then it is an exact predictor, since we can put λi(t j) = δi j,
i, j = 1, . . . ,n. This extrapolation method is similar of the generic orthogonality
property of simple kriging, cf. (11.26). It is also symmetric (in a sense) to the LSL
predictor, compare (11.34) and (11.35). In contrast to (11.34), the system of equa-
tions considered in (11.35) is linear which makes the computation of the weights λi
easier.

Introduce the covariation function κ : Rd×R
d → R of X = {X(t), t ∈ R

d} by

κ(s, t) = [X(s),X(t)]α . (11.36)

Note that this function is not symmetric in its arguments, in distinction to the co-
variance function, cf. Definition 11.6.

By the additivity of the covariation in the first argument (see Sect. 11.2.4), the
system of equations in (11.35) rewrites as

⎛
⎜⎝
κ(t1, t1) · · · κ(tn, t1)

...
. . .

...
κ(t1, tn) · · · κ(tn, tn)

⎞
⎟⎠
⎛
⎜⎝
λ1
...
λn

⎞
⎟⎠=

⎛
⎜⎝
κ(t, t1)

...
κ(t, tn)

⎞
⎟⎠ . (11.37)
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If the matrix K = (κ(ti, t j))i, j=1,...,n is positive definite, the solution of (11.37) exists
and is unique.

In the following we show that for moving-average and for sub–Gaussian random
fields X sufficient conditions for the positive definiteness of K can be given.

11.4.2.1 The COL Predictor for Moving Averages

Consider a moving-average stable random field X = {X(t), t ∈ R
d} with represen-

tation
X(t) =

∫
Rd

f (t− x)M(dx), t ∈ R
d ,

where M is an α–stable random measure with Lebesgue control measure and f ∈
Lα(Rd) (see Sect. 11.2.5). By the strict stationarity of X , we get that [X(h),X(0)]α =
[X(t+h),X(t)]α for all t, h∈Rd . With slight abuse of notation, we write κ(s− t) =
[X(s− t),X(0)]α = κ(s, t), for s, t ∈ R

d and the system of equations considered in
(11.37) is equivalent to

⎛
⎜⎝

κ(0) · · · κ(tn− t1)
...

. . .
...

κ(tn− t1) · · · κ(0)

⎞
⎟⎠
⎛
⎜⎝
λ1
...
λn

⎞
⎟⎠=

⎛
⎜⎝
κ(t− t1)

...
κ(t− tn)

⎞
⎟⎠ . (11.38)

The next theorem gives a sufficient condition for the existence and uniqueness of
the COL predictor.

Theorem 11.6. If the kernel f : Rd → R+ is a positive-definite function that is pos-
itive on a set of non–zero Lebesgue measure, then κ is positive definite.

Proof. By formula (11.17), we have

κ(h) =
∫
Rd

f (h− x)( f (−x))〈α−1〉 dx, h ∈ R
d .

Thus for any m ∈ N, z1, . . . ,zm ∈ R, (z1, . . . ,zn)
� �= (0, . . . ,0)� and s1, . . . ,sm ∈ R

d

it holds that

m

∑
i, j=1

κ(si− s j)ziz j =
∫
Rd

m

∑
i, j=1

f (si− s j− x)ziz j( f (−x))〈α−1〉 dx > 0.

�

For d = 1, an example of a stochastic process X = {X(t), t ∈ R} satisfying the
conditions of Theorem 11.6 is the SαS Ornstein–Uhlenbeck process, where for any
fixed λ > 0

X(t) =
∫
R

e−λ (t−x)1(t− x≥ 0)M(dx), t ∈ R.

Then, by [337, p. 138], we have X̂(t) = e−λ (t−tn)X(tn) provided that t1 < .. . < tn < t.
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Theorem 11.7. If the covariation function κ is positive-definite and continuous,
then the COL predictor is continuous.

Proof. Since κ is positive-definite and the matrix K is invertible, we have

⎛
⎜⎝
λ1(t)

...
λn(t)

⎞
⎟⎠=

⎛
⎜⎝

κ(0) · · · κ(tn− t1)
...

. . .
...

κ(tn− t1) · · · κ(0)

⎞
⎟⎠
−1⎛
⎜⎝
κ(t− t1)

...
κ(t− tn)

⎞
⎟⎠ .

Since κ is continuous, the weights λ1, . . . ,λn are continuous in t. �

Exercise 11.24. Show that continuous kernel functions with compact support yield
a continuous covariation function κ . Hint. Use the dominated convergence theorem.

11.4.2.2 The COL Predictor for Gaussian and sub–Gaussian Random Fields

Let X = {X(t), t ∈ R
d} be a sub–Gaussian random field, i.e., X(t) = A1/2G(t),

t ∈ R
d , where A ∼ Sα/2((cos(πα/4))2/α ,1,0) and G is a zero-mean stationary

Gaussian field independent of A. In [337, Example 2.7.4], it is shown that for sub–
Gaussian random fields, the covariation function is given by

κ(h) = 2−α/2C(h)C(0)(α−2)/2, h ∈ R
d , (11.39)

where C(·) is the covariance function of G.
It is easy to see that in this case, (11.37) coincides with the simple kriging system

for G considered in (11.21) for G:
⎛
⎜⎝

C(0) · · · C(tn− t1)
...

. . .
...

C(tn− t1) · · · C(0)

⎞
⎟⎠
⎛
⎜⎝
λ1
...
λn

⎞
⎟⎠=

⎛
⎜⎝

C(t− t1)
...

C(t− tn)

⎞
⎟⎠ . (11.40)

If C is positive-definite, then the corresponding covariance matrix is invertible which
ensures the existence and uniqueness of the solution of (11.40).

Theorem 11.8. If (X(t1), . . . ,X(tn))� is full–dimensional and the covariance func-
tion C of the Gaussian component is continuous, then the COL predictor for sub–
Gaussian random fields is continuous.

The proof is similar to the proof of Theorem 11.7.

Theorem 11.9. Let 1 < α ≤ 2. For Gaussian and sub–Gaussian random fields, the
COL and LSL predictors coincide.

Proof. Introduce the notation t0 = t. Put λ0(t0) =−1 and

X̂(t0)−X(t0) = A1/2
n

∑
i=0
λi(t0)G(ti).
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The characteristic function of random vector (X(t0), . . . ,X(tn))� is given by

Eexp

(
i

n

∑
k=0

θkX(tk)

)
= exp

⎛
⎝−

∣∣∣∣∣
1
2

n

∑
i=0

n

∑
j=0
θiθ jC(ti− t j)

∣∣∣∣∣
α/2

⎞
⎠ (11.41)

for all θ1, . . . ,θn ∈ R, cf. [337, Proposition 2.5.2]. Now it is simple to see that

σX̂(t0)−X(t0)
=

(
1
2

var

(
n

∑
i=0
λi(t0)G(ti)

))1/2

=

(
1
2

n

∑
i, j=0

λiλ jC(ti− t j)

)1/2

.

Thus, the LSL optimization problem is equivalent to

n

∑
i, j=0

λiλ jC(ti− t j)→ min
λ1,...,λn

.

Taking derivatives we obtain ∑n
j=0 C(tk − t j)λ j = 0, k = 1, . . . ,n which coincides

with the COL extrapolation system (11.40). �

Remark 11.5. It follows from the proof of Theorem 11.9 (which is valid for all
α ∈ (0,2)) that the weights of the LSL predictor for sub–Gaussian random fields
are a solution of the system (11.40) also in the case α ∈ (0,1]. The statement of
Theorem 11.8 holds as well. To summarize, the LSL predictor for stationary sub–
Gaussian random fields X exists and is unique and exact for all α ∈ (0,2] if the
covariance function C of the Gaussian component G is positive definite. If C is
additionally continuous then this LSL predictor is also continuous.

11.4.3 Maximization of Covariation

In this section, we assume that X is an α–stable random field of the form (11.29)
with α ∈ (1,2]. The predictor X̂(t) =∑n

i=1λi(t)X(ti), whose weights λ1(t), . . . ,λn(t)
solve the following optimization problem

⎧⎨
⎩
[
X̂(t),X(t)

]
α
= ∑n

i=1λi(t)[X(ti),X(t)]α → max
λ1,...,λn

,

σX̂(t) = σX(t)

(11.42)

for t ∈ R
d , is called maximization of covariation linear (MCL) predictor. The La-

grange function of (11.42) is given by

L(λ ,γ) =
n

∑
i=1
λi[X(ti),X(t)]α + γ

(
σα∑n

i=1 λiX(ti)
−σαX(t)

)
, λ ∈ R

n, γ ∈ R.

By taking partial derivatives and putting them equal to zero, we get that



358 Evgeny Spodarev, Elena Shmileva and Stefan Roth

{
[X(t j),X(t)]α + γ ·∂σα∑n

i=1 λiX(ti)
/∂λ j = 0, j = 1, . . . ,n,

σ∑n
i=1 λiX(ti) = σX(t).

(11.43)

Analogously to (11.34) one can show that

∂σα∑n
i=1 λiX(ti)

∂λ j
= α ·

[
X(t j),

n

∑
i=1
λi(t)X(ti)

]
α
.

Since γ = −1/α , λi(t j) = δi j is obviously a solution of (11.43) for t = t j, j =
1, . . . ,n, the MCL predictor is exact.

Let us now discuss the properties of the MCL predictor. Note that here no direct
analogy with kriging can be drawn. For instance, a counterpart σX̂(t) ≤ σX(t) of
the shrinkage property (11.24) is deliberately mutated to the additional condition
σX̂(t) = σX(t). The reason for this is that both conditions lead to the same solutions
due to the convexity of the optimization problem (11.42).

Let ζ (t) = (κ(t1, t), . . . ,κ(tn, t))�, t ∈ R
d , and let the function σ0 : Rd → R+

be given by σ0(t) = σX(t) = κ(t, t). Furthermore, let the functionΨ : Rn→ R+ be
defined by

Ψ(λ ) = σX̂(t) =
∥∥∥ n

∑
i=1
λi fti

∥∥∥
α
.

Denote the level set ofΨ at level u ∈R by Bu = {λ ∈R
n :Ψ(λ )≤ u}. The support

set of any convex set B⊂ R
n at a point x ∈ R

n is defined by

T (B,x) =
{

y ∈ B : 〈y,x〉= sup
z∈B
〈z,x〉

}
.

It is well-known that for strictly convex sets B and any non–zero x ∈R
n the support

set T (B,x) is a singleton. We denote this single point by yB,x.

Theorem 11.10. Assume that the α-stable random vector X = (X(t1), . . . ,X(tn))�
is full–dimensional. Then, the following is true.

1. The solution of the optimization problem (11.42) exists for all t ∈Rd . If κ(ti, t) �=
0 for some i = 1, . . . ,n, then the MCL predictor X̂(t) is unique.

2. If κ is a continuous function on R
d ×R

d and κ(ti, t) �= 0 for some i = 1, . . . ,n,
then the MCL predictor is continuous in t.

Proof. For a proof of the existence and uniqueness of an MCL predictor, we refer
to [221]. It is also shown in [221] that the vector of MCL weights

λ (t) = (λ1(t), . . . ,λn(t))�

is equal to yBσ0(t)
,ζ (t) for any t ∈ R

d , whereas the set Bσ0(t) is strictly convex. We

show that λ :Rd→R
n is a continuous function. It is easy to see that Bσ0(t) =

1
σ0(t)

B1,

because the sets Bσ0(t), t ∈ R
d are homothetic, i.e. aBσ0(t) = Bσ0(t)/a, a > 0. Thus,

by simple geometric considerations, we get that
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T (Bσ0(t),ζ (t)) = T
(

1
σ0(t)

B1,ζ (t)
)
=

1
σ0(t)

T (B1,ζ (t)),

and, consequently λ (t) = 1
σ0(t)

yB1,ζ (t). Put B = B1 and x(s) = yB,ζ (s) for any s ∈Rd .
It remains to show that lims→t x(s) = x(t). This limit exists by the definition of the
support set and the continuity of the scalar product. Note that ζ (s)→ ζ (t) as s→ t
since κ is a continuous function. Moreover, B is a compact, and x(s) ∈ B for all s.
Choose a convergent sequence sm → t as m→ ∞ such that x(sm)→ y as m→ ∞,
where y ∈ B, and show that y = x(t). It is clear that 〈x(sm),ζ (sm)〉 → 〈y,ζ (t)〉 as
m→ ∞. Furthermore, for any x ∈ B it holds that

〈x,ζ (t)〉= lim
m→∞
〈x,ζ (sm)〉 ≤ lim

m→∞
〈x(sm),ζ (sm)〉= 〈y,ζ (t)〉.

The latter inequality here is obtained from the fact that {x(sm)} = T (B,ζ (sm)) for
any m ∈ N. Thus y = yB,ζ (t). �

11.4.4 The Case α ∈ (0,1]

As mentioned in Sect. 11.2.4, the covariation function is not defined for α ∈ (0,1].
Moreover, for α < 1 the function ‖ · ‖α defined in (11.31) is not a norm any-
more since the triangle inequality fails to hold. The property of strict convexity
of Lα(E,E ,m) does not hold as well.

To cope with these drawbacks, one may come up with the idea that the codiffer-
ence (cf. Definition 11.17) can be used instead of the covariation in the COL and
MCL methods. However, this does not seem to make sense in extrapolation. For
instance, replacing the covariation by the codifference in the MCL method leads to
the optimization problem

⎧⎨
⎩
τ(X̂(t),X(t)) = σX̂(t) +σX(t)−σX̂(t)−X(t) → max

λ1,...,λn
,

σX̂(t) = σX(t).
(11.44)

Using the constraint σX̂(t) = σX(t), the first line in (11.44) rewrites

τ(X̂(t),X(t)) = 2σX(t)−σX̂(t)−X(t).

Hence, the optimization problem (11.44) is equivalent to LSL extrapolation, i.e., to
minimizing the scale parameter

σX̂(t)−X(t) =
∥∥∥ ft −

n

∑
i=1
λi fti

∥∥∥
α

of X̂(t)−X(t).
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Replacing the covariation by the codifference in the COL approach considered
in (11.35), one arrives at the following system of nonlinear equations

τX̂(t),X(ti)
= τX(t),X(ti), i = 1, . . . ,n. (11.45)

Note that the solution of (11.45) has to be computed numerically, which can be very
time consuming. Furthermore, it is shown in [161] that the solution of (11.45) is not
unique. For this reason, we shall not pursue the method given by (11.45).

We also remark that the maximization of τX̂(t),X(t) with respect to the weights
λ1, . . . ,λn does not lead to a unique predictor of the form considered in (11.30). In
particular, its existence is not really clear. As an example consider a random field
as in (11.29) with kernel function ft of compact support such that the supports of ft
and ft1 , . . . , ftn do not overlap. Then it is easy to see that τX̂(t),X(t) = 0 holds, which
allows allowing for an arbitrary choice of the weights λ1, . . . ,λn.

In the rest of this section, we focus on the properties of the LSL method for
α–stable random fields with α ∈ (0,1]. First of all, the fundamental question of
existence has to be answered. Here we follow [161] and consider this problem in a
more general setting of r–normed vector spaces.

Definition 11.19. Let V be a vector space over a field K. A map ||.||(r) : V → R+ is
called an r–norm if there exists K ≥ 1 and r > 0 such that

||x||(r) = 0 if and only if x = 0,

||ax||(r) = |a| · ||x||(r) for all a ∈ K and x ∈ V,

||x+ y||(r) ≤ K(||x||(r) + ||y||(r)) for all x,y ∈ V,

||x+ y||r(r) ≤ ||x||r(r) + ||y||r(r) for all x,y ∈ V.

Now the following existence theorem can be formulated.

Theorem 11.11 ([161]). Let V be a vector space over R with the r-norm || · ||(r)
and let f1, . . . , fn ∈V be linearly independent. Then, for any f0 ∈V , there exist real
numbers λ ∗1 , . . . ,λ

∗
n such that

∥∥∥ f0−
n

∑
i=1
λ ∗i fi

∥∥∥
(r)

= inf
λ1,...,λn∈R

∥∥∥ f0−
n

∑
i=1
λi fi

∥∥∥
(r)
.

If we put V = Lα(E,m) and note that || · ||(α) = ‖ · ‖α defined in (11.31) is an
α-norm on Lα(E,m) (even a norm if α ≥ 1), the existence of the LSL predictor fol-
lows immediately from Theorem 11.11. In contrast to the case α ∈ (1,2] (Theorem
11.4), the uniqueness of the LSL weights λ ∗ := (λ ∗1 , . . . ,λ

∗
n )
� in Theorem 11.11 is

not guaranteed. We illustrate this by the following example. Introduce the notation
Hα(λ ) = σX̂(t)−X(t) for λ = (λ1, . . . ,λn)

� ∈ R
n.

Example 11.5. Let (E,m) = ([0,1],ν1) and consider the kernel function ft(x) =
1
(
x ∈ (t + 1

4 , t +
3
4 )
)
. Given t1 = 1

4 , predict the value of the symmetric α–stable
process X(t) =

∫
[0,1] ft(x)M(dx) at t = 0. By elementary computations we obtain
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Hα
α (λ ) =

∫
[0,1]
| ft(x)−λ ft1(x)|αdx =

1
4
(1+ |1−λ |α + |λ |α).

It is easy to see that for 0 < α < 1, Hα has two global minima at λ = 0 and λ = 1.
If α = 1, then the set of all global minimum points equals the interval [0,1]. For
α > 1, the function Hα has a unique global minimum at λ = 0.5.

The structure of the set of all possible LSL predictors for α ∈ (0,1] and n ≥
as een escribed n apers 215–219]. n rder o et n nbiased predictor

(provide ha h ea alu unctio el efined) h arameter
space is often restricted to {(λ1, . . . ,λn)

� ∈ R
n : ∑n

i=1λi = 1}. In [161] it has
been shown that this restriction does not cause uniqueness of the LSL predictor
for α ∈ (0,1). Alternatively, the following algorithmic approach to choose a unique
global minimum in the LSL optimization problem is proposed.

Algorithm 11.1. Let {X(t), t ∈ I} be an α–stable random field which admits the
integral representation (11.29) with 0 < α < 1 and I ⊂R

d . Let t1, . . . , tn ∈ I be fixed
such that functions ft1 , . . . , ftn are linearly independent.

1. Order the points t1, . . . , tn so that

‖t− t1‖ ≤ ‖t− t2‖ ≤ . . .≤ ‖t− tn‖

and if ‖t− ti‖= ‖t− ti+1‖ for some i ∈ {1, . . . ,n−1} then

t(p)
i = t(p)

i+1 for all p = 1, . . . ,k−1 (11.46)

t(k)i < t(k)i+1 (11.47)

for some k ∈ {1, . . . ,m}, where t(p)
i is the p–th component of ti.

2. Determine the set A0 of all critical points

A0 = {(λ1, . . . ,λn)
� ∈ R

n : Hα(λ1, . . . ,λn) = inf
(μ1,...,μn)∈Rn

Hα(μ1, . . . ,μn)}

3. Reduce A0 step by step to the sets A1 ⊇ A2 ⊇ ·· · ⊇ An given by

A j = {(λ1, . . . ,λn)
� ∈ A j−1 : λ j = max

(μ1,...,μn)∈A j−1
μ j}, j = 1, . . . ,n.

Clearly, the set An consists of just one element.

Definition 11.20. We call X̂(t)=∑n
i=1λ ∗i X(ti) the best LSL predictor if (λ ∗1 , . . . ,λ

∗
n )∈

An.

The above construction has a simple intuitive meaning. The points t1, . . . , tn are
ordered with respect to their distance from t. To get a unique ordering, conditions
(11.46) and (11.47) are required. Points with a smaller distance from t are regarded
to exert more influence on the value of X at t. Thus their weights should be maxi-
mized first.

1  b  d h  i  p  [  I  o  t  g  a  u  
d t t t e m n v e f n of X is w l d , t e p
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To show that A j �= /0, j = 1, . . . ,n we notice that A0 is nonempty and compact.
Therefore, the projection mapping (x1, . . . ,xn)

� �→ x1 takes its maximum on A0.
Hence, A1 is nonempty and compact as well. The sets A2, . . . ,An are not empty by
induction.

It can be easily proved that the best LSL predictor is exact. To see this, let t = ti
for some i ∈ {1, . . . ,n} and let t1, . . . , tn ∈ R

d be as in Algorithm 11.1. Then, condi-
tions (11.46) and (11.47) imply that t = t1. Trivially (1,0, . . . ,0)� ∈ A0 holds. Due
to the linear independence of ft1 , . . . , ftn , it holds that An = A0 = {(1,0, . . . ,0)�}.

For 1 < α ≤ 2, Theorem 11.5 states the continuity of LSL predictor. In con-
trast, the best LSL predictor is not necessarily continuous for 0 < α ≤ 1 as the next
example shows.

Example 11.6. Let X = {X(t), t ∈ R
2} be an α–stable random field which admits

the integral representation (11.29) with 0 < α < 1,

ft(x) = 1
(

x ∈ (min{t(1), t(2)},max{t(1), t(2)})
)

for t = (t(1), t(2))� ∈ R
2, E = R and M being an SαS random measure on R with

Lebesgue control measure. It follows from (11.13), (11.14) and the Markov inequal-
ity that that X is stochastically continuous, i.e., it has a.s. no jumps at fixed locations
t. For n = 1, introduce t0 = ( 1

2 ,
3
2 )
�, t1 = (0,1)�, t = t0+ε , where ε = (δ ,δ )� ∈R2

for some δ ∈ (− 1
2 ,

1
2 ). Consider the best LSL predictor X̂(t) of X(t) based on X(t1).

Then, it holds that

Hα
α (λ ) =

∫
R

| ft0+ε(x)−λ ft1(x)|αdx

=

(
1
2
+δ

)
· |λ |α +

(
1
2
−δ

)
· |1−λ |α +

(
1
2
+δ

)
.

If δ > 0, then Hα has a global minimum at λ = 0 and, if δ < 0, H0 has a global
minimum at λ = 1. Thus, X̂(t) is discontinuous at t = t0.

In addition to the best LSL predictor, it is possible to treat the case α = 1 similar
to the case 1 < α < 2. The following approach has been proposed in [161]. For a
symmetric 1–stable field {X(t) : t ∈ I} with integral representation

X(t) =
∫

E
ft(x)M(dx),

let ft ∈ L1(E,E ,m)∩Lδ (E,E ,m) for some δ > 1. Then we have

∫
E
| ft(x)−

n

∑
i=1
λi fti(x)|γm(dx)< ∞

for all γ ∈ [1,δ ], λ1, . . . ,λn ∈ R and t, t1, . . . , tn ∈ I. Now fix t, t1, . . . , tn ∈ I and
chose an arbitrary sequence {γk}k∈N ⊂ (1,δ ] which converges to 1 as k→ ∞. Let
(λ (γk)

1 , . . . ,λ (γk)
n ) be the unique solution of
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∫
E
| ft(x)−

n

∑
i=1
λi fti(x)|γk m(dx)→ min

λ1,...,λn
. (11.48)

Applying the stability theorem in [235, p.225], the convergence

∫
E
| ft(x)−

n

∑
i=1
λ (γk)

i fti(x)|γk m(dx)→ inf
μ1,...,μn

∫
E
| ft(x)−

n

∑
i=1
μi fti(x)|m(dx) (11.49)

follows as k→ ∞. Moreover, it can be shown that

(λ (γk)
1 , . . . ,λ (γk)

n )→ (λ ∗1 , . . . ,λ
∗
n ), as k→ ∞

for some set of weights (λ ∗1 , . . . ,λ
∗
n ) which is unique if all LSL prediction problems

considered in (11.48) with stability indices γk > 1 possess this property. Furthermore
the weights (λ ∗1 , . . . ,λ

∗
n ) do not depend on the choice of the sequence (γk)k∈N ⊂

(1,δ ] such that γk→ 1 as k→ ∞.

Definition 11.21. The predictor X̂∗(t) = ∑n
i=1λ ∗i X(ti), t ∈ I is called an index–

continuous LSL (ICLSL) predictor for the symmetric 1–stable random field X .

It is still an open problem to explore the statistical properties of ICLSL predic-
tors.

11.4.5 Numerical Examples

In this section, the LSL, COL and MCL extrapolation methods (as well as maximum
likelihood extrapolation and conditional simulation for sub–Gaussian random fields)
are applied to simulated data of various α–stable random processes and fields for
α ∈ (0,2).

The random fields are simulated and extrapolated on an equidistant 50× 50 –
grid of points within I = [0,1]2. In Examples 11.7 and 11.8, the simulated field
X = {X(t), t ∈ [0,1]2} is observed at the points t1, . . . , t16 given by their coordinates

t1 = (0,0), t2 = (0,0.3), t3 = (0,0.6), t4 = (0,0.9),
t5 = (0.3,0), t6 = (0.3,0.3), t7 = (0.3,0.6), t8 = (0.3,0.9),
t9 = (0.6,0), t10 = (0.6,0.3), t11 = (0.6,0.6), t12 = (0.6,0.9),

t13 = (0.9,0), t14 = (0.9,0.3), t15 = (0.9,0.6), t16 = (0.9,0.9).

Example 11.7 (Sub–Gaussian random fields). Consider a stationary sub–Gaussian
random field X = {X(t), t ∈ [0,1]2} described in Example 5 of Section 11.2.5 with
α = 1.2. The Gaussian part G of this field has a Whittle–Matérn covariance func-
tion (cf. Sect. 11.2.2.1, Example 6) with parameters as in Fig. 11.1(a). Fig. 11.7(a)
shows a realization of X . Realisations of the corresponding LSL predictor (coincid-
ing with the COL predictor by Theorem 11.9) and MCL predictors are given in Figs.
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(a) Realization of a sub–Gaussian random
field with α = 1.2.

(b) Corresponding LSL (COL) predictor

(c) Corresponding MCL predictor (d) Pointwise difference ((b)-(c)) between
LSL (b) and MCL (c) predictors

Fig. 11.7 Realization of a sub–Gaussian random field for α > 1 and different predictors

11.7(b) and (c). The realisations of both predictors are smoother than the realization
of the field itself. Since the predictions in Figs. 11.7(b) and (c) look quite similar and
cannot be distinguished from each other by the naked eye, their difference is given
in Fig. 11.7(d). Notice the differences in scale of the z-axes in Fig.11.8 (a),(b),(c)
and (d). Fig. 11.8(a) shows a realization of the stationary sub–Gaussian field with
α = 0.8 and covariance function C of the Gaussian part as above. Note that a maxi-
mum likelihood (ML) predictor for sub–Gaussian random fields has been introduced
in [221]. It is shown in Theorem 11 of [221] that the LSL, COL and ML methods co-
incide if α ∈ (1,2). However, the proof of this result does not depend on α covering
(with regard to Remark 11.5 of the present chapter) the range of all α ∈ (0,2). Thus,
the LSL and ML predictors coincide for sub–Gaussian random fields with any sta-
bility index α ∈ (0,2). A possibility of extrapolation of sub–Gaussian random fields
X by conditional simulation (CS) of the Gaussian component G of X and subsequent
scaling by

√
A is straightforward; see e.g. [219, p. 112] and [308]. Algorithms for

conditional simulation of G are given in [241]. Corresponding extrapolation results
for the LSL (ML) and CS methods are given in Figs. 11.8(b) and (c). Note that the
ML prediction for this realization of X is much smoother than the CS prediction.
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(a) Realization of a sub–Gaussian random
field with α = 0.8.

(b) Corresponding LSL (ML) predictor

(c) Prediction by conditional simulation

Fig. 11.8 Realization of a sub–Gaussian random field for α < 1 and different predictors

Example 11.8 (Skewed stable Lévy motion). Consider the two–dimensional 1.5–
stable Lévy motion X = {X(t), t ∈ [0,1]2} defined by

X(t) =
∫
[0,1]2

1(x1 ≤ t1,x2 ≤ t2)M
(
d(x1,x2)

)
, t = (t1, t2)� ∈ [0,1]2,

where M is a non–symmetric centered 1.5–stable random measure with skewness
intensity β = 1. Comparing the realization of X given in Fig. 11.9(a) with the cor-
responding LSL, COL and MCL predictions (cf. Figs. 11.9(b), (c) and (d)) one can
see that the prediction has a smoothing effect.

Example 11.9 (Stable Ornstein–Uhlenbeck process). Let X = {X(t), t ∈ [0,10]}
be a 1.6-stable Ornstein–Uhlenbeck process with λ = 0.5 defined in Example 2 of
Sect. 11.2.5. Fig. 11.10 shows a trajectory of this process and different interpolators.
The process X is observed at positions ti = 1, . . . ,10 within [0,10]. It can be seen that
the LSL interpolation is very smooth. In contrast, the COL predictor is piecewise
smooth and continuous on the whole interval.

Example 11.10 (Stable moving average). Let X = {X(t), t ∈ [0,0.49]2} be a mov-
ing average field (cf. Example 2 of Section 11.2.5) with the kernel function
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(a) Realization of a stable Lévy motion with
skewness intensity β = 1 and α = 1.5

(b) Corresponding LSL predictor

(c) Corresponding COL predictor (d) Corresponding MCL predictor

Fig. 11.9 Realization of a skewed stable Lévy motion field and different predictors

f (x) = 0.5
(
0.04−‖x‖2)1(‖x‖ ≤ 0.2) ,

stability index α = 0.5 and skewness intensity β = 0.8. The random field X is sim-
ulated on an equidistant 50×50–grid of points within [0,0.49]2 using the step func-
tion approach proposed in [220] with an accuracy (Lα -error) of ε = 0.01. The field
X is observed at the points

t1 = (0,0), t2 = (0,0.25), t3 = (0,0.49),
t4 = (0.25,0), t5 = (0.25,0.25), t6 = (0.25,0.49),
t7 = (0.49,0), t8 = (0.49,0.25), t9 = (0.49,0.49).

To solve the optimization problems for the best LSL prediction (cf. Sect. 11.4.4)
numerically, an average of 8 realizations of the simulated annealing algorithm from
[233] is used. Figs. 11(a) and 11(b) show a realization of X and its best LSL predic-
tor. The numerical optimization procedure is quite time consuming with 136 min-
utes of computation time (Pentium Dual Core E5400, 2.70 GHz, 8 GB RAM) per
extrapolation.
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Fig. 11.10 Trajectory (black) of the stable Ornstein–Uhlenbeck process together with LSL (red),
COL (green) and MCL (blue) predictors, α = 1.6

(a) Realization of a skewed 0.5–stable mov-
ing average random field

(b) Corresponding best LSL predictor

Fig. 11.11 Realization of a skewed moving average field with α = 0.5 and its best LSL predictor

11.5 Open problems

In contrast to kriging methods, there is no common methodology of measuring pre-
diction errors in the stable case. We propose the following measures
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sup
t∈Rd

(
E|X(t)− X̂(t)|p

)1/p
= cα(p) sup

t∈Rd
‖ ft −

n

∑
i=1
λi fti‖α , (11.50)

where 1 < p < α and cα(p)> 0 is the constant from (11.13), or

P

(
sup
t∈Rd
|X(t)− X̂(t)|> ε

)
, ε > 0. (11.51)

It is an open problem to find lower and upper bounds for these errors as well as
minimax bounds where the infimum over a subclass of stable random fields X is ad-
ditionally considered in (11.50) and (11.51). Alternatively, one can be interested in
the asymptotic behavior of P

(
supt∈Rd |X(t)− X̂(t)|< ε

)
as ε→ 0 which is related

to small deviation problems.

Acknowledgements This research was partially supported by the DFG – RFBR grant 09–
01–91331. The second author was also supported by the Chebyshev Laboratory (Department
of Mathematics and Mechanics, St.-Petersburg State University) within RF government grant
11.G34.31.0026. The research was also supported by JSC "Gazprom Neft". The idea of the proof
of Theorem 11.31 is due to Adrian Zimmer. Furthermore, the authors are grateful to Pavel Zatitskiy
and Dmitry Stolyarov for the help with the proof simplification of Theorem 11.10.



Chapter 12

Spatial Process Simulation

Dirk P. Kroese and Zdravko I. Botev

Abstract The simulation of random spatial data on a computer is an important
tool for understanding the behavior of spatial processes. In this chapter we describe
how to simulate realizations from the main types of spatial processes, including
Gaussian and Markov random fields, point processes, spatial Wiener processes, and
Lévy fields. Concrete MATLAB code is provided.

12.1 Introduction

The collection and analysis of spatially arranged measurements and patterns is of
interest to many scientific and engineering disciplines, including the earth sciences,
materials design, urban planning, and astronomy. Examples of spatial data are geo-
statistical measurements, such as groundwater contaminant concentrations, temper-
ature reports from different cities, maps of the locations of meteorite impacts or
geological faults, and satellite images or demographic maps.

From a mathematical point of view, a spatial process is a collection of random
variables {Xt , t ∈ T } where the index set T is some subset of the d-dimensional
Euclidean space R

d . Then, Xt can be a random quantity associated with a spatial
position t rather than time. The set of possible values of Xt is called the state space
of the spatial process. Thus, spatial processes can be classified into four types, based
on whether the index set and state space are continuous or discrete. An example of a
spatial process with a discrete index set and a discrete state space is the Ising model
in statistical mechanics, where sites arranged on a grid are assigned either a positive
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or negative “spin”; see, for example, [387]. Image analysis, where a discrete number
of pixels is assigned a continuous gray scale, provides an example of a process with a
discrete index set and a continuous state space. A random configuration of points in
R

d can be viewed as an example of a spatial process with a continuous index set and
discrete state space {0,1}. If, in addition, continuous measurements are recorded at
these points (e.g., rainfall data), one obtains a process in which both the index set
and the state space are continuous.

Spatial processes can also be classified according to their distributional proper-
ties. For example, if any choice of random variables in a spatial process has jointly a
multivariate normal distribution, the process is said to be Gaussian. Another impor-
tant property is the Markov property, which deals with the local conditional inde-
pendence of the random variables in the spatial process. A prominent class of spatial
processes is that of the point processes, which are characterized by the random posi-
tions of points in space. The most important example is the Poisson process, whose
foremost property is that the (random) numbers of points in nonoverlapping sets
are independent of each other. Lévy fields are spatial processes that generalize this
independence property. Throughout this chapter we provide computer implementa-
tion of the algorithms in MATLAB. Because of its simple syntax, excellent debugging
tools, and extensive toolboxes, MATLAB is the de facto choice for numerical analysis

FFT, which is used in this chapter.
The rest of this chapter is organized as follows. We discuss in Sect. 12.2 the

simulation of spatial processes that are both Gaussian and Markov. In Sect. 12.3 we
consider various classes of spatial point processes, including the Poisson, compound
Poisson, cluster, and Cox processes, and explain how to simulate these. Sect. 12.4
looks at ways of simulating spatial processes based on the Wiener process. Finally,
Sect. 12.5 deals with the simulation of Lévy processes and fields.

12.2 Gaussian Markov Random Fields

A spatial stochastic process on R
2 or R3 is often called a random field. Fig. 12.1

depicts realizations of three different types of random fields that are characterized
by Gaussian and Markovian properties, which are discussed below.

12.2.1 Gaussian Property

A stochastic process {X̃t , t ∈ T } is said to be Gaussian if all its finite-dimensional
distributions are Gaussian (normal). That is, if for any choice of n and t1, . . . , tn ∈ T ,
we have

X def
= (X1, . . . ,Xn)

ᵀ def
= (X̃t1 , . . . , X̃tn)

ᵀ ∼ N(μ,Σ) (12.1)

and scientific computing. Moreover, it has one of the fastest implementations of the
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Fig. 12.1 Illustrations of zero-mean Gaussian random fields. Left: Moving average spatial process.
Middle: Stationary Gaussian random field on the torus. Right: Gaussian Markov random field

for some expectation vector μ and covariance matrix Σ . Hence, any linear com-
bination ∑n

i=1 biX̃ti has a normal distribution. A Gaussian process is determined
completely by its expectation function μ̃t = EX̃t and covariance function Σ̃s,t =
cov(X̃s, X̃t). To generate a Gaussian process with expectation function μ̃t and co-
variance function Σ̃s,t at positions t1, . . . , tn, one can sample the multivariate normal
random vector in (12.1) via the following algorithm.

Algorithm 12.1 (Gaussian process generator).

1. Construct the mean vector μ = (μ1, . . . ,μn)
ᵀ and covariance matrix Σ = (Σi j) by

setting μi = μ̃ti , i = 1, . . . ,n and Σi j = Σ̃ti,t j , i, j = 1, . . . ,n.
2. Find a square root A of Σ , so that Σ = AAᵀ.
3. Generate independent random variables Z1, . . . ,Zn∼N(0,1). Let Z =(Z1, . . . ,Zn)

ᵀ.
4. Output X = μ+AZ.

Using Cholesky’s square-root method, it is always possible to find a real-valued
matrix A such that Σ = AAᵀ. Sometimes it is easier to work with a decomposition of
the form Σ =BB∗, where B=B1+ iB2 is a complex matrix with conjugate transpose
B∗ = Bᵀ

1− iBᵀ
2. Let Z = Z1 + iZ2, where Z1 and Z2 are independent standard normal

random vectors, as in Step 3 above. Then, the random vector X = ℜ(BZ) = B1Z1−
B2Z2 has covariance matrix Σ .

A Gaussian vector X ∼ N(μ,Σ) with invertible covariance matrix Σ can also be
simulated using its precision matrixΛ = Σ−1. Let Z =DY , where Z ∼iid N(0,1) and
DDᵀ is the Cholesky factorization of Λ . Then Y is a zero-mean multivariate normal
vector with covariance matrix

E(YY ᵀ) = D−1E(ZZᵀ)(D−1)ᵀ = (DᵀD)−1 = (Λ−1)ᵀ = Σ .

The following algorithm describes how a Gaussian process can be generated us-
ing a precision matrix.

Algorithm 12.2 (Gaussian process generator using a precision matrix).

1. Derive the Cholesky decomposition Λ = DDᵀ of the precision matrix.
2. Draw independent random variables Z1, . . . ,Zn∼iid N(0,1). Let Z =(Z1, . . . ,Zn)

ᵀ.
3. Solve Y from Z = DY , using forward substitution.
4. Output X = μ+Y .
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The Cholesky decomposition of a general n× n covariance or precision matrix
takes O(n3) floating point operations. The simulation of high-dimensional Gaussian
vectors becomes very time-consuming for large n, unless some extra structure is
introduced. In some cases the Cholesky decomposition can be altogether avoided by
utilizing the fact that any Gaussian vector can be written as an affine transformation
X = μ +AZ of a “white noise” vector Z∼N(o, I); as in Step 4 of Algorithm 12.1,
where o is the n-dimensional zero vector and I the n-dimensional identity matrix.
An example where such a transformation can be carried out directly is the following
moving average Gaussian process X = {Xt , t ∈ T }, where T is a two-dimensional
grid of equally-spaced points. Here each Xt is equal to the average of all white noise
terms Zs with s lying in a disc of radius r around t. That is,

Xt =
1
Nr

∑
s :‖t−s‖≤r

Zs ,

where Nr is the number of grid points in the disc. Such spatial processes have been
used to describe rough energy surfaces for charge transport [51, 223]. The following
MATLAB program produces a realization of this process on a 200×200 grid, using a
radius r = 6. A typical outcome is depicted in the left pane of Fig. 12.1.

n = 300;
r = 6; % radius (maximal 49)
noise = randn(n);
[x,y]=meshgrid(-r:r,-r:r);
mask=((x.^2+y.^2)<=r^2); %(2*r+1)x(2*r+1) bit mask
x = zeros(n,n);
nmin = 50; nmax = 250;
for i=nmin:nmax

for j=nmin:nmax
A = noise((i-r):(i+r), (j-r):(j+r));
x(i,j) = sum(sum(A.*mask));

end
end
Nr = sum(sum(mask)); x = x(nmin:nmax, nmin:nmax)/Nr;
imagesc(x); colormap(gray)

12.2.2 Generating Stationary Processes via Circulant Embedding

Another approach to efficiently generate Gaussian spatial processes is to exploit
the structural properties of stationary Gaussian processes. A Gaussian process
{X̃t , t ∈ R

d} is said to be stationary if the expectation function, EX̃t , is constant
and the covariance function, cov(X̃s, X̃t), is invariant under translations; that is
cov(X̃s+u, X̃t+u) = cov(X̃s, X̃t) .
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An illustrative example is the simulation of a stationary Gaussian process on the
unit torus; that is, the unit square [0,1]× [0,1] in which points on opposite sides
are identified with each other. In particular, we wish to generate a zero-mean Gaus-
sian random process {X̃t} on each of the grid points {(i, j)/n, i = 0, . . . ,n− 1, j =
0, . . . ,n−1} corresponding to a covariance function of the form

cov(X̃s, X̃t) = exp{−c‖s− t‖αT }, (12.2)

where ‖s− t‖T = ‖(s1− t1,s2− t2)‖T
def
=
√

∑2
k=1(min{|sk− tk|,1−|sk− tk|})2 is the

Euclidean distance between s = (s1,s2) and t = (t1, t2) on the torus. Notice that this
renders the process not only stationary but also isotropic (that is, the distribution
remains the same under rotations).

We can arrange the grid points in the order

(0,0),(0,1/n), . . . ,(0,1−1/n),(1/n,0), . . . ,(1−1/n,1−1/n).

The values of the Gaussian process can be accordingly gathered in an n2×1 vector
X or, alternatively an n×n matrix X . Let Σ be the n2×n2 covariance matrix of X .
The key to efficient simulation of X is that Σ is a symmetric block-circulant matrix
with circulant blocks. That is, Σ has the form

Σ =

⎛
⎜⎜⎝

C1 C2 C3 . . . Cn
Cn C1 C2 . . . Cn−1

. . .
C2 C3 . . . Cn C1

⎞
⎟⎟⎠ ,

where each Ci is a circulant matrix circ(ci1, . . . ,cin). The matrix Σ is thus completely
specified by its first row, which we gather in an n×n matrix G. The eigenstructure
of block-circulant matrices with circulant blocks is well known; see, for example,
[30]. Specifically, Σ is of the form

Σ = P∗diag(γ)P, (12.3)

where P∗ denotes the complex conjugate transpose of P, and P is the Kronecker
product of two discrete Fourier transform matrices; that is, P = F ⊗ F , where
Fjk = exp(−2πi jk/n)/

√
n, j,k = 0,1, . . . ,n− 1. The vector of eigenvalues γ =

(γ1, . . . ,γn2)ᵀ ordered as an n×n matrixΓ satisfiesΓ = nF∗GF . Since Σ is a covari-
ance matrix, the component-wise square root

√
Γ is well-defined and real-valued.

The matrix B = P∗diag(
√γ) is a complex square root of Σ , so that X can be gen-

erated by drawing Z = Z1 + iZ2, where Z1 and Z2 are independent standard normal
random vectors, and returning the real part of BZ. It will be convenient to gather Z
into an n×n matrix Z.

The evaluation of both Γ and X can be done efficiently by using the (appropri-
ately scaled) two-dimensional fast Fourier transform (FFT2). In particular, Γ is the
FFT2 of the matrix G and X is the real part of the FFT2 of the matrix

√
Γ � Z,

where � denotes component-wise multiplication. The following MATLAB program
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generates the outcome of a stationary Gaussian random field on a 256× 256 grid,
for a covariance function of the form (12.2), with c = 8 and α = 1. A realization is
shown in the middle pane of Fig. 12.1.

n = 2^8;
t1 = [0:1/n:1-1/n]; t2 = t1;
for i=1:n % first row of cov. matrix, arranged in a matrix
for j=1:n

G(i,j)=exp(-8*sqrt(min(abs(t1(1)-t1(i)), ...
1-abs(t1(1)-t1(i)))^2 + min(abs(t2(1)-t2(j)), ...
1-abs(t2(1)-t2(j)))^2));

end;
end;
Gamma = fft2(G); % the eigenvalue matrix n*fft2(G/n)
Z = randn(n,n) + sqrt(-1)*randn(n,n);
X = real(fft2(sqrt(Gamma).*Z/n));
imagesc(X); colormap(gray)

The simulation of general stationary Gaussian processes in R
d with covariance

function
cov(X̃s, X̃t) = ρ(s− t)

is discussed in [100] and [65, 418]. Recall that if ρ(s− t) = ρ(‖s− t‖), then the
random field is not only stationary, but isotropic.

In [100], the method of circulant embedding is proposed, which allows the ef-
ficient simulation of a stationary Gaussian field via the FFT. The idea is to embed
the covariance matrix into a block circulant matrix with each block being circu-
lant itself (as in the last example), and then construct the matrix square root of the
block circulant matrix using FFT techniques. The FFT permits the fast simulation of
the Gaussian field with this block circulant covariance matrix. Finally, the marginal
distributions of appropriate sub-blocks of this Gaussian field have the desired co-
variance structure.

Here we consider the two-dimensional case. The aim is to generate a zero-mean
stationary Gaussian field over the n×m rectangular grid

G = {(iΔx, jΔy), i = 0, . . . ,n−1, j = 0, . . . ,m−1},

where Δx and Δy denote the corresponding horizontal and vertical spacing along the
grid. The algorithm can broadly be described as follows.

Step 1 (Building and storing the covariance matrix). The grid points can be
arranged into a column vector of size mn to yield the mn×mn covariance matrix
Ωi, j = ρ(si− s j), i, j = 1, . . . ,mn, where

sk
def
=

(
(k−1) mod m,

⌊
k
m

⌋)
, k = 1, . . . ,mn .

The matrix Ω has symmetric block-Toeplitz structure, where each block is a
Toeplitz matrix (not necessarily symmetric). For example, the left panel of Fig. 12.2
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shows the block-Toeplitz covariance matrix with m = n = 3. Each 3× 3 block is
itself a Toeplitz matrix with entry values coded in color. For instance, we have
Ω2,4 = Ω3,5 = c. The matrix Ω is thus uniquely characterized by its first block
row (R1, . . . ,Rn), where each of the n blocks is an m×m Toeplitz matrix. The k-th
m×m Toeplitz matrix consists of the sub-block of Ω with entries

Ωi, j, i = 1, . . . ,m, j = (km+1), . . . ,(k+1)m .

Notice that each block Rk is itself characterized by its first row and column. (Each
Toeplitz block Rk will be characterized by the first row only provided the covariance
function has the form ρ(s− t) = ρ(‖s‖,‖t‖), in which case each Rk is symmetric.)
Thus, in general, the covariance matrix can be completely characterized by the en-
tries of a pair of m×n and n×m matrices storing the first columns and rows of all
n Toeplitz blocks (R1, . . . ,Rn). In typical applications, the computation of these two
matrices is the most time-consuming step.

Fig. 12.2 Left panel: the symmetric block-Toeplitz covariance matrix Ω with n = m = 3. Right
panel: block-circulant matrix Σ of size ((2n−1)×(2m−1))2 = 25×25. The first three block rows
of Ω are embedded in the upper left corners of the first three block columns of the circulant matrix
Σ

Step 2 (Embedding in block circulant matrix). Each Toeplitz matrix Rk is em-
bedded in the upper left corner of an 2m+ 1 circulant matrix Ck. For example, in
the right panel of Fig. 12.2 the embedded blocks R1,R2,R3 are shown within bold
rectangles. Finally, let Σ be the (2n−1)(2m−1)×(2n−1)(2m−1) block circulant
matrix with first block row given by (C1, . . . ,Cn,C

ᵀ
n , . . . ,C

ᵀ
2 ). This gives the minimal

embedding in the sense that there is no block circulant matrix of smaller size that
embeds Ω .

Step 3 (Computing the square root of the block circulant matrix). After the
embedding we are essentially generating a Gaussian process on a torus with covari-
ance matrix Σ as in the last example. The block circulant matrix Σ can be diago-
nalized as in (12.3) to yield Σ = P∗diag(γ)P, where P is the (2n− 1)(2m− 1)×
(2n−1)(2m−1) two-dimensional discrete Fourier transform matrix. The vector of
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eigenvalues γ is of length (2n−1)(2m−1) and is arranged in a (2m−1)× (2n−1)
matrix Γ so that the first column of Γ consists of the first 2m− 1 entries of γ , the
second column of Γ consists of the next 2m− 1 entries and so on. It follows that
if G is an (2m− 1)× (2n− 1) matrix storing the entries of the first block row of
Σ , then Γ is the FFT2 of G. Assuming that γ > 0, we obtain the square root factor
B = P∗diag(

√γ), so that Σ = B∗B.
Step 4 (Extracting the appropriate sub-block). Next, we compute the FFT2

of the array
√
Γ �Z, where the square root is applied component-wise to Γ and Z

is an (2m−1)× (2n−1) complex Gaussian matrix with entries Z j,k =Uj,k + iVj,k,
Uj,k,Vj,k ∼ N(0,1) for all j and k. Finally, the first m× n sub-blocks of the real
and imaginary parts of FFT2(

√
Γ �Z) represent two independent realization of a

stationary Gaussian field with covariance Σ on the grid G. If more realizations are
required, we store the values

√
Γ and we repeat Step 4 only. The complexity of

the circulant embedding inherits the complexity of the FFT approach, which is of
order O(mn log(m+ n)), and compares very favorably with the standard Cholesky
decomposition method of order O(m3n3).

As a numerical example (see [100]), Fig. 12.3 shows a realization of a stationary
nonisotropic Gaussian field with m = 512,n = 384, Δx = Δy = 1, and covariance
function

ρ(s− t) = ρ(h) =
(

1− h2
1

502 −
h1h2

50×15
− h2

2
152

)
exp

(
− h2

1
502 −

h2
2

152

)
. (12.4)

Fig. 12.3 Realization of a stationary nonisotropic Gaussian field with covariance function given
by (12.4)

The following MATLAB code implements the procedure described above with co-
variance function given by (12.4).

n=384; m=512; % size of grid is m*n
% size of covariance matrix is m^2*n^2
tx=[0:n-1]; ty=[0:m-1]; % create grid for field
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rho=@(x,y)((1-x^2/50^2-x*y/(15*50)-y^2/15^2)...

*exp(-(x^2/50^2+y^2/15^2)));
Rows=zeros(m,n); Cols=Rows;
for i=1:n

for j=1:m
Rows(j,i)=rho(tx(i)-tx(1),ty(j)-ty(1)); % rows of blocks
Cols(j,i)=rho(tx(1)-tx(i),ty(j)-ty(1)); % columns

end
end
% create the first row of the block circulant matrix with
% circulant blocks and store it as a matrix suitable for fft2
BlkCirc_row=[Rows, Cols(:,end:-1:2);

Cols(end:-1:2,:), Rows(end:-1:2,end:-1:2)];
% compute eigen-values
lam=real(fft2(BlkCirc_row))/(2*m-1)/(2*n-1);

if abs(min(lam(lam(:)<0)))>10^-15
error('Could not find positive definite embedding!')

else
lam(lam(:)<0)=0; lam=sqrt(lam);

end
% generate field with covariance given by block circulant matrix
F=fft2(lam.*complex(randn(2*m-1,2*n-1),randn(2*m-1,2*n-1)));
F=F(1:m,1:n); % extract sub-block with desired covariance
field1=real(F); field2=imag(F); % two independent fields
imagesc(tx,ty,field1), colormap bone

Extensions to three and more dimensions are possible, see [100]. For example,
in the three-dimensional case the correlation matrix Ω will be symmetric block
Toeplitz matrix with each block satisfying the properties of a two-dimensional co-
variance matrix.

Throughout the discussion so far we have always assumed that the block circu-
lant matrix Σ is a covariance matrix itself. If this is the case, then we say that we
have a nonnegative definite embedding of Ω . A nonnegative definite embedding en-
sures that the square root of γ is real. Generally, if the correlation between points
on the grid that are sufficiently far apart is zero, then a non-negative embedding
will exist, see [100]. A method that exploits this observation is Stein’s intrinsic em-
bedding method proposed in [377] (see also [143]). Stein’s method depends on the
construction of a compactly supported covariance function that yields to a nonneg-
ative circulant embedding. The idea is to modify the original covariance function
so that it decays smoothly to zero. In more detail, suppose we wish to simulate a
process with covariance function ρ over the set {h : ‖h‖ ≤ 1,h > 0}. To achieve
this, we simulate a process with covariance function

ψ(h) =

⎧⎪⎨
⎪⎩

c0 + c2‖h‖2 +ρ(h), if ‖h‖ ≤ 1 ,
ϕ(h), if 1≤ ‖h‖ ≤ R ,

0, if ‖h‖ ≥ R ,

(12.5)
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where the constants c0,c2, R ≥ 1 and function ϕ are selected so that ψ is a contin-
uous (and as many times differentiable as possible), stationary and isotropic covari-
ance function on R

2. The process will have covariance structure of c0 + c2‖h‖2 +
ρ(h) in the disk {h : ‖h‖ ≤ 1,h > 0}, which can then be easily transformed into a
process with covariance function ρ(h). We give an example of this in Sect. 12.4.4,
where we generate fractional Brownian surfaces via the intrinsic embedding tech-
nique. Generally, the smoother the original covariance function, the harder it is to
embed via Stein’s method, because a covariance function that is smoother close to
the origin has to be even smoother elsewhere.

12.2.3 Markov Property

A Markov random field is a spatial stochastic process {Xt , t ∈ T } that possesses a
Markov property, in the sense that

(Xt |Xs,s ∈ T \{t})∼ (Xt |Xs,s ∈Nt),

where Nt is the set of “neighbors” of t. Thus, for each t ∈ T the conditional distri-
bution of Xt given all other values Xs is equal to the conditional distribution of Xt
given only the neighboring values.

Assuming that the index set T is finite, Markov random fields are often defined
via an undirected graph G = (V,E). In such a graphical model the vertices of the
graph correspond to the indices t ∈ T of the random field, and the edges describe the
dependencies between the random variables. In particular, there is no edge between
nodes s and t in the graph if and only if Xs and Xt are conditionally independent,
given all other values {Xu,u �= i, j}. In a Markov random field described by a graph
G, the set of neighbors Nt of t corresponds to the set of vertices that share an edge
with t; that is, those vertices that are adjacent to t. An example of a graphical model
for a 2-dimensional Markov random field is shown in Fig. 12.4. In this case vertex
corner nodes have two neighbors and interior nodes have four neighbors.

Fig. 12.4 A graphical model for 2D spatial process. Each vertex has at most four neighbors.
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Of particular importance are Markov random fields that are also Gaussian. Sup-
pose {Xt , t ∈T } is such a Gaussian Markov random field (GMRF), with correspond-
ing graphical model G = (V,E). We may think of {Xt , t ∈ T } as a column vector of
n = |V | elements, or as a spatial arrangement of random variables (pixel values), as
in Fig. 12.4. Without loss of generality we assume that EXt = 0 for each t ∈ T , and
that the index set T is identified with the vertex set V , whose elements are labeled
as 1,2, . . . ,n. Because {Xt , t ∈ T } is Gaussian, the probability density function of
{Xt , t ∈ T }

f (x) = (2π)−n/2
√

det(Λ) e−
1
2 xᵀΛx ,

where Λ = (λi j) is the precision matrix. In particular, the joint distribution of two
components Xi and X j is

f̃ (xi,x j) ∝ exp
(
−1

2
(λiix2

i +λi jxix j +λ j jx2
j)

)
.

This shows that Xi and X j are conditionally independent given {Xk,k �= i, j}, if and
only if λi j = 0. Consequently, (i, j) is an edge in the graphical model if and only
if λi j �= 0. In typical applications (for example in image analysis) each vertex in
the graphical model only has a small number of adjacent vertices, as in Fig. 12.4.
In such cases the precision matrix is thus sparse, and the Gaussian vector can be
generated efficiently using, for example, sparse Cholesky factorization [146].

As an illustrative example, consider the graphical model of Fig. 12.4 on a grid of
n = m2 points: {1, . . . ,m}×{1, . . . ,m}. We can efficiently generate a GMRF on this
grid via Algorithm 12.2, provided the Cholesky decomposition can be carried out
efficiently. For this we can use for example the band Cholesky method [146], which
takes n(p2 +3p) floating point operations, where p is the bandwidth of the matrix;
that is, p = maxi, j{|i− j| : λi j = 0}. The right pane of Fig. 12.1 shows a realization
of the GMRF on a 250×250 grid, using parameters λii = 2 for all i = 1, . . . ,n and
λi j = −0.5 for all neighboring elements j ∈ N j of i = 1, . . . ,n. Further details on
such construction methods for GMRFs may be found, for example, in [336].

Exercise 12.1. Write MATLAB code to generate a zero-mean Gaussian Markov ran-
dom field for a 200× 200 grid with a neighborhood structure similar to Fig. 12.4,
that is, each internal vertex has four neighbors, the boundary ones have three, and
the corner ones have two. Choose λii = 1 and λi j = −0.25 for each neighboring
element j of i. Hint. See the MATLAB code in Sect. 5.1 of [237].

12.3 Point Processes

Point processes on R
d are spatial processes describing random configurations of

d-dimensional points. Spatially distributed point patterns occur frequently in na-
ture and in a wide variety of scientific disciplines, such as spatial epidemiology,

is given by
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materials science, forestry, and geography. The positions of accidents on a high-
way during a fixed time period and the times of earthquakes in Japan are examples
of one-dimensional spatial point processes. Two-dimensional examples include the
positions of cities on a map, the positions of farms with Mad Cow Disease in the
UK, and the positions of broken connections in a communications or energy net-
work. In three dimensions, we observe the positions of stars in the universe, the po-
sitions of mineral deposits underground, or the times and positions of earthquakes
in Japan. Spatial processes provide excellent models for many of these point pat-
terns [15, 16, 93, 94, 102]. Spatial processes also have an important role in stochas-
tic modeling of complex microstructures, for example, graphite electrodes used in
Lithium-ion batteries [380].

Mathematically, point processes can be described in three ways: 1. as random sets
of points, 2. as random-sized vectors of random positions, and 3. as random counting
measures. In this section we discuss some of the important classes of point processes
and their generalizations, including Poisson processes, marked point processes, and
cluster processes.

12.3.1 Poisson Process

Poisson processes are used to model random configurations of points in space and
time. Let E be some Borel subset of Rd and let E be the collection of Borel sets
on E. To any collection of random points {X1, . . . ,XN} in E corresponds a random
counting measure X(A), A ∈ E defined by

X(A) =
N

∑
i=1

1{Xi∈A}, A ∈ E , (12.6)

which counts the random number of points in A. We may identify the random mea-
sure X defined in (12.6) with the random set {Xi, i = 1, . . . ,N}, or with the random
vector (X1, . . . ,XN). The measure μ : E → [0,∞] given by μ(A) = EX(A), A ∈ E is
called the mean measure of X . In many cases the mean measure μ has a density
λ : E→ [0,∞), called the intensity function; so that

μ(A) = EX(A) =
∫

A
λ (x)dx .

We will assume from now on that such an intensity function exists.
The most important class of point processes which holds the key to the analysis

of point pattern data is the Poisson process. A random counting measure X is said
to be a Poisson random measure with locally finite mean measure μ if the following
properties hold:

1. For any bounded set A ∈ E the random variable X(A) has a Poisson distribution
with mean μ(A). We write X(A)∼ Pois(μ(A)).
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2. For any disjoint sets A1, . . . ,AN ∈ E , the random variables X(A1), . . . ,X(AN) are
independent.

The Poisson process is said to be stationary if the intensity function is constant.
When the intensity function is a constant, we simply refer to it as the intensity.
An important corollary of Properties 1 and 2 is the following result. Suppose that
0 < μ(E)< ∞. Then,

3. conditional upon X(E) = N, the points X1, . . . ,XN are independent of each other
and have the probability density function (pdf) g(x) = λ (x)/μ(E).

This result is the key to generating a Poisson random measure on E ⊂ R
d with

finite mean measure μ(E)< ∞.

Algorithm 12.3 (Generating a Poisson random measure).

1. Generate a Poisson random variable N ∼ Pois(μ(E)).
2. Draw X1, . . . ,XN ∼ g, where g(x) = λ (x)/μ(E), and return these as the points of
the Poisson random measure.

As a specific example, consider the simulation of a 2-dimensional Poisson pro-
cess with intensity function λ (x1,x2) = 300(x2

1 + x2
2) on the unit square E = [0,1]2.

Since the probability density function g(x1,x2) = λ (x1,x2)/μ(E) = 3(x2
1 + x2

2)/2
is bounded by 3, drawing from g can be done simply via the acceptance–rejection
method [334].

Exercise 12.2. Write MATLAB code that implements this acceptance-rejection method.
That is, in Step 2 of Algorithm 12.3, draw (X1,X2) uniformly on E and Z uniformly
on [0,3], and accept (X1,X2) if g(X1,X2)≤ Z; otherwise repeat.

An alternative, but equivalent, method is to generate a stationary Poisson process
on E, with intensity λ = 600, and to thin out the points by accepting each point
(x1,x2) with probability λ (x1,x2)/λ . The following MATLAB code implements this
thinning procedure. A typical realization is given in Fig. 12.5.

lambda = @(x) 300*(x(:,1).^2 + x(:,2).^2);
lamstar = 600;
N=poissrnd(lamstar); x = rand(N,2); % homogeneous PP
ind = find(rand(N,1) < lambda(x)/lamstar);
xa = x(ind,:); % thinned PP
plot(xa(:,1),xa(:,2))

12.3.2 Marked Point Processes

A natural way to extend the notion of a point process is to associate with each
point Xi ∈ R

d a (random) mark Yi ∈ R
m, representing an attribute such as width,

velocity, weight etc. The collection {(Xi,Yi)} is called a marked point process. In
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0 1
0

1

Fig. 12.5 A realization of a non-stationary Poisson process with intensity function λ (x1,x2) =
300(x2

1 + x2
2) (contour lines shown) on the unit square

a marked point process with independent marking the marks are assumed to be
independent of each other and of the points, and distributed according to a fixed
mark distribution. The following gives a useful connection between marked point
processes and Poisson processes; see, for example, [93, 94].

Theorem 12.1. If {(Xi,Yi)} is a Poisson process on R
d×R

m with intensity function
ζ : Rd×R

m→ [0,∞), and

K(x) =
∫
ζ (x,y)dy < ∞ for all x ∈ R

d , (12.7)

then {Xi} is a Poisson process on R
d with intensity function K : Rd → [0,∞) given

in (12.7), and {(Xi,Yi)} is a marked Poisson process, where the density function of
the marks is given by ζ (x, ·)/K(x) on R

m.

A (spatial) marked Poisson process with independent marking is an important
example of a (spatial) Lévy process: a stochastic process with independent and sta-
tionary increments (discussed in more detail in Sect. 12.5).

The simulation of a marked Poisson process with independent marks is virtually
identical to that of an ordinary (that is, non-marked) Poisson process. The only
difference is that for each point the mark has to be drawn from the mark distribution.
An example of a realization of a marked Poisson process is given in Fig. 12.6. Here
the marks are uniformly distributed on [0,0.1], and the underlying Poisson process
is stationary with intensity 100.

12.3.3 Cluster Process

In applications one often observes point patterns that display clustering. An example
is the spread of plants from a weed species where the plants are initially introduced
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0 1
0

1

Fig. 12.6 A realization of a marked Poisson process with independent marking on the unit square.
The Poisson process has intensity 100. The marks are uniformly distributed on [0,0.1] and corre-
spond to the radii of the circles

by birds at a number of geographically dispersed locations and the plants then spread
themselves locally.

Let C be a point process of “centers” and associate with each c∈C a point process
Xc, which may include c. The combined set of points X = ∪c∈CXc constitutes a
cluster process. If C is a Poisson process, then X is called a Poisson cluster process.

As a specific example, consider the following Hawkes process. Here, the cen-
ter process C is a Poisson process on R

d (or a subset thereof) with some intensity
function λ (·). The clusters are generated as follows. For each c ∈C, independently
generate “first-generation offspring” according to a Poisson process with intensity
function ρ(x− c), where ρ(·) is a positive function on R

d with integral less than
unity. Then, for each first-generation offspring c(1) generate a Poisson process with
intensity function ρ(x−c(1)), and so on. The collection of all generated points forms
the Hawkes process. The requirement that

∫
ρ(y)dy < 1 simply means that the ex-

pected number of offspring of each point is less than one.
Fig. 12.7 displays a realization for R2 with the cluster centers forming a Poisson

process on the unit square with intensity λ = 30. The offspring intensity function is
here

ρ(x1,x2) =
α

2πσ2 e−
1

2σ2 (x
2
1+x2

2), (x1,x2) ∈ R
2, (12.8)

with α = 0.9 and with σ = 0.02. This means that the number N of offspring for a
single generation from a parent at position (x1,x2) has a Poisson distribution with
parameter α . And given N = n, the offspring locations are independent and iden-
tically distributed according to a bivariate normal random vector with independent
components with means x1 and x2 and both variances σ2. In Fig. 12.7 the cluster
centers are indicated by circles. Note that the process possibly has points outside the
displayed box. The MATLAB code is given below.
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lambda = 30; %intensity of initial points (centers)
mean_offspring = 0.9; %mean number of offspring of each point
X = zeros(10^5,2); %initialise the points
N = poissrnd(lambda); %number of centers
X(1:N,:) = rand(N,2); %generate the centers
total_so_far = N; %total number of points generated
next = 1;
while next < total_so_far

nextX = X(next,:); %select next point
N_offspring = poissrnd(mean_offspring); %number of offspring
NewX=repmat(nextX,N_offspring,1)+0.02*randn(N_offspring,2);
X(total_so_far+(1:N_offspring),:) = NewX; %update point list
total_so_far = total_so_far+N_offspring;
next = next+1;

end
X=X(1:total_so_far,:); %cut off unused rows
plot(X(:,1),X(:,2),'.')

0 1
0

1

Fig. 12.7 Realization of a two-dimensional Hawkes process with centers (encircled) forming a
Poisson process on [0,1]× [0,1] with intensity λ = 30. The offspring intensity function is given in
(12.8)

12.3.4 Cox Process

Suppose we wish to model a point pattern of trees given that we know the soil quality
h(x1,x2) at each point (x1,x2). We could use a non-stationary Poisson process with
an intensity function λ that is an increasing function of h; for example, λ (x1,x2) =
eα+βh(x1,x2) for some known α > 0 and β > 0. In practice, however, the soil quality
itself could be random, and be described via a random field. Consequently, one could
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could try instead to model the point pattern as a Poisson process with a random
intensity function Λ . Such processes were introduced in [85] as doubly stochastic
Poisson processes and are now called Cox processes.

More precisely, we say that X is a Cox process driven by the random intensity
function Λ if conditional on Λ = λ the point process X is Poisson with intensity
function λ . Simulation of a Cox process on a set T ⊂ R

d is thus a two-step proce-
dure.

Algorithm 12.4 (Simulation of a Cox process).

1. Simulate a realization λ = {λ (x),x ∈ T } of the random intensity function Λ .
2. Given Λ = λ , simulate X as an non-stationary Poisson process with intensity
function λ .

Fig. 12.8 (a) shows a realization of a Cox process on the unit square T = [0,1]×
[0,1], with a random intensity function whose realization is given in Fig. 12.8 (b).
The random intensity at position (x1,x2) is either 3000 or 0, depending on whether
the value of a random field on T is negative or not. The random field that we used
is the stationary Gaussian process on the torus described in Sect. 12.2.

(a) (b)

Fig. 12.8 Realization of a Cox process: (a) on a square generated by a the random intensity func-
tion given in (b). The black points have intensity 3000 and the white points have intensity 0

Given an outcome of the random intensity function, this Cox process (sometimes
called random-set Cox or interrupted Poisson process) is constructed by generating
a stationary Poisson process with rate 3000 on T and accepting only those points for
which the random intensity function is non-zero. The values of the intensity function
are taken to be constant within each square {(i+ u)/n,( j + v)/n),0 ≤ u,v ≤ 1},
i, j = 0, . . . ,n− 1. The following MATLAB code is to be appended to the code used
for the stationary Gaussian process simulation on the torus in Sect. 12.2.

Lambda = ones(n,n).*(X < 0); %random intensity function
%imagesc(Lambda); set(gca,'YDir','normal')
Lambda = Lambda(:); %reshape as a column vector
N = poissrnd(3000);

0 1
0

1

0 1
0

1
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P = rand(N,2); %generate homogenous PP
Pn = ceil(P*n); %PP scaled by factor n
K = (Pn(:,1)-1)*n + Pn(:,2); % indices of scaled PP
ind = find(Lambda(K)); %indices for which intensity is 1
Cox = P(ind,:); %realization of the Cox process
plot(Cox(:,1),Cox(:,2),'.');

In [299] the following Cox process has been applied to cosmology; see, however,
[178], who show the limitations of the model. Used to model the positions of stars in
the universe, it now bears the name Neyman–Scott process. Suppose C is a stationary
Poisson process in R

d with constant intensity κ . Let the random intensity function
Λ be given by

Λ(x) = α ∑
c∈C

k(x− c)

for some α > 0 and some d-dimensional probability density function (pdf) k. Such
a Cox process is also a Poisson cluster process. Note that in this case the cluster cen-
ters are not part of the Cox process. Given a realization of the cluster center process
C, the cluster of points originating from c∈C form a non-stationary Poisson process
with intensity function k(x− c),x ∈ R

d , independently of the other clusters. Draw-
ing such a cluster via Algorithm 12.3 simply means that (1) the number of points
Nc in the cluster has a Pois(α) distribution, and (2) these Nc points are independent
and identically distributed according to the density function k(x− c).

A common choice for k is k(x) ∝ 1{‖x‖≤r}, first proposed in [262]. The resulting
process is called a Matérn process. Thus, for a Matérn process each point in the
cluster with center c is uniformly distributed within a ball of radius r at c. If instead
a N(c,σ2I) distribution is used, where I is the d-dimensional identity matrix, then
the process is known as a (modified) Thomas process [287].

Fig. 12.9 A realization of a Matérn process with parameters κ = 20, α = 5, and r = 0.1. The
process extends beyond the shown window. The cluster centers (the centers of the circles) are not
part of the point pattern

Fig. 12.9 shows a realization of a Matérn process with parameters κ = 20, α = 5
and r = 0.1 on [0,1]× [0,1]. Note that the cluster centers are assumed to lie on

0 1
0

1
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the whole of R
2. To show a genuine outcome of the process within the window

[0,1]× [0,1] it suffices to consider only the points that are generated from centers
lying in square [−r,1+ r]× [−r,1+ r].

The following MATLAB program was used.

X = zeros(10^5,2); %initialise the points
kappa = 20; alpha = 5; r = 0.1; %parameters
meanpts=kappa*(1 + 2*r)^2;
N = poissrnd(meanpts); %number of cluster centers
C = rand(N,2)*(1+2*r) - r; ;%draw cluster centers
total_so_far = 0;
for c=1:N

NC = poissrnd(alpha); %number of points in cluster
k = 0;
while k < NC %draw uniformly in the n-ball via accept-reject

Y = 2*r*rand(1,2) - r; %candidate point
if norm(Y) < r

X(total_so_far+k+1,:) = C(c,:) + Y;
k = k+1;

end
end
total_so_far = total_so_far + NC;

end
X = X(1:total_so_far,:); %cut off unused rows
plot(X(:,1),X(:,2),'.')
axis([0, 1,0, 1])

A versatile generalization the Neyman–Scott process is the shot-noise Cox pro-
cess [280], where the random intensity function is of the form

Λ(x) = ∑
(c j ,γ j)∈Z

γ j k(c j,x) ,

and {(c j,γ j)} are the points of an non-stationary Poisson process Z on R
d ×R+

with intensity function ζ , and k is a kernel function; that is, k(c, ·) is a probability
density function (on R

d) for each c∈Rd . By Theorem 12.1, if there exists a function
K(c) : Rd → R+ such that

K(c) =
∫ ∞

0
ζ (c,γ)dγ < ∞ ,

then C = {c : (c,γ) ∈ Z} is a Poisson process with intensity function K, and Z is
a marked Poisson process with mark density ζ (c, ·)/K(c). This decomposition of
the shot-noise Cox process into a marked Poisson process suggests a method for
simulation.

Algorithm 12.5 (Simulation of a shot-noise Cox process).

1. Draw the points C of an non-stationary Poisson process with intensity function
K(c).
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2. For each c j ∈C, draw the corresponding mark γ j from the density ζ (c j, ·)/K(c j).
3. For each c j ∈C, draw Nj ∼ Pois(γ j).
4. Draw for each c j ∈ C, Nj points from the kernel k(c j,x). The collection of all
points drawn at this step constitutes a realization from the shot-noise Cox process.

A special case of the shot-noise Cox process, and one that appears frequently in
the literature, is the shot-noise Gamma Cox process. Here the intensity function ζ
is of the form

ζ (c,γ) = βγα−1 exp(−λγ)/Γ (1+α) ,
where β > 0,α > 0,λ > 0, and

K(c) =
∫ ∞

0
ζ (c,γ)dγ = βλ−α/α < ∞ .

Hence, Z is a marked Poisson process, where the intensity function of the centers
is K(c) = βλ−α/α and the marks are independently and identically Gamma(α,λ )
distributed; see [53] and [287] for more information.

12.3.5 Point Process Densities

Let X be a point process with mean measure μ on a bounded region E ⊂ R
d . We

assume that the expected total number of points μ(E) is finite. We may view X as
a random object taking values in the space X = ∪∞

n=0 ({n}×En), where En is the
Cartesian product of n copies of E. Note that in this representation the coordinates
of X are ordered: X = (N,(X1, . . . ,XN)). We identify each vector (N,X) with X . If,
for every set {n}×A with A a measurable set in En we can write

P(X ∈ {n}×A) =
∫

A
f (x1, . . . ,xn)dx1 . . .dxn ,

then f (x) is the probability density function or simply density of X on X (with
respect to the Lebesgue measure on X ). Using the identification (n,x) = x, we can
view f (x) as the joint density of the random variable N and the N-dimensional vector
X , where each component of X takes values in E. Using a Bayesian notation con-
vention where all probability density functions and conditional probability density
functions are indicated by the same symbol f , we have f (x) = f (n,x) = f (n) f (x |n),
where f (n) is the (discrete) probability density function of the random number of
points N, and f (x |n) is the joint probability density function (pdf) of X1, . . . ,Xn
given N = n. As an example, for the Poisson process on E with intensity function
λ (x) and mean measure μ we have, in correspondence to Algorithm 12.3,

f (x) = f (n) f (x |n) = e−μ(E){μ(E)}n

n!

n

∏
i=1

λ (xi)

μ(E)
=

e−μ(E)

n(x)!

n(x)

∏
i=1

λ (xi) , (12.9)
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where n(x) is the number of components in x. Conversely, the expression for the pdf
in (12.9) shows immediately how X can be generated; that is, via Algorithm 12.3.

A general recipe for generating a point process X is thus:

1. draw N from the discrete pdf f (n);
2. given N = n, draw (X1, . . . ,Xn) from the conditional pdf f (x |n).

Unfortunately, the pdf f (n) and f (x |n) may not be available explicitly. Some-
times f (x) is known up to an unknown normalization constant. In such cases one
case use Markov Chain Monte Carlo (MCMC) to simulate from f (x). The basic
idea of MCMC is to run a Markov chain long enough so that its limiting distribution
is close to the target distribution. The most well-known MCMC algorithm is the
following; see, for example, [334].

Algorithm 12.6. (Metropolis–Hastings algorithm) Given a transition density
q(y |x), and starting from an initial state X0, repeat the following steps for t =
1,2, . . .:
1. Generate a candidate Y ∼ q(y |Xt).
2. Generate U ∼ Unif(0,1) and set

Xt+1 =

{
Y, if U ≤ α(Xt ,Y ),
Xt , otherwise,

(12.10)

where α(x,y) is the acceptance probability, given by:

α(x,y) = min
{

f (y)q(x |y)
f (x)q(y |x) , 1

}
. (12.11)

This produces a sequence X1,X2, . . . of dependent random vectors, with Xt ap-
proximately distributed according to f (x), for large t. Since Algorithm 12.6 is of
the acceptance–rejection type, its efficiency depends on the acceptance probability
α(x,y). Ideally, one would like the proposal transition density q(y |x) to reproduce
the desired pdf f (y) as faithfully as possible. For a random walk sampler the pro-
posal state Y , for a given current state x, is given by Y = x+Z, where Z is typically
generated from some spherically symmetrical distribution. In that case the proposal
transition density pdf is symmetric; that is q(y |x) = q(x |y). It follows that the ac-
ceptance probability is:

α(x,y) = min
{

f (y)
f (x)

, 1
}
. (12.12)

As a specific example, suppose we wish to generate a Strauss process [222, 384].
This is a point process with density of the form

f (x) ∝ β n(x)γs(x) ,

where β ,γ ≥ 0 and s(x) is the number of pairs of points where the two points are
within distance r of each other. As before, n(x) denotes the number of points. The
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process exists (that is, the normalization constant is finite) if γ ≤ 1; otherwise, it
does not exist in general [287].

We first consider simulating from f (x |n) for a fixed n. Thus, f (x |n) ∝ γs(x),
where x = (x1, . . . ,xn). The following MATLAB program implements a Metropolis–
Hastings algorithm for simulating a (conditional) Strauss process with n = 200
points on the unit square [0,1]× [0,1], using the parameter values γ = 0.1 and
r = 0.2. Given a current state x = (x1, . . . ,xn), the proposal state Y = (Y1, . . . ,Yn)
is identical to x except for the J-th component, where J is a uniformly drawn in-
dex from the set {1, . . . ,n}. Specifically, YJ = xJ +Z, where Z ∼ N(0,(0.1)2). The
proposal Y for this random walk sampler is accepted with probability α(x,Y ) =
min{γs(Y )/γs(x), 1}. The function s(x) is implemented below as numpairs.m.

gam = 0.1;
r = 0.2;
n = 200;
x = rand(n,2); %initial pp
K = 10000;
np= zeros(K,1);
for i=1:K

J = ceil(n*rand);
y = x;
y(J,:) = y(J,:) + 0.1*randn(1,2); %proposal
if (max(max(y)) > 1 || min(min(y)) <0)

alpha =0; %don't accept a point outside the region
elseif (numpairs(y,r) < numpairs(x,r))

alpha =1;
else

alpha = gam^numpairs(y,r)/gam^numpairs(x,r);
end
R = (rand < alpha);
x = R*y + (1-R)*x; %new x-value
np(i) = numpairs(x,r);
plot(x(:,1),x(:,2),'.');
axis([0,1,0,1])
refresh; pause(0.0001);

end

function s = numpairs(x,r)
n = size(x,1);
D = zeros(n,n);
for i = 1:n

D(i,:) = sqrt(sum((x(i*ones(n,1),:) - x).^2,2));
end
D = D + eye(n);
s = numel(find((D < r)))/2;
end

A typical realization of the conditional Strauss process is given in the left pane
of Fig. 12.10. We see that the n = 200 points are clustered together in groups. This



12 Spatial Process Simulation 391

pattern is quite different from a typical realization of the unconditional Strauss pro-
cess, depicted in the right pane of Fig. 12.10. Not only are there typically far fewer
points, but also these points tend to “repel” each other, so that the number of pairs
within a distance of r of each other is small. The radius of each circle in the figure
is r/2 = 0.1. We see that in this case s(x) = 3, because 3 circle pairs overlap.

0 1
0

1

0 1
0

1

Fig. 12.10 Left: Conditional Strauss process with n = 200 points and parameters γ = 0.1 and
r = 0.2. Right: Strauss process with β = 100, γ = 0.1, and r = 0.2

To generate the (unconditional) Strauss process using the Metropolis–Hastings
sampler, the sampler needs to be able to “jump” between different dimensions n.
The reversible jump sampler [150, 334] is an extension of the Metropolis–Hastings
algorithm designed for this purpose. Instead of one transition density q(y |x), it re-
quires a transition density for n, say q(n |m), and for each n a transition density
q(y |x,n) to jump from x to an n-dimensional vector y.

Given a current state Xt of dimension m, Step 1 of Algorithm 12.6 is replaced
with

1a. Generate a candidate dimension n∼ q(n |m).
1b. Generate an n-dimensional vector Y ∼ q(y |Xt ,n).

And in Step 2 the acceptance ratio in (12.11) is replaced with

α(x,y) = min
{

f (n,y)q(m |n)q(x |y,m)

f (m,x)q(n |m)q(y |x,n) , 1
}

. (12.13)

The MATLAB program below implements a simple version of the reversible jump
sampler, suggested in [136]. From a current state x of dimension m, a candidate
dimension is chosen to be either m+1 or m−1, with equal probability. Thus, q(m+
1 |m) = q(m−1 |m) = 1/2,m = 1,2, . . . . The first transition corresponds to the birth
of a new point; the second to the death of a point. On the occasion of a birth, a
candidate Y is generated by simply appending a uniform point on [0,1]2 to x. The
corresponding transition density is therefore q(y |x,m) = 1. On the occasion of a
death, the candidate Y is obtained from x by removing one of the points of x at
random and uniformly. The transition density is thus q(y |x,m) = 1/n(x). This gives
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the acceptance ratios:
1. Birth:

α(x,y) = min

{
β n(y)γs(y) 1

n(y)

β n(x)γs(x)1
, 1

}
= min{(βγs(y)−s(x))/n(y), 1} .

2. Death:

α(x,y) = min

{
β n(y)γs(y)1
β n(x)γs(x) 1

n(x)

, 1

}
= min{(γs(y)−s(x) n(x))/β , 1} .

r = 0.1; gam = 0.2; beta = 100; %parameters
n = 200; x = rand(n,2); %initial pp
K = 1000;
for i=1:K

n = size(x,1);
B = (rand < 0.5);
if B %birth

xnew = rand(1,2);
y = [x;xnew];
n = n+1;

else %death
y = setdiff(x,x(ceil(n*rand),:),'rows');

end
if (max(max(y)) > 1 || min(min(y)) <0)

alpha =0; %don't accept a point outside the region
elseif (numpairs(y,r) < numpairs(x,r))

alpha =1;
elseif B %birth

alpha = beta*gam^(numpairs(y,r) - numpairs(x,r))/n;
else %death

alpha = n*gam^(numpairs(y,r) - numpairs(x,r))/beta;
end
if (rand < alpha)

x = y;
end
plot(x(:,1),x(:,2),'.');
axis([0,1,0,1]); refresh; pause(0.0001);

For more on Strauss processes, see [401].

12.4 Wiener Surfaces

Brownian motion is one of the simplest continuous-time stochastic processes, and
as such has found myriad applications in the physical sciences [247]. As a first step
toward constructing Brownian motion we introduce the one-dimensional Wiener
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process {Wt , t ∈ R+}, which can be viewed as a spatial process with a continuous
index set on R+ and with a continuous state space R.

12.4.1 Wiener Process

A one-dimensional Wiener process is a stochastic process {Wt , t ≥ 0} characterized
by the following properties:

1. the increments of Wt are stationary and normally distributed, that is, Wt −Ws ∼
N(0, t− s) for all t ≥ s≥ 0;

2. W has independent increments, that is, for any t1 < t2 ≤ t3 < t4, the increments
Wt4−Wt3 and Wt2−Wt1 are independent random variables (in other words, Wt−
Ws, t > s is independent of the past history of {Wu, 0≤ u≤ s});

3. continuity of paths, that is, {Wt} has continuous paths with W0 = 0.

The simplest algorithm for generating the process uses the Markovian (independent
increments) and Gaussian properties of the Wiener process. Let 0 = t0 < t1 < t2 <
· · · < tn be the set of distinct times for which simulation of the process is desired.
Then, the Wiener process is generated at times t1, . . . , tn via

Wtk =
k

∑
i=1

√
tk− tk−1 Zi, k = 1, . . . ,n ,

where Z1, . . . ,Zn
iid∼N(0,1). To obtain a continuous path approximation to the path of

the Wiener process, one could use linear interpolation on the points Wt1 , . . . ,Wtn . A
realization of a Wiener process is given in the middle panel of Fig. 12.11. Given the
Wiener process Wt , we can now define the d-dimensional Brownian motion process
via

X̃t = μ t +Σ 1/2Wt , Wt = (W (1)
t , . . . ,W (d)

t )ᵀ, t ≥ 0 , (12.14)

where W (1)
t , . . . ,W (d)

t are independent Wiener processes and Σ is a d× d covari-
ance matrix. The parameter μ ∈ R

d is called the drift parameter and Σ is called the
diffusion matrix.

Exercise 12.3. Generate and plot a realization of a three dimensional Wiener pro-
cess at times 0,1/n,2/n, . . . ,1 for n = 104.

One approach to generalizing the Wiener process conceptually or to higher spa-
tial dimensions is to use its characterization as a zero-mean Gaussian process (see
Sect. 12.2.1) with continuous sample paths and covariance function cov(Wt ,Ws) =
min{t,s} for t,s > 0. Since 1

2 (|t|+ |s|− |t− s|) = min{t,s}, we can consider the
covariance function 1

2 (|t|+ |s|− |t− s|) as a basis for generalization. The first gen-
eralization is obtained by considering a continuous zero-mean Gaussian process
with covariance ρ(t,s) = 1

2 (|t|α + |s|α −|t− s|α), where α is a parameter such that
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α = 1 yields the Wiener process. This generalization gives rise to fractional Brow-
nian motion discussed in the next section.

12.4.2 Fractional Brownian Motion

A continuous zero-mean Gaussian process {Wt , t ≥ 0} with covariance function

cov(Wt ,Ws) =
1
2
(|t|α + |s|α −|t− s|α) , t,s≥ 0 (12.15)

is called fractional Brownian motion (fBm) with roughness parameter α ∈ (0,2).
The process is frequently parameterized with respect to H =α/2, in which case H ∈
(0,1) is called the Hurst or self-similarity parameter. The notion of self-similarity
arises, because fBm satisfies the property that the rescaled process {c−H Wct , t ≥ 0}
has the same distribution as {Wt , t ≥ 0} for all c > 0.

Simulation of fBm on the uniformly spaced grid 0 = t0 < t1 < t2 < · · · < tn = 1
can be achieved by first generating the increment process {X1,X2, . . . ,Xn}, where
Xi =Wi−Wi−1, and then delivering the cumulative sum

Wti = cH
i

∑
k=1

Xk, i = 1, . . . ,n, c = 1/n .

The increment process {X1,X2, . . . ,Xn} is called fractional Gaussian noise and can
be characterized as a discrete zero-mean stationary Gaussian process with covari-
ance

cov(Xi,Xi+k) =
1
2
(|k+1|α −2|k|α + |k−1|α) , k = 0,1,2, . . .

Fig. 12.11 Fractional Brownian motion for different values of the Hurst parameter H. From left to
right we have H = 0.3,0.5,0.9

Since the fractional Gaussian noise is stationary, we can generate it efficiently
using the circulant embedding approach in Sect. 12.2.2. First, we compute the first
row (r1, . . . ,rn+1) of the symmetric Toeplitz (n+1)× (n+1) covariance matrix Ω
with elements Ωi+1, j+1 = cov(Xi,X j), i, j = 0, . . . ,n. Second, we build the first row
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of the 2n×2n circulant matrix Σ , which embedsΩ in the upper left (n+1)×(n+1)
corner. Thus, the first row of Σ is given by r = (r1, . . . ,rn+1,rn,rn−1, . . . ,r2). We now
seek a factorization of the form (12.3). Here, λ is the one-dimensional FFT of r de-
fined as the linear transformation λ =Fr with Fj,k = exp(−2πi jk/(2n))/

√
2n, j,k=

0,1, . . . ,2n− 1. Finally, the real and imaginary parts of the first n+ 1 components
of F∗diag(

√
λ )Z, where Z is a 2n× 1 complex valued Gaussian vector, yield two

independent realizations of fractional Brownian noise. Fig. 12.11 shows how the
smoothness of fBm depends on the Hurst parameter. Note that H = 0.5 corresponds
to the Wiener process.
The following MATLAB code implements the circulant embedding method for fBm.

n=2^15; % grid points
H = 0.9; %Hurst parameter
r=nan(n+1,1); r(1) = 1;
for k=1:n

r(k+1) = 0.5*((k+1)^(2*H) - 2*k^(2*H) + (k-1)^(2*H));
end
r=[r; r(end-1:-1:2)]; % first rwo of circulant matrix
lambda=real(fft(r))/(2*n); % eigenvalues
W=fft(sqrt(lambda).*complex(randn(2*n,1),randn(2*n,1)));
W = n^(-H)*cumsum(real(W(1:n+1))); % rescale
plot((0:n)/n,W);

12.4.3 Fractional Wiener Sheet in R
2

A simple spatial generalization of the fractional Brownian motion is the fractional
Wiener sheet in two dimensions. The fractional Wiener sheet process on the unit
square is the continuous zero-mean Gaussian process {Wt , t ∈ [0,1]2} with covari-
ance function

cov(Wt ,Ws) =
1
4
(|s1|α + |t1|α −|s1− t1|α)(|s2|α + |t2|α −|s2− t2|α) , (12.16)

where t = (t1, t2) and s = (s1,s2). Note that (12.16) is simply a product form exten-
sion of (12.15).

As in the one-dimensional case of fBm, we can consider the two-dimensional
fractional Gaussian noise process {Xi, j, i, j = 1, . . . ,n}, which can be used to con-
struct a fractional Wiener sheet on a uniformly spaced square grid via the cumulative
sum

Wti,t j = n−2H
i

∑
k=1

j

∑
l=1

Xk,l , i, j = 1, . . . ,n .

Note that this process is self-similar in the sense that (mn)−H ∑m
k=1 ∑n

l=1 Xk,l has the
same distribution as X1,1 for all m,n, and H, see [260].
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Generating a the two-dimensional fractional Gaussian noise process requires that
we generate a zero-mean stationary Gaussian process with covariance [324]

cov(Xi, j,Xi+k, j+l) =
|k+1|α −2|k|α + |k−1|α

2
× |l +1|α −2|l|α + |l−1|α

2

for k, l = 0,1, . . . ,n. We can thus proceed to generate this process using the circulant
embedding method in Sect. 12.2.2. The simulation of the Wiener sheet for H =
0.5 is particularly easy since then all of the Xi, j are independent standard normally
distributed. Fig. 12.12 shows realizations of fractional Wiener sheets for H = 1

2α ∈
{0.2,0.5,0.8} with n = 29.

Fig. 12.12 Fractional Wiener sheets with different Hurst parameter H

Exercise 12.4. Show that for the special case of α = 1 (that is, H = 1/2), we can
write the covariance function (12.16) as cov(Wt ,Ws) = min{t1,s1}min{t2,s2}.

Two objects which are closely related to Wt are the Wiener pillow and the Wiener
bridge, which are zero-mean Gaussian processes on [0,1]d with covariance func-
tions cov(Wt ,Ws) = ∏d

i=1(min(ti,si)− tisi) and ∏d
i=1 min(ti,si)−∏d

i=1 tisi, respec-
tively.

12.4.4 Fractional Brownian Field

Fractional Brownian surface or field in two dimensions can be defined as the zero-
mean Gaussian process {X̃t , t ∈ R

2} with nonstationary covariance function

cov(X̃s, X̃t) = ρ̃(s, t) = ‖s‖α +‖t‖α −‖s− t‖α . (12.17)

The parameter H = α
2 ∈ (0,1) is the Hurst parameter controlling the roughness of

the random field or surface. Contrast this isotropic generalization of the covariance
(12.15) with the product form extension of the covariance in (12.16).

Simulation of X̃t over a unit (quarter) disk in the first quadrant involves the fol-
lowing steps. First, we use Dietrich and Newsam’s method (Sect. 12.2.2) to gen-
erate a stationary Gaussian field X̆t with covariance function over the quarter disk

H = 0.2 H = 0.5 H = 0.8
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{h : ‖h‖ ≤ 1,h > 0}

ρ̆(s, t) = c0 + c2‖s− t‖2−‖s− t‖α

for some constants c0,c2 ≥ 0 whose selection will be discussed later. Once we have
generated X̆t , the process X̃t is obtained via the adjustment:

X̃t = X̆t − X̆0 +
√

2c2 tᵀZ, Z = (Z1,Z2)
ᵀ, Z1,Z2

iid∼ N(0,1) .

This adjustment ensures that the covariance structure of X̃t over the disk {h : ‖h‖ ≤
1,h > 0} is given by (12.17).

Exercise 12.5. Show that that the covariance structure of X̃t is indeed given by
ρ̃(s, t), i.e., prove that for any s, t ∈ R

2

cov(X̃s, X̃t) = ρ̃(s, t) .

Hint. Verify that

cov(X̃s, X̃t) = cov(X̆s− X̆0 +
√

2c2 sᵀZ, X̆t − X̆0 +
√

2c2 tᵀZ)

= ρ̆(s, t)− ρ̆(s,0)− ρ̆(0, t)+ ρ̆(0,0)+2c2 cov(sᵀZ, tᵀZ)

= ρ̆(s, t)− (c0 + c2‖t‖2−‖s‖α)− (c0 + c2‖t‖2−‖t‖α)+ c0 +2c2 sᵀt

= ρ̃(s, t)+ c2‖s− t‖2− c2‖t‖2− c2‖s‖2 +2c2 sᵀt︸ ︷︷ ︸
=0

.

It now remains to explain how we generate the process X̆t . The idea is to generate
the process on [0,R]2, R≥ 1 via the intrinsic embedding of Stein (see (12.5)) using
the covariance function:

ψ(h) =

⎧⎪⎨
⎪⎩

c0 + c2‖h‖2−‖h‖α , if ‖h‖ ≤ 1,
β (R−‖h‖)3

‖h‖ , if 1≤ ‖h‖ ≤ R,

0, if ‖h‖ ≥ R,

, (12.18)

where depending on the value of α , the constants R ≥ 1,β ≥ 0,c2 > 0,c0 ≥ 0 are
defined in Table 12.1.

Note that for α > 1.5, the parameters needed for a nonnegative embedding are
more complex, because a covariance function that is smoother close to the origin has
to be even smoother elsewhere. In particular, for α > 1.5 the choice of constants en-
sures that ψ is twice continuously differentiable as a function of ‖h‖. Notice that
while we generate the process X̃t over the square grid [0,R]2, we are only interested
in X̃t restricted inside the quarter disk with covariance ρ̆(s, t). Thus, in order to re-
duce the computational effort, we would like to have R ≥ 1 as close as possible
to 1. While the optimal choice R = 1 guarantees a nonnegative embedding for all
α ≤ 1.5, in general we need R > 1 to ensure the existence of a minimal embedding
for α > 1.5. The choice R = 2 given in Table 12.1 is the most conservative one that



398 Dirk P. Kroese and Zdravko I. Botev

Table 12.1 Parameter values needed to ensure that (12.18) allows for a nonnegative circulant em-
bedding.

0 < α ≤ 1.5 1.5 < α < 2
R 1 2
β 0 α(2−α)

3R(R2−1)

c2
1
2α

α−β (R−1)2(R+2)
2

c0 1− c2 β (R−1)3 +1− c2

guarantees a nonnegative circulant embedding for α > 1.5. Smaller values of R that
admit a nonnegative circulant embedding can be determined numerically [377, Ta-
ble 1]. As a numerical example consider generating a fractional Brownian surface
with m = n = 1000 and for Hurst parameter H ∈ (0.2,0.5,0.8). Fig. 12.13 shows
the effect of the parameter on the smoothness of the surface, with larger values pro-
viding a smoother surface. We used the following MATLAB code for the generation

Fig. 12.13 Fractional Brownian fields with different roughness parameter α = 2H

of the surfaces.

H=0.8; % Hurst parameter
R=2; % [0,R]^2 grid, may have to extract only [0,R/2]^2
n=1000; m=n; % size of grid is m*n; covariance matrix is m^2*n^2
tx=[1:n]/n*R; ty=[1:m]/m*R; % create grid for field
Rows=zeros(m,n);
for i=1:n

for j=1:m % rows of blocks of cov matrix
Rows(j,i)=rho([tx(i),ty(j)],[tx(1),ty(1)],R,2*H);

end
end
BlkCirc_row=[Rows, Rows(:,end-1:-1:2);

Rows(end-1:-1:2,:), Rows(end-1:-1:2,end-1:-1:2)];
% compute eigen-values
lam=real(fft2(BlkCirc_row))/(4*(m-1)*(n-1));
lam=sqrt(lam);
% generate field with covariance given by block circulant matrix
Z=complex(randn(2*(m-1),2*(n-1)),randn(2*(m-1),2*(n-1)));
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F=fft2(lam.*Z);
F=F(1:m,1:n); % extract sub-block with desired covariance
[out,c0,c2]=rho([0,0],[0,0],R,2*H);
field1=real(F); field2=imag(F); % two independent fields
field1=field1-field1(1,1); % set field zero at origin
% make correction for embedding with a term c2*r^2
field1=field1 + kron(ty'*randn,tx*randn)*sqrt(2*c2);
[X,Y]=meshgrid(tx,ty);
field1((X.^2+Y.^2)>1)=nan;
surf(tx(1:n/2),ty(1:m/2),field1(1:n/2,1:m/2),'EdgeColor','none')
colormap bone

The code uses the function rho.m, which implements the embedding (12.18).

function [out,c0,c2]=rho(x,y,R,alpha)
% embedding of covariance function on a [0,R]^2 grid
if alpha<=1.5 % alpha=2*H, where H is the Hurst parameter

beta=0;c2=alpha/2;c0=1-alpha/2;
else % parameters ensure piecewise function twice differentiable

beta=alpha*(2-alpha)/(3*R*(R^2-1));
c2=(alpha-beta*(R-1)^2*(R+2))/2;
c0=beta*(R-1)^3+1-c2;

end
% create continuous isotropic function
r=sqrt((x(1)-y(1))^2+(x(2)-y(2))^2);
if r<=1

out=c0-r^alpha+c2*r^2;
elseif r<=R

out=beta*(R-r)^3/r;
else

out=0;
end

12.5 Spatial Levy Processes

Recall from Sect. 12.4.1 that the Brownian motion process (12.14) can be character-
ized as a continuous sample path process with stationary and independent Gaussian
increments. The Lévy process is one of the simplest generalizations of the Brownian
motion process, in cases where either the assumption of normality of the increments,
or the continuity of the sample path is not suitable for modeling purposes.
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12.5.1 Lévy Process

A d-dimensional Lévy process {Xt , t ∈R+} with X0 = 0 is a stochastic process with
a continuous index set on R+ and with a continuous state space R

d defined by the
following properties:

1. the increments of {Xt} are stationary, that is, (Xt+s−Xt) has the same distribu-
tion as Xs for all t,s≥ 0;

2. the increments of {Xt} are independent, that is, Xti−Xti−1 , i = 1,2, . . . are inde-
pendent for any 0≤ t0 < t1 < t2 < · · · ; and

3. for any ε > 0, we have P(‖Xt+s−Xt‖ ≥ ε) = 0 as s ↓ 0.

From the definition it is clear that Brownian motion (12.14) is an example of
a Lévy process, with normally distributed increments. Brownian motion is the
only Lévy process with continuous sample paths. Other basic examples of Lévy
processes include the Poisson process {Nt , t ≥ 0} with intensity λ > 0, where
Nt ∼ Pois(λ t) for each t, and the compound Poisson process defined via

Jt =
Nt

∑
k=1

δXk, Nt ∼ Pois(λ t) , (12.19)

where δX1,δX2, . . . are independent and identically distributed random variables, in-
dependent of {Nt , t ≥ 0}. We can more generally express Jt as Jt =

∫ t
0
∫
Rd xN(ds,dx),

where N(ds,dx) is a Poisson random counting measure on R+×Rd (see Sect. 12.3.1)
with mean measure EN([0, t]×A), A ∈ E , equal to the expected number of jumps
of size A in the interval [0, t].

A crucial property of Lévy processes is infinite divisibility. In particular, if we de-
fine Y (n)

j =X j t/n−X( j−1) t/n, then using the stationarity and independence properties

of the Lévy process, we obtain that for each n ≥ 2 the {Y (n)
1 } are independent and

identically distributed random variables with the same distribution as Xt/n. Thus, for
a fixed t we can write

Xt ∼ Y (n)
1 + · · ·+Y (n)

n , for any n≥ 2 , (12.20)

and hence by definition the random vector Xt is infinitely divisible (for a fixed t). The
Lévy–Khintchine theorem [338] gives the most general form of the characteristic
function of an infinitely divisible random variable. Specifically, the logarithm of the
characteristic function of Xt (the so-called characteristic exponent) is of the form

logEeisᵀXt = i t sᵀμ− 1
2

t sᵀΣs+ t
∫
Rd

(
eisᵀx−1− isᵀx1{‖x‖≤1}

)
ν(dx) , (12.21)

for some μ ∈ R
d , covariance matrix Σ and measure ν such that ν({0}) = 0,

∫
‖x‖>1

ν(dx)< ∞ and
∫
‖x‖≤1

‖x‖2ν(dx)< ∞ ⇔
∫
Rd

min{1,‖x‖2}ν(dx)< ∞ .

(12.22)
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The triplet (μ,Σ ,ν) is referred to as the characteristic triplet defining the Lévy pro-
cess. The measure ν is referred to as the Lévy measure. Note that for a general ν
satisfying (12.22), the integral

∫
Rd
(
eisᵀx−1

)
ν(dx) in (12.21) does not converge sep-

arately. In this sense isᵀx1{‖x‖≤1} in (12.21) serves the purpose of enforcing conver-
gence under the very general integrability condition (12.22). However, if in addition
to (12.22) the measure ν satisfies

∫
Rd min{1,‖x‖}ν(dx) < ∞ and ν(Rd) < ∞, then

the integral in (12.21) can be separated as t
∫
Rd (eisᵀx−1)ν(dx)− i t sᵀ

∫
‖x‖≤1 xν(dx),

and the characteristic exponent simplifies to

i t sᵀμ∗ − 1
2

t sᵀΣ s︸ ︷︷ ︸
Brownian motion term

+ t
∫
Rd

(
eisᵀx−1

)
ν(dx)

︸ ︷︷ ︸
Poisson process term

,

where μ∗ = μ − ∫
‖x‖≤1 xν(dx). We can now recognize this characteristic exponent

as the one corresponding to the process {Xt} defined by Xt = tμ∗+Σ 1/2Wt + Jt ,
where tμ∗+Σ 1/2Wt defines a Brownian motion (see (12.14)) and {Jt} is a com-
pound Poisson process (12.19) with jump size distribution δX1 ∼ ν(dx)/λ . Thus,
ν(dx) can be interpreted as the intensity function of the jump sizes in this particular
Lévy process. In a similar way, it can be shown that the most general Lévy process
{Xt} with characteristic triplet (μ,Σ ,ν) and integrability condition (12.22) can be
represented as the limit in probability of a process {X (ε)

t } as ε ↓ 0, where X (ε)
t has

the Lévy–Itô decomposition

X (ε)
t = tμ+Σ 1/2Wt + Jt +

(
J(ε)t − t

∫
ε<‖x‖≤1

xν(dx)
)

(12.23)

with the following independent components:

1. {tμ + Σ 1/2Wt} is the Brownian motion (12.14), which corresponds to the
i t sᵀμ− 1

2 t sᵀΣ s part of (12.21).
2. {Jt} is a compound Poisson process of the form (12.19) with λ =

∫
‖x‖>1 ν(dx)

and increment distribution δX1 ∼ ν(dx)/λ over ‖x‖> 1, which corresponds to
the

∫ t
0
∫
‖x‖>1(e

isᵀx−1)ν(dx)dt part in the characteristic exponent (12.21).

3. {J(ε)t } is a compound Poisson process with λ = ν(ε < ‖x‖ ≤ 1) and increment
distribution ν(dx)/λ over ε < ‖x‖ ≤ 1, so that the compensated compound
Poisson process {J(ε)t − t

∫
ε<‖x‖≤1 xν(dx)} corresponds to the

∫ t
0
∫
‖x‖≤1

(
eisᵀx−

1 −isᵀx
)
ν(dx)dt part of (12.21) in the limit ε ↓ 0.

The Lévy–1tô decomposition immediately suggests an approximate generation
method — we generate {X (ε)

t } in (12.23) for a given small ε , where the Brownian
motion part is generated via the methods in Sect. 12.4.1 and the compound Pois-
son process (12.19) in the obvious way. We are thus throwing away the very small
jumps of size less than ε . For d = 1 it can then be shown [8] that the error pro-
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cess {Xt −X (ε)
t } for this approximation is a Lévy process with characteristic triplet

(0,0,ν(dx)1{|x|<ε}) and variance var(Xt −X (ε)
t ) = t

∫ ε
−ε x2ν(dx).

A given approximation X (εn)
t can always be further refined by adding smaller

jumps of size [εn+1,εn] to obtain:

X (εn+1)
t = X (εn)

t + J(εn+1)
t − t

∫
εn+1<‖x‖≤εn

xν(dx) , εn > εn+1 > 0 ,

where the compound Poisson process {J(εn+1)
t } has increment distribution given by

ν(dx)/ν(εn+1 < ‖x‖≤ εn) for all εn+1 < ‖x‖≤ εn. For a more sophisticated method
of refining the approximation, see [8].

As an example consider the Lévy process {Xt}with characteristic triplet (μ,0,ν),
where ν(dx) = α e−x/xdx for α,x > 0 and μ =

∫
|x|≤1 xν(dx) = α(1− e−1). Here,

in addition to (12.22), the infinite measure ν satisfies the stronger integrability con-
dition

∫
R

min{1, |x|}ν(dx) < ∞ and hence we can write Xt = tμ − t
∫
|x|≤1 xν(dx)+∫ t

0
∫
R

xN(ds,dx) =
∫ t

0
∫
R+

xN(ds,dx), where EN(ds,dx) = dsν(dx).

The leftmost panel of Fig. 12.14 shows an outcome of the approximation X (ε1)
t in

(12.23) over t ∈ [0,1] for ε1 = 1 and α = 10. The middle and rightmost panels show
the refinements X (ε2)

t and X (ε3)
t , respectively, where (ε1,ε2,ε3) = (1,0.1,0.001).

Note that the refinements add finer and finer jumps to the path.

Fig. 12.14 Approximate gamma process realizations obtained by throwing away jumps smaller
than εi

This process is called a gamma process and can be generated more simply using
the fact that the increments {X jt/n−X( j−1)t/n} have a known gamma distribution
[237, p. 212].

Exercise 12.6. Show that the characteristic exponent corresponding to the triplet
(μ,0,ν) of the above gamma process is given by

logEeisXt =
∫ ∞

0

(
eisx−1

) αe−x

x
dx =−α log(1− is) .

Deduce from the characteristic exponent that any increment Xt+s−Xt ∼ Γ (αs,1).
Here Γ (α,β ) denotes the gamma distribution, with probability density function
βαxα−1e−βx/Γ (α), x≥ 0.
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The gamma process is an example of an increasing Lévy process (that is, Xt ≥
Xs almost surely for all t ≥ s) called a Lévy subordinator. A Lévy subordinator
{Xt , t ≥ 0} has characteristic triplet (μ,0,ν) satisfying the positive jump property
ν((−∞,0]) = 0 and the positive drift property 0≤ μ− ∫ 1

0 xν(dx)< ∞.

12.5.2 Lévy Sheet in R
2

One way of generalizing the Lévy process to the spatial case is to insist on the
preservation of the infinite divisibility property. In this generalization, a spatial Lévy
process or simply a Lévy sheet {Xt , t ∈R2} possesses the property that (Xt1 , . . . ,Xtn)
is infinitely divisible for all indices t1, . . . , tn ∈ R

2 and any integer n (see (12.20)).
To construct such an infinitely divisible process, consider stochastic integration with
respect to a random infinitely divisible measure Λ defined as the stochastic process
{Λ(A), A ∈ E} with the following properties:

1. For any set A ∈ E the random variable Λ(A) has an infinitely divisible distribu-
tion with Λ( /0) = 0 almost surely.

2. For any disjoint sets A1,A2, . . . ∈ E , the random variables Λ(A1),Λ(A2), . . . are
independent and Λ(∪iAi) = ∑iΛ(Ai).

An example of a random infinitely divisible measure is the Poisson random measure
(12.6) in Sect. 12.3.1. As a consequence of the independence and infinite divisibility
properties, the characteristic exponent of Λ(A), A ∈ E has the Lévy–Khintchine
representation (12.21):

logEeisΛ(A) = is μ̃(A)− 1
2

s2(σ̃(A))2 +
∫
R

(
eisx−1− isx1{|x|≤1}

)
ν̃(dx,A) ,

where μ̃ is an additive set function, σ̃ is a measure on the Borel sets E , the mea-
sure ν̃(·,A) is a Lévy measure for each fixed A ∈ E (so that ν̃({0},A) = 0 and∫
R

min{1,x2}ν̃(dx,A) < ∞), and ν̃(dx, ·) is a Borel measure for each fixed dx. For
example, Xt =Λ((0, t]) defines a one-dimensional Lévy process.

We can then construct a Lévy sheet {Xt , t ∈ R
2} via the stochastic integral

Xt =
∫
Rd
κt(x)Λ(dx), t ∈ R

2 , (12.24)

where κt : Rd → R is a Hölder continuous kernel function for all t ∈ R
2, which is

integrable with respect to the random infinitely divisible measureΛ . Thus, the Lévy
sheet (12.24) is a stochastic integral with a deterministic kernel function as inte-
grand (determining the spatial structure) and a random infinitely divisible measure
as integrator [220].

Consider simulating the Lévy sheet (12.24) over t ∈ [0,1]2 for d = 2. Truncate
the region of integration to a bounded domain, say [0,1]2, so that κt(x) = 0 for each
x �∈ [0,1]2 and t ∈ [0,1]2. Then, one way of simulating {Xt , t ∈ [0,1]2} is to consider
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the approximation

X (n)
t =

n−1

∑
i=0

n−1

∑
j=0

κt(i/n, j/n)Λ(!i, j), !i, j ≡
[

i
n
,

i+1
n

]
×
[

j
n
,

j+1
n

]
, (12.25)

where all Λ(!i, j) are independent infinitely divisible random variables with char-
acteristic triplet (μ̃(!i, j), σ̃(!i, j), ν̃( · ,!i, j)). Under some technical conditions
[220], it can be shown that X(n)

t converges to Xt in probability as n ↑ ∞.
As an example, consider generating (12.25) on the square grid {(i/m, j/m), i, j =

0, . . . ,m−1} with the kernel function

κt(x1,x2) = (r2−‖x− t‖2) 1{‖x−t‖≤r}, t ∈ [0,1]2 ,

and Λ(!i, j)∼ Γ (α|!i, j|,β ), |!i, j|= 1/n2 for all i, j. The corresponding limiting
process {Xt} is called a gamma Lévy sheet. Fig. 12.15 shows realizations of (12.25)
for m = n = 100 and r = 0.05, α = β ∈ {102,105}, so that we have the scaling
EΛ(!i, j) = α/(β n2) = 1/n2.

α = 102

α = 105

Fig. 12.15 Gamma Lévy random sheet realizations for different values of the shape parameter α

Note that the sheet exhibits more bumps for smaller values of α than for large
values of α . For a method of approximately generating (12.24) using wavelets see
[220].
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Chapter 13

Introduction to Coupling-from-the-Past using R

Wilfrid S. Kendall

Abstract The purpose of this chapter is to exemplify construction of selected
coupling-from-the-past algorithms, using simple examples and discussing code
which can be run in the statistical scripting language R. The simple examples are:
symmetric random walk with two reflecting boundaries, a very basic continuous
state-space Markov chain, the Ising model with external field, and random walk
with negative drift and a reflecting boundary at the origin. In parallel with this, a
discussion is given of the relationship between coupling-from-the-past algorithms
on the one hand, and uniform and geometric ergodicity on the other.

13.1 Introduction

Propp and Wilson’s coupling-from-the-past algorithm (CFTP) [320, 321] and its
generalisations are based on simple but delicately balanced ideas. The purpose of
this chapter is to give a careful discussion of exactly how some simple examples of
CFTP can be implemented in the popular and flexible statistical language R [323].
Of course R is a scripting language and therefore is not ideal for implementing sim-
ulation algorithms; serious work should use compiler-based languages or at least
scripting languages with substantial support for numerics (for example, Python with
the Numpy extension, or Matlab). However R has several advantages if one wishes
to demonstrate precisely what is going on without worrying much about efficiency;
in particular R is not only free and open-source but also widely popular within the
statistical community. Moreover, by its very nature R allows direct access to statis-
tical procedures, making it easier to check statistical correctness. In addition, the
algorithms for CFTP are most clearly communicated if the reader can actually run,
test, and vary them within a suitable stable computing environment of this kind. To
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facilitate this, the chapter was written using the R report-generation utility software
Sweave [248], so as to ensure that the R code presented here is identical to the code
used to generate the reported results and to test algorithms (though graphics-related
code is largely suppressed). Actual R code is presented in boxed displays (some-
times continued over consecutive pages); occasional R output is presented in similar
boxes distinguished by their shaded edges.

After this introductory section, the chapter commences (Sect. 13.2) with a dis-
cussion of the classic Propp-Wilson version of CFTP, and then demonstrates its use
in a (rather inefficient) implementation of CFTP for image analysis using the Ising
model, before turning (Sect. 13.3) to the more subtle and generally less understood
notion of dominated CFTP. A brief concluding Sect. 13.4 discusses the relationship
of CFTP and dominated CFTP to uniform and geometric ergodicity.

Throughout much of the exposition, algorithms are illustrated by short self-
contained R scripts, which themselves are discussed in the text. The R scripts (con-
catenated together into one long R script file) can be found at go.warwick.ac.
uk/wsk/perfect_programs#Ulm-notes. The exposition focusses on spe-
cific examples rather than general principles and theory (which is covered in [227]),
though comments on the general theory occur throughout.

13.2 Classic Coupling-from-the-Past

The objective of CFTP is to produce exact draws from the equilibrium distribution of
suitable Markov chains X defined on specified state-spacesX . Conventional Markov
chain Monte Carlo runs a single realization of a suitable X from the present (time
0) to some distant future (time T = n where n is large), and relies on convergence
theorems which assert (under suitable conditions) that the distribution of Xn ap-
proximates the equilibrium distribution when n is suitably large. In contrast, CFTP
typically seeks to generate a realization of X which starts in the indefinite past (time
T = −n for indefinitely large n) and runs until the present (time 0). In the case of
classic CFTP, this is achieved by realizing a single simulation of multiple trajectories
of X running from all possible starting locations x ∈ X and all possible past times
−n. This is done by constructing a stochastic flow {F−n,−n+t : X →X : n, t ≥ 0}.
Here F−n,−n+t : X →X is a random map, and for each x ∈ X and each −n < 0 the
process {F−n,−n+t(x) : t = 0,1, . . . ,n} is a realization of the Markov chain X run
from time T =−n (with initial state x) through to time 0.

The classic CFTP algorithm succeeds exactly when the stochastic flow is con-
structed so that the map F−n,0 has a one-point random image for all large enough n;
we can view this as complete coalescence of the coupled realizations {F−n,−n+t(x) :
t = 0,1, . . . ,n} for varying x∈X , once n is sufficiently large. Because of the random
flow property (F−n−m,0 = F−m,0 ◦F−n−m,−m) it then follows that the random image
{F−n,0(x) : x∈X} stabilizes for large enough n, and the point in the stable one-point
image is actually an exact draw from the equilibrium distribution of X . See Theorem
3 of [227] for a formal statement and proof.
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Practical issues are: firstly, how to construct coalescing stochastic flows; sec-
ondly, how to identify a random time such that coalescence has definitely occurred.
If the state-space is finite then it is possible in principle to proceed by exhaustive
enumeration, but this would typically be unbearably inefficient and computationally
infeasible. In this section we will discuss three thematic examples which allow for
efficient solutions.

13.2.1 Random Walk CFTP

We begin by illustrating classic CFTP [320] in the very special case of simple sym-
metric random walk on the integer segment {1,2, . . . ,10}, with (reversible) reflec-
tion at both boundaries. This expands on and refines the discussion in Sect. 1.2 of
[227]. Here the random flow is implemented as synchronous coupling of random
walks begun at different starting points, and the monotonicity of this coupling can
be used to detect coalescence in an efficient way. Moreover in this simple case the
equilibrium distribution is uniform (this follows directly from a detailed balance cal-
culation) and so the validity of CFTP can be confirmed empirically using a statistical
χ2 test.

This example is completely trivial, but can be viewed as a prototype for a rather
less trivial Ising model application, which is discussed below in Sect. 13.2.4.

13.2.1.1 Helper Functions for the Simulations

We begin by describing various R functions useful for constructing the random walk
CFTP algorithm. First of all, we need a function which generates a sequence or
block of innovations for the underlying stochastic flow. Since the flow is composed
of synchronously coupled simple symmetric random walks, the innovations can be
realized as binary random variables which are equally likely to take the values ±1.
The function make_block generates a single block (of prescribed length) of real-
izations of independent binary random variables of this form, using the R simulation
function rbinom to generate Ber( 1

2 ) random variables (equivalently, Binom(1, 1
2 ))

and then transforming them appropriately.

make_block <- function(block_length) {
return(2 * rbinom(block_length, 1, 1/2) - 1)

}

The flow for this implementation of random walk CFTP is based on the update
function. This uses a single ±1 innovation innov as a candidate for the jump of
the chosen random walk at a particular instant. If the random walk is prevented by
a boundary from using this jump then it simply stays where it is.
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update <- function(x, innov, lo = 1, hi = 10) {
return(min(max(x + innov, lo), hi))

}

The consequence of this update definition is that all random walks are syn-
chronously coupled; they move in parallel except where boundaries prevent them
from so doing. In particular the random walk trajectories depend monotonically on
their starting positions.

The function cycle lies at the heart of the algorithm. It employs a block of ±1
innovations innovations (as supplied by make_block above) to construct a
synchronously coupled pair of upper and lower random walks using update. One
of the walks (upper) starts from the upper boundary hi of the random walk, the
other (lower) starts from the lower boundary lo. Consider all other synchronously
coupled simple symmetric walks based on the same stream of innovations started
either at the same time as these two, or earlier. By monotonicity of the synchronous
coupling, at any given time all these other walks must lie above lower and below
upper. The cycle function returns NA (R’s “not a number” value) if coalescence
has not yet occurred at time 0, and otherwise returns the common coalesced value.
Since coalescence is achieved exactly when upper and lower meet before time
0, it is detected easily.

cycle <- function(innovations, lo = 1, hi = 10) {
lower <- lo
upper <- hi
for (i in 1:length(innovations)) {

lower <- update(lower, innovations[i],
lo = lo, hi = hi)

upper <- update(upper, innovations[i],
lo = lo, hi = hi)

}
if (upper != lower)

return(NA)
return(upper)

}

13.2.1.2 A Typical Run of the Random Walk CFTP Algorithm

We illustrate the CFTP algorithm by carrying out classic random walk CFTP, run
statement-by-statement, without regard for efficiency.

First we initialize the seed of the random number generator (to facilitate repeata-
bility of the simulation), and use make_block to create an initial vector of ±1
innovations.
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set.seed(1)
innovations <- make_block(2)

Then we repeatedly apply cycle, extending the innovations block to the left,
until upper and lower random walks coincide at time zero.

while (is.na(cycle(innovations))) {
innovations <- c(

make_block(length(innovations)),
innovations)

}

The doubling of the length of the innovations block corresponds to a simple
binary search for the coalescence time.

Finally we report the result of the CFTP algorithm, which we obtain by re-
running cycle on the total block of innovations which has been accumulated
in the previous while loop.

cycle(innovations)

Output is as follows.

[1] 4

13.2.1.3 Implementing the Algorithm

The random walk CFTP simulation can now be put together succinctly as a single
R function, using the helper functions defined above.

rw_cftp <- function(initial_range, lo = 1,
hi = 10) {
innovations <- make_block(initial_range)
result <- NA
while (is.na(result)) {

innovations <- c(
make_block(length(innovations)),
innovations)

result <- cycle(innovations, lo = lo,
hi = hi)

}
return(result)

}
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13.2.1.4 Statistical Analysis

This R implementation of random walk CFTP is of course rather slow. We are how-
ever now able to investigate the algorithm output statistically; we base this on 10000
successive runs of the algorithm

data <- sapply(rep(100, 10000), rw_cftp)
tabulate(data)

Output is as follows.

[1] 959 957 1029 1054 1051 1007 958 1002 987 996

Computations took 15 seconds on a notebook computer running Ubuntu 10.10 using
an Intel quad processor i7 Core M 620 at 2.67GHz using 2 GB RAM. Fig. 13.1 (a)
presents a histogram of these results. A χ2-test confirms that the output has the
correct distribution (uniform on {1,2, . . . ,10}).

chisq.test(tabulate(data), p = rep(1/10, 10))

Output is as follows.

Chi-squared test for given probabilities

data: tabulate(data)
X-squared = 11.89, df = 9, p-value = 0.2196

13.2.1.5 Graphical Visualization of Random Walk CFTP Algorithm

It is helpful to visualize the algorithm using graphics. Re-writing the algorithm to
generate graphical output is now a straightforward exercise; and this can be invalu-
able when testing for correctness of implementation. The changes are as follows:

1. The cycle part of the algorithm is augmented graphically so that at each cycle
it plots the trajectories of upper and lower processes;

2. The main body of the algorithm initializes the graphics, then cycles through the
CFTP algorithm using the graphically augmented version of cycle.

We can now use the amended algorithm to obtain a graphical demonstration of how
the algorithm runs. The result is presented in Fig. 13.1 (b).

13.2.1.6 More Details

The reader is referred to the tutorial [77] (see also [394, 417]) for further discussion
of classic CFTP, including illustration of the defective simulation results arising
from (a) not re-using randomness, or (b) stopping the CFTP cycle early at the first
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point when upper and lower simulations coalesce. See also Exercises 13.1 and 13.3
below.

Note that, despite appearances, the validity of the CFTP algorithm described here
actually does not depend on the symmetry of the random walk. Indeed the algorithm
can be modified to deal with instances in which the target Markov chain is no longer
a random walk, nor even a reversible Markov chain; It suffices that the target chain
exhibit a stochastic monotonicity sufficient to make sense of being able to couple
realizations of the chain starting at all possible initial points so that there is an up-
per chain and a lower chain, and such that coalescence eventually occurs. For more
on the nature of the required monotonicity, see [119, 120]. An alternative general
approach to perfect simulation is presented in [117], using a rejection sampling ap-
proach, with the advantages of requiring less stringent monotonicity structure and
avoiding possible correlation between output and algorithm run-time (compare Ex-
ercise 13.2); the relationship between this and classic CFTP has been elucidated in
[121].

Exercise 13.1. Consider the function rw_cftp. In each cycle of the following
loop,

while(is.na(result)) {...},

the previous block of innovations is extended backwards in time. Investigate the
statistical consequences of (incorrectly) generating completely new blocks instead,
using the following construction.

innovations <- make_block(2 * length(innovations))

Exercise 13.2. Consider the function rw_cftp. What would be the statistical con-
sequences if the

while(is.na(result)) {...}

loop were abandoned after (say) 2 iterations, in favour of re-starting the function
rw_cftp using the initial_range?

Exercise 13.3. Consider the function rw_cftp. What would be the consequences
of extending the previous block of innovations forwards in time rather than
back in time? That is to say, generating new blocks using the following construction.

innovations <- c(
innovations,
make_block(length(innovations)))

Exercise 13.4. Modify the function make_block so that rw_cftp produces a
perfect draw from the equilibrium distribution of a specified asymmetric random
walk on the integer segment {1,2, . . . ,10}. Compute the true equilibrium using de-
tailed balance, and test the modified algorithm statistically.
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13.2.2 Read-once CFTP

In this section we consider read-once CFTP (RO-CFTP). This idea goes back to
[416], and may be thought of as a variation on classic CFTP which works block-by-
block using successive draws of whole blocks of innovations, and additionally runs
forwards in time rather than backwards. For the sake of clarity we will describe this
in terms of random walk CFTP, although the same principles apply to any instance
of classic CFTP. This is indicated, for example, as part of the treatment of the small-
set CFTP discussed in Sect. 13.2.3.

The implementation uses the same helper functions as are described for random
walk CFTP in Sect. 13.2.1.

13.2.2.1 A Typical Run of RO-CFTP

The idea is to group together fixed sequences of innovations in separate blocks,
block length n being chosen to ensure a positive chance of coalescence within the
block.

n <- 100

Before discussing the details, we work through an instance of read-once CFTP run
statement-by-statement. We begin by repeatedly sampling an initial block of inno-
vations and rejecting the sample until coalescence is achieved. The resulting draw
is therefore of a block of innovations, viewed as running over the time interval
{−n,−n+ 1, . . . ,0}, which is conditioned so that the flow map F−n,0 has a one-
point image.

block <- make_block(n)
while (is.na(cycle(block))) {

block <- make_block(n)
}

This initial (coalescent) block is stored as the first (left-most) contribution to a
whole sequence of innovations.

innovations <- block

Now we generate a sequence of further blocks corresponding to a sequence of flow
functions {Fkn,(k+1)n : k = 0,1, . . .}; while no coalescence is achieved these blocks
are successively appended to innovations. This iteration is finished once a fur-
ther coalescent block is obtained, stored separately in coalescent_block.

block <- make_block(n)
while (is.na(cycle(block))) {

block <- make_block(n)
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append(innovations, block)
}
coalescent_block <- block

Finally we return the final value from the current sequence of innovations. A
further RO-CFTP run can now start off with the most recent coalescent_block,
to save the work of repeatedly sampling to generate a suitably conditioned initial
block.

cycle(innovations)

Output is as follows.

[1] 6

The validity of this algorithm may be deduced from the following argument. Sup-
pose we carry out classic CFTP, but limit ourselves to detecting coalescence block-
by-block and stop when we obtain a coalescent block. We then generate blocks
of innovations in succession, B−1, B−2, . . . , B−(N−1), B−N . By construction these
blocks are all non-coalescent except for the final block, B−N . Moreover, conditional
on N, the blocks B−1, B−2, . . . , B−(N−1) are independent draws of blocks condi-
tioned to be non-coalescent, while independently the final block B−N is conditioned
to be coalescent. Moreover N has a Geometric distribution with success probability
given by the probability of a block being coalescent. For classic CFTP these blocks
are arranged thus:

B−N ·B−(N−1) · . . . ·B−2 ·B−1 , (13.1)

and this delivers an exact draw from the equilibrium distribution.
On the other hand the RO-CFTP procedure described above generates an arrange-

ment
B̃1 · B̃2 · . . . · B̃Ñ−1 · B̃Ñ , (13.2)

where, conditional on Ñ, the first block B̃1 is conditioned to be coalescent and inde-
pendently the blocks B̃2, B̃3, . . . , B̃Ñ are independent draws of blocks conditioned
to be non-coalescent. Finally, Ñ again has a Geometric distribution with success
probability given by the probability of a block being coalescent.

Thus the innovation sequences corresponding to the concatenations of (13.1) and
(13.2) are statistically identical. It follows that the distributions of the images of the
corresponding flow maps are the same, and hence RO-CFTP delivers a draw with
the same statistics as a draw from classic CFTP.

This algorithm may be refined to economize on storage: it suffices to establish
the coalesced value of the initial coalesced block, and then to keep a record only of
the most recent result of updating this coalesced value. Moreover, in a very natural
way, RO-CFTP can be made to deliver a sequence of independent exact draws from
a sequence of draws of blocks.
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13.2.2.2 Packaging the Algorithm

As before, we package the RO-CFTP process as a single R function.

ro_cftp <- function(block_length) {
block <- make_block(block_length)
while (is.na(cycle(block))) {

block <- make_block(block_length)
}
innovations <- block
block <- make_block(block_length)
while (is.na(cycle(block))) {

block <- make_block(block_length)
append(innovations, block)

}
return(cycle(innovations))

}

We ignore here the possibility of re-using the final coalescent block, which would
economize on the initial rejection-sampling step. Also we do not economize on stor-
age by storing only the most recent value during the iteration loop; this is because
the less economical version presented here is easier to augment to produce visual-
ization graphics.

13.2.2.3 Statistical Analysis

As with random walk CFTP, computation is slow but manageable (in [416] it is
shown that run-time can be arranged to be comparable to that of classic CFTP).
The output appears to be uniformly distributed (Fig. 13.2 (a)).

data <- sapply(rep(100, 2000), ro_cftp)
tabulate(data)

Output is as follows.

[1] 205 212 192 192 212 208 193 204 192 190

Uniformity is confirmed by a χ2-test.

chisq.test(tabulate(data), p = rep(1/10, 10))

Output is as follows.

Chi-squared test for given probabilities

data: tabulate(data)
X-squared = 3.67, df = 9, p-value = 0.9318
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(a) Histogram of results from repeated runs of RO-CFTP. The
impression of uniform distribution is confirmed by a χ2 test.

(b) Visualization of an RO-CFTP run producing a single result. The two non-coalescing blocks
have white backgrounds. The thick line indicates the coalesced trajectory. This trajectory starts
at the end of the first coalesced block, at the coalesced value, and ends at the start of the second
coalesced block, there delivering the sampled value.

Fig. 13.2 Illustrations of RO-CFTP output: histogram and visualization
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A typical run is visualized graphically in Fig. 13.2 (b)

13.2.2.4 More Details

We have mentioned (Sect. 13.2.2.1) that it is easy to adapt RO-CFTP so as to gen-
erate a stream of exact draws for its target distribution. This and other ways of
generating streams of exact CFTP draws have been discussed in [294]. Indeed this
work led directly to the link [121] between classic CFTP and Fill’s version of perfect
simulation.

Exercise 13.5. Consider the function ro_cftp. Using the modification of the
function make_block from Exercise 13.4, arrange for ro_cftp to produce a
perfect draw from the equilibrium distribution of a specified asymmetric random
walk on the integer segment {1,2, . . . ,10}. Test the modified algorithm statistically.

Exercise 13.6. Modify the function ro_cftp to produce a sequence of indepen-
dent exact draws, with the length of the sequence specified by a second argument of
ro_cftp, as indicated in Sect. 13.2.2.1.

13.2.3 Small-set (Green-Murdoch) CFTP

So far we have only described CFTP for discrete probability models. But in fact
CFTP can be applied to continuous probability models as well. The clue as to how
to do this is to be found in the theory of small sets for continuous state-space Markov

Definition 13.1 (Small set). Suppose that X = {X0,X1,X3, . . .} is a Markov chain on
a state-space X which is a measurable space. We say C⊆X is small of lag k if there
is a probability measure ν on X and 0 < ρ < 1 such that the following minorization
condition is obeyed for all x ∈C:

P(Xk ∈ · | X0 = x) ≥ ρν(·) .

(Technically one usually requires X is ϕ-irreducible and insists that ϕ(C)> 0.)
In case k = 1 then X can be viewed as having positive probability p of regener-

ation at every visit to the small set C. If C = X is the whole state-space then it is
shown in [293] how to generate a CFTP algorithm.

13.2.3.1 A Simple Example of Small-Set CFTP

A simple example is given by the Markov chain X on [0,1] with “triangular” transi-
tion density: the conditional distribution of Xn+1 given Xn = x has probability density
p(x,y) where
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p(x,y) =

{
2(x/y) if 0 < x≤ y ,
2 ((1− x)/(1− y)) if y < x < 1 .

Thus the density forms a triangle with base the unit segment on the x-axis, and third
vertex at (y,2). A visual appreciation of the fact that the whole state-space is small
is given by the graph of densities in Fig. 13.3, using the following R function: all
possible triangles intersect in a “regeneration triangle”.

triangle <- function(x, y = 0) {
if (y == 0)

return(2 * (1 - x))
if (y == 1)

return(x)
return((x <= y) * (2 * x/y) + (x > y) * (2 *

(1 - x)/(1 - y)))
}

For the purposes of CFTP we need to be able to generate coupled realizations
from all triangle densities. We begin by noting that a simultaneous draw from all
densities can be obtained by regarding p(·,y) as obtained from p(·,0) by a horizontal
affine shear, while we can draw from p(·,0) by first drawing (x,z) from the rectangle
(0,1)× (0.2) and then folding the rectangle over using the diagonal from (0.2) to
(1,0) as in the following R function and illustrated in Fig. 13.4 (a).

left_draw <- function(n) {
x <- runif(n, min = 0, max = 1)
z <- runif(n, min = 0, max = 2)
reflect <- (z > (2 - 2 * x))
return(reflect * cbind(1 - x, 2 - z) + (1 -

reflect) * cbind(x, z))
}

Fig. 13.4 (b) presents the result of shearing the points to produce draws from a
different triangular density p(·,0.75).

This coupling construction needs to be modified so that points falling in the “re-
generation triangle” are not sheared at all, while points that would fall into or to
the right of this triangle after shearing are subject to a further affine shear: see Fig.
13.4 (c) and Fig. 13.4 (d). We compile all this into a single function to deliver the
resulting coalescing flow.

coalescing_flow <- function(y) {
draw <- left_draw(1)
x <- rep(draw[, 1], length(y))
z <- rep(draw[, 2], length(y))
regeneration <- (2 * x > z) & (2 * (1 - x) >

z)
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Fig. 13.3 Triangular densities. Note the common area under the densities, indicated by the shaded
triangle. This implies that the entire state-space [0,1] is a small set.

sheared_x <- x + 0.5 * z * y
needs_second_shear <- (2 * sheared_x > z) &

(z < 1)
return(regeneration * x + (1 - regeneration) *

(sheared_x + needs_second_shear * (1 -
z)))

}

RO-CFTP may be applied to the output to harvest a sequence of exact draws
from the target distribution, which is the equilibrium distribution of the Markov
chain X . In the following code, we exceptionally include the graphical directives,
which produce Fig. 13.5.

T1 <- 30
start <- seq(0, 1, 0.2)
state <- start
predecessor <- start[1]
initial <- TRUE
store <- state
t0 <- 1

plot(0:T1, rep(0, T1 + 1), xlim = c(0, T1),
ylim = c(0, 1), type = "l",
main = "Coalescing flow",
xlab = "Time", ylab = "State")

for (t in 1:T1) {
if (length(unique(state)) == 1) {

for (j in 1:dim(store)[2]) lines(t0:t +
1, store[, j])
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(a) Draws of points lying beneath the left-
most triangular density

(b) Draws of points as above, and also of
their locations after being subjected to a
shear so that they are drawn from a differ-
ent triangular density

(c) Draws of points lying beneath the
left-most triangular density, marking points
in “regeneration triangle” and also points
which would fall into or to right of “regen-
eration triangle” after first shearing

(d) Draws of sheared points, but leaving un-
touched those points originally in “regener-
ation triangle” and applying a further shear
to points which would fall into or to right of
“regeneration triangle” after first shearing

Fig. 13.4 Illustration of triangular densities example

if (!initial)
points(t, predecessor, col = "red",

pch = 19, cex = 20)
initial <- FALSE
state <- c(unique(state), start)
t0 <- t
store <- state

}
predecessor <- state[1]
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state <- coalescing_flow(state)
store <- rbind(store, state)

}

Fig. 13.5 Flow induced by triangular densities example. The circular dots indicate the instants
where RO-CFTP permits sampling of exact draws from the equilibrium distribution. These occur
at the right-hand ends of trajectories running strictly between adjacent pairs of coalesced blocks.

13.2.3.2 Extensions of Small-set CFTP

In real-world applications either the whole state-space may not form a small set,
or the resulting regeneration probability may be too small to be of practical use.
In [293] it is shown how to overcome this when the state-space can be partitioned
into disjoint small sets of useful regeneration probability. Furthermore, in [10] it
is described how the small-set CFTP construction may be adapted to produce a
representation of the equilibrium probability distribution (see also [174]). Small-set
CFTP provides a strong motivation for the natural question, how prevalent are small
sets of small lag? Consider the case of Markov chains with measurable transition
densities: in [229] it is shown that there exist examples with no small sets of lag
1 at all, but that all such Markov chains possess so many small sets of lag 2 that,
when sub-sampled with periodicity 2, they may be represented in terms of latent
discrete-time Markov chains.

Exercise 13.7. Modify the code in this section by removing the graphics directives,
and arranging for it to produce a sequence of specified length of perfect draws from
the equilibrium distribution of the Markov chain X using RO-CFTP (as applied
in Sect. 13.2.3.1). Use R to construct a kernel density estimate of the equilibrium
density of X .
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13.2.4 Image Analysis and Ising CFTP

One of the earliest instances of perfect simulation concerned the Ising model [320].
Here the major application used Sweeny’s algorithm for exact simulation of Fortuin-
Kastelyn-Potts models near the critical temperature; however we will describe the
easier method used in [320] to produce exact draws from high-temperature Ising
models. This method is well-adapted to image analysis problems.

Readers unfamiliar with the Ising model will find a useful and accessible intro-
duction in [232]. Recall that an Ising model is formed by assigning spins Si = ±1
to each node i of a fixed graph G (we shall take G to be a finite planar lattice
{1, . . . ,N}2). Then the Ising model is defined as having the following probability
mass function for assignations of spins:

p(Si : i ∈ G) = Z(J)−1 exp

(
J ∑

i∼ j
SiS j

)
. (13.3)

Here i ∼ j if i and j are neighbours in the graph G and the sum is taken over all
unordered pairs; we shall take J > 0 (the ferromagnetic case), so that neighbour-
ing sites with the same spin lead to higher values of the probability mass function.
Finally, Z(J) is the normalizing constant.

For purposes of image analysis it is interesting also to investigate the case when
an “external field” {S̃i : i ∈ G} is applied; given the external field, the probability
mass function is then taken to be proportional to

exp

(
J ∑

i∼ j
SiS j +H ∑

i
SiS̃i

)
. (13.4)

In the context of binary image analysis the external field represents the observed
noisy image {S̃i : i ∈ G}, while {Si : i ∈ G} is the “true” image. The probability
mass function defined by (13.4) may then be taken to be the Bayesian posterior dis-
tribution of the “true” image, based on a Bayesian prior and likelihood determined
by an Ising model connecting {S̃i : i ∈ G}, and {Si : i ∈ G}.

We can draw from the Ising model (whether given by (13.3) or by (13.4)) by
viewing it as the equilibrium distribution of the Markov chain given by the single-
site update heat bath algorithm; sites are updated either at random or in systematic
order by re-sampling from their conditional distribution given the configuration at
all other sites. (It follows by detailed balance that the equilibrium will be a draw
from the Ising model.) Thus under (13.3) we update site i as follows:

re-sampled Si←+1, probability proportional to exp

(
+J ∑

j: j∼i
S j

)
,

re-sampled Si←−1, probability proportional to exp

(
−J ∑

j: j∼i
S j

)
.
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Similarly in the case of (13.4)

re-sampled Si←+1, probability proportional to exp

(
+HS̃i + J ∑

j: j∼i
S j

)
,

re-sampled Si←−1, probability proportional to exp

(
−HS̃i− J ∑

j: j∼i
S j

)
.

Since we take J > 0, it follows that the probability of the re-sampled Si being equal
to 1 is monotonically increasing in the configuration {Si : i ∈ G} using the natural
partial order. This is the key observation for the purposes of CFTP: as a result we
can implement a monotonic coupling of the heat bath process which is a simple
generalization of that used for random walk CFTP as described in Sect. 13.2.1.

A further refinement arises from the bipartite structure of the finite lattice
{1, . . . ,N}2, which allows us to implement a “coding” scheme for the updates.
Viewing the lattice as a chessboard, we update all the sites on the black squares,
then all the sites on the white squares, and so forth; whatever the detailed order of
implementation, the statistical result will be the same. This permits extraction of the
heat-bath simulation (in fact, two copies of it; see below) from simultaneous updates
of all sites. (This refinement is no longer available for more general graphs, such as
that arising from the lattice if we choose to make additional connections between
diagonally adjacent sites.)

13.2.4.1 Implementation

We begin by constructing a test image, represented as a 256× 256 binary matrix.
Noisy and clean versions of this test image are illustrated in Fig. 13.6.

Fig. 13.6 The test image for Ising CFTP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Original “true” image (b) Noisy image



424 Wilfrid S. Kendall

The heat-bath algorithm is based on a single update using an array of innova-
tions. Note that the update is really a parallel update of two separate instances of the
algorithm: one update confined to the “black squares”, one to the “white squares” of
the chessboard; this corresponds to an inbuilt period 2 for the heat-bath algorithm
for this particular version of the Ising model. The state of the algorithm is an
M×M matrix of ±1, bordered by a single strip of zeros. (This corresponds to free
boundary conditions: the construction and algorithm are easily varied to produce
other boundary conditions.)

update <- function(state, image, innov, J = 0.9,
H = 1.5) {
M <- dim(image)[1]
line <- (1:M) + 1
work <- cbind(0, rbind(0, state, 0), 0)
threshold <- 1/(1 + exp(-2 * (J * (work[line,

line + 1] + work[line, line - 1] +
work[line + 1, line] +
work[line - 1, line]) +
H * image)))

state[1:M, 1:M] <- -1
state[innov < threshold] <- +1
return(state)

}

M <- dim(im1)[1]
J <- 0.9
H <- 1.5
state <- matrix(data = +1, nrow = M, ncol = M)
line <- (1:M) + 1
for (iter in 1:36) {

innov <- matrix(data = runif(M * M), nrow = M,
ncol = M)

state <- update(state, im1, innov, J = J,
H = H)

}

A sub-sequence of outputs from the parallel heat-bath algorithm is given in Fig.
13.7. Here the initial state was fixed with all spins at +1, so the first few updates
overcome the discrepancies arising from the fact that most of the noisy image yields
spins of −1. By update 24 it appears that equilibrium may nearly be attained. Note
that (a) post-processing of the image is required in order to undo the “chess-board”
encoding; (b) this post-processing yields two draws from equilibrium; (c) the en-
coding means that each of the two draws entails visiting of each node 12 times in
the first 24 updates. In fact the CFTP algorithm will produce exact draws after order
of 64 updates or fewer.
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Fig. 13.7 Parallel heat-bath reconstruction (J = 0.9 and H = 1.5). Post-processing is required.

We now package up a CFTP algorithm, which largely follows the pattern of the
original random walk CFTP algorithm discussed above.

make_block <- function(block_length, M) {
ilist <- list()
for (iter in 1:block_length) {

ilist <- c(list(matrix(data = runif(M *
M), nrow = M, ncol = M)), ilist)

}
return(ilist)

}

cycle <- function(innovations, image, J = 0.6,
H = 1.5) {
M <- dim(image)[1]
upper <- matrix(data = +1, ncol = M, nrow = M)
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lower <- matrix(data = -1, ncol = M, nrow = M)
for (innov in innovations) {

upper <- update(upper, im1, innov, J = J,
H = H)

lower <- update(lower, im1, innov, J = J,
H = H)

}
if (sum(upper - lower) != 0)

return(NA)
else return(upper)

}

ising_cftp <- function(image, initial_range,
J = 0.6, H = 1.5) {
innovations <- make_block(initial_range,

dim(image)[1])
result <- NA
while (is.na(result)) {

innovations <- c(
make_block(length(innovations),
dim(image)[1]), innovations)

result <- cycle(innovations, image, J = J,
H = H)

}
return(result)

}

We need to post-process the result of the CFTP function ising_cftp, since
its result interlaces two independent draws from the posterior distribution using
the black/white chessboard encoding. Note that the two independent post-processed
draws are guaranteed to be taken from the posterior distribution, but are not neces-
sarily good results from the point of view of statistical image analysis, which would
involve considerations of model adequacy and whether the parameters J and H have
been chosen appropriately.

innov <- matrix(data = runif(M * M), nrow = M,
ncol = M)

result1 <- update(result0, im1, innov, J = J,
H = H)

chess1 <- outer(1:M, 1:M, function(x, y) ((x +
y)%%2))

chess0 <- 1 - chess1
image0 <- result0 * chess0 + result1 * chess1
image1 <- result0 * chess1 + result1 * chess0
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13.2.4.2 More Details

There is room for considerable improvement in this algorithm as far as image anal-
ysis is concerned! Certainly it would be helpful to use more general neighbourhood
structures, the better to capture boundaries which are non-rectilinear (eg: diagonal
of second-nearest neighbours as well as nearest neighbours). However periodicity
2 fails for most more general lattice structures, meaning that the coding technique
will also fail. This means that one must use (potentially less efficient) sequential up-
date schemes. Performance is greatly enhanced by using a scripting language with
substantial support for numerics: for example Python with the Numpy extension
provides matrix operations which are implemented in a manner that allows one to
encode an entire sequential image update in a single command. On the other hand,
close inspection of successive updates of the CFTP algorithm (both upper and lower
states) makes it apparent that much of the running time is taken up with dealing
with small deviations from the equilibrium. In [140] modifications of the CFTP al-
gorithm has been considered which are based on producing draws which are within
a set distance from the perfect equilibrium draw, using Wasserstein metric.

We have noted that the major application of CFTP in [320] was to critical Ising
models without external field, using Sweeney’s algorithm. In [175] it is shown
how to use the “bounding chain” technique to produce a CFTP algorithm for the
Swendsen-Wang algorithm. Recent results [400] describe bounds for variants on
heat-bath dynamics for all temperatures.

Exercise 13.8. Modify the function update for suitable M to implement the case
of periodic boundary conditions: pixels (i1, i2) and ( j1, j2) are neighbours if i1 =
j1± 1 mod M and i2 = j2± 1 mod M. For which values of M does the “parallel
update” chessboard coding scheme still work correctly?

Exercise 13.9. Modify the functions involved in ising_cftp to work with rect-
angular images of size M1×M2 for suitable M1 and M2.

13.2.5 Other Remarks

Space precludes treatment of the significant technique of the “multishift sampler”,
introduced in [417] and developed in [83]. A brief description is given in Sect. 2.4
of [227]; the fundamental observation is that one can draw simultaneously from all
Unif([x,x+ 1)) distributions (−∞ < x < ∞) simply by simulating a uniformly ran-
domized integer lattice X +{0,±1,±2, . . .} (for X being Unif([0,1))), and selecting
the single point of this random lattice lying in the interval [x,x+ 1). This is an im-
portant tool in CFTP, allowing one to reduce a continuous range of possibilities to a
locally finite range.

Very recent work on convergence rates for Gibbs samplers for the n-simplex
[371] makes intriguing use of coupling which is non-co-adapted; as noted in [371],
this can be modified to produce CFTP algorithms (though controlling the range
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Fig. 13.8 Results of Ising CFTP using J = 0.9 and H = 1.5, compared with noisy image

of possibilities then produces a substantial slow factor which probably cannot be
avoided).

13.3 Dominated Coupling-from-the-Past

In the first section we introduced classic CFTP by treating three examples (simple
symmetric random walk, a Markov chain with triangle densities, the Ising model).
The treatment of the first and third of these examples depends heavily on mono-
tonicity, and moreover on there being upper and lower chains. Monotonicity is not
evident in the second example, though (as indicated by Green and Murdoch) one
may take a set-valued approach to this case, so that suitable monotonicity is seen
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to follow from the partial ordering imposed by set-inclusion. More generally, the
monotonicity requirement can to some extent be avoided by the use of bounding
chains [172, 175, 225, 228].

In all three cases the significant constraint is that one is dealing with uniform
ergodicity. We now state this notion formally, together with the associated notion of
geometric ergodicity, formally. First recall the notion of distance in total variation

distTV(μ,ν) = sup{|μ(A)−ν(A)| : measurable A} ,

which provides a measure of the amount of agreement between probability measures
μ and ν .

Definition 13.2 (Uniform ergodicity). The Markov chain X is said to be uniformly
ergodic with equilibrium distribution π if its distribution converges to the equilib-
rium distribution π in total variation distance uniformly in the starting point X0 = x:
for some fixed C > 0 and for fixed γ ∈ (0,1),

sup
x∈X

distTV(P(Xn ∈ · | X0 = x),π) ≤ C γn ,

where P(Xn ∈ · | X0 = x) is the conditional distribution of Xn given X0 = x.

Uniform ergodicity is an easy consequence of the apparently weaker assertion
that as n→ ∞ so

sup
x∈X

distTV(P(Xt ∈ · | X0 = x),π) → 0 .

Definition 13.3 (Geometric ergodicity). The chain X is geometrically ergodic
with equilibrium distribution π if there is a π-almost surely finite function V : X →
[0,∞], and fixed γ ∈ (0,1), such that

distTV

(
P(n)(x, ·),π

)
≤ V (x) γn for all n,x ,

where P(n)(x, ·) denotes the n-th step transition kernel of X .

It is evident that the very existence of coalescing upper and lower chains implies
uniform ergodicity. In [123] it has been shown that the reverse implication also
holds at least in principle. Thus the scope of classic CFTP is strictly limited to
uniformly ergodic chains. This is a severe limitation; many chains arising in practice
are geometrically ergodic but not uniformly ergodic (random walks with negative
drift and reflected in the origin, birth-death-immigration processes, queues which
do not turn customers away, storage processes with no upper storage limit, . . . ).

However there are three ways to extend CFTP to extend beyond instances of
uniform ergodicity:

1. Truncation of state-space. One can approximate the equilibrium distribution
via constraining the target chain by forbidding any moves which take the chain
out of a large but finite subset of state-space (so that the chain does not move
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at all instead of carrying out a forbidden move). Under suitable conditions the
equilibrium of the constrained chain can be shown to approximate that of the
original chain. Particularly in case the target chain is reversible, this holds if the
subset is irreducible for the constrained chain, and moreover the constrained
equilibrium probabilities are proportional to the original probabilities within
the constrained region. However it seems somewhat self-defeating to build an
exact simulation of an approximation.

2. Conversion to uniformly ergodic case. In [292] it has been noted that one
can sometimes convert a geometrically ergodic Markov chain into a uniformly
ergodic Markov chain, simply by occasionally substituting in an independence
sampler update.

3. Domination by an amenable process. It is shown in [225] how (in suitable
cases) one can replace the upper bound (and lower bound, if required), by us-
ing a stationary random process which can be coupled to the target Markov
chain so as to continue to lie above any realization of the target if it does so ini-
tially. If one can simulate this stationary process backwards in time, and if one
can realize the coupling together with some variant on stochastic monotonicity,
then this dominated coupling-from-the-past (domCFTP) can produce an exact
simulation.

In this section we explore the method of domCFTP by describing the algorithm
in the special context of a particular and very simple example. We refer to [227,
Sect. 3.4, Theorem 31] for a general description of the method and a proof.

13.3.1 Random Walk domCFTP

We demonstrate domCFTP by applying it to the extremely elementary example of a
simple random walk with negative drift, reflected in the origin. This has the advan-
tage of being closely related to the random walk discussed in Sect. 13.2.1; therefore
the R code will be closely related to the code in that section.

13.3.1.1 Helper Functions for domCFTP Simulation

Here is the update function which we will use for dominating and target Markov
chains. The ±1 innovations need to be constructed so that the probability of a
+1 innovation is less than 1

2 , in order for an equilibrium to exist (and in this case it
is a straightforward exercise to show that geometric ergodicity applies).

update <- function(x, innov) return(max(x +
innov, 0))

Note that the reflection carried out here is the reversible form of reflection also
used in Sect. 13.2.1; the recipe can be adapted to other forms of reflection.
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The truncation method would amount to replacing this update by an update of
the form used in Sect. 13.2.1. Not only does this give only approximate answers,
but also coalescence involves waiting for the upper random walk to sink to zero,
or the lower random walk to rise to the top level. Clearly good approximations
will result in increasing computational demands, unnecessary if compared with the
domCFTP method demonstrated below. Conversion to a uniformly ergodic chain is
feasible in this simple one-dimensional case, but our purpose here is to demonstrate
domCFTP. For dominating process, we choose the same reflected random walk but
with a larger value pdom ∈ (p, 1

2 ) of positive jump. The dominating random walk
is reversible, and its equilibrium distribution is easily computed as geometric using
detailed balance: setting ρdom = pdom/(1− pdom),

πdom
x = (1−ρdom)(ρdom)x for x = 0,1,2, . . . . (13.5)

We need a function evolve, which uses update to build up a trajectory from
increments using an initial value.

evolve <- function(x, dx) {
result <- c(x)
for (u in dx) {

x <- update(x, u)
result <- append(result, x)

}
return(result)

}

We can now simulate the dominating process (in statistical equilibrium) by draw-
ing its height at t = 0 from the equilibrium distribution and then simulating the same
process backwards in time (initially we work back to the initial time specified by
the invocation of the algorithm). We base this on generation of innovations, but now
these innovations are to be viewed as occurring in reverse time.

make_block <- function(block_length, p_dom = 0.4) {
return(2 * rbinom(block_length, 1, p_dom) - 1)

}

13.3.1.2 A Typical Run of the Random Walk domCFTP algorithm

As in Sect. 13.2.1, we build up the algorithm in a sequence of steps. First we de-
termine the trajectory of the dominating process, by using evolve to build up the
trajectory (in reverse-time) using final value and innovations. The distribution of the
dominating process at time 0 is geometric, as given in the detailed balance calcula-
tions resulting in (13.5).
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set.seed(5)
p_dom <- 0.4
p <- 0.25
T <- -9

So we work here in this example with pdom = 0.4. We generate reversed domi-
nating innovations r_d_innovs for the dominating process in reversed time and
evolve the dominating trajectory accordingly:

dom0 <- rgeom(1, 1 - p_dom/(1 - p_dom))
r_d_innovs <- make_block(-T, p_dom = p_dom)
trajectory <- rev(evolve(dom0, r_d_innovs))

Next, we need to run the target process forwards in a way which is coupled to the
dominating process. Note that the innovations r_d_innovs for the dominating
process cannot be the innovations for the target process; dominating innovations are
run backwards in time for the stationary dominating process, so the independence
structure is quite different. We construct innovations for the target process by ex-
ploiting the reversibility of the dominating process; thus when run forwards in time
the dominating process jumps by +1 with probability pdom = 0.4. We wish to work
with probability p< pdom for a +1 jump; hence−1 jumps of the dominating process
remain negative, 0 jumps are converted to −1 jumps, while +1 jumps are converted
into −1 jumps with probability 1− p/pdom, as performed in the following function.

generate_innovations <- function(trajectory,
old_innovs, p_dom = 0.4, p = 0.25) {
innovs <- trajectory[2:length(trajectory)] -

trajectory[1:(length(trajectory) - 1)]
innovs[innovs == 0] <- -1
innovs[innovs == 1] <- 1 - 2 *

rbinom(length(innovs[innovs ==
1]), 1, 1 - p/p_dom)

return(c(innovs[1:(length(innovs) -
length(old_innovs))], old_innovs))

}

These innovations can now be used to generate upper and lower processes.
Note the initial value for the upper process is given by the trajectory of the domi-
nating process.

lower <- evolve(0, innovations)
upper <- evolve(trajectory[1], innovations)

Coalescence not yet having occurred, we need to extend the dominating process.
We work in reversed time as before.
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old_upper <- upper
old_lower <- lower
old_T <- T
extend_r_d_innovs <- function(innovs,

p_dom = 0.4) {
return(c(innovs, make_block(length(innovs),

p_dom = p_dom)))
}
trajectory <- rev(evolve(dom0,

extend_r_d_innovs(r_d_innovs,
p_dom = p_dom)))

T <- 1 - length(trajectory)

Having done this, we may now simulate the new upper and lower processes. Care
must be taken to re-use randomness, but this is ensured by the construction of the
generate_innovations function invoked above.

lower <- evolve(0, innovations)
upper <- evolve(trajectory[1], innovations)

We now achieve coalescence. Note that the consequence of re-use of random-
ness is that old upper and lower processes “funnel” between newer upper and lower
processes.

13.3.1.3 Implementing the Algorithm

Finally we package the domCFTP algorithm in a function. Note that the output of
dom_cftp(T) is not stable under variations of the start-time parameter T even
if the seed of the random number generator is held fixed: this arises because each
cycle of this particular domCFTP requires the use of the random number generator
to impute innovations for the target process. In order to keep the code simple, this
implementation does not synchronize each imputation with the generation of the
corresponding entry in r_d_innovs, which is what would be required to stabilize
the algorithm.

dom_cftp <- function(T, p_dom = 0.4, p = 0.25) {
dom0 <- rgeom(1, 1 - p_dom/(1 - p_dom))
r_d_innovs <- make_block(-T, p_dom = p_dom)
trajectory <- rev(evolve(dom0, r_d_innovs))
innovs <- generate_innovations(trajectory,

c(), p_dom = p_dom, p = p)
lower <- evolve(0, innovs)
upper <- evolve(trajectory[1], innovs)
while (lower[1 - T] != upper[1 - T]) {
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(a) Dominating process (b) Upper and lower processes

(c) Extended dominating process (d) Extended upper and lower processes

Fig. 13.9 domCFTP output for a simple random walk example

old_innov <- innovs[]
old_lower <- lower[]
old_upper <- upper[]
r_d_innovs <- extend_r_d_innovs(r_d_innovs,

p_dom = p_dom)
T <- -length(r_d_innovs)
trajectory <- rev(evolve(dom0, r_d_innovs))
innovs <- generate_innovations(trajectory,

innovs, p_dom = p_dom, p = p)
old_innov_range <- (length(innovs) -

length(old_innov) + 1):length(innovs)
lower <- evolve(0, innovs)
upper <- evolve(trajectory[1], innovs)
old_range <- (length(lower) + 1 -
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length(old_lower)):length(lower)
}
return(upper[length(upper)])

}

13.3.1.4 Statistical Analysis

We now test the algorithm. It is worth paying particular attention to whether the
actual implementation maintains the fundamental “funnelling” relationship

old_lower ≤ lower ≤ upper ≤ old_upper ≤ trajectory .

This can be checked during evolution of the algorithm by using the R function
stopifnot.

Detailed inspection of the operation of the domCFTP algorithm reveals that in
the following 10000 runs the algorithm reaches back on occasion to time −120 in
order to achieve coalescence.

N <- 10000
data <- sapply(rep(-30, N), dom_cftp)
est <- sum(data > 0)/N
sd <- sqrt(est * (1 - est)/N)
print(paste("Empirical estimate of p / (1 - p) (=",

format(p/(1 - p), digits = 3), "): ",
format(est, digits = 3), "+/-", format(2 *

sd, digits = 1), sep = ""))

This yields output giving an empirical estimate for p/(1− p):

[1] "Empirical estimate of p / (1 - p) (=0.333): 0.331+/-0.01"

The above empirical estimate forms part of a larger analysis, comparing log-
frequencies with their theoretical expectations, which is graphed in Fig. 13.10.

rho <- p/(1 - p)
counts <- tabulate(1 + data)
k <- 5
probs <- c(dgeom(0:k, 1 - rho), pgeom(k, 1 -

rho, lower.tail = FALSE))
counts

The above code fragment produces output tabulating the output of the domCFTP
algorithm.

[1] 6688 2183 742 268 80 21 13 2 1 1
[11] 0 1
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We now compute the expected output:

N * probs

with output as follows.

[1] 6666.66667 2222.22222 740.74074 246.91358
[5] 82.30453 27.43484 13.71742

Finally we perform a χ2 test,

chisq.test(tabulate(1 + data, nbins = k +
2), p = probs)

with output as follows.

Chi-squared test for given probabilities

data: tabulate(1 + data, nbins = k + 2)
X-squared = 4.1744, df = 6, p-value = 0.6531

The χ2 test has been carried out on samples of size 106, and still reports no
significant deviations from the predicted equilibrium distribution.
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Fig. 13.10 Plot of log-frequencies of domCFTP output for the simple random walk example:
the line indicates the theoretical expectation. Note that sampling variation is high at low log-
frequencies, so the theoretical line is not plotted there.
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While conveniently simple, this example is unrepresentative in a number of ways.
Firstly, the dominating process often visits 0, thus forcing coalescence of upper and
lower processes at such times. In more general applications of domCFTP such con-
venient coalescence will be very rare. Speaking technically, one should generally
not expect the dominating process in substantial applications to exhibit a practically
useful regenerative atom. Secondly, the target process is a random walk (and we are
using a rather simple synchronous coupling of upper and lower processes), and this
means that upper and lower processes themselves can only coalesce when the up-
per process hits 0 (in contrast to the continuous-time non-linear birth-death example
discussed in [224, 227]). Nevertheless, the simplicity of this example permits clear
demonstration of the underlying principles of domCFTP unhindered by technicali-
ties.

13.3.2 Other Remarks

While the random walk domCFTP example is trivial, it serves as a useful prototype
for much more complicated and useful examples. There are a variety of instances
of more realistic examples of domCFTP. We have already noted the continuous-
time non-linear birth-death example discussed in [224, 227; this extends naturally
to treatment of spatial point processes (such as area-interaction point processes and
Strauss point processes), to be found in [224, 225, 228]; see also the tutorial paper
[36]. Note that many spatial point processes are produced by non-attractive spatial
birth-and-death processes; in this case a simple crossover trick can be applied to
ensure upper and lower processes envelope the perfectly simulated trajectory [225,
228]. A nice application to the (super-stable) M/G/s queue is given in [368]. In [281]
the ideas of domCFTP have been applied to produce an intriguing model diagnostic
for a spatial point process. Finally, in [118] it is shown how to use domCFTP to
produce exact draws from Vervaat’s perpetuity.

Exercise 13.10. Modify the function dom_cftp to work for a target process which
evolves as a modified random walk X with negative bias: at each time n such that
Xn > 1 the next step Xn+1−Xn is replaced by a double jump −2 with some small
positive probability, independently of the past and of the step Xn+1−Xn.

13.4 Conclusion

As noted in Sect. 13.3, the equivalence of (a) uniform ergodicity and (b) existence
(at least in principle) of a classical CFTP algorithm has been shown in [123]. The
implication “classical CFTP implies uniform ergodicity” is an immediate calcula-
tion, using the consideration that bounds on coalescence time will generate bounds
on convergence in total variation, and it is well-known in the field how to improve
such bounds to establish geometric decay. The reverse implication follows by noting
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the fact that uniform ergodicity implies that the whole state-space is a small set of
lag k for some k > 0. But then the k-sub-sampled chain makes the whole state-space
small of lag 1, and then small set CFTP may be applied as in Sect. 13.2.3.

Of course this small set CFTP only works in principle. To make it work in prac-
tise, one would need to determine the lag k and the regeneration measure ρν(·) of
the state-space, and one would also need to know how to draw from the k-step tran-
sition probability conditioned on regeneration not occurring. In practise one would
at least need k = 1; moreover it would be crucial to consider whether the actual
run-time of the algorithm made it a feasible means of achieving draws from the
equilibrium. However, whether practical or impractical, the existence of small set
CFTP is surely of interest.

It is then natural to ask whether there is a relationship between geometric ergod-
icity and domCFTP. Even the simple example of Sect. 13.3 provides an example of
a geometrically ergodic chain which is not uniformly ergodic, and yet possesses a
domCFTP algorithm. However general geometrically ergodic chains do not possess
natural monotonicity structure, and this appears to be an obstacle to the existence of
domCFTP.

However for Markov chains satisfying the weak property of ϕ-irreducibility it
is actually the case that geometric ergodicity is equivalent to the existence of a ge-
ometric Foster-Lyapunov criterion (for ϕ-irreducibility and this equivalence result
we refer to the famous monograph of Meyn and Tweedie [272]). Namely, let us
consider the following condition.

Definition 13.4 (Geometric Foster-Lyapunov condition). The Markov chain X
satisfies a geometric Foster-Lyapunov condition if there are: a small set C; con-
stants α ∈ (0,1), b > 0; and a scale or drift function Λ : X → [1,∞) bounded on C;
such that C is a Λ -sub-level set, and for π-almost all x ∈ X

E(Λ(Xn+1) | Xn = x) ≤ αΛ(x)+b1(x∈C) ,

where π is the equilibrium measure of X .

The following can then be established [226]: stochastic comparisons using the
Markov inequality establish that Λ(Xn) can be dominated by D, the scalar multiple
of the exponential of the workload of a D/M/1 queue sampled at arrivals. The domi-
nating chain will not itself necessarily be recurrent. However under k-sub-sampling
for suitable k and variation of the small set C = {x : Λ(x) ≤ c} the domination can
be refined to produce a dominating Markov chain D which is recurrent. Although
D is not reversible, nonetheless one can use duality to compute its time-reversal un-
der equilibrium. Refining the sub-sampling if necessary, one can then show that a
sub-sampling of Λ(X) is dominated by a stationary dominating Markov chain D,
for which the equilibrium and time-reversed statistics are known, and such that re-
generation occurs whenever D sinks below the level c. This suffices to establish a
domCFTP algorithm, impractical in the same way that the Foss-Tweedie CFTP is
impractical for the case of uniform ergodicity.

Despite its impracticality, this queue-based domCFTP algorithm bears a clear
resemblance to the practical domCFTP algorithms discussed in the literature. It
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suggests the following challenging question: if one can prove that a chain is geo-
metrically ergodic, then shouldn’t one try to exhibit a domCFTP algorithm?

It is natural to ask whether geometric ergodicity is equivalent to domCFTP.
However the answer to this is negative. It has been shown in [79] that domCFTP
can be established for classes of non-geometrically ergodic Markov chains (specif-
ically, polynomially ergodic Markov chains satisfying a technical condition known
as “tameness”). This has in turn led to theoretical advances in the theory of polyno-
mially ergodic Markov chains [78].
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affine transformation, 372
ambit set, 224
anamorphosis transformation, 152
assignment problem, 18
association, 48

band Cholesky method, 379
basis

orthonormal, 268
Schauder, 267

Berry–Esseen bound, 9
Bessel family, 328
best LSL predictor, 361
binomial process, 36

association, 49
Blaschke-Petkantschin formula, 236
block-circulant matrix, 373
Boolean island, 148
Boolean random closed set, 148
Boolean random function, 147, 326
Brownian Lévy field, 324

Cauchy family, 329
Čech complex, 64
cell reconstruction, 87
central intensity subspace, 188
central subspace, 188
centroid, 77
CFTP, 406

coupling-from-the-past algorithm, 405
crossover trick, 437
domCFTP, 430
funnelling relationship, 435
montonicity, 428
random walk CFTP, 409
read-once CFTP, 413

small-set CFTP, 417
stabilized CFTP, 433
truncation, 429
uniform ergodicity, 429

cluster process, 221, 383
elliptical, 104
Matérn, 386
Poisson, 383

coalescence time, 409
codifference, 342
complete coalescence, 406
conditional intensity, 209

function, 16
conditional mean mark, 175
conditionally negative semi–definite function,

327
contact distribution function, 216
coupling, 14, 25
covariance, 216
covariance function, 106, 258, 327, 371
covariation, 341

function, 354

Cox process, 38, 102, 385
dcx super-Poisson, 54
dcx ordering, 51
generalised, 37
log-Gaussian, 39
Matérn cluster, 37
shot-noise, 387
Thomas (modified), 37
v-weakly super-Poisson, 47

Crofton formula, 235
rotational, 242

cyclone model, 330

dcx order, 49, 50

classic CFTP, 406, 407

covariation orthogonal linear (COL) predictor, 354
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of Cox processes, 51
of Lévy-driven Cox processes, 51
of perturbed processes, 50
of shot-noise fields, 51
sub-Poisson perturbed lattice, 54
sub-Poisson process, 53
super-Poisson perturbed lattice, 54
super-Poisson process, 53

detailed balance, 407, 431
determinantal point process, 194
determinantal process, 39

dcx, 54
Ginibre, 40
weakly sub-Poisson, 47

diffusion matrix, 393
dilation, 144
dimension reduction, 187
disector, 254
disorientation, 184

edge, 76
edge correction, 88
eigenequation, 273
eigenspace, 273
eigenvalue, 271
eigenvector, 271
elliptic integral, 237
embedding

intrinsic, 377
minimal, 375
nonnegative definite, 377

estimated prediction error, 299
Euler characteristic, 84
Euler method, 182
Euler-Poincaré characteristic, 234
expectation measure, 15
exponential model, 329

face-to-face tessellation, 76
facet, 76
force-biased algorithm, 89
forest, 309
Fourier transform, 373

discrete, 373
fast, 374

fractional Brownian field, 324
fractional Wiener sheet, 395
Frechet-Hoeffding bound, 177
full-dimensional random vector, 336
functional data analysis, 260

gamma process, 402
Gasser-Müller estimator, 262
Gaussian covariance family, 329

Gaussian linear random function, 324
Gaussian random field, 182
generalized linear model, 292
geometric anisotropy, 330
geometric ergodicity, 429
geometrical covariogram, 154
Georgii–Nguyen–Zessin equation, 17
germ-grain model, 52

coverage, 52, 69
k-percolation, 60
percolation, 56

nonstandard critical radii, 58
Gibbs process, 16, 28, 30
graph, 312

edge, 312
vertex, 312

graphical model, 378

h-minima transform, 88
Hadwiger’s characterization theorem, 234
Hausdorff measure, 236
Hawkes process, 383
Hilbert space, 272
hole-effect model, 329
Horvitz-Thompson procedure, 88
Hurst index, 324
hypergeometric function, 237
hyperplane tessellation, 79
hypothesis of orthogonality, 198

immigration-death process, 13
spatial, 25

importance sampling, 207
independent marking, 382
independently scattered random measure, 339
index–continuous LSL predictor, 363
infinitesimal generator, 12
innovation, 407
integral of mean curvature, 84
intensity, 75
intensity function, 15, 219
intensity measure, 75, 100
intrinsic stationarity of order two, 322
intrinsic volume, 84, 235

density, 84
invariance in strict sense, 322
invariance in wide sense, 322
Ising model, 422

Bayesian image analysis, 422
coding scheme, 423
critical temperature, 422
external field, 422
ferromagnetic case, 422
Fortuin-Kastelyn-Potts model, 422
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free boundary conditions, 424
image analysis, 422
single-site update heat bath algorithm, 422
spin, 422
Sweeney’s algorithm, 422

isotropy, 75, 77, 322

Johnson-Mehl tessellation, 81

kernel, 261
biweight, 261
Epanechnikov, 261
estimator, 227
function, 260, 343, 387
uniform, 261

kriging, 346
Kullback–Leibler divergence, 309

Lévy basis, 38, 220
Lévy-driven Cox point process, 220
Lévy process, 325, 382
Lévy sheet, 403
Laguerre tessellation, 81
lattice process, 33

Ripley’s K-function of, 42
simple perturbed, 36
sub-Poisson perturbed, 36, 54
super-Poisson perturbed, 37, 54
Voronoi-perturbed, 36

least scale linear (LSL) predictor, 353
least-squares method, 270
Lebesgue measure, 236
level set, 358
linear multifractional stable motion, 344
linear predictor, 345
linear regression, 279

with functional response, 288
link function, 307
local polynomial, 264
local stereological estimator, 251
location dependent thinning, 219
logic regression, 308
logistic regression, 308

mark correlation function, 175
mark covariance function, 175
mark variogram, 175
mark-weighted K-function, 175
marked fibre process, 186
Markov chain, 312

aperiodic, 312
irreducible, 312

Markov chain Monte Carlo, 206, 389, 406

Markov process, 12, 206
Matérn hard-core process, 102
maximization of covariation linear (MCL)

predictor, 357
maximum-likelihood, 213, 292
mean-value function, 106, 258
Metropolis–Hastings algorithm, 389
Miles-Lantuejoul correction, 88
minimum contrast estimation, 226
minimum spanning tree, 24
Minkowski addition, 84
Minkowski tensor, 241

rotational average, 243
mixed anisotropy, 332
model fit, 216
model of interacting discs, 212
modulated Matérn hard-core process, 104
moment measure, 43, 50

factorial, 43
motion invariance, 322
moving average process, 372
multifactor dimensionality reduction (MDR),

295
robust MDR method (RMDR), 306
Gene-MDR, 306
generalized (GMDR), 305
MDR method with independent rule, 304

n-way interaction information, 305
Nadaraya-Watson estimator, 262
nearest neighbour distance, 24
negative association, 48
neurophysiological experiment, 184
Neyman-Scott process, 37, 386

association, 49
dcx super-Poisson, 54

non-stationarity function, 223
normal scale mixture, 328
nucleator, 248
nugget effect, 332

ordinary kriging, 349
Ornstein-Uhlenbeck process, 13, 323
overgraph, 145

pair correlation function, 42, 221
pairwise interaction process, 16
Pareto model, 156
particle filter, 207
particle marginal Metropolis-Hastings

path, 313
of the height h ≥ 0, 313

Pearson residual, 211

K-function (Ripley’s), 41

algorithm, 208
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nonstandard critical radii, 58
of germ-grain model, 56, see also

germ-grain model
of SINR model, 63

permanental process, 39
simultaneously observable, 54

weakly super-Poisson, 47
perturbation kernel, 36

convex ordering, 36, 50
displacement, 36
replication, 36

binomial, 36
geometric, 37
hyper-geometric, 36
negative binomial, 37
Poisson, 36
Poisson mixture, 37

phenotype-associated information, 305
point process, 15, 74, 99, 382

2D elliptical Matérn cluster process, 104
associated, 48, see also association
binomial, 36, see also binomial process
clustering perturbation, 35
concentration inequality, 44, 46, 47
Cox, 38, see also Cox process
dcx order, 49
determinantal, 39, see also determinantal

process
Gibbs, 39
Ginibre, 40
isotropic, 100
lattice, 33, see also lattice process
marked, 105, 382
Matérn hard-core process, 102
modulated Matérn hard-core process,

negatively associated, 48
Neyman-Scott, 37, see also Neyman-Scott

process
permanental, 39, see also permanental

process
Poisson, 34
Poisson process, 100
simple, 15, 99
stationary, 100
sub-Poisson, 32, 36
α-weakly, 44
concentration inequality, 47
dcx, 53
v-weakly, 46
weakly, 47, 48

super-Poisson
α-weakly, 44

dcx, 53
v-weakly, 46
weakly, 47, 48

Poisson cluster process
association, 49

Poisson hyperplane tessellation, 79
Poisson point process, 147
Poisson process, 16, 28, 34, 75, 100

as perturbed lattice, 36
intensity, 100
mixed, 38
stationary, 100

Poisson random measure, 380
Poisson shot-noise field, 325
Poisson-Voronoi tessellation, 200
polar coordinates, 238
positive definite function, 326
positive semi–definite function, 326
posterior distribution, 206
precision matrix, 371
predictor

continuous, 345
exact, 345
stochastically continuous, 352
unbiased, 345
weakly consistent, 352

preflooded watershed transform, 88
primary grain, 148
principal component analysis, 191, 270
probability distribution

Bernoulli, 407
Binomial, 407
Geometric, 414, 431
triangular, 417
Uniform, 427

probability metric, 6, 10
bounded Lipschitz metric, 6
bounded Wasserstein metric, 6, 23
Kantorovich metric, see Wasserstein metric
Kolmogorov metric, 6
total variation metric, 6, 22
Wasserstein metric, 6, 23

projection process, 223
proposal density, 207
purely zonal anisotropy, 332

R statistical scripting language, 405
r–norm, 360
random closed set (RACS), 144
random counting measure, 99, 380
random field, 174, 322, 370

Gaussian, 370
Gaussian Markov, 378
Markovian, 378

percolation, 56

104
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separable in probability, 341
random geometric graph, 64
random marked closed set, 173
random sequential adsorption, 89
random tessellation, 76, 158
random walk sampler, 389
regeneration, 417
regression model, 260

nonparametric, 260
reversible jump sampler, 391
rotation invariant, 235
rotational average, 235
rotational integral

geometry, 235
of intrinsic volume, 234

second order intensity reweighted stationarity,
219

semi-continuous (upper, lower) random
function, 145

separability, 222
sequential Monte Carlo, 206
Shannon entropy, 304
shot-noise Cox process, 220
shot-noise field, 51

dcx order of , 51
extremal, 51

ordering, 52
level-sets, 60

shot-noise Gamma Cox process, 388
shrinkage property, 348
sill, 332
simple inhibition point process, 193
simple kriging, 346

conditional unbiasedness, 348
homoscedasticity, 349

simple symmetric random walk, 407
simplicial complex, 64
simulated annealing, 132, 312
singular random vector, 336

Gaussian, 336
SINR model, 63

percolation, 63
size map, 91
skeleton, 91
slice means, 191
sliced inverse regression, 188
small set, 417

lag, 417
minorization condition, 417

space-time
space-time germ-grain model, 214
space-time intensity function, 226
space-time point process, 218

spatial Lévy process, 403
spatial random network, 129
specific strut length, 85
spectral density, 327
spectral measure, 327

of a stable vector, 336
spectral representation, 327
spectral theorem, 273
spherical contact distribution function, 101
spherical model, 330
spiking activity, 185
stability index, 335
stable family, 329
stable Lévy process, 343
stable moving-average random field, 343
stable Ornstein–Uhlenbeck process, 344
stable random field, 340
stable random measure, 339

control measure, 339
skewness function, 339

stable random variable, 337
totally skewed, 338

stable random vector, 334
stable Riemann–Liouville process, 344
stable subordinator, 343
state-space model, 206
stationarity, 322
stationary distribution, 12
Stein equation, 5, 10
Stein’s lemma, 4
Steiner formula, 84
stereology, 246
STIT tessellation, 79
stochastic flow, 406
stochastic geometry model with covariates,

199
stochastic process, 105, 257, 371

Gaussian, 371
isotropic, 373
stationary, 372
trajectory, 105
weakly stationary, 106

process mean, 106
process variance, 106

Strauss process, 389
strict convexity of Lα (E,m), 353
sub–Gaussian random field, 344
subgraph, 145
sufficient dimension reduction subspace, 188
sufficient intensity dimension reduction

subspace, 188
support set, 358
surface area, 84, 234
Sweave, 406

K-function, 219
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symmetric distribution, 337
synchronous coupling, 408

tessellation, 75
thickness profile, 91
Thomas process, 386
total variation distance, 429
track modelling, 184
tree, 309
two-dimensional Brownian motion, 181
typical k-face, 78

uniform ergodicity, 429

variance function, 106, 258
variogram, 324, 331

vectorial autoregressive (VAR) process, 106
Gaussian, 107

vertex, 76
Vietoris-Rips complex, 65
void probability, 45, 50
volume, 84
Voronoi model, 158
Voronoi tessellation, 80

watershed transform, 88
Weibull model, 155
weighted random measure, 173
white noise, 328
Whittle-Matérn family, 329
Wiener bridge, 396
Wiener pillow, 396
Wiener process, 274

U-statistic, 64
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