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PREFACE TO THE THIRD EDITION

The Third Edition contains some new material. More specifically, the chapter on large sam-
ple theory has been reorganized, repositioned, and re-titled in recognition of the growing
role of asymptotic statistics. In Chapter 12 on General Linear Hypothesis, the section on
regression analysis has been greatly expanded to include multiple regression and logistic
and Poisson regression.

Some more problems and remarks have been added to illustrate the material covered.
The basic character of the book, however, remains the same as enunciated in the Preface to
the first edition. It remains a solid introduction to first-year graduate students or advanced
seniors in mathematics and statistics as well as a reference to students and researchers in
other sciences.

We are grateful to the readers for their comments on this book over the past 40 years
and would welcome any questions, comments, and suggestions. You can communi-
cate with Vijay K. Rohatgi at vrohatg@bgsu.edu and with A. K. Md. Ehsanes Saleh at
esaleh@math.carleton.ca.

Vijay K. RohatgiSolana Beach, CA
A. K. Md. Ehsanes SalehOttawa, Canada



PREFACE TO THE SECOND EDITION

There is a lot that is different about this second edition. First, there is a co-author without
whose help this revision would not have been possible. Second, we have benefited from
countless letters from readers and colleagues who have pointed out errors and omissions
and have made valuable suggestions over the past 25 years. These communications make
this revision worth the effort. Third, we have tried to update the content of the book while
striving to preserve the character and spirit of the first edition.

Here are some of the numerous changes that have been made.

1. The Introduction section has been removed. We have also removed Chapter 14 on
sequential statistical inference.

2. Many parts of the book have gone substantial rewriting. For example, Chapter 4 has
many changes, such as inclusion of exchangeability. In Chapter 3, an introduction to
characteristic functions has been added. In Chapter 5 some new distributions have
been added while in Chapter 6 there have been many changes in proofs.

3. The statistical inference part of the book (Chapters 8 to 13) has been updated.
Thus in Chapter 8 we have expanded the coverage of invariance and have included
discussions of ancillary statistics and conjugate prior distributions.

4. Similar changes have been made in Chapter 9. A new section on locally most
powerful tests has been added.

5. Chapter 11 has been greatly revised and a discussion of invariant confidence
intervals has been added.

6. Chapter 13 has been completely rewritten in the light of increased emphasis on
nonparametric inference. We have expanded the discussion of U-statistics. Later
sections show the connection between commonly used tests and U-statistics.

7. In Chapter 12, the notation has been changed to confirm to the current convention.
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8. Many problems and examples have been added.

9. More figures have been added to illustrate examples and proofs.

10. Answers to selected problems have been provided.

We are truly grateful to the readers of the first edition for countless comments and
suggestions and hope we will continue to hear from them about this edition.

Special thanks are due Ms. Gillian Murray for her superb word processing of the
manuscript, and Dr. Indar Bhatia for figures that appear in the text. Dr. Bhatia spent count-
less hours preparing the diagrams for publication. We also acknowledge the assistance of
Dr. K. Selvavel.

Vijay K. Rohatgi
A. K. Md. Ehsanes Saleh



PREFACE TO THE FIRST EDITION

This book on probability theory and mathematical statistics is designed for a three-quarter
course meeting 4 hours per week or a two-semester course meeting 3 hours per week. It is
designed primarily for advanced seniors and beginning graduate students in mathematics,
but it can also be used by students in physics and engineering with strong mathematical
backgrounds. Let me emphasize that this is a mathematics text and not a “cookbook.” It
should not be used as a text for service courses.

The mathematics prerequisites for this book are modest. It is assumed that the reader has
had basic courses in set theory and linear algebra and a solid course in advanced calculus.
No prior knowledge of probability and/or statistics is assumed.

My aim is to provide a solid and well-balanced introduction to probability theory and
mathematical statistics. It is assumed that students who wish to do graduate work in prob-
ability theory and mathematical statistics will be taking, concurrently with this course, a
measure-theoretic course in analysis if they have not already had one. These students can
go on to take advanced-level courses in probability theory or mathematical statistics after
completing this course.

This book consists of essentially three parts, although no such formal divisions are des-
ignated in the text. The first part consists of Chapters 1 through 6, which form the core of
the probability portion of the course. The second part, Chapters 7 through 11, covers the
foundations of statistical inference. The third part consists of the remaining three chapters
on special topics. For course sequences that separate probability and mathematical statis-
tics, the first part of the book can be used for a course in probability theory, followed by
a course in mathematical statistics based on the second part and, possibly, one or more
chapters on special topics.

The reader will find here a wealth of material. Although the topics covered are fairly
conventional, the discussions and special topics included are not. Many presentations give
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far more depth than is usually the case in a book at this level. Some special features of the
book are the following:

1. A well-referenced chapter on the preliminaries.

2. About 550 problems, over 350 worked-out examples, about 200 remarks, and about
150 references.

3. An advance warning to reader wherever the details become too involved. They can
skip the later portion of the section in question on first reading without destroying
the continuity in any way.

4. Many results on characterizations of distributions (Chapter 5).

5. Proof of the central limit theorem by the method of operators and proof of the
strong law of large numbers (Chapter 6).

6. A section on minimal sufficient statistics (Chapter 8).

7. A chapter on special tests (Chapter 10).

8. A careful presentation of the theory of confidence intervals, including Bayesian
intervals and shortest-length confidence intervals (Chapter 11).

9. A chapter on the general linear hypothesis, which carries linear models through to
their use in basic analysis of variance (Chapter 12).

10. Sections on nonparametric estimation and robustness (Chapter 13).

11. Two sections on sequential estimation (Chapter 14).

The contents of this book were used in a 1-year (two-semester) course that I taught three
times at the Catholic University of America and once in a three-quarter course at Bowling
Green State University. In the fall of 1973 my colleague, Professor Eugene Lukacs, taught
the first quarter of this same course on the basis of my notes, which eventually became
this book. I have always been able to cover this book (with few omissions) in a 1-year
course, lecturing 3 hours a week. An hour-long problem session every week is conducted
by a senior graduate student.

In a book of this size there are bound to be some misprints, errors, and ambiguities of
presentation. I shall be grateful to any reader who brings these to my attention.

V. K. RohatgiBowling Green, Ohio
February 1975
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ENUMERATION OF THEOREMS
AND REFERENCES

This book is divided into 13 chapters, numbered 1 through 13. Each chapter is divided
into several sections. Lemmas, theorems, equations, definitions, remarks, figures, and so
on, are numbered consecutively within each section. Thus Theorem i.j.k refers to the kth
theorem in Section j of Chapter i, Section i.j refers to the jth section of Chapter i, and
so on. Theorem j refers to the jth theorem of the section in which it appears. A similar
convention is used for equations except that equation numbers are enclosed in parenthe-
ses. Each section is followed by a set of problems for which the same numbering system
is used.

References are given at the end of the book and are denoted in the text by numbers
enclosed in square brackets, [ ]. If a citation is to a book, the notation ([i, p. j]) refers to
the jth page of the reference numbered [i].

A word about the proofs of results stated without proof in this book. If a reference
appears immediately following or preceding the statement of a result, it generally means
that the proof is beyond the scope of this text. If no reference is given, it indicates that the
proof is left to the reader. Sometimes the reader is asked to supply the proof as a problem.



1
PROBABILITY

1.1 INTRODUCTION

The theory of probability had its origin in gambling and games of chance. It owes much
to the curiosity of gamblers who pestered their friends in the mathematical world with all
sorts of questions. Unfortunately this association with gambling contributed to a very slow
and sporadic growth of probability theory as a mathematical discipline. The mathemati-
cians of the day took little or no interest in the development of any theory but looked only
at the combinatorial reasoning involved in each problem.

The first attempt at some mathematical rigor is credited to Laplace. In his monumental
work, Theorie analytique des probabilités (1812), Laplace gave the classical definition of
the probability of an event that can occur only in a finite number of ways as the proportion
of the number of favorable outcomes to the total number of all possible outcomes, provided
that all the outcomes are equally likely. According to this definition, the computation of
the probability of events was reduced to combinatorial counting problems. Even in those
days, this definition was found inadequate. In addition to being circular and restrictive,
it did not answer the question of what probability is, it only gave a practical method of
computing the probabilities of some simple events.

An extension of the classical definition of Laplace was used to evaluate the probabilities
of sets of events with infinite outcomes. The notion of equal likelihood of certain events
played a key role in this development. According to this extension, ifΩ is some region with
a well-defined measure (length, area, volume, etc.), the probability that a point chosen at
random lies in a subregion A of Ω is the ratio measure(A)/measure(Ω). Many problems
of geometric probability were solved using this extension. The trouble is that one can

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



2 PROBABILITY

define “at random” in any way one pleases, and different definitions therefore lead to dif-
ferent answers. Joseph Bertrand, for example, in his book Calcul des probabilités (Paris,
1889) cited a number of problems in geometric probability where the result depended
on the method of solution. In Example 9 we will discuss the famous Bertrand paradox
and show that in reality there is nothing paradoxical about Bertrand’s paradoxes; once
we define “probability spaces” carefully, the paradox is resolved. Nevertheless difficul-
ties encountered in the field of geometric probability have been largely responsible for
the slow growth of probability theory and its tardy acceptance by mathematicians as a
mathematical discipline.

The mathematical theory of probability, as we know it today, is of comparatively recent
origin. It was A. N. Kolmogorov who axiomatized probability in his fundamental work,
Foundations of the Theory of Probability (Berlin), in 1933. According to this development,
random events are represented by sets and probability is just a normed measure defined on
these sets. This measure-theoretic development not only provided a logically consistent
foundation for probability theory but also, at the same time, joined it to the mainstream of
modern mathematics.

In this book we follow Kolmogorov’s axiomatic development. In Section 1.2 we intro-
duce the notion of a sample space. In Section 1.3 we state Kolmogorov’s axioms of
probability and study some simple consequences of these axioms. Section 1.4 is devoted to
the computation of probability on finite sample spaces. Section 1.5 deals with conditional
probability and Bayes’s rule while Section 1.6 examines the independence of events.

1.2 SAMPLE SPACE

In most branches of knowledge, experiments are a way of life. In probability and statis-
tics, too, we concern ourselves with special types of experiments. Consider the following
examples.

Example 1. A coin is tossed. Assuming that the coin does not land on the side, there are
two possible outcomes of the experiment: heads and tails. On any performance of this
experiment one does not know what the outcome will be. The coin can be tossed as many
times as desired.

Example 2. A roulette wheel is a circular disk divided into 38 equal sectors numbered
from 0 to 36 and 00. A ball is rolled on the edge of the wheel, and the wheel is rolled
in the opposite direction. One bets on any of the 38 numbers or some combinations of
them. One can also bet on a color, red or black. If the ball lands in the sector numbered
32, say, anybody who bet on 32 or combinations including 32 wins, and so on. In this
experiment, all possible outcomes are known in advance, namely 00, 0, 1, 2, . . . ,36, but
on any performance of the experiment there is uncertainty as to what the outcome will be,
provided, of course, that the wheel is not rigged in any manner. Clearly, the wheel can be
rolled any number of times.

Example 3. A manufacturer produces footrules. The experiment consists in measuring
the length of a footrule produced by the manufacturer as accurately as possible. Because
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of errors in the production process one does not know what the true length of the footrule
selected will be. It is clear, however, that the length will be, say, between 11 and 13 in.,
or, if one wants to be safe, between 6 and 18 in.

Example 4. The length of life of a light bulb produced by a certain manufacturer is
recorded. In this case one does not know what the length of life will be for the light bulb
selected, but clearly one is aware in advance that it will be some number between 0 and
∞ hours.

The experiments described above have certain common features. For each experiment,
we know in advance all possible outcomes, that is, there are no surprises in store after the
performance of any experiment. On any performance of the experiment, however, we do
not know what the specific outcome will be, that is, there is uncertainty about the outcome
on any performance of the experiment. Moreover, the experiment can be repeated under
identical conditions. These features describe a random (or a statistical) experiment.

Definition 1. A random (or a statistical) experiment is an experiment in which

(a) all outcomes of the experiment are known in advance,

(b) any performance of the experiment results in an outcome that is not known in
advance, and

(c) the experiment can be repeated under identical conditions.

In probability theory we study this uncertainty of a random experiment. It is convenient
to associate with each such experiment a set Ω, the set of all possible outcomes of the
experiment. To engage in any meaningful discussion about the experiment, we associate
with Ω a σ-field S, of subsets of Ω. We recall that a σ-field is a nonempty class of subsets
of Ω that is closed under the formation of countable unions and complements and contains
the null set Φ.

Definition 2. The sample space of a statistical experiment is a pair (Ω,S), where

(a) Ω is the set of all possible outcomes of the experiment and

(b) S is a σ-field of subsets of Ω.

The elements of Ω are called sample points. Any set A∈ S is known as an event. Clearly
A is a collection of sample points. We say that an event A happens if the outcome of the
experiment corresponds to a point in A. Each one-point set is known as a simple or an
elementary event. If the set Ω contains only a finite number of points, we say that (Ω,S) is
a finite sample space. If Ω contains at most a countable number of points, we call (Ω,S)
a discrete sample space. If, however, Ω contains uncountably many points, we say that
(Ω,S) is an uncountable sample space. In particular, if Ω = Rk or some rectangle in Rk,
we call it a continuous sample space.

Remark 1. The choice of S is an important one, and some remarks are in order. If Ω con-
tains at most a countable number of points, we can always take S to be the class of all
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subsets of Ω. This is certainly a σ-field. Each one point set is a member of S and is the
fundamental object of interest. Every subset of Ω is an event. If Ω has uncountably many
points, the class of all subsets of Ω is still a σ-field, but it is much too large a class of
sets to be of interest. It may not be possible to choose the class of all subsets of Ω as S.
One of the most important examples of an uncountable sample space is the case in which
Ω=R or Ω is an interval in R. In this case we would like all one-point subsets of Ω and all
intervals (closed, open, or semiclosed) to be events. We use our knowledge of analysis to
specify S. We will not go into details here except to recall that the class of all semiclosed
intervals (a,b] generates a class B1 which is a σ-field on R. This class contains all one-
point sets and all intervals (finite or infinite). We take S =B1. Since we will be dealing
mostly with the one-dimensional case, we will write B instead of B1. There are many
subsets of R that are not in B1, but we will not demonstrate this fact here. We refer the
reader to Halmos [42], Royden [96], or Kolmogorov and Fomin [54] for further details.

Example 5. Let us toss a coin. The set Ω is the set of symbols H and T, where H
denotes head and T represents tail. Also, S is the class of all subsets of Ω, namely,
{{H},{T},{H,T},Φ}. If the coin is tossed two times, then

Ω= {(H,H),(H,T),(T,H),(T,T)}, S= {∅,{(H,H)},
{(H,T)},{(T,H)},{(T,T)},{(H,H),(H,T)},{(H,H),(T,H)},
{(H,H),(T,T)},{(H,T),(T,H)},{(T,T),(T,H)},{(T,T),
(H,T)},{(H,H),(H,T),(T,H)},{(H,H),(H,T),(T,T)},
{(H,H),(T,H),(T,T)},{(H,T),(T,H),(T,T)},Ω},

where the first element of a pair denotes the outcome of the first toss and the second
element, the outcome of the second toss. The event at least one head consists of sample
points (H,H), (H,T), (T,H). The event at most one head is the collection of sample points
(H,T), (T,H), (T,T).

Example 6. A die is rolled n times. The sample space is the pair (Ω,S), where Ω is the
set of all n-tuples (x1,x2, . . . ,xn), xi ∈ {1,2,3,4,5,6}, i = 1,2, . . . ,n, and S is the class of
all subsets of Ω. Ω contains 6n elementary events. The event A that 1 shows at least once
is the set

A = {(x1,x2, . . . ,xn) : at least one of xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : none of the xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : xi ∈ {2,3,4,5,6}, i = 1,2, . . . ,n}.

Example 7. A coin is tossed until the first head appears. Then

Ω= {H,(T,H),(T,T,H),(T,T,T,H), . . .},

and S is the class of all subsets of Ω. An equivalent way of writing Ω would be to look
at the number of tosses required for the first head. Clearly, this number can take values
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1,2,3, . . . , so that Ω is the set of all positive integers. The S is the class of all subsets of
positive integers.

Example 8. Consider a pointer that is free to spin about the center of a circle. If the pointer
is spun by an impulse, it will finally come to rest at some point. On the assumption that
the mechanism is not rigged in any manner, each point on the circumference is a possible
outcome of the experiment. The set Ω consists of all points 0 ≤ x < 2πr, where r is the
radius of the circle. Every one-point set {x} is a simple event, namely, that the pointer
will come to rest at x. The events of interest are those in which the pointer stops at a point
belonging to a specified arc. Here S is taken to be the Borel σ-field of subsets of [0,2πr).

Example 9. A rod of length l is thrown onto a flat table, which is ruled with parallel lines
at distance 2l. The experiment consists in noting whether the rod intersects one of the ruled
lines.

Let r denote the distance from the center of the rod to the nearest ruled line, and let θ
be the angle that the axis of the rod makes with this line (Fig. 1). Every outcome of this
experiment corresponds to a point (r,θ) in the plane. As Ω we take the set of all points
(r,θ) in {(r,θ) : 0 ≤ r ≤ l,0 ≤ θ < π}. For S we take the Borel σ-field, B2, of subsets of
Ω, that is, the smallest σ-field generated by rectangles of the form

{(x,y) : a < x ≤ b, c < y ≤ d, 0 ≤ a < b ≤ l, 0 ≤ c < d < π}.

Clearly the rod will intersect a ruled line if and only if the center of the rod lies in the area
enclosed by the locus of the center of the rod (while one end touches the nearest line) and
the nearest line (shaded area in Fig. 2).

Remark 2. From the discussion above it should be clear that in the discrete case there is
really no problem. Every one-point set is also an event, and S is the class of all subsets ofΩ.

r

l/2

l/2
2l

Fig. 1
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r

r=    sin θ

θ

l

π

l/2

π/2

l
2

Fig. 2

The problem, if there is any, arises only in regard to uncountable sample spaces. The reader
has to remember only that in this case not all subsets ofΩ are events. The case of most inter-
est is the one in whichΩ=Rk. In this case, roughly all sets that have a well-defined volume
(or area or length) are events. Not every set has the property in question, but sets that lack
it are not easy to find and one does not encounter them in practice.

PROBLEMS 1.2

1. A club has five members A, B, C, D, and E. It is required to select a chairman and a
secretary. Assuming that one member cannot occupy both positions, write the sam-
ple space associated with these selections. What is the event that member A is an
office holder?

2. In each of the following experiments, what is the sample space?

(a) In a survey of families with three children, the sexes of the children are recorded
in increasing order of age.

(b) The experiment consists of selecting four items from a manufacturer’s output
and observing whether or not each item is defective.

(c) A given book is opened to any page, and the number of misprints is counted.

(d) Two cards are drawn (i) with replacement and (ii) without replacement from an
ordinary deck of cards.

3. Let A, B, C be three arbitrary events on a sample space (Ω,S). What is the event that
only A occurs? What is the event that at least two of A, B, C occur? What is the event
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that both A and C, but not B, occur? What is the event that at most one of A, B, C
occurs?

1.3 PROBABILITY AXIOMS

Let (Ω,S) be the sample space associated with a statistical experiment. In this section we
define a probability set function and study some of its properties.

Definition 1. Let (Ω,S) be a sample space. A set function P defined on S is called a
probability measure (or simply probability) if it satisfies the following conditions:

(i) P(A)≥ 0 for all A ∈ S.

(ii) P(Ω) = 1.

(iii) Let {Aj}, Aj ∈ S, j = 1,2, . . . , be a disjoint sequence of sets, that is, Aj ∩Ak = Φ
for j �= k where Φ is the null set. Then

P

⎛
⎝ ∞∑

j=1

Aj

⎞
⎠=

∞∑
j=1

P(Aj), (1)

where we have used the notation
∑∞

j=1 Aj to denote union of disjoint sets Aj.

We call P(A) the probability of event A. If there is no confusion, we will write PA
instead of P(A). Property (iii) is called countable additivity. That PΦ = 0 and P is also
finitely additive follows from it.

Remark 1. If Ω is discrete and contains at most n (<∞) points, each single-point set {ωj},
j = 1,2, . . . ,n, is an elementary event, and it is sufficient to assign probability to each {ωj}.
Then, if A ∈ S, where S is the class of all subsets of Ω, PA =

∑
ω∈A P{ω}. One such

assignment is the equally likely assignment or the assignment of uniform probabilities.
According to this assignment, P{ωj}= 1/n, j = 1,2, . . . ,n. Thus PA = m/n if A contains
m elementary events, 1 ≤ m ≤ n.

Remark 2. If Ω is discrete and contains a countable number of points, one cannot make
an equally likely assignment of probabilities. It suffices to make the assignment for
each elementary event. If A ∈ S, where S is the class of all subsets of Ω, define PA =∑

ω∈A P{ω}.

Remark 3. If Ω contains uncountably many points, each one-point set is an elementary
event, and again one cannot make an equally likely assignment of probabilities. Indeed,
one cannot assign positive probability to each elementary event without violating the
axiom PΩ = 1. In this case one assigns probabilities to compound events consisting of
intervals. For example, if Ω = [0,1] and S is the Borel σ-field of all subsets of Ω, the
assignment P[I] = length of I, where I is a subinterval of Ω, defines a probability.
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Definition 2. The triple (Ω,S,P) is called a probability space.

Definition 3. Let A ∈ S. We say that the odds for A are a to b if PA = a/(a+b), and then
the odds against A are b to a.

In many games of chance, probability is often stated in terms of odds against an event.
Thus in horse racing a two dollar bet on a horse to win with odds of 2 to 1 (against) pays
approximately six dollars if the horse wins the race. In this case the probability of winning
is 1/3.

Example 1. Let us toss a coin. The sample space is (Ω,S), where Ω = {H,T}, and S is
the σ-field of all subsets of Ω. Let us define P on S as follows.

P{H}= 1/2, P{T}= 1/2.

Then P clearly defines a probability. Similarly, P{H}= 2/3, P{T}= 1/3, and P{H}= 1,
P{T}= 0 are probabilities defined on S. Indeed,

P{H}= p and P{T}= 1−p (0 ≤ p ≤ 1)

defines a probability on (Ω,S).

Example 2. Let Ω = {1,2,3, . . .} be the set of positive integers, and let S be the class of
all subsets of Ω. Define P on S as follows:

P{i}= 1
2i
, i = 1,2, . . . .

Then
∑∞

i=1 P{i}= 1, and P defines a probability.

Example 3. Let Ω= (0,∞) and S=B, the Borel σ-Field on Ω. Define P as follows: for
each interval I ⊆ Ω,

PI =
∫

I
e−x dx.

Clearly PI ≥ 0, PΩ= 1, and P is countably additive by properties of integrals.

Theorem 1. P is monotone and subtractive; that is, if A,B ∈ S and A ⊆ B, then PA ≤ PB
and P(B−A) = PB−PA, where B−A = B∩Ac, Ac being the complement of the event A.

Proof. If A ⊆ B, then

B = (A∩B)+(B−A) = A+(B−A).

and it follows that PB = PA+P(B−A).

Corollary. For all A ∈ S, 0 ≤ PA ≤ 1.
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Remark 4. We wish to emphasize that, if PA = 0 for some A ∈ S, we call A an event with
zero probability or a null event. However, it does not follow that A=Φ. Similarly, if PB= 1
for some B ∈ S, we call B a certain event but it does not follow that B =Ω.

Theorem 2 (The Addition Rule). If A,B ∈ S, then

P(A∪B) = PA+PB−P(A∩B). (2)

Proof. Clearly

A∪B = (A−B)+(B−A)+(A∩B)

and

A = (A∩B)+(A−B),B = (A∩B)+(B−A).

The result follows by countable additivity of P.

Corollary 1. P is subadditive, that is, if A,B ∈ S, then

P(A∪B)≤ PA+PB. (3)

Corollary 1 can be extended to an arbitrary number of events Aj,

P

(⋃
j

Aj

)
≤
∑

j

PAj. (4)

Corollary 2. If B = Ac, then A and B are disjoint and

PA = 1−PAc. (5)

The following generalization of (2) is left as an exercise.

Theorem 3 (The Principle of Inclusion–Exclusion). Let A1,A2, . . . ,An ∈ S. Then

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

PAk −
n∑

k1<k2

P(Ak1 ∩Ak2)

+
n∑

k1<k2<k3

P(Ak1 ∩Ak2 ∩Ak3)

+ · · ·+(−1)n+1P

(
n⋂

k=1

Ak

)
. (6)
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Example 4. A die is rolled twice. Let all the elementary events in Ω = {(i, j) : i, j =
1,2, . . . ,6} be assigned the same probability. Let A be the event that the first throw shows
a number ≤ 2, and B, the event that the second throw shows at least 5. Then

A = {(i, j) : 1 ≤ i ≤ 2, j = 1,2, . . . ,6},
B = {(i, j) : 5 ≤ j ≤ 6, i = 1,2, . . . ,6},

A∩B = {(1,5),(1,6),(2,5),(2,6)};

P(A∪B) = PA+PB−P(A∩B)

= 1
3 +

1
3 −

4
36 = 5

9 .

Example 5. A coin is tossed three times. Let us assign equal probability to each of the 23

elementary events in Ω. Let A be the event that at least one head shows up in three throws.
Then

P(A) = 1−P(Ac)

= 1−P(no heads)

= 1−P(TTT) = 7
8 .

We next derive two useful inequalities.

Theorem 4 (Bonferroni’s Inequality). Given n (> 1) events A1,A2, . . . ,An,

n∑
i=1

PAi −
∑
i<j

P(Ai ∩Aj)≤ P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

PAi. (7)

Proof. In view of (4) it suffices to prove the left side of (7). The proof is by induction.
The inequality on the left is true for n = 2 since

PA1 +PA2 −P(A1 ∩A2) = P(A1 ∪A2).

For n = 3,

P

(
3⋃

i=1

Ai

)
=

3∑
i=1

PAi −
∑
i<j

P(Ai ∩Aj)+P(A1 ∩A2 ∩A3),

and the result holds. Assuming that (7) holds for 3 < m ≤ n−1, we show that it holds also
for m+1:

P

(
m+1⋃
i=1

Ai

)
= P

((
m⋃

i=1

Ai

)
∪Am+1

)

= P

(
m⋃

i=1

Ai

)
+PAm+1 −P

(
Am+1 ∩

(
m⋃
1

Ai

))
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≥
m+1∑
i=1

PAi −
m∑

i<j

P(Ai ∩Aj)−P

(
m⋃

i=1

(Ai ∩Am+1)

)

≥
m+1∑
i=1

PAi −
m∑

i<j

P(Ai ∩Aj)−
m∑

i=1

P(Ai ∩Am+1)

=

m+1∑
i=1

PAi −
m+1∑
i<j

P(Ai ∩Aj).

Theorem 5 (Boole’s Inequality). For any two events, A and B,

P(A∩B)≥ 1−PAc −PBc. (8)

Corollary 1. Let {Aj}, j = 1,2, . . . , be a countable sequence of events; then

P(∩Aj)≥ 1−
∑

P(Ac
j ). (9)

Proof. Take

B =
∞⋂

j=2

Aj and A = A1

in (8).

Corollary 2 (The Implication Rule). If A,B,C ∈ S and A and B imply C, then

PCc ≤ PAc +PBc. (10)

Let {An} be a sequence of sets. The set of all pointsω ∈Ω that belong to An for infinitely
many values of n is known as the limit superior of the sequence and is denoted by

limsup
n→∞

An or lim
n→∞

An.

The set of all points that belong to An for all but a finite number of values of n is known
as the limit inferior of the sequence {An} and is denoted by

lim
n→∞

inf An or lim
n→∞

An.

If

lim
n→∞

An = lim
n→∞

An,

we say that the limit exists and write limn→∞ An for the common set and call it the limit
set.
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We have

lim
n→∞

An =

∞⋃
n=1

∞⋂
k=n

Ak ⊆
∞⋂

n=1

∞⋃
k=n

Ak = lim
n→∞

An.

If the sequence {An} is such that An ⊆ An+1, for n = 1,2, . . ., it is called nondecreasing;
if An ⊇ An+1, n = 1,2, . . ., it is called nonincreasing. If the sequence An is nondecreasing,
we write An �↓ ; if An is nonincreasing, we write An �↑ . Clearly, if An �↑ or An �↓ , the limit
exists and we have

lim
n

An =

∞⋃
n=1

An if An �↓

and

lim
n

An =

∞⋂
n=1

An if An �↑ .

Theorem 6. Let {An} be a nondecreasing sequence of events in S, that is, An ∈ S,
n = 1,2, . . . , and

An ⊇ An−1, n = 2,3, . . . .

Then

lim
n→∞

PAn = P
(
lim

n→∞
An

)
= P

( ∞⋃
n=1

An

)
. (11)

Proof. Let

A =

∞⋃
j=1

Aj.

Then

A = An +
∞∑

j=n

(Aj+1 −Aj).

By countable additivity we have

PA = PAn +
∞∑

j=n

P(Aj+1 −Aj).

and letting n →∞, we see that

PA = lim
n→∞

PAn + lim
n→∞

∞∑
j=n

P(Aj+1 −Aj).



PROBABILITY AXIOMS 13

The second term on the right tends to 0 as n →∞ since the sum
∑∞

j=1 P(Aj+1 −Aj) ≤ 1
and each summand is nonnegative. The result follows.

Corollary. Let {An} be a nonincreasing sequence of events in S. Then

lim
n→∞

PAn = P
(
lim

n→∞
An

)
= P

( ∞⋂
n=1

An

)
. (12)

Proof. Consider the nondecreasing sequence of events {Ac
n}. Then

lim
n→∞

Ac
n =

∞⋃
j=1

Ac
j = Ac.

It follows from Theorem 6 that

lim
n→∞

PAc
n = P

(
lim

n→∞
Ac

n

)
= P

⎛
⎝∞⋃

j=1

Ac
n

⎞
⎠= P(Ac).

In other words,

lim
n→∞

(1−PAn) = 1−PA,

as asserted.

Remark 5. Theorem 6 and its corollary will be used quite frequently in subsequent chap-
ters. Property (11) is called the continuity of P from below, and (12) is known as the
continuity of P from above. Thus Theorem 6 and its corollary assure us that the set function
P is continuous from above and below.

We conclude this section with some remarks concerning the use of the word “ran-
dom” in this book. In probability theory “random” has essentially three meanings. First,
in sampling from a finite population a sample is said to be a random sample if at each
draw all members available for selection have the same probability of being included.
We will discuss sampling from a finite population in Section 1.4. Second, we speak of a
random sample from a probability distribution. This notion is formalized in Section 6.2.
The third meaning arises in the context of geometric probability, where statements such
as “a point is randomly chosen from the interval (a,b)” and “a point is picked randomly
from a unit square” are frequently encountered. Once we have studied random variables
and their distributions, problems involving geometric probabilities may be formulated
in terms of problems involving independent uniformly distributed random variables, and
these statements can be given appropriate interpretations.

Roughly speaking, these statements involve a certain assignment of probability. The
word “random” expresses our desire to assign equal probability to sets of equal lengths,
areas, or volumes. Let Ω⊆Rn be a given set, and A be a subset of Ω. We are interested in
the probability that a “randomly chosen point” in Ω falls in A. Here “randomly chosen”
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means that the point may be any point of Ω and that the probability of its falling in some
subset A of Ω is proportional to the measure of A (independently of the location and shape
of A). Assuming that both A andΩ have well-defined finite measures (length, area, volume,
etc.), we define

PA =
measure(A)
measure(Ω)

.

(In the language of measure theory we are assuming that Ω is a measurable subset of Rn

that has a finite, positive Lebesque measure. If A is any measurable set, PA = μ(A)/μ(Ω),
where μ is the n-dimensional Lebesque measure.) Thus, if a point is chosen at random
from the interval (a,b), the probability that it lies in the interval (c,d), a ≤ c < d ≤ b,
is (d− c)/(b− a). Moreover, the probability that the randomly selected point lies in any
interval of length (d− c) is the same.

We present some examples.

Example 6. A point is picked “at random” from a unit square. Let Ω= {(x,y) : 0 ≤ x ≤ 1,
0 ≤ y ≤ 1}. It is clear that all rectangles and their unions must be in S. So too should all
circles in the unit square, since the area of a circle is also well defined. Indeed, every set
that has a well-defined area has to be in S. We choose S=B2, the Borel σ-field generated
by rectangles in Ω. As for the probability assignment, if A ∈ S, we assign PA to A, where
PA is the area of the set A. If A = {(x,y) : 0 ≤ x ≤ 1/2,1/2 ≤ y ≤ 1}, then PA = 1/4. If
B is a circle with center (1/2,1/2) and radius 1/2, then PB = π(1/2)2 = π/4. If C is the
set of all points which are at most a unit distance from the origin, then PC = π/4 (see
Figs. 1–3).

Example 7 (Buffon’s Needle Problem). We return to Example 1.2.9. A needle (rod) of
length l is tossed at random on a plane that is ruled with a series of parallel lines at distance

x

(1,1)(0,1)

(0,0) (1,0)

A

y

Fig. 1 A = {(x,y) : 0 ≤ x ≤ 1/2,1/2 ≤ y ≤ 1}.
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y

x

(1,0)

(1,1)(0,1)

(0,0)

B

Fig. 2 B = {(x,y) : (x−1/2)2 +(y−1/2)2 = 1}.

(0,0) (1,0)

(1,1)(0,1)

C

y

x

Fig. 3 C = {(x,y) : (x2 + y2 ≤ 1}.

2l apart. We wish to find the probability that the needle will intersect one of the lines.
Denoting by r the distance from the center of the needle to the closest line and by θ the
angle that the needle forms with this line, we see that a necessary and sufficient condition
for the needle to intersect the line is that r ≤ (l/2)sinθ. The needle will intersect the
nearest line if and only if its center falls in the shaded region in Fig. 1.2.2. We assign
probability to an event A as follows:

PA =
area of set A

lπ
.
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Thus the required probability is

1
lπ

∫ π

0

l
2
sinθdθ =

1
π
.

Here we have interpreted “at random” to mean that the position of the needle is character-
ized by a point (r,θ) which lies in the rectangle 0 ≤ r ≤ l, 0 ≤ θ ≤ π. We have assumed
that the probability that the point (r,θ) lies in any arbitrary subset of this rectangle is pro-
portional to the area of this set. Roughly, this means that “all positions of the midpoint of
the needle are assigned the same weight and all directions of the needle are assigned the
same weight.”

Example 8. An interval of length 1, say (0, 1), is divided into three intervals by choosing
two points at random. What is the probability that the three line segments form a triangle?

It is clear that a necessary and sufficient condition for the three segments to form a
triangle is that the length of any one of the segments be less than the sum of the other two.
Let x,y be the abscissas of the two points chosen at random. Then we must have either

0 < x <
1
2
< y < 1 and y− x <

1
2

or

0 < y <
1
2
< x < 1 and x− y <

1
2
.

This is precisely the shaded area in Fig. 4. It follows that the required probability is 1/4.
If it is specified in advance that the point x is chosen at random from (0,1/2), and the

point y at random from (1/2,1), we must have

0 < x <
1
2
,

1
2
< y < 1,

(0,0)
(1,0)

(1,1)(0,1)

x

y

Fig. 4 {(x,y) : 0< x< 1/2< y< 1, and (y−x)< 1/2 or 0< y< 1/2< x< 1, and (x−y)< 1/2}.
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and

y− x < x+1− y or 2(y− x)< 1.

In this case the area bounded by these lines is the shaded area in Fig. 5, and it follows that
the required probability is 1/2.

Note the difference in sample spaces in the two computations made above.

Example 9 (Bertrand’s Paradox). A chord is drawn at random in the unit circle. What is
the probability that the chord is longer than the side of the equilateral triangle inscribed in
the circle?

We present here three solutions to this problem, depending on how we interpret the
phrase “at random.” The paradox is resolved once we define the probability spaces
carefully.

Solution 1. Since the length of a chord is uniquely determined by the position of
its midpoint, choose a point C at random in the circle and draw a line through C and O,
the center of the circle (Fig. 6). Draw the chord through C perpendicular to the line OC.
If l1 is the length of the chord with C as midpoint, l1 >

√
3 if and only if C lies inside the

circle with center O and radius 1/2. Thus PA = π(1/2)2/π = 1/4.
In this case Ω is the circle with center O and radius 1, and the event A is the concentric

circle with center O and radius 1
2 . S is the usual Borel σ-field of subsets of Ω.

Solution 2. Because of symmetry, we may fix one end point of the chord at some
point P and then choose the other end point P1 at random. Let the probability that P1 lies
on an arbitrary arc of the circle be proportional to the length of this arc. Now the inscribed
equilateral triangle having P as one of its vertices divides the circumference into three

l/2

1

0
l/2 x

y

Fig. 5 {(x,y) : 0 < x < 1/2, 1/2 < y < 1 and 2(y− x)< 1}.
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c

o

Fig. 6

P P1

Fig. 7

equal parts. A chord drawn through P will be longer than the side of the triangle if and
only if the other end point P1 (Fig. 7) of the chord lies on that one third of the circumference
that is opposite to P. It follows that the required probability is 1/3. In this case Ω= [0,2π],
S=B1 ∩Ω and A = [2π/3,4π/3].

Solution 3. Note that the length of a chord is uniquely determined by the distance of
its midpoint from the center of the circle. Due to the symmetry of the circle, we assume that
the midpoint of the chord lies on a fixed radius, OM, of the circle (Fig. 8). The probability
that the midpoint M lies in a given segment of the radius through M is then proportional
to the length of this segment. Clearly, the length of the chord will be longer than the side
of the inscribed equilateral triangle if the length of OM is less than radius/2. It follows
that the required probability is 1/2.
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O

M

Fig. 8

PROBLEMS 1.3

1. Let Ω be the set of all nonnegative integers and S the class of all subsets of Ω. In
each of the following cases does P define a probability on (Ω,S)?

(a) For A ∈ S, let

PA =
∑
x∈A

e−λλx

x!
, λ > 0.

(b) For A ∈ S, let

PA =
∑
x∈A

p(1−p)x, 0 < p < 1.

(c) For A ∈ S, let PA = 1 if A has a finite number of elements, and PA = 0 otherwise.

2. Let Ω=R and S=B. In each of the following cases does P define a probability on
(Ω,S)?

(a) For each interval I, let

PI =
∫

I

1
π
.

1
1+ x2

dx.

(b) For each interval I, let PI = 1 if I is an interval of finite length and PI = 0 if I is
an infinite interval.

(c) For each interval I, let PI = 0 if I ⊆ (−∞,1) and PI =
∫

I(1/2)dx if I ⊆ [1,∞].
(If I = I1 + I2, where I1 ⊆ (−∞,1) and I2 ⊆ [1,∞), then PI = PI2.)

3. Let A and B be two events such that B ⊇ A. What is P(A∪B)? What is P(A∩B)?
What is P(A−B)?
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4. In Problems 1(a) and (b), let A = {all integers > 2}, B = {all nonnegative
integers < 3}, and C = {all integers x, 3 < x < 6}. Find PA, PB, PC, P(A ∩ B),
P(A∪B), P(B∪C), P(A∩C), and P(B∩C).

5. In Problem 2(a) let A be the event A = {x : x ≥ 0}. Find PA. Also find P{x : x > 0}.

6. A box contains 1000 light bulbs. The probability that there is at least 1 defective bulb
in the box is 0.1, and the probability that there are at least 2 defective bulbs is 0.05.
Find the probability in each of the following cases:

(a) The box contains no defective bulbs.

(b) The box contains exactly 1 defective bulb.

(c) The box contains at most 1 defective bulb.

7. Two points are chosen at random on a line of unit length. Find the probability that
each of the three line segments so formed will have a length >1/4.

8. Find the probability that the sum of two randomly chosen positive numbers (both
≤1) will not exceed 1 and that their product will be ≤2/9.

9. Prove Theorem 3.

10. Let {An} be a sequence of events such that An → A as n →∞. Show that PAn → PA
as n →∞.

11. The base and the altitude of a right triangle are obtained by picking points ran-
domly from [0,a] and [0,b], respectively. Show that the probability that the area
of the triangle so formed will be less than ab/4 is (1+ �n 2)/2.

12. A point X is chosen at random on a line segment AB. (i) Show that the probability
that the ratio of lengths AX/BX is smaller than a (a > 0) is a/(1+a). (ii) Show that
the probability that the ratio of the length of the shorter segment to that of the larger
segment is less than 1/3 is 1/2.

1.4 COMBINATORICS: PROBABILITY ON FINITE SAMPLE SPACES

In this section we restrict attention to sample spaces that have at most a finite number of
points. Let Ω= {ω1,ω2, . . . ,ωn} and S be the σ-field of all subsets of Ω. For any A ∈ S,

PA =
∑
ωj∈A

P{ωj}.

Definition 1. An assignment of probability is said to be equally likely (or uniform) if each
elementary event in Ω is assigned the same probability. Thus, if Ω contains n points ωj,
P{ωj}= 1/n, j = 1,2, . . . ,n.

With this assignment

PA =
number of elementary events in A

total number of elementary events in Ω
. (1)

Example 1. A coin is tossed twice. The sample space consists of four points. Under the
uniform assignment, each of four elementary events is assigned probability 1/4.
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Example 2. Three dice are rolled. The sample space consists of 63 points. Each one-point
set is assigned probability 1/63.

In games of chance we usually deal with finite sample spaces where uniform proba-
bility is assigned to all simple events. The same is the case in sampling schemes. In such
instances the computation of the probability of an event A reduces to a combinatorial
counting problem. We therefore consider some rules of counting.

Rule 1. Given a collection of n1 elements a11,a12, . . . ,a1n1 , n2 elements a21,a22, . . . ,a2n2 ,
and so on, up to nk elements ak1,ak2, . . . ,aknk , it is possible to form n1 ·n2 · · · · ·nk ordered
k-tuples (a1j1 ,a2j2 , . . . ,akjk) containing one element of each kind, 1 ≤ ji ≤ ni, i= 1,2, . . . ,k.

Example 3. Here r distinguishable balls are to be placed in n cells. This amounts to choos-
ing one cell for each ball. The sample space consists of nr r-tuples (i1, i2, . . . , ir), where ij
is the cell number of the jth ball, j = 1,2, . . . ,r, (1 ≤ ij ≤ n).

Consider r tossings with a coin. There are 2r possible outcomes. The probability that
no heads will show up in r throws is (1/2)r. Similarly, the probability that no 6 will turn
up in r throws of a die is (5/6)r.

Rule 2 is concerned with ordered samples. Consider a set of n elements a1,a2, . . . ,an.
Any ordered arrangement (ai1 ,ai2 , . . . ,air) of r of these n symbols is called an ordered
sample of size r. If elements are selected one by one, there are two possibilities:

1. Sampling with replacement In this case repetitions are permitted, and we can draw
samples of an arbitrary size. Clearly there are nr samples of size r.

2. Sampling without replacement In this case an element once chosen is not replaced,
so that there can be no repetitions. Clearly the sample size cannot exceed n, the size
of the population. There are n(n−1) · · ·(n− r+1) = nPr, say, possible samples of
size r. Clearly nPr = 0 for integers r > n. If r = n, then nPr = n!.

Rule 2. If ordered samples of size r are drawn from a population of n elements, there are
nr different samples with replacement and nPr samples without replacement.

Corollary. The number of permutations of n objects is n!.

Remark 1. We will frequently use the term “random sample” in this book to describe the
equal assignment of probability to all possible samples in sampling from a finite popula-
tion. Thus, when we speak of a random sample of size r from a population of n elements,
it means that each of nr samples, in sampling with replacement, has the same probability
1/nr or that each of nPr samples, in sampling without replacement, is assigned probability
1/nPr.

Example 4. Consider a set of n elements. A sample of size r is drawn at random with
replacement. Then the probability that no element appears more than once is clearly
nPr/nr.
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Thus, if n balls are to be randomly placed in n cells, the probability that each cell will
be occupied is n!/nn.

Example 5. Consider a class of r students. The birthdays of these r students form a sample
of size r from the 365 days in the year. Then the probability that all r birthdays are different
is 365Pr/(365)r. One can show that this probability is <1/2 if r = 23.

The following table gives the values of qr = 365Pr/(365)r for some selected values of r.

r 20 23 25 30 35 60

qr 0.589 0.493 0.431 0.294 0.186 0.006

Next suppose that each of the r students is asked for his birth date in order, with the
instruction that as soon as a student hears his birth date he is to raise his hand. Let us
compute the probability that a hand is first raised when the kth (k = 1,2, . . . ,r) student
is asked his birth date. Let pk be the probability that the procedure terminates at the kth
student. Then

p1 = 1−
(

364
365

)r−1

and

pk =
365Pk−1

(365)k−1

(
1− k−1

365

)r−k+1
[

1−
(

365− k
365− k+1

)r−k
]
, k = 2,3, . . . . ,r.

Example 6. Let Ω be the set of all permutations of n objects. Let Ai be the set of all permu-
tations that leave the ith object unchanged. Then the set ∪n

i=1Ai is the set of permutations
with at least one fixed point. Clearly

PAi =
(n−1)!

n!
, i = 1,2, . . . ,n,

P(Ai ∩Aj) =
(n−2)!

n!
, i < j; i, j = 1,2, . . . ,n, etc.

By Theorem 1.3.3 we have

P

(
n⋃

i=1

Ai

)
=

(
1− 1

2!
+

1
3!

−·· ·± 1
n!

)
.

As an application consider an absent-minded secretary who places n letters in n
envelopes at random. Then the probability that she will misplace every letter is

1−
(

1− 1
2!

+
1
3!

−·· ·± 1
n!

)
.

It is easy to see that this last probability −→ e−1 = 0.3679 as n →∞.
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Rule 3. There are
(n

r

)
different subpopulations of size r ≤ n from a population of n

elements, where

(
n
r

)
=

n!
r!(n− r)!

. (2)

Example 7. Consider the random distribution of r balls in n cells. Let Ak be the event that
a specified cell has exactly k balls, k = 0,1,2, . . . ,r; k balls can be chosen in

(r
k

)
ways. We

place k balls in the specified cell and distribute the remaining r− k balls in the n−1 cells
in (n−1)r−k ways. Thus

PAk =

(
r
k

)
(n−1)r−k

nr
=

(
r
k

)(
1
n

)k (
1− 1

n

)r−k

.

Example 8. There are
(52

13

)
= 635,013,559,600 different hands at bridge, and

(52
5

)
=

2,598,960 hands at poker.
The probability that all 13 cards in a bridge hand have different face values is 413/

(52
13

)
.

The probability that a hand at poker contains five different face values is
(13

5

)
45/

(52
5

)
.

Rule 4. Consider a population of n elements. The number of ways in which the population
can be partitioned into k subpopulations of sizes r1,r2, . . . ,rk, respectively, r1 + r2 + · · ·+
rk = n, 0 ≤ ri ≤ n, is given by

(
n

r1,r2, . . . ,rk

)
=

n!
r1!r2! · · ·rk!

. (3)

The numbers defined in (3) are known as multinomial coefficients.

Proof. For the proof of Rule 4 one uses Rule 3 repeatedly. Note that

(
n

r1,r2, . . . ,rk

)
=

(
n
r1

)(
n− r1

r2

)
· · ·

(
n− r1 · · ·− rk−2

rk−1

)
. (4)

Example 9. In a game of bridge the probability that a hand of 13 cards contains 2 spades,
7 hearts, 3 diamonds, and 1 club is

(
13
2

)(
13
7

)(
13
3

)(
13
1

)
(

52
13

) .

Example 10. An urn contains 5 red, 3 green, 2 blue, and 4 white balls. A sample of size 8
is selected at random without replacement. The probability that the sample contains 2 red,
2 green, 1 blue, and 3 white balls is
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5
2

)(
3
2

)(
2
1

)(
4
3

)
(

14
8

) .

PROBLEMS 1.4

1. How many different words can be formed by permuting letters of the word “Missis-
sippi”? How many of these start with the letters “Mi”?

2. An urn contains R red and W white marbles. Marbles are drawn from the urn one
after another without replacement. Let Ak be the event that a red marble is drawn for
the first time on the kth draw. Show that

PAk =

(
R

R+W − k+1

) k−1∏
j=1

(
1− R

R+W − j+1

)
.

Let p be the proportion of red marbles in the urn before the first draw. Show that
PAk → p(1−p)k−1 as R+W →∞. Is this to be expected?

3. In a population of N elements, R are red and W = N −R are white. A group of n
elements is selected at random. Find the probability that the group so chosen will
contain exactly r red elements.

4. Each permutation of the digits 1, 2, 3, 4, 5, 6 determines a six-digit number. If the
numbers corresponding to all possible permutations are listed in increasing order of
magnitude, find the 319th number on this list.

5. The numbers 1,2, . . . ,n are arranged in random order. Find the probability that the
digits 1,2, . . . ,k (k < n) appear as neighbors in that order.

6. A pin table has seven holes through which a ball can drop. Five balls are played.
Assuming that at each play a ball is equally likely to go down any one of the seven
holes, find the probability that more than one ball goes down at least one of the holes.

7. If 2n boys are divided into two equal subgroups find the probability that the two
tallest boys will be (a) in different subgroups and (b) in the same subgroup.

8. In a movie theater that can accommodate n+ k people, n people are seated. What is
the probability that r ≤ n given seats are occupied?

9. Waiting in line for a Saturday morning movie show are 2n children. Tickets are
priced at a quarter each. Find the probability that nobody will have to wait for change
if, before a ticket is sold to the first customer, the cashier has 2k (k < n) quarters.
Assume that it is equally likely that each ticket is paid for with a quarter or a half-
dollar coin.

10. Each box of a certain brand of breakfast cereal contains a small charm, with k distinct
charms forming a set. Assuming that the chance of drawing any particular charm is
equal to that of drawing any other charm, show that the probability of finding at least
one complete set of charms in a random purchase of N ≥ k boxes equals
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1−
(

k
1

)(
k−1

k

)N

+

(
k
2

)(
k−2

k

)N

−
(

k
3

)(
k−3

k

)N

+ · · ·+(−1)k−1

(
k

k−1

)(
1
k

)N

.

[Hint: Use (1.3.6).]

11. Prove Rules 1–4.

12. In a five-card poker game, find the probability that a hand will have:

(a) A royal flush (ace, king, queen, jack, and 10 of the same suit).

(b) A straight flush (five cards in a sequence, all of the same suit; ace is high but A,
2, 3, 4, 5 is also a sequence) excluding a royal flush.

(c) Four of a kind (four cards of the same face value).

(d) A full house (three cards of the same face value x and two cards of the same face
value y).

(e) A flush (five cards of the same suit excluding cards in a sequence).

(f) A straight (five cards in a sequence).

(g) Three of a kind (three cards of the same face value and two cards of different
face values).

(h) Two pairs.

(i) A single pair.

13. (a) A married couple and four of their friends enter a row of seats in a concert hall.
What is the probability that the wife will sit next to her husband if all possible
seating arrangements are equally likely?

(b) In part (a), suppose the six people go to a restaurant after the concert and sit at
a round table. What is the probability that the wife will sit next to her husband?

14. Consider a town with N people. A person sends two letters to two separate people,
each of whom is asked to repeat the procedure. Thus for each letter received, two
letters are sent out to separate persons chosen at random (irrespective of what hap-
pened in the past). What is the probability that in the first n stages the person who
started the chain letter game will not receive a letter?

15. Consider a town with N people. A person tells a rumor to a second person, who in
turn repeats it to a third person, and so on. Suppose that at each stage the recipient
of the rumor is chosen at random from the remaining N − 1 people. What is the
probability that the rumor will be repeated n times

(a) Without being repeated to any person.

(b) Without being repeated to the originator.

16. There were four accidents in a town during a seven-day period. Would you be sur-
prised if all four occurred on the same day? Each of the four occurred on a different
day?

17. While Rules 1 and 2 of counting deal with ordered samples with or without replace-
ment, Rule 3 concerns unordered sampling without replacement. The most difficult
rule of counting deals with unordered with replacement sampling. Show that there
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are
(n+r−1

r

)
possible unordered samples of size r from a population of n elements

when sampled with replacement.

1.5 CONDITIONAL PROBABILITY AND BAYES THEOREM

So far, we have computed probabilities of events on the assumption that no information
was available about the experiment other than the sample space. Sometimes, however,
it is known that an event H has happened. How do we use this information in mak-
ing a statement concerning the outcome of another event A? Consider the following
examples.

Example 1. Let urn 1 contain one white and two black balls, and urn 2, one black and two
white balls. A fair coin is tossed. If a head turns up, a ball is drawn at random from urn 1
otherwise, from urn 2. Let E be the event that the ball drawn is black. The sample space
is Ω = {Hb11,Hb12,Hw11,Tb21,Tw21,Tw22}, where H denotes head, T denotes tail, bij

denotes jth black ball in ith urn, i = 1,2, and so on. Then

PE = P{Hb11,Hb12,Tb21}= 3
6 = 1

2 .

If, however, it is known that the coin showed a head, the ball could not have been drawn
from urn 2. Thus, the probability of E, conditional on information H, is 2

3 . Note that this
probability equals the ratio P{Head and ball drawn black}/P{Head}.

Example 2. Let us toss two fair coins. Then the sample space of the experiment is Ω =
{HH,HT,TH,TT}. Let event A = {both coins show same face} and B = {at least one
coin shows H}. Then PA = 2/4. If B is known to have happened, this information assures
that TT cannot happen, and P{A conditional on the information that B has happened} =
1
3 = 1

4/
3
4 = P(A∩B)/PB.

Definition 1. Let (Ω,S,P) be a probability space, and let H ∈ S with PH > 0. For an
arbitrary A ∈ S we shall write

P{A | H}= P(A∩H)

PH
(1)

and call the quantity so defined the conditional probability of A, given H. Conditional
probability remains undefined when PH = 0.

Theorem 1. Let (Ω,S,P) be a probability space, and let H ∈ S with PH > 0. Then
(Ω,S,PH), where PH(A) = P{A | H} for all A ∈ S, is a probability space.

Proof. Clearly PH(A) = P{A | H} ≥ 0 for all A ∈ S. Also, PH(Ω) = P(Ω∩H)/PH = 1.
If A1,A2, . . . is a disjoint sequence of sets in S, then



CONDITIONAL PROBABILITY AND BAYES THEOREM 27

PH

( ∞∑
i=1

Ai

)
= P

{ ∞∑
i=1

Ai | H

}
=

P{(
∑∞

1 Ai)∩H}
PH

=

∑∞
i=1 P(Ai ∩H)

PH

=
∞∑

i=1

PH(Ai).

Remark 1. What we have done is to consider a new sample space consisting of the basic
set H and the σ-field SH = S∩H, of subsets A∩H, A ∈ S, of H. On this space we have
defined a set function PH by multiplying the probability of each event by (PH)−1. Indeed,
(H,SH,PH) is a probability space.

Let A and B be two events with PA > 0, PB > 0. Then it follows from (1) that⎧⎨
⎩

P(A∩B) = PA ·P{B | A},

P(A∩B) = PB ·P{A | B}.
(2)

Equation (2) may be generalized to any number of events. Let A1,A2, . . . ,An ∈ S, n ≥ 2,
and assume that P(

⋂n−1
j=1 Ai)> 0. Since

A1 ⊃ (A1 ∩A2)⊃ (A1 ∩A2 ∩A3)⊃ ·· · ⊃

⎛
⎝n−2⋂

j=1

Aj

⎞
⎠⊃

⎛
⎝n−1⋂

j=1

Aj

⎞
⎠ ,

we see that

PA1 > 0, P(A1 ∩A2)> 0, . . . , P

(
n−2⋂
j=1

Aj

)
> 0.

It follows that P{Ak | ∩k−1
j=1 Aj} are well defined for k = 2,3, . . . ,n.

Theorem 2 (The Multiplication Rule). Let (Ω,S,P) be a probability space and A1,A2, . . . ,
An ∈ S, with P(∩n−1

j=1 Aj)> 0. Then

P

{
n⋂

j=1

Aj

}
= P(A1)P{A2 | A1}P{A3 | A1 ∩A2}· · ·P

{
An |

n−1⋂
j=1

Aj

}
. (3)

Proof. The proof is simple.

Let us suppose that {Hj} is a countable collection of events in S such that Hj ∩Hk =Φ,
j �= k, and

∑∞
j=1 Hj =Ω. Suppose that PHj > 0 for all j. Then

PB =

∞∑
j=1

P(Hj)P{B | Hj} for all B ∈ S. (4)
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For the proof we note that

B =
∞∑

j=1

(B∩Hj),

and the result follows. Equation (4) is called the total probability rule.

Example 3. Consider a hand of five cards in a game of poker. If the cards are dealt at
random, there are

(52
5

)
possible hands of five cards each. Let A = {at least 3 cards of

spades} and B = {all 5 cards of spades}. Then

P(A∩B) = P{all 5 cards of spades}

=

(
13
5

)
(

52
5

)

and

P{B | A}= P(A∩B)
PA

=

(
13
5

)/(
52
5

)
[(

13
3

)(
39
2

)
+

(
13
4

)(
39
1

)
+

(
13
5

)]/(
52
5

) .

Example 4. Urn 1 contains one white and two black marbles, urn 2 contains one black
and two white marbles, and urn 3 contains three black and three white marbles. A die is
rolled. If a 1, 2, or 3 shows up, urn 1 is selected; if a 4 shows up, urn 2 is selected; and if
a 5 or 6 shows up, urn 3 is selected. A marble is then drawn at random from the selected
urn. Let A be the event that the marble drawn is white. If U, V , W, respectively, denote the
events that the urn selected is 1, 2, 3, then

A = (A∩U)+(A∩V)+(A∩W),

P(A∩U) = P(U) ·P{A | U}= 3
6 ·

1
3 ,

P(A∩V) = P(V) ·P{A | V}= 1
6 ·

2
3 ,

P(A∩W) = P(W) ·P{A | W}= 2
6 ·

3
6 .

It follows that

PA = 1
6 +

1
9 +

1
6 = 4

9 .

A simple consequence of the total probability rule is the Bayes rule, which we now
prove.
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Theorem 3 (Bayes Rule). Let {Hn} be a disjoint sequence of events such that PHn > 0,
n = 1,2, . . . , and

∑∞
n=1 Hn =Ω. Let B ∈ S with PB > 0. Then

P{Hj | B}= P(Hj)P{B | Hj}∑∞

i=1
P(Hi)P{B | Hi}

, j = 1,2, . . . . (5)

Proof. From (2)

P{B∩Hj}= P(B)P{Hj | B}= PHjP{B | Hj},

and it follows that

P{Hj | B}= PHjP{B | Hj}
PB

.

The result now follows on using (4).

Remark 2. Suppose that H1,H2, . . . are all the “causes” that lead to the outcome of a ran-
dom experiment. Let Hj be the set of outcomes corresponding to the jth cause. Assume
that the probabilities PHj, j = 1,2, . . . , called the prior probabilities, can be assigned. Now
suppose that the experiment results in an event B of positive probability. This information
leads to a reassessment of the prior probabilities. The conditional probabilities P{Hj | B}
are called the posterior probabilities. Formula (5) can be interpreted as a rule giving the
probability that observed event B was due to cause or hypothesis Hj.

Example 5. In Example 4 let us compute the conditional probability P{V | A}.
We have

P{V | A}= PV P{A | V}
PU P{A | U}+PV P{A | V}+PW P{A | W}

=
1
6 ·

2
3

3
6 ·

1
3 +

1
6 ·

2
3 +

2
6 ·

3
6

=
1
9
4
9

= 1
4 .

PROBLEMS 1.5

1. Let A and B be two events such that PA = p1 > 0, PB = p2 > 0, and p1 + p2 > 1.
Show that P{B | A} ≥ 1− [(1−p2)/p1].

2. Two digits are chosen at random without replacement from the set of integers
{1,2,3,4,5,6,7,8}.

(a) Find the probability that both digits are greater than 5.

(b) Show that the probability that the sum of the digits will be equal to 5 is the same
as the probability that their sum will exceed 13.

3. The probability of a family chosen at random having exactly k children is αpk, 0 <
p < 1. Suppose that the probability that any child has blue eyes is b, 0 < b < 1,
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independently of others. What is the probability that a family chosen at random has
exactly r (r ≥ 0) children with blue eyes?

4. In Problem 3 let us write

pk = probability of a randomly chosen family having exactly k children = αpk,

k = 1,2, . . . ,

p0 = 1− αp
(1−p)

.

Suppose that all sex distributions of k children are equally likely. Find the probability
that a family has exactly r boys, r ≥ 1. Find the conditional probability that a family
has at least two boys, given that it has at least one boy.

5. Each of (N + 1) identical urns marked 0,1,2, . . . ,N contains N balls. The kth urn
contains k black and N−k white balls, k = 0,1,2, . . . ,N. An urn is chosen at random,
and n random drawings are made from it, the ball drawn being always replaced. If
all the n draws result in black balls, find the probability that the (n+1)th draw will
also produce a black ball. How does this probability behave as N →∞?

6. Each of n urns contains four white and six black balls, while another urn contains
five white and five black balls. An urn is chosen at random from the (n+ 1) urns,
and two balls are drawn from it, both being black. The probability that five white
and three black balls remain in the chosen urn is 1/7. Find n.

7. In answering a question on a multiple choice test, a candidate either knows the
answer with probability p (0 ≤ p < 1) or does not know the answer with probability
1−p. If he knows the answer, he puts down the correct answer with probability 0.99,
whereas if he guesses, the probability of his putting down the correct result is 1/k
(k choices to the answer). Find the conditional probability that the candidate knew
the answer to a question, given that he has made the correct answer. Show that this
probability tends to 1 as k →∞.

8. An urn contains five white and four black balls. Four balls are transferred to a sec-
ond urn. A ball is then drawn from this urn, and it happens to be black. Find the
probability of drawing a white ball from among the remaining three.

9. Prove Theorem 2.

10. An urn contains r red and g green marbles. A marble is drawn at random and its
color noted. Then the marble drawn, together with c > 0 marbles of the same color,
are returned to the urn. Suppose n such draws are made from the urn? Find the
probability of selecting a red marble at any draw.

11. Consider a bicyclist who leaves a point P (see Fig. 1), choosing one of the roads
PR1, PR2, PR3 at random. At each subsequent crossroad he again chooses a road at
random.

(a) What is the probability that he will arrive at point A?

(b) What is the conditional probability that he will arrive at A via road PR3?

12. Five percent of patients suffering from a certain disease are selected to undergo a
new treatment that is believed to increase the recovery rate from 30 percent to 50
percent. A person is randomly selected from these patients after the completion of
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R34

Fig. 1 Map for Problem 11.

the treatment and is found to have recovered. What is the probability that the patient
received the new treatment?

13. Four roads lead away from the county jail. A prisoner has escaped from the jail and
selects a road at random. If road I is selected, the probability of escaping is 1/8;
if road II is selected, the probability of success is 1/6; if road III is selected, the
probability of escaping is 1/4; and if road IV is selected, the probability of success
is 9/10.

(a) What is the probability that the prisoner will succeed in escaping?

(b) If the prisoner succeeds, what is the probability that the prisoner escaped by
using road IV? Road I?

14. A diagnostic test for a certain disease is 95 percent accurate; in that if a person has
the disease, it will detect it with a probability of 0.95, and if a person does not have
the disease, it will give a negative result with a probability of 0.95. Suppose only 0.5
percent of the population has the disease in question. A person is chosen at random
from this population. The test indicates that this person has the disease. What is the
(conditional) probability that he or she does have the disease?

1.6 INDEPENDENCE OF EVENTS

Let (Ω,S,P) be a probability space, and let A,B ∈ S, with PB > 0. By the multiplication
rule we have

P(A∩B) = P(B)P{A | B}.
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In many experiments the information provided by B does not affect the probability of
event A, that is, P{A | B}= P{A}.

Example 1. Let two fair coins be tossed, and let A = {head on the second throw},
B = {head on the first throw}. Then

P(A) = P{HH,TH}= 1
2 , P(B) = {HH,HT}= 1

2 ,

and

P{A | B}= P(A∩B)
P(B)

=
1
4
1
2

= 1
2 = P(A)

Thus

P(A∩B) = P(A)P(B).

In the following, we will write A∩B = AB.

Definition 1. Two events, A and B, are said to be independent if and only if

P(AB) = P(A)P(B). (1)

Note that we have not placed any restriction on P(A) or P(B). Thus conditional prob-
ability is not defined when P(A) or P(B) = 0 but independence is. Clearly, if P(A) = 0,
then A is independent of every E ∈ S. Also, any event A ∈ S is independent of Φ and Ω.

Theorem 1. If A and B are independent events, then

P{A | B}= P(A) if P(B)> 0

and

P{B | A}= P(B) if P(A)> 0.

Theorem 2. If A and B are independent, so are A and Bc, Ac and B, and Ac and Bc.

Proof.

P(AcB) = P(B− (A∩B))

= P(B)−P(A∩B) since B ⊇ (A∩B)

= P(B){1−P(A)}
= P(Ac)P(B).

Similarly, one proves that (i) Ac and Bc and (ii) A and Bc are independent.
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We wish to emphasize that independence of events is not to be confused with disjoint
or mutually exclusive events. If two events, each with nonzero probability, are mutually
exclusive, they are obviously dependent since the occurrence of one will automatically
preclude the occurrence of the other. Similarly, if A and B are independent and PA > 0,
PB > 0, then A and B cannot be mutually exclusive.

Example 2. A card is chosen at random from a deck of 52 cards. Let A be the event that
the card is an ace and B, the event that it is a club. Then

P(A) = 4
52 = 1

13 , P(B) = 13
52 = 1

4 ,

P(AB) = P{ace of clubs}= 1
52 ,

so that A and B are independent.

Example 3. Consider families with two children, and assume that all four possible dis-
tributions of sex—BB, BG, GB, GG, where B stands for boy and G for girl—are equally
likely. Let E be the event that a randomly chosen family has at most one girl and F, the
event that the family has children of both sexes. Then

P(E) = 3
4 , P(F) = 1

2 , and P(EF) = 1
2 ,

so that E and F are not independent.
Now consider families with three children. Assuming that each of the eight possible

sex distributions is equally likely, we have

P(E) = 4
8 , P(F) = 6

8 , P(EF) = 3
8 ,

so that E and F are independent.

An obvious extension of the concept of independence between two events A and B to a
given collection U of events is to require that any two distinct events in U be independent.

Definition 2. Let U be a family of events from S. We say that the events U are pairwise
independent if and only if, for every pair of distinct events A,B ∈ U,

P(AB) = PAPB.

A much stronger and more useful concept is mutual or complete independence.

Definition 3. A family of events U is said to be a mutually or completely independent
family if and only if, for every finite sub collection {Ai1 ,Ai2 , . . . ,Aik} of U, the following
relation holds:

P(Ai1 ∩Ai2 ∩·· ·∩Aik) =

k∏
j=1

PAij . (2)
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In what follows we will omit the adjective “mutual” or “complete” and speak of inde-
pendent events. It is clear from Definition 3 that in order to check the independence of n
events A1,A2, . . . ,An ∈ S we must check the following 2n −n−1 relations.

P(AiAj) = PAi PAj, i �= j; i, j = 1,2, . . . ,n,

P(AiAjAk) = PAi PAj PAk, i �= j �= k; i, j,k = 1,2, . . . ,n,

...

P(A1A2 · · ·An) = PA1 PA2 · · ·PAn.

The first of these requirements is pairwise independence. Independence therefore implies
pairwise independence, but not conversely.

Example 4 (Wong [120]). Take four identical marbles. On the first, write symbols A1A2A3.
On each of the other three, write A1, A2, A3, respectively. Put the four marbles in an urn
and draw one at random. Let Ei denote the event that the symbol Ai appears on the drawn
marble. Then

P(E1) = P(E2) = P(E3) =
1
2 ,

P(E1E2) = P(E2E3) = P(E1E3) =
1
4 ,

and

P(E1E2E3) =
1
4 . (3)

It follows that although events E1, E2, E3 are not independent, they are pairwise
independent.

Example 5 (Kac [48], pp. 22–23). In this example P(E1E2E3) = P(E1)P(E2)P(E3), but
E1, E2, E3 are not pairwise independent and hence not independent. Let Ω = {1,2,3,4},
and let pi be the probability assigned to {i}, i = 1,2,3,4. Let p1 =

√
2

2 − 1
4 , p2 =

1
4 ,p3 =

3
4 −

√
2

2 , p4 =
1
4 . Let E1 = {1,3}, E2 = {2,3}, E3 = {3,4}. Then

P(E1E2E3) = P{3}= 3
4
−

√
2

2
=

1
2

(
1−

√
2

2

)(
1−

√
2

2

)

= (p1 +p3)(p2 +p3)(p3 +p4)

= P(E1)P(E2)P(E3).

But P(E1E2) =
3
4 −

√
2

2 �= PE1PE2, and it follows that E1, E2, E3 are not independent.

Example 6. A die is rolled repeatedly until a 6 turns up. We will show that event A, that
“a 6 will eventually show up,” is certain to occur. Let Ak be the event that a 6 will show up
for the first time on the kth throw. Let A =

∑∞
k=1 Ak. Then

PAk =
1
6

(
5
6

)k−1

, k = 1,2, . . . . ,
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and

PA =
1
6

∞∑
k=1

(
5
6

)k−1

=
1
6

1

1− 5
6

= 1.

Alternatively, we can use the corollary to Theorem 1.3.6. Let Bn be the event that a 6 does
not show up on the first n trials. Clearly Bn+1 ⊆ Bn, and we have Ac = ∩∞

n=1Bn. Thus

1−PA = PAc = P

( ∞⋂
n=1

Bn

)
= lim

n→∞
P(Bn) = lim

n→∞

(
5
6

)n

= 0.

Example 7. A slip of paper is given to person A, who marks it with either a plus or a
minus sign; the probability of her writing a plus sign is 1/3. A passes the slip to B, who
may either leave it alone or change the sign before passing it to C. Next, C passes the slip
to D after perhaps changing the sign; finally, D passes it to a referee after perhaps changing
the sign. The referee sees a plus sign on the slip. It is known that B, C, and D each change
the sign with probability 2/3. We shall compute the probability that A originally wrote a
plus.

Let N be the event that A wrote a plus sign, and M, the event that she wrote a minus
sign. Let E be the event that the referee saw a plus sign on the slip. We have

P{N | E}= P(N)P{E | N}
P(M)P{E | M}+P(N)P{E | N} .

Now

P{E | N}= P{the plus sign was either not changed or changed exactly twice}

=

(
1
3

)3

+3

(
2
3

)2

+

(
1
3

)

and

P{E | M}= P{the minus sign was changed either once or three times}

= 3

(
2
3

)(
1
3

)2

+

(
2
3

)3

.

It follows that

P{N | E}=
( 1

3 )[(
1
3 )

3 +3( 2
3 )

2( 1
3 )]

( 1
3 )[(

1
3 )

3 +3( 2
3 )

2( 1
3 )]+( 2

3 )[3(
2
3 )(

1
3 )

2 +( 2
3 )

3]

=
13
18
41
81

=
13
41

.
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PROBLEMS 1.6

1. A biased coin is tossed until a head appears for the first time. Let p be the probability
of a head, 0 < p < 1. What is the probability that the number of tosses required is
odd? Even?

2. Let A and B be two independent events defined on some probability space, and let
PA = 1/3, PB = 3/4. Find (a) P(A∪B), (b) P{A | A∪B}, and (c) P{B | A∪B}.

3. Let A1, A2, and A3 be three independent events. Show that Ac
1, Ac

2, and Ac
3 are

independent.

4. A biased coin with probability p, 0 < p < 1, of success (heads) is tossed until for the
first time the same result occurs three times in succession (i.e., three heads or three
tails in succession). Find the probability that the game will end at the seventh throw.

5. A box contains 20 black and 30 green balls. One ball at a time is drawn at random,
its color is noted, and the ball is then replaced in the box for the next draw.

(a) Find the probability that the first green ball is drawn on the fourth draw.

(b) Find the probability that the third and fourth green balls are drawn on the sixth
and ninth draws, respectively.

(c) Let N be the trial at which the fifth green ball is drawn. Find the probability that
the fifth green ball is drawn on the nth draw. (Note that N take values 5,6,7, . . . .)

6. An urn contains four red and four black balls. A sample of two balls is drawn at
random. If both balls drawn are of the same color, these balls are set aside and a new
sample is drawn. If the two balls drawn are of different colors, they are returned to
the urn and another sample is drawn. Assume that the draws are independent and
that the same sampling plan is pursued at each stage until all balls are drawn.

(a) Find the probability that at least n samples are drawn before two balls of the
same color appear.

(b) Find the probability that after the first two samples are drawn four balls are left,
two black and two red.

7. Let A, B, and C be three boxes with three, four, and five cells, respectively. There are
three yellow balls numbered 1 to 3, four green balls numbered 1 to 4, and five red
balls numbered 1 to 5. The yellow balls are placed at random in box A, the green in
B, and the red in C, with no cell receiving more than one ball. Find the probability
that only one of the boxes will show no matches.

8. A pond contains red and golden fish. There are 3000 red and 7000 golden fish,
of which 200 and 500, respectively, are tagged. Find the probability that a random
sample of 100 red and 200 golden fish will show 15 and 20 tagged fish, respectively.

9. Let (Ω,S,P) be a probability space. Let A, B, C ∈ S with PB and PC > 0. If B and
C are independent show that

P{A | B}= P{A | B∩C}PC+P{A | B∩Cc}PCc.

Conversely, if this relation holds, P{A | BC} �= P{A | B}, and PA > 0, then B and C
are independent (Strait [111]).
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10. Show that the converse of Theorem 2 also holds. Thus A and B are independent if,
and only if, A and Bc are independent, and so on.

11. A lot of five identical batteries is life tested. The probability assignment is assumed
to be

P(A) =
∫

A
(1/λ)e−x/λdx

for any event A ⊆ [0,∞), where λ> 0 is a known constant. Thus the probability that
a battery fails after time t is given by

P(t,∞) =

∫ ∞

t
(1/λ)e−x/λdx, t ≥ 0.

If the times to failure of the batteries are independent, what is the probability that at
least one battery will be operating after t0 hours?

12. On Ω= (a,b), −∞< a < b <∞, each subinterval is assigned a probability propor-
tional to the length of the interval. Find a necessary and sufficient condition for two
events to be independent.

13. A game of craps is played with a pair of fair dice as follows. A player rolls the dice.
If a sum of 7 or 11 shows up, the player wins; if a sum of 2, 3, or 12 shows up, the
player loses. Otherwise the player continues to roll the pair of dice until the sum is
either 7 or the first number rolled. In the former case the player loses and in the latter
the player wins.

(a) Find the probability that the player wins on the nth roll.

(b) Find the probability that the player wins the game.

(c) What is the probability that the game ends on: (i) the first roll, (ii) second roll,
and (iii) third roll?



2
RANDOM VARIABLES AND THEIR
PROBABILITY DISTRIBUTIONS

2.1 INTRODUCTION

In Chapter 1 we dealt essentially with random experiments which can be described by
finite sample spaces. We studied the assignment and computation of probabilities of
events. In practice, one observes a function defined on the space of outcomes. Thus, if
a coin is tossed n times, one is not interested in knowing which of the 2n n-tuples in the
sample space has occurred. Rather, one would like to know the number of heads in n tosses.
In games of chance one is interested in the net gain or loss of a certain player. Actually, in
Chapter 1 we were concerned with such functions without defining the term random vari-
able. Here we study the notion of a random variable and examine some of its properties.

In Section 2.2 we define a random variable, while in Section 2.3 we study the notion
of probability distribution of a random variable. Section 2.4 deals with some special types
of random variables, and Section 2.5 considers functions of a random variable and their
induced distributions.

The fundamental difference between a random variable and a real-valued function of a
real variable is the associated notion of a probability distribution. Nevertheless our knowl-
edge of advanced calculus or real analysis is the basic tool in the study of random variables
and their probability distributions.

2.2 RANDOM VARIABLES

In Chapter 1 we studied properties of a set function P defined on a sample space (Ω,S).
Since P is a set function, it is not very easy to handle; we cannot perform arithmetic or

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
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algebraic operations on sets. Moreover, in practice one frequently observes some function
of elementary events. When a coin is tossed repeatedly, which replication resulted in heads
is not of much interest. Rather one is interested in the number of heads, and consequently
the number of tails, that appear in, say, n tossings of the coin. It is therefore desirable to
introduce a point function on the sample space. We can then use our knowledge of calculus
or real analysis to study properties of P.

Definition 1. Let (Ω,S) be a sample space. A finite, single-valued function which maps
Ω into R is called a random variable (RV) if the inverse images under X of all Borel sets
in R are events, that is, if

X−1(B) = {ω : X(ω) ∈ B} ∈ S for all B ∈B. (1)

In order to verify whether a real-valued function on (Ω,S) is an RV, it is not necessary
to check that (1) holds for all Borel sets B ∈ B. It suffices to verify (1) for any class A

of subsets of R which generates B. By taking A to be the class of semiclosed intervals
(−∞,x], x ∈ R we get the following result.

Theorem 1. X is an RV if and only if for each x ∈ R

{ω : X(ω)≤ x}= {X ≤ x} ∈ S. (2)

Remark 1. Note that the notion of probability does not enter into the definition of an RV.

Remark 2. If X is an RV, the sets {X = x}, {a < X ≤ b}, {X < x}, {a ≤ X < b}, {a <
X < b}, {a ≤ X ≤ b} are all events. Moreover, we could have used any of these intervals
to define an RV. For example, we could have used the following equivalent definition: X
is an RV if and only if

{ω : X(ω)< x} ∈ S for all x ∈ R. (3)

We have

{X < x}=
∞⋃

n=1

{
X ≤ x− 1

n

}
(4)

and

{X ≤ x}=
∞⋂

n=1

{
X < x+

1
n

}
. (5)

Remark 3. In practice (1) or (2) is a technical condition in the definition of an RV which
the reader may ignore and think of RVs simply as real-valued functions defined on Ω. It
should be emphasized though that there do exist subsets of R which do not belong to B

and hence there exist real-valued functions defined on Ω which are not RVs but the reader
will not encounter them in practical applications.
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Example 1. For any set A ⊆ Ω, define

IA(ω) =

{
0, ω /∈ A,

1, ω ∈ A.

IA(ω) is called the indicator function of set A. IA is an RV if and only if A ∈ S.

Example 2. Let Ω= {H,T} and S be the class of all subsets of Ω. Define X by X(H) = 1,
X(T) = 0. Then

X−1(−∞,x] =

⎧⎪⎨
⎪⎩
φ if x < 0,

{T} if 0 ≤ x < 1,

{H,T} if 1 ≤ x,

and we see that X is an RV.

Example 3. Let Ω = {HH,TT,HT,TH} and S be the class of all subsets of Ω.
Define X by

X(ω) = number of H’s in ω.

Then X(HH) = 2, X(HT) = X(TH) = 1, and X(TT) = 0.

X−1(−∞,x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ, x < 0,

{TT}, 0 ≤ x < 1,

{TT,HT,TH}, 1 ≤ x < 2,

Ω, 2 ≤ x.

Thus X is an RV.

Remark 4. Let (Ω,S) be a discrete sample space; that is, let Ω be a countable set of points
and S be the class of all subsets of Ω. Then every numerical valued function defined on
(Ω,S) is an RV.

Example 4. Let Ω= [0,1] and S=B∩ [0,1] be the σ-field of Borel sets on [0,1]. Define
X on Ω by

X(ω) = ω, ω ∈ [0,1].

Clearly X is an RV. Any Borel subset of Ω is an event.

Remark 5. Let X be an RV defined on (Ω,S) and a, b be constants. Then aX + b is also
an RV on (Ω,S). Moreover, X2 is an RV and so also is 1/X, provided that {X = 0} = φ.
For a general result see Theorem 2.5.1.
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PROBLEMS 2.2

1. Let X be the number of heads in three tosses of a coin. What isΩ? What are the values
that X assigns to points of Ω? What are the events {X ≤ 2.75}, {0.5 ≤ X ≤ 1.72}?

2. A die is tossed two times. Let X be the sum of face values on the two tosses and Y
be the absolute value of the difference in face values. What is Ω? What values do X
and Y assign to points of Ω? Check to see whether X and Y are random variables.

3. Let X be an RV. Is |X| also an RV? If X is an RV that takes only nonnegative values,
is
√

X also an RV?

4. A die is rolled five times. Let X be the sum of face values. Write the events {X = 4},
{X = 6}, {X = 30}, {X ≥ 29}.

5. Let Ω= [0,1] and S be the Borel σ-field of subsets of Ω. Define X on Ω as follows:
X(ω) = ω if 0 ≤ ω ≤ 1/2, and X(ω) = ω−1/2 if 1/2 < ω ≤ 1. Is X an RV? If so,
what is the event {ω : X(ω) ∈ (1/4,1/2)}?

6. Let A be a class of subsets of R which generates B. Show that X is an RV on Ω if
and only if X−1(A) ∈ R for all A ∈ A.

2.3 PROBABILITY DISTRIBUTION OF A RANDOM VARIABLE

In Section 2.2 we introduced the concept of an RV and noted that the concept of proba-
bility on the sample space was not used in this definition. In practice, however, random
variables are of interest only when they are defined on a probability space. Let (Ω,S,P)
be a probability space, and let X be an RV defined on it.

Theorem 1. The RV X defined on the probability space (Ω,S,P) induces a probability
space (R,B,Q) by means of the correspondence

Q(B) = P{X−1(B)}= P{ω : X(ω) ∈ B} for all B ∈B. (1)

We write Q = PX−1 and call Q or PX−1 the (probability) distribution of X.

Proof. Clearly Q(B)≥ 0 for all B ∈B, and also Q(R) = P{X ∈ R}= P(Ω) = 1.
Let Bi ∈ B, i = 1,2, . . . with Bi ∩Bj = φ, i 	= j. Since the inverse image of a disjoint

union of Borel sets is the disjoint union of their inverse images, we have

Q

( ∞∑
i=1

Bi

)
= P

{
X−1

( ∞∑
i=1

Bi

)}

= P

{ ∞∑
i=1

X−1(Bi)

}

=

∞∑
i=1

PX−1(Bi) =

∞∑
i=1

Q(Bi).

It follows that (R,B,Q) is a probability space, and the proof is complete.
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We note that Q is a set function, and set functions are not easy to handle. It is therefore
more practical to use (2.2.2) since then Q(−∞,x] is a point function. Let us first introduce
and study some properties of a special point function on R.

Definition 1. A real-valued function F defined on (−∞,∞) that is nondecreasing, right
continuous, and satisfies

F(−∞) = 0 and F(+∞) = 1

is called a distribution function (DF).

Remark 1. Recall that if F is a nondecreasing function on R, then F(x−) = limt↑x F(t),
F(x+) = limt↓x F(t) exist and are finite. Also, F(+∞) and F(−∞) exist as limt↑+∞ F(t)
and limt↓−∞ F(t), respectively. In general,

F(x−)≤ F(x)≤ F(x+),

and x is a jump point of F if and only if F(x+) and F(x−) exist but are unequal. Thus a
nondecreasing function F has only jump discontinuities. If we define

F∗(x) = F(x+) for all x,

we see that F∗ is nondecreasing and right continuous on R. Thus in Definition 1 the non-
decreasing part is very important. Some authors demand left continuity in the definition
of a DF instead of right continuity.

Theorem 2. The set of discontinuity points of a DF F is at most countable.

Proof. Let (a,b] be a finite interval with at least n discontinuity points:

a < x1 < x2 < · · ·< xn ≤ b.

Then

F(a)≤ F(x1−)< F(x1)≤ ·· · ≤ F(xn−)< F(xn)≤ F(b).

Let pk = F(xk)−F(xk−), k = 1,2, . . . ,n. Clearly,

n∑
k=1

pk ≤ F(b)−F(a),

and it follows that the number of points x in (a,b] with jump p(x) > ε > 0 is at most
ε−1{F(b)− F(a)}. Thus, for every integer N, the number of discontinuity points with
jump greater than 1/N is finite. It follows that there are no more than a countable number
of discontinuity points in every finite interval (a,b]. Since R is a countable union of such
intervals, the proof is complete.
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Definition 2. Let X be an RV defined on (Ω,S,P). Define a point function F(.) on R by
using (1), namely,

F(x) = Q(−∞,x] = P{ω : X(ω)≤ x} for all x ∈ R. (2)

The function F is called the distribution function of RV X.

If there is no confusion, we will write

F(x) = P{X ≤ x}.

The following result justifies our calling F as defined by (2) a DF.

Theorem 3. The function F defined in (2) is indeed a DF.

Proof. Let x1 < x2. Then (−∞,x1]⊂ (−∞,x2], and we have

F(x1) = P{X ≤ x1} ≤ P{X ≤ x2}= F(x2).

Since F is nondecreasing, it is sufficient to show that for any sequence of numbers xn ↓ x,
x1 > x2 > · · · > xn > · · · > x, F(xn)→ F(x). Let Ak = {ω : X(ω) ∈ (x,xk]}. Then Ak ∈ S

and Ak 	↑. Also,

lim
k→∞

Ak =

∞⋂
k=1

Ak = φ,

since none of the intervals (x,xk] contains x. It follows that limk→∞ P(Ak) = 0. But,

P(Ak) = P{X ≤ xk}−P{X ≤ x}
= F(xk)−F(x),

so that

lim
k→∞

F(xk) = F(x)

and F is right continuous.
Finally, let {xn} be a sequence of numbers decreasing to −∞. Then,

{X ≤ xn} ⊇ {X ≤ xn+1} for each n

and

lim
n→∞

{X ≤ xn}=
∞⋂

n=1

{X ≤ xn}= φ.

Therefore,

F(−∞) = lim
n→∞

P{X ≤ xn}= P
{
lim

n→∞
{X ≤ xn}

}
= 0.
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Similarly,

F(+∞) = lim
xn→∞

P{X ≤ xn}= 1,

and the proof is complete.

The next result, stated without proof, establishes a correspondence between the induced
probability Q on (R,B) and a point function F defined on R.

Theorem 4. Given a probability Q on (R,B), there exists a distribution function F
satisfying

Q(−∞,x] = F(x) for all x ∈ R, (3)

and, conversely, given a DF F, there exists a unique probability Q defined on (R,B) that
satisfies (3).

For proof see Chung [15, pp. 23–24].

Theorem 5. Every DF is the DF of an RV on some probability space.

Proof. Let F be a DF. From Theorem 4 it follows that there exists a unique probability Q
defined on R that satisfies

Q(−∞,x] = F(x) for all x ∈ R.

Let (R,B,Q) be the probability space on which we define

X(ω) = ω, ω ∈ R.

Then

Q{ω : X(ω)≤ x}= Q(−∞,x] = F(x),

and F is the DF of RV X.

Remark 2. If X is an RV on (Ω,S,P), we have seen (Theorem 3) that F(x) = P{X ≤ x} is a
DF associated with X. Theorem 5 assures us that to every DF F we can associate some RV.
Thus, given an RV, there exists a DF, and conversely. In this book, when we speak of
an RV we will assume that it is defined on some probability space.

Example 1. Let X be defined on (Ω,S,P) by

X(ω) = c for all ω ∈ Ω.
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Then

P{X = c}= 1,

F(x) = Q(−∞,x] = P{X−1(−∞,x]}= 0 if x < c

and

F(x) = 1 if x ≥ c.

Example 2. Let Ω= {H,T} and X be defined by

X(H) = 1, X(T) = 0.

If P assigns equal mass to {H} and {T}, then

P{X = 0}=
1

2
= P{X = 1}

and

F(x) = Q(−∞,x] =

⎧⎪⎨
⎪⎩

0, x < 0,
1
2 , 0 ≤ x < 1,

1, 1 ≤ x.

Example 3. Let Ω= {(i, j) : i, j ∈ {1,2,3,4,5,6}} and S be the set of all subsets of Ω. Let
P{(i, j)}= 1/62 for all 62 pairs (i, j) in Ω. Define

X(i, j) = i+ j, 1 ≤ i, j ≤ 6.

Then,

F(x) = Q(−∞,x] = P{X ≤ x}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 2,
1

36 , 2 ≤ x < 3,
3

36 , 3 ≤ x < 4,
6

36 , 4 ≤ x < 5,
...
35
36 , 11 ≤ x < 12,

1, 12 ≤ x.

Example 4. We return to Example 2.2.4. For every subinterval I of [0,1] let P(I) be the
length of the interval. Then (Ω,S,P) is a probability space, and the DF of RV X(ω) = ω,
ω ∈ Ω is given by F(x) = 0 if x < 0, F(x) = P{ω : X(ω)≤ x}= P([0,x]) = x if x ∈ [0,1],
and F(x) = 1 if x ≥ 1.
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PROBLEMS 2.3

1. Write the DF of RV X defined in Problem 2.2.1, assuming that the coin is fair.

2. What is the DF of RV Y defined in Problem 2.2.2, assuming that the die is not loaded?

3. Do the following functions define DFs?

(a) F(x) = 0 if x < 0, = x if 0 ≤ x < 1/2, and = 1 if x ≥ 1
2 .

(b) F(x) = (1/π)tan−1 x, −∞< x <∞.

(c) F(x) = 0 if x ≤ 1, and = 1− (1/x) if 1 < x.

(d) F(x) = 1− e−x if x ≥ 0, and = 0 if x < 0.

4. Let X be an RV with DF F.

(a) If F is the DF defined in Problem 3(a), find P{X > 1
4}, P{ 1

3 < X ≤ 3
8}.

(b) If F is the DF defined in Problem 3(d), find P{−∞< X < 2}.

2.4 DISCRETE AND CONTINUOUS RANDOM VARIABLES

Let X be an RV defined on some fixed, but otherwise arbitrary, probability space (Ω,S,P),
and let F be the DF of X. In this book, we shall restrict ourselves mainly to two cases,
namely, the case in which the RV assumes at most a countable number of values and
hence its DF is a step function and that in which the DF F is (absolutely) continuous.

Definition 1. An RV X defined on (Ω,S,P) is said to be of the discrete type, or simply
discrete, if there exists a countable set E ⊆ R such that P{X ∈ E} = 1. The points of E
which have positive mass are called jump points or points of increase of the DF of X, and
their probabilities are called jumps of the DF.

Note that E ∈B since every one-point is in B. Indeed, if x ∈ R, then

{x}=
∞⋂

n=1

{(
x− 1

n
< x ≤ x+

1
n

)}
. (1)

Thus {X ∈ E} is an event. Let X take on the value xi with probability pi (i = 1,2, . . .).
We have

P{ω : X(ω) = xi}= pi, i = 1,2, . . . , pi ≥ 0 for all i.

Then
∑∞

i=1 pi = 1.

Definition 2. The collection of numbers {pi} satisfying P{X = xi}= pi ≥ 0, for all i and∑∞
i=1 pi = 1, is called the probability mass function (pmf) of RV X.

The DF F of X is given by

F(x) = P{X ≤ x}=
∑
xi≤x

pi. (2)
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If IA denotes the indicator function of the set A, we may write

X(ω) =
∞∑

i=1

xiI[X=xi](ω). (3)

Let us define a function ε(x) as follows:

ε(x) =

{
1, x ≥ 0,

0, x < 0.

Then we have

F(x) =
∞∑

i=1

piε(x− xi). (4)

Example 1. The simplest example is that of an RV X degenerate at c, P{X = c}= 1:

F(x) = ε(x− c) =

{
0, x < c,

1, x ≥ c.

Example 2. A box contains good and defective items. If an item drawn is good, we assign
the number 1 to the drawing; otherwise, the number 0. Let p be the probability of drawing
at random a good item. Then

P

{
X =

0

1

}
=

{
1−p

p,

and

F(x) = P{X ≤ x}=

⎧⎪⎨
⎪⎩

0, x < 0,

1−p, 0 ≤ x < 1,

1, 1 ≤ x.

Example 3. Let X be an RV with PMF

P{X = k}= 6
π2

· 1
k2
, k = 1,2, . . . .

Then,

F(x) =
6
π2

∞∑
k=1

1
k2
ε(x− k).

Theorem 1. Let {pk} be a collection of nonnegative real numbers such that
∑∞

k=1 pk = 1.
Then {pk} is the PMF of some RV X.
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We next consider RVs associated with DFs that have no jump points. The DF of such
an RV is continuous. We shall restrict our attention to a special subclass of such RVs.

Definition 3. Let X be an RV defined on (Ω,S,P) with DF F. Then X is said to be of
the continuous type (or, simply, continuous) if F is absolutely continuous, that is, if there
exists a nonnegative function f (x) such that for every real number x we have

F(x) =
∫ x

−∞
f (t)dt. (5)

The function f is called the probability density function (PDF) of the RV X.

Note that f ≥ 0 and satisfies limx→+∞ F(x) = F(+∞) =
∫∞
−∞ f (t)dt = 1. Let a and b

be any two real numbers with a < b. Then

P{a < X ≤ b}= F(b)−F(a)

=

∫ b

a
f (t)dt.

In view of remarks following Definition 2.2.1, the following result holds.

Theorem 2. Let X be an RV of the continuous type with PDF f . Then for every Borel set
B ∈B

P(B) =
∫

B
f (t)dt. (6)

If F is absolutely continuous and f is continuous at x, we have

F′(x) =
dF(x)

dx
= f (x). (7)

Theorem 3. Every nonnegative real function f that is integrable over R and satisfies

∫ ∞

−∞
f (x)dx = 1

is the PDF of some continuous type RV X.

Proof. In view of Theorem 2.3.5 it suffices to show that there corresponds a DF F to f .
Define

F(x) =
∫ x

−∞
f (t)dt, x ∈ R.
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Then F(−∞) = 0, F(+∞) = 1, and, if x2 > x1,

F(x2) =

(∫ x1

−∞
+

∫ x2

x1

)
f (t)dt ≥

∫ x1

−∞
f (t)dt = F(x1).

Finally, F is (absolutely) continuous and hence continuous from the right.

Remark 1. In the discrete case, P{X = a} is the probability that X takes the value a. In the
continuous case, f (a) is not the probability that X takes the value a. Indeed, if X is of the
continuous type, it assumes every value with probability 0.

Theorem 4. Let X be any RV. Then

P{X = a}= lim
t→a
t<a

P{t < X ≤ a}. (8)

Proof. Let t1 < t2 < · · ·< a, tn → a, and write

An = {tn < X ≤ a}.

Then An is a nonincreasing sequence of events which converges to
⋂∞

n=1 An = {X = a}. It
follows that limn→∞ PAn = P{X = a}.

Remark 2. Since P{t < X ≤ a}= F(a)−F(t), it follows that

lim
t→a
t<a

P{t < X ≤ a}= P{X = a}= F(a)− lim
t→a
t<a

F(t)

= F(a)−F(a−).

Thus F has a jump discontinuity at a if and only if P{X = a}> 0, that is, F is continuous
at a if and only if P{X = a}= 0. If X is an RV of the continuous type, P{X = a}= 0 for
all a ∈ R. Moreover,

P{X ∈ R−{a}}= 1.

This justifies Remark 1.3.4.

Remark 3. The set of real numbers x for which a DF F increases is called the support
of F. Let X be the RV with DF F, and let S be the support of F. Then P(X ∈ S) = 1 and
P(X ∈ Sc) = 0. The set of positive integers is the support of the DF in Example 3, and the
open interval (0,1) is the support of F in Example 4 below.

Example 4. Let X be an RV with DF F given by (Fig. 1)

F(x) =

⎧⎪⎨
⎪⎩

0, x ≤ 0,

x, 0 < x ≤ 1,

1, 1 < x.
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0 0.5 1 1.5

1
F(x)

Fig. 1

1

1

f(x)

x

Fig. 2

Differentiating F with respect to x at continuity points of f , we get

f (x) = F′(x) =

{
0, x < 0 or x > 1,

1, 0 < x < 1.

The function f is not continuous at x = 0 or at x = 1 (Fig. 2). We may define f (0) and f (1)
in any manner. Choosing f (0) = f (1) = 0, we have

f (x) =

{
1, 0 < x < 1,

0, otherwise.
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Then

P{0.4 < X ≤ 0.6}= F(0.6)−F(0.4) = 0.2.

Example 5. Let X have the triangular PDF (Fig. 3)

f (x) =

⎧⎪⎨
⎪⎩

x, 0 < x ≤ 1,

2− x, 1 ≤ x ≤ 2,

0, otherwise.

It is easy to check that f is a PDF. For the DF F of X we have (Fig. 4)

F(x) = 0 if x ≤ 0,

F(x) =
∫ x

0
t dt =

x2

2
if 0 < x ≤ 1,

F(x) =
∫ 1

0
t dt+

∫ x

1
(2− t)dt = 2x− x2

2
−1 if 1 < x ≤ 2,

and

F(x) = 1 if x ≥ 2.

Then

P{0.3 < X ≤ 1.5}= P{X ≤ 1.5}−P{X ≤ 0.3}
= 0.83.

1

0 1 2 x

f(x)

Fig. 3 Graph of f .
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0

1

x

F(x)

F(x)

1 2

Fig. 4 Graph of F.

Example 6. Let k > 0 be a constant, and

f (x) =

{
kx(1− x), 0 < x < 1,

0, otherwise.

Then
∫ 1

0 f (x)dx = k/6. It follows that f (x) defines a PDF if k = 6. We have

P{X > 0.3}= 1−6
∫ .3

0
x(1− x)dx = 0.784.

We conclude this discussion by emphasizing that the two types of RVs considered above
form only a part of the class of all RVs. These two classes, however, contain practically all
the random variables that arise in practice. We note without proof (see Chung [15, p. 9])
that every DF F can be decomposed into two parts according to

F(x) = aFd(x)+(1−a)Fc(x). (9)

Here Fd and Fc are both DFs; Fd is the DF of a discrete RV, while Fc is a continuous (not
necessarily absolutely continuous) DF. In fact, Fc can be further decomposed, but we will
not go into that (see Chung [15, p.11]).

Example 7. Let X be an RV with DF

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,
1
2 , x = 0,
1
2 +

x
2 , 0 < x < 1,

1, 1 ≤ x.
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Note that the DF F has a jump at x = 0 and F is continuous (in fact, absolutely continuous)
in the interval (0,1). F is the DF of an RV X that is neither discrete nor continuous. We
can write

F(x) =
1
2

Fd(x)+
1
2

Fc(x),

where

Fd(x) =

{
0, x < 0,

1, x ≥ 0

and

Fc(x) =

⎧⎪⎨
⎪⎩

0, x ≤ 0,

x, 0 < x < 1,

1, 1 ≤ x.

Here Fd(x) is the DF of the RV degenerate at x = 0, and Fc(x) is the DF with PDF

fc(x) =

{
1, 0 < x < 1,

0, otherwise.

PROBLEMS 2.4

1. Let

pk = p(1−p)k, k = 0,1,2, . . . , 0 < p < 1.

Does {pk} define the PMF of some RV? What is the DF of this RV? If X is an RV
with PMF {pk}, what is P{n ≤ X ≤ N}, where n, N (N > n) are positive integers?

2. In Problem 2.3.3, find the PDF associated with the DFs of parts (b), (c), and (d).

3. Does the function fθ(x) = θ2xe−θx if x > 0, and = 0 if x ≤ 0, where θ > 0, define
a PDF? Find the DF associated with fθ(x); if X is an RV with PDF fθ(x), find
P{X ≥ 1}.

4. Does the function fθ(x) = {(x+1)/[θ(θ+1)]}e−x/θ if x > 0, and = 0 otherwise,
where θ > 0 define a PDF? Find the corresponding df.

5. For what values of K do the following functions define the PMF of some RV?

(a) f (x) = K(λx/x!), x = 0,1,2, . . . , λ > 0.

(b) f (x) = K/N, x = 1,2, . . . ,N.

6. Show that the function

f (x) =
1
2

e−|x|, −∞< x <∞,

is a PDF. Find its DF.

7. For the PDF f (x) = x if 0≤ x< 1, and = 2−x if 1≤ x< 2, find P{1/6<X ≤ 7/4}.
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8. Which of the following functions are density functions:

(a) f (x) = x(2− x), 0 < x < 2, and 0 elsewhere.

(b) f (x) = x(2x−1), 0 < x < 2, and 0 elsewhere.

(c) f (x) = 1
λ exp{−(x−θ)/λ}, x > θ, and 0 elsewhere, λ > 0.

(d) f (x) = sinx, 0 < x < π/2, and 0 elsewhere.

(e) f (x) = 0 for x < 0, = (x+1)/9 for 0 ≤ x < 1, = 2(2x−1)/9 for 1 ≤ x < 3/2,
= 2(5−2x)/9 for 3/2 ≤ x < 1, = 4/27 for 2 ≤ x < 5, and 0 elsewhere.

(f) f (x) = 1/[π(1+ x2)], x ∈ R.

9. Are the following functions distribution functions? If so, find the corresponding
density or probability functions.

(a) F(x) = 0 for x ≤ 0, = x/2 for 0 ≤ x < 1, = 1/2 for 1 ≤ x < 2, = x/4 for
2 ≤ x < 4 and = 1 for x ≥ 4.

(b) F(x) = 0 if x <−θ, = 1
2

(
x
θ +1

)
if |x| ≤ θ, and 1 for x > θ where θ > 0.

(c) F(x) = 0 if x < 0, and = 1− (1+ x)exp(−x) if x ≥ 0.

(d) F(x) = 0 if x < 1, = (x−1)2/8 if 1 ≤ x < 3, and 1 for x ≥ 3.

(e) F(x) = 0 if x < 0, and = 1− e−x2
if x ≥ 0.

10. Suppose P(X ≥ x) is given for a random variable X (of the continuous type) for
all x. How will you find the corresponding density function? In particular find the
density function in each of the following cases:

(a) P(X ≥ x) = 1 if x ≤ 0, and P(X ≥ x) = e−λx for x > 0, λ > 0 is a constant.

(b) P(X ≥ x) = 1 if x < 0, and = (1+ x/λ)−λ, for x ≥ 0, λ > 0 is a constant.

(c) P(X ≥ x) = 1 if x ≤ 0, and = 3/(1+ x)2 −2/(1+ x)3 if x > 0.

(d) P(X > x) = 1 if x≤ x0, and= (x0/x)α if x> x0; x0 > 0 andα> 0 are constants.

2.5 FUNCTIONS OF A RANDOM VARIABLE

Let X be an RV with a known distribution, and let g be a function defined on the real line.
We seek the distribution of Y = g(X), provided that Y is also an RV. We first prove the
following result.

Theorem 1. Let X be an RV defined on (Ω,S,P). Also, let g be a Borel-measurable
function on R. Then g(X) is also an RV.

Proof. For y ∈ R, we have

{g(X)≤ y}= {X ∈ g−1(−∞,y]},

and since g is Borel-measurable, g−1(−∞,y] is a Borel set. It follows that {g(X)≤ y} ∈ S,
and the proof is complete.

Theorem 2. Given an RV X with a known DF, the distribution of the RV Y = g(X), where
g is a Borel-measurable function, is determined.
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Proof. Indeed, for all y ∈ R

P{Y ≤ y}= P{X ∈ g−1(−∞,y]}. (1)

In what follows, we will always assume that the functions under consideration are
Borel-measurable.

Example 1. Let X be an RV with DF F. Then |X|, aX+b (where a 	= 0 and b are constants),
Xk (where k ≥ 0 is an integer), and |X|α (α > 0) are all RVs. Define

X+ =

{
X, X ≥ 0,

0, X < 0,

and

X− =

{
X, X ≤ 0,

0, X > 0.

Then X+, X− are also RVs. We have

P{|X| ≤ y}= P{−y ≤ X ≤ y}= P{X ≤ y}−P{X <−y}
= F(y)−F(−y)+P{X =−y}, y > 0;

P{aX+b ≤ y}= P{aX ≤ y−b}

=

⎧⎪⎪⎨
⎪⎪⎩

P

{
X ≤ y−b

a

}
if a > 0,

P

{
X ≥ y−b

a

}
if a < 0;

P{X+ ≤ y}=

⎧⎪⎨
⎪⎩

0 if y < 0,

P{X ≤ 0} if y = 0,

P{X < 0}+P{0 ≤ X ≤ y} if y > 0.

Similarly,

P{X− ≤ y}=
{

1 if y ≥ 0,

P{X ≤ y} if y < 0.

Let X be an RV of the discrete type, and A be the countable set such that P{X ∈ A}= 1
and P{X = x} > 0 for x ∈ A. Let Y = g(X) be a one-to-one mapping from A onto some
set B. Then the inverse map, g−1, is a single-valued function of y. To find P{Y = y}, we
note that

P{Y = y}= P{g(X) = y}= P{X = g−1(y)}, y ∈ B,

and P{Y = y}= 0, y ∈ Bc.
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Example 2. Let X be a Poisson RV with PMF

P{X = k}=

⎧⎨
⎩e−λλ

k

k!
, k = 0,1,2, . . . ; λ > 0,

0, otherwise.

Let Y = X2 +3. Then y = x2 +3 maps A = {0,1,2, . . .} onto B = {3,4,7,12,19,28, . . .}.
The inverse map is x =

√
(y−3), and since there are no negative values in A we take the

positive square root of y−3. We have

P{Y = y}= P{X =
√

y−3}= e−λλ
√

y−3√
(y−3)!

, y ∈ B,

and P{Y = y}= 0 elsewhere.

Actually the restriction to a single-valued inverse on g is not necessary. If g has a
finite (or even a countable) number of inverses for each y, from countable additivity of P
we have

P{Y = y}= P{g(X) = y}= P

{⋃
a

[X = a,g(a) = y]

}

=
∑

a

P{X = a,g(a) = y}.

Example 3. Let X be an RV with PMF

P{X =−2}= 1
5
, P{X =−1}= 1

6
, P{X = 0}= 1

5
,

P{X = 1}= 1
15

, and P{X = 2}= 11
30

.

Let Y = X2. Then

A = {−2,−1,0,1,2} and B = {0,1,4}.

We have

P{Y = y}=

⎧⎪⎪⎨
⎪⎪⎩

1
5 y = 0,
1
6 +

1
15 = 7

30 , y = 1,
1
5 +

11
30 = 17

30 , y = 4.

The case in which X is an RV of the continuous type is not as simple. First we note that
if X is a continuous type RV and g is some Borel-measurable function, Y = g(X) may not
be an RV of the continuous type.
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Example 4. Let X be an RV with uniform distribution on [−1,1], that is, the PDF of X is
f (x) = 1/2, −1 ≤ x ≤ 1, and = 0 elsewhere. Let Y = X+. Then, from Example 1,

P{Y ≤ y}=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, y < 0,
1
2 , y = 0,
1
2 +

1
2 y, 1 ≥ y > 0,

1, y > 1.

We see that the DF of Y has a jump at y = 0 and that Y is neither discrete nor continuous.
Note that all we require is that P{X < 0}> 0 for X+ to be of the mixed type.

Example 4 shows that we need some conditions on g to ensure that g(X) is also an RV
of the continuous type whenever X is continuous. This is the case when g is a continuous
monotonic function. A sufficient condition is given in the following theorem.

Theorem 3. Let X be an RV of the continuous type with PDF f . Let y = g(x) be differen-
tiable for all x and either g′(x) > 0 for all x or g′(x) < 0 for all x. Then Y = g(X) is also
an RV of the continuous type with PDF given by

h(y) =

⎧⎨
⎩f [g−1(y)]

∣∣∣∣ d
dy

g−1(y)

∣∣∣∣ , α < y < β,

0, otherwise,
(2)

where α=min{g(−∞),g(+∞)} and β =max{g(−∞),g(+∞)}.

Proof. If g is differentiable for all x and g′(x)> 0 for all x, then g is continuous and strictly
increasing, the limits α,β exist (may be infinite), and the inverse function x = g−1(y)
exists, is strictly increasing, and is differentiable. The DF of Y for α < y < β is given by

P{Y ≤ y}= P{X ≤ g−1(y)}.

The PDF of g is obtained on differentiation. We have

h(y) =
d
dy

P{Y ≤ y}

= f [g−1(y)]
d
dy

g−1(y).

Similarly, if g′ < 0, then g is strictly decreasing and we have

P{Y ≤ y}= P{X ≥ g−1(y)}
= 1−P{X ≤ g−1(y)} (X is a continuous type RV)

so that

h(y) =−f [g−1(y)] · d
dy

g−1(y).
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Since g and g−1 are both strictly decreasing, (d/dy)g−1(y) is negative and (2) follows.

Note that

d
dy

g−1(y) =
1

dg(x)/dx

∣∣∣∣
x=g−1(y)

,

so that (2) may be rewritten as

h(y) =
f (x)

|dg(x)/dx|

∣∣∣∣
x=g−1(y)

, α < y < β. (3)

Remark 1. The key to computation of the induced distribution of Y = g(X) from the dis-
tribution of X is (1). If the conditions of Theorem 3 are satisfied, we are able to identify
the set {X ∈ g−1(−∞,y]} as {X ≤ g−1(y)} or {X ≥ g−1(y)}, according to whether g is
increasing or decreasing. In practice Theorem 3 is quite useful, but whenever the condi-
tions are violated one should return to (1) to compute the induced distribution. This is the
case, for example, in Examples 7 and 8 and Theorem 4 below.

Remark 2. If the PDF f of X vanishes outside an interval [a,b] of finite length, we need
only to assume that g is differentiable in (a,b) and either g′(x)> 0 or g′(x)< 0 throughout
the interval. Then we take

α=min{g(a),g(b)} and β =max{g(a),g(b)}

in Theorem 3.

Example 5. Let X have the density f (x) = 1, 0 < x < 1, and = 0 otherwise. Let Y = eX .
Then X = logY , and we have

h(y) =

∣∣∣∣1y
∣∣∣∣ ·1, 0 < logy < 1,

that is,

h(y) =

⎧⎨
⎩

1
y
, 1 < y < e,

0, otherwise.

If y =−2 logx, then x = e−y/2 and

h(y) =

∣∣∣∣∣−1

2
e−y/2

∣∣∣∣∣ ·1, 0 < e−y/2 < 1,

=

{
1
2 e−y/2, 0 < y <∞,

0, otherwise.
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Example 6. Let X be a nonnegative RV of the continuous type with PDF f , and let α> 0.
Let Y = Xα. Then

P{Xα ≤ y}=
{

P{X ≤ y1/α} if y ≥ 0,

0 if y < 0.

The PDF of Y is given by

h(y) = f (y1/α)

∣∣∣∣ d
dy

y1/α

∣∣∣∣
=

⎧⎨
⎩

1
α

y1/α−1f (y1/α), y > 0,

0, y ≤ 0.

Example 7. Let X be an RV with PDF

f (x) =
1√
2π

e−x2/2, −∞< x <∞.

Let Y = X2. In this case, g′(x) = 2x which is > 0 for x > 0, and < 0 for x < 0, so that the
conditions of Theorem 3 are not satisfied. But for y > 0

P{Y ≤ y}= P{−√
y ≤ X ≤√

y}
= F(

√
y)−F(−√

y),

where F is the DF of X. Thus the PDF of Y is given by

h(y) =

⎧⎨
⎩

1
2
√

y
{ f (

√
y)+ f (−√

y)}, y > 0,

0, y ≤ 0.

Thus

h(y) =

⎧⎨
⎩

1√
2π y

e−y/2, 0 < y,

0, y ≤ 0.

Example 8. Let X be an RV with PDF

f (x) =

⎧⎨
⎩

2x
π2

, 0 < x < π,

0, otherwise.

Let Y = sinX. In this case g′(x) = cosx > 0 for x in (0,π/2) and < 0 for x in (π/2,π),
so that the conditions of Theorem 3 are not satisfied. To compute the PDF of Y we return
to (1) and see that (Fig. 1) the DF of Y is given by
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xπ

y

Fig. 1 y = sinx, 0 ≤ x ≤ π.

P{Y ≤ y}= P{sinX ≤ y}, 0 < y < 1,

= P{[0 ≤ X ≤ x1]∪ [x2 ≤ X ≤ π]},

where x1 = sin−1 y and x2 = π− sin−1 y. Thus

P{Y ≤ y}=
∫ x1

0
f (x)dx+

∫ π

x2

f (x)dx

=
(x1

π

)2
+1−

(x2

π

)2
,

and the PDF of Y is given by

h(y) =
d
dy

(
sin−1 y

π

)2

+
d
dy

[
1−

(
π− sin−1 y

π

)2]

=

⎧⎨
⎩

2

π
√

1− y2
, 0 < y < 1,

0, otherwise.

In Examples 7 and 8 the function y = g(x) can be written as the sum of two mono-
tone functions. We applied Theorem 3 to each of these monotonic summands. These two
examples are special cases of the following result.

Theorem 4. Let X be an RV of the continuous type with PDF f . Let y = g(x) be differen-
tiable for all x, and assume that g′(x) is continuous and nonzero at all but a finite number
of values of x. Then, for every real number y,
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(a) there exist a positive integer n = n(y) and real numbers (inverses) x1(y),x2(y), . . . ,
xn(y) such that

g[xk(y)] = y, g′[xk(y)] 	= 0, k = 1,2, . . . ,n(y),

or

(b) there does not exist any x such that g(x) = y, g′(x) 	= 0, in which case we write
n(y) = 0.

Then Y is a continuous RV with PDF given by

h(y) =

⎧⎪⎨
⎪⎩

n∑
k=1

f [xk(y)] |g′[xk(y)]|−1 if n > 0,

0 if n = 0.

Example 9. Let X be an RV with PDF f , and let Y = |X|. Here n(y) = 2, x1(y) = y,
x2(y) =−y for y > 0, and

h(y) =

{
f (y)+ f (−y), y > 0,

0, y ≤ 0.

Thus, if f (x) = 1/2, −1 ≤ x ≤ 1, and = 0 otherwise, then

h(y) =

{
1, 0 ≤ y ≤ 1,

0, otherwise.

If f (x) = (1/
√

2π)e−(x2/2), −∞< x <∞, then

h(y) =

⎧⎨
⎩

2√
2π

e−(y2/2), y > 0,

0, otherwise.

Example 10. Let X be an RV of the continuous type with PDF f , and let Y = X2m, where
m is a positive integer. In this case g(x) = x2m, g′(x) = 2mx2m−1 > 0 for x> 0 and g′(x)< 0
for x< 0. Writing n= 2m, we see that, for any y> 0, n(y) = 2, x1(y) =−y1/n, x2(y) = y1/n.
It follows that

h(y) = f [x1(y)] ·
1

ny1−1/n
+ f [x2(y)]

1
ny1−1/n

=

⎧⎨
⎩

1
ny1−1/n

{ f (y1/n)+ f (−y1/n)} if y > 0,

0 if y ≤ 0.
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In particular, if f is the PDF given in Example 7, then

h(y) =

⎧⎪⎨
⎪⎩

2√
2πny1−1/n

exp

{
−y2/n

2

}
if y > 0,

0 if y ≤ 0.

Remark 3. The basic formula (1) and the countable additivity of probability allow us to
compute the distribution of Y = g(X) in some instances even if g has a countable number
of inverses. Let A ⊆ R and g map A into B ⊆ R. Suppose that A can be represented as a
countable union of disjoint sets Ak, k = 1,2, . . . . Then the DF of Y is given by

P{Y ≤ y}= P{X ∈ g−1(−∞,y]}

= P

{
X ∈

∞∑
k=1

[{g−1(−∞,y]}∩Ak]

}

=
∞∑

k=1

P
{

X ∈ Ak ∩{g−1(−∞,y]}
}
.

If the conditions of Theorem 3 are satisfied by the restriction of g to each Ak, we may
obtain the PDF of Y on differentiating the DF of Y . We remind the reader that term-by-term
differentiation is permissible if the differentiated series is uniformly convergent.

Example 11. Let X be an RV with PDF

f (x) =

{
θe−θx, x > 0,

0, x ≤ 0,
θ > 0.

Let Y = sinX, and let sin−1 y be the principal value. Then (Fig. 2), for 0 < y < 1,

P{sinX ≤ y}
= P{0 < X ≤ sin−1 y or (2n−1)π− sin−1 y ≤ X ≤ 2nπ+sin−1 y

for all integers n ≥ 1}

= P{0 < X ≤ sin−1 y}+
∞∑

n=1

P{(2n−1)π− sin−1 y ≤ X ≤ 2nπ+sin−1 y}

= 1− e−θ sin−1 y +

∞∑
n=1

[e−θ[(2n−1)π−sin−1 y]− e−θ(2nπ+sin−1 y)]

= 1− e−θ sin−1 y +(eθπ+θ sin−1 y − e−θ sin−1 y)
∞∑

n=1

e−(2θπ)n

= 1− e−θ sin−1 y +(eθπ+θ sin−1 y − e−θ sin−1 y)

(
e−2θπ

1− e−2θπ

)

= 1+
e−θπ+θ sin−1 y − e−θ sin−1 y

1− e−2πθ
.
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3π2π

y

0
xπ

Fig. 2 y = sinx, x ≥ 0.

A similar computation can be made for y < 0. It follows that the PDF of Y is given by

h(y) =

⎧⎪⎨
⎪⎩
θe−θπ(1− e−2θπ)−1(1− y2)−1/2[eθ sin

−1 y + e−θπ−θ sin−1 y] if −1 < y < 0,

θ(1− e−2θπ)−1(1− y2)−1/2[e−θ sin−1 y + e−θπ+θ sin−1 y] if 0 < y < 1,

0 otherwise.

PROBLEMS 2.5

1. Let X be a random variable with probability mass function

P{X = r}=
(

n
r

)
pr(1−p)n−r, r = 0,1,2, . . . ,n, 0 ≤ p ≤ 1.

Find the PMFs of the RVs (a) Y = aX+b, (b) Y = X2, and (c) Y =
√

X.

2. Let X be an RV with PDF

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x ≤ 0,
1
2

if 0 < x ≤ 1,

1
2x2

if 1 < x <∞.

Find the PDF of the RV 1/X.
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3. Let X be a positive RV of the continuous type with PDF f (·). Find the PDF of the
RV U = X/(1+X). If, in particular, X has the PDF

f (x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise,

what is the PDF of U?

4. Let X be an RV with PDF f defined by Example 11. Let Y = cosX and Z = tanX.
Find the DFs and PDFs of Y and Z.

5. Let X be an RV with PDF

fθ(x) =

{
θe−θx if x ≥ 0,

0 otherwise,

where θ > 0. Let Y = [X−1/θ]2. Find the PDF of Y .

6. A point is chosen at random on the circumference of a circle of radius r with center
at the origin, that is, the polar angle θ of the point chosen has the PDF

f (θ) =
1

2π
, θ ∈ (−π,π).

Find the PDF of the abscissa of the point selected.

7. For the RV X of Example 7 find the PDF of the following RVs: (a) Y1 = eX , (b) Y2 =
2X2 +1, and (c) Y3 = g(X), where g(x) = 1 if x > 0, = 1/2 if x = 0, and =−1 if
x < 0.

8. Suppose that a projectile is fired at an angle θ above the earth with a velocity V .
Assuming that θ is an RV with PDF

f (θ) =

⎧⎨
⎩

12
π

if
π

6
< θ <

π

4
,

0 otherwise,

find the PDF of the range R of the projectile, where R = V2 sin2θ/g, g being the
gravitational constant.

9. Let X be an RV with PDF f (x) = 1/(2π) if 0 < x < 2π, and = 0 otherwise. Let
Y = sinX. Find the DF and PDF of Y .

10. Let X be an RV with PDF f (x) = 1/3 if−1< x< 2, and= 0 otherwise. Let Y = |X|.
Find the PDF of Y .

11. Let X be an RV with PDF f (x) = 1/(2θ) if −θ ≤ x ≤ θ, and = 0 otherwise. Let
Y = 1/X2. Find the PDF of Y .

12. Let X be an RV of the continuous type, and let Y = g(X) be defined as follows:

(a) g(x) = 1 if x > 0, and =−1 if x ≤ 0.

(b) g(x) = b if x ≥ b, = x if |x|< b, and =−b if x ≤−b.

(c) g(x) = x if |x| ≥ b, and = 0 if |x|< b.

Find the distribution of Y in each case.



3
MOMENTS AND GENERATING
FUNCTIONS

3.1 INTRODUCTION

The study of probability distributions of a random variable is essentially the study of some
numerical characteristics associated with them. These so-called parameters of the distribu-
tion play a key role in mathematical statistics. In Section 3.2 we introduce some of these
parameters, namely, moments and order parameters, and investigate their properties. In
Section 3.3 the idea of generating functions is introduced. In particular, we study prob-
ability generating functions, moment generating functions, and characteristic functions.
Section 3.4 deals with some moment inequalities.

3.2 MOMENTS OF A DISTRIBUTION FUNCTION

In this section we investigate some numerical characteristics, called parameters, associ-
ated with the distribution of an RV X. These parameters are (a) moments and their functions
and (b) order parameters. We will concentrate mainly on moments and their properties.

Let X be a random variable of the discrete type with probability mass function
pk = P{X = xk}, k = 1,2, . . . . If

∞∑
k=1

|xk|pk <∞, (1)

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



68 MOMENTS AND GENERATING FUNCTIONS

we say that the expected value (or the mean or the mathematical expectation) of X exists
and write

μ= EX =

∞∑
k=1

xkpk. (2)

Note that the series
∑∞

k=1 xkpk may converge but the series
∑∞

k=1 |xk|pk may not. In that
case we say that EX does not exist.

Example 1. Let X have the PMF given by

pj = P

{
X = (−1)j+1 3j

j

}
=

2
3j
, j = 1,2, . . . .

Then

∞∑
j=1

|xj|pj =

∞∑
j=1

2
j
=∞,

and EX does not exist, although the series

∞∑
j=1

xjpj =

∞∑
j=1

(−1)j+1 2
j

is convergent.

If X is of the continuous type and has PDF f , we say that EX exists and equals
∫

xf (x)dx,
provided that ∫

|x| f (x)dx <∞.

A similar definition is given for the mean of any Borel-measurable function h(X) of X.
Thus, if X is of the continuous type and has PDF f , we say that Eh(X) exists and equals∫

h(x)f (x)dx, provided that ∫
|h(x)| f (x)dx <∞.

We emphasize that the condition
∫
|x| f (x)dx < ∞ must be checked before it can be

concluded that EX exists and equals
∫

xf (x)dx. Moreover, it is worthwhile to recall at
this point that the integral

∫∞
−∞ϕ(x)dx exists, provided that the limit lima→∞

b→∞
∫ a
−bϕ(x)dx

exists. It is quite possible for the limit lima→∞
∫ a
−aϕ(x)dx to exist without the existence

of
∫∞
−∞ϕ(x)dx. As an example, consider the Cauchy PDF:

f (x) =
1
π

1
1+ x2

, −∞< x <∞.
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Clearly

lim
a→∞

∫ a

−a

x
π

1
1+ x2

dx = 0.

However, EX does not exist since the integral (1/π)
∫∞
−∞ |x|/(1+ x2)dx diverges.

Remark 1. Let X(ω) = IA(ω) for some A ∈ S. Then EX = P(A).

Remark 2. If we write h(X) = |X|, we see that EX exists if and only if E|X| does.

Remark 3. We say that an RV X is symmetric about a point α if

P{X ≥ α+ x}= P{X ≤ α− x} for all x.

In terms of DF F of X, this means that, if

F(α− x) = 1−F(α+ x)+P{X = α+ x}

holds for all x ∈ R, we say that the DF F (or the RV X) is symmetric with α as the center
of symmetry. If α= 0, then for every x

F(−x) = 1−F(x)+P{X = x}.

In particular, if X is an RV of the continuous type, X is symmetric with center α if and
only if the PDF f of X satisfies

f (α− x) = f (α+ x) for all x.

If α= 0, we will say simply that X is symmetric (or that F is symmetric).
As an immediate consequence of this definition we see that, if X is symmetric with α

as the center of symmetry and E|X|<∞, then EX = α. A simple example of a symmetric
distribution is the Cauchy PDF considered above (before Remark 1). We will encounter
many such distributions later.

Remark 4. If a and b are constants and X is an RV with E|X| <∞, then E|aX +b| <∞
and E{aX +b} = aEX +b. In particular, E{X −μ} = 0, a fact that should not come as a
surprise.

Remark 5. If X is bounded, that is, if P{|X|< M}= 1, 0 < M <∞, then EX exists.

Remark 6. If {X ≥ 0}= 1, and EX exists, then EX ≥ 0.

Theorem 1. Let X be an RV, and g be a Borel-measurable function on R. Let Y = g(X).
If X is of discrete type then

EY =

∞∑
j=1

g(xj)P{X = xj} (3)
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in the sense that, if either side of (3) exists, so does the other, and then the two are equal.
If X is of continuous type with PDF f then EY =

∫
g(x)f (x)dx in the sense that, if either

of the two integrals converges absolutely, so does the other, and the two are equal.

Remark 7. Let X be a discrete RV. Then Theorem 1 says that

∞∑
j=1

g(xj)P{X = xj}=
∞∑

k=1

ykP{Y = yk}

in the sense that, if either of the two series converges absolutely, so does the other, and
the two sums are equal. If X is of the continuous type with PDF f , let h(y) be the PDF of
Y = g(X). Then, according to Theorem 1,∫

g(x)f (x)dx =
∫

yh(y)dy,

provided that E|g(X)|<∞.

Proof of Theorem 1. In the discrete case, suppose that P{X ∈ A} = 1. If y = g(x) is a
one-to-one mapping of A onto some set B, then

P{Y = y}= P{X = g−1(y)}, y ∈ B.

We have ∑
x∈A

g(x)P{X = x}=
∑
y∈B

yP{Y = y}.

In the continuous case, suppose g satisfies the conditions of Theorem 2.5.3. Then

∫
g(x)f (x)dx =

∫ β

α

yf [g−1(y)]
d
dy

g−1(y)|dy

by changing the variable to y = g(x). Thus

∫
g(x)f (x)dx =

∫ β

α

yh(y)dy.

The functions h(x) = xn, where n is a positive integer, and h(x) = |x|α, where α is a pos-
itive real number, are of special importance. If EXn exists for some positive integer n, we
call EXn the nth moment of (the distribution function of) X about the origin. If E|X|α <∞
for some positive real number α, we call E|X|α the αth absolute moment of X. We shall
use the following notation:

mn = EXn βα = E|X|α, (4)

whenever the expectations exist.
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Example 2. Let X have the uniform distribution on the first N natural numbers, that is, let

P{X = k}= 1
N
, k = 1,2, . . . ,N.

Clearly, moments of all order exist:

EX =
N∑

k=1

k · 1
N

=
N +1

2
,

EX2 =

N∑
k=1

k2 · 1
N

=
(N +1)(2N +1)

6
.

Example 3. Let X be an RV with PDF

f (x) =

⎧⎨
⎩

2
x3
, x ≥ 1,

0, x < 1.

Then

EX =

∫ ∞

1

2
x2

dx = 2.

But

EX2 =

∫ ∞

1

2
x

dx

does not exist. Indeed, it is easily possible to construct examples of random variables for
which all moments of a specified order exist by no higher-order moments do.

Example 4. Two players, A and B, play a coin-tossing game. A gives B one dollar if a
head turns up; otherwise B pays A one dollar. If the probability that the coin shows a head
is p, find the expected gain of A.

Let X denote the gain of A. Then

P{X = 1}= P{Tails}= 1−p, P{X =−1}= p

and

EX = 1−p−p = 1−2p

{
> 0 if and only if p < 1

2 ,

= 0 if and only if p = 1
2 ,

Thus EX = 0 if and only if the coin is fair.
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Theorem 2. If the moment of order t exists for an RV X, moments of order 0< s< t exist.

Proof. Let X be of the continuous type with PDF f . We have

E|X|s =
∫
|x|s≤1

|x|sf (x)dx+
∫
|x|s>1

|x|sf (x)dx

≤ P{|X|s ≤ 1}+E|X|t <∞.

A similar proof can be given when X is a discrete RV.

Theorem 3. Let X be an RV on a probability space (Ω,S,P). Let E|X|k < ∞ for some
k > 0. Then

nkP{|X|> n}→ 0 as n →∞.

Proof. We provide the proof for the case in which X is of the continuous type with
density f . We have

∞>

∫
|x|kf (x)dx = lim

n→∞

∫
|x|≤n

|x|kf (x)dx.

It follows that

lim
n→∞

∫
|x|>n

|x|kf (x)dx → 0 as n →∞.

But ∫
|x|>n

|x|kf (x)dx ≥ nkP{|X|> n},

completing the proof.

Remark 8. Probabilities of the type P{|X|> n} or either of its components, P{X > n} or
P{X <−n}, are called tail probabilities. The result of Theorem 3, therefore, gives the rate
at which P{|X|> n} converges to 0 as n →∞.

Remark 9. The converse of Theorem 3 does not hold in general, that is,

nkP{|X|> n}→ 0 as n →∞ for some k

does not necessarily imply that E|X|k <∞, for the RV

P{X = n}= c
n2 logn

, n = 2,3, . . . ,
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where c is a constant determined from

∞∑
n=2

c
n2 logn

= 1.

We have

P{X > n} ≈ c
∫ ∞

n

1
x2 logx

dx ≈ cn−1(logn)−1

and nP{X > n} → 0 as n → ∞. (Here and subsequently ≈ means that the ratio of two
sides → 1 as n →∞.) But

EX =
∑ c

n logn
=∞.

In fact, we need

nk+δP{|X|> n}→ 0 as n → 0

for some δ > 0 to ensure that E|X|k < ∞. A condition such as this is called a moment
condition.

For the proof we need the following lemma.

Lemma 1. Let X be a nonnegative RV with distribution function F. Then

EX =

∫ ∞

0
[1−F(x)]dx, (5)

in the sense that, if either side exists, so does the other and the two are equal.

Proof. If X is of the continuous type with density f and EX <∞, then

EX =

∫ ∞

0
xf (x)dx = lim

n→∞

∫ n

0
xf (x)dx.

On integration by parts we obtain

∫ n

0
xf (x)dx = nF(n)−

∫ n

0
F(x)dx

=−n[1−F(n)]+
∫ n

0
[1−F(x)]dx.
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But

n[1−F(n)] = n
∫ ∞

n
f (x)dx

<

∫ ∞

n
xf (x)dx,

and, since E|X|<∞, it follows that

n[1−F(n)]→ 0 as n →∞.

We have

EX = lim
n→∞

∫ n

0
xf (x)dx = lim

n→∞

∫ n

0
[1−F(x)]dx

=

∫ ∞

0
[1−F(x)]dx.

If
∫∞

0 [1−F(x)]dx <∞, then

∫ n

0
xf (x)dx ≤

∫ n

0
[1−F(x)]dx ≤

∫ ∞

0
[1−F(x)]dx,

and it follows that E|X|<∞.
We leave the reader to complete the proof in the discrete case.

Corollary. For any RV X, E|X| < ∞ if and only if the integrals
∫ 0
−∞ P{X ≤ x}dx and∫∞

0 P{X > x}dx both converge, and in that case

EX =

∫ ∞

0
P{X > x}dx−

∫ 0

−∞
P{X ≤ x}dx.

Actually we can get a little more out of Lemma 1 than the above corollary. In fact,

E|X|α =

∫ ∞

0
P{|X|a > x}dx = α

∫ ∞

0
xα−1P{|X|> x}dx,

and we see that an RV X possesses an absolute moment of order α > 0 if and only if
|x|α−1P{|X|> x} is integrable over (0,∞).

A simple application of the integral test leads to the following moments lemma.
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Lemma 2.

E|X|α <∞⇔
∞∑

n=1

P{|X|> n1/α}<∞. (6)

Note that an immediate consequence of Lemma 2 is Theorem 3. We are now ready to
prove the following result.

Theorem 4. Let X be an RV with a distribution satisfying nαP{|X|> n} → 0 as n →∞
for some α > 0. Then E|X|β <∞ for 0 < β < α.

Proof. Given ε > 0, we can choose an N = N(ε) such that

P{|X|> n}< ε

nα
for all n ≥ N.

It follows that for 0 < β < α

E|X|β = β

∫ N

0
xβ−1P{|X|> x}dx+β

∫ ∞

N
xβ−1P{|X|> x}dx

≤ Nβ +βε

∫ ∞

N
xβ−α−1 dx

<∞.

Remark 10. Using Theorems 3 and 4, we demonstrate the existence of random variables
for which moments of any order do not exist, that is, for which E|X|α =∞ for every α> 0.
For such an RV nαP{|X| > n}� 0 as n →∞ for any α > 0. Consider, for example, the
RV X with PDF

f (x) =

⎧⎨
⎩

1
2|x|(log |x|)2

for |x|> e

0 otherwise.

The DF of X is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 log |x| if x ≤−e

1
2

if − e < x < e,

1− 1
2 logx

if x ≥ e.

Then for x > e

P{|X|> x}= 1−F(x)+F(−x)

=
1

2 logx
,
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and xαP{|X| > x} → ∞ as x → ∞ for any α > 0. It follows that E|X|α = ∞ for every
α > 0. In this example we see that P{|X| > cx}/P{|X| > x} → 1 as x → ∞ for every
c > 0. A positive function L(·) defined on (0,∞) is said to be a function of slow variation
if and only if L(cx)/L(x)→ 1 as x →∞ for every c > 0. For such a function xαL(x)→∞
for every α > 0 (see Feller [26, pp. 275–279]). It follows that, if P{|X| > x} is slowly
varying, E|X|α =∞ for every α > 0. Functions of slow variation play an important role
in the theory of probability.

Random variables for which P{|X| > x} is slowly varying are clearly excluded from
the domain of the following result.

Theorem 5. Let X be an RV satisfying

P{|X|> cx}
P{|X|> x} → 0 as x →∞ for all c > 1; (7)

then X possesses moments of all orders. (Note that, if c = 1, the limit in (7) is 1, whereas
if c < 1, the limit will not go to 0 since P{|X|> cx} ≥ P{|X|> x}.)

Proof. Let ε > 0 (we will choose ε later), choose x0 so large that

P{|X|> cx}
P{|X|> x} < ε for all x ≥ x0, (8)

and choose x1 so large that

P{|X|> x}< ε for all x ≥ x1. (9)

Let N =max(x0,x1). We have, for a fixed positive integer r,

P{|X|> crx}
P{|X|> x} =

r∏
p=1

P{|X|> cpx}
P{|X|> cp−1x} ≤ εr (10)

for x ≥ N. Thus for x ≥ N we have, in view of (9),

P{|X|> crx} ≤ εr+1. (11)

Next note that, for any fixed positive integer n,

E|X|n = n
∫ ∞

0
xn−1P{|X|> x}dx

= n
∫ N

0
xn−1P{|X|> x}dx+n

∫ ∞

N
xn−1P{|X|> x}dx. (12)
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Since the first integral in (12) is finite, we need only show that the second integral is also
finite. We have

∫ ∞

N
xn−1P{|X|> x}dx =

∞∑
r=1

∫ crN

cr−1N
xn−1P{|X|> x}dx

≤
∞∑

r=1

(crN)n−1εr ·2crN

= 2Nn
∞∑

r=1

(εcn)r

= 2Nn εcn

1− εcn
<∞,

provided that we choose ε such that εcn < 1. It follows that E|X|n <∞ for n = 1,2, . . . .
Actually we have shown that (7) implies E|X|δ <∞ for all δ > 0.

Theorem 6. If h1,h2, . . . ,hn are Borel-measurable functions of an RV X and Ehi(X) exists
for i = 1,2, . . . ,n, then E

{∑n
i=1 hi(X)

}
exists and equals

∑n
i=1 Ehi(X).

Definition 1. Let k be a positive integer and c be a constant. If E(X − c)k exists, we call
it the moment of order k about the point c. If we take c = EX = μ, which exists since
E|X| < ∞, we call E(X −μ)k the central moment of order k or the moment of order k
about the mean. We shall write

μk = E{X−μ}k.

If we know m1,m2, . . . ,mk, we can compute μ1,μ2, . . . ,μk, and conversely. We have

μk = E{X−μ}k = mk −
(

k
1

)
μmk−1 +

(
k
2

)
μ2mk−2 −·· ·+(−1)kμk (13)

and

mk = E{X−μ+μ}k = μk +

(
k
1

)
μμk−1 +

(
k
2

)
μ2μk−2 + · · ·+μk. (14)

The case k = 2 is of special importance.

Definition 2. If EX2 exists, we call E{X − μ}2 the variance of X, and we write σ2 =
var(X) = E{X−μ}2. The quantity σ is called the standard deviation (SD) of X.

From Theorem 6 we see that

σ2 = μ2 = EX2 − (EX)2. (15)

Variance has some important properties.
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Theorem 7. Var(X) = 0 if and only if X is degenerate.

Theorem 8. Var(X)< E(X− c)2 for any c 	= EX.

Proof. We have

var(X) = E{X−μ}2 = E{X− c}2 +(c−μ)2.

Note that

var(aX+b) = a2 var(X).

Let E|X|2 <∞. Then we define

Z =
X−EX√
var(X)

=
X−μ

σ
(16)

and see that EZ = 0 and var(Z) = 1. We call Z a standardized RV.

Example 5. Let X be an RV with binomial PMF

P{X = k}=
(

n
k

)
pk(1−p)n−k, k = 0,1,2, . . . ,n; 0 < p < 1.

Then

EX =

∞∑
k=0

k

(
n
k

)
pk(1−p)n−k

= np
∑(

n−1
k−1

)
pk−1(1−p)n−k

= np;

EX2 = E{X(X−1)+X}

=
∑

k(k−1)

(
n
k

)
pk(1−p)n−k +np

= n(n−1)p2 +np;

var(X) = n(n−1)p2 +np−n2p2

= np(1−p);

EX3 = E{X(X−1)(X−2)+3X(X−1)+X}
= n(n−1)(n−2)p3 +3n(n−1)p2 +np;

μ3 = m3 −3μm2 +2μ3

= n(n−1)(n−2)p3 +3n(n−1)p2 +np−3np[n(n−1)p2 +np]+2n3p3

= np(1−p)(1−2p).
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p

1−p

f(x)

10 p(X)

Fig. 1 Quantile of order p.

In the above example we computed factorial moments EX(X−1)(X−2) · · ·(X− k+1)
for various values of k. For some discrete integer-valued RVs whose PMF contains facto-
rials or binomial coefficients it may be more convenient to compute factorial moments.

We have seen that for some distributions even the mean does not exist. We next consider
some parameters, called order parameters, which always exist.

Definition 3. A number x (Fig. 1) satisfying

P{X ≤ x} ≥ p, P{X ≥ x} ≥ 1−p, 0 < p < 1, (17)

is called a quantile of order p [or (100p)th percentile] for the RV X (or, for the DF F of X).
We write zp(X) for a quantile of order p for the RV X.

If x is a quantile of order p for an RV X with DF F, then

p ≤ F(x)≤ p+P{X = x}. (18)

If P{X = x} = 0, as is the case—in particular, if X is of the continuous type—a quantile
of order p is a solution of the equation

F(x) = p. (19)

If F is strictly increasing, (19) has a unique solution. Otherwise (Fig. 2) there may be
many (even uncountably many) solutions of (19), each of which is then called a quantile
of order p. Quantiles are of great deal of interest in testing of hypotheses.

Definition 4. Let X be an RV with DF F. A number x satisfying

1
2
≤ F(x)≤ 1

2
+P{X = x} (20)
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1

10 x

F(x)

p

p(X)

p

x10

1
F(x)

Fig. 2 (a) Unique quantile and (b) infinitely many solutions of F(x) = p.

or, equivalently,

P{X ≤ x} ≥ 1
2

and P{X ≥ x} ≥ 1
2

(21)

is called a median of X (or F).

Again we note that there may be many values that satisfy (20) or (21). Thus a median
is not necessarily unique.

If F is a symmetric DF, the center of symmetry is clearly the median of the DF F.
The median is an important centering constant especially in cases where the mean of the
distribution does not exist.

Example 6. Let X be an RV with Cauchy PDF

f (x) =
1
π

1
1+ x2

, −∞< x <∞.
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Then E|X| is not finite but E|X|δ < ∞ for 0 < δ < 1. The median of the RV X is
clearly x = 0.

Example 7. Let X be an RV with PMF

P{X =−2}= P{X = 0}=
1

4
, P{X = 1}=

1

3
, P{X = 2}=

1

6
.

Then

P{X ≤ 0}=
1

2
and P{X ≥ 0}=

3

4
>

1

2
.

In fact, if x is any number such that 0 < x < 1, then

P{X ≤ x}= P{X =−2}+P{X = 0}=
1

2

and

P{X ≥ x}= P{X = 1}+P{X = 2}=
1

2
,

and it follows that every x, 0 ≤ x < 1, is a median of the RV X.
If p = 0.2, the quantile of order p is x =−2, since

P{X ≤−2}=
1

4
> p and P{X ≥−2}= 1 > 1−p.

PROBLEMS 3.2

1. Find the expected number of throws of a fair die until a 6 is obtained.

2. From a box containing N identical tickets numbered 1 through N, n tickets are
drawn with replacement. Let X be the largest number drawn. Find EX.

3. Let X be an RV with PDF

f (x) =
c

(1+ x2)m
, −∞< x <∞, m ≥ 1,

where c = Γ(m)/[Γ(1/2)Γ(m− 1/2)]. Show that EX2r exists if and only if 2r <
2m−1. What is EX2r if 2r < 2m−1?

4. Let X be an RV with PDF

f (x) =

⎧⎨
⎩

kak

(x+a)k+1
if x ≥ 0,

0 otherwise (a > 0).

Show that E|X|α <∞ for α < k. Find the quantile of order p for the RV X.
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5. Let X be an RV such that E|X|<∞. Show that E|X−c| is minimized if we choose
c equal to the median of the distribution of X.

6. Pareto’s distribution with parameters α and β (both α and β positive) is defined
by the PDF

f (x) =

⎧⎪⎨
⎪⎩

βαβ

xβ+1
if x ≥ α,

0 if x < α.

Show that the moment of order n exists if and only if n < β. Let β > 2. Find the
mean and the variance of the distribution.

7. For an RV X with PDF

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 x if 0 ≤ x < 1,

1
2 if 1 < x ≤ 2,

1
2 (3− x) if 2 < x ≤ 3,

show that moments of all order exist. Find the mean and the variance of X.

8. For the PMF of Example 5 show that

EX4 = np+7n(n−1)p2 +6n(n−1)(n−2)p3 +n(n−1)(n−2)(n−3)p4

and

μ4 = 3(npq)2 +npq(1−6pq),

where 0 ≤ p ≤ 1, q = 1−p.

9. For the Poisson RV X with PMF

P{X = x}= e−λλ
x

x!
, x = 0,1,2, . . . ,

show that EX = λ, EX2 = λ+λ2, EX3 = λ+3λ2 +λ3, EX4 = λ+7λ2 +6λ3 +λ4,
and μ2 = μ3 = λ, μ4 = λ+3λ2.

10. For any RV X with E|X|4 <∞ define

α3 =
μ3

(μ2)3/2
, α4 =

μ4

μ2
2

.

Here α3 is known as the coefficient of skewness and is sometimes used as a measure
of asymmetry, and α4 is known as kurtosis and is used to measure the peakedness
(“flatness of the top”) of a distribution.

Compute α3 and α4 for the PMFs of Problems 8 and 9.

11. For a positive RV X define the negative moment of order n by EX−n, where n > 0
is an integer. Find E{1/(X+1)} for the PMFs of Example 5 and Problem 9.
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12. Prove Theorem 6.

13. Prove Theorem 7.

14. In each of the following cases, compute EX, var(X), and EXn (for n≥ 0, an integer)
whenever they exist.

(a) f (x) = 1, −1/2 ≤ x ≤ 1/2, and 0 elsewhere.

(b) f (x) = e−x, x ≥ 0, and 0 elsewhere.

(c) f (x) = (k−1)/xk, x ≥ 1, and 0 elsewhere; k > 1 is a constant.

(d) f (x) = 1/[π(1+ x2)], −∞< x <∞.

(e) f (x) = 6x(1− x), 0 < x < 1, and 0 elsewhere.

(f) f (x) = xe−x, x ≥ 0, and 0 elsewhere.

(g) P(X = x) = p(1−p)x−1, x = 1,2, . . ., and 0 elsewhere: 0 < p < 1.

15. Find the quantile of order p(0 < p < 1) for the following distributions.

(a) f (x) = 1/x2, x ≥ 1, and 0 elsewhere.

(b) f (x) = 2xexp(−x2), x ≥ 0, and 0 otherwise.

(c) f (x) = 1/θ, 0 ≤ x ≤ θ, and 0 elsewhere.

(d) P(X = x) = θ(1−θ)x−1, x = 1,2, . . ., and 0 otherwise; 0 < θ < 1.

(e) f (x) = (1/β2)x exp(−x/β), x > 0, and 0 otherwise; β > 0.

(f) f (x) = (3/b3)(b− x)2, 0 < x < b, and 0 elsewhere.

3.3 GENERATING FUNCTIONS

In this section we consider some functions that generate probabilities or moments of an
RV. The simplest type of generating function in probability theory is the one associated
with integer-valued RVs. Let X be an RV, and let

pk = P{X = k}, k = 0,1,2, . . .

with
∑∞

k=0 pk = 1.

Definition 1. The function defined by

P(s) =
∞∑

k=0

pksk, (1)

which surely converges for |s| ≤ 1, is called the probability generating function (PGF)
of X.

Example 1. Consider the Poisson RV with PMF

P{X = k}= e−λλ
k

k!
, k = 0,1,2, . . . .
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We have

P(s) =
∞∑

k=0

(sλ)k e−λ

k!
= e−λesλ = e−λ(1−s), for all s.

Example 2. Let X be an RV with geometric distribution, that is, let

P{X = k}= pqk, k = 0,1,2, . . . ; 0 < p < 1, q = 1−p.

Then

P(s) =
∞∑

k=0

skpqk = p
1

1− sq
, |s| ≤ 1.

Remark 1. Since P(1) = 1, series (1) is uniformly and absolutely convergent in |s| ≤ 1
and the PGF P is a continuous function of s. It determines the PGF uniquely, since P(s)
can be represented in a unique manner as a power series.

Remark 2. Since a power series with radius of convergence r can be differentiated
termwise any number of times in (−r,r), it follows that

P(k)(s) =
∞∑

n=k

n(n−1) · · ·(n− k+1)P(X = n)sn−k,

where P(k) is the kth derivative of P. The series converges at least for−1< s< 1. For s= 1
the right side reduces formally to E{X(X − 1) · · ·(X − k+ 1)} which is the kth factorial
moment of X whenever it exists. In particular, if EX <∞ then P′(1) =EX, and if EX2 <∞
then P

′′
(1) = EX(X−1) and Var(X) = EX2 − (EX)2 = P

′′
(1)− [P′(1)]2 +P′(1).

Example 3. In Example 1 we found that P(s) = e−λ(1−s), |s| ≤ 1, for a Poisson RV. Thus

P′(s) = λe−λ(1−s),

P′′(s) = λ2e−λ(1−s).

Also, EX = λ, E{X2 −X}= λ2, so that var(X) = EX2 − (EX)2 = λ2 +λ−λ2 = λ.

In Example 2 we computed P(s) = p/(1− sq), so that

P′(s) =
pq

(1− sq)2
and P′′(s) =

2pq2

(1− sq)3
.

Thus

EX =
q
p
, EX2 =

q
p
+

2pq2

p3
, var(X) =

q2

p2
+

q
p
=

q
p2

.

Example 4. Consider the PGF

P(s) = [(1+ s)/2]n, −∞< s <∞.
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Expanding the right side into a power series we get

P(s) =
n∑

k=0

1
2n

( n

k

)
sn−k =

n∑
k=0

pksk,

and it follows that

P(X = k) = pk =

( n

k

)
2n

, k = 0,1, . . . ,n.

We note that the PGF, being defined only for discrete integer-valued RVS, has limited
utility. We next consider a generating function which is quite useful in probability and
statistics.

Definition 2. Let X be an RV defined on (Ω,S,P). The function

M(s) = EesX (2)

is known as the moment generating function (MGF) of the RV X if the expectation on the
right side of (2) exists in some neighborhood of the origin.

Example 5. Let X have the PMF

f (x) =

⎧⎨
⎩

6
π2

· 1
k2
, k = 1,2, . . . ,

0, otherwise.

Then (1/π2)
∑∞

k=1 esk/k2, is infinite for every s > 0. We see that the MGF of X does not
exist. In fact, EX =∞.

Example 6. Let X have the PDF

f (x) =

{
1
2 e−x/2, x > 0,

0, otherwise.

Then

M(s) =
1
2

∫ ∞

0
e(s−1/2)x dx

=
1

1−2s
, s <

1
2
.

Example 7. Let X have the PMF

P{X = k}=

⎧⎨
⎩e−λλ

k

k!
, k = 0,1,2, . . . ,

0, otherwise.
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Then

M(s) = EesX = e−λ
∞∑

k=0

esk λ
k

k!

= e−λ(1−es) for all s.

The following result will be quite useful subsequently.

Theorem 1. The MGF uniquely determines a DF and, conversely, if the MGF exists, it is
unique.

For the proof we refer the reader to Widder [117, p. 460], or Curtiss [19]. Theorem 2
explains why we call M(s) an MGF.

Theorem 2. If the MGF M(s) of an RV X exists for s in (−s0,s0) say, s0 > 0, the
derivatives of all order exist at s = 0 and can be evaluated under the integral sign, that is,

M(k)(s)
∣∣
s=0

= EXk for positive integral k. (3)

For the proof of Theorem 2 we refer to Widder [117, pp. 446–447]. See also Problem 9.

Remark 3. Alternatively, if the MGF M(s) exists for s in (−s0,s0) say s0 > 0, one can
express M(s) (uniquely) in a Maclaurin series expansion:

M(s) = M(0)+
M′(0)

1!
s+

M′′(0)
2!

s2 + · · · , (4)

so that EXk is the coefficient of sk/k! in expansion (4).

Example 8. Let X be an RV with PDF f (x) = (1/2)e−x/2, x> 0. From Example 6, M(s) =
1/(1−2s) for s < 1/2. Thus

M′(s) =
2

(1−2s)2
and M′′(s) =

4 ·2
(1−2s)3

, s <
1
2
.

It follows that

EX = 2, EX2 = 8, and var(X) = 4.

Example 9. Let X be an RV with PDF f (x) = 1, 0 ≤ x ≤ 1, and = 0 otherwise. Then

M(s) =
∫ 1

0
esx dx =

es −1
s

, all s,

M′(s) =
es · s− (es −1) ·1

s2
,

EX = M′(0) = lim
s→0

ses − es +1
s2

=
1
2
.
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We emphasize that the expectation EesX does not exist unless s is carefully restricted.
In fact, the requirement that M(s) exists in a neighborhood of zero is a very strong require-
ment that is not satisfied by some common distributions. We next consider a generating
function which exists for all distributions.

Definition 3. Let X be an RV. The complex-valued function φ defined on R by

φ(t) = E(eitX) = E(cos tX)+ iE(sin tX), t ∈ R

where i =
√

(−1) is the imaginary unit, is called the characteristic function (CF)
of RV X.

Clearly

φ(t) =
∑

k

(cos tk+ isin tk)P(X = k)

in the discrete case, and

φ(t) =
∫ ∞

−∞
cos txf (x)dx+ i

∫ ∞

−∞
sin tx f (x) dx

in the continuous case.

Example 10. Let X be a normal RV with PDF

f (x) =

(
1√
2π

)
exp

(
−x2

2

)
, x ∈ R.

Then

φ(t) =

(
1√
2π

)∫ ∞

−∞
cos tx e−x2/2dx+

(
i√
2π

)∫ ∞

−∞
sin tx e−x2/2dx.

Note that sin tx is an odd function and so also is sin tx e−x2/2. Thus the second integral on
the right-side vanishes and we have

φ(t) =

(
1√
2π

)∫ ∞

−∞
cos tx e−x2/2dx

=

(
2√
2π

)∫ ∞

0
cos tx e−x2/2dx = e−t2/2, t ∈ R.

Remark 4. Unlike an MGF which may not exist for some distributions, a CF always exists
which makes it a much more convenient tool. In fact, it is easy to see that φ is continuous
on R, |φ(t)| ≤ 1 for all t, and φ(−t) = φ(t) where φ is the complex-conjugate of φ. Thus
φ is the CF of −X. Moreover, φ uniquely determines the DF of RV X. For these and
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many other properties of characteristic functions we need a comprehensive knowledge
of complex variable theory, well beyond the scope of this book. We refer the reader to
Lukacs [69].

Finally, we consider the problem of characterizing a distribution from its moments.
Given a set of constants {μ0 = 1,μ1,μ2, . . .} the problem of moments asks if they can be
moments of a distribution function F. At this point it will be worthwhile to take note of
some facts.

First, we have seen that if the M(s) =EesX exists for some X for s in some neighborhood
of zero, then E|X|n <∞ for all n ≥ 1. Suppose, however, that E|X|n <∞ for all n ≥ 1. It
does not follow that the MGF of X exists.

Example 11. Let X be an RV with PDF

f (x) = ce−|x|α , 0 < α < 1, −∞< x <∞,

where c is a constant determined from

c
∫ ∞

−∞
e−|x|α dx = 1.

Let s > 0. Then

∫ ∞

0
esxe−xα dx =

∫ ∞

0
ex(s−xα−1) dx

and since α− 1 < 0,
∫∞

0 ssxe−xα dx is not finite for any s > 0. Hence the MGF does not
exist. But

E|X|n = c
∫ ∞

−∞
|x|ne−|x|α dx = 2c

∫ ∞

0
xne−xα dx <∞ for each n,

as is easily checked by substituting y = xα.

Second, two (or more) RVs may have the same set of moments.

Example 12. Let X have lognormal PDF

f (x) = (x
√

2π)−1e−(log x)2/2, x > 0,

and f (x) = 0 for x ≤ 0. Let Xε, |ε| ≤ 1, have PDF

fε(x) = f (x)[1+ εsin(2π logx)], x ∈ R.
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(Note that fε ≥ 0 for all ε, |ε| ≤ 1, and
∫∞
∞ fε(x)dx = 1, so fε is a PDF.) Since, however,

∫ ∞

0
xkf (x)sin(2π logx)dx =

(
1√
2π

)∫ ∞

−∞
e−(t2/2)+kt sin(2πt)dt

=

(
1√
2π

)
ek2/2

∫ ∞

−∞
e−y2/2 sin(2πy)dy

= 0,

we see that

∫ ∞

0
xkf (x)dx =

∫ ∞

0
xkfε(x)dx

for all ε, |ε| ≤ 1, and k = 0,1,2, . . .. But f (x) 	= fε(x).
Third, moments of any RV X necessarily satisfy certain conditions. For example, if

βν = E|X|ν , we will see (Theorem 3.4.3) that (βν)
1/ν is an increasing function of ν.

Similarly, the quadratic form

E

(
n∑

i=1

Xαi ti

)2

≥ 0

yields a relation between moments of various orders of X.
The following result, which we will not prove here, gives a sufficient condition for

unique determination of F from its moments.

Theorem 3. Let {mk} be the moment sequence of an RV X. If the series

∞∑
k=1

mk

k!
sk (5)

converges absolutely for some s > 0, then {mk} uniquely determines the DF F of X.

Example 13. Suppose X has PDF

f (x) = e−x, for x ≥ 0, and = 0 for x < 0.

Then EXk =
∫∞

0 xke−xdx = k! and from Theorem 3

∞∑
k=1

mk

k!
sk =

∞∑
k=1

sk = s/(1− s)
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for 0 < s < 1 so that {mk} determines F uniquely. In fact, from Remark 3

M(s) =
∞∑

k=0

mk sk

k!
=

∞∑
k=0

sk =
1

(1− s)
,

0 < s < 1, which is the MGF of X.

In particular if for some constant c

|mk| ≤ ck, k = 1,2, . . . ,

then

∞∑
k=1

|mk|
k!

sk ≤
∞∑
1

(cs)k

k!
< ecs for s > 0,

and the DF of X is uniquely determined. Thus if P{|X| ≤ c}= 1 for some c > 0, then all
moments of X exist, satisfying |mk| ≤ ck, k ≥ 1, and the DF of X is uniquely determined
from its moments.

Finally, we mention some sufficient conditions for a moment sequence to determine a
unique DF:

(i) The range of the RV is finite.

(ii) (Carleman)
∑∞

k=1(m2k)
−1/2k =∞ when the range of the RV is (−∞,∞). If the

range is (0,∞), a sufficient condition is
∑∞

k=1(mk)
−1/2k =∞.

(iii) limn→∞{(m2n)
1/2n/2n} is finite.

PROBLEMS 3.3

1. Find the PGF of the RVs with the following PMFs:

(a) P{X = k}=
(n

k

)
pk(1−p)n−k, k = 0,1,2, . . ., 0 ≤ p ≤ 1.

(b) P{X = k}= [e−λ/(1− e−λ)](λk/k!), k = 1,2, . . .; λ > 0.

(c) P{X = k}= pqk(1−qN+1)−1, k = 0,1,2, . . . ,N; 0 < p < 1, q = 1−p.

2. Let X be an integer-valued RV with PGF P(s). Let α and β be nonnegative integers,
and write Y = αX+β. Find the PGF of Y .

3. Let X be an integer-valued RV with PGF P(s), and suppose that the mgf M(s) exists
for s ∈ (−s0,s0), s0 > 0. How are M(s) and P(s) related? Using M(k)(s)|s=0 = EXk

for positive integral k, find EXk in terms of the derivatives of P(s) for values of
k = 1,2,3,4.

4. For the Cauchy PDF

f (x) =
1
π

1
1+ x2

, −∞< x <∞,

does the MGF exist?
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5. Let X be an RV with PMF

P{X = j}= pj, j = 0,1,2, . . . .

Set P{X > j}= qj, j = 0,1,2, . . . . Clearly qj = pj+1+pj+2+ · · · , j ≥ 0. Write Q(s) =∑∞
j=0 qjsj. Then the series for Q(s) converges in |s|< 1. Show that

Q(s) =
1−P(s)

1− s
for |s|< 1,

where P(s) is the PGF of X. Find the mean and the variance of X (when they exist)
in terms of Q and its derivatives.

6. For the PMF

P{X = j}= ajθ
j

f (θ)
, j = 0,1,2, . . . , θ > 0,

where aj ≥ 0 and f (θ) =
∑∞

j=0 ajθ
j, find the PGF and the MGF in terms of f .

7. For the Laplace PDF

f (x) =
1

2λ
e−|x−μ|/λ, −∞< x <∞; λ > 0, −∞< μ <∞,

show that the MGF exists and equals

M(t) = (1−λ2t2)−1eμt, |t|< 1
λ
.

8. For any integer-valued RV X, show that

∞∑
n=0

snP{X ≤ n}= (1− s)−1P(s),

where P is the PGF of X.

9. Let X be an RV with MGF M(t), which exists for t ∈ (−t0, t0), t0 > 0. Show that

E|X|n < n!s−n[M(s)+M(−s)]

for any fixed s, 0 < s < t0, and for each integer n ≥ 1. Expanding etx in a power
series, show that, for t ∈ (−s,s), 0 < s < t0,

M(t) =
∞∑

n=0

tn EXn

n!
.
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(Since a power series can be differentiated term by term within the interval of
convergence, it follows that for |t|< s,

M(k)(t)|t=0 = EXk

for each integer k ≥ 1.) (Roy, LePage, and Moore [95])

10. Let X be an integer-valued random variable with

E{X(X−1) · · ·(X− k+1)}=

⎧⎪⎨
⎪⎩

k!

(
n

k

)
if k = 0,1,2, . . . ,n

0 if k > n.

Show that X must be degenerate at n.
[Hint: Prove and use the fact that if EXk <∞ for all k, then

P(s) =
∞∑

k=0

(s−1)k

k!
E{X(X−1) · · ·(X− k+1)}.

Write P(s) as

P(s) =
∞∑

k=0

P(X = k)sk =

∞∑
k=0

P(X = k)
k∑

i=0

(s−1)i

=

∞∑
i=0

(s−1)i
∞∑
k=i

( k

i

)
P(X = k). ]

11. Let p(n,k) = f (n,k)/n! where f (n,k) is given by

f (n+1,k) = f (n,k)+ f (n,k−1)+ · · ·+ f (n,k−n),

for k = 0,1, . . . ,
( n

2

)
and

f (n,k) = 0 for k < 0, f (1,0) = 1, f (1,k) = 0 otherwise.

Let

Pn(s) =
1
n!

∞∑
k=0

skf (n,k)

be the probability generating function of p(n,k). Show that

Pn(s) = (n!)−1
n∏

k=2

1− sk

1− s
|s|< 1.

(Pn is the generating function of Kendall’s τ -statistic.)
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12. For k = 0,1, . . . ,

(
n

2

)
let un(k) be defined recursively by

un(k) = un−1(k−n)+un−1(k)

with u0(0) = 1, u0(k) = 0 otherwise, and un(k) = 0 for k < 0. Let Pn(s) =∑∞
k=0 skun(k) be the generating function of {un}. Show that

Pn(s) =
n∏

j=1

(1+ sj) for |s|< 1.

If pn(k) = un(k)/2n, find {pn(k)} for n = 2,3,4. (Pn is the generating function of
one-sample Wilcoxon test statistic.)

3.4 SOME MOMENT INEQUALITIES

In this section we derive some inequalities for moments of an RV. The main result of this
section is Theorem 1 (and its corollary), which gives a bound for tail probability in terms
of some moment of the random variable.

Theorem 1. Let h(X) be a nonnegative Borel-measurable function of an RV X. If Eh(X)
exists, then, for every ε > 0,

P{h(X)≥ ε} ≤ Eh(X)
ε

. (1)

Proof. We prove the result when X is discrete. Let P{X = xk}= pk, k = 1,2, . . . . Then

Eh(X) =
∑

k

h(xk)pk

=

(∑
A

+
∑

Ac

)
h(xk)pk,

where

A = {k : h(xk)≥ ε}.

Then

Eh(X)≥
∑

A

h(xk)pk ≥ ε
∑

A

pk

= εP{h(X)≥ ε}.

Corollary. Let h(X) = |X|r and ε= Kr, where r > 0 and K > 0. Then

P{|X| ≥ K} ≤ E|X|r
Kr

, (2)
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which is Markov’s inequality. In particular, if we take h(X) = (X−μ)2, ε= K2σ2, we get
Chebychev–Bienayme inequality:

P{|X−μ| ≥ Kσ} ≤ 1
K2

, (3)

where EX = μ, var(X) = σ2.

Remark 1. The inequality (3) is generally attributed to Chebychev although recent
research has shown that credit should also go to I.J. Bienayme.

Remark 2. If we wish to be consistent with our definition of a DF as FX(x) = P(X ≤ x),
then we may want to reformulate (1) in the following form.

P{h(X)> ε}< Eh(X)/ε.

For RVs with finite second-order moments one cannot do better than the inequality in (3).

Example 1.

P{X = 0}= 1− 1
K2

P{X =∓1}= 1
2K2

K > 1, constant,

EX = 0, EX2 =
1

K2
, σ =

1
K
,

P{|X| ≥ Kσ}= P{|X| ≥ 1}= 1
K2

,

so that equality is achieved.

Example 2. Let X be distributed with PDF f (x) = 1 if 0 < x < 1, and = 0 otherwise. Then

EX =
1
2
, EX2 =

1
3
, var(X) =

1
3
− 1

4
=

1
12

,

P

{
|X− 1

2
|< 2

√
1
12

}
= P

{
1
2
− 1√

3
< X <

1
2
+

1√
3

}
= 1.

From Chebychev’s inequality

P

{
|X− 1

2
|< 2

√
1
12

}
≥ 1− 1

4
= 0.75.

In Fig. 1 we compare the upper bound for P{|X − 1/2| ≥ k/
√

12} with the exact
probability.

It is possible to improve upon Chebychev’s inequality, at least in some cases, if we
assume the existence of higher order moments. We need the following lemma.
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1

k

Exact

Upper bound 

10 √3

Fig. 1 Chebychev upper bound versus exact probability.

Lemma 1. Let X be an RV with EX = 0 and var(X) = σ2. Then

P{X ≥ x} ≤ σ2

σ2 + x2
if x > 0, (4)

P{X ≥ x} ≥ x2

σ2 + x2
if x < 0, (5)

Proof. Let h(t) = (t+ c)2, c > 0. Then h(t)≥ 0 for all t and

h(t)≥ (x+ c)2 for t ≥ x > 0.

It follows that

P{X ≥ x} ≤ P{h(X)≥ (x+ c)2} (6)

≤ E(X+ c)2

(x+ c)2
for all c > 0, x > 0.

Since EX = 0, EX2 = σ2, and the right side of (6) is minimum when c = σ2/x, we have

P{X ≥ x} ≤ σ2

σ2 + x2
, x > 0.

Similar proof holds for (5).

Remark 3. Inequalities (4) and (5) cannot be improved (Problem 3).

Theorem 2. Let E|X|4 <∞, and let EX = 0, EX2 = σ2. Then

P{|X| ≥ Kσ} ≤ μ4 −σ4

μ4 +σ4K4 −2K2σ4
for K > 1, (7)

where μ4 = EX4.
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Proof. For the proof let us substitute (X2 −σ2)/(K2σ2 −σ2) for X and take x = 1 in (4).
Then

P{X2 −σ2 ≥ K2σ2 −σ2} ≤ var{(X2 −σ2)/(K2σ2 −σ2)}
1+var{(X2 −σ2)/(K2σ2 −σ2)}

=
μ4 −σ4

σ4(K2 −1)2 +μ4 −σ4

=
μ4 −σ4

μ4 +σ4K4 −2K2σ4
, K > 1,

as asserted.

Remark 4. Bound (7) is better than bound (3) if K2 ≥ μ4/σ
4 and worse if 1 ≤ K2 <μ4/σ

4

(Problem 5).

Example 3. Let X have the uniform density

f (x) =

{
1 if 0 < x < 1,

0 otherwise.

Then

EX =
1
2
, var(X) =

1
12

, μ4 = E

{
X− 1

2

}4

=
1
80

,

and

P

{∣∣∣∣X− 1
2

∣∣∣∣≥ 2

√
1

12

}
≤

1
80 −

1
144

1
80 +

1
144 ·16−8 1

144

=
4
49

,

that is,

P

{∣∣∣∣X− 1
2

∣∣∣∣< 2

√
1

12

}
≥ 45

49
≈ 0.92,

which is much better than the bound given by Chebychev’s inequality (Example 2).

Theorem 3 (Lyapunov Inequality). Let βn =E|X|n <∞. Then for arbitrary k, 2≤ k ≤ n,
we have

β
1/(k−1)
k−1 ≤ β

1/k
k . (8)

Proof. Consider the quadratic form

Q(u,v) =
∫ ∞

−∞
(u|x|(k−1)/2 + v|x|(k+1)/2)2f (x)dx,
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where we have assumed that X is continuous with PDF f . We have

Q(u,v) = u2βk−1 +2uvβk +βk+1v2.

Clearly Q ≥ 0 for all u,v real. It follows that∣∣∣∣∣ βk−1 βk

βk βk+1

∣∣∣∣∣≥ 0,

implying that

β2k
k ≤ βk

k−1β
k
k+1.

Thus

β2
1 ≤ β1

0β
1
2 , β4

2 ≤ β2
1β

2
3 , . . . ,β

2(n−1)
n−1 ≤ βn−1

n−2β
n−1
n ,

where β0 = 1. Multiplying successive k−1 of these, we have

βk
k−1 ≤ βk−1

k or β
1/(k−1)
k−1 ≤ β

1/k
k .

It follows that

β1 ≤ β
1/2
2 ≤ β

1/3
3 ≤ ·· · ≤ β1/n

n .

The equality holds if and only if

β
1/k
k = β

1/(k+1)
k+1 for k = 1,2, . . . ,

that is, {β1/k
k } is a constant sequence of numbers, which happens if and only if |X| is

degenerate, that is, for some c, P{|X|= c}= 1.

PROBLEMS 3.4

1. For the RV with PDF

f (x;λ) =
e−xxλ

λ!
, x > 0,

where λ≥ 0 is an integer, show that

P{0 < X < 2(λ+1)}> λ

λ+1
.

2. Let X be any RV, and suppose that the MGF of X, M(t) = Eetx, exists for every t > 0.
Then for any t > 0

P{tX > s2 +logM(t)}< e−s2

.
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3. Construct an example to show that inequalities (4) and (5) cannot be improved.

4. Let g(.) be a function satisfying g(x) > 0 for x > 0, g(x) increasing for x > 0, and
E|g(X)|<∞. Show that

P{|X|> ε}< Eg(|X|)
g(ε)

for every ε > 0.

5. Let X be an RV with EX = 0, var(X) = σ2, and EX4 = μ4. Let K be any positive real
number. Show that

P{|X| ≥ Kσ} ≤

⎧⎪⎪⎨
⎪⎪⎩

1 if K2 < 1,
1

K2 if 1 ≤ K2 < μ4
σ4 ,

μ4 −σ4

μ4 +σ4K4 −2K2σ4
if K2 ≥ μ4

σ4 .

In other words, show that bound (7) is better than bound (3) if K2 ≥ μ4/σ
4 and worse

if 1 ≤ K2 < μ4/σ
4. Construct an example to show that the last inequalities cannot

be improved.

6. Use Chebychev’s inequality to show that for any k > 1, ek+1 ≥ k2.

7. For any RV X, show that

P{X ≥ 0} ≤ inf{ϕ(t) : t ≥ 0} ≤ 1,

where ϕ(t) = EetX, 0 < ϕ(t)≤∞.

8. Let X be an RV such that P(a ≤ X ≤ b) = 1 where −∞ < a < b < ∞. Show that
var(X)≤ (b−a)2/4.



4
MULTIPLE RANDOM VARIABLES

4.1 INTRODUCTION

In many experiments an observation is expressible, not as a single numerical quantity, but
as a family of several separate numerical quantities. Thus, for example, if a pair of distin-
guishable dice is tossed, the outcome is a pair (x,y), where x denotes the face value on the
first die, and y, the face value on the second die. Similarly, to record the height and weight
of every person in a certain community we need a pair (x,y), where the components repre-
sent, respectively, the height and weight of a particular individual. To be able to describe
such experiments mathematically we must study the multidimensional random variables.

In Section 4.2 we introduce the basic notations involved and study joint, marginal,
and conditional distributions. In Section 4.3 we examine independent random variables
and investigate some consequences of independence. Section 4.4 deals with functions of
several random variables and their induced distributions. Section 4.5 considers moments,
covariance, and correlation, and in Section 4.6 we study conditional expectation. The last
section deals with ordered observations.

4.2 MULTIPLE RANDOM VARIABLES

In this section we study multidimensional RVs. Let (Ω,S,P) be a fixed but otherwise
arbitrary probability space.

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Definition 1. The collection X= (X1,X2, . . . ,Xn) defined on (Ω,S,P) into Rn by

X(ω) = (X1(ω),X2(ω), . . . ,Xn(ω)), ω ∈ Ω,

is called an n-dimensional RV if the inverse image of every n-dimensional interval

I = {(x1,x2, . . . ,xn) : −∞< xi ≤ ai,ai ∈ R, i = 1,2, . . . ,n}

is also in S, that is, if

X−1(I) = {ω : X1(ω)≤ a1, . . . ,Xn(ω)≤ an} ∈ S for ai ∈ R.

Theorem 1. Let X1,X2, . . . ,Xn be n RVs on (Ω,S,P). Then X = (X1,X2, . . . ,Xn) is an
n-dimensional RV on (Ω,S,P).

Proof. Let I = {(x1,x2, . . . ,xn) : −∞< xi ≤ ai, i = 1,2, . . . ,n}. Then

{(X1,X2, . . . ,Xn) ∈ I}= {ω : X1(ω)≤ a1,X2(ω)≤ a2, . . . ,Xn(ω)≤ an}

=
n⋂

k=1

{ω : Xk(ω)≤ ak} ∈ S

as asserted.

From now on we will restrict attention mainly to two-dimensional random variables.
The discussion for the n-dimensional (n > 2) case is similar except when indicated. The
development follows closely the one-dimensional case.

Definition 2. The function F(·, ·), defined by

F(x,y) = P{X ≤ x,Y ≤ y}, all (x,y) ∈ R2, (1)

is known as the DF of the RV (X,Y).
Following the discussion in Section 2.3, it is easily shown that

(i) F(x,y) is nondecreasing and continuous from the right with respect to each
coordinate and

(ii) lim
x→+∞
y→+∞

F(x,y) = F(+∞,+∞) = 1,

lim
y→−∞

F(x,y) = F(x,−∞) = 0 for all x,

lim
x→−∞

F(x,y) = F(−∞,y) = 0 for all y.

But (i) and (ii) are not sufficient conditions to make any function F(·, ·) a DF.

Example 1. Let F be a function (Fig. 1) of two variables defined by

F(x,y) =

{
0, x < 0 or x+ y < 1 or y < 0,

1, otherwise.
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1

10 x

y

F(x,y) = 0

F(x,y) = 1

Fig. 1

Then F satisfies both (i) and (ii) above. However, F is not a DF since

P{ 1
3 < X ≤ 1, 1

3 < Y ≤ 1}= F(1,1)+F( 1
3 ,

1
3 )−F(1, 1

3 )−F( 1
3 ,1)

= 1+0−1−1 =−1 �≥ 0.

Let x1 < x2 and y1 < y2. We have

P{x1 < X ≤ x2,y1 < Y ≤ y2}= P{X ≤ x2,Y ≤ y2}+P{X ≤ x1,Y ≤ y1}
−P{X ≤ x1,Y ≤ y2}−P{X ≤ x2,Y ≤ y1}

= F(x2,y2)+F(x1,y1)−F(x1,y2)−F(x2,y1)

≥ 0

for all pairs (x1,y1), (x2,y2) with x1 < x2, y1 < y2 (see Fig. 2).

Theorem 2. A function F of two variables is a DF of some two-dimensional RV if and
only if it satisfies the following conditions:

(i) F is nondecreasing and right continuous with respect to both arguments;

(ii) F(−∞,y) = F(x,−∞) = 0 and F(+∞,+∞) = 1; and

(iii) for every (x1,y1),(x2,y2) with x1 < x2 and y1 < y2 the inequality

F(x2,y2)−F(x2,y1)+F(x1,y1)−F(x1,y2)≥ 0 (2)

holds.

The “if” part of the theorem has already been established. The “only if” part will not
be proved here (see Tucker [114, p. 26]).

Theorem 2 can be generalized to the n-dimensional case in the following manner.
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y

x0

(x1,y1) (x2,y1)

(x2,y2)(x1,y2)

Fig. 2 {x1 < x < x2, y1 < y ≤ y2}.

Theorem 3. A function F(x1,x2, . . . ,xn) is the joint DF of some n-dimensional RV if and
only if F is nondecreasing and continuous from the right with respect to all the arguments
x1,x2, . . . ,xn and satisfies the following conditions:

(i) F(−∞,x2, . . . ,xn) = F(x1,−∞,x3, . . . ,xn) · · ·
= F(x1, . . . ,xn−1,−∞) = 0,

F(+∞,+∞, . . . ,+∞) = 1.

(ii) For every (x1,x2, . . . ,xn) ∈ Rn and all εi > 0(i = 1,2, . . . ,n) the inequality

F(x1 + ε1,x2 + ε2, . . . ,xn + εn)

−
n∑

i=1

F(x1 + ε1, . . . ,xi−1 + εi−1,xi,xi+1 + εi+1, . . . ,xn + εn)

+

n∑
i,j=1
i<j

F(x1 + ε1, . . . ,xi−1 + εi−1,xi,xi+1 + εi+1, . . . ,xj−1 + εj−1,

xj,xj+1 + εj+1, . . . ,xn + εn)

+ · · ·
+(−1)nF(x1,x2, . . . ,xn)≥ 0 (3)

holds.

We restrict ourselves here to two-dimensional RVs of the discrete or the continuous
type, which we now define.



MULTIPLE RANDOM VARIABLES 103

Definition 3. A two-dimensional (or bivariate) RV (X,Y) is said to be of the discrete type
if it takes on pairs of values belonging to a countable set of pairs A with probability 1. We
call every pair (xi,yj) that is assumed with positive probability pij a jump point of the DF
of (X,Y) and call pij the jump at (xi,yj). Here A is the support of the distribution of (X,Y).

Clearly
∑

ij pij = 1. As for the DF of (X,Y), we have

F(x,y) =
∑

B

pij,

where B = {(i, j) : xi ≤ x,yj ≤ y}.

Definition 4. Let (X,Y) be an RV of the discrete type that takes on pairs of values
(xi,yj), i = 1,2, . . . , and j = 1,2, . . . . We call

pij = P{X = xi,Y = yj}, i = 1,2, . . . , j = 1,2, . . . ,

the joint probability mass function (PMF) of (X,Y).

Example 2. A fair die is rolled, and a fair coin is tossed independently. Let X be the face
value on the die, and let Y = 0 if a tail turns up and Y = 1 if a head turns up. Then

A = {(1,0),(2,0), . . . ,(6,0),(1,1),(2,1), . . . ,(6,1)},

pij =
1
12

for i = 1,2, . . . ,6; j = 0,1.

The DF of (X,Y) is given by

F(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 1,−∞< y <∞;−∞< x <∞,y < 0,
1

12
, 1 ≤ x < 2,0 ≤ y < 1,

1
6
, 2 ≤ x < 3,0 ≤ y < 1;1 ≤ x < 2,1 ≤ y,

1
4
, 3 ≤ x < 4,0 ≤ y < 1,

1
3
, 4 ≤ x < 5,0 ≤ y < 1;2 ≤ x < 3,1 ≤ y,

5
12

, 5 ≤ x < 6,0 ≤ y < 1,

1
2
, 6 ≤ x,0 ≤ y < 1;3 ≤ x < 4,1 ≤ y,

2
3
, 4 ≤ x < 5,1 ≤ y,

5
6
, 5 ≤ x < 6,1 ≤ y,

1, 6 ≤ x,1 ≤ y.
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Theorem 4. A collection of nonnegative numbers {pij : i = 1,2, . . . ; j = 1,2, . . .} satisfy-
ing
∑∞

i,j=1 pij = 1 is the PMF of some RV.

Proof. The proof of Theorem 4 is easy to construct with the help of Theorem 2.

Definition 5. A two-dimensional RV (X,Y) is said to be of the continuous type if there
exists a nonnegative function f (·, ·) such that for every pair (x,y) ∈ R2 we have

F(x,y) =
∫ x

−∞

[∫ y

−∞
f (u,v)dv

]
du, (4)

where F is the DF of (X,Y). The function f is called the (joint) PDF of (X,Y).
Clearly,

F(+∞,+∞) = lim
x→+∞
y→+∞

∫ x

−∞

∫ y

−∞
f (u,v)dvdu

=

∫ ∞

−∞

∫ ∞

−∞
f (u,v)dvdu = 1.

If f is continuous at (x,y), then

∂2F(x,y)
∂x∂y

= f (x,y). (5)

Example 3. Let (X,Y) be an RV with joint PDF (Fig. 3) given by

f (x,y) =

{
e−(x+y), 0 < x <∞, 0 < y <∞,

0, otherwise.

Then

F(x,y) =

{
(1− e−x)(1− e−y), 0 < x <∞, 0 < y <∞,

0, otherwise.

Theorem 5. If f is a nonnegative function satisfying
∫∞
−∞
∫∞
−∞ f (x,y)dxdy = 1, then f is

the joint density function of some RV.

Proof. For the proof define

F(x,y) =
∫ x

−∞

[∫ y

−∞
f (u,v)dv

]
du

and use Theorem 2.
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Fig. 3 f (x,y) = exp{−(x+ y)}, x > 0, y > 0.

Let (X,Y) be a two-dimensional RV with PMF

pij = P{X = xi,Y = yj}.

Then

∞∑
i=1

pij =

∞∑
i=1

P{X = xi,Y = yj}= P{Y = yj} (6)

and

∞∑
j=1

pij =

∞∑
j=1

P{X = xi,Y = yj}= P{X = xi}. (7)

Let us write

pi· =
∞∑

j=1

pij and p·j =
∞∑

i=1

pij. (8)

Then pi· ≥ 0 and
∑∞

i=1 pi· = 1,p·j ≥ 0 and
∑∞

j=1 p·j = 1, and {pi·},{p·j} represent PMFs.

Definition 6. The collection of numbers {pi·} is called the marginal PMF of X, and the
collection {p·j}, the marginal PMF of Y .
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Example 4. A fair coin is tossed three times. Let X = number of heads in three tossings,
and Y = difference, in absolute value, between number of heads and number of tails. The
joint PMF of (X,Y) is given in the following table:

Y
X

0 1 2 3 P{Y = y}

1 0 3
8

3
8 0 6

8

3 1
8 0 0 1

8
2
8

P{X = x} 1
8

3
8

3
8

1
8 1

The marginal PMF of Y is shown in the column representing row totals, and the marginal
PMF of X, in the row representing column totals.

If (X,Y) is an RV of the continuous type with PDF f , then

f1(x) =
∫ ∞

−∞
f (x,y)dy (9)

and

f2(y) =
∫ ∞

−∞
f (x,y)dx (10)

satisfy f1(x) ≥ 0, f2(y) ≥ 0, and
∫∞
−∞ f1(x)dx = 1,

∫∞
−∞ f2(y)dy = 1. It follows that f1(x)

and f2(y) are PDFs.

Definition 7. The functions f1(x) and f2(y), defined in (9) and (10), are called the marginal
PDF of X and the marginal PDF of Y , respectively.

Example 5. Let (X,Y) be jointly distributed with PDF f (x,y) = 2, 0 < x < y< 1, and, = 0
otherwise (Fig. 4). Then

f1(x) =
∫ 1

x
2dy =

{
2−2x, 0 < x < 1

0, otherwise

and

f2(y) =
∫ y

0
2dx =

{
2y, 0 < y < 1

0, otherwise

are the two marginal density functions.
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1

0 1 x

y

f(x,y) = 2

Fig. 4 f (x,y) = 2, 0 < x < y < 1.

Definition 8. Let (X,Y) be an RV with DF F. Then the marginal DF of X is defined by

F1(x) = F(x,∞) = lim
y→∞

F(x,y) (11)

=

{∑
xi≤x pi· if (X,Y) is discrete,∫ x

−∞ f1(t)dt if (X,Y) is continuous.

A similar definition is given for the marginal DF of Y .

In general, given a DF F(x1,x2, . . . ,xn) of an n-dimensional RV (X1,X2, . . . ,Xn), one
can obtain any k-dimensional (1 ≤ k ≤ n−1) marginal DF from it. Thus the marginal DF
of (Xi1 ,Xi2 , . . .Xik), where 1 ≤ i1 < i2 < · · ·< ik ≤ n, is given by

lim
xi→∞

i�=i1,i2,...,ik

F(x1,x2, . . . ,xn)

= F(+∞, . . . ,+∞,xi1 ,+∞, . . . ,+∞, . . . ,xik ,+∞, . . . ,+∞).

We now consider the concept of conditional distributions. Let (X,Y) be an RV of the
discrete type with PMF pij = P{X = xi,Y = yj}. The marginal PMFs are pi· =

∑∞
j=1 and

p·j =
∑∞

i=1 pij. Recall that, if A,B ∈ S and PB > 0, the conditional probability of A, given
B, is defined by

P{A | B}= P(AB)
P(B)

.
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Take A= {X = xi}= {(xi,y) : −∞< y<∞} and B= {Y = yj}= {(x,yj);−∞< x<∞},
and assume that PB = P{Y = yj}= p·j > 0. Then A∩B = {X = xi,Y = yj} and

P{A | B}= P{X = xi | Y = yj}=
pij

p·j
.

For fixed j, the function P{X = xi | Y = yj} ≥ 0 and
∑∞

i=1 P{X = xi | Y = yj} = 1. Thus
P{X = xi | Y = yj}, for fixed j, defines a PMF.

Definition 9. Let (X,Y) be an RV of the discrete type. If P{Y = yj}> 0, the function

P{X = xi | Y = yj}=
P{X = xi,Y = yj}

P{Y = yj}
(12)

for fixed j is known as the conditional PMF of X, given Y = yj. A similar definition
is given for P{Y = yj | X = xi}, the conditional PMF of Y , given X = xi, provided that
P{X = xi}> 0.

Example 6. For the joint PMF of Example 4, we have for Y = 1

P{X = i | Y = 1}=

⎧⎨
⎩

0, i = 0,3,

1
2
, i = 1,2.

Similarly

P{X = i | Y = 3}=

⎧⎨
⎩

1
2
, if i = 0,3,

0, if i = 1,2,

P{Y = j | X = 0}=
{

0, if j = 1,

1, if j = 3,

and so on.
Next suppose that (X,Y) is an RV of the continuous type with joint PDF f . Since

P{X = x}= 0, P{Y = y} = 0 for any x,y, the probability P{X ≤ x | Y = y} or P{Y ≤
y | X = x} is not defined. Let ε > 0, and suppose that P{y− ε < Y ≤ y+ ε} > 0. For
every x and every interval (y− ε,y+ ε], consider the conditional probability of the event
{X ≤ x}, given that Y ∈ (y− ε,y+ ε]. We have

P{X ≤ x | y− ε < Y ≤ y+ ε}= P{X ≤ x,y− ε < Y ≤ y+ ε}
P{Y ∈ (y− ε,y+ ε]} .

For any fixed interval (y−ε,y+ε], the above expression defines the conditional DF of X,
given that Y ∈ (y−ε,y+ε], provided that P{Y ∈ (y−ε,y+ε]}> 0. We shall be interested
in the case where the limit

lim
ε→0+

P{X ≤ x | Y ∈ (y− ε,y+ ε]}

exists.
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Definition 10. The conditional DF of an RV X, given Y = y, is defined as the limit

lim
ε→0+

P{X ≤ x | Y ∈ (y− ε,y+ ε]}, (13)

provided that the limit exists. If the limit exists, we denote it by FX|Y(x | y) and define
the conditional density function of X, given Y = y, fX|Y(x | y), as a nonnegative function
satisfying

FX|Y(x | y) =
∫ x

−∞
fX|Y(t | y)dt for all x ∈ R. (14)

For fixed y, we see that fX|Y(x | y)≥ 0 and
∫∞
−∞ fX|Y(x | y)dx = 1. Thus fX|Y(x | y) is a PDF

for fixed y.
Suppose that (X,Y) is an RV of the continuous type with PDF f . At every point (x,y)

where f is continuous and the marginal PDF f2(y)> 0 and is continuous, we have

FX|Y(x | y) = lim
ε→0+

P{X ≤ x,Y ∈ (y− ε,y+ ε]}
P{Y ∈ (y− ε,y+ ε]}

= lim
ε→0+

∫ x
−∞

{∫ y+ε

y−ε
f (u,v)dv

}
du∫ y+ε

y−ε
f2(v)dv

.

Dividing numerator and denominator by 2ε and passing to the limit as ε→ 0+, we have

FX|Y(x | y) =

∫ x
−∞ f (u,y)du

f2(y)

=

∫ x

−∞

{
f (u,y)
f2(y)

}
du.

It follows that there exists a conditional PDF of X, given Y = y, that is expressed by

fX|Y(x | y) =
f (x,y)
f2(y)

, f2(y)> 0.

We have thus proved the following theorem.

Theorem 6. Let f be the PDF of an RV (X,Y) of the continuous type, and let f2 be the
marginal PDF of Y . At every point (x,y) at which f is continuous and f2(y) > 0 and is
continuous, the conditional PDF of X, given Y = y, exists and is expressed by

fX|Y(x | y) =
f (x,y)
f2(y)

. (15)

Note that ∫ x

−∞
f (u,y)du = f2(y)FX|Y(x | y),
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so that

F1(x) =
∫ ∞

−∞

{∫ x

−∞
f (u,y)du

}
dy =

∫ ∞

−∞
f2(y)FX|Y(x | y)dy, (16)

where F1 is the marginal DF of X.

It is clear that similar definitions may be made for the conditional DF and conditional
PDF of the RV Y , given X = x, and an analog of Theorem 6 holds.

In the general case, let (X1,X2, . . . ,Xn) be an n-dimensional RV of the continuous type
with PDF fX1,X2,...,Xn(x1,x2, . . . ,xn). Also, let {i1 < i2 < · · · < ik, j1 < j2 < · · · < jl} be a
subset of {1,2, . . . ,n}. Then

F(xi1 ,xi2 , . . . ,xik | xj1 ,xj2 , . . . ,xjl), (17)

=

∫ xi1
−∞ · · ·

∫ xik

−∞ fXi1...,Xik,Xj1,...,Xjl(ui1 , . . . ,uik ,xj1 , . . . ,xjl)
∏k

p=1 duip∫∞
−∞ · · ·

∫∞
−∞ fXi1,...,X1k,Xj1...,Xjl(ui1 , . . . ,uik ,xj1 , . . . ,xjl)

∏k
p=1 duip

provided that the denominator exceeds 0. Here fXi1 ,...,Xik ,Xj1 ,...,Xjl
is the joint marginal PDF

of (Xi1 ,Xi2 , . . . ,Xik ,Xj1 ,Xj2 , . . . ,Xjl). The conditional densities are obtained in a similar
manner.

The case in which (X1,X2, . . . ,Xn) is of the discrete type is similarly treated.

Example 7. For the joint PDF of Example 5 we have

fY|X(y | x) =
f (x,y)
f1(x)

=
1

1− x
, x < y < 1,

so that the conditional PDF fY|X is uniform on (x,1). Also,

fX|Y(x | y) =
1
y
, 0 < x < y,

which is uniform on (0,y). Thus

P

{
Y ≥ 1

2
| x =

1
2

}
=

∫ 1

1/2

1

1− 1
2

dy = 1,

P

{
X ≥ 1

3

∣∣∣∣y = 2
3

}
=

∫ 2/3

1/3

1
2
3

dx =
1
2
.

We conclude this section with a discussion of a technique called truncation. We con-
sider two types of truncation each with a different objective. In probabilistic modeling we
use truncated distributions when sampling from an incomplete population.

Definition 11. Let X be an RV on (Ω,S,P), and T ∈ B such that 0 < P{X ∈ T} < 1.
Then the conditional distribution P{X ≤ x | X ∈ T}, defined for any real x, is called the
truncated distribution of X.
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If X is a discrete RV with PMF pi = P{X = xi}, i = 1,2, . . . , the truncated distribution
of X is given by

P{X = xi | X ∈ T}= P{X = xi,X ∈ T}
P{X ∈ T} =

⎧⎨
⎩

pi∑
xj∈T pj

if xi ∈ T,

0 otherwise.
(18)

If X is of the continuous type with PDF f , then

P{X ≤ x | X ∈ T}= P{X ≤ x,X ∈ T}
P{X ∈ T} =

∫
(−∞,x]∩T f (y)dy∫

T f (y)dy
. (19)

The PDF of the truncated distribution is given by

h(x) =

⎧⎨
⎩

f (x)∫
T f (y)dy

, x ∈ T,

0, x �∈ T.
(20)

Here T is not necessarily a bounded set of real numbers. If we write Y for the RV with
distribution function P{X ≤ x | X ∈ T}, then Y has support T .

Example 8. Let X be an RV with standard normal PDF

f (x) =
1√
2π

e−x2/2
.

Let T = (−∞,0]. Then P{X ∈ T} = 1/2, since X is symmetric and continuous. For the
truncated PDF, we have

h(x) =

{
2f (x), −∞< x ≤ 0,

0, x > 0.

Some other examples are the truncated Poisson distribution

P{X = k}= e−λ

1− e−λ

xk

k!
, k = 1,2, . . . ,

where T = {X ≥ 1}, and the truncated uniform distribution

f (x) = 1/θ, 0 < x < θ, and = 0 otherwise,

where T = {X < θ}, θ > 0.

The second type of truncation is very useful in probability limit theory specially when
the DF F in question does not have a finite mean. Let a < b be finite real numbers. Define
RV X∗ by

X∗ =

{
X, if a ≤ X ≤ b

0, if X < a, or X > b.
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This method produces an RV for which P(a ≤ X∗ ≤ b) = 1 so that X∗ has moments of all
orders. The special case when b = c > 0 and a = −c is quite useful in probability limit
theory when we wish to approximate X through bounded rvs. We say that Xc is X truncated
at c if Xc = X for |X| ≤ c, and = 0 for |X|> c. Then E|Xc|k ≤ ck. Moreover,

P{X �= Xc}= P{|X|> c}

so that c can be selected sufficiently large to make P{|X| > c} arbitrarily small. For
example, if E|X|2 <∞ then

P{|X|> c} ≤ E|X|2/c2

and given ε > 0, we can choose c such that E|X|2/c2 < ε.
The distribution of Xc is no longer the truncated distribution P{X ≤ x | |X| ≤ c}. In fact,

Fc(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, y ≤−c

F(y)−F(−c), −c < y < 0

1−F(c)+F(y), 0 ≤ y < c

1 y > c,

where F is the DF of X and Fc, that of Xc.
A third type of truncation, sometimes called Winsorization, sets

X∗ = X, if a < X < b, = a if X ≤ a, and = b if X ≥ b.

This method also produces an RV for which P(a ≤ X∗ ≤ b) = 1, moments of all orders
for X∗ exist but its DF is given by

F∗(y) = 0 for y < a, = F(y) for a ≤ y < b, = 1 for y ≥ b.

PROBLEMS 4.2

1. Let F(x,y) = 1 if x+ 2y ≥ 1, and = 0 if x+ 2y < 1. Does F define a DF in the
plane?

2. Let T be a closed triangle in the plane with vertices (0,0), (0,
√

2), and (
√

2,
√

2).
Let F(x,y) denote the elementary area of the intersection of T with {(x1,x2) : x1 ≤
x,x2 ≤ y}. Show that F defines a DF in the plane, and find its marginal DFs.

3. Let (X,Y) have the joint PDF f defined by f (x,y) = 1/2 inside the square with
corners at the points (1,0), (0,1), (−1,0), and (0,−1) in the (x,y)-plane, and = 0
otherwise. Find the marginal PDFs of X and Y and the two conditional PDFs.

4. Let f (x,y,z) = e−x−y−z, x > 0, y > 0, z > 0, and = 0 otherwise, be the joint PDF
of (X,Y,Z). Compute P{X < Y < Z} and P{X = Y < Z}.

5. Let (X,Y) have the joint PDF f (x,y) = 4
3 [xy+(x2/2)] if 0 < x < 1, 0 < y < 2, and

= 0 otherwise. Find P{Y < 1 | X < 1/2}.
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6. For DFs F,F1,F2, . . . ,Fn show that

1−
n∑

i=1

{1−Fi(xi)} ≤ F(x1,x2, . . . ,xn)≤ min
1≤i≤n

Fi(xi)

for all real numbers x1,x2, . . . ,xn if and only if Fi’s are marginal DFs of F.

7. For the bivariate negative binomial distribution

P{X = x,Y = y}= (x+ y+ k−1)!
x!y! (k−1)!

px
1py

2(1−p1 −p2)
k,

where x,y = 0,1,2, . . . ,k ≥ 1 is an integer, 0 < p1 < 1, 0 < p2 < 1, and p1+p2 < 1,
find the marginal PMFs of X and Y and the conditional distributions.

In Problems 8–10 the bivariate distributions considered are not unique generalizations
of the corresponding univariate distributions.

8. For the bivariate Cauchy RV (X,Y) with PDF

f (x,y) =
c

2π
(c2 + x2 + y2)−3/2,−∞< x <∞,−∞< y <∞,c > 0,

find the marginal PDFs of X and Y . Find the conditional PDF of Y given X = x.

9. For the bivariate beta RV (X,Y) with PDF

f (x,y) =
Γ(p1 +p2 +p3)

Γ(p1)Γ(p2)Γ(p3)
xp1−1yp2−1(1− x− y)p3−1,

x ≥ 0,y ≥ 0,x+ y ≤ 1,

where p1,p2,p3 are positive real numbers, find the marginal PDFs of X and Y and
the conditional PDFs. Find also the conditional PDF of Y/(1−X), given X = x.

10. For the bivariate gamma RV (X,Y) with PDF

f (x,y) =
βα+γ

Γ(α)Γ(γ)
xα−1(y− x)γ−1e−βy, 0 < x < y; α,β,γ > 0,

find the marginal PDFs of X and Y and the conditional PDFs. Also, find the con-
ditional PDF of Y −X, given X = x, and the conditional distribution of X/Y , given
Y = y.

11. For the bivariate hypergeometric RV (X,Y) with PMF

P{X = x,Y = y}=
(

N
n

)−1(Np1

x

)(
Np2

y

)(
N −Np1 −Np2

n− x− y

)
,

x,y = 0,1,2, . . . ,n,

where x ≤ Np1, y ≤ Np2, n−x−y ≤ N(1−p1 −p2), N,n integers with n ≤ N, and
0 < p1 < 1,0 < p2 < 1 so that p1 +p2 ≤ 1, find the marginal PMFs of X and Y and
the conditional PMFs.
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12. Let X be an RV with PDF f (x) = 1 if 0 ≤ x ≤ 1, and = 0 otherwise. Let T =
{x : 1/3 < x ≤ 1/2}. Find the PDF of the truncated distribution of X, its means,
and its variance.

13. Let X be an RV with PMF

P{X = x}= e−λλ
x

x!
, x = 0,1,2, . . . ,λ > 0.

Suppose that the value x = 0 cannot be observed. Find the PMF of the truncated
RV, its mean, and its variance.

14. Is the function

f (x,y,z,u) =

{
exp(−u), 0 < x < y < z < u <∞
0 elsewhere

a joint density function? If so, find P(X ≤ 7), where (X,Y,Z,U) is a random
variable with density f .

15. Show that the function defined by

f (x,y,z,u) =
24

(1+ x+ y+ z+u)5
, x > 0,y > 0,z > 0,u > 0

and 0 elsewhere is a joint density function.

(a) Find P(X > Y < Z > U).

(b) Find P(X+Y +Z +U ≥ 1).

16. Let (X,Y) have joint density function f and joint distribution function F. Suppose
that

f (x1,y1)f (x2,y2)≤ f (x1,y2)f (x2,y1)

holds for x1 ≤ a ≤ x2 and y1 ≤ b ≤ y2. Show that

F(a,b)≤ F1(a)F2(b).

17. Suppose (X,Y,Z) are jointly distributed with density

f (x,y,z) =

{
g(x)g(y)g(z), x > 0,y > 0,z > 0

0 elsewhere.

Find P(X > Y > Z). Hence find the probability that (x,y,z) �∈ {X > Y > Z} or
{X < Y < Z}. (Here g is density function on R.)

4.3 INDEPENDENT RANDOM VARIABLES

We recall that the joint distribution of a multiple RV uniquely determines the marginal
distributions of the component random variables, but, in general, knowledge of marginal
distributions is not enough to determine the joint distribution. Indeed, it is quite possible
to have an infinite collection of joint densities fα with given marginal densities.
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Example 1. (Gumbel [39]). Let f1, f2, f3 be three PDFs with corresponding DFs F1,F2,F3,
and let α be a constant, |α| ≤ 1. Define

fα(x1,x2,x3) = f1(x1)f2(x2)f3(x3)

· {1+α[2F1(x1)−1][2F2(x2)−1][2F3(x3)−1]}.

We show that Fα is a PDF for each α in [−1,1] and that the collection of densities
{fα;−1 ≤ α≤ 1} has the same marginal densities f1, f2, f3. First note that

|[2F1(x1)−1][2F2(x2)−1][2F3(x3)−1]| ≤ 1,

so that

1+α[2F1(x1)−1][2F2(x2)−1][2F3(x3)−1]≥ 0.

Also, ∫∫∫
fα(x1,x2,x3)dx1 dx2 dx3

= 1+α

(∫
[2F1(x1)−1]f1(x1)dx1

)(∫
[2F2(x2)−1]f2(x2)dx2

)

·
(∫

[2F3(x3)−1]f3(x3)dx3

)
= 1+α{[F2

1(x1)
∣∣∞
−∞−1][F2

2(x2)
∣∣∞
−∞−1][F2

3(x3)
∣∣∞
−∞−1]}

= 1.

It follows that fα is a density function. That f1, f2, f3 are the marginal densities of fα follows
similarly.

In this section we deal with a very special class of distributions in which the marginal
distributions uniquely determine the joint distribution of a multiple RV. First we consider
the bivariate case.

Let F(x,y) and F1(x),F2(y), respectively, be the joint DF of (X,Y) and the marginal
DFs of X and Y .

Definition 1. We say that X and Y are independent if and only if

F(x,y) = F1(x)F2(y) for all (x,y) ∈ R2. (1)

Lemma 1. If X and Y are independent and a < c,b < d are real numbers, then

P{a < X ≤ c,b < Y ≤ d}= P{a < X ≤ c}P{b < Y ≤ d}. (2)

Theorem 1. (a) A necessary and sufficient condition for RVs X,Y of the discrete type
to be independent is that

P{X = xi,Y = yj}= P{X = xi}P{Y = yj} (3)
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for all pairs (xi,yj). (b) Two RVs X and Y of the continuous type are independent if
and only if

f (x,y) = f1(x)f2(y) for all (x,y) ∈ R2, (4)

where f , f1, f2, respectively, are the joint and marginal densities of X and Y , and f is
everywhere continuous.

Proof. (a) Let X,Y be independent. Then from Lemma 1, letting a → c and b → d, we
get

P{X = c,Y = d}= P{X = c}P{Y = d}.

Conversely,

F(x,y) =
∑

B

P{X = xi,Y = yj},

where

B = {(i, j) : xi ≤ x,yj ≤ y}.

Then

F(x,y) =
∑

B

P{X = xi}P{Y = yj}

=
∑
xi≤x

[
∑
yj≤y

P{Y = yj}]P{X = xi}= F(x)F(y).

The proof of part (b) is left as an exercise.

Corollary. Let X and Y be independent RVs. Then FY|X(y | x) = FY(y) for all y, and
FX|Y(x | y) = FX(x) for all x.

Theorem 2. The RVs X and Y are independent if and only if

P{X ∈ A1,Y ∈ A2}= P{X ∈ A1}P{Y ∈ A2} (5)

for all Borel sets A1 on the x-axis and A2 on the y-axis.

Theorem 3. Let X and Y be independent RVs and f and g be Borel-measurable functions.
Then f (X) and g(Y) are also independent.
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Proof. We have

P{f (X)≤ x,g(Y)≤ y}= P{X ∈ f−1(−∞,x], Y ∈ g−1(−∞,y]}
= P{X ∈ f−1(−∞,x]}P{Y ∈ g−1(−∞,y]}
= P{f (X)≤ x}P{g(Y)≤ y}.

Note that a degenerate RV is independent of any RV.

Example 2. Let X and Y be jointly distributed with PDF

f (x,y) =

⎧⎨
⎩

1+ xy
4

, |x|< 1, |y|< 1,

0, otherwise.

Then X and Y are not independent since f1(x)= 1/2, |x|< 1, and f2(y)= 1/2, |y|< 1 are the
marginal densities of X and Y , respectively. However, the RVs X2 and Y2 are independent.
Indeed,

P{X2 ≤ u,Y2 ≤ v}=
∫ v1/2

−v1/2

∫ u1/2

−u1/2

f (x,y)dxdy

=
1
4

∫ v1/2

−v1/2

[∫ u1/2

−u1/2

(1+ xy)dx

]
dy

= u1/2v1/2

= P{X2 ≤ u}P{Y2 ≤ v}.

Note that φ(X2) and ψ(Y2) are independent where φ and ψ are Borel–measurable
functions. But X is not a Borel-measurable function of X2.

Example 3. We return to Buffon’s needle problem, discussed in Examples 1.2.9 and 1.3.7.
Suppose that the RV R, which represents the distance from the center of the needle to the
nearest line, is uniformly distributed on (0, l]. Suppose further that Θ, the angle that the
needle forms with this line, is uniformly distributed on [0,π). If R and Θ are assumed to
be independent, the joint PDF is given by

fR,Θ(r,θ) = fR(r)fΘ(θ) =

⎧⎨
⎩

1
l
· 1
π

if 0 < r ≤ l, 0 ≤ π,

0 otherwise.

The needle will intersect the nearest line if and only if

l
2
sinΘ≥ R.
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Therefore, the required probability is given by

P

{
sinΘ≥ 2R

l

}
=

∫ π

0

∫ ( l
2 )sinθ

0
fR,Θ(r,θ)dr dθ

=
1
lπ

∫ π

0

l
2
sinθdθ =

1
π
.

Definition 2. A collection of jointly distributed RVs X1,X2, . . . ,Xn is said to be mutually
or completely independent if and only if

F(x1,x2, . . . ,xn) =

n∏
i=1

Fi(xi), for all (x1,x2, . . . ,xn) ∈ Rn, (6)

where F is the joint DF of (X1,X2, . . . ,Xn), and Fi(i = 1,2, . . . ,n) is the marginal DF of
Xi. X1, . . . ,Xn, which are said to be pairwise independent if and only if every pair of them
are independent.

It is clear that an analog of Theorem 1 holds, but we leave the reader to construct it.

Example 4. In Example 1 we cannot write

fα(x1,x2,x3) = f1(x1)f2(x2)f3(x3)

except when α= 0. It follows that X1, X2, and X3 are not independent except when α= 0.

The following result is easy to prove.

Theorem 4. If X1,X2, . . . ,Xn are independent, every subcollection Xi1 ,Xi2 , . . . ,Xik of
X1,X2, . . . ,Xn is also independent.

Remark 1. It is quite possible for RVs X1,X2, . . .Xn to be pairwise independent without
being mutually independent. Let (X,Y,Z) have the joint PMF defined by

P{X = x,Y = y,Z = z}=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
16

if (x,y,z) ∈ {(0,0,0),(0,1,1),
(1,0,1),(1,1,0)},

1
16

if (x,y,z) ∈ {(0,0,1),(0,1,0),
(1,0,0),(1,1,1)}.
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Clearly, X, Y , Z are not independent (why?). We have

P{X = x,Y = y}= 1
4
, (x,y) ∈ {(0,0),(0,1),(1,0),(1,1)},

P{Y = y,Z = z}= 1
4
, (y,z) ∈ {(0,0),(0,1),(1,0),(1,1)},

P{X = x,Z = z}= 1
4
, (x,z) ∈ {(0,0),(0,1),(1,0),(1,1)},

P{X = x}= 1
2
, x = 0, x = 1,

P{Y = y}= 1
2
, y = 0, y = 1,

P{Z = z}= 1
2
, z = 0, z = 1.

It follows that X and Y , Y and Z, and X and Z are pairwise independent.

Definition 3. A sequence {Xn} of RVs is said to be independent if for every n = 2,3,4, . . .
the RVs X1,X2, . . . ,Xn are independent.

Similarly, one can speak of an independent family of RVs.

Definition 4. We say that RVs X and Y are identically distributed if X and Y have the
same DF, that is,

FX(x) = FY(x) for all x ∈ R

where FX and FY are the DF’s of X and Y , respectively.

Definition 5. We say that {Xn} is a sequence of independent, identically distributed
(iid) RVs with common law L(X) if {Xn} is an independent sequence of RVs and the
distribution of Xn(n = 1,2 . . .) is the same as that of X.

According to Definition 4, X and Y are identically distributed if and only if they have
the same distribution. It does not follow that X = Y with probability 1 (see Problem 7). If
P{X = Y} = 1, we say that X and Y are equivalent RVs. All Definition 4 says is that X
and Y are identically distributed if and only if

P{X ∈ A}= P{Y ∈ A} for all A ∈B.

Nothing is said about the equality of events {X ∈ A} and {Y ∈ A}.

Definition 6. Two multiple RVs (X1,X2, . . . ,Xm) and (Y1,Y2, . . . ,Yn) are said to be
independent if

F(x1,x2, . . . ,xm,y1,y2, . . . ,yn) = F1(x1,x2, . . . ,xm)F2(y1,y2, . . . ,yn) (7)
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for all (x1,x2, . . . ,xm,y1,y2, . . . ,yn)∈Rm+n, where F,F1,F2 are the joint distribution func-
tions of (X1,X2, . . . ,Xm,Y1,Y2, . . . ,Yn),(X1,X2, . . . ,Xm), and (Y1,Y2, . . . ,Yn), respectively.

Of course, the independence of (X1,X2, . . . ,Xm) and (Y1,Y2, . . . ,Yn) does not imply the
independence of components X1,X2, . . . ,Xm of X or components Y1,Y2, . . . ,Yn of Y.

Theorem 5. Let X = (X1,X2, . . . ,Xm) and Y = (Y1,Y2, . . . ,Yn) be independent RVs.
Then the component Xj of X(j = 1,2, . . . ,m) and the component Yk of Y(k = 1,2, . . . ,n)
are independent RVs. If h and g are Borel-measurable functions, h(X1,X2, . . . ,Xm) and
g(Y1,Y2, . . . ,Yn) are independent.

Remark 2. It is possible that an RV X may be independent of Y and also of Z, but X may
not be independent of the random vector (Y,Z). See the example in Remark 1.

Let X1,X2, . . . ,Xn be independent and identically distributed RVs with common DF F.
Then the joint DF G of (X1,X2, . . . ,Xn) is given by

G(x1,x2, . . . ,xn) =

n∏
j=1

F(xj).

We note that for any of the n! permutations (xi1 ,xi2 , . . . ,xin) of (x1,x2, . . . ,xn)

G(x1,x2, . . . ,xn) =

n∏
j=1

F(xij) = G(xi1 ,xi2 , . . . ,xin)

so that G is a symmetric function of x1,x2, . . . ,xn. Thus (X1,X2, . . . ,Xn)
d
=(Xi1 ,Xi2 , . . . ,Xin),

where X
d
=Y means that X and Y are identically distributed RVs.

Definition 7. The RVs X1,X2, . . . ,Xn are said to be exchangeable if

(X1,X2, . . . ,Xn)
d
= (Xi1 ,Xi2 , . . . ,Xin)

for all n! permutations (i1, i2, . . . , in) of (1,2, . . . ,n). The RVs in the sequence {Xn} are said
to be exchangeable if X1,X2, . . . ,Xn are exchangeable for each n.

Clearly if X1,X2, . . . ,Xn are exchangeable, then Xi are identically distributed but not
necessarily independent.

Example 5. Suppose X, Y, Z have joint PDF

f (x,y,z) =

{
2
3 (x+ y+ z), 0 < x < 1, 0 < y < 1,0 < z < 1

0, otherwise.

Then X, Y, Z are exchangeable but not independent.
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Example 6. Let X1,X2, . . . ,Xn be iid RVs. Let Sn =
∑n

j=1 Xj, n = 1,2, . . . and Yk =
Xk −Sn/n, k = 1,2, . . . ,n−1. Then Y1,Y2, . . . ,Yn−1 are exchangeable.

Theorem 6. Let X, Y be exchangeable RVs. Then X−Y has a symmetric distribution.

Definition 8. Let X be an RV, and let X′ be an RV that is independent of X and X′ d
= X.

We call the RV

Xs = X−X′

the symmetrized X.

In view of Theorem 6, Xs is symmetric about 0 so that

P{Xs ≥ 0} ≥ 1
2

and P{Xs ≤ 0} ≥ 1
2
.

If E|X|<∞, then E|Xs| ≤ 2E|X|<∞, and EXs = 0.
The technique of symmetrization is an important tool in the study of probability limit

theorems. We will need the following result later. The proof is left to the reader.

Theorem 7. For ε > 0,

(a) P{|Xs|> ε} ≤ 2P{|X|> ε/2}.

(b) If a ≥ 0 such that P{X ≥ a} ≤ 1−p and P{X ≤−a} ≤ 1−p, then

P{|Xs| ≥ ε} ≥ P{|X|> a+ ε},

for ε > 0.

PROBLEMS 4.3

1. Let A be a set of k numbers, and Ω be the set of all ordered samples of size n from
A with replacement. Also, let S be the set of all subsets of Ω, and P be a probability
defined on S. Let X1,X2, . . . ,Xn be RVs defined on (Ω,S,P) by setting

Xi(a1,a2, . . . ,an) = ai, (i = 1,2, . . . ,n).

Show that X1,X2, . . . ,Xn are independent if and only if each sample point is equally
likely.

2. Let X1,X2 be iid RVs with common PMF

P{X =±1}= 1
2
.

Write X3 = X1X2. Show that X1,X2,X3 are pairwise independent but not
independent.
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3. Let (X1,X2,X3) be an RV with joint PMF

f (x1,x2,x3) =
1
4

if (x1,x2,x3) ∈ A,

= 0 otherwise,

where

A = {(1,0,0),(0,1,0),(0,0,1),(1,1,1)}.

Are X1,X2,X3 independent? Are X1,X2,X3 pairwise independent? Are X1+X2 and
X3 independent?

4. Let X and Y be independent RVs such that XY is degenerate at c �= 0. That is,
P(XY = c) = 1. Show that X and Y are also degenerate.

5. Let (Ω,S,P) be a probability space and A,B ∈ S. Define X and Y so that

X(ω) = IA(ω), Y(ω) = IB(ω) for all ω ∈ Ω.

Show that X and Y are independent if and only if A and B are independent.

6. Let X1,X2, . . . ,Xn be a set of exchangeable RVs. Then

E

{
X1 +X2 + · · ·+Xk

X1 +X2 + · · ·+Xn

}
=

k
n
, 1 ≤ k ≤ n.

7. Let X and Y be identically distributed. Construct an example to show that X and Y
need not be equal, that is, P{X = Y} need not equal 1.

8. Prove Lemma 1.

9. Let X1,X2, . . . ,Xn be RVs with joint PDF f , and let fj be the marginal PDF of Xj(j =
1,2, . . . ,n). Show that X1,X2, . . . ,Xn are independent if and only if

f (x1,x2, . . . ,xn) =

n∏
j=1

fj(xj) for all (x1,x2, . . .xn) ∈ Rn.

10. Suppose two buses, A and B, operate on a route. A person arrives at a certain bus
stop on this route at time 0. Let X and Y be the arrival times of buses A and B,
respectively, at this bus stop. Suppose X and Y are independent and have density
functions given, respectively, by

f1(x) =
1
a
, 0 ≤ x ≤ a, and 0 elsewhere,

f2(y) =
1
b
, 0 ≤ y ≤ b, and 0 otherwise.

What is the probability that bus A will arrive before bus B?

11. Consider two batteries, one of Brand A and the other of Brand B. Brand A batteries
have a length of life with density function

f (x) = 3λx2 exp(−λx3), x > 0, and 0 elsewhere,
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whereas Brand B batteries have a length of life with density function given by

g(x) = 3μy2 exp(−μy3), y > 0, and 0 elsewhere

Brand A and Brand B batteries operate independently and are put to a test. What
is the probability that Brand B battery will outlast Brand A? In particular, what is
the probability if λ= μ?

12. (a) Let (X,Y) have joint density f . Show that X and Y are independent if and only
if for some constant k > 0 and nonnegative functions f1 and f2

f (x,y) = kf1(x)f2(y)

for all x,y ∈ R.

(b) Let A = {fX(x) > 0}, B = {fY(y) > 0}, and fX, fY are marginal densities of X
and Y , respectively. Show that if X and Y are independent then {f > 0}=A×B.

13. If φ is the CF of X, show that the CF of Xs is real and even.

14. Let X,Y be jointly distributed with PDF f (x,y) = (1− x3y)/4 for |x|< 1, |y| < 1,
and = 0 otherwise. Show that X

d
= Y and X−Y has a symmetric distribution.

4.4 FUNCTIONS OF SEVERAL RANDOM VARIABLES

Let X1,X2, . . . ,Xn be RVs defined on a probability space (Ω,S,P). In practice we deal with
functions of X1,X2, . . . ,Xn such as X1+X2, X1−X2, X1X2, min(X1, . . . ,Xn), and so on. Are
these also RVs? If so, how do we compute their distribution given the joint distribution of
X1,X2, . . . ,Xn?

What functions of (X1,X2, . . . ,Xn) are RVs?

Theorem 1. Let g : Rn → Rm be a Borel-measurable function, that is, if B ∈ Bm, then
g−1(B) ∈ Bn. If X = (X1,X2, . . . ,Xn) is an n-dimensional RV (n ≥ 1), then g(X) is an
m-dimensional RV.

Proof. For B ∈Bm

{g(X1,X2, . . . ,Xn) ∈ B}= {(X1,X2, . . . ,Xn) ∈ g−1(B)},

and, since g−1(B) ∈Bn, it follows that {(X1,X2, . . . ,Xn) ∈ g−1(B)} ∈ S, which concludes
the proof.

In particular, if g : Rn → Rm is a continuous function, then g(X1,X2, . . . ,Xn) is an RV.
How do we compute the distribution of g(X1,X2, . . . ,Xn)? There are several ways to

go about it. We first consider the method of distribution functions. Suppose that Y =
g(X1, . . . ,Xn) is real-valued, and let y ∈ R. Then
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P{Y ≤ y}= P(g(X1, . . . ,Xn)≤ y)

=

⎧⎪⎪⎨
⎪⎪⎩

∑
{(x1,...,xn):g(x1,...,xn)≤y}

P(X1 = x1, . . . ,xn = Xn) in the discrete case

∫
{(x1,...,xn):g(x1,...,xn)≤y}

f (x1, . . . ,xn)dx1 . . .dxn in the continuous case,

where in the continuous case f is the joint PDF of (X1, . . . ,Xn).
In the continuous case we can obtain the PDF of Y = g(X1, . . . ,Xn) by differentiating

the DF P{Y ≤ y} with respect to y provided that Y is also of the continuous type. In the
discrete case it is easier to compute P{g(X1, . . . ,Xn) = y}.

We take a few examples,

Example 1. Consider the bivariate negative binomial distribution with PMF

P{X = x,Y = y}= (x+ y+ k−1)!
x!y! (k−1)!

px
1py

2(1−p1 −p2)
k,

where x,y = 0,1,2, . . . ;k ≥ 1 is an integer; p1,p2 ∈ (0,1); and p1 + p2 < 1. Let us find
the PMF of U = X + Y . We introduce an RV V = Y (see Remark 1 below) so that u =
x+ y,v = y represents a one-to-one mapping of A = {(x,y) : x,y = 0,1,2, . . .} onto the
set B = {(u,v) : v = 0,1,2, . . . ,u; u = 0,1,2, . . .} with inverse mapping x = u−v,y = v. It
follows that the joint PMF of (U,V) is given by

P{U = u,V = v}=

⎧⎨
⎩

(u+ k−1)!
(u− v)!v! (k−1)!

pu−v
1 pv

2(1−p1 −p2)
k for (u,v) ∈ B,

0 otherwise.

The marginal PMF of U is given by

P{U = u}= (u+ k−1)! (1−p1 −p2)
k

(k−1)!u!

u∑
v=0

(
u
v

)
pu−v

1 pv
2

=
(u+ k−1)! (1−p1 −p2)

k

(k−1)!u!
(p1 +p2)

u

=

(
u+ k−1

u

)
(p1 +p2)

u(1−p1 −p2)
k (u = 0,1,2, . . .).

Example 2. Let (X1,X2) have uniform distribution on the triangle {0 ≤ x1 ≤ x2 ≤ 1), that
is, (X1,X2) has joint density function

f (x1,x2) =

{
2, 0 ≤ x1 ≤ x2 ≤ 1

0, elsewhere.

Let Y = X1+X2. Then for y < 0, P(Y ≤ y) = 0, and for y > 2, P(Y ≤ y) = 1. For 0 ≤ y ≤ 2,
we have

P(Y ≤ y) = P(X1 +X2 ≤ y) =
∫ ∫

0≤x1≤x2≤1

x1+x2≤y

f (x1,x2)dx1dx2.
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y

y/2 x1

x2

1

10

(a)

1

(b)

0 1 x1

x2

y/2y−1

Fig. 1 (a) {x1+x2 ≤ y, 0< x1 ≤ x2 ≤ 1, 0< y≤ 1} and (b) {x1+x2 ≤ y, 0≤ x1 ≤ x2 ≤ 1≤ y≤ 2}.

There are two cases to consider according to whether 0 ≤ y ≤ 1 or 1 ≤ y ≤ 2 (Fig. 1a
and 1b). In the former case,

P(Y ≤ y) =
∫ y/2

x1=0

(∫ y−x1

x2=x1

2dx2

)
dx1 = 2

∫ y/2

0
(y−2x1)dx1 = y2/2

and in the latter case,

P(Y ≤ y) = 1−P(Y > y)+1−
∫ 1

x2=y/2

(∫ x2

x1=y−x2

2dx1

)
dx2

= 1−2
∫ 1

y/2
(2x2 − y)dx1 = 1− (y−2)2

2
.
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Hence the density function of Y is given by

fY(y) =

⎧⎪⎨
⎪⎩

y, 0 ≤ y ≤ 1

2− y, 1 ≤ y ≤ 2

0, elsewhere.

The method of distribution functions can also be used in the case when g takes values
in Rm, 1 ≤ m ≤ n, but the integration becomes more involved.

Example 3. Let X1 be the time that a customer takes from getting in line at a service desk
in a bank to completion of service, and let X2 be the time she waits in line before she
reaches the service desk. Then X1 ≥ X2 and X1 −X2 is the service time of the customer.
Suppose the joint density of (X1,X2) is given by

f (x1,x2) =

{
e−x1 , 0 ≤ x2 ≤ x1 <∞
0, elsewhere.

Let Y1 = X1 +X2 and Y2 = X1 −X2. Then the joint distribution of (Y1,Y2) is given by

P(Y1 ≤ y1, Y2 ≤ y2) =

∫ ∫
A

f (x1,x2)dx1dx2,

where A = {(x1,x2) : x1 + x2 ≤ y1, x1 − x2 ≤ y2, 0 ≤ x2 ≤ x1 < ∞}. Clearly, x1 + x2 ≥
x1 − x2 so that the set A is as shown in Fig. 2. It follows that

x1

x2

1

10

Fig. 2 {x1 + x2 ≤ y1, x1 − x2 ≤ y2, 0 ≤ x2 ≤ x1 <∞}.
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P(Y1 ≤ y1, y2 ≤ y2) =

∫ (y1−y2)/2

x2=0

(∫ x2+y2

x1=x2

e−x1 dx1

)
dx2

+

∫ y1/2

x2=(y1−y2)/2

(∫ y1−x2

x1=x2

e−x1 dx1

)
dx2

=

∫ (y1−y2)/2

0
e−x2(1− e−y2)dx2

+

∫ y1/2

(y1−y2)/2
(e−x2 − e−y1+x2)dx2

= (1− e−y2)(1− e−(y1−y2)/2)

+(e−(y1−y2)/2 − e−y1/2)− e−y1(ey1/2 − e(y1−y2)/2)

= 1− e−y2 −2e−y1/2 +2e−(y1+y2)/2.

Hence the joint density of Y1,Y2 is given by

fY1,Y2(y1,y2) =

⎧⎪⎨
⎪⎩

1
2 e−(y1+y2)/2, 0 ≤ y2 ≤ y1 <∞

0, elsewhere.

The marginal densities of Y1,Y2 are easily obtained as

fy1(y1) = e−y1 for y1 ≥ 0, and 0 elsewhere;

fy2(y2) = e−y2/2(1− e−y2/2), for y2 ≥ 0, and 0 elsewhere.

We next consider the method of transformations. Let (X1, . . . ,Xn) be jointly distributed
with continuous PDF f (x1,x2, . . . ,xn), and let y= g(x1,x2, . . . ,xn) = (y1,y2, . . . ,yn), where

yi = gi(x1,x2, . . . ,xn), i = 1,2, . . . ,n

be a mapping of Rn to Rn. Then

P{(Y1,Y2, . . . ,Yn) ∈ B}= P{(X1,X2, . . . ,Xn) ∈ g−1(B)}

=

∫
g−1(B)

f (x1,x2, . . . ,xn)

n∏
i=1

dxi,

where g−1(B) = {x = (x1,x2, . . . ,xn) ∈ Rn : g(x) ∈ B}. Let us choose B to be the
n-dimensional interval

B = By = {(y′1,y′2, . . . ,y′n) : −∞< y′i ≤ yi, i = 1,2, . . . ,n}.
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Then the joint DF of Y is given by

P{Y ∈ By}= GY(y) = P{g1(X)≤ y1,g2(X)≤ y2, . . . ,gn(X)≤ yn}

=

∫
· · ·

g−1(By)

∫
f (x1,x2, . . . ,xn)

n∏
i=1

dxi,

and (if GY is absolutely continuous) the PDF of Y is given by

w(y) =
∂nGY(y)

∂y1∂y2 · · ·∂yn

at every continuity point y of w. Under certain conditions it is possible to write w in terms
of f by making a change of variable in the multiple integral.

Theorem 2. Let (X1,X2, . . . ,Xn) be an n-dimensional RV of the continuous type with PDF
f (x1,x2, . . . ,xn).

(a) Let

y1 = g1(x1,x2, . . . ,xn),

y2 = g2(x1,x2, . . . ,xn),
...

...

yn = gn(x1,x2, . . . ,xn),

be a one-to-one mapping of Rn into itself, that is, there exists the inverse transfor-
mation

x1 = h1(y1,y2, . . . ,yn), x2 = h2(y1,y2, . . . ,yn), . . . ,

xn = hn(y1,y2, . . . ,yn)

defined over the range of the transformation.

(b) Assume that both the mapping and its inverse are continuous.

(c) Assume that the partial derivatives

∂xi

∂yj
, 1 ≤ i ≤ n,1 ≤ j ≤ n,

exist and are continuous.

(d) Assume that the Jacobian J of the inverse transformation

J =
∂(x1, . . . ,xn)

∂(y1, . . . ,yn)
=

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yn

...
...

...
∂xn
∂y1

∂xn
∂y2

. . . ∂xn
∂yn

is different from 0 for (y1,y2, . . . ,yn) in the range of the transformation.
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Then (Y1,Y2, . . . ,Yn) has a joint absolutely continuous DF with PDF given by

w(y1,y2, . . . ,yn) = |J|f (h1(y1, . . .yn), . . . ,hn(y1, . . . ,yn)). (1)

Proof. For (y1,y2, . . . ,yn) ∈ Rn, let

B = {(y′1,y′2, . . . ,y′n) ∈ Rn : −∞< y′i ≤ yi, i = 1,2, . . . ,n}.

Then

g−1(B) = {x ∈ Rn : g(x) ∈ B}= {(x1,x2, . . . ,xn) : gi(x)≤ yi, i = 1,2, . . . ,n}

and

GY(y) = P{Y ∈ B}= P{X ∈ g−1(B)}

=

∫
· · ·

g−1(B)

∫
f (x1,x2, . . . ,xn)dx1 dx2 · · ·dxn

=

∫ y1

−∞
· · ·
∫ yn

−∞
f (h1(y), . . . ,hn(y))

∣∣∣∣ ∂(x1,x2, . . . ,xn)

∂(y1,y2, . . . ,yn)

∣∣∣∣ dy1 · · ·dyn.

Result (1) now follows on differentiation of DF GY.

Remark 1. In actual applications we will not know the mapping from x1,x2, . . . ,xn to
y1,y2, . . . ,yn completely, but one or more of the functions gi will be known. If only
k,1 ≤ k < n, of the gi’s are known, we introduce arbitrarily n− k functions such that the
conditions of the theorem are satisfied. To find the joint marginal density of these k vari-
ables we simply integrate the w function over all the n− k variables that were arbitrarily
introduced.

Remark 2. An analog of Theorem 2.5.4 holds, which we state without proof.
Let X = (X1,X2, . . . ,Xn) be an RV of the continuous type with joint PDF f , and let

yi = gi(x1,x2, . . . ,xn), i = 1,2, . . . ,n, be a mapping of Rn into itself. Suppose that for each
y the transformation g has a finite number k = k(y) of inverses. Suppose further that Rn

can be partitioned into k disjoint sets A1,A2, . . . ,Ak, such that the transformation g from
Ai(i = 1,2, . . . ,n) into Rn is one-to-one with inverse transformation

x1 = h1i(y1,y2, . . . ,yn), . . . , xn = hni(y1,y2, . . . ,yn), i = 1,2, . . . ,k.

Suppose that the first partial derivatives are continuous and that each Jacobian

Ji =

∂h1i
∂y1

∂h1i
∂y2

· · · ∂h1i
∂yn

∂h2i
∂y1

dh2i
∂y2

· · · ∂h2i
∂yn

...
...

...
dhni
dy1

∂hni
∂y2

· · · ∂hni
∂yn
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is different from 0 in the range of the transformation. Then the joint PDF of Y is given by

w(y1,y2, . . . ,yn) =
k∑

i=1

|Ji|f (h1i(y1,y2, . . . ,yn), . . . ,hni(y1,y2, . . . ,yn)).

Example 4. Let X1,X2,X3 be iid RVs with common exponential density function

f (x) =

{
e−x if x > 0,

0 otherwise.

Also, let

Y1 = X1 +X2 +X3, Y2 =
X1 +X2

X1 +X2 +X3
, Y3 =

X1

X1 +X2
.

Then

x1 = y1y2y3,x2 = y1y2 − x1 = y1y2(1− y3) and

x3 = y1 − y1y2 = y1(1− y2).

The Jacobian of transformation is given by

J =

y2y3 y1y3 y1y2

y2(1− y3) y1(1− y3) −y1y2

1− y2 −y1 0

=−y2
1y2.

Note that 0 < y1 < ∞, 0 < y2 < 1, and 0 < y3 < 1. Thus the joint PDF of Y1,Y2,Y3 is
given by

w(y1,y2,y3) = y2
1y2e−y1

= (2y2)

(
1
2

y2
1e−y1

)
, 0 < y1 <∞,0 < y2,y3 < 1.

It follows that Y1, Y2, and Y3 are independent.

Example 5. Let X1,X2 be independent RVs with common density given by

f (x) =

{
1 if 0 < x < 1,

0 otherwise.

Let Y1 = X1 +X2,Y2 = X1 −X2. Then the Jacobian of the transformation is given by

J =
1
2

1
2

1
2 − 1

2

=−1
2
,
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0
1 2

1

–1

y1

y2

Fig. 3 {0 < y1 + y2 < 2, 0 < y1 − y2 < 2}.

and the joint density of Y1,Y2 (Fig. 3) is given by

fY1,Y2(y1,y2) =
1
2

f

(
y1 + y2

2

)
f

(
y1 − y2

2

)

if 0 <
y1 + y2

2
< 1,0 <

y1 − y2

2
< 1,

=
1
2

if (y1,y2) ∈ {0 < y1 + y2 < 2,0 < y1 − y2 < 2}.

The marginal PDFs of Y1 and Y2 are given by

fY1(y1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ y1

−y1

1
2

dy2 = y1, 0 < y1 ≤ 1,

∫ 2−y1

y1−2

1
2

dy2 = 2− y1, 1 < y1 < 2,

0, otherwise;

fY2(y2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ y2+2
−y2

1
2

dy1 = y2 +1, −1 < y2 ≤ 0,

∫ 2−y2

y2

1
2

dy1 = 1− y2, 0 < y2 < 1,

0, otherwise.

Example 6. Let X1,X2,X3 be iid RVs with common PDF

f (x) =
1√
2π

e−x2/2, −∞< x <∞.
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Let Y1 = (X1 −X2)/
√

2,Y2 = (X1 +X2 −2X3)/
√

6, and Y3 = (X1 +X2 +X3)/
√

3. Then

x1 =
y1√

2
+

y2√
6
+

y3√
3
,

x2 =− y1√
2
+

y2√
6
+

y3√
3

x3 =−
√

2y2√
3

+
y3√

3
.

The Jacobian of transformation is given by

J =

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0
−
√

2√
3

1√
3

= 1.

The joint PDF of X1,X2,X3 is given by

g(x1,x2,x3) =
1

(
√

2π)3
exp

{
−x2

1 + x2
2 + x2

3

2

}
, x1,x2,x3 ∈ R.

It is easily checked that

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3,

so that the joint PDF of Y1,Y2,Y3 is given by

w(y1,y2,y3) =
1

(
√

2π)3
exp

{
−y2

1 + y2
2 + y2

3

2

}
.

It follows that Y1,Y2,Y3 are also iid RVs with common PDF f .

In Example 6 the transformation used is orthogonal and is known as Helmert’s trans-
formation. In fact, we will show in Section 6.5 that under orthogonal transformations iid
RVs with PDF f defined above are transformed into iid RVs with the same PDF.

It is easily verified that

y2
1 + y2

2 =
3∑

j=1

(
xj −

x1 + x2 + x3

3

)2

.

We have therefore proved that (X1 +X2 +X3) is independent of
∑3

j=1{Xj − [(X1 +X2 +

X3)/3]}2. This is a very important result in mathematical statistics, and we will return to
it in Section 7.7.
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Example 7. Let (X,Y) be a bivariate normal RV with joint PDF

f (x,y) =
1

2πσ1σ2(1−ρ2)1/2

·exp
{
− 1

2(1−ρ2)

[
(x−μ1)

2

σ2
1

− 2ρ(x−μ1)(y−μ2)

σ1σ2
+

(y−μ2)
2

σ2
2

]}
,

−∞< x <∞, −∞< y <∞; μ1 ∈ R,μ2 ∈ R;

and σ1 > 0,σ2 > 0, |ρ|< 1.

Let

U1 =
√

X2 +Y2, U2 =
X
Y
.

For u1 > 0, √
x2 + y2 = u1 and

x
y
= u2

have two solutions:

x1 =
u1u2√
1+u2

2

, y1 =
u1√

1+u2
2

, and x2 =−x1, y2 =−y1

for any u2 ∈ R. The Jacobians are given by

J1 = J2 =

u2√
1+u2

2

u1

(1+u2
2)

3/2

1√
1+u2

2

− u1u2

(1+u2
2)

3/2

=− u1

1+u2
2

.

It follows from the result in Remark 2 that the joint PDF of (U1,U2) is given by

w(u1,u2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u1

1+u2
2

[
f

(
u1u2√
1+u2

2

,
u1√

1+u2
2

)

+ f

(
−u1u2√

1+u2
2

,
−u1√
1+u2

2

)]
if u1 > 0,u2 ∈ R,

0 otherwise.

In the special case where μ1 = μ2 = 0, ρ= 0, and σ1 = σ2 = σ, we have

f (x,y) =
1

2πσ2
e−[(x2+y2)/2σ2]

so that X and Y are independent. Moreover,

f (x,y) = f (−x,−y),
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and it follows that when X and Y are independent

w(u1,u2) =

⎧⎨
⎩

1
2πσ2

2u1

1+u2
2

e−u2
1/2σ2

, u1 > 0, −∞< u2 <∞,

0, otherwise.

Since

w(u1,u2) =
1

π(1+u2
2)

u1

σ2
e−u2

1/2σ2

,

it follows that U1 and U2 are independent with marginal PDFs given by

w1(u1) =

{ u1

σ2
e−u2

1/2σ2
, u1 > 0,

0, u1 ≤ 0

and

w2(u2) =
1

π(1+u2
2)
, −∞< u2 <∞,

respectively.

An important application of the result in Remark 2 will appear in Theorem 4.7.2.

Theorem 3. Let (X,Y) be an RV of the continuous type with PDF f . Let

Z = X+Y, U = X−Y, V = XY;

and let W = X/Y . Then the PDFs of Z, U, V , and W are, respectively, given by

fZ(z) =
∫ ∞

−∞
f (x,z− x)dx, (2)

fU(u) =
∫ ∞

−∞
f (u+ y,y)dy, (3)

fV(v) =
∫ ∞

−∞
f
(

x,
v
x

) 1
|x| dx, (4)

fW(w) =
∫ ∞

−∞
f (xw,x)|x|dx. (5)

Proof. The proof is left as an exercise.
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Corollary. If X and Y are independent with PDFs f1 and f2, respectively, then

fZ(z) =
∫ ∞

−∞
f1(x)f2(z− x)dx, (6)

fU(u) =
∫ ∞

−∞
f1(u+ y)f2(y)dy, (7)

fV(v) =
∫ ∞

−∞
f1(x)f2

(v
x

) 1
|x| dx, (8)

fW(w) =
∫ ∞

−∞
f1(xw)f2(x)|x|dx. (9)

Remark 3. Let F and G be two absolutely continuous DFs; then

H(x) =
∫ ∞

−∞
F(x− y)G′(y)dy =

∫ ∞

−∞
G(x− y)F′(y)dy

is also an absolutely continuous DF with PDF

H′(x) =
∫ ∞

−∞
F′(x− y)G′(y)dy =

∫ ∞

−∞
G′(x− y)F′(y)dy.

If

F(x) =
∑

k

pkε(x− xk) and G(x) =
∑

j

qjε(x− yj)

are two DFs, then

H(x) =
∑

k

∑
j

pkqjε(x− xk − yj)

is also a DF of an RV of the discrete type. The DF H is called the convolution of F and G,
and we write H = F ∗G. Clearly, the operation is commutative and associative; that is, if
F1,F2,F3 are DFs, F1∗F2 =F2∗F1 and (F1∗F2)∗F3 =F1∗(F2∗F3). In this terminology,
if X and Y are independent RVs with DFs F and G, respectively, X+Y has the convolution
DF H = F ∗G. Extension to an arbitrary number of independent RVs is obvious.

Finally, we consider a technique based on MGF or CF which can be used in certain
situations to determine the distribution of a function g(X1,X2, . . . ,Xn) of X1,X2, . . . ,Xn.

Let (X1,X2, . . . ,Xn) be an n-variate RV, and g be a Borel-measurable function from Rn

to R1.
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Definition 1. If (X1,X2, . . . ,Xn) is discrete type and
∑

x1,...,xn
|g(x1,x2, . . . ,xn)|P{X1 =

x1,X2 = x2, . . . ,Xn = xn}<∞, then the series

Eg(X1,X2, . . . ,Xn) =
∑

x1,...,xn

g(x1,x2, . . . ,xn)P{X1 = x1,X2 = x2, . . . ,Xn = xn}

is called the expected value of g(X1,X2, . . . ,Xn). If (X1,X2, . . . ,Xn) is a continuous type
RV with joint PDF f , and if

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
|g(x1,x2, . . . ,xn)|f (x1,x2, . . . ,xn)

n∏
i=1

dxi <∞,

then

Eg(X1,X2, . . . ,Xn) =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1,x2, . . . ,xn)f (x1,x2, . . . ,xn)

n∏
i=1

dxi

is called the expected value of g(X1,X2, . . . ,Xn).

Let Y = g(X1,X2, . . . ,Xn), and let h(y) be its PDF. If E|Y|<∞ then

EY =

∫ ∞

−∞
yh(y)dy.

An analog of Theorem 3.2.1 holds. That is,

∫ ∞

−∞
yh(y)dy =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x1,x2, . . . ,xn)f (x1,x2, . . . ,xn)

n∏
i=1

dxi

in the sense that if either integral exists so does the other and the two are equal. The result
also holds in the discrete case.

Some special functions of interest are
∑n

j=1 xj,
∏n

j=1 xkj

j , where k1,k2, . . . ,kn are non-

negative integers, e
∑n

j=1 tjxj , where t1, t2, . . . , tn are real numbers, and ei
∑n

j=1 tjxj , where
i =

√
−1.

Definition 2. Let X1,X2, . . . ,Xn be jointly distributed. If Ee
∑n

j=1 tjXj exists for |tj| ≤ hj,
j = 1,2, . . . ,n, for some hj > 0, j = 1,2, . . . ,n, we write

M(t1, t2, . . . , tn) = E
(
et1X1+t2X2+···+tnXn

)
(10)

and call it the MGF of the joint distribution of (X1,X2, . . . ,Xn) or, simply, the MGF of
(X1,X2, . . . ,Xn).

Definition 3. Let t1, t2, . . . , tn be real numbers and i =
√
−1. Then the CF of

(X1,X2, . . . ,Xn) is defined by
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φ(t1, t2, . . . , tn) = E

⎧⎨
⎩exp

⎛
⎝i

n∑
j=1

tjXj

⎞
⎠
⎫⎬
⎭

= E

⎧⎨
⎩cos

⎛
⎝ n∑

j=1

tjXj

⎞
⎠
⎫⎬
⎭+ iE

⎧⎨
⎩sin

⎛
⎝ n∑

j=1

tjXj

⎞
⎠
⎫⎬
⎭ (11)

As in the univariate case φ(t1, t2, . . . , tn) always exists.

We will mostly deal with MGF even though the condition that it exist for |tj| ≤ hj,
j = 1,2, . . . ,n restricts its application considerably. The multivariate MGF (CF) has prop-
erties similar to the univariate MGF discussed earlier. We state some of these without
proof. For notational convenience we restrict ourselves to the bivariate case.

Theorem 4. The MGF M(t1, t2) uniquely determines the joint distribution of (X,Y), and
conversely, if the MGF exists it is unique.

Corollary. The MGF M(t1, t2) completely determines the marginal distributions of X and
Y . Indeed,

M(t1,0) = E(et1X) = MX(t1), (12)

M(0, t2) = E(et2Y) = MY(t2). (13)

Theorem 5. If M(t1, t2) exists, the moments of all orders of (X,Y) exist and may be
obtained from

∂m+nM(t1, t2)
∂tm

1 ∂tn
2

∣∣∣∣
t1=t2=0

= E(XmYn). (14)

Thus,

∂M(0,0)
∂t1

= EX,
∂M(0,0)

∂t2
= EY,

∂2M(0,0)
∂t2

1

= EX2,
∂2M(0,0)

∂t2
2

= EY2,

∂2M(0,0)
∂t1∂t2

= E(XY),

and so on.

A formal definition of moments in the multivariate case will be given in Section 4.5.

Theorem 6. X and Y are independent RVs if and only if

M(t1, t2) = M(t1,0)M(0, t2) for all t1, t2 ∈ R. (15)

Proof. Let X and Y be independent. Then,

M(t1, t2) = E{et1X+t2Y}= E(et1X)E(et2Y) = M(t1,0)M(0, t2).
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Conversely, if

M(t1, t2) = M(t1,0)M(0, t2),

then, in the continuous case,∫∫
et1x+t2yf (x,y)dxdy =

[∫
et1xf1(x)dx

][∫
et2yf2(y)dy

]
,

that is, ∫∫
et1x+t2yf (x,y)dxdy =

∫∫
et1x+t2yf1(x)f2(y)dxdy.

By the uniqueness of the MGF (Theorem 4) we must have

f (x,y) = f1(x)f2(y) for all (x,y) ∈ R2.

It follows that X and Y are independent. A similar proof is given in the case where (X,Y)
is of the discrete type.

The MGF technique uses the uniqueness property of Theorem 4. In order to find the
distribution (DF, PDF, or PMF) of Y = g(X1,X2, . . . ,Xn) we compute the MGF of Y using
definition. If this MGF is one of the known kind then Y must have this kind of distribution.
Although the technique applies to the case when Y is an m-dimensional RV, 1 ≤ k ≤ n, we
will mostly use it for the m = 1 case.

Example 8. Let us first consider a simple case when X is normal PDF

f (x) =
1√
2π

e−x2/2, −∞< x <−∞.

Let Y = X2. Then

MY(s) = EesX2

=
1√
2π

∫ ∞

−∞
e

1
2 (1−2s)x2

dx

=
1√

1−2s
, for x < 1/2.

It follows (see Section 5.3 and also Example 2.5.7) that Y has a chi-square PDF

w(y) =
(e−y/2)
√

yπ
, y > 0.

Example 9. Suppose X1 and X2 are independent with common PDF f of Example 8. Let
Y1 = X1 −X2. There are three equivalent ways to use MGF technique here. Let Y2 = X2.
Then rather than compute

M(s1,s2) = Ees1Y1+s2Y2 ,
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it is simpler to recognize that Y1 is univariate so

MY1(s) = Ees(X1−X2)

= (EesX1)(Ee−sX2)

= es2/2es2/2 = es2

.

It follows that Y1 has PDF

f (x) =
1√
4π

e−s2/4, −∞< x <∞.

Note that MY1(s) = M(s,0).
Let Y3 = X1 +X2. Let us find the joint distribution of Y1and Y3. Indeed

E
(
es1Y1+s2Y3

)
= E
(

e(s1+s2)X1 · e(s1−s2)X2

)
= E
(

e(s1+s2)X1

)
E
(

e(s1−s2)X2

)
= e(s1+s2)

2/2 · e(s1−s2)
2/2 = es2

1 · es2
2

and it follows that Y1 and Y3 are independent RVs with common PDF f defined above.

The following result has many applications as we will see. Example 9 is a special case.

Theorem 7. Let X1,X2, . . . ,Xn be independent RVs with respective MGFs Mi(s),
i = 1,2, . . . ,n. Then the MGF of Y =

∑n
i=1 aiXi for real numbers a1,a2, . . . ,an is given by

MY(s) =
n∏

i=1

Mi(ais).

Proof. If Mi exists for |s| ≤ hi, hi > 0, then MY exists for |s| ≤min(h1, . . . ,hn) and

MY(s) = Ees
∑n

i=1 aiXi =

n∏
i=1

EesaiXi =

n∏
i=1

Mi(ais).

Corollary. If Xi’s are iid, then the MGF of Y =
∑n

1 Xi is given by MY(s) = [M(s)]n.

Remark 4. The converse of Theorem 7 does not hold. We leave the reader to construct an
example illustrating this fact.

Example 10. Let X1,X2, . . . ,Xm be iid RVs with common PMF

P{X = k}=
(

n
k

)
pk(1−p)n−k, k = 0,1,2, . . . ,n; 0 < p < 1.
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Then the MGF of Xi is given by

M(t) = (1−p+pet)n.

It follows that the MGF of Sm = X1 +X2 + · · ·+Xm is

MSm(t) =
m∏
1

(1−p+pet)n

= (1−p+pet)nm,

and we see that Sm has the PMF

P{Sm = s}=
(

mn
s

)
ps(1−p)mn−s, s = 0,1,2, . . . ,mn.

From these examples it is clear that to use this technique effectively one must be able
to recognize the MGF of the function under consideration. In Chapter 5 we will study a
number of commonly occurring probability distributions and derive their MGFs (whenever
they exist). We will have occasion to use Theorem 7 quite frequently.

For integer-valued RVs one can sometimes use PGFs to compute the distribution of
certain functions of a multiple RV.

We emphasize the fact that a CF always exists and analogs of Theorems 4–7 can be
stated in terms of CFs.

PROBLEMS 4.4

1. Let F be a DF and ε be a positive real number. Show that

Ψ1(x) =
1
ε

∫ x+ε

x
F(x)dx

and

Ψ2(x) =
1
2ε

∫ x+ε

x−ε

F(x)dx

are also distribution functions.

2. Let X,Y be iid RVs with common PDF

f (x) =

{
e−x if x > 0,

0 if x ≤ 0.

(a) Find the PDF of RVs X + Y , X − Y , XY , X/Y , min{X,Y}, max{X,Y},
min{X,Y}/max{X,Y}, and X/(X+Y).
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(b) Let U = X +Y and V = X −Y . Find the conditional PDF of V , given U = u,
for some fixed u > 0.

(c) Show that U and Z = X/(X+Y) are independent.

3. Let X and Y be independent RVs defined on the space (Ω,S,P). Let X be uniformly
distributed on (−a,a),a > 0, and Y be an RV of the continuous type with density f ,
where f is continuous and positive on R. Let F be the DF of Y . If u0 ∈ (−a,a) is a
fixed number, show that

fY|X+Y(y | u0) =

⎧⎨
⎩

f (y)
F(u0 +a)−F(u0 −a)

if u0 −a < y < u0 +a,

0 otherwise,

where fY|X+Y(y | u0) is the conditional density function of Y , given X+Y = u0.

4. Let X and Y be iid RVs with common PDF

f (x) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise.

Find the PDFs of RVs XY , X/Y , min{X,Y}, max{X,Y}, min{X,Y}/max{X,Y}.

5. Let X1,X2,X3 be iid RVs with common density function

f (x) =

{
1 if 0 ≤ x ≤ 1;

0 otherwise.

Show that the PDF of U = X1 +X2 +X3 is given by

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u2

2
, 0 ≤ u < 1,

3u−u2 − 3
2
, 1 ≤ u < 2,

(u−3)2

2
, 2 ≤ u ≤ 3,

0, elsewhere.

An extension to the n-variate case holds.

6. Let X and Y be independent RVs with common geometric PMF

P{X = k}= π(1−π)k, k = 0,1,2, . . . ; 0 < π < 1.

Also, let M = max{X,Y}. Find the joint distribution of M and X, the marginal
distribution of M, and the conditional distribution of X, given M.

7. Let X be a nonnegative RV of the continuous type. The integral part, Y , of X is dis-
tributed with PMF P{Y = k}= λke−λ/k!, k = 0,1,2, . . . ,λ > 0; and the fractional
part, Z, of X has PDF fz(z) = 1 if 0 ≤ z ≤ 1, and = 0 otherwise. Find the PDF of
X, assuming that Y and Z are independent.



142 MULTIPLE RANDOM VARIABLES

8. Let X and Y be independent RVs. If at least one of X and Y is of the continuous
type, show that X+Y is also continuous. What if X and Y are not independent?

9. Let X and Y be independent integral RVs. Show that

P(t) = PX(t)PY(t),

where P, PX , and PY , respectively, are the PGFs of X+Y , X, and Y .

10. Let X and Y be independent nonnegative RVs of the continuous type with PDFs f
and g, respectively. Let f (x) = e−x if x > 0, and = 0 if x ≤ 0, and let g be arbitrary.
Show that the MGF M(t) of Y , which is assumed to exist, has the property that the
DF of X/Y is 1−M(−t).

11. Let X,Y,Z have the joint PDF

f (x,y,z) =

{
6(1+ x+ y+ z)−4 if 0 < x,0 < y,0 < z,

0 otherwise.

Find the PDF of U = X+Y +Z.

12. Let X and Y be iid RVs with common PDF

f (x) =

{
(x
√

2π)−1e−(1/2)(log x)2
, x > 0,

0, x ≤ 0.

Find the PDF of Z = XY .

13. Let X and Y be iid RVs with common PDF f defined in Example 8. Find the joint
PDF of U and V in the following cases:

(a) U =
√

X2 +Y2, V = tan−1(X/Y),−(π/2)< V ≤ (π/2).

(b) U = (X+Y)/2, V = (X−Y)2/2.

14. Construct an example to show that even when the MGF of X+Y can be written as
a product of the MGF of X and the MGF of Y,X and Y need not be independent.

15. Let X1,X2, . . . ,Xn be iid with common PDF

f (x) =
1

(b−a)
, a < x < b, = 0 otherwise.

Using the distribution function technique show that

(a) The joint PDF of X(n) =max(X1,X2, . . . ,Xn), and X(1) =min(X1,X2, . . . ,Xn)
is given by

u(x,y) =
n(n−1)(x− y)n−2

(b−a)n
, a < y < x < b,

and = 0 otherwise.

(b) The PDF of X(n) is given by

g(z) =
n(z−a)n

(b−a)n
, a < z < b, = 0 otherwise
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and that of X(1) by

h(z) =
n(b− z)n−1

(b−a)n
, a < z < b, = 0 otherwise.

16. Let X1,X2 be iid with common Poisson PMF

P(Xi = x) = e−λλ
x

x!
, x = 0,1,2, . . . , i = 1,2,

where λ > 0 is a constant. Let X(2) = max(X1,X2) and X(1) = min(X1,X2). Find
the PMF of X(2).

17. Let X have the binomial PMF

P(X = k) =

(
n

k

)
pk(1−p)n−k, k = 0,1, . . . ,n; 0 < p < 1.

Let Y be independent of X and Y
d
= X. Find PMF of U = X+Y and W = X−Y .

4.5 COVARIANCE, CORRELATION AND MOMENTS

Let X and Y be jointly distributed on (Ω,S,P). In Section 4.4 we defined Eg(X,Y) for
Borel functions g on R2. Functions of the form g(x,y) = xjyk where j and k are nonnegative
integers are of interest in probability and statistics.

Definition 1. If E|XjYk|<∞ for nonnegative integers j and k, we call E(XjYk) a moment
of order (j+ k) of (X,Y) and write

mjk = E(XjYk). (1)

Clearly,

m10 = EX, m01 = EY

m20 = EX2, m11 = EXY, m02 = EY2.

}
(2)

Definition 2. If E
∣∣(X−EX)j(Y −EY)k

∣∣ < ∞ for nonnegative integers j and k, we call
E
{
(X−EX)j(Y −EY)k

}
a central moment of order (j+ k) and write

μjk = E
{
(X−EX)j(Y −EY)k

}
. (3)

Clearly,

μ10 = μ01 = 0, μ20 = var(X), μ02 = var(Y),

μ11 = E{(X−m10)(Y −m01)} .

}
(4)

We see easily that

μ11 = E(XY)−EX EY. (5)
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Note that if X and Y increase (or decrease) together then (X−EX)(Y−EY) should be pos-
itive, whereas if X decreases while Y increases (and conversely) then the product should be
negative. Hence the average value of (X−EX)(Y −EY), namely μ11, provides a measure
of association or joint variation between X and Y .

Definition 3. If E{(X−EX)(Y −EY)} exists, we call it the covariance between X and Y
and write

cov(X,Y) = E{(X−EX)(Y −EY)}= E(XY)−EXEY. (6)

Recall (Theorem 3.2.8) that E{Y − a}2 is minimized when we choose a = EY so that
EY may be interpreted as the best constant predictor of Y . If instead, we choose to predict
Y by a linear function of X, say aX+b, and measure the error in this prediction by E{Y −
aX − b}2, then we should choose a and b to minimize this so-called mean square error.
Clearly, E(Y −aX−b)2 is minimized, for any a, by choosing b = E(Y −aX) = EY−aEX.
With this choice of b, we find a such that

E(Y −aX−b)2 = E{(Y −EY)−a(X−EX)}2

= σ2
Y −2aμ11 +a2σ2

X

is minimum. An easy computation shows that the minimum occurs if we choose

a =
μ11

σ2
X

, (7)

provided σ2
X > 0. Moreover,

min
a,b

E(Y −aX−b)2 =min
a

{
σ2

Y −2aμ11 +a2σ2
X

}
=

σ2
Y −μ2

11

σ2
X

= σ2
Y

{
1−
[

μ11

(σXσY)

]2
}
. (8)

Let us write

ρ=
μ11

σXσY
. (9)

Then (8) shows that predicting Y by a linear function of X reduces the prediction error
from σ2

Y to σ2
Y(1−ρ2). We may therefore think of ρ as a measure of the linear dependence

between RVs X and Y .

Definition 4. If EX2, EY2 exist, we define the correlation coefficient between X and Y as

ρ=
cov(X,Y)

SD(X)SD(Y)
=

EXY −EXEY√
EX2 − (EX)2

√
EY2 − (EY)2

, (10)

where SD(X) denotes the standard deviation of RV X.
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We note that for any two real numbers a and b

|ab| ≤ a2 +b2

2
,

so that E|XY|<∞ if EX2 <∞ and EY2 <∞.

Definition 5. We say that RVs X and Y are uncorrelated if ρ = 0, or equivalently,
cov(X,Y) = 0.

If X and Y are independent, then from (5) cov(X,Y) = 0, and X and Y are uncorrelated.
If, however, ρ= 0 then X and Y may not necessarily be independent.

Example 1. Let U and V be two RVs with common mean and common variance. Let
X = U+V and Y = U−V . Then

cov(X,Y) = E(U2 −V2)−E(U+V)E(U−V) = 0

so that X and Y are uncorrelated but not necessarily independent. See Example 4.4.9.

Let us now study some properties of the correlation coefficient. From the definition we
see that ρ (and also cov(X,Y)) is symmetric in X and Y .

Theorem 1.

(a) The correlation coefficient ρ between two RVs X and Y satisfies

|ρ| ≤ 1. (11)

(b) The equality |ρ|= 1 holds if and only if there exist constants a �= 0 and b such that
P{aX+b = 1}= 1.

Proof. From (8) since E(Y −aX−b)2 ≥ 0, we must have 1−ρ2 ≥ 0, or equivalently, (11)
holds.

Equality in (11) holds if and only if ρ2 = 1, or equivalently, E(Y −aX−b)2 = 0 holds.
This implies and is implied by P(Y = aX+b) = 1. Here a �= 0.

Remark 1. From (7) and (9) we note that the signs of a and ρ are the same so if ρ= 1 then
P(Y = aX+b) where a > 0, and if ρ=−1 then a < 0.

Theorem 2. Let EX2 <∞, EY2 <∞, and let U = aX+b, V = cY +d. Then,

ρX,Y =±ρU,V ,

where ρX,Y and ρU,V , respectively, are the correlation coefficients between X and Y and U
and V .

Proof. The proof is simple and is left as an exercise.
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Example 2. Let X,Y be identically distributed with common PMF

P{X = k}= 1
N
, k = 1,2, . . . ,N(N > 1).

Then

EX = EY =
N +1

2
, EX2 = EY2 =

(N +1)(2N +1)
6

,

so that

var(X) = var(Y) =
N2 −1

12
.

Also,

E(XY) =
1
2
{EX2 +EY2 −E(X−Y)2}

=
(N +1)(2N +1)

6
− E(X−Y)2

2
.

Thus,

cov(X,Y) =
(N +1)(2N +1)

6
− E(X−Y)2

2
− (N +1)2

4

=
(N +1)(N −1)

12
− 1

2
E(X−Y)2

and

ρX,Y =
(N2 −1)/12−E(X−Y)2/2

(N2 −1)/12

= 1− 6E(X−Y)2

N2 −1
.

If P{X = Y}= 1, then ρ= 1, and conversely. If P{Y = N +1−X}= 1, then

E(X−Y)2 = E(2X−N −1)2

= 4
(N +1)(2N +1)

6
−4

(N +1)2

2
+(N +1)2,

and it follows that ρXY = −1. Conversely, if ρX,Y = −1, from Remark 1 it follows that
Y =−aX+b with probability 1 for some a > 0 and some real number b. To find a and b,
we note that EY = −aEX + b so that b = [(N + 1)/2](1+ a). Also EY2 = E(b− aX)2,
which yields

(1−a2)EX2 +2abEX−b2 = 0.

Substituting for b in terms of a and the values of EX2 and EX, we see that a2 = 1, so that
a = 1. Hence, b = N +1, and it follows that Y = N +1−X with probability 1.
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Example 3. Let (X,Y) be jointly distributed with density function

f (x,y) =

{
x+ y, 0 < x < 1,0 < y < 1.

0, otherwise.

Then

EXlYm =

∫ 1

0

∫ 1

0
xlym(x+ y)dxdy

=

∫ 1

0

∫ 1

0
xl+1ym dxdy+

∫ 1

0

∫ 1

0
xlym+1 dxdy

=
1

(l+2)(m+1)
+

1
(l+1)(m+2)

,

where l and m are positive integers. Thus

EX = EY =
7
12

,

EX2 = EY2 =
5
12

,

var(X) = var(Y) =
5
12

− 49
144

=
11
144

,

cov(X,Y) =
1
3
− 49

144
=− 1

144
, ρ=−1/11.

Theorem 3. Let X1,X2, . . . ,Xn be RVs such that E|Xi| < ∞, i = 1,2, . . . ,n. Let
a1,a2, . . . ,an be real numbers, and write

S = a1X1 +a2X2 + · · ·+anXn.

Then ES exists, and we have

ES =
n∑

j=1

ajEXj. (12)

Proof. If (X1,X2, . . . ,Xn) is of the discrete type, then

ES =
∑

i1,i2,...,in

(a1xi1 +a2xi2 + · · ·+anxin)P{X1 = xi1 ,X2 = xi2 , · · · ,Xn = xin}

= a1

∑
i1

xi1

∑
i2,...,in

P{X1 = xi1 , . . . ,Xn = xin}

+ · · ·+an

∑
in

xin

∑
i1,...,in−1

P{X1 = xi1 , . . . ,Xn = xin}

= a1

∑
i1

xi1 P{X1 = xi1}+ · · ·+an

∑
in

P{Xn = xin}

= a1EX1 + · · ·+anEXn.
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The existence of ES follows easily by replacing each aj by |aj| and each xij by |xij| and
remembering that E|Xj|<∞, j = 1,2, . . . ,n. The case of continuous type (X1,X2, . . . ,Xn)
is similarly treated.

Corollary. Take a1 = a2 = · · ·= an = 1/n. Then

E

(
X1 +X2 + · · ·+Xn

n

)
=

1
n

n∑
i=1

EXi,

and if EX1 = EX2 = · · ·= EXn = μ, then

E

(
X1 +X2 + · · ·Xn

n

)
= μ.

Theorem 4. Let X1,X2, . . . ,Xn be independent RVs such that E|Xi| < ∞, i = 1,2, . . . ,n.
Then E(

∏n
i=1 Xi) exists and

E

(
n∏

i=1

Xi

)
=

n∏
i=1

EXi. (13)

Let X and Y be independent, and g1(·) and g2(·) be Borel-measurable functions. Then
we know (Theorem 4.3.3) that g1(X) and g2(Y) are independent. If E{g1(X)}, E{g2(Y)},
and E{g1(X)g2(Y)} exist, it follows from Theorem 4 that

E{g1(X)g2(Y)}= E{g1(X)}E{g2(Y)}. (14)

Conversely, if for any Borel sets A1 and A2 we take g1(X) = 1 if X ∈A1, and = 0 otherwise,
and g2(Y) = 1 if Y ∈ A2, and = 0 otherwise, then

E{g1(X)g2(Y)}= P{X ∈ A1,Y ∈ A2}

and E{g1(X)} = P{X ∈ A1}, E{g2(Y)} = P{Y ∈ A2}. Relation (14) implies that for any
Borel sets A1 and A2 of real numbers

P{X ∈ A1, Y ∈ A2}= P{X ∈ A1}P{Y ∈ A2}.

It follows that X and Y are independent if (14) holds. We have thus proved the following
theorem.

Theorem 5. Two RVs X and Y are independent if and only if for every pair of Borel-
measurable functions g1 and g2 the relation

E{g1(X)g2(Y)}= E{g1(X)}E{g2(Y)} (15)

holds, provided that the expectations on both sides of (15) exist.
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Theorem 6. Let X1,X2, . . . ,Xn be RVs with E|Xi|2 < ∞ for i = 1,2, . . . ,n. Let
a1,a2, . . . ,an be real numbers and write S =

∑n
i=1 aiXi. Then the variance of S exists and

is given by

var(S) =
n∑

i=1

a2
i var(Xi)+

n∑
i=1

n∑
j=1

i�=j

aiaj cov(Xi,Xj). (16)

If, in particular, X1,X2, . . . ,Xn are such that cov(Xi,Xj) = 0 for i, j = 1,2, . . . ,n, i �= j, then

var(S) =
n∑

i=1

a2
i var(Xi). (17)

Proof. We have

var(S) = E

{
n∑

i=1

aiXi −
n∑

i=1

aiEXi

}2

= E

⎧⎨
⎩

n∑
i=1

a2
i (Xi −EXi)

2 +
∑
i�=j

aiaj(Xi −EXi)(Xj −EXj)

⎫⎬
⎭

=
n∑

i=1

a2
i E(Xi −EXi)

2 +
∑
i�=j

aiajE{(Xi −EXi)(Xj −EXj)}.

If the Xi’s satisfy

cov(Xi,Xj) = 0 for i, j = 1,2, . . . ,n; i �= j,

the second term on the right side of (16) vanishes, and we have (17).

Corollary 1. Let X1,X2, . . . ,Xn be exchangeable RVs with var(Xi) = σ2, i = 1,2, . . . ,n.
Then

var

(
n∑

i=1

aiXi

)
= σ2

n∑
i=1

a2
i +ρσ2

n∑
i�=j

aiaj,

where ρ is the correlation coefficient between Xi and Xj, i �= j. In particular,

var

(
n∑

i=1

Xi

n

)
=

σ2

n
+

n−1
n

ρσ2.

Corollary 2. If X1,X2, . . . ,Xn are exchangeable and uncorrelated then

var

(
n∑

i=1

aiXi

)
= σ2

n∑
i=1

a2
i ,
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and

var

(
n∑

i=1

Xi

n

)
=

σ2

n
.

Theorem 7. Let X1,X2, . . . ,Xn be iid RVs with common variance σ2. Also, let
a1,a2, . . . ,an be real numbers such that

∑n
1 ai = 1, and let S=

∑n
i=1 aiXi. Then the variance

of S is least if we choose ai = 1/n, i = 1,2, . . . ,n.

Proof. We have

var(S) = σ2
n∑

i=1

a2
i ,

which is least if and only if we choose the ai’s so that
∑n

i=1 a2
i is smallest, subject to the

condition
∑n

i=1 ai = 1. We have

n∑
i=1

a2
i =

n∑
i=1

(
ai −

1
n
+

1
n

)2

=

n∑
i=1

(
ai −

1
n

)2

+
2
n

n∑
i=1

(
ai −

1
n

)
+

1
n

=

n∑
i=1

(
ai −

1
n

)2

+
1
n
,

which is minimized for the choice ai = 1/n, i = 1,2, . . . ,n.
Note that the result holds if we replace independence by the condition that Xi’s are

exchangeable and uncorrelated.

Example 4. Suppose that r balls are drawn one at a time without replacement from a bag
containing n white and m black balls. Let Sr be the number of black balls drawn.

Let us define RVs Xk as follows:

Xk = 1 if the kth ball drawn is black

= 0 if the kth ball drawn is white
k = 1,2, . . . ,r.

Then

Sr = X1 +X2 + · · ·+Xr.

Also

P{Xk = 1}= m
m+n

, P{Xk = 0}= n
m+n

. (18)
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Thus EXk = m/(m+n) and

var(Xk) =
m

m+n
− m2

(m+n)2
=

mn
(m+n)2

.

To compute cov(Xj,Xk), j �= k, note that the RV XjXk = 1 if the jth and the kth balls drawn
are black, and = 0 otherwise. Thus

E(XjXk) = P{Xj = 1,Xk = 1}= m
m+n

m−1
m+n−1

(19)

and

cov(Xj,Xk) =− mn
(m+n)2(m+n−1)

.

Thus

ESr =
r∑

k=1

EXk =
mr

m+n

and

var(Sr) = r
mn

(m+n)2
− r(r−1)

mn
(m+n)2(m+n−1)

=
mnr

(m+n)2(m+n+1)
(m+n− r).

The reader is asked to satisfy himself that (18) and (19) hold.

Example 5. Let X1,X2, . . . ,Xn be independent, and a1,a2, . . . ,an be real numbers such that∑
ai = 1. Assume that E|X2

i | < ∞, i = 1,2, . . . ,n, and let var(Xi) = σ2
i , i = 1,2, . . . ,n.

Write S =
∑n

i=1 aiXi. Then var(S) =
∑n

i=1 a2
i σ

2
i = σ, say. To find weights ai such that σ

is minimum, we write

σ = a2
1σ

2
1 +a2

2σ
2
2 + · · ·+(1−a1 −a2 −·· ·−an−1)

2σ2
n

and differentiate partially with respect to a1,a2, . . . ,an−1, respectively. We get

∂σ

∂a1
= 2a1σ

2
1 −2(1−a1 −a2 −·· ·−an−1)σ

2
n = 0,

...
∂σ

∂an−1
= 2an−1σ

2
n−1 −2(1−a1 −a2 −·· ·−an−1)σ

2
n = 0.

It follows that

ajσ
2
j = anσ

2
n , j = 1,2, . . . ,n−1,
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that is, the weights aj, j= 1,2, . . . ,n, should be chosen proportional to 1/σ2
j . The minimum

value of σ is then

σmin =

n∑
i=1

k2

σ4
i

σ2
i = k2

n∑
i=1

1
σ2

i

,

where k is given by
∑n

j=1(k/σ
2
j ) = 1. Thus

σmin =
1∑n

j=1(1/σ
2
j )

=
H
n
,

where H is the harmonic mean of the σ2
j .

We conclude this section with some important moment inequalities. We begin with the
simple inequality

|a+b|r ≤ cr(|a|r + |b|r), (20)

where cr = 1 for 0 ≤ r ≤ 1 and = 2r−1 for r > 1. For r = 0 and r = 1, (20) is trivially true.
First note that it is sufficient to prove (20) when 0 < a ≤ b. Let 0 < a ≤ b, and write

x = a/b. Then

(a+b)r

ar +br
=

(1+ x)r

1+ xr
.

Writing f (x) = (1+ x)r/(1+ xr), we see that

f ′(x) =
r(1+ x)r−1

(1+ xr)2
(1− xr−1),

where 0 < x ≤ 1. It follows that f ′(x)> 0 if r > 1,= 0 if r = 1, and < 0 if r < 1. Thus

max
0≤x≤1

f (x) = f (0) = 1 if r ≤ 1,

while

max
0≤x≤1

f (x) = f (1) = 2r−1 if r ≥ 1.

Note that |a+b|r ≤ 2r(|a|r + |b|r) is trivially true since

|a+b| ≤max(2|a|,2|b|).

An immediate application of (20) is the following result.

Theorem 8. Let X and Y be RVs and r > 0 be a fixed number. If E|X|r, E|Y|r are both
finite, so also is E|X+Y|r.
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Proof. Let a = X and b = Y in (20). Taking the expectation on both sides, we see that

E|X+Y|r ≤ cr(E|X|r +E|Y|r),

where cr = 1 if 0 < r ≤ 1 and = 2r−1 if r > 1.
Next we establish Hölder’s inequality,

|xy| ≤ |x|p
p

+
|y|q
q

, (21)

where p and q are positive real numbers such that p > 1 and 1/p+1/q = 1. Note that for
x > 0 the function w = logx is concave. It follows that for x1, x2 > 0

log[tx1 +(1− t)x2]≥ t logx1 +(1− t) logx2.

Taking antilogarithms, we get

xt
1x1−t

2 ≥ tx1 +(1− t)x2.

Now we choose x1 = |x|p,x2 = |y|q, t = 1/p,1− t = 1/q, where p > 1 and 1/p+1/q = 1,
to get (21).

Theorem 9. Let p > 1,q > 1 so that 1/p+1/q = 1. Then

E|XY| ≤ (E|X|p)1/p(E|Y|q)1/q. (22)

Proof. By Hölder’s inequality, letting x = X{E|X|p}−1/p,y = Y{E|Y|q}−1/q, we get

|XY| ≤ p−1|X|p{E|X|p}1/p−1{E|Y|q}1/q

+q−1|Y|q{E|Y|q}1/q−1{E|X|p}1/p.

Taking the expectation on both sides leads to (22).

Corollary. Taking p = q = 2, we obtain the Cauchy–Schwarz inequality,

E|XY| ≤ E1/2|X|2E1/2|Y|2.

The final result of this section is an inequality due to Minkowski.

Theorem 10. For p ≥ 1,

{E|X+Y|p}1/p ≤ {E|X|p}1/p +{E|Y|p}1/p. (23)

Proof. We have, for p > 1,

|X+Y|p ≤ |X| |X+Y|p−1 + |Y| |X+Y|p−1.
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Taking expectations and using Hölder’s inequality with Y replaced by |X+Y|p−1(p > 1),
we have

E|X+Y|p ≤ {E|X|p}1/p{E|X+Y|(p−1)q}1/q

+{E|Y|p}1/p{E|X+Y|(p−1)q}1/q

= [{E|X|p}1/p +{E|Y|p}1/p] · {E|X+Y|(p−1)q}1/q.

Excluding the trivial case in which E|X+Y|p = 0, and noting that (p−1)q = p, we have,
after dividing both sides of the last inequality by {E|X+Y|p}1/q,

{E|X+Y|p}1/p ≤ {E|X|p}1/p +{E|Y|p}1/p, p > 1.

The case p = 1 being trivial, this establishes (23).

PROBLEMS 4.5

1. Suppose that the RV (X,Y) is uniformly distributed over the region R = {(x,y) :
0 < x < y < 1}. Find the covariance between X and Y .

2. Let (X,Y) have the joint PDF given by

f (x,y) =

{
x2 +

xy
3

if 0 < x < 1, 0 < y < 2,

0 otherwise.

Find all moments of order 2.

3. Let (X,Y) be distributed with joint density

f (x,y) =

⎧⎨
⎩

1
4
[1+ xy(x2 − y2)] if |x| ≤ 1, |y| ≤ 1,

0 otherwise.

Find the MGF of (X,Y). Are X, Y independent? If not, find the covariance between
X and Y .

4. For a positive RV X with finite first moment show that (1) E
√

X ≤
√

EX and
(2) E{1/X} ≥ 1/EX.

5. If X is a nondegenerate RV with finite expectation and such that X ≥ a > 0, then

E{
√

X2 −a2}<
√
(EX)2 −a2.

(Kruskal [56])

6. Show that for x > 0(∫ ∞

x
te−t2/2 dt

)2

≤
∫ ∞

x
e−t2/2 dt

∫ ∞

x
t2e−t2/2 dt,
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and hence that ∫ ∞

x
e−t2/2 dt ≥ 1

2
[(4+ x2)1/2 − x]e−x2/2.

7. Given a PDF f that is nondecreasing in the interval a ≤ x ≤ b, show that for any
s > 0

∫ b

a
x2sf (x)dx ≥ b2s+1 −a2s+1

(2s+1)(b−a)

∫ b

a
f (x)dx,

with the inequality reversed if f is nonincreasing.

8. Derive the Lyapunov inequality (Theorem 3.4.3)

{E|X|r}1/r ≤ {E|X|s}1/s, 1 < r < s <∞,

from Hölder’s inequality (22).

9. Let X be an RV with E|X|r < ∞ for r > 0. Show that the function logE|X|r is a
convex function of r.

10. Show with the help of an example that Theorem 9 is not true for p < 1.

11. Show that the converse of Theorem 8 also holds for independent RVs, that is, if
E|X + Y|r < ∞ for some r > 0 and X and Y are independent, then E|X|r < ∞,
E|Y|r <∞.
[Hint: Without loss of generality assume that the median of both X and Y is 0.
Show that, for any t > 0, P{|X+Y|> t}> (1/2)P{|X|> t}. Now use the remarks
preceding Lemma 3.2.2 to conclude that E|X|r <∞.]

12. Let (Ω,S,P) be a probability space, and A1,A2, . . . ,An be events in S such that
P(∪n

k=1Ak)> 0. Show that

2
∑

1≤j<k<n

P(AjAk)≥
(
∑n

k=1 PAk)
2 −
∑n

k=1 PAk

P(∪n
k=1Ak)

.

(Chung and Erdös [14])
[Hint: Let Xk be the indicator function of Ak, k = 1,2, . . . ,n. Use the Cauchy–
Schwarz inequality.]

13. Let (Ω,S,P) be a probability space, and A,B,∈ S with 0 < PA < 1, 0 < PB < 1.
Define ρ(A,B) by ρ(A,B) = correlation coefficient between RVs IA, and IB, where
IA, IB, are the indicator functions of A and B, respectively. Express ρ(A,B) in terms
of PA, PB, and P(AB) and conclude that ρ(A,B) = 0 if and only if A and B are
independent. What happens if A = B or if A = Bc?

(a) Show that

ρ(A,B)> 0 ⇔ P{A | B}> P(A)⇔ P{B | A}> P(B)
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and

ρ(A,B)< 0 ⇔ P{A | B}< PA ⇔ P{B | A}< PB.

(b) Show that

ρ(A,B) =
P(AB)P(AcBc)−P(ABc)P(AcB)

(PAPAc ·PBPBc)1/2
.

14. Let X1,X2, . . . ,Xn be iid RVs and define

X̄ =

∑n
i=1 Xi

n
, S2 =

∑n
i=1(Xi − X̄)2

(n−1)
.

Suppose that the common distribution is symmetric. Assuming the existence of
moments of appropriate order, show that cov(X̄,S2) = 0.

15. Let X,Y be iid RVs with common standard normal density

f (x) =
1√
2π

e−x2/2, −∞< x <∞.

Let U = X + Y and V = X2 + Y2. Find the MGF of the random variable (U,V).
Also, find the correlation coefficient between U and V . Are U and V independent?

16. Let X and Y be two discrete RVs:

P{X = x1}= p1, P{X = x2}= 1−p1;

and

P{Y = y1}= p2, P{Y = y2}= 1−p2.

Show that X and Y are independent if and only if the correlation coefficient between
X and Y is 0.

17. Let X and Y be dependent RVs with common means 0, variances 1, and correlation
coefficient ρ. Show that

E{max(X2,Y2)} ≤ 1+
√

1−ρ2.

18. Let X1,X2 be independent normal RVs with density functions

fi(x) =
1

σi

√
2π

exp

{
−1

2

(
x−μi

σi

)2
}
, −∞< x <∞; i = 1,2.

Also let

Z = X1 cosθ+X2 sinθ and W = X2 cosθ−X1 sinθ.
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Find the correlation coefficient between Z and W and show that

0 ≤ ρ2 ≤
(
σ2

1 −σ2
2

σ2
1 +σ2

2

)2

,

where ρ denotes the correlation coefficient between Z and W.

19. Let (X1,X2, . . . ,Xn) be an RV such that the correlation coefficient between each
pair Xi,Xj, i �= j, is ρ. Show that −(n−1)−1 ≤ ρ≤ 1.

20. Let X1,X2, . . . ,Xm+n be iid RVs with finite second moment. Let Sk =
∑k

j=1 Xj, k =
1,2, . . . ,m+ n. Find the correlation coefficient between Sn and Sm+n − Sm, where
n > m.

21. Let f be the PDF of a positive RV, and write

g(x,y) =

⎧⎨
⎩

f (x+ y)
x+ y

if x > 0, y > 0,

0 otherwise.

Show that g is a density function in the plane. If the mth moment of f exists for
some positive integer m, find EXm. Compute the means and variances of X and Y
and the correlation coefficient between X and Y in terms of moments of f . (Adapted
from Feller [26, p. 100].)

22. A die is thrown n+2 times. After each throw a + sign is recorded for 4, 5, or 6, and
a − sign for 1, 2, or 3, the signs forming an ordered sequence. Each sign, except
the first and the last, is attached to a characteristic RV that assumes the value 1
if both the neighboring signs differ from the one between them and 0 otherwise.
Let X1,X2, . . . ,Xn be these characteristic RVs, where Xi corresponds to the (i+1)st
sign (i = 1,2, . . . ,n) in the sequence. Show that

E

{
n∑
1

Xi

}
=

n
4

and var

{
n∑
1

Xi

}
=

5n−2
16

.

23. Let (X,Y) be jointly distributed with PDF f defined by f (x,y) = 1
2 inside the

square with corners at the points (0,1),(1,0),(−1,0),(0,−1) in the (x,y)-plane,
and f (x,y) = 0 otherwise. Are X,Y independent? Are they uncorrelated?

4.6 CONDITIONAL EXPECTATION

In Section 4.2 we defined the conditional distribution of an RV X, given Y . We showed that,
if (X,Y) is of the discrete type, the conditional PMF of X, given Y = yj, where P{Y = yj}>
0, is a PMF when considered as a function of the xi’s (for fixed yj). Similarly, if (X,Y) is an
RV of the continuous type with PDF f (x,y) and marginal densities f1 and f2, respectively,
then, at every point (x,y) at which f is continuous and at which f2(y)> 0 and is continuous,
a conditional density function of X, given Y , exists and may be defined by

fX|Y(x | y) =
f (x,y)
f2(y)

.
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We also showed that fX|Y(x | y), for fixed y, when considered as a function of x is a PDF
in its own right. Therefore, we can (and do) consider the moments of this conditional
distribution.

Definition 1. Let X and Y be RVs defined on a probability space (Ω,S,P), and let h be a
Borel-measurable function. Then the conditional expectation of h(X), given Y , written as
E{h(X) | Y}, is an RV that takes the value E{h(X) | y}, defined by

E{h(X) | y}=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
x

h(x)P{X = x | Y = y} if (X,Y) is of the discrete

type and P{Y = y}> 0,∫ ∞

−∞
h(x)fX|Y(x | y)dx if (X,Y) is of the contain-

nous type and f2(y)> 0.

(1)

when the RV Y assumes the value y.

Needless to say, a similar definition may be given for the conditional expectation
E{h(Y) | X}.

It is immediate that E{h(X) | Y} satisfies the usual properties of an expectation provided
we remember that E{h(X) | Y} is not a constant but an RV. The following results are easy
to prove. We assume existence of indicated expectations.

E{c | Y}= c, for any constant c (2)

E{[a1g1(X)+a2g2(X)] | Y}= a1E{g1(X) | Y}+a2E{g2(X) | Y} , (3)

for any Borel functions g1,g2.

P(X ≥ 0) = 1 =⇒ E{X | Y} ≥ 0 (4)

P(X1 ≥ X2) = 1 =⇒ E{X1 | Y} ≥ E{X2 | Y}. (5)

The statements in (3), (4), and (5) should be understood to hold with probability 1.

E{X | Y}= E(X), E{Y | X}= E(Y) (6)

for independent RVs X and Y .
If φ(X,Y) is a function of X and Y , then

E{φ(X,Y) | y}= E{φ(X,y) | y} (7)

E{ψ(X)φ(X,Y) | X}= ψ(X)E{φ(X,Y) | X} (8)

for any Borel functions ψ and φ.
Again (8) should be understood as holding with probability 1. Relation (7) is useful as

a computational device. See Example 3 below.
The moments of a conditional distribution are defined in the usual manner. Thus, for

r ≥ 0, E{Xr | Y} defines the rth moment of the conditional distribution. We can define the
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central moments of the conditional distribution and, in particular, the variance. There is
no difficulty in generalizing these concepts for n-dimensional distributions when n > 2.
We leave the reader to furnish the details.

Example 1. An urn contains three red and two green balls. A random sample of two balls
is drawn (a) with replacement and (b) without replacement. Let X = 0 if the first ball drawn
is green, = 1 if the first ball drawn is red, and let Y = 0 if the second ball drawn is green,
= 1 if the second ball drawn is red.

The joint PMF of (X,Y) is given in the following tables:

(a) With Replacement (b) Without Replacement

Y
X

0 1

0 4
25

6
25

2
5

1 6
25

9
25

3
5

2
5

3
5 1

Y
X

0 1

0 2
20

6
20

2
5

1 6
20

6
20

3
5

2
5

3
5 1

The conditional PMFs and the conditional expectations are as follows:

(a) P{X = x | 0}=
{

2
5 , x = 0,
3
5 , x = 1,

P{Y = y | 0}=
{

2
5 , y = 0,
3
5 , y = 1,

P{X = x | 1}=
{

2
5 , x = 0,
3
5 , x = 1,

P{Y = y | 1}=
{

2
5 , y = 1,
3
5 , y = 1,

E{X | Y}=
{

3
5 , y = 0
3
5 , y = 1,

E{Y | X}=
{

3
5 , x = 0,
3
5 , x = 1;

(b) P{X = x | 0}=
{

1
4 , x = 0,
3
4 , x = 1,

P{Y = y | 0}=
{

1
4 , y = 0,
3
4 , y = 1,

P{X = x | 1}=
{

1
2 , x = 0,
1
2 , x = 1,

P{Y = y | 1}=
{

1
2 , y = 0,
1
2 , y = 1,

E{X | Y}=
{

3
4 , y = 0,
1
2 , y = 1,

E{Y | X}=
{

3
4 , x = 0,
1
2 , x = 1.

Example 2. For the RV (X,Y) considered in Examples 4.2.5 and 4.2.7

E{Y | x}=
∫ 1

x
yfY|X(y | x)dy =

1
2

1− x2

1− x
=

1+ x
2

0 < x < 1

and

E{X | y}=
∫ y

0
xfX|Y(x | y)dx =

y
2
, 0 < y < 1.
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Also,

E{X2 | y}=
∫ y

0
x2 1

y
dx =

y2

3
, 0 < y < 1

and

var{X | y}= E{X2 | y}− [E{X | y}]2

=
y2

3
− y2

4
=

y2

12
, 0 < y < 1.

Theorem 1. Let Eh(X) exist. Then,

Eh(X) = E{E{h(X) | Y}}, (9)

Proof. Let (X,Y) be of the discrete type. Then,

E{E{h(X) | Y}}=
∑

y

{∑
x

h(x)P{X = x | Y = y}
}

P{Y = y}

=
∑

y

{∑
x

h(x)P{X = x,Y = y}
}

=
∑

x

h(x)
∑

y

P{X = x,Y = y}

= Eh(X).

The proof in the continuous case is similar.

Theorem 1 is quite useful in computation of Eh(X) in many applications.

Example 3. Let X and Y be independent continuous type RVs with respective PDF f and
g, and DF’s F and G. Then P{X < Y} is of interest in many statistical applications. In view
of Theorem 1

P(X < Y) = EI{X<Y} = E
{

E
{

I{X<Y}|Y
}}

,

where IA is the indicator function of event A. Now

E
{

I{X<Y}|Y = y
}
= E
{

I[X<y] | y
}

= E
(
I[X<y]

)
= F(y)

and it follows that

P{X < Y}= E{F(Y)}=
∫ ∞

−∞
F(y)g(y)dy.
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If, in particular, X
d
= Y , then

P{X < Y}=
∫ ∞

−∞
F(y)f (y)dy =

1
2
.

More generally,

P{X−Y ≤ z}= E
{

E
{

I{X−Y≤z} | Y
}}

= E{F(Y + z)}

=

∫ ∞

−∞
F(y+ z)g(y)dy

gives the DF of Z = X−Y as computed in corollary to Theorem 4.4.3.

Example 4. Consider the joint PDF

f (x,y) = xe−x(1+y), x ≥ 0, y ≥ 0, and 0 otherwise

of (X,Y). Then

fX(x) = e−x, x ≥ 0, and 0 otherwise

fY(y) =
1

(1+ y)2
, y ≥ 0, and 0 otherwise.

Clearly, EY does not exist but

E{Y | x}=
∫ ∞

0
yxe−xydy =

1
x
.

Theorem 2. If EX2 <∞, then

var(X) = var(E{X | Y})+E(var{X | Y}). (10)

Proof. The right-hand side of (10) equals, by definition,

{E(E{X | Y})2 − [E(E{X | Y})]2}+E(E{X2 | Y}− (E{X | Y})2)

= {E(E{X | Y})2 − (EX)2}+EX2 −E(E{X | Y})2

= var(X).

Corollary. If EX2 <∞, then

var(X)≥ var(E{X | Y}) (11)

with equality if and only if X is a function of Y .
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Equation (11) follows immediately from (10). The equality in (11) holds if and only if

E(var{X | Y}) = E(X−E{X | Y})2 = 0,

which holds if and only if with probability 1

X = E{X | Y}. (12)

Example 5. Let X1,X2, . . . be iid RVs and let N be a positive integer-valued RV. Let
SN =

∑N
k=1 Xk and suppose that the X’s and N are independent. Then,

E(SN) = E{E{SN | N}}.

Now,

E{SN | N = n}= E{Sn | N = n}= nEX1

so that

E(SN) = E{NEX1}= (EN)(EX1).

Again, we have assumed above and below that all indicated expectations exist. Also,

var(SN) = var(E{SN | N})+E(var{SN | N}).

First,

var(E{SN | N}) = var(NEX1) = (EX1)
2 var(N).

Second,

var{SN | N = n}= nvar(X1)

so

E(var{SN | N}) = (EN)var(X1).

It follows that

Var(SN) = (EX1)
2 var(N)+(EN)var(X1).

PROBLEMS 4.6

1. Let X be an RV with PDF given by

f (x) =
1

σ
√

2π
exp

{
−1

2
(x−μ)2

σ2

}
, −∞< x <∞,−∞< μ <∞,σ > 0.

Find E{X | a < X < b}, where a and b are constants.
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2. (a) Let (X,Y) be jointly distributed with density

f (x,y) =

{
y(1+ x)−4e−y(1+x)−1

, x,y ≥ 0,

0, otherwise.

Find E{Y | X}.

(b) Do the same for the joint density

f (x,y) =
4
5
(x+3y)e−x−2y, x,y ≥ 0,

= 0, otherwise.

3. Let (X,Y) be jointly distributed with bivariate normal density

f (x,y) =
1

2πσ1σ2

√
1−ρ2

· exp
{

1
2(1−ρ2)

[(
x−μ1

σ1

)2

−2ρ

(
x−μ1

σ1

)(
y−μ2

σ2

)
+

(
y−μ2

σ2

)2
]}

.

Find E{X | y} and E{Y | x}. (Here, μ1,μ2 ∈ R,σ1,σ2 > 0, and |ρ|< 1.)

4. Find E{Y −E{Y | X}}2.

5. Show that E(Y −φ(X))2 is minimized by choosing φ(X) = E{Y | X}.

6. Let X have PMF

Pλ(X = x) = λxe−λ/x!, x = 0,1,2, . . .

and suppose that λ is a realization of a RV Λ with PDF

f (λ) = e−λ, λ > 0.

Find E{e−Λ | X = 1}.

7. Find E(XY) by conditioning on X or Y for the following cases:

(a) f (x,y) = xe−x(1+y), x > 0, y > 0, and 0 otherwise.

(b) f (x,y) = 2, 0 ≤ y ≤ x ≤ 1, and zero otherwise.

8. Suppose X has uniform PDF f (x) = 1, 0 ≤ x ≤ 1, and 0 otherwise. Let Y be chosen
from interval (0,X] according to PDF

g(y | x) =
1
x
, 0 < y ≤ x, and 0 otherwise

Find E{Yk | X} and EYk for any fixed constant k > 0.



164 MULTIPLE RANDOM VARIABLES

4.7 ORDER STATISTICS AND THEIR DISTRIBUTIONS

Let (X1,X2, . . . ,Xn) be an n-dimensional random variable and (x1,x2, . . . ,xn) be an n-tuple
assumed by (X1,X2, . . . ,Xn). Arrange (x1,x2, . . . ,xn) in increasing order of magnitude so
that

x(1) ≤ x(2) ≤ ·· · ≤ x(n),

where x(1) =min(x1,x2, . . . ,xn), x(2) is the second smallest value in x1,x2, . . . ,xn, and so
on, x(n) =max(x1,x2, . . . ,xn). If any two xi,xj are equal, their order does not matter.

Definition 1. The function X(k) of (X1,X2, . . . ,Xn) that takes on the value x(k) in each
possible sequence (x1,x2, . . . ,xn) of values assumed by (X1,X2, . . . ,Xn) is known as the
kth order statistic or statistic of order k. {X(1),X(2), . . . ,X(n)} is called the set of order
statistics for (X1,X2, . . . ,Xn).

Example 1. Let X1,X2,X3 be three RVs of the discrete type. Also, let X1,X3 take on values
0, 1, and X2 take on values 1, 2, 3. Then the RV (X1,X2,X3) assumes these triplets of values:
(0,1,0), (0,2,0), (0,3,0), (0,1,1), (0,2,1), (0,3,1), (1,1,0), (1,2,0), (1,3,0), (1,1,1),
(1,2,1), (1,3,1); X(1) takes on values 0, 1; X(2) takes on values 0, 1; and X(3) takes on
values 1, 2, 3.

Theorem 1. Let (X1,X2, . . . ,Xn) be an n-dimensional RV. Let X(k),1 ≤ k ≤ n, be the order
statistic of order k. Then X(k) is also an RV.

Statistical considerations such as sufficiency, completeness, invariance, and ancillarity
(Chapter 8) lead to the consideration of order statistics in problems of statistical inference.
Order statistics are particularly useful in nonparametric statistics (Chapter 13) where, for
example, many test procedures are based on ranks of observations. Many of these methods
require the distribution of the ordered observations which we now study.

In the following we assume that X1,X2, . . . ,Xn are iid RVs. In the discrete case there is
no magic formula to compute the distribution of any X(j) or any of the joint distributions.
A direct computation is the best course of action.

Example 2. Suppose Xn’s are iid with geometric PMF

pk = P(X = k) = pqk−1, k = 1,2, . . . ,0 < p < 1, q = 1−p.

Then for any integers x ≥ 1 and r ≥ 1

P{X(r) = x}= P{X(r) ≤ x}−P{X(r) ≤ x−1}.

Now

P{X(r) ≤ x}= P{At least r of X’s are ≤ x}
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=
r∑

i=1

(
n
i

)
[P(X1 ≤ x)]i[P(X1 > x)]n−i

and

P{X1 ≥ x) =
∞∑

k=x

pqk−1 = (1−p)x−1.

It follows that

P{X(r) = x}=
n∑

i=r

(
n
i

)
q(x−1)(n−i)

{
qn−i[1−qx]i − [1−qx−1]i

}
,

x = 1,2, . . .. In particular, let n = r = 2. Then,

P{X(2) = x}= pqx−1{pqx−1 +2−2qx−1}, x ≥ 1.

Also for integers x,y ≥ 1 we have

P
{

X(1) = x,X(2)−X(1) = y
}
= P{X(1) = x,X(2) = x+ y}

= P{X1 = x,X2 = x+ y}+P{X1 = x+ y,X2 = x}
= 2pqx−1 ·pqx+y−1

= 2pq2x−2 ·pqy

and

P{X(1) = 1, X(2)−X(1) = 0}= P{X(1) = X(2) = 1}= p2.

It follows that X(1) and X(2)−X(1) are independent RVs.

In the following we assume that X1,X2, . . . ,Xn are iid RVs of the continuous type with
PDF f . Let {X(1),X(2), . . . ,X(n)} be the set of order statistics for X1,X2, . . . ,Xn. Since the
Xi are all continuous type RVs, it follows with probability 1 that

X(1) < X(2) < · · ·< X(n).

Theorem 2. The joint PDF of (X(1),X(2), . . . ,X(n)) is given by

g(x(1),x(2), . . . ,x(n)) =

{
n!
∏n

i=1 f (x(i)), x(1) < x(2) < · · ·< x(n),

0, otherwise.
(1)

Proof. The transformation from (X1,X2, . . . ,Xn) to (X(1),X(2), . . . ,X(n)) is not one-to-one.
In fact, there are n! possible arrangements of x1,x2, . . . ,xn in increasing order of magnitude.
Thus there are n! inverses to the transformation. For example, one of the n! permutations
might be

x4 < x1 < xn−1 < x3 < · · ·< xn < x2,
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then the corresponding inverse is

x4 = x(1), x1 = x(2), xn−1 = x(3), x3 = x(4), . . . ,xn = x(n−1),

x2 = x(n).

The Jacobian of this transformation is the determinant of an n×n identity matrix with rows
rearranged, since each x(i) equals one and only one of x1,x2, . . . ,xn. Therefore J =±1 and

g(x(2),x(n),x(4),x(1), . . . ,x(3),x(n−1)) = |J|
n∏

i=1

f (x(i)),

x(1) < x(2) < · · ·< x(n).

The same expression holds for each of the n! arrangements.
It follows (see Remark 2) that

g(x(1),x(2), . . . ,x(n)) =
∑
all n!

inverses

n∏
i=1

f (x(i))

=

{
n! f (x(1))f (x(2)) · · · f (x(n)) if x(1) < x(2) · · ·< x(n).

0 otherwise.

Example 3. Let X1,X2,X3,X4 be iid RVs with PDF f . The joint PDF of X(1),X(2),
X(3),X(4) is

g(y1,y2,y3,y4) =

{
4! f (y1)f (y2)f (y3)f (y4), y1 < y2 < y3 < y4,

0, otherwise.

Let us compute the marginal PDF of X(2). We have

g2(y2) = 4!
∫∫∫

f (y1)f (y2)f (y3)f (y4)dy1 dy3 dy4

= 4! f (y2)

∫ y2

−∞

∫ ∞

y2

[∫ ∞

y3

f (y4)dy4

]
f (y3)f (y1)dy3 dy1

= 4! f (y2)

∫ y2

−∞

{∫ ∞

y2

[1−F(y3)]f (y3)dy3

}
f (y1)dy1

= 4! f (y2)

∫ y2

−∞

[1−F(y2)]
2

2
f (y1)dy1

= 4! f (y2)
[1−F(y2)]

2

2!
F(y2), y2 ∈ R.

The procedure for computing the marginal PDF of X(r), the rth-order statistic of
X1,X2, . . . ,Xn is similar. The following theorem summarizes the result.
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Theorem 3. The marginal PDF of X(r) is given by

gr(yr) =
n!

(r−1)! (n− r)!
[F(yr)]

r−1[1−F(yr)]
n−rf (yr), (2)

where F is the common DF of X1,X2, . . . ,Xn.

Proof.

gr(yr) = n! f (yr)

∫ yr

−∞

∫ yr−1

−∞
· · ·
∫ y2

−∞

∫ ∞

yr

∫ ∞

yr+1

· · ·
∫ ∞

yn−1

n∏
i�=r

f (yi)dyn · · ·dyr+1dy1 · · ·dyr−1

= n! f (yr)
[1−F(yr)]

n−r

(n− r)!

∫ y2

−∞
· · ·
∫ yr

−∞

r−1∏
i=1

[f (yi)dyi]

= n! f (yr)
[1−F(yr)]

n−r

(n− r)!
[F(yr)]

r−1

(r−1)!

as asserted.

We now compute the joint PDF of X(j) and X(k),1 ≤ j < k ≤ n.

Theorem 4. The joint PDF of X(j) and X(k) is given by

gjk(yj,yk) =

⎧⎪⎪⎨
⎪⎪⎩

n!
(j−1)! (k− j−1)! (n− k)!

Fj−1(yj)[F(yk)−

F(yj)]
k−j−1[1−F(yk)]

n−kf (yj)f (yk) if yj < yk,

0 otherwise.

(3)

Proof.

gjk(yj,yk) =

∫ yj

−∞
· · ·
∫ y2

−∞

∫ yk

yj

· · ·
∫ yk

yk−2

∫ ∞

yk

· · ·
∫ ∞

yn−1

n! f (y1) · · · f (yn)

·dyn · · ·dyk+1 dyk−1 · · ·dyj+1 dy1 · · ·dyj−1

= n!
∫ yj

−∞
· · ·
∫ y2

−∞

∫ yk

yj

· · ·
∫ yk

yk−2

[1−F(yk)]
n−k

(n− k)!
f (y1)f (y2) · · · f (yk)

·dyk−1 · · ·dyj+1dy1 · · ·dyj−1

= n!
[1−F(yk)]

n−k

(n− k)!
f (yk)

∫ yj

−∞
· · ·
∫ y2

−∞

[F(yk)−F(yj)]
k−j−1

(k− j−1)!

· f (y1)f (y2) · · · f (yj)dy1 · · ·dyj−1
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=
n!

(n− k)! (k− j−1)!
[1−F(yk)]

n−k[F(yk)−F(yj)]
k−j−1

· f (yk)f (yj)
[F(yj)]

j−1

(j−1)!
, yj < yk,

as asserted.

In a similar manner we can show that the joint PDF of X(j1), . . . ,X(jk),1 ≤ j1 < j2
< · · ·< jk ≤ n,1 ≤ k ≤ n, is given by

gj1,j2,...,jk(y1,y2 . . . ,yk) =
n!

(j1 −1)! (j2 − j1 −1)! · · ·(n− jk)!

·Fj1−1(y1)f (y1)[F(y2)−F(y1)]
j2−j1−1

f (y2) · · · [1−F(yk)]
n−jk f (yk)

for y1 < y2 < · · ·< yk, and = 0 otherwise.

Example 4. Let X1,X2, . . . ,Xn be iid RVs with common PDF

f (x) =

{
1 if 0 < x < 1,

0 otherwise.

Then,

gr(yr) =

⎧⎪⎪⎨
⎪⎪⎩

n!
(r−1)! (n− r)!

yr−1
r (1− yr)

n−r, 0 < yr < 1

(1 ≤ r ≤ n),

0, otherwise.

The joint distribution of X(j) and X(k) is given by

gjk(yj,yk) =

⎧⎪⎪⎨
⎪⎪⎩

n!
(j−1)! (k− j−1)! (n− k)!

y j−1
j (yk − yj)

k−j−1(1− yk)
n−k,

0 < yj < yk < 1,

0, otherwise,

where 1 ≤ j < k ≤ n.

The joint PDF of X(1) and X(n) is given by

g1n(y1,yn) = n(n−1)(yn − y1)
n−2 0 < y1 < yn < 1

and that of the range Rn = X(n)−X(1) by

gRn(w) =

{
n(n−1)wn−2(1−w), 0 < w < 1,

0, otherwise.
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Example 5. Let X(1),X(2),X(3) be the order statistics of iid RVs X1,X2,X3 with common
PDF

f (x) =

{
βe−xβ , x > 0,

0, otherwise,
(β > 0).

Let Y1 = X(3) −X(2) and Y2 = X(2). We show that Y1 and Y2 are independent. The joint
PDF of X(2) and X(3) is given by

g23(x,y) =

⎧⎨
⎩

3!
1!0!0!

(1− e−βx)βe−βxβe−βy, x < y,

0, otherwise.

The PDF of (Y1,Y2) is

f (y1,y2) = 3!β2(1− e−βy2)e−βy2 e−(y1+y2)β

=

{
{3!βe−2βy2(1− e−βy2)}{βe−βy1}, 0 < y1 <∞,0 < y2 <∞,

0, otherwise.

It follows that Y1 and Y2 are independent.

Finally, we consider the moments, namely, the means, variances, and covariances of
order statistics. Suppose X1,X2, . . . ,Xn are iid RVs with common DF F. Let g be a Borel
function on R such that E|g(X)|<∞, where X has DF F. Then for 1 ≤ r ≤ n

∣∣∣∣
∫ ∞

−∞
g(x)

n!
(n− r)!(r−1)!

[F(x)]r−1[1−F(x)]n−rf (x)dx

∣∣∣∣
≤ n

(
n−1
r−1

)∫ ∞

−∞
|g(x)|f (x)dx (0 ≤ F ≤ 1)

<∞

and we write

Eg(X(r)) =

∫ ∞

−∞
g(y)gr(y)dy,

for r = 1,2, . . . ,n. The converse also holds. Suppose E|g(X(r))| < ∞ for r = 1,2, . . . ,n.
Then,

n

(
n−1
r−1

)∫ ∞

−∞
|g(x)|Fr−1(x)[1−F(x)]n−rf (x)dx <∞,
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for r = 1,2, . . . ,n and hence

n
∫ ∞

−∞

{
n∑

r=1

(
n−1
r−1

)
Fr−1(x)[1−F(x)]n−r

}
|g(x)|f (x)dx

= n
∫ ∞

−∞
|g(x)|f (x)dx <∞.

Moreover, it also follows that

n∑
r=1

Eg(X(r)) = nEg(X).

As a consequence of the above remarks we note that if E|g(X(r))| = ∞ for some r, 1 ≤
r ≤ n, then E|g(X)|=∞ and conversely, if E|g(X)|=∞ then E|g|X(r))|=∞ for some r,
1 ≤ r ≤ n.

Example 6. Let X1,X2, . . . ,Xn be iid with Pareto PDF f (x) = 1/x2, if x ≥ 1, and = 0
otherwise. Then EX =∞. Now for 1 ≤ r ≤ n

EX(r) = n

(
n−1
r−1

)∫ ∞

1
x

(
1− 1

x

)r−1 1
xn−r

dx
x2

= n

(
n−1
r−1

)∫ 1

0
yr−1(1− y)n−r−1dy.

Since the integral on the right side converges for 1 ≤ r ≤ n−1 and diverges for r > n−k,
we see that EX(r) =∞ for r = n− k+1, . . . ,n.

PROBLEMS 4.7

1. Let X(1),X(2), . . .X(n) be the set of order statistics of independent RVs X1,X2, . . . ,Xn

with common PDF

f (x) =

{
βe−xβ if x ≥ 0,

0 otherwise.

(a) Show that X(r) and X(s)−X(r) are independent for any s > r.

(b) Find the PDF of X(r+1)−X(r).

(c) Let Z1 = nX(1),Z2 = (n− 1)(X(2) −X(1)), Z3 = (n− 2)(X(3) −X(2)), . . . ,Zn =
(X(n) − X(n−1). Show that (Z1,Z2, . . . ,Zn) and (X1,X2, . . . ,Xn) are identically
distributed.

2. Let X1,X2, . . . ,Xn be iid from PMF

pk = 1/N, k = 1,2, . . . ,N.

Find the marginal distributions of X(1), X(n), and their joint PMF.
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3. Let X1,X2, . . . ,Xn be iid with a DF

f (y) =

{
yα if 0 < y < 1,

0 otherwise, α > 0.

Show that X(i)/X(n), i = 1,2, . . . ,n−1, and X(n) are independent.

4. Let X1,X2, . . . ,Xn be iid RVs with common Pareto DF f (x) = ασα/xα+1, x > σ
where α > 0, σ > 0. Show that

(a) X(1) and (X(2)/X(1), . . . ,X(n)/X(1)) are independent,

(b) X(1) has Pareto (σ,nα) distribution, and

(c)
∑n

j=1 �n(X(j)/X(1)) has PDF

f (x) =
xn−2e−αx

(n−2)!
, x > 0.

5. Let X1,X2, . . . ,Xn be iid nonnegative RVs of the continuous type. If E|X|<∞, show
that E|X(r)|<∞. Write Mn = X(n) =max(X1,X2, . . . ,Xn). Show that

EMn = EMn−1 +

∫ ∞

0
Fn−1(x)[1−F(x)]dx, n = 2,3, . . . .

Find EMn in each of the following cases:

(a) Xi have the common DF

F(x) = 1− e−βx, x ≥ 0.

(b) Xi have the common DF

F(x) = x,0 < x < 1.

6. Let X(1),X(2), . . . ,X(n) be the order statistics of n independent RVs X1,X2, . . . ,Xn with
common PDF f (x) = 1 if 0 < x < 1, and = 0 otherwise. Show that Y1 = X(1)/X(2),
Y2 = X(2)/X(3), . . ., Y(n−1) = X(n−1)/X(n), and Yn = X(n) are independent. Find the
PDFs of Y1,Y2, . . . ,Yn.

7. For the PDF in Problem 4 find EX(r).

8. An urn contains N identical marbles numbered 1 through N. From the urn n mar-
bles are drawn and let X(n) be the largest number drawn. Show that P(X(n) = k) =(k−1

n−1

)/(N
n

)
, k = n,n+1, . . . ,N, and EX(n) = n(N +1)/(n+1).



5
SOME SPECIAL DISTRIBUTIONS

5.1 INTRODUCTION

In preceding chapters we studied probability distributions in general. In this chapter we
will study some commonly occurring probability distributions and investigate their basic
properties. The results of this chapter will be of considerable use in theoretical as well
as practical applications. We begin with some discrete distributions in Section 5.2 and
follow with some continuous models in Section 5.3. Section 5.4 deals with bivariate and
multivariate normal distributions and in Section 5.5 we discuss the exponential family of
distributions.

5.2 SOME DISCRETE DISTRIBUTIONS

In this section we study some well-known univariate and multivariate discrete distributions
and describe their important properties.

5.2.1 Degenerate Distribution

The simplest distribution is that of an RV X degenerate at point k, that is, P{X = k} = 1
and = 0 elsewhere. If we define

ε(x) =

{
0 if x < 0,

1 if x ≥ 0,
(1)
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the DF of the RV X is ε(x−k). Clearly, EXl = kl, l = 1,2, . . . , and M(t) = etk. In particular,
var(X) = 0. This property characterizes a degenerate RV. As we shall see, the degenerate
RV plays an important role in the study of limit theorems.

5.2.2 Two-Point Distribution

We say that an RV X has a two-point distribution if it takes two values, x1 and x2, with
probabilities

P{X = x1}= p, P{X = x2}= 1−p, 0 < p < 1.

We may write

X = x1 I[X=x1]+ x2I[X=x2], (2)

where IA is the indicator function of A. The DF of X is given by

F(x) = pε(x− x1)+(1−p)ε(x− x2). (3)

Also

EXk =pxk
1 +(1−p)xk

2, k = 1,2, . . . , (4)

M(t) =petxi +(1−p)etx2 for all t. (5)

In particular,

EX = px1 +(1−p)x2 (6)

and

var(X) = p(1−p)(x1 − x2)
2. (7)

If x1 = 1, x2 = 0, we get the important Bernoulli RV:

P{X = 1}= p, P{X = 0}= 1−p, 0 < p < 1. (8)

For a Bernoulli RV X with parameter p, we write X ∼ b(1,p) and have

EX = p, var(X) = p(1−p), M(t) = 1+p(et −1), all t. (9)

Bernoulli RVs occur in practice, for example, in coin-tossing experiments. Suppose that
P{H} = p, 0 < p < 1, and P{T} = 1− p. Define RV X so that X(H) = 1 and X(T) = 0.
Then P{X = 1} = p and P{X = 0} = 1− p. Each repetition of the experiment will be
called a trial. More generally, any nontrivial experiment can be dichotomized to yield a
Bernoulli model. Let (Ω,S,P) be the sample space of an experiment, and let A ∈ S with
P(A) = p > 0. Then P(Ac) = 1− p. Each performance of the experiment is a Bernoulli
trial. It will be convenient to call the occurrence of event A a success and the occurrence
of Ac, a failure.
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Example 1 (Sabharwal [97]). In a sequence of n Bernoulli trials with constant probability
p of success (S), and 1−p of failure (F), let Yn denote the number of times the combination
SF occurs. To find EYn and var(Yn), let Xi represent the event that occurs on the ith trial,
and define RVs

f (Xi,Xi+1) =

{
1 if Xi = S, Xi+1 = F,

0 otherwise.
(i = 1,2, . . . ,n−1).

Then

Yn =

n−1∑
i=1

f (Xi,Xi+1)

and

EYn = (n−1)p(1−p).

Also,

EY2
n = E

{
n−1∑
i=1

f 2(Xi,Xi+1)

}
+E

⎧⎨
⎩
∑∑

i�=j

f (Xi,Xi+1)f (XjXj+1)

⎫⎬
⎭

= (n−1)p(1−p)+(n−2)(n−3)p2(1−p)2,

so that

var(Yn) = (n−1)p(1−p)(1−p+p2).

If p = 1/2, then

EYn =
n−1

4
and var(Yn) =

3(n−1)
16

.

5.2.3 Uniform Distribution on n Points

X is said to have a uniform distribution on n points {x1,x2, . . . ,xn} if its PMF is of the form

P{X = xi}=
1
n
, i = 1,2, . . . ,n. (10)

Thus we may write

X =
n∑

i=1

xiI[X=xi] and F(x) =
1
n

n∑
i=1

ε(x− xi),

EX =
1
n

n∑
i=1

xi, (11)

EXl =
1
n

n∑
i=1

xl
i, l = 1,2, . . . , (12)
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and

var(X) =
1
n

n∑
i=1

x2
i −
(

1
n

∑
xi

)2

=
1
n

n∑
i=1

(xi − x̄)2 (13)

if we write x̄ =
∑n

i=1 xi/n. Also,

M(t) =
1
n

n∑
i=1

etxi for all t. (14)

If, in particular, xi = i, i = 1,2, . . . ,n,

EX =
n+1

2
, EX2 =

(n+1)(2n+1)
6

, (15)

var(X) =
n2 −1

12
. (16)

Example 2. A box contains tickets numbered 1 to N. Let X be the largest number drawn
in n random drawings with replacement.

Then P{X ≤ k}= (k/N)n, so that

P{X = k}= P{X ≤ k}−P{X ≤ k−1}

=

(
k
N

)n

−
(

k−1
N

)n

.

Also,

EX = N−n
N∑
1

[kn+1 − (k−1)n+1 − (k−1)n]

= N−n

[
Nn+1 −

N∑
1

(k−1)n

]
.

5.2.4 Binomial Distribution

We say that X has a binomial distribution with parameter p if its PMF is given by

pk = P{X = k}=
(

n
k

)
pk(1−p)n−k, k = 0,1,2, . . . ,n; 0 ≤ p ≤ 1. (17)

Since
∑n

k=0 pk = [p+(1−p)]n = 1, the pk’s indeed define a PMF. If X has PMF (17),
we will write X ∼ b(n,p). This is consistent with the notation for a Bernoulli RV. We have

F(x) =
n∑

k=0

(
n
k

)
pk(1−p)n−kε(x− k).
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In Example 3.2.5 we showed that

EX = np, (18)

EX2 = n(n−1)p2 +np, (19)

and

var(X) = np(1−p) = npq, (20)

where q = 1−p. Also,

M(t) =
n∑

k=0

etk

(
n
k

)
pk(1−p)n−k

= (q+pet)n for all t. (21)

The PGF of X ∼ b(n,p) is given by P(s) = {1−p(1− s)}n, |s| ≤ 1.
Binomial distribution can also be considered as the distribution of the sum of n inde-

pendent, identically distributed b(1,p) random variables. If we toss a coin, with constant
probability p of heads and 1−p of tails, n times, the distribution of the number of heads
is given by (17). Alternatively, if we write

Xk =

{
1 if kth toss results in a head,

0 otherwise,

the number of heads in n trials is the sum Sn = X1 +X2 + · · ·+Xn. Also

P{Xk = 1}= p, P{Xk = 0}= 1−p, k = 1,2, . . . ,n.

Thus

ESn =

n∑
1

EXi = np,

var(Sn) =

n∑
1

var(Xi) = np(1−p),

and

M(t) =
n∏

i=1

EetXi

= (q+pet)n.

Theorem 1. Let Xi(i = 1,2, . . . ,k) be independent RVs with Xi ∼ b(ni,p). Then Sk =∑k
i=1 Xi has a b(n1 +n2 + · · ·+nk, p) distribution.

Corollary. If Xi(i = 1,2, . . . ,k) are iid RVs with common PMF b(n,p), then Sk has a
b(nk,p) distribution.
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Actually, the additive property described in Theorem 1 characterizes the binomial dis-
tribution in the following sense. Let X and Y be two independent, nonnegative, finite
integer-valued RVs and let Z = X +Y . Then Z is a binomial RV with parameter p if and
only if X and Y are binomial RVs with the same parameter p. The “only if” part is due to
Shanbhag and Basawa [103] and will not be proved here.

Example 3. A fair die is rolled n times. The probability of obtaining exactly one 6 is
n( 1

6 )(
5
6 )

n−1, the probability of obtaining no 6 is ( 5
6 )

n, and the probability of obtaining at
least one 6 is 1− ( 5

6 )
n.

The number of trials needed for the probability of at least one 6 to be ≥ 1/2 is given
by the smallest integer n such that

1−
(

5
6

)n

≥ 1
2

so that

n ≥ log2
log1.2

≈ 3.8.

Example 4. Here r balls are distributed in n cells so that each of nr possible arrangements
has probability n−r. We are interested in the probability pk that a specified cell has exactly
k balls (k = 0,1,2, . . . ,r). Then the distribution of each ball may be considered as a trial.
A success results if the ball goes to the specified cell (with probability 1/n); otherwise the
trial results in a failure (with probability 1−1/n). Let X denote the number of successes
in r trials. Then

pk = P{X = k}=
(

r
k

)(
1
n

)k(
1− 1

n

)r−k

, k = 0,1,2, . . . ,n.

5.2.5 Negative Binomial Distribution (Pascal or Waiting Time Distribution)

Let (Ω,S,P) be a probability space of a given statistical experiment, and let A ∈ S with
P(A) = p. On any performance of the experiment, if A happens we call it a success, oth-
erwise a failure. Consider a succession of trials of this experiment, and let us compute the
probability of observing exactly r successes, where r ≥ 1 is a fixed integer. If X denotes
the number of failures that precede the rth success, X + r is the total number of replica-
tions needed to produce r successes. This will happen if and only if the last trial results in
a success and among the previous (r+X−1) trials there are exactly X failures. It follows
by independence that

P{X = x}=
(

x+ r−1
x

)
pr(1−p)x, x = 0,1,2, . . . . (22)

Rewriting (22) in the form

P{X = x}=
(
−r
x

)
pr(−q)x, x = 0,1,2, . . . ; q = 1−p, (23)
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we see that

∞∑
x=0

(
−r
x

)
(−q)x = (1−q)−r = p−r. (24)

It follows that

∞∑
x=0

P{X = x}= 1.

Definition 1. For a fixed positive integer r ≥ 1 and 0 < p < 1, an RV with PMF given by
(22) is said to have a negative binomial distribution. We will use the notation X ∼ NB(r;p)
to denote that X has a negative binomial distribution.

We may write

X =

∞∑
x=0

xI[X=x] and F(x) =
∞∑

k=0

(
k+ r−1

k

)
pr(1−p)kε(x− k).

For the MGF of X we have

M(t) =
∞∑

x=0

(
x+ r−1

x

)
pr(1−p)xetx

= pr
∞∑

x=0

(qet)x

(
x+ r−1

x

)
(q = 1−p)

= pr(1−qet)−r for qet < 1. (25)

The PGF is given by P(s) = pr(1− sq)−r, |s| ≤ 1. Also,

EX =

∞∑
x=0

x

(
x+ r−1

x

)
prqx

= rpr
∞∑

x=0

(
x+ r

x

)
qx+1

= rprq(1−q)−r−1 =
rq
p
. (26)

Similarly, we can show that

var(X) =
rq
p2

. (27)

If, however, we are interested in the distribution of the number of trials required to get
r successes, we have, writing Y = X+ r,

P{Y = y}=
(

y−1
r−1

)
pr(1−p)y−r, y = r, r+1, . . . , (28)
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EY = EX+ r =
r
p
,

var(Y) = var(X) =
rq
p2

,
(29)

and

MY(t) = (pet)r(1−qet)−r for qet < 1. (30)

Let X be a b(n,p)RV, and let Y be the RV defined in (28). If there are r or more successes
in the first n trials, at most n trials were required to obtain the first r of these successes.
We have

P{X ≥ r}= P{Y ≤ n} (31)

and also

P{X < r}= P{Y > n}. (32)

In the special case when r = 1, the distribution of X is given by

P{X = x}= pqx, x = 0,1,2, . . . . (33)

An RV X with PMF (33) is said to have a geometric distribution. Clearly, for the geometric
distribution, we have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M(t) = p(1−qet)−1,

EX =
q
p
,

var(X) =
q
p2

.

(34)

Example 5 (Banach’s matchbox problem). A mathematician carries one matchbox each
in his right and left pockets. When he wants a match, he selects the left pocket with proba-
bility p and the right pocket with probability 1−p. Suppose that initially each box contains
N matches. Consider the moment when the mathematician discovers that a box is empty.
At that time the other box may contain 0,1,2 . . . ,N matches. Let us identify success with
the choice of the left pocket. The left-pocket box will be empty at the moment when the
right-pocket box contains exactly r matches if and only if exactly N − r failures precede
the (N +1)st success. A similar argument applies to the right pocket, and we have

pr = probability that the mathematician discovers a box empty while

the other contains r matches

=

(
2N − r
N − r

)
pN+1qN−r +

(
2N − r
N − r

)
qN+1pN−r.

Example 6. A fair die is rolled repeatedly. Let us compute the probability of event A that a
2 will show up before a 5. Let Aj be the event that a 2 shows up on the jth trial (j = 1,2, . . .)
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for the first time, and a 5 does not show up on the previous j−1 trials. Then PA=
∑∞

j=1 PAj,
where PAj =

1
6 (

4
6 )

j−1. It follows that

P(A) =
∞∑

j=1

(
1
6

)(
4
6

)j−1

=
1
2
.

Similarly the probability that a 2 will show up before a 5 or a 6 is 1/3, and so on.

Theorem 2. Let X1,X2, . . . ,Xk be independent NB(ri;p) RV’s, i = 1,2, . . . ,k, respectively.
Then Sk =

∑k
i=1 Xi is distributed as NB(r1 + r2 + · · ·+ rk;p).

Corollary. If X1,X2, . . . ,Xk are iid geometric RVs, then Sk is an NB(k;p) RV.

Theorem 3. Let X and Y be independent RVs with PMFs NB(r1;p) and NB(r2;p),
respectively. Then the conditional PMF of X, given X+Y = t, is expressed by

P{X = x|X+Y = t}=
(x+r1−1

x

)(t+r2−x−1
t−x

)
(t+r1+r2−1

t

) .

If, in particular, r1 = r2 = 1, the conditional distribution is uniform on t+1 points.

Proof. By Theorem 2, X+Y is an NB(r1 + r2;p) RV. Thus

P{X = x|X+Y = t}= P{X = x, Y = t− x}
P{X+Y = t}

=

(x+r1−1
x

)
pr1(1−p)x

(t−x+r2−1
t−x

)
pr2(1−p)t−x(t+r1+r2−1

t

)
pr1+r2(1−p)t

=

(x+r1−1
x

)(t+r2−x−1
t−x

)
(t+r1+r2−1

t

) , t = 0,1,2, . . . .

If r1 = r2 = 1, that is, if X and Y are independent geometric RVs, then

P{X = x|X+Y = t}= 1
t+1

, x = 0,1,2, . . . , t; t = 0,1,2, . . . . (35)

Theorem 4 (Chatterji [13]). Let X and Y be iid RVs, and let

P{X = k}= pk > 0, k = 0,1,2, . . . .

If

P{X = t|X+Y = t}= P{X = t−1|X+Y = t}= 1
t+1

, t ≥ 0, (36)

then X and Y are geometric RVs.
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Proof. We have

P{X = t|X+Y = t}= ptp0∑t
k=0 pkpt−k

=
1

t+1
(37)

and

P{X = t−1|X+Y = t}= pt−1p1∑t
k=0 pkpt−k

=
1

t+1
. (38)

It follows that

pt

pt−1
=

p1

p0

and by iteration pt = (p1/p0)
tp0. Since

∑∞
t=0 pt = 1, we must have (p1/p0)< 1. Moreover,

1 = p0
1

1− (p1/p0)
,

so that (p1/p0) = 1−p0, and the proof is complete.

Theorem 5. If X has a geometric distribution, then, for any two nonnegative integers m
and n,

P{X > m+n|X > m}= P{X ≥ n}. (39)

Proof. The proof is left as an exercise.

Remark 1. Theorem 5 says that the geometric distribution has no memory, that is, the
information of no successes in m trials is forgotten in subsequent calculations.

The converse of Theorem 5 is also true.

Theorem 6. Let X be a nonnegative integer-valued RV satisfying

P{X > m+1|X > m}= P{X ≥ 1}

for any nonnegative integer m. Then X must have a geometric distribution.

Proof. Let the PMF of X be written as

P{X = k}= pk, k = 0,1,2, . . . .

Then

P{X ≥ n}=
∞∑

k=n

pk
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and

P{X > m}=
∞∑

m+1

pk = qm, say,

P{X > m+1|X > m}= P{X > m+1}
P{X > m} =

qm+1

qm
.

Thus

qm+1 = qmq0,

where q0 = P{X > 0}= p1+p2+ · · ·= 1−p0. It follows that qk = (1−p0)
k+1, and hence

pk = qk−1 −qk = (1−p0)
kp0, as asserted.

Theorem 7. Let X1,X2, . . . ,Xn be independent geometric RVs with parameters p1,p2, . . . ,pn,
respectively. Then X(1) =min(X1,X2, . . . ,Xn) is also a geometric RV with parameter

p = 1−
n∏

i=1

(1−pi).

Proof. The proof is left as an exercise.

Corollary. Iid RVs X1,X2, . . . ,Xn are NB(1;p) if and only if X(1) is a geometric RV with
parameter 1− (1−p)n.

Proof. The necessity follows from Theorem 7. For the sufficiency part of the proof let

P{X(1) ≤ k}= 1−P{X(1) > k}= 1− (1−p)n(k+1).

But

P{X(1) ≤ k}= 1−P{X1 > k,X2 > k, . . . ,Xn > k}
= 1− [1−F(k)]n,

where F is the common DF of X1,X2, . . . ,Xn. It follows that

[1−F(k)] = (1−p)k+1,

so that P{X1 > k}= (1−p)k+1, which completes the proof.

5.2.6 Hypergeometric Distribution

A box contains N marbles. Of these, M are drawn at random, marked, and returned to the
box. The contents of the box are then thoroughly mixed. Next, n marbles are drawn at
random from the box, and the marked marbles are counted. If X denotes the number of
marked marbles, then

P{X = x}=
(

N
n

)−1(M
x

)(
N −M
n− x

)
. (40)
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Since x cannot exceed M or n, we must have

x ≤min(M,n). (41)

Also x ≥ 0 and N −M ≥ n− x, so that

x ≥max(0,M+n−N). (42)

Note that
n∑

k=0

(
a
k

)(
b

n− k

)
=

(
a+b

n

)

for arbitrary numbers a, b and positive integer n. It follows that

∑
x

P{X = x}=
(

N
n

)−1∑
x

(
M
x

)(
N −M
n− x

)
= 1.

Definition 2. An RV X with PMF given by (47) is called a hypergeometric RV.

It is easy to check that

EX =
n
N

M, (43)

EX2 =
M(M−1)
N(N −1)

n(n−1)+
nM
N

, (44)

and

var(X) =
nM

N2(N −1)
(N −M)(N −n). (45)

Example 7. A lot consisting of 50 bulbs is inspected by taking at random 10 bulbs and
testing them. If the number of defective bulbs is at most 1, the lot is accepted; otherwise,
it is rejected. If there are, in fact, 10 defective bulbs in the lot, the probability of accepting
the lot is (

10
1

)(
40
9

)
(

50
10

) +

(
40
10

)
(

50
10

) = .3487.

Example 8. Suppose that an urn contains b white and c black balls, b+ c = N. A ball is
drawn at random, and before drawing the next ball, s+1 balls of the same color are added
to the urn. The procedure is repeated n times. Let X be the number of white balls drawn
in n draws, X = 0,1,2, . . . ,n. We shall find the PMF of X.

First note that the probability of drawing k white balls in successive draws is(
b
N

)(
b+ s
N + s

)(
b+2s
N +2s

)
· · ·
[

b+(k−1)s
N +(k−1)s

]
,
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and the probability of drawing k white balls in the first k draws and then n− k black balls
in the next n− k draws is

pk =

(
b
N

)(
b+ s
N + s

)
· · ·
[

b+(k−1)s
N +(k−1)s

](
c

N + ks

)[
c+ s

N +(k+1)s

]
(46)

· · ·
[

c+(n− k−1)s
N +(n−1)s

]
.

Here pk also gives the probability of drawing k white and n− k black balls in any given
order. It follows that

P{X = k}=
(

n
k

)
pk. (47)

An RV X with PMF given by (47) is said to have a Polya distribution. Let us write

Np = b, N(1−p) = c, and Nα= s.

Then with q = 1−p, we have

P{X = k}=
(

n
k

)
p(p+α) · · · [p+(k−1)α]q(q+α) · · · [q+(n− k−1)α]

1(1+α) · · · [1+(n−1)α]
.

Let us take s =−1. This means that the ball drawn at each draw is not replaced in the urn
before drawing the next ball. In this case α=−1/N, and we have

P{X = k}=
(

n
k

)
Np(Np−1) · · · [Np− (k−1)]c(c−1) · · · [c− (n− k−1)]

N(N −1) · · · [N − (n−1)]

=

(
Np
k

)(
Nq

n− k

)
(

N
n

) , (48)

which is a hypergeometric distribution. Here

max(0,n−Nq)≤ k ≤min(n,Np). (49)

Theorem 8. Let X and Y be independent RVs with PMFs b(m,p) and b(n,p), respectively.
Then the conditional distribution of X, given X+Y , is hypergeometric.

5.2.7 Negative Hypergeometric Distribution

Consider the model of Section 5.2.6. A box contains N marbles, M of these are marked (or
say defective) and N −M are unmarked. A sample of size n is taken and let X denote the
number of defective marbles in the sample. If the sample is drawn without replacement
we saw that X has a hypergeometric distribution with PMF (40). If, on the other hand, the
sample is drawn with replacement then X ∼ b(n,p) where p = M/N.
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Let Y denote the number of draws needed to draw the rth defective marble. If the draws
are made with replacement then Y has the negative binomial distribution given in (22) with
p = M/N. What if the draws are made without replacement? In that case in order that the
kth draw (k ≥ r) be the rth defective marble drawn, the kth draw must produce a defective
marble, whereas the previous k−1 draws must produce r−1 defectives. It follows that

P(Y = k) =

( M
r−1

)(N−M
k−r

)
( N

k−1

) · M− r+1
N − k+1

for k = r,r+1, . . . ,N. Rewriting we see that

P(Y = k) =

(
k−1
r−1

)(N−k
m−r

)
(N

M

) . (50)

An RV Y with PMF (50) is said to have a negative hypergeometric distribution.
It is easy to see that

EY = r
N +1
M+1

, EY(Y +1) =
r(r+1)(N +1)(N +2)

(M+1)(M+2)
,

and

var(Y) =
r(N −M)(N +1)(M+1− r)

(M+1)2(M+2)
.

Also, if r/N → 0, and k/N → 0 as N →∞, then

(
k−1
r−1

)(
N − k
M− r

)/(N
M

)
−→

(
k−1
r−1

)(
M
N

)r(
1− M

N

)k−r

which is (22).

5.2.8 Poisson Distribution

Definition 3. An RV X is said to be a Poisson RV with parameter λ > 0 if its PMF is
given by

P{X = k}= e−λλk

k!
, k = 0,1,2, . . . . (51)

We first check to see that (51) indeed defines a PMF. We have

∞∑
k=0

P{X = k}= e−λ
∞∑

k=0

λk

k!
= e−λeλ = 1.

If X has the PMF given by (51), we will write X ∼ P(λ). Clearly,

X =

∞∑
k=0

kI[X=k]
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and

F(x) =
∞∑

k=0

e−λλ
k

k!
ε(x− k).

The mean and the variance are given by (see Problem 3.2.9)

EX = λ, EX2 = λ+λ2, (52)

and

var(X) = λ. (53)

The MGF of X is given by (see Example 3.3.7)

EetX = exp{λ(et −1)}, (54)

and the PGF by P(s) = e−λ(1−s), |s| ≤ 1.

Theorem 9. Let X1,X2, . . . ,Xn be independent Poisson RVs with Xk ∼ P(λk), k =
1,2, . . . ,n. Then Sn = X1 +X2 + · · ·+Xn is a P(λ1 +λ2 + · · ·+λn) RV.

The converse of Theorem 9 is also true. Indeed, Raikov [84] showed that if
X1,X2, . . . ,Xn are independent and Sn =

∑n
i=1 Xi has a Poisson distribution, each of the

RVs X1,X2, . . . ,Xn has a Poisson distribution.

Example 9. The number of female insects in a given region follows a Poisson distribution
with mean λ. The number of eggs laid by each insect is a P(μ) RV. We are interested in
the probability distribution of the number of eggs in the region.

Let F be the number of female insects in the given region. Then

P{F = f}= e−λλf

f !
, f = 0,1,2, . . . .

Let Y be the number of eggs laid by each insect. Then

P{Y = y, F = f}= P{F = f} ·P{Y = y|F = f}

=
e−λλf

f !
(fμ)ye−μf

y!
.

Thus

P{Y = y}= e−λμy

y!

∞∑
f=0

(λe−μ)f f y

f !
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The MGF of Y is given by

M(t) =
∞∑

f=0

λf e−λ

f !

∞∑
y=0

eyt(fμ)y

y!
e−μf

=

∞∑
f=0

λf e−λ

f !
exp{fμ(et −1)}

= e−λ
∞∑

f=0

{λeμ(et−1)}f

f !

= e−λ exp{λeμ(et−1)}.

Theorem 10. Let X and Y be independent RVs with PMFs P(λ1) and P(λ2), respectively.
Then the conditional distribution of X, given X+Y , is binomial.

Proof. For nonnegative integers m and n, m < n, we have

P{X = m|X+Y = n}= P{X = m, Y = n−m}
P{X+Y = n}

=
e−λ1(λm

1 /m!)e−λ2(λn−m
2 /(n−m)!)

e−(λ1+λ2)(λ1 +λ2)n/n!

=

(
n
m

)
λm

1 λ
n−m
2

(λ1 +λ2)n

=

(
n
m

)(
λ1

λ1 +λ2

)m(
1− λ1

λ1 +λ2

)n−m

,

m = 0,1,2, . . . ,n,

and the proof is complete.

Remark 2. The converse of this result is also true in the following sense. If X and Y are
independent nonnegative integer-valued RVs such that P{X = k}> 0, P{Y = k}> 0, for
k = 0,1,2, . . . , and the conditional distribution of X, given X+Y , is binomial, both X and
Y are Poisson. This result is due to Chatterji [13]. For the proof see Problem 13.

Theorem 11. If X ∼ P(λ) and the conditional distribution of Y , given X = x, is b(x,p),
then Y is a P(λp) RV.

Example 10. (Lamperti and Kruskal [60]). Let N be a nonnegative integer-valued RV.
Independently of each other, N balls are placed either in urn A with probability p (0 < p <
1) or in urn B with probability 1−p, resulting in NA balls in urn A and NB = N −NA balls
in urn B. We will show that the RVs NA and NB are independent if and only if N has a
Poisson distribution. We have

P{NA = a and NB = b|N = a+b}=
(

a+b
a

)
pa(1−p)b,
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where a, b, are integers ≥ 0. Thus

P{NA = a, NB = b}=
(

a+b
a

)
paqbP{N = n}, q = 1−p, n = a+b.

If N has a Poisson (λ) distribution, then

P{NA = a, NB = b}= (a+b)!
a!b!

paqb e−λλa+b

(a+b)!

=

(
paλae−λ/2

a!

)(
qbλb

b!
e−λ/2

)

so that NA and NB are independent.
Conversely, if NA and NB are independent, then

P{N = n}n! = f (a)g(b)

for some functions f and g. Clearly, f (0) 	= 0, g(0) 	= 0 because P{NA = 0, NB = 0}> 0.
Thus there is a function h such that h(a+b) = f (a)g(b) for all nonnegative integers a, b.
It follows that

h(1) = f (1)g(0) = f (0)g(1),

h(2) = f (2)g(0) = f (1)g(1) = f (0)g(2),

and so on. By induction,

f (a) = f (1)

[
g(1)
g(0)

]a−1

, g(b) = g(1)

[
f (1)
f (0)

]b−1

.

We may write, for some α1, α2, λ,

f (a) = α1e−aλ, g(b) = α2e−bλ,

P{N = n}= α1α2
e−λ(a+b)

(a+b)!

so that N is a Poisson RV.

5.2.9 Multinomial Distribution

The binomial distribution is generalized in the following natural fashion. Suppose that an
experiment is repeated n times. Each replication of the experiment terminates in one of k
mutually exclusive and exhaustive events A1,A2, . . . ,Ak. Let pj be the probability that the
experiment terminates in Aj, j = 1,2, . . . ,k, and suppose that pj (j = 1,2, . . . ,k) remains
constant for all n replications. We assume that the n replications are independent.
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Let x1,x2, . . . ,xk−1 be nonnegative integers such that x1 +x2 + · · ·+xk−1 ≤ n. Then the
probability that exactly xi trials terminate in Ai, i = 1,2, . . . ,k − 1 and hence that xk =
n− (x1 + x2 + · · ·+ xk−1) trials terminate in Ak is clearly

n!
x1!x2! · · ·xk!

px1
1 px2

2 · · ·pxk
k .

If (X1,X2, . . . ,Xk) is a random vector such that Xj = xj means that event Aj has occurred xj

times, xj = 0,1,2, . . . ,n, the joint PMF of (X1,X2, . . . ,Xk) is given by

P{X1 = x1, X2 = x2, . . . , Xk = xk} (55)

=

⎧⎨
⎩

n!
x1!x2! · · ·xk!

px1
1 px2

2 . . .pxk
k if n =

k∑
1

xi,

0 otherwise.

Definition 4. An RV (X1,X2, . . . ,Xk−1) with joint PMF given by

P{X1 = x1, X2 = x2, . . . , Xk−1 = xk−1} (56)

=

⎧⎪⎪⎨
⎪⎪⎩

n!
x1!x2! . . .(n− x1 −·· ·− xk−1)!

px1
1 px2

2 . . .pn−x1−···−xk−1

k

if x1 + x2 + · · ·+ xk−1 ≤ n,

0 otherwise

is said to have a multinomial distribution.

For the MGF of (X1,X2, . . . ,Xk−1) we have

M(t1, t2, . . . , tk−1) = Eet1X1+t2X2+···+tk−1Xk−1

=

n∑
x1,x2,...,xk−1=0

x1+x2+···xk−1≤n

et1x1+···+tk−1xk−1
n!px1

1 px2
2 . . .pxk

k

x1!x2! · · ·xk!

=

n∑
x1,x2,...,xk−1=0

x1+x2+···xk−1≤n

n!
x1!x2! . . .xk!

(p1et1)x1(p2et2)x2 . . .

· (pk−1etk−1)xk−1 pxk
k

= (p1et1 +p2et2 + · · ·+pk−1etk−1 +pk)
n (57)

for all t1, t2, . . . , tk−1 ∈ R.

Clearly,

M(t1,0,0, . . . ,0) = (p1et1 +p2 + · · ·+pk)
n = (1−p1 +p1et1)n,

which is binomial. Indeed, the marginal PMF of each Xi, i = 1,2, . . . ,k− 1, is binomial.
Similarly, the joint MGF of Xi, Xj, i, j = 1,2, . . . ,k−1 (i 	= j), is

M(0,0, . . . ,0, ti,0, . . . ,0, tj,0, . . . ,0) = [pie
ti +pje

tj +(1−pi −pj)]
n,
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which is the MGF of a trinomial distribution with PMF

f (xi,xj) =
n!

xi!xj!(n− xi − xj)!
pxi

i pxj

j pn−xi−xj

k , pk = 1−pi −pj. (58)

Note that the RVs X1,X2, . . . ,Xk−1 are dependent.
From the MGF of (X1,X2, . . . ,Xk−1) or directly from the marginal PMFs we can

compute the moments. Thus

EXj = npj and var(Xj) = npj(1−pj), j = 1,2, . . . ,k−1, (59)

and for j = 1,2, . . . ,k−1, and i 	= j,

cov(Xi,Xj) = E{(Xi −npi)(Xj −npj)}=−npipj, (60)

It follows that the correlation coefficient between Xi and Xj is given by

ρij =−
[

pipj

(1−pi)(1−pj)

]1/2

, i, j = 1,2, . . . ,k−1 (i 	= j). (61)

Example 11. Consider the trinomial distribution with PMF

P{X = x,Y = y}= n!
x!y!(n− x− y)!

px
1py

2pn−x−y
3 ,

where x, y are nonnegative integers such that x+ y ≤ n, and p1, p2, p3 > 0 with p1 +p2 +
p3 = 1. The marginal PMF of X is given by

P{X = x}=
(

n
x

)
px

1(1−p1)
n−x, x = 0,1,2, . . . ,n.

It follows that

P{Y = y|X = x}

=

⎧⎪⎨
⎪⎩

(n− x)!
y!(n− x− y)!

(
p2

1−p1

)(
p3

1−p1

)n−x−y

if y = 0,1,2, . . . ,n− x,

0 otherwise,
(62)

which is b(n− x,p2/(1−p1)). Thus

E{Y|x}= (n− x)
p2

1−p1
. (63)

Similarly,

E{X|y}= (n− y)
p1

1−p2
. (64)
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Finally, we note that, if X= (X1,X2, . . . ,Xk) and Y= (Y1,Y2, . . . ,Yk) are two indepen-
dent multinomial RVs with common parameter (p1,p2, . . . ,pk), then Z=X+Y is also a
multinomial RV with probabilities (p1,p2, . . . ,pk). This follows easily if one employs the
MGF technique, using (57). Actually this property characterizes the multinomial distri-
bution. If X and Y are k-dimensional, nonnegative, independent random vectors, and if
Z=X+Y is a multinomial random vector with parameter (p1,p2, . . . ,pk), then X and Y
also have multinomial distribution with the same parameter. This result is due to Shanbhag
and Basawa [103] and will not be proved here.

5.2.10 Multivariate Hypergeometric Distribution

Consider an urn containing N items divided into k categories containing n1,n2, . . . , nk

items, where
∑k

j=1 nj = N. A random sample, without replacement, of size n is taken
from the urn. Let Xi = number of items in sample of type i. Then

P{X1 = x1,X2 = x2, . . . ,Xk = xk}=
k∏

j=1

(
nj

xj

)/(N
n

)
, (65)

where xj = 0,1, . . . , min(n,nj) and
∑k

j=1 xj = n.
We say that (X1,X2, . . . ,Xk−1) has multivariate hypergeometric distribution if its joint

PMF is given by (65). It is clear that each Xj has a marginal hypergeometric distribution.
Moreover, the conditional distributions are also hypergeometric. Thus

P{Xi = xi|Xj = xj}=
(ni

ni

)(N−ni−xj

n−xi−xj

)
(N−nj

n−xj

) ,

and

P{Xi = xi|Xj = xj,X� = x�}=
(ni

xi

)(N−ni−nj−n�
n−xi−xj−x�

)
(N−nj−n�

n−xj−x�

) ,

and so on. It is therefore easy to write down the marginal and conditional means and
variances. We leave the reader to show that

EXj = n
nj

N
,

var(Xj) = n
nj

n

(
N −nj

N

)(
N −n
N −1

)
,

and

cov(Xi,Xj) =−N −n
N −1

n
(nj

N

)2
.

5.2.11 Multivariate Negative Binomial Distribution

Consider the setup of Section 5.2.9 where each replication of an experiment terminates
in one of k mutually exclusive and exhaustive events A1,A2, . . . ,Ak. Let pj = P(Aj),
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j = 1,2, . . . ,k. Suppose the experiment is repeated until event Ak is observed for the rth
time, r ≥ 1. Then

P(X1 = x1, X2 = x2, . . . ,Xk = r)

=
(x1 + x2 + · · ·+ xk−1 + r−1)!(∏k−1

j=1 xj!
)
(r−1)!

pr
k

k−1∏
j=1

pxj

j , (66)

for xi = 0,1,2, . . . (i = 1,2, . . .k − 1), 1 ≤ r < ∞, 0 < pi < 1,
∑k−1

i=1 pi < 1, and pk =

1−
∑k−1

j=1 pj.
We say that (X1,X2, . . . ,Xk−1) has a multivariate negative binomial (or negative

multinomial) distribution if its joint PMF is given by (66).
It is easy to see the marginal PMF of any subset of {X1,X2, . . . ,Xk−1} is negative

multinomial. In particular, each Xj has a negative binomial distribution.
We will leave the reader to show that

M(s1,s2, . . . ,sk−1) = Ee
∑k−1

j=1 sjXj = pr
k

⎛
⎝1−

k−1∑
j=1

sjpj

⎞
⎠

−r

, (67)

and

cov(Xi,Xj) =
rpipj

p2
k

. (68)

PROBLEMS 5.2

1. (a) Let us write

b(k;n,p) =

(
n
k

)
pk(1−p)n−k, k = 0,1,2, . . . ,n.

Show that, as k goes from 0 to n, b(k;n,p) first increases monotonically and then
decreases monotonically. The greatest value is assumed when k = m, where m
is an integer such that

(n+1)p−1 < m ≤ (n+1)p

except that b(m−1;n,p) = b(m;n,p) when m = (n+1)p.

(b) If k ≥ np, then

P{X ≥ k} ≤ b(k;n,p)
(k+1)(1−p)

k+1− (n+1)p
;

and if k ≤ np, then

P{X ≤ k} ≤ b(k;n,p)
(n− k+1)p
(n+1)p− k

.
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2. Generalize the result in Theorem 10 to n independent Poisson RVs, that is, if
X1,X2, . . . ,Xn are independent RVs with Xi ∼ P(λi), i = 1,2, . . . ,n, the conditional
distribution of X1,X2, . . . ,Xn, given

∑n
i=1 Xi = t, is multinomial with parameters t,

λ1/
∑n

i λi, . . . ,λn/
∑n

1λi.

3. Let X1,X2 be independent RVs with Xi ∼ b(ni,
1
2 ), i = 1,2. What is the PMF of

X1 −X2 +n2?

4. A box contains N identical balls numbered 1 through N. Of these balls, n are drawn at
a time. Let X1,X2, . . . ,Xn denote the numbers on the n balls drawn. Let Sn =

∑n
i=1 Xi.

Find var(Sn).

5. From a box containing N identical balls marked 1 through N, M balls are drawn one
after another without replacement. Let Xi denote the number on the ith ball drawn,
i = 1,2, . . . ,M, 1 ≤ M ≤ N. Let Y =max(X1,X2, . . . ,XM). Find the DF and the PMF
of Y . Also find the conditional distribution of X1,X2, . . . ,XM , given Y = y. Find EY
and var(Y).

6. Let f (x;r,p), x = 0,1,2, . . . , denote the PMF of an NB(r;p) RV. Show that the terms
f (x;r,p) first increase monotonically and then decrease monotonically. When is the
greatest value assumed?

7. Show that the terms

Pλ{X = k}= e−λλ
k

k!
, k = 0,1,2, . . . ,

of the Poisson PMF reach their maxima when k is the largest integer ≤ λ and at
(λ−1) and λ if λ is an integer.

8. Show that (
n
k

)
pk(1−p)n−k → e−λλ

k

k!

as n →∞ and p → 0, so that np = λ remains constant.
[Hint: Use Stirling’s approximation, namely, n!≈

√
2πnn+1/2e−n as n →∞.]

9. A biased coin is tossed indefinitely. Let p (0 < p < 1) be the probability of success
(heads). Let Y1 denote the length of the first run, and Y2, the length of the second
run. Find the PMFs of Y1 and Y2 and show that EY1 = q/p+ p/q, EY2 = 2. If Yn

denotes the length of the nth run, n ≥ 1, what is the PMF of Yn? Find EYn.

10. Show that (
N
n

)−1(Np
k

)(
N(1−p)

n− k

)
→
(

n
k

)
pk(1−p)n−k

as N →∞.

11. Show that (
r+ k−1

k

)
pr(1−p)k → e−λλ

k

k!

as p → 1 and r →∞ in such a way that r(1−p) = λ remains fixed.
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12. Let X and Y be independent geometric RVs. Show that min (X,Y) and X − Y are
independent.

13. Let X and Y be independent RVs with PMFs P{X = k} = pk, P{Y = k} = qk,
k = 0,1,2, . . . , where pk,qk > 0 and

∑∞
k=0 pk =

∑∞
k=0 qk = 1. Let

P{X = k|X+Y = t}=
(

t
k

)
αk

t (1−αt)
t−k, 0 ≤ k ≤ t.

Then αt = α for all t, and

pk =
e−θβ(θβ)k

k!
, qk =

e−θθk

k!
,

where β = α/(1−α), and θ > 0 is arbitrary. (Chatterji [13])

14. Generalize the result of Example 10 to the case of k urns, k ≥ 3.

15. Let (X1,X2, . . . ,Xk−1) have a multinomial distribution with parameters n, p1,p2, . . . ,
pk−1. Write

Y =

k∑
i=1

(Xi −npi)
2

npi
,

where pk = 1−p1 −·· ·−pk−1, and Xk = n−X1 −·· ·−Xk−1. Find EY and var(Y).

16. Let X1, X2 be iid RVs with common DF F, having positive mass at 0,1,2, . . . . Also,
let U =max(X1,X2) and V = X1 −X2. Then

P{U = j, V = 0}= P{U = j}P{V = 0}

for all j if and only if F is a geometric distribution. (Srivastava [109])

17. Let X and Y be mutually independent RVs, taking nonnegative integer values. Then

P{X ≤ n}−P{X+Y ≤ n}= αP{X+Y = n}

holds for n = 0,1,2, . . . and some α > 0 if and only if

P{Y = n}= 1
1+α

(
α

1+α

)n

, n = 0,1,2, . . . .

[Hint: Use Problem 3.3.8.] (Puri [83]]

18. Let X1,X2, . . . be a sequence of independent b(1,p) RVs with 0 < p < 1. Also, let
ZN =

∑N
i=1 Xi, where N is a P(λ) RV which is independent of the Xi’s. Show that

ZN and N −ZN are independent.

19. Prove Theorems 5, 7, 8, and 11.

20. In Example 2 show that

(a)

P
(
X(1) = k

)
= pq2k−2(1+q), k = 1,2, . . . .
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(b)

P
(
X(2)−X(1) = k

)
=

p
(1+q)

for k = 0

=
2pqk

(1+q)
for k = 1,2, . . . .

5.3 SOME CONTINUOUS DISTRIBUTIONS

In this section we study some most frequently used absolutely continuous distributions and
describe their important properties. Before we introduce specific distributions it should
be remarked that associated with each PDF f there is an index or a parameter θ (may be
multidimensional) which takes values in an index set Θ. For any particular choice of θ ∈Θ
we obtain a specific PDF fθ from the family of PDFs {fθ,θ ∈Θ}.

Let X be an RV with PDF fθ(x), where θ is a real-valued parameter. We say that θ is
a location parameter and {fθ} is a location family if X − θ has PDF f (x) which does not
depend on θ. The parameter θ is said to be a scale parameter and {fθ} is a scale family of
PDFs if X/θ has PDF f (x) which is free of θ. If θ= (μ,σ) is two-dimensional, we say that
θ is a location-scale parameter if the PDF of (X −μ)/σ is free of μ and σ. In that case
{fθ} is known as a location-scale family.

It is easily seen that θ is a location parameter if and only if fθ(x) = f (x − θ), a
scale parameter if and only fθ(x) = (1/θ)f (x), and a location-scale parameter if fθ(x) =
(1/σ)f ((x−μ)/σ), σ > 0 for some PDF f . The density f is called the standard PDF for
the family {fθ,θ ∈Θ}.

A location parameter simply relocates or shifts the graph of PDF f without changing
its shape. A scale parameter stretches (if θ > 1) or contracts (if θ < 1) the graph of f .
A location-scale parameter, on the other hand, stretches or contracts the graph of f with
the scale parameter and then shifts the graph to locate at μ. (see Fig. 1.)

Some PDFs also have a shape parameter. Changing its value alters the shape of the
graph. For the Poisson distribution λ is a shape parameter.

For the following PDF

f (x;μ,β,α) =
1

βΓ(α)

(
x−μ

β

)α−1

exp{−(x−μ)/β}, x > μ

and = 0 otherwise, μ is a location, β, a scale, and α, a shape parameter. The standard
density for this location-scale family is

f (x) =
1

Γ(α)
xα−1e−x, x > 0

and = 0 otherwise. For the standard PDF f , α is a shape parameter.
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Fig. 1 (a) Exponential location family; (b) exponential scale family; (c) normal location-scale
family; and (d) shape parameter family fθ(x) = θxθ−1.
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Fig. 1 (continued).
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5.3.1 Uniform Distribution (Rectangular Distribution)

Definition 1. An RV X is said to have a uniform distribution on the interval [a,b],
−∞< a < b <∞ if its PDF is given by

f (x) =

⎧⎨
⎩

1
b−a

, a ≤ x ≤ b,

0, otherwise.
(1)

We will write X ∼ U[a,b] if X has a uniform distribution on [a,b].

The end point a or b or both may be excluded. Clearly,

∫ ∞

−∞
f (x)dx = 1,

so that (1) indeed defines a PDF. The DF of X is given by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < a,
x−a
b−a

, a ≤ x < b,

1, b ≤ x;

(2)

EX =
a+b

2
, EXk =

bk+1 −ak+1

(k+1)(b−a)
, k > 0 is an integer; (3)

var(X) =
(b−a)2

12
; (4)

M(t) =
1

t(b−a)
(etb − eta), t 	= 0. (5)

Example 1. Let X have PDF given by

f (x) =

{
λe−λx, 0 < x <∞, λ > 0,

0, otherwise.

Then

F(x) =

{
0 x ≤ 0,

1− e−λx, x > 0.

Let Y = F(X) = 1− e−λX . The PDF of Y is given by

fY(y) =
1
λ
· 1

1− y
λe−λ(− 1

λ ) log(1−y) 0 ≤ y < 1,

= 1, 0 ≤ y < 1.
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Let us define fY(y) = 1 at y = 1. Then we see that Y has density function

fY(y) =

{
1, 0 ≤ y ≤ 1,

0, otherwise,

which is the U[0,1] distribution. That this is not a mere coincidence is shown in the
following theorem.

Theorem 1 (Probability Integral Transformation). Let X be an RV with a continuous
DF F. Then F(X) has the uniform distribution on [0,1].

Proof. The proof is left as an exercise.

The reader is asked to consider what happens in the case where F is the DF of a discrete
RV. In the converse direction the following result holds.

Theorem 2. Let F be any df, and let X be a U[0,1] RV. Then there exists a function h such
that h(X) has DF F, that is,

P{h(X)≤ x}= F(x) for all x ∈ (−∞,∞). (6)

Proof. If F is the DF of a discrete RV Y , let

P{Y = yk}= pk, k = 1,2, . . . .

Define h as follows:

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

y1 if 0 ≤ x < p1,

y2 if p1 ≤ x < p1 +p2,
...

...

Then

P{h(X) = y1}= P{0 ≤ X < p1}= p1,

P{h(X) = y2}= P{p1 ≤ X < p1 +p2}= p2,

and, in general,

P{h(X) = yk}= pk, k = 1,2, . . . .

Thus h(X) is a discrete RV with DF F.
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If F is continuous and strictly increasing F−1 is well defined, and we take h(X) =
F−1(X). We have

P{h(X)≤ x}= P{F−1(X)≤ x}
= P{X ≤ F(x)}
= F(x),

as asserted.
In general, define

F−1(y) = inf{x : F(x)≥ y}, (7)

and let h(X) = F−1(X). Then we have

{F−1(y)≤ x}= {y ≤ F(x)}. (8)

Indeed, F−1(y) ≤ x implies, that, for every ε > 0, y ≤ F(x+ ε). Since ε > 0 is arbitrary
and F is continuous on the right, we let ε→ 0 and conclude that y ≤ F(x). Since y ≤ F(x)
implies F−1(y)≤ x by definition (7), it follows that (8) holds generally. Thus

P{F−1(X)≤ x}= P{X ≤ F(x)}= F(x).

Theorem 2 is quite useful in generating samples with the help of the uniform distribu-
tion.

Example 2. Let F be the DF defined by

F(x) =

{
0, x ≤ 0

1− e−x, x > 0.

Then the inverse to y = 1− e−x, x > 0, is x =− log(1− y), 0 < y < 1. Thus

h(y) =− log(1− y),

and − log(1−X) has the required distribution, where X is a U[0,1] RV.

Theorem 3. Let X be an RV defined on [0,1]. If P{x < X ≤ y} depends only on y− x for
all 0 ≤ x ≤ y ≤ 1, then X is U[0,1].

Proof. Let P{x < X ≤ y}= f (y−x) then f (x+y) = P{0 < X ≤ x+y}= P{0 < X ≤ x}+
P{x < X ≤ x+ y}= f (x)+ f (y). Note that f is continuous from the right. We have

f (x) = f (x)+ f (0),

so that

f (0) = 0.
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We will show that f (x)= cx for some constant c. It suffices to prove the result for positive x.
Let m be an integer then

f (mx) = f (x)+ · · ·+ f (x) = mf (x).

Letting x = n/m, we get

f
(

m ·
( n

m

))
= mf

( n
m

)
,

so that

f
( n

m

)
=

1
m

f (n) =
n
m

f (1),

for positive integers n and m. Letting f (1) = c, we have proved that

f (x) = cx

for rational numbers x.
To complete the proof we consider the case where x is a positive irrational number.

Then we can find a decreasing sequence of positive rationals x1,x2, . . . such that xn → x.
Since f is right continuous,

f (x) = lim
xn↓x

f (xn) = lim
xn↓x

cxn = cx.

Now, for 0 ≤ x ≤ 1,

F(x) = P{X ≤ 0}+P{0 < X ≤ x}
= F(0)+P{0 < X ≤ x}
= f (x)

= cx, 0 ≤ x ≤ 1.

Since F(1) = 1, we must have c = 1, so that

F(x) = x, 0 ≤ x ≤ 1.

This completes the proof.

5.3.2 Gamma Distribution

The integral

Γ(α) =

∫ ∞

0+
xα−1e−x dx (9)

converges or diverges according as α> 0 or ≤ 0. For α> 0 the integral in (9) is called the
gamma function. In particular, if α= 1, Γ(1) = 1. If α > 1, integration by parts yields

Γ(α) = (α−1)
∫ ∞

0
xα−2e−x dx = (α−1)Γ(α−1). (10)
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If α= n is a positive integer, then

Γ(n) = (n−1)!. (11)

Also writing x = y2/2 in Γ
(

1
2

)
we see that

Γ

(
1
2

)
=

1√
2

∫ ∞

0
e−y2/2dy.

Now consider the integral I =
∫∞

0 e−y2/2dy. We have

I2 =

∫ ∞

0

∫ ∞

0
exp{−(x2 + y2)

2
}dxdy,

and changing to polar coordinates we get

I2 =

∫ 2π

0

∫ ∞

0
r exp(

−r2

2
)dr dθ = 2π.

It follows that Γ
(

1
2

)
=
√
π.

Let us write x = y/β, β > 0, in the integral in (9). Then

Γ(α) =

∫ ∞

0

yα−1

βα
e−y/β dy, (12)

so that ∫ ∞

0

1
Γ(α)βα

yα−1e−y/β dy = 1. (13)

Since the integrand in (13) is positive for y > 0, it follows that the function

f (y) =

⎧⎨
⎩

1
Γ(α)βα

yα−1e−y/β 0 < y <∞,

0, y ≤ 0
(14)

defines a PDF for α > 0, β > 0.

Definition 2. An RV X with PDF defined by (14) is said to have a gamma distribution
with parameters α and β. We will write X ∼ G(α,β).

Figure 2 gives graphs of some gamma PDFs.
The DF of a G(α,β) RV is given by

F(x) =

⎧⎨
⎩

0, x ≤ 0,
1

Γ(α)βα

∫ x

0
yα−1e−y/β dy, x > 0.

(15)
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Fig. 2 Gamma density functions.
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Fig. 2 (continued).

The MGF of X is easily computed. We have

M(t) =
1

Γ(α)βα

∫ ∞

0
ex(t−1/β)xα−1 dx

=

(
1

1−βt

)α∫ ∞

0

yα−1e−y

Γ(α)
dy, t <

1
β

= (1−βt)−α t <
1
β
. (16)
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It follows that

EX = M′(t)|t=0 = αβ, (17)

EX2 = M′′(t)|t=0 = α(α+1)β2, (18)

so that

var(X) = αβ2. (19)

Indeed, we can compute the moment of order n such that α+ n > 0 directly from the
density. We have

EXn =
1

Γ(α)βα

∫ ∞

0
e−x/βxα+n−1 dx

= βn Γ(α+n)
Γ(α)

= βn(α+n−1)(α+n−2) · · ·α. (20)

The special case when α = 1 leads to the exponential distribution with parameter β.
The PDF of an exponentially distributed RV is therefore

f (x) =

{
β−1e−x/β , x > 0,

0, otherwise.
(21)

Note that we can speak of the exponential distribution on (−∞,0). The PDF of such an
RV is

f (x) =

{
β−1ex/β , x < 0,

0, x ≥ 0.
(22)

Clearly, if X ∼ G(1,β), we have

EXn = n!βn (23)

EX = β and var(X) = β2, (24)

M(t) = (1−βt)−1 for t < β−1. (25)

Another special case of importance is when α= n/2, n > 0 (an integer), and β = 2.

Definition 3. An RV X is said to have a chi-square distribution (χ2-distribution) with n
degrees of freedom where n is a positive integer if its PDF is given by

f (x) =

⎧⎨
⎩

1
Γ(n/2)2n/2

e−x/2xn/2−1, 0 < x <∞,

0, x ≤ 0.
(26)
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We will write X ∼ χ2(n) for a χ2 RV with n degrees of freedom (d.f.). [Note the difference
in the abbreviations of distribution function (DF) and degrees of freedom (d.f.).]

If X ∼ χ2(n), then

EX = n, var(X) = 2n, (27)

EXk =
2kΓ[(n/2)+ k]

Γ(n/2)
, (28)

and

M(t) = (1−2t)−n/2 for t <
1
2
. (29)

Theorem 4. Let X1,X2, . . . ,Xn be independent RVs such that Xj ∼G(αj,β), j= 1,2, . . . ,n.
Then Sn =

∑n
k=1 Xk is a G(

∑n
j=1αj,β) RV.

Corollary 1. Let X1,X2, . . . ,Xn be iid RVs, each with an exponential distribution with
parameter β. Then Sn is a G(n,β) RV.

Corollary 2. If X1,X2, . . . ,Xn are independent RVs such that Xj ∼ χ2(rj), j = 1,2, . . . ,n,
then Sn is a χ2(

∑n
i=1 rj) RV.

Theorem 5. Let X ∼ U(0,1). Then Y =−2 logX is χ2(2).

Corollary. Let X1,X2, . . . ,Xn be iid RVs with common distribution U(0,1). Then
−2
∑n

i=1 logXi = 2 log(1/
∏n

i=1 Xi) is χ2(2n).

Theorem 6. Let X ∼ G(α1,β) and Y ∼ G(α2,β) be independent RVs. Then X +Y and
X/Y are independent.

Corollary. Let X ∼ G(α1,β) and Y ∼ G(α2,β) be independent RVs. Then X + Y and
X/(X+Y) are independent.

The converse of Theorem 6 is also true. The result is due to Lukacs [68], and we state
it without proof.

Theorem 7. Let X and Y be two nondegenerate RVs that take only positive values. Sup-
pose that U =X+Y and V =X/Y are independent. Then X and Y have gamma distribution
with the same parameter β.

Theorem 8. Let X ∼ G(1,β). Then the RV X has “no memory,” that is,

P{X > r+ s|X > s}= P{X > r}, (30)

for any two positive real numbers r and s.
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Proof. The proof is left as an exercise.

The converse of Theorem 8 is also true in the following sense.

Theorem 9. Let F be a DF such that F(x) = 0 if x < 0, F(x)< 1 if x > 0, and

1−F(x+ y)
1−F(y)

= 1−F(x) for all x,y > 0. (31)

Then there exists a constant β > 0 such that

1−F(x) = e−xβ , x > 0. (32)

Proof. Equation (31) is equivalent to

g(x+ y) = g(x)+g(y)

if we write g(x) = log{1−F(x)}. From the proof of Theorem 3 it is clear that the only
right continuous solution is g(x) = cx. Hence F(x) = 1− ecx, x ≥ 0. Since F(x) → 1 as
x →∞, it follows that c < 0 and the proof is complete.

Theorem 10. Let X1,X2, . . . ,Xn be iid RVs. Then Xi ∼G(1,nβ), i= 1,2, . . . ,n, if and only
if X(1) is G(1,β).

Note that if X1,X2, . . . ,Xn are independent with Xi ∼ G(1,βi), i = 1,2, . . . ,n, then X(1)

is a G
(

1,1/
∑b

i=1β
−1
i

)
RV.

The following result describes the relationship between exponential and Poisson RVs.

Theorem 11. Let X1,X2, . . . be a sequence of iid RVs having common exponential density
with parameter β > 0. Let Sn =

∑n
k=1 Xk be the nth partial sum, n = 1,2, . . . , and suppose

that t > 0. If Y = number of Sn ∈ [0, t], then Y is a P(t/β) RV.

Proof. We have

P{Y = 0}= P{S1 > t}= 1
β

∫ ∞

t
e−x/β dx = e−t/β ,

so that the assertion holds for Y = 0. Let n be a positive integer. Since the Xi’s are
nonnegative, Sn is nondecreasing, and

P{Y = n}= P{Sn ≤ t, Sn+1 > t}. (33)

Now

P{Sn ≤ t}= P{Sn ≤ t, Sn+1 > t}+P{Sn+1 ≤ t}. (34)
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It follows that

P{Y = n}= P{Sn ≤ t}−P{Sn+1 ≤ t}, (35)

and, since Sn ∼ G(n,β), we have

P{Y = n}=
∫ t

0

1
Γ(n)βn

xn−1e−x/β dx−
∫ t

0

1
Γ(n+1)βn+1

xne−x/β dx

=
tne−t/β

βnn!
,

as asserted.

Theorem 12. If X and Y are independent exponential RVs with parameter β, then Z =
X/(X+Y) has a U(0,1) distribution.

Note that, in view of Theorem 7, Theorem 12 characterizes the exponential distribution
in the following sense. Let X and Y be independent RVs that are nondegenerate and take
only positive values. Suppose that X+Y and X/Y are independent. If X/(X+Y) is U(0,1),
X and Y both have the exponential distribution with parameter β. This follows since, by
Theorem 7, X and Y must have the gamma distribution with parameter β. Thus X/(X+Y)
must have (see Theorem 14) the PDF

f (x) =
Γ(α1 +α2)

Γ(α1)Γ(α2)
xα1−1(1− x)α2−1, 0 < x < 1,

and this is the uniform density on (0,1) if and only if α1 = α2 = 1. Thus X and Y both
have the G(1,β) distribution.

Theorem 13. Let X be a P(λ) RV. Then

P{X ≤ K}= 1
K!

∫ ∞

λ

e−xxK dx (36)

expresses the DF of X in terms of an incomplete gamma function.

Proof.

d
dλ

P{X ≤ K}=
K∑

j=0

1
j!
{je−λλj−1 −λje−λ}

=
−λKe−λ

K!
,

and it follows that

P{X ≤ K}= 1
K!

∫ ∞

λ

e−xxK dx,

as asserted.
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An alternative way of writing (36) is the following:

P{X ≤ K}= P{Y ≥ 2λ},

where X ∼ P(λ) and Y ∼ χ2(2K +2).

5.3.3 Beta Distribution

The integral

B(α,β) =
∫ 1−

0+
xα−1(1− x)β−1 dx (37)

converges for α> 0 and β > 0 and is called a beta function. For α≤ 0 or β ≤ 0 the integral
in (37) diverges. It is easy to see that for α > 0 and β > 0

B(α,β) = B(β,α), (38)

B(α,β) =
∫ ∞

0+
xα−1(1+ x)−α−βdx, (39)

and

B(α,β) =
Γ(α)Γ(β)

Γ(α+β)
. (40)

It follows that

f (x) =

⎧⎨
⎩

xα−1(1− x)β−1

B(α,β)
, 0 < x < 1,

0, otherwise,
(41)

defines a pdf.

Definition 4. An RV X with PDF given by (41) is said to have a beta distribution with
parameters α and β, α > 0 and β > 0. We will write X ∼ B(α,β) for a beta variable with
density (41).

Figure 3 gives graphs of some beta PDFs.
The DF of a B(α,β) RV is given by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ 0,

[B(α,β)]−1
∫ x

0+
yα−1(1− y)β−1 dy, 0 < x < 1,

1, x ≥ 1.

(42)
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Fig. 3 Beta density functions.

If n is a positive number, then

EXn =
1

B(α,β)

∫ 1

0
xn+α−1(1− x)β−1 dx

=
B(n+α,β)

B(α,β)
=

Γ(n+α)Γ(α+β)

Γ(α)Γ(n+α+β)
, (43)

using (40). In particular,

EX =
α

α+β
(44)

and

var(X) =
αβ

(α+β)2(α+β+1)
. (45)

For the MGF of X ∼ B(α,β), we have

M(t) =
1

B(α,β)

∫ 1

0
etxxα−1(1− x)β−1 dx. (46)
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Since moments of all order exist, and E|X|j < 1 for all j, we have

M(t) =
∞∑

j=0

tj

j!
EXj

=
∞∑

j=0

tj

Γ(j+1)
Γ(α+ j)Γ(α+β)

Γ(α+β+ j)Γ(α)
. (47)

Remark 1. Note that in the special case where α= β = 1 we get the uniform distribution
on (0,1).

Remark 2. If X is a beta RV with parameters α and β, then 1−X is a beta variate with
parameters β and α. In particular, X is B(α,α) if and only if 1−X is B(α,α). A special
case is the uniform distribution on (0,1). If X and 1−X have the same distribution, it does
not follow that X has to be B(α,α). All this entails is that the PDF satisfies

f (x) = f (1− x), 0 < x < 1.

Take

f (x) =
1

B(α,β)+B(β,α)
[xα−1(1− x)β−1 +(1− x)α−1xβ−1], 0 < x < 1.

Example 3. Let X be distributed with PDF

f (x) =

{
1

12 x2(1− x), 0 < x < 1,

0, otherwise.

Then X ∼ B(3,2) and

EXn =
Γ(n+3)Γ(5)
Γ(3)Γ(n+5)

=
4!
2!

· (n+2)!
(n+4)!

=
12

(n+4)(n+3)
,

EX =
12
20

, var(X) =
6

52 ·6 =
1
25

,

M(t) =
∞∑

j=0

tj

j!
· (j+2)!
(j+4)!

4!
2!
,

=
∞∑

j=0

12
(j+4)(j+3)

· tj

j!
,

and

P{0.2 < X < 0.5}= 1
12

∫ 0.5

0.2
(x2 − x3)dx

= 0.023.
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Theorem 14. Let X and Y be independent G(α1,β) and G(α2,β), respectively, RVs. Then
X/(X+Y) is a B(α1,α2) RV.

Let X1,X2, . . . ,Xn be iid RVs with the uniform distribution on [0,1]. Let X(k) be the
kth-order statistic.

Theorem 15. The RV X(k) has a beta distribution with parametersα= k and β= n−k+1.

Proof. Let X be the number of Xi’s that lie in [0, t]. Then X is b(n, t). We have

P{X(k) ≤ t}= P{X ≥ k}

=

n∑
j=k

(
n
j

)
tj(1− t)n−j.

Also

d
dt

P{X ≥ k}=
n∑

j=k

(
n
j

)
{jtj−1(1− t)n−j − (n− j)tj(1− t)n−j−1}

=
n∑

j=k

{
n

(
n−1
j−1

)
tj−1(1− t)n−j −n

(
n−1

j

)
tj(1− t)n−j−1

}

= n

(
n−1
k−1

)
tk−1(1− t)n−k.

On integration, we get

P{X(k) ≤ t}= n

(
n−1
k−1

)∫ t

0
xk−1(1− x)n−k dx,

as asserted.

Remark 3. Note that we have shown that if X is b(n,p), then

1−P{X < k}= n

(
n−1
k−1

)∫ p

0
xk−1(1− x)n−k dx, (48)

which expresses the DF of X in terms of the DF of a B(k,n− k+1) RV.

Theorem 16. Let X1,X2, . . . ,Xn be independent RVs. Then X1,X2, . . . ,Xn are iid B(α,1)
RVs if and only if X(n) ∼ B(αn,1).

5.3.4 Cauchy Distribution

Definition 5. An RV X is said to have a Cauchy distribution with parameters μ and θ if
its PDF is given by

f (x) =
μ

π

1
μ2 +(x−θ)2

, −∞< x <∞, μ > 0. (49)
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Fig. 4 Cauchy density function.

We will write X ∼ C(μ,θ) for a Cauchy RV with density (49).

Figure 4 gives graph of a Cauchy PDF.

We first check that (49) in fact defines a PDF. Substituting y = (x−θ)/μ, we get

∫ ∞

−∞
f (x)dx =

1
π

∫ ∞

−∞

dy
1+ y2

=
2
π
(tan−1 y)∞0 = 1.

The DF of a C(1,0) RV is given by

F(x) =
1
2
+

1
π
tan−1 x, −∞< x <∞. (50)

Theorem 17. Let X be a Cauchy RV with parameters μ and θ. The moments of order < 1
exist, but the moments of order ≥ 1 do not exist for the RV X.

Proof. It suffices to consider the PDF

f (x) =
1
π

1
1+ x2

, −∞< x <∞.

E|X|α =
2
π

∫ ∞

0
xα

1
1+ x2

dx,
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and letting z = 1/(1+ x2) in the integral, we get

E|X|α =
1
π

∫ 1

0
z(1−α)/2−1(1− z)[(α+1)/2]−1 dz,

which converges forα< 1 and diverges forα≥ 1. This completes the proof of the theorem.

It follows from Theorem 17 that the MGF of a Cauchy RV does not exist. This creates
some manipulative problems. We note, however, that the CF of X ∼ C(μ,0) is given by

φ(t) = e−μ|t|. (51)

Theorem 18. Let X ∼ C(μ1,θ1) and Y ∼ C(μ2,θ2) be independent RVs. Then X+Y is a
C(μ1 +μ2, θ1 +θ2) RV.

Proof. For notational convenience we will prove the result in the special case where μ1 =
μ2 = 1 and θ1 = θ2 = 0, that is, where X and Y have the common PDF

f (x) =
1
π
· 1

1+ x2
, −∞< x <∞.

The proof in the general case follows along the same lines. If Z = X+Y , the PDF of Z is
given by

fZ(z) =
1
π2

∫ ∞

−∞

1
1+ x2

· 1
1+(z− x)2

dx.

Now

1
(1+ x2)[1+(z− x)2]

=
1

z2(z2 +4)

[
2zx

1+ x2
+

z2

1+ x2
+

2z2 −2zx
1+(z− x)2

+
z2

1+(z− x)2

]
,

so that

fZ(z) =
1
π2

1
z2(z2 +4)

[
z log

1+ x2

1+(z− x)2
+ z2 tan−1 x+ z2 tan−1(x− z)

]∞
−∞

=
1
π

2
z2 +22

, −∞< z <∞.

It follows that, if X and Y are iid C(1,0) RVs, then X+Y is a C(2,0) RV. We note that the
result follows effortlessly from (51).

Corollary. Let X1,X2, . . . ,Xn be independent Cauchy RVs, Xk ∼ C(μk,θk), k = 1,2, . . . ,n.
Then Sn =

∑n
1 Xk is a C(

∑n
1μk,

∑n
1 θk) RV.

In particular, if X1,X2, . . . ,Xn are iid C(1,0) RVs, n−1Sn is also a C(1,0) RV. This is
a remarkable result, the importance of which will become clear in Chapter 7. Actually,
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this property uniquely characterizes the Cauchy distribution. If F is a nondegenerate DF
with the property that n−1Sn also has DF F, then F must be a Cauchy distribution (see
Thompson [113, p. 112]).

The proof of the following result is simple.

Theorem 19. Let X be C(μ,0). Then λ/X, where λ is a constant, is a C(|λ|/μ,0) RV.

Corollary. X is C(1,0) if and only if 1/X is C(1,0).

We emphasize that if X and 1/X have the same PDF on (−∞,∞), it does not follow∗

that X is C(1,0), for let X be an RV with PDF

f (x) =
1
4

if |x| ≤ 1,

=
1

4x2
if |x|> 1.

Then X and 1/X have the same PDF, as can be easily checked.

Theorem 20. Let X be a U(−π/2,π/2) RV. Then Y = tanX is a Cauchy RV.

Many important properties of the Cauchy distribution can be derived from this result
(see Pitman and Williams [80]).

5.3.5 Normal Distribution (the Gaussian Law)

One of the most important distributions in the study of probability and mathematical
statistics is the normal distribution, which we will examine presently.

Definition 6. An RV X is said to have a standard normal distribution if its PDF is given by

ϕ(x) =
1√
2π

e−(x2/2), −∞< x <∞. (52)

We first check that f defines a PDF. Let

I =
∫ ∞

−∞
e−x2/2 dx.

∗ Menon [73] has shown that we need the condition that both X and 1/X be stable to conclude that
X is Cauchy. A nondegenerate distribution function F is said to be stable if, for two iid RVs X1,X2

with common DF F, and given constants a1,a2 > 0, we can find α > 0 and β(a1,a2) such that
the RV

X3 = α−1(a1X1 +a2X2 −β)

again has the same distribution F. Examples are the Cauchy (see the corollary to Theorem 18)
and normal (discussed in Section 5.3.5) distributions.
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Then

0 < e−x2/2 < e−|x|+1, −∞< x <∞,∫ ∞

−∞
e−|x|+1 dx = 2e,

and it follows that I exists. We have

I =
∫ ∞

0
y−1/2e−y/2 dy

= Γ

(
1
2

)
21/2

=
√

2π.

Thus
∫∞
−∞ϕ(x)dx = 1, as required.

Let us write Y = σX+μ, where σ > 0. Then the PDF of Y is given by

ψ(y) =
1
σ
ϕ

(
y−μ

σ

)

=
1

σ
√

2π
e−[(y−μ)2/2σ2], −∞< y <∞; σ > 0, −∞< μ <∞. (53)

Definition 7. An RV X is said to have a normal distribution with parameters μ (−∞ <
μ <∞) and σ(> 0) if its PDF is given by (53).

If X is a normally distributed RV with parameters μ and σ, we will write X ∼N(μ,σ2).
In this notation ϕ defined by (53) is the PDF of an N(0,1) RV. The DF of an N(0,1) RV
will be denoted by Φ(x), where

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du. (54)

Clearly, if X ∼N(μ,σ2), then Z = (X−μ)/σ∼ N(0,1). Z is called a standard normal RV.
For the MGF of an N(μ,σ2) RV, we have

M(t) =
1√
2πσ

∫ ∞

−∞
exp

{
−x2

2σ2
+ x

(tσ2 +μ)

σ2
− μ2

2σ2

}
dx

=
1√
2πσ

∫ ∞

−∞
exp

{
−(x−μ−σ2t)2

2σ2
+μt+

σ2t2

2

}
dx

= exp

(
μt+

σ2t2

2

)
, (55)

for all real values of t. Moments of all order exist and may be computed from the MGF.
Thus

EX = M′(t)|t=0 = (μ+σ2t)M(t)|t=0 = μ (56)



218 SOME SPECIAL DISTRIBUTIONS

and

EX2 = M′′(t)|t=0 = [M(t)σ2 +(μ+σ2t)2M(t)]t=0

= σ2 +μ2. (57)

Thus

var(X) = σ2. (58)

Clearly, the central moments of odd order are all 0. The central moments of even order
are as follows:

E{X−μ}2n =
1

σ
√

2π

∫ ∞

−∞
x2ne−x2/2σ2

dx (n is a positive integer)

=
σ2n

√
2π

2n+1/2Γ

(
n+

1
2

)
= [(2n−1)(2n−3) · · ·3 ·1]σ2n. (59)

As for the absolute moment of order α, for a standard normal RV Z we have

E|Z|α =
1√
2π

2
∫ ∞

0
zαe−z2/2 dz

=
1√
2π

∫ ∞

0
y[(α+1)/2)]−1e−y/2 dy

=
Γ[(α+1)/2]2α/2

√
π

. (60)

As remarked earlier, the normal distribution is one of the most important distributions
in probability and statistics, and for this reason the standard normal distribution is available
in tabular form. Table ST2 at the end of the book gives the probability P{Z > z} for various
values of z(> 0) in the tail of an N(0,1) RV. In this book we will write zα for the value of
Z that satisfies α= P{Z > zα}, 0 ≤ α≤ 1.

Example 4. By Chebychev’s inequality, if E|X|2 <∞, EX = μ, and var(X) = σ2, then

P{|X−μ| ≥ Kσ} ≤ 1
K2

.

For K = 2, we get P{|X−μ| ≥Kσ}≤ 0.25, and for K = 3, we have P{|X−μ| ≥Kσ}≤ 1
9 .

If X is, in particular, N(μ σ2), then

P{|X−μ| ≥ Kσ}= P{|Z| ≥ K},

where Z is N(0,1). From Table ST2.

P{|Z| ≥ 1}= 0.318, P{|Z| ≥ 2}= 0.046, and P{|Z| ≥ 3}= 0.002.
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Thus practically all the distribution is concentrated within three standard deviations of
the mean.

Example 5. Let X ∼N(3,4). Then

P{2 < X ≤ 5}= P

{
2−3

2
<

X−3
2

≤ 5−3
2

}
= P{−0.5 < Z ≤ 1}

= P{Z ≤ 1}−P{Z ≤−0.5}
= 0.841−P{Z ≥ 0.5}
= 0.0841−0.309 = 0.532.

Theorem 21. (Feller [25, p. 175]). Let Z be a standard normal RV. Then

P{Z > x} ≈ 1√
2π x

e−x2/2 as x →∞. (61)

More precisely, for every x > 0

1√
2π

e−x2/2

(
1
x
− 1

x3

)
< P{Z > x}< 1

x
√

2π
e−x2/2. (62)

Proof. We have

1√
2π

∫ ∞

x
e−(1/2)y2

(
1− 3

y4

)
dy =

1√
2π

e−x2/2

(
1
x
− 1

x3

)
(63)

and

1√
2π

∫ ∞

x
e−y2/2

(
1+

1
y2

)
dy =

1√
2π

e−x2/2 1
x
, (64)

as can be checked on differentiation. Approximation (61) follows immediately.

Theorem 22. Let X1,X2, . . . ,Xn be independent RVs with Xk ∼N(μk,σ
2
k ), k = 1,2, . . . ,n.

Then Sn =
∑n

k=1 Xk is an N(
∑n

k=1μk,
∑n

1σ
2
k ) RV.

Corollary 3. If X1,X2, . . . ,Xn are iid N(μ,σ2) RVs, then Sn is an N(nμ,nσ2) RV and
n−1Sn is an N(μ,σ2/n) RV.

Corollary 4. If X1,X2, . . . ,Xn are iid N(0,1) RVs, then n−1/2Sn is also an N(0,1) RV.

We remark that if X1,X2, . . . ,Xn are iid RVs with EX = 0, EX2 = 1 such that n−1/2Sn also
has the same distribution for each n = 1,2, . . . , that distribution can only be N(0,1). This
characterization of the normal distribution will become clear when we study the central
limit theorem in Chapter 7.
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Theorem 23. Let X and Y be independent RVs. Then X+Y is normally distributed if and
only if X and Y are both normal.

If X and Y are independent normal RVs, X+Y is normal by Theorem 22. The converse
is due to Cramér [16] and will not be proved here.

Theorem 24. Let X and Y be independent RVs with common N(0,1) distribution. Then
X+Y and X−Y are independent.

The converse is due to Bernstein [4] and is stated here without proof.

Theorem 25. If X and Y are independent RVs with the same distribution and if Z1 =X+Y
and Z2 = X−Y are independent, all RVs X, Y , Z1, and Z2 are normally distributed.

The following result generalizes Theorem 24.

Theorem 26. If X1,X2, . . . ,Xn are independent normal RVs and
∑n

i=1 aibivar(Xi) = 0,
then L1 =

∑n
i=1 aiXi and L2 =

∑n
i=1 biXi are independent. Here a1,a2, . . . ,an and

b1,b2, . . . ,bn are fixed (nonzero) real numbers.

Proof. Let var(Xi) = σ2
i , and assume without loss of generality that EXi = 0, i =

1,2, . . . ,n. For any real numbers α, β, and t

Ee(αL1+βL2)t = Eexp

{
t

n∑
1

(αai +βbi)Xi

}

=
n∏

i=1

exp

{
t2

2
(αai +βbi)

2σ2
i

}

= exp

{
α2t2

2

n∑
1

a2
i σ

2
i +

β2t2

2

n∑
1

b2
i σ

2
i

}(
since

n∑
i

aibiσ
2
i = 0

)

=

n∏
i=1

exp

{
t2α2

2
a2

i σ
2
i

}
·

n∏
i=1

exp

{
t2β2

2
b2

i σ
2
i

}

=
n∏
1

EetαaiXi ·
n∏
1

EetβbiXi

= Eexp

(
tα

n∑
1

aiXi

)
·Eexp

(
tβ

n∑
1

biXi

)

= EeαtL1 EeβtL2 .

Thus we have shown that

M(αt,βt) = M(αt,0)M(0,βt) for all α,β, t.

It follows that L1 and L2 are independent.
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Corollary. If X1, X2 are independent N(μ1,σ
2) and N(μ2,σ

2) RVs, then X1 − X2 and
X1 +X2 are independent. (This gives Theorem 24.)

Darmois [20] and Skitovitch [106] provided the converse of Theorem 26, which we
state without proof.

Theorem 27. If X1,X2, . . . ,Xn are independent RVs, a1,a2, . . . ,an, b1,b2, . . . ,bn are real
numbers none of which equals 0, and if the linear forms

L1 =

n∑
i=1

aiXi, L2 =

n∑
i=1

biXi

are independent, then all the RVs are normally distributed.

Corollary. If X and Y are independent RVs such that X +Y and X −Y are independent,
X, Y , X+Y , and X−Y are all normal.

Yet another result of this type is the following theorem.

Theorem 28. Let X1,X2, . . . ,Xn be iid RVs. Then the common distribution is normal if
and only if

Sn =

n∑
k=1

Xk and Yn =

n∑
i=1

(Xi −n−1Sn)
2

are independent.

In Chapter 6 we will prove the necessity part of this result, which is basic to the theory
of t-tests in statistics (Chapter 10; see also Example 4.4.6). The sufficiency part was proved
by Lukacs [67], and we will not prove it here.

Theorem 29. X ∼N(0,1)⇒ X2 ∼ χ2(1).

Proof. See Example 2.5.7 for the proof.

Corollary 1. If X ∼N(μ,σ2), the RV Z2 = (X−μ)2/σ2 is χ2(1).

Corollary 2. If X1,X2, . . . ,Xn are independent RVs and Xk ∼ N(μk,σ
2
k ), k = 1,2, . . . ,n,

then
∑n

k=1(Xk −μk)
2/σ2

k is χ2(n).

Theorem 30. Let X and Y be iid N(0,σ2) RVs. Then X/Y is C(1,0).

Proof. For the proof see Example 2.5.7.

We remark that the converse of this result does not hold; that is, if Z = X/Y is the
quotient of two iid RVs and Z has a C(1,0) distribution, it does not follow that X and Y
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are normal, for take X and Y to be iid with PDF

f (x) =

√
2
π

1
1+ x4

, −∞< x <∞.

We leave the reader to verify that Z = X/Y is C(1,0).

5.3.6 Some Other Continuous Distributions

Several other distributions which are related to distributions studied earlier also arise in
practice. We record briefly some of these and their important characteristics. We will use
these distributions infrequently. We say that X has a lognormal distribution if Y = �n X
has a normal distribution. The PDF of X is then

f (x) =
1

xσ
√

2π
exp

{
− (logx−μ)2

2σ2

}
, x ≥ 0, (65)

and f (x) = 0 for x < 0, where −∞< μ <∞, σ > 0. In fact for x > 0

P(X ≤ x) = P(�n X ≤ �n x)

= P(Y ≤ �n x) = P

(
Y −μ

σ
≤ �n x−μ

σ

)

=Φ

(
�n x−μ

σ

)
,

where Φ is the DF of a N(0,1) RV which leads to (65). It is easily seen that for n ≥ 0

⎧⎨
⎩

EXn = exp
(

nμ+n2σ2

2

)
EX = exp

(
μ+σ2

2

)
, var(X) = exp(2μ+2σ2)− exp(2μ+σ2).

(66)

The MGF of X does not exist.
We say that the RV X has a Pareto distribution with parameters θ > 0 and α > 0 if its

PDF is given by

f (x) =
αθα

(x+θ)α+1
, x > 0 (67)

and 0 otherwise. Here θ is scale parameter and α is a shape parameter. It is easy to check
that ⎧⎨

⎩F(x) = P(X ≤ x) = 1− θα

(θ+ x)α
, x > 0

EX = θ
α−1 ,α > 1, and var(X) = αθ2

(α−2)(α−1)2

(68)

for α > 2. The MGF of X does not exist since all moments of X do not.
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Suppose X has a Pareto distribution with parameters θ and α. Writing Y = �n(X/θ) we
see that Y has PDF

fY(y) =
αey

(1+ ey)α+1
, −∞< y <∞, (69)

and DF

FY(y) = 1− (1+ ey)−α, for all y.

The PDF in (69) is known as a logistic distribution. We introduce location and scale param-
eters μ and σ by writing Z = μ+σY , taking α = 1 and then the PDF of Z is easily seen
to be

fZ(z) =
1
σ

exp{(z−μ)/σ}
{1+exp[(z−μ)/σ]}2

(70)

for all real z. This is the PDF of a logistic RV with location–scale parameters μ and σ. We
leave the reader to check that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FZ(z) = exp
{

(z−μ)
σ

}{
1+exp

[
(z−μ)

σ

]}−1

EZ = μ, var(Z) = π2σ2

3

MZ(t) = exp(μt)Γ(1−σt)Γ(1+σt), t < 1
σ .

(71)

Pareto distribution is also related to an exponential distribution. Let X have Pareto PDF of
the form

fX(s) =
ασα

xα+1
, x > σ (72)

and 0 otherwise. A simple transformation leads to PDF (72) from (67). Then it is easily
seen that Y = �n(X/σ) has an exponential distribution with mean 1/α. Thus some proper-
ties of exponential distribution which are preserved under monotone transformations can
be derived for Pareto PDF (72) by using the logarithmic transformation.

Some other distributions are related to the gamma distribution. Suppose X ∼ G(1,β).
Let Y = X1/α, α > 0. Then Y has PDF

fY(y) =

(
α

β

)
yα−1 exp

{
−yα

β

}
, y > 0 (73)

and 0 otherwise. The RV Y is said to have a Weibull distribution. We leave the reader to
show that ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FY(y) = 1− exp
(

−yα

β

)
, y > 0

EYn = βn/αΓ
(
1+ n

α

)
, EY = β1/βΓ

(
1+ 1

α

)
,

var(Y) = β2/α
[
Γ
(
1+ 2

α

)
−Γ2

(
1+ 1

α

)]
.

(74)
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The MGF of Y exists only for α ≥ 1 but for α > 1 it does not have a form useful in
applications. The special case α= 2 and β = θ2 is known as a Rayleigh distribution.

Suppose X has a Weibull distribution with PDF (73). Let Y = �n X. Then Y has DF

FY(y) = 1− exp

{
− 1
β

eαy

}
, −∞< y <∞.

Setting θ = (1/α)�n β and σ = 1/α we get

FY(y) = 1− exp

{
−exp

[
y−θ

σ

]}
(75)

with PDF

fY(y) =
1
σ
exp

{[
(y−θ)

σ

]
− exp

[
(y−θ)

σ

]}
, (76)

for −∞< y <∞ and σ > 0. An RV with PDF (76) is called an extreme value distribution
with location–scale parameters θ and σ. It can be shown that⎧⎪⎨

⎪⎩
EY = θ−γσ, var(Y) = π2σ2

6 , and

MY(t) = eθtΓ(1+σt),

(77)

where γ ≈ 0.577216 is the Euler constant.
The final distribution we consider is also related to a G(1,β) RV. Let f1 be the PDF of

G(1,β) and f2 the PDF

f2(x) =
1
β
exp

(
x
β

)
, x < 0, = 0 otherwise.

Clearly f2 is also an exponential PDF defined on (−∞,0). Consider the mixture PDF

f (x) =
1
2
[f1(x)+ f2(x)], −∞< x <∞. (78)

Clearly,

f (x) =
1
2
exp

{
−|x|
β

}
, −∞< x <∞, (79)

and the PDF f defined in (79) is called a Laplace or double exponential pdf. It is convenient
to introduce a location parameter μ and consider instead the PDF

f (x) =
1
2
exp

{
−|x−μ|

β

}
−∞< x <∞, (80)

where −∞< μ <∞, β > 0. It is easy to see that for RV X with PDF (80) we have

EX = μ, var(X) = 2β2, and M(t) = eμt[1− (βt)2]−1, (81)

for |t|< 1/β.
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For completeness let us define a mixture PDF (PMF). Let g(x|θ) be a PDF and let h(θ)
be a mixing PDF. Then the PDF

f (x) =
∫

g(x|θ)h(θ)dθ (82)

is called a mixture density function. In case h is a PMF with support set {θ1,θ2, . . . ,θk},
then (82) reduces to a finite mixture density function

f (x) =
k∑

i=1

g(x|θi)h(θi). (83)

The quantities h(θi) are called mixing proportions. The PDF (78) is an example with k = 2,
h(θ1) = h(θ2) = 1/2, g(x|θ1) = f1(x), and g(x|θ2) = f2(x).

PROBLEMS 5.3

1. Prove Theorem 1.

2. Let X be an RV with PMF pk = P{X = k} given below. If F is the corresponding
DF, find the distribution of F(X), in the following cases:

(a) pk =

(
n
k

)
pk(1−p)n−k, k = 0,1,2, . . . ,n; 0 < p < 1.

(b) pk = e−λ(λk/k!), k = 0,1,2, . . .; λ > 0.

3. Let Y1 ∼ U[0,1], Y2 ∼ U[0,Y1], . . . ,Yn ∼ U[0,Yn−1]. Show that

Y1 ∼ X1, Y2 ∼ X1X2, . . . ,Yn ∼ X1X2 · · ·Xn,

where X1,X2, . . . ,Xn are iid U[0,1] RVs. If U is the number of Y1,Y2, . . . ,Yn in [t,1],
where 0 < t < 1, show that U has a Poisson distribution with parameter − log t.

4. Let X1,X2, . . . ,Xn be iid U[0,1] RVs. Prove by induction or otherwise that Sn =∑n
k=1 Xk has the PDF

fn(x) = [(n−1)!]−1
n∑

k=0

(−1)k

(
n
k

)
[ε(x− k)]n−1(x− k)n−1,

where ε(x) = 1 if x ≥ 0, = 0 if x < 0.

5. (a) Let X be an RV with PMF pj = P(X = xj), j = 0,1,2, . . . , and let F be the DF
of X. Show that

EF(X) =
1
2

⎧⎨
⎩1+

∞∑
j=0

p2
j

⎫⎬
⎭

varF(X) =
∞∑

j=0

pjq
2
j+1 −

1
2

⎛
⎝1−

∞∑
j=0

p2
j

⎞
⎠

2

,

where qj+1 =
∑∞

i=j+1 pi.
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(b) Let pj > 0 for j = 0,1, . . . ,N and
∑N

j=0 pj = 1. Show that

EF(X)≥ (N +2)
[2(N +1)]

with equality if and only if pj = 1/(N +1) for all j.
(Rohatgi [91])

6. Prove (a) Theorem 6 and its corollary, and (b) Theorem 10.

7. Let X be a nonnegative RV of the continuous type, and let Y ∼ U(0,X). Also, let
Z = X−Y . Then the RVs Y and Z are independent if and only if X is G(2,1/λ) for
some λ > 0. (Lamperti [59])

8. Let X and Y be independent RVs with common PDF f (x) = β−ααxα−1 if 0 < x <β,
and = 0 otherwise; α ≥ 1. Let U = min(X,Y) and V = max(X,Y). Find the joint
PDF of U and V and the PDF of U+V . Show that U/V and V are independent.

9. Prove Theorem 14.

10. Prove Theorem 8.

11. Prove Theorems 19 and 20.

12. Let X1,X2, . . . ,Xn be independent RVs with Xi ∼ C(μi,λi), i = 1,2, . . . ,n. Show that
the RV X = 1/

∑n
i=1 X−1

i is also a Cauchy RV with parameters μ/(λ2 + μ2) and
λ/(λ2 +μ2), where

λ=
n∑

i=1

λi

λ2
i +μ2

i

and μ=
n∑

i=1

μi

λ2
i +μ2

i

.

13. Let X1,X2, . . . ,Xn be iid C(1,0) RVs and ai 	= 0, bi, i = 1,2, . . . ,n, be any real
numbers. Find the distribution of

∑n
i=1 1/(aiXi +bi).

14. Suppose that the load of an airplane wing is a random variable X with
N(1000,14400) distribution. The maximum load that the wing can withstand is an
RV Y , which is N(1260,2500). If X and Y are independent, find the probability that
the load encountered by the wing is less than its critical load.

15. Let X ∼N(0,1). Find the PDF of Z = 1/X2. If X and Y are iid N(0,1), deduce that
U = XY/

√
X2 +Y2 is N(0,1/4).

16. In Problem 15 let X and Y be independent normal RVs with zero means. Show
that U = XY/

√
(X2 +Y2) is normal. If, in addition, var(X) = var(Y) show that

V = (X2 − Y2)/
√

(X2 +Y2) is also normal. Moreover, U and V are indepen-
dent. (Shepp [104])

17. Let X1,X2,X3,X4 be independent N(0,1). Show that Y = X1X2 +X3X4 has the PDF
f (y) = 1

2 e−|y|, −∞< y <∞.

18. Let X ∼ N(15,16). Find (a) P{X ≤ 12}, (b) P{10 ≤ X ≤ 17}, (c) P{10 ≤ X ≤ 19
| X ≤ 17} and (d) P{|X−15| ≥ 0.5}.

19. Let X ∼ N(−1,9). Find x such that P{X > x} = 0.38. Also find x such that
P{|X+1|< x}= 0.4.
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20. Let X be an RV such that log(X−a) is N(μ,σ2). Show that X has PDF

f (x) =

⎧⎪⎨
⎪⎩

1

σ(x−a)
√

2π
exp

{
− [log(x−a)−μ]2

2σ2

}
if x > a,

0 if x ≤ a.

If m1,m2 are the first two moments of this distribution and α3 = μ3/μ
3/2
2 is the

coefficient of skewness, show that a, μ, σ are given by

a = m1 −
√

m2 −m2
1

η
, σ2 = log(1+η2),

and

μ= log(m1 −a)− 1
2
σ2,

where η is the real root of the equation η3 +3η−α3 = 0.

21. Let X ∼ G(α,β) and let Y ∼ U(0,X).

(a) Find the PDF of Y .

(b) Find the conditional PDF of X given Y = y.

(c) Find P(X+Y ≤ 2).

22. Let X and Y be iidN(0,1)RVs. Find the PDF of X/|Y|. Also, find the PDF of |X|/|Y|.
23. It is known that X ∼ B(α,β) and P(X < 0.2) = 0.22. If α+β = 26, find α and β.

[Hint: Use Table ST1.]

24. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. Find the distribution of

Yn =

∑n
k=1 kXk −μ

∑n
k=1 k(∑n

k=1 k2
)1/2

.

25. Let F1,F2, . . . ,Fn be n DFs. Show that min[F1(x1),F2(x2), . . . ,Fn(xn)] is an
n-dimensional DF with marginal DFs F1,F2, . . .Fn. (Kemp [50])

26. Let X ∼ NB(1;p) and Y ∼ G(1,1/λ). Show that X and Y are related by the equation

P{X ≤ x}= P{Y ≤ [x]} for x > 0, λ= log

(
1

1−p

)
,

where [x] is the largest integer ≤ x. Equivalently, show that

P{Y ∈ (n,n+1]}= Pθ{X = n},

where θ = 1− e−λ (Prochaska [82]).

27. Let T be an RV with DF F and write S(t) = 1−F(t) = P(T > t). The function F is
called the survival (or reliability) function of X (or DF F). The function λ(t) = f (t)

S(t)
is called hazard (or failure-rate) function. For the following PDF find the hazard
function:
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(a) Rayleigh: f (t) = (t/α2)exp{−t2/(2α2)}, t > 0.

(b) Lognormal: f (t) = 1/(tσ
√

2π)exp{−(�n t−μ)2/2σ2}.

(c) Pareto: f (t) = αθα/tα+1, t > θ, and = 0 otherwise.

(d) Weibull: f (t) = (α/β)tα−1 exp(−tα/β), t > 0.

(e) Logistic: f (t) = (1/β)exp{−(t − μ)/β}[1 + exp{−(t − μ)/β}]−2, −∞ <
t <∞.

28. Consider the PDF

f (x) =

(
λ

2πx3

)1/2

exp

{
−
[
λ(x−μ)2

2μ2x

]}
, x > 0

and = 0 otherwise. An RV X with PDF f is said to have an inverse Gaussian
distribution with parameters μ and λ, both positive. Show that

EX = μ,var(X) = μ3/λ and

M(t) = Eexp(tX) = exp

{
λ

μ

[
1−

(
1− 2tμ2

λ

)1/2
]}

.

29. Let f be the PDF of a N(μ,σ2) RV:

(a) For what value of c is the function cf n, n > 0, a pdf?

(b) Let Φ be the DF of Z ∼N(0,1). Find E{ZΦ(Z)} and E{Z2Φ(Z)}.

5.4 BIVARIATE AND MULTIVARIATE NORMAL DISTRIBUTIONS

In this section we introduce the bivariate and multivariate normal distributions and inves-
tigate some of their important properties. We note that bivariate analogs of other PDFs are
known but they are not always uniquely identified. For example, there are several versions
of bivariate exponential PDFs so-called because each has exponential marginals. We will
not encounter any of these bivariate PDFs in this book.

Definition 1. A two-dimensional RV (X,Y) is said to have a bivariate normal distribution
if the joint PDF is of the form

f (x,y) =
1

2πσ1σ2

√
1−ρ2

e−Q(x,y)/2, (1)

−∞< x <∞, −∞< y <∞,

where σ1 > 0, σ2 > 0, |ρ|< 1, and Q is the positive definite quadratic form

Q(x,y) =
1

1−ρ2

[(
x−μ1

σ1

)2

−2ρ

(
x−μ1

σ1

)(
y−μ2

σ2

)
+

(
y−μ2

σ2

)2
]
. (2)

Figure 1 gives graphs of bivariate normal PDF for selected values of ρ.
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Fig. 1 Bivariate normal with μ1 = μ2 = 0, σ1 = σ2 = 1, and ρ=−0.9,−0.5,0.5,0.9.
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Fig. 1 (continued).

We first show that (1) indeed defines a joint PDF. In fact, we prove the following result.

Theorem 1. The function defined by (1) and (2) with σ1 > 0, σ2 > 0, |ρ| < 1 is a joint
PDF. The marginal PDFs of X and Y are, respectively, N(μ1,σ

2
1) and N(μ2,σ

2
2), and ρ is

the correlation coefficient between X and Y .
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Proof. Let f1(x) =
∫ ∞

−∞
f (x,y)dy. Note that

(1−ρ2)Q(x,y) =

(
y−μ2

σ2
−ρ

x−μ1

σ1

)2

+(1−ρ2)

(
x−μ1

σ1

)2

=

{
y− [μ2 +ρ(σ2/σ1)(x−μ1)]

σ2

}2

+(1−ρ2)

(
x−μ1

σ1

)2

.

It follows that

f1(x) =
1

σ1

√
2π

exp

{
−(x−μ1)

2

2σ2
1

}∫ ∞

−∞

exp
{
−(y−βx)

2/[2σ2
2(1−ρ2)]

}
σ2

√
1−ρ2

√
2π

dy, (3)

where we have written

βx = μ2 +ρ

(
σ2

σ1

)
(x−μ1). (4)

The integrand is the PDF of an N(βx,σ
2
2(1−ρ2)) RV, so that

f1(x) =
1

σ1

√
2π

exp

{
−1

2

(
x−μ1

σ1

)2
}
, −∞< x <∞.

Thus ∫ ∞

−∞

{∫ ∞

−∞
f (x,y)dy

}
dx =

∫ ∞

−∞
f1(x)dx = 1,

and f (x,y) is a joint PDF of two RVs of the continuous type. It also follows that f1 is the
marginal PDF of X, so that X is N(μ1,σ

2
1). In a similar manner we can show that Y is

N(μ2,σ
2
2).

Furthermore, we have

f (x,y)
f1(x)

=
1

σ2

√
1−ρ2

√
2π

exp

{
−(y−βx)

2

2σ2
2(1−ρ2)

}
, (5)

where βx is given by (4). It is clear, then, that the conditional PDF fY|X(y | x) given by (5)
is also normal, with parameters βx and σ2

2(1−ρ2). We have

E{Y | x}= βx = μ2 +ρ
σ2

σ1
(x−μ1) (6)

and

var{Y|x}= σ2
2(1−ρ2). (7)
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In order to show that ρ is the correlation coefficient between X and Y , it suffices to
show that cov(X,Y) = ρσ1σ2. We have from (6)

E(XY) = E{E{XY|X}}

= E

{
X

[
μ2 +ρ

σ2

σ1
(X−μ1)

]}

= μ1μ2 +
ρσ2

σ1
σ2

1 .

It follows that

cov(X,Y) = E(XY)−μ1μ2 = ρσ1σ2.

Remark 1. If ρ2 = 1, then (1) becomes meaningless. But in that case we know
(Theorem 4.5.1) that there exist constants a and b such that P{Y = aX + b} = 1. We
thus have a univariate distribution, which is called the bivariate degenerate (or singular)
normal distribution. The bivariate degenerate normal distribution does not have a PDF
but corresponds to an RV (X,Y) whose marginal distributions are normal or degenerate
and are such that (X,Y) falls on a fixed line with probability 1. It is for this reason that
degenerate distributions are considered as normal distributions with variance 0.

Next we compute the MGF M(t1, t2) of a bivariate normal RV (X,Y). We have, if f (x,y)
is the PDF given in (1) and f1 is the marginal PDF of X,

M(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
et1x+t2yf (x,y)dxdy,

=

∫ ∞

−∞

{∫ ∞

−∞
fY|X(y | x)et2y dy

}
et1xf1(x)dx

=

∫ ∞

−∞
et1xf1(x)

{
exp

[
1
2
σ2

2 t2
2(1−ρ2)+ t2

(
μ2 +ρ

σ2

σ1
(x−μ1)

)]}
dx

= exp

[
1
2
σ2

2 t2
2(1−ρ2)+ t2μ2 −ρt2

σ2

σ1
μ1

]∫ ∞

−∞
et1xe(ρσ2/σ1)xt2 f1(x)dx.

Now

∫ ∞

−∞
e(t1+ρt2σ2/σ1)xf1(x)dx = exp

[
μ1

(
t1 +ρ

σ2

σ1
t2

)
+

1
2
σ2

1

(
t1 +ρt2

σ2

σ1

)2
]
.

Therefore,

M(t1, t2) = exp

(
μ1t1 +μ2t2 +

σ2
1 t2

1 +σ2
2 t2

2 +2ρσ1σ2t1t2
2

)
. (8)

The following result is an immediate consequence of (8).
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Theorem 2. If (X,Y) has a bivariate normal distribution, X and Y are independent if and
only if ρ= 0.

Remark 2. It is quite possible for an RV (X,Y) to have a bivariate density such that the
marginal densities of X and Y are normal and the correlation coefficient is 0, yet X and Y
are not independent. Indeed, if the marginal densities of X and Y are normal, it does not
follow that the joint density of (X,Y) is a bivariate normal. Let

f (x,y) =
1
2

{
1

2π(1−ρ2)1/2
exp

[
−1

2(1−ρ2)
(x2 −2ρxy+ y2)

]
(9)

+
1

2π(1−ρ2)1/2
exp

[
−1

2(1−ρ2)
(x2 +2ρxy+ y2)

]}
.

Here f (x,y) is a joint PDF such that both marginal densities are normal, f (x,y) is not
bivariate normal, and X and Y have zero correlation. But X and Y are not independent. We
have

f1(x) =
1√
2π

e−x2/2, −∞< x <∞,

f2(y) =
1√
2π

e−y2/2, −∞< y <∞,

EXY = 0.

Example 1. (Rosenberg [93]). Let f and g be PDFs with corresponding DFs F and G.
Also, let

h(x,y) = f (x)g(y)[1+α(2F(x)−1)(2G(y)−1)], (10)

where |α| ≤ 1 is a constant. It was shown in Example 4.3.1 that h is a bivariate density
function with given marginal densities f and g.

In particular, take f and g to be the PDF of N(0,1), that is,

f (x) = g(x) =
1√
2π

e−x2/2, −∞< x <∞, (11)

and let (X,Y) have the joint PDF h(x,y). We will show that X+Y is not normal except in
the trivial case α= 0, when X and Y are independent.

Let Z = X+Y . Then

EZ = 0, var(Z) = var(X)+var(Y)+2cov(X,Y).

It is easy to show (Problem 2) that cov(X,Y) = α/π, so that var(Z) = 2[1+(α/π)]. If Z
is normal, its MGF must be

Mz(t) = et2[1+(α/π)]. (12)
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Next we compute the MGF of Z directly from the joint PDF (10). We have

M1(t) = E{etX+tY}

= et2

+α

∫ ∞

−∞

∫ ∞

−∞
etx+ty[2F(x)−1][2F(y)−1]f (x)f (y)dxdy

= et2

+α

[∫ ∞

−∞
etx[2F(x)−1]f (x)dx

]2

.

Now ∫ ∞

−∞
etx[2F(x)−1]f (x)dx =−2

∫ ∞

−∞
etx[1−F(x)]f (x)dx+ et2/2

= et2/2 −2
∫ ∞

−∞

∫ ∞

x

1
2π

exp

{
−1

2
(x2 +u2 −2tx)

}
dudx

= et2/2 −
∫ ∞

−∞

∫ ∞

0

exp

{
−1

2
[x2 +(v+ x)2 −2tx]

}
π

dvdx

= et2/2 −
∫ ∞

0

exp{−v2/2+(v− t)2/4}√
π

∫ ∞

−∞

exp{−[x+(v− t)/2]2}√
π

dxdv

= et2/2 −2et2/2
∫ ∞

0

exp

{
−1

2
[(v+ t)2/2]

}
2
√
π

dv

= et2/2 −2et2/2P

{
Z1 >

t√
2

}
, (13)

where Z1 is an N(0,1) RV.
It follows that

M1(t) = et2

+α

[
et2/2 −2et2/2P

{
Z1 >

1√
2

}]2

= et2

[
1+α

(
1−2P

{
Z1 >

t√
2

})2
]
. (14)

If Z were normally distributed, we must have Mz(t) = M1(t) for all t and all |α| ≤ 1,
that is,

et2

e(α/π)t2

= et2

[
1+α

(
1−2P

{
Z1 >

t√
2

})2
]
. (15)

For α= 0, the equality clearly holds. The expression within the brackets on the right side
of (15) is bounded by 1+α, whereas the expression e(α/π)t2

is unbounded, so the equality
cannot hold for all t and α.

Next we investigate the multivariate normal distribution of dimension n, n ≥ 2. Let M
be an n× n real, symmetric, and positive definite matrix. Let x denote the n× 1 column
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vector of real numbers (x1,x2, . . . ,xn)
′ and letμ denote the column vector (μ1,μ2, . . . ,μn)

′,
where μi(i = 1,2, . . . ,n) are real constants.

Theorem 3. The nonnegative function

f (x) = cexp

{
− (x−μ)′M(x−μ)

2

}
−∞< xi <∞, (16)

i = 1,2, . . . ,n,

defines the joint PDF of some random vector X = (X1,X2, . . . ,Xn)
′, provided that the

constant c is chosen appropriately. The MGF of X exists and is given by

M(t1, t2, . . . , tn) = exp

{
t′μ+

t′M−1t

2

}
, (17)

where t= (t1, t2, . . . , tn)′ and t1, t2, . . . , tn are arbitrary real numbers.

Proof. Let

I = c
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
t′x− (x−μ)′M(x−μ)

2

} n∏
i=1

dxi. (18)

Changing the variables of integration to y1,y2, . . . ,yn by writing xi−μi = yi, i = 1,2, . . . ,n,
and y = (y1,y2, . . . ,yn)

′, we have x−μ= y and

I = cexp(t′μ)
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
t′y− y′My

2

) n∏
i=1

dyi. (19)

Since M is positive definite, it follows that all the n characteristic roots of M, say
m1,m2, . . . ,mn, are positive. Moreover, since M is symmetric there exists an n×n orthog-
onal matrix L such that L′ML is a diagonal matrix with diagonal elements m1,m2, . . . ,mn.
Let us change the variables to z1,z2, . . . ,zn by writing y = Lz, where z′ = (z1,z2, . . . ,zn),
and note that the Jacobian of this orthogonal transformation is |L|. Since L′L= In, where
In is an n×n unit matrix, |L|= 1 and we have

I = cexp(t′μ)
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
t′Lz− z′L′MLz

2

) n∏
i=1

dzi. (20)

If we write t′L = u′ = (u1,u2, . . . ,un) then t′Lz =
∑n

i=1 uizi. Also L′ML =
diag(m1,m2, . . . ,mn) so that z′L′MLz =

∑n
i=1 miz2

i . The integral in (20) can therefore
be written as

n∏
i=1

[∫ ∞

−∞
exp

(
uizi −

m1z2
i

2

)
dzi

]
=

n∏
i=1

[√
2π
mi

exp

(
u2

i

2mi

)]
.
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If follows that

I = cexp(t′u)
(2π)n/2

(m1m2 · · ·mn)1/2
exp

(
n∑

i=1

u2
i

2mi

)
. (21)

Setting t1 = t2 = · · ·= tn = 0, we see from (18) and (21) that

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1,x2, . . . ,xn)dx1dx2 · · ·dxn =

c(2π)n/2

(m1m2 · · ·mn)1/2
.

By choosing

c =
(m1m2 · · ·mn)

1/2

(2π)n/2
(22)

we see that f is a joint PDF of some random vector X, as asserted.
Finally, since

(L′ML)−1 = diag(m−1
1 ,m−1

2 , . . . ,m−1
n ),

we have

n∑
i=1

u2
i

mi
= u′(L′M−1L)u= t′M−1t.

Also

|M−1|= |L′M−1L|= (m1m2 · · ·mn)
−1.

It follows from (21) and (22) that the MGF of X is given by (17), and we may write

c =
1

{(2π)n|m−1|}1/2
. (23)

This completes the proof of Theorem 3.

Let us write M−1 = (σij)i,j=1,2,...,n. Then

M(0,0, . . . ,0, ti,0, . . . ,0) = exp

(
tiμi +σii

t2
i

2

)

is the MGF of Xi, i = 1,2, . . . ,n. Thus each Xi is N(μi,σii), i = 1,2, . . . ,n. For i 	= j, we
have for the MGF of Xi and Xj

M(0,0, . . . ,0, ti,0, . . . ,0, tj,0, . . . ,0)

= exp

(
tiμi + tjμj +

σiit2
i +2σijtitj + t2

j σjj

2

)
.
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This is the MGF of a bivariate normal distribution with means μi, μj, variances σii, σjj,
and covariance σij. Thus we see that

μ′ = (μ1,μ2, . . . ,μn) (24)

is the mean vector of X′ = (X1, . . . ,Xn),

σii = σ2
i = var(Xi), i = 1,2, . . . ,n, (25)

and

σij = ρijσiσj, i 	= j; i, j = 1,2, . . . ,n. (26)

The matrix M−1 is called the dispersion (variance-covariance) matrix of the multivariate
normal distribution.

If σij = 0 for i 	= j, the matrix M−1 is a diagonal matrix, and it follows that the RVs
X1,X2, . . . ,Xn are independent. Thus we have the following analog of Theorem 2.

Theorem 4. The components X1,X2, . . . ,Xn of a jointly normally distributed RV X are
independent if and only if the covariances σij = 0 for all i 	= j (i, j = 1,2, . . . ,n).

The following result is stated without proof. The proof is similar to the two-variate case
except that now we consider the quadratic form in n variables: E{

∑n
i=1 ti(Xi −μi)}2 ≥ 0.

Theorem 5. The probability that the RVs X1,X2, . . . ,Xn with finite variances satisfy at
least one linear relationship is 1 if and only if |M|= 0.

Accordingly, if |M| = 0 all the probability mass is concentrated on a hyperplane of
dimension < n.

Theorem 6. Let (X1,X2, . . . ,Xn) be an n-dimensional RV with a normal distribution. Let
Y1,Y2, . . . ,Yk, k ≤ n, be linear functions of Xj (j = 1,2, . . . ,n). Then (Y1,Y2, . . . ,Yk) also
has a multivariate normal distribution.

Proof. Without loss of generality let us assume that EXi = 0, i = 1,2, . . . ,n. Let

Yp =

n∑
j=1

ApjXj, p = 1,2, . . . ,k; k ≤ n. (27)

Then EYp = 0, p = 1,2, . . . ,k, and

cov(Yp,Yq) =

n∑
i,j=1

ApiAqjσij, (28)

where E(XiXj) = σij, i, j = 1,2, . . . ,n.



238 SOME SPECIAL DISTRIBUTIONS

The MGF of (Y1,Y2, . . . ,Yk) is given by

M∗(t1, t2, . . . , tk) = E

⎧⎨
⎩exp

⎛
⎝t1

n∑
j=1

A1jXj + · · ·+ tk

n∑
j=1

AkjXj

⎞
⎠
⎫⎬
⎭ .

Writing uj =
∑k

p=1 tpApj, j = 1,2, . . . ,n, we have

M∗(t1, t2, . . . , tk) = E

{
exp

(
n∑

i=1

uiXi

)}

= exp

⎛
⎝1

2

n∑
i,j=1

σijuiuj

⎞
⎠ by (17)

= exp

⎛
⎝1

2

n∑
i,j=1

σij

k∑
l,m=1

tltmAliAmj

⎞
⎠

= exp

⎛
⎝1

2

k∑
l,m=1

tltm

n∑
i,j=1

AliAmjσij

⎞
⎠

= exp

⎧⎨
⎩1

2

k∑
l,m=1

tltm cov(Yl,Ym)

⎫⎬
⎭ . (29)

When (17) and (29) are compared, the result follows.

Corollary 1. Every marginal distribution of an n-dimensional normal distribution is
univariate normal. Moreover, any linear function of X1,X2, . . . ,Xn is univariate normal.

Corollary 2. If X1,X2, . . . ,Xn are iid N(μ,σ2) and A is an n×n orthogonal transforma-
tion matrix, the components Y1,Y2, . . . ,Yn of Y = AX′, where X = (X1, . . . ,Xn)

′, are
independent RVs, each normally distributed with the same variance σ2.

We have from (27) and (28)

cov(Yp,Yq) =
n∑

i=1

ApiAqiσii +
∑
i�=j

ApiAqjσij

=

{
0 if p 	= q,

σ2 if p = q,

since
∑n

i=1 ApiAqi = 0 and
∑n

j=1 A2
pj = 1. It follows that

M∗(t1, t2, . . . , tn) = exp

(
1
2

n∑
l=1

t2
l σ

2

)

and Corollary 2 follows.
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Theorem 7. Let X= (X1,X2, . . . ,Xn)
′. Then X has an n-dimensional normal distribution

if and only if every linear function of X

X′t= t1X1 + t2X2 + · · ·+ tnXn

has a univariate normal distribution.

Proof. Suppose that X′t is normal for any t. Then the MGF of X′t is given by

M(s) = exp

(
bs+

1
2
σ2s2

)
. (30)

Here b = E{X′t} =
∑n

1 tijμi = t′μ, where μ′ = (μ1, . . . ,μn), and σ2 = var(X′t) =
var(

∑
tiXi) = t′M−1t, where M−1 is the dispersion matrix of X. Thus

M(s) = exp

(
t′μs+

1
2
t′M−1ts2

)
. (31)

Let s = 1 then

M(1) = exp

(
t′μ+

1
2
t′M−1t

)
, (32)

and since the MGF is unique, it follows that X has a multivariate normal distribution. The
converse follows from Corollary 1 to Theorem 6.

Many characterization results for the multivariate normal distribution are now available.
We refer the reader to Lukacs and Laha [70, p. 79].

PROBLEMS 5.4

1. Let (X,Y) have joint PDF

f (x,y) =
1

6π
√

7
exp

{
−8

7

(
x2

16
− 31

32
x+

xy
8
+

y2

9
− 4

3
y+

71
16

)}
,

for −∞< x <∞, −∞< y <∞.

(a) Find the means and variances of X and Y . Also find ρ.

(b) Find the conditional PDF of Y given X = x and E{Y|x}, var{Y|x}.

(c) Find P{4 ≤ Y ≤ 6|X = 4}.

2. In Example 1 show that cov(X,Y) = α/π.

3. Let (X,Y) be a bivariate normal RV with parameters μ1, μ2, σ2
1, σ2

2, and ρ. What is
the distribution of X+Y? Compare your result with that of Example 1.

4. Let (X,Y) be a bivariate normal RV with parameters μ1, μ2, σ2
1, σ2

2, and ρ, and let
U = aX+b, a 	= 0, and V = cY +d, c 	= 0. Find the joint distribution of (U,V).
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5. Let (X,Y) be a bivariate normal RV with parameters μ1 = 5, μ2 = 8, σ2
1 = 16, σ2

2 = 9,
and ρ= 0.6. Find P{5 < Y < 11 | X = 2}.

6. Let X and Y be jointly normal with means 0. Also, let

W = X cosθ+Y sinθ, Z = X cosθ−Y sinθ.

Find θ such that W and Z are independent.

7. Let (X,Y) be a normal RV with parameters μ1, μ2, σ2
1, σ2

2, and ρ. Find a necessary
and sufficient condition for X+Y and X−Y to be independent.

8. For a bivariate normal RV with parameters μ1,μ2,σ1,σ2, and ρ show that

P(X > μ1, Y > μ2) =
1
4
+

1
2π

tan−1 ρ√
1−ρ2

.

[Hint: The required probability is P
(
(X −μ1)/σ1 > 0, (Y −μ2)/σ2 > 0

)
. Change

to polar coordinates and integrate.]

9. Show that every variance–covariance matrix is symmetric positive semidefinite and
conversely. If the variance–covariance matrix is not positive definite, then with prob-
ability 1 the random (column) vector X lies in some hyperplane c′X = a with
c 	= 0.

10. Let (X,Y) be a bivariate normal RV with EX = EY = 0, var(X) = var(Y) = 1, and
cov(X,Y) = ρ. Show that the RV Z = Y/X has a Cauchy distribution.

11. (a) Show that

f (x) =
1

(2π)n/2
exp

{
−
∑

x2
i

2

}[
1+

n∏
1

(
xie

−x2
i /2
)]

is a joint PDF on Rn.

(b) Let (X1,X2, . . . ,Xn) have PDF f given in (a). Show that the RVs in any proper
subset of {X1,X2, . . . ,Xn} containing two or more elements are independent
standard normal RVs.

5.5 EXPONENTIAL FAMILY OF DISTRIBUTIONS

Most of the distributions that we have so far encountered belong to a general family of
distributions that we now study. Let Θ be an interval on the real line, and let {fθ : θ ∈Θ}
be a family of PDFs (PMFs). Here and in what follows we write x= (x1,x2, . . . ,xn) unless
otherwise specified.

Definition 1. If there exist real-valued functions Q(θ) and D(θ) on Θ and Borel-
measurable functions T(x1,x2, . . . ,xn) and S(x1,x2, . . . ,xn) on Rn such that

fθ(x1,x2, . . . ,xn) = exp{Q(θ)T(x)+D(θ)+S(x)}, (1)

we say that the family {fθ,θ ∈Θ} is a one-parameter exponential family.
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Let X1,X2, . . . ,Xm be iid with PMF (PDF) fθ. Then the joint distribution of X =
(X1,X2, . . . ,Xm) is given by

gθ(x) =
m∏

i=1

fθ(xi) =
m∏

i=1

exp{Q(θ)T(xi)+D(θ)+S(xi)}

= exp

{
Q(θ)

m∑
i=1

T(xi)+mD(θ)+
m∑

i=1

S(xi)

}
,

where x = (x1,x2, . . . ,xm), xj = (xj1,xj2, . . . ,xjn), j = 1,2, . . . ,m, and it follows that
{gθ : θ ∈Θ} is again a one-parameter exponential family.

Example 1. Let X ∼N(μ0,σ
2), where μ0 is known and σ2 unknown. Then

fσ2(x) =
1

σ
√

2π
exp

{
− (x−μ0)

2

2σ2

}

= exp

{
− log(σ

√
2π)− (x−μ0)

2

2σ2

}

is a one-parameter exponential family with

Q(σ2) =− 1
2σ2

, T(x) = (x−μ0)
2, S(x) = 0, and

D(σ2) =− log(σ
√

2π).

If X ∼N(μ,σ2
0), where σ0 is known but μ is unknown, then

fμ(x) =
1

σ0

√
2π

exp

{
− (x−μ)2

2σ2
0

}

=
1

σ0

√
2π

exp

(
− x2

2σ2
0

+
μx

σ2
0

− μ2

2σ2
0

)

is a one-parameter exponential family with

Q(μ) =
μ

σ2
0

, D(μ) =− μ

2σ2
0

, T(x) = x,

and

S(x) =−
[

x2

2σ2
0

+
1
2
log(2πσ2

0)

]
.

Example 2. Let X ∼ P(λ), λ > 0 unknown. Then

Pλ{X = x}= e−λλ
x

x!
= exp{−λ+ x logλ− log(x!)},
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and we see that the family of Poisson PMFs with parameter λ is a one-parameter
exponential family.

Some other important examples of one-parameter exponential families are binomial,
G(α,β) (provided that one of α, β is fixed), B(α,β) (provided that one of α, β is
fixed), negative binomial, and geometric. The Cauchy family of densities and the uniform
distribution on [0,θ] do not belong to this class.

Theorem 1. Let {fθ : θ ∈ Θ} be a one-parameter exponential family of PDFs (PMFs)
given in (1). Then the family of distributions of T(X) is also a one-parameter exponential
family of PDFs (PMFs), given by

gθ(t) = exp{tQ(θ)+D(θ)+S∗(t)}

for suitable S∗(t).

Proof. The proof of Theorem 1 is a simple application of the transformation of variables
technique studied in Section 4.4 and is left as an exercise, at least for the cases considered
in Section 4.4. For the general case we refer to Lehmann [64, p. 58].

Let us now consider the k-parameter exponential family, k ≥ 2. Let Θ ⊆ Rk be a k-
dimensional interval.

Definition 2. If there exist real-valued functions Q1,Q2, . . . ,Qk,D defined on Θ, and
Borel-measurable functions T1,T2, . . . ,Tk,S on Rn such that

fθ(x) = exp

{
k∑

i=1

Qi(θ)Ti(x)+D(θ)+S(x)

}
, (2)

we say that the family {fθ, θ ∈Θ} is a k-parameter exponential family.

Once again, if X= (X1,X2, . . . ,Xm) and Xj are iid with common distribution (2), the
joint distributions of X form a k-parameter exponential family. An analog of Theorem 1
also holds for the k-parameter exponential family.

Example 3. The most important example of a k-parameter exponential family is N(μ,σ2)
when both μ and σ2 are unknown. We have

θ = (μ,σ2), Θ= {(μ,σ2) :−∞< μ <∞,σ2 > 0}

and

fθ(x) =
1

σ
√

2π
exp

(
−x2 −2μx+μ2

2σ2

)

= exp

{
− x2

2σ2
+

μ

σ2
x− 1

2

[
μ2

σ2
+log(2πσ2)

]}
.
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It follows that fθ is a two-parameter exponential family with

Q1(θ) =− 1
2σ2

, Q2(θ) =
μ

σ2
, T1(x) = x2, T2(x) = x,

D(θ) =−1
2

[
μ2

σ2
+log(2πσ2)

]
, and S(x) = 0.

Other examples are the G(α,β) and B(α,β) distributions when both α,β are unknown,
and the multinomial distribution. U[α,β] does not belong to this family, nor does C(α,β).

Some general properties of exponential families will be studied in Chapter 8, and the
importance of these families will then become evident.

Remark 1. The form in (2) is not unique as easily seen by substituting αQi for Qi and
(1/α)Ti for Ti. This, however, is not going to be a problem in statistical considerations.

Remark 2. The integer k in Definition 2 is also not unique since the family {1,Q1, . . . ,Qk}
or {1,T1, . . . ,Tk} may be linearly dependent. In general, k need not be the dimension of Θ.

Remark 3. The support {x : fθ(x)> 0} does not depend on θ.

Remark 4. In (2), one can change parameters to ηi = Qi(θ), i = 1,2, . . . ,k so that

fη(x) = exp

{
k∑

i=1

ηiTi(x)+D(η)+S(x)

}
(3)

where the parameters η = (η1,η2, . . . ,ηk) are called natural parameters. Again ηi may be
linearly dependent so one of ηi may be eliminated.

PROBLEMS 5.5

1. Show that the following families of distributions are one-parameter exponential
families:

(a) X ∼ b(n,p).

(b) X ∼ G(α,β), (i) if α is known and (ii) if β is known.

(c) X ∼ B(α,β), (i) if α is known and (ii) if β is known.

(d) X ∼ NB(r;p), where r is known, p unknown.

2. Let X ∼ C(1,θ). Show that the family of distributions of X is not a one-parameter
exponential family.

3. Let X ∼ U[0,θ], θ ∈ [0,∞). Show that the family of distributions of X is not an
exponential family.

4. Is the family of PDFs

fθ(x) =
1
2

e−|x−θ|, −∞< x <∞,θ ∈ (−∞,∞),

an exponential family?
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5. Show that the following families of distributions are two-parameter exponential
families:

(a) X ∼ G(α,β), both α and β unknown.

(b) X ∼ B(α,β), both α and β unknown.

6. Show that the families of distributions U[α,β] and C(α,β) do not belong to the
exponential families.

7. Show that the multinomial distributions form an exponential family.



6
SAMPLE STATISTICS AND THEIR
DISTRIBUTIONS

6.1 INTRODUCTION

In the preceding chapters we discussed fundamental ideas and techniques of probability
theory. In this development we created a mathematical model of a random experiment by
associating with it a sample space in which random events correspond to sets of a certain
σ-field. The notion of probability defined on this σ-field corresponds to the notion of
uncertainty in the outcome on any performance of the random experiment.

In this chapter we begin the study of some problems of mathematical statistics. The
methods of probability theory learned in preceding chapters will be used extensively in
this study.

Suppose that we seek information about some numerical characteristics of a collection
of elements called a population. For reasons of time or cost we may not wish or be able to
study each individual element of the population. Our object is to draw conclusions about
the unknown population characteristics on the basis of information on some characteristics
of a suitably selected sample. Formally, let X be a random variable which describes the
population under investigation, and let F be the DF of X. There are two possibilities. Either
X has a DF Fθ with a known functional form (except perhaps for the parameter θ, which
may be a vector) or X has a DF F about which we know nothing (except perhaps that F
is, say, absolutely continuous). In the former case let Θ be the set of possible values of the
unknown parameter θ. Then the job of a statistician is to decide, on the basis of a suitably
selected sample, which member or members of the family {Fθ,θ ∈ Θ} can represent the
DF of X. Problems of this type are called problems of parametric statistical inference and
will be the subject of investigation in Chapters 8 through 12. The case in which nothing is

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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known about the functional form of the DF F of X is clearly much more difficult. Inference
problems of this type fall into the domain of nonparametric statistics and will be discussed
in Chapter 13.

To be sure, the scope of statistical methods is much wider than the statistical inference
problems discussed in this book. Statisticians, for example, deal with problems of plan-
ning and designing experiments, of collecting information, and of deciding how best the
collected information should be used. However, here we concern ourselves only with the
best methods of making inferences about probability distributions.

In Section 6.2 of this chapter we introduce the notions of (simple) random sample and
sample statistics. In Section 6.3 we study sample moments and their exact distributions. In
Section 6.4 we consider some important distributions that arise in sampling from a normal
population. Sections 6.5 and 6.6 are devoted to the study of sampling from univariate and
bivariate normal distributions.

6.2 RANDOM SAMPLING

Consider a statistical experiment that culminates in outcomes x, which are the values
assumed by an RV X. Let F be the DF of X. In practice, F will not be completely known,
that is, one or more parameters associated with F will be unknown. The job of a statistician
is to estimate these unknown parameters or to test the validity of certain statements about
them. She can obtain n independent observations on X. This means that she observes n
values x1,x2, . . . ,xn assumed by the RV X. Each xi can be regarded as the value assumed
by an RV Xi, i= 1,2, . . . ,n, where X1,X2, . . . ,Xn are independent RVs with common DF F.
The observed values (x1,x2, . . . ,xn) are then values assumed by (X1,X2, . . . ,Xn). The set
{X1,X2, . . . ,Xn} is then a sample of size n taken from a population distribution F. The set
of n values x1,x2, . . . ,xn is called a realization of the sample. Note that the possible values
of the RV (X1,X2, . . . ,Xn) can be regarded as points in Rn, which may be called the sample
space. In practice one observes not x1,x2, . . . ,xn but some function f (x1,x2, . . . ,xn). Then
f (x1,x2, . . . ,xn) are values assumed by the RV f (X1,X2, . . . ,Xn).

Let us now formalize these concepts.

Definition 1. Let X be an RV with DF F, and let X1,X2, . . . ,Xn be iid RVs with common
DF F. Then the collection X1,X2, . . . ,Xn is known as a random sample of size n from the
DF F or simply as n independent observations on X.

If X1,X2, . . . ,Xn is a random sample from F, their joint DF is given by

F∗(x1,x2, . . . ,xn) =
n∏

i=1

F(xi). (1)

Definition 2. Let X1,X2, . . . ,Xn be n independent observations on an RV X, and let
f : Rn → Rk be a Borel-measurable function. Then the RV f (X1,X2, . . . ,Xn) is called a
(sample) statistic provided that it is not a function of any unknown parameter(s).

Two of the most commonly used statistics are defined as follows.
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Definition 3. Let X1,X2, . . . ,Xn be a random sample from a distribution function F. Then
the statistic

X = n−1Sn =
n∑

i=1

Xi

n
(2)

is called the sample mean, and the statistic

S2 =

n∑
1

(Xi −X)2

n−1
=

∑n
i=1 X2

i −nX
2

n−1
(3)

is called the sample variance and S is called the sample standard deviation.

Remark 1. Whenever the word “sample” is used subsequently, it will mean “random
sample.”

Remark 2. Sampling from a probability distribution (Definition 1) is sometimes referred
to as sampling from an infinite population since one can obtain samples of any size one
desires even if the population is finite (by sampling with replacement).

Remark 3. In sampling without replacement from a finite population, the independence
condition of Definition 1 is not satisfied. Suppose a sample of size 2 is taken from a finite
population (a1,a2, . . . ,aN) without replacement. Let Xi be the outcome on the ith draw.
Then P{X1 = a1} = 1/N, P{X2 = a2 | X1 = a1} = 1

N−1 , and P{X2 = a2 | X1 = a2} = 0.
Thus the PMF of X2 depends on the outcome of the first draw (that is, on the value of X1),
and X1 and X2 are not independent. Note, however, that

P{X2 = a2}=
N∑

j=1

P{X1 = aj}P{X2 = a2 | aj}

=
∑
j�=2

P{X1 = aj}P{X2 = a2 | aj}=
1
N
,

and X1
d
= X2. A similar argument can be used to show that X1,X2, . . . ,Xn all have the same

distribution but they are not independent. In fact, X1,X2, . . . ,Xn are exchangeable RVs.
Sampling without replacement from a finite population is often referred to as simple
random sampling.

Remark 4. It should be remembered that sample statistics X, S2 (and others that we will
define later on) are random variables, while the population parameters μ, σ2, and so on
are fixed constants that may be unknown.

Remark 5. In (3) we divide by n−1 rather than n. The reason for this will become clear
in the next section.
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Remark 6. Other frequently occurring examples of statistics are sample order statistics
X(1),X(2), . . . ,X(n) and their functions, as well as sample moments, which will be studied
in the next section.

Example 1. Let X ∼ b(1,p), where p is possibly unknown. The DF of X is given by

F(x) = pε(x−1)+(1−p)ε(x), x ∈ R.

Suppose that five independent observations on X are 0, 1, 1, 1, 0. Then 0, 1, 1, 1, 0 is a
realization of the sample X1,X2, . . . ,X5. The sample mean is

x =
0+1+1+1+0

5
= 0.6,

which is the value assumed by the RV X. The sample variance is

s2 =

5∑
i=1

(xi − x)2

5−1
=

2(0.6)2 +3(0.4)2

4
= 0.3,

which is the value assumed by the RV S2. Also s =
√

0.3 = 0.55.

Example 2. Let X ∼N(μ,σ2), where μ is known but σ2 is unknown. Let X1,X2, . . . ,Xn be
a sample from N(μ,σ2). Then, according to our definition,

∑n
i=1 Xi/σ

2 is not a statistic.
Suppose that five observations on X are −0.864, 0.561, 2.355, 0.582, −0.774. Then the

sample mean is 0.372, and the sample variance is 1.648.

PROBLEMS 6.2

1. Let X be a b(1, 1
2 ) RV, and consider all possible random samples of size 3 on X.

Compute X and S2 for each of the eight samples, and also compute the PMFs of X
and S2.

2. A fair die is rolled. Let X be the face value that turns up, and X1, X2 be two
independent observations on X. Compute the PMF of X.

3. Let X1,X2, . . . ,Xn be a sample from some population. Show that

max
1≤i≤n

|Xi −X|< (n−1)S√
n

unless either all the n observations are equal or exactly n− 1 of the Xj’s are equal.
(Samuelson [99])

4. Let x1,x2, . . . ,xn be real numbers, and let x(n) = max{x1,x2, . . . ,xn}, x(1) =
min{x1,x2, . . . ,xn}. Show that for any set of real numbers a1,a2, . . . ,an such that∑n

i=1 ai = 0 the following inequality holds:∣∣∣∣∣
n∑

i=1

aixi

∣∣∣∣∣≤ 1
2

(
x(n)− x(1)

) n∑
i=1

|ai|.
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5. For any set of real numbers x1,x2, . . . ,xn show that the fraction of x1,x2, . . . ,xn

included in the interval (x− ks,x+ ks) for k ≥ 1 is at least 1− 1/k2. Here x is the
mean and s the standard deviation of x’s.

6.3 SAMPLE CHARACTERISTICS AND THEIR DISTRIBUTIONS

Let X1,X2, . . . ,Xn be a sample from a population DF F. In this section we consider some
commonly used sample characteristics and their distributions.

Definition 1. Let F∗
n (x) = n−1∑n

j=1 ε(x−Xj). Then nF∗
n (x) is the number of Xk’s (1 ≤

k ≤ n) that are ≤ x. F∗
n (x) is called the sample (or empirical) distribution function.

We note that 0 ≤ F∗
n (x) ≤ 1 for all x, and, moreover, that F∗

n is right continuous,
nondecreasing, and F∗

n (−∞) = 0, F∗
n (∞) = 1. Thus F∗

n is a DF.
If X(1),X(2), . . . ,X(n) is the order statistic for X1,X2, . . . ,Xn, then clearly

F∗
n (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < X(1)
k
n

if X(k) ≤ x < X(k+1) (k = 1,2, . . . ,n−1).

1 if x ≥ X(n).

(1)

For fixed but otherwise arbitrary x ∈ R, F∗
n (x) itself is an RV of the discrete type. The

following result is immediate.

Theorem 1. The RV F∗
n (x) has the probability function

P

{
F∗

n (x) =
j
n

}
=

(
n
j

)
[F(x)]j[1−F(x)]n−j, j = 0,1, . . . ,n, (2)

with mean

EF∗
n (x) = F(x) (3)

and variance

var(F∗
n (x)) =

F(x)[1−F(x)]
n

. (4)

Proof. Since ε(x−Xj), j = 1,2, . . . ,n, are iid RVs, each with PMF

P{ε(x−Xj) = 1}= P{x−Xj ≥ 0}= F(x)

and

P{ε(x−Xj) = 0}= 1−F(x),

their sum nF∗
n (x) is a b(n,p) RV, where p = F(x). Relations (2), (3), and (4) follow

immediately.
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We next consider some typical values of the DF F∗
n (x), called sample statistics. Since

F∗
n (x) has jump points Xj, j = 1,2, . . . ,n, it is clear that all moments of F∗

n (x) exist. Let us
write

ak = n−1
n∑

j=1

Xk
j (5)

for the moment of order k about 0. Here ak will be called the sample moment of order k.
In this notation

a1 = n−1
n∑

j=1

Xj = X. (6)

The sample central moment is defined by

bk = n−1
n∑

j=1

(Xj −a1)
k = n−1

n∑
j=1

(Xj −X)k. (7)

Clearly,

b1 = 0 and b2 =

(
n−1

n

)
S2.

As mentioned earlier, we do not call b2 the sample variance. S2 will be referred to as the
sample variance for reasons that will subsequently become clear. We have

b2 = a2 −a2
1. (8)

For the MGF of DF F∗
n (x), we have

M∗(t) = n−1
n∑

j=1

etXj . (9)

Similar definitions are made for sample moments of bivariate and multivariate dis-
tributions. For example, if (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) is a sample from a bivariate
distribution, we write

X = n−1
n∑

j=1

Xj and Y = n−1
n∑

j=1

Yj (10)

for the two sample means, and for the second-order sample central moments we write

b20 = n−1
n∑

j=1

(Xj −X)2, b02 = n−1
n∑

j=1

(Yj −Y)2, (11)

b11 = n−1
n∑

j=1

(Xj −X)(Yj −Y).
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Once again we write

S2
1 = (n−1)−1

n∑
j=1

(Xj −X)2 and S2
2 = (n−1)−1

n∑
j=1

(Yj −Y)2 (12)

for the two sample variances, and for the sample covariance we use the quantity

S11 = (n−1)−1
n∑

j=1

(Xj −X)(Yj −Y). (13)

In particular, the sample correlation coefficient is defined by

R =
b11√
b20b02

=
S11

S1S2
. (14)

It can be shown (Problem 4) that |R| ≤ 1, the extreme values ±1 can occur only when all
sample points (X1,Y1), . . . ,(Xn,Yn) lie on a straight line.

The sample quantiles are defined in a similar manner. Thus, if 0 < p < 1, the sample
quantile of order p, denoted by Zp, is the order statistic X(r), where

r =

{
np if np is an integer,

[np+1] if np is not an integer.

As usual, [x] is the largest integer ≤ x. Note that, if np is an integer, we can take any value
between X(np) and X(np)+1 as the pth sample quantile. Thus, if p = 1

2 and n is even, we
can take any value between X(n/2) and X(n/2)+1, the two middle values, as the median. It
is customary to take the average. Thus the sample median is defined as

Z1/2 =

⎧⎨
⎩

X((n+1)/2) if n is odd,

X(n/2)+X((n/2)+1)

2
if n is even.

(15)

Note that

[n
2
+1

]
=

(
n+1

2

)

if n is odd.

Example 1. A random sample of 25 observations is taken from the interval (0,1):

0.50 0.24 0.89 0.54 0.34 0.89 0.92 0.17 0.32 0.80

0.06 0.21 0.58 0.07 0.56 0.20 0.31 0.17 0.41 0.38

0.88 0.61 0.35 0.06 0.90
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In order to compute F∗
25, the first step is to order the observations from smallest to largest.

The ordered sample is

0.06, 0.06, 0.07, 0.17, 0.17, 0.20, 0.21, 0.24, 0.31, 0.32, 0.34,

0.35, 0.38, 0.41, 0.50, 0.54, 0.56, 0.58, 0.61, 0.80, 0.88, 0.89,

0.89, 0.90, 0.92

Then the empirical DF is given by

F∗
25(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0.06

2/25, 0.06 ≤ x < 0.07

3/25, 0.07 ≤ x < 0.17

5/25, 0.17 ≤ x < 0.20
...

24/25, 0.90 ≤ x < 0.92

1, x ≥ 0.92

.

A plot of F∗
25 is shown in Fig. 1. The sample mean and variance are

x = 0.45, s2 = 0.084, and s = 0.29.

Also sample median is the 13th observation in the ordered sample, namely, z1/2 = 0.38,
and if p = 0.2 then np = 5 and z0.2 = 0.17.

0 0.2 0.4 0.6 0.8 1 

0.2

0.4

0.6

0.8

1

Fig. 1 Empirical DF for data of Example 1.
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Next we consider the moments of sample characteristics. In the following we write
EXk = mk and E(X −μ)k = μk for the kth-order population moments. Wherever we use
mk (or μk), it will be assumed to exist. Also, σ2 represents the population variance.

Theorem 2. Let X1,X2, . . . ,Xn be a sample from a population with DF F. Then

EX = μ, (16)

var(X) =
σ2

n
, (17)

E(X)3 =
m3 +3(n−1)m2μ+(n−1)(n−2)μ3

n2
, (18)

and

E(X)4 =
m4 +4(n−1)m3μ+6(n−1)(n−2)m2μ

2 +3(n−1)m2
2

n3
(19)

+
(n−1)(n−2)(n−3)μ4

n3
.

Proof. In view of Theorems 4.5.3 and 4.5.7, it suffices to prove (18) and (19). We have

⎛
⎝ n∑

j=1

Xj

⎞
⎠

3

=

n∑
j=1

X3
j +3

∑
j�=k

X2
j Xk +

∑
j�=k �=l

XjXkXl,

and (18) follows. Similarly,

(
n∑

i=1

Xi

)4

=

(
n∑

i=1

Xi

)⎛
⎝ n∑

j=1

X3
j +3

∑
j�=k

X2
j Xk +

∑
j�=k �=l

XjXkXl

⎞
⎠

=
n∑

i=1

X4
i +4

∑
j�=k

XjX
3
k +3

∑
j�=k

X2
j X2

k +6
∑

i�=j�=k

X2
i XjXk

+
∑

i�=j�=k �=l

XiXjXkXl,

and (19) follows.

Theorem 3. For the third and fourth central moments of X, we have

μ3(X) =
μ3

n2
(20)

and

μ4(X) =
μ4

n3
+3

(n−1)μ2
2

n3
. (21)



254 SAMPLE STATISTICS AND THEIR DISTRIBUTIONS

Proof. We have

μ3(X) = E(X−μ)3 =
1
n3

E

{
n∑

i=1

(Xi −μ)

}3

=
1
n3

n∑
i=1

E(Xi −μ)3 =
μ3

n2
,

and

μ4(X) = E(X−μ)4 =
1
n4

E

{
n∑

i=1

(Xi −μ)

}4

=
1
n4

n∑
i=1

E(Xi −μ)4 +

(
4
2

)
1
n4

∑
i<j

E{(Xi −μ)2(Xj −μ)2}

=
μ4

n3
+

3(n−1)
n3

μ2
2.

Theorem 4. For the moments of b2, we have

E(b2) =
(n−1)σ2

n
, (22)

var(b2) =
μ4 −μ2

2

n
− 2(μ4 −2μ2

2)

n2
+

μ4 −3μ2
2

n3
, (23)

E(b3) =
(n−1)(n−2)

n2
μ3, (24)

and

E(b4) =
(n−1)(n2 −3n+3)

n3
μ4 +

3(n−1)(2n−3)
n3

μ2
2. (25)

Proof. We have

Eb2 =
1
n

E

{
n∑
1

(Xi −μ+μ−X)2

}

=
1
n

E

{
n∑

i=1

(Xi −μ)2 −n(X−μ)2

}

=
1
n
(nσ2 −σ2) =

n−1
n

σ2.

Now

n2b2
2 =

[
n∑

i=1

(Xi −μ)2 −n(X−μ)2

]2

.
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Writing Yi = Xi −μ, we see that EYi = 0, var(Yi) = σ2, and EY4
i = μ4. We have

n2Eb2
2 = E

(
n∑
1

Y2
i −nY

2

)2

= E

⎡
⎣ n∑

i=1

Y4
i +

∑
i�=j

Y2
i Y2

j −
2
n

⎛
⎝∑

i�=j

Y2
i Y2

j +
n∑

j=1

Y4
j

⎞
⎠

+
1
n2

⎛
⎝3

∑
i�=j

Y2
i Y2

j +

n∑
1

Y4
j

⎞
⎠
⎤
⎦ .

It follows that

n2Eb2
2 = nμ4 +n(n−1)σ4 − 2

n
[n(n−1)σ4 +nμ4]

+
1
n2

[3n(n−1)σ4 +nμ4]

=

(
n−2+

1
n

)
μ4 +

(
n−2+

3
n

)
(n−1)μ2

2 (μ2 = σ2).

Therefore,

var(b2) = Eb2
2 − (Eb2)

2

=

(
n−2+

1
n

)
μ4

n2
+(n−1)

(
n−2+

3
n

)
μ2

2

n2
−
(

n−1
n

)2

μ2
2

=

(
n−2+

1
n

)
μ4

n2
+(n−1)(3−n)

μ2
2

n3
,

as asserted.
Relations (24) and (25) can be proved similarly.

Corollary 1. ES2 = σ2.

This is precisely the reason why we call S2, and not b2, the sample variance.

Corollary 2. var(S2) =
μ4

n
+

3−n
n(n−1)

μ2
2.

Remark 1. The results of Theorems 3 to 5 can easily be modified and stated for the case
when the Xi’s are exchangeable RVs. Thus (16) holds and (17) has to be modified to

var(X) =
σ2

n
+

n−1
n

ρσ2, (17′)

where ρ is the correlation coefficient between Xi and Xj. The expressions for (ΣXj)
3

and (ΣXj)
4 in the proof of Theorem 3 still hold but both (18) and (19) need appropriate

modification. For example, (18) changes to
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EX
3
=

m3 +3(n−1)E(X2
j Xk)+(n−1)(n−2)E(XjXkXl)

n2
. (18′)

Let us show how Corollary 1 changes for exchangeable RVs. Clearly,

(n−1)S2 =

n∑
i=1

(Xi −μ)2 −n(X−μ)2

so that

(n−1)ES2 = nσ2 −nE(X−μ)2

= nσ2 −
{
σ2 +(n−1)ρσ2

}
.

in view of (17′). It follows that

ES2 = σ2(1−ρ).

We note that E(S2 −σ2) =−ρσ2 and, moreover, from Problem 4.5.19 (or from (17′)) we
note that ρ≥−1/(n−1) so that 1−ρ≤ n/(n−1) and hence

0 ≤ ES2 ≤ n
n−1

σ2.

Remark 2. In simple random sampling from a (finite ) population of size N we note that
when n = N, X̄ = μ, which is a constant so that (17′) reduces to

0 =
σ2

N
+

N −1
N

ρσ2,

so that ρ=−1/(N −1). It follows that

var(X̄) =
σ2

n

(
1− n−1

N −1

)
=
(N −n

N −1

)σ2

n
. (17′′)

The factor (N − n)/(N − 1) in (17′′) is called the finite population correction factor. As
N → ∞, with n fixed, (N − n)/(N − 1) → 1 so that the expression for var(X̄) in (17′′)
approaches that in (17).

Remark 3. In view of (17′) if the Xi’s are uncorrelated, that is, if ρ = 0, then var (X) = σ2/n,
the SD of X is σ/

√
n. The SD of X is sometimes called standard error (SE) although if σ

is unknown S/
√

n is most commonly referred to as the SE of X.

The following result provides a justification for our definition of sample covariance.

Theorem 5. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate population
with variances σ2

1, σ2
2 and covariance ρσ1σ2. Then,

ES2
1 = σ2

1 , ES2
2 = σ2

2 , and ES11 = ρσ1σ2, (26)

where S2
1, S2

2, and S11 are defined in (12) and (13).
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Proof. It follows from Corollary 1 to Theorem 4 that ES2
1 = σ2

1 and ES2
2 = σ2

2. To prove
that ES11 = ρσ1σ2 we note that Xi is independent of Xj(i 	= j) and Yj (i 	= j). We have

(n−1)ES11 = E

⎧⎨
⎩

n∑
j=1

(Xj −X)(Yj −Y)

⎫⎬
⎭ .

Now

E{(Xj −X)(Yj −Y)}= E

{
XjYj −Xj

∑n
1 Yj

n
−Yj

∑n
1 Xj

n
+

∑
Xj
∑

Yj

n2

}

= EXY − 1
n
[EXY +(n−1)EX EY]− 1

n
[EXY +(n−1)EX EY]

+
1
n2

[nEXY +n(n−1)EX EY]

=
n−1

n
(EXY −EX EY),

and it follows that

(n−1)ES11 = n

(
n−1

n

)
(EXY −EX EY),

that is,

ES11 = EXY −EX EY = cov(X,Y) = ρσ1σ2,

as asserted.

We next turn our attention to the distributions of sample characteristics. Several possi-
bilities exist. If the exact sampling distribution is required, the method of transformation
described in Section 4.4 can be used. Sometimes the technique of MGF or CF can be
applied. Thus, if X1,X2, . . . ,Xn is a random sample from a population distribution for which
the MGF exists, the MGF of the sample mean X is given by

MX(t) =
n∏

i=1

EetXi/n =
[
M
( t

n

)]n

, (27)

where M is the MGF of the population distribution. If MX(t) has one of the known forms,
it is possible to write the PDF of X. Although this method has the obvious drawback
that it applies only to distributions for which all moments exist, we will see in Section 6.5
its effectiveness in the important case of sampling from a normal population where this
condition is satisfied. An analog of (27) holds for CFs without any condition on existence
of moments. Indeed,

φX̄(t) =
n∑

j=1

EeitXj/n =
[
φ
( t

n

)]n

, (28)

where φ is the CF of Xj.
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Example 2. Let X1,X2, . . . ,Xn be a sample from a G(α,1) distribution. We will compute
the PDF of X. We have

MX(t) =
[
M
( t

n

)]n

=
1

(1− t/n)αn
,

t
n
< 1,

so that X is a G(αn,1/n) variate.

Example 3. Let X1,X2, . . . ,Xn be a random sample from a uniform distribution on (0,1).
Consider the geometric mean

Yn =

(
n∏

i=1

Xi

)1/n

.

We have logYn = (1/n)
∑n

i=1 logXi, so that logYn is the mean of logX1, . . . , logXn.
The common PDF of logX1, . . . , logXn is

f (x) =

{
ex if x < 0,

0 otherwise,

which is the negative exponential distribution with parameter β = 1. We see that the MGF
of logYn is given by

M(t) =
n∏

i=1

Eet logXi/n =
1

(1+ t/n)n
,

and the PDF of logYn is given by

f ∗(x) =

⎧⎨
⎩

nn

Γ(n)
(−x)n−1enx, −∞< x < 0,

0, otherwise.

It follows that Yn has PDF

fYn(y) =

⎧⎨
⎩

nn

Γ(n)
yn−1(− logy)n−1, 0 < y < 1,

0, otherwise.

Example 4. (Hogben [46]). Let X1,X2, . . . ,Xn be a random sample from a Bernoulli
distribution with parameter p, 0 < p < 1. Let X be the sample mean and S2 the sample
variance. We will find the PMF of S2. Note that Sn =

∑n
i=1 Xi =

∑n
i=1 X2

i and that Sn is
b(n,p). Since

(n−1)S2 =

n∑
i=1

X2
i −n(X)2

=
Sn(n−Sn)

n
,
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S2 only assumes values of the form

t =
i(n− i)
n(n−1)

, i = 0,1,2, . . . ,
[n

2

]
,

where [x] is the largest integer ≤ x. Thus

P{S2 = t}= P{nSn −S2
n = i(n−1)}

= P

{(
Sn −

n
2

)2
=
(

i− n
2

)2
}

= P{Sn = 1 or Sn = n− i}

=

(
n
i

)
pi(1−p)n−i +

(
n
i

)
pn−i(1−p)i

=

(
n
i

)
pi(1−p)i{(1−p)n−2i +pn−2i}, i <

[n
2

]
.

If n is even, n = 2m, say, where m ≥ 0 is an integer, and i = m, then

P

{
S2 =

m
2(2m−1)

}
= 2

(
2m
m

)
pm(1−p)m.

In particular, if n = 7, S2 = 0, 1
7 , 5

21 , and 2
7 with probabilities {p7 + (1 − p)7},

7p(1−p){p5 +(1−p)5}, 21p2(1−p)2{p3 +(1−p)3}, and 35p3(1−p)3, respectively.
If n = 6, then S2 = 0, 1

6 , 4
15 , and 3

10 with probabilities {p6 +(1−p)6}, 6p(1−p){p4 +
(1−p)4}, 15p2(1−p)2{p2 +(1−p)2}, and 40p3(1−p)3, respectively.

We have already considered the distribution of the sample quantiles in Section 4.7 and
the distribution of range X(n) − X(1) in Example 4.7.4. It can be shown, without much
difficulty, that the distribution of the sample median is given by

fr(y) =
n!

(r−1)! (n− r)!
[F(y)]r−1[1−F(y)]n−rf (y) if r =

n+1
2

, (29)

where F and f are the population DF and PDF, respectively. If n = 2m and the median is
taken as the average of X(m) and X(m+1), then

fr(y) =
2(2m)!

[(m−1)!]2

∫ ∞

y
[F(2y− v)]m−1[1−F(v)]m−1f (2y− v)f (v)dv. (30)

Example 5. Let X1,X2, . . . ,Xn be a random sample from U(0,1). Then the integrand
in (30) is positive for the intersection of the regions 0 < 2y− v < 1 and 0 < v < 1. This
gives (v/2) < y < (v+ 1)/2, y < v, and 0 < v < 1. The shaded area in Fig. 2 gives the
limits on the integral as

y < v < 2y if 0 < y ≤ 1
2
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1/2 1

1

y = v/2 

y = v

y 

v

0 
0

Fig. 2 {y < θ ≤ 2y, 0 < y < 1/2, and y < θ < 1, 1/2 < y ≤ 1}.

and

y < v < 1 if
1
2
< y < 1.

In particular, if m = 2, the PDF of the median, (X(2)+X(3))/2, is given by

fr(y) =

⎧⎪⎨
⎪⎩

8y2(3−4y) if 0 < y < 1
2 ,

8(4y3 −9y2 +6y−1) if 1
2 < y < 1,

0 otherwise.

The method of MGF (or CF) introduced in this section is particularly effective in com-
puting distributions of commonly used statistics in sampling from a univariate or bivariate
normal distribution as we shall see in the next two sections. However, when sampling
from nonnormal populations these methods may not be very fruitful in determining the
exact distribution of the statistic under consideration. Often the statistic itself may be too
intractable. Then we have some of other alternatives at our disposal. One may be able to
use the asymptotic distribution of the statistic or one may resort to simulation methods. In
Chapter 7 we study some of these procedures.

PROBLEMS 6.3

1. Let X1,X2, . . . ,Xn be random sample from a DF F, and let F∗
n (x) be the sample

distribution function. Find cov(F∗
n (x),F

∗
n (y)) for fixed real numbers x,y.
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2. Let F∗
n be the empirical DF of a random sample from DF F. Show that

P

{
|F∗

n (x)−F(x)| ≥ ε

2
√

n

}
≤ 1

ε2
for all ε > 0.

3. For the data of Example 6.2.2 compute the sample distribution function.

4. (a) Show that the sample correlation coefficient R satisfies |R| ≤ 1 with equality if
and only if all sample points lie on a straight line.

(b) If we write Ui = aXi + b (a 	= 0) and Vi = cYi + d (c 	= 0), what is the sample
correlation coefficient between the U’s and the V’s?

5. (a) A sample of size 2 is taken from the PDF f (x) = 1, 0≤ x≤ 1, and = 0 otherwise.
Find P(X̄ ≥ 0.9).

(b) A sample of size 2 is taken from b(1,p):
(i) Find P(X̄ ≤ p). (ii) Find P(S2 ≥ 0.5).

6. Let X1,X2, . . . ,Xn be a random sample from N(μ,σ2). Compute the first four sample
moments of X about the origin and about the mean. Also compute the first four
sample moments of S2 about the mean.

7. Derive the PDF of the median given in (29) and (30).

8. Let U(1),U(2), . . . ,U(n) be the order statistic of a sample size n from U(0,1).
Compute EUk

(r) for any 1 ≤ r ≤ n and integer k (> 0). In particular, show that

EU(r) =
r

n+1
and var(U(r)) =

r(n− r+1)
(n+1)2(n+2)

.

Show also that the correlation coefficient between U(r) and U(s) for 1 ≤ r < s ≤ n is
given by [r(n− s+1)/s(n− r+1)]1/2.

9. Let X1,X2, . . . ,Xn be n independent observations on X. Find the sampling distribution
of X, the sample mean, if (a) X ∼ P(λ), (b) X ∼ C(1,0), and (c) X ∼ χ2(m).

10. Let X1,X2, . . . ,Xn be a random sample from G(α,β). Let us write Yn =
(X−αβ)/β

√
(α/n), n = 1,2, . . . ..

(a) Compute the first four moments of Yn, and compare them with the first four
moments of the standard normal distribution.

(b) Compute the coefficients of skewness α3 and of kurtosis α4 for the RVs Yn. (For
definitions of α3,α4 see Problem 3.2.10.)

11. Let X1,X2, . . . ,Xn be a random sample from U[0,1]. Also let Zn = (X −
0.5)/

√
(1/12n). Repeat Problem 10 for the sequence Zn.

12. Let X1,X2, . . . ,Xn be a random sample from P(λ). Find var(S2), and compare it with
var(X). Note that EX = λ= ES2. [Hint: Use Problem 3.2.9.]

13. Prove (24) and (25).

14. Multiple RVs X1,X2, . . . ,Xn are exchangeable if the n! permutations (Xi1 ,
Xi2 ,. . .,Xin ) have the same n-dimensional distribution. Consider the special case
when X’s are two dimensional. Find an analog of Theorem 6 for exchangeable
bivariate RVs (X1,Y1),(X2,Y2), . . . ,(Xn,Yn).



262 SAMPLE STATISTICS AND THEIR DISTRIBUTIONS

15. Let X1,X2, . . . ,Xn be a random sample from a distribution with finite third moment.
Show that cov(X,S2) = μ3/n.

6.4 CHI-SQUARE, t-, AND F-DISTRIBUTIONS: EXACT SAMPLING
DISTRIBUTIONS

In this section we investigate certain distributions that arise in sampling from a normal pop-
ulation. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2). Then we know that X ∼N(μ,σ2/n).
Also, {√n(X − μ)/σ}2 is χ2(1). We will determine the distribution of S2 in the next
section. Here we mainly define chi-square, t-, and F-distributions and study their prop-
erties. Their importance will become evident in the next section and later in the testing of
statistical hypotheses (Chapter 10).

The first distribution of interest is the chi-square distribution, defined in Chapter 5 as a
special case of the gamma distribution. Let n > 0 be an integer. Then G(n/2,2) is a χ2(n)
RV. In view of Theorem 5.3.29 and Corollary 2 to Theorem 5.3.4, the following result
holds.

Theorem 1. Let X1,X2, . . . ,Xn be iid RVs, and let Sn =
∑n

k=1 Xk. Then

(a) Sn ∼ χ2(n)⇔ X1 ∼ χ2(1)

and

(b) X1 ∼N(0,1)⇒
n∑

k=1

X2
k ∼ χ2(n).

If X has a chi-square distribution with n d.f., we write X ∼ χ2(n). We recall that, if
X ∼ χ2(n), its PDF is given by

f (x) =

⎧⎨
⎩

xn/2−1e−x/2

2n/2Γ(n/2)
if x ≥ 0,

0 if x < 0,
(1)

the MGF by

M(t) = (1−2t)−n/2 for t <
1
2
, (2)

and the mean and the variance by

EX = n, var(X) = 2n. (3)

The χ2(n) distribution is tabulated for values of n = 1,2, . . . . Tables usually go up to
n = 30, since for n > 30 it is possible to use normal approximation. In Fig. 1 we plot the
PDF (1) for selected values of n.
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n = 1

n = 10

n = 20

n = 40

0 10 20 30 40 50 60 70
0

Fig. 1 Chi-square densities.

We will write χ2
n,α for the upper α percent point of the χ2(n) distribution, that is,

P{χ2(n)> χ2
n,α}= α. (4)

Table ST3 at the end of the book gives the values of χ2
n,α for some selected values of n

and α.

Example 1. Let n = 25. Then, from Table ST3,

P{χ2(25)≤ 34.382}= 0.90.

Let us approximate this probability using CLT. We see that Eχ2(25) = 25,
varχ2(25) = 50, so that

P{χ2(25)≤ 34.382}= P

{
χ2(25)−25√

50
≤ 34.382−25

5
√

2

}
≈ P{Z ≤ 1.32}
= 0.9066.
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Definition 1. Let X1,X2, . . . ,Xn be independent normal RVs with EXi = μi and var(Xi) =
σ2, i = 1,2, . . . ,n. Also, let Y =

∑n
i=1 X2

i /σ
2. The RV Y is said to be a non-central chi-

square RV with noncentrality parameter
∑n

i=1μ
2
i /σ

2 and n d.f. We will write Y ∼χ2(n, δ),
where δ =

∑n
i=1μ

2
i /σ

2.

Although the PDF of a χ2(n, δ) RV is hard to compute (see Problem 16), its MGF is
easily evaluated. We have

M(t) = Eet
∑n

1 X2
i /σ

2

=

n∏
1

EetX2
i /σ

2

,

where Xi ∼N(μi,σ
2). Thus

EetX2
i /σ

2

=

∫ ∞

−∞

1

σ
√

2π
exp

{
tx2

i

σ2
− (xi −μi)

2

2σ2

}
dxi,

where the integral exists for t < 1
2 . In the integrand we complete squares, and after some

simple algebra we obtain

EetX2
i /σ

2

=
1√

1−2t
exp

{
tμ2

i

σ2(1−2t)

}
, t <

1
2
.

It follows that

M(t) = (1−2t)−n/2 exp

(
t

1−2t

∑
μ2

i

σ2

)
, t <

1
2
, (5)

and the MGF of a χ2(n, δ) RV is therefore

M(t) = (1−2t)−n/2 exp

(
t

1−2t
δ

)
, t <

1
2
. (6)

It is immediate that, if X1,X2, . . . ,Xk are independent, Xi ∼ χ2(ni, δi), i = 1,2, . . . ,k, then∑k
i=1 Xi is χ2(

∑k
i=1 ni,

∑k
i=1 δi).

The mean and variance of χ2(n, δ) are easy to calculate. We have

EY =

∑n
1 EX2

i

σ2
=

∑n
1[var(Xi)+(EXi)

2]

σ2

=
nσ2 +

∑n
1μ

2
i

σ2
= n+ δ,

and

var(Y) = var

(∑n
1 X2

i

σ2

)
=

1
σ4

[
n∑

i=1

var(X2
i )

]

=
1
σ4

{
n∑

i=1

EX4
i −

n∑
i=1

[E(X2
i )]

2

}



CHI-SQUARE, t-, AND F-DISTRIBUTIONS: EXACT SAMPLING DISTRIBUTIONS 265

=
1
σ4

{
n∑

i=1

(3σ4 +6σ2μ2
i +μ4

i )−
n∑

i=1

(σ2 +μ2
i )

2

}

=
1
σ4

(2nσ4 +4σ2
∑

μ2
i ) = 2n+4δ.

We next turn our attention to Student’s t-statistic, which arises quite naturally in
sampling from a normal population.

Definition 2. Let X ∼ N(0,1) and Y ∼ χ2(n), and let X and Y be independent. Then the
statistic

T =
X√
Y/n

(7)

is said to have a t-distribution with n d.f. and we write T ∼ t(n).

Theorem 2. The PDF of T defined in (7) is given by

fn(t) =
Γ[(n+1)/2]
Γ(n/2)

√
nπ

(1+ t2/n)−(n+1)/2, −∞< t <∞. (8)

Proof. The proof is left as an exercise.

Remark 1. For n = 1, T is a Cauchy RV. We will therefore assume that n > 1. For each
n, we have a different PDF. In Fig. 2 we plot fn(t) for some selected values of n. Like the

–10 –5 0 5 10

n = 1

n = 10

n = 20
n = 40

Fig. 2 Student’s t-densities.
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t(n)

0 t(n, α/2)

α/2 α/2

–t(n, α/2)

Fig. 3

normal distribution, the t-distribution is important in the theory of statistics and hence is
tabulated (Table ST4).

Remark 2. The PDF fn(t) is symmetric in t, and fn(t) → 0 as t → +∞. For large n, the
t-distribution is close to the normal distribution. Indeed, (1+ t2/n)−(n+1)/2 → e−t2/2 as
n →∞. Moreover, as t →∞ or t →−∞, the tails of fn(t)→ 0 much more slowly than do
the tails of the N(0,1) PDF. Thus for small n and large t0

P{|T|> t0} ≥ P{|Z|> t0}, Z ∼N(0,1),

that is, there is more probability in the tail of the t-distribution than in the tail of the
standard normal. In what follows we will write tn,α/2 for the value (Fig. 3) of T for which

P{|T|> tn,α/2}= α. (9)

In Table ST4 positive values of tn,α are tabulated for some selected values of n and α.
Negative values may be obtained from symmetry, tn,1−α =−tn,α.

Example 2. Let n = 5. Then from Table ST4, we get t5,0.025 = 2.571 and t5,0.05 = 2.015.
The corresponding values under the N(0,1) distribution are z0.025 = 1.96 and z0.05 = 1.65.
For n = 30,

t30,0.05 = 1.697 and z0.05 = 1.65.
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Theorem 3. Let X ∼ t(n), n > 1. Then EXr exists for r < n. In particular, if r < n is odd,

EXr = 0, (10)

and if r < n is even,

EXr = nr/2 Γ[(r+1)/2]Γ[(n− r)/2]
Γ(1/2)Γ(n/2)

. (11)

Corollary. If n > 2, EX = 0 and EX2 = var(X) = n/(n−2).

Remark 3. If in Definition 2 we take X ∼ N(μ,σ2), Y/σ2 ∼ χ2(n), and X and Y
independent,

T =
X√
Y/n

is said to have a noncentral t-distribution with parameter (also called noncentrality param-
eter) δ = μ/σ and d.f. n. Various moments of noncentral t-distribution may be computed
by using the fact that expectation of a product of independent RVs is the product of their
expectations.

We leave the reader to show (Problem 3) that, if T has a noncentral t-distribution with
n d.f. and noncentrality parameter δ, then

ET = δ
Γ[(n−1)/2]

Γ(n/2)

√
n
2
, n > 1, (12)

and

var(T) =
n(1+ δ2)

n−2
− δ2n

2

(
Γ[(n−1)/2]

Γ(n/2)

)2

, n > 2. (13)

Definition 3. Let X and Y be independent χ2 RVs with m and n d.f., respectively. The RV

F =
X/m
Y/n

(14)

is said to have an F-distribution with (m,n) d.f., and we write F ∼ F(m,n).

Theorem 4. The PDF of the F-statistic defined in (14) is given by

g(f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γ[(m+n)/2]
Γ(m/2)Γ(n/2)

(m
n

)(m
n

f
)(m/2)−1

·
(

1+
m
n

f
)−(m+n)/2

, f > 0,

0, f ≤ 0.

(15)
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Proof. The proof is left as an exercise.

Remark 4. If X ∼ F(m,n), then 1/X ∼ F(n,m). If we take m = 1, then F = [t(n)]2, so that
F(1,n) and t2(n) have the same distribution. It also follows that, if Z is C(1,0) [which is
the same as t(1)], Z2 is F(1,1).

Remark 5. As usual, we write Fm,n,α for the upper α percent point of the F(m,n)
distribution, that is,

P{F(m,n)> Fm,n,α}= α. (16)

From Remark 4, we have the following relation:

Fm,n,1−α =
1

Fn,m,α
. (17)

It therefore suffices to tabulate values of F that are ≥ 1. This is done in Table ST5, where
values of Fm,n,α are listed for some selected values of m, n, and α. See Fig. 4 for a plot
of g(f ).

Theorem 5. Let X ∼ F(m,n). Then, for k > 0, integral,

EXk =
( n

m

)k Γ[k+(m/2)]Γ[(n/2)− k]
Γ[(m/2)Γ(n/2)]

for n > 2k. (18)

0 1 2 3 4 5 6 7 8

(5,15)

(5,10)

(5,5)

Fig. 4 F densities.
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In particular,

EX =
n

n−2
, n > 2, (19)

and

var(X) =
n2(2m+2n−4)
m(n−2)2(n−4)

, n > 4. (20)

Proof. We have, for a positive integer k,∫ ∞

0
f kf m/2−1

(
1+

m
n

f
)−(m+n)/2

df =
(m

n

)k+(m/2)
∫ 1

0
xk+(m/2)−1(1− x)(n/2)−k−1 dx,

(21)

where we have changed the variable to x= (m/n)f [1+(m/n)f ]−1. The integral in the right
side of (21) converges for (n/2)− k > 0 and diverges for (n/2)− k ≤ 0. We have

EXk =
Γ[(m+n)/2]
Γ(m/2)Γ(n/2)

(m
n

)m/2( n
m

)k+(m/2)
B
(

k+
m
2
,

n
2
− k

)
,

as asserted.
For k = 1, we get

EX =
n
m

m/2
(n/2)−1

=
n

n−2
, n > 2.

Also,

EX2 =
( n

m

)2 (m/2)[(m/2)+1]
[(n/2)−1][(n/2)−2]

, n > 4,

=
( n

m

)2 m(m+2)
(n−2)(n−4)

,

and

var(X) =
( n

m

)2 m(m+2)
(n−2)(n−4)

−
(

n
n−2

)2

=
2n2(m+n−2)

m(n−2)2(n−4)
, n > 4.

Theorem 6. If X ∼ F(m,n), then Y = 1/[1+(m/n)X] is B(n/2,m/2). Consequently, for
each x > 0,

FX(x) = 1−FY

[
1

1+(m/n)x

]
.

If in Definition 3 we take X to be a noncentral χ2 RV with n d.f. and noncentrality
parameter δ, we get a noncentral F RV.
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Definition 4. Let X ∼ χ2(m, δ) and Y ∼ χ2(n), and let X and Y be independent. Then
the RV

F =
X/m
Y/n

(22)

is said to have a noncentral F-distribution with noncentrality parameter δ.

It is shown in Problem 2 that if F has a noncentral F-distribution with (m,n) d.f. and
noncentrality parameter δ,

EF =
n(m+ δ)

m(n−2)
, n > 2,

and

var(F) =
2n2

m2(n−4)(n−2)2
[(m+ δ)2 +(n−2)(m+2δ)], n > 4.

PROBLEMS 6.4

1. Let

Px =
{
Γ
(n

2

)
2n/2

}−1
∫ x

0
ω(n−2)/2e−ω/2 dω, x > 0.

Show that

x <
n

1−Px
.

2. Let X ∼ F(m,n, δ). Find EX and var(X).

3. Let T be a noncentral t-statistic with n d.f. and noncentrality parameter δ. Find ET
and var(T).

4. Let F ∼ F(m,n). Then

Y =
(

1+
m
n

F
)−1

∼ B
(n

2
,

m
2

)
.

Deduce that for x > 0

P{F ≤ x}= 1−P

{
Y ≤

(
1+

m
n

x
)−1

}
.

5. Derive the PDF of an F-statistic with (m,n) d.f.

6. Show that the square of a noncentral t-statistic is a noncentral F-statistic.

7. A sample of size 16 showed a variance of 5.76. Find c such that P{|X −μ| < c} =
0.95, where X is the sample mean and μ is the population mean. Assume that the
sample comes from a normal population.
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8. A sample from a normal population produced variance 4.0. Find the size of the
sample if the sample mean deviates from the population mean by no more than 2.0
with a probability of at least 0.95.

9. Let X1,X2,X3,X4,X5 be a sample from N(0,4). Find P{
∑5

i=1 X2
i ≥ 5.75}.

10. Let X ∼ χ2(61). Find P{X > 50}.

11. Let F ∼ F(m,n). The random variable Z = 1
2 logF is known as Fisher’s Z statistic.

Find the PDF of Z.

12. Prove Theorem 1.

13. Prove Theorem 2.

14. Prove Theorem 3.

15. Prove Theorem 4.

16. (a) Let f1, f2, . . . be PDFs with corresponding MGFs M1,M2, . . ., respectively. Let αj

(0 < αj < 1) be constants such that
∑∞

j=1αj = 1. Then f =
∑∞

1 αjfj is a PDF
with MGF M =

∑∞
j=1αjMj.

(b) Write the MGF of a χ2(n, δ) RV in (6) as

M(t) =
∞∑

j=0

αjMj(t),

where Mj(t) = (1 − 2t)−(2j+n)/2 is the MGF of a χ2(2j + n) RV and αj =
e−δ/2(δ/2)j/j! is the PMF of a P(δ/2) RV. Conclude that PDF of Y ∼ χ2(n, δ) is
the weighted sum of PDFs ofχ2(2j+n)RVs, j= 0,1,2, . . .with Poisson weights
and hence

fY(y) =
∞∑

j=0

e−δ/2(δ/2)j

j!
y(2j+n)/2−1 exp(−y/2)

2(2j+n)/2 Γ
(

2j+n
2

) .

6.5 DISTRIBUTION OF (X,S2) IN SAMPLING FROM A NORMAL
POPULATION

Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), and write X = n−1∑n
i=1 Xi and

S2 = (n−1)−1 ∑n
i=1(Xi − X)2. In this section we show that X and S2 are independent

and derive the distribution of S2. More precisely, we prove the following important result.

Theorem 1. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. Then X and (X1 − X,X2 − X, . . . ,
Xn −X) are independent.

Proof. We compute the joint MGF of X and X1 −X,X2 −X, . . . ,Xn −X as follows:

M(t, t1, t2, . . . , tn) = E exp{tX+ t1(X1 −X)+ t2(X2 −X)+ · · ·+ tn(Xn −X)}

= Eexp

{
n∑

i=1

tiXi −
(

n∑
i=1

ti − t

)
X

}
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= Eexp

{
n∑

i=1

Xi

(
ti −

t1 + t2 + · · ·+ tn − t
n

)}

= E

[
n∏

i=1

exp

{
Xi(nti −nt+ t)

n

}] (
where t = n−1

n∑
i=1

ti

)

=
n∏

i=1

Eexp

{
Xi[t+n(ti − t)]

n

}

=

n∏
1

exp

{
μ[t+n(ti − t)]

n
+

σ2

2
1
n2

[t+n(ti − t)]2
}

= exp

{
μ

n
[nt+n

n∑
i=1

(ti − t)]+
σ2

2n2

n∑
i=1

[t+n(ti − t)]2
}

= exp(μt)exp

{
σ2

2n2

(
nt2 +n2

n∑
i=1

(ti − t)2

)}

= exp

(
μt+

σ2

2n
t2

)
exp

{
σ2

2

n∑
i=1

(ti − t)2

}

= MX(t)MX1−X,...,Xn−X(t1, t2, . . . , tn)

= M(t,0,0, . . . ,0)M(0, t1, t2, . . . , tn).

Corollary 1. X and S2 are independent.

Corollary 2. (n−1)S2/σ2 is χ2(n−1).

Since

n∑
i=1

(Xi −μ)2

σ2
∼ χ2(n), n

(
X−μ

σ

)2

∼ χ2(1),

and X and S2 are independent, it follows from

∑n
1(Xi −μ)2

σ2
= n

(
X−μ

σ

)2

+(n−1)
S2

σ2

that

E

{
exp

[
t

n∑
1

(Xi −μ)2

σ2

]}
= E

{
exp

[
tn

(
X−μ

σ

)2

+(n−1)
S2

σ2
t

]}

= Eexp

[
n

(
X−μ

σ

)2

t

]
Eexp

[
(n−1)

S2

σ2
t

]
,
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that is,

(1−2t)−n/2 = (1−2t)−1/2Eexp

[
(n−1)

S2

σ2
t

]
, t <

1
2
,

and it follows that

Eexp

[
(n−1)

S2

σ2
t

]
= (1−2t)−(n−1)/2, t <

1
2
.

By the uniqueness of the MGF it follows that (n−1)S2/σ2 is χ2(n−1).

Corollary 3. The distribution of
√

n(X−μ)/S is t(n−1).

Proof. Since
√

n(X−μ)/σ is N(0,1), and (n−1)S2/σ2 ∼ χ2(n−1) and since X and S2

are independent,

√
n(X−μ)/σ√

[(n−1)S2/σ2]/(n−1)
=

√
n(X−μ)

S

is t(n−1).

Corollary 4. If X1,X2, . . . ,Xm are iid N(μ1,σ
2
1) RVs, Y1,Y2, . . . ,Yn are iid N(μ2,σ

2
2) RVs,

and the two samples are independently taken, (S2
1/σ

2
1)/(S

2
2/σ

2
2) is F(m− 1,n− 1). If, in

particular, σ1 = σ2, then S2
1/S2

2 is F(m−1,n−1).

Corollary 5. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn, respectively, be independent samples
from N(μ1,σ

2
1) and N(μ2,σ

2
2). Then

X−Y − (μ1 −μ2)

{[(m−1)S2
1/σ

2
1 ]+ [(n−1)S2

2/σ
2
2 ]}1/2

√
m+n−2

σ2
1/m+σ2

2/n
∼ t(m+n−2).

In particular, if σ1 = σ2, then

X−Y − (μ1 −μ2)√
[(m−1)S2

1 +(n−1)S2
2]

√
mn(m+n−2)

m+n
∼ t(m+n−2).

Corollary 5 follows since

X−Y ∼N

(
μ1 −μ2,

σ2
1

m
+

σ2
2

n

)
and

(m−1)S2
1

σ2
1

+
(n−1)S2

2

σ2
2

∼ χ2(m+n−2)

and the two statistics are independent.
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Remark 1. The converse of Corollary 1 also holds. See Theorem 5.3.28.

Remark 2. In sampling from a symmetric distribution, X and S2 are uncorrelated. See
Problem 4.5.14.

Remark 3. Alternatively, Corollary 1 could have been derived from Corollary 2 to
Theorem 5.4.6 by using the Helmert orthogonal matrix:

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/
√

n 1/
√

n 1/
√

n · · · 1/
√

n

−1/
√

2 1/
√

2 0 · · · 0

−1/
√

6 −1/
√

6 2/
√

6 · · · 0

· · · · · · 0

· · · · · · ·
· · · · · · 0

−1/
√

n(n−1) −1/
√

n(n−1) −1/
√

n(n−1) · · · (n−1)/
√

n(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the case of n = 3 this was done in Example 4.4.6. In Problem 7 the reader is asked to
work out the details in the general case.

Remark 4. An analytic approach to the development of the distribution of X and S2 is as
follows. Assuming without loss of generality that Xi is N(0,1), we have as the joint PDF
of (X1,X2, . . . ,Xn)

f (x1,x2, . . . ,xn) =
1

(2π)n/2
exp

⎧⎨
⎩−1

2

n∑
j=1

x2
j

⎫⎬
⎭

=
1

(2π)n/2
exp

{
− (n−1)s2 +nx2

2

}
.

Changing the variables to y1,y2, . . . ,yn by using the transformation yk = (xk −x)/s, we see
that

n∑
k=1

yk = 0 and
n∑

k=1

y2
k = n−1.

It follows that two of the yk’s, say yn−1 and yn, are functions of the remaining yk. Thus
either

yn−1 =
α+β

2
, yn =

α−β

2
,

or

yn−1 =
α−β

2
, yn =

α+β

2
,
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where

α=−
n−2∑
k=1

yk and β =

√√√√2(n−1)−2
n−2∑
k=1

y2
k −

(
n−2∑
k=1

yk

)2

.

We leave the reader to derive the joint PDF of (Y1,Y2, . . . ,Yn−2, X, S2), using the
result described in Remark 2, and to show that the RVs X, S2, and (Y1,Y2, . . . ,Yn−2) are
independent.

PROBLEMS 6.5

1. Let X1,X2, . . . ,Xn be a random sample from N(μ,σ2) and X and S2, respectively,
be the sample mean and the sample variance. Let Xn+1 ∼ N(μ,σ2), and assume
that X1,X2, . . . ,Xn,Xn+1 are independent. Find the sampling distribution of [(Xn+1−
X)/S]√

n/(n+1).

2. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent random samples fromN(μ1,σ
2)

and N(μ2,σ
2), respectively. Also, let α,β be two fixed real numbers. If X,Y denote

the corresponding sample means, what is the sampling distribution of

α(X−μ1)+β(Y −μ2)√
(m−1)S2

1 +(n−1)S2
2

m+n−2

√
α2

m
+

β2

n
,

where S2
1 and S2

2, respectively, denote the sample variances of the X’s and the Y’s?

3. Let X1,X2, . . . ,Xn be a random sample from N(μ,σ2), and k be a positive integer.
Find E(S2k). In particular, find E(S2) and var(S2).

4. A random sample of 5 is taken from a normal population with mean 2.5 and variance
σ2 = 36.

(a) Find the probability that the sample variance lies between 30 and 44.

(b) Find the probability that the sample mean lies between 1.3 and 3.5, while the
sample variance lies between 30 and 44.

5. The mean life of a sample of 10 light bulbs was observed to be 1327 hours with a
standard deviation of 425 hours. A second sample of 6 bulbs chosen from a different
batch showed a mean life of 1215 hours with a standard deviation of 375 hours. If
the means of the two batches are assumed to be same, how probable is the observed
difference between the two sample means?

6. Let S2
1 and S2

2 be the sample variances from two independent samples of sizes n1 =
5 and n2 = 4 from two populations having the same unknown variance σ2. Find
(approximately) the probability that S2

1/S2
2 < 1/5.2 or > 6.25.

7. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2). By using the Helmert orthogonal
transformation defined in Remark 3, show that X and S2 are independent.

8. Derive the joint PDF of X and S2 by using the transformation described in Remark 4.
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6.6 SAMPLING FROM A BIVARIATE NORMAL DISTRIBUTION

Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate normal population with
parameters μ1, μ2, ρ, σ2

1, σ2
2. Let us write

X = n−1
n∑

i=1

Xi, Y = n−1
n∑

i=1

Yi,

S2
1 = (n−1)−1

n∑
i=1

(Xi −X)2, S2
2 = (n−1)−1

n∑
i=1

(Yi −Y)2,

and

S11 = (n−1)−1
n∑

i=1

(Xi −X)(Yi −Y).

In this section we show that (X,Y) is independent of (S2
1,S11,S2

2) and obtain the distribution
of the sample correlation coefficient and regression coefficients (at least in the special case
where ρ= 0).

Theorem 1. The random vectors (X,Y) and (X1 − X, X2 − X, . . . ,Xn − X, Y1 − Y ,
Y2 − Y, . . . ,Yn − Y) are independent. The joint distribution of (X,Y) is bivariate normal
with parameters μ1, μ2, ρ, σ2

1/n, σ2
2/n.

Proof. The proof follows along the lines of the proof of Theorem 1. The MGF of (X,Y,
X1 −X, . . . ,Xn −X,Y1 −Y, . . . ,Yn −Y) is given by

M∗ = M(u,v, t1, t2, . . . , tn,s1,s2, . . . ,sn)

= Eexp

{
uX+ vY +

n∑
i=1

ti(Xi −X)+
n∑

i=1

si(Yi −Y)

}

= Eexp

{
n∑

i=1

Xi

(u
n
+ ti − t

)
+

n∑
i=1

Yi

( v
n
+ si − s

)}
,

where t = n−1∑n
i=1 ti, s = n−1∑n

i=1 si. Therefore,

M∗ =
n∏

i=1

Eexp
{(u

n
+ ti − t

)
Xi +

( v
n
+ si − s

)
Yi

}

=

n∏
i=1

exp
{(u

n
+ ti − t

)
μ1 +

( v
n
+ si − s

)
μ2

+
σ2

1 [(u/n)+ ti − t]2 +2ρσ1σ2[(u/n)+ ti − t][(v/n)+ si − s]
2

+σ2
2 [(v/n)+ si − s]2

2

}
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= exp

(
μ1u+μ2v+

u2σ2
1 +2ρσ1σ2uv+ v2σ2

2

2n

)

· exp
{

1
2
σ2

1

n∑
i=1

(ti − t)2 +ρσ1σ2

n∑
i=1

(ti − t)(si − s)

+
1
2
σ2

2

2∑
i=1

(si − s)2

}

= M1(u,v)M2(t1, t2, . . . , tn,s1,s2, . . . ,sn)

for all real u, v, t1, t2, . . . , tn, s1,s2, . . . ,sn where M1 is the MGF of (X,Y) and M2 is the MGF
of (X1 −X, . . . ,Xn −X,Y1 − Y, . . . ,Yn − Y). Also, M1 is the MGF of a bivariate normal
distribution. This completes the proof.

Corollary. The sample mean vector (X,Y) is independent of the sample variance–

covariance matrix

(
s2

1 s11

s11 s2
2

)
in sampling from a bivariate normal population.

Remark 1. The result of Theorem 1 can be generalized to the case of sampling from a
k-variate normal population. We do not propose to do so here.

Remark 2. Unfortunately the method of proof of Theorem 1 does not lead to the distribu-
tion of the variance–covariance matrix. The distribution of (X,Y,S2

1,S11,S2
2) was found

by Fisher [30] and Romanovsky [92]. The general case is due to Wishart [119], who
determined the distribution of the sample variance–covariance matrix in sampling from
a k-dimensional normal distribution. The distribution is named after him.

We will next compute the distribution of the sample correlation coefficient:

R =

∑n
i=1(Xi −X)(Yi −Y){∑n

i=1(Xi −X)2
∑n

i=1(Yi −Y)2
}1/2

=
S11

S1S2
. (1)

It is convenient to introduce the so-called sample regression coefficient of Y on X

BY|X =

∑n
i=1(Xi −X)(Yi −Y)∑n

i=1(Xi −X)2
=

S11

S2
1

= R
S2

S1
. (2)

Since we will need only the distribution of R and BY|X whenever ρ = 0, we will make
this simplifying assumption in what follows. The general case is computationally quite
complicated. We refer the reader to Cramér [17] for details.

We note that

R =

∑n
i=1 Yi(Xi −X)

(n−1)S1S2
(3)
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and

BY|X =

∑n
i=1 Yi(Xi −X)

(n−1)S2
1

. (4)

Moreover,

R2 =
B2

Y|XS2
1

S2
2

. (5)

In the following we write B = BY|X .

Theorem 2. Let (X1,Y1), . . . ,(Xn,Yn), n ≥ 2, be a sample from a bivariate normal popu-
lation with parameters EX = μ1, EY = μ2, var(X) = σ2

1, var(Y) = σ2
2, and cov(X,Y) = 0.

In other words, let X1,X2, . . . ,Xn be iid N(μ1,σ
2
1) RVs, and Y1,Y2, . . . ,Yn be iid N(μ2,σ

2
2)

RVs, and suppose that the X’s and Y’s are independent. Then the PDF of R is given by

f1(r) =

⎧⎪⎪⎨
⎪⎪⎩

Γ[(n−1)/2]

Γ(
1

2
)Γ[(n−2)/2]

(1− r2)(n−4)/2, −1 ≤ r ≤ 1,

0, otherwise;

(6)

and the PDF of B is given by

h1(b) =
Γ(n/2)

Γ

(
1

2

)
Γ[(n−1)/2]

σ1σ
n−1
2

(σ2
2 +σ2

1b2)n/2
, −∞< b <∞. (7)

Proof. Without any loss of generality, we assume that μ1 = μ2 = 0 and σ2
1 = σ2

2 = 1, for
we can always define

X∗
i =

Xi −μ1

σ1
and Y∗

i =
Yi −μ2

σ2
. (8)

Now note that the conditional distribution of Yi, given X1,X2, . . . ,Xn, is N(0,1), and Y1,
Y2, . . . ,Yn, given X1,X2, . . . ,Xn, are mutually independent. Let us define the following
orthogonal transformation:

ui =

n∑
j=1

cijyj, i = 1,2, . . . ,n, (9)

where (cij)i,j=1,2,...,n is an orthogonal matrix with the first two rows

c1j =
1√
n
, j = 1,2, . . . ,n, (10)

c2j =
xj − x{∑n

i=1(xi − x)2
}1/2

, j = 1,2, . . . ,n. (11)
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It follows from orthogonality that for any i ≥ 2
n∑

j=1

cij =
√

n
n∑

j=1

cij
1√
n
=
√

n
n∑

j=1

cijc1j = 0 (12)

and

n∑
i=1

u2
i =

n∑
i=1

⎛
⎝ n∑

j=1

cijyj

n∑
j′=1

cij′yj′

⎞
⎠

=

n∑
j=1

n∑
j′=1

(
n∑

i=1

cijcij′

)
yjyj′

=

n∑
j=1

y2
j′ . (13)

Moreover,

u1 =
√

ny (14)

and

u2 = b
√∑

(xi − x)2, (15)

where b is a value assumed by RV B. Also U1,U2, . . . ,Un, given X1,X2, . . . ,Xn, are normal
RVs (being linear combinations of the Y’s). Thus

E{Ui | X1,X2, . . . ,Xn}=
n∑

j=1

cijE{Yj | X1,X2, . . . ,Xn}

= 0 (16)

and

cov{Ui,Uk | X1,X2, . . . ,Xn}= cov

⎧⎨
⎩

n∑
j=1

cijYj,

n∑
p=1

ckpYp | X1,X2, . . . ,Xn

⎫⎬
⎭

=

n∑
j=1

n∑
p=1

cijckp cov{Yj,Yp | X1,X2, . . . ,Xn}

=

n∑
j=1

cijckj.

This last equality follows since

cov{Yj,Yp | X1,X2, . . . ,Xn}=
{

0, j 	= p,

1, j = p.
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From orthogonality, we have

cov{Ui,Uk | X1,X2, . . . ,Xn}=
{

0, i 	= k,

1, i = k;
(17)

and it follows that the RVs U1,U2, . . . ,Un, given X1,X2, . . . ,Xn, are mutually independent
N(0,1). Now

n∑
j=1

(yj − y2) =

n∑
i=1

y2
i −ny2

=

n∑
j=1

u2
j −u2

1

=

n∑
j=2

u2
j . (18)

Thus

R2 =
U2

2∑n
i=2 U2

i

=
U2

2

U2
2 +

∑n
i=3 U2

i

. (19)

Writing U =U2
2 and W =

∑n
i=3 U2

i , we see that the conditional distribution of U, given X1,
X2, . . . ,Xn, is χ2(1), and that of W, given X1,X2, . . . ,Xn, is χ2(n− 2). Moreover U and
W are independent. Since these conditional distributions do not involve the X’s, we see
that U and W are unconditionally independent with χ2(1) and χ2(n− 2) distributions,
respectively. The joint PDF of U and W is

f (u,w) =
1

Γ( 1
2 )
√

2
u1/2−1e−u/2 1

Γ[(n−2)/2]2(n−2)/2
w(n−2)/2−1e−w/2.

Let u+w = z, then u = r2z and w = z(1− r2). The Jacobian of this transformation is z, so
that the joint PDF of R2 and Z is given by

f ∗(r2,z) =
1

Γ( 1
2 )Γ[(n−2)/2]2(n−1)/2

zn/2−3/2e−z/2(r2)−1/2(1− r2)n/2−2.

The marginal PDF of R2 is easily computed as

f ∗1 (r
2) =

Γ[(n−1)/2]

Γ( 1
2 )Γ[(n−2)/2]

(r2)−1/2(1− r2)n/2−2, 0 ≤ r2 ≤ 1. (20)

Finally, using Theorem 2.5.4, we get the PDF of R as

f1(r) =
Γ[(n−1)/2]

Γ( 1
2 )Γ[(n−2)/2]

(1− r2)n/2−2, −1 ≤ r ≤ 1.
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As for the distribution of B, note that the conditional PDF of U2 =
√

n−1BS1, given X1,
X2, . . . ,Xn, is N(0,1), so that the conditional PDF of B, given X1,X2, . . . ,Xn, is N(0,1/∑

(xi −x)2). Let us write Λ= (n−1)S2
1. Then the PDF of RV Λ is that of a χ2(n−1) RV.

Thus the joint PDF of B and Λ is given by

h(b,λ) = g(b | λ)h2(λ), (21)

where g(b | λ) is N(0,1/λ), and h2(λ) is χ2(n−1). We have

h1(b) =
∫ ∞

0
h(b,λ)dλ

=
1

2n/2Γ( 1
2 )Γ[(n−1)/2]

∫ ∞

0
λn/2−1e−λ/2(1+b2) dλ

=
Γ(n/2)

Γ( 1
2 )Γ[(n−1)/2]

1
(1+b2)n/2

, −∞< b <∞. (22)

To complete the proof let us write

Xi = μ1 +X∗
i σ1 and Yi = μ2 +Y∗

i σ2,

where X∗
i ∼N(0,1) and Y∗

i ∼N(0,1). Then Xi ∼N(μ1,σ
2
1), Yi ∼N(μ2,σ

2
2), and

R =

∑n
i=1(Xi −X)(Yi −Y)√∑n

i=1(Xi −X)2
∑n

i=1(Yi −Y)2

= R∗, (23)

so that the PDF of R is the same as derived above. Also

B =
σ1σ2

∑n
i=1(X

∗
i −X

∗
)(Y∗

i −Y
∗
)

σ2
1

∑n
i=1(X

∗
i −X

∗
)2

=
σ2

σ1
B∗, (24)

where the PDF of B∗ is given by (22). Relations (22) and (24) are used to find the PDF of
B. We leave the reader to carry out these simple details.

Remark 3. In view of (23), namely the invariance of R under translation and (positive)
scale changes, we note that for fixed n the sampling distribution of R, under ρ = 0, does
not depend on μ1,μ2,σ1, and σ2. In the general case when ρ 	= 0, one can show that for
fixed n the distribution of R depends only on ρ but not on μ1,μ2,σ1, and σ2 (see, for
example, Cramér [17], p. 398).

Remark 4. Let us change the variable to

T =
R√

1−R2

√
n−2. (25)
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Then

1−R2 =

(
1+

T2

n−2

)−1

,

and the PDF of T is given by

p(t) =
1√

n−2

1

B[(n−2)/2, 1
2 ]

1
[1+ t2/(n−2)](n−1)/2

, (26)

which is the PDF of a t-statistic with n− 2 d.f. Thus T defined by (25) has a t(n− 2)
distribution, provided that ρ = 0. This result facilitates the computation of probabilities
under the PDF of R when ρ= 0.

Remark 5. To compute the PDF of BX|Y = R(S1/S2), the so-called sample regression
coefficient of X on Y , all we need to do is to interchange σ1 and σ2 in (7).

Remark 6. From (7) we can compute the mean and variance of B. For n > 2, clearly

EB = 0,

and for n > 3, we can show that

EB2 = var(B) =
σ2

2

σ2
1

1
n−3

.

Similarly, we can use (6) to compute the mean and variance of R. We have, for n > 4,
under ρ= 0,

ER = 0

and

ER2 = var(R) =
1

n−1
.

PROBLEMS 6.6

1. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a random sample from a bivariate normal pop-
ulation with EX = μ1, EY = μ2, var(X) = var(Y) = σ2, and cov(X,Y) = ρσ2. Let
X,Y denote the corresponding sample means, S2

1,S
2
2, the corresponding sample vari-

ances, and S11, the sample covariance. Write R = 2S11/(S2
1+S2

2). Show that the PDF
of R is given by

f (r) =
Γ
(

n
2

)
√
πΓ

(
n−1

2

) (1−ρ2)(n−1)/2(1−ρr)−(n−1)(1− r2)(n−3)/2, |r|< 1.

(Rastogi [89])
[Hint: Let U = (X +Y)/2 and V = (X −Y)/2, and observe that the random vector
(U,V) is also bivariate normal. In fact, U and V are independent.]
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2. Let X and Y be independent normal RVs. A sample of n = 11 observations on (X,Y)
produces sample correlation coefficient r = 0.40. Find the probability of obtaining
a value of R that exceeds the observed value.

3. Let X1,X2 be jointly normally distributed with zero means, unit variances, and cor-
relation coefficient ρ. Let S be a χ2(n) RV that is independent of (X1,X2). Then
the joint distribution of Y1 = X1/

√
S/n and Y2 = X2/

√
S/n is known as a central

bivariate t-distribution. Find the joint PDF of (Y1,Y2) and the marginal PDFs of Y1

and Y2, respectively.

4. Let (X1,Y1), . . . ,(Xn,Yn) be a sample from a bivariate normal distribution with
parameters EX1 = μ1, EYi = μ2, var(Xi) = var(Yi) = σ2, and cov(Xi,Yi) = ρσ2,
i = 1,2, . . . ,n. Find the distribution of the statistic

T(X,Y) =
√

n
(X−μ1)− (Y −μ2)√∑n

i=1(Xi −Yi −X+Y)2
.



7
BASIC ASYMPTOTICS: LARGE SAMPLE
THEORY

7.1 INTRODUCTION

In Chapter 6 we described some methods of finding exact distributions of sample statistics
and their moments. While these methods are used in some cases such as sampling from a
normal population when the sample statistic of interest is X or S2, often either the statistics
of interest, say Tn = T(X1, . . . ,Xn), is either too complicated or its exact distribution is not
simple to work with. In such cases we are interested in the convergence properties of
Tn. We want to know what happens when the sample size is large. What is the limiting
distribution of Tn? When the exact distribution of Tn (and its moments) is unknown or too
complicated we will often use their asymptotic approximations when n is large.

In this chapter, we discuss some basic elements of statistical asymptotics. In Section 7.2
we discuss various modes of convergence of a sequence of random variables. In
Sections 7.3 and 7.4 the laws of large numbers are discussed. Section 7.5 deals with
limiting moment generating functions and in Section 7.6 we discuss one of the most fun-
damental theorem of classical statistics called the central limit theorem. In Section 7.7 we
consider some statistical applications of these methods.

The reader may find some parts of this chapter a bit difficult on first reading. Such a
discussion has been indicated with a†.

7.2 MODES OF CONVERGENCE

In this section we consider several modes of convergence and investigate their interrela-
tionships. We begin with the weakest mode of convergence.

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Definition 1. Let {Fn} be a sequence of distribution functions. If there exists a DF F such
that, as n →∞,

Fn(x)→ F(x) (1)

at every point x at which F is continuous, we say that Fn converges in law (or, weakly), to
F, and we write Fn

w−→ F.
If {Xn} is a sequence of RVs and {Fn} is the corresponding sequence of DFs, we say

that Xn converges in distribution (or law) to X if there exists an RV X with DF F such that
Fn

w−→ F. We write Xn
L−→ X.

It must be remembered that it is quite possible for a given sequence DFs to converge
to a function that is not a DF.

Example 1. Consider the sequence of DFs

Fn(x) =

{
0, x < n,

1, x ≥ n.

Here Fn(x) is the DF of the RV Xn degenerate at x = n. We see that Fn(x) converges to a
function F that is identically equal to 0, and hence it is not a DF.

Example 2. Let X1,X2, . . . ,Xn be iid RVs with common density function

f (x) =

⎧⎨
⎩

1
θ

0 < x < θ, (0 < θ <∞),

0 otherwise.

Let X(n) =max(X1,X2, . . . ,Xn). Then the density function of X(n) is

fn(x) =

⎧⎨
⎩

nxn−1

θn
0 < x < θ,

0 otherwise,

and the DF of X(n) is

Fn(x) =

⎧⎪⎨
⎪⎩

0 x < 0,

(x/θ)n 0 ≤ x < θ,

1, x ≥ θ.

We see that, as n →∞,

Fn(x)→ F(x) =

{
0 x < θ,

1, x ≥ θ,

which is a DF. Thus Fn
w−→ F.
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Example 3. Let Fn be a sequence of DFs defined by

Fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0,

1− 1
n
, 0 ≤ x < n,

1, n ≤ x.

Clearly Fn
w−→ F, where F is the DF given by

F(x) =

{
0, x < 0,

1, x ≥ 0.

Note that Fn is the DF of the RV Xn with PMF

P{Xn = 0}= 1− 1
n
, P{Xn = n}= 1

n
,

and F is the DF of the RV X degenerate at 0. We have

EXk
n = nk

(
1
n

)
= nk−1,

where k is a positive integer. Also EXk = 0. So that

EXk
n � EXk for any k ≥ 1.

We next give an example to show that weak convergence of distribution functions does
not imply the convergence of corresponding PMF’s or PDF’s.

Example 4. Let {Xn} be a sequence of RVs with PMF

fn(x) = P{Xn = x}=
{

1 if x = 2+1/n,

0 otherwise.

Note that none of the fn’s assigns any probability to the point x = 2. It follows that

fn(x)→ f (x) as n →∞,

where f (x) = 0 for all x. However, the sequence of DFs {Fn} of RVs Xn converges to the
function

F(x) =

{
0, x < 2,

1 x ≥ 2,
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at all continuity points of F. Since F is the DF of the RV degenerate at x = 2, Fn
w−→ F.

The following result is easy to prove.

Theorem 1. Let Xn be a sequence of integer-valued RVs. Also, let fn(k) = P{Xn = k},
k = 0,1,2, . . . , be the PMF of Xn, n = 1,2, . . . , and f (k) = P{x = k} be the PMF of X.
Then

fn(x)→ f (x) for all x ⇔ Xn
L→X.

In the continuous case we state the following result of Scheffé [100] without proof.

Theorem 2. Let Xn, n = 1,2, . . . , and X be continuous RVs such that

fn(x)→ f (x) for (almost) all x as n →∞.

Here, fn and f are the PDFs of Xn and X, respectively. Then Xn
L−→ X.

The following result is easy to establish.

Theorem 3. Let {Xn} be a sequence of RVs such that Xn
L−→ X, and let c be a constant.

Then

(a) Xn + c
L−→ X+ c,

(b) cXn
L−→ cX, c �= 0.

A slightly stronger concept of convergence is defined by convergence in probability.

Definition 2. Let {Xn} be a sequence of RVs defined on some probability space (Ω,S,P).
We say that the sequence {Xn} converges in probability to the RV X if, for every ε > 0.

P{|Xn −X|> ε}→ 0 as n →∞. (2)

We write Xn
P−→ X.

Remark 1. We emphasize that the definition says nothing about the convergence of the
RVs Xn to the RV X in the sense in which it is understood in real analysis. Thus Xn

P−→
X does not imply that, given ε > 0, we can find an N such that |Xn − X| < ε for n ≥
N. Definition 2 speaks only of the convergence of the sequence of probabilities P{|Xn −
X|>ε} to 0.

Example 5. Let {Xn} be a sequence of RVs with PMF

P{Xn = 1}= 1
n
, P{Xn = 0}= 1− 1

n
.
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Then

P{|Xn|> ε}=

⎧⎨
⎩P{Xn = 1}= 1

n
if 0 < ε < 1,

0 if ε≥ 1.

It follows that P{|Xn|> ε}→ 0 as n →∞, and we conclude that Xn
P−→ 0.

The following statements can be verified.

1. Xn
P−→ X ⇔ Xn −X

P−→ 0.

2. Xn
P−→ X, Xn

P−→ Y ⇒ P{X = Y} = 1, for P{|X − Y| > c} ≤ P{|Xn −X| > c
2}+

P{|Xn −Y|> c
2}, and it follows that P{|X−Y|> c}= 0 for every c > 0.

3. Xn
P−→ X ⇒ Xn −Xm

P−→ 0 as n, m →∞, for

P{|Xn −Xm|> ε} ≤ P
{
|Xn −X|> ε

2

}
+P
{
|Xm −X|> ε

2

}
.

4. Xn
P−→ X, Yn

P−→ Y ⇒ Xn ±Yn
P−→ X±Y .

5. Xn
P−→ X, k constant, ⇒ kXn

P−→ kX.

6. Xn
P−→ k ⇒ X2

n
P−→ k2.

7. Xn
P−→ a, Yn

P−→ b, a, b constants ⇒ XnYn
P−→ ab, for

XnYn =
(Xn +Yn)

2 − (Xn −Yn)
2

4
P−→ (a+b)2 − (a−b)2

4
= ab.

8. Xn
P−→ 1 ⇒ X−1

n
P−→ 1, for

P

{
| 1
Xn

−1| ≥ ε

}
= P

{
1

Xn
≥ 1+ ε

}
+P

{
1

Xn
≤ 1− ε

}

= P

{
1

Xn
≥ 1+ ε

}
+P

{
1

Xn
≤ 0

}

+P

{
0 <

1
Xn

≤ 1− ε

}

and each of the three terms on the right goes to 0 as n →∞.

9. Xn
P−→ a, Yn

P−→ b, a, b constants, b �= 0 ⇒ XnY−1
n

P−→ ab−1.

10. Xn
P−→ X, and Y an RV ⇒ XnY

P−→ XY .
Note that Y is an RV so that, given δ > 0, there exists a k> 0 such that P{|Y|> k}

< δ/2. Thus

P{|XnY −XY|> ε}= P{|Xn −X‖Y|> ε, |Y|> k}
+P{|Xn −X‖Y|> ε, |Y| ≤ k}

<
δ

2
+P
{
|Xn −X|> ε

k

}
.
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11. Xn
P−→ X, Yn

P−→ Y ⇒ XnYn
P−→ XY , for

(Xn −X)(Yn −Y)
P−→ 0.

The result now follows on multiplication, using result 10. It also follows that
Xn

P−→ X ⇒ X2
n

P−→ X2.

Theorem 4. Let Xn
P−→X and g be a continuous function defined onR. Then g(Xn)

P−→ g(X)
as n →∞.

Proof. Since X is an RV, we can, given ε > 0, find a constant k = k(ε) such that

P{|X|> k}< ε

2
.

Also, g is continuous on R, so that g is uniformly continuous on [−k,k]. It follows that
there exists a δ = δ(ε,k) such that

|g(xn)−g(x)|< ε

whenever |x| ≤ k and |xn − x|< δ. Let

A = {|X| ≤ k}, B = {|Xn −X|< δ}, C = {|g(Xn)−g(X)|< ε}.

Then ω ∈ A∩B ⇒ ω ∈ C, so that

A∩B ⊆ C.

It follows that

P{Cc} ≤ P{Ac}+P{Bc},

that is,

P{|g(Xn)−g(X)| ≥ ε} ≤ P{|Xn −X| ≥ δ}+P{|X|> k}< ε

for n ≥ N(ε,δ,k), where N(ε,δ,k) is chosen so that

P{|Xn −X| ≥ δ}< ε

2
for n ≥ N(ε,δ,k).

Corollary. Xn
P−→ c, where c is a constant ⇒ g(Xn)

P−→ g(c), g being a continuous function.

We remark that a more general result than Theorem 4 is true and state it without proof
(see Rao [88, p. 124]): Xn

L−→ X and g continuous on R⇒ g(Xn)
L−→ g(X).

The following two theorems explain the relationship between weak convergence and
convergence in probability.
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Theorem 5. Xn
P−→ X ⇒ Xn

L−→ X.

Proof. Let Fn and F, respectively, be the DFs of Xn and X. We have

{ω : X(ω)≤ x′}= {ω : Xn(ω)≤ x,X(ω)≤ x′}∪{ω : Xn(ω)> x,

X(ω)≤ x′} ⊆ {Xn ≤ x}∪{Xn > x,X ≤ x′}.

It follows that

F(x′)≤ Fn(x)+P{Xn > x,X ≤ x′}.

Since Xn −X
P−→ 0, we have for x′ < x

P{Xn > x,X ≤ x′} ≤ P{|Xn −X|> x− x′}→ 0 as n →∞.

Therefore

F(x′)≤ lim
n→∞

Fn(x), x′ < x.

Similarly, by interchanging X and Xn, and x and x′, we get

lim
n→∞

Fn(x)≤ F(x′′), x < x′′.

Thus, for x′ < x < x′′, we have

F(x′)≤ limFn(x)≤ limFn(x)≤ F(x′′).

Since F has only a countable number of discontinuity points, we choose x to be a point of
continuity of F, and letting x′′ ↓ x and x′ ↑ x, we have

F(x) = lim
n→∞

Fn(x)

at all points of continuity of F.

Theorem 6. Let k be a constant. Then

Xn
L−→ k ⇒ Xn

P−→ k.

Proof. The proof is left as an exercise.

Corollary. Let k be a constant. Then

Xn
L−→ k ⇔ Xn

P→k.
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Remark 2. We emphasize that we cannot improve the above result by replacing k by an
RV, that is, Xn

L−→ X in general does not imply Xn
P−→ X, for let X,X1,X2 . . . be identically

distributed RVs, and let the joint distribution of (Xn,X) be as follows:

X \ Xn 0 1

0 0 1
2

1
2

1 1
2 0 1

2
1
2

1
2 1

Clearly, Xn
L−→ X. But

P

{
|Xn −X|> 1

2

}
= P{|Xn −X|= 1}

= P{Xn = 0,X = 1}+P{Xn = 1,X = 0}
= 1 � 0.

Hence, Xn
P
� X, but Xn

L−→ X.

Remark 3. Example 3 shows that Xn
P−→ X does not imply EXk

n → EXk for any k > 0, k
integral.

Definition 3. Let {Xn} be a sequence of RVs such that E|Xn|r <∞, for some r > 0. We
say that Xn converges in the rth mean to an RV X if E|X|r <∞ and

E|Xn −X|r → 0 as n →∞, (3)

and we write Xn
r−→ X.

Example 6. Let {Xn} be a sequence of RVs defined by

P{Xn = 0}= 1− 1
n
, P{Xn = 1}= 1

n
, n = 1,2, . . . .

Then

E|Xn|2 =
1
n
→ 0 as n →∞,

and we see that Xn
2−→ X, where RV X is degenerate at 0.

Theorem 7. Let Xn
r−→ X for some r > 0. Then Xn

P−→ X.

Proof. The proof is left as an exercise.

Example 7. Let {Xn} be a sequence of RVs defined by

P{Xn = 0}= 1− 1
nr
, P{Xn = n}= 1

nr
, r > 0, n = 1,2, . . . .
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Then E|Xn|r = 1, so that Xn
r
� 0. We show that Xn

P−→ 0.

P{|Xn|> ε}=
{

P{Xn = n} if ε < n

0 if ε > n

}
→ 0 as n →∞.

Theorem 8. Let {Xn} be a sequence of RVs such that Xn
2−→ X. Then EXn → EX and

EX2
n → EX2 as n →∞.

Proof. We have

|E(Xn −X)| ≤ E|Xn −X| ≤ E1/2|Xn −X|2 → 0 as n →∞.

To see that EX2
n → EX2 (see also Theorem 9), we write

EX2
n = E(Xn −X)2 +EX2 +2E{X(Xn −X)}

and note that

|E{X(Xn −X)}| ≤
√

EX2E(Xn −X)2

by the Cauchy–Schwarz inequality. The result follows on passing to the limits.

We get, in addition, that Xn
2−→ X implies var(Xn)→ var(X).

Corollary. Let {Xm}, {Yn} be two sequences of RVs such that Xm
2−→ X, Yn

2−→ Y . Then
E(XmYn)→ E(XY) as m,n →∞.

Proof. The proof is left to the reader.

As a simple consequence of Theorem 8 and its corollary we see that Xm
2−→ X, Yn

2−→ Y
together imply cov(Xm,Yn)→ cov(X,Y).

Theorem 9. If Xn
r−→ X, then E|Xn|r → E|X|r.

Proof. Let 0 < r ≤ 1. Then

E|Xn|r = E|Xn −X+X|r

so that

E|Xn|r −E|X|r ≤ E|Xn −X|r.

Interchanging Xn and X, we get

E|X|r −E|Xn|r ≤ E|Xn −X|r.
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It follows that

|E|X|r −E|Xn|r| ≤ E|Xn −X|r → 0 as n →∞.

For r > 1, we use Minkowski’s inequality and obtain

[E|Xn|r]1/r ≤ [E|Xn −X|r]1/r +[E|X|r]1/r

and

[E|X|r]1/r ≤ [E|Xn −X|r]1/r +[E|Xn|r]1/r.

It follows that

|E1/r|Xn|r −E1/r|X|r| ≤ E1/r|Xn −X|r → 0 as n →∞.

This completes the proof.

Theorem 10. Let r > s. Then Xn
r−→ X ⇒ Xn

s−→ X.

Proof. From Theorem 3.4.3 it follows that for s < r

E|Xn −X|s ≤ [E|Xn −X|r]s/r → 0 as n →∞

since Xn
r−→ X.

Remark 4. Clearly the converse to Theorem 10 cannot hold, since E|X|s < ∞ for s < r
does not imply E|X|r <∞.

Remark 5. In view of Theorem 9, it follows that Xn
r−→ X ⇒ E|Xn|s → E|X|s for s ≤ r.

Definition 4. † Let {Xn} be a sequence of RVs. We say that Xn converges almost surely
(a.s.) to an RV X if and only if

P{ω : Xn(ω)→ X(ω) as n →∞}= 1, (4)

and we write Xn
a.s.−−→ X or Xn → X with probability 1.

The following result elucidates Definition 4.

Theorem 11. Xn
a.s.−−→ X if and only if limn→∞ P{supm≥n |Xm −X|> ε}= 0 for all ε > 0.

Proof. Since Xn
a.s.−−→ X, Xn − X

a.s.−−→ 0, and it will be sufficient to show the equiva-
lence of

† May be omitted on the first reading.
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(a) Xn
a.s.−−→ 0 and

(b) limn→∞ P{supm≥n |Xm|> ε}= 0.

Let us suppose that (a) holds. Let ε > 0, and write

An(ε) =

{
sup
m≥n

|Xm|> ε

}
and C =

{
lim

n→∞
Xn = 0

}
.

Also write Bn(ε) = C ∩ An(ε), and note that Bn+1(ε) ⊂ Bn(ε), and the limit set
∩∞

n=1Bn(ε) = φ. It follows that

lim
n→∞

PBn(ε) = P

{ ∞⋂
n=1

Bn(ε)

}
= 0.

Since PC = 1, PCc = 0, we have

PBn(ε)−P(An ∩C) = 1−P(Cc ∪Ac
n)

= 1−PCc −PAc
n +P(Cc ∩Ac

n)

= PAn +P(Cc ∩Ac
n)

= PAn.

It follows that (b) holds.
Conversely, let limn→∞ PAn(ε) = 0, and write

D(ε) =
{
lim

n→∞
|Xn|> ε > 0

}
.

Since D(ε)⊂ An(ε) for n = 1,2, . . . , it follows that PD(ε) = 0. Also,

Cc =
{
lim

n→∞
Xn �= 0

}
⊂

∞⋃
k=1

{
lim |Xn|>

1
k

}
,

so that

1−PC ≤
∞∑

k=1

PD

(
1
k

)
= 0,

and (a) holds.

Remark 6. Thus Xn
a.s.−−→ 0 means that, for ε > 0, η > 0 arbitrary, we can find an n0 such

that

P

{
sup
n≥n0

|Xn|> ε

}
< η. (5)

Indeed, we can write, equivalently, that

lim
n0→∞

P

[ ⋃
n≥n0

{|Xn|> ε}
]
= 0. (6)
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Theorem 12. Xn
a.s.−−→ X ⇒ Xn

P−→ X.

Proof. By Remark 6, Xn
a.s.−−→ X implies that, for arbitrary ε > 0, η > 0, we can choose an

n0 = n0(ε,η) such that

P

[ ∞⋂
n=n0

{|Xn −X| ≤ ε}
]
≥ 1−η.

Clearly,

∞⋂
n=n0

{|Xn −X| ≤ ε} ⊂ {|Xn −X| ≤ ε} for n ≥ n0.

It follows that for n ≥ n0

P{|Xn −X| ≤ ε} ≥ P

[ ∞⋂
n=n0

{|Xn −X| ≤ ε}
]
≥ 1−η,

that is

P{|Xn −X|> ε}< η for n ≥ n0,

which is the same as saying Xn
P−→ X.

That the converse of Theorem 12 does not hold is shown in the following example.

Example 8. For each positive integer n there exist integers m and k (uniquely determined)
such that

n = 2k +m, 0 ≤ m < 2k, k = 0,1,2, . . . .

Thus, for n = 1, k = 0 and m = 0; for n = 5, k = 2 and m = 1; and so on. Define RVs Xn,
for n = 1,2, . . . , on Ω= [0,1] by

Xn(ω) =

⎧⎨
⎩2k,

m
2k

≤ ω <
m+1

2k
,

0, otherwise.

Let the probability distribution of Xn be given by P{I} = length of the interval I ⊆ Ω.
Thus

P{Xn = 2k}= 1
2k
, P{Xn = 0}= 1− 1

2k
.

The limit limn→∞ Xn(ω) does not exist for any ω ∈Ω, so that Xn does not converge almost
surely. But

P{Xn|> ε}= P{Xn > ε}=

⎧⎨
⎩

0 if ε≥ 2k,
1
2k

if 0 < ε < 2k,
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and we see that

P{|Xn|> ε}→ 0 as n (and hence k) →∞.

Theorem 13. Let {Xn} be a strictly decreasing sequence of positive RVs, and suppose
that Xn

P−→ 0. Then Xn
a.s.−−→ 0.

Proof. The proof is left as an exercise.

Example 9. Let {Xn} be a sequence of independent RVs defined by

P{Xn = 0}= 1− 1
n
, P{Xn = 1}= 1

n
, n = 1,2, . . . .

Then

E|Xn −0|2 = E|Xn|2 =
1
n
→ 0 as n →∞,

so that Xn
2−→ 0. Also

P{Xn = 0 for every m ≤ n ≤ n0}

=

n0∏
n=m

(
1− 1

n

)
=

m−1
n0

,

which diverges to 0 as n0 →∞ for all values of m. Thus Xn does not converge to 0 with
probability 1.

Example 10. Let {Xn} be independent defined by

P{Xn = 0}= 1− 1
nr
, P{Xn = n}= 1

nr
, r ≥ 2, n = 1,2, . . . .

Then

P{Xn = 0 for m ≤ n ≤ n0}=
n0∏

n=m

(
1− 1

nr

)
.

As n0 → ∞, the infinite product converges to some nonzero quantity, which itself
converges to 1 as m →∞. Thus Xn

a.s.−−→ 0. However, E|Xn|r = 1 and Xn
r
� 0 as n→∞.

Example 11. Let {Xn} be a sequence of RVs with P{Xn = ±1/n} = 1
2 . Then E|Xn|r =

1/nr → 0 as n →∞ and Xn
r−→ 0. For j < k, |Xj|> |Xk|, so that {|Xk|> ε} ⊂ {|Xj|> ε}. It

follows that

∞⋃
j=n

{|Xj|> ε}= {|Xn|> ε}.
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Choosing n > 1/ε, we see that

P

⎡
⎣∞⋃

j=n

{|Xj|> ε}

⎤
⎦= P{|Xn|> ε} ≤ P

{
|Xn|>

1
n

}
= 0,

and (6) implies that Xn
a.s.−−→ 0.

Remark 7. In Theorem 7.4.3 we prove a result which is sometimes useful in proving a.s.
convergence of a sequence of RVs.

Theorem 14. Let {Xn,Yn}, n = 1,2, . . . , be a sequence of RVs. Then

|Xn −Yn| P−→ 0 and Yn
L−→ Y ⇒ Xn

L−→ Y.

Proof. Let x be a point of continuity of the DF of Y and ε > 0. Then

P{Xn ≤ x}= P{Yn ≤ x+Yn −Xn}
= P{Yn ≤ x+Yn −Xn;Yn −Xn ≤ ε}
+P{Yn ≤ x+Yn −Xn;Yn −Xn > ε}

≤ P{Yn ≤ x+ ε}+P{Yn −Xn > ε}.

It follows that

lim
n→∞

P{Xn ≤ x} ≤ lim
n→∞

P{Yn ≤ x+ ε}.

Similarly

lim
n→∞

P{Xn ≤ x} ≥ lim
n→∞

P{Yn ≤ x− ε}.

Since ε > 0 is arbitrary and x is a continuity point of P{Y ≤ x}, we get the result by
letting ε→ 0.

Corollary. Xn
P−→ X ⇒ Xn

L−→ X.

Theorem 15. (Slutsky’s Theorem). Let {Xn,Yn}, n = 1,2, . . . , be a sequence of pairs of
RVs, and let c be a constant. Then

(a) Xn
L−→ X, Yn

P−→ c ⇒ Xn +Yn
L−→ X+ c;

(b) Xn
L−→ X,
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Yn
P→c ⇒

{
XnYn

L−→ cX if c �= 0,

XnYn
P−→ 0 if c = 0;

(c) Xn
L−→ X, Yn

P−→ c ⇒ Xn

Yn

L−→ X/c if c �= 0

Proof. (a) Xn
L−→ X ⇒ Xn + c

L−→ X + c (Theorem 3). Also, Yn − c = (Yn +Xn)− (Xn + c)
P−→ 0.

A simple use of Theorem 14 shows that

Xn +Yn
L−→ X+ c.

(b) We first consider the case where c = 0. We have, for any fixed number k > 0,

P{|XnYn|> ε}= P
{
|XnYn|> ε, |Yn| ≤

ε

k

}
+P
{
|XnYn|> ε, |Yn|>

ε

k

}
≤ P{|Xn|> k}+P

{
|Yn|>

ε

k

}
.

Since Yn
P−→ 0 and Xn

L−→ X, it follows that, for any fixed k > 0,

lim
n→∞

P{|XnYn|> ε} ≤ P{|X|> k}.

Since k is arbitrary, we can make P{|X|> k} as small as we please by choosing k
large. It follows that

XnYn
P−→ 0.

Now, let c �= 0. Then

XnYn − cXn = Xn(Yn − c)

and, since Xn
L−→ X, Yn

P−→ c, Xn(Yn − c)
P−→ 0. Using Theorem 14, we get the result

that

XnYn
L−→ cX.

(c) Yn
P−→ c, and c �= 0 ⇒ Y−1

n
P−→ c−1. It follows that Xn

L−→ X, Yn
P−→ c ⇒

XnY−1
n

L−→ c−1X, and the proof of the theorem is complete.

As an application of Theorem 15 we present the following example.
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Example 12. Let X1,X2, . . . , be iid RVs with common law N(0,1). We shall determine
the limiting distribution of the RV

Wn =
√

n
X1 +X2 + · · ·+Xn

X2
1 +X2

2 + · · ·+X2
n
.

Let us write

Un =
1√
n
(X1 +X2 + · · ·+Xn) and Vn =

X2
1 +X2

2 + · · ·+X2
n

n
.

Then

Wn =
Un

Vn
.

For the MGF of Un we have

MUn(t) =
n∏

i=1

EetXi/
√

n =

n∏
i=1

et2
/2n

= et2
/2 ,

so that Un is an N(0,1) variate (see also Corollary 2 to Theorem 5.3.22). It follows that
Un

L−→ Z, where Z is an N(0,1) RV. As for Vn, we note that each X2
i is a chi-square variate

with 1 d.f. Thus

MVn(t) =
n∏

i=1

(
1

1−2t/n

)1/2

, t <
n
2
,

=

(
1− 2t

n

)−n/2

, t <
n
2
,

which is the MGF of a gamma variate with parameters α = n/2 and β = 2/n. Thus the
density function of Vn is given by

fVn(x) =

⎧⎨
⎩

1
Γ(n/2)

1
(2/n)n/2

xn/2−1e−nx/2, 0 < x <∞,

0, otherwise.

We will show that Vn
P−→ 1. We have, for any ε > 0,

P{|Vn −1|> ε} ≤ var(Vn)

ε2
=
(n

2

)(2
n

)2 1
ε2

→ 0 as n →∞.

We have thus shown that

Un
L−→ Z and Vn

P−→ 1.

It follows by Theorem 15 (c) that Wn = Un/Vn
L−→ Z, where Z is an N(0,1) RV.
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Later on we will see that the condition that the Xi’s be N(0,1) is not needed. All we
need is that E|Xi|2 <∞.

PROBLEMS 7.2

1. Let X1,X2, . . . be a sequence of RVs with corresponding DFs given by Fn(x) = 0 if
x <−n, = (x+n)/2n if −n ≤ x < n, and = 1 if x ≥ n. Does Fn converge to a DF?

2. Let X1,X2 . . . be iid N(0,1) RVs. Consider the sequence of RVs {Xn}, where Xn =
n−1∑n

i=1 Xi. Let Fn be the DF of Xn, n = 1,2, . . . . Find limn→∞ Fn(x). Is this limit
a DF?

3. Let X1,X2, . . . be iid U(0,θ) RVs. Let X(1) =min(X1,X2, · · · ,Xn), and consider the
sequence Yn = nX(1). Does Yn converge in distribution to some RV Y? If so, find
the DF of RV Y .

4. Let X1,X2, . . . be iid RVs with common absolutely continuous DF F. Let X(n) =
max(X1,X2, . . . ,Xn), and consider the sequence of RVs Yn = n[1−F(X(n))]. Find
the limiting DF of Yn.

5. Let X1,X2, . . . be a sequence of iid RVs with common PDF f (x) = e−x+θ if x ≥ θ,
and = 0 if x < θ. Write Xn = n−1∑n

i=1 Xi.

(a) Show that Xn
P−→ 1+θ.

(b) Show that min{X1,X2, · · · ,Xn} P−→ θ.

6. Let X1,X2, . . . be iid U[0,θ] RVs. Show that max{X1,X2, . . . ,Xn} P−→ θ.

7. Let {Xn} be a sequence of RVs such that Xn
L−→ X. Let an be a sequence of positive

constants such that an →∞ as n →∞. Show that a−1
n Xn

P−→ 0.

8. Let {Xn} be a sequence of RVs such that P{|Xn| ≤ k} = 1 for all n and some
constant k > 0. Suppose that Xn

P−→ X. Show that Xn
r−→ X for any r > 0.

9. Let X1,X2, . . . ,X2n be iid N(0,1) RVs. Define

Un =

{
X1

X2
+

X3

X4
+ · · ·+ X2n−1

X2n

}
, Vn = X2

1 +X2
2 + · · ·+X2

n , and

Zn =
Un

Vn
.

Find the limiting distribution of Zn.

10. Let {Xn} be a sequence of geometric RVs with parameter λ/n, n > λ > 0. Also,
let Zn = Xn/n. Show that Zn

L−→ G(1,1/λ) as n →∞ (Prochaska [82]).

11. Let Xn be a sequence of RVs such that Xn
a.s.−−→ 0, and let cn be a sequence of real

numbers such that cn → 0 as n →∞. Show that Xn + cn
a.s.−−→ 0.

12. Does convergence almost surely imply convergence of moments?

13. Let X1,X2, . . . be a sequence of iid RVs with common DF F, and write X(n) =
max{X1,X2, . . . ,Xn}, n = 1,2, . . . .

(a) For α > 0, limx→∞ xαP{X1 > x} = b > 0. Find the limiting distribution
of (bn)−1/αX(n). Also, find the PDF corresponding to the limiting DF and
compute its moments.
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(b) If F satisfies

lim
x→∞

ex[1−F(x)] = b > 0,

find the limiting DF of X(n)− log(bn) and compute the corresponding PDF and
the MGF.

(c) If Xi is bounded above by x0 with probability 1, and for some α > 0

lim
x→x0−

(x0 − x)−α[1−F(x)] = b > 0,

find the limiting distribution of (bn)1/α{X(n) − x0}, the corresponding PDF,
and the moments of the limiting distribution.

(The above remarkable result, due to Gnedenko [36], exhausts all limiting
distributions of X(n) with suitable norming and centering.)

14. Let {Fn} be a sequence of DFs that converges weakly to a DF F which is continuous
everywhere. Show that Fn(x) converges to F(x) uniformly.

15. Prove Theorem 1.

16. Prove Theorem 6.

17. Prove Theorem 13.

18. Prove Corollary 1 to Theorem 8.

19. Let V be the class of all random variables defined on a probability space with finite
expectations, and for X ∈ V define

ρ(X) = E

{
|X|

1+ |X|

}
.

Show the following:

(a) ρ(X+Y)≤ ρ(X)+ρ(Y); ρ(σX)≤max(|σ|,1)ρ(X).
(b) d(X,Y) = ρ(X−Y) is a distance function on V (assuming that we identify RVs

that are a.s. equal).

(c) limn→∞ d(Xn,X) = 0 ⇔ Xn
P−→ X.

20. For the following sequences of RVs {Xn}, investigate convergence in probability
and convergence in rth mean.

(a) Xn ∼ C(1/n,0).

(b) P(Xn = en) = 1
n2 , P(Xn = 0) = 1− 1

n2 .

7.3 WEAK LAW OF LARGE NUMBERS

Let {Xn} be a sequence of RVs. Write Sn =
∑n

k=1 Xk, n = 1,2, . . . . In this section we
answer the following question in the affirmative: Do there exist sequences of constants An

and Bn > 0, Bn →∞ as n →∞, such that the sequence of RVs B−1
n (Sn −An) converges

in probability to 0 as n →∞?
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Definition 1. Let {Xn} be a sequence of RVs, and let Sn =
∑n

k=1 Xk, n = 1,2, . . . . We say
that {Xn} obeys the weak law of large numbers (WLLN) with respect to the sequence of
constants {Bn}, Bn > 0, Bn ↑ ∞, if there exists a sequence of real constants An such that
B−1

n (Sn−An)
P−→ 0 as n →∞. An are called centering constants and Bn norming constants.

Theorem 1. Let {Xn} be a sequence of pairwise uncorrelated RVs with EXi = μi and
var(Xi) = σ2

i , i = 1,2, . . . . If
∑n

i=1σ
2
i →∞ as n →∞, we can choose An =

∑n
k=1μk and

Bn =
∑n

i=1σ
2
i , that is,

n∑
i=1

Xi −μi∑n
i=1σ

2
i

P−→ 0 as n →∞.

Proof. We have, by Chebychev’s inequality,

P

{
|Sn −

n∑
k=1

μk|> ε

n∑
i=1

σ2
i

}
≤ E{

∑n
i=1(Xi −μi)}2

ε2(
∑n

i=1σ
2
i )

2

=
1

ε2
∑n

i=1σ
2
i

→ 0 as n →∞.

Corollary 1. If the Xn’s are identically distributed and pairwise uncorrelated with EXi =μ
and var(Xi) = σ2 <∞, we can choose An = nμ and Bn = nσ2.

Corollary 2. In Theorem 1 we can choose Bn = n, provided that n−2∑n
i=1σ

2
i → 0 as

n →∞.

Corollary 3. In Corollary 1, we can take An = nμ and Bn = n, since nσ2/n2 → 0 as
n → ∞. Thus, if {Xn} are pairwise-uncorrelated identically distributed RVs with finite
variance, Sn/n

P−→ μ.

Example 1. Let X1,X2, . . . be iid RVs with common law b(1,p). Then EXi = p, var(Xi) =
p(1−p), and we have

Sn

n
P−→ p as n →∞.

Note that Sn/n is the proportion of successes in n trials. In particular, recall from Section
6.3 that n F∗

n (x) is a b(x,F(x)) RV. It follows that for each x ∈ R,

F∗
n (x)

P−→ F(x) as n →∞.

Hereafter, we shall be interested mainly in the case where Bn = n. When we say that
{Xn} obeys the WLLN, this is so with respect to the sequence {n}.

Theorem 2. Let {Xn} be any sequence of RVs. Write Yn = n−1∑n
k=1 Xk. A necessary and

sufficient condition for the sequence {Xn} to satisfy the weak law of large numbers is that

E

{
Y2

n

1+Y2
n

}
→ 0 as n →∞. (1)
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Proof. For any two positive numbers a, b, a ≥ b > 0, we have

(
a

1+a

)(
1+b

b

)
≥ 1. (2)

Let A = {|Yn| ≥ ε}. Then ω ∈ A ⇒ |Yn|2 ≥ ε2 > 0. Using (2), we see that ω ∈ A implies

Y2
n

1+Y2
n

1+ ε2

ε2
≥ 1.

It follows that

PA ≤ P

{
Y2

n

1+Y2
n
≥ ε2

1+ ε2

}

≤ E
|Y2

n/(1+Y2
n )|

ε2/(1+ ε2)
by Markov’s inequality

→ 0 as n →∞.

That is,

Yn
P−→ 0 as n →∞.

Conversely, we will show that for every ε > 0

P{|Yn| ≥ ε} ≥ E

{
Y2

n

1+Y2
n

}
− ε2. (3)

We will prove (3) for the case in which Yn is of the continuous type. The discrete case
being similar, we ask the reader to complete the proof. If Yn has PDF fn(y), then

∫ ∞

−∞

y2

1+ y2
fn(y)dy =

⎛
⎜⎝ ∫

|y|>ε

+

∫
|y|≤ε

⎞
⎟⎠ y2

1+ y2
fn(y)dy

≤ P{|Yn|> ε}+
∫ ε

−ε

(
1− 1

1+ y2

)
fn(y)dy

≤ P{|Yn|> ε}+ ε2

1+ ε2
≤ P{|Yn|> ε}+ ε2,

which is (3).

Remark 1. Since condition (1) applies not to the individual variables but to their sum, The-
orem 2 is of limited use. We note, however, that all weak laws of large numbers obtained
as corollaries to Theorem 1 follow easily from Theorem 2 (Problem 6).
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Example 2. Let (X1,X2, . . . ,Xn) be jointly normal with EXi = 0, EX2
i = 1 for all i, and

cov(Xi,Xj) = ρ if |j− i|= 1, and = 0 otherwise. Then Sn =
∑n

k=1 Xk is N(0,σ2), where

σ2 = var(Sn) = n+2(n−1)ρ,

and

E

{
Y2

n

1+Y2
n

}
= E

{
S2

n

n2 +S2
n

}

=
2

σ
√

2π

∫ ∞

0

x2

n2 + x2
e−x2/2σ2

dx

=
2√
2π

∫ ∞

0

y2[n+2(n−1)ρ]
n2 + y2[n+2(n−1)ρ]

e−y2/2 dy

≤ n+2(n−1)ρ
n2

∫ ∞

0

2√
2π

y2e−y2/2 dy → 0 as n →∞.

It follows from Theorem 2 that n−1Sn
P−→ 0. We invite the reader to compare this result to

that of Problem 7.5.6.

Example 3. Let X1,X2, . . . be iid C(1,0) RVs. We have seen (corollary to Theorem 5.3.18)
that n−1Sn ∼ C(1,0), so that n−1Sn does not converge in probability to 0. It follows that
the WLLN does not hold (see also Problem 10).

Let X1,X2, . . . be an arbitrary sequence of RVs, and let Sn =
∑n

k=1 Xk, n = 1,2, . . . . Let
us truncate each Xi at c > 0, that is, let

Xc
i =

{
Xi if |Xi| ≤ c

0 if |Xi|> c
, i = 1,2, . . . ,n.

Write

Sc
n =

n∑
i=1

Xc
i ,and mn =

n∑
i=1

EXc
i .

Lemma 1. For any ε > 0,

P{|Sn −mn|> ε} ≤ P{|Sc
n −mn|> ε}+

n∑
k=1

P{|Xk|> c}. (4)

Proof. We have

P{|Sn −mn|> ε}= P{|Sn −mn|> ε and |Xk| ≤ c for k = 1,2, . . . ,n}
+P{|Sn −mn|> ε and |Xk|> c for at least one k,

k = 1,2, . . . ,n}
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≤ P{|Sc
n −mn|> ε}+P{|Xk|> c for at least one k,

1 ≤ k ≤ n}

≤ P{|Sc
n −mn|> ε}+

n∑
k=1

P{|Xk|> c}.

Corollary. If X1,X2, . . . ,Xn are exchangeable, then

P{|Sn −mn|> ε} ≤ P{|Sc
n −mn|> ε}+nP{|X1|> c}. (5)

If, in addition, the RVs X1,X2, . . . ,Xn are independent, then

P{|Sn −mn|> ε} ≤ nE(Xc
1)

2

ε2
+nP{|X1|> c}. (6)

Inequality (6) yields the following important theorem.

Theorem 3. Let {Xn} be a sequence of iid RVs with common finite mean μ= EX1. Then

n−1Sn
P−→ μ as n →∞.

Proof. Let us take c = n in (6) and replace ε by nε; then we have

P{|Sn −mn|> nε} ≤ 1
nε2

E(Xn
1)

2 +nP{|X1|> n},

where Xn
1 is X1 truncated at n.

First note that E|X1|<∞⇒ nP{|X1|> n}→ 0 as n→∞. Now (see remarks following
Lemma 3.2.1)

E(Xn
1)

2 = 2
∫ n

0
xP{|X1|> x}dx

= 2

(∫ A

0
+

∫ n

A

)
xP{|X1|> x}dx,

where A is chosen sufficiently large that

xP{|X1|> x}< δ

2
for all x ≥ A, δ > 0 arbitrary.

Thus

E(Xn
1)

2 ≤ c+ δ

∫ n

A
dx ≤ c+nδ,

where c is a constant. It follows that

1
nε2

E(Xn
1)

2 ≤ c
nε2

+
δ

ε2
,



WEAK LAW OF LARGE NUMBERS 307

and since δ is arbitrary, (1/nε2)E(Xn
1)

2 can be made arbitrarily small for sufficiently large
n. The proof is now completed by the simple observation that, since EXj = μ,

mn

n
→ μ as n →∞.

We emphasize that in Theorem 3 we require only that E|X1|<∞; nothing is said about
the variance. Theorem 3 is due to Khintchine.

Example 4. Let X1,X2, . . . be iid RVs with E|X1|k <∞ for some positive integer k. Then

n∑
j=1

Xk
j

n
P−→ EXk

1 as n →∞.

Thus, if EX2
1 < ∞, then

∑n
1 X2

j /n
P−→ EX2

1 , and since (
∑n

j=1 Xj/n)2 P−→ (EX1)
2 it follows

that

ΣX2
j

n
−
(
ΣXj

n

)2
P−→ var(X1).

Example 5. Let X1,X2, . . . be iid RVs with common PDF

f (x) =

⎧⎨
⎩

1+ δ

x2+δ
, x ≥ 1

0, x < 1
, δ > 0.

Then

E|X|= (1+ δ)

∫ ∞

1

1
x1+δ

dx

=
1+ δ

δ
<∞,

and the law of large numbers holds, that is,

n−1Sn
P−→ 1+ δ

δ
as n →∞.

PROBLEMS 7.3

1. Let X1,X2, . . . be a sequence of iid RVs with common uniform distribution on [0,1].
Also, let Zn = (

∏n
i=1 Xi)

1/n be the geometric mean of X1,X2, . . . ,Xn, n = 1,2, . . . .

Show that Zn
P−→ c, where c is some constant. Find c.
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2. Let X1,X2, . . . be iid RVs with finite second moment. Let

Yn =
2

n(n+1)

n∑
i=1

iXi.

Show that Yn
P−→ EX1.

3. Let X1,X2, . . . be a sequence of iid RVs with EXi = μ and var(Xi) = σ2. Let Sk =∑k
j=1 Xj. Does the sequence Sk obey the WLLN in the sense of Definition 1? If so,

find the centering and the norming constants.

4. Let {Xn} be a sequence of RVs for which var(Xn) ≤ C for all n and ρij =
cov(Xi,Xj)→ 0 as |i− j| →∞. Show that the WLLN holds.

5. For the following sequences of independent RVs does the WLLN hold?

(a) P{Xk =±2k}= 1
2 .

(b) P{Xk =±k}= 1/2
√

k, P{Xk = 0}= 1− (1/
√

k).

(c) P{Xk =±2k}= 1/22k+1, P{Xk = 0}= 1− (1/22k).

(d) P{Xk =±1/k}= 1/2.

(e) P{Xk =±
√

k}= 1
2 .

6. Let X1,X2, . . . be a sequence of independent RVs such that var (Xk) < ∞ for
k = 1,2, . . . , and (1/n2)

∑n
k=1 var(Xk) → 0 as n → ∞. Prove the WLLN, using

Theorem 2.

7. Let Xn be a sequence of RVs with common finite variance σ2. Suppose that the
correlation coefficient between Xi and Xj is < 0 for all i �= j. Show that the WLLN
holds for the sequence {Xn}.

8. Let {Xn} be a sequence of RVs such that Xk is independent of Xj for j �= k+ 1 or
j �= k − 1. If var(Xk) < C for all k, where C is some constant, the WLLN holds
for {Xk}.

9. For any sequence of RVs {Xn} show that

max
1≤k≤n

|Xk| P−→ 0 ⇒ n−1Sn
P−→ 0.

10. Let X1,X2, . . . be iid C(1,0) RVs. Use Theorem 2 to show that the weak law of large
numbers does not hold. That is, show that

E
S2

n

n2 +S2
n
� 0 as n →∞, where Sn =

n∑
k=1

Xk,n = 1,2, . . . .

11. Let {Xn} be a sequence of iid RVs with P{Xn ≥ 0} = 1. Let Sn =
∑n

j=1 Xj, n =

1,2, . . .. Suppose {an} is a sequence of constants such that a−1
n Sn

P−→ 1. Show that
(a) an →∞ as n →∞ and (b) an+1/an → 1.

7.4 STRONG LAW OF LARGE NUMBERS†

In this section we obtain a stronger form of the law of large numbers discussed in
Section 7.3. Let X1,X2, . . . be a sequence of RVs defined on some probability space
(Ω,S,P).

† This section may be omitted on the first reading.
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Definition 1. We say that the sequence {Xn} obeys the strong law of large numbers
(SLLN) with respect to the norming constants {Bn} if there exists a sequence of (centering)
constants {An} such that

B−1
n (Sn −An)

a.s.−−→ 0 as n →∞. (1)

Here Bn > 0 and Bn →∞ as n →∞.

We will obtain sufficient conditions for a sequence {Xn} to obey the SLLN. In what fol-
lows, we will be interested mainly in the case Bn = n. Indeed, when we speak of the SLLN
we will assume that we are speaking of the norming constants Bn = n, unless specified
otherwise.

We start with the Borel–Cantelli lemma. Let {Aj} be any sequence of events in S. We
recall that

lim
n→∞

An = lim
n→∞

∞⋃
k=n

Ak =
∞⋂

n=1

∞⋃
k=n

Ak. (2)

We will write A = limn→∞An. Note that A is the event that infinitely many of the An occur.
We will sometimes write

PA = P
(
lim

n→∞
An

)
= P(Ani.o.),

where “i.o.” stands for “infinitely often.” In view of Theorem 7.2.11 and Remark 7.2.6 we
have Xn

a.s.−−→ 0 if and only if P{|Xn|> ε i.o.}= 0 for all ε > 0.

Theorem 1 (Borel–Cantelli Lemma).

(a) Let {An} be a sequence of events such that
∑∞

n=1 PAn <∞. Then PA = 0.

(b) If {An} is an independent sequence of events such that
∑∞

n=1 PAn = ∞, then
PA=1.

Proof.

(a) PA = P(limn→∞
⋃∞

k=n Ak) = limn→∞ P(
⋃∞

k=n Ak)≤ limn→∞
∑∞

k=n PAk = 0.

(b) We have Ac =
⋃∞

n=1

⋂∞
k=n Ac

k, so that

PAc = P

(
lim

n→∞

∞⋂
k=n

Ac
k

)
= lim

n→∞
P

( ∞⋂
k=n

Ac
k

)
.

For n0 > n, we see that
⋂∞

k=n Ac
k ⊂
⋂n0

k=n Ac
k, so that

P

( ∞⋂
k=n

Ac
k

)
≤ lim

n0→∞
P

(
n0⋂

k=n

Ac
k

)
= lim

n0→∞

n0∏
k=n

(1−PAk),
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because {An} is an independent sequence of events. Now we use the elementary
inequality

1− exp

⎛
⎝−

n0∑
j=n

αj

⎞
⎠≤ 1−

n0∏
j=n

(1−αj)≤
n0∑

j=n

αj, n0 > n,1 ≥ αj ≥ 0,

to conclude that

P

( ∞⋂
k=n

Ac
k

)
≤ lim

n0→∞
exp

(
−

n0∑
k=n

PAk

)
.

Since the series
∑∞

n=1 PAn diverges, it follows that PAc = 0 or PA = 1.

Corollary. Let {An} be a sequence of independent events. Then PA is either 0 or 1.

The corollary follows since
∑∞

n=1 PAn either converges or diverges.
As a simple application of the Borel–Cantelli lemma, we obtain a version of the SLLN.

Theorem 2. If X1,X2, . . . are iid RVs with common mean μ and finite fourth moment,
then

P

{
lim

n→∞

Sn

n
= μ

}
= 1.

Proof. We have

E{Σ(Xi −μ)}4 = nE(X1 −μ)4 +6

(
n
2

)
σ4 ≤ Cn2.

By Markov’s inequality

P

{∣∣∣∣∣
n∑
1

(X1 −μ)

∣∣∣∣∣> nε

}
≤ E{

∑n
1(X1 −μ)}4

(nε)4
≤ Cn2

(nε)4
=

C′

n2
.

Therefore,

∞∑
n=1

P{|Sn −μn|> nε}<∞,

and it follows by the Borel–Cantelli lemma that with probability 1 only finitely many of
the events {ω : |(Sn/n)−μ|> ε} occur, that is, PAε = 0, where

Aε = lim
n→∞

sup

{∣∣∣∣Sn

n
−μ

∣∣∣∣> ε

}
.
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The sets Aε increase, as ε→ 0, to the ω set on which Sn/n � μ. Letting ε→ 0 through a
countable set of values, we have

P

{
Sn

n
−μ� 0

}
= P

{⋃
k

A1/k

}
= 0.

Corollary. If X1,X2, . . . are iid RVs such that P{|Xn| < K} = 1 for all n, where K is a
positive constant, then n−1Sn

a.s.−−→ μ.

Theorem 3. Let X1,X2, . . . be a sequence of independent RVs. Then

Xn
a.s.−−→ 0 ⇔

∞∑
n=1

P{|Xn|> ε}<∞ for all ε > 0.

Proof. Writing An = {|Xn| > ε}, we see that {An} is a sequence of independent events.
Since Xn

a.s.−−→ 0, Xn → 0 on a set Ec with PE = 0. A point ω ∈ Ec belongs only to a finite
number of An. It follows that

lim
n→∞

supAn ⊂ E,

hence, P(An i.o.) = 0. By the Borel–Cantelli lemma (Theorem 1(b)) we must have∑∞
n=1 PAn <∞. (Otherwise,

∑∞
n=1 PAn =∞, and then P(An i.o.) = 1.)

In the other direction, let

A1/k = limsup
n→∞

{
|Xn|>

1
k

}
,

and use the argument in the proof of Theorem 2.

Example 1. We take an application of Borel–Cantelli Lemma to prove a.s. convergence.
Let {Xn} have PMF

P(Xn = 0) = 1− 1
nα

, P(Xn =±n) =
1

2nα
.

Then P(|Xn|> ε) = 1
nα and it follows that

∞∑
n=1

P(|Xn|> ε) =

∞∑
n=1

1
nα

<∞ for α > 1.

Thus from Borel–Cantelli lemma P(An i.o.) = 0, where An = {|Xn| > ε}. Now using the
argument in the proof of Theorem 2 we can show that P(Xn �→ 0}= 0.

We next prove some important lemmas that we will need subsequently.
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Lemma 1 (Kolmogorov’s Inequality). Let X1,X2, . . . ,Xn be independent RVs with com-
mon mean 0 and variances σ2

k , k = 1,2, . . . ,n, respectively. Then for any ε > 0

P

{
max

1≤k≤n
|Sk|> ε

}
≤

n∑
1

σ2
i

ε2
. (3)

Proof. Let A0 =Ω,

Ak =

{
max
1≤j≤k

|Sj| ≤ ε

}
, k = 1,2, . . . ,n,

and

Bk = Ak−1 ∩Ac
k

= {|S1| ≤ ε, . . . , |Sk−1| ≤ ε}∩{at least one of |S1|, . . . , |Sk| is > ε}
= {|S1| ≤ ε, . . . , |Sk−1| ≤ ε, |Sk|> ε}.

It follows that

Ac
n =

n∑
k=1

Bk

and

Bk ⊂ {|Sk−1| ≤ ε, |Sk|> ε}.

As usual, let us write IBk , for the indicator function of the event Bk. Then

E(SnIBk)
2 = E{(Sn −Sk)IBk +SkIBk}2,

= E{(Sn −Sk)
2IBk +S2

k IBk +2Sk(Sn −Sk)IBk}.

Since Sn−Sk = Xk+1+ · · ·+Xn and SkIBk are independent, and EXk = 0 for all k, it follows
that

E(SnIBk)
2 = E{(Sn −Sk)IBk}2 +E(SkIBk)

2

≥ E(SkIBk)
2 ≥ ε2PBk.

The last inequality follows from the fact that, in Bk, |Sk|> ε. Moreover,

n∑
k=1

E(SnIBk)
2 = E(S2

nIAc
n
)≤ E(S2

n) =

n∑
1

σ2
k

so that
n∑
1

σ2
k ≥ ε2

n∑
1

PBk = ε2P(Ac
n),

as asserted.
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Corollary. Take n = 1 then

P{|X1|> ε} ≤ σ2
1

ε2
,

which is Chebychev’s inequality.

Lemma 2 (Kronecker Lemma). If
∑∞

n=1 xn converges to s (finite) and bn ↑∞, then

b−1
n

n∑
k=1

bkxk → 0.

Proof. Writing b0 = 0, ak = bk −bk−1, and sn+1 =
∑n

k=1 xk, we have

1
bn

n∑
k=1

bkxk =
1
bn

n∑
k=1

bk(sk+1 − sk)

=
1
bn

(
bnsn+1 +

n∑
1

bk−1sk

)
− 1

bn

n∑
k=1

bksk

= sn+1 −
1
bn

n∑
k=1

(bk −bk−1)sk

= sn+1 −
1
bn

n∑
k=1

aksk.

It therefore suffices to show that b−1
n

∑n
k=1 aksk → s. Since sn → s, there exists an n0 =

n0(ε) such that

|sn − s|< ε

2
for n > n0.

Since bn ↑∞, let n1 be an integer > n0 such that

b−1
n

∣∣∣∣∣
n0∑
1

(bk −bk−1)(sk − s)

∣∣∣∣∣< ε

2
for n > n1.

Writing

rn = b−1
n

n∑
k=1

(bk −bk−1)sk,

we see that

|rn − s|= 1
bn

∣∣∣∣∣
n∑

k=1

(bk −bk−1)(sk − s)

∣∣∣∣∣ ,
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and, choosing n > n1, we have

|rn − s| ≤
∣∣∣∣∣ 1
bn

n0∑
k=1

(bk −bk−1)(sk − s)

∣∣∣∣∣+ 1
bn

∣∣∣∣∣
n∑

k=n0+1

(bk −bk−1)
ε

2

∣∣∣∣∣< ε.

This completes the proof.

Theorem 4. If
∑∞

n=1 varXn <∞, then
∑∞

n=1(Xn −EXn) converges almost surely.

Proof. Without loss of generality assume that EXn = 0. By Kolmogorov’s inequality

P

{
max

1≤k≤n
|Sm+k −Sm| ≥ ε

}
≤ 1

ε2

n∑
k=1

var(Xm+k).

Letting n →∞ we have

P

{
max
k≥1

|Sm+k −Sm| ≥ ε

}
= P

{
max

k≥m+1
|Sk −Sm| ≥ ε

}

≤ 1
ε2

∞∑
k=m+1

var(Xk).

It follows that

lim
m→∞

P

{
max
k>m

|Sk −Sm|< ε

}
= 1,

and since ε > 0 is arbitrary we have

P

⎧⎨
⎩ lim

m→∞

∣∣∣∣∣∣
∞∑

j=m

Xj

∣∣∣∣∣∣= 0

⎫⎬
⎭= 1.

Consequently,
∑∞

j=1 Xj converges a.s.

As a corollary we get a version of the SLLN for nonidentically distributed RVs which
subsumes Theorem 2.

Corollary 1. Let {Xn} be independent RVs. If

∞∑
k=1

var(Xk)

B2
k

<∞, Bn ↑∞,

then

Sn −ESn

Bn

a.s.−−→ 0.

The corollary follows from Theorem 4 and the Kronecker lemma.
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Corollary 2. Every sequence {Xn} of independent RVs with uniformly bounded vari-
ances obeys the SLLN.

If var(Xk)≤ A for all k, and Bk = k, then
∞∑

k=1

σ2
k

k2
≤ A

∞∑
1

1
k2

<∞,

and it follows that
Sn −ESn

n
a.s.−−→ 0.

Corollary 3 (Borel’s Strong Law of Large Numbers). For a sequence of Bernoulli tri-
als with (constant) probability p of success, the SLLN holds (with Bn=n and An=np).

Since

EXk = p, var(Xk) = p(1−p)≤ 1
4
, 0 < p < 1,

the result follows from Corollary 2.

Corollary 4. Let {Xn} be iid RVs with common mean μ and finite variance σ2. Then

P

{
lim

n→∞

Sn

n
= μ

}
= 1.

Remark 1. Kolmogorov’s SLLN is much stronger than Corollaries 1 and 4 to Theorem 4.
It states that if {Xn} is a sequence of iid RVs then

n−1Sn
a.s.−→ μ⇐⇒ E|X1|<∞,

and then μ= EX1. The proof requires more work and will not be given here. We refer the
reader to Billingsley [6], Chung [15], Feller [26], or Laha and Rohatgi [58].

PROBLEMS 7.4

1. For the following sequences of independent RVs does the SLLN hold?

(a) P{Xk =±2k}= 1
2 .

(b) P{Xk =±k}= 1/2
√

k, P{Xk = 0}= 1− (1/
√

k).

(c) P{Xk =±2k}= 1/22k+1, P{Xk = 0}= 1− (1/22k).

2. Let X1,X2, . . . be a sequence of independent RVs with
∑∞

k=1 var(Xk)/k2 <∞. Show
that

1
n2

n∑
k=1

var(Xk)→ 0 as n →∞.

Does the converse also hold?
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3. For what values of α does the SLLN hold for the sequence

P{Xk =±kα}= 1
2
?

4. Let {σ2
k} be a sequence of real numbers such that

∑∞
k=1σ

2
k/k2 =∞. Show that there

exists a sequence of independent RVs {Xk}with var(Xk) = σ2
k , k = 1,2, . . . , such that

n−1∑n
k=1(Xk −EXk) does not converge to 0 almost surely.

[Hint: Let P{Xk =±k}= σ2
k/2k2, P{Xk = 0}= 1−(σ2

k/k2) if σk/k ≤ 1, and P{Xk =
±σk}= 1

2 if σk/k > 1. Apply the Borel–Cantelli lemma to {|Xn|> n}.]

5. Let Xn be a sequence of iid RVs with E|Xn| = +∞. Show that, for every positive
number A, P{|Xn|> nA i.o.}= 1 and P{|Sn|< nA i.o.}= 1.

6. Construct an example to show that the converse of Theorem 1(a) does not hold.

7. Investigate a.s. convergence of {Xn} to 0 in each case.

(a) P(Xn = en) = 1/n2, P(Xn = 0) = 1−1/n2.

(b) P(Xn = 0) = 1−1/n, P(Xn =±1) = 1/(2n).
(Xn’s are independent in each case.)

7.5 LIMITING MOMENT GENERATING FUNCTIONS

Let X1,X2, . . . be a sequence of RVs. Let Fn be the DF of Xn, n = 1,2, . . . , and suppose
that the MGF Mn(t) of Fn exists. What happens to Mn(t) as n →∞? If it converges, does
it always converge to an MGF?

Example 1. Let {Xn} be a sequence of RVs with PMF P{Xn =−n}= 1, n = 1,2, . . . . We
have

Mn(t) = EetXn = e−tn → 0 as n →∞ for all t > 0,

Mn(t)→+∞ for all t < 0, and Mn(t)→ 1 at t = 0.

Thus

Mn(t)→ M(t) =

⎧⎪⎨
⎪⎩

0, t > 0

1, t = 0 as n →∞.

∞, t < 0

But M(t) is not an MGF. Note that if Fn is the DF of Xn then

Fn(x) =

{
0 if x <−n

1 if x ≥−n
→ F(x) = 1 for all x,

and F is not a DF.
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Next suppose that Xn has MGF Mn and Xn
L−→ X, where X is an RV with MGF M. Does

Mn(t)→ M(t) as n →∞? The answer to this question is in the negative.

Example 2. (Curtiss [19]). Consider the DF

Fn(x) =

⎧⎪⎨
⎪⎩

0, x <−n,
1
2 + cn tan

−1(nx), −n ≤ x < n,

1, x ≥ n,

where cn = 1/[2tan−1(n2)]. Clearly, as n →∞,

Fn(x)→ F(x) =

{
0, x < 0,

1, x ≥ 0,

at all points of continuity of the DF F. The MGF associated with Fn is

Mn(t) =
∫ n

−n
cnetx n

1+n2x2
dx,

which exists for all t. The MGF corresponding to F is M(t) = 1 for all t. But Mn(t)�M(t),
since Mn(t)→∞ if t �= 0. Indeed

Mn(t)>
∫ n

0
cn
|t|3x3

6
n

1+n2x2
dx.

The following result is a weaker version of the continuity theorem due to Lévy and
Cramér. We refer the reader to Lukacs [69, p. 47], or Curtiss [19], for details of the proof.

Theorem 1 (Continuity Theorem). Let {Fn} be a sequence of DFs with corresponding
MGFs {Mn}, and suppose that Mn(t) exists for |t| ≤ t0 for every n. If there exists a DF
F with corresponding MGF M which exists for |t| ≤ t1 < t0, such that Mn(t) → M(t) as
n →∞ for every t ∈ [−t1, t1], then Fn

w−→ F.

Example 3. Let Xn be an RV with PMF

P{Xn = 1}= 1
n

and P{Xn = 0}= 1− 1
n
.

Then Mn(t) = (1/n)et +[1− (1/n)] exists for all t ∈R, and Mn(t)→ 1 as n →∞ for all t.
Here M(t) = 1 is the MGF of an RV X degenerate at 0. Thus Xn

L−→ X.

Remark 1. The following notation on orders of magnitude is quite useful. We write xn =
o(rn) if, given ε > 0, there exists an N such that |xn/rn|< ε for all n ≥ N and xn = O(rn)
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if there exists an N and a constant c > 0, such that |xn/rn| < c for all n ≥ N. We write
xn = O(1) to express the fact that xn is bounded for large n, and xn = o(1) to mean that
xn → 0 as n →∞.

This notation is extended to RVs in an obvious manner. Thus
Xn = op(rn) if, for every ε > 0 and δ > 0, there exists an N such that P(|Xn/rn| ≤ δ) ≥
1− ε for n ≥ N, and Xn = Op(rn) if, for ε > 0, there exists a c > 0 and an N such that

P(|Xn/rn| ≤ c)≥ 1−ε. We write Xn = op(1) to mean Xn
P−→0. This notation can be easily

extended to the case where rn itself is an RV.

The following lemma is quite useful in applications of Theorem 1.

Lemma 1. Let us write f (x) = o(x), if f (x)/x → 0 as x → 0. We have

lim
n→∞

{
1+

a
n
+o

(
1
n

)}n

= ea for every real a.

Proof. By Taylor’s expansion we have

f (x) = f (0)+ xf ′(θx)

= f (0)+ xf ′(0)+{ f ′(θx)− f ′(0)}x, 0 < θ < 1.

If f ′(x) is continuous at x = 0, then as x → 0

f (x) = f (0)+ xf ′(0)+o(x).

Taking f (x) = log(1+x), we have f ′(x) = (1+x)−1, which is continuous at x = 0, so that

log(1+ x) = x+o(x).

Then for sufficiently large n

n log

{
1+

a
n
+o

(
1
n

)}
= n

{
a
n
+o

(
1
n

)
+o

[
a
n
+o

(
1
n

)]}

= a+n o

(
1
n

)
= a+o(1).

It follows that {
1+

a
n
+o

(
1
n

)}n

= ea+o(1),

as asserted.

Example 4. Let X1,X2, . . . be iid b(1,p) RVs. Also, let Sn =
∑n

1 Xk, and let Mn(t) be the
MGF of Sn. Then

Mn(t) = (q+pet)n for all t,
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where q = 1−p. If we let n →∞ in such a way that np remains constant at λ, say, then,
by Lemma 1,

Mn(t) =

(
1− λ

n
+

λ

n
et

)n

=

{
1+

λ

n
(et −1)

}n

→ exp{λ(et −1)} for all t,

which is the MGF of a P(λ) RV. Thus, the binomial distribution function approaches the
Poisson df, provided that n →∞ in such a way that np = λ > 0.

Example 5. Let X ∼ P(λ). The MGF of X is given by

M(t) = exp{λ(et −1)} for all t.

Let Y = (X−λ)/
√
λ. Then the MGF of Y is given by

MY(t) = e−t
√
λ M

(
t√
λ

)
.

Also,

logMY(t) =−t
√
λ+logM

(
t√
λ

)
=−t

√
λ+λ(et/

√
λ−1)

=−t
√
λ+λ

(
t√
λ
+

t2

2λ
+

t3

3 !λ3/2
+ · · ·

)

=
t2

2
+

t3

3 !λ3/2
+ · · · .

It follows that

logMY(t)→
t2

2
as λ→∞,

so that MY(t)→ et2/2 as λ→∞, which is the MGF of an N(0,1) RV.

For more examples see Section 7.6.

Remark 2. As pointed out earlier working with MGFs has the disadvantage that the exis-
tence of MGFs is a very strong condition. Working with CFs which always exist, on the
other hand, permits a much wider application of the continuity theorem. Let φn be the CF
of Fn. Then Fn

w−→ F if and only if φn → φ as n → ∞ on R, where φ is continuous at
t = 0. In this case φ, the limit function, is the CF of the limit DF F.
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Example 6. Let X be a C(0,1) RV. Then its CF is given by

Eexp(itX) =
1
π

∫ ∞

−∞

cos tx
1+ x2

dx+ i
1
π

∫ ∞

−∞

sin tx
1+ x2

dx

=
1
π

∫ ∞

−∞

cos tx
1+ x2

dx = e−|t|

since the second integral on the right side vanishes.
Let {Xn} be iid RVs with common law L(X) and set Yn =

∑n
j=1 Xj/n. Then the CF of

Yn is given by

ϕn(t) = E exp

⎧⎨
⎩it

n∑
j=1

Xj/n

⎫⎬
⎭=

n∏
j=1

exp

{
−|t|

n

}

= exp(−|t|)

for all n. It follows ϕn is the CF of a C(1,0) RV. We could not have derived this result
using MGFs. Also if Un =

∑n
j=1 Xj/nα for α > 1, then

ϕUn(t) = exp
{
−|t|/nα−1

}
→ 1

as n → ∞ for all t. Since ϕ(t) = 1 is continuous at t = 0, ϕ is the CF of the limit

DF F. Clearly F is the DF of an RV degenerate at 0. Thus
∑n

j=1 Xj/nα
L,P−→ U, where

P(U=0)=1.

PROBLEMS 7.5

1. Let X ∼ NB(r;p). Show that

2pX
L−→ Y as p → 0,

where Y ∼ χ2(2r).

2. Let Xn ∼ NB(rn;1−pn), n = 1,2, . . . . Show that Xn
L−→ X as rn →∞, pn → 0, in such

a way that rnpn → λ, where X ∼ P(λ).

3. Let X1,X2, . . . be independent RVs with PMF given by P{Xn =±1}= 1
2 , n= 1,2, . . . .

Let Zn =
∑n

j=1 Xj/2j. Show that Zn
L−→ Z, where Z ∼ U[−1,1].

4. Let {Xn} be a sequence of RVs with Xn ∼ G(n,β) where β > 0 is a constant
(independent of n). Find the limiting distribution of Xn/n.

5. Let Xn ∼ χ2(n), n = 1,2, . . . . Find the limiting distribution of Xn/n2.

6. Let X1,X2, . . . ,Xn be jointly normal with EXi = 0, EX2
i = 1 for all i and cov(Xi,Xj) =

ρ, i, j = 1,2, . . . (i �= j). What is the limiting distribution of n−1Sn, where Sn =∑n
k=1 Xk?
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7.6 CENTRAL LIMIT THEOREM

Let X1,X2, . . . be a sequence of RVs, and let Sn =
∑n

k=1, Xk, n = 1,2, . . . . In Sections 7.3
and 7.4 we investigated the convergence of the sequence of RVs B−1

n (Sn − An) to
the degenerate RV. In this section we examine the convergence of B−1

n (Sn − An) to a
nondegenerate RV. Suppose that, for a suitable choice of constants An and Bn > 0, the RVs
B−1

n (Sn −An)
L−→ Y . What are the properties of this limit RV Y? The question as posed is

far too general and is not of much interest unless the RVs Xi are suitably restricted. For
example, if we take X1 with DF F and X2,X3, . . . to be 0 with probability 1, choosing An = 0
and Bn = 1 leads to F as the limit DF.

We recall (Example 7.5.6) that, if X1,X2, . . . ,Xn are iid RVs with common law C(1,0),
then n−1Sn is also C(1,0). Again, if X1,X2, . . . ,Xn are iid N(0,1) RVs then n−1/2Sn is
also N(0,1) (Corollary 2 to Theorem 5.3.22). We note thus that for certain sequences of
RVs there exist sequences An and Bn > 0, Bn →∞, such that B−1

n (Sn −An)
L−→ Y . In the

Cauchy case Bn = n, An = 0, and in the normal case Bn = n1/2, An = 0. Moreover, we see
that Cauchy and normal distributions appear as limiting distributions—in these two cases,
because of the reproductive nature of the distributions. Cauchy and normal distributions
are examples of stable distributions.

Definition 1. Let X1, X2, be iid nondegenerate RVs with common DF F. Let a1, a2 be any
positive constants. We say that F is stable if there exist constants A and B (depending on
a1, a2) such that the RV B−1(a1X1 +a2X2 −A) also has the DF F.

Let X1,X2, . . . be iid RVs with common DF F. We remark without proof (see Loève [66,
p. 339]) that only stable distributions occur as limits. To make this statement more precise
we make the following definition.

Definition 2. Let X1,X2, . . . be iid RVs with common DF F. We say that F belongs to
the domain of attraction of a distribution V if there exist norming constants Bn > 0 and
centering constants An such that, as n →∞,

P{B−1
n (Sn −An)≤ x}→ V(x), (1)

at all continuity points x of V .

In view of the statement after Definition 1, we see that only stable distributions possess
domains of attraction. From Definition 1 we also note that each stable law belongs to its
own domain of attraction. The study of stable distributions is beyond the scope of this
book. We shall restrict ourselves to seeking conditions under which the limit law V is the
normal distribution. The importance of the normal distribution in statistics is due largely
to the fact that a wide class of distributions F belongs to the domain of attraction of the
normal law. Let us consider some examples.

Example 1. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Let

Sn =

n∑
k=1

Xk, An = ESn = np, Bn =
√

var(Sn) =
√

np(1−p).
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Then

Mn(t) = E exp

{
Sn −np√
np(1−p)

t

}

=

n∏
i=1

E exp

{
Xi −p√
np(1−p)

t

}

= exp

{
− npt√

np(1−p)

}{
q+p exp

[
t√

np(1−p)

]}n

, q = 1−p,

=

{
q exp

(
− pt
√

npq

)
+p exp

(
qt

√
npq

)}n

=

[
1+

t2

2n
+o

(
1
n

)]n

.

It follows from Lemma 7.5.1 that

Mn(t)→ et2/2 as n →∞,

and since et2/2 is the MGF of an N(0,1) RV, we have by the continuity theorem

P

{
Sn −np
√

npq
≤ x

}
→ 1√

2π

∫ x

−∞
et2/2 dt for all x ∈ R.

In particular, we note that for each x ∈ R, F∗
n (x)

p−→ F(x) as n →∞ and
√

n[F∗
n (x)−F(x)]√

F(x)(1−F(x))

L−→ Z as n →∞,

where Z is N(0,1). It is possible to make a probability statement simultaneously for all x.
This is the so-called Glivenko–Cantelli theorem: F∗

n (x) converges uniformly to F(x). For
a proof, we refer to Fisz [31, p. 391].

Example 2. Let X1,X2, . . . ,Xn be iid χ2(1) RVs. Then Sn ∼χ2(n), ESn = n, and var(Sn) =
2n. Also let Zn = (Sn −n)/

√
2n then

Mn(t) = EetZn

= exp

(
−t

√
n
2

)(
1− 2t√

2n

)−n/2

, 2t <
√

2n,

=

[
exp

(
t

√
2
n

)
− t

√
2
n
exp

(
t

√
2
n

)]−n/2

, t <

√
n
2
.

Using Taylor’s approximation, we get

exp

(
t

√
2
n

)
= 1+ t

√
2
n
+

t2

2

(√
2
n

)2

+
1
6
exp(θn)

(
t

√
2
n

)3

,
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where 0 < θn < t
√

(2/n). It follows that

Mn(t) =

(
1− t2

n
+

ζ(n)
n

)−n/2

,

where

ζ(n) =−
√

2
n

t3 +

(
t3

3

√
2
n
− 2t4

3n

)
exp(θn)→ 0 as n →∞,

for every fixed t. We have from Lemma 1 that Mn(t)→ et2/2 as n →∞ for all real t, and
it follows that Zn

L−→ Z, where Z is N(0,1).

These examples suggest that if we take iid RVs with finite variance and take An = ESn,
Bn =

√
var(Sn), then B−1

n (Sn−An)
L−→ Z, where Z isN(0,1). This is the central limit result,

which we now prove. The reader should note that in both Examples 1 and 2 we used more
than just the existence of E|X|2. Indeed, the MGF exists and hence moments of all order
exist. The existence of MGF is not a necessary condition.

Theorem 1 (Lindeberg–Lévy Central Limit Theorem). Let {Xn} be a sequence of iid
RVs with 0 < var(Xn) = σ2 < ∞ and common mean μ. Let Sn =

∑n
j=1 Xj, n = 1,2, . . ..

Then for every x ∈ R

lim
n→∞

P

{
Sn −nμ
σ
√

n
≤ x

}
= lim

n→∞
P

{
X−μ

σ/
√

n
≤ x

}
=

1√
2π

∫ x

−∞
e−u2/2du.

Proof. The proof we give here assumes that the MGF of Xn exists. Without loss of gen-
erality, we also assume that EXn = 0 and var(Xn) = 1. Let M be the MGF of Xn. Then the
MGF of Sn/

√
n is given by

Mn(t) = E exp(tSn/
√

n) = [M(t/
√

n)]n

and

�n Mn(t) = n �n M(t/
√

n) =
�n M(t/

√
n)

1/n

=
L(t/

√
n)

1/n
,

where L(t/
√

n)= �nM(t/
√

n). Clearly L(0) = �n(1) = 0, so that as n→∞, the conditions
for L’Hospital’s rule are satisfied. It follows that

lim
n→∞

�n Mn(t) = lim
n→∞

L′(t/
√

n)t
2/
√

n

and since L′(0) = EX = 0, we can use L’Hospital’s Rule once again to get

lim
n→∞

�n Mn(t) = lim
n→∞

L′′(t/
√

n)t2

2
=

t2

2
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using L′′(0) = var(X) = 1. Thus

Mn(t)−→ exp(t2/2) = M(t)

where M(t) is the MGT of a N(0,1) RV.

Remark 1. In the proof above we could have used the Taylor series expansion of M to
arrive at the same result.

Remark 2. Even though we proved Theorem 1 for the case when the MGF of Xn’s exists,
we will use the result whenever 0 < EX2

n = σ2 <∞. The use of CFs would have provided
a complete proof of Theorem 1. Let φ be the CF of Xn. Assuming again, without loss of
generality, that EXn = 0, var(Xn) = 1, we can write

φ(t) = 1− 1
2

t2 + t2o(1).

Thus the CF of Sn/
√

n is

[φ(t/
√

n)]n =

[
1− 1

2n
t2 +

t2

n
o(1)

]n

,

which converges to exp(−t2/2) which is the CF of a N(0,1) RV. The devil is in the details
of the proof.

The following converse to Theorem 1 holds.

Theorem 2. Let X1,X2, . . . ,Xn be iid RVs such that n−1/2Sn has the same distribution for
every n = 1,2, . . . . Then, if EXi = 0, var(Xi) = 1, the distribution of Xi must be N(0,1).

Proof. Let F be the DF of n−1/2Sn. By the central limit theorem,

lim
n→∞

P{n−1/2Sn ≤ x}=Φ(x).

Also, P{n−1/2Sn ≤ x}= F(x) for each n. It follows that we must have F(x) = Φ(x).

Example 3. Let X1,X2, . . . be iid RVs with common PMF

P{X = k}= p(1−p)k, k = 0,1,2, . . . , 0 < p < 1,q = 1−p.

Then EX = q/p, var(X) = q/p2. By Theorem 1 we see that

P

{
Sn −n(q/p)

√
nq

p ≤ x

}
→ Φ(x) as n →∞ for all x ∈ R.

Example 4. Let X1,X2, . . . be iid RVs with common B(α,β) distribution. Then

EX =
α

α+β
and var(X) =

αβ

(α+β)2(α+β+1)
.
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By the corollary to Theorem 1, it follows that

Sn −n[α/(α+β)]√
αβn/[(α+β+1)(α+β)2]

L−→ Z,

where Z is N(0,1).

For nonidentically distributed RVs we state, without proof, the following result due to
Lindeberg.

Theorem 3. Let X1,X2, . . . be independent RVs with DFs F1,F2, . . . , respectively. Let
EXk = μk and var(Xk) = σ2

k , and write

s2
n =

n∑
j=1

σ2
j .

If the Fk’s are absolutely continuous with PDF fk, assume that the relation

lim
n→∞

1
s2

n

n∑
k=1

∫
|x−μk|>εsn

(x−μk)
2fk(x)dx = 0 (2)

holds for all ε > 0. (A similar condition can be stated for the discrete case.) Then

S∗
n =

∑n
j=1 Xj −

∑n
j=1μj

sn

L−→Z ∼N(0,1). (3)

Condition (2) is known as the Lindeberg condition.

Feller [24] has shown that condition (2) is necessary as well in the following sense. For
independent RVs {Xk} for which (3) holds and

P

{
max

1≤k≤n
|Xk −EXk|> ε

√
var(Sn)

}
→ 0,

(2) holds for every ε > 0.

Example 5. Let X1,X2, . . . be independent RVs such that Xk is U(−ak,ak). Then EXk = 0,
var(Xk) = (1/3)a2

k . Suppose that |ak|< a and
∑n

1 a2
k →∞ as n →∞. Then

1
s2

n

n∑
k=1

∫
|x|>εsn

x2fk(x)dx ≤ 1
s2

n

n∑
k=1

∫
|x|>εsn

a2 1
2ak

dx

≤ a2

s2
n

n∑
k=1

P{|Xk|> εsn} ≤
a2

s2
n

n∑
k=1

var(Xk)

ε2s2
n

=
a2

ε2s2
n
→ 0 as n →∞.
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If
∑∞

1 a2
k < ∞, then s2

n ↑ A2, say, as n → ∞. For fixed k, we can find εk such that
εkA < ak and then P{|Xk|> εksn} ≥ P{|Xk|> εkA}> 0. For n ≥ k, we have

1
s2

n

n∑
j=1

∫
|x|>εksn

x2fj(x)dx ≥ s2
nε

2
k

s2
n

n∑
j=1

P{|Xj|> εksn}

≥ ε2
kP{|Xk|> εksn}

> 0,

so that the Lindeberg condition does not hold. Indeed, if X1,X2, . . . are independent RVs
such that there exists a constant A with P{|Xn| ≤ A} = 1 for all n, the Lindeberg condi-
tion (2) is satisfied if s2

n →∞ as n →∞. To see this, suppose that s2
n →∞. Since the Xk’s

are uniformly bounded, so are the RVs Xk −EXk. It follows that for every ε > 0 we can
find an Nε such that, for n ≥ Nε, P{|Xk −EXk|< εsn, k = 1,2, . . . ,n}= 1. The Lindeberg
condition follows immediately. The converse also holds, for, if limn→∞ s2

n < ∞ and the
Lindeberg condition holds, there exists a constant A <∞ such that s2

n → A2. For any fixed
j, we can find an ε > 0 such that P{|Xj −μj|> εA}> 0. Then, for n ≥ j,

1
s2

n

n∑
k=1

∫
|x−μk|>εsn

(x−μk)
2fk(x)dx

≥ ε2
n∑

k=1

P{|Xk −μk|> εsn}

≥ ε2P{|Xj −μj|> εA}
> 0,

and the Lindeberg condition does not hold. This contradiction shows that s2
n →∞ is also

a necessary condition that is, for a sequence of uniformly bounded independent RVs, a
necessary and sufficient condition for the central limit theorem to hold is s2

n → ∞ as
n→∞.

Example 6. Let X1,X2, . . . be independent RVs such that αk = E|Xk|2+δ < ∞ for some
δ > 0 and α1+α2+ · · ·+αn = o(s2+δ

n ). Then the Lindeberg condition is satisfied, and the
central limit theorem holds. This result is due to Lyapunov. We have

1
s2

n

n∑
k=1

∫
|x|>εsn

x2fk(x)dx

≤ 1

εδs2+δ
n

n∑
k=1

∫ ∞

−∞
|x|2+δfk(x)dx

=

∑n
k=1αk

εδs2+δ
n

→ 0 as n →∞.

A similar argument applies in the discrete case.
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Remark 3. Both the central limit theorem (CLT) and the (weak) law of large numbers
(WLLN) hold for a large class of sequences of RVs {Xn}. If the {Xn} are independent
uniformly bounded RVs, that is, if P{|Xn| ≤ M} = 1, the WLLN (Theorem 7.3.1) holds;
the CLT holds provided that s2

n →∞ (Example 5).
If the RVs {Xn} are iid, then the CLT is a stronger result than the WLLN in that the

former provides an estimate of the probability P{|Sn −nμ|/n ≥ ε}. Indeed,

P{|Sn −nμ|> nε}= P

{
|Sn −nμ|
σ
√

n
>

ε

σ

√
n

}

≈ 1−P
{
|Z| ≤ ε

σ

√
n
}
,

where Z is N(0,1), and the law of large number follows. On the other hand, we note that
the WLLN does not require the existence of a second moment.

Remark 4. If {Xn} are independent RVs, it is quite possible that the CLT may apply to the
Xn’s, but not the WLLN.

Example 7 (Feller [25, p. 255]). Let {Xk} be independent RVs with PMF

P{Xk = kλ}= P{Xk =−kλ}= 1
2
, k = 1,2, . . . .

Then EXk = 0, var(Xk) = k2λ. Also let λ > 0, then

s2
n =

n∑
k=1

k2λ ≤
∫ n+1

0
x2λ dx =

(n+1)2λ+1

2λ+1

It follows that, if 0 < λ < 1
2 , sn/n → 0, and by Corollary 2 to Theorem 7.3.1 the WLLN

holds. Now kλ < nλ, so that the sum
∑n

k=1

∑
|xkl|>εsn

x2
klpkl will be nonzero if nλ > εsn ≈

ε[nλ+1/2/
√
(2λ+1)]. It follows that, as long as n > (2λ+1)ε−2,

1
s2

n

n∑
k=1

∑
|xkl|>εsn

x2
klpkl = 0

and the Lindeberg condition holds. Thus the CLT holds for λ > 0. This means that

P

{
a <

√
2λ+1
n2λ+1

Sn < b

}
→
∫ b

a

e−t2/2 dt√
2π

.

Thus

P

{
anλ+1/2−1

√
2λ+1

<
Sn

n
<

bnλ+1/2−1

√
2λ+1

}
→
∫ b

a

e−t2/2

√
2π

dt

and the WLLN cannot hold for λ≥ 1
2 .
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We conclude this section with some remarks concerning the application of the CLT.
Let X1,X2, . . . be iid RVs with common mean μ and variance σ2. Let us write

Zn =
Sn −nμ
σ
√

n
,

and let z1, z2 be two arbitrary real numbers with z1 < z2. If Fn is the DF of Zn, then

lim
n→∞

P{z1 < Zn ≤ z2}= lim
n→∞

[Fn(z2)−Fn(z1)]

=
1√
2π

∫ z2

z1

e−t2/2 dt,

that is,

lim
n→∞

P{z1σ
√

n+nμ < Sn ≤ z2σ
√

n+nμ}= 1√
2π

∫ z2

z1

e−t2/2 dt. (4)

It follows that the RV Sn =
∑n

k=1 Xk is asymptotically normally distributed with mean nμ
and variance nσ2. Equivalently, the RV n−1Sn is asymptotically N(μ,σ2/n). This result is
of great importance in statistics.

In Fig. 1 we show the distribution of X in sampling from P(λ) and G(1,1). We have
also superimposed, in each case, the graph of the corresponding normal approximation.

How large should n be before we apply approximation (4)? Unfortunately the answer
is not simple. Much depends on the underlying distribution, the corresponding speed of
convergence, and the accuracy one desires. There is a vast amount of literature on the
speed of convergence and error bounds. We will content ourselves with some examples.
The reader is referred to Rohatgi [90] for a detailed discussion.

In the discrete case when the underlying distribution is integer-valued, approximation
(4) is improved by applying the continuity correction. If X is integer-valued, then for
integers x1,x2

P{x1 ≤ X ≤ x2}= P{x1 −1/2 < X < x2 +1/2},

which amounts to making the discrete space of values of X continuous by considering
intervals of length 1 with midpoints at integers.

Example 8. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Then ESn = np and var(Sn) = np(1−p)
so (Sn −np)/

√
np(1−p) is approximately N(0,1).

Suppose n= 10, p= 1/2. Then from binomial tables P(X ≤ 4) = 0.3770. Using normal
approximation without continuity correction

P(X ≤ 4)≈ P

(
Z ≤ 4−5√

2.5

)
= P(Z ≤−0.63) = 0.2643.

Applying continuity correction,

P(X ≤ 4) = P(X < 4.5)≈ P(Z ≤−0.32) = 0.3745.
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Fig. 1 (a) Distribution of X for Poisson RV with mean 3 and normal approximation and (b) distri-
bution of X for exponential RV with mean 1 and normal approximation.



330 BASIC ASYMPTOTICS: LARGE SAMPLE THEORY

Next suppose that n = 100, p = 0.1. Then from binomial tables P(X = 7) = 0.0889.
Using normal approximation, without continuity correction

P(X = 7) = P(6.0 < X < 8.0)≈ P(−1.33 < Z <−0.67)

= 0.1596

and with continuity correction

P(X = 7) = P(6.5 < X < 7.5)≈ P(−1.17 < Z <−0.83)

= 0.0823

The rule of thumb is to use continuity correction, and use normal approximation whenever
np(1−p)> 10, and use Poisson approximation with λ= np for p < 0.1, λ≤ 10.

Example 9. Let X1,X2, . . . be iid P(λ) RVs. Then Sn has approximately an N(nλ,nλ) dis-
tribution for large n. Let n = 64, λ= 0.125. Then Sn ∼ P(8) and from Poisson distribution
tables P(Sn = 10) = 0.099. Using normal approximation

P(Sn = 10) = P(9.5 < Sn < 10.5)≈ P(0.53 < Z < 0.88)

= 0.1087.

If n = 96, λ= 0.125, then Sn ∼ P(12) and

P(Sn = 10) = 0.105, exact,

P(Sn = 10)≈ 0.1009, normal approximation.

PROBLEMS 7.6

1. Let {Xn} be a sequence of independent RVs with the following distributions. In each
case, does the Lindeberg condition hold?

(a) P{Xn =±(1/2n)}= 1
2 .

(b) P{Xn =±2n+1}= 1/2n+3, P{Xn = 0}= 1− (1/2n+2).

(c) P{Xn =±1}= (1−2−n)/2, P{Xn =±2−n}= 1/2n+1.

(d) {Xn} is a sequence of independent Poisson RVs with parameter λn, n = 1,2, . . . ,
such that

∑n
k=1λk →∞.

(e) P{Xn =±2n}= 1
2 .

2. Let X1,X2, . . . be iid RVs with mean 0, variance 1, and EX4
i <∞. Find the limiting

distribution of

Zn =
√

n
X1X2 +X3X4 + · · ·+X2n−1X2n

X2
1 +X2

2 + · · ·+X2
2n

.

3. Let X1,X2, . . . be iid RVs with mean α and variance σ2, and let Y1,Y2, . . . be iid
RVs with mean β (�= 0) and variance τ 2. Find the limiting distribution of Zn =√

n(Xn −α)/Yn, where Xn = n−1∑n
i=1 Xi and Yn = n−1∑n

i=1 Yi.



LARGE SAMPLE THEORY 331

4. Let X ∼ b(n,θ). Use the CLT to find n such that Pθ{X > n/2} ≥ 1−α. In particular,
let α= 0.10 and θ = 0.45. Calculate n, satisfying P{X > n/2} ≥ 0.90.

5. Let X1,X2, . . . be a sequence of iid RVs with common mean μ and variance σ2. Also,
let X = n−1∑n

k=1 Xk and S2 = (n− 1)−1∑n
i=1(Xi − X)2. Show that

√
n(X − μ)/

S
L−→ Z, where Z ∼N(0,1).

6. Let X1,X2, . . . ,X100 be iid RVs with mean 75 and variance 225. Use Chebychev’s
inequality to calculate the probability that the sample mean will not differ from the
population mean by more than 6. Then use the CLT to calculate the same probability
and compare your results.

7. Let X1,X2, . . . ,X100 be iid P(λ) RVs, where λ= 0.02. Let S = S100 =
∑100

i=1 Xi. Use
the central limit result to evaluate P{S ≥ 3} and compare your result to the exact
probability of the event S ≥ 3.

8. Let X1,X2, . . . ,X81 be iid RVs with mean 54 and variance 225. Use Chebychev’s
inequality to find the possible difference between the sample mean and the pop-
ulation mean with a probability of at least 0.75. Also use the CLT to do the
same.

9. Use the CLT applied to a Poisson RV to show that limn→∞ e−nt
∑n−1

k=1
(nt)k

k! = 1 for
0 < t < 1, = 1

2 if t = 1, and 0 if t > 1.

10. Let X1,X2, . . . be a sequence of iid RVs with mean μ and variance σ2, and assume that
EX4

1 <∞. Write Vn =
∑n

k=1(Xk −μ)2. Find the centering and norming constants An

and Bn such that B−1
n (Vn −An)

L−→ Z, where Z is N(0,1).

11. From an urn containing 10 identical balls numbered 0 through 9, n balls are drawn
with replacement.

(a) What does the law of large numbers tell you about the appearance of 0’s in the
n drawings?

(b) How many drawings must be made in order that, with probability at least 0.95,
the relative frequency of the occurrence of 0’s will be between 0.09 and 0.11?

(c) Use the CLT to find the probability that among the n numbers thus chosen
the number 5 will appear between (n − 3

√
n)/10 and (n + 3

√
n)/10 times

(inclusive) if (i) n = 25 and (ii) n = 100.

12. Let X1,X2, . . . ,Xn be iid RVs with EX1 = 0 and EX2
1 = σ2 <∞. Let X =

∑n
i=1 Xi/n,

and for any positive real number ε let Pn,ε = P{X ≥ ε}. Show that

Pn,ε ≈
σ

ε
√

n
1√
2π

e−nε2/2σ2

, as n →∞.

[Hint: Use (5.3.61).]

7.7 LARGE SAMPLE THEORY

In many applications of probability one needs the distribution of a statistic or some func-
tion of it. The methods of Section 7.3 when applicable lead to the exact distribution of the
statistic under consideration. If not, it may be sufficient to approximate this distribution
provided the sample size is large enough.
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Let {Xn} be a sequence of RVs which converges in law to N(μ,σ2). Then {(Xn−μ)/σ)}
converges in law to N(0,1), and conversely. We will say alternatively and equivalently
that {Xn} is asymptotically normal with mean μ and variance σ2. More generally, we
say that Xn is asymptotically normal with “mean” μn and “variance” σ2

n , and write Xn is
AN(μn,σ

2
n), if σn > 0 and as n →∞.

Xn −μn

σn

L−→N(0,1). (1)

Here μn is not necessarily the mean of Xn and σ2
n , not necessarily its variance. In this

case we can approximate, for sufficiently large n, P(Xn ≤ t) by P
(

Z ≤ t−μn

σn

)
, where Z is

N(0,1).
The most common method to show that Xn is AN(μn,σ

2
n) is the central limit theorem of

Section 6. Thus, according to Theorem 7.6.1
√

n(Xn −μ)
L−→N(0,σ2) as n →∞, where

Xn is the sample mean of n iid RVs with mean μ and variance σ2. The same result applies
to kth sample moment, provided E|X|2k <∞. Thus

n∑
j=1

Xk
n/n is AN

(
EXk,

var(Xk)

n

)
.

In many large sample approximations an application of the CLT along with Slutsky’s
theorem suffices.

Example 1. Let X1,X2, . . . be iid N(μ,σ2). Consider the RV

Tn =

√
n(X−μ)

S
.

The statistic Tn is well-known for its applications in statistics and in Section 6.5 we deter-
mined its exact distribution. From Example 6.3.4 (n−1)S2/n

P−→σ2 and hence S/σ
P−→1.

Since
√

n(X−μ)/σ
L−→Z ∼N(0,1), it follows from Slutsky’s theorem that Tn

L−→Z. Thus
for sufficiently large n (n ≥ 30) we can approximate P(Tn ≤ t) by P(Z ≤ t).

Actually, we do not need X’s to be normally distributed (see Problem 7.6.5).

Often we need to approximate the distribution of g(Yn) given that Yn is AN(μ,σ2).

Theorem 1 (Delta Method). Suppose Yn is AN(μ,σ2
n), with σn → 0 and μ a fixed real

number. Let g be a real-valued function which is differentiable at x = μ, with g′(μ) �= 0.
Then

g(Yn) is AN
(
g(μ), [g′(μ)]2σ2

n

)
. (2)

Proof. We first show that

[g(Yn)−g(μ)]
g′(μ)σn

− (Yn −μ)

σn

P−→0. (3)
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Set

h(x) =

{
g(x)−g(μ)

x−μ −g′(μ), x �= μ

0, x = μ.

Then h is continuous at x = μ. Since

Yn −μ= σn

[
Yn −μ

σn

]
L−→0

by Problem 7.2.7, Yn−μ
P−→0, and it follows from Theorem 7.2.4 that h(Yn)

P−→h(μ)= 0.
By Slutsky’s theorem, therefore,

h(Yn)
Yn −μ

σn

P−→0.

That is,

g(Yn)−g(μ)
σng′(μ)

− Yn −μ

σn

P−→0.

It follows again by Slutsky’s theorem that [g(Yn)−g(μ)]/[g′(μ)σn] has the same limit
law as (Yn −μ)/σn.

Example 2. We know by CLT theorem that Yn = X is AN(μ,σ2/n). Suppose g(X) =
X(1−X) where X is the sample mean in random sampling from a population with mean
μ and variance σ2. Since g′(μ) = 1− 2μ �= 0 for μ �= 1/2, it follows that for μ �= 1/2,
σ2 <∞, X(1−X) is AN(μ(1−μ),(1−2μ)2σ2/n). Thus

P(X(1−X)≤ y) = P

(
X(1−X)−μ(1−μ)

|1−2μ|σ/√n)
≤ y−μ(1−μ)

|1−2μ|σ/√n

)

≈ Φ

(
y−μ(1−μ)

|1−2μ|σ/√n

)

for large n.

Remark 1. Suppose g in Theorem 1 is differentiable k times, k≥ 1, at x=μ and g(i)(μ)= 0
for 1 ≤ i ≤ k−1, g(k)(μ) �= 0. Then a similar argument using Taylor’s theorem shows that

[g(Yn)−g(μ)]/

{
1
k!

g(k)(μ)σk
n

}
L−→Zk, (4)

where Z is a N(0,1) RV. Thus in Example 2, when μ= 1/2, g′(1/2) = 0 and g′′(1/2) =
−2 �= 0. It follows that

n[X(1−X)−1/4]
L−→−σ2χ2(1)

since Z2 d
=χ2(1).
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Remark 2. Theorem 1 can be extended to the multivariate case but we will not pursue the
development. We refer the reader to Ferguson [29] or Serfling [102].

Remark 3. In general the asymptotic variance [g′(μ)]2σ2
n of g(Yn) will depend on the

parameter μ. In problems of inference it will often be desirable to use transformation
g such that the approximate variance varg(Yn) is free of the parameter. Such transforma-
tions are called variance stabilizing transformations. Let us write σ2

n = σ2(μ)/n. Then
finding a g such that var g(Yn) is free of μ is equivalent to finding a g such that

g′(μ) = c/σ(μ)

for all μ, where c is a constant independent of μ. It follows that

g(x) = c
∫

dx
σ(x)

. (5)

Example 3. In Example 2, σ2(μ) = μ(1−μ). Suppose X1, . . . ,Xn are iid b(1,p). Then
σ2(p) = p(1−p) and (5) reduces to

g(x) = c
∫

dx√
x(1− x)

= 2arcsin
√

x.

Since g(0) = 0, g(1) = 1, c = (2/π), and g(x) = (2/π)arcsin
√

x.

Remark 4. In Section 6.3 we computed exact moments of some statistics in terms of pop-
ulation parameters. Approximations for moments of g(X) can also be obtained from series
expansions of g. Suppose g is twice differentiable at x = μ. Then

Eg(X)≈ g(μ)+E(X−μ)g′(μ)+
1
2

g′′(μ)E(X−μ)2 (6)

and

E[g(X)−g(μ)]2 ≈ [g′(μ)]2E(X−μ)2, (7)

by dropping remainder terms. The case of most interest is to approximate Eg(X) and
varg(X). In this case, under suitable conditions, one can show that

Eg(X)≈ g(μ)+
σ2

2n
g′′(μ) (8)

and

varg(X)≈ σ2

n
[g′(μ)]2, (9)

where EX = μ and var(X) = σ2.
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In Example 2, when Xi’s are iid b(1,p), and g(x) = x(1−x), g′(x) = 1−2x, g′′(x) =−2
so that

Eg(X)≈ E[X(1−X)]≈ p(1−p)+
σ2

2n
(−2)

= p(1−p)
n−1

n

and

varg(X)≈ p(1−p)
n

(1−2p)2.

In this case we can compute Eg(X) and varg(X) exactly. We have

Eg(X) = EX−EX
2
= p−

(
p(1−p)

n
+p2

)
= p(1−p)

n−1
n

so that (8) is exact. Also since Xk
i = Xi, using Theorem 6.3.4 we have

varg(X) = var(X−X
2
)

= varX−2cov(X,X
2
)+EX

4 − (EX
2
)2

=
p(1−p)

n

{
(1−2p)2 +

2p(1−p)
n−1

}(
n−1

n

)2

.

Thus the error in approximation (9) is

Error =
2p2(1−p)2

n3
(n−1).

Remark 5. Approximations (6) through (9) do not assert the existence of Eg(X) or Eg(X),
or varg(X) or varg(X).

Remark 6. It is possible to extend (6) through (9) to two (or more) variables by using
Taylor series expansion in two (or more) variables.

Finally, we state the following result which gives the asymptotic distribution of the rth
order statistic, 1 ≤ r ≤ n, in sampling from a population with an absolutely continuous DF
F with PDF f . For a proof see Problem 4.

Theorem 2. If X(r) denotes the rth order statistic of a sample X1,X2, . . . ,Xn from an
absolutely continuous DF F with PDF f , then

{
n

p(1−p)

}1/2

f (zp){X(r)− zp} L−→Z as n →∞, (10)

so that r/n remains fixed, r/n = p, where Z is N(0,1), and zp is the unique solution of
F(zp) = p (that is, zp is the population quantile of order p assumed unique).
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Remark 7. The sample quantile of order p, Zp, is

AN

(
zp,

1
[f (zp)]2

p(1−p)
n

)
,

where zp is the corresponding population quantile, and f is the PDF of the population

distribution function. It also follows that Zp
P−→zp.

PROBLEMS 7.7

1. In sampling from a distribution with mean μ and variance σ2 find the asymptotic
distribution of

(a) X
2
, (b) 1/X, (c) �n|X|2, (d) exp(X)

both when μ �= 0 and when μ= 0.

2. Let X ∼ P(λ). Then (X − λ)/
√
λ

L−→N(0,1). Find a transformation g such that
(g(X)−g(λ)) has an asymptotic N(0,c) distribution for large μ where c is a suitable
constant.

3. Let X1,X2, . . . ,Xn be a sample from an absolutely continuous DF F with PDF f .
Show that

EX(r) ≈ F−1

(
r

n+1

)
and

var(X(r))≈
r(n− r+1)

(n+1)2(n+2)
1

{f [F−1(r/n+1)]}2
.

[Hint: Let Y be an RV with mean μ and φ be a Borel function such that Eφ(Y) exists.
Expand φ(Y) about the point μ by a Taylor series expansion, and use the fact that
F(X(r)) = U(r).]

4. Prove Theorem 2. [Hint: For any real μ and σ (> 0) compute the PDF of
(U(r)−μ)/σ and show that the standardized U(r), (U(r)−μ)/σ, is asymptotically
N(0,1) under the conditions of the theorem.]

5. Let X ∼ χ2(n). Then (X − n)/
√

2n is AN(0,1) and X/n is AN
(
1, 2

n

)
. Find a

transformation g such that the distribution of g(X)−g(n) is AN(0,c).

6. Suppose X is G(1,θ). Find g such that g(X)−g(θ) is AN(0,c).

7. Let X1,X2, . . . ,Xn be iid RVs with E|X1|4 <∞. Let var(X) = σ2 and β2 = μ4/σ
4:

(a) Show, using the CLT for iid RVs, that
√

n(S2 −σ2)
L−→N(0,μ4 −σ4).

(b) Find a transformation g such that g(S2) has an asymptotic distribution which
depends on β2 alone but not on σ2.



8
PARAMETRIC POINT ESTIMATION

8.1 INTRODUCTION

In this chapter we study the theory of point estimation. Suppose, for example, that a ran-
dom variable X is known to have a normal distributionN(μ,σ2), but we do not know one of
the parameters, say μ. Suppose further that a sample X1,X2, . . . ,Xn is taken on X. The prob-
lem of point estimation is to pick a (one-dimensional) statistic T(X1,X2, . . . ,Xn) that best
estimates the parameter μ. The numerical value of T when the realization is x1,x2, . . . ,xn

is frequently called an estimate of μ, while the statistic T is called an estimator of μ. If
both μ and σ2 are unknown, we seek a joint statistic T = (U,V) as an estimator of (μ,σ2).

In Section 8.2 we formally describe the problem of parametric point estimation. Since
the class of all estimators in most problems is too large it is not possible to find the “best”
estimator in this class. One narrows the search somewhat by requiring that the estimators
have some specified desirable properties. We describe some of these and also outline some
criteria for comparing estimators.

Section 8.3 deals, in detail, with some important properties of statistics such as suffi-
ciency, completeness, and ancillarity. We use these properties in later sections to facilitate
our search for optimal estimators. Sufficiency, completeness, and ancillarity also have
applications in other branches of statistical inference such as testing of hypotheses and
nonparametric theory.

In Section 8.4 we investigate the criterion of unbiased estimation and study methods for
obtaining optimal estimators in the class of unbiased estimators. In Section 8.5 we derive
two lower bounds for variance of an unbiased estimator. These bounds can sometimes help
in obtaining the “best” unbiased estimator.

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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In Section 8.6 we describe one of the oldest methods of estimation and in Section 8.7
we study the method of maximum likelihood estimation and its large sample properties.
Section 8.8 is devoted to Bayes and minimax estimation, and Section 8.9 deals with
equivariant estimation.

8.2 PROBLEM OF POINT ESTIMATION

Let X be an RV defined on a probability space (Ω,S,P). Suppose that the DF F of X
depends on a certain number of parameters, and suppose further that the functional form of
F is known except perhaps for a finite number of these parameters. Let θ= (θ1,θ2, . . . ,θk)
be the unknown parameter associated with F.

Definition 1. The set of all admissible values of the parameters of a DF F is called the
parameter space.

Let X = (X1,X2, . . . ,Xn) be an RV with DF Fθ , where θ = (θ1,θ2, . . . ,θk) is a vector
of unknown parameters, θ ∈Θ. Let ψ be a real-valued function on Θ. In this chapter we
investigate the problem of approximating ψ(θ) on the basis of the observed value x of X.

Definition 2. LetX= (X1,X2, . . . ,Xn)∼Pθ , θ ∈Θ. A statistic δ(X) is said to be a (point)
estimator of ψ if δ : X→Θ, where X is the space of values of X.

The problem of point estimation is to find an estimator δ for the unknown parametric
function ψ(θ) that has some nice properties. The value δ(x) of δ(X) for the data x is
called the estimate of ψ(θ).

In most problems X1,X2, . . . ,Xn are iid RVs with common DF Fθ .

Example 1. Let X1,X2, . . . ,Xn be iid G(1,θ), where Θ= {θ > 0} and θ is to be estimated.
Then X = R+

n and any map δ : X→ (0,∞) is an estimator of θ. Some typical estimators
of θ are X̄ = n−1∑n

j=1 Xj and {2/[n(n+1)]}
∑n

j=1 j Xj.

Example 2. Let X1,X2, . . . ,Xn be iid b(1,p) RVs, where p ∈ [0,1]. Then X̄ is an estimator
of p and so also are δ1(X) = X1, δ2(X) = (X1 +Xn)/2, and δ3(X) =

∑n
j=1 ajXj, where

0 ≤ aj ≤ 1,
∑n

j=1 aj = 1.

It is clear that in any given problem of estimation we may have a large, often an infinite,
class of appropriate estimators to choose from. Clearly we would like the estimator δ to
be close to ψ(θ), and since δ is a statistic, the usual measure of closeness |δ(X)−ψ(θ)|
is also an RV, we interpret “δ close to ψ” to mean “close on the average.” Examples of
such measures of closeness are

Pθ{|δ(X)−ψ(θ)|< ε} (1)

for some ε > 0, and

Eθ|δ(X)−ψ(θ)|r (2)
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for some r > 0. Obviously we want (1) to be large whereas (2) to be small. For r = 2, the
quantity defined in (2) is called mean square error and we denote it by

MSEθ(δ) = Eθ{δ(X)−ψ(θ)}2. (3)

Among all estimators for ψ we would like to choose one say δ0 such that

Pθ{|δ0(X)−ψ(θ)|< ε} ≥ Pθ{|δ(X)−ψ(θ)|< ε} (4)

for all δ, all ε > 0 and all θ. In case of (2) the requirement is to choose δ0 such that

MSEθ(δ0)≤MSEθ(δ) (5)

for all δ, and all θ ∈Θ. Estimators satisfying (4) or (5) do not generally exist.
We note that

MSEθ(δ) = Eθ{δ(X)−Eθδ(X)}2 +{Eθδ(X)−ψ(θ)}2

= varθ δ(X)+{b(δ,ψ)}2, (6)

where

b(δ,ψ) = Eθδ(X)−ψ(θ) (7)

is called the bias of δ. An estimator that has small MSE has small bias and variance. In
order to control MSE, we need to control both variance and bias.

One approach is to restrict attention to estimators which have zero bias, that is,

Eθδ(X) = ψ(θ) for all θ ∈Θ. (8)

The condition of unbiasedness (8) ensures that, on the average the estimator δ has no sys-
tematic error; it neither over-nor underestimates ψ on the average. If we restrict attention
only to the class of unbiased estimators then we need to find an estimator δ0 in this class
such that δ0 has the least variance for all θ ∈ Θ. The theory of unbiased estimation is
developed in Section 8.4.

Another approach is to replace |δ−ψ|r in (2) by a more general function. Let L(θ, δ)
measure the loss in estimatingψ by δ. Assume that L, the loss function, satisfies L(θ, δ)≥ 0
for all θ and δ, and L(θ,ψ(θ)) = 0 for all θ. Measure average loss by the risk function

R(θ, δ) = EθL(θ, δ(X)). (9)

Instead of seeking an estimator which minimizes R the risk uniformly in θ, we minimize∫
R(θ, δ)π(θ) dθ (10)

for some weight function π on Θ and minimize

sup
θ∈Θ

R(θ, δ). (11)

The estimator that minimizes the average risk defined in (10) leads to the Bayes estimator
and the estimator that minimizes (11) leads to the minimax estimator. Bayes and minimax
estimation are discussed in Section 8.8.
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Sometimes there are symmetries in the problem which may be used to restrict attention
only to estimators which also exhibit the same symmetry. Consider, for example, an exper-
iment in which the length of life of a light bulb is measured. Then an estimator obtained
from the measurements expressed in hours and minutes must agree with an estimator
obtained from the measurements expressed in minutes. If X represents measurements in
original units (hours) and Y represents corresponding measurements in transformed units
(minutes) then Y = cX (here c = 60). If δ(X) is an estimator of the true mean, then we
would expect δ(Y), the estimator of the true mean to correspond to δ(X) according to the
relation δ(Y) = cδ(X). That is, δ(cX) = cδ(X), for all c > 0. This is an example of an
equivariant estimator which is the topic under extensive discussion in Section 8.9.

Finally, we consider some large sample properties of estimators. As the sample size
n → ∞, the data x are practically the whole population, and we should expect δ(X) to
approach ψ(θ) in some sense. For example, if δ(X) = X, ψ(θ) = EθX1, and X1,X2, . . . ,Xn

are iid RVs with finite mean then strong law of large numbers tells us that X → EθX1 with
probability 1. This property of a sequence of estimators is called consistency.

Definition 3. Let X1,X2, . . . be a sequence of iid RVs with common DF Fθ , θ ∈ Θ. A
sequence of point estimators Tn(X1,X2, . . . ,Xn) = Tn will be called consistent for ψ(θ) if

Tn
P−→ ψ(θ) as n →∞

for each fixed θ ∈Θ.

Remark 1. Recall that Tn
P−→ ψ(θ) if and only if P{|Tn −ψ(θ)| > ε} → 0 as n →∞ for

every ε > 0. One can similarly define strong consistency of a sequence of estimators Tn if
Tn

a.s.−−→ ψ(θ). Sometimes one speaks of consistency in the rth mean when Tn
r−→ ψ(θ).

In what follows, “consistency” will mean weak consistency of Tn for ψ(θ), that is,
Tn

P−→ ψ(θ).

It is important to remember that consistency is a large sample property. Moreover, we
speak of consistency of a sequence of estimators rather than one point estimator.

Example 3. Let X1,X2, . . . be iid b(1,p) RVs. Then EX1 = p, and it follows by the
WLLN that ∑n

1 Xi

n
P−→ p.

Thus X is consistent for p. Also (
∑n

1 Xi + 1)/(n+ 2)
P−→ p, so that a consistent estimator

need not be unique. Indeed, if Tn
P−→ p, and cn → 0 as n → ∞, then Tn + cn

P−→ p and if
dn → 1 then dnTn

p−→ p.

Theorem 1. If X1,X2 . . . are iid RVs with common law L(X), and E|X|p < ∞ for some
positive integer p, then ∑n

1 Xk
i

n
P−→ EXk for 1 ≤ k ≤ p,
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and n−1∑n
1 Xk

i is consistent for EXk, 1 ≤ k ≤ p. Moreover, if cn is any sequence of con-
stants such that cn → 0 as n → ∞, then {n−1∑Xk

i + cn} is also consistent for EXk,
1 ≤ k ≤ p. Also, if cn → 1 as n → ∞, then

{
cnn−1∑Xk

i

}
is consistent for EXk. This

is simply a restatement of the WLLN for iid RVs.

Example 4. Let X1,X2, . . . be iid N(μ,σ2) RVs. If S2 is the sample variance, we know that
(n−1)S2/σ2 ∼ χ2(n−1). Thus E(S2/σ2) = 1 and var(S2/σ2) = 2/(n−1). It follows that

P{|S2 −σ2|> ε} ≤ var(S2)

ε2
=

2σ4

(n−1)ε2
→ 0 as n →∞.

Thus S2 P−→ σ2. Actually, this result holds for any sequence of iid RVs with E|X|2 <∞ and
can be obtained from Theorem 1.

Example 4 is a particular case of the following theorem.

Theorem 2. If Tn is a sequence of estimators such that ETn → ψ(θ) and var(Tn)→ 0 as
n →∞, then Tn is consistent for ψ(θ).

Proof. We have

P{Tn −ψ(θ)|> ε} ≤ ε−2E{Tn −ETn +ETn −ψ(θ)}2

= ε−2{var(Tn)+(ETn −ψ(θ))2}→ 0 as n →∞.

Other large sample of properties of estimators are asymptotic unbiasedness, asymptotic
normality, and asymptotic efficiency. A sequence of estimators {Tn} is asymptotically
unbiased for ψ(θ) if

lim
n→∞

EθTn(X) = ψ(θ)

for all θ. A consistent sequence of estimators {Tn} is said to be consistent asymptotically
normal (CAN) for ψ(θ) if Tn ∼AN(ψ(θ),v(θ)/n) for all θ ∈Θ. If v(θ) = 1/I(θ), where
I(θ) is the Fisher information (Section 8.7), then {Tn} is known as a best asymptotically
normal (BAN) estimator.

Example 5. Let X1,X2, . . . ,Xn be iid N(θ,1) RVs. Then Tn =
∑n

i=1 Xi/(n+1) is asymp-
totically unbiased for θ and BAN estimator for θ with v(θ) = 1.

In Section 8.7 we consider large sample properties of maximum likelihood estimators
and in Section 8.5 asymptotic efficiency is introduced.

PROBLEMS 8.2

1. Suppose that Tn is a sequence of estimators for parameter θ that satisfies the condi-
tions of Theorem 2. Then Tn

2−→ θ, that is, Tn is squared error consistent for θ. If Tn

is consistent for θ and |Tn −θ| ≤ A <∞ for all θ and all (x1,x2, . . . ,xn) ∈ Rn, show
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that Tn
2−→ θ. If, however, |Tn −θ| ≤ An <∞, then show that Tn may not be squared

error consistent for θ.

2. Let X1,X2, . . . ,Xn be a sample from U[0,θ],θ ∈ Θ = (0,∞). Let X(n) = max

{X1,X2, . . . ,Xn}. Show that X(n)
P−→ θ. Write Yn = 2X. Is Yn consistent for θ?

3. Let X1,X2, . . . ,Xn be iid RVs with EXi = μ and E|Xi|2 < ∞. Show that T(X1,
X2, . . . ,Xn) = 2[n(n+1)]−1∑n

i=1 iXi is a consistent estimator for μ.

4. Let X1,X2, . . . ,Xn be a sample from U[0,θ]. Show that T(X1,X2, . . . ,Xn) =
(
∏n

i=1 Xi)
1/n is a consistent estimator for θe−1.

5. In Problem 2 show that T(X) = X(n) is asymptotically biased for θ and is not BAN.

(Show that n(θ−X(n))
L−→ G(1,θ).)

6. In Problem 5 consider the class of estimators T(X) = eX(n), c > 0. Show that the
estimator Tθ(X) = (n+2)X(n)/(n+1) in this class has the least MSE.

7. Let X1,X2, . . . ,Xn be iid with PDF fθ(x) = exp{−(x−θ)}, x > θ. Consider the class
of estimators T(X) = X(1)+b, b ∈ R. Show that the estimator that has the smallest
MSE in this class is given by T(X) = X(1)−1/n.

8.3 SUFFICIENCY, COMPLETENESS AND ANCILLARITY

After the completion of any experiment, the job of a statistician is to interpret the data she
has collected and to draw some statistically valid conclusions about the population under
investigation. The raw data by themselves, besides being costly to store, are not suitable
for this purpose. Therefore the statistician would like to condense the data by computing
some statistics from them and to base her analysis on these statistics, provided that there is
“no loss of information” in doing so. In many problems of statistical inference a function
of the observations contains as much information about the unknown parameter as do all
the observed values. The following example illustrates this point.

Example 1. Let X1,X2, . . . ,Xn be a sample from N(μ,1), where μ is unknown. Suppose
that we transform variables X1,X2, . . . ,Xn to Y1,Y2, . . . ,Yn with the help of an orthogo-
nal transformation so that Y1 is N(

√
nμ,1), Y2, . . . ,Yn are iid N(0,1), and Y1,Y2, . . . ,Yn

are independent. (Take y1 =
√

nx, and, for k = 2, . . . ,n, yk = [(k − 1)xk − (x1 + · · ·+
xk−1)]/

√
k(k−1)). To estimate μ we can use either the observed values of X1,X2, . . . ,Xn

or simply the observed value of Y1 =
√

nX. The RVs Y2,Y3, . . . ,Yn provide no information
about μ. Clearly, Y1 is preferable since one need not keep a record of all the observations;
it suffices to cumulate the observations and compute y1. Any analysis of the data based
on y1 is just as effective as any analysis that could be based on xi’s. We note that Y1 takes
values in R1 whereas (X1,X2, . . . ,Xn) takes values in Rn.

A rigorous definition of the concept involved in the above discussion requires the notion
of a conditional distribution and is beyond the scope of this book. In view of the discussion
of conditional probability distributions in Section 4.2, the following definition will suffice
for our purposes.

Definition 1. Let X = (X1,X2, . . . ,Xn) be a sample from {Fθ : θ ∈ Θ}. A statistic T =
T(X) is sufficient for θ or for the family of distributions {Fθ : θ ∈ Θ} if and only if the
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conditional distribution of X, given T = t, does not depend on θ (except perhaps for a null
set A,Pθ{T ∈ A}= 0 for all θ).

Remark 1. The outcome X1,X2, . . . ,Xn is always sufficient, but we will exclude this trivial
statistic from consideration. According to Definition 1, if T is sufficient for θ, we need
only concentrate on T since it exhausts all the information that the sample has about θ.
In practice, there will be several sufficient statistics for a family of distributions, and the
question arises as to which of these should be used in a given problem. We will return to
this topic in more detail later in this section.

Example 2. We show that the statistic Y1 in Example 1 is sufficient for μ. By construction
Y2, . . . ,Yn are iidN(0,1)RVs that are independent of Y1. Hence the conditional distribution
of Y2, . . . ,Yn, given Y1 =

√
nX, is the same as the unconditional distribution of (Y2, . . . ,Yn),

which is multivariate normal with mean (0,0, . . . ,0) and dispersion matrix In−1. Since this
distribution is independent of μ, the conditional distribution of (Y1,Y2, . . . ,Yn), and hence
(X1,X2, . . . ,Xn), given Y1 = y1, is also independent of μ and Y1 is sufficient.

Example 3. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Intuitively, if a loaded coin is tossed
with probability p of heads n times, it seems unnecessary to know which toss resulted in
a head. To estimate p, it should be sufficient to know the number of heads in n trials. We
show that this is consistent with our definition. Let T(X1,X2, . . . ,Xn) =

∑n
i=1 Xi. Then

P

{
X1 = x1, . . . ,Xn = xn

∣∣∣∣
n∑

i=1

Xi = t

}
=

P{X1 = x1, . . . ,Xn = xn,T = t}(n
t

)
pt(1−p)n−t

,

if
∑n

1 xi = t, and = 0 otherwise. Thus, for
∑n

1 xi = t, we have

P{X1 = x1, . . . ,Xn = xn | T = t}= p
∑n

1 xi(1−p)n−
∑

xi(n
t

)
pt(1−p)n−t

=
1(n
t

) ,
which is independent of p. It is therefore sufficient to concentrate on

∑n
1 Xi.

Example 4. Let X1,X2 be iid P(λ) RVs. Then X1 +X2 is sufficient for λ, for

P{X1 = x1,X2 = x2 | X1 +X2 = t}

=

⎧⎨
⎩

P{X1 = x1,X2 = t− x1}
P{X1 +X2 = t} if t = x1 + x2,xi = 0,1,2, . . . ,

0 otherwise.

Thus, for xi = 0,1,2, . . ., i = 1,2,x1 + x2 = t, we have

P{X1 = x1,X2 = x2 | X1 +X2 = t}=
(

t
x1

)(
1
2

)t

,

which is independent of λ.

Not every statistic is sufficient.
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Example 5. Let X1,X2 be iid P(λ) RVs, and consider the statistic T = X1 +2X2. We have

P{X1 = 0,X2 = 1 | X1 +2X2 = 2}= P{X1 = 0,X2 = 1}
P{X1 +2X2 = 2}

=
e−λ(λe−λ)

P{X1 = 0,X2 = 1}+P{X1 = 2,X2 = 0}

=
λe−2λ

λe−2λ+(λ2/2)e−2λ
=

1
1+(λ/2)

,

and we see that X1 +2X2 is not sufficient for λ.

Definition 1 is not a constructive definition since it requires that we first guess a statistic
T and then check to see whether T is sufficient. Moreover, the procedure for checking that
T is sufficient is quite time-consuming. We now give a criterion for determining sufficient
statistics.

Theorem 1 (The Factorization Criterion). Let X1,X2, . . . ,Xn be discrete RVs with PMF
pθ(x1,x2, . . . ,xn), θ ∈ Θ. Then T(X1,X2, . . . ,Xn) is sufficient for θ if and only if we can
write

pθ(x1,x2, . . . ,xn) = h(x1,x2, . . . ,xn) gθ(T(x1,x2, . . . ,xn)), (1)

where h is a nonnegative function of x1,x2, . . . ,xn only and does not depend on θ, and
gθ is a nonnegative nonconstant function of θ and T(x1,x2, . . . ,xn) only. The statistic
T(X1, . . . ,Xn) and parameter θ may be multidimensional.

Proof. Let T be sufficient for θ. Then P{X = x | T = t} is independent of θ, and we
may write

Pθ{X= x}= Pθ{X= x,T(X1,X2, . . . ,Xn) = t}
= Pθ{T = t}P{X= x | T = t},

provided that P{X= x | T = t} is well defined.
For values of x for which Pθ{X= x}= 0 for all θ, let us define h(x1,x2, . . . ,xn) = 0,

and for x for which Pθ{X= x}> 0 for some θ, we define

h(x1,x2, . . . ,xn) = P{X1 = x1, . . . ,Xn = xn | T = t}
and

gθ(T(x1,x2, . . . ,xn)) = Pθ{T(x1, . . . ,xn) = t}.
Thus we see that (1) holds.

Conversely, suppose that (1) holds. Then for fixed t0 we have

Pθ{T = t0}=
∑

(x : T(x)=t0)

Pθ{X= x}

=
∑

(x : T(x)=t0)

gθ(T(x))h(x)

= gθ(t0)
∑

T(x)=t0

h(x).
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Suppose that Pθ{T = t0}> 0 for some θ > 0. Then

Pθ{X= x | T = t0}=
Pθ{X= x,T(x) = t0}

Pθ{T(x) = t0}
=

⎧⎨
⎩

0 if T(x) 	= t0,
Pθ{X= x}

Pθ{T(x) = t0}
if T(x) = t0.

Thus, if T(x) = t0, then

Pθ{X= x}
Pθ{T(x) = t0}

=
gθ(t0)h(x)

gθ(t0)
∑

T(x)=t0
h(x)

,

which is free of θ, as asserted. This completes the proof.

Remark 2. Theorem 1 holds also for the continuous case and, indeed, for quite arbitrary
families of distributions. The general proof is beyond the scope of this book, and we refer
the reader to Halmos and Savage [41] or to Lehmann [64, pp. 53–56]. We will assume that
the result holds for the absolutely continuous case. We leave the reader to write the analog
of (1) and to prove it, at least under the regularity conditions assumed in Theorem 4.4.2.

Remark 3. Theorem 1 (and its analog for the continuous case) holds if θ is a vector of
parameters and T is a multiple RV, and we say that T is jointly sufficient for θ. We empha-
size that, even if θ is scalar, T may be multidimensional (Example 9). If θ and T are of
the same dimension, and if T is sufficient for θ, it does not follow that the jth component
of T is sufficient for the jth component of θ (Example 8). The converse is true under mild
conditions (see Fraser [32, p. 21]).

Remark 4. If T is sufficient for θ, any one-to-one function of T is also sufficient. This
follows from Theorem 1, if U = k(T) is a one-to-one function of T , then t = k−1(u) and
we can write

fθ(x) = gθ(t)h(x) = gθ(k
−1(u))h(x) = g∗

θ(u)h(x).

If T1,T2 are two distinct sufficient statistics, then

fθ(x) = gθ(t1)h1(x) = gθ(t2)h2(x),

and it follows that T1 is a function of T2. It does not follow, however, that every function of
a sufficient statistic is itself sufficient. For example, in sampling from a normal population,
X is sufficient for the mean μ but X

2
is not. Note that X is sufficient for μ2.

Remark 5. As a rule, Theorem 1 cannot be used to show that a given statistic T is not
sufficient. To do this, one would normally have to use the definition of sufficiency. In
most cases Theorem 1 will lead to a sufficient statistic if it exists.

Remark 6. If T(X) is sufficient for {Fθ : θ ∈ Θ}, then T is sufficient for {Fθ : θ ∈ ω},
where ω ⊆Θ. This follows trivially from the definition.
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Example 6. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Then T =
∑n

i=1 Xi is sufficient. We have

Pp{X1 = x1,X2 = x2, . . . ,Xn = xn}= p
∑n

1 xi(1−p)n−
∑n

1 xi ,

and, taking

h(x1,x2, . . . ,xn) = 1 and gp(x1,x2, . . . ,xn) = (1−p)n

(
p

1−p

)∑n
i=1 xi

,

we see that T is sufficient. We note that T1(X) = (X1,X2 +X3 + · · ·+Xn) and T2(X) =
(X1 +X2,X3,X4 +X5 + · · ·+Xn) are also sufficient for p although T is preferable to T1

or T2.

Example 7. Let X1,X2, . . . ,Xn be iid RVs with common PMF

P{Xi = k}= 1
N
, k = 1,2, . . . ,N; i = 1,2, . . . ,n.

Then

PN{X1 = k1,X2 = k2, . . . ,Xn = kn}=
1

Nn
if 1 ≤ k1, . . . ,kn ≤ N,

=
1

Nn
ϕ(1, min

1≤i≤n
ki)ϕ(max

1≤i≤n
ki,N),

where ϕ(a,b) = 1 if b ≥ a, and = 0 if b < a. It follows, by taking gN [max(k1, . . .kn)] =
(1/Nn)ϕ(max1≤i≤n ki,N) and h = ϕ(1,minki), that max(X1,X2, . . . ,Xn) is sufficient for
the family of joint PMFs PN .

Example 8. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), where both μ and σ2 are
unknown. The joint PDF of (X1,X2, . . . ,Xn) is

fμ,σ2(x) =
1

(σ
√

2π)n
exp

{
−
∑

(xi −μ)2

2σ2

}

=
1

(σ
√

2π)n
exp

(
−
∑n

1 x2
i

2σ2
+

μ
∑n

1 xi

σ2
− nμ2

2σ2

)
.

It follows that the statistic

T(X1, . . . ,Xn) =

(
n∑
1

Xi,
n∑
1

X2
i

)

is jointly sufficient for the parameter (μ,σ2). An equivalent sufficient statistic that is
frequently used is T1(X1, . . . ,Xn) = (X,S2). Note that X is not sufficient for μ if σ2

is unknown, and S2 is not sufficient for σ2 if μ is unknown. If, however, σ2 is known,
X is sufficient for μ. If μ= μ0 is known,

∑n
1(Xi −μ0)

2 is sufficient for σ2.
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Example 9. Let X1,X2, . . . ,Xn be a sample from PDF

fθ(x) =

⎧⎪⎨
⎪⎩

1
θ
, x ∈

[
−θ

2
,
θ

2

]
, θ > 0,

0, otherwise.

The joint PDF of X1,X2, . . . ,Xn is given by

fθ(x1,x2, . . . ,xn) =
1
θn

IA(x1, . . . ,xn),

where

A =

{
(x1,x2, . . . ,xn) :−

θ

2
≤minxi ≤maxxi ≤

θ

2

}
.

It follows that (X(1),X(n)) is sufficient for θ.
We note that the order statistic (X(1),X(2), . . . ,X(n)) is also sufficient. Note also that the

parameter is one-dimensional, the statistics (X(1),X(n)) is two-dimensional, whereas the
order statistic is n-dimensional.

In Example 9 we saw that order statistic is sufficient. This is not a mere coincidence.
In fact, if X = (X1,X2, . . . ,Xn) are exchangeable then the joint PDF of X is a symmetric
function of its arguments. Thus

fθ(x1,x2, . . . ,xn) = fθ(x(1),x(2), . . . ,x(n)),

and it follows that the order statistic is sufficient for fθ.
The concept of sufficiency is frequently used with another concept, called complete-

ness, which we now define.

Definition 2. Let {fθ(x),θ ∈Θ} be a family of PDFs (or PMFs). We say that this family
is complete if

Eθg(X) = 0 for all θ ∈Θ,

which implies

Pθ{g(X) = 0}= 1 for all θ ∈Θ.

Definition 3. A statistic T(X) is said to be complete if the family of distributions of T is
complete.

In Definition 3 X will usually be a multiple RV. The family of distributions of T is
obtained from the family of distributions of X1,X2, . . . ,Xn by the usual transformation
technique discussed in Section 4.4.
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Example 10. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Then T =
∑n

1 Xi is a sufficient statistic.
We show that T is also complete, that is, the family of distributions of T , {b(n,p),0 <
p<1}, is complete.

Epg(T) =
n∑

t=0

g(t)

(
n
t

)
pt(1−p)n−t = 0 for all p ∈ (0,1)

may be rewritten as

(1−p)n
n∑

t=0

g(t)

(
n
t

)(
p

1−p

)t

= 0 for all p ∈ (0,1).

This is a polynomial in p/(1−p). Hence the coefficients must vanish, and it follows that
g(t)=0 for t = 0,1,2, . . . ,n, as required.

Example 11. Let X be N(0,θ). Then the family of PDFs {N(0,θ),θ > 0} is not complete
since EX = 0 and g(x) = x is not identically 0. Note that T(X) = X2 is complete, for the
PDF of X2 ∼ θχ2(1) is given by

f (t) =

⎧⎨
⎩

e−t/2θ

√
2πθt

, t > 0,

0, otherwise.

Eθg(T) =
1√
2πθ

∫ ∞

0
g(t)t−1/2e−t/2θ dt = 0 for all θ > 0,

which holds if and only if
∫∞

0 g(t)t−1/2e−t/2θ dt = 0, and using the uniqueness property
of Laplace transforms, it follows that

g(t)t−1/2 = 0 for all t > 0,

that is, g(t) = 0.

The next example illustrates the existence of a sufficient statistic which is not complete.

Example 12. Let X1,X2, . . . ,Xn be a sample from N(θ,θ2). Then T = (
∑n

1 Xi,
∑n

1 X2
i ) is

sufficient for θ. However, T is not complete since

Eθ

⎧⎨
⎩2

(
n∑
1

Xi

)2

− (n+1)
n∑
1

X2
i

⎫⎬
⎭= 0 for all θ,

and the function g(x1, . . . ,xn) = 2(
∑n

1 xi)
2 − (n+1)

∑n
1 x2

j is not identically 0.

Example 13. Let X ∼ U(0,θ), θ ∈ (0,∞). We show that the family of PDFs of X is
complete. We need to show that

Eθg(X) =
∫ θ

0

1
θ

g(x)dx = 0 for all θ > 0
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if and only if g(x) = 0 for all x. In general, this result follows from Lebesgue integration
theory. If g is continuous, we differentiate both sides in

∫ θ

0
g(x)dx = 0

to get g(θ) = 0 for all θ > 0.
Now let X1,X2, . . . ,Xn be iid U(0,θ) RVs. Then the PDF of X(n) is given by

fn(x | θ) =
{

nθ−nxn−1, 0 < x < θ,

0, otherwise.

We see by a similar argument that X(n) is complete, which is the same as saying that
{fn(x | θ); θ > 0} is a complete family of densities. Clearly, X(n) is sufficient.

Example 14. Let X1,X2, . . . ,Xn be a sample from PMF

PN(x) =

⎧⎨
⎩

1
N
, x = 1,2, . . . ,N,

0, otherwise.

We first show that the family of PMFs {PN ,N ≥ 1} is complete. We have

ENg(X) =
1
N

N∑
k=1

g(k) = 0 for all N ≥ 1,

and this happens if and only if g(k) = 0, k = 1,2, . . . ,N. Next we consider the family of
PMFs of X(n) =max(X1, . . . ,Xn). The PMF of X(n) is given by

P(n)
N (x) =

xn

Nn
− (x−1)n

Nn
, x = 1,2, . . . ,N.

Also

ENg(X(n)) =
N∑

k=1

g(k)

[
kn

Nn
− (k−1)n

Nn

]
= 0 for all N ≥ 1.

E1g(X(n)) = g(1) = 0

implies g(1) = 0. Again,

E2g(X(n)) =
g(1)
2n

+g(2)

(
1− 1

2n

)
= 0

so that g(2) = 0.
Using an induction argument, we conclude that g(1) = g(2) = · · · = g(N) = 0 and

hence g(x) = 0. It follows that P(n)
N is a complete family of distributions, and X(n) is a

complete sufficient statistic.
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Now suppose that we exclude the value N = n0 for some fixed n0 ≥ 1 from the family
{PN : N ≥ 1}. Let us write P= {PN : N ≥ 1, N 	= n0}. Then P is not complete. We ask the
reader to show that the class of all functions g such that EPg(X) = 0 for all P ∈ P consists
of functions of the form

g(k) =

⎧⎪⎨
⎪⎩

0, k = 1,2, . . . ,n0 −1,n0 +2,n0 +3, . . . ,

c, k = n0,

−c, k = n0 +1,

where c is a constant, c 	= 0.

Remark 7. Completeness is a property of a family of distributions. In Remark 6 we saw
that if a statistic is sufficient for a class of distributions it is sufficient for any subclass of
those distributions. Completeness works in the opposite direction. Example 14 shows that
the exclusion of even one member from the family {PN : N ≥ 1} destroys completeness.

The following result covers a large class of probability distributions for which a
complete sufficient statistic exists.

Theorem 2. Let {fθ : θ ∈Θ} be a k-parameter exponential family given by

fθ(x) = exp

⎧⎨
⎩

k∑
j=1

Qj(θ)Tj(x)+D(θ)+S(x)

⎫⎬
⎭ , (2)

where θ = (θ1,θ2, . . . ,θk) ∈ Θ, an interval in Rk,T1,T2, . . . ,Tk, and S are defined on
Rn,T = (T1,T2, . . . ,Tk), and x = (x1,x2, . . . ,xn), k ≤ n. Let Q = (Q1,Q2, . . . ,Qk), and
suppose that the range of Q contains an open set in Rk. Then

T= (T1(X),T2(X), . . . ,Tk(X))

is a complete sufficient statistic.

Proof. For a complete proof in a general setting we refer the reader to Lehmann [64,
pp. 142–143]. Essentially, the unicity of the Laplace transform is used on the probability
distribution induced by T. We will content ourselves here by proving the result for the
k = 1 case when fθ is a PMF.

Let us write Q(θ) = θ in (2), and let (α,β)⊆Θ. We wish to show that

Eθg(T(X)) =
∑

t

g(t)Pθ{T(X) = t}

=
∑

t

g(t)exp{θt+D(θ)+S∗(t)}= 0 for all θ (3)

implies that g(t) = 0.
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Let us write x+ = x if x ≥ 0, = 0 if x < 0, and x− = −x if x < 0, = 0 if x ≥ 0. Then
g(t) = g+(t)−g−(t), and both g+ and g− are nonnegative functions. In terms of g+ and
g−, (3) is the same as ∑

t

g+(t)eθt+S∗(t) =
∑

t

g−(t)eθt+S∗(t) (4)

for all θ.
Let θ0 ∈ (α,β) be fixed, and write

p+(t) =
g+(t)eθ0t+S∗(t)∑
t g+(t)eθ0t+S∗(t)

and p−(t) =
g−(t)eθ0t+S∗(t)∑
t g−(t)eθ0t+S∗(t)

(5)

Then both p+ and p− are PMFs, and it follows from (4) that∑
t

eδtp+(t) =
∑

t

eδtp−(t) (6)

for all δ ∈ (α−θ0,β−θ0). By the uniqueness of MGFs (6) implies that

p+(t) = p−(t) for all t

and hence that g+(t) = g−(t) for all t, which is equivalent to g(t) = 0 for all t. Since T is
clearly sufficient (by the factorization criterion), it is proved that T is a complete sufficient
statistic.

Example 15. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs where both μ and σ2 are unknown.
We know that the family of distributions of X= (X1, . . . ,Xn) is a two-parameter exponen-
tial family with T(X1, . . . ,Xn) = (

∑n
1 Xi,
∑n

1 X2
i ). From Theorem 2 it follows that T is a

complete sufficient statistic. Examples 10 and 11 fall in the domain of Theorem 2.

In Example 6, 8, and 9 we have shown that a given family of probability dis-
tributions that admits a nontrivial sufficient statistic usually admits several sufficient
statistics. Clearly we would like to be able to choose the sufficient statistic that results
in the greatest reduction of data collection. We next study the notion of a mini-
mal sufficient statistic. For this purpose it is convenient to introduce the notion of
a sufficient partition. The reader will recall that a partition of a space X is just a
collection of disjoint sets Eα such that

∑
α Eα = X. Any statistic T(X1,X2, . . . ,Xn)

induces a partition of the space of values of (X1,X2, . . . ,Xn), that is, T induces
a covering of X by a family U of disjoint sets At = {(x1,x2, . . . ,xn) ∈ X : T(x1,
x2, . . . ,xn) = t}, where t belongs to the range of T . The sets At are called partition sets.
Conversely, given a partition, any assignment of a number to each set so that no two par-
tition sets have the same number assigned defines a statistic. Clearly this function is not,
in general, unique.

Definition 4. Let {Fθ : θ ∈ Θ} be a family of DFs, and X = (X1,X2, . . . ,Xn) be a
sample from Fθ. Let U be a partition of the sample space induced by a statistic
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T = T(X1,X2, . . . ,Xn). We say that U = {At : t is in the range of T} is a sufficient parti-
tion for θ (or the family {Fθ : θ ∈ Θ}) if the conditional distribution of X, given T = t,
does not depend on θ for any At, provided that the conditional probability is well defined.

Example 16. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. The sample space of values of (X1,
X2, . . . ,Xn) is the set of n-tuples (x1,x2, . . . ,xn), where each xi = 0 or = 1 and consists of
2n points. Let T(X1,X2, . . . ,Xn) =

∑n
1 Xi, and consider the partition U= {A0,A1, . . . ,An},

where x ∈ Aj if and only if
∑n

1 xi = j, 0 ≤ j ≤ n. Each Aj contains
(n

j

)
sample points. The

conditional probability

Pp{x | Aj}=
Pp{x}
Pp(Aj)

=

(
n
j

)−1

if x ∈ Aj,

and we see that U is a sufficient partition.

Example 17. Let X1,X2, . . . ,Xn be iid U[0,θ] RVs. Consider the statistic T(X) =
max1≤i≤n Xi. The space of values of X1,X2, . . . ,Xn is the set of points {x : 0 ≤ xi ≤ θ,
i = 1,2, . . . ,n}. T induces a partition U on this set. The sets of this partition are At = {(x1,
x2, . . . ,xn) : max(x1, . . . ,xn) = t}, t ∈ [0,θ].

We have

fθ(x | t) =
fθ(x)

f T
θ (t)

if x ∈ At,

where f T
θ (t) is the PDF of T . We have

fθ(x | t) =
1/θn

ntn−1/θn
=

1
ntn−1

if x ∈ At.

It follows that U= {At} defines a sufficient partition.

Remark 8. Clearly a sufficient statistic T for a family of DFs {Fθ : θ ∈ Θ} induces a
sufficient partition and, conversely, given a sufficient partition, we can define a sufficient
statistic (not necessarily uniquely) for the family.

Remark 9. Two statistics T1,T2 that define the same partition must be in one-to-one cor-
respondence, that is, there exists a function h such that T1 = h(T2) with a unique inverse,
T2 = h−1(T1). It follows that if T1 is sufficient every one-to-one function of T1 is also
sufficient.

Let U1,U2 be two partitions of a space X. We say that U1 is a subpartition of U2 if every
partition set in U2 is a union of sets of U1. We sometimes say also that U1 is finer than
U2 (U2 is coarser than U1) or that U2 is a reduction of U1. In this case, a statistic T2 that
defines U2 must be a function of any statistic T1 that defines U1. Clearly, this function need
not have a unique inverse unless the two partitions have exactly the same partition sets.

Given a family of distributions {Fθ : θ ∈Θ} for which a sufficient partition exists, we
seek to find a sufficient partition U that is as coarse as possible, that is, any reduction of U
leads to a partition that is not sufficient.
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Definition 5. A partition U is said to be minimal sufficient if

(i) U is a sufficient partition, and

(ii) if C is any sufficient partition, C is a subpartition of U.

The question of the existence of the minimal partition was settled by Lehmann and
Scheffé [65] and, in general, involves measure-theoretic considerations. However, in the
cases that we consider where the sample space is either discrete or a finite-dimensional
Euclidean space and the family of distributions ofX is defined by a family of PDFs (PMFs)
{fθ,θ ∈Θ} such difficulties do not arise. The construction may be described as follows.

Two points x and y in the sample space are said to be likelihood equivalent, and we
write x∼ y, if and only if there exists a k(y,x) 	= 0 which does not depend on θ such that
fθ(y) = k(y,x)fθ(x). We leave the reader to check that “∼” is an equivalence relation
(that is, it is reflexive, symmetric, and transitive) and hence “∼” defines a partition of the
sample space. This partition defines the minimal sufficient partition.

Example 18. Consider again Example 16. Then

fp(x)
fp(y)

= p
∑

xi−
∑

yi(1−p)−
∑

xi+
∑

yi ,

and this ratio is independent of p if and only if

n∑
1

xi =

n∑
1

yi,

so that x∼y if and only if
∑n

1 xi =
∑n

1 yi. It follows that the partitionU= {A0,A1, . . . ,An},
where x ∈ Aj if and only if

∑n
1 xi = j, introduced in Example 16 is minimal sufficient.

A rigorous proof of the above assertion is beyond the scope of this book. The basic
ideas are outlined in the following theorem.

Theorem 3. The relation “∼” defined above induces a minimal sufficient partition.

Proof. If T is a sufficient statistic, we have to show that x ∼ y whenever T(x) = T(y).
This will imply that every set of the minimal sufficient partition is a union of sets of the
form At = {T = t}, proving condition (ii) of Definition 5.

Sufficiency of T means that whenever x ∈ At, then

fθ{x | T = t}= fθ(x)

f T
θ (t)

if x ∈ At

is free of θ. It follows that if both x and y ∈ At, then

fθ(x | t)
fθ(y | t)

=
fθ(x)
fθ(y)

is independent of θ, and hence x∼ y.
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To prove the sufficiency of the minimal sufficient partition U, let T1 be an RV that
induces U. Then T1 takes on distinct values over distinct sets of U but remains constant on
the same set. If x ∈ {T1 = t1}, then

fθ(x | T1 = t1) =
fθ(x)

Pθ{T1 = t1}
. (7)

Now

Pθ{T1 = t1}=
∫
(y:T1(y)=t1)

fθ(y)dy or
∑

(y:T1(y)=t1)

fθ(y),

depending on whether the joint distribution ofX is absolutely continuous or discrete. Since
fθ(x)/fθ(y) is independent of θ whenever x∼ y, it follows that the ratio on the right-hand
side of (7) does not depend on θ. Thus T1 is sufficient.

Definition 6. A statistic that induces the minimal sufficient partition is called a minimal
sufficient statistic.

In view of Theorem 3 a minimal sufficient statistic is a function of every sufficient
statistic. It follows that if T1 and T2 are both minimal sufficient, then both must induce the
same minimal sufficient partition and hence T1 and T2 must be equivalent in the sense that
each must be a function of the other (with probability 1).

How does one show that a statistic T is not sufficient for a family of distributions P?
Other than using the definition of sufficiency one can sometimes use a result of Lehmann
and Scheffé [65] according to which if T1(X) is sufficient for θ, θ ∈Θ, then T2(X) is also
sufficient if and only if T1(X) = g(T2(X)) for some Borel-measurable function g and all
x ∈ B, where B is a Borel set with PθB = 1.

Another way to prove T nonsufficient is to show that there exist x for which T(x) =
T(y) but x and y are not likelihood equivalent. We refer to Sampson and Spencer [98] for
this and other similar results.

The following important result will be proved in the next section.

Theorem 4. A complete sufficient statistic is minimal sufficient.

We emphasize that the converse is not true. A minimal sufficient statistic may not be
complete.

Example 19. Suppose X ∼ U(θ,θ+1). Then X is a minimal sufficient statistic. However,
X is not complete. Take for example g(x) = sin2πx. Then

Eg(X) =
∫ θ+1

θ

sin2πx dx =
∫ 1

0
sin2πx dx = 0.

for all θ and it follows that X is not complete.
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If X1,X2, . . . ,Xn is a sample from U(θ,θ+1), then (X(1),X(n)) is minimal sufficient for
θ but not complete since

Eθ(X(n)−X(1)) =
n−1
n+1

for all θ.

Finally, we consider statistics that have distributions free of the parameter(s) θ and
seem to contain no information about θ. We will see (Example 23) that such statistics can
sometimes provide useful information about θ.

Definition 7. A statistic A(x) is said to be ancillary if its distribution does not depend on
the underlying model parameter θ.

Example 20. Let X1,X2, . . . ,Xn be a random sample from N(μ,1). Then the statistic
A(X) = (n− 1)S2 =

∑n
i=1(Xi − X)2 is ancillary since (n− 1)S2 ∼ χ2(n− 1) which is

free of μ. Some other ancillary statistics are

X1 −X,X(n)−X(1),

n∑
i=1

|Xi −X|.

Also, X, a complete sufficient statistic (hence minimal sufficient) for μ is independent
of A(X).

Example 21. Let X1,X2, . . . ,Xn be a random sample from N(0,σ2). Then, A(X) = X
follows a N(0,n−1σ2) and not ancillary with respect to the parameter σ2.

Example 22. Let X(1),X(2), . . . ,X(n) be the order statistics of a random sample from the
PDF f (x − θ), where θ ∈ R. Then the statistic A(X) = (X(2) − X(1), . . .X(n) − X(1)) is
ancillary for θ.

In Example 20 we saw that S2 was independent of the minimal sufficient statistic X.
The following result due to Basu shows that it is not a mere coincidence.

Theorem 5. If S(X) is a complete sufficient statistic for θ, then any ancillary statistic
A(X) is independent of S.

Proof. If A is ancillary, then Pθ{A(X)≤ a} is free of θ for all a. Consider the conditional
probability ga(s) = P{A(X)≤ a | S(X) = s}. Clearly

Eθ

{
ga(S(X))

}
= Pθ{A(X)≤ a}.

Thus

Eθ(ga(S)−P{A(X)≤ a}) = 0
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for all θ. By completeness of S it follows that

Pθ{ga(S)−P{A ≤ a}= 0}= 1,

that is ,

Pθ {A(X)≤ a | S(X) = s}= P{A(X)≤ a},

with probability 1. Hence A and S are independent.

The converse of Basu’s Theorem is not true. A statistic S that is independent of every
ancillary statistic need not be complete (see, for example, Lehmann [62]).

The following example due to R.A. Fisher shows that if there is no sufficient statis-
tic for θ, but there exists a reasonable statistic not independent of an ancillary statistic
A(X), then the recovery of information is sometimes helped by the ancillary statistic via
a conditional analysis. Unfortunately, the lack of uniqueness of ancillary statistics creates
problems with this conditional analysis.

Example 23. Let X1,X2, . . . ,Xn be a random sample from an exponential distribution with
mean θ, and let Y1,Y2, . . . ,Yn be another random sample from an exponential distribution
and mean 1/θ. Assume X’s and Y’s are independent and consider the problem of estimation
of θ based on the observations (X1,X2, . . . ,Xn; Y1,Y2, . . . ,Yn). Let S1(x) =

∑n
i=1 xi and

S2(y) =
∑n

i=1 yi. Then
(
S1(X),S2(Y)

)
is jointly sufficient for θ. It is easily seen that

(S1,S2) is a minimal sufficient statistic for θ.
Consider the statistics

S(X,Y) =
(
S1(X)/S2(Y)

)1/2

and

A(X,Y) = S1(X)S2(Y).

Then the joint PDF of S and A is given by

2
[Γ(n)]2

exp

{
−A(x,y)

(
S(x,y)

θ
+

θ

S(x,y)

)}
[A(x,y)]
S(x,y)

2n−1

,

and it is clear that S and A are not independent. The marginal distribution of A is given by
the PDF

C(x,y)[A(x,y)]2n−1,

where C(x,y) is the constant of integration which depends only on x,y, and n but not
on θ. In fact, C(x,y) = 4K0[2A(x,y)]/[Γ(n)]2, where K0 is the standard form of a Bessel
function (Watson [116]). Consequently A is ancillary for θ.
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Clearly, the conditional PDF of S given A = a is of the form

1
2K0[2a]S(x,y)

exp

{
−a

(
S(x,y)

θ
+

θ

S(x,y)

)}
.

The amount of information lost by using S(X,Y) alone is ( 1
2n+1 )th part of the total and

this loss of information is gained by the knowledge of the ancillary statistic A(X,Y).
These calculations will be discussed in Example 8.5.9.

PROBLEMS 8.3

1. Find a sufficient statistic in each of the following cases based on a random sample
of size n:

(a) X ∼ B(α,β) when (i) α is unknown, β known; (ii) β; is unknown, α known; and
(iii) α,β are both unknown.

(b) X ∼ G(α,β) when (i) α is unknown, β known; (ii) β is unknown, α known; and
(iii) α,β are both unknown.

(c) X ∼ PN1,N2(x), where

PN1,N2(x) =
1

N2 −N1
, x = N1 +1,N1 +2, . . . ,N2,

and N1,N2(N1 < N2) are integers, when (i) N1 is known, N2 unknown; (ii) N2

known, N1 unknown; and (iii) N1,N2 are both unknown.

(d) X ∼ fθ(x), where

fθ(x) =

{
e−x+θ if < x <∞,

0 otherwise.

(e) X ∼ f (x;μ,σ), where

f (x;μ,σ) =
1

xσ
√

2π
exp

{
− 1

2σ2
(logx−μ)2

}
,x > 0

(f) X ∼ fθ(x), where

fθ(x) = Pθ{X = x}= c(θ)2−x/θ, x = θ,θ+1, . . . , θ > 0

and

c(θ) = 21−1/θ(21/θ−1).

(g) X ∼ Pθ,p(x), where

Pθ,p(x) = (1−p)px−θ, x = θ,θ+1, . . . , 0 < p < 1,
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when (i) p is known, θ unknown; (ii) p is unknown, θ known; and ( iii) p, θ are
both unknown.

2. Let X = (X1,X2, . . . ,Xn) be a sample from N(ασ,σ2), where α is a known real
number. Show that the statistic T(X) = (

∑n
i=1 Xi,

∑n
i=1 X2

i ) is sufficient for σ but
that the family of distributions of T(X) is not complete.

3. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2). Then X = (X1,X2, . . . ,Xn) is clearly
sufficient for the family N(μ,σ2),μ ∈ R,σ > 0. Is the family of distributions of X
complete?

4. Let X1,X2, . . . ,Xn be a sample from U(θ− 1
2 ,θ+

1
2 ), θ ∈ R. Show that the statistic

T(X1, . . . ,Xn) = (minXi,maxXi) is sufficient for θ but not complete.

5. If T = g(U) and T is sufficient, then so also is U.

6. In Example 14 show that the class of all functions g for which EPg(X) = 0 for all
P ∈ P consists of functions of the form

g(k) =

⎧⎪⎨
⎪⎩

0, k = 1,2, . . . ,n0 −1, n0 +2, n0 +3, . . . ,

c, k = n0,

−c, k = n0 +1,

where c is a constant.

7. For the class {Fθ1 ,Fθ2} of two DFs where Fθ1 is N(0,1) and Fθ1 is C(1,0), find a
sufficient statistic.

8. Consider the class of hypergeometric probability distributions {PD : D =
0, 1,2, . . . ,N}, where

PD{X = x}=
(

N
n

)−1(D
x

)(
N −D
n− x

)
, x = 0,1, . . . ,min{n,D}.

Show that it is a complete class. IfP= {PD :D= 0,1,2, . . . ,N, D 	= d, d integral 0≤
d ≤ N}, is P complete?

9. Is the family of distributions of the order statistic in sampling from a Poisson
distribution complete?

10. Let (X1,X2, . . . ,Xn) be a random vector of the discrete type. Is the statistic
T(X1, . . . ,Xn) = (X1, . . . ,Xn−1) sufficient?

11. Let X1,X2, . . . ,Xn be a random sample from a population with law L(X). Find a
minimal sufficient statistic in each of the following cases:

(a) X ∼ P(λ).

(b) X ∼ U[0,θ].

(c) X ∼ NB(1;p).

(d) X ∼ PN , where PN{X = k}= 1/N if k = 1,2, . . . ,N, and = 0 otherwise.

(e) X ∼N(μ,σ2).

(f) X ∼ G(α,β).

(g) X ∼ B(α,β).

(h) X ∼ fθ(x), where fθ(x) = (2/θ2)(θ− x), 0 < x < θ.
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12. Let X1,X2 be a sample of size 2 from P(λ). Show that the statistic X1 +αX2, where
α > 1 is an integer, is not sufficient for λ.

13. Let X1,X2, . . . ,Xn be a sample from the PDF

fθ(x) =

{
x
θ e−x2/2θ if x > 0

0 if x ≤ 0
θ > 0.

Show that
∑n

i=1 X2
i is a minimal sufficient statistic for θ, but

∑n
i=1 Xi is not sufficient.

14. Let X1,X2, . . . ,Xn be a sample from N(0,σ2). Show that
∑n

i=1 X2
i is a minimal

sufficient statistic but
∑n

i=1 Xi is not sufficient for σ2.

15. Let X1,X2, . . . ,Xn be a sample from PDF fα,β(x) = βe−β(x−α) if x > α, and = 0 if
x ≤ α. Find a minimal sufficient statistic for (α,β).

16. Let T be a minimal sufficient statistic. Show that a necessary condition for a
sufficient statistic U to be complete is that U be minimal.

17. Let X1,X2, . . . ,Xn be iidN(μ,σ2). Show that (X̄,S2) is independent of each of (X(n)−
X(1))/S,(X(n)− X̄)/S, and

∑n−1
i=1 (Xi+1 −Xi)

2/S2.

18. Let X1,X2, . . . ,Xn be iid N(θ,1). Show that a necessary and sufficient condition for∑n
i=1 aiXi and

∑n
i=1 Xi to be independent is

∑n
i=1 ai = 0.

19. Let X1,X2, . . . ,Xn be a random sample from fθ(x) = exp{−(x− θ)}, x > θ. Show
that X(1) is a complete sufficient statistic which is independent of S2.

20. Let X1,X2, . . . ,Xn be iid RVs with common PDF fθ(x) = (1/θ)exp(−x/θ),
x > 0, θ > 0. Show that X must be independent of every scale-invariant statistic
such as X1/

∑n
j=1 Xj.

21. Let T1,T2 be two statistics with common domain D. Then T1 is a function of T2 if
and only if

for all x,y ∈ D, T1(x) = T1(y) =⇒ T2(x) = T2(y).

22. Let S be the support of fθ, θ ∈Θ and let T be a statistic such that for some θ1,θ2 ∈Θ,
and x,y ∈ S, x 	= y, T(x) = T(y) but fθ1(x)fθ2(y) 	= fθ2(x)fθ1(y). Then show that T is
not sufficient for θ.

23. Let X1,X2, . . . ,Xn be iid N(θ,1). Use the result in Problem 22 to show that
(∑n

1 Xi
)2

is not sufficient for θ.

24. (a) If T is complete then show that any one-to-one mapping of T is also complete.

(b) Show with the help of an example that a complete statistic is not unique for a
family of distributions.

8.4 UNBIASED ESTIMATION

In this section we focus attention on the class of unbiased estimators. We develop a
criterion to check if an unbiased estimator is optimal in this class. Using sufficiency
and completeness, we describe a method of constructing uniformly minimum variance
unbiased estimators.
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Definition 1. Let {Fθ, θ ∈ Θ}, Θ ⊆ Rk, be a nonempty set of probability distributions.
Let X= (X1,X2, . . . ,Xn) be a multiple RV with DF Fθ and sample space X. Let ψ : Θ→R

be a real-valued parametric function. A Borel-measurable function T : X→ Θ is said to
be unbiased for ψ if

EθT(X) = ψ(θ) for all θ ∈Θ. (1)

Any parametric function ψ for which there exists a T satisfying (1) is called an
estimable function. An estimator that is not unbiased is called biased, and the function
b(T,ψ), defined by

b(T,ψ) = EθT(X)−ψ(θ), (2)

is called the bias of T .

Remark 1. Definition 1, in particular, requires that Eθ|T| <∞ for all θ ∈ Θ and can be
extended to the case when both ψ and T are multidimensional. In most applications we
consider Θ⊆ R1, ψ(θ) = θ, and X1,X2, . . . ,Xn are iid RVs.

Example 1. Let X1,X2, . . . ,Xn be a random sample from some population with finite
mean. Then X is unbiased for the population mean. If the population variance is finite, the
sample variance S2 is unbiased for the population variance. In general, if the kth population
moment mk exists, the kth sample moment is unbiased for mk.

Note that S is not, in general, unbiased for σ. If X1,X2, . . . ,Xn are iid N(μ,σ2) RVs we
know that (n−1)S2/σ2 is χ2(n−1). Therefore,

E(S
√

n−1/σ) =
∫ ∞

0

√
x

1
2(n−1)/2Γ[(n−1)/2]

x(n−1)/2−1e−x/2 dx

=
√

2Γ
(n

2

)[
Γ

(
n−1

2

)]−1

,

Eσ(S) = σ

{√
2

n−1
Γ
(n

2

)[
Γ

(
n−1

2

)]−1
}
.

The bias of S is given by

b(S,σ) = σ

{√
2

n−1
Γ
(n

2

)[
Γ

(
n−1

2

)]−1

−1

}
.

We note that b(s,σ)→ 0 as n →∞ so that S is asymptotically unbiased for σ.

If T is unbiased for θ, g(T) is not, in general, an unbiased estimator of g(θ) unless g is
a linear function.

Example 2. Unbiased estimators do not always exist. Consider an RV with PMF b(1,p).
Suppose that we wish to estimate ψ(p) = p2. Then, in order that T be unbiased for p2, we
must have

p2 = EpT = pT(1)+(1−p)T(0), 0 ≤ p ≤ 1,
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that is,

p2 = p{T(1)−T(0)}+T(0)

must hold for all p in the interval [0,1], which is impossible. (If a convergent power series
vanishes in an open interval, each of the coefficients must be 0. See also Problem 1.)

Example 3. Sometimes an unbiased estimator may be absurd. Let X be P(λ), and
ψ(λ) = e−3λ. We show that T(X) = (−2)X is unbiased for ψ(λ). We have

EλT(X) = e−λ
∞∑

x=0

(−2)x λ
x

x!
= e−λ

∞∑
x=0

(−2λ)x

x!
= e−λe−2λ = ψ(λ).

However, T(x)= (−2)x > 0 if x is even, and< 0 if x is odd, which is absurd sinceψ(λ)> 0.

Example 4. Let X1,X2, . . . ,Xn be a sample from P(λ). Then X is unbiased for λ and so
also is S2, since both the mean and the variance are equal to λ. Indeed, αX +(1−α)S2,
0 ≤ α≤ 1, is unbiased for λ.

Let θ be estimable, and let T be an unbiased estimator of θ. Let T1 be another unbiased
estimator of θ, different from T . This means that there exists at least one θ such that Pθ{T 	=
T1} > 0. In this case there exist infinitely many unbiased estimators of θ of the form
αT +(1−α)T1, 0 < α < 1. It is therefore desirable to find a procedure to differentiate
among these estimators.

Definition 2. Let θ0 ∈ Θ and U(θ0) be the class of all unbiased estimators T of θ0 such
that Eθ0 T2 <∞. Then T0 ∈U(θ0) is called a locally minimum variance unbiased estimator
(LMVUE) at θ0 if

Eθ0(T0 −θ0)
2 ≤ Eθ0(T −θ0)

2 (3)

holds for all T ∈ U(θ0).

Definition 3. Let U be the set of all unbiased estimators T of θ ∈Θ such that EθT2 <∞
for all θ ∈ Θ. An estimator T0 ∈ U is called a uniformly minimum variance unbiased
estimator (UMVUE) of θ if

Eθ(T0 −θ)2 ≤ Eθ(T −θ)2 (4)

for all θ ∈Θ and every T ∈ U.

Remark 2. Let a1,a2, . . . ,an be any set of real numbers with
∑n

i=1 ai = 1. Let
X1,X2, . . . ,Xn be independent RVs with common mean μ and variances σ2

k , k = 1,2, . . . ,n.
Then T =

∑n
i=1 aiXi is an unbiased estimator of μ with variance

∑n
i=1 a2

i σ
2
i (see

Theorem 4.5.6). T is called a linear unbiased estimator of μ. Linear unbiased estimators
of μ that have minimum variance (among all linear unbiased estimators) are called best
linear unbiased estimators (BLUEs). In Theorem 4.5.6 (Corollary 2) we have shown that,
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if Xi are iid RVs with common variance σ2, the BLUE of μ is X = n−1∑n
i=1 Xi. If Xi are

independent with common mean μ but different variance σ2
i , the BLUE of μ is obtained

if we choose ai proportional to 1/σ2
i , then the minimum variance is H/n, where H is the

harmonic mean of σ2
1 , . . . ,σ

2
n (see Example 4.5.4).

Remark 3. Sometimes the precision of an estimator T of parameter θ is measured by the
so-called mean square error (MSE). We say that an estimator T0 is at least as good as any
other estimator T in the sense of the MSE if

Eθ(T0 −θ)2 ≤ Eθ(T −θ)2 for all θ ∈Θ. (5)

In general, a particular estimator will be better than another for some values of θ and worse
for others. Definitions 2 and 3 are special cases of this concept if we restrict attention only
to unbiased estimators.

The following result gives a necessary and sufficient condition for an unbiased
estimator to be a UMVUE.

Theorem 1. Let U be the class of all unbiased estimators T of a parameter θ ∈ Θ with
EθT2 <∞ for all θ, and suppose that U is nonempty. Let U0 be the class of all unbiased
estimators v of 0, that is,

U0 = {v : Eθv = 0, Eθv2 <∞ for all θ ∈Θ}.

Then T0 ∈ U is a UMVUE if and only if

Eθ(vT0) = 0 for all θ and all v ∈ U0. (6)

Proof. The conditions of the theorem guarantee the existence of Eθ(vT0) for all θ and
v ∈ U0. Suppose that T0 ∈ U is a UMVUE and Eθ0(v0T0) 	= 0 for some θ0 and some
v0 ∈ U0. Then T0 + λv0 ∈ U for all real λ. If Eθ0 v2

0 = 0, then Eθ0(v0T0) = 0 must hold
since Pθ0{v0 = 0}= 1. Let Eθ0 v2

0 > 0. Choose λ0 =−Eθ0(T0v0)/Eθ0 v2
0. Then

Eθ0(T0 +λ0v0)
2 = Eθ0 T2

0 −
E2
θ0
(v0T0)

Eθ0 v2
0

< Eθ0 T2
0 . (7)

Since T0 +λ0v0 ∈ U and T0 ∈ U, it follows from (7) that

varθ0(T0 +λ0v0)< varθ0(T0), (8)

which is a contradiction. It follows that (6) holds.
Conversely, let (6) hold for some T0 ∈U, all θ ∈Θ and all v ∈U0, and let T ∈U. Then

T0 −T ∈ U0, and for every θ

Eθ{T0(T0 −T)}= 0.
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We have

EθT2
0 = Eθ(TT0)≤ (EθT2

0 )
1/2(EθT2)1/2

by the Cauchy–Schwarz inequality. If EθT2
0 = 0, then P(T0 = 0) = 1 and there is nothing

to prove. Otherwise

(EθT2
0 )

1/2 ≤ (EθT2)1/2

or varθ(T0)≤ varθ(T). Since T is arbitrary, the proof is complete.

Theorem 2. Let U be the nonempty class of unbiased estimators as defined in Theorem 1.
Then there exists at most one UMVUE for θ.

Proof. If T and T0 ∈ U are both UMVUEs, then T −T0 ∈ U0 and

Eθ{T0(T −T0)}= 0 for all θ ∈Θ,

that is, EθT2
0 = Eθ(TT0), and it follows that

cov(T,T0) = varθ(T0) for all θ.

Since T0 and T are both UMVUEs varθ(T) = varθ(T0), and it follows that the correlation
coefficient between T and T0 is 1. This implies that Pθ{aT +bT0 = 0}= 1 for some a, b
and all θ ∈ Θ. Since T and T0 are both unbiased for θ, we must have Pθ{T = T0} = 1
for all θ.

Remark 4. Both Theorems 1 and 2 have analogs for LMVUE’s at θ0 ∈Θ, θ0 fixed.

Theorem 3. If UMVUEs Ti exist for real functions ψi, i = 1,2, of θ, they also exist for
λψi (λ real), as well as for ψ1 +ψ2, and are given by λTi and T1 +T2, respectively.

Theorem 4. Let {Tn} be a sequence of UMVUEs and T be a statistic with EθT2 < ∞
such that Eθ{Tn −T}2 → 0 as n →∞ for all θ ∈Θ. Then T is also the UMVUE.

Proof. That T is unbiased follows from |EθT −θ| ≤ Eθ|T −Tn| ≤ E1/2
0 {Tn −T}2. For all

v ∈ U0, all θ, and every n = 1,2, . . . ,

Eθ(Tnv) = 0

by Theorem 1. Therefore,

Eθ(vT) = Eθ(vT)−Eθ(vTn)

= Eθ[v(T −Tn)]

and

|Eθ(vT)| ≤ (Eθv2)1/2[Eθ(T −Tn)
2]1/2 → 0 as n →∞
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for all θ and all v ∈ U. Thus

Eθ(vT) = 0 for all v ∈ U0, all θ ∈Θ,

and, by Theorem 1, T must be the UMVUE.

Example 5. Let X1,X2, . . . ,Xn be iid P(λ). Then X is the UMVUE of λ. Surely X is unbi-
ased. Let g be an unbiased estimator of 0. Then T(X) = X +g(X) is unbiased for θ. But
X is complete. It follows that

Eλg(X) = 0 for all λ > 0 ⇒ g(x) = 0 for x = 0,1,2, . . . .

Hence X must be the UMVUE of λ.

Example 6. Sometimes an estimator with larger variance may be preferable.
Let X be a G(1,1/β) RV. X is usually taken as a good model to describe the time to

failure of a piece of equipment. Let X1,X2, . . . ,Xn be a sample of n observations on X. Then
X is unbiased for EX = 1/β with variance 1/(nβ2). (X is actually the UMVUE for 1/β.)
Now consider X(n) = min(X1,X2, . . . ,Xn). Then nX(n) is unbiased for 1/β with variance
1/β2, and it has a larger variance than X. However, if the length of time is of importance,
nX(n) may be preferable to X, since to observe nX(n) one needs to wait only until the first
piece of equipment fails, whereas to compute X one would have to wait until all the n
observations X1,X2, . . . ,Xn are available.

Theorem 5. If a sample consists of n independent observations X1,X2, . . . ,Xn from the
same distribution, the UMVUE, if it exists, is a symmetric function of the Xi’s.

Proof. The proof is left as an exercise.

The converse of Theorem 5 is not true. If X1,X2, . . . ,Xn are iid P(λ) RVs, λ > 0, both
X and S2 are unbiased for θ. But X is the UMVUE, whereas S2 is not.

We now turn our attention to some methods for finding UMVUE’s.

Theorem 6. (Blackwell [10], Rao [87]). Let {Fθ : θ ∈Θ} be a family of probability DFs
and h be any statistic in U, where U is the (nonempty) class of all unbiased estimators
of θ with Eθh2 <∞. Let T be a sufficient statistic for {Fθ,θ ∈ Θ}. Then the conditional
expectation Eθ{h | T} is independent of θ and is an unbiased estimator of θ. Moreover,

Eθ(E{h | T}−θ)2 ≤ Eθ(h−θ)2 for all θ ∈Θ. (9)

The equality in (9) holds if and only if h = E{h | T} (that is, Pθ{h = E{h | T}} = 1
for all θ).

Proof. We have

Eθ{E{h | T}}= Eθh = θ.
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It is therefore sufficient to show that

Eθ{E{h | T}}2 ≤ Eθh2 for all θ ∈Θ. (10)

But Eθh2 = Eθ{E{h2 | T}}, so that it will be sufficient to show that

[E{h | T}]2 ≤ E{h2 | T}. (11)

By the Cauchy–Schwarz inequality

E2{h | T} ≤ E{h2 | T}E{1 | T},

and (11) follows. The equality holds in (9) if and only if

Eθ[E{h | T}]2 = Eθh2, (12)

that is,

Eθ[E{h2 | T}−E2{h | T}] = 0,

which is the same as

Eθ{var{h | T}}= 0.

This happens if and only if var{h | T}= 0, that is, if and only if

E{h2 | T}= E2{h | T},

as will be the case if and only if h is a function of T . Thus h = E{h | T} with probability 1.

Theorem 6 is applied along with completeness to yield the following result.

Theorem 7. (Lehmann-Scheffé [65]). If T is a complete sufficient statistic and there exists
an unbiased estimator h of θ, there exists a unique UMVUE of θ, which is given by
E{h | T}.

Proof. If h1,h2 ∈ U, then E{h1 | T} and E{h2 | T} are both unbiased and

Eθ[E{h1 | T}−E{h2 | T}] = 0, for all θ ∈Θ.

Since T is a complete sufficient statistic, it follows that E{h1 | T} = E{h2 | T}. By
Theorem 6 E{h | T} is the UMVUE.

Remark 5. According to Theorem 6, we should restrict our search to Borel-measurable
functions of a sufficient statistic (whenever it exists). According to Theorem 7, if a com-
plete sufficient statistic T exists, all we need to do is to find a Borel-measurable function



366 PARAMETRIC POINT ESTIMATION

of T that is unbiased. If a complete sufficient statistic does not exist, an UMVUE may still
exist (see Example 11).

Example 7. Let X1,X2, . . . ,Xn be N(θ,1). X1 is unbiased for θ. However, X = n−1∑n
1 Xi

is a complete sufficient statistic, so that E{X1 | X} is the UMVUE.
We will show that E{X1 | X}= X. Let Y = nX. Then Y is N(nθ,n), X1 is N(θ,1), and

(X1,Y) is a bivariate normal RV with variance covariance matrix

⎛
⎜⎝1 1

1 n

⎞
⎟⎠. Therefore,

E{X1 | y}= EX1 +
cov(X1,Y)
var(Y)

(y−EY)

= θ+
1
n
(y−nθ) =

y
n
,

as asserted.
If we let ψ(θ) = θ2, we can show similarly that X

2−1/n is the UMVUE for ψ(θ). Note
that X

2−1/n may occasionally be negative, so that an UMVUE for θ2 is not very sensible
in this case.

Example 8. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Then T =
∑n

1 Xi is a complete sufficient
statistic. The UMVUE for p is clearly X. To find the UMVUE for ψ(p) = p(1− p), we
have E(nT) = n2p, ET2 = np+n(n−1)p2, so that E{nT −T2}= n(n−1)p(1−p), and it
follows that (nT −T2)/n(n−1) is the UMVUE for ψ(p) = p(1−p).

Example 9. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2). Then (X,S2) is a complete
sufficient statistic for (μ,σ2). X is the UMVUE for μ, and S2 is the UMVUE for σ2. Also
k(n)S is the UMVUE for σ, where k(n) =

√
[(n−1)/2]Γ[(n−1)/2]/Γ(n/2). We wish to

find the UMVUE for the pth quantile zp. We have

p = P{X ≤ zp}= P

{
Z ≤ zp −μ

σ

}
,

where Z is N(0,1). Thus zp = σz1−p +μ, and the UMVUE is

T(X1,X2, . . . ,Xn) = z1−pk(n)S+X.

Example 10. (Stigler [110]). We return to Example 14. We have seen that the family
{P(n)

N : N ≥ 1} of PMFs of X(n) = max1≤i≤n Xi is complete and X(n) is sufficient for
N. Now EX1 = (N + 1)/2, so that T(X1) = 2X1 − 1 is unbiased for N. It follows from
Theorem 7 that E{T(X1) | X(n)} is the UMVUE of N. We have

P{X1 = x1 | X(n) = y}=

⎧⎪⎪⎨
⎪⎪⎩

yn−1 − (y−1)n−1

yn − (y−1)n
if x1 = 1,2, . . . ,y−1,

yn−1

yn − (y−1)n
x1 = y.
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Thus

E{T(X1) | X(n) = y}= yn−1 − (y−1)n−1

yn − (y−1)n

y−1∑
x1=1

(2x1 −1)+(2y−1)
yn−1

yn − (y−1)n

=
yn+1 − (y−1)n+1

yn − (y−1)n

is the UMVUE of N.
If we consider the family P instead, we have seen (Example 8.3.14 and Problem 8.3.6)

that P is not complete. The UMVUE for the family {PN : N ≥ 1} is T(X1) = 2X1 − 1,
which is not the UMVUE for P. The UMVUE for P is in fact, given by

T1(k) =

{
2k−1, k 	= n0, k 	= n0 +1,

2n0, k = n0, k = n0 +1.

The reader is asked to check that T1 has covariance 0 with all unbiased estimators g of 0
that are of the form described in Example 8.3.14 and Problem 8.3.6, and hence Theorem 1
implies that T1 is the UMVUE. Actually T1(X1) is a complete sufficient statistic for P.
Since En0 T1(X1) = n0 + 1/n0, T1 is not even unbiased for the family {PN : N ≥ 1}. The
minimum variance is given by

varN(T1(X1)) =

⎧⎨
⎩
varN(T(X1)) if N < n0,

varN(T(X1))−
2
N

if N > n0.

The following example shows that UMVUE may exist while minimal sufficient statistic
may not.

Example 11. Let X be an RV with PMF

Pθ(X =−1) = θ and Pθ(X = x) = (1−θ)2θx,

x = 0,1,2, . . . , where 0 < θ < 1. Let ψ(θ) = Pθ(X = 0) = (1− θ)2. Then X is clearly
sufficient, in fact minimal sufficient, for θ but since

EθX = (−1)θ+
∞∑

x=0

x(1−θ)2θx

=−θ+θ(1−θ)2 d
dθ

∞∑
x=1

θx = 0,

it follows that X is not complete for {Pθ : 0 < θ < 1}. We will use Theorem 1 to check if
a UMVUE for ψ(θ) exists. Suppose

Eθh(X) = h(−1)θ+
∞∑

x=0

(1−θ)2θxh(x) = 0
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for all 0 < θ < 1. Then, for 0 < θ < 1,

0 = θh(−1)+
∞∑

x=0

θxh(x)−2
∞∑

x=0

θx+1h(x)+
∞∑

x=0

θx+2h(x)

= h(0)+
∞∑

x=0

θx+1[h(x+1)−2h(x)+h(x−1)]

which is a power series in θ.
It follows that h(0) = 0, and for x ≥ 1, h(x+1)−2h(x)+h(x−1) = 0. Thus

h(1) = h(−1), h(2) = 2h(1)−h(0) = 2h(−1),

h(3) = 2h(2)−h(1) = 4h(−1)−h(−1) = 3h(−1),

and so on. Consequently, all unbiased estimators of 0 are of the form h(X) = cX. Clearly,
T(X) = 1 if X = 0, and = 0 otherwise is unbiased for ψ(θ). Moreover, for all θ

E{cX ·T(X)}= 0

so that T is UMVUE of ψ(θ).

We conclude this section with a proof of Theorem 8.3.4.

Theorem 8. (Theorem 8.3.4) A complete sufficient statistic is minimal sufficient statistic.

Proof. Let S(X) be a complete sufficient statistic for {fθ : θ ∈Θ} and let T be any statistic
for which Eθ|T2| < ∞. Writing h(S) = Eθ{T|S} we see that h is UMVUE of EθT . Let
S1(X) be another sufficient statistic. We show that h(S) is a function of S1. If not, then
h1(S1) = Eθ{h(S)|S1} is unbiased for EθT and by Rao–Blackwell theorem

varθ h1(S1)≤ varθ h(S),

contradicting the fact that h(S) is UMVUE for EθT . It follows that h(S) is a function of S1.
Since h and S1 are arbitrary, S must be a function of every sufficient statistic and hence,
minimal sufficient.

PROBLEMS 8.4

1. Let X1,X2, . . . ,Xn(n ≥ 2) be a sample from b(1,p). Find an unbiased estimator for
ψ(p) = p2.

2. Let X1,X2, . . . ,Xn(n ≥ 2) be a sample from N(μ,σ2). Find an unbiased estimator for
σp, where p+n > 1. Find a minimum MSE estimator of σp.

3. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. Find a minimum MSE estimator of the form
αS2 for the parameter σ2. Compare the variances of the minimum MSE estimator
and the obvious estimator S2.
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4. Let X ∼ b(1,θ2). Does there exist an unbiased estimator of θ?

5. Let X ∼ P(λ). Does there exist an unbiased estimator of ψ(λ) = λ−1?

6. Let X1,X2, . . . ,Xn be a sample from b(1,p), 0 < p < 1, and 0 < s < n be an integer.
Find the UMVUE for (a) ψ(p) = ps and (b) ψ(p) = ps +(1−p)n−s.

7. Let X1,X2, . . . ,Xn be a sample from a population with mean θ and finite variance, and
T be an estimator of θ of the form T(X1,X2, . . . ,Xn) =

∑n
i=1αiXi. If T is an unbiased

estimator of θ that has minimum variance and T ′ is another linear unbiased estimator
of θ, then

covθ(T,T
′) = varθ(T).

8. Let T1,T2 be two unbiased estimators having common variance ασ2(α > 1), where
σ2 is the variance of the UMVUE. Show that the correlation coefficient between T1

and T2 is ≥ (2−α)/α.

9. Let X ∼ NB(1;θ) and d(θ) = Pθ{X = 0}. Let X1,X2, . . . ,Xn be a sample on X. Find
the UMVUE of d(θ).

10. This example covers most discrete distributions. Let X1,X2, . . . ,Xn be a sample from
PMF

Pθ{X = x}= α(x)θx

f (θ)
, x = 0,1,2, . . . ,

where θ > 0,α(x)> 0, f (θ)=
∑∞

x=0α(x)θ
x,α(0)= 1, and let T =X1+X2+ · · ·+Xn.

Write

c(t,n) =
∑

x1,x2,...,xn

n∏
i=1

α(xi).

with
n∑

i=1

xi = t

Show that T is a complete sufficient statistic for θ and that the UMVUE for d(θ) = θr

(r > 0 is an integer) is given by

Yr(t) =

⎧⎨
⎩

0 if t < r
c(t− r,n)

c(t,n)
if t ≥ r.

(Roy and Mitra [94])

11. Let X be a hypergeometric RV with PMF

PM{X = x}=
(

N
n

)−1(M
x

)(
N −M
n− x

)
,

where max(0,M+n−N)≤ x ≤min(M,n).

(a) Find the UMVUE for M when N is assumed to be known.

(b) Does there exist an unbiased estimator of N (M known)?
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12. Let X1,X2, . . . ,Xn be iid G(1,1/λ) RVs λ > 0. Find the UMVUE of Pλ{X1 ≤ t0},
where t0 > 0 is a fixed real number.

13. Let X1,X2, . . . ,Xn be a random sample from P(λ). Let ψ(λ) =
∑∞

k=0 ckλ
k be a para-

metric function. Find the UMVUE for ψ(λ). In particular, find the UMVUE for
(a) ψ(λ) = 1/(1 − λ), (b) ψ(λ) = λs for some fixed integer s > 0, (c) ψ(λ) =
Pλ{X=0}, and (d) ψ(λ) = Pλ{X = 0 or 1}.

14. Let X1,X2, . . . ,Xn be a sample from PMF

PN(x) =
1
N
, x = 1,2, . . . ,N.

Let ψ(N) be some function of N. Find the UMVUE of ψ(N).

15. Let X1,X2, . . . ,Xn be a random sample from P(λ). Find the UMVUE of ψ(λ) =
Pλ{X = k}, where k is a fixed positive integer.

16. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate normal population
with parameters μ1, μ2, σ2

1, σ2
2, and ρ. Assume that μ1 = μ2 = μ, and it is required

to find an unbiased estimator of μ. Since a complete sufficient statistic does not exist,
consider the class of all linear unbiased estimators

μ̂(α) = αX+(1−α)Y.

(a) Find the variance of μ̂.

(b) Choose α= α0 to minimize var(μ̂) and consider the estimator

μ̂0 = α0X+(1−α0)Y.

Compute var(μ̂0). If σ1 = σ2, the BLUE of μ (in the sense of minimum
variance) is

μ̂1 =
X+Y

2

irrespective of whether σ1 and ρ are known or unknown.

(c) If σ1 	= σ2 and ρ,σ1,σ2 are unknown, replace these values in α0 by their
corresponding estimators. Let

α̂=
S2

2 −S11

S2
1 +S2

2 −2S11
.

Show that

μ̂2 = Y +(X−Y)α̂

is an unbiased estimator of μ.

17. Let X1,X2, . . . ,Xn be iid N(θ,1). Let p = Φ(x− θ), where Φ is the DF of a N(0,1)

RV. Show that the UMVUE of p is given by Φ
(
(x− x)

√
n

n−1

)
.
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18. Prove Theorem 5.

19. In Example 10 show that T1 is the UMVUE for N (restricted to the family P), and
compute the minimum variance.

20. Let (X1,Y1), . . . ,(Xn,Yn) be a sample from a bivariate population with finite vari-
ances σ2

1 and σ2
2, respectively, and covariance γ. Show that

var(S11) =
1
n

(
μ22 −

n−2
n−1

γ2 +
σ2

1σ
2
2

n−1

)
,

where μ22 = E[(X−EX)2(Y −EY)2]. It is assumed that appropriate order moments
exist.

21. Suppose that a random sample is taken on (X,Y) and it is desired to estimate γ,
the unknown covariance between X and Y . Suppose that for some reason a set S of
n observations is available on both X and Y , an additional n1 − n observations are
available on X but the corresponding Y values are missing, and an additional n2 −n
observations of Y are available for which the X values are missing. Let S1 be the set
of all n1(≥ n) X values, and S2, the set of all n2(≥ n) Y values, and write

X̂ =

∑
j∈S1

Xj

n1
, Ŷ =

∑
j∈S2

Yj

n2
, X =

∑
i∈S Xi

n
, Y =

∑
i∈S Yi

n
.

Show that

γ̂ =
n1n2

n(n1n2 −n1 −n2 +n)

∑
i∈S

(Xi − X̂)(Yi − Ŷ)

is an unbiased estimator of γ. Find the variance of γ̂, and show that var(γ̂) ≤
var(S11), where S11 is the usual unbiased estimator of γ based on the n observations
in S (Boas [11]).

22. Let X1,X2, . . . ,Xn be iid with common PDF fθ(x) = exp(−x+θ), x > θ. Let x0 be a
fixed real number. Find the UMVUE of fθ(x0).

23. Let X1,X2, . . . ,Xn be iid N(μ,1) RVs. Let T(X) =
∑n

i=1 Xi. Show that ϕ(x; t/n,n−
1/n) is UMVUE of ϕ(x;μ,1) where ϕ(x;μ,σ2) is the PDF of a N(μ,σ2) RV.

24. Let X1,X2, . . . ,Xn be iid G(1,θ) RVs. Show that the UMVUE of f (x;θ) =
(1/θ)exp(−x/θ), x > 0, is given by h(x|t) the conditional PDF of X1 given T(X) =∑n

i=1 Xi = t, where

h(x|t) = (n−1)(t− x)n−2/tn−1 for x < t and = 0 for x > t.

25. Let X1,X2, . . . ,Xn be iid RVs with common PDF fθ(x) = 1/(2θ), |x| < θ, and = 0
elsewhere. Show that T(X) =max{−X(1),X(1)} is a complete sufficient statistic for
θ. Find the UMVU estimator of θr.

26. Let X1,X2, . . . ,Xn be a random sample from PDF

fθ(x) = (1/σ)exp{−(x−μ)/σ}, x > μ,σ > 0,
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where θ = (μ,σ).

(a)
(

X(1),
∑n

j=1

(
Xj −X(1)

))
is a complete sufficient statistic for θ.

(b) Show that the UMVUEs of μ and σ are given by

μ̂= X(1)−
1

n(n−1)

n∑
j=1

(
Xj −X(1)

)
, σ̂ =

1
n−1

n∑
j=1

(
Xj −X(1)

)
.

(c) Find the UMVUE of ψ(μ,σ) = Eμ,σX1.

(d) Show that the UMVUE of Pθ(X1 ≥ t) is given by

P̂(X1 ≥ t) =
n−1

n

{(
1−

t−X(1)∑n
1(Xj −X(1))

)+
}n−2

,

where x+ =max(x,0).

8.5 UNBIASED ESTIMATION (CONTINUED): A LOWER BOUND FOR
THE VARIANCE OF AN ESTIMATOR

In this section we consider two inequalities, each of which provides a lower bound for
the variance of an estimator. These inequalities can sometimes be used to show that an
unbiased estimator is the UMVUE. We first consider an inequality due to Fréchet, Cramér,
and Rao (the FCR inequality).

Theorem 1. (Cramér [18], Fréchet [34], Rao [86]). Let Θ ⊆ R be an open interval and
suppose the family {fθ : θ ∈Θ} satisfies the following regularity conditions:

(i) It has common support set S. Thus S = {x : fθ(x)> 0} does not depend on θ.

(ii) For x ∈ S and θ ∈Θ, the derivative θ
∂θ log fθ(x) exists and is finite.

(iii) For any statistic h with Eθ|h(X)| < ∞ for all θ, the operations of integration
(summation) and differentiation with respect to θ can be interchanged in Eθh(X).
That is,

∂

∂θ

∫
h(x)fθ(x)dx=

∫
h(x)

∂

∂θ
fθ(x)dx (1)

whenever the right-hand side of (1) is finite.

Let T(X) be such that varθ T(X) < ∞ for all θ and set ψ(θ) = EθT(X). If I(θ) =
Eθ

{
∂
∂θ log fθ(X)

}2
satisfies 0 < I(θ)<∞ then

varθ T(X)≥ [ψ′(θ)]2

I(θ)
. (2)
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Proof. Since (iii) holds for h ≡ 1, we get

0 =

∫
S

∂

∂θ
fθ(x)dx

=

∫
S

{
∂

∂θ
log fθ(x)

}
fθ(x)dx

= E

{
∂

∂θ
log fθ(X)

}
. (3)

Differentiating ψ(θ) = EθT(X) and using (1) we get

ψ′(θ) =

∫
S

T(x)
∂

∂θ
fθ(x)dx

=

∫
S

{
T(x)

∂

∂θ
log fθ(x)

}
fθ(x)dx

= cov

(
T(X),

∂

∂θ
log fθ(X)

)
. (4)

Also, in view of (3) we have

varθ

(
∂

∂θ
log fθ(X)

)
= Eθ

{
∂

∂θ
log fθ(X)

}2

and using Cauchy–Schwarz inequality in (4) we get

[ψ′(θ)]2 ≤ varθ T(X)Eθ

{
∂

∂θ
log fθ(X)

}2

which proves (2). Practically the same proof may be given when fθ is a PMF by replacing∫
by Σ.

Remark 1. If, in particular, ψ(θ) = θ, then (2) reduces to

varθ(T(X))≥ 1
I(θ)

. (5)

Remark 2. Let X1,X2, . . . ,Xn be iid RVs with common PDF (PMF) fθ(x). Then

I(θ) = Eθ

{
∂ log fθ(X)

∂θ

}2

=

n∑
i=1

Eθ

{
∂ log fθ(Xi)

∂θ

}2

= nEθ

{
∂ log fθ(X1)

∂θ

}2

= nI1(θ),

where I1(θ) = Eθ

{
∂ log fθ(X1)

∂θ

}2
. In this case the inequality (2) reduces to

varθ(T(X))≥ [ψ′(θ)]2

nI1(θ)
.
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Definition 1. The quantity

I1(θ) = Eθ

{
∂ log fθ(X1)

∂θ

}2

(6)

is called Fisher’s information in X1 and

In(θ) = Eθ

{
∂ log fθ(X)

∂θ

}2

= nI1(θ) (7)

is known as Fisher information in the random sample X1,X2, . . . ,Xn.

Remark 3. As n gets larger, the lower bound for varθ(T(X)) gets smaller. Thus, as the
Fisher information increases, the lower bound decreases and the “best” estimator (one for
which equality holds in (2)) will have smaller variance, consequently more information
about θ.

Remark 4. Regularity condition (i) is unnecessarily restrictive. An examination of the
proof shows that it is only necessary that (ii) and (iii) hold for (2) to hold. Condition (i)
excludes distributions such as fθ(x) = (1/θ), 0 < x < θ, for which (3) fails to hold. It also
excludes densities such as fθ(x) = 1, θ < x<θ+1, or fθ(x) = 2

π sin2(x+π), θ≤ x≤ θ+π,
each of which satisfies (iii) for h ≡ 1 so that (3) holds but not (1) for all h with Eθ|h|<∞.

Remark 5. Sufficient conditions for regularity condition (iii) may be found in most calcu-
lus textbooks. For example if (i) and (ii) hold then (iii) holds provided that for all h with
Eθ|h| < ∞ for all θ ∈ Θ, both Eθ

{
h(X)∂ log fθ(X)

∂θ

}
and Eθ

∣∣∣h(X)∂fθ(X)
∂θ

∣∣∣ are contin-
uous functions of θ. Regularity conditions (i) to (iii) are satisfied for a one-parameter
exponential family.

Remark 6. The inequality (2) holds trivially if I(θ) = ∞ (and ψ′(θ) is finite) or if
varθ(T(X)) =∞.

Example 1. Let X ∼ b(n,p);Θ=(0,1)⊂R. Here the Fisher Information may be obtained
as follows:

log fp(x) = log

(
n
x

)
+ x logp+(n− x) log(1−p),

∂ log fp(x)
∂p

=
x
p
− n− x

1−p
,

and

Ep

(
∂ log fp(x)

∂p

)2

=
n

p(1−p)
= I(p).

Let ψ(p) be a function of p and T(X) be an unbiased estimator of ψ(p). The only condition
that need be checked is differentiability under the summation sign. We have

ψ(p) = EpT(X) =
n∑

x=0

(
n
x

)
T(x)px(1−p)n−x,
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which is a polynomial in p and hence can be differentiated with respect to p. For any
unbiased estimator T(X) of p we have

varp(T(X))≥
1
n

p(1−p) =
1

I(p)
,

and since

var

(
X
n

)
=

np(1−p)
n2

=
p(1−p)

n
,

it follows that the variance of the estimator X/n attains the lower bound of the FCR
inequality, and hence T(X) has least variance among all unbiased estimators of p. Thus
T(X) is UMVUE for p.

Example 2. Let X ∼ P(λ). We leave the reader to check that the regularity conditions are
satisfied and

varλ(T(X))≥ λ.

Since T(X) = X has variance λ, X is the UMVUE of λ. Similarly, if we take a sample
of size n from P(λ), we can show that

In(λ) =
n
λ

and varλ(T(X1, . . . ,Xn))≥
λ

n

and X is the UMVUE.
Let us next consider the problem of unbiased estimation of ψ(λ) = e−λ based on a

sample of size 1. The estimator

∂ (X) =

{
1 if X = 0

0 if X ≥ 1

is unbiased for ψ(λ) since

Eλ∂ (X) = Eλ[∂ (X)]
2 = Pλ{X = 0}= e−λ.

Also,

varλ(∂ (X)) = e−λ(1− e−λ).

To compute the FCR lower bound we have

log fλ(x) = x logλ−λ− logx!.

This has to be differentiated with respect to e−λ, since we want a lower bound for an
estimator of the parameter e−λ. Let θ = e−λ. Then

log fθ(x) = x log log
1
θ
+logθ− logx!,

∂

∂ θ
log fθ(x) = x

1
θ logθ

+
1
θ
,
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and

Eθ

{
∂

∂ θ
log fθ(X)

}2

=
1
θ2

{
1+

2
logθ

log
1
θ
+

1
(logθ)2

(
log

1
θ
+

(
log

1
θ

)2
)}

= e2λ

{
1−2+

1
λ2

(λ+λ2)

}

=
e2λ

λ
= I(e−λ),

so that

varθ T(X)≥ λ

e2λ
=

1
I(e−λ)

,

where θ = e−λ.
Since e−λ(1−e−λ)>λe−2λ for λ> 0, we see that var(δ(X)) is greater than the lower

bound obtained from the FCR inequality. We show next that δ(X) is the only unbiased
estimator of θ and hence is the UMVUE.

If h is any unbiased estimator of θ, it must satisfy Eθh(X) = θ. That is, for all λ > 0

e−λ =

∞∑
k=0

h(k)e−λλ
k

k!
.

Equating coefficients of powers of λ we see immediately that h(0) = 1 and h(k) = 0 for
k = 1,2, . . .. It follows that h(X) = ∂(X).

The same computation can be carried out when X1,X2, . . . ,Xn is random sample from
P(λ). We leave the reader to show that the FCR lower bound for any unbiased estimator of
θ= e−λ is λe−2λ/n. The estimator

∑n
i=1 ∂(Xi)/n is clearly unbiased for e−λ with variance

e−λ(1− e−λ)/n > (λe−2λ)/n. The UMVUE of e−λ is given by T0 =
(

n−1
n

)∑n
i=1 Xi with

varλ(T0) = e−2λ(eλ/n −1)> (λe−2λ)/n for all λ > 0.

Corollary. Let X1,X2, . . . ,Xn be iid with common PDF fθ(x). Suppose the family {fθ :
θ ∈Θ} satisfies the conditions of Theorem 1. Then equality holds in (2) if and only if, for
all θ ∈Θ,

T(x)−ψ(θ) = k(θ)
∂

∂θ
log fθ(x) (8)

for some function k(θ).

Proof. Recall that we derived (2) by an application of Cauchy–Schwatz inequality where
equality holds if and only if (8) holds.

Remark 7. Integrating (8) with respect to θ we get

log fθ(x) = Q(θ)T(x)+S(θ)+A(x)
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for some functions Q,S, and A. It follows that fθ is a one-parameter exponential family
and the statistic T is sufficient for θ.

Remark 8. A result that simplifies computations is the following. If fθ is twice differen-
tiable and Eθ

{
∂
∂θ log fθ(X)

}
can be differentiated under the expectation sign, then

I(θ) = Eθ

{
∂

∂θ
log fθ(X)

}2

=−Eθ

{
∂2

∂θ2
log fθ(X)

}
. (9)

For the proof of (9), it is straightforward to check that

∂2

∂θ2
log fθ(x) =

f ′′θ (x)
fθ(x)

−
{

∂

∂θ
log fθ(x)

}2

.

Taking expectations on both side we get (9).

Example 3. Let X1,X2, . . . ,Xn be iid N(μ,1). Then

log fμ(x) =−1
2
log(2π)− (x−μ)2

2
,

∂

∂μ
log fμ(x) = x−μ,

∂2

∂μ2
log fμ(x) =−1.

Hence I(μ) = 1 and In(μ) = n.

We next consider an inequality due to Chapman, Robbins, and Kiefer (the CRK inequal-
ity) that gives a lower bound for the variance of an estimator but does not require regularity
conditions of the Fréchet–Cramér–Rao type.

Theorem 2 (Chapman and Robbins [12], Kiefer [52]). Let Θ⊂ R and {fθ(x) : θ ∈Θ}
be a class of PDFs (PMFs). Let ψ be defined on Θ, and let T be an unbiased estimator
of ψ(θ) with EθT2 < ∞ for all θ ∈ Θ. If θ 	= ϕ, assume that fθ and fϕ are different and
assume further that there exists a ϕ ∈Θ such that θ 	= ϕ and

S(θ) = {fθ(x)> 0} ⊃ S(ϕ) = {fϕ(x)> 0}. (10)

Then

varθ(T(X))≥ sup
{ϕ:S(ϕ)⊂S(θ),ϕ 	=θ}

[ψ(ϕ)−ψ(θ)]2

varθ{fϕ(X)/fθ(X)} (11)

for all θ ∈ Ω.
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Proof. Since T is unbiased for ψ, EϕT(X) = ψ(ϕ) for all ϕ ∈Θ. Hence, for ϕ 	= θ,

∫
S(θ)

T(x)
fϕ(x)− fθ(x)

fθ(x)
fθ(x)dx= ψ(ϕ)−ψ(θ), (12)

which yields

covθ

{
T(X),

fϕ(X)

fθ(X)
−1

}
= ψ(ϕ)−ψ(θ).

Using the Cauchy–Schwarz inequality, we get

cov2
θ

{
T(X),

fϕ(X)

fθ(X)
−1

}
≤ varθ(T(X))varθ

{
fϕ(X)

fθ(X)
−1

}

= varθ(T(X))varθ

(
fϕ(X)

fθ(X)

)
.

Thus

varθ(T(X))≥ [ψ(ϕ)−ψ(θ)]2

varθ{fϕ(X)/fθ(X)} ,

and the result follows. In the discrete case it is necessary only to replace the integral in the
left side of (12) by a sum. The rest of the proof needs no change.

Remark 9. Inequality (11) holds without any regularity conditions on fθ or ψ(θ). We will
show that it covers some nonregular cases of the FCR inequality. Sometimes (11) is avail-
able in an alternative form. Let θ and θ+ δ(δ 	= 0) be any two distinct values in Θ such
that S(θ+ δ)⊂ S(θ), and take ψ(θ) = θ. Write

J = J(θ,δ) =
1
δ2

{(
fθ+δ(X)

fθ(X)

)2

−1

}
.

Then (11) can be written as

varθ(T(X))≥ 1
inf
δ

EθJ
, (13)

where the infimum is taken over all δ 	= 0 such that S(θ+ δ)⊂ S(θ).
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Remark 10. Inequality (11) applies if the parameter space is discrete, but the Fréchet–
Cramér–Rao regularity conditions do not hold in that case.

Example 4. Let X be U[0,θ]. The regularity conditions of FCR inequality do not hold in
this case. Let ψ(θ) = θ. If ϕ < θ, then S(ϕ)⊂ S(θ). Also,

Eθ

{
fϕ(X)
fθ(X)

}2

=

∫ ϕ

0

(
θ

ϕ

)2 1
θ

dx =
θ

ϕ
.

Thus

varθ(T(X))≥ sup
(ϕ:ϕ<θ)

(ϕ−θ)2

(θ/ϕ)−1
= sup

(ϕ:ϕ<θ)

{ϕ(θ−ϕ)}= θ2

4

for any unbiased estimator T(X) of θ. X is a complete sufficient statistic, and 2X is unbiased
for θ so that T(X) = 2X is the UMVUE. Also

varθ(2X) = 4varX =
θ2

3
>

θ2

4
.

Thus the lower bound of θ2/4 of the CRK inequality is not achieved by any unbiased
estimator of θ.

Example 5. Let X have PMF

PN{X = k}=

⎧⎨
⎩

1
N
, k = 1,2, . . . ,N

0, otherwise.

Let Θ = {N : N ≥ M, M > 1 given}. Take ψ(N) = N. Although the FCR regularity
conditions do not hold, (11) is applicable since, for N 	= N′ ∈Θ⊂ R,

S(N) = {1,2, . . . ,N} ⊃ S(N′) = {1,2, . . . ,N′} if N′ < N.

Also, PN and PN′ are different for N 	= N′. Thus

varN(T)≥ sup
N′<N

(N −N′)2

varN{PN′/PN}
.

Now

PN′

PN
(x) =

PN′(x)
PN(x)

=

⎧⎨
⎩

N
N′ , x = 1,2, . . . ,N′, N′ < N,

0, otherwise,

EN

{
PN′(X)
PN(X)

}2

=
1
N

N′∑
1

(
N
N′

)2

=
N
N′ ,
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and

varN

{
PN′(X)
PN(X)

}
=

N
N′ −1 > 0 for N > N′.

It follows that

varN(T(X))≥ sup
N′<N

(N −N′)2

(N −N′)/N′ = sup
N′<N

N′(N −N′).

Now

k(N − k)
(k−1)(N − k+1)

> 1 if and only if k <
N +1

2
,

so that N′(N −N′) increases as long as N′ < (N +1)/2 and decreases if N′ > (N +1)/2.
The maximum is achieved at N′ = [(N + 1)/2] if M ≤ (N + 1)/2 and at N′ = M if M >
(N +1)/2, where [x] is the largest integer ≤ x. Therefore,

varN(T(X))≥
[

N +1
2

]{
N −
[

N +1
2

]}
if M ≤ (N +1)/2

and

varN(T(X))≥ M(N −M) if M > (N +1)/2,

Example 6. Let X ∼N(0,σ2). Let us compute J (see Remark 9) for δ 	= 0.

J =
1
δ2

{(
fσ+δ(X)

fσ(X)

)2

−1

}
=

1
δ2

[
σ2n

(σ+ δ)2n
exp

{
−
∑

X2
i

(σ+ δ)2
+

∑
X2

i

σ2

}
−1

]

=
1
δ2

[(
σ

σ+ δ

)2n

exp

{∑
X2

i (δ
2 +2σδ)

σ2(σ+ δ)2

}
−1

]
,

EσJ =
1
δ2

(
σ

σ+ δ

)2n

Eσ

{
exp

(
c

∑
X2

i

σ2

)}
− 1

δ2
,

where c = (δ2 +2σδ)/(σ+ δ)2.
Since

∑
X2

i /σ
2 ∼ χ2(n)

EσJ =
1
δ2

{(
σ

σ+ δ

)2n 1
(1−2c)n/2

−1

}
for c <

1
2
.

Let k = δ/σ then

c =
2k+ k2

(1+ k)2
and 1−2c =

1−2k− k2

(1+ k)2
,

EσJ =
1

k2σ2
[(1+ k)−n(1−2k− k2)−n/2 −1].
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Here 1+ k > 0 and 1−2c > 0, so that 1−2k− k2 > 0, implying −
√

2 < k+1 <
√

2 and
also k >−1. Thus −1 < k <

√
2−1 and k 	= 0. Also,

lim
k→0

EσJ = lim
k→0

(1+ k)−n(1−2k− k2)−n/2 −1
k2σ2

=
2n
σ2

by L’Hospital’s rule. We leave the reader to check that this is the FCR lower bound for
varσ(T(X)). But the minimum value of EσJ is not achieved in the neighborhood of k = 0
so that the CRK inequality is sharper than the FCR inequality. Next, we show that for
n = 2 we can do better with the CRK inequality. We have

EσJ =
1

k2σ2

{
1

(1−2k− k2)(1+ k)2
−1

}

=
(k+2)2

σ2(1+ k)2(1−2k− k2)
, −1 < k <

√
2−1, k 	= 0.

For k = −0.1607 we achieve the lower bound as (EσJ)−1 = 0.2698σ2, so that
varσ(T(X)) ≥ 0.2698σ2 > σ2/4. Finally, we show that this bound is by no means the
best available; it is possible to improve on the Chapman–Robbins–Kiefer bounds too in
some cases. Take

T(X1,X2, . . . ,Xn) =
Γ(n/2)

Γ[(n+1)/2]
σ√
2

√∑n
1 X2

i

σ2

to be an estimate of σ. Now EσT = σ and

EσT2 =
σ2

2

(
Γ(n/2)

Γ[(n+1)/2]

)2

E

{∑n
1 X2

i

σ2

}

=
nσ2

2

{
Γ(n/2)

Γ[(n+1)/2]

}2

so that

varσ(T) = σ2

{
n
2

(
Γ(n/2)

Γ[(n+1)/2]

)2

−1

}
.

For n = 2,

varσ(T) = σ2

[
4
π
−1

]
= 0.2732σ2,

which is > 0.2698σ2, the CRK bound. Note that T is the UMVUE.

Remark 11. In general the CRK inequality is as sharp as the FCR inequality. See Chapman
and Robbins [12, pp. 584–585], for details.

We next introduce the concept of efficiency.
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Definition 2. Let T1,T2 be two unbiased estimators for a parameter θ. Suppose that
EθT2

1 <∞, EθT2
2 <∞. We define the efficiency of T1 relative to T2 by

effθ(T1 | T2) =
varθ(T2)

varθ(T1)
(14)

and say that T1 is more efficient than T2 if

effθ(T1 | T2)> 1. (15)

It is usual to consider the performance of an unbiased estimator by comparing its
variance with the lower bound given by the FCR inequality.

Definition 3. Assume that the regularity conditions of the FCR inequality are satisfied by
the family of DFs {Fθ,θ ∈Θ}, Θ⊆R. We say that an unbiased estimator T for parameter
θ is most efficient for the family {Fθ} if

varθ(T) =

[
Eθ

{
∂ log fθ(X)

∂ θ

}2
]−1

= 1/In(θ). (16)

Definition 4. Let T be the most efficient estimator for the regular family of DFs {Fθ,
θ ∈Θ}. Then the efficiency of any unbiased estimator T1 of θ is defined as

effθ(T1) = effθ(T1 | T) =
varθ(T)
varθ(T1)

=
1

In(θ)varθ(T1)
. (17)

Clearly, the efficiency of the most efficient estimator is 1, and the efficiency of any
unbiased estimator T1 is < 1.

Definition 5. We say that an estimator T1 is asymptotically (most) efficient if

lim
n→∞

effθ(T1) = 1 (18)

and T1 is at least asymptotically unbiased in the sense that limn→∞ EθT1 = θ. Here n is
the sample size.

Remark 12. Definition 3, although in common usage, has many drawbacks. We have
already seen cases in which the regularity conditions are not satisfied and yet UMVUEs
exist. The definition does not cover such cases. Moreover, in many cases where the regu-
larity conditions are satisfied and UMVUEs exist, the UMVUE is not most efficient since
the variance of the best estimator (the UMVUE) does not achieve the lower bound of the
FCR inequality.

Example 7. Let X ∼ b(n,p). Then we have seen in Example 1 that X/n is the UMVUE
since its variance achieves the lower bound of the FCR inequality. It follows that X/n is
most efficient.
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Example 8. Let X1,X2, . . . ,Xn be iid P(λ) RVs and suppose ψ(λ) = Pλ(X = 0) = e−λ.
From Example 2, the UMVUE of ψ is given by T0 =

(
n−1

n

)∑n
i=1 Xi with

varλ(T0) = e−2λ(eλ/n −1).

Also In(λ) = n/(λe−2λ). It follows that

effλ(T0) =
(λe−2λ)/n

e−2λ(eλ/n −1)
<

λe−2λ/n
e−2λ(λ/n)

= 1

since ex −1 > x for x > 0. Thus T0 is not most efficient. However, since effλ(T0)→ 1 as
n →∞, T0 is asymptotically efficient.

In view of Remarks 6 and 7, the following result describes the relationship between
most efficient unbiased estimators and UMVUEs.

Theorem 3. A necessary and sufficient condition for an unbiased estimator T of ψ to be
most efficient is that T be sufficient and the relation (8) holds for some function k(θ).

Clearly, an estimator T satisfying the conditions of Theorem 3 will be the UMVUE, and
two estimators coincide. We emphasize that we have assumed the regularity conditions of
FCR inequality in making this statement.

Example 9. Let (X,Y) be jointly distributed with PDF

fθ(x,y) = exp
{
−
( x
θ
+θy
)}

, x > 0, y > 0.

For a sample (x,y) of size 1, we have

− ∂

∂θ
log fθ(x,y) =

∂

∂θ

( x
θ
+θy
)
=− x

θ2
+ y.

Hence, information for this sample is

I(θ) = Eθ

(
Y − X

θ2

)2
= Eθ(Y

2)+
E(X2)

θ4
− 2E(XY)

θ2
.

Now

Eθ(Y
2) =

2
θ2

, Eθ(X
2) = 2θ2

and E(XY) = 1,

so that

I(θ) =
2
θ2

+
2
θ2

− 2
θ2

=
2
θ2

.

Therefore, amount of Fisher’s Information in a sample of n pairs is 2n
θ2 .



384 PARAMETRIC POINT ESTIMATION

We return to Example 8.3.23 where X1,X2, . . . ,Xn are iid G(1,θ) and Y1,Y2, . . . ,Yn

are iid G(1,1/θ), and X’s and Y’s are independent. Then (X1,Y1) has common PDF
fθ(x,y) given above. We will compute Fisher’s Information for θ in the family of PDFs
of S(X,Y) = (

∑
Xi/
∑

Yi)
1/2. Using the PDFs of

∑
Xi ∼ G(n,θ) and

∑
Yi ∼ G(n,1/θ)

and the transformation technique, it is easy to see that S(X,Y) has PDF

gθ(s) =
2Γ(2n)
[Γ(n)]2

s−1

(
s
θ
+

θ

s

)−2n

, s > 0.

Thus

∂ loggθ(s)
∂θ

=−2n

(
− s
θ2

+
1
s

)(
s
θ
+

θ

s

)−1

.

It follows that

Eθ

{
∂

∂θ
loggθ(S)

}2

=
4n2

θ2
Eθ

{
1−4

(
S
θ
+

θ

S

)−2
}

=
4n2

θ2

{
1−4

n
2(2n+1)

}
=

2n
θ2

(
2n

2n+1

)

<
2n
θ2

.

That is, the information about θ in S is smaller than that in the sample.
The Fisher Information in the conditional PDF of S given A = a, where A(X,Y) =

S1(X)S2(Y), can be shown (Problem 12) to equal

2a
θ2

K1(2a)
K0(2a)

,

where K0 and K1 are Bessel functions of order 0 and 1, respectively. Averaging over all val-
ues of A, one can show that the information is 2n/θ2 which is the total Fisher information
in the sample of n pairs (xj,yj)’s.

PROBLEMS 8.5

1. Are the following families of distributions regular in the sense of Fréchet, Cramér,
and Rao? If so, find the lower bound for the variance of an unbiased estimator based
on a sample size n.

(a) fθ(x) = θ−1e−x/θ if x > 0, and = 0 otherwise; θ > 0.

(b) fθ(x) = e−(x−θ) if θ < x <∞, and = 0 otherwise.

(c) fθ(x) = θ(1−θ)x, x = 0,1,2, . . .; 0 < θ < 1.

(d) f (x;σ2) = (1/σ
√

2π)e−x2/2σ2
, −∞< x <∞; σ2 > 0.

2. Find the CRK lower bound for the variance of an unbiased estimator of θ, based on
a sample of size n from the PDF of Problem 1(b).

3. Find the CRK bound for the variance of an unbiased estimator of θ in sampling from
N(θ,1).
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4. In Problem 1 check to see whether there exists a most efficient estimator in each
case.

5. Let X1,X2, . . . ,Xn be a sample from a three-point distribution:

P{X = y1}=
1−θ

2
, P{X = y2}=

1
2
, P{X = y3}=

θ

2
,

where 0 < θ < 1. Does the FCR inequality apply in this case? If so, what is the lower
bound for the variance of an unbiased estimator of θ?

6. Let X1,X2, . . . ,Xn be iid RVs with mean μ and finite variance. What is the efficiency
of the unbiased (and consistent) estimator [2/n(n+1)]

∑n
i=1 iXi relative to X?

7. When does the equality hold in the CRK inequality?

8. Let X1,X2, . . . ,Xn be a sample from N(μ,1), and let d(μ) = μ2:

(a) Show that the minimum variance of any estimator of μ2 from the FCR inequality
is 4μ2/n:

(b) Show that T(X1,X2, . . . ,Xn) = X
2 − (1/n) is the UMVUE of μ2 with variance

(4μ2/n+2/n2).

9. Let X1,X2, . . . ,Xn be iid G(1,1/α) RVs:

(a) Show that the estimator T(X1,X2, . . . ,Xn) = (n− 1)/nX is the UMVUE for α
with variance a2/(n−2).

(b) Show that the minimum variance from FCR inequality is α2/n.

10. In Problem 8.4.16 compute the relative efficiency of μ̂0 with respect to μ̂1.

11. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be independent samples from N(μ,σ2
1) and

N(μ,σ2
2), respectively, where μ,σ2

1 ,σ
2
2 are unknown. Let ρ = σ2

2/σ
2
1 and θ = m/n,

and consider the problem of unbiased estimation of μ:

(a) If ρ is known, show that

μ̂0 = αX+(1−α)Y,

where α= ρ/(ρ+θ) is the BLUE of μ. Compute var(μ̂0).

(b) If ρ is unknown, the unbiased estimator

μ̄=
X+θY
1+θ

is optimum in the neighborhood of ρ= 1. Find the variance of μ̄.

(c) Compute the efficiency of μ̄ relative to μ̂0.

(d) Another unbiased estimator of μ is

μ̂=
ρFX+θY
θ+ρF

,

where F = S2
2/ρS2

1 is an F(m−1,n−1) RV.

12. Show that the Fisher Information on θ based on the PDF

1
2K0(2a)

s exp

{
−a

(
s
θ
+

θ

s

)}

for fixed a equals 2a
θ2

K1(2a)
K0(2a) , where K0(2a) and K1(2a) are Bessel functions of order

0 and 1 respectively.
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8.6 SUBSTITUTION PRINCIPLE (METHOD OF MOMENTS)

One of the simplest and oldest methods of estimation is the substitution principle: Let
ψ(θ), θ ∈ Θ be a parametric function to be estimated on the basis of a random sample
X1,X2, . . . ,Xn from a population DF F. Suppose we can writeψ(θ) = h(F) for some known
function h. Then the substitution principle estimator of ψ(θ) is h(F∗

n ), where F∗
n is the

sample distribution function. Accordingly we estimate μ = μ(F) by μ(F∗
n ) = X, mk =

EFXk by
∑n

j=1 Xj/n, and so on. The method of moments is a special case when we need to
estimate some known function of a finite number of unknown moments. Let us suppose
that we are interested in estimating

θ = h(m1,m2, . . . ,mk), (1)

where h is some known numerical function and mj is the jth-order moment of the
population distribution that is known to exist for 1 ≤ j ≤ k.

Definition 1. The method of moments consists in estimating θ by the statistic

T(X1, . . . ,Xn) = h

(
n−1

n∑
1

xi,n
−1

n∑
1

X2
i , . . . ,n

−1
n∑
1

Xk
i

)
. (2)

To make sure that T is a statistic, we will assume that h :Rk →R is a Borel-measurable
function.

Remark 1. It is easy to extend the method to the estimation of joint moments. Thus we
use n−1∑n

1 XiYi to estimate E(XY) and so on.

Remark 2. From the WLLN, n−1∑n
i=1 Xj

i
P−→ EXj. Thus, if one is interested in estimating

the population moments, the method of moments leads to consistent and unbiased estima-
tors. Moreover, the method of moments estimators in this case are asymptotically normally
distributed (see Section 7.5).

Again, if one estimates parameters of the type θ defined in (1) and h is a continuous
function, the estimators T(X1,X2, . . . ,Xn) defined in (2) are consistent for θ (see Prob-
lem 1). Under some mild conditions on h, the estimator T is also asymptotically normal
(see Cramér [17, pp. 386–387]).

Example 1. Let X1,X2, . . . ,Xn be iid RVs with common mean μ and variance σ2. Then
σ =
√

(m2 −m2
1), and the method of moments estimator for σ is given by

T(X1, . . . ,Xn) =

√√√√1
n

n∑
1

X2
i −

(
∑

Xi)2

n2
.

Although T is consistent and asymptotically normal for σ, it is not unbiased.
In particular, if X1,X2, . . . ,Xn are iid P(λ) RVs, we know that EX1 = λ and var(X1) = λ.

The method of moments leads to using either X or
∑n

1(Xi −X)2/n as an estimator of λ.
To avoid this kind of ambiguity we take the estimator involving the lowest-order sample
moment.
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Example 2. Let X1,X2, . . . ,Xn be a sample from

f (x) =

⎧⎨
⎩

1
b−a

, a ≤ x ≤ b,

0, otherwise.

Then

EX =
a+b

2
and var(X) =

(b−a)2

12
.

The method of moments leads to estimating EX by X and var(X) by
∑n

1(Xi −X)2/n so
that the estimators for a and b, respectively, are

T1(X1, . . . ,Xn) = X−

√
3
∑n

1(Xi −X)2

n

and

T2(X1, . . . ,Xn) = X+

√
3
∑n

1(Xi −X)2

n
.

Example 3. Let X1,X2, . . . ,XN be iid b(n,p) RVs, where both n and p are unknown. The
method of moments estimators of p and n are given by

X = EX = np

and

1
N

N∑
1

X2
i = EX2 = np(1−p)+n2p2.

Solving for n and p, we get the estimator for p as

T1(X1, . . . ,XN) =
X

T2(X1, . . . ,XN)
,

where T2(X1, . . . ,XN) is the estimator for n, given by

T2(X1,X2, . . . ,XN) =
(X)2

X+X
2 −
(∑N

1 X2
i /N
) .

Note that X
P−→ np,

∑N
1 X2

i /N
P−→ np(1− p)+ n2p2, so that both T1 and T2 are consistent

estimators.

Method of moments may lead to absurd estimators. The reader is asked to compute
estimators of θ in N(θ,θ) or N(θ,θ2) by the method of moments and verify this assertion.
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PROBLEMS 8.6

1. Let Xn
P−→ a, and Yn

P−→ b, where a and b are constants. Let h :R2 →R be a continuous
function. Show that h(Xn,Yn)

P−→ h(a,b).

2. Let X1,X2, . . . ,Xn be a sample from G(α,β). Find the method of moments estimator
for (α,β).

3. Let X1,X2, . . . ,Xn be a sample fromN(μ,σ2). Find the method of moments estimator
for (μ,σ2).

4. Let X1,X2, . . . ,Xn be a sample from B(α,β). Find the method of moments estimator
for (α,β).

5. A random sample of size n is taken from the lognormal PDF

f (x;μ,σ) = (σ
√

2π)−1x−1 exp

{
− 1

2σ2
(logx−μ)2

}
, x > 0.

Find the method of moments estimators for μ and σ2.

8.7 MAXIMUM LIKELIHOOD ESTIMATORS

In this section we study a frequently used method of estimation, namely, the method of
maximum likelihood estimation. Consider the following example.

Example 1. Let X ∼ b(n,p). One observation on X is available, and it is known that n is
either 2 or 3 and p = 1

2 or 1
3 . Our objective is to estimate the pair (n,p). The following

table gives the probability that X = x for each possible pair (n,p):

x (2, 1
2 ) (2, 1

3 ) (3, 1
2 ) (3, 1

3 ) Maximum Probability

0 1
4

4
9

1
8

8
27

4
9

1 1
2

4
9

3
8

12
27

1
2

2 1
4

1
9

3
8

6
27

3
8

3 0 0 1
8

1
27

1
8

The last column gives the maximum probability in each row, that is, for each value that
X assumes. If the value x = 1, say, is observed, it is more probable that it came from
the distribution b(2, 1

2 ) than from any of the other distributions and so on. The following
estimator is, therefore, reasonable in that it maximizes the probability of the observed
value:

(n̂, p̂)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2, 1
3 ) if x = 0,

(2, 1
2 ) if x = 1,

(3, 1
2 ) if x = 2,

(3, 1
2 ) if x = 3.
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The principle of maximum likelihood essentially assumes that the sample is represen-
tative of the population and chooses as the estimator that value of the parameter which
maximizes the PDF (PMF) fθ(x).

Definition 1. Let (X1,X2, . . . ,Xn) be a random vector with PDF (PMF) fθ(x1,x2, . . . ,xn),
θ ∈Θ. The function

L(θ; x1,x2, . . . ,xn) = fθ(x1,x2, . . . ,xn), (1)

considered as a function of θ, is called the likelihood function.

Usually θ will be a multiple parameter. If X1,X2, . . . ,Xn are iid with PDF (PMF) fθ(x),
the likelihood function is

L(θ; x1,x2, . . . ,xn) =

n∏
i=1

fθ(xi). (2)

Let Θ⊆ Rk and X= (X1,X2, . . . ,Xn).

Definition 2. The principle of maximum likelihood estimation consists of choosing as an
estimator of θ a θ̂(X) that maximizes L(θ;x1,x2, . . . ,xn), that is, to find a mapping θ̂ of
Rn → Rk that satisfies

L(θ̂; x1,x2, . . . ,xn) = sup
θ∈θ

L(θ; x1,x2, . . . ,xn). (3)

(Constants are not admissible as estimators.)

If a θ̂ satisfying (3) exists, we call it a maximum likelihood estimator (MLE).
It is convenient to work with the logarithm of the likelihood function. Since log is a

monotone function,

logL(θ̂; x1, . . . ,xn) = sup
θ∈θ

logL(θ; x1, . . . ,xn). (4)

Let Θ be an open subset of Rk, and suppose that fθ(x) is a positive, differentiable
function of θ (that is, the first-order partial derivatives exist in the components of θ). If a
supremum θ̂ exists, it must satisfy the likelihood equations

∂ logL(θ̂; x1, . . . ,xn)

∂ θj
= 0, j = 1,2, . . . ,k, θ = (θ1, . . . ,θk). (5)

Any nontrivial root of the likelihood equations (5) is called an MLE in the loose sense.
A parameter value that provides the absolute maximum of the likelihood function is called
an MLE in the strict sense or, simply, an MLE.

Remark 1. If Θ ⊆ R, there may still be many problems. Often the likelihood equa-
tion ∂ L/∂ θ = 0 has more than one root, or the likelihood function is not differentiable
everywhere in Θ, or θ̂ may be a terminal value. Sometimes the likelihood equation
may be quite complicated and difficult to solve explicitly. In that case one may have to
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resort to some numerical procedure to obtain the estimator. Similar remarks apply to the
multiparameter case.

Example 2. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), where both μ and σ2 are
unknown. Here Θ= {(μ,σ2),−∞< μ <∞, σ2 > 0}. The likelihood function is

L(μ,σ2; x1, . . . ,xn) =
1

σn(2π)n/2
exp

{
−

n∑
i=1

(xi −μ)2

2σ2

}

and

logL(μ,σ2; x) =−n
2
logσ2 − n

2
log(2π)−

∑n
1(xi −μ)2

2σ2
.

The likelihood equations are

1
σ2

n∑
i=1

(xi −μ) = 0

and

−n
2

1
σ2

+
1

2σ4

n∑
i=1

(xi −μ)2 = 0.

Solving the first of these equations for μ, we get μ̂ = X and, substituting in the second,
σ̂2 =

∑n
i=1[(Xi−X)2/n]. We see that (μ̂, σ̂2)∈Θ with probability 1. We show that (μ̂, σ̂2)

maximizes the likelihood function. First note that X maximizes L(μ,σ2; x) whatever σ2

is, since L(μ,σ2; x) → 0 as |μ| → ∞, and in that case L(μ̂,σ2; x) → 0 as σ2 → 0 or ∞
whenever θ̂ ∈Θ, θ̂ = (μ̂, σ̂2).

Note that σ̂2 is not unbiased for σ2. Indeed, Eσ̂2 = [(n−1)/n]σ2. But nσ̂2/(n−1) = S2

is unbiased, as we already know. Also, μ̂ is unbiased, and both μ̂ and σ̂2 are consistent. In
addition, μ̂ and σ̂2 are method of moments estimators for μ and σ2, and (μ̂, σ̂2) is jointly
sufficient.

Finally, note that μ̂ is the MLE of μ if σ2 is known; but if μ is known, the MLE of σ2

is not σ̂2 but
∑n

1(Xi −μ)2/n.

Example 3. Let X1,X2, . . . ,Xn be a sample from PMF

PN(k) =

⎧⎨
⎩

1
N
, k = 1,2, . . . ,N,

0 otherwise.

The likelihood function is

L(N; k1,k2, . . . ,kn) =

⎧⎨
⎩

1
Nn

, 1 ≤max(k1, . . . ,kn)≤ N,

0, otherwise.

Clearly the MLE of N is given by

N̂(X1,X2, . . . ,Xn) = max(X1,X2, . . . ,Xn),
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if we take any α̂ < N̂ as the MLE, then Pα̂(k1,k2, . . . ,kn) = 0; and if we take any β̂ > N̂
as the MLE, then Pβ̂(k1,k2, . . . ,kn) = 1/(β̂)n < 1/(N̂)n = PN̂(k1,k2, . . . ,kn).

We see that the MLE N̂ is consistent, sufficient, and complete, but not unbiased.

Example 4. Consider the hypergeometric PMF

PN(x) =

⎧⎪⎨
⎪⎩
(M

x

)(N−M
n−x

)
(N

n

) , max(0,n−N +M)≤ x ≤min(n,M),

0, otherwise.

To find the MLE N̂ = N̂(X) of N consider the ratio

R(N) =
PN(x)

PN−1(x)
=

N −n
N

N −M
N −M−n+ x

.

For values of N for which R(N) > 1, PN(x) increases with N, and for values of N for
which R(N)< 1, PN(x) is a decreasing function of N:

R(N)> 1 if and only if N <
nM
x

and

R(N)< 1 if and only if N >
nM
x

.

It follows that PN(x) reaches its maximum value where N ≈ nM/x. Thus N̂(X) = [nM/X],
where [x] denotes the largest integer ≤ x.

Example 5. Let X1,X2, . . . ,Xn be a sample from U[θ− 1
2 ,θ+

1
2 ]. The likelihood function is

L(θ; x1,x2, . . . ,xn) =

⎧⎪⎨
⎪⎩

1 if θ− 1
2 ≤min(x1, . . . ,xn)

≤max(x1, . . . ,xn)≤ θ+ 1
2 ,

0 otherwise.

Thus L(θ; x) attains its maximum provided that

θ− 1
2
≤min(x1, . . . ,xn) and θ+

1
2
≥max(x1, . . . ,xn),

or when

θ <min(x1, . . . ,xn)+
1
2

and θ ≥max(x1, . . . ,xn)−
1
2
.

It follows that every statistic T(X1,X2, . . . ,Xn) such that

max
1≤i≤n

Xi −
1
2
≤ T(X1,X2, . . . ,Xn)≤ min

1≤i≤n
Xi +

1
2

(6)
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is an MLE of θ. Indeed, for 0 < α < 1,

Tα(X1, . . . ,Xn) = max
1≤i≤n

Xi −
1
2
+α(1+ min

1≤i≤n
Xi − max

1≤i≤n
Xi)

lies in interval (6), and hence for each α, 0 < α < 1, Tα(X1, . . . ,Xn) is an MLE of θ. In
particular, if α= 1

2 ,

T1/2(X1, . . . ,Xn) =
minXi +maxXi

2

is an MLE of θ.

Example 6. Let X ∼ b(1,p), p ∈ [ 1
4 ,

3
4 ]. In this case L(p; x) = px(1−p)1−x, x = 0,1, and

we cannot differentiate L(p; x) to get the MLE of p, since that would lead to p̂ = x, a value
that does not lie in Θ= [ 1

4 ,
3
4 ]. We have

L(p; x) =

{
p, x = 1,

1−p, x = 0,

which is maximized if we choose p̂(x) = 1
4 if x = 0, and = 3

4 if x = 1. Thus the MLE of p
is given by

p̂(X) =
2X+1

4
.

Note that Epp̂(X) = (2p+1)/4, so that p̂ is biased. Also, the mean square error for p̂ is

Ep(p̂(X)−p)2 =
1
16

Ep(2X+1−4p)2 =
1
16

.

In the sense of the MSE, the MLE is worse than the trivial estimator δ(X) = 1
2 , for

Ep(
1
2 −p)2 = ( 1

2 −p)2 ≤ 1
16 for p ∈ [ 1

4 ,
3
4 ].

Example 7. Let X1,X2, . . . ,Xn be iid b(1,p) RVs, and suppose that p ∈ (0,1). If
(0,0, . . . ,0)((1,1, . . . ,1)) is observed, X = 0(X = 1) is the MLE, which is not an admissible
value of p. Hence an MLE does not exist.

Example 8. (Oliver [78]). This example illustrates a distribution for which an MLE is
necessarily an actual observation, but not necessarily any particular observation. Let
X1,X2, . . . ,Xn be a sample from PDF

fθ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
α

x
θ
, 0 ≤ x ≤ θ,

2
α

α− x
α−θ

, θ ≤ x ≤ α,

0, otherwise,
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where α > 0 is a (known) constant. The likelihood function is

L(θ; x1,x2, . . . ,xn) =

(
2
α

)n∏
xi≤θ

(xi

θ

)∏
xi>0

(
α− xi

α−θ

)
,

where we have assumed that observations are arranged in increasing order of magnitude,
0 ≤ x1 < x2 < · · · < xn ≤ α. Clearly L is continuous in θ (even for θ = some xi) and
differentiable for values of θ between any two xi’s. Thus, for xj < θ < xj+1, we have

L(θ) =

(
2
α

)n

θ−j(α−θ)−(n−j)
j∏

i=1

xi

n∏
i=j+1

(α− xi),

∂ logL
∂ θ

=− j
θ
+

n− j
α−θ

, and
∂2 logL
∂ θ2

=
j
θ2

+
n− j

(α−θ)2
> 0.

It follows that any stationary value that exists must be a minimum, so that there can be no
maximum in any range xj < θ < xj+1. Moreover, there can be no maximum in 0 ≤ θ < x1

or xn < θ ≤ α. This follows since, for 0 ≤ θ < x1,

L(θ) =

(
2
α

)n

(α−θ)−n
n∏

i=1

(α− xi)

is a strictly increasing function of θ. By symmetry, L(θ) is a strictly decreasing function
of θ in xn < θ ≤ α. We conclude that an MLE has to be one of the observations.

In particular, let α = 5 and n = 3, and suppose that the observations, arranged in
increasing order of magnitude, are 1,2,4. In this case the MLE can be shown to be θ̂ = 1,
which corresponds to the first-order statistic. If the sample values are 2,3,4, the third-order
statistic is the MLE.

Example 9. Let X1,X2, . . . ,Xn be a sample from G(r,1/β); β > 0 and r > 0 are both
unknown. The likelihood function is

L(β,r; x1,x2, . . . ,xn) =

⎧⎨
⎩

βnr

{Γ(r)}n

∏n
i=1 xr−1

i exp
(
−β
∑n

i=1 xi
)
, xi ≥ 0,

0, otherwise.

Then

logL(β,r) = nr logβ−n logΓ(r)+(r−1)
n∑

i=1

logxi −β

n∑
i=1

xi,

∂ logL(β,r)
∂ β

=
nr
β

−
n∑

i=1

xi = 0,

∂ logL(β,r)
∂ r

= n logβ−n
Γ′(r)
Γ(r)

+
n∑

i=1

logxi = 0.

The first of the likelihood equations yields β̂(x1,x2, . . . ,xn) = r̂/x̄, while the second gives

n log
r
x
+

n∑
i=1

logxi −n
Γ′(r)
Γ(r)

= 0,
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that is,

log r− Γ′(r)
Γ(r)

= logx− 1
n

n∑
i=1

logxi,

which is to be solved for r̂. In this case, the likelihood equation is not easily solvable and
it is necessary to resort to numerical methods, using tables for Γ′(r)/Γ(r).

Remark 2. We have seen that MLEs may not be unique, although frequently they are.
Also, they are not necessarily unbiased even if a unique MLE exists. In terms of MSE,
an MLE may be worthless. Moreover, MLEs may not even exist. We have also seen that
MLEs are functions of sufficient statistics. This is a general result, which we now prove.

Theorem 1. Let T be a sufficient statistic for the family of PDFs (PMFs) {fθ : θ ∈Θ}. If
a unique MLE of θ exists, then it is a (nonconstant) function of T . If a MLE of θ exists but
is not unique, then one can find a MLE that is a function of T .

Proof. Since T is sufficient, we can write

L(θ) = fθ(x) = h(x)gθ(T(x)),

for all x, all θ, and some h and gθ. If a unique MLE θ̂ exists that maximizes L(θ), it also
maximizes gθ(T(x)) and hence θ̂ is a function of T . If a MLE of θ exists but is not unique,
we choose a particular MLE θ̂ from the set of all MLE’s which is a function of T .

Example 10. Let X1,X2, . . . ,Xn be a random sample from U[θ,θ+ 1], θ ∈ R. Then the
likelihood function is given by

L(θ;x) =

(
1
2

)n

I[θ−1≤x(1)≤x(n)≤θ+1](x).

We note that T(X) = (X(1),X(n)) is jointly sufficient for θ and any θ satisfying

θ−1 ≤ x(1) ≤ x(n) ≤ θ+1,

or, equivalently,

x(n)−1 ≤ θ ≤ x(1)+1

maximizes the likelihood and hence is an MLE for θ. Thus, for 0 ≤ α≤ 1,

θ̂α = α(X(n)−1)+(1−α)(X(1)+1)

is an MLE of θ. If α is a constant independent of the X’s, then θ̂α is a function of T . If,
on the other hand, α depends on the X’s, then θ̂α may not be a function of T alone. For
example

θ̂α = (sin2 X1)(X(n)−1)+(cos2 X1)(X(1)+1)

is an MLE of θ but not a function of T alone.
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Theorem 2. Suppose that the regularity conditions of the FCR inequality are satisfied and
θ belongs to an open interval on the real line. If an estimator θ̂ of θ attains the FCR lower
bound for the variance, the likelihood equation has a unique solution θ̂ that maximizes the
likelihood.

Proof. If θ̂ attains the FCR lower bound, we have [see (8.5.8)]

∂ log fθ(X)

∂ θ
= [k(θ)]−1[θ̂(X)−θ]

with probability 1, and the likelihood equation has a unique solution θ = θ̂.
Let us write A(θ) = [k(θ)]−1. Then

∂2 log fθ(X)

∂ θ2
= A′(θ)(θ̂−θ)−A(θ),

so that

∂2 log fθ(X)

∂ θ2

∣∣∣∣
θ=θ̂

=−A(θ).

We need only to show that A(θ)> 0.
Recall from (8.5.4) with ψ(θ) = θ that

Eθ

{
[T(X)−θ]

∂ log fθ(X)

∂θ

}
= 1,

and substituting T(X)−θ = k(θ) ∂ log fθ(X)
∂θ we get

k(θ)Eθ

{
∂ log fθ(X)

∂θ

}2

= 1.

That is,

A(θ) = E

{
∂ log fθ(X)

∂θ

}2

> 0

and the proof is complete.

Remark 3. In Theorem 2 we assumed the differentiability of A(θ) and the existence of the
second-order partial derivative ∂2 log fθ/∂ θ2. If the conditions of Theorem 2 are satisfied,
the most efficient estimator is necessarily the MLE. It does not follow, however, that every
MLE is most efficient. For example, in sampling from a normal population, σ̂2 =

∑n
1(Xi−

X)2/n is the MLE of σ2, but it is not most efficient. Since
∑

(Xi −X)2/σ2 is χ2(n− 1),
we see that var(σ̂2) = 2(n−1)σ4/n2, which is not equal to the FCR lower bound, 2σ4/n.
Note that σ̂2 is not even an unbiased estimator of σ2.

We next consider an important property of MLEs that is not shared by other methods
of estimation. Often the parameter of interest is not θ but some function h(θ). If θ̂ is MLE
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of θ what is the MLE of h(θ)? If λ = h(θ) is a one to one function of θ, then the inverse
function h−1(λ) = θ is well defined and we can write the likelihood function as a function
of λ. We have

L∗(λ;x) = L(h−1(λ);x)

so that

sup
λ

L∗(λ;x) = sup
λ

L(h−1(λ);x) = sup
θ

L(θ;x).

It follows that the supremum of L∗ is achieved at λ= h(θ̂). Thus h(θ̂) is the MLE of h(θ).
In many applications λ= h(θ) is not one-to-one. It is still tempting to take λ̂= h(θ̂) as

the MLE of λ. The following result provides a justification.

Theorem 3 (Zehna [122]). Let {fθ : θ ∈Θ} be a family of PDFs (PMFs), and let L(θ) be
the likelihood function. Suppose that Θ ⊆ Rk, k ≥ 1. Let h : Θ → Λ be a mapping of Θ
onto Λ, where Λ is an interval in Rp(1 ≤ p ≤ k). If θ̂ is an MLE of θ, then h(θ̂) is an MLE
of h(θ).

Proof. For each λ ∈ Λ, let us define

Θλ = {θ : θ ∈Θ, h(θ) = λ}

and

M(λ; x) = sup
θ∈Θλ

L(θ;x).

Then M defined on Λ is called the likelihood function induced by h. If θ̂ is any MLE of
θ, then θ̂ belongs to one and only one set, Θλ̂. Since θ̂ ∈Θλ̂, λ̂= h(θ̂). Now

M(λ̂; x) = sup
θ∈Θλ

L(θ; x)≥ L(θ̂; x)

and λ̂ maximizes M, since

M(λ̂; x)≤ sup
λ∈Λ

M(λ; x) = sup
θ∈Θλ

L(θ; x) = L(θ̂;x),

so that M(λ̂; x) = supλ∈Λ M(λ; x). It follows that λ̂ is an MLE of h(θ), where λ̂= h(θ̂).

Example 11. Let X ∼ b(1,p), 0 ≤ p ≤ 1, and let h(p) = var(X) = p(1− p). We wish to
find the MLE of h(p). Note that Λ= [0, 1

4 ]. The function h is not one-to-one. The MLE of
p based on a sample of size n is p̂(X1, . . . ,Xn) = X. Hence the MLE of parameter h(p) is
h(X) = X(1−X).

Example 12. Consider a random sample from G(1,β). It is required to find the MLE of β
in the following manner. A sample of size n is taken, and it is known only that k, 0≤ k ≤ n,
of these observations are ≤ M, where M is a fixed positive number.
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Let p = P{Xi ≤ M} = 1 − e−M/β , so that −M/β = log(1 − p) and β = M/ log[1/
(1 − p)]. Therefore, the MLE of β is M/ log[1/(1 − p̂)], where p̂ is the MLE of p. To
compute the MLE of p we have

L(p; x1,x2, . . . ,xn) = pk(1−p)n−k,

so that the MLE of p is p̂ = k/n. Thus the MLE of β is

β̂ =
M

log[n/(n− k)]
.

Finally we consider some important large-sample properties of MLE’s. In the following
we assume that {fθ, θ ∈Θ} is a family of PDFs (PMFs), where Θ is an open interval on R.
The conditions listed below are stated when fθ is a PDF. Modifications for the case where
fθ is a PMF are obvious and will be left to the reader.

(i) ∂ log fθ/∂ θ,∂2 log fθ/∂ θ2,∂3 log fθ/∂ θ3 exist for all θ ∈Θ and every x. Also,∫ ∞

−∞

∂ fθ(x)
∂ θ

dx = Eθ
∂ log fθ(X)

∂ θ
= 0 for all θ ∈Θ.

(ii)
∫∞
−∞

∂2fθ(x)
∂ θ2

dx = 0 for all θ ∈Θ.

(iii) −∞<
∫∞
−∞

∂2 log fθ(x)
∂ θ2

fθ(x)dx < 0 for all θ.

(iv) There exists a function H(x) such that for all θ ∈Θ∣∣∣∣∂3 log fθ(x)
∂ θ3

∣∣∣∣< H(x) and
∫ ∞

−∞
H(x)fθ(x)dx = M(θ)<∞.

(v) There exists a function g(θ) which is positive and twice differentiable for every
θ ∈Θ, and a function H(x) such that for all θ∣∣∣∣ ∂2

∂ θ2

[
g(θ)

∂ log fθ
∂ θ

]∣∣∣∣< H(x) and
∫ ∞

−∞
H(x)fθ(x)dx <∞.

Note that the condition (v) is equivalent to condition (iv) with the added qualification
that g(θ) = 1.

We state the following results without proof.

Theorem 4 (Cramér [17]).

(a) Conditions (i), (iii), and (iv) imply that, with probability approaching 1, as n →∞,
the likelihood equation has a consistent solution.

(b) Conditions (i) through (iv) imply that a consistent solution θ̂n of the likelihood
equation is asymptotically normal, that is,

σ−1√n(θ̂n −θ)
L−→ Z,
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where Z is N(0,1) and

σ2 =

[
Eθ

{
∂ log fθ(X)

∂ θ

}2
]−1

.

On occasions one encounters examples where the conditions of Theorem 4 are not
satisfied and yet a solution of the likelihood equation is consistent and asymptotically
normal.

Example 13 (Kulldorf [57]). Let X ∼ N(0,θ), θ > 0. Let X1,X2, . . . ,Xn be n indepen-
dent observations on X. The solution of the likelihood equation is θ̂n =

∑n
i=1 X2

i /n. Also,
EX2 = θ, var(X2) = 2θ2, and

Eθ

{
∂ log fθ(X)

∂ θ

}2

=
1

2θ2
.

We note that

θ̂n
a.s.−−→ θ

and

√
n(θ̂n −θ) = θ

√
2

∑n
1 X2

i −nθ√
2n θ

L−→N(0,2θ2).

However,

∂3 log fθ
∂3θ

=− 1
θ3

+
3x2

θ4
→∞ as θ → 0

and is not bounded in 0 < θ <∞. Thus condition (iv) does not hold.

The following theorem covers such cases also.

Theorem 5 (Kulldorf [57]).

(a) Conditions (i), (iii), and (v) imply that, with probability approaching 1 as n →∞,
the likelihood equation has a solution.

(b) Conditions (i), (ii), (iii), and (v) imply that a consistent solution of the likelihood
equation is asymptotically normal.

Proof of Theorems 4 and 5. For proofs we refer to Cramér [17, p. 500], and Kulldorf [57].

Remark 4. It is important to note that the results in Theorems 4 and 5 establish the con-
sistency of some root of the likelihood equation but not necessarily that of the MLE when
the likelihood equation has several roots. Huzurbazar [47] has shown that under certain
conditions the likelihood equation has at most one consistent solution and that the like-
lihood function has a relative maximum for such a solution. Since there may be several
solutions for which the likelihood function has relative maxima, Cramér’s and Huzur-
bazar’s results still do not imply that a solution of the likelihood equation that makes the
likelihood function an absolute maximum is necessarily consistent.
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Wald [115] has shown that under certain conditions the MLE is strongly consistent. It
is important to note that Wald does not make any differentiability assumptions.

In any event, if the MLE is a unique solution of the likelihood equation, we can use
Theorems 4 and 5 to conclude that it is consistent and asymptotically normal. Note that
the asymptotic variance is the same as the lower bound of the FCR inequality.

Example 14. Consider X1,X2, . . . ,Xn iid P(λ) RVs, λ∈Θ= (0,∞). The likelihood equa-
tion has a unique solution, λ̂(x1, . . . ,xn) =X, which maximizes the likelihood function. We
leave the reader to check that the conditions of Theorem 4 hold and that MLE X is consis-
tent and asymptotically normal with mean λ and variance λ/n, a result that is immediate
otherwise.

We leave the reader to check that in Example 13 conditions of Theorem 5 are satisfied.

Remark 5. The invariance and the large sample properties of MLEs permit us to find
MLEs of parametric functions and their limiting distributions. The delta method intro-
duced in Section 7.5 (Theorem 1) comes in handy in these applications. Suppose in
Example 13 we wish to estimate ψ(θ) = θ2. By invariance of MLEs, the MLE of ψ(θ)
is ψ(θ̂n) where θ̂n =

∑n
1 X2

i /n is the MLE of θ. Applying Theorem 7.5.1 we see that ψ(θ̂n)
is AN(θ2,8θ4/n).

In Example 14, suppose we wish to estimate ψ(λ) = Pλ(X = 0) = e−λ. Then ψ(λ̂) =
e−X is the MLE of ψ(λ) and, in view of Theorem 7.5.1, ψ(λ̂)∼AN(e−λ,λe−2λ/n).

Remark 6. Neither Theorem 4 nor Theorem 5 guarantee asymptotic normality for a unique
MLE. Consider, for example, a random sample from U(0,θ]. Then X(n) is the unique MLE

for θ and in Problem 8.2.5 we asked the reader to show that n(θ−X(n))
L→ G(1,θ).

PROBLEMS 8.7

1. Let X1,X2, . . . ,Xn be iid RVs with common PMF (pdf) fθ(x). Find an MLE for θ in
each of the following cases:

(a) fθ(x) = 1
2 e−|x−θ|,−∞< x <∞.

(b) fθ(x) = e−x+θ, θ ≤ x <∞.

(c) fθ(x) = (θα)xα−1e−θxα , x > 0, and α known.

(d) fθ(x) = θ(1− x)θ−1, 0 ≤ x ≤ 1, θ > 1.

2. Find an MLE, if it exists, in each of the following cases:

(a) X ∼ b(n,θ): both n and θ ∈ [0,1] are unknown, and one observation is available.

(b) X1,X2, . . . ,Xn ∼ b(1,θ), θ ∈ [ 1
2 ,

3
4 ].

(c) X1,X2, . . . ,Xn ∼N(θ,θ2), θ ∈ R.

(d) X1,X2, . . . ,Xn is a sample from

P{X = y1}=
1−θ

2
, P{X = y2}=

1
2
, P{X = y3}=

θ

2
(0 < θ < 1).



400 PARAMETRIC POINT ESTIMATION

(e) X1,X2, . . . ,Xn ∼N(θ,θ), 0 < θ <∞.

(f) X ∼ C(θ,0).

3. Suppose that n observations are taken on an RV X with distribution N(μ,1),
but instead of recording all the observations one notes only whether or not the
observation is less than 0. If {X < 0} occurs m(< n) times, find the MLE of μ.

4. Let X1,X2, . . . ,Xn be a random sample from PDF

f (x; α,β) = β−1e−β−1(x−α), α < x <∞, −∞< α <∞, β > 0.

(a) Find the MLE of (α,β).

(b) Find the MLE of Pα,β{X1 ≥ 1}.

5. Let X1,X2, . . . ,Xn be a sample from exponential density fθ(x) = θe−θx, x ≥ 0, θ > 0.
Find the MLE of θ, and show that it is consistent and asymptotically normal.

6. For Problem 8.6.5 find the MLE for (μ,σ2).

7. For a sample of size 1 taken from N(μ,σ2), show that no MLE of (μ,σ2) exists.

8. For Problem 8.6.5 suppose that we wish to estimate N on the basis of observations
X1,X2, . . . ,XM:

(a) Find the UMVUE of N.

(b) Find the MLE of N.

(c) Compare the MSEs of the UMVUE and the MLE.

9. Let Xij(1= 1,2, . . . ,s; j= 1,2, . . . ,n) be independent RVs where Xij ∼N(μi,σ
2), i=

1,2, . . . ,s. Find MLEs for μ1,μ2, . . . ,μs, and σ2. Show that the MLE for σ2 is not
consistent as s →∞ (n fixed) (Neyman and Scott [77]).

10. Let (X,Y) have a bivariate normal distribution with parameters μ1,μ2,σ
2
1 ,σ

2
2, and ρ.

Suppose that n observations are made on the pair (X,Y), and N −n observations on
X that is, N−n observations on Y are missing. Find the MLE’s of μ1,μ2,σ

2
1 ,σ

2
2, and

ρ (Anderson [2]).

[Hint: If f (x,y; μ1,μ2,σ
2
1 ,σ

2
2 ,ρ) is the joint PDF of (X,Y) write

f (x,y; μ1,μ2,σ
2
1 ,σ

2
2 ,ρ) = f1(x; μ1,σ

2
1)fY|X(y | βx,σ

2
2(1−ρ2)),

where f1 is the marginal (normal) PDF of X, and fY|X is the conditional (normal) PDF
of Y , given x with mean

βx =

(
μ2 −ρ

σ2

σ1
μ1

)
+ρ

σ2

σ1
x

and variance σ2
2(1− ρ2). Maximize the likelihood function first with respect to μ1

and σ2
1 and then with respect to μ2 −ρ(σ2/σ1)μ1, ρσ2/σ1, and σ2

2(1−ρ2).]

11. In Problem 5, let θ̂ denote the MLE of θ. Find the MLE of μ = EX1 = 1/θ and its
asymptotic distribution.

12. In Problem 1(d), find the asymptotic distribution of the MLE of θ.
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13. In Problem 2(a), find MLE of d(θ) = θ2 and its asymptotic distribution.

14. Let X1,X2, . . . ,Xn be a random sample from some DF F on the real line. Suppose
we observe x1,x2, . . . ,xn which are all different. Show that the MLE of F is F∗

n , the
empirical DF of the sample.

15. Let X1,X2, . . . ,Xn be iid N(μ,1). Suppose Θ= {μ≥ 0}. Find the MLE of μ.

16. Let (X1,X2, . . . ,Xk−1) have a multinomial distribution with parameters n,p1, . . . ,
pk−1, 0 ≤ p1,p2, . . . ,pk−1 ≤ 1,

∑k−1
1 pj ≤ 1, where n is known. Find the MLE of

(p1,p2, . . . ,pk−1).

17. Consider the one parameter exponential density introduced in Section 5.5 in its
natural form with PDF

fθ(x) = exp{ηT(x)+D(η)+S(x)}.

(a) Show that the MGF of T(X) is given by

M(t) = exp{D(η)−D(η+ t)}

for t in some neighborhood of the origin. Moreover, EηT(X) = −D′(η) and
var(T(X)) =−D′′(η).

(b) If the equation EηT(X) = T(x) has a solution, it must be the unique MLE of η.

18. In Problem 1(b) show that the unique MLE of θ is consistent. Is it asymptotically
normal?

8.8 BAYES AND MINIMAX ESTIMATION

In this section we consider the problem of point estimation in a decision-theoretic setting.
We will consider here Bayes and minimax estimation.

Let {fθ : θ ∈Θ} be a family of PDFs (PMFs) and X1,X2, . . . ,Xn be a sample from this
distribution. Once the sample point (x1,x2, . . . ,xn) is observed, the statistician takes an
action on the basis of these data. Let us denote by A the set of all actions or decisions
open to the statistician.

Definition 1. A decision function δ is a statistic that takes values in A, that is, δ is a
Borel-measurable function that maps Rn into A.

If X= x is observed, the statistician takes action δ(X) ∈A.

Example 1. Let A= {a1,a2}. Then any decision function δ partitions the space of values
of (X1, . . . ,Xn), namely, Rn, into a set C and its complement Cc, such that if x ∈ C we
take action a1, and if x ∈ Cc action a2 is taken. This is the problem of testing hypotheses,
which we will discuss in Chapter 9.

Example 2. Let A=Θ. In this case we face the problem of estimation.
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Another element of decision theory is the specification of a loss function, which
measures the loss incurred when we take a decision.

Definition 2. Let A be an arbitrary space of actions. A nonnegative function L that maps
Θ×A into R is called a loss function.

The value L(θ,a) is the loss to the statistician if he takes action a when θ is the true
parameter value. If we use the decision function δ(X) and loss function L and θ is the true
parameter value, then the loss is the RV L(θ,δ(X)). (As always, we will assume that L is
a Borel-measurable function.)

Definition 3. Let D be a class of decision functions that map Rn into A, and let L be a
loss function on Θ×A. The function R defined on Θ×D by

R(θ,δ) = EθL(θ,δ(X)) (1)

is known as the risk function associated with δ at θ.

Example 3. Let A=Θ⊆ R, L(θ,a) = |θ−a|2. Then

R(θ,δ) = EθL(θ,δ(X)) = Eθ{δ(X)−θ}2,

which is just the MSE. If we restrict attention to estimators that are unbiased, the risk is
just the variance of the estimator.

The basic problem of decision theory is the following: Given a space of actions A, and a
loss function L(θ,a), find a decision function δ in D such that the risk R(θ,δ) is “minimum”
in some sense for all θ ∈ Θ. We need first to specify some criterion for comparing the
decision functions δ.

Definition 4. The principle of minimax is to choose δ∗ ∈D so that

max
θ

R(θ,δ∗)≤max
θ

R(θ,δ) (2)

for all δ in D. Such a rule δ∗, if it exists, is called a minimax (decision) rule.

If the problem is one of estimation, that is, if A=Θ, we call δ∗ satisfying (2) a minimax
estimator of θ.

Example 4. Let X ∼ b(1,p), p ∈ Θ = { 1
4 ,

1
2}, and A = {a1,a2}. Let the loss function be

defined as follows.

a1 a2

p1 =
1
4 1 4

p2 =
1
2 3 2
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The set of decision rules includes four functions: δ1, δ2, δ3, δ4, defined by δ1(0) = δ1(1) =
a1; δ2(0) = a1, δ2(1) = a2; δ3(0) = a2, δ3(1) = a1; and δ4(0) = δ4(1) = a2. The risk
function takes the following values

i R(p1, δi) R(p2, δi) Max R(p, δi) Min Max R(p, δi)
p1,p2 i p1,p2

1 1 3 3

2 7
4

5
2

5
2

5
2

3 13
4

5
2

13
4

4 4 2 4

Thus the minimax solution is δ2(x) = a1 if x = 0 and = a2 if x = 1.

The computation of minimax estimators is facilitated by the use of the Bayes estimation
method. So far, we have considered θ as a fixed constant and fθ(x) has represented the PDF
(PMF) of the RV X. In Bayesian estimation we treat θ as a random variable distributed
according to PDF (PMF) π(θ) onΘ. Also, π is called the a priori distribution. Now f (x | θ)
represents the conditional probability density (or mass) function of RVX, given that θ ∈Θ
is held fixed. Since π is the distribution of θ, it follows that the joint density (PMF) of θ
and X is given by

f (x,θ) = π(θ)f (x | θ). (3)

In this framework R(θ,δ) is the conditional average loss, E{L(θ,δ(X)) | θ}, given that θ
is held fixed. (Note that we are using the same symbol to denote the RV θ and a value
assumed by it.)

Definition 5. The Bayes risk of a decision function δ is defined by

R(π,δ) = EπR(θ,δ). (4)

If θ is a continuous RV and X is of the continuous type, then

R(π,δ) =
∫

R(θ,δ)π(θ)dθ

=

∫∫
L(θ,δ(x))f (x | θ)π(θ)dxdθ

=

∫∫
L(θ,δ(x))f (x,θ)dxdθ. (5)

If θ is discrete with PMF π and X is of the discrete type, then

R(π,δ) =
∑
θ

∑
x

L(θ,δ(x))f (x,θ). (6)

Similar expressions may be written in the other two cases.
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Definition 6. A decision function δ∗ is known as a Bayes rule (procedure) if it minimizes
the Bayes risk, that is, if

R(π,δ∗) = inf
δ

R(π,δ). (7)

Definition 7. The conditional distribution of RV θ, given X= x, is called the a posteriori
probability distribution of θ, given the sample.

Let the joint PDF (PMF) be expressed in the form

f (x,θ) = g(x)h(θ | x), (8)

where g denotes the joint marginal density (PMF) of X. The a priori PDF (PMF) π(θ)
gives the distribution of θ before the sample is taken, and the a posteriori PDF (PMF)
h(θ | x) gives the distribution of θ after sampling. In terms of h(θ | x) we may write

R(π,δ) =
∫

g(x)

{∫
L(θ, δ(x))h(θ | x)dθ

}
dx (9)

or

R(π,δ) =
∑
x

g(x)

{∑
θ

L(θ,δ(x))h(θ | x)
}
, (10)

depending on whether f and π are both continuous or both discrete. Similar expressions
may be written if only one of f and π is discrete.

Theorem 1. Consider the problem of estimation of a parameter θ ∈ Θ ⊆ R with respect
to the quadratic loss function L(θ,δ) = (θ− δ)2. A Bayes solution is given by

δ(x) = E{θ |X= x} (11)

(δ(x) defined by (11) is called the Bayes estimator).

Proof. In the continuous case, if π is the prior PDF of θ, then

R(π,δ) =
∫

g(x)

{∫
[θ− δ(x)]2 h(θ | x)dθ

}
dx,

where g is the marginal PDF of X, and h is the conditional PDF of θ, given x. The
Bayes rule is a function δ that minimizes R(π,δ). Minimization of R(π,δ) is the same
as minimization of ∫

[θ− δ(x)]2 h(θ | x)dθ,

which is minimum if and only if

δ(x) = E{θ | x}.

The proof for the remaining cases is similar.
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Remark 1. The argument used in Theorem 1 shows that a Bayes estimator is one which
minimizes E{L(θ,δ(X)) |X}. Theorem 1 is a special case which says that if L(θ,δ(X)) =
[θ− δ(X)]2 the function

δ(x) =

∫
θh(θ | x)dθ

is the Bayes estimator for θ with respect to π, the a priori distribution on Θ.

Remark 2. Suppose T(X) is sufficient for the parameter θ. Then it is easily seen that the
posterior distribution of θ given x depends on x only through T and it follows that the
Bayes estimator of θ is a function of T .

Example 5. Let X ∼ b(n,p) and L(p, δ(x)) = [p− δ(x)]2. Let π(p) = 1 for 0 < p < 1 be
the a priori PDF of p. Then

h(p | x) =

(n
x

)
px(1−p)n−x∫ 1

0

(n
x

)
px(1−p)n−xdp

It follows that

E{p | x}=
∫ 1

0
ph{p | x}dp

=
x+1
n+2

.

Hence the Bayes estimator is

δ∗(X) =
X+1
n+2

.

The Bayes risk is

R(π,δ∗) =
∫

π(p)
n∑

x=0

[δ∗(x)−p]2f (x | p)dp

=

∫ 1

0
E

{(
X+1
n+2

−p

)2 ∣∣∣∣p
}

dp

=
1

(n+2)2

∫ 1

0
[np(1−p)+(1−2p)2]dp

=
1

6(n+2)
.

Example 6. Let X ∼N(μ,1), and let the a priori PDF of μ be N(0,1). Also, let L(μ,δ) =
[μ− δ(X)]2. Then

h(μ | x) = f (x,μ)
g(x)

=
π(μ)f (x | μ)

g(x)
,
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where

f (x) =
∫

f (x,μ)dμ

=
1

(2π)(n+1)/2
exp

(
−1

2

n∑
1

x2
i

)

·
∫ ∞

−∞
exp

{
−n+1

2

(
μ2 −2μ

nx
n+1

)}
dμ

=
(n+1)−1/2

(2π)n/2
exp

{
−1

2

∑
x2

i +
n2x2

2(n+1)

}
.

It follows that

h(μ | x) = 1√
2π/(n+1)

exp

{
−n+1

2

(
μ− nx

n+1

)2
}
,

and the Bayes estimator is

δ∗(x) = E{μ | x}= nx
n+1

=

∑n
1 xi

n+1
.

The Bayes risk is

R(π,δ∗) =
∫

π(μ)

∫
[δ∗(x)−μ]2f (x | μ)dxdμ

=

∫ ∞

−∞
Eμ

{
nX

n+1
−μ

}2

π(μ)dμ

=

∫ ∞

−∞
(n+1)−2(n+μ2)π(μ)dμ

=
1

n+1
.

The quadratic loss function used in Theorem 1 is but one example of a loss function in
frequent use. Some of many other loss functions that may be used are

|θ− δ(X)|, |θ− δ(X)|2
|θ| , |θ− δ|4, and

(
|θ− δ(X)|
|θ|+1

)1/2

.

Example 7. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. It is required to find a Bayes estimator
of μ of the form δ(x1, . . . ,xn) = δ(x), where x =

∑n
1 xi/n, using the loss function L(μ,δ) =

|μ−δ(x)|. From the argument used in the proof of Theorem 1 (or by Remark 1), the Bayes
estimator is one that minimizes the integral

∫
|μ− δ(x)|h(μ|x)dμ. This will be the case if

we choose δ to be the median of the conditional distribution (see Problem 3.2.5).
Let the a priori distribution of μ be N(θ,τ 2). Since X∼N(μ,σ2/n), we have

f (x,μ) =

√
n

2πστ
exp

{
− (μ−θ)2

2τ 2
− n(x−μ)2

2σ2

}
.
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Writing

(x−μ)2 = (x−θ+θ−μ)2 = (x−θ)2 −2(x−θ)(μ−θ)+(μ−θ)2,

we see that the exponent in f (x,μ) is

−1
2

{
(μ−θ)2

(
1
τ 2

+
n
σ2

)
− 2n(x−θ)(μ−θ)

σ2
+

n
σ2

(x−θ)2

}
.

It follows that the joint PDF of μ and X is bivariate normal with means θ,θ, variances τ 2,
τ 2+(σ2/n), and correlation coefficient τ/

√
[τ 2 +(σ2/n)]. The marginal of X isN(θ,τ 2+

(σ2/n)), and the conditional distribution of μ, given X, is normal with mean

θ+
τ√

τ 2 +(σ2/n)

τ√
τ 2 +(σ2/n)

(x−θ) =
θ(σ2/n)+ xτ 2

τ 2 +(σ2/n)

and variance

τ 2

[
1− τ 2

τ 2 +(σ2/n)

]
=

τ 2σ2/n
τ 2 +(σ2/n)

(see the proof of Theorem 1). The Bayes estimator is therefore the median of this
conditional distribution, and since the distribution is symmetric about the mean,

δ∗(x) =
θ(σ2/n)+ xτ 2

τ 2 +(σ2/n)

is the Bayes estimator of μ.

Clearly δ∗ is also the Bayes estimator under the quadratic loss function L(μ,δ) =
[μ− δ(X)]2.

Key to the derivation of Bayes estimator is the posteriori distribution, h(θ | x). The
derivation of the posteriori distribution h(θ | x), however, is a three-step process:

1. Find the joint distribution of X and θ given by π(θ)f (x | θ).
2. Find the marginal distribution with PDF (PMF) g(x) by integrating (summing) over

θ ∈ Ω.

3. Divide the joint PDF (PMF) by g(x).

It is not always easy to go through these steps in practice. It may not be possible to
obtain h(θ | x) in a closed form.

Example 8. Let X ∼N(μ,1) and the prior PDF of μ be given by

π(μ) =
e−(μ−θ)

[1+ e−(μ−θ)]2
,
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where θ is a location parameter. Then the joint PDF of X and μ is given by

f (x,μ) =
1√
2π

e−(x−μ)2/2 e−(μ−θ)

[1+ e−(μ−θ)]2

so that the marginal PDF of X is

g(x) =
eθ√
2π

∫ ∞

−∞

e−(x−μ)2/2e−μ

[1+ e−(μ−θ)]2
dμ.

A closed form for g is not known.

To avoid problem of integration such as that in Example 8, statisticians use the so-called
conjugate prior distributions. Often there is a natural parameter family of distributions
such that the posterior distributions also belong to the same family. These priors make the
computations much easier.

Definition 8. Let X ∼ f (x|θ) and π(θ) be the prior distribution on Θ. Then π is said to be
a conjugate prior family if the corresponding posterior distribution h(θ | x) also belongs
to the same family as π(θ).

Example 9. Consider Example 6 where π(μ) is N(0,1) and h(μ | x) is N
(

nx
n+1 ,

1
n+1

)
so

that both h and π belong to the same family. Hence N(0,1) is a conjugate prior for μ.

Example 10. Let X ∼ b(n,p), 0< p< 1, and π(p) be the beta PDF with parameters (α,β).
Then

h(p | x) =
px+α−1(1−p)β−1∫ 1

0 px+α−1(1−p)β−1dp
=

px+α−1(1−p)β−1

B(x+α,β)

which is also a beta density. Thus the family of beta distributions is a conjugate family of
priors for p.

Conjugate priors are popular because whenever the prior family is parametric the pos-
terior distributions are always computable, h(θ|x) being an updated parametric version of
π(θ). One no longer needs to go through a computation of g, the marginal PDF (PMF) of
X. Once h(θ|x) is known g, if needed, is easily determined from

g(x) =
π(θ)f (x|θ)

h(θ|x) .

Thus in Example 10, we see easily that g(x) is beta (x+α,β), while in Example 6 g is
given by

g(x) =
1

(n+1)1/2(2π)n/2
exp

{
−1

2

n∑
i=1

x2
i +

n2x2

2(n−1)

}
.
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Conjugate priors are usually associated with a wide class of sampling distributions,
namely, the exponential family of distributions.

Natural Conjugate Priors

Sampling Prior Posterior

PDF(PMF), f (x|θ) π(θ) h(θ|x)
N(θ,σ2) N(μ,τ 2) N

(
σ2μ+xτ 2

σ2+τ 2 , σ2τ 2

σ2+τ 2

)
G(ν,β) G(α,β) G(α+ν,β+ x)

b(n,p) B(α,β) B(α+ x,β+n− x)

P(λ) G(α,β) G(α+ x,β+1)

NB(r;p) B(α,β) B(α+ r,β+ x)

G(γ,1/θ) G(α,β) G(α+ν,β+ x)

Another easy way is to use a noninformative prior π(θ) though one needs some
integration to obtain g(x).

Definition 9. A PDF π(θ) is said to be a noninformative prior if it contains no information
about θ, that is, the distribution does not favor any value of θ over others.

Example 11. Some simple examples of noninformative priors are π(θ) = 1, π(θ) = 1
θ and

π(θ) =
√

I(θ). These may quite often lead to infinite mass and the PDF may be improper
(that is, does not integrate to 1).

Calculation of h(θ|x) becomes easier by-passing the calculation of g(x) when f (x|θ) is
invariant under a group G of transformations following Fraser’s [33] structural theory.

Let G be a group of Borel-measurable functions on Rn onto itself. The group operation
is composition, that is, if g1 and g2 are mappings from Rn onto Rn, g2g1 is defined by
g2g1(x) = g2(g1(x)). Also, G is closed under composition and inverse, so that all maps in
G are one-to-one. We define the group G of affine linear transformations g = {a,b} by

gx = a+bx, a ∈ R, b > 0.

The inverse of {a,b} is

{a,b}−1 =

{
−a

b
,

1
b

}
,

and the composition {a,b} and {c,d} ∈ G is given by

{a,b}{c,d}(x) = {a,b}(c+dx) = a+b(c+dx)

= (a+bc)+bdx = {a+bc,bd}(x).

In particular,

{a,b}{a,b}−1 = {a,b}
{
−a

b
,

1
b

}
= {0,1}= e.
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Example 12. Let X ∼N(μ,1) and let G be the group of translations G= {{b,1}, −∞<
b <∞}. Let X1, . . . ,Xn be a sample from N(μ,1). Then, we may write

Xi = {μ,1}Zi, i = 1, . . . ,n,

where Z1, . . . ,Zn are iid N(0,1).
It is clear that Z ∼N(0,1/n) with PDF√

n
2π

exp
{
−n

2
z2
}

and there is a one-to-one correspondence between values of {z,1} and {μ,1} given by

{x,1}= {μ,1}{z,1}= {μ+ z,1}.

Thus x = μ+ z with inverse map z = x−μ. We fix x and consider the variation in z as a
function of μ. Changing the PDF element of z to μ we get√

n
2π

exp
{
−n

2
(μ− x)2

}
as the posterior of μ given x with prior π(μ) = 1.

Example 13. Let X ∼N(0,σ2) and consider the scale group G= {{0,c}, c > 0}. Let X1,
X2, . . . ,Xn be iid N(0,σ2). Write

Xi = {0,σ}Zi, i = 1,2, . . . ,n,

where Zi are iid N(0,1) RVs. Then the RV nS2
z =
∑n

i=1 Z2
i ∼ χ2(n) with PDF

1

2
n
2 Γ( n

2 )
exp

{
−ns2

z

2

}
(ns2

z )
n
2 −1.

The values of {0,sz} are in one-to-one correspondence with those of {0,σ} through

{0,sx}= {0,σ}{0,sz},

where nS2
x =
∑n

i=1 X2
i , so that sx = σsz. Considering the variation in sz as a function of σ

for fixed sx we see that dsz = sx
dσ
σ2 . Changing the PDF element of sz to σ we get the PDF

of σ as

1
2n/2Γ( n

2 )
exp

{
− ns2

x

2σ2

}(
ns2

x

σ2

)( n
2 −1)

which is the same as the posterior of σ given sx with prior π(σ) = 1/σ.

Example 14. Let X1 . . .Xn be a sample from N(μ,σ2) and consider the affine linear group
G= {{a,b}, −∞< a <∞,b > 0}. Then

Xi = {μ,σ}Zi, i = 1, . . . ,n



BAYES AND MINIMAX ESTIMATION 411

where Zi’s are iid N(0,1). We know that the joint distribution of (Z,S2
z ) is given by

√
n

2π
exp

{
−nz2

2

}
dz

1√
( n−1

2 )

(
(n−1)s2

z

2

) n−1
2 −1

exp

{
− (n−1)s2

z

2

}
d

[
(n−1)s2

z

2

]
.

Further,the values of {z,sz} are in one-to-one correspondence with the values of {μ,σ}
through

{x,sx}= {μ,σ}{z,sz}= {μ+σz,σsz}

⇒ z =
x−μ

σ
and sz =

sx

σ
.

Consider the variation of (z,sz) as a function of (μ,σ) for fixed (x,sx). The Jacobian of
the transformation from {z,sz} to {μ,σ} is given by

J =

∣∣∣∣∣ −
1
σ − (x−μ)

σ2

0 − sx
σ2

∣∣∣∣∣= sx

σ3
.

Hence, the joint PDF of (μ,σ) given (x,sx) is given by

√
n

2π
exp

{
−n(μ− x)2

2σ2

}
1√(
n−1

2

)
(
(n−1)s2

x

2σ2

) n−1
2 −1

× exp

{
− (n−1)s2

x

2σ2

}(
(n−1)s2

x

2σ2

) n−1
2 −1(

(n−1)s2
x

σ3

)
.

This is the PDF one obtains if π(μ) = 1 and π(σ) = 1
σ and μ and σ are independent RV.

The following theorem provides a method for determining minimax estimators.

Theorem 2. Let {fθ : θ ∈Θ} be a family of PDFs (PMFs), and suppose that an estimator
δ∗ of θ is a Bayes estimator corresponding to an a priori distribution π on Θ. If the risk
function R(θ,δ∗) is constant on Θ, then δ∗ is a minimax estimator for θ.

Proof. Since δ∗ is the Bayes estimator of θ with constant risk r∗ (free of θ), we have

r∗ = R(π,δ∗) =
∫ ∞

−∞
R(θ,δ∗)π(θ)dθ

= inf
δ∈D

∫
R(θ,δ)π(θ)dθ

≤ sup
θ∈Θ

inf
δ∈D

R(θ,δ)≤ inf
δ∈D

sup
θ∈Θ

R(θ,δ).
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Similarly, since r∗ = R(θ,δ∗) for all θ ∈Θ, we have

r∗ = sup
θ∈Θ

R(θ,δ∗)≥ inf
δ∈D

sup
θ∈Θ

R(θ,δ).

Together we then have

sup
θ∈Θ

R(θ,δ∗) = inf
δ∈D

sup
θ∈Θ

R(θ,δ),

which means δ∗ is minimax.

The following examples show how to obtain constant risk estimators and the suitable
prior distribution.

Example 15. (Hodges and Lehmann [43]). Let X ∼ b(n,p), 0≤ p≤ 1. We seek a minimax
estimator of p of the form αX+β, using the squared error loss function. We have

R(p, δ) = Ep{αX+β−p}2 = Ep{α(X−np)+β+(αn−1)p}2

= [(αn−1)2 −α2n]p2 +[α2n+2β(αn−1)]p+β2,

which is a quadratic equation in p. To find α and β such that R(p, δ) is constant for all
p ∈Θ, we set the coefficients of p2 and p equal to 0 to get

(αn−1)2 −α2n = 0 and α2n+2β(αn−1) = 0.

It follows that

α=
1√

n(1+
√

n)
or

1√
n(
√

n−1)

and

β =
1

2(1+
√

n)
or − 1

2(
√

n−1)
.

Since 0≤ p≤ 1, we discard the second set of roots for both α and β, and then the estimator
is of the form

δ∗(x) =
X√

n(1+
√

n)
+

1
2(1+

√
n)

It remains to show that δ∗ is Bayes against some a priori PDF π.
Consider the natural conjugate priori PDF

π(p) = [β(α′,β′)]−1pα
′−1(1−p)β

′−1, 0 ≤ p ≤ 1, α′,β′ > 0.

The a posteriori PDF of p, given x, is expressed by

h(p | x) =
px+α′−1(1−p)n−x+β′−1

B(x+α′,n− x+β′)



BAYES AND MINIMAX ESTIMATION 413

It follows that

E{p | x}= B(x+α′+1,n− x+β′)

B(x+α′,n− x+β′)

=
x+α′

n+α′+β′ ,

which is the Bayes estimator for a squared error loss. For this to be of the form δ∗, we
must have

1√
n(1+

√
n)

=
1

n+α′+β′ and
1

2(1+
√

n)
=

α′

n+α′+β′ ,

giving α′ = β′ =
√

n/2. It follows that the estimator δ∗(x) is minimax with constant risk

R(p, δ∗) =
1

4(1+
√

n)2
for all p ∈ [0,1].

Note that the UMVUE (which is also the MLE) is δ(X) = X/n with risk R(p,d) =
p(1−p)/n. Comparing the two risks (Figs. 1 and 2), we see that

p(1−p)
n

≤ 1
4(1+

√
n)2

if and only if |p− 1
2
| ≥
√

1+2
√

n
2(1+

√
n)

,

so that

R(p, δ∗)< R(p, δ)

0.25

l/16

0.5 1 p

R

R(p, δ*)

Fig. 1 Comparison of R(p, δ) and R(p, δ∗), n = 1.
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0 0.5 1 p

R

R(p, δ*)

R(p, δ)

l/64

Fig. 2 Comparison of R(p, δ) and R(p, δ∗), n = 9.

in the interval ( 1
2 −an,

1
2 +an), where an → 0 as n →∞. Moreover,

supp R(p, δ)

supp R(p, δ∗)
=

1/4n
1/[4(1+

√
n)2]

=
n+2

√
n+1

n
→ 1 as n →∞.

Clearly, we would prefer the minimax estimator if n is small and would prefer the UMVUE
because of its simplicity if n is large.

Example 16. (Hodges and Lehmann [43]). A lot contains N elements, of which D are
defective. A random sample of size n produces X defectives. We wish to estimate D.
Clearly,

PD{X = k}=
(

D
k

)(
N −D
n− k

)(
N
n

)−1

,

EDX = n
D
N
, and σ2

D =
nD(N −n)(N −D)

N2(N −1)
.

Proceeding as in Example 8, we find a linear function of X with constant risk. Indeed,
ED(αX+β−D)2 = β2 when

α=
N

n+
√

n(N −n)/(N −1)
and β =

N
2

(
1− αn

N

)
.
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We show that αX+β is the Bayes estimator corresponding to a priori PMF

P{D = d}= c
∫ 1

0

(
N
d

)
pd(1−p)N−dpa−1(1−p)b−1 dp,

where a,b > 0, and c = Γ(a+b)/Γ(a)Γ(b). First note that
∑N

d=0 P{D = d}= 1 so that

N∑
d=0

(
N
d

)
Γ(a+b)
Γ(a)Γ(b)

Γ(a+d)Γ(N +b−d)
Γ(N +a+b)

= 1.

The Bayes estimator is given by

δ∗(k) =

∑N−n+k
d=k d

(d
k

)(N−d
n−k

)(N
d

)
Γ(a+d)Γ(N +b−d)∑N−n+k

d=k

(d
k

)(N−d
n−k

)(N
d

)
Γ(a+d)Γ(N +b−d)

.

A little simplification, writing d = (d−a)+a and using

(
d
k

)(
N −d
n− k

)(
N
d

)
=

(
N −n
d− k

)(
N
n

)(
n
k

)
,

yields

δ∗(k) =

∑N−n
i=0

(N−n
i

)
Γ(d+a+1)Γ(N +b−d)∑N−n

0

(N−n
i

)
Γ(d+a)Γ(N +b−d)

−a

= k
a+b+N
a+b+n

+
a(N −n)
a+b+n

.

Now putting

α=
a+b+N
a+b+n

and β =
a(N −n)
a+b+n

and solving for a and b, we get

a =
β

α−1
and b =

N −αn−β

α−1
.

Since a> 0, β > 0, and since b> 0, N >αn+β. Moreover,α> 1 if N > n+1. If N = n+1,
the result is obtained if we give D a binomial distribution with parameter p = 1

2 . If N = n,
the result is immediate.

The following theorem which is an extension of Theorem 2 is of considerable help to
prove minimaxity of various estimators.
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Theorem 3. Let {πk(θ); k ≥ 1} be a sequence of prior distributions on Θ and let
{δ∗k } be the corresponding sequence of Bayes estimators with Bayes risks R(πk;δ

∗
k ). If

limsupk→∞ R(πk;δ
∗
k ) = r∗ and there exists an estimator δ∗ for which

sup
θ∈Θ

R(θ,δ∗)≤ r∗

then δ∗ is minimax.

Proof. Suppose δ∗ is not minimax. Then there exists an estimator δ̃ such that

sup
θ∈Θ

R(θ, δ̃)≤ sup
θ∈Θ

R(θ,δ∗).

On the other hand, consider the Bayes estimators {δ∗k } corresponding to the priors {πk(θ)}.
We obtain

R(πk, δ
∗
k ) =

∫
R(θ,δ∗k )πk(θ)dθ (12)

≤
∫

R(θ, δ̃)πk(θ)dθ (13)

≤ sup
θ∈Θ

R(θ, δ̃), (14)

which contradicts supθ∈Θ R(θ,δ∗)≤ r∗. Hence δ∗ is minimax.

Example 17. Let X1, . . . ,Xn be a sample of size n from N(μ,1). Then, the MLE of μ is X
with variance 1

n . We show that X is minimax. Let μ∼ N(0, τ 2). Then the Bayes estimator
ofμ is X

(
nτ 2

1+nτ 2

)
. The Bayes risk of this estimator is R(π,δτ 2)= 1

n

(
nτ 2

1+τ 2

)
. Now, as τ 2 →∞

R(π,δ∗τ 2)→ 1
n which is the risk of X. Hence X is minimax.

Definition 10. A decision rule δ is inadmissible if there exists a δ∗ ∈ D such that
R(θ,δ∗)≤ R(θ,δ) where the inequality is strict for some θ ∈Θ; otherwise δ is admissible.

Theorem 4. If X1, . . . ,Xn is a sample from N(θ,1), then X is an admissible estimator of θ
under square error loss L(θ,a) = (θ−a)2.

Proof. Clearly, X ∼ N(θ, 1
n ). Suppose X is not admissible, then there exists another rule

δ∗(x) such that R(θ,δ∗) ≤ R(θ,X) while the inequality is strict for some θ = θ0 (say).
Now, the risk R(θ,δ) is a continuous function of θ and hence there exists an ε > 0 such
that R(θ,δ∗)< R(θ,X)− ε for |θ−θ0|< ε.

Now consider the prior N(0, τ 2). Then the Bayes estimator is δ(X) = X
(
1+ 1

nτ 2

)−1

with risk 1
n

(
nτ 2

1+nτ 2

)
. Thus,

R(π,X)−R(π,δτ 2) =
1
n

(
1

1+nτ 2

)
.
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However,

τ [R(π,δ∗)−R(π,X)]

= τ

∫
[R(θ,δ∗)−R(θ,X)]

1√
2πτ

exp

{
− 1

2τ 2
θ2

}
dθ

≤− ε√
2π

∫ θ0+ε

θ0−ε

exp

{
− 1

2τ 2
θ2

}
dθ.

We get

0 ≤ τ [R(π,δ∗)−R(π,X)]+ τ
[
R(π,X)−R(π,δτ 2

)
]

≤− ε√
2π

∫ θ0+ε

θ0+ε

exp

{
− 1

2τ 2
θ2

}
dθ+

τ

n
1

(1+nτ 2)
.

The right-hand side goes to − 2ε2
√

2π
as τ →∞. This result leads to a contradiction that δ∗

is admissible. Hence X is admissible under squared loss.
Thus we have proved that X is an admissible minimax estimator of the mean of a normal

distribution N(θ,1).

PROBLEMS 8.8

1. It rains quite often in Bowling Green, Ohio. On a rainy day a teacher has essentially
three choices: (1) to take an umbrella and face the possible prospect of carrying it
around in the sunshine; (2) to leave the umbrella at home and perhaps get drenched;
or (3) to just give up the lecture and stay at home. Let Θ= {θ1,θ2}, where θ1 corre-
sponds to rain, and θ2, to no rain. Let A= {a1,a2,a3}, where ai corresponds to the
choice i, i = 1,2,3. Suppose that the following table gives the losses for the decision
problem:

θ1 θ2

a1 1 2

a2 4 0

a3 5 5

The teacher has to make a decision on the basis of a weather report that depends on
θ as follows.

θ1 θ2

W1 (Rain) 0.7 0.2

W2 (No rain) 0.3 0.8

Find the minimax rule to help the teacher reach a decision.
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2. Let X1,X2, . . . ,Xn be a random sample from P(λ). For estimating λ, using the
quadratic error loss function, an a priori distribution over Θ, given by PDF

π(λ) = e−λ if λ > 0,

= 0 otherwise,

is used:

(a) Find the Bayes estimator for λ.

(b) If it is required to estimate ϕ(λ) = e−λ with the same loss function and same a
priori PDF, find the Bayes estimator for ϕ(λ).

3. Let X1,X2, . . . ,Xn be a sample from b(1,θ). Consider the class of decision rules δ of
the form δ(x1,x2, . . . ,xn) = n−1∑n

i=1 xi+α, where α is a constant to be determined.
Find α according to the minimax principle, using the loss function (θ− δ)2, where
δ is an estimator for θ.

4. Let δ∗ be a minimax estimator for aψ(θ) with respect to the squared error loss
function. Show that aδ∗+b(a,b constants) is a minimax estimator for aψ(θ)+b.

5. Let X ∼ b(n,θ), and suppose that the a priori PDF of θ is U(0,1). Find the Bayes
estimator of θ, using loss function L(θ,δ) = (θ− δ)2/[θ(1− θ)]. Find a minimax
estimator for θ.

6. In Example 5 find the Bayes estimator for p2.

7. Let X1,X2, . . . ,Xn be a random sample from G(1,1/λ). To estimate λ, let the a priori
PDF on λ be π(λ) = e−λ, λ > 0, and let the loss function be squared error. Find the
Bayes estimator of λ.

8. Let X1,X2, . . . ,Xn be iid U(0,θ) RVs. Suppose the prior distribution of θ is a Pareto
PDF π(θ) = αaα

θα+1 for θ ≥ a, = 0 for θ < a. Using the quadratic loss function find
the Bayes estimator of θ.

9. Let T be the unique Bayes estimator of θ with respect to the prior density π. Then
T is admissible.

10. Let X1,X2, . . . ,Xn be iid with PDF fθ(x) = exp{−(x−θ)}, x > θ. Take π(θ) = e−θ,
θ > 0. Find the Bayes estimator of θ under quadratic loss.

11. For the PDF of Problem 10 consider the estimation of θ under quadratic loss. Con-
sider the class of estimators a

(
X(1)− 1

n

)
for all a > 0. Show that X(1) − 1/n is

minimax in this class.

8.9 PRINCIPLE OF EQUIVARIANCE

Let P= {Pθ : θ ∈Θ} be a family of distributions of some RV X. Let X⊆ Rn be sample
space of values of X. In Section 8.8 we saw that the statistical decision theory revolves
around the following four basic elements: the parameter space Θ, the action space A, the
sample space X, and the loss function L(θ,a).

Let G be a group of transformations which map X onto itself. We say that P is invariant
under G if for each g ∈ G and every θ ∈ Θ, there is a unique θ′ = ḡθ ∈ Θ such that
g(X)∼ Pḡθ whenever X∼ Pθ . Accordingly,

Pθ{g(X) ∈ A}= Pḡθ{X ∈ A} (1)
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for all Borel subsets in Rn. We note that the invariance of P under G does not change the
class of distributions we begin with; it only changes the parameter or index θ to ḡθ. The
group G induces Ḡ, a group of transformations ḡ on Θ onto itself.

Example 1. Let X ∼ b(n,p), 0 ≤ p ≤ 1. Let G= {g,e}, where g(x) = n−x, and e(x) = x.
Then gg−1 = e. Clearly, g(X) ∼ b(n,1− p) so that ḡp = 1− p and ēp = e. The group G

leaves {b(n,p); 0 ≤ p ≤ 1} invariant.

Example 2. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. Consider the affine group of trans-
formations G = {{a,b}, a ∈ R, b > 0} on X. The joint PDF of {a,b}X = (a+ bX1, . . . ,
a+bXn) is given by

f (x1,x2, . . . ,xn) =
1

(bσ
√

2π)n
exp

{
− 1

2b2σ2

n∑
i=1

(xi −a−bμ)2

}

and we see that

ḡ(μ,σ) = (a+μσ,bσ) = {a,b}{μ,σ}.

Clearly G leaves the family of joint PDFs of X invariant.

In order to apply invariance considerations to a decision problem we need also to ensure
that the loss function is invariant.

Definition 1. A decision problem is said to be invariant under a group G if

(i) P is invariant under G and

(ii) the loss function L is invariant in the sense that for every g ∈ G and a ∈A there is
a unique a′ ∈A such that

L(θ,a) = L(ḡθ,a′) for all θ.

The a′ ∈ A in Definition 1 is uniquely determined by g and may be denoted by g̃(a).
One can show that G̃= {g̃ : g ∈ G} is a group of transformations of A into itself.

Example 3. Consider the estimation of μ in sampling from N(μ,1). In Example 8.9.2
we have shown that the normal family is invariant under the location group G =
{{b,1},−∞< b <∞}. Consider the quadratic loss function

L(μ,a) = (μ−a)2.

Then, {b,1}a = b+a and {b,1}{μ,1}= {b+μ,1}. Hence,

L({b,1}μ,{b,1}a) = L[(b+μ)− (b+a)]2 = (μ−a)2 = L(μ,a).

Thus L(μ,a) is invariant under G and the problem of estimation of μ is invariant under
group G.
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Example 4. Consider the normal family N(0,σ2) which is invariant under the scale group
G= {{0,c},c > 0}. Let the loss function be

L(σ2,a) =
1
σ4

(σ2 −a)2.

Now, {0,c}a = ca and {0,c}{0,σ2}= {0,cσ2} and

L[{0,c}σ2,{0,c}a] =
1

c2σ4
(cσ2 − ca)2 =

1
σ4

(σ2 −a)2 = L(σ2,a).

Thus, the loss function L(σ2,a) is invariant under G= {{0,c},c > 0} and the problem of
estimation of σ2 is invariant.

Example 5. Consider the loss function

L(σ2,a) =
a
σ2

−1− log
a
σ2

for the estimation of σ2 from the normal family N(0,σ2). We show that this loss-function
is invariant under the scale group. Since

{0,c}σ2 = {0,cσ2} and {0,c}{0,a}= {0,ca},

we have

L[{0,c}σ2,{0,c}a] =
ca

cσ2
−1− log

ca
cσ2

= L(σ2,a).

Let us now return to the problem of estimation of a parametric function ψ : Θ → R.
For convenience let us take Θ⊆ R and ψ(θ) = θ. Then A=Θ and G̃= Ḡ.

Suppose θ is the mean of PDF fθ, G = {{b,1}, b ∈ R}, and {fθ} is invariant under
G. Consider the estimator ∂(X) = X. What we want in an estimator ∂∗ of θ is that it
changes in the same prescribed way as the data are changed. In our case, since X changes
to {b,1}X=X+b we would like X to transform to {b,1}X = X+b.

Definition 2. An estimator δ(X) of θ is said to be equivariant, under G, if

δ(gX) = ḡδ(X) for all g ∈ G, (2)

where we have written gX for g(X) for convenience.

Indeed g on S induces ḡ on Θ. Thus if X ∼ fθ, then gX ∼ fḡθ so if δ(X) estimates
θ then δ(gX) should estimate ḡθ. The principle of equivariance requires that we restrict
attention to equivariant estimators and select the “best” estimator in this class in a sense
to be described later in this section.
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Example 6. In Example 3, consider the estimators ∂1(X) = X, ∂2(X) = (X(1)+X(n))/2,
and ∂3(X) = αX, α a fixed real number. Then G= {(b,1), −∞< b <∞} induces Ḡ= G

on Θ and both ∂1,∂2 are equivariant under G. The estimator δ3 is not equivariant unless
α= 1. In Example 8.9.1 ∂(X) = X/n is an equivariant estimator of p.

In Example 6 consider the statistic ∂(X) = S2. Note that under the translation group
{b,1}X = X+ b and ∂({b,1}X) = ∂(X). That is, for every g ∈ G, ∂(gX) = ∂(X). A
statistic ∂ is said to be invariant under a group of transformations G if ∂(gX) = ∂(X) for
all g ∈ G. When G is the translation group, an invariant statistic (function) under G is called
location-invariant. Similarly if G is the scale group, we call ∂ scale-invariant and if G is
the location-scale group, we call ∂ location-scale invariant. In Example 6 ∂4(X) = S2 is
location-invariant but not equivariant, and ∂2(X) and ∂3(X) are not location-invariant.

A very important property of equivariant estimators is that their risk function is constant
on orbits of θ.

Theorem 1. Suppose ∂ is an equivariant estimator of θ in a problem which is invariant
under G. Then the risk function of ∂ satisfies

R(ḡθ,∂) = R(θ,∂) (3)

for all θ ∈Θ and g ∈ G. If, in particular, Ḡ is transitive over Θ, then R(θ,∂) is independent
of θ.

Proof. We have for θ ∈Θ and g ∈ G

R(θ,∂(X)) = EθL(θ,∂(X))

= EθL(ḡθ, ḡ∂(X)) (Invariance of L)

= EθL(ḡθ,∂(g(X)) (Equivariance of δ)

= EḡθL(ḡθ,∂(X)) (Invariance of {Pθ})
= R(ḡθ,∂(X)).

In the special case when Ḡ is transitive over Θ then for any θ1,θ2 ∈Θ, there exists a ḡ ∈ Ḡ

such that θ2 = ḡθ1. It follows that

R(θ2,∂) = R(ḡθ1,∂) = R(θ1,∂)

so that R is independent of θ.

Remark 1. When the risk function of every equivariant estimator is constant, an estimator
(in the class equivariant estimators) which is obtained by minimizing the constant is called
the minimum risk equivariant (MRE) estimator.

Example 7. Let X1,X2, . . . ,Xn iid RVs with common PDF

f (x,θ) = exp{−(x−θ)}, x ≥ θ, and = 0, if x < 0.
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Consider the location group G = {{b,1},−∞ < b < ∞} which induces Ḡ on Θ where
Ḡ = G. Clearly Ḡ is transitive. Let L(θ,∂) = (θ−∂)2. Then the problem of estimation of
θ is invariant and according to Theorem 1 the risk of every equivariant estimator is free of
θ. The estimator δ0(X) = X(1)− 1

n is equivariant under G since

δ0({b,1}X) = min
1≤i≤n

(Xi +b)− 1
n
= b+X(1)−

1
n
= b+ δ0(X).

We leave the reader to check that

R(θ,∂0) = Eθ

(
X(1)−

1
n
−θ

)2

=
1
n2

,

and it will be seen later that ∂0 is the MRE estimator of θ.

Example 8. In this example we consider sampling from a normal PDF. Let us first con-
sider estimation of μ when σ = 1. Let G = {{b,1}, −a < b < ∞}. Then ∂(X) = X is
equivariant under G and it has the smallest risk 1/n. Note that {x,1}−1 = {−x,1} may be
used to designate x on its orbits

{x,1}−1x= (x1 − x, . . . ,xn − x) = A(x).

Clearly A(x) is invariant under G and A(X) is ancillary to μ. By Basu’s theorem A(X)
and X̄ are independent.

Next consider estimation of σ2 with μ= 0 and G= {{0,c},c > 0}. Then S2
x =
∑n

1 X2
i

is an equivariant estimator of σ2. Note that {0,sx}−1 may be used to designate x on its
orbits

{0,sx}−1x=

(
x1

sx
, . . . ,

xn

sx

)
= A(x).

Again A(x) is invariant under G and A(X) is ancillary to σ2. Moreover, S2
x and A(X) are

independent.
Finally, we consider estimation of (μ,σ2) when G = {{b,c}, −a < b < ∞, c > 0}.

Then (X,S2
x), where S2

x =
∑n

1(Xi − X)2 is an equivariant estimator of (μ,σ2). Also
{x,sx}−1 may be used to designate x on its orbits

{x,sx}−1x=

(
x1 − x

sx
, . . . ,

xn − x
sx

)
= A(x).

Note that the statistic A(X) defined in each of the three cases considered in Example 8
is constant on its orbits. A statistic A is said to be maximal invariant if
(i) A is invariant, and
(ii) A is maximal, that is, A(x1) = A(x2)⇒ x1 = g(x2) for some g ∈ G.

We now derive an explicit expression for MRE estimator for a location parameter. Let
X1,X2, . . . ,Xn be iid with common PDF fθ(x) = f (x−θ), −∞< θ <∞. Then {fθ : θ ∈Θ}
is invariant under G= {{b,1}, −∞< b <∞} and an estimator of θ is equivariant if

∂({b,1}X= ∂(X)+b

for all real b.
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Lemma 1. An estimator ∂ is equivariant for θ if and only if

∂(X) = X1 +q(X2 −X1, . . . ,Xn −X1), (4)

for some function q.

Proof. If (4) holds then

∂({b,1}x) = b+ x1 +q(x2 − x1, . . . ,xn − x1)

= b+∂(x).

Conversely,

∂(x) = ∂(x1 + x1 − x1,x1 + x2 − x1, . . . ,x1 + xn − x1)

= x1 +∂(0,x2 − x1,x · · · ,xn − x1),

which is (4) with q(x2 − x1, . . . ,xn − x1) = ∂(0,x2 − x1, . . . ,xn − x1).

From Theorem 1 the risk function of an equivariant estimator ∂ is constant with risk

R(θ,∂) = R(0,∂) = E0[∂(X)]2, for all θ,

where the expectation is with respect to PDF f0(x) = f (x). Consequently, among all
equivariant estimators ∂ for θ, the MRE estimator is ∂0 satisfying

R(0,∂0) = min
∂

R(0,∂).

Thus we only need to choose the function q in (4).
Let L(θ,∂) be the loss function. Invariance considerations require that

L(θ,∂) = L(ḡθ, ḡ∂) = L(θ+b,∂+b)

for all real b so that L(θ,∂) must be some function w of ∂−θ.
Let Yi = Xi −X1, i = 2, . . . ,n, Y = (Y2, . . . ,Yn), and g(y) be the joint PDF of Y under

θ = 0. Let h(x1|y) be the conditional density, under θ = 0, of X1 given Y = y. Then

R(0,∂) = E0[w(X1 −q(Y))]

=

∫ {∫
w(x1 −q(y))h(x1|y)dx

}
g(y)dy. (5)

Then R(0,∂) will be minimized by choosing, for each fixed y, q(y) to be that value
of c which minimizes ∫

w(u− c)h(u|y)du. (6)
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Necessarily q depends on y. In the special case w(d−θ) = (d−θ)2, the integral in (6) is
minimum when c is chosen to be the mean of the conditional distribution. Thus the unique
MRE estimator of θ is given by

∂0(x) = x1 −Eθ{X1|Y = y}. (7)

This is the so-called Pitman estimator. Let us simplify it a little more by computing
E0{x1 −X1|Y = y}.

First we need to compute h(u|y). When θ = 0, the joint PDF of X1,Y2, . . . ,Yn is easily
seen to be

f (x1)f (x1 + y2) . . . f (x1 + yn)

so the joint PDF of (Y2, . . . ,Yn) is given by

∫ ∞

−∞
f (u)f (u+ y2) . . . f (u+ yn)du.

It follows that

h(u|y) = f (u)f (u+ y2) · · · f (u+ yn)∫∞
−∞ f (u)f (u+ y2) · · · f (u+ yn)du

. (8)

Now let Z = x1 −X1. Then the conditional PDF of Z given y is h(x1 − z | y). It follows
from (8) that

∂0(x) = E0{Z|y}=
∫ ∞

−∞
zh(x1 − z)dz

=

∫∞
−∞ z

∏n
j=1 f (xj − z)dz∫∞

−∞
∏n

j=1 f (xj − z)dz
. (9)

Remark 2. Since the joint PDF of X1,X2, . . . ,Xn is
∏n

j=1 fθ(xj) =
∏n

j=1 f (xj −θ), the joint
PDF of θ and X when θ has prior π(θ) is π(θ)

∏n
j=1 f (xj − θ). The joint marginal of X is∫∞

−∞π(θ)
∏n

j=1 f (xj−θ)dθ. It follows that the conditional pdf of θ given X= x is given by

π(θ)
∏n

j=1 f (xj −θ)∫∞
−∞π(θ)

∏n
j=1 f (xj −θ)dθ

.

Taking π(θ) = 1, the improper uniform prior on Θ, we see from (9) that ∂0(x) is the Bayes
estimator of θ under squared error loss and prior π(θ) = 1. Since the risk of ∂0 is constant,
it follows that ∂0 is also minimax estimator of θ.
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Remark 3. Suppose S is sufficient for θ. Then
∏n

j=1 fθ(xj) = gθ(s)h(x) so that the Pitman
estimator of θ can be rewritten as

∂0(x) =

∫∞
−∞ θ

∏n
j=1 fθ(xj)dθ∫∞

−∞
∏n

j=1 fθ(xj)dθ

=

∫∞
−∞ θgθ(s)h(x)dθ∫∞
−∞ gθ(s)h(x)dθ

=

∫∞
−∞ θgθ(s)dθ∫∞
−∞ gθ(s)dθ

,

which is a function of s alone.

Examples 7 and 8 (continued). A direct computation using (9) shows that X(1)−1/n is the
Pitman MRE estimator of θ in Example 7 and X is the MRE estimator of μ in Example 8
(when σ = 1). The results can be obtained by using sufficiency reduction. In Example 7,
X(1) is the minimal sufficient statistic for θ. Every (translation) equivariant function based
on X(1) must be of the form ∂c(X) = X(1)+ c where c is a real number. Then

R(θ,∂c) = Eθ{X(1)+ c−θ}2

= Eθ{X(1)−1/n−θ+(c+1/n)}2

= R(θ,∂0)+(c+1/n)2 = (1/n)2 +(c+1/n)2

which is minimized for c = −1/n. In Example 8, X is the minimal sufficient statistic so
every equivariant function of X must be of the form ∂c(X) = X + c, where c is a real
constant. Then

R(μ,∂c) = Eμ(X+ c−μ)2 =
1
n
+ c2,

which is minimized for c = 0.

Example 9. Let X1,X2, . . . ,Xn be iid U(θ − 1/2,θ + 1/2). Then (X(1),X(n)) is jointly
sufficient for θ. Clearly,

f (x1 −θ, . . . ,xn −θ) =

{
1 x(1) < θ < x(n)

0 otherwise

so that Pitman estimator of θ is given by

∂0(x) =

∫ x(n)

x(1)

θdθ

∫ x(n)

x(1)

dθ
=

(x(n)+ x(1))

2
.
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We now consider, briefly, Pitman estimator of a scale parameter. Let X have a joint
PDF

fσ(x) =
1
σn

f
(x1

σ
, . . . ,

xn

σ

)
,

where f is known and σ > 0 is a scale parameter. The family {fσ : σ > 0} remains invariant
under G = {{0,c},c > 0} which induces Ḡ = G on Θ. Then for estimation of σk loss
function L(σ,a) is invariant under these transformations if and only if L(σ,a) = w

(
a
σk

)
.

An estimator ∂ of σk is equivariant under G if

∂({0,c}X) = ck∂(X) for all c > 0.

Some simple examples of scale-equivariant estimators of σ are the mean deviation∑n
1 |Xi −X|/n and the standard deviation

√∑n
1(Xi −X)2/(n−1). We note that the group

Ḡ over Θ is transitive so according to Theorem 1, the risk of any equivariant estimator of
σk is free of σ and an MRE estimator minimizes this risk over the class of all equivariant
estimators of σk. Using the loss function L(σ,a) = w(a/σk) = (a− σk)2/σ2k it can be
shown that the MRE estimator of σk, also known as the Pitman estimate of σk, is given by

∂0(x) =

∫∞
0 vn+k−1f (vx1, . . . ,vxn)dv∫∞

0 vn+2k−1f (vx1, . . . ,vxn)dv
.

Just as in the location case one can show that ∂0 is a function of the minimal suffi-
cient statistic and ∂0 is the Bayes estimator of σk with improper prior π(σ) = 1/σ2k+1.
Consequently, ∂0 is minimax.

Example 8 (continued). In Example 8, the Pitman estimator of σk is easily shown to be

∂0(X) =
Γ
(

n+k
2

)
Γ
(

n+2k
2

)
(

n∑
1

X2
i

)k/2

.

Thus the MRE estimator of σ is given by
{
Γ
(

n+1
2

)√∑n
1 X2

i

/
Γ
(

n+2
2

)}
and that of σ2 by∑n

1 X2
i /(n+2).

Example 10. Let X1,X2, . . . ,Xn be iid U(0,θ). The Pitman estimator of θ is given by

∂0(X) =

∫∞
X(n)

vndv∫∞
X(n)

vn+1dv
=

n+2
n+1

X(n).

PROBLEMS 8.9

In all problems assume that X1,X2, . . . ,Xn is a random sample from the distribution under
consideration.

1. Show that the following statistics are equivariant under translation group:
(a) Median (Xi).

(b) (X(1)+X(n))/2.
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(c) X[np]+1, the quantile of order p, 0 < p < 1.

(d)
(
X(r)+X(r+1)+ · · ·+X(n−r)

)
/(n−2r).

(e) X+Y , where Y is the mean of a sample of size m, m 	= n.

2. Show that the following statistics are invariant under location or scale or location-
scale group:

(a) X−median(Xi).

(b) X(n+1−k)−X(k).

(c)
∑n

i=1 |Xi −X|/n.

(d)
∑n

i=1(Xi−X)(Yi−Y)

{∑n
i=1(Xi−X)2

∑n
i=1(Yi−Y)2}1/2 , where (X1,Y1, . . . ,(Xn,Yn) is a random sample from

a bivariate distribution.

3. Let the common distribution be G(α,σ) where α (> 0) is known and σ > 0 is
unknown. Find the MRE estimator of σ under loss L(σ,a) = (1−a/σ)2.

4. Let the common PDF be the folded normal distribution√
2
π
exp

{
−1

2
(x−μ)2

}
I[μ,∞)(x).

Verify that the best equivariant estimator of μ under quadratic loss is given by

μ̂= X−
exp{− n

2 (X(1)−X)2}
√

2nπ
{∫√n(X(1)−X)

0
1√
2π

exp(−z2/2)dz
} .

5. Let X ∼ U(θ,2θ).

(a) Show that (X(1),X(n)) is jointly sufficient statistic for θ.

(b) Verify whether or not (X(n) − X(1)) is an unbiased estimator of θ. Find an
ancillary statistic.

(c) Determine the best invariant estimator of θ under the loss function L(θ,a) =(
1− a

θ

)2
.

6. Let

fθ(x) =
1
2
exp{−|x−θ|}.

Find the Pitman estimator of θ.

7. Let fθ(x)= exp{−(x−θ)}· [1+exp{−(x−θ)}]−2, for x∈R, θ∈R. Find the Pitman
estimator of θ.

8. Show that an estimator ∂ is (location) equivariant if and only if

∂(x) = ∂0(x)+φ(x),

where ∂0 is any equivariant estimator and φ is an invariant function.
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9. Let X1,X2 be iid with PDF

fσ(x) =
2
σ

(
1− x

σ

)
, 0 < x < σ, and = 0 otherwise.

Find, explicitly, the Pitman estimator of σr.

10. Let X1,X2, . . . ,Xn be iid with PDF

fθ(x) =
1
θ
exp(−x/θ), x > 0, and = 0, otherwise.

Find the Pitman estimator of θk.



9
NEYMAN–PEARSON THEORY OF
TESTING OF HYPOTHESES

9.1 INTRODUCTION

Let X1,X2, . . . ,Xn be a random sample from a population distribution Fθ , θ ∈Θ, where the
functional form of Fθ is known except, perhaps, for the parameterθ. Thus, for example, the
Xi’s may be a random sample from N(θ,1), where θ ∈ R is not known. In many practical
problems the experimenter is interested in testing the validity of an assertion about the
unknown parameter θ. For example, in a coin-tossing experiment it is of interest to test,
in some sense, whether the (unknown) probability of heads p equals a given number p0,
0 < p0 < 1. Similarly, it is of interest to check the claim of a car manufacturer about
the average mileage per gallon of gasoline achieved by a particular model. A problem of
this type is usually referred to as a problem of testing of hypotheses and is the subject of
discussion in this chapter. We will develop the fundamentals of Neyman–Pearson theory.
In Section 9.2 we introduce the various concepts involved. In Section 9.3 the fundamental
Neyman–Pearson lemma is proved, and Sections 9.4 and 9.5 deal with some basic results
in the testing of composite hypotheses. Section 9.6 deals with locally optimal tests.

9.2 SOME FUNDAMENTAL NOTIONS OF HYPOTHESES TESTING

In Chapter 8 we discussed the problem of point estimation in sampling from a popula-
tion whose distribution is known except for a finite number of unknown parameters. Here
we consider another important problem in statistical inference, the testing of statistical
hypotheses. We begin by considering the following examples.
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Example 1. In coin-tossing experiments one frequently assumes that the coin is fair,
that is, the probability of getting heads or tails is the same: 1

2 . How does one test whether
the coin is fair (unbiased) or loaded (biased)? If one is guided by intuition, a reasonable
procedure would be to toss the coin n times and count the number of heads. If the pro-
portion of heads observed does not deviate “too much” from p = 1

2 , one would tend to
conclude that the coin is fair.

Example 2. It is usual for manufacturers to make quantitative assertions about their prod-
ucts. For example, a manufacturer of 12-volt batteries may claim that a certain brand of his
batteries lasts for N hours. How does one go about checking the truth of this assertion? A
reasonable procedure suggests itself: Take a random sample of n batteries of the brand in
question and note their length of life under more or less identical conditions. If the average
length of life is “much smaller” than N, one would tend to doubt the manufacturer’s claim.

To fix ideas, let us define formally the concepts involved. As usual,X=(X1,X2, . . . ,Xn)
and let X∼ Fθ , θ ∈Θ⊆ Rk. It will be assumed that the functional form of Fθ is known
except for the parameter θ. Also, we assume that Θ contains at least two points.

Definition 1. A parametric hypothesis is an assertion about the unknown parameter θ.
It is usually referred to as the null hypothesis, H0 : θ ∈ Θ0 ⊂ Θ. The statement H1 : θ ∈
Θ1 =Θ−Θ0 is usually referred to as the alternative hypothesis.

Usually the null hypothesis is chosen to correspond to the smaller or simpler subset Θ0

of Θ and is a statement of “no difference,” whereas the alternative represents change.

Definition 2. If Θ0(Θ1) contains only one point, we say that Θ0(Θ1) is simple; otherwise,
composite. Thus, if a hypothesis is simple, the probability distribution of X is completely
specified under that hypothesis.

Example 3. Let X ∼ N(μ,σ2). If both μ and σ2 are unknown, Θ = {(μ,σ2) : −∞ <
μ < ∞, σ2 > 0}. The hypothesis H0 : μ ≤ μ0, σ2 > 0, where μ0 is a known constant, is
a composite null hypothesis. The alternative hypothesis is H1 : μ > μ0, σ2 > 0, which is
also composite. Similarly, the null hypothesis μ= μ0, σ2 > 0 is also composite.

If σ2 = σ2
0 is known, the hypothesis H0 : μ= μ0 is a simple hypothesis.

Example 4. Let X1,X2, . . . ,Xn be iid b(1,p) RVs. Some hypotheses of interest are p = 1
2 ,

p ≤ 1
2 , p ≥ 1

2 or, quite generally, p = p0, p ≤ p0, p ≥ p0, where p0 is a known number,
0 < p0 < 1.

The problem of testing of hypotheses may be described as follows: Given the sample
point x= (x1,x2, . . . ,xn), find a decision rule (function) that will lead to a decision to reject
or fail to reject the null hypothesis. In other words, partition the sample space into two
disjoint sets C and Cc such that, if x ∈ C, we reject H0, and if x ∈ Cc, we fail to reject H0.
In the following we will write accept H0 when we fail to reject H0. We emphasize that when
the sample point x ∈ Cc and we fail to reject H0, it does not mean that H0 gets our stamp
of approval. It simply means that the sample does not have enough evidence against H0.
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Definition 3. Let X∼ Fθ , θ ∈Θ. A subset C of Rn such that if x ∈ C, then H0 is rejected
(with probability 1) and is called the critical region (set):

C = {x ∈ Rn : H0 is rejected if x ∈ C}.

There are two types of errors that can be made if one uses such a procedure. One may
reject H0 when in fact it is true, called a type I error, or accept H0 when it is false, called a
type II error,

True

H0 H1

H0 Correct Type II Error

Accept

H1 Type I Error Correct

If C is the critical region of a rule, PθC, θ ∈ Θ0, is a probability of type I error, and
PθCc, θ ∈ Θ1, is a probability of type II error. Ideally, one would like to find a critical
region for which both these probabilities are 0. This will be the case if we can find a subset
S ⊆Rn such that PθS = 1 for every θ ∈Θ0 and PθS = 0 for every θ ∈Θ1. Unfortunately,
situations such as this do not arise in practice, although they are conceivable. For example,
let X ∼C(1,θ) under H0 and X ∼P(θ) under H1. Usually, if a critical region is such that the
probability of type I error is 0, it will be of the form “do not reject H0” and the probability
of type II error will then be 1.

The procedure used in practice is to limit the probability of type I error to some pre-
assigned level α (usually 0.01 or 0.05) that is small and to minimize the probability of
type II error. To restate our problem in terms of this requirement, let us formulate these
notions.

Definition 4. Every Borel-measurable mapping ϕ of Rn → [0,1] is known as a test
function.

Some simple examples of test functions are ϕ(x) = 1 for all x ∈ Rn, ϕ(x) = 0 for all
x ∈Rn, or ϕ(x) = α, 0 ≤ α≤ 1, for all x ∈Rn. In fact, Definition 4 includes Definition 3
in the sense that, whenever ϕ is the indicator function of some Borel subset A of Rn, A is
called the critical region (of the test ϕ).

Definition 5. The mappingϕ is said to be a test of hypothesis H0 : θ ∈Θ0 against the alter-
natives H1 : θ ∈ Θ1 with error probability α (also called level of significance or, simply,
level) if

Eθϕ(X)≤ α for all θ ∈Θ0. (1)

We shall say, in short, that ϕ is a test for the problem (α,Θ0,Θ1).
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Let us write βϕ(θ) = Eθϕ(X). Our objective, in practice, will be to seek a test ϕ for a
given α, 0 ≤ α≤ 1, such that

sup
θ∈Θ0

βϕ(θ)≤ α. (2)

The left-hand side of (2) is usually known as the size of the test ϕ. Condition (1) therefore
restricts attention to tests whose size does not exceed a given level of significance α.

The following interpretation may be given to all tests ϕ satisfying βϕ(θ) ≤ α for all
θ ∈Θ0. To every x∈Rn we assign a number ϕ(x), 0 ≤ϕ(x)≤ 1, which is the probability
of rejecting H0 that X∼ fθ, θ ∈Θ0, if x is observed. The restriction βϕ(θ)≤α for θ ∈Θ0

then says that, if H0 were true, ϕ rejects it with a probability ≤ α. We will call such a test
a randomized test function. If ϕ(x) = IA(x), ϕ will be called a nonrandomized test. If
x ∈ A, we reject H0 with probability 1; and if x 
∈ A, this probability is 0. Needless to say,
A ∈Bn.

We next turn our attention to the type II error.

Definition 6. Let ϕ be a test function for the problem (α,Θ0,Θ1). For every θ ∈ Θ
define

βϕ(θ) = Eθϕ(X) = Pθ{Reject H0}. (3)

As a function of θ, βϕ(θ) is called the power function of the test ϕ. For any θ ∈Θ1, βϕ(θ)
is called the power of ϕ against the alternative θ.

In view of Definitions 5 and 6 the problem of testing of hypotheses may now be refor-
mulated. Let X ∼ fθ , θ ∈ Θ ⊆ Rk, Θ = Θ0 +Θ1. Also, let 0 ≤ α ≤ 1 be given. Given a
sample point x, find a test ϕ(x) such that βϕ(θ)≤ α for θ ∈Θ0, and βϕ(θ) is a maximum
for θ ∈Θ1.

Definition 7. Let Φα be the class of all tests for the problem (α,Θ0,Θ1). A test ϕ0 ∈Φα

is said to be a most powerful (MP) test against an alternative θ ∈Θ1 if

βϕ0(θ)≥ βϕ(θ) for all ϕ ∈ Φα. (4)

If Θ1 contains only one point, this definition suffices. If, on the other hand, Θ1 contains
at least two points, as will usually be the case, we will have an MP test corresponding to
each θ ∈Θ1.

Definition 8. A test ϕ0 ∈ Φα for the problem (α,Θ0,Θ1) is said to be a uniformly most
powerful (UMP) test if

βϕ0(θ)≥ βϕ(θ) for all ϕ ∈ Φα, uniformly in θ ∈Θ1. (5)

Thus, if Θ0 and Θ1 are both composite, the problem is to find a UMP test ϕ for the
problem (α,Θ0,Θ1). We will see that UMP tests very frequently do not exist, and we will
have to place further restrictions on the class of all tests, Φα.
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Note that if ϕ1,ϕ2 are two tests and λ is a real number, 0 < λ < 1, then λϕ1 +
(1−λ)ϕ2 is also a test function, and it follows that the class of all test functions Φα is
convex.

Example 5. Let X1,X2, . . . ,Xn be iidN(μ,1)RVs, where μ is unknown but it is known that
μ ∈ Θ = {μ0,μ1}, μ0 < μ1. Let H0 : Xi ∼ N(μ0,1), H1 : Xi ∼ N(μ1,1). Both H0 and H1

are simple hypotheses. Intuitively, one would accept H0 if the sample mean X is “closer”
to μ0 than to μ1; that is to say, one would reject H0 if X > k, and accept H0 otherwise. The
constant k is determined from the level requirements. Note that, under H0, X ∼N(μ0,1/n),
and, under H1, X ∼N(μ1,1/n). Given 0 < α < 1, we have

Pμ0{X > k}= P

{
X−μ0

1/
√

n
>

k−μ0

1/
√

n

}
= P{Type I error}= α,

so that k = μ0 + zα/
√

n. The test, therefore, is (Fig. 1)

ϕ(x) =

{
1 if x > μ0 + zα/

√
n,

0 otherwise.

Here X is known as a test statistic, and the test ϕ is nonrandomized with critical region
C = {x : x >μ0 + zα/

√
n}. Note that in this case the continuity of X (that is, the absolute

continuity of the DF of X) allows us to achieve any size α, 0 < α < 1.
The power of the test at μ1 is given by

Eμ1ϕ(X) = Pμ1

{
X > μ0 +

zα√
n

}

= P

{
X−μ1

1/
√

n
> (μ0 −μ1)

√
n+ zα

}
= P{Z > zα−

√
n(μ1 −μ0)},

Accept H0 Reject H0 

α

μ0 xμ0 + zα /√n

Fig. 1 Rejection region of H0 in Example 5.
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where Z ∼N(0,1). In particular, Eμ1ϕ(X)> α since μ1 > μ0. The probability of type II
error is given by

P{Type II error}= 1−Eμ1ϕ(X)

= P{Z ≤ zα−
√

n(μ1 −μ0)}.

Figure 2 gives a graph of the power function βϕ(μ) of ϕ for μ > 0 when μ0 = 0, and
H1 : μ > 0.

Example 6. Let X1,X2,X3,X4,X5, be a sample from b(1,p), where p is unknown and 0 ≤
p ≤ 1. Consider the simple null hypothesis H0 : Xi ∼ b(1, 1

2 ), that is, under H0, p = 1
2 .

Then H1 : Xi ∼ b(1,p), p 
= 1/2. A reasonable procedure would be to compute the average
number of 1’s, namely, X =

∑5
1 Xi/5, and to accept H0 if |X − 1

2 | ≤ c, where c is to be
determined. Let α = 0.10. Then we would like to choose c such that the size of our test
is α, that is,

0.10 = Pp=1/2

{
|X− 1

2
|> c

}
,

or

0.90 = Pp=1/2

{
−5c ≤

5∑
1

Xi −
5
2
≤ 5c

}

= Pp=1/2

{
−k ≤

5∑
1

Xi −
5
2
≤ k

}
, (6)

0 1.5−1.5
0

0.05

0.5

1

Fig. 2 Power function of ϕ in Example 5.
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where k = 5c. Now
∑5

1 Xi ∼ b(5, 1
2 ) under H0, so that the PMF of

∑5
1 Xi − 5

2 is given in
the following table.

5∑
1

xi

5∑
1

xi −
5
2

Pp=1/2

{
5∑
1

Xi =
5∑
1

xi

}

0 −2.5 0.03125

1 −1.5 0.15625

2 −0.5 0.31250

3 0.5 0.31250

4 1.5 0.15625

5 2.5 0.03125

Note that we cannot choose any k to satisfy (6) exactly. It is clear that we have to reject
H0 when k = ±2.5, that is, when we observe

∑
Xi = 0 or 5. The resulting size if we use

this test is α = 0.03125+ 0.03125 = 0.0625 < 0.10. A second procedure would be to
reject H0 if k = ±1.5 or ±2.5 (

∑
Xi = 0,1,4,5), in which case the resulting size is α =

0.0625+2(0.15625) = 0.375, which is considerably larger than 0.10. A third alternative,
if we insist on achievingα= 0.10, is to randomize on the boundary. Instead of accepting or
rejecting H0 with probability 1 when

∑
Xi = 1 or 4, we reject H0 with probability γ where

0.10 = Pp=1/2

{
5∑
1

Xi = 0 or 5

}
+γPp=1/2

{
5∑
1

Xi = 1 or 4

}
.

Thus

γ =
0.0375
0.3125

= 0.114.

A randomized test of size α= 0.10 is therefore given by

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if
5∑
1

xi = 0 or 5,

0.114 if
5∑
1

xi = 1 or 4,

0 otherwise.

The power of this test is

Epϕ(X) = Pp

{
5∑
1

Xi = 0 or 5

}
+0.114Pp

{
5∑
1

Xi = 1 or 4

}
,

where p 
= 1
2 and can be computed for any value of p. Figure 3 gives a graph of βϕ(p).
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0.5 1 1.5

0.5

1

0
0

0.1

Fig. 3 Power function of ϕ in Example 6.

We conclude this section with the following remarks.

Remark 1. The problem of testing of hypotheses may be considered as a special case of the
general decision problem described in Section 8.8. Let A= {a0,a1}, where a0 represents
the decision to accept H0 : θ ∈Θ0 and a1 represents the decision to reject H0. A decision
function δ is a mapping of Rn into A. Let us introduce the following loss functions:

L1(θ,a1) =

{
1 if θ ∈Θ0

0 if θ ∈Θ1
and L1(θ,a0) = 0 for all θ,

and

L2(θ,a0) =

{
0 if θ ∈Θ0

1 if θ ∈Θ1
and L2(θ,a1) = 0 for all θ.

Then the minimization of EθL2(θ, δ(X)) subject to EθL1(θ, δ(X))≤ α is the hypotheses
testing problem discussed above. We have

EθL2(θ, δ(X)) = Pθ{δ(X) = a0}, θ ∈Θ1,

= Pθ{Accept H0 | H1 true},

and

EθL1(θ, δ(X)) = Pθ{δ(X) = a1}, θ ∈Θ0,

= Pθ{Reject H0 | θ ∈Θ0 true}.

Remark 2. In Example 6 we saw that the chosen size α is often unattainable. The choice
of a specific value of α is completely arbitrary and is determined by nonstatistical
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considerations such as the possible consequences of rejecting H0 falsely, and the economic
and practical implications of the decision to reject H0. An alternative, and somewhat sub-
jective, approach wherever possible is to report the so-called P-value of the observed test
statistic. This is the smallest level α at which the observed sample statistic is significant. In
Example 6, let S =

∑5
i=1 Xi. If S = 0 is observed, then PH0(S = 0) = P0(S = 0) = 0.03125.

By symmetry, if we reject H0 for S = 0 we should do so also for S = 5 so the probability
of interest is P0(S = 0 or 5) = 0.0625 which is the P-value. If S = 1 is observed and we
decide to reject H0, then we would do so also for S = 0 because S = 0 is more extreme
than S = 1. By symmetry considerations

P-value = P0(S ≤ 1 or S ≥ 4) = 2(0.03125+0.15625) = 0.375.

This discussion motivates Definition 9 below. Suppose the appropriate critical region
for testing H0 against H1 is one-sided. That is, suppose C is either of the form {T ≥ c1}
or {T ≤ c2}, where T is the test statistic.

Definition 9. The probability of observing under H0 a sample outcome at least as extreme
as the one observed is called the P-value. The smaller the P-value, the more extreme the
outcome and the stronger the evidence against H0.

If α is given, then we reject H0 if P ≤ α and do not reject H0 if P >α. In the two-sided
case when the critical region is of the form C = {|T(X)| > k}, the one-sided P-value is
doubled to obtain the P-value. If the distribution of T is not symmetric then the P-value
is not well-defined in the two-sided case although many authors recommend doubling the
one-sided P-value.

PROBLEMS 9.2

1. A sample of size 1 is taken from a population distribution P(λ). To test H0 : λ = 1
against H1 : λ = 2, consider the nonrandomized test ϕ(x) = 1 if x > 3, and = 0 if
x ≤ 3. Find the probabilities of type I and type II errors and the power of the test
against λ= 2. If it is required to achieve a size equal to 0.05, how should one modify
the test ϕ?

2. Let X1,X2, . . . ,Xn be a sample from a population with finite mean μ and finite vari-
ance σ2. Suppose that μ is not known, but σ is known, and it is required to test μ=μ0

against μ= μ1 (μ1 >μ0). Let n be sufficiently large so that the central limit theorem
holds, and consider the test

ϕ(x1,x2, . . . ,xn) = 1 if x > k,

= 0 if x ≤ k,

where x = n−1∑n
i=1 xi. Find k such that the test has (approximately) size α. What is

the power of this test at μ = μ1? If the probabilities of type I and type II errors are
fixed at α and β, respectively, find the smallest sample size needed.

3. In Problem 2, if σ is not known, find k such that the test ϕ has size α.
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4. Let X1,X2, . . . ,Xn be a sample from N(μ,1). For testing μ ≤ μ0 against μ > μ0

consider the test function

ϕ(x1,x2, . . . ,xn) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x > μ0 +
zα√

n
,

0 if x ≤ μ0 +
zα√

n
.

Show that the power function of ϕ is a nondecreasing function of μ. What is the size
of the test?

5. A sample of size 1 is taken from an exponential PDF with parameter θ, that is,
X ∼ G(1,θ). To test H0 : θ = 1 against H1 : θ > 1, the test to be used is the
nonrandomized test

ϕ(x) = 1 if x > 2,

= 0 if x ≤ 2.

Find the size of the test. What is the power function?

6. Let X1,X2, . . . ,Xn be a sample from N(0,σ2). To test H0 : σ = σ0 against H1 =
σ 
= σ0, it is suggested that the test

ϕ(x1,x2, . . . ,xn) =

{
1 if

∑
x2

i > c1 or
∑

x2
i < c2,

0 if c2 ≤
∑

x2
i ≤ c1,

be used. How will you find c1 and c2 such that the size of ϕ is a preassigned number
α, 0 < α < 1? What is the power function of this test?

7. An urn contains 10 marbles, of which M are white and 10−M are black. To test that
M = 5 against the alternative hypothesis that M = 6, one draws 3 marbles from the
urn without replacement. The null hypothesis is rejected if the sample contains 2 or
3 white marbles; otherwise it is accepted. Find the size of the test and its power.

9.3 NEYMAN–PEARSON LEMMA

In this section we prove the fundamental lemma due to Neyman and Pearson [76], which
gives a general method for finding a best (most powerful) test of a simple hypothesis
against a simple alternative. Let {fθ,θ ∈Θ}, where Θ= {θ0,θ1}, be a family of possible
distributions of X. Also, fθ represents the PDF of X if X is a continuous type rv, and the
PMF of X if X is of the discrete type. Let us write f0(x) = fθ0(x) and f1(x) = fθ1(x) for
convenience.

Theorem 1 (The Neyman–Pearson Fundamental Lemma).

(a) Any test ϕ of the form

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if f1(x)> k f0(x),

γ(x) if f1(x) = k f0(x),

0 if f1(x)< k f0(x),

(1)
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for some k ≥ 0 and 0 ≤ γ(x)≤ 1, is most powerful of its size for testing H0 : θ= θ0

against H1 : θ = θ1. If k =∞, the test

ϕ(x) = 1 if f0(x) = 0, (2)

= 0 if f0(x)> 0,

is most powerful of size 0 for testing H0 against H1.

(b) Given α, 0 ≤ α≤ 1, there exists a test of form (1) or (2) with γ(x) = γ (a constant),
for which Eθ0ϕ(X) = α.

Proof. Let ϕ be a test satisfying (1), and ϕ∗ be any test with Eθ0ϕ
∗(X) ≤ Eθ0ϕ(X). In

the continuous case∫
(ϕ(x)−ϕ∗(x))(f1(x)− k f0(x))dx

=

⎛
⎝ ∫

f1>kf0

+

∫
f1<kf0

⎞
⎠(ϕ(x)−ϕ∗(x))(f1(x)− k f0(x))dx.

For any x∈ {f1(x)> kf0(x)}, ϕ(x)−ϕ∗(x) = 1−ϕ∗(x)≥ 0, so that the integrand is ≥ 0.
For x∈ {f1(x)< kf0(x)}, ϕ(x)−ϕ∗(x) =−ϕ∗(x)≤ 0, so that the integrand is again ≥ 0.
It follows that ∫

(ϕ(x)−ϕ∗(x))(f1(x)− k f0(x))dx

= Eθ1ϕ(X)−Eθ1ϕ
∗(X)− k(Eθ0ϕ(X)−Eθ0ϕ

∗(X))≥ 0,

which implies

Eθ1ϕ(X)−Eθ1ϕ
∗(X)≥ k(Eθ0ϕ(X)−Eθ0ϕ

∗(X))≥ 0

since Eθ0ϕ
∗(X)≤ Eθ0ϕ(X).

If k =∞, any test ϕ∗ of size 0 must vanish on the set {f0(x)> 0}. We have

Eθ1ϕ(X)−Eθ1ϕ
∗(X) =

∫
{f0(x)=0}

(1−ϕ∗(x))f1(x)dx≥ 0.

The proof for the discrete case requires the usual change of integral by a sum throughout.
To prove (b) we need to restrict ourselves to the case where 0 < α ≤ 1, since the MP

size 0 test is given by (2). Let γ(x) = γ, and let us compute the size of a test of form (1).
We have

Eθ0ϕ(X) = Pθ0{f1(X)> k f0(X)}+γPθ0{f1(X) = k f0(X)}
= 1−Pθ0{f1(X)≤ k f0(X)}+γ Pθ0{f1(X) = k f0(X)}.
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Since Pθ0{f0(X) = 0}= 0, we may rewrite Eθ0ϕ(X) as

Eθ0ϕ(X) = 1−Pθ0

{
f1(X)

f0(X)
≤ k

}
+γPθ0

{
f1(X)

f0(X)
= k

}
. (3)

Given 0 < α≤ 1, we wish to find k and γ such that Eθ0ϕ(X) = α, that is,

Pθ0

{
f1(X)

f0(X)
≤ k

}
−γPθ0

{
f1(X)

f0(X)
≤ k

}
= 1−α. (4)

Note that {
f1(X)

f0(X)
≤ k

}

is a DF so that it is a nondecreasing and right continuous function of k. If there exists a k0

such that

Pθ0

{
f1(X)

f0(X)
≤ k0

}
= 1−α,

we choose γ = 0 and k = k0. Otherwise there exists a k0 such that

Pθ0

{
f1(X)

f0(X)
< k0

}
≤ 1−α < Pθ0

{
f1(X)

f0(X)
≤ k0

}
, (5)

that is, there is a jump at k0 (see Fig. 1). In this case we choose k = k0 and

γ =
Pθ0{f1(X)/f0(X)≤ k0}− (1−α)

Pθ0{f1(X)/f0(X) = k0}.
(6)

Since γ given by (6) satisfies (4), and 0 ≤ γ ≤ 1, the proof is complete.

Remark 1. It is possible to show (see Problem 6) that the test given by (1) or (2) is unique
(except on a null set), that is, if ϕ is an MP test of size α of H0 against H1, it must have
form (1) or (2), except perhaps for a set A with Pθ0(A) = Pθ1(A) = 0.

Remark 2. An analysis of proof of part (a) of Theorem 1 shows that test (1) is MP even if
f1 and f0 are not necessarily densities.

Theorem 2. If a sufficient statistic T exists for the family {fθ : θ ∈Θ}, Θ= {θ0,θ1}, the
Neyman–Pearson MP test is a function of T .

Proof. The proof of this result is left as an exercise.

Remark 3. If the family {fθ : θ ∈Θ} admits a sufficient statistic, one can restrict attention
to tests based on the sufficient statistic, that is, to tests that are functions of the sufficient
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1

1–α
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statistic. If ϕ is a test function and T is a sufficient statistic, E{ϕ(X) | T} is itself a test
function, 0 ≤ E{ϕ(X) | T} ≤ 1, and

Eθ{ϕ(X) | T}}= Eθϕ(X),

so that ϕ and E{ϕ | T} have the same power function.

Example 1. Let X be an RV with PMF under H0 and H1 given by

x 1 2 3 4 5 6

f0(x) 0.01 0.01 0.01 0.01 0.01 0.95

f1(x) 0.05 0.04 0.03 0.02 0.01 0.85

Then λ(x) = f1(x)/f0(x) is given by

x 1 2 3 4 5 6

λ(x) 5 4 3 2 1 0.89

If α= 0.03, for example, then Neyman–Pearson MP size 0.03 test rejects H0 if λ(X)≥ 3,
that is, if X ≤ 3 and has power

P1(X ≤ 3) = 0.05+0.04+0.03 = 0.12

with P(Type II error) = 1−0.12 = 0.88.
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Example 2. Let X ∼ N(0,1) under H0 and X ∼ C(1,0) under H1. To find an MP size α
test of H0 against H1,

λ(x) =
f1(x)
f0(x)

=
(1/π)[1/(1+ x2)]

(1/
√

2π)e−x2/2

=

√
2
π

ex2/2

1+ x2
.

Figure 2 gives a graph of λ(x) and we note that λ has a maximum at x = 0 and two min-
imas at x =±1. Note that λ(0) = 0.7979 and λ(±1) = 0.6578 so for k ∈ (0.6578,0.7989),
λ(x) = k intersects the graph at four points and the critical region is of the form |X| ≤ k1 or
|X| ≥ k2, where k1 and k2 are solutions of λ(x) = k. For k = 0.7979, the critical region is of
the form |X| ≥ k0, where k0 is the positive solution of e−k2

0/2 = 1+k2
0 so that k0 ≈ 1.59 with

α= 0.1118. For k < 0.6578, α= 1 and for k = 0.6578, the critical region is |X| ≥ 1 with
α= 0.3413. For the traditional level α= 0.05, the critical region is of the form |X| ≥ 1.96.

Example 3. Let X1,X2, . . . ,Xn be iid b(1,p) RVs, and let H0 : p = p0, H1 : p = p1, p1 > p0.
The MP size α test of H0 against H1 is of the form

ϕ(x1,x2, . . . ,xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, λ(x) =
p
∑

xi

1 (1−p1)
n−
∑

xi

p
∑

xi

0 (1−p0)n−
∑

xi

> k,

γ, λ(x) = k,

0, λ(x)< k,

λ(0) = 0.7979

λ(1) = 0.6578

−k1 k1 1 k2 x−k2 −1 0

Fig. 2 Graph of λ(x) = (2/π)1/2 exp(x2/2)
(1+x2)

.
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where k and γ are determined from

Ep0ϕ(X) = α.

Now

λ(x) =

(
p1

p0

)∑xi
(

1−p1

1−p0

)n−
∑

xi

,

and since p1 > p0, λ(x) is an increasing function of
∑

xi. It follows that λ(x)> k if and
only if

∑
xi > k1, where k1 is some constant. Thus the MP size α test is of the form

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if
∑

xi > k1,

γ if
∑

xi = k1,

0 otherwise.

Also, k1 and γ are determined from

α= Ep0ϕ(X) = Pp0

{
n∑
1

Xi > k1

}
+γPp0

{
n∑
1

Xi = k1

}

=
n∑

r=k1+1

(
n
r

)
pr

0(1−p0)
n−r +γ

(
n
k1

)
pk1

0 (1−p0)
n−k1 .

Note that the MP size α test is independent of p1 as long as p1 > p0, that is, it remains an
MP size α test against any p > p0 and is therefore a UMP test of p = p0 against p > p0.

In particular, let n = 5, p0 =
1
2 , p1 =

3
4 , and α= 0.05. Then the MP test is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

1
∑

xi > k,

γ
∑

xi = k,

0
∑

xi < k,

where k and γ are determined from

0.05 = α=

5∑
k+1

(
5
r

)(
1
2

)5

+γ

(
5
k

)(
1
2

)5

.

It follows that k = 4 and γ = 0.122. Thus the MP size α = 0.05 test is to reject p = 1
2 in

favor of p = 3
4 if
∑n

1 Xi = 5 and reject p = 1
2 with probability 0.122 if

∑n
1 Xi = 4.

It is simply a matter of reversing inequalities to see that the MP size α test of H0 : p= p0

against H1 : p = p1 (p1 < p0) is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if
∑

xi < k,

γ if
∑

xi = k,

0 if
∑

xi > k,

where γ and k are determined from Ep0ϕ(X) = α.
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We note that T(X) =
∑

Xi is minimal sufficient for p so that, in view of Remark 3, we
could have considered tests based only on T . Since T ∼ b(n,p),

λ(t) =
f1(t)
f0(t)

=

(
n
t

)
pt

1(1−p1)
n−t

(
n
t

)
pt

0(1−p0)
n−t

=

(
p1

p0

)t(1−p1

1−p0

)n−t

so that an MP Test is of the same form as above but the computation is somewhat simpler.
We remark that in both cases (p1 > p0,p1 < p0) the MP test is quite intuitive. We would

tend to accept the larger probability if a larger number of “successes” showed up, and
the smaller probability if a smaller number of “successes” were observed. See, however,
Example 2.

Example 4. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs where both μ and σ2 are unknown.
We wish to test the null hypothesis H0 : μ=μ0, σ2 = σ2

0 against the alternative H1 : μ=μ1,
σ2 = σ2

0. The fundamental lemma leads to the following MP test:

ϕ(x) =

{
1 if λ(x)> k,

0 if λ(x)< k,

where

λ(x) =
(1/σ0

√
2π)n exp{−[

∑
(xi −μ1)

2/2σ2
0 ]}

(1/σ0

√
2π)n exp{−[

∑
(xi −μ0)2/2σ2

0 ]}
,

and k is determined from Eμ0,σ0ϕ(X) = α. We have

λ(x) = exp

{∑
xi

(
μ1

σ2
0

− μ0

σ2
0

)
+n

(
μ2

0

2σ2
0

− μ2
1

2σ2
1

)}
.

If μ1 > μ0, then

λ(x)> k if and only if
n∑

i=1

xi > k′,

where k′ is determined from

α= Pμ0,σ0

{
n∑

i=1

Xi > k′
}

= P

{∑
Xi −nμ0√

nσ0
>

k′−nμ0√
n σ0

}
,

giving k′ = zα
√

nσ0 + nμ0. The case μ1 < μ0 is treated similarly. If σ0 is known, the
test determined above is independent of μ1 as long as μ1 > μ0, and it follows that the
test is UMP against H′

1 : μ > μ1, σ2 = σ2
0. If, however, σ0 is not known, that is, the null

hypothesis is a composite hypothesis H′′
0 : μ= μ0, σ2 > 0 to be tested against the alterna-

tives H′′
1 : μ= μ1, σ2 > 0 (μ1 > μ0), then the MP test determined above depends on σ2.

In other words, an MP test against the alternative μ1, σ2
0 will not be MP against μ1, σ2

1,
where σ2

1 
= σ2
0.
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PROBLEMS 9.3

1. A sample of size 1 is taken from PDF

fθ(x) =

⎧⎨
⎩

2
θ2

(θ− x) if 0 < x < θ,

0 otherwise.

Find an MP test of H0 : θ = θ0 against H1 : θ1 (θ1 < θ0).

2. Find the Neyman–Pearson size α test of H0 : θ = θ0 against H1 : θ = θ1 (θ1 < θ0)
based on a sample of size 1 from the PDF

fθ(x) = 2θx+2(1−θ)(1− x), 0 < x < 1, θ ∈ [0,1].

3. Find the Neyman–Pearson size α test of H0 : β = 1 against H1 : β = β1 (> 1) based
on a sample of size 1 from

f (x;β) =

{
βxβ−1, 0 < x < 1,

0, otherwise.

4. Find an MP size α test of H0 : X ∼ f0(x), where f0(x) = (2π)−1/2e−x2/2, −∞< x <
∞, against H1 : X ∼ f1(x) where f1(x) = 2−1e−|x|, −∞< x <∞, based on a sample
of size 1.

5. For the PDF fθ(x) = e−(x−θ), x ≥ θ, find an MP size α test of θ = θ0 against θ = θ1

(> θ0), based on a sample of size n.

6. If ϕ∗ is an MP size α test of H0 : X∼ f0(x) against H1 : X∼ f1(x) show that it has
to be either of form (1) or form (2) (except for a set of x that has probability 0 under
H0 and H1).

7. Let ϕ∗ be an MP size α (0 < α ≤ 1) test of H0 against H1, and let k(α) denote the
value of k in (1). Show that if α1 < α2, then k(α2)≤ k(α1).

8. For the family of Neyman–Pearson tests show that the larger the α, the smaller the
β (= P[Type II error]).

9. Let 1−β be the power of an MP size α test, where 0 < α< 1. Show that α < 1−β
unless Pθ0 = Pθ1 .

10. Let α be a real number, 0 < α < 1, and ϕ∗ be an MP size α test of H0 against H1.
Also, let β = EH1ϕ

∗(X)< 1. Show that 1−ϕ∗ is an MP test for testing H1 against
H0 at level 1−β.

11. Let X1,X2, . . . ,Xn be a random sample from PDF

fθ(x) =
θ

x2
if 0 < θ ≤ x <∞.

Find an MP test of θ = θ0 against θ = θ1(
= θ0).

12. Let X be an observation in (0,1). Find an MP size α test of H0 : X ∼ f (x) = 4x if
0 < x < 1

2 , and = 4−4x if 1
2 ≤ x < 1, against H1 : X ∼ f (x) = 1 if 0 < x < 1. Find

the power of your test.
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13. In each of the following cases of simple versus simple hypotheses H0 : X ∼ f0, H1 :
X ∼ f1, draw a graph of the ratio λ(x) = f1(x)/f0(x) and find the form of the Neyman–
Pearson test:

(a) f0(x) = (1/2)exp{−|x+1|}; f1(x) = (1/2)exp{−|x−1|}.

(b) f0(x) = (1/2)exp{−|x|}; f1(x) = {1/[π(1+ x2)]}.

(c) f0(x) = (1/π){1+(1+ x)2}−1; f1(x) = (1/π){1+(1− x)2}−1.

14. Let X1,X2, . . . ,Xn be a random sample with common PDF

fθ(x) =
1
2θ

exp{−|x|/θ}, x ∈ R, θ > 0.

Find a size α MP test for testing H0 : θ = θ0 versus H1 : θ = θ1 (> θ0).

15. Let X ∼ fj, j = 0,1, where

x 1 2 3 4 5

f0(x) 1/5 1/5 1/5 1/5 1/5

f1(x) 1/6 1/4 1/6 1/4 1/6

(a) Find the form of the MP test of its size.

(b) Find the size and the power of your test for various values of the cutoff point.

(c) Consider now a random sample of size n from f0 under H0 or f1 under H1. Find
the form of the MP test of its size.

9.4 FAMILIES WITH MONOTONE LIKELIHOOD RATIO

In this section we consider the problem of testing one-sided hypotheses on a single real-
valued parameter. Let {fθ,θ ∈Θ} be a family of PDFs (PMFs), Θ⊆ R, and suppose that
we wish to test H0 : θ ≤ θ0 against the alternatives H1 : θ > θ0 or its dual, H′

0 : θ ≥ θ0,
against H′

1 : θ < θ0. In general, it is not possible to find a UMP test for this problem. The
MP test of H0 : θ≤ θ0, say, against the alternative θ= θ1 (> θ0) depends on θ1 and cannot
be UMP. Here we consider a special class of distributions that is large enough to include the
one-parameter exponential family, for which a UMP test of a one-sided hypothesis exists.

Definition 1. Let {fθ,θ ∈ Θ} be a family of PDFs (PMFs), θ ⊆ R. We say that {fθ} has
a monotone likelihood ratio (MLR) in statistic T(x) if for θ1 < θ2, whenever fθ1 , fθ2 are
distinct, the ratio fθ2(x)/fθ1(x) is a nondecreasing function of T(x) for the set of values x
for which at least one of fθ1 and fθ2 is > 0.

It is also possible to define families of densities with nonincreasing MLR in T(x), but
such families can be treated by symmetry.

Example 1. Let X1,X2, . . . ,Xn ∼ U[0,θ], θ > 0. The joint PDF of X1, . . . ,Xn is

fθ(x) =

⎧⎨
⎩

1
θn

, 0 ≤maxxi ≤ θ,

0, otherwise.
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Let θ2 > θ1 and consider the ratio

fθ2(x)

fθ1(x)
=

(1/θn
2)I[maxxi≤θ2]

(1/θn
1)I[maxxi≤θ1]

=

(
θ1

θ2

)n

I[maxxi≤θ2]/I[maxxi≤θ1].

Let

R(x) =
I[maxxi≤θ2]

I[maxxi≤θ1]

=

{
1, maxxi ∈ [0,θ1],

∞, maxxi ∈ [θ1,θ2].

Define R(x) = ∞ if maxxi > θ2. It follows that fθ2/fθ1 is a nondecreasing function of
max1≤i≤n xi, and the family of uniform densities on [0,θ] has an MLR in max1≤i≤n xi.

Theorem 1. The one-parameter exponential family

fθ(x) = exp{Q(θ)T(x)+S(x)+D(θ)}, (1)

where Q(θ) is nondecreasing, has an MLR in T(x).

Proof. The proof is left as an exercise.

Remark 1. The nondecreasingness of Q(θ) can be obtained by a reparametrization, putting
ϑ= Q(θ), if necessary.

Theorem 1 includes normal, binomial, Poisson, gamma (one parameter fixed), beta
(one parameter fixed), and so on. In Example 1 we have already seen that U[0,θ], which
is not an exponential family, has an MLR.

Example 2. Let X ∼ C(1,θ). Then

fθ2(x)
fθ1(x)

=
1+(x−θ1)

2

1+(x−θ2)2
→ 1 as x →±∞,

and we see that C(1,θ) does not have an MLR.

Theorem 2. Let X∼ fθ, θ ∈Θ, where {fθ} has an MLR in T(x). For testing H0 : θ ≤ θ0

against H1 : θ > θ0, θ0 ∈Θ, any test of the form

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if T(x)> t0,

γ if T(x) = t0,

1 if T(x)< t0,

(2)
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has a nondecreasing power function and is UMP of its size Eθ0ϕ(X) = α (provided that
the size is not 0).

Moreover, for every 0 ≤ α≤ 1 and every θ0 ∈Θ, there exists a t0, −∞≤ t0 ≤∞, and
0 ≤ γ ≤ 1 such that the test described in (2) is the UMP size α test of H0 against H1.

Proof. Let θ1,θ2 ∈Θ, θ1 < θ2. By the fundamental lemma any test of the form

ϕ(x) =

⎧⎪⎨
⎪⎩

1, λ(x)> k,

γ(x), λ(x) = k,

0, λ(x)< k,

(3)

where λ(x) = fθ2(x)/fθ1(x) is MP of its size for testing θ = θ1 against θ = θ2, provided
that 0 ≤ k <∞ and if k =∞, the test

ϕ(x) =

{
1, if fθ1(x) = 0,

0 if fθ1(x)> 0,
(4)

is MP of size 0. Since fθ has an MLR in T , it follows that any test of form (2) is also of
form (3), provided that Eθ1ϕ(X)> 0, that is, provided that its size is > 0. The trivial test
ϕ′(x)≡ α has size α and power α, so that the power of any test (2) is at least α, that is,

Eθ2ϕ(X)≥ Eθ2ϕ
′(X) = α= Eθ1ϕ(X).

It follows that, if θ1 < θ2 and Eθ1ϕ(X)> 0, then Eθ1ϕ(X)≤ Eθ2ϕ(X), as asserted.
Let θ1 = θ0 and θ2 > θ0, as above. We know that (2) is an MP test of its size Eθ0ϕ(X)

for testing θ = θ0 against θ = θ2 (θ2 > θ0), provided that Eθ0ϕ(X) > 0. Since the power
function of ϕ is nondecreasing,

Eθϕ(X)≤ Eθ0ϕ(X) = α0 for all θ ≤ θ0. (5)

Since, however, ϕ does not depend on θ2 (it depends only on constants k and γ), it follows
that ϕ is the UMP size α0 test for testing θ = θ0 against θ > θ0. Thus ϕ is UMP among
the class of tests ϕ′′ for which

Eθ0ϕ
′′(X)≤ Eθ0ϕ(X) = α0. (6)

Now the class of tests satisfying (5) is contained in the class of tests satisfying (6)
[there are more restrictions in (5)]. It follows that ϕ, which is UMP in the larger class
satisfying (6), must also be UMP in the smaller class satisfying (5). Thus, provided that
α0 > 0, ϕ is the UMP size α0 test for θ ≤ θ0 against θ > θ0.

We ask the reader to complete the proof of the final part of the theorem, using the
fundamental lemma.
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Remark 2. By interchanging inequalities throughout in Theorem 2, we see that this
theorem also provides a solution of the dual problem H′

0 : θ ≥ θ0 against H′
1 : θ < θ0.

Example 3. Let X have the hypergeometric PMF

PM{X = x}=

(
M
x

)(
N −M
n− x

)
(

N
n

) , x = 0,1,2, . . . ,M.

Since

PM+1{X = x}
PM{X = x} =

M+1
N −M

N −M−n+ x
M+1− x

,

we see that {PM} has an MLR in x(PM2/PM1 where M2 > M1 is just a product of such
ratios). It follows that there exists a UMP test of H0 : M ≤ M0 against H1 : M > M0, which
rejects H0 when X is too large, that is, the UMP size α test is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

1, x > k,

γ, x = k,

0, x < k,

where (integer) k and γ are determined from

EM0ϕ(X) = α.

For the one-parameter exponential family UMP tests exist also for some two-sided
hypotheses of the form

H0 : θ ≤ θ1 or θ ≥ θ2(θ1 < θ2). (7)

We state the following result without proof.

Theorem 3. For the one-parameter exponential family (1), there exists a UMP test of the
hypothesis H0 : θ ≤ θ1 or θ ≥ θ2 (θ1 < θ2) against H1 : θ1 < θ < θ2 that is of the form

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if c1 < T(x)< c2,

γi if T(x) = ci, i = 1,2 (c1 < c2),

0 if T(x)< c1 or > c2,

(8)

where the c’s and the γ’s are given by

Eθ1ϕ(X) = Eθ2ϕ(X) = α. (9)

See Lehmann [64, pp. 101–103], for proof.
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Example 4. Let X1,X2, . . . ,Xn be iid N(μ,1) RVs. To test H0 : μ≤ μ0 or μ≥ μ1 (μ1 >μ0)
against H1 : μ0 < μ < μ1, the UMP test is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if c1 <
∑n

1 xi < c2,

γi if
∑

xi = c1 or c2,

0 if
∑

xi < c1 or > c2,

where we determine c1,c2 from

α= Pμ0{c1 <
∑

Xi < c2}= Pμ1{c1 <
∑

Xi < c2}

and γ1 = γ2 = 0. Thus

α= P

{
c1 −nμ0√

n
<

∑
Xi −nμ0√

n
<

c2 −nμ0√
n

}

= P

{
c1 −nμ1√

n
<

∑
Xi −nμ1√

n
<

c2 −nμ1√
n

}

= P

{
c1 −nμ0√

n
< Z <

c2 −nμ0√
n

}

= P

{
c1 −nμ1√

n
< Z <

c2 −nμ1√
n

}
,

where Z isN(0,1). Givenα, n,μ0, andμ1, we can solve for c1 and c2 from the simultaneous
equations

Φ

(
c2 −nμ0√

n

)
−Φ

(
c1 −nμ0√

n

)
= α,

Φ

(
c2 −nμ1√

n

)
−Φ

(
c1 −nμ1√

n

)
= α,

where Φ is the DF of Z.

Remark 3. We caution the reader that UMP tests for testing H0 : θ1 ≤ θ ≤ θ2 and
H′

0 : θ = θ0 for the one-parameter exponential family do not exist. An example will suffice.

Example 5. Let X1,X2, . . . ,Xn be a sample from N(0,σ2). Since the family of joint PDFs
of X = (X1, . . . ,Xn) has an MLR in T(X) =

∑n
1 X2

i , it follows that UMP tests exist for
one-sided hypotheses σ ≥ σ0 and σ ≤ σ0.

Consider now the null hypotheses H0 : σ = σ0 against the alternative H1 : σ 
= σ0. We
will show that a UMP test of H0 does not exist. For testing σ = σ0 against σ > σ0, a test
of the form

ϕ1(x) =

{
1,
∑

x2
i > c1

0, otherwise
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is UMP, and for testing σ = σ0 against σ < σ0, a test of the form

ϕ2(x) =

{
1
∑

x2
i < c2

0 otherwise

is UMP. If the size is chosen as α, then c1 = σ2
0χ

2
n,α and c2 = σ2

0χ
2
n,1−α. Clearly, neither ϕ1

nor ϕ2 is UMP for H0 against H1 : σ 
= σ0. The power of any test of H0 for values σ > σ0

cannot exceed that of ϕ1, and for values of σ < σ0 it cannot exceed the power of test ϕ2.
Hence no test of H0 can be UMP (see Fig. 1).

PROBLEMS 9.4

1. For the following families of PMFs (PDFs) fθ(x), θ ∈Θ⊆R, find a UMP size α test
of H0 : θ ≤ θ0 against H1 : θ > θ0, based on a sample of n observations.

(a) fθ(x) = θx(1−θ)1−x, x = 0,1; 0 < θ < 1.

(b) fθ(x) = (1/
√

2π)exp{−(x−θ)2/2}, −∞< x <∞, −∞< θ <∞.

(c) fθ(x) = e−θ(θx/x!), x = 0,1,2, . . .; θ > 0.

(d) fθ(x) = (1/θ)e−x/θ, x > 0, θ > 0.

(e) fθ(x) = [1/Γ(θ)]xθ−1e−x, x > 0, θ > 0.

(f) fθ(x) = θxθ−1, 0 < x < 1, θ > 0.

0

1

1 32

σ> 1 

σ ≠ 1

σ< 1 

Fig. 1 Power functions of chi-square tests of H0 : σ = σ0 against H1.
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2. Let X1,X2, . . . ,Xn be a sample of size n from the PMF

PN(x) =
1
N
, x = 1,2, . . . ,N;N ∈ {1,2, . . .}.

(a) Show that the test

ϕ(x1,x2, . . . ,xn) =

{
1 if max(x1,x2, . . . ,xn)> N0

α if max(x1,x2, . . . ,xn)≤ N0

is UMP size α for testing H0 : N ≤ N0 against H1 : N > N0.

(b) Show that

ϕ(x1,x2, . . . ,xn) =

⎧⎪⎨
⎪⎩

1 if max(x1,x2, . . . ,xn)> N0 or

max(x1,x2, . . . ,xn)≤ α1/nN0

0 otherwise,

is a UMP size α test of H′
0 : N = N0 against H′

1 : N 
= N0.

3. Let X1,X2, . . . ,Xn be a sample of size n from U(0,θ), θ > 0. Show that the test

ϕ1(x1,x2, . . . ,xn) =

{
1 if max(x1, . . . ,xn)> θ0

α if max(x1,x2, . . . ,xn)≤ θ0

is UMP size α for testing H0 : θ ≤ θ0 against H1 : θ > θ0 and that the test

ϕ2(x1,x2, . . . ,xn) =

⎧⎪⎨
⎪⎩

1 if max(x1, . . . ,xn)> θ0 or

max(x1,x2, . . . ,xn)≤ θ0α
1/n

0 otherwise

is UMP size α for H′
0 : θ = θ0 against H′

1 : θ 
= θ0.

4. Does the Laplace family of PDFs

fθ(x) =
1
2
exp{−|x−θ|}, −∞< x <∞, θ ∈ R,

possess an MLR?

5. Let X have logistic distribution with PDF

fθ(x) = e−x−θ{1+ e−x−θ}−2, x ∈ R.

Does {fθ} belong to the exponential family? Does {fθ} have MLR?

6. (a) Let fθ be the PDF of a N(θ,θ) RV. Does {fθ} have MLR?

(b) Do the same as in (a) if X ∼N(θ,θ2).
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9.5 UNBIASED AND INVARIANT TESTS

We have seen that, if we restrict ourselves to the class Φα of all size α tests, there do not
exist UMP tests for many important hypotheses. This suggests that we reduce the class of
tests under consideration by imposing certain restrictions.

Definition 1. A size α test ϕ of H0 : θ ∈Θ0 against the alternatives H1 : θ ∈Θ1 is said to
be unbiased if

Eθϕ(X)≥ α for all θ ∈Θ1. (1)

It follows that a test ϕ is unbiased if and only if its power function βϕ(θ) satisfies

βϕ(θ)≤ α for θ ∈Θ0 (2)

and

βϕ(θ)≥ α for θ ∈Θ1. (3)

This seems to be a reasonable requirement to place on a test. An unbiased test rejects a
false H0 more often than a true H0.

Definition 2. Let Uα be the class of all unbiased size α tests of H0. If there exists a test
ϕ ∈ Uα that has maximum power at each θ ∈Θ1, we call ϕ a UMP unbiased size α test.

Clearly Uα ⊂ Φα. If a UMP test exists in Φα, it is UMP in Uα. This follows by com-
paring the power of the UMP test with that of the trivial test ϕ(x) = α. It is convenient to
introduce another class of tests.

Definition 3. A test ϕ is said to be α-similar on a subset Θ∗ of Θ if

βϕ(θ) = Eθϕ(X) = α for θ ∈Θ∗. (4)

A test is said to be similar on a set Θ∗ ⊆Θ if it is α-similar on Θ∗ for some α, 0 ≤ α≤ 1.

It is clear that there exists at least one similar test on every Θ∗, namely, ϕ(x) ≡ α,
0 ≤ α≤ 1.

Theorem 1. Let βϕ(θ) be continuous in θ for any ϕ. If ϕ is an unbiased size α test of
H0 : θ ∈Θ0 against H1 : θ ∈Θ1, it is α-similar on the boundary Λ = Θ0 ∩Θ1. (Here A is
the closure of set A.)

Proof. Let θ ∈ Λ. Then there exists a sequence {θn}, θn ∈ Θ0, such that θn → θ. Since
βϕ(θ) is continuous, βϕ(θn) → βϕ(θ); and since βϕ(θn) ≤ α, for θn ∈ Θ0, βϕ(θ) ≤ α.
Similarly, there exists a sequence {θ′n}, θ′n ∈Θ1, such that βϕ(θ

′
n)≥ α (ϕ is unbiased) and

θ′n → θ. Thus βϕ(θ
′
n)→ βϕ(θ), and it follows that βϕ(θ)≥ α. Hence βϕ(θ) = α for θ ∈Λ,

and ϕ is α-similar on Λ.
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Remark 1. Thus, if βϕ(θ) is continuous in θ for any ϕ, an unbiased size α test of H0

against H1 is also α-similar for the PDFs (PMFs) of Λ, that is, for {fθ,θ ∈ Λ}. If we can
find an MP similar test of H0 : θ ∈ Λ against H1, and if this test is unbiased size α, then
necessarily it is MP in the smaller class.

Definition 4. A testϕ that is UMP among allα-similar tests on the boundaryΛ=Θ0∩Θ1

is said to be a UMP α-similar test.

It is frequently easier to find a UMPα-similar test. Moreover, tests that are UMP similar
on the boundary are often UMP unbiased.

Theorem 2. Let the power function of every test ϕ of H0 : θ ∈Θ0 against H1 : θ ∈Θ1 be
continuous in θ. Then a UMP α-similar test is UMP unbiased, provided that its size is α
for testing H0 against H1.

Proof. Let ϕ0 be UMP α-similar. Then Eθϕ0(X) ≤ α for θ ∈ Θ0. Comparing its power
with that of the trivial similar test ϕ(x) ≡ α, we see that ϕ0 is unbiased also. By the
continuity of βϕ(θ) we see that the class of all unbiased size α tests is a subclass of the
class of all α-similar tests. It follows that ϕ0 is a UMP unbiased size α test.

Remark 2. The continuity of power function βϕ(θ) is not always easy to check but
sufficient conditions may be found in most advanced calculus texts. See, for example,
Widder [117, p. 356]. If the family of PDF (PMF) fθ is an exponential family then a proof
is given in Lehman [64, p. 59].

Example 1. Let X1,X2, . . . ,Xn be a sample from N(μ,1). We wish to test H0 : μ ≤ 0
against H1 : μ > 0. Since the family of densities has an MLR in

∑n
1 Xi, we can use

Theorem 2 to conclude that a UMP test rejects H0 if
∑n

1 Xi > c. This test is also UMP
unbiased. Nevertheless we use this example to illustrate the concepts introduced above.

HereΘ0 = {μ≤ 0},Θ1 = {μ> 0}, andΛ=Θ0∩Θ1 = {μ= 0}. Since T(X)=
∑n

i=1 Xi

is sufficient, we focus attention to tests based on T alone. Note that T ∼N(nμ,n) which is
one-parameter exponential. Thus the power function of any testϕ based on T is continuous
in μ. It follows that any unbiased size α test of H0 has the property βϕ(0) = α of similarity
overΛ. In order to use Theorem 2, we find a UMP test of H′

0 :μ∈Λ against H1. Let μ1 > 0.
By the fundamental lemma an MP test of μ= 0 against μ= μ1 > 0 is given by

ϕ(t) =

{
1 if exp

{
t2

2n −
(t−nμ)2

2n

}
> k′

0 otherwise,

=

{
1 if t > k

0 if t ≤ k

where k is determined from

α= P0{T > k}= P

{
Z >

k√
n

}
.
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Thus k =
√

nzα. Since ϕ is independent of μ1 as long as μ1 > 0, we see that the test

ϕ(t) =

{
1, t >

√
nzα

0, otherwise,
,

is UMP α-similar. We need only check that ϕ is of the right size for testing H0 against H1.
We have, for μ≤ 0,

Eμϕ(T) = Pμ{T >
√

nzα}

= P

{
T −nμ√

n
> zα−

√
nμ

}
≤ P{Z > zα},

since −√
nμ≥ 0. Here Z is N(0,1). It follows that

Eμϕ(T)≤ α for μ≤ 0,

hence ϕ is UMP unbiased.

Theorem 2 can be used only if it is possible to find a UMP α-similar test. Unfortunately
this requires heavy use of conditional expectation, and we will not pursue the subject any
further. We refer to Lehmann [64, chapters 4 and 5] and Ferguson [28, pp. 224–233] for
further details.

Yet another reduction is obtained if we apply the principle of invariance to hypothesis
testing problems. We recall that a class of distributions is invariant under a group of trans-
formations G if for every g ∈ G and every θ ∈ Θ there exists a unique θ′ ∈ Θ such that
g(X) has distribution Pθ′ , whenever X∼ Pθ . We rewrite θ′ = gθ.

In a hypothesis testing problem we need to reformulate the principle of invariance.
First, we need to ensure that under transformations G not only does P = {Pθ : θ ∈ Θ}
remain invariant but also the problem of testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 remain
invariant. Second, since the problem has not changed by application of G, the decision also
must not change.

Definition 5. A groupG of transformations on the space of values of X leaves a hypothesis
testing problem invariant if G leaves both {Pθ : θ ∈Θ0} and {Pθ : θ ∈Θ1} invariant.

Definition 6. We say that ϕ is invariant under G if

ϕ(g(x)) = ϕ(x) for all x and all g ∈ G.

Definition 7. Let G be a group of transformations on the space of values of the RV X. We
say that a statistic T(x) is maximal invariant under G if (a) T is invariant; (b) T is maximal,
that is T(x1) = T(x2)⇒ x1 = g(x2) for some g ∈ G.
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Example 2. Let x= (x1,x2, . . . ,xn), and G be the group of translations

gc(x) = (x1 + c, . . . ,xn + c), −∞< c <∞.

Here the space of values of X is Rn. Consider the statistic

T(x) = (xn − x1, . . . ,xn − xn−1).

Clearly,

T(gc(x)) = (xn − x1, . . . ,xn − xn−1) = T(x).

If T(x) = T(x′), then xn−xi = x′n−x′i , i = 1,2, . . . ,n−1, and we have xi−x′i = xn−x′n = c
(i = 1,2, . . . ,n−1), that is, gc(x

′) = (x′1 + c, . . . ,x′n + c) = x and T is maximal invariant.
Next consider the group of scale changes

gc(x) = (cx1, . . . ,cxn), c > 0.

Then

T(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if all xi = 0,(
x1

z
, . . . ,

xn

z

)
if at least one xi 
= 0, z =

(
n∑
1

x2
i

)1/2

,

is maximal invariant; for

T(gc(x)) = T(cx1, . . . ,cxn) = T(x),

and if T(x) = T(x′), then either T(x) = T(x′) = 0 in which case xi = x′i = 0, or T(x) =
T(x′) 
= 0, in which case xi/z = x′i/z′, implying x′i = (z′/z)xi = cxi, and T is maximal.

Finally, if we consider the group of translation and scale changes,

g(x) = (ax1 +b, . . . ,axn +b), a > 0, −∞< b <∞,

a maximal invariant is

T(x) =

⎧⎨
⎩

0 if β = 0,(
x1 − x
β

,
x2 − x
β

, . . . ,
xn − x
β

)
if β 
= 0,

where x = n−1∑n
1 xi and β = n−1∑n

1(xi − x)2.

Definition 8. Let Iα denote the class of all invariant size α tests of H0 : θ ∈ Θ0 against
H1 : θ ∈Θ1. If there exists a UMP member in Iα, we call the test a UMP invariant test of H0

against H1.
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The search for UMP invariant tests is greatly facilitated by the use of the following
result.

Theorem 3. Let T(x) be maximal invariant with respect to G. Then ϕ is invariant under
G if and only if ϕ is a function of T .

Proof. Let ϕ be invariant. We have to show that T(x1) = T(x2) ⇒ ϕ(x1) = ϕ(x2). If
T(x1) = T(x2), there is a g ∈ G such that x1 = g(x2), so that ϕ(x1) = ϕ(g(x2)) = ϕ(x2).

Conversely, if ϕ is a function of T , ϕ(x) = h[T(x)], then

ϕ(g(x)) = h[T(g(x))] = h[T(x)] = ϕ(x),

and ϕ is invariant.

Remark 3. The use of Theorem 3 is obvious. If a hypothesis testing problem is invariant
under a group G, the principle of invariance restricts attention to invariant tests. According
to Theorem 3, it suffices to restrict attention to test functions that are functions of maximal
invariant T .

Example 3. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), where both μ and σ2 are
unknown. We wish to test H0 : σ ≥ σ0, −∞ < μ < ∞, against H1 : σ < σ0, −∞ <
μ < ∞. The family {N(μ,σ2)} remains invariant under translations x′i = xi + c,
−∞ < c < ∞. Moreover, since var(X + c) = var(X), the hypothesis testing problem
remains invariant under the group of translations, that is, both {N(μ,σ2) : σ2 ≥ σ2

0} and
{N(μ,σ2) : σ2 < σ2

0} remain invariant. The joint sufficient statistic is (X,
∑

(Xi −X)2),
which is transformed to (X + c,

∑
(Xi −X)2) under translations. A maximal invariant is∑

(Xi −X)2. It follows that the class of invariant tests consists of tests that are functions
of
∑

(Xi −X)2.
Now

∑
(Xi −X)2/σ2 ∼ χ2(n−1), so that the PDF of Z =

∑
(Xi −X)2 is given by

fσ2(z) =
σ−(n−1)

Γ[(n−1)/2]2(n−1)/2
z(n−3)/2e−z/2σ2

, z > 0.

The family of densities {fσ2 : σ2 > 0} has an MLR in z, and it follows that a UMP test is
to reject H0 : σ

2 ≥ σ2
0 if z ≤ k, that is, a UMP invariant test is given by

ϕ(x) =

{
1 if

∑
(xi − x)2 ≤ k,

0 if
∑

(xi − x)2 > k,

where k is determined from the size restriction

α= Pσ0

{∑
(Xi −X)2 ≤ k

}
= P

{∑
(Xi −X)2

σ2
0

≤ k

σ2
0

}
,

that is,

k = σ2
0χ

2
n−1,1−α.
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Example 4. Let X have PDF fi(x1 −θ, . . . ,xn −θ) under Hi (i = 0,1), −∞< θ <∞. Let
G be the group of translations

gc(x) = (x1 + c, . . . ,xn + c), −∞< c <∞, n ≥ 2.

Clearly, g induces g on Θ, where gθ = θ+ c. The hypothesis testing problem remains
invariant under G. A maximal invariant under G is T(X) = (X1 −Xn, . . . ,Xn−1 −Xn) =
(T1,T2, . . . ,Tn−1). The class of invariant tests coincides with the class of tests that are
functions of T . The PDF of T under Hi is independent of θ and is given by

∫∞
−∞ fi(t1 +

z, . . . , tn−1 + z,z)dz. The problem is thus reduced to testing a simple hypothesis against a
simple alternative. By the fundamental lemma the MP test

ϕ(t1, t2, . . . , tn−1) =

{
1 if λ(t)> c,

0 if λ(t)< c,

where t= (t1, t2, . . . , tn−1) and

λ(t) =

∫ ∞

−∞
f1(t1 + z, . . . , tn−1 + z,z)dz∫ ∞

−∞
f0(t1 + z, . . . , tn−1 + z,z)dz

,

is UMP invariant.
A particular case of Example 4 will be, for instance, to test H0 : X ∼ N(θ,1) against

H1 : X ∼ C(1,θ),θ ∈ R. See Problem 1.

Example 5. Suppose (X,Y) has joint PDF

fθ(x,y) = λμexp{−λx−μy}, x > 0, y > 0,

and = 0 elsewhere, where θ = (λ,μ) , λ > 0, μ > 0. Consider scale group G =
{{0,c}, c > 0} which leaves {fθ} invariant. Suppose we wish to test H0 : μ ≥ λ against
H1 : μ < λ. It is easy to see that GΘ0 = Θ0 so that G leaves (α,Θ0,Θ1) invariant and
T = Y/X is maximal invariant. The PDF of T is given by

f T
θ (t) =

λμ

(λ+μt)2
, t > 0, = 0 for t < 0.

The family {f T
θ } has MLR in T and hence a UMP invariant test of H0 is of the form

ϕ(t) =

⎧⎪⎨
⎪⎩

1, t > c(α),

γ, t = c(α),

0, t < c(α),

where

α=

∫ ∞

c(α)

1
(1+ t)2

dt ⇒ c(α) =
1−α

α
.
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PROBLEMS 9.5

1. To test H0 : X ∼N(θ,1) against H1 : X ∼ C(1,θ) a sample of size 2 is available on X.
Find a UMP invariant test of H0 against H1.

2. Let X1,X2, . . . ,Xn be a sample from P(λ). Find a UMP unbiased size α test for
the null hypothesis H0 : λ ≤ λ0 against alternatives λ > λ0 by the methods of this
section.

3. Let X ∼ NB(1;θ). By the methods of this section find a UMP unbiased size α test
of H0 : θ ≥ θ0 against H1 : θ < θ0.

4. Let X1,X2, . . . ,Xn iid N(μ,σ2) RVs. Consider the problem of testing H0 : μ ≤ 0
against H1 : μ > 0:

(a) It suffices to restrict attention to sufficient statistic (U,V) where U = X and
V = S2. Show that the problem of testing H0 is invariant under G = {{a,1},
a ∈ R} and a maximal invariant is T = U/

√
V .

(b) Show that the distribution of T has MLR and a UMP invariant test rejects H0

when T > c.

5. Let X1,X2, . . . ,Xn be iid RVs and let H0 be that Xi ∼ N(θ,1), and H1 be that the
common PDF is fθ(x) = (1/2)exp{−|x− θ|}. Find the form of the UMP invariant
test of H0 against H1.

6. Let X1,X2, . . . ,Xn be iid RVs and suppose H0 : Xi ∼ N(0,1) and H1 : Xi ∼ f1(x) =
exp{−|x|}/2:

(a) Show that the problem of testing H0 against H1 is invariant under scale changes
gc(x) = cx, c > 0 and a maximal invariant is T(X) = (X1/Xn, . . . ,Xn−1/Xn).

(b) Show that the MP invariant test rejects H0 when

√√√√1+
n−1∑
i=1

Y2
i

/[
1+

n+1∑
i=1

|Yi|
]

< k where Yj = Xj/Xn, j = 1,2, . . . ,n−1, or equivalently when

⎛
⎝ n∑

j=1

X2
j

⎞
⎠

1/2

n∑
j=1

|Xj|
< k.

9.6 LOCALLY MOST POWERFUL TESTS

In the previous section we argued that whenever a UMP test does not exist, we restrict the
class of tests under consideration and then find a UMP test in the subclass. Yet another
approach when no UMP test exists is to restrict the parameter set to a subset of Θ1. In
most problems, the parameter values that are close to the null hypothesis are the hardest
to detect. Tests that have good power properties for “local alternatives” may also retain
good power properties for “nonlocal” alternatives.
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Definition 1. Let Θ⊆ R. Then a test ϕ0 with power function βϕ0(θ) = Eθϕ0(X) is said
to be a locally most powerful (LMP) test of H0 : θ ≤ θ0 against H1 : θ > θ0 if there exists
a Δ> 0 such that for any other test ϕ with

βϕ(θ0) = βϕ0(θ0) =

∫
ϕ(x)fθ0(x)dx (1)

βϕ0(θ)≥ βϕ(θ) for every θ ∈ (θ0,θ0 +Δ]. (2)

We assume that the tests under consideration have continuously differentiable power
function at θ = θ0 and the derivative may be taken under the integral sign. In that case, an
LMP test maximizes

∂

∂θ
βϕ(θ)

∣∣∣
θ=θ0

= β′
ϕ(θ)
∣∣∣
θ=θ0

=

∫
ϕ(x)

∂

∂θ
fθ(x)

∣∣∣
θ=θ0

dx (3)

subject to the size constraint (1). A slight extension of the Neyman–Pearson lemma
(Remark 9.3.2) implies that a test satisfying (1) and given by

ϕ0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ∂
∂θ fθ(x)

∣∣∣
θ0

> kfθ0(x),

γ if ∂
∂θ fθ(x)

∣∣∣
θ0

= kfθ0(x),

0 if ∂
∂θ fθ(x)

∣∣∣
θ0

< kfθ0(x)

(4)

will maximize β′
ϕ(θ0). It is possible that a test that maximizes β′

ϕ(θ0) is not LMP, but if
the test maximizes β′(θ0) and is unique then it must be LMP test (see Kallenberg et al. [49,
p. 290] and Lehmann [64, p. 528]).

Note that for x for which fθ0(x) 
= 0 we can write

∂
∂θ fθ(x)

∣∣∣
θ0

fθ0(x)
=

∂

∂θ
log fθ(x)

∣∣
θ0
,

and then

ϕ0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if ∂
∂θ log fθ(x)

∣∣∣
θ0

> k,

γ if ∂
∂θ log fθ(x)

∣∣∣
θ0

= k,

0 if ∂
∂θ log fθ(x)

∣∣∣
θ0

< k.

(5)

Example 1. Let X1,X2, . . . ,Xn be iid with common normal PDF with mean μ and vari-
ance σ2. If one of these parameters is unknown while the other is known, the family of
PDFs has MLR and UMP tests exist for one-sided hypotheses for the unknown parameter.
Let us derive the LMP test in each case.
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First consider the case when σ2 is known, say σ2 = 1 and H0 : μ ≤ 0, H1 : μ > 0. An
easy computation shows that an LMP test is of the form

ϕ0(x) =

{
1 if x > k

0 if x ≤ k

which, of course, is the form of the UMP test obtained in Problem 9.4.1 by an application
of Theorem 9.4.2.

Next consider the case when μ is known, say μ= 0 and H0 : σ≤ σ0, H1 : σ > σ0. Using
(5) we see that an LMP test is of the form

ϕ1(x) =

{
1 if

∑n
i=1 x2

i > k

0 if
∑n

i=1 x2
i ≤ k

which coincides with the UMP test.
In each case the power function is differentiable and the derivatives may be taken inside

the integral sign because the PDF is a one–parameter exponential type PDF.

Example 2. Let X1,X2, . . . ,Xn be iid RVs with common PDF

fθ(x) =
1
π

1
1+(x−θ)2

, x ∈ R,

and consider the problem of testing H0 : θ ≤ 0 against H1 : θ > 0.

In this case {fθ} does not have MLR. A direct computation using the Neyman–Pearson
lemma shows that an MP test of θ = 0 against θ = θ1, θ1 > 0 depends on θ1 and hence
cannot be MP for testing θ = 0 against θ = θ2, θ2 
= θ1. Hence a UMP test of H0 against
H1 does not exist. An LMP test of H0 against H1 is of the form

ϕ0(x) =

⎧⎪⎨
⎪⎩

1 if
n∑

i=1

2xi

1+ x2
i

> k

0 otherwise,

where k is chosen so that the size of ϕ0 is α. For small n it is hard to compute k but for
large n it is easy to compute k using the central limit theorem. Indeed { Xi

1+X2
i
} are iid RVs

with mean 0 and finite variance (= 3/8) so that k = zα
√

n/2 will give an (approximate)
level α test for large n.

The testϕ0 is good at detecting small departures from θ≤ 0 but it is quite unsatisfactory
in detecting values of θ away from 0. In fact, for α < 1/2, βϕ0(θ)→ 0 as θ→∞.

This procedure for finding locally best tests has applications in nonparametric statistics.
We refer the reader to Randles and Wolfe [85, section 9.1] for details.
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PROBLEMS 9.6

1. Let X1,X2, . . . ,Xn be iid C(1,θ) RVs. Show that E0(1 + X2
1)

−k = (1/π)B(k +

1/2,1/2). Hence or otherwise show that E0

[
X2

1

(1+X2
1)

2

]
= var

(
X1

1+X2
1

)
= 1/8.

2. Let X1,X2, . . . ,Xn be a random sample from logistic PDF

fθ(x) =
1

2[1+cosh(x−θ)]
=

ex−θ

{1+ ex−θ}2
.

Show that the LMP test of H0 :θ=0 against H1 :θ>0 rejects H0 if
∑n

i=1 tanh(
xi
2

)
> k.

3. Let X1,X2, . . . ,Xn be iid RVs with common Laplace PDF

fθ(x) = (1/2)exp{−|x−θ|}.

For n ≥ 2 show that UMP size α (0 < α < 1) test of H0 : θ ≤ 0 against H1 : θ > 0
does not exist. Find the form of the LMP test.



10
SOME FURTHER RESULTS ON
HYPOTHESES TESTING

10.1 INTRODUCTION

In this chapter we study some commonly used procedures in the theory of testing of
hypotheses. In Section 10.2 we describe the classical procedure for constructing tests
based on likelihood ratios. This method is sufficiently general to apply to multi-parameter
problems and is specially useful in the presence of nuisance parameters. These are
unknown parameters in the model which are of no inferential interest. Most of the normal
theory tests described in Sections 10.3 to 10.5 and those in Chapter 12 can be derived
by using methods of Section 10.2. In Sections 10.3 to 10.5 we list some commonly
used normal theory-based tests. In Section 10.3 we also deal with goodness-of-fit tests.
In Section 10.6 we look at the hypothesis testing problem from a decision-theoretic
viewpoint and describe Bayes and minimax tests.

10.2 GENERALIZED LIKELIHOOD RATIO TESTS

In Chapter 9 we saw that UMP tests do not exist for some problems of hypothesis testing.
It was suggested that we restrict attention to smaller classes of tests and seek UMP tests in
these subclasses or, alternatively, seek tests which are optimal against local alternatives.
Unfortunately, some of the reductions suggested in Chapter 9, such as invariance, do not
apply to all families of distributions.

In this section we consider a classical procedure for constructing tests that has
some intuitive appeal and that frequently, though not necessarily, leads to optimal

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
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tests. Also, the procedure leads to tests that have some desirable large-sample
properties.

Recall that for testing H0 : X ∼ f0 against H1 : X ∼ f1, Neyman–Pearson MP test is
based on the ratio f1(x)/f0(x). If we interpret the numerator as the best possible explana-
tion of x under H1, and the denominator as the best possible explanation of X under H0,
then it is reasonable to consider the ratio

r(x) =
supθ∈Θ1

L(θ;x)

supθ∈Θ0
L(θ;x)

=
supθ∈Θ1

fθ(x)

supθ∈Θ0
fθ(x)

as a test statistic for testing H0 : θ ∈Θ0 against H1 : θ ∈Θ1. Here L(θ;x) is the likelihood
function of x. Note that for each x for which the MLEs of θ under Θ1 and Θ0 exist the
ratio is well defined and free of θ and can be used as a test statistic. Clearly we should
reject H0 if r(x)> c.

The statistic r is hard to compute; only one of the two supremas in the ratio may be
attained.

Let θ ∈ Θ ⊆ Rk be a vector of parameters, and let X be a random vector with PDF
(PMF) fθ . Consider the problem of testing the null hypothesis H0 : X∼ fθ , θ ∈Θ0 against
the alternative H1 : X∼ fθ , θ ∈Θ1.

Definition 1. For testing H0 against H1, a test of the form, reject H0 if and only if
λ(x)< c, where c is some constant, and

λ(x) =

sup
θ∈Θ0

fθ(x1,x2, . . . ,xn)

sup
θ∈Θ

fθ(x1,x2, . . . ,xn)
,

is called a generalized likelihood ratio (GLR) test.

We leave the reader to show that the statistics λ(X) and r(X) lead to the same criterion
for rejecting H0.

The numerator of the likelihood ratio λ is the best explanation of X (in the sense of
maximum likelihood) that the null hypothesis H0 can provide, and the denominator is the
best possible explanation of X. H0 is rejected if there is a much better explanation of X
than the best one provided by H0.

It is clear that 0 ≤ λ≤ 1. The constant c is determined from the size restriction

sup
θ∈Θ0

Pθ{λ(X)< c}= α.

If the distribution of λ is continuous (that is, the DF is absolutely continuous), any size α
is attainable. If, however, λ(X) is a discrete RV, it may not be possible to find a likelihood
ratio test whose size exactly equals α. This problem arises because of the nonrandomized
nature of the likelihood ratio test and can be handled by randomization. The following
result holds.

Theorem 1. If for given α, 0 ≤ α ≤ 1, nonrandomized Neyman–Pearson and likelihood
ratio tests of a simple hypothesis against a simple alternative exist, they are equivalent.

Proof. The proof is left as an exercise.
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Theorem 2. For testing θ ∈ Θ0 against θ ∈ Θ1, the likelihood ratio test is a function of
every sufficient statistic for θ.

Theorem 2 follows from the factorization theorem for sufficient statistics.

Example 1. Let X ∼ b(n,p), and we seek a level α likelihood ratio test of H0 : p ≤ p0

against H1 : p > p0:

λ(x) =

sup
p≤p0

(
n
x

)
px(1−p)n−x

sup
0≤p≤1

(
n
x

)
px(1−p)n−x

.

Now

sup
0≤p≤1

px(1−p)n−x =
( x

n

)x(
1− x

n

)n−x
.

The function px(1 − p)n−x first increases, then achieves its maximum at p = x/n, and
finally decreases, so that

sup
p≤p0

px(1−p)n−x =

⎧⎪⎨
⎪⎩

px
0(1−p0)

n−x if p0 <
x
n
,( x

n

)x(
1− x

n

)n−x
if

x
n
≤ p0.

It follows that

λ(x) =

⎧⎪⎨
⎪⎩

px
0(1−p0)

n−x

(x/n)x[1− (x/n)]n−x
if p0 <

x
n
,

1 if
x
n
≤ p0.

Note that λ(x) ≤ 1 for np0 < x and λ(x) = 1 if x ≤ np0, and it follows that λ(x) is a
decreasing function of x. Thus λ(x)< c if and only if x > c′, and the GLR test rejects H0

if x > c′.
The GLR test is of the type obtained in Section 9.4 for families with an MLR except

for the boundary λ(x) = c. In other words, if the size of the test happens to be exactly α,
the likelihood ratio test is a UMP level α test. Since X is a discrete RV, however, to obtain
size α may not be possible. We have

α= sup
p≤p0

Pp{X > c′}= Pp0{X > c′}.

If such a c′ does not exist, we choose an integer c′ such that

Pp0{X > c′} ≤ α and Pp0{> c′−1}> α.

The situation in Example 1 is not unique. For one-parameter exponential family it can
be shown (Birkes [7]) that a GLR test of H0 : θ ≤ θ0 against H1 : θ > θ0 is UMP of its
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size. The result holds also for the dual H′
0 : θ ≥ θ0 and, in fact, for a much wider class of

one-parameter family of distributions.
The GLR test is specially useful when θ is a multiparameter and we wish to test

hypothesis concerning one of the parameters. The remaining parameters act as nuisance
parameters.

Example 2. Consider the problem of testing μ = μ0 against μ �= μ0 in sampling from
N(μ,σ2), where both μ and σ2 are unknown. In this case Θ0 = {(μ0,σ

2) : σ2 > 0} and
Θ= {(μ,σ2) : −∞< μ <∞, σ2 > 0}. We write θ = (μ,σ2):

sup
θ∈Θ0

fθ(x) = sup
σ2>0

[
1

(σ
√

2π)n
exp

{
−
∑n

1(xi −μ0)
2

2σ2

}]
= f 2

σ̂0
(x),

where σ̂2
0 is the MLE, σ̂2

0 = (1/n)
∑n

i=1(xi −μ0)
2. Thus

sup
θΘ0

fθ(x) =
1

(2π/n)n/2
{∑n

1(xi −μ0)2
}n/2

e−n/2.

The MLE of θ = (μ,σ2) when both μ and σ2 are unknown is (
∑n

1 xi/n,
∑n

1(xi − x)2/n).
It follows that

sup
θ∈Θ

fθ(x) = sup
μ,σ2

[
1

(σ
√

2π)n
exp

{
−
∑n

1(xi −μ)2

2σ2

}]

=
1

(2π/n)n/2
{∑n

1(xi − x)2
}n/2

e−n/2.

Thus

λ(x) =

{ ∑n
1(xi − x)2∑n

1(xi −μ0)2

}n/2

=

{
1

1+[n(x−μ0)2/
∑n

1(xi − x)2]

}n/2

.

The GLR test rejects H0 if

λ(x)< c,

and since λ(x) is a decreasing function of n(x−μ0)
2/

∑n
1 n(xi − x)2, we reject H0 if∣∣∣∣∣∣

x−μ0√∑n
1(xi − x)2

∣∣∣∣∣∣> c′,

that is, if ∣∣∣∣
√

n(x−μ0)

s

∣∣∣∣> c′′,
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where s2 = (n−1)−1∑n
1(xi − x)2. The statistic

t(X) =

√
n(X−μ0)

S

has a t-distribution with n− 1 d.f. Under H0 : μ = μ0, t(X) has a central t(n− 1) dis-
tribution, but under H1 : μ �= μ0, t(X) has a noncentral t-distribution with n−1 d.f. and
noncentrality parameter δ = (μ− μ0)/σ. We choose c′′ = tn−1,α/2 in accordance with
the distribution of t(X) under H0. Note that the two-sided t-test obtained here is UMP
unbiased. Similarly one can obtain one-sided t-tests also as likelihood ratio tests.

The computations in Example 2 could be slightly simplified by using Theorem 2.
Indeed T(X) = (X,S2) is a minimal sufficient statistic for θ and since X and S2 are indepen-
dent the likelihood is the product of the PDFs of X and S2. We note that X ∼N(μ,σ2/n)
and S2 ∼ σ2

n−1χ
2
n−1. We leave it to the reader to carry out the details.

Example 3. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent random samples from
N(μ1,σ

2
1) and N(μ2,σ

2
2), respectively. We wish to test the null hypothesis H0 : σ

2
1 = σ2

2
against H1 : σ

2
1 �= σ2

2. Here

Θ= {(μ1,σ
2
1 ,μ2,σ

2
2) : −∞< μi <∞,σ2

i > 0, i = 1,2}

and

Θ0 = {(μ1,σ
2
1 ,μ2,σ

2
2) : −∞< μi <∞, i = 1,2,σ2

1 = σ2
2 > 0}.

Let θ = (μ1,σ
2
1 ,μ2,σ

2
2). Then the joint PDF is

fθ(x,y) =
1

(2π)(m+n)/2σm
1 σ

n
2

exp

{
− 1

2σ2
1

m∑
1

(xi −μ1)
2 − 1

2σ2
2

n∑
1

(yi −μ2)
2

}
.

Also,

log fθ(x,y) =−m+n
2

log2π− m
2
logσ2

1 −
n
2
logσ2

2 −
∑m

1 (xi −μ1)
2

2σ2
1

− 1
2σ2

2

n∑
1

(yi −μ2)
2.

Differentiating with respect to μ1 and μ2, we obtain the MLEs

μ̂1 = x and μ̂2 = y.

Differentiating with respect to σ2
1 and σ2

2, we obtain the MLEs

σ̂2
1 =

1
m

m∑
1

(xi − x)2 and σ̂2
2 =

1
n

n∑
1

(yi − y)2.
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If, however, σ2
1 = σ2

2 = σ2, the MLE of σ2 is

σ̂2 =

∑m
1 (xi − x)2 +

∑n
1(yi − y)2

m+n
.

Thus

sup
θ∈Θ0

fθ(x,y) =
e−(m+n)/2

[2π/(m+n)](m+n)/2
{∑m

1 (xi − x)2 +
∑n

1(yi − y)2
}(m+n)/2

and

sup
θ∈Θ

fθ(x,y) =
e−(m+n)/2

(2π/m)m/2(2π/n)n/2
{∑m

1 (xi − x)2
}m/2{∑n

1(yi − y)2
}n/2

,

so that

λ(x,y) =

(
m

m+n

)m/2( n
m+n

)n/2 {∑m
1 (xi − x)2

}m/2{∑n
1(yi − y)2

}n/2

{∑m
1 (xi − x)2 +

∑n
1(yi − y)2

}(m+n)/2
.

Now

{∑m
1 (xi − x)2

}m/2{∑n
1(yi − y)2

}n/2

{∑m
1 (xi − x)2 +

∑n
1(yi − y)2

}(m+n)/2

=
1{

1+
∑m

1 (xi − x)2/
∑n

1(yi − y)2
}n/2{

1+
∑n

1(yi − y)2/
∑m

1 (xi − x)2
}m/2

.

Writing

f =

∑m
1 (xi − x)2/(m−1)∑n
1(yi − y)2/(n−1)

,

we have

λ(x,y) =

(
m

m+n

)m/2( n
m+n

)n/2

· 1
{1+[(m−1)/(n−1)] f}n/2{1+[(n−1)/(m−1)](1/f )}m/2

.

We leave the reader to check that λ(x,y) < c is equivalent to f < c1 or f > c2. (Take
logarithms and use properties of convex functions. Alternatively, differentiate logλ.)

Under H0, the statistic

F =

∑m
1 (Xi −X)2/(m−1)∑n
1(Yi −Y)2/(n−1)
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has an F(m−1,n−1) distribution, so that c1, c2 can be selected. It is usual to take

P{F ≤ c1}= P{F ≥ c2}=
α

2
.

Under H1, (σ2
2/σ

2
1)F has an F(m−1,n−1) distribution.

In Example 3 we can obtain the same GLR test by focusing attention on the joint suf-
ficient statistic (X,Y,S2

X,S
2
Y) where S2

X and S2
Y are sample variances of the X’s and the Y’s,

respectively. In order to write down the likelihood function we note that X, Y , S2
X , S2

Y are
independent RVs. The distributions X and S2

X are the same as in Example 2 except that m
is the sample size. Distributions of Y and S2

Y require appropriate modifications. We leave
the reader to carry out the details. It turns out that the GLR test coincides with the UMP
unbiased test in this case.

In certain situations the GLR test does not perform well. We reproduce here an example
due to Stein and Rubin.

Example 4. Let X be a discrete RV with PMF

Pp=0{X = x}=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

2
if x =±2,

1−2α
2

if x =±1,

α if x = 0,

under the null hypothesis H0 : p = 0, and

Pp{X = x}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pc if x =−2,

1− c
1−α

(
1
2
−α

)
if x =±1,

α

(
1− c
1−α

)
if x = 0,

(1−p)c if x = 2,

under the alternative H1 : p ∈ (0,1), where α and c are constants with

0 < α <
1
2

and
α

2−α
< c < α.

To test the simple null hypothesis against the composite alternative at the level of
significance α, let us compute the likelihood ratio λ. We have

λ(2) =
P0{X = 2}

sup
0≤p<1

Pp{X = 2} =
α/2

c
=

α

2c

since α/2 < c. Similarly λ(−2) = α/(2c). Also

λ(1) = λ(−1) =
1
2 −α

[(1− c)/(1−α)]
(

1
2 −α

) =
1−α

1− c
, α <

1
2
,
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and

λ(0) =
1−α

1− c
.

The GLR test rejects H0 if λ(x)< k, where k is to be determined so that the level is α. We
see that

P0

{
λ(X)<

1−α

1− c

}
= P0{X =±2}= α,

provided that α/2c < [(1−α)/(1− c)]. But α/(2−α)< c < α implies α < 2c− cα, so
that α−cα < 2c−2cα, or α(1−c)< 2c(1−α), as required. Thus the GLR size α test is
to reject H0 if X =±2. The power of the GLR test is

Pp

{
λ(X)<

1−α

1− c

}
= Pp{X =±2}= pc+(1−p)c = c < α

for all p ∈ (0,1). The test is not unbiased and is even worse than the trivial test ϕ(x)≡ α.
Another test that is better than the trivial test is to reject H0 whenever x = 0 (this is

opposite to what the likelihood ratio test says). Then

P0{X = 0}= α,

Pp{X = 0}= α
1− c
1−α

> α (since c < α),

for all p ∈ (0,1), and the test is unbiased.

We will use the generalized likelihood ratio procedure quite frequently hereafter
because of its simplicity and wide applicability. The exact distribution of the test statistic
under H0 is generally difficult to obtain (despite what we saw in Examples 1 to 3 above)
and evaluation of power function is also not possible in many problems. Recall, however,
that under certain conditions the asymptotic distribution of the MLE is normal. This result
can be used to prove the following large-sample property of the GLR under H0, which
solves the problem of computation of the cut-off point c at least when the sample size is
large.

Theorem 3. Under some regularity conditions on fθ(x), the random variable−2 logλ(X)
under H0 is asymptotically distributed as a chi-square RV with degrees of freedom equal to
the difference between the number of independent parameters in Θ and the number in Θ0.

We will not prove this result here; the reader is referred to Wilks [118, p. 419]. The
regularity conditions are essentially the ones associated with Theorem 8.7.4. In Example 2
the number of parameters unspecified under H0 is one (namely, σ2), and under H1 two
parameters are unspecified (μ and σ2), so that the asymptotic chi-square distribution will
have 1 d.f. Similarly, in Example 3, the d.f. = 4−3 = 1.

Example 5. In Example 2 we showed that, in sampling from a normal population with
unknown mean μ and unknown variance σ2, the likelihood ratio for testing H0 : μ = μ0

against H1 : μ �= μ0 is
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λ(x) =

{
1+

n(x−μ0)
2∑n

i=1(xi − x)2

}−n/2

.

Thus

−2 logλ(X) = n log

{
1+n

(X−μ0)
2∑n

1(Xi −X)2

}
.

Under H0,
√

n(X − μ0)/σ ∼ N(0,1) and
∑n

1(Xi − X)2/σ2 ∼ χ2(n − 1). Also∑n
i=1 (Xi −X)2/[(n−1)σ2]

P−→1. It follows that if Z ∼N(0,1) then −2 logλ(X) has the

same limiting distribution as n log
{

1+ Z2

n−1

}
. Moreover,

{
1+

Z2

n−1

}n
L−→exp{Z2}

and since logarithm is a continuous function we see that

n log

{
1+

Z2

n−1

}
L−→Z2.

Thus −2 logλ(X)
L−→Y , where Y ∼ χ2(1). This result is consistent with Theorem 3.

PROBLEMS 10.2

1. Prove Theorems 1 and 2.

2. A random sample of size n is taken from PMF P(Xj = xj) = pj, j = 1,2,3,4, 0 <

pj < 1,
∑4

j=1 pj = 1. Find the form of the GLR test of H0 : p1 = p2 = p3 = p4 = 1/4
against H1 : p1 = p2 = p/2, p3 = p4 = (1−p)/2, 0 < p < 1.

3. Find the GLR test of H0 : p = p0 against H1 : p �= p0, based on a sample of size 1
from b(n,p).

4. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), where both μ and σ2 are unknown.
Find the GLR test of H0 : σ = σ0 against H1 : σ �= σ0.

5. Let X1,X2, . . . ,Xk be a sample from PMF

PN{X = j}= 1
N
, j = 1,2, . . . ,N, N ≥ 1 is an integer.

(a) Find the GLR test of H0 : N ≤ N0 against H1 : N > N0.

(b) Find the GLR test of H0 : N = N0 against H1 : N �= N0.

6. For a sample of size 1 from PDF

fθ(x) =
2
θ2

(θ− x), 0 < x < θ,

find the GLR test of θ = θ0 against θ �= θ0.
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7. Let X1,X2, . . . ,Xn be a sample from G(1,β):

(a) Find the GLR test of β = β0 against β �= β0.

(b) Find the GLR test of β ≤ β0 against β > β0.

8. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a random sample from a bivariate normal pop-
ulation with EXi = μ1, EYi = μ2, var(Xi) = σ2, var(Yi) = σ2, and cov(Xi,Yi) = ρσ2.
Show that the likelihood ratio test of the null hypothesis H0 : ρ= 0 against H1 : ρ �= 0
reduces to rejecting H0 if |R| > c, where R = 2S11/(S2

1 + S2
2), S11, S2

1, and S2
2 being

the sample covariance and the sample variances, respectively. (For the PDF of the
test statistic R, see Problem 7.7.1.)

9. Let X1,X2, . . . ,Xm be iid G(1,θ) RVs and let Y1,Y2, . . . ,Yn be iid G(1,μ) RVs, where
θ and μ are unknown positive real numbers. Assume that the X’s and the Y’s are
independent. Develop an α-level GLR test for testing H0 : θ = μ against H1 : θ �= μ.

10. A die is tossed 60 times in order to test H0 : P{j} = 1/6, j = 1,2, . . . ,6 (die is fair)
against H1 : P{2} = P{4} = P{6} = 2/9, P{1} = P{3} = P{5} = 1/9. Find the
GLR test.

11. Let X1,X2, . . . ,Xn be iid with common PDF fθ(x) = exp{−(x−θ)}, x > 0, and = 0
otherwise. Find the level α GLR test for testing H0 : θ ≤ θ0 against H1 : θ > θ0.

12. Let X1,X2, . . . ,Xn be iid RVs with common Pareto PDF fθ(x) = θ/x2 for x > θ,
and = 0 elsewhere. Show that the family of joint PDFs has MLR in X(1) and find a
size α test of H0 : θ = θ0 against H1 : θ > θ0. Show that the GLR test coincides with
the UMP test.

10.3 CHI-SQUARE TESTS

In this section we consider a variety of tests where the test statistic has an exact or a limit-
ing chi-square distribution. Chi-square tests are also used for testing some nonparametric
hypotheses and will be taken up again in Chapter 13.

We begin with tests concerning variances in sampling from a normal population. Let
X1,X2, . . . ,Xn be iid N(μ,σ2) RVs where σ2 is unknown. We wish to test a hypothesis
of the type σ2 ≥ σ2

0, σ2 ≤ σ2
0, or σ2 = σ2

0, where σ0 is some given positive number. We
summarize the tests in the following table.

Reject H0 at level α if

H0 H1 μ Known μ Unknown

I. σ ≥ σ0 σ < σ0
∑n

1(xi −μ)2 ≤ χ2
n,1−ασ

2
0 s2 ≤ σ2

0

n−1
χ2

n−1,1−α

II. σ ≤ σ0 σ > σ0
∑n

1(xi −μ)2 ≥ χ2
n,ασ

2
0 s2 ≥ σ2

0

n−1
χ2

n−1,α

∑n
1(xi −μ)2 ≤ χ2

n,1−α/2σ
2
0 s2 ≤ σ2

0

n−1
χ2

n−1,1−α/2

III. σ = σ0 σ �= σ0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

or

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

or

∑n
1(xi −μ)2 ≥ χ2

n,α/2σ
2
0 s2 ≥ σ2

0

n−1
χ2

n−1,α/2
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Remark 1. All these tests can be derived by the standard likelihood ratio procedure. If μ
is unknown, tests I and II are UMP unbiased (and UMP invariant). If μ is known, tests I
and II are UMP (see Example 9.4.5). For tests III we have chosen constants c1, c2 so that
each tail has probability α/2. This is the customary procedure, even though it destroys the
unbiasedness property of the tests, at least for small samples.

Example 1. A manufacturer claims that the lifetime of a certain brand of batteries pro-
duced by his factory has a variance of 5000 (hours)2. A sample of size 26 has a variance
of 7200 (hours)2. Assuming that it is reasonable to treat these data as a random sample
from a normal population, let us test the manufacturer’s claim at the α= 0.02 level. Here
H0 : σ

2 = 5000 is to be tested against H1 : σ
2 �= 5000. We reject H0 if either

s2 = 7200 ≤ σ2
0

n−1
χ2

n−1,1−α/2 or s2 >
σ2

0

n−1
χ2

n−1,α/2.

We have

σ2
0

n−1
χ2

n−1,1−α/2 =
5000

25
×11.524 = 2304.8

σ2
0

n−1
χ2

n−1,α/2 =
5000

25
×44.314 = 8862.8.

Since s2 is neither ≤ 2304.8 nor ≥ 8862.8, we cannot reject the manufacturer’s claim at
level 0.02.

A test based on a chi-square statistic is also used for testing the equality of several
proportions. Let X1,X2, . . . ,Xk be independent RVs with Xi ∼ b(ni,pi), i = 1,2, . . . ,k,
k ≥ 2.

Theorem 1. The RV
∑k

i=1{(Xi − nipi)/
√

nipi(1−pi)}2 converges in distribution to the
χ2(k) RV as n1,n2, . . . ,nk →∞.

Proof. The proof is left as an exercise.

If n1,n2, . . . ,nk are large, we can use Theorem 1 to test H0 : p1 = p2 = · · · = pk = p
against all alternatives. If p is known, we compute

y =
k∑
1

{
xi −nip√
nip(1−p)

}2

,

and if y ≥ χ2
k,α, we reject H0. In practice p will be unknown. Let p= (p1,p2, . . . ,pk). Then

the likelihood function is

L(p;x1, . . . ,xk) =

k∏
1

{(
ni

xi

)
pxi

i (1−pi)
ni−xi

}
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so that

logL(p;x) =
k∑

i=1

log

(
ni

xi

)
+

k∑
i=1

xi logpi +

k∑
i=1

(ni − xi) log(1−pi).

The MLE p̂ of p under H0 is therefore given by

∑k
1 xi

p
−

∑k
1(ni − xi)

1−p
= 0,

that is,

p̂ =
x1 + x2 + · · ·+ xk

n1 +n2 + · · ·+nk
.

Under certain regularity assumptions (see Cramér [17, pp. 426–427]) it can be shown that
the statistic

Y1 =

k∑
1

(Xi −nip̂)2

nip̂(1− p̂)
(1)

is asymptotically χ2(k−1). Thus the test rejects H0 : p1 = p2 = · · ·= pk = p, p unknown,
at level α if y1 ≥ χ2

k−1,α.
It should be remembered that the tests based on Theorem 1 are all large-sample tests and

hence not exact, in contrast to the tests concerning the variance discussed above, which
are all exact tests. In the case k = 1, UMP tests of p ≥ p0 and p ≤ p0 exist and can be
obtained by the MLR method described in Section 9.4. For testing p = p0, the usual test
is UMP unbiased.

In the case k = 2, if n1 and n2 are large, a test based on the normal distribution can be
used instead of Theorem 1. In this case the statistic

Z =
X1/n1 −X2/n2√

p̂(1− p̂)(1/n1 +1/n2)
, (2)

where p̂ = (X1 +X2)/(n1 + n2), is asymptotically N(0,1) under H0 : p1 = p2 = p. If p is
known, one uses p instead of p̂. It is not too difficult to show that Z2 is equal to Y1, so that
the two tests are equivalent.

For small samples the so-called Fisher–Irwin test is commonly used and is based on
the conditional distribution of X1 given T = X1 +X2. Let ρ = [p1(1− p2)]/[p2(1− p1)].
Then

P(X1 +X2 = t) =
t∑

j=0

(
n1

j

)
pj

1(1−p1)
n1−j

(
n2

t− j

)
pt−j

2 (1−p2)
n1−t+j

=

t∑
j=0

(
n1

j

)(
n2

t− j

)
ρja(n1,n2),
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where

a(n1,n2) = (1−p1)
n1(1−p2)

n2{p2/(1−p2)}t.

It follows that

P
{

X1 = x|X1 +X2 = t
}
=

(n1
x

)
px

1(1−p1)
n1−x

( n2
t−x

)
pt−x

2 (1−p2)
n2−t+x

a(n1,n2)
∑t

j=0

(n1
j

)( n2
t−j

)
ρj

=

(n1
j

)( n2
t−j

)
ρx∑t

j=0

(n1
j

)( n2
t−j

)
ρj
.

On the boundary of any of the hypotheses p1 = p2, p1 ≤ p2, or p1 ≥ p2 we note that ρ= 1
so that

P
{

X1 = x|X1 +X2 = t
}
=

(n1
x

)( n2
t−x

)
(n1+n2

t

) ,

which is a hypergeometric distribution. For testing H0 : p1 ≤ p2 this conditional test rejects
if X1 ≤ k(t), where k(t) is the largest integer for which P

{
X1 ≤ k(T)|T = t} ≤ α. Obvious

modifications yield critical regions for testing p1 = p2, and p1 ≥ p2 against corresponding
alternatives.

In applications a wide variety of problems can be reduced to the multinomial distribu-
tion model. We therefore consider the problem of testing the parameters of a multinomial
distribution. Let (X1,X2, . . . ,Xk−1) be a sample from a multinomial distribution with
parameters n, p1,p2, . . . ,pk−1, and let us write Xk = n−X1 − ·· · −Xk−1, and pk = 1−
p1−·· ·−pk−1. The difference between the model of Theorem 1 and the multinomial model
is the independence of the Xi’s.

Theorem 2. Let (X1,X2, . . . ,Xk−1) be a multinomial RV with parameters n, p1,p2, . . . ,
pk−1. Then the RV

Uk =
k∑

i=1

{
(Xi −npi)

2

npi

}
(3)

is asymptotically distributed as a χ2(k−1) RV (as n →∞).

Proof. For the general proof we refer the reader to Cramér [17, pp. 417–419] or
Ferguson [29, p. 61]. We will consider here the k = 2 case to make the result a little more
plausible. We have

U2 =
(X1 −np1)

2

np1
+

(X2 −np2)
2

np2
=

(X1 −np1)
2

np1
+

[n−X1 −n(1−p1)]
2

n(1−p1)

= (X1 −np1)
2

[
1

np1
+

1
n(1−p1)

]

=
(X1 −np1)

2

np1(1−p1)
.
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It follows from Theorem 1 that U2
L−→ Y as n →∞, where Y ∼ χ2(1).

To use Theorem 2 to test H0 : p1 = p′1, . . . ,pk = p′k, we need only to compute the quantity

u =

k∑
1

{
(xi −np′i)

2

np′i

}

from the sample; if n is large, we reject H0 if u > χ2
k−1,α.

Example 2. A die is rolled 120 times with the following results:

1 2 3 4 5 6

Frequency: 20 30 20 25 15 10

Let us test the hypothesis that the die is fair at level α = 0.05. The null hypothesis is
H0 : pi =

1
6 , i = 1,2, . . . ,6, where pi is the probability that the face value is i, 1 ≤ i ≤ 6. By

Theorem 2 we reject H0 if

u =

6∑
1

[xi −120
(

1
6

)
]2

120
(

1
6

) > χ2
5,0.05.

We have

u = 0+
102

20
+0+

52

20
+

52

20
+

102

20
= 12.5

Sinceχ5,0.05 = 11.07, we reject H0. Note that, if we chooseα= 0.025, thenχ5,0.025 = 12.8,
and we cannot reject at this level.

Theorem 2 has much wider applicability, and we will later study its application to
contingency tables. Here we consider the application of Theorem 2 to testing the null
hypothesis that the DF of an RV X has a specified form.

Theorem 3. Let X1,X2, . . . ,Xn be a random sample on X. Also, let H0 : X ∼ F, where
the functional form of the DF F is known completely. Consider a collection of disjoint
Borel sets A1,A2, . . . ,Ak that form a partition of the real line. Let P{X ∈ Ai} = pi, i =
1,2, . . . ,k, and assume that pi > 0 for each i. Let Yj = number of Xi’s in Aj, j = 1,2, . . . ,k,
i = 1,2, . . . ,n. Then the joint distribution of (Y1,Y2, . . . ,Yk−1) is multinomial with param-
eters n, p1,p2, . . . ,pk−1. Clearly, Yk = n−Y1 −·· ·−Yk−1 and pk = 1−p1 −·· ·−pk−1.

The proof of Theorem 3 is obvious. One frequently selects A1,A2, . . . ,Ak as disjoint
intervals. Theorem 3 is especially useful when one or more of the parameters associated
with the DF F are unknown. In that case the following result is useful.

Theorem 4. Let H0 : X ∼ Fθ , where θ = (θ1,θ2, . . . ,θr) is unknown. Let X1,X2, . . . ,Xn

be independent observations on X, and suppose that the MLEs of θ1,θ2, . . . ,θr exist and
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are, respectively, θ̂1, θ̂2, . . . , θ̂r. Let A1,A2, . . . ,Ak be a collection of disjoint Borel sets that
cover the real line, and let

p̂i = Pθ̂{X ∈ Ai}> 0 i = 1,2, . . . ,k,

where θ̂ = (θ̂1, . . . , θ̂r), and Pθ is the probability distribution associated with Fθ . Let
Y1,Y2, . . . ,Yk be the RVs, defined as follows: Yi = number of X1,X2, . . . ,Xn in Ai, i =
1,2, . . . ,k.

Then the RV

Vk =

k∑
n=1

{
(Yi −np̂i)

2

np̂i

}

is asymptotically distributed as a χ2(k− r−1) RV (as n →∞).

The proof of Theorem 4 and some regularity conditions required on Fθ are given in
Rao [88, pp. 391–392].

To test H0 : X ∼ F, where F is completely specified, we reject H0 if

u =

k∑
1

{
(yi −npi)

2

npi

}
> χ2

k−1,α,

provided that n is sufficiently large. If the null hypothesis is H0 : X ∼ Fθ , where Fθ is
known except for the parameter θ, we use Theorem 4 and reject H0 if

v =
k∑

i=1

{
(yi −np̂i)

2

np̂i

}
> χ2

k−r−1,α,

where r is the number of parameters estimated.

Example 3. The following data were obtained from a table of random numbers of normal
distribution with mean 0 and variance 1.

0.464 0.137 2.455 −0.323 −0.068

0.906 −0.513 −0.525 0.595 0.881

−0.482 1.678 −0.057 −1.229 −0.486

−1.787 −0.261 1.237 1.046 −0.508

We want to test the null hypothesis that the DF F from which the data came is normal
with mean 0 and variance 1. Here F is completely specified. Let us choose three intervals
(−∞,−0.5], (−0.5,0.5], and (0.5,∞). We see that Y1 = 5, Y2 = 8, and Y3 = 7.

Also, if Z is N(0,1), then p1 = 0.3085, p2 = 0.3830, and p3 = 0.3085. Thus

u =

3∑
i=1

{
(yi −npi)

2

npi

}
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=
(5−20×0.3085)2

6.17
+

(8−20×0.383)2

7.66
+

(7−20×0.3085)2

6.17
< 1.

Also, χ2
2,0.05 = 5.99, so we cannot reject H0 at level 0.05.

Example 4. In a 72-hour period on a long holiday weekend there was a total of 306 fatal
automobile accidents. The data are as follows:

Number of Fatal Accidents

per Hour Numbers of Hours

0 or 1 4

2 10

3 15

4 12

5 12

6 6

7 6

8 or more 7

Let us test the hypothesis that the number of accidents per hour is a Poisson RV.
Since the mean of the Poisson RV is not given, we estimate it by

λ̂= x =
306
72

= 4.25.

Let us now estimate p̂i = Pλ̂{X = i}, i = 0,1,2, . . ., p̂0 = e−λ̂ = 0.0143. Note that

Pλ̂{X = x+1}
Pλ̂{X = x} =

λ̂

x+1
,

so that p̂i+1 = [λ̂/(i+1)]p̂i. Thus

p̂1 = 0.0606, p̂2 = 0.1288, p̂3 = 0.1825, p̂4 = 0.1939,

p̂5 = 0.1648, p̂6 = 0.1167, p̂7 = 0.0709, p̂8 = 1−0.9325 = 0.0675.

The observed and expected frequencies are as follows:

i

0 or 1 2 3 4 5 6 7 8 or more

Observed Frequency, oi 4 10 15 12 12 6 6 7

Expected Frequency 5.38 9.28 13.14 13.96 11.87 8.41 5.10 4.86

= 72p̂i = ei
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Thus

u =

8∑
i=1

(oi − ei)
2

ei

= 2.74.

Since we estimated one parameter, the number of degrees of freedom is k− r− 1 = 8−
1−1=6. From Table ST3, χ2

6,0.05 = 12.6, and since 2.74 < 12.6, we cannot reject the null
hypothesis.

Remark 2. Any application of Theorem 3 or 4 requires that we choose sets A1,A2, . . . ,Ak,
and frequently these are chosen to be disjoint intervals. As a rule of thumb, we choose the
length of each interval in such a way that the probability P{X ∈ Ai} under H0 is approxi-
mately 1/k. Moreover, it is desirable to have n/k ≥ 5 or, rather, ei ≥ 5 for each i. If any of
the ei’s is < 5, the corresponding interval is pooled with one or more adjoining intervals
to make the cell frequency at least 5. The number of degrees of freedom, if any pooling
is done, is the number of classes after pooling, minus 1, minus the number of parameters
estimated.

Finally, we consider a test of homogeneity of several multinomial distributions. Sup-
pose we have c samples of sizes n1,n2, . . . ,nc from c multinomial distributions. Let the
associated probabilities with the jth population be (p1j,p2j, . . . ,prj), where

∑r
i=1 pij = 1,

j = 1,2, . . . ,c. Given observations Nij, i = 1,2, . . . ,r, j = 1,2, . . . ,c with
∑r

i=1 Nij = nj, j =
1,2, . . . ,c we wish to test H0 : pij = pi, for j = 1,2, . . . ,c, i = 1,2, . . . ,r−1. The case c = 1
is covered by Theorem 2. By Theorem 2 for each j

Ur =

r∑
i=1

{
(Nij −njpi)

2

njpi

}

has a limiting χ2
r−1 distribution. Since samples are independent, the statistic

Urc =

c∑
j=1

r∑
i=1

(Nij −njpi)
2

njpi

has a limiting χ2
c(r−1) distribution. If pi’s are unknown we use the MLEs

p̂i =

∑c
j=1 Nij∑c
j=1 nj

, i = 1,2, . . . ,r−1

for pi and we see that the statistic

Vrc =

c∑
j=1

r∑
i=1

(Nij −njp̂i)
2

njp̂i

has a chi-square distribution with c(r−1)− (r−1) = (c−1)(r−1) d.f. We reject H0 at
(approximate) level α is Vrc > χ2

(r−1)(c−1),α.
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Example 5. A market analyst believes that there is no difference in preferences of televi-
sion viewers among the four Ohio cities of Toledo, Columbus, Cleveland, and Cincinnati.
In order to test this belief, independent random samples of 150, 200, 250, and 200 per-
sons were selected from the four cities and asked, “What type of program do you prefer
most: Mystery, Soap, Comedy, or News Documentary?” The following responses were
recorded.

City

Program Type Toledo Columbus Cleveland Cincinnati

Mystery 50 70 85 60

Soap 45 50 58 40

Comedy 35 50 72 67

News 20 30 35 33

Sample Size 150 200 250 200

Under the null hypothesis that the proportions of viewers who prefer the four types of
programs are the same in each city, the maximum likelihood estimates of pi, i = 1,2,3,4
are given by

p̂1 =
50+70+85+60

150+200+250+200
=

265
800

= 0.33, p̂3 =
35+50+72+67

800
=

224
800

= 0.28,

p̂2 =
45+50+58+40

800
=

193
800

= 0.24, p̂4 =
20+30+35+33

800
=

118
800

= 0.15.

Here p1 = proportion of people who prefer mystery, and so on. The following table
gives the expected frequencies under H0.

Expected Number of Responses Under H0

Program

Type Toledo Columbus Cleveland Cincinnati

Mystery 150×0.33 = 49.5 200×0.33 = 66 250×0.33 = 82.5 200×0.33 = 66

Soap 150×0.24 = 36 200×0.24 = 48 250×0.24 = 60 200×0.24 = 48

Comedy 150×0.28 = 42 200×0.28 = 56 250×0.28 = 70 200×0.28 = 56

News 150×0.15 = 22.5 200×0.15 = 30 250×0.15 = 37.5 200×0.15 = 30

Sample 150 200 250 200

Size
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It follows that

u44 =
(50−49.5)2

49.5
+

(45−36)2

36
+

(35−42)2

42
+

(20−22.5)2

22.5

+
(70−66)2

66
+

(50−48)2

48
+

(50−56)2

56
+

(30−30)2

30

+
(85−82.5)2

82.5
+

(58−60)2

60
+

(72−70)2

70
+

(35−37.5)2

37.5

+
(60−66)2

66
+

(40−48)2

48
+

(67−56)2

56
+

(33−30)2

30
= 9.37.

Since c = 4 and r = 4, the number of degrees of freedom is (4− 1)(4− 1) = 9 and we
note that under H0

0.30 < P(U44 ≥ 9.37)< 0.50.

With such a large P-value we can hardly reject H0. The data do not offer any evidence to
conclude that the proportions in the four cities are different.

PROBLEMS 10.3

1. The standard deviation of capacity for batteries of a standard type is known to be 1.66
ampere-hours. The following capacities (ampere-hours) were recorded for 10 bat-
teries of a new type: 146, 141, 135, 142, 140, 143, 138, 137, 142, 136. Does the
new battery differ from the standard type with respect to variability of capacity

(Natrella [75, p. 4-1])?

2. A manufacturer recorded the cut-off bias (volts) of a sample of 10 tubes as follows:
12.1, 12.3, 11.8, 12.0, 12.4, 12.0, 12.1, 11.9, 12.2, 12.2. The variability of cut-off
bias for tubes of a standard type as measured by the standard deviation is 0.208
volts. Is the variability of the new tube, with respect to cut-off bias less than that of
the standard type (Natrella [75, p. 4-5])?

3. Approximately equal numbers of four different types of meters are in service and
all types are believed to be equally likely to break down. The actual numbers of
breakdowns reported are as follows:

Type of Meter 1 2 3 4

Number of Breakdowns Reported 30 40 33 47

Is there evidence to conclude that the chances of failure of the four types are not
equal (Natrella [75, p. 9-4])?

4. Every clinical thermometer is classified into one of four categories, A, B, C, D, on
the basis of inspection and test. From past experience it is known that thermometers
produced by a certain manufacturer are distributed among the four categories in the
following proportions:
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Category A B C D

Proportion 0.87 0.09 0.03 0.01

A new lot of 1336 thermometers is submitted by the manufacturer for inspection and
test, and the following distribution into the four categories results:

Category A B C D

Number of Thermometers Reported 1188 91 47 10

Does this new lot of thermometers differ from the previous experience with regard
to proportion of thermometers in each category (Natrella [75, p. 9-2])?

5. A computer program is written to generate random numbers, X, uniformly in the
interval 0 ≤ X < 10. From 250 consecutive values the following data are obtained:

X-value 0–1.99 2–3.99 4–5.99 6–7.99 8–9.99

Frequency 38 55 54 41 62

Do these data offer any evidence that the program is not written properly?

6. A machine working correctly cuts pieces of wire to a mean length of 10.5 cm with a
standard deviation of 0.15 cm. Sixteen samples of wire were drawn at random from a
production batch and measured with the following results (centimeters): 10.4, 10.6,
10.1, 10.3, 10.2, 10.9, 10.5, 10.8, 10.6, 10.5, 10.7, 10.2, 10.7, 10.3, 10.4, 10.5. Test
the hypothesis that the machine is working correctly.

7. An experiment consists in tossing a coin until the first head shows up. One hun-
dred repetitions of this experiment are performed. The frequency distribution of the
number of trials required for the first head is as follows:

Number of trials 1 2 3 4 5 or more

Frequency 40 32 15 7 6

Can we conclude that the coin is fair?

8. Fit a binomial distribution to the following data:

x 0 1 2 3 4

Frequency: 8 46 55 40 11

9. Prove Theorem 1.
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10. Three dice are rolled independently 360 times each with the following results.

Face Value Die 1 Die 2 Die 3

1 50 62 38

2 48 55 60

3 69 61 64

4 45 54 58

5 71 78 73

6 77 50 67

Sample Size 360 360 360

Are all the dice equally loaded? That is, test the hypothesis H0 : pi1 = pi2 = pi3,
i = 1,2, . . . ,6, where pi1 is the probability of getting an i with die 1, and so on.

11. Independent random samples of 250 Democrats, 150 Republicans, and 100 Indepen-
dent voters were selected 1 week before a nonpartisan election for mayor of a large
city. Their preference for candidates Albert, Basu, and Chatfield were recorded as
follows.

Party Affiliation

Preference Democrat Republican Independent

Albert 160 70 90

Basu 32 45 25

Chatfield 30 23 15

Undecided 28 12 20

Sample Size 250 150 150

Are the proportions of voters in favor of Albert, Basu, and Chatfield the same within
each political affiliation?

12. Of 25 income tax returns audited in a small town, 10 were from low- and middle-
income families and 15 from high-income families. Two of the low-income families
and four of the high-income families were found to have underpaid their taxes. Are
the two proportions of families who underpaid taxes the same?

13. A candidate for a congressional seat checks her progress by taking a random sample
of 20 voters each week. Last week, six reported to be in her favor. This week nine
reported to be in her favor. Is there evidence to suggest that her campaign is working?

14. Let {X11,X21, . . . ,Xr1}, . . . ,{X1c,X2c, . . . ,Xrc} be independent multinomial RVs
with parameters (n1,p11,p21, . . . ,pr1), . . . ,(nc,p1c,p2c, . . . ,prc) respectively. Let
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Xi· =
∑c

j=1 Xij and
∑c

j=1 nj = n. Show that the GLR test for testing H0 : pij = pj,
for j = 1,2, . . . ,c, i = 1,2, . . . ,r−1, where pj’s are unknown against all alternatives
can be based on the statistic

λ(X) =

∏r
i=1

(
Xi·
n

)Xi·

∏r
i=1

∏c
j=1

(
Xij

nj

)Xij
.

10.4 t-TESTS

In this section we investigate one of the most frequently used types of tests in statistics,
the tests based on a t-statistic. Let X1,X2, . . . ,Xn be a random sample from N(μ,σ2), and,
as usual, let us write

X = n−1
n∑
1

Xi, S2 = (n−1)−1
n∑
1

(Xi −X)2.

The tests for usual null hypotheses about the mean can be derived using the GLR method.
In the following table we summarize the results.

Reject H0 at Level α if

H0 H1 σ2 Known σ2 Unknown

I. μ≤ μ0 μ > μ0 X ≥ μ0 +
σ√
n

zα x ≥ μ0 +
s√
n

tn−1,α

II. μ≥ μ0 μ < μ0 X ≤ μ0 +
σ√
n

z1−α x ≤ μ0 +
s√
n

tn−1,1−α

III. μ= μ0 μ �= μ0 |x−μ0| ≥
σ√
n

zα/2 |x−μ0| ≥
s√
n

tn−1,α/2

Remark 1. A test based on a t-statistic is called a t-test. The t-tests in I and II are called
one-tailed tests; the t-test in III, a two-tailed test.

Remark 2. If σ2 is known, tests I and II are UMP and test III is UMP unbiased. If σ2 is
unknown, the t-tests are UMP unbiased and UMP invariant.

Remark 3. If n is large we may use normal tables instead of t-tables. The assumption
of normality may also be dropped because of the central limit theorem. For small sam-
ples care is required in applying the proper test, since the tail probabilities under normal
distribution and t-distribution differ significantly for small n (see Remark 6.4.2).

Example 1. Nine determinations of copper in a certain solution yielded a sample mean of
8.3 percent with a standard deviation of 0.025 percent. Let μ be the mean of the population
of such determinations. Let us test H0 : μ= 8.42 against H1 : μ < 8.42 at level α= 0.05.
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Here n = 9, x = 8.3, s = 0.025, μ0 = 8.42, and tn−1,1−α =−t8,0.05 =−1.860.
Thus

μ0 +
s√
n

tn−1,1−α = 8.42− 0.025
3

1.86 = 8.4045.

We reject H0 since 8.3 < 8.4045.

We next consider the two-sample case. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be inde-
pendent random samples from N(μ1,σ

2
1) and N(μ2,σ

2
2), respectively. Let us write

X = m−1
∑m

1
Xi, Y = n−1

∑n

1
Yi,

S2
1 = (m−1)−1

∑m

1
(Xi −X)2, S2

2 = (n−1)−1
∑n

1
(Yi −Y)2,

and

S2
p =

(m−1)S2
1 +(n−1)S2

2

m+n−2
.

S2
p is sometimes called the pooled sample variance. The following table summarizes the

two sample tests comparing μ1 and μ2:

H0 H1 Reject H0 at Level α if

(δ = Known Constant) σ2
1, σ2

2 Known σ2
1, σ2

2 Unknown, σ1 = σ2

I. μ1 −μ2 ≤ δ μ1 −μ2 > δ x− y ≥ x− y ≥ δ+ tm+n−2,α

δ+ zα

√
σ2

1

m
+

σ2
2

n
·sp

√
1
m
+

1
n

II. μ1 −μ2 ≥ δ μ1 −μ2 < δ x− y ≤ x− y ≤ δ− tm+n−2,α

δ− zα

√
σ2

1

m
+

σ2
2

n
·sp

√
1
m
+

1
n

III. μ1 −μ2 = δ μ1 −μ2 �= δ |x− y− δ| ≥ |x− y− δ| ≥ tm+n−2,α/2

zα/2

√
σ2

1

m
+

σ2
2

n
·sp

√
1
m
+

1
n

Remark 4. The case of most interest is that in which δ = 0. If σ2
1 ,σ

2
2 are unknown and

σ2
2 = σ2

2 = σ2, σ2 unknown, then S2
p is an unbiased estimate of σ2. In this case all the

two-sample t-tests are UMP unbiased and UMP invariant. Before applying the t-test, one
should first make sure that σ2

1 = σ2
2 = σ2, σ2 unknown. This means applying another test

on the data. We will consider this test in the next section.
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Remark 5. If m+n is large, we use normal tables; if both m and n are large, we can drop
the assumption of normality, using the CLT.

Remark 6. The problem of equality of means in sampling from several populations will
be considered in Chapter 12.

Remark 7. The two sample problem when σ1 �= σ2, both unknown, is commonly referred
to as Behrens–Fisher problem. The Welch approximate t-test of H0 : μ1 = μ2 is based on
a random number of d.f. f given by

f =

{(
R

1+R

)2 1
m−1

+
1

(1+R)2

1
n−1

}−1

,

where

R =
S2

1/m

S2
2/n

,

and the t-statistic

T =
(X−Y)− (μ1 −μ2)√

S2
1/m+S2

2/n

with f d.f. This approximation has been found to be quite good even for small samples.
The formula for f generally leads to noninteger d.f. Linear interpolation in t-table can be
used to obtain the required percentiles for f d.f.

Example 2. The mean life of a sample of 9 light bulbs was observed to be 1309 hours with
a standard deviation of 420 hours. A second sample of 16 bulbs chosen from a different
batch showed a mean life of 1205 hours with a standard deviation of 390 hours. Let us
test to see whether there is a significant difference between the means of the two batches,
assuming that the population variances are the same (see also Example 10.5.1).

Here H0 : μ1 =μ2, H1 : μ1 �=μ2, m= 9, n= 16, x= 1309, s1 = 420, y= 1205, s2 = 390,
and let us take α= 0.05. We have

sp =

√
8(420)2 +15(390)2

23

so that

tm+n−2,α/2sp

√
1
m
+

1
n
= t23,0.025

√
8(420)2 +15(390)2

23

√
1
9
+

1
16

= 345.44.

Since |x− y|= |1309−1205|= 104 �> 345.44, we cannot reject H0 at level α= 0.05.

Quite frequently one samples from a bivariate normal population with means μ1,μ2,
variances σ2

1 ,σ
2
2, and correlation coefficient ρ, the hypothesis of interest being μ1 = μ2.

Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate normal distribution with
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parameters μ1, μ2, σ2
1, σ2

2, and ρ. Then Xj − Yj is N(μ1 − μ2,σ
2), where σ2 = σ2

1 +
σ2

2 −2ρσ1σ2. We can therefore treat Dj = (Xj − Yj), j = 1,2, . . . ,n, as a sample from a
normal population. Let us write

d =

∑n
1 di

n
and s2

d =

∑n
1(di −d)2

n−1
.

The following table summarizes the resulting tests:

H0 H1

d0 = Known Constant Reject H0 at Level α if

I. μ1 −μ2 ≥ d0 μ1 −μ2 < d0 d ≤ d0 +
sd√

n
tn−1,1−α

II. μ1 −μ2 ≤ d0 μ1 −μ2 > d0 d ≥ d0 +
sd√

n
tn−1,α

III. μ1 −μ2 = d0 μ1 −μ2 �= d0 |d−d0| ≥
sd√

n
tn−1,α/2

Remark 8. The case of most importance is that in which d0 = 0. All the t-tests, based
on Dj’s, are UMP unbiased and UMP invariant. If σ is known, one can base the test on a
standardized normal RV, but in practice such an assumption is quite unrealistic. If n is large
one can replace t-values by the corresponding critical values under the normal distribution.

Remark 9. Clearly, it is not necessary to assume that (X1,Y1), . . . ,(Xn,Yn) is a sample from
a bivariate normal population. It suffices to assume that the differences Di form a sample
from a normal population.

Example 3. Nine adults agreed to test the efficacy of a new diet program. Their weights
(pounds) were measured before and after the program and found to be as follows:

Participant

1 2 3 4 5 6 7 8 9

Before 132 139 126 114 122 132 142 119 126

After 124 141 118 116 114 132 145 123 121

Let us test the null hypothesis that the diet is not effective, H0 : μ1 −μ2 = 0, against the
alternative, H1 : μ1 −μ2 > 0, that it is effective at level α= 0.01. We compute

d =
8−2+8−2+8+0−3−4+5

9
=

18
9

= 2,

s2
d = 26.75, sd = 5.17.
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Thus

d0 +
sd√

n
tn−1,α = 0+

5.17√
9

t8,0.01 =
5.17

3
×2.896 = 4.99.

Since d �> 4.99, we cannot reject hypothesis H0 that the diet is not very effective.

PROBLEMS 10.4

1. The manufacturer of a certain subcompact car claims that the average mileage of
this model is 30 miles per gallon of regular gasoline. For nine cars of this model
driven in an identical manner, using 1 gallon of regular gasoline, the mean distance
traveled was 26 miles with a standard deviation of 2.8 miles. Test the manufacturer’s
claim if you are willing to reject a true claim no more than twice in 100.

2. The nicotine contents of five cigarettes of a certain brand showed a mean of 21.2
milligrams with a standard deviation of 2.05 milligrams. Test the hypothesis that the
average nicotine content of this brand of cigarettes does not exceed 19.7 milligrams.
Use α= 0.05.

3. The additional hours of sleep gained by eight patients in an experiment with a certain
drug were recorded as follows:

Patient 1 2 3 4 5 6 7 8

Hours Gained 0.7 −1.1 3.4 0.8 2.0 0.1 −0.2 3.0

Assuming that these patients form a random sample from a population of such
patients and that the number of additional hours gained from the drug is a normal
random variable, test the hypothesis that the drug has no effect at level α= 0.10.

4. The mean life of a sample of 8 light bulbs was found to be 1432 hours with a standard
deviation of 436 hours. A second sample of 19 bulbs chosen from a different batch
produced a mean life of 1310 hours with a standard deviation of 382 hours. Making
appropriate assumptions, test the hypothesis that the two samples came from the
same population of light bulbs at level α= 0.05.

5. A sample of 25 observations has a mean of 57.6 and a variance of 1.8. A further
sample of 20 values has a mean of 55.4 and a variance of 2.5. Test the hypothesis
that the two samples came from the same normal population.

6. Two methods were used in a study of the latent heat of fusion of ice. Both method A
and method B were conducted with the specimens cooled to−0.72◦C. The following
data represent the change in total heat from −0.72◦C to water, 0◦C, in calories per
gram of mass:

Method A: 79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,

80.02,80.00,80.02

Method B: 80.02,79.74,79.98,79.97,79.97,80.03,79.95,79.97
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Perform a test at level 0.05 to see whether the two methods differ with regard to their
average performance (Natrella [75, p. 3-23]).

7. In Problem 6, if it is known from past experience that the standard deviations of the
two methods are σA = 0.024 and σB = 0.033, test the hypothesis that the methods
are same with regard to their average performance at level α= 0.05.

8. During World War II bacterial polysaccharides were investigated as blood plasma
extenders. Sixteen samples of hydrolyzed polysaccharides supplied by various man-
ufacturers in order to assess two chemical methods for determining the average
molecular weight yielded the following results:

Method A: 62,700;29,100;44,400;47,800;36,300;40,000;43,400;35,800;

33,900;44,200;34,300;31,300;38,400;47,100;42,100;42,200

Method B: 56,400;27,500;42,200;46,800;33,300;37,100;37,300;36,200;

35,200;38,000;32,200;27,300;36,100;43,100;38,400;39,900

Perform an appropriate test of the hypothesis that the two averages are the same
against a one-sided alternative that the average of Method A exceeds that of
Method B. Use α= 0.05. (Natrella [75, p. 3-38]).

9. The following grade-point averages were collected over a period of 7 years to
determine whether membership in a fraternity is beneficial or detrimental to grades:

Year

1 2 3 4 5 6 7

Fraternity 2.4 2.0 2.3 2.1 2.1 2.0 2.0

Nonfraternity 2.4 2.2 2.5 2.4 2.3 1.8 1.9

Assuming that the populations were normal, test at the 0.025 level of significance
whether membership in a fraternity is detrimental to grades.

10. Consider the two sample t-statistic T = (X − Y)/[Sp

√
1/m+1/n], where S2

p =
[(m − 1)S2

1 + (n − 1)S2
2]/(m + n − 2). Suppose σ1 �= σ2. Let m,n → ∞ such that

m/(m+ n) → ρ. Show that, under μ1 = μ2, T
L−→U, where U ∼ N(0, τ 2), where

τ 2 = [(1− ρ)σ2
1 + ρσ2

2 ]/[ρσ
2
1 +(1− ρ)σ2

2 ]. Thus when m ≈ n, ρ ≈ 1/2 and τ 2 ≈ 1
and T is approximately N(0,1) as m(≈ n)→∞. In this case, a t-test based on T will
have approximately the right level.

10.5 F-TESTS

The term F-tests refers to tests based on an F-statistic. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn

be independent samples from N(μ1,σ
2
1) and N(μ2,σ

2
2), respectively. We recall that∑m

1 (Xi − X)/σ2
1 ∼ χ2(m − 1) and

∑n
1(Yi − Y)2/σ2

2 ∼ χ2(n − 1) are independent RVs,
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so that the RV

F(X,Y) =

∑m
1 (Xi −X)2∑n
1(Yi −Y)2

σ2
2(n−1)

σ2
1(m−1)

=
σ2

2

σ2
1

S2
1

S2
2

is distributed as F(m−1,n−1).
The following table summarizes the F-tests:

Reject H0 at Level α if

H0 H1 μ1,μ2 Known μ1,μ2 Unknown

I. σ2
1 ≤ σ2

2 σ2
1 > σ2

2

∑m
1 (xi −μ1)

2∑n
1(yi −μ2)2

≥ m
n

Fm,n,α
s2

1

s2
2

≥ Fm−1,n−1,α

II. σ2
1 ≥ σ2

2 σ2
1 < σ2

2

∑n
1(yi −μ2)

2∑m
1 (xi −μ1)2

≥ n
m

Fn,m,α
s2

2

s2
1

≥ Fn−1,m−1,α

III. σ2
1 = σ2

2 σ2
1 �= σ2

2

⎧⎪⎪⎨
⎪⎪⎩

∑m
1 (xi −μ1)

2∑n
1(yi −μ2)2

≥ m
n

Fm,n,α/2

or ≤ m
n

Fm,n,1−α/2

⎧⎪⎨
⎪⎩

s2
1

s2
2

≥ Fm−1,n−1,α/2

or ≤ Fm−1,n−1,1−α/2

Remark 1. Recall (Remark 6.4.5) that

Fm,n,1−α = {Fn,m,α}−1.

Remark 2. The tests described above can be easily obtained from the likelihood ratio pro-
cedure. Moreover, in the important case where μ1,μ2 are unknown, tests I and II are UMP
unbiased and UMP invariant. For test III we have chosen equal tails, as is customarily done
for convenience even though the unbiasedness property of the test is thereby destroyed.

Example 1 (Example 10.4.2 continued). In Example 10.4.2 let us test the validity of the
assumption on which the t-test was based, namely, that the two populations have the
same variance at level 0.05. We compute s2

1/s2
2 = (420/390)2 = 196/169 = 1.16. Since

Fm−1,n−1,α/2 = F8,15,0.025 = 3.20, we cannot reject H0 : σ1 = σ2.

An important application of the F-test involves the case where one is testing the equality
of means of two normal populations under the assumption that the variances are the same,
that is, testing whether the two samples come from the same population. Let X1,X2, . . . ,Xm

and Y1,Y2, . . . ,Yn be independent samples from N(μ1,σ
2
1) and N(μ2,σ

2
2), respectively. If

σ2
1 = σ2

2 but is unknown, the t-test rejects H0 : μ1 = μ2 if |T| > c, where c is selected so
that α2 = P{|T|> c | μ1 = μ2,σ1 = σ2}, that is, c = tm+n−2,α2/2sp

√
(1/m+1/n), where

s2
p =

(m−1)s2
1 +(n−1)s2

2

m+n−2
,
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s1,s2 being the sample variances. If first an F-test is performed to test σ1 = σ2, and then
a t-test to test μ1 = μ2 at levels α1 and α2, respectively, the probability of accepting both
hypotheses when they are true is

P{|T| ≤ c,c1 < F < c2|μ1 = μ2,σ1 = σ2};

and if F is independent of T , this probability is (1 − α1)(1 − α2). It follows that the
combined test has a significance level α= 1− (1−α1)(1−α2). We see that

α= α1 +α2 −α1α2 ≤ α1 +α2

and α≥max(α1,α2). In fact, α will be closer to α1+α2, since for small α1 and α2, α1α2

will be closer to 0.
We show that F is independent of T whenever σ1 = σ2. The statistic V = (X,Y,

∑m
1

(Xi − X)2 +
∑n

1(Yi − Y)2) is a complete sufficient statistic for the parameter (μ1,μ2,
σ1 = σ2) (see Theorem 8.3.2). Since the distribution of F does not depend on μ1, μ2,
and σ1 = σ2, it follows (Problem 5) that F is independent of V whenever σ1 = σ2. But T
is a function of V alone, so that F must be independent of T also.

In Example 1, the combined test has a significance level of

α= 1− (0.95)(0.95) = 1−0.9025 = 0.0975.

PROBLEMS 10.5

1. For the data of Problem 10.4.4 is the assumption of equality of variances, on which
the t-test is based, valid?

2. Answer the same question for Problems 10.4.5 and 10.4.6.

3. The performance of each of two different dive bombing methods is measured a dozen
times. The sample variances for the two methods are computed to be 5545 and 4073,
respectively. Do the two methods differ in variability?

4. In Problem 3 does the variability of the first method exceed that of the second
method?

5. Let X = (X1,X2, . . . ,Xn) be a random sample from a distribution with PDF (PMF)
f (x,θ),θ ∈ΘwhereΘ is an interval inRk. Let T(X) be a complete sufficient statistic
for the family {f (x;θ) : θ ∈ Θ}. If U(X) is a statistic (not a function of T alone)
whose distribution does not depend on θ, show that U is independent of T .

10.6 BAYES AND MINIMAX PROCEDURES

Let X1,X2, . . . ,Xn be a sample from a probability distribution with PDF (PMF) fθ, θ ∈Θ.
In Section 8.8 we described the general decision problem, namely, once the statistician
observes x, she has a set A of options available. The problem is to find a decision func-
tion d that minimizes the risk R(θ,δ) = EθL(θ,δ) in some sense. Thus a minimax solution
requires the minimization of maxR(θ,δ), while a Bayes solution requires the minimiza-
tion of R(π,δ) = ER(θ,δ), where π is the a priori distribution on Θ. In Remark 9.2.1
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we considered the problem of hypothesis testing as a special case of the general decision
problem. The set A contains two points, a0 and a1; a0 corresponds to the acceptance of
H0 : θ ∈ Θ0, and a1 corresponds to the rejection of H0. Suppose that the loss function is
defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(θ,a0) = a(θ) if θ ∈Θ1, a(θ)> 0,

L(θ,a1) = b(θ) if θ ∈Θ0, b(θ)> 0,

L(θ,a0) = 0 if θ ∈Θ0,

L(θ,a1) = 0 if θ ∈Θ1.

(1)

Then

R(θ,δ(X)) =L(θ,a0)Pθ{δ(X) = a0}+L(θ,a1)Pθ{δ(X) = a1} (2)

=

{
a(θ)Pθ{δ(X) = a0} if θ ∈Θ1

b(θ)Pθ{δ(X) = a1} if θ ∈Θ0.
(3)

A minimax solution to the problem of testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where
Θ=Θ0 +Θ1, is to find a rule δ that minimizes

max
θ

[a(θ)Pθ{δ(X) = a0}, b(θ)Pθ{δ(X) = a1}].

We will consider here only the special case of testing H0 : θ = θ0 against H1 : θ = θ1.
In that case we want to find a rule δ which minimizes

max[aPθ1{δ(X) = a0}, bPθ0{δ(X) = a1}]. (4)

We will show that the solution is to reject H0 if

fθ1(x)

fθ0(x)
≥ k, (5)

provided that the constant k is chosen so that

R(θ0, δ(X)) = R(θ1, δ(X)), (6)

where δ is the rule defined in (5); that is, the minimax rule δ is obtained if we choose k
in (5) so that

aPθ1{δ(X) = a0}= bPθ0{δ(X) = a1}, (7)

or, equivalently, we choose k so that

aPθ1

{
fθ1(X)

fθ0(X)
< k

}
= bPθ0

{
fθ1(X)

fθ0(X)
≥ k

}
. (8)
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Let δ∗ be any other rule. If R(θ0, δ) < R(θ0, δ
∗), then R(θ0, δ) = R(θ1, δ) <

max[R(θ0, δ
∗), R(θ1, δ

∗)] and δ∗ cannot be minimax. Thus, R(θ0, δ) ≥ R(θ0, δ
∗), which

means that

Pθ0{δ∗(X) = a1} ≤ Pθ0{δ(X) = a1}= P{Reject H0 | H0 true}. (9)

By the Neyman–Pearson lemma, rule δ is the most powerful of its size, so that its power
must be at least that of δ∗, that is,

Pθ1{δ(X) = a1} ≥ Pθ1{δ∗(X) = a1}

so that

Pθ1{δ(X) = a0} ≤ Pθ1{δ∗(X) = a0}.

It follows that

aPθ1{δ(X) = a0} ≤ aPθ1{δ∗(X) = a0}

and hence that

R(θ1,d)≤ R(θ1, δ
∗). (10)

This means that

max[R(θ0, δ), R(θ1, δ)] = R(θ1, δ)≤ R(θ1, δ
∗)

and thus

max[R(θ0, δ), R(θ1, δ)]≤max[R(θ0, δ
∗), R(θ1, δ

∗)].

Note that in the discrete case one may need some randomization procedure in order to
achieve equality in (8).

Example 1. Let X1,X2, . . . ,Xn be iid N(μ,1) RVs. To test H0 : μ= μ0 against H1 : μ= μ1

(> μ0), we should choose k so that (8) is satisfied. This is the same as choosing c, and
thus k, so that

aPμ1{X < c}= bPμ0{X ≥ c}

or

aPμ1

{
X−μ1

1/
√

n
<

c−μ1

1/
√

n

}
= bP

{
X−μ0

1/
√

n
≥ c−μ0

1/
√

n

}
.

Thus

aΦ[
√

n(c−μ1)] = b{1−Φ[
√

n(c−μ0)]},
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where Φ is the DF of an N(0,1) RV. This can easily be accomplished with the help of
normal tables once we know a, b, μ0, μ1, and n.

We next consider the problem of testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 from a
Bayesian point of view. Let π(θ) be the a priori probability distribution on Θ.

Then

R(π,d) =EθR(θ,δ(X))

=

{∫
Θ

R(θ,δ)π(θ)dθ if π is a pdf,∑
Θ R(θ,δ)π(θ) if π is a pmf,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Θ0

b(θ)π(θ)Pθ{δ(X) = a1}dθ+∫
Θ1

a(θ)π(θ)Pθ{δ(X) = a0}dθ if π is a PDF,∑
Θ0

b(θ)π(θ)Pθ{δ(X) = a1}+∑
Θ1

a(θ)π(θ)Pθ{δ(X) = a0} if π is a PMF.

(11)

The Bayes solution is a decision rule that minimizes R(π,δ). In what follows we restrict
our attention to the case where both H0 and H1 have exactly one point each, that is,
Θ0 = {θ0}, Θ1 = {θ1}. Let π(θ0) = π0 and π(θ1) = 1−π0 = π1. Then

R(π,δ) = bπ0Pθ0{δ(X) = a1}+aπ1Pθ1{δ(X) = a0}, (12)

where b(θ0) = b, a(θ1) = a; (a,b > 0).

Theorem 1. Let X = (X1,X2, . . . ,Xn) be an RV of the discrete (continuous) type with
PMF (PDF) fθ, θ ∈Θ= {θ0,θ1}. Let π(θ0) = π0, π(θ1) = 1−π0 = π1 be the a priori prob-
ability mass function on Θ. A Bayes solution for testing H0 : X∼ fθ0 against H1 : X∼ fθ1 ,
using the loss function (1), is to reject H0 if

fθ1(x)

fθ0(x)
≥ bπ0

aπ1
. (13)

Proof. We wish to find δ which minimizes

R(π,δ) = bπ0Pθ0{δ(X) = a1}+aπ1Pθ1{δ(X) = a0}.

Now

R(π,δ) =EθR(θ,δ)

=E{Eθ{L(θ,δ)|X}}

so it suffices to minimize {Eθ{L(θ,δ)|X}.
The a posteriori distribution of θ is given by

h(θ|x) = π(θ)fθ(x)∑
θ fθ(x)π(θ)

=
π(θ)fθ(x)

π0fθ0(x)+π1fθ1(x)
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=

⎧⎪⎪⎨
⎪⎪⎩

π0fθ0(x)

π0fθ0(x)+π1fθ1(x)
if θ = θ0,

π1fθ1(x)

π0fθ0(x)+π1fθ1(x)
if θ = θ1.

(14)

Thus

Eθ{L(θ,δ(X))|X= x}=
{

bh(θ0|x), θ = θ0, δ(X) = a1,

ah(θ1|x), θ = θ1, δ(X) = a0,

It follows that we reject H0, that is, δ(X) = a1 if

bh(θ0|x)≤ ah(θ1|x),

which is the case if and only if

bπ0fθ0(x)≤ aπ1fθ1(x),

as asserted.

Remark 1. In the Neyman–Pearson lemma we fixed Pθ0{δ(X) = a1}, the probability of
rejecting H0 when it is true, and minimized Pθ1{δ(X) = a0}, the probability of accepting
H0 when it is false. Here we no longer have a fixed level α for Pθ0{δ(X) = a1}. Instead
we allow it to assume any value as long as R(π,δ), defined in (12), is minimum.

Remark 2. It is easy to generalize Theorem 1 to the case of multiple decisions. Let X be
an RV with PDF (PMF) fθ, where θ can take any of the k values θ1,θ2, . . . ,θk. The problem
is to observe x and decide which of the θi’s is the correct value of θ. Let us write Hi : θ= θi,
i = 1,2, . . . ,k, and assume that π(θi) = πi, i = 1,2, . . .k,

∑k
1πi = 1, is the prior probability

distribution on Θ= {θ1,θ2, . . . ,θk}. Let

L(θi, δ) =

{
1 if δ chooses θj, j �= i.

0 if δ chooses θi.

The problem is to find a rule δ that minimizes R(π,δ). We leave the reader to show that a
Bayes solution is to accept Hi : θ = θi (i = 1,2, . . . ,k) if

πifθi(x)≥ πjfθj(x) for all j �= i, j = 1,2, . . . ,k, (15)

where any point lying in more than one such region is assigned to any one of them.

Example 2. Let X1,X2, . . . ,Xn be iid N(μ,1) RVs. To test H0 : μ= μ0 against H1 : μ= μ1

(> μ0), let us take a = b in the loss function (1). Then Theorem 1 says that the Bayes rule
is one that rejects H0 if

fθ1(x)

fθ0(x)
≥ π0

1−π0
,
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that is,

exp

{
−
∑n

1(xi −μ1)
2

2
+

∑n
1(xi −μ0)

2

2

}
≥ π0

1−π0
,

exp

{
(μ1 −μ0)

n∑
1

xi +
n(μ2

0 −μ2
1)

2

}
≥ π0

1−π0
.

This happens if and only if

1
n

n∑
1

xi ≥
1
n
log[π0/(1−π0)]

μ1 −μ0
+

μ0 +μ1

2
,

where the logarithm is to the base e. It follows that, if π0 = 1
2 , the rejection region

consists of

x ≥ μ0 +μ1

2
.

Example 3. This example illustrates the result described in Remark 2. Let X1,X2, . . . ,Xn

be a sample from N(μ,1) and suppose that μ can take any one of the three values μ1,
μ2, or μ3. Let μ1 < μ2 < μ3. Assume, for simplicity, that π1 = π2 = π3. Then we accept
Hi : μ= μi, i = 1,2,3, if

πi exp

{
−

n∑
k=1

(xk −μi)
2

2

}
≥ πj exp

{
−

n∑
k=1

(xk −μj)
2

2

}

for each j �= i, j = 1,2,3.

It follows that we accept Hi if

(μi −μj)x+
μ2

j −μ2
i

2
≥ 0, j = 1,2,3,(j �= i),

that is,

x(μi −μj)≥
(μi −μj)(μi +μj)

2
, j = 1,2,3,(j �= i).

Thus, the acceptance region of H1 is given by

x ≤ μ1 +μ2

2
and x ≤ μ1 +μ3

2
.

Also, the acceptance region of H2 is given by

x ≥ μ1 +μ2

2
and x ≤ μ2 +μ3

2
,
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and that of H3 by

x ≥ μ1 +μ3

2
and x ≥ μ2 +μ3

2
.

In particular, if μ1 = 0, μ2 = 2, μ3 = 4, we accept H1 if x ≤ 1, H2 if 1 ≤ x ≤ 3, and H3

if x ≥ 3. In this case, boundary points 1 and 3 have zero probability, and it does not matter
where we include them.

PROBLEMS 10.6

1. In Example 1 let n = 15, μ0 = 4.7, and μ1 = 5.2, and choose a = b > 0. Find the
minimax test, and compute its power at μ= 4.7 and μ= 5.2.

2. A sample of five observations is taken on a b(1,θ) RV to test H0 : θ = 1
2 against

H1 : θ =
3
4 .

(a) Find the most powerful test of size α= 0.05.

(b) If L( 1
2 ,

1
2 ) = L( 3

4 ,
3
4 ) = 0, L( 1

2 ,
3
4 ) = 1, and L( 3

4 ,
1
2 ) = 2, find the minimax rule.

(c) If the prior probabilities of θ= 1
2 and θ= 3

4 are π0 =
1
3 and π1 =

2
3 , respectively,

find the Bayes rule.

3. A sample of size n is to be used from the PDF

fθ(x) = θe−θx, x > 0,

to test H0 : θ= 1 against H1 : θ= 2. If the a priori distribution on θ is π0 =
2
3 , π1 =

1
3 ,

and a = b, find the Bayes solution. Find the power of the test at θ = 1 and θ = 2.

4. Given two normal densities with variances 1 and with means −1 and 1, respectively,
find the Bayes solution based on a single observation when a = b and (a) π0 =
π1 =

1
2 , and (b) π0 =

1
4 , π1 =

3
4 .

5. Given three normal densities with variances 1 and with means −1, 0, 1, respec-
tively, find the Bayes solution to the multiple decision problem based on a single
observation when π1 =

2
5 , π2 =

2
5 , π3 =

1
5 .

6. For the multiple decision problem described in Remark 2 show that a Bayes solution
is to accept Hi : θ = θi (i = 1,2, . . . .k) if (15) holds.



11
CONFIDENCE ESTIMATION

11.1 INTRODUCTION

In many problems of statistical inference the experimenter is interested in constructing
a family of sets that contain the true (unknown) parameter value with a specified (high)
probability. If X, for example, represents the length of life of a piece of equipment, the
experimenter is interested in a lower bound θ for the mean θ of X. Since θ = θ(X) will be
a function of the observations, one cannot ensure with probability 1 that θ(X)≤ θ. All that
one can do is to choose a number 1−α that is close to 1 so that Pθ{θ(X)≤ θ} ≥ 1−α for
all θ. Problems of this type are called problems of confidence estimation. In this chapter
we restrict ourselves mostly to the case where Θ⊆R and consider the problem of setting
confidence limits for the parameter θ.

In Section 11.2 we introduce the basic ideas of confidence estimation. Section 11.3
deals with various methods of finding confidence intervals, and Section 11.4 deals with
shortest-length confidence intervals. In Section 11.5 we study unbiased and equivariant
confidence intervals.

11.2 SOME FUNDAMENTAL NOTIONS OF CONFIDENCE ESTIMATION

So far we have considered a random variable or some function of it as the basic observable
quantity. Let X be an RV, and a, b, be two given positive real numbers. Then

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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P{a < X < b}= P{a < X and X < b}

= P

{
X < b <

bX
a

}
,

and if we know the distribution of X and a,b, we can determine the probability P{a <
X < b}. Consider the interval I(X) = (X,bX/a). This is an interval with end points that
are functions of the RV X, and hence it takes the value (x,bx/a) when X takes the value x.
In other words, I(X) assumes the value I(x) whenever X assumes the value x. Thus I(X)
is a random quantity and is an example of a random interval. Note that I(X) includes the
value b with a certain fixed probability. For example, if b = 1, a = 1

2 , and X is U(0,1),
the interval (X,2X) includes point 1 with probability 1

2 . We note that I(X) is a family
of intervals with associated coverage probability P(I(X) � 1) = 1

2 . It has (random) length
�(I(X))= 2X−X =X. In general the larger the length of the interval the larger the coverage
probability. Let us formalize these notions.

Definition 1. Let Pθ , θ ∈ Θ ⊆ Rk, be the set of probability distributions of an RV X. A
family of subsets S(x) of Θ, where S(x) depends on the observation x but not on θ, is
called a family of random sets. If, in particular, Θ⊆R and S(x) is an interval (θ(x),θ(x)),
where θ(x) and θ(x) are functions of x alone (and not θ), we call S(X) a random interval
with θ(X) and θ(X) as lower and upper bounds, respectively. θ(X) may be −∞, and
θ(X) may be +∞.

In a wide variety of inference problems one is not interested in estimating the parameter
or testing some hypothesis concerning it. Rather, one wishes to establish a lower or an
upper bound, or both, for the real-valued parameter. For example, if X is the time to failure
of a piece of equipment, one may be interested in a lower bound for the mean of X. If the
RV X measures the toxicity of a drug, the concern is to find an upper bound for the mean.
Similarly, if the RV X measures the nicotine content of a certain brand of cigarettes, one
may be interested in determining an upper and a lower bound for the average nicotine
content of these cigarettes.

In this chapter we are interested in the problem of confidence estimation, namely, that of
finding a family of random sets S(x) for a parameter θ such that, for a given α, 0 <α< 1
(usually small),

Pθ{S(X) � θ} ≥ 1−α for all θ ∈Θ. (1)

We restrict our attention mainly to the case where θ ∈Θ⊆ R.

Definition 2. Let θ ∈Θ⊆ R and 0 < α < 1. A statistic θ(X) satisfying

Pθ{θ(X)≤ θ} ≥ 1−α for all θ (2)

is called a lower confidence bound for θ at confidence level 1−α. The quantity

inf
θ∈Θ

Pθ{θ(X)≤ θ} (3)

is called the confidence coefficient.
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Definition 3. A statistic θ that minimizes

Pθ{θ(X)≤ θ′} for all θ′ < θ (4)

subject to (2) is known as a uniformly most accurate (UMA) lower confidence bound for
θ at confidence level 1−α.

Remark 1. Suppose X∼ Pθ and (2) holds. Then the smallest probability of true coverage,
Pθ{θ(X)≤ θ) = Pθ{[θ(X),∞) � θ} is 1−α. Then the probability of false (or incorrect)
coverage is Pθ{[θ(X),∞) � θ′}= Pθ{θ(X)≤ θ′} for θ′ < θ. According to Definition 3
among the class of all lower confidence bounds satisfying (2), a UMA lower confidence
bound has the smallest probability of false coverage.

Similar definitions are given for an upper confidence bound for θ and a UMA upper
confidence bound.

Definition 4. A family of subsets S(x) of Θ ⊆ Rk is said to constitute a family of
confidence sets at confidence level 1−α if

Pθ{S(X) � θ} ≥ 1−α for all θ ∈Θ, (5)

that is, the random set S(X) covers the true parameter value θ with probability ≥ 1−α.
A lower confidence bound corresponds to the special case where k = 1 and

S(X) = {θ : θ(x)≤ θ <∞}; (6)

and an upper confidence bound, to the case where

S(x) = {θ : θ(x)≥ θ >−∞}. (7)

If S(x) is of the form

S(x) = (θ(x),θ(x)) (8)

we will call it a confidence interval at confidence level 1−α, provided that

Pθ{θ(X)< θ < θ(X)} ≥ 1−α for all θ, (9)

and the quantity

inf
θ

Pθ{θ(X)< θ < θ(X)} (10)

will be referred to as the confidence coefficient associated with the random interval.

Remark 2. We write S(X) � θ to indicate that X, and hence S(X), is random here and
not θ so the probability distribution referred to is that of X.
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Remark 3. When X= x is the realization the confidence interval (set) S(x) is a fixed sub-
set ofRk. No probability is attached to S(x) itself since neither θ nor S(x) has a probability
distribution. In fact either S(x) covers θ or it does not and we will never know which since
θ is unknown. One can give a relative frequency interpretation. If (1−α)-level confidence
sets for θ were computed a large number of times, then a fraction (approximately) 1−α
of these would contain the true (but unknown) parameter value.

Definition 5. A family of (1−α)-level confidence sets {S(x)} is said to be a UMA family
of confidence sets at level 1−α if

Pθ{S(X) contains θ′} ≤ Pθ{S′(X) contains θ′}

for all θ 	= θ′ and any (1−α)-level family of confidence sets S′(X).

Example 1. Let X1,X2, . . . ,Xn be iid RVs, Xi ∼ N(μ,σ2). Consider the interval (X − c1,
X+ c2). In order for this to be a (1−α)-level confidence interval, we must have

P{X− c1 < μ < X+ c2} ≥ 1−α,

which is the same as

P{μ− c2 < X < μ+ c1} ≥ 1−α.

Thus

P

{
−c2

σ

√
n <

X−μ

σ

√
n <

c1

σ

√
n

}
≥ 1−α.

Since
√

n(X−μ)/σ ∼N(0,1), we can choose c1 and c2 to have equality, namely,

P

{
−c2

σ

√
n <

X−μ

σ

√
n <

c1

σ

√
n

}
= 1−α,

provided that σ is known. There are infinitely many such pairs of values (c1,c2). In
particular, an intuitively reasonable choice is c1 =−c2 = c, say. In that case

c
√

n
σ

= zα/2,

and the confidence interval is (X−(σ/
√

n)zα/2,X+(σ/
√

n)zα/2). The length of this inter-
val is (2σ/

√
n)zα/2. Given σ and α, we can choose n to get a confidence interval of a fixed

length.
If σ is not known, we have from

P{−c2 < X−μ < c1} ≥ 1−α
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that

P

{
−c2

S

√
n <

X−μ

S/
√

n
<

c1

S

√
n

}
≥ 1−α,

and once again we can choose pairs of values (c1,c2) using a t-distribution with n−1 d.f.
such that

P

{
−c2

√
n

S
<

X−μ

S

√
n <

c1
√

n
S

}
= 1−α.

In particular, if we take c1 =−c2 = c, say, then

c

√
n

S
= tn−1,α/2,

and (X−(S/
√

n)tn−1,α/2,X+(S/
√

n)tn−1,α/2), is a (1−α)-level confidence interval forμ.
The length of this interval is (2S/

√
n)tn−1,α/2, which is no longer constant. Therefore we

cannot choose n to get a fixed-width confidence interval of level 1−α. Indeed, the length
of this interval can be quite large if σ is large. Its expected length is

2√
n

tn−1,α/2EσS =
2√
n

tn−1,α/2

√
2

n−1
Γ(n/2)

Γ[(n−1)/2]
σ,

which can be made as small as we please by choosing n large enough.

Example 2. In Example 1, suppose that we wish to find a confidence interval for σ2

instead when μ is unknown. Consider the interval (c1S2,c2S2), c1,c2 > 0. We have

P{c1S2 < σ2 < c2S2} ≥ 1−α,

so that

P

{
c−1

2 <
S2

σ2
< c−1

1

}
≥ 1−α.

Since (n−1)S2/σ2 is χ2(n−1), we can choose pairs of values (c1,c2) from the tables of
the chi-square distribution. In particular, we can choose c1,c2 so that

P

{
S2

σ2
≥ 1

c1

}
=

α

2
= P

{
S2

σ2
≤ 1

c2

}
.

Then

n−1
c1

= χ2
n−1,α/2 and

n−1
c2

= χ2
n−1,1−α/2.

Thus (
(n−1)S2

χ2
n−1,α/2

,
(n−1)S2

χ2
n−1,1−α/2

)
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is a (1−α)-level confidence interval for σ2 whenever μ is unknown. If μ is known, then

n∑
1

(Xi −μ)2

σ2
∼ χ2(n).

Thus we can base the confidence interval on
∑n

1(Xi −μ)2. Proceeding similarly, we get a
(1−α)-level confidence interval as(∑n

1(Xi −μ)2

χ2
n,α/2

,

∑n
1(Xi −μ)2

χ2
n,1−α/2

)
.

Next suppose that both μ and σ2 are unknown and that we want a confidence set for
(μ,σ2). We have from Boole’s inequality

P

{
X− S√

n
tn−1,α1/2 < μ < X+

S√
n

tn−1,α1/2,
(n−1)S2

χ2
n−1,α2/2

< σ2 <
(n−1)S2

χ2
n−1,1−α2/2

}

≥ 1−P

{
X+

S√
n

tn−1,α1/2 ≤ μ or X− S√
n

tn−1,α1/2 ≥ μ

}

−P

{
(n−1)S2

χ2
n−1,1−α2/2

≤ σ2 or
(n−1)S2

χ2
n−1,α2/2

≥ σ2

}

= 1−α1 −α2,

so that the Cartesian product,

S(X) =

(
X− S√

n
tn−1,α1/2,X+

S√
n

tn−1,α1/2

)
×
(
(n−1)S2

χ2
n−1,α2/2

,
(n−1)S2

χ2
n−1,1−α2/2

)

is a (1−α1 −α2)-level confidence set for (μ,σ2).

11.3 METHODS OF FINDING CONFIDENCE INTERVALS

We now consider some common methods of constructing confidence sets. The most
common of these is the method of pivots.

Definition 1. Let X ∼ Pθ . A random variable T(X,θ) is known as a pivot if the
distribution of T(X,θ) does not depend on θ.

In many problems, especially in location and scale problems, pivots are easily found.
For example, in sampling from f (x − θ), X(n) − θ is a pivot and so is X − θ. In sam-
pling from (1/σ)f (x/σ), a scale family, X(n)/σ is a pivot and so is X(1)/σ, and in
sampling from (1/σ)f ((x− θ)/σ), a location-scale family, (X − θ)/S is a pivot, and so
is (X(2)+X(1)−2θ)/S.
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If the DF Fθ of Xi is continuous, then Fθ(Xi)∼U[0,1] and, in case of random sampling,
we can take

T(X,θ) =
n∏

i=1

Fθ(Xi),

or,

− logT(X,θ) =−
n∑

i=1

logFθ(Xi)

as a pivot. Since Fθ(Xi) ∼ U[0,1], − logFθ(Xi) ∼ G(1,1) and −
∑n

i=1 logFθ(Xi) ∼
G(n,1). It follows that −

∑n
i=1 logFθ(Xi) is a pivot.

The following result gives a simple sufficient condition for a pivot to yield a confidence
interval for a real-valued parameter θ.

Theorem 1. Let T(X,θ) be a pivot such that for each θ, T(X,θ) is a statistic, and as a
function of θ, T is either strictly increasing or decreasing at each x ∈ Rn. Let Λ ⊆ R be
the range of T , and for every λ ∈ Λ and x ∈ Rn let the equation λ= T(x,θ) be solvable.
Then one can construct a confidence interval for θ at any level.

Proof. Let 0 < α < 1. Then we can choose a pair of numbers λ1(α) and λ2(α) in Λ not
necessarily unique, such that

Pθ{λ1(α)< T(X,θ)< λ2(α)} ≥ 1−α for all θ. (1)

Since the distribution of T is independent of θ, it is clear that λ1 and λ2 are independent
of θ. Since, moreover, T is monotone in θ, we can solve the equations

T(x,θ) = λ1(α) and T(x,θ) = λ2(α) (2)

for every x uniquely for θ. We have

Pθ{θ(X)< θ < θ(X)} ≥ 1−α for all θ, (3)

where θ(X)< θ(X) are RVs. This completes the proof.

Remark 1. The condition that λ= T(x,θ) be solvable will be satisfied if, for example, T
is continuous and strictly increasing or decreasing as a function of θ in Θ.

Note that in the continuous case (that is, when the DF of T is continuous) we can find
a confidence interval with equality on the right side of (1). In the discrete case, however,
this is usually not possible.
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Remark 2. Relation (1) is valid even when the assumption of monotonicity of T in the
theorem is dropped. In that case inversion of the inequalities may yield a set of intervals
(random set) S(X) in Θ instead of a confidence interval.

Remark 3. The argument used in Theorem 1 can be extended to cover the multiparameter
case, and the method will determine a confidence set for all the parameters of a distribution.

Example 1. Let X1,X2, . . . ,Xn ∼ N(μ,σ2), where σ is unknown and we seek a (1−α)-
level confidence interval for μ. Let us choose

T(X,μ) =
X−μ

S

√
n,

where X,S2 are the usual sample statistics. The RV T(X,μ) has Student’s t-distribution
with n−1 d.f., which is independent of μ and T(X,μ), as a function of μ is monotone. We
can clearly choose λ1(α),λ2(α) (not necessarily uniquely) so that

P{λ1(α)< T(X,μ)< λ2(α)}= 1−α for all μ.

Solving

λ1(α) =
X−μ

S

√
n,

we get

μ(X) = X− S√
n
λ2(α), μ(X) = X− S√

n
λ1(α),

and the (1−α)-level confidence interval is(
X− S√

n
λ2(α),X− S√

n
λ1(α)

)
.

In practice, one chooses λ2(α) =−λ1(α) = tn−1,α/2.

Example 2. Let X1,X2, . . . ,Xn be iid with common PDF

fθ(x) = exp{−(x−θ)}, x > θ, and 0 elsewhere.

Then the joint PDF of X is

f (x;θ) = exp

{
−

n∑
i=1

xi +nθ

}
I[x(1)>θ].

Clearly, T(X,θ) = X(1)−θ is a pivot. We can choose λ1(α), λ2(α) such that

Pθ

{
λ1(α)< X(1)−θ < λ2(α)

}
= 1−α for all θ,

which yields (X(1)−λ2(α),X(1)−λ1(α)) as a (1−α)-level confidence interval for θ.
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Remark 4. In Example 1 we chose λ2 = −λ1 whereas in Example 2 we did
not indicate how to choose the pair (λ1,λ2) from an infinite set of solutions to
Pθ {λ1(α)< T(X,θ)< λ2(α)}= 1−α. One choice is the equal-tails confidence interval
which is arrived at by assigning probability α/2 to each tail of the distribution of T . This
means that we solve

α/2 = Pθ{T(X,θ)< λ1}= P{T(X,θ)> λ2}.

In Example 1 symmetry of the distribution leads to the indicated choice. In Example 2,
Y = X(1)−θ has PDF

g(y) = nexp(−ny) for y > 0

so we choose (λ1,λ2) from

Pθ

{
X(1)−θ < λ1

}
= α/2 = Pθ

{
X(1)−θ > λ2

}
,

giving λ2(α) = (1/n)�n(α/2) and λ1(α) =−(1/n)�n(1−α/2). Yet another method is to
choose λ1,λ2 in such a way that the resulting confidence interval has smallest length. We
will discuss this method in Section 11.4.

We next consider the method of test inversion and explore the relationship between a
test of hypothesis for a parameter θ and confidence interval for θ. Consider the following
example.

Example 3. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2
0), where σ0 is known. In

Example 11.2.1 we showed that(
X− 1√

n
zα/2σ0,X+

1√
n

zα/2σ0

)

is a (1−α)-level confidence interval for μ. If we define a test ϕ that rejects a value of
μ= μ0 if and only if μ0 lies outside this interval, that is, if and only if

√
n |X−μ0|

σ0
≥ zα/2,

then

Pμ0

{√
n
|X−μ0|

σ0
≥ zα/2

}
= α,

and the test ϕ is a size α test of μ= μ0 against the alternatives μ 	= μ0.
Conversely, a family of α-level tests for the hypothesis μ = μ0 generates a family of

confidence intervals for μ by simply taking, as the confidence interval for μ0, the set of
those μ for which one cannot reject μ= μ0.

Similarly, we can generate a family ofα-level tests from a (1−α)-level lower (or upper)
confidence bound. Suppose that we start with the (1−α)-level lower confidence bound
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X − zα(σ0/
√

n) for μ. Then, by defining a test ϕ(X) that rejects μ ≤ μ0 if and only if
μ0 < X− zα(σ0/

√
n), we get an α-level test for a hypothesis of the form μ≤ μ0.

Example 1 is a special case of the duality principle proved in Theorem 2 below. In the
following we restrict attention to the case in which the rejection (acceptance) region of
the test is the indicator function of a (Borel-measurable) set, that is, we consider only
nonrandomized tests (and confidence intervals). For notational convenience we write
H0(θ0) for the hypothesis H0 : θ = θ0 and H1(θ0) for the alternative hypothesis, which
may be one- or two-sided.

Theorem 2. Let A(θ0), θ0 ∈ Θ, denote the region of acceptance of an α-level test of
H0(θ0). For each observation x= (x1,x2, . . . ,xn) let S(x) denote the set

S(x) = {θ : x ∈ A(θ),θ ∈Θ}. (4)

Then S(x) is a family of confidence sets for θ at confidence level 1−α. If, moreover,
A(θ0) is UMP for the problem (α,H0(θ0),H1(θ0)), then S(X) minimizes

Pθ{S(X) � θ′} for all θ ∈ H1(θ
′) (5)

among all (1−α)-level families of confidence sets. That is, S(X) is UMA.

Proof. We have

S(x) � θ if and only x ∈ A(θ), (6)

so that

Pθ{S(X) � θ}= Pθ{X ∈ A(θ)} ≥ 1−α,

as asserted.
If S∗(X) is any other family of (1 − α)-level confidence sets, let A∗(θ) =

{x : S∗(x) � θ}. Then

Pθ{X ∈ A∗(θ)}= Pθ{S∗(X) � θ} ≥ 1−α

and since A(θ0) is UMP for (α,H0(θ0),H1(θ0)), it follows that

Pθ{X ∈ A∗(θ0)} ≥ Pθ{X ∈ A(θ0)} for any θ ∈ H1(θ0).

Hence

Pθ{S∗(X) � θ0} ≥ Pθ{X ∈ A(θ0)}= Pθ{S(X) � θ0}

for all θ ∈ H1(θ0). This completes the proof.
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Example 4. Let X be an RV of the continuous type with one-parameter exponential PDF,
given by

fθ(x) = exp{Q(θ)T(x)+S′(x)+D(θ)},

where Q(θ) is a nondecreasing function of θ. Let H0 : θ = θ0 and H1 : θ < θ0. Then the
acceptance region of a UMP size α test of H0 is of the form

A(θ0) = {x : T(x)> c(θ0)}.

Since, for θ ≥ θ′,

Pθ′{T(X)≤ c(θ′)}= α= Pθ{T(X)≤ c(θ)} ≤ Pθ′{T(X)≤ c(θ)},

c(θ) may be chosen to be nondecreasing. (The last inequality follows because the power
of the UMP test is at least α, the size.) We have

S(x) = {θ : x ∈ A(θ)},

so that S(x) is of the form (−∞,c−1(T(x))), or (−∞,c−1(T(x))], where c−1 is defined by

c−1(T(x)) = sup
θ
{θ : c(θ)≤ T(x)}.

In particular, if X1,X2, . . . ,Xn is a sample from

fθ(x) =

⎧⎨
⎩

1
θ

e−x/θ, x > 0,

0, otherwise,

then T(x) =
∑n

i=1 xi and for testing H0 : θ = θ0 against H1 : θ < θ0, the UMP acceptance
region is of the form

A(θ0) = {x :
n∑

i=1

xi ≥ c(θ0)},

where c(θ0) is the unique solution of

∫ ∞

c(θ0)/θ0

yn−1

(n−1)!
e−ydy = 1−α, 0 < α < 1.

The UMA family of (1−α)-level confidence sets is of the form

S(x) = {θ : x ∈ A(θ)}.

In the case n = 1, c(θ0) = θ0 log
1

1−α and S(x) =
[
0, x

− log(1−α)

]
.
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Example 5. Let X1,X2, . . . ,Xn be iid U(0,θ) RVs. In Problem 9.4.3 we asked the reader
to show that the test

φ(x) =

{
1 x(n) > θ0 or x(n) < θ0α

1/n,

0 otherwise

is UMP size α test of θ = θ0 against θ 	= θ0. Then

A(θ0) = {x : θ0α
1/n ≤ x(n) ≤ θ0}

and it follows that [x(n),x(n)α
−1/n] is a (1−α)-level UMA confidence interval for θ.

The third method we consider is based on Bayesian analysis where we take into account
any prior knowledge that the experimenter has about θ. This is reflected in the specification
of the prior distribution π(θ) on Θ. Under this setup the claims of probability of coverage
are based not on the distribution of X but on the conditional distribution of θ given X= x,
the posterior distribution of θ.

Let Θ be the parameter set, and let the observable RV X have PDF (PMF) fθ(x). Sup-
pose that we consider θ as an RV with distribution π(θ) onΘ. Then fθ(x) can be considered
as the conditional PDF (PMF) of X, given that the RV θ takes the value θ. Note that we
are using the same symbol for the RV θ and the value that it assumes. We can determine
the joint distribution of X and θ, the marginal distribution of X, and also the conditional
distribution of θ, given X= x as usual. Thus the joint distribution is given by

f (x,θ) = π(θ)fθ(x), (7)

and the marginal distribution of X by

g(x) =

{∑
π(θ)fθ(x) if π is a PMF,∫
π(θ)fθ(x)dθ if π is a PDF.

(8)

The conditional distribution of θ, given that x is observed, is given by

h(θ | x) = π(θ)fθ(x)
g(x)

, g(x)> 0. (9)

Given h(θ | x), it is easy to find functions l(x),u(x) such that

P{l(X)< θ < u(X)} ≥ 1−α,

where

P{l(X)< θ < u(X) |X= x}=
{∫ u

l h(θ | x)dθ∑u
l h(θ | x),

(10)

depending on whether h is a PDF or a PMF.
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Definition 2. An interval (l(x),u(x)) that has probability at least 1−α of including θ is
called a (1−α)-level Bayes interval for θ. Also l(x) and u(x) are called the lower and
upper limits of the interval.

One can similarly define one-sided Bayes intervals or (1−α)-level lower and upper
Bayes limits.

Remark 5. We note that, under the Bayesian set-up, we can speak of the probability that θ
lies in the interval (l(x),u(x)) with probability 1−α because l and u are computed based
on the posterior distribution of θ given x. In order to emphasize this distinction between
Bayesian and classical analysis, some authors prefer the term credible sets for Bayesian
confidence sets.

Example 6. Let X1,X2, . . . ,Xn be iid N(μ,1), μ ∈ R, and let the a priori distribution of μ
be N(0,1). Then from Example 8.8.6 we know that h(μ | x) is

N

(∑n
1 xi

n+1
,

1
n+1

)
.

Thus a (1−α)-level Bayesian confidence interval is(
nx

n+1
−

zα/2√
n+1

,
nx

n+1
+

zα/2√
n+1

)

A (1−α)-level confidence interval for μ (treating μ as fixed) is a random interval with
value (

x−
zα/2√

n
,x+

zα/2√
n

)
.

Thus the Bayesian interval is somewhat shorter in length. This is to be expected since we
assumed more in the Bayesian case.

Example 7. Let X1,X2, . . . ,Xn be iid b(1,p) RVs, and let the prior distribution on
Θ= (0,1) be U(0,1). A simple computation shows that the posterior PDF of p, given x, is

h(p|x) =

⎧⎨
⎩

p−
∑n

1 xi (1−p)n−
∑n

1 xi

B(
∑n

1 xi+1,n−
∑n

1 xi+1)
, 0 < p < 1

0, otherwise.

Given a table of incomplete beta integrals and the observed value of
∑n

1 xi, one can
easily construct a Bayesian confidence interval for p.

Finally, we consider some large sample methods of constructing confidence intervals.
Suppose T(X)∼AN(θ,v(θ)/n). Then

√
n

T(X)−θ√
v(θ)

L−→Z,
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where Z ∼ N(0,1). Suppose further that there is a statistic S(X) such that S(X)
P−→v(θ).

Then, by Slutsky’s theorem

√
n

T(X)−θ√
S(X)

L−→Z,

and we can obtain an (approximate) (1−α)-level confidence interval for θ by inverting
the inequality ∣∣∣∣∣√n

T(X)−θ√
S(X)

∣∣∣∣∣≤ zα/2.

Example 8. Let X1,X2, . . . ,Xn be iid RVs with finite variance. Also, let EXi =μ and EX2
i =

σ2 +μ2. From the CLT it follows that

X−μ

σ/
√

n
L−→ Z,

where Z ∼N(0,1). Suppose that we want a (1−α)-level confidence interval for μ when
σ is not known. Since S

P−→σ, for large n the quantity [
√

n(X −μ)/S] is approximately
normally distributed with mean 0 and variance 1. Hence, for large n, we can find constants
c1,c2 such that

P

{
c1 <

X−μ

S

√
n < c2

}
= 1−α.

In particular, we can choose −c1 = c2 = zα/2 to give(
x− s√

n
zα/2,x+

s√
n

zα/2

)

as an approximate (1−α)-level confidence interval for μ.

Recall that if θ̂ is the MLE of θ and the conditions of Theorem 8.7.4 or 8.7.5 are satisfied
(caution: See Remark 8.7.4), then

√
n(θ̂−θ)

σ

L−→N(0,1) as n →∞,

where

σ2 =

[
Eθ

{
∂ log fθ(X)

∂θ

}2
]−1

=
1

I(θ)
.

Then we can invert the statement

Pθ

{
−zα/2 <

θ̂−θ

σ

√
n < zα/2

}
≥ 1−α

to give an approximate (1−α)-level confidence interval for θ.
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Yet another possible procedure has universal applicability and hence can be used
for large or small samples. Unfortunately, however, this procedure usually yields con-
fidence intervals that are much too large in length. The method employs the well-known
Chebychev inequality (see Section 3.4):

P
{
|X−EX|< ε

√
var(X)

}
> 1− 1

ε2
.

If θ̂ is an estimate of θ (not necessarily unbiased) with finite variance σ2(θ), then by
Chebychev’s inequality

P

{
|θ̂−θ|< ε

√
E(θ̂−θ)2

}
> 1− 1

ε2
.

It follows that (
θ̂− ε

√
E(θ̂−θ)2, θ̂+ ε

√
E(θ̂−θ)2

)

is a [1− (1/ε2)]-level confidence interval for θ. Under some mild consistency conditions

one can replace the normalizing constant
√
[E(θ̂−θ)2], which will be some function λ(θ)

of θ, by λ(θ̂).
Note that the estimator θ̂ need not have a limiting normal law.

Example 9. Let X1,X2, . . . ,Xn be iid b(1,p) RVs, and it is required to find a confidence
interval for p. We know that EX = p and

var(X) =
var(X)

n
=

p(1−p)
n

.

It follows that

P

{
|X−p|< ε

√
p(1−p)

n

}
> 1− 1

ε2
.

Since p(1−p)≤ 1
4 , we have

P

{
X− 1

2
√

n
ε < p < X+

1
2
√

n
ε

}
> 1− 1

ε2
.

One can now choose ε and n or, if n is kept constant at a given number, ε to get the
desired level.

Actually the confidence interval obtained above can be improved somewhat. We note
that

P

{
|X−p|< ε

√
p(1−p)

n

}
> 1− 1

ε2
.
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so that

P

{
|X−p|2 < ε2p(1−p)

n

}
> 1− 1

ε2
.

Now

|X−p|2 < ε2

n
p(1−p)

if and only if

(
1+

ε2

n

)
p2 −

(
2X+

ε2

n

)
p+X

2
< 0.

This last inequality holds if and only if p lies between the two roots of the quadratic
equation

(
1+

ε2

n

)
p2 −

(
2X+

ε2

n

)
p+X

2
= 0.

The two roots are

p1 =
2X+(ε2/n)−

√
[2X+(ε2/n)]2 −4[1+(ε2/n)]X

2

2[1+(ε2/n)]

=
X

1+(ε2/n)
+

(ε2/n)−
√

4(ε2/n)X(1−X)+(ε4/n2)

2[1+(ε2/n)]

and

p2 =
2X+(ε2/n)+

√
[2X+(ε2/n)]2 −4[1+(ε2/n)]X

2

2[1+(ε2/n)]

=
X

1+(ε2/n)
+

(ε2/n)+
√

4(ε2/n)X(1−X)+(ε4/n2)

2[1+(ε2/n)]

It follows that

P{p1 < p < p2}> 1− 1
ε2
.

Note that when n is large

p1 ≈ X− ε

√
X(1−X)

n
and p2 ≈ X+ ε

√
X(1−X)

n
,



METHODS OF FINDING CONFIDENCE INTERVALS 515

as one should expect in view of the fact that X → p with probability 1 and
√
[X(1−X)/n]

estimates
√
[p(1−p)/n]. Alternatively, we could have used the CLT (or large-sample

property of the MLE) to arrive at the same result but with ε replaced by zα/2.

Example 10. Let X1,X2, . . . ,Xn be a sample from U(0,θ). We seek a confidence interval
for the parameter θ. The estimator θ̂ = X(n) is the MLE of θ, which is also sufficient for θ.
From Example 5, [X(n),α

−1/nX(n)] is a (1−α)-level UMA confidence interval for θ.
Let us now apply the method of Chebychev’s inequality to the same problem. We have

EθX(n) =
n

n+1
θ

and

Eθ(X(n)−θ)2 = θ2 2
(n+1)(n+2)

.

Thus

P

{
|X(n)−θ|

θ

√
(n+1)(n+2)

2
< ε

}
> 1− 1

ε2
.

Since X(n)
P−→ θ, we replace θ by X(n) in the denominator, and, for moderately large n,

P

{
|X(n)−θ|

X(n)

√
(n+1)(n+2)

2
< ε

}
> 1− 1

ε2
.

It follows that(
X(n)− εX(n)

√
2√

(n+1)(n+2)
,X(n)+ εX(n)

√
2√

(n+1)(n+2)

)

is a [1− (1/ε2)]-confidence interval for θ. Choosing 1− (1/ε2) = 1−α, or ε = 1/
√
α,

and noting that 1/
√

[(n+1)(n+2)]≈ 1/n for large n, and the fact that with probability 1,
X(n) ≤ θ, we can use the approximate confidence interval

(
X(n),X(n)

(
1+

1
n

√
2
α

))

for θ.

In the examples given above we see that, for a given confidence interval 1−α, a wide
choice of confidence intervals is available. Clearly, the larger the interval, the better the
chance of trapping a true parameter value. Thus the interval (−∞,+∞), which ignores the
data completely will include the real-valued parameter θ with confidence level 1. How-
ever, the larger the confidence interval, the less meaningful it is. Therefore, for a given
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confidence level 1−α, it is desirable to choose the shortest possible confidence interval.
Since the length θ− θ, in general, is a random variable, one can show that a confidence
interval of level 1−α with uniformly minimum length among all such intervals does not
exist in most cases. The alternative, to minimize Eθ(θ− θ), is also quite unsatisfactory.
In the next section we consider the problem of finding shortest-length confidence interval
based on some suitable statistic.

PROBLEMS 11.3

1. A sample of size 25 from a normal population with variance 81 produced a mean of
81.2. Find a 0.95 level confidence interval for the mean μ.

2. Let X be the mean of a random sample of size n from N(μ,16). Find the smallest
sample size n such that (X−1,X+1) is a 0.90 level confidence interval for μ.

3. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent random samples fromN(μ1,σ
2)

and N(μ2,σ
2), respectively. Find a confidence interval for μ1 − μ2 at confidence

level 1−α when (a) σ is known and (b) σ is unknown.

4. Two independent samples, each of size 7, from normal populations with common
unknown variance σ2 produced sample means 4.8 and 5.4 and sample variances
8.38 and 7.62, respectively. Find a 0.95 level confidence interval for μ1 −μ2, the
difference between the means of samples 1 and 2.

5. In Problem 3 suppose that the first population has variance σ2
1 and the second pop-

ulation has variance σ2
2, where both σ2

1, and σ2
2 are known. Find a (1 − α)-level

confidence interval for μ1 −μ2. What happens if both σ2
1 and σ2

2 are unknown and
unequal?

6. In Problem 5 find a confidence interval for the ratio σ2
2/σ

2
1, both when μ1,μ2 are

known and when μ1,μ2 are unknown. What happens if either μ1 or μ2 is unknown
but the other is known?

7. Let X1,X2, . . . ,Xn be a sample from a G(1,β) distribution. Find a confidence interval
for the parameter β with confidence level 1−α.

8. (a) Use the large-sample properties of the MLE to construct a (1−α)-level con-
fidence interval for the parameter θ in each of the following cases: (i) X1,
X2, . . . ,Xn is a sample from G(1,1/θ) and (ii) X1,X2, . . . ,Xn is a sample
from P(θ).

(b) In part (a) use Chebychev’s inequality to do the same.

9. For a sample of size 1 from the population

fθ(x) =
2
θ2

(θ− x), 0 < x < θ,

find a (1−α)-level confidence interval for θ.

10. Let X1,X2, . . . ,Xn be a sample from the uniform distribution on N points. Find an
upper (1−α)-level confidence bound for N, based on max(X1,X2, . . . ,Xn).

11. In Example 10 find the smallest n such that the length of the (1−α)-level confidence
interval (X(n),α

−1/nX(n))< d, provided it is known that θ ≤ a, where a is a known
constant.
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12. Let X and Y be independent RVs with PDFs λe−λx (x> 0) and μe−μy (y> 0), respec-
tively. Find a (1−α)-level confidence region for (λ,μ) of the form {(λ,μ) : λX +
μY ≤ k}.

13. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2), where σ2 is known. Find a UMA
(1−α)-level upper confidence bound for μ.

14. Let X1,X2, . . . ,Xn be a sample from a Poisson distribution with unknown param-
eter λ. Assuming that λ is a value assumed by a G(α,β) RV, find a Bayesian
confidence interval for λ.

15. Let X1,X2, . . . ,Xn be a sample from a geometric distribution with parameter θ.
Assuming that θ has a priori PDF that is given by the density of a B(α,β) RV, find
a Bayesian confidence interval for θ.

16. Let X1,X2, . . . ,Xn be a sample from N(μ,1), and suppose that the a priori PDF for
μ is U(−1,1). Find a Bayesian confidence interval for μ.

11.4 SHORTEST-LENGTH CONFIDENCE INTERVALS

We have already remarked that we can increase the confidence level by simply taking
a larger-length confidence interval. Indeed, the worthless interval −∞ < θ < ∞, which
simply says that θ is a point on the real line, has confidence level 1. In practice, one would
like to set the level at a given fixed number 1−α (0 <α< 1) and, if possible, construct an
interval as short in length as possible among all confidence intervals with the same level.
Such an interval is desirable since it is more informative. We have already remarked that
shortest-length confidence intervals do not always exist. In this section we will investigate
the possibility of constructing shortest-length confidence intervals based on simple RVs.
The discussion here is based on Guenther [37]. Theorem 11.3.1 is really the key to the
following discussion.

Let X1,X2, . . . ,Xn be a sample from a PDF fθ(x), and T(X1,X2, . . . ,Xn,θ) = Tθ be a
pivot for θ. Also, let λ1 = λ1(α), λ2 = λ2(α) be chosen so that

P{λ1 < Tθ < λ2}= 1−α, (1)

and suppose that (1) can be rewritten as

P{θ(X)< θ < θ(X)}= 1−α. (2)

For every Tθ, λ1 and λ2 can be chosen in many ways. We would like to choose λ1 and
λ2 so that θ−θ is minimum. Such an interval is a (1−α)-level shortest-length confidence
interval based on Tθ. It may be possible, however, to find another RV T∗

θ that may yield
an even shorter interval. Therefore we are not asserting that the procedure, if it succeeds,
will lead to a (1−α)-level confidence interval that has shortest length among all intervals
of this level. For Tθ we use the simplest RV that is a function of a sufficient statistic and θ.

Remark 1. An alternative to minimizing the length of the confidence interval is to
minimize the expected length Eθ{θ(X)− θ(X)}. Unfortunately, this also is quite unsat-
isfactory since, in general, there does not exist a member of the class of all (1−α)-level



518 CONFIDENCE ESTIMATION

confidence intervals that minimizes Eθ{θ(X)− θ(X)} for all θ. The procedures applied
in finding the shortest-length confidence interval based on a pivot are also applicable in
finding an interval that minimizes the expected length. We remark here that the restriction
to unbiased confidence intervals is natural if we wish to minimize Eθ{θ(X)−θ(x)}. See
Section 11.5 for definitions and further details.

Example 1. Let X1,X2, . . . ,Xn be sample from N(μ,σ2), where σ2 is known. Then X is
sufficient for μ and take

Tμ(X) =
X−μ

σ/
√

n
.

Then

1−α= P

{
a <

X−μ

σ

√
n < b

}
= P

{
X−b

σ√
n
< μ < X−a

σ√
n

}
.

The length of this confidence interval is (σ/
√

n)(b−a). We wish to minimize L= (σ/
√

n)
(b−a) such that

Φ(b)−Φ(a) =
1√
2π

∫ b

a
e−x2/2 dx =

∫ b

a
ϕ(x)dx = 1−α.

Here ϕ and Φ, respectively, are the PDF and DF of an N(0,1) RV. Thus

dL
da

=
σ√
n

(
db
da

−1

)

and

ϕ(b)
db
da

−ϕ(a) = 0,

giving

dL
da

=
σ√
n

[
ϕ(a)
ϕ(b)

−1

]
.

The minimum occurs when ϕ(a) = ϕ(b), that is, when a = b or a =−b. Since a = b does
not satisfy

∫ b

a
ϕ(t)dt = 1−α,

we choose a = −b. The shortest confidence interval based on Tμ is therefore the equals-
tails interval,(

X+ z1−α/2
σ√
n
,X+ zα/2

σ√
n

)
or

(
X− zα/2

σ√
n
,X+ zα/2

σ√
n

)
.



SHORTEST-LENGTH CONFIDENCE INTERVALS 519

The length of this interval is 2zα/2(σ/
√

n). In this case we can plan our experiment to give
a prescribed confidence level and a prescribed length for the interval. To have level 1−α
and length ≤ 2d, we choose the smallest n such that

d ≥ zα/2
σ√
n

or n ≥ z2
α/2

σ2

d2
.

This can also be interpreted as follows. If we estimate μ by X, taking a sample of size
n ≥ z2

α/2(σ
2/d2), we are 100(1−α) percent confident that the error in our estimate is at

most d.

Example 2. In Example 1, suppose that σ is unknown. In that case we use

Tμ(X) =
X−μ

S

√
n

as a pivot. Tμ has Student’s t-distribution with n−1 d.f. Thus

1−α= P

{
a <

X−μ

S

√
n < b

}
= P

{
X−b

S√
n
< μ < X−a

S√
n

}
.

We wish to minimize

L = (b−a)
S√
n

subject to

∫ b

a
fn−1(t)dt = 1−α,

where fn−1(t) is the PDF of Tμ. We have

dL
da

=

(
db
da

−1

)
S√
n

and fn−1(b)
db
da

− fn−1(a) = 0,

giving

dL
da

=

[
fn−1(a)
fn−1(b)

−1

]
S√
n
.

It follows that the minimum occurs at a=−b (the other solution, a= b, is not admissible).
The shortest-length confidence interval based on Tμ is the equal-tails interval,(

X− tn−1,α/2
S√
n
,X+ tn−1,α/2

S√
n

)
.

The length of this interval is 2tn−1,α/2(S/
√

n), which, being random, may be arbitrarily
large. Note that the same confidence interval minimizes the expected length of the interval,
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namely, EL = (b−a)cn(σ/
√

n), where cn is a constant determined from ES = cnσ and the
minimum expected length is 2tn−1,α/2cn(σ/

√
n).

Example 3. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs. Suppose that μ is known and we want
a confidence interval for σ2. The obvious choice for a pivot Tσ2 is given by

Tσ2(x) =

∑n
1(Xi −μ)2

σ2
,

which has a chi-square distribution with n d.f. Now

P

{
a <

∑n
1(Xi −μ)2

σ2
< b

}
= 1−α,

so that

P

{∑n
1(Xi −μ)2

b
< σ2 <

∑n
1(Xi −μ2)

a

}
= 1−α.

We wish to minimize

L =

(
1
a
− 1

b

) n∑
1

(Xi −μ)2

subject to

∫ b

a
fn(t)dt = 1−α,

where fn is the PDF of a chi-square RV with n d.f. We have

dL
da

=−
(

1
a2

− 1
b2

db
da

) n∑
1

(Xi −μ)2

and

db
da

=
fn(a)
fn(b)

,

so that

dL
da

=−
[

1
a2

− 1
b2

fn(a)
fn(b)

] n∑
1

(Xi −μ)2,

which vanishes if

1
a2

=
1
b2

fn(a)
fn(b)

.
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Numerical results giving values of a and b to four significant places of decimals are
available (see Tate and Klett [112]). In practice, the simpler equal-tails interval,

(∑n
i=1(Xi −μ)2

χ2
n,α/2

,

∑n
i=1(Xi −μ)2

χ2
n,1−α/2

)
,

may be used.
If μ is unknown, we use

Tσ2(X) =

∑n
1(Xi −X)2

σ2
= (n−1)

S2

σ2

as a pivot. Tσ2 has a χ2(n− 1) distribution. Proceeding as above, we can show that the
shortest-length confidence interval based on Tσ2 is ((n−1)(S2/b),(n−1)(S2/a)); here a
and b are a solution of

P{a < χ2(n−1)< b}= 1−α

and

a2fn−1(a) = b2fn−1(b),

where fn−1 is the PDF of a χ2(n−1) RV. Numerical solutions due to Tate and Klett [112]
may be used, but, in practice, the simpler equal-tails confidence interval,

(
(n−1)S2

χ2
n−1,α/2

,
(n−1)S2

χ2
n−1,1−α/2

)

is employed.

Example 4. Let X1,X2, . . . ,Xn be a sample from U(0,θ). Then X(n) is sufficient for θ with
density

fn(y) = n
yn−1

θn
, 0 < y < θ.

The RV Tθ = X(n)/θ has PDF

h(t) = ntn−1, 0 < t < 1.

Using Tθ as pivot, we see that the confidence interval is (X(n)/b,X(n)/a) with length
L = X(n)(1/a−1/b). We minimize L subject to

∫ b

a
ntn−1 dt = bn −an = 1−α.
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Now

(1−α)1/n < b ≤ 1

and

dL
db

= X(n)

(
− 1

a2

da
db

+
1
b2

)
= X(n)

(
an+1 −bn+1

b2an+1

)
< 0,

so that the minimum occurs at b = 1. The shortest interval is therefore (X(n), X(n)/α
1/n).

Note that

EL =

(
1
a
− 1

b

)
EX(n) =

nθ
n+1

(
1
a
− 1

b

)
,

which is minimized subject to

bn −an = 1−α,

where b = 1 and a = α1/n. The expected length of the interval that minimizes EL is
[(1/α1/n)− 1][nθ/(n+ 1)], which is also the expected length of the shortest confidence
interval based on X(n).

Note that the length of the interval (X(n),α
−1/nX(n)) goes to 0 as n →∞.

For some results on asymptotically shortest-length confidence intervals, we refer the
reader to Wilks [118, pp. 374–376].

PROBLEMS 11.4

1. Let X1,X2, . . . ,Xn be a sample from

fθ(x) =

{
e−(x−θ) if x > θ,

0 otherwise.

Find the shortest-length confidence interval for θ at level 1−α based on a sufficient
statistic for θ.

2. Let X1,X2, . . . ,Xn be a sample from G(1,θ). Find the shortest-length confidence
interval for θ at level 1−α, based on a sufficient statistic for θ.

3. In Problem 11.3.9 how will you find the shortest-length confidence interval for θ at
level 1−α, based on the statistic X/θ?

4. Let T(X,θ) be a pivot of the form T(X,θ)= T1(X)−θ. Show how one can construct
a confidence interval for θ with fixed width d and maximum possible confidence
coefficient. In particular, construct a confidence interval that has fixed width d and
maximum possible confidence coefficient for the mean μ of a normal population
with variance 1. Find the smallest size n for which this confidence interval has a
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confidence coefficient ≥ 1−α. Repeat the above in sampling from an exponential
PDF

fμ(x) = eμ−x for x > μ and fμ(x) = 0 for x ≤ μ.

(Desu [21])

5. Let X1,X2, . . . ,Xn be a random sample from

fθ(x) =
1
2θ

exp{−|x|/θ}, x ∈ R, θ > 0.

Find the shortest-length (1 − α)-level confidence interval for θ, based on the
sufficient statistic

∑n
i=1 |Xi|.

6. In Example 4, let R = X(n)−X(1). Find a (1−α)-level confidence interval for θ of
the form (R,R/c). Compare the expected length of this interval to the one computed
in Example 4.

7. Let X1,X2, . . . ,Xn be a random sample from a Pareto PDF fθ(x) = θ/x2, x > θ, and
= 0 for x ≤ θ. Show that the shortest-length confidence interval for θ based on X(1)

is (X(1)α
1/n,X(1)). (Use θ/X(1) as a pivot.)

8. Let X1,X2, . . . ,Xn be a sample from PDF fθ(x) = 1/(θ2 − θ1), θ1 ≤ x ≤ θ2, θ1 < θ2

and = 0 otherwise. Let R = X(n)−X(1). Using R/(θ2 −θ1) as a pivot for estimating
θ2 − θ1, show that the shortest-length confidence interval is of the form (R,R/c),
where c is determined from the level as a solution of cn−1{(n− 1)c− n}+α = 0
(Ferentinos [27]).

11.5 UNBIASED AND EQUIVARIANT CONFIDENCE INTERVALS

In Section 11.3 we studied test inversion as one of the methods of constructing confidence
intervals. We showed that UMP tests lead to UMA confidence intervals. In Chapter 9 we
saw that UMP tests generally do not exist. In such situations we either restrict considera-
tion to smaller subclasses of tests by requiring that the test functions have some desirable
properties, or we restrict the class of alternatives to those near the null parameter values.

In this section will follow a similar approach in constructing confidence intervals.

Definition 1. A family {S(x)} of confidence sets for a parameter θ is said to be unbiased
at confidence level 1−α if

Pθ{S(X) contains θ} ≥ 1−α (1)

and

Pθ{S(X) contains θ′} ≤ 1−α for all θ, θ′ ∈Θ, θ 	= θ′. (2)

If S(X) is an interval satisfying (1) and (2), we call it a (1−α)-level unbiased confidence
interval. If a family of unbiased confidence sets at level 1−α is UMA in the class of all
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(1−α)-level unbiased confidence sets, we call it a UMA unbiased (UMAU) family of
confidence sets at level 1−α. In other words if S∗(x) satisfies (1) and (2) and minimizes

Pθ{S(X) contains θ′} for θ, θ′ ∈Θ, θ 	= θ′

among all unbiased families of confidence sets S(X) at level 1−α, then S∗(X) is a UMAU
family of confidence sets at level 1−α.

Remark 1. Definition 1 says that a family S(X) of confidence sets for a parameter θ is
unbiased at level 1−α if the probability of true coverage is at least 1−α and that of false
coverage is at most 1−α. In other words, S(X) traps a true parameter value more often
than it does a false one.

Theorem 1. Let A(θ0) be the acceptance region of a UMP unbiased size α test of
H0(θ0) : θ= θ0 against H1(θ0) : θ 	= θ0 for each θ0. Then S(x) = {θ : x ∈ A(θ)} is a UMA
unbiased family of confidence sets at level 1−α.

Proof. To see that S(x) is unbiased we note that, since A(θ) is the acceptance region of
an unbiased test,

Pθ{S(X) contains θ′}= Pθ{X ∈ A(θ′)} ≤ 1−α.

We next show that S(X) is UMA. Let S∗(x) be any other unbiased (1−α)-level family
of confidence sets, and write A∗(θ) = {x : S∗(x) contains θ}. Then Pθ{X ∈ A∗(θ′)} =
Pθ{S∗(X) contains θ′} ≤ 1−α, and it follows that A∗(θ) is the acceptance region of an
unbiased size α test. Hence

Pθ{S∗(X) contains θ′}= Pθ{X ∈ A∗(θ′)}
≥ Pθ{X ∈ A(θ′)}
= Pθ{S(X) contains θ′}.

The inequality follows since A(θ) is the acceptance region of a UMP unbiased test. This
completes the proof.

Example 1. Let X1,X2, . . . ,Xn be a sample from N(μ,σ2) where both μ and σ2 are
unknown. For testing H0 : μ= μ0 against H1 : μ 	= μ0, it is known (Ferguson [28, p. 232])
that the t-test

ϕ(x) =

⎧⎨
⎩1,

|√n(x−μ0)|
s

> c,

0, otherwise,

where x =
∑

xi/n and s2 = (n−1)−1∑(xi −x)2 is UMP unbiased. We choose c from the
size requirement

α= Pμ=μ0

{∣∣∣∣
√

n(X−μ0)

S

∣∣∣∣> c

}
,
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so that c = tn−1,α/2. Thus

A(μ0) =

{
x :

∣∣∣∣
√

n(x−μ0)

s

∣∣∣∣≤ tn−1,α/2

}

is the acceptance region of a UMP unbiased size α test of H0 : μ= μ0 against H1 : μ 	= μ0.
By Theorem 1, it follows that

S(x) = {μ : x ∈ A(μ)}

=

{
x− s√

n
tn−1,α/2 ≤ μ≤ x+

s√
n

tn−1,α/2

}

is a UMA unbiased family of confidence sets at level 1−α.

If the measure of precision of a confidence interval is its expected length, one is natu-
rally led to a consideration of unbiased confidence intervals. Pratt [81] has shown that the
expected length of a confidence interval is the average of false coverage probabilities.

Theorem 2. Let Θ be an interval on the real line and fθ be the PDF of X. Let S(X)
be a family of (1 − α)-level confidence intervals of finite length, that is, let S(X) =
(θ(X), θ(X)), and suppose that θ(X)−θ(X) is (random) finite. Then∫

(θ(x)−θ(x))fθ(x)dx=

∫
θ′ �=θ

Pθ{S(X) contains θ′}dθ′ (3)

for all θ ∈Θ.

Proof. We have

θ−θ =

∫ θ

θ

dθ′.

Thus for all θ ∈Θ

Eθ{θ(X)−θ(X)}= Eθ

{∫ θ

θ

dθ′
}

=

∫
fθ(x)

{∫ θ

θ

dθ′
}

dx

=

∫ {∫ θ

θ

fθ(x)dx

}
dθ′

=

∫
Pθ{S(X) contains θ′}dθ′

=

∫
θ′ �=θ

Pθ{S(X) contains θ′}dθ′.
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Remark 2. If S(X) is a family of UMAU (1−α)-level confidence intervals, the expected
length of S(X) is minimal. This follows since the left-hand side of (3) is the expected
length, if θ is the true value, of S(X) and Pθ{S(X) contains θ′} is minimal [because
S(X) is UMAU], by Theorem 1, with respect to all families of 1−α unbiased confidence
intervals uniformly in θ(θ 	= θ′).

Since a reasonably complete discussion of UMP unbiased tests (see Section 9.5) is
beyond the scope of this text, the following procedure for determining unbiased confidence
intervals is sometimes quite useful (see Guenther [38]). Let X1,X2, . . . ,Xn be a sample
from an absolutely continuous DF with PDF fθ(x) and suppose that we seek an unbiased
confidence interval for θ. Following the discussion in Section 11.4, suppose that

T(X1,X2, . . . ,Xn,θ) = T(X,θ) = Tθ

is a pivot, and suppose that the statement

P{λ1(α)< Tθ < λ2(α)}= 1−α

can be converted to

Pθ{θ(X)< θ < θ(X)}= 1−α.

In order for (θ,θ) to be unbiased, we must have

P(θ,θ′) = Pθ{θ(X)< θ′ < θ(X)}= 1−α if θ′ = θ (4)

and

P(θ,θ′)< 1−α if θ′ 	= θ. (5)

If P(θ,θ′) depends only on a function γ of θ,θ′, we may write

P(γ)

{
= 1−α if θ′ = θ,

< 1−α if θ′ 	= θ,
(6)

and it follows that P(γ) has a maximum at θ′ = θ.

Example 2. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs, and suppose that we desire an
unbiased confidence interval for σ2. Then

T(X,σ2) =
(n−1)S2

σ2
= Tσ

has a χ2(n−1) distribution, and we have

P

{
λ1 < (n−1)

S2

σ2
< λ2

}
= 1−α,



UNBIASED AND EQUIVARIANT CONFIDENCE INTERVALS 527

so that

P

{
(n−1)

S2

λ2
< σ2 < (n−1)

S2

λ1

}
= 1−α.

Then

P(σ2,σ′2) = Pσ2

{
(n−1)

S2

λ2
< σ′2 < (n−1)

S2

λ1

}

= P

{
Tσ

λ2
< γ <

Tσ

λ1

}
,

where γ = σ′2/σ2 and Tσ ∼ χ2(n−1). Thus

P(γ) = P{λ1γ < Tσ < λ2γ}.

Then

P(1) = 1−α

and

P(γ)< 1−α.

Thus we need λ1,λ2 such that

P(1) = 1−α (7)

and

dP(γ)
dγ

∣∣∣
γ=1

= λ2fn−1(λ2)−λ1fn−1(λ1) = 0, (8)

where fn−1 is the PDF of Tσ . Equations (7) and (8) have been solved numerically for
λ1,λ2 by several authors (see, for example, Tate and Klett [112]). Having obtained λ1,λ2

from (7) and (8), we have as the unbiased (1−α)-level confidence interval(
(n−1)

S2

λ2
,(n−1)

S2

λ1

)
. (9)

Note that in this case the shortest-length confidence interval (based on Tσ) derived in
Example 11.4.3, the usual equal-tails confidence interval, and (9) are all different. The
length of the confidence interval (9), however, can be considerably greater than that of the
shortest interval of Example 11.4.3. For large n all three sets of intervals are approximately
the same.

Finally, let us briefly investigate how invariance considerations apply to confidence
estimation. Let X= (X1,X2, . . . ,Xn)∼ fθ, θ ∈Θ⊆R. Let G be a group of transformations
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on X which leaves P = {fθ : θ ∈ Θ} invariant. Let S(X) be a (1−α)-level confidence
set for θ.

Definition 2. Let P be invariant under G and let S(x) be a confidence set for θ. Then S is
equivariant under G, if for every x ∈ X, θ ∈Θ and g ∈ G

S(x) ∈ θ ⇔ S(g(x)) � gθ. (10)

Example 3. Let X1,X2, . . . ,Xn be a sample from PDF

fθ(x) = exp{−(x−θ)}, x > θ

and = 0 if x ≤ θ. Let G = {{a,1} : a ∈ R}, where {a,1}x = (x1 + a,x2 + a, . . . ,xn + a)
and G induces Ḡ = G on Θ = R. The family {fθ} remains invariant under G. Consider a
confidence interval of the form

S(x) = {θ : x− c1 ≤ θ ≤ x+ c2}

where c1, c2 are constants. Then

S({a,1}x) = {θ : x+a− c1 ≤ θ ≤ x+a− c2}.

Clearly,

S(x) � θ⇐⇒ x+a− c1 ≤ θ+a ≤ x+a− c2

⇐⇒ S({a,1}x) � gθ

and it follows that S(x) is an equivariant confidence interval.

The most useful method of constructing invariant confidence intervals is test inversion.
Inverting the acceptance region of invariant tests often leads to equivariant confidence
intervals under certain conditions. Recall that a group G of transformations leaves a
hypothesis testing problem invariant if G leaves both Θ0 and Θ1 invariant. For each
H0 : θ = θ0, θ0 ∈ Θ, we have a different group of transformations, Gθ0 , which leaves the
problem of testing θ= θ0 invariant. The equivariant confidence interval, on the other hand,
must be equivariant with respect to G, which is a much larger group since G ⊃ Gθ0 for
all θ0. The relationship between an equivariant confidence set and invariant tests is more
complicated when the family P has a nuisance parameter τ .

Under certain conditions there is a relationship between equivariant confidence sets
and associated invariant tests. Rather than pursue this relationship, we refer the reader to
Ferguson [28, p. 262]; it is generally easy to check that (10) holds for a given confidence
interval S to show that S is invariant. The following example illustrates this point.
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Example 4. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs where both μ and σ2 are unknown.
In Example 9.5.3 we showed that the test

φ(x) =

{
1 if

∑n
1(xi − x)2 ≤ σ2

0χ
2
n−1,1−α

0 otherwise

is UMP invariant, under translation group for testing H0 : σ
2 ≥ σ2

0 against H1 : σ
2 < σ2

0.
Then the acceptance region of φ is

A(x) =

{
x :

n∑
1

(xi − x)2 > σ2
0χ

2
n−1,1−α

}
.

Clearly,

x ∈ A(x)⇐⇒ σ2
0 < (n−1)s2/χ2

n−1,1−α

and it follows that

S(x) =
{
σ2 : σ2 < (n−1)s2/χ2

n−1,1−α

}
is a (1−α)-level confidence interval (upper confidence bound) for σ2. We show that S is
invariant with respect to the scale group. In fact

S({0,c}x) =
{
σ2 : σ2 < c2(n−1)s2/χ2

n−1,1−α

}
and

σ2 < (n−1)s2/χ2
n−1,1−α ⇐⇒ S({0,c}x) � ḡσ2 = {0,c}σ2

and it follows that S(x) is an equivariant confidence interval for σ2.

PROBLEMS 11.5

1. Let X1,X2, . . . ,Xn be a sample from U(0,θ). Show that the unbiased confidence inter-
vals for θ based on the pivot max Xi/θ coincides with the shortest-length confidence
interval based on the same pivot.

2. Let X1,X2, . . . ,Xn be a sample from G(1,θ). Find the unbiased confidence interval
for θ based on the pivot 2

∑n
i=1 Xi/θ.

3. Let X1,X2, . . . ,Xn be a sample from PDF

fθ(x) =

{
e−(x−θ) if x > θ

0 otherwise.

Find the unbiased confidence interval based on the pivot 2n[min Xi −θ].

4. Let X1,X2, . . . ,Xn be iid N(μ,σ2) RVs where both μ and σ2 are unknown. Using
the pivot Tμ,σ =

√
n(X−μ)/S show that the shortest-length unbiased (1−α)-level

confidence interval for μ is the equal-tails interval (X − tn−1,α/2S/
√

n,X +
tn−1,α/2S/

√
n).
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5. Let X1,X2, . . . ,Xn be iid with PDF fθ(x) = θ/x2, x ≥ θ, and = 0 otherwise. Find the
shortest-length (1−α)-level unbiased confidence interval for θ based on the pivot
θ/X(1).

6. Let X1,X2, . . . ,Xn be a random sample from a location family P = {fθ(x) =
f (x−θ);θ ∈R}. Show that a confidence interval of the form S(x) = {θ : T(x)−c1 ≤
θ ≤ T(x) + c2} where T(x) is an equivariant estimate under location group is an
equivariant confidence interval.

7. Let X1,X2, . . . ,Xn be iid RVs with common scale PDF fσ(x) = 1
σ f (x/σ), σ > 0.

Consider the scale group G = {{0,b} : b > 0}. If T(x) is an equivariant estimate
of σ, show that a confidence interval of the form

X(x) =

{
σ : c1 ≤

T(x)
σ

≤ c2

}
is equivariant.

8. Let X1,X2, . . . ,Xn be iid RVs with PDF fθ(x) = exp{−(x − θ)}, x > θ and, = 0,
otherwise. For testing H0 : θ = θ0 against H1 : θ > θ0, consider the (UMP) test

φ(x) = 1, if X(1) ≥ θ0 − (�n α)/n, = 0, otherwise.

Is the acceptance region of this α-level test an equivariant (1−α)-level confidence
interval (lower bound) for θ with respect to the location group?

11.6 RESAMPLING: BOOTSTRAP METHOD

In many applications of statistical inference the investigator has a random sample from a
population distribution DF F which may or may not be completely specified. Indeed the
empirical data may not even fit any known distribution. The inference is typically based
on some statistic such as X, S2, a percentile or some much more complicated statistic
such as sample correlation coefficient or odds ratio. For this purpose we need to know the
distribution of the statistic being used and/or its moments. Except for the simple situations
such as those described in Chapter 6 this is not easy. And even if we are able to get a handle
on it, it may be inconvenient to deal with it. Often, when the sample is large enough, one
can resort to asymptotic approximations considered in Chapter 7. Alternatively, one can
use computer-intensive techniques which have become quite popular in the last 25 years
due to the availability of fast home or office laptops and desktops.

Suppose x1,x2, . . . ,xn is a random sample from a distribution F with unknown param-
eter θ(F), and let θ̃ be an estimate of θ(F). What is the bias of θ̃ and its SE? Resampling
refers to sampling from x1,x2, . . . ,xn and using these samples to estimate the statistical
properties of θ̃. Jackknife is one such method where one uses subsets of the sample by
excluding one or more observations at a time. For each of these subsamples an estimate θ̃j
of θ is computed, and these estimates are then used to investigate the statistical properties
of θ̃.

The most commonly used resampling method is the bootstrap, introduced by
Efron [22], where one draws random samples of size n, with replacement, from
x1,x2, . . . ,xn. This allows us to generate a large number of bootstrap samples and hence
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bootstrap estimates θ̂b of θ. This bootstrap distribution of θ̂b is then used to study the
statistical properties of θ̃.

Let X∗
b1,X

∗
b2, . . . ,X

∗
bn, b = 1,2, . . . ,B, be iid RVs with common DF F∗

n , the empirical DF
corresponding to the sample x1,x2, . . . ,xn. Then (X∗

b1,X
∗
b2, . . . ,X

∗
bn) is called a bootstrap

sample. Let θ be the parameter of interest associated with DF F and suppose we have
chosen θ̂ to be an estimate of θ based on the sample x1,x2, . . . ,xn. For each bootstrap
sample let θ̂b, b = 1,2, . . . ,B, be the corresponding bootstrap estimate of θ. We can now
study the statistical properties of θ̂ based on the distribution of the θ̂b, b = 1,2, . . . ,B,
values. Let θ∗ =ΣB

1 θ̂b/B. Then the variance of θ̂ is estimated by the bootstrap variance.

varbs(θ̂) = var(θ̂b) =
1

B−1
ΣB

b=1

(
θ̂b −θ

∗)2
. (1)

Similarly the bias of θ̂, b(θ) = E(θ̂) - θ, is estimated by

biasbs(θ̂) = θ
∗− θ̂. (2)

Arranging the values of θ̂b, b = 1,2, . . . ,B, in increasing order of magnitude and then
excluding 100α/2 percent smallest and largest values we get a (1−α)-level confidence
interval for θ. This is the so-called percentile confidence interval. One can also use this
confidence interval to test hypotheses concerning θ.

Example 1. For this example we took a random sample of size 20 from a distribution on
(.25, 1.25) with following results.

0.75 0.49 1.14 0.79 0.59 1.14 1.17 0.42 0.57 1.05

0.31 0.46 0.73 0.32 0.81 0.45 0.56 0.42 0.66 0.63

Suppose we wish to estimate the mean θ of the population distribution. For the sake of
this illustration we use θ̂ = x and use the bootstrap to estimate the SE of θ̂.

We took 1000 random samples, with replacement, of size 20 each from this sample
with the following distribution of θ̂b.

Interval Frequency

0.49–0.56 6

0.53–0.57 29

0.57–0.61 109

0.61–0.65 200

0.65–0.69 234

0.69–0.73 229

0.73–0.77 123

0.77–0.81 59

0.81–0.85 10

0.85–0.89 2
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The bootstrap estimate of θ is θ∗ =0.677 and that of the variance is 0.061. By excluding
the smallest and the largest twenty-five vales of θ̂b a 95 percent confidence interval for θ
is given by (0.564, 0.793). (We note that x = 0.673 and s2 = 0.273 so the SE(x) = .061.)

Figure 1 show the frequency distribution of the bootstrap statistic θ̂b.

It is natural to ask how well does the distribution of the bootstrap statistic θ̂b approxi-
mate the distribution of θ̂? The bootstrap approximation is often better when applied to the
appropriately centered θ̂. Thus to estimate population mean θ bootstrap is applied to the
centered sample mean x−θ. The corresponding bootstrapped version will then be xb − x,
where xb is the sample mean of the bth bootstrap sample. Similarly if θ̂ = Z1/2 = med(X1,
X2,. . . , Xn) then the bootstrap approximation will be applied to the centered sample median
Z1/2−F−1(0.5). The bootstrap version will be then be med(X∗

b1, X∗
b2,. . . , X∗

bn)−Z1/2. Sim-
ilarly , in estimation of the distribution of sample variance S2, the bootstrap version will
be applied to the ratio S2/σ2, where σ2 is the variance of the DF F.

We have already considered the percentile method of constructing confidence intervals.
Let us denote theαth percentile of the distribution of θ̂b, b= 1, 2,. . . , B, by Bα. Suppose that
the sampling distribution of θ̂−θ is approximated by the bootstrap distribution of θ̂b − θ̂.
Then the probability that θ̂−θ is covered by the interval (Bα/2− θ̂, B1−α/2 + θ̂) is approx-
imately (1−α). This is called a (1−α)-level centered bootstrap percentile confidence
interval for θ.

Recall that in sampling from a normal distribution when both mean and the variance
are unknown, a (1−α)-level confidence interval for the mean θ is based on t-statistic and
is given by (x− tn−1,α/2,x+ tn−1,α/2). For nonnormal distributions the bootstrap analog
of the Student’s t-statistic is the statistic (θ̂− θ)/(σ̂/

√
n). The bootstrap version is the

statistic Tb = (θ̂b − θ̂)/SEb, where SEb is the SE computed from the bootstrap sample
distribution. A(1−α)-level confidence interval is now easily constructed.
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In our discussion above we have assumed that F(θ) is completely unspecified. What if
we know F except for the parameter θ? In that case we take bootstrap samples from the
distribution F(θ̂).

We refer the reader to Efron and Tibshirani [23] for further details.

PROBLEMS 11.6

1. (a) Show that there are
(2n−1

n

)
distinct bootstrap samples of size n. [Hint: Problem

1.4.17.]

(b) What is the probability that a bootstrap sample is identical to the original
samples?

(c) What is the most likely bootstrap sample to be drawn?

(d) What is the mean number of times that xi appears in the bootstrap samples?

2. Let x1, x2,. . . ,xn be a random sample. Then μ̂ = x is an estimate of the unknown
mean μ. Consider the leave-one-out Jackknife sample. Let μ̃i be the mean of the
remaining (n−1) observations when xi is excluded:

(a) Show that xi = n μ̂− (n−1)μ̃i.

(b) Now suppose we need to estimate a parameter θ and choose θ̂ to be an estimate
from the sample. Imitating the Jackknife procedure for estimating μ we note that
θ∗i = nθ̂− (n−1)θ̃i. What is the Jackknife estimate of θ? What is the Jackknife
estimate of the bias of θ̂ and its variance?

3. Let x1, x2,. . . ,xn be a random sample from N(θ,1) and suppose that x is an estimate
of θ. Let X∗

1 , X∗
2 ,. . . ,X∗

n be a bootstrap sample from N(x,1). Show that both X − θ
and X

∗− x have the same N(0,1/n) distribution.

4. Consider the data set
2, 5, 3, 9.

Let x∗1 , x∗2 , x∗3 , x∗4 be a bootstrap sample from this data set:

(a) Find the probability that the bootstrap mean equals 2.

(b) Find the probability that the maximum value of the bootstrap mean is 9.

(c) Find the probability that the bootstrap sample mean is 4.
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GENERAL LINEAR HYPOTHESIS

12.1 INTRODUCTION

This chapter deals with the general linear hypothesis. In a wide variety of problems the
experimenter is interested in making inferences about a vector parameter. For example,
he may wish to estimate the mean of a multivariate normal or to test some hypotheses
concerning the mean vector. The problem of estimation can be solved, for example, by
resorting to the method of maximum likelihood estimation, discussed in Section 8.7. In this
chapter we restrict ourselves to the so-called linear model problems and concern ourselves
mainly with problems of hypotheses testing.

In Section 12.2 we formally describe the general model and derive a test in complete
generality. In the next four sections we demonstrate the power of this test by solving
four important testing problems. We will need a considerable amount of linear algebra
in Section 12.2.

12.2 GENERAL LINEAR HYPOTHESIS

A wide variety of problems of hypotheses testing can be treated under a general setup. In
this section we state the general problem and derive the test statistic and its distribution.
Consider the following examples.

Example 1. Let Y1,Y2, . . . ,Yk be independent RVs with EYi = μi, i = 1,2, . . . ,k, and com-
mon variance σ2. Also, ni observations are taken on Yi, i = 1,2, . . . ,k, and

∑k
i=1 ni = n.

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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It is required to test H0 : μi = μ2 = · · · = μk. The case k = 2 has already been treated
in Section 10.4. Problems of this nature arise quite naturally, for example, in agricultural
experiments where one is interested in comparing the average yield when k fertilizers are
available.

Example 2. An experimenter observes the velocity of a particle moving along a line. He
takes observations at given times t1, t2, . . . , tn. Let β1 be the initial velocity of the particle
and β2 the acceleration; then the velocity at time t is given by y= β1+β2t+ε, where ε is an
RV that is nonobservable (like an error in measurement). In practice, the experimenter does
not know β1 and β2 and has to use the random observations Y1,Y2, . . . ,Yn made at times
t1, t2, . . . , tn, respectively, to obtain some information about the unknown parameters β1,β2.

A similar example is the case when the relation between y and t is governed by

y = β0 +β1t+β2t2 + ε,

where t is a mathematical variable, β0,β1,β2 are unknown parameters, and ε is a nonob-
servable RV. The experimenter takes observations Y1,Y2, . . . ,Yn at predetermined values
t1, t2, . . . , tn, respectively, and is interested in testing the hypothesis that the relation is in
fact linear, that is, β2 = 0.

Examples of the type discussed above and their much more complicated variants can
all be treated under a general setup. To fix ideas, let us first make the following definition.

Definition 1. Let Y = (Y1,Y2, . . . ,Yn)
′ be a random column vector and X be an n× k

matrix, k < n, of known constants xij, i = 1,2, . . . ,n; j = 1,2, . . . ,k. We say that the
distribution of Y satisfies a linear model if

EY =Xβ, (1)

where β = (β1,β2, . . . ,βk)
′ is a vector of unknown (scalar) parameters β1,β2, . . . ,βk. It is

convenient to write

Y =Xβ+ε, (2)

where ε = (ε1, ε2, . . . , εn)
′ is a vector of nonobservable RVs with Eεj = 0, j = 1,2, . . . ,n.

Relation (2) is known as a linear model. Then general linear hypothesis concerns β,
namely, that β satisfies H0 : Hβ = 0, where H is a known r× k matrix with r ≤ k.

In what follows we will assume that ε1, ε2, . . . , εn are independent, normal RVs with
common variance σ2 and Eεj = 0, j= 1,2, . . . ,n. In view of (2), it follows that Y1,Y2, . . . ,Yn

are independent normal RVs with

EYi =

k∑
j=1

xijβj and var(Yi) = σ2, i = 1,2, . . . ,n. (3)

We will assume that H is a matrix of full rank r,r ≤ k, and X is a matrix of full rank k < n.
Some remarks are in order.
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Remark 1. Clearly, Y satisfies a linear model if the vector of means EY=(EY1,
EY2, . . . ,EYn)

′ lies in a k-dimensional subspace generated by the linearly independent
column vectors x1,x2, . . . ,xk of the matrix X. Indeed, (1) states that EY is a linear combi-
nation of the known vectors x1, . . . ,xk. The general linear hypothesis H0 : Hβ = 0 states
that the parameters β1,β2, . . . ,βk satisfy r independent homogeneous linear restrictions. It
follows that, under H0, EY lies in a (k−r)-dimensional subspace of the k-space generated
by x1, . . . ,xk.

Remark 2. The assumption of normality, which is conventional, is made to compute the
likelihood ratio test statistic of H0 and its distribution. If the problem is to estimate β, no
such assumption is needed. One can use the principle of least squares and estimate β by
minimizing the sum of squares,

n∑
i=1

ε2
i = εε′ = (Y−Xβ)′(Y−Xβ). (4)

The minimizing value β̂(y) is known as a least square estimate of β. This is not a difficult
problem, and we will not discuss it here in any detail but will mention only that any solution
of the so-called normal equations

X′Xβ =X′Y (5)

is a least square estimator. If the rank of X is k(< n), then X′X, which has the same rank
as X, is a nonsingular matrix that can be inverted to give a unique least square estimator

β̂ = (X′X)−1X′Y. (6)

If the rank of X is < k, then X′X is singular and the normal equations do not have a
unique solution. One can show, for example, that β̂ is unbiased for β, and if the Yi’s
are uncorrelated with common variance σ2, the variance–covariance matrix of the β̂i’s is
given by

E

{(
β̂−β

)(
β̂−β

)′}
= σ2(X′X)−1. (7)

Remark 3. One can similarly compute the so-called restricted least square estimator of β
by the usual method of Lagrange multipliers. For example, under H0 : Hβ= 0 one simply
minimizes (Y−Xβ)′ (Y−Xβ) subject to Hβ = 0 to get the restricted least square
estimator β̂. The important point is that, if ε is assumed to be a multivariate normal RV
with mean vector 0 and dispersion matrix σ2In, the MLE of β is the same as the least
square estimator. In fact, one can show that β̂i is the UMVUE of βi, i = 1,2, . . . ,k, by the
usual methods.

Example 3. Suppose that a random variable Y is linearly related to a mathematical vari-
able x that is not random (see Example 2). Let Y1,Y2, . . . ,Yn be observations made at
different known values x1,x2, . . . ,xn of x. For example, x1,x2, . . . ,xn may represent dif-
ferent levels of fertilizer, and Y1,Y2, . . . ,Yn, respectively, the corresponding yields of
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a crop. Also, ε1, ε2, . . . , εn represent unobservable RVs that may be errors of measurements.
Then

Yi = β0 +β1xi + εi, i = 1,2, . . . ,n,

and we wish to test whether β1 = 0, that the fertilizer levels do not affect the yield. Here

X=

⎛
⎜⎜⎜⎜⎝

1 x1

1 x2

...
...

1 xn

⎞
⎟⎟⎟⎟⎠ ,

β = (β0,β1)
′, and ε= (ε1, ε2, . . . , εn)

′.

The hypothesis to be tested is H0 : β1 = 0 so that, with H= (0,1), the null hypothesis can
be written as H0 : Hβ = 0. This is a problem of linear regression.

Similarly, we may assume that the regression of Y on x is quadratic:

Y = β0 +β1x+β2x2 + ε,

and we may wish to test that a linear function will be sufficient to describe the relationship,
that is, β2 = 0. Here X is the n×3 matrix

X=

⎛
⎜⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xn x2
n

⎞
⎟⎟⎟⎟⎠ ,

β = (β0,β1,β2)
′, ε= (ε1, ε2, . . . , εn)

′,

and H is the 1×3 matrix (0,0,1).
In another example of regression, the Y’s can be written as

Y = β1x1 +β2x2 +β3x3 + ε,

and we wish to test the hypothesis that β1 = β2 = β3. In this case, X is the matrix

X=

⎛
⎜⎜⎜⎜⎝

x11 x12 x13

x21 x22 x23

...
...

...

xn1 xn2 xn3

⎞
⎟⎟⎟⎟⎠ ,

and H may be chosen to be the 2×3 matrix

H=

(
1 0 −1

1 −1 0

)
.
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Example 4. Another important example of the general linear hypothesis involves the
analysis of variance. We have already derived tests of hypotheses regarding the equal-
ity of the means of two normal populations when the variances are equal. In practice, one
is frequently interested in the equality of several means when the variances are the same,
that is, one has k samples from N(μ1,σ

2), . . . ,N(μk,σ
2), where σ2 is unknown and one

wants to test H0 : μ1 = μ2 = · · · = μk (see Example 1). Such a situation is of common
occurrence in agricultural experiments. Suppose that k treatments are applied to experi-
mental units (plots), the ith treatment is applied to ni randomly chosen units, i= 1,2, . . . ,k,∑k

i=1 ni = n, and the observation yij represents some numerical characteristic (yield) of the
jth experimental unit under the ith treatment. Suppose also that

Yij = μi + εij, j = 1,2, . . . ,n; i = 1,2, . . . ,k,

where εij are iid N(0,σ2) RVs. We are interested in testing H0 : μ1 = μ2 = · · · = μk. We
write

Y = (Y11,Y12, . . . ,Y1n1 ,Y21,Y22, . . . ,Y2n2 , . . . ,Yk1 ,Yk2 , . . . ,Yknk)
′,

β = (μ1,μ2, . . . ,μk)
′,

X=

⎛
⎜⎜⎜⎜⎝
1n1 0 · · · 0

0 1n2 · · · 0
...

...
···
···
···

...

0 0 · · · 1nk

⎞
⎟⎟⎟⎟⎠ ,

where 1ni = (1,1, . . . ,1)′ is the ni-vector (i = 1,2, . . . ,k), each of whose elements is unity.
Thus X is n× k. We can choose

H=

⎛
⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

···
···
···

...

1 0 0 · · · −1

⎞
⎟⎟⎟⎟⎠

so that H0 : μ1 = μ2 = · · ·= μk is of the form Hβ = 0. Here H is a (k−1)× k matrix.
The model described in this example is frequently referred to as a one-way analysis of

variance model. This is a very simple example of an analysis of variance model. Note that
the matrix X is of a very special type, namely, the elements of X are either 0 or 1. X is
known as a design matrix.

Returning to our general model

Y =Xβ+ε,

we wish to test the null hypothesis H0 : Hβ = 0. We will compute the likelihood ratio
test and the distribution of the test statistic. In order to do so, we assume that ε has a
multivariate normal distribution with mean vector 0 and variance–covariance matrix σ2In,
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where σ2 is unknown and In is the n×n identity matrix. This means thatY has an n-variate
normal distribution with mean Xβ and dispersion matrix σ2In for some β and some σ2,
both unknown. Here the parameter space Θ is the set of (k+1)-tuples (β′,σ2) = (β1,β2,
. . . ,βk,σ

2), and the joint PDF of the X’s is given by

fβ,σ2(y1,y2, . . . ,yn) (8)

=
1

(2π)n/2σn
exp

{
− 1

2σ2

n∑
i=1

(yi −β1xi1 −·· ·−βkxik)
2

}

=
1

(2π)n/2σn
exp

{
− 1

2σ2
(Y−Xβ)′(Y−Xβ)

}
.

Theorem 1. Consider the linear model

Y =Xβ+ε,

where X is an n × k matrix ((xij)), i = 1,2, . . . ,n, j = 1,2, . . . ,k, of known constants
and full rank k < n,β is a vector of unknown parameters β1,β2, . . . ,βk and ε = (ε1, ε2,
. . . , εn) is a vector of nonobservable independent normal RVs with common variance σ2

and mean Eε= 0. The likelihood ratio test for testing the linear hypothesis H0 : Hβ = 0,
where H is an r× k matrix of full rank r ≤ k, is to reject H0 at level α if F ≥ Fα, where
PH0{F ≥ Fα}= α, and F is the RV given by

F =
(Y−X

ˆ̂
β)′(Y−X

ˆ̂
β)− (Y−Xβ̂)′(Y−Xβ̂)

(Y−Xβ̂)′(Y−Xβ̂)
. (9)

In (9), β̂, ˆ̂β are the MLE’s of β under Θ and Θ0, respectively. Moreover, the RV [(n−
k)/r]F has an F-distribution with (r,n− k) d.f. under H0.

Proof. The likelihood ratio test of H0 : Hβ = 0 is to reject H0 if and only if λ(y) < c,
where

λ(y) =
supθ∈Θ0

fβ,σ2(y)

supθ∈Θ fβ,σ2(y)
, (10)

θ = (β′,σ2)′, and Θ0 = {(β′,σ2)′ : Hβ = 0}. Let θ̂ = (β̂
′
, σ̂2)′ be the MLE of θ′ ∈ Θ,

and ˆ̂
θ = (

ˆ̂
β′, ˆ̂σ2)′ be the MLE of θ under H0, that is, when Hβ = 0. It is easily seen that

β̂ is the value of β that minimizes (y−Xβ)′(y−Xβ), and

σ̂2 = n−1(y−Xβ̂)′(y−Xβ̂). (11)

Similarly, ˆ̂β is the value of β that minimizes (y−Xβ)′(y−Xβ) subject to Hβ = 0, and

ˆ̂σ2 = n−1(y−X
ˆ̂
β)′(y−X

ˆ̂
β). (12)
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It follows that

λ(y) =

(
σ̂2

ˆ̂σ2

)n/2

. (13)

The critical region λ(y) < c is equivalent to the region {λ(y)}−2/n < {c}−2/n, which is
of the form

ˆ̂σ2

σ̂2
> c1. (14)

This may be written as

(y−X
ˆ̂
β)′(y−X

ˆ̂
β)

(y−Xβ̂)′(y−Xβ̂)
> c1 (15)

or, equivalently, as

(y−X
ˆ̂
β)′(y−X

ˆ̂
β)− (y−Xβ̂)′(y−Xβ̂)

(y−Xβ̂)′(y−Xβ̂)
> c1 −1. (16)

It remains to determine the distribution of the test statistic. For this purpose it is
convenient to reduce the problem to the canonical form. Let Vn be the vector space of
the observation vector Y,Vk be the subspace of Vn generated by the column vectors
x1,x2, . . . ,xk of X, and Vk−r be the subspace of Vk in which EY is postulated to lie
under H0. We change variables from Y1,Y2, . . . ,Yn to Z1,Z2, . . . ,Zn, where Z1,Z2, . . . ,Zn

are independent normal RVs with common variance σ2 and means EZi = θi, i = 1,2, . . . ,k,
EZi = 0, i = k + 1, . . . ,n. This is done as follows. Let us choose an orthonormal basis
of k − r column vectors {αi} for Vk−r, say {αr+1,αr+2, . . . ,αk}. We extend this to an
orthonormal basis {α1,α2, . . . ,αr,αr+1, . . . ,αk} for Vk, and then extend once again to
an orthonormal basis {α1,α2, . . . ,αk,αk+1, . . . ,αn} for Vn. This is always possible.

Let z1,z2, . . . ,zn be the coordinates of y relative to the basis {α1,α2, . . . ,αn}. Then zi =
α′

iy and z=PY, where P is an orthogonal matrix with ith row α′
i . Thus EZi = Eα′

iY=
α′

iXβ, and EZ=PXβ. Since Xβ ∈ Vk (Remark 1), it follows that α′
iXβ = 0 for i > k.

Similarly, under H0,Xβ ∈ Vk−r ⊂ Vk, so that α′
iXβ= 0 for i ≤ r. Let us write ω=PXβ.

Then ωk+1 = ωk+2 = · · · = ωn = 0, and under H0,ω1 = ω2 = · · · = ωr = 0. Finally, from
Corollary 2 of Theorem 6 it follows that Z1,Z2, . . . ,Zn are independent normal RVs with
the same variance σ2 and EZi = ωi, i = 1,2, . . . ,n. We have thus transformed the problem
to the following simpler canonical form:⎧⎪⎨

⎪⎩
Ω: Zi are independent N(ωi,σ

2), i = 1,2, . . . ,n,

ωk+1 = ωk+2 = · · ·= ωn = 0,

H0 : ω1 = ω2 = · · ·= ωr = 0.

(17)

Now

(y−Xβ)′(y−Xβ) = (P′z−P′ω)′(P′z−P′ω) (18)
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= (z−ω)′(z−ω)

=
k∑

i=1

(zi −ωi)
2 +

n∑
i=k+1

z2
i .

The quantity (y−Xβ)′(y−Xβ) is minimized if we choose ω̂i = zi, i = 1,2, . . . ,k, so
that

(y−Xβ̂)′(y−Xβ̂) =

n∑
i=k+1

z2
i . (19)

Under H0,ω1 = ω2 = · · · = ωr = 0, so that (y−Xβ)′(y−Xβ) will be minimized if
we choose ˆ̂ωi = zi, i = r+1, . . . ,k. Thus

(y−X
ˆ̂
β)′(y−X

ˆ̂
β) =

r∑
i=1

z2
i +

n∑
i=k+1

z2
i . (20)

It follows that

F =

∑r
i=1 Z2

i∑n
i=k+1 Z2

i

.

Now
∑n

i=k+1 Z2
i /σ

2 has a χ2(n− k) distribution, and, under H0,
∑r

i=1 Z2
i /σ

2 has a χ2(r)
distribution. Since

∑r
i=1 Z2

i and
∑n

i=k+1 Z2
i are independent, we see that [(n− k)/r]F is

distributed as F(r,n− k) under H0, as asserted. This completes the proof of the theorem.

Remark 4. In practice, one does not need to find a transformation that reduces the problem
to the canonical form. As will be done in the following sections, one simply computes the

estimators θ̂ and ˆ̂
θ and then computes the test statistic in any of the equivalent forms (14),

(15), or (16) to apply the F-test.

Remark 5. The computation of β̂, ˆ̂β is greatly facilitated, in view of Remark 3, by using
the principle of least squares. Indeed, this was done in the proof of Theorem 1 when we
reduced the problem of maximum likelihood estimation to that of minimization of sum of
squares (y−Xβ)′(y−Xβ).

Remark 6. The distribution of the test statistic under H1 is easily determined. We note
that Zi/σ ∼N(ωi/σ,1) for i = 1,2, . . . ,r, so that

∑r
i=1 Z2

i /σ
2 has a noncentral chi-square

distribution with r d.f. and noncentrality parameter δ =
∑r

i=1ω
2
i /σ

2. It follows that
[(n− k)/r]F has a noncentral F-distribution with d.f. (r,n− k) and noncentrality param-
eter δ. Under H0, δ = 0, so that [(n− k)/r]F has a central F(r,n− k) distribution. Since∑r

i=1ω
2
i =
∑r

i=1(EZi)
2, it follows from (19) and (20) that if we replace each observation

Yi by its expected value in the numerator of (16), we get σ2δ.

Remark 7. The general linear hypothesis makes use of the assumption of common vari-
ance. For instance, in Example 4, Yij ∼ N(μi,σ

2), j = 1,2, . . . ,k. Let us suppose that
Yij ∼ N(μi,σ

2
i ), i = 1,2, . . . ,k. Then we need to test that σ1 = σ2 = · · · = σk before we

can apply Theorem 1. The case k = 2 has already been considered in Section 10.3. For the
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case where k > 2 one can show that a UMP unbiased test does not exist. A large-sample
approximation is described in Lehmann [64, pp. 376–377]. It is beyond the scope of this
book to consider the effects of departures from the underlying assumptions. We refer the
reader to Scheffé [101, Chapter 10], for a discussion of this topic.

Remark 8. The general linear model (GLM) is widely used in social sciences where Y
is often referred to as the response (or dependent) variable and X as the explanatory (or
independent) variable. In this language the GLM “predicts” a response variable from a
linear combination of one or more explanatory variables. It should be noted that dependent
and independent in this context do not have the same meaning as in Chapter 4. Moreover,
dependence does not imply causality.

PROBLEMS 12.2

1. Show that any solution of the normal equations (5) minimizes the sum of squares
(Y−Xβ)′(Y−Xβ).

2. Show that the least square estimator given in (6) is an unbiased estimator of β. If the
RVs Yi are uncorrelated with common variance σ2, show that the covariance matrix
of the β̂i’s is given by (7).

3. Under the assumption that ε [in model (2)] has a multivariate normal distribution
with mean 0 and dispersion matrix σ2In show that the least square estimators and
the MLE’s of β coincide.

4. Prove statements (11) and (12).

5. Determine the expression for the least squares estimator of β subject to Hβ = 0

12.3 REGRESSION ANALYSIS

In this section we study regression analysis, which is a tool to investigate the interrela-
tionship between two or more variables. Typically, in its simplest form a response random
variable Y is hypothesized to be related to one or more explanatory nonrandom vari-
ables xi’s. Regression analysis with a single explanatory RV is known as simple regression
and if, in addition, the relationship is thought to be linear, it is called simple linear regres-
sion (Example 12.2.3). In the case where several explanatory variables xi’s are involved
the regression is referred to as multiple linear regression. Regression analysis is widely
used in forecasting and prediction. Again this is a special case of GLM.

This section is divided into three subsections. The first subsection deals with multiple
linear regression where the RV Y is of the continuous type. In the next two subsections we
study the case when Y is either Bernoulli or a count variable.

12.3.1 Multiple Linear Regression

It is convenient to write GLM in the form

Y = β01n +Xβ+ε, (1)
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where Y,X,ε, and β are as in Equation (12.2.1), and 1n is the column n× 1 unit vector
(1,1, . . . ,1). The parameter β0 is usually referred to as the intercept whereas β is known
as the slope vector with k parameters. The least estimator (LSE) of β0 and β are easily
obtained by minimizing.

n∑
i=1

(yi −β0 −x′iβ)
2
, xi = (xi1,xi2, . . . ,xik)

′
, i = 1,2, . . . ,n, (2)

resulting in k+1 normal equations

y = β0 +β1x1 +β2x2 + · · ·+βkxk = β0 +β′x, x =

n∑
i=1

xi

n

Sxx =

n∑
i=1

(xi −x)(xi −x)′,Sxy =

n∑
i=1

(xi −x)yi (3)

Sxxβ̂ = Sxy

or

β̂ = S−1
xx Sxy and β̂0 = y− β̂′x

E(β̂0) = β0, E(β̂) = β (4)

and

Cov(β̂0, β̂
′
) =

σ2

n

(
1+n x′ S−1

xx x n x S−1
xx

n x S−1
xx n S−1

xx

)
(5)

An unbiased estimate of σ2 is given by

σ̂2 =
1

n− k−1

(
Y− β̂01n −Xβ̂

)′(
Y − β̂01n−Xβ̂

)
. (6)

Let us now consider the simple linear regression model

y = β01n+Xβ+ ε. (7)

The LSEs of (β0,β)
′ is given by (

β̂0

β̂

)
=

(
ȳ− β̂x∑
(xi−x)yi∑
(xi−x)2

)
(8)

and

σ̂2 =
1

n−2

n∑
n=1

(
yi − y− β̂(xi − x)

)2
. (9)
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The covariance matrix is given by

Cov

(
β̂0

β̂

)
=

σ2

n

(
1+n nx2

sn
− nx

sn

− nx
sn

n
sn

)
, (10)

where s2
n =
∑n

i=1(xi − x)2

Let us now verify these results using the maximum likelihood method.
Clearly, Y1,Y2, . . . ,Yn are independent normal RVs with EYi = β0 + β1xi and

var(Yi) = σ2, i = 1,2, . . . ,n, and Y is an n-variate normal random vector with mean Xβ
and variance σ2In. The joint PDF of Y is given by

f (y;β0,β1,σ
2) =

1
(2π)n/2

1
σn

exp

{
− 1

2σ2

n∑
i=1

(yi −β0 −β1xi)
2

}
. (11)

It easily follows that the MLE’s for β0,β1, and σ2 are given by

β̂0 =

∑n
i=1 Yi

n
− β̂1x, (12)

β̂1 =

∑n
i=1(xi − x)(Yi −Y)∑n

i=1(xi − x)2
(13)

and

σ̂2 =
1
n

n∑
i=1

(Yi − β̂0 − β̂1xi)
2, (14)

where x = n−1∑n
i=1 xi.

If we wish to test H0 : β1 = 0, we take H = (0,1), so that the model is a special case
of the general linear hypothesis with k = 2, r = 1. Under H0 the MLE’s are

ˆ̂
β0 = Y =

∑n
i=1 Yi

n
(15)

and

ˆ̂σ2 =
1
n

n∑
i=1

(Yi −Y)2. (16)

Thus

F =

∑n
i=1(Yi −Y)2 −

∑n
i=1(Yi −Y + β̂1x− β̂1xi)

2∑n
i=1(Yi −Y + β̂1x− β̂1xi)2

(17)

=
β̂2

1

∑n
i=1(xi − x)2∑n

i=1(Yi −Y + β̂1x− β̂1xi)2
.
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From Theorem 12.2.1, the statistic [(n− 2)/1]F has a central F(1,n− 2) distribution
under H0. Since F(1,n−2) is the square of a t(n−2), the likelihood ratio test rejects H0 if

|β̂1|
{

(n−2)
∑n

i=1(xi − x)2∑n
i=1(Yi −Y + β̂1x− β̂1xi)2

}1/2

> c0, (18)

where c0 is computed from t-tables for n−2 d.f.
For testing H0 : β0 = 0, we choose H= (1,0) so that the model is again a special case

of the general linear hypothesis. In this case

ˆ̂
β1 =

∑n
i=1 xiYi∑n
i=1 x2

i

and

ˆ̂σ2 =
1
n

n∑
i=1

(Yi − ˆ̂
β1xi)

2. (19)

It follows that

F =

∑n
i=1(Yi − ˆ̂

β1xi)
2 −
∑n

i=1(Yi −Y + β̂1x− β̂1xi)
2∑n

i=1(Yi −Y + β̂1x− β̂1xi)2
, (20)

and since

ˆ̂
β1 =

∑n
i=1 xiYi∑n
i=1 x2

i

=

∑n
i=1(xi − x)(Yi −Y)+nxY∑n

i=1 x2
i

(21)

=
β̂1
∑n

i=1(xi − x)2 +nx(β̂0 + β̂1x)∑n
i=1 x2

i

= β̂1 +
nβ̂0x∑n

i=1 x2
i

,

we can write the numerator of F as

n∑
i=1

(Yi − ˆ̂
β1xi)

2 −
n∑

i=1

(Yi −Y + β̂1x− β̂1xi)
2 (22)

=

n∑
i=1

(
Yi − β̂1xi + β̂1x−Y +Y − β̂1x− nβ̂0xxi∑n

i=1 x2

)2

−
n∑

i=1

(Yi −Y + β̂1x− β̂1xi)
2

=

n∑
i=1

(
Y − β̂1x− nβ̂0xxi∑n

i=1 x2
i

)2

+2
n∑

i=1

(Yi − β̂1xi + β̂1x−Y)
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·
(

Y − β̂1x− nβ̂0xxi∑n
i=1 x2

i

)

=
β̂2

0n
∑n

i=1(xi − x)2∑n
i=1 x2

i

.

It follows from Theorem 12.2.1 that the statistic

β̂0

√
n
∑n

i=1(xi − x)2/
∑n

i=1 x2
i√∑n

i=1(Yi −Y + β̂1x− β̂1xi)2/(n−2)
(23)

has a central t-distribution with n − 2 d.f. under H0 : β0 = 0. The rejection region is
therefore given by

|β̂0|
√

n
∑n

i=1(xi − x)2/
∑n

i=1 x2
i√∑n

i=1(Yi − β̂0 − β̂1xi)2/(n−2)
> c0, (24)

where c0 is determined from the tables of t(n − 2) distribution for a given level of
significance α.

For testing H0 : β0 = β1 = 0, we choose H =

(
1 0

0 1

)
, so that the model is again a

special case of the general linear hypothesis with r = 2. In this case

ˆ̂σ2 =
1
n

n∑
i=1

Y2
i (25)

and

F =

∑n
i=1 Y2

i −
∑n

i=1(Yi −Y + β̂1x− β̂1xi)
2∑n

i=1(Yi −Y + β̂1x− β̂xi)2
(26)

=
nY

2
+ β̂2

1

∑n
i=1(xi − x)2∑n

i=1(Yi − β̂0 − β̂1xi)2

=
n(β̂0 + β̂1x)2 + β̂2

1

∑n
i=1(xi − x)2∑n

i=1(Yi − β̂0 − β̂1xi)2
.

From Theorem 12.2.1, the statistic [(n−2)/2]F has a central F(2,n−2) distribution under
H0 : β0 = β1 = 0. It follows that the α-level rejection region for H0 is given by

n−2
2

F > c0, (27)

where F is given by (26), and c0 is the upper α percent point under the F(2,n − 2)
distribution.
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Remark 1. It is quite easy to modify the analysis above to obtain tests of null hypothe-
ses β0 = β′

0, β1 = β′
1, and (β0,β1)

′ = (β′
0,β

′
1)

′, where β′
0,β

′
1 are given real numbers

(Problem 4).

Remark 2. The confidence intervals for β0,β1 are also easily obtained. One can show that
a (1−α)-level confidence interval for β0 is given by⎛

⎝β̂0 − tn−2,α/2

√∑n
i=1 x2

i

∑n
i=1(Yi − β̂0 − β̂1xi)

2

n(n−2)
∑n

i=1(xi − x)2
, (28)

β̂0 + tn−2,α/2

√∑n
i=1 x2

i

∑n
i=1(Yi − β̂0 − β̂1xi)

2

n(n−2)
∑n

i=1(xi − x)2

⎞
⎠

and that for β1 is given by⎛
⎝β̂1 − tn−2,α/2

√∑n
i=1(Yi − β̂0 − β̂1xi)

2

(n−2)
∑n

i=1(xi − x)2
, (29)

β̂1 + tn−2,α/2

√∑n
i=1(Yi − β̂0 − β̂1xi)

2

(n−2)
∑n

i=1(xi − x)2

⎞
⎠ .

Similarly, one can obtain confidence sets for (β0,β1)
′ from the likelihood ratio test of

(β0,β1)
′ = (β′

0,β
′
1)

′. It can be shown that the collection of sets of points (β0,β1)
′ satisfying

(n−2)[n(β̂0 −β0)
2 +2nx(β̂0 −β0)(β̂1 −β1)+

∑n
i=1 x2

i (β̂1 −β1)
2]

2
∑n

i=1(Yi − β̂0 − β̂1xi)2
(30)

≤ F2,n−2,α

is a (1 − α)-level collection of confidence sets (ellipsoids) for (β0,β1)
′ centered at

(β̂0, β̂1)
′.

Remark 3. Sometimes interest lies in constructing a confidence interval on the unknown
linear regression function E{Y | x0} = β0 + β1x0 for a given value of x, or on a value
of Y , given x = x0. We assume that x0 is a value of x distinct from x1,x2, . . . ,xn. Clearly,
β̂0 + β̂1x0 is the maximum likelihood estimator of β0 +β1x0. This is also the best linear
unbiased estimator. Let us write Ê{Y | x0}= β̂0 + β̂1x0. Then

Ê{Y | x0}= Y − β̂1x+ β̂1x0

= Y +(x0 − x)

∑n
i=1(xi − x)(Yi −Y)∑n

i=1(xi − x)2
,

which is clearly a linear function of normal RVs Yi. It follows that Ê{Y | x0} is also
normally distributed with mean E(β̂0 + β̂1x0) = β0 +β1x0 and variance

var{Ê{Y | x0}}= E{β̂0 −β0 + β̂1x0 −β1x0}2 (31)
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= var(β̂0)+ x2
0 var(β̂1)+2x0 cov(β̂0, β̂1)

= σ2

[
1
n
+

(x− x0)
2∑n

i=1(xi − x)2

]
.

(See Problem 6.) It follows that

β̂0 + β̂1x0 −β0 −β1x0

σ{(1/n)+ [(x− x0)2/
∑n

i=1(xi − x)2]}1/2
(32)

is N(0,1). But σ is not known, so that we cannot use (32) to construct a confidence interval
for E{Y | x0}. Since nσ̂2/σ2 is a χ2(n− 2) RV and nσ̂2/σ2 is independent of β̂0 + β̂1x0

(why?), it follows that

√
n−2

β̂0 + β̂1t0 −β0 −β1x0

σ̂{1+n[(x− x0)2/
∑n

i=1(xi − x)2]}1/2
(33)

has a t(n − 2) distribution. Thus, a (1 − α)-level confidence interval for β0 + β1x0 is
given by

(
β̂0 + β̂1x0 − tn−2,α/2 σ̂

√
n

n−2

[
1
n
+

(x− x0)
2∑n

i=1(xi − x)2

]
, (34)

β̂0 + β̂1x0 + tn−2,α/2 σ̂

√
n

n−2

[
1
n
+

(x− x0)
2∑n

i=1(xi − x)2

])
.

In a similar manner one can show (Problem 7) that

(
β̂0 + β̂1x0 − tn−2,α/2 σ̂

√
n

n−2

[
n+1

n
+

(x− x0)
2∑n

i=1(xi − x)2

]
, (35)

β̂0 + β̂1x0 + tn−2,α/2 σ̂

√
n

n−2

[
n+1

n
+

(x− x0)
2∑n

i=1(xi − x)2

])

is a (1−α)-level confidence interval for Y0 = β0+β1x0+ε, that is, for the estimated value
Y0 of Y at x0.

Remark 4. The simple regression model (2) considered above can be generalized in many
directions. Thus we may consider EY as a polynomial in x of a degree higher than 1, or
we may regard EY as a function of several variables. Some of these generalizations will
be taken up in the problems.

Remark 5. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate normal popu-
lation with parameters EX = μ1, EY = μ2, var(X) = σ2

1, var(Y) = σ2
2, and cov(X,Y) = ρ.
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In Section 6.6 we computed the PDF of the sample correlation coefficient R and showed
(Remark 6.6.4) that the statistic

T = R

√
n−2

1−R2
(36)

has a t(n − 2) distribution, provided that ρ = 0. If we wish to test ρ = 0, that is, the
independence of two jointly normal RVs, we can base a test on the statistic T . Essen-
tially, we are testing that the population covariance is 0, which implies that the population
regression coefficients are 0. Thus we are testing, in particular, that β1 = 0. It is there-
fore not surprising that (36) is identical with (18). We emphasize that we derived (36)
for a bivariate normal population, but (18) was derived by taking the X’s as fixed and
the distribution of Y’s as normal. Note that for a bivariate normal population E{Y | x} =
μ2 +ρ(σ2/σ1)(x−μ1) is linear, in consistency with our model (1) or (2).

Example 1. Let us assume that the following data satisfy a linear regression model:

Yi = β0 +β1xi + εi.

x 0 1 2 3 4 5

y 0.475 1.007 0.838 −0.618 1.0378 0.943.

Let us test the null hypothesis that β1 = 0. We have

x = 2.5,
5∑

i=0

(xi − x)2 = 17.5, y = 0.671,

5∑
i=0

(xi − x)(yi − y) = 0.9985,

β̂1 = 0.0571, β̂0 = y− β̂1x = 0.5279,
5∑

i=0

(yi − β̂0 − β̂1xi)
2 = 2.3571,

and

|β̂1|
√

(n−2)
∑

(xi − x)2∑
(yi − β̂0 − β̂1xi)2

= 0.3106.

Since tn−2,α/2 = t4,0.025 = 2.776 > 0.3106, we accept H0 at level α= 0.05.
Let us next find a 95 percent confidence interval for E{Y | x = 7}. This is given by (34).

We have

tn−2,α/2σ̂

√
n

n−2

[
1
n
+

(x− x0)
2∑

(xi − x)2

]
= 2.776

√
2.3571

6

√
6
4

(
1
6
+

20.25
17.5

)
= 2.3707,
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β̂0 + β̂1x0 = 0.5279+0.0571×7

= 0.9276,

so that the 95 percent confidence interval is (−1.4431,3.2983).
(The data were produced from Table ST6, of random numbers with μ = 0, σ = 1, by

letting β0 = 1 and β1 = 0 so that E{Y | x}= β0+β1x= 1, which surely lies in the interval.)

12.3.2 Logistic and Poisson Regression

In the regression model considered above Y is a continuous type RV. However, in a wide
variety of problems Y is either binary or a count variable. Thus in a medical study Y
may be the presence or absence of a disease such as diabetes. How do we modify linear
regression model to apply in this case? The idea here is to choose a function of E(Y) so
that in Section 12.3.1

f (E(Y)) =Xβ.

This can be accomplished by choosing the function f to be the logarithm of the odds ratio

f (p) = log

(
p

1−p

)
, (37)

where p = P(Y = 1) so that E(Y) = p. It follows that

p = E(Y) = P(Y = 1) =
exp(Xβ)

1+exp(Xβ)
(38)

so that logistic regression models the logarithm of odds ratio as a linear function of RVs Xi.
The term logistic regression derives from the fact that the function ex/(1+ ex) is known
as the logistic function.

For simplicity we will only consider the simple linear regression model case so that

E(Yi) = πi(β0 +βxi), i = 1,2, . . . ,n, 0 < πi(β0 +βxi)< 1. (39)

Choosing the logistic distribution as

πi = πi(β0 +βxi) =
exp(β0 +βxi)

1+exp(β0 +βxi)
, (40)

let Y1,Y2, . . . ,Yn be iid binary RVs taking values 0 or 1. Then the joint PMF of Y1,Y2, . . . ,Yn

is given by

L(β0,β|x) =
n∏

i=1

{
πyi

i (1−πi)
1−yi
}

=
n∏

i=1

(1−πi)

{
exp

n∑
i=1

yi log

(
πi

1−πi

)}
(41)
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and the log likelihood function by

logL(β0,β|x) = nyβ0 +β
x∑

i=1

xiyi −
n∑

i=1

log{1+exp(β0 +βxi)} . (42)

It is easy to see that

∂logL
∂β0

= ny−
n∑

i=1

πi = 0,

∂logL
∂β

=
n∑

i=1

xiyi −
n∑

i=1

xiπi = 0. (43)

Since the likelihood equations are nonlinear in the parameters, the MLEs of β0 and β are
obtained numerically by using Newton–Raphson method.

Let β̂0 and β̂ be the MLE of β0 and β, respectively. From section 8.7 we note that the
variance of β̂ is given by

var(β̂) =

n∑
i=1

x2
i πi(1−πi), (44)

so that the standard error (SE) of β̂ is its square root. For large n, the so-called Wald
statistic Z = β̂/SE(β̂) has an approximate N(0,1) distribution under H0 : β = 0. Thus we
reject H0 at level α if |z|> zα/2. One can use β̂±zα/2 SE(β̂) as a (1−α)-level confidence
interval for β.

Yet another choice for testing H0 is to use the LRT statistics −2logλ (see Theorem
10.2.3). Under H0,−2logλ has a chi-square distribution with 1 d.f. Here

λ=
L(β̂0,0|x)
L(β̂0, β̂|x)

. (45)

In (40) we chose the DF of a logistic RV. We could have chosen some other DF such
as φ(x), the DF of a N(0,1) RV. In that case we have β0 +βx = φ(x). The resulting model
is called probit regression.

We finally consider the case when the RV Y is a count of rare events and has Poisson
distribution with parameter λ. Clearly, the GLM is not directly applicable. Again we only
consider the linear regression model case. Let Yi, i= 1,2, . . . ,k, be independent P(λi) RVs
where λi = exp(β0 +xiβ1), so that

θi = logλi = β0 +xiβ1.

The log likelihood function is given by

logL(β0,β1;y1, . . . ,yn) =

n∑
i=1

{
yiθi − eθi − log(yi!)

}
. (46)
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In order to find the MLEs of β0 and β1 we need to solve the likelihood equations

∂logL
∂β0

=

n∑
i=1

{yi −θi}= 0

∂logL
∂β1

=
n∑

i=1

{xiyi − xiθi}= 0, (47)

which are nonlinear in β0 and β1. The most common method of obtaining the MLEs is to
apply the iteratively weighted least squares algorithm.

Once the MLEs of β0 and β1 are computed, one can compute the SEs of the estimates
by using methods of Section 8.7. Using the SE(β̂1), for example, one can test hypothesis
concerning β1 or construct (1−α)-level confidence interval for β1.

For a detailed discussion of Geometric and Poisson regression we refer Agresti [1].
A wide variety of software is available, which can be used to carry out the computations
required.

PROBLEMS 12.3

1. Prove statements (12), (13), and (14).

2. Prove statements (15) and (16).

3. Prove statement (19).

4. Obtain tests of null hypotheses β0 = β′
0,β1 = β′

1, and (β0,β1)
′ = (β′

0,β
′
1)

′, where
β′

0,β
′
1 are given real numbers.

5. Obtain the confidence intervals for β0 and β1 as given in (28) and (29), respectively.

6. Derive the expression for var{Ê{Y | x0}} as given in (31).

7. Show that the interval given in (35) is a (1−α)-level confidence interval for Y0 =
β0 +β1x0 + ε, the estimated value of Y at x0.

8. Suppose that the regression of Y on the (mathematical) variable x is a quadratic

Yi = β0 +β1xi +β2x2
i + εi,

where β0,β1,β2 are unknown parameters, x1,x2, . . . ,xn are known values of x, and
ε1, ε2, . . . , εn are unobservable RVs that are assumed to be independently normally
distributed with common mean 0 and common variance σ2 (see Example 12.2.3).
Assume that the coefficient vectors (xk

1,x
k
2, . . . ,x

k
n), k = 0,1,2, are linearly indepen-

dent. Write the normal equations for estimating the β’s and derive the generalized
likelihood ratio test of β2 = 0.

9. Suppose that the Y’s can be written as

Yi = β1xi1 +β2xi2 +β3xi3 + εi,

where xi1, xi2, xi3 are three mathematical variables, and εi are iid N(0,1) RVs.
Assuming that the matrix X (see Example 3) is of full rank, write the normal
equations and derive the likelihood ratio test of the null hypothesis H0 : β1 = β2 = β3.
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10. The following table gives the weight Y (grams) of a crystal suspended in a saturated
solution against the time suspended T (days):

Time T 0 1 2 3 4 5 6

Weight Y 0.4 0.7 1.1 1.6 1.9 2.3 2.6

(a) Find the linear regression line of Y on T .

(b) Test the hypothesis that β0 = 0 in the linear regression model Yi = β0+β1Ti+εi.

(c) Obtain a 0.95 level confidence interval for β0.

11. Let oi = πi/(1−πi) be the odds ratio corresponding to xi, i = 1,2, . . . ,n. By consid-
ering the ratio oi+1/oi, how will you interpret the value of the slope parameter β1?

12. Do the same for parameter β1 in the Poisson regression model by considering the
ratio λi+1/λ1.

12.4 ONE-WAY ANALYSIS OF VARIANCE

In this section we return to the problem of one-way analysis of variance considered in
Examples 12.2.1 and 12.2.4. Consider the model

Yij = μi + εij, j = 1,2, . . . ,ni; i = 1,2, . . . ,k, (1)

as described in Example 12.2.4. In matrix notation we write

Y =Xβ+ε, (2)

where

Y = (Y11,Y12, . . . ,Y1n1 ,Y21,Y22, . . . ,Y2n2 , . . . ,Yk1,Yk2, . . . ,Yknk)
′,

β = (μ1,μ2, . . . ,μk)
′,

X=

⎛
⎜⎜⎝
1n1 0 · · · 0

...
...

···
···
···

...

0 0 · · · 1nk

⎞
⎟⎟⎠ ,

ε= (ε11, ε12, . . . , ε1n1 , ε21, ε22, . . . , ε2n2 , . . . , εk1, εk2, . . . , εknk)
′.

As in Example 12.2.4, Y is a vector of n-observations (n =
∑k

i=1 ni), whose components
Yij are subject to random error εij ∼ N(0,σ2), β is a vector of k unknown parameters,
and X is a design matrix. We wish to find a test of H0 : μ1 = μ2 = · · · = μk against all
alternatives. We may write H0 in the form Hβ = 0, where H is a (k− 1)× k matrix of
rank (k−1), which can be chosen to be
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H=

⎛
⎜⎜⎜⎜⎝

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

···
···
···

...

1 0 0 · · · −1

⎞
⎟⎟⎟⎟⎠ .

Let us write μ1 = μ2 = · · ·μk = μ under H0. The joint PDF of Y is given by

f (y;μ1,μ2, . . . ,μk,σ
2) =

(
1

2πσ2

)n/2

exp

⎧⎨
⎩− 1

2σ2

k∑
i=1

ni∑
j=1

(yij −μi)
2

⎫⎬
⎭ , (3)

and, under H0, by

f (x;μ,σ2) =

(
1

2πσ2

)n/2

exp

⎧⎨
⎩− 1

2σ2

k∑
i=1

ni∑
j=1

(yij −μ)2

⎫⎬
⎭ . (4)

It is easy to check that the MLEs are

μ̂i =

∑ni

j=1 yij

ni
= yi., i = 1,2, . . . ,k, (5)

σ̂2 =

∑k
i=1

∑ni

j=1(yij − yi.)
2

n
, (6)

ˆ̂μ=

∑k
i=1

∑ni

j=1 yij

n
= y, (7)

and

ˆ̂σ2 =

∑k
i=1

∑ni

j=1(yij − y)2

n
. (8)

By Theorem 12.2.1, the likelihood ratio test is to reject H0 if

∑k
i=1

∑ni

j=1(Yij −Y)2 −
∑k

i=1

∑ni

j=1(Yij −Yi.)
2∑k

i=1

∑ni

j=1(Yij −Yi.)2

(
n− k
k−1

)
≥ F0, (9)

where F0 is the upper α percent point in the F(k−1,n− k) distribution. Since

k∑
i=1

ni∑
j=1

(Yij −Y)2 =

k∑
i=1

ni∑
j=1

(Yij −Yi.+Yi.−Y)2 (10)

=

k∑
i=1

ni∑
j=1

(Yij −Yi.)
2 +

k∑
i=1

ni(Yi.−Y)2,
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we may rewrite (9) as ∑k
i=1 ni(Yi.−Y)2/(k−1)∑k

i=1

∑ni

j=1(Yij −Yi.)2/(n− k)
≥ F0. (11)

It is usual to call the sum of squares in the numerator of (11) the between sum of squares
(BSS) and the sum of squares in the denominator of (11) the within sum of squares (WSS).
The results are conveniently displayed in a so-called analysis of variance table in the
following form.

One-Way Analysis of Variance

Source Degrees of Mean Sum

Variation Sum of Squares Freedom of Squares F-Ratio

Between BSS =

k∑
i=1

ni(Yi.−Y)2 k−1 BSS/(k−1)
BSS/(k−1)
WSS/(n− k)

Within WSS =
k∑

i=1

ni∑
j=1

(Yij −Yi.)
2 n− k WSS/(n− k)

Mean nY
2

1

Total TSS =
k∑

i=1

ni∑
j=1

Y2
ij n

The third row, designated “Mean,” has been included to make the total of the second
column add up to the total sum of squares (TSS),

∑k
i=1

∑ni

j=1 Y2
ij .

Example 1. The lifetimes (in hours) of samples from three different brands of batteries
were recorded with the following results:

Brand

Y1 Y2 Y3

40 60 60

30 40 50

50 55 70

50 65 65

30 75

40

We wish to test whether the three brands have different average lifetimes. We will assume
that the three samples come from normal populations with common (unknown) standard
deviation σ.
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From the data n1 = 5, n2 = 4, n3 = 6, n = 15, and

y1 =
200
5

= 40, y2 =
220

4
= 55, y3 =

360
6

= 60,

5∑
i=1

(y1i − y1)
2 = 400,

4∑
i=1

(y2i − y2)
2 = 350,

6∑
i=1

(y3i − y3)
2 = 850.

Also, the grand mean is

y =
200+220+360

15
=

780
15

= 52.

Thus

BSS = 5(40−52)2 +4(55−52)2 +6(60−52)2

= 1140,

WSS = 400+350+850 = 1600.

Analysis of Variance

Source SS d.f. MSS F-Ratio

Between 1140 2 570 570/133.33 = 4.28

Within 1600 12 133.33

Choosingα= 0.05, we see that F0 =F2,12,0.05 = 3.89. Thus we reject H0 : μ1 =μ2 =μ3

at level α= 0.05.

Example 2. Three sections of the same elementary statistics course were taught by three
instructors. The final grades of students were recorded as follows:

Instructor

I II III

95 88 68

33 78 79

48 91 91

76 51 71

89 85 87

82 77 68

(continued)
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Instructor

I II III

60 31 79

77 62 16

96 35

81

Let us test the hypothesis that the average grades given by the three instructors are the
same at level α= 0.05.

From the data n1 = 8, n2 = 10, n3 = 9, n = 27, y1 = 70, y2 = 74, y3 = 66,∑8
i=1(y1i − y1)

2 = 3168,
∑10

i=1(y2i−y2)
2 = 3686,

∑9
i=1(y3i−y3)

2 = 4898. Also, the grand
mean is

y =
560+740+594

27
=

1894
27

= 70.15.

Thus

BSS = 8(0.15)2 +10(3.85)2 +9(4.15)2

= 303.4075

WSS = 3168+3686+4898

= 11,752.

Analysis of Variance

Source SS d.f. MSS F-Ratio

Between 303.41 2 151.70 151.70/489.67

Within 11,752.00 24 489.67

We therefore cannot reject the null hypothesis that the average grades given by the three
instructors are the same.

PROBLEMS 12.4

1. Prove statements (5), (6), (7), and (8).

2. The following are the coded values of the amounts of corn (in bushels per acre)
obtained from four varieties, using unequal number of plots for the different
varieties:

A : 2,1,3,2

B : 3,4,2,3,4,2
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C : 6,4,8

D : 7,6,7,4

Test whether there is a significant difference between the yields of the varieties.

3. A consumer interested in buying a new car has reduced his search to six different
brands: D, F, G, P, V , T . He would like to buy the brand that gives the highest
mileage per gallon of regular gasoline. One of his friends advises him that he should
use some other method of selection, since the average mileages of the six brands are
the same, and offers the following data in support of her assertion.

Distance Traveled (Miles) per Gallon of Gasoline

Brand

Car D F G P V T

1 42 38 28 32 30 25

2 35 33 32 36 35 32

3 37 28 35 27 25 24

4 37 37 26 30

5 28 30

6 19

Should the consumer accept his friend’s advice?

4. The following data give the ages of entering freshmen in independent random
samples from three different universities.

University

A B C

17 16 21

19 16 23

20 19 22

21 20

18 19

Test the hypothesis that the average ages of entering freshman at these universities
are the same.

5. Five cigarette manufacturers claim that their product has low tar content. Inde-
pendent random samples of cigarettes are taken from each manufacturer and the
following tar levels (in milligrams) are recorded.
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Brand Tar Level (mg)

A 4.2, 4.8, 4.6, 4.0, 4.4

B 4.9, 4.8, 4.7, 5.0, 4.9, 5.2

C 5.4, 5.3, 5.4, 5.2, 5.5

D 5.8, 5.6, 5.5, 5.4, 5.6, 5.8

E 5.9, 6.2, 6.2, 6.8, 6.4, 6.3

Can the differences among the sample means be attributed to chance?

6. The quantity of oxygen dissolved in water is used as a measure of water pollution.
Samples are taken at four locations in a lake and the quantity of dissolved oxygen is
recorded as follows (lower reading corresponds to greater pollution):

Location Quantity of Dissolved Oxygen (%)

A 7.8, 6.4, 8.2, 6.9

B 6.7, 6.8, 7.1, 6.9, 7.3

C 7.2, 7.4, 6.9, 6.4, 6.5

D 6.0, 7.4, 6.5, 6.9, 7.2, 6.8

Do the data indicate a significant difference in the average amount of dissolved
oxygen for the four locations?

12.5 TWO-WAY ANALYSIS OF VARIANCE WITH ONE OBSERVATION
PER CELL

In many practical problems one is interested in investigating the effects of two factors that
influence an outcome. For example, the variety of grain and the type of fertilizer used both
affect the yield of a plot or the score on a standard examination is influenced by the size
of the class and the instructor.

Let us suppose that two factors affect the outcome of an experiment. Suppose also
that one observation is available at each of a number of levels of these two factors. Let
Yij(i = 1,2, . . . ,a; j = 1,2, . . . ,b) be the observation when the first factor is at the ith level,
and the second factor at the jth level. Assume that

Yij = μ+αi +βj + εij, i = 1,2, . . . ,a; j = 1,2, . . . ,b, (1)

where αi is the effect of the ith level of the first factor, βj is the effect of the jth level of the
second factor, and εij is the random error, which is assumed to be normally distributed with
mean 0 and variance σ2. We will assume that the εij’s are independent. It follows that Yij

are independent normal RVs with means μ+αi +βj and variance σ2. There is no loss of
generality in assuming that

∑a
i=1αi =

∑b
j=1βj = 0, for, if μij = μ′+α′

i +β′
j , we can write

μij = (μ′+α′+β
′
)+(α′

i −α′)+(β′
j −β

′
)

= μ+αi +βj
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and
∑a

i=1αi = 0,
∑b

j=1βj = 0. Here we have written α′ and β
′

for the means of
α′

i’s and β′
j ’s, respectively. Thus Yij may denote the yield from the use of the ith variety of

some grain and the jth type of some fertilizer. The two hypotheses of interest are

α1 = α2 = · · ·= αa = 0 and β1 = β2 = · · ·= βb = 0.

The first of these, for example, says that the first factor has no effect on the outcome of
the experiment.

In view of the fact that
∑a

i=1αi = 0 and
∑b

j=1βj = 0,αa =−
∑a−1

i=1 αi, βb =−
∑b−1

j=1 βj,
and we can write our model in matrix notation as

Y =Xβ+ε, (2)

where

Y = (Y11,Y12, . . . ,Y1b,Y21,Y22, . . . ,Y2b, . . . ,Ya1,Ya2, . . . ,Yab)
′,

β = (μ,α1,α2, . . . ,αa−1,β1,β2, . . . ,βb−1)
′,

ε= (ε11, ε12, . . . , ε1b, ε21, ε22, . . . , ε2b, . . . , εa1, εa2, . . . , εab)
′,

and

X=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ α1 α2 · · · αa−1 β1 β2 · · · βb−1

1 1 0 · · · 0 1 0 · · · 0
1 1 0 · · · 0 0 1 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 1 0 · · · 0 0 0 · · · 1
1 1 0 · · · 0 −1 −1 · · · −1
1 0 1 · · · 0 1 0 · · · 0
1 0 1 · · · 0 0 1 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 0 1 · · · 0 0 0 · · · 1
1 0 1 · · · 0 −1 −1 · · · −1
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 −1 −1 · · · −1 1 0 · · · 0
1 −1 −1 · · · −1 0 1 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
1 −1 −1 · · · −1 0 0 · · · 1
1 −1 −1 · · · −1 −1 −1 · · · −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The vector of unknown parameters β is (a+b−1)×1 and the matrix X is ab× (a+
b− 1) (b blocks of a rows each). We leave the reader to check that X is of full rank,
a+ b− 1. The hypothesis Hα : α1 = α2 = · · · = αa = 0 or Hβ : β1 = β2 = · · · = βb = 0
can easily be put into the form Hβ = 0. For example, for Hβ we can choose H to be the
(b−1)× (a+b−1) matrix of full rank b−1, given by

H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ α1 α2 · · · αa−1 β1 β2 · · · βb−1

0 0 0 · · · 0 1 0 · · · 0

0 0 0 · · · 0 0 1 · · · 0

· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
0 0 0 · · · 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, the model described above is a special case of the general linear hypothesis, and
we can use Theorem 12.2.1 to test Hβ .

To apply Theorem 12.2.1 we need the estimators μ̂ij and ˆ̂μij. It is easily checked that

μ̂=

∑a
i=1

∑b
j=1 yij

ab
= y (3)

and

α̂i = yi.− y, β̂j = y.j − y, (4)

where yi.=
∑b

j=1 yij/b, y.j =
∑a

i=1 yij/a. Also, under Hβ , for example,

ˆ̂μ= y and ˆ̂αi = yi.− y. (5)

In the notation of Theorem 12.2.1, n = ab, k = a+ b− 1, r = b− 1, so that n− k =
ab−a−b+1 = (a−1)(b−1), and

F =

∑a
i=1

∑b
j=1(Yij −Yi.)

2 −
∑a

i=1

∑b
j=1(Yij −Yi.−Y.j+Y)2∑a

i=1

∑b
j=1(Yij −Yi.−Y.j +Y)2

. (6)

Since

a∑
i=1

b∑
j=1

(Yij −Yi.)
2 =

a∑
i=1

b∑
j=1

{(Yij −Yi.−Y.j +Y)+(Y.j −Y)}2 (7)

=

a∑
i=1

b∑
j=1

(Yij −Yi.−Y.j +Y)2 +a
b∑

j=1

(Y.j −Y)2,
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we may write

F =
a
∑b

j=1(Y.j −Y)2∑a
i=1

∑b
j=1(Yij −Yi.−Y.j +Y)2

. (8)

It follows that, under Hβ , (a−1)F has a central F(b−1,(a−1)(b−1)) distribution.
The numerator of F in (8) measures the variability between the means Y.j, and the

denominator measures the variability that exists once the effects due to the two factors
have been subtracted.

If Hα is the null hypothesis to be tested, one can show that under Hα the MLEs are

ˆ̂μ= y and ˆ̂
βj = y.j − y. (9)

As before, n = ab, k = a+b−1, but r = a−1. Also,

F =

∑a
i=1

∑b
j=1(Yij −Y.j)2 −

∑a
i=1

∑b
j=1(Yij −Yi.−Y.j +Y)2∑a

i=1

∑b
j=1(Yij −Yi.−Y.j +Y)2

, (10)

which may be rewritten as

F =
b
∑a

i=1(Yi.−Y)2∑a
i=1

∑b
j=1(Yij −Yi.−Y.j +Y)2

. (11)

It follows that, under Hα,(b−1)F has a central F(a−1,(a−1)(b−1)) distribution. The
numerator of F in (11) measures the variability between the means Yi..

If the data are put into the following form:

α
β Levels of Factor 2

1 2 b Row Means

1 Y11, Y12, · · · , Y1b Y1.

Levels 2 Y21, Y22, · · · , Y2b Y2.

of · · · · · · · ·
Factor 1 · · · · · · · ·

· · · · · · · ·
a Ya1, Ya2, · · · , Yab Ya.

Column Means Y.1, Y.2, · · · , Y.b Y

so that the rows represent various levels of factor 1, and the columns, the levels of factor 2,
one can write

between sum of squares for rows = b
a∑

i=1

(Yi.−Y)2

= sum of squares for factor 1

= SS1.
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Similarly,

between sum of squares for columns = a
b∑

j=1

(Y.j −Y)2

= sum of squares for factor 2

= SS2.

It is usual to write error or residual sum of squares (SSE) for the denominator of (8) or (11).
These results are conveniently presented in an analysis of variance table as follows.

Two-Way Analysis of Variance Table with One Observation per Cell

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F-Ratio

Rows SS1 a−1 MS1 = SS1/(a−1) MS1/MSE

Columns SS2 b−1 MS2 = SS2/(b−1) MS2/MSE

Error SSE (a−1)(b−1) MSE = SSE/(a−1)(b−1)

Mean abY
2

1 abY
2

Total
a∑

i=1

b∑
j=1

Y2
ij ab

a∑
i=1

b∑
j=1

Y2
ij/ab

Example 1. The following table gives the yield (pounds per plot) of three varieties of
wheat, obtained with four different kinds of fertilizers.

Variety of Wheat

Fertilizer A B C

α 8 3 7

β 10 4 8

γ 6 5 6

δ 8 4 7

Let us test the hypothesis of equality in the average yields of the three varieties of wheat
and the null hypothesis that the four fertilizers are equally effective.

In our notation, b= 3, a= 4, y1.= 6, y2.= 7.33, y3.= 5.67, y4.= 6.33, y.1 = 8, y.2 = 4,
y.3 = 7, y = 6.33.

Also,

SS1 = sum of squares due to fertilizer

= 3[(0.33)2 +12 +(0.66)2 +02]

= 4.67;
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SS2 = sum of squares due to variety of wheat

= 4[(1.67)2 +(2.33)2 +(0.67)2]

= 34.67

SSE =

4∑
i=1

3∑
j=1

(yij − yi.− y.j + y)2

= 7.33

The results are shown in the following table:

Analysis of Variance

Source SS d.f. MS F-Ratio

Variety of wheat 34.67 2 17.33 14.2

Fertilizer 4.67 3 1.56 1.28

Error 7.33 6 1.22

Mean 481.33 1 481.33

Total 528.00 12 44.00

Now F2,6,0.05 = 5.14 and F3,6,0.05 = 4.76. Since 14.2 > 5.14, we reject Hβ , that there is
equality in the average yield of the three varieties; but, since 1.28 �> 4.76, we accept Hα,
that the four fertilizers are equally effective.

PROBLEMS 12.5

1. Show that the matrix X for the model defined in (2) is of full rank, a+b−1.

2. Prove statements (3), (4), (5), and (9).

3. The following data represent the units of production per day turned out by four
different brands of machines used by four machinists:

Machinist

Machine A1 A2 A3 A4

B1 15 14 19 18

B2 17 12 20 16

B3 16 18 16 17

B4 16 16 15 15

Test whether the differences in the performances of the machinists are significant
and also whether the differences in the performances of the four brands of machines
are significant. Use α= 0.05.
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4. Students were classified into four ability groups, and three different teaching
methods were employed. The following table gives the mean for four groups:

Teaching Method

Ability Group A B C

1 15 19 14

2 18 17 12

3 22 25 17

4 17 21 19

Test the hypothesis that the teaching methods yield the same results. That is, that the
teaching methods are equally effective.

5. The following table shows the yield (pounds per plot) of four varieties of wheat,
obtained with three different kinds of fertilizers.

Variety of Wheat

Fertilizer A B C D

α 8 3 6 7

β 10 4 5 8

γ 8 4 6 7

Test the hypotheses that the four varieties of wheat yield the same average yield and
that the three fertilizers are equally effective.

12.6 TWO-WAY ANALYSIS OF VARIANCE WITH INTERACTION

The model described in Section 12.5 assumes that the two factors act independently, that
is, are additive. In practice this is an assumption that needs testing. In this section we allow
for the possibility that the two factors might jointly affect the outcome, that is, there might
be so-called interactions. More precisely, if Yij is the observation in the (i, j)th cell, we
will consider the model

Yij = μ+αi +βj +γij + εij, (1)

where αi(i= 1,2, . . . ,a) represent row effects (or effects due to factor 1), βj(j= 1,2, . . . ,b)
represent column effects (or effects due to factor 2), and γij represent interactions or joint
effects. We will assume that εij are independently N(0,σ2). We will further assume that

a∑
i=1

αi = 0 =

b∑
j=1

βj and
b∑

j=1

γij = 0 for all i,
a∑

i=1

γij = 0 (2)

for all j.
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The hypothesis of interest is

H0 : γij = 0 for all i, j. (3)

One may also be interested in testing that all α’s are 0 or that all β’s are 0 in the presence
of interactions γij.

We first note that (2) is not restrictive since we can write

Yij = μ′+α′
i +β′

j +γ′
ij + εij,

where α′
i , β

′
j , and γ′

ij do not satisfy (2), as

Yij = μ′+α′+β
′
+γ′+(α′

i −α′+γ′
i .−γ′)+(β′

j −β
′
+γ.′j −γ′)

+(γ′
ij −γ′

i .−γ.′j +γ′)+εij,

and then (2) is satisfied by choosing

μ= μ′+α′+β
′
+γ′,

αi = α′
i −α′+γ′

i .−γ′,

βj = β′
j −β

′
+γ.′j −γ′,

γij = γ′
ij −γ′

i .−γ.′j +γ′.

Here

α′ = a−1
a∑

i=1

α′
i , β

′
= b−1

b∑
j=1

β′
j , γ′

i .= b−1
b∑

j=1

γ′
ij,

γ.′j = a−1
a∑

i=1

γ′
ij, and γ′ = (ab)−1

a∑
i=1

b∑
j=1

γ′
ij.

Next note that, unless we replicate, that is, take more than one observation per cell,
there are no degrees of freedom left to estimate the error SS (see Remark 1).

Let Yijs be the sth observation when the first factor is at the ith level, and the second
factor at the jth level, i = 1,2, . . . ,a, j = 1,2, . . . ,b, s = 1,2, . . . ,m(> 1). Then the model
becomes as follows:

Levels of Factor 2

Levels of Factor 1 1 2 · · · b

1 y111 y121 · · · y1b1

· · · · · ·
· · · · · ·
· · · · · ·

y11m y12m · · · y1bm

(continued)
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Levels of Factor 2

Levels of Factor 1 1 2 · · · b

2 y211 y221 · · · y2b1

· · · · · ·
· · · · · ·
· · · · · ·

y21m y22m · · · y2bm

· · · · · ·
· · · · · ·
· · · · · ·

a ya11 ya21 · · · yab1

· · · · · ·
· · · · · ·
· · · · · ·

ya1m ya2m · · · yabm

Yijs = μ+αi +βj +γij + εijs, (4)

i = 1,2, . . . ,a, j = 1,2, . . . ,b, and s = 1,2, . . . ,m, where εijs’s are independent N(0,σ2).
We assume that

∑a
i=1αi =

∑b
j=1βj =

∑a
i=1 γij =

∑b
j=1 γij = 0. Suppose that we wish to

test Hα : α1 = α2 = · · · = αa = 0. We leave the reader to check that model (4) is then a
special case of the general linear hypothesis with n = abm, k = ab, r = a−1, and n−k =
ab(m−1).

Let us write

Y =

∑a
i=1

∑b
j=1

∑m
s=1 Yijs

n
,Yij.=

∑m
s=1 Yijs

m
,

Yi..=

∑b
j=1

∑m
s=1 Yijs

mb
,Y.j.=

∑a
i=1

∑m
s=1 Yijs

am
. (5)

Then it can be easily checked that{
μ̂= ˆ̂μ= Y, ˆ̂αi = Yi..−Y, β̂j =

ˆ̂
βj = Y.j.−Y,

γ̂ij = ˆ̂γij = Yij.−Yi..−Y.j.+Y.
(6)

It follows from Theorem 12.2.1 that

F =

∑
i

∑
j

∑
s(Yijs −Yij.+Yi..−Y)2 −

∑
i

∑
j

∑
s(Yijs −Yij.)

2∑
i

∑
j

∑
s(Yijs −Yij.)2

. (7)
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Since

∑
i

∑
j

∑
s

(Yijs −Yij.+Yi..−Y)2

=
∑

i

∑
j

∑
s

(Yijs −Yij.)
2 +
∑

i

∑
j

∑
s

(Yi..−Y)2,

we can write (7) as

F =
bm
∑

i(Yi..−Y)2∑
i

∑
j

∑
s(Yijs −Yij.)2

. (8)

Under Hα the statistic [ab(m−1)/(a−1)]F has the central F(a−1,ab(m−1)) distribu-
tion, so that the likelihood ratio test rejects Hα if

ab(m−1)
a−1

mb
∑

i(Yi..−Y)2∑
i

∑
j

∑
s(Yijs −Yij.)2

> c. (9)

A similar analysis holds for testing Hβ : β1 = β2 = · · ·= βb.
Next consider the test of hypothesis Hγ : γij = 0 for all i, j, that is, that the two factors are

independent and the effects are additive. In this case n = abm, k = ab, r = (a−1)(b−1),
and n− k = ab(m−1). It can be shown that

ˆ̂μ= Y, ˆ̂αi = Yi..−Y, and ˆ̂
βj = Y.j.−Y. (10)

Thus

F =

∑
i

∑
j

∑
s(Yijs −Yi..−Y.j.+Y)2 −

∑
i

∑
j

∑
s(Yijs −Yij.)

2∑
i

∑
j

∑
s(Yijs −Yij.)2

. (11)

Now

∑
i

∑
j

∑
s

(Yijs −Yi..−Y.j.+Y)2

=
∑

i

∑
j

∑
s

(Yijs −Yij.+Yij.−Yi..−Y.j.+Y)2

=
∑

i

∑
j

∑
s

(Yijs −Yij.)
2 +
∑

i

∑
j

∑
s

(Yij.−Yi..−Y.j.+Y)2,

so that we may write

F =

∑
i

∑
j

∑
s(Yij.−Yi..−Y.j.+Y)2∑

i

∑
j

∑
s(Yijs −Yij.)2

. (12)
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Under Hγ , the statistic {(m−1)ab/[(a−1)(b−1)]}F has the F((a−1)(b−1), ab(m−1))
distribution. The likelihood ratio test rejects Hγ if

(m−1)ab
(a−1)(b−1)

m
∑

i

∑
j(Yij.−Yi..−Y.j.+Y)2∑

i

∑
j

∑
s(Yijs −Yij.)2

> c. (13)

Let us write

SS1 = sum of squares due to factor 1 (row sum of squares)

= bm
a∑

i=1

(Yi..−Y)2,

SS2 = sum of squares due to factor 2 (column sum of squares)

= am
b∑

j=1

(Y.j.−Y)2,

SSI = sum of squares due to interaction

= m
a∑

i=1

b∑
j=1

(Yij.−Yi..−Y.j.+Y)2,

and

SSE = sum of squares due to error (residual sum of squares)

=

a∑
i=1

b∑
j=1

m∑
s=1

(Yijs −Yij.)
2.

Then we may summarize the above results in the following table.

Two-Way Analysis of Variance Table with Interaction

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F-Ratio

Rows SS1 a−1 MS1 = SS1/(a−1) MS1/MSE

Columns SS2 b−1 MS2 = SS2/(b−1) MS2/MSE

Interaction SSI (a−1)(b−1) MSI = SSI/(a−1)(b−1) MSI/MSE

Error SSE ab(m−1) MSE = SSE/ab(m−1)

Mean abmX
2

1 abmX
2

Total
a∑

i=1

b∑
j=1

m∑
s=1

Y2
ijs abm

a∑
i=1

b∑
j=1

m∑
s=1

Y2
ijs/abm
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Remark 1. Note that, if m = 1, there are no d.f. associated with the SSE. Indeed, SSE = 0
if m = 1. Hence, we cannot make tests of hypotheses when m = 1, and for this reason we
assume m > 1.

Example 1. To test the effectiveness of three different teaching methods, three instructors
were randomly assigned 12 students each. The students were then randomly assigned to
the different teaching methods and were taught exactly the same material. At the con-
clusion of the experiment, identical examinations were given to the students with the
following results in regard to grades.

Instructor

Teaching

Method I II III

1 95 60 86

85 90 77

74 80 75

74 70 70

2 90 89 83

80 90 70

92 91 75

82 86 72

3 70 68 74

80 73 86

85 78 91

85 93 89

From the data the table of means is as follows:

yij. yi..

82 75 77 78.0

86 89 75 83.3

80 78 85 81.0

y.j. 82.7 80.7 79.0 y = 80.8
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Then

SS1 = sum of squares due to methods

= bm
a∑

i=1

(yi..− y)2

= 3×4×14.13 = 169.56,

SS2 = sum of squares due to instructors

= am
b∑

j=1

(y.j.− y)2

= 3×4×6.86 = 82.32,

SSI = sum of squares due to interaction

= m
3∑

i=1

3∑
j=1

(yij.− yi..− y.j.+ y)2

= 4×140.45 = 561.80,

SSE = residual sum of squares

=

3∑
i=1

3∑
j=1

4∑
s=1

(yijs − yij.)
2 = 1830.00.

Analysis of Variance

Source SS d.f. MSS F-Ratio

Methods 169.56 2 84.78 1.25

Instructors 82.32 2 41.16 0.61

Interactions 561.80 4 140.45 2.07

Error 1830.00 27 67.78

Withα= 0.05, we see from the tables that F2,27,0.05 = 3.35 and F4,27,0.05 = 2.73, so that
we cannot reject any of the three hypotheses that the three methods are equally effective,
that the three instructors are equally effective, and that the interactions are all 0.

PROBLEMS 12.6

1. Prove statement (6).

2. Obtain the likelihood ratio test of the null hypothesis Hβ : β1 = β2 = · · ·= βb = 0.

3. Prove statement (10).
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4. Suppose that the following data represent the units of production turned out each day
by three different machinists, each working on the same machine for three different
days:

Machinist

Machine A B C

B1 15, 15, 17 19, 19, 16 16, 18, 21

B2 17, 17, 17 15, 15, 15 19, 22, 22

B3 15, 17, 16 18, 17, 16 18, 18, 18

B4 18, 20, 22 15, 16, 17 17, 17, 17

Using a 0.05 level of significance, test whether (a) the differences among the machin-
ists are significant, (b) the differences among the machines are significant, and (c)
the interactions are significant.

5. In an experiment to determine whether four different makes of automobiles average
the same gasoline mileage, a random sample of two cars of each make was taken
from each of four cities. Each car was then test run on 5 gallons of gasoline of the
same brand. The following table gives the number of miles traveled.

Automobile Make

Cities A B C D

Cleveland 92.3, 104.1 90.4, 103.8 110.2, 115.0 120.0, 125.4

Detroit 96.2, 98.6 91.8, 100.4 112.3, 111.7 124.1, 121.1

San Francisco 90.8, 96.2 90.3, 89.1 107.2, 103.8 118.4, 115.6

Denver 98.5, 97.3 96.8, 98.8 115.2, 110.2 126.2, 120.4

Construct the analysis of variance table. Test the hypothesis of no automobile effect,
no city effect, and no interactions. Use α= 0.05.



13
NONPARAMETRIC STATISTICAL
INFERENCE

13.1 INTRODUCTION

In all the problems of statistical inference considered so far, we assumed that the distribu-
tion of the random variable being sampled is known except, perhaps, for some parameters.
In practice, however, the functional form of the distribution is seldom, if ever, known.
It is therefore desirable to devise methods that are free of this assumption concerning
distribution. In this chapter we study some procedures that are commonly referred to as
distribution-free or nonparametric methods. The term “distribution-free” refers to the fact
that no assumptions are made about the underlying distribution except that the distribution
function being sampled is absolutely continuous. The term “nonparametric” refers to the
fact that there are no parameters involved in the traditional sense of the term “parameter”
used thus far. To be sure, there is a parameter which indexes the family of absolutely con-
tinuous DFs, but it is not numerical and hence the parameter set cannot be represented as a
subset of Rn, for any n ≥ 1. The restriction to absolutely continuous distribution functions
is a simplifying assumption that allows us to use the probability integral transformation
(Theorem 5.3.1) and the fact that ties occur with probability 0.

Section 13.2 is devoted to the problem of unbiased (nonparametric) estimation. We
develop the theory of U-statistics since many estimators and test statistics may be viewed
as U-statistics. Sections 13.3 through 13.5 deal with some common hypotheses testing
problems. In Section 13.6 we investigate applications of order statistics in nonparamet-
ric methods. Section 13.7 considers underlying assumptions in some common parametric
problems and the effect of relaxing these assumptions.

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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13.2 U-STATISTICS

In Chapter 6 we encountered several nonparametric estimators. For example, the empir-
ical DF defined in Section 6.3 as an estimator of the population DF is distribution-free,
and so also are the sample moments as estimators of the population moments. These are
examples of what are known as U–statistics which lead to unbiased estimators of popula-
tion characteristics. In this section we study the general theory of U-statistics. Although
the thrust of this investigation is unbiased estimation, many of the U-statistics defined in
this section may be used as test statistics.

Let X1,X2, . . . ,Xn be iid RVs with common law L(X), and let P be the class of all pos-
sible distributions of X that consists of the absolutely continuous or discrete distributions,
or subclasses of these.

Definition 1. A statistic T(X) is sufficient for the family of distributions P if the
conditional distribution of X, given T = t, is the same whatever the true F ∈ P.

Example 1. Let X1,X2, . . . ,Xn be a random sample from an absolutely continuous DF, and
let T= (X(1), . . . ,X(n)) be the order statistic. Then

f (x |T= t) = (n!)−1,

and we see that T is sufficient for the family of absolutely continuous distributions on R.

Definition 2. A family of distributions P is complete if the only unbiased estimator of 0
is the zero function itself, that is,

EFh(X) = 0 for all F ∈ P⇒ h(x) = 0

for all x (except for a null set with respect to each F ∈ P).

Definition 3. A statistic T(X) is said to be complete in relation to a class of distributions
P if the class of induced distributions of T is complete.

We have already encountered many examples of complete statistics or complete
families of distributions in Chapter 8.

The following result is stated without proof. For the proof we refer to Fraser [32,
pp. 27–30, 139–142].

Theorem 1. The order statistic (X(1),X(2), . . . ,X(n)) is a complete sufficient statistic
provided that the iid RVs X1,X2, . . . ,Xn are of either the discrete or the continuous type.

Definition 4. A real-valued parameter g(F) is said to be estimable if it has an unbiased
estimator, that is, if there exists a statistic T(X) such that

EFT(X) = g(F) for all F ∈ P. (1)
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Example 2. If P is the class of all distributions for which the second moment exists, X is
an unbiased estimator of μ(F), the population mean. Similarly, μ2(F) = varF(X) is also
estimable, and an unbiased estimator is S2 =

∑n
1(Xi−X)2/(n−1). We would like to know

whether X and S2 are UMVUEs. Similarly, F(x) and PF(X1 +X2 > 0) are estimable for
F ∈ P.

Definition 5. The degree m (m≥ 1) of an estimable parameter g(F) is the smallest sample
size for which the parameter is estimable, that is, it is the smallest m such that there exists
an unbiased estimator T(X1,X2, . . . ,Xm) with

EFT = g(F) for all F ∈ P.

Example 3. The parameter g(F) = PF{X > c}, where c is a known constant, has degree 1.
Also, μ(F) is estimable with degree 1 (we assume that there is at least one F ∈P such that
μ(F) �= 0), and μ2(F) is estimable with degree m = 2, since μ2(F) cannot be estimated
(unbiasedly) by one observation only. At least two observations are needed. Similarly,
μ2(F) has degree 2, and P(X1 +X2 > 0) also is of degree 2.

Definition 6. An unbiased estimator of a parameter based on the smallest sample size
(equal to degree m) is called a kernel.

Example 4. Clearly Xi 1 ≤ i ≤ n is a kernel of μ(F); T(Xi) = 1, if Xi > c, and = 0 if
Xi ≤ c is a kernel of P(X > c). Similarly, T(Xi,Xj) = 1 if Xi +Xj > 0, and =0 otherwise
is a kernel of P(Xi +Xj > 0), XiXj is a kernel of μ2(F) and X2

i −XiXj is a kernel of μ2(F).

Lemma 1. There exists a symmetric kernel for every estimable parameter.

Proof. If T(X1,X2, . . . ,Xm) is a kernel of g(F), so also is

Ts(X1,X2, . . . ,Xm) =
1

m!

∑
P

T(Xi1 ,Xi2 , . . . ,Xim), (2)

where the summation P is over all m! permutations of {1,2, . . . ,m}.

Example 5. A symmetric kernel for μ2(F) is

Ts(Xi,Xj) =
1
2{T(Xi,Xj)+T(Xj,Xi)}

= 1
2 (Xi −Xj)

2, i, j = 1,2, . . . ,n (i �= j).

Definition 7. Let g(F) be an estimable parameter of degree m, and let X1,X2, . . . ,Xn be a
sample of size n, n ≥ m. Corresponding to any kernel T(Xi1 , . . . ,Xim) of g(F), we define a
U-statistic for the sample by

U(X1,X2, . . . ,Xn) =

(
n
m

)−1∑
C

Ts(Xi1 , . . . ,Xim), (3)

where the summation C is over all
(n

m

)
combinations of m integers (i1, i2, . . . , im) chosen

from {1,2, . . . ,n}, and Ts is the symmetric kernel defined in (2).
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Clearly, the U-statistic defined in (3) is symmetric in the Xi’s, and

EFU(X) = g(F) for all F. (4)

Moreover, U(X) is a function of the complete sufficient statistic X(1),X(2), . . . ,X(n). It
follows from Theorem 8.4.6 that it is UMVUE of its expected value.

Example 6. For estimating μ(F), the U-statistic is n−1∑n
1 Xi. For estimating μ2(F),

a symmetric kernel is

Ts(Xi1 ,Xi2) =
1
2 (Xi1 −Xi2)

2, i1 = 1,2, . . . ,n (i1 �= i2),

so that the corresponding U-statistic is

U(X) =

(
n
2

)−1 ∑
i1<i2

1
2
(Xi1 −Xi2)

2

=
1

n−1

n∑
1

(Xi −X)2

= S2.

Similarly, for estimating μ2(F), a symmetric kernel is Ts(Xi1 ,Xi2) = Xi1 Xi2 , and the
corresponding U-statistic is

U(X) =
1(n
2

)∑
i<j

XiXj =
1

n(n−1)

∑
i�=j

XiXj.

For estimating μ3(F), a symmetric kernel is Ts(Xi1 ,Xi2 ,Xi3) = Xi1 Xi2 Xi3 so that the
corresponding U-statistic is

U(X) =

(
n
3

)−1∑∑∑
i<j<k

XiXjXk

=
1

n(n−1)(n−2)

∑
i�=j�=k

XiXjXk.

For estimating F(x) a symmetric kernel is I[Xi≤x] so the corresponding U-statistic is

U(X) =
1
n

n∑
i=1

I[Xi≤x] = F∗
n (x),

and for estimating P(X > 0) the U-statistic is

U(X) =
1
n

n∑
i=1

I[Xi>0] = 1−F∗
n (0).
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Finally, for estimating P(X1 +X2 > 0) the U-statistic is

U(X) =
1(n
2

)∑
i<j

I[Xi+Xj>0].

Theorem 2. The variance of the U-statistic defined in (3) is given by

varU(X) =
1(n
m

) m∑
c=1

(
m
c

)(
n−m
m− c

)
ζc, (5)

where

ζc = covF {Ts (Xi1 , . . . ,Xim) ,Ts (Xji , . . . ,Xjm)}

with m, the degree of g(F), and c is the common number of integers in the sets {i1, . . . , im}
and {j1, . . . , jm}. (For c = 0, the two statistics T(Xi1 , . . . ,Xim) and T(Xj1 , . . . ,Xjm) are
independent and have zero covariance.)

Proof. Clearly

varU(X)

=
1[(n

m

)]2

∑∑
EF [{Ts (Xi1 , . . . ,Xim)−g(F)}{Ts (Xj1 , . . . ,Xjm)−g(F)}] .

Let c be the number of common integers in {i1, i2, . . . , im} and {j2, j2, . . . , jm}. Then c takes
values 0,1, . . . ,m and for c = 0, Ts(Xi1 , . . . ,Xim) and Ts(Xj1 , . . . ,Xjm) are independent. It
follows that

varU(X) =
1[(n

m

)]2

m∑
c=1

(
n
m

)(
m
c

)(
n−m
m− c

)
ζc, (6)

which is (5). The counting argument from (6) to (7) is as follows: First we select integers
{i1, . . . , im} from {1,2, . . . ,n} in

(n
m

)
ways. Next we select the integers in {j1, . . . , jm}. This

is done by selecting first the c integers that will be in {i1, . . . , im} (hence common to both
sets) and then the m− c integers from n−m integers which will not be {j1, . . . , jm}. Note
that ζ0 = 0 from independence.

Example 7. Consider the U-statistic estimator X of g(F) = μ(F) in Example 6. Here
m = 1, T(x) = x, and ζ1 = var(X1) = σ2 so that var(X) = σ2/n.

For the parameter g(F) = μ2(F), U(X) = S2. In this case, m = 2, Ts(Xi1 ,Xi2) =
(Xi1 −Xi2)

2/2 so

varU(X) =
1(n
2

){2(n−2)ζ1 + ζ2},

where

ζ2 = EF

{
1
4
(Xi1 −Xi2)

4 −σ4

}
=

μ4 +σ4

2
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and

ζ1 = cov

{
1
2
(Xi1 −Xi2)

2
,

1
2
(Xi1 −Xj2)

2
}

where i2 �= j2. Then

ζ1 =
(μ4 −σ4)

4

and

varU(X) = var(S2) =
2

n(n−1)

[
(n−2)(μ4 −σ4)

2
+

μ4 +σ4

2

]

=
1
n

{
μ4 −

n−3
n−1

σ4

}
,

which agrees with Corollary 2 to Theorem 6.3.4.

For the parameter g(F) = F(x), varU(X) = F(x)(1 − F(x))/n, and for g(F) =
PF(X1 +X2 > 0)

varU(X) =
1

n(n−1)
{4(n−2)ζ1 +2ζ2},

where

ζ1 = PF(X1 +X2 > 0, X1 +X3 > 0)−P2
F(X1 +X2 > 0)

and

ζ2 = PF(X1 +X2 > 0)−P2
F(X1 +X2 > 0)

= PF(X1 +X2 > 0)PF(X1 +X2 ≤ 0).

Corollary to Theorem 2. Let U be the U-statistic for a symmetric kernel
Ts(X1,X2, . . . ,Xm). Suppose EF[Ts(X1, . . . ,Xm)]

2 <∞. Then

lim
n→∞

{nvarU(X)}= m2ζ1. (7)

Proof. It is easily shown that 0 ≤ ζc ≤ ζm for 1 ≤ c ≤ m. It follows from the hypothesis
ζm = var[Ts(X1, . . . ,Xm)]

2 <∞ and (5) that varU(X)<∞. Now

n

(m
c

)(n−m
m−c

)
(n

m

) ζc =
(m!)2n

c![(m− c)!]2
[(n−m)!]2

n!(n−2m+ c)!
ζc

=
(m!)2

c![(m− c)!]2
n
(n−m)(n−m−1) · · ·(n−2m+ c+1)

n(n−1) · · ·(n−m+1)
ζc.
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Now note that the numerator has m−c+1 factors involving n, while the denominator has
m such factors so that for c > 1, the ratio involving n goes to 0 as n →∞. For c = 1, this
ratio →1 and

varU(X)−→ (m!)2

((m−1)!)2
ζ1 = m2ζ1

as n →∞.

Example 8. In Example 7, nvar(X)≡ σ2 and

nvar(S2)−→ 22ζ1 = μ4 −σ4

as n →∞.

Finally we state, without proof, the following result due to Hoeffding [45], which estab-
lishes the asymptotic normality of a suitably centered and normed U-statistic. For proof
we refer to Lehmann [61, pp. 364–365] or Randles and Wolfe [85, p. 82].

Theorem 3. Let X1,X2, . . . ,Xn be a random sample from a DF F and let g(F) be an
estimable parameter of degree m with symmetric kernel Ts(X1,X2, . . . ,Xm).

If EF {Ts(X1,X2, . . . ,Xm)}2
<∞ and U is the U-statistic for g (as defined in (3)), then√

n(U(X)−g(F))
L−→N(0,m2ζ1), provided

ζ1 = covF {Ts (Xi1 , . . . ,Xim) ,Ts (Xj1 , . . . ,Xjm)}> 0.

In view of the corollary to Theorem 2, it follows that (U−g(F))/
√

var(U)
L−→N(0,1),

provided ζ1 > 0.

Example 9 (Example 7 continued). Clearly,
√

n(X − μ)/σ
L−→N(0,1) as n → ∞ since

ζ1 = σ2 > 0.

For the parameter g(F) = μ2(F), varU(X) = var(S2) =
1
n

{
μ4 −

n−3
n−1

σ4

}
,

ζ1 = (μ4 −σ4)/4 > 0 so it follows from Theorem 3 that

√
n(S2 −σ2)

L−→N(0,μ4 −σ4).

The concept of U-statistics can be extended to multiple random samples. We will
restrict ourselves to the case of two samples. Let X1,X2, . . . ,Xn1 and Y1,Y2, . . . ,Yn2 be two
independent random samples from DFs F and G, respectively.

Definition 8. A parameter g(F,G) is estimable of degrees (m1,m2) if m1 and m2 are the
smallest sample sizes for which there exists a statistic T (X1, . . . ,Xm1 ;Y1, . . . ,Ym2) such that

EF,GT (X1, . . . ,Xm1 ;Y1, . . . ,Ym2) = g(F,G) (8)

for all F,G ∈ P.
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The statistic T in Definition 8 is called a kernel of g and a symmetrized version of T ,
Ts is called a symmetric kernel of g. Without loss of generality therefore we assume that
the two-sample kernel T in (9) is a symmetric kernel.

Definition 9. Let g(F,G), F,G ∈ P be an estimable parameter of degree (m1,m2). Then,
a (two-sample) U-statistic estimate of g is defined by

U(X;Y) =

(
n1

m1

)−1(n2

m2

)−1∑
i∈A

∑
j∈B

T
(
Xi1 , . . . ,Xim1

;Yj1 , . . . ,Yjm2

)
, (9)

where A and B are collections of all subsets of m1 and m2 integers chosen without
replacement from the sets {1,2, . . . ,n1} and {1,2, . . . ,n2} respectively.

Example 10. Let X1,X2, . . . ,Xn1 and Y1,Y2, . . . ,Yn1 be two independent samples
from DFs F and G, respectively. Let g(F,G) = P(X < Y) =

∫∞
−∞ F(x)g(x)dx =∫∞

−∞ P(Y > y)f (y)dy, where f and g are the respective PDFs of F and G. Then

T(Xi;Yj) =

{
1, if Xi < Yj

0, if Xi ≥ Yj

is an unbiased estimator of g. Clearly, g has degree (1,1) and the two-sample U-statistic
is given by

U(X;Y) =
1

n1n2

n1∑
i=1

n2∑
j=1

T(Xi;Yj).

Theorem 4. The variance of the two-sample U-statistic defined in (10) is given by

varU(X;Y) =
1(n1

m1

)(n2
m2

) m1∑
c=0

m2∑
d=0

(
m1

c

)(
n1 −m1

m1 − c

)(
m2

d

)(
n2 −m2

m2 −d

)
ζc,d, (10)

where ζc,d is the covariance between T
(
Xi1 , . . . ,Xim1

;Yj1 , . . . ,Yjm1

)
and T(Xk1 , . . . ,Xkm1

;
Y�1 , . . . ,Y�m2

) with exactly c X’s and d Y’s in common.

Corollary. Suppose EF,GT2(X1, . . . ,Xm1 ;Y1, . . . ,Ym2)<∞ for all F,G ∈ P. Let N = n1 +
n2 and suppose n1,n2,N →∞ such that n1/N → λ, n2/N → 1−λ. Then

lim
N→∞

N varU(X;Y) =
m2

1

λ
ζ1,0 +

m2
2

1−λ
ζ0,1. (11)

The proofs of Theorem 4 and its corollary parallel those of Theorem 2 and its corollary
and are left to the reader.

Example 11. For the U-statistic in Example 10

EF,GU2(X;Y) =
1

n2
1n2

2

∑∑∑∑
EF,G {T(Xi;Yj)T(Xk;Y�)} .
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Now

EF,G {T(Xi;Yj)T(Xk;Y�)}= P(Xi < Yj,Xk < Y�)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫∞
−∞ F(x)g(x)dx for i = k, j = �,∫∞
−∞[1−G(x)]2f (x)dx for i = k, j �= �,∫∞
−∞ F2(x)g(x)dx for i �= k, j = �,[∫∞
−∞ F(x)g(x)dx

]2
for i �= k, j �= �,

where f and g are PDFs of F and G, respectively. Moreover,

ζ1,0 =

∫ ∞

−∞
[1−G(x)]2f (x)dx− [g(F,G)]2

and

ζ0,1 =

∫ ∞

−∞
F2(X)g(x)dx− [g(F,G)]2.

It follows that

varU(X;Y) =
1

n1n2
{g(F,G)[1−g(F,G)]+(n1 −1)ζ1,0 +(n2 −1)ζ0,1} .

In the special case when F = G, g(F,G) = 1/2, ζ1,0 = ζ0,1 = 1/3− 1/4 = 1/12, and
varU = (n1 +n2 +1)/[12n1n2].

Finally we state, without proof, the two-sample analog of Theorem 3 which establishes
the asymptotic normality of the two-sample U-statistic defined in (10).

Theorem 5. Let X1,X2, . . . ,Xn1 and Y1,Y2, . . . ,Yn2 be independent random samples from
DFs F and G, respectively, and let g(F,G) be an estimable parameter of degree (m1,m2).
Let T(X1, . . . ,Xm1 ;Y1, . . . ,Ym2) be a symmetric kernel for g such that ET2 <∞. Then

√
n1 +n2 {U(X;Y)−g(F,G)} L−→N(0,σ2),

where σ2 =
m2

1ζ1,0

λ
+

m2
2ζ0,1

1−λ
, provided σ2 > 0 and 0 < λ = limN→∞(m1/N) = λ < 1,

N = n1 +n2.
We see that (U−g)/

√
varU

L−→N(0,1), provided σ2 > 0.

For the proof of Theorem 5 we refer to Lehmann [61, p. 364], or Randles and Wolfe [85,
p. 92].

Example 11 (Continued). In Example 11 we saw that in the special case when F = G,
ζ1,0 = ζ0,1 = 1/12, and varU = (n1 +n2 +1)/[12n1n2]. It follows that

U(X;Y)− (1/2)√
(n1 +n2 +1)/[12n1n2]

L−→N(0,1).
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PROBLEMS 13.2

1. Let (R,B,Pθ) be a probability space, and let P = {Pθ : θ ∈ Θ}. Let A be a Borel
subset of R, and consider the parameter d(θ) = Pθ(A). Is d estimable? If so, what is
the degree? Find the UMVUE for d, based on a sample of size n, assuming that P is
the class of all continuous distributions.

2. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent random samples from two
absolutely continuous DFs. Find the UMVUEs of (a) E{XY} and (b) var(X+Y).

3. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a random sample from an absolutely continu-
ous distribution. Find the UMVUEs of (a) E(XY) and (b) var(X+Y).

4. Let T(X1,X2, . . . ,Xn) be a statistic that is symmetric in the observations. Show that
T can be written as a function of the order statistic. Conversely, if T(X1,X2, . . . ,Xn)
can be written as a function of the order statistic, T is symmetric in the observations.

5. Let X1,X2, . . . ,Xn be a random sample from an absolutely continuous DF F, F ∈ P.
Find U-statistics for g1(F) = μ3(F) and g2(F) = μ3(F). Find the corresponding
expressions for the variance of the U-statistic in each case.

6. In Example 3, show that μ2(F) is not estimable with one observation. That is, show
that the degree of μ2(F) where F ∈P, the class of all distributions with finite second
moment, is 2.

7. Show that for c = 1,2, . . . ,m, 0 ≤ ζc ≤ ζm.

8. Let X1,X2, . . . ,Xn be a random sample from an absolutely continuous DF F, F ∈ P.
Let

g(F) = EF|X1 −X2|.

Find the U-statistic estimator of g(F) and its variance.

13.3 SOME SINGLE-SAMPLE PROBLEMS

Let X1,X2, . . . ,Xn be a random sample from a DF F. In Section 13.2 we studied properties
of U-statistics as nonparametric estimators of parameters g(F). In this section we con-
sider some nonparametric tests of hypotheses. Often the test statistic may be viewed as a
function of a U-statistic.

13.3.1 Goodness-of-Fit Problem

The problem of fit is to test the hypothesis that the sample comes from a specified DF
F0 against the alternative that it is from some other DF F, where F(x) �= F0(x) for some
x ∈ R. In Section 10.3 we studied the chi-square test of goodness of fit for testing H0 :
Xi ∼ F0. Here we consider the Kolmogorov–Smirnov test of H0. Since H0 concerns the
underlying DF of the X’s, it is natural to compare the U-statistic estimator of g(F) =
F(x) with the specified DF F0 under H0. The U-statistic for g(F) = F(x) is the empirical
DF F∗

n (x).
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Definition 1. Let X1,X2, . . . ,Xn be a sample from a DF F, and let F∗
n be a corresponding

empirical DF. The statistic

Dn = sup
x

|F∗
n (x)−F(x)| (1)

is called the (two-sided) Kolmogorov–Smirnov statistic. We write

D+
n = sup

n
[F∗

n (x)−F(x)] (2)

and

D−
n = sup

x
[F(x)−F∗

n (x)] (3)

and call D+
n ,D

−
n the one-sided Kolmogorov–Smirnov statistic.

Theorem 1. The statistics Dn, D−
n , D+

n are distribution-free for any continuous DF F.

Proof. Clearly, Dn =max(D+
n ,D

−
n ). Let X(1) ≤ X(2) ≤ ·· · ≤ X(n) be the order statistics

of X1,X2, . . . ,Xn, and define X(0) =−∞, X(n+1) =+∞. Then

F∗
n (x) =

i
n

for X(i) ≤ x < X(i+1), i = 0,1,2, . . . ,n,

and we have

D+
n = max

0≤i≤n
sup

X(i)≤x<X(i+1)

{
i
n
−F(x)

}

= max
0≤i≤n

{
i
n
− inf

X(i)≤x<X(i+1)

F(x)

}

= max
0≤i≤n

{
i
n
−F(X(i))

}

=max

{
max
1≤i≤n

[
i
n
−F(X(i))

]
,0

}
.

Since F(X(i)) is the ith-order statistic of a sample from U(0,1) irrespective of what F is, as
long as it is continuous, we see that the distribution of D+

n is independent of F. Similarly,

D−
n =max

{
max
1≤i≤n

[
F(X(i))−

i−1
n

]
,0

}
,

and the result follows.

Without loss of generality, therefore, we assume that F is the DF of a U(0,1) RV.
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Theorem 2. If F is continuous, then

P

{
Dn ≤ v+

1
2n

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if v ≤ 0,∫ v+(1/2n)

(1/2n)−v

∫ v+(3/2n)

(3/2n)−v
· · ·

∫ v+[(2n−1)/2n]

[(2n−1)/2n]−v
f (u1,u2, . . . ,un) ·

1∏
n

dui if 0 < v <
2n−1

2n
,

1 if v ≥ 2n−1
2n

,

(4)

where

f (u1,u2, . . . ,un) =

{
n!, 0 < u1 < · · ·< un < 1,

0, otherwise,
(5)

is the joint PDF of the set of order statistics for a sample of size n from U(0,1).

We will not prove this result here. Let Dn,α be the upper α-percent point of the distribu-
tion of Dn, that is, P{Dn > Dn,α} ≤ α. The exact distribution of Dn for selected values of n
and α has been tabulated by Miller [74], Owen [79], and Birnbaum [9]. The large-sample
distribution of Dn was derived by Kolmogorov [53], and we state it without proof.

Theorem 3. Let F be any continuous DF. Then for every z ≥ 0

lim
n→∞

P{Dn ≤ zn−1/2}= L(z), (6)

where

L(z) = 1−2
∞∑

i=1

(−1)i−1e−2i2z2

. (7)

Theorem 3 can be used to find dα such that limn→∞ P{√nDn ≤ dα} = 1−α. Tables
of dα for various values of α are also available in Owen [79].

The statistics D+
n and D−

n have the same distribution because of symmetry, and their
common distribution is given by the following theorem.

Theorem 4. Let F be a continuous DF. Then

P{D+
n ≤ z}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z ≤ 0,∫ 1

1−z

∫ un

[(n−1)/n]−z
· · ·

∫ u3

(2/n)−z

×
∫ u2

(1/n)−z
f (u1,u2, . . . ,un)

n∏
i=1

dui if 0 < z < 1,

1 if z ≥ 1,

(8)

where f is given by (5).
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Proof. We leave the reader to prove Theorem 4.

Tables for the critical values D+
n,α, where P{D+

n > D+
n,α} ≤ α, are also available for

selected values of n and α; see Birnbaum and Tingey [8]. Table ST7 at the end of this
book gives D+

n,α and Dn,α for some selected values of n and α. For large samples Smirnov
[108] showed that

lim
n→∞

P{
√

nD+
n ≤ z}= 1− e−2z2

, z ≥ 0. (9)

In fact, in view of (9), the statistic Vn = 4nD+2
n has a limiting χ2(2) distribution, for

4nD+2
n ≤ 4z2 if and only if

√
nD+

n ≤ z, z ≥ 0, and the result follows since

lim
n→∞

P{Vn ≤ z2}= 1− e−2z2

, z ≥ 0,

so that

lim
n→∞

P{Vn ≤ x}= 1− e−x/2, x ≥ 0,

which is the DF of a χ2(2) RV.

Example 1. Let α = 0.01, and let us approximate D+
n,α. We have χ2

2,0.01 = 9.21. Thus
Xn = 9.21, yielding

D+
n,0.01 =

√
9.21
4n

=
3.03
2
√

n
.

If, for example, n= 9, then D+
n,0.01 = 3.03/6= 0.50. Of course, the approximation is better

for large n.

The statistic Dn and its one-sided analogs can be used in testing H0 : X ∼ F0 against
H1 : X ∼ F, where F0(x) �= F(x) for some x.

Definition 2. To test H0 : F(x) = F0(x) for all x at level α, the Kolmogorov–Smirnov test
rejects H0 if Dn >Dn,α. Similarly, it rejects F(x)≥ F0(x) for all x if D−

n >D+
n,α and rejects

F(x)≤ F0(x) for all x at level α if D+
n > D+

n,α.

For large samples we can approximate by using Theorem 3 or (9) to obtain an
approximate α-level test.

Example 2. Let us consider the data in Example 10.3.3, and apply the Kolmogorov–
Smirnov test to determine the goodness of the fit. Rearranging the data in increasing order
of magnitude, we have the following result:
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x F0(x) F∗
20(x) i/20−F0(x(i)) F0(x(i))−(i−1)/20

−1.787 0.0367 1
20 0.0133 0.0367

−1.229 0.1093 2
20 −0.0093 0.0593

−0.525 0.2998 3
20 −0.1498 0.1998

−0.513 0.3050 4
20 −0.1050 0.1550

−0.508 0.3050 5
20 −0.0550 0.1050

−0.486 0.3121 6
20 −0.0121 0.0621

−0.482 0.3156 7
20 0.0344 0.0156

−0.323 0.3745 8
20 0.0255 0.0245

−0.261 0.3974 9
20 0.0526 −0.0026

−0.068 0.4721 10
20 0.0279 0.0221

−0.057 0.4761 11
20 0.0739 −0.0239

0.137 0.5557 12
20 0.0443 0.0057

0.464 0.6772 13
20 −0.0272 0.0772

0.595 0.7257 14
20 −0.0257 0.0757

0.881 0.8106 15
20 −0.0606 0.1106

0.906 0.8186 16
20 −0.0186 0.0686

1.046 0.8531 17
20 −0.0031 0.0531

1.237 0.8925 18
20 0.0075 0.0425

1.678 0.9535 19
20 −0.0035 0.0535

2.455 0.9931 1 0.0069 0.0431

From Theorem 1,

D−
20 = 0.1998, D+

20 = 0.0739, and D20 =max(D+
20,D

−
20) = 0.1998.

Let us take α = 0.05. Then D20,0.05 = 0.294. Since 0.1998 < 0.294, we accept H0 at the
0.05 level of significance.

It is worthwhile to compare the chi-square test of goodness of fit and the Kolmogorov–
Smirnov test. The latter treats individual observations directly, whereas the former
discretizes the data and sometimes loses information through grouping. Moreover, the
Kolmogorov–Smirnov test is applicable even in the case of very small samples, but the
chi-square test is essentially for large samples.

The chi-square test can be applied when the data are discrete or continuous, but the
Kolmogorov–Smirnov test assumes continuity of the DF. This means that the latter test



SOME SINGLE-SAMPLE PROBLEMS 589

provides a more refined analysis of the data. If the distribution is actually discontinuous,
the Kolmogorov–Smirnov test is conservative in that it favors H0.

We next turn our attention to some other uses of the Kolmogorov–Smirnov statistic.
Let X1,X2, . . . ,Xn be a sample from a DF F, and let F∗

n be the sample DF. The estimate F∗
n

of F for large n should be close to F. Indeed,

P

{
|F∗

n (x)−F(x)| ≤ λ
√

F(x)[1−F(x)]√
n

}
≥ 1− 1

λ2
, (10)

and, since F(x)[1−F(x)]≤ 1
4 , we have

P

{
|F∗

n (x)−F(x)| ≤ λ

2
√

n

}
≥ 1− 1

λ2
. (11)

Thus F∗
n can be made close to F with high probability by choosing λ and large enough n.

The Kolmogorov–Smirnov statistic enables us to determine the smallest n such that the
error in estimation never exceeds a fixed value ε with a large probability 1−α. Since

P{Dn ≤ ε} ≥ 1−α, (12)

ε = Dn,α; and, given ε and α, we can read n from the tables. For large n, we can use the
asymptotic distribution of Dn and solve dα = ε

√
n for n.

We can also form confidence bounds for F. Given α and n, we first find Dn,α such that

P{Dn > Dn,α} ≤ α, (13)

which is the same as

P

{
sup

x
|F∗

n (x)−F(x)| ≤ Dn,α

}
≥ 1−α.

Thus

P{|F∗
n (x)−F(x)| ≤ Dn,α for all x} ≥ 1−α. (14)

Define

Ln(x) = max{F∗
n (x)−Dn,α,0} (15)

and

Un(x) = min{F∗
n (x)+Dn,α,1}. (16)

Then the region between Ln(x) and Un(x) can be used as a confidence band for F(x) with
associated confidence coefficient 1−α.

Example 3. For the data on the standard normal distribution of Example 2, let us form
a 0.90 confidence band for the DF. We have D20,0.10 = 0.265. The confidence band is,
therefore, F∗

20(x)±0.265 as long as the band is between 0 and 1.
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13.3.2 Problem of Location

Let X1,X2, . . . ,Xn be a sample of size n from some unknown DF F. Let p be a positive
real number, 0 < p < 1, and let zp(F) denote the quantile of order p for the DF F. In the
following analysis we assume that F is absolutely continuous. The problem of location
is to test H0 : zp(F) = z0, z0 a given number, against one of the alternatives zp(F) > z0,
zp < z0, and zp �= z0. The problem of location and symmetry is to test H′

0 : z0.5(F) = z0,
and F is symmetric against H′

1 : z0.5(F) �= ζ0 or F is not symmetric.
We consider two tests of location. First, we describe the sign test.

13.3.2.1 The Sign Test Let X1,X2, . . . ,Xn be iid RVs with common PDF f . Consider
the hypothesis testing problem

H0 : zp(f ) = z0 against H1 : zp(f )> z0, (17)

where zp(f ) is the quantile of order p of PDF f , 0 < p < 1. Let g(F) = P(Xi > z0) =
P(Xi − z0 > 0). Then the corresponding U-statistic is given by

nU(X) = R+(X),

the number of positive elements in X1 − z0, X2 − z0, . . . ,Xn − z0. Clearly, P(Xi = z0) = 0.
Fraser [32, pp. 167–170] has shown that a UMP test of H0 against H1 is given by

ϕ(x) =

⎧⎪⎨
⎪⎩

1, R+(x)> c,

γ, R+(x) = c,

0, R+(x)< c,

(18)

where c and γ are chosen from the size restriction

α=
n∑

i=c+1

(
n

R+(x)

)
(1−p)R+(x)pn−R+(x)+γ

(
n
c

)
(1−p)cpn−c. (19)

Note that, under H0, zp(f ) = z0, so that PH0(X ≤ z0) = p and R+(X) ∼ b(n,1− p). The
same test is UMP for H0 : zp(f ) ≤ z0 against H1 : zp(f ) > z0. For the two-sided case,
Fraser [32, p. 171] shows that the two-sided sign test is UMP unbiased.

If, in particular, z0 is the median of f , then p = 1/2 under H0. In this case one can also
use the sign test to test H0 : med(X) = z0, F is symmetric.

For large n one can use the normal approximation to binomial to find c and γ in (19).

Example 4. Entering college freshmen have taken a particular high school achievement
test for many years, and the upper quartile (p = 0.75) is well established at a score of 195.
A particular high school sent 12 of its graduates to college, where they took the examina-
tion and obtained scores of 203, 168, 187, 235, 197, 163, 214, 233, 179, 185, 197, 216.
Let us test the null hypothesis H0 that z0.75 ≤ 195 against H1 : z0.75 > 195 at the α= 0.05
level.
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We have to find c and γ such that

12∑
i=c+1

(
12
i

)(
1
4

)i(3
4

)12−i

+γ

(
12
c

)(
1
4

)c(3
4

)12−c

= 0.05.

From the table of cumulative binomial distribution (Table ST1) for n = 12, p = 1
4 , we see

that c = 6. Then γ is given by

0.0142+γ

(
12
6

)(
1
4

)6(3
4

)6

= 0.05.

Thus

γ =
0.0358
0.0402

= 0.89.

In our case the number of positive signs, xi −195, i = 1,2, . . . ,12, is 7, so we reject H0

that the upper quartile is ≤195.

Example 5. A random sample of size 8 is taken from a normal population with mean 0
and variance 1. The sample values are −0.465, 0.120, −0.238, −0.869, −1.016, 0.417,
0.056, 0.561. Let us test hypothesis H0 : μ = −1.0 against H1 : μ > −1.0. We should
expect to reject H0 since we know that it is false. The number of observations, xi −μ0 =
xi +1.0, that are ≥ 0 is 7. We have to find c and γ such that

8∑
i=c+1

(
8
i

)(
1
2

)8

+γ

(
8
c

)(
1
2

)8

= 0.05, say,

that is,

8∑
i=c+1

(
8
i

)
+γ

(
8
c

)
= 12.8.

We see that c = 6 and γ = 0.13. Since the number of positive xi −μ0 is > 6, we reject H0.
Let us now apply the parametric test here. We have

x =−1.434
8

=−0.179.

Since σ = 1, we reject H0 if

x > μ0 +
1√
n

zα =−1.0+
1√
8

1.64

=−0.42.

Since −0.179 >−0.42, we reject H0.
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The single-sample sign test described above can easily be modified to apply to sampling
from a bivariate population. Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a random sample from a
bivariate population. Let Zi = Xi −Yi, i = 1,2, . . . ,n, and assume that Zi has an absolutely
continuous DF. Then one can test hypotheses concerning the order parameters of Z by
using the sign test. A hypothesis of interest here is that Z has a given median z0. Without
loss of generality let z0 = 0. Then H0 : med(Z) = 0, that is, P{Z > 0} = P{Z < 0}= 1

2 .
Note that med(Z) is not necessarily equal to med(X) −med(Y), so that H0 is not
that med(X) = med(Y) but that med(Z) = 0. The sign test is UMP against one-sided
alternatives and UMP unbiased against two-sided alternatives.

Example 6. We consider an example due to Hahn and Nelson [40], in which two measur-
ing devices take readings on each of 10 test units. Let X and Y , respectively, be the readings
on a test unit by the first and second measuring devices. Let X = A+ ε1, Y = A+ ε2,
where A, ε1, ε2, respectively, are the contributions to the readings due to the test unit and
to the first and the second measuring devices. Let A, ε1, ε2 be independent with EA = μ,
var(A) = σ2

a , Eε1 = Eε2 = 0, var(ε1) = σ2
1, var(ε2) = σ2

2, so that X and Y have common
mean μ and variances σ2

1 +σ2
a and σ2

2 +σ2
a , respectively. Also, the covariance between X

and Y is σ2
a . The data are as follows:

Test unit

1 2 3 4 5 6 7 8 9 10

First device, X 71 108 72 140 61 97 90 127 101 114

Second device, Y 77 105 71 152 88 117 93 130 112 105

Z = X−Y −6 3 1 −8 −17 −20 −3 −3 −11 9

Let us test the hypothesis H0 : med(Z) = 0. The number of Zi’s > 0 is 3. We have

P{number of Zi’s > 0 is ≤ 3 | H0}=
3∑

k=0

(
10
k

)(
1
2

)10

= 0.172.

Using the two-sided sign test, we cannot reject H0 at level α= 0.05, since 0.172 > 0.025.
The RVs Zi can be considered to be distributed normally, so that under H0 the common
mean of Zi’s is 0. Using a paired comparison t-test on the data, we can show that t =−0.88
for 9 d.f., so we cannot reject the hypothesis of equality of means of X and Y at level
α= 0.05.

Finally, we consider the Wilcoxon signed-ranks test.

13.3.2.2 The Wilcoxon Signed-Ranks Test The sign test for median and symmetry
loses information since it ignores the magnitude of the difference between the observa-
tions and the hypothesized median. The Wilcoxon signed-ranks test provides an alternative
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test of location (and symmetry) that also takes into account the magnitudes of these
differences.

Let X1,X2, . . . ,Xn be iid RVs with common absolutely continuous DF F, which is sym-
metric about the median z1/2. The problem is to test H0 : z1/2 = z0 against the usual
one- or two-sided alternatives. Without loss of generality, we assume that z0 = 0. Then
F(−x) = 1 − F(x) for all x ∈ R. To test H0 : F(0) = 1

2 or z1/2 = 0, we first arrange
|X1|, |X2|, . . . , |Xn| in increasing order of magnitude, and assign ranks 1,2, . . . ,n, keeping
track of the original signs of Xi. For example, if n = 4 and |X2| < |X4| < |X1| < |X3|, the
rank of |X1| is 3, of |X2| is 1, of |X3| is 4, and of |X4| is 2.

Let {
T+ = the sum of the ranks of positive Xi’s,

T− = the sum of the ranks of negative Xi’s.
(20)

Then, under H0, we expect T+ and T− to be the same. Note that

T++T− =

n∑
1

i =
n(n+1)

2
, (21)

so that T+ and T− are linearly related and offer equivalent criteria. Let us define

Zi =

{
1 if Xi > 0

0 if Xi < 0
, i = 1,2, . . . ,n, (22)

and write R(|Xi|) = R+
i for the rank of |Xi|. Then T+ =

∑n
i=1 R+

i Zi and T− =∑n
i=1(1−Zi)R

+
i . Also,

T+−T− =−
n∑

i=1

R+
i +2

n∑
i=1

ZiR
+
i

= 2
n∑

i=1

R+
i Zi −

n(n+1)
2

. (23)

The statistic T+ (or T−) is known as the Wilcoxon statistic. A large value of T+ (or,
equivalently, a small value of T−) means that most of the large deviations from 0 are
positive, and therefore we reject H0 in favor of the alternative, H1 : z1/2 > 0.

A similar analysis applies to the other two alternatives. We record the results as follows:

Test

H0 H1 Reject H0 if

z1/2 = 0 z1/2 > 0 T+ > c1

z1/2 = 0 z1/2 < 0 T+ < c2

z1/2 = 0 z1/2 �= 0 T+ < c3 or T+ > c4
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We now show how the Wilcoxon signed-ranks test statistic is related to the U-statistic
estimate of g2(F) = PF(X1 +X2 > 0). Recall from Example 13.2.6 that the corresponding
U-statistic is

U2(X) =

(
n
2

)−1 ∑
1≤i<j≤n

I[Xi+Xj>0]. (24)

First note that

∑
1≤i≤j≤n

I[Xi+Xj>0] =
n∑

j=1

I[Xj>0]+
∑

1≤i<j≤n

I[Xi+Xj>0]. (25)

Next note that for i < j, X(i)+X(j) > 0 if and only if X(j) > 0 and |X(i)|< |X(j)|. It follows
that

∑j
i=1 I[X(i)+X(j)>0] is the signed-rank of X(j). Consequently,

T+ =

n∑
j=1

j∑
i=1

I[X(i)+X(j)>0] =
∑

1≤i≤j≤n

I[Xi+Xj>0]

=

n∑
j=1

I[Xj>0]+
∑

1≤i<j≤n

I[Xi+Xj>0]

= nU1(X)+

(
n
2

)
U2(X), (26)

where U1 is the U-statistic for g1(F) = PF(X1 > 0).
We next compute the distribution of T+ for small samples. The distribution of T+ is

tabulated by Kraft and Van Eeden [55, pp. 221–223].
Let

Z(i) =

{
1 if the |Xj| that has rank i is > 0

0 otherwise.

Note that T+ = 0 if all differences have negative signs, and T+ = n(n+1)/2 if all differ-
ences have positive signs. Here a difference means a difference between the observations
and the postulated value of the median. T+ is completely determined by the indicators Z(i),
so that the sample space can be considered as a set of 2n n-tuples (z1,z2, . . . ,zn), where
each zi is 0 or 1. Under H0, z1/2 = z0 and each arrangement is equally likely. Thus

PH0{T+ = t}=

{number of ways to assign + or − signs to

integers 1,2, . . . ,n so that the sum is t}
2n

=
n(t)
2n

, say. (27)
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Note that every assignment has a conjugate assignment with plus and minus signs
interchanged so that for this conjugate, T+ is given by

n∑
1

i(1−Z(i)) =
n(n+1)

2
−

n∑
1

iZ(i). (28)

Thus under H0 the distribution of T+ is symmetric about the mean n(n+1)/4.

Example 7. Let us compute the null distribution for n = 3. EH0 T+ = n(n+1)/4 = 3, and
T+ takes values from 0 to n(n+1)/2 = 6:

Ranks Associated with

Value of T+ Positive Differences n(t)

6 1, 2, 3 1

5 2, 3 1

4 1, 3 1

3 1, 2; 3 2

so that

PH0{T+ = t}=

⎧⎪⎨
⎪⎩

1
8 , t = 4,5,6,0,1,2,
2
8 , t = 3,

0, otherwise.

(29)

Similarly, for n = 4, one can show that

PH0{T+ = t}=

⎧⎪⎨
⎪⎩

1
16 , t = 0,1,2,8,9,10,
2

16 , t = 3,4,5,6,7,

0, otherwise.

(30)

An alternative procedure would be to use the MGF technique. Under H0, the RVs iZ(i)

are independent and have the PMF

P{iZ(i) = i}= P{iZ(i) = 0}= 1
2 .

Thus

M(t) = EetT+

=

n∏
i=1

(
eit +1

2

)
. (31)
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We express M(t) as a sum of terms of the form αjejt/2n. The PMF of T+ can then be
determined by inspection. For example, in the case n = 4, we have

M(t) =
4∏

i=1

(
eit +1

2

)
=

(
et +1

2

)(
e2t +1

2

)(
e3t +1

2

)(
e4t +1

2

)

= 1
4 (e

3t + e2t + et +1)

(
e3t +1

2

)(
e4t +1

2

)
(32)

= 1
8 (e

6t + e5t + e4t +2e3t + e2t + et +1)

(
e4t +1

2

)
(33)

= 1
16 (e

10t + e9t + e8t +2e7t +2e6t +2e5t +2e4t +2e3t + e2t + et +1). (34)

This method gives us the PMF of T+ for n = 2, n = 3, and n = 4 immediately. Quite
simply,

PH0{T+ = j}= coefficient of ejt in the expansion of M(t), j = 0,

1, . . . ,n(n+1)/2.

(35)

See Problem 3.3.12 for the PGF of T+.

Example 8. Let us return to the data of Example 5 and test H0 : z1/2 = μ=−1.0 against
H1 : z1/2 >−1.0. Ranking |xi − z1/2| in increasing order of magnitude, we have

0.016 < 0.131 < 0.535 < 0.762 < 1.056 < 1.120 < 1.417 < 1.561

5 4 1 3 7 2 6 8

Thus

r1 = 3, r2 = 6, r3 = 4, r4 = 2,

r5 = 1, r6 = 7, r7 = 5, r8 = 8

and

T+ = 3+6+4+2+7+5+8 = 35.

From Table ST10, H0 is rejected at level α= 0.05 if T+ ≥ 31. Since 35> 31, we reject H0.

Remark 1. The Wilcoxon test statistic can also be used to test for symmetry. Let
X1,X2, . . . ,Xn be iid observations on an RV with absolutely continuous DF F. We set the
null hypothesis as

H0 : z1/2 = z0, and DF F is symmetric about z0.

The alternative is

H1 : z1/2 �= z0 and F symmetric, or F asymmetric.

The test is the same since the null distribution of T+ is the same.



SOME SINGLE-SAMPLE PROBLEMS 597

Remark 2. If we have n independent pairs of observations (X1,Y1),(X2,Y2), , . . . ,(Xn,Yn)
from a bivariate DF, we form the differences Zi = Xi −Yi, i = 1,2, . . . ,n. Assuming that
Z1,Z2, . . . ,Zn are (independent) observations from a population of differences with abso-
lutely continuous DF F that is symmetric with median z1/2, we can use the Wilcoxon
statistic to test H0 : z1/2 = z0.

We present some examples.

Example 9. For the data of Example 10.3.3 let us apply the Wilcoxon statistic to test
H0 : z1/2 = 0 and F is symmetric against H1 : z1/2 �= 0 and F symmetric or F not
symmetric.

The absolute values, when arranged in increasing order of magnitude, are as follows:

0.057 < 0.068 < 0.137 < 0.261 < 0.323 < 0.464 < 0.482 < 0.486 < 0.508 < 0.513

13 5 2 17 4 1 11 15 20 7

< 0.525 < 0.595 < 0.881 < 0.906 < 1.046 < 1.229 < 1.237 < 1.678 < 1.787 < 2.455

8 9 10 6 19 14 18 12 16 3

Thus

r1 = 6, r2 = 3, r3 = 20, r4 = 5, r5 = 2, r6 = 14,

r7 = 10, r8 = 11, r9 = 12, r10 = 13, r11 = 7, r12 = 18,

r13 = 1, r14 = 16, r15 = 8, r16 = 19, r17 = 4, r18 = 17,

r19 = 15, r20 = 9,

and

T+ = 6+3+20+14+12+13+18+17+15 = 118.

From Table ST10 we see that H0 cannot be rejected even at level α= 0.20.

Example 10. Returning to the data of Example 6, we apply the Wilcoxon test to the dif-
ferences Zi = Xi−Yi. The differences are −6, 3, 1, −8, −17, −20, −3, −3, −11, 9. To test
H0 : z1/2 = 0 against H1 : z1/2 �= 0, we rank the absolute values of zi in increasing order to
get

1 < 3 = 3 = 3 < 6 < 8 < 9 < 11 < 17 < 20

and

T+ = 1+2+7 = 10.

Here we have assigned ranks 2, 3, 4 to observations +3, −3, −3. (If we assign rank 4 to
observation 3, then T+ = 12 without appreciably changing the result.)

From Table ST10, we reject H0 at α= 0.05 if either T+ > 46 or T+ < 9. Since T+ > 9
and < 46, we accept H0. Note that hypothesis H0 was also accepted by the sign test.
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For large samples we use the normal approximation. In fact, from (26) we see that
√

n(T+−ET+)(n
2

) =
n3/2(n

2

) (U1 −EU1)+
√

n(U2 −EU2).

Clearly, U1 − EU1
P−→0 and since n3/2

/(n
2

)
→ 0, the first term → 0 in probability as

n →∞. By Slutsky’s theorem (Theorem 7.2.15) it follows that

√
n(n

2

) (T+−ET+) and
√

n(U2 −EU2)

have the same limiting distribution. From Theorem 13.2.3 and Example 13.2.7 it follows
that

√
n(U2 −EU2), and hence (T+ −ET+)

√
n
/(n

2

)
, has a limiting normal distribution

with mean 0 and variance

4ζ1 = 4PF(X1 +X2 > 0,X1 +X3 > 0)−4P2
F(X1 +X2 > 0).

Under H0, the RVs iZ(i) are independent b(1,1/2) so

EH0 T+ =
n(n+1)

4
and varH0 T+ =

(
1
2

)(
1
2

) n∑
i=1

i2 =
n(n+1)(2n+1)

24
.

Also, under H0, F is continuous and symmetric so

PF(X1 +X2 > 0) =
∫ ∞

−∞
PF(X1 >−x)f (x)dx =

1
2

and

PF(X1 +X2 > 0,X1 +X3 > 0) =
∫ ∞

−∞
[PF(X1 >−x)]2f (x)dx =

1
3

Thus 4ζ1 = 4/3−4/4 = 1/3 so that

T+−EH0 T+(n
2

)√
1

3n

L−→N(0,1).

However,

(varH0 T+)1/2(n
2

)√
1

3n

=
[n(n+1)(2n+4)/24]1/2

n(n−1)
2

√
1

3n

→ 1

as n →∞. Consequently, under H0

T+ ∼AN

(
n(n+1)

4
,

n(n+1)(2n+1)
24

)
.
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Thus, for large enough n we can determine the critical values for a test based on T+ by
using normal approximation.

As an example, take n = 20. From Table ST10 the P-value associated with t+ = 140 is
0.10. Using normal approximation

PH0(T
+ > 140)≈ P

(
Z >

140−105
27.45

)
= P(Z > 1.28) = 0.10003

PROBLEMS 13.3

1. Prove Theorem 4.

2. A random sample of size 16 from a continuous DF on [0,1] yields the following
data: 0.59, 0.72, 0.47, 0.43, 0.31, 0.56, 0.22, 0.90, 0.96, 0.78, 0.66, 0.18, 0.73, 0.43,
0.58, 0.11. Test the hypothesis that the sample comes from U[0,1].

3. Test the goodness of fit of normality for the data of Problem 10.3.6, using the
Kolmogorov–Smirnov test.

4. For the data of Problem 10.3.6 find a 0.95 level confidence band for the distribution
function.

5. The following data represent a sample of size 20 from U[0,1]: 0.277, 0.435, 0.130,
0.143, 0.853, 0.889, 0.294, 0.697, 0.940, 0.648, 0.324, 0.482, 0.540, 0.152, 0.477,
0.667, 0.741, 0.882, 0.885, 0.740. Construct a .90 level confidence band for F(x).

6. In Problem 5 test the hypothesis that the distribution is U[0,1]. Take α= 0.05.

7. For the data of Example 2 test, by means of the sign test, the null hypothesis
H0 : μ= 1.5 against H1 : μ �= 1.5.

8. For the data of Problem 5 test the hypothesis that the quantile of order p = 0.20
is 0.20.

9. For the data of Problem 10.4.8 use the sign test to test the hypothesis of no
difference between the two averages.

10. Use the sign test for the data of Problem 10.4.9 to test the hypothesis of no
difference in grade-point averages.

11. For the data of Problem 5 apply the signed-rank test to test H0 : z1/2 = 0.5 against
H1 : z1/2 �= 0.5.

12. For the data of Problems 10.4.8 and 10.4.9 apply the signed-rank test to the
differences to test H0 : z1/2 = 0 against H1 : z1/2 �= 0.

13.4 SOME TWO-SAMPLE PROBLEMS

In this section we consider some two-sample tests. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be
independent samples from two absolutely continuous distribution functions FX and FY ,
respectively. The problem is to test the null hypothesis H0 : FX(x) = FY(x) for all x ∈ R

against the usual one- and two-sided alternatives.
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Tests of H0 depend on the type of alternative specified. We state some of the alternatives
of interest even though we will not consider all of these in this text.

I Location alternative: FY(x) = FX(x−θ), θ �= 0.

II Scale alternative: FY(x) = FX(x/σ), σ > 0.

III Lehmann alternative: FY(x) = 1− [1−FX(x)]θ+1, θ+1 > 0.

IV Stochastic alternative: FY(x)≥ FX(x) for all x, and FY(x)> FX(x) for at least one x.

V General alternative: FY(x) �= FX(x) for some x.

Some comments are in order. Clearly I through IV are special cases of V. Alternatives I
and II show differences in FX and FY in location and scale, respectively. Alternative III
states that P(Y > x) = [P(X > x)]θ+1. In the special case when θ is an integer it states that
Y has the same distribution as the smallest of the θ+1 of X-variables. A similar alternative
to test that is sometimes used is FY(x) = [FX(x)]α for some α > 0 and all x. When α is an
integer, this states that Y is distributed as the largest of the α X-variables. Alternative IV
refers to the relative magnitudes of X’s and Y’s. It states that

P(Y ≤ x)≥ P(X ≤ x) for all x,

so that

P(Y > x)≤ P(X > x), (1)

for all x. In other words, X’s tend to be larger than the Y’s.

Definition 1. We say that a continuous RV X is stochastically larger than a continuous
RV Y if inequality (1) is satisfied for all x with strict inequality for some x.

A similar interpretation may be given to the one-sided alternative FX > FY . In the spe-
cial case where both X and Y are normal RVs with means μ1,μ2 and common variance σ2,
FX = FY corresponds to μ1 = μ2 and FX > FY corresponds to μ1 < μ2

In this section we consider some common two-sample tests for location (Case I) and
stochastic ordering (Case IV) alternatives. First, note that a test of stochastic ordering
may also be used as a test of less restrictive location alternatives since, for example,
FX > FY corresponds to larger Y’s and hence larger location for Y . Second, we note that
the chi-square test of homogeneity described in Section 10.3 can be used to test general
alternatives (Case V) H1 : F(x) �= G(x) for some x. Briefly, one partitions the real line into
Borel sets A1,A2, . . . ,Ak. Let

pi1 = P(Xj ∈ Ai) and pi2 = P(Yj ∈ Ai),

i = 1,2, . . . ,k. Under H0 : F = G, pi1 = pi2, i = 1,2, . . . ,k, which is the problem of testing
equality of two independent multinomial distributions discussed in Section 10.3.

We first consider a simple test of location. This test, based on the sample median of the
combined sample, is a test of the equality of medians of the two DFs. It will tend to accept
H0 : F = G even if the shapes of F and G are different as long as their medians are equal.
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13.4.1 Median Test

The combined sample X1,X2, . . . ,Xm, Y1,Y2, . . . ,Yn is ordered and a sample median is
found. If m+ n is odd, the median is the [(m+ n+ 1)/2]th value in the ordered arrange-
ment. If m+n is even, the median is any number between the two middle values. Let V be
the number of observed values of X that are less than or equal to the sample median for the
combined sample. If V is large, it is reasonable to conclude that the actual median of X is
smaller than the median of Y . One therefore rejects H0 : F =G in favor of H1 : F(x)≥G(x)
for all x and F(x) > G(x) for some x if V is too large, that is, if V ≥ c. If, however, the
alternative is F(x)≤ G(x) for all x and F(x)< G(x) for some x, the median test rejects H0

if V ≤ c.
For the two-sided alternative that F(x) �= G(x) for some x, we use the two-sided test.
We next compute the null distribution of the RV V . If m+n = 2p, p a positive integer,

then

PH0{V = v}= PH0{exactly v of the Xi’s are ≤ combined median}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
m
v

)(
n

p− v

)
(

m+n
p

) , v = 0,1,2, . . . ,m,

0, otherwise.

(2)

Here 0 ≤ V ≤ min(m,p). If m+ n = 2p+ 1, p > 0, is an integer, the [(m+ n+ 1)/2]th
value is the median in the combined sample, and

PH0{V = v}= P{exactly v of the Xi’s are below the (p+1)th value

in the ordered arrangement}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
m
v

)(
n

p− v

)
(

m+n
p

) , v = 0,1, . . . ,min(m,p),

0, otherwise.

(3)

Remark 1. Under H0 we expect (m+n)/2 observations above the median and (m+n)/2
below the median. One can therefore apply the chi-square test with 1 d.f. to test H0 against
the two-sided alternative.

Example 1. The following data represent lifetimes (hours) of batteries for two different
brands:

Brand A: 40 30 40 45 55 30

Brand B: 50 50 45 55 60 40
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The combined ordered sample is 30, 30, 40, 40, 40, 45, 45, 50, 50, 55, 55, 60. Since
m+n = 3 is even, the median is 45. Thus

v = number of observed values of X that are less than or equal to 45

= 5.

Now

PH0{V ≥ 5}=

(
6
5

)(
6
1

)
(

12
6

) +

(
6
6

)(
6
0

)
(

12
6

) ≈ 0.04.

Since PH0{V ≥ 5}> 0.025, we cannot reject H0 that the two samples come from the same
population.

We now consider two tests of the stochastic alternatives. As mentioned earlier they may
also be used as tests of location.

13.4.2 Kolmogorov–Smirnov Test

Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent random samples from continuous DFs
F and G, respectively. Let F∗

m and G∗
n , respectively, be the empirical DFs of the X’s and

the Y’s. Recall the F∗
m is the U-statistic for F and G∗

n , that for G. Under H0 : F(x) = G(x)
for all x, we expect a reasonable agreement between the two sample DFs. We define

Dm,n = sup
x

|F∗
m(x)−G∗

n(x)|. (4)

Then Dm,n may be used to test H0 against the two-sided alternative H1 : F(x) �= G(x) for
some x. The test rejects H0 at level α if

Dm,n ≥ Dm,n,α, (5)

where PH0{Dm,n ≥ Dm,n,α} ≤ α.
Similarly, one can define the one-sided statistics

D+
m,n = sup

x
[F∗

m(x)−G∗
n(x)] (6)

and

D−
m,n = sup

x
[G∗

n(x)−F∗
m(x)], (7)

to be used against the one-sided alternatives

G(x)≤ F(x) for all x and G(x)< F(x) for some x

with rejection region D+
m,n ≥ D+

m,n,α

(8)
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and

F(x)≤ G(x) for all x and F(x)< G(x) for some x

with rejection region D−
m,n ≥ D−

m,n,α,
(9)

respectively.
For small samples tables due to Massey [72] are available. In Table ST9, we give the

values of Dm,n,α and D+
m,n,α for some selected values of m, n, and α. Table ST8 gives the

corresponding values for the m = n case.
For large samples we use the limiting result due to Smirnov [107]. Let N =mn/(m+n).

Then

lim
m,n→∞

P{
√

N D+
m,n ≤ λ}=

{
1− e−2λ2

, λ > 0,

0, λ≤ 0,
(10)

lim
m,n→∞

P{
√

N Dm,n ≤ λ}=

⎧⎪⎨
⎪⎩

∞∑
j=−∞

(−1)je−2j2λ2

, λ > 0,

0, λ≤ 0.

(11)

Relations (10) and (11) give the distribution of D+
m,n and Dm,n, respectively, under

H0 : F(x) = G(x) for all x ∈ R.

Example 2. Let us apply the test to data from Example 1. Do the two brands differ with
respect to average life?

Let us first apply the Kolmogorov–Smirnov test to test H0 that the population distribu-
tion of length of life for the two brands is the same.

x F∗
6 (x) G∗

6(x) |F∗
6 (x)−G∗

6(x)|

30 2
6 0 2

6

40 4
6

1
6

3
6

45 5
6

2
6

3
6

50 5
6

4
6

1
6

55 1 5
6

1
6

60 1 1 0

D6,6 = supx |F∗
6 (x)−G∗

6(x)|=
3
6
.

From Table ST8, the critical value for m = n = 6 at level α = 0.05 is D6,6,0.05 = 4
6 .

Since D6,6 �> D6,6,0.05, we accept H0 that the population distribution for the length of life
for the two brands is the same.
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Let us next apply the two-sample t-test. We have x = 40, y = 50, s2
1 = 90, s2

2 = 50,
s2

p = 70. Thus

t =
40−50

√
70
√

1
6 +

1
6

=−2.08.

Since t10,0.025 = 2.2281, we accept the hypothesis that the two samples come from the
same (normal) population.

The second test of stochastic ordering alternatives we consider is the Mann–Whitney–
Wilcoxon test which can be viewed as a test based on a U-statistic.

13.4.3 The Mann–Whitney–Wilcoxon Test

Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be independent samples from two continuous DFs,
F and G, respectively. As in Example 13.2.10, let

T(Xi;Yj) =

{
1, if Xi < Yj

0, if Xi ≥ Yj,

for i = 1,2, . . . ,m, j = 1,2, . . . ,n. Recall that T(Xi;Yj) is an unbiased estimator of
g(F,G) = PF,G(X < Y) and the two sample U-statistic for g is given by U1(X;Y) =
(m,n)−1∑m

i=1

∑n
j=1 T(Xi;Yj). For notational convenience, let us write

U = mnU1(X;Y) =

m∑
i=1

n∑
j=1

T(Xi;Yj). (12)

Then U is the number of values of X1,X2, . . . ,Xm that are smaller than each of Y1,Y2, . . . ,Yn.
The statistic U is called the Mann–Whitney statistic. An alternative equivalent form using
Wilcoxon scores is the linear rank statistic given by

W =

n∑
j=1

Qj, (13)

where Qj = rank of Yj among the combined m+n observations. Indeed,

Qj = rank of Yj = (# of Xi’s < Yj)+ rank of Yj in Y’s.

Thus

W =

n∑
j=1

Qj = U+

n∑
j=1

j = U+
n(n+1)

2
(14)

so that U and W are equivalent test statistics. Hence the name Mann–Whitney–Wilcoxon
Test. We will restrict attention to U as the test statistic.
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Example 3. Let m = 4, n = 3, and suppose that the combined sample when ordered is as
follows:

x2 < x1 < y3 < y2 < x4 < y1 < x3.

Then U = 7, since there are three values of x < y1, two values of x < y2, and two values
of x < y3. Also, W = 13 so U = 13−3(4)/2 = 7.

Note that U = 0 if all the Xi’s are larger than all the Yj’s and U = mn if all the Xi’s are
smaller than all the Yj’s, because then there are m X’s < Y1, m X’s < Y2, and so on. Thus
0 ≤ U ≤ mn. If U is large, the values of Y tend to be larger than the values of X (Y is
stochastically larger than X), and this supports the alternative F(x) ≥ G(x) for all x and
F(x)> G(x) for some x. Similarly, if U is small, the Y values tend to be smaller than the X
values, and this supports the alternative F(x)≤ G(x) for all x and F(x)< G(x) for some x.
We summarize these results as follows:

H0 H1 Reject H0 if

F = G F ≥ G U ≥ c1

F = G F ≤ G U ≤ c2

F = G F �= G U ≥ c3 or U ≤ c4

To compute the critical values we need the null distribution of U. Let

pm,n(u) = PH0{U = u}. (15)

We will set up a difference equation relating pm,n to pm−1,n and pm,n−1. If the observations
are arranged in increasing order of magnitude, the largest value can be either an x value or
a y value. Under H0, all m+n values are equally likely, so the probability that the largest
value will be an x value is m/(m+n) and that it will be a y value is n/(m+n).

Now, if the largest value is an x, it does not contribute to U, and the remaining m− 1
values of x and n values of y can be arranged to give the observed value U = u with
probability pm−1,n(u). If the largest value is a Y , this value is larger than all the m x’s. Thus,
to get U = u, the remaining n−1 values of Y and m values of x contribute U = u−m. It
follows that

pm,n(u) =
m

m+n
pm−1,n(u)+

n
m+n

pm,n−1(u−m). (16)

If m = 0, then for n ≥ 1

p0,n(u) =

{
1 if u = 0,

0 if u > 0.
(17)
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If n = 0, m ≥ 1, then

pm,0(u) =

{
1 if u = 0,

0 if u > 0,
(18)

and

pm,n(u) = 0 if u < 0, m ≥ 0, n ≥ 0. (19)

For small values of m and n one can easily compute the null PMF of U. Thus, if m =
n = 1, then

p1,1(0) = 1
2 , p1,1(1) = 1

2 .

If m = 1, n = 2, then

p1,2(0) = p1,2(1) = p1,2(2) = 1
3 .

Tables for critical values are available for small values of m and n, m ≤ n. See, for
example, Auble [3] or Mann and Whitney [71]. Table ST11 gives the values of uα for
which PH0{U > uα} ≤ α for some selected values of m, n, and α.

If m,n are large we can use the asymptotic normality of U. In Example 13.2.11 we
showed that, under H0,

U/(mn)− 1
2√

(m+n+1)/(12mn)

L−→N(0,1)

as m,n → ∞ such that m/(m + n) → constant. The approximation is fairly good for
m,n ≥ 8.

Example 4. Two samples are as follows:

Values of Xi: 1,2,3,5,7,9,11,18

Values of Yi: 4,6,8,10,12,13,14,15,19

Thus m = 8, n = 9, and U = 3+ 4+ 5+ 6+ 7+ 7+ 7+ 7+ 8 = 54. The (exact) p-value
PH0(U ≥ 54) = 0.046, so we reject H0 at (two-tailed) level α = 0.1. Let us apply the
normal approximation. We have

EH0 U =
8 ·9

2
= 36, varH0(U) =

8 ·9
12

(8+9+1) = 108,

and

Z =
54−36√

108
=

18

6
√

3
=
√

3 = 1.732.

We note that P(Z > 1.73) = 0.042.
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PROBLEMS 13.4

1. For the data of Example 4 apply the median test.

2. Twelve 4-year-old boys and twelve 4-year-old girls were observed during two
15-minute play sessions, and each child’s play during these two periods was scored
as follows for incidence and degree of aggression:

Boys: 86,69,72,65,113,65,118,45,141,104,41,50

Girls: 55,40,22,58,16,7,9,16,26,36,20,15

Test the hypothesis that there were sex differences in the amount of aggression
shown, using (a) the median test and (b) the Mann-Whitney-Wilcoxon test (Siegel
[105]).

3. To compare the variability of two brands of tires, the following mileages (1000
miles) were obtained for eight tires of each kind:

Brand A: 32.1,20.6,17.8,28.4,19.6,21.4,19.9,30.1

Brand B: 19.8,27.6,30.8,27.6,34.1,18.7,16.9,17.9

Test the null hypothesis that the two samples come from the same population, using
the Mann–Whitney–Wilcoxon test.

4. Use the data of Problem 2 to apply the Kolmogorov–Smirnov test.

5. Apply the Kolmogorov–Smirnov test to the data of Problem 3.

6. Yet another test for testing H0 : F = G against general alternatives is the so-called
runs test. A run is a succession of one or more identical symbols which are pre-
ceeded and followed by a different symbol (or no symbol). The length of a run
is the number of like symbols in a run. The total number of runs, R, in the com-
bined sample of X’s and Y’s when arranged in increasing order can be used as a
test of H0. Under H0 the X and Y symbols are expected to be well-mixed. A small
value of R supports H1 : F �= G. A test based on R is appropriate only for two-sided
(general) alternatives. Tables of critical values are available. For large samples, one
uses normal approximation: R ∼AN

(
1+ 2mn

m+n ,
2mn(2mn−m−n)
(m+n−1)(m+n)2

)
.

(a) Let R1 = # of X-runs, R2 =#Y-runs, and R = R1 +R2. Under H0, show that

P(R1 = r1,R2 = r2) = k

(m−1
r1−1

)( n−1
r2−1

)
(m+n

m

) ,

where k = 2 if r1 = r2, = 1 if |r1 − r2|= 1, r1 = 1,2, . . . ,m and r2 = 1,2, . . . ,n.

(b) Show that

PH0(R1 = r1) =

(m−1
r1−1

)(n+1
r1

)
(m+n

m

) , 0 ≤ r1 ≤ m.
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7. Fifteen 3-year-old boys and 15 3-year-old girls were observed during two sessions
of recess in a nursery school. Each child’s play was scored for incidence and degree
of aggression as follows:

Boys: 96 65 74 78 82 121 68 79 111 48 53 92 81 31 40

Girls: 12 47 32 59 83 14 32 15 17 82 21 34 9 15 51

Is there evidence to suggest that there are sex differences in the incidence and amount
of aggression? Use both Mann–Whitney–Wilcoxon and runs tests.

13.5 TESTS OF INDEPENDENCE

Let X and Y be two RVs with joint DF F(x,y), and let F1 and F2, respectively, be
the marginal DFs of X and Y . In this section we study some tests of the hypothesis of
independence, namely,

H0 : F(x,y) = F1(x)F2(y) for all (x,y) ∈ R2

against the alternative

H1 : F(x,y) �= F1(x)F2(y) for some (x,y).

If the joint distribution function F is bivariate normal, we know that X and Y are indepen-
dent if and only if the correlation coefficient ρ= 0. In this case, the test of independence
is to test H0 : ρ= 0.

In the nonparametric situation the most commonly used test of independence is the
chi-square test, which we now study.

13.5.1 Chi-square Test of Independence—Contingency Tables

Let X and Y be two RVs, and suppose that we have n observations on (X,Y). Let us
divide the space of values assumed by X (the real line) into r mutually exclusive inter-
vals A1,A2, . . . ,Ar. Similarly, the space of values of Y is divided into c disjoint intervals
B1,B2, . . . ,Bc. As a rule of thumb, we choose the length of each interval in such a way
that the probability that X(Y) lies in an interval is approximately (1/r)(1/c). Moreover,
it is desirable to have n/r and n/c at least equal to 5. Let Xij denote the number of pairs
(Xk,Yk), k = 1,2, . . . ,n, that lie in Ai ×Bj, and let

pij = P{(X,Y) ∈ Ai ×Bj}= P{X ∈ Ai and Y ∈ Bj}, (1)

where i = 1,2, . . . ,r, j = 1,2, . . . ,c. If each pij is known, the quantity

r∑
i=1

c∑
j=1

[
(Xij −npij)

2

npij

]
(2)
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has approximately a chi-square distribution with rc− 1 d.f., provided that n is large (see
Theorem 10.3.2.). If X and Y are independent, P{(X,Y)∈Ai×Bj}=P{X ∈Ai}P{Y ∈ Bj}.
Let us write pi· = P{X ∈ Ai} and p·j = P{Y ∈ Bj}. Then under H0 : pij = pi·p·j, i =
1,2, . . . ,r, j = 1,2, . . . ,c. In practice, pij will not be known. We replace pij by their
estimates. Under H0, we estimate pi· by

p̂i· =

∑c
j=1 Xij

n
, i = 1,2, . . . ,r, (3)

and p·j by

p̂·j =
r∑

i=1

Xij

n
, j = 1,2, . . . ,c. (4)

Since
∑c

j=1 p̂·j = 1 =
∑r

1 p̂i·, we have estimated only r−1+c−1 = r+c−2 parameters.
It follows (see Theorem 10.3.4) that the RV

U =

r∑
i=1

c∑
j=1

[
(Xij −np̂i·p̂·j)2

np̂i·p̂·j

]
(5)

is asymptotically distributed as χ2 with rc−1−(r+c−2) = (r−1)(c−1) d.f., under H0.
The null hypothesis is rejected if the computed value of U exceeds χ2

(r−1)(c−1),α.
It is frequently convenient to list the observed and expected frequencies of the rc events

Ai ×Bj in an r× c table, called a contingency table, as follows:

Observed Frequencies, Oij

B1 B2 · · ·Bc

A1 X11 X12 · · ·X1c
∑

X1j

A2 X21 X22 · · ·X2c
∑

X2j

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

Ar Xr1 Xr2 · · ·Xrc
∑

Xrj∑
Xi1

∑
Xi2

∑
Xic n

Expected Frequencies, Eij

B1 B2 · · · Bc

A1 np1·p·1 np1·p·2 · · ·np1·p·c np1·

A2 np2·p·1 np2·p·2 · · ·np2·p·c np2·

· · · · · ·
· · · · · ·
· · · · · ·

Ar npr·p·1 npr·p·2 · · ·npr·p·c npr·

np·1 np·2 np·c n

Note that the Xij’s in the table are frequencies. Once the category Ai ×Bj is determined
for an observation (X,Y), numerical values of X and Y are irrelevant. Next, we need to
compute the expected frequency table. This is done quite simply by multiplying the row
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and column totals for each pair (i, j) and dividing the product by n. Then we compute the
quantity

∑
i

∑
j

(Eij −Oij)
2

Eij

and compare it with the tabulated χ2 value. In this form the test can be applied even to
qualitative data. A1,A2, . . . ,Ar and B1,B2, . . . ,Bc represent the two attributes, and the null
hypothesis to be tested is that the attributes A and B are independent.

Example 1. The following are the results for a random sample of 400 employed
individuals:

Annual Income (dollars)Length of time

(years) with the Less than More than

Same Company 40,000 40,000–75,000 75,000 Total

< 5 50 75 25 150

5–10 25 50 25 100

10 or more 25 75 50 150

100 200 100 400

If X denotes the length of service with the same company, and Y , the annual income we
wish to test the hypothesis that X and Y are independent. The expected frequencies are as
follows:

Expected FrequenciesTime (years)

with the Same

Company <40,000 40–75,000 ≥75,000 Total

<5 37.5 75 37.5 150

5–10 25 50 25 100

≥10 37.5 75 37.5 150

100 200 100 400

Thus

U =
(12.5)2

37.5
+

0
25

+
(12.5)2

37.5
+0+0+0+

(12.5)2

37.5
+0+

(12.5)2

37.5
= 16.66.

The number of degrees of freedom is (3 − 1)(3 − 1) = 4, and χ2
4,0.05 = 9.488. Since

16.66 > 9.488, we reject H0 at level 0.05 and conclude that length of service with a
company is not independent of annual income.
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13.5.2 Kendall’s Tau

Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate population.

Definition 1. For any two pairs (Xi,Yi) and (Xj,Yj) we say that the relation is perfect
concordance (or agreement) if

Xi < Xj whenever Yi < Yj or Xi > Xj whenever Yi > Yj (6)

and that the relation is perfect discordance (or disagreement) if

Xi > Xj whenever Yi < Yj or Xi < Xj whenever Yi > Yj. (7)

Writing πc and πd for the probability of perfect concordance and of perfect discordance,
respectively, we have

πc = P{(Xj −Xi)(Yj −Yi)> 0} (8)

and

πd = P{(Xj −Xi)(Yj −Yi)< 0}, (9)

and, if the marginal distributions of X and Y are continuous,

πc = [P{Yi < Yj}−P{Xi > Xj and Yi < Yj}]
+ [P{Yi > Yj}−P{Xi < Xj and Yi > Yj}]

= 1−πd. (10)

Definition 2. The measure of association between the RVs X and Y defined by

τ = πc −πd (11)

is known as Kendall’s tau.

If the marginal distributions of X and Y are continuous, we may rewrite (11), in view
of (10), as follows:

τ = 1−2πd = 2πc −1. (12)

In particular, if X and Y are independent and continuous RVs, then

P{Xi < Xj}= P{Xi > Xj}= 1
2 ,

since then Xi −Xj is a symmetric RV. Then

πc = P{Xi < Xj}P{Yi < Yj}+P{Xi > Xj}P{Yi > Yj}
= P{Xi > Xj}P{Yi < Yj}+P{Xi < Xj}P{Yi > Yj}
= πd,

and it follows that τ = 0 for independent continuous RVs.
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Note that, in general, τ = 0 does not imply independence. However, for the bivariate
normal distribution τ = 0 if and only if the correlation coefficient ρ, between X and Y ,
is 0, so that τ = 0 if and only if X and Y are independent (Problem 6).

Let

ψ ((x1,y1),(x2,y2)) =

{
1, (y2 − y1)(x2 − x1)> 0,

0, otherwise.
(13)

Then Eψ ((X1,Y1),(X2,Y2)) = τc = (1+τ)/2, and we see that τc is estimable of degree 2,
with symmetric kernel ψ defined in (13). The corresponding one-sample U-statistic is
given by

U ((X1,Y1), . . . ,(Xn,Yn)) =

(
n
2

)−1 ∑
1≤i<j≤n

ψ ((Xi,Yi),(Xj,Yj)) . (14)

Then the corresponding estimator of Kendall’s tau is

T = 2U−1 (15)

and is called Kendall’s sample correlation coefficient.
Note that −1 ≤ T ≤ 1. To test H0 that X and Y are independent against H1 : X and Y

are dependent, we reject H0 if |T| is large. Under H0, τ = 0, so that the null distribution of
T is symmetric about 0. Thus we reject H0 at level α if the observed value of T , t, satisfies
|t|> tα/2, where P{|T| ≥ tα/2 | H0}= α.

For small values of n the null distribution can be directly evaluated. Values for 4 ≤
n ≤ 10 are tabulated by Kendall [51]. Table ST12 gives the values of Sα for which
P{S > Sα} ≤ α, where S =

(n
2

)
T for selected values of n and α.

For a direct evaluation of the null distribution we note that the numerical value of T is
clearly invariant under all order-preserving transformations. It is therefore convenient to
order X and Y values and assign them ranks. If we write the pairs from the smallest to the
largest according to, say, X values, then the number of pairs of values of 1 ≤ i < j ≤ n for
which Yj −Yi > 0 is the number of concordant pairs, P.

Example 2. Let n = 4, and let us find the null distribution of T . There are 4! different
permutations of ranks of Y:

Ranks of X values: 1 2 3 4

Ranks of Y values: a1 a2 a3 a4

where (a1,a2,a3,a4) is one of the 24 permutations of 1,2,3,4. Since the distribution is
symmetric about 0, we need only compute one half of the distribution.
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P T Number of Permutations PH0{T = t}
0 −1.00 1 1

24

1 −0.67 3 3
24

2 −0.33 5 5
24

3 0.00 6 6
24

Similarly, for n = 3 the distribution of T under H0 is as follows:

P T Number of Permutations PH0{T = t}
0 −1.00 1 : (3,2,1) 1

6

1 −0.33 2 : (2,3,1),(3,1,2) 2
6

Example 3. Two judges rank four essays as follows:

Essay

Judge 1 2 3 4

1,X 3 4 2 1

2,Y 3 1 4 2

To test H0 : rankings of the two judges are independent, let us arrange the rankings of the
first judge from 1 to 4. Then we have:

Judge 1,X: 1 2 3 4

Judge 2,Y: 2 4 3 1

P = number of pairs of rankings for Judge 2 such that for j > i, Yj −Yi > 0 = 2 [the pairs
(2,4) and (2,3)], and

t =
2 ·2(

4
2

) −1 =−0.33.

Since

PH0{|T| ≥ 0.33}= 18
24

= 0.75,

we cannot reject H0.

For large n we can use an extension of Theorem 13.3.3 to bivariate case to conclude
that

√
n(U− τc)

L−→N(0,4ζ1), where

ζ1 = cov{ψ ((X1,Y1),(X2,Y2)) ,ψ ((X1,Y1),(X3,Y3))} .
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Under H0, it can be shown that

3
√

n(n−1)√
2(2n+5)

T
L−→N(0,1).

See, for example, Kendall [51], Randles and Wolfe [85], or Gibbons [35]. Approximation
is good for n ≥ 8.

13.5.3 Spearman’s Rank Correlation Coefficient

Let (X1,Y1),(X2,Y2), . . . ,(Xn,Yn) be a sample from a bivariate population. In Section 6.3
we defined the sample correlation coefficient by

R =

∑n
i=1(Xi −X)(Yi −Y){∑n

i=1(Xi −X)2
∑n

i=1(Yi −Y)2
}1/2

, (16)

where

X = n−1
n∑

i=1

Xi and Y = n−1
n∑

i=1

Yi.

If the sample values X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are each ranked from 1 to n in
increasing order of magnitude separately, and if the X’s and Y’s have continuous DFs, we
get a unique set of rankings. The data will then reduce to n pairs of rankings. Let us write

Ri = rank(Xi) and Si = rank(Yi)

then Ri and Si ∈ {1,2, . . . ,n}. Also,

n∑
1

Ri =
n∑
1

Si =
n(n+1)

2
, (17)

R = n−1
n∑
1

Ri =
n+1

2
, S = n−1

n∑
1

Si =
n+1

2
, (18)

and

n∑
1

(Ri −R)2 =
n∑
1

(Si −S)2 =
n(n2 −1)

12
. (19)

Substituting in (16), we obtain

R =
12
∑n

i=1(Ri −R)(Si −S)

n3 −n

=
12
∑n

1 RiSi

n(n2 −1)
− 3(n+1)

n−1
. (20)
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Writing Di = Ri −Si = (Ri −R)− (Si −S), we have

n∑
i=1

D2
i =

n∑
i=1

(Ri −R)2 +
n∑

i=1

(Si −S)2 −2
n∑

i=1

(Ri −R)(Si −S)

=
1
6

n(n2 −1)−2
n∑

i=1

(Ri −R)(Si −S),

and it follows that

R = 1− 6
∑n

i=1 D2
i

n(n2 −1)
. (21)

The statistic R defined in (20) and (21) is called Spearman’s rank correlation coefficient
(see also Example 4.5.2).

From (20) we see that

ER =
12

n(n2 −1)
E

(
n∑

i=1

RiSi

)
− 3(n+1)

n−1

=
12

n2 −1
E(RiSi)−

3(n+1)
n−1

. (22)

Under H0, the RVs X and Y are independent, so that the ranks Ri and Si are also
independent. It follows that

EH0(RiSi) = ERiESi =

(
n+1

2

)2

and

EH0 R =
12

n2 −1

(
n+1

2

)2

− 3(n+1)
n−1

= 0. (23)

Thus we should reject H0 if the absolute value of R is large, that is, reject H0 if

|R|> Rα, (24)

where PH0{|R| > Rα} ≤ α. To compute Rα we need the null distribution of R. For this
purpose it is convenient to assume, without loss of generality, that Ri = i, i = 1,2, . . . ,n.
Then Di = i−Si, i = 1,2, . . . ,n. Under H0, X and Y being independent, the n! pairs (i,Si)
of ranks are equally likely. It follows that

PH0{R = r}= (n!)−1 × (number of pairs for which R = r) (25)

=
nr

n!
, say.

Note that −1 ≤ R ≤ 1, and the extreme values can occur only when either the rankings
match, that is, Ri = Si, in which case R = 1, or Ri = n+ 1− Si, in which case R = −1.
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Moreover, one need compute only one half of the distribution, since it is symmetric about 0
(Problem 7).

In the following example we will compute the distribution of R for n = 3 and 4. The
exact complete distribution of

∑n
i=1 D2

i , and hence R, for n ≤ 10 has been tabulated by
Kendall [51]. Table ST13 gives the values of Rα for some selected values of n and α.

Example 4. Let us first enumerate the null distribution of R for n = 3. This is done in the
following table:

(s1,s2,s3)

n∑
i=1

isi r =
12
∑n

1 isi

n(n2 −1)
− 3(n+1)

n−1

(1,2,3) 14 1.0

(1,3,2) 13 0.5

(2,1,3) 13 0.5

Thus

PH0{R = r}=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6 , r = 1.0,
2
6 , r = 0.5,
2
6 , r =−0.5,
1
6 , r =−1.0.

Similarly, for n = 4 we have the following:

(s1,s2,s3,s4)

n∑
1

isi r nr PH0{R = r}

(1,2,3,4) 30 1 1 1
24{

(1,3,2,4),(2,1,3,4)

(1,2,4,3)
29 0.8 3 3

24

(2,1,4,3) 28 0.6 1 1
24{

(1,3,4,2),(1,4,2,3),(2,3,1,4)

(3,1,2,4)
27 0.4 4 4

24

(1,4,3,2),(3,2,1,4) 26 0.2 2 2
24

25 0.0 2 2
24

The last value is obtained from symmetry.

Example 5. In Example 3, we see that

r =
12×23
4×15

− 3×5
3

=−0.4.
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Since PH0{|R| ≥ 0.4}= 18/24 = 0.75, we cannot reject H0 at α= 0.05 or α= 0.10.

For large samples it is possible to use a normal approximation. It can be shown (see,
e.g., Fraser [32, pp. 247–248]) that under H0 the RV

Z =

(
12

n∑
i=1

RiSi −3n3

)
n−5/2

or, equivalently,

Z = R
√

n−1

has approximately a standard normal distribution. The approximation is good for n ≥ 10.

PROBLEMS 13.5

1. A sample of 240 men was classified according to characteristics A and B. Char-
acteristic A was subdivided into four classes A1, A2, A3, and A4, while B was
subdivided into three classes B1, B2, and B3, with the following result:

A1 A2 A3 A4

B1 12 25 32 11 80

B2 17 18 22 23 80

B3 21 17 16 26 80

50 60 70 60 240

Is there evidence to support the theory that A and B are independent?

2. The following data represent the blood types and ethnic groups of a sample of Iraqi
citizens:

Blood Type

Ethnic Group O A B AB

Kurd 531 450 293 226

Arab 174 150 133 36

Jew 42 26 26 8

Turkoman 47 49 22 10

Ossetian 50 59 26 15

Is there evidence to conclude that blood type is independent of ethnic group?

3. In a public opinion poll, a random sample of 500 American adults across the coun-
try was asked the following question: “Do you believe that there was a concerted
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effort to cover up the Watergate scandal? Answer yes, no, or no opinion.” The
responses according to political beliefs were as follows:

ResponsePolitical

Affiliation Yes No No Opinion

Republican 45 75 30 150

Independent 85 45 20 150

Democrat 140 30 30 200

270 150 80 500

Test the hypothesis that attitude toward the Watergate cover-up is independent of
political party affiliation.

4. A random sample of 100 families in Bowling Green, Ohio, showed the following
distribution of home ownership by family income:

Annual Income (dollars)

Residential Less than 30,000– 50,000

Status 30,000 50,000 or Above

Home Owner 10 15 30

Renter 8 17 20

Is home ownership in Bowling Green independent of family income?

5. In a flower show the judges agreed that five exhibits were outstanding, and these
were numbered arbitrarily from 1 to 5. Three judges each arranged these five
exhibits in order of merit, giving the following rankings:

Judge A: 5 3 1 2 4

Judge B: 3 1 5 4 2

Judge C: 5 2 3 1 4

Compute the average values of Spearman’s rank correlation coefficient R and
Kendall’s sample tau coefficient T from the three possible pairs of rankings.

6. For the bivariate normally distributed RV (X,Y) show that τ = 0 if and only if X and
Y are independent. [Hint: Show that τ = (2/π)sin−1 ρ, where ρ is the correlation
coefficient between X and Y .]

7. Show that the distribution of Spearman’s rank correlation coefficient R is symmet-
ric about 0 under H0.

8. In Problem 5 test the null hypothesis that rankings of judge A and judge C are
independent. Use both Kendall’s tau and Spearman’s rank correlation tests.
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9. A random sample of 12 couples showed the following distribution of heights:

Height (in.) Height (in.)

Couple Husband Wife Couple Husband Wife

1 80 72 7 74 68

2 70 60 8 71 71

3 73 76 9 63 61

4 72 62 10 64 65

5 62 63 11 68 66

6 65 46 12 67 67

(a) Compute T .

(b) Compute R.

(c) Test the hypothesis that the heights of husband and wife are independent, using
T as well as R. In each case use the normal approximation.

13.6 SOME APPLICATIONS OF ORDER STATISTICS

In this section we consider some applications of order statistics. We are mainly inter-
ested in three applications, namely, tolerance intervals for distributions, coverages, and
confidence interval estimates for quantiles and location parameters.

Definition 1. Let F be a continuous DF. A tolerance interval for F with tolerance coeffi-
cient γ is a random interval such that the probability is γ that this random interval covers
at least a specific percentage (100p) of the distribution.

Let X1,X2, . . . ,Xn be a sample of size n from F, and let X(1),X(2), . . . ,X(n) be the cor-
responding set of order statistics. If the end points of the tolerance interval are two-order
statistics X(r),X(s), r < s, we have

P{P{X(r) < X < X(s)} ≥ p}= γ. (1)

Since F is continuous, F(X) is U(0,1), and we have

P{X(r) < X < X(s)}= P{X < X(s)}−P{X ≤ X(r)}
= F(X(s))−F(X(r))

= U(s)−U(r), (2)

where U(r),U(s) are the order statistics from U(0,1). Thus (1) reduces to

P{U(s)−U(r) ≥ p}= γ. (3)
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The statistic V = U(s) − U(r), 1 ≤ r < s ≤ n, is called the coverage of the interval
(X(r),X(s)). More precisely, the differences Vk = F(X(k))−F(X(k−1)) = U(k)−U(k−1), for
k = 1,2, . . . ,n+1, where U(0) =−∞ and U(n+1) = 1, are called elementary coverages.

Since the joint PDF of U(1),U(2), . . . ,U(n) is given by

f (u1,u2, . . . ,un) =

{
n!, 0 < u1 < u2 < · · ·< un,

0, otherwise,

the joint PDF of V1,V2, . . . ,Vn is easily seen to be

h(v1,v2, . . . ,vn) =

{
n!, vi ≥ 0, i = 1,2, . . . ,n,

∑n
1 vi ≤ 1

0, otherwise.
(4)

Note that h is symmetric in its arguments. Consequently, Vi’s are exchangeable RVs and
the distribution of every sum of r, r < n, of these coverages is the same and, in particular,
it is the distribution of U(r) =

∑r
j=1 Vj, namely,

gr(u) =

{
n
(n−1

r−1

)
ur−1(1−u)n−r, 0 < u < 1

0, otherwise.
(5)

The common distribution of elementary coverages is

g1(u) = n(1−u)n−1, 0 < u < 1, = 0, otherwise.

Thus EVi = 1/(n+1) and
∑r

i=1 EVi = r/(n+1). This may be interpreted as follows:
The order statistics X(1),X(2), . . . ,X(n) partition the area under the PDF in n+1 parts such
that each part has the same average (expected) area.

The sum of any r successive elementary coverages Vi+1,Vi+1, . . . ,Vi+r is called an
r-coverage. Clearly

r∑
j=1

Vi+j = U(i+r)−U(i), i+ r ≤ n, (6)

and, in particular, U(s)−U(r) =
∑s

j=r+1 Vj. Since V’s are exchangeable it follows that

U(s)−U(r)
d
=U(s−r) (7)

with PDF

gs−r(u) = n

(
n−1

s− r−1

)
us−r−1(1−u)n−s+r, 0 < u < 1.

From (3), therefore,

γ =

∫ 1

p
gs−r(u)du =

s−r−1∑
i=0

(
n
i

)
pi(1−p)n−i, (8)
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where the last equality follows from (5.3.48). Given n, p, γ it may not always be possible
to find s− r to satisfy (8).

Example 1. Let s = n and r = 1. Then

γ =

n−2∑
i=0

(
n
i

)
pi(1−p)n−i = 1−pn −npn−1(1−p).

If p = 0.8, n = 5, r = 1, then

γ = 1− (0.8)5 −5(0.8)4(0.2) = 0.263.

Thus the interval (X(1),X(5)) in this case defines a 26 percent tolerance interval for 0.80
probability under the distribution (of X).

Example 2. Let X1,X2,X3,X4,X5 be a sample from a continuous DF F. Let us find r and s,
r < s, such that (X(r),X(s)) is a 90 percent tolerance interval for 0.50 probability under F.
We have

0.90 = P

{
U ≥ 1

2

}
=

s−r−1∑
i=0

(
5
i

)(
1
2

)5

.

It follows that, if we choose s− r = 4, then γ = 0.81; and if we choose s− r = 5, then
γ = 0.969. In this case, we must settle for an interval with tolerance coefficient 0.969,
exceeding the desired value 0.90.

In general, given p, 0 < p < 1, it is possible to choose a sufficiently large sample of
size n and a corresponding value of s− r such that with probability ≥ γ an interval of the
form (X(r),X(s)) covers at least 100p percent of the distribution. If s− r is specified as a
function of n, one chooses the smallest sample size n.

Example 3. Let p = 3
4 and γ = 0.75. Suppose that we want to choose the smallest sample

size required such that (X(2),X(n)) covers at least 75 percent of the distribution. Thus we
want the smallest n to satisfy

0.75 ≤
n−3∑
i=0

(
n
i

)(
3
4

)i(1
4

)n−i

.

From Table ST1 of binomial distributions we see that n = 14.

We next consider the use of order statistics in constructing confidence intervals for
population quantiles. Let X be an RV with a continuous DF F, 0< p< 1. Then the quantile
of order p satisfies

F(zp) = p. (9)
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Let X1,X2, . . . ,Xn be n independent observations on X. Then the number of Xi’s < zp is an
RV that has a binomial distribution with parameters n and p. Similarly, the number of Xi’s
that are at least zp has a binomial distribution with parameters n and 1−p.

Let X(1),X(2), . . . ,X(n) be the set of order statistics for the sample. Then

P{X(r) ≤ zp}= P{At least r of the Xi’s ≤ zp}

=

n∑
i=r

(
n
i

)
pi(1−p)n−i. (10)

Similarly

P{X(s) ≥ zp}= P{At least n− s+1 of the Xi’s ≥ zp}
= P{At most s−1 of the Xi’s < zp}

=

s−1∑
i=0

(
n
i

)
pi(1−p)n−i. (11)

It follows from (10) and (11) that

P{X(r) ≤ zp ≤ X(s)}= P{X(s) ≥ zp}−P{X(r) > zp}
= P{X(r) ≤ zp}−1+P{X(s) ≥ zp}

=

n∑
i=r

(
n
i

)
pi(1−p)n−i +

s−1∑
i=0

(
n
i

)
pi(1−p)n−i −1

=

s−1∑
i=r

(
n
i

)
pi(1−p)n−i. (12)

It is easy to determine a confidence interval for zp from (12), once the confidence level is
given. In practice, one determines r and s such that s− r is as small as possible, subject to
the condition that the level is 1−α.

Example 4. Suppose that we want a confidence interval for the median (p = 1
2 ), based on

a sample of size 7 with confidence level 0.90. It suffices to find r and s, r < s, such that

s−1∑
i=r

(
7
i

)(
1
2

)7

≥ 0.90.

By trial and error, using the probability distribution b(7, 1
2 ) we see that we can choose

s = 7, r = 2 or r = 1, s = 6; in either case s−r is minimum (= 5), and the confidence level
is at least 0.92.

Example 5. Let us compute the number of observations required for (X(1),X(n)) to be a
0.95 level confidence interval for the median, that is, we want to find n such that

P{X(1) ≤ z1/2 ≤ X(n)} ≥ 0.95.
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It suffices to find n such that

n−1∑
i=1

(
n
i

)(
1
2

)n

≥ 0.95.

It follows from Table ST1 that n = 6.

Finally we consider applications of order statistics to constructing confidence intervals
for a location parameter. For this purpose we will use the method of test inversion discussed
in Chapter 11. We first consider confidence estimation based on the sign test of location.

Let X1,X2, . . . ,Xn be a random sample from a symmetric, continuous DF F(x−θ) and
suppose we wish to find a confidence interval for θ. Let R+(X− θ0) = # of Xi’s > θ0, be
the sign-test statistic for testing H0 : θ = θ0 against H1 : θ �= θ0. Clearly, R+(X− θ0) ∼
b(n,1/2) under H0. The sign-test rejects H0 if

min{R+(X−θ0), R+(θ0 −X)} ≤ c (13)

for some integer c to be determined from the level of the test. Let r = c+ 1. Then any
value of θ is acceptable provided it is greater than the rth smallest observation and smaller
than the rth largest observation, giving as confidence interval

X(r) < θ < X(n+1−r). (14)

If we want level 1−α to be associated with (14), we choose c so that the level of test
(13) is α.

Example 6. The following 12 observations come from a symmetric, continuous DF
F(x−θ):

−223,−380,−94,−179,194,25,−177,−274,−496,−507,−20,122.

We wish to obtain a 95% confidence interval for θ. Sign test rejects H0 if R+(X)≥ 9 or ≤2
at level 0.05. Thus

P{3 < R+(X−θ)< 10}= 1−2(0.0193) = 0.9614 ≥ 0.95.

It follows that a 95% confidence interval for θ is given by (X(3),X(10)) or (−380,25).

We next consider the Wilcoxon signed-ranks test of H0 : θ = θ0 to construct a con-
fidence interval for θ. The test statistic in this case is T+ = sum of ranks of positive
(Xi −θ0)’s in the ordered |Xi −θ0|’s. From (13.3.4)

T+ =
∑

1≤i≤j≤n

I[Xi+Xj>2θ0]

= number of
Xi +Xj

2
> θ0.
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Let Tij = (Xi +Xj)/2, 1 ≤ i ≤ j ≤ n and order the N =
(n+1

2

)
Tij’s in increasing order of

magnitude

T(1) < T(2) < · · ·< T(N).

Then using the argument that converts (13) to (14) we see that a confidence interval for θ
is given by

T(r) < θ < T(N+1−r). (15)

Critical values c are taken from Table ST10.

Example 7. For the data in Example 6, the Wilcoxon signed-rank test rejects H0 : θ = θ0

at level 0.05 if T+ > 64 or T+ < 14. Thus

P{14 ≤ T+(X−θ0)≤ 64} ≥ 0.95.

It follows that a 95% confidence interval for θ is given by [T(14),T(64)] = [−336.5,−20].

PROBLEMS 13.6

1. Find the smallest values of n such that the intervals (a) (X(1),X(n)) and
(b) (X(2),X(n−1)) contain the median with probability ≥ 0.90.

2. Find the smallest sample size required such that (X(1),X(n)) covers at least 90 percent
of the distribution with probability ≥ 0.98.

3. Find the relation between n and p such that (X(1),X(n)) covers at least 100 p percent
of the distribution with probability ≥ 1−p.

4. Given γ, δ, p0, p1 with p1 > p0, find the smallest n such that

P{F(X(s))−F(X(r))≥ p0} ≥ γ

and

P{F(X(s))−F(X(r))≥ p1} ≤ δ.

Find also s− r.
[Hint: Use the normal approximation to the binomial distribution.]

5. In Problem 4 find the smallest n and the associated value of s− r if γ = 0.95, δ =
0.10, p1 = 0.75, p0 = 0.50.

6. Let X1,X2, . . . ,X7 be a random sample from a continuous DF F. Compute:

(a) P(X(1) < z.5 < X(7)).

(b) P(X(2) < z.3 < X(5)).

(c) P(X(3) < z.8 < X(6)).

7. Let X1,X2, . . . ,Xn be iid with common continuous DF F.
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(a) What is the distribution of

F((Xn−1)−F(X(j))+F(X(i))−F(X(2))

for 2 ≤ i < j ≤ n−1?

(b) What is the distribution of [F(X(n))−F(X(2))]/[F(X(n))−F(X(1))].

13.7 ROBUSTNESS

Most of the statistical inference problems treated in this book are parametric in nature. We
have assumed that the functional form of the distribution being sampled is known except
for a finite number of parameters. It is to be expected that any estimator or test of hypothe-
sis concerning the unknown parameter constructed on this assumption will perform better
than the corresponding nonparametric procedure, provided that the underlying assump-
tions are satisfied. It is therefore of interest to know how well the parametric optimal tests
or estimators constructed for one population perform when the basic assumptions are mod-
ified. If we can construct tests or estimators that perform well for a variety of distributions,
for example, there would be little point in using the corresponding nonparametric method
unless the assumptions are seriously violated.

In practice, one makes many assumptions in parametric inference, and any one or all
of these may be violated. Thus one seldom has accurate knowledge about the true under-
lying distribution. Similarly, the assumption of mutual independence or even identical
distribution may not hold. Any test or estimator that performs well under modifications of
underlying assumptions is usually referred to as robust.

In this section we will first consider the effect that slight variation in model assump-
tions have on some common parametric estimators and tests of hypotheses. Next we will
consider some corresponding nonparametric competitors and show that they are quite
robust.

13.7.1 Effect of Deviations from Model Assumptions on Some Parametric Proce-
dures

Let us first consider the effect of contamination on sample mean as an estimator of the
population mean.

The most commonly used estimator of the population mean μ is the sample mean X.
It has the property of unbiasedness for all populations with finite mean. For many parent
populations (normal, Poisson, Bernoulli, gamma, etc.) it is a complete sufficient statistic
and hence a UMVUE. Moreover, it is consistent and has asymptotic normal distribution
whenever the conditions of the central limit theorem are satisfied. Nevertheless, the sam-
ple mean is affected by extreme observations, and a single observation that is either too
large or too small may make X worthless as an estimator of μ. Suppose, for example, that
X1,X2, . . . ,Xn is a sample from some normal population. Occasionally something happens
to the system, and a wild observation is obtained that is, suppose one is sampling from
N(μ,σ2), say, 100α percent of the time and from N(μ,kσ2), where k > 1, (1−α)100



626 NONPARAMETRIC STATISTICAL INFERENCE

percent of the time. Here both μ and σ2 are unknown, and one wishes to estimate μ. In
this case one is really sampling from the density function

f (x) = αf0(x)+(1−α)f1(x), (1)

where f0 is the PDF of N(μ,σ2), and f1, the PDF of N(μ,kσ2). Clearly,

X =

∑n
1 Xi

n
(2)

is still unbiased for μ. If α is nearly 1, there is no problem since the underlying distribution
is nearly N(μ,σ2), and X is nearly the UMVUE of μ with variance σ2/n. If 1−α is large
(that is, not nearly 0), then, since one is sampling from f , the variance of X1 is σ2 with
probability α and is kσ2 with probability 1−α, and we have

varσ(X) =
1
n
var(X1) =

σ2

n
[α+(1−α)k]. (3)

If k(1−α) is large, varσ(X) is large and we see that even an occasional wild observa-
tion makes X subject to a sizable error. The presence of an occasional observation from
N(μ,kσ2) is frequently referred to as contamination. The problem is that we do not know,
in practice, the distribution of the wild observations and hence we do not know the PDF f .
It is known that the sample median is a much better estimator than the mean in the pres-
ence of extreme values. In the contamination model discussed above, if we use Z1/2, the
sample median of the Xi’s, as an estimator of μ (which is the population median), then for
large n

E(Z1/2 −μ)2 = var(Z1/2)≈
1

4n
1

[f (μ)]2
. (4)

(See Theorem 7.5.2 and Remark 7.5.7.) Since

f (μ) = αf0(μ)+(1−α)f1(μ)

=
α

σ
√

2π
+(1−α)

1

σ
√

2πk
=

(
α+

1−α√
k

)
1

σ
√

2π
,

we have

var(Z1/2)≈
πσ2

2n
1

{α+[(1−α)/
√

k]}2
. (5)

As k →∞, var(Z1/2)≈ πσ2/(2nα2). If there is no contamination, α= 1 and var(Z1/2)≈
πσ2/2n. Also,

πσ2/2nα2

πσ2/2n
=

1
α2

,
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which will be close to 1 if α is close to 1. Thus the estimator Z1/2 will not be greatly
affected by how large k is, that is, how wild the observations are. We have

var(X)
var(Z1/2)

=
2
π
[α+(1−α)k]

[
α+

(1−α)√
k

]2

→∞ as k →∞.

Indeed, var(X)→∞ as k →∞, whereas var(Z1/2)→ πσ2/(2nα2) as k →∞. One can
check that, when k = 9 and α ≈ 0.915, the two variances are (approximately) equal. As
k becomes larger than 9 or α smaller than 0.915, Z1/2 becomes a better estimator of μ
than X.

There are other flaws as well. Suppose, for example, that X1,X2, . . . ,Xn is a sam-
ple from U(0,θ), θ > 0. Then both X and T(X) = (X(1) + X(n))/2, where X(1) =
min(X1, . . . ,Xn), X(n) = max(X1, . . . ,Xn), are unbiased for EX = θ/2. Also, varθ(X) =
var(X)/n = θ2/[12n], and one can show that var(T) = θ2/[2(n+ 1)(n+ 2)]. It follows
that the efficiency of X relative to that of T is

effθ(X | T) =
varθ(T)

varθ(X)
=

6n
(n+1)(n+2)

< 1 if n > 2.

In fact, effθ(X | T)→ 0 as n →∞, so that in sampling from a uniform parent X is much
worse than T , even for moderately large values of n.

Let us next turn our attention to the estimation of standard deviation. Let X1,X2, . . . ,Xn

be a sample from N(μ,σ2). Then the MLE of σ is

σ̂ =

{
n∑

i=1

(Xi −X)2

n

}1/2

=

(
n−1

n

)1/2

S. (6)

Note that the lower bound for the variance of any unbiased estimator for σ is σ2/2n.
Although σ̂ is not unbiased, the estimator

S1 =

√
n
2
Γ[(n−1)/2]

Γ(n/2)
σ̂ =

√
n−1

2
Γ[(n−1)/2]

Γ(n/2)
S (7)

is unbiased for σ. Also,

var(S1) = σ2

{
n−1

2

(
Γ[(n−1)/2]

Γ(n/2)

)2

−1

}

=
σ2

2n
+O

(
1
n2

)
. (8)

Thus the efficiency of S1 (relative to the estimator with least variance = σ2/2n) is

σ2/2n
var(S1)

=
1

1+σ2O
(

2
n

) < 1
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and → 1 as n →∞. For small n, the efficiency of S1 is considerably smaller than 1. Thus,
for n = 2, eff(S1) = 1/[2(π−2)] = 0.438 and, for n = 3, eff(S1) = π/[6(4−π)] = 0.61.

Yet another estimator of σ is the sample mean deviation

S2 =
1
n

n∑
i=1

|Xi −X|. (9)

Note that

E

{√
π

2
1
n

n∑
i=1

|Xi −μ|
}

=

√
π

2
E|Xi −μ|= σ,

and

var

{√
π

2
1
n

n∑
i=1

|Xi −μ|
}

=
π−2

2n
σ2. (10)

If n is large enough so that X ≈ μ, we see that S3 =
√

(π/2)S2 is nearly unbiased for σ
with variance [(π−2)/2n]σ2. The efficiency of S3 is

σ2(2n)
σ2[(π−2)/(2n)]

=
1

π−2
< 1.

For large n, the efficiency of S1 relative to S3 is

var(S3)

var(S1)
=

[(π−2)/(2n)]σ2

σ2/(2n)+O(1/n2)
= π−2+

π−2
O(2/n)

> 1.

Now suppose that there is some contamination. As before, let us suppose that for a
proportionα of the time we sample fromN(μ,σ2) and for a proportion 1−α of the time we
get a wild observation from N(μ,kσ2), k > 1. Assuming that both μ and σ2 are unknown,
suppose that we wish to estimate σ. In the notation used above, let

f (x) = αf0(x)+(1−α)f1(x),

where f0 is the PDF of N(μ,σ2), and f1, the PDF of N(μ,kσ2). Let us see how even small
contamination can make the maximum likelihood estimate σ̂ of σ quite useless.

If θ̂ is the MLE of θ, and ϕ is a function of θ, then ϕ(θ̂) is the MLE of ϕ(θ). In view
of (7.5.7) we get

E(σ̂−σ)2 ≈ 1
4σ2

E(σ̂2 −σ2)2. (11)

Using Theorem 7.3.5, we see that

E(σ̂2 −σ2)2 ≈ μ4 −μ2
2

n
(12)
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(dropping the other two terms with n2 and n3 in the denominator), so that

E(σ̂−σ)2 ≈ 1
4σ2n

(μ4 −μ2
2). (13)

For the density f , we see that

μ4 = 3σ4[α+ k2(1−α)] (14)

and

μ2 = σ2[α+ k(1−α)]. (15)

It follows that

E{σ̂−σ}2 ≈ σ2

4n

{
3[α+ k2(1−α)]− [α+ k(1−α)]2

}
. (16)

If we are interested in the effect of very small contamination, α ≈ 1 and 1−α ≈ 0.
Assuming that k(1−α)≈ 0, we see that

E{σ̂−σ}2 ≈ σ2

4n
{3[1+ k2(1−α)]−1}

=
σ2

2n

[
1+ 3

2 k2(1−α)
]
. (17)

In the normal case, μ4 = 3σ4 and μ2
2 = σ4, so that from (11)

E{σ̂−σ}2 ≈ σ2

2n
.

Thus we see that the mean square error due to a small contamination is now multiplied by
a factor [1+ 3

2 k2(1−α)]. If, for example, k = 10, α = 0.99, then 1+ 3
2 k2(1−α) = 5

2 . If
k = 10, α= 0.98, then 1+ 3

2 k2(1−α) = 4, and so on.
A quick comparison with S3 shows that, although S1 (or even σ̂) is a better estimator of

σ than S3 if there is no contamination, S3 becomes a much better estimator in the presence
of contamination as k becomes large.

Next we consider the effect of deviation from model assumptions on tests of hypothe-
ses. One of the most commonly used tests in statistics is Student’s t-test for testing the
mean of a normal population when the variance is unknown. Let X1,X2, . . . ,Xn be a sam-
ple from some population with mean μ and finite variance σ2. As usual, let X denote the
sample mean, and S2, the sample variance. If the population being sampled is normal, the
t-test rejects H0 : μ = μ0 against H1 : μ �= μ0 at level α if |x−μ0| > tn−1,α/2(s/

√
n). If

n is large, we replace tn−1,α/2 by the corresponding critical value, zα/2, under the stan-
dard normal law. If the sample does not come from a normal population, the statistic
T = [(X −μ0)/S]

√
n is no longer distributed as a t(n− 1) statistic. If, however, n is suf-

ficiently large, we know that T has an asymptotic normal distribution irrespective of the
population being sampled, as long as it has a finite variance. Thus, for large n, the distri-
bution of T is independent of the form of the population, and the t-test is stable. The
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same considerations apply to testing the difference between two means when the two
variances are equal. Although we assumed that n is sufficiently large for Slutsky’s result
(Theorem 7.2.15) to hold, empirical investigations have shown that the test based on Stu-
dent’s statistic is robust. Thus a significant value of t may not be interpreted to mean a
departure from normality of the observations. Let us next consider the effect of depar-
ture from independence on the t-distribution. Suppose that the observations X1,X2, . . . ,Xn

have a multivariate normal distribution with EXi = μ, var(Xi) = σ2, and ρ as the common
correlation coefficient between any Xi and Xj, i �= j. Then

EX = μ and var(X) =
σ2

n
[1+(n−1)ρ], (18)

and since Xi’s are exchangeable it follows from Remark 6.3.1 that

ES2 = σ2(1−ρ). (19)

For large n, the statistic
√

n(X −μ0)/S will be asymptotically distributed as N(0,1+
nρ/(1−ρ)), instead of N(0,1). Under H0, ρ= 0 and T2 = n(X−μ0)

2/S2 is distributed as
F(1,n−1). Consider the ratio

nE(X−μ0)
2

ES2
=

σ2[1+(n−1)ρ]
σ2(1−ρ)

= 1+
nρ

1−ρ
. (20)

The ratio equals 1 if ρ= 0 but is > 0 for ρ > 0 and →∞ as ρ→ 1. It follows that a large
value of T is likely to occur when ρ > 0 and is large, even though μ0 is the true value of
the mean. Thus a significant value of t may be due to departure from independence, and
the effect can be serious.

Next, consider a test of the null hypothesis H0 : σ = σ0 against H1 : σ �= σ0. Under the
usual normality assumptions on the observations X1,X2, . . . ,Xn, the test statistic used is

V =
(n−1)S2

σ2
=

∑n
i=1(Xi −X)2

σ2
, (21)

which has a χ2(n−1) distribution under H0. The usual test is to reject H0 if

V0 =
(n−1)S2

σ2
0

> χ2
n−1,α/2 or V0 < χ2

n−1,1−α/2. (22)

Let us suppose that X1,X2, . . . ,Xn are not normal. It follows from Corollary 2 of Theo-
rem 7.3.4 that

var(S2) =
μ4

n
+

3−n
n(n−1)

μ2
2, (23)

so that

var

(
S2

σ2

)
=

1
n
μ4

σ4
+

3−n
n(n−1)

. (24)
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Writing γ2 = (μ4/σ
4)−3, we have

var

(
S2

σ2

)
=

γ2

n
+

2
n−1

(25)

when the Xi’s are not normal, and

var

(
S2

σ2

)
=

2
n−1

(26)

when the Xi’s are normal (γ2 = 0). Now (n−1)S2 =
∑n

i=1(Xi−X)2 is the sum of n identi-
cally distributed but dependent RVs (Xj−X)2, j= 1,2, . . . ,n. Using a version of the central
limit theorem for dependent RVs (see, e.g., Cramér [17, p. 365]), it follows that

(
n−1

2

)−1/2( S2

σ2
−1

)
,

under H0, is asymptotically N(0,1+(γ2/2)), and not N(0,1) as under the normal theory.
As a result the size of the test based on the statistic V0 will be different from the stated
level of significance if γ2 differs greatly from 0. It is clear that the effect of violation
of the normality assumption can be quite serious on inferences about variances, and the
chi-square test is not robust.

In the above discussion we have used somewhat crude calculations to investigate the
behavior of the most commonly used estimators and test statistics when one or more of
the underlying assumptions are violated. Our purpose here was to indicate that some tests
or estimators are robust whereas others are not. The moral is clear: One should check
carefully to see that the underlying assumptions are satisfied before using parametric
procedures.

13.7.2 Some Robust Procedures

Let X1,X2, . . . ,Xn be a random sample from a continuous PDF f (x−θ), θ ∈R and assume
that f is symmetric about θ. We shall be interested in estimation or tests of hypotheses
concerning θ. Our objective is to find procedures that perform well for several different
types of distributions but do not have to be optimal for any particular distribution. We will
call such procedures robust. We first consider estimation of θ.

The estimators fall under one of the following three types:

1. Estimators that are functions of R= (R1,R2, . . . ,Rn), where Rj is the rank of Xj, are
known as R-estimators. Hodges and Lehmann [44] devised a method of deriving
such estimators from rank tests. These include the sample median X̃ (based on the
sign test) and W = med{(Xi +Xj)/2, 1 ≤ i ≤ j ≤ n} based on the Wilcoxon signed-
rank test.

2. Estimators of the form
∑n

i=1 aiX(i) are called L-estimators, being linear combina-
tions of order statistics. This class includes the median, the mean, and the trimmed
mean obtained by dropping a prespecified proportion of extreme observations.
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3. Maximum likelihood type estimators obtained as solutions to certain equations∑n
j=1ψ(Xj −θ) = 0 are called M-estimators. The function ψ(t) =−f ′(t)/f (t) gives

MLEs.

Definition 1. Let k = [nα] be the largest integer ≤ nα where 0 < α < 1/2. Then the
estimator

Xα =

n−k∑
j=k+1

X(j)

n−2k
(27)

is called a trimmed-mean.
Two extreme examples of trimmed means are the sample mean X(α = 0) and the

median X̃ when all except the central (n odd) or the two central (n even) observations
are excluded.

Example 1. Consider the following sample of size 15 taken from a symmetric
distribution.

0.97 0.66 0.73 0.78 1.30 0.58 0.79 0.94

0.52 0.52 0.83 1.25 1.47 0.96 0.71

Suppose α= 0.10. Then k = [nα] = 1 and

x0.10 =

∑14
j=2 x(j)

15−2
= 0.85.

Here x̄ = 0.867, med
1≤j≤15

xj = x(8) = 0.79.

We will limit this discussion to four estimators of location, namely, the sample median,
trimmed mean, sample mean, and Hodges–Lehmann type estimator based on Wilcoxon
signed-rank test. In order to compare the performance of two procedures A and B we will
use a (large sample) measure of relative efficiency due to Pitman. Pitman’s asymptotic
relative efficiency (ARE) of procedure B relative to procedure A is the limit of the ratio
of sample sizes nA/nB, where nA, nB are sample sizes needed for procedures A and B to
perform equivalently with respect to a specified criterion. For example, suppose {Tn(A)}
and {Tn(B)} are two sequences of estimators for ψ(θ) such that

Tn(A) ∼AN

(
ψ(θ),

σ2
A(θ)

n(A)

)
,

and

Tn(B) ∼AN

(
ψ(θ),

σ2
B(θ)

n(B)

)
.

Suppose further that A and B perform equivalently if their asymptotic variances are the
same, that is,

σ2
A(θ)

n(A)
≈ σ2

B(θ)

n(B)
.
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Then

n(A)
n(B)

−→ σ2
A(θ)

σ2
B(θ)

.

Clearly, different performance measures may lead to different measures of ARE.
Similarly if procedures A and B lead to two sequences of tests, then ARE is the limiting

ratio of the sample sizes needed by the tests to reach a certain power β0 against the same
alternative and at the same limiting level α.

Accordingly, let e(B,A) denote the ARE of B relative to A. If e(B,A) = 1/2 say,
then procedure A requires (approximately) half as many observations as procedure B.
We will write eF(B,A), whenever necessary to indicate the dependence of ARE on the
underlying DF F.

For detailed discussion of Pitman efficiency we refer to Lehmann [61, pp. 371–380],
Lehmann [63, section 5.2], Serfling [102, chapter 10], Randles and Wolfe [85, chapter 5],
and Zacks [121]. The expressions for AREs of median and the Hodges-Lehmann estima-
tors of location parameter θ with respect to the sample mean X are

eF(X̃,X) = 4σ2
Ff (0), (28)

eF(W,X) = 12σ2
F

[∫ ∞

−∞
f 2(x)dx

]2

, (29)

where f is the PDF corresponding to F. In order to get eF(X̃,W) we use the fact that

eF(X̃,W) =
eF(X̃,X)

eF(W,X)

=
f (0)

3
[∫∞

−∞ f 2(x)dx
]2 . (30)

Bickel [5] showed that

eF(Xα,X) =
σ2

F

σ2
α

, (31)

where

σ2
α =

2
(1−2α)2

[∫ z1−α

0
t2f (t)dt+αz1−α

]
(32)

and zα is the uniqueαth percentile of F. It is clear from (32) that no closed form expression
for eF(Xα,X) is possible for most DFs F.

In the following table we give the AREs for some selected F.
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ARE Computations for Selected F

F e(X̃,X) e(W,X) e(X̃,W)

U(−1/2,1/2) 1/3 1 1/3

N(0,1) 2/π = 0.637 3/π = 0.955 2/3

Logistic, f (x) = e−x (1+ e−x)
−1

π2/12 = 0.822 1.10 0.748

Double Exponential,

f (x) = (1/2)exp(−|x|) 2 1.5 4/3

C(0,1) ∞ ∞ 4/3

It can be shown that eF(X̃,X) ≥ 1/3 for all symmetric F, so X̃ is quite inefficient
compared to X for U(−1/2,1/2). Even for normal f , X̃ would require 157 observations
to achieve the same accuracy that X achieves with 100 observations. For heavier tailed
distributions, however, X̃ provides more protection that X.

The values of e(W,X), on the other hand, are quite high for most F and, in fact,
eF(W,X)≥ 0.864 for all symmetric F. Even for normal F one loses little (4.5%) in using
W instead of X. Thus W is more robust as an estimator of θ.

A look at the values of e(X̃,W) shows that X̃ is worse than W for distributions with
light-tails but does slightly better than W for heavier-tailed F.

Let us now compare the AREs of Xα, X, and W. The following AREs for selected α
are due to Bickel [5].

ARE Comparisons

α= 0.01 α= 0.05

F e(Xα,X) e(W,Xα) e(Xα,X) e(W,Xα)

Uniform 0.96 1.04 0.83 1.20

Normal 0.995 0.96 0.97 0.985

Double Exponential 1.06 1.41 1.21 1.24

Cauchy ∞ 6.72 ∞ 2.67

We note that Xα performs quite well compared to X. In fact, for normal distribution the
efficiency is quiet close to 1 so there is little loss in using Xα. For heavier-tailed distribu-
tions Xα is preferable. For small values of α, it should be noted that Xα does not differ
much from X. Nevertheless, Xα is more robust; it cannot do much worse than X but can
do much better. Compared to Hodges–Lehmann estimator, Xα does not perform as well.
It (W) provides better protection against outliers (heavy tails) and gives up little in the
normal case.

Finally we consider testing H0 : θ = θ0 against H1 : θ > θ0. Recall that X1,X2, . . . ,Xn

are iid with common continuous symmetric DF F(x − θ), θ ∈ R and PDF f (x−θ).
Suppose σ2

F = Var(X1) < ∞. Let S denotes the sign test based on the statis-
tic R+(X) =

∑n
i=1 I[Xi>θ0], W denotes the Wilcoxon signed-rank test based on the
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statistic T+(X) =
∑

1≤i≤j≤nI[Xi+Xj>2θ0], M denotes the test based on the Z-statistic Z =√
n((X−θ0)/σF, and t denotes the student’s t-test based on the statistic

√
n(X−θ0)/S,

where S2 is the sample variance.
First note that e(T,M) = 1. Next we note that eF(S, t) = eF(X̃,X), eF(W, t) = eF(W,X)

so that AREs are the same as given in (28), (29), and (30) and values of ARE given in the
table for various F remain the same for corresponding tests.

Similar remarks apply as in the case of estimation of θ. Sign test is not as efficient as the
Wilcoxon signed-rank test. But for heavier-tailed distributions such as Cauchy and double
exponential sign test does better than the Wilcoxon signed-rank test.

PROBLEMS 13.7

1. Let (X1,X2, . . . ,Xn) be jointly normal with EXi = μ, var(Xi) = σ2, and cov(Xi,Xj) =
ρσ2 if |i− j|= 1, i �= j, and = 0 otherwise.

(a) Show that

var(X) =
σ2

n

[
1+2ρ

(
1− 1

n

)]

and

E(S2) = σ2

(
1− 2ρ

n

)
.

(b) Show that the t-statistic
√

n(X−μ)/S is asymptotically normally distributed with
mean 0 and variance 1+2ρ. Conclude that the significance of t is overestimated
for positive values of ρ and underestimated for ρ < 0 in large samples.

(c) For finite n, consider the statistic

T2 =
n(X−μ)2

S2
.

Compare the expected values of the numerator and the denominator of T2 and
study the effect of ρ �= 0 to interpret significant t values (Scheffé [101, p. 338].)

2. Let X1,X2, . . . ,Xn be a random sample from G(α,β), α > 0, β > 0:

(a) Show that

μ4 = 3α(α+2)/β4.

(b) Show that

var

{
(n−1)

S2

σ2

}
≈ (n−1)

(
2+

6
α

)
.

(c) Show that the large sample distribution of (n−1)S2/σ2 is normal.

(d) Compare the large-sample test of H0 : σ = σ0 based on the asymptotic normality
of (n− 1)S2/σ2 with the large-sample test based on the same statistic when the
observations are taken from a normal population. In particular, take α= 2.
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3. Let X1,X2, . . . ,Xm and Y1,Y2, . . . ,Yn be two independent random samples from pop-
ulations with means μ1 and μ2, and variances σ2

1 and σ2
2, respectively. Let X,Y be

the two sample means, and S2
1,S

2
2 be the two sample variances. Write N = m+ n,

R = m/n, and θ = σ2
1/σ

2
2. The usual normal theory test of H0 : μ1 −μ2 = δ0 is the

t-test based on the statistic

T =
X−Y − δ0

Sp(1/m+1/n)1/2
,

where

S2
p =

(m−1)S2
1 +(n−1)S2

2

m+n−2
.

Under H0, the statistic T has a t-distribution with N −2 d.f., provided that σ2
1 = σ2

2.

Show that the asymptotic distribution of T in the nonnormal case is
N(0,(θ+R)(1 + Rθ)−1) for large m and n. Thus, if R = 1, T is asymptotically
N(0,1) as in the normal theory case assuming equal variances, even though the two
samples come from nonnormal populations with unequal variances. Conclude that
the test is robust in the case of large, equal sample sizes (Scheffé [101, p. 339]).

4. Verify the computations in the table above using the expressions of ARE in (28),
(29), and (30).

5. Suppose F is a G(α,β) r.v. Show that

e(W, X) =
3αΓ2(2α)

24(α−1)(2α−1)2{Γ(α)}4
.

(Note that F is not symmetric.)

6. Suppose F has PDF

f (x) =
Γ(m)

Γ(1/2)Γ((m−1)/2)(1+ x2)m
, −∞< x <∞,

for m ≥ 1. compute e(X̃,X), e(W,X), and e(X̃,W). (From Problem 3.2.3, E|X|k <∞
if k < m−1/2.)



FREQUENTLY USED SYMBOLS
AND ABBREVIATIONS

⇒ implies

⇔ implies and is implied by

→ converges to

↑, ↓ increasing, decreasing

�↑, �↓ nonincreasing, nondecreasing

Γ(x) gamma function

lim, lim, lim limit superior, limit inferior, limit

R, Rn real line, n-dimensional Euclidean space

B, Bn Borel σ-field on R, Borel σ-field on Rn

IA indicator function of set A

ε(x) = 1 if x ≥ 0, and = 0 if x < 0

μ EX, expected value

mn EXn, n ≥ 0 integral

βα E|X|α, α > 0

μk E(X−EX)k, k ≥ 0 integral

σ2 = μ2, variance

f ′, f ′′, f ′′′ first, second, third derivative of f

∼ distributed as

≈ asymptotically (or approximately) equal to

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



638 FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

L−→ convergence in law
P−→ convergence in probability
a.s.−−→ convergence almost surely
r−→ convergence in rth mean

RV random variable

DF distribution function

PDF probability density function

PMF probability mass function

PGF probability generating function

MGF moment generating function

d.f. degrees of freedom

BLUE best linear unbiased estimate

MLE maximum likelihood estimate

MVUE minimum variance unbiased estimate

UMA uniformly most accurate

UMVUE uniformly minimum variance unbiased estimate

UMAU uniformly most accurate unbiased

MP most powerful

UMP uniformly most powerful

GLM general linear model

i.o. infinitely often

iid independent, identically distributed

SD standard deviation

SE standard error

MLR monotone likelihood ratio

MSE mean square error

WLLN weak law of large numbers

SLLN strong law of large numbers

CLT central limit theorem

SPRT sequential probability ratio test

b(1,p) Bernoulli with parameter p

b(n,p) binomial with parameters n,p

NB(r;p) negative binomial with parameters r,p

P(λ) Poisson with parameter λ

U[a,b] uniform on [a,b]

G(α,β) gamma with parameters α,β

B(α,β) beta with parameters α,β

χ2(n) chi-square with d.f. n

C(μ,θ) Cauchy with parameters μ,θ
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N(μ,σ2) normal with mean μ, variance σ2

t(n) Student’s t with n d.f.

F(m,n) F-distribution with (m,n) d.f.

zα 100(1−α)th percentile of N(0,1)

χ2
n,α 100(1−α)th percentile of χ2(n)

tn,α 100(1−α)th percentile of t(n)

Fm,n,α 100(1−α)th percentile of F(m,n)

AN(μn,σ
2
n) asymptotically normal

GLR generalized likelihood ratio

MRE minimum risk equivariant

	nx logarithm (to base e) of x

exp(X) exponential

LMP locally most powerful

L(x) law or distribution of RV X

b(δ,.) bias in estimator δ

iid independent, identically distributed
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Table ST1. Cumulative Binomial Probabilities,
∑r

x= 0

(
n
x

)
px(1− p)n−x,

r = 0,1,2, . . . ,n− 1

p

n r 0.01 0.05 0.10 0.20 0.25 0.30 0.333 0.40 0.50

2 0 0.9801 0.9025 0.8100 0.6400 0.5625 0.4900 0.4444 0.3600 0.2500
1 0.9999 0.9975 0.9900 0.9600 0.9375 0.9100 0.8888 0.8400 0.7500

3 0 0.9703 0.8574 0.7290 0.5120 0.4219 0.3430 0.2963 0.2160 0.1250
1 0.9997 0.9928 0.9720 0.8960 0.8438 0.7840 0.7407 0.6480 0.5000
2 1.0000 0.9999 0.9990 0.9920 0.9844 0.9730 0.9629 0.9360 0.8750

4 0 0.9606 0.8145 0.6561 0.4096 0.3164 0.2401 0.1975 0.1296 0.0625
1 0.9994 0.9860 0.9477 0.8192 0.7383 0.6517 0.5926 0.4742 0.3125
2 1.0000 0.9995 0.9963 0.9728 0.9492 0.9163 0.8889 0.8198 0.6875
3 1.0000 0.9999 0.9984 0.9961 0.9919 0.9877 0.9734 0.9375

5 0 0.9510 0.7738 0.5905 0.3277 0.2373 0.1681 0.1317 0.0778 0.0312
1 0.9990 0.9774 0.9185 0.7373 0.6328 0.5283 0.4609 0.3370 0.1874
2 1.0000 0.9988 0.9914 0.9421 0.8965 0.8370 0.7901 0.6826 0.4999
3 0.9999 0.9995 0.9933 0.9844 0.9693 0.9547 0.9130 0.8124
4 1.0000 1.0000 0.9997 0.9990 0.9977 0.9959 0.9898 0.9686

6 0 0.9415 0.7351 0.5314 0.2621 0.1780 0.1176 0.0878 0.0467 0.0156
1 0.9986 0.9672 0.8857 0.6553 0.5340 0.4201 0.3512 0.2333 0.1094
2 1.0000 0.9977 0.9841 0.9011 0.8306 0.7442 0.6804 0.5443 0.3438
3 0.9998 0.9987 0.9830 0.9624 0.9294 0.8999 0.8208 0.6563
4 0.9999 0.9999 0.9984 0.9954 0.9889 0.9822 0.9590 0.8907
5 1.0000 1.0000 0.9999 0.9998 0.9991 0.9987 0.9959 0.9845

7 0 0.9321 0.6983 0.4783 0.2097 0.1335 0.0824 0.0585 0.0280 0.0078
1 0.9980 0.9556 0.6554 0.5767 0.4450 0.3294 0.2633 0.1586 0.0625
2 1.0000 0.9962 0.8503 0.8520 0.7565 0.6471 0.5706 0.4199 0.2266
3 0.9998 0.9743 0.9667 0.9295 0.8740 0.8267 0.7102 0.5000
4 1.0000 0.9973 0.9953 0.9872 0.9712 0.9547 0.9037 0.7734
5 0.9998 0.9996 0.9987 0.9962 0.9931 0.9812 0.9375
6 1.0000 1.0000 0.9999 0.9998 0.9995 0.9984 0.9922

8 0 0.9227 0.6634 0.4305 0.1678 0.1001 0.0576 0.0390 0.0168 0.0039
1 0.9973 0.9427 0.8131 0.5033 0.3671 0.2553 0.1951 0.1064 0.0352
2 0.9999 0.9942 0.9619 0.7969 0.6786 0.5518 0.4682 0.3154 0.1445
3 1.0000 0.9996 0.9950 0.9437 0.8862 0.8059 0.7413 0.5941 0.3633
4 1.0000 0.9996 0.9896 0.9727 0.9420 0.9120 0.8263 0.6367
5 1.0000 0.9988 0.9958 0.9887 0.9803 0.9502 0.8555
6 1.0000 0.9996 0.9987 0.9974 0.9915 0.9648
7 1.0000 0.9999 0.9998 0.9993 0.9961

9 0 0.9135 0.6302 0.3874 0.1342 0.0751 0.0404 0.0260 0.0101 0.0020
1 0.9965 0.9287 0.7748 0.4362 0.3004 0.1960 0.1431 0.0706 0.0196
2 0.9999 0.9916 0.9470 0.7382 0.6007 0.4628 0.3772 0.2318 0.0899
3 1.0000 0.9993 0.9916 0.9144 0.8343 0.7296 0.6503 0.4826 0.2540
4 0.9999 0.9990 0.9805 0.9511 0.9011 0.8551 0.7334 0.5001
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(Continued)

p

n r 0.01 0.05 0.10 0.20 0.25 0.30 0.333 0.40 0.50

5 1.0000 0.9998 0.9970 0.9900 0.9746 0.9575 0.9006 0.7462
6 0.9999 0.9998 0.9987 0.9956 0.9916 0.9749 0.9103
7 1.0000 1.0000 0.9999 0.9995 0.9989 0.9961 0.9806
8 1.0000 0.9999 0.9998 0.9996 0.9982

10 0 0.9044 0.5987 0.3487 0.1074 0.0563 0.0282 0.0173 0.0060 0.0010
1 0.9958 0.9138 0.7361 0.3758 0.2440 0.1493 0.1040 0.0463 0.0108
2 1.0000 0.9884 0.9298 0.6778 0.5256 0.3828 0.2991 0.1672 0.0547
3 0.9989 0.9872 0.8791 0.7759 0.6496 0.5592 0.3812 0.1719
4 0.9999 0.9984 0.9672 0.9219 0.8497 0.7868 0.6320 0.3770
5 1.0000 0.9999 0.9936 0.9803 0.9526 0.9234 0.8327 0.6231
6 1.0000 0.9991 0.9965 0.9894 0.9803 0.9442 0.8282
7 0.9999 0.9996 0.9984 0.9966 0.9867 0.9454
8 1.0000 1.0000 0.9998 0.9996 0.9973 0.9893
9 1.0000 0.9999 0.9999 0.9991

11 0 0.8954 0.5688 0.3138 0.0859 0.0422 0.0198 0.0116 0.0036 0.0005
1 0.9948 0.8981 0.6974 0.3221 0.1971 0.1130 0.0752 0.0320 0.0059
2 0.9998 0.9848 0.9104 0.6174 0.4552 0.3128 0.2341 0.1189 0.0327
3 1.0000 0.9984 0.9815 0.8389 0.7133 0.5696 0.4726 0.2963 0.1133
4 0.9999 0.9972 0.9496 0.8854 0.7897 0.7110 0.5328 0.2744
5 1.0000 0.9997 0.9884 0.9657 0.9218 0.8779 0.7535 0.5000
6 1.0000 0.9981 0.9924 0.9784 0.9614 0.9007 0.7256
7 0.9998 0.9988 0.9947 0.9912 0.9707 0.8867
8 1.0000 0.9999 0.9994 0.9986 0.9941 0.9673
9 1.0000 0.9999 0.9999 0.9993 0.9941

10 1.0000 1.0000 1.0000 0.9995
12 0 0.8864 0.5404 0.2824 0.0687 0.0317 0.0139 0.0077 0.0022 0.0002

1 0.9938 0.8816 0.6590 0.2749 0.1584 0.0850 0.0540 0.0196 0.0032
2 0.9998 0.9804 0.8892 0.5584 0.3907 0.2528 0.1811 0.0835 0.0193
3 1.0000 0.9978 0.9744 0.7946 0.6488 0.4925 0.3931 0.2254 0.0730
4 1.0000 0.9998 0.9957 0.9806 0.8424 0.7237 0.6315 0.4382 0.1939
5 1.0000 1.0000 0.9995 0.9961 0.9456 0.8822 0.8223 0.6652 0.3872
6 1.0000 0.9994 0.9858 0.9614 0.9336 0.8418 0.6128
7 0.9999 0.9972 0.9905 0.9812 0.9427 0.8062
8 1.0000 0.9996 0.9983 0.9962 0.9848 0.9270
9 10000 0.9998 0.9995 0.9972 0.9807

10 1.0000 0.9999 0.9997 0.9968
11 1.0000 1.0000 0.9998

13 0 0.8775 0.5134 0.2542 0.0550 0.0238 0.0097 0.0052 0.0013 0.0000
1 0.9928 0.8746 0.6214 0.2337 0.1267 0.0637 0.0386 0.0126 0.0017
2 0.9997 0.9755 0.8661 0.5017 0.3326 0.2025 0.1388 0.0579 0.0112
3 1.0000 0.9969 0.9659 0.7473 0.5843 0.4206 0.3224 0.1686 0.0462
4 0.9997 0.9936 0.9009 0.7940 0.6543 0.5521 0.3531 0.1334
5 1.0000 0.9991 0.9700 0.9198 0.8346 0.7587 0.5744 0.2905
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Table ST1. (Continued)

p

n r 0.01 0.05 0.10 0.20 0.25 0.30 0.333 0.40 0.50

6 0.9999 0.9930 0.9757 0.9376 0.8965 0.7712 0.5000
7 1.0000 0.9988 0.9944 0.9818 0.9654 0.9024 0.7095
8 0.9998 0.9990 0.9960 0.9912 0.9679 0.8666
9 1.0000 0.9999 0.9994 0.9984 0.9922 0.9539

10 1.0000 0.9999 0.9998 0.9987 0.9888
11 1.0000 1.0000 0.9999 0.9983
12 1.0000 0.9999

14 0 0.8687 0.4877 0.2288 0.0440 0.0178 0.0068 0.0034 0.0008 0.0000
1 0.9916 0.8470 0.5847 0.1979 0.1010 0.0475 0.0274 0.0081 0.0009
2 0.9997 0.9700 0.8416 0.4480 0.2812 0.1608 0.1054 0.0398 0.0065
3 1.0000 0.9958 0.9559 0.6982 0.5214 0.3552 0.2612 0.1243 0.0287
4 0.9996 0.9908 0.8702 0.7416 0.5842 0.4755 0.2793 0.0898
5 1.0000 0.9986 0.9562 0.8884 0.7805 0.6898 0.4859 0.2120
6 0.9998 0.9884 0.9618 0.9067 0.8506 0.6925 0.3953
7 1.0000 0.9976 0.9897 0.9686 0.9424 0.8499 0.6048
8 0.9996 0.9979 0.9917 0.9826 0.9417 0.7880
9 1.0000 0.9997 0.9984 0.9960 0.9825 0.9102

10 1.0000 0.9998 0.9993 0.9961 0.9713
11 1.0000 0.9999 0.9994 0.9936
12 1.0000 0.9999 0.9991
13 0.9999

15 0 0.8601 0.4633 0.2059 0.0352 0.0134 0.0048 0.0023 0.0005 0.0000
1 0.9904 0.8291 0.5491 0.1672 0.0802 0.0353 0.0194 0.0052 0.0005
2 0.9996 0.9638 0.8160 0.3980 0.2361 0.1268 0.0794 0.0271 0.0037
3 1.0000 0.9946 0.9444 0.6482 0.4613 0.2969 0.2092 0.0905 0.0176
4 0.9994 0.9873 0.8358 0.6865 0.5255 0.4041 0.2173 0.0592
5 1.0000 0.9978 0.9390 0.8516 0.7216 0.6184 0.4032 0.1509
6 0.9997 0.9820 0.9434 0.8689 0.7970 0.6098 0.3036
7 1.0000 0.9958 0.9827 0.9500 0.9118 0.7869 0.5000
8 0.9992 0.9958 0.9848 0.9692 0.9050 0.6964
9 0.9999 0.9992 0.9964 0.9915 0.9662 0.8491

10 1.0000 0.9999 0.9993 0.9982 0.9907 0.9408
11 1.0000 0.9999 0.9997 0.9981 0.9824
12 1.0000 1.0000 0.9997 0.9963
13 1.0000 0.9995
14 1.0000

Source: For n = 2 through 10, adapted with permission from E. Parzen, Modern Probability Theory and Its
Applications, John Wiley, New York, 1962. For n = 11 through 15, adapted with permission from Tables of
Cumulative Binomial Probability Distribution, Harvard University Press, Cambridge, M.A., 1955.
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Table ST2. Tail Probability Under Standard Normal Distributiona

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2231 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1984 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0017 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

Source: Adapted with permission from P. G. Hoel, Introduction to Mathematical Statistics, 4th ed., Wiley,
New York, 1971, p. 391.
aThis table gives the probability that the standard normal variable Z will exceed a given positive value z, that is,
P{Z > zα}= α. The probabilities for negative values of z are obtained by symmetry.
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Table ST4. Student’s t-Distributiona

α

n 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617
∞ 1.282 1.645 1.960 2.326 2.576

Source: P. G. Hoel, Introduction to Mathematical Statistics, 4th ed., Wiley, New York, 1971, p. 393. Reprinted
by permission of John Wiley & Sons, Inc.
aThe first column lists the number of degrees of freedom (n). The headings of the other columns give probabilities
(α) for t to exceed the entry value. Use symmetry for negative t values.



Ta
bl

e
ST

5.
F

-D
is

tr
ib

ut
io

n:
5%

(L
ig

ht
fa

ce
T

yp
e)

an
d

1%
(B

ol
df

ac
e

T
yp

e)
P

oi
nt

s
fo

r
th

e
D

is
tr

ib
ut

io
n

of
F

D
eg

re
es

of
D

eg
re

es
of

Fr
ee

do
m

fo
r

N
um

er
at

or
(m

)

Fr
ee

do
m

fo
r

D
en

om
in

at
or

(n
)

1
2

3
4

5
6

7
8

9
10

11
12

14
16

20
24

30
40

50
75

10
0

20
0

50
0

∞

1
16

1
20

0
21

6
22

5
23

0
23

4
23

7
23

9
24

1
24

2
24

3
24

4
24

5
24

6
24

8
24

9
25

0
25

1
25

2
25

3
25

3
25

4
25

4
25

4

40
52

49
99

54
03

56
25

57
64

58
59

59
28

59
81

60
22

60
56

60
82

61
06

61
42

61
69

62
08

62
34

62
58

62
86

63
02

63
23

63
34

63
52

63
61

63
66

2
18

.5
1

19
.0

0
19

.1
6

19
.2

5
19

.3
0

19
.3

3
19

.3
6

19
.3

7
19

.3
8

19
.3

9
19

.4
0

19
.4

1
19

.4
2

19
.4

3
19

.4
4

19
.4

5
19

.4
6

19
.4

7
19

.4
7

19
.4

8
19

.4
9

19
.4

9
19

.5
0

19
.5

0

98
.4

9
99

.0
1

99
.1

7
99

.2
5

99
.3

0
99

.3
3

99
.3

4
99

.3
6

99
.3

8
99

.4
0

99
.4

1
99

.4
2

99
.4

3
99

.4
4

99
.4

5
99

.4
6

99
.4

7
99

.4
8

99
.4

8
99

.4
9

99
.4

9
99

.4
9

99
.5

0
99

.5
0

3
10

.1
3

9.
55

9.
28

9.
12

9.
01

8.
94

8.
88

8.
84

8.
81

8.
78

8.
76

8.
74

8.
71

8.
69

8.
66

8.
64

8.
62

8.
60

8.
58

8.
57

8.
56

8.
54

8.
54

8.
53

34
.1

2
30

.8
1

29
.4

6
28

.7
1

28
.2

4
27

.9
1

27
.6

7
27

.4
9

27
.3

4
27

.2
3

27
.1

3
27

.0
5

26
.9

2
26

.8
3

26
.6

9
26

.6
0

26
.5

0
26

.4
1

26
.3

0
26

.2
7

26
.2

3
26

.1
8

26
.1

4
26

.1
2

4
7.

71
6.

94
6.

59
6.

39
6.

26
6.

16
6.

09
6.

04
6.

00
5.

96
5.

93
5.

91
5.

87
5.

84
5.

80
5.

77
5.

74
5.

71
5.

70
5.

68
5.

66
5.

65
5.

64
5.

63

21
.2

0
18

.0
0

16
.6

9
15

.9
8

15
.5

2
15

.2
1

14
.9

8
14

.8
0

14
.6

6
14

.5
4

14
.4

5
14

.3
7

14
.2

4
14

.1
5

14
.0

2
13

.9
3

13
.8

3
13

.7
4

13
.6

9
13

.6
1

13
.5

7
13

.5
2

13
.4

8
13

.4
6

5
6.

61
5.

79
5.

41
5.

19
5.

05
4.

95
4.

88
4.

82
4.

78
4.

74
4.

70
4.

68
4.

64
4.

60
4.

56
4.

53
4.

50
4.

46
4.

44
4.

42
4.

40
4.

38
4.

37
4.

36

16
.2

6
13

.2
7

12
.0

6
11

.3
9

10
.9

7
10

.6
7

10
.4

5
10

.2
7

10
.1

5
10

.0
5

9.
96

9.
89

9.
77

9.
68

9.
55

9.
47

9.
38

9.
29

9.
24

9.
17

9.
13

9.
07

9.
04

9.
02

6
5.

99
5.

14
4.

76
4.

53
4.

39
4.

28
4.

21
4.

15
4.

10
4.

06
4.

03
4.

00
3.

96
3.

92
3.

87
3.

84
3.

81
3.

77
3.

75
3.

72
3.

71
3.

69
3.

68
3.

67

13
.7

4
10

.9
2

9.
78

9.
15

8.
75

8.
47

8.
26

8.
10

7.
98

7.
87

7.
79

7.
72

7.
60

7.
52

7.
39

7.
31

7.
23

7.
14

7.
09

7.
02

6.
99

6.
94

6.
90

6.
88

7
5.

59
4.

74
4.

35
4.

12
3.

97
3.

87
3.

79
3.

73
3.

68
3.

63
3.

60
3.

57
3.

52
3.

49
3.

44
3.

41
3.

38
3.

34
3.

32
3.

29
3.

28
3.

25
3.

24
3.

23

12
.2

5
9.

55
8.

45
7.

85
7.

46
7.

19
7.

00
6.

84
6.

71
6.

62
6.

54
6.

47
6.

35
6.

27
6.

15
6.

07
5.

98
5.

90
5.

85
5.

78
5.

75
5.

70
5.

67
5.

65

8
5.

32
4.

46
4.

07
3.

84
3.

69
3.

58
3.

50
3.

44
3.

39
3.

34
3.

31
3.

28
3.

23
3.

20
3.

15
3.

12
3.

08
3.

05
3.

03
3.

00
2.

98
2.

96
2.

94
2.

93

11
.2

6
8.

65
7.

59
7.

01
6.

63
6.

37
6.

19
6.

03
5.

91
5.

82
5.

74
5.

67
5.

56
5.

48
5.

36
5.

28
5.

20
5.

11
5.

06
5.

00
4.

96
4.

91
4.

88
4.

86

9
5.

12
4.

26
3.

86
3.

63
3.

48
3.

37
3.

29
3.

23
3.

18
3.

13
3.

10
3.

07
3.

02
2.

98
2.

93
2.

90
2.

86
2.

82
2.

80
2.

77
2.

76
2.

73
2.

72
2.

71

10
.5

6
8.

02
6.

99
6.

42
6.

06
5.

80
5.

62
5.

47
5.

35
5.

26
5.

18
5.

11
5.

00
4.

92
4.

80
4.

73
4.

64
4.

56
4.

51
4.

45
4.

41
4.

36
4.

33
4.

31

10
4.

96
4.

10
3.

71
3.

48
3.

33
3.

22
3.

14
3.

07
3.

02
2.

97
2.

94
2.

91
2.

86
2.

82
2.

77
2.

74
2.

70
2.

67
2.

64
2.

61
2.

59
2.

56
2.

55
2.

54

10
.0

4
7.

56
6.

55
5.

99
5.

64
5.

39
5.

21
5.

06
4.

95
4.

85
4.

78
4.

71
4.

60
4.

52
4.

41
4.

33
4.

25
4.

17
4.

12
4.

05
4.

01
3.

96
3.

93
3.

91

11
4.

84
3.

98
3.

59
3.

36
3.

20
3.

09
3.

01
2.

95
2.

90
2.

96
2.

82
2.

79
2.

74
2.

70
2.

65
2.

61
2.

57
2.

53
2.

50
2.

47
2.

45
2.

42
2.

41
2.

40

9.
65

7.
20

6.
22

5.
67

5.
32

5.
07

4.
88

4.
74

4.
63

4.
54

4.
46

4.
40

4.
29

4.
21

4.
10

4.
02

3.
94

3.
86

3.
80

3.
74

3.
70

3.
66

3.
62

3.
60

12
4.

75
3.

88
3.

49
3.

26
3.

11
3.

00
2.

92
2.

85
2.

80
2.

76
2.

72
2.

69
2.

64
2.

60
2.

54
2.

50
2.

46
2.

42
2.

40
2.

36
2.

35
2.

32
2.

31
2.

30

9.
33

6.
93

5.
95

5.
41

5.
06

4.
82

4.
65

4.
50

4.
39

4.
30

4.
22

4.
16

4.
05

3.
98

3.
86

3.
78

3.
70

3.
61

3.
56

3.
49

3.
46

3.
41

3.
38

3.
36

13
4.

67
3.

80
3.

41
3.

18
3.

02
2.

92
2.

84
2.

77
2.

72
2.

67
2.

63
2.

60
2.

55
2.

51
2.

46
2.

42
2.

38
2.

34
2.

32
2.

28
2.

26
2.

24
2.

22
2.

21

9.
07

6.
70

5.
74

5.
20

4.
86

4.
62

4.
44

4.
30

4.
19

4.
10

4.
02

3.
96

3.
85

3.
78

3.
67

3.
59

3.
51

3.
42

3.
37

3.
30

3.
27

3.
21

3.
18

3.
16



14
4.

60
3.

74
3.

34
3.

11
2.

96
2.

85
2.

77
2.

70
2.

65
2.

60
2.

56
2.

53
2.

48
2.

44
2.

39
2.

35
2.

31
2.

27
2.

24
2.

21
2.

19
2.

16
2.

14
2.

13

8.
86

6.
51

5.
56

5.
03

4.
69

4.
46

4.
28

4.
14

4.
03

3.
94

3.
86

3.
80

3.
70

3.
62

3.
51

3.
43

3.
34

3.
26

3.
21

3.
14

3.
11

3.
06

3.
02

3.
00

15
4.

54
3.

68
3.

29
3.

06
2.

90
2.

79
2.

70
2.

64
2.

59
2.

55
2.

51
2.

48
2.

43
2.

39
2.

33
2.

29
2.

25
2.

21
2.

18
2.

15
2.

12
2.

10
2.

08
2.

07

8.
68

6.
36

5.
42

4.
89

4.
56

4.
32

4.
14

4.
00

3.
89

3.
80

3.
73

3.
67

3.
56

3.
48

3.
36

3.
29

3.
20

3.
12

3.
07

3.
00

2.
97

2.
92

2.
89

2.
87

16
4.

49
3.

63
3.

24
3.

01
2.

85
2.

74
2.

66
2.

59
2.

54
2.

49
2.

45
2.

42
2.

37
2.

33
2.

28
2.

24
2.

20
2.

16
2.

13
2.

09
2.

07
2.

04
2.

02
2.

01

8.
53

6.
23

5.
29

4.
77

4.
44

4.
20

4.
03

3.
89

3.
78

3.
69

3.
61

3.
55

3.
45

3.
37

3.
25

3.
18

3.
10

3.
01

2.
96

2.
89

2.
86

2.
80

2.
77

2.
75

17
4.

45
3.

59
3.

20
2.

96
2.

81
2.

70
2.

62
2.

55
2.

50
2.

45
2.

41
2.

38
2.

33
2.

29
2.

23
2.

19
2.

15
2.

11
2.

08
2.

04
2.

02
1.

99
1.

97
1.

96

8.
40

6.
11

5.
18

4.
67

4.
34

4.
10

3.
93

3.
79

3.
68

3.
59

3.
52

3.
45

3.
35

3.
27

3.
16

3.
08

3.
00

2.
92

2.
86

2.
79

2.
76

2.
70

2.
67

2.
65

18
4.

41
3.

55
3.

16
2.

93
2.

77
2.

66
2.

58
2.

51
2.

46
2.

41
2.

37
2.

34
2.

29
2.

25
2.

19
2.

15
2.

11
2.

07
2.

04
2.

00
1.

98
1.

95
1.

93
1.

92

8.
28

6.
01

5.
09

4.
58

4.
25

4.
01

3.
85

3.
71

3.
60

3.
51

3.
44

3.
37

3.
27

3.
19

3.
07

3.
00

2.
91

2.
83

2.
78

2.
71

2.
68

2.
62

2.
59

2.
57

19
4.

38
3.

52
3.

13
2.

90
2.

74
2.

63
2.

55
2.

48
2.

43
2.

38
2.

34
2.

31
2.

26
2.

21
2.

15
2.

11
2.

07
2.

02
2.

00
1.

96
1.

94
1.

91
1.

90
1.

88

8.
18

5.
93

5.
01

4.
50

4.
17

3.
94

3.
77

3.
63

3.
52

3.
43

3.
36

3.
30

3.
19

3.
12

3.
00

2.
92

2.
84

2.
76

2.
70

2.
63

2.
60

2.
54

2.
51

2.
49

20
4.

35
3.

49
3.

10
2.

87
2.

71
2.

60
2.

52
2.

45
2.

40
2.

35
2.

31
2.

28
2.

23
2.

18
2.

12
2.

08
2.

04
1.

99
1.

96
1.

92
1.

90
1.

87
1.

85
1.

84

8.
10

5.
85

4.
94

4.
43

4.
10

3.
87

3.
71

3.
56

3.
45

3.
37

3.
30

3.
23

3.
13

3.
05

2.
94

2.
86

2.
77

2.
69

2.
63

2.
56

2.
53

2.
47

2.
44

2.
42

21
4.

32
3.

47
3.

07
2.

84
2.

68
2.

57
2.

49
2.

42
2.

37
2.

32
2.

28
2.

25
2.

20
2.

15
2.

09
2.

05
2.

00
1.

96
1.

93
1.

89
1.

87
1.

84
1.

82
1.

81

8.
02

5.
78

4.
87

4.
37

4.
04

3.
81

3.
65

3.
51

3.
40

3.
31

3.
24

3.
17

3.
07

2.
99

2.
88

2.
80

2.
72

2.
63

2.
58

2.
51

2.
47

2.
42

2.
38

2.
36

22
4.

30
3.

44
3.

05
2.

82
2.

66
2.

55
2.

47
2.

40
2.

35
2.

30
2.

26
2.

23
2.

18
2.

13
2.

07
2.

03
1.

98
1.

93
1.

91
1.

87
1.

84
1.

81
1.

80
1.

78

7.
94

5.
72

4.
82

4.
31

3.
99

3.
76

3.
59

3.
45

3.
35

3.
26

3.
18

3.
12

3.
02

2.
94

2.
83

2.
75

2.
67

2.
58

2.
53

2.
46

2.
42

2.
37

2.
33

2.
31

23
4.

28
3.

42
3.

03
2.

80
2.

64
2.

53
2.

45
2.

38
2.

32
2.

28
2.

24
2.

20
2.

14
2.

10
2.

04
2.

00
1.

96
1.

91
1.

88
1.

84
1.

82
1.

79
1.

77
1.

76

7.
88

5.
66

4.
76

4.
26

3.
94

3.
71

3.
54

3.
41

3.
30

3.
21

3.
14

3.
07

2.
97

2.
89

2.
78

2.
70

2.
62

2.
53

2.
48

2.
41

2.
37

2.
32

2.
28

2.
26

24
4.

26
3.

40
3.

01
2.

78
2.

62
2.

51
2.

43
2.

36
2.

30
2.

26
2.

22
2.

18
2.

13
2.

09
2.

02
1.

98
1.

94
1.

89
1.

86
1.

82
1.

80
1.

76
1.

74
1.

73

7.
82

5.
61

4.
72

4.
22

3.
90

3.
67

3.
50

3.
36

3.
25

3.
17

3.
09

3.
03

2.
93

2.
85

2.
74

2.
66

2.
58

2.
49

2.
44

2.
36

2.
33

2.
27

2.
23

2.
21

25
4.

24
3.

38
2.

99
2.

76
2.

60
2.

49
2.

41
2.

34
2.

28
2.

24
2.

20
2.

16
2.

11
2.

06
2.

00
1.

96
1.

92
1.

87
1.

84
1.

80
1.

77
1.

74
1.

72
1.

71

7.
77

5.
57

4.
68

4.
18

3.
86

3.
63

3.
46

3.
32

3.
21

3.
13

3.
05

2.
99

2.
89

2.
81

2.
70

2.
62

2.
54

2.
45

2.
40

2.
32

2.
29

2.
23

2.
19

2.
17

26
4.

22
3.

37
2.

89
2.

74
2.

59
2.

47
2.

39
2.

32
2.

27
2.

22
2.

18
2.

15
2.

10
2.

05
1.

99
1.

95
1.

90
1.

85
1.

82
1.

78
1.

76
1.

72
1.

70
1.

69

7.
72

5.
53

4.
64

4.
14

3.
82

3.
59

3.
42

3.
29

3.
17

3.
09

3.
02

2.
96

2.
86

2.
77

2.
66

2.
58

2.
50

2.
41

2.
36

2.
28

2.
25

2.
19

2.
15

2.
13



Ta
bl

e
ST

5.
(C

on
ti

nu
ed

)

D
eg

re
es

of
D

eg
re

es
of

Fr
ee

do
m

fo
r

N
um

er
at

or
,m

Fr
ee

do
m

fo
r

D
en

om
in

at
or

(n
)

1
2

3
4

5
6

7
8

9
10

11
12

14
16

20
24

30
40

50
75

10
0

20
0

50
0

∞

27
4.

21
3.

35
2.

96
2.

73
2.

57
2.

46
2.

37
2.

30
2.

25
2.

20
2.

16
2.

13
2.

08
2.

03
1.

97
1.

93
1.

88
1.

84
1.

80
1.

76
1.

74
1.

71
1.

68
1.

67

7.
68

5.
49

4.
60

4.
11

3.
79

3.
56

3.
39

3.
26

3.
14

3.
06

2.
98

2.
93

2.
83

2.
74

2.
63

2.
55

2.
47

2.
38

2.
33

2.
25

2.
21

2.
16

2.
12

2.
10

28
4.

20
3.

34
2.

95
2.

71
2.

56
2.

44
2.

36
2.

29
2.

24
2.

19
2.

15
2.

12
2.

06
2.

02
1.

96
1.

91
1.

87
1.

81
1.

78
1.

75
1.

72
1.

69
1.

67
1.

65

7.
64

5.
45

4.
57

4.
07

3.
76

3.
53

3.
36

3.
23

3.
11

3.
03

2.
95

2.
90

2.
80

2.
71

2.
60

2.
52

2.
44

2.
35

2.
30

2.
22

2.
18

2.
13

2.
09

2.
06

29
4.

18
3.

33
2.

93
2.

70
2.

54
2.

43
2.

35
2.

28
2.

22
2.

18
2.

14
2.

10
2.

05
2.

00
1.

94
1.

90
1.

85
1.

80
1.

77
1.

73
1.

71
1.

68
1.

65
1.

64

7.
60

5.
52

4.
54

4.
04

3.
73

3.
50

3.
33

3.
20

3.
08

3.
00

2.
92

2.
87

2.
77

2.
68

2.
57

2.
49

2.
41

2.
32

2.
27

2.
19

2.
15

2.
10

2.
06

2.
03

30
4.

17
3.

32
2.

92
2.

69
2.

53
2.

42
2.

34
2.

27
2.

21
2.

16
2.

12
2.

09
2.

04
1.

99
1.

93
1.

89
1.

84
1.

79
1.

76
1.

72
1.

69
1.

66
1.

64
1.

62

7.
56

5.
39

4.
51

4.
02

3.
70

3.
47

3.
30

3.
17

3.
06

2.
98

2.
90

2.
84

2.
74

2.
66

2.
55

2.
47

2.
38

2.
29

2.
24

2.
16

2.
13

2.
07

2.
03

2.
01

32
4.

15
3.

30
2.

90
2.

67
2.

51
2.

40
2.

32
2.

25
2.

19
2.

14
2.

10
2.

07
2.

02
1.

97
1.

91
1.

86
1.

82
1.

76
1.

74
1.

69
1.

67
1.

64
1.

61
1.

59

7.
50

5.
34

4.
46

3.
97

3.
66

3.
42

3.
25

3.
12

3.
01

2.
94

2.
86

2.
80

2.
70

2.
62

2.
51

2.
42

2.
34

2.
25

2.
20

2.
12

2.
08

2.
02

1.
98

1.
96

34
4.

13
3.

28
2.

88
2.

65
2.

49
2.

38
2.

30
2.

23
2.

17
2.

12
2.

08
2.

05
2.

00
1.

95
1.

89
1.

84
1.

80
1.

74
1.

71
1.

67
1.

64
1.

61
1.

59
1.

57

7.
44

5.
29

4.
42

3.
93

3.
61

3.
38

3.
21

3.
08

2.
97

2.
89

2.
82

2.
76

2.
66

2.
58

2.
47

2.
38

2.
30

2.
21

2.
15

2.
08

2.
04

1.
98

1.
94

1.
91

36
4.

11
3.

26
2.

86
2.

63
2.

48
2.

36
2.

28
2.

21
2.

15
2.

10
2.

06
2.

03
1.

89
1.

93
1.

87
1.

82
1.

78
1.

72
1.

69
1.

65
1.

62
1.

59
1.

56
1.

55

7.
39

5.
25

4.
38

3.
89

3.
58

3.
35

3.
18

3.
04

2.
94

2.
86

2.
78

2.
72

2.
62

2.
54

2.
43

2.
35

2.
26

2.
17

2.
12

2.
04

2.
00

1.
94

1.
90

1.
87

38
4.

10
3.

25
2.

85
2.

62
2.

46
2.

35
2.

26
2.

19
2.

14
2.

09
2.

05
2.

02
1.

96
1.

92
1.

85
1.

80
1.

76
1.

71
1.

67
1.

63
1.

60
1.

57
1.

54
1.

53

7.
35

5.
21

4.
34

3.
86

3.
54

3.
32

3.
15

3.
02

2.
91

2.
82

2.
75

2.
69

2.
59

2.
51

2.
30

2.
32

2.
22

2.
14

2.
08

2.
00

1.
97

1.
90

1.
86

1.
84

40
4.

08
3.

23
2.

84
2.

61
2.

45
2.

34
2.

25
2.

18
2.

12
2.

07
2.

04
2.

00
1.

95
1.

90
1.

84
1.

79
1.

74
1.

69
1.

66
1.

61
1.

59
1.

55
1.

53
1.

51

7.
31

5.
18

4.
31

3.
83

3.
51

3.
29

3.
12

2.
99

2.
88

2.
80

2.
73

2.
66

2.
56

2.
49

2.
37

2.
29

2.
20

2.
11

2.
05

1.
97

1.
94

1.
88

1.
84

1.
81

42
4.

07
3.

22
2.

83
2.

59
2.

44
2.

32
2.

24
2.

17
2.

11
2.

06
2.

02
1.

99
1.

94
1.

89
1.

82
1.

78
1.

73
1.

68
1.

64
1.

60
1.

57
1.

54
1.

51
1.

49

7.
27

5.
15

4.
29

3.
80

3.
49

3.
26

3.
10

2.
96

2.
86

2.
77

2.
70

2.
64

2.
54

2.
46

2.
35

2.
26

2.
17

2.
08

2.
02

1.
94

1.
91

1.
85

1.
80

1.
78

44
4.

06
3.

21
2.

82
2.

58
2.

43
2.

31
2.

23
2.

16
2.

10
2.

05
2.

01
1.

98
1.

92
1.

88
1.

81
1.

76
1.

72
1.

66
1.

63
1.

58
1.

56
1.

52
1.

50
1.

48

7.
24

5.
12

4.
26

3.
78

3.
46

3.
24

3.
07

2.
94

2.
84

2.
75

2.
68

2.
62

2.
52

2.
44

2.
32

2.
24

2.
15

2.
06

2.
00

1.
92

1.
88

1.
82

1.
78

1.
75

46
4.

05
3.

20
2.

81
2.

57
2.

42
2.

30
2.

22
2.

14
2.

09
2.

04
2.

00
1.

97
1.

91
1.

87
1.

80
1.

75
1.

71
1.

65
1.

62
1.

57
1.

54
1.

51
1.

48
1.

46

7.
21

5.
10

4.
24

3.
76

3.
44

3.
22

3.
05

2.
92

2.
82

2.
73

2.
66

2.
60

2.
50

2.
42

2.
40

2.
22

2.
13

2.
04

1.
98

1.
90

1.
86

1.
80

1.
76

1.
72

48
4.

04
3.

19
2.

80
2.

56
2.

41
2.

30
2.

21
2.

14
2.

08
2.

03
1.

99
1.

96
1.

90
1.

86
1.

79
1.

74
1.

70
1.

64
1.

61
1.

56
1.

53
1.

50
1.

47
1.

45

7.
19

5.
08

4.
22

3.
74

3.
42

3.
20

3.
04

2.
90

2.
80

2.
71

2.
64

2.
58

2.
48

2.
40

2.
28

2.
20

2.
11

2.
02

1.
96

1.
88

1.
84

1.
78

1.
73

1.
70



50
4.

03
3.

18
2.

79
2.

56
2.

40
2.

29
2.

20
2.

13
2.

07
2.

02
1.

98
1.

95
1.

90
1.

85
1.

78
1.

74
1.

69
1.

63
1.

60
1.

55
1.

52
1.

48
1.

46
1.

44

7.
17

5.
06

4.
20

3.
72

3.
41

3.
18

3.
02

2.
88

2.
78

2.
70

2.
62

2.
56

2.
46

2.
39

2.
26

2.
18

2.
10

2.
00

1.
94

1.
86

1.
82

1.
76

1.
71

1.
68

55
4.

02
3.

17
2.

78
2.

54
2.

38
2.

27
2.

18
2.

11
2.

05
2.

00
1.

97
1.

93
1.

88
1.

83
1.

76
1.

72
1.

67
1.

61
1.

58
1.

52
1.

50
1.

46
1.

43
1.

41

7.
12

5.
01

4.
16

3.
68

3.
37

3.
15

2.
98

2.
85

2.
75

2.
66

2.
59

2.
53

2.
43

2.
35

2.
23

2.
15

2.
06

1.
96

1.
90

1.
82

1.
78

1.
71

1.
66

1.
64

60
4.

00
3.

15
2.

76
2.

52
2.

37
2.

25
2.

17
2.

10
2.

04
1.

99
1.

95
1.

92
1.

86
1.

81
1.

75
1.

70
1.

65
1.

59
1.

56
1.

50
1.

48
1.

44
1.

41
1.

39

7.
08

4.
98

4.
13

3.
65

3.
34

3.
12

2.
95

2.
82

2.
72

2.
63

2.
56

2.
50

2.
40

2.
32

2.
20

2.
12

2.
03

1.
93

1.
87

1.
79

1.
74

1.
68

1.
63

1.
60

65
3.

99
3.

14
2.

75
2.

51
2.

36
2.

24
2.

15
2.

08
2.

02
1.

98
1.

94
1.

90
1.

85
1.

80
1.

73
1.

68
1.

63
1.

57
1.

54
1.

49
1.

46
1.

42
1.

39
1.

37

7.
04

4.
95

4.
10

3.
62

3.
31

3.
09

2.
93

2.
79

2.
70

2.
61

2.
54

2.
47

2.
30

2.
37

2.
18

2.
09

2.
00

1.
90

1.
84

1.
76

1.
71

1.
64

1.
60

1.
56

70
3.

98
3.

13
2.

74
2.

50
2.

35
2.

32
2.

14
2.

07
2.

01
1.

97
1.

93
1.

89
1.

84
1.

79
1.

72
1.

67
1.

62
1.

56
1.

53
1.

47
1.

45
1.

40
1.

37
1.

35

7.
01

4.
92

4.
08

3.
60

3.
29

3.
07

2.
91

2.
77

2.
67

2.
59

2.
51

2.
45

2.
35

2.
28

2.
15

2.
07

1.
98

1.
88

1.
82

1.
74

16
9

1.
63

1.
56

1.
53

80
3.

96
3.

11
2.

72
2.

48
2.

33
2.

21
2.

12
2.

05
1.

99
1.

95
1.

91
1.

88
1.

82
1.

77
1.

70
1.

65
1.

60
1.

54
1.

51
1.

45
1.

42
1.

38
1.

35
1.

32

6.
96

4.
88

4.
04

3.
56

3.
25

3.
04

2.
87

2.
74

2.
64

2.
55

2.
48

2.
41

2.
32

2.
24

2.
11

2.
03

1.
94

1.
84

1.
78

1.
70

1.
65

1.
57

1.
52

1.
49

10
0

3.
94

3.
09

2.
70

2.
46

2.
30

2.
19

2.
10

2.
03

1.
97

1.
92

1.
88

1.
85

1.
79

1.
75

1.
68

1.
63

1.
57

1.
51

1.
48

1.
42

1.
39

1.
34

1.
30

1.
28

6.
90

4.
82

3.
98

3.
51

3.
20

2.
99

2.
82

2.
69

2.
59

2.
51

2.
43

2.
36

2.
26

2.
19

2.
06

1.
98

1.
89

1.
79

1.
73

1.
64

1.
59

1.
51

1.
46

1.
43

12
5

3.
92

3.
07

2.
68

2.
44

2.
29

2.
17

2.
08

2.
01

1.
95

1.
90

1.
86

1.
83

1.
77

1.
72

1.
65

1.
60

1.
55

1.
49

1.
45

1.
39

1.
36

1.
31

1.
27

1.
25

6.
84

4.
78

3.
94

3.
47

3.
17

2.
95

2.
79

2.
65

2.
56

2.
47

2.
40

2.
33

2.
23

2.
15

2.
03

1.
94

1.
85

1.
75

1.
68

1.
59

1.
54

1.
46

1.
40

1.
37

15
0

3.
91

3.
06

2.
67

2.
43

2.
27

2.
16

2.
07

2.
00

1.
94

1.
89

1.
85

1.
82

1.
76

1.
71

1.
64

1.
59

1.
54

1.
47

1.
44

1.
37

1.
34

1.
29

1.
25

1.
22

6.
81

4.
75

3.
91

3.
44

3.
13

2.
92

2.
76

2.
62

2.
53

2.
44

2.
37

2.
30

2.
20

2.
12

2.
00

1.
91

1.
83

1.
72

1.
66

1.
56

1.
51

1.
43

1.
37

1.
33

20
0

3.
89

3.
04

2.
65

2.
41

2.
26

2.
14

2.
05

1.
98

1.
92

1.
87

1.
83

1.
80

1.
74

1.
69

1.
62

0.
15

7
1.

52
1.

45
1.

42
1.

35
1.

32
1.

26
1.

22
1.

19

6.
76

4.
71

3.
88

3.
41

3.
11

2.
90

2.
73

2.
60

2.
50

2.
41

2.
34

2.
28

1.
17

2.
09

1.
97

1.
88

1.
79

1.
69

1.
62

1.
53

1.
48

1.
39

1.
33

1.
28

40
0

3.
86

3.
02

2.
62

2.
39

2.
23

2.
12

2.
03

1.
96

19
0

1.
85

1.
81

1.
78

1.
72

1.
67

1.
60

1.
54

1.
49

1.
42

1.
38

1.
32

1.
28

1.
22

1.
16

1.
13

6.
70

4.
66

3.
83

3.
36

3.
06

2.
85

2.
69

2.
55

2.
46

2.
37

2.
29

2.
23

2.
12

2.
04

1.
92

1.
84

1.
74

1.
64

1.
57

1.
47

1.
42

1.
32

1.
24

1.
19

10
00

3.
85

3.
00

2.
61

2.
38

2.
22

2.
10

2.
02

1.
95

1.
89

1.
84

1.
80

1.
76

1.
70

1.
65

1.
58

1.
53

1.
47

1.
41

1.
36

1.
30

1.
26

1.
19

1.
13

1.
08

6.
66

4.
62

3.
80

3.
34

3.
04

2.
82

2.
66

2.
53

2.
43

2.
34

2.
26

2.
20

2.
09

2.
01

1.
89

1.
81

1.
71

1.
61

1.
54

1.
44

1.
38

1.
28

1.
19

1.
11

∞
3.

84
2.

99
2.

60
2.

37
2.

21
2.

09
2.

01
1.

94
1.

88
1.

83
1.

79
1.

75
1.

69
1.

64
1.

57
1.

52
1.

46
1.

40
1.

35
1.

28
1.

24
1.

17
1.

11
1.

00

6.
64

4.
60

3.
78

3.
32

3.
02

2.
80

2.
64

2.
51

2.
41

2.
32

2.
24

2.
18

2.
07

1.
99

1.
87

1.
79

1.
69

1.
59

1.
52

1.
41

1.
36

1.
25

1.
15

1.
00

So
ur

ce
:

R
ep

ri
nt

ed
by

pe
rm

is
si

on
fr

om
G

eo
rg

e
W

.S
ne

de
co

r
an

d
W

ill
ia

m
G

.C
oc

hr
an

,S
ta

ti
st

ic
al

M
et

ho
ds

,6
th

ed
.,

©
19

67
by

Io
w

a
St

at
e

U
ni

ve
rs

ity
Pr

es
s,

A
m

es
,I

.A
.



658 STATISTICAL TABLES

Table ST6. Random Normal Numbers, μ = 0 and σ = 1

1 2 3 4 5 6 7 8 9 10

0.464 0.137 2.455 −0.323 −0.068 0.290 −0.288 1.298 0.241 −0.957
0.060 −2.526 −0.531 −0.194 0.543 −1.558 0.187 −1.190 0.022 0.525
1.486 −0.354 −0.634 0.697 0.926 1.375 0.785 −0.963 −0.853 −1.865
1.022 −0.472 1.279 3.521 0.571 −1.851 0.194 1.192 −0.501 −0.273
1.394 −0.555 0.046 0.321 2.945 1.974 −0.258 0.412 0.439 −0.035

0.906 −0.513 −0.525 0.595 0.881 −0.934 1.579 0.161 −1.885 0.371
1.179 −1.055 0.007 0.769 0.971 0.712 1.090 −0.631 −0.255 −0.702

−1.501 −0.488 −0.162 −0.136 1.033 0.203 0.448 0.748 −0.423 −0.432
−0.690 0.756 −1.618 −0.345 −0.511 −2.051 −0.457 −0.218 0.857 −0.465

1.372 0.225 0.378 0.761 0.181 −0.736 0.960 −1.530 −0.260 0.120

−0.482 1.678 −0.057 −1.229 −0.486 0.856 −0.491 −1.983 −2.830 −0.238
−1.376 −0.150 1.356 −0.561 −0.256 −0.212 0.219 0.779 0.953 −0.869
−1.010 0.598 −0.918 1.598 0.065 0.415 −0.169 0.313 −0.973 −1.016
−0.005 −0.899 0.012 −0.725 1.147 −0.121 1.096 0.481 −1.691 0.417

1.393 1.163 −0.911 1.231 −0.199 −0.246 1.239 −2.574 −0.558 0.056

−1.787 −0.261 1.237 1.046 −0.508 −1.630 −0.146 −0.392 −0.627 0.561
−0.105 −0.357 −1.384 0.360 −0.992 −0.116 −1.698 −2.832 −1.108 −2.357
−1.339 1.827 −0.959 0.424 0.969 −1.141 −1.041 0.362 −1.726 1.956

1.041 0.535 0.731 1.377 0.983 −1.330 1.620 −1.040 0.524 −0.281
0.279 −2.056 0.717 −0.873 −1.096 −1.396 1.047 0.089 −0.573 0.932

−1.805 −2.008 −1.633 0.542 0.250 −0.166 0.032 0.079 0.471 −1.029
−1.186 1.180 1.114 0.882 1.265 −0.202 0.151 −0.376 −0.310 0.479

0.658 −1.141 1.151 −1.210 0.927 0.425 0.290 −0.902 0.610 2.709
−0.439 0.358 −1.939 0.891 −0.227 0.602 0.873 −0.437 −0.220 −0.057
−1.399 −0.230 0.385 −0.649 −0.577 0.237 −0.289 0.513 0.738 −0.300

0.199 0.208 −1.083 −0.219 −0.291 1.221 1.119 0.004 −2.015 −0.594
0.159 0.272 −0.313 0.084 −2.828 −0.430 −0.792 −1.275 −0.623 −1.047
2.273 0.606 0.606 −0.747 0.247 1.291 0.063 −1.793 −0.699 −1.347
0.041 −0.307 0.121 0.790 −0.584 0.541 0.484 −0.986 0.481 0.996

−1.132 −2.098 0.921 0.145 0.446 −1.661 1.045 −1.363 −0.586 −1.023

0.768 0.079 −1.473 0.034 −2.127 0.665 0.084 −0.880 −0.579 0.551
0.375 −1.658 −0.851 0.234 −0.656 0.340 −0.086 −0.158 −0.120 0.418

−0.513 −0.344 0.210 −0.736 1.041 0.008 0.427 −0.831 0.191 0.074
0.292 −0.521 1.266 −1.206 −0.899 0.110 −0.528 −0.813 0.071 0.524
1.026 2.990 −0.574 −0.491 −1.114 1.297 −1.433 −1.345 −3.001 0.479

−1.334 1.278 −0.568 −0.109 −0.515 −0.566 2.923 0.500 0.359 0.326
−0.287 −0.144 −0.254 0.574 −0.451 −1.181 −1.190 −0.318 −0.094 1.114

0.161 −0.886 −0.921 −0.509 1.410 −0.518 0.192 −0.432 1.501 1.068
−1.346 0.193 −1.202 0.394 −1.045 0.843 0.942 1.045 0.031 0.772

1.250 −0.199 −0.288 1.810 1.378 0.584 1.216 0.733 0.402 0.226

0.630 −0.537 0.782 0.060 0.499 −0.431 1.705 1.164 0.884 −0.298
0.375 −1.941 0.247 −0.491 0.665 −0.135 −0.145 −0.498 0.457 1.064
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(Continued)

1 2 3 4 5 6 7 8 9 10

−1.420 0.489 −1.711 −1.186 0.754 −0.732 −0.066 1.006 −0.798 0.162
−0.151 −0.243 −0.430 −0.762 0.298 1.049 1.810 2.885 −0.768 −0.129
−0.309 0.531 0.416 −1.541 1.456 2.040 −0.124 0.196 0.023 −1.204

0.424 −0.444 0.593 0.993 −0.106 0.116 0.484 −1.272 1.066 1.097
0.593 0.658 −1.127 −1.407 −1.579 −1.616 1.458 1.262 0.736 −0.916
0.862 −0.885 −0.142 −0.504 0.532 1.381 0.022 −0.281 −0.342 1.222
0.235 −0.628 −0.023 −0.463 −0.899 −0.394 −0.538 1.707 −0.188 −1.153

−0.853 0.402 0.777 0.833 0.410 −0.349 −1.094 0.580 1.395 1.298

Source: From tables of the RAND Corporation, by permission.

Table ST7. Critical Values of the Kolmogorov–Smirnov One-Sample Test Statistica

One-Sided Test:
α= 0.10 0.05 0.025 0.01 0.005 α= 0.10 0.05 0.025 0.01 0.005
Two-Sided Test:
α= 0.20 0.10 0.05 0.02 0.01 α= 0.20 0.10 0.05 0.02 0.01

n = 1 0.900 0.950 0.975 0.990 0.995 n = 21 0.226 0.259 0.287 0.321 0.344
2 0.684 0.776 0.842 0.900 0.929 22 0.221 0.253 0.281 0.314 0.337
3 0.565 0.636 0.708 0.785 0.829 23 0.216 0.247 0.275 0.307 0.330
4 0.493 0.565 0.624 0.689 0.734 24 0.212 0.242 0.269 0.301 0.323
5 0.447 0.509 0.563 0.627 0.669 25 0.208 0.238 0.264 0.295 0.317
6 0.410 0.468 0.519 0.577 0.617 26 0.204 0.233 0.259 0.290 0.311
7 0.381 0.436 0.483 0.538 0.576 27 0.200 0.229 0.254 0.284 0.305
8 0.358 0.410 0.454 0.507 0.542 28 0.197 0.225 0.250 0.279 0.300
9 0.339 0.387 0.430 0.480 0.513 29 0.193 0.221 0.246 0.275 0.295

10 0.323 0.369 0.409 0.457 0.489 30 0.190 0.218 0.242 0.270 0.290
11 0.308 0.352 0.391 0.437 0.468 31 0.187 0.214 0.238 0.266 0.285
12 0.296 0.338 0.375 0.419 0.449 32 0.184 0.211 0.234 0.262 0.281
13 0.285 0.325 0.361 0.404 0.432 33 0.182 0.208 0.231 0.258 0.277
14 0.275 0.314 0.349 0.390 0.418 34 0.179 0.205 0.227 0.254 0.273
15 0.266 0.304 0.338 0.377 0.404 35 0.177 0.202 0.224 0.251 0.269
16 0.258 0.295 0.327 0.366 0.392 36 0.174 0.199 0.221 0.247 0.265
17 0.250 0.286 0.318 0.355 0.381 37 0.172 0.196 0.218 0.244 0.262
18 0.244 0.279 0.309 0.346 0.371 38 0.170 0.194 0.215 0.241 0.258
19 0.237 0.271 0.301 0.337 0.361 39 0.168 0.191 0.213 0.238 0.255
20 0.232 0.265 0.294 0.329 0.352 40 0.165 0.189 0.210 0.235 0.252

Approximation
for n > 40

1.07√
n

1.22√
n

1.36√
n

1.52√
n

1.63√
n

Source: Adapted by permission from Table 1 of Leslie H. Miller, Table of Percentage points of Kolmogrov
statistics, J. Am. Stat. Assoc. 51 (1956), 111–121.
aThis table gives the values of D+

n,α and Dn,α for which α≥ P{D+
n > D+

n,α} and α≥ P{Dn > Dn,α} for some
selected values of n and α.



660 STATISTICAL TABLES

Table ST8. Critical Values of the Kolmogorov–Smirnov Test Statistic for Two Samples of
Equal Sizea

One-Sided Test:
α= 0.10 0.05 0.025 0.01 0.005 α= 0.10 0.05 0.025 0.01 0.005
Two-Sided Test:
α= 0.20 0.10 0.05 0.02 0.01 α= 0.20 0.10 0.05 0.02 0.01

n = 3 2/3 2/3 n = 20 6/20 7/20 8/20 9/20 10/20
4 3/4 3/4 3/4 21 6/21 7/21 8/21 9/21 10/21
5 3/5 3/5 4/5 4/5 4/5 22 7/22 8/22 8/22 10/22 10/22
6 3/6 4/6 4/6 5/6 5/6 23 7/23 8/23 9/23 10/23 10/23
7 4/7 4/7 5/7 5/7 5/7 24 7/24 8/24 9/24 10/24 11/24
8 4/8 4/8 5/8 5/8 6/8 25 7/25 8/25 9/25 10/25 11/25
9 4/9 5/9 5/9 6/9 6/9 26 7/26 8/26 9/26 10/26 11/26

10 4/10 5/10 6/10 6/10 7/10 27 7/27 8/27 9/27 11/27 11/27
11 5/11 5/11 6/11 7/11 7/11 28 8/28 9/28 10/28 11/28 12/28
12 5/12 5/12 6/12 7/12 7/12 29 8/29 9/29 10/29 11/29 12/29
13 5/13 6/13 6/13 7/13 8/13 30 8/30 9/30 10/30 11/30 12/30
14 5/14 6/14 7/14 7/14 8/14 31 8/31 9/31 10/31 11/31 12/31
15 5/15 6/15 7/15 8/15 8/15 32 8/32 9/32 10/32 12/32 12/32
16 6/16 6/16 7/16 8/16 9/16 34 8/34 10/34 11/34 12/34 13/34
17 6/17 7/17 7/17 8/17 9/17 36 9/36 10/36 11/36 12/36 13/36
18 6/18 7/18 8/18 9/18 9/18 38 9/38 10/38 11/38 13/38 14/38
19 6/19 7/19 8/19 9/19 9/19 40 9/40 10/40 12/40 13/40 14/40

Approximation
for n > 40:

1.52√
n

1.73√
n

1.92√
n

2.15√
n

2.30√
n

Source: Adapted by permission from Tables 2 and 3 of Z. W. Birnbaum and R. A. Hall, Small sample distributions
for multisample statistics of the Smirnov type, Ann. Math. Stat. 31 (1960), 710–720.
aThis table gives the values of D+

n,n,α and Dn,n,α for which α≥ P{D+
n,n > D+

n,n,α} and α≥ P{Dn,n > Dn,n,α}
for some selected values of n and α.
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Table ST9. Critical Values of the Kolmogorov–Smirnov Test Statistic for Two Samples of
Unequal Sizea

One-Sided Test: α= 0.10 0.05 0.025 0.01 0.005
Two-Sided Test: α= 0.20 0.10 0.05 0.02 0.01

N1 = 1 N2 = 9 17/18
10 9/10

N1 = 2 N2 = 3 5/6
4 3/4
5 4/5 4/5
6 5/6 5/6
7 5/7 6/7
8 3/4 7/8 7/8
9 7/9 8/9 8/9

10 7/10 4/5 9/10
N1 = 3 N2 = 4 3/4 3/4

5 2/3 4/5 4/5
6 2/3 2/3 5/6
7 2/3 5/7 6/7 6/7
8 5/8 3/4 3/4 7/8
9 2/3 2/3 7/9 8/9 8/9

10 3/5 7/10 4/5 9/10 9/10
12 7/12 2/3 3/4 5/6 11/12

N1 = 4 N2 = 5 3/5 3/4 4/5 4/5
6 7/12 2/3 3/4 5/6 5/6
7 17/28 5/7 3/4 6/7 6/7
8 5/8 5/8 3/4 7/8 7/8
9 5/9 2/3 3/4 7/9 8/9

10 11/20 13/20 7/10 4/5 4/5
12 7/12 2/3 2/3 3/4 5/6
16 9/16 5/8 11/16 3/4 13/16

N1 = 5 N2 = 6 3/5 2/3 2/3 5/6 5/6
7 4/7 23/35 5/7 29/35 6/7
8 11/20 5/8 27/40 4/5 4/5
9 5/9 3/5 31/45 7/9 4/5

10 1/2 3/5 7/10 7/10 4/5
15 8/15 3/5 2/3 11/15 11/15
20 1/2 11/20 3/5 7/10 3/4
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Table ST9. (Continued)

One-Sided Test: α= 0.10 0.05 0.025 0.01 0.005
Two-Sided Test: α= 0.20 0.10 0.05 0.02 0.01

N1 = 6 N2 = 7 23/42 4/7 29/42 5/7 5/6
8 1/2 7/12 2/3 3/4 3/4
9 1/2 5/9 2/3 13/18 7/9

10 1/2 17/30 19/30 7/10 11/15
12 1/2 7/12 7/12 2/3 3/4
18 4/9 5/9 11/18 2/3 13/18
24 11/24 1/2 7/12 5/8 2/3

N1 = 7 N2 = 8 27/56 33/56 5/8 41/56 3/4
9 31/63 5/9 40/63 5/7 47/63

10 33/70 39/70 43/70 7/10 5/7
14 3/7 1/2 4/7 9/14 5/7
28 3/7 13/28 15/28 17/28 9/14

N1 = 8 N2 = 9 4/9 13/24 5/8 2/3 3/4
10 19/40 21/40 23/40 27/40 7/10
12 11/24 1/2 7/12 5/8 2/3
16 7/16 1/2 9/16 5/8 5/8
32 13/32 7/16 1/2 9/16 19/32

N1 = 9 N2 = 10 7/15 1/2 26/45 2/3 31/45
12 4/9 1/2 5/9 11/18 2/3
15 19/45 22/45 8/15 3/5 29/45
18 7/18 4/9 1/2 5/9 11/18
36 13/36 5/12 17/36 19/36 5/9

N1 = 10 N2 = 15 2/5 7/15 1/2 17/30 19/30
20 2/5 9/20 1/2 11/20 3/5
40 7/20 2/5 9/20 1/2

N1 = 12 N2 = 15 23/60 9/20 1/2 11/20 7/12
16 3/8 7/16 23/48 13/24 7/12
18 13/36 5/12 17/36 19/36 5/9
20 11/30 5/12 7/15 31/60 17/30

N1 = 15 N2 = 20 7/20 2/5 13/30 29/60 31/60
N1 = 16 N2 = 20 27/80 31/80 17/40 19/40 41/80

Large-sample
approximation 1.07

√
m+n

mn
1.22

√
m+n

mn
1.36

√
m+n

mn
1.52

√
m+n

mn
1.63

√
m+n

mn

Source: Adapted by permission from F. J. Massey, Distribution table for the deviation between two sample
cumulatives, Ann. Math. Stat. 23 (1952), 435–441.
aThis table gives the values of D+

m,n,α and Dm,n,α for whichα≥P{D+
m,n >D+

m,n,α} andα≥P{Dm,n >Dm,n,α}
for some selected values of N1 = smaller sample size, N2 = larger sample size, and α.
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Table ST10. Critical Values of the Wilcoxon Signed-Ranks Test Statistica

α

n 0.01 0.025 0.05 0.10

3 6 6 6 6
4 10 10 10 9
5 15 15 14 12
6 21 20 18 17
7 27 25 24 22
8 34 32 30 27
9 41 39 36 34

10 49 46 44 40
11 58 55 52 48
12 67 64 60 56
13 78 73 69 64
14 89 84 79 73
15 100 94 89 83
16 112 106 100 93
17 125 118 111 104
18 138 130 123 115
19 152 143 136 127
20 166 157 149 140

Source: Adapted by permission from Table 1 of R. L. McCornack, Extended tables of the Wilcoxon matched
pairs signed-rank statistics, J. Am. Stat. Assoc. 60 (1965), 864–871.
aThis table gives values of tα for which P{T+ > tα} ≤ α for selected values of n and α. Critical values in the
lower tail may be obtained by symmetry from the equation t1−α = n(n+1)/2− tα.
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Table ST11. Critical Values of the Mann–Whitney–Wilcoxon Test Statistica

n

m α 2 3 4 5 6 7 8 9 10

2 0.01 4 6 8 10 12 14 16 18 20
0.025 4 6 8 10 12 14 15 17 19
0.05 4 6 8 9 11 13 14 16 18
0.10 4 5 7 8 10 12 13 15 16

3 0.01 9 12 15 18 20 20 25 28
0.025 9 12 14 16 19 21 24 26
0.05 8 11 13 15 18 20 22 25
0.10 7 10 12 14 16 18 21 23

4 0.01 16 19 22 26 29 32 36
0.025 15 18 21 24 27 31 34
0.05 14 17 20 23 26 29 32
0.10 12 15 18 21 24 26 29

5 0.01 23 27 31 35 39 43
0.025 22 26 29 33 37 41
0.05 20 24 28 31 35 38
0.10 19 22 26 29 32 36

6 0.01 32 37 41 46 51
0.025 30 35 39 43 48
0.05 28 33 37 41 45
0.10 26 30 34 38 42

7 0.01 42 48 53 58
0.025 40 45 50 55
0.05 37 42 47 52
0.10 35 39 44 48

8 0.01 54 60 66
0.025 50 56 62
0.05 48 53 59
0.10 44 49 55

9 0.01 66 73
0.025 63 69
0.05 59 65
0.10 55 61

10 0.01 80
0.025 76
0.05 72
0.10 67

Source: Adapted by permission from Table 1 of L. R. Verdooren, Extended tables of critical values for Wilcoxon’s
test statistic, Biometrika 50 (1963), 177–186, with the kind permission of Professor E. S. Pearson, the author,
and the Biometrika Trustees.
aThis table gives values of uα for which P{U > uα}≤α for some selected values of m, n, and α. Critical values
in the lower tail may be obtained by symmetry from the equation u1−α = mn−uα.
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Table ST12. Critical Points of Kendall’s Tau Test Statistica

α

n 0.100 0.050 0.025 0.01

3 3 3 3 3
4 4 4 6 6
5 6 6 8 8
6 7 9 11 11
7 9 11 13 15
8 10 14 16 18
9 12 16 18 22

10 15 19 21 25

Source: Adapted by permission from Table 1, p. 173, of M. G. Kendall, Rank Correlation Methods, 3rd ed.,
Griffin, London, 1962. For values of n ≥ 11, see W. J. Conover, Practical Nonparametric Statistics, John Wiley,
New York, 1971, p. 390.
aThis table gives the values of Sα for which P{S > Sα} ≤ α, where S =

(n
2

)
T , for some selected values of α

and n. Values in the lower tail may be obtained by symmetry, S1−α =−Sα.

Table ST13. Critical Values of Spearman’s Rank Correlation Statistica

α

n 0.01 0.025 0.05 0.10

3 1.000 1.000 1.000 1.000
4 1.000 1.000 0.800 0.800
5 0.900 0.900 0.800 0.700
6 0.886 0.829 0.771 0.600
7 0.857 0.750 0.679 0.536
8 0.810 0.714 0.619 0.500
9 0.767 0.667 0.583 0.467

10 0.721 0.636 0.552 0.442

Source: Adapted by permission from Table 2, pp. 174–175, of M. G. Kendall, Rank Correlation Methods, 3rd
ed., Griffin, London, 1962. For values of n ≥ 11, see W. J. Conover, Practical Nonparametric Statistics, John
Wiley, New York, 1971, p. 391.
aThis table gives the values of Rα for which P{R > Rα} ≤ α for some selected values of n and α. Critical
values in the lower tail may be obtained by symmetry, R1−α =−Rα.
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Problems 1.3
1. (a) Yes; (b) yes; (c) no. 2. (a) Yes; (b) no; (c) no.
6. (a) 0.9; (b) 0.05; (c) 0.95. 7. 1/16. 8. 1

3 +
2
9�n2 = 0.487.

Problems 1.4

3.

(
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n

)(
W

n− r

)/(
N

n

)
4. 352146 5. (n− k+1)!/n!

6. 1− 7P5/75 8.

(
n+ k− r

n− r

)/(
n+ k

k

)
9. 1−
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Problems 1.5

3. α(pb)r
∞∑
�=0

(
r+ �

�

)
[p(1−b)]� 4. p/(2−p)

5.
N∑

j=0

(j/N)n+1
/ N∑

j=0

(j/N)n � n+1
n+2

for large N 6. n = 4

10. r/(r+g) 11. (a) 1/4; (b) 1/3 12. 0.08
13. (a) 173/480 (b) 108/173; 15/173 14. 0.0872

Problems 1.6
1. 1/(2−p); (1−p)/(2−p) 4. p2(1−p)2[3−7p(1−p)]
12. For any two disjoint intervals I1, I2 ⊆ (a,b), �(I1)�(I2) = (b−a)�(I1 ∩ I2), where

�(I) = length of interval I.

13. (a) pn=

{
8/36 if n = 1

2
(

27
36

)n−2( 3
6

)2
+2

(
26
36

)n−2( 4
36

)2
+2

(
25
36

)n−2( 5
36

)2
,n ≥ 2

(b) 22/45
(c) 12/36; 2

(
27
36

)n−2( 9
36

)(
3

16

)
+2

(
26
36

)n−2( 10
36

)(
4
36

)
+2

(
25
36

)n−2( 11
36

)(
5
36

)
for n = 2,3, . . ..

Problems 2.2
3. Yes; yes
4. φ;{(1,1,1,1,2),(1,1,1,2,1),(1,1,2,1,1),(1,2,1,1,1),(2,1,1,1,1)};{(6,6,6,6,6)};

{(6,6,6,6,6),(6,6,6,6,5),(6,6,6,5,6),(6,6,5,6,6),(6,5,6,6,6),(5,6,6,6,6)}
5. Yes; (1/4,1/2)∪ (3/4,1)

Problems 2.3

1.
x 0 1 2 3

P(X = x) 1/8 3/8 3/8 1/8
F(x) = 0, x < 0, = 1/8, 0 ≤ x < 1; = 1/2, 1 ≤ x < 2; = 5/8, 2 ≤ x < 3;

= 1, x ≥ 3
3. (a) Yes; (b) yes; (c) yes; yes

Problems 2.4
1. (1−p)n+1 − (1−p)N+1, N ≥ n

2. (b) 1
π(1+x2) ; (c) 1/x2; (d) e−x

3. Yes; Fθ(x) = 0 x ≤ 0, = 1− e−θx −θxe−θx for x > 0; P(X ≥ 1) = 1−Fθ(1)

4. Yes; F(x) = 0, x ≤ 0; = 1−
(

1+ x
θ+1

)
e−x/θ for x > 0

6. F(x) = ex/2 for x ≤ 0, = 1− e−x/2 for x > 0
8. (c), (d), and (f)
9. Yes; (a) 1/2, 0 < x < 1, 1/4 for 2 < x < 4; (b) 1/(2θ), |x| ≤ θ;

(c) xe−x, x > 0; (d) (x−1)/4 for 1 ≤ x < 3, and P(X = 3) = 1/2;
(e) 2xe−x2

, x > 0
10. If S(x) = 1−F(x) = P(X > x), then S′(x) =−f (x)
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Problems 2.5
2. X

d
=1/X

4. θ[1− exp(−2πθ)]
√

1− y2
[
e−θ arc cos y + e−2πθ+θ arc cos y

]
, |y| ≤ 1;{

θ exp{−θ arctan z}[(1+ z2)(1− e−θπ]−1, z > 0

θ exp{−πθ− arctan z}[(1+ z2)(1− e−θπ)]−1, z < 0
10. f|X|(y) = 2/3 for 0 < y < 1, = 1/3 for 1 < y < 2
12. (a) 0,y < 0;F(0) for −1 ≤ y < 1, and 1 for y ≥ 1;

(b) = 0 if y <−b, = F(−b) if y =−b, = F(y) if −b ≤ y < b, = 1 if y ≥ b;
(c) = F(y) if y <−b, = F(−b) if −b ≤ y < 0, = F(b) if 0 ≤ y < b, = F(y).

if y ≥ b.

Problems 3.2
3. EX2r = 0 if 2r < 2m−1 is an odd integer,

=
Γ
(

m−r+ 1
2

)
Γ
(

r+ 1
2

)
Γ
(

1
2

)
Γ
(

m−1
2

) if 2r < 2m−1 is an even integer

9. zp = a(1− v)/v, where v = (1−p)1/k

10. Binomial: α3 = (q−p)/
√

npq, α4 = 3+(1−6pq)/3npq
Poisson: α3 = λ−1/2, α4 = 3+1/λ.

Problems 3.3
1. (b) e−λ(eλs −1)/(1− e−λ); (c) p[1− (qs)N+1]/[(1−qs)(1−qN+1)], s < 1/q.
6. f (θs)/f (θ); f (θet)/f (θ).

Problems 3.4
3. For any σ2 > 0 take P(X = x) = σ2

σ2+x2 , P
(
X =−σ2

x

)
= x2

σ2+x2 , x 	= 0.

5. P
(

X2 = σ4K2−μ4
K2σ2−σ2

)
= σ4[K2−1]2

μ4+K4σ4−2K2σ4 1 < K <
√

2

P(X2 = K2σ2) = μ4−σ4

μ4+K4σ4−2K2σ4 .

Problems 4.2
1. No 4. 1/6; 0. 7. Marginals negative binomial, so also conditionals.

8. h(y|x) = 1
2 (c

2 + x2)/(c2 + x2 + y2)3/2.
9. X ∼ B(p1,p2 +p3); Y/(1− x)∼ B(p2,p3).
10. X ∼ G(α,1/β), Y ∼ G(α+γ,1/β), X/y ∼ B(α,γ), Y − x ∼ G(γ,1/β).
14. P(X ≤ 7) = 1− e−7 15. 1/24; 15/16. 17. 1/6.

Problems 4.3
3. No; Yes; No. 10. = 1−a/(2b) if a < b, = b/(2a) if a > b.
11. λ/(λ+μ); 1/2.

Problems 4.4
2. (b) fV|U(v|u) = 1/(2u), |v|< u, u > 0.
6. P(X = x,M = m) = π(1−π)m[1− (1−π)m+1] if x = m, = π2(1−π)m+x

if x < m. P(M = m) = 2π(1−π)m −π(2−π)(1−π)2m, m ≥ 0.
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7. fX(x) = λke−λ/k!, k ≤ x < k+1, k = 0,1,2, ...
11. fU(u) = 3u2/(1+u)4, u > 0.

13. (a) FU,V(u,v) =
[
1− exp

(
− u2

2σ2

)](
π+2v

2π

)
if u > 0, |v| ≤ π/2,

= 1− exp[1−u2/(2σ2)] if u > 0, v > π/2, = 0 elsewhere.
(b) f (u,v) = 1√

π
e−u2 v1/2−1e−v/2

Γ(1/2)
√

2
.

Problems 4.5
2. EXkY� = 2�+1

(k+3)(�+1) +
2�+2

3(k+2)(�+2) . 3. cov(X,Y) = 0; X, Y dependent.

15. MU,V(u,v) = (1−2v)−1 exp{u2/(1−2v)} for v < 1/2; ρ(U,V) = 0; no.

18. ρZ,W = (σ2
2 −σ2

1)sinθ cosθ/
√

var(Z)var(W).

21. If U has PDF f , then EXm = EUm/(m+1) for m ≥ 0; ρ= 1
2 −

EU2

8
3 var(U)+ 2

3 (EU)2 .

Problems 4.6
1. μ+σ

[
f
( a−μ

σ

)
− f

( b−μ
σ

)]
/Φ

( b−μ
σ

)
−Φ

( a−μ
σ

)]
where Φ is the standard normal DF.

2. (a) 2(1+X). 3. E{X|y}= μ1 +ρσ1
σ2
(y−μ2). 4. E(var{Y|X}).

6. 4/9. 7. (a) 1; (b) 1/4. 8. xk/(k+1); 1/(1+ k)2.

Problems 4.7

5. (a)

( n∑
j=1

1/j

)
/β; (b) n

n+1 .

Problems 5.2

5. FY(y) =
( y

M

)/( N

M

)
, P(Y = y) =

( y−1

M−1

)/( N

M

)
, y ≥ M+1, and

P(Y = M) = 1
/( N

M

)
. P(x1, . . . ,xm|Y = y) = (y−m)!

(y−1)!M , 0 < xi ≤ y,

i = 1, . . . , j, xi 	= xj for i 	= j.
9. P(Y1 = x) = qpx +pqx, x ≥ 1. P(Y2 = x) = p2qx−1 +q2px−1, x ≥ 1

P(Yn = x) = P(Y1 = x) for n odd; = P(Y2 = x) for n even.

Problems 5.3

2. (a) P
{

F(X) =
∑x

k=0

( n

k

)
pk(1−p)n−k

}
=
( n

x

)
px(1−p)n−x, x = 0,1, . . . ,n.

13. C

(∑n
i=1

|ai|
a2

i +b2
i
,
∑n

i=1
bi

a2
i +b2

i

)
22. X/|Y| ∼ C(1,0); (2/π)(1+ z2)−1, 0 < z <∞.
27. (a) t/α2; (c) = 0 if t ≤ θ, = α/t if t > θ; (d) (α/β)tα−1.
29. (b) 1/(2

√
π);1/2.
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Problems 5.4
1. (a) μ1 = 4; μ2 = 15/4, ρ=−3/4; (b) N

(
6− 9

16 x, 63
16

)
; (c) 0.3191.

4. BN(aμ1 +b,cμ2 +d,a2σ2
1 ,c

2σ2
2 ,ρ). 6. tan2 θ = EX2/EY2. 7. σ2

1 = σ2
2.

Problems 6.2
1. P(X = 0) = P(X = 1) = 1/8, P(X = 1/3) = P(X = 2/3) = 3/8

P(S2 = 0) = 1/4, P(S2 = 1/3) = 3/4.

2.
x 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
.

Problems 6.3
1. {F(min(x,y))−F(x)F(y)}/n.
6. E(S2)k = σ2

(n−1)k (n−1)(n+2) · · ·(n+2k−3), k ≥ 1.
9. (a) P(X = t) = e−nλ(nλ)tn/(tn)!, t = 0,1/n,2/n, . . .; (b) C(1,0);

(c) Γ(nm/2,2/n). 10. (b) 2/
√
αn; 3+6/(αn).

11. 0,1,0,E(Xn −0.5)4/(144n2). 12. var(S2) = 1
n

(
λ+ 2nλ2

n−1

)
> var(X).

Problems 6.4
2. n(m+ δ)/[m(n−2)]; 2n2{(m+ δ)2 +(n−2)(m+2δ)}/[m2(n−2)2(n−4)].

3. δ
√

n
2
Γ( n−1

2 )

Γ( n
2 )

, n > 1; n
n−2 (1+ δ2)−

(
δ
√

n
2
Γ( n−1

2 )

Γ( n
2 )

)2
, n > 2.

11. 2mm/2nn/2(n+me2z)−(m+n)/2ezm/B
(

m
2 ,

n
2

)
, −∞< z <∞.

Problems 6.5
1. t(n−1) 2. t(m+n−2) 3.

(
2σ2

n−1

)k
Γ
(

n−1
2 + k

)/
Γ
(

n−1
2

)
.

Problems 6.6
3. [2π(1−ρ2)]−1/2

[
1+ y2

1+y2
2−2ρy1y2

n(1−ρ2)

]−( n
2 +1)

; both ∼ t(n).

4.
√

n−1T ∼ t(n−1).

Problems 7.2
1. No. 2. Yes
3. Yn → Y ∼ F(y) = 0 if y < 0, = 1− e−y/θ if y ≥ 0.
4. F(y) = 0 if y ≤ 0, = 1− e−y if y > 0.
9. C(1,0) 12. No
13. (a) exp(−x−α), x > 0; EXk = Γ(1− k/α), k < α.

(b) exp(−e−x), −∞< x <∞; M(t) = Γ(1− t), t < 1.
(c) exp{−(−x)α}, x < 0; EXk = (−1)kΓ(1+ k/α), k >−α.

20. (a) Yes; No (b) Yes; No.

Problems 7.3
3. Yes; An = n(n+1)μ/2, Bn = σ

√
n(n+1)(2n+1)/6

5. (a) Mn(t)→ 0 as n →∞; no. (b) Mn(t) diverges as n →∞
(c) Yes (d) Yes (e) Mn → et2/4; no.
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Problems 7.4
1. (a) No; (b) No. 2. No. 3. For α < 1/2. 7. (a) Yes; (b) No.

Problems 7.5
4. Degenerate at β. 5. Degenerate at 0.
6. For ρ≥ 0, N(0,

√
ρ), and for ρ < 0, Sn/n

L−→ degenerate.

Problems 7.6
1. (b) No; (c) Yes; (d) No.
2. N(0,1). 3. N(0,σ2/β2). 4. 163. 8. 0.0926; 1.92

Problems 7.7
1. (a) AN(μ2,4μ2σ2

n) for μ 	= 0, X
2
/σ2

n
L−→χ2(1) for μ= 0, σ2

n = σ2/n.
(b) For μ 	= 0, 1/X ∼ AN(1/μ,σ2

n/μ
4); for μ= 0, σn/Xn

L−→1/N(0,1).
(c) For μ 	= 0, �n|X| ∼ AN(�n|μ|,σ2

n/μ
2); for μ= 0, �n(|X|/σn)

L−→�n|N(0,1)|.
(d) AN(eμ,e2μσ2

n).
2. c = 1/2 and

√
X ∼ AN(

√
λ,1/4).

Problems 8.3
2. No. 7. fθ2(x)/fθ1(x). 9. No. 10. No.

11. (b) X(n); (e) (X,S2); (g)

( n∏
1

Xi,

n∏
1

(1−Xi)

)
(h) X((1),X(2), . . . ,X(n)).

Problems 8.4

2.
(

n−1
2

)p Γ
(

n−1
2

)
Γ
(

n+p−1
2

)Sp;
(

n−1
2

)p/2 Γ
(

n+p−1
2

)
Γ
(

n+2p−1
2

)S.

3. S2
1 =

n−1
n+1 S2; var(S2

1) =
(

n−1
n+1

)2 2σ4

n−1 < var(S2) = 2σ4

n−1 ; 4. No; 5. No.

6. (a)

(
n− s

t− s

)
/

(
n

t

)
, 0 ≤ s ≤ t ≤ n, t =

∑n
1 xi; (b) =

(
s

t

)/( n

t

)
if 0 ≤ t < s,

= 2/

(
n

t

)
if t = s, and

(
n− s

t− s

)/( n

t

)
if s+1 ≤ t ≤ n.

9.

(
t+n−2

t

)/( t+n−1

t

)
, t =Σxi. 11. (a) NX/n; (b) No.

12. t =Σn
1xi, 1−

(
1− t0

t

)n−1
if t > t0, and 1 if t ≤ t0.

13. (a) With t =
∑n

1 xj,
∑t

j=0
t!
j!n

j−t; (b) t!
(t−s)!n

−s, t ≥ s (c) (1−1/n)t;
(d) (1−1/n)t−1[1+ t−1

n ].
14. With t = x(n), [tnψ(t)− (t−1)nψ(t−1)]/[tn − (t−1)n], t ≥ 1.

15. With t =
∑n

1 xj,

(
t

k

)(
1
n

)k(
1− 1

n

)t−k
.
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Problems 8.5
1. (a), (c), (d) Yes; (b) No. 2. 0.64761/n2.
3. n−1 sup

x �=0
{x2/[ex2 −1]}. 5. 2θ(1−θ)/n

Problems 8.6
2. β̂ = (n−1)S2/(nX), α̂= X/β̂ 3. μ̂= X, σ̂2 = (n−1)S2/n.
4. α̂= X(X−X2)[X2 −X

2
]−1, X2 =

∑n
1 X2

i /n β̂ = (1−X)(X−X2)[X2 −X
2
]−1.

5. μ̂= �n{X
2
/[X2]1/2}, σ̂2 = �n{X2/X

2}, X2 =
∑n

1 X2
i /n.

Problems 8.7
1. (a) med(Xj); (b) X(1); (c) n/

∑n
1 Xα

j ; (d) −n/
∑n

1 �n(1−Xj).
2. (a) X/n; (b) θ̂n = 1/2 if X ≤ 1/2, = X if 1/2 ≤ X ≤ 3/4, = 3/4 if X ≥ 3/4;

(c) θ̂ =

{
θ̂0, if X ≥ 0

θ̂1, if X ≤ 0
where θ̂0 =−X

2 +
√

X2 +(X
2 )

2,

θ̂1 =−X
2 −

√
X2 +(X

2 )
2, X2 =

∑
X2

1/n;

(d) θ̂ = n3
n1+n3

if n1,n3 > 0; = any value in (0,1) if n1 = n3 = 0;
no mle if n1 = 0,n3 	= 0; no mle if n1 	= 0,n3 = 0;
(e) θ̂ =− 1

2 +
1
2

√
1+4X2; (f) θ̂ = X.

3. μ̂=−Φ−1(m/n).
4. (a) α̂= X(1), β̂ =

∑n
1(Xi − α̂)/n; (b) Δ= Pα,β(X1 ≥ 1) = e(α−1)β α≤ 1,

= 1, α≥ 1. Δ̂ = 1 if α̂≥ 1, = exp{(α̂−1)/β̂} if α̂ < 1.
5. θ̂ = 1/X. 6. μ̂=Σ�nXi/n, σ̂2 =

∑n
1(�nXi − μ̂)2/n.

8. (a) N̂ = M+1
M X(M)−1; (b) X(M).

9. μ̂i =
∑n

j=1 Xij/n = Xi, i = 1,2, . . . ,s σ̂2 =ΣΣ(Xij −Xi)
2/(ns).

11. μ̂= X, 13. d(θ̂) = (X/n)2. 15. μ̂=max(X,0).
16. p̂j = Xj/n, j = 1,2, . . . ,k−1.

Problems 8.8
2. (a) (Σxi +1)/(n+1); (b)

(
n+1
n+2

)Σxi+1
. 3. X. 5. X/n.

6. (X+1)(X+n)/[(n+2)(n+3)]. 8. (α+n)max(a,X(n))/(α+n−1).

Problems 8.9
5. (c) (n+2)

[
(X(n)/2)−(n+1)− (X(1))

−(n+1)
]
/{(n+1)[(X(n)/2)−(n+2)− (X(1))

−(n+2)]}
10. (ΣXi)

kΓ(n+ k)/Γ(n+2k)

Problems 9.2
1. 0.019, 0.857. 2. k = μ0 +σzα/

√
n; 1−Φ

(
zα− μ1−μ0

σ

√
n
)

.

5. exp(−2); exp(−2/θ), θ ≥ 1.
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Problems 9.3
1. φ(x) = 1 if x < θ0(1−

√
1−α) = 0 otherwise.

4. φ(x) = 1 if ||x|−1|> k. 5. φ(x) = 1 if x(1) > c = θ0 − �n(α1/n).
11. If θ0 < θ1, φ(x) = 1 if x(1) > θ0α

−1/n, and if θ1 < θ0, then φ(x) = 1 if x(1)

< θ0(1−α1/n)−1.
12. φ(x) = 1 if x <

√
α/2 or > 1−√

α/2.

Problems 9.4
1. (a), (b), (c), (d) have MLR in ΣXj; (e) and (f) in

∏n
1 Xj

4. Yes. 5. Yes; yes.

Problems 9.5
1. φ(x1,x2) = 1 if |x1 − x2|> c, = 0 otherwise, c =

√
2zα/2.

2. φ(x) = 1 if Σxi > k. Choose k from α= Pλ0

(∑n
1 Xi > k

)
.

Problems 9.6
3. φ(x) = 1 if (no. of xi’s > 0− no. of xi’s < 0)> k.

Problems 10.2
2. Y = # of x1,x2 in sample, Y < c1 or Y > c2. 3. X < c1 or > c2.
4. S2 > c1 or < c2. 5. (a) X(n) > N0; (b) X(n) > N0 or < c.
6. |X−θ0/2|> c. 7. (a) X < c1 or > c2; (b) X > c.
11. X(1) > θ0 − �n(α)1/n. 12. X(1) > θ0α

−1/n.

Problems 10.3
1. Reject at α= 0.05. 3. Do not reject H0 : p1 = p2 = p3 = p4 at 0.05 level.
4. Reject H0 at α= 0.05. 5. Reject at 0.10 but not at 0.05 level.
7. Do not reject H0 at α= 0.05. 8. Do not reject H0 at α= 0.05.
10. U = 15.41. 12. P-value = 0.5447.

Problems 10.4
1. t =−4.3, reject H0 at α= 0.02. 2. t = 1.64, do not reject H0.

5. t = 5.05. 6. Reject H0 at α= 0.05. 7. Reject H0. 8. Reject H0.

Problems 10.5
1. Do not reject H0 : σ1 = σ2 at α= 0.10.
3. Do not reject H0 at α= 0.05. 4. Do not reject H0.

Problems 10.6
2. (a) φ(x) = 1 if Σxi = 5, = 0.12 if Σxi = 4, = 0 otherwise;

(b) Minimax rule rejects H0 if Σxi = 4 or 5, and with probability 1/16 if Σxi = 3;
(c) Bayes rule rejects H0 if Σxi ≥ 2.
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3. Reject H0 if x ≤ (1−1/n)�n2
β(1) = P(Y ≤ (n−1)�n2), β(2) = P(Z ≤ (n−1)�n2), where Y ∼ G(n,1) and
Z ∼ G(n,1/2)

Problems 11.3
1. (77.7, 84.7). 2. n = 42. 7.

(
2ΣXi

χ2
2n,α/2

,2ΣXi/χ
2
2n,1−α/2

)
.

9. (2X/(2−λ1), 2X/(2−λ2)), λ2
2 −λ2

1 = 4(1−α). 10. [α1/nN].
11. n ≥ �n(1/α)

[�n(1+d/X(n))]
.

12. Choose k from α= (k+1)e−k. 13. X+ zασ/
√

n
14. (ΣX2

i /c2,ΣX2
i /c1), where

∫ c2

c1
χ2

n(y)dy = 1−α and
∫ c2

c1
yχ2

n(y)dy = n(1−α).
15. Posterior B(n+α,Σxi +β−n).
16. h(μ|x) =

√
n

2π exp{− n
2 (μ− x)2}[Φ(√n(1− x̄))−Φ(−√

n(1+ x̄))], where Φ
is standard normal DF.

Problems 11.4
1. (X(1)−χ2

2,α/(2n),X(1)).

2. (2nX/b,2nX/a), choose a,b from
∫ b

a χ2
2n(u)du = 1−α, and a2χ2

2n(a) = b2χ2
2n(b),

where χ2
v(x) is the PDF of χ2(v) RV.

3. (X/(1−b),X/(1−a)), choose a,b from 1−α= b2 −a2 and a(1−a)2 = b(1−b)2.
4. n = [4z2

1−α/2/d2]+1; n > (1/α)�n(1/α).

Problems 11.5
1. (X(n),α

−1/nX(n)).
2. (2ΣXi/λ2, 2ΣXi/λ1), where λ1,λ2 are solutions of λ1f2nα(λ1) = λ2f2nα(λ2) and

P(1) = 1−α, fv is χ2(v) PDF.

3. (X(1)−
χ2

2,α

2n ,X(1)). 5. (α1/nX(1),X(1)). 8. Yes.

Problems 12.3
4. Reject H0 : α0 = α′

0 if
|α̂0−α′

0|
√

nΣ(ti−t)2/Σt2
i√

Σ(Yi−α̂0−α̂1ti)2/(n−2)
> c0.

8. Normal equations β̂0Σxk
i + β̂1Σxk+1

i + β̂2Σxk+2
i =ΣYixk

i , k = 0,1,2.

Reject H0 : β2 = 0 if {|β̂2|/
√

c2
1}/

√
Σ(Yi − β̂0 − β̂1xi − β̂2x2

i )}> c0, where

β̂2 =ΣciYi and β̂0 = Y − β̂1x, β̂1 =Σ(xi − x)(Yi −Y)/Σ(xi − x)2.
10. (a) β̂0 = 0.28, β̂1 = 0.411; (b) t = 4.41, reject H0.

Problems 12.4
2. F = 10.8. 3. Reject at α= 0.05 but not at α= 0.01.
4. BSS = 28.57, WSS = 26, reject at α= 0.05 but not at 0.01.
5. F = 56.45. 6. F = 0.87.

Problems 12.5
4. SS Methods = 50, SS Ability = 64.56, ESS = 25.44; reject H0 at α= 0.05, not at 0.01.
5. Fvariety = 24.00.
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Problems 12.6
2. Reject H0 if

am
∑b

1(y.j.−y)
ΣΣΣ(yijs−yij.)

2 > c.

4. SS1 (machines) = 2.786, d.f. = 3; SSI = 73.476, d.f. = 6;
SS2 (machines) = 27.054, d.f. = 2; SSE = 41.333, d.f. = 24.

5. Cities 3 227.27 4.22

Auto 3 3695.94 68.66

Interactions 9 9.28 0.06

Error 16 287.08

Problems 13.2
1. d is estimable of degree 1; (number of xi’s in A)/n.
2. (a) (mn)−1ΣXiΣYj; (b) S2

1 +S2
2.

3. (a) ΣXiYi/n; (b) Σ(Xi +Yi −X−Y)2/(n−1).

Problems 13.3
3. Do not reject H0. 7. Reject H0. 10. Do not reject H0 at 0.05 level.
11. T+ = 133, do not reject H0.
12. (Second part) T+ = 9, do not reject H0 at α= 0.05.

Problems 13.4
1. Do not reject H0. 2. (a) Reject; (b) Reject.
3. U = 29, reject H0. 5. d = 1/4, do not reject H0.
7. t = 313.5, z = 3.73, reject; r = 10 or 12, do not reject at α= 0.05.

Problems 13.5
1. Reject H0 at α= 0.05. 4. Do not reject H0 at α= 0.05.
9. (a) t = 1.21; (b) r = 0.62; (c) Reject H0 in each case.

Problems 13.6
1. (a) 5; (b) 8. 3. pn−2(n+p−np)≤ 1.
4. n ≥ (z1−γ

√
p0(1−p0)− z1−δ

√
p1(1−p1))

2/(p1 −p0)
2.

Problems 13.7
1. (c) E{n(X−μ)2}/ES2 = 1+2ρ(1−2ρ/n)−1; ratio = 1 if ρ= 0, > 1 for ρ > 0.
2. Chi-square test based on (c) is not robust for departures from normality.
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SUBJECT INDEX

Absolutely continuous df, 47, 49, 53, 135,
335, 336, 576, 590

Actions, 401, 397
Admissible decision rule, 416
Analysis of variance, 539

one-way, 539, 554
table, 555
two-way, 560
two-way with interaction, 566, 570

Ancillary statistic, 355
Assignment of probability, 7, 13

equally likely, 1, 7, 20
on finite sample spaces, 20
random, 13
uniform, 7, 20

Asymptotic distribution,
of rth order-statistic, 335
of sample moments, 328
of sample quantile, 336

Asymptotic relative efficiency(Pitman’s),
632

Asymptotically efficient estimator, 382
Asymptotically normal, 332
Asymptotically normal estimator, 332

best, 341
consistent, 341

Asymptotically unbiased estimator, 341
At random, 1, 16

Banach’s matchbox problem, 180
Bayes,

risk, 403
rule, 28, 403
solution, 404

Behrens-Fisher problem, 486
Welch approximation, 486

Bernoulli random variable, 174
Bernoulli trials, 174
Bertrand’s paradox, 17
Best asymptotically normal estimator, 341
Beta distribution, 210

bivariate, 113
MGF, 212
moments, 211

Beta function, 210
Bias of an estimator, 339, 360
Biased estimator, 359
Binomial coefficient, 79
Binomial distribution, 78, 176

bounds for tail probability, 193
central term, 193
characterization, 178
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Binomial distribution (cont’d)
coefficient of skewness, 82
generalized to multinomial, 190
Kurtosis, 82
mean, 78
MGF, 177
moments, 78, 82
PGF, 95, 177
relation to negative binomial, 180
tail probability as incomplete beta

function, 213
variance, 78

Blackwell-Rao theorem, 364
Bonferroni’s inequality, 10
Boole’s inequality, 11
Bootstrap,

method, 530
sample, 530

Borel-Cantelli lemma, 309
Borel-measurable functions, of an rv, 55,

69, 117
Buffon’s needle problem, 14

Canonical form, 541
Cauchy distribution, 68, 80, 213

bivariate, 113
characterization, 216
characteristic function, 215, 320
mean does not exist, 215
MGF does not exist, 215
moments, 214
as ratio of two normal, 221
as stable distribution, 216

Cauchy-Schwarz inequality, 153
Central limit theorem, 321

applications of, 327
Chapman, Robbins and Kiefer inequality,

377
for discrete uniform, 378
for normal, 379
for uniform, 378

Characteristic function, 87
of multiple RVs, 136
properties, 136

Chebychev-Bienayme inequality, 94
Chebychev’s inequality, 94

improvement of, 95
Chi-square distribution, central, 206, 261

MGF, 207, 262
moments, 207, 262

as square of normal, 221
noncentral, 264

MGF, 264
moments, 264

Chi-square test(s), 472
as a goodness of fit, 476
for homogeneity, 479
for independence, 608
one-tailed, 472
robustness, 631
for testing equality of proportions, 473
for testing parameters of multinomial,

475
for testing variance, 472
two-tailed, 472

Combinatorics, 20
Complete, family of distributions, 347
Complete families, binomial, 348

chi-square, 348
discrete uniform, 358
hypergeometric, 358
uniform, 348

Complete sufficient statistic, 347, 576
for Bernoulli, 348
for exponential family, 350
for normal, 351
for uniform, 349

Concordance, 611
Conditional, DF, 108

distribution, 107
PDF, 109
PMF, 108
probability, 26

Conditional expectation, 158
properties of, 158

Confidence, bounds, 500
coefficient, 500
estimation problem, 500

Confidence interval, 499
Bayesian, 511
equivariant, 527
expected length of, 517
general method(s) of construction, 504
level of, 500
length of, 500
percentile, 531
for location parameter, 623
for the parameter of, Bernoulli, 513

discrete uniform, 516
exponential, 509
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normal, 502–503
uniform, 509, 515

for quantile of order p, 621
shortest-length, 516
from tests of hypotheses, 507
UMA family, 502
UMAU family, 524
for normal mean, 524
for normal variance, 526
unbiased, 523
using Chebychev’s inequality, 513
using CLT, 512
using properties of MLE’s, 513

Conjugate prior distribution, 408
natural, 408

Confidence set, 501
for mean and variance of normal,

502
UMA family of, 502
UMAU family of, 524
unbiased, 523

Consistent estimator, 340
asymptotically normal, 341
in rth mean, 340
strong and weak, 340

Contaminated normal, 625
Contingency table, 608
Continuity correction, 328
Continuity theorem, 317
Continuous type distributions, 49
Convergence, a.s., 294

in distribution = weak, 286
in law, 286
of MGFs, 316–317
modes of, 285
of moments, 287
of PDFs, 287
of PMFs, 287–288
in probability, 288
in rth mean, 292

Convolution of DFs, 135
Correlation, 144
Correlation coefficient, 144, 277

properties, 145
Countable additivity, 7
Covariance, 144

sample, 277
Coverage, elementary, 619

r-coverage, 620
probability, 619

Credible sets, 511
Critical region, 431

Decision function, 401
Degenerate RV, 173
Degrees of freedom when pooling classes,

479
Delta method, 332
Density function, probability, 49, 104
Design matrix, 539
Diachotomous trials, 174
Discordance, 611
Discrete distributions, 173
Discrete uniform distribution, 175
Dispersion matrix = variance – covariance

matrix, 328
Distribution, conditional, 107

conjugate prior, 408
of a function of an RV, 55
induced, 59
a posteriori, 404
a priori, 403
of sample mean, 257
of sample median, 259
of sample quantile, 167, 336
of sample range, 162, 326

Distribution function, 43
continuity points of a, 43, 50
of a continuous type RV, 49
convolution, 135
decomposition of a, 53
discontinuity points of a, 43
of a discrete type RV, 47
of a function of an RV, 56
of an RV, 43
of multiple RVs, 100, 102

Domain of attraction, 321

Efficiency of an estimate, 382
relative, 382

Empirical DF = sample DF, 249
Equal likelihood, 1
Equivalent RVs, 119
Estimable function, 360
Estimable parameter, 576, 581

degree, 577, 581
kernel, 577, 582

Estimator, 338
equivariant, 340, 420
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Estimator (cont’d)
Hodges-Lehmann, 631
least squares, 537
minimum risk equivariant, 422
Pitman, 424, 426
point, 338

Event, 3
certain, 8
elementary = simple, 3
disjoint = mutually exclusive, 7, 33
independent, 31
null, 3

Exchangeable random variables, 120, 149,
255

Expectation, conditional, 158
properties, 158

Expected value = mean = mathematical
expectation, 68

of a function of RV, 67, 136
of product of RVs, 148
of sum of RVs, 147

Exponential distribution, 206
characterizations, 208
memoryless property of, 207
MGF, 206
moments, 206

Exponential family, 242
k-parameter, 242
natural parameters of, 243
one-parameter, 240

Extreme value distribution, 224

Factorial moments, 79
Factorization criterion, 344
Finite mixture density function, 225
Finite population correction, 256
Fisher Information, 375
Fisher’s Z-statistic, 270
Fitting of distribution, binomial, 482

geometric, 482
normal, 477
Poisson, 478

Fréchet, Cramér, and Rao inequality, 374
Fréchet, Cramér, and Rao lower bound,

375
binomial, 376
exponential, 385
normal, 385
one-parameter exponential family, 377
Poisson, 375

F-distribution, central, 267
moments of, 267

noncentral, 269
moments of, 269

F-test(s), 489
of general linear hypothesis, 540
as generalized likelihood ratio test,

540
for testing equality of variances, 440

Gamma distribution, 203
bivariate, 113
characterizations, 207
MGF, 205
moments, 206
relation with Poisson, 208

Gamma function, 202
General linear hypothesis, 536

canonical form, 541
estimation in, 536
GLR test of, 540

General linear model, 536
Generalized Likelihood ratio test, 464

asymptotic distribution, 470
F-test as, 468
for general linear hypothesis, 540
for parameter of, binomial, 465
for simple vs. simple hypothesis, 464

bivariate normal, 471
discrete uniform, 471
exponential, 472
normal, 466

Generating functions, 83
moment, 85
probability, 83

Geometric distribution, 84, 180
characterizations, 182
memoryless property of, 182
MGF, 180
moments, 180
order statistic, 164
PGF, 84

Glivenko-Cantelli theorem, 322
Goodness-of-fit problem, 584

Hazard(=failure rate) function, 227
Helmert orthogonal matrix, 274
Hodges-Lehmann estimators, 631
Hölder’s inequality, 153
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Hypergeometric distribution, 184
bivariate, 113
mean and variance, 184

Hypothesis, tests of, 429
alternative, 430
composite, 430
null, 430
parametric, 430
simple, 430
tests of, 430

Identically distributed RVs, 119
Implication rule, 11
Inadmissible decision rule, 416
Independence and correlation, 145
Independence of events, 115

complete = mutual, 118
pairwise, 118

Independence of RVs, 114–121
complete = mutual, 118
pairwise, 118

Independent, identically distributed rv’s,
119

sequence of, 119
Indicator function, 41
Induced distribution, 59
Infinitely often, 309
Interections, 566
Invariance, of hypothesis testing problem,

455
principle, 455

Invariant,
decision problem, 419
family of distributions, 418
function, 420, 455
location, 421
location-scale, 421
loss function, 420
maximal, 505
scale, 420
statistic, 420

Invariant, class of distributions, 419
estimators, 420
maximal, 422, 455
tests, 455

Inverse Gaussian PDF, 228

Jackknife, 533
Joint, DF, 100–102

PDF, 104
PMF, 103

Jump, 47, 103
Jump point, of a DF, 47, 103

Kendall’s sample tau, 612
distribution of, 612
generating function, 92

Kendall’s tau coefficient, 611
Kendall’s tau test, 612
Kernel, symmetric, 577, 582
Kolmogorov’s, inequality, 312

strong law of large numbers, 315
Kolmogorov-Smirnov one sample statistic,

584
for confidence bounds of DF, 587
distribution, 585–587

Kolmogorov-Smirnov test, 602
comparison with chi-square test, 588
one-sample, 587
two-sample, 603

Kolmogorov-Smirnov two sample statistic,
601

distribution, 603
Kronecker lemma, 313
Kurtosis, coefficient of, 83

Laplace = double exponential distribution,
91, 224

MGF, 87
Least square estimation, 537

principle, 537
restricted, 537

L’Hospital rule, 323
Likelihood,

equal, 1
equation, 389
equivalent, 353
function, 389

Limit, inferior, 11
set, 11
superior, 11

Lindeberg central limit theorem, 325
Lindeberg-Levy CLT, 323
Lindeberg condition, 324
Linear combinations of RVs, 147

mean and variance, 147, 149
Linear dependence, 145
Linear model, 536
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Linear regression model, 538, 543
confidence intervals, 545
estimation, 543
testing of hypotheses, 545–546

Locally most powerful test, 459
Location family, 196
Location-scale family, 196
Logistic distribution, 223
Logistic function, 551
Logistic regression, 550
Lognormal distribution, 88, 222
Loss function, 339, 401
Lower bound for variance, Chapman,

Robbins and Kiefer inequality, 377
Fréchet, Cramér and Rao inequality, 372

Lyapunov condition, 326
Lyapunov inequality, 96

Maclaurin expansion of an mgf, 86
Mann-Whitney statistic, 604

moments, 582
null distribution, 605

Mann-Whitney-Wilcoxon test, 605
Marginal,

DF, 107
PDF, 106
PMF, 105

Markov’s inequality, 94
Maximal invariant statistic, 422, 455

function of, 457
Maximum likelihood estimation, principle

of, 389
Maximum likelihood estimator, 389

asymptotic normality, 397–398
consistency, 397
as a function of sufficient statistic, 394
invariance property, 396

Maximum likelihood estimation method
applied to, Bernoulli, 392

binomial, 399
bivariate normal, 395
Cauchy, 399
discrete uniform, 390
exponential, 396
gamma, 393
hypergeometric, 391
normal, 390
Poisson, 399
uniform, 391, 394

Mean square error, 339, 362

Median, 80, 82
Median test, 600
Memoryless property,

of exponential, 207
of geometric, 182

Method of finding distribution,
CF or MGF, 90, 137
DF, 56, 124
transformations 128

Methods of finding confidence interval
Bayes, 511
for large samples, 511
pivot, 504
test inversion, 507

Method of moments, 386
applied to, beta, 388

binomial, 387
gamma, 388
lognormal, 388
normal, 388
Poisson, 386
uniform, 387

Minimal sufficient statistic, 354
for beta, 358
for gamma, 358
for geometric, 358
for normal, 355
for Poisson, 358
for uniform, 354, 358

Minimax, estimator, 402
principle, 402
solution, 492

Minimax estimation for parameter of,
Bernoulli, 402
binomial, 412
hypergeometric, 414

Minimum mean square error estimator, 339
for variance of normal, 368

Minimum risk equivariant estinator, 421
for location parameter, 424
for scale parameter, 425

Mixing proportions, 225
Minkowski inequality, 153
Mixture density function, 224–225
Moment, about origin, 70

absolute, 70
central, 77
condition, 73
Factorial, 79
of conditional distribution, 158
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of DF, 70
of functions of multiple RVs, 136
inequalities, 93
lemma, 74–75
non-existence of order, 75
of sample covariance, 257
of sample mean, 253
of sample variance, 253–254

Moment generating function, 85
continuity theorem for, 317
differentiation, 86
existence, 87
expansion, 86
limiting, 316
of linear combinations, 139
and moments, 86
of multiple RVs, 136
of sample mean, 256
series expansion, 86
of sum of independent RVs, 139
uniqueness, 86

Monotone likelihood ratio, 446
for hypergeometric, 448
for one-parameter exponential family, 447
UMP test for families with, 447
for uniform, 446

Most efficient estimator, 382
asymptotically, 382
as MLE, 395

Most powerful test, 432
for families with MLR, 446
as a function of sufficient statistic, 440
invariant, 456
Neyman-Pearson, 438
similar, 433
unbiased, 432
uniformly, 432

Multidimentional RV = multiple RV, 99
Multinomial coefficient, 23
Multinomial distribution, 190

MGF, 190
moments, 191

Multiple RV, 99
continuous type, 104
discrete type, 103
functions of, 123

Multiple regression, 543
Multiplication rule, 27
Multivariate hypergeometric distribution,

192

Multivariate negative binomial
distribution, 193

Multivariate normal, 234
dispersion matrix, 236

Natural parameters, 243
Negative binomial (=Pascal or waiting

time) distribution, 178–179
bivariate, 113
central term, 194
mean and variance, 179
MGF, 179

Negative hypergeometric distribution, 186
mean and variance, 186

Neyman-Pearson lemma, 438
Neyman-Pearson lemma applied to,

Bernoulli, 442
normal, 444

Noncentral, chi-square distribution, 263
F-distribution, 269
t-distribution, 266

Noncentrality parameter, of chi-square,
263

F-distribution, 269
t-distribution, 266

Noninformative prior, 409
Nonparametric = distribution-free

estimation, 576–577
methods, 576

Nonparametric unbiased estimation, 576
of population mean, 578
of population variance, 578

Normal approximation, to binomial, 328
to Poisson, 330

Normal distribution = Gaussian law,
87, 216

bivariate, 228
characteristic function, 87
characterizations, 219, 221, 238
contaminated, 625, 628
folded, 426
as limit of binomial, 321, 328
as limit of chi-square, 322
as limit of Poisson, 330
MGF, 217
moments, 217–218
multivariate, 234
singular, 232
as stable distribution, 321
standard, 216
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Normal distribution = Gaussian law (cont’d)
tail probability, 219
truncated, 111

Normal equations, 537

Odds, 8
Order statistic, 164

is complete and sufficient, 576
joint PDF, 165
joint marginal PDF, 168
kth, 164
marginal PDF, 167
uses, 619
moments, 169

Ordered samples, 21
Orders of magnitude, o and O notation, 318

Parameter(s), of a distribution, 67,
196, 576

estimable, 576
location, 196
location-scale, 196
order, 79
scale, 196
shape, 196
space, 338

Parametric statistical hypothesis, 430
alternative, 430
composite, 430
null, 430
problem of testing, 430
simple, 430

Parametric statistical inference, 245
Pareto distribution, 82, 222
Partition, 351

coarser, 352
finer, 352
minimal sufficient, 353
reduction of a, 352
sets, 351
sub-, 352
sufficient, 351

Percentile confidence interval, 531
centered percentile confidence interval,

532
Permutation, 21
Pitman estimator, 24

location, 426
scale, 426

Pitman’s asymptotic relative efficiency, 632
Pivot, 504
Point estimator, 338, 340
Point estimation, problem of, 338
Poisson DF, as incomplete gamma, 209
Poisson distribution, 57, 83, 186

central term, 194
characterizations, 187
coefficient of skewness, 82
kurtosis, 82
as limit of binomial, 194
as limit of negative binomial, 194
mean and variance, 187
MGF, 187
moments, 82
PGF, 187
truncated, 111

Poisson regression, 553
Polya distribution, 185
Pooled sample variance, 485
Population, 245
Population distribution, 246
Posterior probability, 29
Principle of,

equivariance, 420
inclusion-exclusion, 9
invariance, 456
least squares, 537

Probability, 7
addition rule, 9
axioms, 7
conditional, 26
continuity of, 13
countable additivity of, 7
density function, 49
distribution, 42
equally likely assignment, 7, 21
on finite sample spaces, 20
generating function, 83
geometric, 13
integral transformation, 200
mass function, 47
measure, 7
monotone, 8
multiplication rule, 27
posterior and prior, 29
principle of inclusion-exclusion, 9
space, 8
subadditivity, 9
tail, 72
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total, 28
uniform assignment of, 7, 21

Probability integral transformation, 200
Probit regression, 552
Problem,

of location, 590
of location and symmetry, 590
of moments, 88

P-value, 437, 481, 599

Quadratic form, 228
Quantile of order p = (100p)th percentile,

79

Random, 13
Random experiment = statistical

experiment, 3
Random interval, 500

coverage of, 619
Random sample, 13, 246

from a finite population, 13
from a probability distribution, 13, 246

Random sampling, 246
Random set, family of, 500
Random variable(s), 40

bivariate, 103
continuous type, 49, 104
discrete type, 47
degenerate, 48
equivalent, 119
exchangeable 120, 149, 255
functions of a, 55
multiple = multivariate, 99
standardized, 78
symmetric, 69
symmetrized, 121
truncated, 110
uncorrelated, 145

Range, 168
Rank correlation coefficient, 614
Rayleigh distribution, 224
Realization of a sample, 246
Rectangular distribution, 199
Regression, 543

coefficient, 277
linear, 544
logistic, 551
model, 543
multiple, 543

Poisson, 552
probit, 552

Regularity conditions of FCR inequality,
372

Resampling, 530
Risk function, 339, 402
Robust estimator(s), 631
Robust test(s), 634
Robustness, of chi-square test, 631

of sample mean as an estimator, 628
of sample standard deviation as an

estimator, 628
of Student’s t-test, 629

Robust procedure, defined, 625, 631
Rules of counting, 21–24
Run, 607
Run test, 607

Sample, 245–246
correlation coefficient, 251
covariance, 251
DF, 250
mean, 247
median, 251

distribution of, 260
MGF, 251
moments, 250–251
ordered, 21
point, 3
quantile of order p, 251, 342
random, 246
regression coefficient, 282
space, 3
statistic(s), 246, 249
standard deviation, 248
standard error, 256
variance, 247

Sampling with and without replacement,
21, 247

Sampling from bivariate normal, 276
distribution of sample correlation

coefficient, 277
distribution of sample regression

coefficient, 277
independence of sample mean vector

and dispersion matrix, 277
Sampling from univariate normal, 271

distribution of sample variance, 273
independence of X̄ and S2, 273

Scale family, 196
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Sequence of events, 11
limit inferior, 11
limit set, 11
limit superior, 11
nondecreasing, 12
nonincreasing, 12

Set function, 7
Shortest-length confidence interval(s), 517

for the mean of normal, 518–519
for the parameter of exponential, 523
for the parameter of uniform, 521
for the variance of normal, 519

σ-field, 3
choice of, 3
generated by a class = smallest, 40

Sign test, 590
Similar tests, 454
Single-sample problem(s), 584

of fit, 584
of location, 590

and symmetry, 590
Skewness, coefficient of, 82
Slow variation, function of, 76
Slutsky’s theorem, 298
Spearman’s rank correlation coefficient, 614

distribution, 615
Stable distribution, 216, 321
Standard deviation, 77
Standard error, 256
Standardized RV, 78
Statistic of order k, 164

marginal PDF, 167
Stirling’s approximation, 194
Stochastically larger, 600
Strong law of large numbers, 308

Borel’s, 315
Kolmogorov’s, 315

Student’s t-distribution, central, 265
bivariate, 282
moments, 267
noncentral, 267

moments, 267
Student’s t- statistic, 265
Student’s t- test, 484–485

as generalized likelihood ratio test, 467
for paired observations, 486
robustness of, 630

Substitution principle, 386
estimator, 386

Sufficient statistic, 343

factorization criterion, 344
joint, 345

Sufficient statistic for, Bernoulli, 345
beta, 356
discrete uniform, 346
gamma, 356
lognormal, 357
normal, 346
Poisson, 343
uniform, 346

Support, of a DF, 50, 103
Survival function = reliability function,

227
Symmetric DF or RV, 50, 103
Symmetrization, 121
Symmetrized rv, 121
Symmetry, center of, 73

Tail probabilities, 72
Test(s),

α-similar, 453
chi-square, 470
critical = rejection region, 431
critical function, 431
of hypothesis, 431
F-, 489
invariant, 453
level of significance, 431
locally most powerful, 459
most powerful, 432
nonrandomized, 432
one-tailed, 484
power function, 432
randomized, 432
similar, 453
size, 432
statistic, 433
Student’s t, 506
two tailed, 484
unbiased, 484
uniformly most powerful, 432

Testing the hypothesis of, equality of several
normal means, 539

goodness-of- fit, 482, 584
homogeneity, 479
independence, 608

Tests of hypothesis, Bayes, 507
GLR, 463
minimax, 491
Neyman-Pearson, 438
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Tests of location, 590
sign test, 590
Wilcoxon signed-rank, 592

Tolerance coefficient and interval, 619
Total probability rule, 28
Transformation, 55

of continuous type, 58, 124, 128
of discrete type, 58, 135
Helmert, 274
Jacobian of, 128
not one-to-one, 165
one-to-one, 56, 129

Triangular distribution, 52
Trimmed mean, 632
Trinomial distribution, 191
Truncated distribution, 110
Truncated RVs, 110
Truncation, 110
Two-point distribution, 174
Two-sample problems, 599
Types of error in testing hypotheses, 431

Unbiased confidence interval(s), 523
general method of construction, 524
for mean of normal, 524
for parameter of exponential, 529
for parameter of uniform, 529
for variance of normal, 526

Unbiased estimator, 339
best linear, 361
and complete sufficient statistic, 365
LMV, 361
and sufficient statistic, 364
UMV, 361

Unbiased estimation for parameter of,
Bernoulli, 365, 364
bivariate normal, 368
discrete uniform, 369
exponential, 369
hypergeometric, 369

negative binomial, 368
normal, 365
Poisson, 363

Unbiased test, 453
for mean of normal, 454
and similar test, 453
UMP, 453

Uncorrelated RVs, 145
Uniform distribution, 56, 197

characterization, 201
discrete, 72, 175
generating samples, 201
MGF, 199
moments, 199
statistic of order k, 168, 213
truncated, 111

UMP test(s)
α-similar, 453
invariant, 457
unbiased, 453

U-statistic, 576
for estimating mean and variance, 578
one-sample, 576
two-sample, 581

Variance, 77
properties of, 77
of sum of RVs, 148

Variance stablizing transformations, 333

Weak law of large numbers, 303, 306
centering and norming constants, 303

Weibull distribution, 223
Welch approximate t-test, 486
Wilcoxon signed-rank test, 592
Wilcoxon statistic, 593

distribution, 594, 597
generating function, 93
moments, 597

Winsorization, 112
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