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Preface

This volume brings together latest results in the area of stochastic analysis and
statistics. The individual chapters cover a wide range of topics from limit theorems,
Markov processes, nonparametric methods, actuarial science, population dynamics,
and many others. The volume is dedicated to Valentin Konakov, professor at the
Higher School of Economics and the Lomonosov Moscow State University.

Professor Konakov made significant contributions to several areas of stochastics,
including discretization and approximation of the stochastic differential equations,
nonparametric functional estimation, local limit theorems, extreme value analysis,
theory of Gaussian processes. Some of his research findings have become classics.
For instance, the parametrix method for diffusions and Markov chains proposed by
Valentin Konakov in joint articles with Enno Mammen (Heidelberg University), is
now referred to as a classical approach for the analysis of these models. His results
were published in top-tier journals like Bernoulli, Probability Theory and Related
Fields, Stochastic Processes and their applications, Annales de l’Institut Henri
Poincaré (B): Probability and Statistics, and many others.

Valentin Konakov supervised a lot of international projects, e.g., for 12 years he
was a head of Russian-German projects jointly funded by RFBR (Russian
Foundation of Basic Research) and DFG (Deutsche Forschungsgemeinschaft).
From 1994 to 2010, Valentin Konakov worked as an invited professor in the
leading universities of Germany and France.

In February 2014, the Higher School of Economics has founded a new inter-
national laboratory of Stochastic Analysis and its Applications under the direction
of Prof. Konakov (https://lsa.hse.ru/). The team of the laboratory includes scientists
from Russia, USA, Germany, France, United Kingdom, which are yet to be linked
by close research interests. It is important to note that this team was created on the
basis of a long collaboration between Valentin Konakov and his colleagues from
foreign universities, namely Stanislav Molchanov (UNC Charlotte, USA), Enno
Mammen (Heidelberg University, Germany), and Stéphane Menozzi (University of
Evry, France). Nowadays, the Laboratory of Stochastic Analysis and its
Applications plays an important role in the scientific community in Moscow.

v
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In view of his professional achievements, Prof. Konakov got the status of
tenured (ordinary) professor of the Higher School in Economics. This status is
conferred only to outstanding professors, who made a significant contribution to
science and development of the university.

On the occasion of Valentin Konakov’s 70th birthday, the members of his
laboratory organized the international conference “Modern problems of stochastic
analysis and statistics” (May 29–June 2, 2016). Many of his coauthors and
colleagues came to Moscow to celebrate his anniversary and to present recent
results related to his research interests. This volume is mostly prepared by the
participants of the conference and is dedicated to Valentin’s work and his mathematical
heritage. We hope that the book offers a valuable reference for researchers and
graduate students interested in modern stochastics.

Moscow, Russia Vladimir Panov

Fig. 1 Valentin Konakov at work. May 2016
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Part I
Random motions



RandomWalks in Nonhomogeneous Poisson
Environment

Youri Davydov and Valentin Konakov

Abstract In the first part of the paper, we consider a “random flight” process in
Rd and obtain the weak limits under different transformations of the Poissonian
switching times. In the second part, we construct diffusion approximations for this
process and investigate their accuracy. To prove the weak convergence result, we
use the approach of [15]. We consider more general model which may be called
“random walk over ellipsoids in Rd”. For this model, we establish the Edgeworth-
type expansion. The main tool in this part is the parametrix method [5, 7].

Keywords Random walks · Random flights
Random nonhomogeneous environment · Diffusion approximation
Parametrix method

1 Introduction

We consider the moving particle process in Rd which is defined in the following
way. There are two independent sequences (Tk) and (εk) of random variables.

The variables Tk are nonnegative and ∀k Tk ≤ Tk+1, while variables εk form an
i.i.d sequence with common distribution concentrated on the unit sphere Sd−1.

The values εk are interpreted as the directions, and Tk as the moments of change
of directions.

A particle starts from zero and moves in the direction ε1 up to the moment T1. It
then changes direction to ε2 and moves on within the time interval of length T2 −T1,

For the second author, this work has been funded by the Russian Academic Excellence Project
‘5–100’.

Y. Davydov
Saint Petersburg State University, Saint Petersburg, Russia

V. Konakov (B)
National Research University Higher School of Economics, Moscow, Russia
e-mail: vkonakov@hse.ru

© Springer International Publishing AG 2017
V. Panov (ed.), Modern Problems of Stochastic Analysis and Statistics,
Springer Proceedings in Mathematics & Statistics 208,
DOI 10.1007/978-3-319-65313-6_1
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4 Y. Davydov and V. Konakov

etc. The speed is constant at all sites. The position of the particle at time t is denoted
by X (t).

The study of the processes of this type has a long history. The first work dates
back probably to [13] and continued by [6, 14]. In [8] the case was considered where
the increments Tn − Tn−1 form i.i.d. sequence with the common law having a heavy
tail. The term “Levy flights” later changed to “Random flights”.

To date, a large number of works were accumulated, devoted to the study of such
processes, we mention here only articles by [4, 9, 11, 12] which contain an extensive
bibliography andwhere for different assumptions on (Tk) and (εk) the exact formulas
for the distribution of X (t) were derived.

Our goals are different.
First, we are interested in the global behavior of the process X = {X (t), t ∈ R+},

namely, we are looking for conditions under which the processes {YT , T > 0},

YT (t) = 1

B(T )
X (tT ), t ∈ [0, 1],

weakly converges in C[0, 1] : YT =⇒ Y, BT −→ ∞, T −→ ∞.

From now on, we suppose that the points (Tk), Tk ≤ Tk+1, form a Poisson point
process in R+ denoted by T.

It is clear that in the homogeneous case the process X (t) is a conventional random
walk because the spacings Tk+1 − Tk are independent, and then the limit process is
Brownian motion.

In the nonhomogeneous case, the situation is more complicated as these spacings
are not independent. Nevertheless, it was possible to distinguish three modes that
determine different types of limiting processes.

For a more precise description of the results, it is convenient to assume that
Tk = f (�k), where � = (�k) is a standard homogeneous Poisson point process on
R+ with intensity 1. In this case,

(�k)
L= (γ1 + γ2 + · · · + γk),

where (γk) are i.i.d standard exponential random variables.
If the function f has power growth,

f (t) = tα, α > 1/2,

the behavior of the process is analogous to the uniform case and then in the limit we
obtain a Gaussian process which is a linearly transformed Brownian motion

Y (t) =
∫ t

0
Kα(s)dW (s),
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whereW is a process of Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1 and Kα(s) is a nonrandom kernel, and its
exact expression is given below.

In the case of exponential growth,

f (t) = etβ, β > 0,

the limiting process is piecewise linear with an infinite number of units, but ∀ε > 0
the number of units in the interval [ε, 1] will be a.s. finite.

Finally, with the super exponential growth of f , the process degenerates: its
trajectories are linear functions:

Y (t) = εt, t ∈ [0, 1], ε
Law= ε1.

In the second part of the paper, the process X (t) is assumed to be a Markov
chain. We construct diffusion approximations for this process and investigate their
accuracy. To prove the weak convergence, we use the approach of [15]. Under our
assumptions the diffusion coefficients a and b have the property that for each x ∈ Rd

the martingale problem for a and b has exactly one solution Px starting from x
(that is well posed). It remains to check the conditions from [15] which imply the
weak convergence of our sequence of Markov chains to this unique solution Px .
We consider also the more general model which may be called as “random walk
over ellipsoids in Rd”. For this model, we establish the convergence of the transition
densities and obtain the Edgeworth-type expansion up to the order n−3/2, where n is
a number of switching. The main tool in this part is the parametrix method [5, 7].

2 Random Flights in Poissonian Environment

The reader is reminded that we suppose Tk = f (�k), where (�k) is a standard
homogeneous Poisson point process on R+. Assume also that Eε1 = 0.

It is more convenient to consider at first the behavior of the processes

Zn(t) = YTn (t),

as for T = Tn the paths of Zn have an integer number of full segments on the interval
[0,1]. The typical path of {Zn(t), t ∈ [0, 1]} is a continuous broken line with vertices
{(tn,k,

Sk
Bn

), k = 0, 1, . . . , n}, where tn,k = Tk
Tn

, T0 = 0, Bn = B(Tn), Sk =∑k
1 εi (Ti − Ti−1).

Theorem 1 Under the previous assumptions

(1) If the function f has power growth: f (t) = tα, α > 1/2, we take B(T ) =
T

2α−1
2α .
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Then Zn =⇒ Y, where Y is a Gaussian process

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s),

and W is a process of Brownian motion, for which the covariance matrix of
W (1) coincides with the covariance matrix of ε1.

(2) If the function f has exponential growth: f (t) = etβ, β > 0, we take
B(T ) = T .

Then Zn =⇒ Y, where Y is a continuous piecewise linear process with the
vertices at the points (tk,Y (tk)),

tk = e−β�k−1 , �0 = 0,

Y (tk) =
∞∑
i=k

εk(e
−β�i−1 − e−β�i ), Y (0) = 0.

(3) In the super exponential case, suppose that f is increasing absolutely continuous
and such that

lim
t→∞

f ′(t)
f (t)

= +∞.

We take B(T ) = T .

Then Tn
Tn+1

→ 0 in probability, and Zn =⇒ Y, where the limiting process Y
degenerates:

Y (t) = ε1t, t ∈ [0, 1].

Remark 1 In the case of power growth, the limiting process admits the following
representation:

Y (t)
L= α

√
2

2α − 1
W (t

2α−1
α ),

where, as before,W is a Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1.

It is clear that we can also express Y in another way:

Y (t)
L= α

√
2

2α − 1
K

1
2 w(t

2α−1
α ),

where w is a standard Brownian motion and K is the covariance matrix of ε1.

Remark 2 In the case of exponential growth, it is possible to describe the limiting
process Y in the following way:

We take a Poisson point process T = (tk), tk = e−β�k−1 , defined on (0, 1], and
define a step process {Z(t), t ∈ (0, 1]},
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Z(t) = εk for t ∈ (tk+1, tk].

Then

Y (t) =
∫ t

0
Z(s) ds.

3 Diffusion Approximation

In this section, first we consider a model of random flight which is equivalent to the
study of random broken lines {Xn(t), t ∈ [0, 1]} with the vertices ( kn , Xn(

k
n )), and

such that (h = 1
n )

Xn ((k + 1)h) = Xn(kh) + hb(Xn(kh)) + √
hξk(X (kh)),

Xn(0) = x0, ξk(Xn(kh)) = ρkσ(Xn(kh))εk, (1)

where {εk} and {ρk} are two independent sequences and
{εk} are i.i.d. r. v. uniformly distributed on the unit sphere Sd−1;
{ρk} are i.i.d. r. v. having an absolutely continuous distribution, ρk ≥ 0, Eρ2

k = d;
b : Rd −→ Rd is a bounded measurable function and σ : Rd −→ Rd × Rd is a

bounded measurable matrix function.

Theorem 2 Let X = {X (t), t ∈ [0, 1]} be a solution of stochastic equation

X (t) = x0 +
∫ t

0
b(X (s))ds +

∫ t

0
σ(X (s))dw(s).

Suppose that b and σ are continuous functions satisfying the Lipschitz condition

|b(t) − b(s)| + |σ(t) − σ(s)| ≤ K |t − s|.

Moreover, it is supposed that b(x) and 1
det (σ (x)) are bounded.

Then,

Xn =⇒ X in C[0, 1].
Our next result is about the approximation of the transition density. We consider

now more general models given by a triplet (b(x), σ (x), f (r; θ)), x ∈ Rd , r ≥
0, θ ∈ R+, where b(x) is a vector field, σ(x) is a d × d matrix, a(x) := σσ T (x) >

δ I, δ > 0, and f (r; θ) is a radial density depending on a parameter θ controlling
the frequency of changes of directions, namely, the frequency increases when θ

decreases. Suppose X (0) = x0. The vector b(x0) acts by shifting a particle from x0
to x0 +(θ)b(x0),where(θ) = cdθ2, cd > 0. Several examples of such functions
(θ) for different models will be given below. Define
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Ex0(r) := {x : ∣∣a−1/2(x0)(x − x0 − (θ)b(x0))
∣∣2 = r2},

Sd
x0(r) := {y : |y − x0 − (θ)b(x0)|2 = r2}.

The initial direction is defined by a random variable ξ0, and the law of ξ0 is a
pushforward of the spherical measure on Sd

x0(1) under affine change of variables

x − x0 − (θ)b(x0) = a1/2(x0)(y − x0 − (θ)b(x0)).

Then particle moves along the ray lx0 corresponding to the directional unit vector

ε0 := ξ0 − x0 − (θ)b(x0)

|ξ0 − x0 − (θ)b(x0)| ,

and changes the direction in (r, r + dr) with probability

det
(
a−1/2(x0)

) · f (r
∣∣a−1/2(x0)e0

∣∣)dr. (2)

Let ρ0 be a random variable independent of ξ0 and distributed on lx0 with the radial
density (2). We consider the point x1 = x0 + (θ)b(x0) + ρ0ε0. Let (εk, ρk) be
independent copies of (ε0, ρ0). Starting from x1, we repeat the previous construction
to obtain x2 = x1 + (θ)b(x1) + ρ1ε1. After n switches, we arrive at the point xn,

xn = xn−1 + (θ)b(xn−1) + ρn−1εn−1.

To obtain the one-step characteristic function �1(t), we make use of formula (6)
from [17] (see also the proof of Theorem 2.1 in [10]):

�1(t) = Eei〈t,ρ0ε0〉 =
∫ ∞

0

∫
Ex0 (r)

ei〈t,a1/2(x0)a−1/2(x0)ξ〉μEx0 (r)(dξ)d�E(r) =

=
∫ ∞

0

∫
Sd

x0
(r)

ei〈a1/2(x0)t,y〉λd
r (dy) f (r; θ)dr =

= 2
d−2
2 �

(
d

2

)∫ ∞

0

Jd−2
2

(r
∣∣a1/2(x0)t∣∣)(

r
∣∣a1/2(x0)t∣∣) d−2

2

f (r; θ)dr, (3)

where Jν(z) is the Bessel function, d�E(r) is the F-measure of the layer between
Ex0(r) and Ex0(r+dr), and F is the law of ρ0ε0.Nowwemake our main assumption
about the radial density:

(A1) The function f (r; θ) is homogeneous of degree −1, that is

f (λr; λθ) = λ−1 f (r; θ), ∀λ = 0.
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Denote by pE(n, x, y) the transition density after n switches in the RF model de-
scribed above. To obtain the one-step transition density pE(1, x, y) (we write (x, y)
instead of (x0, x1) ), we use the inverse Fourier transform, (3) and (A1). We have

pE(1, x, y) = −d/2(θ)qx

(
y − x − (θ)b(x)√

(θ)

)
, (4)

where

qx (z) = 2
d−2
2 �

(
d
2

)
(2π)d

∫
Rd

cos 〈τ, z〉
⎡
⎣
∫ ∞

0

Jd−2
2

(ρ
∣∣a1/2(x)τ ∣∣)

(
ρ
∣∣a1/2(x)τ ∣∣) d−2

2

f (ρ; cd)dρ
⎤
⎦ dτ. (5)

Consider two examples.

Example 1 We put (θ) = (d + 1)2θ2 and

f (r; θ) = 1

�(d)
r−1

( r
θ

)d
exp

(
− r

θ

)
.

Using (3), formula 6.623 (2) on p. 694 from [3], and the doubling formula for the
Gamma function, we obtain

pE(1, x, y) = −d/2(θ)qx

(
y − x − (θ)b(x)√

(θ)

)
,

where

qx (z) = (d + 1)d/2

2dπ(d−1)/2�
(
d+1
2

) ∣∣det a1/2(x)∣∣e
−√

d+1|a−1/2(x)z|.

It is easy to check that

∫
ziqx (z) = 0,

∫
zi z jqx (z)dz = ai j (x).

Example 2 We put (θ) = θ2/2 and

f (r; θ) = Cdr
−1

( r
θ

)d
exp

(
− r2

θ2

)
,

where Cd = 2(d+1)/2

(d−2)!!√π
if d is odd, and Cd = 2

[(d−2)/2]! if d is even. From (3) and
formula 6.631 (4) on p. 698 of [3], we obtain

pE(1, x, y) = −d/2(θ)φx(
y − x − (θ)b(x)√

(θ)
),
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where

φx (z) = 1

(2π)d/2 √
det a(x)

exp

(
−1

2

〈
a−1(x)z, z

〉)
.

It is easy to see that the transition density (4) corresponds to the one-step transition
density in the following Markov chain model:

X(k+1)(θ) = Xk(θ) + (θ) b(Xk(θ)) + √
(θ)ξ(k+1)(θ),

where the conditional density (under Xk(θ) = x) of the innovations ξ(k+1)(θ) is

equal to qx (·). If we put θ = θn =
√

2
n , then (θn) = 1

n and we obtain a sequence
of Markov chains defined on an equidistant grid

X k+1
n

= X k
n
+ 1

n
b(X k

n
) + 1√

n
ξ k+1

n
, X0 = x0. (6)

Note that the triplet (b(x), σ (x), f (r; θ)), x ∈ Rd , r ≥ 0, θ ∈ R+, of Example 2
corresponds to the classical Euler scheme for the d-dimensional SDE

dX (t) = b(Xt )dt + σ(Xt )dW (t), X (0) = x0. (7)

Let p(1, x, y) be transition density from 0 to 1 in the model (7). We make the
following assumptions.

(A2) The function a(x) = σσ T (x) is uniformly elliptic.
(A3) The functions b(x) and σ(x) and their derivatives up to the sixth order are

continuous and bounded uniformly in x . The sixth derivative is globally Lipschitz.

Theorem 3 Under the assumptions (A2) and (A3,) we have the following expansion:
for any positive integer S as n → ∞

sup
x,y∈Rd

(
1 + |y − x |S

)
·
∣∣∣∣pE (n, x, y) − p(1, x, y) − 1

2n
p ⊗

(
L2∗ − L2

)
p(1, x, y)

∣∣∣∣ = O(n−3/2),

(8)
where

L = 1

2

d∑
i, j=1

ai j (x)∂
2
xi x j

+
d∑

i=1

bi (x)∂xi . (9)

The operator L∗ in (8) is the same operator as in (9) but with coefficients “frozen”
at x . It means that when calculating degrees of the operator we do not differentiate
coefficients and we consider them as constants, taking them out of the derivative.

Clearly, L = L∗ but, in general, L2 = L2∗. The convolution-type binary operation
⊗ is defined for functions f and g in the following way:

( f ⊗ g) (t, x, y) =
∫ t

0
ds

∫
Rd

f (s, x, z)g(t − s, z, y)dz.
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Proof It follows immediately from Theorem 1 of [7].

4 Proof of Theorem 1

4.1 Asymptotic Behavior in Case (3)

We have, by taking Bn = B(Tn) = Tn :

sup
t∈
[
0,

Tn−1
Tn

] ‖Xn(t)‖∞ ≤
n−1∑
k=1

Tk − Tk−1

Tn
= Tn−1

Tn
−−−→
n→∞ 0 a.s.

At the same time,

Xn(1) = Sn−1 + εn(Tn − Tn−1)

Tn
= εn + o(1) ⇒ Pε1

Therefore, the process Xn converges weakly to the process {Y (t)}, Y (t) = ε1t ,
t ∈ [0, 1].

This process is in some sense degenerate. Hence, this case is not very interesting.

4.2 Asymptotic Behavior in Case (2)

Take Bn = Tn and show that the limit process Y is not trivial. For simplicity fix
β = 1. We have now tn,k := Tk

Tn
= e−(�n−�k ) = e−(γk+1+···+γn), and

Xn
(
tn,k

) =
k∑

i=1

εi (e
−(γi+1+···+γn) − e−(γi+···+γn)), k = 1, . . . , n.

The process Xn is completely defined by two independent vectors (ε1, . . . , εn)

and (γ1, . . . , γn). Hence, its distribution will be the same if we replace these vectors

by (εn, . . . , ε1) and (γn, . . . , γ1). In another words, the process (Xn(·)) L= (Yn(·)),
where Yn(·) is a broken line with vertices (τn,k,Yn(τn,k)), (τn,k) ↓, τn,1 = 1, τn,k =
e−(γ1+···+γk−1), k = 2, . . . , n, and

Yn(τn,k) =
n−1∑
i=k

εi
(
e−(γ1+···+γi−1) − e−(γ1+···+γi )

) + εne
−(γ1+···+γn−1);

Yn(0) = 0, and γ0 := 0.
Using the notation �k = γ1 + · · · + γk , we get the more compact formula:
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Yn(τn,k) =
n−1∑
i=k

εi
(
e−�i−1 − e−�i

) + εne
−�n−1 .

Consider now the process {Y (t), t ∈ [0, 1]} defined as follows:

Y (0) = 0, Y (tk) =
∞∑
i=k

εi
(
e−�i−1 − e−�i

)
, (10)

where tk = e−�k−1 , k = 2, 3, . . . , t1 = 1; for t ∈ [tk+1, tk], Y (t) is defined by linear
interpolation. The paths of Y are continuous broken lines, starting at 0 and having
an infinite number of segments in the neighborhood of zero.

The evident estimation

sup
t∈[0,1]

|Y (t) − Yn(t)| ≤
∣∣∣∣∣

∞∑
i=n

εi
(
e−�i−1 − e−�i

)∣∣∣∣∣ + e−�n−1 ≤

≤
∞∑
i=n

(
e−�i−1 − e−�i

) + e−�n−1 = 2e−�n−1 −→ 0 a.s.

shows that a.s. Yn(·) C[0,1]−−−→ Y (·).
Conclusion: In case (2), the process Xn converges weakly to Y (·).

Remark 3 In the case where β = 1, it is simply necessary to replace e−�k by e− �k
β .

Remark 4 It seems that the last result could be expanded by consideringmore general
sequences (εk).

Interpretation: εk
|εk | defines the direction and |εk | defines the velocity of displace-

ment in this direction on the step Sk .

4.3 Asymptotic Behavior in Case of Power Growth

In this case, Tk = �α
k , α > 1/2, tn,k = Tk

Tn
=
(

�k
�n

)α

, and

Xn(tn,k) = 1

Bn

k∑
i=1

εi (�
α
i − �α

i−1); �0 = 0, k = 0, 1, . . . , n. (11)

Let x ∈ R
d be such that |x | = 1. We will show below that

Var

⎛
⎝ n∑
i=1

〈εi , x〉(�α
i − �α

i−1)

⎞
⎠ = E〈εi , x〉2

n∑
i=1

E(�α
i − �α

i−1)
2 ∼ C(x)n2α−1, n → ∞,
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where C(x) = 2α2

2α−1 E〈ε1, x〉2. Therefore it is natural to take B2
n = n2α−1.

We proceed in five steps:
Step 1: Lemmas
Step 2: We compare Xn(·) with Zn(·) where Zn(tn,k) = α

Bn

∑k
i=1 εiγi�

α−1
i−1 and

show that ‖Xn − Zn‖∞
P−→ 0.

Step 3: We compare Zn(·) with Wn(·) where Wn(tn,k) = α
Bn

∑k
i=1 εiγi (i − 1)α−1

and state that ‖Zn − Wn‖∞
P−→ 0.

Step 4: We show that process Un(·),

Un

((
k

n

)α)
= α

Bn

k∑
i=1

εiγi (i − 1)α−1,

converges weakly to the limiting process

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s);

hereW (·) is a process of Brownian motion, for which the covariance matrix ofW (1)
coincides with the covariance matrix of ε1.

Step 5: We show that the convergence Wn ⇒ Y follows from the convergence
Un ⇒ Y .

Finally: We get the convergence Xn ⇒ Y .

4.3.1 Step 1

This section contains several technical lemmas necessary for realization of subse-
quent steps.

Lemma 1 Let α > 0 and m ≥ 1. Then ∀x > 0, h > 0

(x + h)α − xα =
m∑

k=1

akh
kxα−k + R(x, h), (12)

where

ak = α(α − 1) . . . (α − k + 1)

k! ,

and
|R(x, h)| ≤ |am+1|hm+1 max{xα−(m+1), (x + h)α−(m+1)}. (13)

Proof By the formula of Taylor–Lagrange, we have (12) with
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|R(x, y)| ≤ 1

(m + 1)!h
m+1 sup

x≤t≤x+h
| f (m+1)(t)|,

where f (t) = tα . As f (m+1)(t) = α(α − 1) . . . (α −m)tα−(m+1), we get the claimed
result. �

Lemma 2 For α ≥ 0 and k → ∞
(
1 + α

k

)k = eα + O

(
1

k

)
. (14)

Proof It follows from the inequalities:

0 ≤ eα −
(
1 + α

k

)k ≤ eαα2

k
. �

Lemma 3 Let � be the Gamma function. Then as k → ∞
�(k + α)

�(k)
= kα + O(kα−1).

Proof It follows from Lemma 2 and well-known asymptotic (see a.e. [16], v. 2,
12.33)

�(t) = t t−
1
2 e−t

√
2π

(
1 + 1

12t
+ O

(
1

t2

))
, t → ∞.

Lemma 4 For any real β, we have as k → ∞

E(�
β

k ) = kβ + O(kβ−1).

Proof The result follows from the well-known fact that

E(�
β

k ) = �(k + β)

�(k)

and Lemma 3.

Lemma 5 Let α ≥ 0. The following relations take place as k → ∞:

�α
k+1 − �α

k = αγk+1�
α−1
k + ρk, (15)

where |ρk | = O(kα−2) in probability;

E |�α
k+1 − �α

k |2 = 2α2k2α−2 + O(k2α−3); (16)

E |�α
k+1 − �α

k − αγk+1�
α−1
k |2 = O(k2α−4). (17)



Random Walks in Nonhomogeneous Poisson Environment 15

Proof of Lemma 5 We find, by applying Lemma 1,

�α
k+1 − �α

k = αγk+1�
α−1
k + R(�k, γk+1), (18)

where

R(�k, γk+1) ≤ 1

2
γ 2
k+1 max

�k≤s≤�k+1

|α(α−1)|sα−2 ≤ |α(α − 1)|
2

γ 2
k+1 max{�α−2

k+1 , �α−2
k }.
(19)

As �k ∼ k a.s. when k → ∞, we get (15).
The proofs of (16) and (17) follow directly from (18), (19) and Lemma 4. �

We deduce immediately from (16) the following relation.

Corollary 1 We have

n−1∑
1

E |�α
k+1 − �α

k |2 = 2α2

2α − 1
n2α−1 + O(n2α−2).

4.3.2 Step 2

We show that ‖Xn − Zn‖∞
P−→ 0, where

Zn(tn,k) = α

Bn

k∑
i=1

εiγi�
α−1
i−1 .

It is clear that

δn := ‖Xn − Zn‖∞ = sup
t∈[0,1]

|Xn(t) − Zn(t)| = max
k≤n

|X (tn,k) − Zn(tn,k)| = max
k≤n

|rk |,

where

rk = 1

Bn

k∑
i=1

εi
[
�α
i − �α

i−1 − αγi�
α−1
i−1

] =
k∑

i=1

εiξi ,

and

ξi = (
�α
i − �α

i−1 − αγi�
α−1
i−1

) 1

Bn
.

Let M = σ(ξ1, ξ2, . . . , ξn) = σ(γ1, γ2, . . . , γn). Under condition M, the se-
quence (rk) is the sequence of sums of independent random variables with mean
zero. By Kolmogorov’s inequality,
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P{max
k≤n

|rk | ≥ t} = E{P{max
k≤n

|rk | ≥ t |M}} ≤ E

⎛
⎝ 1

t2

n∑
j=1

ξ 2
j

⎞
⎠ = 1

t2

n∑
j=1

Eξ 2
j .

(20)
By Lemma 5, Eξ 2

j = O( j−3). Therefore,

n∑
j=1

Eξ 2
j = O(n−2).

Finally, we get from (20): ∀t > 0

P{δn ≥ t} −−−→
n→∞ 0,

which gives the convergence ‖Xn − Zn‖∞
P−→ 0.

4.3.3 Step 3

We show now that ‖Zn −Wn‖∞
P−−−→

n→∞ 0; whereWn(tn,k) = α
Bn

∑k
i=1 εiγi (i −1)α−1.

We have

n = sup
t∈[0,1]

|Zn(t) − Wn(t)| = max
k≤n

|Zn(tn,k) − Wn(tn,k)| = max
k≤n

{|βk |},

where βk = α
Bn

∑k
i=1 εiγi

(
�α−1
i−1 − (i − 1)α−1

)
.

Similar to the previous case, (βk) under condition M is the sequence of sums of
independent random variables with mean zero. Therefore,

P{max
k≤n

{|βk |} ≥ t} = E

(
P{max

k≤n
{|βk |} ≥ t |M}

)
≤ 1

t2

n∑
j=1

Eη2
j ,

where η j = α
Bn

γ j

(
�α−1

j−1 − ( j − 1)α−1
)
.

Estimation of Eη2
j .

By independence of γ j and � j−1

Eη2
j = 2α2

B2
n

E
(
�α−1

j−1 − ( j − 1)α−1
)2

.

Let us change j − 1 to k
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E
(
�α−1
k − kα−1

)2 = E
(
�2α−2
k

) + k2α−2 − 2kα−1E
(
�α−1
k

) =
= �(k + 2α − 2)

�(k)
+ k2α−2 − 2kα−1 �(k + α − 1)

�(k)
= (by Lemma3) =

= [
k2α−2 + O(k2α−3) + k2α−2 − 2k2α−2

] = O(k2α−3).

Hence,

Eη2
j ≤ C

j2α−3

n2α−1.

It follows from this estimation that
for α > 1

n∑
j=1

Eη2
j ≤ C

n
;

for α = 1
n∑
j=1

Eη2
j ≤ log n

n
;

and for 1/2 < α < 1
n∑
j=1

Eη2
j ≤ C

n2α−1
.

We have finally P{maxk≤n |βk | ≥ t} → 0, n → ∞,which gives the convergence

‖Wn − Zn‖ P−→ 0.

4.3.4 Step 4

Let Un be the process defined at the points k
n by

Un

((
k

n

)α)
= α

Bn

k∑
i=1

εiγi (i − 1)α−1, k = 1, 2, . . . , n,

and by linear interpolation on the intervals [ kn , k+1
n ], k = 0, . . . , n−1.We now state

the weak convergence of the processes Un to the process Y ,

Y (t) = √
2α

∫ t

0
s

α−1
2α dW (s),

W is a Brownian motion, for which the covariance matrix of W (1) coincides with
the covariance matrix of ε1.
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The proof is standard because Un(·) represents a (more or less) usual broken
line constructed by the consecutive sums of independent (nonidentically distributed)
random variables. One could apply Prokhorov’s theorem (see [2], Chap. IX, Sect. 3,
Theorem1).

Only one thing must be checked: the Lindeberg condition.
Let ε > 0. We have

�n(ε) := 1

B2
n

n∑
1

E
{‖εiγi (i − 1)α−1‖21{‖εiγi (i−1)α−1‖≥εBn}

} =

= 1

n2α−1

n∑
2

(i − 1)2α−2E
{
γ 2
1 1{|γ1|(i−1)α−1‖≥εnα−1/2}

}
.

As
{|γ1|(i − 1)α−1‖ ≥ εnα−1/2} ⊂ {|γ1| ≥ ε

√
n}

for 2 ≤ i ≤ n, we get

�n(ε) ≤ 1

2α − 1
Eγ 2

1 1{|γ1|≥ε
√
n} → 0,

as n → ∞.

It means that the Lindeberg condition is fulfilled, and by the above-mentioned
Prokhorov’s theorem the process Un is weakly converging. To identify the limiting
process with Y , it is sufficient to state that for any 0 < s < t ≤ 1, and for any
x ∈ R

d , |x | = 1,we have the convergence 〈Un(t)−Un(s), x〉 =⇒ 〈Y (t)−Y (s), x〉.
It is clear that

[Un(t) −Un(s)] −
[
Un

((
k

n

)α)
−Un

((
l

n

)α)]
P−−→ 0,

if
(
k
n

)α → t,
(
l
n

)α → s.
Let l < k. As

〈
Un

((
k

n

)α)
−Un

((
l

n

)α)
, x

〉
= α

Bn

k∑
i=l+1

〈εi , x〉γi (i − 1)α−1,

by the theorem of Lindeberg–Feller, it is sufficient to state the convergence of vari-
ances.

We have

Var

〈
Un

((
k

n

)α)
−Un

((
l

n

)α)
, x

〉
=
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= 2α2

n2α−1
E〈ε1, x〉2

k∑
i=l+1

(i − 1)2α−2 −−−→
n→∞

2α2

2α − 1
E〈ε1, x〉2[t 2α−1

α − s
2α−1

α ],

and

Var〈Y (t) − Y (s), x〉 = 2αE〈ε1, x〉2
∫ t

s
u

α−1
α du = 2α2

2α − 1
E〈ε1, x〉2[t 2α−1

α − s
2α−1

α ],

which are the same. Therefore, indeed Un ⇒ Y.

4.3.5 Step 5: Convergence Xn ⇒ Y .

Due to the steps 2 and 3, it is sufficient to show that Wn ⇒ Y .
Let fn : [0, 1] → [0, 1], be a piecewise linear continuous function such that

fn(tn,k) = (
k
n

)α
; tn,k =

(
�k
�n

)α

; k = 0, 1, . . . , n.

By definition of Wn and Un , we have

Wn(t) = Un( fn(t)), t ∈ [0, 1].

By the corollary to Lemma 6 (see below), the function fn converges in probability
uniformly to f , f (t) = t , and by previous step Un ⇒ Y .

It means that we can apply Lemma 7 which gives the necessary convergence.

Lemma 6 Let

Mn = max
k≤n

{∣∣∣∣�k

�n
− k

n

∣∣∣∣
}

.

Then Mn
P−→ 0, n → ∞.

Proof of Lemma 6 We have

P{Mn > ε} = E

{
P

{
max
k≤n

∣∣∣∣�k

�n
− k

n

∣∣∣∣ > ε | �n

}}
=

=
∫ ∞

0
P

{
max
k≤n

∣∣∣∣�k

�n
− k

n

∣∣∣∣ > ε | �n = t

}
P�n (dt) =

=
∫ ∞

0
P

{
max
k≤n

∣∣∣∣ξn,k − k

n

∣∣∣∣ > ε

}
P�n (dt) = P

{
max
k≤n

∣∣∣∣ξn,k − k

n

∣∣∣∣ > ε

}
,

(21)

where (ξn,k)k=1,...,n are the order statistics from [0, 1]-uniform distribution.
Let δn := maxk≤n

∣∣ξn,k − k
n

∣∣. Evidently, δn ≤ sup[0,1] |F∗
n (x) − x |, where

F∗
n is the uniform empirical distribution function. By Glivenko–Cantelli theo-

rem, sup[0,1] |F∗
n (x) − x | → 0 a.s, which gives the convergence Mn → 0 in

probability. �
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Corollary 2 M (1)
n = maxk≤n

∣∣∣
(

�k
�n

)α − (
k
n

)α∣∣∣ P−→ 0, n → ∞.

The proof follows directly from Lemma 6 due to the uniform continuity of the
function h(x) = xα , x ∈ [0, 1].
Lemma 7 Let {Un} be a sequence of continuous processes on [0, 1] weakly con-
vergent to some limit process U. Let { fn} be a sequence of random continuous
bijections [0, 1] on [0, 1] which in probability uniformly converges to the identity
function f (t) ≡ t . Then the process Wn, Wn(t) = Un( fn(t)), t ∈ [0, 1], will con-
verge weakly to U.

Proof of Lemma 7 By theorem 4.4 from [1], we have the weak convergence in
M := C[0, 1] × C[0, 1]

(Un, fn) =⇒ (U, f ).

By Skorohod representation theorem, we can find random elements (Ũn, f̃n) and
(Ũ , f̃ ) of M (defined probably on a new probability space) such that

(Un, fn)
L= (Ũn, f̃n), (U, f )

L= (Ũ , f̃ ),

and (Ũn, f̃n) → (Ũ , f̃ ) a.s. inM.

As the last convergence implies evidently the a.s. uniform convergence of
Ũn( f̃n(t)) to Ũ ( f̃ (t)), we get the convergence in distribution of U ( fn(·)) to
U ( f (·)) = U (·). �

5 Proof of Theorem 2

Proof of Theorem 2. We need some facts from [15]. Consider (�,M), where
� = C([0,∞); Rd) be the space of continuous trajectories from [0,∞) into Rd .

Given t ≥ 0 and ω ∈ � let x(t, ω) denote the position of ω in Rd at time t. If we put

D(ω, ω′) =
∞∑
n=1

1

2n
sup0≤t≤n

∣∣x(t, ω) − x(t, ω′)
∣∣

1 + sup0≤t≤n |x(t, ω) − x(t, ω′)|

then it is well known that D is a metric on � and (�, D) is a Polish space. The
convergence induced by D is the uniform convergence on bounded t-intervals. For
simplicity, we will omitω in the future and wewill be assuming that all our processes
are homogeneous in time. Analogous results for time-inhomogeneous processes may
be obtained by simply considering the time-space processes.

We will useM to denote the Borel σ -field of subsets of (�, D) , M = σ [x(t) :
t ≥ 0]. We also will consider an increasing family of σ -algebras Mt = σ [x(s) :
0 ≤ s ≤ t]. The classical approach to the construction of diffusion processes cor-
responding to given coefficients a and b involves a transition probability function
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P(s, x; t, ·) which allows to construct for each x ∈ Rd , a probability measure Px on
� = C([0,∞); Rd) with the properties that

Px (x(0) = x) = 1

and
Px (x(t2) ∈ � |Mt1) = P(t1, x(t1); t2, �) a.s.Px

for all 0 ≤ t1 < t2 and � ∈ BRd (the Borel σ -algebra in Rd). It appears that this
measure is a martingale measure for a special martingale related with the second-
order differential operator

L = 1

2

d∑
i, j=1

ai j (·) ∂2

∂xi∂x j
+

d∑
i=1

bi (·) ∂

∂xi
,

namely, for all f ∈ C
∞
0 (Rd)

Px (x(0) = x) = 1,

( f (x(t)) −
∫ t

0
L f (x(u))du,Mt , Px ) (22)

is a martingale. We will say that the martingale problem for a and b is well posed
if, for each x , there is exactly one solution to that martingale problem starting from
x . We will be working with the following setup. For each h > 0, let �h(x, ·) be a
transition function on Rd . Given x ∈ Rd , let Ph

x be the probability measure on �

characterized by the properties that

(i) Ph
x (x(0) = x) = 1, (23)

(i i) Ph
x

{
x(t) = (k + 1)h − t

h
x(kh)+ t − kh

h
x((k+1)h), kh ≤ t < (k+1)h

}
= 1

(24)
for all k ≥ 0,

(i i i) Ph
x (x((k + 1)h) ∈ � | Mkh) = �h(x(kh), �), Ph

x − a.s.

for all k ≥ 0 and � ∈ BRd . (25)

Define

ai jh (x) = 1

h

∫
|y−x |≤1

(yi − xi )(y j − x j )�h(x, dy), (26)
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bih(x) = 1

h

∫
|y−x |≤1

(yi − xi )�h(x, dy), (27)

and

ε
h(x) = 1

h
�h(x, R

d\B(x, ε)), (28)

where B(x, ε) is the open ball with center x and radius ε. What we are going to
assume is that for all R > 0

lim
h↘0

sup
|x |≤R

‖ah(x) − a(x)‖ = 0, (29)

lim
h↘0

sup
|x |≤R

|bh(x) − b(x)| = 0, (30)

sup
h>0

sup
x∈Rd

(‖ah(x)‖ + |bh(x)|) < ∞, (31)

lim
h↘0

sup
x∈Rd

ε
h(x) = 0. (32)

Theorem A. ([15], p. 272, Theorem 11.2.3). Assume that in addition to (29)–(32)
the coefficients a and b are continuous and have the property that for each x ∈ Rd

the martingale problem for a and b has exactly one solution Px starting from x (that
is well posed). Then Ph

x converges weakly to Px uniformly in x on compact subsets
of Rd .

Sufficient conditions for the well posedness are given by the following theorem.
Let Sd be the set of symmetric nonnegative definite d × d real matrices.

Theorem B. ([15], p. 152, Theorem 6.3.4). Let a : Rd −→ Sd and b : Rd −→ Rd

be bounded measurable functions and suppose that σ : Rd −→ Rd × Rd is a
bounded measurable function such that a = σσ ∗. Assume that there is an A such
that

‖σ(x) − σ(y)‖ + |b(x) − b(y)| ≤ A |x − y| (33)

for all x, y ∈ Rd . Then the martingale problem for a and b is well posed and
the corresponding family of solutions {Px : x ∈ Rd} is Feller continuous (that is
Pxn → Px weakly if xn → x).

Note that (33) and uniform ellipticity of a(x) imply the existence of the transition
density p(s, x; t, y) ([15], Theorem 3.2.1, p. 71).

Consider the model

X ((k + 1)h) = X (kh) + hb(X (kh)) + √
hξ(X (kh)),

ξ(X (kh)) = ρkσ(X (kh))εk, (34)
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where {εk} are i.i.d. random vectors uniformly distributed on the unit sphere Sd−1,

and {ρk} are i.i.d. random variables having a density, ρk ≥ 0, Eρ2
k = d. Let us check

the conditions (29)–(32). It is easy to see that

�h(x, dy) = pxh (y)dy, where pxh (y) = h−d/2 fξ

(
y − x − hb(x)√

h

)
. (35)

Here, fξ denotes the density of the random vector ξ. Let us check (32). Note that
Eξ = 0 and the covariance matrix of the vector ξ is equal to

Cov(ξ, ξ T ) = E(ρ2
kσ(x)εkε

T
k σ T (x)) = a(x). (36)

We have

hε
h(x) = �h(x, R

d\B(x, ε)) =
∫
Rd\B(x,ε)

pxh (y)dy =

=
∫

v+√
hb(x)∈Rd\B(0, ε√

h
)

fξ (v)dv = P

{
ξ ∈ B

(
0,

ε√
h

)}
− √

hb(x)) ≤

≤ P

{
|ξ |2 ≥ ε2

4h

}
= o(h). (37)

The last equality is a consequence of the Markov inequality. The equality (36), the
uniform ellipticity of a(x) and (37) imply (32). To prove (29), note that by (33)

ai jh (x) = 1

h

∫
|y−x |≤1

(yi − xi )(y j − x j )p
x
h (y)dy =

=
∫
|v+√

hb(x)|≤ 1√
h

(vi + √
hbi (x))(v j + √

hb j (x)) fξ (v)dv =

=
∫
|v+√

hb(x)|≤ 1√
h

viv j fξ (v)dv + o(
√
h) = a(x) + o(1). (38)

To check (30), note that

bih(x) = 1

h

∫
|y−x |≤1

(yi − xi )p
x
h (y)dy =

= 1√
h

∫
|v+√

hb(x)|≤ 1√
h

(vi + √
hbi (x)) fξ (v)dv =
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= bi (x)
∫
|v+√

hb(x)|≤ 1√
h

fξ (v)dv − 1√
h

∫
|v+√

hb(x)|> 1√
h

vi fξ (v)dv. (39)

To estimate the second integral in (39), we apply the Cauchy–Schwarz inequality

1√
h

∫
∣∣∣v+√

hb(x)
∣∣∣> 1√

h

|v| fξ (v)dv ≤ 1√
h

(∫
|v|2 fξ (v)dv

)1/2 (
P(|ξ |2 ≥ 1

4h

)1/2

= o(1),

(40)
and (39), (40) imply (30). Finally, (31) follows fromour calculations and assumptions
of Theorem B. Weak convergence Ph

x to Px follows now from Theorems A and B
cited above. �
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Random Motions with Space-Varying
Velocities

Roberto Garra and Enzo Orsingher

Abstract Randommotions on the line andon the planewith space-varyingvelocities
are considered and analyzed in this paper. On the line we investigate symmetric
and asymmetric telegraph processes with space-dependent velocities and we are
able to present the explicit distribution of the position T (t), t > 0, of the moving
particle. Also the case of a nonhomogeneous Poisson process (with rate λ = λ(t))
governing the changes of direction is analyzed in three specific cases. For the special
case λ(t) = α/t , we obtain a random motion related to the Euler–Poisson–Darboux
(EPD) equation which generalizes the well-known case treated, e.g., in (Foong, S.K.,
Van Kolck, U.: Poisson random walk for solving wave equations. Prog. Theor. Phys.
87(2), 285–292, 1992, [6], Garra, R., Orsingher, E.: Random flights related to the
Euler-Poisson-Darboux equation. Markov Process. Relat. Fields 22, 87–110, 2016,
[8], Rosencrans, S.I.: Diffusion transforms. J. Differ. Equ. 13, 457–467, 1973, [16]).
A EPD-type fractional equation is also considered and a parabolic solution (which in
dimensiond = 1has the structure of a probability density) is obtained. Planar random
motions with space-varying velocities and infinite directions are finally analyzed in
Sect. 5. We are able to present their explicit distributions, and for polynomial-type
velocity structures we obtain the hyper- and hypoelliptic form of their support (of
which we provide a picture).
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1 Introduction

The telegraph process represents a simple prototype of finite velocity randommotions
on the line, whose probability law is governed by a hyperbolic partial differential
equation that is the classical telegraph equation, widely used inmathematical physics
both in problems of electromagnetism and heat conduction (see for example [2]). In
[13], the authors studied a generalization of the classical telegraphprocesswith space-
time-varying propagation speed. Within this framework, the probabilistic model is
based on the limit of a persistent random walk on a nonuniform lattice. The con-
sequence of the assumption of a space-time-depending velocity c(x, t) is that the
probability law of the corresponding finite velocity random motion is governed by
the following telegraph equation with variable coefficients

∂

∂t

[
1

c(x, t)

∂ p

∂t

]
+ 2λ

1

c(x, t)

∂ p

∂t
= ∂

∂x

[
c(x, t)

∂ p

∂x

]
. (1.1)

In some cases, it is possible to find the explicit form of the probability law of this
generalization of the telegraph process, by solving equation (1.1) subject to suitable
initial conditions. In particular, we focus our attention on the case of space-depending
velocity, where (1.1) becomes

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c(x)

∂

∂x

[
c(x)

∂ p

∂x

]
. (1.2)

The function c(x) ∈ C1(R) represents the velocity of a particle running through point
x and thus must be c(x) ≥ 0. The transformation

y =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0

dw

c(w)
, x > 0

−
∫ 0

x

dw

c(w)
, x < 0

(1.3)

implies that
∂

∂x
= 1

c(x)

∂

∂y
(1.4)

and converts (1.2) into the classical telegraph equation. Provided that

∫ max{0,x}

min{0,x}
dw

c(w)
< +∞, (1.5)

we take y = 0 for x = 0. These conditions on c = c(x) must hold in all parts of the
paper, suitably adapted to the specific cases.

In principle, the transformation (1.3) is sufficient for converting (1.2) into the
telegraph equation with constant velocity in the frame (y, t) but we need also (1.3)
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for the necessary changes of the probability distributions. For the case where c(x) /∈
C1(R) in some isolated points, we can replace it with a suitable smoothed version
cε(x) and then apply the procedure just described and finally take ε → 0.

A possible example of velocity function is c(x) = |x |α which for 0 < α < 1
denotes a moderately increasing velocity and for α < 0 has fading off effect on
motions. Of course for α ≥ 1, the particle undergoes an accelerating process and
looses the character of a finite velocity motion.

In this paper, we consider the asymmetric telegraph process with space-varying
velocity and also the symmetric telegraph process with a nonhomogeneous Poisson
process governing the changes of space-dependent velocities.

A section is devoted to a fractional Euler–Poisson–Darboux-type equation and to
the discussion of a special class of nonnegative solutions.

While the telegraph process on the line is essentially a persistent random walk
with only two possible directions, the picture of finite velocity random motions
on the plane and in the space is more complicated and gives rise to the studies of
random flights (see for example [3–5, 15]). An interesting result, in this context, was
proved by Kolesnik and Orsingher in [12], where the connection between planar
random motions with an infinite number of possible directions and the damped
wave equation was discussed. In their model, the motion is described by a particle
taking directions θ j , j = 1, 2, ..., uniformly distributed in [0; 2π) at Poisson paced
times. The orientations θ j are i.i.d. r.v.’s independent from the homogeneous Poisson
process N (t) of rate λ governing the changes of direction. The particle starts off at
time t = 0 from the origin and moves with constant velocity c. At the epochs of the
Poisson process, the particle takes new directions (uniformly distributed in [0, 2π)),
independent from its previous evolution. Under these assumptions, it is possible to
prove that the explicit probability law of the current position (X (t),Y (t)) of the
randomly moving particle is a solution of the damped wave equation

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c2

[
∂2 p

∂x2
+ ∂2 p

∂y2

]
. (1.6)

In the last part of this paper, we consider the effect of a space-varying speed of
propagation on the model of planar randommotions with infinite possible directions,
leading to the equation

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c1(x)

∂

∂x

(
c1(x)

∂ p

∂x

)
+ c2(y)

∂

∂y

(
c2(y)

∂ p

∂y

)
. (1.7)

We show the consequence of assuming space-varying velocities on the form of the
support D of the distribution of (X (t),Y (t)). By means of the transformation (suit-
ably extended as in the one-dimensional case)

u =
∫ x

0

dw

c1(w)
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v =
∫ y

0

dz

c2(z)
,

The Eq. (1.7) is reduced to the form (1.6) and thus we can obtain the explicit dis-
tribution p(x, y, t) of (X (t),Y (t)). We then examine the form of the support of
p = p(x, y, t) and analyze its dependence on the space-varying velocity.

In the special case where c1(x) = |x |γ/c1, c2(y) = |y|β/c2, γ,β < 1, we obtain
that the boundary of D is hyperelliptic for γ = β < 0 and hypoelliptic for 1 > γ =
β > 0 and elliptic for γ = β = 0.

2 Telegraph Process with Drift and Space-Varying Velocity

In this section, we consider a generalization of the telegraph process with drift con-
sidered by Beghin et al. (see Ref. [1]) in the case where the velocity is assumed to
be space-varying. In particular, here we consider the random motion of a particle
moving on the line and switching from the space-varying (positive) velocity c(x) to
−c(x) after an exponentially distributed time with rate λ1 and from −c(x) to c(x)
after an exponential time with a different rate λ2. For the description of the random
position of the particle X (t) at time t > 0, we use the following probability densities:

{
f (x, t)dx = P{X (t) ∈ dx, V (t) = c(x)}
b(x, t)dx = P{X (t) ∈ dx, V (t) = −c(x)}, (2.1)

satisfying the system of partial differential equations (see [14] for a detailed proba-
bilistic derivation) ⎧⎪⎨

⎪⎩
∂ f

∂t
= −c(x)

∂ f

∂x
− λ1 f + λ2b

∂b

∂t
= c(x)

∂b

∂x
+ λ1 f − λ2b.

(2.2)

Defining
p(x, t) = f + b, w = f − b, (2.3)

we have the following system of equations

⎧⎪⎪⎨
⎪⎪⎩

∂ p

∂t
= −c(x)

∂w

∂x
∂w

∂t
= −c(x)

∂ p

∂x
+ λ2(p − w) − λ1(p + w).

(2.4)

Therefore, the probability law p(x, t) is governed by the following telegraph-type
equation with space-varying velocity and drift
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∂2 p

∂t2
+ (λ1 + λ2)

∂ p

∂t
= c(x)

∂

∂x
(c(x)

∂ p

∂x
) + c(x)(λ1 − λ2)

∂ p

∂x
. (2.5)

In order to eliminate the drift term and to find the explicit form of the probability
law, we now introduce the following Lorentz-type transformation of variables:

⎧⎪⎨
⎪⎩
x ′ = A

∫ x

0

dw

c(w)
+ Bt

t ′ = C
∫ x

0

dw

c(w)
+ Dt.

(2.6)

By means of some calculation we obtain that, by taking the following choice of the
coefficients appearing in (2.6)

A = D = 1, B = C = λ1 − λ2

λ1 + λ2
, (2.7)

equation (2.5) becomes the classical telegraph equation

∂2 p

∂t ′2
+ (λ1 + λ2)

∂ p

∂t ′
= ∂2 p

∂x ′2 (2.8)

and we can therefore find the following explicit probability law, starting from that
of the classical telegraph process (with λ = λ1+λ2

2 )

p(x, t) = e−λt

2

{
δ

(
t −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
)

+ δ

(
t +

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
)}

+ e−λt

2c(x)

[
λI0

(
λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2)

+ ∂

∂t
I0

(
λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2)]

× 1D(x)

}
,

where 1D is the characteristic function of the set

D :=
{
x ∈ R :

∣∣∣∣
(∫ x

0

dx ′

c(x ′)

) ∣∣∣∣ < t

}

and I0(·) is the modified Bessel function of order zero.

3 Nonhomogeneous Telegraph Processes
with Space-Varying Velocities

Let us recall that a telegraphprocessT (t), t > 0,where changes of direction are paced
by a nonhomogeneous Poisson process, denoted byN (t), with time-dependent rate
λ(t), t > 0, has distribution p(x, t) satisfying the Cauchy problem (see e.g., [10]):
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⎧⎪⎨
⎪⎩

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
= c2

∂2 p

∂x2
,

p(x, 0) = δ(x),
∂ p

∂t
(x, t)

∣∣
t=0 = 0.

(3.1)

In order to obtain explicit distributions in some specific cases, we observe that the
transformation

p(x, t) = e− ∫ t
ε λ(s)dsv(x, t), (3.2)

converts (3.1) into
∂2v

∂t2
− [λ′(t) + λ2(t)]v = c2

∂2v

∂x2
. (3.3)

In (3.2), we exclude the initial time instant (which, however, does not play any role
in the subsequent differential transformations) in order to avoid pathologies at t = 0.
Functions of the form λ(t) = α/t and λ(t) = λ coth λt , for t > 0, display an initial
high-valued intensity of the Poisson events which hinder the particle to reach the
endpoints of the support interval. Then, in order to find the explicit probability law
of T (t) from (3.1), a mathematical trick is to solve the following Riccati equation
emerging from (3.3) (see [8, 9]):

λ′(t) + λ2(t) = const. (3.4)

In this way, it is possible to find, in particular, the following probability laws with
absolutely continuous components given by

P

{
Y (t) ∈ dx

}
/dx = 1

2c cosh λt

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
, |x | < ct, (3.5)

and

P

{
X (t) ∈ dx

}
/dx =

λI0
(

λ
c

√
c2t2 − x2

)
2c sinh λt

, |x | < ct, (3.6)

corresponding to the cases {
λ(t) = λ tanh λt,

λ(t) = λ coth λt,

respectively.We observe that the processY (t) has a discrete component of the distrib-
ution concentrated at x = ±ct (see [9]),while X (t) has only an absolutely continuous
distribution (see [8]).

Starting from (3.5) and (3.6), we can clearly build other families of explicit prob-
ability laws of the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

{
Y (t) ∈ dx

}
/dx = 1

2c(x) cosh λt
∂
∂t I0

⎛
⎝λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2
⎞
⎠ ,

P

{
X (t) ∈ dx

}
/dx = λ

2c(x) sinh λt I0

⎛
⎝λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2
⎞
⎠ ,

for

{
x :
∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣ < t

}
,

(3.7)

which depend on the particular choice of c(x) > 0 (s.t. condition (1.5) is fullfilled for
all x). These probability laws are clearly related to the following partial differential
equations: ⎧⎪⎪⎨

⎪⎪⎩

∂2 p

∂t2
+ 2λ tanh λt

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
,

∂2 p

∂t2
+ 2λ coth λt

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
,

(3.8)

respectively.
Another interesting case is λ(t) = α

t , which converts Eq. (3.1) into the classical
Euler–Poisson–Darboux equation

∂2u

∂t2
+ 2α

t

∂u

∂t
= ∂2u

∂x2
, x ∈ R, t > 0. (3.9)

The first probabilistic interpretation of the fundamental solution of the EPD equa-
tion was given by Rosencrans in [16] and some of its generalizations have been
considered in [8]. In the spirit of the previous observations, we have that the solution
of the Cauchy problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2v

∂t2
+ 2α

t

∂v

∂t
= c(x)

∂

∂x
c(x)

∂v

∂x
,

v(x, 0) = δ(x),

∂v
∂t

∣∣∣∣
t=0

= 0

(3.10)

can be written as

v(x, t) = 1

B(α, 1
2 ) c(x)t

⎛
⎜⎜⎜⎝1 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2

t2

⎞
⎟⎟⎟⎠

α−1

, for

{
x :
∣∣∣∣
∫ x

0

dw

c(w)

∣∣∣∣ < t

}
.

(3.11)
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We finally observe that it is possible to consider other cases of nonhomogeneous
telegraph processes with space-dependent velocities according to the following sim-
ple steps:

• Consider the equation

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
, (3.12)

governing a telegraph process on the line, where the changes of direction are given
by a nonhomogeneous Poisson process with a deterministic time-dependent rate
λ(t) and with space-dependent velocity c(x).

• Define the new variables x ′ = ∫ x
0

du
c(u)

and t ′ = ∫ t
0 γ(s)ds, where γ(t) is a

C1[0,+∞) function that will be defined in the next step;
• In the new variables, we have that p(x ′, t ′) satisfies the equation

γ2(t ′)
∂2 p

∂t ′2
+ (

γ′ + 2λγ
) ∂ p

∂t ′
= ∂2 p

∂x ′2 ; (3.13)

• Take γ(t) such that γ′
γ

= −2λ(t). Then the problem is finally reduced to the fol-
lowing D’Alembert equation with a time-depending coefficient

∂2 p

∂t ′2
= 1

γ2(t ′)
∂2 p

∂x ′2 . (3.14)

• By taking the further change of variable (x ′, t ′) → (γ(t ′)x ′, t ′) and calling x ′′ =
γ(t ′)x ′ we finally reduce Eq. (3.14) to the classical D’Alembert equation in the
variables (x ′′, t ′)

∂2u

∂t ′2
= ∂2u

∂x ′′2 . (3.15)

Thus an observer in the framework (x ′′, t ′) sees the original random motion trans-
formed into a deterministic one governed by the classical D’Alembert equation.

4 Time-Fractional Euler–Poisson–Darboux Equation
with Variable Velocity

We here provide some new results about the Euler–Poisson–Darboux equation
involving time-fractional derivatives in the sense of Riemann–Liouville (see [11])
and with space-varying velocity. It is well known that the EPD equation governs a
telegraph process with time-dependent rate λ(t) = α/t . As far as we know this is
the first investigation about the time-fractional EPD equation.
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Theorem 4.1 The d-dimensional time-fractional EPD-type equation

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
u = �u, (4.1)

with ν ∈ (0, 1) \ { 12 , 1
3 ,

1
4 ,

1
5 } and

C1 = −�(1 − 4ν)

�(1 − 5ν)
, (4.2)

admits the following nonnegative solution:
for C2 > 0

u(xd , t) =
⎧⎨
⎩

1

tν

[
1 − C2

‖xd‖2
t2ν

]
, ‖xd‖ < tν

C1/2
2

,

0 elsewhere,
(4.3)

while for C2 < 0

u(xd , t) = 1

tν

[
1 − C2

‖xd‖2
t2ν

]
, ∀ xd ∈ R

d (4.4)

where xd = (x1, x2, . . . , xd), d ∈ N and

C2 = − 1

2d

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]

Proof By considering that (4.1) has the structure of an EPD equation, we determine
a parabolic-type solution. By using the well-known fact that (see [11], p. 71)

∂αtβ

∂tα
= �(β + 1)tβ−α

�(β + 1 − α)
, for α > 0 and β > −1, (4.5)

we can calculate the exact form of the coefficient C2 such that (4.3) is a solution
of (4.1). We assume that ν 
= 1

2 ,
1
3 ,

1
4 ,

1
5 in order to avoid the singularities in the

coefficients appearing in C1 and C2. �

Remark 4.2 It is possible to construct a probability law with compact support, start-
ing from the general Theorem 4.1 in the one-dimensional case, assuming that ν is
such that C2 is positive. In this case, we have that the probability law

p(x, t) = N

tν

[
1 − C2

|x |2
t2ν

]
, |x | <

tν

C1/2
2

, (4.6)
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with

C2 = −1

2

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]

and N = 3
4

√
C2 the normalizing constant satisfies the one-dimensional

time-fractional EPD-type Eq. (4.1).
We remark that it is not a trivial matter to find the explicit values of ν ∈ (0, 1) such
that the coefficient C2 > 0.

Notice that it is extremely hard to ascertain that functions of the form

u(x, t) = N

tβ

(
1 − ‖xd‖2

tα

)γ

(4.7)

are solutions of (4.1) for γ 
= 1 and suitable β and α.
We can also observe, with the following Proposition, that we are able to find a

solution for a time-fractional EPD-type equation of higher order.

Proposition 4.3 The d-dimensional time-fractional EPD-type equation

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
u =

d∑
j=1

∂2nu

∂x2nj
, n ∈ N, (4.8)

with ν ∈ (0, 1) \ { 12 , 1
3 ,

1
4 ,

1
5 } and

C1 = −�(1 − 4ν)

�(1 − 5ν)
, (4.9)

admits the following nonnegative solution:
for C2 > 0

u(x1, . . . , xd , t) =

⎧⎪⎪⎨
⎪⎪⎩

1
tν

[
1 − C2

∑d
j=1 x

2n
j

t2ν

]
,

d∑
j=1

x2nj <
t2ν

C2
,

0 elsewhere

(4.10)

and for C2 < 0

u(x1, . . . , xd , t) = 1

tν

[
1 − C2

∑d
j=1 x

2n
j

t2ν

]
, ∀ xd ∈ R

d (4.11)

where d ∈ N and

C2 = − 1

(2n)!d
[

�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]
.
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Starting from (4.6), we have the following corollary.

Corollary 4.4 Taking ν ∈ (0, 1) such that C2 > 0, the probability law

p(x, t) = N

c(x)tν

⎡
⎢⎢⎢⎣1 − C2

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2

t2ν

⎤
⎥⎥⎥⎦ , for

{
x :
∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣ <
tν

C1/2
2

}
,

(4.12)
with N = 3

4

√
C2 and

C2 = −1

2

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]
,

satisfies the time-fractional EPD-type equation with nonconstant coefficients

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
p = c(x)

∂

∂x
c(x)

∂ p

∂x
, (4.13)

with

C1 = −�(1 − 4ν)

�(1 − 5ν)
.

5 Planar Random Motions with Space-Varying Velocity

Westart our analysis from thedampedwave equationwith space-dependingvelocities
as follows:

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c1(x)

∂

∂x
c1(x)

∂ p

∂x
+ c2(y)

∂

∂y
c2(y)

∂ p

∂y
. (5.1)

By taking the change of variables

⎧⎪⎪⎨
⎪⎪⎩
z =

∫ x

0

dx ′

c1(x ′)

w =
∫ y

0

dy′

c2(y′)
, (x, y) ∈ R

2,

(5.2)

we obtain
∂2 p

∂t2
+ 2λ

∂ p

∂t
= ∂2 p

∂z2
+ ∂2 p

∂w2
. (5.3)

The transformation (5.2)must be extendedon thewhole plane (x, y) ∈ R
2 by suitably

adapting the considerations discussed in the introduction. The absolutely continuous



36 R. Garra and E. Orsingher

component of the distribution of the position (X (t),Y (t)) of the moving particle
performing the planar motion described in the introduction satisfies (5.3) (see [12]).
Therefore, returning to the original variables (x, y), we are able to understand the
role played by the variable velocity on the model considered in [12]. The absolutely
continuous component of the probability law is given by

p(x, y, t) = λ

2πc1(x)c2(y)

exp

{
− λt + λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2}

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2

,

(5.4)

provided that both c1(x) and c2(y) are positive and such that
∫ max{0,x}

min{0,x}
dx ′

c1(x ′)
< ∞

for all x ∈ R and
∫ max{0,y}

min{0,y}
dy′

c2(y′)
< ∞ for all y ∈ R, respectively.

Therefore, the support of p(x, y, t) is given by the set

D :=
{
(x, y) :

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

+
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2

< t2
}
. (5.5)

The set D is therefore a deformation of the circle representing the support of
(X (t),Y (t)) in the case of constant velocity. From formula (5.4), we can extract the
conditional distribution of this class of generalized planar random motions. Since

P{X (t) ∈ dx, Y (t) ∈ dy} =
∞∑
n=0

P{X (t) ∈ dx, Y (t) ∈ dy|N (t) = n}P{N (t) = n}dxdy, (5.6)

where P{N (t) = n} is the homogeneous Poisson distribution of rate λ, we have that
the conditional distribution is obviously given by

P{X (t) ∈ dx,Y (t) ∈ dy|N (t) = n}

= n

2πtn

[
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2] n

2 −1 dxdy

c1(x)c2(y)
. (5.7)

The planar motion with space-varying velocity after n changes of direction can be
described as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X (t) =
n+1∑
j=1

(∫ t j

t j−1

c1(X (s))ds

)
cos θ j

Y (t) =
n+1∑
j=1

(∫ t j

t j−1

c2(Y (s))ds

)
sin θ j ,

(5.8)
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where 0 = t0 < t1 < · · · < t j < · · · < tn < tn+1 = t are the epochs of the Poisson
process and θ j are the directions of motion assumed at times t j . The reader can
ascertain that (5.8) coincides with equation (12) of [12] in the case c1 = c2 = const..

The intuitive idea underlying (5.8) is that at Poisson times t j the particle chooses
its direction randomly and the displacement performed is determined by the local
velocity field. During (s, s + ds), for example, the x-coordinate makes a step of
length c1(X (s))ds depending on the position occupied at time s.

We also observe that we can arrive at (5.7) by expanding (5.4) and then using (5.6).
In order to understand the role of considering different velocities on both axes,

we consider a general domain that includes some interesting cases. It corresponds
to taking the space-dependent velocities of the form c1(x) = |x |γ

c1
and c2(y) = |y|β

c2
,

with γ,β < 1 and c1, c2 > 0. The functions c1(x) and c2(x) considered here can be
regarded as the limit of approximating smooth functions excluding x = y = 0. With
this choice, we obtain a family of probability laws concentrated inside domains of
the form

Dγ,β :=
{
(x, y) :

(
c1|x |1−γ

1 − γ

)2

+
(
c2|y|1−β

1 − β

)2

< t2
}
. (5.9)

This means that the boundary of the support of this family of probability laws is given
by a superellipse, also known as a Lamé curves including a wide class of geometrical
figures like hypoellipses (for γ = β < 0) and hyperellipses (for γ = β > 0). We
consider, in particular, two interesting cases.

The first one is the case in which c1(x) = c1 and c2(y) = c2 and c1 
= c2 
= 0. In
this case, the support of the probability law is clearly given by the ellipse:

D0,0 :
{
(x, y) : c21|x |2 + c22|y|2 < t2

}
. (5.10)

The second interesting case is given by the choice c1(x) = c1|x |2/3 and c2(y) =
c2|y|2/3, leading to the compact support

D2/3,2/3 :
{
(x, y) : 9c21|x |2/3 + 9c22|y|2/3 < t2

}
. (5.11)

For c1 = c2 = 1/3, we obtain as boundary of D2/3,2/3 the astroid (see Fig. 1). For
c1 
= c2 
= 1, we have instead a squeezed astroid, possibly on both axes.

Another interesting class of d-dimensional random motions at finite velocities is
related to the EPD equation

∂2v

∂t2
+ 2α + d − 1

t

∂v

∂t
=

d∑
j=1

c j (x j )
∂

∂x j
c j (x j )

∂v

∂x j
. (5.12)
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Fig. 1 We represent the boundary of the compact support Dγ,β of the family of probability laws
(5.4), in the hypoelliptic (n = 2/3 leading to the astroid and n = 3/2), elliptic (n = 2), and hyper-
elliptic case (n = 3). Here, we assume that c1 = c2 = 1 and n = 2(1 − γ) = 2(1 − β). We show,
as an example, four sample paths with zero, two, three, and four changes of direction, in the case
when the random motion takes place in the astroid

In this case, the probability law p(x1, x2, . . . , xd , t) of the particle moving in the
d-dimensional space has the form

p(x1, x2, . . . , xd , t) = 1∏d
j=1 c j (x j )

�(α + d
2 )

πd/2�(α)td+2α−2

⎛
⎝t2 −

d∑
j=1

∣∣∣∣
∫ x j

0

du j

c j (u j )

∣∣∣∣
2
⎞
⎠

α−1

,

(5.13)

for
d∑
j=1

∣∣∣∣
∫ x j

0

du j

c j (u j )

∣∣∣∣
2

< t2
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and represents a solution of (5.12). The projection on the axes x1, . . . , xd of the prob-
ability law (5.13) coincides with the one-dimensional motion dealt with in Sect. 3.

A more general random motion in R
d with space-varying velocities leads to

equation

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
=

d∑
j=1

c j (x1, . . . x j , . . . , xd)
∂

∂x j
c j (x1, . . . x j , . . . , xd)

∂

∂x j
p.

(5.14)
This can be object of future research.
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Parametrix and Heat Kernel Estimates



Parametrix Methods for One-Dimensional
Reflected SDEs

Aurélien Alfonsi, Masafumi Hayashi and Arturo Kohatsu-Higa

Abstract In this article, we revisit in a didactic manner the forward and backward
approaches of the parametrix method for one-dimensional reflected stochastic differ-
ential equations on the half line.We give probabilistic expressions for the expectation
of functionals of its solution and we also discuss properties of the associated density.

Keywords Reflected SDEs · Parametrix method · Probabilistic representation

1 Introduction

Reflected stochastic differential equations appear naturally in various applications
due to the natural restrictions one has to impose to the solution of a stochastic
differential equation (SDE). From the point of view of partial differential equations,
this corresponds to the solution of parabolic differential equations with Neumann-
type conditions.

AurélienAlfonsi—This research benefited from the support of the “Chaire Risques Financiers”,
Fondation du Risque and of Labex Bézout.
Masafumi Hayashi—This research was supported by KAKENHI grant 26800061.
Arturo Kohatsu-Higa—This research was supported by KAKENHI grant 2434002.

A. Alfonsi
Université Paris-Est, 6 Et 8 Avenue Blaise Pascal, 77455 Marne La Vallée,
Cedex 2, France
e-mail: aurelien.alfonsi@enpc.fr

M. Hayashi
University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan
e-mail: hayashim6@gmail.com

A. Kohatsu-Higa (B)
Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
e-mail: khts00@fc.ritsumei.ac.jp; arturokohatsu@gmail.com

© Springer International Publishing AG 2017
V. Panov (ed.), Modern Problems of Stochastic Analysis and Statistics,
Springer Proceedings in Mathematics & Statistics 208,
DOI 10.1007/978-3-319-65313-6_3

43



44 A. Alfonsi et al.

In this article, we base our discussion on the following one-dimensional stochastic
differential equation reflected on D = (0,∞) of the type1

Xt (x) = x +
∫ t

0
σ(Xs(x)) dWs + Lt (x). (1)

Here, x ∈ D̄ = [0,∞) and W is a one-dimensional Wiener process on (Ω,F , P)

with the natural filtration (Ft )t≥0.
We say that {(Xt (x), Lt (x))}t≥0 ≡ {(Xt , Lt )}t≥0 is a solution to (1) if it satisfies

the following conditions:

L1. Both Xt and Lt are nonnegative, continuous, and Ft -adapted processes satis-
fying (1).

L2. L0 = 0 and t → Lt is increasing P-a.s.
L3. The support of the measure dLs is carried by ∂D = {0} in the following sense:

Lt =
∫ t

0
1(Xs = 0) dLs .

We will give an alternative probabilistic representation for E[ f (Xt )] which is
based on the parametrix methodology used to prove the existence and uniqueness
of fundamental solutions for parabolic partial differential equations (for a general
reference on this method, see [6]).

This method provides a Taylor like expansion for the fundamental solution of a
parabolic partial differential equation. It has been used in order to solve a variety of
problems in partial differential equations. In particular, it has been used by Valentin
Konakov and his collaborators in the past years in order to study the properties of
the Euler scheme between other Markov chain-type diffusion approximations (see
[13–15]).

One of the possible applications of a probabilistic representation is to use it for
Monte Carlo simulations. This probabilistic representation was introduced in [2]2

for the case of diffusions, although recently we have also found similar expressions
ubiquitously in other fields of probability and its applications (see, e.g., [4, 9, 21]).

This methodology produces a simulation method without bias using the reflected
Euler–Maruyama scheme for Hölder-type coefficients. This method is related with
the so-called random multilevel Monte Carlo method as described in [8] (for the
basic description of this method, see [7]) which applies it to Lipschitz coefficients in
the non-reflected case. It is also related with the so-called exact simulation methods
which only applies in one dimension as described in [5] (for the basic description of
this method, see [3]).

1We consider the reflected SDE without drift just to simplify the discussion. For a general case
scenario, see [20].
2See also, the typo-corrected version with comments on the webpage of the second author.
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On the other hand, this method may give a large variance except for particular
situations. Therefore, variance reduction methods have to be studied. Such study in
the case of diffusions without reflection has been performed in [1].

The study of reflected stochastic differential equations using the parametrix
method has been done in [20] using what we call the backward parametrix method3

The goal of this article is to give a simple introduction to these methods in the reflect-
ing SDE case. In particular, we will obtain the backward method which can be used
when coefficients are bounded and Hölder continuous. Based on this, we will also
provide the forward parametrix method.

In order to keep the article within a minimal simplicity, we have decided not to
consider multidimensional reflected SDEs. Standard modifications through bound-
ary parametrization could be applied in order to consider some classes of smooth
boundaries in themultidimensional case.We also do not discuss the oblique reflection
or sticky boundary case.

Notations: The space of measurable bounded functions f : D̄ = [0,∞) → R is
denoted by Mb(D̄). We will denote the partial derivatives of a function f with
respect to its i-th variable by ∂i f . The sup-norm of the function f will be denoted by
‖ f ‖∞. The spaceCk

b (D̄) consists of all bounded functionswith k bounded continuous
derivatives on D̄ where the derivatives and the continuity at 0 are understood with the
right limits at 0 only. For k ∈ (0, 1), Ck

b (D̄) denotes the class of bounded functions
which are k-Hölder continuous with a bounded Hölder constant.

As usual, constants are denoted by the letters K or C and, in the proofs of upper
bounds, they may change value from one line to the next. Indicator functions may be
denoted indifferently using 1A(x) or 1(x ∈ A). We also remark that in each section a
different approximation process is used and although the same symbol X̄ maybe used,
this may denote a different approximation which is clearly stated at the beginning of
each section.

2 Reflected SDEs and its Approximation Process

In this section, we start with a general review of reflected stochastic differential
equations and their approximations.

Let {Wt }t≥0 be a one-dimensional standard Brownian motion on the canonical
filtered probability space (Ω,F , {Ft }t≥0, P).

3The reason for the use of “backward” on this terminology is that one uses an Euler scheme which
runs backward in time. Researchers in parabolic partial differential equation prefer the terminology
forward because the method corresponds to the application of the forward Kolmogorov equation
to the density of X . As the current article deals with approximations using the Euler scheme, we
will keep using the former terminology. The forward method was known as early as [11]. See [10]
for a translation (see also the historical references there). The backward method appeared in [19].
Thanks to Valentin for these references. The essential idea for the method was first introduced for
elliptic equations and is due to [17].
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We assume that the coefficients of the SDE (1) satisfy the following hypotheses:

(H) a: = σ2 is uniformly elliptic and bounded:

0 < a: = inf
x∈D̄

a(x) ≤ sup
x∈D̄

a(x) =: a.

(Hf) σ: D̄ → R is such that σ ∈ C2
b (D̄).

(Hb) σ: D̄ → R is such that a ∈ Cα
b (D̄).

The hypothesis (H) will always be in force. Hypothesis (Hf) will be assumed in the
forward method and the Hypothesis (Hb) will be used in the backward formulation.

For standard results on the existence and uniqueness of solutions for reflected
SDEs and their properties, we refer the reader to, e.g., Lions–Sznitman [18] under
(H) and Tsuchiya [20] under (Hb).

We define

Pt f (x) = E[ f (Xt (x))]. (2)

Then Pt is a Feller semigroup and its generator, denoted byL , can be described for
f ∈ D : = { f ∈ C2

b (D̄): f ′(0) = 0} as

L f (x) = 1

2
a(x)∂2

x f (x)1D(x). (3)

For more details, see Lemma 2.2. We recall that the main result in [20] implies that
for any measurable and bounded function f : D̄ → R then Pt f ∈ C2

b (D̄) for any
t ∈ (0, T ] and (Pt f )′(0) = 0. That is, Pt f ∈ D .

These results may seem difficult to digest for a probability audience without much
training on analysis. Therefore, this article only uses as a basis the results in [18] and
we will reprove the statements in [20] under the present simplified setting using an
argument which has a probabilistic flavor.

Before introducing the reader to the parametrix method, we will first discuss an
approximation process which is usually called the parametrix. The approximation
process to be used will be the reflected Brownian motion.

Let x, z ∈ D̄ be fixed, and we consider the following SDEwith frozen coefficients
and with reflecting boundary conditions:

X̄ (z)
t (x) = x + σ(z) · Wt + L̄(z)

t (x). (4)

We say that (X̄ (z)
t (x), L̄(z)

t (x)) is a solution to (4) if (X̄ (z)
t (x), L̄(z)

t (x)) satisfies the
following conditions:

A1. X̄ (z)
t (x) ≥ 0 and L̄(z)

t (x) are continuous progressively measurable processes
satisfying (4);

A2. L̄(z)
0 (x) = 0 and t → L̄(z)

t (x) is increasing P-a.s.;
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A3. the measure d L̄(z)
s is carried by ∂D:

L̄(z)
t (x) =

∫ t

0
1
(
X̄ (z)
s (x) = 0

)
d L̄(z)

s (x).

It is known (see e.g., Lemma 6.14 in Chap.3 of Karatzas and Shreve [12]) that there
is a unique pathwise solution to (4), which is given by

L̄(z)
t (x) = max{0, max

0≤s≤t
{−(x + σ(z)Ws)}}. (5)

For a Brownian motion B, Tanaka’s formula yields that |x + σ(z)Bt | = x + σ(z)
∫ t
0

sgn(x + σ(z)Bs) dBs + Kt , where K is an increasing process supported by the set
{s; x + σ(z)Bs = 0}. By Lévy’s theorem, the martingale

∫ ·
0 sgn(x + σ(z)Bs) dBs is

a Brownian motion. Thus, (|x + σ(z)B|, K ) also satisfies (4) and has the same law
as (X̄ (z)(x), L̄(z)(x)). In particular, we get that X̄ (z)

t admits the density

P(X̄ (z)
t (x) ∈ A) =

∫
A
π̄(z)
t (x, x ′) dx ′,

where for x, x ′ ≥ 0

π̄(z)
t (x, x ′) = H̃0(x

′ − x, a(z)t) + H̃0(x
′ + x, a(z)t). (6)

Here, we use the following notation for Hermite-type functions

H̃n(x, a) =
(

d

dx

)n [
1√
2πa

exp(− x2

2a
)

]
. (7)

Using this notation, one has for x, x ′ ≥ 0 and i ∈ N the following general formulas
for the derivatives4 of the density function π̄(z):

∂i
x ′∂ j

x π̄
(z)
t (x, x ′) = (−1) j H̃i+ j (x

′ − x, a(z)t) + H̃i+ j (x
′ + x, a(z)t), (8)

∂i
t π̄

(z)
t (x, x ′) = 2−i a(z)i∂2i

x ′ π̄
(z)
t (x, x ′) = 2−i a(z)i∂2i

x π̄(z)
t (x, x ′).

By using Hypothesis (H) and the following lemma is also known as the space-time
inequality Lemma 2.1 below, we get the upper bound

∣∣∣∂i
x ′∂ j

x π̄
(z)
t (x, x ′)

∣∣∣ ≤ Ct−(i+ j)/2
(
H̃0(x

′ − x, 2at) + H̃0(x
′ + x, 2at)

)
, (9)

where C > 0 depends on i, j, a, and a but is independent of t .

4By these properties, it may appear at first that the symmetry of the density π̄
(z)
t (x, x ′) with respect

to the variables (x, x ′) is important, but in fact this is not the case. This can be seen if one considers
the general case including a drift coefficient like in [20].
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Lemma 2.1 Let n ∈ N and k ≥ 0 then there exists universal constants Cn,k that do
not depend on a such that for all x ∈ R and any a > 0,

|x |k |H̃n(x, a)| ≤ Cn,ka
(k−n)/2 H̃0(x, 2a). (10)

Proof Let ϕ(x) = e−x2/2. We have H̃n(x, a) = 1√
2πaan/2 ϕ

(n)( x√
a
) and thus (10) with

Cn,k = √
2 supx∈R

{
|x |k |ϕ(n)(x)| exp( x24 )

}
< ∞. �

We define the approximating semigroup as

P̄ (z)
t f (x) = E[ f (X̄ (z)

t (x))], (11)

anddenote by L̄ (z) = a(z)
2 ∂2

x its generator.Recall thatD = { f ∈ C2
b (D̄): f ′(0) = 0}.

Note that the condition f ′(0) = 0 is related to the Neumann condition of the partial
differential equation associated to (1).

Lemma 2.2 For t > 0, z ≥ 0 we have that π̄(z)
t (·, ·) ∈ C∞

b (D̄ × D̄) and ∂x π̄
(z)
t

(0, x ′) = 0. For any bounded measurable function f , we have that P̄ (z)
t f ∈ D . Fur-

thermore, for f ∈ D , we have for x ∈ D̄, t > 0,

lim
h→0+

1

h
(P̄ (z)

h f (x) − f (x)) = L̄ (z) f (x),

∂t P̄
(z)
t f (x) = P̄ (z)

t L̄ (z) f (x) = L̄ (z) P̄ (z)
t f (x),

lim
h→0+

1

h
(Ph f (x) − f (x)) = L f (x), ∂t Pt f (x) = PtL f (x).

Proof The proof of the first part of the above statement follows from (8) by direct
calculation.

Let t ≥ 0, h > 0. Itô’s formula for semimartingales yields that for f ∈ D

f (Xt+h(x)) − f (Xt (x)) =
∫ t+h

t

a(Xs(x))

2
f ′′(Xs(x))ds +

∫ t+h

t
f ′(Xs(x))dLs(x)

+
∫ t+h

t
f ′(Xs(x))dWs .

From f ′(0) = 0 and (L3), we get
∫ t+h
t f ′(Xs(x))dLs(x) = 0. By taking the expecta-

tion, we get Pt+h f (x) = Pt f (x) + ∫ t+h
t PsL f (x)ds, which gives the desired result

since s �→ PsL f (x) = 1
2 E[a(Xs(x)) f ′′(Xs(x))] is continuous. �

3 The Backward Method

Through this section, we will assume that hypotheses (H) and (Hb) hold.
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3.1 Presentation of the Backward Method

To start describing the backward method, we define the operator

Pt f (x) =
∫

f (x ′)π̄(x ′)
t (x, x ′)dx ′. (12)

For f ∈ Mb, the function x �→ Pt f (x) is well defined and finite, and we have
from (H) and (6) that ‖Pt f ‖∞ ≤ √

a/a‖ f ‖∞. Besides, from (9) and Lebesgue’s

theorem, the partial derivatives ∂k
t ∂

l
xPt f (x) = ∫

f (x ′)∂k
t ∂

l
x π̄

(x ′)
t (x, x ′)dx ′ are well

defined and satisfy |∂k
t ∂

l
xPt f (x)| ≤ Ct−(k+l/2)‖ f ‖∞, where C > 0 is a constant

depending on k, l, a, and a. Using (8), we have

∀t > 0,Pt f ∈ D and ∂tPt f (x) =
∫

f (x ′)L̄ (x ′)π̄(x ′)
t (·, x ′)(x)dx ′. (13)

The operator P may look strange at first sight, and in general x ′ �→ π̄(x ′)
t (x, x ′)

is not a density function. However, one may interpret it as a “reversed” transition
operator5 and we have for f, g continuous with bounded support the duality formula:

∫
g(x)Pt f (x)dx =

∫
P̄ (x ′)
t g(x ′) f (x ′)dx ′.

Now we will define the operator which will measure the distance between the
marginal lawof the approximation and themarginal lawof the solution of the reflected
SDE. That is, we define

St ( f )(x) := (L − ∂t )Pt f (x)

=
∫

f (x ′)(L − L̄ (x ′))π̄(x ′)
t (·, x ′)(x)dx ′.

In the formula above, we see that one applies the difference of the generators of
the processes X and X̄ (x ′)

t to the “density” of the “reversed” approximating reflected
SDE. Then one has that

St ( f )(x) =
∫ ∞

0
f (x ′)θ∗

t (x, x
′)π̄(x ′)

t (x, x ′)dx ′ (14)

θ∗
t (x, x

′) = 1

2
(a(x) − a(x ′))∂2

x π̄
(x ′)
t (x, x ′)(π̄(x ′)

t (x, x ′))−1, for x, x ′ ≥ 0.

Lemma 3.1 Let f ∈ C0
b (D̄) then limt↓0 Pt f (x) = f (x), x ≥ 0.

5That is, through a proper renormalization onemay say that π̄(x ′)
t (x, x ′) is proportional to the density

of a reflected Brownian motion at the point x ≥ 0 which starts at x ′ with diffusion coefficient σ(x ′).
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Proof We will discuss the case x > 0, the case x = 0 follows similarly. From (6),
we have

Pt f (x) =
∫ ∞

0

f (x ′)√
2πa(x ′)t

[
e− (x ′−x)2

2a(x ′)t + e− (x ′+x)2

2a(x ′)t

]
dx ′

=
∫ ∞

−∞
1(ξ ≥ −x√

a(x)t
)
f (x(t, ξ))

√
a(x)√

2πa(x(t, ξ))

[
e− a(x)ξ2

2a(x(t,ξ)) + e− (x(t,ξ)+x)2

2a(x(t,ξ))t

]
dξ,

by using the change of variable x ′ = x + √
a(x)tξ =: x(t, ξ). The integrand is dom-

inated by 2 ‖ f ‖∞
√
a√

2πa
e− aξ2

2a , which gives the claim by Lebesgue’s theorem. �

The idea of the parametrix method is to obtain a Taylor expansion. As in the
classical Taylor formula a first step toward obtaining it is the mean value theorem or
the first-order Taylor formula with residue.

Lemma 3.2 Let f : D̄ → R be a measurable and bounded function. Then for any
0 < s < t < T we have that

E[PT−t f (Xt )] − E[PT−s f (Xs)] =
∫ t

s
E[ST−u f (Xu)]du. (15)

Proof SincePt f (x) ∈ C1,2((0, T ] × D̄), we can apply Itô’s formula. The stochastic
integral has a null expectation since ∂xPT−u f is bounded for u ∈ [s, t], and we
obtain (15) by using (13).

Now we are getting close to the first-order expansion. In fact, for t ↑ T , we have
that E[PT−t f (Xt )] → E[ f (XT )] and for s ↓ 0, we have that E[PT−s f (Xs)] →
PT f (x) which is the approximation. Therefore, the right side of (15) represents the
residue of first order for the Taylor formula.

In order for this argument to work, we need to repeat the previous arguments in
order to show uniform integrability as s ↓ 0 and t ↑ T of the integrand on the right
side of (15). This will lead to obtain a linear relation which can be iterated as is the
case in Taylor expansions.

Theorem 3.1 Let (H) and (Hb) hold. Then, for f ∈ Mb and u > 0, there exists a
positive universal constant C independent of u, f , and x such that

|Su f (x)| ≤ C‖ f ‖∞
u1−α/2

. (16)

In particular, when f ∈ C0
b , |E[ f (XT )] − PT f (x)| ≤ C‖ f ‖∞T α/2 and we have

E[ f (XT )] − PT f (x) =
∫ T

0
E[ST−u f (Xu)]du. (17)
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Proof For x, x ′ ≥ 0, we have

∣∣∣(L − L̄ (x ′))π̄(x ′)
u (·, x ′)(x)

∣∣∣ =
∣∣∣∣12 (a(x) − a(x ′))

(
H̃2(x

′ − x, a(x ′)u) + H̃2(x
′ + x, a(x ′)u)

)∣∣∣∣
≤C |x − x ′|α

(∣∣∣H̃2(x
′ − x, a(x ′)u)

∣∣∣ +
∣∣∣H̃2(x

′ + x, a(x ′)u)

∣∣∣
)

≤ C

u1−α/2

(
H̃0(x

′ − x, 2au) + H̃0(x
′ + x, 2au)

)
, (18)

by using Lemma 2.1 for the last inequality. This gives (16). Then, we use Lemma
3.1 to take limits on (15) when s ↓ 0 and t ↑ T and get (17). �

Remark 1 Wenote that the above argument does not use the continuity of the operator
Pt in L2(D̄) directly which is important if one wants to define the dual operator.
This point is essential when using semigroup theory arguments. In fact, one may
define Pt :C∞

c (D̄K ) ⊆ L2(D̄K ) → L2(D̄K ) for D̄K = D̄ ∩ [0, K ] with Pt f (x) :=
E[ f (Xt (x))]. This assertion follows as

∫
D̄ g(x)Pt f (x)dx ≤ ‖ f ‖∞‖g‖L1(D̄K ). Then

the dual operator of Pt can be defined as an unbounded operator as well as its
generator. Still, the actions of these operators on C∞

c (D̄K ) are well understood, and
therefore proofs can be carried out. Once the proofs are obtained as in [2], then one
may take the limit as K ↑ ∞.

As stated previously, formula (15) is a first-order Taylor formula and now our
goal is to iterate and eventually obtain an infinite-order Taylor expansion. In order
to do this, there are two issues to tackle. The first is to prove that ST−u f ∈ C0

b in
order to iterate the formula using the same procedure. Second, we need to obtain a
bound for the iterations in order to be able to prove that the infinite sums converge
and that the residue converges to zero. We do all this in the next lemma, for which
we introduce the following notation:

• for (possibly non-commutative) operators A j , j = 1, . . . , n, we use the shorthand
notation

∏n
j=1 A j := An . . . A1,

• we denote by Eα,β(z) the Mittag–Leffler function:

Eα,β(z) :=
∞∑
k=0

zk

Γ (β + αk)
, z ∈ C, α,β > 0,

• for f : D̄ → R bounded measurable and T > 0, we define

In
T f (x) =

∫ T

0
. . .

∫ v2

0
Pvn+1−vn

n−1∏
j=0

Sv j+1−v j f (x)dv1 . . . dvn,

where v0 = 0 and vn+1 = T .
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Lemma 3.3 For f ∈ C0
b (D̄), we have

E[ f (XT )] =
∞∑
i=0

I i
T f (x),

where the sum converges uniformly on x ≥ 0 and on compact sets for T .

Proof Let u1 ∈ [0, T ). The function f 1T−u1
:= ST−u1 f is bounded by Theorem 3.1

and continuous by (13) and (Hb). We can thus use the second result of Theorem 3.1
and get

E[ f 1T−u1(Xu1)] − Pu1 f
1
T−u1(x) =

∫ u1

0
E[Su1−u2 f

1
T−u1(Xu2)]du2.

Furthermore, the bounds obtained in Theorem 3.1 give

∣∣Su1−u2 f
1
T−u1(Xu2)

∣∣ ≤ C‖ f 1T−u1
‖∞

(u1 − u2)1−α/2
≤ C2‖ f ‖∞

((T − u1)(u1 − u2))1−α/2
.

We therefore obtain from Theorem 3.1 that

E[ f (XT )] − PT f (x) =
∫ T

0
Pu1ST−u1 f (x)du1

+
∫ T

0

∫ u1

0
E[Su1−u2ST−u1 f (Xu2)]du2du1.

This is a second-order Taylor expansion and the integrability of the second order is
assured. The residue is bounded by

∫ T

0

∫ u

0

C2‖ f ‖∞
((T − u1)(u1 − u2))1−α/2

du2du1 = 2C2

α
‖ f ‖∞

∫ T

0

uα/2

(T − u)1−α/2
du

= 2C2

α
‖ f ‖∞T αB(1 + α/2,α/2),

where B(a, b) := ∫ 1
0 ua−1(1 − u)b−1du = Γ (a)Γ (b)

Γ (a+b) denotes the Beta function. By
repeating the argument iteratively and by using the change of variables vi = T − ui ,
we get that

E[ f (XT )] =
n−1∑
i=0

I i
T f (x) + Rn(T, x)

Rn(T, x) :=
∫ T

0
...

∫ un−1

0
E

⎡
⎣n−1∏

j=0

Su j−u j+1 f (Xun )

⎤
⎦ dun . . . du1.
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Furthermore, the following estimates are satisfied for n = 1, . . .

|In
T f (x)| + |Rn f (T, x)| ≤Cn‖ f ‖∞T nα/2

Γ (1 + nα/2)
. (19)

We get
∑∞

i=0 ‖I i
T f ‖∞ ≤ ‖ f ‖∞Eα/2,1(CT α/2), which gives the claim. �

Before continuing into the main theoretical results, we will give now the proba-
bilistic representation.

The interpretation of the argument presented here should be clear. In fact, when
proving a first-order Taylor expansion formula for a smooth function f , one usually
defines g(α) = f (x + α(y − x)), α ∈ [0, 1], then one obtains

f (y) − f (x) = g(1) − g(0) =
∫ 1

0
g′(s)ds =

∫ 1

0
f ′(x + α(y − x))(y − x)ds.

The same heuristic argument has been applied before. In fact, formula (15) is
the equivalent to the above formula. The derivative concept above now becomes
L − L̄ (x ′) in the definition of the difference operator S which at the same time
measures the distance between the reflected stochastic differential equation and its
approximation.

3.2 The Backward Simulation Method

To clarify how the probabilistic representation will be obtained, let us do first the
representation for I1. We have

I1
t ( f )(x) =

∫ t

0
du1Pu1St−u1( f )(x)

=
∫ t

0
du1

∫
f (y2)θ

∗
t−u1(y, y2)π̄

(y2)
t−u1(y2, y)π̄

(y)
u1 (y, x)dydy2.

Note that in the above expression, we have used the symmetry of the density π̄(z) in
the space arguments. Now suppose for simplicity that f is a density function. Then
the probabilistic kernels f (y2)π̄

(y2)
t−u1(y2, y)π̄

(y)
u1 (y, x)dy2dy can be interpreted as a

Markov chain which starts from a point X0 randomly chosen using the density f and
whose transitions are obtained following the density y2 → π̄

(y2)
t−u1(y2, X0) which is

finally evaluated at the function y → π̄
(y)
u1 (y, x).6 Adding a Poisson process N with

parameter λ and the random jump times τ j , j ∈ N, gives the following simulation

6When f is not a density function, one has to draw the initial point according to some density
funtion q0 and then multiply by the well-defined weight f (y2)

q0(y2)
.That is, we apply an importance

sampling method.



54 A. Alfonsi et al.

method. Let Θ∗(t, x, y) = θ∗
t (x, y) as in (14) and let us suppose that f is a density

function. Therefore, we have the following result.

Theorem 3.2 Let f : D̄ → R+ be a continuous and bounded density function. Sup-
pose that the assumptions (H) and (Hb) are satisfied. Then

E[ f (XT (x))] = E

[
π̄
X τNT
T−τNT

(x, X τNT
)MT

]
, (20)

MT := eλTλ−NT

NT −1∏
j=0

Θ∗(τ j+1 − τ j , X τ j+1 , X τ j ). (21)

The above product is interpreted as being equal to 1 if NT = 0. Furthermore,
E[|MT |] < ∞.

The result on the finiteness of the first moment of MT can be achieved using
the space-time inequalities like it was done in the proof of Lemma 3.3. In fact,
E[|MT |] = ∑∞

i=0 |I i
T g(x)|with g = 1, which is smaller than Eα/2,1(CT α/2) by using

the bound just after (19).
From the above interpretation, one sees that the simulationmethod goes backward

with respect to the dynamics of X .
Simulation method
1. Let τ0 = 0, Λ0 = 1, and X̄0 be a random variable with density function f .
For i = 0, 1, . . . , perform the following steps:
2. Simulate an exponential random variable Ei+1 with parameter λ and set τi+1 =

τi + Ei+1.
3. If τi+1 > T , go to step 6. Otherwise continue with 4.
4. Compute X τi+1 = Zi+1

τi+1−τi (X τi ) where Zi+1 is computed using the simulation
method given in Lépingle [16]. That is,

Zi+1
τi+1−τi

(X τi ) = X τi + σ(X τi )Gi+1
√

τi+1 − τi + max{0,−X τi + Yi }
Yi = 1

2

{
−σ(X τi )Gi+1

√
τi+1 − τi + (

a(X τi )Vi+1 + a(X τi )G
2
i+1(τi+1 − τi )

)1/2}
.

HereGi+1 is a standard Gaussian random variable and Vi+1 is an exponential random
variable with parameter (2(τi+1 − τi ))

−1.
5. Next one computes Λi+1 = ΛiΘ

∗(τi+1 − τi , X τi+1 , X τi ). Go back to 2.
6. The final simulation value is

S = eλTλ−NT π̄
X τNT
T−τNT

(x, X τNT
)ΛNT .

Here, NT = max{i; τi < T }. Finally, repeat steps 1–6 as many times as the Monte
Carlo simulation requires and take the average.
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Remark 2 The simulation method based on (20) assumes that f is a density function
which generates the random starting point of the reflected Euler scheme. Heuristi-

cally, the appearance of the kernel function π̄
X τNT
T−τNT

(x, X τNT
) measures how close is

the final point of the simulation to the starting point x of the reflected stochastic dif-
ferential equation X . In this sense, this method uses an approximation to a reflected
diffusion bridge. For this reason, its performancemay strongly depend on the point x .

Finally, we can take limits in the above formula to obtain the final result for this
section, which completes the backward formulation.

Theorem 3.3 Let f ∈ Mb(D̄) then

E[ f (XT )] =
∞∑
i=0

I i
T f (x). (22)

Furthermore, PT f ∈ D , ∂t Pt f (x) = LPt f (x), and the density of XT , denoted by
pT (x, y), exists and it belongs to the space C0,2((0, T ] × D̄) as a function of (T, x).
Besides, it satisfies the boundary condition ∂x pT (0, y) = 0. Its probabilistic repre-
sentation for its density pT (x, y) is given by (20) for X̄0 = y. In analytical terms,
one has

pT (x, y) = π̄
(y)
T (x, y) +

∞∑
i=1

I i
T δy(x) (23)

In
T δy(x) :=

∫ T

0
. . .

∫ v2

0
Pvn+1−vn

n−1∏
j=0

Sv j+1−v j δy(x)dv1...dvn,

St (δy)(x) := θ∗
t (x, y)π̄

(y)
t (x, y). (24)

In the above definition of In
T δy(x), we use δy to make it reminiscent of the Dirac

delta distribution function. For the unexperienced reader, In
T δy(x) should just be

interpreted as the definition of a function which depends on (T, x, y) and the para-
meter n. A similar remark applies for St (δy)(x).

Note that in particular, the above results imply that ∂t Pt f (x) = L Pt f (x) which
complements the results in Lemma 3.1. Furthermore, the simulation method previ-
ously described can also be generalized for f ∈ Mb(D̄).

Proof The extension to functions f ∈ Mb(D̄) is obtained by a direct application of
the functional monotone theorem.

The result on the density is a particular case of Theorem 3.3 of [20] (see Fried-
man [6], Chap. 1 for a general description of the parametrix method). Here, we just
give a brief idea of its proof. First one shows that the expansion (23) holds. To do
so, we consider the transition density π̂t (x, y) = H̃0(y − x, 2āt) + H̃0(y + x, 2āt),
for x, y ≥ 0, and show by induction on n that7

7Note that the operator L − L̄ is applied to the variable x .
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|(L − L̄ )In
T δy(·)(x)| ≤ Cn+1Γ (α/2)(n+1)T (n+1)α/2−1

Γ ((n + 1)α/2)
π̂T (x, y),

(L − L̄ )In
T δy(·)(x) :=

∫ T

0
. . .

∫ v2

0
Svn+1−vn

n−1∏
j=0

Sv j+1−v j δy(x)dv1 . . . dvn.

Note that for n = 0, we have |(L − L̄ (y))π̄
(y)
T (·, y)(x)| ≤ CT α/2−1π̂T (x, y) from

(18) for a constant C depending on a and a, α and the Hölder constant of a. Now,
we suppose that the induction hypothesis is true for n − 1, and we use the formula

In
T δy(x) =

∫ T

0

∫ ∞

0
(L − L̄ )In−1

v δy(·)(z)π̄(z)
T−v(x, z)dzdv (25)

which gives

(L − L̄ )In
T δy(·)(x) =

∫ T

0

∫ ∞

0
(L − L̄ )In−1

v δy(·)(z)1
2
(a(x) − a(z))∂2

x π̄
(z)
T−v(x, z)dzdv.

This yields

|(L − L̄ )InT δy(·)(x)| ≤
∫ T

0

∫ ∞
0

CnΓ (α/2)nvnα/2−1

Γ (nα/2)
π̂v(z, y)Cvα/2−1π̂T−v(x, z)dzdx

= Cn+1Γ (α/2)(n+1)T (n+1)α/2−1

Γ ((n + 1)α/2)
π̂T (x, y).

From (25) and |π̄(y)
t (x, y)| ≤ C π̂t (x, y), we deduce for n ≥ 1

|In
T δy(x)| ≤ C

CnΓ (α/2)nT nα/2

Γ (nα/2)nα/2
π̂T (x, y).

Therefore, the series (23) converges absolutely and therefore it corresponds to the
density of the random variable in (22) by exchange of summations and integral.
Proving that PT f ∈ D and that pT (x, y) is differentiable with respect to (T, x) has
many points in common and it follows the same arguments as in [6]. The argu-
ment being long, we do not detail it here. We just remark that the proof of exis-
tence of the first derivative in x is done by differentiating each term In

T δy(x) and
proving the uniform convergence of the infinite sum which gives explicit upper
bounds for the density derivatives which prove the boundedness of ∂x Pt f (x).
For the second derivative, one has to use the Hölder property of the function(
(L − L̄ )

∏n
j=2 Pv j+1−v j (L − L̄ )

)
π̄

(y)
v1 (·, y)(·) and one obtains similar results as

for the first derivatives. Note that the fact that ∂xIn
T δy(0) = 0 follows readily from a

similar property satisfied by ∂x π̄
(z)
T−v(x, z)|x=0 = 0.

Finally, note that limh→0+ Ph(Pt f )(x)−Pt f (x)
h = LPt f (x), followed by Lemma 2.2

as Pt f ∈ D . �
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Note that one can also prove that corresponding heat equation ∂t pt (x, y) =
1
2a(x)∂2

x pt (x, y) for (t, x) ∈ (0, T ] × D̄ with limt→0+ pt (x, ·) = δx (·) is satisfied
but we do not discuss this here.

4 The Forward Method

Throughout this section, we will assume that hypotheses (Hf) and (H) hold.

4.1 Presentation of the Forward Method

We define the approximating semigroup as

P̄ (x)
t f (x) = E[ f (X̄ (x)

t (x))], (26)

and note that L̄ (x) is its generator.
We remark that Theorem3.3 proves that for any t > 0 and f ∈ Mb then Pt f ∈ D .

Therefore,∂t Pt f (x) = L Pt f (x) and∂t P̄
(z)
t f (x) = L̄ (z) P̄ (z)

t f (x) are also satisfied
for f ∈ Mb. This will be used in what follows. Now, we present the arguments in
order to expand PT f (x) using the parametrix method. We will use the following
shorthand notation

π̄t (x, x
′) ≡ π̄(x)

t (x, x ′) and P̄t f (x) = P̄ (x)
t f (x).

We will proceed in a series of steps in order to make clear to the reader the
problems involved in developing the parametrix method.

Lemma 4.1 Let f ∈ Mb(D̄) then we have

PT f (x) − P̄ (x)
T f (x) =

∫ T

0

∫
D̄
PT−s f (x

′)(θs(x, x ′)π̄s(x, x
′)dx ′ + θ̂s(x)δ0(dx

′))ds,

(27)

where δ0(dx ′) denotes the point mass measure at zero and the functions θt : D̄2 → R

and θ̂t : D̄ → R, t > 0 are defined by

θt (x, x
′)π̄t (x, x

′) = 1

2
∂2
x ′
(
π̄t (x, x

′) [a(x ′) − a(x)]) ,

θ̂t (x) = π̄t (x, 0)
a′(0)
2

.
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Furthermore, the following estimates are satisfied for x, x ′ ∈ D̄ t > 0

|θt (x, x ′)|π̄t (x, x
′) ≤ C

{
1 + 1√

t

}
H̃0(x − x ′, 2at), (28)

|θ̂t (x)| ≤ C π̄t (x, 0). (29)

Here, C is a constant which depends on the upper and lower bounds for a and its
first derivative at x = 0.

As the similar result in the backward case (see Lemma 3.2), this result can
be heuristically interpreted as a first-order Taylor expansion. To explain this, note
that the left side of (27) measures the difference between the semigroup Pt f (x) =
E[ f (Xt (x))] and its parametrix (or approximation) P̄ (x)

t f (x) = E[ f (X̄ (x)
t (x))]. The

right-hand side of (27) is the residue of first order (or mean value theorem) which
is a “middle” point between these two semigroups. The weight functions θ and θ̂
represent the derivatives in the Taylor expansion.

Proof The proof follows the same arguments as in [2] except that in this case one has
boundary terms. In fact, first note that due to the results in Lemma 2.2 and Theorem
3.3, we have −∂t (P̄

(x)
t PT−t f )(x) = P̄ (x)

t (L − L̄ (x))PT−t f (x) for t ∈ [0, T ). In
fact, this follows because the generators of P and P̄ (x) are well defined on D and
PT−t f ∈ D (see Theorem 3.3). Next, by the definition of P̄ (x) and (6), we have that

P̄ (x)
t (L − L̄ (x))PT−t f (x) = 1

2

∫ ∞

0
π̄t (x, x

′)(a(x ′) − a(x))∂2
x ′ PT−t f (x

′)dx ′.

Using Lemma 2.2, we apply the integration by parts formula twice and using the
fact that ∂x ′ Pt f (0) = ∂x ′ π̄t (x, 0) = 0 and (8) for i = 1, 2, j = 0 we obtain

P̄ (x)
t (L − L̄ (x))PT−t f (x) = 1

2
π̄t (x, x

′)(a(x ′) − a(x))∂x ′ PT−t f (x
′)
∣∣∣∞
x ′=0

− 1

2

∫
D̄

∂x ′(π̄t (x, x
′)(a(x ′) − a(x)))∂x ′ PT−t f (x

′)dx ′

= − 1

2
∂x ′(π̄t (x, x

′)(a(x ′) − a(x)))PT−t f (x
′)
∣∣∣∞
x ′=0

+
∫
D̄
PT−t f (x

′)θt (x, x ′)π̄t (x, x
′)dx ′.

This finally gives

P̄ (x)
t (L − L̄ (x))PT−t f (x) =

∫
D̄
PT−t f (x

′)(θt (x, x ′)π̄t (x, x
′)dx ′ + θ̂t (x)δ0(dx

′)).

(30)



Parametrix Methods for One-Dimensional Reflected SDEs 59

In order to finish the proof, one needs to use that

PT f (x) − P̄ (x)
T f (x) =

∫ T

0
−∂t (P̄

(x)
t PT−t f )(x)dt.

In order for the above to be satisfied, one needs to prove the integrability of the
integrand. In fact, the integrand (30) is continuous and bounded for t ∈ (ε, T ] for
any fixed ε ∈ (0, T ). The main problem is when ε tends to zero. Therefore, we need
to find upper bounds for the integrand in (30). These are stated in (28) and (29) which
we prove next.

The bound (29) is obvious, so we focus on proving (28). To do so, we need to
bound each of the following terms:

θt (x, x
′)π̄t (x, x

′) = 1

2
∂2
x ′ π̄t (x, x

′) [a(x ′) − a(x)] + ∂x ′ π̄t (x, x
′)a′(x ′) + 1

2
π̄t (x, x

′)a′′(x ′).
(31)

We explain how to treat the first term in detail. Using (8) for i = 0, j = 1, 2, (Hf), the
inequality |x ′ − x | ≤ x + x ′ for x, x ′ ∈ D̄, and the space-time inequality, we have

|∂2
x ′ π̄t (x, x

′) [a(x ′) − a(x)]| (32)

≤ ‖a′‖∞|x ′ − x |(|H̃2(x − x ′, a(x)t)| + |H̃2(x + x ′, a(x)t)|) (33)

≤ ‖a′‖∞(|x ′ − x ||H̃2(x − x ′, a(x)t)| + (x + x ′)|H̃2(x + x ′, a(x)t)|)
≤ C

‖a′‖∞√
ta(x)

H̃0(x − x ′, 2a(x)t) ≤ C√
t
H̃0(x − x ′, 2at).

The two other terms in (31) can be handled similarly, which yields (28).
With this estimate, we see that the degeneration of the integrand on the right-hand

side of (30) is of the order O(t−1/2) as t ↓ 0 which is therefore integrable.
In a final note, one also needs to prove that limε→0 P̄

(x)
T−εPε f (x) = P̄ (x)

T f (x).
This is done using Fubini’s theorem. The other convergence limε→0 P̄ (x)

ε PT−ε f (x) =
PT f (x) is also proved easily. �

Remark 3 Note that the rate O(t−1/2) follows from the fact that a is a Lipschitz
bounded function.

In order to obtain a higher order expansion and eventually an infinite-order expan-
sion, we need to introduce the operator St , t > 0 for any measurable and bounded
function g: D̄ → R by

Stg(x) =
∫
D̄

g(x ′) (θt (x, x
′)π̄t (x, x

′)dx ′ + θ̂t (x)δ0(dx
′)).
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With this definition, we can write the first-order expansion of PT f as

PT f (x) = P̄ (x)
T f (x) +

∫ T

0
St PT−t f (x)dt. (34)

The iteration of this formula gives the main result for the forward parametrix
approach.

Theorem 4.1 For f ∈ Mb(D̄), define for x ∈ D̄, t > 0

I 0t ( f )(x) = P̄ (x)
t f (x)

and recursively for n ≥ 1

I nt ( f )(x) =
∫ t

0
Ss I

n−1
t−s ( f )(x) ds.

Then we have

Pt f (x) =
∞∑
n=0

I nt ( f )(x),

where the sum converges uniformly for x ≥ 0 and t in compact intervals in R+.

Proof Using (28) and (29), we have

∃C > 0,∀t > 0, ‖Stg‖∞ ≤ C
‖g‖∞√

t
(35)

for any function g ∈ Mb(D̄). Here, the constant C is independent of t and g. With
all these estimates one obtains the finiteness of the integral in (34) and therefore (34)
is satisfied.

Note that the above terms are integrable due to (35). Now, we repeat the arguments
already used in [2] (see Sect. 3: A functional linear equation). In fact, from the
iteration of (34), one obtains

Pt f (x) = P̄t f (x) +
∫ t

0
St−s1 Ps1 f (x) ds1

= I 0t ( f )(x) +
∫ t

0
St−s1

(
P̄s1 f (x) +

∫ s1

0
Ss1−s2 Ps2 f (x) ds2

)
ds1

= I 0t ( f )(x) +
∫ t

0
St−s1 I

0
s1( f )(x) ds1 +

∫ t

0

∫ s1

0
St−s1 Ss1−s2 Ps2 f (x) ds2 ds1.
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By repeating this procedure, we obtain

Pt f (x) =
N∑

n=0

I nt ( f )(x) + RN
t ( f )(x),

with

RN
t ( f )(x) =

∫ t

0

∫ s1

0
. . .

∫ sN

0

⎛
⎝ N∏

j=0

SsN− j−sN− j+1

⎞
⎠ PsN+1 f (x)dsN+1 . . . ds1.

All we have to do is to show that

lim
N→∞ ‖RN

t ( f )(·)‖∞ = 0.

By (35), we have

‖RN−1
t ( f )‖∞ ≤

∫ t

0

∫ s1

0
· · ·

∫ sN−1

0

∥∥∥∥∥∥

⎛
⎝ N∏

j=1

SsN− j−sN− j+1

⎞
⎠ PsN f (·)

∥∥∥∥∥∥∞
dsN · · · ds1

≤ C
∫ t

0

∫ s1

0
· · ·

∫ sN−1

0
(t − s1)

− 1
2

∥∥∥∥∥∥

⎛
⎝N−1∏

j=1

SsN− j−sN− j+1

⎞
⎠ PsN f (·)

∥∥∥∥∥∥∞
dsN · · · ds1

.

.

.

≤ CN
∫ t

0

∫ s1

0
· · ·

∫ sN−1

0

N−1∏
i=0

(si − si+1)
− 1

2 ‖PsN f ‖∞dsN · · · ds1

≤ CN‖ f ‖∞
∫ t

0

∫ s1

0
· · ·

∫ sN−1

0

N−1∏
i=0

(si − si+1)
− 1

2 dsN · · · ds1,

where we put s0 = t and we have used that ‖Pt f ‖∞ ≤ ‖ f ‖∞. Using the result (its
proof can be carried out by induction on N ), we obtain for N ∈ N

∫ t

0

∫ s1

0
· · ·

∫ sN−1

0

N−1∏
i=0

(si − si+1)
− 1

2 dsN · · · ds1 = t
N
2

Γ N ( 12 )

Γ ( N+2
2 )

,

which yields to ‖RN
t ( f )‖∞ → 0 for any t > 0.

Remark 4 Note that we have the following bound for I n:

‖I nt ( f )‖∞ ≤ Cn ‖ f ‖∞tn/2

Γ (n/2 + 1)
, t > 0.

Again, this bound is reminiscent of the bounds for Taylor expansions.
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4.2 The Forward Simulation Method

In this section, we will give a probabilistic representation formula for I nT ( f ) which
may be used for simulation.

We first have I 0T ( f )(x) = P̄T f (x) = E[ f (X̄ (x)
T (x))]. To understand the proce-

dure we will follow, we give now the interpretation for n = 1 in detail. In order to
do this, we introduce the general flow notation for the reflected approximation for
t ≥ s

Zt (s, x) := x + σ(x) · (Bt − Bs) + L̄ t (s, x).

Define Ui as a sequence of i.i.d. random variables with Bernoulli law of parameter
p ∈ (0, 1) independent of B. We let X0 = x and we define Xt1 := U1Zt1(0, X0). The
additional random variables to be used in the probabilistic representation are defined
as

Θi (t, x, x
′) := (1 − p)−1θ̂t (x)(1 −Ui+1) + p−1θt (x, x

′)Ui+11x ′>0.

Then one can check that for f : D̄ → R, measurable and bounded,

E[Θ0(t1, x, Xt1) f (Xt1)]
=

∫
D̄
f (x1) (θt1(x, x1)π̄t1(x, x1)dx1 + θ̂t1(x)δ0(dx1))

= St1 f (x).

To obtain the probabilistic representation for I 1T f (X̄0), we define XT = ZT (t1, Xt1).
Then

E[Θ0(t1, x, Xt1) f (XT )] = E[Θ0(t1, x, Xt1)P̄T−t1 f (Xt1)] = St1 P̄T−t1 f (x). (36)

Note that the estimates in (28) and (29) give the integrability of the random variable
Θ0(t1, x, Xt1) f (XT ) for any bounded measurable function f and t ∈ (0, T ]. If τ1
denotes a uniform random variable on the interval [0, T ] which is independent of all
previously defined random variables and processes, then we have that

E[Θ0(τ1, x, X τ1) f (XT )] = T−1 I 1T f (X̄0).

One can further link the r.v. τ1 with a Poisson process if one notes that if a Poisson
process has jumped only once in the interval [0, T ] then the jump time is distributed
as a uniform r.v. in [0, T ]. We will use this in the general case.

Now to deal with the general case for n ≥ 1, we have I nT ( f ) = ∫ T
0 ST−un I

n−1
un

( f )dun , which gives

I nT ( f ) =
∫
0<u1<···<un<T

ST−un · · · Su2−u1 P̄u1 f du1 . . . dun
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=
∫
0<t1<···<tn<T

St1 · · · Stn−tn−1 P̄T−tn f dt1 . . . dtn, (37)

by setting ti = T − un+1−i , and observing that 0 < u1 < · · · < un < T if and only
if 0 < t1 < · · · < tn < T .

Define the partition Δ : 0 = t0 < t1 < · · · < tn < tn+1 = T . Generalizing the
previous definitions, we have that for n ∈ N

∗, one defines the random variables
Xti+1 := Ui+1Zti+1(ti , Xti ) for i ∈ {1, . . . , n} and XT := Ztn+1(tn, Xtn ). With these
definitions, we get from (36) the following probabilistic representation:

⎛
⎝ n∏

j=1

Stn− j+1−tn− j

⎞
⎠ P̄T−tn f (x) = E

⎡
⎣ f (XT )

n−1∏
j=0

Θ j (t j+1 − t j , Xt j , Xt j+1)

⎤
⎦ . (38)

In order to interpret the time integrals in (37), let us consider a Poisson process
{Nt ; t ∈ [0, T ]} of parameter λwith jump times given by {0 = τ0 < · · · < τNT ≤ T }
independent of all previously defined random variables and stochastic processes.
Then,wedefine X τi+1 := Ui+1Zτi+1(τi , X τi ) for 0 ≤ i ≤ n − 1and XT := ZT (τNT , X τNT

).
Then we have the following lemma.

Theorem 4.2 Let f : D̄ → R be a measurable and bounded function. Suppose that
the assumptions (Hf) and (H) are satisfied. Then

E[ f (XT )] = E
[
f (XT )MT

]
, (39)

MT := eλTλ−NT

NT −1∏
j=0

Θ j (τ j+1 − τ j , X τ j , X τ j+1). (40)

The above product is interpreted as being equal to 1 if NT = 0. Furthermore,
E[MT ] = 1 and E[|MT |] < ∞.

Proof The claim is a consequence of (37), (38) and Theorem 4.1, since we have

E

⎡
⎣ f (XT )λ−NT

NT −1∏
j=0

Θ j (τ j+1 − τ j , X τ j , X τ j+1)

∣∣∣∣NT = n

⎤
⎦

= n!
(λT )n

∫
0<t1<···<tn<T

⎛
⎝ n∏

j=1

Stn− j+1−tn− j

⎞
⎠ P̄T−tn f (x)dt1 . . . dtn = n!

(λT )n
I nT ( f ).

Note that we have used the fact that given NT = n then the jump times τ1, . . . , τn
are distributed as the order statistics of a sequence of n independent uniform ran-
dom variables on the interval [0, T ]. Therefore, their joint density is given by
n!
T n 10<t1<···<tn<T dt1 . . . dtn . Furthermore, the estimate (35) gives the integrability of
the expectation on the right side of (39).
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We now give a brief description of the Monte Carlo simulation method with sam-
ple size N .

Monte Carlo simulation method
Set S = 0. Repeat the following steps M times (M ∈ N

∗ represents the number
of simulations to be used in the sample average)

1. Let X0 = x , τ0 = 0, Λ0 = 1
For i = 0, 1, . . . , perform the following steps

2. Simulate an exponential random variable Ei+1 of parameter λ and set τi+1 =
τi + Ei+1.

3. If τi+1 > T , go to step 6 with NT = i . Otherwise, continue with step 4.
4. Compute for a p-Bernoulli random variable Ui+1, X τi+1 = Ui+1Zτi+1(τi , X τi )

where Z is computed using the simulation method given in Lépingle [16]. That is,

Zτi+1(τi , X τi ) = X τi + σ(X τi )Gi+1
√

τi+1 − τi + max{0,−X τi + Yi } (41)

Yi = 1

2

{
−σ(X τi )Gi+1

√
τi+1 − τi + (

a(X τi )Vi+1 + a(X τi )G
2
i+1(τi+1 − τi )

)1/2}
.

HereGi+1 is a standard Gaussian random variable and Vi+1 is an exponential random
variable with parameter (2(τi+1 − τi ))

−1.
5. Next one computes Λi+1 = ΛiΘi (τi+1 − τi , X τi , X τi+1). Go back to 2.
6. Finalize by computing XT = ZT (τNT , X τNT

) using (41).

For each simulation, add to S the value eλTλ−NT f (XT )ΛNT . Finally, compute S/M .
When programming the above Monte Carlo simulation method, formulas (8) for

i = 0, 1, 2 and j = 0, and

θt (x, x
′) =

(
a′′(x ′)

2
+ ∂x ′ π̄t (x, x ′)

π̄t (x, x ′)
a′(x ′) + ∂2

x ′ π̄t (x, x ′)
π̄t (x, x ′)

[a(x ′) − a(x)]
2

)

are useful.

Remark 5 As discussed in [1], one may use importance of sampling on the jump
times of the Poisson process. In fact, one just needs to consider a renewal process
Rt = ∑∞

j=1 1τ j≤t where τ j = ∑ j
i=1 ζi and {ζi } is a sequence of independent positive

random variables with common density ξ. Then one performs importance sampling
using the factor pn(t1, . . . , tn; t) := ∏n

i=1 ξ(ti − ti−1)P(ζn+1 > t − tn)P(Rt = n)−1

within each integral of order n. Here t0 = 0. Then the simulation method and its
probabilistic representation is given by

E[ f (XT )] = E

⎡
⎣ f (XT )

pn(τ1, . . . , τn; T )

RT −1∏
j=0

Θ j (τ j+1 − τ j , X τ j , X τ j+1)

⎤
⎦ .

A wise choice of ξ leads to a Monte Carlo simulation method with finite variance.
For more details, see [1].
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Table 1 Calculation of E[e−XT ] with T = 1, X0 = 1/2, σ(x) = 1
2 + 1

4 cos(x). We have used
M = 106 samples and N̄ = 10 time steps for the discretization schemes and λ = 1, p = 0.9 for
both parametrix methods

Scheme 1 Scheme 2 Forward Backward

Mean 0.544456 0.54441 0.545028 0.543441

Precision (95%) 4.62 × 10−4 4.62 × 10−4 3.9 × 10−3 4.06 × 10−3

To test numerically the method, we compare it with the standard Monte Carlo
method with discretization schemes for the reflected SDE (1). We will use two
discretization schemes on the regular time grid with N̄ steps.

• Scheme 1 or Reflected Euler scheme:

X̂(k+1) T
N̄

=
∣∣∣X̂(k+1) T

N̄
+ σ(X̂(k+1) T

N̄
)(W(k+1) T

N̄
− Wk T

N̄
)

∣∣∣
L̂(k+1) T

N̄
= L̂k T

N̄
+ 2

(
X̂(k+1) T

N̄
+ σ(X̂(k+1) T

N̄
)(W(k+1) T

N̄
− Wk T

N̄
)
)−

,

with x− = max(−x, 0).
• Scheme 2 or Lépingle’s scheme: (X̂(k+1) T

N̄
, L̂(k+1) T

N̄
) is obtained from (X̂k T

N̄
, L̂k T

N̄
)

by using Lepingle’s scheme with frozen coefficient σ(X̂k T
N̄
).

We have reported in Table1 an example of a Monte Carlo evaluation with the
discretization scheme, the forward Parametrix method, and the backward Parametrix
method presented in the previous sections. The precision indicated in the table is the
empirical standard error multiplied by 1.96/

√
M . It is worth to mention here that

the variance of the estimator given by the Parametrix method may have an infinite
variance as indicated in Remark 5. In fact, we observe some fluctuations on the
empirical variance between two Monte Carlo runs. This effect becomes enhanced as
parameters of the problem become large.

Here, our goal is simply to validate numerically the algorithms of the Parametrix
method.We obtain indeed results that are in line with a classicalMonte Carlomethod
with standard discretization schemes. This variance explosion problem needs to be
further studied.
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Harnack Inequalities and Bounds for
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Gennaro Cibelli and Sergio Polidoro

Dedicated to Valentin Konakov in occasion of his 70th birthday.

Abstract We consider possibly degenerate parabolic operators in the form

L =
m∑

k=1

X2
k + X0 − ∂t ,

that are naturally associated to a suitable family of stochastic differential equations,
and satisfying the Hörmander condition. Note that, under this assumption, the oper-
ators in the formL have a smooth fundamental solution that agrees with the density
of the corresponding stochastic process. We describe a method based on Harnack
inequalities and on the construction of Harnack chains to prove lower bounds for the
fundamental solution. We also briefly discuss PDE and SDE methods to prove anal-
ogous upper bounds. We eventually give a list of meaningful examples of operators
to which the method applies.

Keywords Density of a stochastic process · Kolmogorov equations
Hypoelliptic PDEs · Harnack inequality · Harnack chain · Asymptotic estimates

1 Introduction

Let (Wt )t≥0 denote an m-dimensional Brownian motion, Wt = (W 1
t , . . . ,Wm
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space-time functions (σi j )(i, j)∈{1,...,N }×{1,...,m}, (bi )i{1,...,N } such that the following
SDE

dZi
t =

m∑

j=1

σi j (Zt , t) ◦ dW j
t + bi (Zt , t)dt, i = 1, . . . , N , t ≥ 0 (1)

is well posed at least in the weak sense. Here “◦ dWt” stands for the Stratonovich
integral.We denote by Zx0

t the solution of the SDE (1)with initial condition Zx0
0 = x0.

The Eq. (1) is associated to the Kolmogorov operator

L =
m∑

i=1

X2
i + X0 − ∂t ,

where

Xi (x, t) = 1√
2

m∑

j=1

σi j (x, t)∂x j , i = 1, . . . ,m, X0(x, t) =
N∑

i=1

bi (x, t)∂xi . (2)

In this note, we describe a general method to prove upper and lower bounds for
the fundamental solution of L . Specifically, we say that a nonnegative function
Γ (x, t; y, s) defined for x, y ∈ R

N and t > s, is a fundamental solution for L if

(i) in the weak sense,L Γ (·, ·; y, s) = 0 in ]s,+∞[×R
N andL ∗Γ (t, x; ·, ·) = 0

in ] − ∞, t[×R
N where L ∗ denotes the formal adjoint operator ofL ;

(ii) for any bounded function ϕ ∈ C(RN ) and x, y ∈ R
N , we have

lim
(x,t)→(y,s)

u(x, t) = ϕ(y), lim
(y,s)→(x,t)

v(y, s) = ϕ(x), (3)

where

u(x, t) :=
∫

RN

Γ (x, t; y, s)ϕ(y)dy, v(y, s) :=
∫

RN

Γ (x, t; y, s)ϕ(x)dx .

(4)

Note that the functions in (4) are weak solutions of the following backward and
forward Cauchy problems:
{
L u(t, x) = 0, (x, t) ∈ ]s,+∞[×R

N ,

u(x, s) = ϕ(x), x ∈ R
N ,

{
L ∗v(y, s) = 0, (y, s) ∈ ] − ∞, t[×R

N ,

v(y, t) = ϕ(y), y ∈ R
N .

We introduce the N × N matrix A(x, t) = (ai j (x, t)
)
i, j=1,...,N whose elements

are

ai j (x, t) = 1
2

m∑

k=1

σik(x, t)σ jk(x, t), i, j = 1, . . . , N ,
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and we note that

〈A(x, t)ξ, ξ 〉 = 1
2‖σ(t, x)ξ‖2 ≥ 0. for every ξ ∈ R

N .

If the smallest eigenvalue of A(t, x) is uniformly positive, we say that the operator
L is uniformly parabolic.

A keystone result in the theory of parabolic partial differential equations reads as
follows. Assume that there exist two positive constants λ,Λ such that

λ|ξ |2 ≤ 〈A(x, t)ξ, ξ 〉 ≤ Λ|ξ |2, for every (x, t) ∈ R
N×]0, T [, and ξ ∈ R

N . (5)

If Γ = Γ (x, t, ξ, τ ) denotes the fundamental solution of the PDE

∂t u(x, t) =
N∑

i, j=1

∂xi
(
ai j (x, t)∂x j u(x, t)

)
, (x, t) ∈ R

N×]0, T [, (6)

then there exist positive constants c−,C−, c+,C+ only depending on N ,Λ, λ such
that

c−
(t − τ)N/2

exp

(
−C− |x − ξ |2

t − τ

)
≤ Γ (x, t; ξ, τ ) ≤ C+

(t − τ)N/2
exp

(
−c+ |x − ξ |2

t − τ

)
,

(7)

for every (x, t), (ξ, τ ) ∈ R
N×]0, T [ with τ < t . We emphasize that the constants

in (7) do not depend on T . This upper bound has been proved by Aronson [1] for
operators with bounded measurable coefficients ai j ’s, while the lower bound has
been proved by Moser [32, 33]. The results by Aronson and by Moser improve the
earliest estimates given by Nash in his seminal work [34]. We also refer to the article
of Escauriaza [16] for non-divergence form operators.

The results described above have been extended by several authors to possibly
degenerate operators in the form

L :=
m∑

k=1

X2
k + Y, Y := X0 − ∂t , (8)

where X0, X1, . . . , Xm are smooth vector fields on R
N+1, that is

Xi (x, t) =
N∑

j=1

ci, j (x, t)∂x j , i = 0, . . . ,m. (9)

for some smooth functions ci, j ’s. In particular, upper bounds have been proved by
a PDE approach that goes back to Aronson’s work [1], or by an approach based
on Lyapunov functions (see [30] and the references therein). Several authors prove
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bounds analogous to (7) in the framework of stochastic processes. We refer to the
works ofMalliavin [28], Kusuoka and Stroock [27], where a general method to prove
upper bounds for density is introduced and to the work of BenArous and Léandre [6],
where the Malliavin Calculus is further developed. We also refer to the monograph
of Nualart [35] for a comprehensive presentation of this subject.

In general, lower bounds have been proved by following the idea introduced by
Moser in [32]. In this note, we briefly describe this method for uniformly parabolic
partial differential equations, then we give an overview of more recent articles where
it has been adapted to the study of degenerate parabolic equations in the form (8).
This idea is also used in the works where lower bounds are proved by probabilistic
methods. We refer to Kohatsu-Higa [23], Bally [3], Bally and Kohatsu-Higa [4].

We now give a list of examples of operators considered in this note. Each one of
them is the prototype of a wide family of differential operators.

• Heat operator on the Heisenberg group L = X2
1 + X2

2 − ∂t , where

X1 = ∂x − 1
2 y∂w, X2 = ∂y + 1

2 x∂w.

Note thatL acts on the variable (x, y,w, t) ∈ R
4, and writes in the form (8) with

X0 = 0. The degenerate elliptic operatorΔH = X2
1 + X2

2 is said sub-Laplacian on
the Heisenberg group.

• Kolmogorov Operator L = ∂xx + x∂y − ∂t , (x, y, t) ∈ R
3. In this case L =

X2 + Y with X = ∂x , Y = x∂y − ∂t .
• More Degenerate Kolmogorov Operators L = ∂xx + x2∂y − ∂t , (x, y, t) ∈ R

3.
In this caseL = X2 + Y with X = ∂x , Y = x2∂y − ∂t .

• Asian Option Operator L = x2∂xx + x∂x + x∂y − ∂t , (x, y, t) ∈ R
+ × R

2. In
this case, L = X2 + Y with X = x∂x , Y = x∂y − ∂t .

All the operators in the above list are strongly degenerate, since the smallest eigen-
value of the characteristic form is zero for all the above examples. In general, oper-
ators in the form (8) cannot be uniformly parabolic if m < N . On the other hand, all
the examples do satisfy the following condition:

Hypothesis [H]L =∑m
k=1 X

2
k + Y satisfies the Hörmander condition if

rank (Lie{X1, . . . , Xm,Y }(x, t)) = N + 1, for every (x, t) ∈ R
N+1.

In the sequel we only consider operators L satisfying the Hörmander condition.
It is know that, for this family of operators, the law of the stochastic process (1)
is absolutely continuous with respect to the Lebesgue measure in R

N , and that its
density is smooth.Moreover, for every pairs (ξ, τ ), (x, t) ∈ R

N × [0, T [with τ > t ,
the density p(ξ, τ ; x, t) is linked with the fundamental solution Γ of L . Precisely,
if p denotes the density of the process
{
dZi

s =∑m
i, j=1 σi j (Zs , T − s) ◦ dWi

s + bi (Zs , T − s)ds, i = 1, . . . , N , t < s ≤ T ;
Zi
t = xi , i = 1, . . . , N ,
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then Γ is defined by the relation

Γ (x, t; ξ, τ ) = p(ξ, T − τ ; x, T − t).

It is known that the regularity properties of the operators satisfying the Hörmander
condition are related to a Lie group structure that replaces the usual Euclidean one.
In the proof of the lower bounds for positive solutions the geometric aspects of this
non Euclidean structure will be explicitly used. To make the exposition clear, in
Sect. 2 we recall the method used by Moser in [32] to prove the lower bound in (7)
for uniformly parabolic operators. In Sect. 3 we describe how the method outlined
in Sect. 2 is adapted to the degenerate ones, satisfying the Hörmander condition [H].
The remaining Sects. 4, 5, 6, and 7 are devoted to the examples listed above.

2 Uniformly Parabolic Equations

In this section, we describe the method introduced by Moser [32] to prove the
lower bound (7) of the fundamental solution for uniformly parabolic equations. The
main ingredient of the method is the parabolic Harnack inequality, first proved by
Hadamard [18] and, independently, by Pini [36] in 1954 for the heat equation, then
by Moser [32, 33] for uniformly parabolic equations in divergence form (6). Its
statement requires some notation (see Fig. 1). Let

Qr (x, t) = B(x, r)×]t − r2, t[,

denote the parabolic cylinder whose upper basis is centered at (x, t). Let α, β, γ, δ ∈
]0, 1[ be given constants, with α < β < γ < 1,

Q−
r (x, t) = B(x, δr)×]t − γ r2, t − βr2[ Q+

r (x, t) = B(x, δr)×]t − αr2, t[.

Theorem 1 (Parabolic Harnack inequality) Let Qr (x, t) ⊂ R
N+1, and let α, β, γ, δ

∈]0, 1[ be given constants, withα < β < γ < 1. Then there exists C = C(α, β, γ, δ,

λ,Λ, N ) such that
sup

Q−
r (x,t)

u ≤ C inf
Q+

r (x,t)
u

Fig. 1 Parabolic Harnack
inequality

(x, t)

r2
(β −α)r2

δ r

(γ −β )r2

δ r

αr2
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Fig. 2 Parabolic Harnack
inequality

(x, t)

for every u : Qr (x, t) → R, u ≥ 0, satisfying (6). Here λ,Λ are the constants in (5).

Remark 1 Note that C does not depend on the point (x, t) and on r , then the
Harnack inequality is invariant with respect to the Euclidean translation (x, t) �→
(x + x0, t + t0), and to the parabolic dilation (x, t) �→ (r x, r2t). For this reason, the
above statement is often referred to as invariant Harnack inequality.

In the sequel,wewill use the following version of the parabolicHarnack inequality
(see Fig. 2). For any given c ∈]0, 1[ we denote by

Pr (x, t) = {(y, s) ∈ Qr (x, t) | 0 < t − s ≤ cr2 < t, |y − x |2 ≤ t − s
}
.

Corollary 1 Let Qr (x, t) ⊂ R
N+1, and let c ∈]0, 1[ be a given constant. Then there

exists C = C(c, λ,Λ, N ) such that

sup
Pr (x,t)

u ≤ Cu(x, t)

for every u : Qr (x, t) → R, u ≥ 0, satisfying (6). Here λ,Λ are the constants in (5).

Proof For every positive ρ we denote

Sρ(x, t) = B(x, ρ) × {t − ρ2}.

Let α, β, γ ∈]0, 1[ be such that α < β ≤ c ≤ γ < 1, and let δ = √
c. Then, for every

ρ ∈ [0, r ] we have that u is a nonnegative solution of (6) in the domain Qρ(x, t).
Since Sρ(x, t) ⊂ Q−

ρ (x, t), from Theorem 1 we obtain

sup
Sρ(x,t)

u ≤ sup
Q−

ρ (x,t)
u ≤ C inf

Q+
ρ (x,t)

u ≤ Cu(x, t),

and the conclusion follows from the fact that Pr (x, t) = ∪0<ρ≤r Sρ(x, t). �

With Corollary 1 in hand, we can easily obtain the following non local Harnack
inequality, first proved by Moser (Theorem 2 in [32]). We also refer to Aronson and
Serrin [2] for more general uniformly parabolic differential operators.
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Fig. 3 Harnack chain (x0, t0)

(x, t)

(x1, t1)

(x2, t2)

(x3, t3)

Theorem 2 Let u : RN×]0, T [→ R be a nonnegative solution of the parabolic
Eq. (6). Then there exists a positive constant C = C(c, λ,Λ, N ) such that

u(x, t) ≤ C1+ |x0−x |2
t0−t u(x0, t0),

for every (x0, t0), (x, t) ∈ R
N×]0, T [ with t0 − t < c t0.

Proof Let (x0, t0), (x, t) ∈ R
N×]0, T [, with t0 − t < ct0, choose r = √

t and note
that the cylinder Qr (x0, t0) is contained in R

N×]0, T [. If (x, t) ∈ Pr (x0, t0) we
simply apply Corollary 1 and the proof is complete. If otherwise (x, t) /∈ Pr (x0, t0),
we consider the segment whose end points are (x0, t0) and (x, t), and denote by
(x1, t1) the point where it intersects the boundary of Pr (x0, t0). Note that t1 ≥ t >

(1 − c)t0, then (x1, t1) belongs to the lateral part of the boundary of Pr (x0, t0). By
Corollary 1 we have

u(x1, t1) ≤ Cu(x0, t0).

We then iterate the argument. We define a finite sequence (x j , t j ), with j = 2, . . . , k
such that (x j , t j ) belonging to the boundary of Pr (x j−1, t j−1) for j = 2, . . . , k, and
(x, t) ∈ Pr (xk, tk) (see Fig. 3). By applying k times Corollary 1 we then find

u(x, t) ≤ Cu(xk, tk) ≤ C2u(xk−1, tk−1) ≤ · · · ≤ Ck+1u(x0, t0).

To conclude the proof it is sufficient to note that the integer k only depends on the
slope of the line connecting (x0, t0) to (x, t) and that a simple computation gives
k <

|x0−x |2
t0−t . �

The set
{
(x0, t0), (x1, t1), . . . (xk, tk), (x, t)

}
appearing in the above proof is often

referred to as Harnack chain. By using the following property of the fundamental
solution Γ of the differential operator appearing in (6)

Γ (0, t) ≥ C

tN/2
, for every t > 0, (10)

for some positive constant C = C(λ,Λ, N ). We refer to Nash [34] and to Fabes-
Strook [17, Lemma 2.6] for a derivation of (10). By choosing c = 1

2 in Theorem 2,
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we conclude that there exist two positive constants C−, c− such that

Γ (x, t, y, s) ≥ C−

(t − s)N/2
exp

(
−c− |x − y|2

t − s

)
,

for every (x, t), (y, s) ∈ R
N+1 with 0 < s < t < T .

We explicitly note that the method described above also applies to non-divergence
uniformly parabolic operators, if we rely on the Harnack inequality proved byKrylov
and Safonov [26]. In this setting, the inequality (10) holds for t belonging to any
bounded interval ]0, T [ and the constant C may depend on T . We refer to the manu-
script of Konakov [24] for the derivation of (10) by using the a parametrix expansion,
to the article of Escauriaza [16] and to the monograph of Bass [5] for uniformly par-
abolic operators with bounded measurable coefficients.

Remark 2 Before considering degenerate parabolic operators, we point out that the
method used in the proof of Theorem 2 only relies on the following two ingredients.

(i) The invariance with respect to the Euclidean translation and to the parabolic
dilation (x, t) �→ (x0 + ρx, t0 + ρ2t) are the properties that allow us to obtain
Corollary 1 from Theorem 1.

(ii) Segments are very simple supports for the construction of Harnack chains. In
the study of degenerate parabolic operators, a more sophisticated construction
will be needed.

3 Degenerate Hypoelliptic Operators

Consider a linear second-order differential operator in the form (8)

L =
m∑

k=1

X2
k + X0 − ∂t .

satisfying theHörmander condition [H].We introduce a definition based on the vector
fields X1, . . . , Xm,Y .

Definition 1 We say that γ is an L -admissible path starting from z0 ∈ R
N+1 if it

is an absolutely continuous solution of the following ODE:

γ̇ (τ ) =
m∑

k=1

ωk(τ )Xk(γ (τ )) + Y (γ (τ ))

γ (0) = z0.

with ω1, . . . , ωm ∈ L1([0, T ]).
Let Ω be an open subset of RN+1 and z0 ∈ Ω . The attainable set of z0 in Ω is
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Az0(Ω) = {z ∈ Ω |there exists an L -admissible path γ such that

γ (0) = z0, γ (T ) = z and γ (τ) ∈ Ω for 0 ≤ τ ≤ T
}
.

The following version of the Harnack inequality is based on the definition of
attainable set. It has been introduced in [10, 11] and in its general form in [22] for
operators in the form (8).

Theorem 3 Let u be a nonnegative solution of L u = 0 in some bounded open

set Ω ⊂ R
N+1, and let z0 ∈ Ω . Suppose that Int

(
Az0(Ω)

)
�= ∅. Then, for every

compact set K ⊂ Int
(
Az0(Ω)

)
there exists a positive constant CK , only depending

on Ω, K , z0 and L , such that

sup
K

u(z) ≤ CKu(z0).

If the operatorL is also invariant with respect to suitable non-Euclidean transla-
tions and dilations, then Theorem 3 restores an invariant Harnack inequality useful
for the construction of Harnack chains.

Hypothesis [G1] There exists a Lie groupG = (RN+1, ◦) such that X1, . . . , Xm,Y
are left invariant on G, i.e.: given ξ ∈ R

N+1 and denoting by �ξ (z) = ξ ◦ z, the left
translation of z ∈ R

N+1 it holds

Xi (u(�ξ (z))) = (Xiu)(�ξ (z)), i = 1, . . . ,m,

Y (u(�ξ (z))) = (Yu)(�ξ (z)),

for every smooth function u.
As we will see in the next sections, all the examples listed in the Introduction

do satisfy the above assumption, that replaces the usual invariance with respect to
the Euclidean translation. For some operators L considered in this note, the vector
fields X1, . . . , Xm, Y are also invariant with respect to a rescaling property (δλ)λ>0

of the Lie groupG, which replaces the multiplication by a positive scalar in a vector
space.

Hypothesis [G2]There exists a dilation (δλ)λ>0 on theLie groupG such that the vec-
tor fields X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homogeneous
of degree two. i.e.:

Xi (u(δλ(z))) = λ(Xiu)(δλ(z)), i = 1, . . . ,m,

Y (u(δλ(z))) = λ2(Yu)(δλ(z)),

for every smooth function u.
When both of assumptions [G1] and [G2] are satisfied, we say that

G = (RN+1, ◦, (δλ)λ>0

)
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is a homogeneous Lie group and the operator L is invariant with respect to the
left translations of G, and homogeneous of degree 2 with respect to the dilation of
G. In this case, we easily obtain from Theorem 3 an invariant Harnack inequality
analogous to Corollary 1. Consider any bounded open set Ω ⊂ R

N+1 with 0 ∈ Ω

and suppose that it is star-shaped with respect to (δλ)λ>0, that is

δr (Ω) := {δr (z) | z ∈ Ω
} ⊂ Ω, for every r ∈]0, 1].

If Int
(
A0(Ω)

)
�= ∅, we choose any compact set K ⊂ Int

(
A0(Ω)

)
. For every r > 0

and z0 ∈ R
N+1 we set

Ωr (z0) = z0 ◦ δr (Ω) := {z0 ◦ δr (z) | z ∈ Ω
}
.

Note that we also have z0 ◦ δρ(K ) ⊂ Int
(
Az0(Ωr (z0))

)
for every ρ ∈]0, r ], since

Ω is star-shaped. We define

Pr (z0) =
⋃

0<ρ≤r

z0 ◦ δρ(K ).

Theorem 4 LetL be an operator in the form (8) satisfying assumptions [G1] and

[G2] and let Ωr (z0) as above. Suppose that Int
(
Az0(Ωr (z0))

)
�= ∅, then

sup
Pr (z0)

u(x, t) ≤ CKu(z0)

for every positive solution u of L u = 0 in Ωr (z0). Here CK is the same constant
appearing in Theorem 3.

Theorem4 is theHarnack inequality that replacesCorollary 1 in the non-Euclidean
setting that is natural for the study of degenerate operators L . In accordance with
Remark 2, this is the first ingredient for the construction of Harnack chains. It turns
out that the second ingredient is theL -admissible path,which is the natural substitute
of the segment used in the Euclidean setting. To replicate the construction made in
the proof of Theorem 2 we only need to choose γ , with γ (0) = (x0, t0), andP(x0,t0)

with the following property:

there exists s0 ∈]0, t0 − t[ such that γ (s) ∈ P(x0,t0)for s ∈]0, s0]. (11)

All the examples in this note satisfy (11). Thus we have what we need to construct
a Harnack chain

{
(x0, t0), (x1, t1), . . . (xk, tk), (x, t)

}
with starting point at (x0, t0)

and end point at (x, t).
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In order to find an accurate bound of the positive solutions of L u = 0 we need
to control the length k of the Harnack chain. It is possible to prove that there exists
a positive constant h such that, if we construct the Harnack chain by using the L -
admissible pathγ as inDefinition1,with z0 = (x0, t0) and z = (x, t), thenT = t0 − t
and we have

k ≤ 1
hΦ(ω) + 1, Φ(ω) :=

∫ t0−t

0
‖ω(s)‖2d s. (12)

In the sequel, we will refer to the integral appearing in (12) as the cost of the path
γ associated to the control (ω1, . . . , ωm). We then conclude that there exist three
positive constants θ, h andM , with θ < 1 andM > 1, only depending on the operator
L such that

u(x, t) ≤ M1+ Φ(ω)

h u(x0, t0), (13)

for every positive solution u ofL u = 0, were (x0, t0), (x, t) ∈ R
N×]0, T [ are such

that 0 < t0 − t < θ t0.
Note that (13) provides us with a bound depending on the choice of the L -

admissible path γ steering (x0, t0) to (x, t). In order to get the best exponent, we can
optimize the choice of γ . With this spirit, we define the Value function

Ψ (x0, t0; x, t) = inf
ω

{
Φ(ω)

}
, (14)

where the infimum is taken in the set of all theL -admissible paths γ steering (x0, t0)
to (x, t), and satisfying (11).We summarize this construction in the following general
statement.

Let L be an operator in the form (8) satisfying conditions [H], [G1], and [G2],
and assume that there is a positive r and an open star-shaped set Ω with 0 ∈ Ω

such that Int
(
A0(Ωr (0))

)
�= ∅. Moreover, if all theL -admissible paths γ steering

(x0, t0) to (x, t) satisfy (11), then there exist three positive constants θ, h and M,
with θ < 1 and M > 1, only depending on the operator L such that the following
property holds.

Let (x0, t0), (x, t) ∈ R
N+1 with 0 < t0 − t < θ t0. Then, for every positive solution

u : RN×]0, T [ of L u = 0 it holds

u(x, t) ≤ M1+ 1
h Ψ (x0,t0;x,t)u(x0, t0). (15)

Inequality (15) is themain step in the proof of our lower bound for the fundamental
solution. All the examples considered in this note satisfy conditions [H], [G1]. Some
examples also satisfy [G2], some examples do not. However, in this case, a scale
invariant Harnack inequality still holds true, then the method provides us with a
lower bound of the fundamental solution.



78 G. Cibelli and S. Polidoro

4 Degenerate Hypoelliptic Operators on Homogeneous
Groups

The Heat operator on the Heisenberg group

L = X2
1 + X2

2 − ∂t

where
X1 = ∂x − 1

2 y∂w, X2 = ∂y + 1
2 x∂w

are vector fields acting on the variable (x, y,w, t) ∈ R
4, is the simplest example of

degenerate operator built by a sub-Laplacian on a stratified Lie group. The vector
fields X1, X2 are invariant with respect to the left translation on the Heisenberg group
on R3, whose operation is defined as

(x0, y0,w0) ◦ (x, y,w) = (x0 + x, y0 + y,w0 + w + 1
2 (x0y − y0x)

)
.

The above operation is extended to R4 by setting

(x0, y0,w0, t0) ◦ (x, y,w, t) = (x0 + x, y0 + y,w0 + w + 1
2 (x0y − y0x), t0 + t

)
.

Moreover L is invariant with respect to the following dilation:

δr (x, y,w, t) = (r x, r y, r2w, r2t
)
,

then the hypotheses [G1] and [G2] are fulfilled by L . Furthermore, it satisfies the
following property.
[C] For every x0, x ∈ R

N , and for every positive T there exists an absolutely contin-
uous path γ0 : [0, T ] → R

N such that

γ̇0(τ ) =
m∑

k=1

ωk(τ )Xk(γ0(τ )), γ0(0) = x0, γ0(T ) = x . (16)

Note that, for operatorsL in the form (8) with X0 = 0, condition [C] is equivalent
to the strong Hörmander condition

rank Lie
{
X1, . . . , Xm

}
(x) = N , ∀x ∈ R

N .

Moreover, for every Ω ⊂ R
N+1 and for every (x0, t0) ∈ Ω , there exist a positive ε

and a neighborhood U of x0 such that U×]t0, t0 − ε[⊂ A(x0,t0)(Ω). This particular
geometric property of the attainable set implies that an invariant Harnack inequality
analogous to the standard parabolic one holds for this operator. The only difference
is that the Euclidean translation and the parabolic dilations are replaced by the oper-
ations used to satisfy hypotheses [G1] and [G2]. In conclusion, the hypotheses we
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need to prove (15) are satisfied by the heat operator on the Heisenberg group. In
particular, this method leads us to the lower bound of the following version of (7):
there exist positive constants c−,C−, c+,C+ such that

c−√
|Bt−τ (x)|

exp
(
−C− dCC (x,ξ)2

t−τ

)
≤ Γ (x, t, ξ, τ ) ≤ C+√

|Bt−τ (x)|
exp
(
−c+ dCC (x,ξ)2

t−τ

)
,

(17)

where dCC denotes the Carnot-Caratheodory distance

dCC(x0, x) = inf{�(γ0) | γ0 is as in (16)}, �(γ ) :=
∫ T

0
‖ω(s)‖ds.

and |Br (x)| is the volume of the metric ball with center at x and radius r . To make
more precise the analogy between (7) and (17), we recall that ifH is a homogeneous
Lie group on R

N , then
|Br (x)| = r Q |B1(0)|,

where Q is an integer called homogeneous dimension ofH. We recall that the upper
boundwasprovedbyDavies in [13], and theupper and lower bounds are due to Jerison
and Sánchez-Calle [20] and to Varopoulos, Saloff-Coste and Coulhon [44]. Note that
Ψ (x0, t0; x, t) = dCC (x0,x)2

t0−t . Indeed, if we consider the path γ (s) = (γ0(s), t0 − s)
with 0 ≤ s ≤ t0 − t , then by the Cauchy–Schwarz inequality, we obtain �(γ0) ≤√

Φ(ω)
√
t0 − t . Moreover the equality occurs only if the norm of the control ω is

constant, that is

�(γ0) = √Φ(ω)
√
t0 − t ⇐⇒ (ω2

1 + · · · + ω2
m)(s) = Φ(ω)

t0 − t
for every s ∈ [0, t0 − t].

We refer to the article [8] for the study of a more general class of operator satisfying
[G1], [G2] and [C], that includes heat operators on Carnot groups and also operators
L with X0 �= 0. We also recall that in the article [12] the analogous upper bound has
been proved by using a PDE method combined with the Optimal Control Theory.

5 Degenerate Kolmogorov Equations

The simplest degenerate example of degenerate Kolmogorov operator is

L := ∂2
x + x∂y − ∂t , (x, y, t) ∈ R

2×]0, T [, (18)

it writes in the form (8), if the vector fields X, Y are
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X (x, y, t) = ∂x ∼
⎛

⎝
1
0
0

⎞

⎠ , Y (x, y, t) = x∂y − ∂t ∼
⎛

⎝
0
x

−1

⎞

⎠ .

L is related to the following stochastic process

{
Xt = x0 + Wt ,

Yt = y0 + ∫ t
0 (x0 + Ws) ds.

(19)

which satisfies the Langevin equation dXt = dWt , dYt = Xtdt . We recall that this
kind of stochastic process appears in several research areas. For instance, in Kinetic
Theory, (Xt )t≥0 describes the velocity of a particle, while (Yt )t≥0 is its position. We
note that

(i) X and Y are invariant with respect to the left translation of the group defined
by the following operation

(x0, y0, t0) ◦ (x, y, t) = (x + x0, y + y0 − t x0, t + t0), (x, y, t), (x0, y0, t0) ∈ R
3,

(20)

(ii) X and Y are homogeneous of degree 1 and 2, respectively, with respect to the
dilation

(δρ)ρ>0 : (x, y, t) �→ (ρx, ρ3y, ρ2t) = diag(ρ, ρ3, ρ2) ·
⎛

⎝
x
y
t

⎞

⎠ . (21)

In particular, L satisfies the Hypotheses [G1] and [G2].
(iii) The L -admissible paths are the solutions γ (s) = (x(s), y(s), t (s)) of the fol-

lowing equation ⎧
⎨

⎩

ẋ(s) = ω(s), x(0) = x0,
ẏ(s) = x(s), y(0) = y0,
ṫ(s) = −1, t (0) = t0.

It is easy to check that the attainable set of the point (0, 0, 0) in the open set Ω =
] − 1, 1[3 is A(0,0,0)(Ω) = {(x, y, t) ∈ Ω | t < −|y|}, (see Fig. 4).

As the interior ofA(0,0,0)(Ω) is not empty, Theorem 4 gives an invariant Harnack
inequality forL , and we can apply (15) to prove lower bounds for positive solutions
defined on the domain R2×]0, T [. The Optimal Control Theory provides us with an
explicit expression of the value function Ψ0 for L in (18)

Ψ0(x, y, t; ξ, η, τ ) = (x − ξ)2

t − τ
+ 12

(t − τ)3

(
y − η − (t − τ)

(x+ξ)

2

)2
. (22)

This is a remarkable fact, as it is known that the explicit expression of the fundamental
solution of L was written by [25] and is
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Fig. 4 A(0,0,0)(Ω) t

xy

(0,0,0)

y

(0,0,0)

Γ0(x, y, t; ξ, η, τ ) =
√
3

2π(t−τ)2
exp

(
− (x−ξ)2

4(t−τ)
− 3

(t−τ)3

(
y − η − (t − τ)

(x+ξ)

2

)2)
.

(23)

We briefly discuss here the anisotropic dilation (21). We first note that the Hör-
mander condition is satisfied since

[X,Y ] = XY − Y X = ∂y ∼
⎛

⎝
0
1
0

⎞

⎠

and that ∂y is homogeneous of degree three as XY and Y X are both homogeneous
of degree three. This explains the exponent 3 appearing in (21). Moreover, since

det
(
diag(ρ, ρ3)

) = ρ4,

then Q = 4 is the spatial homogeneous dimension of R2 with respect to the dilation
(21). Furthermore, in view of (19), such dilation has a natural probabilistic meaning
as one has Var(Xt ) = t and Var(Yt ) = t3/3.

The lower bound based on the value function Ψ is useful as we consider Kol-
mogorov equations in the form

∂t u(x, t) =
m∑

i, j=1

ai j (x, t)∂
2
xi x j u(x, t) +

N∑

i, j=1

bi j x j ∂xi u(x, t), (x, t) ∈ R
N×]0, T [,

(24)

with bounded Hölder continuous coefficients ai j ’s. In the study of this family of
operators,we assume thatm < N , thematrix

(
ai j (t, x)

)
i, j=1,...,m is uniformlypositive

in Rm . Moreover, the Hörmander condition is satisfied for the operatorL(ξ,τ ) frozen
at some point (ξ, τ ) ∈ R

N+1, that is obtained from the equation in (24) by replacing
every function ai j = ai j (x, t) with ai j (ξ, τ ). It turns out that this condition does not
depend on the choice of the point (ξ, τ ), that L(ξ,τ ) is invariant with respect to a
Lie group G on RN+1 which does not depend on (ξ, τ ). In this case, the parametrix
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method provides us with the existence of a fundamental solution Γ of the operator
introduced in (24). The method also gives an upper bound of the form

Γ (x, t; ξ, τ ) ≤ C+
(t − τ)Q/2

exp
(−c+Ψ (x, t; ξ, τ )

)
(ξ, τ ), (x, t) ∈ R

N×]0, T [, t > τ,

where Q is the homogeneous dimension of the space RN with respect to the under-
lying Lie Group in R

N+1, and C+, c+ are constants depending on the operator. The
method described in this section gives the analogous lower bound for Γ

c−
(t − t0)Q/2

exp
(−C−Ψ (x, t; x0, t0)

) ≤ Γ (x, t; x0, t0) (x0, t0), (x, t) ∈ R
N×]0, T [.

We conclude this section with a discussion on another meaningful example of
operator which writes in the form (24) and is somehow more degenerate than (18).
It is

L = ∂2
x1 + x1∂x2 + · · · + xN−1∂xN − ∂t , (25)

which is related to the following stochastic process:

dX1
t = dWt , dX2

t = X1
t dt, . . . , dXN

t = XN−1
t dt, t ≥ 0. (26)

As the operator defined in (18), the one in (25) can be written asL = X2 + Y with

X (x, t) = ∂x1 ∼

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ , Y (x, t) =
N−1∑

j=1

x j∂x j+1 − ∂t ∼

⎛

⎜⎜⎜⎜⎜⎝

0
x1
x2
...

−1

⎞

⎟⎟⎟⎟⎟⎠
.

Note that, in this case, ∂x j+1 = [∂x j ,Y ] for j = 1, . . . , N − 1. As a consequence,L
is invariant with respect to the dilation defined by the following matrix:

diag(ρ, ρ3, . . . , ρ2N−1, ρ2),

then its homogeneous dimension Q is equal to N 2. Accordingly, we have that
Var(X j

t ) = c j t2 j−1, j = 1, . . . , N , where c j is a positive constant.
We recall that the parametrix method has been used by several authors for the

study of degenerate Kolmogorov equations. We recall the works of Weber [45], Il’In
[19], Sonin [42], Polidoro [37, 38], Di Francesco and Polidoro [15]. In particular,
the lower bound of the fundamental is proved in [38] and in [15].

More recently, Delarue and Menozzi [14] extended the above bounds to a class of
Degenerate Kolmogorov Operator with possibly nonlinear drifts satisfying Hörman-
der condition, under spatial Hölder continuity assumptions on the coefficients ai j ’s.
They obtained analogous bounds by combining stochastic control methods with the
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parametrix representation of the fundamental solution given by McKean and Singer
in [29].

6 More Degenerate Equations

In this section, we consider a stochastic process studied By Cinti, Menozzi, and
Polidoro in [10]. It is similar to the one considered in Sect. 4, as it writes as follows:

L := ∂2
x + x2∂y − ∂t , (x, y, t) ∈ R

2 × (0, T ), (27)

and is related to the following stochastic differential equation

{
Xt = x0 + Wt ,

Yt = y0 + ∫ t
0 (x0 + Ws)

2 ds.
(28)

A representation of the density of this process has been obtained from the seminal
works of Kac [21] in terms of the Laplace transform of the process (Yt )t≥0. We also
refer to the monograph of Borodin and Salminen [7] for an expression in terms of
special functions. We also quote the works of Smirnov [41] and Tolmatz [43] on the
distribution function of the square of the Brownian bridge.

We give explicit upper and lower bounds for the density of the process (Xt ,Yt )t≥0

by the approach described in Sect. 3. Note that new difficulties appear in the study
of the operator L defined in (27). Indeed, if we writeL as follows:

L = X2 + Y, with X = ∂x , Y = x2∂y − ∂t ,

then the commutator [X,Y ](x, y, t) = 2x∂y vanishes in the set
{
x = 0

}
, andwe need

a second commutator [X, [X,Y ]](x, y, t) = 2∂y to satisfy the Hörmander condition
at every point of R3. As a consequence, a Lie group leaving invariant the equation
L u = 0 cannot exist. This problem is overcome by a lifting procedure (see Rothshild
and Stein [40]). Specifically, we consider the following operator:

L̃ := ∂2
x + x∂w + x2∂y − ∂t , (x, y,w, t) ∈ R

3 × (0, T ),

and we consider any solution of L u = 0 as a function that does not depend on w,
and that solves the equation L̃ u = 0. The lifting procedure allows us to rely on the
Lie group invariance of L̃ in the study of the positive solutions ofL u = 0. Indeed,
we have

(i) The operator L̃ is invariant with respect to the following Lie group operation:

(x0, y0,w0, t0) ◦ (x, y,w, t) = (x + x0, y + y0 + 2x0w − t x20 ,w + w0 − t x0, t + t0),
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Fig. 5 Projection of
A(0,0,0,0)(Ω) on the set{
x = 0

}
t

yw

(0,0,0)

x= 0

defined for every (x, y,w, t), (x0, y0,w0, t0) ∈ R
4. In particular, it holds

(L̃ u)(z0 ◦ z) = L̃ (u(z0 ◦ z)),

for every z0 = (x0, y0,w0, t0) and z = (x, y,w, t) ∈ R
4.

(ii) The operator L̃ is invariant with respect to the following dilation:

(δρ)ρ≥0 : (x, y,w, t) �→ (ρx, ρ4y, ρ3w, ρ2t).

That is, it holds:

ρ2 (L u)(ρx, ρ3y, ρ2t) = L (u(ρx, ρ3y, ρ2t)).

(iii) The attainable set of the origin in the box Ω =] − 1, 1[4 is

A(0,0,0,0)(Ω) =
{
(x,w, y, t) ∈] − 1, 1[4 | 0 ≤ y ≤ −t,w2 ≤ −t y

}
.

Figure5 describes the projection on the hyperplane
{
x = 0

}
of the setA(0,0,0,0)

Then, an invariant Harnack inequality needed to construct Harnack chains for the
positive solutions of L̃ u = 0 is available. The main result of the article [10] is the
following:

Theorem 5 Let Γ denote the fundamental solution of ∂xx + x2∂y − ∂t .

• If η − y ≤ 0, then Γ (x, y, t, ξ, η, τ ) = 0;
• if η−y

(t−τ)2
>

x2+ξ 2

t−τ
+ 1, then

Γ (x, y, t, ξ, η, τ ) ≈ 1

(t − τ)5/2
exp

(
−C

(
(x − ξ)2

t − τ
+ η − y

(t − τ)2

))
;

• if 0 <
η−y

(t−τ)2
< 1

2 , then

Γ (x, y, t, ξ, η, τ ) ≈ 1

(t − τ)5/2
exp

(
−C

(
x4 + ξ 4 + (t − τ)2

η − y

))
.
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We conclude this sectionwith some remarks.We first note that, because of the par-
ticular form of the attainable setA(0,0,0,0)(Ω), it is not true that all theL -admissible
paths γ steering z0 to z satisfy (11). For this reason, in the proof of our main result
we do not solve any optimal control problem.We prove our lower bound by choosing
smart admissible paths. This construction does not guarantee the optimality of the
lower bounds. However, the comparison with the upper bound, that has the same
asymptotic behavior, shows the optimality of both of them. The diagonal bounds and
the upper bounds have been obtained by using probabilistic methods, and Malliavin
Calculus in particular.

We eventually recall thatmore general operators and stochastic processes are stud-
ied in [10]. Precisely, we consider for every positive integer k the process (Xt ,Yt )t≥0,
with value in Rn × R

{
Xt = x + Wt

Yt = y + ∫ t
0

∑
j (x + Ws)

k
j ds

whose Kolmogorov equation is

L := 1
2Δx + (xk1 + · · · + xkn )∂y − ∂t

and {
Xt = x + Wt , (k even)

Yt = y + ∫ t
0 |x + Ws |k ds

whose Kolmogorov equation is

L := 1
2Δx + |x |k∂y − ∂t .

We refer to the article [10] for the precise statement of our achievements and for
further details.

7 Operators Related to Arithmetic Average Asian Options

In this section, we consider the operator

L = x2∂xx + x∂x + x∂y − ∂t

with (x, y, t) ∈ R
+ × R × (0, T ). It appears in the Black and Scholes setting when

we consider the pricing problem for Arithmetic Average Asian Option. Specifically,
we assume that the price of an asset (Xt )t≥0 is described by a Geometric Brownian
Motion and that the option depends on the arithmetic average of (Xt )t≥0. Then,
according to the Black and Scholes theory, the value of the option v is modeled by a
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function v = v(t, Xt ,Yt ) where

{
Xt = x0e

√
2Wt ,

Yt = y0 + x0
∫ t
0 e

√
2Wsds.

(29)

This system was widely studied by Yor who wrote in [46] its joint density (see
equation (6.e) in Sect. 6 of [46])

p(x, y, t; x0, y0) = 2
√
x0√

x(y − y0)2
e

π2

t

π
√

π t
exp

(
− x + x0

(y − y0)

)
ψ

(
2
√
xx0

y − y0
,
t

2

)
,

(30)
where

ψ (z, t) =
∫ ∞

0
e− ξ2

2t e−z cosh(ξ) sinh (ξ) sin

(
πξ

t

)
dξ. (31)

As in the previous example, the density of the stochastic process (Xt ,Yt )t≥0 is not
strictly positive in the whole set R+ × R × (0, T ). In particular, its support is R+ ×
(y0,+∞) × (t0, T ).

Monti andPascucci observe in [31] thatL is invariantwith respect to the following
group operation on R+ × R

2:

(x0, y0, t0) ◦ (x, y, t) = (x0x, y0 + x0y, t0 + t). (32)

Indeed, if we set
v(x, y, t) = u(x0x, y0 + x0y, t0 + t), (33)

then L v = 0 if, and only ifL u = 0.
Note that L is not invariant with respect to any dilation group (δρ)ρ≥0. On the

other hand, as

L = X2 + Y, with X (x, y, t) = x∂x , Y (x, y, t) = x∂y − ∂t ,

we have that L can be approximated by the Kolmogorov operator (18) defined in
Sect. 5. Indeed, we can consider the coefficient x of the vector field X as a smooth
function that is bounded and bounded by below on every compact set K ⊂ R

+ ×
R × (0, T ). For this reason, the Harnack inequality introduced in Sect. 5 also applies
toL .

The L admissible paths are the solutions of the following differential equation:

⎧
⎨

⎩

ẋ(s) = ω(s)x(s), x(0) = x0,
ẏ(s) = x(s), y(0) = y0,
ṫ(s) = −1, t (0) = t0,
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and we denote by Ψ (x0, y0, t0, x, y, t) the value function of the relevant optimal
control problem with quadratic cost. The main result for the fundamental solution
Γ (x, y, t; x0, y0, t0) of the operator L is the following

Theorem 6 Let Γ be the fundamental solution of L . Then, for every (x0, y0, t0) ∈
R

+ × R × [0, T [ we have

Γ (x, y, t, x0, y0, t0) = 0 ∀ (x, y, t) ∈ R
+ × R

2 \ {] − ∞, y0[×]t0, T [}. (34)

Moreover, for arbitrary ε ∈]0, 1[, there exist two positive constants c−
ε ,C+

ε depend-
ing on ε, on T and on the operator L , and two positive constants C−, c+, only
depending on the operator L such that

c−
ε

x20 (t − t0)2
exp
(−C−Ψ (x, y + x0ε(t − t0), t − ε(t − t0); x0, y0, t0)

) ≤
Γ (x, y, t; x0, y0, t0) ≤

C+
ε

x20 (t − t0)2
exp
(−c+Ψ (x, y − x0ε, t + ε; x0, y0, t0)

)
,

(35)

for every (x, y, t) ∈ R
+×] − ∞, y0 − x0ε(t − t0)[×]t0, T [.

Note that, since the proof of Theorem 6 is based on local estimates of the solution
of L u = 0 and L is locally well approximated by the operator introduced in (18),
the diagonal bound in (35) agrees with the diagonal term of Γ0 in (23). Furthermore,
the diagonal estimate corresponds to the product of the standard deviations of the
random variables Xt and Yt defined in (29). Indeed,

Var(Xt ) = x20 e
2t
(
e2t − 1

)
= 2x20 t + o(t), as t → 0,

Var(Yt ) = x20

(
1
6

(
e4t − 1

)
− 2

3

(
et − 1

)− (et − 1
)2) = 2

3 x20 t
3 + o(t3), as t → 0.

Clearly, the knowledge of the asymptotic behavior of the functionΨ is crucial for
the application of our Theorem 6. In [9], it is shown that one can write the function
Ψ in terms of the function g defined as follows

g(r) =

⎧
⎪⎨

⎪⎩

sinh(
√
r)√

r
, r > 0,

1, r = 0,
sin(

√−r)√−r
, −π2 < r < 0,

and it is proven the following proposition:

Proposition 1 For every (x, y, t), (x0, y0, t0) ∈ R
+ × R

2, with t0 < t and y0 > y,
we have
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ (x1, y1, t1; x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

− 4
√
E + 4x1x0

(y0−y1)2
,

i f E ≥ − π2

t1−t0
;

Ψ (x1, y1, t1; x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

+ 4
√
E + 4x1x0

(y0−y1)2
,

i f − 4π2

t1−t0
< E < − π2

t1−t0
.

where

E = 4

(t − t0)2
g−1

(
y0 − y

(t − t0)
√
xx0

)
.

Moreover,

Ψ (x, y, t; x0, y0, t0)
4

(t−t0)
log2

( y0−y
(t−t0)

√
xx0

)+ 4(x0+x)
y0−y

→ 1, as
y0 − y

(t − t0)
√
x0x

→ +∞;

Ψ (x, y, t; x0, y0, t0)
4(

√
x+√

x0)2

y0−y − 4π2

(t−t0)

→ 1, as
y0 − y

(t − t0)
√
x0x

→ 0.

The above expression for the value function Ψ has been obtained by using the
PontryaginMaximum Principle [39], the upper bound in (35) is a consequence of the
fact that Ψ satisfies the Hamilton–Jacobi–Bellman equation YΨ + 1

4 (XΨ )2 = 0.
Toour knowledge, it is not easy to compare the integral expression of p in (30)with

the estimates given in Proposition 1, then Theorem 6 provides us with an alternative
explicit information on the asymptotic behavior of p.Moreover, themethoddescribed
in this section also applies to the divergence form operator L̃ defined as

L̃ u = x∂x (a x∂xu) + b x∂xu + x∂yu − ∂t u,

where a and b are smooth bounded coefficients, with a bounded by below and x∂xa
bounded. Note that, in this case, an expression ofΓ analogous to (30) is not available.
A further consequence of (35) is the following result. By applying (35) to Γ and to
the fundamental solutions Γ ± of the operators

L ±u = λ±x2∂xxu + x∂xu + x∂yu − ∂t u, (x, y, t) ∈ R
+ × R×]0, T [, (36)

we obtain

k−Γ −(x, y + ε(t + 1), t − ε(t + 1)
)

≤ Γ (x, y, t)

≤ k+Γ +
(
x, y − ε

1−ε
(t + 1), t + ε

1−ε
(t + 1)

)
,

for every (x, y, t),∈ R
+ × R×]0, T [ with y + ε(t + 1) < 0 and t > ε/(1 − ε).

Hence, we obtain lower and upper bounds for the fundamental solution Γ of the
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variable coefficients operator L̃ in terms of the fundamental solutions Γ ± of the
constant coefficients operators L ±, whose expressions, up to some scaling para-
meters, agree with the function p in (30). We refer to the article [9] for the precise
statement of the results of this section and for further details.

Acknowledgements We thank the anonymous referee for his/her careful reading of ourmanuscript
and for several suggestions that have improved the exposition of our work.
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Part III
Local Limit Theorems



A Survey on Conditioned Limit Theorems
for Products of Random Matrices and Affine
RandomWalks

Ion Grama

Abstract This paper is a survey of results on the asymptotics of the exit time from
certain domains and conditioned limit theorems to stay in the same domains for two
type of Markov walks studied in Grama et al. (Prob Theory Rel Fields, 2016, [15])
and Grama et al. (Ann I.H.P, 2016, [16]).

Keywords Conditioned Markov walks · General linear group
Affine Markov walk · Limit theorems

1 Introduction and Previous Results

Let (Xn)n�1 be independent identically distributed random variables. Consider the
random walk Sn = X1 + · · · + Xn. For a starting point y > 0 denote by τy the exit
time of the process (y + Sn)n�1 from the positive part of the real line. Many authors
have investigated the asymptotic behavior of the probability of the event τy � n andof
the conditional law of y + Sn given τy � n as n → +∞. There is awaste literature on
this subject. We refer the reader to Iglehart [18], Bolthausen [2], Doney [11], Bertoin
and Doney [1], Borovkov [3, 4]. Eichelsbacher and Köning [12], Denisov, Vatutin
and Wachtel [7], Denisov and Wachtel [8, 10] have considered random walks in R

d

and studied the exit times from the cones. Walks with increments forming a Markov
chain have been considered by Presman [21, 22], Varapoulos [23, 24], Dembo [6],
Denisov and Wachtel [9]. Varapoulos [23, 24] studied Markov chains with bounded
increments and obtained lower and upper bounds for the probabilities of the exit time
from cones.

The purpose of this paper is to present some recent results on the asymptotic of
the exit time and on the conditioned law for two particular cases of Markov chains.
In Sect. 2 we treat products of i.i.d. random matrices which lead to the study of a
certain Markov chain. The results of this section have been obtained in collaboration
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Springer Proceedings in Mathematics & Statistics 208,
DOI 10.1007/978-3-319-65313-6_5

93



94 I. Grama

with Émile Le Page and Marc Peigné [15]. The second case deals with a Markov
chain defined by affine transformations on the real line. The results of the Sect. 3
have been obtained in collaboration with Ronan Lauvergnat and Émile Le Page [16].
In both cases our proofs rely upon a strong approximation result for Markov chains
established in [14]. A short sketch of the proofs is given in Sect. 4 based on the results
of [15].

2 Products of i.i.d Random Matrices

Let G = GL (d, R) be the general linear group of d × d invertible matrices w.r.t.
ordinarymatrixmultiplication. If g is an element of ofG by ‖g‖wemean the operator
norm and if v is an element of the vector space V = R

d the norm ‖v‖ is Euclidean.
Let μ be a probability measure on G and suppose that on the probability space
(�,F ,Pr) we are given an i.i.d. sequence (gn)n≥1 of G-valued random elements of
the same law Pr (g1 ∈ dg) = μ (dg) . Let Gn = gn . . . g1 and v ∈ V � {0} be a start-
ing point. The object of interest is the size of the vector Gnv which is controlled by
the quantity log ‖Gnv‖ . It follows from the results of Le Page [19] that, under appro-
priate assumptions, the sequence (log ‖Gnv‖)n≥1 behaves like a sum of i.i.d. r.v.’s
and satisfies standard classical properties such as the law of large numbers, law of
iterated logarithm and the central limit theorem.

Introduce the following conditions. Let N (g) = max
{‖g‖ , ‖g‖−1

}
, suppμ be

the support of the measure μ and P (V) be the projective space of V.

P1. There exists δ0 > 0 such that

∫

G

N (g)δ0 μ (dg) < ∞,

The next condition requires, roughly speaking, that the dimension of the support
of suppμ cannot be reduced.

P2 (Strong irreducibility). The support suppμ of μ acts strongly irreducibly on
V, i.e. no proper union of finite vector subspaces of V is invariant with respect to all
elements g of the group generated by suppμ.

The sequence (hn)n≥1 of elements of G is said to be contracting for the pro-
jective space P (V) if limn→∞ log a1(n)

a2(n)
= ∞, where a1 (n) ≥ . . . ≥ ad (n) are the

eigenvalues of the symmetric matrix h′
nhn and h′

n is the transpose of hn.

P3 (Proximality). The closed semigroup generated by suppμ contains a contracting
sequence for the projective space P (V).

For example P3 is satisfied if the closed semigroup generated by suppμ contains
a matrix with a unique simple eigenvalue of maximal modulus. For more details we
refer to Bougerol and Lacroix [5] and to the references therein.
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In the sequel for any v ∈ V � {0} we denote by v = Rv ∈ P (V) its direction and
for any direction v ∈ P (V)we denote by v a vector in V � {0} of direction v.Define
the function ρ : G × P (V) → R called norm cocycle by setting

ρ (g, v) := log
‖gv‖
‖v‖ , for (g, v) ∈ G × P (V) . (1)

It iswell known (seeLePage [19] andBougerol andLacroix [5]) that under conditions
P1–P3 there exists an unique μ-invariant measure ν on P (V) such that, for any
continuous function ϕ on P (V),

(μ ∗ ν) (ϕ) = ν (ϕ) .

Moreover the upper Lyapunov exponent

γ = γμ =
∫

G×P(V)

ρ (g, v) μ (dg)ν (dv)

is finite and there exists a constant σ > 0 such that for any v ∈ V� {0} and any t ∈ R,

lim
n→∞Pr

(
log ‖Gnv‖ − nγ

σ
√
n

≤ t

)
= �(t) ,

where �(·) is the standard normal distribution.
Denote by B the closed unit ball in V and by B

c its complement. For any v ∈ B
c

define the exit time of the random process Gnv from B
c by

τv = min {n ≥ 1 : Gnv ∈ B} .

In the sequel, we consider that the upper Lyapunov exponent γ is equal to 0. The
fact that γ = 0 does not imply that the events

{τv > n} = {
Gkv ∈ B

c : k = 1, . . . , n
}
, n ≥ 1

occur with positive probability for any v ∈ B
c. To ensure this we need the following

additional condition:

P4. There exists δ > 0 such that

inf
s∈Sd−1

μ (g : log ‖gs‖ > δ) > 0.

Our first result gives the asymptotic of the probability of the exit time.

Theorem 2.1 Under conditions P1-P4, for any v ∈ B
c,
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Pr (τv > n) = 2V (v)

σ
√
2πn

(1 + o (1)) as n → ∞,

where V is a positive function on B
c.

Moreover, we prove that the limit law of the quantity 1
σ
√
n
log ‖Gnv‖ , given the

event {τv > n} coincides with the Rayleigh distribution �+ (t) = 1 − exp
(
− t2

2

)
:

Theorem 2.2 Under conditions P1–P4, for any v ∈ B
c and for any t ≥ 0,

lim
n→∞Pr

(
log ‖Gnv‖

σ
√
n

≤ t

∣
∣
∣
∣ τv > n

)
= �+ (t) .

The study of the products of random matrices is reduced to the case of a Markov
chain in the following way. Consider the homogenous Markov chain (Xn)n≥0 with
values in the product space X = G × P (V) and initial value X0 = (g, v) ∈ X by
setting X1 = (g1, g · v) and

Xn+1 = (gn+1, gn . . . g1g · v) , n ≥ 1.

Let v ∈ V� {0} be a starting vector and v be its direction. Iterating the cocycle
property ρ (g2g1, v) = ρ (g2, g1 · v) + ρ (g1, v) one gets the basic representation

log ‖Gngv‖ = y +
n∑

k=1

ρ (Xk) , n ≥ 1,

where y = log ‖gv‖ determines the “size” of the vector gv. We deal with the random
walk (y + Sn)n≥0 associated to the Markov chain (Xn)n≥0 , where X0 = x = (g, v)

is an arbitrary element of X, y is any real number and

S0 = 0, Sn =
n∑

k=1

ρ (Xk) , n ≥ 1.

The results for log ‖Gnv‖ stated in this section are obtained by taking X0 = x =
(I, v) as the initial state of the Markov chain (Xn)n≥0 and setting y = ln ‖v‖ and
V (v) = V ((I, v) , ln ‖v‖) . The function V is the harmonic function related to the
transition probability of the Markov chain (Xn, y + Sn)n≥0.

3 Results for Affine Markov Walks

On the probability space (�,F , P) consider the affine recursion

Xn+1 = an+1Xn + bn+1, n ≥ 0,
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where (ai , bi ), i ≥ 1 is a sequence of independent real random pairs of the same
law as the generic random pair (a, b) and X0 = x ∈ R is a starting point. Denote
by E the expectation pertaining to P. Denote by Px and Ex the probability and
the corresponding expectation generated by the finite dimensional distributions of
(Xn)n≥0 starting at X0 = x .

We make use of the following conditions:

A1. 1. There exists a constant α > 2 such that E (|a|α) < 1 and E (|b|α) < +∞.

2. The random variable b is non-zero with positive probability, P(b �= 0) > 0,
and centered, E(b) = 0.

A2. For all x ∈ R and y > 0,

Px
(
τy > 1

) = P (ax + b > −y) > 0.

A3. For any x ∈ R and y > 0, there exists p0 ∈ (2,α) such that for any constant
c > 0, there exists n0 ≥ 1 such that,

Px
((
Xn0 , y + Sn0

) ∈ Kp0,c , τy > n0
)

> 0,

where
Kp0,c = {

(x, y) ∈ R × R
∗
+, y ≥ c

(
1 + |x |p0)} .

Using the techniques from [17] it can be shown that, under condition A1, the
Markov chain (Xn)n≥0 has a unique invariant measure m and its partial sum Sn
satisfies the central limit theorem

Px

(
Sn − nμ

σ
√
n

≤ t

)
→ � (t) as n → +∞,

with

μ = E(b)

1 − E(a)
= 0

and

σ2 = E(b2)

1 − E(a2)

1 + E(a)

1 − E(a)
> 0.

Moreover, it is easy to see that under A1 the Markov chain (Xn)n≥0 has no fixed
point: P (ax + b = x) < 1, for any x ∈ R.

For any y ∈ R consider the affine Markov walk (y + Sn)n≥0 starting at y and
define its exit time

τy = min{k ≥ 1, y + Sk ≤ 0}.

Our first result gives the asymptotic of the probability of the exit time.
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Theorem 3.1 Assume either conditions A1, A2, A3 and E(a) ≥ 0, or Conditions
A1 and A3. For any x ∈ R and y > 0,

Px
(
τy > n

) = 2V (x, y)√
2πnσ

(1 + o (1)) as n → ∞,

where V is a positive function on R × R
∗+.

As in the previous section the function V is the harmonic function related to the
transition probability of the two dimensional Markov chain (Xn, y + Sn)n≥0.

Our second result gives the asymptotic of the law of (y + Sn)n≥0 conditioned to
stay positive.

Theorem 3.2 Assume either conditions A1, A2, A3 and E(a) ≥ 0, or Conditions
A1 and A3. For any x ∈ R, y > 0 and t > 0,

Px

(
y + Sn
σ
√
n

≤ t
∣
∣
∣τy > n

)
−→
n→+∞ �+(t),

where �+(t) = 1 − e− t2

2 is the Rayleigh distribution function.

4 Sketch of the Proof

We start by giving a sketch of the proof of the results in Sect. 2.
We follow the arguments in [15] (we also refer the reader to the proof in [10]

where the case of sums of independent random variables inR
d is considered). Denote

by Px the probability measure generated by the finite dimensional distributions of
(Xk)k≥0 starting at X0 = x ∈ X and by Ex the corresponding expectation. For any
(x, y) ∈ X × R consider the transition kernel

Q+ (x, y, ·) = 1X×R
∗+ (·)Q (x, y, ·) ,

whereQ
(
x, y, dx ′ × dy′) is the transitionprobability of the twodimensionalMarkov

chain (Xn, y + Sn)n≥0 under the measure Px . A positive Q+-harmonic function V
is any function V : X × R

∗+ → R
∗+ satisfying

Q+V = V . (2)

Extend V by setting V (x, y) = 0 for (x, y) ∈ X × R−.

We first should prove the existence of a positive Q+-harmonic function. For any
y > 0 denote by τy the first time when the Markov walk (y + Sn)n≥0 becomes neg-
ative: τy = min {n ≥ 1 : y + Sn ≤ 0}.
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Theorem 4.1 Assume hypotheses P1–P5.
1. For any x ∈ X and y > 0 the limit

V (x, y) = lim
n→+∞ Ex

(
y + Sn; τy > n

)

exists and satisfies V (x, y) > 0.
2. The function V is Q+-harmonic, i.e., for any x ∈ X and y > 0,

Ex
(
V (X1, y + S1) ; τy > 1

) = V (x, y) .

The proof of this theorem is rather lengthy. Skipping the technical details, the
main difficulty is to show the integrability of the random variable Sτy , i.e., that
for any x ∈ X and y > 0 it holds Ex

(∣∣y + Sτy

∣
∣) ≤ c (1 + y) < +∞. The integra-

bility is obtained by using a martingale approximation (see Gordin [13]) Mn =∑n
k=1 (θ (Xk) − Pθ (Xk−1)), n ≥ 1, where θ is the solution of the Poisson equation

ρ = θ − Pθ and the norm cocycle ρ is defined in (1).

Lemma 4.2 It holds sup
n≥0

|Sn − Mn| ≤ a = 2 ‖Pθ‖∞ . Px -a.s. for any x ∈ X.

Once integrabilty of Sτy established, for any x ∈ X set

V (x, y) =
{−Ex Mτy if y > 0,

0 if y ≤ 0.

The following proposition presents some properties of the function V .

Proposition 4.3 The function V satisfies
1. For any y > 0 and x ∈ X,

V (x, y) = lim
n→+∞ Ex

(
y + Mn; τy > n

) = lim
n→+∞ Ex

(
y + Sn; τy > n

)
.

2. For any y > 0 and x ∈ X,

0 ∨ (y − a) ≤ V (x, y) ≤ c (1 + y) .

3. For any x ∈ X, limy→+∞ V (x,y)
y = 1.

4. For any x ∈ X, the function V (x, ·) is increasing.
The harmonicity of V is established in the following way. Let x ∈ X and y > 0

and set Vn (x, y) = Ex
(
y + Sn; τy > n

)
, for any n ≥ 1. By the Markov property we

have

Vn+1 (x, y) = Ex
(
y + Sn+1; τy > n + 1

)

= Ex
(
(Vn (X1; y + S1)) ; τy > 1

)
.
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Taking the limit as n → +∞, by Lebesgue’s dominated convergence theorem, we
get

V (x, y) = lim
n→+∞ Ex

(
Vn (X1; y + S1) ; τy > 1

)

= Ex

(
lim

n→+∞ Vn (X1; y + S1) ; τy > 1

)

= Ex V (X1, y + S1) 1{τy>1}
= Q+V (x, y) , (3)

which proves that V is harmonic. We refer to [15] for all the details.
We now give some hints how to prove Theorem 4.5. From the strong approxi-

mation result [14] it follows that without loss of generality we can reconstruct the
Markov walk (Sn)n�1 on the same probability space with the standard Brownian
motion (Bt )t≥0 such that for any ε ∈ (0, ε0), x ∈ X and n ≥ 1,

Px

(
sup
0≤t≤1

∣
∣S[nt] − σBnt

∣
∣ > n1/2−2ε

)
≤ cεn

−2ε, (4)

where cε depends on ε and ε0 > 0. Using the strong approximation (4) and the well-
known results on the exit time for standard Brownian motion (see Lévy [20]) we
establish the following:

Lemma 4.4 Let ε ∈ (0, ε0) and (θn)n≥1 be a sequence of positive numbers such that
θn → 0 and θnnε/4 → +∞ as n → +∞. Then
1. There exists a constant c > 0 such that, for n sufficiently large,

sup
x∈X, y∈[n1/2−ε,θnn1/2]

∣
∣
∣
∣
∣
Px

(
τy > n

)

2y√
2πnσ

− 1

∣
∣
∣
∣
∣
≤ cθn.

2. There exists a constant cε > 0 such that for any n ≥ 1 and y ≥ n1/2−ε,

sup
x∈X

Px
(
τy > n

) ≤ cε
y√
n
.

The previous result holds for y in the interval
[
n1/2−ε, θnn1/2

]
. To extend it to a

fixed y > 0 consider the first time νn when |y + Mk | exceeds 2n1/2−ε :

νn = min
{
k ≥ 1 : |y + Mk | ≥ 2n1/2−ε

}
, (5)

where ε > 0 is small enough. Using Markov property and Lemma 4.4 we show that

Px
(
τy > n

) = 2√
2πnσ

Ex
(
y + Sνn ; τy > νn, νn ≤ n1−ε

)
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+o
(
n−1/2

)
.

To end the proof one has to prove that for any x ∈ X and y > 0,

lim
n→+∞ Ex

(
y + Sνn ; τy > νn, νn ≤ n1−ε

) = V (x, y) . (6)

Again, for details, we refer to [15]. Our main result concerning the limit behavior of
the exit time τy is as follows:

Theorem 4.5 Assume hypotheses P1–P5. Then, for any x ∈ X and y > 0,

Px
(
τy > n

) ∼ 2V (x, y)

σ
√
2πn

as n → +∞.

Moreover, there exists a constant c such that for any y > 0 and x ∈ X,

sup
n≥1

√
nPx

(
τy > n

) ≤ c
1 + y

σ
.

The proof of Theorem 2.2 follows the same line using the following:

Lemma 4.6 Let ε ∈ (0, ε0), t > 0 and (θn)n≥1 be a sequence such that θn → 0 and
θnnε/4 → +∞ as n → +∞. Then

lim
n→+∞ sup

∣
∣
∣
∣
∣
∣

Px

(
τy > n − k, y+Sn−k√

n
≤ t

)

2y√
2πn

1
σ3

∫ t
0 u exp

(
− u2

2σ2

)
du

− 1

∣
∣
∣
∣
∣
∣
= 0, (7)

where sup is taken over x ∈ X, k ≤ n1−ε and n1/2−ε ≤ y ≤ θnn1/2.

The results exposed in Sect. 3 are more delicate but can be proved using similar
technics which can be found in [16].
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Bounds in the Local Limit Theorem
for a RandomWalk Conditioned to Stay
Positive

Ion Grama and Émile Le Page

Abstract Let (Xi )i≥1 be a sequence i.i.d. random variables and Sn = ∑n
i=1 Xi ,

n ≥ 1. For any starting point y > 0 denote by τy the first moment when the random
walk (y + Sk)k≥1 becomes negative. We give some bounds of order n−3/2 for the
expectations E (g (y + Sn) ; τn > n), y ∈ R

∗+ which are valid for a large class of
bounded measurable function g with constants depending on some norms of the
function g.

Keywords Exit time · Random walk conditioned to stay positive
Local limit theorem

1 Notations and Main Results

Let (Xi )i≥1 be a sequence of i.i.d. real valued r.v.’s. on the probability space
(�,F , P). Assume that EX1 = 0 and EX2

1 = σ2 ∈ R
∗+ := (0,∞). Denote

Sn :=
n∑

i=1

Xi , n ≥ 1. (1.1)

For any starting point y > 0, let τy be the first moment when the random walk
(y + Sk)k≥1 becomes non-positive

τy := inf {k ≥ 1 : y + Sk ≤ 0} . (1.2)
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Define the reversals X∗
1 = −Xn, X∗

2 = −Xn−1, ..., X∗
n = −X1 and

S∗
k :=

k∑

i=1

X∗
i , k = 1, ..., n.

Wecan easily extend X∗
k and Sk to all k ≥ n : it is enough to extend Xi for non-positive

indices i = 0,−1,−2, ... . For any “end” point z > 0 set

τ ∗
z := inf

{
k ≥ 1 : z + S∗

k < 0
}
. (1.3)

The exact asymptotics for the probabilites P
(
τy > n

)
and P

(
τ ∗
y > n

)
have been

studied for many authors. We refer to Spitzer [13], Iglehart [12], Bertoin and Doney
[1], Borovkov [2–4], Doney [8], Caravenna [5], Denisov and Wachtel [6, 7], Vatutin
andWachtel [16], Eichelsbacher andKönig [9].We state awell-known result for inde-
pendent random variables inR

1, which gives a bound for the probabilitiesP
(
τy > n

)

and P
(
τ ∗
y > n

)
.We refer to [11], where the case of affine randomwalks was consid-

ered (the i.i.d. randomwalk inR
1 is a particular case); see also Denisov andWachtel

[7] for the case of random walks in cones in R
d .

Theorem 1.1 There exists a constant c such that for any y > 0 and n ≥ 1,

P
(
τy > n

) ≤ c
1 + y

σ
√
n

and P
(
τ ∗
y > n

) ≤ c
1 + y

σ
√
n

. (1.4)

The goal of the paper is to prove bounds of order n−3/2 on the expectation

E
(
g (y + Sn) ; τy > n

) := Eg (y + Sn) 1{τy>n} (1.5)

for a large class of function g : R
∗+ → R+ := [0,∞) and y > 0, under the additional

assumption that X1 is strongly non-lattice, i.e., that for any ε > 0 it holds

sup
|t |>ε

∣
∣Eeit X1

∣
∣ < 1.

An equivalent statement is that the characteristic function of X1 satisfies Cramer’s
strong non-lattice condition lim sup |Eeit X1 | < 1 as |t | → +∞.

A specificity of our results is that we do not require that the function g has
integrable Fourier transform. Instead, our bound involves a constant depending on
some weighted L1 norm of the function g defined below.

Let ε > 0. For any boundedmeasurable function g : R
∗+ → R+ and any x ∈ R set

gε (x) := sup
u∈[x−ε,x+ε]∩R∗+

g (u) , (1.6)
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where sup ∅ = 0. In the sequel we shall assume without mentioning explicitly at
each occurence that the function g is such that gε is measurable. For any bounded
measurable function h : R → R+ and p > 0 define

‖h‖1,p :=
∫

R

(1 + |x |)p h (x) dx and ‖h‖1 :=
∫

R

h (x) dx . (1.7)

Our first result gives two bounds of order 1/n. The first one depends on the initial
value y, the second one gives a bound not depending on y.

Theorem 1.2 Assume that X1 is strongly non-lattice. Then there exist an absolute
constant c > 0 and a decreasing sequence of positive numbers (rn)n≥1 , rn → 0 as
n → ∞, depending only on the law of X1 such that for any bounded measurable
function g : R

∗+ → R+, n ≥ 1 and y > 0 it holds

E
(
g (y + Sn) ; τy > n

) ≤ c
∥
∥grn

∥
∥
1

1 + y

n
(1.8)

and

E
(
g (y + Sn) ; τy > n

) ≤ c
∥
∥grn

∥
∥
1,1

1

n
. (1.9)

The following assertion is the main result of the paper.

Theorem 1.3 Assume that X1 is strongly non-lattice. Then there exist an absolute
constant c > 0 and a decreasing sequence of positive numbers (rn)n≥1 , rn → 0 as
n → ∞, depending only on the law of X1 such that for any bounded measurable
function g : R

∗+ → R+, n ≥ 1 and y > 0 it holds

E
(
g (y + Sn) ; τy > n

) ≤ c
∥
∥grn

∥
∥
1,1

1 + y

n3/2
. (1.10)

The bounds stated above make sense if the norms
∥
∥grn

∥
∥
1 and

∥
∥grn

∥
∥
1,1 of the

function grn appearing in the r.h.s. of (1.8), (1.9) and (1.10) are finite. The bounds
for the expectation E

(
g

(
y + S∗

n

) ; τ ∗
y > n

)
are similar and therefore will not be

formulated separately.
Bounds of order n3/2 for the expectation (1.5) are known in the literature for ran-

dom walks on lattices, see [6, 7]. They can be extended relatively straightforwardly
to the case when X1 has a density. To the best of our knowledge, in the non-lattice
case, bounds of type (1.8), (1.9) and (1.10), with an explicit dependence of the con-
stants for an arbitrary function g, have not been considered in the literature. These
type of bounds are useful for finding exact asymptotic in a conditioned local limit
theorem for a large class of functions, which, however, is outside the scope of the
present paper.

We continue by showing how the norms
∥
∥grn

∥
∥
1 and

∥
∥grn

∥
∥
1,1 can be bounded for

two particular cases.
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Case I. Let I be the set of indicators g (x) = 1[a,b] (x) , x ∈ R,with 0 < a < b <

+∞. For any g ∈ I and ε > 0 we have gε = 1[a−ε,b+ε]. Moreover, ‖gε‖1 = b − a +
2ε and ‖gε‖1,1 = (b − a + 4ε)(a + b)/2, for ε small enough. From Theorems 1.2
and 1.3 we get

Corollary 1.4 Assume that X1 is strongly non-lattice. Then there exist an absolute
constant c and a decreasing sequence of positive numbers (rn)n≥1 , rn → 0 as n →
∞, depending only on the law of X1, such that for any 0 < a < b < +∞, y > 0
and n large enough, it holds

P
(
y + Sn ∈ [a, b], τy > n

) ≤ c(b − a + rn)
1 + y

n
,

P
(
y + Sn ∈ [a, b], τy > n

) ≤ c(b − a + rn)(a + b)
1

n
,

P
(
y + Sn ∈ [a, b], τy > n

) ≤ c(b − a + rn)(a + b)
1 + y

n3/2
.

In particular with b = a + � and some �0 > 0 we have the following bounds
which hold uniformly in rn ≤ � ≤ �0. More precisely, there exist an absolute con-
stant c and a decreasing sequence of positive numbers (rn)n≥1 , rn → 0 as n → ∞,

depending only on the distribution function of X1 such that for any a > 0, y > 0 and
n large enough, it holds

sup
rn≤�≤�0

P
(
y + Sn ∈ [a, a + �]; τy > n

)

�
≤ c(1 + y)

n
,

sup
rn≤�≤�0

P
(
y + Sn ∈ [a, a + �]; τy > n

)

�
≤ c(a + �0)

n
,

sup
rn≤�≤�0

P
(
y + Sn ∈ [a, a + �]; τy > n

)

�
≤ c(a + �0)(1 + y)

n3/2
.

Case II. Let G0 be the set of bounded measurable functions g : R
∗+ → R+ for

which ‖g‖G0
= ‖g‖1 + ∥

∥ωg

∥
∥
1 < ∞, where

ωg (x) = sup
y>0, y �=x

|g (x) − g (y)|
|x − y| , x > 0.

Set ‖g‖G1
= ‖g‖1,1 + ∥

∥ωg

∥
∥
1,1 . Let G1 be the set of bounded measurable functions

g : R
∗+ → R+ for which ‖g‖G1

< ∞. Note that for any g ∈ G0, ε > 0 and x > 0,

|gε(x)| ≤ |g(x)| + |g(x) − gε(x)| ≤ |g(x)| + εωg(x), (1.11)

which implies
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‖gε‖1 ≤ ‖g‖1 + ε
∥
∥ωg

∥
∥
1 ≤ (1 + ε) ‖g‖G0

,

‖gε‖1,1 ≤ ‖g‖1,1 + ε
∥
∥ωg

∥
∥
1,1 ≤ (1 + ε) ‖g‖G1

.

From Theorems 1.2 and 1.3 we deduce the following:

Corollary 1.5 Assume that X1 is strongly non-lattice. Then there exists a constant c
depending only on the law of X1 such that for any g ∈ G0, y > 0 and n ≥ 1 it holds

Qng (y) ≡ E
(
g (y + Sn) ; τy > n

) ≤ c ‖g‖G0

1 + y

n
.

Moreover, for any g ∈ G1, y > 0 and n ≥ 1.

Qng (y) ≡ E
(
g (y + Sn) ; τy > n

) ≤ c ‖g‖G1

1

n

and

Qng (y) ≡ E
(
g (y + Sn) ; τy > n

) ≤ c ‖g‖G1

1 + y

n3/2
.

We end this section by recalling some notations used in this paper: R+ = [0,∞)

is the nonnegative part of the real lineR,R∗+ = (0,∞) is the set of positive numbers.
Denote by φ (t) = 1√

2π
e−t2/2, t ∈ R the standard normal density. The normal density

of zero mean and variance σ2 is denoted by φσ2 (t) := φ (t/σ) /σ. By c, c0, c1, ...we
denote absolute constants and cα,β,..., c′

α,β,..., c
′′
α,β,..., ... denote constants depending

only on the indices α,β, ... . All these constants are not always the same when used
in different formulas. Occasionally, the constants will be specifically mentioned in
the text.

2 Duality Lemma for RandomWalks

The next key properties are crucial in the proof of the duality lemma below.
We associate with the condition that the random walk (y + Sk)k≥1 stays positive

the function

J (y, x1, ..., xn) := 1R∗+ (y) 1R∗+ (y + x1) 1R∗+ (y + x1 + x2) ...1R∗+ (y + x1 + ... + xn) ,

which is defined for any real x1, ..., xn and y.We readily verify the followingproperty:
Antisymmetry: For any real x1, ..., xn, starting point y ∈ R

∗+ and terminal point
z ∈ R

∗+ satisfying z = xn + ... + x1 + y, it holds

J (y, x1, ..., xn) = J (z,−xn, ...,−x1) . (2.1)

Proof Note that
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J (y, x1, ..., xn) = 1 (y ≥ Mn (x1, ..., xn))

= 1 (z ≥ x1 + ... + xn + Mn (x1, ..., xn)) ,

where

Mn (x1, ..., xn) := max {0,−x1,−x1 − x2, ...,−x1 − ... − xn} ≥ 0.

Since

x1 + ... + xn + Mn (x1, ..., xn)

= x1 + ... + xn + max {0,−x1,−x1 − x2, ...,−x1 − ... − xn}
= max {x1 + ... + xn, x2 + ... + xn, ..., xn, 0}
= Mn (−xn,−xn−1, ...,−x1) ,

we have

J (y, x1, ..., xn) = 1 (z ≥ Mn (−xn,−xn−1, ...,−x1))

= J (z,−xn, ...,−x1) .

�

This (elementary) property turns out to be one of the key points in proving the
duality lemma below. The second key point is the elementary fact that the Lebesgue
measure is shift-invariant on R

Shift-Invariance:For any nonnegative boundedmeasurable function f onRwith
compact support and any a ∈ R it holds

∫

R

f (y) dy =
∫

R

f (z − a) dz. (2.2)

Introduce the following transition kernels from R
∗+ to R

∗+ :

Qn (y, dz) = P
(
y + Sn ∈ dz, τy > n

)

= P (y + Sn ∈ dz, y + S1 ≥ 0, ..., y + Sn−1 ≥ 0) (2.3)

and

Q∗
n (z, dy) = P

(
z + S∗

n ∈ dy, τ ∗
z > n

)

= P
(
z + S∗

n ∈ dy, z + S∗
1 ≥ 0, ..., z + S∗

n−1 ≥ 0
)
. (2.4)

Define the transition operators

Qng (·) =
∫

R
∗+
g (x) Qn (·, dx) (2.5)
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and

Q∗
ng (·) =

∫

R
∗+
g (x) Q∗

n (·, dx) , (2.6)

for any bounded measurable function g on R.

The actions of Qn and Q∗
n on a positive bounded measurable function g in terms

of the joint law of X1, . . . , Xn can be computed as follows:

Qng (y) =
∫

Rn

FX1,...,Xn (dx1, ..., dxn) g (y + x1 + ... + xn) J (y, x1, ..., xn) (2.7)

and, in the same way,

Q∗
ng (z) =

∫

Rn
FX∗

1 ,...,X
∗
n

(
dx∗

1 , ..., dx∗
n
)
g

(
z + x∗

1 + ... + x∗
n
)
J

(
z, x∗

1 , ..., x∗
n
)

=
∫

Rn
FX1,...,Xn (dx1, ..., dxn) g (z − xn − ... − x1) J (z, −xn, ..., −x1) . (2.8)

The following lemma establishes a duality relation between Q∗
n and Qn .

Lemma 2.1 (Duality) Let g and h be two nonnegative bounded measurable func-
tions with support in R

∗+. Assume that one of the functions f or g has a compact
support. Then ∫

R
∗+
h (y)Qng (y) dy =

∫

R
∗+
g (z)Q∗

nh (z) dz.

Proof Note that the function gh has a compact support. Using (2.7) and Fubini’s
theorem, we have

∫

R
∗+
h (y)Qng (y) dy =

∫

Rn

I (x1, ..., xn) FX1,...,Xn (dx1, ..., dxn) , (2.9)

where we denoted for brevity

I (x1, ..., xn) =
∫

R
∗+
h (y) g (y + x1 + ... + xn) J (y, x1, ..., xn) dy.

In the same way, using (2.8), we have

∫

R
∗+
g (z)Q∗

nh (z) dz =
∫

Rn

I ∗ (x1, ..., xn) FX1,...,Xn (dx1, ..., dxn) ,

with

I ∗ (x1, ..., xn) =
∫

R
∗+
g (z) h (z − xn − ... − x1) J (z,−xn, ...,−x1) dy.
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To finish the proof of the lemma we show that, for any real x1, ..., xn,

I (x1, ..., xn) = I ∗ (x1, ..., xn) . (2.10)

For this we extend the functions h and g to the whole R by setting h (y) = 0 and
g (y) = 0 for y /∈ R

∗+. Since J (xn, ..., x1, y) = 1 (y > Mn (x1, ..., xn)) = 0 for y ≤
0 we get

I (x1, ..., xn) =
∫

R

h (y) g (xn + ... + x1 + y) J (y, x1, ..., xn) dy.

Using the shift-invariance property (2.2) of the Lebesgue integral onR it follows that

I (x1, ..., xn) =
∫

R

h (z − xn − ... − x1) g (z) J (z − xn − ... − x1, x1, ..., xn) dz.

Since by antisymmetry property, we have

J (z − x1 − ... − xn, x1, ..., xn) = J (z,−xn, ...,−x1) ,

we conclude that (2.10) is true and so

∫

R
∗+
h (y)Qng (y) dy =

∫

R
∗+
g (z)Q∗

nh (z) dz. (2.11)

�

The duality stated in Lemma 2.1 can be rewritten in the following equivalent way.
For any two functions g and h satisfying the conditions of Lemma 2.1 it holds

∫

R
∗+
h (y)

∫

R
∗+
g (z) Pn

(
y + Sn ∈ dz; τy > n

)
dy

=
∫

R
∗+
g (z)

∫

R
∗+
h (y) Pn

(
z + S∗

n ∈ dy; τ ∗
z > n

)
dz. (2.12)

It is easy to see that the condition that one of the functions g or h has compact
support in the previous lemma can be replaced by the condition that, one of the
function g or h is integrable. The usefulness of Lemma 2.1 is explained by the
following:

Corollary 2.2 For any nonnegative bounded measurable function g on R
∗+ it holds

∫

R
∗+

En
(
g(y + Sn); τy > n

)
dy =

∫

R
∗+
g (z) Pn

(
τ ∗
z > n

)
dz.
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Proof Let h = 1[0,a] with a > 0. By duality Lemma 2.1,

∫

R
∗+
1[0,a](y)En

(
g(y + Sn); τy > n

)
dy =

∫

R
∗+
1[0,a] (y)Qng (y) dy

=
∫

R
∗+
g (z)Q∗

n1[0,a] (z) dz ≤
∫

R
∗+
g (z) Pn

(
τ ∗
z > n

)
dz.

Taking the limit as a → ∞, by the Lebesgue monotone convergence theorem, we
get

∫

R
∗+

En
(
g(y + Sn); τy > n

)
dy ≤

∫

R
∗+
g (z) Pn

(
τ ∗
z > n

)
dz.

In the same way, we obtain the opposite bound, which finishes the proof of the
corollary. �

This corollary will be used in Lemma 4.2 to prove that h(·) = En (g(· + Sn);
τy > n

)
is integrable with respect to the Lebesgue measure.

3 A Non-asymptotic Version of the Local Limit Theorem

Local limit theorems have attracted much attention since the seminal papers by
Gnedenko [10], Stone [15] and Shepp [14]. In this section, we give a version the
local limit theorem for functions h with a non-integrable Fourier transform. The
peculiarity of our result is that it is non-asymptotic, i.e., holds for any n ≥ 1. We
also give explicit dependence of the constants on the properties of the function h,

which to the best of our knowledge is not given in the previous papers. The explicit
dependence of the constants turns out to be crucial in proving the main results of the
present paper. We conclude this section by showing how a Stone’s type local limit
theorem can be obtained from our result.

3.1 Smoothing and Some Related Bounds

In the sequel, we use a random variable with a compact support and with integrable
Fourier transform. Define the triangular density κ (·) by κ (x) = 1 − |x | , for |x | ≤ 1
and κ (x) = 0 otherwise (which is the density of a sum of two independent uniform
random variables on [−1/2, 1/2]). Note that the support of the function κ(·) is the
interval [−1, 1] and its Fourier transform κ̂(t) = 1

2π

(
sin(2t)
2t

)2
is integrable:
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‖̂κ‖1 =
∫ ∞

−∞
κ̂ (t) dt = 1

2π

∫ ∞

−∞

(
sin (2t)

2t

)2

dt < ∞.

Let η be an extra randomvariablewith densityκ independent of X1, ..., Xn .Let y > 0
and ε ∈ (0, 1/2) . Set ηε = εη. The density of ηε is κε (x) = κ (x/ε) /ε. Moreover,
its characteristic function κ̂ε (t) = Eeitεη = κ̂ (εt) is integrable

‖̂κε‖1 =
∫ ∞

−∞
|̂κ (εt)| dt = 1

ε

∫ ∞

−∞
|̂κ (t)| dt = 1

ε
‖̂κ‖1 .

Let g : R → R+ be a bounded measurable function. Along with the definition (1.6),
for any x ∈ R, set

gε (x) := sup
u∈[x−ε,x+ε]

g (u) and g−ε (x) = inf
u∈[x−ε,x+ε] g (u) . (3.1)

Note that

g±ε ∗ κε(x) = Eg±ε (x − ηε) =
∫ ∞

−∞
g±ε (x − u)κε (u) du. (3.2)

Lemma 3.1 For any x ∈ R,

g−ε (x) ≤ g (x) ≤ gε (x) (3.3)

and
g−2ε (x) ≤ g−ε ∗ κε (x) ≤ g (x) ≤ gε ∗ κε (x) ≤ g2ε (x) . (3.4)

Proof By (3.1), for any x ∈ R and u ∈ [−ε, ε] it holds gε (x − u) ≥ g (x) and
g−ε (x − u) ≤ g (x) . In particular, with u = 0 we have gε (x) ≥ g (x) and g−ε (x) ≤
g (x) . Since the support of the random variable ηε is [−ε, ε] , we have g (x) ≤
gε (x − ηε) and g (x) ≥ g−ε (x − ηε) for any x ∈ R. From this, taking the expecta-
tion, we get

g (x) ≤ Egε (x − ηε) = gε ∗ κε(x), x ∈ R

and
g (x) ≥ Eg−ε (x − ηε) = g−ε ∗ κε(x), x ∈ R.

On the other hand, since gε (x − u) ≤ g2ε (x) for any x ∈ R
∗+ and |u| ≤ ε, it holds

gε ∗ κε(x) =
∫ ∞

−∞
gε (x − u)κε (u) du ≤ g2ε (x)

∫ ∞

−∞
κε (u) du = g2ε (x) , x ∈ R.
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In the same way we obtain

g−ε ∗ κε(x) =
∫ ∞
−∞

g−ε (x − u) κε (u) du ≥ g−2ε (x)
∫ ∞
−∞

κε (u) du = g−2ε (x) , x ∈ R.

�
In the sequel, denote by ĝ the Fourier transform of g whenever the latter is

integrable.

Lemma 3.2 Assume that g2ε is integrable. For any x ∈ R,

∥
∥ĝε ∗ κε

∥
∥∞ ≤ ‖g2ε‖1 ,

∥
∥ ̂g−ε ∗ κε

∥
∥∞ ≤ ‖g‖1 (3.5)

and
∥
∥ĝε ∗ κε

∥
∥
1 ≤ ‖gε‖1

‖̂κ‖1
ε

,
∥
∥ ̂g−ε ∗ κε

∥
∥
1 ≤ ‖g‖1

‖̂κ‖1
ε

. (3.6)

Proof Using Lemma 3.1, we have

∥
∥ĝε ∗ κε

∥
∥∞ ≤ ‖gε ∗ κε‖1 =

∫ ∞

−∞
gε ∗ κεdx ≤

∫ ∞

−∞
g2ε (x) dx = ‖g2ε‖1

and ∥
∥ ̂g−ε ∗ κε

∥
∥∞ ≤ ‖g−ε ∗ κε‖1 ≤ ‖g‖1 .

Since ĝε ∗ κε = ĝεκ̂ε, we have

∥
∥ĝε ∗ κε

∥
∥
1 = ‖̂gεκ̂ε‖1 ≤ ‖̂gε‖∞ ‖̂κε‖1 ≤ ‖gε‖1

‖̂κ‖1
ε

and

∥
∥ ̂g−ε ∗ κε

∥
∥
1 = ‖̂g−εκ̂ε‖1 ≤ ‖̂g−ε‖∞ ‖̂κε‖1 ≤ ‖g−ε‖1 ‖̂κε‖1 ≤ ‖g‖1

‖̂κ‖1
ε

.

�

3.2 A Non-asymptotic Local Limit Theorem for Functions
with Integrable Fourier Transform

Let X1, X2, . . . be i.i.d. random variables of means 0 and unit variances: EX1 = 0
and EX2

1 = 1. Let F (x) = P (X1 ≤ x) , x ∈ R be the distribution function of X1.

Let H be the set of bounded nonnegative functions h with support in R and
bounded integrable Fourier transform ĥ. We apply the convention 0/0 = 0 whenever
the indeterminacy 0/0 occurs.
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Theorem 3.3 Suppose that X1 is strongly non-lattice. Then there is a decreasing
sequence of positive numbers (rn)n≥1 depending only on the law of X1, such that
limn→∞ rn = 0 and for any n ≥ 1,

sup
h∈H

sup
y∈R

∣
∣
∣
√
nEh (y + Sn) − ∫

R
h (x) φ

(
x−y√

n

)
dx

∣
∣
∣

∥
∥ĥ

∥
∥
1 + ∥

∥ĥ
∥
∥∞

≤ rn.

Proof Let h ∈ H. Without loss of generality we assume that σ = 1. By inversion
formula we have

h (x) = 1

2π

∫

R

eixt ĥ (t) dt, x ∈ R
∗
+.

Denote Pn (dx) = P (Sn ∈ dx) . Let P̂n (t) = ∫
R+ e

it x Pn (dx) be its Fourier trans-
form. By Fubini’s theorem, for any y ∈ R,

Eh (y + Sn) =
∫

R

h (y + x) Pn (dx)

=
∫

R

1

2π

∫

R

ei(y+x)t ĥ (t) dt Pn (dx)

= 1

2π

∫

R

eiyt ĥ (t) P̂n (t) dt.

Changing the variable t = u√
n
, we obtain

√
nEh (y + Sn) = 1

2π

∫

R

ei
yu√
n ĥ

(
u√
n

)

P̂n

(
u√
n

)

du

= 1

2π

∫

R

ei
yu√
n ĥ

(
u√
n

)

φ̂ (u) du + I, (3.7)

where

I = 1

2π

∫

R

ei
yu√
n ĥ

(
u√
n

) (

P̂n

(
u√
n

)

− φ̂ (u)

)

du.

Let ε > 0. Decompose the integral I into three parts: I = I1 + I2 + I3, where

I1 = 1

2π

∫

|u|≤ε
√
n
ei

yu√
n ĥ

(
u√
n

) (

P̂n

(
u√
n

)

− φ̂ (u)

)

du,

I2 = − 1

2π

∫

|u|>ε
√
n
ei

yu√
n ĥ

(
u√
n

)

φ̂ (u) du,

I3 = 1

2π

∫

|u|>ε
√
n
ei

yu√
n ĥ

(
u√
n

)

P̂n

(
u√
n

)

du.
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First we control I1. We shall prove that, for |u| ≤ ε
√
n,

∣
∣
∣
∣P̂n

(
u√
n

)

− φ̂ (u)

∣
∣
∣
∣ ≤ u2rF

(
u√
n

)

exp

(

−u2

2
+ u2rF

(
u√
n

))

, (3.8)

where rF (v) is a real function satisfying rF (t) → 0 as t → 0. Denote ψF (t) =
log F̂ (t) , where F̂ (t) = E exp (i t X1) . Since EX1 = 0 and EX2

1 = 1, by Taylor’s
expansion, there exists ε > 0 and a complex function RF (·) such that |RF (t)| → 0 as
t → 0 and ψF (t) = − t2

2 + t2RF (t) , for |t | ≤ ε. Taking into account that P̂n (t) =
(
F̂ (t)

)n
, for any u satisfying |u| ≤ ε, we have

log P̂n

(
u√
n

)

= nψF

(
u√
n

)

= −u2

2
+ u2RF

(
u√
n

)

.

Since ex = 1 + ηxex , for some |η| ≤ 2 and |x | sufficiently small, this implies that,
for any |u| ≤ ε

√
n,

P̂n

(
u√
n

)

= exp

(

−u2

2
+ u2RF

(
u√
n

))

= exp

(

−u2

2

) (

1 + θu2RF

(
u√
n

)

exp

(

u2RF

(
u√
n

)))

,

where |θ| ≤ 2, which proves (3.8) with rF (t) = |RF (t)| .
Using (3.8) we get

|I1| ≤ 1

2π

∫

|u|≤ε
√
n

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣

∣
∣
∣
∣P̂n

(
u√
n

)

− φ̂ (u)

∣
∣
∣
∣ du

≤ c
∫

|u|≤ε
√
n
u2rF

(
u√
n

)

exp

(

−u2

2
+ u2rF

(
u√
n

)) ∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du. (3.9)

Since rF (t) → 0 as t → 0 one can choose a positive ε depending only on the law of

X1 so small that sup|t |≤ε rF (t) ≤ 1/8, which implies − u2

2 + u2rF
(

u√
n

)
≥ −3u2/8.

Therefore

|I1| ≤ c
∫

|u|≤ε
√
n
u2rF

(
u√
n

)

exp
(−3u2/8

)
∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

≤ c
∫

|u|≤ε
√
n
rF

(
u√
n

)

exp
(−u2/4

)
∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du,

where we use the bound u2 exp
(−u2/8

) ≤ c, u ∈ R. Since the sequence r ′
n =

supv∈[0,εn−1/4] rF (v) decreases as n → ∞ and r ′
n ≤ c′

F for some positive constant
c′
F depending only on the law of X1, we have
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|I1| ≤ c
∫

|u|≤εn1/4
rF

(
u√
n

)

exp
(−u2/4

)
∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

+c
∫

εn1/4≤|u|≤ε
√
n
rF

(
u√
n

)

exp
(−u2/4

)
∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

≤ cr ′
n

∫

R

exp
(−u2/4

)
∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

+c′
Fe

−ε2
√
n/4

∫

R

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du.

Since φ̂σ (t) = e−t2σ2/2 is the Fourier transform of φσ2 (u) = 1√
2πσ

e− t2

2σ2 , we obtain

|I1| ≤ cr ′
n

∫

R

∣
∣
∣̂h (u)

√
ne−nu2/4

∣
∣
∣ du + c′

F

√
ne−ε2

√
n/4

∫

R

∣
∣̂h (u)

∣
∣ du.

= cr ′
n

∥
∥ĥ

√
nφ̂n/2

∥
∥
1 + c′

F

√
ne−ε2

√
n/4

∥
∥ĥ

∥
∥
1 . (3.10)

Control of I2. Obviously

|I2| ≤ 1

2π

∫

|u|>ε
√
n

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ φ̂ (u) du

≤ 1

2π
e−ε2n/2

∫

R

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

=
√
n

2π
e−ε2n/2

∥
∥ĥ

∥
∥
1 . (3.11)

Control of I3. Since X1 is strongly non-lattice there exists a positive constant
qF,ε < 1 depending on the distribution function F and on ε such that

∣
∣P̂n (t)

∣
∣ ≤ qn

F,ε,

for any |t | > ε. Using this we get

|I3| ≤ 1

2π

∫

|u|>ε
√
n

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ q

n
F,εdu

≤ 1

2π
e−c′′

F,εn
∫

R

∣
∣
∣
∣ĥ

(
u√
n

)∣
∣
∣
∣ du

=
√
n

2π
e−c′′

F,εn
∥
∥ĥ

∥
∥
1 , (3.12)

for some positive constant c′′
F,ε. Collecting the bounds (3.10), (3.11) and (3.12), we

obtain

|I | ≤ cr ′
n

∥
∥ĥ

√
n φ̂n/2

∥
∥
1 + e−c′′′

F n

c′′′
F

∥
∥ĥ

∥
∥
1 , (3.13)
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for some constant c′′′
F > 0 depending on the law of X1 and ε. Changing the variable

u = t
√
n, from (3.7) and (3.13) it follows that

∣
∣
∣
∣
√
nEh (y + Sn) − 1

2π

∫ ∞

−∞
e−it y ĥ (t)

√
nφ̂

(
t
√
n
)
dt

∣
∣
∣
∣ ≤ cr ′

n

∥
∥ĥ

√
n φ̂n/2

∥
∥
1 + e−c′′′

F n

c′′′
F

∥
∥ĥ

∥
∥
1 .

(3.14)

Note that
√
nφ̂

(
t
√
n
)
is the Fourier transform of φ

(
u√
n

)
:

√
nφ̂

(
t
√
n
) = √

n
∫ ∞

−∞
e−it x

√
nφ (x) dx =

∫ ∞

−∞
e−i tuφ

(
u√
n

)

du.

Using the inversion formula we get

1

2π

∫ ∞

−∞
e−it y ĥ (t)

√
nφ̂

(
t
√
n
)
dt = 1

2π

∫ ∞

−∞
φ

(
u√
n

) ∫ ∞

−∞
e−i t(y+u)ĥ (t) dtdu

= 1

2π

∫ ∞

−∞
h (y + u) φ

(
u√
n

)

du. (3.15)

From (3.14) and (3.15) we obtain

∣
∣
∣
∣
√
nEh (y + Sn) −

∫

R

h (y + x) φ

(
x√
n

)

dx

∣
∣
∣
∣ ≤ cr ′

n

∥
∥ĥ

√
n φ̂n/2

∥
∥
1 + e−c′′′

F n

c′′′
F

∥
∥ĥ

∥
∥
1 .

Since ε depend only on the law of X1, to finish the proof of Theorem 3.3 it is enough
to note that

∥
∥ĥ

√
n φ̂n/2

∥
∥
1 =

∫

R

∣
∣
∣
∣ĥ

(
u√
n

)

e−u2/4

∣
∣
∣
∣ du ≤ c

∥
∥ĥ

∥
∥∞ .

�

3.3 Non-asymptotic Local Theorem for Functions with
Non-integrable Fourier Transform

In this section, we give an extension of Theorem3.3 for functionswith non-integrable
Fourier transforms. Our result is non-asymptotic, i.e., holds for any n ≥ 1. Recall
that for any positive bounded measurable function h on R and ε > 0 the extension
hε is defined by (3.1).

Theorem 3.4 Assume that X1 is strongly non-lattice. Then there exist a constant c
andadecreasing sequence of positive numbers (rn)n≥1, limn→∞ rn = 0, both depend-
ing only on the law of X1, such that for any positive bounded measurable function h
on R and n ≥ 1,
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sup
y∈R

(√
nEh (y + Sn) −

∫

R

hrn (x) φ

(
x − y

σ
√
n

)

dx

)

≤ crn
∥
∥hrn

∥
∥
1

and

sup
y∈R

(∫

R

h−rn (x) φ

(
x − y

σ
√
n

)

dx − √
nEh (y + Sn)

)

≤ crn
∥
∥hrn

∥
∥
1 .

Proof Without loss of generality we consider that σ = 1. Let ε ∈ (0, 1/2) and h∗
ε =

hε ∗ κε. Using the bound (3.4) of Lemma 3.1,

√
nEh (y + Sn) ≤ √

nEh∗
ε (y + Sn) .

By Theorem 3.3 there exist a constant c and a sequence (rn)n≥1 , rn → 0 as n → ∞,
depending only on the law of X1 such that

sup
y∈R

∣
∣
∣
∣
√
nEh∗

ε (y + Sn) −
∫

R

h∗
ε (x) φ

(
x − y√

n

)

dx

∣
∣
∣
∣ ≤ crn

(∥
∥ĥ∗

ε

∥
∥∞ + ∥

∥ĥ∗
ε

∥
∥
1

)
,

(3.16)
where ĥ∗

ε is the Fourier transform of h∗
ε . By Lemma 3.2,

∥
∥ĥ∗

ε

∥
∥∞ ≤ ‖h2ε‖1 ,

∥
∥ĥ∗

ε

∥
∥
1 ≤ ‖hε‖1 ‖̂κ‖1

ε
= c

ε
‖hε‖1 .

Moreover, again by (3.4) of Lemma 3.1 h∗
ε (x) ≤ h2ε (x) , so that

√
nEh (y + Sn) ≤

∫

R

h2ε (x) φ

(
x − y√

n

)

dx + crn ‖h2ε‖1 + crnε
−1 ‖hε‖1 .

Since ‖hε‖1 ≤ ‖h2ε‖1, choosing ε = r ′
n := √

rn we obtain, for n ≥ 1,

√
nEh (y + Sn) ≤

∫

R

h2r ′
n
(x) φ

(
x − y√

n

)

dx + c′r ′
n

∥
∥h2r ′

n

∥
∥
1 ,

for some constant c′ > 0 depending only on the law of X1.
The lower bound is proved in the same way, thus finishing the proof. �

3.4 Stone’s Type Local Limit Theorem

We shall derive from Theorem 3.4 the following version of the local limit theorem
due to Stone [15] under the condition that X1 is strongly non-lattice. Let X1, X2, ...

be i.i.d. random variables of means 0 and unit variances: EX1 = 0 and EX2
1 = 1.



Bounds in the Local Limit Theorem for a Random Walk … 119

Theorem 3.5 Assume that X1 is strongly non-lattice. Then, there exist a constant c
and a decreasing sequence (rn)n≥1, limn→∞ rn = 0, both depending only on the law
of X1, such that for any n ≥ 1,

sup
�≥rn

sup
x∈R

∣
∣
∣
∣
1

�

√
nP (Sn ∈ [x, x + �]) − φ

(
x/

√
n
)
∣
∣
∣
∣ ≤ crn.

Proof Let� > 0. Consider the indicator function h = 1[0,�]. Then hrn = 1[−rn ,�+rn ].

By Theorem 3.4 there exists a sequence (rn)n≥1 , limn→∞ rn = 0, depending only on
the law of X1 such that, uniformly in y ∈ R,

√
nEh (−y + Sn) ≤

∫

R

hrn (x) φ

(
x + y√

n

)

dx + ∥
∥hrn

∥
∥
1 rn.

Since
∥
∥hrn

∥
∥
1 = � + 2rn and

∫

R

hrn (x) φ

(
x + y√

n

)

dx ≤
∫ �+rn

−rn

φ

(
x + y√

n

)

dx ≤ (� + 2rn)φ(y/
√
n),

we obtain

√
nP (Sn ∈ [y, y + �]) ≤ (� + 2rn)φ(y/

√
n) + (� + 2rn)rn.

This implies

√
nP (Sn ∈ [y, y + �]) − �φ(y/

√
n) ≤ 2rn + (� + 2rn)rn.

Choosing r ′
n = r1/2n , for any � > r ′

n one gets

√
nP (Sn ∈ [y, y + �]) − �φ(y/

√
n) ≤ �(2r ′

n + (1 + 2r ′
n)rn) ≤ c�r ′

n.

A lower bound is proved in the same way, which ends the proof. �

4 Proof of the Main Results

Recall the following notations which will be used all over this section: for any n ≥ 1
and y ∈ R

∗+,

Qn (y, dz) := P
(
y + Sn ∈ dz, τy > n

)

and, for any bounded measurable function g : R
∗+ → R+,

Qng (y) :=
∫

R+
g (z) Qn (y, dz) = E (g (y + Sn) ; τn > n) , y ∈ R

∗
+.
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4.1 Boundedness and Integrability of Qng

Let g : R
∗+ → R+ be a boundedmeasurable function. It is easy to see that the function

Qng is bounded

‖Qng‖∞ ≤
∫

R+
g (z) Qn (y, dz) ≤ ‖g‖∞

∫

R+
Qn (y, dz) ≤ ‖g‖∞ . (4.1)

Moreover, using Theorem 1.1 we obtain, for any y > 0,

Qng (y) =
∫

R+
g (x) P

(
y + Sn ∈ dx; τy > n

) ≤ ‖g‖∞ P
(
τy > n

) ≤ c ‖g‖∞
1 + y√

n
(4.2)

and a similar inequality for Q∗
ng (·) holds true.

Recall that gε (u) = sup|v−u|≤ε g (v) , where ε > 0. The following lemma shows
that when gε is integrable, the functions

√
nQng (·) are bounded in L∞ uniformly in

n ≥ 1.

Lemma 4.1 There exists a sequence of numbers (rn)n≥1 depending only on the law
of X1 and satisfying rm → 0 as n → ∞ such that

√
n ‖Qng‖∞ ≤ ∥

∥grn
∥
∥
1

(
1√
2π

+ rn

)

.

Proof We have

√
nQng (u) = √

n
∫

R
∗+
g (z) P (u + Sn ∈ dz; τu > n)

≤ √
n

∫

R
∗+
g (z) P (u + Sn ∈ dz) . (4.3)

Using Theorem 3.4, it follows that there is a sequence of numbers (rn)n≥1 , depending
only on the law of X1, such that limn→∞ rn = 0 and uniformly in u > 0

√
n

∫

R

g (z) P (u + Sn ∈ dz) ≤ Vn (u) + ∥
∥grn

∥
∥
1 rn, (4.4)

where

Vn (u) =
∫ +∞

−∞
grn (z)

1√
2π

e− (z−u)2

2n dz ≤ 1√
2π

∥
∥grn

∥
∥
1 . (4.5)

From (4.3), (4.4) and (4.5) the claim follows. �

The next lemma shows that the L1 norm of the function Qng is of order n−1/2.

This turns out to be one of the key points in the sequel. The proof is based upon the
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duality Lemma 2.1 and Theorem 1.1. Recall that the weighted L1 norm ‖g‖1,p used
below is defined by (1.7).

Lemma 4.2 There is an absolute constant c such that, for any bounded and mea-
surable function g : R

∗+ → R+, it holds

sup
n≥1

√
n ‖Qng‖1 := sup

n≥1

√
n

∫

R+
Qng (y) dy ≤ c ‖g‖1,1 .

Proof Let a > 0 and n ≥ 1. By duality Lemma 2.1,

∫

R+
1[0,a] (y)Qng (y) dy =

∫

R+
1[0,a] (y)

(∫

R+
g (z) Qn (y, dz)

)

dy

=
∫

R+
g (z)

(∫

R+
1[0,a] (y) Q∗

n (z, dy)

)

dz

≤
∫

R+
g (z)

(∫

R+
Q∗

n (z, dy)

)

dz.

By Theorem 1.1, there exists a constant c such that, for any z ≥ 0,

∫

R+
Q∗

n (z, dy) =
∫

R+
P

(
z + S∗

n ∈ dy; τ ∗
z > n

) = P
(
τ ∗
z > n

) ≤ c
1 + z√

n
.

Therefore, ∫

R+
1[0,a] (y)Qng (y) dy ≤ c√

n

∫

R+
g (z) (1 + z) dz.

Taking the limit as a → ∞, by monotone convergence theorem, we obtain

∫

R+
Qng (y) dy ≤ c√

n

∫

R+
g (z) (1 + z) dz. (4.6)

�

Let ε ∈ (0, 1/2) . For any bounded measurable function g : R
∗+ → R+, introduce

the upper right ε-bound of g by setting

gε (s) = sup
u∈[s−ε,s]∩R∗+

g (u) for s ∈ R, (4.7)

where sup ∅ = 0. With this definition gε(s) = 0 for s ≤ 0. Note also that, in this
case, gε (s) ≤ gε (s) , for all s ∈ R, where gε is defined by (1.6).

Recall the triangular density κ (x) = 1 − |x | , for |x | ≤ 1 and κ (x) = 0 other-
wise. Let η be a random variable with density κ independent of X1, ..., Xn . Let
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ε ∈ (0, 1/2) and ηε = εη. Setting ζε = 1
2 (ηε + ε) ≥ 0, for any s > 0, we obtain a

new smoothing variable whose support is the interval [0, ε] . Denote by k+
ε (·) the

density of ζε.

Lemma 4.3 For any boundedmeasurable function g : R∗+ → R+, s > 0 and n ≥ 1,

Qng (s) := E (g (s + Sn) ; τs > n) ≤ EQngε (s + ζε) = (Qngε) ∗ k+
ε (s).

Proof Note that ζε ∈ (0, ε) and that by the definition of gε, for any s > 0,

gε (s + ζε) = sup
u∈[s+ζε−ε,s+ζε]∩R∗+

g (u) ≥ g (s) , (4.8)

where the for the last inequalitywe use the fact that the interval [s + ζε − ε, s + ζε] ∩
R

∗+ contains s. Using (4.8) with s + Sn instead of s and the fact that ζε is independent
of the sequence (Xi )i≥1 we have, for any s > 0,

Qng (s) = E (g (s + Sn) ; τs > n)

= E (g (s + Sn) ; s + S1 > 0, ..., s + Sn > 0)

≤ E
(
gε (s + Sn + ζε) ; s + S1 + ζε > 0, ..., s + Sn + ζε > 0

)

= E
(
gε (s + Sn + ζε) ; τs+ζε

> n
)

= EQngε (s + ζε) . �

4.2 Proof of Theorem 1.2

First we prove the inequality (1.8).
Assume that n is large enough and that k = [n/2] andm = n − k. By the Markov

property, for any y > 0.

Qng (y) =
∫

R
∗+
Qk (y, ds)

∫

R
∗+
Qm (s, dz) g (z) . (4.9)

Since Qm (s, dz) = P (s + Sm ∈ dz; τs > m) ≤ P (s + Sm ∈ dz) ,

Qng (y) ≤
∫

R
∗+
Qk (y, ds)

∫

R
∗+
g (z) P (s + Sm ∈ dz)

=
∫

R
∗+
Qk (y, ds)

∫

R

g (z) P (s + Sm ∈ dz) . (4.10)

ByTheorem3.4, there exists a constant c and adecreasing sequence (rm)m≥1 , rm → 0
as m → ∞, depending only on the law of X1 such that, for any m ≥ 1,
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sup
s∈R

(√
m

∫

R

g (z) P (s + Sm ∈ dz) −
∫

R

grn (z)φ

(
z − s√

m

)

dz

)

≤ crn
∥
∥grn

∥
∥
1

form which we have

√
m sup

s∈R

∫

R

g (z) P (s + Sm ∈ dz) ≤ crn
∥
∥grn

∥
∥
1 . (4.11)

Substituting (4.11) into (4.10) we obtain

√
mQng (y) ≤ crn

∥
∥grn

∥
∥
1

∫

R
∗+
Qn (y, ds) . (4.12)

By Theorem 1.1, for any y ≥ 0,

∫

R
∗+
Qk (y, ds) =

∫

R
∗+

P
(
y + Sk ∈ ds; τy > k

) = P
(
τy > k

) ≤ c
1 + y√

k
. (4.13)

Substituting (4.13) into (4.12) the result follows.
Now we prove the bound (1.9). In the proof of this assertion we use the duality

implicitly, through Lemma 4.2 whose proof is based on the duality.
As before, let k = [n/2] and m = n − k. By the Markov property (4.9), we have,

for any y > 0,

Qng (y) =
∫

R
∗+
Qmg (s) Qk (y, ds) .

Since Qk (y, ds) = P
(
y + Sk ∈ ds; τy > k

) ≤ P (y + Sk ∈ ds) , we get

Qng (y) ≤
∫

R

hm (s) P (y + Sk ∈ ds) , (4.14)

where hm (s) = Qmg (s) for s > 0 and hm (s) = 0 otherwise. We are going to apply
the local limit Theorem 3.3 with h = hm . However, the function hm may have non-
integrable Fourier transform. To overcome this difficulty, we shall substitute it by a
function with bounded integrable Fourier transform.

For any ε ∈ (0, 1/2) define gε by (4.7) and set for brevity

hm,ε (s) := Qmgε (s) , s > 0.

We extend gε and hm,ε to the whole real line by setting gε = 0 and hm,ε(s) = 0 for
s ≤ 0. Then, for any s ∈ R,

h
∗
m,ε (s) := Ehm,ε (s + ζε) ≥ 0. (4.15)
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By Lemma 4.3, for any s > 0,

Qmg (s) = E (g (s + Sm) ; τs > m)

≤ EQmgε (s + ζε) = Ehm,ε (s + ζε) =: h∗
m,ε (s) .

This and the previous inequality imply, for any s ∈ R,

hm(s) ≤ EQngε (s + ζε) =: h∗
m,ε (s) . (4.16)

From (4.16) and (4.14) we obtain,

Qng (y) ≤
∫

R

h
∗
m,ε (s) P (y + Sk ∈ ds) . (4.17)

Denote by ĥ∗
m,ε the Fourier transform of h

∗
m,ε, which, as we shall see below, is

bounded and integrable. By Theorem 3.3, there is a decreasing sequence of real
numbers (rn)n≥1 depending only on the law of X1, such that limn→∞ rn = 0 and for
any n ≥ 1 uniformly in y > 0,

√
k

∫

R

h
∗
m,ε (s) P (y + Sk ∈ ds)

≤ 1√
2π

∫

R

h
∗
m,ε (s) exp

(

− (s − y)2

2k

)

ds + (∥
∥ĥ∗

m,ε

∥
∥

∞ + ∥
∥ĥ∗

m,ε

∥
∥
1

)
rk

≤ 1√
2π

∥
∥
∥h

∗
m,ε

∥
∥
∥
1
+ (∥

∥ĥ∗
m,ε

∥
∥

∞ + ∥
∥ĥ∗

m,ε

∥
∥
1

)
rk . (4.18)

Note that, for s > 0, we have hm,ε (s) = E
(
gε (s + Sm) ; τs > m

)
, while for s ≤ 0,

we have hm,ε (s) := 0 ≤ E
(
gε (s + Sm) ; τs > m

)
,which proves that, for any s ∈ R,

hm,ε (s) ≤ E
(
gε (s + Sm) ; τs > m

)
.

Therefore, conditioning with respect to ζs , for any s ∈ R, we get

h
∗
m,ε (s) = E

(
Ehm,ε (s + ζε)

∣
∣ ζs

)

≤ E
(
E

(
gε (s + ζε + Sm) ; τs+ζε

> m
)∣
∣ ζs

)

= E
(
E

(
gε (s + ζε + Sm) ; s + S1 + ζε > 0, ..., s + Sm + ζε > 0

)∣
∣ ζs

)

≤ E
(
g2ε (s + ε + Sm) ; s + S1 + ε > 0, ..., s + Sm + ε > 0

)

= Qmg2ε (s + ε) .

Using Lemma 4.2,

∥
∥ĥ∗

m,ε

∥
∥

∞ ≤
∥
∥
∥h

∗
m,ε

∥
∥
∥
1

=
∫ ∞

0
h

∗
m,ε (s) ds ≤

∫ ∞

0
Qmg2ε (s + ε) ds
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≤
∫ ∞

0
Qmg2ε (s) ds = ∥

∥Qmg2ε
∥
∥
1 ≤ c√

m

∥
∥g2ε

∥
∥
1,1 ≤ c√

m
‖g2ε‖1,1 ,

(4.19)

which proves that ĥ∗
m,ε is bounded. Since by (4.15), h

∗
m,ε is a convolution, we have,

for any s ∈ R,

ĥ∗
m,ε (s) = ĥm,ε (s) Ee−isζε = e−is ε

2 ĥm,ε (s) κ̂ε (s/2) ,

where ĥm,ε is the Fourier transform of hm,ε. Then, using Lemma 4.2, as in (4.19),
this proves that ĥ∗

m,ε is integrable

∥
∥ĥ∗

m,ε

∥
∥
1

=
∫

R

∣
∣̂hm,ε (t) κ̂ε (t/2)

∣
∣ dt ≤ ∥

∥ĥm,ε

∥
∥∞

∫

R

|̂κε (t/2)| dt

= 2

ε

∥
∥ĥm,ε

∥
∥∞

∫

R

|̂κ (t)| dt ≤ c

ε

∥
∥hm,ε

∥
∥
1 = c

ε

∥
∥Qmgε

∥
∥
1

≤ c

ε
√
m

∥
∥gε

∥
∥
1,1 ≤ c

ε
√
m

‖g2ε‖1,1 . (4.20)

Implementing (4.18) into (4.17) and using the bounds (4.19), (4.20), we obtain,

√
kQng (y) ≤ √

k
∫

R+
h∗
m,ε (s) P (y + Sk ∈ ds)

≤ 1√
2π

∥
∥h∗

m,ε

∥
∥
1
+ (∥

∥ĥ∗
m,ε

∥
∥

∞ + ∥
∥ĥ∗

m,ε

∥
∥
1

)
rk

≤ c√
m

‖g2ε‖1,1
(

1 +
(

1 + 1

ε

)

rk

)

.

Choosing ε = √
rk proves inequality (1.9).

4.3 Proof of Theorem 1.3

In the proof of this statement the duality is used implicitly through Theorem 1.2.
Assume that k = [n/2] and m = n − k. By the Markov property

Qng (y) =
∫

R+
g (z) Qn (y, dz)

=
∫

R+
Qk (y, ds)

∫

R+
g (z) Qm (s, dz) . (4.21)
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By Theorem 1.2, there exists a sequence (rn)n≥1 , rn → 0 as n → ∞, depending
only on the law of X1, such that

∫

R+
g (z) Qm (s, dz) ≤ c(1 + rn)

m

∥
∥grn

∥
∥
1,1 ≤ c

m

∥
∥grn

∥
∥
1,1 . (4.22)

From (4.21) and (4.22),

Qng (y) ≤
∫

R+
Qk (y, ds)

c

m

∥
∥grn

∥
∥
1,1 . (4.23)

By Theorem 1.1, there exists a constant c such that, for any y ≥ 0,

∫

R+
Qk (y, ds) =

∫

R+
P

(
y + Sk ∈ ds; τy > k

) ≤ P
(
τy > k

) ≤ c
1 + y√

k
. (4.24)

From this and (4.23),

Qng (y) ≤ c
1 + y

m
√
k

∥
∥grn

∥
∥
1,1 ≤ c

1 + y

n3/2
∥
∥grn

∥
∥
1,1 ,

which proves the theorem.

Remark 4.4 Inspecting the proof of Theorem 1.3 one could think to improve the
rate n3/2 using instead of the bound (4.24) the more precise bounds (1.8) and (1.9).
To do so the inequalities (1.8) and (1.9) should be applied with g being the unity
function: g(x) = e(x) = 1. However, since the unity function e is not in L

1, we have∥
∥grn

∥
∥
1 = ∥

∥ern
∥
∥
1 = ∞. Recall that our bounds (1.8) and (1.9) can be applied only

for functions g with
∥
∥grn

∥
∥
1,1 < +∞. In the particular case considered here we have

∥
∥ern

∥
∥
1,1 = ∥

∥ern
∥
∥
1 = +∞ which makes such an improvement impossible.
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Part IV
Approximation of Stochastic Processes



Regression-Based Variance Reduction
Approach for Strong Approximation Schemes

Denis Belomestny, Stefan Häfner and Mikhail Urusov

Abstract In this paper, we present a novel approach towards variance reduction
for discretised diffusion processes. The proposed approach involves specially con-
structed control variates and allows for a significant reduction in the variance for the
terminal functionals. In this way, the complexity order of the standard Monte Carlo
algorithm (ε−3) can be reduced down to ε−2

√|log(ε)| in case of the Euler scheme
with ε being the precision to be achieved. These theoretical results are illustrated by
several numerical examples.

Keywords Monte Carlo methods · Regression methods · Control variates
Stochastic differential equations · Strong schemes

1 Introduction

Let T > 0 be a fixed time horizon. Consider a d-dimensional diffusion process
(Xt )t∈[0,T ] defined on a filtered probability space (�,F , (Ft )t∈[0,T ],P) by the Itô
stochastic differential equation

dXt = μ(Xt ) dt + σ(Xt ) dWt , X0 = x0 ∈ R
d , (1)

The study has been funded by the Russian Academic Excellence Project ‘5–100’.

D. Belomestny (B) · M. Urusov
Duisburg-Essen University, Essen, Germany
e-mail: denis.belomestny@uni-due.de

D. Belomestny
National Research University Higher School of Economics, Moscow, Russia

S. Häfner
PricewaterhouseCoopers GmbH, Frankfurt, Germany
e-mail: stefan.haefner@de.pwc.com

M. Urusov
e-mail: mikhail.urusov@uni-due.de

© Springer International Publishing AG 2017
V. Panov (ed.), Modern Problems of Stochastic Analysis and Statistics,
Springer Proceedings in Mathematics & Statistics 208,
DOI 10.1007/978-3-319-65313-6_7

131



132 D. Belomestny et al.

for Lipschitz continuous functions μ : R
d → R

d and σ : R
d → R

d×m , where
(Wt )t∈[0,T ] is a standard m-dimensional (Ft )-Brownian motion. Suppose we want
to find a continuous function

u = u(t, x) : [0, T ] × R
d → R,

which has a continuous first derivative with respect to t and continuous first and
second derivatives with respect to the components of x on [0, T ) × R

d , such that it
solves the partial differential equation

∂u

∂t
+ L u = 0 on [0, T ) × R

d , (2)

u(T, x) = f (x) for x ∈ R
d , (3)

where f is a given Borel function on R
d . Here, L is the differential operator asso-

ciated with the Eq. (1):

(L u)(t, x) :=
d∑

k=1

μk(x)
∂u

∂xk
(t, x) + 1

2

d∑

k,l=1

(σσ�)kl(x)
∂2u

∂xk∂xl
(t, x),

where σ� denotes the transpose of σ . Under appropriate conditions on μ, σ and f,
there is a solution of the Cauchy problem (2)–(3), which is unique in the class of
solutions satisfying certain growth conditions, and it has the following Feynman-Kac
stochastic representation

u(t, x) = E[ f (Xt,x
T )] (4)

(see Sect. 5.7 in [5]), where Xt,x denotes the solution started at time t in point x .
Moreover, it holds

E[ f (X0,x
T )|X0,x

t ] = u(t, X0,x
t ), a.s.

for t ∈ [0, T ] and

f (X0,x
T ) = E[ f (X0,x

T )] + M∗
T , a.s. (5)

with

M∗
T :=

∫ T

0
∇xu(t, X0,x

t ) σ (X0,x
t ) dWt ≡

∫ T

0

d∑

k=1

∂u

∂xk
(t, X0,x

t )

m∑

i=1

σki (X
0,x
t ) dWi

t .

(6)

The standardMonte Carlo (SMC) approach for computing u(0, x) at a fixed point
x ∈ R

d basically consists of three steps. First, an approximation XT for X0,x
T is
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constructed via a time discretisation in Eq. (1) (we refer to [6] for a nice overview
of various discretisation schemes). In this paper, we focus on the Euler–Maruyama
approximation to the exact solution (the Euler scheme). Next, N0 independent copies
of the approximation XT are generated, and, finally, a Monte Carlo estimate VN0 is
defined as the average of the values of f at simulated points:

VN0 := 1

N0

N0∑

n=1

f
(
X

(n)

T

)
. (7)

In the computation of u(0, x) = E[ f (X0,x
T )] by the SMC approach, there are two

types of error inherent: the discretisation error E[ f (X0,x
T )] − E[ f (XT )] and the

Monte Carlo (statistical) error, which results from the substitution of E[ f (XT )]
with the sample average VN0 . The aim of variance reduction methods is to reduce
the statistical error. For example, in the so-called control variate variance reduction
approach, one looks for a random variable ξ with Eξ = 0, which can be simulated,
such that the variance of the difference f (XT ) − ξ is minimised, that is,

Var[ f (XT ) − ξ ] → min under Eξ = 0.

The use of control variates for solving (1) via Monte Carlo path simulation
approach was initiated by Newton [10] and further developed in Milstein and
Tretyakov [8]. In fact, the construction of the appropriate control variates in the
above two papers essentially relies on identities (5) and (6) implying that the zero-
mean random variable M∗

T can be viewed as an optimal control variate, since

Var[ f (X0,x
T ) − M∗

T ] = Var[E f (X0,x
T )] = 0.

Let us note that it would be desirable to have a control variate reducing the variance
of f (XT ) rather than the one of f (X0,x

T ) because we simulate from the distribution of
f (XT ) and not from the one of f (X0,x

T ). Moreover, the control variate M∗
T cannot be

directly computed, since the function u(t, x) is unknown. This is why Milstein and
Tretyakov [8] proposed to use regression for getting a preliminary approximation for
u(t, x) in a first step.

The contribution of our work is as follows. We propose an approach for the
construction of control variates that reduce the variance of f (XT ), i.e. we perform
variance reduction not for the exact but rather for the discretised process. A nice
by-product is that our control variates can be computed in a rather simple way, and
less assumptions are required in our case, than one would require to construct control
variates based on the exact solution. Moreover, we present bounds for the regression
error involved in the construction of our control variates and perform the complexity
analysis (these are not present in [8]), which is also helpful for designing numerical
experiments. We are able to achieve a sufficient convergence order of the resulting
variance, which in turn leads to a significant complexity reduction as compared to the
SMC algorithm. Other examples of algorithms with this property include the analo-
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gous regression-based variance reduction approach for weak approximation schemes
of [2], themultilevelMonteCarlo (MLMC) algorithmof [3] and the quadrature-based
algorithm of [9].

Summing up, we propose a new regression-type approach for the construction of
control variates in case of the Euler scheme. It takes advantage of the smoothness in
μ, σ and f (which is needed for nice convergence properties of regression methods)
in order to significantly reduce the variance of the random variable f (XT ).

This work is organised as follows. In Sect. 2, we describe the construction of
control variates for strong approximation schemes. Section3 describes the use of
regression algorithms for the construction of control variates and analyses their con-
vergence. A complexity analysis of the variance reduced Monte Carlo algorithm is
conducted in Sect. 4. Section5 is devoted to a simulation study. Finally, all proofs
are collected in Sect. 6.

Notational convention. Throughout, elements ofRd (resp.R1×d ) are understood
as column vectors (resp. row vectors). Generally, most vectors in what follows are
column vectors. However, gradients of functions and some vectors defined via them
are row vectors. Finally, we record our standing assumption that we do not repeat
explicitly in the sequel.

Standing assumption. The coefficients μ and σ in (1) are globally Lipschitz func-
tions.

2 Control Variates for Strong Approximation Schemes

To begin with, we introduce some notations, which will be frequently used in the
sequel. Throughout this paper, N0 := N ∪ {0} denotes the set of nonnegative inte-
gers, J ∈ N denotes the time discretisation parameter, we set � := T/J and con-
sider discretisation schemes defined on the grid {t j = j� : j = 0, . . . , J }. We set
� jW := Wj� − W( j−1)�, and by Wi we denote the i th component of the vector W .
Further, for k ∈ N0, Hk : R → R stands for the (normalised) kth Hermite polyno-
mial, i.e.

Hk(x) := (−1)k√
k! e

x2

2
dk

dxk
e− x2

2 , x ∈ R.

Notice that H0 ≡ 1, H1(x) = x , H2(x) = 1√
2
(x2 − 1).

2.1 Series Representation

Let us consider a scheme,whered-dimensional approximations X�, j�, j = 0, . . . , J ,
satisfy X�,0 = x0 and
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X�, j� = ��

(
X�,( j−1)�,� jW

)
, (8)

where� jW := Wj� − W( j−1)�, for someBorelmeasurable functions�� : Rd×m →
R

d (clearly, the Euler scheme is a special case of this setting).

Theorem 1 Let f : Rd → R be a Borel measurable function such that it holds
E| f (X�,T )|2 < ∞. Then, we have the representation (cf. Theorem 2.1 in [2])

f (X�,T ) = E[ f (X�,T )] +
J∑

j=1

∑

k∈Nm
0 \{0m }

a j,k(X�,( j−1)�)

m∏

r=1

Hkr

(
� jWr

√
�

)
, (9)

where k = (k1, . . . , km) and 0m := (0, . . . , 0) ∈ R
m (in the second summation), and

the coefficients a j,k : Rd → R are given by the formula

a j,k(x) = E

[

f (X�,T )

m∏

r=1

Hkr

(
� jWr

√
�

) ∣
∣
∣
∣ X�,( j−1)� = x

]

, (10)

for all j ∈ {1, . . . , J } and k ∈ N
m
0 \ {0m}.

Remark 1 Representation (9) shows that we have a perfect control variate, namely

M�,T :=
J∑

j=1

∑

k∈Nm
0 \{0m }

a j,k(X�,( j−1)�)

m∏

r=1

Hkr

(
� jWr

√
�

)
, (11)

for the functional f (X�,T ), i.e. Var[ f (X�,T ) − M�,T ] = 0.

The control variate M�,T is not implementable because of the infinite summation
in (11) andbecause the coefficientsa j,k are unknown. In the later sections,we estimate
the unknown coefficients in this and other (related) representations via regression and
present bounds for the estimation error.

Now we introduce the following ‘truncated’ control variate

Mser ,1
�,T :=

J∑

j=1

m∑

i=1

a j,ei (X�,( j−1)�)
� jW i

√
�

, (12)

where ei denotes the i th unit vector inRm . The superscript ‘ser’ comes from ‘series’.
In the next subsection, performing a quite different argumentation, we derive another
control variate, which will turn out to be theoretically equivalent to Mser ,1

�,T .
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2.2 Integral Representation

Integral representation for the exact solution. We first motivate what we call
‘integral representation for the discretisation’, which will be presented below in
this subsection, in that we recall in more detail the main idea of constructing control
variates inMilstein and Tretyakov [8]. As was alreadymentioned in the introduction,
the control variate in [8] is an approximation of M∗

T of (6), where the function u is
given in (4) and is therefore unknown, which raises the question about a possible
practical implementation of (6).

To this end, let us define the ‘derivative processes’ δi Xk
s,x (t) := ∂Xk

s,x (t)
∂xi

for i, k ∈
{1, . . . , d}, where Xk

s,x (t) means the kth component of the solution of (1) started
at time s in x evaluated at time t ≥ s, and simply write δi Xk

t rather than δi Xk
0,x0(t)

below. Further, we define the matrix δXt :=
⎛

⎜
⎝

δ1X1
t · · · δd X1

t
...

. . .
...

δ1Xd
t · · · δd Xd

t

⎞

⎟
⎠ ∈ R

d×d as well as

the vectors δi Xt := (
δi X1

t · · · δi Xd
t

)� ∈ R
d . Assuming μ, σ ∈ C1, we notice that

δi Xt satisfies the following SDE

dδi Xt =
d∑

k=1

δi Xk
t

[
∂μ(Xt )

∂xk
dt + ∂σ(Xt )

∂xk
dWt

]
, δi Xk

0 =
{
1, i = k
0, i �= k

. (13)

Milstein and Tretyakov [8] exploit (13) to prove that, provided f, μ, σ ∈ C1, the
integral in (6) can be expressed by means of δXt as follows

M∗
T :=

T∫

0

∇xu(t, Xt ) σ (Xt ) dWt =
T∫

0

E [∇ f (XT )δXT | Xt ] δX
−1
t σ(Xt ) dWt ,

(14)

where ∇xu(t, x) ∈ R
1×d denotes the gradient of u w.r.t. x . The second integral here

can be used for a practical construction of an approximation of M∗
T because the

conditional expectation can be approximated via regression.
The preceding description lacks assumptions under which the procedure works

(the mentioned ones are not enough). We refer to [8] for more detail.

Integral representation for the discretisation. As was mentioned in the intro-
duction, we are going to reduce not the variance in f (XT ) but rather the one in
f (X�,T ), that is, we aim at constructing control variates directly for the discretised
process. The fine details of the construction must of course depend on the discreti-
sation scheme. For the rest of the paper, we focus on the Euler scheme, that is, we
have
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��(x, y) = x + μ(x)� + σ(x)y. (15)

We define the ‘discretised derivative process’ δi Xk
t j ,x (�, tl) := ∂Xk

t j ,x
(�,tl )

∂xi
, for l ≥ j

and i, k ∈ {1, . . . , d}, where Xk
t j ,x (�, tl) means the kth component of the (Euler)

discretisation for (1) started at time t j in x and evaluated at time tl (≥ t j ), and use
δi Xk

�,tl as an abbreviation of δi Xk
0,x0(�, tl). Assuming μ, σ ∈ C1, we get that the

process (δi X�, j�) j=1,...,J has the dynamics

δi X�, j� = δi X�,( j−1)� +
d∑

k=1

δi Xk
�,( j−1)�

[
∂μ(X�,( j−1)�)

∂xk
� + ∂σ(X�,( j−1)�)

∂xk
� j W

]
,

(16)

(cf. (13)), where δX�,0 = Id , and in what follows Id denotes the identity matrix of
size d.

Given a Borel function f : Rd → R satisfying E
∣
∣ f (X�,T )

∣
∣ < ∞, it can be veri-

fied by a direct calculation that, for t ∈ [t j−1, t j ),

E[ f (X�,T )|Ft ] = u�(t, X�,t j−1 ,Wt − Wtj−1), (17)

where the function u� : [0, T ] × R
d+m → R is constructed via the backward recur-

sion as follows

u�(t, x, y) = E[u�(t j ,��(x, y + z j
√
t j − t), 0)], t ∈ [t j−1, t j ), (18)

u�(T, x, 0) = f (x), (19)

where t j := jT
J , j ∈ {0, . . . , J }, and z1, . . . , z J

i.i.d.∼ N (0m, Im).
We now introduce the following assumptions: for any j ∈ {1, . . . , J } and x ∈ R

d ,
it holds

(Ass1) f (Xt j−1,x (�, T )) ∈ L1,
(Ass2)n |� jW |n E[ f (Xt j−1,x (�, T ))|Ft j ] ∈ L1.

(Ass1) is just a minimal assumption that allows to have (17) with the function u�

constructed via (18)–(19). (Ass2)n is a technical assumption, which depends on n,
allowing to replace integration and differentiation in several cases of interest (see
below). In most places, we need the variant (Ass2)1, i.e. with n = 1, but at a couple
of instances, we will need stronger variants (Ass2)n with n ≥ 1. That is why we have
the parameter n in the formulation of that assumption.

An attractive feature of such an approach via the discretised process (in con-
trast to the one via the exact solution) is that, under (Ass1) and (Ass2)1, due to the
smoothness of the Gaussian density, the function u� is continuously differentiable
in y regardless of whether f is smooth, and, moreover, u� is continuously differ-
entiable in x , provided f, μ, σ are continuously differentiable. More precisely, we
obtain the above statements because, for t ∈ [t j−1, t j ), we can write (for simplicity,
in the one-dimensional case)
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u�(t, x, y) =
∫

R

u�

(
t j ,��(x,w), 0

) 1
√
2π(t j − t)

e
− (w−y)2

2(t j−t) dw,

and differentiation under the integral applies due to (Ass2)1 together with the dom-
inated convergence theorem (notice that the expression E[ f (Xt j−1,x (�, T ))|Ft j ]
in (Ass2)n is nothing else than u�(t j ,��(x,� jW ), 0)).

Theorem 2 Suppose (Ass1) and (Ass2)1.

(i) It holds

f (X�,T ) = E[ f (X�,T )] +
J∑

j=1

t j∫

t j−1

∇yu�(t, X�,t j−1 ,Wt − Wtj−1) dWt ,

where ∇yu�(t, x, y) ∈ R
1×m denotes the gradient of u� w.r.t. y.

(ii) Assume additionally that f, μ, σ ∈ C1. Then, we also have the alternative
representation

f (X�,T ) = E[ f (X�,T )] +
J∑

j=1

t j∫

t j−1

E

[
∇ f (X�,T )δX�,T δX−1

�,t j
|Ft

]
σ(X�,t j−1) dWt .

Let us define the function g j : Rd → R
1×d , j ∈ {1, . . . , J }, through

g j (x) = (
g j,1(x), . . . , g j,d(x)

) := E

[
∇ f (X�,T )δX�,T δX−1

�,t j

∣
∣ X�,t j−1 = x

]
.

(20)

Note that it holds (see the proof of Theorem 2)

g j (x) = E
[∇xu�(t j , X�,t j , 0)

∣
∣ X�,t j−1 = x

]
, (21)

∇yu�(t j−1, x, 0) = g j (x)σ (x), (22)

where ∇xu�(t, x, y) denotes the gradient of u� w.r.t. x , and we conditioned on
X�,t j−1 instead of Ft j−1 because (X�,t j ) j=0,...,J is a Markov chain (one can do that
for grid points only). Theorem 2 inspires to introduce the control variate

Mint,1
�,T :=

J∑

j=1

m∑

i=1

∂u�(t j−1, X�,t j−1 , 0)

∂yi
� jW

i

=
J∑

j=1

d∑

k=1

g j,k(X�,t j−1)

m∑

i=1

σki (X�,t j−1)� jW
i . (23)
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It will turn out that Mint,1
�,T = Mser,1

�,T . To this end, we derive a connection between the
series and integral representations.

Theorem 3 Under (Ass1) and (Ass2)n for all n ∈ N, provided that it holds

∣
∣
∣
∣D

α

(
∂

∂yr
u�(t, x, y)

)∣∣
∣
∣ :=

∣
∣
∣
∣
∣
∣

∂K
(

∂
∂yr

u�(t, x, y)
)

∂tα1∂yα2
1 · · · ∂yαm+1

m

∣
∣
∣
∣
∣
∣
≤ CK (24)

for all K ∈ N, r ∈ {1, . . . ,m}, |α| = K, t ∈ [t j−1, t j ), x ∈ R
d , y ∈ R

m, with some
constant C > 0, we have for the Euler scheme

f (X�,T ) = E[ f (X�,T )] +
J∑

j=1

∞∑

l=1

�l/2
∑

k∈Nm
0∑m

r=1 kr=l

∂ l u�(t j−1, X�,t j−1 , 0)

∂yk11 · · · ∂ykmm

m∏

r=1

Hkr

(
� j Wr
√

�

)

√
kr !

(25)

whenever 0 < � < 1
C2 . (The series converge in L2.) Consequently, we obtain for

l = ∑m
r=1 kr ∈ N

�l/2

√
k1! · · · √km ! · ∂ lu�(t j−1, X�,t j−1 , 0)

∂yk11 · · · ∂ykmm
= a j,k(X�,t j−1). (26)

Remark 2 In the one-dimensional case (d = m = 1), a representation of a similar
type as (25) appears in [1] in a somewhat different form. Our form is aimed at
constructing control variates via regression methods.

In particular, we see from Theorem 3 that Mint,1
�,T = Mser,1

�,T provided that (24)
holds. However, we can prove the equality of the aforementioned control variates
without assuming (24):

Theorem 4 Under (Ass1) and (Ass2)1, we have for i ∈ {1, . . . ,m}

a j,ei (x) = √
�

∂

∂yi
u�(t j−1, x, 0),

and consequently,

Mint,1
�,T = Mser,1

�,T .

It is interesting to remark that, although we assumed f (X�,T ) ∈ L2 when speak-
ing about the series representation, the coefficients a j,ei are well-defined already
under (Ass1) and (Ass2)1.

We can now investigate the order of the truncation error, which arises when we
replace the control variate M�,T of (11) with the control variate Mser,1

�,T of (12).
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Theorem 5 Suppose (Ass1) and (Ass2)3. Provided that the function u�(t, x, y) has
bounded partial derivatives in y of orders 2 and 3, it holds

Var
[
f (X�,T ) − Mint,1

�,T

]
= Var

[
f (X�,T ) − Mser,1

�,T

]
� �. (27)

Remark 3 (i) Below we will present sufficient conditions in terms of the functions
f, μ, σ that ensure the assumption on u� in Theorem 5 (see Theorem 6 in Sect. 3).

(ii) The control variate Mint,1
�,T differs from the one suggested in [8] only in an

index concerning the inverted matrix, i.e. we have δX−1
�,t j inside of g j (X�,t j−1) rather

than theFt j−1 -measurable random variable δX−1
�,t j−1

which arises in case of the exact
solution f (XT ) from a simple discretisation of the stochastic integral in (14).

Regarding theweak convergence order of the Euler scheme,we have the following
result (cf. Theorem 2.1 in [7]).

Proposition 1 Assume thatμ and σ in (1) are Lipschitz continuouswith components
μk, σki : Rd → R, k = 1, . . . , d, i = 1, . . . ,m, being 4 times continuously differen-
tiable with their partial derivatives of orders up to 4 having polynomial growth. Let
f : Rd → R be 4 times continuously differentiable with partial derivatives of orders
up to 4 having polynomial growth. Then, for the Euler scheme (15), we have

∣
∣E f (XT ) − E f (X�,T )

∣
∣ ≤ c�, (28)

where the constant c does not depend on �.

We remark that the assumption that, for sufficiently large n ∈ N, the expectations
E|X�, j�|2n are uniformly bounded in J and j = 0, . . . , J (cf. Theorem 2.1 in [7])
is automatically satisfied for the Euler scheme because μ and σ , being globally
Lipschitz, have at most linear growth.

3 Regression Analysis

In the previous sections, we have given several representations for the control vari-
ates. Now we discuss how to compute the coefficients in these representations via
regression. For the sake of clarity, we will focus on the control variate given by (23),
that is, we will estimate the functions g j,k in (20) via linear regression. Let us start
with a general description of the global Monte Carlo regression algorithm.

3.1 Global Monte Carlo Regression Algorithm

Fix a q-dimensional vector of real-valued functionsψ = (ψ1, . . . , ψq) onRd . Simu-
late a set of N ‘trainingpaths’ of theMarkov chains X�, j� and δX�, j�, j = 0, . . . , J .
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We should choose N > q. In what follows these N training paths are denoted by
Dtr

N :

Dtr
N :=

{
(Xtr,(n)

�, j�, δXtr,(n)
�, j�) j=0,...,J : n = 1, . . . , N

}
.

Let α j,k = (α1
j,k, . . . , α

q
j,k), where j ∈ {1, . . . , J }, k ∈ {1, . . . , d}, be a solution of

the following least squares optimisation problem:

argminα∈Rq

N∑

n=1

[
ζ
tr,(n)
j,k − α1ψ1(Xtr,(n)

�,( j−1)�) − · · · − αqψq(Xtr,(n)

�,( j−1)�)
]2

with

ζ
tr,(n)
j =

(
ζ
tr,(n)
j,1 , . . . , ζ

tr,(n)
j,d

)
:= ∇ f (Xtr,(n)

�,T )δXtr,(n)
�,T

(
δXtr,(n)

�, j�

)−1
.

Define an estimate for the coefficient function g j,k via

ĝ j,k(z) := α1
j,kψ

1(z) + . . . + α
q
j,kψ

q(z), z ∈ R
d .

The cost of computing α j,k is of order O(Nq2), since each α j,k is of the form
α j,k = B−1b with

Bl,o := 1

N

N∑

n=1

ψ l
(
Xtr,(n)

�,( j−1)�

)
ψo

(
Xtr,(n)

�,( j−1)�

)
(29)

and

bl := 1

N

N∑

n=1

ψ l
(
Xtr,(n)

�,( j−1)�

)
ζ
tr,(n)
j,k ,

l, o ∈ {1, . . . , q}. The cost of approximating the family of the coefficient functions
g j,k , j ∈ {1, . . . , J }, k ∈ {1, . . . , d}, is of order O(

JdNq2
)
.

3.2 Piecewise Polynomial Regression

There are different ways to choose the basis functions ψ = (ψ1, . . . , ψq). In this
section, we describe piecewise polynomial partitioning estimates and present L2-
upper bounds for the estimation error.
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From now on, we fix some p ∈ N0, which will denote the maximal degree of
polynomials involved in our basis functions. The piecewise polynomial partitioning
estimate of g j,k works as follows: consider some R > 0 and an equidistant parti-
tion of [−R, R]d in Qd cubes K1, . . . , KQd . Further, consider the basis functions
ψ l,1, . . . , ψ l,q with l ∈ {

1, . . . , Qd
}
and q = (p+d

d

)
such that ψ l,1(x), . . . , ψ l,q(x)

are polynomials with degree less than or equal to p for x ∈ Kl and ψ l,1(x) = · · · =
ψ l,q(x) = 0 for x /∈ Kl . Then we obtain the least squares regression estimate ĝ j,k(x)
for x ∈ R

d as described in Sect. 3.1, based on Qdq = O(Qd pd) basis functions.
In particular, we have ĝ j,k(x) = 0 for any x /∈ [−R, R]d . We note that the cost of
computing ĝ j,k for all j, k is of order O(JdNQd p2d) rather than O(JdNQ2d p2d)
due to a block diagonal matrix structure of B in (29). An equivalent approach,
which leads to the same estimator ĝ j,k(x), is to perform separate regressions for
each cube K1, . . . , KQd . Here, the number of basis functions at each regression
is of order O(pd) so that the overall cost is of order O(JdNQd p2d), too. For
x = (x1, . . . , xd) ∈ R

d and h ∈ [1,∞), we will use the notations

|x |h :=
(

d∑

k=1

|xk |h
)1/h

, |x |∞ := max
k=1,...,d

|xk |.

For s ∈ N0,C > 0 and h ∈ [1,∞], we say that a function F : Rd → R is (s + 1,C)-
smooth w.r.t. the norm |·|h whenever, for all α = (α1, . . . , αd) ∈ N

d
0 with

∑d
k=1 αk =

s, we have

|DαF(x) − DαF(y)| ≤ C |x − y|h, x, y ∈ R
d ,

i.e. the function DαF is globally Lipschitz with the Lipschitz constantC with respect
to the norm | · |h on R

d (cf. Definition 3.3 in [4]). In what follows, we use the
notation P�, j−1 for the distribution of X�,( j−1)�. In particular, we will work with
the corresponding L2-norm:

‖F‖2L2(P�, j−1)
:=

∫

Rd

F2(x)P�, j−1(dx) = E
[
F2

(
X�,( j−1)�

)]
.

We now define ζ j,k as the kth component of the vector ζ j = (
ζ j,1, . . . , ζ j,d

) :=
∇ f (X�,T )δX�,T δX−1

�, j� and remark that g j,k(x) = E[ζ j,k |X�,( j−1)� = x]. In what
follows, we consider the following assumptions: there exist h ∈ [1,∞] and pos-
itive constants �, A,Ch, ν, Bν such that, for all J ∈ N, j ∈ {1, . . . , J } and k ∈
{1, . . . , d}, it holds
(A1) supx∈Rd Var[ζ j,k |X�,( j−1)� = x] ≤ � < ∞,
(A2) supx∈Rd |g j,k(x)| ≤ A < ∞,
(A3) g j,k is (p + 1,Ch)-smooth w.r.t. the norm | · |h ,
(A4) P(|X�,( j−1)�|∞ > R) ≤ BνR−ν for all R > 0.
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Remark 4 Let us notice that it is only a matter of convenience which h to choose
in (A3) because all norms | · |h are equivalent. Furthermore, since μ and σ are
assumed to be globally Lipschitz, hence have linear growth, then, given any ν > 0,
(A4) is satisfied with a sufficiently large Bν > 0. In other words, (A4) is needed only
to introduce the constant Bν , which appears in the formulations below.

In the next theorem we, in particular, present sufficient conditions in terms of the
functions μ, σ and f that imply the preceding assumptions.

Theorem 6 (i) Under (Ass1) and (Ass2)1, let all functions f, μk, σki , k ∈ {1, . . . , d},
i ∈ {1, . . . ,m}, be continuously differentiablewith bounded partial derivatives. Then
(A1) and (A2) hold with appropriate constants � and A.

(ii) If, moreover, (Ass1) and (Ass2)3 are satisfied, all functions σki are bounded
and all functions f, μk, σki are 3 times continuously differentiable with bounded
partial derivatives up to order 3, then the function u�(t, x, y) has bounded partial
derivatives in y up to order 3. In particular, (27) holds true.

Remark 5 As a generalisation of Theorem 6, it is natural to expect that (A3) is
satisfied with a sufficiently large constant Ch > 0 if, under (Ass1) and (Ass2)p+2, all
functions f, μk, σki are p + 2 times continuously differentiable with bounded partial
derivatives up to order p + 2.

Let ĝ j,k be the piecewise polynomial partitioning estimate of g j,k . By g̃ j,k we
denote the truncated estimate, which is defined as

g̃ j,k(x) := TAĝ j,k(x) :=
{
ĝ j,k(x) if |ĝ j,k(x)| ≤ A,

A sgn ĝ j,k(x) otherwise,

where A is the bound from (A2).

Lemma 1 Under (A1)–(A4), we have

E‖g̃ j,k − g j,k‖2L2(P�, j−1)
≤ c̃

(
� + A2(log N + 1)

)
(p+d

d

)
Qd

N
(30)

+ 8C2
h

(p + 1)!2d2−2/h

(
Rd

Q

)2p+2

+ 8A2BνR
−ν,

where c̃ is a universal constant.

It is worth noting that the expectation in the left-hand side of (30) accounts
for the averaging over the randomness in Dtr

N . To explain this in more detail, let
(X�, j�) j=0,...,J be a ‘testing path’ which is independent of the training paths Dtr

N .
Then it holds

‖g̃ j,k − g j,k‖2L2(P�, j−1)
≡ ‖g̃ j,k(·, Dtr

N ) − g j,k(·)‖2L2(P�, j−1)

= E

[(
g̃ j,k(X�,( j−1)�, Dtr

N ) − g j,k(X�,( j−1)�)
)2 | Dtr

N

]
,
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hence,

E‖g̃ j,k − g j,k‖2L2(P�, j−1)
= E

[(
g̃ j,k(X�,( j−1)�, Dtr

N ) − g j,k(X�,( j−1)�)
)2]

, (31)

which provides an alternative form for the expression in the left-hand side of (30).
Let us now estimate the variance of the random variable f (X�,T ) − M̃int,1

�,T , where

M̃int,1
�,T :=

J∑

j=1

d∑

k=1

g̃ j,k(X�,( j−1)�, Dtr
N )

m∑

i=1

σki (X�,( j−1)�)� jW
i . (32)

Theorem 7 Let us assume supx∈Rd |σki (x)| ≤ σmax < ∞ for all k ∈ {1, . . . , d} and
i ∈ {1, . . . ,m}. Then we have under (A1)–(A4)

Var[ f (X�,T ) − M̃int,1
�,T ] � 1

J
+ d2Tmσ 2

max

{

c̃
(
� + A2(log N + 1)

)
(p+d

d

)
Qd

N

+ 8C2
h

(p + 1)!2d2−2/h

(
Rd

Q

)2p+2

+ 8A2BνR
−ν

}

. (33)

We finally stress that M̃int,1
�,T is a valid control variate in that it does not introduce

bias, i.e. E[M̃int,1
�,T |Dtr

N ] = 0, which follows from the martingale transform structure
in (32).

3.3 Summary of the Algorithm

The algorithm of the ‘integral approach’ consists of two phases: training phase and
testing phase. In the training phase,we simulate N independent training paths Dtr

N and
construct regression estimates g̃ j,k(·, Dtr

N ) for the coefficients g j,k(·), k ∈ {1, . . . , d}.
In the testing phase, independently from Dtr

N we simulate N0 independent test-
ing paths (X (n)

�, j�) j=0,...,J , n = 1, . . . , N0, and build the Monte Carlo estimator for
E f (XT ) as

1

N0

N0∑

n=1

(
f (X (n)

�,T ) − M̃int,1,(n)
�,T

)
. (34)

The expectation of this estimator equals E f (X�,T ), and the upper bound for the
variance is 1

N0
times the expression in (33).
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4 Complexity Analysis

The results presented in previous sections provide us with ‘building blocks’ to per-
form the complexity analysis.

Standing assumption for Complexity Analysis consists in

(Ass1), (Ass2)1, (27) and (28).

Combining Theorems 5, 6 and Proposition 1, we recall that this standing assumption
is satisfiedwheneverwe have (Ass1), (Ass2)3, σ is bounded, f, μ, σ ∈ C4, the partial
derivatives of f , μ and σ up to order 3 are bounded and of order 4 have polynomial
growth. However, we prefer to formulate the standing assumption for complexity
analysis as above because one might imagine other sufficient conditions for it.

4.1 Integral Approach

Below we present a complexity analysis which explains how we can approach the
complexity order ε−2

√|log(ε)| with ε being the precision to be achieved.
For the integral approach, we perform d regressions in the training phase and d

evaluations of g̃ j,k in the testing phase (using the regression coefficients from the
training phase) at each time step. Therefore, the overall cost is of order

J Qddcp,d max
{
cp,d N , N0

}
, (35)

where cp,d := (p+d
p

)
. Under (A1)–(A4) and boundedness of σ (cf. Theorem 7), we

have the following constraints

max

{
1

J 2
,

1

J N0
,
Qdd2mcp,d log(N )

NN0
,

d2m

(p + 1)!2N0

(
Rd

Q

)2(p+1)

,
d2mBν

N0Rν

}

� ε2,

(36)

to ensure a mean squared error (MSE) of order ε2. Note that the first term in (36)
comes from the squared bias of the estimator (due to (28) and E[M̃int,1

�,T ] = 0) and
the remaining four ones come from the variance of the estimator (see (33) and (34)).

Theorem 8 Under (A1)–(A4) and boundedness of σ , we obtain the following solu-
tion for the integral approach:
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J � ε−1, Q �
[
B4(p+1)

ν d2ν+4(p+1)(ν+1)mν+2(p+1)

ε2ν+4(p+1)c2ν+4(p+1)
p,d (p + 1)!4ν

] 1
dν+2(p+1)(d+2ν)

, (37)

N �
[
B2d(p+1)

ν d2dν+2(p+1)(dν+2d+2ν)mdν+2(p+1)(d+ν)

ε2dν+4(p+1)(d+ν)cdν+2d(p+1)
p,d (p + 1)!2dν

] 1
dν+2(p+1)(d+2ν)

·
√

log
(
ε

− 2dν+4(p+1)(d+ν)

dν+2(p+1)(d+2ν)

)
, (38)

N0 � Ncp,d

�
[
B2d(p+1)

ν c4ν(p+1)
p,d d2dν+2(p+1)(dν+2d+2ν)mdν+2(p+1)(d+ν)

ε2dν+4(p+1)(d+ν)(p + 1)!2dν

] 1
dν+2(p+1)(d+2ν)

·
√

log
(
ε

− 2dν+4(p+1)(d+ν)

dν+2(p+1)(d+2ν)

)
, (39)

R �
[
Bd+4(p+1)

ν (p + 1)!2dm2(p+1)

ε4(p+1)c4(p+1)
p,d d2(p+1)(d−2)

] 1
dν+2(p+1)(d+2ν)

, (40)

provided that 2(p + 1) > d and ν >
2d(p+1)
2(p+1)−d .

1 Thus, we have for the complexity

Cint � J Qddc2p,d N � J Qddcp,d N0

�
[
B6d(p+1)

ν c2(p+1)(4ν−d)−dν

p,d d5dν+2(p+1)(3dν+5d+4ν)m3dν+6(p+1)(d+ν)

ε5dν+2(p+1)(5d+4ν)(p + 1)!6dν

] 1
dν+2(p+1)(d+2ν)

·
√

log
(
ε

− 2dν+4(p+1)(d+ν)

dν+2(p+1)(d+2ν)

)
. (41)

Remark 6 (i) For the sake of comparison with the SMC andMLMC approaches, we
recall at this point that their complexities are

CSMC � ε−3 and CMLMC � ε−2

at best.2 Complexity estimate (41) shows that one can approach the complexity order
ε−2

√|log(ε)|, when p, ν → ∞, i.e. if the coefficients g j,k are smooth enough and
the solution X of SDE (1) lives in a compact set.

1Performing the full complexity analysis via Lagrange multipliers one can see that these parameter
values are not optimal if 2(p + 1) ≤ d or ν ≤ 2d(p+1)

2(p+1)−d (a Lagrange multiplier corresponding to a
‘≤ 0’ constraint is negative, cf. proof of Theorem 8). Therefore, the recommendation is to choose
the power p for our basis functions according to p > d−2

2 . The opposite choice is allowed as well
(the method converges), but theoretical complexity of the method would be then worse than that of
the SMC, namely, ε−3.
2For the Euler scheme, there is an additional logarithmic factor in the complexity of the MLMC
algorithm (see [3]).
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(ii) Note that wewould have obtained the same complexity evenwhen the variance
in (27) were of order�K with K > 1. This is due to the fact that the second constraint
in (36) is the only inactive one and this would still hold if the condition were 1

J K N0
�

ε2. Hence, it is not useful to derive a control variate with a higher variance order for
the Euler scheme.

4.2 Series Approach

Below we present a complexity analysis for the series representation, defined in
Sect. 2.1. Again we focus on the Euler scheme (15). Then we compare the resulting
complexity with the one in (41).

Similarly to Sect. 3.2, we define ζ j,i as the i th component of the vector ζ j =
(
ζ j,1, . . . , ζ j,m

)� := f (X�,T )
� j W√

�
and remark that a j,ei (x) = E[ζ j,i |X�,( j−1)� = x]

(compare with (10)). We will work under the following assumptions: there exist
h ∈ [1,∞] and positive constants �, A,Ch such that, for all J ∈ N, j ∈ {1, . . . , J }
and i ∈ {1, . . . ,m}, it holds:
(B1) supx∈Rd Var[ζ j,i |X�,( j−1)� = x] ≤ � < ∞,
(B2) supx∈Rd |a j,ei (x)| ≤ A

√
� < ∞,

(B3) a j,ei is (p + 1,Ch)-smooth w.r.t. the norm | · |h .
Note the difference between (B2) and (A2) of Sect. 3.2, while (B1) has the same
form as (A1). This is due to (26), hence the additional factor

√
� in (B2).

In what follows the N training paths are denoted by

Dtr
N :=

{
(Xtr,(n)

�, j�) j=0,...,J : n = 1, . . . , N
}

,

that is, we do not need to simulate paths for the derivative processes δX�, j�. Let
â j,ei be the piecewise polynomial partitioning estimate of a j,ei described in Sect. 3.2.
By ã j,ei we denote the truncated estimate, which is defined as follows:

ã j,ei (x) := TA
√

�â j,ei (x) :=
{
â j,ei (x) if |â j,ei (x)| ≤ A

√
�,

A
√

� sgn â j,ei (x) otherwise.

Lemma 2 Under (B1)–(B3) and (A4), we have

E‖ã j,ei − a j,ei ‖2L2(P�, j−1)
≤ c̃

(
� + A2�(log N + 1)

) cp,d Qd

N
(42)

+ 8C2
h

(p + 1)!2d2− 2
h

(
R

Q

)2p+2

+ 8A2�BνR
−ν,

where c̃ is a universal constant.
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Let us now estimate the variance of the randomvariable f (X�,T ) − M̃ser ,1
�,T , where

M̃ser ,1
�,T :=

J∑

j=1

m∑

i=1

ã j,ei (X�,( j−1)�, Dtr
N )

� jW i

√
�

. (43)

Theorem 9 Under (B1)–(B3) and (A4), we have

Var[ f (X�,T ) − M̃ser ,1
�,T ] � 1

J
+ Jm

{
c̃
(
� + A2�(log N + 1)

) cp,d Qd

N

+ 8C2
h

(p + 1)!2d2− 2
h

(
R

Q

)2p+2

+ 8A2�BνR
−ν

}

. (44)

Let us study the complexity of the following ‘series approach’: In the training phase,
we simulate N independent training paths Dtr

N and construct regression estimates
ã j,ei (·, Dtr

N ) for the coefficients a j,ei (·), i ∈ {1, . . . ,m}. In the testing phase, in-
dependently from Dtr

N , we simulate N0 independent testing paths (X (n)
�, j�) j=0,...,J ,

n = 1, . . . , N0, and build the Monte Carlo estimator for E f (XT ) as

1

N0

N0∑

n=1

(
f (X (n)

�,T ) − M̃ser ,1,(n)
�,T

)
. (45)

Therefore, the overall cost is of order

J Qdmcp,d max
{
cp,d N , N0

}
. (46)

The expectation of the estimator in (45) equals E f (X�,T ), and the upper bound
for the variance is 1

N0
times the expression in (44). Hence, we have the following

constraints

max

{
1

J 2
,

1

J N0
,
J Qdmcp,d

N N0
,

Jm

(p + 1)!2N0

(
Rd

Q

)2(p+1)

,
mBν

N0Rν

}

� ε2, (47)

to ensure a MSE of order ε2 (due to E[Mser ,1
�,T ] = 0 as well as (44) and (45)). Note

that there is no longer a log term in (47). This is due to the factor � in (44) such that
� is of a higher order, compared to �(log N + 1).

Theorem 10 Under (B1)–(B3) and (A4), we obtain the following solution for the
series approach:
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J � ε−1, Q �
[

B4(p+1)
ν d4ν(p+1)mν+2(p+1)

ε3ν+2(p+1)c2ν+4(p+1)
p,d (p + 1)!4ν

] 1
dν+2(p+1)(d+2ν)

, (48)

N �
[

B2d(p+1)
ν d2dν(p+1)mdν+2(p+1)(d+ν)

ε3dν+2(p+1)(2d+3ν)cdν+2d(p+1)
p,d (p + 1)!2dν

] 1
dν+2(p+1)(d+2ν)

, (49)

N0 � Ncp,d �
[
B2d(p+1)

ν c4ν(p+1)
p,d d2dν(p+1)mdν+2(p+1)(d+ν)

ε3dν+2(p+1)(2d+3ν)(p + 1)!2dν

] 1
dν+2(p+1)(d+2ν)

, (50)

R �
[
Bd+4(p+1)

ν (p + 1)!2dm2(p+1)

ε2(p+1)−dc4(p+1)
p,d d2d(p+1)

] 1
dν+2(p+1)(d+2ν)

, (51)

provided that 2(p + 1) > d and ν >
2(p+1)

2(p+1)−d .
3 Thus, we have for the complexity

Cser � J Qdmc2p,d N � J Qdmcp,d N0

�
[
B6d(p+1)

ν c2(p+1)(4ν−d)−dν

p,d d6dν(p+1)m3dν+6(p+1)(d+ν)

ε7dν+2(p+1)(4d+5ν)(p + 1)!6dν

] 1
dν+2(p+1)(d+2ν)

. (52)

Remark 7 (i) Complexity estimate (52) shows that one cannot go beyond the com-
plexity order ε−2.5 in this case, no matter how large p, ν are. This is mainly due to
the factor J within the third constraint in (47) which does not arise in (36).

(ii) Similarly to Sect. 4.1, wewould have obtained the same complexity evenwhen
we used a control variate with a higher variance order �K for some K > 1.

(iii) When comparing (52) with (41), one clearly sees that (41) always achieves a
better complexity for ν >

2(p+1)
2(p+1)−d (in terms of ε).

(iv) Furthermore, also from the pure computational point of view, it is preferable
to consider the integral approach rather than the series approach, even though the
control variates Mser ,1

�,T and Mint,1
�,T are theoretically equivalent (recall Theorem 4).

This is mainly due to the factor � jW i in a j,ei (see (10)), which is independent of
X�,( j−1)� and has zero expectation and thus may lead to poor regression results
(cf. ‘RCV approach’ in [2]). Regarding the integral approach, such a destabilising
factor is not present in g j,k (see (20)).

5 Numerical Results

In this section,we consider theEuler scheme and compare the numerical performance
of the SMC,MLMC, series and integral approaches. For simplicity, we implemented

3Compare with footnote 1 on p. 16.



150 D. Belomestny et al.

a global regression (i.e. the one without truncation and partitioning). Regarding the
choice of basis functions, we use in both series and integral approaches the same
polynomialsψ(x) = ∏d

k=1 x
lk
k , where l1, . . . , ld ∈ {0, 1, . . . , p} and∑d

k=1 lk ≤ p. In
addition to the polynomials, we consider the function f as a basis function. Hence,
we have overall

(p+d
d

) + 1 basis functions in each regression. As for the MLMC
approach, we use the same simulation results as in [2].

The following results are based on program codes written and vectorised in
MATLAB and running on a Linux 64-bit operating system.

5.1 One-Dimensional Example

Here d = m = 1. We consider the following SDE (cf. [2])

dXt = − 1

2
tanh (Xt ) sech

2 (Xt ) dt + sech (Xt ) dWt , X0 = 0, (53)

for t ∈ [0, 1], where sech(x) := 1
cosh(x) . This SDE has an exact solution Xt =

arsinh (Wt ) . Furthermore, we consider the functional f (x) = sech(x) + 15 arctan
(x), that is, we have

E [ f (X1)] = E [sech (arsinh (W1))] = E

⎡

⎣ 1
√
1 + W 2

1

⎤

⎦ ≈ 0.789640. (54)

We choose p = 3 (that is, 5 basis functions) and, for each ε = 2−i , i ∈ {2, 3, 4, 5, 6},
we set the parameters J , N and N0 as follows (compare with the formulas in Sect. 4
for ν → ∞, limν→∞ Bν = 1 and ignore the log terms for the integral approach):

J = ⌈
ε−1⌉ , N = 256 ·

{ �0.6342 · ε−1.0588� integral approach,
�0.6342 · ε−1.5882� series approach,

N0 = 256 ·
{ �2.5367 · ε−1.0588� integral approach,

�2.5367 · ε−1.5882� series approach.

Regarding the SMC approach, the number of paths is set N0 = 256 · ε−2. The factor
256 is here for stability purposes. As for the MLMC approach, we set the initial
number of paths in the first level (l = 0) equal to 103 as well as the ‘discretisation
parameter’ M = 4, which leads to time steps of the length 1

4l at level l (the notation
here is as in [3]). Next, we compute the numerical RMSE (the exact value is known,
see (54)) by means of 100 independent repetitions of the algorithm. As can be seen
from left-hand side in Fig. 1, the estimated numerical complexity is about RMSE−1.82

for the integral approach, RMSE−2.43 for the series approach, RMSE−1.99 for the
MLMC approach and RMSE−3.02 for the SMC approach, which we get by regressing
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the log time (logarithmic computing time of the whole algorithm in seconds) versus
log RMSE. Thus, the complexity reduction works best with the integral approach.

5.2 Five-Dimensional Example

Here d = m = 5. We consider the SDE (cf. [2])

dXi
t = − sin

(
Xi
t

)
cos3

(
Xi
t

)
dt + cos2

(
Xi
t

)
dWi

t , Xi
0 = 0, i ∈ {1, 2, 3, 4} ,

dX5
t =

4∑

i=1

[
−1

2
sin

(
Xi
t

)
cos2

(
Xi
t

)
dt + cos

(
Xi
t

)
dWi

t

]
+ dW 5

t , X5
0 = 0. (55)

The solution of (55) is given by

Xi
t = arctan

(
Wi

t

)
, i ∈ {1, 2, 3, 4} ,

X5
t =

4∑

i=1

arsinh
(
Wi

t

) + W 5
t .

for t ∈ [0, 1]. Further, we consider the functional

f (x) = cos

(
5∑

i=1

xi

)

− 20
4∑

i=1

sin (xi ) ,

that is, we have

E [ f (X1)] = (
E
[
cos

(
arctan

(
W 1

1

) + arsinh
(
W 1

1

))])4
E
[
cos

(
W 5

1

)] ≈ 0.002069.

We again choose p = 3 (this now results in 57 basis functions), consider the same
values of ε as above (and, in addition, consider the values ε = 2−7 and ε = 2−8 for
the SMC approach to obtain similar computing times as for the series and integral
approaches). Moreover, we set (compare with the formulas in Sect. 4 for ν → ∞,
limν→∞ Bν = 1 and ignore the log terms for the integral approach):

J = ⌈
ε−1

⌉
, N =

{ �35.9733 · ε−1.2381� integral approach,
4 · �4.9044 · ε−1.8571� series approach,

N0 =
{ �2014.5030 · ε−1.2381� integral approach,
4 · �274.6480 · ε−1.8571� series approach.

The number of paths for the SMC approach is again set N0 = 256 · ε−2. Regarding
the MLMC approach, we again choose M = 4, but the initial number of paths in
the first level is increased to 104. As in the one-dimensional case, we compute the
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Fig. 1 Numerical complexities of the integral, series, SMC andMLMC approaches in the one- and
five-dimensional cases
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numerical RMSE by means of 100 independent repetitions of the algorithm. Our
empirical findings are illustrated on the right-hand side in Fig. 1. We observe the
numerical complexity RMSE−1.95 for the integral approach, RMSE−2.05 for the se-
ries approach, RMSE−2.01 for the MLMC approach and RMSE−3.03 for the SMC
approach. Even though here the complexity order of the series approach is better
than that of the SMC approach and close to that of MLMC approach, the series
approach is practically outperformed by the other approaches (see Fig. 1; the multi-
plicative constant influencing the computing time is obviously very big). However,
the integral approach remains numerically the best one also in this five-dimensional
example.

6 Proofs

Proof of Theorem 1

Cf. the proof of Theorem 2.1 in [2].

Proof of Theorem 2

First of all, we derive

lim
t↗t j

u�(t, X�,t j−1 ,Wt − Wtj−1) (56)

= lim
t↗t j

E
[
u�(t j ,��(x, y + z j

√
t j − t), 0)

] ∣∣
∣ x=X�,( j−1)�, y=Wt−Wt j−1

=u�(t j ,��(X�,( j−1)�,� jW ), 0) = u�(t j , X�,t j , 0).

By means of Itô’s lemma and the fact that u� satisfies the heat equation

∂u�

∂t
+ 1

2

m∑

i=1

∂2u�

∂y2i
= 0 (57)

due to its relation to the normal distribution, we then obtain

f (X�,T ) − E[ f (X�,T )] (58)

= u�(T, X�,T , 0) − u�(0, x0, 0)

=
J∑

j=1

(
u�(t j , X�,t j , 0) − u�(t j−1, X�,t j−1 , 0)

)

=
J∑

j=1

lim
t↗t j

(
u�(t, X�,t j−1 ,Wt − Wtj−1) − u�(t j−1, X�,t j−1 , 0)

)
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=
J∑

j=1

m∑

i=1

lim
t↗t j

t∫

t j−1

∂u�

∂yi
(s, X�,t j−1 ,Ws − Wtj−1) dW

i
s

=
J∑

j=1

t j∫

t j−1

∇yu�(s, X�,t j−1 ,Ws − Wtj−1) dWs .

Next, let us derive a relation between ∇yu� and ∇xu�. We have for t ∈ [t j−1, t j )

∇yu�(t, x, y) = ∇yE[u�(t j ,��(x, y + z j
√
t j − t), 0)]

= ∇xE[u�(t j ,��(x, y + z j
√
t j − t), 0)]σ(x).

Thus, the term ∇yu�(s, X�,t j−1 ,Ws − Wtj−1) in (58) takes the form

∇yu�(s, X�,t j−1 ,Ws − Wtj−1) = E[∇xu�(t j , X�,t j , 0) |Fs ]σ(X�,t j−1). (59)

Note that it holds

u�(t j , x, 0) = E[ f (Xt j ,x (�, T ))],

where we recall that Xt j ,x (�, tl), for l ≥ j , denotes the Euler discretisation starting
at time t j in x (analogous to Xs,x (t) for the exact solution). Hence, we have for∇xu�

∇xu�(t j , x, 0) = E[∇ f (Xt j ,x (�, T ))δXt j ,x (�, T )]

or, in another form,

∇xu�(t j , X�,t j , 0) = E

[
∇ f (Xt j ,X�,t j

(�, T ))δXt j ,X�,t j
(�, T )

∣
∣Ft j

]
,

where δi Xk
t j ,x (�, tl) := ∂Xk

t j ,x
(�,tl )

∂xi
with l ≥ j and i, k ∈ {1, . . . , d}. We also notice

at this point that X�,tl = X0,x0(�, tl) and δX�,tl = δX0,x0(�, tl).

Let us define σk(x) := (
σk,1(x), . . . , σk,m(x)

)�
for k ∈ {1, . . . , d}. Further, we

denote with Jμ ∈ R
d×d , Jσk ∈ R

m×d the Jacobi matrices of the functions μ, σk .
Regarding the discretisation δX�, j� of δXt we can use, alternatively to (16), the
matrix form

δX�, j� = A jδX�,( j−1)� = A j A j−1 · · · A1, (60)

where
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Ak := Id + Jμ(X�,(k−1)�)� +
⎛

⎜
⎝

�kW�Jσ1(X�,(k−1)�)
...

�kW�Jσd (X�,(k−1)�)

⎞

⎟
⎠ .

This gives us

Xt j ,X�,t j
(�, tl) = ��(· · · (��(X�,t j ,� j+1W ), · · · ,�lW )

= ��(· · · (��(X�,0,�1W ), · · · ,�lW ) = X�,tl ,

δXt j ,X�,t j
(�, tl) = Al Al−1 · · · A j+1 = Al Al−1 · · · A1

(
A j A j−1 · · · A1

)−1

= δX�,tl δX
−1
�,t j ,

where �� is defined through (15). Finally, we obtain for s ∈ [
t j−1, t j

)

∇yu�(s, X�,t j−1 ,Ws − Wtj−1 ) = E

[
E

[
∇ f (X�,T )δX�,T δX−1

�,t j

∣
∣Ft j

]
|Fs

]
σ(X�,t j−1 )

= E

[
∇ f (X�,T )δX�,T δX−1

�,t j
|Fs

]
σ(X�,t j−1 ).

Proof of Theorem 3

Below we simply write u�,t j−1 rather than u�(t j−1, X�,t j−1 , 0). Let us consider
the Taylor expansion for ∂

∂yr
u�(t, X�,t j−1 ,Wt − Wtj−1) of order K ∈ N0 around

(t j−1, X�,t j−1 , 0), with r ∈ {1, . . . ,m}, that is, for t ∈ [t j−1, t j ), we set

T K
j,r (t) :=

∑

|α|≤K

Dα
(

∂
∂yr

u�,t j−1

)

α1! · · · αm+1! (t − t j−1)
α1(W 1

t − W 1
t j−1

)α2 · · · (Wm
t − Wm

tj−1
)αm+1 ,

(61)

where α ∈ N
m+1
0 and Dα

(
∂

∂ym
u�,t j−1

)
= ∂ |α|

(
∂

∂ym
u�,t j−1

)

∂tα1 ∂y
α2
1 ···∂yαm+1

m
. Via Taylor’s theorem we

obtain

∂

∂yr
u�(t, X�,t j−1 ,Wt − Wtj−1 ) − T K

j,r (t)

=
∑

|α|=K+1

⎡

⎣ (K + 1)!
α1! · · · αm+1!

1∫

0

(1 − z)K Dα

(
∂

∂yr
u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1 ))

)
dz

·(t − t j−1)
α1 (W 1

t − W 1
t j−1

)α2 · · · (Wm
t − Wm

t j−1
)αm+1

]
.

Provided that (24) holds, we get
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Var

⎡

⎢
⎣

J∑

j=1

m∑

r=1

t j∫

t j−1

(
∂

∂yr
u�(t, X�,t j−1 ,Wt − Wtj−1 ) − T K

j,r (t)

)
dWr

t

⎤

⎥
⎦

=
J∑

j=1

m∑

r=1

t j∫

t j−1

E

[(
∂

∂yr
u�(t, X�,t j−1 ,Wt − Wtj−1 ) − T K

j,r (t)

)2
]

dt

�C2(K+1)
J∑

j=1

∑

|α|=K+1

t j∫

t j−1

E

[
(t − t j−1)

2α1 (W 1
t − W 1

t j−1
)2α2 · · · (Wm

t − Wm
t j−1

)2αm+1
]
dt

�(C2�)K+1 K→∞−→ 0,

and thus T K
j,r converges for K → ∞ in L2(� × [0, T ]) to ∂u�

∂yr
(t, X�,t j−1 ,Wt −

Wtj−1). Moreover, due to (57), the limit of T K
j,r simplifies to (cf. (61))

∂u�,t j−1

∂yr
+

m∑

i=1

∂2u�,t j−1

∂yr∂yi
(Wi

t − Wi
t j−1

)

+ 1

2

m∑

i=1

∂3u�,t j−1

∂yr∂y2i
((Wi

t − Wi
t j−1

)2 − (t − t j−1))

+
m∑

i1,i2=1
i1<i2

∂3u�,t j−1

∂yr∂yi1∂yi2
(Wi1

t − Wi1
t j−1

)(Wi2
t − Wi2

t j−1
)

+
[
1

6

m∑

i=1

∂4u�,t j−1

∂yr∂y3i
((Wi

t − Wi
t j−1

)3 − 3(Wi
t − Wi

t j−1
)(t − t j−1))

+ 1

2

m∑

i1,i2=1
i1<i2

∂4u�,t j−1

∂yr∂y2i1∂yi2
((Wi1

t − Wi1
t j−1

)2 − (t − t j−1))(W
i2
t − Wi2

t j−1
)

+
m∑

i1,i2,i3=1
i1<i2<i3

∂4u�,t j−1

∂yr∂yi1∂yi2∂yi3
(Wi1

t − Wi1
t j−1

)(Wi2
t − Wi2

t j−1
)(Wi3

t − Wi3
t j−1

)

⎤

⎥
⎥
⎦

+ ...

=
∞∑

l=1

(t − t j−1)
l−1
2

∑

k∈Nm
0∑m

i=1 ki=l−1

∂ lu�,t j−1

∂yr∂y
k1
1 · · · ∂ykmm

m∏

i=1

Hki

(
Wi

t −Wi
t j−1√

t−t j−1

)

√
ki ! .

To compute the stochastic integral
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t j∫

t j−1

∇yu�(t, X�,t j−1 ,Wt − Wtj−1) dWt

=
∞∑

l=1

m∑

r=1

t j∫

t j−1

(t − t j−1)
l−1
2

∑

k∈Nm
0∑m

i=1 ki=l−1

∂ lu�,t j−1

∂yr∂y
k1
1 · · · ∂ykmm

m∏

i=1

Hki

(
Wi

t −Wi
t j−1√

t−t j−1

)

√
ki ! dWr

t ,

we apply Itô’s lemma w.r.t. the functions Fk(t, y1, . . . , ym) := t l/2
∏m

i=1

Hki

(
yi√
t

)

√
ki ! ,

where
∑m

i=1 ki = l. Thus, we obtain

dFk(t − t j−1,W
1
t − W 1

t j−1
, . . . ,Wm

t − Wm
tj−1

) (62)

=(t − t j−1)
l−1
2

m∑

r=1

Hkr−1

(Wr
t −Wr

t j−1√
t−t j−1

)

√
(kr − 1)!

m∏

i=1
i �=r

Hki

(
Wi

t −Wi
t j−1√

t−t j−1

)

√
ki ! dWr

t .

This gives us finally

t j∫

t j−1

∇yu�(t, X�,t j−1 ,Wt − Wtj−1) dWt

=
∞∑

l=1

�l/2
∑

k∈Nm
0∑m

i=1 ki=l

∂ lu�(t j−1, X�,t j−1 , 0)

∂yk11 · · · ∂ykmm
m∏

i=1

Hki

(
� j W i
√

�

)

√
ki ! .

Proof of Theorem 4

We define the (random) function Gl, j (x) for J ≥ l ≥ j ≥ 0, x ∈ R
d , as follows

Gl, j (x) = ��,l ◦ ��,l−1 ◦ . . . ◦ ��, j+1(x), l > j, (63)

Gl, j (x) = x, l = j,

where ��,l(x) := �� (x,�lW ) for l = 1, . . . , J . Note that it holds

u�(t j , x, 0) = E
[
f (GJ, j (x))

]
. (64)

Similar to G, we define the function G̃ j (x, z), 0 ≤ j < J , x ∈ R
d , z := (z1, . . . ,

z J− j ) ∈ R
m×(J− j), zl := (z1l , . . . , z

m
l )� ∈ R

m for l = 1, . . . , J − j , as follows

G̃ j (x, z) := �̃�,z J− j ◦ . . . ◦ �̃�,z1(x),
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where �̃�,zl (x) := ��

(
x, zl

√
�
)
. Note that G and G̃ are in the following relation

GJ, j (x) = G̃ j

(
x,

1√
�

(
� j+1W,� j+2W, . . . ,�JW

)
)

, j < J. (65)

Let us represent
√

� ∂
∂yi

u�(t j−1, x, 0), where j ∈ {1, . . . , J } and i ∈ {1, . . . ,m},
as a (J − j + 1)m-dimensional integral, that is (cf. (65))

√
�

∂

∂yi
u�(t j−1, x, 0) = √

�
∂

∂yi
E
[
f
(
GJ, j

(
��

(
x,� j W + y

)))] |y=0m

=
∫

R(J− j+1)m

√
�

∂

∂yi

[
f

(
G̃ j−1

(
x,

(
z1 + y√

�
, z2, . . . , z J− j+1

)))]
ϕ(J− j+1)m(z) dz

∣
∣y=0m ,

where ϕ(J− j+1)m denotes the (J − j + 1)m-dimensional standard normal density
function. Since it holds

√
�

∂

∂yi

[
f

(
G̃ j−1

(
x,

(
z1 + y√

�
, z2, . . . , z J− j+1

)))]

= ∂

∂zi1

[
f

(
G̃ j−1

(
x,

(
z1 + y√

�
, z2, . . . , z J− j+1

)))]
,

we obtain via integration by parts

√
�

∂

∂yi
u�(t j−1, x, 0)

=
∫

R(J− j+1)m

∂

∂zi1

[
f
(
G̃ j−1 (x, z)

)]
ϕ(J− j+1)m(z) dz

= −
∫

R(J− j+1)m

f
(
G̃ j−1 (x, z)

) ∂

∂zi1
ϕ(J− j+1)m(z) dz

=
∫

R(J− j+1)m

f
(
G̃ j−1 (x, z)

)
zi1ϕ(J− j+1)m(z) dz

=E

[
f (GJ, j−1(x))

� jW i

√
�

]
= E

[
f (X�,T )

� jW i

√
�

∣
∣X�,( j−1)� = x

]
= a j,ei (x).

We finally remark that we have only the integral term in the integration by parts
above because the function z1 �→ f (G̃ j−1(x, z))ϕ(J− j+1)m(z) is integrable over R
w.r.t. the Lebesgue measure.

Proof of Theorem 5

Via Taylor’s theorem we get
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∂u�(t, X�,t j−1 ,Wt − Wtj−1 )

∂yi

= ∂u�(t j−1, X�,t j−1 , 0)

∂yi
+ (t − t j−1)

1∫

0

∂2u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1 ))

∂yi∂t
dz

+
m∑

r=1

(Wr
t − Wr

t j−1
)

1∫

0

∂2u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1 ))

∂yi∂yr
dz. (66)

Due to (57), (66) simplifies to

∂u�(t, X�,t j−1 ,Wt − Wtj−1)

∂yi
= ∂u�(t j−1, X�,t j−1 , 0)

∂yi

− 1

2
(t − t j−1)

1∫

0

m∑

r=1

∂3u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1))

∂yi∂y2r
dz

+
m∑

r=1

(Wr
t − Wr

t j−1
)

1∫

0

∂2u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1))

∂yi∂yr
dz.

Provided that the second and third derivatives of u� w.r.t. y are bounded, we have

Var

⎡

⎢
⎣

t j∫

t j−1

∂u�(t, X�,t j−1 ,Wt − Wtj−1 )

∂yi
dWi

t − ∂u�(t j−1, X�,t j−1 , 0)

∂yi
� j W

i

⎤

⎥
⎦

=
t j∫

t j−1

E

⎡

⎣

⎛

⎝
1∫

0

m∑

r=1

(

(Wr
t − Wr

t j−1
)
∂2u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1 ))

∂yi∂yr

−1

2
(t − t j−1)

∂3u�(t j−1 + z(t − t j−1), X�,t j−1 , z(Wt − Wtj−1 ))

∂yi∂y2r

)

dz

)2
⎤

⎦ dt

�
m∑

r=1

t j∫

t j−1

E

[
(Wr

t − Wr
t j−1

)2 + (t − t j−1)
2
]
dt � �2.

Thus, we finally obtain

Var
[
f (X�,T ) − Mint,1

�,T

]
� �.

Proof of Theorem 6

We start the calculations, which will lead to the proof of part (ii). At some point, we
will get the proof of part (i) as a by-product.
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In this proof, we will use the shorthand notation ξk := �kW , k ∈ {1, . . . , J }. For
j ∈ {0, . . . , J − 1}, we have

u�(t j , x, y) = E
[
f
(
��,J ◦ ��,J−1 ◦ . . . ◦ ��, j+2 ◦ ��(x, y + ξ j+1)

)]
,

where ��,k(x) := ��(x, ξk). Denote, for k > j ,

Gk, j (x, y) := ��,k ◦ ��,k−1 ◦ . . . ◦ ��, j+2 ◦ ��(x, y + ξ j+1).

Assume that for any n ∈ N, l ∈ {1, . . . , d}, α ∈ N
d
0 ,

∣
∣
∣E

[(
Dα�l

�,k+1(Gk, j (x, y))
)n∣∣
∣Fk

]∣∣
∣ ≤

{
(1 + An,l�), β = αl = 1

Bn,l,α�, (β > 1) ∨ (αl �= 1)

(67)

with probability one for β = |α| ∈ N and some constants An,l > 0, Bn,l,α > 0. We

recall the notation Dα f (x) = ∂ |α| f (x)
∂x

α1
1 ···∂xαd

d
, which was used here. Clearly, for the Euler

scheme (15), condition (67) is satisfied if all the derivatives of order β forμk, σki , k ∈
{1, . . . , d}, i ∈ {1, . . . ,m}, are bounded. Moreover, suppose that for any n1, n2 ∈ N,
l ∈ {1, . . . , d}, α1, α2 ∈ N

d
0 , with β1 = |α1| > 0, β2 = |α2| > 0, (β1 > 1) ∨ (β2 >

1) ∨ ((α1)l �= 1) ∨ ((α2)l �= 1),

∣
∣
∣E

[(
Dα1�l

�,k+1(Gk, j (x, y))
)n1 (Dα2�l

�,k+1(Gk, j (x, y))
)n2

∣
∣
∣Fk

]∣∣
∣ ≤ Cn1,n2,l,α1,α2�

(68)

for some constant Cn1,n2,l,α1,α2 > 0. Again, for the Euler scheme (15), condition (68)
is satisfied if all the derivatives of orders β1 and β2 for μk, σki are bounded.

We have for some i ∈ {1, . . . ,m} and l ∈ {1, . . . , d}

∂

∂yi
Gl

k+1, j (x, y) =
d∑

s=1

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

and ∂
∂yi

Gs
j+1, j (x, y) = ∂

∂yi
�s

�(x, y + ξ j+1). Hence

E

[(
∂

∂yi
Gl

k+1, j (x, y)

)2
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)2

+
∑

s �=l

{
2

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)
∂

∂yi
Gs

k, j (x, y)
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+(d − 1)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)2
}]

Denote

ρ
i,s
k+1,n = E

[(
∂

∂yi
Gs

k+1, j (x, y)

)n]
, (69)

then, due to 2ab ≤ a2 + b2, we get for k = j + 1, . . . , J − 1,

ρ
i,l
k+1,2 ≤ (1 + A2,l�)ρ

i,l
k,2 +

∑

s �=l

{
C1,1,l,el ,es�(ρ

i,l
k,2 + ρ

i,s
k,2) + (d − 1)B2,l,es�ρ

i,s
k,2

}
.

Further, denote

ρi
k+1,n =

d∑

l=1

ρ
i,l
k+1,n,

then we get for k = j + 1, . . . , J − 1,

ρi
k+1,2 ≤ (1 + A2�)ρi

k,2 + 2(d − 1)C1,1�ρi
k,2 + (d − 1)2B2�ρi

k,2.

where A2 := max
l=1,...,d

A2,l , B2 := max
l,s=1,...,d

B2,l,es and C1,1 := max
l,s=1,...,d

C1,1,l,el ,es . This

gives us
ρi
k+1,2 ≤ (1 + κ1�)ρi

k,2, k = j + 1, . . . , J − 1

for some constant κ1 > 0, leading to

ρi
k,2 ≤ (1 + κ1�)k− j−1ρi

j+1,2, k = j + 1, . . . , J − 1,

where

ρi
j+1,2 =

d∑

s=1

E

[(
∂

∂yi
�s

�(x, y + ξ j+1)

)2
]

=
d∑

s=1

σ 2
si (x).

Thus, we obtain the boundedness of

∂

∂yi
u�(t j , x, y) =

d∑

s=1

E

[
∂

∂xs
f (GJ, j (x, y))

∂

∂yi
Gs

J, j (x, y)

]
,

provided that σki and all the derivatives of order 1 of f, μk, σki are bounded.
Similar calculations show that the boundedness of σki is not necessary to assume

in order to get that ∂
∂xl

u�(t j , x, y) and consequently g j,l(x) for l ∈ {1, . . . , d} are
bounded (recall (21)). This yields (A2) under the assumptions in part (i) of Theorem6
(that is, the boundedness of σki is not needed).
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Furthermore, we have, due to (
∑d

k=1 ak)
n ≤ dn−1 ∑d

k=1 a
n
k ,

E

[(
∂

∂yi
Gl

k+1, j (x, y)

)4
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)4

+
∑

s �=l

{

4

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)3

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

+ 6(d − 1)

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)2

+ 4(d − 1)2
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)3

+(d − 1)3
(

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)4
}]

and thus, due to 4a3b ≤ 3a4 + b4 and 2a2b2 ≤ a4 + b4,

ρ
i,l
k+1,4 ≤ (1 + A4,l�)ρ

i,l
k,4

+
∑

s �=l

{
C3,1,l,el ,es�(3ρi,l

k,4 + ρ
i,s
k,4) + 3(d − 1)C2,2,l,el ,es�(ρ

i,l
k,4 + ρ

i,s
k,4)

+(d − 1)2C1,3,l,el ,es�(ρ
i,l
k,4 + 3ρi,s

k,4) + (d − 1)3B4,l,es�ρ
i,s
k,4

}

This gives us

ρi
k+1,4 ≤ (1 + A4�)ρi

k,4 + 4(d − 1)C3,1�ρi
k,4 + 6(d − 1)2C2,2�ρi

k,4

+4(d − 1)3C1,3�ρi
k,4 + (d − 1)4B4�ρi

k,4,

where A4 := max
l=1,...,d

A4,l , B4 := max
l,s=1,...,d

B4,l,es , C3,1 := max
l,s=1,...,d

C3,1,l,el ,es , C2,2 :=
max

l,s=1,...,d
C2,2,l,el ,es and C1,3 := max

l,s=1,...,d
C1,3,l,el ,es . Hence, we obtain
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ρi
k+1,4 ≤ (1 + κ2�)ρi

k,4, k = j + 1, . . . , J − 1

for some constant κ2 > 0, leading to

ρi
k,4 ≤ (1 + κ2�)k− j−1ρi

j+1,4, k = j + 1, . . . , J − 1,

where

ρi
j+1,4 =

d∑

s=1

E

[(
∂

∂yi
�s

�(x, y + ξ j+1)

)4
]

=
d∑

s=1

σ 4
si (x).

Thus, we obtain boundedness of ρi
k,4 uniformly in x , y, j , k ∈ { j + 1, . . . , J } and

J , for all i ∈ {1, . . . ,m}, provided σki and all derivatives of order 1 of f, μk, σki are
bounded.

Now we set4 G̃ J, j (x) := GJ, j (x, 0) and observe that similar calculations involv-
ing derivatives w.r.t. xk show that the quantities

E

[(
∂

∂xk
G̃s

J, j (x)

)4
]

(cf. with (69)) are all bounded uniformly in x , J and j ∈ {0, . . . , J − 1}, provided
all derivatives of order 1 of f, μk, σki are bounded (that is, boundedness of σki is not
needed at this point). Using the identity G̃ J, j (X�,t j ) = X�,T one can check that

JG̃ J, j
(X�,t j ) = δX�,T δX−1

�,t j , (70)

whereJG̃ J, j
denotes the Jacobi matrix of the function G̃ J, j . Recalling the definition

ζ j = (ζ j,1, . . . , ζ j,d) := ∇ f (X�,T )δX�,T δX−1
�,t j of the vector ζ j , we get from (70)

that

ζ j,k =
d∑

s=1

∂

∂xs
f (G̃ J, j (X�,t j ))

∂

∂xk
G̃s

J, j (X�,t j ).

Then we obtain for k ∈ {1, . . . , d} and j ∈ {1, . . . , J }

Var
[
ζ j,k | X�,t j−1 = x

]

≤ E
[
ζ 2
j,k | X�,t j−1 = x

]

= E

⎡

⎣

(
d∑

s=1

∂

∂xs
f (G̃ J, j (X�,t j ))

∂

∂xk
G̃s

J, j (X�,t j )

)2

| X�,t j−1 = x

⎤

⎦

≤ d
d∑

s=1

E

[(
∂

∂xs
f (G̃ J, j−1(x))

∂

∂xk
G̃s

J, j (��, j (x))

)2
]

4Notice that thus defined G̃ J, j is the same as GJ, j of (63) (in the proof of Theorem 4).
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≤ d
d∑

s=1

√√
√
√
E

[(
∂

∂xs
f (G̃ J, j−1(x))

)4
]

E

[(
∂

∂xk
G̃s

J, j (�� j (x))

)4
]

.

Due to the discussion above, the latter expression is bounded in x , provided all
derivatives of order 1 of f, μk, σki are bounded. That is, we get (A1), and the proof
of part (i) is completed.

Proceeding with part (ii), we have

E

[(
∂

∂yi
Gl

k+1, j (x, y)

)6
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)6

+
∑

s �=l

{

6

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)5

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

+ 15(d − 1)

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)4

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)2

+ 20(d − 1)2
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)3

+ 15(d − 1)3
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)2

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)4

+ 6(d − 1)4
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)5
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+(d − 1)5
(

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)6
}]

and thus, due to 6a5b ≤ 5a6 + b6, 3a4b2 ≤ 2a6 + b6 and 2a3b3 ≤ a6 + b6,

ρ
i,l
k+1,6 ≤ (1 + A6,l�)ρ

i,l
k,6

+
∑

s �=l

{
C5,1,l,el ,es�(5ρi,l

k,6 + ρ
i,s
k,6) + 5(d − 1)C4,2,l,el ,es�(2ρi,l

k,6 + ρ
i,s
k,6)

+ 10(d − 1)2C3,3,l,el ,es�(ρ
i,l
k,6 + ρ

i,s
k,6) + 5(d − 1)3C2,4,l,el ,es�(ρ

i,l
k,6 + 2ρi,s

k,6)

+(d − 1)4C1,5,l,el ,es�(ρ
i,l
k,6 + 5ρi,s

k,6) + (d − 1)5B6,l,es�ρ
i,s
k,6

}
.

This gives us

ρi
k+1,6 ≤ (1 + A6�)ρi

k,6 + 6(d − 1)C5,1�ρi
k,6 + 15(d − 1)2C4,2�ρi

k,6

+20(d − 1)3C3,3�ρi
k,6

+15(d − 1)4C2,4�ρi
k,6 + 6(d − 1)5C1,5�ρi

k,6 + (d − 1)6B6�ρi
k,6,

where A6 := max
l=1,...,d

A6,l , B6 := max
l,s=1,...,d

B6,l,es , C5,1 := max
l,s=1,...,d

C5,1,l,el ,es , C4,2 :=
max

l,s=1,...,d
C4,2,l,el ,es ,C3,3 := max

l,s=1,...,d
C3,3,l,el ,es ,C2,4 := max

l,s=1,...,d
C2,4,l,el ,es andC1,5 :=

max
l,s=1,...,d

C1,5,l,el ,es . Hence, we obtain

ρi
k+1,6 ≤ (1 + κ3�)ρi

k,6, k = j + 1, . . . , J − 1

for some constant κ3 > 0, leading to

ρi
k,6 ≤ (1 + κ3�)k− j−1ρi

j+1,6, k = j + 1, . . . , J − 1,

where

ρi
j+1,6 =

d∑

s=1

E

[(
∂

∂yi
�s

�(x, y + ξ j+1)

)6
]

=
d∑

s=1

σ 6
si (x).

Moreover, we have

E

[(
∂

∂yi
Gl

k+1, j (x, y)

)8
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)8
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+
∑

s �=l

{

8

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)7

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

+ 28(d − 1)

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)6

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)2

+ 56(d − 1)2
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)5

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)3

+ 70(d − 1)3
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)4

+ 56(d − 1)4
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)3

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)5

+ 28(d − 1)5
(

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

)2

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)6

+ 8(d − 1)6
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gl

k, j (x, y)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)7

+(d − 1)7
(

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)

)8
}]
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and thus, due to 8a7b ≤ 7a8 + b8, 4a6b2 ≤ 3a8 + b8, 8a5b3 ≤ 5a8 + 3b8 and
2a4b4 ≤ a8 + b8,

ρ
i,l
k+1,8 ≤(1 + A8,l�)ρ

i,l
k,8

+
∑

s �=l

{
C7,1,l,el ,es�(7ρi,l

k,8 + ρ
i,s
k,8) + 7(d − 1)C6,2,l,el ,es�(3ρi,l

k,8 + ρ
i,s
k,8)

+ 7(d − 1)2C5,3,l,el ,es�(5ρi,l
k,8 + 3ρi,s

k,8) + 35(d − 1)3C4,4,l,el ,es�(ρ
i,l
k,8 + ρ

i,s
k,8)

+ 7(d − 1)4C3,5,l,el ,es�(3ρi,l
k,8 + 5ρi,s

k,8) + 7(d − 1)5C2,6,l,el ,es�(ρ
i,l
k,8 + 3ρi,s

k,8)

+(d − 1)6C1,7,l,el ,es�(ρ
i,l
k,8 + 7ρi,s

k,8) + (d − 1)7B8,l,es�ρ
i,s
k,8

}
.

This gives us

ρi
k+1,8 ≤ (1 + A8�)ρi

k,8 + 8(d − 1)C7,1�ρi
k,8 + 28(d − 1)2C6,2�ρi

k,8 + 56(d − 1)3C5,3�ρi
k,8

+70(d − 1)4C4,4�ρi
k,8 + 56(d − 1)5C3,5�ρi

k,8 + 28(d − 1)6C2,6�ρi
k,8

+8(d − 1)7C1,7�ρi
k,8 + (d − 1)8B8�ρi

k,8,

where A8 := max
l=1,...,d

A8,l , B8 := max
l,s=1,...,d

B8,l,es , C7,1 := max
l,s=1,...,d

C7,1,l,el ,es , C6,2 :=
max

l,s=1,...,d
C6,2,l,el ,es , C5,3 := max

l,s=1,...,d
C5,3,l,el ,es , C4,4 := max

l,s=1,...,d
C4,4,l,el ,es , C3,5 :=

max
l,s=1,...,d

C3,5,l,el ,es , C2,6 := max
l,s=1,...,d

C2,6,l,el ,es and C1,7 := max
l,s=1,...,d

C1,7,l,el ,es . Hence,

we obtain
ρi
k+1,8 ≤ (1 + κ4�)ρi

k,8, k = j + 1, . . . , J − 1

for some constant κ4 > 0, leading to

ρi
k,8 ≤ (1 + κ4�)k− j−1ρi

j+1,8, k = j + 1, . . . , J − 1,

where

ρi
j+1,8 =

d∑

s=1

E

[(
∂

∂yi
�s

�(x, y + ξ j+1)

)8
]

=
d∑

s=1

σ 8
si (x).

Next, we have for some i, o ∈ {1, . . . ,m} and l ∈ {1, . . . , d}

∂2

∂yi∂yo
Gl

k+1, j (x, y) =
d∑

s=1

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

+
d∑

s,u=1

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

and ∂2

∂yi ∂yo
Gs

j+1, j (x, y) = ∂2

∂yi ∂yo
�s

�(x, y + ξ j+1). Hence
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E

[(
∂2

∂yi∂yo
Gl

k+1, j (x, y)

)2
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)

)2

+
∑

s �=l

{
2

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)

∂2

∂yi∂yo
Gs

k, j (x, y) + (d − 1)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

)2
}

+ 2
d∑

s,u,v=1

∂

∂xv
�l

�,k+1(Gk, j (x, y))
∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))

∂2

∂yi∂yo
Gv

k, j (x, y)
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

+d2
d∑

s,u=1

(
∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

)2
⎤

⎦

Denote

ψ
i,o,s
k+1,n = E

[(
∂2

∂yi∂yo
Gs

k+1, j (x, y)

)n]

and es,u := es + eu , then we get, due to

2E [XY Z ] ≤ 2
√
E
[
X2

]
4

√
E
[
Y 4

]
4

√
E
[
Z4

] ≤ E
[
X2

] +
√
E
[
Y 4

]√
E
[
Z4

] ≤ E
[
X2

]

+ 1

2
(E[Y 4] + E[Z4]),

for k = j + 1, . . . , J − 1,

ψ
i,o,l
k+1,2 ≤ (1 + A2,l�)ψ

i,o,l
k,2 +

∑

s �=l

{
C1,1,l,el ,es�(ψ

i,o,l
k,2 + ψ

i,o,s
k,2 ) + (d − 1)B2,l,es�ψ

i,o,s
k,2

}

+
d∑

s,u,v=1

C1,1,l,ev,es,u�

(
ψ

i,o,v
k,2 + 1

2

(
ρ
i,s
k,4 + ρ

o,u
k,4

))

+d2
d∑

s,u=1

B2,l,es,u�
1

2

(
ρ
i,s
k,4 + ρ

o,u
k,4

)
.

Further, denote

ψ
i,o
k+1,n =

d∑

l=1

ψ
i,o,l
k+1,n,

then we get for k = j + 1, . . . , J − 1,
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ψ
i,o
k+1,2 ≤ (1 + A2�)ψ

i,o
k,2 + 2(d − 1)C1,1�ψ

i,o
k,2 + (d − 1)2B2�ψ

i,o
k,2

+d3C̃1,1�

(
ψ

i,o
k,2 + 1

2

(
ρi
k,4 + ρo

k,4

)
)

+ d4 B̃2�
1

2

(
ρi
k,4 + ρo

k,4

)
.

where C̃1,1 := max
l,s,u,v=1,...,d

C1,1,l,ev,es,u and B̃2 := max
l,s,u=1,...,d

B2,l,es,u . This gives us

ψ
i,o
k+1,2 ≤ (1 + κ5�)ψ

i,o
k,2 + κ6, k = j + 1, . . . , J − 1

for some constants κ5, κ6 > 0, leading to

ψ
i,o
k,2 ≤ (1 + κ5�)k− j−1ψ

i,o
j+1,2 + κ7 = κ7, k = j + 1, . . . , J − 1,

where κ7 > 0 and

ψ
i,o
j+1,2 =

d∑

s=1

E

[(
∂2

∂yi∂yo
�s

�(x, y + ξ j+1)

)2
]

= 0.

Thus, we obtain the boundedness of

∂2

∂yi∂yo
u�(t j , x, y) = E

[
d∑

s=1

∂

∂xs
f (GJ, j (x, y))

∂2

∂yi∂yo
Gs

J, j (x, y)

+
d∑

s,u=1

∂2

∂xs∂xu
f (GJ, j (x, y))

∂

∂yi
Gs

J, j (x, y)
∂

∂yo
Gu

J, j (x, y)

⎤

⎦ ,

provided that σki and all the derivatives of order 1 and 2 for f, μk, σki are bounded.
Moreover, we have

E

[(
∂2

∂yi∂yo
Gl

k+1, j (x, y)

)4
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)

)4

+
∑

s �=l

{

4

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)

)3

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

+ 6(d − 1)

(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)
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∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

)2

+ 4(d − 1)2
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gl

k, j (x, y)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

)3

+(d − 1)3
(

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gs

k, j (x, y)

)4
}

+
d∑

s,u,v=1

{

4d2

(
∂

∂xv
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gv

k, j (x, y)

)3

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y)) · ∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

+ 6d3

(
∂

∂xv
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gv

k, j (x, y)

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))

)2

·
(

∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

)2

+ 4d4 ∂

∂xv
�l

�,k+1(Gk, j (x, y))
∂2

∂yi∂yo
Gv

k, j (x, y)

·
(

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

)3
}

+d6
d∑

s,u

(
∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

)4
]

and thus, due to 4a3bc ≤ 3a4 + 1
2

(
b8 + c8

)
, 2a2b2c2 ≤ a4 + 1

2

(
b8 + c8

)
and

4ab3c3 ≤ a4 + 3
2

(
b8 + c8

)
,
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ψ
i,o,l
k+1,4 ≤ (1 + A4,l�)ψ

i,o,l
k,4

+
∑

s �=l

{
C3,1,l,el ,es�(3ψ i,o,l

k,4 + ψ
i,o,s
k,4 ) + 3(d − 1)C2,2,l,el ,es�(ψ

i,o,l
k,4 + ψ

i,o,s
k,4 )

+(d − 1)2C1,3,l,el ,es�(ψ
i,o,l
k,4 + 3ψ i,o,s

k,4 ) + (d − 1)3B4,l,es�ψ
i,o,s
k,4

}

+
d∑

s,u,v=1

{
d2C3,1,l,ev,es,u�

(
3ψ i,o,v

k,4 + 1

2

(
ρ
i,s
k,8 + ρ

o,u
k,8

))

+ 3d3C2,2,l,ev,es,u�

(
ψ

i,o,v
k,4 + 1

2

(
ρ
i,s
k,8 + ρ

o,u
k,8

))

+d4C1,3,l,ev,es,u�

(
ψ

i,o,v
k,4 + 3

2

(
ρ
i,s
k,8 + ρ

o,u
k,8

))}

+ d6
d∑

s,u=1

B4,l,es,u�
1

2

(
ρ
i,s
k,8 + ρ

o,u
k,8

)
.

This gives us

ψ
i,o
k+1,4 ≤ (1 + A4�)ψ

i,o
k,4 + 4(d − 1)C3,1�ψ

i,o
k,4 + 6(d − 1)2C2,2�ψ

i,o
k,4

+4(d − 1)3C1,3�ρi
k,4 + (d − 1)4B4�ψ

i,o
k,4 + d5C̃3,1�

(
3ψ i,o

k,4 + 1

2

(
ρi
k,8 + ρo

k,8

))

+3d6C̃2,2�

(
ψ

i,o
k,4 + 1

2

(
ρi
k,8 + ρo

k,8

))
+ d7C̃1,3�

(
ψ

i,o
k,4 + 3

2

(
ρi
k,8 + ρo

k,8

))

+d8 B̃4�
1

2

(
ρi
k,8 + ρo

k,8

)
,

where C̃3,1 := max
l,s,u,v=1,...,d

C3,1,l,ev,es,u , C̃2,2 := max
l,s,u,v=1,...,d

C2,2,l,ev,es,u , C̃1,3 :=
max

l,s,u,v=1,...,d
C1,3,l,ev,es,u and B̃4 := max

l,s,u=1,...,d
B4,l,es,u . Hence, we obtain

ψ
i,o
k+1,4 ≤ (1 + κ8�)ψ

i,o
k,4 + κ9, k = j + 1, . . . , J − 1

for some constants κ8, κ9 > 0, leading to

ψ
i,o
k,4 ≤ (1 + κ8�)k− j−1ψ

i,o
j+1,4 + κ10 = κ10, k = j + 1, . . . , J − 1,

where κ10 > 0 and

ψ
i,o
j+1,4 =

d∑

s=1

E

[(
∂2

∂yi∂yo
�s

�(x, y + ξ j+1)

)4
]

= 0.

Next, we have for some i, o, r ∈ {1, . . . ,m} and l ∈ {1, . . . , d}



172 D. Belomestny et al.

∂3

∂yi∂yo∂yr
Gl

k+1, j (x, y)

=
d∑

s=1

∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂3

∂yi∂yo∂yr
Gs

k, j (x, y)

+
d∑

s,u=1

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))

(
∂2

∂yi∂yo
Gs

k, j (x, y)
∂

∂yr
Gu

k, j (x, y)

+ ∂2

∂yi∂yr
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

+ ∂

∂yi
Gs

k, j (x, y)
∂2

∂yo∂yr
Gu

k, j (x, y)

)

+
d∑

s,u,v=1

∂3

∂xs∂xu∂xv
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)
∂

∂yr
Gv

k, j (x, y)

and ∂3

∂yi ∂yo∂yr
Gs

j+1, j (x, y) = ∂3

∂yi ∂yo∂yr
�s

�(x, y + ξ j+1). Hence

E

[(
∂3

∂yi∂yo∂yr
Gl

k+1, j (x, y)

)2
]

≤ E

[(
∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂3

∂yi∂yo∂yr
Gl

k, j (x, y)

)2

+
∑

s �=l

{
2

∂

∂xl
�l

�,k+1(Gk, j (x, y))
∂

∂xs
�l

�,k+1(Gk, j (x, y))

∂3

∂yi∂yo∂yr
Gl

k, j (x, y)
∂3

∂yi∂yo∂yr
Gs

k, j (x, y)

+(d − 1)

(
∂

∂xs
�l

�,k+1(Gk, j (x, y))
∂3

∂yi∂yo∂yr
Gs

k, j (x, y)

)2
}

+ 2
d∑

s,u,v=1

∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))
∂

∂xv
�l

�,k+1(Gk, j (x, y))
∂3

∂yi∂yo∂yr
Gv

k, j (x, y)

·
(

∂2

∂yi∂yo
Gs

k, j (x, y)
∂

∂yr
Gu

k, j (x, y) + ∂2

∂yi∂yr
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

+ ∂

∂yi
Gs

k, j (x, y)
∂2

∂yo∂yr
Gu

k, j (x, y)

)

+ 2
d∑

s,u,v,w=1

∂3

∂xs∂xu∂xv
�l

�,k+1(Gk, j (x, y))

∂

∂xw
�l

�,k+1(Gk, j (x, y))
∂3

∂yi∂yo∂yr
Gw

k, j (x, y)
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· ∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)
∂

∂yr
Gv

k, j (x, y)

+ 6d2
d∑

s,u=1

(
∂2

∂xs∂xu
�l

�,k+1(Gk, j (x, y))

)2
((

∂2

∂yi∂yo
Gs

k, j (x, y)
∂

∂yr
Gu

k, j (x, y)

)2

+
(

∂2

∂yi∂yr
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

)2

+
(

∂

∂yi
Gs

k, j (x, y)
∂2

∂yo∂yr
Gu

k, j (x, y)

)2
)

+ 2d3
d∑

s,u,v=1

(
∂3

∂xs∂xu∂xv
�l

�,k+1(Gk, j (x, y))
∂

∂yi
Gs

k, j (x, y)
∂

∂yo
Gu

k, j (x, y)

∂

∂yr
Gv

k, j (x, y)

)2
]

Denote

ζ
i,o,r,s
k+1 = E

[(
∂3

∂yi∂yo∂yr
Gs

k+1, j (x, y)

)2
]

and es,u,v := es + eu + ev, then we get, due to 3a2b2c2 ≤ a6 + b6 + c6 and

2E [XY ZU ] ≤ 2
√
E
[
X2

]
6

√
E
[
Y 6

]
6

√
E
[
Z6

]
6

√
E
[
U 6

]

≤ E
[
X2

] + 3

√
E
[
Y 6

]
3

√
E
[
Z6

]
3

√
E
[
U 6

]

≤ E
[
X2

] + 1

3

(
E
[
Y 6

] + E
[
Z6

] + E
[
U 6

])
,

for k = j + 1, . . . , J − 1,

ζ
i,o,r,l
k+1 ≤ (1 + A2,l�)ζ

i,o,r,l
k +

∑

s �=l

{
C1,1,l,el ,es�(ζ

i,o,r,l
k + ζ

i,o,r,s
k ) + (d − 1)B2,l,es�ζ

i,o,r,s
k

}

+
d∑

s,u,v=1

C1,1,l,ev,es,u�

(
ζ
i,o,r,v
k,2 + 1

2

(
ρ
i,s
k,4 + ρ

o,u
k,4 + ρ

r,u
k,4 + ψ

i,o,s
k,4 + ψ

i,r,s
k,4 + ψ

o,r,u
k,4

))

+
d∑

s,u,v,w=1

C1,1,l,ew,es,u,v�

(
ζ
i,o,r,w
k,2 + 1

3

(
ρ
i,s
k,6 + ρ

o,u
k,6 + ρ

r,v
k,6

))

+3d2
d∑

s,u=1

B2,l,es,u�
(
ρ
i,s
k,4 + ρ

o,u
k,4 + ρ

r,u
4,k + ψ

i,o,s
k,4 + ψ

i,r,s
k,4 + ψ

o,r,u
k,4

)

+d3
d∑

s,u,v=1

B2,l,es,u,v�
1

3

(
ρ
i,s
k,6 + ρ

o,u
k,6 + ρ

r,w
k,6

)
.
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Further, denote

ζ
i,o,r
k+1 =

d∑

l=1

ζ
i,o,r,l
k+1 ,

then we get for k = j + 1, . . . , J − 1,

ζ
i,o,r
k+1,2 ≤ (1 + A2�)ζ

i,o,r
k,2 + 2(d − 1)C1,1�ζ

i,o,r
k,2 + (d − 1)2B2�ζ

i,o,r
k,2

+d3C̃1,1�

(
ζ
i,o,r
k,2 + 1

2

(
ρi
k,4 + ρo

k,4 + ρr
k,4 + ψ

i,o
k,4 + ψ

i,r
k,4 + ψ

o,r
k,4

))

+d4 ˜̃C1,1�

(
ζ
i,o,r
k,2 + 1

3

(
ρi
k,6 + ρo

k,6 + ρr
k,6

)
)

+3d4 B̃2�
(
ρi
k,4 + ρo

k,4 + ρr
k,4 + ψ

i,o
k,4 + ψ

i,r
k,4 + ψ

o,r
k,4

)

+d6 ˜̃B2�
1

3

(
ρi
k,6 + ρo

k,6 + ρr
k,6

)
.

where ˜̃C1,1 := max
l,s,u,v,w=1,...,d

C1,1,l,ew,es,u,v and ˜̃B2 := max
l,s,u,v=1,...,d

B2,l,es,u,v . This gives

us
ζ
i,o,r
k+1,2 ≤ (1 + κ11�)ζ

i,o,r
k,2 + κ12, k = j + 1, . . . , J − 1

for some constants κ11, κ12 > 0, leading to

ζ
i,o,r
k,2 ≤ (1 + κ11�)k− j−1ζ

i,o,r
j+1,2 + κ13 = κ13, k = j + 1, . . . , J − 1,

where κ13 > 0 and

ζ
i,o,r
j+1,2 =

d∑

s=1

E

[(
∂3

∂yi∂yo∂yr
�s

�(x, y + ξ j+1)

)2
]

= 0.

Thus, we obtain the boundednesss of

∂3

∂yi∂yo∂yr
u�(t j , x, y)

= E

[
d∑

s=1

∂

∂xs
f (GJ, j (x, y))

∂3

∂yi∂yo∂yr
Gs

J, j (x, y)

+
d∑

s,u=1

∂2

∂xs∂xu
f (GJ, j (x, y))

(
∂2

∂yi∂yo
Gs

J, j (x, y)
∂

∂yr
Gu

J, j (x, y)

+ ∂2

∂yi∂yr
Gs

J, j (x, y)
∂

∂yo
Gu

J, j (x, y)

+ ∂

∂yi
Gs

J, j (x, y)
∂2

∂yo∂yr
Gu

J, j (x, y)

)
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+
d∑

s,u,v=1

∂3

∂xs∂xu∂xv
f (GJ, j (x, y))

∂

∂yi
Gs

J, j (x, y)
∂

∂yo
Gu

J, j (x, y)
∂

∂yr
Gv

J, j (x, y)

⎤

⎦ ,

provided that σki and all the derivatives of order 1, 2 and 3 for f, μk, σki are bounded.

Proof of Lemma 1

Cf. Theorem 5.2 in [2].

Proof of Theorem 7

Wehave, by themartingale property of (M̃int ,1
�, j�) j=0,...,J , where M̃

int,1
�, j� is given by (32)

with J being replaced by j , and by the orthogonality of the system � jW i ,

Var[ f (X�,T ) − M̃int,1
�,T ] = Var[ f (X�,T ) − Mint,1

�,T ] + Var[Mint,1
�,T − M̃int,1

�,T ]

� 1

J
+ �

J∑

j=1

m∑

i=1

E‖
d∑

k=1

(g̃ j,k − g j,k)σki‖2L2(P�, j−1)

≤ 1

J
+ d�

J∑

j=1

m∑

i=1

d∑

k=1

E‖(g̃ j,k − g j,k)σki‖2L2(P�, j−1)

≤ 1

J
+ d2Tmσ 2

max

{

c̃
(
� + A2(log N + 1)

)
(p+d

d

)
Qd

N

+ 8C2
h

(p + 1)!2d2−2/h

(
Rd

Q

)2p+2

+ 8A2BνR
−ν

}

.

Proof of Theorem 8

Let us, for simplicity, first ignore the log(N )-term in (36) and only consider the terms
w.r.t. the variables J, N , N0, Q, R which shall be optimised, since the constants
d,m, cp,d , (p + 1)!, Bν do not affect the terms on ε. Further, we consider the log
cost and log constraints rather than (35) and (36). Let us subdivide the optimisation
problem into two cases:

1. N � N0. This gives us the Lagrange function

Lλ1,...,λ6(J, N , N0, Q, R) (71)

:= log(J ) + log(N0) + d log(Q) + λ1(−2 log(J ) − 2 log(ε))

+ λ2(− log(J ) − log(N0) − 2 log(ε))

+ λ3(d log(Q) − log(N ) − log(N0) − 2 log(ε))

+ λ4(2(p + 1)(log(R) − log(Q)) − log(N0) − 2 log(ε))

+ λ5(−ν log(R) − log(N0) − 2 log(ε)) + λ6(log(N ) − log(N0)),
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where λ1, . . . , λ6 ≥ 0. Thus, considering of the conditions ∂L
∂ J = ∂L

∂N = ∂L
∂N0

=
∂L
∂Q = ∂L

∂R
!= 0 gives us the following relations

λ1 = 1 − λ2

2
,

λ3 = 2(p + 1)(ν(1 − λ2) − d) − dν

dν + 2(p + 1)(d + 2ν)
= λ6,

λ4 = dν(3 − λ2)

dν + 2(p + 1)(d + 2ν)
,

λ5 = 2d(p + 1)(3 − λ2)

dν + 2(p + 1)(d + 2ν)
.

The case λ1, . . . , λ6 > 0 is not feasible, since all constraints in (71) cannot be
active, that is they cannot become zero simultaneously because of six (linearly
independent) equalities on five unknowns. Hence, we derive the solutions under
λi = 0 for different i and observe which one is actually optimal.

a. λ1 = 0 ⇒ λ3 = λ6 = − d(2(p+1)+ν)

dν+2(p+1)(d+2ν)
< 0. Due to negative λ3, λ6, this

case is not optimal.
b. λ2 = 0 ⇒ λ1, λ4, λ5 > 0, λ3 = λ6 = 2(p+1)(ν−d)−dν

dν+2(p+1)(d+2ν)
. Again, we make a

case distinction:
i. λ3 = λ6 = 0 ⇒ ν = 2d(p+1)

2(p+1)−d for 2(p + 1) > d. This gives us, due to
λ1, λ4, λ5 > 0,

J � ε−1,

Q �
[

1

N0ε2

] 1
d

,

J Qd N0 � ε−3.

This solution is no improvement compared to the SMC approach.
ii. λ3 = λ6 > 0 ⇒ ν >

2d(p+1)
2(p+1)−d for 2(p + 1) > d. In this case, all con-

straints apart from the second one in (71), corresponding to λ2, are
active. Then we obtain

J � ε−1,

Q � ε
− 2ν+4(p+1)

dν+2(p+1)(d+2ν) ,

N0 � ε
− 2dν+4(p+1)(d+ν)

dν+2(p+1)(d+2ν) ,

J Qd N0 � ε
− 5dν+2(p+1)(5d+4ν)

dν+2(p+1)(d+2ν) ,

which is a better solution than the previous one.Moreover, the remaining
constraint 1

J N0
� ε2 is also satisfied under this solution.



Regression-Based Variance Reduction Approach for … 177

c. λ3 = λ6 = 0 ⇒ λ1, λ4, λ5 > 0, λ2 = 2(p+1)(ν−d)−dν

2(p+1)ν . The case λ2 = 0 is

the same as the last but one and thus gives us J Qd N0 � ε−3. The case
λ2 > 0 leads to four active constraints in (71), namely the ones correspond-
ing to λ1, λ2, λ4, λ5, such that

J � ε−1,

Q � ε
− ν+2(p+1)

2ν(p+1) ,

N0 � ε−1,

J Qd N0 � ε
− dν+2(p+1)(d+2ν)

2ν(p+1) .

This solution seems to be nice at the first moment. However, it does not
satisfy both constraints corresponding to λ3, λ6. On the one hand, we have

for the third constraint N � ε
−1− dν+2d(p+1)

2ν(p+1) . On the other hand, we have for
the sixth constraint N � ε−1. Hence, this is not an admissible solution.

d. λ4 = 0 ⇒ λ1 = −1. Since λ1 is negative, this case is not optimal.
e. λ5 = 0 ⇒ λ1 = −1. As for the previous one, this case is not optimal.

2. N � N0. This gives us the Lagrange function

L̃λ1,...,λ6(J, N , N0, Q, R)

:= log(J ) + log(N ) + d log(Q) + λ1(−2 log(J ) − 2 log(ε))

+ λ2(− log(J ) − log(N0) − 2 log(ε))

+ λ3(d log(Q) − log(N ) − log(N0) − 2 log(ε))

+ λ4(2(p + 1)(log(R) − log(Q)) − log(N0) − 2 log(ε))

+ λ5(−ν log(R) − log(N0) − 2 log(ε)) + λ6(log(N0) − log(N )).

Analogously to the procedure above we get the same optimal solution, that is

J � ε−1,

Q � ε
− 2ν+4(p+1)

dν+2(p+1)(d+2ν) ,

N � ε
− 2dν+4(p+1)(d+ν)

dν+2(p+1)(d+2ν) ,

J Qd N � ε
− 5dν+2(p+1)(5d+4ν)

dν+2(p+1)(d+2ν) .

Now we consider also the remaining terms cp,d , (p + 1)!, Bν and obtain (37)–(41)
via equalising all constraints in (36) apart from the second one. Finally, we add the
log term concerning ε in the parameters N , N0 to ensure that all constraints are really
satisfied.

Proof of Lemma 2

Cf. Theorem 5.2 in [2].
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Proof of Theorem 9

Wehave, by themartingale property of (M̃ser ,1
�, j�) j=0,...,J , where M̃

ser ,1
�, j� is given by (43)

with J being replaced by j , and by the orthonormality of the system � j W√
�
,

Var[ f (X�,T ) − M̃ser ,1
�,T ] = Var[ f (X�,T ) − Mser ,1

�,T ] + Var[Mser ,1
�,T − M̃ser ,1

�,T ]

� 1

J
+

J∑

j=1

m∑

i=1

E‖ã j,ei − a j,ei ‖2L2(P�, j−1)

≤ 1

J
+ Jm

{
c̃
(
� + A2�(log N + 1)

) cp,d Qd

N

+ 8C2
h

(p + 1)!2
(
R

Q

)2p+2

+ 8A2�BνR
−ν

}

.

Proof of Theorem 10

The proof is similar to the one of Theorem 8.
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Quadratic Approximation
for Log-Likelihood Ratio Processes

Alexander Gushchin and Esko Valkeila

Abstract We consider a sequence of general filtered statistical models with a finite-
dimensional parameter. It is tacitly assumed that a proper rescaling of the parameter
space is already done (so we deal with a local parameter) and also time rescal-
ing is done if necessary. Our first and main purpose is to give sufficient condi-
tions for the existence of certain uniform in time linear–quadratic approximations
of log-likelihood ratio processes. Second, we prove general theorems establishing
LAN, LAMN and LAQ properties for these models based on these linear–quadratic
approximations. Our third purpose is to prove three theorems related to the necessity
of the conditions in our main result. These theorems assert that these conditions are
necessarily satisfied if (1) an approximation of a much more general form exists
and a (necessary) condition of asymptotic negligibility of jumps of likelihood ratio
processes holds, or (2) we have LAN property at every moment of time and the limit-
ing models are continuous in time, or (3) we have LAN property, Hellinger processes
are asymptotically degenerate at the terminal times, and the condition of asymptotic
negligibility of jumps holds.
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1 Introduction

Local quadratic approximations to the logarithms of likelihood ratios play a sig-
nificant role in the classical asymptotic statistics. Many results in the asymptotic
decision theory are proved under the property of local asymptotic normality (LAN)
introduced byLeCam [22]. The LANpropertymeans that the log-likelihoods admit a
specific quadratic approximation in local neighbourhoods of a fixed parameter value.
Sometimes, the LAN property is not valid but nevertheless the log-likelihoods admit
local quadratic approximations. The local asymptotic quadraticity (LAQ) property
formalizes this more general situation. An intermediate case between LAN and LAQ
is local asymptotic mixed normality (LAMN) which is statistically a more rich prop-
erty than LAQ. We refer to Le Cam and Yang [27, Chap.6] and to Höpfner [10] for
the definition of LAN, LAMN and LAQ, and for statistical assertions resulting from
these properties. The unexplained terminology and notation are explained later on.

We work with general filtered statistical models, see e.g. Shiryaev and Spokoiny
[35]. We make no assumptions on the filtrations such as quasi-left continuity, and
so our results also cover the discrete-time filtrations. In this framework, we give
sufficient conditions for certain linear–quadratic approximations of log-likelihood
processes. Moreover, we study the connection of this approximation to LAN, LAMN
and LAQ properties.1

In the case of discrete-time filtrations, Fabian and Hannan [1] used such an
approach to study LAN and LAMN properties of the log-likelihoods. More pre-
cisely, they performed approximations by constructing appropriate martingales, see
[1, Theorem3.9], and then the LAN or LAMN property follows from the properties
of approximating martingales, see e.g. [1, Theorem3.14].

We use a similar scheme. Let

(Ωn,F n,Fn = (F n
t )t∈R+ , (Pn,ϑ )ϑ∈Θ)

be a sequence of filtered statistical models, where Θ is an open subset of Rk . Let
also an F

n-stopping time Tn be given for every n, which may be interpreted as
the duration of observations in the nth experiment. One of our purposes is to find
sufficient conditions for LAN, LAMN or LAQ properties of the experiments En =
(Ωn,F n

Tn
, (Pn,ϑ

Tn
)ϑ∈Θ) at some fixed point ϑ0 ∈ Θ .

Let Zn,ϑ be the generalized density process of Pn,ϑ0+ϕnϑ with respect to Pn :=
Pn,ϑ0 , where {ϕn} is a normalizing sequence of k × k matrices.We tacitly assume that
the sequence {ϕn} is chosen in a ‘correct’ way; however, the only formal restriction on
the sequence {ϕn} is that the sequence (Pn

0) is contiguous with respect to (Pn,ϑ0+ϕnϑn
0 )

for every bounded sequence {ϑn} in R
k . Denote by W = W ({Tn}) the set of all

sequences {wn} with the following properties: wn = (wn,1, . . . ,wn,k), wn
0 = 0, is a

1To be more precise, approximations and limits are assumed to be uniform on all compact parame-
ter subsets. The corresponding properties are often called ULAN (uniform LAN), ULAMN, etc.
However, we omit the letter ‘U’ in the notation.
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locally square-integrable martingale on (Ωn,F n,Fn,Pn)with values inRk for each
n, the quadratic characteristic 〈wn,wn〉Tn is bounded in Pn-probability, i.e.

the sequence

( k∑
i=1

〈wn,i ,wn,i 〉Tn
∣∣∣∣Pn

)
is R-tight,

and the Lindeberg-type condition on jumps of wn holds, i.e.

‖x‖21{‖x‖>ε} � νwn

Tn

Pn−→ 0, n → ∞, for all ε > 0.

Our first and main objective is to find conditions that imply the existence of a
sequence {wn} ∈ W such that the following uniform in time quadratic approximation

sup
s≤Tn

∣∣∣log Zn,ϑn
s − log Zn,ϑn

0 −
(
ϑ	
n w

n
s − 1

2
ϑ	
n

〈
wn,wn

〉
sϑn

)∣∣∣ Pn−→ 0, n → ∞, (1)

holds for each bounded sequence {ϑn} in Rk .
The existence of the quadratic approximation (1) with {wn} ∈ W has a number

of immediate benefits:

• Due to the boundedness assumption on 〈wn,wn〉Tn , we obtain the contiguity

(Pn
Tn ) � (Pn,ϑ0+ϕnϑn

Tn
)

for every bounded sequence ϑn , which is necessary for the LAQ property.
• Limit theorems for the likelihoods will follow now from limit theorems for locally
square-integrable martingales. Because the approximation is uniform in time, this
carries over to functional limit theorems as well.

• To obtain LAN, LAMN or LAQ property for En , it is sufficient to study properties
of wn only.

• We need no additional efforts to obtain LAN, LAMN or LAQ property for the
experiments (Ωn,F n

Sn
, (Pn,ϑ

Sn
)ϑ∈Θ) at ϑ0 with stopping times Sn ≤ Tn .

Our second objective is to prove LAN, LAMN and LAQ properties, also in func-
tional form, from the quadratic approximation.

Finally, our third objective is to study the relationships between our results and
assumptions.We prove several theorems illustrating the necessity of conditions under
which the approximation (1) and other results are obtained. In particular, our assump-
tions are necessary and sufficient for the LAN property (with a given sequence {ϕn})
in the case of i.i.d. observations. Let usmention here that if a quadratic approximation
(1) with {wn} ∈ W exists, then

sup
s≤Tn

|Δ log Zn,ϑn
s | Pn−→ 0, n → ∞,
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for every bounded sequence ϑn . This condition outlines the range of applicability of
our method.

We formulate ourmain approximation result under twodifferent equivalent groups
of conditions. The first group is characterized in terms of intrinsic properties of the
models, and in this casewe construct explicitly an approximating sequence {wn} ∈ W
satisfying (1). The second group says what are sufficient conditions in predictable
terms for the approximation (1) if we already have a candidate for a sequence {wn} ∈
W . The second approach is similar to earlierworks byLuschgy [31–33] but he proved
his results under additional assumptions on the structure of the likelihood processes
and the filtrations. This second approach might be convenient in applications if our
models are locally differentiable at ϑ0, see Jacod [15] for the precise definition. In
this case, the normalized score process wn = ϕnvn , where vn is the score process at
ϑ0, is a Pn-locally square-integrable martingale, and this may be a natural choice.
However, we would like to emphasize that local differentiability properties of the
models are in no way required for the existence of the approximation (1).

Since the normalizing sequence {ϕn} is assumed to be fixed, we use the nota-
tion Pn,ϑ instead of Pn,ϑ0+ϕnϑ in the rest of the paper except Sect. 5. We do not
discuss here how to choose {ϕn}; however, understanding what is required may be
useful for finding an appropriate normalizing sequence. Let us note that the paper is
mainly aimed to find conditions for the existence of the approximation (1). However,
this approximation is meaningless from the statistical point of view if the matrices〈
wn,wn

〉
Tn

are asymptotically singular (noninvertible) with positive probability. As
an example, we mention the model considered by Gushchin and Küchler [4], where
the log-likelihoods are already quadratic and hence the approximation (1) holds triv-
ially. Correspondingly, the invertibility of the corresponding matrix plays a decisive
role in determining normalizing matrices {ϕn}. It turns out that there are 11 different
cases (depending on ϑ0) for a correct choice of {ϕn}. This choice is far from being
trivial in most cases, especially in Case M3. Another instructive model is considered
by Höpfner and Jacod [11], where nonlinear transformations of the parameter space
are needed to ensure the invertibility of the matrix in the quadratic term of limiting
log-likelihood.

Let us also mention that some of our results tacitly assume that (deterministic
linear) time changes in filtered statistical models are already done. There are also
models where nonlinear time changes may be useful, see examples in Höpfner [10,
Chap.8].

As explained above, in the discrete-time case our main results generalize those
of Fabian and Hannan [1], where the references to earlier works can be found; see
also Greenwood and Shiryaev [2, Sect. 8], Le Cam [25, Chap.9, Sect. 5], and Hallin
et al. [7]. For continuous-time filtrations, we have already mentioned the results by
Luschgy [31–33], where more information on earlier works can be found; for related
results see also Linkov [28].

This paper can be considered as the second part of our paper [6]where correspond-
ing results were proved for binary experiments and where the reader can find more
detailed discussions on the relationship between different assumptions. Our proofs
rely heavily on the results in [6]. In the both papers the use of Hellinger processes
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plays an essential rôle. We refer to [6] for literature on Hellinger processes in limit
theorems for binary experiments. In parametric models, limit theorems for likeli-
hoods using Hellinger processes were proved in Vostrikova [38, 39] and Jacod [14].

In Sect. 5, we apply the theory developed in the previous sections to i.i.d. mod-
els and obtain ‘minimal’ conditions for the LAN property. Perhaps it would have
been natural to obtain similar results also in a number of other sufficiently sim-
ple models including autoregressive models, cf. e.g. Shiryaev and Spokoiny [35],
Markov step processes, cf. Höpfner [8, 9], one-dimensional ergodic diffusions,
cf. e.g. Kutoyants [21].

For standard notation and results concerning general theory of processes, stochas-
tic integration and semimartingaleswe refer to Jacod and Shiryaev [16].We shall deal
with different filtered spaces (Ω,F ,F = (Ft )t∈R+); the filtration F is always right-
continuous, but no completeness assumption is made, cf. [16]. If P is a probability
measure on (Ω,F ) and T is a stopping time relative to F, then PT is the restriction
of P onto FT . An increasing process is always assumed to be right-continuous. If
X is a semimartingale, then Xc is its continuous martingale part and [X, X ] is its
quadratic variation; the angle brackets 〈M, M〉 stand for the quadratic characteristic
of a locally square-integrable martingale M . The notation H · Xt = ∫ t

0 Hs dXs and
W � μt = ∫ t

0

∫
Rd W (s, x) μ(ds, dx) is used for the (ordinary or stochastic) integral

processes, where X is a semimartingale and μ = μ(ω, ds, dx) is a random measure
on R+ × R

d .
We shall consider also stochastic processes defined only on predictable stochastic

intervals of the form Γ =⋃k�0, Tk�, where (Tk) is an increasing sequence of stop-
ping times. We refer to Jacod [12, Chap.5] for more details on such processes. If X
is defined on Γ , then the process Var(X) is defined also on Γ in the following way:
if (ω, t) ∈ Γ then Var(X)t (ω) is the total variation of X ·(ω) on [0, t].

Let E be aPolish space andE its Borelσ -field.P(E) is the space of all probability
measures on (E,E ) endowed with the weak topology. The distribution of a random
element X with values in E under a probability measure P, i.e. the image P ◦ X−1 ∈
P(E) ofP under X , is denoted byL (X | P). The spaceD(E) of all càdlàg functions
α : R+ → E equipped with the Skorokhod topology is also a Polish space. The Borel
σ -field inD(E) is denoted byD(E). The corresponding notationC(E) and C (E) is
used for the space of all continuous functions from R+ to E equipped with the local
uniform topology and its Borel σ -field. If E = R, we shall sometimes write D and
C instead of D(R) and C(R), respectively.

The weak convergence of distributions in P(Rd) is denoted by ⇒, while the

symbol
d−→ is used for the weak convergence of distributions in P(D(E)). To

avoid ambiguities, we shall add that the convergence is in D(E) if E �= R. On the

other hand, the symbol
d f (S)−−−→ is used for the finite-dimensional convergence along

a set S, i.e. L (Xn | Pn)
d f (S)−−−→ L (X | P), n → ∞, means that L (Xn

t1 , . . . , X
n
tp |

Pn) ⇒ L (Xt1 , . . . , Xtp | P), n → ∞, for any p = 1, 2, . . . and t1, . . . , tp ∈ S.
We say that a sequence (Xn | Pn) is D-tight if Xn are Pn-a.s. càdlàg processes

with values in R and the laws L (Xn | Pn) are tight in D; if, moreover, all cluster
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points of the sequence L (Xn | Pn) are laws of continuous processes, we say that
the sequence (Xn | Pn) is C-tight.

If ξn are random variables with values in [−∞,+∞] on probability spaces
(Ωn,F n,

Pn), we write

ξn
Pn−→ 0 if lim

n→∞Pn(|ξn| > ε) = 0 for every ε > 0,

and we say that the sequence

(ξn | Pn) is R−tight if lim
N↑∞ lim sup

n→∞
Pn(|ξn| > N ) = 0.

We shall also use this notation even if ξn are not well defined everywhere onΩn; it is
sufficient to assume that ξn are defined on subsets Bn ∈ F and limn→∞ Pn(Bn) = 1.

If Pn and P′n are probability measures on measurable spaces (Ωn,F n), n =
1, 2, . . . , then (Pn) � (P′n) means that the sequence (Pn) is contiguous to the
sequence (P′n).

For probability measures P and P′ on the same measurable space the squared
Hellinger distance is defined as

ρ2(P,P′) = 1

2

∫ [( dP
dQ

)1/2 −
(dP′

dQ

)1/2]2
dQ,

where Q = 1
2 (P + P′) (or any other measure dominating P and P′).

M
k+ stands for the set of all symmetric positive semidefinite k × k matrices, and

S is the set of all bounded sequences in Rk .

2 Quadratic Approximation

In Sect. 2.1, we introduce the objects that are needed to formulate our main result in
Sect. 2.2.

2.1 Basic Ingredients

Let (Ωn,F n,Fn = (F n
t )t∈R+ , (Pn,ϑ )ϑ∈Θ) be a sequence of filtered statistical exper-

iments, where Θ = R
k . Denote Pn := Pn,0. For processes defined on Ωn stochastic

integrals, angle and square brackets, compensators (of increasing processes and ran-
dom measures) are taken with respect to Pn .

For ϑ ∈ Θ let Zn,ϑ be the (generalized) density process of Pn,ϑ with respect to
Pn , i.e. a right-continuous (and admitting left-hand limits Pn- and Pn,ϑ -a.s.) adapted
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process (Zn,ϑ
t )t∈R+ with values in [0,∞] such that for any F

n-stopping time Tn

Pn,ϑ (B) =
∫
B
Zn,ϑ
Tn

dPn + Pn,ϑ (B ∩ {Zn,ϑ
Tn

= ∞}), B ∈ F n
Tn .

Of course,Pn(Zn,ϑ
Tn

< ∞) = 1 and Zn,ϑ
Tn

coincidesPn-a.s. with the Radon–Nikodým

derivative of the part of the measurePn,ϑ
Tn

which is absolutely continuous with respect
to Pn

Tn
. Moreover, Zn,ϑ is a Pn-supermartingale and

Pn(sup
t

Zn,ϑ
t ≥ a) ≤ a−1 for any a > 0 and ϑ ∈ Θ. (2)

Let T n,ϑ
k := inf{t : Zn,ϑ

t < 1/k} and Γ n,ϑ :=⋃∞
k=1�0, T

n,ϑ
k �, then Γ n,ϑ = �0� ∪

{Zn,ϑ
− > 0} Pn- and Pn,ϑ -a.s. Put also T n,ϑ := T n,ϑ

n . Note that the contiguity

(Pn
Tn ) � (Pn,ϑn

Tn
), {ϑn} ∈ S ,

where Tn is an F
n-stopping time for each n, is equivalent to the property

lim
ε↓0 lim sup

n→∞
Pn( inf

s≤Tn
Zn,ϑn
s < ε) = 0, (3)

see [16, LemmaV.1.19], which implies

lim
n→∞Pn(T n,ϑn < Tn) = 0; (4)

in particular,
lim
n→∞Pn{ω : (ω, t) ∈ Γ n,ϑn for all t ≤ Tn(ω)} = 1. (5)

Put Y n,ϑ := √
Zn,ϑ . The process Y n,ϑ is a Pn-supermartingale. In what follows,

hn,ϑ and ιn,ϑ are arbitrary versions of the Hellinger processes h( 12 ;Pn,Pn,ϑ ) and
h(0;Pn,Pn,ϑ ) of orders 1/2 and 0, respectively, for Pn and Pn,ϑ . In other words,
hn,ϑ and ιn,ϑ are predictable increasing processes with values in [0,∞] such that
hn0 = ιn0 = 0,

Y n,ϑ + Y n,ϑ
− · hn,ϑ is a Pn-martingale. (6)

Zn,ϑ + Zn,ϑ
− · ιn,ϑ is a Pn-local martingale. (7)

The processes hn,ϑ and ιn,ϑ are Pn-a.s. unique and finite on Γ n,ϑ . If Pn,ϑ
loc�Pn then

one can take ιn,ϑ = 0.We refer to Jacod and Shiryaev [16, Chap. IV] for the definition
and properties of Hellinger processes and to Gushchin and Valkeila [6] for the above
description of hn,ϑ and ιn,ϑ .

Define now processes yn,ϑ and mn,ϑ on the predictable interval Γ n,ϑ by
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yn,ϑ := (1/Y n,ϑ
− ) · Y n,ϑ and mn,ϑ := yn,ϑ + hn,ϑ . (8)

Theprocessmn,ϑ is aPn-locally square-integrablemartingale onΓ n,ϑ , seeLemma4.1

in [6]. Define also a stopped process m̃n,ϑ := (mn,ϑ )
T n,ϑ

, which is a Pn-square-
integrable martingale on the whole time interval up to ∞ due to [6, Lemma4.1] and
the definition of T n,ϑ .

If ϑ, η ∈ Θ , let hn,ϑ,η be an arbitrary version of the Hellinger process h( 12 ;Pn,ϑ ,

Pn,η) of order 1/2 for Pn,ϑ and Pn,η. It is convenient for us to introduce also a related
process h

n,ϑ,η
, which is calculated from Zn,ϑ and Zn,η with respect to Pn . Namely,

let Y
n,ϑ,η := √

Zn,ϑ Zn,η and define h
n,ϑ,η

as any predictable increasing process with

values in [0,∞] such that h
n,ϑ,η

0 = 0 and

Y
n,ϑ,η + Y

n,ϑ,η

− · hn,ϑ,η
is a Pn-local martingale. (9)

Since Y
n,ϑ,η

is a nonnegative Pn-supermartingale, the existence of h
n,ϑ,η

and its
Pn-uniqueness on Γ n,ϑ ∩ Γ n,η follow from standard arguments as in the case of

Hellinger processes. If Pn,ϑ
loc�Pn and Pn,η

loc�Pn , then any version of hn,ϑ,η can be

taken as h
n,ϑ,η

and vice versa. It follows from (6) and (9) that one can take hn,ϑ as
h
n,ϑ,0

and vice versa. Similarly, one can take ιn,ϑ as h
n,ϑ,ϑ

and vice versa, cf. (7)
and (9).

We prefer to use the processes h
n,ϑ,η

in all our results. However, they can be every-
where replaced by hn,ϑ,η as it follows from the proofs and from the next proposition.

Proposition 1 Let (Pn
Tn

) � (Pn,ϑn
Tn

) and ι
n,ϑn
Tn

Pn−→ 0, n → ∞, for each {ϑn} ∈ S .
Then

Var (h
n,ϑn ,ηn − hn,ϑn ,ηn )Tn

Pn−→ 0

for all {ϑn}, {ηn} ∈ S .

The proof of Proposition1 follows from Lemma2 and (5).

2.2 Quadratic Approximation

In what follows a sequence {Tn} is fixed, where Tn is a stopping time relative to F
n

for every n.
Let us denote by W the set of all sequences {wn} satisfying the following prop-

erties: wn = (wn,1, . . . ,wn,k), wn
0 = 0, is a locally square-integrable martingale on

(Ωn,F n,Fn,Pn) with values in Rk for each n,

the sequence

( k∑
i=1

〈wn,i ,wn,i 〉Tn
∣∣∣∣Pn

)
is R-tight, (10)
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and
‖x‖21{‖x‖>ε} � νwn

Tn

Pn−→ 0, n → ∞, for all ε > 0. (11)

Introduce the following assumptions:

(O) For every {ϑn} ∈ S ,

(Pn
0) � (Pn,ϑn

0 )

and
ι
n,ϑn
Tn

Pn−→ 0, n → ∞. (12)

(H) There is a sequence {Hn} of random matrices on (Ωn,F n
Tn

) with values inMk+
such that the sequence (tr Hn|Pn) is R-tight and, for all {ϑn} and {ηn} inS ,

h
n,ϑn ,ηn

Tn − (ϑn − ηn)
	Hn(ϑn − ηn)

Pn−→ 0, n → ∞. (13)

(L) For every {ϑn} ∈ S ,

x21{|x |>ε} � νmn,ϑn

Tn

Pn−→ 0, n → ∞, for all ε > 0. (14)

(W) There is a sequence {wn} ∈ W such that, for each {ϑn} ∈ S ,

〈
mn,ϑn − 1

2
ϑ	
n w

n,mn,ϑn − 1

2
ϑ	
n w

n
〉
Tn

Pn−→ 0, n → ∞. (15)

Note that conditions (O) and (H) are overlapping: (12) is a special case of (13)

with ηn = ϑn . However, it is not the case if we replace h
n,ϑn ,ηn by hn,ϑn ,ηn in (H).

Theorem 1 (a) Let conditions (O), (H), and (L) be satisfied. Then

(Pn
Tn ) � (Pn,ϑn

Tn
) for each {ϑn} ∈ S (16)

and condition (W) holds true. Moreover, with {wn} from (W) we have

Var
(
h
n,ϑn ,ηn − 1

8
(ϑn − ηn)

	〈wn,wn
〉
(ϑn − ηn)

)
Tn

Pn−→ 0, n → ∞, (17)

for all sequences {ϑn}, {ηn} ∈ S .
(b) Assume that conditions (O) and (W) are satisfied. Then we have (16), (H)with

Hn = 1
8 〈wn,wn〉Tn , and (L).

(c) Assume that conditions (O) and (W) are satisfied. Then

sup
s≤Tn

∣∣∣log Zn,ϑn
s − log Zn,ϑn

0 −
(
ϑ	
n w

n
s − 1

2
ϑ	
n

〈
wn,wn

〉
sϑn

)∣∣∣ Pn−→ 0, n → ∞,

(18)
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for each {ϑn} ∈ S , with {wn} from (W).

Remark 1 The contiguity (16) implies

lim
n→∞Pn

(
inf
s≤Tn

Zn,ϑn
s = 0

)
= 0,

cf. (5). Hence the process log Zn,ϑn
s − log Zn,ϑn

0 , s ≤ Tn , in (18) is well defined and
takes finite values on a set, whose Pn-probability tends to 1 as n → ∞.

Remark 2 The processes in conditions (O), (L) and (W) arePn-a.s. uniquely defined

only on the set Γ n,ϑn , and the process h
n,ϑn ,ηn in (H) is Pn-a.s. unique on the set

Γ n,ϑn ∩ Γ n,ηn . Theorem1 says that in order to obtain its statement, in particular, the
contiguity (16), it is sufficient to check its assumptions for some versions of these
processes. On the other hand, as soon as the contiguity (16) is established, these
conditions do not depend on the choice of corresponding versions, see (5).

Remark 3 In Theorem1 and all subsequent theorems, one can replace the measure
νmn,ϑn by the measure ν yn,ϑn in the Lindeberg-type condition (14). This follows from
the proofs and from Proposition2.6 in [6]. For connections between condition (14)
and some other conditions see [6].

Remark 4 Let (Pn,ϑn
0 ) � (Pn

0). We cannot assert under the assumptions of Theo-
rem1 that (Pn,ϑn

Tn
) � (Pn

Tn
). A simple modification of our Example6.1 in [6] yields a

counterexample.

It is clear that if (W) is satisfied with some {wn} and we have another sequence
{w′n}, each w′n = (w′n,1, . . . ,w′n,k), w′n

0 = 0, being a locally square-integrable mar-
tingale on (Ωn,F n,Fn,Pn), such that

k∑
i=1

〈wn,i − w′n,i ,wn,i − w′n,i 〉Tn Pn−→ 0, n → ∞, (19)

then {w′n} ∈ W and (15) holds with w′n instead of wn . But (19) is a special case
of (15). This simple observation shows that the following choice of {wn} is always
possible in (W) if this condition is satisfied with some {wn} and (Pn

Tn
) � (Pn,ϑn

Tn
),

{ϑn} ∈ S . Namely, wn = (wn,1, . . . ,wn,k) can be defined as follows:

wn,i = 2m̃n,ei , i = 1, . . . , k, (20)

where the processes m̃n,ϑ are defined after (8) and e1, . . . , ek are coordinate unit
vectors. Moreover, this sequence has an additional property that each wn is a Pn-
square-integrable martingale.

The next proposition gives an equivalent form of condition (H). The statement
is simple and of little interest by itself, and we leave its proof to the reader. The
reason for which we present it here, is that it is connected with a much more difficult
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problem of characterizing filtered statistical models admitting approximations of the
form (44) with (43) but without assumption (42). For a nonfiltered version of this
problem, see [5, Theorem4.1].

Proposition 2 Assume that conditions (O) and (L) are satisfied. Then condition (H)
holds if and only if

the sequence (hn,ϑn
Tn

|Pn) is R-tight

and

αh
n,ϑn ,αϑn+(1−α)ηn

Tn + (1 − α)h
n,ηn ,αϑn+(1−α)ηn

Tn − α(1 − α)h
n,ϑn ,ηn

Tn

Pn−→ 0

for all α ∈ (0, 1) and all {ϑn}, {ηn} ∈ S .

3 Limit Theorems

We consider the same setting as in Sect. 2. We are given a sequence (Ωn,F n,Fn =
(F n

t )t∈R+ , (Pn,ϑ )ϑ∈Θ) of filtered statistical experiments, where Θ = R
k , and, for

every n, anFn-stopping time Tn .En
Tn
stands for the (nonfiltered) statistical experiment

(Ωn,F n
Tn

, (Pn,ϑ
Tn

)ϑ∈Θ).

3.1 Preliminaries

In this subsection, we recall the definitions of the properties that we want to obtain
additionally to the conclusion of Theorem1. As it was explained in introduction, it is
tacitly assumed that a proper rescaling of the parameter space is already done, so ϑ

is a local parameter. This is why we omit the letter ‘L’ in the abbreviations. The first
definition is of preparatory character. It includes properties that we already know
how to prove. Statistically meaningful concepts appear in the next definitions.

Definition 1 The sequence {En
Tn

} is said to admit a quadratic approximation for the
log-likelihood ratios if

(Pn
Tn ) � (Pn,ϑ

Tn
) for every ϑ ∈ Θ (21)

and there are FTn -measurable random vectors Vn with values in R
k and random

matrices Kn with values inMk+ such that, for each {ϑn} ∈ S ,

log Zn,ϑn
Tn

−
(
ϑ	
n Vn − 1

2
ϑ	
n Knϑn

)
Pn−→ 0, n → ∞. (22)
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Remark 5 The contiguity (21) is equivalent to the property that the sequence of
distributionsL (log Zn,ϑ

Tn
|Pn) isR-tight, and then it follows easily from (22) that the

sequenceL (Vn, Kn|Pn) isRk+k2 -tight. Conversely, if we have (22) and the sequence
L (Vn, Kn|Pn) is tight, then

(Pn
Tn ) � (Pn,ϑn

Tn
) for each {ϑn} ∈ S .

Definition 2 The sequence {En
Tn

} is said to be asymptotically quadratic (AQ) if it
satisfies Definition1,

(Pn,ϑ
Tn

) � (Pn
Tn ) for every ϑ ∈ Θ, (23)

and for any cluster pointL (K ) ofL (Kn|Pn) thematrix K is almost surely invertible.

Remark 6 If we have (21) and (22), then, by Le Cam’s first lemma, the contiguity
(23) is equivalent to

E exp
(
ϑ	V − 1

2
ϑ	Kϑ

)
= 1 (24)

for any cluster point L (V, K ) of L (Vn, Kn|Pn). Therefore, if the sequence {En
Tn

}
is AQ, then

(Pn
Tn ) � �(Pn,ϑn

Tn
) for each {ϑn} ∈ S .

Definition 3 The sequence {En
Tn

} is said to be asymptotically mixed normal (AMN)
if it satisfies Definition1 and for any cluster point L (V, K ) of the sequence
L (Vn, Kn|Pn), the matrix K is almost surely invertible and, conditionally on K ,
the vector V is normal with zero mean and the covariance matrix K .

Remark 7 AMN implies AQ. Indeed, if the sequence {En
Tn

} is AMN, then (24) is
automatically satisfied, and we have (23) due to the previous remark.

Definition 4 The sequence {En
Tn

} is said to be asymptotically normal (AN) if it satis-
fies Definition1 and for any cluster pointL (V, K ) of the sequenceL (Vn, Kn|Pn),
the matrix K is deterministic and invertible, and the vector V is normal with zero
mean and the covariance matrix K .

It is clear that AN is a special case of AMN and, hence, of AQ. In what follows,
it is convenient for us to have a relaxed form of AN. Namely, let us say, that the
sequence {En

Tn
} is asymptotically normal∗ (AN∗) if it satisfies all the requirements of

Definition4 except that K is invertible.
Our definition of AQ, AMN, and AN are in accordance with the definitions of

LAQ, LAMN, and LAN in Le Cam and Yang [27, pp. 120–121]. It is more usual,
especially in the case of asymptotic normality, to require convergence in law of
distributions L (Vn, Kn|Pn). Under the assumptions of Theorems2–6 below such
convergence does take place.
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3.2 Asymptotic Normality

In this subsection, we state two results concerning asymptotic normality. Instead of
(O), we assume the following stronger hypothesis:

(O∗) For every {ϑn} ∈ S , we have (12) and Zn,ϑn
0

Pn−→ 1.

This is not harmless because conditions (14) or (11) do not allow us to change time
t � t + 1 and to putF n

t = trivial σ -field for t < 1. However, it is possible to work
under condition (O) in Theorems2 and 3 if one assumes additionally that Ωn ≡ Ω

and the densities Zn,ϑ
0 are

⋂
n F

n
0 -measurable. In such a case, one obtains (with no

changes in the proofs) that the convergence in (26) and (30) is
⋂

n F
n
0 -mixing, see

Liptser and Shiryayev [29, Theorems5.5.4 and 7.1.4] and also Jacod and Shiryaev
[16, Chap.VIII, Sect. 5]. Therefore, the variables log Zn,ϑn

0 and the processes wn in
(18) are asymptotically independent under Pn . We leave details to the reader.

Theorem 2 Let conditions (O∗) and (L) be satisfied and (H) hold with Hn ≡ H,

where H = (Hi j )i, j=1,...,k is a deterministic matrix. Then

(Pn
Tn ) � �(Pn,ϑn

Tn
) for each {ϑn} ∈ S (25)

and there is a sequence {wn} ∈ W ({Tn}) such that

L (wn
Tn |Pn) ⇒ N (0, 8H) (26)

and
〈wn,i ,wn, j 〉Tn Pn−→ 8Hi j , i, j = 1, . . . , k, (27)

as n → ∞, and

sup
s≤Tn

∣∣∣log Zn,ϑn
s −

(
ϑ	
n w

n
s − 1

2
ϑ	
n

〈
wn,wn

〉
sϑ

	
n

)∣∣∣ Pn−→ 0, n → ∞, (28)

for each {ϑn} ∈ S . The sequence En
Tn
is asymptotically normal if H is nonsingular.

Assume that t � Ht , Ht = (Hi j
t ) is a continuous increasing function with values

in M
k+, H0 = 0, M is a continuous Gaussian martingale with values in R

k with

M0 = 0 and 〈Mi , M j 〉t = 8Hi j
t , i, j = 1, . . . , k, t ∈ [0, T ], on some stochastic basis

(Ω,F ,F,P).

Theorem 3 Let T ∈ R+ and Tn ≡ T . Assume that (O∗), (H) and (L) are satisfied
and

hn,ϑ
t

Pn−→ ϑ	Htϑ, n → ∞, for all t ∈ S and ϑ ∈ Θ, (29)

where S is a dense subset of [0, T ] containing 0 and T . Then (25) holds and there is
a sequence {wn} ∈ W ({Tn}) such that
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L (wn|Pn)
d−→ L (M |P), n → ∞, in D([0, T ],Rk), (30)

sup
s≤T

∣∣∣(〈wn,i ,wn, j 〉s − 8Hi j
s

∣∣∣ Pn−→ 0, n → ∞, i, j = 1, . . . , k, (31)

and (28) holds for each {ϑn} ∈ S . The sequence En
t , t ∈ (0, T ], is asymptotically

normal if Ht is nonsingular.

A converse (in a sense) statement is given in Theorem8.
As a simple exercise, we leave to the reader the question what has to be added to

conditions (O∗) and (W) to obtain the same conclusions as in Theorems2 and 3.

3.3 Asymptotic Mixed Normality

In contrast to wide applicability of the results in the previous subsection, Theorems4
and 5 below are restricted to particular (L)AMN situations, where the Hellinger
process for the limit model can be defined on the space of the original experiments
and there is the convergence in probability of theHellinger processes. There are broad
classes of exampleswhere (L)AMNoccurs, but theHelinger processes converge only
in law.

We impose the following assumptions.
First, the nesting condition is satisfied:Ωn = Ω ,F n = F , andPn = P for every

n, and there is a sequence of numbers (sn), decreasing to 0, such that F n
sn ⊆ F n+1

sn+1

for all n and G :=∨n F
n∞ =∨n F

n
sn .

Second, there is given a continuous increasing process C = (Ct )t∈R+ with val-
ues in M

k+ such that C0 = 0 and Ct are G -measurable for all t . Let C = C(Rk)

be the space of continuous functions α = (α(t)) on R+ with values in M
k+ and C

the Borel σ -field on C. Let X be the canonical process on C, i.e. Xt (α) = α(t).
For every ϑ ∈ Θ , there is a Markov kernel Qϑ(ω, dα) from (Ω,G ) into (C,C )

such that for each ω ∈ Ω X0 = 0 Qϑ(ω, dα)-a.s. and Xt − ϑ	Ct (ω) is a con-
tinuous Gaussian martingale under Qϑ(ω, dα) with the quadratic characteristic
Ct (ω). Put Pϑ(dω, dα) = P(dω)Qϑ(ω, dα), P = P0. Consider the filtered model
(Ω × C,G ⊗ C ,F, (Pϑ)ϑ∈Θ), where F = (F t ) is the smallest filtration of Ω × C

to which X (naturally extended to Ω × C) is adapted and such that G ⊆ F 0. It is

clear that Pϑ loc∼ P and the density process Zϑ = (Zϑ
t (ω, α)) is given by

Zϑ
t (ω, α) = exp(ϑ	Xt (ω) − 1

2
ϑ	Ct (α)ϑ).

We use the notion of G -stable convergence in the same sense as in [6].
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Theorem 4 Assume that the above assumptions are satisfied. Let T ∈ R+ and Tn ≡
T . Assume that conditions (O∗) and (L) are satisfied and (H) holds with Hn ≡ 1

8CT .

Moreover, assume that hn,ϑ
sn

P−→ 0, n → ∞, for each ϑ ∈ Θ . Then

(Pn
Tn ) � �(Pn,ϑn

Tn
) for each {ϑn} ∈ S (32)

and there is a sequence {wn} ∈ W such that

L (wn
Tn , 〈wn,wn〉Tn |P) ⇒ L (XT ,CT |P)), n → ∞, (G -stably) (33)

and

sup
s≤Tn

∣∣∣log Zn,ϑn
s −

(
ϑ	
n w

n
s − 1

2
ϑ	
n

〈
wn,wn

〉
sϑ

	
n

)∣∣∣ Pn−→ 0, n → ∞, (34)

for each {ϑn} ∈ S . The sequence En
Tn
is asymptotically mixed normal if CT is P-a.s.

nonsingular.

Theorem 5 Assume that the above assumptions are satisfied. Let T ∈ R+ and Tn ≡
T . Assume that (O∗), (H), and (L) are satisfied and

hn,ϑ
t

P−→ 1

8
ϑ	Ctϑ, n → ∞, for all t ∈ S and ϑ ∈ Θ,

where S is a dense subset of [0, T ] containing 0 and T . Then (32) holds and there is
a sequence {wn} ∈ W ({Tn}) such that

L (wn, 〈wn,wn〉|P)
d−→ L (X,C |P), n → ∞, (G -stably)

inD([0, T ],Rk+k2), and (34) holds for each {ϑn} ∈ S . The sequenceEn
t , t ∈ (0, T ],

is asymptotically mixed normal if Ct is P-a.s. nonsingular.

3.4 Asymptotic Quadraticity

In this subsection, we consider a general sequence (Ωn,F n,Fn = (F n
t )t∈R+ ,

(Pn,ϑ )ϑ∈Θ) of filtered statistical experiments, where Θ = R
k , as in Sect. 2. We are

interested in the case where the limiting density process is of the form E (ϑ	M),
M being a continuous local martingale (not necessarily Gaussian or conditionally
Gaussian). General limit theorems for likelihood processes, corresponding to such a
limit, e.g. TheoremsX.1.59 and X.1.65 in Jacod and Shiryaev [16] and Theorem3.9
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in Gushchin and Valkeila [6], have certain drawbacks. First, the majoration condi-
tions X.1.57 (c) in [16] andM (c) in [6] are quite restrictive. Second, in many models
the process M happens to be of the form

∫
K dB, where B is a Brownian motion and

K is adapted with respect to the filtration FB generated by B. Thus, it is inconvenient
to represent the quadratic characteristic of M as a functional of M or of the density
process as is needed in the above-mentioned theorems.

In Theorem6 below, we have tried to avoid these drawbacks. Though amajoration
condition is still imposed, it refers to another process which is a Gaussian martingale
in many applications, and then the condition is trivially satisfied. However, this
theorem is oriented towards rather specific models in the broad range of (L)AQ
situations.

Introduce the following assumptions:

(B) (a) (Ω,F ,F) = (D(Rq),DDD(Rq),D(Rq)) is the Skorokhod space with the
Borel σ -fieldDDD(Rq) and the filtrationD(Rq) generated by the canonical process
denoted by B.
(b) C = (Ci j )i, j≤q is an adapted continuous increasing process with values in
M

q
+, defined on (Ω,F ,F), C0 = 0.

(c) There is a continuous and deterministic increasing function t � Ft with
F0 = 0, such that F −∑q

i=1 C
ii (α) is nondecreasing for all α ∈ Ω .

(d) α � Ct (α) is Skorokhod-continuous for all t ∈ R+.
(e) There is a unique probability measure P on (Ω,F ) under which B is a
continuous local martingale with B0 = 0 and 〈B, B〉 = C .

(G) (a) There are adapted càdlàg processes Gn = (Gn,i j )i≤k, j≤q and G =
(Gi j )i≤k, j≤q with values in Rk×q , defined on (Ω,F ,F).
(b) If αn → α ∈ C(Rq) in the Skorokhod topology on D(Rq) (i.e. locally uni-
formly), then Gn(αn) → G(α) in the Skorokhod topology on D(Rk×q).

It follows from (B) (c) that there is a predictable process c = (ci j )i, j≤q with values
inMq

+, defined on (Ω,F ,F), such that Ci j
t = ci j · Ft , i, j ≤ q, and tr ct ≤ 1 for all

t ∈ R+ P-a.s.
In what follows, we use the notation Gn ◦ Bn , which is understood as the

composition of the mappings Bn : Ωn → Ω and Gn : Ω → D(Rk×q). Note that
G ◦ B = G. For a (k × q)-dimensional adapted càdlàg process K = (K i j )i≤k, j≤q

and a q-dimensional locally square-integrablemartingaleM = (M j ) j≤q , the process
Y := K− · M is understood as a k-dimensional locally square-integrable martingale
Y = (Y i )i≤k such that Y i =∑q

j=1 K
i j
− · M j .

Theorem 6 (i) Let (O∗), (B), and (G) be satisfied, T ∈ R+ and Tn ≡ T . Assume that
there is a sequence {Bn} such that the following holds: Bn = (Bn, j ) j≤q , Bn

0 = 0, is
a locally square-integrable martingale on (Ωn,F n,Fn,Pn) with values in R

q for
each n,

〈Bn, Bn〉t − Ct ◦ Bn Pn−→ 0, n → ∞, for all t ∈ S, (35)
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where S is a dense subset of [0, T ] containing 0 and T,

‖x‖21{‖x‖>ε} � νBn

T
Pn−→ 0, n → ∞, for all ε > 0, (36)

and 〈
mn,ϑn − 1

2
ϑ	
n w

n,mn,ϑn − 1

2
ϑ	
n w

n
〉
T

Pn−→ 0, n → ∞, (37)

for each {ϑn} ∈ S , where wn := Kn− · Bn, Kn := Gn ◦ Bn. Then {wn} ∈ W and
(W) is satisfied,

(Pn
T ) � (Pn,ϑn

T ) for each {ϑn} ∈ S , (38)

L (wn, 〈wn,wn〉|Pn)
d−→ L (G− · B, (G−cG	−) · F |P), n → ∞, in D([0, T ],Rk+k2 ),

(39)
and

sup
s≤T

∣∣∣log Zn,ϑn
s −

(
ϑ	
n w

n
s − 1

2
ϑ	
n

〈
wn,wn

〉
sϑ

	
n

)∣∣∣ Pn−→ 0, n → ∞,

for each {ϑn} ∈ S .
(ii) Assume additionally that

E exp
((

ϑ	G−
) · BT − 1

2

(
ϑ	G−cG	

−ϑ
) · FT

)
= 1 (40)

for any ϑ ∈ R
k . Then

(Pn
T ) � �(Pn,ϑn

T ) for each {ϑn} ∈ S ,

Assumption (40) is automatically satisfied if G is a Gaussian process on (Ω,F ,P).
(iii) Assume additionally to (i) and (ii) that (G−cG	−) · Ft , t ∈ (0, T ], is P-a.s.

nonsingular. Then the sequence En
t is asymptotically quadratic.

Remark 8 A sufficient condition for the process G to be Gaussian on (Ω,F ,P),
see (ii), is that C is a deterministic function (so B is a Gaussian martingale) and
Gi j (α)t =∑q

l=1

∫ t
0 αl(s) ζl(ds) for all t ∈ R, α ∈ C(Rq), i ≤ k, j ≤ q, where ζl is

a finite signed measure on [0, t], depending in general also on t , i , and j .

4 Necessity of Conditions

In this section, we state three theorems demonstrating the necessity of conditions
in the theorems in Sects. 2 and 3. The first theorem says, in particular, that if one
assumes the mutual contiguity (41), then the conditions of Theorem1 are satisfied
if and only if there exists an approximation (44) with (43) and condition (42) of
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asymptotic negligibility of jumps of likelihood ratio processes holds true. Recall that
the conditions of Theorem1 imply (42), see Propositions2.6 and 2.8 in [6].

Theorem 7 Let
(Pn,ϑn

Tn
) � �(Pn

Tn ) (41)

and
sup
s≤Tn

|ΔZn,ϑn
s | Pn−→ 0, n → ∞, (42)

for each {ϑn} ∈ S . Assume also that there exist càdlàg processes Xn with values in
R

k and predictable processes Bn,ϑ with finite variation such that for every {ϑn} ∈ S

the sequence
(
Var (Bn,ϑ )Tn

∣∣Pn
)

is R-tight, (43)

and
sup
s≤Tn

∣∣∣log Zn,ϑn
s − log Zn,ϑn

0 − (ϑ	
n Xn

s − Bn,ϑn
s

)∣∣∣ Pn−→ 0, n → ∞. (44)

Then assumptions (O), (H), (L), and (W) of Sect.2.2 are satisfied. In particular,
by Theorem1 there is a sequence {wn} ∈ W ({Tn}) of Pn-locally square-integrable
martingales such that one can replace Xn by wn and Bn,ϑn by ϑ	

n

〈
wn,wn

〉
ϑn in (44).

The next theorem says that if at every time t (here it is assumed that Tn ≡ T
and deterministic), our models are asymptotically normal∗ and the limiting mod-
els are continuous in t (this condition replaces (42)), then all assumptions of
Theorem1 are satisfied. It is assumed that there is given a continuous increasing
function Kt = (K i j

t ), t ∈ [0, T ], with values in M
k+. Denote by N a continuous

Gaussian martingale with values in R
k on some stochastic basis (Ω,F ,F,P) with

L (N0|P) = N (0, K0) and 〈Ni , N j 〉t = K i j
t − K i j

0 , i, j = 1, . . . , k, t ∈ [0, T ].
Theorem 8 Let T ∈ R+ and Tn ≡ T . Assume that, for every t ∈ S, where S is
a dense subset of [0, T ] containing 0 and T , the sequence E

n
t of experiments is

asymptotically normal∗ with random vectors Vn = V n
t and random matrices Kn =

Kn
t , and Kn

t
Pn−→ Kt , n → ∞. Then conditions (O), (H), (L) and (W) of Sect.2.2

are satisfied,

L (wn|Pn)
d−→ L (N − N0|P), n → ∞, in D([0, T ],Rk), (45)

sup
s≤T

∣∣∣〈wn,i ,wn, j 〉s − (K i j
s − K i j

0 )

∣∣∣ Pn−→ 0, n → ∞, i, j = 1, . . . , k, (46)

V n
0 and (wn)t∈[0,T ] are asymptotically independent under Pn and

sup
s≤T

∣∣∣log Zn,ϑn
s −

(
ϑ	
n (V n

0 + wn
s ) − 1

2
ϑ	
n

(
Kn

0 + 〈wn,wn
〉
s

)
ϑn

)∣∣∣ Pn−→ 0, n → ∞,

(47)



Quadratic Approximation for Log-Likelihood Ratio Processes 197

for each {ϑn} ∈ S .

This theorem should be also compared with Theorem5.3 in Strasser [37].
In the last theorem, in contrast to the previous one, we assume asymptotic

normality∗ only at terminal times and impose condition (42) again. Moreover, we
introduce the following additional assumption:

(D) For every {ϑn} and {ηn} inS the sequence hn,ϑn ,ηn
Tn

is asymptotically degenerate,
i.e. every subsequence contains a further subsequence tending to a nonrandom
limit in Pn,ηn -probability.

Of course, (D) is satisfied if all the processes hn,ϑ,η admit deterministic versions
and Tn are deterministic, in particular, if our experiments correspond to independent
observations on a nonrandom time interval. For a detailed discussion of the property
of all the Hellinger processes to be deterministic, we refer to Jacod [13].

Theorem 9 Assume that the sequence {En
Tn

} is asymptotically normal∗, Zn,ϑn
0

Pn−→ 1
for every {ϑn} ∈ S , and conditions (42) and (D) hold. Then assumptions (O), (H),
(L), and (W) of Sect.2.2 are satisfied and we have the uniform in s approximation
(18) with {wn} ∈ W ({Tn}),
Remark 9 In the case k = 1, we are able to prove the same statement replacing
assumption (D) by a weaker one, namely, that hn,ϑn

Tn
are asymptotically degenerate

for each {ϑn} ∈ S . The proof is much more laborious and is not given here.

5 Independent Observations

In this section, we consider a special case where our experiments have a product
structure. We show that the quadratic approximation (1) is necessary for the LAN
property under a standard additional assumption, see (54) below. This assumption is
not needed if the factors in every experiment are copies of each other (but may be
different in different experiments). Thus, in such a case the quadratic approximation
(1) always takes place if the LAN occurs.

We assume throughout this section that an open subset Θ of Rk is given. Let(
Xn
i ,X

n
i , (Qn,ϑ

i )ϑ∈Θ

)
be statistical models, i = 1, 2, . . . , kn , n = 1, 2, . . . , kn →

∞ as n → ∞. For simplicity of notation, we shall assume that kn = n. Put

Ωn =
n∏

i=1

Xn
i , F n =

n⊗
i=1

X n
i , Pn,ϑ =

n∏
i=1

Qn,ϑ
i ,

and introduce the filtrations Fn = (F n
t )t∈R+ and the stopping times Tn by

F n
t = G n

[nt]∧n, Tn = 1,
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where G n
m is the sub-σ -field of F n generated by the projections of Ωn onto

Xn
1 , . . . , X

n
m .

Fix ϑ0 ∈ Θ and take a sequence {ϕn} of nonsingular k × k matrices such that
ϕn → 0 as n → ∞. Put

Pn = Pn,ϑ0 , Qn
i = Qn,ϑ0

i ;

En stands for the expectation with respect to Pn .
Let αn,ϑ

i be the density of the absolutely continuous part ofQn,ϑ0+ϕnϑ

i with respect
toQn

i . The generalized density process Z
n,ϑ of Pn,ϑ0+ϕnϑ with respect to Pn satisfies

Zn,ϑ
t =

[nt]∧n∏
i=1

α
n,ϑ
i Pn-a.s.

Now, we can construct different processes from Zn,ϑ as it was done in Sect. 2.1.
Namely, let

hn,ϑ
t =

[nt]∧n∑
i=1

En
(
1 −

√
α
n,ϑ
i

)
=

[nt]∧n∑
i=1

ρ2
(
Qn

i ,Q
n,ϑ0+ϕnϑ

i

)
, (48)

ιn,ϑ
t =

[nt]∧n∑
i=1

(
1 − Enα

n,ϑ
i

)
, (49)

h
n,ϑ,η

t =
[nt]∧n∑
i=1

En
(
1 −

√
α
n,ϑ
i α

n,η

i

)
. (50)

hn,ϑ,η
t =

[nt]∧n∑
i=1

ρ2(Qn,ϑ0+ϕnϑ

i ,Qn,ϑ0+ϕnη

i

)
, (51)

yn,ϑ
t =

[nt]∧n∑
i=1

(√
α
n,ϑ
i − 1

)
, (52)

mn,ϑ
t =

[nt]∧n∑
i=1

(√
α
n,ϑ
i − En

√
α
n,ϑ
i

)
. (53)

It is easy to see that the processes in (48), (49), and (50) do satisfy (6), (7), and (9),
respectively, and, similarly, the process hn,ϑ,η in (51) is a version of the Hellinger
process of order 1/2 for Pn,ϑ0+ϕnϑ and Pn,ϑ0+ϕnη, and that the processes in (52) and
(53) coincide with the corresponding processes in (8) on the stochastic intervals
where the latter ones were defined. According to Remark2, we can use the versions
introduced in (48)–(53) in all subsequent considerations. Similarly, we can use the
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above version of mn,ei instead of m̃n,ei in (20), which makes wn to be a sum of
square-integrable zero mean independent random vectors (with respect to Pn). Note
also that here it seems to be more convenient to check the Lindeberg-type condition
(14) with ν yn,ϑn instead of νmn,ϑn , see Remark3. Then (14) takes the form of the
standard Lindeberg condition:

n∑
i=1

En
(√

α
n,ϑn
i − 1

)2
1{∣∣√α

n,ϑn
i −1

∣∣>ε

} → 0, n → ∞, for all ε > 0

for each {ϑn} ∈ S .
Now assume that (O), (H) and (L) hold. Since the processes h

n,ϑ,η
are deter-

ministic, we may assume that the matrices Hn in (H) are deterministic. Hence, if
one assumes additionally that lim infn→∞ det Hn > 0, then it follows from Theo-
rem2 that the sequence

(
Ωn,F n, (Pn,ϑ0+ϕnϑ)ϑ∈Rk

)
is asymptotically normal, which

amounts to say that the sequence
(
Ωn,F n, (Pn,ϑ )ϑ∈Θ

)
is locally asymptotically

normal at ϑ0.
Let us nowassume that the sequence

(
Ωn,F n, (Pn,ϑ0+ϕnϑ)ϑ∈Rk

)
is asymptotically

normal. We assert that if

lim
n→∞ sup

i≤n
ρ2(Qn,ϑ0

i ,Qn,ϑ0+ϕnϑn
i ) = 0 (54)

for any {ϑn} ∈ S , then (O), (H) and (L) hold, and hence we have the quadratic
approximation (1) with wn = (wn,1, . . . ,wn,k) defined by

wn,m
t = 2

[nt]∧n∑
i=1

(√
α
n,em
i − En

√
α
n,em
i

)
,

as explained above.
To prove this statement, it is enough to show according Theorem9 that condi-

tion (42) is satisfied. Take a sequence {ϑn} ∈ S and let (Vn, Kn) be the sequence
from the definition of AN. Similarly to the proof of Theorem9 it is enough to check
(42) under the assumption that ϑn → ϑ and Kn tends (in Pn-probability) to a (deter-
ministic) matrix K . Then the distributions L (log Zn,ϑn

1 | Pn) weakly converge to
the normal distribution with mean − 1

2ϑ
	Kϑ and variance ϑ	Kϑ . In particular,

Pn(Zn,ϑn
1 = 0) = 1 −

n∏
i=1

(
1 − Pn(α

n,ϑn
i = 0)

)→ 0,

which implies
n∑

i=1

Pn(α
n,ϑn
i = 0) → 0, n → ∞. (55)
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Put ηn,i = (log α
n,ϑn
i )1{αn,ϑn

i >0}. Then ηn,i , i = 1, . . . , n, are independent and
(ηn,i )i≤n, n=1,2,... is an infinitesimal (or a null) array of random variables in the sense
that

lim
n→∞ sup

i
Pn(|ηn,i | > ε) = 0 for every ε > 0,

the last property is due to (54) because of

ρ2(Qn,ϑ0
i ,Qn,ϑ0+ϕnϑn

i ) = En
(
1 −

√
α
n,ϑn
i

)
≥ 1

2
En
(
1 −

√
α
n,ϑn
i

)2
.

On the other hand, in view of (55),

L
( n∑
i=1

ηn,i

∣∣∣ Pn
)

⇒ N (−1

2
ϑ	Kϑ, ϑ	Kϑ).

It is well known that the weak convergence for infinitesimal arrays to a Gaussian law
implies

lim
n→∞

n∑
i=1

Pn(|ηn,i | > ε) = 0 for every ε > 0,

see e.g. Kallenberg [20, Theorem5.15]. Combining this relation with (55), we get

Pn(sup
i

|αn,ϑn
i − 1| > ε) ≤

n∑
i=1

Pn(|αn,ϑn
i − 1| > ε) → 0 for every ε > 0.

The claim follows now from (2).

Remark 10 The above statements concerning necessary and sufficient conditions for
AN are similar to Proposition6 in Le Cam [23], see also Theorem1 in Le Cam [25,
Chap.16, Sect. 3, p. 472].

Remark 11 Let Jn be nonempty subsets of {1, . . . , n}, F̃ n generated by the pro-
jections of Ωn onto Xn

j , j ∈ Jn , P̃n,ϑ = Pn,ϑ |F̃ n . If the sequence E
n = (Ωn,F n,

(Pn,ϑ0+ϕnϑ)ϑ∈Rk

)
is AN and (54) holds, then the sequence Ẽ

n = (Ωn, F̃ n,

(P̃n,ϑ0+ϕnϑ)ϑ∈Rk

)
is AN∗. Indeed, the order of factors in our experiments has not

played any role up to now, so we may assume that Jn = {1, . . . , jn}. Then the exis-
tence of a quadratic approximation of the form (22) and nonrandomness of cluster
pointsL (K ) follow from the quadratic approximation (1), and it is well known that
the contiguity properties of En remain valid in Ẽn . For more general results concern-
ing the preservation of the AN property under information loss, see Proposition4 in
Le Cam [25, Chap. 16, Sect. 3, p. 474] and Le Cam and Yang [26].

Informally speaking, assumption (54) says that each observation has relatively
little inference on the whole experiment itself. It is not surprising that this assump-
tion is automatically satisfied in the case of identical observations within every
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model. Namely, assume that
(
Xn
i ,X

n
i , (Qn,ϑ

i )ϑ∈Θ

)
, i = 1, . . . , n are copies of(

Xn,X n, (Qn,ϑ )ϑ∈Θ

)
for all n. Then

ρ2(Qn,ϑ0
i ,Qn,ϑ0+ϕnϑn

i ) = ρ2(Qn,ϑ0 ,Qn,ϑ0+ϕnϑn ), i = 1, . . . , n,

and
ρ2(Pn,ϑ0 ,Pn,ϑ0+ϕnϑn ) = 1 − (1 − ρ2(Qn,ϑ0 ,Qn,ϑ0+ϕnϑn )

)n
.

Hence, assumption (54) is satisfied if lim supn→∞ ρ2(Pn,ϑ0 ,Pn,ϑ0+ϕnϑn ) < 1, which
is, of course, true if the sequence

(
Ωn,F n, (Pn,ϑ0+ϕnϑ)ϑ∈Rk

)
is asymptotically nor-

mal.
This means that if our experiments have a product structure and every factor in the

nth experiment is a copy of each other for every n, then the following assumptions
are necessary and sufficient for the local asymptotic normality at ϑ0: there is a
sequence {ϕn} of nonsingular k × k matrices such that ϕn → 0 as n → ∞ and there
is a sequence {Hn} of matrices inMk+ such that

lim inf
n→∞ det Hn > 0, lim sup

n→∞
tr Hn < ∞,

and, with the above notation,

lim
n→∞

[
nEn
(
1 −

√
α
n,ηn
i α

n,ϑn
i

)
− (ϑn − ηn)

	Hn(ϑn − ηn)

]
= 0

for all {ϑn} and {ηn} inS , and

lim
n→∞ n

[
En
(√

α
n,ϑn
i − 1

)2
1{∣∣√α

n,ϑn
i −1

∣∣>ε

}] = 0 for all ε > 0

for each {ϑn} ∈ S .
Let us mention here that this result uses essentially the Euclidean structure of the

parameter set. Le Cam [24], see also Le Cam and Yang [27], considers Gaussian
approximations to experiments formed by independent identical distributions with
an arbitrary parameter set.

Finally, let us consider the case of i.i.d. observations. That is, we have an experi-
ment

(
X,X , (Qϑ)ϑ∈Θ

)
, whereΘ is an open subset ofRk . Define the infinite product

experiment

Ω =
∞∏
i=1

X, F =
∞⊗
i=1

X , Pϑ =
∞∏
i=1

Qϑ ,

and introduce the filtrations Fn = (F n
t )t∈R+ and the stopping times Tn by

F n
t = G[nt]∧n, Tn = 1,
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where Gm is the sub-σ -field ofF generated by the projections of Ω onto the first m
coordinates: ω = (ω1, ω2, . . . ) � ωi , i = 1, . . . ,m. We are interested in establish-
ing the LAN property for the sequence of experiments

(Ω,F n,Fn, (Pn,ϑ )ϑ∈Θ)

at some point ϑ0 ∈ Θ , where F n = Gn , Pn,ϑ = Pϑ |F n .
Put Q := Qϑ0 . From the above considerations, the sequence (Ω,F n,Fn,

(Pn,ϑ )ϑ∈Θ) is locally asymptotically normal at ϑ0 if and only if there are a sequence
{ϕn} of nonsingular k × k matrices and a sequence of measurable mappings gn =
(gn1, . . . , gnk)	 : X → R

k such that ϕn → 0 as n → ∞,

∫
g2ni dQ < ∞ and

∫
gni dQ = 0, for all i = 1, . . . , k, n = 1, 2, . . . ,

(56)

lim inf
n→∞ n det

∫
gng

	
n dQ > 0, lim sup

n→∞
n
∫

‖gn‖2 dQ < ∞, (57)

lim
n→∞ n

∫
‖gn‖>ε

‖gn‖2 dQ < ∞ for all ε > 0, (58)

lim
n→∞ n

∫ [(dQϑ0+ϕnϑn

dQ

)1/2 − 1 − 1

2
ϑ	
n gn

]2
= 0 for all {ϑn} ∈ S , (59)

and

lim
n→∞ n

∫ (
1 − dQϑ0+ϕnϑn

dQ

)
dQ = 0 for all {ϑn} ∈ S , (60)

and then we have (1) with

wn
t =

[nt]∧n∑
i=1

gn(ωi ),
〈
wn,wn

〉
t = ([nt] ∧ n)

∫
gng

	
n dQ.

In particular, if LAN holds, then vectors Vn and matrices Kn satisfying

log
dPϑ0+ϕnϑn

dPϑ0
−
(
ϑ	
n Vn − 1

2
ϑ	
n Knϑn

)
Pn−→ 0, n → ∞, (61)

cf. (22), can be always chosen of the form

Vn =
n∑

i=1

gn(ωi ), Kn =
∫

VnV
	
n dQ, (62)

where gn satisfy (56)–(58).
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It is interesting to compare the above remarkwith some known results dealingwith
the case where normalizing matrices are of the form ϕn = δn Ik , where δn > 0 and
Ik is the identity matrix. Then the LAN property is possible only if δn = n−1/2L(n)

with a slowly varying sequence L(n), see Strasser [36]. If the family (Qϑ)ϑ∈Rk is
continuous and translation invariant (in particular, a location parameter family), then
necessary and sufficient conditions for the LAN property with rescaling by scalars
are given by Janssen [17] in terms of the Hellinger distances ρ2(Q0,Qϑ).

The reader can easily check that relations (56)–(60) with

ϕn = n−1/2 Ik and gn = n−1/2v (63)

are equivalent to the L2-differentiability of the family {Qϑ } at ϑ0 with the score
function v and a nonsingular Fisher information matrix J = ∫ vv	 dQ, see e.g. [10,
Chap. 4] for the definition of L2-differentiable models. L2-differentiability is a clas-
sical sufficient condition for LAN. The converse statement (if

log
dPϑ0+ϕnϑn

dPϑ0
−
(
n−1/2ϑ	

n

n∑
i=1

v(ωi ) − 1

2
ϑ	
n Jϑn

)
Pn−→ 0, n → ∞,

for every {ϑn} in S , where
∫ ‖v‖2 dQ < ∞ and

∫
v dQ = 0, then the family {Qϑ }

is L2-differentiable at ϑ0) is also known, see e.g. Le Cam [25, Proposition2, p. 584].
However, even in the one-dimensional case (k = 1), LAN may hold with a dif-

ferent choice of ϕn and/or gn than in (63). Le Cam [25, pp. 583–584] provides an
example of a family which satisfies LAN with the rate ϕn = n−1/2 but is not L2-
differentiable, hence gn cannot be represented as in (63). Janssen [19] introduces a
number of models which satisfy (61) with

Vn = ϕn

n∑
i=1

v(ωi ), (64)

where v is the score function in some sense and has zero mean with respect to Q;
however, v is not square integrable with respect to Q, and its law belongs to the
domain of attraction of the normal law. Our choice of Vn as in (62) is definitely
different from (64). On the other hand, Pfanzagl [34] constructs an example of a
location parameter family Qϑ(·) = Q(· − ϑ) on the line which satisfies LAN but it
is not possible to choose Vn in (61) of the form Vn = an

∑n
i=1 v(ωi ) with some an

and v.
Let us also mention that Janssen [18] describes experiments that appear as limit

models if only LAMN holds in the considered i.i.d. case.
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6 Proofs

We start with a general remark. In our proofs, we refer many times to different
results in [6], in particular, to Theorems2.1 and 3.1 and Propositions2.5, 2.6 and
2.8, which are proved for Tn ≡ t , where t ∈ R+. However, they are still true (with
evident modifications) for an arbitrary sequence {Tn} of stopping times, since the
general case reduces to the case Tn ≡ 1 by replacing the original filtrations F n

t by
F̂ n

t := F n
τ(t)∧Tn

, t ∈ [0, 1], where τ is a deterministic continuous strictly increasing
function from [0, 1] onto [0,∞].

6.1 Auxiliary Results

For simplicity of notation, we omit the index n everywhere in this subsection.
The next lemma generalizes relation (4.1) in [6, Lemma4.1].

Lemma 1 For all ϑ, η ∈ Θ

h
ϑ,η = hϑ + hη − 〈mϑ ,mη〉 − [hϑ , hη] P-a.s. on Γ ϑ ∩ Γ η. (65)

Proof Recall that Y ϑ = Y ϑ
0 E (mϑ − hϑ) onΓ ϑ and Y η = Y η

0 E (mη − hη) onΓ η. By
Yor’s formula, on Γ ϑ ∩ Γ η

Y
ϑ,η = Y ϑY η = Y

ϑ,η

0 E (mϑ + mη − hϑ − hη + [mϑ − hϑ ,mη − hη])
= Y

ϑ,η

0 E
({mϑ + mη − (Δhϑ) · mη − (Δhη) · mη + [mϑ ,mη] − 〈mϑ ,mη〉}

−{hϑ + hη − 〈mϑ ,mη〉 − [hϑ , hη]}).
The expression in the first braces is a Pn-local martingale on Γ ϑ ∩ Γ η, and the

expression in the second braces is a predictable process with finite variation on

Γ ϑ ∩ Γ η. The claim follows from the definition of h
ϑ,η

. �

The next lemma can be deduced from statement (b) of Lemma5.8 in [15]. How-
ever, the proof of that statement contains a small inaccuracy, so we give a full proof.

Lemma 2 For all ϑ, η ∈ Θ, the processes

h
ϑ,η − hϑ,η and

1

2
(ιϑ + ιη) − (h

ϑ,η − hϑ,η)

are P-a.s. increasing on Γ ϑ ∩ Γ η.

Proof Let Q be a probability measure that dominates P, Pϑ , and Pη. The density
processes of these measures with respect to Q are denoted by z, zϑ , and zη, respec-
tively. Then Zϑ = zϑ/z P- and Pϑ -a.s., and Zη = zη/z P- and Pη-a.s. Put also
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Sk = inf{t : zt ∧ zϑt ∧ z
η
t < 1/k}.

Let {Rk} be a sequence of stopping times such that P(limk Rk = ∞) = 1 and(
Y

ϑ,η + Y
ϑ,η

− · hϑ,η)Rk is a P-martingale for every k. Since

⋃
k

�0, Sk ∧ Rk� = (⋃
k

�0, Rk�
)⋂(

�0� ∪ {z−zϑ−zη− > 0}) Q-a.s.

and P(inf t zt > 0) = 1, we have

⋃
k

�0, Sk ∧ Rk� = �0� ∪ {Zϑ
−Z

η
− > 0} = Γ ϑ ∩ Γ η P-a.s.

Therefore, it is enough to prove the statement of the lemma on an interval �0, R�,
where R = Rk ∧ Sk for some k.

Since
(
Y

ϑ,η + Y
ϑ,η

− · hϑ,η)R
is a P-martingale,

(
z(Y

ϑ,η
)R + zR(Y

ϑ,η

− · hϑ,η
)R is a

Q-martingale, see e.g. [16, Proposition III.3.8]. By Itô’s formula,

zR(Y
ϑ,η

− · hϑ,η
)R − (zR−Y

ϑ,η

− ) · (h
ϑ,η

)R = zR(Y
ϑ,η

− · hϑ,η
)R − zR− · (Y

ϑ,η

− · hϑ,η
)R

= (Y
ϑ,η

− · hϑ,η
)R · zR

is a Q-local martingale. Note that zϑ−z
η
− > 0 on �0, R�, hence z−Y

ϑ,η

− = Y ϑ,η
− on

�0, R� and zY
ϑ,η = Y ϑ,η − Y ϑ,η1{z=0}∩�R� on �0, R�, where Y ϑ,η = √zϑzη. Further-

more, Y ϑ,η + Y ϑ,η
− · hϑ,η is aQ-martingale by the definition of hϑ,η. Combining these

relations together, we obtain that

Y ϑ,η1{z=0}∩�R� − Y ϑ,η
− · (h

ϑ,η − hϑ,η)R is a Q-local martingale.

In other words, (h
ϑ,η − hϑ,η)R is theQ-compensator of (Y ϑ,η/Y ϑ,η

− )1{z=0}∩�R�. Now
recall that ιϑ is defined, see [16, Chap. IV, Sect. 1 d], as the Q-compensator of
(zϑ/zϑ−)1{z/z−=0} (with the convention 0/0 = 0), more precisely, this is true on the
set �0� ∪ {z−zϑ− > 0}, ιη is defined similarly. It is clear that

Y ϑ,η

Y ϑ,η−
=
√
1 + Δzϑ

zϑ−

√
1 + Δzη

z
η
−

≤ 1

2

(
1 + Δzϑ

zϑ−

)
+ 1

2

(
1 + Δzη

z
η
−

)

on Γ ϑ ∩ Γ η, and the second statement of the lemma follows. �
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6.2 Proofs of Theorems1–6

Proof of Theorem1 (a) Condition (H) applied with ηn ≡ 0 implies that

the sequence (hn,ϑn
Tn

|Pn) is R-tight. (66)

(Note that the same is true if we consider hn,ϑn ,ηn instead of h
n,ϑn ,ηn in (H).) Thus,

for every {ϑn} ∈ S we are in a position to apply Theorem2.1 in [6] obtaining (16),

Var
(
hn,ϑn − 1

2
〈mn,ϑn ,mn,ϑn 〉

)
Tn

Pn−→ 0, n → ∞, (67)

and

sup
s≤Tn

∣∣∣log Zn,ϑn
s − log Zn,ϑn

0 − (2mn,ϑn
s − 2〈mn,ϑn ,mn,ϑn 〉s

)∣∣∣ Pn−→ 0, n → ∞.

(68)
We also have

sup
s≤Tn

Δhn,ϑn
s

Pn−→ 0, n → ∞,

see Proposition2.6 in [6], and it follows from (66) that

Var ([hn,ϑn , hn,ηn ])Tn Pn−→ 0, n → ∞, (69)

for all {ϑn}, {ηn} ∈ S .
Now take two sequences {ϑn} and {ηn} inS . Combining (H), (65), and (69), and

taking into account (5), we obtain that

〈mn,ϑn ,mn,ηn 〉Tn − 2ϑ	
n Hnηn

Pn−→ 0, n → ∞. (70)

Moreover, mn,ϑn and mn,ηn can be replaced by m̃n,ϑn and m̃n,ηn in (67), (68) and (70)
in view of (4).

Define now the process wn = (wn,1, . . . ,wn,k) according to (20), n = 1, 2, . . . .
Each wn,i is a Pn-locally square-integrable martingale, condition (10) holds in view
of (66) and (67), and (11) follows from (L) and the inequality

(a21 + · · · + a2k )1{a21+···+a2k>ε2} ≤ k{a211{|a1|>ε/
√
k} + · · · + a2k1{|ak |>ε/

√
k}}.

Hence {wn} ∈ W ({Tn}).
After direct calculations based on (70), we obtain that for every {ϑn} ∈ S , ϑn =

(ϑn1, . . . , ϑnk),
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〈
m̃n,ϑn −

k∑
i=1

ϑni m̃
n,ei , m̃n,ϑn −

k∑
i=1

ϑni m̃
n,ei
〉
Tn

Pn−→ 0, n → ∞,

which means (15), i.e. condition (W) holds.
Applying (65), (67), (69) and (5), we obtain

Var
(
h
n,ϑn ,ηn − 1

2

〈
mn,ϑn − mn,ηn ,mn,ϑn − mn,ηn

〉)
Tn

Pn−→ 0, n → ∞, (71)

for all {ϑn}, {ηn} ∈ S . Now (17) follows from (71), (15), and the Kunita–Watanabe
inequality.

(b) Since 〈ϑ	
n w

n, ϑ	
n w

n〉Tn ≤ ‖ϑn‖2∑k
i=1〈wn,i ,wn,i 〉Tn Pn-a.s., we obtain from

(10) and (15) that

the sequence
(
1Γ n,ϑn · 〈mn,ϑn ,mn,ϑn 〉Tn

∣∣Pn
)

is R-tight

for any {ϑn} ∈ S . Taking into account that 0 ≤ Δhn,ϑn ≤ 1andhence [hn,ϑn , hn,ϑn ] ≤
hn,ϑn Pn-a.s. on Γ n,ϑn , we obtain from Lemma4.1 in [6] that

the sequence (h′n,ϑn
Tn

|Pn) is R-tight,

where h′n,ϑn = 1Γ n,ϑn · hn,ϑn is a ‘strict’ version of hn,ϑn .
It is obvious from (11) that every component wn,i satisfies the Lindeberg-type

condition for its jumps. The same is true for ϑniwn,i , where ϑni are bounded. Using
the inequality

(a1 + · · · + ak)
21{|a1+···+ak |>ε} ≤ k2{a211{|a1|>ε/k} + · · · + a2k1{|ak |>ε/k}},

we deduce that the sequence ϑ	
n w

n satisfies the Lindeberg-type condition, and now
we obtain from (15) that

x21{|x |>ε}1Γ n,ϑn � νmn,ϑn

Tn

Pn−→ 0, n → ∞, for all ε > 0.

This is enough to apply Theorem2.1 in [6] to obtain contiguity (16) and hence
condition (L) for every version of the integral in (14). We also have (67) and (69) for
any versions of the Hellinger processes.

Finally, we use Lemma1, (67), and (69) to show (71). Combining it with (15)
and the Kunita–Watanabe inequality, we get (17), in particular (H) with Hn =
1
8 〈wn,wn〉Tn is satisfied.

(c) Part (b) of the theorem shows that the hypotheses of part (a) are satisfied, hence
(68) holds true. It remains to replace 2〈mn,ϑn ,mn,ϑn 〉 by 1

2ϑ
	
n 〈wn,wn〉ϑn , and 2mn,ϑn

by ϑ	
n w

n . The former is possible due to (15) and the Kunita–Watanabe inequality,
and the latter is due to (15) and Lenglart’s inequality. �
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Proof of Theorem2 According toTheorem1, (16) and condition (W) are satisfied, and
there is a sequence {wn} ∈ W ({Tn}) such that (17) and (18) are true. Since Θ = R

k ,
(17) combinedwith (13) yields (27). Now (26) follows from the central limit theorem
for locally square-integrable martingales, see e.g. Liptser and Shiryayev [29, Theo-
rem5.5.4 and Problem5.5.6]. Contiguity (Pn,ϑn

Tn
) � (Pn

Tn
) follows fromRemark6. ��

Proof of Theorem3 Applying Theorem1, we obtain (16) and find a sequence {wn} ∈
W ({Tn}) such that (17) and (18) hold. Combining (29) and (17) with ϑn ≡ ϑ and
ηn ≡ 0, we get

〈wn,wn〉t Pn−→ 8Ht , n → ∞, t ∈ S. (72)

By the functional central limit theorem for locally square-integrable martingales,
see e.g. Jacod and Shiryaev [16, TheoremVIII.3.22] or Liptser and Shiryayev [29,
Theorem7.1.4 and Problem7.1.4], we have (30). The relation (31) follows directly
from (72). Remaining assertions follow from Theorem2. ��
Proof of Theorem4 As in the proof of Theorem2, we obtain (16) and find a sequence
{wn} ∈ W such that (17) and (18) are satisfied, and we obtain from (17) and (13)
that

〈wn,wn〉T P−→ CT

and
〈wn,wn〉sn P−→ 0,

n → ∞. Now (33) follows from Liptser and Shiryayev [29, Theorem5.5.5 and Prob-
lem5.5.6]. Contiguity (Pn,ϑn

Tn
) � (Pn

Tn
) is checked using Remark6. ��

Proof of Theorem5 Similar to that of Theorem3. ��
Proof of Theorem6 (i) It follows from TheoremIX.3.27 in Jacod and Shiryaev [16]
that (B), (35) and (36) imply the weak convergence

L (Bn|Pn)
d−→ L (B|P), n → ∞, in D([0, T ],Rq).

Let αn → α ∈ C(Rq) in the Skorokhod topology onD(Rq). Then, due to (G) (b),
Gn(αn) → G(α) in the Skorokhod topology onD(Rk×q) and, since α is continuous,
(αn,Gn(αn)) → (α,G(α)) in the Skorokhod topology on D(Rq+k×q). Hence

L (Bn, Kn|Pn) = L (Bn,Gn ◦ Bn|Pn)
d−→ L (B,G ◦ B|P)

= L (B,G|P), n → ∞, in D([0, T ],Rq+k×q),

see e.g. Theorem4.27 in Kallenberg [20].
It can be easily seen from Jacod and Shiryaev [16, TheoremVI.6.21] that the

Lindeberg-type condition (36) guarantees that the sequence (Bn|Pn) is predictably
uniformly tight (P-UT). By TheoremVI.6.22 in Jacod and Shiryaev [16],
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L (wn|Pn) = L (Kn
− · Bn|Pn)

d−→ L (G− · B|P), n → ∞, in D([0, T ],Rk).

The sequence (wn|Pn) is also P-UT, see Jacod and Shiryaev [16, Corollary VI.6.20],
and, applying TheoremVI.6.26 in Jacod and Shiryaev [16], we obtain that

L (wn, [wn,wn]|Pn)
d−→ L (G− · B, (G−cG	−) · F |P), n → ∞, in D([0, T ],Rk+k2 ).

(73)

Moreover,wn arePn-locally square-integrablemartingales satisfying (11). Indeed,

‖x‖21{‖x‖>ε} � νwn

T = ‖Kn
−x‖21{‖Kn−x‖>ε} � νBn

T ,

hence

Pn(‖x‖21{‖x‖>ε} � νw
n

T > δ
)

≤ Pn(‖x‖21{‖x‖>εc−1} � νB
n

T > δc−2
)

+ Pn(sup
t

|Kn
t | > c),

and the claim follows from (36) and the tightness of (Kn).
It follows, in particular, from (73) that the sequence

([wn,wn]T |Pn
)
is R-tight.

This property combined with the Lindeberg-type condition (11) implies

sup
s≤T

∣∣[wn,wn]s − 〈wn,wn〉s
∣∣ Pn−→ 0, n → ∞,

see e.g. the proof of Lemma5.5.5 in Liptser and Shiryayev [29]. In particular, (10)
and (39) hold, {wn} ∈ W , and we have (W) due to (37). The rest follows from
Theorem1.

(ii) For the first statement use (38) and Remark6. Let G be a Gaussian process.
Our arguments are similar to the ones used in Example3 in Liptser and Shiryaev
[30, Chap.VI, pp. 233–234]. To simplify the notation, put β = G	−ϑ and Z = E (β ·
B). Then β is a k-dimensional Gaussian process. Let us note that the quadratic
characteristic (β	cβ) · F of the local martingale β · B is majorized by the process
‖β‖2 · F . Using the inequality

exp(δ‖βt‖2) ≤ 1

k

k∑
i=1

exp(kδ(β i
t )

2)

and following the arguments in [30], we can find δ > 0 such that

sup
t≤T

E exp(δ‖βt‖2) < ∞. (74)

Now take a partition 0 = t0 < t1 < · · · < tn = T such thatmax j≤n(Ft j − Ft j−1) ≤
2δ. By Jensen’s inequality,
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exp

(
1

2

t j∫
t j−1

‖βt‖2 dFt

)
≤ 1

Ft j − Ft j−1

t j∫
t j−1

exp
(
δ‖βt‖2

)
dFt , j = 1, . . . , n,

hence, due to (74),

E exp

(
1

2

t j∫
t j−1

(β	cβ) dFt

)
≤ E exp

(
1

2

t j∫
t j−1

‖βt‖2 dFt

)
< ∞, j = 1, . . . , n.

ByNovikov’s criterion,E
(
(1(t j−1,t j ]β) · B) = Zt j /Zt j−1 is amartingale.HenceE(Zt j |

Ft j−1) = Zt j−1 , j = 1, . . . , n, which implies EZT = 1.
(iii) The statement follows from Definition2. ��

6.3 Proofs of Theorems7–9

Proof of Theorem7 The first part of Condition (O) is obvious and the second part is a
simple consequence of (41), see e.g. [6, p. 226]. Propositions2.8 and 2.6 in [6] show
that (41) and (42) imply (L). Moreover, it follows from (41) and Proposition2.5 in
[6] that for each {ϑn} ∈ S

the sequence (hn,ϑn
Tn

|Pn) is R-tight. (75)

Thus, we are in a position to apply Theorem2.1 in [6] to obtain

Var
(
h
n,ϑn − 1

2

〈
mn,ϑn ,mn,ϑn

〉)
Tn

Pn−→ 0, n → ∞, (76)

and

sup
s≤Tn

∣∣∣log Zn,ϑn
s − log Zn,ϑn

0 −
(
2mn,ϑn

s − 2
〈
mn,ϑn ,mn,ϑn

〉
s

)∣∣∣ Pn−→ 0, n → ∞,

(77)

for every {ϑn} ∈ S . Moreover, we can replace mn,ϑn by m̃n,ϑn in (76) and (77) due
to (4).

Nowdefinewn = (wn,1, . . . ,wn,k) according to (20).As in the proof ofTheorem1,
it follows from (75), (76), and (14) that {wn} ∈ W ({Tn}).

It follows from (44) and (77) that

sup
s≤Tn

∣∣∣(2m̃n,ϑn
s − 2

〈
m̃n,ϑn , m̃n,ϑn

〉
s

)
−
(
ϑ	
n Xn

s − Bn,ϑn
s

)∣∣∣ Pn−→ 0, n → ∞.

Combining it with the same relation for ϑn ≡ ei , i = 1, . . . , k, we get
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sup
s≤Tn

|lns − bns | Pn−→ 0, n → ∞, (78)

where
ln := 2m̃n,ϑn − ϑ	

n w
n

is a Pn-locally square-integrable martingale, and

bn := 2〈m̃n,ϑn , m̃n,ϑn 〉 − Bn,ϑn − 1

2

∑
i

ϑn,i 〈wn,i ,wn,i 〉 +
∑
i

ϑn,i B
n,ei

is a predictable process with finite variation.
We have that

the sequence
(
Var (bn)Tn

∣∣Pn
)

is R-tight (79)

due to (43), (75) and (76). Moreover,

x21{|x |>ε} � νl
n

Tn

Pn−→ 0, n → ∞, for all ε > 0, (80)

in view of (L). In particular,

lim
a↑∞ lim sup

n→∞
Pn
(
|x |1{|x |>a} � νl

n

Tn > ε
)

= 0 for all ε > 0. (81)

According to Corollary 4 in Gushchin [3], conditions (79) and (81) are sufficient to
deduce from (78) that

sup
s≤Tn

|lns | Pn−→ 0, n → ∞. (82)

(In [3] all the processes are defined on the same filtered probability space which is not
a restriction sincewe can take the tensor product of all stochastic bases. Alternatively,
a direct proof of (82) can be given following the same lines as in [3].) Now Corollary

VIII.3.24 in [16] allows us to deduce from (82) and (80) that 〈ln, ln〉Tn Pn−→ 0. Thus
we have proved (W), and the rest of the claim follows from Theorem1. ��
Proof of Theorem8 Condition (O) is an immediate consequence of the contiguity
(Pn,ϑn

T ) � �(Pn
T ), {ϑn} ∈ S , see the beginning of the previous proof.

Let {ϑn} and {ηn} be sequences from S converging to ϑ and η respectively. (Of
course, it is sufficient to prove (H), (L) and (W) only for such sequences.) Let Zn,ϑn ,ηn

be the generalized density process of Pn,ϑn with respect to Pn,ηn . It is well known
that asymptotic normality∗ of En

t , t ∈ S, implies

L
(
log Zn,ϑn ,ηn

t

∣∣∣Pn,ηn

)
⇒ N

(
−1

2
(ϑ − η)	Kt (ϑ − η), (ϑ − η)	Kt (ϑ − η)

)

as n → ∞. In other words,
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L
(
Zn,ϑn ,ηn

∣∣∣Pn,ηn

) d f (S)−−−→ L
(
e(ϑ−η)	N− 1

2 (ϑ−η)	K (ϑ−η)
∣∣∣P), n → ∞.

The latter relation allows us to apply Theorem4.6 in [6] to the processes Zn,ϑn ,ηn

under the measures Pn,ηn . First, we obtain (L) (with ηn ≡ 0). Second, we get all the
assumptions of Theorem2.1 in [6]. Combining relation (2.9) in [6] with statement
(v) of [6, Theorem4.6], we obtain, in particular,

sup
s≤T

∣∣∣hn,ϑn ,ηn
s − 1

8
(ϑn − ηn)

	(Ks − K0)(ϑn − ηn)

∣∣∣ Pn,ηn−→ 0, n → ∞. (83)

Convergence in Pn,ηn -probability can be replaced by convergence in Pn-probabil-

ity due to contiguity, and the processes hn,ϑn ,ηn can be replaced by h
n,ϑn ,ηn due to

Proposition1. This shows that (H) is satisfied. By Theorem1 condition (W) also
holds. Let {wn} be a sequence satisfying (W). Then (46) follows from (83) and (17),
and (47) is a consequence of (18) and asymptotic normality∗ of En

0.
Finally, we again apply Theorem4.6 in [6] in the above situation with ϑn ≡ ϑ and

ηn ≡ 0 and obtain

L
(
log Zn,ϑ

∣∣∣Pn
)

d−→ L
(
ϑ	N − 1

2
ϑ	Kϑ

∣∣∣P), n → ∞, in D([0, T ]).

Combined with (18), (46), and asymptotic normality∗ of E
n
0, the last relation

reduces to

L
(
ϑ	(V n

0 + wn)
∣∣Pn
) d−→ L

(
ϑ	N

∣∣P), n → ∞, in D([0, T ])

for every ϑ ∈ R
k . Since the limiting process N is continuous, the components wn,i

areC-tight inD([0, T ]). Therefore, the sequence wn isC-tight inD([0, T ],Rk). The
Cramér–Wold device allows us to identify the limit, and we obtain

L
(
V n
0 + wn

∣∣Pn
) d−→ L

(
N
∣∣P), n → ∞, in D([0, T ],Rk),

which implies (45) and asymptotic independence of V n
0 and (wn)t∈[0,T ] under Pn . ��

Proof of Theorem9 Take an arbitrary {ϑn} ∈ S , and assume without loss of general-
ity that ϑn → ϑ . We proceed as in the beginning of the proof of Theorem7. We have

Zn,ϑn
0

Pn−→ 1 by the assumptions and deduce (12) from contiguity (Pn,ϑn
Tn

) � �(Pn
Tn

),
hence condition (O) holds. Contiguity combined with (42) yields (L) and (75). Using
condition (D) and asymptotic normality of {En

Tn
}, given an arbitrary subsequence

{n′} ⊆ {n}, we can extract a further subsequence {n′′} ⊆ {n′} such that the matrices
Kn from (22) and hn,ϑn

Tn
converge in Pn-probability along this subsequence {n′′} to

deterministic limits, say, K ∈ M
k+ and h ∈ R+, respectively. Applying Theorem3.1

in [6] to the subsequence {n′′} of Zn,ϑn , we obtain that (log Zn,ϑn
Tn

|Pn) converges in
law to N (−4h, 8h) along {n′′}. On the other hand, asymptotic normality of {En

Tn
}
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gives convergence in law of (log Zn,ϑn
Tn

|Pn) to N (− 1
2ϑ

	Kϑ, ϑ	Kϑ) along {n′′},
hence h = 1

8ϑ
	Kϑ . As a conclusion, we obtain

hn,ϑn
Tn

− 1

8
ϑ	Knϑ

Pn−→ 0, n → ∞.

Now, we want to show that for two sequences {ϑn} and {ηn} in S with limits ϑ

and η respectively,

hn,ϑn ,ηn
Tn

− 1

8
(ϑ − η)	Kn(ϑ − η)

Pn,ηn−→ 0, n → ∞. (84)

To repeat the previous arguments,wemust show that (Pn,ϑn
Tn

) � �(Pn,ηn
Tn

), Zn,ϑn ,ηn
0

Pn,ηn−→
1, and

sup
s≤Tn

|ΔZn,ϑn ,ηn
s | Pn,ηn−→ 0, n → ∞, (85)

where Zn,ϑn ,ηn is the generalized density process of Pn,ϑn with respect to Pn,ηn . The
first two claims are easy. To prove (85), let us note that

Zn,ϑn ,ηn = Zn,ϑn

Zn,ηn
Pn-a.s.

at least on the set {Zn,ϑn
Tn

> 0, Zn,ηn
Tn

> 0}, whose Pn-probability tends to 1. Hence,
on this set

ΔZn,ϑn ,ηn

Zn,ϑn ,ηn−
=
(

ΔZn,ϑn

Zn,ϑn−
− ΔZn,ηn

Zn,ηn−

)
Zn,ηn−
Zn,ηn

.

Using (42), (3) and (2), we have

sup
s≤Tn

∣∣∣∣ΔZn,ϑn ,ηn
s

Zn,ϑn ,ηn
s−

∣∣∣∣ Pn−→ 0, n → ∞.

Convergence in Pn-probability can be replaced by convergence in Pn,ηn -probability
due to contiguity, and inequality (2) (applied to Pn,ηn and Zn,ϑn ,ηn ) allows us to get
rid of the denominator. Thus, we have proved (85) and consequently (84). Replacing
in (84) convergence in Pn,ηn -probability by convergence in Pn-probability and the

processes hn,ϑn ,ηn by h
n,ϑn ,ηn due to Proposition1, we obtain condition (H). The final

claim follows from Theorem1. ��
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Fractional Brownian Motion



Noise Sensitivity of Functionals of Fractional
Brownian Motion Driven Stochastic
Differential Equations: Results and
Perspectives

Alexandre Richard and Denis Talay

Abstract We present an innovating sensitivity analysis for stochastic differential
equations: We study the sensitivity, when the Hurst parameter H of the driving frac-
tional Brownianmotion tends to the pure Brownian value, of probability distributions
of smooth functionals of the trajectories of the solutions {X H

t }t∈R+ and of the Laplace
transform of the first passage time of X H at a given threshold. Our technique requires
to extend already known Gaussian estimates on the density of X H

t to estimates with
constants which are uniform w.r.t. t in the whole half-line R+ − {0} and H when H
tends to 1

2 .

Keywords Fractional Brownian motion · First hitting time · Malliavin calculus

1 Introduction

Recent statistical studies showmemory effects in biological, financial, physical data:
see e.g. [18] for a statistical evidence in climatology and [6] and citations therein for
an evidence and important applications in finance. For such data theMarkov structure
of Lévy-driven stochastic differential equations makes such models questionable. It
seems worth proposing new models driven by noises with long-range memory such
as fractional Brownian motions.

In practice the accurate estimation of the Hurst parameter H of the noise is dif-
ficult (see e.g. [4]) and therefore one needs to develop sensitivity analysis w.r.t. H
of probability distributions of smooth and non-smooth functionals of the solutions
(X H

t ) to stochastic differential equations. Similar ideas were developed in [11] for
symmetric integrals of the fractional Brownian motion.
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Here, we review and illustrate by numerical experiments our theoretical results
obtained in [17] for two extreme situations in terms of Malliavin regularity: on the
one hand, expectations of smooth functions of the solution at a fixed time; on the
other hand, Laplace transforms of first passage times at prescribed thresholds. Our
motivation to consider first passage times comes from their many use in various
applications: default risk in mathematical finance or spike trains in neuroscience
(spike trains are sequences of times at which the membrane potential of neurons
reach limit thresholds and then are reset to a resting value, are essential to describe
the neuronal activity), stochastic numerics (see e.g. [3, Sect. 3]) and physics (see
e.g. [13]). Long-range dependence leads to analytical and numerical difficulties: see
e.g. [10].

In a Markovian setting the simplest partial differential equations characterizing
the probability distributions of first hitting times are those satisfied by their Laplace
transforms. In some circumstances they even have explicit solutions. It is, thus,
natural to concentrate our study on Laplace transforms.We have a secondmotivation.
Laplace transforms of first hitting times are expectations of singular functionals on
the Wiener space. It seemed worth to us showing that a sensitivity analysis can be
developed in such singular situations.

Our theoretical estimates and numerical results tend to show that the Markov
Brownian model is a good proxy model as long as the Hurst parameter remains
close to 1

2 . This robustness property, even for probability distributions of singular
functionals (in the sense ofMalliavin calculus) of the paths such as first hitting times,
is an important information formodeling and simulation purposes: when statistical or
calibration procedures lead to estimated values of H close to 1

2 , then it is reasonable
to work with Brownian SDEs, which allows to analyze the model by means of PDE
techniques and stochastic calculus for semimartingales, and to simulate it by means
of standard stochastic simulation methods.

Our Main Results
The fractional Brownian motion {B H

t }t∈R+ with Hurst parameter H ∈ (0, 1) is the
centred Gaussian process with covariance

RH (s, t) = 1
2

(
s2H + t2H − |t − s|2H

)
, ∀s, t ∈ R+.

Given H ∈ ( 12 , 1), we consider the process {X H
t }t∈R+ solution to the following

stochastic differential equation driven by {B H
t }t∈R+ :

X H
t = x0 +

∫ t

0
b(X H

s ) ds +
∫ t

0
σ(X H

s ) ◦ dB H
s , (1)

where the last integral is a pathwise Stieltjes integral in the sense of [19]. For H = 1
2

the process X solves the following SDE in the classical Stratonovich sense:

Xt = x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) ◦ dBs . (2)
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Below we use the following set of hypotheses:

(H1) There exists γ ∈ (0, 1) such that b, σ ∈ C1+γ (R);
(H2) b, σ ∈ C2(R);
(H3) The function σ satisfies a strong ellipticity condition: ∃σ0 > 0 such that

|σ(x)| ≥ σ0,∀x ∈ R.

Our first theorem is elementary. It describes the sensitivity w.r.t. H around the
critical Brownian parameter H = 1

2 of time marginal probability distributions of
{X H

t }t∈R+ .

Theorem 1 Let H ∈ ( 12 , 1), and let X H and X be as before. Suppose that b and σ

satisfy (H1) and (H3), and ϕ is bounded and Hölder continuous of order 2 + β for
some β > 0. Then, for any T > 0 there exists CT > 0 such that

∀H ∈ [ 12 , 1), sup
t∈[0,T ]

∣∣Eϕ(X H
t ) − Eϕ(Xt )

∣∣ ≤ CT (H − 1
2 ).

Our next theorem concerns the first passage time at threshold 1 of X H issued
from x0 < 1: τ X

H := inf{t ≥ 0 : X H
t = 1}. The probability distribution of the

first passage time τH of a fractional Brownian motion is not explicitly known. [14]
obtained the asymptotic behaviour of its tail distribution function and [7] obtained
an upper bound on the Laplace transform of τ 2H

H . The recent work of [8] proposes
an asymptotic expansion (in terms of H − 1

2 ) of the density of τH formally obtained
by perturbation analysis techniques.

Theorem 2 Suppose that b and σ satisfy Hypotheses (H2) and (H3) and let x0 < 1.
There exist constants λ0 ≥ 1, μ ≥ 0 (both depending on b and σ only), α > 0 and
0 < η0 < 1−x0

2 such that: for all ε ∈ (0, 1
4 ) and 0 < η ≤ η0, there exists Cε,η > 0

such that

∀λ ≥ λ0, ∀H ∈ [ 12 , 1),
∣∣∣
∣E
(

e−λτ X
H

)
− E

(
e
−λτ X

1
2

)∣∣∣
∣

≤ Cε,η(H − 1
2 )

1
2 −ε e−αS(1−x0−2η)(

√
2λ+μ2−μ),

where S(x) = x ∧ x
1
2H . In the pure fBm case (where b ≡ 0 and σ ≡ 1), the result

holds with λ0 = 1 and μ = 0.

Remark 1 In [17], we extend the preceding result to the case H < 1
2 . The statement,

the definition of the stochastic integrals, and technical arguments in the proofs are
substantially different from the case H > 1

2 .

In addition to the preceding theorems,weprovide accurate estimates on the density
of X H

t with constants which are uniform w.r.t. small and long times and w.r.t. H in
[ 12 , 1). Our next theorem improves estimates in [2, 5]. Our contributions consists in
getting constants which are uniform w.r.t. t in the whole half-line R+ − {0} and H
when H tends to 1

2 .
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Theorem 3 Assume that b and σ satisfy the conditions (H2) and (H3). Then for
every H ∈ [ 12 , 1), the density of X H satisfies: there exists C(b, σ ) ≡ C > 0 such
that, for all t ∈ R+ and H ∈ [ 12 , 1),

∀x ∈ R, pH
t (x) ≤ eCt

√
2π t2H

exp

(
− (x − x0)2

2Ct2H

)
. (3)

Theorems 1–2 are proved in [17]. We do not address the proof of Theorem 3 here.

We sketch the proofs of Theorems 1 and 2 in Sect. 2. In Sect. 3 we consider a
case which was not tackled in [17], that is, the case λ < 1. Finally, in Sect. 4 we
show numerical experiment results which illustrate Theorem 2 and suggest that the
(H − 1

2 )
1
2 − rate is sub-optimal.

2 Sketch of the Proofs

Under Assumption (H3), the Lamperti transform F is a map such that F(X H ) solves
Eq. (1) with coefficients b̃ = b◦F−1

σ◦F−1 and σ(x) ≡ 1. Since F is one-to-one, we may
and do assume in the rest of this paper that σ(x) ≡ 1. See [17] for more details.

2.1 Reminders on Malliavin Calculus

We denote by D and δ, the classical derivative and Skorokhod operators of Malliavin
calculus w.r.t. Brownian motion on the time interval [0, T ] (see e.g. [15]). In the
fractional Brownian motion framework, the Malliavin derivative DH is defined as
an operator on the smooth random variables with values in the Hilbert space HH

defined as the completion of the space of step functions on [0, T ] with the following
scalar product:

〈ϕ,ψ〉HH := αH

∫ T

0

∫ T

0
ϕs ψt |s − t |2H−2 dsdt < ∞,

where αH = H(2H − 1).

The domain of DH in L p(Ω) (p > 1) is denoted by D1,p and is the closure of the
space of smooth random variables with respect to the norm:

‖F‖p
1,p = E(|F |p) + E

(‖DH F‖p
HH

)
.
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Equivalently, DH and δH are defined as DH := (K ∗
H )−1D and δH (u) := δ(K ∗

H u)

for u ∈ (K ∗
H )−1(domδ) (cf. [15, p. 288]), where for any H ∈ ( 12 , 1) the operator K ∗

H
is defined as follows: for any ϕ with suitable integrability properties,

K ∗
Hϕ(s) = (H − 1

2 )cH

∫ T

s

(
θ

s

)H− 1
2

(θ − s)H− 3
2 ϕ(θ) dθ

with

cH :=
(

2H Γ (3/2 − H)

Γ (H + 1
2 ) Γ (2 − 2H)

) 1
2

.

We denote by ‖ · ‖∞,[0,T ] the sup norm and ‖ · ‖α the Hölder norm for functions
on the interval [0, T ].

Let X H be the solution to (1) with σ(x) ≡ 1. There exist modifications of the
processes X H and DH· X H· such that for any α < H it a.s. holds that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖X H‖∞,[0,T ] ≤ CT (1 + |x0| + ‖B H‖∞,[0,T ]),
‖X H‖α ≤ ‖B H‖α + CT (1 + |x0| + ‖B H‖∞,[0,T ]),
‖DH· X H· ‖∞,[0,T ]2 ≤ CT ,

supr≤t
|DH

r X H
t −1|

t−r ≤ CT ,∀t ∈ [0, T ] .

(4)

These inequalities are simple consequences of the definition of X H , assumptions

(H1) and (H3), and the equality: DH
r X H

t = 1{r≤t}
(
1 + ∫ t

r DH
r X H

s b′(X H
s )ds

)
(see

Sect. 3 in [17] for more details).

2.2 Sketch of the Proof of Theorem 1

Proving Theorem 1 is easy. A first technique consists in using pathwise estimates
on B H − B1/2 with B H and B1/2 defined on the same probability space. A second
technique, which we present here in order to introduce the reader to the method of
proof for Theorem 2, consists in differentiating u(t, X H

t ) where

u(s, x) := Ex (ϕ(Xt−s)) ,

which leads to

u(t, X H
t ) = u(0, x0) +

∫ t

0

(
∂su(s, X H

s ) + ∂x u(s, X H
s )b(X H

s )
)
ds + δH

(
1[0,t]∂x u(·, X H· )

)

+ αH

∫ t

0

∫ s

0
|r − s|2H−2DH

r X H
s ∂2xx u(s, X H

s ) drds.
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As u solves a parabolic PDE driven by the generator of (Xt ) and as the Skorokhod
integral has zero mean we get

Eϕ(X H
t ) − Ex0ϕ(Xt ) = Eu(t, X H

t ) − u(0, x0)

= E

∫ t

0
∂2

xx u(s, X H
s )
(
Hs2H−1 − 1

2

)
ds

+ αHE

∫ t

0

∫ s

0
|r − s|2H−2(DH

r X H
s − 1)∂2

xx u(s, X H
s ) drds.

It then remains to use the estimates (4).

2.3 Sketch of the Proof of Theorem 2

We now sketch the proof of Theorem 2.We will soon limit ourselves to the pure fBm
case (b(x) ≡ 0 and σ ≡ 1) in order to show the main ideas used in the proof and
avoid too heavy technicalities. Recall that, after having used the Lamperti transform,
we are reduced to the case σ(x) ≡ 1.

Our Laplace transform’s sensititivity analysis is based on a PDE representation
of first hitting time Laplace transforms in the case H = 1

2 .
For λ > 0 it is well known that

∀x0 ∈ (−∞, 1], Ex0

(
e
−λτ 1

2

)
= uλ(x0),

where the function uλ is the classical solution with bounded continuous first and
second derivatives to

⎧
⎪⎨

⎪⎩

2b(x)u′
λ(x) + u′′

λ(x) = 2λuλ(x), x < 1,

uλ(1) = 1,

limx→−∞ uλ(x) = 0.

(5)

For any t ∈ [0, T ] the process 1[0,t]u′
λ(B H· ) e−λ· is in dom δ

(T )
H . One thus can

apply Itô’s formula to e−λt uλ(X H
t ) (see [17, Sect. 2] and [15]). As uλ satisfies (5),

for any t ≤ T ∧ τH we get

e−λt uλ(X H
t ) = uλ(x0) +

∫ t

0
e−λs

(
u′

λ(X H
s )b(X H

s ) − λuλ(X H
s )
)
ds

+ δ
(T )
H

(
1[0,t](·)e−λ·u′

λ(X H
· )
)

+ αH

∫ t

0

∫ t

0
DH

v

(
e−λsu′

λ(X H
s )
) |s − v|2H−2 dvds ,

where the last term corresponds to the Itô term. Using
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DH
v X H

s = 1[0,s](v)
(
1 +

∫ s

0
b′(X H

θ ) DH
v X H

θ dθ

)

and the ODE (5) satisfied by uλ, we get

e−λt uλ(X H
t ) = uλ(x0) +

∫ t

0

(
αH

∫ s

0
|s − v|2H−2dv − 1

2

)
e−λsu′′

λ(X H
s ) ds

+ δ
(T )
H

(
1[0,t](·)e−λ·u′

λ(X H
· )
)

+ αH

∫ t

0

∫ s

0
e−λsw′′

λ(X H
s ) I (v, s) |s − v|2H−2 dvds,

where I (v, s) = 1{v≤s}
∫ s

v b′(X H
θ ) DH

v X H
θ dθ . Observe that the last term vanishes for

H close to 1
2 , since αH |s − v|2H−2 is an approximation of the identity and I (v, s)

converges to 0 as |v − s| → 0. This argument is made rigorous in [17].
We now limit ourselves to the pure fBm case (b(x) ≡ 0 and σ ≡ 1) to make

the rest of the computations more understandable, although the differences will be
essentially technical. Given that now, u′

λ(x) = √
2λuλ(x), the previous equality

becomes

uλ(B H
t ) e−λt = uλ(x0) + √

2λδ
(T )
H

(
1[0,t]uλ(B H

· ) e−λ·)

+ 2λ
∫ t

0

(
Hs2H−1 − 1

2

)
uλ(B H

s ) e−λs ds.

Evaluate the previous equation at T ∧τH , take expectations and let T tend to infinity.
For any λ ≥ 0 it comes:

E
(
e−λτH

)− E

(
e
−λτ 1

2

)
= E

[
2λ
∫ τH

0
(Hs2H−1 − 1

2 )uλ(B H
s ) e−λs ds

]
(6)

+ √
2λ lim

T →∞E

[
δ

(T )
H

(
1[0,t]uλ(B H

· ) e−λ·)
∣
∣∣
t=τH ∧T

]

=: I1(λ) + I2(λ). (7)

Proposition 1 Let T be the function of λ ∈ R+ defined by T (λ) = (2λ)1− 1
4H if

λ ≤ 1 and T (λ) = √
2λ if λ > 1. There exists a constant C > 0 such that

|I1(λ)| ≤ C (H − 1
2 ) e− 1

4 S(1−x0)T (λ),

where S is the function defined in Theorem 2.

Proof (Sketch of proof) From Fubini’s theorem, we get

I1(λ) = 2λ
∫ +∞

0
(Hs2H−1 − 1

2 )E
[
1{τH ≥s}uλ(B H

s )
]

e−λs ds.
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The inequalities

∀H ∈ ( 12 , 1), ∀s ∈ (0,∞), |Hs2H−1 − 1
2 | ≤ (H − 1

2 ) (1∨ s2H−1)(1+ 2H | log s|)

and

E
[
1{τH ≥s}uλ(B H

s )
] ≤

∫ 1

−∞
uλ(x)

e− x2

2s2H

√
2πs2H

dx =
∫ 1

−∞
e−(1−x)

√
2λ e− x2

2s2H

√
2πs2H

dx

lead to the desired result.

The above calculation can be extended to diffusions but then accurate estimates on
the density of X H are needed: They are provided by our Theorem 3.

Compared to the proof of Theorem 1, an important difficulty appears when esti-
mating |I2(λ)|: as the optional stopping theorem does not hold for Skorokhod inte-
grals of the fBm one has to carefully estimate expectations of stopped Skorokhod
integrals and obtain estimates which decrease infinitely fast when λ goes to infinity.
We obtained the following result.

Proposition 2

∀λ > 1, |I2(λ)| ≤ C(H − 1
2 )

1
2 −εe−αS(1−x0−2η)

√
2λ. (8)

Proof Proposition 13 of [16] shows that

∀T > 0, E

(
δ(T )(1[0,t](·)uλ(B H

· )e−λ·)
∣∣
t=T ∧τH

)
= 0.

Thus I2(λ) satisfies

|I2(λ)| = √
2λ

∣∣∣∣ limN→∞E

[
δ

(N )
H

(
1[0,t](·)uλ(B H

· )e−λ·)
∣∣∣
t=τH ∧N

− δ(N )
(
1[0,t](·)uλ(B H

· )e−λ·)∣∣
t=τH ∧N

]∣∣∣

= √
2λ

∣∣
∣∣ limN→∞E

[
δ(N )

({K ∗
H − Id}(1[0,t](·)uλ(B H

· )e−λ·)
)∣∣

t=τH ∧N

]∣∣
∣∣

≤ √
2λ lim

N→∞E sup
t∈[0,τH ∧N ]

|δ(N )
({K ∗

H − Id}(1[0,t](·)uλ(B H
· )e−λ·)

) |

≤ √
2λ lim

N→∞E sup
t∈[0,N ]

[
1{τH ≥t}|δ(N )

({K ∗
H − Id}(1[0,t](·)uλ(B H

· )e−λ·)
) |] .

Define the field {Ut (v), t ∈ [0, N ], v ≥ 0} and the process {Υt , t ∈ [0, N ]} by

∀t ∈ [0, N ], Ut (v) = {K ∗
H − Id} (1[0,t](·) uλ(B H

· ) e−λ·) (v),

and
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Υt = δ(N )(Ut (·)).

For any real-valued function f with f (0) = 0 one has

1{τH ≥t}| f (t)| ≤ 1{τH ≥t}
[t]∑

n=0

sup
s∈[n,n+1]

1{τH ≥s}| f (s) − f (n)|

≤
[t]∑

n=0

sup
s∈[n,n+1]

1{τH ≥s}| f (s) − f (n)|.

Therefore,

|I2(λ)| ≤ √
2λ lim

N→∞E sup
t∈[0,N ]

[
1{τH ≥t}|Υt |

]

≤ √
2λ lim

N→∞

N−1∑

n=0

E sup
t∈[n,n+1]

[
1{τH ≥t}|Υt − Υn|

]
.

(9)

Suppose for a while that we have proven: there exists η0 ∈ (0, 1−x0
2 ) such that for

all η ∈ (0, η0] and all ε ∈ (0, 1
4 ), there exist constants C, α > 0 such that

E sup
t∈[n,n+1]

[
1{τH ≥t}|Υt − Υn|

] ≤ C (H − 1
2 )

1
2 −ε e− 1

3(2+4ε) λne−αS(1−x0−2η)
√
2λ. (10)

We would then get:

|I2(λ)| ≤ C
√
2λ

∞∑

n=0

e− λn
3(2+4ε) (H − 1

2 )
1
4 −εe−αS(1−x0−2η)

√
2λ

≤ C (H − 1
2 )

1
2 −εe−αS(1−x0−2η)

√
2λ,

which is the desired result (8).
In order to estimate the left-hand side of Inequality (10) we aim to apply Garsia–

Rodemich–Rumsey’s lemma (see below). However, it seems hard to get the desired
estimate by estimating moments of increments of 1{τH ≥t}|Υt − Υn|, in particular
because 1{τH ≥t} is not smooth in theMalliavin sense.We thus proceed by localization
and construct a continuous process Ῡt which is smooth on the event {τH ≥ t} and is
close to 0 on the complementary event. To this end we introduce the following new
notations.

For some small η > 0 to be fixed set

∀t ∈ [0, N ], Ūt (v) = {K ∗
H − Id} (1[0,t](·) uλ(B H

· )φη(B H
· ) e−λ·) (v)

and
Ῡt = δ(N )

(
Ūt
)
,
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where φη is a smooth function taking values in [0, 1] such that φη(x) = 1, ∀x ≤ 1,
and φη(x) = 0, ∀x > 1 + η.

The crucial property of Ῡt is the following: For all n ∈ N and n ≤ r ≤ t < n + 1,
1{τH ≥t}Υr = 1{τH ≥t}Ῡr a.s. This is a consequence of the local property of δ [15, p. 47].
Therefore, for any n ≤ N − 1,

E

(

sup
t∈[n,n+1]

1{τH ≥t}|Υt − Υn |
)

= E

(

sup
t∈[n,n+1]

1{τH ≥t}|Ῡt − Ῡn |
)

≤ E

(

sup
t∈[n,n+1]

|Ῡt − Ῡn |
)

.

(11)
Recall the Garsia–Rodemich–Rumsey lemma: if X is a continuous process, then for
p ≥ 1 and q > 0 such that pq > 2, one has

E

(

sup
t∈[a,b]

|Xt − Xa|
)

≤ C
pq

pq − 2
(b − a)

q− 2
p E

[(∫ b

a

∫ b

a

|Xs − Xt |p

|t − s|pq
ds dt

) 1
p
]

≤ C
pq

pq − 2
(b − a)

q− 2
p

(∫ b

a

∫ b

a

E (|Xs − Xt |p)

|t − s|pq
ds dt

) 1
p

(12)

provided the right-hand side in each line is finite. In order to apply (12), we thus
need to estimate moments of Ῡt − Ῡs . Lemmas 1 and 2 below give bounds on the
moments of Ῡt − Ῡs in terms of a power of |t − s|. Thus Kolmogorov’s continuity
criterion implies that Ῡ has a continuous modification, which justifies to apply the
GRR lemma to Ῡ .

In addition, we can easily obtain bounds on the norm
∥∥Ῡt − Ῡs

∥∥
L2(Ω)

in terms of

(H − 1
2 ). This observation leads us to notice that

E
(|Ῡs − Ῡt |2+4ε

) ≤ ∥∥Ῡt − Ῡs

∥∥
L2(Ω)

× E
(|Ῡt − Ῡs |2+8ε

) 1
2 .

We then combine Lemmas 1 and 2 below to obtain: For every [n ≤ s ≤ t ≤ n + 1],

E
(|Ῡs − Ῡt |2+4ε

) ≤ C (H − 1
2 )(t − s)

1
2 −ε e−αS(1−x0−2η)

√
2λ

× (t − s)
1
2 +2ε e− 1

3 λse−αS(1−x0−2η)
√
2λ

≤ C (H − 1
2 ) (t − s)1+ε e− 1

3 λse−αS(1−x0−2η)
√
2λ.

Choosing p = 2 + 4ε and q = 2+ε/2
2+4ε we thus get

E

(
sup

t∈[n,n+1]
1{τH ≥t}|Υt − Υn|

)
≤ C (H − 1

2 )
1

2+4ε e− α
2+4ε S(1−x0−2η)

√
2λ

(∫ n+1

n

∫ n+1

s
e− 1

3 λs(t − s)
ε
2 −1 dtds

) 1
2+4ε

≤ C (H − 1
2 )

1
2+4ε e−αS(1−x0−2η)

√
2λe− 1

3(2+4ε) λn
,
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from which Inequality (10) follows.

It now remains to prove the above estimates on
∥∥Ῡt − Ῡs

∥∥
L2(Ω)

and E
(|Ῡt−

Ῡs |2+8ε
) 1

2 : These estimates are provided by Lemmas 1 and 2 below whose proofs
are very technical.

Lemma 1 There exists η0 ∈ (0, 1−x0
2 ) such that: for all 0 < η ≤ η0, for all H ∈

[ 12 , 1) and for all 0 < ε < 1
4 , there exist C, α > 0 such that

∀λ ≥ 1, ∀0 ≤ n ≤ s ≤ t ≤ n + 1 ≤ N ,

E
(|Ῡt − Ῡs |2+8ε

) 1
2 ≤ C (t − s)

1
2 +2ε e− 1

3 λse−αS(1−x0−2η)
√
2λ ,

where the function S is defined as in Theorem 2.

Lemma 2 There exists η0 ∈ (0, 1−x0
2 ) such that: For all 0 < η ≤ η0 and 0 < ε < 1

4 ,
there exist C, α > 0 such that

∀n ∈ [0, N ], ∀H ∈ [ 12 ,1), ∀n ≤ s ≤ t ≤ n + 1, ∀λ ≥ 1,
∥∥Ῡt − Ῡs

∥∥
L2(Ω)

≤ C (H − 1
2 )(t − s)

1
2 −ε e−αS(1−x0−2η)

√
2λ.

3 Discussion on the fBm Case with λ < 1

We believe that Theorem 2 also holds true for λ ∈ (0, 1]. One of the main issues
consists in getting accurate enough bounds on the right-hand side of Inequality (9).

For aλ = λ− 1
2H and bλ = − log

√
λ

λ
(λ < 1) we have

|I2(λ)| ≤√
2λE

[
sup

t∈[0,aλ]
1{τH ≥t}

∣
∣δ
({K ∗

H − Id}(1[0,t]uλ(B H
· )e−λ·)

)∣∣
]

+ √
2λE

[

sup
t∈[aλ,bλ]

1{τH ≥t}
∣∣δ
({K ∗

H − Id}(1[aλ,t]uλ(B H
· )e−λ·)

)∣∣
]

+ √
2λ lim

N→+∞E

[

sup
t∈[bλ,N ]

1{τH ≥t}
∣∣δ
({K ∗

H − Id}(1[bλ,t]uλ(B H
· )e−λ·)

)∣∣
]

.

We here limit ourselves to examine the second summand on the right-hand side and
we denote it by I (2)

2 (λ). The two other terms (corresponding to t < aλ and t > bλ)
are easier to study.

Compared to Sect. 2.3, we localize the Skorokhod integral in a slightly different
manner by using φη(SH

t ) instead of φη(B H
t ), where SH

t denotes the running supre-
mum of the fBm up to time t . Hence
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1{τH ≥t}δ
({K ∗

H − Id} (1[0,t]uλ(B H
· )e−λ·))

= 1{τH ≥t}δ
({K ∗

H − Id} (1[0,t]uλ(B H
· )φη(SH

· )e−λ·)) a.s.

Set V̄λ(s) := uλ(B H
s )φη(SH

s ) and

Υ̃t := δ
({K ∗

H − Id} (1[0,t]V̄λ(·)e−λ·)) .

Proceeding as from Eq.(11) to Eq.(12) we get for some p > 1 and m > 0 (chosen
later):

E

(

sup
t∈[aλ,bλ]

1{τH ≥t}|δH
(
1[0,t]uλ(B H

· )e−λ·) |
)

≤ P (τH ≥ aλ)
p−1

p C(bλ − aλ)
m
p

×
⎛

⎝
∫ bλ

aλ

∫ bλ

aλ

E

(
|Υ̃t − Υ̃s |p

)

|t − s|m+2
dsdt

⎞

⎠

1
p

.

(13)

We then use the Proposition 3.2.1 in [15] to bound E|Υ̃t − Υ̃s |p:

E|Υ̃t − Υ̃s |p ≤ C(t − s)
p
2 −1
∫ t

s
|E (V̄λ(r)e−λr

) |p

+ E

[(∫ bλ

0
|Dθ V̄λ(r)e−λr |2 dθ

) p
2
]

dr.

(14)

The Malliavin derivative of the supremum of the fBm is obtained for example in
[7]. Denoting by ϑr the first time at which B H reaches SH

r on the interval [0, r ]
we have DH

θ SH
r = 1{ϑr >θ}. It follows that Dθ SH

r = K H (ϑr , θ). Since Dθ V̄λ(r) =
φη(SH

r )Dθuλ(B H
r )+uλ(B H

r )Dθφη(SH
r ), we are led to study the three following terms

(for p > 2):

(i) E
(
V̄λ(r)e−λr

) ≤ E
(
φη(SH

r )
) ≤ P(SH

r ≤ 1 + η).

(ii) e−pλr
E

[(∫ bλ

0 |φη(SH
r )Dθuλ(B H

r )|2 dθ
) p

2

]

≤ E

[
1{SH

r ≤1+η}
(∫ r

0 |√2λK H (r, θ)uλ(B H
r )|2 dθ

) p
2

]

= (
√
2λ)p r pH

E(1{SH
r ≤1+η}uλ(B H

r )p).

(iii) e−pλr
E

[(∫ bλ

0 |uλ(B H
r )Dθφη(SH

r )|2 dθ
) p

2

]

≤ E

[
φ′

η(SH
r )p ϑ

H p
r

]
≤ ‖φ′

η‖p
∞E

[
1{SH

r ≤1+η}ϑ
H p
r

]
.

Wedo not know any accurate estimate on the joint law of either (SH· , B H· ) or (SH· , ϑ·).
We thus can only use the rough bounds 1{SH

r ≤1+η}uλ(B H
r ) ≤ C1{SH

r ≤1+η} for (ii) and
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ϑr ≤ r for (iii). Then one is in a position to use the following refinement ofMolchan’s
asymptotic [14] obtained by Aurzada [1]: P(τH ≥ t) ≤ t−(1−H)(log t)c for some
constant c > 0. However, when plugged into (14) and then into (13), these bounds
lead us to an upper bound for |I (2)

2 (λ)| which diverges when λ → 0.
Hence, the preceding rough bounds on (ii) and (iii) must be improved. In the

Brownian motion case, the joint laws of (Br , S
1
2

r ) and (ϑr , S
1
2

r ) are known (see e.g.
[12, p. 96–102]). In particular, for p ∈ (2, 3) the term (iii) leads to

∀r ≥ 0, E

[
1{S1/2

r ≤1+η}ϑ
p
2

r

]
≤ C (15)

instead of the bound r
p
2 − 1

2 (log t)c when one uses the previous rough method.
From numerical simulations and an incomplete mathematical analysis using argu-

ments developed by [1, 14], we believe that Inequality (15) remains true for H > 1
2 .

If so, the bound on |I (2)
2 (λ)| would become

|I (2)
2 (λ)| ≤ C

√
2λa

−(1−H)
p−1

p

λ (bλ − aλ)
1
2 ,

which, in view of aλ = λ− 1
2H and bλ = − log

√
λ

λ
, can now be bounded as λ → 0.

4 Optimal Rate of Convergence in Theorem 2: Comparison
with Numerical Results

In this section, we numerically approximate the quantity L(H, λ) = E
[
e−λτH

]
,

where τH is the first time a fractional Brownian motion started from 0 hits 1.
As already recalled this Laplace transform is explicitly known in the Brownian

case: L( 12 , λ) = e−√
2λ, ∀λ ≥ 0. Our simulations suggest that the convergence of

L(H, λ) towards L( 12 , λ) is faster than what we were able to prove. We also show
numerical experiments which concern the convergence of hitting time densities.

Although several numerical schemes permit to decrease the weak error when
estimating τ 1

2
, none seem to be available in the fractional Brownian motion case. We

thus propose a heuristic extension of the bridge correction of Gobet [9] (valid in the
Markov case) and compare this procedure to the standard Euler scheme.

Convergence of E
[
e−λτH

]
to E

[
e
−λτ 1

2
]
.

Let us fix a timehorizon T and N points on each trajectory. Let δ = T
N be the time step.

Denote by M the number of Monte-Carlo samples. For each m ∈ {1, . . . , M}, we
simulate {B H,N

nδ (m)}1≤n≤N , from which we obtain τ
δ,T
H (m) = inf{nδ : B H,N

nδ (m) >

1}. We then approximate L(H, λ) as follows:
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Fig. 1 Regression of L( 12 , 1) − L(H, 1) against H − 1
2 using the values from Table1

L(H, λ) ≈ 1

M

M∑

m=1

e−λτ
δ,T
H (m) =: Lδ,T,M (H, λ) .

The bias τ
δ,T
H (m) ≥ τH (m) due to the time discretization implies

lim
M→∞Lδ,T,M(H, λ) ≤ L(H, λ)

.
In view of Theorem 2 we have

log
∣
∣L(H, λ) − L( 12 , λ)

∣
∣ ≤ Cλ + β log(H − 1

2
) ,

with β = ( 14 − ε). We approximate log
∣∣L(H, λ) − L( 12 , λ)

∣∣ by log
∣∣Lδ,T,M (H, λ)−

L( 12 , λ)
∣
∣ for several values of H close to 1

2 and then perform a linear regression
analysis around log(H − 1

2 ). The slope of the regression line provides a hint on the
optimal value of β.

The global error |L(H, 1) − Lδ,T,M (H, 1)| results from the discretization error
err(δ) and the statistical error err(M). For M = 213 and δ = 3.10−4 the estimator of
the standard deviation of Lδ,T,M(H, λ) is 0.259. This allows to decrease the number
of simulations to 100,000 to have a statistical error of order 0.0016.

The numerical results are presented in Table1 for several values of λ(= 1, 2, 3, 4)
and of the parameter H ∈ {0, 5; 0, 51; 0, 52; 0, 54; 0, 6}. These results suggest that
|Lδ,T,M( 12 , λ) − Lδ,T,M (H, λ)| is linear w.r.t. (H − 1

2 ). For each λ we thus perform
a linear regression on these quantities (without the above log transformation). The
regression line is plotted in Fig. 1.

Our numerical results suggest that Theorem 2 is not optimal but the optimal
convergence rate seems hard to get. An even more difficult result to obtain concerns
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Fig. 2 Density of τH for several values of H

the convergence rate of the density of the first hitting time of fBm to the density of
the first hitting time of Brownian motion. We analyze it numerically: See Fig. 2.

Brownian Bridge Correction. We apply the following rule (which is only heuris-
tic when H > 1

2 ): at each time step, if the threshold has not yet been hit and if
B H,N

(n−1)δ(m) < 1 and B H,N
nδ (m) < 1, we sample a uniform random variable U on

[0, 1] and compare it to

pH = exp

⎧
⎨

⎩
−2

(
1 − B H,N

(n−1)δ(m)
) (

1 − B H,N
nδ (m)

)

δ2H

⎫
⎬

⎭
.

If U < pH then decide τ
δ,T
H (m) = nδ. Otherwise let the algorithm continue. In

the sequel we denote by L̃δ,T,M(H, λ) the corresponding Laplace transform. This
algorithm is an adaptation to our non-Markovian framework of the algorithm of [9]
which is fully justified when H = 1

2 . In particular p 1
2
is the exact probability that a

Brownian motion conditioned by its values at time (n − 1)δ and nδ crosses 1 in the
time interval [(n − 1)δ, nδ]. Here, we approximate the unknown value of pH by a
heuristic value which coincides with p 1

2
when H = 1

2 .

Table2 shows the corresponding results for the simple estimatorLδ0,T,M( 12 , λ) and
the Brownian Bridge estimator L̃δ1,T,M( 12 , λ) with δ0 < δ1 in the Brownian case (we
kept M = 105). Consistentlywith theoretical results, Table2 shows that the estimator
L̃δ,T,M(H, λ) allows to substantially reduce the number of discretization steps (thus
the computational time) to get a desired accuracy. The figure also shows a reasonable
choice of δ1 which we actually keep when tackling the fractional Brownian motion
case.

The exact value L(H, λ) is unknown. Our reference value is the lower bound
Lδ0,T,M(H, λ). The parameter δ1 used in Table3 allows to conjecture that the Brown-
ian bridge correction is useful even in the non-Markovian case. Although the approx-
imation errors of the estimators Lδ1,T,M and L̃δ1,T,M are similar when compared to
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Lδ0,T,M(H, λ), we recommend to use the latter because we have Lδ1,T,M(H, λ) ≤
Lδ0,T,M(H, λ) ≤ L(H, λ) whereas Lδ0,T,M(H, λ) ≤ L̃δ1,T,M(H, λ).

Appendix: Tables

Table 1 Values of �H = E
[
e
−λτ 1

2
]−E

[
e−λτH

]
when H → 1

2 . Set of parameters: T = 20, N =
216 (δ ≈ 3.10−4), M = 105

H λ = 1 λ = 2 λ = 3 λ = 4

Lδ,T,M (H, λ) �H Lδ,T,M (H, λ) �H Lδ,T,M (H, λ) �H Lδ,T,M (H, λ) �H

0, 50 0, 2400 – 0, 1329 – 0, 0846 – 0, 0578 –

0, 51 0, 2323 0, 0077 0, 1271 0, 0059 0, 0800 0, 0046 0, 0542 0, 0037

0, 52 0, 2275 0, 0125 0, 1232 0, 0098 0, 0769 0, 0077 0, 0517 0, 0061

0, 54 0, 2171 0, 0229 0, 1149 0, 0180 0, 0703 0, 0143 0, 0464 0, 0114

0, 60 0, 1907 0, 0493 0, 0958 0, 0372 0, 0560 0, 0286 0, 0354 0, 0224

Table 2 Test case: Error estimation of our procedure in the Brownian case (H = 1
2 ). Set of

parameters: T = 20, N = 216 (δ0 ≈ 3.10−4), M = 105 for the simple estimator T = 20, N =
215 (δ1 ≈ 6.10−4), M = 105 for the bridge estimator

λ L( 12 , λ) Lδ,T,M ( 12 , λ) Error (%) L̃δ,T,M ( 12 , λ) Error (%)

1 0, 2431 0, 2400 1, 3 0, 2438 0, 3

2 0, 1353 0, 1329 1, 7 0, 1358 0, 4

3 0, 0863 0, 0846 2, 0 0, 0867 0, 5

4 0, 0591 0, 0578 2, 2 0, 0594 0, 5

Table 3 Comparison of estimators in the fractional case (H = 0, 54). Set of parameters: T =
20, N = 216 (δ0 ≈ 3.10−4), M = 105 for the simple estimator T = 20, N = 215 (δ1 ≈
6.10−4), M = 105 for the simple estimator T = 20, N = 215 (δ1 ≈ 6.10−4), M = 105 for the
bridge estimator

λ Lδ0,T,M (H, λ) Lδ1,T,M (H, λ) Error (%) L̃δ1,T,M (H, λ) Error (%)

1 0, 2171 0, 2147 1, 1 0, 2186 0, 7

2 0, 1149 0, 1131 1, 6 0, 1165 1, 4

3 0, 07003 0, 0689 2, 0 0, 0717 1, 9

4 0, 0464 0, 0453 2, 3 0, 0476 2, 5
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Drift Parameter Estimation in the Models
Involving Fractional Brownian Motion

Yuliya Mishura and Kostiantyn Ralchenko

Abstract This paper is a survey of existing estimation techniques for an unknown
drift parameter in stochastic differential equations driven by fractional Brownian
motion. We study the cases of continuous and discrete observations of the solution.
Special attention is given to the fractional Ornstein–Uhlenbeckmodel.Mixedmodels
involving both standard and fractional Brownian motion are also considered.

Keywords Fractional Brownian motion · Stochastic differential equation
Drift parameter estimation · Fractional Ornstein-Uhlenbeck process

1 Introduction

Stochastic differential equations driven by fractional Brownian motion (fBm) have
been the subject of an active research for the last two decades. Themain reason is that
these equations seem to be one of the most suitable tools to model the so-called long-
range dependence in many applied areas, such as physics, finance, biology, network
studies, etc. In modeling, the problem of statistical estimation of model parameters
is of a particular importance, so the growing number of papers devoted to statistical
methods for equations with fractional noise is not surprising.

In this paper, we concentrate on the estimation of an unknown drift parameter θ

in the fractional diffusion process given as the solution to the equation

Xt = X0 + θ

∫ t

0
a(s, Xs) ds +

∫ s

0
b(s, Xs) d B H

s , (1)
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where B H is a fBm with known Hurst index H . The integral with respect to fBm
is understood in the path-wise sense. Special attention is given to the fractional
Ornstein–Uhlenbeck process, which is a solution of the following Langevin equation

Xt = X0 + θ

∫ t

0
Xs ds + B H

s , (2)

and to its generalizations. This model has been studied since the early 2000s, and
comparing to the general case, it has been well developed for now. The asymptotic
and explicit distributions for various estimators were obtained, and almost sure limit
theorems, large deviation principles, and Berry–Esséen bounds were established for
this model. In the general case, only strong consistency results are known, up to our
knowledge.

Note thatwhen H = 1/2weobtain a diffusionmodel driven by standardBrownian
motion. The statistical inference for suchmodels has been thoroughly studied by now,
presented in many papers, and summarized in several books, see, e.g., [11, 28, 33,
35, 44, 46, 66, 70] and references cited therein. At the same time, we can mention
only the book [67] devoted to fractional diffusions (some fractional models are also
considered in [11, 51]). In the present article, we try to present the most recent
achievements in this field focusing on rather general models.

We also study the following mixed model

Xt = X0 + θ

∫ t

0
a(s, Xs) ds +

∫ s

0
b(s, Xs) d B H

s +
∫ s

0
c(s, Xs) dWs, (3)

which contains both standard and fractional Brownian motion. The motivation to
consider such equations comes, in particular, from financial mathematics. When it
is necessary to model randomness on a financial market, it is useful to distinguish
between two main sources of this randomness. The first source is the stock exchange
itself with thousands of agents. The noise coming from this source can be assumed
white and is best modeled by a Wiener process. The second source has the financial
and economic background. The random noise coming from this source usually has
a long-range dependence property, which can be modeled by a fBm B H with the
Hurst parameter H > 1/2. As examples of the Eq. (3), we consider linear and mixed
Ornstein–Uhlenbeck models.

Note that in the present paper the parameter H is considered to be known. The
problem of the Hurst parameter estimation in stochastic differential equations driven
by fBm was studied in [9, 40, 41], for mixed models see [21].

Let us mention briefly some related models that are not considered in this arti-
cle. First note that if a = b = c ≡ 1, then we get simple models Xt = θ t + B H

t and
Xt = θ t + B H

t + Wt . They were studied in [8, 16, 32], respectively. Recently, a
similar mixed model with two fractional Brownian motions was considered in [52,
56]. Prakasa Rao [67] investigated the equation d Xt = [a(t, Xt ) + θb(t, Xt )] dt +
σ(t) d B H

t . He studied maximum likelihood, Bayes, and instrumental variable esti-
mation in this model. Multiparameter equations with additive fractional noise were
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considered in [18, 71].Multidimensionalmodelwas investigated [60]. In [19, 50], the
so-called sub-fractional Ornstein–Uhlenbeck process was studied, where the process
B H

t in (2) was replaced with a sub-fractional Brownian motion. A model with more
general Gaussian noise was considered in [22]. For the parameter estimation in the
so-called fractional Ornstein–Uhlenbeck process of the second kind, see [1, 2]. Lin-
ear and Ornstein–Uhlenbeck models with multifractional Brownian motion were
studied in [20]. The parameter estimation for partially observed fractional models
related to fractional Ornstein–Uhlenbeck process was investigated in [7, 14, 15, 23].

The paper is organized as follows. In Sect. 2 the basic facts about fBm, path-wise
stochastic integration, pure and mixed stochastic differential equations with fBm are
given. Section3 is devoted to the case of estimation by continuous-time observations
in the fractional model (1), when the whole trajectory of the solution is observed.
In Sect. 4, we consider the discrete-time versions of this model. Mixed models are
discussed in Sect. 5.

2 Basic Facts

In this section, we review basic properties of the fBm (Sect. 2.1), consider the path-
wise integration using the fractional calculus (Sect. 2.2), and give the existence
and uniqueness theorems for stochastic differential equations driven by fBm with
H > 1/2 (Sect. 2.3) and for mixed stochastic differential equations with long-range
dependence, involving both Wiener process and fBm with H > 1/2 (Sect. 2.4).

2.1 Fractional Brownian Motion

Let (Ω,F ,F ,P) be a complete probability space with filtration F = {Ft , t ∈ R
+}

satisfying the standard assumptions. It is assumed that all processes under consider-
ation are adapted to filtration F .

Definition 2.1 Fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a
Gaussian process B H = {

B H
t , t ∈ R

+}
on (Ω,F ,P) featuring the properties

(a) B H
0 = 0;

(b) EB H
t = 0, t ∈ R

+;
(c) EB H

t B H
s = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ∈ R

+.

It is not hard to see that for H = 1/2 fBm is a Brownian motion. For H �= 1/2
the fBm is neither a semimartingale nor a Markov process.

The fBm was first considered in [37]. Stochastic calculus for fBm was developed
byMandelbrot and vanNess [48],who obtained the following integral representation:

B H
t = aH

{∫ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1
2

]
dWs +

∫ t

0
(t − s)H− 1

2 dWs

}
,
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whereW = {Wt , t ∈ R} is aWiener process, and aH =
√

2HΓ ( 3
2 −H)

Γ (H+ 1
2 )Γ (2−2H)

,Γ denotes

the Gamma function.
Another representation of the fBm was obtained in [61]:

B H
t =

∫ t

0
gH (t, s) dWs, t ∈ [0, T ],

where W = {Wt , t ≥ 0} is a Wiener process, and

gH (t, s) = aH

[(
t

s

)H− 1
2

(t − s)H− 1
2 − (

H − 1
2

)
s

1
2 −H

∫ t

s
(v − s)H− 1

2 vH− 3
2 dv

]
.

For H > 1/2 this expression can be slightly simplified:

gH (t, s) = (
H − 1

2

)
aH s

1
2 −H

∫ t

s
(v − s)H− 3

2 vH− 1
2 dv.

Definition2.1 implies that the fBm is self-similar with the self-similarity parame-

ter H , that is, {BH (ct)} D= {
cH B H (t)

}
for any c > 0, where

D= denotes the distribu-
tional equivalence.

The fBm has stationary increments in the sense that E
(
B H

t − B H
s

)2 = |t − s|2H .
Taking into account that the process B H is Gaussian, one can deduce from the
Kolmogorov theorem that it has the continuous (and even Hölder continuous up to
order H ) modification. In what follows, we consider this modification of fBm.

The increments of the fBm are independent only in the case H = 1/2. They are
negatively correlated for H ∈ (0, 1/2) and positively correlated for H ∈ (1/2, 1).
Moreover, for H ∈ (1/2, 1) the fBm has the property of long-range dependence.
This means that

∑∞
n=1 |r(n)| = ∞, where r(n) = EB H

1

(
B H

n+1 − B H
n

)
is the autoco-

variance function.
Jost [34] established the formula for the transformation of an fBm with positively

correlated increments into an fBm with negatively correlated increments, and vice
versa. Let B H = {

B H
t , t ∈ [0, T ]} be an fBm with Hurst index H ∈ (0, 1). Then

there exists a unique (up to modification) fBm B1−H = {
B1−H

t , t ∈ [0, T ]} with
Hurst index 1 − H such that

B H
t =

(
2H

Γ (2H)Γ (3 − 2H)

) 1
2
∫ t

0
(t − s)2H−1 d B1−H

s ,

where the integral with respect to fBm is a fractional Wiener integral.
For more details on fBm we refer to the books [10, 51, 62].
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2.2 Elements of Fractional Calculus and Fractional
Integration

In this subsection, we describe a construction of the path-wise integral following the
approach developed by Zähle [76–78]. We start by introducing fractional integrals
and derivatives, see [69] for the details on the concept of fractional calculus.

Definition 2.2 Let f ∈ L1(a, b). The Riemann–Liouville left- and right-sided frac-
tional integrals of order α > 0 are defined for almost all x ∈ (a, b) by

Iα
a+ f (x) := 1

Γ (α)

∫ x

a
(x − y)α−1 f (y) dy,

Iα
b− f (x) := (−1)−α

Γ (α)

∫ b

x
(y − x)α−1 f (y) dy,

respectively, where (−1)−α = e−iπα .

Definition 2.3 For a function f : [a, b] → R the Riemann–Liouville left- and right-
sided fractional derivatives of order α (0 < α < 1) are defined by

Dα
a+ f (x) := 1(a,b)(x)

1

Γ (1 − α)

d

dx

∫ x

a

f (y)

(x − y)α
dy,

Dα
b− f (x) := 1(a,b)(x)

(−1)1+α

Γ (1 − α)

d

dx

∫ b

x

f (y)

(y − x)α
dy.

Denote by Iα
a+(L p) (resp. Iα

b−(L p)) the class of functions f that can be pre-
sented as f = Iα

a+ϕ (resp. f = Iα
b−ϕ) for ϕ ∈ L p(a, b). For f ∈ Iα

a+(L p) (resp.
f ∈ Iα

b−(L p)), p ≥ 1, the corresponding Riemann–Liouville fractional derivatives
admit the following Weyl representation

Dα
a+ f (x) = 1

Γ (1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)

(x − y)α+1
dy

)
1(a,b)(x),

Dα
b− f (x) = (−1)α

Γ (1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)

(y − x)α+1
dy

)
1(a,b)(x),

where the convergence of the integrals holds pointwise for a. a. x ∈ (a, b) for p = 1
and in L p(a, b) for p > 1.

Let f, g : [a, b] → R. Assume that the limits

f (u+) := lim
δ↓0 f (u + δ) and g(u−) := lim

δ↓0 f (u − δ)

exist for a ≤ u ≤ b. Denote
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fa+(x) = ( f (x) − f (a+))1(a,b)(x),

gb−(x) = (g(b−) − g(x))1(a,b)(x).

Definition 2.4 ([76]) Assume that fa+ ∈ Iα
a+(L p), gb− ∈ I1−α

b− (Lq) for some
1/p + 1/q ≤ 1, 0 < α < 1. The generalized (fractional) Lebesgue–Stieltjes inte-
gral of f with respect to g is defined by

∫ b

a
f (x) dg(x) :=(−1)α

∫ b

a
Dα

a+ fa+(x)D1−α
b− gb−(x) dx+

+ f (a+)
(
g(b−) − g(a+)

)
.

(4)

Note that this definition is correct, i. e. independent of the choice of α ([76, Propo-
sition2.1]). If αp < 1, then (4) can be simplified to

∫ b

a
f (x) dg(x) := (−1)α

∫ b

a
Dα

a+ f (x)D1−α
b− gb−(x) dx .

In particular, Definition2.4 allows us to integrate Hölder continuous functions.

Definition 2.5 Let 0 < λ ≤ 1. A function f : R → R belongs to Cλ[a, b], if there
exists a constant C > 0 such that for all s, t ∈ [a, b]

| f (s) − f (t)| ≤ C |s − t |λ , s, t ∈ [a, b].

Proposition 2.6 ([76, Theorem4.2.1]) Let f ∈ Cλ[a, b], g ∈ Cμ[a, b] with
λ + μ > 1. Then the assumptions of Definition2.4 are satisfied with any
α ∈ (1 − μ, λ) and p = q = ∞. Moreover, the generalized Lebesgue–Stieltjes inte-
gral

∫ b
a f (x) dg(x) defined by (4) coincides with the Riemann–Stieltjes integral

{R − S}
∫ b

a
f (x) dg(x) := lim|π |→0

∑
i

f (x∗
i )(g(xi+1) − g(xi )),

whereπ ={a = x0 ≤ x∗
0 ≤ x1≤ . . .≤ xn−1 ≤ x∗

n−1 ≤ xn =b}, |π | = maxi |xi+1 − xi |.
Recall that for any μ ∈ (0, H) the trajectories of the fBm B H are μ-Hölder con-

tinuous. Therefore, if Z = {Zt , t ≥ 0} is a stochastic process whose trajectories are
λ-Hölder continuous with λ > 1 − H , then the path-wise integral

∫ T
0 Zt d B H

t is well
defined and coincides with the Riemann–Stieltjes integral.

Remark 2.7 There are many papers devoted to stochastic differential equations with
fBm with different definitions of the stochastic integral. In the present paper, we
concentrate only on the path-wise definition proposed in [76] for H > 1/2. We refer
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to the book [10] (see also [51]) for the extended survey on various approaches on
stochastic integration with respect to fBm and the relations between different types
of integrals.

2.3 Stochastic Differential Equations Driven by fBm

Consider a stochastic differential equation driven by fBm B H = {
B H

t , t ∈ [0, T ]},
H ∈ (1/2, 1) on a complete probability space (Ω,F ,P):

Xt = X0 +
∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s , t ∈ [0, T ]. (5)

Let the function b = b(t, x) : [0, T ] × R → R satisfy the assumptions: b is dif-
ferentiable in x , there exist M > 0, 0 < γ, κ ≤ 1 and for any R > 0 there exists
MR > 0 such that

(A1) b is Lipschitz continuous in x :

|b(t, x) − b(t, y)| ≤ M |x − y|, ∀t ∈ [0, T ], x, y ∈ R;

(A2) x-derivative of b is locally Hölder in x :

|bx (t, x) − bx (t, y)| ≤ MR|x − y|κ , ∀|x |, |y| ≤ R, t ∈ [0, T ];

(A3) b and its spatial derivative are Hölder in time:

|b(t, x) − b(s, x)| + |bx (t, x) − bx (s, x)| ≤ M |t − s|γ , ∀x ∈ R, t, s ∈ [0, T ].

Let the function a = a(t, x) : [0, T ] × R → R satisfy the assumptions

(A4) for any R ≥ 0 there exists L R > 0 such that

|a(t, x) − a(t, y)| ≤ L R|x − y|, ∀|x |, |y| ≤ R,∀t ∈ [0, T ];

(A5) there exists the function a0 ∈ L p[0, T ] and L > 0 such that

|a(t, x)| ≤ L|x | + a0(t), ∀(t, x) ∈ [0, T ] × R.

Fix a parameter α ∈ (0, 1/2). Let W α∞[0, T ] be the space of real-valued measur-
able functions f : [0, T ] → R such that

‖ f ‖∞,α;T = sup
s∈[0,T ]

(
| f (s)| +

∫ s

0
| f (s) − f (u)| (s − u)−1−αdu

)
< ∞.
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Theorem 2.8 ([65]) Let the coefficients a and b satisfy (A1)–(A5) with
p = (1 − H + ε)−1 with some 0 < ε < H − 1/2, γ > 1 − H, κ > H−1 − 1 (the
constants M, MR, R, L R, and the function a0 may depend on ω). Then there exists the
unique solution X = {Xt , t ∈ [0, T ]} of Eq. (5), X ∈ L0(Ω,F ,P, W 1−H+ε∞ [0, T ])
with a.a. trajectories from C H−ε[0, T ].
Remark 2.9 Here we restrict ourselves to the one-dimensional case, but it is worth
mentioning that Theorem2.8 was proved in [65] for the case of multidimensional
processes. It also admits multiparameter [54] and multifractional [68] generaliza-
tions.

When b(t, x) ≡ 1, we obtain the following equation:

Xt = X0 +
∫ t

0
a(s, Xs)ds + B H

t , t ∈ [0, T ]. (6)

Since this equation does not contain integration with respect to fractional Brownian
motion, it can be considered for all H ∈ (0, 1). Nualart and Ouknine [63] proved the
existence and uniqueness of a strong solution to Eq. (6) under the following weak
regularity assumptions on the coefficient a(t, x).

Theorem 2.10 ([63])

(i) If H ≤ 1/2 (singular case), we assume the linear growth condition

|a(t, x)| ≤ C(1 + |x |).

(ii) If H > 1/2 (regular case), we assume that a is Hölder continuous of order
α ∈ (1 − 1/2H, 1) in x and of order γ > H − 1/2 in time:

|a(t, x) − a(s, y)| ≤ C (|x − y|α + |t − s|γ ) .

Then the Eq. (6) has a unique strong solution.

Remark 2.11 The existence and uniqueness of a strong solution to (6) can be
obtained under weaker conditions on a(t, x). In particular, the equations with locally
unbounded drift for H < 1/2 were studied in [64]. For H > 1/2 Hu et al. [31] con-
sidered the case when the coefficient a(t, x) has a singularity at x = 0.

2.4 Mixed Stochastic Differential Equations with
Long-Range Dependence

Let (Ω,F , {Ft }t∈[0,T ] ,P) be a complete probability space equipped with a filtration
satisfying standard assumptions, and W = {Wt , t ∈ [0, T ]} be a standardFt -Wiener
process. In this subsection, we investigate more general model than (3): instead of
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the fBm we consider an Ft -adapted stochastic process Z = {Zt , t ∈ [0, T ]}, which
is almost surely Hölder continuous with exponent γ > 1/2. The processes W and Z
can be dependent. We study a mixed stochastic differential equation

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
b(s, Xs) d Zs +

∫ t

0
c(s, Xs) dWs, t ∈ [0, T ] .

(7)
The integral w.r.t. Wiener process W is the standard Itô integral, and the integral
w.r.t. Z is path-wise generalized Lebesgue–Stieltjes integral, see Definition2.4.

Wewill assume that for some K > 0,β > 1/2, and for any t, s ∈ [0, T ], x, y ∈ R,

(B1) |a(t, x)| + |b(t, x)| + |c(t, x)| ≤ K (1 + |x |),
(B2) |a(t, x) − a(t, y)| + |c(t, x) − c(t, y)| ≤ K |x − y|,
(B3) |a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| + |c(s, x) − c(t, x)|

+ |∂x b(s, x) − ∂x b(t, x)| ≤ K |s − t |β ,
(B4) |∂x b(t, x) − ∂x b(t, y)| ≤ K |x − y|,
(B5) |∂x b(t, x)| ≤ K ,

Theorem 2.12 ([53]) Let α ∈ (1 − γ, 1
2 ∧ β) If the coefficients of equation (7) sat-

isfy conditions (B1)–(B5), then it has a unique solution X such that ‖X‖∞,α,T < ∞
a.s.

Remark 2.13 It was proved in [58] that Eq. (7) is uniquely solvable when assump-
tions (B1)–(B5) hold and if additionally c is bounded as follows:

(B6) |c(t, x)| ≤ K1 for some K1 > 0.

Later, in [53] the existence and uniqueness theorem without assumption (B6) was
obtained. Equation (7) with Z = B H , a fractional Brownian motion, was first con-
sidered in [39], where existence and uniqueness of solution were proved for time-
independent coefficients and zero drift. For inhomogeneous coefficients, unique solv-
ability was established in [51] for H ∈ (3/4, 1) and bounded coefficients, in [27] for
any H > 1/2, but under the assumption that W and B H are independent.

3 Drift Parameter Estimation by Continuous Observations

This section is devoted to the drift parameter estimation in the model (1) by contin-
uous observations of the process X . We discuss the construction of the maximum
likelihood estimator based on the Girsanov transform. Then we study a non-standard
estimator. These results are applied to linear models. In the last subsection of this
section, the various estimators in fractional Ornstein–Uhlenbeck model are consid-
ered.
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3.1 General Fractional Model

Assume that H > 1
2 and consider the equation

Xt = x0 + θ

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s , t ∈ R
+, (8)

where x0 ∈ R is the initial value, θ is the unknown parameter to be estimated, the first
integral in the right-hand side of (8) is the Lebesgue–Stieltjes integral, and the second
integral is the generalized Lebesgue–Stieltjes integral introduced in Definition2.4.

3.1.1 The Standard Maximum Likelihood Estimator

Let the following assumptions hold:

(C1) Linear growth of a, b in space: for any t ∈ [0, T ] and x ∈ R

|a(t, x)| + |b(t, x)| ≤ K (1 + |x |),

(C2) Lipschitz continuity of a, b in space: for any t ∈ [0, T ] and x, y ∈ R

|a(t, x) − a(t, y)| + |b(t, x) − b(t, y)| ≤ K |x − y|,

(C3) Hölder continuity of a, b, ∂x b in time: there exists β > 1/2 such that for any
t, s ∈ [0, T ] and x ∈ R

|a(s, x) − a(t, x)| + |b(s, x) − b(t, x)| + |∂x b(s, x) − ∂x b(t, x)| ≤ K |s − t |β,

(C4) Hölder continuity of ∂x b in space: there exists such ρ ∈ (3/2 − H, 1) that
for any t ∈ [0, T ] and x, y ∈ R

|∂x b(t, x) − ∂x b(t, y)| ≤ D|x − y|ρ,

Then, according to Theorem2.8, solution for Eq. (8) exists on any interval [0, T ] and
is unique in the class of processes satisfying

‖X‖∞,α,T < ∞ a.s. (9)

for some α > 1 − H .
In addition, suppose that the following assumption holds:

(D1) b(t, Xt ) �= 0, t ∈ [0, T ] and a(t,Xt )

b(t,Xt )
is a.s. Lebesgue integrable on [0, T ] for

any T > 0.

Denote ψ(t, x) = a(t,x)

b(t,x)
, ϕ(t) := ψ(t, Xt ). Also, let the kernel
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lH (t, s) = cH s
1
2 −H (t − s)

1
2 −H1{0<s<t},

with cH =
(

Γ (3−2H)

2HΓ ( 3
2 −H)3Γ (H+ 1

2 )

) 1
2
, and introduce the integral

Jt =
∫ t

0
lH (t, s)ϕ(s)ds = cH

∫ t

0
(t − s)

1
2 −H s

1
2 −Hϕ(s)ds. (10)

Finally, let M H
t = ∫ t

0 lH (t, s)d B H
s be Gaussian martingale with square bracket

〈M H 〉t = t2−2H (Molchan martingale, see [61]).
Consider the following two processes:

Yt =
∫ t

0
b−1(s, Xs)d Xs = θ

∫ t

0
ϕ(s)ds + B H

t

and

Zt =
∫ t

0
lH (t, s)dYs = θ Jt + M H

t .

Remark 3.1 Note that the transformation from X to Z does not lead to loss of
information since we can present Y (consequently, X ) via Z and Volterra kernel
introduced in Theorem5.2 [61]. So, these processes generate the same filtration.

Also, note that we can rewrite process Z as

Zt =
∫ t

0
lH (t, s)b−1(s, Xs)d Xs,

so Z is a functional of the observable process X . The following smoothness condition
for the function ψ (Lemma6.3.2 [51]) ensures the semimartingale property of Z .

Lemma 3.2 Let ψ = ψ(t, x) ∈ C1(R+) × C2(R). Then for any t > 0

J ′(t) = (2 − 2H)CH ψ(0, x0)t
1−2H

+
∫ t

0
lH (t, s)

(
∂ψ

∂t
(s, Xs) + θ

∂ψ

∂x
(s, Xs)a(s, Xs)

)
ds

−
(

H − 1
2

)
cH

∫ t

0
s− 1

2−H (t − s)
1
2−H

∫ s

0

(
∂ψ

∂t
(u, Xu) + θ

∂ψ

∂x
(u, Xu)a(u, Xu)

)
duds

+ (2 − 2H)cH t1−2H
∫ t

0
s2H−3

∫ s

0
u

3
2−H (s − u)

1
2−H ∂ψ

∂x
(u, Xu)b(u, Xu)d B H

u ds

+ cH t−1
∫ t

0
u

3
2−H (t − u)

1
2−H ∂ψ

∂x
(u, Xu)b(u, Xu)d B H

u ,

(11)
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where CH = B( 32 − H, 3
2 − H)cH =

(
Γ ( 3

2 −H)

2HΓ (H+ 1
2 )Γ (3−2H)

) 1
2
, and all of the involved

integrals exists a.s.

Remark 3.3 Suppose thatψ(t, x) ∈ C1(R+) × C2(R) and limitς(0) = lims→0 ς(s)
exists a.s., where ς(s) = s

1
2 −Hϕ(s). In this case J (t) can be presented as

J (t) = cH

∫ t

0
(t − s)

1
2 −Hς(s)ds = cH t

3
2 −H

3
2 − H

ς(0) + cH

∫ t

0

(t − s)
3
2 −H

3
2 − H

ς ′(s)ds,

and J ′(t) from (11) can be simplified to

J ′(t) = cH t
1
2 −Hς(0) +

∫ t

0
lH (t, s)

((
1
2 − H

)
s−1ϕ(s) + ∂ψ

∂t
(s, Xs)

+ θ
∂ψ

∂x
(s, Xs)a(s, Xs)

)
ds +

∫ t

0
lH (t, s)

∂ψ

∂x
(s, Xs)b(s, Xs)d B H

s .

Same way as Z , processes J and J ′ are functionals of X . It is more convenient to
consider process χ(t) = (2 − 2H)−1 J ′(t)t2H−1, so that

Zt = (2 − 2H)θ

∫ t

0
χ(s)s1−2H ds + M H

t = θ

∫ t

0
χ(s)d〈M H 〉s + M H

t .

Suppose that the following conditions hold:

(D2) EIT := E
∫ T
0 χ2

s d〈M H 〉s < ∞ for any T > 0,
(D3) I∞ := ∫ ∞

0 χ2
s d〈M H 〉s = ∞ a.s.

Then we can consider the maximum likelihood estimator (MLE)

θ
(1)
T =

∫ T
0 χsd Zs∫ T

0 χ2
s d〈M H 〉s

= θ +
∫ T
0 χsd M H

s∫ T
0 χ2

s d〈M H 〉s

.

Condition (D2) ensures that process
∫ t
0 χsd M H

s , t > 0 is a square integrable mar-
tingale, and condition (D3) alongside with the law of large numbers for martingales

ensure that
∫ T
0 χs d M H

s∫ T
0 χ2

s d〈M H 〉s
→ 0 a.s. as T → ∞. Summarizing, we arrive at the following

result.

Theorem 3.4 ([51]) Let ψ(t, x) ∈ C1(R+) × C2(R) and assumptions (C1)–(C4)
and (D1)–(D3) hold. Then the estimator θ

(1)
T is strongly consistent as T → ∞.

Remark 3.5 In [57] the explicit form of the likelihood ratio was established. It was
shown that MLE can be presented as a function of the observed process Xt , namely
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θ̂
(1)

t =
∫ t
0

(
ϕ(s) + (H − 1

2 )s
2H−1

∫ s
0

s
1
2 −H

ϕ(s)−u
1
2 −H

ϕ(u)

(s−u)
H+ 1

2
du

)
dỸs

∫ t
0 s2H−1

(
ϕ(s)

s2H−1 + (H − 1
2 )

∫ s
0

s
1
2 −H

ϕ(s)−u
1
2 −H

ϕ(u)

(s−u)
H+ 1

2
du

)2

ds

,

where Ỹs = ∫ s
0 v

1
2 −H (s − v)

1
2 −H b−1(v, Xv) d Xv.

Remark 3.6 Tudor and Viens [74] constructed the MLE for the following model

Xt =
∫ t

0
a(Xs) ds + B H

t , X0 = 0.

Under some regularity conditions on the coefficient a(x) they proved the strong
consistency of the MLE in both cases H < 1/2 and H > 1/2.

3.1.2 A Nonstandard Estimator

It is possible to construct another estimator for parameter θ , preserving the structure
of the standardMLE. Similar approachwas applied in [29] to the fractional Ornstein–
Uhlenbeck processwith constant coefficients (see the estimator (19) below).We shall
use process Y to define the estimator as follows:

θ̂
(2)
T =

∫ T
0 ϕs dYs∫ T
0 ϕ2

s ds
= θ +

∫ T
0 ϕsd B H

s∫ T
0 ϕ2

s ds
. (12)

Theorem 3.7 ([38])Let assumptions (C1)–(C4), (D1), and (D2) hold and let function
ϕ satisfy the following assumption:

(D4) There exists such α > 1 − H and p > 1 that

ρα,p,T := T H+α−1(log T )p
∫ T
0 |(Dα

0+ϕ)(s)|ds∫ T
0 ϕ2

s ds
→ 0 a.s. as T → ∞. (13)

Then estimator θ̂
(2)
T is correctly defined and strongly consistent as T → ∞.

Relation (13) ensures convergence
∫ T
0 ϕs d B H

s∫ T
0 ϕ2

s ds
→ 0 a.s. in the general case. In a

particular case when function ϕ is nonrandom and integral
∫ T
0 ϕs d B H

s is a Wiener
integral w.r.t. the fractional Brownianmotion, conditions for existence of this integral
are simpler since assumption (13) can be simplified.

Theorem 3.8 ([38]) Let assumptions (C1)–(C4), (D1), and (D2) hold and let function
ϕ be nonrandom and satisfy the following assumption:
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(D5) There exists such p > 0 that

lim sup
T →∞

T 2H−1+p

∫ T
0 ϕ2(t)dt

< ∞.

Then estimator θ̂
(2)
T is strongly consistent as T → ∞.

In the next subsection, we consider some examples of ϕ and establish not only
the convergence to zero but the rate of convergence as well.

3.1.3 Examples of the Remainder Terms with the Estimation of the
Rate of Convergence to Zero

We start with the simplest case when ϕ is a power function, ϕ(t) = ta , a ≥ 0,
t ≥ 0. Itmeans that a(t, x) = b(t, x)ta . If the coefficient b(t, x) satisfies assumptions
(C1)–(C4) and b(t, Xt ) �= 0, t ∈ [0, T ], then a(t, x) satisfies assumptions (C1)–(C4)
on any interval [0, T ], condition (D1) holds, then the Eq. (8) has the unique solu-
tion, the estimator θ̂

(2)
T is correctly defined and we can study the properties of the

remainder term ρα,p,T .

Lemma 3.9 ([3]) Let ϕ(t) = ta, a ≥ 0, t ≥ 0. Then ρα,p,T = CaT H−a−1 ×
(log T )p → 0 as T → ∞, where

Ca = (2a + 1)Γ (a + 1)

Γ (a − α + 2)
.

Remark 3.10 As to the rate of convergence to zero, we can say that

ρα,p,T = O
(
T H−1−a+ε

)

as T → ∞ for any ε > 0.

Now, we can consider ϕ that is a polynomial function. In this case, similar to
monomial case, the solution of the Eq. (7) exists and is unique, and the estimator
is correctly defined. As an immediate generalization of the Lemma3.9, we get the
following statement.

Lemma 3.11 ([3])Let N ∈ N \ {0}andϕN (t) =
N∑

k=0

αk tak , t ≥ 0, (ak)be a sequence

of nonnegative power coefficients, 0 ≤ a0 < a1 < . . . < aN , and (αk) be a sequence
of nonnegative coefficients, αN > 0. Then ρα,p,T → 0 as T → ∞, and the rate of
convergence to zero is ρα,p,T = O

(
T H−1−aN +ε

)
for any ε > 0.

Now consider the case of the trigonometric function.
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Lemma 3.12 ([3]) Let ϕ(t) = sin(λt), λ ≥ 0. Then estimator θ̂
(2)
T is strongly con-

sistent as T → ∞.

Remark 3.13 Wesee that in the case of power andpolynomial functions (Remark3.10
and Lemma3.11) we can get not only convergence to zero but also the rate of con-
vergence, but in the case of the trigonometric function, we only get convergence.
The difference can be seen from the following result.

Lemma 3.14 ([3]) Let ϕ(t) = sin(λt), λ ≥ 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= +∞.

Remark 3.15 Note for completeness that for
T H+α−1(log T )p

∫ T
0 (Dα

0+ ϕ)(x)dx∫ T
0 ϕ2

x dx
situation is

different, more precisely,

lim
T →+∞

T H+α−1(log T )p
∫ T
0 (Dα

0+ϕ)(x)dx∫ T
0 ϕ2(x)dx

= 0.

Lemma 3.16 ([3]) Let ϕ(t) = exp(−λt), λ > 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.17 It is easy to deduce from the previous calculations that in the latter
case

ρα,p,T = O
(
T H−1+ε

)

as T → ∞ for any ε > 0.

Lemma 3.18 ([3]) Let ϕ(t) = exp(λt), λ > 0. Then

lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.19 In this case

ρα,p,T = O
(
e−(λ−ε)T

) = o
(
T −ε

)

as T → ∞ for any ε > 0.

Lemma 3.20 ([3]) Let ϕ(t) = log(1 + t). Then
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lim
T →+∞ ρα,p,T = lim

T →+∞
T H+α−1(log T )p

∫ T
0 |(Dα

0+ϕ)(x)|dx∫ T
0 ϕ2(x)dx

= 0.

Remark 3.21 In this case
ρα,p,T = O

(
T H−1+ε

)

as T → ∞ for any ε > 0.

3.1.4 Sequential Estimators

Suppose that conditions (D1)–(D3) hold. For any h > 0 consider the stopping time

τ(h) = inf

{
t > 0 :

∫ t

0
χ2

s d〈M H 〉s = h

}
.

Under conditions (D1)–(D2) we have τ(h) < ∞ a.s. and
∫ τ(h)

0 χ2
s d〈M H 〉s = h. The

sequential MLE has a form

θ̂
(1)
τ (h) =

∫ τ(h)

0 χsd Zs

h
= θ +

∫ τ(h)

0 χsd M H
s

h
.

A sequential version of the estimator θ̂
(2)
T has a form

θ̂
(2)
υ(h) = θ +

∫ υ(h)

0 ϕsd B H
s

h
,

where

υ(h) = inf

{
t > 0 :

∫ t

0
ϕ2(s)ds = h

}
.

Theorem 3.22 ([38])

(a) Let assumptions (D1)–(D3) hold. Then the estimator θ̂
(1)
τ (h) is unbiased, efficient,

strongly consistent, E
(
θ̂

(1)
τ (h) − θ

)2 = 1
h , and for any estimator of the form

θ̂τ =
∫ τ

0 χsd Zs∫ τ

0 χ2
s d〈M H 〉s

= θ +
∫ τ

0 χsd M H
s∫ τ

0 χ2
s d〈M H 〉s

with τ < ∞ a.s. and E
∫ τ

0 χ2
s d〈M H 〉s ≤ h we have that

E
(
θ̂

(1)
τ (h) − θ

)2 ≤ E(θ̂τ − θ)2.
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(b) Let function ϕ be separated from zero, |ϕ(s)| ≥ c > 0 a.s. and satisfy the assump-
tion: for some 1 − H < α < 1 and p > 0

∫ υ(h)

0 |(Dα
0+ϕ)(s)|ds

(υ(h))2−α−H−p
→ 0 a.s. (14)

as h → ∞. Then estimator θ̂
(2)
υ(h) is strongly consistent.

Remark 3.23 The assumption (14) holds, for example, for a bounded and Lipschitz
function ϕ.

3.2 Linear Models

Consider the linear version of model (8):

d Xt = θa(t)Xt dt + b(t)Xt d B H
t ,

where a and b are locally bounded nonrandom measurable functions. In this case
solution X exists, it is unique and can be presented in the integral form

Xt = x0 + θ

∫ t

0
a(s)Xsds +

∫ t

0
b(s)Xsd B H

s = x0 exp

{
θ

∫ t

0
a(s)ds +

∫ t

0
b(s)d B H

s

}
.

Suppose that function b is nonzero and note that in this model

ϕ(t) = a(t)

b(t)
.

Suppose thatϕ(t) is also locally bounded and considermaximum likelihood estimator
θ̂

(1)
T . According to (10), to guarantee existence of process J ′, we have to assume that
the fractional derivative of order 3

2 − H for function ς(s) := ϕ(s)s
1
2 −H exists and

is integrable. The sufficient conditions for the existence of fractional derivatives can
be found in [69]. One of these conditions states the following:

(D6) Functions ϕ and ς are differentiable and their derivatives are locally inte-
grable.

So, it is hard to conclude what is the behavior of the MLE for an arbitrary locally
bounded function ϕ. Suppose that condition (D6) holds and limit ς0 = lims→0 ς(s)
exists. In this case, according to Lemma3.2 and Remark3.3, process J ′ admits both
of the following representations:
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J ′(t) = (2 − 2H)CHϕ(0)t1−2H +
∫ t

0
lH (t, s)ϕ′(s)ds

−
(

H − 1

2

)
cH

∫ t

0
s− 1

2 −H (t − s)
1
2 −H

∫ s

0
ϕ′(u)duds

= cHς0t
1
2 −H + cH

∫ t

0
(t − s)

1
2 −Hς ′(s)ds,

and assuming (D3) also holds true, the estimator θ̂
(1)
T is strongly consistent. Let us

formulate some simple conditions sufficient for the strong consistency.

Lemma 3.24 ([38]) If function ϕ is nonrandom, locally bounded, satisfies (D6), limit
ς(0) exists, and one of the following assumptions hold:

(a) function ϕ is not identically zero and ϕ′ is nonnegative and nondecreasing;
(b) derivative ς ′ preserves the sign and is separated from zero;
(c) derivative ς ′ is nondecreasing and has a nonzero limit,

then the estimator θ̂
(1)
T is strongly consistent as T → ∞.

Example 3.25 If the coefficients are constant, a(s) = a �= 0 and b(s) = b �= 0, then

the estimator has a form θ̂
(1)
T = θ + bM H

T
aCH T 2−2H and is strongly consistent. In this case

assumption (a) holds. In addition, power functions ϕ(s) = sρ are appropriate for
ρ > H − 1: this can be verified directly from (10).

Let us now apply estimator θ̂
(2)
T to the same model. It has a form (12). We can use

Theorem3.8 directly and under assumption (D5) estimator θ̂ (2)
T is strongly consistent.

Note that we do not need any assumptions on the smoothness of ϕ, which is a clear
advantage of θ̂

(2)
T . We shall consider two more examples.

Example 3.26 If the coefficients are constant, a(s) = a �= 0 and b(s) = b �= 0, then

the estimator has a form θ̂
(2)
T = θ + bB H

T
aT . In this case both estimators θ̂

(1)
T and θ̂

(2)
T are

strongly consistent and E
(
θ − θ̂

(1)
T

)2 = γ 2T 2H−2

a2C2
H

has the same asymptotic behavior

as E
(
θ − θ̂

(2)
T

)2 = γ 2T 2H−2

a2 .

Example 3.27 If nonrandom functions ϕ and ς are bounded on some fixed interval
[0, t0] but ς is sufficiently irregular on this interval and has no fractional derivative
of order 3

2 − H or higher then we cannot even calculate J ′(t) on this interval and it
is hard to analyze the behavior of the maximum likelihood estimator. However, if we
assume that ϕ(t) ∼ t H−1+ρ at infinity with some ρ > 0, then assumption (D5) holds
and estimator θ̂

(2)
T is strongly consistent as T → ∞. In this sense, the estimator θ̂

(2)
T

is more flexible. The estimator θ̂
(1)
T was considered in [45].
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3.3 Fractional Ornstein–Uhlenbeck Model

3.3.1 General Case

Consider the fractional Ornstein–Uhlenbeck, or Vasicek, model with nonconstant
coefficients. It has a form

d Xt = θ(a(t)Xt + b(t))dt + γ (t)d B H
t , t ≥ 0,

where a, b, and γ are nonrandom measurable functions. Suppose they are locally
bounded and γ = γ (t) > 0. The solution for this equation is a Gaussian process and
has a form

Xt = eθ A(t)
(

x0 + θ

∫ t

0
b(s)e−θ A(s)ds +

∫ t

0
γ (s)e−θ A(s)d B H

s

)
:= E(t) + G(t),

where A(t) = ∫ t
0 a(s)ds, E(t) = eθ A(t)

(
x0 + θ

∫ t
0 b(s)e−θ A(s)ds

)
is a nonrandom

function, G(t) = eθ A(t)
∫ t
0 γ (s)e−θ A(s)d B H

s is a Gaussian process with zero mean.
Denote c(t) = a(t)

γ (t) , d(t) = b(t)
γ (t) . Now we shall state the conditions for strong

consistency of the maximum likelihood estimator.

Theorem 3.28 ([38]) Let functions a, c, d, and γ satisfy the following assumptions:

(D7) −a1 ≤ a(s) ≤ −a2 < 0,−c1 ≤ c(s) ≤ −c2 < 0,0 < γ1 ≤ γ (s) ≤ γ2, func-
tions c and d are continuously differentiable, c′ is bounded, c′(s) ≥ 0, and
c′(s) → 0 as s → ∞.

Then estimator θ̂
(1)
T is strongly consistent as T → ∞.

Remark 3.29 The assumptions of the theorem are fulfilled, for example, if
a(s) = −1, b(s) = b ∈ R and γ (s) = γ > 0. In this case we deal with a standard
Ornstein–Uhlenbeck process X with constant coefficients that satisfies the equation

d Xt = θ(b − Xt )dt + γ d B H
t , t ≥ 0.

3.3.2 The Case of Constant Coefficients

Consider a simple version of the Ornstein–Uhlenbeck model where a = γ = 1,
b = x0 = 0. Corresponding stochastic differential equation has a form

d Xt = θ Xt dt + d B H
t , t ≥ 0

with evident solution Xt = eθ t
∫ t
0 e−θsd B H

s . We start with maximum likelihood esti-

mator θ̂
(1)

T . According to [36], it has the following form
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θ̂
(1)

T =
∫ T
0 Q(s) d Zs∫ T

0 Q2(s) dwH
s

, (15)

wherewH
t = t2−2H Γ (3/2−H)

2HΓ (3−2H)Γ (H+1/2) ,Q(t)= d
dwH

t

∫ t
0 kH (t, s)Xs ds, Zt =

∫ t
0 kH (t, s) d Xs ,

kH (t, s) = s1/2−H (t−s)1/2−H

2HΓ (3/2−H)Γ (H+1/2) .

Theorem 3.30 ([14, 36, 72, 73]) Let H ∈ [ 12 , 1).
1. For any θ ∈ R the estimator θ̂

(1)
T defined by (15) is strongly consistent.

2. Denote B(θ, T ) = E
(
θ̂

(1)
T − θ

)
, V (θ, T ) = E

(
θ̂

(1)
T − θ

)2
. The following prop-

erties hold:

(i) If θ < 0, then, as T → ∞,

B(θ, T ) ∼ −2T −1; V (θ, T ) ∼ 2 |θ | T −1, (16)

(ii) If θ = 0, then, for all T ,

B(0, T ) = B(0, 1)T −1; V (0, T ) = V (0, 1)T −2,

(iii) If θ > 0, then, as T → ∞,

B(θ, T ) ∼ −2
√

π sin π Hθ3/2e−θT
√

T ; (17)

V (θ, T ) ∼ 2
√

π sin π Hθ5/2e−θT
√

T . (18)

3. (i) If θ < 0, then, as T → ∞,

√
T

(
θ̂

(1)
T − θ

) L−→ N (0,−2θ),

(ii) If θ = 0, then, for all T ,

T θ̂
(1)

T
D= θ̂

(1)
1

(iii) If θ > 0, then, as T → ∞,

eθT

2θ

(
θ̂

(1)
T − θ

) L−→ √
sin π H C(1),

where C(1) is the standard Cauchy distribution, and
L−→ denotes the conver-

gence in law.

Remark 3.31 TheMLE for fractional Ornstein–Uhlenbeck process was first studied
in [36]. The authors derived the formula for MLE, proved its strong consistency, and
got the asymptotic properties of the bias and the mean square error. The asymptotic
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normality in the case θ < 0 was established in [14]. The asymptotic distributions
for θ = 0 and θ > 0 were obtained in [72, 73]. The large deviation properties of the
MLE were investigated in [5] (see also [6, 26]). The exact distribution of MLE was
computed in [72, 73].

Remark 3.32 It holds that θ̂
(1)
H,T

D= θ̂
(1)
1−H,T , where θ̂

(1)
H,T is the MLE under the Hurst

parameter H and the time span T (see [14] for θ < 0, [72] for θ = 0, and [73] for
θ > 0). The MLE for H < 1/2 was also considered in [74], where the relations
(16)–(18) was proved for H < 1/2.

Remark 3.33 The properties of estimators in the fractional Ornstein–Uhlenbeck
model substantially depend on the sign of θ . The hypothesis testing of the drift
parameter sign was studied in [43, 59, 72, 73].

Consider for H ∈ ( 12 , 1) the estimator θ̂
(2)
T :

θ̂
(2)
T =

∫ T
0 Xsd Xs∫ T
0 X2

s ds
= θ +

∫ T
0 Xsd B H

s∫ T
0 X2

s ds
. (19)

It admits the following representation

θ̂
(2)
T = X2

T

2
∫ T
0 X2

s ds
. (20)

Note that this form of the estimator is well defined for all H ∈ (0, 1).

Theorem 3.34 ([4, 22]) Let θ > 0, H ∈ (0, 1). Then the estimator θ̂
(2)
T given by

(20) is strongly consistent as T → ∞. Moreover,

eθT
(
θ̂

(2)
T − θ

) L−→ 2θC(1),

as T → ∞, where C(1) is the standard Cauchy distribution.

Remark 3.35 If θ < 0, then θ̂
(2)
T converges to zero in L2(Ω,P) ([29], see the remark

at the end of Sect. 3). If the path-wise integral in (19) is replaced by the divergence-
type integral, then the estimator (19) is strongly consistent and asymptotically normal
[29, Theorems3.2, 3.4]. The divergence-type integral is the limit of the Riemann
sums defined in terms of the Wick product. Since it is not suitable for simulation and
discretization, Hu and Nualart [29] proposed the following estimator for the ergodic
case θ < 0

θ̂
(3)
T = −

(
1

HΓ (2H)T

∫ T

0
X2

s ds

)− 1
2H

.

Theorem 3.36 ([29, 43]) Let θ < 0, H ∈ (0, 1). Then the estimator θ̂
(3)
T is strongly

consistent as T → ∞. If H ∈ ( 12 ,
3
4 ), then
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√
T

(
θ̂

(3)
T − θ

) L−→ N (
0,−θσ 2

H

)
,

as T → ∞, where

σ 2
H = 4H − 1

(2H)2

(
1 + Γ (3 − 4H)Γ (4H − 1)

Γ (2 − 2H)Γ (2H)

)
. (21)

To construct the estimator for all θ ∈ R, Moers [59] combined θ̂
(2)
T and θ̂

(3)
T as

follows (assuming x0 ∈ R is arbitrary):

θ̂
(4)
T = X2

T − x2
0

2
∫ T
0 X2

t dt
−

(
1

HΓ (2H)T

∫ T

0
X2

t dt

)− 1
2H

.

Theorem 3.37 ([59]) Let H ∈ [ 12 , 1). Then the estimator θ̂
(4)
T is strongly consistent

for all θ ∈ R. As T → ∞,

√|θ | T
(
θ̂

(4)
T − θ

) L−→ N (
0, θ2σ 2

H

)
, θ < 0, H ∈ [

1
2 ,

3
4

)
,

T θ̂
(4)
T

L−→ ψH , θ = 0,

eθT
(
θ̂

(4)
T − θ

) L−→ 2θ
η1

η2 + x0bH
, θ > 0,

where σ 2
H is defined in (21), bH = θ H√

HΓ (2H)
,

ψH =
(
B H
1

)2
2

∫ 1
0

(
B H

t

)2
dt

−
(

1

HΓ (2H)

∫ 1

0

(
B H

t

)2
dt

)− 1
2H

,

and η1 and η2 are independent standard normal random variables.

Bishwal [12] studied for H ∈ (1/2, 1) and θ < 0 the followingminimum contrast
estimator

θ̂
(5)
T = − T

2
∫ T
0 Q2(s) dwH

s

, (22)

and proved the same asymptotic normality as the MLE (see statement 3(i) of Theo-
rem3.30). The distribution of θ̂

(5)
T was computed in [72].
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4 Drift Parameter Estimation by Discrete Observations

4.1 General Fractional Model

Consider a stochastic differential equation

Xt = X0 + θ

∫ t

0
a(Xs)ds +

∫ t

0
b(Xs)d B H

s , (23)

where X0 is a nonrandom coefficient. In [47] it is shown that this equation has
a unique solution under the following assumptions: there exist constants K > 0,
L > 0, δ ∈ (1/H − 1, 1], and for every N > 0 there exists RN > 0 such that

(E1) |a(x)| + |b(x)| ≤ K for all x, y ∈ R,
(E2) |a(x) − a(y)| + |b(x) − b(y)| ≤ L |x − y| for all x, y ∈ R,
(E3)

∣∣b′(x) − b′(y)
∣∣ ≤ RN |x − y|δ for all x ∈ [−N , N ], y ∈ [−N , N ].

Ourmain problem is to construct an estimator for θ based on discrete observations
of X . Specifically, we will assume that for some n ≥ 1 we observe values Xtk

n
at the

following uniform partition of [0, 2n]: tn
k = k2−n , k = 0, 1, . . . , 22n .

In order to construct consistent estimators for θ , we need another technical
assumption, in addition to conditions (E1)–(E3):

(E4) a(x) and b(x) are separated from zero.

We now define an estimator, which is a discretized version of a maximum likeli-
hood estimator for F(X), where F(x) = ∫ x

0 b(y)−1dy:

θ̃ (1)
n = 2n

∑22n

k=1

(
tn
k

)−α (
2n − tn

k

)−α
b−1

(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1

(
tn
k

)−α (
2n − tn

k

)−α
b−1

(
Xtn

k−1

)
a

(
Xtn

k−1

) .

Theorem 4.1 ([55]) Under conditions (E1)–(E4), θ̃ (1)
n is strongly consistent. More-

over, for any β ∈(1/2, H) and γ > 1/2 there exists a random variable η = ηβ,γ with
all finite moments such that

∣∣θ̃ (1)
n − θ

∣∣ ≤ ηnκ+γ 2−τn, where κ = γ /β,
τ = (1 − H) ∧ (2β − 1).

Consider a simpler estimator:

θ̃ (2)
n = 2n

∑22n

k=1 b−1
(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1 b−1
(
Xtn

k−1

)
a

(
Xtn

k−1

) .

This is a discretized maximum likelihood estimator for θ in Eq. (23), where B H is
replaced by Wiener process.

Theorem 4.2 ([55]) Theorem4.1 holds for θ̃ (2)
n .
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Now let us define a discretized version of θ̂
(2)
T defined in (12). Put

θ̃ (3)
n := 2n

∑22n

k=1 a
(
Xtn

k−1

)
b−2

(
Xtn

k−1

) (
Xtn

k
− Xtn

k−1

)
∑22n

k=1 a2
(
Xtn

k−1

)
b−2

(
Xtn

k−1

) .

Let ϕ(t) = a(Xt )

b(Xt )
,

ϕ̂n(t) :=
22n−1∑
k=0

ϕ(tn
k )1[tn

k ,tn
k+1)

(t).

Theorem 4.3 ([57]) Under conditions (E1)–(E4), assume that there exist constants
β > 1 − H and p > 1 such that

2n(H+β)n p
∫ 2n

0

∣∣∣
(

Dβ

0+ϕ̂n

)
(s)

∣∣∣ ds
∑22n

k=1 ϕ2(tn
k−1)

→ 0 a. s. at n → ∞.

Then θ̃ (3)
n is strongly consistent.

4.2 Fractional Ornstein–Uhlenbeck Model

In this subsection, we consider discretized versions of the estimators θ̂
(2)
T and θ̂

(3)
T in

the fractional Ornstein–Uhlenbeck model with constant coefficients

d Xt = θ Xt dt + d B H
t , t ≥ 0.

We start with the case θ > 0. Assume that a trajectory of X = X (t) is observed
at the points tk,n = kΔn , 0 ≤ k ≤ n, n ≥ 1, and Tn = nΔn denotes the length of
“observation window”. Let us consider the following two estimators:

θ̃ (4)
n =

∑n
i=1 Xti−1

(
Xti − Xti−1

)
Δn

∑n
i=1 X2

ti−1

,

θ̃ (5)
n = X2

tn

2Δn
∑n

i=1 X2
ti−1

.

These estimators are discretized versions of θ̂
(2)
T , obtained from representations (19)

and (20).

Theorem 4.4 ([24]) Let θ > 0, H ∈ ( 12 , 1). Suppose that Δn → 0 and nΔ1+α
n → 0

as n → ∞ for some α > 0. Then the estimators θ̃ (4)
n and θ̃ (5)

n are strongly consistent
as n → ∞.
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A similar estimator to θ̃ (4)
n was considered in [42]. Let n ≥ 1, tk,n = k

n ,
0 ≤ k ≤ nm , where m ∈ N is some fixed integer. Suppose that we observe X at
the points {tk,n, n ≥ 1, 0 ≤ k ≤ nm}. Consider the estimator

θ̃ (6)
n (m) =

∑nm−1
k=0 Xk,nΔXk,n

1
n

∑nm−1
k=0 X2

k,n

,

where Xk,n = Xtk,n , ΔXk,n = Xk+1,n − Xk,n .

Theorem 4.5 ([42]) Let θ > 0, H ∈ (0, 1). Then for any m > 1 the estimator
θ̃ (6)

n (m) is strongly consistent.

Now let θ < 0. In [30, 75] the following discretized version of the estimator θ̂
(3)
T

was considered

θ̃ (7)
n = −

(
1

nHΓ (2H)

n∑
k=1

X2
kΔ

)− 1
2H

,

where the process X was observed at the points Δ, 2Δ, . . . , nΔ for some fixed
Δ > 0.

Theorem 4.6 ([30]) Let θ < 0, H ∈ [ 12 , 1). Then the estimator θ̃ (7)
n is strongly con-

sistent as n → ∞. If H ∈ [ 12 , 3
4 ), then

√
n

(
θ̃ (7)

n − θ
) L−→ N

(
0,

θ2

2H 2

)
,

as n → ∞.

Remark 4.7 The discretization of MLE was considered in [74]. Discrete approxi-
mations to the minimum contrast estimator (22) were studied in [12].

Remark 4.8 For the case θ < 0 the drift parameter estimator based on polynomial
variations was proposed in [25].

Remark 4.9 In [13, 79], a more general situation was studied, where the equation
had the form d Xt = θ Xt dt + σd B H

t , t > 0, andϑ = (θ, σ, H) is the unknown para-
meter, θ < 0. Consistent and asymptotically Gaussian estimators of the parameter θ

were proposed using the discrete observations of the sample path
(XkΔn , k = 0, . . . , n) for H ∈ ( 12 ,

3
4 ), where nΔ

p
n → ∞, p > 1, and Δn → 0 as

n → ∞. In [79] the strongly consistent estimator is constructed for the scheme
when H > 1

2 , the time interval [0, T ] is fixed and the process is observed at the
points hn, 2hn, . . . , nhn , where hn = T

n .
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5 Drift Parameter Estimation in Mixed Models

5.1 General Mixed Model

Let us take aWiener process W = {Wt , t ∈ R
+} on probability space (Ω,F ,F , P),

possibly correlated with B H . Assume that H > 1
2 and consider a one-dimensional

mixed stochastic differential equation involving both the Wiener process and the
fractional Brownian motion

Xt = x0 + θ

∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)d B H

s +
∫ t

0
c(s, Xs)dWs, t ∈ R

+,

(24)
where x0 ∈ R is the initial value, θ is the unknown parameter to be estimated, the
first integral in the right-hand side of (24) is the Lebesgue–Stieltjes integral, the
second integral is the generalized Lebesgue–Stieltjes integral introduced in Defin-
ition2.4, and the third one is the Itô integral. From now on, we shall assume that
the coefficients of equation (24) satisfy the assumptions (B1)–(B6) on any interval
[0, T ]. It was proved in [58] that under these assumptions there exists a solution
X = {Xt ,Ft , t ∈ [0, T ]} for the Eq. (24) on any interval [0, T ] which satisfies (9)
for any α ∈ (1 − H, κ), where κ = 1

2 ∧ β. This solution is unique in the class of
processes satisfying (9) for some α > 1 − H .

Remark 5.1 In case when components W and B H are independent, assumptions
for the coefficients can be relaxed, as it has been shown in [27]. More specifically,
coefficient c can be of linear growth and ∂x b can be Hölder continuous up to some
order less than 1.

If we consider general equation (24) with nonzero c, then it is impossible to
construct reasonable MLE of the parameter θ . Therefore we construct the estimator
of the same type as in (12). More exactly, suppose that the following assumption
holds:

(F1) c(t, Xt ) �= 0, t ∈ [0, T ], a(t,Xt )

c(t,Xt )
is a.s. Lebesgue integrable on [0, T ] for any

T > 0 and there exists generalized Lebesgue–Stieltjes integral
∫ T
0

b(t,Xt )

c(t,Xt )
d B H

t .

Define functions ψ1(t, x) = a(t,x)

c(t,x)
and ψ2(t, x) = b(t,x)

c(t,x)
, processes ϕi (t) =

ψi (t, Xt ), i = 1, 2, and process

Yt =
∫ t

0
c−1(s, Xs)d Xs = θ

∫ t

0
ϕ1(s)ds +

∫ t

0
ϕ2(s)d B H

s + Wt .

Evidently, Y is a functional of X and is observable. Assume additionally that the
generalized Lebesgue–Stieltjes integral

∫ T
0 ϕ1(t)ϕ2(t)d B H

t exists and

(F2) for any T > 0 E
∫ T
0 ϕ2

1(s)ds < ∞.
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Denote ϑ(s) = ϕ1(s)ϕ2(s). We can consider the following estimator of
parameter θ :

θ̂T =
∫ T
0 ϕ1(s)dYs∫ T
0 ϕ2

1(s)ds
= θ +

∫ T
0 ϑ(s)d B H

s∫ T
0 ϕ2

1(s)ds
+

∫ T
0 ϕ1(s)dWs∫ T
0 ϕ2

1(s)ds
. (25)

Estimator θ̂T preserves the traditional form of MLE for diffusion models. The
right-hand side of (25) provides a stochastic representation of θ̂T .

Theorem 5.2 ([38]) Let assumptions (F1) and (F2) hold, and, in addition,

(F3)
∫ T
0 ϕ2

1(s)ds = ∞ a.s.
(F4) There exist such α > 1 − H and p > 1 that

T H+α−1(log T )p
∫ T
0 |(Dα

0+ϑ)(s)|ds∫ T
0 ϕ2

1(s)ds
→ 0 a.s. as T → ∞.

Then the estimator θ̂T is strongly consistent as T → ∞.

Similar to Theorem3.8, conditions stated in Theorem5.2 can be simplified in case
when function ϑ is nonrandom.

Theorem 5.3 ([38]) Let assumptions (F1) and (F2) hold. Then, if functions ϕ1 and
ϕ2 are nonrandom, function ϕ1 satisfies condition (D5), function ϕ2 is bounded, then
estimator θ̂T is strongly consistent as T → ∞.

Sequential version of the estimator θ̂T has a form

θ̂υ1(h) = θ +
∫ υ1(h)

0 ϑ(s)d B H
s

h
+

∫ υ1(h)

0 ϕ1(s)dWs

h
,

where

υ1(h) = inf

{
t > 0 :

∫ t

0
ϕ2
1(s)ds = h

}
.

Theorem 5.4 ([38])

(a) Let function ϕ1 be separated from zero, |ϕ1(s)| ≥ c > 0 a.s. and let function ϑ

satisfy the assumption: for some 1 − H < α < 1 and p > 0

∫ υ1(h)

0 |(Dα
0+ϑ)(s)|ds

(υ1(h))2−α−H−p
→ 0 a.s. (26)

as h → ∞. Then estimator θ̂υ1(h) is strongly consistent.
(b) Let function ϑ be nonrandom, bounded, and positive, ϕ1 be separated from

zero. Then estimator θ̂υ(h) is consistent in the following sense: for any p > 0,

E
∣∣∣θ − θ̂υ1(h)

∣∣∣p → 0 as h → ∞.
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Remark 5.5 The assumption (26) holds, for example, for a bounded and Lipschitz
function ϑ .

5.2 Linear Model

Consider a mixed linear model of the form

d Xt = Xt
(
θa(t)dt + b(t)d B H

t + c(t)dWt
)
, (27)

where a, b, and c are nonrandommeasurable functions. Assume that they are locally
bounded. In this case solution X for Eq. (27) exists, is unique and can be presented
in the integral form

Xt = x0 exp

{
θ

∫ t

0
a(s)ds +

∫ t

0
b(s)d B H

s +
∫ t

0
c(s)dWs − 1

2

∫ t

0
c2(s)ds

}
.

Assume that c(s) �= 0. We have that ϕ1(t) = a(t)
c(t) and ϕ2(t) = b(t)

c(t) . The estimator θ̂T

has a form

θ̂T =
∫ T
0 ϕ1(s)dYs∫ T
0 ϕ2

1(s)ds
= θ +

∫ T
0 ϕ1(s)ϕ2(s)d B H

s∫ T
0 ϕ2

1(s)ds
+

∫ T
0 ϕ1(s)dWs∫ T
0 ϕ2

1(s)ds
.

In accordance with Theorem5.3, assume that function ϕ1 satisfies (D5) and ϕ2 is
bounded. Then the estimator θ̂T is strongly consistent. Evidently, these assumptions
hold for the constant coefficients.

5.3 Mixed Fractional Ornstein–Uhlenbeck Model

Chigansky and Kleptsyna [17] considered the maximum likelihood estimation in the
mixed fractional Ornstein–Uhlenbeck model

Xt = X0 + θ

∫ t

0
Xs ds + Vt

with V = B + B H , where B and B H , H ∈ (0, 1) \ {
1
2

}
are independent standard and

fractional Brownian motions. Let g(s, t) be the solution of the integro-differential
Wiener–Hopf type equation:

g(s, t) + d

ds

∫ t

0
g(r, t)H |s − r |2H−1 sign(s − r) dr = 1, 0 < s �= t ≤ T .
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Then the process Mt = ∫ t
0 g(s, t) dVs , t ∈ [0, T ], is a Gaussian martingale with

quadratic variation 〈M〉t = ∫ t
0 g(s, t) ds, t ∈ [0, T ]. The MLE of θ is given by

θ̂T =
∫ T
0 Qt (X) d Zt∫ T

0 Qt (X)2 d〈M〉t

,

where Qt (X) = d
d〈M〉t

∫ t
0 g(s, t)Xs ds, and Zt = ∫ t

0 g(s, t) d Xs .

Theorem 5.6 ([17]) For θ < 0 the estimator θ̂T is asymptotically normal:

√
T

(
θ̂T − θ

) L−→ N (0,−2θ), as T → ∞.

Large deviation properties of this estimator where investigated in [49].
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Convergence to Equilibrium for Many
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Abstract The goal of this paper is to give a short review of recent results of the
authors concerning classical Hamiltonian many-particle systems.We hope that these
results support the new possible formulation of Boltzmann’s ergodicity hypothesis
which sounds as follows. For almost all potentials, the minimal contact with external
world, through only one particle of N , is sufficient for ergodicity. But only if this
contact has no memory. Also new results for quantum case are presented.
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1 Introduction

The goal of this paper is to give a short review of recent results [13–18] of the authors.
In these results, classical Hamiltonian many-particle systems were considered from
new point of view: they have minimal contact with external world, for example, only
one particle of N can have this contact. Thus, we consider Hamiltonian systems with
minimal possible randomness. In despite of this, ergodicity can be proved for almost
all potentials of a wide natural class.

Also we present some new results concerning quantum situation and discuss
common points and difference of our results with other research in mathematical
physics and Markov chains theory, for example with [1–3, 10–12, 19, 20, 22, 23,
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1.1 Intro to Intro

To start with, we give very simple intuition. Let finite set X be given, and let M(X)

be the set of probability measures on X . Stochastic matrix P defines linear map
P : M(X) → M(X), and discrete time Markov chain

¯
ξk depending on the initial

distribution μ0 of ξ0.
It is known that if the matrix Pk , for some k, has all elements positive, then there

exists unique P-invariant measure π, and moreover for any initial measure μ0 as
n → ∞

Pnμ0 → π, (1)

that is for any A ⊂ X the sequence of real numbers (Pnμ0)(A) converges to π(A).
We will call this property strong ergodicity. A weaker ergodicity property (we will
call it Cesaro ergodicity)

1

n

n∑

k=1

Pkμ → π (2)

follows. It can be formulated differently: for any real function f (x) on X and for
any initial state ξ0, time averages are approximately equal to space averages (this
was Boltzmann’s formulation of his famous hypothesis in statistical physics). Exact
formulation for this could be the following:

1

n

n∑

k=1

f (ξk) →
∑

x∈X
f (x)π(x) (3)

as n → ∞, with L1-convergence, or in some other sense.
Deterministic map U : X → X is a particular case of Markov chains - when any

element of matrix P is either 0 or 1. We will consider only one-to-one mapsU . Then
it is clear that

1. if N = |X | > 1 then strong convergence never holds because any U defines a
partition X = X1 ∪ . . . ∪ Xm such that U is cyclic on any Xi ;

2. convergence of
1

n

n∑

k=1

f (Ukx)

holds for anyU and any x (this is a trivial case of the famous Birkhoff–Khinchin
ergodicity theorem) but Cesaro ergodicity (the limit is the unique invariant mea-
sure) holds iff there is only one cycle;

3. note that there are NN deterministic maps, among them N ! one-to-one maps, and
among the latter only (N − 1)! maps with unique cycle. Thus, Cesaro ergodicity
is also a rare event but not so rare as strong ergodicity.
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If the set X is not finite, for example, a smooth manifold, the situation becomes
enormously more complicated. Ludwig Boltzmann did not give exact mathematical
formulations. Later on, various formulations of the problem appeared. For some
history of ergodicity theory we refer to [24] and references therein. What could be
the ways to avoid extreme complexity? First of all, one must find wider and possibly
alternative exact formulations of the problem.

1.2 Classical Ergodicity

We will consider N -particle systems with arbitrary but finite N . Namely, N point
particles in (coordinate) space Rd with coordinate vectors qi = (qi1, . . . , qid), veloc-
ities vi = (vi1, . . . , vid), momenta pi = mivi , and with the interaction defined by
smooth symmetric potentials Vi j (qi , q j ). To avoid double indices we write fur-
ther N instead of dN (thus the index i should be considered as a pair (particle
number, coordinate number)). Then the dynamics in the phase space R2N = {ψ =
(q1, . . . , qN , p1, . . . , pN )} is defined by the following system of Hamiltonian equa-
tions

dqk
dt

= ∂H

∂ pk
= vk,

dpk
dt

= −∂H

∂qk
, k = 1, . . . , N , (4)

with the Hamiltonian

H = H(ψ) =
N∑

k=1

p2k
2mk

+ Q, Q =
∑

1≤k≤l≤N

Vkl(qk, ql).

This dynamics defines a one parameter group of one-to-one transformations Ut :
R2N → R2N of the phase space. We assume that Q → +∞ as maxk |qk | → ∞, so
that no particle could escape to infinity. This assumption is similar to assuming the
system to be in some finite volume (system in the box) � with reflecting boundary
∂�. Then the energy surface Mh = {ψ : H(ψ) = h} ⊂ R2N is bounded for any h
and (by the energy conservation law) is invariant with respect to this dynamics.

Liouville’s theorem says that on any Mh there exists finite probability measure
λh (Liouville’s measure—normalized restriction of the Lebesgue measure λ on the
phase space), invariant with respect to this dynamics.

We say that for a given H the system is ergodic if for any ψ ∈ Mh

lim
T→∞

1

T

∫ T

0
f (Utψ)dt =

∫

Mh

f (ψ)dλh(ψ) (5)

in some space of measurable functions. It can be L2, L1-convergence, or uniform
convergence with respect to ψ.
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Possible problems could be the following:
1. Give examples of Vkl or, better, classes of Vkl such that ergodicity holds for

all sufficiently large N . We do not know any such example, but there are many
counterexamples: linear (due to invariant tori) and nonlinear integrable systems;

2. prove the contrary: for typical (or almost any) Q, from interesting classes
of potentials, ergodicity does not hold. Of course, one should define what means
<<almost all>>;

3. instead of problems 1 and 2 one could look for more natural problems. What
are the reasons for this:

(a) the N -particle systems discussed above are closed systems, but it is not known
whether closed systems exist in nature. More realistic is to assume that any system
always has some contact with external world. Then the first natural question is: how
weak can be this contact for the system to be ergodic;

(b) this does not contradict to the recent development of theoretical physics, where
the notion of space point itself becomes an approximation. Namely, in quantum
physics the dynamics is defined not as a transformation of the phase space, but of L2

space of functions on the coordinate space. Moreover, in modern physics the notion
of space itself is being reconsidered: discrete space, quantum space, or no space
at all.

1.3 Systems with Minimal. Randomness

We consider three types of models with minimum randomness, or combinations of
them.

1. Only one degree of freedom open to external influenceNamely, we change only
one equation (for k = 1) of the system (4)

dq1
dt

= ∂H

∂ p1
= p1,

dp1
dt

= −∂H

∂q1
+ F(x1, p1, t), (6)

where we assume unit masses. All other Eq. (4) are left unchanged. This is used in
part III.

2. Two deterministic evolutions with switching at random time moments Let
Ut

i , i = 1, 2, t ∈ [0,∞), be two semigroups of deterministic transformations (of
some set X ). For example, when X is the phase space of N -particle system, and the
equations are of the type (4). Consider the sequence

0 = t0 < t1 < t2 < . . . (7)
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of time moments and denote τn = tn − tn−1. For any integer m � 1 and nonnegative
real τ1, τ2, . . . τ2m+1 � 0 consider the following transformations

J0 = E, J1 = U τ1
1 ,

J2m(τ1, . . . , τ2m) = U τ2m
2 U τ2m−1

1 . . .U τ2
2 U τ1

1 , (8)

J2m+1(τ1, . . . , τ2m+1) = U τ2m+1
1 J2m(τ1, . . . , τ2m), (9)

and define the evolution W (t):

W (t) = Ut−t2m
1 J2m(τ1, . . . , τ2m), t2m ≤ t < t2m+1, (10)

W (t) = Ut−t2m+1
2 J2m+1(τ1, . . . , τ2m+1), t2m+1 ≤ t < t2m+2.

Define also the following sets of transformations:

Jn(U
t
1,U

t
2) = {Jn(τ1, . . . , τn) : τ1, τ2, . . . , τn � 0}.

We say that the triple (Ut
1,U

t
2, x) satisfies the covering (or contrallability) condition

if there exists n such that

Jn(x) = J x
n (Ut

1,U
t
2) = Jn(U

t
1,U

t
2)x = X, (11)

that is, starting from x , n transformations cover all the set X . The triple satisfies
strong covering (strong controllability) condition if n does not depend on x .

Belowwe always assumeCondition D: τk are independent identically distributed
positive random variables with Eτ1 < ∞, having some density p(s) = pτ (s) with
respect to Lebesgue measure, positive for all s ≥ 0. However, in some cases weaker
assumptions are possible.

This model is used in Sect. 2.2.

3. One deterministic evolution with external deterministic intrusion at random
time moments Let be given semigroup Ut

1 and fixed transformation U2. We put
J (t) = U2Ut

1 and for tn ≤ t < tn+1 put

W (t) = Ut−tn
1 J (τn) . . . J (τ1). (12)

This model is used in Sect. 2.1. Note that in case 2 the trajectories are continuous,
and here not.
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2 Convergence and Covering (Controllability) Property

2.1 Classical Dynamics with Random Time Velocity Flips

On the phase space

L = L2N = R
2N =

{
ψ =

(
q
p

)
, q = (q1, . . . , qN )T , p = (p1, . . . , pN )T ∈ R

N

}

(13)

(T denotes transposition, thus q, p,ψ are the column vectors) we consider quadratic
Hamiltonian

H = H(ψ) = 1

2

N∑

i=1

p2i + 1

2

∑

i, j

V (i, j)qiq j = 1

2

((
V 0
0 E

)
ψ,ψ

)

2

(14)

with (symmetric) positive-definite matrix V , and the corresponding Hamiltonian
system of linear ODE with k = 1, . . . , N

q̇k = pk, ṗk = −
N∑

l=1

Vklql . (15)

Note that here the energy surface Mh is a smooth manifold (ellipsoid) in L of
codimension 1.

With (2N × 2N )-matrix

A =
(

0 E
−V 0

)

the system (15) can be rewritten as follows:

ψ̇ = Aψ, (16)

and the solution of (16) defines the transformation group

Ut
1 = et A

Now define the transformation U2. Assume that at time moments (7) the follow-
ing deterministic transformation U2 : L → L occurs: all qk, pk are left unchanged,
except for p1, the sign of which becomes inverted

p1(tm − 0) → p1(tm) = −p1(tm − 0),m ≥ 1.
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One can say that U2 is the velocity flip of the first coordinate of particle 1. Note
that the Liouville measure π is invariant w.r.t. Hamiltonian dynamics and also w.r.t.
velocity flips.

For any tn ≤ t < tn+1 define linear transformations L → L , putting as in (12)

W (t)ψ = e(t−tn)AU2e
τn A . . .U2e

τ1Aψ, ψ ∈ L .

Thus, we are in the situation of 1.3.3. It is clear that Mh is invariant w.r.t. W (t) for
any h > 0 and t ≥ 0.
What means “almost all” Define the mixing subspace

L− = L−(V ) =
{(

q
p

)
∈ L : q, p ∈ lV

}
, (17)

where lV = lV,1 is the subspace ofRN , generated by the vectorsV ke1, k = 0, 1, 2 . . .,
where e1, . . . , eN is the standard basis in RN .

Let V be the set of all positive-definite (N × N )-matrices, and letV+ ⊂ V be the
subset of matrices for which

L−(V ) = L . (18)

Note thatV can be considered as subset of R
N (N+1)

2 , thus (the restriction of) Lebesgue
measure is defined on it. Let ω2

1, . . . ,ω
2
N be the eigenvalues of V , and letVind be the

set of V ∈ V such that the square rootsω1, . . . ,ωN of the eigenvalues are independent
over the field of rational numbers.

Lemma 1 (1) The set V+ is open and everywhere dense (assuming topology of
R

N (N+1)
2 ) in V,

(2) The set V+ ∩ Vind is dense both in V+and in V, and the Lebesgue measures
on V,V+,V ∩ Vind are all equal.

Covering Theorem

Theorem 1 Assume that V ∈ V+ ∩ Vind , then there exists m � 1 such that for any
ψ ∈ L we have

Jm(ψ) = Mh

Moreover, there is the following upper bound on m

m ≤ 2

mink β2
k

+ 2

where βk = (vk, e1) and v1, . . . , vN are the eigenvectors of V . Moreover, from the
properties of L− it follows that all βk are not zero.

Similar property was called pure state controllability in quantum case, see for
example [5, 12, 25, 26].
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Convergence Theorem

Theorem 2 Assume that V ∈ V+ ∩ Vind . Then, under condition D, for any initial
ψ(0) and any bounded measurable real function f onMh we have a.s.

M f (T ) =de f 1

T

∫ T

0
f (ψ(t))dt →T→∞ π( f ) =de f

∫

Mh

f dπ

If, for example, τi have exponential distributionwith the densityλ exp(−λτ ), λ >

0, then it definesMarkov processψ(t)with right continuous deterministic trajectories
and random jumps. Such processes are often called piecewise deterministic Markov
processes, see for example [2]. At the same time, this can be considered as an example
from random perturbation theory, see [11] where the problem of invariant measures
is studied.

2.2 Finite Quantum Dynamics with Random Time Switching

Here we consider the situation of the Sect. 1.3.2̇, and assume both groups Ut
i to be

unitary evolutions in CN . Examples could be quantum walks on finite lattices.

2.2.1 Definitions and Results

WeconsiderH = CN , N > 1, as theHilbert spacewith the scalar product (Hermitian
form)

(ψ,ψ′) =
N∑

k=1

ψkψ̄
′
k, ψ,ψ′ ∈ H.

LetO be the set of all Hermitian (self adjoint) operators onH. Lie algebra structure
on O is introduced as follows:

{A, B} = i[A, B] = i(AB − BA) ∈ O. (19)

Let U (N ) be the group of unitary transformations of H. Consider two its one-
parametric subgroups Ut

k = e−i t Hk , k = 1, 2, t � 0, where H1, H2 ∈ O. For any
integerm � 1 and any real s1, s2, . . . s2m+1 ≥ 0 consider the transformations (8) and
(9) and define the following sets of unitary matrices

Jn(H1, H2) = {Jn(s1, . . . , sn) : s1, s2, . . . , sn ≥ 0}.

U-controllabilityWe say that the pair (H1, H2) of Hermitian operators satisfies the
U -controllability condition, if there exists n such that

Jn(H1, H2) = U (N ).
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Theorem 3 For the pair of Hermitian operators (H1, H2) theU-controllability con-
dition holds iff the linear span L = L(H1, H2) (over the field of real numbers) of the
operators

H1, H2, {H1, H2}, {H1, {H1, H2}}, {H2, {H1, H2}}, . . . (20)

coincides with O.

The proof of this assertion can be found in many sources: see [25], also Theo-
rem3.2.1, p. 82 in the book [5], also many references in [26]. Then L is a subalgebra
of O with respect to the operation (19), and iL is called the dynamical Lie algebra
in [5].

Denote � ⊂ O × O the set of all pairs of Hermitian operators (H1, H2), for
which the U -controllability property holds. For any H1 ∈ O define the set �(H1)

of all H2 ∈ O such that the pair (H1, H2) is U -controllable. We shall say that the
operator H1 is almost U-controllable, if the set�(H1) is open and everywhere dense
in O.

Theorem 4 (almost all theorem) The following assertions hold:
(1) � is open and everywhere dense in O × O.
(2) the set of almost U-controllable operators is open and everywhere dense in O.

One can find the formulations of Theorem4 in the papers [10, 12, 25].We provide
below formal rigorous proof. But first we want to give more constructive criteria. Let
λ1, . . . ,λN be the eigenvalues of H2 and ψ1, . . . ,ψN be the corresponding eigen-
vectors.

Theorem 5 Assume that the following two conditions hold:

1. (H1ψk,ψ j ) �= 0 for all k �= j ;
2. λk − λl �= λk ′ − λl ′ for any ordered pairs (k, l) �= (k ′, l ′) ∈ {1, . . . , N }2.
Then for L = L(H1, H2) the following assertions hold:

1. if Tr(H1) = Tr(H2) = 0, then L coincides with the subalgebra of all Hermitian
operators with zero trace;

2. otherwise L coincides with O.

Corollary 1 If the operator H has all eigenvalues different, then H is almost
U-controllable.

Note that for the second condition of this theorem to hold it is sufficient that
λ1, . . . ,λN were linearly independent over Z. One could deduce Theorem5 from
results of [1], but we will give below a direct and simple proof.

Convergence to Haar measure Consider the sequence (7) of time moments. For
t � 0 define the following continuous time random process with values in U (N ): if
tn−1 ≤ t < tn then
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X (t) = Jn(τ1, τ2, . . . , τn−1, t − tn−1), X (0) = E, (21)

(that is X (t) = W (t) from 10). Define also the discrete time <<embedded>>

process
Xn = X (tn) = Jn(τ1, τ2, . . . , τn−1, τn).

Note that Xn is a Markov chain with values in U (N ), but X (t) in general is not
Markov. For any Borel subset A ⊂ U (N ) let Pn(A) be the probability distribution
of the random variable Xn .

Denote π the normed Haar measure on U (N ).

Theorem 6 (convergence to Haar measure) Assume Condition D and that the pair
(H1, H2) satisfies theU-controllability condition. Then the followingassertions hold:

1. Pn → π in variation as n → ∞ exponentially fast, that is for some positive
constants c > 0, q < 1, all Borel subsets A ⊂ U (N ) and all n ≥ 1

|Pn(A) − π(A)| � cqn;

2. For any bounded measurable function f , defined on U (N ), a. s.

1

T

∫ T

0
f (X (t)) dt →T→∞

∫

U (N )

f (u)π(du).

Convergence for quantum statesConsider the setS of real valued linear functionals
on the algebra O, such that

F(E) = 1, F(A2) � 0,

for any A ∈ O, where E is the identity operator. Remind that any functional F ∈ S
can be written as

F(A) = Tr(ρA)

for some nonnegative definite operator ρ such that Tr(ρ) = 1, that is

ρ = ρ∗, (ρψ,ψ) � 0,

for all ψ ∈ H.
Dynamics on the set S is defined by the differential (Schrodinger) equation

dρ(t)

dt
= −i[H, ρ(t)], (22)

having the solution
ρ(t) = U (t)ρ(0)U ∗(t),

where U (t) = e−i Ht is unitary and H is Hermitian.
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We will say that the function ρ(t), t � 0, converges in Cesaro sense as t → ∞
to ρ ∈ S, if

lim
T→∞

1

T

∫ T

0
Tr(ρ(t)A) dt = Tr(ρA)

for any A ∈ O. We shall use the notation ρ(t) →c ρ.

Theorem 7 (pure state convergence)
Assume that all eigenvalues of the matrix H are different and ρ(0) = Pψ is the

projector on the unit vector ψ, then

ρ(t)
c−→

N∑

k=1

|(ψ,ψk)|2Pψk

as t → ∞, whereψ1, . . . ,ψn -are the eigenvectors of H, which form the orthonormal
basis on H.

From this theorem it follows that Cesaro limit of ρ(t) depends on ρ(0) (thus there
is no “ergodicity” in this case). Now consider the case when the Hamiltonian H is
time dependent:

dρ(t)

dt
= −i[H(t), ρ(t)]. (23)

Namely, for the time sequence (7) define H(t) as follows:

H(t) =
{
H1, t2k ≤ t < t2k+1

H2, t2k+1 ≤ t < t2k+2
,

for k = 0, 1, . . . and some pair of Hermitian operators H1, H2.
Then one can write down the solution of (23) in terms of the process X (t)

(see (21)):
ρ(t) = X (t)ρ(0)X∗(t). (24)

Theorem 8 (mixed state convergence) Assume that the conditions of the Theorem6
hold. Then for any ρ(0) ∈ S with probability one we have

ρ(t)
c−→ 1

N
E, t → ∞.

Generalizations for a weaker controllability condition Let us say that the pair of
Hermitian operators (H1, H2) is pure states controllable (or controllable for short),
if there exists n, such that for any ψ ∈ H

J ψ
n (H1, H2) = H.
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It is obvious that this condition follows from the U -controllability condition. The
inverse statement in general is not true. Moreover, in the book [5] there is a general
criterion of when the pair (H1, H2) is controllable in terms of L (Theorem3.4.7).

Define the random process ψ(t) = X (t)ψ and the embedded chain ψn = Xnψ as
ψ ∈ H. Let Pn(ψ, A) denote the probability that ψn belongs to Borel subset A ⊂ H.
Denote π∗ the uniform measure on S = {ψ ∈ H : (ψ,ψ) = 1}.
Theorem 9 (measure convergence for weaker controllability)

Assume condition D and that for the pair (H1, H2) the (pure state) controllability
condition holds. Then:

1. Pn(ψ, ·) converges to π∗ in variation as n → ∞ exponentially fast and uniformly
inψ ∈ S that is for some positive constants c > 0 and q < 1, for any Borel subsets
A ⊂ H and all ψ ∈ S

|Pn(ψ, A) − π(A)| � cqn

for all n � 1.
2. For any bounded measurable function f on S and any initial ψ(0) ∈ S a.s.

1

T

∫ T

0
f (ψ(t)) dt →T→∞

∫

S
f (ψ)dπ∗(ψ).

The proof is exactly the same as the proof of Theorem6.
Theorem on mixed states convergence holds also under controllability condition.

Theorem 10 (mixed state convergence 2)
Assume that the conditions of Theorem9 hold. Then for any ρ(0) ∈ S as t →

∞ a.s.

ρ(t)
c−→ 1

N
E .

2.3 Proofs

2.3.1 Proof of Theorems4 and 5

We prove first the Theorem5.
Further on, all matrices are considered in the basis ψ1, . . . ,ψN . Note that the set

T = {H ∈ O : (Hψk,ψk) = 0, f or all k = 1, . . . , N }

is a linear real space of dimension d = N (N − 1).

Lemma 2 T is a subset of L.



Convergence to Equilibrium for Many Particle Systems 283

Proof Define the operator T : O → O by

T (H) = {H2, H}.

To prove the lemma it is sufficient to show that the real linear space generated by
the matrices

T (H1), T
2(H1), . . . , T

d(H1), . . . (25)

coincides with T . For the (k, j)-th element of the matrix T (H) we have

(T (H))k, j = hk, j (λk − λ j )i,

where H = (hk, j ). It follows that

(
T n(H)

)
k, j = hk, j

(
(λk − λ j )i

)n
.

As all elements of the matrix H1 are non zero, then, for all n, the linear dependence
of T (H1), T 2(H1), . . . , T n(H1) over C is equivalent to the linear dependence of the
matrices T1, . . . , Tn over C, where

(Tn)k, j = (
(λk − λ j )i

)n
.

But this is possible (due to the condition on the eigenvalues of H2) only for n >
N (N−1)

2 = d
2 . Lemma is proved.

We will need one more lemma. Denote Ek, j ∈ O the Hermitian operator with the
matrix

(Ek, jψk ′ ,ψ j ′) =

⎧
⎪⎨

⎪⎩

1, k ′ = j ′ = k,

−1, k ′ = j ′ = j,

0, otherwise.

.

Lemma 3 For all k �= j = 1, . . . , N

Ek, j ∈ L.

Proof By symmetry it is sufficient to prove that E1,N ∈ L. For this we shall define
the operator S ∈ T , such that {H1, S} = E1,N . Lemma will follow from this. For any
ψ ∈ H and S ∈ O we have the following:

({H1, S}ψ,ψ) = i((Sψ, H1ψ) − (H1ψ, Sψ)) = 2Im((H1ψ, Sψ)).

Denote H1 = (hk, j ). Define now the operator S ∈ T as follows:

Sψ1 = b1ψ2,
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Sψk = akψk−1 + bkψk+1, k = 2, . . . , N − 1,

SψN = aNψN−1,

where bk = āk+1, k = 1, . . . , N − 1 and

ak = i

2hk,k−1
, k = 2, . . . , N .

We have the following:

({H1, S}ψ1,ψ1) = 2Im(h2,1b̄1) = 1,

({H1, S}ψk ,ψk) = 2Im
(
hk−1,k āk + hk+1,k b̄k

) = Im

(
−hk−1,k

i

h̄k,k−1
+ hk+1,k

i

hk+1,k

)
= 0,

({H1, S}ψN ,ψN ) = 2Im(hN−1,N āN ) = −1,

where k = 2, . . . , N − 1. It follows that for some T ∈ T one can write {H1, S} =
E1,N + T ∈ L. This proves the Lemma.

Return now to the proof of the theorem. In the first case, Tr(H1) = Tr(H2) = 0,
it follows from the definition of L that the trace of any operator H ∈ L is zero. In
other words, iL ⊂ su(N ), where su(N ) is the Lie algebra of the group of special
unitary matrices. The dimension of su(N ) is N 2 − 1. Moreover, as E1,k ∈ L, k =
1, . . . , N − 1 are linearly independent and do not belong to T , the dimension of L
also equals N (N − 1) + N − 1 = N 2 − 1. Thus, iL = su(N ).

Consider now the second case of the Theorem, i.e., when for some k = 1, 2 the
trace of Hk is not zero. Let D be the operator with diagonal matrix, having the ( j, j)-
th element equal to (Hk) j, j . As T ⊂ L, then D ∈ L. As the trace of D is not zero,
then D, E1,2, . . . , EN−1,N are linearly independent. Then, by the arguments similar
to those in the first case above, we get the proof of the Theorem.

Now we will give the Proof of Theorem4.

Proof of Theorem

Proof of assertion (1) To prove the first statement of the theorem it is sufficient to
prove the following two assertions:
(a) � is the complement to some algebraic set in O × O, that is to the set of zeroes
of some system of polynomial equations.
(b) the set � is not empty. This follows from Theorem 5.

Let us prove the assertion (a). Let P be the countable set of all operators (20).
That is the algebra L is, by definition, the linear span of the vectors from P . The set
O of all Hermitian operators can be considered as N 2-dimensional linear space over
reals. Then for the set S1, . . . , SN 2 ∈ O of such operators denote F(S1, . . . , SN 2)

the determinant of the matrix, with rows of which are these vectors. Note that if
S1, . . . , SN 2 ∈ P , then

GS1,...,SN2 (H1, H2) = F(S1, . . . , SN 2)
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is the polynomial of the elements of the matrices H1, H2. Let E be the complement
to � in O × O. It is clear that (H1, H2) ∈ E iff for any S1, . . . , SN 2 ∈ P will be

GS1,...,SN2 (H1, H2) = 0. (26)

But by Hilbert’s Basis theorem there exists finite set of polynomials of the elements
of the pair (H1, H2), with the same set of zeroes as the set (26). Thus the first assertion
is proved.

Proof of (2) We proved above that � is the complement to some algebraic set E ,
i.e.,

E = {(H1, H2) : F1(H1, H2) = . . . = Fm(H1, H2) = 0}

for some polynomials F1, . . . , Fm of the coefficients of the matrices of operators
H1, H2 in some fixed basis. Consider the following algebraic set in O:

E(H1) = {H2 : F1(H1, H2) = . . . = Fm(H1, H2) = 0}.

It is clear that for any H1 ∈ O the set�(H1) is the complement to E(H1) inO. Then
�(H1) is either open and everywhere dense or empty. The latter possibility can occur
iff for any k = 1, . . . , N the polynomial (considered as the function of the matrix
H2) fk(H2) = Fk(H1, H2) is identically zero.

Let us show first that the set of almost U -controllable H1, i.e., for which �(H1)

is open and everywhere dense, is open. Let H1 be almost U -controllable. Then
there exists H2, such that Fk(H1, H2) �= 0 for some k = 1, . . . ,m. Then for all H
in some neighborhood of H1 the inequality Fk(H, H2) �= 0 holds. We get from this
that �(H) �= ∅, then H is also almost U -controllable. Now it is sufficient to prove
that the set of almost U -controllable operators from O is dense. Now take H2 from
Theorem5. It is clear that the set of all H1 for which H2 ∈ �(H1) is dense. Our
statement follows from this.

Proof of the Corollary

Let us prove that in some orthonormal basis all non-diagonal elements of the
matrix of H are nonzero. Letψ1, . . . ,ψN be the eigenvectors of H . For t � 0 consider
the orthonormal basis

ψk(t) = eit Sψk, k = 1, . . . , N ,

where the Hermitian operator S is such that (Sψk,ψ j ) �= 0 for all k, j = 1, . . . , N .
We have

(Hψk(t),ψ j (t)) = (H(t)ψk,ψ j ), H(t) = e−i t S Heit S,

and
dH(0)

dt
= i[H, S].
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It follows that (
dH(0)

dt
ψk,ψ j

)
= (Sψk,ψ j )i(λ j − λk),

where λ1, . . . ,λN are the eigenvalues of H corresponding to ψ1, . . . ,ψN . Then for
t → 0

(Hψk(t),ψ j (t)) = λkδk, j + (Sψk,ψ j )i(λ j − λk)t + ¯̄o(t).

Using the assumptions on H and the choice of S we conclude that for some small t
and all k �= j = 1, . . . , N the following inequality holds

(Hψk(t),ψ j (t)) �= 0.

Now take any Hermitian operator H2, satisfying the conditions of Theorem5 with
eigenvectors ψ1(t), . . . ,ψN (t). By this theorem (H1, H2) is U -controllable. In the
Proof of Theorem4 we got that there is the alternative: either �(H1) is open and
everywhere dense or empty. The theorem is proved.

Note that the condition that all eigenvalues are different is important. Because
one can show that there is no orthonormal basis in which the matrix elements of the
operator

H =
(

λ 0
0 E

)
, λ �= 1,λ > 0,

are nonzero. Nevertheless, from this one cannot state that this H is not almost
U -controllable.

2.3.2 Mixed States Convergence: Theorem 8

By equality (24) and Theorem 6 about convergence, we have (further on u ∈ U (N ))

ρ(t)
c−→ ρ =

∫

U (N )

uρ(0)u∗ dπ(u).

For any g ∈ U (N ) we have

gρg∗ =
∫

U (N )

(gu)ρ(0)(gu)∗ dπ(u) =
∫

U (N )

uρ(0)u∗ dπ(u).

The last equality follows from the invariance of Haar measure with respect to left
and right multiplication. Then for any g ∈ U (N )

gρg∗ = ρ.
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It follows that

ρ = 1

N
E .

The proof is finished.

2.3.3 Theorem10 for (Pure State) Controllability Condition

One can write the initial state as follows:

ρ(0) =
N∑

k=1

ck Pψk ,

N∑

k=1

ck = 1, ck � 0, k = 1, . . . , N ,

where ψ1, . . . ,ψN is an orthonormal basis ofH. Then

ρ(t) =
N∑

k=1

ck Pψk (t),

where ψk(t) = X (t)ψk . By Theorem9 concerning convergence with probability 1
we have:

lim
T→∞

1

T

∫ T

0
Tr(Pψk (t)A)dt =

∫

S
(Aψ,ψ)dπ∗(ψ) = Tr(ρA),

where we put

ρ =
∫

S
ψψ∗dπ∗(ψ).

Thus, with probability 1
ρ(t)

c−→ ρ.

As measure π∗ is invariant with respect to unitary transformations, then for any
unitary matrix u ∈ U (N ) we have the following:

uρu∗ =
∫

S
(uψ)(uψ)∗dπ∗(ψ) = ρ,

and it follows that

ρ = 1

N
E .
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2.3.4 Theorem7: Pure State Convergence

Use the expansion of vector ψ in the eigenvectors of H :

ψ =
N∑

k=1

akψk, ak = (ψ,ψk).

Then
ρ(t) = Pψ(t), ψ(t) = e−i Htψ.

Let λ1, . . . ,λN be eigenvalues of H corresponding to eigenvectors ψ1, . . . ,ψN cor-
respondingly. Then

ψ(t) =
N∑

k=1

ake
−iλk tψk .

For any Hermitian operator A we have the following:

Tr(ρ(t)A) = (Aψ(t),ψ(t)) =
∑

k, j

ak ā j e
it (λ j−λk )(Aψk,ψ j ).

As

lim
T→∞

1

T

∫ T

0
eit (λ j−λk ) =

{
1, k = j

0, k �= j
,

the theorem is proved.

2.3.5 Theorem6

Here it is convenient to denote U (N ) = M.

Convergence for embedded chain It is necessary to do some remarks concerning
possible proofs. This assertion could be examined using the general theory ofMarkov
chains with general state space, see, for example, [19, 20, 22], as it was done in sim-
pler cases for random walks on groups (see, for example, [7] p. 83, Theorem3.2.6).
However, our proof will be based on Theorem4.1 in [17].

Note that Xn is a Markov process, which is not time homogeneous. But ξn = X2n

will already be time homogeneousMarkov process.We shall study ergodic properties
of ξn and will understand how they could be related to ergodic properties of Xn .

Otherwise speaking ξn on M can be defined as follows:

ξn = U τ2n
2 U τ2n−1

1 ξn−1 = X2ng, n = 1, . . . , ξ0 = g ∈ M.
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For g ∈ M andBorel subset A ⊂ M let P(g, A)be the one step transition probability
of the chain ξn . The probability Pm(A), defined at the beginning of this section, and
P(g, A) are connected as follows:

P2m(A) = Pm(e, A),

P2m+1(A) =
∫

M
P1(du)Pm(u, A),

for all m � 1, where e ∈ M is the identity transformation, Pm(·, ·)— m-th degree
of the kernal P(·, ·).

Using Theorem11, we get the following:

|P2m(A) − π(A)| = |Pm(e, A) − π(A)| � cqm,

|P2m+1(A) − π(A)| = |
∫

M
P1(du)Pm(u, A) − π(A)|

�
∫

M
P1(du)|Pm(u, A) − π(A)| � cqm .

Thus we have proved the first assertion of Theorem 6.

Theorem 11 Assume that the conditions of Theorem6hold. Then Pn(g, ·) converges
to π in variation as n → ∞ exponentially fast and uniformly in g ∈ M, that is for
some positive constants c > 0, q < 1, all Borel subsets A ⊂ M and all g ∈ M:

|Pn(g, A) − π(A)| � cqn (27)

for all n � 1.

To prove this theorem we shall use Theorem4.1 from [17]. Let us check the
conditions of this theorem, namely that ξn is a weakly Feller process, and that for
some n � 1 the measure Pn(g, ·) is equivalent to Haar measure π for any g ∈ M.

Lemma 4 (Condition A2 from [17]) The kernel P(·, ·) is a weak Feller that is for
any open O ⊂ M the transition probability P(g, O) is lower semicontinuous in
g ∈ M.

For any g denote 1g(s1, s2) the indicator function on R+ × R+, that is 1g(s1, s2) = 1
if J2(s1, s2)g ∈ O , and zero otherwise. Then we have

P(g, O) =
∫

R+×R+
1g(s1, s2)p(s1)p(s2)ds1ds2.
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Let gn → g, gn ∈ M as n → ∞. Fix s1, s2 � 0 and consider two cases:
1. J2(s1, s2)g ∈ O , then starting fromsomen the inclusion J2(s1, s2)gn ∈ O holds,

as O is open. That is why

lim
n→∞ 1gn (s1, s2) = 1g(s1, s2) = 1;

2. J2(s1, s2)g /∈ O . Then

lim inf
n

1gn (s1, s2) � 1g(s1, s2) = 0.

Thus for any s1, s2
lim inf

n
1gn (s1, s2) � 1g(s1, s2).

Then by Fatou lemma
lim inf

n
P(gn, O) � P(g, O).

So, the lemma is proved.

Lemma 5 (Condition A1 from [17]) For some m � 1 the measures π and Pm(g, ·)
are equivalent for any g. Moreover, there is exist m-step transition density pm(g, u)

measurable on M × M and positive almost everywhere, such that

Pm(g, B) =
∫

B
pm(g, u)dπ(u)

for all g ∈ M and all Borel subset B ⊂ M.

Let us remind that ξn can be presented as follows:

ξn = J2n(τ1, τ2, . . . , τ2n)g,

where operator J2n was defined above. Further, we assume that m = 2n2, where n is
as in the definition of U -controllability. Introduce the following set

�m = {(s1, . . . , sm) : si � 0, i = 1, . . . ,m} ⊂ R
m
�0.

For any g ∈ M the function J g
m(s1, . . . , sm) = Jm(s1, . . . , sm)g acts from �m toM,

then by definition of U -controllability:

J g
m(�m) = M.

Lemma 6 For anymeasurable B ⊂ M its Haarmeasure π(B) = 0 iff the Lebesgue
measure λ of the set (J g

m)−1(B) in �m is zero.
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(1) Assume that for some B ⊂ M we have π(B) = 0. Let us show that λ((J g
m)−1

(B)) = 0. Let Acr be the set of critical points of the map J g
m (that is points τ =

(τ1, . . . , τm) where the rank of the Jacobian is not maximal) and let E = J g
m(Acr ) ⊂

M be the set of critical values of J g
m . By Sard’s theorem π(E) = 0. But as J g

m(�m) =
M, then there exists noncritical point τ = (τ1, . . . , τm) ∈ �m , that is such that the
rank of d J g

m at this point equals N 2. As the map J g
m is analytic in the variables

τ1, . . . , τm , the set of points Acr , where the rank is less than N 2, has Lebesgue
measure zero. Then the equality λ((J g

m)−1(B)) = 0 follows from Theorem1 of [21].
(2) Assume that for some B ⊂ M we have π(B) > 0, and let us show that

λ((J g
m)−1(B)) > 0. By Lebesgue differentiation theorem there exists point g′ ∈

M \ E and its neighborhood O(g′) such that π(O(g′) ∩ B) > 0. Then there is point
τ = τ (g′) ∈ (J g

m)−1(g′) and some its neighborhood O(τ ) ⊂ �m , so that the restric-
tion of J g

m on O(τ ) is a submersion. Then π(O(g′) ∩ B) > 0 implies λ((J g
m)−1(B) ∩

O(τ )) > 0. So, Lemma6 is proven.
Denote p(m)

τ the product of 2m densities pτ , then as for any B ⊂ M

Pm(g, B) =
∫

(J g
m )−1(B)

p(m)
τ (τ )dτ ,

by Lemma6 we get that Pm and π are equivalent measures.
The proof of measurability of the transition density one can find in Theorem1, p.

180 of [22], and in Proposition1.1, p. 5, of [20].
So, Lemma5 is proven.
Let us continue the proof of the assertion of Theorem 11 concerning convergence

of the embedded chain. Let us check that Haar measure is invariant with respect to
ξn . For Borel subset B ⊂ M we have the following:

(πP)(B) =
∫

M
dπ(u)P(u, B) =

∫

M
dπ(u)

∫

R+×R+
1(Us2

2 Us1
1 u ∈ B)p(s1)p(s2)ds1ds2 =

=
∫

R+×R+
p(s1)p(s2)ds1ds2

∫

M
dπ(u)1(Us2

2 Us1
1 u ∈ B) = π(B),

where the last equality follows from the invariance of Haar measure with respect to
multiplication.

Further we shall use Theorem4.1 from [17]. In this paper, there is no assertions
concerning geometric rate convergence. However, during proof of the Theorem4.1
in [17] (see the end of the proof) the following inequality was proved:

Sn+k(A) − In+k(A) � (1 − δ)(Sn(A) − In(A)), for all n = 1, 2, . . . , (28)

where 0 < δ < 1, k > 1, A ⊂ M, and

In(A) = inf
g∈M

Pn(g, A), Sn(A) = sup
g∈M

Pn(g, A).
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But it is obvious that from (28) the assertion (27) holds. Thus, we have proved the
first item of Theorem 6.

Cesaro convergence For any measurable bounded function f onM and any T > 0
define the followings integrals:

M f (T ) = 1

T

∫ T

0
f (X (t)) dt, π( f ) =

∫

M
f (u)dπ(u).

Define the random time Tn as

Tn =
2n∑

k=1

τk, n = 1, 2, . . . .

Lemma 7 For any measurable bounded function f onM the following limit holds
a.s.

lim
n→∞ M f (Tn) = π( f ).

Proof Denote Yk = (ξk, τ2k+1, τ2k+2), k = 0, 1, . . . , ξ0 = e the Markov chain with
values in Y = M × R+ × R+. Then

∫ Tk+1

Tk
f (X (s))ds =

∫ Tk+τ2k+1

Tk
f (Us−Tk

1 ξk)ds +
∫ Tk+1

Tk+τ2k+1

f (Us−(Tk+τ2k+1)

2 U τ2k+1
1 ξk)ds =

(29)

=
∫ τ2k+1

0
f (Us

1ξk)ds +
∫ τ2k+2

0
f (Us

2U
τ2k+1
1 ξk)ds = F(Yk),

where

F(g, t1, t2) =
∫ t1

0
f (Us

1g)ds +
∫ t2

0
f (Us

2U
t1
1 g)ds, (g, t1, t2) ∈ Y .

Then

M f (Tn) = 1

Tn

n−1∑

k=0

∫ Tk+1

Tk

f (X (s))ds = 1

Tn

n−1∑

k=0

F(Yk). (30)

It is easy to show that Yk has invariant measure μ = π × Pτ , Pτ = pτ (s1)pτ (s2)ds1
ds2, satisfies the conditions of Theorem4.2 in [17] as ξk satisfies it. Then

lim
n→∞

1

n

n−1∑

k=0

F(Yk) = μ(F) =
∫

Y
F(g, t1, t2)dμ,
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where

μ(F) =
∫

R+×R+
Pτ (dt1dt2)

∫

M
dπ(g)

(∫ t1

0
f (Us

1g)ds +
∫ t2

0
f (Us

2U
t1
1 g)ds

)
=

=
∫

R+×R+
Pτ (dt1dt2)

(∫ t1

0
ds

∫

M
dπ(g) f (Us

1g) +
∫ t2

0
ds

∫

M
dπ(g) f (Us

2U
t1
1 g)

)

= π( f )
∫

R+×R+
Pτ (dt1dt2)

(∫ t1

0
ds +

∫ t2

0
ds

)
= 2π( f )Eτ1.

Moreover, by strong law of large numbers for independent random variables τk we
have

lim
n→∞

Tn
n

= 2Eτ1.

Then by (30) we get the proof of the lemma.
To prove the second part of Theorem6 we have to estimate the difference between

M f (T ) and M f (Tn). Using the boundedness | f (g)| � c we have

|M f (T ) − M f (Tn)| � | 1
T

∫ T

Tn

f (X (s))ds| + |T − Tn|
T

|M f (Tn)|

� |T − Tn|
T

(c + |M f (Tn)|). (31)

For any T > 0 define the random index n(t) so that

Tn(t) � T < Tn(T )+1,

and note that

|T − Tn(T )|
T

� τ2n(T )+1 + τ2n(T )+2

Tn(T )

= τ2n(T )+1 + τ2n(T )+2∑2n(T )
k=1 τk

.

As Eτ1 < ∞, the law of large numbers, as n → ∞, gives a.s.

τ2N+1 + τ2N+2∑2N
k=1 τk

→ 0.

But n(T ) → ∞ as T → ∞. Then the right-hand side of (31) tends to 0 a.s. as
n = n(T ) and T → ∞. Thus, we complete the proof of Theorem6.
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2.4 From Unitary to Symplectic

Here, on a general but very simple example, we show how convergence in situations
with unitary transformations is related to the similar question for the symplectic
transformations. More information one can find in physical literature, see [4, 8, 9].

We considerCN as complexHilbert space of dimension N < ∞with the standard
basis en, n = 1, 2, . . . , N . Then any vector f ∈ CN can be presented as

f =
∑

n

λnen,λn = qn + i pn. (32)

with real qn, pn . Now letUt = eit Ĥ be unitary group in CN where Ĥ is a selfadjoint
operator in CN with matrix

(akl + ibkl), akl = alk, bkl = −blk .

For the Hamiltonian Ĥ the quantum dynamics f (t) = eit Ĥ f (0) for any vector
f (0) ∈ CN satisfies the Schrodinger equation

− i
∂ f

∂t
= Ĥ f, (33)

or

−i
dλk

dt
= −i

(
dqk
dt

+ i
dpk
dt

)
=

∑

l

(akl + ibkl)(ql + i pl),

or
dpk
dt

=
∑

l

(aklql − bkl pl),
dqk
dt

=
∑

l

(−akl pl − bklql). (34)

If we introduce the quadratic Hamiltonian

H = −1

2

N∑

k,l=1

akl(qkql − pk pl) +
N∑

k,l=1

bklqk pl , (35)

then the Eq. (34) coincide with the classical Hamiltonian equations

dqk
dt

= ∂H

∂ pk
,
dpk
dt

= −∂H

∂qk
, (36)

as

∂(
∑

k,l bklqk pl)

∂ pk
= −∂(

∑
k,l blkqk pl)

∂ pk
= −∂(

∑
l,k bkl plqk)

∂ pk
= −

∑

k,l

bklql .
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Remark 1 It is interesting that this class of classical Hamiltonian dynamics has
nothing with the standard Hamiltonian dynamics considered in Sects. II.1 and III.
Possible convergence toLiouville andGibbsmeasures of such (gyroscopic) dynamics
we shall discuss elsewhere.

3 Gibbs Equilibrium and Memory

Here we use the notation (13)–(16) from Sect. II.1, and consider the system (15) with
quadratic Hamiltonian (14). Then, the density of Gibbs measure μβ with respect to
Lebesgue measure λ on R2N is given by

dμβ

dλ
= Z−1

β exp(−βH) = Z−1
β exp

(
−1

2
(C−1

G,βψ,ψ)2

)
. (37)

So it is gaussian with covariance matrix

CG,β = 1

β

(
V−1 0
0 E

)
. (38)

Although Gibbs distribution is invariant with respect to this dynamics, convergence
(for closed system) to it is impossible due to the law of energy conservation. Thus
we have to introduce some random influence, and we consider the dynamics defined
by the system of 2N stochastic differential equations, as in (6),

dqk
dt

= pk,
dpk
dt

= −
N∑

l=1

V (k, l)ql + δk,1(−αpk + ft ). (39)

This means that only one degree of freedom, namely 1 (first coordinate of the particle
1) is subjected to damping (defined by the factor α > 0) and to the external force ft ,
which we assume to be a gaussian stationary stochastic process.

3.1 Large Time Behavior for Fixed Finite N

One can rewrite system (39) in the vector notation

dψ

dt
= Aψ + Ft , (40)

where

A =
(

0 E
−V − αD

)
, (41)
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E is the unit (N × N )-matrix, D is the diagonal (N × N )-matrix with all zeroes on
the diagonal except D11 = 1, and Ft is the vector (0, . . . , 0. ft , 0, . . . , 0) ∈ R2N .

Covariance All our external forces ft will be gaussian stationary processes with
zeromean.Among them there is thewhite noise—the generalized stationary gaussian
process having covarianceC f (s) = σ2δ(s), it is sometimes called process with inde-
pendent values (without memory). All other stationary gaussian processes, which we
consider here, are processes with memory.We will assume that they have continuous
trajectories and integrable (short memory) covariance

C f (s) =< ft ft+s >= E( ft ft+s).

Then the solution of (40) with arbitrary initial vector ψ(0) is unique and is equal to

ψ(t) = et A
(∫ t

0
e−s AFsds + ψ(0)

)
. (42)

Our goal, in particular, is to show that even weakmemory, in the generic situation,
prevents the limiting invariant measure (which always exists and unique) from being
Gibbs. To formulate more readable results we assume more: C f belongs to the
Schwartz space S = S(R). Then also the spectral density

a(λ) = 1

2π

∫ +∞

−∞
e−i tλC f (t) dt

belongs to the space S.
We shall say that some property (for given V ) holds for almost all C f from the

space S if the set S(+) ⊂ S where this property holds is open and everywhere dense
in S.

Invariant subspacesThe subspace L− ⊂ L was introduced in (17).Nowwedescribe
important properties of this set.

Lemma 8 1. L− and its orthogonal complement denoted by L0, are invariant with
respect to the operator A.

2. The spectrum of the restriction A− of A on the subspace L− belongs to the left
half-plane, and as t → ∞

||et A−||2 → 0

exponentially fast, Moreover¸ L− can be defined as

L− = {ψ ∈ L : H(et Aψ) → 0, t → ∞} ⊂ L

Role of the Memory

Theorem 12 Let ft be either white noise or has continuous trajectories and inte-
grable C f . Then for any Hamiltonian H with L0 = {0} the following holds:
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1. there exists gaussian random (2N )-vectorψ(∞) such that for any initial condition
ψ(0) the distribution of ψ(t) converges, as t → ∞, to that of ψ(∞);

2. for the process ψ(t) we have Eψ(t) → 0 and the covariance -

Cψ(∞)(s) = lim
t→∞ < ψ(t)ψT (t + s) >= lim

t→∞Cψ(t, t + s) = W (s)CG,1 + CG,1W (−s)T ,

(43)
where

W (s) =
∫ +∞

0
eτ AC f (τ + s)dτ ; (44)

3. For the white noise with variance σ2 the vector ψ(∞) has Gibbs distribution (37)
with the temperature

β−1 = σ2

2α
;

4. If α = 0,σ2 > 0, then for any i the mean energy EHi , where

Hi = p2i
2

+
∑

j

V (i, j)qiq j ,

of the particle i tends to infinity. If α > 0,σ2 = 0, then it tends to zero.

We will use here the shorter notation Cψ(∞)(0) = Cψ .

Theorem 13 Let N ≥ 2, and the Hamiltonian H is such that L0 = L0(H) = {0}.
Then the following assertions hold:

1. for any C f ∈ S the limiting distribution does not have correlations between coor-
dinates and velocities;

2. for almost any C f ∈ S there are non zero correlations between velocities, that
is for some i �= j Cψ(pi , p j ) �= 0. It follows that the limiting distribution cannot
be Gibbs.

Classes of Hamiltonians Here we describe classes of potentials with dim L0 = 0.
Let � = �N be connected graph with N vertices i = 1, . . . , N , and not more than

one edge per each (unordered) pair of vertices (i, j). It is assumed that all loops (i, i)
are the edges of �. Denote H� the set of (positive-definite) V such that V (i, j) = 0
if (i, j) is not the edge of �. It is easy to see that the dimension of the setH� is equal
to the number of edges of �.

Examples can be complete graph with N vertices, or we can consider the
d-dimensional integer lattice Zd and the graph � = �(d,�), the set of vertices
of which is the cube

� = �(d, M) = {(x1, . . . , xd) ∈ Zd : |xi | ≤ M, i = 1, . . . , d} ⊂ Zd

and the edges (i, j), |i − j | ≤ 1.
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In general, V is called γ-local on � if V (i, j) = 0 for all pairs i, j having distance
r(i, j) between them greater than γ, where the distance r(i, j) between two vertices
i, j on a graph is the minimal length (number of edges) of paths between them.

We shall say that some property holds for almost any Hamiltonian from the setH�

if the set H(+)
� , where the property holds, is open and everywhere dense. Moreover,

the dimension of the set H(−)
� = H� \ H(+)

� where it does not hold, is less than the
dimension of H� itself.

Lemma 9 For almost any H ∈ H� we have dim L0 = 0.

4 Thermodynamic Limit

We have studied above the limit t → ∞ for fixed N and fixed potential V = VN .
Here we discuss the limit

lim
N→∞ lim

t→∞ .

First of all, it is not clear that this limit exists, and even less how it can look like. The
only immediate conclusion is that, if it exists, it will be gaussian, and will depend
on the covariance C f . One of the central question is of course: how the limiting
distribution will look like far away from the place of external influence that is far
away from the particle 1. Will the effect of the memory disappear or not, i.e., will
this limit have Gibbs covariance or not.

In the white noise case, it is easy to prove that we will get anyway the Gibbs
distribution. Consider now the case when ft is not the white noise. We will prove
that for large N the matrices Cψ become close to the simpler matrix

CV = π

α

(
a(

√
V )V−1 0
0 a(

√
V )

)
,

where
√
V is the unique positive root of V . First of all note that: 1) CV also defines

an invariant measure with respect to pure (that is with α = 0, ft = 0) Hamiltonian
dynamics; 2) for the white noise case CV , corresponds to the Gibbs distribution.

We assume that some graph � is given with the set of vertices �, |�| = N . For
any V ∈ H� such that L0(V ) = {0}, the following representation of the limiting
covariance matrix appears to be crucial

Cψ = CV + YV ,

where YV is some remainder term.
The following theorem gives the estimates for YV . The norm ||V ||∞ of a matrix

V we define by the formula

||V ||∞ = max
i

∑

j

|V (i, j)|.
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Theorem 14 Assume that V is γ-local and ||V ||∞ < B for some B > 0. Fix also
some number η = η(N ) � γ. Then the following assertions hold the following:

1. If C f ∈ S and has bounded support, that is C f (t) = 0 if |t | > b for some
b > 0, then for any pair i, j far away from the particle 1, that is the distances
r(i, 1), r( j, 1) > η(N ), there is the following estimate

|YV (qi , q j )|, |YV (pi , p j )| < K0

(
K

η

)ηγ−1

for some constants K0 = K (C f , B, b,α, γ) and K = K (C f , B, b,α, γ), not
depending on N.

2. For arbitrary C f ∈ S the estimate is

|YV (qi , q j )|, |YV (pi , p j )| < C(k)η−k,

for any k > 0 and some constant C(k) = C(C f , k, B,α, γ), not depending on
N.

This theorem allows to do various conclusions concerning the thermodynamic
limit. We give an example.

Fix some C f (t) ∈ S and some connected countable graph �∞ with the set of
vertices�∞ and an increasing sequence of subsets�1 ⊂ �2 ⊂ . . . ⊂ �n ⊂ . . . such
that � = ∪�n . Let �n be the subgraph of �∞ with the set of vertices �n , i.e., �n

inherits all edges between vertices of�n from�. Here it will be convenient to assume
that, for any fixed n, the specified particle (the only one having contact with external
world) has number Nn = |�n|. We assume also that for any i ∈ �∞ its distance
rn(i, Nn) to the particle Nn tends to ∞ as n → ∞.

Let l∞(�∞) be the complex Banach space of bounded functions on the set of
vertices of �∞:

l∞(�∞) = {(xi )i∈�∞ : sup
i∈�∞

|xi | < ∞, xi ∈ C}.

Fix some γ-local infinite matrix V on this space and such that ||V ||∞ � B. It is clear
thatV defines abounded linear operator on l∞(�∞).Denoteσ(V ) the spectrumof this
operator. Let Vn = (V (i, j))i, j∈�n be the restriction of V on �n , it is a matrix of the
order Nn . Assume that for all n = 1, 2, . . . the matrices Vn are positive definite. Note
that the condition L−(Vn) = L may not hold for some n. However, one can choose
a sequence of positive-definite matrices V ′

n ∈ H�n such that ||Vn − V ′
n||∞ → 0 as

n → ∞ with L0(V ′
n) = {0}. Moreover, the convergence of V ′

n to V n can be chosen
arbitrary fast. Denote C (n)

ψ the limiting covariance matrices corresponding to V ′
n .
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Corollary 2 The following assertions hold:

1. for any i, j ∈ �∞ there exists the thermodynamic limit

lim
n→∞C (n)

ψ (pi , p j ) = C (∞),p
ψ (i, j),

that is for distribution of velocities;
2. if for any i, j ∈ �∞ there exists finite limits:

U (i, j) � lim
n→∞ V−1

n (i, j), (45)

then for the coordinates we have

lim
n→∞C (n)

ψ (qi , q j ) = C (∞),q
ψ (i, j);

3. assume that the spectral density a(
√

λ) is analytic on the open set containing the
spectrum σ(V ). Then

C (∞),p
ψ (i, j) = a(

√
V ),

where a(
√
V ) is defined in terms of the operator calculus on l∞(�∞) ([6], p.

568).

In [15] one can find all proofs in more general situation when more than one
particle have contact with external world.
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Large Deviations for the Rightmost Position
in a Branching Brownian Motion

Bernard Derrida and Zhan Shi

Abstract We study the lower deviation probability of the position of the rightmost
particle in a branching Brownian motion and obtain its large deviation function.

Keywords Branching Brownian motion · Lower deviation probability

2010 Mathematics Subject Classification 60F10 · 60J80

1 Introduction

The question of the distribution of the position Xmax(t) of the rightmost particle in
a branching Brownian motion (BBM) has a long history in probability theory [3–6,
9, 17, 20, 24, 26, 27] and in physics [15, 19, 22, 23].

By branching Brownian motion, we mean that the system starts with a single
particle at the origin which performs a Brownian motion with variance σ2 at time
1, and branches at rate 1 into two independent Brownian motions which themselves
branch at rate 1 independently, and so on. For such a BBM, one knows since the
work of McKean [20] that

u(x, t) := P(Xmax(t) ≤ x),

satisfies the F-KPP (Fisher–Kolmogorov–Petrovskii–Piskunov) equation
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∂u

∂t
= σ2

2

∂2u

∂x2
+ u2 − u (1)

with the initial condition u(x, 0) = 1{x≥0}. It is also known since the works of Bram-
son [5, 6] that in the long time limit

u(x + m(t)σ, t) → F(x), (2)

where F(z) is a traveling wave solution of

σ2

2
F ′′ +

√
2σ2 F ′ + F2 − F = 0

and

m(t) := √
2 t − 3

2
√
2
ln t . (3)

This implies in particular that

lim
t→∞

Xmax(t)

t
=

√
2σ2 , in probability.

[The convergence also holds almost surely.]
In 1988, Chauvin and Rouault [9, 24] proved a large deviation result for

Xmax(t)/t >
√
2σ2, namely, that for v >

√
2σ2

ln

[
P

(
Xmax(t)

t
> v

)]
∼ t

(
1 − v2

2σ2

)
. (4)

In (4) and everywhere below, the symbol ∼ means that

lim
t→∞

lnP(Xmax(t) > vt)

t (1 − v2

2σ2 )
= 1 . (5)

Here, we are interested in the lower deviation probability P(Xmax(t) ≤ vt) for each
v ∈ (−∞,

√
2σ2 ). It turns out that v/

√
2σ2 is an important parameter, so we fix

α ∈ (−∞, 1), and study
P(Xmax(t) ≤ α

√
2σ2 t),

when t → ∞.
Throughout the paper, we write

ρ := √
2 − 1 . (6)

Theorem 1 Let Xmax(t) denote the rightmost position of the BBM at time t. Then
for all α ∈ (−∞, 1),
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Fig. 1 The large deviation
function of the position of
the rightmost particle of a
branching Brownian motion.
The expression of ψ(α) is
nonanalytic at
α = −ρ = 1 − √

2 and at
α = 1

ψ(α)

α−ρ
 0

 2

 4

 0  1  2

 6

−2 −1

lnP(Xmax(t) ≤ α
√
2σ2 t) ∼ −t ψ(α), (7)

where

ψ(α) =
{
2ρ(1 − α) , if α ∈ [−ρ, 1) ,

1 + α2 , if α ∈ (−∞, −ρ] .
(8)

Together with Theorem 1 and the upper large deviation probability in (4), a routine
argument (proof of Theorem III.3.4 in den Hollander [16], proof of Theorem 2.2.3
in Dembo and Zeitouni [11]) yields the following formalism of large deviation prin-
ciple: the family of the distributions of Xmax(t)√

2σ2 t
, for t ≥ 1, satisfies the large deviation

principle on R, with speed t and with the rate function ψ(α) (shown in Fig. 1).

ψ(α) =

⎧⎪⎨
⎪⎩
1 + α2 , if α ≤ −ρ ,

2ρ(1 − α) , if − ρ ≤ α ≤ 1 ,

α2 − 1 , if α ≥ 1 ,

(9)

i.e., for any closed set F ⊂ R and open set G ⊂ R,

lim sup
t→∞

1

t
lnP

( Xmax(t)√
2σ2 t

∈ F
)

≤ − inf
α∈F ψ(α),

lim inf
t→∞

1

t
lnP

( Xmax(t)√
2σ2 t

∈ G
)

≥ − inf
α∈G ψ(α).

Let us also mention that Proposition 2.5 of Chen [10] (recalled as Lemma 3 in
Sect. 3 below) implies that for all α < 1,

ψ(α) ≥ 1 − α

6
,

which is in agreement with (8).
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The reason for the nonanalyticity of ψ(α) in (9) at α = −ρ is that, as we will
see it in Sects. 2 and 3, for α < −ρ the events which dominate are those where the
initial particle does not branch or branches at a very late time (at a time τ very
close to t) while in the range −ρ < α < 1 the first branching event occurs at a time
τ ∼ (1 − α)t/

√
2.

The rest of the paper is as follows. Sections2 and 3 are devoted to the proof of the
lower bound and the upper bound, respectively, for the probability in Theorem1. In
Sect. 4, we present some further remarks.

2 Lower Bound

Fix v ∈ (−∞,
√
2σ2 ). We prove the lower bound in the deviation probability, by

considering a special event described as follows: The initial particle does not pro-
duce any offspring during time interval [0, τ ] and is positioned at y ∈ (−∞, vt −√
2σ2 (t − τ ) − 1] at time τ ; then, at time t , the maximal position lies in (−∞, vt).

As such, we get

P(Xmax(t) ≤ vt)

≥ e−τ

∫ vt−√
2σ2 (t−τ )−1

−∞
dy√
2πσ2τ

e− y2

2σ2τ P(Xmax(t − τ ) < vt − y) . (10)

Note that for y ∈ (−∞, vt − √
2σ2 (t − τ ) − 1], we have vt − y ≥ √

2σ2 (t −
τ ) + 1, so

P(Xmax(t − τ ) ≤ vt − y) ≥ P(Xmax(t − τ ) ≤
√
2σ2 (t − τ ) + 1) .

Let m(t) := √
2 t − 3

2
√
2
ln t be as in (3). By (2), for any z ∈ R, P(Xmax(s) ≤

m(s)σ + z) converges, as s → ∞, to a positive limit (which depends on z). This
yields the existence of a constant c > 0 such that

P(Xmax(t − τ ) ≤
√
2σ2 (t − τ ) + 1) ≥ c,

for all τ ∈ [0, t]. [The presence of +1 in
√
2σ2 (t − τ ) + 1 is only to ensure the

positivity of the probability when τ equals t or is very close to t .] Going back to
(10), we get that for all τ ∈ (0, t],

P(Xmax(t) ≤ vt) ≥ c e−τ

∫ vt−√
2σ2 (t−τ )−1

−∞
1√

2πσ2τ
e− y2

2σ2τ dy .
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Hence,

P(Xmax(t) ≤ vt) ≥ c sup
τ∈(0, t]

{
e−τ

∫ vt−√
2σ2 (t−τ )−1

−∞
1√

2πσ2τ
e− y2

2σ2τ dy
}

. (11)

We now use the following result.

Lemma 2 For v <
√
2σ2 and t → ∞,

ln
(

sup
τ∈(0, t]

{
e−τ

∫ vt−√
2σ2 (t−τ )−1

−∞
1√

2πσ2τ
e− y2

2σ2τ dy
})

∼ −ϕ(v)t,

where

ϕ(v) :=
{
2ρ(1 − α), if α ≥ −ρ,

1 + α2, if α ≤ −ρ ,
(12)

with α := v√
2σ2

< 1 and ρ := √
2 − 1 as before.

The proof of Lemma 2 is quite elementary (as ln(
∫ z
−∞ e−y2 dy) ∼ −z2 for z →

−∞, and
∫ z
−∞ e−y2 dy is greater than a positive constant if z ≥ 0). We only indicate

the optimal value of τ :

τ =
{

1−α√
2
t + o(t), if α ≥ −ρ,

t + o(t), if α ≤ −ρ .
(13)

By (11) and Lemma 2, we obtain

lim inf
t→∞

1

t
lnP(Xmax(t) ≤ vt) ≥ −ϕ(v) ,

with ϕ(v) as in (12). This yields the desired lower bound for the probability in the
theorem, as ϕ(v) coincides with ψ(α) defined in (9).

3 Upper Bound

We now look for the upper bound in the deviation probability. Fix x = vt with
v <

√
2σ2 . Let

u(x, t) := P(Xmax(t) ≤ x),

as before. Considering the event that the first branching time is τ , we have



308 B. Derrida and Z. Shi

u(x, t) =
∫ x

−∞
dy√
2πσ2t

e−t− y2

2σ2 t

+
∫ t

0
dτ

∫ ∞

−∞
dy√
2πσ2τ

e−τ− y2

2σ2τ u2(x − y, t − τ ) ,

the first term on the right-hand side originating from the event that the first branching
time is greater than t . [It is easy to check that this expression satisfies the F-KPP
equation (1).] We also have a lower bound for u(x, t) by considering only the event
that there is no branching up to time τ : For any τ ∈ [0, t],

u(x, t) ≥
∫ ∞

−∞
dy√
2πσ2τ

e−τ− y2

2σ2τ u(x − y, t − τ ) .

Writing (Bs, s ≥ 0) for a standard Brownian motion (with variance of B1 being 1),
the last two displayed formulas can be expressed as follows:

u(x, t) = e−t P(σBt ≤ x) +
∫ t

0
e−τ E[u2(x − σBτ , t − τ )] dτ , (14)

u(x, t) ≥ e−τ E[u(x − σBτ , t − τ )], ∀τ ∈ [0, t] . (15)

Consider, for τ ∈ [0, t],

�(τ ) := e−τ E[u2(x − σBτ , t − τ )] .

Since � is a continuous function on [0, t], there exists τ0 = τ0(t, x) such that

�(τ0) = sup
τ∈[0, t]

�(τ ) .

On the other hand, since u( · , 0) = 1[0, ∞)( · ), we have e−t P(σBt ≤ x) = �(t). So
(14) becomes u(x, t) = �(t) + ∫ t

0 �(τ ) dτ , which is bounded by (t + 1) supτ∈[0, t]
�(τ ). Taking τ = τ0 in (15), it follows from (15) to (14) that

e−τ0 E[u(x − σBτ0 , t − τ0)] ≤ u(x, t) ≤ (t + 1)�(τ0) ,

which can be represented as

e−τ0 E(Y ) ≤ u(x, t) ≤ (t + 1)e−τ0 E(Y 2) , (16)

where
Y = Y (x, t, σ) := u(x − σBτ0 , t − τ0) .

Let us have a closer look at E(Y ). We write

e−τ0 E(Y ) = A1 + A2 ,
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with

A1 = A1(x, t, σ) := e−τ0 E[Y 1{Y< 1
2(t+1) }] ,

A2 = A2(x, t, σ) := e−τ0 E[Y 1{Y≥ 1
2(t+1) }] .

Then

(t + 1)e−τ0 E(Y 2)

= (t + 1)e−τ0 E[Y 2 1{Y< 1
2(t+1) }] + (t + 1)e−τ0 E[Y 2 1{Y≥ 1

2(t+1) }]

≤ 1

2
e−τ0 E[Y 1{Y< 1

2(t+1) }] + (t + 1)e−τ0 E[Y 1{Y≥ 1
2(t+1) }] ,

where, on the right-hand side, we have used the trivial inequality Y 2 ≤ Y when
dealing with the event {Y ≥ 1

2(t+1) }. In other words,

(t + 1)e−τ0 E(Y 2) ≤ 1

2
A1 + (t + 1)A2 .

So by (16), we obtain

A1 + A2 ≤ u(x, t) ≤ (t + 1)e−τ0 E(Y 2) ≤ 1

2
A1 + (t + 1)A2 .

In particular, this implies A1 ≤ 2t A2. As a consequence,

A2 ≤ u(x, t) ≤ (2t + 1)A2 . (17)

This yields that A2 has the same asymptotic behavior as u(x, t), as far as large
deviation functions are concerned.

We now look for an upper bound for A2, which, multiplied by 2t + 1, will be
served as an upper bound for u(x, t). Let us recall the following estimate:

Lemma 3 (Chen [10], Proposition 2.5) Let m(t) := √
2 t − 3

2
√
2
ln t as in (3). There

exist two constants c1 > 0 and c2 > 0 independent of σ, such that

P(Xmax(r) ≤ σm(r) − σz f or some r ≤ ez) ≤ c1 e
−c2z,

for all sufficiently large z.Moreover, one can take c2 = 1
6
√
2
.

We apply the lemma to z := t1/3, to see that when t is sufficiently large (say
t ≥ t0), for any τ ∈ [0, t],

y <
√
2σ2 τ − t1/2 ⇒ u(y, τ ) <

1

2(t + 1)
.
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As such, for t ≥ t0, we have

A2 = e−τ0 E[Y 1{Y≥ 1
2(t+1) }] ≤ e−τ0 E[Y 1{x−σBτ0≥√

2σ2 (t−τ0)−t1/2}] .

Since Y ≤ 1, this yields, for t ≥ t0,

A2 ≤ e−τ0 P(x − σBτ0 ≥
√
2σ2 (t − τ0) − t1/2)

≤ sup
τ∈[0, t]

{
e−τ P(x − σBτ ≥

√
2σ2 (t − τ ) − t1/2)

}

= sup
τ∈(0, t]

{ ∫ x−√
2σ2 (t−τ )+t1/2

−∞
1√

2πσ2τ
e−τ− y2

2σ2τ dy
}

.

By (17), we have therefore, for all sufficiently large t ,

u(x, t) ≤ (2t + 1) sup
τ∈(0, t]

{ ∫ x−√
2σ2 (t−τ )+t1/2

−∞
1√

2πσ2τ
e−τ− y2

2σ2τ dy
}

.

Recall that x = vt . The supremum on the right-hand side has already been esti-
mated in Lemma 2 in Sect. 2: For v <

√
2σ2 and t → ∞,

ln
(

sup
τ∈(0, t]

{ ∫ x−√
2σ2 (t−τ )+t1/2

−∞
1√

2πσ2τ
e−τ− y2

2σ2τ dy
})

∼ −ϕ(v)t,

where ϕ(v) is defined in (12). Note that we have t1/2 here (in x − √
2σ2 (t − τ ) +

t1/2) instead of −1 in the lemma; this makes in practice no difference because t1/2 ≤
εt (for any ε > 0 and all sufficiently large t) and we can use the continuity of the
function v → ϕ(v). Consequently, for x = vt with v <

√
2σ2,

lim sup
t→∞

ln u(x, t)

t
≤ −ϕ(v),

which yields the upper bound for the probability in the theorem because ϕ(v) coin-
cides with ψ(α) given in (8).

4 Conclusion and Remarks

The main result stated in (8) and (9) of the present work is the expression of the
(lower) large deviation function ψ(α) of the position of the rightmost particle of a
branching Brownian motion. One remarkable feature of this large deviation function
is its nonanalyticity at some particular values α = −√

2 + 1 and α = 1 due to a
change of scenario of the dominant contribution to the large deviation function: for
α < −√

2 + 1, the dominant event is a single Brownian particle which does not
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branch up to time t ; for−√
2 + 1 < α < 1, it corresponds to a particle which moves

to position −(
√
2 − 1)(1 − α)σt without branching up to a time t (1 − α)/

√
2, and

then behaves like a normal BBM up to time t ; for α > 1, the tree branches normally
but one branch moves at the speed α

√
2σ2, faster than the normal speed

√
2σ2.

Using more heuristic arguments as in [12], it is possible to determine the time
dependence of the prefactor, for example, by showing [14] that for −ρ < α < 1,
there exists a constant c ∈ (0, ∞) such that

P(Xmax(t) ≤ α
√
2σ2 t) ∼ c t

3(
√
2−1)
2 e−ψ(α)t . (18)

The result of the present work can also be easily extended to more general branching
Brownian motions, where one includes the possibility that a particle branches into
more than two particles (for example, one could consider that a particle branches
into k particles with probability pk). It can also be extended to branching random
walks. In all these cases, one finds [14] as in (8) and (9) three different regimes with
the same scenarios as described above.

It is, however, important to notice that expressions (8) and (9) of the large deviation
function ψ(α) for α < 1 depend crucially on the fact that one starts initially with
a single particle and that branchings occur at random times according to Poisson
processes. If instead one starts at time t = 0 with several particles in [21] or if the
distribution of the branching times is not exponential (for example in the case of a
branching random walk generated by a regular binary tree where at each (integer)
time step each particle branches into two particles), P(Xmax ≤ vt)might decay faster
than an exponential of time.

Recently, there has been a renewed interest in the understanding of the extremal
process and in particular of the measure seen at the tip of the branching Brownian
motion [1, 2, 7, 8, 18, 25]. We think that it would be interesting to investigate
how this extremal process is modified when it is conditioned on the position of the
rightmost particle, i.e., how it depends on the parameter α.
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Bounds on the Prediction Error of Penalized
Least Squares Estimators with Convex
Penalty

Pierre Bellec and Alexandre Tsybakov

Abstract This paper considers the penalized least squares estimator with arbitrary
convex penalty. When the observation noise is Gaussian, we show that the prediction
error is a subgaussian random variable concentrated around its median.We apply this
concentration property to derive sharp oracle inequalities for the prediction error of
the LASSO, the group LASSO, and the SLOPE estimators, both in probability and
in expectation. In contrast to the previous work on the LASSO-type methods, our
oracle inequalities in probability are obtained at any confidence level for estimators
with tuning parameters that do not depend on the confidence level. This is also the
reason why we are able to establish sparsity oracle bounds in expectation for the
LASSO-type estimators, while the previously known techniques did not allow for
the control of the expected risk. In addition, we show that the concentration rate in
the oracle inequalities is better than it was commonly understood before.

Keywords Penalized least squares · Oracle inequality · LASSO estimator
SLOPE estimator · Group LASSO

1 Introduction and Notation

Assume that we have noisy observations

yi = fi + ξi , i = 1, . . . , n, (1)

where ξ1, . . . , ξn are i.i.d. centered Gaussian random variables with variance σ 2, and
f = ( f1, . . . , fn)T ∈ R

n is an unknown mean vector. In vector form, the model (1)
can be rewritten as y = f + ξ where ξ = (ξ1, . . . , ξn)

T and y = (y1, . . . , yn)T .
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Let X ∈ R
n×p be a matrix with p columns that we will call the design matrix. We

consider the problem of estimation of f by Xβ̂(y) where β̂(y) is an estimator valued
in Rp. Specifically, we restrict our attention to penalized least squares estimators of
the form

β̂(y) ∈ argmin
β∈Rp

(‖y − Xβ‖2 + 2F(β)
)
, (2)

where ‖ · ‖ is the scaled Euclidean norm defined by ‖u‖2 = 1
n

∑n
i=1 u

2
i for any

u = (u1, . . . , un), and the penalty function F : Rp → [0,+∞] is convex. If the
context prevents any ambiguity, we will omit the dependence on y and write β̂ for
the estimator β̂(y).

The object of study in this paper is the prediction error of the estimator β̂(y),
that is, the value ‖Xβ̂(y) − f‖. Under the mild assumption that the penalty function
F is convex, proper, and lower semicontinuous, we show that the prediction error
‖Xβ̂(y) − f‖ is a subgaussian random variable concentrated around its median and
its expectation. This holds for any design matrix X. Furthermore, when F is a norm,
we obtain an explicit formula for the predictor Xβ̂(y) in terms of the projection on
the dual ball. Finally, we apply the subgaussian concentration property around the
median to derive sharp oracle inequalities for the prediction error of the LASSO, the
group LASSO, and the SLOPE estimators, both in probability and in expectation.
The inequalities in probability improve upon the previous work on the LASSO-type
estimators (see, e.g., the papers [3, 6, 9, 11] or the monographs [5, 7, 16]) since, in
contrast to the results of these works, our bounds hold at any given confidence level
for estimators with tuning parameter that does not depend on the confidence level.
This is also the reason why we are able to establish bounds in expectation, while
the previously known techniques did not allow for the control of the expected risk.
In addition, we show that the concentration rate in the oracle inequalities is better
than it was commonly understood before. Similar results have been obtained quite
recently in [2] by a different and somewhat more involved construction conceived
specifically for the LASSO and the SLOPE estimators. The techniques of the present
paper are more general since they can be used not only for these two estimators but
for any penalized least squares estimators with convex penalty.

2 Notation

For any randomvariable Z , letMed[Z ] be amedian of Z , i.e., any real numberM such
that P(Z ≥ M) = P(Z ≤ M) = 1/2. For a vector u = (u1, . . . , un), the sup-norm,
the Euclidean norm and the �1-norm will be denoted by |u|∞ = maxi=1,...,n |ui |,
|u|1 = ∑n

i=1 |ui | and |u|2 = (
∑n

i=1 u
2
i )

1/2. The inner product in R
n is denoted by

〈·, ·〉. We also denote by Supp(u) the support of u, and by |u|0 the cardinality of
Supp(u). We denote by I (·) the indicator function. For any S ⊂ {1, . . . , p} and a
vector u = (u1, . . . , u p), we set uS = (u j I ( j ∈ S)) j=1,...,p, and we denote by |S|
the cardinality of S.
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3 The Prediction Error of Convex Penalized Estimators
Is Subgaussian

The aim of this section is to show that the prediction error ‖Xβ̂(y)−f‖ is subgaussian
and concentrates around its median for any estimator β̂(y) defined by (2). The results
of the present section will allow us to carry out a unified analysis of LASSO, group
LASSO, and SLOPE estimators in Sects. 4–6.

Proposition 1 Let μ̂ : R
n → R

n be an L-Lipschitz function, that is, a function
satisfying

‖μ̂(y) − μ̂(y′)‖ ≤ L‖y − y′‖, ∀y, y′ ∈ R
n. (3)

Let g(z) = ‖μ̂(f + σz) − f‖ for some fixed f ∈ R
n and z ∼ N (0, In×n). Then, for

all t > 0,

P

(
g(z) > Med[g(z)] + σ Lt√

n

)
≤ 1 − Φ(t), (4)

where Φ(·) is theN (0, 1) cumulative distribution function.

Proof The result follows immediately from the Gaussian concentration inequality
(cf., e.g., [10, Theorem 6.2]) and the fact that g(·) satisfies the Lipschitz condition
∣∣g(u) − g(u′)

∣∣ ≤ ‖μ̂(f + σu) − μ̂(f + σu′)‖ ≤ σ L√
n
|u − u′|2, ∀u,u′ ∈ R

n.

�

We now show that μ̂(y) = Xβ̂(y) where β̂(y) is estimator (2) satisfies the Lip-
schitz condition (3) with L = 1, provided that the penalty function F is convex,
proper, and lower semicontinuous.

We first consider estimators penalized by a norm in R
p, for which we get a

sharper result. Namely, in this case, the explicit expression for Xβ̂(y) is available.
In addition, we get a stronger property than the Lipschitz condition (3). Let N :
R

p → R+ be a norm and let N◦(·) be the corresponding dual norm defined by
N◦(u) = supv∈Rp :N (v)=1 u

T v. For any y ∈ R
n , define β̂(y) as a solution of the

following minimization problem:

β̂(y) ∈ argmin
β∈Rp

(‖y − Xβ‖2 + 2N (β)
)
. (5)

The next two propositions are crucial in proving that the concentration bounds (4)
apply when g(z) is the prediction error associated with β̂(y).

Proposition 2 Let N : Rp → R+ be a norm and let β̂(y) be a solution of (5). For
all y ∈ R

n and all matrices X ∈ R
n×p, we have
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(i) Xβ̂(y) = y − PC(y) where PC(·) : Rn → C is the operator of projection onto
the closed convex set C = {u ∈ R

n : N◦(XTu) ≤ 1/n},

(ii) the function μ̂(y) = Xβ̂(y) satisfies

‖μ̂(y) − μ̂(y′)‖2 ≤ ‖y − y′‖2 − 1

n
|PC(y) − PC(y′)|22.

Proof Since C is a closed convex set, we have that θ = PC(y) if and only if

(y − θ)T (θ − u) ≥ 0 for all u ∈ C. (6)

Thus, to prove statement (i) of the proposition, it is enough to check that (6) holds for
θ = y − Xβ̂(y). Since (6) is trivial when β̂(y) = 0, we assume in what follows that
β̂(y) �= 0. Any solution β̂(y) of the convex minimization problem in (5) satisfies

1

n
X

T (Xβ̂(y) − y) + v = 0 (7)

where v is an element of the subdifferential of N (·) at β̂(y). Recall that the subdif-
ferential of any norm N (·) at β̂(y) �= 0 is the set {v ∈ R

p : N (v) = 1 and vT β̂(y) =
N (β̂(y))} [1, Sect. 2.6]. Therefore, taking an inner product of (7) with β̂(y) yields

(Xβ̂(y))T (y − Xβ̂(y)) = nN (β̂(y)) = n max
w∈Rp :N◦(w)=1

β̂(y)Tw

≥ max
u∈Rn :N◦(XT u)=1/n

(Xβ̂(y))T u = max
u∈C (Xβ̂(y))T u.

This proves (6) with θ = y − Xβ̂(y). Thus, we have established that Xβ̂(y) =
y − PC(y).

To prove part (ii) of the proposition, we use that, for any closed convex subset C
of Rn and any y, y′ ∈ R

n ,

|PC(y) − PC(y′)|22 ≤ 〈PC(y) − PC(y′), y − y′〉,

see, e.g., [8, Proposition 3.1.3]. This immediately implies

|y − PC(y) − (y′ − PC(y′))|22 ≤ |y − y′|22 − |PC(y) − PC(y′)|22.

Part (ii) of the proposition follows now from part (i) and the last display. �

We note that Proposition 2 generalizes to any norm N (·) an analogous result
obtained for the �1-norm in [15, Lemma 3].

We now turn to the general case assuming that F is any convex penalty.
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Proposition 3 Let the penalty function F : R
p → [0,+∞] be convex, proper,

and lower semicontinuous. For all y ∈ R
n, let β̂(y) be any solution of the convex

minimization problem (2). Then the estimator μ̂(y) = Xβ̂(y) satisfies (3)with L = 1.

Proof Let y, y′ ∈ R
n . The case Xβ̂(y) = Xβ̂(y′) is trivial so we assume in the fol-

lowing thatXβ̂(y) �= Xβ̂(y′). The optimality condition and theMoreau–Rockafellar
Theorem [14, Theorem 3.30] yield that there exists an element h ∈ R

p of the subd-
ifferential ∂F(β̂(y)) of F(·) at β̂(y) and h′ ∈ ∂F(β̂(y′)) such that

1

n
X

T (Xβ̂(y) − y) + h = 0, and
1

n
X

T (Xβ̂(y′) − y′) + h′ = 0.

Taking the difference of these two equalities, we obtain

X
T (Xβ̂(y) − Xβ̂(y′)) − X

T (y − y′) = n(h′ − h).

Let � = β̂(y) − β̂(y′). Since F is convex, proper, and lower semicontinuous, we
have that �T (h − h′) = 〈h − h′, β̂(y) − β̂(y′)〉 ≥ 0 for any h ∈ ∂F(β̂(y)) and any
h′ ∈ ∂F(β̂(y′)) (see, e.g., [14, Proposition 3.22]). Therefore,

�T
X

T
X� − �T

X
T (y − y′) = n�T (h′ − h) ≤ 0.

This and the Cauchy–Schwarz inequality yield

|X�|22 ≤ �T
X

T (y − y′) ≤ |X�|2|y − y′|2, (8)

which implies |X�|2 ≤ |y − y′|2 since Xβ̂(y) �= Xβ̂(y′). �
Combining the above two propositions, we obtain the following theorem.

Theorem 1 Let R ≥ 0 be a constant and f ∈ R
n. Assume that ξ ∼ N (0, σ 2 In×n)

and let y = f + ξ . Let the penalty function F : Rp → [0,+∞] be convex, proper,
and lower semicontinuous. Assume also that the estimator β̂ defined in (5) satisfies

P

(
‖Xβ̂(y) − f‖ ≤ R

)
≥ 1/2, (9)

or equivalently, the median of the prediction error satisfiesMed[‖Xβ̂(y)− f‖] ≤ R.
Then, for all t > 0,

P

(
‖Xβ̂(y) − f‖ ≤ R + σ t√

n

)
≥ Φ(t) (10)

and consequently, for all x > 0,

P

(
‖Xβ̂(y) − f‖ ≤ R + σ

√
2x/n

)
≥ 1 − e−x . (11)
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Furthermore,
E‖Xβ̂(y) − f‖ ≤ R + σ√

2πn
. (12)

Proof Fix f ∈ R
n and let z ∼ N (0, In×n). Proposition 3 implies that the function

g(z) = ‖Xβ̂(f + σz)− f‖ satisfies (4) with L = 1 for all x > 0. Thus, we can apply
Proposition 1 and (11) follows from (4). The bound (11) is a simplified version of
(10) using that 1 − Φ(t) ≤ e−t2/2, ∀t > 0. Finally, inequality (12) is obtained by
integration of (10). �

Note that condition (9) in Theorem 1 is a weak property. To satisfy, it is enough to
have a rough bound on ‖Xβ̂(y)− f‖. Of course, we would like to have a meaningful
value of R. In the next two sections, we give examples of such R. Namely, we show
that Theorem 1 allows one to derive sharp oracle inequalities for the prediction risk
of such estimators as LASSO, group LASSO, and SLOPE.

Remark 1 Along with the concentration around the median, the prediction error
‖Xβ̂(y) − f‖ also concentrates around its expectation. Using the Lipschitz property
of Proposition 1, and the theorem about Gaussian concentration with respect to the
expectation (cf., e.g., [7, Theorem B.6]), we find that

P

(
‖Xβ̂(y) − f‖ ≤ E‖Xβ̂(y) − f‖ + σ

√
2x/n

)
≥ 1 − e−x (13)

and
P

(
‖Xβ̂(y) − f‖ ≥ E‖Xβ̂(y) − f‖ − σ

√
2x/n

)
≥ 1 − e−x . (14)

For the special case of identity design matrix X = In×n , these properties have been
proved in [17] where they were applied to some problems of nonparametric estima-
tion. However, the bounds (13) and (14) dealing with the concentration around the
expectation are of no use for the purposes of the present paper since initially we have
no control of the expectation. On the other hand, a meaningful control of the median
is often easy to obtain as shown in the examples below. This is the reason why we
focus on the concentration around the median.

Remark 2 The argument used to prove Theorem 1 relies on the concentration prop-
erty of a Lipschitz function of the noise random vector. In the setting of the present
paper, the noise vector is standard normal and such a concentration result is avail-
able, see for instance [10, Theorem 6.2]. However, to our knowledge, its analog for
subgaussian random vectors is not available. For this reason, the method presented
above does not readily extend to subgaussian noise.
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4 Application to LASSO

The LASSO is a convex regularized estimator defined by the relation

β̂ ∈ argmin
β∈Rp

(‖y − Xβ‖2 + 2λ|β|1
)
, (15)

where λ > 0 is a tuning parameter. Risk bounds for the LASSO estimator are estab-
lished under some conditions on the design matrix X that measure the correlations
between its columns. The Restricted Eigenvalue (RE) condition [3] is defined as
follows. For any S ⊂ {1, . . . , p} and c0 > 0, we define the RE constant κ(S, c0) ≥ 0
by the formula

κ2(S, c0) � min
�∈Rp :|�Sc |1≤c0|�S |1

‖X�‖2
|�|22

. (16)

The RE condition RE(S, c0) is said to hold if κ(S, c0) > 0. Note that (16) is slightly
different from the original definition given in [3] since we have � and not �S in the
denominator. However, the two definitions are equivalent up to a constant depending
only on c0, cf. [2]. In terms of the RE constant, we have the following deterministic
result.

Proposition 4 Let λ > 0 be a tuning parameter. On the event

{
1

n
|XT ξ |∞ ≤ λ

2

}
, (17)

the LASSO estimator (15) with tuning parameter λ satisfies

‖Xβ̂ − f‖2 ≤ min
S⊂{1,...,p}

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖2 + 9|S|λ2

4κ2(S, 3)

]
(18)

with the convention that a/0 = +∞ for any a > 0.

An oracle inequality as in Proposition 4 has been first established in [3] with a
multiplicative constant greater than 1 in front of the right-hand side of (18). The fact
that this constant can be reduced to 1, so that the oracle inequality becomes sharp, is
due to [9]. For the sake of completeness, we provide below a sketch of the proof of
Proposition 4.

Proof We will use the following fact [2, Lemma A.2].

Lemma 1 Let F : Rp → R be a convex function, let f, ξ ∈ R
n, y = f + ξ , and let

X be any n × p matrix. If β̂ is a solution of the minimization problem (2), then β̂

satisfies, for all β ∈ R
p,

‖Xβ̂ − f‖2 − ‖Xβ − f‖2 ≤ 2

(
1

n
ξ T

X(β̂ − β) + F(β) − F(β̂)

)
− ‖X(β̂ − β)‖2.
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Let S ⊂ {1, . . . , p} and β be minimizers of the right-hand side of (18) and let
� = β̂ − β. We will assume that κ(S, 3) > 0 since otherwise the claim is trivial.
From Lemma 1 with F(β) = λ|β|1, we have

‖Xβ̂ − f‖2 − ‖Xβ − f‖2 ≤ 2
(
1
n ξ

T
X� + λ|β|1 − λ|β̂|1

)
− ‖X�‖2 � D.

On the event (17), using the duality inequality xT� ≤ |x|∞|�|1 valid for all x,� ∈
R

p and the triangle inequality for the �1-norm, we find that the right-hand side of
the previous display satisfies

D ≤ 2λ

[
1

2
|�|1 + |β|1 − |β̂|1

]
− ‖X�‖2 ≤ 2λ

[
3

2
|�S|1 − 1

2
|�Sc |1

]
− ‖X�‖2.

If |�Sc |1 > 3|�S|1, then the claim follows trivially. Otherwise, if |�Sc |1 ≤ 3|�S|1
we have |�|2 ≤ ‖X�‖/κ(S, 3) and thus, by the Cauchy–Schwarz inequality,

3λ|�S|1 ≤ 3λ
√|S||�S|2 ≤ 9|S|λ2

4κ2(S, 3)
+ ‖X�‖2. (19)

Combining the above three displays yields (18). �
Theorem 2 below is a simple consequence of Proposition 4 and Theorem 1. Its

proof is given at the end of the present section.

Theorem 2 Let p ≥ 2 and λ ≥ 2σ
√
2 log(p)/n. Assume that the diagonal elements

of matrix 1
nX

T
X are not greater than 1. Then for any δ ∈ (0, 1), the LASSO estimator

(15) with tuning parameter λ satisfies

‖Xβ̂−f‖ ≤ min
S⊂{1,...,p}

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖ + 3λ

√|S|
2κ(S, 3)

]
+ σΦ−1(1 − δ)√

n
(20)

with probability at least 1− δ, noting that Φ−1(1− δ) ≤ √
2 log(1/δ). Furthermore,

E‖Xβ̂ − f‖ ≤ min
S⊂{1,...,p}

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖ + 3λ

√|S|
2κ(S, 3)

]
+ σ√

2πn
. (21)

Previous works on the LASSO estimator established that for some fixed δ0 ∈
(0, 1) the estimator (15) with tuning parameter λ = c1σ

√
2 log(c2 p/δ0), where

c1 > 1, c2 ≥ 1 are some constants, satisfies an oracle inequality of the form (18)
with probability at least 1 − δ0, see for instance [3, 6, 9] or the books on high-
dimensional statistics [5, 7, 16]. Thus, such oracle inequalities were available only
for one fixed confidence level 1 − δ0 tied to the tuning parameter λ. Remarkably,
Theorem 2 shows that the LASSO estimator with a universal (not level-dependent)
tuning parameter, which can be as small as 2σ

√
(2 log p)/n, satisfies (20) for all

confidence levels δ ∈ (0, 1). As a consequence, we can obtain an oracle inequality
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(21) for the expected error, while control of the expected error was not achievable
with the previously known methods of proof. Furthermore, bounds for any moments
of the prediction error can be readily obtained by integration of (20). Analogous
facts have been shown recently in [2] using different techniques. To our knowledge,
the present paper and [2] provide the first evidence of such properties of the LASSO
estimator.

In addition, Theorem 2 shows that the rate of concentration in the oracle inequal-
ities is better than it was commonly understood before. Let S ⊂ {1, . . . , p}, s = |S|
and set δ = exp(−2sλ2n/σ 2κ2(S, 3)). For this choice of δ, Theorem 2 implies that
if λ ≥ 2σ

√
2 log(p)/n then

P

(
‖Xβ̂ − f‖ ≤ min

β∈Rp :Supp(β)=S
‖Xβ − f‖ + 7λ

√|S|
2κ(S, 3)

)
≥ 1 − e−2sλ2n/σ 2κ2(S,3).

Since the diagonal elements of 1
nX

T
X are at most 1, we have κ(S, 3) ≤ 1. Thus, the

probability on the right-hand side of the last display is at least 1− p−16s . Interestingly,
this probability depends on the sparsity s and tends to 1 exponentially fast as s grows.
The previous proof techniques [3, 5, 6, 9] provided, for the same type of probability,
only an estimate of the form 1 − p−b for some fixed constant b > 0 independent of
s.

The oracle inequality (18) holds for the error ‖Xβ̂−f‖. In order to obtain an oracle
inequality for the squared error ‖Xβ̂ − f‖2, one can combine (20) with the basic
inequality (a + b + c)2 ≤ 3(a2 + b2 + c2). This yields that under the assumptions
of Theorem 2, the LASSO estimator with tuning parameter λ ≥ 2σ

√
2 log(p)/n

satisfies, with probability at least 1 − δ,

‖Xβ̂ − f‖2 ≤ min
S⊂{1,...,p}

[
min

β∈Rp :Supp(β)=S
3‖Xβ − f‖2 + 27λ2|S|

4κ2(S, 3)

]
+ 6 log(1/δ)

n
.

The constant 3 in front of the ‖Xβ − f‖2 can be reduced to 1 using the techniques
developed in [2].

Proof of Theorem 2. The random variable |XT ξ |∞/
√
n is the maximum of

p-centered Gaussian random variables with variance at most σ 2. If η ∼ N (0, 1),
a standard approximation of the Gaussian tail gives P(|η| > x) ≤ √

2/π(e−x2/2/x)
for all x > 0. This approximation with x = √

2 log p together with and the union
bound imply that the event (17) with λ ≥ 2σ

√
(2 log p)/n has probability at least

1 − 1/
√

π log p, which is greater than 1/2 for all p ≥ 3. For p = 2, the probabil-
ity of this event is bounded from below by 1 − 2P(|η| >

√
2 log 2) > 1/2. Thus,

Proposition 4 implies that condition (9) is satisfied with R being the square root of
the right-hand side of (18). Let S and β be minimizers of the right-hand side of (20).
Applying Theorem 1 and the inequality

√
a + b ≤ √

a + √
b with

√
a = ‖Xβ − f‖

and
√
b = 3λ

√|S|/(2κ(S, 3)) completes the proof.
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5 Application to Group LASSO and Related Penalties

Theabove arguments canbeused to establish oracle inequalities for the groupLASSO
estimator similar to those obtained in Sect. 4 for the usual LASSO. The improvements
as compared to the previously known oracle bounds (see, e.g., [11] or the books [5, 7,
16]) are the same as above—independent of the tuning parameter on the confidence
level, better concentration, and derivation of bounds in expectation.

Let G1, . . . ,GM be a partition of {1, . . . , p}. The group LASSO estimator is a
solution of the convex minimization problem

β̂ ∈ argmin
β∈Rp

(

‖y − Xβ‖2 + 2λ
M∑

k=1

|βGk
|2
)

, (22)

where λ > 0 is a tuning parameter. In the following, we assume that the groups Gk

have the same cardinality |Gk | = T = p/M , k = 1, . . . , M .
We will need the following group analog of the RE constant introduced in [11].

For any S ⊂ {1, . . . , M} and c0 > 0, we define the group RE constant κG(S, c0) ≥ 0
by the formula

κ2
G(S, c0) � min

�∈C (S,c0)

‖X�‖2
|�|22

, (23)

where C (S, c0) is the cone

C (S, c0) � {� ∈ R
p :

∑

k∈Sc
|�Gk |2 ≤ c0

∑

k∈S
|�Gk |2}.

Denote by XGk the n × |Gk | submatrix of X composed from all the columns of X
with indices in Gk . For any β ∈ R

p, setK (β) = {k ∈ {1, . . . , M} : βGk
�= 0}. The

following deterministic result holds.

Proposition 5 Let λ > 0 be a tuning parameter. On the event

{
max

k=1,...,M

1

n
|XT

Gk
ξ |2 ≤ λ

2

}
, (24)

the group LASSO estimator (22) with tuning parameter λ satisfies

‖Xβ̂ − f‖2 ≤ min
S⊂{1,...,M}

[
min

β∈Rp :K (β)=S
‖Xβ − f‖2 + 9|S|λ2

4κ2
G(S, 3)

]
(25)

with the convention that a/0 = +∞ for any a > 0.

Proof We follow the same lines as in the proof of Proposition 4. The difference is
that we replace the �1 norm by the group LASSO norm

∑M
k=1 |βGk

|2, and the value
D now has the form
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D = 2

(
1
n ξ

T
X� + λ

M∑

k=1

|βGk
|2 − λ

M∑

k=1

|β̂Gk
|2
)

− ‖X�‖2.

Then, on the event (24), we obtain

D ≤ 2λ

(
1

2

M∑

k=1

|�Gk |2 +
M∑

k=1

|βGk
|2 −

M∑

k=1

|β̂Gk
|2
)

− ‖X�‖2

≤ 2λ

(
3

2

∑

k∈S
|�Gk |2 − 1

2

∑

k∈Sc
|�Gk |2

)

− ‖X�‖2,

where the last inequality uses the fact thatK (β) = S. The rest of the proof is quite
analogous to that of Proposition 4 if we replace there κ(S, 3) by κG(S, 3). �

To derive the oracle inequalities for group LASSO, we use the same argument
as in the case of LASSO. In order to apply Theorem 1, we need to find a “weak
bound”R on the error ‖Xβ̂ − f‖, i.e., a bound valid with probability at least 1/2.
The next lemma gives a range of values of λ such that the event (24) holds with
probability at least 1/2. Then, due to Proposition 5, we can take as R the square root
of the right-hand side of (25).

Denote by ‖XGk‖sp � sup|x|2≤1 |XGkx|2 the spectral norm of matrix XGk , and set
ψ∗ = maxk=1,...,M ‖XGk‖sp/

√
n.

Lemma 2 Let the diagonal elements of matrix 1
nX

T
X be not greater than 1. If

λ ≥ 2σ√
n

(√
T + ψ∗√2 log(2M)

)
, (26)

then the event (24) has probability at least 1/2.

Proof Note that the function u �→ |XGku|2 is ψ∗√n-Lipschitz with respect to the
Euclidean norm. Therefore, the Gaussian concentration inequality, cf., e.g., [7, The-
orem B.6], implies that, for all x > 0,

P

(
|XGk ξ |2 ≥ E|XGk ξ |2 + σψ∗√2xn

)
≤ e−x , k = 1, . . . , M.

Here, E|XGk ξ |2 ≤ (
E|XGk ξ |22

)1/2 = σ‖XGk‖F , where ‖ · ‖F is the Frobenius norm.
By the assumption of the lemma, all columns of X have the Euclidean norm at
most

√
n. Since XGk is composed from T columns of X we have ‖XGk‖2F ≤ nT , so

that E|XGk ξ |2 ≤ σ
√
nT for k = 1, . . . , M . Thus, for all x > 0,

P

(
|XGk ξ |2 ≥ σ(

√
nT + ψ∗√2xn)

)
≤ e−x , k = 1, . . . , M,

and the result of the lemma follows by application of the union bound. �
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Combining Proposition 5, Lemma 2, and Theorem 1, we get the following result.

Theorem 3 Assume that the diagonal elements of matrix 1
nX

T
X are not greater than

1. Let λ be such that (26) holds. Then for any δ ∈ (0, 1), the group LASSO estimator
(22) with tuning parameter λ satisfies, with probability at least 1 − δ, the oracle
inequality (20) with κ(S, 3) replaced by κG(S, 3), and Supp(β) replaced byK (β).
Furthermore, it satisfies (21) with the same modifications.

We can consider in a similar way a more general class of penalties generated by
cones [13]. Let A be a convex cone in (0,+∞)p. For any β ∈ R

p, set

‖β‖A � inf
a∈A

1

2

p∑

j=1

(
β2
j

a j
+ a j

)

= inf
a∈A :|a|1≤1

√√√√
p∑

j=1

β2
j

a j
(27)

and consider the penalty F(β) = λ‖β‖A where λ > 0. The function ‖·‖A is convex
since it is a minimum of a convex function of the couple (β, a) over a in a convex set
[8, Corollary 2.4.5]. In view of its positive homogeneity, it is also a norm. The group
LASSO penalty is a special case of (27) corresponding to the cone of all vectors a
with positive components that are constant on the blocks Gk of the partition. Many
other interesting examples are given in [12, 13], see also [16, Sect. 6.9].

Such penalties induce a class of admissible sets of indices S ⊂ {1, . . . , p}. This
is a generalization of the sets of indices corresponding to vectors β that vanish on
entire blocks in the case of group LASSO. Roughly speaking, the set of indices S
would be suitable for our construction if, for any a ∈ A , the vectors aS and aSc
belong to A . However, this is not possible since, by definition, the elements of A
must have positive components. Thus, we slightly modify this condition on S. A set
S ⊂ {1, . . . , p}will be called admissiblewith respect toA if, for any a ∈ A and any
ε > 0, there exist vectors bSc ∈ R

p and bS ∈ R
p supported on Sc and S, respectively,

with all components in (0, ε) and such that aS + bSc ∈ A , and aSc + bS ∈ A .
The following lemma shows that, for admissible S, the norm ‖ · ‖A has the same

decomposition property as the �1 norm.

Lemma 3 If S ⊂ {1, . . . , p} is an admissible set of indices with respect toA , then

‖β‖A = ‖βS‖A + ‖βSc‖A .

Proof As ‖ · ‖A is a norm, we have to show only that ‖β‖A ≥ ‖βS‖A + ‖βSc‖A .

Obviously,

‖β‖A ≥ inf
a∈A

1

2

∑

j∈S

(
β2
j

a j
+ a j

)

+ inf
a∈A

1

2

∑

j∈Sc

(
β2
j

a j
+ a j

)

. (28)

Since S is admissible, adding the sum
∑

j∈Sc a j under the infimum in the first term
on the right-hand side does not change the result:
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inf
a∈A

1

2

∑

j∈S

(
β2
j

a j
+ a j

)

= inf
a∈A

1

2

⎡

⎣
∑

j∈S

(
β2
j

a j
+ a j

)

+
∑

j∈Sc
a j

⎤

⎦ = ‖βS‖A .

The second term on the right-hand side of (28) is treated analogously. �

Next, for any S ⊂ {1, . . . , p} and c0 > 0, we need an analog of the RE constant
corresponding to the penalty ‖·‖A , cf. [16].We define qA (S, c0) ≥ 0 by the formula

q2
A (S, c0) � min

�∈C ′(S,c0)

‖X�‖2
‖�S‖2A

, (29)

where C ′(S, c0) is the cone

C ′(S, c0) � {� ∈ R
p : ‖�Sc‖A ≤ c0‖�S‖A }.

As in the previous examples, our starting point will be a deterministic bound that
holds on a suitable event. This result is analogous to Propositions 4 and 5. To state
it, we define

‖β‖A ,◦ = sup
a∈A :|a|1≤1

√√√
√

p∑

j=1

a jβ
2
j

which is the dual norm to ‖ · ‖A .

Proposition 6 Let A be a convex cone in (0,+∞)p, and let SA be set of all S ⊂
{1, . . . , p} that are admissible with respect to A . Let λ > 0 be a tuning parameter.
On the event {

‖ 1
nX

T ξ‖A ,◦ ≤ λ

2

}
, (30)

the estimator (2) with penalty F(·) = λ‖ · ‖A satisfies

‖Xβ̂ − f‖2 ≤ min
S∈SA

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖2 + 9λ2

4q2
A (S, 3)

]
(31)

with the convention that a/0 = +∞ for any a > 0.

Proof In view of Lemma 3, we can follow exactly the lines of the proof of Propo-
sition 4 by replacing there the �1 norm by the norm ‖ · ‖A and taking into account
the duality bound 1

n ξ
T
X� ≤ ‖ 1

nX
T ξ‖A ,◦‖�‖A . At the end, instead of (19), we use

that

3λ‖�S‖A ≤ 3λ
‖X�‖

qA (S, 3)
≤ 9λ2

4q2
A (S, 3)

+ ‖X�‖2.

�
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Our next step is to find a range of values of λ such that the event (30) holds with
probability at least 1/2. We will consider only the case whenA is a polyhedral cone,
which corresponds to many examples considered in [12, 13]. We will denote byA ′
the closure of the set A ∩ {a : |a|1 ≤ 1}.
Lemma 4 Let the diagonal elements of matrix 1

nX
T
X be not greater than 1. Let A

be a polyhedral cone, and let EA ′ be the set of extremal points of A ′. If

λ ≥ 2σ√
n

(
1 + √

2 log(2|EA ′ |)
)

, (32)

then the event (30) has probability at least 1/2.

Proof Denote by η j = 1
n e

T
j X

T ξ the j th component of 1
nX

T ξ . We have

‖ 1
nX

T ξ‖A ,◦ = sup
a∈A :|a|1≤1

√√√√
p∑

j=1

a jη
2
j = max

a∈EA ′

√√√√
p∑

j=1

a jη
2
j , (33)

where the last equality is due to the fact thatA ′ is a convex polytope. Let z = ξ/σ be
a standard normalN (0, In×n) random vector. Note that, for all a such that |a|1 ≤ 1,

the function fa(z) = σ

√∑p
j=1 a j (

1
n e

T
j X

T z)2 is σ/
√
n-Lipschitz with respect to the

Euclidean norm. Indeed,

| fa(z) − fa(z′)| ≤ σ

√√√
√

p∑

j=1

a j (
1
n e

T
j X

T (z − z′))2 ≤ σ√
n

√√√
√

p∑

j=1

a j‖Xe j‖2|z − z′|22

≤ σ√
n
|z − z′|2, ∀ |a|1 ≤ 1,

since max j ‖Xe j‖2 ≤ 1 by the assumption of the lemma. Therefore, the Gaussian
concentration inequality, cf., e.g., [7, Theorem B.6], implies that, for all x > 0,

P

(

fa(z) ≥ E fa(z) + σ

√
2x

n

)

≤ e−x .

Here, fa(z) =
√∑p

j=1 a jη
2
j and E

√∑p
j=1 a jη

2
j ≤

(
E
∑p

j=1 a jη
2
j

)1/2 ≤ σ/
√
n for

all a in the positive orthant such that |a|1 ≤ 1 where we have used that Eη2
j ≤ σ 2/n

for j = 1, . . . , p. Thus, for all a in the positive orthant such that |a|1 ≤ 1 and all
x > 0, we have

P

⎛

⎝

√√
√√

p∑

j=1

a jη
2
j ≥ σ√

n
(1 + √

2x)

⎞

⎠ ≤ e−x .
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The result of the lemma follows immediately from this inequality, (33) and the union
bound. �

Finally, from Proposition 6, Lemma 4, and Theorem 1, we get the following theorem.

Theorem 4 Assume that the diagonal elements of matrix 1
nX

T
X are not greater

than 1. Let λ be such that (32) holds. Then for any δ ∈ (0, 1), the estimator (2) with
penalty F(·) = λ‖ · ‖A satisfies

‖Xβ̂ − f‖ ≤ min
S∈SA

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖ + 3λ

2qA (S, 3)

]
+ σΦ−1(1 − δ)√

n

with probability at least 1 − δ. Furthermore,

E‖Xβ̂ − f‖ ≤ min
S∈SA

[
min

β∈Rp :Supp(β)=S
‖Xβ − f‖ + 3λ

2qA (S, 3)

]
+ σ√

2πn
.

Note that, in contrast to Theorems 2 and 3, Theorem 4 is a less explicit result. Indeed,
the form of the oracle inequalities depends on the value qA (S, 3) and, through λ,
on the value |EA ′ |. Both quantities are solutions of nontrivial geometric problems
depending on the form of the coneA . Little is known about them. Note also that the
knowledge of |EA ′ | (or of an upper bound on it) is required to find the appropriate λ.

6 Application to SLOPE

This section studies the SLOPE estimator introduced in [4], which is yet another
convex regularized estimator. Define the norm | · |∗ in Rp by the relation

|u|∗ � max
φ

p∑

j=1

μ j uφ( j), u = (u1, . . . , u p) ∈ R
p,

where the maximum is taken over all permutations φ of {1, . . . , p} and μ j > 0 are
some weights. In what follows, we assume that

μ j = σ
√
log(2p/j)/n, j = 1, . . . , p.

For any u = (u1, . . . , u p) ∈ R
p, let u∗

1 ≥ u∗
2 ≥ · · · ≥ u∗

p ≥ 0 be a nonincreasing
rearrangement of |u1|, . . . , |u p|. Then the norm | · |∗ can be equivalently defined as

|u|∗ =
p∑

j=1

μ j u
∗
i , u = (u1, . . . , u p) ∈ R

p.
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Given a tuning parameter A > 0, we define the SLOPE estimator β̂ as a solution of
the optimization problem

β̂ ∈ argmin
β∈Rp

(‖y − Xβ‖2 + 2A|β|∗
)
. (34)

As | · |∗ is a norm, it is a convex function so Proposition 3 and Theorem 1 apply.
For any s ∈ {1, . . . , p} and any c0 > 0, the Weighted Restricted Eigenvalue (WRE)
constant ϑ(s, c0) ≥ 0 is defined as follows:

ϑ2(s, c0) � min
�∈Rp :∑p

j=s+1 μ j δ
∗
j≤c0(

∑s
j=1 μ2

j )
1/2|�|2

‖X�‖2
|�|22

.

The WRE(s, c0) condition is said to hold if ϑ(s, c0) > 0.
We refer the reader to [2] for a comparison of this RE-type constant with other

restricted eigenvalue constants such as (16). A high-level message is that the WRE
condition is only slightly stronger than the RE condition. It is also established in [2]
that a large class of random matrices X with independent and possibly anisotropic
rows satisfies the condition ϑ(s, c0) > 0 with high probability provided that n >

Cs log(p/s) for some absolute constant C > 0.
For j = 1, . . . , p, let g j = 1√

n
e jX

T ξ , where e j is the j th canonical basis vector
in R

p, and let g∗
1 ≥ g∗

2 ≥ · · · ≥ g∗
p ≥ 0 be a nonincreasing rearrangement of

|g1|, . . . , |gp|. Consider the event

�∗ � ∩p
j=1

{
g∗
j ≤ 4σ

√
log(2p/j)

}
. (35)

The next proposition establishes a deterministic result for the SLOPE estimator on
the event (35).

Proposition 7 On the event (35), the SLOPE estimator β̂ defined by (34)with A ≥ 8
satisfies

‖Xβ̂ − f‖2 ≤ min
s∈{1,...,p}

[
min

β∈Rp :|β|0≤s
‖Xβ − f‖2 + 9A2σ 2s log(2ep/s)

4nϑ2(s, 3)

]
(36)

with the convention that a/0 = +∞ for any a > 0.

Proof Let s ∈ {1, . . . , p} and β be minimizers of the right-hand side of (36) and let
� � β̂ − β. We will assume that ϑ(s, 3) > 0 since otherwise the claim is trivial.
From Lemma 1 with F(β) = A|β|∗, we have

‖Xβ̂ − f‖2 − ‖Xβ − f‖2 ≤ 2
(
1
n ξ

T
X� + A|β|∗ − A|β̂|∗

)
− ‖X�‖2 � D.

On the event (35), the right-hand side of the previous display satisfies
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D ≤ 2A

[
1

2
|�|∗ + |β|∗ − |β̂|∗

]
− ‖X�‖2.

By [2, Lemma A.1], 1
2 |�|∗ + |β|∗ − |β̂|∗ ≤ 3

2 (
∑s

j=1 μ2
j )
1/2|�|2 − 1

2

∑p
j=s+1 μ jδ

∗
j .

If 3(
∑s

j=1 μ2
j )
1/2|�|2 ≤ ∑p

j=s+1 μ jδ
∗
j , then the claim follows trivially. If the

reverse inequality holds, we have |�|2 ≤ ‖X�‖/ϑ(s, 3). This implies

3A(

s∑

j=1

μ2
j )
1/2|�|2 ≤ 9A2∑s

j=1 μ2
j

4ϑ2(s, 3)
+ ‖X�‖2 ≤ 9A2σ 2s log(2ep/s)

4nϑ2(s, 3)
+ ‖X�‖2,

where for the last inequality we have used that, by Stirling’s formula, log(1/s!) ≤
s log(e/s) and thus

∑s
j=1 μ2

j ≤ σ 2s log(2ep/s)/n. Combining the last three displays
yields the result. �

Wenow follow the same argument as in Sects. 4 and 5. In order to applyTheorem1,
we need to find a “weak bound" R on the error ‖Xβ̂ − f‖, i.e., a bound valid with
probability at least 1/2. If the event �∗ holds with probability at least 1/2 then, due
to Proposition 7, we can take as R the square root of the right-hand side of (36).
Since ξ ∼ N (0, σ 2 In×n) and the diagonal elements of 1

nX
T
X are bounded by 1, the

random variables g1, . . . , gp are centered Gaussian with variance at most σ 2. The
following proposition from [2] shows that the event (35) has probability at least 1/2.

Proposition 8 [2] If g1, . . . , gp are centered Gaussian random variables with vari-
ance at most σ 2, then the event (35) has probability at least 1/2.

Proposition 8 cannot be substantially improved without additional assumptions. To
see this, let η ∼ N (0, 1) and set g j = ση for all j = 1, . . . , p. The random
variables g1, . . . , gp satisfy the assumption of Proposition 8. In this case, the event
(35) satisfiesP(�∗) = P(|η| ≤ 4

√
log 2) so thatP(�∗) is an absolute constant. Thus,

without additional assumptions on the random variables g1, . . . , gp, there is no hope
to prove a lower bound better than P(�∗) ≥ c for some fixed numerical constant
c ∈ (0, 1) independent of p.

By combining Propositions 7 and 8, we obtain that the oracle bound (36) holds
with probability at least 1/2.At first sight, this result is uninformative as it cannot even
imply the consistency, i.e., the convergence of the error ‖Xβ̂ − f‖ to 0 in probability.
But the SLOPE estimator is a convex regularized estimator and the argument of
Sect. 3 yields that a risk bound with probability 1/2 is in fact very informative:
Theorem 1 immediately implies the following oracle inequality for any confidence
level 1 − δ as well as an oracle inequality in expectation.

Theorem 5 Assume that the diagonal elements of the matrix 1
nX

T
X are not greater

than 1. Then for all δ ∈ (0, 1), the SLOPE estimator β̂ defined by (34) with tuning
parameter A ≥ 8 satisfies



332 P. Bellec and A. Tsybakov

‖Xβ̂ − f‖ ≤ min
s∈{1,...,p}

[

min
β∈Rp :|β|0≤s

‖Xβ − f‖ + 3σ A

2ϑ(s, 3)

√
s log(2ep/s)

n

]

+ σΦ−1(1 − δ)√
n

with probability at least 1 − δ. Furthermore,

E‖Xβ̂−f‖ ≤ min
s∈{1,...,p}

[

min
β∈Rp :|β|0≤s

‖Xβ − f‖ + 3σ A

2ϑ(s, 3)

√
s log(2ep/s)

n

]

+ σ√
2πn

.

The proof is similar to that of Theorem 2, and thus it is omitted. Remarks analogous
to the discussion after Theorem 2 apply here as well.

7 Generalizations and Extensions

The list of applications of Theorem 1 considered in the previous sections can be
further extended. For instance, the same techniques can be applied when, instead
of prediction by Xβ for f , one uses a trace regression prediction. In this case, the
estimator β̂ ∈ R

m1×m2 is a matrix satisfying

β̂(y) ∈ argmin
β∈Rm1×m2

(
1

n

n∑

i=1

(yi − trace(XT
i β))2 + 2F(β)

)

, (37)

where X1, . . . , Xn are given deterministic matrices in R
m1×m2 , F : Rm1×m2 → R

is a convex penalty. A popular example of F(β) in this context is the nuclear norm
of β. The methods of this paper apply for such an estimator as well, and we obtain
analogous bounds. Indeed, (37) can be rephrased as (2) by vectorizing β and defining
a new matrix X. Thus, Theorem 1 can be applied. Next, note that the examples of
application of Theorem 1 considered above required only two ingredients: a deter-
ministic oracle inequality and a weak bound on the probability of the corresponding
random event. The deterministic bound is obtained here quite analogously to the
previous sections or following the same lines as in [9] or in [16, Corollary 12.8]. A
bound on the probability of the random event can be also borrowed from [9]. We
omit further details.

Finally, we observe that Proposition 3 and Theorem 1 generalize to Hilbert space
setting. Let H, H ′ be two Hilbert spaces andX : H ′ → H a bounded linear operator.
If H is equipped with a norm ‖ · ‖H , and F : H ′ → [0,+∞] is convex, proper, and
lower semicontinuous, consider for any y ∈ H a solution

β̂(y) ∈ argmin
β∈H ′

(‖y − Xβ‖2H + 2F(β)
)
. (38)
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Proposition 9 Under the above assumptions, any solution β̂(y) of (38) satisfies
‖X(β̂(y) − β̂(y′))‖H ≤ ‖y − y′‖H .

The proof of this proposition is completely analogous to that of Proposition 3. It
suffices to note that the properties of convex functions used in the proof of Propo-
sition 3 are valid when these functions are defined on a Hilbert space, cf. [14]. This
and the fact that the Gaussian concentration property extends to Hilbert space valued
Gaussian variables [10, Theorem 6.2] immediately imply a Hilbert space analog of
Theorem 1.
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Structured Nonparametric Curve Estimation

Enno Mammen

Abstract In this note, we discuss structured nonparametric models. Under a struc-
tured nonparametric model, we understand a non- or semiparametric model with
several nonparametric components where one of the nonparametric components lies
in the focus of statistical interest but where all other nonparametric components are
nuisance parameters. In structured nonparametrics, the focus of the statistical analy-
sis is inference on this component whereas the goodness of fit of the whole model is
only of secondary interest. This creates new challenging problems in the theory of
nonparametrics. We will outline this in this note by discussing two classes of models
from structured nonparametrics and by highlighting the theoretical questions arising
in these classes of models.

Keywords Structured nonparametrics ·Kernel smoothing
Nonparametric additive models · Chain ladder mode

1 Introduction

Structured nonparametrics is a class of models in non- or semiparametrics with sev-
eral nonparametric components f1,…, fq . In structured nonparametrics, the focus of
statistical inference is directed to only one nonparametric component, f1 say. One is
interested in the shape or other characteristics of f1. All other nonparametric compo-
nents f2,…, fq and all parametric components of the model are nuisance parameters
that are of no specific interest. Examples are applications where one wants to con-
struct confidence bands or pointwise confidence sets for f1 or where one wants to
test hypothesis on the component f1 but where the other components f2,…, fq are
nuisance components.
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This is related to semiparametricswhere one is interested in onefinite-dimensional
parameter and where the nonparametric components are nuisance. But there is a big
difference. For a finite-dimensional parameter, optimality in estimation and testing
can be easily described. This is the case under regularity conditions that allow asymp-
totic central limit theorems with Gaussian limits for asymptotically linear statistics.
Studies of optimality reduce then to the comparison of asymptotic covariance matri-
ces. In structured nonparametrics, infinite-dimensional objects are estimated. Often,
the estimators do not have a global distributional limit. And typically, there exists no
unique optimal estimator. Typically, there are several ways to judge optimality and
each criterion leads to another optimal statistical procedure. An example is classical
nonparametric curve estimation problems. Here, the performance of the estimators
can be tuned by looking for estimators with small bias and large variance, by choos-
ing estimators with low bias, large variance or by balancing bias and variance of
the estimator. Thus, it cannot be expected to get an asymptotic optimality theory in
structured nonparametrics as it is available in semiparametrics.

There exist a lot of examples of models in structured nonparametrics. A first
class of examples is structured nonparametric regression where one observes i.i.d.
R

q × R-valued random variables (Xi ,Y i ) (i = 1, .., n) with

Y i = G[θ, f1, . . . , fq ](Xi ) + εi

for some f1,…, fq belonging to some specified function classes and for a finite-
dimensional parameter θ and with error variables εi that fulfill:

E[εi |Xi ] = 0.

In structured nonparametrics, one is interested in a good fit of only one of the non-
parametric components f1, …, fq . This differs from prediction where the focus is a
good fit of the composed regression function G[θ, f1, . . . , fq ]. Many tools in math-
ematical statistics answer the question how a good fit can be achieved for the full
model. But an analysis for estimation of one component of the model needs novel
tools and approaches.

Perhaps, the simplest example of structured nonparametric regression is the addi-
tive model where

G[c, f1, . . . , fq ](x) = c + f1(x1) + · · · + fq(xq).

Here, we observe (Xi
1, . . . , X

i
q ,Y

i ) (i = 1, .., n) with

Y i = c + f1(X
i
1) + · · · + fq(X

i
q) + εi

for functions f1,…, fq belonging to some specified function classes and some con-
stant c. For the error variables εi , it is assumed that:

E[εi |Xi
1, . . . , X

i
q ] = 0.
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Other examples in structured nonparametric regression include:

• additive models with monotone component functions,
• additive models with increasing number of additive components and sparsity,
• generalized additive models with unknown link function

G[ f0, . . . , fq ](x) = f0( f1(x1) + · · · + fq(xq)),

• varying coefficient models

G[ f j,k : j ∈ {1, . . . , d}, k ∈ I j ](x) =
d∑

j=1

x j

∑

k∈I j
f j,k(xk),

• index models

G[ f1, . . . , fq , θ1, . . . , θq ](x) =
d∑

j=1

f j (θ
ᵀ
j x),

• age-cohort-period models: G[ f1, f2, f3](x) = f1(x1) + f2(x2) + f3(x1 + x2),
• age-cohort-period models with operational time: G[ f1, f2, f3, f4](x) = f1(x1) +

f2( f4(x1)x2) + f3(x1 + x2).

In structured nonparametric density estimation, one observes i.i.d.Rq -valued ran-
dom variables Xi (i = 1, .., n) with density

G[θ, f1, . . . , fq ](x)

for some f1,…, fq belonging to some specified function classes. A specification that
we will discuss below is the nonparametric chain-ladder model where

G[ f1, f2](x) = f1(x1) f2(x2)Ix1+x2≤1;x1,x2≥0.

In this note, we will start with a short discussion of some general theoretical ques-
tions in structured nonparametrics. Then, we will report on some ongoing research
projects with YoungKyung Lee (Seoul), María DoloresMartínezMiranda (Granada,
London), Jens Perch Nielsen (London), Byeong Park (Seoul) where we discussed
the chain-ladder model and some of its modifications. In the last part of this note,
we will state some asymptotic oracle results for high-dimensional additive models.
For the additive model

Y i = c + f1(X
i
1) + · · · + fq(X

i
q) + εi

with q → ∞ we show under sparsity constraints: A component f1 in the additive
model can be estimated asymptotically as well as f1 in the model

Zi = c + f1(X
i
1) + εi .
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Thismeans that not knowing f2,…, fq does not lead to a loss of statistical information
on f1, asymptotically up to first order. This result was obtained in a project with Karl
Gregory (University of South Carolina) and Martin Wahl (Berlin).

2 Theoretical Questions

There are some theoretical questions that naturally arise in structured nonparametrics.

I. Does the global function x → G[θ, f1, . . . , fq ](x) identify θ, f1, . . . , fq?
II. What are the optimal rates for the estimation of a component f j . Is it the same

rate as for G[θ, f1, . . . , fq ]?
III. How can one construct an estimator for a component f j? Is an asymptotic dis-

tribution theory available for the estimator?
IV. Can theory be developed for optimal estimation of a component f j? Does there

exist a concept like efficiency in semiparametrics?

We conjecture that there exist no general answers to all these questions that work
for all models in structured nonparametrics. For this reason, we think that one has to
consider these questions separately for each class of models in structured nonpara-
metrics. In this note, we will do this for two classes of models. In the next section, we
will discuss Questions I–III for age-cohort-period models with and without opera-
tional time. InSect. 4,wewill discussQuestion IV for additive nonparametricmodels.
There we will show that one can show that in an additive model a component can be
estimated with the same asymptotic limit as it would be the case if the other additive
nonparametric would be known. We formalize this statement and we interpret this
as an optimality theory. Clearly, it cannot be expected that such an optimality result
is available for all classes of models in structured nonparametrics.

3 A Worked Out Applied Model: Chain-ladder Model

In the simplest version of the chain-ladder model, one observes n i.i.d. tuples
{(Xi ,Yi ), i = 1, . . . , n} with density

f (x, y) = c f f1(x) f2(y)

and support I f that is contained in the set

S f = {(x, y) : 0 ≤ x ≤ T1, 0 ≤ y ≤ T2}

with T1, T2 > 0, see [5, 8]. Discrete versions of this model are used in claims
reserving in non-life insurance where an important aim is to forecast the func-
tion f (x, y) in S f \ I f . There the data arrange is a triangle support defined as
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I f = {(x, y) : 0 ≤ x, y ≤ T, x + y ≤ T },where x is the underwriting time, y is the
claims development time and [0, T ] (with T > 0) is the time observation window.
Claims were paid at x + y.

There exist other examples for such data structures. In all thesemodels, the covari-
ate X represents the start of something. This could be the start of unemployment for
an employee, onset of some infection, the reporting of an insurance claim, birth of
a new member of a cohort or, as is the case in the above example underwriting of
an insurance contract. The variable Y measures the time passed until some specified
event occurs. It could be the duration of unemployment, incubation period of some
disease, age of a cohort member, or development of an insurance claim. In all these
cases, X + Y is the calendar time of the relevant event. The functions f1 and f2 are
interesting by themselves. Inference on their values gives insight about the future
development of the data under consideration.

To simplify things, we here restrict our theory to the triangular support I f =
{(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1} ⊂ S f = [0, 1]2, where for simplicity, we trans-
form the time into the interval [0, 1]. Thus, we observe n i.i.d. observations
(Xi ,Yi ) with density f on the triangle I f where f is of the form: f (x, y) =
c f f1(x) f2(y), with probability densities f1 and f2 on [0, 1] and constant c f such
that

∫
I f

c f f1(x) f2(y)dx dy = 1.
We now define

g1(x) =
∫ 1−x

0
f (x, y)w(x, y) dy,

g2(y) =
∫ 1−y

0
f (x, y)w(x, y) dx

with some weight function w(x, y) > 0. For the choice w(x, y) ≡ 1 we get that g1
is the marginal density of X and g2 is the marginal density of Y . But we allow also
for other choices of w. We will consider estimators of f1 and f2 that are based on
pilot estimators ĝ1 and ĝ2 of g1 and g2. The functions g1 and g2 can be estimated by
kernel smoothing:

ĝ1(x) = 1

nh1

n∑

i=1

K

(
Xi − x

h1

)
w(Xi ,Yi ),

ĝ2(y) = 1

nh2

n∑

i=1

K

(
Yi − y

h2

)
w(Xi ,Yi ),

where the kernel function K is a probability density function and where the band-
widths h1, h2 are positive sequences that converge to zero.

Our estimators ĉ f , f̂1 and f̂2 of c f , f1 and f2 are given as solutions of the equation

F̂(ĉ f , f̂1, f̂2) ≡ 0
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under the constraint
∫ 1
0 f̂1(u)du = 1 and

∫ 1
0 f̂2(v)dv = 1, with

F̂(c, r1, r2)(x, y) =
(
c r1(x)

1
ĝ1(x)

∫ 1−x
0 r2(v)w(x, v)dv − 1

c r2(y)
1

ĝ2(y)

∫ 1−y
0 r1(u)w(u, y)du − 1

)
.

Note that F̂(ĉ f , f̂1, f̂2) ≡ 0 is equivalent to

ĝ1(x) =
∫ 1−x

0
ĉ f f̂1(x) f̂2(y)w(x, y) dy,

ĝ2(y) =
∫ 1−y

0
ĉ f f̂1(x) f̂2(y)w(x, y) dx .

Under regularity assumptions, one gets the following result, see [5].

Theorem 1 The following expansions hold

f̂1(x) = f1(x) −
1

nh1

∑n
i=1 K

(
Xi−x
h1

)
w(Xi ,Yi ) − E

[
K

(
Xi−x
h1

)
w(Xi ,Yi )

]

g1(x)

+h21b1(x) + oP(
1√
nh1

+ h21),

f̂2(y) = f2(y) −
1

nh2

∑n
i=1 K

(
Yi−y
h2

)
w(Xi ,Yi ) − E

[
K

(
Yi−y
h2

)
w(Xi ,Yi )

]

g2(y)

+h22b2(y) + oP(
1√
nh2

+ h22),

uniformly for δ ≤ x, y ≤ 1 − δ for δ > 0 with b1, b2 given as solutions of determin-
istic linear integral equations.

We shortly outline how this result can be achieved. In the proof, one can make
use of the following theorem.

Newton–Kantorovich Theorem. Suppose that there exist constants α, β, k, r and
a value ξ0 such that a functional T has a derivative T ′(ξ) for ‖ξ − ξ0‖ ≤ r , T ′(ξ)

is invertible,

‖T ′(ξ0)−1T (ξ0)‖ ≤ α,

‖T ′(ξ0)−1‖ ≤ β,

‖T ′(ξ) − T ′(ξ ′)‖ ≤ k‖ξ − ξ ′‖,

for all ξ, ξ ′ with‖ξ − ξ0‖ ≤ r ,‖ξ ′ − ξ0‖ ≤ r , 2kαβ < 1 and2α < r .ThenT (ξ) = 0
has a unique solution ξ ∗ in {ξ : ‖ξ − ξ0‖ ≤ 2α}.
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The main point in the proof of our theorem is to show that the random oper-
ator F̂ is differentiable with a derivative that has a bounded inverse. This allows
to apply the Newton–Kantorovich Theorem with the choice T = F̂ . The choice
ξ0 = (c f , f1, f2) can be used to show consistency of (ĉ f , f̂1, f̂2). The choice
ξ0 = (c f , f1, f2) − T ′(c f , f1, f2)−1T (c f , f1, f2) leads to the stochastic expansion
of (ĉ f , f̂1, f̂2) presented in our theorem.

The stochastic expansion in the theorem shows that f1 and f2 can be estimated
with the same rate as in kernel smoothing in classical nonparametric regression or
density estimation. We have a stochastic term that is mean zero and has the same
structure as known from kernel smoothing in classical nonparametric regression or
density estimation. As there, the stochastic terms are of order (nh1)−1/2 or (nh2)−1/2,
respectively. Additionally, there is a bias term that is of order h21 or h

2
2, respectively.

Again, this is the same order as in classical nonparametric regression or density
estimation. Furthermore, the expansions of our theorem allow to construct point
wise confidence intervals or confidence bands for f1 and f2 and to construct testing
procedures for their shape. This answers questions I–III for this model. It also shows
that the optimal rate for estimation of f1 and f2 is equal to n−2/5. This rate can
be achieved by choosing h1 and h2 of order n−1/5. Furthermore, no better rate can
be achieved because we cannot do better than in the model where one of the two
functions, f1 or f2, is known.But our theoremdoes not answer questions of optimality
that go beyond rate optimality.

There exist several extensions of the chain-laddermodel.Wewill discuss a version
of the chain-ladder model that contains a varying time scale φ(x) (operational time)

f (x, y) = f1(x) f2(yφ(x)), (x, y) ∈ I f ,

with unknown functions f1, f2 and φ. We choose this model as an example to discuss
issues of identification. We will discuss why φ is identifiable. One can show that:

φ′(x)
φ(x)

=
∫ 1−x
0

(
∂
∂x log f (x, y)

)
w(y; x) dy

∫ 1−x
0

(
∂
∂y log f (x, y)

)
yw(y; x) dy

,

wherew(·; x) : R → R is a contrast function for each x ∈ [0, 1), having the property
that

∫ 1−x
0 w(y; x) dy = 0. This motivates use of a plug-in estimator φ̂ using kernel

estimators of (derivatives of) f .
We have the following result for this estimator, see [6].

Theorem 2 Suppose that the bandwidths h1 and h2 are of order n−1/5. Then under
some regularity conditions for x ∈ [0, 1) it holds that

φ̂(x) − φ(x) = Op(n
−2/5). (1)
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Furthermore, for an arbitrarily small ε > 0, it holds that

∫ 1−ε

0
(φ̂(x) − φ(x))2 dx = Op(n

−4/5), (2)

sup
x∈[0,1−ε]

|φ̂(x) − φ(x)| = Op(n
−2/5

√
log n). (3)

Under additional assumptions, one can proceed now as if φ̂ would be the true time
transform and one can apply similar methods as above for the estimation of f1 and
f2. For the resulting estimators f̂1 and f̂2, one can show the following results. Under
regularity conditions, it holds that the estimators f̂1 and f̂2 differ asymptotically from
oracle estimators in the model where φ is known by a random and by a deterministic
term of order n−2/5. In particular, one gets that

f̂ j (x) − f j (x) = Op(n
−2/5) (4)

for j = 1, 2. Again, we arrive at results that show rate optimality of the estimators
φ, f1 and f2. This can be seen by looking at the oracle models where two of the three
functions are known. Asymptotic distribution theory in this model turns out to be
more complex. But one can also develop asymptotic expansions for the estimators
of f1, f2 and φ, that allow for such a theory. In particular, this theory allows the
construction of statistical methods for testing and confidence intervals. For details
see [6].

The theory can also be generalized to other shapes of the region where the density
is observed and to the inclusion of a multiplicative factor of seasonal effects see
again [6]. This is an important extension because seasonal effects are present in
many actuarial, biostatistical, econometric, and statistical studies.

4 Asymptotic Oracle Results for High-dimensional
Additive Models

In the last part of this note, we compare estimation of f1 in the additive model

Y i = c + f1(X
i
1) + · · · + fq(X

i
q) + εi

with estimation of f1 in the oracle model

Zi = c + f1(X
i
1) + εi .

For identification, we assume that E[ f j (Xi
j )] = 0. We will show that f1 can be

estimated in an additive model asymptotically as well as f1 in the oracle model. This
means that not knowing f2,…, fq does not lead to a loss of statistical information
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on f1, at least asymptotically up to first order. This can be judged as an answer to
our question IV. At least it answers this question for the additive model. It reduces
statistical questions on optimal estimation and testing in the additive model to the
same questions in classical nonparametric regression model where these issues are
well understood.

We now give a more precise formulation of this asymptotic equivalence result.
Suppose that a smoothing estimator

f̂ oracle1 (x1) = SMOOT HXi
1→Zi (x1)

of f1 in the oracle model Zi = c + f1(Xi
1) + εi is given. We now ask: can we

construct an estimator f̂1(x1) of f1 in the additive model

Y i = c + f1(X
i
1) + · · · + fq(X

i
q) + εi

with
‖ f̂1 − f̂ oracle1 ‖∞ = oP(δn),

where δn is the rate of convergence of f̂ oracle1 to f1?
The answer is: Yes!
For an additive model with a fixed number q of functions, this has been shown

in [2]. For a sparse high-dimensional additive model, this has been shown in [1].
There it has been allowed that the number q of functions may grow with n, even
with q >> n, but that the number s0 of nonzero functions may grow, but only with
s0 << n.

The basic idea of the construction in these papers is the observation that for a
nonparametric estimator f̃ oracle1 with low bias and high variance (undersmoothing)
it holds that

f̂ oracle1 (x1)(= SMOOT HXi
1→Zi (x1)) = SMOOT HXi

1→Z̃ i (x1) + oP(δn), (5)

where Z̃ i = f̃ oracle1 (Xi
1). This means that the application of one smoothing step leads

to asymptotically the same result as if one applies the smoothing after one under-
smoothing of the data: “smoothing≈ smoothing ◦ undersmoothing”. This asymptotic
equivalence can be easily checked formany smoothing estimators such as kernel esti-
mators, smoothing splines, orthogonal series estimators, Pinsker estimator, etc. It is
a natural property because a negligible increase of a smoothing parameter typically
does not lead to an asymptotically different result of the smoothing operation.

For a fixed choice of the undersmoothing estimator f̃ oracle1 in the oracle model, [1,
2] state conditions under which it is possible to construct undersmoothing estimators
f̃1, …, f̃q in the additive model such that:

Z̃ i = f̃ oracle1 (Xi
1) = f̃1(X

i
1) + oP(δn). (6)
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This means that using the original data one can construct values that are asymp-
totically equivalent to the undersmoothed oracle data. This asymptotic equiva-
lence has an important consequence. If one applies a smoothing operator with
property (5) to the undersmoothed oracle data or to the data constructed from
the original data then one gets the same asymptotic output. For the estimator
f̂1(x1) = SMOOT HXi

1→Ỹ i (x1) with Ỹ i = f̃1(Xi
1) it holds that:

f̂1(x1) = SMOOT HXi
1→Z̃ i (x1) + oP(δn) = SMOOT HXi

1→Zi (x1) + oP(δn) (7)

= f̂ oracle1 (x1) + oP(δn).

This means that we have constructed an estimator f̂1 based on the original data that
is asymptotically equivalent to the oracle estimator f̂ oracle1 .

Here is the argument again: For one simple undersmoothing estimator f̃ oracle1

in the oracle model, one shows the existence of an estimator f̃1 with (6). Then
one gets for all estimators f̂ oracle1 in the oracle model with (5) that (7) holds for
the estimator f̂1(x1) = SMOOT HXi

1→Ỹ i (x1) with Ỹ i = f̃1(Xi
1). This is the oracle

result for additive models with a fixed number of additive components and for sparse
high-dimensional additive model.

This gives an answer to our Question IV for additive models. It has to be studied to
which extent the oracle results of additive models carry over to other nonparametric
models.

The results of this section complement recent results that only discuss optimal rates
in additive models, see [11] for additive models of additive components belonging to
function classes with differing complexity, and see [4, 7, 9, 10] for additive models
with an increasing number of components.
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Part VIII
Acturial Science



New Research Directions in Modern
Actuarial Sciences

Ekaterina Bulinskaya

Abstract The aim of the paper is to outline the new trends in modern actuarial
sciences in order to help the researchers to find new domains of activity and univer-
sity professors teaching future actuaries to prepare special courses. The paper begins
by description of actuarial profession and a brief historical sketch. After recalling
the main achievements of the first two periods in actuarial sciences, we describe
the new research directions of the third and fourth periods characterized by inter-
play of insurance and finance, unification of reliability and cost approaches, as well
as, consideration of complex systems. Sophisticated mathematical tools are used for
analysis and optimization of insurance systems including dividend payment, reinsur-
ance, and investment. Discrete-time models turned out to be more realistic in some
situations for investigation of insurance problems.

Keywords Risk · Dividends · Reinsurance · Investment · Ruin · Bankruptcy

1 Introduction

Web site CareerCast.com has ranked actuary the fourth-best job of 2014 taking
into account environment, income, hiring outlook, and stress. Data from the U.S.
Department of Labor and the Bureau of Labor Statistics, as well as other government
agencies, trade associations, and private survey firms were used to evaluate the 200
jobs included in its annual Jobs Rated report. The top three jobs, according to the
report, are mathematician, tenured university professor, and statistician.

Math skills are key in landing some of the best jobs in the nation, according to
CareerCast’s 2015 Jobs Rated report, with four of the nation’s ten best jobs focusing
on mathematics. An actuary—who uses mathematics, statistics, and financial theory
to assess the risk that an event will occur—came in at No. 1 on the list, just ahead of
mathematician (No. 3), statistician (No. 4), and data scientist (No. 6).
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Thus, it is natural to ask the following questions. What is an actuary? What is
actuarial science? One of the answers is given below.

Actuarial science is the discipline that applies mathematical and statistical meth-
ods to assess risk in insurance, finance, andother industries andprofessions.Actuaries
are professionals who are qualified in this field through intense education and expe-
rience. In many countries, actuaries must demonstrate their competence by passing
a series of thorough professional examinations.

Actuarial profession was formally established in 1848, with the formation of In-
stitute of Actuaries, London. The Faculty of Actuaries, Edinburgh, was organized
in 1856, and in 2010 it merged with Institute of Actuaries. The International Ac-
tuarial Association (IAA) is a worldwide association of local professional actuarial
associations. It was established in 1895 as an association of individuals under the
name the “Comité Permanent des Congrés d’Actuaires”, renamed IAA in 1968 and
restructured at the 26th International Congress of Actuaries, held in Birmingham on
7–12 June 1998. Nowadays IAA includes 69 Full Member Associations, represent-
ing 98% of qualified actuaries worldwide, and 28 Associate Member Associations.
It has seven sections.

ASTIN, the section for Actuarial STudies In Non-life insurance, was created in
1957 as the first section of the IAA. ASTIN’s main objective is to promote actuarial
research, particularly in non-life insurance. ASTIN is continually working to further
develop the mathematical foundation of non-life insurance and reinsurance.

Another section of the IAA, created in 1986,wasAFIR, which stands forActuarial
Approach for FInancial Risks. Its objective was defined as promotion of actuarial
research in financial risks and problems, see, e.g., [407]. Effective from 2011, the
section mandate was extended to formally include Enterprise Risk Management
(ERM), hence, the section was named AFIR/ERM. The purpose of this change
was to expand the discussion beyond market risk issues and provide a strong home
for international discussion and research on ERM topics. It is a reflection of the
expanding and developing role of ERM in actuarial practice and the IAA efforts to
provide support for this growing area of actuarial practice. It is a natural extension
and many ERM papers and topics have been presented at past AFIR colloquia, see,
e.g., [135] and references therein.

In November 2009, a group of actuarial professional bodies took the unprece-
dented step of agreeing to collaborate to develop and administer a new qualifica-
tion in enterprise risk management (ERM)—the Chartered Enterprise Risk Actuary
(CERA)—a ground breaking achievement, and the birth of the Global CERA Treaty.
The first nine actuaries received this certificate in July 2010.

We do not consider in this paper the scientific activity of such important IAA
Sections as the Health Section (IAAHS) created in 2003, the Pensions, Benefits
and Social Security Section (PBSS) also started in 2003, and Life Section (IAALS)
created in 2005, although these branches of research deserve a special consideration,
see, e.g., [398].

The Russian Actuarial Society was organized on September 14, 1994, the first
President was Professor A.N. Shiryaev, see [381]. The Russian Guild of Actuaries
was founded in 2002 on the basis of the Society of actuaries, established in 1994.
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OnNovember 4, 2008, the Russian Guild of Actuaries became the full member of the
IAA and was acknowledged as an integral part of international actuarial community.

Actuarial education at the Moscow State University was initiated by Professor
B.V. Gnedenko in 1993, see [91]. It is necessary to mention the achievements of
Russian actuarial science before 1917. The most well-known person is S.E. Savitsch
(1864–1936) who was a vice-president of the first four International Congresses of
Actuaries and a member of Organizing Committee of the 8th Congress which was
planned to take place in St. Petersburg in 1915 (however canceled due towar). Hewas
a permanent member of the Insurance Committee at the Ministry of Internal Affairs,
which carried out insurance supervision in the Russian Empire. For the most part,
he was interested in life insurance, health and pensions (see, e.g., his book [367]).
However, there also exists his paper [368] dealing with premiums in fire insurance.
The worldwide known specialists in probability theory, V.Ya. Bunyakovski [97] and
A.A. Markov ([297], chap. VIII) have also contributed to the development of life
insurance.

This paper is organized as follows. Historical background is provided in Sect. 2. In
particular, we sketch the main steps in the history of actuarial sciences and describe
what is actuary of the fourth kind.General description of applied probabilitymodels is
given in Sect. 3. This description clearly demonstrates the similarity ofmodels arising
in different research domains. It is also useful formodels classification. New research
directions in modern actuarial sciences are presented in Sect. 4 (for continuous-time
models) and in Sect. 5 (for discrete-time models). Three examples are treated in
Sect. 6. Conclusion is given in Sect. 7.

2 Historical Background

The keyword in all definitions of actuarial sciences is risk. According to the Concise
Oxford English Dictionary, “risk is a hazard, a chance of bad consequences, loss or
exposure to mischance” (see also [330]).

There exists the following classification of risks. First of all, risk can be pure or
speculative. Pure risk entails loss only, whereas speculative one can provide gain,
as well as loss. The most known sources of the latter risks are gambling and stock
exchange. In its turn, pure risk is subdivided into physical andmoral. Both are typical
for insurance. Insurance is a means of protection from financial loss. It is a form of
risk management primarily used to hedge against the risk of a contingent, uncertain
loss. Not all pure risks can be insured. To be insurable a risk must be random, not
depend entirely on the will of insured and materialize in the future. Randomness can
be of two types. Either the event under consideration (insured’s death) will happen
with certainty sometimes, however the occurrence time is random, or the event (e.g.,
theft of auto) may not occur at all. In the latter case, the occurrence time is also a
random variable however its distribution is improper. That is one of the reasons for
different approaches in life insurance and non-life insurance.
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Risk is present whenever the outcome is uncertain, whether favorable or unfavor-
able. Traditional actuarial mathematics work best on hazard risks, as they are gen-
erally independent and discontinuous. Actuaries and other risk professionals have
done a remarkably good job assessing and evaluating hazard risks. Organizations
rarely become insolvent due to failure to manage hazard risks.

Financial risks are those that affect assets, including interest rates, inflation, equity
values, and foreign exchange rate. These risks are correlated, continuous, and require
an understanding of stochastic calculus to be measured appropriately. Unlike hazard
risks, financial risks provide the possibility of a gain, not just a loss. The techniques
formanaging financial risks—financial derivatives such as forwards, futures, options,
and swaps—are relatively new.Misuse of these techniques and the resulting financial
debacles they caused have actually led to the need for enterprise risk management
(ERM), see [133].

According to the Casualty Actuarial Society (CAS), enterprise risk management
is defined as: “The process by which organizations in all industries assess, control,
exploit, finance and monitor risks from all sources for the purpose of increasing the
organization’s short and long term value to its stakeholders.”

In other words, ERM is the systematic evaluation of all the significant risks facing
an organization and how they affect the organization in an aggregate way. Hence,
categorizing risks as hazard, financial, operational, or strategic is most useful. Op-
erational risks represent the failure of people, processes, or systems. Strategic risk
reflects the business decisions of an organization or the impact of competition or reg-
ulation. Examples of strategic risk for insurance are the benefits produced for those
first to use credit scoring (see, e.g., [359]) as a rating variable, and the market share
losses of those companies that were slow to adopt this approach. ERM originally fo-
cused on loss prevention, controlling negative surprises, and reducing downside risk.
Now ERM deals with the entire range of potential outcomes, not just downside risk.
Accepting risks where it has a comparative advantage, and transferring or avoiding
risks where it does not, a company is adding value by efficient risk treatment.

Methods for transferring or distributing risk were practiced by Chinese and Baby-
lonian traders as long ago as the 3rd and 2nd millennia BC, respectively. Chinese
merchants traveling treacherous river rapids would redistribute their wares across
many vessels to limit the loss due to any single vessel’s capsizing. The Babylonians
developed a system which was recorded in the famous Code of Hammurabi, c. 1750
BC, and practiced by early Mediterranean sailing merchants. If a merchant received
a loan to fund his shipment, he would pay the lender an additional sum in exchange
for the lender’s guarantee to cancel the loan should the shipment be stolen or lost at
sea. Further history of insurance development is described, e.g., in [381].

Why actuarial science emerged significantly later (in the 17th century) one can
read in the interesting book by P.L. Bernstein [64] written in 1996 about the risk
history.

According to classification given in 1987 by H. Bühlmann [82], there were
three periods in actuarial sciences. However less than two decades later, in 2005,
P. Embrechts declared the beginning of the fourth period, namely, appearance of
actuaries of the fourth kind. S. D’Arcy, in his Presidential address [133] to CAS
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(Casualty Actuarial Society), has told that such a term is applied to actuaries work-
ing in ERM (enterprise risk management) and explained how to become an actuary
of the fourth kind.

Actuaries of the first kind are life actuaries. According to Bühlmann, the primary
methods of life actuaries involve deterministic calculations. Actuaries of the second
kind, the casualty actuaries, develop probabilistic methods for dealing with risky
situations. The actuaries of the third kind deal with the investment side of insurance
and incorporate stochastic processes into actuarial calculations. Nowadays, almost
all aspects of insurance product development and pricing involve a combination of
investment and insurance characteristics. This change requires all actuaries to become
actuaries of the third kind. How to reach this goal one can read in [134]. The actuaries
of the third kind, who were the object of Bühlmann’s editorial, were the investment
actuaries applying stochastic processes, contingent claims, and derivatives to assets
and liabilities. This specialty developed in the 1980s as financial risk became more
important and tools to manage financial risk were created. In order to become the
actuary of the fourth kind, one has to learn to deal not only with hazard and financial
risks but with operational and strategic risks as well, see [130].

According to [133], in ERM, as in traditional risk management, the first step is
risk identification. Focus on the most significant risks an organization faces. Deal
with those first, then in future iterations expand the focus to the next level of risk
elements, as advised one of ERM pioneers, J. Lam (see [248]).

Step two in ERM, as in traditional risk management, is to quantify the risks. Actu-
aries are well skilled in this area, at least for hazard risks, but ERM also requires the
quantification of the correlations among different risks. Two risks can be generally
uncorrelated, but, if an extreme event were to occur, then they could be highly corre-
lated. Techniques for evaluating these forms of correlations, filters, tail dependency,
copulas, and other numerical techniques must be incorporated. Much needs to be
done to be able to quantify operational and strategic risk to the standards common
in hazard and financial risk (see, e.g., [130, 131]).

Step three of the risk management process involves evaluating the different meth-
ods for handling risk. Risks can be assumed, transferred, or reduced. A variety of
methods exist for transferring (subcontracting, insurance, or securitization) or reduc-
ing risk (loss control, contract, or reinsurance).

Step four is to select the best method for handling the risk, which in most cases
will involve a combination of different techniques. Moreover, the organization wants
to make consistent choices about all the risks it faces, how much risk it will accept,
and what return it would require for accepting a particular level of risk.

Step five is to monitor and adjust the risk management approach selected. It is
an iterative process that entails identifying additional significant risks, quantifying
those risks, and improving the quantification of previously identified risks based on
additional information and improved mathematical techniques. It also entails reeval-
uating the different approaches to handle risk, implementing an improved strategy,
and then, once more, monitoring the result.
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In addition to references in [133], the following papers and books may be helpful:
[51, 105, 107, 135, 136, 140, 151, 164, 194, 196, 228, 233, 302, 317, 323, 365,
384, 392, 396, 419].

Thus, the first period in actuarial science development was deterministic, see,
e.g., [398]. It is characterized by E. Haley’s mortality tables which appeared in 1693
and D. Bernoulli’s utility functions introduced in 1738. Although some researchers
claim that idea of mortality tables belongs to Roman juror Ulpian, the first life
tables appeared in the seventeeth century. They were issued by John Graunt in 1662
(some historians attribute them to William Petty, who introduced the new subject
named “political arithmetic”) and Johan de Witt, 1671. However, E. Halley “was the
first individual to describe the principles of actuarial mathematics on scientifically
accurate lines” (see [200]).

The second (stochastic) period is marked by the application of probability theory
and stochastic processes to solving the actuarial problems. The main achievement of
this period is the collective risk theory, in particular, a well-knownCramér–Lundberg
model, see, e.g. [299]. It is worth mentioning that one of widely used in practice
stochastic processes with independent increments, namely, Poisson process was in-
troduced for the first time in the dissertation of F. Lundberg in 1903, see, e.g. [129].
The other process with independent increments called Brownian motion or Wiener
process appeared as a model for stock exchange performance in dissertation of
L. Bachelier “Theory of speculation” in 1900. The results of Lundberg were ex-
plained and further developed by H. Cramér in 1930s. It is said that the reason for
Swedish insurance companies successes was the attention paid to actuarial sciences.
Thus, in 1929, a special chair of Statistics and Actuarial Sciences was created at
Stockholm university for H. Cramér.

The science has gone through revolutionary changes during the last 40 years due
to the proliferation of high-speed computers and the union of stochastic actuarial
models with modern financial theory. Thus, one can call the third period financial.
It was very short, not more than three decades. The fourth (modern) period has
brought, in addition to achievements of previous periods, development of enterprise
risk management.

Hence, the modern period is characterized by strong interaction of insurance
and finance, investigation of complex systems and employment of sophisticated
mathematical tools. The aim of the paper is to outline the new research directions
which emerged during the last two decades. Further on, we are going to focus on
non-life (general) insurance, mentioning in passing that life insurance is thoroughly
treated in the book [234] by M. Koller, see also [165]. The models used in health
insurance can be found in [347] byE. Pitacco. Those interested in the famousWilkie’s
investment model and its generalizations are referred to [420] and original papers
[362, 363, 406, 408, 409].

It is important to underline that the books [127, 158, 195, 217, 232, 237, 241,
326, 329, 341, 348, 352, 361, 383, 413, 421] demonstrate the similarity between
the models arising in insurance, finance, and other research fields. Thus, methods
used in one research field may turn out fruitful in others. The books [71, 73, 83,
126, 141, 142, 145, 208, 221, 231, 300, 304, 349, 370, 375, 380, 420] also can
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be useful, along with traditional textbooks such as [56, 75, 81, 138, 173, 371], for
professors planning the special courses for actuarial students.

Although the bibliography of this paper contains 446 papers and books, almost
all of them published in this century, the list is far from being complete. Further
references can be found in the mentioned books and reviews [8, 28, 40, 202, 272,
379]. The last review was published during the preparation of this paper, so the
material was rearranged in order not to repeat [379]. Thus, the taxation problems
(see, e.g., the loss-carry-forward tax model for Lundberg risk process in [7], or [245]
where general tax processes are investigated for Lévy insurance model, as well as
[305] dealing with a compound Poisson process under absolute ruin) and statistical
estimation (see, e.g., [436] where nonparametric estimation for ruin probability in
Lévy risk model is treated) are only mentioned, the interested reader is referred to
[379].

3 General Description of Applied Probability Models

Not only insurance, but other applied probability research domains such as inventory
and dams, finance, queueing theory, reliability, and some others can be considered as
special cases of decision-making under uncertainty (or risk management) aimed at
the systems performance optimization, thus eliminating or minimizing risk, see, e.g.,
[85, 301]. “The capacity to manage risk, and with it appetite to take risk and make
forward-looking choices, are key elements of the energy that drives the economic
system forward”—one reads in [64]. The ability of businesses to survive and thrive
often requires unconventional thinking and calculated risk taking. The key is to make
the right decisions—even under the most risky, uncertain, and turbulent conditions,
see, e.g., [168].

For correct decision-making, one needs an appropriate mathematical model. For
several centuries, mathematics has been the language of the exact sciences. Only in
the twentieth century has mathematics become predominant in other fields, partic-
ularly economics and finance. Obviously, it is possible to construct a lot of models
describing the same real-life event or process more or less precisely. Furthermore,
the same mathematical model can arise in different research domains.

Constructing an insurance companymodel one has to take into account its twofold
nature. Originally all insurance societies were designed for risk sharing. Hence, their
primary task is policyholders indemnification. Nowadays, for the most part, they
are joint-stock companies. Thus, the secondary but very important task is dividend
payments to shareholders.

It is well known that insurance company performance generates two cash flows.
Namely, the inflow consists of premiums paid by insureds and outflow is determined
by claim process. Premiums are paid by all policyholders (insureds) however reim-
bursement is obtained only by those who suffered from risk realization. Clearly, the
insurance company models are of input–output type. They can be described by the
following six-tuple (T, Z ,Y,U, Ψ,L ).
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Table 1 Interpretation of model parameters for different research domains

Research field Input Output System state

Insurance Premium Indemnity Surplus

Finance Money inflow Money outflow Capital

Inventory Supply Demand Inventory level

Storage Water inflow Water outflow Water level in a dam

Reliability New & repaired Broken elements Working elements

Queueing Customers arrival Served customers Queue length

Population growth Birth and immigration Death and emigration Population size

Here, T is the planning horizon, Z = {Z(t), t ∈ [0, T ]} and Y = {Y (t), t ∈
[0, T ]} being input and output processes, respectively. The next element U =
{U (t), t ∈ [0, T ]} is a control, whereas Ψ represents the system configuration and
operation mode. Hence, X = Ψ (Z ,Y,U ) is the system state, so, X = {X (t), t ∈
[0, T ]}. All the above-mentioned processes may be multidimensional, moreover,
their dimensions may differ. Finally, LT (U ) = L (Z ,Y,U, X, T ) is an objective
function (target, valuation criterion, riskmeasure) evaluating the systemperformance
quality.

Definition 1 A control U ∗
T = {U ∗(t), t ∈ [0, T ]} is called optimal if

LT (U ∗
T ) = inf

UT ∈UT

LT (UT ), (or LT (U ∗
T ) = sup

UT ∈UT

LT (UT )), (1)

whereUT is a class of all feasible controls. Furthermore,U ∗ = {U ∗
T , T ≥ 0} is called

an optimal policy (or strategy).

If the extremum in (1) cannot be attained, one has to use either the ε-optimal or
asymptotic optimal policies.

Giving another interpretation to input and output processes, one can pass (see,
e.g., [90]) from one research field to another as shown in Table1.

3.1 Models Classification

Now, we turn to models classification according to parameters of their general de-
scription.

1. The planning horizon can be finite (T < ∞) or infinite (T = ∞). Furthermore,
one can consider continuous or discrete time. In the first case, the system is observed
at any time t ∈ [0, T ], in the second one, its behavior is known in a finite or countable
set of points belonging to the planning horizon.

2. Input and output processes can be deterministic or stochastic. In the latter
case, their distributions may be known completely, partly (unknown parameters), or
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unknown at all. Thus, a system will be deterministic or stochastic if the same true for
both (input and output) processes. It is called mixed if one process is deterministic
while the other one is stochastic.

3. According to the set of feasible controls, the system can be static (control is
applied only one time) or dynamic (control is applied many times or continuously).
Moreover, one can control input or/and output processes, as well as the system initial
state, configuration, and operationmode. Hence, dimensions of underlying processes
(input, output, control, and system state) can differ and change in course of system
functioning.

4. The last but not least element of systemsdescription is anobjective function (risk
measure). At first, in many research fields, an objective function was not considered
at all. Hence, there was no control and optimization. One can mention here queueing
and dam theory. Nowadays, in all applied probability research fields, one is interested
in the choice of optimal control providing extremum of some prescribed objective
function. Multi-objective optimization (see, [318]) can also be studied.

Themost widely used approaches in choosing the objective function are reliability
and cost ones. It is clear that reliability approach has arisen in reliability theory. The
researcherswere always interested in survival time of the systemunder consideration,
in other words, the time until the system failure, as well as, in survival probability.
The reliability approach was also used in insurance. Since company solvency is very
important for its existence, for a long time the primary task of actuarial sciences was
investigation of ruin time and ruin probability.

On the other hand, the cost approach was applied from the beginning in finance
and inventory theory. The expected (discounted) costs were typical for inventory
models optimization. Mean variance principle was used for portfolio optimization
and capital allocation since 1952 when the seminal paper [298] was published. In-
surance application of this principle is presented, e.g., in [53, 210], whereas optimal
portfolio choice for a loss averse insurer is treated in [192] (see also references
therein). Other well-known financial risk measures, such as VaR (Value at Risk) or
CVaR (Conditional Value at Risk), were widely used in insurance as well. Coherent
risk measures (see, e.g., [22, 162]), deviation measures and expectation bounded risk
measures (see, e.g., [360]) became very popular during the last two decades. Now,
reliability and cost approaches (along with their various combinations) are used in
any applied probability domain.

3.2 New Trends in Actuarial Sciences

Further on, the following characteristics of modern period of actuarial sciences are
treated.

• Interplay of actuarial and finance methods, in particular, unification of reliability
and cost approaches.
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• Investigation of complex systems including dividend payment, reinsurance, in-
vestment, and bank loans, as well as taxes. Hence, the necessity of dealing with
more intricate models and processes, application of sophisticated mathematical
tools.

• Consideration of discrete-time models which turned out to be more appropriate
for the description of some aspects of insurance company performance.

Historically, most insurance-related problems deal with jump processes due to
the nature of insurance claims which occur at discrete-time points, whereas many
classical models in financial mathematics rely on continuous processes to reflect
fluctuations in the constantly changing financial markets. Although the two disci-
plines of applied probability have evolved rather independently, there is a common
trend in recent years to incorporate stochastic models with both continuous and jump
components, see, e.g., [385].

For example, on the ruin theory side, in addition to the random jumps which ac-
count for insurance claims, diffusion components have gained increasing popularity
to describe investment returns in sophisticated risk models.

4 New Results for Continuous-Time Insurance Models

It was already mentioned that functioning of insurance company generates two cash
flows. Namely, input Z(t) describes the premiums acquired up to time t , whereas
output Y (t) represents the payments of company to policyholders in order to satisfy
their claims. In other words, Y (t) is the aggregate claim amount up to time t .

Thus, insurance company capital (surplus or reserve) at time t is given by

X (t) = x + Z(t) − Y (t), (2)

where x is the initial capital.
Continuous-timemodels were used during the last century and still are very popu-

lar. The famous Cramér–Lundberg model, which appeared in 1903 (see [129]), has a
mixed type. Its input is deterministic Z(t) = ct , c > 0 is the premium rate, whereas
the output Y (t) is a stochastic process

Y (t) =
N (t)∑

i=1

Yi . (3)

Here, the claim number N (t) is a Poisson process with parameter λ, Yi being the
amount of the i th claim. The sequence {Yi } of i.i.d. r.v.’s and N (t) are supposed inde-
pendent. Thus, Y (t) is a compound Poisson process with intensity λ. It is interesting
to mention that X (t) given by (2) and (3) is a particular case of spectral negative
Lévy process.
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4.1 Decision Problems and Objective Functions

The problems of interest for any insurance company are choice of underwriting
procedure, premium principles (see, e.g., [114, 255, 274, 277, 288, 351, 440,
441]) and reserves (see, e.g., [1, 29, 84, 211, 303, 418]) to ensure the company
solvency. Moreover, very important decisions are dividend payments, reinsurance,
and investment. Hence, very popular research topics are

• calculation of ruin probabilities,
• estimation of ruin severity (Gerber–Shiu function),
• investigation of the rate of capital growth,

as well as, thorough study of models incorporating

• dividends, investment, reinsurance, tax.

4.1.1 Ruin Probability

From the beginning, the ruin probability attracted attention of actuaries occupied
with company solvency. There exists a vast bibliography pertaining to this problem,
see, e.g., [24, 25, 186] and references therein.

Denote by τ = inf{t > 0 : X (t) < 0} the ruin time of the company. Then, finite-
time ruin probability (ruin in interval [0, T]) is defined as follows:

ψ(x, T ) = P(τ ≤ T |X (0) = x) = P( inf
0<t≤T

X (t) < 0),

whereas the probability of ultimate ruin is given by

ψ(x) = P(τ < ∞|X (0) = x) = lim
T→∞ ψ(x, T ).

Much of the literature on ruin theory is concentrated on classical risk model, in
which the insurer starts with an initial surplus, and collects premiums continuously
at a constant rate, while the aggregate claims process follows a compound Poisson
process.

In 1957, Sparre Andersen (see, [19]) let claims occur according to a more gen-
eral renewal process and derived an integral equation for the corresponding ruin
probability. Since then, random walks and queuing theory have provided a more
general framework, which has led to explicit results in the case where the interclaim
times or the claim severities have distributions related to the Erlang or phase-type
distributions.

Some other generalizations of the basic modelwill be outlined in the next subsub-
section. Now, we only mention that ruin probability was investigated under various
assumptions. Thus, the explicit formulas for ruin probability with dependence be-
tween risks, arising due to mixing over simple model parameters, were established
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in [13]. Archimedean dependence structure can be considered as a particular case of
such procedure. Other classes of processes for which explicit expressions for ruin
probability exist can be found in [25]. Estimates of ruin probabilities for Cramér–
Lundberg model with stochastic premiums are established in [20]. Review of fluid
methods in ruin theory is given in [40]. Generalization of De Vylder approximation
for ruin probability is provided in [41].

The author of [80] deals with obtaining the optimal investment policy in a risky as-
set minimizing the ruin probability. The related objective of minimizing the expected
discounted penalty paid at ruin is treated as well. Minimization of ruin probability by
choosing the optimal investment is also the object of [57]. The authors consider an
insurance company whose surplus is represented by the classical Cramér–Lundberg
process. The company can invest its surplus in a risk-free asset and in a risky asset,
governed by the Black–Scholes equation. There is a constraint that the insurance
company can only invest in the risky asset at a limited leveraging level. The minimal
ruin probability as a function of the initial surplus is characterized by a classical solu-
tion to the corresponding Hamilton–Jacobi–Bellman (HJB) equation. It is shown that
the optimal investment policy significantly differs from those established in [203]
for unrestricted case or in [35] for the case of no shortselling and no borrowing.
Minimization of the ruin probability by investment and reinsurance is considered in
[369].

Ruin probabilities with dependent rate interests are treated [99], whereas in [100]
stochastic rates of interest and in [102] Markov Chain interests are assumed. The
bounds for ruin probabilities inmultivariate riskmodel are obtained in [103]. The ruin
for the Erlang(n) risk process is tackled in [266]. Ruin probabilities for two classes
of risk processes are studied in [269]. Ruin theoretical and financial applications of
the first passage time for compound Poisson process perturbed by diffusion are given
in [251]. Lundberg type bounds are obtained in [372] by investigation of renewal
equations.

An important question in insurance is how to evaluate the probabilities of (non-)
ruin of a company over any given horizon of finite length. The paper [261] aims
to present some (not all) useful methods that have been proposed for computing, or
approximating, these probabilities in the case of discrete claim severities. The starting
model is the classical compound Poisson risk model with constant premium and
independent and identically distributed claim severities. Two generalized versions
of the model are then examined. The former incorporates a nonconstant premium
function and a nonstationary claim process. The latter takes into account a possible
interdependence between the successive claim severities. Special attention is paid to
a recursive computational method that enables us to tackle, in a simple and unified
way, the different models under consideration. The approach, still relatively little
known, relies on the use of remarkable families of polynomials which are of Appell
or generalized Appell (Sheffer) types.

Asymptotic behavior and estimates of ruin probabilities are given, e.g., in [26,
63, 123, 159, 187, 235]. Two papers, [321, 322], are devoted to investigation of ruin
probabilities under capital injections. The paper [205] establishes the asymptotics of
ruin probabilities for controlled risk processes in the small claims case.



New Research Directions in Modern Actuarial Sciences 361

A thorough survey of the ruin problem in risk models with investment income
(until 2008) is presented in [333] (see also [331]). In addition to a general presentation
of the problem, topics covered are a presentation of the relevant integro-differential
equations, exact and numerical solutions, asymptotic results, bounds on the ruin
probability and also the possibility of minimizing the ruin probability by investment
and possibly reinsurance control. The main emphasis is on continuous-time models,
but discrete-time models are also covered.

4.1.2 Gerber–Shiu Function

• The ruin probability is a popular but not always a good risk measure. To treat
solvency problems, it is important to know the ruin time distribution and severity
of ruin.

Already in 1988, Dufresne and Gerber (see [154]) in the classical compound Poisson
model of the collective risk theory considered U , the surplus before the claim that
causes ruin, and V , the deficit at the time of ruin. Let f (x; u, v) be their joint density
(x initial surplus) which is a defective probability density (since U and V are only
defined, if ruin takes place). For an arbitrary claim amount distribution, they estab-
lished that f (0; u, v) = ap(u + v), where p(z) is the probability density function of
a claim amount and a is the ratio of the Poisson parameter and the rate of premium
income. After that, the distribution of the surplus prior to ruin and that of the claim
causing ruin were studied in [143, 144], respectively.

During 1997–1998, Gerber and Shiu (see [176, 177]) introduced the expected
discounted penalty function (EDPF) taking into account the surpluses immediately
before and at ruin. Since then, many researchers studied the following function

m(x) = E(e−δτw(X (τ−), |X (τ )|)I (τ < ∞)|X (0) = x),

where δ is the force of interest, I (A) is indicator of event A and w(x1, x2) is a
nonnegative penalty function defined on [0,∞) × [0,∞).

• So one can see the unification of reliability and cost approaches. (The ruin proba-
bility is obtained for δ = 0, w(x1, x2) ≡ 1.)

The joint analysis of these random variables, which had been traditionally studied
separately, allowed to offer an elegant characterization of the ruin event in terms of
a renewal equation.

The function m(x) (called frequently EDPF) is useful whenever one wishes to
place a value on cash flows triggered by the first passage of a process across a given
barrier. Applications of the EDPF are natural not only in the context of solvency
where it can be used to determine the initial capital required by a company to avoid
insolvency with a minimum level of confidence, but in option pricing or dividends
optimization as well. This is the case for credit risky securities, whose cash flows
depend on a firm’s assets falling below its liabilities, or for American options, whose
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exercise is triggered by the underlying security’s market value crossing an exercise
boundary.

By the end of the last century, Gerber and Landry (see [175]) and Gerber and Shiu
(see [178]), for example, used the EDPF to price perpetual American options and
reset guarantees.

The deficit at ruin and surplus before ruin were studied in [43] for a correlated risk
process. Moments of the surplus before ruin and the deficit at ruin are obtained in
[109] for Erlang-2 risk model. Approximations for moments of deficit at ruin for the
case of exponential and sub-exponential claims are given in [110]. The distribution
of the deficit at ruin when claims are phase-type is provided in [153]. The maximum
surplus before ruin in an Erlang(n) risk process is treated in [265]. The moments of
the time of ruin, the surplus before ruin, and the deficit at ruin are tackled in [281].

The ruin probability and the Gerber–Shiu function in a compound renewal (Sparre
Andersen) risk process with interclaim times that have a Kn distribution (i.e., the
Laplace transform of their density function is a ratio of two polynomials of degree at
most n ∈ N ) was studied in [267]. The Laplace transform of the expected discounted
penalty function at ruin is derived. This leads to a generalization of the defective re-
newal equations given in [179, 410]. The explicit results are established for rationally
distributed claim severities. The case of Erlang interclaim times has been studied in
[179, 266].

By now, EDPF is usually called Gerber–Shiu function according to the names of
its inventors. It was investigated in many papers under various assumptions about the
underlying risk model. The almost universal approach of analysis is the derivation
of some (defective) renewal equations, coming from a set of integro-differential
equations which are obtained via Itô’s formula or the infinitesimal generator of the
risk reserve process. There exists already a special book [242] devoted to Gerber–
Shiu risk theory.

Gerber–Shiu function is studied in [247] for the following generalization of
Cramér–Lundberg model. The claim sizes are allowed to take positive as well as
negative values. Depending on the sign of these amounts, they are interpreted either
as claims made by insureds or as income from deceased annuitants, respectively. The
classical risk model with a two-step premium rate is treated in [437]. Gerber–Shiu
analysis in a perturbed risk model with dependence between claim sizes and inter-
claim times is implemented in [435]. A Sparre Andersen risk process perturbed by
diffusion is dealt with in [268]. The Gerber–Shiu discounted penalty functions for a
risk model with two classes of claims is investigated in [438].

In [116], a generalization of the usual penalty function is proposed, and a de-
fective renewal equation is derived for the Gerber–Shiu discounted penalty function
in the classical risk model. This is used to derive the trivariate distribution of the
deficit at ruin, the surplus prior to ruin, and the surplus immediately following the
second last claim before ruin. The marginal distribution of the last interclaim time
before ruin is derived and studied, and its joint distribution with the claim causing
ruin is derived. In [117], the results of previous paper are extended on the Sparre
Andersen models allowing for possible dependence between claim sizes and inter-
claim times. The penalty function is assumed to depend on some or all of the surplus
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immediately prior to ruin, the deficit at ruin, the minimum surplus before ruin, and
the surplus immediately after the second last claim before ruin. Defective joint and
marginal distributions involving these quantities are derived. A discussion of Lund-
berg’s fundamental equation and the generalized adjustment coefficient is given, and
the connection to a defective renewal equation is considered.

The analysis of the Gerber–Shiu discounted penalty function for risk processes
with Markovian arrivals is performed in [2]. The paper [32] concerns an optimal
dividend distribution problem for an insurance company whose risk process evolves
as a spectrally negative Lévy process (in the absence of dividend payments). The
management of the company is assumed to control timing and size of dividend pay-
ments. The objective is to maximize the sum of the expected cumulative discounted
dividend payments received until the moment of ruin and a penalty payment at the
moment of ruin, which is an increasing function of the size of the shortfall at ruin.
Compound geometric residual lifetime distributions and the deficit at ruin are studied
in [411], whereas in [412] the author treats the discounted penalty function in the
renewal risk model with general interclaim times.

The penalty delivered by the classical EDPF has local nature, in the sense that it
only characterizes the surplus in a neighborhood of the ruin time. So, one can explore
the possibility of introducing path-dependent variables in the EDPF such as the last
minimum of the surplus before ruin (see [68]).

A generalized Gerber–Shiu measure for Markov additive risk processes with
phase-type claims and capital injections is studied in [79]. It is supposed that the
arrivals (either claims or capital injections) occur according to a Markovian point
process. Both claim and capital injection sizes are phase-type distributed and the
model allows for possible correlations between these and the interclaim times. The
premium income is modeled by a Markov-modulated Brownian motion which may
depend on the underlying phases of the point arrival process. For this risk reserve
model, the authors derive a generalized Gerber–Shiu measure that is the joint distri-
bution of the time to ruin, the surplus immediately before ruin, the deficit at ruin, the
minimal risk reserve before ruin, and the time until this minimum is attained. The
investigation is based on the results concerning the joint distribution of the space-
time positions of overshoots and undershoots derived in [78] for Markov additive
processes with phase-type jumps.

An explicit characterization of a generalized version of the Gerber–Shiu function
in terms of scale functions is provided in [67] for spectrally negative Lévy insurance
risk processes. The joint analysis of discounted aggregate claim costs until ruin
is carried out in the recent thesis [282], the other ruin-related quantities are also
examined.

• There arose the new research directions in actuarial sciences specific for modern
period. They include, along with dividend payments, reinsurance, and investment
problems.

• Thus, the treatment of complex models and consideration of new classes of
processes, such as Markov-modulated processes, martingales, diffusion, Lévy
processes or generalized renewal ones is needed.
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• Several types of objective functions and various methods are used to implement
the stochastic models optimization.

In order to understand the papers treating the modern actuarial problems, it is nec-
essary to possess solid knowledge in the field of probability theory and stochas-
tic processes. Let us mention Lévy processes (see, e.g., [21, 65, 241, 366]), point
processes [215], Brownian motion and stochastic calculus [156, 227, 230], conver-
gence of probability measures [69], limit theorems for stochastic processes [216]
which are widely used nowadays by researchers. One has to be also acquainted
with stochastic control and dynamic programming (see, e.g., [37, 327, 343, 370]),
Markov decision processes [52] and controlled Markov processes [163]. Among
the others, one finds in [40] fluid flow matrix analytic methods, in [238] Volterra
integro-differential equations, in [309] renewal processes. It is necessary to be able
to deal not only with ordinary differential equations (ODE), see, e.g., [197], but with
SDE (stochastic differential equations), see, e.g. [328]. Very important area is risk
management (see, e.g., [208, 300]). As previously, we stress that it is impossible to
mention all the needed mathematical tools and sources to study them.

4.1.3 Dividends

• Now we turn to the decision problems arising in actuarial sciences.

We briefly recall that a dividend is a distribution of a portion of a company’s earnings,
decided by the board of directors, to a class of its shareholders. Dividends can be
issued as cash payments, as shares of stock, or other property.

The study of dividends in insurance was proposed by B. de Finetti in 1957, see
[139]. He argued that under net profit condition the company surplus could become
infinitely large as time grows that is not realistic. So, it is necessary to decide when
and how much to pay, in other words, to choose a dividend strategy.

There exist a lot of possible dividends strategies. The simplest one is a barrier
strategywith barrier level b. Such a strategymeans that there is no dividends payment
if X (t) < b, whereas the payment intensity equals c (the premium rate), if X (t) = b.

Let V (x, b) = E
[

τ∫

0
e−δt dD(t)

]
be the expected discounted dividends until ruin

time τ under barrier strategywith parameter b, whereas x denotes the initial company
surplus, 0 ≤ x ≤ b. Then, according to [181], V (x, b), as a function of x , satisfies
the following equation

cV ′(x, b) − (λ + δ)V (x, b) + λ

x∫

0

V (y, b)p(x − y)dy = 0, 0 < x < b, (4)

with the boundary condition V ′(b, b) = 1.
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In [11], exact solutions for dividend strategies of threshold and linear barrier type
in a Sparre Andersen model are established. Barrier strategies are studied in, e.g., [4,
9, 287, 291, 378, 429] under various assumptions.

Themain drawback of a barrier strategy is that sooner or later the company surplus
becomes negative bringing the ruin (or bankruptcy).

In a threshold strategy, no dividends are paid when the risk reserve is below a
certain threshold, while above this threshold dividends are paid at a rate that is less
than the rate of premium income, see, e.g., [38, 39, 44, 45, 121, 172, 279, 280, 284,
285, 311, 319, 400]. Such a strategy leads to probability of ruin less than 1.

It is necessary to mention multi-threshold (see, e.g., [6]) and band strategies (see,
e.g., [36] or [370]) as well.

In insurance risk theory, dividend and aggregate claimamount are of great research
interest as they represent the insurance company’s payments to its shareholders and
policyholders, respectively. Since the analyses of these two quantities are performed
separately in the literature, the Gerber–Shiu expected discounted penalty function
was generalized in [120] by further incorporating the moments of the aggregate dis-
counted claims until ruin and the discounted dividends until ruin. While in [120], the
authors considered the compound Poisson model with a dividend barrier in which
ruin occurs almost surely, the paper [115] looks at this generalized Gerber–Shiu
function under a threshold dividend strategy where the insurer has a positive survival
probability. Because the Gerber–Shiu function is only defined for sample paths lead-
ing to ruin, the joint moments of the aggregate discounted claims and the discounted
dividends without ruin occurring are also studied. Some explicit formulas are derived
when the individual claim distribution follows a combination of exponentials. Nu-
merical illustrations involving the correlation between aggregate discounted claims
and discounted dividends are given.

Optimal dividend payments under a time of ruin constraint in case of exponential
claims are considered by the authors of [199]. In [201], optimal dividend payment
is studied under ruin constraint in three cases: de Finetti model in which time and
space are discrete, continuous-time Brownian motion with drift model and Cramér–
Lundberg model with exponential claims. Value function at each time point is sup-
posed to depend on two variables (current surplus and current ruin probability).
Dynamic equations are derived on the base of assumption that ruin probability does
not exceed a given small α. They can be solved numerically in the discrete model
and might be used to identify the optimal strategy in the other cases.

Dividend problems are also discussed in [8, 10, 15, 16, 28, 31, 32, 34, 36, 54,
55, 87, 89, 108, 124, 149, 160, 180, 181, 219, 220, 225, 239, 264, 270, 271, 275,
279, 287, 291, 292, 358, 376, 401, 431, 434, 439].

4.1.4 Investment

• Another notion we are going to use is investment.



366 E. Bulinskaya

To invest is to allocate money (or sometimes another resource, such as time) in the
expectation of some benefit in the future. In finance, the expected future benefit
from investment is a return. The return may consist of capital gain and/or investment
income, including dividends, interest, rental income, etc.

Investment generally results in acquiring an asset, also called an investment. If the
asset is available at a price worth investing, it is normally expected either to generate
income, or to appreciate in value, so that it can be sold at a higher price (or both).
It is worth mentioning that the Code of Hammurabi provided a legal framework for
investment. Various aspects of investment role in company performance optimization
are studied in many papers. We mention below only some recent results.

The optimal dividend problem for an insurance company whose uncontrolled
reserve process evolves as a classical Cramér–Lundberg process is considered in [36].
The firm has the option of investing part of the surplus in a Black–Scholes financial
market. The objective is to find a strategy consisting of both investment and dividend
payment policies which maximizes the cumulative expected discounted dividend
payouts until the time of bankruptcy. It is shown that the optimal value function
is the smallest viscosity solution of the associated second-order integro-differential
Hamilton–Jacobi–Bellman equation. The regularity of the optimal value function is
studied. It is proved that the optimal dividend payment strategy has a band structure.
A method is found to construct a candidate solution and obtain a verification result
to check optimality. Finally, an example is given where the optimal dividend strategy
is not barrier and the optimal value function is not twice continuously differentiable.

A combination of investment and reinsurance is treated in [66] under assumption
of diffusion approximation. The aim is minimization of the absolute ruin risk (this
notion will be discussed later). The paper [223] addresses the situation where the
reserve of an insurance business is currently invested in an asset that may yield
negative interest. Upper and lower bounds for the probability of ruin are obtained
in the case where the cash flow of premiums less claims and the logarithm of the
asset price are both Lévy processes. These bounds are in general power functions of
the initial reserve. Thus, it is shown that risky investments may impair the insurer’s
solvency just as severely as do large claims. One can also find in this paper references
on previous results concerning ruin problem and investment.

The paper [276] focuses on the optimal investment problem for an insurer and
a reinsurer. The insurer’s and reinsurer’s surplus processes are both approximated
by a Brownian motion with drift and the insurer can purchase proportional reinsur-
ance from the reinsurer. In addition, both the insurer and the reinsurer are allowed to
invest in a risk-free asset and a risky asset. First, the optimization problem of mini-
mizing the ruin probability for the insurer is studied. Then according to the optimal
reinsurance proportion chosen by the insurer, two optimal investment problems for
the reinsurer are investigated, namely, the problem of maximizing the exponential
utility and the problem of minimizing the ruin probability. By solving the corre-
sponding Hamilton–Jacobi–Bellman (HJB) equations, optimal strategies for both
the insurer and the reinsurer are derived explicitly. Furthermore, it is established that
the reinsurer’s optimal strategies in these two cases are equivalent for some special
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parameters. Finally, numerical simulations are presented to illustrate the effects of
model parameters on the optimal strategies.

In [203], the ruin probability of the risk process, modeled as a compound Poisson
process, is minimized by the choice of a suitable investment strategy in a risky asset
(market index) that follows a geometric Brownian motion. The optimal strategy
is computed using the Bellman equation. The existence of a smooth solution and a
verification theoremare proved. The explicit solutions in some caseswith exponential
claim size distribution, as well as numerical results in a case with Pareto claim size,
are given. For this last case, the optimal amount invested will not be bounded.

Optimal investment and proportional reinsurance in the Sparre Andersen model
are treated in [278]. Optimal investment and risk control for an insurer under inside
information are considered in [337]. Optimal investment, consumption, and propor-
tional reinsurance under model uncertainty are studied in [338]. An extension of
Paulsen–Gjessing’s risk model with stochastic return on investments is dealt with
in [430]. Expected utility maximization for insurer by optimal investment and risk
control is provided in [445], see also [446].

Insurance models with stochastic return on investments are also considered in
[57–62, 166, 169–171, 188, 189, 222, 332, 334, 340].

4.1.5 Reinsurance

• Now we have to answer what is reinsurance.

Reinsurance is the practice of insurers transferring portions of risk portfolios to other
parties by some form of agreement in order to reduce the likelihood of having to pay
a large obligation resulting from an insurance claim. The intent of reinsurance is
for an insurance company to reduce the risks associated with underwritten policies
by spreading risks across alternative institutions. It is well known as insurance for
insurers. Legal rights of the policyholders (insureds) are in no way affected by rein-
surance, and the insurer remains liable to the insureds for insurance policy benefits
and claims.

The most popular approach is to minimize some measure of the first insurer’s
risk after reinsurance, although the interests of reinsurer are sometimes also taken
into account. Thus, in [104] a “reciprocal reinsurance” was treated to consider the
objectives of both companies, while in [213], portfolio selection problem for an
insurer as well as a reinsurer aiming at maximizing the probability of survival is
tackled. The authors of [48] propose a risk sharing approach in order to diversify the
risk as much as possible, so as to make the “global market risk” (or systemic risk, in
this paper) as close as possible to the total sum of partial risks. In other words, the
paper deals with “reciprocal reinsurance contracts” involving n companies.

An optimal reinsurance strategy combining a proportional and an excess of loss
reinsurance is obtained in [185] for a collective risk theory model with two classes of
dependent risks. The aim is to maximize the expected utility of the terminal wealth.
Using the control technique, the Hamilton–Jacobi–Bellman equation is written and,
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in the special case of the only excess of loss reinsurance, the optimal strategy and
the corresponding value function are given in a closed form. In [315], more general
case is studied, namely, optimal reinsurance in the model with several risks within
one insurance policy.

A two-dimensional risk model with proportional reinsurance is treated in [47].
A review concerning optimal reinsurance up to year 2009 can be found in [106],
whereas optimal reinsurance under ruin probability constraint is surveyed in [224].
In [49], the authors deal with optimization of reinsurance taking into account not
only risk but uncertainty (or ambiguity) of statistical data possessed by insurer and
reinsurer. The levels of uncertainty of insurer and reinsurer do not have to be iden-
tical. Furthermore, the decision variable is not the retained (or ceded) risk, but its
sensitivity (mathematical derivative) with respect to the total claims. Thus, if one
imposes strictly positive lower bounds for this variable, the reinsurer moral hazard
is totally eliminated. Necessary and sufficient optimality conditions are given. The
optimal reinsurance problem is shown to be equivalent to other linear programming
problem (the double-dual problem), despite the fact that risk and uncertainty (and
many pricing principles) cannot be represented by linear expressions. This fact ex-
plains why the nonlinear optimal reinsurance problemmay be solved by a bang-bang
reinsurance. Optimal investment, consumption, and proportional reinsurance under
model uncertainty is treated in [338].

Optimal control of capital injections by reinsurance in a diffusion approximation
is investigated in [157]. A correlated aggregate claims model with common Pois-
son shocks, which allows the dependence in n (n ≥ 2) classes of business across m
(m ≥ 1) different types of stochastic events is presented in [209]. The dependence
structure between different claim numbers is connected with the thinning procedure.
Under combination of quota-share and excess of loss reinsurance arrangements, the
properties of the proposed risk model are examined. An upper bound for the ruin
probability determined by the adjustment coefficient is established through mar-
tingale approach. Optimal risk control and dividend policies under excess of loss
reinsurance are considered in [313].

Optimal reinsurance under distortion risk measures is treated in [440, 441]. In
the first paper, the authors impose a premium constraint, in the second one, expected
value premiumprinciple is applied for reinsurer. The paper [443] investigates optimal
reinsurance strategies for an insurerwithmultiple lines of business under the criterion
of minimizing its total capital requirement calculated based on the multivariate lower
orthant Value at Risk. The reinsurance is purchased by the insurer for each line
of business separately. The premium principles used to compute the reinsurance
premiums are allowed to differ from one line of business to another, but they all
satisfy three mild conditions: distribution invariance, risk loading and preserving the
convex order, which are satisfied by many popular premium principles. It is shown
that an optimal strategy for the insurer is to buy a two-layer reinsurance policy
for each line of business, and it reduces to be a one-layer reinsurance contract for
premium principles satisfying some additional mild conditions, which are met by the
expected value principle, standard deviation principle, and Wang’s principle among
many others.
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The risk models incorporating reinsurance can be also found in [34, 66, 72, 77,
86, 89, 96, 125, 206, 207, 225, 278, 295, 336, 390, 391].

4.1.6 Solvency

The solvency problems (see, e.g. [339, 365]), a company bankruptcy or liquidation
gave rise to the introduction of new notions of ruin.

• Absolute ruin

Since its practical importance, the absolute ruin problem has attracted growing at-
tention in risk theory. When the surplus is below zero or the insurer is on deficit, the
insurer could borrow money at a debit interest rate to pay claims. Meanwhile, the
insurer will repay the debts from the premium income. The negative surplus may
return to a positive level. However, when the negative surplus is below a certain
critical level, the surplus is no longer able to become positive. Absolute ruin occurs
at this moment. One of the first papers in this direction is [174].

One of the latest is [167] where the dividend payments in a compound Poisson
model with a constant debit interest r are considered. That is to say, the insurer can
borrow an amount of money equal to the deficit at a debit interest force r when
the surplus is negative. Meanwhile, the insurance company will repay the debts
continuously from its premium income (acquired at rate c). Denoting the surplus of
the insurer at time t with the debit interest r by X (t), one easily gets the following
equation satisfied

dX (t) =
{
cdt − dY (t), X (t) ≥ 0,
(c + r X (t))dt − dY (t), −c/r ≤ X (t) < 0,

(5)

where Y (t) is given by (3). It is also assumed that dividends are paid to shareholders
according to a barrier strategy with parameter b > 0. Under the barrier strategy, the
premium incomes are paid out as dividends when the surplus reaches b, that is, when
the value of the surplus hits b, dividends are paid continuously at rate c and the surplus
remains at level b until the next claim occurs. Denote the aggregate dividends paid in
the time interval [0, t] by D(t). So the modified surplus Xb(t) = X (t) − D(t). The
time of absolute ruin is defined as Tb = inf{t > 0 : Xb(t) ≤ −c/r}. Then Dx,b =∫ Tb
0 e−δt dD(t) is the present value of all dividends payable to shareholders, till
absolute ruin time Tb, calculated at a constant force of interest δ > 0, whereas x is
the initial surplus of insurer.

The authors investigate the moment generating function of Dx,b, that is,
M(x, y, b) = E exp(yDx,b). They put M(x, y, b) = M1(x, y, b) for 0 ≤ x ≤ b and
M(x, y, b) = M2(x, y, b) for −c/r ≤ x < 0. Then, assuming the functions to be
smooth in x and y and using the strong Markov property of the surplus process, they
establish the following integro-differential equations. For 0 < x < b
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c(∂/∂x)M1(x, y, b) = δy(∂/∂y)M1(x, y, b) + λM1(x, y, b)

−λ

[∫ x

0
M1(x − u, y, b) dF(u) +

∫ x+c/r

x
M2(x − u, y, b) dF(u) + F̄(x + c/r)

]

and for −c/r < x < 0

(r x + c)(∂/∂x)M2(x, y, b) = δy(∂/∂y)M2(x, y, b) + λM2(x, y, b)

−λ

[∫ x+c/r

0
M2(x − u, y, b) dF(u) + F̄(x + c/r)

]
.

Here, F̄(t) = 1 − F(t) and F is the distribution function of claim size. Additionally,
M(x, y, b) satisfies the following conditions

(∂/∂x)M1(x, y, b) = yM1(x, y, b), x = b, M2(−c/r, y, b) = 1,

right and left limits of M(x, y, b), as x → 0, coincide.
This result allows to establish the equations for the moments of Dx,b and calcu-

late the explicit form of moments and M(x, y, b) for the case of exponential claim
distribution. Thus, it is possible to find the optimal dividend barrier for exponential
claims.

Minimization of the risk of absolute ruin under a diffusion approximation model
with reinsurance and investment is considered in [66]. On the contrary, in [101] it is
assumed that the surplus of an insurer follows a compound Poisson surplus process.
The expected discounted penalty function at absolute ruin is studied. Moreover, it is
shown that when the initial surplus goes to infinity, the absolute ruin probability and
the classical ruin probability are asymptotically equal for heavy-tailed claims, while
the ratio of the absolute ruin probability to the classical ruin probability goes to a
positive constant that is less than one for light-tailed claims. Explicit expressions for
the function in exponential claims case are also given. Absolute ruin probability in
a Markov risk model is treated in [286].

An Ornstein–Uhlenbeck type risk model is considered in [290]. The time value of
absolute ruin in the compound Poisson process with tax is studied in [305]. First, a
system of integro-differential equations satisfied by the expected discounted penalty
function is derived. Second, closed-form expressions for the expected discounted
total sum of tax payments until absolute ruin and the Laplace–Stieltjes transform
(LST) of the total duration of negative surplus are obtained. Third, for exponential
individual claims, closed-form expressions for the absolute ruin probability, the LST
of the time to absolute ruin, the distribution function of the deficit at absolute ruin, and
the expected accumulated discounted tax are given. Fourth, for general individual
claim distributions, when the initial surplus goes to infinity, it is shown that the
ratio of the absolute ruin probability with tax to that without tax goes to a positive
constant which is greater than one. Finally, the asymptotic behavior of the absolute
ruin probability is investigated for a modified risk model where the interest rate on
a positive surplus is involved.
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In [312], the absolute ruin in a Sparre Andersen risk model with constant interest
is considered, whereas in [401, 402], the absolute ruin problems are treated for the
classical risk model.

In the paper [296], it is assumed that the surplus process of an insurance entity
is represented by a pure diffusion. The company can invest its surplus into a Black–
Scholes risky asset and a risk-free asset. The following investment restrictions are
imposed. Only a limited amount is allowed in the risky asset and no short-selling
is allowed. When the surplus level becomes negative, the company can borrow to
continue financing. The ultimate objective is to seek an optimal investment strategy
that minimizes the probability of absolute ruin, i.e., the probability that the lim inf
of the surplus process is −∞. The corresponding Hamilton–Jacobi–Bellman (HJB)
equation is analyzed and a verification theorem is proved. Applying the HJB method
authors obtain explicit expressions for the S-shaped minimal absolute ruin func-
tion and its associated optimal investment strategy. In the second part of the paper,
the optimization problem with both investment and proportional reinsurance con-
trol is studied. There, the minimal absolute ruin function and the feedback optimal
investment-reinsurance control are found explicitly as well.

Absolute ruin probability for amulti-type-insurance riskmodel is treated in [422].

• Parisian ruin

In the last few years, the idea of Parisian ruin has attracted a lot of attention. The
idea comes from Parisian options (see, e.g., [111]), the prices of which depend on the
excursions of the underlying asset prices above or below a barrier. An example is a
Parisian down-and-out option, the owner of which loses the option if the underlying
asset price S reaches the level l and remains constantly below this level for a time
interval longer than d.

In Parisian type ruinmodels, the insurance company is not immediately liquidated
when it defaults: a grace period is granted before liquidation.More precisely, Parisian
ruin occurs if the time spent below a predetermined critical level (red zone) is longer
than the implementation delay, also called the clock. Originally, two types of Parisian
ruin have been considered, one with deterministic delays (see, e.g., [132, 293]) and
another one with stochastic delays ([253, 257]). These two types of Parisian ruin
start a new clock each time the surplus enters the red zone, either deterministic or
stochastic. A third definition of Parisian ruin, called cumulative Parisian ruin, has
been proposed very recently in [191]; in that case, the race is between a single
deterministic clock and the sum of the excursions below the critical level.

In the paper [289], the time of Parisian ruinwith a deterministic delay is considered
for a refracted Lévy insurance risk process.

In [293], for a spectrally negative Lévy process, a compact formula is given for
the Parisian ruin probability, which is defined by the probability that the process
exhibits an excursion below zero, with a length that exceeds a certain fixed period r .
The formula involves only the scale function of the spectrally negative Lévy process
and the distribution of the process at time r .

Another relevant paper is [257]. Here the authors study, for a spectrally negative
Lévy process of bounded variation, a somewhat different type of Parisian stopping



372 E. Bulinskaya

time, in which, loosely speaking, the deterministic, fixed delay r is replaced by an
independent exponential random variable with a fixed parameter p > 0. To be a lit-
tle bit more precise, each time the process starts a new excursion below zero, a new
independent exponential random variable with parameter p is considered, and the
stopping time of interest, let us denote it by kexp(p), is defined as the first time when
the length of the excursion is bigger than the value of the accompanying exponential
random variable. Although in insurance the stopping time kexp(p) is arguably less
interesting than kr (corresponding to a fixed delay r ), working with exponentially
distributed delays allowed the authors to obtain relatively simple expressions, for
example, the Laplace transform of kexp(p) in terms of the so-called (q-)scale func-
tions of X . In order to avoid a misunderstanding, we emphasize that, in the definition
of kexp(p), by [257], there is not a single underlying exponential random variable,
but a whole sequence (each attached to a separate excursion below zero); therefore
Px (kexp(p) ∈ dz) does not equal

∫ ∞
0 pe−pr Px (kr ∈ dz) dr .

In the paper [137], a single barrier strategy is applied to optimize dividend pay-
ments in the situation where there is a time lag d > 0 between decision and imple-
mentation.Using a classical surplus processwith exponentially distributed jumps, the
optimal barrier b∗ maximizing the expected present value of dividends is established.

Parisian-type ruin is treated in [357] for an insurance ruin model with an adaptive
premium rate, referred to as restructuring/refraction, in which classical ruin and
bankruptcy are distinguished. In this model, the premium rate is increased as soon as
the wealth process falls into the red zone and is brought back to its regular level when
the wealth process recovers. The analysis is focused mainly on the time a refracted
Lévy risk process spends in the red zone (analogous to the duration of the negative
surplus).Building on results from [243], the distribution of various functionals related
to occupation times of refracted spectrally negative Lévy processes is obtained. For
example, these results are used to compute both the probability of bankruptcy and
the probability of Parisian ruin in this model with restructuring.

Other Parisian problems are treated in [414].

• Omega model

In classical risk theory, a company goes out of business as soon as ruin occurs, that
is, when the surplus is negative for the first time. In the Omega model, there is a
distinction between ruin (negative surplus) and bankruptcy (going out of business).
It is assumed that even with a negative surplus, the company can do business as usual
and continue until bankruptcy occurs. The probability for bankruptcy is quantified
by a bankruptcy rate function ω(x), where x is the value of the negative surplus. The
symbol for this function leads to the name Omega model. The idea of distinguishing
ruin from bankruptcy comes from the impression that some companies and certain
industries seem to be able to continue doing business even when they are technically
ruined. This may especially be true for companies that are owned by governments
or other companies. Such a model was introduced in [14]. Assuming that dividends
can only be paid with a certain probability at each point of time, the authors derive
closed-form formulas for the expected discounted dividends until bankruptcy under a
barrier strategy. Subsequently, the optimal barrier is determined, and several explicit
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identities for the optimal value are found. The surplus process of the company is
modeled by a Wiener process (Brownian motion). A similar model was also treated
in [182] where the probability of bankruptcy and the expectation of a discounted
penalty at the time of bankruptcy are determined. Explicit results are derived under
assumption that the surplus process is described by the Brownian motion.

In [403], the Omega model with underlying Ornstein–Uhlenbeck type surplus
process for an insurance company is considered. Explicit expressions for the ex-
pected discounted penalty function at bankruptcy with a constant bankruptcy rate
and linear bankruptcy rate are derived. Based on random observations of the surplus
process, the differentiability for the expected discounted penalty function at bank-
ruptcy, especially at zero, is examined. Finally, the Laplace transforms for occupation
times are given.

• Drawdown analysis

Another important research direction associated with solvency problems is draw-
down analysis. The concept of drawdown is being used increasingly in risk analysis,
as it provides surplus-related information similar to ruin-related quantities. For the
insurer’s surplus {Xt , t ≥ 0}, the drawdown (or reflected) process Yt is defined as
the difference between its running maximum Mt = sup0≤s≤t Xs at time t and Xt .

A new drawdown-based regime-switching (DBRS) Lévy insurance model in
which the underlying drawdown process is used to describe an insurer’s level of
financial distress over time, and to trigger regime-switching transitions is proposed
in [259]. Explicit formulas are derived for a generalized two-sided exit problem. Con-
ditions under which the survival probability is not trivially zero (which corresponds
to the positive security loading conditions of the proposed model) are stated. The
regime-dependent occupation time until ruin is later studied. As a special case of the
general DBRS model, a regime-switching premium model is given further consid-
eration. Connections with other existing risk models (such as the loss-carry-forward
tax model of [7]) are established.

Some drawdown-related quantities in the context of the renewal insurance risk
process with general interarrival times and phase-type distributed jump sizes are
treated in [249]. Some recent results on the two-sided exit problem for the spectrally
negative Markov additive process (see, e.g., [214]) and a fluid flow analogy between
certain queues and risk processes (see, e.g., [4]) are used to solve the two-sided exit
problem of the renewal insurance risk process. The two-sided exit quantities are later
shown to be central to the analysis of such drawdown quantities as the drawdown
time, the drawdown size, the running maximum (minimum) at the drawdown time,
the last running maximum time prior to drawdown, the number of jumps before
drawdown and the number of excursions from running maximum before drawdown.
Finally, another application of this methodology is proposed for the study of the
expected discounted dividend payments until ruin.
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4.2 Generalization of the Classical Cramér–Lundberg Model

Generalization of the model has gone in the following directions.

• Another type of counting process for representation of claim number was intro-
duced (instead of Poisson one).

A well known Sparre Andersen model appeared in 1957, see [19], and was studied
in many papers afterwards. This model has also the mixed type, since the premium is
supposed to be acquired continuously at a constant rate. Thus, the company surplus
is described by (2) with Y (t) given by (3) where N (t) is assumed to be a renewal
process. That means the intervals between the claims are nonnegative independent
identically distributed random variables however their distribution is arbitrary (not
exponential), see, e.g. [11, 146–148, 179, 254, 278, 312, 356, 388, 416].

Polya–Aeppli counting processes are treated in [306]. Generalized renewal
process can be also considered as claim number, see, e.g., [88]. Two classes of
claims were studied in [47, 184, 438], for multivariate case see, e.g., [103].

• Dependence conditions

In previous models, the counting process (number of events) and claim severities
were supposed to be independent. Recently, this restriction was taken away. Various
types of dependence exist between claim amounts and interarrival times.

In [33], a one-dimensional surplus process is considered with a certain Sparre An-
dersen type dependence structure under general interclaim times distribution and cor-
related phase-type claim sizes. The Laplace transform of the time to ruin is obtained
as the solution of a fixed-point problem, under both the zero-delayed and the delayed
cases. An efficient algorithm for solving the fixed-point problem is derived together
with bounds that illustrate the quality of the approximation. A two-dimensional risk
model is analyzed under a bailout-type strategy with both fixed and variable costs
and a dependence structure of the proposed type.

In [46], the authors consider an extension of the Sparre Andersen insurance risk
model by relaxing one of its independence assumptions. The newly proposed de-
pendence structure is introduced through the assumption that the joint distribution
of the interclaim time and the subsequent claim size is bivariate phase-type (see,
e.g. [27, 240]). Relying on the existing connection between risk processes and fluid
flows (see, e.g., [3, 4, 42, 44, 354]), an analytically tractable fluid flow is constructed.
That leads to the analysis of various ruin-related quantities in the aforementioned risk
model. Using matrix analytic methods, an explicit expression for the Gerber–Shiu
discounted penalty function is obtained when the penalty function depends on the
deficit at ruin only. It is investigated how some ruin-related quantities involving the
surplus immediately prior to ruin can also be analyzed via the fluid flowmethodology.

The discounted penalty function in a Markov-dependent risk model is consid-
ered in [5], whereas a correlated aggregate claims model with Poisson and Erlang
risk processes is studied in [432]. Optimal dynamic proportional and excess of loss
reinsurance under dependent risks are obtained in [185].
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Other examples can be found in [13, 43, 74, 117, 128, 193, 198, 209, 252, 256,
258, 260, 274, 342, 350, 374, 389, 424, 432], as well as [119, 268, 283, 377, 423].

Several types of claims to treat heterogeneous insurance portfolios are consid-
ered in [438]. The authors obtain integro-differential equations for the Gerber–Shiu
discounted penalty function, generalized Lundberg equation and Laplace transforms
for the Gerber–Shiu discounted penalty function under assumption that the surplus
process X (t) = x + ct − Y (t), t ≥ 0, is of the Cramér–Lundberg type where the
aggregate claim process Y (t) is generated by two classes of insurance risks, i.e.,

Y (t) = Y1(t) + Y2(t) =
N1(t)∑

i=1

Xi +
N2(t)∑

i=1

Yi , t ≥ 0,

and N1(t) is a Poisson process and N2(t) is Erlang(n).

• The Markovian claim arrivals, Markov additive processes (MAP), and Markov-
modulated risk processes

Beginning with [23, 355], researchers start consideration of risk processes in the
Markovian environment.

Potential measures for spectrally negative Markov additive processes with appli-
cations in ruin theory are studied in [161]. Markovian arrivals were treated in [2,
112], where a unified analysis of claim costs up to ruin is given. In [118], a general-
ization of the risk model with Markovian claim arrivals is introduced. Moments of
the discounted dividends in a threshold-type Markovian risk process are obtained in
[38], whereas a multi-threshold Markovian risk model is analyzed in [45]. Analysis
of a threshold dividend strategy for a MAP risk model is implemented in [44], while
generalized penalty function with the maximum surplus prior to ruin in a MAP risk
model is studied in [113], see also [252], where occupation times in the MAP risk
model are treated.

For a Markov-modulated risk model, probability of ruin is obtained in [294], mo-
ments of the dividend payments and related problems are treated in [270], and de-
compositions of the discounted penalty functions and dividends-penalty identity are
established in [271]. Bounds for the ruin probability in a Markovian modulated risk
model are obtained in [417], while expected discounted penalty function is treated
in [378], under additional assumption of constant barrier and stochastic income.

• Spectrally negative Lévy processes are considered in [31, 67, 132, 244, 253, 291,
293, 387, 429] and many other papers.

• Perturbed and diffusion processes

Ruin theory models incorporating a diffusion term aim to reflect small fluctuations in
the insurance companies’ surplus. Suchfluctuationsmight be due to the uncertainty in
the premium income or in the economic environment as a whole. Extensive research
in this area has been carried out during the past 25 years.
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Wemention just a few papers. Thus, one of the first papers in this direction is [155]
devoted to risk theory for the compound Poisson process perturbed by diffusion.
In [400], dividend payments with a threshold strategy in the compound Poisson
risk model perturbed by diffusion are considered. In [395], a generalized defective
renewal equation for the surplus process perturbed by diffusion is studied, whereas
in [264] the research focuses on the distribution of the dividend payments. The paper
[251] treats the first passage times for compound Poisson processes with diffusion
and provides actuarial and financial applications. The threshold dividend strategy
is dealt with in [121] for a generalized jump-diffusion risk model. Gerber–Shiu
function is investigated in [122] for a classical risk process perturbed by diffusion,
while a linear barrier dividend strategy is a subject of [287]. The perturbed compound
Poisson risk model with constant interest and a threshold dividend strategy is treated
in [172]. The Gerber–Shiu function in a Sparre Andersen risk model perturbed by
diffusion is studied in [268], whereas in [283] a generalized discounted penalty
function is considered. A multi-threshold compound Poisson process perturbed by
diffusion is investigated in [311]. Gerber–Shiu analysis in a perturbed riskmodelwith
dependence between claim sizes and interclaim times is provided in [435]. Absolute
ruin minimization under a diffusion approximation model is carried out in [296].
The optimal dividend strategy in a regime-switching diffusion model is established
in [405]. In contrast to classical case, it is assumed there that the dividends can be
only paid at arrival times of a Poisson process. By solving an auxiliary optimization
problem, it is shown that optimal is a modulated barrier strategy. The value function
can be obtained by iteration or by solving a system of differential equations.

• Stochastic premiums

To reflect the cash flows of the insurance company more realistically, some papers
assumed that the insurer earns random premium income. In the simplest case, the
company surplus at time t is given by (2) where Z(t) and Y (t) are independent
compound Poisson processes (with different intensities and jumps distributions).
An interesting example is presented in the book [237] for modeling the speculative
activity of money exchange point and optimization of its profit by using such a
process.

In [308], the authors consider a generalization of the classical risk model when
the premium intensity depends on the current surplus of an insurance company. All
surplus is invested in the risky asset, the price of which follows a geometric Brownian
motion. An exponential bound is established for the infinite-horizon ruin probability.

Models with stochastic premiums or income were also studied in [20, 76, 183,
195, 246, 288, 378, 393, 394, 444] and many others.

• Dual processes

In amodel dual to classical Cramér–Lundberg one, see, e.g. [12], the surplus (without
dividends) is described by the following equation

X (t) = x − ct + Y (t), (6)
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where c is now the rate of expenses, assumed to be deterministic and fixed. The
process Y (t) is compound Poisson. Such a model is natural for companies that have
occasional gains whose amount and frequency can bemodeled by the process {Y (t)}.
For companies such as pharmaceutical or petroleum companies, the jump should be
interpreted as the net present value of future gains from an invention or discovery.
Other examples are commission-based businesses, such as real estate agent offices
or brokerage firms that sell mutual funds of insurance products with a front-end load.
Last but not least, a model of the form (6) might be appropriate for an annuity or
pension fund. In this context, the probability of ruin has been calculated, see, e.g.,
[371]. The dividend problem for such a model is treated in [12]. A key tool is the
method of Laplace transforms. A more general case where surplus is a skip-free
downwards Lévy process is considered as well. The optimal strategy is of barrier
type, the optimal barrier b∗ is obtained. It is also shown that if the initial surplus is
b∗, the expectation of the discounted dividends until ruin is the present value of a
perpetuity with the payment rate being the drift of the surplus process.

A short proof of the optimality of barrier strategies for all spectrally positive Lévy
processes of bounded or unbounded variation is given in [54]. Moreover, the optimal
barrier is characterized using a functional inverse of the scale functions. A variant of
the dividend payment problem in which the shareholders are expected to give capital
injection in order to avoid ruin is also considered. The form of the value function
for this problem is very similar to the problem in which the horizon is the time of
ruin. The optimal dividend problem for a spectrally positive Lévy process is also
considered in [428].

Optimal dividends in the dual model under transaction costs are treated in [55].
The time value of Parisian ruin in (dual) renewal risk processes with exponential

jumps is considered in [415]. Other dual models are also considered in [108, 284,
319, 320].

• Interest rates

In recent years, the classical risk process has been extended tomore practical and real
situations. Thus, it is very important to deal with the risks that rise from monetary
inflation in the insurance and finance market, and also to consider the operation
uncertainties in administration of financial capital.

An optimal control problem is considered in [204] under assumption that a risky
asset is used for investment, and this investment is financed by initial wealth as well
as by a state dependent income. The objective function is accumulated discounted
expected utility of wealth. Solution of this problem enables the authors to deal with
the problem of optimal investment for an insurer with an insurance business modeled
by a compound Poisson or a compound Cox process, under the presence of constant
as well as (finite state space Markov) stochastic interest rate.

The aim of the paper [351] is to build recursive and integral equations for ruin
probabilities of generalized risk processes under rates of interest with homogenous
Markov chain claims and homogenous Markov chain premiums, while the interest
rates follow a first-order autoregressive process. Generalized Lundberg inequalities
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for ruin probabilities of this process are derived by using recursive technique. Interest
bearing surplus model with liquid reserves is considered in [373].

Asymptotic finite-time ruin probability for a two-dimensional renewal risk model
with constant interest force and dependent sub-exponential claims is studied in [424].
The absolute ruin problems taking into account debit and credit interest rates are
investigated, e.g., in [401, 402, 442] under some additional assumptions. A model
with interest is studied in [310].Amulti-threshold compoundPoisson surplus process
is introduced there as follows.When the initial surplus is between any twoconsecutive
thresholds, the insurer has the option to choose the respective premium rate and
interest rate. Also, the model allows for borrowing the current amount of deficit
whenever the surplus falls below zero. Explicit expressions for the Gerber–Shiu
function are obtained if claim sizes are exponentially and phase-type(2) distributed.

5 Discrete-Time Models

A review [272] on discrete-time insurance models appeared in 2009. The authors un-
derline that although most theoretical risk models use the concept of time continuity,
the practical reality is discrete. Thus, dividend payment is usually based on results
of financial year, whereas reinsurance treaties are discussed by the end of a year. It is
important that recursive formulas for discrete-time models can be obtained without
assuming a claim severity distribution and are readily programmable. The models,
techniques used, and results for discrete-time risk models are of independent scien-
tific interest. Moreover, results for discrete-time risk models can give, in addition,
a simpler understanding of their continuous-time analog. For example, these results
can serve as approximations or bounds for the corresponding results in continuous-
time models. The expected discounted penalty functions and their special cases in
the compound binomial model and its extensions are reviewed. In particular, the
discrete-time Sparre Andersen models with Km interclaim times and general inter-
claim times are treated, as well as other extensions to the compound binomial model
including time-correlated claims and general premium rates, the compound Markov
binomial risk model, and the compound binomial model defined in a Markovian
environment.

Two papers [344, 345], not included in [272], deal with finite-time and ultimate
ruin probability, respectively, for the following discrete-time model. It is supposed
that the cumulative loss process has independent and stationary increments, the incre-
ments per unit of time take nonnegative integer values and their distribution {ak}k≥0

has a finite mean ā. The premium receipt process {ck}k≥0 is deterministic, nonneg-
ative, and nonuniform. In addition, it is assumed that there exists a constant c > ā
such that the deviation

∑t
k=0(ck − c) is bounded as the time t varies. In particu-

lar, P(τ = ∞), where τ is the ruin time, is obtained as limt→∞ P(τ > t), first, if
c = d−1 for some positive integer d, then general case if a0 > 0.5.

A class of compound renewal (Sparre Andersen) risk processes with claim wait-
ing times having a discrete Km distribution is studied in [262, 263]. The classical
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compound binomial risk model is a special case when m = 1. A recursive formula
is derived in the former paper for the expected discounted penalty (Gerber–Shiu)
function, which can be used to analyze many quantities associated with the time of
ruin. In the latter paper, an explicit formula for the Gerber–Shiu function is given in
terms of a compound geometric distribution function. The finite-time ruin probability
under the compound binomial model is treated in [273].

Discrete-time multi-risks insurance model is considered in [346]. The model de-
scribes the evolution in discrete time of an insurance portfolio covering several in-
terdependent risks. The main problem under study is the determination of the proba-
bilities of ruin over a finite horizon, for one or more risks. An underlying polynomial
structure in the expression of these probabilities is exhibited. This result is then used
to provide a simple recursive method for their numerical evaluation.

The discounted factorial moments of the deficit in discrete-time renewal risk
model are treated in [50]. The discrete stationary renewal risk model and the Gerber–
Shiu discounted penalty function were considered in [335].

We would also like to mention some papers considering other aspects of discrete-
timemodels. Thus, two discrete-time riskmodels under rates of interest are dealt with
in [98]. Stochastic inequalities for the ruin probabilities are derived by martingales
and renewal recursive techniques.

In [149], the authors discuss a situation in which a surplus process is modified
by the introduction of a constant dividend barrier. They extend some known results
relating to the distribution of the present value of dividend payments until ruin in the
classical risk model by allowing the process to continue after ruin. Moreover, they
show how a discrete-time risk model can be used to provide approximations when
analytic results are unavailable. Discrete-time financial surplus models for insurance
companies are proposed in [218].Ageneralization of the expected discounted penalty
function in a discrete-time insurance risk model is introduced in [250].

Survival probabilities for compound binomial risk model with discrete phase-
type claims are dealt with in [397]. Asymptotic ruin probabilities for a discrete-time
risk model with dependent insurance and financial risks are obtained in [427], the
ruin probability in a dependent discrete-time risk model with insurance and financial
risks is studied in [426], whereas asymptotic results are established for a discrete-
time risk model with Gamma-like insurance risks in [425]. Discrete-time insurance
risk models with dependence structure are treated in the thesis [404]. A thorough
analysis of the generalized Gerber–Shiu function in discrete-time dependent Sparre
Andersen model is presented in the quite recent thesis [350].

Randomized observation periods were considered for compound Poisson risk
model in [16] in connection with dividend payments. The authors study a modifi-
cation of the horizontal dividend barrier strategy by introducing random observa-
tion times at which dividends can be paid and ruin can be observed. This model
contains both the continuous-time and the discrete-time risk model as a limit and
represents a certain type of bridge between them which still enables the explicit cal-
culation of moments of total discounted dividend payments until ruin. In [17] for
Erlang(n) distributed inter-observation times, explicit expressions for the discounted
penalty function at ruin are derived. The resulting model contains both the usual
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continuous-time and the discrete-time risk model as limiting cases, and can be used
as an effective approximation scheme for the latter. Optimal dividend payout in
random discrete time is treated in [15].

In [434], a Markov additive insurance risk process under a randomized dividend
strategy in the spirit of [16] is considered. Decisions on whether to pay dividends
are only made at a sequence of dividend decision time points whose intervals are
Erlang(n) distributed. At a dividend decision time, if the surplus level is larger than a
predetermined dividend barrier, then the excess is paid as a dividend as long as ruin
has not occurred. In contrast to [16], it is assumed that the event of ruin is monitored
continuously (as in [30, 433]), i.e., the surplus process is stopped immediately once
it drops below zero. The quantities of interest include the Gerber–Shiu expected
discounted penalty function and the expected present value of dividends paid until
ruin. Solutions are derived with the use of Markov renewal equations. Numerical
examples are given, and the optimal dividend barrier is identified in some cases.

In [229], the authors focus on the development of a recursive computational pro-
cedure to calculate the finite-time ruin probabilities and expected total discounted
dividends paid prior to ruin associated with a model which generalizes the single
threshold-based risk model introduced in [152]. Namely, a discrete-time dependent
Sparre Andersen risk model with multiple threshold levels is considered in an effort
to characterize an insurer’s minimal capital requirement, dividend paying scenarios,
and external financial activities related to both investment and loan undertakings.

Computational aspects are also treated in [18]. A Sparre Andersen insurance risk
model in discrete time was analyzed there as a doubly infinite Markov chain to
establish a computational procedure for calculating the joint probability distribution
of the time of ruin, the surplus immediately prior to ruin, and the deficit at ruin.
Discounted factorial moments of the deficit in discrete-time renewal risk model are
studied in [50].

Cost approach for solving discrete-time actuarial problemswas introduced in [90],
see also [89, 93–96].

The paper [70] deals with the discrete-time riskmodel with nonidentically distrib-
uted claims. The recursive formula of finite-time ruin probability is obtained, which
enables one to evaluate the probability of ruin with desired accuracy. Rational valued
claims and nonconstant premium payments are considered.

In [226], a discrete-timemodel of insurance company is considered. It is supposed
that the company applies a dividend barrier strategy. The limit distribution for the
time of ruin normalized by its expected value is found. It is assumed that shareholders
cover the deficit at the time of ruin. The barrier strategies maximizing shareholders’
dividends and profit accumulated until ruin are investigated. In case the additional
capital is injected right after the ruin to enable infinite performance of the company,
existence of optimal strategies is proved both for expected discounted dividends and
net profit.

A discrete-time model for the cash flow of an insurance portfolio/business in
which the net losses are random variables, while the return rates are fuzzy numbers
was studied in [399]. The shape of these fuzzy numbers is assumed trapezoidal,
Gaussian or lognormal, the last one having a more flexible shape than the previous
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ones. For the resulting fuzzymodel, the fuzzy present value of its wealth is evaluated.
The authors propose an approximation for the chance of ruin and a ranking criterion
which could be used to compare different risk management strategies. A discrete-
time insurance model with reinvested surplus and a fuzzy number interest rate is
investigated in [307].

The discrete-time risk model with nonidentically distributed claims is studied in
[70]. The recursive formula of finite-time ruin probability is obtained, which enables
one to evaluate the probability of ruin with desired accuracy. Rational valued claims
and nonconstant premium payments are considered. Some numerical examples of
finite-time ruin probability calculation are presented. Ruin probability in the three-
seasonal discrete-time riskmodel is obtained in [190]. It is also interesting tomention
a discrete-time pricing model for individual insurance contracts studied in [325].

6 Examples

Below, we give three simple examples to demonstrate the problems and methods we
did not discuss earlier and present some results of the author. At first, we deal with
dividends optimization by reinsurance treaty with liability constraint, published in
[87]. Then the stability of the periodic review model of insurance company perfor-
mance with capital injections and reinsurance, introduced in [96], is studied. The
full version of this results will be submitted for publication elsewhere. Finally, some
limit theorems for generalized renewal processes introduced in [88] are provided.

6.1 Limited Liability of Reinsurer and Dividends

Below, we give some results proved in [87] concerning the dividend payments under
barrier strategy and excess of loss reinsurance with limited liability of reinsurer in
the framework of Cramér–Lundberg model.

Denote by d the retention level and by l the reinsurer’s liability. Let Y be the initial
claim size of direct insurer. Then, his payment under the above mentioned treaty is
Yl = min(d,Y ) + max(Y − l − d, 0), whereas the reinsurer’s payment is equal to
Y ′
l = min(max(Y − d, 0), l). We assume that X (0) = x ≤ b, hence, the insurer’s

surplus X (t) never exceeds the dividend barrier b.
Let us suppose that direct insurer and reinsurer use for premiums calculation the

expected value principle with loads θ and θ1 respectively (and θ1 > θ > 0). Then
the insurer’s premium net of reinsurance cl has the form

cl = λ(1 + θ)p1 − λ(1 + θ1)

d+l∫

d

(1 − F(y)) dy
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where λ is the intensity of the Poisson process describing claim arrivals, F(y) is
the claim distribution function with density p(y) and the expected claim value p1 =
∞∫

0
yp(y) dy.

Theorem 1 The integro-differential equation for expected total discounted divi-
dends until ruin, under reinsurance treaty, V (x, b, d, l) can be written for 0 < x < d
as follows

c̃lV
′(x, b, d, l) − (1 + α)V (x, b, d, l) +

x∫

0

V (y, b, d, l)p(x − y) dy = 0

and for d ≤ x < b

c̃lV
′(x, b, d, l) − (1 + α)V (x, b, d, l) +

x∫

x−d

V (y, b, d, l)p(x − y) dy

+V (x − d, b, d, l)(F(d + l) − F(d)) +
x−d∫

0

V (y, b, d, l)p(l + x − y) dy = 0

with c̃l = clλ−1, α = δλ−1 and boundary condition V ′(b, b, d, l) = 1.

Turning to exponential claim distribution with parameter β, one obtains the fol-
lowing results.

Theorem 2 For 0 < x < d, the function V (x, b, d, l) satisfies the second-order dif-
ferential equation

c̃lV
′′(x, b, d, l) + (β c̃l − (1 + α))V ′(x, b, d, l) − αβV (x, b, d, l) = 0,

whereas for d ≤ x < b one has

c̃lV
′′(x, b, d, l) + (β c̃l − (1 + α))V ′(x, b, d, l) − αβV (x, b, d, l)

= −e−βd F(l)V ′(x − d, b, d, l).

Here, c̃l = β−1
(
(1 + θ) + (1 + θ1)e−βd(e−βl − 1)

)
.

Theorem 3 For the exponential claim distribution, the optimal dividend barrier, un-
der excess of loss reinsurance treaty with limited liability of reinsurer and assumption
0 < x ≤ b < d, is given by

b∗
l = b∗(rl, sl) = 1

rl − sl
ln

s2l (sl + β)

r2l (rl + β)
.
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Here, rl > 0, sl < 0 are the roots of the characteristic equation

c̃lξ
2 + (β c̃l − (1 + α)) ξ − αβ = 0.

Assume the claims to be uniformly distributed on the interval [0, h]. It is reason-
able to suppose that d + l < h.

Theorem 4 For 0 < x < d, the function V (x, b, d, l) satisfies the second-order dif-
ferential equation

c̃lV
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) = 0, (7)

whereas for d ≤ x < h − l one has

c̃l V
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) + l

h
V ′(x − d, b, d, l) = 0 (8)

and for h − l ≤ x < b

c̃lV
′′(x, b, d, l) − (1 + α)V ′(x, b, d, l) + 1

h
V (x, b, d, l) (9)

+ l

h
V ′(x − d, b, d, l) − 1

h
V (x − (h − l), b, d, l) = 0.

Here, c̃l = (1 + θ) h2 − l(1 + θ1)(1 − 2d+l
2h ).

Theorem 5 If the claim distribution is uniform on interval [0, h] and the roots
of characteristic equation corresponding to differential equation (7) are real then
the optimal dividend barrier b under assumption 0 < x ≤ b < d is equal to initial
capital of insurance company x.

To calculate V (x, b, d, l) for d ≤ x < b it is possible to use the following algo-
rithm

1. Find expression of V (x, b, d, l) on interval (0, d).
2. Let h − l ∈ (nd, (n + 1)d] for n = 1, 2, . . .. The form of the function on half-

interval [kd, (k + 1)d) for 1 ≤ k ≤ n − 1 can be obtained using its form on
half-interval [(k − 1)d, kd) and Eq. (8), the same is true for the last half-interval
[nd, h − l).

3. For x ∈ [h − l, (n + 1)d) according to (9) the function V (x, b, d, l) depends
on V ′(x − d, b, d, l) and V (x − (h − l), b, d, l). The same is true for x ≥ (n +
1)d. Similarly, for h − l ≤ x < b, we use the expression of the function on two
previous half-intervals.

Thus, for the exponential and uniform claim distributions, we have considered
the barrier dividend strategy and obtained the form of optimal barrier level b∗

l for
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the model with limited reinsurer’s liability l in the excess of loss reinsurance treaty
having retention d.

Some results pertaining to the case of variable barriers which are changed af-
ter each claim arrival are obtained in [316], whereas a generalization of Lundberg
inequality for the case of a joint-stock insurance company one can find in [314].

6.2 Discrete-Time Model with Reinsurance and Capital
Injections

A periodic review insurance model is considered under the following assumptions.
In order to avoid ruin, the insurer maintains the company surplus above a chosen
level a by capital injections at the end of each period. One-period insurance claims
form a sequence {ξn}n≥1 of independent identically distributed nonnegative random
variableswith a knowndistribution function and finitemean. The company concludes
at the end of each period the stop-loss reinsurance treaty. If the retention level is
denoted by z > 0 then c(z) is the insurer premium (net of reinsurance). It is necessary
to choose the sequence of retention levels minimizing the total discounted injections
during n periods.

Let x be the initial surplus of insurance company. One-period minimal capital
injections are defined as follows

h1(x) := inf
z>0

EJ (x, z), where J (x, z) = (min(ξ, z) − (x − a) − c(z))+ .

For the n-step model, n ≥ 1, the company surplus X (n) at time n is given by the
relation

X (n) = max(X (n − 1) + c(z) − min(ξ, z), a), X (0) = x .

It was proved in [96] that the minimal expected discounted costs injected in company
during n years satisfy the following Bellman equation

hn(x) = inf
z>0

(EJ (x, z) + αEhn−1(max(x + c(z) − min(ξ, z), a))), h0(x) = 0,

(10)
where 0 < α < 1 is the discount factor.

Under assumption that premiums of insurer and reinsurer are calculated according
to mean value principle, the optimal reinsurance strategy was established. It turned
out that its character depends on the relationship between the safety loading of insurer
and reinsurer.

An important problem is investigation of the system asymptotic behavior and
its stability with respect to parameters fluctuation and perturbation of underlying
processes. It was established in [96] that hn(x) → h(x) as n → ∞ uniformly in x .
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The analysis of the model sensitivity to cost parameters fluctuations is carried out,
in the same way as in [95], using the results of [92, 324, 364, 386].

To study the perturbations of the processes one has to use the probability metrics,
see, e.g., [353].

Definition 2 For random variables X and Y defined on some probability space
(Ω,F , P) and possessing finite expectations, it is possible to define their distance
on the base of Kantorovich metric in the following way

κ(X,Y ) =
∫ +∞

−∞
|F(t) − G(t)|dt,

where F and G are the distribution functions of X and Y respectively.

This metric coincides (see, e.g. [150] or [382]) with Wasserstein L1 metric defined
as d1(F,G) = inf E|X − Y | where infimum is taken over all jointly distributed X
and Y having marginal distribution functions (d.f.’s) F and G. It is supposed that
both d.f.’s belong to B1 consisting of all F such that

∫ +∞
−∞ |x | dF(x) < ∞.

Lemma 1 The following statements are valid.
1. Let F−1(t) = inf{x : F(x) ≥ t}, then d1(F,G) = ∫ 1

0 |F−1(t) − G−1(t)| dt.
2. (B1, d1) is a complete metric space.

3. For a sequence {Fn}n≥1 from B1 one has d1(Fn, F) → 0 if and only if Fn
d→

Fn and
∫ +∞
−∞ |x | dFn(x) → ∫ +∞

−∞ |x | dF(x), as n → ∞. Here
d→ denotes, as usual,

convergence in distribution.

The proof can be found in [150].

Lemma 2 Let X,Y be nonnegative random variables possessing finite expected val-
ues and κ(X,Y ) ≤ ρ. Assume also that g : R+ → R+ is a nondecreasing Lipschitz
function. Then κ(g(X), g(Y )) ≤ Cρ where C is the Lipschitz constant.

The next result enables us to estimate the difference between infimums of two func-
tions.

Lemma 3 Let functions f1(z), f2(z)be such that | f1(z) − f2(z)| < δ for some δ > 0
and any z > 0. Then | inf z>0 f1(z) − inf z>0 f2(z)| < δ.

Note that we are going to add the label X to all functions depending on ξ if
ξ ∼ law(X).

Putting Δ1 := supu>a |h1X (u) − h1Y (u)|, we prove the following result.

Theorem 6 Let X, Y be nonnegative random variables possessing finite expecta-
tions, moreover κ(X,Y ) ≤ ρ. Then

Δ1 ≤ (1 + l + m)ρ
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where l and m are the safety loading coefficients of insurer and reinsurer premiums,
respectively. Both premiums are calculated according to expected value principle
and 1 < l < m.

For the multistep case, we get the following results.

Lemma 4 Function hn(u) defined by (10) is non-increasing in u.

Lemma 5 For each n ≥ 0 and any u ≥ a, the following inequality is valid

|hn(u + Δu) − hn(u)| ≤ CnΔu,

where Cn = (1 − αn)(1 − α)−1.

To establish the model stability, we put Δn = supu>a |hnX (u) − hnY (u)| and for-
mulate the following result.

Theorem 7 Let X, Y be nonnegative random variables having finite means and
κ(X,Y ) ≤ ρ. Then

Δn ≤
(

n−1∑

i=0

αiCn−i

)
(1 + l + m)ρ,

here 0 < α < 1 is the discount factor, 1 < l < m are the safety loadings of insurer
and reinsurer and Ck, k ≤ n, were defined in Lemma 5.

Furthermore, in practice neither the exact values of parameters nor the processes
distributions are known. Thus, it is important to study the systems behavior under
incomplete information. The estimates of distribution parameters are easily obtained
on the base of previous observations.

If there is no a priori information, it may be useful to employ the empirical
processes, see, e.g., [382].

For each fixed t ∈ R, the difference Hn(ω, t) =: Fn(ω, t) − Gn(ω, t) of two
empirical distribution functions is a real-valued function of the random vector
(X1,Y1, . . . , Xn,Yn) defined on a probability space (Ω,F , P), namely,

Hn(ω, t) = 1

n

n∑

i=1

I {Xi ≤ t} − 1

n

n∑

i=1

I {Yi ≤ t} = 1

n

n∑

i=1

ζi (t),

where ζi (t) = I {Xi ≤ t} − I {Yi ≤ t}, i = 1, n.

According to properties of convergence in distribution, we get immediately the
following result

Lemma 6 For any t ∈ R, as n → ∞,

√
n |Fn(ω, t) − Gn(ω, t) − (F(t) − G(t))| d→

√
F(t) + G(t) − (F2(t) + G2(t))|N (0, 1)|.
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We have also obtained a functional limit theorem. The established results are used to
construct the empirical asymptotically optimal policies for the discrete-time model.
The following three-step algorithm is proposed

1. Find the optimal control for known parameters and distributions.
2. Obtain stationary asymptotically optimal policy.
3. Calculate empirical asymptotically optimal policy using previous observations.

6.3 Generalized Renewal Processes

It is well known that ordinary renewal processes are widely used in various applica-
tions of probability theory not only in insurance, see, e.g., [309]. However, they are
appropriate for the study of systems with time-homogeneous evolution.

In order to take into account the initial phase of a system functioning or its sea-
sonal variations several generalizations of renewal processes are introduced, see, e.g.,
[88]. We focus here on delayed periodic processes and investigate their asymptotic
behavior, in particular, state the strong law of large numbers and functional limit
theorem. Some results concerning the reward-renewal processes are also provided.

Definition 3 Let {Tn}n≥1 be a sequence of independent nonnegative random vari-
ables, Fj , j = 1, . . . , l, being the distribution function of variable Tql+ j for some
fixed integer l ≥ 1, q = 0, 1, . . .. Let {Xi }i=0,...,k−1 be another sequence of nonneg-
ative independent r.v.’s with distribution functions Gi , respectively. The sequences
{Tn} and {Xi } are also supposed to be independent.

The delayed periodical renewal process is formed in the following way: Sn =
X0 + · · · + Xn , 0 ≤ n ≤ k − 1, whereas Sn = Sk−1 + T1 + · · · + Tn−k+1 for n ≥ k.
The partial sums Sn are called the renewals (or renewal epochs) and the summands
X j and Ti are the intervals between the renewals.

It is reasonable to call l the process period and k the length of delay, thus we have,
say (k, l)-process. Taking l = 1, k = 1 and X0 = 0, we obtain the ordinary renewal
process. We can also consider the following types of generalized renewal processes

• generalized delayed process corresponds to l = 1, k > 1,
• putting k = 1, X0 = 0 and leaving l > 1 we obtain a periodic renewal process;
• a special case of the periodic process with l = 2 is a well-known alternating
process.

The asymptotic behavior of ordinary renewal process is thoroughly studied. Cen-
tral limit theorem (CLT), strong law of large numbers (SLLN) and functional limit
theorem (FCLT) are proved for them.

We have proved the same theorems for our generalized processes. In order to
do this, we established that the delay length does not have any influence on the
asymptotic behavior of a renewal process.
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Lemma 7 Let {Tn}n≥1 and {Xi }i≥0 be two independent sequences of independent
r.v.’s. Put S j = ∑ j

i=1 Ti , the delayed sequence {Σn}n≥0 is given byΣn = X0 + · · · +
Xn, 0 ≤ n ≤ k − 1, while Σn = Σk−1 + Sn−k+1 for n ≥ k.

If there exists an almost sure (a.s.) convergence n−1Sn → μ, then for any fixed k
there exists the same limit for the delayed sequence:

n−1Σn → μ a.s. as n → ∞.

Lemma 8 Let {Sn} and {Σn} be the sequences defined in Lemma 7. Assume that
all random variables have finite mathematical expectations. If there exists a number
σ > 0 such that

Sn − ESn
σ
√
n

d→ ξ, as n → ∞,

where ξ has a standardGaussian distribution, then for any fixed k the same statement
is true for Σn, that is,

Σn − EΣn

σ
√
n

d→ ξ as n → ∞.

Symbol
d→ denotes weak convergence of random variables.

Lemma 9 If there exists a finite number μ such that n−1Sn → μ a.s., then there is
an a.s. convergence

t−1Nt → μ−1 as t → ∞.

Lemma 10 If there exist numbers μ and σ such that

Sn − nμ

σ
√
n

d→ ξ as n → ∞,

where ξ is a random variable having a standard Gaussian distribution, then

Nt − tμ−1

σ
√
tμ−3

d→ ξ as t → ∞.

Theorem 8 (SLLN) Let Sn be a delayed periodical renewal process. Suppose that
all the summands Tql+i have finite mathematical expectation μi < ∞, i = 1, . . . , l.
Then a.s.

Nt

t
→ l

μ
as t → ∞.

Here, the counting process Nt is defined as earlier, Nt = min{n ≥ 0 : Sn > t} and
μ = μ1 + · · · + μl .

Theorem 9 (CLT) Suppose that r.v.’s Tlq+i have finite mathematical expectations
μi and variances 0 < σ 2

i < ∞ respectively, i = 1, . . . , l, and r.v. X j has finite
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mathematical expectation ν j , j ≥ 1. Then, as t → ∞, we have

Nt − tlμ−1

σ l
√
tμ−3

d→ ξ

whereμ = μ1 + · · · + μl , σ 2 = σ 2
1 + · · · + σ 2

l and r.v. ξ has the standard Gaussian
distribution.

Next, we state the functional limit theorem for the generalized renewal process
{Sn} treated in Theorem 9.

Theorem 10 (FCLT) Put μ = μ1 + · · · + μl , σ 2 = σ 2
1 + · · · + σ 2

l and

Zn(t, ω) = Nnt (ω) − ntlμ−1

σ l
√
nμ−3

,

Then, Zn
D→ W as n → ∞.

It is interesting to deal with controlled processes introduced in [236].

Definition 4 Xt is a controlled version of Nt if it is formed by the sequence of
S′
n = ∑n

i=0 T
′
i where T ′

i = Ti/v(i), 0 < v(i) < ∞. In other words, the i th inter-
renewal time is scaled by a (deterministic) function of the number of previous times.
The function v is called the speed of the process.

Note that for a constant speed v(i) = c one gets Xt = Ntc.
For controlled versions of renewal processes, one can consider the so-called fluid

(deterministic) and diffusion approximations. More precisely, consider a twice con-
tinuously differentiable function c : (0,∞) → (0,∞), and define the nth approxi-
mation Xn to N as the controlled renewal process with the speed vn(i) = nc(i/n).

Thus, Xn is a point process with points generated by T n
j = Tj/nc( j/n). We

assume Ti to have finite mean and variance denoted by μ and σ 2, respectively.

Theorem 11 (Fluid approximation) Consider the ODE x ′
t = μ−1c(xt ), t ≥ 0, with

x0 = 0 and assume that c is such that xt remains finite for all t > 0. Let xnt = n−1Xn
t .

Then, xn converges to the solution x of the ODE, as n → ∞, in the sense that for
any ε > 0 and any T > 0,

lim
n→∞ P( sup

0≤t≤T
|xnt − xt | > ε) = 0.

Theorem 12 (Diffusion approximation) Consider the process ξ n
t = √

n(xnt − xt ).
Let D[0,∞) denote the space of càdlàg functions endowed with the Skorokhod
topology. Then ξ n converges weakly, as n → ∞, to the solution of the following
SDE

dξt = μ−1c′(xt )ξt dt +
√

μ−3σ 2c(xt )dWt , t ≥ 0,

ξ0 = 0. Here Wt is a Wiener process and xt is the solution of ODE.
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At last, we turn to reward-renewal processes.

Definition 5 Let (Ti ,Yi )i≥0 be a bivariate renewal sequence (vectors are i.i.d. for
i > 0 and Ti ≥ 0). Then, Yt = ∑Nt

i=0 Yi is called a reward-renewal process.

Theorem 13 If there exist ETi = μ and EYi = δ, i ≥ 1, then almost surely

Yt
t

→ δ

μ
, as t → ∞.

Theorem 14 If {Tn}n≥1 and {Yn}n≥1 are periodic renewal sequences with periods l1
and l2 respectively and there exist ETi = μi , EYi = δi , then almost surely

lim
t→∞

Yt
t

= l1
l2

∑l2
i=1 δi∑l1
i=1 μi

.

Note that limt→∞ t−1Yt represents the long-run costs and widely used as objective
function in various applications.

It is possible to consider purely stochastic model (difference of two reward-
renewal processes) generalizing the model introduced in [247].

X (t) = x + Z(t) − Y (t)

where Z(t) = ∑N1(t)
i=1 Zi , N1(t) is generated by l3 periodic process and {Zi } form a

l4 periodic process, the corresponding means being μ′
i and δ′

i . Then

lim
t→∞

X (t)

t
= l1

l2

∑l2
i=1 δi∑l1
i=1 μi

− l3
l4

∑l4
i=1 δ′

i∑l3
i=1 μ′

i

. (11)

The positivity of rhs in (11) is analog of classical net profit condition. Its fulfillment
enables us to state that ultimate ruin probability is less than 1.

Diffusion approximation for insurance models was proposed for the first time by
D.L. Iglehart in 1969, see [212]. It can be useful for estimation of ruin probabilities.

Denote by Wa,σ 2(t) the Wiener process with the mean at and variance σ 2t . This
random process is stochastically equivalent to at + σW (t), whereW (t) is a standard
Wiener process.

The process with stochastic premiums can be approximated (see, e.g., [444]) by
x + Wa,σ 2(t) where ER(t) = at and VarR(t) = σ 2t for R(t) = Z(t) − Y (t). So,
parameters a and σ 2 can be easily calculated.

Hence, ultimate ruin probability is approximated as follows:

ψ(x) ≈ P(inf
t>0

Wa,σ 2(t) < −x) = exp{−2xa/σ 2}

and ruin probability on finite interval
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ψ(x, T ) ≈ P( inf
0<t≤T

Wa,σ 2(t) < −x)

= 1 − Φ

(
aT + x

σ
√
T

)
+ exp{−2xa/σ 2}Φ

(
aT − x

σ
√
T

)
.

We have obtained the diffusion approximation and FLCT for the difference of
two periodic renewal-reward processes to be published elsewhere.

7 Conclusion

Actuarial science is a fast growing research domain, so it turned out impossible even
to include all recent publications. In this review, a classification of existing so far
models is given, emphasizing the role of the new ones. Since some of the models
possess several characteristics such as implementation of investment, reinsurance,
capital injections, and so on, they can be mentioned not only in one group. Summing
up, it is necessary to stress that three new notions of ruin (absolute, Parisian and
Omega) were introduced for treating the solvency and bankruptcy problems. Many
generalizations of Gerber–Shiu function, which unified reliability and cost approach,
allow to investigate more precisely the company surplus behavior in order to control
it avoiding bankruptcy. On the other hand, various extensions of classical Cramér–
Lundberg and Sparre Andersen models aim at better description of reality, although
they demand more profound knowledge of mathematics. So, hopefully, the review
will be useful for the researcher in applied probability and professor teaching future
actuaries, as well as, students themselves.
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238. Kostić, M.: Abstract Volterra Integro-Differential Equations. CRC Press, Boca Raton (2015)
239. Kulenko, N., Schmidli, H.: Optimal dividend strategies in a Cramér-Lundberg model with

capital injections. Insur.: Math. Econ. 43, 270–278 (2008)
240. Kulkarni, V.G.: A new class of multivariate phase type distributions. Oper. Res. 37, 151–158

(1989)
241. Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications.

Springer, Berlin (2006)
242. Kyprianou, A.: Gerber-Shiu Risk Theory. Springer International Publishing, Switzerland

(2013)
243. Kyprianou, A.E., Loeffen, R.L.: Refracted Lévy processes. Ann. Inst. H. Poincaré Probab.

Stat. 46(1), 24–44 (2010)
244. Kyprianou, A.E., Zhou, X.W.: General tax structures and the Lévy insurance risk model. J.

Appl. Probab. 46(4), 1146–1156 (2009)
245. Kyprianou, A.E., Loeffen, R., Perez, J.-L.: Optimal control with absolutely continuous strate-

gies for spectrally negative Lévy processes (2010). arXiv:1008.2363
246. Labbé, C.D., Sendova, K.P.: The expected discounted penalty function under a risk model

with stochastic income. Appl. Math. Comput. 215, 1852–1867 (2009)
247. Labbé, C.D., Sendov, H.S., Sendova, K.P.: The Gerber-Shiu function and the generalized

Cramér-Lundberg model. Appl. Math. Comput. 218, 3035–3056 (2011)
248. Lam, J.: Enterprise Risk Management: From Incentives to Controls, 2nd edn. Wiley, New

York (2014)

http://arxiv.org/abs/1008.2363


New Research Directions in Modern Actuarial Sciences 401

249. Landriault, D., Li, B., Li, S.: Drawdown analysis for the renewal insurance risk process.
Scand. Actuar. J. 2016, 1–19. doi:10.1080/03461238.2015.1123174

250. Landriault, D.: On a generalization of the expected discounted penalty function in a discrete-
time insurance risk model. Appl. Stoch. Models Bus. Ind. 24(6), 525–539 (2008)

251. Landriault, D., Shi, T.: First passage time for compound Poisson processes with diffusion:
ruin theoretical and financial applications. Scand. Actuar. J. 2014(4), 368–382 (2014)

252. Landriault, D., Shi, T.: Occupation times in the MAP risk model. Insur.: Math. Econ. 60(1),
75–82 (2015)

253. Landriault, D., Renaud, J.-F., Zhou, X.: Occupation times of spectrally negative Lévy
processes with applications. Stoch. Process. Appl. 212(11), 2629–2641 (2011)

254. Landriault, D., Shi, T., Willmot, G.E.: Joint density involving the time to ruin in the Sparre
Andersen risk model under the exponential assumption. Insur.: Math. Econ. 49(3), 371–379
(2011)

255. Landriault, D., Lemieux, C., Willmot, G.E.: An adaptive premium policy with a Bayesian
motivation in the classical risk model. Insur.: Math. Econ. 51(2), 370–378 (2012)

256. Landriault, D., Lee,W.Y.,Willmot, G.E.,Woo, J.-K.: A note on deficit analysis in dependency
models involving Coxian claim amounts. Scand. Actuar. J. 2014(5), 405–423 (2014)

257. Landriault, D., Renaud, J.-F., Zhou, X.: An insurance riskmodel with Parisian implementation
delays. Methodol. Comput. Appl. Probab. 16(3), 583–607 (2014)

258. Landriault, D., Willmot, G.E., Xu, D.: On the analysis of time dependent claims in a class of
birth process claim count models. Insur.: Math. Econ. 58, 168–173 (2014)

259. Landriault, D., Li, B., Li, S.: Analysis of a drawdown-based regime-switching Lévy insurance
model. Insur.: Math. Econ. 60(1), 98–107 (2015)

260. Lee, W.Y., Willmot, G.E.: On the moments of the time to ruin in dependent Sparre Andersen
models with emphasis on Coxian interclaim times. Insur.: Math. Econ. 59, 1–10 (2014)

261. Lefèvre, C., Loisel, S.: Finite-time ruin probabilities for discrete, possibly dependent, claim
severities. Methodol. Comput. Appl. Probab. 11(3), 425–441 (2009)

262. Li, S.: On a class of discrete time renewal risk models. Scand. Actuar. J. 2005(4), 241–260
(2005)

263. Li, S.: Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin
in a class of discrete time risk models. Scand. Actuar. J. 2005(4), 271–284 (2005)

264. Li, S.: The distribution of the dividend payments in the compound Poisson risk model per-
turbed by diffusion. Scand. Actuar. J. 2006(2), 73–85 (2006)

265. Li, S., Dickson, D.C.M.: The maximum surplus before ruin in an Erlang(n) risk process and
related problems. Insur.: Math. Econ. 38(3), 529–539 (2006)

266. Li, S., Garrido, J.: On ruin for the Erlang(n) risk process. Insur.: Math. Econ. 34, 391–408
(2004)

267. Li, S., Garrido, J.: On a general class of renewal risk process: analysis of the Gerber-Shiu
function. Adv. Appl. Probab. 37(3), 836–856 (2005)

268. Li, S., Garrido, J.: The Gerber-Shiu function in a Sparre Andersen risk process perturbed by
diffusion. Scand. Actuar. J. 2005(3), 161–186 (2005)

269. Li, S., Garrido, J.: Ruin probabilities for two classes of risk processes. ASTIN Bull. 35, 61–77
(2005)

270. Li, S.M., Lu, Y.: Moments of the dividend payments and related problems in a Markov-
modulated risk model. N. Am. Actuar. J. 11(2), 65–76 (2007)

271. Li, S., Lu, Y.: The decompositions of the discounted penalty functions and dividends-penalty
identity in a Markov-modulated risk model. ASTIN Bull. 38(1), 53–71 (2008)

272. Li, S., Lu, Y., Garrido, J.: A review of discrete-time risk models. Rev. R. Acad. Cien. Serie
A. Mat. 103, 321–337 (2009)

273. Li, S., Sendova, K.P.: The finite-time ruin probability under the compound binomial model.
Eur. Actuar. J. 3(1), 249–271 (2013)

274. Li, Z., Sendova, K.P.: On a ruin model with both interclaim times and premiums depending
on claim sizes. Scand. Actuar. J. 2015(3), 245–265 (2015)

http://dx.doi.org/10.1080/03461238.2015.1123174


402 E. Bulinskaya

275. Li, P., Yin, C., Zhou, M.: Dividend payments with a hybrid strategy in the compound Poisson
risk model. Appl. Math. 5, 1933–1949 (2014)

276. Li, D., Rong, X., Zhao, H.: Optimal investment problem for an insurer and a reinsurer. J. Syst.
Sci. Complex. 28(6), 1326–1348 (2015)

277. Li, S., Landriault, D., Lemieux, C.: A risk model with varying premiums: its risk management
implications. Insur.: Math. Econ. 60(1), 38–46 (2015)

278. Liang, Zh., Guo, J.: Optimal investment and proportional reinsurance in the Sparre Andersen
model. J. Syst. Sci. Complex. 25(5), 926–941 (2012)

279. Lin, X.S., Pavlova, K.P.: The compound Poisson riskmodel with a threshold dividend strategy.
Insur.: Math. Econ. 38, 57–80 (2006)

280. Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur.:
Math. Econ. 42, 617–627 (2008)

281. Lin, X.S., Willmot, G.E.: The moments of the time of ruin, the surplus before ruin, and the
deficit at ruin. Insur.: Math. Econ. 27, 19–44 (2000)

282. Liu, H.: On the joint analysis of discounted aggregate claim costs until ruin and other ruin-
related quantities. Thesis. The University of Hong Kong Libraries, University of Hong Kong
(2015)

283. Liu, Ch., Zhang, Zh.:A note on a generalized discounted penalty function in a SparreAndersen
risk model perturbed by diffusion. Abstr. Appl. Anal. 2013, 6 p (2013)

284. Liu, Zh., Zhang, A., Li, C.: The expected discounted tax payments on dual risk model under
a dividend threshold. Open J. Stat. 3, 136–144 (2013)

285. Liu, J., Xu, J.C., Hu, H.C.: The Markov-dependent risk model with a threshold dividend
strategy. Wuhan Univ. J. Nat. Sci. 16(3), 193–198 (2011)

286. Liu, J., Xu, J.: A note on absolute ruin probability in a Markov risk model. In: 2011 Interna-
tional Conference on Electric Information and Control Engineering (ICEICE) (2011). doi:10.
1109/ICEICE.2011.5777660

287. Liu,D.H., Liu, Z.M.: The perturbed compoundPoisson riskmodelwith linear dividend barrier.
J. Comput. Appl. Math. 235, 2357–2363 (2011)

288. Livshits, K., Yakimovich, K.: Cramér-Lundbergmodelwith stochastic premiums and continu-
ous non-insurance costs. In: Dudin, A., et al. (eds.) Information Technology andMathematical
Modelling, vol. 487, pp. 251–260. Springer, Berlin (2014)

289. Lkabous, M.A., Czarna, I., Renaud, J.-F.: Parisian ruin for a refracted Lévy process.
arXiv:1603.09324v1 [math.PR]. Accessed 30 Mar 2016

290. Loeffen, R.L., Patie, P.: Absolute ruin in the Ornstein-Uhlenbeck type risk model (2010).
arXiv:1006.2712

291. Loeffen, R.:On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally
negative Lévy processes. Ann. Appl. Probab. 18, 1669–1680 (2008)

292. Loeffen, R., Renaud, J.F.: De Finetti’s optimal dividends problem with an affine penalty
function at ruin. Insur.: Math. Econ. 46, 98–108 (2010)

293. Loeffen, R., Czarna, I., Palmowski, Z.: Parisian ruin probability for spectrally negative Lévy
processes. Bernoulli 19(2), 599–609 (2013)

294. Lu, Y., Li, S.: On the probability of ruin in a Markov-modulated risk model. Insur.: Math.
Econ. 37(3), 522–532 (2005)

295. Luo, S., Taksar, M.: Optimal excess-of-loss reinsurance under borrowing constraints. J. Risk
Decis. Anal. 2, 103–123 (2010)

296. Luo, S., Taksar, M.: On absolute ruin minimization under a diffusion approximation model.
Insur.: Math. Econ. 48(1), 123–133 (2011)

297. Markov, A.A.: Calculus of Probability. St. Petersburg (1908) (in Russian)
298. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
299. Martin-Löf, A.: Harald Cramér and insurance mathematics. Appl. Stoch. Models Data Anal.

11, 271–276 (1995)
300. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques

and Tools. Princeton University Press, Princeton (2005)

http://dx.doi.org/10.1109/ICEICE.2011.5777660
http://dx.doi.org/10.1109/ICEICE.2011.5777660
http://arxiv.org/abs/1603.09324v1
http://arxiv.org/abs/1006.2712


New Research Directions in Modern Actuarial Sciences 403

301. Mehr, R.I., Hedges, B.A.: Risk Management in the Business Enterprise. Richard D. Irwin,
Inc., Homewood (1963)

302. Melnikov, A.: Risk Analysis in Finance and Insurance, 2nd edn. Chapman and Hall/CRC,
Boca Raton (2011)

303. Meyers, G.G.: Stochastic Loss ReservingUsingBayesianMCMCModels. CasualtyActuarial
Society, New York (2015)

304. Mikosch, T.: Non-life Insurance Mathematics. Springer, Berlin (2004)
305. Ming, R.X.,Wang,W.Y., Xiao, L.Q.: On the time value of absolute ruin with tax. Insur.: Math.

Econ. 46(1), 67–84 (2010)
306. Minkova, L.D.: The Polya-Aeppli process and ruin problems. J. Appl. Math. Stoch. Anal. 3,

221–234 (2004)
307. Mircea, I., Covrig, M.: A discrete time insurance model with reinvested surplus and a fuzzy

number interest rate. Procedia Econ. Financ. 32, 1005–1011 (2015)
308. Mishura, Yu., Perestyuk, M., Ragulina, O.: Ruin probability in a risk model with variable

premium intensity and risky investments. Opusc. Math. 35(3), 333–352 (2015)
309. Mitov, K.V., Omey, E.: Renewal Processes. Springer, Berlin (2014)
310. Mitric, I.-R., Sendova, K.P.: On a multi-threshold compound Poisson surplus process with

interest. Scand. Actuar. J. 2011(2), 75–95 (2011)
311. Mitric, I.-R., Sendova, K.P., Tsai, C.C.-L.: On a multi-threshold compound Poisson process

perturbed by diffusion. Stat. Probab. Lett. 80, 366–375 (2010)
312. Mitric, I.R., Badescu, A.L., Stanford, D.: On the absolute ruin in a Sparre Andersen riskmodel

with constant interest. Insur.: Math. Econ. 50, 167–178 (2012)
313. Mnif, M., Sulem, A.: Optimal risk control and dividend policies under excess of loss reinsur-

ance. Stochastics 77(5), 455–476 (2005)
314. Muromskaya, A.: A generalization of Lundberg inequality for the case of a joint-stock insur-

ance company. Vestnik Moskovskogo Universiteta. Seriya 1: Matematica, Mekhanica. 72(1),
32–36 (2017) (in Russian)

315. Muromskaya, A.A.: Optimal reinsurance in the model with several risks within one insurance
policy. Vestnik TvGU. Seriya: Prikladnaya Matematika [Herald of Tver State University.
Series: Applied Mathematics], vol. 2016(4), pp. 79–97 (2016) (in Russian)

316. Muromskaya, A.: Discounted dividends in a strategy with a step barrier function. Moscow
Univ. Math. Bull. 71(5), 200–203 (2016)

317. Murphy, D.: Understanding Risk: The Theory and Practice of Financial Risk Management.
Chapman and Hall/CRC, Boca Raton (2008)

318. Nakayama, H., Sawaragi, Y., Tanino, T.: Theory of Multiobjective Optimization. Academic
Press, Waltham (1985)

319. Ng, A.C.Y.: On a dual model with a dividend threshold. Insur.: Math. Econ. 44, 315–324
(2009)

320. Ng, A.C.Y.: On the upcrossing and downcrossing probabilities of a dual risk model with
phase-type gains. ASTIN Bull. 40, 281–306 (2010)

321. Nie, C., Dickson, D.C.M., Li, Sh.: Minimizing the ruin probability through capital injections.
Ann. Actuar. Sci. 5, 195–209 (2011)

322. Nie, C., Dickson, D.C.M., Li, Sh.: The finite time ruin probability in a risk model with capital
injections. Scand. Actuar. J. 2015(4), 301–318 (2015)

323. Note on enterprise risk management for capital and solvency purposes in the insurance in-
dustry. http://www.actuaries.org. Accessed 31 Mar 2009

324. Oakley, J.E., O’Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian
approach. J. R. Stat. Soc. B. 66, Part 3, 751–769 (2004)

325. Oh, K., Kang, H.: A discrete time pricing model for individual insurance contracts. J. Insur.
Issues 27(1), 41–65 (2004)

326. Ohlsson, E., Johansson, B.: Non-life Insurance Pricing with Generalized Linear Models.
Springer, Berlin (2010)

327. Oksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Univer-
sitext (2005)

http://www.actuaries.org


404 E. Bulinskaya

328. Oksendal, B.: Stochastic Differential Equations. Springer Verlag, Universitext (2013)
329. Olivieri, A., Pitacco, E.: Introduction to Insurance Mathematics. Technical and Financial

Features of Risk Transfers. Springer, Berlin (2015)
330. Outreville, J.F.: Theory and Practice of Insurance. Springer, Berlin (1998)
331. Paulsen, J.: Ruin theory with compounding assets - a survey. Insur.: Math. Econ. 22, 3–16

(1998)
332. Paulsen, J.: On Cramér-like asymptotics for risk processes with stochastic return on invest-

ments. Ann. Appl. Probab. 12, 1247–1260 (2002)
333. Paulsen, J.: Ruin models with investment income. Probab. Surv. 5, 416–434 (2008)
334. Paulsen, J., Gjessing, H.K.: Ruin theory with stochastic return on investments. Adv. Appl.

Probab. 29, 965–985 (1997)
335. Pavlova, K.P., Willmot, G.E.: The discrete stationary renewal risk model and the Gerber-Shiu

discounted penalty function. Insur.: Math. Econ. 35, 267–277 (2004)
336. Peng, L.: Joint tail of ECOMOR and LCR reinsurance treaties. Insur.: Math. Econ. 59, 116–

120 (2014)
337. Peng, X., Wang, W.: Optimal investment and risk control for an insurer under inside infor-

mation. Insur.: Math. Econ. 69, 104–116 (2016)
338. Peng, X., Chen, F., Hu, Y.: Optimal investment, consumption and proportional reinsurance

under model uncertainty. Insur.: Math. Econ. 59, 222–234 (2014)
339. Pentikainen, T., Bornsdorff, H., Pesonen, M., Rantala, J., Ruohonen, M.: Insurance Solvency

and Financial Strength. Finnish Insurance Training and Publishing Company Ltd., Helsinki
(1989)

340. Pergamenshchikov, S., Zeitouny, O.: Ruin probability in the presence of risky investments.
Stoch. Process. Appl. 116(2), 267–278 (2006)

341. Perna, C., Sibillo, M. (eds.): Mathematical and Statistical Methods for Actuarial Sciences and
Finance. Springer, Berlin (2014)

342. Peters, G.W., Dong, A.X.D., Kohn, R.: A copula based Bayesian approach for paid-incurred
claims models for non-life insurance reserving. Insur.: Math. Econ. 59, 258–278 (2014)

343. Pham,H.:Continuous-TimeStochasticControl andOptimizationwithFinancialApplications.
Springer, Berlin (2009)

344. Picard, P., Lefèvre, C.: Probabilité de ruine éventuelle dans un modèle de risque à temps
discret. J. Appl. Probab. 40(3), 543–556 (2003)

345. Picard, P., Lefèvre, C., Coulibaly, I.: Problèmes de ruine en théorie du risque à temps discret
avec horizon fini. J. Appl. Probab. 40, 527–542 (2003)

346. Picard, P., Lefèvre, C., Coulibaly, I.: Multirisks model and finite-time ruin probabilities.
Methodol. Comput. Appl. Probab. 5, 337–353 (2003)

347. Pitacco, E.: Health Insurance. Basic Actuarial Models. Springer, Switzerland (2014)
348. Prabhu, N.U.: Stochastic Storage Processes. Queues, Insurance Risk, Dams and Data Com-

munications. Springer, New York (2012)
349. Promyslow, D.S.: Fundamentals of Actuarial Mathematics, 2nd edn. Wiley, New York (2011)
350. Qi, X.: Analysis of the generalized Gerber-Shiu function in discrete-time dependent Sparre

Andersen model. Thesis. The University of Hong Kong Libraries, University of Hong Kong
(2016)

351. Quang, P.D.: Ruin probability in a generalized risk process under interest force with homoge-
nous Markov chain premiums. Int. J. Stat. Probab. 2(4), 85–92 (2013)

352. Rachev, S.T., Stoyanov, S.V., Fabozzi, F.J.: Advanced Stochastic Models, Risk Assessment,
Portfolio Optimization. Wiley, Hoboken (2008)

353. Rachev, S.T., Klebanov, L., Stoyanov, S.V., Fabozzi, F.: The Methods of Distances in the
Theory of Probability and Statistics. Springer, New York (2013)

354. Ramaswami, V.: Passage times in fluid models with application to risk processes. Methodol.
Comput. Appl. Probab. 8, 497–515 (2006)

355. Reinhard, J.M.: On a class of semi-Markov risk models obtained as classical risk models in
a Markovian enviroment. ASTIN Bull. 14, 23–43 (1984)



New Research Directions in Modern Actuarial Sciences 405

356. Ren, J.: The discounted joint distribution of the surplus prior to ruin and the deficit at ruin in
a Sparre Andersen model. N. Am. Actuar. J. 11, 128–136 (2007)

357. Renaud, J.-F.: On the time spent in the red by a refracted Lévy risk process. J. Appl. Probab.
51(4), 1171–1188 (2014)

358. Renaud, J.-F., Zhou, X.: Distribution of the dividend payments in a general Lévy risk model.
J. Appl. Probab. 44, 420–427 (2007)

359. R̆ezác̆, M., R̆ezác̆, F.: How to measure the quality of credit scoring models. Finance a úvĕr
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Population Processes with Immigration

Dan Han, Stanislav Molchanov and Joseph Whitmeyer

Abstract The paper contains a complete analysis of theGalton–Watsonmodelswith
immigration, including the processes in the random environment, stationary or non-
stationary ones. We also study the branching random walk on Zd with immigration
and prove the existence of the limits for the first two correlation functions.

Keywords Galton-Watson process · Branching process · Immigration
Random environment

1 Introduction

A problem with many single population models of population dynamics involving
processes of birth, death, and migration is that the populations do not attain steady
states or do so only under critical conditions. One solution is to allow immigration,
which can stabilize the population when the birth rate is less than the mortality rate.

Here, we present analysis of severalmodels that incorporate immigration. The first
two are spatial Galton–Watson processes, the first with no migration and the second
with finite Markov chain spatial dynamics (see Sects. 2 and 3 respectively). The third
model allowsmigration onZd (see Sect. 4). The remainingmodels all involve random
environments in some way (see Sect. 5). Two are again Galton–Watson processes,
the first with a random environment based on population size and the second with

For the second author, this work has been funded by the Russian Academic Excellence Project
‘5-100’.

D. Han · S. Molchanov
University of North Carolina at Charlotte, Charlotte, NC 28223, USA

S. Molchanov
National Research University, Higher School of Economics, Moscow, Russian Federation

J. Whitmeyer (B)
University of North Carolina at Charlotte, Charlotte, NC 28223, USA
e-mail: jwhitmey@uncc.edu

© Springer International Publishing AG 2017
V. Panov (ed.), Modern Problems of Stochastic Analysis and Statistics,
Springer Proceedings in Mathematics & Statistics 208,
DOI 10.1007/978-3-319-65313-6_16

411



412 D. Han et al.

a random environment given by a Markov chain. The last two models have birth,
death, immigration, and migration in a random environment allowing in some way
nonstationarity in both space and time. We study in this paper only first and second
moments. We will return to the complete analysis of the models with immigration
in another publication. It will include a theorem about the existence of steady states
and an analysis of the stability of these states.

2 Spatial Galton–Watson Process with Immigration. No
Migration and No Random Environment

2.1 Moments

Assume that at each site for each particle we have birth of one new particle with rate
β and death of the particle with rate μ. Also, assume that regardless of the number
of particles at the site we have immigration of one new particle with rate k (this
is a simplified version of the process in [1]). Assume that β < μ, for otherwise the
population will grow exponentially. Assume we start with one particle at each site. In
continuous time, for a given site x , x ∈ Zd , we can obtain all moments recursively by
means of theLaplace transformwith respect ton(t, x), where n(t, x) is the population
size at time t at x

ϕt (λ) = E e−λn(t,x) =
∞∑

j=0

P{n(t, x) = j}e−λ j .

Specifically, for the j th moment, m j

m j (t, x) = (−1) j
∂ jϕ

∂λ j
|λ=0. (2.1)

A partial differential equation for ϕt (λ) can be derived using the forward
Kolmogorov equations

n(t + dt, x) = n(t, x) + ξdt (t, x) (2.2)

where the r.v.ξ is defined

ξdt (t, x) =
⎧
⎨

⎩

+1 βn(t, x)dt + kdt
−1 μn(t, x)dt
0 1 − ((β + μ)n(t, x) + k)dt

(2.3)

In other words, our site (x) in a small time interval (dt) can gain a new particle at
rate β for every particle at the site or through immigration with rate k; it can lose a
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particle at rate μ for every particle at the site; or no change at all can happen. Because
our model is homogeneous in space, we can write n(t) for n(t, x). This leads to the
general differential equation

∂ϕt (λ)

∂t
= ϕt (λ)

(
μn(t)eλ − ((β + μ)n(t) + k) + (βn(t) + k)e−λ

)

ϕ0(λ) = e−λ

from which we can calculate the recursive set of differential equations

∂ϕt (λ)( j)

∂t
= ϕt (λ)( j)

(
μn(t)eλ − ((β + μ)n(t) + k) + (βn(t) + k)e−λ

)+

+
j∑

i=1

(
j

i

)
ϕt (λ)( j−i)

(
μn(t)eλ + (−1)i (βn(t) + k)e−λ

)

ϕ0(λ)( j) = (−1) j e−λ

Applying Eq.2.1, we obtain a set of recursive differential equations for the moments

dm j (t)

dt
=

j∑

i=1

(
j

i

) (
(β + (−1)iμ)m j−i+1 + m j−i

)

= j (β − μ)m j + s j (2.4)

m j (0) = 1

where s j denotes a linear expression involving lower order moments and where
we define m0 = 1. For example, the differential equations for the first and second
moments are

dm1(t)

dt
= (β − μ)m1(t) + k

m1(0) = 1

and

dm2(t)

dt
= 2(β − μ)m2(t) + (β + μ + 2k)m1(t) + k

m2(0) = 1

These have the solutions:

m1(t) = k

μ − β
+
(
1 − k

μ − β

)
e−(μ−β)t
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and

m2(t) =k(k + μ)

(μ − β)2
+ μ2 − 2k2 − β2 + kμ − 3kβ

(μ − β)2
e−(μ−β)t+

+ k2 + 2β2 + 3kβ − 2μβ − 2kμ

(μ − β)2
e−2(μ−β)t

Again, given that we have assumed that μ > β, in other words, the birth rate is
not high enough to maintain the population size, as t → ∞

m1(t) −−−→
t→∞

k

μ − β

m2(t) −−−→
t→∞

k(k + μ)

(μ − β)2

and

Var(n(t)) = m2(t) − m2
1(t) −−−→

t→∞
μk

(μ − β)2
.

Moreover, it is clear from Eq.2.4 that all the moments are finite.
In other words, the population size will approach a finite limit, which can be

regulated by controlling the immigration rate k, and this population sizewill be stable,
as indicated by the fact that the limiting variance is finite.Without immigration, i.e., if
k = 0, the population size will decay exponentially. Another possibility, because all
sites are independent and there are no spatial dynamics, is for there to be immigration
at some sites, which therefore reach stable population levels, and not at others, where
the population thus decreases exponentially. Of course, if the birth rate exceeds the
death rate, β > μ, m1(t) increases exponentially and immigration has negligible
effect, as shown by the solution for m1(t).

2.2 Local CLT

Setting λn = nβ + k, μn = nμ, we see that the model given by Eqs. 2.2 and 2.3 is a
particular case of the general random walk on Z1+ = {0, 1, 2, . . .} with generator

Lψ(n) = ψ(n + 1)λn − (λn + μn)ψ(n) + μnψ(n − 1), n � 0 (2.5)

Lψ(0) = kψ(1) − kψ(0) (2.6)

The theory of such chains has interesting connections to the theory of orthogonal
polynomials, the moments problem, and related topics (see [2]). We recall several
facts of this theory.

a. Equation Lψ = 0, x � 1, (i.e., the equation for harmonic functions) has two
linearly independent solutions:
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ψ1(n) ≡ 1

ψ2(n) =
⎧
⎨

⎩

0 n = 0
1 n = 1
1 + μ1

λ1
+ μ1μ2

λ1λ2
+ · · · + μ1μ2···μn−1

λ1λ2···λn−1
n � 2

(2.7)

b. Denoting the adjoint of L by L∗, equation L∗π = 0 (i.e., the equation for the
stationary distribution, which can be infinite) has the positive solution

π(1) = λ0

μ1
π(0) (2.8)

π(2) = λ0λ1

μ1μ2
π(0) (2.9)

· · · (2.10)

π(n) = λ0λ1 · · ·λn−1

μ1μ2 · · · μn
π(0) (2.11)

This random walk is ergodic (i.e., n(t) converges to a statistical equilibrium, a
steady state) if and only if the series 1 + λ0

μ1
· · · + λ0λ1

μ1μ2
+ · · · + λ0λ1···λn−1

μ1μ2···μn
converges.

In our case,

xn = λ0 · · · λn−1

μ1 · · · μn
= k(k + β) · · · (k + (μ − 1))β

μ(2μ) · · · (nμ)
.

If β > μ, then, for n > n0, for some fixed ε > 0, k+(n−1)β
nμ

> 1 + ε, that is, xn ≥
Cn , for C > 1 and n ≥ n1(ε), and so

∑
xn = ∞. In contrast, if β < μ, then, for

some 0 < ε < 1, k+(n−1)β
nμ

< 1 − ε, and xn ≤ qn , for 0 < q < 1 and n > n1(ε); thus,∑
xn < ∞. In this ergodic case, the invariant distribution of the random walk n(t)

is given by the formula

π(n) = 1

S̃

λ0 · · · λn−1

μ1 · · · μn
,

where

S̃ = 1 + k

μ
+ k(β + k)

μ(2μ)
+ · · · + k(k + β) · · · (β(n − 1) + k)

μ(2μ) · · · (nμ)
+ · · · .

Theorem 2.1 (Local Central Limit theorem) Let β < μ. If l = O(k2/3), then, for
the invariant distribution π(n)

π(n0 + l) ∼ e− l2

2σ2√
2πσ2

as k → ∞ (2.12)

where σ2 = μk
(μ−β)2

, n0 ∼ k
μ−β

.
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The proof, which we omit here, makes use of the fact that S̃ is a degenerate

hypergeometric function and so S̃ =
(
1 − β

μ

)− k
β

. If we define an by setting π(n) =
an

S̃
, then, an0 ∼ k

μ−β
, and, setting l = O(k2/3), straightforward computations yield

an0+l ∼ an0e
− l2

2σ2 . Application of Stirling’s formula leads to the result.

2.3 Global Limit Theorems

A functional Law of Large Numbers follows directly from Theorem 3.1 in Kurtz
(1970 [3]). Likewise, a functional Central Limit Theorem follows from Theorems
3.1 and 3.5 in Kurtz (1971 [4]). We state these theorems here, therefore, without
proof.

Write the population size as nk(t), a function of the immigration rate as well as
time. Set n∗

k = k
μ−β

, the limit of the first moment as t → ∞. Define a new stochastic

process for the population size divided by the immigration rate, Zk(t) := nk (t)
k . Set

z∗ = n∗
k
k = 1

μ−β
.

We define the transition function, fk(
nk
k , j) := 1

k p(nk, nk + j). Thus,

fk(z, j) =
⎧
⎨

⎩

βnk+k
k = βz + 1 j = 1

μnk
k = μz j = −1

(not needed) j = 0

Note that fk(z, j) does not, in fact, depend on k and we write simply f (z, j).

Theorem 2.2 (Functional LLN) Suppose lim
k→∞ Zk(0) = z0. Then, as k → ∞, Zk(t)

→ Z(t) uniformly in probability, where Z(t) is a deterministic process, the solution
of

dZ(t)

dt
= F(Z(t)), Z(0) = z0. (2.13)

where
F(z) :=

∑

j

j f (z, j) = (β − μ)z + 1.

This has the solution

Z(t, z) = 1

μ − β
+
(
z0 − 1

μ − β

)
e−(μ−β)t = z∗ + (z0 − z∗)e−(μ−β)t , t ≥ 0.

Next, define Gk(z) :=
∑

j

j2 fk(z, j) = (b + μ)z + 1. This too does not depend

on k and we simply write G(z).
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Theorem 2.3 (Functional CLT) If lim
k→∞

√
k (Zk(0) − z∗) = ζ0, the processes

ζk(t) := √
k(Zk(t) − Z(t))

converge weakly in the space of cadlag functions on any finite time interval [0, T ]
to a Gaussian diffusion ζ(t) with:

(1) initial value ζ(0) = ζ0,
(2) mean

Eζ(s) = ζ0Ls := ζ0e

s∫

0
F ′(Z(u,z0))du

,

(3) variance

Var(ζ(s)) = L2
s

s∫

0

L−2
u G(Z(u, z0))du.

Suppose, moreover, that F(z0) = 0, i.e., z0 = z∗, the equilibrium point. Then,
Z(t) ≡ z0 and ζ(t) is an Ornstein–Uhlenbeck process (OUP) with initial value ζ0,
infinitesimal drift

q := F ′(z0) = β − μ

and infinitesimal variance

a := G(z0) = 2μ

μ − β
.

Thus, ζ(t) is normally distributed with mean

ζ0e
qt = ζ0e

−(μ−β)t

and variance a

−2q

(
1 − e2qt

) = μ

(μ − β)2

(
1 − e−2(μ−β)t

)
.

3 Spatial Galton–Watson Process with Immigration
and Finite Markov Chain Spatial Dynamics

Let X = {x, y, . . .} be a finite set, and define the following parameters.

β(x) is the rate of duplication at x ∈ X .
μ(x) is the rate of annihilation at x ∈ X .
a(x, y) is the rate of transition x → y.
k(x) is the rate of immigration into x ∈ X .
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We define−→n (t) = {n(t, x), x ∈ X}, the population at moment t ≥ 0, with n(t, x)

the occupation number of site x ∈ X . Letting
−→
λ = {λx ≥ 0, x ∈ X}, we write the

Laplace transform of the random vector −→n (t) ∈ R
N , N = Card(X) as u(t,

−→
λ ) =

E e−(
−→
λ ,

−→n (t)).
Now, we derive the differential equation for u(t,

−→
λ ). Denote the σ-algebra of

events before or including t by F≤t . Setting
−→ε (t, dt)) = −→n (t + dt) − −→n (t)

u(t + dt,
−→
λ ) = E e−(

−→
λ ,

−→n (t+dt)) = E e−(
−→
λ ,

−→n (t))E [e−(
−→
λ ,−→ε (t,dt))|F≤t ] (3.1)

The conditional distribution of (
−→
λ ,−→ε ) under F≤t is given by the formulas

(a) P{(−→λ ,−→ε (t, dt)) = λx |F≤t } = n(t, x)β(x)dt + k(x)dt
(the birth of a new offspring at site x or the immigration of a new particle into
x ∈ X )

(b) P{(−→λ ,−→ε ) = λy|F≤t } = n(t, y)μ(y)dt
(the death of a particle at y ∈ X )

(c) P{(−→λ ,−→ε ) = λx − λz|F≤t } = n(t, x)a(x, z)dt; x, z ∈ X, x �= z
(transition of a single particle from x to z. Then, n(t + dt, x) = n(t, x) − 1,
n(t + dt, z) = n(t, z) + 1.)

(d) P{(−→λ ,−→ε ) = 0|F≤t } = 1 −
(
∑

x∈X
n(t, x)β(x)

)
dt −

(
∑

x∈X
k(x)

)
dt

−
⎛

⎝
∑

y∈X
n(t, y)μ(y)

⎞

⎠ dt −
⎛

⎝
∑

x �=z

n(t, x)a(x, z)

⎞

⎠ dt

After substitution of these expressions intoEq.3.1 and elementary transformations
we obtain

∂u(t,
−→
λ )

∂t
=E

∑

x∈X
(e−λx − 1)e−(

−→
λ ,

−→n (t))(β(x)n(t, x) + k(x))+
∑

y∈X
(eλy − 1)e−(

−→
λ ,

−→n (t))μ(y)n(t, y)

+
∑

x,y;x �=y

(eλx−λy − 1)e−(
−→
λ ,

−→n (t))a(x, y)n(t, x)

But

E e−(
−→
λ ,

−→n (t))n(t, x) = −∂u(t,
−→
λ )

∂λx

I.e., finally
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∂u(t,
−→
λ )

∂t
=
∑

x∈X
(e−λx − 1)

(
−∂u(t,

−→
λ )

∂λx
β(x) + u(t,

−→
λ )k(x)

)

+
∑

y∈X
(eλy − 1)μ(y)

(
−∂u(t,

−→
λ )

∂λy

)

+
∑

x,z;x �=z

(eλx−λz − 1)a(x, z)

(
−∂u(t,

−→
λ )

∂λx

)

(3.2)

The initial condition is
u(0,

−→
λ ) = E e−(

−→
λ ,

−→n (0))

(say, u(0,
−→
λ ) = e−(

−→
λ ,1) = e

∑
x∈X λx for n(0, x) = 1).

Differentiation of Eq.3.2 and the substitution of
−→
λ = 0 leads to the equations for

the correlation functions (moments) of the field n(t, x), x ∈ X . Put

m1(t, v) = E n(t, v) = −∂u(t,
−→
λ )

∂λv

|−→
λ =0

, v ∈ X

Then

∂m1(t, v)

∂t
= k(v) + (β(v) − μ(v))m1(t, v) + ∂

∂λv

⎛

⎝
∑

z:z �=v

(eλv−λz − 1)a(v, z)
∂u

∂λv

⎞

⎠ |−→
λ =0

+ ∂

∂λv

⎛

⎝
∑

z:z �=v

(eλz−λv − 1)a(z, v)
∂u

∂λz

⎞

⎠ |−→
λ =0

= k(v) + (β(v) − μ(v)︸ ︷︷ ︸
V (v)

)m1(t, v) +
∑

a(z, v)m1(t, z)

−
⎛

⎝
∑

z:z �=v

a(v, z)

⎞

⎠m1(t, v)

If a(x, z) = a(z, x) then finally

∂m1(t, x)

∂t
= Am1 + Vm1 + k(x), m1(0, x) = n(0, x)

Here, A is the generator of a Markov chain A = [a(x, y)] = A∗.
By differentiating equation (3.2) over the variables λx , x ∈ X , one can get the

equations for the correlation functions

kl1...lm (t, x1, . . . , xm) = E nl1(t, x1) · · · nlm (t, xm)
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Fig. 1 General random walk with reflection at 0

where x1, . . . , xm are different points of X and l1, . . . , lm ≥ 1 are integers. Of course
kl1...lm (t, x1, . . . , xm) = (−1)l1+···+lm ∂l1+···+lm n(t,−→x )

∂l1λx1 ...∂
lm λxm

|−→
λ =0

. The corresponding equations

will be linear. The central point here is that the factors (eλx−λz − 1), (eλy − 1), and

(e−λx − 1) are equal to 0 for
−→
λ = 0. As a result, the higher order (n > l1 + · · · + lm)

correlation functions cannot appear in the equations for {kl1...lm (·), l1 + · · · + lm =
n}.

Consider, for instance, the correlation function (in fact, matrix- valued function)

k2(t, x1, x2) =
[
E n2(t, x1, x1) E n(t, x1) n(t, x2)
E n(t, x1) n(t, x2) E n2(t, x2, x2)

]

The method based on generating functions is typical for the theory of branching
processes. In the case of processes with immigration, another, Markovian approach
gives new results. Let us start from the simplest case, when there is but one site, i.e.,
X = {x}. Then, the process n(t), t ≥ 0 is a random walk with reflection on the half
axis n ≥ 0.

For a general random walk y(t) on the half axis with reflection in continuous
time, we have the following facts. Let the process be given by the generator G =
(g(w, z)), w, z ≥ 0, where aw = g(w,w + 1), w ≥ 0; bw = g(w,w − 1), w > 0;
g(w,w) = −(aw + bw), w > 0; and g(0, 0) = −a0 (see Fig. 1).

The random walk is recurrent iff the series

S = 1 + b1
a1

+ · · · + b1 · · · bn
a1 · · · an + · · · (3.3)

diverges. It is ergodic (positively recurrent) iff the series

S̃ = 1 + a0
b1

+ · · · + a0 · · · an−1

b1 · · · bn + · · · (3.4)

converges. In the ergodic case, the invariant distribution of the random walk y(t) is
given by the formula

π(n) = 1

S̃

a0 · · · an−1

b1 · · · bn (3.5)

(see [5]).
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For our random walk, n(t)

g(0, 0) = −k, a0 = g(0, 1) = k

and, for n ≥ 1

bn = g(n, n − 1) = μn, g(n, n) = −(μn + βn + k), an = g(n, n + 1) = βn + k.

Proposition 3.1 1. If β > μ the process n(t) is transient and the population n(t)
grows exponentially.

2. If β = μ, k > 0 the process is not ergodic but rather it is zero-recurrent for
k
β

≤ 1 and transient for k
β

> 1.
3. If β < μ the process n(t) is ergodic. The invariant distribution for β < μ is given

by

π(n) = 1

S̃

k(k + β) · · · (k + β(n − 1))

μ · 2μ · · · nμ

= 1

S̃

(
β

μ

)n k
β

(
k
β

+ 1
)

· · ·
(

k
β

+ n − 1
)

n!
= 1

S̃

(
β

μ

)n

(1 + α)
(
1 + α

2

)
· · ·
(
1 + α

n

)
, α = k

β
− 1

= 1

S̃

(
β

μ

)n

exp

⎛

⎝
n∑

j=1

ln (1 + α

j
)

⎞

⎠ ∼ 1

S̃

(
β

μ

)n

nα

where S̃ =
∞∑

j=1

k(k + β) · · · (k + β( j − 1))

μ · 2μ · · · jμ .

Proof 1 and 3 follow from Eqs. 3.3–3.5. If β = μ (but k > 0), i.e., in the critical
case, the process cannot be ergodic because, setting α = k

β
− 1, then α > −1 and as

n → ∞ S̃ ∼
∑

n

nα = +∞. The process is zero-recurrent, however, for 0 < k
β

≤ 1.

In fact, for β = μ

b1 · · · bn
a1 · · · an = β · 2β · · · nβ

(k + β) · · · (k + nβ)
= 1

n∏

i=1

(
1 + k

iβ

)  1

nk/β

and the series inEq.3.4 diverges if 0 < k
β

≤ 1. If, however, k > β the series converges
and the process n(t) is transient. �
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Consider, now, the general case of the finite space X . Let N = Card X and −→n (t)
be the vector of the occupation numbers. The process −→n (t), t ≥ 0 is the random
walk on (Z1+)N = {0, 1, ...)N with continuous time. The generator of this random

walk was already described when we calculated the Laplace transform u(t,
−→
λ ) =

E e−(
−→
λ ,

−→n (t)). If at the moment t we have the configuration−→n (t) = {n(t, x), x ∈ X},
then, for the interval (t, t + dt) only the following events (up to terms of order(dt)2)
can happen:

(a) the birth of a new particle at the site x0 ∈ X , with corresponding probability
n(t, x0)β(x0)dt + k(x0)dt . In this case we have the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
{
n(t, x), x �= x0
n(t, x0) + 1, x = x0

(b) the death of one particle at the site x0 ∈ X . This has corresponding probability
μ(x0)n(t, x0)dt and the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
{
n(t, x), x �= x0
n(t, x0) − 1, x = x0

(Of course, here n(t, x0) ≥ 1, otherwise μ(x0)n(t, x0)dt = 0).
(c) the transfer of one particle from site x0 to site y0 ∈ X (jump from x0 to y0), i.e.,

the transition

−→n (t) = {n(t, x), x ∈ X} → −→n (t + dt) =
⎧
⎨

⎩

n(t, x), x �= x0, y0
n(t, x0) − 1, x = x0
n(t, y0) + 1, x = y0

with probability n(t, x0)a(x0, y0)dt for n(t, x0) ≥ 1.

The following theorem gives sufficient conditions for the ergodicity of the process−→n (t).

Theorem 3.2 Assume that for some constants δ > 0, A > 0 and any x ∈ X

μ(x) − β(x) ≥ δ, k(x) ≤ A.

Then, the process −→n (t) is an ergodic Markov chain and the invariant measure of

this process has exponential moments, i.e., E e(
−→
λ ,

−→n (t)) ≤ c0 < ∞ if |−→λ | ≤ λ0 for
appropriate (small) λ0 > 0.

Proof We take on (Z1+)N = {0, 1, . . .)N as a Lyapunov function

f (−→n ) = (
−→n ,

−→
1 ) =

∑

x∈X
nx ,

−→n ∈ (Z1
+)N ,
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Fig. 2 Markov model for immigration process

Then, with G the generator of the process, G f (−→n ) ≤ 0 for large enough (
−→n ,

−→
1 ) =

‖−→n ‖1. In fact

G f =
∑

x∈X
((β(x) − μ(x))nx + k(x)) < 0, for large ‖−→n ‖1.

(The terms concerning transitions of the particles between sitesmake no contribution:
1 − 1 = 0.) �

If β(x) ≡ β < μ ≡ μ(x) and k(x) ≡ k then (
−→n ,

−→
1 ), i.e., the total number of the

particles in the phase space X is also a Galton–Watson process with immigration and
the rates of transition shown in Fig. 2.

If t → ∞ this process has a limiting distribution with invariant measure (in which
Nk replaces k). That is

E (
−→n ,

−→
1 ) −−−→

t→∞
Nk

μ − β

4 Branching Process with Migration and Immigration

We now consider our process with birth, death, migration, and immigration on a
countable space, specifically the lattice Zd . As in the other models, we have β > 0,
the rate of duplication at x ∈ Zd ; μ > 0, the rate of death; and k > 0, the rate of
immigration. Here, we add migration of the particles with rate κ > 0 and probability
kernel a(z), z ∈ Z

d , z �= 0, a(z) = a(−z),
∑
z �=0

a(z) = 1. That is, a particle jumps

from site x to x + z with probability κa(z)dt . Here we put κ = 1 to simplify the
notation.

For n(t, x), the number of particles at x at time t , the forward equation for this
process is given by n(t + dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 w. pr. n(t, x)βdt + kdt + ∑
z �=0

a(z)n(t, x + z)dt

−1 w. pr. n(t, x)(μ + 1)dt
0 w. pr. 1 − (β + μ + 1)n(t, x)dt − ∑

z �=0
a(z)n(t, x + z)dt − kdt

(4.1)
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Note that ξ(dt, x) is independent onF�t (theσ-algebra of events before or includ-
ing t) and

(a) E[ξ(dt, x)|F�t ] = n(t, x)(β − μ − 1)dt + kdt + ∑
z �=0

a(z)n(t, x + z)dt .

(b) E[ξ2(dt, x)|F�t ] = n(t, x)(β + μ + 1)dt + kdt + ∑
z �=0

a(z)n(t, x + z)dt .

(c) E[ξ(dt, x)ξ(dt, y)|F�t ] = a(x − y)n(t, x)dt + a(y − x)n(t, y)dt .
A single particle jumps from x to y or from y to x . Other possibilities have
probability O((dt)2) ≈ 0. Here, of course, x �= y.

d) If x �= y, y �= z, and x �= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.
We will not use property (d) in this paper, but it is crucial for the analysis of
moments of order greater or equal to 3.

From here on, we concentrate on the first two moments.

4.1 First Moment

Due to the fact that β < μ, the system has a short memory, and we can calculate all
the moments under the condition that n(0, x), x ∈ Z

d , is a system of independent
and identically distributed random variables with expectation k

μ−β
. We will select

Poissonian random variables with parameter λ = k
μ−β

. Then,m1(t, x) = k
μ−β

, t � 0,

x ∈ Z
d , and, as a result, Lam1(t, x) = 0. Setting m1(t, x) = E[n(t, x)], we have

m1(t + dt, x) = E[E[n(t + dt, x)|Ft ]] = E[E[n(t, x) + ξ(t, x)|Ft ]]
= m1(t, x) + (β − μ)m1(t, x)dt + kdt +

∑

z �=0

a(z)[m1(t, x + z) − m1(t, x)]dt

(4.2)

Defining the operator La( f (t, x)) = ∑
z �=0

a(z)[ f (t, x + z) − f (t, x)], then, from
Eq.4.2 we get the differential equation

{ ∂m1(t, x)

∂t
= (β − μ)m1(t, x) + k + Lam1(t, x)

m1(0, x) = 0

Because of spatial homogeneity, Lam1(t, x) = 0, giving

{ ∂m1(t, x)

∂t
= (β − μ)m1(t, x) + k

m1(0, x) = 0

which has the solution
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m1(t, x) = k

β − μ
(e(β−μ)t − 1).

Thus, if β ≥ μ, m1(t, x) → ∞, and if μ > β,

lim
t→∞m1(t, x) = k

μ − β
.

4.2 Second Moment

We derive differential equations for the second correlation function m2(t, x, y) for
x = y and x �= y separately, then combine them and use a Fourier transform to prove
a useful result concerning the covariance.

I. x = y

m2(t + dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F�t ]]

= m2(t, x, x) + 2E

⎡

⎣n(t, x)[n(t, x)(β − μ − 1)dt + kdt

+
∑

z �=0

a(z)n(t, x + z)]dt
⎤

⎦

+ E

⎡

⎣n(t, x)(β + μ + 1)dt + kdt +
∑

z �=0

a(z)n(t, x + z)dt

⎤

⎦

Denote Laxm2(t, x, y) = ∑
z �=0

a(z)(m2(t, x + z, y) − m2(t, x, y)).

From this follows the differential equation

{ ∂m2(t, x, x)

∂t
= 2(β − μ)m2(t, x, x) + 2Laxm2(t, x, x) + 2k2

μ−β
+ 2k(μ+1)

μ−β

m2(0, x, x) = 0

II. x �= y
Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,

while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = a(x − y)n(t, y)dt,
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and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = a(y − x)n(t, x)dt.

Then, similar to above

m2(t + dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F�t ]]
= m2(t, x, y) + (β − μ)m2(t, x, y)dt + km1(t, y)dt

+
∑

z �=0

a(z)(m2(t, x + z, y) − m2(t, x, y))dt

+ (β − μ)m2(t, x, y)dt + km1(t, x)dt

+
∑

z �=0

a(z)(m2(t, x, y + z) − m2(t, x, y))dt

+ a(x − y)m1(t, y)dt + a(y − x)m1(t, x)dt

= m2(t, x, y) + 2(β − μ)m2(t, x, y)dt + k(m1(t, y) + m1(t, x))dt

+ (Lax + Lay)m2(t, x, y)dt

+ a(x − y)(m1(t, x) + m1(t, y))dt

The resulting differential equation is

∂m2(t, x, y)

∂t
= 2(β − μ)m2(t, x, y) + (Lax + Lay)m2(t, x, y) + k(m1(t, x)

+ m1(t, y)) + a(x − y)[m1(t, x) + m1(t, y)]
(4.3)

That is

∂m2(t, x, y)

∂t
= 2(β − μ)m2(t, x, y) + (Lax + Lay)m2(t, x, y)

+ 2k2

μ − β
+ 2a(x − y)

k

μ − β

Because, for fixed t , n(t, x) is homogeneous in space, we can writem2(t, x, y) =
m2(t, x − y) = m2(t, u). Then, we can condense the two cases into a single differ-
ential equation

⎧
⎨

⎩

∂m2(t, u)

∂t
= 2(β − μ)m2(t, u) + 2Laum2(t, u) + 2k2

μ−β + 2a(u) k
μ−β + δ0(u)

2k(μ+1)
μ−β

m2(0, u) = En2(0, x)

Here u = x − y �= 0 and a(0) = 0.

We can partition m2(t, u) into m2(t, u) = m21 + m22, where the solution for m21

depends on time but not position and the solution for m22 depends on position but
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not time. Thus, Laum21 = 0 and m21 corresponds to the source 2k2

μ−β
, which gives

∂m21(t, u)

∂t
= 2(β − μ)m21(t, u) + 2k2

μ − β

As t → ∞, m21 → M̄2 = m2
1(t, x) = k2

(μ−β)2
.

For the second part, m22,
∂m22
∂t = 0, i.e.,

∂m22(t, u)

∂t
= 2(β − μ)m22(t, u) + 2Laum22(t, u) + 2a(u)

k

μ − β

+ δ0(u)
2k(μ + 1)

μ − β
= 0

As t → ∞, m22 → M̃2. M̃2 is the limiting correlation function for the particle field
n(t, x), t → ∞. It is the solution of the “elliptic” problem

2Lau M̃2(u) − 2(μ − β)M̃2(u) + δ0(u)
2k(μ + 1)

μ − β
+ 2a(u)

k

μ − β
= 0

Applying the Fourier transform ̂̃M2(θ) = ∑
u∈Zd

M̃2(u)ei(θ,u), θ ∈ T d = [−π,π]d ,
we obtain

̂̃M2(θ) =
k

μ−β
+ kâ(θ)

μ−β

(μ − β) + (1 − â(θ)
.

We have proved the following result.

Theorem 4.1 If t → ∞, then Cov(n(t, x), n(t, y)) = E[n(t, x)n(t, y)] − E[n(t,
x)]E[n(t, y)] = m2(t, x, y) − m1(t, x)m1(t, y), tends to M̃2(x − y) = M̃2(u)

∈ L2(Zd)

The Fourier transform of M̃2(·) is equal to

̂̃M2(θ) = c1 + c2â(θ)

c3 + (1 − â(θ))
∈ C(T d)

where c1 = k
μ−β

, c2 = k
μ−β

, c3 = μ − β

Let us compare our results with the corresponding results for the critical contact
model [6] (where k = 0, μ = β). In the last case, the limiting distribution for the field
n(t, x), t � 0, x ∈ Z

d , exists if and only if the underlying randomwalkwith generator
La is transient. In the recurrent case, we have the phenomenon of clusterization. The
limiting correlation function is always slowly decreasing (like the Green kernel of
La).
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In the presence of immigration, the situation is much better: the limiting corre-
lation function always exists and we believe that the same is true for all moments.
The decay of M̃2(u) depends on the smoothness of â(θ). Under minimal regularity
conditions, correlations have the same order of decay as a(z), z → ∞. For instance,
if a(z) is finitely supported or exponentially decreasing, the correlation also has an
exponential decay. If a(z) has power decay, then the same is true for correlation
M̃2(u), u → ∞.

5 Processes in a Random Environment

Thefinal fourmodels involve a randomenvironment. Two areGalton–Watsonmodels
with immigration and lack a spatial component. In the first, the parameters are random
functions of the population size; in the second, they are random functions of aMarkov
chain on a finite space. The last two models are spatial and feature immigration,
migration, and, most importantly, a random environment in space, still stationary in
time for the third but not stationary in time for the fourth.

5.1 Galton–Watson Processes with Immigration in Random
Environments

5.1.1 Galton–Watson Process with Immigration in Random
Environment Based on Population Size

Assume that rates of mortality μ(·), duplication β(·), and immigration k(·) are ran-
dom functions of the volume of the population x ≥ 0. Namely, the random vectors
(μ,β, k)(x,ω) are i.i.d on the underlying probability space (�e,Fe, Pe) (e: environ-
ment).

The Galton–Watson Process is ergodic (Pe-a.s) if and only if the random series

S =
∞∑

n=1

k(0)(β(1) + k(1))(2β(2) + k(2)) · · · ((n − 1)β(n − 1) + k(n − 1))

μ(1)(2μ(2)) · · · (nμ(n))
< ∞, Pe-a.s.

Theorem 5.1 Assume that the random variables β(x,ω), μ(x,ω), k(x,ω) are
bounded from above and below by the positive constants C±: 0 < C− ≤ β(x,ω) ≤
C+ < ∞. Then, the process n(t,ωe) is ergodic Pe-a.s. if and only if 〈ln β(x,ω)

μ(x,ω)
〉 =

〈ln β(·)〉 − 〈ln(μ(·))〉 < 0

Proof It is sufficient to note that
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k(n − 1,ω) + (n − 1)β(n − 1,ω)

nμ(x,ω)
=

k(n−1,ω)−β(n−1,ω))

n + β(n − 1,ω)

μ(n,ω)

= eln β(n−1)−ln μ(n)+o( 1
n ).

�

It follows from the strong LLN that the series diverges exponentially fast for
〈ln β(·)〉 − 〈ln μ(·)〉 > 0; it converges like a decreasing geometric progression for
〈ln β(·)〉 − 〈ln μ(·)〉 < 0; and it is divergent if 〈ln β(·)〉 = 〈ln μ(·)〉. It diverges even
when β(x,ωe) = μ(x,ωe) due to the presence of k− ≥ C− > 0.

Note that ES < ∞ if and only if 〈λ(x−1)
μ(x) 〉 = 〈λ〉〈 1

μ
〉 < ∞, i.e., the fluctuations of

S, even in the case of convergence, can be very high.

5.1.2 Random Nonstationary (Time Dependent) Environment

Assume that k(t) and � = (μ − β)(t) are stationary random processes on (�m, Pm)

and that k(t) is independent of �. For a fixed environment, i.e., fixed k(·) and �(·),
the equation for the first moment takes the form

dm1(t,ωm)

dt
= −�(t,ωm)m1 + k(t,ωm)

m1(0,ωm) = m1(0)

Then

m1(t,ωm) = m1(0)e
− ∫ t

0 �(u,ωm )du +
∫ t

0
k(s,ωm)e− ∫ t

s �(u,ωm )duds

Assume that 1
δ

� �(·) � δ > 0, 1
δ

� k(·) � δ > 0. Then

m1(t,ωm) =
∫ t

−∞
k(s,ωm)e− ∫ t

s �(u,ωm )duds + O(e−δt ).

Thus, for large t , the processm1(t,ωm) is exponentially close to the stationary process

m̃1(t,ω) =
∫ t

∞
k(s,ωm)e− ∫ t

s �(u,ωm )duds

Assumenow that k(t) and�(s) are independent stationaryprocesses and−�(t) =
V (x(t)), where x(t), t � 0, is a Markov Chain with continuous time and symmet-
ric geometry on the finite set X . (One can also consider x(t), t � 0, as a diffusion
process on a compact Riemannian manifold with Laplace–Beltrami generator �.)
Let
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u(t, x) = Exe
∫ t
0 V (xs )dx f (xt )

= Exe
∫ t
0 −�(xs )dx f (xt )

Then ⎧
⎪⎨

⎪⎩

∂u

∂t
= Lu + Vu = Hu

u(0, x) = f (x)

(5.1)

The operator L is symmetric in L2(x) with dot product ( f, g) = ∑
x∈X

f (x) ¯g(x).

Thus, H = L + V is also symmetric and has real spectrum 0 > −δ � λ0 > λ1 �
· · · with orthonormal eigenfunctions ψ0(x) > 0,ψ1(x) > 0, . . . Inequality λ0 � δ <

0 follows from our assumption on �(·).
The solution of Eq.5.1 is given by

u(t, x) =
N∑

n=1

eλk tψk(x)(t,ψk).

Now, we can calculate < m̃1(t, x,ωm) >.

< m̃ >=
∫ t

−∞
< k(·) >< Eπe

∫ t
s V (xu)du > ds (5.2)

Here, π(x) = 1
N = 1(x)

N is the invariant distribution of xs . Then

< m̃ > =
∫ t

−∞
< k >

k=N∑

k=0

eλk (t−s)(ψkπ)(1ψk)ds

= − < k >

k=N∑

k=0

1

λk
(ψk1)2

1

N

= −< k >

N

N∑

k=0

(ψk1)2

λk

5.1.3 Galton–Watson Process with Immigration in Random
Environment Given by Markov Chain

Let x(t) be an ergodicMCh on the finite space X and let β(x),μ(x), k(x), the rates of
duplication, annihilation, and immigration, be functions from X to R+, and, therefore,
functions of t and ωe. The process (n(t), x(t)) is a Markov chain on Z

1+ × X .
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Let a(x, y), x, y ∈ X , a(x, y) ≥ 0,
∑
y∈X

a(x, y) = 1 for all x ∈ X , be the transition

function for x(t). Consider E(n,x) f (n(t), x(t)) = u(t, (n, x)). Then

u(t + dt, (n, x)) = (1 − (nβ(x) + nμ(x) + k(x) − a(x, x))dt)u(t, x)

+ nβ(x)u(t, (n + 1, x))dt + k(x)u(t, (n + 1, x))dt

+ nμ(x)u(t, (n − 1, x))dt +
∑

y:y �=x

a(x, y)u(t, (n, y))dt

We obtain the backward Kolmogorov equation

∂u

∂t
=
∑

y:y �=z

a(t, y)(u(t, (n, y)) − u(t, (n, x))) + (nβ(x) + k(x))(u(t, (n + 1, x))

− u(t, (n, x))) + nμ(x)(u(t, (n − 1, x)) − u(t, (n, x)))

u(0, (n, x)) = 0

Example. Two-state random environment.
Here, x(t) indicates which one of two possible states, {1, 2} the process is in at time
t . The birth, mortality, and immigration rates are different for each state: β1 and β2,
μ1 and μ2, and k1 and k2. For a process in state 1, at any time the rate of switching to
state 2 is α1, with α2 the rate of the reverse switch. This creates the two-state random
environment. Let G be the generator for the process, as shown in Fig. 3.

The following theorem gives sufficient conditions for the ergodicity of the process
(n(t), x(t)).

Theorem 5.2 Assume that for some constants δ > 0 and A > 0

μi − βi ≥ δ, ki ≤ A, i = 1, 2

Fig. 3 GW process with immigration with random environment as two states
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Then, the process (n(t), x(t)) is an ergodic Markov chain and the invariant mea-
sure of this process has exponential moments, i.e., E eλn(t) ≤ c0 < ∞ if λ ≤ λ0 for
appropriate (small) λ0 > 0.

Proof We take as a Lyapunov function f (n, x) = n.
Then, G f (n(t), x(t)) = (βx − μx )n + kx . So for sufficiently large n, specifically

n > A
δ
, we have G f ≤ 0. �

5.2 Models with Immigration and Migration in a Random
Environment

For this most general case, we have migration and a nonstationary environment in
space and time. The rates of duplication, mortality, and immigration at time t and
position x ∈ Z

d are given by β(t, x), μ(t, x), and k(t, x). As in the above models,
immigration is uninfluenced by the presence of other particles; also set δ1 ≤ k(t, x) ≤
δ2, 0 < δ1 < δ2 < ∞. The rate of migration is given by κ, with the process governed
by the probability kernel a(z), the rate of transition from x to x + z, z ∈ Zd .

If n(t, x) is the number of particles at x ∈ Zd at time t , n(t + dt, x) = n(t, x) +
ξ(t, x), where

ξ(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 w. pr. n(t, x)β(t, x)dt + k(t, x)dt + ∑
z �=0

a(−z)n(t, x + z)dt

−1 w. pr. n(t, x)μ(t, x)dt + ∑
z �=0

a(z)n(t, x)dt

0 w. pr. 1 − (β(t, x) + μ(t, x))n(t, x)dt − ∑
z �=0

a(z)n(t, x + z)dt

−∑
z �=0

a(z)n(t, x)dt − k(t, x)dt

For the first moment, m1(t, x) = E[n(t, x)], we can write

m1(t + dt, x) = E[E[n(t + dt, x)|Ft ]] = E[E[n(t, x) + ε(t, x)|Ft ]]
= m1(t, x) + (β(t, x) − μ(t, x))m1(t, x)dt + k(t, x)dt

+
∑

z �=0

a(z)[m1(t, x + z) − m1(t, x)]dt

and so, defining, as above,La( f (t, x)) = ∑
z �=0

a(z)[ f (t, x + z) − f (t, x)], we obtain

{ ∂m1(t, x)

∂t
= (β(t, x) − μ(t, x))m1(t, x) + k(t, x) + Lam1(t, x)

m1(0, x) = 0
(5.3)
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We consider two cases. The first is where the duplication and mortality rates are
equal, β(t, x) = μ(t, x). Because of the immigration rate bounded above 0, we find
that the expected population size at each site tends to infinity. In the second case,
to simplify, we consider β(t, x) and μ(t, x) to be stationary in time, and assume
the mortality rate to be greater than the duplication rate everywhere by at least a
minimal amount. Here, we show that the interplay between the excess mortality and
the positive immigration results in a finite positive expected population size at each
site.

5.2.1 Case I

If β(t, x) = μ(t, x)

{ ∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x)

m1(0, x) = 0

By taking the Fourier and, then, inverse Fourier transforms, we obtain

m1(t, x) =
∫ t

0
ds
∑

y∈Zd

k(s, y)p(t − s, x − y, 0) ≥
∫ t

0
δ1ds = δ1t

where

p(t, x, y) = 1

(2π)d

∫

T d

e
−t

d∑
j=1

(cos (v j )−1)−i(v,x−y)
dv (5.4)

As t → ∞, δ1t → ∞. Thus,when the birth rate equals the death rate, the expected
population at each site x ∈ Z

d will go to infinity as t → ∞.

5.2.2 Case II

Here, β(t, x) �= μ(t, x). For simplificationwe assume that only immigration, k(t, x),
is not stationary in time. In other words, we assume that the duplication andmortality
rates are stationary in time and depend only on position: β(t, x) = β(x), μ(t, x) =
μ(x) and μ(x) − β(x) � δ1 > 0. From Eq.5.3, we get

{ ∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x) + (β(t, x) − μ(t, x))m1(t, x)

m1(0, x) = 0

This has the solution
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m1(t, x) =
∫ t

0
ds
∑

y∈Zd

k(s, y)q(t − s, x, y)

where q(t − s, x, y) is the solution for

⎧
⎪⎨

⎪⎩

∂q

∂t
= Laq + (β(t, x) − μ(t, x))q

q(0, x, y) = δ(x − y) =
{
1 y = x
0 y �= x

Using the Feynman–Kac formula, we obtain

q(t, x, y) = p(t, x, y)Ex→y[e
∫ t
0 (β(xu)−μ(xu)du]

with p(t, x, y) as in Eq.5.4.
Finally

lim
t→∞m1(t, x) = lim

t→∞

∫ t

0
ds
∑

y∈Zd

k(s, y)Ex→y[e
∫ t−s
0 (β(xu)−μ(xu)du]p(t − s, x, y)

≤ ‖k‖∞
∫ ∞

0
e−δ1wdw

= ‖k‖∞
δ1

.

Thus, when μ(x) − β(x) is bounded above 0, then lim
t→∞m1(t, x) is bounded by 0

and ‖k‖∞
δ1

, so this limit exists and is finite.
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Spatial Models of Population Processes

Stanislav Molchanov and Joseph Whitmeyer

Abstract Recent progress has been made on spatial mathematical models of
population processes. We review a few of these: the spatial Galton–Watson model,
modern versions that add migration and immigration and thereby may avoid the
increasing concentration of population into an ever smaller space (clusterization),
models involving a random environment, and two versions of the Bolker–Pakala
model, in which mortality (or birth rate) is affected by competition.

Keywords Populationprocess ·Galton–Watsonmodel ·Mean-fieldmodel
Bolker–Pacala model · Random environment

1 Introduction

Recent advances have been made in developing mathematical models for population
processes over a large spatial scale, with application primarily to biological pop-
ulations other than humans (e.g., [2, 3, 15]). Here, we discuss some of this work
and its possible application to human populations. This work may be seen as the
development of baseline models, which show the processes and patterns that emerge
from basic regenerative and migration processes, prior to economic political, and
social considerations. Note that in keeping with the universality of these models as
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well as their simplicity, we will use the neutral terminology of “particles” for popu-
lation members. These models are in the spirit of a general approach to population
dynamics as part of statistical physics (e.g., work carried out by Y. Kondratiev and
his group [15, 16]).

We use these models to focus on two questions: the long-run spatial distribu-
tion and the temporal fluctuations of a population. We are particularly interested
in models that describe two common features of empirical populations, stationarity
in space and time and strong deviations from the classical Poissonian picture, i.e.,
spatial intermittency in the distribution of species (clusterization or “patches”). Let
us elaborate. By stationarity, we mean roughly that the stochastic process in question
depends neither on the time we begin observing it nor on the place where we observe
it. Mathematically, we will take this to mean that the mean and the variance of the
number of particles at a given location do not depend on either the location or the
time. Empirically, this is unlikely to be completely true, for there will be ecological
features that make some places more favorable to population growth than others, and
events such as climatic change occur that make some stretches of time more propi-
tious than others for population growth. Nevertheless, variation in such conditions
may not be very great and stationarity is often a reasonable first approximation for
many populations. Stationarity also may be a goal in some modern human societies.
As for clusterization, we note that random spatial placement of population members
will result in a spatial Poisson distribution, which we might describe as mild clump-
ing of the population. Nevertheless, a variety of empirical populations, from humans
to other biological populations (e.g., tropical arboreal ants [21]) to even stars, dis-
play a higher degree of clusterization than that; in the extreme, situations where there
are relatively sparse locations with high population concentrations isolated by vast
unpopulated regions.

Again, these are baseline, simple models. We assume an isolated population that
is not involved in complex multipopulation interaction (such as a predator–prey
scheme). Most of the models we discuss are branching processes or developments of
branching processes and, as is typical for these processes, exclude direct interaction
between particles, although in some the birth–death mechanism can create a kind of
mean-field attractive potential. We discuss a model that allows inhibition or stimula-
tion to particle reproduction due to the presence of existing particles. Both kinds of
models satisfy the Markov property, namely, that evolution of the system from time
t depends only on the state of the system at time t and not additionally on its state
before time t .

The organization of this paper is as follows.We beginwith the background to these
models, the simple nonspatial Galton–Watson process. We then present nine mod-
els, roughly in order of increasing complexity. The first three lack spatial dynamics:
the spatial Galton–Watson process, which produces a high level of clusterization,
the same model but with immigration added, and a mean-field approximation to
the Bolker–Pacala model, which is characterized by intra-population competition.
The second set of six models allow migration in various ways, including one with
immigration as well, two involving something of a random environment, and a mul-
tilayered Bolker–Pacala model with migration between layers.
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2 Mean-Field Models

2.1 Galton–Watson Model

Recent applications of these models have been to organisms such as trees, crabgrass,
and butterflies. This line of work began, however, with humans. In 1873, Francis
Galton posed a problem [7] concerning the extinction of surnames, i.e., the extinction
of male lines of descendants. He wanted to know, given the probability of a given
number of male offspring per male, what proportion of surnames would disappear
and how many people would hold a surname that survived. In 1874, Galton and the
Reverend Henry WilliamWatson published the first mathematical treatment of what
has become known as the Galton–Watson process [8].

The Galton–Watson (GW) process is a simple example of a branching process
[13], a term for stochastic processes arising from incorporating probability theory into
population processes [12]. Both continuous- and discrete-time versions of this model
exist. In the continuous-time version of the GW process, a particle in an infinitesimal
period of time dt produces one offspring with probability β dt and disappears (dies)
with probability μ dt . If it produced an offspring, then there are two particles, each
of which can produce an offspring or die, and the process continues in the same
fashion. It is well known that the entire population, encompassing all lines, becomes
extinct with probability 1 for μ ≥ β. Equal birth and death rates, β = μ, are known
as the critical case. Only when β > μ (the supercritical case), there is a positive
probability that extinction does not occur. In fact, in this case the population follows
the predictions of the Reverend Malthus [19] and grows exponentially: En(t) =
N0e(β−μ)t , where E means to take the expectation, n(t) denotes the population at
time t , and N0 is the initial population [11].

A model of population processes in space may be obtained by extending the
Galton–Watson process by considering independent GW processes occurring in
space. Specifically, we can consider a random point field n(t, x) in the d-dimensional
lattice Z

d , with a critical GW process at each occupied point and no interaction or
movement in space. It is possible also to consider the branching process models in
d-dimensional Euclidean space R

d , but in this paper we treat only the lattice; results
are similar for the two settings. For our applications, generally, d = 2. Assume that
n(0, x) is the initial point field on Z

d , given by the Bernoulli law: for any indepen-
dent x ∈ Z

d , P{n(0, x) = 1} = ρ0, P{n(0, x) = 0} = 1 − ρ0,whereρ0 is the initial
density of the population members. Assume now that each initial population mem-
ber (located at x for n(0, x) = 1) generates its own family, concentrated at the same
location x ∈ Z

d . Assume that the corresponding Galton–Watson processes n(t, x),
t ≥ 0, x ∈ Z

d , are critical, i.e., β = μ. The result is a field n(t, x) with independent
values and constant density: En(t, x) ≡ ρ0.

For large t , in this model, the majority of the cells x ∈ Z
d will be empty because

P{n(t, x) = 0} = βt
1+βt = 1 − 1

βt + O( 1
t2 ) (which gives the formula P{n(t, x) =

0 | n(0, x) = N0} ∼ e−N0/βt ) [9]. The populated points, moreover, are increasingly
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sparse (of order 1
βt ) and contain increasingly large families (of order βt). This is the

phenomenon of clusterization: the population consists of large dense groups of par-
ticles separated by large distances (the distances will be of order t1/d , so the square
root of t in two dimensions). As t → ∞, the clusterization becomes stronger and
stronger. Figure1 illustrates this phenomenon by showing three progressivemoments
of a simulated critical spatial Galton–Watson process in discrete time on a 10× 10
lattice. The initial distribution is a spatial Poisson distribution (and so at t = 1, the
distribution is still close to spatially Poissonian). Again, being critical, the birth and
death rates are equal: β = μ = 1

2 .

2.2 Spatial Galton–Watson Process with Immigration

One simple addition to the spatial GW process is to allow immigration, that is, the
appearance of a new particle at a site, uninfluenced by the presence of particles at
that site or other sites. Adding immigration has two advantages. First, it increases
the realism of the model. Second, it helps to alleviate the concern that the total
population size is stable only in the critical case, that is, if the birth rate and death
rate are precisely and, in many situations, improbably equal (β = μ). An analysis of
this model may be found in Sect. 2.1 of the preceding chapter in this volume, by Han
et al. We refer the reader to that section.

2.3 Bolker–Pakala Model in Mean-Field Approximation

The fact that in the preceding branching process models the population is stable only
in a narrow critical condition, e.g., that b = μ in the Galton–Watsonmodel, or simply
due to immigration in the model with independent immigration, may not be entirely
satisfactory. In the first case, there is no obvious reason why the critical condition
should hold; in the second, the results seem to rest on the extreme simplicity of the
model of immigration.

One alternativemodel that yields a stable distributionmore robustly is the Bolker–
Pacala model [2, 3]. The Bolker–Pacala model, well known in the theory of popula-
tion dynamics, is a stochastic spatial model that incorporates both spatial dynamics
and competition. The general Bolker–Pacala model can be formulated as follows.

At time t = 0, we have an initial homogeneous population, that is, a locally finite
point process

n0(�) = #(individuals in� at time t = 0),

where � denotes a bounded and connected region in R
d . The simplest option is for

n0(�) to be a Poissonian point field with intensity ρ > 0, i.e.,
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Fig. 1 Critical (β = μ = 1/2) spatial Galton–Watson process at three times
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P{n0(�) = k} = exp(−ρ|�|) (ρ|�|)k
k! , k = 0, 1, 2, . . .

where |�| is the finite Lebesgue measure of �. The following rules dictate the evo-
lution of the field:

(i) Each population member, independent of the others, during time interval (t, t +
dt) can produce a new population member(offspring) with probability bdt =
A+dt , A+ > 0. The initial individual remains at its initial position x but the
offspring jumps to x + z + dz with probability

a+(z)dz, A+ =
∫

Rd

a+(x)dx .

In the mean-field approximation, the spatial aspect is averaged and so the jump
of the offspring becomes irrelevant.

(ii) Each population member at point x during the time interval (t, t + dt) dies with
probability μ dt , where μ is the mortality rate.

(iii) Most important is the competition factor. If two populationmembers are located
at the points x, y ∈ R

d , then each of them dies with probability a−(x − y)dt
during the time interval (t, t + dt) (we may assume that both do not die). This
requires that a−(·) be integrable; set

A− =
∫

Rd

a−(z)dz.

The total effect of competition on a individual is the sum of the effects of
competition with all population members. For modern human populations, it is
probably more appropriate to include the suppressive effect of competition in
the birth parameter b than to add it to mortality. The probability of production
of a new population member at x , then, will become b(x − y), for it will depend
on the presence of individuals at points y.

In the Bolker–Pacala model, we have interacting individuals, in contrast to the usual
branching process.One can expect physically that for arbitrary nontrivial competition
(a− ∈ C(Rd), A− > 0), there will exist a limiting distribution of the population. At
each site x , with population at time t given by n(t, x), three rates are relevant, the
birth rate b and mortality rate μ, each proportional to n(t, x), and the death rate
due to competition, proportional to n(t, x)2. Heuristically, when n(t, x) is small, the
linear effects will dominate, which means that if b > μ the population will grow.
As n(t, x) becomes large, however, the quadratic effect will become increasingly
dominant, which will prevent unlimited growth.

This can be seen in the mean-field approximation. We assume all particles on the
lattice in fact are contained in a large but finite box of size L . The total population
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inside the box is described by a continuous-time random walk, the transition rates
for which are

P (NL (t + dt) = j |NL (t) = n) =
⎧⎨
⎩
nκb dt + o(dt2) if j = n + 1
nκμ dt + κγn2/L dt + o(dt2) if j = n − 1
o(dt2) if | j − n| > 1

In [1], we prove a set of limit theorems for this random walk and show that, appro-
priately normalized, as L → ∞, the process approaches an Ornstein–Uhlenbeck
process, a well-known stochastic process that may be loosely described as fluctua-
tions around an evolving central tendency, which may be a fixed equilibrium, or may
be characterized by drift.

3 Models with Spatial Dynamics

3.1 KPP Model on Z
d with Migration (Heavy Tails)

In order to avoid clusterization, the process must fill out empty space to compensate
for the degenerating families. One simple alternative to immigration is to add to the
branching process a simple random walk to nearest neighbors. Given that we are on
the lattice, this move is to one of two places in dimension 1, one of four places in
dimension 2, and so on. In mathematical terms, the model includes diffusion with
generator �, where � is the discrete or lattice Laplacian

� f (x) =
∑

x ′ :|x ′−x |=1

( f (x ′) − f (x)).

In high dimensions (d ≥ 3), this simple randomwalk (diffusion) with generator�
is sufficient to eliminate clusterization. For d ≤ 2, which is after all the appropriate
setting for most demographic or ecological applications, such local diffusion is not
sufficient and the clusterization still increases infinitely. If, however, we modify the
simple random walk to allow for “long jumps,” that is, moves an indefinitely long
distance, with sufficiently heavy tails and other conditions, then we can eliminate
clusterization even in two or fewer dimensions. This modified random walk may be
called “migration.”

We are interested in the evolution of the configuration N (t, x), x ∈ Z
d , meaning

the total number of individuals at position x in the d-dimensional lattice at time
t . The following models are similar to the Kolmogorov–Petrovskii–Piskunov (KPP)
model [14], a well-known and influential model from the 1930s. Two rather technical
differences that do not have much effect on the conclusions are that in the KPPmodel
the phase (or state) space is continuous (Rd instead ofZ

d ) and the underlying process
is Brownian motion instead of a random walk, but these are rather technical points.
More essential is that in the KPP model the initial population N (0, ·) contains but
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a single individual. Under the condition of supercriticality, β > μ, think of a novel,
superior gene thatmay spread through a species or a seed thatmay propagate in space.
We consider, in contrast, the critical case where β = μwith an initial population that
is stationary in the phase space Z

d with positive finite density, and, thus, is infinite.
The central simplifying assumption of these models is the absence of interaction

between individuals. As a result, we can write the total population at point y, N (t, y),
as the sum of subpopulations as follows. Let n(t, y; x) be the particle field generated
by the initial n(0, x) particles at the site x ∈ Z

d . Then

N (t, y) =
∑
x∈Zd

n(t, y; x).

Each subpopulation, in turn, is the sum of the contribution (the progeny) of each
individual initially at the given site x , which we can write

n(t, y; x) =
n(0,x)∑
i=1

n(t, y; xi ).

The dynamics of the process includes three components, the familiar birth rate
β and death rate μ, and the migration of population members. Migration depends
on the probability kernel a(z), z ∈ Z

d , z 
= 0,
∑
z 
=0

a(z) = 1 and a rate of migration,

which we can set to 1 by scaling time appropriately. An individual located at time
t in some site x ∈ Z

d , therefore, jumps to the point (x + z) ∈ Z
d with probability

a(z)dt , independently of the other population members.
To implement the heavy tails assumption for migration, we assume that a(z) takes

the form:

a(z) = h1(θ)

|z|2+α

(
1 + O

(
1

|z|2
))

, z 
= 0

with 0 < α < 2, θ = arg z
|z| ∈ (−π,π] = T 1, h1 ∈ C2(T 1), h1 > 0. The second

moment of the spatial distribution a(z) is infinite. The stipulation that
∑
z 
=0

a(z) = 1

may be met by appropriate scaling of the bounded function h1. The heaviness of the
tails is controlled by α.

The generator for the migration process L is a generalization of the discrete
Laplacian. The operator L is defined:

L f (x) :=
∑
z 
=0

a(z)( f (x + z) − f (x))

For the study of subpopulation n(t, y; x), x, y ∈ Z
d , let us define the generating

functionuz(t, x; y) = Ex zn(t,y;x) = ∑∞
j=0 P{n(t, y; x) = j}z j . This is a polynomial

that is especially useful in generating moments. The nonlinear differential equation



Spatial Models of Population Processes 443

for uz(t, x; y) is [14]
∂uz

∂t
= Luz + βu2z − (β + μ)uz + μ (3.1)

u(0, x; y) =
{
z, x = y

1, x 
= y

Repeated differentiation over z and the substitution z = 1 leads to the sequence
of moment equations for the factorial moments, given by

m1(t, x; y) = Exn(t, y; x)
m2(t, x; y) = Exn(t, y; x)(n(t, y; x) − 1)
m3(t, x; y) = Exn(t, y; x)(n(t, y; x) − 1)(n(t, y; x) − 2)
etc.

Then, for the critical case β = μ

∂m1

∂t
= Lm1, m1(0, x; y) = δy(x),

where δi ( j) = 1 for i = j and 0 for i 
= j . This means m1(t, x; y) = p(t, x, y),
where p(t, x, y) is the transition probability from x to y in time t , i.e., p(t, x, y) =
Px {x(t) = y} where x(t) is the trajectory of the random walk (random jump!) with
generator L.

From here, we can obtain a theorem using what is known as the “method of
moments” to establish the existence of a stable distribution as t → ∞—in other
words, no exponential decay, no exponential growth, and no clusterization. We state
and explain the theorem here, but do not give the proof.

Let us note a well-known distinction concerning stochastic processes. A random
walk x(t) is called “recurrent” if P{x(t) returns to i infinitely often |x(0) = i} = 1
and “transient” if P{x(t) returns to i infinitely often |x(0) = i} = 0. An equivalent

way of expressing this is x(t) is transient if and only if
∞∫
0
p(t, x, x)dt < ∞.

Theorem 3.1 Suppose x(t) is transient, i.e.,
∞∫
0
p(t, x, x)dt < ∞. Then,

E N (t, x) ≤ cn0n!

for some constant c0 (Carleman conditions). For our model

E N (t, x)(N (t, x) − 1) · · · (N (t, x) − l + 1) = ml(t) −−−→
t→∞ ml(∞)

and, therefore
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N (t, x)
law−−−→

t→∞ N (∞, x)

where N (∞, x) is a steady state, that is, a random variable with a finite distribution.

Let us elaborate two points. The Carleman conditions are time-independent
bounds on themomentswhich,when satisfied as they are here,mean that themoments
uniquely define the distribution. In other words, it is possible to construct the field
N (t, ·) and study its limiting behaviors t → ∞ using the moments. The last con-
clusion gives us the desired result that we will have a stable population, without
exponential growth or decay and without clusterization.

In the KPP case, a similar result goes back to [4, 18], who developed ideas
by R.L. Dobrushin [5] using a technique involving partial differential equations. For
branching randomwalks inR

d , the case of so-called contact processes, [17] usedwhat
are called the “forward Kolmogorov equations” to prove the existence of the steady
state N (∞,∞). Equation3.1, in contrast, is constructed using the related “backward”
Kolmogorov equations. We proved the above theorem by using this method for
individual subpopulations n(t, y; x), y ∈ Z

d and then combining the results, which
we were able to do because of the independence of these subpopulations.

The most convenient way to calculate the moments is by using the Fourier trans-
form. In Fourier representation

m̂l(t, k; y) =
∑
x∈Zd

ei(k,x)ml(t, x; y).

Note that, therefore ∑
x∈Zd

ml(t, x; y) = m̂l(t, k; y)|k=0.

It is straightforward to show that L̂ f (x) = L̂(k) f̂ (k), where L̂ = â(k) − 1; note,
also, â(0) = 1. As a result

m̂1(t, k; y) = eL̂t

and so
m1(t, y) =

∑
x∈Zd

m1(t, x; y) = m̂1(t, k; y)|k=0 = 1.

For the second factorial moment, Eq.3.1 gives

∂m2(t, x; y)
∂t

= Lm2(t, x; y) + 2βm1(t, x; y)2.

Again, we use the Fourier transform to obtain
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∑
x∈Zd

m2(t, x; y) = m̂2(t, k; y)|k=0 = β

∫

T d

dθ

1 − â(θ)

(
1 − e−2t (1−â(θ))

)
.

By using cumulants and their properties, it can be shown that m2(t, y) = ∑
x∈Zd m2

(t, x; y) + o(1) + 1.
Intermittency or full clusterization is identified by the property

m2

m2
1

−−−→
t→∞ ∞.

In fact, clusterization is evident if m2 � m2
1. In our situation, x(t) is transient if∫

T d

dθ
1−â(θ)

< ∞, but the limiting distribution of particles will show some clusterization

if
∫
T d

dθ
1−â(θ)

� 1.

3.2 KKP Model on Z
d with Multiple Offspring (Contact

Process)

This introduces only one complication of the previous model. Namely, the number
of offspring is no longer limited to two. When a particle splits, it may do so into j
particles, j = 2, 3, ...,∞, with rates b j . We need only the assumption, setting

β :=
∞∑
j=2

b j and β1 :=
∞∑
j=2

jb j ,

that β < ∞, β1 < ∞.
With, as before, uz(t, x; y) = Ex zn(t,y;x),

∂uz

∂t
= Luz +

∞∑
j=2

b ju
j
z − (β + μ)uz + μ

u(0, x; y) =
{
zρ0 , x = y

1, x 
= y

where ρ0 is the initial population density.
For the first moment

∂m1(t, x; y)
∂t

=Lm1(t, x; y) +
∞∑
j=2

jb jm1(t, x; y) − (β + μ)m1(t, x; y),

m1(0, x; y) =ρ0δy(x).
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As before, this is easily solved using the Fourier transform

m̂1(t, k; y) = ρ0e
(β1−β−μ)t eL̂(k)t

and
m1(t, y) = m̂1(t, k; y)|k=0 = 1 = ρ0e

(β1−β−μ)t .

This establishes β1 − β − μ = 0 as the critical setting of parameters for this
process.

For the second factorial moment, we need to assume that β2 < ∞, where β2 =∑∞
j=2 j ( j − 1)b j . Using the Fourier transform

∑
x∈Zd

m2(t, x; y) = m̂2(t, k; y)|k=0 = β2

2

∫

T d

dθ

1 − â(θ)

(
1 − e−2t (1−â(θ))

)
.

Then, as above, because m2(t, y) = ∑
x∈Zd m2(t, x; y) + o(1) + 1, the population

will be unstable due to intermittency, be stable with some clusterization, or be stable
without clusterization, depending on the evaluation of

∫
T d

dθ
1−â(θ)

.

3.3 Stability Under a Single Point Perturbation

A natural next step is to probe the effect of perturbations on the stability created by
the critical condition of the KPP-type model of the previous section. We consider,
here, the same model with the critical condition that β = μ everywhere on the lattice
Z
d except at a single point 0, that is,

β(x) − μ(x) = σδ0(x), x ∈ Z
d

with σ > 0. This model is due to Yarovaya (e.g., [20]).
The PDE for the first moment is then

∂m1

∂t
= Lm1 + σδ0(x)m1

m1(0, x) ≡ 1.

The stability of this model hinges on the value of σ. Specifically, there is a crit-
ical σcr such that if σ < σcr the population attains a stable state but if σ > σcr the
population does not stabilize but grows indefinitely.

This follows from spectral analysis, using Fourier transforms. The spectrum of
L, Sp(L) = [min(L̂), 0]. We define the Hamiltonian H = L + σδ0(x). If H has
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discrete eigenvalue λ0 with eigenvector ψ0, then, Ĥ ψ̂0 = λ0ψ̂0. Thus, L̂(θ)ψ̂0(θ) +
σψ0(0) = λ0ψ̂0(θ). Rearranging, we obtain

ψ̂0(θ) = σψ0(0)

λ0 − L̂(θ)

Taking the inverse Fourier transform

ψ0(x) = σψ0(0)

(2π)d

∫

T d

dθ e−i(θ,x)

λ0 − L̂(θ)

ψ0(0) 
= 0, otherwise ψ0(x) ≡ 0, which means

1

σ
= 1

(2π)d

∫

T d

dθ e−i(θ,x)

λ0 − L̂(θ)
=: I (λ0)

I (0) > 0 and as λ0 increases from 0, I (λ0) decreases monotonically. Conse-
quently, if 1

σ
> I (0), there is no λ0 > 0. Put otherwise, we set σcr = 1

I (0) . Then there
is a simple λ0(σ) > 0 iff σ > σcr.

The corresponding eigenfunction, up to a constant factor, is

ψ0(x) = 1

(2π)d

∫

T d

dθ e−i(θ,x)

λ0 − L̂(θ)
= Gλ0(0, x)

where Gλ(0, x) =
∞∫
0
e−λt p(t, 0, x)dt is the Green function of the underlying random

walk, which is given by

∂ p(t, x, y)

∂t
= Lp(t, x, y)

p(0, x, y) = δx (y).

Because of translation invariance, we may write p(t, y − x) = p(t, x, y)

Set μ1(t, x) = m1(t, x) − 1.

∂μ1(t, x)

∂t
= Hm1(t, x) = Lμ1 + σδ0(x)μ1 + σδ0(x)

μ1(0, x) ≡ 0.
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We now have two cases:

(1) If λ0(σ) > 0, then μ1 = O(1) + eλ0tσψ0(0)ψ0(x), and because ‖ψ0‖ = 1 it fol-
lows that the population size is unstable and increases exponentially; there is no
steady-state population.

(2) If λ0(σ) < 0, we may apply Duhamel’s principle to obtain

μ1(t, x) = σ

t∫

0

ds
∑
z

p(t − s, x − z)(δ0(z)μ1(s, z) + δ0(z))

= σ

t∫

0

p(t − s, x)(μ1(s, 0) + 1)ds

m1(t, x) = 1 + σ

t∫

0

p(t − s, x)m1(s, 0)ds

= 1 + σ

t∫

0

p(t − s, x)ds + σ2
t∫

0

s∫

0

p(t − s, x)p(s − u, 0)m1(u, 0)du ds

= 1 + σ

t∫

0

p(s, x)ds + σ2
t∫

0

p(t − s, x)

s∫

0

p(u, 0)du ds + . . .

For σ < σcr, σ
∞∫
0
p(s, 0)ds < 1, and so the above series converges for all t and

as t → ∞.
Turning to the second moment, the PDE for the second factorial moment is

∂m2(t, x)

∂t
= Lm2(t, x) + σδ0(x)(m2(t, x) + 2m2

1(t, x))

m2(0, x) ≡ 0.

An analysis parallel to that for the first moment shows that m2(∞, x) < ∞.
Consequently, for σ < σcr the population stabilizes.

3.4 Spatial Galton–Watson Process with Immigration
and Finite Markov Chain Spatial Dynamics

We return to the spatial Galton–Watson process with immigration, but here with the
possibility of migration between sites and allowing birth, death, and immigration
rates to vary across sites. The number of sites is finite, which facilitates calculations.
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We present the main results, here, and sketch their rationale; for full analysis, see
[10] in this volume.

Let X = {x, y, . . .} be a finite set. Define the following parameters. At x in X , let
β(x) be the rate of duplication, μ(x) be the rate of annihilation, and k(x) be the rate
of immigration. For x and y in X , let a(x, y) be the rate of transition x → y.

Define −→n (t) = {n(t, x), x ∈ X} to be the population at moment t ≥ 0, with

n(t, x) the occupation number of site x ∈ X . Letting
−→
λ = {λx ≥ 0, x ∈ X}, we

write the Laplace transform of the random vector −→n (t) ∈ R
N , N = Card(X) as

u(t,
−→
λ ) = E e−(

−→
λ ,

−→n (t)).
The differential equation for u(t,

−→
λ ) is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,
−→
λ )

∂t =
∑
x∈X

(e−λx − 1)(−∂u(t,
−→
λ )

∂λx
β(x) + u(t,

−→
λ )k(x)) +

∑
y∈X

(eλy − 1)μ(y)(−∂u(t,
−→
λ )

∂λy
)

+
∑

x,z;x 
=z

(eλx−λz − 1)a(x, z)(−∂u(t,
−→
λ )

∂λx
)

u(0,
−→
λ ) = E e−(

−→
λ ,

−→n (0))

(3.2)
By differentiating Eq.3.2 over the variables λx , x ∈ X , one can get the equations for
the correlation functions

kl1...lm (t, x1, . . . , xm) = E nl1(t, x1) · · · nlm (t, xm),

where x1, . . . , xm are different points of X and l1, . . . , lm ≥ 1 are integers. Specifi-
cally

kl1...lm (t, x1, . . . , xm) = (−1)l1+···+lm
∂l1+···+lm n(t,−→x )

∂l1λx1 . . . ∂lmλxm

|−→
λ =0

.

The corresponding equations will be linear. The central point here is that the factors

(eλx−λz − 1), (eλy − 1), and (e−λx − 1) are equal to 0 for
−→
λ = 0. As a result, the

higher order (n > l1 + . . . + lm) correlation functions cannot appear in the equations
for {kl1...lm (·), l1 + . . . + lm = n}.

For the first moment, for example, if we assume the symmetry a(x, z) = a(z, x)
and define V (v) = β(v) − μ(v), we obtain

∂m1(t, x)

∂t
= Am1 + Vm1 + k(x), m1(0, x) = n(0, x)

where A = [a(x, y)] = A∗ is the generator of a Markov chain.
An alternative approach to the generating function method is to treat the birth and

death process with immigration as a random walk with reflection on the half axis
n ≥ 0.. If we start from the simplest case, when there is one site, i.e., X = {x}, then
application of known facts concerning random walks (see [6]) yields the following
result.
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Proposition 3.2

1. Ifβ > μ, the process n(t) is transient and the population n(t) grows exponentially.
2. If β = μ, k > 0, the process is not ergodic but rather it is zero-recurrent for k

β
≤ 1

and transient for k
β

> 1.
3. If β < μ, the process n(t) is ergodic. The invariant distribution for β < μ is given

by

π(n) = 1

S̃

k(k + β) · · · (k + β(n − 1))

n!μn

where S̃ =
∞∑
j=1

k(k + β) · · · (k + β( j − 1))

μ · 2μ · · · jμ .

Let us turn to the general case of the finite space X . Let N = Card X and −→n (t)
be the vector of the occupation numbers. The process −→n (t), t ≥ 0 is a random
walk on (Z1+)N = {0, 1, ...)N with continuous time. If at the moment t we have the
configuration −→n (t) = {n(t, x), x ∈ X}, then, for the interval (t, t + dt), only the
following events (up to terms of order(dt)2) can happen:

(a) the appearance of a new particle at the site x0 ∈ X , due to birth or immigration,
with probability n(t, x0)β(x0)dt + k(x0)dt .

(b) the death of one particle at the site x0 ∈ X , with probability μ(x0)n(t, x0)dt , for
n(t, x0) ≥ 1.

(c) the transfer of one particle from site x0 to y0 ∈ X (jump from x0 to y0), with
probability n(t, x0)a(x0, y0)dt , for n(t, x0) ≥ 1.

Theorem 3.2 in the preceding chapter in this volume, by Han et al., gives sufficient
conditions for the ergodicity of the process−→n (t). We refer the reader to that analysis.

3.5 Branching Process with Stationary Random Environment

The last of our models without interaction between particles is a recently developed
one that relaxes the artificiality of uniform birth and death rates, at β and μ, for the
entire phase space. Working now in continuous space R

d , [16] stipulates a random
environment ωm for the process with birth rate and death rates given by b(x,ωm) and
m(x,ωm). Define the potential V (x,ωm) = b(x,ωm) − m(x,ωm). In addition, there
is migration but no immigration. Let the generator of the underlying migration L be
the continuous version of our usual one with long jumps

L f (x) =
∫

Rd

a(z)( f (x + z) − f (x))dz.

The population density ρ(t, x) satisfies

http://dx.doi.org/10.1007/978-3-319-65313-6_3
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∂ρ(t, x)

∂t
= Lρ(t, x) + V (x,ωm)ρ(t, x)

ρ(0, x) ≡ ρ0.

Suppose that b(x,ωm) and m(x,ωm) are continuous, ergodic, homogeneous, and
nonnegative fields. Suppose also that 〈etb(0,ωm )〉 < ∞, where 〈·〉 indicates the expec-
tation over ωm . Then, if V (x,ωm) satisfies the condition that there exists a (small)
ε0 > 0 such that for any L > 0

P{V (z,ωm) ≥ ε0, |z| ≤ L} > 0

Reference [16] show that for any open domain D ∈ R
d , with the measure of the

domain |D| < ∞, n(t, D) −−−→
t→∞ ∞ with probability 1.

This is true, moreover, even if 〈V 〉 < 0, in other words, if on average the death rate
exceeds the birth rate. The reason is that, despite the fact that most places the death
rate prevails and the population decays to 0, there are an infinite number of places
where the birth rate exceeds the death rate so that the population grows exponentially.
This is sufficient for the population as a whole to grow without limit.

3.6 Multilayer Bolker–Pacala Model

Some of the most intriguing population questions involve the interplay between
multiple populations. A model that can capture some of this is a generalization of the
mean-field approximation to the Bolker–Pacala model. We take the idea of a mean
field over a box of size L and extend that to a set of N boxes, each of size L .

As always, there are birth rates and death rates. With multiple boxes, they can
vary by box, although in simpler models we may keep them uniform across boxes.
Migration (the “jump of the offspring”), which was irrelevant in the one-box mean-
field approximation, here, can occur between boxes and so cannot be ignored as in
the simpler Bolker–Pacala model. Migration can be seen equivalently as two random
events, the birth of a individual and its dispersal, as inBolker andPacala’s presentation
[2], or as a single random event, as in our model. (We stress that this differs from
the classical branching process, in which the “parental” individual and its offspring
commence independent motion from the same point.) We assume, of course, that all
offspring evolve independently according to the same rules.

Most interesting is the competition or suppression effect, which now can occur
both internally, the population in a given box suppressing its own population, and
externally, the population in one box suppressing the population of other boxes.
The migration and suppression parameters can vary across boxes, or, again, in the
simplest models, can be kept uniform across boxes.

Different general configurations of the parameters may be more appropriate
for different modeling scenarios. For example, if the multiple populations are
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geographical regions, migration rates and internal suppression or competition rates
may be relatively high, while external suppression rates would be low. Whereas if
the populations are human social classes, migration rates are likely to be low, while
external suppression rates, one class’s population constraining the growth of another
class’s population, might be relatively high. Moreover, these last rates might well be
nonuniform, with not all classes affecting other social classes equally.

The N -box Bolker–Pacala model gives rise to a random walk on

(Z+)N = {(n1, n2, . . . , nN ) : ni ∈ Z+, 1 ≤ i ≤ N }.

Consider a system of N disjoint rectangles Qi,L ⊂ R
2, i = 1, 2, . . . , N , N fixed,

with
|Qi,L ∩ Z

2| = L .

Parameters βi ,μi > 0 represent the natural (biological) birth and death rates of par-
ticles in box i , i = 1, . . . , N , respectively. The migration potential a+ and the com-
petition potential a− also are constant on each Qi,L . For x ∈ Qi,L , y ∈ Q j,L ,

a−
L (x, y) = a−

i j /L
2, i, j = 1, 2, . . . , N , (3.3)

and
a+
L (x, y) = a+

i j /L , i, j = 1, 2, . . . , N . (3.4)

Specifically, a−
i j indicates the supressive effect on the population in box i due to

the population in box j (such as due to competition between boxes i and j), while
a+
L (x, y) is the rate of migration from x ∈ Qi,L to y ∈ Q j,L .
Let

⋃N
i=1 Qi,L = QL . Then set

A+
i :=

∑
y∈QL

a+(x, y) =
N∑
j=1

a+
i j , A−

i :=
∑
y∈QL

a−(x, y) =
N∑
j=1

a−
i j

Assume that
A+
i , A−

i ≤ A < ∞

uniformly in L .
The population in each square Qi,L , i = 1, . . . , N , at time t is represented by

n(t) = {n1(t), n2(t), . . . , nN (t)}, (3.5)

a continuous-time randomwalk on (Z+)N with transition rates, for i, j = 1, 2, . . . , N
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n(t + dt |n(t)) (3.6)

= n(t) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei w. pr. βi ni (t)dt + o(dt2)

−ei w. pr. μi ni (t)dt + ni (t)
L

∑N
j=1 a

−
i j n j (t)dt + o(dt2)

e j − ei w. pr. ni (t)a
+
i j dt + o(dt2), j 
= i

0 w. pr. 1 − ∑N
i=1(βi + μi )ni (t)dt

− 1
L

∑
i, j ni (t)n j (t)a

−
i j dt + ∑

i, j ni (t)a
+
i j + o(dt2)

other w. pr. o(dt2)

where ei is the vector with 1 in the ith position and 0 everywhere else.
This more general model exhibits some of the same characteristics of the simple

mean-field approximation but reveals some new effects as well. Once again, there is
convergence, as the size of the boxes L increases, to an Ornstein–Uhlenbeck process.
The N -dimensional random walk is geometrically ergodic, meaning that it shows
exponential convergence to a stable distribution. New, however, is that, for at least
N = 2 and 3 (solutions become increasingly difficult to find as N increases), the
population level may have multiple nontrivial equilibria. This is true only for some
rate values, however. In particular, at least some of the values of the a−

i j , i 
= j , the
suppression of population across boxes, must be high enough.

This creates intriguing possibilities. For example, given the perpetual probabilistic
fluctuations in population size, there is a certain chance that a population fluctuating
about one equilibrium could swing wildly enough to put it into the attractive basin of
a different equilibrium. This phenomenon should be amenable to analysis although
it has not yet been done. Research into these models is ongoing.
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1 Introduction

In these lecture notes we will consider the following issues: Ergodic theorem
(in some textbooks called Convergence theorem, while Ergodic would be reserved
for what we call Law of Large Numbers—see below), Law of Large Numbers (LLN),
Central Limit Theorem (CLT), Large Deviations (LDs) forMarkov chains (MC), and
as one of themost important applications, a Poisson equation. LLN, CLT and LDs are
the basis of most of statistical applications. Everything is presented on the simplest
model of a Markov chain with positive transition probabilities on a finite state space,
and in some cases we show a few more general results where it does not require too
much of additional efforts. This simplified version may be regarded as a preparation
to more advanced situations of Markov chains on a more general state space, includ-
ing non-compact ones and including Markov diffusions. A special place in this plan
is occupied by coupling method, a famous idea, which is not necessary for any result
in these lecture notes; yet, it is a rather convenient tool ‘for thinking’, although some-
times not very easy for a rigorous presentation. We show the Ergodic theorem firstly
without and then with coupling method. Poisson equations in this paper are discrete
analogues of ‘real’ Poisson equations for elliptic differential operators of the second
order in mathematical physics. We consider equations without a potential—the most
useful tool in diffusion approximations, cf. [12, 34, 35]—and also with a potential.
The problem of smoothness of solutions with respect to a parameter—which makes
this stuff so important in diffusion approximations and which is one of the main
motivations of the whole theory—is not presented; however, these notes may be
regarded as a bridge to this smoothness issue.

These notes are based on several different courses delivered by the author at
various universities in various years, including Moscow State University, Helsinki
Technical University (now Aalto University), University of Leeds and Magic con-
sortium (http://maths-magic.ac.uk/index.php), and National Research University
Higher School of Economics—Moscow. The author thanks all participants—not
only students—for their interest and patience and for many useful remarks.

The initial plan involved non-compact cases with problems related to stability
or recurrence properties of processes in such spaces. However, this would require
significantly more time and many more pages. Hence, this more ambitious task is
postponed for some future.

Some classical results are given without proofs although they were proved in the
courses delivered. The references on all such ‘missing’ proofs are straightforward.

Finally, let us mention that the following numeration system is accepted here: all
items such as Theorem, Lemma, Remark, Definition and some others are numbered
by a unique sequence of natural numbers. This method was accepted in some well-
known textbooks and the author shares the view about its convenience.
The following notations will be used for a process (Xn, n ≥ 0):

F X
n = σ(Xk : k ≤ n); F X

(n) = σ(Xn).
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The following notations from the theory of Markov processes will be accepted (cf.
[11]): the index x in Ex or Px signifies the expectation or the probability measure
related to the non-random initial state of the process X0. This initial state may be also
random with some distribution μ, in which case notations Eμ or Pμ may be used.

If state space S is finite, then |S| denotes the number of its elements. In the sequel
P denotes the transition matrix

(
pi j

)
1≤i, j≤|S| of the process in the cases where state

space of the process is finite.
Since this is a course about ergodic properties, we do not recall the definitions of

what are Markov, strong Markov, homogeneous Markov processes (MP) which are
assumed to be known to the reader: consult any of the textbooks [4, 10–12, 20, 27,
38, 49] if in doubt.

2 Ergodic Theorem – 1

In this section, we state and prove a simple ergodic theorem for Markov chains on a
finite state space. However, we start with a more general setting because later in the
end of these lecture notes a more general setting will be addressed. Ergodic Theorem
for Markov chains in a simple situation of finite state spaces is due to Markov,
although sometimes it is attributed to Kolmogorov with a reference to Gnedenko’s
textbook, and sometimes to Doeblin (see [9, 15]). We emphasize that this approach
was introduced by Markov himself (see [30, 38, 39]). Kolmogorov, indeed, has
contributed to this area: see, in particular, [23].

Let us consider a homogeneous Markov chain X = (Xn), n = 0, 1, 2, . . . with a
general topological state space (S,S) where S is the family of all Borel sets in S
assuming that S contains all single point subsets. Let Px (A) be the transition kernel,
that is, Px (A) = P(X1 ∈ A|X0 = x) ≡ Px (X1 ∈ A); recall that for any A ∈ S this
function is assumed Borel measurable in x (see [11]) and a measure in A (of course,
for a finite S this is not a restriction). Denote by Px (n, A) the n-step transition kernel,
i.e. Px (n, A) = Px (Xn ∈ A); for a finite Markov chain and if A = j , the notation
p(n)
i j will be used, too. If initial state is random with distribution μ, we will be using a

similar notation Pμ(n, A) for the probability Pμ(Xn ∈ A). Repeat that Pinv(Xn ∈ A)

signifies Pμ(Xn ∈ A) with the (unique) invariant measure μ; naturally, this value
does not depend on n.

Recall the definition of ergodicity for Markov chains (MC).

Definition 1 An MC (Xn) is called Markov ergodic iff the sequence of transition
measures (Px (n, ·))has a limit in total variationmetric,which is a probabilitymeasure
and if, in addition, this limiting measure does not depend on x ,

lim
n→∞Px (n, A) = μ(A), ∀ A ∈ S. (1)

Recall that the total variation distance or metric between two probability measures
may be defined as
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‖μ − ν‖T V := 2 sup
A∈S

(μ(A) − ν(A)).

Definition 2 AnMC (Xn) is called irreducible iff for any x ∈ S and A ∈ S, A 
= ∅,
there exists n such that

Px (Xn ∈ A) > 0.

AnMC (Xn) is called ν-irreducible for a given measure ν on (S,S) iff for any x ∈ S
and A ∈ S, ν(A) > 0 there exists n such that

Px (Xn ∈ A) > 0.

Of course, weaker or stronger ergodicity properties (definitions) may be stated
with weaker, or, respectively, stronger metrics. Yet, in the finite state space case all
of them are equivalent.

Exercise 3 In the case of a finite state space S with S = 2S (all subsets of S) and
a counting measure ν such that ν(A) = |A| := the number of elements in A ⊂ S,
show that ν-irreducibility of a MC is equivalent to the claim that there exists n > 0
such that the n-step transition probability matrix Pn is positive, that is, all elements
of it are strictly positive.

The most standard is the notion of ν-irreducibility of an MC where ν is the unique
invariant measure of the process.

Definition 4 Stationary or invariant probability measure μ for a Markov process X
is a measure on S such that for each A ∈ S and any n,

μ(A) =
∑

x∈S
μ(x)Px (n, A).

Lemma 5 A probability measure μ is stationary for X iff

μP = μ,

where P is the transition probability matrix of X.

Proof is straightforward by induction.

Lemma 6 For any (homogeneous)Markov chain in a finite state space S there exists
at least one stationary measure.

Proof of the Lemma 6. The method is due to Krylov and Bogoliubov (Kryloff and
Bogoliuboff, [26]). Let us fix some (any) i0 ∈ S, and consider Cesàro averages

1

n + 1

n∑

k=0

p(k)
i0, j

, 1 ≤ j ≤ N , n ≥ 1,
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where N = |S|. Due to the boundedness, this sequence of vectors as n → ∞ has a
limit over some subsequence, say, n′ → ∞,

1

n′ + 1

n′∑

k=0

p(k)
i0, j

→ π j , 1 ≤ j ≤ N , n′ → 1,

where by the standard convention, p(0)
i j = δi j (Kronecker’s symbol). Since S is finite,

it follows that (π j , 1 ≤ j ≤ N ) is a probability distribution on S. Finally, stationarity
follows from the following calculus based on Chapman–Kolmogorov’s equations,

1

n′ + 1

n′∑

k=0

p(k)
i0, j

= 1

n′ + 1

n′∑

k=0

N∑

�=1

p(k−1)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

=
N∑

�=1

1

n′ + 1

n′−1∑

k=0

p(k)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

=
N∑

�=1

1

n′ + 1

n′∑

k=0

p(k)
i0,�

p�, j + 1

n′ + 1
p(0)
i0, j

− 1

n′ + 1

N∑

�=1

p(n′)
i0,�

p�, j .

It follows,

lim
n′→∞

1

n′ + 1

n′∑

k=0

p(k)
i0, j

=
N∑

�=1

π� p�, j .

Hence,

π j =
N∑

�=1

π j p�, j ∼ π = πP.

Hence, the distribution (π j ) is stationary due to the Lemma 5. The Lemma 6 is
proved.

Remark 7 Note that for a finite S the statement of the Lemma, actually, may be
proved much faster by applying the Brouwer fixed-point theorem, as it is done, for
example, in [41]. Yet, the method used in the proof seems deeper, and it can be used
in a much more general situation including ‘non-compact’ cases. (However, we are
not saying that the use of Brouwer’s fixed-point theorem is restricted to finite state
spaces.)

From now on, in this and several following sections we consider the case of
a finite state space S; a more general case will be addressed in the last sections.
The next condition suggested by Markov himself plays a very important role in the
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analysis of asymptotic behaviour of a (homogeneous) Markov chain (MC in the
sequel). Let there exist n0 such that

κn0 := inf
i,i ′

∑

j

min(Pi (n0, j), Pi ′(n0, j)) ≡ inf
i,i ′

∑

j

min(pn0i, j , p
n0
i ′, j ) > 0. (2)

By the suggestion of S. Seneta, this coefficient κn0 (as well as κ in (3) and in (52))
is properly called Markov–Dobrushin’s.

Unlike in the continuous time case, in discrete-time situation there are potential
complications related to possible cycles, that is, to a periodic structure of the process.
A typical example of such a periodic structure is a situation where the state space
is split into two parts, S = S1 ∪ S2, which do not intersect, and X2n ∈ S1, while
X2n+1 ∈ S2 for each n. Then ergodic properties is reasonable to study separately for
Yn := X2n and for Zn := X2n+1. In other words, this complication due to periodicity
does not introduce any real news, and by this reason there is a tradition to avoid this
situation.Hence, in the sequelwewill study our ergodic process under the assumption
n0 = 1 in the condition (2). Similar results could be obtained under a more general
assumption of aperiodicity.

So, here is the simplified version of (2), which will be accepted in the sequel:

κ := inf
i,i ′

∑

j

min(Pi (1, j), Pi ′(1, j)) ≡ inf
i,i ′

∑

j

min(pi j , pi ′ j ) > 0. (3)

Also, to clarify the ideas we will be using in some cases the following stronger
assumption,

κ0 := inf
i j

pi j > 0. (4)

However, eventually, the assumption (4) will be dropped and only (3) will remain in
use.

Theorem 8 Let the assumption (3) hold true. Then the process (Xn) is ergodic, i.e.
there exists a limiting probability measure μ such that (1) holds true. Moreover, the
uniform bound is satisfied for every n,

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ (1 − κ)n, (5)

and the measure μ is a unique invariant one.

Proof of Theorem 8 is classical and may be found in many places, for example, in
[15].

(A) Denote for any A,

m(n)(A) := min
i

Pi (n, A), M (n)(A) := max
i

Pi (n, A).
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By Chapman–Kolmogorov’s equation,

m(n+1)(A) = min
i

Pi (n + 1, A) = min
i

∑

j

pi j Pj (n, A)

≥ min
i

∑

j

pi j min
j ′

Pj ′(n, A) = m(n)(A),

which signifies that the sequence m(n)(A) does not decrease in n. Similarly, the
sequence M (n)(A) does not increase in n. Hence, it suffices to show that

M (n)(A) − m(n)(A) ≤ (1 − κ)n. (6)

(B) Again by Chapman–Kolmogorov’s equation,

M (n)(A) − m(n)(A) = max
i

Pi (n, A) − min
i ′

Pi ′(n, A)

= max
i

∑

j

pi j Pj (n − 1, A) − min
i ′

∑

j

pi ′ j Pj (n − 1, A).

Let maximum here be attained at i+ while minimum at i−. Then,

M (n)(A) − m(n)(A) =
∑

j

pi+ j Pj (n − 1, A) −
∑

j

pi− j Pj (n − 1, A)

=
∑

j

(pi+ j − pi− j )Pj (n − 1, A). (7)

(C) Denote by S+ the part of the sum in the right hand side of (7) with just (pi+ j −
pi− j ) ≥ 0, and by S− the part of the sum with (pi+ j − pi− j ) < 0. Using notations
a+ = a ∨ 0 and a− = a ∧ 0 (where a ∨ b = max(a, b) and a ∧ b = min(a, b)), we
estimate,

S+ ≤
∑

j

(pi+ j − pi− j )+M (n−1)(A) = M (n−1)(A)
∑

j

(pi+ j − pi− j )+,

and
S− ≤

∑

j

(pi+ j − pi− j )−m(n−1)(A).
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Therefore,

M (n)(A) − m(n)(A) = S+ + S−

≤ M (n−1)(A)
∑

j

(pi+ j − pi− j )+ + m(n−1)(A)
∑

j

(pi+ j − pi− j )−.

(D) It remains to notice that

∑

j

(pi+ j − pi− j )− = −
∑

j

(pi+ j − pi− j )+,

and ∑

j

(pi+ j − pi− j )+ ≤ 1 − κ. (8)

The first follows from the normalization condition

∑

j

pi+ j =
∑

j

pi− j = 1,

while the second from (recall that (a − b)+ = a − a ∧ b ≡ a − min(a, b) for any
real values a, b)

∑

j

(pi+ j − pi− j )+ =
∑

j

(pi+ j − min(pi− j , pi+ j ))

= 1 −
∑

j

min(pi− j , pi+ j ) ≤ 1 − κ

(see the definition of κ in (3)). So, we find that

M (n)(A) − m(n)(A) ≤ (1 − κ) (M (n−1)(A) − m(n−1)(A)).

By induction this implies (6). So, (5) and uniqueness of the limits π j = limn→∞ p(n)
i j

follow.

(E) The invariance of the measure μ and uniqueness of the invariant measure fol-
low, in turn, from (5). Indeed, let us start the process from any invariant distribu-
tion μ—which exists due to the Lemma 6—then μ j ≡ Pμ(Xn = j) = ∑

� μ� p
(n)
i j →

π j , n → ∞. However, the left hand side here does not depend on n. Hence,μ j = π j .
The Theorem 8 is proved.

Recall that the total variation distance or metric between two probability measures
may be defined as

‖μ − ν‖T V := 2 sup
A

(μ(A) − ν(A)).
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Hence, the inequality (5) may be rewritten as

sup
x

‖Px (n, ·) − μ(·)‖T V ≤ 2(1 − κ)n. (9)

Corollary 9 Under the assumption of the Theorem8, for any boundedBorel function
f and for any 0 ≤ s < t ,

sup
x

|Ex ( f (Xt )|Xs) − Einv f (Xt )| ≡ sup
x

|Ex ( f (Xt ) − Einv f (Xt )|Xs)| ≤ C f (1 − κ)t−s ,

or, equivalently,

sup
x

|Ex ( f (Xt )|F X
s ) − Einv f (Xt )| ≤ C f (1 − κ)t−s,

where C f = max
j

| f ( j)| ≡ ‖ f ‖B(S).

This useful Corollary follows from the Theorem 8.
It is worth noting that in a general case there is a significantly weaker condition

than (2) (or, in the general case weaker than (52)—see below in the Sect. 11), which
also guarantees an exponential convergence rate to a unique invariant measure. We
will show this condition—called Doeblin-Doob’s one—and state the corresponding
famous Doeblin–Doob’s theorem on convergence, but for the proof we refer the
reader to [10].

Definition 10 (DD-condition) There exist a finite (sigma-additive) measure ν ≥ 0
and ε > 0, s > 0 such that ν(A) ≤ ε implies

sup
x

Px (s, A) ≤ 1 − ε.

Theorem 11 (Doeblin–Doob, without proof) If the DD-condition is satisfied for an
aperiodic MP with a unique class of ergodicity (see [10]) on the state space S, then
there exist C, c > 0 such that

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ C exp(−cn), n ≥ 0. (10)

It turns out that under the assumption (DD), the constants in the upper bound (10)
cannot be effectively computed, i.e. they may be arbitrary even for the same ε and ν,
say. This situation dramatically differs from the case of conditions (4) and (3), where
both constants in the upper bound are effectively and explicitly evaluated.

Open Question 12 It is interesting whether or not there may exist any intermediate
situation with a bound like (10)—in particular, it should be uniform in the initial
state—with computable constants C, c under an assumption lying somewhere in
‘between’ Markov–Dobrushin’s and Doeblin–Doob’s. Apparently, such a condition
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may be artificially constructed from a ‘non-compact’ theory with an exponential
recurrence, but then the bounds would not be uniform in the initial data. In fact,
some relatively simple version of a desired condition will be shown in the end of
this text, see the Theorem 47. However, it does not totally close the problem, e.g. for
non-compact spaces.

3 LLN for Homogeneous MC, Finite S

It may seem as if the Ergodic Theorem with uniform exponential convergence rate
in total variation metric were all we could wish about ergodic features of the process.
Yet, the statement of this theorem itself even does not include the Law of Large
Numbers (LLN), which is not emphasized in most of the textbooks. However, the
situation with LLN (as well as with Central Limit Theorem – CLT) is good enough,
which is demonstrated below. The Theorem 13 under the assumption (4) belongs to
A.A. Markov, see [30, 38].

Theorem 13 (WeakLLN)Under the assumptions of the Theorem 8, for any function
f on a finite state space S,

1

n

n−1∑

k=0

f (Xk)
P→ Einv f (X0), (11)

where Einv stands for the expectation of f (X0) with respect to the invariant prob-
ability measure of the process, while P denotes the measure, which corresponds to
the initial value or distribution of X0: the latter may be, or may be not stationary.

NB. Note that a simultaneous use of stationary and non-stationary measures is not a
contradiction here. The initial state could be either non-random, or it may have some
distribution. At the same time, the process has a unique invariant measure, and the
writing Einv f (X0) = 0 signifies the mere fact that

∑

y∈S
f (y)μ(y) = 0, but it is in no

way in a conflict with a non-stationary initial distribution. In the next proof we use
P and, respectively, E without specifying the initial state or distribution. However,
this initial distribution (possibly concentrated at one single state) exists and it is fixed
throughout the proof.

Proof of the Theorem 13. 1. First of all, note that (11) is equivalent to

1

n

n−1∑

k=0

( f (Xk) − Einv f (X0))
P→ 0,

so, without loss of generality we may and will assume that Einv f (X0) = 0. Now we
estimate with any ε > 0 by the Bienaymé–Chebyshev–Markov inequality,



Ergodic Markov Processes and Poisson Equations (Lecture Notes) 467

P

(

|1
n

n−1∑

k=0

f (Xk)| > ε

)

≤ ε−2n−2
E|

n−1∑

k=0

f (Xk)|2

(12)

= ε−2n−2
E

n−1∑

k=0

f 2(Xk) + 2ε−2n−2
E

∑

0≤k< j≤n−1

f (Xk) f (X j ).

Here the first term, clearly (as f is bounded), satisfies,

ε−2n−2
E

n−1∑

k=0

f 2(Xk) → 0, n → ∞.

Let us transform the second term as follows for k < j :

E f (Xk) f (X j ) = E( f (Xk)E( f (X j )|Xk)),

and recall that due to the Corollary 9 to the Ergodic theorem,

|E( f (X j )|Xk) − Einv f (X j )| ≤ C f (1 − κ) j−k,

where due to our convention Einv f (X j ) = 0. Therefore, we have,

|E
∑

k< j

f (Xk) f (X j )| = |E
∑

k< j

f (Xk)E( f (X j )|Xk)|

≤ C f

∑

k, j : 0≤k< j<n

(1 − κ) j−k ≤ Cn, with C = C f κ
−1.

Thus, the second term in (12) also goes to zero as n → ∞. The Theorem 13 is proved.

Remark 14 Recall that f is bounded and exponential rate of convergence is guar-
anteed by the assumptions. This suffices for a strong LLN via higher moments for
sums. However, it will not be used in the sequel, so we do not show it here.

4 CLT, Finite S

In this section, state space S is also finite. For the function f on S, let

σ2 := Einv( f (X0) − Einv f (X0))
2 + 2

∞∑

k=1

Einv( f (X0)

− Einv f (X0))( f (Xk) − Einv f (Xk)). (13)
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It is known that this definition provides a non-negative value (for completeness, see
the two lemmata below).

Lemma 15 Under our standing assumptions (S is finite and min
i j

pi j > 0),

σ2 ≥ 0, (14)

and, moreover,

n−1
Einv

(
n−1∑

r=0

( f (Xr ) − Einv f (X0))

)2

→ σ2, n → ∞, (15)

where the latter convergence is irrespectively of whether σ2 > 0, or σ2 = 0.

Proof Without loss of generality, we may and will assume now that Einv f (X0) = 0
(otherwise, this mean value can be subtracted from f as in the formula (15)). Note

also that in this case the variance of the random variable n−1/2
n−1∑

r=0

f (Xr ) computed

with respect to the invariant measure coincides in this casewith its secondmoment.
Since Einv f (Xi ) = 0 for any i , this second moment may be evaluated as follows,

n−1
Einv(

n−1∑

r=0

f (Xr ))
2 = Einv f

2(X0) + 2n−1
∑

0≤i< j≤n−1

Einv f (Xi ) f (X j )

= Einv f
2(X0) + 2n−1

n−1∑

r=1

(n − r)Einv f (X0) f (Xr )

clearly→ Einv f
2(X0) + 2

∞∑

r=1

Einv f (X0) f (Xk) = σ2, n → ∞.

Here the left hand side is non-negative, so σ2 is non-negative, too. The Lemma 15 is
proved.

Lemma 16 Under the same assumptions as in the previous Lemma, σ2 < ∞.

Proof Again, without loss of generality, wemay andwill assume f̄ := Einv f (X0) =
0, and ‖ f ‖B ≤ 1. We have, due to the Corollary 9 applied with f̄ = 0,

|Einv f (X0) f (Xk)| = |Einv f (X0)Einv( f (Xk)|X0)| ≤ C fEinv| f (X0)|qk,

with some 0 ≤ q < 1 and C f = ‖ f ‖B ≤ 1. So, the series in (13) does converge and
the Lemma 16 is proved.



Ergodic Markov Processes and Poisson Equations (Lecture Notes) 469

Theorem 17 Let the assumption (3) hold true. Then for any function f on S,

1√
n

n−1∑

k=0

( f (Xk) − Einv f (X0))
P=⇒ η ∼ N (0,σ2), (16)

where =⇒ stands for the weak convergence with respect to the original probability
measure (i.e. generally speaking, non-invariant).

Emphasize that we subtract the expectation with respect to the invariant measure,
while weak convergence holds true with respect to the initial measure, which is not
necessarily invariant. (We could have subtracted the actual expectation instead; the
difference would have been negligible due to the Corollary 9.)

Remark 18 About Markov’s method in CLT the reader may consult the textbook
[41]. Various approaches can be found in [1, 2, 10, 23, 31, 32, 38], et al. For a
historical review see [39]. A nontrivial issue of distinguishing the cases σ2 > 0 and
σ2 = 0 for stationary Markov chains is under discussion in [3] for finite MC where a
criterion has been established for σ2 = 0; this criterion was extended tomore general
cases in [24]. A simple example of irreducible aperiodic MC (with min

i j
pi j = 0) and

a non-constant function f where σ2 = 0 can be found in [41, ch. 6]. Nevertheless,
there is a general belief that ‘normally’ in ‘most of cases’ σ2 > 0. (Recall that zero
(a constant) is regarded as a degenerateGaussian randomvariableN (0, 0).) On using
weaker norms in CLT for Markov chains see [28].

Proof of the Theorem 17. Without loss of generality, assume that ‖ f ‖B ≤ 1, and that

Einv f (X0) = 0.

I. Firstly, consider the case σ2 > 0. We want to check the assertion,

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

→ exp(−λ2σ2/2), n → ∞.

In the calculus below therewill be expectationswith respect to themeasureP (denoted
by E) and some other expectations Einv . Note that they are different: the second one
means expectation of a function of a random variable Xk computed with respect to
the invariant measure of this process.

We are going to use Bernstein’s method of ‘corridors and windows’ (cf. [1, 2]). Let
us split the interval [0, n] into partitions of two types: larger ones called ‘corridors’
and smaller ones called ‘windows’. Their sizes will increase with n as follows. Let
k := [n/[n3/4]] be the total number of long corridors of equal length (here [a] is
the integer part of a ∈ R); this length will be chosen shortly as equivalent to n3/4.
The length of each window is w := [n1/5]. Now, the length of each corridor except
the last one is c := [n/k] − w ≡ [n/k] − [n1/5]; the last complementary corridor has
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the length cL := n − k[n/k]; note that cL ≤ [n/k] ∼ n3/4, k ∼ n1/4 (i.e. k/n1/4 →
1, n → ∞), and c ∼ n3/4.

The total length of all windows is then equivalent to w × k ∼ n1/5+1/4 = n9/20;
note for the sequel that n9/20 << n1/2. As was mentioned earlier, the length of the last
corridor does not exceed k, and, hence, asymptotically is no more than n1/4 (which
is much less than the length of any other corridor).

Now, denote all partial sums
n∑

r=0
f (Xr ) over the first k corridors by η j , 1 ≤ j ≤ k.

In particular,

η1 =
c−1∑

r=0

f (Xr ), η2 =
2c+w−1∑

r=c+w

f (Xr ), etc.

Note that

1√
n
|

n∑

r=0

f (Xr ) −
k∑

j=1

η j | ≤ C f
(wk + k)√

n
∼ C f

n9/20 + n1/4√
n

→ 0, n → ∞,

uniformly in ω ∈ �. Hence, it suffices to show that

1√
n

k∑

j=1

η j =⇒ η′ ∼ N (0,σ2).

Note that

n−1
Einvη

2
1 ∼ c

n
σ2, n → ∞,

or,

n−3/4
Einvη

2
1 → σ2, n → ∞, (17)

and the latter convergence is irrespectively of whether σ2 > 0, or σ2 = 0.
Now, to show the desired weak convergence, let us check the behaviour of the

characteristic functions. Due to the Corollary 9, we estimate for any λ ∈ R,

|E(exp(iλη j )|F X
( j−1)[n/k]) − Einv exp(iλη j )| ≤ C(1 − κ)[n

1/5].
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So, by induction,

E exp

⎛

⎝i
λ√
n

k+1∑

j=1

η j

⎞

⎠ = E exp

⎛

⎝i
λ√
n

k∑

j=1

η j

⎞

⎠E

(
exp

(
i

λ√
n

ηk+1

)
|F X

k[n/k]
)

= E exp

⎛

⎝i
λ√
n

k∑

j=1

η j

⎞

⎠
(
Einv

(
exp(i

λ√
n

ηk+1

)
+ O((1 − κ)n

1/5
))

)
= . . .

= Einv

(
exp

(
i

λ√
n

ηk+1 + O((1 − κ)n
1/5

)

)) (

Einv

(
exp

(
i

λ√
n

η1

))k

+ O(k(1 − κ)n
1/5

)

)

.

(18)

Here O(k(1 − κ)n
1/5

) is, generally speaking, random and it is a function of Xk[n/k],
but the modulus of this random variable does not exceed a nonrandom constant
multiplied by k(1 − κ)n

1/5
. We replaced [n1/5] by n1/5, which does not change the

asymptotic (in)equality. Note that

O(k(1 − κ)n
1/5

)) = O(n3/4(1 − κ)n
1/5

)) → 0, n → ∞.

Now the idea is to use Taylor’s expansion

Einv exp

(
i

λ√
n
η1

)
= 1 − λ2

2n
n3/4σ2 + Rn = 1 − λ2

2n1/4
σ2 + Rn. (19)

Here, to prove the desired statement it suffices to estimate accurately the remainder
term Rn , that is, to show that Rn = o(n−1/4), n → ∞.

Since we, actually, transferred the problem to studying an array scheme (as η1
itself changes with n), we have to inspect carefully this remainder Rn . Due to the
Taylor expansion we have,

Reϕ

(
λ√
n

)
= Einv cos

(
λη1√
n

)
= 1 − λ2

2n
Einvη

2
1 + λ̂3

6
√
n3

Einvη
3
1 sin(λ̂η1),

with some λ̂ between 0 and λ, and similarly, with some λ̃ between 0 and λ,

Imϕ

(
λ√
n

)
= Einv sin

(
λη1√
n

)
= − λ̃3

6
√
n3

Einvη
3
1 cos(λ̃η1).

Here in general λ̂ and λ̃ may differ. However, this is not important in our calculus
because in any case |λ̃| ≤ |λ| and |λ̂| ≤ |λ|. All we need to do now is to justify a
bound

|Einvη
3
1| ≤ Kc, (20)
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with some non-random constant K . This is a rather standard estimation and we show
the details only for completeness. (See similar in [14, 18, 22], et al.) It suffices to
consider the case C f ≤ 1, which restriction we assume without loss of generality.

(a) Consider the case E f (Xk)
3. We have, clearly,

|
c∑

k=1

E f (Xk)
3| ≤ c.

(b) For simplicity, denote fk = f (Xk) and consider the case E f j fk f�, � > k > j .
We have,

c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f� =
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkE( f�|Xk)

=
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkψk,�q
�−k (here ψk,� ∈ F X

(k) ≡ σ(Xk) and |ψk,�| ≤ 1).

Note that, with a 0 ≤ q < 1, the expression

ζk :=
c−1∑

�=k+1

ψk,�q
�−k

is a random variable, which modulus is bounded by the absolute constant (1 − q)−1

and which is F X
(k)-measurable, i.e. it may be represented as some Borel function of

Xk . So, we continue the calculus,

c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f� =
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fkζk

=
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j E( fkζk |X j ) =
c−2∑

j=0

c−1∑

k= j+1

E f j (E fkζk + ζ ′
k, j q

k− j )

=
c−2∑

j=0

c−1∑

k= j+1

E f j

c−1∑

k= j+1

ζ ′
k, j q

k− j =
c−2∑

j=0

E f j

c−1∑

k= j+1

ζ ′
k, j q

k− j ,

due to E f jE fkζk = 0, since E f j = 0. Here ζ ′
k, j , in turn, for each k does not exceed

by modulus the value (1 − q)−1 and is F X
( j)-measurable. Therefore, the inner sum in

the last expression satisfies,
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|
c−1∑

k= j+1

ζ ′
k, j q

k− j | ≤
c−1∑

k= j+1

|ζ ′
k, j |qk− j ≤ (1 − q)−1

c−1∑

k= j+1

qk− j ≤ (1 − q)−2.

Thus,

|
c−2∑

j=0

c−1∑

k= j+1

c∑

�=k+1

E f j fk f�| ≤ (1 − q)−2
c−2∑

j=0

E| f j | ≤ c(1 − q)−2,

as required.
(c) Consider the terms with E f (Xk)

2 f (X�), � > k. We estimate, with some (ran-
dom) |ψ′

�,k | ≤ 1 and 0 ≤ q < 1,

|
c−1∑

k<�

E f (Xk)
2
E( f (X�)|Xk)| = |

∑

k<�<c

E f (Xk)
2ψ′

�,kq
�−k | ≤ c

1 − q
.

(d) Consider the case E f (Xk)
2 f (X�), � < k. We have similarly, for � < k,

E f 2k f� = E f�E( f 2k |X�) = E f�(E f 2k + ψ′′
�,kq

k−�), |ψ�,k | ≤ 1,

with some (random) |ψ′′
�,k | ≤ 1. So, again,

|
c−1∑

�<k

E f�E( f 2k |X�)| = |
∑

�<k<c

E f 2k ψ′′
�,kq

k−�| ≤ c

1 − q
.

(e) Finally, collecting all intermediate bounds we obtain the bound (20), as required:

|Eη3
1| ≤ Kc.

This implies the estimate for the remainder term Rn in (19) of the form

|Rn| ≤ c

n3/2
∼ n3/4−3/2 = n−3/4 = o(n−1/4),

as required. The last detail is to consider the term Einv exp(i λ√
n
ηk+1) in (18), for

which we have σ2
k+1 := Eη2

k+1 satisfying

Einvη
2
k+1 = O(n3/4σ2), n → ∞. (21)

This term may be tackled similarly to all others, and, in any case, we get the estimate

Einv exp

(
i

λ√
n
ηk+1

)
= 1 + o(1), n → ∞.
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Hence, we eventually get (recall that c ∼ n3/4),

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

=
(
1 − λ2σ2c

2n
+ O(

c

n3/2
)

)n1/4

=
(
1 − λ2σ2

2n1/4
+ O

(
1

n3/4

))n1/4

→ exp(−λ2σ2/2),

which is the characteristic function for the Gaussian distribution N (0,σ2), as
required.

(II) The case σ2 = 0 is considered absolutely similarly. Namely, with a practically
identical arguments we get, now with σ2 = 0,

E exp

(

i
λ√
n

n∑

r=0

f (Xr )

)

=
(
1 − λ2σ2c

2n
+ O

( c

n3/2

))n1/4

=
(
1 + O

(
1

n3/4

))n1/4

→ 1,

which is the characteristic function for the degenerate Gaussian distributionN (0, 0),
as required. Hence, the Theorem 17 is proved.

5 Coupling Method for Markov Chain: Simple Version

Concerning coupling method, it is difficult to say who exactly invented this method.
The common view—shared by the author of these lecture notes—is that it was intro-
duced byW.Doeblin [9], even though he himself refers to some ideas of Kolmogorov
with relation to the study of ergodic properties ofMarkov chains. Leaving this subject
to the historians of mathematics, let us just mention that there are quite a few articles
andmonographs where this method is presented [16, 29, 33, 40], et al. Also there are
many papers and books where this or close method is used for further investigations
without being explicitly named, see, e.g. [4]. This method itself provides ‘another
way’ to establish geometric convergence in the Ergodic theorem. In the simple form
as in this section, this method has limited applications; however, in a more elaborated
version—see the Sect. 13 below—it is most useful, and applicable to a large variety
of Markov processes including rather general diffusions, providing not necessarily
geometric rates of convergence but also much weaker rates in non-compact spaces.

By simple coupling for two random variables X1, X2 we understand the situation
where both X1, X2 are defined on the same probability space and

P(X1 = X2) > 0.
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Consider aMarkov chain (Xn, n = 0, 1, . . .). In fact, this simple ‘Doeblin’s’ version
of coupling provides bounds of convergence which are far from optimal in most
cases. (By ‘far from optimal’ we understand that the constant under the exponential
is too rough.) Yet, its advantage is its simplicity and, in particular, no change of the
initial probability space. From the beginning we need two ‘independent’ probability
spaces, (�1,F1,P1), and (�2,F2,P2), and thewhole construction runs on the direct
product of those two:

(�,F ,P) := (�1,F1,P1) × (�2,F2,P2).

This space (�,F ,P) will remain unchanged in this section. We assume that there
are two Markov processes (X1

n) on (�1,F1,P1) and (X2
n) on (�2,F2,P2), corre-

spondingly, with the same transition probability matrixP = (pi j )i, j∈S satisfying the
‘simple ergodic assumption’,

κ0 := min
i, j

pi j > 0. (22)

Naturally, both processes are defined on (�,F ,P) as follows,

X1
n(ω) = X1

n(ω
1,ω2) := X1

n(ω
1), & X2

n(ω) = X2
n(ω

1,ω2) := X2
n(ω

2).

Wewill need some (well-known) auxiliary results. Recall that given a filtration (Fn),
stopping time is any random variable τ < ∞ a.s. with values in Z+ such that for any
n ∈ Z+,

(ω : τ > n) ∈ Fn.

In most of textbooks on Markov chains the following Lemma may be found (see,
e.g. [49]).

Lemma 19 Any Markov chain (i.e. a Markov process with discrete time) is strong
Markov.

Consider a new process composed of two, Xn := (X1
n, X

2
n), evidently, with two inde-

pendent coordinates. Due to this independence, the following Lemma holds true.

Lemma 20 The (vector-valued) process (Xn) is a (homogeneous) Markov chain;
hence, this chain is also strong Markov.

In the following main result of this section, μ stands for the (unique) stationary
distribution of our Markov chain (X1

n) (as well as of (X2
n)).

Theorem 21 For any initial distribution μ0,

sup
A

|Pμ(n, A) − μ(A)| ≤ (1 − κ0)
n. (23)
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Let us emphasize again that the bound may be not optimal; however, the advantage is
that the construction of coupling here does not require any change of the probability
space.

Proof of Theorem 21. Recall that a new Markov chain Xn := (X1
n, X

2
n) with two

independent coordinates is strong Markov. Let

τ := inf(n ≥ 0 : X1
n = X2

n).

We have seen that P(τ < ∞) = 1. More than that, from Markov property it follows
for any n by induction (with a random variable called indicator, 1(A)(ω) = 1 if
ω ∈ A and 1(A)(ω) = 0 if ω /∈ A),

P(τ > n) = E1(τ > n) = E

n∏

k=1

1(τ > k)

= E

(

E(

n∏

k=1

1(τ > k)|Fn−1)

)

= E

(
n−1∏

k=1

1(τ > k)E(1(τ > n)|Fn−1)

)

≤ E

n−1∏

k=1

1(τ > k)(1 − κ0) = (1 − κ0)E

n−1∏

k=1

1(τ > k) ≤ (induction). . . ≤ (1 − κ0)
n.

(24)

Define
X3
n := X1

n1(n < τ ) + X2
n1(n ≥ τ ).

Due to the strong Markov property, (X3) is also aMarkov chain and it is equivalent
to (X1)—that is, they both have the same distribution in the space of trajectories.
This follows from the fact that at τ which is a stopping time the process follows X3,
so that it uses the same transition probabilities while choosing the next state at τ + 1
and further.

Now, here is the most standard and most frequent calculus in most of works
on coupling method, or where this method is used (recall that all the processes
X1, X2, X3 are defined on the same probability space): for any A ∈ S,
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|P(X1
n ∈ A) − P(X2

n ∈ A)| = |P(X3
n ∈ A) − P(X2

n ∈ A)|

= |E1(X1
n ∈ A) − E1(X2

n ∈ A)| = |E(1(X3
n ∈ A) − 1(X2

n ∈ A))|

= |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n) + E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ ≤ n)|

(∗)= |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n)| ≤ |E(1(X3
n ∈ A) − 1(X2

n ∈ A))1(τ > n)|

≤ E|1(X3
n ∈ A) − 1(X2

n ∈ A)|1(τ > n) ≤ E1(τ > n) = P(τ > n)
(24)≤ (1 − κ0)

n .

Note that the final bound is uniform in A. Here the equality (*) is due to the trivial fact
that since n ≥ τ , the values of X3

n and X2
n coincide, so either 1(X3

n ∈ A) = 1(X2
n ∈

A) = 0, or 1(X3
n ∈ A) = 1(X2

n ∈ A) = 1 simultaneously on each ω, which imme-
diately implies that (1(X3

n ∈ A) − 1(X2
n ∈ A))1(τ ≤ n) = 0. So, the Theorem 21 is

proved.

6 A Bit of Large Deviations

In this section, assume
Einv f (X0) = 0.

We will be interested in the existence and properties of the limit,

lim
n→∞

1

n
lnEx exp

(

β

n−1∑

k=0

f (Xk)

)

=: H(β). (25)

Note that we do not use x in the right hand side because in ‘good cases’—as below—
the limit does not depend on the initial state. Denote

Hn(β, x) := 1

n
lnEx exp

(

β

n−1∑

k=0

f (Xk)

)

,

and define the operator T = T β acting on functions on S as follows,

T βh(x) := exp(β f (x))Exh(X1),

for any function h defined on S. Note that
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Ex exp

(

β

n−1∑

k=0

f (Xk)

)

= (T β)nh(x),

with h(x) ≡ 1. Indeed, for n = 1 this coincides with the definition of T β . Further,
for n > 1 due to the Markov property by induction,

Ex exp

(

β

n−1∑

k=0

f (Xk)

)

= ExEx

(

exp

(

β

n−1∑

k=0

f (Xk)

)

|X1

)

= exp(β f (x))ExEx

(

exp

(

β

n−1∑

k=1

f (Xk)

)

|X1

)

= exp(β f (x))Ex (T
β)nh(x) = T β(T β)n−1h(x) = (T β)nh(x),

as required. So, the function Hn can be rewritten as

Hn(β, x) = 1

n
ln(T β)nh(x),

(h(x) ≡ 1). It is an easy exercise to check that the function Hn(β, x) is convex in β.
Hence, if the limit exists, then the limiting function H is also convex. Now recall the
following classical and basic result about positive matrices.

Theorem 22 (Perron–Frobenius) Any positive quadratic matrix (i.e. with all entries
positive) has a positive eigenvalue r called its spectral radius, which is strictly
greater than the moduli of the rest of the spectrum, this eigenvalue is simple, and its
corresponding eigenfunction (eigenvector) has all positive coordinates.

In fact, this result under the specified conditions is due to Perron, while Frobenius
extended it to non-negative matrices. We do not discuss the details of this difference
and how it can be used. Various presentations may be found, in particular, in [20,
25, 38]. As an easy corollary, the Theorem 22 implies the existence of the limit in
(25)—which, as was promised, does not depend on x—with,

H(β) = ln r(β), (26)

where r(β) is the spectral radius of the operator T β , see, for example, [14, Theorem
7.4.2]. (Emphasize that in the proof of this theorem it is important that the eigen-
vector corresponding to the spectral radius is strictly positive, i.e. it has all positive
components.) More than that, in our case it follows from the theorem about analytic
properties of simple eigenvalues that r(β) is analytic, see, e.g. [21]. Therefore, H(β)

is analytic, too. Also, clearly, analytic is Hn as a function of the variable β. Then
it follows from the properties of analytic (or convex) functions that convergence
Hn(β, x) → H(β) implies that also
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H ′
n(0, x) → H ′(0), n → ∞,

where by H ′
n we understand the derivative with respect to β. On the other hand, we

have,

H ′
n(0, x) = ∂

∂β

(
1

n
lnEx exp(β

n−1∑

k=0

f (Xk))

)

|β=0

= 1

n

Ex

(
n−1∑

k=0
f (Xk) exp(β

n−1∑

k=0
f (Xk))

)

Ex exp(β
∑n−1

k=0 f (Xk))
|β=0 = 1

n
Ex

n−1∑

k=0

f (Xk).

So, due to the Law of Large Numbers,

H ′
n(0, x) = 1

n
Ex

n−1∑

k=0

f (Xk) → Einv f (X0) = 0.

Hence,
H ′(0) = Einv f (X0) = 0.

Also, again due to the analyticity,

H ′′
n (0, x) → H ′′(0), n → ∞.

On the other hand, due to (17),

H ′′
n (0) = 1

n
Ex

(
n−1∑

k=0

f (Xk)

)2

→ σ2, n → ∞.

Hence,
H ′′(0) = σ2.

This last assertion will not be used in the sequel.
Let us state it all as a lemma.

Lemma 23 There exists a limit H(β) in (25). This function H is convex and differ-
entiable, and, in particular,

H ′(0) = 0, H ′′(0) = σ2.

Actually, we will not use large deviations (LDs) in these lecture notes, except
for the Lemma 23, which is often regarded as a preliminary auxiliary result in large
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deviation theory. Yet, once the title of the section uses this term, let us state one
simple inequality of LD type. Recall that Einv f (X0) = 0 in this section.

Proposition 24 Let

L(α) := sup
β

(αβ − H(β)), L̃(α) := lim sup
δ→0

L(α + δ). (27)

Then under the assumptions of the Ergodic Theorem 8 for any ε > 0,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −L̃(ε). (28)

The function L is called Legendre transformation of the function H . It is convex
and lower semicontinuous; see [37] about this andmore general transformations (e.g.
where H is convex but not necessarily smooth—in which case L is called Fenchel–
Legendre’s transformation). Notice that ‘usually’ in (28) there is a limit instead of
lim sup, and this limit equals the right hand side, and both L̃(ε) = L(ε) > 0; the latter
is certainly true, at least, for small ε > 0 if σ2 > 0. However, this simple result does
not pretend to be even an introduction to large deviations, about which theory see
[5, 7, 13, 14, 17, 36, 42], et al. In the next sections the Proposition 24 will not be
used: all wewill need is the limit in (25) due to the Lemma 23 and some its properties,
which will be specified.

Proof of Proposition 24.We have for any 0 < δ < ε, by Chebyshev–Markov’s expo-
nential inequality with any λ > 0,

Px

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

= Px

(

exp

(

λ

n−1∑

k=0

f (Xk)

)

≥ exp(nλε)

)

≤ exp(−nλε)Ex exp

(

λ

n−1∑

k=0

f (Xk)

)
(25)≤ exp(−n(λ(ε − δ) + H(λ))),

if n is large enough. The first and the last terms here with the inequality between
them can be rewritten equivalently as

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −λ(ε − δ) + H(λ),

for n large enough. So, we have,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ −(λ(ε − δ) − H(λ)).
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Since this is true for any λ > 0, we also get,

lim sup
n→∞

1

n
lnPx

(
1

n

n−1∑

k=0

f (Xk) ≥ ε

)

≤ − sup
λ>0

(λ(ε − δ) − H(λ)),

However, since H(0) = 0 and H ′(0) = 0 and due to the convexity of H , the supre-
mum on all λ ∈ R here on positive ε − δ is attained at λ > 0, i.e.

sup
λ>0

(λ(ε − δ) − H(λ)) = sup
λ∈R

(λ(ε − δ) − H(λ)) ≡ L(ε − δ).

Thus, the left hand side in (28) does not exceed the value − lim sup
δ↓0

L(ε − δ) ≤
−L̃(ε), as required. The Proposition 24 is proved.

7 Dynkin’s Formulae

Let L be a generator of some Markov chain on a finite state space S, that is, for any
function u on S,

Lu := Exu(X1) − u(x) ≡ Pu(x) − u(x). (29)

Recall that here P is the transition probability matrix of the corresponding Markov
chain (Xn), a function u on S is considered as a column-vector, Pu is this matrix
multiplied by this vector, andPu(x) is the x-component of the resulting vector. Note
that such difference operators are discrete analogues of elliptic differential operators
of the second order studied extensively, in particular, in mathematical physics. What
makes them the analogues is that both are generators of Markov processes, either
in discrete or in continuous time; also, it may be argued about limiting procedures
approximating continuous time processes by discrete ones. Yet, the level of this
comparison here is, of course, intuitive and we will not try to justify in any way, or
to explain it further.

As usual in these lecture notes, we will assume that the corresponding process
(Xn) satisfies the Ergodic Theorem 8. The Poisson equation for the operator L from
(29) is as follows:

Lu(x) = − f (x), x ∈ S. (30)

This equation may be studied with or without some boundary and certain boundary
conditions. The goal of this chapter is to present how such equations may be solved
probabilistically. This simple study may be also considered as an introduction to the
Poisson equations for elliptic differential operators. We start with Dynkin’s formula
or Dynkin’s identity.
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Theorem 25 (Dynkin’s formula 1) On the finite state space S, for any function h
and any n = 1, 2, . . .,

Exh(Xn) = h(x) +
n−1∑

k=0

Ex Lh(Xk), n ≥ 0. (31)

Proof 1. For n = 1 the formula (31) reads,

Exh(X1) = h(x) + Lh(x),

where x is a non-random initial value of the process. Hence, by inspection, the desired
identity for n = 1 is equivalent to the definition of the generator in (29).

2. For the general case n, the desired formula follows by induction. Indeed, assume
that the formula (31) holds true for some n = k and check it for n = k + 1.We have,

Exh(Xn+1) = Exh(Xn+1) − Exh(Xn) + Exh(Xn)

= ExEx (h(Xn+1) − h(Xn)|Xn) + Exh(Xn)

= ExEx (Lh(Xn)|Xn) + h(x) +
n−1∑

k=0

Ex Lh(Xk)

= Ex Lh(Xn) + h(x) +
n−1∑

k=0

Ex Lh(Xk) = h(x) +
n∑

k=0

Ex Lh(Xk).

So, the formula (31) for all values of n follows by induction. The Theorem 25 is
proved.

8 Stopping Times and Martingales: Reminder

Definition 26 Filtration (Fn, n = 0, 1, . . .) is a family of increasing sigma-fields
on a probability space (�,F ,P) completed with respect to the measure P (that is,
each Fn contains each subset of all P-zero sets from F). The process (Mn) is called
a martingale with respect to a filtration (Fn) iff EMn < ∞ and E(Mn+1|Fn) = Mn

(a.s.).

Definition 27 A random variable τ < ∞ a.s. with values in Z+ is called a stop-
ping time with respect to a filtration (Fn) iff for each n ∈ Z+ the event (τ > n) is
measurable with respect to Fn .
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It is recommended to read about simple properties of martingales and stopping times
in one of the textbooks on stochastic processes, e.g. [27]. We will only need the
following classical result about stopped martingales given here without proof.

Theorem 28 (Doob) Let (Mn) be a martingale and let τ be a stopping time with
respect to a filtration (Fn). Then (M̃n := Mn∧τ ) is also a martingale.

In terms of martingales, the first Dynkin’s formula may be re-phrased as follows.

Theorem 29 (Dynkin’s formula 2) On the finite state space S, for any function h
and any n = 1, 2, . . ., the process

Mn := h(Xn) − h(x) −
n−1∑

k=0

Lh(Xk), n ≥ 0, (32)

is a martingales with respect to the natural filtration F X
n ‘generated’ by the process

X. Vice versa, if the process Mn from (32) is a martingale then (31) holds true.

Proof The inverse statement is trivial. The main part follows due to the Markov
property,

E(Mn|Fn−1) = E(h(Xn)|Xn−1) − h(x) −
n−1∑

k=0

Lh(Xk)

= Ph(Xn−1) − Lh(Xn−1) − h(x) −
n−2∑

k=0

Lh(Xk)

= h(Xn−1) − h(x) −
n−2∑

k=0

Lh(Xk) = Mn−1.

The Theorem 29 is thus proved.

Lemma 30 (Dynkin’s formula 3) Let τ be a stopping time with

Exτ < ∞, ∀ x ∈ S.

Then for any function h on S,

Exh(Xτ ) = h(x) + Ex

τ−1∑

k=0

Lh(Xk).

Proof Follows straightforward from the Theorem 29.
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9 Poisson Equation Without a Potential

9.1 Introduction

Here we consider the following discrete Poisson equation without a potential,

Lu(x) ≡ Pu(x) − u(x) = − f (x). (33)

In the next section a similar discrete equation with a potential c = c(x), x ∈ S, will
be studied,

Lcu(x) := exp(−c(x))Pu(x) − u(x) = − f (x), (34)

firstly because it is natural for PDEs—and here we present an easier but similar
discrete-time theory—and secondly with a hope that it may be also useful for some
further extensions, as it already happened with equations without a potential. Let μ
be, as usual, the (unique) invariant probability measure of the process (Xn, n ≥ 0).

9.2 Poisson Equation (33) with a Boundary

Firstly, we consider Poisson equation with a non-empty boundary,

Lu(x) = − f (x), x ∈ S \ �, u(x) = g(x), x ∈ �, (35)

where � ⊂ S, � 
= ∅. If the right hand side equals zero, this equation is called the
Laplace equation with Dirichlet boundary conditions:

Lu(x) = 0, x ∈ S \ �, u(x) = g(x), x ∈ �. (36)

Let
τ := inf(n ≥ 0 : Xn ∈ �),

and denote

v(x) := Ex

(
τ−1∑

k=0

f (Xk) + g(Xτ )

)

. (37)

Recall that under our assumptions on the process, necessarily Exτ < ∞.

For the uniqueness, we would need a maximum principle, which holds true for
the Laplace equation (recall that we always assume min

i, j
pi j > 0):
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Lemma 31 (Maximum principle) If the function u satisfies the Eq. (36), then the
maximal value (as well as minimal) of this function is necessarily attained at the
boundary �.

Proof Since Lu(x) = 0 for any x /∈ �, we have

u(x) = Pu(x), (38)

for such x . In other words, the value u(x) is equal to the average of the values u(y)
at all other y ∈ S with some positive weights, due to the assumption min

i j
pi j > 0.

However, if a maximal value, say, M , is attained by u not at the boundary, say,
u(x0) = M , x0 /∈ �, and if at least one value on � (or, actually, anywhere else) is
strictly less than M , then we get a contradiction, as the equality

∑

y∈S
pxyv(y) = M

with all v(y) ≤ M and with at least one v(y) < M is impossible. Similar arguments
apply to the minimal value of u. This proves the Lemma 31.

Theorem 32 The function v(x) given by the formula (37) is a unique solution of the
Poisson equation (35).

Proof 1. The boundary condition v(x) = g(x) on x ∈ � is trivial because τ = 0 in
this case.
2. Let x /∈ �. Then τ ≥ 1. We have, due to the Markov property,

v(x) = f (x) +
∑

y

Ex1(X1 = y)Ey

(
τ−1∑

k=0

f (Xk) + g(Xτ )

)

= f (x) +
∑

y

pxyv(y) = f (x) + Exv(X1).

From this, it follows clearly the statement about solving the equation,

Lv(x) = Exv(X1) − v(x) = − f (x).

3. Uniqueness follows from the maximum principle. Indeed, let v1 and v2 be two
solutions. Then

u(x) := v1(x) − v2(x) = 0, ∀ x ∈ �.

Also, at any x /∈ �,
Lu(x) = Lv1(x) − Lv2(x) = 0.

Hence, by virtue of the Lemma 31, both maximal and minimal values of the function
u are attained at the boundary �. However, at the boundary both these values are
equal to zero. Therefore,

u(x) = 0, ∀ x ∈ S,
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that is, v1 − v2 ≡ 0, as required. This completes the proof of the Theorem 32.

9.3 Poisson Equation (33) without a Boundary

Consider the equation on the whole S,

Lu(x) = − f (x), x ∈ S. (39)

We will need an additional assumption on f called ‘centering’. This condition is a
close analogue of the subtraction in the standardization for a CLT.

Assumption 33 (Centering) It is assumed that the function f satisfies the condition,

Einv f (X0) ≡
∑

x

f (x)μ(x) = 0, (40)

where μ is the (unique) invariant measure of the process X .

Theorem 34 Under the assumption (40), the Eq. (39) has a solution u, which is
unique up to an additive constant. This solution is given by the formula

u(x) =
∞∑

k=0

Ex f (Xk). (41)

The solution u from (41) itself satisfies the centering condition,

∑
u(x)μ(x) = 0. (42)

Note that the ‘educated guess’ about a solution represented by the formula (41)
may be deduced from the comparison with (37) where, so to say, we want to drop the
terminal summand g as there is no boundary and to replace τ by infinity; naturally,
expectation and summation should be interchanged. Also, in the present setting
the idea based on considering the series for (I − P)−1 on centred functions may
be applied. Yet, we would like to avoid this way because in a more general ‘non-
compact’ situation a polynomial convergence of the series in (41) would also suffice,
and, hence, this approach looks more general.

Proof of Theorem 34. 1. Convergence. Follows straightforward from the Corollary
9. This shows that the function u(x) defined in (41) is everywhere finite.
2. Satisfying the equation. From the Markov property,
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u(x) = f (x) +
∑

y

Ex1(X1 = y)Ey

∞∑

k=0

f (Xk)

= f (x) +
∑

y

pxyv(y) = f (x) + Exu(X1).

From this, it follows clearly the statement,

Lu(x) = Exu(X1) − u(x) = − f (x).

3. Uniqueness. Let u1 and u2 be two solutions both satisfying the moderate growth
and centering. Denote v = u1 − u2. Then

Lv = 0.

By virtue of Dynkin’s formula (31),

Ev(Xn) − v(x) = 0.

However, due to the Corollary 9,

Exv(Xn) → Einvv(X0) = 0.

Hence,
v(x) ≡ 0,

as required.
4. Centering. We have, due to a good convergence—see the Corollary 9—and
Fubini’s theorem, and sincemeasureμ is stationary, andfinally because f is centered,

∑

x

u(x)μ(x) =
∑

x

μ(x)
∞∑

k=0

Ex f (Xk)

=
∞∑

k=0

∑

x

μ(x)Ex f (Xk) =
∞∑

k=0

Einv f (Xk) = 0.

The Theorem 34 is proved.

10 Poisson Equation with a Potential

Let us remind the reader that the case |S| < ∞ is under consideration.
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10.1 Equation (34)

Recall the Eq. (34),

exp(−c(x))Pu(x) − u(x) = − f (x).

A natural candidate for the solution is the function

u(x) :=
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xk), (43)

provided that this expression is well-defined. Naturally on our finite state space S
both f and c bounded. Denote

ϕn :=
n∑

k=0

c(Xk), ϕ−1 = 0,

and
Lc := exp(−c(x))P − I,

that is,
Lcu(x) := exp(−c(x))Pu(x) − u(x).

We can tackle several cases, and the most interesting one in our view is where c(x) =
εc1(x), ε > 0 small and c̄1 :=

∑

x

c1(x)μ(x) > 0. Denote also c̄ = ∑

x
c(x)μ(x).

10.2 Further Dynkin’s Formulae

Lemma 35 (Dynkin’s formula 4)

Ex exp(−ϕn−1) h(Xn) = h(x) +
n−1∑

k=0

Ex exp(−ϕk−1)L
ch(Xk). (44)

In other words, the process

Mn := exp(−ϕn−1) h(Xn) − h(x) −
n−1∑

k=0

exp(−ϕk−1)L
ch(Xk), n ≥ 0, (45)

is a martingale.
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Proof Let the initial state x be fixed. Let us check the base, n = 0. Note that ϕ0 =
c(x), ϕ−1 = 0, and Lch(x) = exp(−ϕ0)Ph(x) − h(x). So, for n = 0 the formula
(44) reads,

h(x) = h(x) +
−1∑

k=0

Ex L
ch(Xk),

which is true due to the standard convention that
−1∑

k=0
· · · = 0.

Let us check the first step, n = 1:

Ex exp(−c(x)) h(X1) = h(x) +
0∑

k=0

Ex exp(−ϕ−1)L
ch(Xk) ≡ h(x)

+ exp(−c(x))Ph(x) − h(x),

or, equivalently,

Ex exp(−c(x)) h(X1) = exp(−c(x))Ph(x),

which is also true.
The induction stepwith a general n ≥ 1 follows similarly, using theMarkov property.
Indeed, assume that the formula (44) is true for some n ≥ 0. Then, for n + 1we have,

Ex exp(−ϕn) h(Xn+1) − h(x) −
n∑

k=0

Ex exp(−ϕk−1)L
ch(Xk)

= Ex exp(−ϕn) h(Xn+1) − Ex exp(−ϕn−1) h(Xn) + Ex exp(−ϕn−1) h(Xn)

−h(x) −
n−1∑

k=0

Ex exp(−ϕk−1)L
ch(Xk) − Ex exp(−ϕn−1)L

ch(Xn)

= Ex exp(−ϕn) h(Xn+1) − Ex exp(−ϕn−1) h(Xn) − Ex exp(−ϕn−1)L
ch(Xn)

= Ex
[
Ex

(
exp(−ϕn) h(Xn+1) − exp(−ϕn−1) h(Xn) − exp(−ϕn−1)L

ch(Xn)|Fn
)]

= Ex exp(−ϕn−1)
[
Ex

(
exp(−c(Xn)) h(Xn+1) − h(Xn) − Lch(Xn)|Xn

)] = 0,

by definition of Lc. This completes the induction step, so the Lemma 44 is proved.

Lemma 36 (Dynkin’s formula 5) Let τ be a stopping time with

Exe
ατ < ∞, ∀ x ∈ S,
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for some α > 0. Then for any function h on S and if c = εc1 and ε is small enough,

Exe
−ϕτ−1h(Xτ ) = h(x) + Ex

τ−1∑

k=0

e−ϕk−1Lch(Xk).

Recall that for an irreducible Markov chain with values in a finite state space
any hitting time has some finite exponential moment. This will be used in the next
subsection.

Proof We conclude from (44), or (45), due to Doob’s theorem about stopped mar-
tingales,

Exe
−ϕ(τ−1)∧n h(Xτ∧n) = h(x) + Ex

(τ−1)∧n∑

k=0

e−ϕk−1Lch(Xk).

Now if ε is small enough, then we may pass to the limit as n → ∞, due to the
Lebesgue theorem about a limit under the uniform integrability condition. We have,

Exe
−ϕ(τ−1)∧n h(Xτ∧n) → Exe

−ϕτ−1h(Xτ ),

and

h(x) + Ex

(τ−1)∧n∑

k=0

e−ϕk−1Lch(Xk) → h(x) + Ex

τ−1∑

k=0

e−ϕk−1Lch(Xk), n → ∞,

as required. The Lemma 36 is proved.

10.3 Poisson Equation with a Potential with a Boundary

Recall the equation with the boundary:

exp(−c(x))Pu(x) − u(x) = − f (x), x ∈ S \ �, u(x) = g(x), x ∈ �, (46)

with a boundary � 
= ∅. The natural candidate for the solution is the function

u(x) := Ex

(
τ−1∑

n=0

exp (−ϕn−1) f (Xn) + exp (−ϕτ−1) g(Xτ )

)

, (47)

τ = inf(n ≥ 0 : Xn ∈ �). If x ∈ �, then τ = 0, andwe agree that the term
−1∑

k=0
equals

zero.
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Theorem 37 If the expectation in (47) is finite then the function u(x) is a unique
solution of the equation (46).

Recall that τ does have some exponential moment, so if c = εc1 as in the statement
of the Lemma 36, and if ε is small enough, then the expression in (47), indeed,
converges.

The proof of the Theorem 37 can be established similarly to the proof of the Theorem
32. Firstly, if x ∈ �, then clearly τ = 0, so that u(x) = g(x). Secondly, if x /∈ �, then
clearly τ ≥ 1. Then, due to the Markov property and by splitting the sum, i.e. taking

a sum
τ−1∑

k=1
and separately considering the term corresponding to n = 0 which is just

f (x), we have,

u(x) = f (x) + Ex

⎛

⎝
τ−1∑

n=1

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )

⎞

⎠

= f (x) + ExEx

⎡

⎣
τ−1∑

n=1

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )|X1

⎤

⎦

= f (x) + Ex exp(−c(x))EX1

⎛

⎝
τ−1∑

n=0

exp

⎛

⎝−
n−1∑

k=0

c(Xk )

⎞

⎠ f (Xk ) + exp

⎛

⎝−
τ−1∑

k=0

c(Xk )

⎞

⎠ g(Xτ )

⎞

⎠

= f (x) + exp(−c(x))Ex u(X1) = f (x) + exp(−c(x))Pu(x),

which shows exactly the Eq. (46), as required. The Theorem 37 is proved.

10.4 Poisson Equation with a Potential Without a Boundary

Recall the Eq. (34):

exp(−c(x))Pu(x) − u(x) = − f (x),

and the natural candidate for the solution ‘in the whole space’ is the function

u(x) :=
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xk), (48)

The main question here is the question of convergence. As was mentioned earlier, we
are interested in the following case: c(x) = εc1(x), ε > 0 small, and

∑
c1(x)μ(x) >

0, where μ is the unique invariant measure of the Markov chain X .
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10.5 Convergence

The first goal is to justify that u is well-defined. Recall that we want to show conver-
gence of the series,

u(x) =
∞∑

n=0

Ex exp

(

−
n−1∑

k=0

c(Xk)

)

f (Xn),

with c(x) = εc1(x), c̄1 = ∑
c1(x)μ(x) > 0, with ε > 0 small. Denote

Hn(β, x) := n−1 lnEx exp

(

β

n−1∑

k=0

c1(Xk)

)

, β ∈ R
1,

or, equivalently,

Ex exp

(

β

n−1∑

k=0

c1(Xk)

)

= Ex exp(n Hn(β, x)).

(Note that this notation just slightly differs fromhow the function Hn—and in the next
formula also H—was defined in the Sect. 6: now it is constructed via the ‘additive
functional’ related to another function c1. Yet, the meaning is similar, so that there
is no need to change this standard notation.) Let

H(β) := lim
T→∞ HT (β, x), β ∈ R

1.

As we have seen in the Sect. 6, this limit does exist for all values of β. (The fact that
in the Sect. 6 this was shown for another function and under the centering condition
for that function is of no importance because the average may be always subtracted.)

Also, it may be proved—left as an exercise to the reader (here some Lemma from
[25] about estimating the spectral radius may be useful)—that if δ > 0 then there
exists n(δ) such that uniformly in x

sup
|β|≤B

|H(β) − Hn(β, x)| ≤ δ, n ≥ n(δ). (49)

Unlike in the Sect. 6 where it was assumed that f̄ = 0, here we compute,

H ′
n(0, x) = n−1

Ex

n−1∑

k=0

c1(Xk),

where, as usual, the notation H ′
n(0, x) stands for ∂H ′

n(β, x)/∂β|β=0. Now, due to
the Corollary 9 it follows,
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lim
n→∞ n−1

Ex

n−1∑

k=0

c1(Xk) = c̄1 = 〈c1,μ〉 > 0.

This means that in our case
H ′(0) = c̄1 > 0,

and that, at least, in some neighbourhood of zero,

H(β) > 0, β > 0, & H(β) < 0, β < 0. (50)

Now, convergence of the sum defining u for each x for ε > 0 small enough and
uniformly in x—recall that |S| < ∞—follows from (50). Indeed, choose ε > 0
so that H(−ε) < 0 and for a fixed δ = −H(−ε)/2 also choose n0 such that
|Hn(−ε, x) − H(−ε)| < δ, for all n ≥ n0 and any x . We estimate, for ε small and
any x (and with ε independent of x),

|u(x)| ≤ ‖ f ‖B

∞∑

n=0

Ex exp

(

−ε

n−1∑

k=0

c1(Xk)

)

= ‖ f ‖B

∞∑

n=0

exp(nHn(−ε, x))

≤ ‖ f ‖B

∞∑

n=0

exp(n(H(−ε) + δ)) ≤ ‖ f ‖B exp(δ)
∞∑

n=0

exp(nH(−ε)) < ∞.

10.6 u Solves the Equation

Let us argue why the function u solves the Poisson equation (34). By the Markov
property,

u(x) = f (x) + exp(−c(x))
∑

y

Ex1(X1 = y)Ey

∞∑

k=0

exp(−ϕk−1) f (Xk)

= f (x) + exp(−c(x))
∑

y

pxyv(y) = f (x) + exp(−c(x))Exu(X1).

From this, it follows clearly that, as required,

Lcu(x) = exp(−c(x))Exu(X1) − u(x) = − f (x).
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10.7 Uniqueness of Solution

Uniqueness may be shown in a standard manner. For the difference of two solutions
v = u1 − u2 we have Lcv = 0. Therefore, we get,

v(x) = exp(−c(x))Exv(X1).

After iterating this formula by induction n times, we obtain,

v(x) = Ex exp

(

−
n−1∑

k=0

c(Xk)

)

v(Xn).

Recall that the function v is necessarily bounded on a finite state space S. Hence, it
follows that v(x) ≡ 0. Indeed, we estimate,

|v(x)| = |Ex exp

(

−
n−1∑

k=0

c(Xk)

)

v(Xn)| ≤ CEx exp

(

−
n−1∑

k=0

c(Xk)

)

.

Hence, we get, for any n ≥ 0,

|v(x)| ≤ CEx exp

(

−ε

n−1∑

k=0

c1(Xk)

)

= C exp(nHn(−ε, x)). (51)

Recall thatHn(β, x) → H (β), n → ∞, and thatH (−ε) < 0 for ε > 0 small enough.
So, the right hand side in (51) converges to zero exponentially fast with n → ∞.
Since the left hand side does not depend on n, we get |v(x)| = 0, i.e. u1 ≡ u2, as
required.

11 Ergodic Theorem, General Case

Now let us consider a more general construction on a more general state space. It
is assumed that

κ := inf
x,x ′

∫ (
Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy) > 0. (52)

Note that here
Px ′(1, dy)

Px (1, dy)
is understood in the sense of the density of the absolute

continuous components. For brevity we will be using a simplified notation Px (dz)
for Px (1, dz). Another slightly less general condition will be accepted in the next
section but it is convenient to introduce it here: suppose that there exists a measure
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� with respect to which each measure Px (1, dz) for any x is absolutely continuous,

Px (1, dz) << �(dz), ∀ x ∈ S. (53)

Under the assumption (53)wehave another representationof the constantκ from (52).

Lemma 38 Under the assumption (53), we have the following representation for
the constant from (52),

κ = inf
x,x ′

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy). (54)

Proof Firstly, note that clearly the right hand side in (38) does not depend on any
particularmeasure�, i.e. for any othermeasurewith respect towhich both Px ′(1, dy)
and Px (1, dy) are absolutely continuous the formula (52) gives the same result.
Indeed, it follows straightforward from the fact that if, say, d� << d�̃ and d� =
f d�̃, then we get,

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy)

=
∫ (

Px ′(1, dy)

f �̃(dy)
∧ Px (1, dy)

f �̃(dy)

)
f (y)1( f (y) > 0)�̃(dy)

=
∫ (

Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
1( f (y) > 0)�̃(dy).

However, Px ′(1, dy) << �(dy) = f (y)�̃(dy), so for any measurable A we have∫
A Px ′(1, dy)1( f (y) = 0) = 0 and the same for Px (1, dy), which means that, actu-

ally,

∫ (
Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
1( f (y) > 0)�̃(dy)

=
∫ (

Px ′(1, dy)

�̃(dy)
∧ Px (1, dy)

�̃(dy)

)
�̃(dy).

Respectively, if there are two reference measure � and, say, �′, then we may take
�̃ = � + �′, and the coefficients computed by using each of the two—� and �′—
will be represented via �̃ in the same way.

Secondly, let fx (y) = Px (1, dy)

�(dy)
(y). Then,
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κ = inf
x,x ′

∫ (
Px ′(1, dy)

Px (1, dy)
∧ Px (1, dy)

Px (1, dy)

)
Px (1, dy)

= inf
x,x ′

∫ (
Px ′(1, dy)

fx (y)�(dy)
∧ Px (1, dy)

fx (y)�(dy)

)
fx (y)�(dy)

= inf
x,x ′

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy),

as required. The Lemma 38 is proved.

Denote

κ(x, x ′) :=
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

Clearly, for any x, x ′ ∈ S,
κ(x, x ′) ≥ κ. (55)

Lemma 39 For any x, x ′ ∈ S,

κ(x, x ′) = κ(x ′, x).

Proof Under the more restrictive assumption (54) we have,

κ(x ′, x) =
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (dy) =

∫ (
Px ′(1, dy)

�(dy)
∧ Px (1, dy)

�(dy)

)
�(dy),

which expression is, apparently, symmetric with respect to x and x ′, as required.
Without assuming (54) we can argue as follows. Denote �x,x ′(dz) = Px (1, dz) +
Px ′(1, dz). Note that by definition, �x,x ′ = �x ′,x . Then we have,

κ(x ′, x) =
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

=
∫ (

Px ′(1, dy)

Px (1, dy)
∧ 1

)
Px (1, dy)

�x,x ′(dy)
�x,x ′(dy)

=
∫ (

Px ′(1, dy)

�x,x ′(dy)
∧ Px (1, dy)

�x,x ′(dy)

)
�x,x ′(dy). (56)

The latter expression is symmetric with respect to x and x ′, which proves the
Lemma 39.

Definition 40 If an MC (Xn) satisfies the condition (52)—we call it MD-condition
in the sequel—then we call this process Markov–Dobrushin’s or MD-process.

This condition in an easier situation of finite chains was introduced by Markov
himself [30]; later on, for non-homogeneous Markov processes its analogue was
suggested and used by Dobrushin [8]. So, we call it Markov–Dobrushin’s condition,
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as already suggested earlier by Seneta. Note that in all cases κ ≤ 1. The case κ = 1
corresponds to the i.i.d. sequence (Xn). In the opposite extreme situation where
the transition kernels are singular for different x and x ′, we have κ = 0. The MD-
condition (52)—as well as (54)—is most useful because it provides an effective
quantitative upper bound for convergence rate of aMarkov chain towards its (unique)
invariant measure in total variation metric.

Theorem 41 Let the assumption (52) hold true. Then the process (Xn) is ergodic,
i.e. there exists a limiting probability measure μ, which is stationary and such that
(1) holds true. Moreover, the uniform bound is satisfied for every n,

sup
x

sup
A∈S

|Px (n, A) − μ(A)| ≤ (1 − κ)n. (57)

Recall that the total variation distance or metric between two probability measures
may be defined as

‖μ − ν‖T V := 2 sup
A

(μ(A) − ν(A)).

Hence, the inequality (57) may be rewritten as

sup
x

‖Px (n, ·) − μ(·)‖T V ≤ 2(1 − κ)n, (58)

Proof 1. Denote for any measurable A ∈ S,

M (n)(A) := sup
x

Px (n, A), m(n)(A) := inf
x

Px (n, A).

Due to the Chapman–Kolmogorov equation we have,

m(n+1)(A) = inf
x

Px (n + 1, A) = inf
x

∫
Px (dz)Pz(n, A)

≥ inf
x

∫
Px (dz)m

(n)(A) = m(n)(A).

So, the sequence (m(n)(A))does not decrease. Similarly, (M (n)(A))does not increase.
We are going to show the estimate

(0 ≤) M (n)(A) − m(n)(A) ≤ (1 − κ)n. (59)

In particular, it follows that for any x, y ∈ S we have,

|Px (n, A) − Py(n, A)| ≤ (1 − κ)n. (60)

More than that, by virtue of (59) and due to the monotonicity (M (n)(A) decreases,
while m(n)(A) increases) both sequences M (n)(A) and m(n)(A) have limits, which
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limits coincide and are uniform in A:

lim
n→∞ M (n)(A) = lim

n→∞m(n)(A) =: m(A), (61)

and
sup
A

|M (n)(A) − m(A)| ∨ sup
A

|m(n)(A) − m(A)| ≤ (1 − κ)n. (62)

2. Let x, x ′ ∈ S, and let �x,x ′ be some reference measure for both Px (1, dz) and
Px ′(1, dz). Again by virtue of Chapman–Kolmogorov’s equation we have for any
n > 1 (recall that we accept the notations, a+ = a ∨ 0 ≡ max(a, 0), and a− = a ∧
0 ≡ min(a, 0)),

Px (n, A) − Px ′(n, A) =
∫

[Px (1, dz) − Px ′(1, dz)]Pz(n − 1, A)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)
�x,x ′(dz) Pz(n − 1, A)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) Pz(n − 1, A)

+
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz) Pz(n − 1, A). (63)

Further, we have,

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) Pz(n − 1, A)

≤
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) M (n−1)(A),

and similarly,

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz) Pz(n − 1, A)

≤
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

−
�x,x ′(dz)m(n−1)(A),

On the other hand,
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∫ (
Px (1, dz)

�x,x ′ (dz)
− Px ′(1, dz)

�x,x ′ (dz)

)

+
�x,x ′ (dz) +

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′ (dz)

)

−
�x,x ′ (dz)

=
∫ (

Px (1, dz)

�x,x ′ (dz)
− Px ′(1, dz)

�x,x ′(dz)

)
�x,x ′ (dz) = 1 − 1 = 0.

Thus, we get,

M (n)(A) − m(n)(A) = sup
x

Px (n, A) − inf
x ′ Px ′(n, A)

≤ sup
x,x ′

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz) (M (n−1)(A) − m(n)(A)).

It remains to notice that (recall that (a − b)+ = a − a ∧ b ≡ a − min(a, b))

∫ (
Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)

)

+
�x,x ′(dz)

=
∫ (

Px (1, dz)

�x,x ′(dz)
− Px ′(1, dz)

�x,x ′(dz)
∧ Px (1, dz)

�x,x ′(dz)

)
�x,x ′(dz) = 1 − κ(x, x ′) ≤ 1 − κ.

Now the bound (59) follows by induction.
3. Let us establish the existence of at least one stationary distribution. For any x ∈ S
and any measurable A,

m(n)(A) ≤ Px (n, A) ≤ M (n)(A). (64)

Due to (61) and (62), (Px (n, A)) is aCauchy sequencewhich converges exponentially
fast and uniformly with respect to A. Denote

q(A) := lim
n→∞ Px (n, A). (65)

Clearly, due to this uniform convergence, q(·) ≥ 0, q(S) = 1, and the function q is
additive in A. More than that, by virtue of the same uniform convergence in A in
(65), the function q(·) is also ‘continuous at zero’, i.e. it is, actually, a sigma-additive
measure. More than that, the uniform convergence implies that

‖Px (n, ·) − q(·)‖T V → 0, n → ∞. (66)

4. Now, let us show stationarity. We have,

q(A) = lim
n→∞ Px0(n, A) = lim

n→∞

∫
Px0(n − 1, dz)Pz(A)

=
∫

q(dz)Pz(A) + lim
n→∞

∫
(Px0(n − 1, dz) − q(dz))Pz(A).
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Here, in fact, the second term equals zero. Indeed,

|
∫

(Px0(n − 1, dz) − q(dz))Pz(A)| ≤
∫

|Px0(n − 1, dz) − q(dz)|Pz(A)

≤
∫

|Px0(n − 1, dz) − q(dz)| = ‖Px0(n − 1, ·) − q(·)‖T V → 0, n → ∞.

Thus, we find that

q(A) =
∫

q(dz)Pz(A),

which is the definition of stationarity. This completes the proof of the Theorem 41.

Corollary 42 For any bounded Borel function f and any 0 ≤ s < t ,

sup
x

|Ex ( f (Xt )|Xs) − Einv f (Xt )| ≡ sup
x

|Ex ( f (Xt ) − Einv f (Xt )|Xs)| ≤ C f (1 − κ)t−s ,

or, equivalently,

sup
x

|Ex ( f (Xt )|F X
s ) − Einv f (Xt )| ≤ C f (1 − κ)t−s,

12 Coupling Method: General Version

This more general version requires a change of probability space so as to construct
coupling. Results themselves in no way pretend to be new: we just suggest a presen-
tation convenient for the author. In particular, all newly arising probability spaces
on each step (i.e. at each time n) are explicitly shown. By ‘general’ we do not mean
that it is the most general possible: this issue is not addressed here. Just it is more
general that in the Sect. 5, and it is more involved because of the more complicated
probability space, and it provides a better constant in the convergence bound. It turns
out that the general version requires a bit of preparation; hence, we start with the
section devoted to a couple of random variables, while the case of Markov chains
will be considered separately in the next section.

The following folklore yet important lemma answers the following question: sup-
pose we have two distributions, which are not singular, and the ‘common area’ equals
some positive constant κ. Is it possible to realize these two distributions on the same
probability space so that the two corresponding random variables coincide exactly
with probability κ?We call one version of this result ‘the lemma about three random
variables’, and another one ‘the lemma about two random variables’.

Lemma 43 (‘Of three random variables’) Let ξ1 and ξ2 be two random variables on
their (without loss of generality different, and they will be made independent after
we take their direct product!) probability spaces (�1,F1,P1) and (�2,F2,P2) and
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with densities p1 and p2 with respect to some reference measure�, correspondingly.
Then, if Markov–Dobrushin’s condition holds true,

κ :=
∫ (

p1(x) ∧ p2(x)
)
�(dx) > 0, (67)

then there exists one more probability space (�,F ,P) and a random variable on it
ξ3 (and ξ2 also lives on (�,F ,P), clearly, with the same distribution) such that

L(ξ3) = L(ξ1), & P(ξ3 = ξ2) = κ. (68)

Here L denotes the distribution of a random variable under consideration. Note
that in the case κ = 1 we have p1 = p2, so we can just assign ξ3 := ξ2, and then
immediately both assertions of (68) hold. Mention that even if κ were equal to zero
(excluded by the assumption (67)), i.e. the two distributions were singular, we could
have posed ξ3 := ξ1, and again both claims in (68) would have been satisfied trivially.
Hence, in the proof below it suffices to assume

0 < κ < 1.

Proof of the Lemma 43. 1: Construction. Let

A1 := {x : p1(x) ≥ p2(x)}, A2 := {x : p1(x) < p2(x)},

We will need two new independent random variables, ζ ∼ U [0, 1] (uniformly dis-
tributed random variable on [0, 1]) and η with the density

pη(x) := p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x) ≡ p1 − p1 ∧ p2

∫

A1

(p1 − p1 ∧ p2)(y)�(dy)
(x).

Both ζ and η are assumed to be defined on their own probability spaces. Now let
(on the direct product of all these probability spaces, i.e. of the probability spaces
where the random variables ξ1, ξ2, ζ, η are defined)

ξ3 := ξ21(
p1

p1 ∨ p2
(ξ2) ≥ ζ) + η1(

p1

p1 ∨ p2
(ξ2) < ζ).

We shall see that ξ3 admits all the desired properties. Denote

C := {ω : p1

p1 ∨ p2
(ξ2) ≥ ζ}.

Then ξ3 may be rewritten as



502 A. Veretennikov

ξ3 = ξ21(C) + η1(C̄). (69)

2: Verification. BelowP is understood as the probability arising on the direct product
of the probability spaces mentioned earlier. Let

c :=
∫

A1

(p1(x) − p2(x))�(dx) ≡
∫

A2

(p2(x) − p1(x))�(dx).

Due to our assumptions we have,

c + κ =
∫

A1

(p1(x) − p2(x))�(dx) +
∫ (

p1(x) ∧ p2(x)
)
�(dx)

=
∫

A1

(p1(x) − p2(x))�(dx) +
∫

A1

(
p1(x) ∧ p2(x)

)
�(dx) +

∫

A2

(
p1(x) ∧ p2(x)

)
�(dx)

=
∫

A1

p1(x)�(dx) +
∫

A2

p1(x)�(dx) =
∫

A1∪A2

p1(x)�(dx) = 1.

So,
c = 1 − κ ∈ (0, 1).

Also,

pη(x) = p1 − p1 ∧ p2

c
(x).

Also notice that

P(C |ξ2) = p1

p1 ∨ p2
(ξ2),

and recall that on C , ξ3 = ξ2, while on its complement C̄ , ξ3 = η. Now, for any
bounded Borel measurable function g we have,
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Eg(ξ3) = Eg(ξ3)1(C) + Eg(ξ3)1(C̄) = Eg(ξ2)1(C) + Eg(η)1(C̄)

= Eg(ξ2)
p1

p1 ∨ p2
(ξ2) + Eg(η)(1 − p1

p1 ∨ p2
(ξ2))

= Eg(ξ2)
p1

p1 ∨ p2
(ξ2) + Eg(η)E(1 − p1

p1 ∨ p2
(ξ2))

=
∫

A1∪A2

g(x)
p1

p1 ∨ p2
(x)p2(x)�(dx) +

∫

(A1)

g(x)pη(x)�(dx)

×
∫

(A2)

(1 − p1

p1 ∨ p2
(y))p2(y)�(dy)

=
∫

A1

g(x)p2(x)�(dx) +
∫

A2

g(x)p1(x)�(dx) +
∫

A1

g(x)
p1 − p2

c
(x)�(dx)

×
∫

A2

(p2 − p1)(y)�(dy)

=
∫

A1∪A2

g(x)p1(x)�(dx) = Eg(ξ1).

Here (A1) in brackets in
∫

(A1)

g(x)pη(x)�(dx) is used with the following meaning:

the integral is originally taken over the whole domain, but integration outside the set
A1 gives zero; hence, only the integral over this domain remains. The established
equality Eg(ξ3) = Eg(ξ1) means that L(ξ3) = L(ξ1), as required.
Finally, from the definition of ξ3 it is straightforward that

P(ξ3 = ξ2) ≥ P(C).

So,

P(ξ3 = ξ2) ≥ P(C) = E
p1

p1 ∨ p2
(ξ2) =

∫
p1

p1 ∨ p2
(x)p2(x)�(dx)

=
∫

A1

p1

p1 ∨ p2
(x)p2(x)�(dx) +

∫

A2

p1

p1 ∨ p2
(x)p2(x)�(dx)

=
∫

A1

p2(x)�(dx) +
∫

A2

p1

p1 ∨ p2
(x)p1(x)�(dx) =

∫
(p1 ∧ p2)�(dx) = κ.
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Let us argue why, actually,

P(ξ3 = ξ2) = P(C) = κ,

i.e. why the inequality P(ξ3 = ξ2) ≥ P(C) may not be strict. Indeed, P(ξ3 = ξ2) >

P(C) may only occur if P(η1(C̄) = ξ2) > 0 (cf. with (69)), or, equivalently, if

P

(
η1(

p1

p1 ∨ p2
(ξ2) < ζ) = ξ2

)
> 0. However,

ω ∈ C̄ = {ω : p1

p1 ∨ p2
(ξ2) < ζ}.

implies p1(ξ2) < p2(ξ2), that is, ξ2 ∈ A2.But on this set the density of η equals zero.
Hence,P(ξ3 = ξ2) > P(C) is not possible, whichmeans that, in fact, we have proved
that P(ξ3 = ξ2) = P(C) = κ, as required. The Lemma 43 is proved.

Here is another, ‘symmetric’ version of the latter lemma.

Lemma 44 (‘Of two random variables’) Let ξ1 and ξ2 be two random variables
on their (without loss of generality different, which will be made independent after
we take their direct product!) probability spaces (�1,F1,P1) and (�2,F2,P2) and
with densities p1 and p2 with respect to some reference measure�, correspondingly.
Then, if

κ :=
∫ (

p1(x) ∧ p2(x)
)
�(dx) > 0, (70)

then there exists one more probability space (�,F ,P) and two random variables
on it η1, η2 such that

L(η j ) = L(ξ j ), j = 1, 2, & P(η1 = η2) = κ. (71)

Proof of the Lemma 44. 1: Construction. We will need now four new independent
random variables, Bernoulli random variable γ with P(γ = 0) = κ and ζ0,1,2 with
the densities

pζ1(x) := p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x),

pζ2(x) := p2 − p1 ∧ p2
∫

(p2 − p1 ∧ p2)(y)�(dy)
(x),

pζ0(x) := p1 ∧ p2
∫

(p1 ∧ p2)(y)�(dy)
(x).
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We may assume that they are all defined on their own probability spaces and eventu-
allywe consider the direct product of these probability spaces denoted as (�,F ,P).
As a result, they are all defined on one unique probability space and they are inde-
pendent there. Now, on the same product of all probability spaces just mentioned,
let

η1 := ζ01(γ = 0) + ζ11(γ 
= 0), & η2 := ζ01(γ = 0) + ζ21(γ 
= 0). (72)

We shall see that η1,2 admit all the desired properties claimed in the Lemma.

2: Verification. From (72), clearly,

P(η1 = η2) ≥ P(γ = 0) = κ.

Yet, we already saw earlier (in slightly different terms) that this may be only an
equality, that is, P(η1 = η2) = P(γ = 0) = κ.

Next, since γ, ζ0 and ζ1 are independent on (�,F ,P), for any bounded measurable
function g we have,

Eg(η1) = Eg(η1)1(γ = 0) + Eg(η1)1(γ 
= 0)

= Eg(ζ0)1(γ = 0) + Eg(ζ1)1(γ 
= 0) = Eg(ζ0)E1(γ = 0) + Eg(ζ1)E1(γ 
= 0)

= κ

∫
g(y)pζ0 (y) �(dy) + (1 − κ)

∫
g(y)pζ1 (y) �(dy)

= κ

∫
p1 ∧ p2

∫
(p1 ∧ p2)�(dy)

(x)�(dx) + (1 − κ)

∫
g(x)

p1 − p1 ∧ p2
∫

(p1 − p1 ∧ p2)(y)�(dy)
(x)�(dx)

=
∫

p1 ∧ p2(x)�(dx) +
∫

g(x)(p1 − p1 ∧ p2)(x)�(dx) =
∫

g(y)p1(y) dy = Eg(ξ1).
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For η2 the arguments are similar, so alsoEg(η2) = Eg(ξ2). The Lemma 44 is proved.

Remark 45 Note that the extended probability space in the proof of the Lemma 44
has the form,

(�,F ,P) = (�1,F1,P1) × (�2,F2,P2) × (�γ,Fγ,Pγ) ×
2∏

k=0

(�ζk ,F ζk ,Pζk ).

13 General Coupling Method for Markov Chains

Throughout this section the assumption (54) is assumed. In this section, it is explained
how to apply general coupling method as in the Sect. 12 to Markov chains in general
state spaces (S,S). Various presentations of this method may be found in [19, 29,
33, 40, 43], et al. This section follows the lines from [6], which, in turn, is based on
[43]. Note that in [6] the state space was R1; however, in Rd all formulae remain the
same. Clearly, this may be further extended to more general state spaces, although,
we will not pursue this goal here.

Let us generalize the Lemma 44 to a sequence of random variables and present our
coupling construction for Markov chains based on [43]. Assume that the process has
a transition density p(x, y) with respect to some reference measure � and consider
two versions (X1

n), (X
2
n) of the same Markov process with two initial distributions,

respectively, which also have densities with respect to this � denoted by pX1
0
and

pX2
0
(of course, this does not exclude the case of non-random initial states). Let

κ(u, v) :=
∫

p(u, t) ∧ p(v, t)�(dt), κ = inf
u,v

κ(u, v), (73)

and

κ(0) :=
∫

pX1
0
(t) ∧ pX2

0
(t)�(dt). (74)

It is clear that 0 ≤ κ(u, v) ≤ 1 for all u, v. Note that κ(0) is not the same as κ0 in
the previous sections. We assume that X1

0 and X2
0 have different distributions, so

κ(0) < 1. Otherwise we obviously have X1
n

d= X2
n (equality in distribution) for all n,

and the coupling can be made trivially, for example, by letting X̃1
n = X̃2

n := X1
n .

Let us introduce a new, vector-valued Markov process
(
η1
n, η

2
n, ξn, ζn

)
. If κ0 = 0

then we set
η1
0 := X1

0, η2
0 := X2

0, ξ0 := 0, ζ0 := 1.

Otherwise, if 0 < κ(0) < 1, then we apply the Lemma 44 to the random variables
X1
0 and X2

0 so as to create the random variables η1
0, η2

0, ξ0 and ζ0 (they corre-
spond to η1, η2, ξ, and ζ in the Lemma). Now, assuming that the random variables(
η1
n, η

2
n, ξn, ζn

)
have been determined for some n, let us show how to construct them
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for n + 1. For this aim, we define the transition probability density ϕ with respect to
the same measure � for this (vector-valued) process as follows,

ϕ(x, y) := ϕ1(x, y
1)ϕ2(x, y

2)ϕ3(x, y
3)ϕ4(x, y

4), (75)

where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4), and if 0 < κ(x1, x2) < 1, then

ϕ1(x, u) := p(x1, u) − p(x1, u) ∧ p(x2, u)

1 − κ(x1, x2)
, ϕ2(x, u) := p(x2, u) − p(x1, u) ∧ p(x2, u)

1 − κ(x1, x2)
,

ϕ3(x, u) := 1(x4 = 1)
p(x1, u) ∧ p(x2, u)

κ(x1, x2)
+ 1(x4 = 0)p(x3, u),

ϕ4(x, u) := 1(x4 = 1)
(
δ1(u)(1 − κ(x1, x2)) + δ0(u)κ(x1, x2)

) + 1(x4 = 0)δ0(u), (76)

where δi (u) is the Kronecker symbol, δi (u) = 1(u = i), or, in other words, the delta
measure concentrated at state i . The case x4 = 0 signifies coupling already realized
at the previous step, and u = 0 means successful coupling at the transition. In the
degenerate cases, if κ(x1, x2) = 0 (coupling at the transition is impossible), then we
may set, e.g.

ϕ3(x, u) := 1(x4 = 1)1(0 < u < 1) + 1(x4 = 0)p(x3, u),

and if κ(x1, x2) = 1, then we may set

ϕ1(x, u) = ϕ2(x, u) := 1(0 < u < 1).

In fact, in both degenerate cases κ(x1, x2) = 0 or κ(x1, x2) = 1, the functions
ϕ3(x, u)1(x4 = 1) (or, respectively, ϕ1(x, u) and ϕ2(x, u)) can be defined more
or less arbitrarily, only so as to keep the property of conditional independence of the
four random variables

(
η1
n+1, η

2
n+1, ξn+1, ζn+1

)
given

(
η1
n, η

2
n, ξn, ζn

)
.

Lemma 46 Let the random variables X̃1
n and X̃2

n, for n ∈ Z+ be defined by the
following formulae:

X̃1
n := η1

n1(ζn = 1) + ξn1(ζn = 0), X̃2
n := η2

n1(ζn = 1) + ξn1(ζn = 0).

Then

X̃1
n

d= X1
n, X̃2

n
d= X2

n, for all n ≥ 0.

Moreover,

X̃1
n = X̃2

n, ∀ n ≥ n0(ω) := inf{k ≥ 0 : ζk = 0},
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and

P(X̃1
n 
= X̃2

n) ≤ (1 − κ(0))E
n−1∏

i=0

(1 − κ(η1
i , η

2
i )). (77)

Moreover,
(
X̃1
n

)
n≥0 and

(
X̃2
n

)
n≥0 are both homogeneous Markov processes, and

(
X̃1
n

)
n≥0

d= (
X1
n

)
n≥0 , &

(
X̃2
n

)
n≥0

d= (
X2
n

)
n≥0 . (78)

Informally, the processes η1
n and η2

n represent X
1
n and X2

n , correspondingly, under
condition that the coupling was not successful until time n, while the process ξn
represents both X1

n and X2
n if the coupling does occur no later than at time n. The

process ζn represents the moment of coupling: the event ζn = 0 is equivalent to the
event that coupling occurs no later than at time n. As it follows from (75) and (76),

P(ζn+1 = 0|ζn = 0) = 1,

P(ζn+1 = 0|ζn = 1, η1
n = x1, η2

n = x2) = κ(x1, x2).

Hence, if two processes were coupled at time n, then they remain coupled at time
n + 1, and if they were not coupled, then the coupling occurs with the probability
κ(η1

n, η
2
n). At each time the probability of coupling at the next step is as large as

possible, given the current states.

For the proof of Lemma 46 see [6].

From the last lemma a new version of the exponential bound in the Ergodic The-
orem may be derived. In general, itmay somehow improve the estimate based on the
constant κ from Markov–Dobrushin’s condition (52) or (54). In the remaining para-
graphs we do not pursue the most general situation restricting ourselves again to
a simple setting of |S| < ∞. Introduce the operator V acting on a (bounded con-
tinuous) function h on the space S × S as follows: for x = (x1, x2) ∈ S × S and
Xn := (X̃1

n, X̃
2
n),

Vh(x) := (1 − κ(x1, x2))Ex1,x2h(X1) ≡ exp(ψ(x))Ex1,x2h(X1), (79)

where in the last expression ψ(x) := ln(1 − κ(x1, x2)). The aim is now to find out
whether the geometric bound (1 − κ)n in (5) under the assumption (3) is the optimal
one, or it could be further improved, let under some additional assumptions. Let us
rewrite the estimate (77) as follows:

P(X̃1
n 
= X̃2

n) ≤ (1 − κ(0))V n1(x). (80)
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Note that by definition (79), for the non-negative matrix V its sup-norm ‖V ‖ =
‖V ‖B,B := sup

|h|B≤1
|Vh|B equals sup

x
V 1(x), where |h|B := max

x
|h(x)| and 1 = 1(x)

is considered as a function on S × S identically equal to one. Note that sup
x

V 1(x) =
1 − κ.
Now the well-known inequality (see, for example, [25, §8]) reads,

r(V ) ≤ ‖V ‖ = (1 − κ). (81)

Further, from the Perron–Frobenius Theorem it follows (see, e.g. [14, (7.4.10)]),

lim
n

1

n
ln V n1(x) = ln r(V ). (82)

The assertions (80) and (82) together lead to the following result.

Theorem 47 Let state space S be finite and let theMarkov condition (3) be satisfied.
Then

lim sup
n→∞

1

n
ln ‖Px (n, ·) − μ(·)‖T V ≤ ln r(V ). (83)

In other words, for any ε > 0 and n large enough,

‖Px (n, ·) − μ(·)‖T V ≤ (r(V ) + ε)n, (84)

which is strictly better than (5) if r(V ) < ‖V ‖ = 1 − κ and ε > 0 is chosen small
enough, i.e. so that r(V ) + ε < 1 − κ. It is also likely to be true in more general
cases for compact operators V where r(V ) + ε < 1 − κ. However, the full problem
remains open.
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