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Foreword

I am delighted to introduce the first extensive book on nonparametric statistics

on manifolds and their applications. When I came to know about this book

project undertaken by the most active researcher in the field, I was pleased to

know that this book is coming at an early stage in a field that is in need of an

early synthesis. In most emerging research fields, a book can play a significant

role in bringing some maturity to the field. Research fields advance through

research papers. In research papers, however, only a limited perspective can be

provided regarding the field, its application potential, the techniques required

and already developed in the field. A book presents the chance to provide the

foundations, the main themes, the methods, to present the existing results in a

systematic manner, to outline the field’s horizon, including its open problems.

This book succeeds in unifying the field by bringing in disparate topics, al-

ready available in several papers, but not easy to understand, under one roof. I

was supportive of this book project even before I had seen any material on it.

The project is a brilliant and a bold idea by an active researcher, who is now

joined in coauthorship by an enthusiastic, hard working and talented younger

peer. Now that I have it on my screen, it exceeds all expectations, in particular

regarding the extent to which complex differential geometric notions permeate

statistics.

Nonparametric Statistics on Manifolds started gaining recognition in 1990s

as a field. Image and shape analysis, directional data analysis, bioinformatics,

pattern recognition and medical imaging had advanced to a point where statis-

ticians, computer scientists, and engineers started building a geometric metho-

dology aimed at combining information in these various types of data sources,

images, video, or text, by representing them as points on higher dimensional

curved spaces, or manifolds. Statistics computing and manifold techniques are

today recognized for their synergetic effect on any numerical data analysis.

However, when applied separately, these methodologies provide insufficient

information. By landmark selecting and preprocessing data, such methodolo-

gies aspire, much like the human perception system, to create a fused picture

of the data rather then using only partial information arrived at from separate

methodologies.

Nonparametric statistics on manifolds is a blend of progress in nonparamet-

ric multivariate data analysis including large sample theory and nonparametric

xiii



xiv FOREWORD

bootstrap, and differential geometry. When it became possible to store and pre-

process huge digital vectors (stored as digital images, shapes, sounds, etc) in

data libraries and run nonlinear statistical algorithms to explore all possible

matches among the contents provided, the field of nonparametric statistics on

manifolds was born as a perfect match for tackling complex questions in mod-

ern data analysis. This field has already seen spectacular applications in many

diverse domains such as astronomy (providing real evidence, as opposed to

voting bodies at international conferences, that Pluto is not a planet!), biology,

bioinformatics and proteomics, computer vision, geology, medical imaging,

manufacturing, meteorology, surveillance and defense, pattern recognition and

neurology.

In fact, new research areas are a direct outgrowth of nonparametric statis-

tics on manifolds, and, since the latter extends multivariate analysis, it is likely

to become a much more accurate tool in the statistical analysis of any research

area. So far, the main problem with applying nonparametric statistics on mani-

folds for the practicing statistician has been the daunting task of understanding

the formidable apparatus behind it, and the absence of a textbook presenting

the right amount of information needed for an adequate understanding. Here it

is, that textbook!

Victor Pambuccian

Professor of Mathematics

Arizona State University



Preface

The main objective of this book is to introduce the reader to a new way of an-

alyzing object data, that primarily takes into account the geometry of the

spaces of objects measured on the sample space. This elementary fact that

was too long ignored in statistics becomes a must, given that, in our day, ob-

servations extracted from electronic sources, including medical imaging, can

not be regarded as linear data points, and even if by some procedure they are

embedded in a linear space, the key statistic, the sample mean falls outside

the space of objects regarded as a subset of a linear space. Classical Statis-

tics, based on Probability theory, Mathematical Analysis, Linear Algebra and

(more recently) Computer Science, is thus fundamentally challenged to find

new ways for analyzing object data problems. For this reason, our top prior-

ity is to give an appropriate notion of mean object, as a point that lives on

the object space, like every other observation. When considering the notion

of sample mean, we go back the the basic least squares principle, bearing in

mind that, on the object space, the distance between two points is no longer a

Euclidean distance.

Fortunately, this problem is not new. It was already posed by Cartan (1928)

[58] in his Lectures on the Geometry of Riemannian spaces, where he consid-

ered the notion of the barycenter of a finite system of points on a Riemannian

space (the notion of manifold was not known at the time). Certainly, there are

metrizable object spaces, which do not necessarily have a smooth structure,

where the least expected value of the square distance of the random object to

a given point was considered by Fréchet (1948) [121]. All the minimizers of

this expected value, are being regarded as mean values of the random point.

On the other hand, Cartan, to avoid the problem of multiple barycenters of the

same finite set, imposed an additional topological restriction on the Rieman-

nian object space by assuming that it is simply connected and has nonpositive

sectional curvature. Cartan and Fréchet were contemporaries, so we decided to

give them both credit for their breakthrough definition of a mean value by nam-

ing such values Fréchet means, and Cartan means (in case we sample points

from a Riemannian manifold).

Computing the value of a Cartan mean turns out to be a time consum-

ing process. When it comes to non-Euclidean data, historically, statisticians

considered sample means that are not a computational burden to the data ana-

xv
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lysis, such as the mean direction for directional data (see Mardia and Jupp

(2000) [230]) or the Procrustes mean for similarity shape data (see Dryden and

Mardia (1998) [91], and Kent (1992) [181]). Such means appeared as maxi-

mum likelihood estimates (m.l.e.’s) in certain directional (respectively shape)

parameterized distributions, so the analysis was carried out in the numerical

parameter space in those instances. On the other hand, in the general case of an

arbitrary manifold there are no known distributional families and a nonpara-

metric approach is sought.

An early useful result, making Object Data Analysis (ODA) possible, is the

consistency of the Fréchet sample mean set as an estimator of the mean Fréchet

set (see Ziezold (1977) [345]). The bad news, though, was that for general met-

ric spaces there was no asymptotic theory, leading to a statistical table-based

inference, therefore one could not go further with data analysis. An additional

structure was needed, which is where smoothness (manifold structure) of the

object space comes in handy. Given the computational issues with the Car-

tan means, Patrangenaru (1998) [266] considered a nonparametric analysis of

extrinsic means on manifolds, which are Fréchet means associated with a dis-

tance between two observations on the object space and which is equal to the

chord distance between their images of the object space under an embedding

into the Euclidean space.

Inspired by Milnor’s work in Differential Topology (see Milnor (1963)

[242]), one realized that a random point on an embedded manifold has a unique

extrinsic mean when the mean of its push forward distribution in the numerical

space is non focal. Since not being a focus point of an embedded manifold is

a generic property for a distribution of such a random point on a given em-

bedded manifold, the extrinsic mean is the preimage via the embedding of the

projection of the mean vector of the push forward distribution; since projec-

tions preserve consistency, a simpler view of consistency of the extrinsic mean

is obtained. Since consistency is a local property on the embedded manifold,

one could apply Cramer’s delta method to the projection map, and obtain the

asymptotic normality of extrinsic sample mean around the extrinsic population

mean (see Patrangenaru (1998) [266]).

Slightly earlier, independently, Hendriks and Landsman derived the asymp-

totic normality of the linearized extrinsic sample means on a submanifold

of the Euclidean space. Additionally they derived the first tests for the two

extrinsic sample mean problem on manifolds (see Hendriks and Landsman

(1996,1998) [152, 154]). Bhattacharya and Patrangenaru (2003, 2005) [42],

[43]) introduced the extrinsic sample covariance matrix as a descriptive statis-

tic. Patrangenaru (1998) [257] and Hendriks and Landsman (1998) [154] how-

ever use different estimation techniques of the extrinsic mean. Hendricks and

Landsman used estimators with a sample covariance based on the Weingarten

map (see Spivak (1979) [316]), while Patrangenaru (1998) [266] used the

technique of adapted frames, inspired from Cartan’s moving frames (see Spi-
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vak(1979) [316]), a technique that at the time was already available in axial

data analysis due to Fisher et al. (1996) [116], where it was effective in deriv-

ing nonparametric confidence regions for mean axes.

In summary, ODA requires some sort of differentiable structure on the ob-

ject space, that has to be consequently either a manifold, or having some

manifold related structure, no matter what the nature of the objects is.

Therefore we structured our book as follows. In Part I, we introduce the

basics for the three “pillars of ODA”: (i) examples of object data, (ii) non-

parametric multivariate statistics and (iii) geometry and topology of manifolds.

This part is a must read and learn for anyone new to the area, who genuinely

wants to understand what is behind ODA, as opposed to simply using it. Sec-

ondly, we develop a general nonparametric analysis on arbitrary manifolds, as

well as density estimation on manifolds. In Part II, we “translate” this metho-

dology, in the context of certain sampling manifolds arising in Statistics. In

Part III, we apply this methodology to concrete examples of ODA. Finally, in

Part IV, we introduce the reader to more recent methodologies for data analysis

on manifolds, such as persistence homology and intrinsic PCA on manifolds.

Chapter 1 provides an overview of data on manifolds, presenting a number

of examples of such data in practical applications. A manifold is an abstract

metric space that looks locally, but not necessarily globally, like a numeri-

cal space Rm. Data on manifolds originally arose in astronomy, meteorology,

geology, cartography, biology, and physics. A drastic increase in the need of

data analysis on manifolds occurred with the computer revolution in digital

imagery. Digital images, which arguably account for the largest types of data

available, are today the bread and butter of modern sciences, such as bioinfor-

matics, medical imaging, computer vision, pattern recognition, astrophysics,

learning, forensics, etc. Although a digital image is a long vector of values rep-

resenting the brightness of a given color at any specific pixel or voxel location,

the marginal distribution of a random image of a given size, at a given pixel,

has no relevance for the scene pictured. A standard way of analyzing the con-

tents of a random image, is often by associating a random object on a certain

manifold M (shape space, DTI space, learning space, etc.) and analyzing that

random object on M.
Real life data can be best analyzed only if a sufficiently large number of

variables have been measured. Therefore, in Chapter 2, the reader is provided

with the supporting knowledge, from basic definitions from probability the-

ory through more advanced theory, necessary for the proper study of such data

using nonparametric multivariate methods. It begins by introducing random

vectors and their mean and covariance parameters, along with their sample es-

timators and associated sampling distributions. As necessary introductory top-

ics, multivariate normal distributions, inference procedures for mean vectors

and covariance matrices, and principal components along with certain related

techniques are then introduced. Nonparametric methodologies, for which the
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assumptions are that nothing is known about the form of the multivariate dis-

tribution except, perhaps, that it has certain finite moments, or that it has a

continuous and positive joint density over the effective range, are the other

primary focus of this chapter. These assumptions suffice to construct reason-

ably good estimators of population parameters, such as mean vectors, covari-

ance matrices, moments, and spatial quantiles. The Edgeworth expansion (see

Edgeworth (1905) [93], Bhattacharya and Denker (1990) [36]) and the non-

parametric bootstrap (see Efron (1982, 1979, 2003) [97, 96, 98], Hall (1997)

[137]) are the key techniques discussed here for inference from small samples.

The chapter continues with a discussion of function and density estimation, and

concludes with considering tests of neighborhood hypotheses for the one-and

multi-sample problem in a Hilbert space.

Chapter 3 presents needed Differential Geometry and Topology back-

ground needed for the study of manifolds. A manifold is a metric space that can

be locally parameterized by a number of independent parameters, for which the

transition between two parameterizations is smooth. The number of parameters

needed in such a parametrization is the dimension of the manifold. Curves and

surfaces of the Euclidean space are basic examples of low dimensional mani-

folds. Their geometry was thoroughly studied by Gauss. However, often the

number of independent parameters is high, so that a manifold arising in data

analysis is impossible to visualize. A high dimensional representation of an

abstract manifold as a smooth object in a vector space is called an embedding.

Whenever possible, it is preferred to equivariantly embed a manifold so that

its representation is left invariant by a group of symmetries of the ambient nu-

merical space, allowing for the comparison of data sets at different locations

on the manifold. A more abstract approach to manifolds, due to Riemann, is

to endow a manifold with a a geodesic distance depending on a Riemannian

structure and, whenever possible, it is preferred to find a Riemannian structure

on the manifold with the largest possible group of isometries (transformations

that preserve the geodesic distance).

The median and the mean of a probability measure on a Riemannian ma-

nifold (M,ρg) were introduced in the case of a random sample by Cartan

(1928) [57] and, in general, by Fréchet (1948) [121]. Following Fréchet’s orig-

inal ideas, in Chapter 4 we introduce random objects (r.o.) on metric spaces,

their associated Fréchet functions, and related probability Fréchet parameters,

such as the median, total variance and mean. Unlike with random vectors, the

Fréchet mean (or median) of a r.o. is not necessarily unique; the more appro-

priate notion of a Fréchet mean set is therefore considered here. The corre-

sponding sample counterparts, Fréchet sample total variance and Fréchet sam-

ple mean set are shown to be consistent estimators of the Fréchet total variance

and Fréchet mean, provided the metric space (M,ρ) is complete.

Asymptotic distributions of extrinsic sample means for embeddings of ab-

stract manifolds in an Euclidean space are given in Chapter 5. Here is also
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given the Central Limit Theorem for the distribution of Fréchet sample means

from a probability distribution on a complete manifold. As a corollary, for a

large family of probability measures on a complete Riemannian manifold, the

Cartan means yield asymptotically a normal distribution in the tangent space

of the intrinsic mean of that distribution. In this chapter, one proves this result

and, as a consequence, one gives large sample confidence regions for the in-

trinsic mean as well as nonparametric confidence regions for the intrinsic mean

of such distributions using pivotal and nonpivotal bootstrap.

In Chapter 6, we first address the problem of comparing two population

total extrinsic variances. Next, we study the two sample extrinsic mean prob-

lem for random objects on an embedded manifold. The last part of the chapter

is concerned with large sample and nonparametric bootstrap tests for mean

change associated with a matched pair of random objects on a Lie group, and

with nonparametric tests for the change in the extrinsic mean on a manifold

that admits a simply transitive Lie group action.

Chapter 7 focuses in details on density estimation using harmonic ana-

lysis methods on Riemannian symmetric spaces (see Cartan (1927) [57],

Helgason(1984)[148]), that are due to Kim et al. (2009) [191], or kernel density

estimation on manifolds methods (see Pelletier (2005) [278]). Emphasizing the

work of Kim et al. (2009) [191], in this chapter the technical details for infi-

nite dimensional linear data analysis on symmetric is given. Note that unlike

in Chapters 4–6, the approximations are on a linear space of functions, not on

the manifold proper. Here, one is concerned with statistical inverse problems

and function estimation on manifolds. After detailing the approximations us-

ing harmonic functions on a Riemannian manifold, specific applications are

discussed. Kernel density estimation of probability distributions on a Rieman-

nian manifold due to Pelletier (op. cit.) is also detailed here.

Part II of the book focuses on inference procedures based on asymptotics

and nonparametric bootstrap for some special manifolds. Chapter 8 deals with

such methodology for two-sample tests for means on Riemannian manifolds

with a simply transitive group of isometries. In particular, it presents a two-

sample procedure for testing the equality of the intrinsic means on a homo-

geneous Hadamard–Cartan manifold. Although all the Riemannian structures

on homogeneous space are locally classified (see Patrangenaru (1994) [264]),

Hadamard–Cartan structures are preferred for easing the computations.

In Chapter 9, we present asymptotic results for extrinsic means of subman-

ifolds on the Euclidean space that are due to Hendriks and Landsman (1998)

[154]; special attention is paid to Stiefel manifolds, including the orthogonal

groups and the special orthogonal groups.

Chapter 10 applies the results from Chapter 5 to (i) real projective spaces

RN−1 - the axial spaces and (ii) complex projective spaces CPk−2- the pla-

nar shape spaces. Another application is to the products of real projective

spaces (RPm)k−m−1, or the so-called projective shape spaces (see Mardia and
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Patrangenaru (2005) [233]). In this chapter, one considers two-sample tests

for mean projective shapes based on the Lie group structure of 3D projective

shapes in general position and nonparametric bootstrap tests for VW mean 3D

projective shape change.

In Chapter 11 the one-sample test for functional data is applied to the prob-

lem of identifying the projective shape of a planar curve. This leads to Chap-

ter 12, which presents general theory for nonparametric statistics on Hilbert

manifolds, including a one-sample neighborhood hypothesis test for extrinsic

means.

Chapter 13 details similarity shape analysis for k-ads that lie in the plane

as well as those in higher dimensions. The shape spaces for such configura-

tions are described along with embeddings with which to perform statistical

analysis. The chapter concludes with definitions of extrinsic means in this con-

text and the asymptotic distributions of their sample analogues. For medical

imaging problems, nonparametric statistics on size-and-reflection manifolds in

2D or 3D are performed for purposes of diagnostics, discrimination, and/or

identification.

Chapter 14 focuses on equivariant embeddings of Grassman manifolds.

Grassmann manifolds were identified in Chapter 5 as manifold models for

affine shape spaces. Their equivariant embeddings are used to derive the ex-

trinsic means and extrinsic covariance matrices for data on Grassmannians.

A variety of applications for the previously presented methodology are pre-

sented in Part III. Chapter 15 presents an application in diffusion tensor ima-

ging (DTI), which is a fairly novel modality of MR imaging that allows non-

invasive mapping of the brain’s white matter. A particular map derived from

DTI measurements is a map of water’s principal diffusion directions, which are

proxies for neural fiber directions. The method presented here naturally leads to

an analysis based on Cholesky decompositions of covariance matrices, which

helps to decrease computational time and does not increase dimensionality. The

resulting nonparametric matrix-valued statistics are used for testing if there is a

difference on average between corresponding signals in Diffusion Tensor Ima-

ges in young children with dyslexia when compared to their clinically normal

peers, based on data that was previously analyzed using parametric methods.

Both methodologies show a significant difference.

The solar nebula theory hypothesizes that planets are formed from an ac-

cretion disk of material that over time condenses into dust, small planetesimals,

and planets that should have, on average, coplanar, nearly circular orbits. If the

orbit of Pluto has a different origin than the other planets in the solar system,

that will have a tremendous effect on modeling the spacecrafts for a mission to

Pluto. The nebula theory is tested for Pluto. Chapter 16 uses both parametric

and nonparametric methods to test this hypothesis.

Chapter 17 presents applications to medical imaging data analysis for dis-

tributions on the complex projective space CPk−2, as a space of planar similar-
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ity shapes of k-ads, which are embedded in spaces of matrices via Veronese-

Whitney embeddings, as well as a test for increased internal ocular pressure

(IOP) detection in animal models, run on the 3-dimensional direct similarity

shape space Σ4
3 .

Motivated by the problem of nonparametric inference in high level digital

image analysis, Chapter 18 applies the methodology for statistical analysis on

Hilbert manifolds presented in Chapter 12 to the analysis of shapes of contours

lying in the plane. The space of such shapes, which is a Hilbert manifold, is

embedded into a space of Hilbert–Schmidt operators to define extrinsic mean

shapes and their sample analogues. Computational restrictions faced when uti-

lizing digital imaging data are also considered.

Chapter 19 focuses on various preprocessing and post-processing steps in a

larger project on planning reconstructive surgery in severe skull injuries. These

steps are needed in order to perform a reflection size-and-similarity shape

based statistical analysis of the human skull based on CT images. The image

processing problems associated with extracting the bone structure from the CT

images are considered, as well.

In Chapter 20, a study of affine shapes is considered in connection with

problems that arise in bioinformatics and pattern recognition. In particular,

affine shape analysis is used in retrieving a larger image from aerial images.

Linear shape spaces are defined here, and identified with Grasmannians, lead-

ing to an analysis of 2D electrophoresis images for protein matching.

In Chapter 21, the problem of identifying the projective shape of a planar

curve is considered as a practical application of the neighborhood hypothesis

testing in a data-driven example where we determine δ , the smallest radius

of the neighborhood hypothesis for which the neighborhood hypothesis is not

rejected. The theory is applied to the recognition of the projective shape of a

planar curve extracted from digital images of a flat scene.

Following Patrangenaru et al. (2010) [272], in Chapter 22, one develops a

nonparametric methodology for analysis of projective shapes of configurations

of landmarks on real 3D objects from their regular camera pictures. A funda-

mental result in computer vision, emulating the principle of human vision in

space, claims that, generically, a finite 3D configuration of points can be re-

trieved from corresponding configurations in a pair of camera images, up to a

projective transformation. Consequently, the projective shape of a 3D config-

uration can be retrieved from two of its planar views, and a projective shape

analysis can be pursued from a sample of images. Using large sample and non-

parametric bootstrap methodology for extrinsic means on manifolds, one can

give confidence regions and tests for the mean projective shape of a 3D config-

uration from its 2D camera images. In Chapter 22, two examples are given: an

example of testing for accuracy of a simple manufactured object using mean

projective shape analysis, and a face identification example. Both examples are

data driven based on landmark registration in digital images.
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In Chapter 23, we extend tests for mean 3D projective shape change in

matched pairs to independent samples. We provide a brief introduction of pro-

jective shapes of spatial configurations obtained from their digital camera ima-

ges, building on previous results of Crane and Patrangenaru (2011) [78]. The

manifold of projective shapes of k-ads in 3D containing a projective frame

at five given landmark indices has a natural Lie group structure, which is in-

herited from the quaternion multiplication. Here, given the small sample size,

one estimates the mean 3D projective shape change in two populations, based

on independent random samples of possibly different sizes using Efron’s non-

parametric bootstrap (see Efron (1979) [96]). This methodology is applied in

three relevant applications of analysis of 3D scenes from digital images: visual

quality control, face recognition, and scene recognition.

Stereo data of the eye is the most common type of imaging data for eye

disease detection and control. Chapter 24 considers an application of projective

shape analysis to a set of data from the Louisiana Experimental Glaucoma

Study (Burgoyne et al. (2000) [56]). A matched pairs test is presented and

applied to detect mean glaucomatous projective shape change for this data.

In Chapter 25, one gives a class of adjusted Pelletier density estimators, on

homogeneous spaces, that converge uniformly and almost surely at the same

rate as naive kernel density estimators on Euclidean spaces. A concrete ex-

ample of projective shape density estimation of 6-ads arising from digitized

images of the “actor” data set in Chapter 1 is also given here.

Part IV of this book considers some additional topics. Chapter 26, con-

siders the related topic using topological methods for multivariate statistics.

This chapter is from Bubenik et al. (2010) [53]. Using persistent homology

from computational algebraic topology, a random sample is used to construct

estimators of persistent homology. The estimation procedure can then be eval-

uated using the so-called bottleneck distance (see Cohen-Steiner et al. (2005)

[75]) between the estimated persistent homology and the true persistent ho-

mology. The connection to Statistics comes from the fact that, when viewed as

a nonparametric regression problem, the distance is bounded by the sup-norm

loss. Consequently, a sharp asymptotic minimax bound is determined under the

sup–norm risk over Hölder classes of functions for the nonparametric regres-

sion problem on manifolds. This provides good convergence properties for the

persistent homology estimator in terms of the expected bottleneck distance.

Chapter 27 considers some additional directions in nonparametric statistics

on manifolds and consists of two main sections. The first one discusses some

recent developments in this area that are not presented at length in this text,

but certainly warrant inclusion. These topics are extensions of principal com-

ponent analysis and spatial statistics for data on manifolds, shape analysis of

surfaces in three dimensions, and the analysis of data on stratified spaces. The

second section is concerned with computational issues with calculating Cartan

means on manifolds. This section is motivated by the flurry of papers that have
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appeared in computer vision, statistical learning, pattern recognition, medical

imaging, and other computationally intensive applied areas that utilize non-

parametric methodology for statistics on manifolds. While pursuing location

parameters in these works, scientists have been using intrinsic means almost

without exception. However, there are often computational, in addition to the-

oretical, advantages to utilizing extrinsic means instead. This section presents

a number of examples in which this is the case.

This is the first extended monograph on statistics on manifolds and their ap-

plications to Object Data Analysis, addressing in detail the blend of geometry,

statistics, and their practical case studies from a nonparametric viewpoint. The

targeted audience is graduate students in Mathematics, Statistics, Biostatistics

and Bioinformatics and Engineering. The book is also addressed to a larger

community, including statisticians, mathematicians, computer vision experts,

image analysts, bioinformaticians, medical imaging specialists, geologists and

geophysicists, and anthropologists, among others.
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There are many disciplines in which data arises on object spaces which are ma-

nifolds. Among these are anthropology, astronomy, bioinformatics, computer

vision, geology, image analysis, medical imaging, meteorology, and statistics.

Over the next several chapters, this monograph will present the general the-

ory and methodology underlying a nonparametric statistical analysis of data

arising on manifolds. However, each application and type of data will have its

own specific problems that need to be taken into consideration in the analysis,

which will be addressed in later portions of this book. First, though, we wish

to provide a number of examples of data lying on manifolds. In addition to

showing applications in which such data arise, these example can help provide

context in subsequent chapters focusing on theory.

1.1 Directional and Axial Data

Statistical data analysis on spheres is a relatively old discipline. Watson (1983)

[333] points out that one of the first statistical tests ever known is due to D.

Bernoulli (1734) [21], who was asking whether the unit normals to orbital

planes are uniformly distributed on the celestial sphere. Here, the angle of the

orbital plane of a planet is in reference to the ecliptic, which is the apparent

path of the Sun around the Earth.

3
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Let i be the inclination of the orbital plane of a planet to the ecliptic and Ω
be the angle between a fixed line in the ecliptic (the line joining the Sun and

the Earth at the time of the vernal equinox) and the line joining the ascending

node of the planet (the point where the orbit of the planet rises to the positive

side of the ecliptic). Then each orbit determines one directed unit vector n

perpendicular to the orbital plane of the planet with the sense of direction given

by the right hand rule,

n = (sin(Ω ) sin(i),−cos(Ω ) sin(i),cos(i))

The University of Uppsala data (Mardia and Jupp (2000), Table 10.2) [230]

provides a set of measurements (i,Ω ) for the (at the time) nine planets in the

solar system. From this data, Patrangenaru (1998) [266] derived the coordi-

nates nx,ny,nz of the unit normals to orbital planes of the planets as of 1998.

See Table 1.1 for these coordinates.

Table 1.1: The normals to the orbital planes of the nine planets in the solar system

Planet nx ny nz

Mercury 0.001151 0.121864 0.99255

Venus 0.022170 -0.054694 0.99826

Earth 0.000000 0.000000 1.00000

Mars 0.032156 -0.002858 0.99948

Jupiter 0.020454 -0.010471 0.99974

Saturn 0.013473 -0.041487 0.99905

Uranus 0.012596 0.004514 0.99991

Neptune 0.029663 -0.009412 0.99952

Pluto 0.241063 0.170303 0.95545

Additional data on spheres or projective planes can be found in Fisher et al.

(1987) [117]. One such example concerning wind directions at a given location

on Earth can be found on p. 308 in that reference and is graphically displayed

here in Figure 1.1. The data, itself, can be found in Table 1.3 at the conclusion

of this chapter.

1.2 Similarity Shape Data and Size and Shape Data

Images arise as data in a number of fields, including anthropology, biology,

computer vision, and medicine. In a number of cases, the entire image may not

be of interest to researchers. Instead, they may be interested only in describing

certain geometric information, commonly called the shape, of key features of

the image. Depending on the manner in which the images were obtained, this
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Figure 1.1 Four views of a sample of wind directions on consecutive days of March

1981, near Singleton, United Kingdom, at a height of 300 meters. (Source: Bhat-

tacharya et al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD).

data may lend itself to similarity shape or size-and-shape analysis. We will

now consider a few examples of such data.

A useful data library, maintained by James Rohlf at the State University

of New York, Stony Brook, can be found on his website [291]. This library in-

cludes classical data sets from Bookstein (1991) [51] in electronic format. Such

data typically contains observations that consist of lists of coordinates for land-

marks, which are points of key interest in an image. Two such data sets de-

scribe locations in the human skull. For instance, the University School Study

data (Bookstein (1991), pp. 400-405) contains landmark coordinates from X-

rays of children’s midface bones. These observations can be found in Tables

1.4, 1.5, 1.6, and 1.7 at the conclusion of this chapter.

The Apert data set (Bookstein (1991), pp. 405-406), as shown in Table 1.8,

consists of a number of landmarks describing children who have Apert syn-

drome. Apert syndrome is a genetic craniosynostosis, of a markedly deformed

tower-shaped head resulting from the premature fusion of all cranial sutures.

X-rays of a clinically normal and an Apert syndrome skull are displayed in

Figure 1.2. In each of these examples, the data sets describe 2D, or planar,

similarity shapes of the finite number of landmarks. For additional examples

of 2D similarity shape data, we recommend the data sets in Dryden and Mardia

(1998) [91].

While classical planar similarity shape analysis is concerned with the types

of data shown in the preceding examples, in recent years, many researchers

have begun to focus instead on analyzing the direct similarity shape of outlines

or boundaries of objects, which are often referred to as contours, as infinite-
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Figure 1.2 Lateral X-ray of a clinically normal skull (top, with landmarks) and an Apert

syndrome skull (bottom). (Source: Bandulasiri et al.(2009), Figure 4. Reproduced by

permission of Elsevier).
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Figure 1.3 Sample of 4 contours of a hand gesture. (Source: Bhattacharya et al.(2012),

Figure 4. Reproduced by permission of John Wiley & Sons LTD).

dimensional objects rather than finite. For instance, consider the following

sample of contours of hand gestures from Sharvit et. al. (1998) [306] shown

in Figure 1.3. Here, the contours are represented by evaluating the underly-

ing function at a sufficiently large number of sampling points, as suggested in

Ellingson et al. (2013) [104]. A list of the 300 sampling points used for Figure

1.3 is given in Tables 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, and 1.16.

Albert Einstein’s brain was removed shortly after his death (most likely

without prior family consent), weighed, dissected and photographed by a

pathologist. Among other pictures, a digital scan of a picture of the General

Relativity creator’s half brain taken at the autopsy is displayed below; we ex-

tracted the contour of the corpus callosum(CC) from this Einstein’s brain im-

age, the shape of which would be set as a null hypothesis in our testing problem

(see Figure 1.2).

Fletcher (2013) [118] extracted contours of CC midsagittal sections from

MRI images to study possible age related changes in this part of the human

brain. His study points to certain age related shape changes in the CC. Given

that Einstein passed away at 76, we consider a subsample of CC brain contours

from Fletcher (2013) [118] in the age group 64-83 to test how far the average

CC contour is from Einstein’s. The data is displayed in Figure 1.2.
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Figure 1.4 Right hemisphere of Einstein’s brain including CC midsagittal section (left) and its

contour (right).

Figure 1.5: Corpus callosum midsagittal sections shape data, in subjects ages - 65 to 83

With advancements in imaging technology, 3D-direct similarity shape

and 3D size-and-shape data are also produced in various fields, including

the biological sciences and medicine. Our first example of such data arises

from medical imaging. In the Louisiana State University Experimental Glau-

coma Study (LEGS), the optic nerve head (ONH) region of both eyes of twelve

mature Rhesus monkeys were imaged with a Heidelberg Retina Tomograph

(HRT) device, also called Scanning Confocal Laser Tomograph (SCLT). The

experimental glaucoma was induced in one eye of each animal and the second

eye was kept as control. The images are 256 × 256 arrays of elevation values

which represent the “depth” of the ONH and are thus range images. Figure 1.6

shows contour plots for glaucomatous change (see Derado et al. 2004 [82]).

From clinical experience, it is known that the ONH area contains all the

relevant information related to glaucoma onset. Figure 1.7 shows the relevant

area with four landmarks. Namely, S for the superior aspect of the retina to-

wards the top of the head, N for the nasal or nose side of the retina, T for

temporal, the side of the retinal closest to the temple or temporal bone of the

skull, and V for the ONH deepest point. The first three are anatomical land-

marks and the fourth one is a mathematical landmark. A fifth landmark, called

I for inferior, was also recorded.

The data set was obtained from a library of Heidelberg Retina Tomograph

(HRT) images of the complicated ONH topography. Those images are so-

called range images. A range image is, loosely speaking, like a digital camera

image, except that each pixel stores a depth rather than a color level. It can also
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be seen as a set of points in 3D. The range data acquired by 3D digitizers, such

as optical scanners, commonly consist of depths sampled on a regular grid. In

the mathematical sense, a range image is a 2D array of real numbers which

represent those depths.

A combination of modules in C++ and SAS took the raw image output and

processed it into 256× 256 arrays of height values

Another byproduct was a file that we will refer to as the “abxy” file. This

file contains the following information: subjects names (denoted by: 1c, 1d,

1e, 1f, 1g, 1i, 1j, 1k, 1l, 1n, 1o, 1p), observation points that distinguish the

normal and treated eyes and the 10 or 15 degree fields of view for the imaging.

Observation point “03” denotes a 10 degree view of the experimental glaucoma

eye, “04” denotes 15 degree view of the experimental glaucoma eye, “11” – 10

degree fellow normal eye, “12”– 15 degree fellow normal eye. Recall that of

the two eyes of one animal one was given experimental glaucoma, and the

other was left untreated (normal) and imaged over time as a control.

The coordinates of the ellipse that determines the border of the optic nerve

head were determined by the software of the HRT as it interacts with the oper-

ator of the device.

Two-dimensional coordinates of the center of these ellipses, as well as the

sizes of the small and the large axes of the ellipses, are also stored in the “abxy”

file. To find out more about the LSU study and the image acquisition, see Bur-

goyne et al. (2000) [56]. Files names (each file is one observation) were con-

structed from the information in these so-called “abxy” file. The list of all the

observations was then used as an input for the program (created by G. Derado

in C++), which determined the three dimensional coordinates of the landmarks

for each observation considered in our analysis.

The XY coordinates of the “cardinal” papilla landmarks, were recovered

from “abxy” data file in the LEGS library, which further allowed a reading

from each of the the Z coordinate from the corresponding 256× 256 array

files.

The original data was collected in experimental observations on Rhesus

monkeys. Given that, after treatment, a healthy eye slowly returns to its origi-

nal shape, for the purpose of IOP increment detection, only the first set of after-

treatment observations of the treated eye were considered. Table 1.17 contains

the original sample coordinates, The filenames and their corresponding xr
i co-

ordinates, in microns, are given for 12 animals.

A large source of 3D size-and-shape data is the RCSB Protein Data Bank

(PDB) website at http://www.rcsb.org/pdb/home/home.do, which provides a

wealth of information about , including about their physical structures. As of

March 1, 2015, there were 106,858 structures posted on the there. One of the

many problems of interest in bioinformatics is the relationship of the physical

structure and chemical sequence of a protein to its biological function and size-

and-shape analysis provides one avenue for exploring this relationship.
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Figure 1.6 Range images as contour plots for HRT images of a Rhesus monkey ONH

area before and after the induced glaucomatous shape change. (Source: Derado et

al.(2004), Figure 3. Reproduced by permission of Taylor & Francis).

Figure 1.7 Magnified HRT image of the central region of the retina including ONH,

and the four landmarks N,S,T,V. (Source: Derado et al.(2001), Figure 1. Reproduced

by permission of Taylor & Francis).
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Figure 1.8 Serine proteinase protein binding site structures.(Source: Bhattacharya et

al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD)

Figure 1.9 Acid proteinase protein binding site structures. (Source: Bhattacharya et

al.(2012), Figure 4. Reproduced by permission of John Wiley & Sons LTD).

Here, we will consider the 3D atomic structures of two groups of binding

sites, which are locations on the surface of a protein where binding activity

occurs. In Figure 1.8, we show binding sites from three examples of hydrolase

(serine proteinase) which were obtained by X-ray diffraction, as displayed us-

ing the software Rasmol. Their structure i.d.s on PDB are 1ela, 1eld and 1ele

and their primary citation is Mattos et al. (1997) [237]. In Figure 1.8, the atoms

are gray level coded where hydrogen is dark gray, oxygen is medium gray, and

carbon is light gray. Similarly, Figure 1.9 displays binding sites for three ex-

amples of acid proteinase. The coordinates and chemical types of atoms from

these acid proteinase binding sites are shown in Tables 1.18 and 1.19, where

the units are measured in Å.

1.3 Digital Camera Images

As suggested in the previous section, the manner in which image data is ob-

tained impacts the type of shape information contained in the image. For simi-

larity shape analysis to be suitable, great care must be taken with collecting the

data. On the other hand, because image acquisition from regular digital cam-

eras is based on a principle, projective shape data is overwhelmingly the least

expensive and most available source of digital imaging data. The important
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Figure 1.10 Landmarks - Sope Creek data. (Source Patrangenaru (2001), Figure 1.

Reproduced by permission of Taylor & Francis).

distinction here is that since two digital images of the same flat scene roughly

differ by a projective transformation, in the absence of additional knowledge

of the 2D scene pictured, the only information that can be retrieved from an

image is the resulting 2D projective shape.

A set of basic 2D projective shape data is contained in Table 1.20. This

set consists of coordinates of five landmarks identified across a random sample

of 41 scanned images of a flat river stone. The marked landmarks in one of

these images are displayed in Figure 1.10. A more sophisticated example of

planar projective shape data is the so-called “Big Foot” data set from Munk

et al. (2007) [252]. A subset of this data set is displayed in Figure 1.11. This

data involves projective shapes of planar contours, rather than configurations

of landmarks.

Another example of projective shape data is in the area of face recognition.

Our data consists in fourteen digital images of the same person (an actor posing

in different disguises), from the live BBC program “Tomorrow’s World”. Face

appearance in these pictures may be neither frontal or lateral, as seen in Figure

1.12. Table 1.21 contains the coordinates of eight landmarks: the tip of the nose

(1), the base of the nose (2), the left end of lips (3), the right end of lips (4), the

left end of left eye (5), the right end of left eye (6), the left end of right eye (7)

and the right end of right eye (8).

Since scenes are naturally three dimensional, the 2D projective shape of

one image of a 3D scene often yields an inaccurate reflection of the true pro-
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Figure 1.11 Two views of a planar scene including a natural projective frame (the four

points) and a curve (edge of the footprint).

Figure 1.12 BBC data:14 views of an actor’s face in different disguises and poses.

Front views are on the top row.

jective shape of the scene. Instead, if one has at least two images of the scene,

the scene’s 3D projective shape can be extracted, as shown in Chapter 22. We

consider a case of 3D projective shape in our next example. Here, we consider

a 3D polyhedral object manufactured from three cubes to match a blueprint

displayed in Figure 1.13. The three cubes sit on the top of each other as shown

in the left side of Figure 1.13 and have sides, from top to bottom, of four, six,

and ten units. The right side of Figure 1.13 displays a digital image of the

object with visible corners, taken as landmarks, numbered from 1 to 19.
Sixteen randomly selected pictures of the object that show all of the se-

lected landmarks were paired into eight pairs of images. The recording of

landmark coordinates of camera image pairs was done using the MATLAB

commands imread and cpselect. The sixteen images of the object are displayed

in Figure 1.14. The 2D coordinates of the visible corners that were selected as

landmarks are listed in Table 1.22 (see from Patrangenaru et al. (2010)[272]).

This sample of images in Figure 1.14 will be considered in Chapter 22, for

a one-sample test for a VW-mean 3D projective shape. A second data set of

16 digital images of a related polyhedral scene, that was obtained by a slight

modification of the first polyhedral object, is displayed in Figure 1.15. These

pictures were taken with another digital camera, and the 2D coordinates of the

visible corners selected as landmarks are listed in Table 1.23. The data sets

in Tables 1.22 and 1.23 will be used for two-sample tests for VW-means 3D
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Figure 1.13 Blueprint of a 3D object (left) and nineteen landmarks displayed that are

used for 3D scene reconstruction, and statistical analysis (right). (Source: Patrange-

naru et al.(2010), Figure 1 and Figure 2. Reproduced by permission of Elsevier).

Figure 1.14 Sixteen digital camera views of a 3D object resembling the blueprint.

(Source: Patrangenaru et al.(2010), Figure 3. Reproduced by permission of Elsevier).

projective shapes in Chapter 23.

In this example the data consists of twenty-four photos taken of the busts of the

Greek philosopher Epicurus. These are displayed in Figure 1.16. Sixteen of the

images are from a one-headed statue, others, in the third row are from a double-

headed statue, including Epicurus and one of his disciples. Nine landmarks,

displayed in Figure 1.17 were selected from the right half of the face of the

statues. In Figure 1.17 the facial landmarks used in our image analysis are

marked from 1 to 9. The registered coordinates are used in Chapter 23 for two

sample tests for mean 3D projective shapes extracted from the data.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-3&iName=master.img-199.jpg&w=294&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-3&iName=master.img-199.jpg&w=294&h=147
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-3&iName=master.img-201.jpg&w=315&h=114


STEREO IMAGING DATA OF THE EYE FUNDUS 15

Figure 1.15 Top box slightly larger than in Figure 1.14. (Source: Patrangenaru et

al.(2014), Figure 3. Reproduced by permission of Springer)

Figure 1.16 Epicurus bust images - bottom row shows his disciple the back of the bust.

(Source: Patrangenaru et al.(2014), Figure 8. Reproduced by permission of Springer).

1.4 Stereo Imaging Data of the Eye Fundus

Medical imaging has changed the medical practice in many ways. Neverthe-

less, some of the medical devices used are prohibitively expensive, or worse,

can do harm, when used in excess. For this reason cheaper and less invasive

imaging devices are welcome by medical practitioners. In the case of eye ima-

ging, besides the Heidelberg Retina Tomograph (HRT), a cheaper device used

is a stereo camera. The data provided here consists of 15 sets of pairs of stereo

images of the complicated optic nerve head (ONH) topography in animal mod-

els, that are displayed in Figure 1.18. Of the two eyes of one subject, one was

given experimental glaucoma, and the other was left untreated (normal) and
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Figure 1.17 Landmarks for Epicurus bust. (Source: Patrangenaru et al.(2014), Figure

10. Reproduced by permission of Springer).

imaged over time as a control. In Figure 1.18, for each subject, there are four

images: one stereo pair for the normal eye, and one stereo pair for the glauco-

matous eye, so that each row consists in eye fundus images from two Rhesus

monkeys, except for the bottom row that has images from one subject only.

The coordinates of nine landmarks on the approximate elliptic contour that

determines the ridge of the ONH are recorded, as well as those of certain blood

vessels junctions and the estimated location of the deepest point are tabulated in

the tables 1.24, 1.25, 1.26. In addition to the landmarks S(superior), I(inferior),

N(nasal), T(templar) and V(vertex), considered for HRT data, in Figure 1.19

we marked four anatomical landmarks SM(mid-superior), IM(mid-inferior),

NM(mid-nasal) and TM(mid-templar), that are located at the junction of im-

portant blood vessels. Their positions in the ONH cup are schematically dis-

played in Figure 1.19.

1.5 CT Scan Data

A (CT) scan uses X-rays to make detailed pictures of structures inside of the

body. A CT scan can be used to study various parts of the human body, such as

the chest, abdomen, pelvis, and an arm or leg. A CT scan can also take pictures

of body organs, such as the bladder, liver, lungs, pancreas, intestines, kidneys,

and heart. Additionally, CT scans can be used to study the spinal cord, blood

vessels, and bones. Figure 1.20 displays a series of CT scans of one person’s

head. This observation comes from a data set consisting of 34 different patients,

as shown in Osborne (2012) [257] and Osborne et al. (2012) [259]. We will

return to this data set in Chapter 19.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-3&iName=master.img-258.jpg&w=112&h=149


CT SCAN DATA 17

Figure 1.18 Stereo pairs of the Optic Nerve Head region for a normal and glaucoma-

tous eye in Rhesus monkeys. (Source: Crane and Patrangenaru(2011), Figure 2. Repro-

duced by permission of Elsevier).

Figure 1.19 Nine anatomical landmarks of the Optic Nerve Head region. (Source:

Crane and Patrangenaru (2011), Figure 3. Reproduced by permission of Elsevier).
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Figure 1.20 CT scan slices of a human head from the bottom (top left) to the top (bottom

right).
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Figure 1.21 DTI slice images of a control subject (left) and of a dyslexia subject (right).

(Source: Osborne at a.(2013), Figure 1, p.171. Reproduced by permission of Elsevier).

1.6 DTI Data

Diffusion Tensor Imaging (DTI) is a sophisticated magnetic resonance (MR)

imaging technique that enables researchers to visualize white matter fibers in

the brain. The researchers can then trace subtle changes in the white matter that

are associated with either unusual brain wiring, as in conditions like dyslexia

and schizophrenia, or brain diseases, such as multiple sclerosis or epilepsy. Dif-

fusion tensor images store information about the diffusion of water molecules

in the brain. As an example, Figure 1.21 displays a DTI slice for a control sub-

ject and a patient with dyslexia, which is a reading disability characterized by

a delay in the age at which a child begins to read.

The diffusion of a water molecule at a certain location in the brain has

a probability distribution in 3-dimensional space. Its diffusion D is one-half

of the covariance matrix of that distribution, which is a symmetric positive

semidefinite matrix. The diffusion matrix

D =




d11 d12 d13

d21 d22 d23

d31 d32 d33




at any given voxel may be stored in the form of a column vector

(d11 d22 d33 d12 d13 d22 d23)T . As a result, the location, orientation, and

anisotropy of the white fiber tracts can be measured. The degree of anisotropy,

which is the departure from a spherical diffusion, in children’s brains may of-

fer insight to the study of dyslexia. Table 15.1 displays D for a voxel chosen

from two samples of DTI slices, one consisting of clinically normal subjects

and the other patients with dyslexia. The control and dyslexia subjects from

Figure 1.21 are, respectively, the first and seventh observations in the table.

We will discuss theory for analyzing such data in Chapter 8 and return to

this example, in particular, in Chapter 15. As a final remark, we would like to

note that these methodologies may be similarly applied to cosmic background
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Table 1.2 DTI data in a group of control (columns 1 – 6) and dyslexia (columns 7 –

12).

1 2 3 4 5 6

0.8847 0.6516 0.4768 0.6396 0.5684 0.6519

0.9510 0.9037 1.1563 0.9032 1.0677 0.9804

0.8491 0.7838 0.6799 0.8265 0.7918 0.7922

0.0448 -0.0392 0.0217 0.0229 -0.0427 0.0269

-0.1168 -0.0631 -0.0091 -0.1961 -0.0879 -0.1043

0.0162 -0.0454 -0.1890 -0.1337 -0.1139 -0.0607

7 8 9 10 11 12

0.5661 0.6383 0.6418 0.6823 0.6159 0.5643

0.7316 0.8381 0.8776 0.8376 0.7296 0.8940

0.8232 1.0378 1.0137 0.9541 0.9683 0.9605

0.0358 -0.0044 -0.0643 0.0309 -0.0929 -0.0635

-0.2289 -0.2229 -0.1675 -0.2217 -0.1713 -0.1307

-0.1106 -0.0449 -0.0192 -0.0925 -0.0965 -0.1791

radiation (CBR) data, which consists of 2× 2 symmetric positive definite ma-

trices.
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1.7 Data Tables

Table 1.3 Wind directions at a height of 300 m on consecutive days near Singleton, UK.

Colatitude (◦) Longitude (◦)

90 132.2

90 107.2

90 282.5

87 213.3

87.6 167.7

90 158.3

88.6 182.8

90 135

92.7 300.3

91.3 240.3

88.8 131.5

88.7 108.6

91.8 282.7

90 296.6

92.7 243.4

89.1 115.3

92.2 283.5

91.3 336.3

92.1 155.8

89.4 98.3

89.3 95.8

88.3 112.1

90 225

89.4 120.2

88.6 124.9

89 144.1

88.2 85.4

90 67.8

88.8 83.6
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Table 1.4 Coordinates of landmarks in a normal children growth study measured from

X-rays at 8 and 14 years of age – part I.

Id-months-gender 1x 1y 2x 2y 3x 3y 4x 4y

1872-96-1 6.000 6.000 9.018 6.000 4.941 4.710 5.356 3.229

1872-168-1 6.000 6.000 9.268 6.000 4.876 4.604 5.165 2.772

1890-96-2 6.000 6.000 9.142 6.000 5.082 4.685 5.776 3.414

1890-170-2 6.000 6.000 9.385 6.000 5.036 4.587 5.580 3.128

1953-96-1 6.000 6.000 8.870 6.000 4.817 4.591 5.433 3.407

1953-168-1 6.000 6.000 9.086 6.000 4.607 4.242 5.199 3.037

1956-94-2 6.000 6.000 8.789 6.000 4.800 4.622 5.546 3.175

1956-173-2 6.000 6.000 8.999 6.000 4.654 4.459 5.493 2.713

2000-96-1 6.000 6.000 8.920 6.000 4.872 4.867 5.442 3.560

2000-167-1 6.000 6.000 9.121 6.000 4.696 4.677 5.118 3.240

2002-92-1 6.000 6.000 8.893 6.000 5.028 4.822 5.609 3.359

2002-167-1 6.000 6.000 9.099 6.000 4.933 4.450 5.821 2.812

2007-97-1 6.000 6.000 8.723 6.000 4.984 4.748 5.375 3.554

2007-162-1 6.000 6.000 8.941 6.000 4.877 4.541 5.199 3.234

2026-96-1 6.000 6.000 8.886 6.000 4.975 5.099 5.605 3.829

2026-168-1 6.000 6.000 9.079 6.000 4.805 5.049 5.355 3.314

2101-96-1 6.000 6.000 9.082 6.000 4.969 4.400 5.622 3.042

2101-167-1 6.000 6.000 9.319 6.000 4.808 4.186 5.540 2.434

2102-96-2 6.000 6.000 8.809 6.000 4.828 4.769 5.338 3.495

2102-168-2 6.000 6.000 8.959 6.000 4.511 4.571 5.062 3.193

2108-96-1 6.000 6.000 9.049 6.000 5.000 4.708 5.392 3.438

2108-167-1 6.000 6.000 9.286 6.000 4.809 4.438 5.111 2.802

2109-96-2 6.000 6.000 8.694 6.000 4.992 4.814 5.396 3.624

2109-172-2 6.000 6.000 8.872 6.000 4.762 4.464 5.234 3.130

2113-95-1 6.000 6.000 8.924 6.000 5.029 4.624 5.577 3.275

2113-172-1 6.000 6.000 9.219 6.000 5.005 4.555 5.446 2.668

2123-96-2 6.000 6.000 8.926 6.000 5.122 4.510 5.640 3.345

2123-168-2 6.000 6.000 9.151 6.000 5.007 4.471 5.381 3.209

2124-96-1 6.000 6.000 8.939 6.000 4.809 4.959 5.563 3.302

2124-167-1 6.000 6.000 9.157 6.000 4.714 4.731 5.492 2.902

2135-96-1 6.000 6.000 8.642 6.000 4.881 4.954 5.350 3.535

2135-168-1 6.000 6.000 8.827 6.000 4.840 4.806 5.137 3.097

2190-90-2 6.000 6.000 8.834 6.000 5.012 4.916 5.699 3.557

2190-162-2 6.000 6.000 9.041 6.000 4.864 4.820 5.590 3.046

2191-96-1 6.000 6.000 8.917 6.000 4.954 4.407 5.504 3.294

2191-171-1 6.000 6.000 9.092 6.000 4.739 4.457 5.298 2.967

2192-90-2 6.000 6.000 8.777 6.000 5.021 4.695 5.588 3.565

2192-162-2 6.000 6.000 8.988 6.000 4.922 4.562 5.485 3.136

2196-96-2 6.000 6.000 8.687 6.000 4.917 4.887 5.374 3.578

2196-172-2 6.000 6.000 8.866 6.000 4.872 4.891 5.193 3.182

2197-95-2 6.000 6.000 8.810 6.000 4.929 4.587 5.552 3.588

2197-170-2 6.000 6.000 9.046 6.000 4.774 4.399 5.322 3.200

2198-90-2 6.000 6.000 8.785 6.000 5.040 4.756 5.693 3.538

2198-163-2 6.000 6.000 8.976 6.000 4.928 4.651 5.682 3.154

2245-95-1 6.000 6.000 9.085 6.000 5.043 4.790 5.435 3.274

2245-168-1 6.000 6.000 9.257 6.000 4.901 4.695 5.172 2.757

2257-97-1 6.000 6.000 8.863 6.000 4.816 4.757 5.378 3.546

2257-168-1 6.000 6.000 8.951 6.000 4.699 4.615 5.363 2.995

2259-96-1 6.000 6.000 9.116 6.000 4.748 4.760 5.303 3.407

2259-168-1 6.000 6.000 9.339 6.000 4.739 4.553 5.160 2.939

2271-96-2 6.000 6.000 8.837 6.000 5.091 4.731 5.546 3.320

2271-167-2 6.000 6.000 9.031 6.000 4.919 4.507 5.404 2.783

2276-95-2 6.000 6.000 8.838 6.000 5.016 4.529 5.795 3.115

2276-168-2 6.000 6.000 9.037 6.000 4.844 4.391 5.646 2.664

2279-96-2 6.000 6.000 8.805 6.000 4.773 4.817 5.432 3.586

2279-168-2 6.000 6.000 8.928 6.000 4.719 4.640 5.095 3.358

2286-90-2 6.000 6.000 8.873 6.000 4.770 4.722 5.408 3.502

2286-166-2 6.000 6.000 9.057 6.000 4.658 4.620 5.180 3.220

2367-96-1 6.000 6.000 9.015 6.000 4.779 4.715 5.448 3.086

2367-168-1 6.000 6.000 9.289 6.000 4.675 4.445 5.339 2.495

2373-96-1 6.000 6.000 8.884 6.000 5.113 4.601 5.718 3.362

2373-167-1 6.000 6.000 9.025 6.000 5.187 4.466 5.697 2.873

2377-90-1 6.000 6.000 9.034 6.000 5.099 4.647 5.695 3.348

2377-170-1 6.000 6.000 9.335 6.000 4.954 4.365 5.601 2.713

2378-97-2 6.000 6.000 8.726 6.000 4.953 4.789 5.431 3.627

2378-168-2 6.000 6.000 8.928 6.000 4.859 4.675 5.328 3.173

2392-96-1 6.000 6.000 9.029 6.000 5.065 4.641 5.722 3.166

2392-167-1 6.000 6.000 9.378 6.000 5.002 4.411 5.697 2.567

2398-96-1 6.000 6.000 9.007 6.000 4.918 4.760 5.479 3.324

2398-168-1 6.000 6.000 9.235 6.000 4.627 4.780 5.098 2.791

2399-90-1 6.000 6.000 9.084 6.000 5.000 4.707 5.636 3.206

2399-173-1 6.000 6.000 9.257 6.000 4.791 4.440 5.422 2.425

2400-90-1 6.000 6.000 8.961 6.000 4.822 4.645 5.318 3.332

2400-162-1 6.000 6.000 9.092 6.000 4.680 4.427 5.202 2.817

2406-96-2 6.000 6.000 8.964 6.000 4.838 4.827 5.397 3.217

2406-168-2 6.000 6.000 9.183 6.000 4.662 4.762 5.359 2.749
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Table 1.5 Coordinates of landmarks in a normal children growth study measured from

X-rays at 8 and 14 years of age – part II.

Id-months-gender 5x 5y 6x 6y 7x 7y 8x 8y

1872-96-1 7.528 1.739 7.007 6.069 8.823 4.159 6.740 4.265

1872-168-1 7.836 1.160 7.049 6.121 9.043 3.802 6.826 3.997

1890-96-2 7.441 1.898 7.110 5.961 8.749 3.984 6.883 4.359

1890-170-2 7.549 1.259 7.185 6.017 8.906 3.672 6.816 4.108

1953-96-1 7.494 1.522 6.959 5.945 8.736 4.122 6.754 4.241

1953-168-1 7.676 .905 7.047 6.077 9.050 3.718 6.742 3.954

1956-94-2 7.859 1.917 7.036 5.972 8.599 3.972 6.701 4.293

1956-173-2 8.303 1.269 7.048 5.972 8.776 3.678 6.767 4.086

2000-96-1 7.368 1.779 6.947 6.137 8.678 4.051 6.702 4.228

2000-167-1 7.358 1.220 7.074 6.098 8.908 3.700 6.522 4.014

2002-92-1 7.609 1.714 6.818 5.908 8.781 4.052 6.620 4.349

2002-167-1 8.192 .948 6.873 5.960 9.219 3.730 6.817 3.988

2007-97-1 7.323 1.757 6.897 6.003 8.443 4.230 6.679 4.425

2007-162-1 7.448 1.289 6.928 5.983 8.708 3.922 6.636 4.166

2026-96-1 7.601 2.278 7.059 5.942 8.732 4.250 6.779 4.518

2026-168-1 7.861 1.579 7.086 5.906 9.014 3.880 6.761 4.310

2101-96-1 7.562 1.260 7.020 5.923 9.117 3.959 6.842 3.989

2101-167-1 7.775 .403 7.033 5.960 9.383 3.544 6.884 3.664

2102-96-2 7.298 2.010 6.988 5.933 8.593 4.114 6.333 4.413

2102-168-2 7.311 1.453 6.962 6.000 8.761 3.679 6.398 4.224

2108-96-1 7.066 1.645 7.161 6.066 8.794 3.964 6.689 4.333

2108-167-1 7.193 .750 7.227 6.028 9.058 3.483 6.750 4.048

2109-96-2 7.353 1.970 7.072 6.116 8.415 4.079 6.543 4.417

2109-172-2 7.727 1.319 7.080 6.154 8.622 3.809 6.480 4.197

2113-95-1 7.556 1.823 7.059 5.997 8.820 3.967 6.754 4.270

2113-172-1 8.001 .845 7.056 5.974 9.214 3.686 6.754 3.994

2123-96-2 7.862 2.003 7.109 6.044 8.705 4.109 6.845 4.313

2123-168-2 7.803 1.401 7.205 6.129 8.744 3.864 6.761 4.152

2124-96-1 7.628 1.656 7.157 6.118 8.756 4.138 6.844 4.400

2124-167-1 7.986 1.190 7.261 6.098 9.062 3.880 6.860 4.143

2135-96-1 7.239 1.960 6.947 6.032 8.323 4.172 6.486 4.406

2135-168-1 7.150 1.226 7.009 6.009 8.368 3.757 6.397 4.144

2190-90-2 7.797 1.952 7.122 5.993 8.760 4.150 6.702 4.465

2190-162-2 8.301 1.404 7.186 5.932 9.069 3.842 6.788 4.169

2191-96-1 7.681 1.699 7.110 5.891 8.641 4.194 6.447 4.309

2191-171-1 7.749 1.184 7.154 5.941 8.837 3.925 6.385 4.154

2192-90-2 7.424 2.061 7.005 6.042 8.644 4.196 6.719 4.384

2192-162-2 7.708 1.391 7.053 6.162 8.835 3.892 6.704 4.201

2196-96-2 7.265 2.000 7.067 6.041 8.453 4.241 6.445 4.516

2196-172-2 7.454 1.361 7.098 6.015 8.644 3.938 6.422 4.250

2197-95-2 7.455 2.035 7.161 6.086 8.741 4.236 6.732 4.371

2197-170-2 7.630 1.362 7.203 6.133 8.843 3.877 6.626 4.084

2198-90-2 7.532 2.140 7.125 6.019 8.772 4.117 6.743 4.369

2198-163-2 8.008 1.575 7.099 6.053 9.034 3.790 6.789 4.121

2245-95-1 7.399 1.659 7.119 6.036 8.955 3.911 6.783 4.247

2245-168-1 7.627 .865 7.102 6.065 9.111 3.581 6.604 3.964

2257-97-1 7.379 1.992 7.021 5.956 8.590 4.192 6.446 4.311

2257-168-1 7.901 1.445 7.044 5.985 8.938 4.016 6.552 3.887

2259-96-1 7.196 1.569 7.042 6.019 8.707 4.010 6.590 4.291

2259-168-1 7.306 .781 7.088 5.965 8.960 3.555 6.557 4.055

2271-96-2 7.703 1.834 7.094 6.035 8.773 4.072 6.839 4.331

2271-167-2 7.786 .989 7.095 6.004 9.026 3.699 6.776 4.036

2276-95-2 8.319 1.972 7.078 5.981 8.848 4.218 6.961 4.331

2276-168-2 8.553 1.440 7.146 6.001 9.041 3.954 6.853 4.207

2279-96-2 7.151 1.917 7.070 6.134 8.502 4.029 6.611 4.373

2279-168-2 7.165 1.406 7.072 6.129 8.705 3.820 6.423 4.163

2286-90-2 7.237 1.777 7.019 6.085 8.612 4.086 6.626 4.340

2286-166-2 7.272 1.192 7.034 6.100 8.701 3.780 6.524 4.155

2367-96-1 7.637 1.544 7.046 5.943 8.711 3.954 6.594 4.212

2367-168-1 7.935 .754 7.116 5.963 8.957 3.600 6.570 3.887

2373-96-1 7.799 1.920 7.146 6.102 8.789 4.176 6.812 4.308

2373-167-1 8.320 1.385 7.176 6.105 9.009 4.081 6.863 4.094

2377-90-1 7.631 1.935 7.087 5.995 8.913 4.112 6.855 4.278

2377-170-1 7.991 1.266 7.137 6.020 9.332 3.721 6.847 4.036

2378-97-2 7.618 1.980 6.973 5.989 8.679 4.075 6.759 4.275

2378-168-2 7.990 1.513 7.026 5.979 8.971 3.774 6.755 4.071

2392-96-1 7.788 1.830 7.084 5.923 9.052 4.118 6.842 4.238

2392-167-1 8.319 1.180 7.103 5.972 9.507 3.781 6.954 3.991

2398-96-1 7.451 1.768 7.050 6.104 8.801 4.065 6.781 4.258

2398-168-1 7.530 .827 7.155 6.050 8.935 3.548 6.619 3.970

2399-90-1 7.989 1.798 7.244 6.115 8.973 4.012 6.967 4.319

2399-173-1 8.305 .837 7.225 6.190 9.092 3.710 6.805 4.101

2400-90-1 7.582 1.717 7.052 5.943 8.732 4.024 6.768 4.225

2400-162-1 7.758 1.132 7.083 5.976 8.962 3.819 6.718 4.030

2406-96-2 7.550 1.777 7.211 6.032 8.900 4.048 6.792 4.253

2406-168-2 7.896 1.167 7.122 6.043 9.176 3.773 6.725 4.038
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Table 1.6 Coordinates of landmarks in a normal children growth study measured from

X-rays at 8 and 14 years of age – part III.

Id-months-gender 1x 1y 2x 2y 3x 3y 4x 4y

2407-96-1 6.000 6.000 8.763 6.000 5.024 4.415 5.553 3.099

2407-169-1 6.000 6.000 8.941 6.000 4.744 4.217 5.448 2.482

2410-96-1 6.000 6.000 9.183 6.000 4.894 4.806 5.681 3.314

2410-167-1 6.000 6.000 9.396 6.000 4.766 4.737 5.425 3.001

2411-91-1 6.000 6.000 9.152 6.000 5.178 4.670 5.807 3.211

2411-162-1 6.000 6.000 9.328 6.000 5.068 4.565 5.600 2.910

2429-91-1 6.000 6.000 9.004 6.000 5.028 4.715 5.703 3.381

2429-162-1 6.000 6.000 9.230 6.000 4.966 4.550 5.498 2.878

2437-91-2 6.000 6.000 8.814 6.000 4.843 4.613 5.218 3.421

2437-163-2 6.000 6.000 8.990 6.000 4.632 4.413 5.083 3.026

2449-91-2 6.000 6.000 9.100 6.000 5.069 4.859 5.931 3.259

2449-162-2 6.000 6.000 9.269 6.000 4.888 4.759 5.810 2.996

2539-96-2 6.000 6.000 8.835 6.000 4.844 4.572 5.543 3.081

2539-168-2 6.000 6.000 8.976 6.000 4.631 4.333 5.358 2.650

2541-96-1 6.000 6.000 8.985 6.000 4.882 4.565 5.501 3.151

2541-168-1 6.000 6.000 9.137 6.000 4.816 4.329 5.421 2.702

2545-95-1 6.000 6.000 9.017 6.000 5.053 4.517 5.571 3.131

2545-168-1 6.000 6.000 9.185 6.000 4.977 4.456 5.492 2.790

2548-90-2 6.000 6.000 8.618 6.000 5.291 4.654 5.741 3.004

2548-162-2 6.000 6.000 8.754 6.000 5.178 4.422 5.698 2.409

2549-95-1 6.000 6.000 8.960 6.000 5.015 4.707 5.468 3.137

2549-168-1 6.000 6.000 9.170 6.000 4.781 4.527 5.104 2.711

2561-96-2 6.000 6.000 8.657 6.000 5.045 5.063 5.574 3.581

2561-168-2 6.000 6.000 8.777 6.000 4.810 4.861 5.394 3.227

2572-90-2 6.000 6.000 8.964 6.000 4.894 4.524 5.415 3.406

2572-168-2 6.000 6.000 9.110 6.000 4.906 4.462 5.209 2.991

2578-96-1 6.000 6.000 8.968 6.000 4.801 4.664 5.461 3.423

2578-168-1 6.000 6.000 9.221 6.000 4.590 4.358 5.314 2.680

2580-96-1 6.000 6.000 9.018 6.000 4.991 4.493 5.472 2.890

2580-168-1 6.000 6.000 9.170 6.000 4.844 4.243 5.405 2.396

2594-90-1 6.000 6.000 8.867 6.000 5.009 4.636 5.442 3.272

2594-168-1 6.000 6.000 9.068 6.000 4.839 4.500 5.046 2.726

2595-95-1 6.000 6.000 8.676 6.000 4.780 4.748 5.517 3.233

2595-167-1 6.000 6.000 8.799 6.000 4.475 4.459 5.042 2.585

2596-90-2 6.000 6.000 8.712 6.000 5.162 4.908 5.587 3.512

2596-162-2 6.000 6.000 8.925 6.000 4.995 4.786 5.544 3.045

2603-99-1 6.000 6.000 8.807 6.000 5.120 4.541 5.669 3.150

2603-168-1 6.000 6.000 8.986 6.000 5.009 4.334 5.424 2.617

2680-95-2 6.000 6.000 8.898 6.000 4.585 4.800 5.272 3.517

2680-168-2 6.000 6.000 8.995 6.000 4.563 4.710 5.167 3.090

2726-96-2 6.000 6.000 8.715 6.000 4.925 4.741 5.468 3.446

2726-168-2 6.000 6.000 8.863 6.000 4.708 4.721 5.017 3.051

2779-101-1 6.000 6.000 9.011 6.000 4.822 4.572 5.216 3.504

2779-162-1 6.000 6.000 9.241 6.000 4.589 4.353 5.047 3.008

2781-96-2 6.000 6.000 8.828 6.000 4.866 4.777 5.580 3.792

2781-167-2 6.000 6.000 8.964 6.000 4.763 4.666 5.525 3.448

2802-90-1 6.000 6.000 8.891 6.000 4.952 4.877 5.823 3.300

2802-168-1 6.000 6.000 9.085 6.000 4.796 4.718 5.607 2.898
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Table 1.7 Coordinates of landmarks in a normal children growth study measured from

X-rays at 8 and 14 years of age – part IV.

Id-months-gender 5x 5y 6x 6y 7x 7y 8x 8y

2407-96-1 7.733 1.827 6.966 6.019 8.641 3.995 6.650 4.274

2407-169-1 7.943 1.007 6.914 5.989 8.966 3.610 6.760 3.998

2410-96-1 7.732 2.014 7.328 6.054 8.922 3.996 6.761 4.422

2410-167-1 7.796 1.609 7.376 6.034 9.146 3.639 6.733 4.196

2411-91-1 7.971 1.763 7.126 5.956 8.854 3.999 6.869 4.277

2411-162-1 8.072 1.230 7.186 6.015 9.151 3.651 6.818 4.034

2429-91-1 8.090 1.797 7.022 6.217 8.943 4.242 6.924 4.410

2429-162-1 8.043 1.142 7.085 6.237 9.099 4.054 6.937 4.194

2437-91-2 7.380 1.809 6.876 6.104 8.843 4.106 6.678 4.299

2437-163-2 7.480 1.321 6.884 6.148 8.900 3.718 6.537 4.133

2449-91-2 8.253 1.826 7.205 6.009 9.161 4.172 7.001 4.297

2449-162-2 8.528 1.534 7.193 6.067 9.332 3.986 6.979 4.171

2539-96-2 7.571 1.615 7.047 5.951 8.928 3.971 6.810 4.197

2539-168-2 7.819 .988 7.049 5.974 9.001 3.804 6.701 3.951

2541-96-1 7.910 1.862 7.129 6.007 8.789 4.053 6.847 4.114

2541-168-1 8.235 1.308 7.129 5.995 9.029 3.726 6.773 3.833

2545-95-1 7.738 1.718 7.166 6.019 8.930 3.962 7.017 4.202

2545-168-1 8.058 1.235 7.187 6.040 9.127 3.703 6.954 3.969

2548-90-2 7.764 1.873 7.140 6.248 8.735 4.171 6.761 4.339

2548-162-2 8.160 1.341 7.132 6.242 8.872 3.817 6.801 4.078

2549-95-1 7.721 1.746 7.174 6.045 8.872 4.032 6.765 4.159

2549-168-1 7.796 .980 7.239 6.167 9.024 3.661 6.671 3.930

2561-96-2 7.376 2.094 7.158 6.135 8.586 4.221 6.759 4.537

2561-168-2 7.529 1.510 7.149 6.112 8.735 3.890 6.626 4.263

2572-90-2 7.372 1.500 7.057 5.972 8.946 3.832 6.775 4.159

2572-168-2 7.647 .888 7.015 5.912 9.019 3.586 6.616 3.971

2578-96-1 7.289 1.693 6.969 5.925 8.823 4.080 6.844 4.292

2578-168-1 7.874 .778 7.032 5.924 9.312 3.631 6.957 3.925

2580-96-1 7.747 1.393 7.129 5.989 8.907 3.897 6.866 4.068

2580-168-1 8.113 .736 7.137 6.123 9.103 3.683 6.981 3.816

2594-90-1 7.560 1.705 7.022 6.159 8.885 3.975 6.815 4.183

2594-168-1 7.851 .911 7.077 6.115 8.965 3.480 6.597 3.815

2595-95-1 7.688 1.895 6.920 6.008 8.868 4.048 6.655 4.222

2595-167-1 7.963 1.022 6.930 6.015 8.995 3.618 6.630 3.937

2596-90-2 7.464 2.108 7.083 6.039 8.696 4.213 6.714 4.374

2596-162-2 7.967 1.673 7.102 6.019 9.011 3.928 6.721 4.182

2603-99-1 7.679 1.730 6.939 6.140 8.821 4.081 6.741 4.241

2603-168-1 7.713 1.016 6.961 6.135 8.982 3.700 6.671 3.923

2680-95-2 7.280 1.790 7.077 5.949 8.593 3.970 6.622 4.328

2680-168-2 7.705 1.284 7.099 5.955 8.785 3.742 6.554 4.156

2726-96-2 7.569 1.829 6.981 6.102 8.731 4.104 6.791 4.366

2726-168-2 7.559 1.204 6.999 6.121 8.777 3.801 6.627 4.110

2779-101-1 7.230 1.530 7.104 6.073 8.730 3.802 6.773 4.240

2779-162-1 7.457 .798 7.192 6.092 8.965 3.426 6.723 3.980

2781-96-2 7.267 2.253 6.975 6.002 8.491 4.143 6.650 4.423

2781-167-2 7.502 1.810 6.967 6.122 8.708 4.005 6.635 4.259

2802-90-1 7.827 1.951 7.078 6.074 8.832 4.150 6.838 4.378

2802-168-1 8.103 1.405 7.034 6.044 9.001 3.808 6.749 4.184

  



26 DATA ON MANIFOLDS

Table 1.8 Coordinates of landmarks in Apert children, including their age and gender.

Gender-age(yr) Ax Ay Bx By Cx Cy Dx Dy

Fem.-9 12.59 8.90 9.74 9.70 11.07 10.16 12.13 10.67

Male-7 12.34 8.58 10.04 10.04 11.36 9.98 12.69 10.12

Fem.-6 12.19 9.43 9.76 10.31 11.00 10.59 12.12 10.96

Male-6 12.29 8.31 10.53 9.79 11.29 9.75 12.70 9.70

Male1-15 12.11 9.39 9.70 10.24 11.05 10.47 12.21 11.00

Male-13 12.23 9.09 9.57 9.87 10.84 10.18 11.96 10.99

Fem.-11 12.46 8.16 10.12 9.14 11.39 9.31 12.56 9.79

Fem.1-15 10.97 8.49 8.92 9.97 10.13 10.06 11.45 10.01

Fem.-12 11.73 9.17 9.48 10.35 10.66 10.44 12.00 10.62

Fem.2-15 12.66 9.14 10.00 10.33 11.45 10.39 12.77 10.83

Fem.3-15 12.31 8.94 9.75 9.51 10.93 10.09 12.15 10.44

Male-10 12.12 9.36 9.82 10.68 11.16 10.82 12.39 10.77

Male2-15 11.97 8.88 9.86 10.51 10.87 10.48 12.71 10.52

Fem.4-15 11.79 9.71 9.42 11.36 10.80 11.18 12.03 11.49

Gender-age(yr) Ex Ey Fx Fy Gx Gy Hx Hy

Fem.-9 11.85 9.49 11.53 8.72 10.80 8.86 11.08 8.64

Male-7 11.74 9.09 11.30 8.50 10.74 9.01 10.75 8.67

Fem.-6 11.67 9.99 11.28 9.47 10.50 9.52 10.66 9.28

Male-6 12.08 8.95 11.56 8.54 10.89 8.78 11.15 8.68

Male1-15 11.58 9.77 11.26 8.80 10.38 9.03 10.29 8.80

Male-13 11.51 9.46 11.13 8.80 10.34 8.92 10.39 8.69

Fem.-11 11.99 8.43 11.59 7.83 10.73 7.91 10.93 7.90

Fem.1-15 10.65 9.13 10.15 8.38 9.42 8.84 9.57 8.48

Fem.-12 11.38 9.59 10.98 8.99 -0. -0. 9.99 9.14

Fem.2-15 11.98 9.61 11.59 8.95 10.88 8.90 10.86 9.09

Fem.3-15 11.54 9.16 11.33 8.49 10.43 8.99 10.72 8.71

Male-10 11.62 9.91 11.23 9.27 10.47 9.43 10.49 9.33

Male2-15 11.37 9.52 11.13 8.93 10.46 9.25 10.34 9.17

Fem.4-15 11.32 10.12 10.77 9.65 9.98 9.96 10.07 9.85

  



DATA TABLES 27

Table 1.9: List A of pseudo-landmarks on the first contour in Figure 1.3.

Landmarks 1-50 Landmarks 51-100 Landmarks 101-150

X Y X Y X Y

-0.0690195 -0.0607218 -0.0356867 0.00061036 -0.0045762 0.05527602

-0.0690195 -0.0589441 -0.0330201 0.00416585 -0.0036873 0.05438714

-0.0712416 -0.0531664 -0.0316868 0.00594359 -0.0032429 0.05394271

-0.0716861 -0.0518331 -0.030798 0.00683247 -0.0032429 0.05305384

-0.072575 -0.0496109 -0.0303535 0.0072769 -0.002354 0.05127609

-0.072575 -0.0491665 -0.0281313 0.01038796 -0.0014652 0.04949835

-0.072575 -0.0482776 -0.0272425 0.01172127 -0.0014652 0.04905391

-0.072575 -0.0478332 -0.0272425 0.0121657 -0.0005763 0.04594286

-0.0730194 -0.0473888 -0.0254647 0.01438788 -0.0001318 0.04460955

-0.0730194 -0.045611 -0.0254647 0.01483232 -0.0001318 0.04372067

-0.0730194 -0.0451666 -0.0241314 0.0170545 0.00031259 0.04238737

-0.0734638 -0.0438333 -0.0241314 0.01749894 0.00120146 0.04016518

-0.0739083 -0.0416111 -0.023687 0.01794337 0.0016459 0.03972075

-0.0739083 -0.0411666 -0.0219092 0.02327661 0.0016459 0.03927631

-0.0739083 -0.0385 -0.0214648 0.02505435 0.0016459 0.03749857

-0.0739083 -0.0380556 -0.0210204 0.02594323 0.0016459 0.03705413

-0.0739083 -0.0371667 -0.0210204 0.02638766 0.00120146 0.03572082

-0.0739083 -0.0362778 -0.0205759 0.02727653 0.00120146 0.03483195

-0.0739083 -0.0331668 -0.0201315 0.02772097 0.00120146 0.03394308

-0.0739083 -0.0291669 -0.0201315 0.02860984 0.0016459 0.03305421

-0.0743527 -0.0287224 -0.019687 0.02905428 0.0016459 0.03216533

-0.0743527 -0.0260558 -0.019687 0.03038759 0.00209033 0.02994315

-0.0734638 -0.0229448 -0.019687 0.03127646 0.00209033 0.02860984

-0.0734638 -0.0216115 -0.019687 0.0317209 0.00253477 0.02727653

-0.0730194 -0.0202781 -0.019687 0.03216533 0.0029792 0.02594323

-0.0716861 -0.0198337 -0.019687 0.03260977 0.0029792 0.02549879

-0.0699083 -0.0193893 -0.0192426 0.03305421 0.0029792 0.02460992

-0.0676862 -0.0185004 -0.019687 0.0366097 0.00431251 0.0219433

-0.0672417 -0.0185004 -0.019687 0.03705413 0.00520139 0.02105443

-0.0667973 -0.0185004 -0.019687 0.03883188 0.00564582 0.02016555

-0.0663529 -0.0185004 -0.019687 0.04060962 0.00964575 0.01438788

-0.0650195 -0.0185004 -0.019687 0.04105406 0.01009018 0.01394345

-0.0645751 -0.0185004 -0.019687 0.04327624 0.01053462 0.01349901

-0.0641307 -0.018056 -0.019687 0.04638729 0.01097906 0.01305457

-0.0632418 -0.018056 -0.019687 0.04727616 0.01186793 0.01172127

-0.0627974 -0.018056 -0.019687 0.04860947 0.0127568 0.01083239

-0.0610196 -0.0176115 -0.019687 0.04905391 0.01320124 0.01038796

-0.0570197 -0.0167227 -0.019687 0.05038722 0.01453455 0.00949908

-0.0561308 -0.0167227 -0.019687 0.0526094 0.01675673 0.00772134

-0.0539086 -0.0167227 -0.0201315 0.05572045 0.0176456 0.0072769

-0.051242 -0.0167227 -0.0210204 0.05883151 0.01986778 0.00594359

-0.0499087 -0.0162782 -0.0214648 0.05927594 0.02164553 0.00505472

-0.048131 -0.0153893 -0.0214648 0.05972038 0.02564545 0.00461029

-0.0432422 -0.0096117 -0.0214648 0.06060925 0.02653433 0.00461029

-0.0427977 -0.0091672 -0.0210204 0.06060925 0.0274232 0.00505472

-0.0419089 -0.0078339 -0.0201315 0.06060925 0.03186756 0.0072769

-0.0414644 -0.0069451 -0.0152427 0.06105369 0.03453418 0.00816578

-0.04102 -0.0065006 -0.0103539 0.05972038 0.03497861 0.00816578

-0.0379089 -0.0025007 -0.0090206 0.05883151 0.03586749 0.00861021

-0.0356867 0.00016592 -0.006354 0.05705376 0.03631192 0.00861021

  



28 DATA ON MANIFOLDS

Table 1.10: List B of pseudo-landmarks on the first contour in Figure 1.3.

Landmarks 151-200 Landmarks 201-250 Landmarks 251-300

X Y X Y X Y

0.03675636 0.0086102 0.07186682 0.02416548 0.01720116 -0.0362778

0.03808967 0.0090546 0.07275569 0.0219433 0.01675673 -0.0367223

0.04164516 0.010388 0.07275569 0.02149886 0.01631229 -0.0367223

0.04208959 0.0117213 0.07320013 0.01972112 0.01453455 -0.0376112

0.04253403 0.013499 0.07320013 0.01927668 0.01320124 -0.0385

0.04253403 0.0139434 0.07320013 0.01838781 0.01186793 -0.0389445

0.04253403 0.0148323 0.074089 0.01572119 0.00831244 -0.0402778

0.04253403 0.0152768 0.07497788 0.01394345 0.00564582 -0.0411666

0.04297847 0.0166101 0.07675562 0.01038796 0.00520139 -0.0411666

0.04431178 0.0183878 0.07675562 0.00905465 0.00431251 -0.0416111

0.04520065 0.02061 0.07586675 0.00505472 0.00386808 -0.0420555

0.04520065 0.0219433 0.07453344 0.00327698 0.00342364 -0.0420555

0.04520065 0.0232766 0.074089 0.00283254 0.0029792 -0.0420555

0.04520065 0.023721 0.06964464 -0.0042784 -0.0036873 -0.045611

0.04520065 0.0250544 0.06964464 -0.0047229 -0.0045762 -0.045611

0.04520065 0.0254988 0.0692002 -0.0051673 -0.0050206 -0.0460554

0.0434229 0.027721 0.06875577 -0.0065006 -0.0072428 -0.0464999

0.04208959 0.0290543 0.06520028 -0.0087228 -0.0099094 -0.0473888

0.04164516 0.0294987 0.06386697 -0.0096117 -0.0103539 -0.0473888

0.04164516 0.030832 0.06075592 -0.0127227 -0.0139094 -0.0491665

0.04164516 0.0312765 0.0580893 -0.0136116 -0.0161316 -0.0500554

0.04120072 0.0330542 0.05675599 -0.0136116 -0.0170204 -0.0500554

0.04120072 0.0352764 0.05631155 -0.014056 -0.0227981 -0.052722

0.04120072 0.0357208 0.05542268 -0.014056 -0.023687 -0.052722

0.04120072 0.037943 0.05497825 -0.0145005 -0.0245758 -0.0531664

0.04120072 0.0383874 0.05364494 -0.0158338 -0.0303535 -0.055833

0.04120072 0.0388319 0.05275606 -0.0167227 -0.0312424 -0.055833

0.04297847 0.0468317 0.05053388 -0.0185004 -0.0347979 -0.0571664

0.0434229 0.048165 0.05008945 -0.0189448 -0.0370201 -0.0580552

0.04431178 0.0490539 0.04608952 -0.0229448 -0.0379089 -0.0584997

0.04520065 0.0499428 0.04431178 -0.0247225 -0.0383534 -0.0584997

0.04608952 0.0503872 0.04253403 -0.0260558 -0.0387978 -0.0589441

0.0483117 0.0512761 0.04120072 -0.0273891 -0.0405755 -0.0593885

0.04920057 0.0517205 0.04075629 -0.0273891 -0.04102 -0.0593885

0.04964501 0.0517205 0.0372008 -0.0291669 -0.0414644 -0.0593885

0.05453381 0.0512761 0.03675636 -0.0296113 -0.0432422 -0.0602774

0.05675599 0.0499428 0.03542305 -0.0300557 -0.0445755 -0.0602774

0.05942261 0.048165 0.03453418 -0.0305002 -0.0476865 -0.0602774

0.06031148 0.0463873 0.03408974 -0.0305002 -0.0485754 -0.0602774

0.06120035 0.0446095 0.032312 -0.0313891 -0.0503531 -0.0607218

0.06608915 0.0397207 0.03142312 -0.0313891 -0.0516865 -0.0611663

0.06831133 0.0361653 0.03097869 -0.0318335 -0.0552419 -0.0624996

0.06875577 0.0343875 0.02920094 -0.0322779 -0.0556864 -0.0624996

0.06875577 0.0330542 0.02831207 -0.0322779 -0.0592419 -0.062944

0.06964464 0.030832 0.02697876 -0.0327224 -0.0619085 -0.0633885

0.06964464 0.0303876 0.02564545 -0.0331668 -0.0627974 -0.0633885

0.07008908 0.0299432 0.0225344 -0.0340557 -0.0650195 -0.062944

0.07053351 0.0286098 0.02164553 -0.0345001 -0.0676862 -0.0616107

0.07097795 0.027721 0.01942335 -0.035389 -0.068575 -0.0611663

0.07142239 0.0259432 0.01809004 -0.0358334 -0.0690195 -0.0607218

  



DATA TABLES 29

Table 1.11: List A of pseudo-landmarks on the second contour in Figure 1.3.

Landmarks 1-50 Landmarks 51-100 Landmarks 101-150

X Y X Y X Y

0.09044152 0.01044919 0.03461837 -0.0400804 -0.0457477 -0.0501863

0.08899781 0.00515562 0.03413714 -0.0405616 -0.0462289 -0.0501863

0.08851658 0.00467439 0.03269343 -0.0410428 -0.0486351 -0.0492238

0.08803535 0.00467439 0.0322122 -0.0415241 -0.0491163 -0.0492238

0.08611041 0.00371192 0.03173097 -0.0415241 -0.0495976 -0.0492238

0.08418547 0.00323068 0.02788109 -0.0424865 -0.0500788 -0.0492238

0.07985437 0.00274945 0.02739986 -0.0424865 -0.05056 -0.0492238

0.07792943 0.00323068 0.02643739 -0.0429678 -0.052485 -0.0487426

0.07119215 0.00419315 0.02258752 -0.043449 -0.0534475 -0.0482614

0.07022969 0.00419315 0.02210629 -0.043449 -0.0544099 -0.0482614

0.06926722 0.00419315 0.02162505 -0.043449 -0.0592223 -0.0468177

0.06878598 0.00419315 0.02114382 -0.043449 -0.0601847 -0.0463364

0.06830475 0.00419315 0.02018135 -0.043449 -0.0621097 -0.0463364

0.06734228 0.00419315 0.01777518 -0.0448927 -0.0630721 -0.0463364

0.06686105 0.00419315 0.01536901 -0.0458552 -0.0635534 -0.0458552

0.06637981 0.00419315 0.01344407 -0.0468177 -0.066922 -0.045374

0.06589858 0.00419315 0.0110379 -0.0472989 -0.0678845 -0.045374

0.06445488 0.00419315 0.01007544 -0.0477801 -0.0683657 -0.045374

0.06252994 0.00419315 0.00718803 -0.0482614 -0.0688469 -0.0448927

0.06012377 0.00419315 0.0067068 -0.0482614 -0.0707719 -0.0444115

0.05868007 0.00419315 0.00381939 -0.0497051 -0.0712531 -0.0444115

0.05819884 0.00419315 0.00045076 -0.0506675 -0.0736593 -0.0439302

0.0577176 0.00419315 -0.0005117 -0.0511488 -0.0736593 -0.0424865

0.05242403 0.00419315 -0.0014742 -0.05163 -0.0736593 -0.0405616

0.04953662 0.00467439 -0.0019554 -0.05163 -0.0736593 -0.0395991

0.04857416 0.00419315 -0.0053241 -0.0530737 -0.0736593 -0.037193

0.04520552 0.00371192 -0.0082115 -0.0535549 -0.0736593 -0.0362305

0.04472428 0.00371192 -0.0101364 -0.0540362 -0.073178 -0.035268

0.04424305 0.00323068 -0.0106176 -0.0540362 -0.073178 -0.0328619

0.04231811 -0.000138 -0.0110989 -0.0540362 -0.073178 -0.0294932

0.04183688 -0.0011004 -0.0130238 -0.0545174 -0.073178 -0.0280495

0.04135565 -0.0030254 -0.0173549 -0.0549986 -0.073178 -0.0275683

0.03846824 -0.0068752 -0.0183174 -0.0549986 -0.073178 -0.0261246

0.03558084 -0.0088002 -0.0187986 -0.0549986 -0.073178 -0.0246809

0.03558084 -0.0092814 -0.0197611 -0.0545174 -0.073178 -0.0237184

0.03558084 -0.0097626 -0.0240922 -0.0540362 -0.073178 -0.0203498

0.0350996 -0.0116876 -0.0255359 -0.0535549 -0.0736593 -0.0136125

0.03750577 -0.0160187 -0.0264983 -0.0535549 -0.073178 -0.0112063

0.03798701 -0.0174624 -0.0284233 -0.0535549 -0.0726968 -0.0078377

0.03798701 -0.0179436 -0.0289045 -0.0535549 -0.0722156 -0.0068752

0.03798701 -0.0189061 -0.029867 -0.0535549 -0.0702906 -0.0049503

0.03798701 -0.0203498 -0.0317919 -0.0535549 -0.0688469 -0.0049503

0.03558084 -0.0246809 -0.0337169 -0.0530737 -0.0674032 -0.0054315

0.03558084 -0.0251621 -0.0341981 -0.0530737 -0.0621097 -0.006394

0.03461837 -0.0261246 -0.036123 -0.0525925 -0.0616284 -0.006394

0.03461837 -0.029012 -0.0366043 -0.0525925 -0.060666 -0.006394

0.03606207 -0.0328619 -0.0375667 -0.0521112 -0.0597035 -0.006394

0.03654331 -0.0338243 -0.0399729 -0.05163 -0.0577786 -0.006394

0.03702454 -0.0362305 -0.0409354 -0.0511488 -0.0572973 -0.006394

0.03654331 -0.037193 -0.0447852 -0.0506675 -0.0563349 -0.006394
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Table 1.12: List B of pseudo-landmarks on the second contour in Figure 1.3.

Landmarks 151-200 Landmarks 201-250 Landmarks 251-300

X Y X Y X Y

-0.0558536 -0.006394 -0.0202423 0.06049753 0.01392531 0.02055511

-0.0544099 -0.006394 -0.0168737 0.06386617 0.01440654 0.02055511

-0.0491163 -0.003507 -0.01543 0.06338494 0.01681271 0.02055511

-0.0486351 -0.002544 -0.0149487 0.06338494 0.01921888 0.02055511

-0.0486351 -0.002063 -0.013505 0.06338494 0.02258752 0.02055511

-0.0471914 0.0022682 -0.0125426 0.0629037 0.02306875 0.02055511

-0.0462289 0.0041932 -0.0120613 0.0629037 0.02354999 0.02055511

-0.0452665 0.0061181 -0.0110989 0.06194123 0.02643739 0.02055511

-0.044304 0.0085243 -0.0101364 0.06146 0.02691863 0.02055511

-0.044304 0.0090055 -0.0096552 0.06097877 0.02739986 0.02055511

-0.0438228 0.0094867 -0.0086927 0.0600163 0.02980603 0.02055511

-0.0438228 0.009968 -0.0082115 0.05905383 0.0322122 0.02055511

-0.0428603 0.0128554 -0.007249 0.05664766 0.03413714 0.02055511

-0.0414166 0.016224 -0.0062865 0.05472272 0.0350996 0.02055511

-0.0414166 0.0171865 -0.0062865 0.05231655 0.03846824 0.02055511

-0.0404541 0.0195926 -0.0058053 0.05039162 0.03894948 0.02055511

-0.0399729 0.0200739 -0.0058053 0.04606051 0.04039318 0.02055511

-0.0394917 0.0215176 -0.0058053 0.04413557 0.04183688 0.02055511

-0.0390104 0.0219988 -0.0058053 0.04365434 0.04231811 0.02055511

-0.0390104 0.02248 -0.0062865 0.04269187 0.04376182 0.02055511

-0.0341981 0.0282549 -0.0062865 0.04221064 0.04424305 0.02055511

-0.0337169 0.0287361 -0.0062865 0.03980447 0.04616799 0.02055511

-0.0337169 0.0292173 -0.0067678 0.03932323 0.04664922 0.02055511

-0.0327544 0.030661 -0.0077302 0.03691706 0.04713045 0.02055511

-0.0313107 0.032586 -0.0082115 0.03499213 0.04761169 0.02055511

-0.0289045 0.0354734 -0.0125426 0.02777362 0.05049909 0.02055511

-0.0284233 0.0364358 -0.0125426 0.02729238 0.05434896 0.02007387

-0.0279421 0.0369171 -0.0120613 0.02055511 0.05819884 0.01959264

-0.0279421 0.0373983 -0.0091739 0.01959264 0.05868007 0.01959264

-0.0274608 0.0378795 -0.0082115 0.01959264 0.05964254 0.01911141

-0.0264983 0.0402857 -0.0077302 0.01959264 0.06060501 0.01911141

-0.0260171 0.0412482 -0.0062865 0.01959264 0.06204871 0.01911141

-0.0250546 0.0431731 -0.0058053 0.01959264 0.06301118 0.01863017

-0.0245734 0.0436543 -0.0053241 0.01959264 0.06397364 0.01863017

-0.0236109 0.045098 -0.0033991 0.01911141 0.06445488 0.01863017

-0.0221672 0.0475042 -0.0029179 0.01911141 0.06589858 0.01863017

-0.021686 0.0484667 -0.0024366 0.01911141 0.06830475 0.01814894

-0.0212048 0.0489479 -0.0019554 0.01911141 0.07119215 0.0176677

-0.0212048 0.0494291 -3.05E-05 0.01911141 0.07311709 0.01718647

-0.0207235 0.0499104 0.00045076 0.01911141 0.07552326 0.01670524

-0.0207235 0.0518353 0.00093199 0.01911141 0.07696696 0.01670524

-0.0207235 0.0523166 0.00189446 0.01959264 0.07792943 0.016224

-0.0207235 0.053279 0.00430063 0.02007387 0.07841067 0.016224

-0.0202423 0.0547227 0.0052631 0.02055511 0.0803356 0.016224

-0.0202423 0.0556852 0.00574433 0.02055511 0.08226054 0.01574277

-0.0202423 0.0571289 0.00622556 0.02055511 0.08514794 0.0147803

-0.0202423 0.0580914 0.0081505 0.02055511 0.08755411 0.0133366

-0.0202423 0.0585726 0.00911297 0.02055511 0.08803535 0.01285536

-0.0202423 0.0590538 0.01007544 0.02055511 0.08851658 0.01237413

-0.0207235 0.0600163 0.01296284 0.02055511 0.08947905 0.01141166
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Table 1.13: List A of pseudo-landmarks on the third contour in Figure 1.3.

Landmarks 1-50 Landmarks 51-100 Landmarks 101-150

X Y X Y X Y

0.09184302 -0.0002324 0.03448028 -0.0150676 -0.0367286 -0.0516611

0.09134851 -0.0027049 0.03398577 -0.0165511 -0.0382122 -0.0516611

0.09134851 -0.0031995 0.03349127 -0.0175401 -0.0396957 -0.0511666

0.09134851 -0.003694 0.03250226 -0.0185292 -0.0416737 -0.0506721

0.08541444 -0.006661 0.03200775 -0.0190237 -0.0436517 -0.0506721

0.08393092 -0.0061665 0.03151324 -0.0195182 -0.0451352 -0.0506721

0.08145839 -0.005672 0.02706269 -0.0239687 -0.0456298 -0.0506721

0.08046937 -0.0051775 0.02557917 -0.0259467 -0.0466188 -0.0506721

0.07948036 -0.0051775 0.02607367 -0.0279248 -0.0485968 -0.0506721

0.07898585 -0.0051775 0.02656818 -0.0284193 -0.0495858 -0.0501776

0.07700783 -0.004683 0.02706269 -0.0303973 -0.0500803 -0.0501776

0.07354628 -0.0041885 0.02508466 -0.0328698 -0.0530473 -0.0496831

0.07008474 -0.003694 0.02360114 -0.0343534 -0.0535419 -0.0496831

0.06860122 -0.0031995 0.02310663 -0.0353424 -0.0545309 -0.0491885

0.0671177 -0.0027049 0.02211762 -0.0378149 -0.0555199 -0.048694

0.06662319 -0.0027049 0.02162311 -0.0407819 -0.0570034 -0.0481995

0.06563418 -0.0022104 0.02112861 -0.0412764 -0.0574979 -0.0481995

0.06266714 -0.0017159 0.02112861 -0.043749 -0.0579924 -0.0481995

0.06217264 -0.0017159 0.0206341 -0.0452325 -0.0599704 -0.0472105

0.06068912 -0.0017159 0.01964509 -0.0462215 -0.0609594 -0.0472105

0.05871109 -0.0012214 0.01816157 -0.0472105 -0.064421 -0.045727

0.05821659 -0.0012214 0.01766706 -0.047705 -0.0649155 -0.045727

0.05772208 -0.0012214 0.01618354 -0.0481995 -0.0668935 -0.0452325

0.051788 -0.0012214 0.01568904 -0.0481995 -0.067388 -0.044738

0.05079899 -0.0012214 0.01470003 -0.0481995 -0.0703551 -0.0442435

0.04931547 -0.0012214 0.01371101 -0.0481995 -0.0738166 -0.0432545

0.04733745 -0.0007269 0.01222749 -0.0481995 -0.0748056 -0.04276

0.04684294 -0.0007269 0.00678792 -0.048694 -0.0753001 -0.04276

0.04585393 -0.0007269 0.00332638 -0.0496831 -0.0767837 -0.0392984

0.04486491 -0.0007269 0.00184286 -0.0501776 -0.0767837 -0.0388039

0.0438759 -0.0007269 0.00134835 -0.0506721 -0.0767837 -0.0353424

0.04239238 -0.0007269 -0.0031022 -0.0506721 -0.0767837 -0.0343534

0.04140337 -0.0007269 -0.0035967 -0.0506721 -0.0767837 -0.0328698

0.04090886 -0.0007269 -0.0129923 -0.0521556 -0.0762891 -0.0323753

0.03991985 -0.0007269 -0.0139813 -0.0521556 -0.0767837 -0.0274303

0.03893084 -0.0007269 -0.0164539 -0.0526501 -0.0762891 -0.0244632

0.03645831 -0.0007269 -0.0179374 -0.0526501 -0.0757946 -0.0234742

0.03151324 -0.0007269 -0.0189264 -0.0531446 -0.0757946 -0.0224852

0.0285462 -0.0007269 -0.0199154 -0.0531446 -0.0753001 -0.0214962

0.0280517 -0.0031995 -0.0218934 -0.0531446 -0.0753001 -0.0195182

0.0280517 -0.003694 -0.022388 -0.0526501 -0.0753001 -0.0190237

0.02755719 -0.0041885 -0.023377 -0.0526501 -0.0748056 -0.0150676

0.02755719 -0.004683 -0.024366 -0.0526501 -0.0748056 -0.0125951

0.02755719 -0.005672 -0.0278275 -0.0526501 -0.0743111 -0.0116061

0.03002972 -0.00765 -0.0288165 -0.0526501 -0.0743111 -0.009628

0.03052423 -0.00765 -0.0298055 -0.0526501 -0.0743111 -0.0071555

0.03299676 -0.009628 -0.0303001 -0.0526501 -0.0733221 -0.003694

0.03398577 -0.0111116 -0.0322781 -0.0526501 -0.0713441 -0.0007269

0.03448028 -0.0116061 -0.0337616 -0.0521556 -0.0688715 -0.0012214

0.03448028 -0.0121006 -0.0357396 -0.0521556 -0.0668935 -0.0012214
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Table 1.14: List B of pseudo-landmarks on the third contour in Figure 1.3.

Landmarks 151-200 Landmarks 201-250 Landmarks 251-300

X Y X Y X Y

-0.0629375 -0.0017159 -0.0209044 0.06207538 0.00579891 0.01608629

-0.0619485 -0.0017159 -0.0184319 0.06652594 0.00728243 0.01559179

-0.0599704 -0.0012214 -0.0179374 0.06702045 0.01074397 0.01509728

-0.0589814 -0.0012214 -0.0144758 0.06751495 0.01123848 0.01509728

-0.0579924 -0.0007269 -0.0139813 0.06751495 0.01371101 0.01460277

-0.0560144 -0.0002324 -0.0134868 0.06800946 0.01717256 0.01410827

-0.0540364 0.0012511 -0.0124978 0.06751495 0.01964509 0.01410827

-0.0525528 0.00273462 -0.0120033 0.06702045 0.0201396 0.01460277

-0.0515638 0.00372363 -0.0115088 0.06702045 0.02162311 0.01460277

-0.0505748 0.00471265 -0.0100253 0.06553693 0.02607367 0.01410827

-0.0505748 0.00520715 -0.0090363 0.06454792 0.03200775 0.01262475

-0.0500803 0.00570166 -0.0070583 0.06108637 0.03299676 0.01262475

-0.0495858 0.00619616 -0.0060692 0.05960285 0.03398577 0.01262475

-0.0490913 0.00718518 -0.0060692 0.05910835 0.0359638 0.01262475

-0.0476078 0.00965771 -0.0055747 0.05811933 0.03744732 0.01262475

-0.0461243 0.01213024 -0.0055747 0.05762483 0.03843633 0.01262475

-0.0446407 0.01559179 -0.0050802 0.0556468 0.03893084 0.01262475

-0.0446407 0.0165808 -0.0040912 0.05317427 0.04288689 0.01262475

-0.0436517 0.01954784 -0.0035967 0.05070174 0.04437041 0.01262475

-0.0426627 0.02202037 -0.0035967 0.05020723 0.04733745 0.01262475

-0.0421682 0.02300938 -0.0035967 0.04822921 0.04832646 0.01262475

-0.0411792 0.0244929 -0.0035967 0.0477347 0.04931547 0.01262475

-0.0396957 0.02696543 -0.0035967 0.04724019 0.04980998 0.01262475

-0.0377176 0.02844895 -0.0035967 0.04625118 0.05079899 0.01311925

-0.0357396 0.02993247 -0.0040912 0.04575667 0.0512935 0.01311925

-0.0332671 0.032405 -0.0040912 0.04427315 0.051788 0.01311925

-0.0327726 0.03289951 -0.0055747 0.03932809 0.05327152 0.01311925

-0.0307946 0.03636105 -0.0060692 0.03833908 0.05376603 0.01311925

-0.0298055 0.03833908 -0.0075528 0.03438303 0.05426054 0.01262475

-0.0288165 0.03932809 -0.0100253 0.03092148 0.05722757 0.01213024

-0.0288165 0.0398226 -0.0110143 0.02894346 0.06167813 0.01064672

-0.0268385 0.04229513 -0.0115088 0.02844895 0.06316165 0.01015222

-0.0258495 0.04377865 -0.0115088 0.02795444 0.06563418 0.01015222

-0.0258495 0.04427315 -0.0120033 0.02745994 0.06612869 0.01015222

-0.0248605 0.04575667 -0.0124978 0.02597642 0.06662319 0.01015222

-0.024366 0.04674569 -0.0134868 0.0244929 0.0671177 0.01015222

-0.0238715 0.04724019 -0.0134868 0.02399839 0.06761221 0.01015222

-0.023377 0.04872371 -0.0134868 0.02350389 0.06810671 0.01015222

-0.023377 0.04971272 -0.0139813 0.02300938 0.06959023 0.00965771

-0.0228825 0.05070174 -0.0139813 0.02202037 0.07008474 0.00965771

-0.0228825 0.05119624 -0.0144758 0.02103136 0.07156826 0.0091632

-0.022388 0.05169075 -0.0120033 0.01756981 0.07354628 0.0086687

-0.022388 0.05267976 -0.0100253 0.01608629 0.07799684 0.00817419

-0.0218934 0.05317427 -0.0095308 0.01608629 0.07948036 0.00767968

-0.0218934 0.05366878 -0.0075528 0.01608629 0.08145839 0.00669067

-0.0218934 0.05416328 -0.0070583 0.01608629 0.08442542 0.00570166

-0.0209044 0.05614131 -0.0060692 0.01608629 0.08491993 0.00520715

-0.0209044 0.05713032 -0.0040912 0.01559179 0.08887598 0.00273462

-0.0204099 0.05861384 0.00134835 0.01559179 0.08937049 0.00224011

-0.0209044 0.05910835 0.00233737 0.01559179 0.08986499 0.00174561
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Table 1.15: List A of pseudo-landmarks on the fourth contour in Figure 1.3.

Landmarks 1-50 Landmarks 51-100 Landmarks 101-150

X Y X Y X Y

0.09563799 0.002356 0.03315564 -0.0161388 -0.035325 -0.0496293

0.09513813 -0.0026426 0.03015648 -0.0196378 -0.0383242 -0.0486296

0.09263884 -0.0036423 0.02865691 -0.0216372 -0.0458221 -0.0461303

0.09163912 -0.0041422 0.02765719 -0.0226369 -0.0473216 -0.0456304

0.09113926 -0.004642 0.02615761 -0.026136 -0.0478215 -0.0456304

0.09013954 -0.004642 0.02615761 -0.0271357 -0.0503208 -0.0446307

0.08664053 -0.0051419 0.02665747 -0.0276355 -0.0518204 -0.0441309

0.08514095 -0.0051419 0.02665747 -0.0291351 -0.0528201 -0.043631

0.08414124 -0.0051419 0.02615761 -0.0301348 -0.0538198 -0.043631

0.08164194 -0.0051419 0.02465804 -0.0326341 -0.0548195 -0.0431312

0.08064223 -0.0051419 0.02115902 -0.0356333 -0.0578187 -0.0421314

0.08014237 -0.0051419 0.01965945 -0.0371328 -0.0593182 -0.0411317

0.0761435 -0.0051419 0.01965945 -0.0381326 -0.060318 -0.0411317

0.07564364 -0.0051419 0.02015931 -0.0386324 -0.0628173 -0.040132

0.07114491 -0.0051419 0.02015931 -0.040132 -0.0648167 -0.040132

0.07014519 -0.0051419 0.01965945 -0.0431312 -0.0653166 -0.040132

0.06964533 -0.0051419 0.01865973 -0.0441309 -0.0668161 -0.0406319

0.06914547 -0.0051419 0.01666029 -0.0461303 -0.0688156 -0.040132

0.06864561 -0.0051419 0.01566058 -0.04713 -0.0733143 -0.0356333

0.06664618 -0.0051419 0.01516072 -0.0476299 -0.0738142 -0.033134

0.0651466 -0.0051419 0.01466086 -0.0476299 -0.0738142 -0.0326341

0.06214745 -0.0051419 0.014161 -0.0481297 -0.0738142 -0.0321343

0.06164759 -0.0051419 0.00666312 -0.050629 -0.0738142 -0.0311345

0.06114773 -0.0051419 0.00466368 -0.0511289 -0.0738142 -0.0306347

0.06064787 -0.0051419 0.00416382 -0.0511289 -0.0738142 -0.0286352

0.05864844 -0.0051419 0.00166453 -0.0516288 -0.0738142 -0.0266358

0.05714886 -0.0051419 -0.0003349 -0.0521286 -0.0738142 -0.026136

0.05614914 -0.0051419 -0.0008348 -0.0526285 -0.0738142 -0.0256361

0.05564928 -0.0051419 -0.0013346 -0.0526285 -0.0738142 -0.0251362

0.05265013 -0.0051419 -0.0028342 -0.0526285 -0.0738142 -0.0236367

0.05215027 -0.0051419 -0.0048336 -0.0526285 -0.0738142 -0.0231368

0.05165041 -0.004642 -0.0063332 -0.0526285 -0.0738142 -0.0211374

0.0506507 -0.004642 -0.0078328 -0.0526285 -0.0738142 -0.0201376

0.04865126 -0.004642 -0.0103321 -0.0526285 -0.0738142 -0.0186381

0.0481514 -0.0041422 -0.0108319 -0.0526285 -0.0738142 -0.0181382

0.04665182 -0.0036423 -0.0118317 -0.0526285 -0.0738142 -0.0176384

0.03815422 -0.0031424 -0.0148308 -0.0526285 -0.0733143 -0.0141393

0.03665465 -0.0031424 -0.0163304 -0.0526285 -0.0738142 -0.01164

0.03565493 -0.0031424 -0.0173301 -0.0526285 -0.0738142 -0.0111402

0.03515507 -0.0031424 -0.01783 -0.0526285 -0.074314 -0.0106403

0.03315564 -0.0041422 -0.0193295 -0.0526285 -0.074314 -0.0096406

0.03265578 -0.004642 -0.0198294 -0.0526285 -0.074314 -0.0091408

0.0311562 -0.0066415 -0.021329 -0.0526285 -0.0748139 -0.008141

0.03065634 -0.008141 -0.0218288 -0.0526285 -0.0748139 -0.0061416

0.0311562 -0.0091408 -0.0263276 -0.0526285 -0.0748139 -0.0021427

0.03165606 -0.0096406 -0.0268274 -0.0526285 -0.0738142 0.00035657

0.03315564 -0.01164 -0.028327 -0.0526285 -0.0733143 0.00085642

0.0336555 -0.0121399 -0.0288269 -0.0521286 -0.0733143 0.00135628

0.0336555 -0.0131396 -0.0308263 -0.0511289 -0.070815 0.00285586

0.03315564 -0.0156389 -0.0328257 -0.050629 -0.0703151 0.00335572
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Table 1.16: List B of pseudo-landmarks on the fourth contour in Figure 1.3.

Landmarks 151-200 Landmarks 201-250 Landmarks 251-300

X Y X Y X Y

-0.0693154 0.00385558 -0.0148308 0.0618392 0.01516072 0.01435261

-0.0683157 0.00385558 -0.0153307 0.06633793 0.01566058 0.01435261

-0.0658164 0.00385558 -0.0148308 0.06733765 0.01815987 0.01385275

-0.0643168 0.00385558 -0.014331 0.06833737 0.01915959 0.01385275

-0.0623174 0.00385558 -0.0133312 0.0703368 0.02065917 0.01385275

-0.0608178 0.00385558 -0.0128314 0.07083666 0.02365832 0.01385275

-0.0588184 0.00385558 -0.0058334 0.06883723 0.02415818 0.01435261

-0.0583185 0.00385558 -0.0038339 0.06683779 0.02515789 0.01435261

-0.0553194 0.0048553 -0.0033341 0.06633793 0.02615761 0.01435261

-0.0543197 0.00535515 -0.0033341 0.06583807 0.02765719 0.01385275

-0.0528201 0.00585501 -0.0028342 0.0643385 0.02815705 0.0133529

-0.0513205 0.00735459 -0.0023343 0.06283892 0.02865691 0.0133529

-0.0508206 0.00785445 -0.0018345 0.06233906 0.02915677 0.0133529

-0.0503208 0.00835431 -0.0018345 0.06083948 0.02965662 0.0133529

-0.0493211 0.00935402 -0.0013346 0.05784033 0.03015648 0.01285304

-0.0493211 0.00985388 -0.0008348 0.05684061 0.03215592 0.01235318

-0.0478215 0.01135346 -0.0013346 0.05534104 0.03315564 0.01235318

-0.0463219 0.0133529 -0.0013346 0.05484118 0.0336555 0.01185332

-0.0453222 0.01485247 -0.0013346 0.05434132 0.03415535 0.01185332

-0.0448223 0.01535233 -0.0018345 0.05384146 0.03515507 0.01135346

-0.0433228 0.01685191 -0.0033341 0.04784315 0.03715451 0.01135346

-0.0408235 0.0218505 -0.0038339 0.04684344 0.03815422 0.01135346

-0.0403236 0.02285021 -0.0058334 0.04084513 0.03865408 0.01185332

-0.0398238 0.02434979 -0.0063332 0.03934555 0.04065352 0.01185332

-0.0393239 0.02484965 -0.0078328 0.0363464 0.04415253 0.01185332

-0.0393239 0.02534951 -0.0093324 0.03334725 0.04465239 0.01185332

-0.0383242 0.02634923 -0.0098322 0.03134781 0.04665182 0.01185332

-0.0363247 0.02884852 -0.0103321 0.03084795 0.04715168 0.01185332

-0.0358249 0.02934838 -0.0103321 0.02984824 0.05165041 0.01185332

-0.035325 0.02984824 -0.0108319 0.02834866 0.05265013 0.01185332

-0.0343253 0.03084795 -0.0113318 0.0278488 0.05314999 0.01185332

-0.0333256 0.03234753 -0.0113318 0.02734894 0.05564928 0.01185332

-0.0328257 0.03334725 -0.0108319 0.02684908 0.05764872 0.01135346

-0.031826 0.03484683 -0.0103321 0.02534951 0.05864844 0.01135346

-0.0313262 0.03584654 -0.0093324 0.02384993 0.05964815 0.0108536

-0.0308263 0.0363464 -0.0073329 0.0218505 0.0651466 0.00935402

-0.0298266 0.03734612 -0.0048336 0.01985106 0.06564646 0.00935402

-0.0293267 0.03784598 -0.0033341 0.0193512 0.06814575 0.00935402

-0.028327 0.0388457 -0.0013346 0.01785163 0.07064505 0.00935402

-0.0258277 0.04184485 0.00066481 0.01735177 0.0736442 0.00985388

-0.0253278 0.04284457 0.00116467 0.01735177 0.07414406 0.00985388

-0.0238283 0.044844 0.00266425 0.01735177 0.07564364 0.00985388

-0.0233284 0.04584372 0.00316411 0.01735177 0.07664335 0.00985388

-0.0233284 0.04634358 0.00366397 0.01735177 0.08064223 0.00935402

-0.0228286 0.0473433 0.00516354 0.01735177 0.08614067 0.00785445

-0.0223287 0.04784315 0.0056634 0.01685191 0.08714039 0.00785445

-0.0208291 0.05134217 0.00666312 0.01685191 0.09213898 0.00635487

-0.0198294 0.05284174 0.00716298 0.01685191 0.0931387 0.00535515

-0.0168302 0.05834019 0.01116185 0.01585219 0.09463827 0.00385558

-0.0163304 0.05884005 0.01466086 0.01435261 0.09563799 0.002356
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Table 1.17 Coordinates of five landmarks in a normal eye (n) and in a treated eye (0)

measured in 12 Rhesus monkeys.

Filename Sx Sy Sz Tx Ty Tz Nx Ny Nz Ix Iy Iz

1a1pn103.12b 2580 1060 60.31 1360 2660 -78.40 3800 2660 -132.68 2580 4260 126.65

1a1p0103.12b 2580 1060 78.01 1360 2660 39.00 3800 2660 -208.02 2580 4260 110.51

1a1cn103.12b 2540 1180 84.36 1500 2460 -72.31 3580 2460 -210.91 2540 3740 114.50

1a1c0103.12b 2540 1180 -5.79 1500 2460 -144.63 3580 2460 -237.19 2540 3740 75.21

1a1dn103.12b 2620 700 46.32 1440 2500 30.88 3800 2500 -108.09 2620 4300 101.24

1a1d0103.12b 2480 800 -37.89 1280 2500 -86.61 3680 2500 -162.40 2480 4200 108.27

1a1en103.12b 2480 900 5.88 1180 2560 -23.52 3780 2560 -146.97 2480 4220 229.27

1a1e0103.12b 2540 900 53.55 1220 2520 -119.01 3860 2520 -53.55 2540 4140 208.27

1a1fn103.12b 2640 880 -8.97 1260 2640 -71.72 4020 2640 -35.86 2640 4400 53.79

1a1f0103.12b 2640 880 5.67 1260 2640 -39.69 4020 2640 -136.09 2640 4400 90.73

1a1gn103.12b 2520 1060 23.05 1280 2560 -17.29 3760 2560 -149.84 2520 4060 201.71

1a1g0103.12b 2520 1060 -123.44 1280 2560 -101.97 3760 2560 -161.01 2520 4060 53.67

1a1in103.12b 2620 840 140.08 1320 2680 -170.53 3920 2680 -146.17 2620 4520 158.35

1a1i0103.12b 2580 620 26.64 1280 2380 -154.49 3880 2380 -111.87 2580 4140 159.81

1a1jn103.12b 2760 960 296.99 1600 2580 -77.22 3920 2580 -65.34 2760 4200 160.37

1a1j0103.12b 2720 1020 208.38 1520 2620 -191.02 3920 2620 -81.04 2720 4220 -28.94

1a1kn103.12b 2580 840 126.64 1320 2460 -143.16 3840 2460 -99.11 2580 4080 137.66

1a1k0103.12b 2580 840 -32.91 1320 2460 -98.73 3840 2460 -142.61 2580 4080 142.61

1a1ln103.12b 2560 1000 71.99 1420 2580 -95.99 3700 2580 -185.98 2560 4160 233.97

1a1l0103.12b 2560 1000 119.73 1420 2580 -125.17 3700 2580 -163.26 2560 4160 250.34

1a1nn103.12b 2540 860 65.71 1220 2540 -175.24 3860 2540 -147.86 2540 4220 93.10

1a1n0103.12b 2540 860 53.71 1220 2540 -102.05 3860 2540 -139.64 2540 4220 134.27

1a1on103.12b 2620 1120 49.15 1420 2600 -24.57 3820 2600 -147.44 2620 4080 141.30

1a1o0103.12b 2620 1120 95.55 1420 2600 106.16 3820 2600 -159.24 2620 4080 196.40

Filename Vx Vy Vz

1a1pn103.12b 2180 2820 -542.77

1a1p0103.12b 2860 2400 -585.04

1a1cn103.12b 3100 2880 -403.75

1a1c0103.12b 2960 2820 -480.17

1a1dn103.12b 2960 2380 -339.70

1a1d0103.12b 2720 2460 -552.16

1a1en103.12b 2900 2220 -388.00

1a1e0103.12b 2080 2500 -636.70

1a1fn103.12b 2080 3220 -421.36

1a1f0103.12b 2820 2540 -487.65

1a1gn103.12b 2920 2720 -438.00

1a1g0103.12b 2760 2920 -558.16

1a1in103.12b 2820 2660 -347.15

1a1i0103.12b 3020 2420 -447.48

1a1jn103.12b 2480 2700 -497.80

1a1kn103.12b 2340 2240 -390.95

1a1k0103.12b 2300 2260 -422.34

1a1ln103.12b 2680 2900 -419.95

1a1l0103.12b 2800 2600 -353.74

1a1nn103.12b 2960 3220 -498.33

1a1n0103.12b 2860 2700 -386.70

1a1on103.12b 2940 2920 -681.91

1a1o0103.12b 2900 2220 -642.28
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Table 1.18: Acid proteinase atoms coordinates and types – I.

Protein A Protein B

X Y Z Element

9.919 28.923 -8.61 N

11.278 29.372 -8.909 C

12.35 28.532 -8.306 C

13.365 28.337 -8.933 O

11.509 30.797 -8.429 C

10.897 31.807 -9.331 C

10.794 32.972 -8.983 O

10.485 31.374 -10.515 N

12.121 28.052 -7.086 N

13.108 27.255 -6.366 C

13.297 27.834 -4.974 C

14.067 29.007 -5.073 O

13.063 29.505 0.84 C

12.749 29.348 -0.652 C

12.828 28.238 -1.183 O

14.565 29.741 1.067 C

12.322 30.44 -1.293 N

11.988 30.461 -2.721 C

12.577 31.724 -3.313 C

12.23 32.822 -2.89 O

10.477 30.53 -2.975 C

10.218 30.488 -4.467 C

9.747 29.399 -2.268 C

13.761 34.807 -5.994 N

13.011 35.835 -6.723 C

13.091 35.436 -8.181 C

12.32 35.905 -9.014 O

13.716 37.201 -6.736 C

14.463 37.458 -5.443 C

12.72 38.293 -7.009 C

15.544 38.518 -5.604 C

14.13 34.664 -8.482 N

14.434 34.213 -9.827 C

14.194 32.723 -10.067 C

14.456 31.878 -9.197 O

15.896 34.554 -10.12 C

16.213 36.017 -9.858 C

15.843 36.883 -10.645 O

16.867 36.299 -8.735 N

13.676 32.42 -11.255 N

13.407 31.046 -11.677 C

14.744 30.314 -11.634 C

15.752 30.891 -12.012 O

14.798 29.08 -11.152 N

16.469 27.921 -9.734 C

16.892 29.032 -8.753 C

17.468 30.254 -9.47 C

17.911 31.352 -8.512 C

19.119 30.905 -7.76 N

X Y Z Element

9.504 27.24 -5.912 O

9.717 29.014 -8.516 N

11.058 29.475 -8.851 C

12.178 28.64 -8.308 C

13.19 28.482 -8.972 O

11.26 30.911 -8.383 C

10.69 31.912 -9.347 C

10.528 33.074 -9.019 O

10.402 31.468 -10.561 N

11.99 28.106 -7.106 N

13.027 27.333 -6.451 C

13.28 27.929 -5.072 C

14.093 29.077 -5.186 O

12.917 29.41 0.72 C

12.584 29.33 -0.767 C

12.64 28.251 -1.353 O

14.421 29.646 0.928 C

12.163 30.451 -1.351 N

11.821 30.513 -2.77 C

12.428 31.782 -3.338 C

12.11 32.878 -2.884 O

10.304 30.563 -3.015 C

10.042 30.693 -4.506 C

9.612 29.308 -2.465 C

13.707 34.88 -5.997 N

13.047 35.982 -6.698 C

13.091 35.604 -8.17 C

12.26 36.033 -8.972 O

13.864 37.298 -6.597 C

14.267 37.578 -5.151 C

13.072 38.462 -7.186 C

15.416 38.578 -5.017 C

14.111 34.814 -8.497 N

14.393 34.358 -9.851 C

14.139 32.866 -10.095 C

14.503 32.02 -9.265 O

15.863 34.667 -10.149 C

16.248 36.085 -9.761 C

15.887 37.04 -10.447 O

16.958 36.232 -8.642 N

13.529 32.554 -11.24 N

13.264 31.164 -11.64 C

14.626 30.475 -11.669 C

14.752 29.266 -11.14 N

16.463 28.183 -9.749 C

16.781 29.327 -8.768 C

17.599 30.456 -9.415 C

18.204 31.431 -8.39 C

19.413 30.854 -7.681 N
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Table 1.19: Acid proteinase atoms coordinates and types.

Protein C

X Y Z Element

10.167 29.245 -8.599 N

11.476 29.668 -9.02 C

12.528 28.755 -8.443 C

13.438 28.32 -9.158 O

11.707 31.11 -8.574 C

10.952 32.098 -9.422 C

11.073 33.296 -9.244 O

10.178 31.597 -10.372 N

12.302 28.339 -7.199 N

13.251 27.499 -6.499 C

13.49 28.082 -5.115 C

14.203 29.294 -5.257 O

13.51 29.73 0.626 C

13.202 29.635 -0.865 C

13.511 28.628 -1.504 O

15.014 29.878 0.879 C

12.51 30.644 -1.391 N

12.136 30.686 -2.798 C

12.68 31.955 -3.418 C

12.25 33.05 -3.097 O

10.615 30.639 -2.987 C

10.296 30.497 -4.451 C

10.014 29.477 -2.215 C

14.053 34.998 -6.056 N

13.422 36.056 -6.848 C

13.723 35.698 -8.305 C

13.185 36.295 -9.24 O

14.099 37.421 -6.659 C

14.701 37.533 -5.27 C

13.101 38.543 -6.927 C

15.748 38.621 -5.185 C

14.653 34.771 -8.492 N

15.045 34.357 -9.824 C

14.798 32.868 -10.073 C

15.201 32.022 -9.276 O

16.506 34.753 -10.039 C

16.738 36.253 -9.801 C

16.53 37.074 -10.7 O

17.12 36.616 -8.577 N

14.018 32.587 -11.118 N

13.678 31.225 -11.536 C

15.018 30.532 -11.645 C

15.169 29.342 -11.075 N

16.806 28.073 -9.747 C

17.239 29.11 -8.723 C

18.193 30.141 -9.324 C

18.779 31.099 -8.272 C

19.95 30.517 -7.495 N
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Table 1.20: Landmark coordinates – Sope Creek data.

Id x1 y1 x3 y3 x2 y2 x5 y5 x4 y4

01 46.00 18.3 28.70 20.5 21.80 11.4 20.0 20.0 17.7 31.7

02 17.44 44.3 58.70 31.0 71.50 30.5 64.8 23.0 54.1 17.8

03 48.80 44.5 58.60 31.0 71.70 30.5 65.0 25.0 52.4 17.6

04 55.20 54.0 42.00 35.3 47.00 24.7 36.0 29.0 23.0 35.0

05 17.70 3.0 50.40 16.8 68.65 31.0 65.6 24.3 61.3 16.3

06 18.00 22.0 40.30 20.3 56.20 27.1 54.0 20.0 50.7 12.0

07 13.70 29.3 33.60 21.3 50.85 24.0 43.2 18.3 34.0 11.0

08 17.80 43.0 39.45 32.3 61.70 29.5 49.4 28.0 34.3 26.1

09 53.40 17.3 41.40 32.0 29.40 32.7 34.7 38.7 41.6 46.0

10 29.20 48.3 40.90 37.8 50.60 43.8 47.6 31.9 37.7 20.9

11 46.60 11.2 42.00 21.4 29.00 22.3 37.9 26.2 49.8 30.8

12 24.00 31.5 25.00 18.4 37.70 8.7 27.0 12.2 13.6 16.3

13 24.20 23.1 30.70 11.5 46.10 1.0 34.4 6.1 10.1 15.9

14 61.80 34.1 41.20 33.7 34.80 22.3 34.8 31.9 33.3 44.7

15 29.40 14.0 26.10 21.2 41.90 29.3 48.0 25.5 50.9 20.6

16 54.20 19.3 33.70 17.0 40.10 13.3 14.7 28.2 10.8 16.9

17 53.50 12.2 42.20 10.1 49.80 7.3 24.1 8.0 26.0 8.2

18 49.20 9.7 52.00 26.8 34.70 35.8 51.6 36.8 67.4 36.6

19 62.00 14.4 55.10 30.4 35.10 29.0 40.6 38.7 66.2 49.9

20 46.20 9.3 61.30 22.3 56.60 34.1 68.9 30.2 79.4 25.5

21 30.90 20.5 54.10 24.5 63.20 33.9 66.0 27.7 68.5 18.1

22 19.20 30.7 45.70 22.3 64.00 28.5 58.5 19.1 51.6 8.3

23 65.30 29.9 44.10 32.9 34.90 21.1 34.3 32.1 24.0 46.7

24 34.40 32.3 55.80 28.5 64.70 41.5 65.5 28.9 66.1 12.8

25 42.70 36.0 25.10 29.2 22.60 11.5 18.7 24.4 13.4 39.6

26 23.70 40.3 38.40 19.2 59.30 12.2 46.0 10.4 30.0 8.8

27 51.30 27.2 28.60 35.6 14.10 29.1 14.6 38.2 18.2 58.9

28 36.50 8.8 27.40 32.8 16.50 38.3 20.9 44.1 28.7 52.6

29 56.20 13.7 43.40 18.1 32.00 15.1 35.4 19.4 40.8 24.9

30 40.80 14.9 38.30 30.6 31.30 33.5 35.5 37.5 41.8 42.7

31 60.30 19.7 44.90 16.6 44.70 9.9 38.7 13.9 30.6 19.6

32 53.10 24.9 44.20 18.2 48.50 12.8 41.4 14.6 31.6 17.1

33 37.40 17.1 28.50 24.8 24.80 16.4 24.3 25.9 24.1 39.7

34 52.30 29.9 43.10 21.0 49.10 15.6 40.4 16.6 28.6 17.9

35 40.50 28.3 31.00 20.1 36.50 9.0 28.4 14.9 17.8 23.0

36 46.10 26.1 30.20 23.8 30.10 16.3 23.8 21.3 15.0 28.2

37 53.20 17.2 38.30 28.5 30.70 17.3 30.5 24.0 31.5 33.1

38 49.50 8.9 30.70 10.2 26.40 11.8 24.7 20.7 22.6 31.0

39 63.10 26.0 41.40 28.3 34.70 16.3 32.0 27.2 29.2 43.3

40 65.50 21.1 37.40 32.4 14.00 23.1 25.1 35.2 38.3 48.6

41 30.00 7.1 62.10 18.1 74.20 30.6 79.7 24.2 84.6 13.5

Table 1.21: Landmark coordinates – BBC “impersonator” data.

Landmark 1 2 3 4 5 6 7 8

Image

1 466,403 469,191 350,501 608,501 278,191 397,199 554,200 665,202

2 482,385 483,164 328,552 602,570 254,148 40,161 598,167 730,173

3 511,358 533,170 371,500 600,531 308,136 428,157 616,178 742,188

4 482,334 513,162 365,462 589,480 299,140 412,154 577,169 701,185

5 505,260 511,84 394,422 628,430 302,83 421,89 599,83 719,91

6 530,328 539,142 389,450 605,468 344,133 457,152 619,155 728,173

7 465,264 478,56 338,457 620,454 263,98 385,103 580,113 700,120

8 491,382 503,164 343,494 593,521 287,143 430,172 580,181 727,199

9 208,238 300,59 224,422 421,423 157,94 239,98 391,106 497,109

10 155,295 240,94 139,495 389,515 91,94 193,122 376,128 494,139

11 167,303 244,129 161,449 365,468 127,113 196,128 353,136 475,148

12 196,280 256,91 152,447 401,482 92,101 203,113 373,117 514,130

13 690,484 683,268 412,569 620,662 449,212 568,257 728,310 842,349

14 195,315 240,141 250,477 439,446 152,173 224,155 350,140 454,124
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Table 1.22 Coordinates of landmarks from camera images of 3D object in Figure 1.14.

Landmark No. 1 2 3 4 5 6 7 8 9 10

x 89.50 72.50 142.00 154.00 75.50 144.00 156.50 68.00 171.00 188.50
Image 1

y 29.50 66.00 73.00 37.50 125.50 134.50 96.00 146.50 159.50 99.50

x 135.00 97.50 137.50 174.50 99.00 138.50 175.00 80.00 138.50 194.00
Image 2

y 39.00 54.50 70.50 53.50 105.00 122.00 104.00 116.00 140.50 113.00

x 177.50 133.50 165.50 209.50 133.00 164.50 207.50 112.50 157.00 222.50
Image 3

y 28.00 39.00 56.50 46.00 89.00 109.50 95.50 96.00 125.50 107.50

x 223.00 176.50 201.00 248.50 175.50 199.50 246.50 152.00 187.00 258.50
Image 4

y 35.50 44.50 63.50 53.50 94.50 114.50 104.50 100.00 130.00 115.00

x 189.00 140.50 162.50 212.50 138.00 159.00 209.00 114.00 144.50 219.00
Image 5

y 33.50 41.00 65.00 57.00 89.00 113.00 106.00 94.50 132.00 119.50

x 209.50 163.00 178.00 227.00 161.00 175.00 224.50 138.00 157.00 231.50
Image 6

y 63.50 67.50 83.00 80.50 115.50 132.50 129.00 119.00 145.00 138.50

x 110.00 75.00 112.50 146.50 80.00 117.00 151.00 63.00 118.00 169.00
Image 7

y 24.00 40.50 53.50 35.50 88.50 101.50 83.00 99.50 119.00 90.00

x 161.50 121.50 147.00 187.50 122.00 147.00 187.00 102.50 139.50 199.50
Image 8

y 47.00 56.00 71.50 62.00 101.00 117.00 106.00 107.50 130.00 115.50

x 176.50 141.50 176.50 210.50 140.00 175.50 210.50 122.50 174.00 226.50
Image 9

y 38.00 44.00 52.50 47.00 94.00 103.00 95.50 99.00 112.50 101.50

x 146.50 109.50 136.50 176.00 109.00 136.50 175.00 89.00 131.00 187.50
Image 10

y 35.00 41.00 51.50 46.00 88.00 100.50 93.00 93.50 110.50 99.00

x 146.50 102.50 159.50 201.00 99.50 153.50 194.00 77.50 159.00 221.00
Image 11

y 40.00 71.50 104.00 70.00 128.00 159.00 126.00 145.00 194.50 141.50

x 167.00 111.50 143.50 200.50 105.50 136.00 191.00 78.50 123.50 208.00
Image 12

y 29.00 42.50 80.50 65.50 96.50 136.50 118.00 104.00 163.00 138.00

x 91.00 78.00 142.50 152.00 79.00 142.50 153.50 72.50 168.50 181.50
Image 13

y 35.50 63.00 70.00 41.50 122.00 127.50 99.50 138.50 148.00 103.00

x 163.50 138.00 190.00 212.00 128.00 178.50 201.50 114.50 190.50 225.50
Image 14

y 47.00 62.50 82.00 66.00 115.50 135.00 118.00 126.00 156.00 128.50

x 135.00 105.50 167.50 193.00 105.50 166.00 190.50 91.00 180.50 219.00
Image 15

y 38.00 64.00 79.50 54.50 124.50 140.50 112.50 140.00 165.00 120.50

x 104.00 72.50 112.50 142.00 74.00 114.50 143.50 58.50 119.00 163.50
Image 16

y 28.00 36.50 43.50 35.00 87.00 97.00 84.50 94.00 105.50 89.00

Landmark No. 11 12 13 14 15 16 17 18 19

x 72.50 170.00 187.50 56.00 225.50 249.50 66.50 222.50 244.50
Image 1

y 227.50 238.50 179.50 273.00 295.50 187.00 389.00 412.00 303.50

x 81.50 138.50 193.00 43.00 142.00 233.50 50.00 144.00 231.50
Image 2

y 187.50 214.00 184.50 208.50 256.00 202.50 319.00 373.00 312.50

x 110.50 154.00 219.00 66.00 140.00 251.00 69.50 139.50 246.00
Image 3

y 168.00 199.50 179.00 183.00 240.00 200.50 293.00 356.50 312.00

x 150.50 184.50 254.50 104.50 159.50 281.00 106.00 158.50 275.50
Image 4

y 169.50 202.50 186.00 181.50 240.00 209.50 289.00 354.50 321.00

x 110.00 140.00 212.00 62.50 110.50 235.00 61.00 106.00 225.00
Image 5

y 162.00 201.50 188.00 173.00 241.50 216.00 276.00 350.50 321.00

x 135.00 154.50 228.00 88.00 117.50 245.00 88.00 116.50 238.00
Image 6

y 187.50 216.00 209.00 192.00 243.00 230.50 300.50 360.50 344.50

x 69.00 122.50 173.50 34.00 125.00 211.50 47.00 136.50 217.50
Image 7

y 167.00 187.50 158.50 188.50 227.00 173.00 292.00 336.00 277.00

x 103.00 139.00 199.00 63.00 124.00 225.50 68.00 126.50 224.50
Image 8

y 171.50 195.50 180.00 184.00 229.00 198.00 283.00 335.00 299.50

x 120.00 171.50 224.50 82.50 169.50 259.50 83.00 167.50 256.00
Image 9

y 171.50 188.00 174.50 181.50 211.50 185.50 298.00 337.00 303.00

x 88.50 128.50 186.50 48.50 118.50 215.50 50.00 117.50 212.00
Image 10

y 160.50 180.50 166.50 171.00 206.50 180.50 277.50 321.50 289.50

x 75.00 150.00 210.00 30.00 161.50 260.50 32.50 150.00 240.50
Image 11

y 218.00 266.00 213.00 256.00 343.50 244.50 356.00 441.00 342.00

x 71.00 113.00 193.00 16.00 85.50 225.50 14.00 76.00 204.00
Image 12

y 175.50 232.50 206.50 193.00 298.00 248.50 292.00 396.50 345.00

x 74.50 166.50 180.50 60.00 220.50 239.00 66.00 216.00 234.50
Image 13

y 221.00 229.00 182.00 258.00 276.00 189.50 382.00 400.00 308.50

x 99.50 173.50 208.00 71.50 200.50 256.50 52.50 172.50 229.50
Image 14

y 200.50 232.00 200.00 223.50 278.50 221.00 340.00 395.00 330.00

x 89.00 176.00 212.50 57.50 209.00 270.50 60.00 201.00 260.00
Image 15

y 223.50 249.00 203.00 258.00 304.50 219.00 382.50 432.50 338.50

x 60.50 120.00 164.00 27.00 131.50 203.00 33.50 133.00 205.00
Image 16

y 167.50 181.00 160.50 181.50 207.00 170.50 298.50 329.50 284.50

  



40 DATA ON MANIFOLDS

Table 1.23 Coordinates of landmarks from camera images of 3D object in Figure 1.15.

Landmark No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x 2147 1737 1864 2279 1717 1839 2249 1636 1788 2279 1616 1747 2244 1302 1519 2345 1286 1494 2279
Image 01

y 162 203 425 380 588 815 765 603 876 810 1023 1302 1241 1074 1580 1454 1697 2218 2092

x 2289 1879 2310 2687 1854 2264 2649 1763 2254 2730 1737 2213 2659 1428 2228 2973 1403 2142 2851
Image 02

y 253 476 775 512 937 1231 983 1003 1347 1038 1023 1302 1241 1074 1580 1454 1697 2218 2092

x 2350 1909 2289 2735 1920 2289 2740 1828 2289 2811 1854 2294 2806 1504 2249 3110 1550 2259 3084
Image 03

y 198 395 633 436 912 1140 937 962 1251 998 1535 1839 1560 1712 2259 1778 2598 3160 2659

x 2304 1925 2360 2740 1920 2345 2715 1839 2355 2786 1839 2325 2755 1535 2375 3084 1540 2320 3003
Image 04

y 304 527 775 527 1013 1241 1003 1059 1362 1064 1600 1889 1580 1808 234 178 2613 3145 2573

x 2132 1671 1955 2421 1681 1960 2421 1585 1925 2477 1606 1920 2461 1251 1778 2694 1286 1783 2664
Image 05

y 152 294 542 395 770 1028 866 810 1119 927 1337 1651 1459 1464 2041 1687 2279 2867 2487

x 1940 1560 1925 2304 1570 1925 2294 1499 1925 2355 1514 1914 2340 1231 1894 2608 1266 1899 2548
Image 06

y 309 522 775 557 927 1175 942 988 1292 1008 1418 1732 1443 1616 2198 1646 2244 2781 2304

x 2477 1970 2269 2781 1965 2264 2765 1864 2223 2826 1879 2208 2801 1489 2046 3049 1519 2051 3003
Image 07

y 56 208 486 324 729 1008 836 760 1109 907 1337 1687 1479 1469 2107 1727 2335 2983 2598

x 2396 2021 2467 2846 2051 2487 2836 1965 2497 2917 2011 2502 2902 1732 2568 3241 1793 2563 3176
Image 08

y 512 820 1069 760 1241 1489 1180 1307 1621 1236 1752 2061 1687 2006 2598 1904 2634 3191 2517

x 2436 1914 2112 2649 1869 2082 2603 1768 2011 2644 1732 1950 2588 1332 1687 2755 1276 1631 2659
Image 09

y 46 111 375 304 623 891 826 638 972 886 1226 1570 1474 1292 1899 1722 2198 2836 2639

x 2340 1980 2269 2624 1970 2249 2608 1889 2228 2659 1889 2213 2634 1611 2147 2857 1611 2122 2796
Image 10

y 360 491 699 562 891 1109 957 932 1195 1003 1373 1636 1449 1504 1996 1646 2168 2659 2299

x 2396 1864 2006 2553 1808 1950 2492 1697 1864 2517 1646 1808 2446 1231 1464 2568 1160 1388 2456
Image 11

y 248 268 547 517 780 1048 1028 785 1124 1089 1347 1707 1661 1393 2011 1920 2274 2927 2826

x 2153 1773 1965 2350 1757 1940 2330 1676 1904 2370 1676 1879 2340 1383 1722 2492 1383 1712 2446
Image 12

y 263 334 562 466 729 937 856 750 1008 896 1170 1433 1327 1241 1727 1519 1894 2391 2158

x 2325 1884 2234 2669 1864 2198 2634 1773 2183 2700 1768 2137 2639 1423 2056 2907 1418 2001 2806
Image 13

y 370 557 861 663 1003 1297 1109 1043 1423 1175 1524 1894 1636 1687 2365 1899 2391 3059 2578

x 2259 1722 1909 2456 1712 1894 2446 1606 1828 2477 1600 1813 2456 1190 1514 2603 1185 1509 2563
Image 14

y 122 198 456 370 714 977 896 734 1059 952 1317 1656 1550 1393 1996 1793 2310 2938 2725

x 2624 2193 2502 2943 2158 2451 2897 2071 2436 2953 2036 2380 2892 1697 2269 3130 1651 2198 3029
Image 15

y 334 456 704 572 927 1170 1038 962 1266 1099 1484 1798 1621 1606 2168 1849 2421 2998 2659

x 2122 1788 2228 2558 1803 2249 2548 1737 2254 2629 1752 2259 2618 1499 2360 2958 1524 2345 2907
Image 16

y 506 755 942 689 1200 1398 1135 1276 1499 1190 1763 2006 1676 1980 2446 1854 2745 3196 2598
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Table 1.24 LEGS stereo data: coordinates of the nine ONH anatomical landmarks – I.

Landmark Id I S N T V IM SM NM TM

x 3015 2709 2385 3415 2882 3104 2762 2502 3128
1AL

y 2408 1038 1785 1661 1682 2108 1214 1771 1527

x 3056 2762 2444 3456 2954 3158 2828 2589 3202
1AR

y 2444 1061 1802 1655 1694 2126 1238 1784 1597

x 3164 2918 2588 3578 3092 3272 2930 2711 3318
1BL

y 2540 1130 1934 1808 1790 2228 1328 1931 1668

x 3212 2966 2636 3650 3170 3314 3002 2788 3378
1BR

y 2594 1160 1964 1838 1844 2264 1370 1978 1711

x 2996 2888 2426 3428 3008 2912 2817 2624 3242
2AL

y 2462 1088 1778 1766 1718 2318 1311 1790 1652

x 3068 2966 2516 3500 3092 2984 2902 2708 3320
2AR

y 2456 1070 1742 1736 1688 2312 1283 1778 1622

x 3014 2918 2438 3464 3032 2936 2846 2648 3290
2BL

y 2414 1028 1700 1700 1640 2270 1238 1730 1592

x 3026 2936 2444 3476 3044 2954 2870 2642 3296
2BR

y 2444 1040 1718 1718 1700 2276 1292 1736 1592

x 2648 2666 2048 3176 2564 2480 2648 2282 2894
3AL

y 2546 1046 1742 1832 1754 2192 1196 1886 1490

x 2714 2744 2132 3248 2672 2600 2732 2384 2996
3AR

y 2558 1076 1760 1850 1778 2228 1238 1904 1538

x 2666 2678 2060 3182 2606 2510 2666 2282 2900
3BL

y 2414 1028 1700 1700 1640 2270 1238 1730 1592

x 2708 2720 2120 3230 2654 2564 2726 2372 2948
3BR

y 2540 1052 1694 1832 1754 2198 1202 1880 1472

x 3164 3086 2738 3584 3110 3116 3224 2822 3416
4AL

y 2366 1250 1826 1856 1826 2216 1454 1748 1880

x 3080 2990 2648 3512 3068 3026 3140 2768 3356
4AR

y 2360 1250 1838 1844 1796 2222 1436 1748 1874

x 3593 3593 3211 4034 3602 3539 3734 3334 3889
4BL

y 2389 1307 1843 1934 1848 2257 1507 1762 1930

x 3316 3321 2957 3784 3375 3243 3471 3098 3662
4BR

y 2434 1352 1880 1975 1871 2312 1539 1798 1980

x 2960 2882 2378 3416 2822 2792 2810 2504 3212
5AL

y 2594 1142 1904 1850 1886 2360 1370 1772 1628

x 3122 3050 2540 3590 3008 2960 2990 2666 3380
5AR

y 2600 1130 1904 1838 1868 2366 1370 1796 1622

x 3014 3002 2456 3548 2948 2858 2930 2588 3356
5BL

y 2654 1166 1916 1916 1910 2420 1394 1826 1694

x 3080 3062 2522 3620 3020 2918 2990 2666 3428
5BR

y 2612 1124 1880 1874 1898 2384 1358 1790 1682

x 3296 3200 2858 3590 3242 3170 3302 2984 3458
6AL

y 2366 1334 1970 1844 1844 2168 1592 1916 1850

x 3260 3164 2846 3590 3230 3140 3290 2966 3470
6AR

y 2462 1424 2060 1928 1946 2264 1676 2006 1946

x 3024 2863 2528 3284 2852 2840 2900 2660 3116
6BL

y 2693 1533 2240 2030 2102 2414 1808 2174 2048

x 2989 2818 2492 3242 2816 2810 2864 2630 3068
6BR

y 2683 1508 2222 1994 2072 2396 1760 2126 2024
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Table 1.25 LEGS stereo data: coordinates of the nine ONH anatomical landmarks – II.

Landmark Id I S N T V IM SM NM TM

x 2838 2843 2313 3284 2818 2894 2909 2418 3139
7AL

y 2658 1308 1953 1998 1948 2413 1493 1908 1998

x 2833 2853 2348 3314 2838 2914 2919 2408 3189
7AR

y 2543 1203 1853 1908 1848 2318 1408 1798 1893

x 2763 2743 2228 3269 2733 2753 2813 2328 3069
7BL

y 1203 2568 1848 1948 1863 2378 1373 1818 1928

x 2828 2813 2293 3334 2813 2838 2894 2378 3139
7BR

y 1198 2568 1853 1933 1838 2373 1378 1808 1908

x 3050 3080 2468 3518 3002 3014 3128 2636 3320
8AL

y 2546 1052 1724 1802 1778 2342 1310 1640 1766

x 2384 2372 1772 2858 2336 2348 2432 1988 2660
8AR

y 2522 1028 1766 1802 1784 2324 1304 1670 1772

x 3176 3374 2720 3734 3236 3176 3410 2900 3524
8BL

y 2498 1082 1700 1826 1766 2288 1328 1592 1754

x 2858 3050 2408 3422 2948 2864 3086 2600 3236
8BR

y 2438 1022 1646 1778 1688 2222 1244 1520 1676

x 3116 3170 2636 3656 3086 3134 3128 2786 3476
9AL

y 2450 1232 1868 1850 1838 1424 2150 1838 1808

x 3128 3146 2636 3644 3116 3152 3158 2774 3464
9AR

y 2432 1220 1874 1844 1838 1424 2150 1820 1766

x 2954 3002 2456 3524 2930 2966 2978 2648 3320
9BL

y 2420 1154 1820 1808 1784 2192 1316 1838 1718

x 2960 3002 2450 3500 2978 3008 3002 2672 3350
9BR

y 2384 1148 1772 1796 1754 2180 1316 1820 1712

x 3134 3200 2726 3572 3158 3080 3176 2870 3380
10AL

y 2444 1346 1946 1946 1850 2174 1478 1964 1928

x 3050 3110 2654 3488 3104 3002 3098 2792 3314
10AR

y 2378 1280 1874 1892 1778 2090 1412 1904 1862

x 3170 3248 2780 3602 3146 3110 3212 2912 3416
10BL

y 2288 1220 1766 1790 1682 1988 1346 1790 1766

x 3080 3146 2690 3506 3074 3026 3104 2816 3320
C10BR

y 2276 1196 1778 1778 1688 1970 1328 1796 1754

x 3170 3050 2678 3560 3098 3170 3254 2834 3404
11AL

y 2258 1160 1730 1616 1724 1970 1484 1748 1694

x 3152 3044 2702 3566 3098 3146 3248 2864 3416
11AR

y 2216 1106 1700 1550 170 1922 1430 1706 1634

x 3218 3110 2672 3524 3080 3206 3206 2810 3416
11BL

y 2270 1196 1820 1598 1802 2036 1520 1820 1682

x 3128 3026 2594 3446 3020 3110 3122 2726 3332
11BR

y 2270 1208 1838 1604 1796 2012 1496 1838 1682

x 3170 3050 2678 3560 3098 3170 3254 2834 3404
12AL

y 2258 1160 1730 1616 1724 1970 1484 1748 1694

x 3152 3044 2702 3566 3098 3146 3248 2864 3416
12AR

y 2216 1106 1700 1550 170 1922 1430 1706 1634

x 3218 3110 2672 3524 3080 3206 3206 2810 3416
12BL

y 2270 1196 1820 1598 1802 2036 1520 1820 1682

x 3128 3026 2594 3446 3020 3110 3122 2726 3332
12BR

y 2270 1208 1838 1604 1796 2012 1496 1838 1682
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Table 1.26 LEGS stereo data: coordinates of the nine ONH anatomical landmarks –

III.

Landmark Id I S N T V IM SM NM TM

x 3171 3189 2693 3566 3134 3180 3257 2802 3398
13AL

y 2248 1152 1753 1780 1734 1989 1493 1757 1689

x 3148 3175 2698 3566 3143 3161 3248 2816 3402
13AR

y 2207 1098 1693 1725 1693 1930 1434 1703 1621

x 3224 3122 2672 3530 3146 3194 3194 2788 3390
13BL

y 2282 1220 1820 1766 1772 1988 1478 1823 1685

x 3134 3038 2588 3452 3062 3092 3122 2716 3275
13BR

y 2270 1208 1838 1604 1796 2012 1496 1838 1682

x 3002 2948 2354 3500 2876 2858 2834 2582 3218
14AL

y 2306 794 1412 1406 1466 1808 944 1472 1430

x 3122 3044 2474 3614 3014 2984 2930 2702 3320
14AR

y 2288 770 1382 1376 1460 1808 920 1454 1400

x 2894 2708 2210 3350 2708 2792 2600 2408 3062
14BL

y 2546 1076 1760 1580 1736 2048 1226 1766 1676

x 3038 2870 2366 3506 2870 2942 2750 2528 3188
14BR

y 2564 1058 1790 1604 1742 2042 1238 1784 1694

x 2774 2714 2282 3218 2726 2714 2702 2420 3014
15AL

y 2288 1130 1862 1742 1706 2168 1364 1814 1730

x 2702 2624 2204 3134 2666 2606 2606 2348 2966
15AR

y 2336 1172 1916 1802 1784 2204 1442 1886 1784

x 2672 2732 2252 3158 2714 2618 2714 2372 2972
15BL

y 2306 1166 1844 1814 1796 2162 1400 1814 1784

x 2714 2768 2294 3188 2762 2660 2744 2402 3038
15BR

y 2294 1130 1808 1796 1772 2138 1394 1802 1778
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2.1 Basic Probability Theory

Mathematics, including Probability Theory, hinges upon bivalent Logics and

its set theoretical derivatives. In Probability Theory one assumes that when per-

forming an experiment with more than one possible outcome, these outcomes

form a set, the sample space, and the probability (chance) of a particular event

(subset of outcomes) to occur, accumulates from probabilities of its disjoint

parts (subevents). A more formal definition is:

DEFINITION 2.1.1. (i) A A is a set of subsets, called events, of a nonempty

set Ω , called sample space, defined by the requirements that

Ω ∈A,

∀E ∈ A⇒ Ec ∈A, (2.1)

∀E1,E2, · · · ∈ A⇒∪∞
k=1Ek ∈ A.

(ii) A measure P is a function P : A→ [0,1] with the following properties

P(∅) = 0. (2.2)

P(∪∞
k=1Ek) =

∞
∑
k=1

P(Ek),∀E1,E2, · · · ∈ A. (2.3)

assuming the events E1,E2, . . . are pairwise disjoint (mutually exclusive), and

the triple (Ω ,A,P) is called a measure space. If in addition

P(Ω ) = 1, (2.4)

P is said to be a probability measure.

(iii) Let C be a collection of subsets of Ω . The σ -field generated by C, denoted

by σ{C}, is the smallest σ -field containing C.

In turn, the σ -field σ{C} is the intersection of all σ -fields containing C.

Hence a σ−field is closed under complementation, and under operations of

finite or countable union or intersection.

Here are some further definitions and properties related to probability mea-

sures. Let E1,E2, · · · ∈ A and E1 ⊂ E2 ⊂ . . . . Define E = ∪∞
k=1Ek = limk→∞ Ek;

also write Ek ↑ E . We have that P is continuous from below, meaning that

if Ek ↑ E, then P(Ek) ↑ P(E).

Similarly if E1 ⊃ E2 ⊃ . . . define E = ∩∞
k=1Ek = limk→∞ Ek and write Ek ↓ E .

We have

if Ek ↓ E, then P(Ek) ↓ P(E),
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which expresses the continuity from above. The triple (Ω ,A,P) is a proba-

bility space. A probability measure is σ - subadditive, meaning that

P(∪∞
k=1Ek) ≤ Σ∞

k=1P(Ek),

DEFINITION 2.1.2. The events, elements of an indexed set {E j ∈A} j∈J, are

said to be independent if for any finite set of indices j1, . . . , ja,

P(

a⋂

r=1

E jr ) =
a

∏
r=1

P(E jr ). (2.5)

The notation for the events {E j ∈ A} j∈J, being independent is ⊔ j∈JE j

The notion of independence of events should not be confused with the

events being disjoint. For example given the events E and F if E ∩F = ∅ then

E ⊔F only one of them has probability zero.

This idea leads at once to the notion of the conditional probability of an

event E ∈ A, given an event F ∈ A with positive probability

P(E|F) =
P(E ∩F)

P(F)
, provided thatP(F) > 0. (2.6)

Fixing F , we can compute P(E|F) for each E ∈ A. This means that we have a

set-function E 7→ P(E|F),E ∈ A, or P(•|F) : A→ [0,1]. It is an easy exercise

to verify that this set-function has all the properties of a probability measure.

ThereforeP(•|F) is called the conditional probability measure or distribution,

given F .

To define the fundamental notion of random vector we need to equip the

Euclidean space Rm with a suitable σ -field of , so that certain events defined

in terms of inequalities, have a probability to occur. Consider the classes

Om = {all open subsets of Rm},

Rm = {φ , and all half-open “rectangular boxes” (a1,b1]×·· ·× (am,bm],

−∞< a j < b j <∞, j = 1, . . . , p},
Qm = {all closed “quadrants” Q(x1, . . . ,xm) (2.7)

with a quadrant Q(x),x = (x1, . . . ,xm) ∈ Rm given by

Q(x) = (−∞,x1]×·· ·× (−∞,xm]. (2.8)

One can show that these collections generate the same σ -field Bm of Borel sets

in Rm, that is

Bm = σ (Om) = σ (Rm) = σ (Qm). (2.9)

This σ -field is very big, although subsets of Rm can be constructed that are not
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in Bm. Here we have constructed Bm directly. It is also possible to obtain Bm

from B1. In fact we have

Bm = σ{B1 ×·· ·×Bm : B j ∈ B1, j = 1, . . . , p}.

An important example of a measure is the Lebesgue measure λ m, which

is the unique measure on (Rm,Bm) that assigns the Euclidean volume

λ m((a1,b1]×·· ·× (am,bm])) = (b1−a1)×·· ·× (bm−am), to rectangular boxes

in Rm.
A second type of measure is the counting measure. Let D = {x1,x2, . . . }́ ⊂

Rm be a countable set, and define the set-function

νD(B) = Σ∞
k=11B(xk),B ∈ Bm.

It is easy to see that νD is a measure, so that (Rm,Bm,νD) is a measure space.

The measure νD is called counting measure with respect to D. It should be

noted that νD can actually be defined on the σ -field of all subsets of Rm and

νD(B) equals the number of points from D contained in B.

2.2 Integration on Euclidean Spaces

This section is derived in part from a LaTeX file of class notes in Mathematical

Statistics, kindly provided in 2005 by Frits Ruymgaart [297].

A function f : Rm → R = [−∞,∞] is called (Bm,B)-measurable (or,

briefly, Borel measurable) if

f−1({±∞}) ∈ Bm, f−1(B) ∈ Bm ∀B ∈ B.

A mapping f : Rm → R
k

is a (Bm,Bk)-measurable function if each of its k

components is measurable as defined above.

PROPOSITION 2.2.1. The class of all measurable functions is closed under

the algebraic operations of addition, multiplication, and division, under com-

position, under countable infima and suprema, and under limits. A continuous

function is measurable.

A useful and simple class of measurable functions is the class S of all step-

functions s : Rm →R,

s(x) = Σn
k=1ck1Bk

(x),x ∈ Rm, (2.10)

where n ∈ N,ck ∈ R, and Bk ∈ Bm. Obviously the representation of a step-

function is not unique. The results below, however, are independent of the par-

ticular representation used.

For measurable f define

f + = f ∨0, f− = −( f ∧0).
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Clearly f +, f− are nonnegative and measurable (see 1. of this subsection). Note

that

f = f + − f−, | f | = f + + f−.

This decomposition allows us to develop most of integration theory for non-

negative functions.

PROPOSITION 2.2.2. Let f be a nonnegative measurable function, and, for

k = 1, . . . ,n2n, let us set

Bn,k = {x ∈Rm : (k− 1)2−n < f (x) ≤ k 2−n}, (2.11)

Bn = {x ∈ Rm : f (x) > n}, (2.12)

fn(x) = Σn2n

k=1

k− 1

2n
1Bn,k

(x) + n1Bn(x),x ∈ Rm. (2.13)

Then

fn(x) ↑ f (x), asn →∞,x ∈ Rm,

thus f can be approximated by step-functions.

Note that these step-functions in the approximation above are obtained by

partitioning the range (which is the real line and therefore easy to explicitly

partition) rather than the domain (Rm). This idea is particularly useful for real-

valued functions defined on abstract sets, and is a distinction from Riemann

integral.

Let s∈S be a nonnegative step-function, i.e. assume s(x) = Σn
k=1ck1Bk

(x),x∈
Rm, with 0 ≤ ck <∞ and Bk ∈ Bm for all k. For such a function define the in-

tegral with respect to the measure M by

0 ≤
∫

Rm
s (x)dM(x) =

∫

Rm
sd M =

∫
sd M = Σn

k=1ck M (Bk) ≤∞. (2.14)

For arbitrary nonnegative measurable f we define the integral with respect to

the measure M to be

0 ≤
∫

Rm
f d M = sup

{∫

Rm
sd M : s ∈ S,0 ≤ s ≤ f

}
≤∞.

The properties

0 ≤ f ≤ g ⇒ 0 ≤
∫

f d M ≤
∫

gd M,

0 ≤ fn ↑ f ⇒
∫

fn d M ↑
∫

f d M,n →∞,

are almost immediate ( f ,g, and f1, f2, . . . measurable). The first expresses the
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monotonicity of the integral, and the second is called the monotone conver-

gence theorem (see Billingsley (1995, Thm16.2) [48]). A property is true M-

almost everywhere (a. e.) if it is true on the complement of a set G, with

M(G) = 0. Assuming that f ≥ 0 we also have

∫
f d M <∞⇒ f <∞,M− a.e.,

∫
f d M = 0 ⇒ f = 0,M− a.e..

Let f ≥ 0 and g≥ 0 be measurable. We have
∫

(c f +g)d M = c
∫

f d M +
∫

gd M,
They express the linearity of the integral (on the cone of nonnegative measur-

able functions).

Let f ≥ 0 be measurable and assume M is a measure on (Rm,Bm). Then

the set function

B 7→ ν(B) =

∫

B
f d M,B ∈ Bm,

is a measure on Bm.

Let us now turn to integration of arbitrary measurable functions. If∫
f±d M < ∞, then f is called M-integrable function, and its integral is de-

fined as ∫
f d M =

∫
f +d M−

∫
f−d M. (2.15)

Note that the integral is well-defined. Let LM denote the class of all M-

integrable functions. We have

f ,g ∈ LM ⇒
{

a f + bg ∈ LM,∫
(a f + bg)d M = a

∫
f d M + b

∫
gd M,

for all a,b ∈ R. Hence

PROPOSITION 2.2.3. LM is a linear space and the integral acts as a linear

functional on that space.

A function on Rm is Lebesgue integrable if it is λ m-integrable. Let Q =

[a1,b1]× ·· · × [am,bm] be a compact hyper-rectangle and f : Rm → R such

that f = 0 on Qc and continuous on Q. Then the Lebesgue integral over Q

equals the Riemann integral:

∫

Q
f dλ m =

∫
. . .

∫

Q
f (x1, . . . ,xm)d x1 . . .d xm.

A measurable f is in LνD
if and only if Σ∞

k=1| f (xk)| < ∞. For such an f the

integral with respect to the counting measure νD equals

∫
f d νD = Σ∞

k=1 f (xk). (2.16)
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Any Riemann integrable function is Lebesgue integrable; the converse is false.

To conclude this section, recall that the product measure Q1 ⊗Q2 of two mea-

sures Q1,Q2 is defined on pairs of Borel sets in corresponding Euclidean spaces

by

Q1 ⊗Q2(B1 ×B2) = Q1(B1)Q2(B2) (2.17)

Suppose that f : Rm → [0,∞] is Borel measurable. Then we also have (x ∈
Rm,y ∈ Rq, (x,y) ∈Rm)

f (•,y) is Borel measurable on Rm ∀y ∈ Rq

f (x,•) is Borel measurable on Rq ∀x ∈ Rm,
∫

Rq
f (•,y)d Q (y) is Borel measurable on Rm,

∫

Rm
f (x,•)d M (x) is Borel measurable on Rq.

We can now formulate the main result, viz.
∫

Rm
f (x,y)d(M⊗Q)(x,y) =

=

∫

Rm

{∫

Rq
f (x,y)d Q (y)

}
d M(x) =

=

∫

Rq

{∫

Rm
f (x,y)dM(x)

}
dQ(y),

which is called Fubini’s theorem.

By way of an example let us apply Fubini’s theorem in the situation where

p = q = 1,M = νD with D = {x1,x2, . . .}, and Q = λ . Then we obtain

∫

R2
f (x,y)d(νD ⊗λ )(x,y) =

= Σ∞
k=1

∫

R
f (xk,y)dλ (y) =

∫

R
{Σ∞

k=1 f (xk,y)}dλ (y),

apparently an instance where summation and integration can be interchanged.

2.3 Random Vectors

DEFINITION 2.3.1. Assume (Ω ,A,P) is a probability space. A random vec-

tor (r. vec.) is a mapping X : Ω → Rm which is (A,Bm) - measurable, which

means that

X−1(B) = {ω : X(ω) ∈ B} ∈ A,∀B ∈ Bm.

If p = 1,X is said to be a random variable (r.v.).
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The simplest natural example of a family of r. vec.’s is the family of multi-

nomial trials (Johnson and Wichern (2007)[170]), the natural multivariate ex-

tension of the Bernoulli trials. A multinomial trial with g possible outcomes,

g ≥ 2 is a r. vec. X in Rg, with P(X = ei) = πi > 0,∀i = 1, . . . ,g, where e1, . . . ,eg

is the standard basis of Rg and π1 + · · ·+πg = 1; we will write down X ∼ Mg(π),
where π = (π1 . . .πg)T . A multinomial trial is an example of discrete r.vec. X

on Rg, that is a r.vec. X for which there is a discrete subset D ⊂ Rg, such that

P(X ∈ D) = 1. The probability mass function(p.m.f.) of a discrete r. vec. X is

the function

fX (x) = P(X = x). (2.18)

In the case of a multinomial trial X ∼Mg(π) considered above, D = {e1, . . . ,eg}
and if x ∈ D, fX (x) = fX ((x1 . . .xg)T ) = πx1

1 . . .π
xg
g .

The joint cumulative distribution function (c.d.f.) of X in definition 2.3.1 is

the multivariable function FX : Rm → [0,1] given by

FX (x) = P(X−1(Q(x1, . . . ,xm))), (2.19)

where Q(x1, . . . ,xm) ∈ Qm is the closed lower quadrant Q(x1, . . . ,xm) =

(−∞,x1]×·· ·× (−∞,xm].
The r. vec. X induces a probability measure Q on (Rm,Bm) according to

Q(B) = PX (B) = P(X−1(B)),B ∈ Bm. (2.20)

Naturally Q = PX is called the induced or image probability measure (by, re-

spectively under X , on the numerical space Rm).

The are defined by

PX j (B) = Pj(B) = P{X j ∈ B},B ∈ B,

with the given by

Fj(x
j) = P{X j ≤ x j} = Pj((−∞,x j]).

Now let ϕ : Rm → R be Borel measurable function. In this section we will

assume that for any such function, ϕ ,
∫ |ϕ |dP <∞.

In order to define the mean vector and covariance matrix of Q = PX for

an arbitrary r.v. X , we should consider an integrable with respect to (w.r.t.) Q.

That is ϕ : Rm → R is a measurable function such that
∫
R |ϕ |dQ <∞. LQ is

the space of all integrable functions w.r.t. Q.
Then we define the expected value of ϕ(X1, . . . ,Xm) as

E(ϕ(X1, . . . ,Xm)) =

∫

Rm
ϕ(x1, . . . ,xm)dQ(x1, . . . ,xm) =

∫
ϕdQ. (2.21)

In particular we may again obtain the means and variances of the marginals

E(X j) = µ j,Var(X j) = σ2
j ,
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and their covariances

Cov(X i,X j) = E(X i− µ i)(X j − µ j) = σi j,

by choosing ϕ(x1, . . . ,xm) = (xi − µ i)(x j − µ j).
More generally, the absolute moment of order k ∈ N is defined as E(‖X‖k).

It follows from standard inequalities that

E(‖X‖m) <∞⇒ E(‖X‖k) <∞, for all k ≤ m,

k,m ∈N.

Moments are important parameters of probability distributions. The fa-

mous moment problem refers to the question whether a probability dis-

tribution Q = PX is uniquely determined by the set of all its moments

E((X1)k1 . . . (Xm)km),k1 + · · · + km = k,k ∈ N, assuming these moments exist.

Under some additional assumptions this question can be answered in the af-

firmative.

The characteristic function of a r. vec. X on Rm is the complex function

defined on a neighborhood of 0 ∈ Rm given by

ΦX (t) = E(exp(itT X)). (2.22)

The Euclidean Fréchet function associated with a r. vec. X is

FX (y) = E(‖y−X‖2), (2.23)

and, if the Euclidean Fréchet function is finite, its minimizer is the mean vector

E(X) = µ , whose components are the means of the marginals X j, j = 1, . . . , p.
Similarly, one may define the median set as the set of all vectors, minimizers

of the function F1 given by

F1(y) = E(‖y−X‖). (2.24)

Unlike the mean vector, the median set may have more than one vector.

The mean vector is linear:

E(aϕ(X1, . . . ,Xm) + bψ(X1, . . . ,Xm)) =

= aEϕ(X1, . . . ,Xm) + bEψ(X1, . . . ,Xm),

for all a,b ∈ R. In particular we have

Cov(X i,X j) = E(X iX j)−E(X i) ·E(X j).

The matrix consisting of the covariances σi j , i, j = 1, . . . , p is called the covari-

ance matrix Σ of the random vector X = (X1, . . . ,Xm)T . Here the “T ” opera-

tion stands for transpose. Adhering to the convention that the expectation of a

  



54 BASIC NONPARAMETRIC MULTIVARIATE INFERENCE

matrix of r. v.’s is simply the matrix of expectations, and the mean vector is

µ = (µ1 . . .µm)T , we can conveniently represent the covariance matrix as

Σ = Cov(X) = E(X − µ)(X − µ)T . (2.25)

If C is a matrix, and X is a r.vec., then E(CX) = CE(X) and Cov(CX) =

CCov(X)CT , thus covariance matrix is symmetric and semi-definite positive

corresponding to a symmetric operator on Rm, called the covariance operator.

The total variance of X is given by

tvar(X) = E(X − µ)T (X − µ) = trΣ = σ2
1 + · · ·+ σ2

m (2.26)

and the of X is the determinant |Σ | of the covariance matrix of X .
X has a joint probability density function (p.d.f.) fX with respect to the

measure M if the c.d.f. FX can be expressed as the integral

FX (x) =

∫

Q(x)
fX dM, (2.27)

where Q(x) is the quadrant given in equation (2.8). In particular, X has a dis-

crete probability measure with support D if and only if X has a joint probability

distribution function (p.d.f.) w.r.t. the counting measure νD, and in this case the

p.m.f. of X is the p.d.f. w.r.t. νD.
The random vector X in Rm has an absolutely continuous distribution

if X has a joint probability density function (p.d.f.) w.r.t. the Lebesgue mea-

sure λ m, and in this case the mean vector and covariance matrix of X can be

expressed in terms of Lebesgue integrals on Rm.

2.4 Parameters and Sampling Distributions of their Estimators

In Nonparametric Statistics, a parameter is a vector valued functional θ : C →
Rm on a subset C of the space P(p) of all probability measures on Rm. We

will often identify the parameter θ with its value θ (Q) associated with the

unknown probability measure Q.

DEFINITION 2.4.1. Assume X1, . . . ,Xn are random vectors, possibly of dif-

ferent dimensions, and let X = (XT
1 . . .XT

n )T . X1, . . . ,Xn are said to be indepen-

dent if the probability measure PX is the product of the probability measures

PX j
, j = 1, . . . ,n.

We will say that X1, . . . ,Xn are independent, identically distributed

r.vec’s(i.i.d.r.vec.’s) from a population (probability measure) Q on Rm, if

X1, . . . ,Xn are independent and PXi
= Q,∀i = 1, . . . ,n. A random sample of

size n from a probability measure Q is a set of values x1 = X1(ω1), . . . ,xn =

Xn(ωn), where X1, . . . ,Xn are i.i.d.r.vec’s, and ωi ∈ Ω . In Multivariate Ana-

lysis, one often has to estimate a parameter θ (Q) based on a random sam-

ple. To this goal, one considers an estimator Θ̂n = Θ̂n(X1, . . . ,Xn), where
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X1, . . . ,Xn are i.i.d.r.vec.’s from Q, and Θ̂n : (Rm)n →Rm is a function, such that

Θ̂n(xτ(1), . . . ,xτ(n)) = Θ̂n(x1, . . . ,xn), for all τ in the permutation group Σn of the

indices {1, . . . ,n}. The symmetry is needed, as a sample x1, . . . ,xn from a prob-

ability measure Q can be regarded as a list values of n r.vec.s X1, . . . ,Xn from

Q, which are usually assumed to be independent and to provide and equally

weighted information. A standard example of estimator of θ (Q), is Θ̂n = θ (Q̂n),
value of the parameter on the empirical distribution Q̂n which is given by

Q̂n(xi) =
1

n
, i = 1, . . .n. (2.28)

The goodness of an estimator may be based on its asymptotic properties,

since the larger the sample, it is assumed the closer Θ̂n(x1, . . . ,xn) to the pa-

rameter θ (Q). The distribution of the estimator Θ̂n(X1, . . . ,Xn), is the sampling

distribution of Θ̂ , which is key to statistical inference for the parameter θ . As a

basic example, given a random sample x1, . . . ,xn of multivariate observations,

and its associated data matrix:

x = (x1 . . .xn)T , (2.29)

one may estimate the mean vector µ a distribution Q, by the mean of the

empirical distribution:

µ̂ =
n

∑
i=1

Q̂n(xi)xi =
1

n

n

∑
i=1

xi = x̄, (2.30)

called the sample mean vector. For example, given a multinomial trial X ∼
Mg(π), its mean vector is µ = E(X) = π = (π1 . . .πg)T . To estimate µ , we

consider the estimator X̄ in equation (2.30) based on i.i.d.r.vec.’s X1, . . . ,Xn

from this multinomial trial. Note that X1 + · · · + Xn has a multinomial distri-

bution, that is the distribution of a random vector on Rg counting the num-

ber of outcomes in each of the g cells in n independent multinomial trials.

That is S(X) = X1 + · · ·+Xg)T has a multinomial Mg(n,π),π = (π1 . . .πg)T ,πi >
0,π1 + · · ·+ πg = 1. Then its joint p.d.f. with respect to the counting measure is

fS(X)(x) =
( n

x1...xg

)
πx1

1 . . .π
xg
g . (2.31)

Since fX̄ (y) = P(S(X) = ny), we obtain for the sampling distribution of X̄ , the

following p.d.f. with respect to the counting measure:

fX̄ (y) =
( n

ny1...nyg

)
π

ny1
1 . . .π

nyg
g . (2.32)

Define the vector 1n as the n×1 column matrix with all entries equal to 1, then

the sample mean vector can be expressed in terms of the data matrix as

x =
1

n
xT1n. (2.33)
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The matrix xT will be called the sampling matrix.

The sample covariance matrix estimate estimate sn is

sn =
1

n
xTHnx, (2.34)

where Hn is the centering matrix

Hn = In −
1

n
1n1T

n . (2.35)

Note that since Hn1n = 0, it follows that rkHn = n−1. Also note that the sample

covariance matrix estimate is the covariance matrix of the empirical distribu-

tion Q̂n.
Since given two matrices A,B for which the product AB is defined, rkAB ≤
min(rkA,rkB) and, since rkx ≤ p,rkHn = n− 1, from (2.34) we have

rk sn ≤ min(p,n− 1). (2.36)

2.5 Consistency and Asymptotic Distributions of Estimators

For corresponding univariate results in this section, see class notes by R. N.

Bhattacharya (1997) [31] or Bhattacharya et al. (2015) [40]. A minimal re-

quirement of any reasonable estimator Θ̂n = Θ̂n(X1, . . . ,Xn) of a population pa-

rameter θ : C →Rm is that of consistency.

DEFINITION 2.5.1. A consistent estimator Θ̂n (n ≥ 1) of a parameter θ :

C →Rm, is an estimator Θ̂n that converges in probability to θ : Θ̂n
P−→ θ , i.e.,

P(||Θ̂n −θ ||> ε) −→ 0 as n →∞, for every ε > 0. (2.37)

More generally, a sequence of random vectors Yn converges in probability

to a random vector Y , Yn
P−→ Y , if

P(||Yn −Y ||> ε) −→ 0 as n →∞, for every ε > 0. (2.38)

A common method for proving consistency is the following.

PROPOSITION 2.5.1. (a) If, for some q > 0,E‖Θ̂n − θ‖q → 0, then Θ̂n

is a consistent estimator of θ . (b) If Θ̂n is an unbiased estimator of θ and

tvar(Θ̂n) → 0, then Θ̂n is a consistent estimator of θ .

Proof. (a) By Chebyshev’s inequality, for every ε > 0,

P(‖Θ̂n −θ‖ ≥ ε) ≤ E‖Θ̂n −θ‖q

εq
−→ 0 as n →∞. (2.39)
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(b) is a special case of (a) with q = 2, and

tvar(Θ̂n) = E‖Θ̂n −θ‖2.

Note: Let X be a random vector (e.g., X = Θ̂n − θ ) such that E‖X‖q <∞
for some q > 0, then writing E(Y : A) for the expectation of Y on the set A, i.e.,

E(Y : A) =
∫

A YdP,

E‖X‖q = E
[
‖X‖q : ‖X‖< ε

]
+ E
[
‖X‖q : ‖X‖ ≥ ε

]

≥ E
[
‖X‖q : ‖X‖ ≥ ε

]
≥ εqP(‖X‖ ≥ ε), (2.40)

which gives

P(‖X‖ ≥ ε) ≤ E‖X‖q

εq
. (2.41)

PROPOSITION 2.5.2. Suppose Un and Vn are two sequences of random vec-

tors such that Un
P−→ a,Vn

P−→ b. If g(u,v) is a function (of two vector valued

variables) which is continuous at (a,b), then g(Un,Vn)
P−→ g(a,b).

Proof. Fix ε > 0. There exists δ = δ (ε) such that if ‖u− a‖ ≤ δ and ‖v−
b‖ ≤ δ then ‖g(u,v)− g(a,b)‖≤ ε . Now

P(‖g(Un,Vn)− g(a,b)‖> ε) =

= P({‖Un − a‖> δ or ‖Vn − b‖> δ}∩{‖g(Un,Vn)− g(a,b)‖> ε})

+P({‖Un − a‖ ≤ δ and ‖Vn − b‖ ≤ δ}∩{‖g(Un,Vn)− g(a,b)‖> ε})

≤ P(‖Un − a‖> δ ) +P(‖Vn− b‖> δ ) → 0. (2.42)

Note that the set {‖Un − a‖ ≤ δ ,‖Vn − b‖ ≤ δ}∩{g(Un,Vn)− g(a,b)|> ε} is

empty, and has therefore zero probability—a fact used for the least inequality.

REMARK 2.5.1. Proposition 2.5.2 extends to any fixed number, say k, of

sequences U
(i)
n

P−→ ai,1 ≤ i ≤ k, and a function g(u1,u2, . . . ,uk) of k vari-

ables which is continuous at (a1, . . . ,ak), yielding: g(U
(1)
n ,U (2)

n , . . . ,U (k)
n )

P−→
g(a1,a2, . . . ,ak). The proof is entirely analogous. (Exercise 7.)

COROLLARY 2.5.1. If Un
P−→ a, Vn

P−→ b then (i) Un + Vn
P−→ a + b,

(ii) UT
n Vn

P−→ aT b, and (iii) assuming ‖b‖ 6= 0, Un/‖Vn‖ P−→ a/‖b‖.

Proof. Use Proposition 2.5.2 with (i) g(u,v) = u + v, (ii) g(u,v) = uT v and

(iii) g(u,v) = u/‖v‖.

2.5.1 Consistency of Sample Moments

EXAMPLE 2.5.1. consistency of the sample mean. Let X1, . . . ,Xn be indepen-

dent observations from an unknown distribution on Rm of which we assume a

finite total variance σ2. Since EX = µ , and var(X) = σ2/n → 0 as n →∞, it

follows that X is a consistent estimator of µ .
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EXAMPLE 2.5.2. (consistency of the sample moments). Suppose a random

sample X1, . . . , Xn is taken from a univariate distribution with a finite k-th

moment, for some k ≥ 1 (i.e., E|X j|k <∞). Then it can be shown by the law of

large numbers (LLN) that the sample moments m̂r are consistent estimators of

population moments mr for r = 1, . . . ,k,

m̂r =
1

n

n

∑
j=1

X r
j

a.s.−→ E(X r) = mr (the r-th ‘population moment’)

r = 1,2, . . . ,k. (2.43)

Note that m̂r is an unbiased estimator of mr (r = 1,2, . . . ,k). Hence if EX2k ≡
m2k < ∞, then it follows from Proposition 2.5.1 that m̂r is a consistent esti-

mator of mr (r = 1,2, . . . ,k). Next consider the centered population moments

µr = E(X −m1)r, where m1 = µ is the mean of the distribution (population).

A natural estimator of µr is the (corresponding) centered r-th sample moment

µ̂r = 1
n ∑n

j=1(X j −X)r. Note that by the binomial expansion,

µ̂r =
1

n

n

∑
j=1

{X r
j −
(

r

1

)
X r−1

j X + · · ·+ (−1)t

(
r

t

)
X r−t

j X
t
+

· · ·+ (−1)rX
r}

=
1

n

n

∑
j=1

r

∑
t=0

(−1)t

(
r

t

)
X r−t

j X
t

=
r

∑
t=0

(−1)t

(
r

t

)
X

t
m̂r−t ·

=
r

∑
t=0

(−1)t

(
r

t

)
m̂r−tm̂

t
1. (2.44)

It follows that the last sum converges in probability to

r

∑
t=0

(−1)t

(
r

t

)
mr−tm

t
1 = E(X −m1)r, (2.45)

provided m̂r′
P→ mr′ as n → ∞ (r′ = 1, . . . ,r). The latter (namely, (2.45)) is

assured for all r′ = 1, . . . ,r if EX2r <∞ (by Proposition 2.5.1).

REMARK 2.5.2. Example 2.5.2 extends to the case of a random sample X1,

. . . , Xn from a multivariate distribution on Rm with a finite k-th moment, for

some k ≥ 1 (i.e., E||X j||k <∞), since one can show by the LLN that the sam-

ple moments m̂r1...rm ,r1 + · · · + rm = r are consistent estimators of population

moments mr1...rm ,r1 + · · ·+ rm = r for r = 1, . . . ,k.

PROPOSITION 2.5.3. Assume X1, . . . ,Xn are i.i.d.r.vec.’s from a multivariate

distribution with finite mean µ and covariance matrix Σ . The sample covari-

ance matrix estimator Sn in (2.34), that is also given by

Sn =
1

n

n

∑
j=1

(X j −X)(X j −X)T (2.46)
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is a consistent estimator of Σ .

The proof is left as an exercise 8.

2.6 The Multivariate Normal Distribution

REMARK 2.6.1. The multivariate normal distribution play a central role

in Large Sample Theory, the key to Nonparametric Data Analysis (see Bhat-

tacharya and Rao (1976) [46] or Tsybakov (2009) [323]).

1. A r.vec. X : Ω → Rm has a multivariate normal distribution if ∀a ∈ Rm

the r.v. aT X has a normal distribution.

Assume X is as in §1 and E(X) = µ ,Cov(X) = Σ , ( notation X−̃Nm(µ ,Σ ) ).

The characteristic function of X is ϕX (t) = eitT µ− 1
2 tT Σt .

If X−̃Nm(µ ,Σ ), where Σ is positive definite then the joint p.d.f. of X is given

φX (x) = (2π)−p/2|Σ |−1/2exp(−1

2
(x− µ)T Σ−1(x− µ)) (2.47)

If Z = (Z1, ...,Zm)−̃Nm(0, Im), then the marginals Z1, . . . ,Zm are independent.

X−̃Nm(µ ,Σ ), where Σ is positive definite then (X − µ)T Σ−1(X − µ) has a χ2
m

distribution.

If X = (X1...Xm)T ∼ Nm(µ ,Σ ), then the joint characteristic function of X is

given by

ΦX (t) = eitT µ− 1
2 tT Σt (2.48)

Assume X−̃Nm(µ ,Σ ), and L1,L2 are linear combinations in the components

X1, ...,Xm of X , that is L1 = CT
1 X ,L2 = CT

2 X . Then L1,L2 are independent (

notation : L1 ⊔L2 ) if CT
1 ΣC2 = 0.

It follows that if X1, . . . ,Xn are i.i.d.r.vec.’c from a multivariate normal dis-

tribution, then X̄n ⊔Sn.
Consider m i.i.d.r.vec.’s (Y1, ...,Ym) from Nm(0,Σ ), and the associated sam-

pling matrix Y. Let M = YY T The probability distribution of M on the set of

p× p symmetric matrices is called the Wishart distribution with scale matrix

Σ and m degrees of freedom. Notation M ∼Wm(·|Σ ).

PROPOSITION 2.6.1. Assume M ∼ Wm(·|Σ ). Then (i) E(M) = mΣ . (ii) If B

is a p× q matrix, then BT MB ∼Wm(·|BT ΣB). (iii) If Σ > 0,a is a fixed vector,

aT a> 0, then aT Ma
aT Σa

∼ χ2
m. (iv) M1 ∼Wm1

(·|Σ ),M2 ∼Wm2
(·|Σ ) are independent,

then M1 + M2 ∼Wm1+m2
(·|Σ ).

One reference for the following result is Mardia et al. (1972) [231].

THEOREM 2.6.1. (Cochran’s theorem) Assume C is a symmetric matrix and

X is a sampling matrix from Nm(0,Σ ). Then (i) XCXT can be written as a

weighted sum of rk(C) independent W1(·|Σ ) distributed random matrices. (ii)

If in addition C is idempotent, then XCXT ∼Wrk(C)(·|Σ ). (iii) nSn = (n−1)Su ∼
Wn−1(·|Σ ).
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2.7 Convergence in Distribution

The main reference for this section is Ferguson (1996) [115]. In this and other

sections of this chapter, we include proofs to insure that the key prerequisites

are mathematically sound.

2.7.1 Convergence in Distribution (Weak Convergence)

The material in this section, including proofs, is from from Ferguson (1996)

[115].

DEFINITION 2.7.1. A sequence of random vectors Yn,n ∈ N, is convergent

in distribution (or in law) to a random vector Y, if the sequence of joint c.d.f.’s

FYn(y) converges to FY (y) at all vectors y where FY is continuous. Notation

Yn →d Y, or Yn →d Y.

The following, including the proofs, is a combination of the Helly-Bray

theorem with the continuity theorem , and is taken straight from Ferguson

(1996) [115].

THEOREM 2.7.1. Assume Xn,n ∈N, is a sequence of random vectors in Rm.
The following are equivalent:

(a) Xn →d X .
(b) E f (Xn) −→ E f (X) =

∫
Rm f dPX as n →∞ for all real-valued continuous

functions f on Rm, with compact support.

(c) Xn converges weakly to X, that is

E f (Xn) −→ E f (X) as n →∞ (2.49)

for all bounded real-valued continuous functions f on Rm.
(d) E f (Xn) −→ E f (X) as n →∞ for all measurable functions f on Rm, such

that X takes values on the set of points of continuity of f with probability 1.
(e) The sequence of characteristic functions of Xn converges to the character-

istic function of X .

Proof of THEOREM 2.7.1. Obviously, (d) ⇒ (c) and (c) ⇒ (b). We will

show (d)
Part(1)−−−−→ (a)

Part(2)−−−−→ (b)
Part(3)−−−−→ (c)

Part(4)−−−−→ (d)

(1) Proof of (d)
Part(1)−−−−→ (a). Let x0 be continuity point of FX . Then FX (x0) =

Eg(X), where g(x) is the indicator function,

g(x) =

{
1 , if x ≤ x0

0 , otherwise.

The continuity set of g contains all points x except those such that x ≤ x0 with

equality for at least one component. Because x0 is a continuity point of FX , we

have FX (x0 +ε1)−FX (x0−ε1)→ 0 as ε → 0, which implies that the continuity

set of g has probability 1 under the distribution of X . Hence, FXn(x0) → FX (x0).
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(2) Proof of (a)
Part(2)−−−−→ (b). Let g be continuous and vanishing outside a com-

pact set, C. Then g is uniformly continuous: For every ε > 0, there exists a

number δ > 0 such that |x− y|< δ implies |g(x)− g(y)|< ε.
Let ε > 0 and find such a δ > 0. Slice C by finite sets of parallel hyper-

planes at a distance at a distance of at most δ/
√

m apart, one set for each

dimension, each hyperplane having probability zero under FX ( only countably

many parallel planes can have positive mass). This cuts Rm into parallelepipeds

of the form (b,c] = {x : b < x ≤ c} = {x : bi < xi ≤ ci, for all i = 1, . . . ,m.} On

any such parallelepipeds |g(x)− g(c)| ≤ ε.
Thus, |g(x) − g̃(x)| ≤ ε for all x, where g̃(x) = ∑

all(b,c]
g(c)I(b,c](x). This is

essentially a finite sum since g vanishes outside a compact set, and it

may be rewritten as a finite sum of the form, g̃(x) = ∑
i

aiI(−∞,xi](x) (see

Ferguson(1996)[115]), with FX continuous at each xi. Thus, Xn
L−→ X implies

that

Eg̃(Xn) = ∑
i

aiFXn(x) → ∑
i

aiFX (x) = Eg̃(X).

Finally,

|Eg(Xn)−Eg(X)| ≤ |Eg(Xn)−Eg̃(Xn)|+ |Eg̃(Xn)−Eg̃(X)|+ |Eg̃(X)−Eg(X)| ≤

≤ 2ε + |Eg̃(Xn)−Eg̃(X)| → 2ε.

Since this is true for all ε > 0,Eg(Xn) → Eg(X).
(3) Proof of (b) ⇒ Part(3)(c)

Let g be continuous, |g(x)|< A or all x, and ε > 0. By Chebysheff’s inequality,

find B such that P{|X | ≥ B}< ε/(2A). Find h continuous so that

h(x) =

{
1 , if |x| ≤ B

0 , if|x| ≥ B + 1
and 0 ≤ h(x) ≤ 1 for all x

Then,

|Eg(Xn)−Eg(X)| ≤
≤ |Eg(Xn)−Eg(Xn)h(Xn)|+ |Eg(Xn)h(X)−Eg(X)h(Xn)|+ |Eg(X)h(X)−Eg(X)|
The middle term converges to 0 because g · h is continuous and vanishes out-

side a compact set. The first term is bounded by ε/2,
|Eg(Xn)−Eg(Xn)h(Xn)| ≤ E|g(Xn)||1− h(Xn)| ≤ AE(1− h(Xn))

= A(1−Eh(Xn)) → A(1−Eh(X)) ≤ ε/2,
and, similarly, the last term is bounded by ε/2. Therefore, |Eg(Xn)−Eg(X)| is

bounded by something that converges to ε.
Since this is true for all ε > 0, lim

n→∞
|Eg(Xn)−Eg(X)| = 0.

(4) To prove (c)
Part(4)−−−−→ (d), we use the following lemma.
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LEMMA 2.7.1. Let g be bounded measurable with P{X ∈ C(g)} = 1. Then,

for every ε > 0 there exist bounded continuous functions f and h such that

f ≤ g ≤ h and E(h(X)− f(X)) < ε.

Proof of lemma. Let fk,hk,k = 1, . . . , be defined as follows :

fk(x) = inf
y

(g(y) + k|x− y|),hk(x) = sup
y

(g(y)− k|x− y|).

Obviously f1(x)≤ ·· · ≤ fk(x)≤ g(x)≤ gk(x) · · · ≤ g1(x), and since that | fk(x′)−
fk(x)| ≤ k|x′− x|, |hk(x′)− hk(x)| ≤ k|x′− x|, the sequences fk,gk,k = 1,2, . . .
are continuous. They are also bounded since g is bounded. Therefore their

limits, f0 = limk→∞ fk,h0 = limk→∞ hk, satisfy the inequalities f0 ≤ g ≤ h0.
At any point x ∈C(g), f0(x) = g(x) = h0(x). Indeed given x ∈C(g),ε > 0, there

is a δ > 0, such that if |y− x| < δ , then |g(y)− g(x)|< ε, and if B is a lower

bound for g, and we select k > g(x)−B
δ , then

f0(x) ≥ fk(x) =

= min( inf
|y−x|<δ

(g(y) + k|x− y|), inf
|y−x|≥δ

(g(y) + k|x− y|))≥

min(g(x)− ε,B + δ (
g(x)−B)

δ
)) = g(x)− ε.

Therefore, for any ε > 0, | f0(x) − g(x)| < ε, and similarly, for any ε >
0, |h0(x)− g(x)| < ε, proving the claim. Given that P{X ∈ C(g)} = 1, it fol-

lows that E f0(X) = Eg(X) = Eh0(X). On the other hand, from the Monotone

Convergence Theorem E fk(X) ր E f0(X),Ehk(X) ց Eh0(X), therefore given

ε > 0, there is a k such that Ehk(X)−Eh0(X) < ε/2,E f0(X)−E fk(X) < ε/2,
thus |Ehk(X)−E fk(X)|< ε, done.

( Proof of (c)
Part(4)−−−−→ (d) from here )

Let g be bounded measurable with P{X ∈ C(g)} = 1, let ε > 0, and find f and

h as in the lemma. Then,

Eg(X)− ε ≤ Ef (X) = lim Ef(Xn) ≤ lim inf Eg(Xn)

≤ lim sup Eg(Xn) ≤ lim Eh(Xn) = Eh(X) ≤ Eg(X)+ε. Let ε → 0, and conclude

Eg(X) = lim Eg(Xn).
Finally, the implication (a) ⇒ (b) or (c) or (d) follows from the other implica-

tions that were proved.

We now show that (a) ⇔ (e), that is Xn →d X ⇔ ϕXn(t) → ϕX (t), for all t ∈Rp.

Proof. (⇒) This follows immediately from Theorem 2.7.1, because exp{
itT X=cos tT X + i sin tT X } is bounded and continuous.

(⇐) Let g be continuous with compact support. Then g is bounded, |g(x)| ≤ B

say, and uniformly continuous. Let ε > 0. Find δ > 0 such that |x− y|< δ ⇒
|g(x)− g(y)|< ε.
To show Eg(Xn) → Eg(X), let Yσ ∼ Nm(0,σ2I) be independent of the Xn and

X . Then
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|Eg(Xn)−Eg(X)| ≤ |Eg(Xn)−Eg(Xn +Yσ )|
+|Eg(Xn +Yσ )−Eg(X +Yσ )|
+|Eg(X +Yσ )−Eg(X)|
The first term is

≤ E{|g(Xn)− g(Xn +Yσ )|I(|Yσ | ≤ δ )}
+E{|g(Xn)− g(Xn +Yσ )|I(|Yσ |) > δ )}

≤ ε + 2BP{|Yσ |> δ} ≤ 2ε

for σ sufficiently small. Similarly, the third term ≤ 2ε.
It remains to show that

Eg(Xn +Yσ ) → Eg(X +Yσ )

The characteristic function of Nm(0,α2I) is

ϕ(t) = [
1√

2πα
]m
∫

eitT z−zT z/(2α2)dz = e−tT tα2/2

Using this with α = 1/σ , and making the change of variables u = x + y for y,

we find

Eg(Xn +Yσ ) = [
1√

2πσ
]m
∫∫

g(x + y)e−yT y/(2σ 2)dydFXn(X)

= [
1√

2πσ
]m
∫

g(u)e−(u−x)T (u−x)/(2σ 2)dFXn(X)du

= [
1√

2πσ
]m
∫

g(u)
∫

[
σ√
2π

]m
∫

eitT (u−x)−σ 2tT t/2dtdFXn(X)du

= [
1

2π
]m
∫

g(u)
∫

eitT u−σ 2tT t/2ϕXn (−t)dtdu

→ [
1

2π
]m
∫

g(u)
∫

eitT u−σ 2tT t/2ϕX (−t)dtdu

using the Lebesque Dominated Convergence Theorem

(|eitT uϕXn(−t)| ≤ 1 and g has compact support). Undoing the previous steps,

we see that this last expression is equal to Eg(X +Yσ ), done.

2.8 Limit Theorems

Most of this section follows from the lecture notes of Bhattacharya (1997) [31].

2.8.1 The Central Limit Theorem

The most important convergence theorem in law is the following theorem, ab-

breviated as CLT.

THEOREM 2.8.1 (Central Limit Theorem). If Yn is a sequence of i.i.d.r.vec.’s

in Rm with common mean vector zero and a finite common covariance matrix

Σ , then

n−
1
2 (Y1 + · · ·+Yn) →d Nm(0,Σ ). (2.50)
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For a proof of the CLT, we consider the sequence Xn =
√

nȲn = n−
1
2 (Y1 +

· · ·+Yn). Note that

ϕXn(t) = E(exp(in−
1
2 tT

n

∑
j=1

Yj)) = (E(exp(in−
1
2 tTY1)))n = (ϕY1

(n−
1
2 t))n (2.51)

Let σ2(t) = E((tT X1)2). From equation (2.51) it follows that

lim
n→∞

ϕXn(t) = exp(−σ2(t)

2
). (2.52)

The right hand side of equation (2.52) is ϕU (1), where U ∼ N (0,σ2(t)).
Finally note that if X ∼Nm(0,Σ ), then tT X ∼ N(0,σ2(t)), and from Theorem

2.7.1 it follows that Xn
L−→ X , done.

We will sometimes use the alternate notation Φ0,Σ for Nm(0,Σ ), and denote

the corresponding joint c.d.f. by Φ0,Σ (x), and, whenever Σ is positive definite,

the joint p.d.f. by

ϕ0,Σ (x) =
1√

(2π)m|Σ |
e−

1
2 xT Σ−1x.

The CLT says that if Σ is positive definite, then

P(n−
1
2 (Y1 + · · ·+Yn) ≤ x) −→ Φ0,Σ (x) =

1√
(2π)m|Σ |

∫
. . .

∫

y≤x
e−

1
2 yT Σ−1ydy

(2.53)

for all x. A useful extension of the multivariate CLT (see Cramer (1946) [76])

is

THEOREM 2.8.2. (Multivariate Lindeberg-Feller-Levy CLT). Let X1,X2, . . .
be independent r. vec.’c in Rm, with the joint c.d.f.’s F1,F2, . . . , such that EXn =

µn and Cov(Xn) = Σn. Assume Σ = limn→∞ 1
n
(∑n

j=1 Σ j) is a positive definite

covariance matrix, and the following Lindeberg condition is satisfied:

∀ε > 0, lim
n→∞

1

n

n

∑
k=1

∫

‖x−µk‖>ε
√

n
‖x− µk‖2dFk(x) = 0.

Then
1√
n

n

∑
i=1

(Xi − µi) →d Nm(0,Σ )

2.8.2 Basic Large Sample Theory

If x ∈ Rm and δ > 0, the ball centered at x of radius δ is

Bx(δ ) = {y ∈Rm,‖y− x‖ ≤ δ}.
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A number of key results in limit theory of statistics are summarized in the

following

THEOREM 2.8.3 (generalized Slutsky theorem). Suppose Un,Vn,Wn (n ≥ 1)

are three sequences of random vectors such that Un
P−→ a, Vn

P−→ b, Wn →d W.

Let h(u,v,w) be a function valued in Rq, which is continuous on a neighbor-

hood Bδ1
(a)×Bδ2

(b)×Rm for some δ1 > 0, δ2 > 0. Then h(Un,Vn,Wn) →d h

(a,b,W ).

Proof. We will first prove that h(Un,Vn,Wn)−h(a,b,Wn)
P−→ 0. The desired

result would follow from this, using the continuity of w → h(a,b,w). Fix ε > 0

and θ > 0, however small. In view of the convergence in distribution of Wn

there exists A = A(θ ) such that P(‖Wn‖ > A) < θ/3 for all n (Exercise 3). In

view of (uniform) continuity of h on the compact set Bδ1
(a)×Bδ2

(b)×B0(A),

there exists δ = δ (ε) > 0 such that ‖h(u,v,w)− h(a,b,w)‖ ≤ ε for all (u,v,w)

satisfying ‖u−a‖≤ δ , ‖v−b‖≤ δ and ‖w‖ ≤ A. Now since Un
P−→ a, Vn

P−→
b, there exists a positive integer n(θ ,ε) such that

P(‖Un − a‖> δ ) <
θ

3
, P(‖Vn− b‖> δ ) <

θ

3
∀ n ≥ n(θ ,ε). (2.54)

Hence

P(‖h(Un,Vn,Wn)− h(a,b,Wn)‖> ε)

≤ P(‖Un − a‖> δ ) +P(‖Vn− b‖> δ ) +P(‖Wn‖> A) (2.55)

+P({‖Un − a‖ ≤ δ ,‖Vn − b‖ ≤ δ ,‖Wn‖

≤ A,‖h(Un,Vn,Wn)− h(a,b,Wn)‖> ε}) ≤ 3
θ

3
= θ ,

since the set within curly brackets in the last term in (2.55) is empty and has,

therefore, probability zero.

In particular we obtain the following corollary, the proof of which is left as an

exercise (2).

COROLLARY 2.8.1. (i). Suppose Zn →d Z and g is a continuous function.

Then g(Zn) →d g(Z).

(ii). Suppose Xn →d X and Yn
P−→ 0. Then Xn +Yn →d X .

The following simple result is widely used in asymptotic theory.

THEOREM 2.8.4. Suppose Wn is a sequence of random vectors and g(n) a

sequence of constants, g(n) ↑∞, such that g(n)(Wn−µ) →d V. Then for every

function H which is continuously differentiable in a neighborhood of µ , one

has

g(n)[H(Wn)−H(µ)] →d H′(µ)V. (2.56)
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Proof. By the mean value theorem there exists µ∗ between µ and Wn such

that the left side of (2.56) is

g(n)(Wn− µ)H′(µ∗) = g(n)(Wn− µ){H′(µ) + op(1)} (2.57)

where op(1) → 0 in probability. Note that this is a consequence of the fact

that Wn −µ
P−→ 0 (since g(n) ↑∞ and g(n)(Wn−µ) →d V (Exercise 10)). The

convergence now follows. The most commonly used consequence of Theorem

2.8.4 is the following, called the delta method.

THEOREM 2.8.5. (Cramer’s delta method) Theorem 2.8.4 extends to the case

where Z j, j ≥ 1, are i.i.d. k-dimensional random vectors with mean vector µ
and covariance matrix Σ = ((σi j)), while H is vector-valued and continuously

differentiable (as a function of k variables) in a neighborhood of µ . In this case

√
n[H(Z)−H(µ)]→d DµH ·V = Nm(0,DµHΣDµHT ), (2.58)

with DµH = (∂H j(z)/∂ zi)i=1,...,k, j=1,...,p|z = µ , and V is Nk(0,Σ ).

EXAMPLE 2.8.1 (asymptotic distribution of the studentized sample mean).

Let Yn be a sequence of i.i.d. p-dimensional random vectors with a positive

covariance matrix Σ . The studentized p-dimensional version of the t-statistic

is given by

Tn =
√

nS
− 1

2
u,n (Y − µ) =

√
n− 1S

− 1
2

n (Y − µ)

=

√
n− 1

n
T̃n, T̃n =

√
nS

− 1
2

n (Y − µ) . (2.59)

Here EYn = µ , Cov(Yn) = Σ > 0 (finite). Also note, by the CLT and by Exercise

8 that √
n(Y − µ) →d Nm(0,Σ ),

and

Sn
P−→ Σ ,

so that Slutsky’s theorem applies to show that Tn →d Nm(0, Im).

EXAMPLE 2.8.2 (asymptotic distribution of Hotelling T 2). For any random

sample X1, . . . ,Xn from a distribution on Rm with finite mean vector µ and

covariance matrix Σ we consider the analogue of the Hotelling like statistic

T 2
n given by

T 2
n = n(X̄ − µ)T S−1

n (X̄ − µ). (2.60)

Note that T 2
n = ‖Tn‖2, where Tn is the studentized sample mean vector in Ex-

ample 2.8.1, and since the square norm is a continuous function on Rm, from

Example 2.8.1 and Corollary 2.8.1 we see that T 2
n →d χ2

m.
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2.9 Elementary Inference

In general, for any unknown distributions Q on Rm, a confidence region (c.r.) of

confidence level 1−α for a parameter θ ∈Θ ⊆Rq, is a set Cα (x1, . . . ,xn)⊆Rq,
depending on random sample x1, . . . ,xn, such that

P(θ ∈ Cα(x1, . . . ,xn)) = 1−α. (2.61)

Often the parameter is a pair θ = (θ1,θ2), and we are interested in estimating

only θ1. In this case θ2 is a nuisance parameter, and we may replace it by

one of its consistent estimators θ̂2 in the expression of a statistic with a known

asymptotic distribution, leading to a formula for the confidence region of θ1

that is independent of θ2.
For example, given i.i.d.r.vec.s X1, . . . ,Xn ∼ Q, where the probability dis-

tribution Q has finite moments of order three, mean vector µ , positive definite

covariance matrix Σ > 0, for n large enough, by the CLT we have:

P(n(X̄n− µ)T Σ−1(X̄n − µ) ≤ χ2
p,α) ≈ 1−α, (2.62)

where the probability area of the upper tail above χ2
p,α , under the density func-

tion of a χ2
p-distributed is α. In this example if we consider the parameter

θ = (µ ,Σ ) ∈Rp ×Sym+(p), the dimension m = p + 1
2

p(p + 1), and the nuisance

parameter is the parameter θ2 = Σ . Since the sample covariance matrix is a

consistent estimator we may plug θ̂2 = Sn in place of Σ in equation (2.62), and

from Slutsky’s theorem it follows that for n large enough, a confidence region

Cα(x1, . . . ,xn) for µ at confidence level 1−α , is given by

Cα (x1, . . . ,xn) = {µ ∈ Rp,n(x̄− µ)T S−1
n (x̄− µ) ≤ χ2

p,α}. (2.63)

In general, since we do not know if the true distribution has positive defi-

nite covariance (Σ ∈ Sym+(p)), the best one can do is to find an approximate

confidence region, based on asymptotics, as above, or another approximation.

Typically with P(θ ∈ Cα (x1, . . . ,xn))< 1−α. The difference between the nom-

inal coverage (1−α) and the true coverage (P(θ ∈ Cα (x1, . . . ,xn)) is called

coverage error.

Hypothesis testing. Nonparametric Approach. An χ2 based test for H0 :

µ = µ0 vs. Ha : µ 6= µ0 can be obtained using the above confidence region.

Indeed note that we fail to reject H0 at level α if and only if µ0 ∈ Cα . It follows

that at level α we reject H0 if

n(µ0 − x)T S−1
n (µ0 − x) ≥ χ2

p,α , (2.64)
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2.9.1 Simultaneous Confidence Intervals for µ .

A variant of the following result is given with a proof in Johnson and Wichern

(2008) [170], in the case of multivariate normal distributions.

THEOREM 2.9.1. Assume X is a random sampling matrix from a multivari-

ate distribution in Rm with mean vector µ and covariance matrix Σ ). Then for

any α ∈ (0,1), with probability 1−α, for any vector a ∈Rm,aT µ is inside the

intervals:

L.B. = aT x−
√

χ2
p,αaT Sna

U.B. = aT x +
√

χ2
p,αaT Sna (2.65)

As a corollary, if n > p, with probability of about 1−α, for j = 1, . . . , p, µ j is

inside the interval (
x j

n −
√

χ2
p,αs j ,x

j
n +
√

χ2
p,αs j

)
. (2.66)

These are simultaneous χ2-based c.i.’s for the components of the mean vector

for n− p large. Simultaneous z-based c.i.’s for the components of the mean

vector, for n− p large, are given by the following theorem.

THEOREM 2.9.2. (Bonferroni simultaneous confidence intervals) Assume

x1, . . . ,xn is a random sample from a probability distribution Q on Rp, with

mean µ = (µ1, . . . ,µ p)T and covariance matrix Σ , with Σ > 0,n > p. Then for

any α ∈ (0,1), with probability at least 1−α, for j = 1, . . . , p, µ j is inside the

interval (
x j

n − z(
α

2p
)

s j√
n
,x j

n + z(
α

2p
)

s j√
n

)
, (2.67)

where z(β ) is the cutoff point of the upper tail enclosing a probability area β
under the graph of the p.d.f. of a standard normally distributed r.v.

Bonferroni simultaneous c.i.’s are based on the basic Bonferroni inequality:

P(∪p
a=1Ua) ≤

p

∑
a=1

P(Ua). (2.68)

Comparison of the large sample simultaneous c.i.’s for the components of the

mean vector (n− p large) using these two methods is usually done by utilizing

the z and χ2-tables.

2.10 Comparison of Two Mean Vectors

Assume that we have i.i.d.r.vec.’s Xa,1, . . . ,Xa,na ,a = 1,2 from two independent

distributions in Rm, Xa,1 ∼ (µa,Σa),a = 1,2.
In the case of matched pairs, n1 = n2 = n, we simply assume that the dif-

ference vector D = X1,1 −X2,1 has a mean µD and we are the null hypothesis
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H0 : µD = µ0 vs. H1 : µD 6= µ0, and use the large sample rejection region at

significance level α , level given in (2.64).

The case when the population covariance matrices are unequal can be an-

swered in the large sample case, as follows.

For testing H0 : µ1 − µ2 = δ0, assume the two samples are i.i.d.r.vec’s

Xa, ja ∼ µa,Σa, ja = 1, . . . ,na,a = 1,2 from two independent multivariate popu-

lations, of the total sample size n = n1 + n2, s.t. n1
n
→ q ∈ (0,1), as n →∞, and

1
q
Σ1 + 1

1−q
Σ2 > 0, Then from the C.L.T and Slutsky’s theorem 2.8.3, under H0,

it follows that

T 2 = (X1 −X2 − δ0)T (
1

n1
S1 +

1

n2
S2)−1(X1 −X2 − δ0) →d C ∼ χ2

m, (2.69)

as n →∞, therefore we reject H0 at level α if

(X1 −X2 − δ0)T (
1

n1
S1 +

1

n2
S2)−1(X1 −X2 − δ0) > χ2

m(α). (2.70)

If the distributions are unknown and the samples are small, for testing, one

may use the nonparametric bootstrap, a methodology that will be presented in

Section 2.13.

2.11 Principal Components Analysis (P.C.A.)

Principal components (p.c.’s) are linear combinations in the given covariates

of a multivariate random vector. The first principal component captures most

of the total variance of this random vector, the second p.c. points in a direc-

tion perpendicular on the direction of the first p.c. that has a largest variance

amongst all such covariates, etc. Principal components are used in dimension

reduction.

Assume X = (X1,X2, . . . ,Xm) : Ω →Rm is a random vector. A simple linear

combination ( s.l.c.) in X is a linear combination L = l1X1 + l2X2 + · · ·+ lmXm =

lT X , with lT l = 1. We are interested in those s. l. c.’s of largest variance.

Assume λi, i = 1, . . . , p are the eigenvalues of Σ =Cov(X) in their decreasing

order and ei, i = 1, . . . , p are corresponding norm one eigenvectors. Note that

the eigenspaces corresponding to distinct eigenvalues are orthogonal, therefore

w.l.o.g. we may assume that these vectors form an orthobasis of Rm, therefore

the matrix Γ = (e1 . . .em) is orthogonal.

If µ = E(X) is the mean vector, then the principal components of X are the

covariates Y 1, . . . ,Y m of Y = Γ T (X − µ).
Large sample properties - the univariate case Note that if X1,X2, . . . ,Xn are

i.i.d.r.v.’s from a distribution with finite fourth moments µ4 and variance σ2,
then, from the delta method Theorem 2.8.5, it follows that for n large enough√

(n)(S2−σ2) →d N(0,µ4 −σ4), as shown in Ferguson (1996, p.46) [115].
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A large sample hypothesis testing for the percentage of variability ex-

plained by the first P.C.’s is suggested as follows by Mardia et al. (1972, p.

232) [231]. If we assume that ρ > 0, we may not test H0 : λ j = 0, j = k +1, .., p,
since in this case Σ would be singular. A reasonable hypothesis testing problem

is that λ j = 0, j = k + 1, .., p are small, that is

H0 :
λ1 + ...+ λk

λ1 + ...+ λm
= ρ vs H1 :

λ1 + ...+ λk

λ1 + ...+ λm
> ρ .

If r the sample counterpart of ρ , then by the delta method, under H0 the

large sample distribution of r is normal with mean ρ and variance τ2, where

τ2 = 2Tr(Σ2)

nTr2(Σ )
(ρ2 − 2αρ + α), where

α =
λ 2

1 + ...+ λ 2
k

λ 2
1 + ...+ λ 2

m

.

For testing H0 above, one may use Slutsky’s theorem and a large sample z-test;

one should studentize r by replacing τ2 with its sample counterpart,

τ̂2 =
2Tr(S2

n)

nTr2(Sn)
(ρ2 − 2α̂ρ + α̂), (2.71)

where

α̂ =
λ̂ 2

1 + · · ·+ λ̂ 2
k

λ̂ 2
1 + · · ·+ λ̂ 2

m

. (2.72)

2.12 Multidimensional Scaling

An important result in data visualization in higher numerical spaces, is known

as multidimensional scaling(MDS) (see Schoenberg (1935) [300], Gower

(1966) [130], Mardia et al. (1972, p. 397) [231]). Let D = (drs)r,s=1,...,k be a dis-

tance matrix between k points and consider A and B defined by A = (ars), ars =

− 1
2 d2

rs, ∀r,∀s = 1, . . .k,B = H̃AH̃T , where H̃ = Ik − k−11k1T
k is the centering

matrix in Rk. A version of Schoenberg’s theorem suitable for our purposes is

given below. Theorem 2.12.1 is an edited version of Theorem 14.2.1 in Mardia

et al. (1972, pp. 397–398) [231].

THEOREM 2.12.1.(a) If D is a matrix of Euclidean distances drs = ‖xr−xs‖,
x j ∈ Rm, and we set X = (x1 . . .xk)T ,k > p, then B is given by

brs = (xr − x)T (xs − x),r,s = 1, . . . ,k (2.73)

In matrix form, B = (H̃X)(H̃X)T .
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(b) Conversely, assume B is a k × k symmetric positive semidefinite matrix B

of rank p, having zero row sums. Then B is a centered inner product ma-

trix for a configuration X constructed as follows. Let λ1 ≥ ·· · ≥ λm denote

the positive eigenvalues of B with corresponding eigenvectors x(1), . . . ,x(p)

normalized by

xT
(i)x(i) = λi. (2.74)

Then the k points Pr ∈ Rm with coordinates xr = (xr1, ...,xrp)T ,r = 1, . . . ,k,
where xr is the rth row of the k× p matrix (x(1) . . .x(p)), have center x = 0,

and B = H̃AH̃T where A = − 1
2
(‖xr − xs‖2)r,s=1,...,k.

2.13 Nonparametric Bootstrap and the Edgeworth Expansion

The main references for this section are Bhattacharya and Denker (1990 )[36]

and Bhattacharya et al. (2014) [40]. Here we describe the precise level of

asymptotic accuracy of the nonparametric bootstrap procedure for estimating

the true distribution of a class of commonly used statistics, when the common

distribution of the observations has a density component. The technique for

this analysis, and for all others which demonstrate the superiority of the boot-

strap over normal approximation, involves the so-called Edgeworth expansion

(see Bhattacharya and Ghosh (1978) [38]).

2.13.1 Edgeworth Expansions for Statistics

Let X j (1 ≤ j ≤ n) be i.i.d. random vectors in Rm, and let f be an Rk-valued

Borel measurable on Rm. Let Z j = f (X j),1 ≤ j ≤ n, and assume a statistic T is

given by

T (X1, . . . ,Xn) = H(Z̄), Z̄ :=
1

n

n

∑
j=1

Z j =
1

n

n

∑
j=1

f (X j), (2.75)

where, for simplicity H is assumed to be sufficiently smooth real-valued func-

tion defined in a neighborhood of the mean of Z1,

µ := EZ j = EZ̄. (2.76)

Note that the theory in this section is also valid if H is vector valued (Bhat-

tacharya and Denker (1990) [36]). Most classical statistics are of this form or

may be approximated within the desired level of accuracy by such functions

H(Z̄). Since the asymptotic performance of only the pivotal bootstrap is of a

higher order than that of the normal approximation, we will assume studenti-

zation, meaning that the variance of H(Z1) is 1 or

(gradH)(µ)TΣ (gradH)(µ) = 1, (2.77)

where Σ is the k× k covariance matrix of Z1
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Σ := CovZ1. (2.78)

Supposed that H is s − 1 times continuously differentiable (s ≥ 2) in a

neighborhood of µ so that one has the Taylor expansion,

H(Z̄)−H(µ) = (gradH)(µ)T (µ)(Z̄− µ)

+
s−1

∑
|ν|=1

(DνH)(µ)
(Z̄− µ)ν

ν!
+ R(Z̄,µ).

(2.79)

Here ν = (ν1,ν2, . . . ,νk) is a multi-index, i.e., ν ∈ (Z+)k, |ν| = ν1 + ν2 +

. . .+ νk,ν! = ν1!ν2! . . .νk!,zν = (z
ν1
1 z

ν2
2 . . .z

νk
k ) (for z = (z1,z2, . . . ,zk) ∈ Rk, ν ∈

(Z+)k), and Dν = ( ∂
∂ z1

)ν1 · · · ( ∂
∂ zk

)νk . The remainder term R(z̄,µ) satisfies the

relation

|R(z̄,µ)| = o(‖z̄− µ‖s−1) as ‖z̄− µ‖ → 0. (2.80)

The normalized statistic Wn =
√

n(H(z̄)−H(µ)) then may be expressed as

Wn =
√

n(H(Z̄)−H(µ))

= (gradH)T (µ)
√

n(Z̄)−H(µ) +
s−1

∑
|ν|=2

(n−(|ν|−1)/2(DνH)(µ)
(
√

n(Z̄− µ))ν

ν!

+
√

nR(Z̄,µ)

= W̃n +
√

nR(Z̄,µ) = W̃n + op(n−(s−2)/2).

(2.81)

Since W̃n is
√

n-times a polynomial in Z̄ − µ , one may calculate mo-

ments and cumulants of W̃n in terms of those of Z j − µ and the derivatives

(DνH)(µ)(1 ≤ |ν| ≤ s− 1). Let κr,n denote the r-th cumulant W̃n omitting all

terms of order o(n−(s−2)/2), 1 ≤ r ≤ s−2. One may show that like the normal-

ized mean
√

n(Ȳ −µ) of i.i.d. random variables with finite s moments, the r-th

cumulant of W̃n is of the order o(n−(s−2)/2):

κ1,n =
s−2

∑
j=1

n− j/2b1 j,

κ2,n = σ2 +
s−2

∑
j=1

n− j/2b2 j, (σ
2 = 1, by (2.77))

κr,n = n−(r−2)/2br +
s−2

∑
j=r−1

n− j/2br j (3 ≤ r ≤ s).

(2.82)
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The of W̃n may then be formally expressed as

γn(t) := EeitW̃n ≃ exp

{
− t2

2
+

s−2

∑
r=1

n−r/2κr+2,n
(it)r+2

(r + 2)!

}

≃ exp

{
− t2

2

}[
1 +

s−2

∑
r=1

n−r/2qr(it)

] (2.83)

where qr(it) is a polynomial in it whose coefficients involve the constants br,

br j in equation (2.82). One may now apply the inverse of the Fourier transform

on the right side of equation (2.83) to arrive at a “formal” Edgeworth density

ψs−2,n(x) =

[
1 +

s−2

∑
r=1

n−r/2qr(−
d

dx
)

]
ϕ(x), (2.84)

where ϕ is the standard normal density on R1, and qr(− d
dx

) is obtained by for-

mally replacing it by − d
dx

in qr(it). [Note: (it) je−t2/2 is the Fourier transform

of the function
(
− d

dx

)
ϕ(x)]. A scheme roughly of this kind was proposed by

F.Y. Edgeworth (1905)[93]. The theorem below provides a generally usable

sufficient condition for the validity of the formal Edgeworth expansion.

THEOREM 2.13.1. (Bhattacharya and Ghosh (1978) [38]). Assume

(A1) E| fi(X1)|s <∞, 1 ≤ i ≤ k, for some integer s ≥ 2,

(A2) H is (s− 1)-times continuously differentiable in a neighborhood of µ =

EZ1, and

(A3) Cramér’s condition

limsup |Eeiξ T Z1 |< 1 (ξ ∈ Rk) (2.85)

is satisfied. Then

sup
B∈C

|P(Wn ∈ B)−
∫

B
ψs−2,n(x)dx| = o(n−(s−2)/2) (2.86)

for every class C of Borel subets of R1 satisfying

sup
B∈C

∫

(∂B)ε
ψ(x)dx = O(εa) f or some a > 0. (2.87)

(∂B)ε := {y : |y− x|< ε f or some x ∈ (∂B)}
REMARK 2.13.1. Consider the following:

1. The class C of all intervals satisfies equation (2.87) with a = 1.
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2. Since generally p< k, the distribution of Z1 is singular w.r.t. Lebesgue mea-

sure in Rk, even if X1 has a density on Rm. (In the case of r, p = 2 and k = 5).

However, it may be shown that Z1 + . . .+ Zk has a density component w.r.t.

Lebesgue measure, if X1 has a positive density component on a nonempty

open subset of Rm (Bhattacharya and Ghosh (1978) [38]).

3. For estimating the distribution of Wn =
√

n(H(Z̄) −H(µ)) from the sam-

ple, one may substitute sample moments for the population moments in the

Edgeworth density ψs−2,n(x). Because the sampling errors involved in this

substitution only s = 3 or 4 seem effective. This leads to the empirical Edge-

worth approximation of the distribution on Wn to be discussed in the next

subsection.

2.13.2 Bootstrap and the Empirical Edgeworth Expansion.

Let P̂n = 1
n ∑n

j=1 δX j
be the empirical distribution of X1, . . . ,Xn and let

X1∗, . . . ,X∗
n be n i.i.d. observations from P̂n, conditionally given X1, . . . ,Xn. The

i.i.d. r. vectors X∗
1 , . . . ,X

∗
n can be thought of as a sample with replacement from

X1, . . . ,Xn, also known as a bootstrap resample from X1, . . . ,Xn. One may for-

mally calculate the Edgeworth expansion of the distribution of the bootstrapped

statistic W∗
n =

√
n(H(Z̄∗)−H(Z̄)) under the empirical P̂∗

n = 1
n ∑n

j=1 δX∗
j
. One

sees that this expansion ψ∗
s−2,n is obtained by replacing population moments

by sample moments in ψs−2,n. In other words, ψ∗
s−2,n, is precisely the so-called

empirical Edgeworth expansion mentioned in Remark 2.13.1 number 3 above.

For the sample mean X̄∗ or Z̄∗, this was proved to be a valid expansion by Babu

and Singh (1984) [9], and extended to the present case of W∗
n in Bhattacharya

(1987) [30]. See also Beran (1987) [16].

THEOREM 2.13.2. (Babu and Singh theorem(1984) [9], Bhattacharya

(1987) [30]). Under the hypothesis of Theorem 26.3.2, one has

sup
B∈C

|P∗(W∗
n ∈ B)−

∫

B
ψ∗

s−2,n(x)dx| = oP(n−(s−2)/2) (2.88)

for every class C of Borel subset of R1 satisfying equation (2.87), where the

subscript P in (2.88), means that the left hand side in that equation is a

o(n−(s−2)/2) with probability 1.

It follows from Theorem 2.13.2 that the asymptotic comparison between

the bootstrap estimate P∗(W∗
n ∈ B) and the normal approximation

∫
B ϕ(x)dx

(of P(Wn ∈ B)) is the same as that between
∫

B ψ∗
s−2,n(x)dx and

∫
B ϕ(x)dx (up to

order oP(n−(s−2)/2)). Now, taking s = 3, one has

P∗(W∗
n ≤ x)−

∫ x

−∞
ψ∗

1,n(y)dy = oP(n−
1
2 ) , (2.89)
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where

ψ∗
1,n(y) = ϕ(y)

(
1 + n−

1
2 q̃∗1 (y)

)
. (2.90)

Here q̃1(y)ϕ(y) = q1

(
− d

dy

)
ϕ(y), with q1 is as in Theorem 26.3.2, and q̃∗1 (y)

is obtained by replacing population moments by sample moments in q̃1(y). It

turns out that q1 is a polynomial of degree three, so that

∫ x

−∞
q1

(
− d

dy

)
ϕ(y)dy = p1(x)ϕ(x), say, (2.91)

where p1(x) is a polynomial of degree 2, as is p∗1(x). Hence

∫ x

−∞
ψ1,n(y) =

∫ x

−∞
ϕ(y)dy + n−

1
2 p1(x)ϕ(x),

∫ x

−∞
ψ∗

1,n(y) =

∫ x

−∞
ϕ(y)dy + n−

1
2 p∗1(x)ϕ(x). (2.92)

It follows from Theorem 26.3.2, 2.13.2, relations with equations (2.89), (2.92)

that

P(Wn ≤ x)−
∫ x

−∞
ϕ(y)dy = n−

1
2 p1(x)ϕ(x) + op(n−1) (2.93)

P(Wn ≤ x)−P∗(W∗
n ≤ x) = n−

1
2 (p1(x)− p∗1(x))ϕ(x) + op(n−1). (2.94)

Since the difference between a polynomial of sample moments (which are co-

efficients of p∗1 (x)) and that of the corresponding population moments is of the

form H(Z̄)−H(µ), one may show that

n
1
2 (p1(x)− p∗1(x)) →d Y ∼N (0,σ2

b (x)), (2.95)

where σ2
b (x) is a polynomial of degree four. Hence

n(P(Wn ≤ x)−P∗(W∗
n ≤ x)) →d Y ∼N (0,σ2

b (x)ϕ2(x)), (2.96)

In other words,

COROLLARY 2.13.1. The error of pivotal bootstrap approximation is

sup
x
|P(Wn ≤ x)−P∗(W∗

n ≤ x)| = Op(n−1), (2.97)

whereas the error of the normal approximation is O(n−
1
2 ), as given by equation

(2.93).
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The proof of equation (2.97) actually is based on two relations,

sup
x

∣∣∣∣P(Wn ≤ x)−
∫ x

−∞
ψ∗

1,n(y)dy

∣∣∣∣ = Op(n−1), (2.98)

and

sup
x

∣∣∣∣P∗(W∗
n ≤ x)−

∫ x

−∞
ψ∗

1,n(y)dy

∣∣∣∣ = Op(n−1). (2.99)

REMARK 2.13.2. Consider the following:

1. The pivotal bootstrap is not only superior to the normal approximation (the

error of the normal approximation is O(n−
1
2 ), while that of the bootstrap

OP(n−1)), it is superior to the one-term correction to the normal, namely

the empirical Edgeworth, as shown by Bhattacharya and Qumsiyeh (1989)

[45].

2. In the case when the statistics Wn is not pivotal, one can show (Bhattacharya

and Denker (1990) [36], Part I) that errors of the bootstrap approximation

and the normal approximation are of the same order.

3. Bootstrap is often used for nonpivotal statistics
√

n(θ̂n −θ ) to provide con-

fidence intervals such as [c α
2
,c 1−α

2
], where

ĉp := sup
{

c : P∗(θ∗
n − θ̂n ≤ c) ≤ p

}
.

This is the so-called percentile method, which bypasses the estimation of

the standard error of θ̂n (see Efron (1982) [97], Efron (2003) [98], Efron

and Tibshirani (1993) [99]).

2.14 Nonparametric Function Estimation

For functions F : Rm → R, denote by ‖ · ‖2 and ‖ · ‖∞ the L2 and L∞ norms,

respectively. Recall that

‖F‖∞ = sup
x∈Rm

|F(x)| , (2.100)

and

‖F‖2 =

∫

Rm
|F(x)|2λ (dx), (2.101)

where λ is the Lebesgue measure.

Let X1,X2, . . . ,Xn be a random sample from a distribution P on R. A

consistent estimator of PX1
= P is the empirical P̂n = 1

n ∑n
i=1 δXi

. Let F̂n(x) ≡
P̂n((−∞,n]) be the c. d. f. of P̂n and F(x) that of P. The Glivenko–Cantelli

theorem(see Ferguson (1996) [115]) states that with probability 1
∣∣∣F̂n(x)−F(x)

∣∣∣
∞

−→ 0 as n →∞. (2.102)

  



NONPARAMETRIC FUNCTION ESTIMATION 77

Suppose now that F is absolutely continuous with a p.d.f. f . Since P̂n is

discrete, one may estimate f using a kernel density estimator . That is a density

of the random variable X̂n + hZ where X̂n has the distribution P̂n (conditionally,

given X1, . . . ,Xn) and Z is independent of X̂n and has a nice density, say, K, and

h is a small positive number, called the bandwidth satisfying

h ≡ hn −→ 0 as n →∞. (2.103)

Note that X̂n + hZ has the density

f̂n(x) =
1

n

n

∑
i=1

Kh(x−Xi), (2.104)

where Kh is the density of hZ, namely,

Kh(y) =
1

h
K
( y

h

)
. (2.105)

To see that f̂n is the density of X̂n + hZ, note that the latter has the distribution

function

P̃(X̂n + hZ ≤ x) = E[P̃(hZ ≤ x− X̂n|X̂)]

=

∫ x−y

−∞
Kh(u)dP̂n(y) =

1

n

n

∑
i=1

∫ x−xi

−∞
Kh(u)du, (2.106)

where the superscript ˜ indicates that the probabilities are computed given

X1, . . . ,Xn. Differentiating (2.106) w.r.t. x one arrives at (2.104).

Alternatively, one may think of (2.104) as obtained by spreading out the

point mass δXi
with a density centered at Xi and concentrating most of the

density near Xi (1 ≤ i ≤ n). Now we show that the bias E f̂n(x)− f (x) → 0. For

this write

E f̂n(x) = E
1

n

n

∑
i=1

1

h
K

(
x−Xi

h

)
= E

1

h
K

(
x−Xi

h

)

=
1

h

∫ ∞

−∞
K

(
x− y

h

)
f (y)dy (2.107)

=

∫ ∞

−∞
K(v) f (x− vh)dv −→ f (x) as h ↓ 0,

if f is bounded and is continuous at x (by the Lebesgue Dominated Conver-
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gence Theorem). Also,

var( f̂n(x)) =
1

n
varKh(x−X1) (2.108)

=
1

n

{
1

h2
EK2

(
x−X1

h

)
− 1

n

(
E

1

h
K

(
x−X1

h

))2
}

=
1

nh

∫ ∞

−∞
K2(v) f (x− vh)dv− 1

n

(∫ ∞

−∞
K(v) f (x− vh)dv

)2

→ 0

as n →∞,

if (i) f is bounded, (ii) f is continuous at x, (iii) K2(v) is integrable,

nh −→∞ and h −→ 0 (as n →∞). (2.109)

Thus, under the hypothesis (i)—(iii) and (2.109), one has (by (2.107) and

(2.108))

E
(

f̂n(x)− f (x)
)2

= var f̂n(x) + (Bias f̂n(x))2 −→ 0 as n →∞. (2.110)

In other words, under the above assumptions, f̂n(x) → f (x) in probability as

n →∞.

Note that the convergences (2.107) and (2.108) do not really require bound-

edness of f on all of R. For example, if one takes K to have a compact support

then it is enough to require that f is continuous at x. We have proved that un-

der mild assumptions the kernel estimator with kernel K kernel estimator is a

consistent estimator of f at every point of continuity of f .

By choosing an appropriately smooth and symmetric kernel K one may

make the error of approximation f̂n(x)− f (x) reasonably small.

A measure of the (squared) error of approximation is provided by the so-

called , or MISE given by

MISE( f̂n) =

∫

R
E[ f̂n(x)− f (x)]2dx =

∫

R
[var f̂n(x) + (Bias f̂n(x)2]dx. (2.111)

Write

c1 =

∫
v2K(v)dv, c2 =

∫
K2(v)dv, c3 =

∫
( f ′′(x))2dx, (2.112)

and assume c1,c2,c3 are finite and that

∫
K(v)dv = 1,

∫
vK(v)dv = 0. (2.113)
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Now it follows from (2.107) that

E f̂n(x) =

∫

R
K(v)

[
f (x)− vh f ′(x) +

v2h2

2
f ′′(x) + o(h2)

]
dv

= f (x) +
c1h2

2
f ′′(x) + o(h2),

(Bias f̂n)(x) =
c1h2

2
f ′′(x) + o(h2), (2.114)

if f ′′ is continuous and bounded. Then

∫

R
(Bias f̂n)2(x)dx =

c3c2
1h4

4
+ o(h4). (2.115)

Next, by (2.108) and (2.109),

var f̂n(x) =
c2 f (x)

nh
+ o

(
1

n

)
, (2.116)

∫

R
var f̂n(x)dx =

c2

nh
+ O

(
1

n

)
, as n →∞. (2.117)

Hence

MISE( f̂n) =
c2

1c3

4
h4 +

c2

nh
+ o(h4) + O

(
1

n

)
. (2.118)

Neglecting the two smaller order terms, the asymptotically optimal choice of

the bandwidth h, for a given kernel K as above, is obtained by

hn = argmin
h

{
c2

1c3

4
h4 +

c2

nh

}
=

(
c2

c2
1c3

) 1
5

n−
1
5 . (2.119)

The corresponding asymptotically minimal MISE is

MISE f̂n =
c4

n4/5
+ o
(

n−4/5
)

c4 :=
5

4

(
c

2/5
1 c

4/5
2 c

1/5
3

)
. (2.120)

We have arrived at the following result.

THEOREM 2.14.1. Assume f ′′ is continuous and bounded. Then for any

choice of a symmetric kernel K satisfying (2.113), and 0 < ci <∞ (i = 1,2,3),

the asymptotically optimal bandwidth h is given by the extreme right side of

(2.119), and the asymptotically minimal MISE is given by (2.120).

From the expression (2.104) it follows that f̂n(x) is, for each n, a sum of

i.i.d. random variables. By the Lindeberg CLT it now follows that, under the

hypothesis of Theorem 2.14.1 one has (Exercise 12)

f̂n(x)−E f̂n(x)√
var f̂n(x)

→d Z ∼ N(0,1), if f (x) > 0. (2.121)
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Also check, using (2.114), (2.115) and (2.119), that

E f̂n(x)− f (x)√
var f̂n(x)

−→ c
− 1

2
3

f ′′(x)√
f (x)

= γ, say, if f (x) > 0. (2.122)

Hence
f̂n(x)− f (x)√

var f̂n(x)

L−→ N(γ,1) if f (x) > 0. (2.123)

To remove the asymptotic bias γ , one may choose a slightly sub-optimal band-

width hn = o(n−
1
5 ) (Exercise 13). Since var f̂n(x) involves f ′′(x), for setting

confidence regions for f (x), one may resort to bootstrapping.

REMARK 2.14.1. It has been shown by Epanechnikov (1969, pp. 153–158)

[109]. that the constant c4 in MISE is minimized (under the hypothesis of The-

orem 2.14.1) by the kernel

K(v) =
3

4
√

5

(
1− 1

5
v2

)
1{|v|≤

√
5}. (2.124)

However, the loss of efficiency is rather small if, instead of (2.124), one chooses

any symmetric kernel with high concentration, such as the (standard) Normal

density or the triangular density (Lehmann, E. L. (1998), pp. 415, 416) [216].

The asymptotic theory presented above has extensions to the multidimen-

sional case. We provide a brief sketch of the arguments here, leaving the details

to Exercise 14. Let f be a p.d.f. on Rm, and let K be a symmetric kernel den-

sity with finite second moments c1,i, j =
∫

viv jK(v)dv, and with c2 =
∫

K2(v)dv.

Then if the second partial derivatives
∂ f

∂xi∂x j
are continuous and bounded, one

uses the kernel estimate

f̂n(x) =
1

hm

n

∑
i=1

K

(
x−Xi

h

)
, (2.125)

based on i.i.d. observations X1, . . . ,Xn with p.d.f. f . Then

E f̂n(x) = E
1

hm
K

(
x−X1

h

)
=

1

hm

∫

Rm
K

(
x− v

h

)
f (v)dv1 . . .dvd

=

∫

Rm
K(u) f (x− hu)du

=

∫

Rm
K(u)

[
f (x)− hu ·grad f (x) +

h2

2
∑uiu j

∂ 2 f (x)

∂xi∂x j
+ o(h2)

]
du

= f (x) +
h2

2
∑c1,i, j

∂ 2 f (x)

∂xi∂x j
+ o(h2),
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so that

Bias f̂n(x) = E f̂n(x)− f (x) =
h2

2
∑c1,i, j

∂ 2 f (x)

∂xi∂x j
+ o(h2). (2.126)

Also,

E

(
1

hm
K

(
x−X1

h

))2

=
hm

h2p

∫

Rm
K2(u)

[
f (x)− hu ·grad f (x)

+
h2

2
∑uiu j

∂ 2 f (x)

∂xi∂x j
+ o(h2)

]
du

=
1

hm
c2 f (x) + o

(
h2

hm

)
,

var

(
1

hm
K

(
x−X1

h

))
=

1

hm
c2 f (x) +

var( f̂n(x)) =
1

nhm
c2 f (x) + o

(
1

nhm

)
.(2.127)

Hence

E( f̂n(x)− f (x))2 = (Bias f̂n(x))2 + var( f̂n(x))

=
1

nhm
c2 f (x) +

h4

4

(
∑
i, j

c1,i, j
∂ 2 f (x)

∂xi∂x j

)2

+o(h4) + o

(
1

nhm

)
. (2.128)

Therefore,

MISE f̂n =

∫

Rm
E( f̂n(x)− f (x))2dx =

c2

nhm
+

h4

4
c̃3 +o(h4)+o

(
1

nhm

)
, (2.129)

where

c̃3 =

∫

Rm

(
∑
i, j

c1,i, j
∂ 2 f (x)

∂xi∂x j

)2

dx.

As before, the asymptotically optimal bandwidth is given by

hn = argmin
h

{
h4

4
c̃3 +

c2

nhm

}
=

(
c2 p

c̃3

) 1
p+4

n
− 1

p+4 , (2.130)

and the asymptotically minimal MISE is

MISE f̂n = C
4

p+4

2 C̃
p

p+4

3

(
1

4
p

4
p+4 + p

− p
p+4

)
n
− 4

p+4 + o
(

n
− 4

p+4

)
. (2.131)
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Multi-dimensional versions of (2.121)—(2.123) may now be derived (Exercise

14).

Unlike classical statistics, where the number of covariates (marginals) stu-

died was relatively small, modern data analysis (including imaging and bioin-

formatics) deals with low sample size high dimensional (LSSHD) statistics,

that is, the number p of variables is huge, while the sample size n is small,

even by classical asymptotics, thus making statistical inference difficult. To

address this challenge, statisticians are using various techniques including reg-

ularization and dimension reduction, as discussed in the section 2.15.

2.15 Data Analysis on Hilbert Spaces - an Introduction

Direct generalization of multivariate techniques to functional data analysis is

not in general feasible; for the remainder of this chapter, some procedures for

the one-and multi-sample problem will be modified, so as to become suitable

for functional data (see Munk et al. (2008) [252]). For an extensive discussion

of functional data see the monograph by Ramsey and Silverman (1997) [286].

In Munk et al. (2008)[252], the problem of identifying the projective shape of

a planar curve was be considered as a practical application.

The union-intersection principle of Roy and Bose (1953) [293] provides us

with a projection pursuit type technique to construct multivariate procedures

from a family of univariate procedures. A case in point is Hotelling’s (1931)

[161] multivariate T 2-statistic that can be constructed from a family of univari-

ate student statistics. It is easy to see that further extension to infinite dimen-

sional Hilbert spaces along similar lines breaks down, in particular because

the rank of the sample covariance operator cannot exceed the finite sample size

and consequently cannot be injective, not even when the population covariance

operator is one-to-one.

Several alternatives could be considered. One possibility is to project the

data onto a Euclidean subspace of sufficiently high dimension and perform a

Hotelling test with these finite dimensional data. This includes spectral-cut-

off regularization of the inverse of the sample covariance operator as a special

case. Another option is a Moore-Penrose type of regularization of this operator.

We will, however, consider another modification that seems more appro-

priate as it yields at once a more realistic hypothesis and a mathematically

tractable procedure. That is, we will consider approximate equality of means

instead of exact equality. Therefore, we will replace the usual hypothesis with

a “neighborhood hypothesis”.

This kind of modified hypothesis has a long history and has been developed

in different situations. It has been, e.g., proposed by Hodges and Lehmann

(1954) [159] for testing whether multinomial cell probabilities are approx-

imately equal. Dette and Munk (1998) [84] extended this approach for the

purpose of validating a model in a nonparametric regression framework. For
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methodological aspects and a more recent discussion, we refer to Goutis and

Robert (1998) [129], Dette and Munk (2003) [85], and Liu and Lindsay (2005)

[222]. The underlying idea is that the hypothesis is often formulated on the ba-

sis of theoretical considerations that will never cover reality completely. Hence

in practice such a hypothesis will always be rejected if the sample size is large

enough.

It is therefore more realistic to test a somewhat larger hypothesis that also

includes parameters in a neighborhood of the original one. Also see Berger

and Delampady (1987) [20], who employ the term “precise hypothesis” in-

stead of “neighborhood hypothesis”, whereas Liu and Lindsay (2005) [222]

coined the phrase ”tubular models”. Dette and Munk (1998) [84] and Munk

and Dette (1998) [251] considered L2-neighborhood hypotheses in nonpara-

metric regression models.

A further advantage is that neighborhood hypotheses often lead to simpler

asymptotic analysis. This in turn makes it possible to interchange the role of

a neighborhood hypothesis and its alternative without complicating the testing

procedure. This is particularly relevant for goodness-of-fit type tests, where

traditionally the choice of the null hypothesis is usually dictated by mathema-

tical limitations rather than statistical considerations. Accepting a model after

a goodness of fit test always leaves the statistician in an ambiguous situation

as to whether the model has not been rejected for other reasons, e.g. because

of lack of data, an inefficient goodness of fit test at hand, or because of the

large variability of the data. In contrast, the approach we will soon describe

allows to validate a hypotheses at a given level α , instead of accepting a model

without any further evidence in favor of the model. In fact, this is equivalent

to reporting on a confidence interval for a certain distance measure between

models.

The section is organized as follows. In Subsection 2.15.1 we briefly review

some basic concepts for Hilbert space valued random variables, and in Sub-

section 2.15.2 we briefly discuss the difficulties with studentization in infinite

dimensional Hilbert spaces. Subsections 2.15.3 and 2.15.4 are devoted respec-

tively to a suitably formulated version of the functional one-and multi-sample

problem. The theory is applied to the recognition of the projective shape of a

planar curve in Chapter 3.

2.15.1 Random Elements in Hilbert Spaces

Let (Ω ,W ,P) be an underlying probability space, H a separable Hilbert space

over the real numbers with inner product 〈•,•〉 and norm || • ||, and BH the σ -

field generated by the open subsets of H. A random element in H is a mapping

X : Ω →H which is (W ,BH ) - measurable. Let us write PX = P for the induced

probability measure on (H,BH).

The probability distribution P is uniquely determined by its characteristic
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functional

P̃(x) = E ei〈x,X〉 =

∫

H
ei〈x,y〉dP(y),x ∈H. (2.132)

Assuming that

E ||X ||2 <∞, (2.133)

the Riesz representation theorem ensures the existence of a vector µ ∈ H and

an operator Σ : H→H, uniquely determined by the properties

E〈x,X〉 = 〈x,µ〉∀ x ∈H, (2.134)

E〈x,X − µ〉〈y,X − µ〉 = 〈x,Σ y〉∀ x,y ∈H. (2.135)

The operator Σ is linear, Hermitian, semi-definite positive; it has, moreover,

finite trace and is consequently compact. Any operator with these properties

will be referred to as a covariance operator, and any covariance operator is

induced by some random element.

It follows from the Minlos–Sazanov theorem that for µ ∈H and Σ :H→H

a covariance operator, the functional

ϕ(x) = ei〈x,µ〉− 1
2 〈x,Σx〉,x ∈H, (2.136)

is the characteristic functional of a probability measure on H, which is called

the Gaussian measure with parameters µ and Σ and will be denoted by G(µ ,Σ ).

The parameters represent respectively the mean and covariance operator of the

distribution.

Let Hp be the real, separable Hilbert space of all p-tuples x =

(x1, . . . ,xp)∗,x j

∈H for j = 1, . . . , p. The inner product in Hp is given by 〈x,y〉p = ∑
p
j=1 〈x j,y j〉,

for x,y ∈Hp.

2.15.2 Why Studentization Breaks Down in a Hilbert Space

Let X1, . . . ,Xn be independent copies of a random element X in H with

E ||X ||4 <∞, (2.137)

mean µ ∈ H, and covariance operator Σ : H→ H. Estimators of µ and Σ are

respectively

X =
1

n

n

∑
i=1

Xi, S =
1

n

n

∑
i=1

(Xi −X)⊗ (Xi−X), (2.138)

where for a,b ∈ H the operator a ⊗ b : H → H is defined by (a ⊗ b)(x) =

〈b,x〉a,x ∈H.
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Immediate extension of the union-intersection principle would suggest to

use the Hotelling-type test statistic

T 2
n = n sup

u∈H:||u||=1

〈
X ,u

〉2

〈u,Su〉 , (2.139)

for testing the classical hypothesis that µ = 0. The studentization, however, now

in general causes a problem since under the assumption that

P{X1, . . . ,Xn are linearly independent} = 1, (2.140)

it will be shown that

P{T 2
n = ∞} = 1, (2.141)

even when Σ is supposed to be injective.

To prove (2.141), let us first observe that (2.140) entails that P{X ∈
linear span of X1 − X , . . . ,Xn − X} = 0. For if X were an element of the lin-

ear span there would exist scalars α1, . . . ,αn such that X = ∑n
i=1 αi(Xi − X).

Because of the linear independence of the Xi this means that the vector

α = (α1, . . . ,αn)∗ ∈ Rn must satisfy

(In −
1

n
1n1∗n )α = 1n, (2.142)

where In is the n× n identity matrix and 1n a column of n numbers 1. This is

impossible because the matrix on the left in (2.142) is the projection onto the

orthogonal complement in Rn of the line through 1n. Hence with probability 1

there exist X1,X2 such that X = X1 + X2, and

{
X1 6= 0,X1 ⊥ Xi −X :: for i = 1, . . . ,n,

X2 ∈ linear span of X1 −X , . . . ,Xn −X .
(2.143)

Choosing u = X1 we have on the one hand that
〈
X ,X1

〉2
= ||X1||4 > 0, and

on the other hand we have SX1 = n−1. ∑n
i=1

〈
Xi −X ,X1

〉
(Xi −X) = 0, so that

(2.141) follows.

A possible modification of this statistic is obtained by replacing S−1 with

a regularized inverse of Moore-Penrose type and by considering

sup
u∈H:||u||=1

〈
X ,u

〉2

〈
u, (αI + S)−1 u

〉

= largest eigenvalue of (αI + S)−1/2
(
X ⊗X

)
(αI + S)−1/2 ,

where I is the identity operator. We conjecture that perturbation theory for

compact operators in Hilbert spaces leads to the asymptotic distribution of
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(αI + S)−1/2 and subsequently to the asymptotic distribution of this largest

eigenvalue, in the same vein as this kind of result can be obtained for matri-

ces. See, for instance, Watson (1983) [333] for sample covariance matrices and

Ruymgaart and Yang (1997) [295] for functions of sample covariance matri-

ces. Watson’s (1982) result has been obtained for sample covariance operators

on Hilbert spaces by Dauxois et al. (1982) [80]. As has been explained in the

introduction, however, here we prefer to pursue the approach of modifying the

hypothesis.

2.15.3 The One-Sample Problem in a Hilbert Space

Let X1, . . . ,Xn be as defined above and suppose we want to test hypotheses re-

garding µ . As has been argued above, we will change the usual hypothesis.

This modified hypothesis may make more sense from an applied point of view

and leads, moreover, to simpler asymptotics. To describe these hypotheses sup-

pose that

M ⊂H is a linear subspace of dimension m ∈ N0, (2.144)

and let δ > 0 be an arbitrary given number. Let us denote the orthogonal pro-

jection onto M by Π , and onto M⊥ by Π⊥. It is useful to observe that

〈
Π⊥x,Π⊥y

〉
=
〈

x,Π⊥y
〉
∀ x,y ∈H. (2.145)

Furthermore let us introduce the functional

ϕM(x) = ||x−M||2, x ∈H, (2.146)

representing the squared distance of a point x ∈ H to M (finite dimensional

subspaces are closed).

The neighborhood hypothesis to be tested is

Hδ : µ ∈ Mδ ∪Bδ , for some δ > 0, (2.147)

where Mδ = {x ∈H : ϕM(x) < δ 2} and Bδ = {x ∈H : ϕM(x) = δ 2,〈
Π⊥x,ΣΠ⊥x

〉
> 0}. The alternative to (2.147) is

Aδ : µ ∈ Mc
δ ∩Bc

δ . (2.148)

The usual hypothesis would have been: µ ∈ M. It should be noted that Hδ

contains {ϕM < δ 2} and that Aδ contains {ϕM > δ 2}. These are the important

components of the hypotheses; the set Bδ is added to the null hypothesis by

mathematical convenience, i.e. because the asymptotic power on that set is

precisely α , as will be seen below.
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For testing hypotheses like (2.147) see Dette and Munk (1998). These au-

thors also observe that testing

H′
δ : µ ∈

(
M′

δ

)c ∪Bδ versus A′
δ : µ ∈ M′

δ ∩Bc
δ , (2.149)

where M′
δ = {x ∈ H : ϕM(x) > δ 2}, can be done in essentially the same man-

ner; see also Remark 2.13.1. This may be very useful in practice. When, for

instance, M is the subspace of all polynomials of degree at most m− 1, it is

more appropriate to test if one wants to establish that the mean value func-

tion is close to such a polynomial. In the traditional set-up interchanging null

hypothesis and alternative would be virtually impossible due to mathematical

difficulties, just as this is the case in the classical goodness-of-fit problems.

The reason that it is mathematically easier to deal with the present hypothe-

ses is that the test statistic, which is based on

ϕM(X)− δ 2, (2.150)

has a simple normal distribution in the limit for large sample sizes.

LEMMA 2.15.1. We have

√
n{ϕM(X)−ϕM(µ)}→d N (0,v2), as n →∞, (2.151)

where

v2 = 4
〈

Π⊥µ ,Σ Π⊥µ
〉
. (2.152)

If v2 = 0 the limiting distribution N (0,0) is to be interpreted as the distribution

which is degenerate at 0.

Proof. The central limit theorem for H-valued random variables yields the

existence of a G(0,Σ ) random element G, such that

√
n(X − µ) →d G, as n →∞, (2.153)

in (H,BH). It is easy to see that ϕM : H → R is Fréchet differentiable at any

µ ∈H, tangentially to H, with derivative the linear functional

2
〈

Π⊥µ ,h
〉
,h ∈H. (2.154)

According to the functional delta method we may conclude

√
n{ϕM(X)−ϕM(µ)}→d 2

〈
Π⊥µ ,G

〉
. (2.155)

The random variable on the right in (2.155) is normal, because G is Gaussian,

and clearly its mean is 0. Therefore its variance equals

E

〈
Π⊥µ ,G

〉〈
Π⊥µ ,G

〉
=
〈

Π⊥µ ,Σ Π⊥µ
〉
, (2.156)

according to the definition of Σ (cf.(2.135)).
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LEMMA 2.15.2. We have

v̂2
n = 4

〈
Π⊥X ,S Π⊥X

〉
→p v2, as n →∞. (2.157)

Proof. By simple algebra we find
〈

Π⊥X ,S Π⊥X
〉

= (2.158)

=

〈
Π⊥X ,

1

n

n

∑
i=1

〈
Xi −X,Π⊥X

〉
(Xi −X)

〉
=

=
1

n

n

∑
i=1

〈
Xi −X ,Π⊥X

〉2

=

=
1

n

n

∑
i=1

{
〈

Xi − µ ,Π⊥µ
〉

+
〈

Xi − µ ,Π⊥(X − µ)
〉

+
〈

µ −X ,Π⊥µ
〉

+
〈

µ −X,Π⊥(X − µ)
〉
}2.

According to the weak law of large numbers and the definition of covariance

operator we have

1

n

n

∑
i=1

〈
Xi − µ ,Π⊥µ

〉2 P−→ E

〈
X − µ ,Π⊥µ

〉2

=

=
〈

Π⊥µ ,ΣΠ⊥µ
〉
, as n →∞.

All the other terms tend to 0 in probability. As an example consider

〈
µ −X,Π⊥µ

〉2

≤ ||X − µ ||2||Π⊥µ ||2 P−→ 0,

as n→∞. The lemma follows from straightforward combination of the above.

For 0 < α < 1 let ξ1−α denote the quantile of order 1−α of the standard

normal distribution. Focusing on the testing problem (2.147), (2.148) let us

decide to reject the null hypothesis when
√

n{ϕM(X)− δ 2}/v̂ > ξ1−α . The

corresponding power function is then

βn(µ) = P{√n{ϕM(X)− δ 2}/v̂ > ξ1−α}, (2.159)

when µ ∈H is the true parameter.

THEOREM 2.15.1. (asymptotics under the null hypothesis and fixed alterna-

tives.) The power function in (2.159) satisfies

lim
n→∞

βn(µ) =





0, ϕM(µ) < δ 2,

α, ϕM(µ) = δ 2,v2 > 0,

1, ϕM(µ) > δ 2.

(2.160)
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Hence the test has asymptotic size α , and is consistent against the alternatives

µ : ϕM(µ) > δ 2.

Proof. If v2 > 0 it is immediate from Lemma’s 1 and 2 that
√

n{ϕM(X)−
δ 2}/v̂−→d N (0,1). The result now follows in the usual way by observing that√

n{δ 2 −ϕM(µ)} tends to either ∞ (when ϕM(µ) < δ 2), to 0 (when ϕM(µ) =

δ 2) or to −∞ (when ϕM(µ) > δ 2). If v2 = 0 we still have that
√

n{ϕM(X)−
δ 2}/v̂ tends in probability to ∞ (when ϕM(µ)< δ 2) or to −∞ (when ϕM(µ)>
δ 2).

To describe the sampling situation under local alternatives (including the

null hypothesis) we assume now that

X1, . . . ,Xn are i.i.d. (µn,t ,Σ ), (2.161)

where Σ is as above and

µn,t = µ +
t√
n

γ, t ≥ 0, (2.162)

for some (cf. (2.147) and below)

µ ∈ Bδ ,γ ∈H :
〈

µ ,Π⊥γ
〉
> 0. (2.163)

Under these assumptions it follows that µn,0 = µ satisfies Hδ , and µn,t satisfies

Aδ for each t > 0. Let Φ denote the standard normal c.d.f.

THEOREM 2.15.2. (asymptotic power). We have

lim
n→∞

βn(µn,t) = 1−Φ

(
ξ1−α − 2t

〈
µ ,Π⊥γ

〉

v

)
, t > 0. (2.164)

Proof. We may write Xi = X ′
i + (t/

√
n)γ , where the X ′

i are i.i.d. (µ ,Σ ). It is

easy to see from this representation that we still have

v̂n −→p v2 > 0, as n →∞∀ t > 0. (2.165)

Exploiting once more the Fréchet differentiability of ϕM (see ((2.154))) we

obtain
√

n
ϕM(X)− δ 2

v̂
= (2.166)

=
√

n
ϕM(X

′
)−ϕ(µ)

v̂
+ 2t

〈
Π⊥µ ,Π⊥γ

〉

v̂
+ op(1) →d

→d N (2t

〈
µ ,Π⊥γ

〉

v
,1), as n →∞,

and the result follows.
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REMARK 2.15.1. To corroborate the remark about interchanging null hy-

pothesis and alternative made at the beginning of this section, just note that

an asymptotic size α test for testing H′
δ versus A′

δ in (2.149) is obtained by

rejecting H′
δ when

√
n

ϕM(X)− δ 2

v̂
< ξα , α ∈ (0,1). (2.167)

This allows to assess the approximate validity of the model within the neigh-

borhood δ . Of course, from (2.167) we immediately get a confidence interval

for δ as well.

REMARK 2.15.2. The expression in (2.166) remains valid for t = 0 or γ = 0.
In either case the corresponding mean satisfies the null hypothesis assumption

and the limit in (2.166) equals α .

There is an objective, data-driven method to select the parameter δ , say,

that determines the size of the neighborhood hypothesis. Given any level α ∈
(0,1) for the test, one might determine the smallest value δ̂ (α) for which the

neighborhood hypothesis is not rejected. It should be realized that modification

of Hotelling’s test will require a more or less arbitrary regularization parameter.

2.15.4 The Multi-Sample Problem in a Hilbert Space

Let X j1, . . . ,X jn j
be i.i.d. with mean µ j and covariance operator Σ j , where n j ∈

N, s.t. ∑ j n j = n, and let these random elements satisfy the moment condition

in (2.137): all of this for j = 1, . . . , p. Moreover these p samples are supposed

to be mutually independent, and their sample sizes satisfy

{
n j

n
= λ j + o

(
1√
n

)
, as n = n1 + · · ·+ np →∞,

λ j ∈ (0,1), j = 1, . . . , p.
(2.168)

Let us define

X j =
1

n j

n j

∑
i=1

X ji, X =
1

p

p

∑
j=1

n j

n
X j, j = 1, . . . , p. (2.169)

Furthermore, let the functionals ψn : Hp → R be given by

ψn(x1, . . . ,xp) =
p

∑
j=1

∣∣∣
∣∣∣n j

n
x j − xn

∣∣∣
∣∣∣
2

(2.170)

where x1, . . . ,xp ∈H and xn = 1
p ∑

p
j=1

n j

n
x j. Defining ψ : Hp → R by

ψ(x1, . . . ,xp) =
p

∑
j=1

||λ jx j − x||2 , (2.171)

  



DATA ANALYSIS ON HILBERT SPACES 91

where x = 1
p ∑

p
j=1 λ jx j, it is readily verified that

√
n{ψn(x1, . . . ,xp)−ψ(x1, . . . ,xp)}→ 0, as n →∞, (2.172)

provided that condition (2.168) is fulfilled.

The neighborhood hypothesis in this model can be loosely formulated as

“approximate equality of the means”. More precisely the null hypothesis

Hp,δ : µ = (µ1, . . . ,µp)∗ ∈ Mp,δ ∪Bp,δ , (2.173)

where Mp,δ = {x ∈Hp : ψ(x) < δ 2} and Bp,δ = {x ∈Hp : ψ(x) = δ 2,

∑
p
j=1 λ j

〈
λ jx j − x,∑ j(λ jx j − x)

〉
> 0}, will be tested against the alternative

Ap,δ : µ = (µ1, . . . ,µp)∗ ∈ Mc
p,δ ∩Bc

p,δ . (2.174)

Let us introduce some further notation and set

τ2
p = 4

p

∑
j=1

λ j 〈λ jµ j − µ, (λ jµ j − µ)〉 ,µ =
1

p

p

∑
j=1

λ jµ j. (2.175)

Writing S j for the sample covariance operator of the j-th sample (cf.(3.2)) the

quantity in (2.175) will be estimated by

τ̂2
p,n = 4

p

∑
j=1

λ j

〈
λ jX j −X ,S j(λ jX j −X)

〉
. (2.176)

THEOREM 2.15.3. The test that rejects Hp,δ for

√
n

ψn(X1, . . . ,X p)−ψn(µ1, . . . ,µp)

τ̂p,n
> ξ1−α ,0 < α < 1, (2.177)

has asymptotic size α , and is consistent against fixed alternatives µ =

(µ1, . . . ,µp)∗ with ψ(µ) > δ 2.

Proof. Because the p samples are independent the central limit theorem in

(2.153) yields

√
n




X1−µ1

...
Xm−µm


→d

(
G1

...
Gm

)
, (2.178)

where G1, . . . ,Gm are independent Gaussian random elements in H, and

G j =d G
(

0,
1

λ j
Σ j

)
. (2.179)

It follows from (2.172) that

√
n[ψn(X1, . . . ,Xm)−ψn(µ1, . . . ,µm) (2.180)

  



92 BASIC NONPARAMETRIC MULTIVARIATE INFERENCE

−{ψ(X1, . . . ,Xm)−ψ(µ1, . . . ,µm)}] = op(1).

Moreover, a slight modification of Lemma 2 yields that
〈
X j −X,S j(X j −X)

〉
P−→
〈
µ j − µ,∑ j(µ j − µ)

〉
and hence

τ̂2
n,m

P−→ τ2
m. (2.181)

This means that the statistic on the left in (2.177) and the one obtained by

replacing ψn with ψ in that expression will exhibit the same first order asymp-

totics. The proof will be continued with the latter, simpler version. A simple

calculation shows that ψ : Hm →R is Fréchet differentiable at any x ∈Hm, tan-

gentially to Hm. Writing h = 1
p ∑m

j=1 λ jh j, for any h1, . . . ,hm ∈H, its derivative

is equal to

2
m

∑
j=1

〈
λ jx j − x,λ jh j − h

〉
= 2

m

∑
j=1

〈λ jx j − x,λ jh j〉 . (2.182)

Application of the delta method with the functional ψ in the basic result (2.178)

yields

√
n{ψ(X1, . . . ,Xm)−ψ(µ1, . . . ,µm)}→d 2

m

∑
j=1

〈λ jµ j − µ,λ jG j〉 . (2.183)

According to (2.179) we have

λ jG j =d G
(
0,λ jΣ j

)
, (2.184)

and because of the independence of the G j it follows that

2
p

∑
j=1

〈λ jµ j − µ,λ jG j〉 =d N (0,τ2
p), (2.185)

where τ2
p is defined in (2.175). Exploiting the consistency in (2.181) the proof

can be concluded in much the same way as that of Theorem 2.15.1. Just as in

that theorem we need here that τ2
p > 0 at the alternative considered in order to

ensure consistency.

2.16 Exercises

Exercise 1. (a) Prove that if Yn
P−→ Y, then Yn converges in distribution to Y.

(b) Prove that if Yn converges in distribution to a constant c (i.e., the distribu-

tion of Yn converges to the Dirac measure δ{c}), then Yn
P−→ c.

[Hint: (a) Assume Yn
P−→ Y. Then

P(Yn ≤ t) = P({Yn ≤ t}∩{|Yn −Y | ≤ ε}) +P({Yn ≤ t}∩{|Yn −Y |> ε})

≤ P(Y ≤ t + ε) +P(|Yn−Y |> ε)
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First pick ε small enough so that P(X ≤ t + ε) ≤ P(X ≤ t) + η/2. Then pick n

large enough so that P(|Yn−Y |> ε) < η/2. Then, for n large enough, we have

FYn(t) ≤ FY (t) + η . Similarly, for n large enough, if FY is continuous at t, we

have FYn(t) ≥ FY (t)−η . This shows that limn→∞FYn(t) = FY (t) at continuity

points t of FY .]

Exercise 2. Prove Corollary 2.8.1.

Exercise 3. Suppose Pn (n ≥ 1), P are probability measures on (R,B1) such

that Pn converges weakly to P. Show that {Pn : n ≥ 1} is tight: for every ε > 0

there exists Aε > 0 such that Pn ({x : |x|> Aε}) < ε for all n.

[Hint: (i) Find points of continuity −Bε , Cε of the distribution function F of P

such that F(−Bε) < ε/3, F(Cε ) > 1− ε/3.

(ii) Find Nε such that Fn(−Bε ) < ε/3 and Fn(Cε ) > 1− ε/3 for all n ≥ Nε ,

where Fn is the distribution function of Pn. Then Pn([−Bε , Cε ]) > 1− 2ε
3 for all

n ≥ Nε .

(iii) For n = 1, . . . ,Nε , find Dε > 0 such that Pn([−Dε ,Dε ])> 1−ε (1≤ n≤Nε ).

(iv) Let Aε = maxBε ,Cε ,Dε to get Pn({x : |x|> Aε}) < ε for all n.]

Exercise 4. Assume X j, j ≥ 1, are i.i.d. real-valued, with EX j = µ , var(X j) =

σ2 > 0, EX4
j <∞. Prove that

(a)
√

n(s2 −σ2) →d N(0,E(X1 − µ)4 −σ4), and

(b)
√

n( 1
s
− 1

σ ) →d N(0, [E(X1 − µ)4 −σ4] · [1/4σ6]).

(c) What is the asymptotic distribution of
√

n(logs− logσ ) ?

[Hint: (a) Consider U j = X j − µ , j ≥ 1, s2 = ( n
n−1

) 1
n ∑1

j=1(U j −U)2

= ( n
n−1)

[
1
n
(∑n

j=1)U2
j −U

2
]
, so that

√
n(s2 −σ2)−√

n( 1
n
Σn

j=1(U2
j −σ2))

P−→ 0.

(b)
√

n( 1
s
− 1

σ )−√
n[H(z)−H(σ2)]

P−→ 0, where z j = U2
j , EZ j = σ2, H(z) =

z−1/2, H(Z) = ( 1
n
Σn

j=1U2
j )−1/2, H(σ2) = 1/σ . Apply Theorem 2.8.4.]

Exercise 5. (a) Let Xn have the discrete uniform distribution on {0, 1
n
, 2

n
, . . . ,1}

(i.e., P(Xn = k
n
) = 1

n+1
(k = 0,1, . . . ,n). Show that Xn converges in distribution to

the uniform distribution on [0,1] (with constant density 1).

(b) Use (a) to prove that (1/n+1)∑n
k=0 f (k/n)→ ∫ 1

0 f (x)dx for every continuous

function f on [0,1].

(c) Extend (b) to the case of all bounded measurable f on [0,1] with a finite

set of discontinuities.

Exercise 6. Show that if a random variable Tn has a Student t distribution with

n degrees of freedom then Tn →d Z, where Z ∼ N(0,1).

Exercise 7. Extend Proposition 2.5.2 to k sequences U
(i)
n

P−→ ai (1 ≤ i ≤ k)

and a function g of k vector variables continuous at (a1,a2, . . . ,ak), as stated

in Remark 2.5.1.

Exercise 8. Prove that the sample covariance matrix is a consistent estimator

of the covariance matrix (see Proposition 2.5.3).
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Exercise 9. Let Xn (n ≥ 1) be a sequence of i.i.d. random variables, and as-

sume that the infimum and supremum of values of X1 are m and M, respec-

tively. That is, P(m ≤ X1 ≤ M) = 1, P(X1 < a) > 0 ∀ a > m, P(X1 > b) > 0

∀ b < M (Here Xn real-valued, but m and/or M may be infinite). Prove that

max{X1, . . . ,Xn} P−→ M and min{X1, . . . ,Xn} P−→ m.

Exercise 10. Prove that if Yn converges in distribution to a constant c (i.e., the

distribution of Yn converges to the Dirac measure δ{c}), then Yn
P−→ c.

Exercise 11. Let Pn (n ≥ 1), P be probability measures on (R,B1) such that Pn

converges weakly to P.

(a) Give an example to show that Pn(B) need not converge to P(B) for all Borel

sets B.

(b) Give an example to show that the distribution function Fn of Pn may not

converge to the distribution function F of P at every point x.

Exercise 12. Let the hypothesis of Theorem 2.14.1 hold.

(a) Derive (2.120) and (2.123). Show that

(b) {( f̂n(x) − f (x))/

√
var f̂n(x) : x such that f (x) > 0} converges in law to

a Gaussian process, and compute the mean and covariance function of this

Gaussian process.

Exercise 13. Assume that h ≡ hn = o(n−1/5) and (2.109) holds, and prove that

with this bandwidth (2.123) holds with γ = 0, under the hypothesis of Theorem

2.14.1.

Exercise 14. Consider a pdf f on Rm, having continuous and bounded second

derivatives.

(a) State and prove the analog of Theorem 2.14.1.

(b) Derive the multidimensional versions of (2.121)–(2.123).

  



Chapter 3

Geometry and Topology of

Manifolds

3.1 Manifolds, Submanifolds, Embeddings, Lie Groups 96

3.1.1 Manifolds and Their Tangent Bundles 98

3.1.2 Embeddings of Manifolds in Euclidean Spaces 101

3.1.3 Lie Groups and Their Lie Algebras 103

3.1.4 Hilbert Manifolds 108

3.2 Riemannian Structures, Curvature, Geodesics 108

3.3 The Laplace–Beltrami Operator 122

3.3.1 Harmonic Analysis on Homogeneous Spaces 125

3.3.2 Harmonics on Semi-Simple Lie Groups 127

3.4 Topology of Manifolds 128

3.4.1 Background on Algebraic Topology 128

3.4.2 Homology 129

3.4.3 Differential Topology 135

3.5 Manifolds in Statistics 138

3.5.1 Spaces of Directions, Axial Spaces and Spaces of Frames 139

3.5.2 G-Shape Spaces 140

3.5.3 Kendall Shape Spaces 140

3.5.4 Planar Size-and-Shape Manifolds 142

3.5.5 Size-and-Shape Manifolds in Higher Dimensions 142

3.5.6 Size-and-Reflection Shape Manifolds in Higher

Dimensions 143

3.5.7 Linear Shape Spaces and Affine Shape Spaces as

Grassmannians 143

3.5.8 Projective Shape Spaces 146

3.6 Exercises 149

95
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3.1 Manifolds, Submanifolds, Embeddings, Lie Group actions

A topological space is a pair (M,τ), where M is a nonempty set, and τ is a set

of parts of M, such that (i) M is in τ, (ii) for any finite set of parts in τ, their

intersection is still in τ, and (iii) for any set of parts in τ, their union is in τ.
A set in τ is said to be open, and its complement is said to be a closed set .

A function f : (M1,τ1) → (M2,τ2) between two topological spaces is continu-

ous if ∀W ∈ τ2, f−1(W ) ∈ τ1. If in addition f is one to one and its inverse is

continuous, f is said to be a .

EXAMPLE 3.1.1. A metric space is a pair (M,ρ), where M is a nonempty set,

and

ρ : M×M → [0,∞) is a function such that ∀x1,∀x2,∀x3 ∈M, (i) if ρ(x1,x2) = 0,
then x1 = x2, (ii) ρ(x1,x2) = ρ(x2,x1)(symmetry) and (iii) ρ(x1,x2) ≤ ρ(x1,x3)+

ρ(x3,x2) (triangle inequality). The metric topology τρ of this metric space is

the set of all subsets U of M, with the property that for any point x ∈ U, there

is a positive number r such that the open ball

Br(x) = {y ∈ M;ρ(y,x) < r}, (3.1)

is a subset of U.

The closure cl(D) of a subset D of a topological space (M,τ) is the inter-

section of all closed sets containing S. The subset D is said to be in (M,τ) if

cl(D) = M.

EXAMPLE 3.1.2. The set Qm is a countable dense subset of the Euclidean

space (Rm,τ0). Here τ0 is the Euclidean metric topology.

DEFINITION 3.1.1. Given a subset N of a topological space (M,τ), the in-

duced topology τ|N the set of all intersections N ∩U,U ∈ τ.

The inclusion map ι : (N,τ|N) → (M,τ) is an example of a continuous

function.

DEFINITION 3.1.2. A relationship on a set M is a subset R of M ×M. The

relationship R is reflexive if ∀x ∈ M, (x,x) ∈ R. The relationship R is symmetric

if ∀x,y, if (x,y) ∈ R, then (y,x) ∈ R. The relationship R is transitive if ∀x,y,z,

(x,y) ∈ R and (y,z) ∈ R, then (x,z) ∈ R. An equivalence relationship on M is a

relationship on M that is reflexive, symmetric and transitive.

EXAMPLE 3.1.3. Consider the relationship Rm on Rm defined as follows

(x,y) ∈ Rm if x− y ∈ Zm. It is elementary to show that Rm is an equivalence

relationship.

Given an equivalence relationship R on M and an element x ∈ M, the equiv-

alence class of x is the set [x]R = {y ∈ M, (y,x) ∈ R}. Note that two equivalence
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classes that do intersect are equal, therefore the set of equivalence classes give

a partition of M..

DEFINITION 3.1.3. Given an equivalence relationship R on M, the quotient

set M/R is the set M/R = {[x]R,x ∈ M}. If M has in addition a topology τ on

it, the quotient topology τ/R on M/R is the set V ⊆ M/R,π−1
R (V ) ∈ τ , where

πR : M → M/R is given by πR(x) = [x]R. and the pair (M/R,τ/R) is a quotient

topological space.

EXAMPLE 3.1.4. Consider the numerical space Rm with the metric topology

τ0 associated with the Euclidean distance on Rm. The quotient topological

space (Rm/Rm,τ0/Rm) is called flat torus .

A topological space is said to be connected if it can not be written as a

union of two disjoint open sets. Connectivity is a topological property: if C is

a connected subset of a topological space (M1,τ1) and f : (M1,τ1) → (M2,τ2)

is a continuous function, then f (C) is a connected subset in (M2,τ2). Note that

the only connected sets of the Euclidean line are the intervals, which leads to

the following

THEOREM 3.1.1. (Generalized Darboux theorem ) If (M,τ) is a connected

topological space and f : (M,τ) →R, is a continuous function, such that there

are two values of f having opposite signs, then the equation f (x) = 0 has a

solution in M.

Given a topological space (M,τ), an open neighborhood of point on M is

an open set that contains that point. The topological space (M,τ) is said to be

Hausdorff if ∀x1,x2 in M,x1 6= x2 there are disjoint open neighborhoods U1 of

x1 and U2 of x2. The topological space (M,τ) is said to be separable if there is

a dense countable subset D of M.

EXAMPLE 3.1.5. The Euclidean space Em = (Rm,τ0) is both Hausdorff and

separable.

A metric space M, is paracompact if from any open cover (Uα)α∈A, of M,
one can extract a locally finite subcover. Given a paracompact space M, and

an open cover (Uα)α∈A, partition of the unity , is an indexed set of functions

(ϕα)α∈A, for which (i) ϕα ≥ 0, (ii) suppϕα ⊂Uα , and (iii) ∑α∈A ϕα = 1. Here

suppϕα is the closure of the set of points p ∈M, with ϕ(p) > 0.

EXAMPLE 3.1.6. Any compact metric space is paracompact.

Recall that a function of several real variables f : U ⊆ Rm → Rp defined

on an open set U is said to be differentiable at a point x0 if there exists a linear

map T : Rm → Rp such that

lim
h→0

1

‖h‖ ( f (x0 + h)− f (x0)−T (h)) = 0. (3.2)
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We use the notation dx0
f for T ; this is the differential of f at x0. If the func-

tion is differentiable at x0, then for all indices j = 1, . . . ,m, the partial deriva-

tives
∂ f

∂x j (x0), exist, and if e j, j = 1, . . . ,m is the standard basis of Rm, then
∂ f

∂x j (x0) = dx0
f (e j).

DEFINITION 3.1.4. The function f : U ⊆Rm →Rp is differentiable , if ∀x ∈
U, f is differentiable at the point x.

DEFINITION 3.1.5. A Cr diffeomorphism between two open sets in Rm is a

differentiable one-to-one and onto map from the first set to the second set, with

a differentiable inverse, that has continuous partial derivatives up the order r.

3.1.1 Manifolds and Their Tangent Bundles

Assume M is a metric space. A chart on M is a homeomorphism of an open

subset U ⊆ M onto an open subset of Rm. An m dimensional chart x : U →
x(U)⊆Rm is typically defined by the pair (U,x), and if M is connected metric

space, by the invariance of the domain theorem (see Brower (1912 [167],1913

[168]), any other chart (V,y) is also m-dimensional.

EXAMPLE 3.1.7. If F = (F1, . . . ,Fp) : Rm ×Rp → Rp, is a C1 differentiable

function, and the matrix (gradyF1 . . .gradyFp) has rank p at any point (x0,y0)

with F(x0,y0) = 0, then, by the implicit function theorem, there is an open

neighborhood V of such a point (x0,y0) in Rm×Rp such that the the projection

x : V ∩F−1(0) → x(V ∩F−1(0)) is a chart on F−1(0).

DEFINITION 3.1.6. A collection A = {(Uα ,xα )} of Rm-valued charts on

(M,ρ) is called the atlas of class Cr if the following conditions are satisfied:

(i) ∪αUα = M.
(ii) Whenever Uα ∩Uβ is not empty, then the map xβ ◦ x−1

α : xα(Uα ∩Uβ ) →
xβ (Uα ∩Uβ ) is a Cr diffeomorphism.

DEFINITION 3.1.7. An m-dimensional manifold of class Cr is a triple

(M,ρ ,AM) where (M,ρ) is a metric space and AM is an Rm-valued atlas

of class Cr on M.

Note that since any manifold M is locally compact , every closed bounded

subset of a complete manifold M is compact.

EXAMPLE 3.1.8. Assume F : Rm+p → Rp is a differentiable function, such

that for each point x ∈ F−1(0), the matrix
(

∂Fj

∂xi

)
i=1,m+p, j=1,p

has rank p. Then

from example 3.1.7 MF = F−1(0) is a differentiable manifold of dimension

m with an atlas of charts given around a point x ∈ F−1(0), by a projection

x → xI where I ⊂ 1,m + p is a set of indices, with I∪J = 1,m + p, I∩J = ∅ and

rank
(

∂Fj

∂xi

)
i=1,m+p, j∈J

= p.
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Figure 3.1: Tangent plane to a surface at a given point.

EXAMPLE 3.1.9. A particular case of an m-dimensional manifold ob-

tained as set of zeros of a differentiable function as in example 3.1.8

is the m-dimensional sphere or radius one, M = Sm = {x ∈ Rm+1 :

‖x‖ = 1}, since Sm = F−1(0), where F((x1, . . . ,xm+1)) = ∑m+1
a=1 (x j)2 − 1 and

rank
(

∂Fj

∂xi
(x)
)

i=1,m+1, j∈J
= 1, for any point x ∈ Sm.

DEFINITION 3.1.8. Assume M,N are two manifolds of dimension m, re-

spectively p. A function f : M→N is differentiable function between mani-

folds, if f is continuous and for any charts (U,xU ) ∈ AM, (V,xV ) ∈ AN , with

V ∩ f (M) 6= ∅, the local representative fxU ,xV
: xU (U ∩ f−1(V )) →Rp, given by

fxU ,xV
(x) = xV ( f (x−1

U (x))) is a differentiable.

A manifold diffeomorphism is an invertible differentiable function f :M→
N that has a differentiable inverse; in this case M and N are said to be diffeo-

morphic manifolds.

If (M,AM), (N ,AN ) are manifolds, their product M×N has a natural

structure of manifold with the atlas AM×N of charts (U ×V,xU × xV ) given

by xU × xV (u,v) = (xU (u),xV (v)). A differentiable curve on a manifold M is a

differentiable function from an interval to M. Two curves ca,a = 1,2 defined

on a neighborhood of 0 ∈ R are tangent at p if c1(0) = c2(0) = p and there is a

chart (U,x) around p such that (x◦ c1)′(0) = (x◦ c2)′(0).

DEFINITION 3.1.9. The set of all curves tangent at p to the curve c is called

tangent vector vp at p = c(0), and is labeled vp = dc
dt

(0).
If (U,x) is a chart around p with x(p) = x0, the tangent vector to the curve

cp,x0,i(t) = x−1(x0 + tei) is labeled ∂
∂xi |p,x or ∂

∂xi |p, if x is known.

If M is a submanifold of RN , then two curves c1,c2 on M with c1(0) =

c2(0) = p have the same tangent vector in the sense of multivariable calculus, if
dc1
dt

(0) = dc2
dt

(0), therefore if x : U → Rm, is a chart around p, then d(x◦c1)
dt

(0) =
d(x◦c2)

dt
(0), showing that the definition 3.1.9 corresponds to the classical notion

of tangent vector.
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DEFINITION 3.1.10. The TpM at a point p of a manifold M is the set of all

tangent vectors vp = dc
dt

(0) to curves c : (−ε,ε) →M with c(0) = p.

Assume (U,x) is a chart defined on a neighborhood of p, with x(p) = 0, and

c is a differentiable curve in M,c(0) = p. We may write c(t) = x−1(x(c(t))),
therefore any curve is locally defined around p = c(0) by a curve γ(t) =

x(c(t)),γ : (−ε,ε) → Rm, with γ(0) = 0. Note that the curves t → c(t) and

t → x−1(t
dγ
dt
|t=0) define the same tangent vector at p, therefore any tangent

vector is uniquely determined by a vector w ∈ Rm and the tangent space TpM
inherits a structure m dimensional vector space from the Rm, which is indepen-

dent on the choice of the chart (U,x).
Let (U,x) be a chart around p with two curves defined around 0∈R c1(0) =

c2(0) = p and both c1 and c2 tangent at p. Then given another chart (V,y) around

p we have;

d(y◦ c1)

dt
(0) =

(
∂y j

∂xi

∣∣∣∣
c(o)

)

i, j=1,...,m

d(x◦ c1)

dt
(0) (3.3)

Note that x ◦ c1 : (−ε,ε) → Rm and similarily y ◦ c1 : (−ε,ε) → Rm, hence

x(p) = (x1(c1(0)), · · · ,xm(c1(0)))T = x ◦ c1(0) and we also have that y ◦ c1(t) =

(y1 ◦ c1(t), · · · ,ym ◦ c1(t))T and for i = 1, · · · ,m we have

yi(c(t)) = yi ◦ x−1(x1(c(t)), · · · ,xm(c(t)))

d(y◦ c1)

dt
(0) =

(
d(y1 ◦ c1)

dt
(0), · · · , d(ym ◦ c1)

dt
(0)

)T

where

d(y1 ◦ c1)

dt
(0) =

m

∑
i=1

∂ (y1 ◦ x−1)

∂xi

∣∣∣∣
x(c(0))

d(xi ◦ c1)

dt
(0)

...
...

d(y j ◦ c1)

dt
(0) =

m

∑
i=1

∂ (y j ◦ x−1)

∂xi

∣∣∣∣
x(c(0))

d(xi ◦ c1)

dt
(0)

...
...

d(ym ◦ c1)

dt
(0) =

m

∑
i=1

∂ (ym ◦ x−1)

∂xi

∣∣∣∣
x(c(0))

d(xi ◦ c1)

dt
(0)

Also note that; ∂ (y j◦x−1)

∂xi

∣∣∣
x(c(0))

d(xi◦c1)
dt

(0) = ∂y j

∂xi

∣∣∣
c(0)

d(xi◦c1)
dt

(0)

Furthermore, p∈M, TpM =
{

dc
dt

(0)
∣∣c : (−ε,ε) → M, di f f erentiable,c(0) = p

}
.
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And we have that it is a vectors spaces as well. Let v1,p and v2,p be tangent vec-

tors in TpM we have that v1,p + v2,p = dc
dt

(0) such that

c(t) = x−1

(
t

[
d(x◦ c1)

dt

∣∣∣∣
x(p)

+
d(x◦ c2)

dt

∣∣∣∣
x(p)

]
+ x(p)

)

The tangent space of a manifold M, TM, is the disjoint union of all tan-

gent spaces to M at different points of M, TM = ⊔p∈MTpM. The tangent

bundle is the triple (TM,Π ,M), where the Π : TM→M associates to each

tangent vector its base point, Π (vp) = p.
The tangent space TM has a natural structure of 2m dimensional manifold,

for which the map Π is differentiable. Indeed if (U,x) is a chart on M, then

(TU,Tx) is a chart on TM, where

TU = {v ∈ TM,Π (v) ∈U} (3.4)

and

T x(
dc

dt
(0)) = (x(c(0)),

d(x◦ c)

dt
(0)), if c(0) ∈U. (3.5)

A vector field V is a differentiable section of Π , that is V : M → TM, is

a differentiable function for which, Π ◦V = IdM. An equivalent definition is

that a vector field on M is an assignment to every point of M of a tangent

vector to M at that point, that is differentiable as a function of that point. That

is, for each p ∈M, we have a tangent vector V (p) ∈ TpM. An example of a

vector field on the sphere is suggested by the velocity of the wind at a given

moment at different points on the surface of a planet.

Vector fields are generated by one parameter groups of diffeomorphisms

(actions of the additive group (R,+) by diffeomorphishms of the manifold).

The set of all differentiable vector fields on M is labeled Γ (TM).

DEFINITION 3.1.11. A vector field X on M can be also regarded as a dif-

ferential operator X : C∞(M) →C∞(M) on the algebra of smooth functions

on M. That is an operator with the properties (i) X(f+g) = X(f) + X(g), (ii)

X( f g) = f X(g) + X( f )g, and (iii) X(1) = 0.
The Lie bracket [X ,Y ] of two vector fields X ,Y on M is defined as the differ-

ential operator on C∞(M) given by

[X ,Y ]( f ) = X(Y ( f ))−Y(X( f )). (3.6)

3.1.2 Embeddings of Manifolds in Euclidean Spaces

Manifolds are abstractions. To visualize a manifold as a submanifold of an

Euclidean space, one should embed it in a numerical space. If f : M1 →M2

  



102 GEOMETRY AND TOPOLOGY OF MANIFOLDS

is a differentiable function between manifolds, its tangent map is the function

d f : TM1 → TM2, given by

d f (
dc

dt
|c(0)) =

d( f ◦ c)

dt
| f (c(0)), (3.7)

for all differentiable curves c defined on an interval containing 0 ∈ R. The

differential of f at a point p is the restriction of the tangent map, regarded as a

linear function dp f : TpM1 → Tf (p)M2.

DEFINITION 3.1.12. An immersion of a manifold M in an Euclidean space

RN is a differentiable j : M→ RN , for which differential dp j is a one-to-one

function from TpM to RN . An embedding of a manifold M into an Euclidean

space RN is a one-to-one immersion j : M → RN , for which j is a homeo-

morphism from M to j(M), endowed with metric topology induced by the

Euclidean distance.

EXAMPLE 3.1.10. The inclusion map of a flat torus (S1)N in (R2)N is an

embedding.

PROPOSITION 3.1.1. Any compact manifold M can be embedded into RN ,
for some large enough N.

For a proof, assume M is m dimensional. W.l.o.g. we may consider a finite

atlas A on M, whose charts are (Ua,ϕa),a = 1, . . . ,N. Assume ηa,a = 1, . . . ,N
is a partition of unity subordinated to this open covering, and for a = 1, . . . ,N,
define ψa : M→ Rm,

ψa(p) =

{
ηa(p)ϕa(p) , if p ∈Ua

0 , otherwise.

It is easy to see that the function F : M→R(m+1)N given by

F(p) = (η1(p), . . . ,ηN(p),ψ1(p), . . . ,ψN(p)), (3.8)

is one to one. To prove that F is an embedding, given that M is compact, it

suffices to show that F is an immersion. By the product rule, given v ∈ TpM,

dpF(v) = (dpη1(v), . . . ,dpηk(v),dpη1(v)ϕ1(p) + η1(p)dpϕ1(v), . . . ,

dpηN(v)ϕN(p) + ηN(p)dpϕN(v), (3.9)

therefore if dpF(v) = 0, it follows that ∀a = 1, . . . ,N,dpη(v) = 0, and since

∑a ηa(p) = 1, there is an a such that dpϕa(v) = 0, and since ϕa : Ua → Rm

is a diffeomorphism, we get v = 0. Therefore F is an immersion, done.

The following result, due to Whitney (1944)[336], can not be improved if

m = 2k,k ∈ N,

THEOREM 3.1.2. (Whitney’s embedding theorem) Any smooth m dimen-

sional manifold can be embedded into R2m.
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3.1.3 Lie Groups and Their Lie Algebras

A Lie group is a differentiable manifold G which has in addition an algebraic

structure of group, for which the group multiplication ◦ : G×G → G, and the

operation of taking the inverse g → g−1 are differentiable functions.

The group GL(m,R) of invertible matrices, with the matrix multiplication

is a Lie group. The orthogonal group O(m) (see Exercise 16), and its connected

component, the special orthogonal group SO(m) of all m×m orthogonal ma-

trices A with Det(A) = 1, are also Lie groups.

DEFINITION 3.1.13. A one parameter subgroup of a Lie group G is differ-

entiable group homomorphism γ from (R,+) to G.
EXAMPLE 3.1.11. Assume Y is a m×m real matrix, and define eY ∈GL(p,R)

given by

eY = exp(Y ) =
∞
∑
k=0

1

k!
Y k. (3.10)

Any one parameter subgroup γ(t) of GL(m,R), is given by γ(t) = etA, where

A ∈M(m,R).

REMARK 3.1.1. In general, given a tangent vector u in the tangent space

T1GG at the identity element of a Lie group G, there is a unique one parameter

subgroup ϕu : R→G, with d0ϕu(1) = u. In view of example 3.1.11, one defines

the exponential map expG : T1GG → G, as follows:

expG(u) = ϕu(1). (3.11)

The tangent space g
.
= T1GG has an additional structure of Lie algebra , derived

from the group operations. This structure measures the departure of the group

structure from being commutative. The commutator of a pair of elements x,y ∈
G, is the element {x,y} = xyx−1y−1. The commutator is the identity iff x and y

commute. To measure the infinitesimal effect of departure from commutativity,

one may consider the differentiable path ϕu,v : R→ G, associated with a pair

of tangent vectors u,v ∈ g, given by

ϕu,v(t) = {expG(tu),expG(tv)}. (3.12)

Note that ϕu,v(t) is a constant map, whenever expG(u) and expG(v) commute.

Also note that since the Lie group exponential map is a local diffeomorphism

around 0 ∈ g, for t small enough, the local representative of ϕu,v(t) in (3.12)

has the form

exp−1
G ϕu,v(t) = t2[u,v]g + ω(t), (3.13)

where limt→0
1
t2 ω(t) = 0.

DEFINITION 3.1.14. The operation bG : g×g→ g, given by

bG(u,v) = [u,v]g, (3.14)
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is called bracket operation and the pair (g, [u,v]g) turns out to have the follow-

ing properties

• linearity in the first variable:

[au + bv,w]g = a[u,w]g + b[v,w]g,∀a,b ∈ R,∀u,v,w ∈ g,

• skew symmetry:

[u,v]g = [v,u]g,∀u,v,∈ g,

• the Jacobi identity:

[u, [v,w]]g + [w, [u,v]]g + [v, [w,u]]g = 0,∀u,v,w ∈ g,

EXAMPLE 3.1.12. A straightforward computation starting from the defini-

tion 3.1.14 and equation (3.10) shows that the Lie bracket of the Lie algebra

gl(m,R) of the general linear group GL(m,R) is given by the commutator of

the two matrices:

[u,v] = uv− vu. (3.15)

The Lie algebra k of a Lie subgroup K of GL(m,R), is a linear subspace of

gl(m,R) and its Lie bracket operation is also given by (3.15). It can be also

obtained as the value the Lie bracket of the vector fields generated by the left

translation from the two tangent vectors u and v. Finally, since any (finite di-

mensional ) connected Lie group can be represented as a group of matrices,

the Lie algebra operations are essentially all derived from (3.15).

For the rest of the chapter, we will assume that a differentiable function has

a continuous differential.

DEFINITION 3.1.15. A subset M of the Euclidean space RN ,d0 is a sub-

manifold, if any point p0 ∈M, there is a RC-valued differentiable function F

defined on an open neighborhood U ⊆ RN of p0, such that M ∩U = F−1(0)

and ∀p ∈U ⊆ RN the rank of the differential dFp is C.

Note that while often times the function F in definition 3.1.15 is globally

defined on a neighborhood U of M (see, for instance, Example 3.1.9), in gen-

eral, the function F is defined only locally.

Many manifolds in statistics do not arise as submanifolds of an Euclidean

space though. They are spaces of orbits of Lie group actions.

Assume K is a Lie group with unit 1K . Consider a function α : K×M→
M, and for each element k ∈K, define the function αk : M→M, given by

αk(p) = k · p = α((k, p)). (3.16)

DEFINITION 3.1.16. α is a differentiable left action on M if

α is a differentiable function,

k · (h · p)) = (k ·h) · p,∀k,h ∈ G,∀p ∈M,

1K · p = p,∀p ∈M. (3.17)
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Figure 3.2: A diffeomorphism between a flat torus and a torus in 3D.

A simple example of group action is the adjoint action of GL(m,R) on

Mm(R), set of m×m matrices:

T ·A = TAT−1. (3.18)

DEFINITION 3.1.17. If K acts on M, the orbit of a point p ∈M is the set

K(p) = {k · p,g ∈ K} and the isotropy group Kp = {k ∈ K,k · p = p}.
The or quotient space of the group action (6.20) is the set of orbits

M/G = {G(p)|p ∈M}. (3.19)

EXAMPLE 3.1.13. The action of the additive group Zp on Rp is given by

α(k,x) = k + x. The quotient space Tp = Rp/Zp is called the p-dimensional

flat torus. Note that R2/Z2 can be identified with S1 × S1, a surface in R4.
This surface can be also obtained by “gluing” the opposite sides of the square

[0,1]2, via the identifications (x,0) ∼ (x,1) and (0,y) ∼ (1,y). Thus flat torus

S1×S1 is diffeomorphic to a torus of revolution (think of the surface of a bagel),

as shown in a number of steps in Figure 3.2.

In another example, if we consider the action of the multiplicative group

R∗ = R\{0} on Rm+1, given by scalar multiplication

α(λ ,x) = λ x (3.20)

the quotient space is the m-dimensional real projective space RPm, set of all

lines in Rm+1 going through 0 ∈ Rm+1.

EXAMPLE 3.1.14. To show that RP2 is a manifold, note that RP2 is a metric

space with the distance between two lines in R3 given by the measure of their
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acute angle. If u ∈ R3 \ {0},u = (u1,u2,u3), we label its orbit R∗(u) by [u] =

[u1 : u2 : u3]. Consider the affine open subsets A1,A2,A3 given by

A1 = {[1 : x2 : x3],x2,x3 ∈R},
A2 = {[x1 : 1 : x3],x1,x3 ∈R}, (3.21)

A3 = {[x1 : x2 : 1],x1,x2 ∈ R},

and the charts {(Ai,xi), i = 1,2,3}, given by x1 : A1 → R2,x1([u]) = ( u2

u1 ,
u3

u1 ) =

(x2
1,x

3
1),

x2 : A2 →R2,x2([u]) = ( u1

u2 ,
u3

u2 ) = (x1
2,x

3
2),

and x3 : A3 →R2,x3([u]) = ( u1

u3 ,
u2

u3 ) = (x1
3,x

2
3),

It is obvious that A1 ∪A2 ∪A3 = RP2.

Note that A1∩A2 = {[u]∈RP2,u1 6= 0,u2 6= 0 and if [u] ∈ A1 ∩A2 and x1([u]) =

(x2
1,x

3
1), and x2([u]) = (x1

2,x
3
2), then since x2

1 = u2

u1 ,x
3
1 = u3

u1 ,x
1
2 = u1

u2 ,x
3
2 = u3

u2 it

follows that x1
2 = 1

x2
1

,x3
2 =

x3
1

x2
1

, showing that x−1
2 ◦ x1 is analytic. The reader

may check that x−1
3 ◦ x1,x

−1
3 ◦ x2 and their inverses are also analytic func-

tions, showing that RP2 is an analytic manifold. Similarly one can show that

∀m ∈ N∗,RPm is an m-dimensional analytic manifold.

Similarly, if we consider the action of the multiplicative group C∗ = C\{0}
on Cm+1\{0}, given by scalar multiplication

α(λ ,z) = λ z (3.22)

the quotient space is the m-dimensional complex projective space CPm, set of

all complex lines in Cm+1 going through 0 ∈ Cm+1. One can show that CPm is

a 2m dimensional analytic manifold, using similar transition maps to those in

the case of RPm.
An m dimensional vector subspace of a real vector space V will be called m–

plane in V . The Grassmannian Gm(V ) is the set of m− planes in V. In particular

G1(Rm) is the (m− 1) dimensional real projective space, thus data analysis on

real Grassmannians is an extension of axial data analysis.

PROPOSITION 3.1.2. The Grassmannian Gm(Rd) is a m(d −m) - dimen-

sional manifold.

Indeed, assuming that W is an m-dimensional linear subspace of Rd , we

decompose Rd = W ⊕W⊥. If W̃ is another such subspace, that is close to W ,

then W̃ is the graph of a linear map T : W →W⊥ and if we select two bases in

W and W⊥ such a linear transformation is uniquely determined by the matrix C

associated with this linear map with respect to these two bases and we consider

the local chart xW defined by

xW (W̃ ) = C, (3.23)
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taking values in M(m,d −m,R) ∼ Rm(d−m). The differentiability of the tran-

sition maps is left to the reader (see Exercise 53).

Consider the set R(0)
m,k(⊂ Rm,k) of all m× k matrices S of full rank k and

the left action α of the group of non singular k× k matrices on R(0)
m,k, given by

α(X ,L) = XL, where L ∈ R(0)
m,k. This group action defines an equivalence re-

lation in R(0)
m,k. Two elements in R(0)

m,k are considered equivalent if the column

vectors of the two matrices span the same k - plane. Hence the equivalence

classes of R(0)
m,k are in one to one correspondence with the points of the Grass-

mannian Gk,m−k, and Gk(Rm) can be thought of as the quotient space

R(0)
m,k/R

(0)
k,k.

Furthermore, the Grassmannian can be thought of as the quotient space

O(m)/O(k)×O(m− k) (see Exercise 54).

In general, a differentiable action of a Lie group K on a manifold M is a

free action, if for all points p ∈M, the isotropy group Kp is the trivial group

{1G} and the quotient space M/G is a dimM− dimG dimensional manifold.

If H is a Lie subgroup of a Lie group K, the left coset of k ∈K is kH = {kh,h∈
H}, and the quotient space K/H is the set K/H = {kH,k ∈ K}.

Let Sym(m + 1,R) be the space of (m + 1)× (m + 1) symmetric matrices.

EXAMPLE 3.1.15. The Veronese-Whitney map j : RPm → Sym(m + 1,R),
given by

j([x]) = xxT ,xT x = 1 (3.24)

is an embedding of the real projective space in a Euclidean space of symmetric

matrices.

DEFINITION 3.1.18. Assume the Lie group G acts on both M and on RN . A

G-equivariant embedding j of M in RN is an embedding j that is compatible

with the two group actions, that is

j(g · p) = g · j(p). (3.25)

A manifold M is said to be a homogeneous space if there is a Lie group

K acting transitively on M. If M is a homogeneous space, and the transitive

group K is known, a K-equivariant embedding j of M is simply called equiv-

ariant embedding.

The cotangent space T ∗M of a manifold M is the disjoint union of all cotan-

gent spaces to M at different points of M, TM = ⊔p∈MT ∗
p M. The cotangent

bundle is the triple (T∗M,Π∗,M), where the Π∗ : T ∗M,Π ,M associates to

each cotangent vector its base point, Π (ωp) = p.
The cotangent space T∗M has a natural structure of 2m dimensional mani-

fold, for which the map Π∗ is differentiable. A Pfaff form ω is a differentiable

section of Π∗, that is ω : M→ T∗M, is a differentiable function for which,
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Π∗ ◦ω = IdM. An equivalent definition is that a Pfaff form on M is an as-

signment to every point of M of a linear function from TM to M at that point,

that is differentiable as a function of that point. That is, for each p ∈M, we

have a cotangent vector ω(p) ∈ T∗
p M.

3.1.4 Hilbert Manifolds

In this section we assume that H is a complete separable over the reals.

Any such space is isometric with the spacel2 of sequences x = (xn)n∈N of real

numbers for which the series ∑∞
n=0 x2

n is convergent, with the scalar product

< x,y >= ∑∞
n=0 xnyn. A Hilbert space with the norm ‖v‖ =< v,v >, induced by

the scalar product becomes a Banach space. One can show that if f is differen-

tiable at x ∈ B, then L is unique. L is the differential of f at x, and it is labeled

dx f .

DEFINITION 3.1.19. A function f defined on an open set U of a Banach

space (B,‖ · ‖), f : U → B, is differentiable at a point x ∈ U, if there is a

bounded linear operator L : B→ B, such that if we set

ωx(h) = f (x + h)− f (x)−L(h), (3.26)

then

lim
h→0

‖ωx(h)‖
‖h‖ = 0. (3.27)

DEFINITION 3.1.20. A chart on a separable metric space M,ρ is a one

to one homeomorphism ϕU : U → ϕ(U) defined on a open subset of M to

a Hilbert space H. A is a separable metric space M, that admits an open

covering by domain of charts, such that the transition maps ϕV ◦ϕ−1
U : ϕV (U ∩

V ) → ϕV (U ∩V ) are differentiable.

EXAMPLE 3.1.16. The P(H) of a Hilbert space H, space of all one dimen-

sional linear subspaces of H, has a natural structure of Hilbert manifold mod-

eled over H. (see Exercise 31).

3.2 Riemannian Structures, Curvature, Geodesics

Assume V is a vector space over R and let SP(V ) be the set of all scalar pro-

ducts on V . Recall that a scalar product on V is a symmetric bilinear form

B : V ×V →R, such that B(v,v) > 0,∀v ∈V,v 6= 0V .
If M is an m-dimensional manifold, let SPM =

⊔
u∈M P(TpM). One can

show that SPM is an (m + m(m+1)
2

) dimensional manifold, and the projec-

tion Π : SPM→ M,Π (Bp) = p is differentiable. A Riemannian structure is

a differentiable section of the projection Π , that is a differentiable function

g : M → SPM such that Π ◦ g = IdM, which is same as saying that at each
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point p ∈M is given a bilinear form g(p) : TpM×TpM→R that is symmet-

ric and positive definite, and g(p) depends smoothly on p ∈ M. A manifold

M together with a Riemannian structure g is called a Riemannian manifold.

EXAMPLE 3.2.1. (Spivak (1976) [316]) Using a partition of the unity, one

can show that any paracompact manifold has a Riemannian structure.

EXAMPLE 3.2.2. A submanifold of the Euclidean space has a natural Rie-

mannian structure induced by the Euclidean scalar product .

Let x = (x1, . . . ,xm) be a system of local coordinates associated with a chart

ϕ defined on U ⊂ M, and let
∂

∂xi
, i = 1, . . . ,m be the corresponding local

frame of vector fields. Give the local coordinates system ϕ : U → Rm, one

associates the matrix function ϕ g : ϕ(U) → Sym+(m,R),ϕ g = (gi j)i, j=1,...m with

the Riemannian metric g, where

ϕg(ϕ(p))i j = g

(
∂

∂xi
|p,

∂

∂x j
|p
)

(3.28)

Note that in equation (3.28), the metric g is an abbreviation for gU , the induced

metric on the U, regarded as an open submanifold of M.
Conversely, if for a given atlas A on M we define the matrices

(ϕgi j)i, j=1,...,m : ϕ(U) → Sym+(m,R) (3.29)

with the property that for any two of charts (U,xU ), (V,yV ) and for any point

p ∈U ∩V, with x = xU (p),y = yV (p),

xU
gi j(x) =

m

∑
a,b=1

∂ya

∂xi

∂yb

∂x j xV
gab(y),∀i, j ∈ 1,m (3.30)

then the functions (3.29) define a Riemannian structure on M.
Usually the subscript xU in the notation xU

g is dropped, as the chart xU is

assumed to be known.

In the case of a submanifold M⊂ RN , the induced Riemannian structure

g is given in terms with a local parametrization φ (inverse of the chart (U,x))

on M, by the first fundamental form

gi j =
∂φ

∂xi
· ∂φ

∂x j
. (3.31)

For example if we use spherical coordinates for a point on S2,

x = cosr cosθ ,y = cosr sin θ ,z = sinr (3.32)

the induced Riemannian structure on the manifold is given locally by the ma-

trices

g(r,θ ) =

(
1 0

0 cos2r.

)
(3.33)
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The classical local (covariant-contravariant) notation for the Riemannian struc-

ture (infinitesimal point varying squared Riemannian norm) is ds2. We have

ds2 =
m

∑
i, j=1

gi j(x)dxidx j (3.34)

Recall that a tensor is covariant in the upper indices and contravariant in the

lower ones. This representation of ds2 is that of a Riemannian structure, since

the coefficients gi j(x) are not constant, depending also on x. For example, if we

use spherical coordinates (3.32) for a point the induced Riemannian structure

on the sphere is

(r,θ ) → gr,θ = dr2 + cos2rdθ 2 (3.35)

However, for different parameterizations, a locally flat Riemannian structure

may also have nonconstant coefficients gi j(x).
For example the flat Riemannian structure given by the dot product on R2, in

Cartesian coordinates

ds2 = dx2 + dy2 (3.36)

and in polar coordinates r,θ ,x = r cosθ ,y = r sinθ , the same Riemannian struc-

ture has the form

ds2 = dr2 + r2dθ 2. (3.37)

The key invariant of a Riemannian manifold (M,g) was introduced by Rie-

mann in his celebrated Habilitation thesis delivered in a lecture at the Georg-

August University of Göttingen in 1854, as a measure for the deviation of

(M,g) from being flat (locally isometric to an Euclidean space). See Spivak

(1979) [316]. It is the curvature. In case of a surface (dim M = 2), this can be

reduced to a scalar function on M, called the curvature function of M, that

coincides with the Gaussian curvature (see Gauss (1828) [123]) in case M
is a submanifold of R3. This function is zero if and only if the Riemannian

manifold is locally isometric to a Euclidean plane (is flat). In particular, the

curvature function of a non-flat surface is constant only in the cases of famous

non-Euclidean geometries: the elliptic geometry (of constant positive curva-

ture), due to Riemann (essentially a real projective plane), and the hyperbolic

geometry (curvature is constant negative), due to Bolyay, Lobachevsky and,

possibly, to Gauss.

An intuitive approach to curvature is via moving frames (see Cartan (1946)

[59]). An orthoframe field on a Riemanian manifold M of dim m is an ordered

set of m vector fields on M, which are orthonormal w.r.t. the Riemannian

structure g on M. Locally such an orthoframe field is given by a function,

x → (v1(x), . . . ,vm(x)),where

g(vi(x),v j(x)) = δi j,∀i ≤ j (3.38)
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Cartan used instead orthocoframe fields. Such a coframe field is (ω1, . . . ,ωm),
where

g = (ω1)2 + · · ·+ (ωm)2. (3.39)

Cartan approached the geometry of manifolds using differential forms rather

than vector fields.

Recall that if V is a real vector space, its dual space is V∗ = L(V,R). Assume

e1, ...,em basis of V . Then the dual basis of V∗ is e∗ = (e∗1 , ...,e
∗
m) with

e∗i (e j) = δ i
j,∀i, j = 1, . . . ,m. (3.40)

Often the notation used is e∗i = ei.
Any co-vector θ ∈V∗, (linear form) can be written as θ = ∑m

1 aie
∗
i

DEFINITION 3.2.1. Assume p ∈M where M is a manifold. The cotangent

space at the point p, T ∗
p M, is the dual of the tangent space TpM, T ∗

p M =

L(TpM,R), space of linear forms on TpM.

The canonical basis of TpM associated with a chart (U,X) around p∈M is

( ∂
∂xi |p, i = 1, . . . ,m), therefore with the notation above (ei)i=1,...,m = ( ∂

∂xi )i=1,...,m

Its dual basis ei is labeled ei = dxi|p. By definition dxi|p( ∂
∂x j |p) = δ i

j. Another

interpretation of dxi is that of a differential of the function xi : U →R.
A cotangent vector at the point u ∈M can be decomposed w.r.t. the basis

(dxi|p)i=1,...,m in T ∗
p M as θp = ∑m

i=1 aidxi|u
The cotangent space T∗M of a manifold is the disjoint union of the cotan-

gent spaces at various points of that manifold, T ∗M =
⊔

u∈M T ∗
p M.

T∗M is has a structure of manifold of dimension 2m.
The projection π∗ : TM→M,π∗(θ ) = p if θ ∈ T∗

p M is differentiable as

a function between manifolds.

A 1 - differential form is a differentiable section θ : M → T∗M of the

projection Π∗, i.e. Π∗ ◦θ = 1M θ (p) ∈ T∗
p M

The local representative is xθ = ∑m
i=1 ai(x)dxi, where ai(x),x = x(p) are dif-

ferentiable functions.

With Einstein’s summation convention, a convention that will be used for

the rest of this chapter, θ = aidxi.
A 2-skew symmetric form, is a bilinear form on a vector space V, with the

property b(v,w) = −b(w,v),∀v,w ∈V.
The set

∧2 V∗ of all skew symmetric bilinear forms on a vector space V

of dimension m has a vector space structure and dimR

∧2 V∗ = 1
2
m(m− 1). In

terms of the dual basis (ei, i = 1, . . . ,m) of a given basis ei, i = 1, . . . ,m) of V, a

basis of
∧2 V∗ is (ei ∧ e j,1 ≤ i < j ≤ m) where

(ei ∧ e j)(ek,el) = δ i
kδ j

l − δ i
l δ j

k ,∀l,k = 1, . . . ,m. (3.41)

The space of skew symmetric tensors on M is
∧2 T ∗M =

⊔
p∈M

∧2(T ∗
u M).
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This space has a structure of differentiable manifold of dimension 1
2
m(m + 1).

The projection
∧2 π :

∧2 T∗M→M,
∧2 π(b) = p if b ∈∧2(T ∗

p M) is differen-

tiable, as a function between manifolds, and a section of this projection is called

a 2-differential form. If (U,x) is a chart around p ∈M, a basis for
∧2(TpM)

is given by (dxi|p ∧ dx j|p,1 ≤ i < j ≤ m), therefore locally any 2-differential

form ω on M can be written w.r.t. a chart (U,ϕ) as

ω = ∑
i< j

ai j(x)dxi ∧dx j =
1

2
∑ai j(x)dxi ∧dx j, (3.42)

where ai j = −a ji are differentiable functions on ϕ(U).

The set of all 2-differentiable forms on M is
∧2M, and the set of all 1-

differentiable forms on M is
∧1M.

The differential operator d :
∧1M→∧2 M is defined by

d(∑aidxi) =
1

2
∑
i6= j

(
∂ai

∂x j
− ∂a j

∂xi
)dxi ∧dx j (3.43)

Note that

d(d f ) = 0, (3.44)

for all differentiable functions f :M→R, and by Poincaré’s lemma and closed

1-differential form θ ( i.e. with dθ = 0) is locally exact (i.e. θ = d f .)
Assume the differential forms ω j satisfy (3.39). Cartan introduced the

Levi–Civita connection forms (ω i
j)i, j=1,...,m, defined by the following proper-

ties:

ω i
j + ω

j
i = 0,∀i, j ≤ m,

dω i +
m

∑
j=1

ω i
j ∧ωi = 0, (3.45)

The Cartan–curvature forms of a Riemannian manifold are given by the ma-

trix Ω = (Ω i
j)i, j=1,...,m, having as entries differential forms on M, as follows:

Ω i
j ∈
∧2M

Ω i
j = dω i

j +
m

∑
k=1

ω i
k ∧ωk

j

Ω i
j =

1

2
Ω i

jlmω l ∧ωm,Ω i
jlm + Ω i

jml = 0. (3.46)

Note that since the connection forms satisfy to ω
j

i + ω i
j = 0, the functions Ω

j
iml
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satisfy to Ω j
iml + Ω i

jml = 0. The functions Ω i
jlm define the curvature with re-

spect to the given orthoframe field. In the case of a surface, if we set ω1
2 = ω ,

equations (3.45) amount to

dω1 = −ω ∧ω2

dω2 = ω ∧ω1 (3.47)

For a surface (2D manifold), its curvature function k(x) = k = Ω 1
212 is given by

the equation:

dω = kω1 ∧ω2, (3.48)

Note that the wedge product is skew symmetric if x1,x2 are local coordinates

on a surface, then

dx2 ∧dx2 = 0,dx1 ∧dx1 = 0,dx1 ∧dx2 = −dx2 ∧dx1 6= 0. (3.49)

Also, from definition (3.44), for any local coordinate xi we have ddx j = 0.

EXAMPLE 3.2.3. We consider a surface of revolution, obtained by rotating

a curve in a half plane, parameterized by arc length parameter u, around the

boundary of this half plane. The location of a point p(X ,Y,X) on this surface

can be parameterized as follows

X = x(u)cosv

Y = x(u) sinv (3.50)

Z = y(u), (3.51)

where x(u) > 0,y(u) are the coordinates on the curve, and x′(u)2 + y′(u)2 =

1. The nonzero components of the induced Riemannian metric are g11(u,u) =

1,g22(u,v) = x2(u), therefore, in local coordinates g = du2 + x2(u)dv2. We may

then select the orthocoframe ω1 = du,ω2 = x(u)dv, the Levi-Civita connection

form has the expression

ω = λ1du + λ2dv, (3.52)

where λi = λi(u,v). Then dω1 = ddu = 0 = −ω ∧ (x(u)dv) = −(λ1du + λ2dv)∧
(x(u)dv) = −λ1x(u)du∧ dv, and it follows that λ1 = 0. From the second Levi-

Civita connection equation we get

dω2 = x′(u)du∧dv = λ2dv∧du = −λ2du∧dv, (3.53)

therefore λ2 = −x′(u), and ω = −x′(u)dv.
We may now compute the curvature function on the surface from equation

(3.48). Using the differential of a product we get:

dω = d(x′udv) = x′′(u)du∧dv.
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From the right hand side of (3.48) we have

kω1 ∧ω2 = kx(u)du∧dv.

From (3.48) it follows that the curvature function is

k(u,v) = −x′′(u)

x(u)
. (3.54)

In particular, in a sphere of radius R in R3 can be regarded as a surface of

revolution, obtained from planar curve with x(u) = Rcos( u
R

), therefore the cur-

vature is constant k(u,v) = 1
R2 . From the example above, and from the following

theorem it follows that a round sphere is not locally isometric to an Euclidean

plane.

THEOREM 3.2.1. (Riemann). (M,g) is locally Euclidean if and only if one

of the following two sets of identities holds true (i)Ω i
jkl = 0,∀i, j,k, l = 1, . . . ,N,

and, (ii) Ω i
j = 0,∀i, j = 1, . . . ,N.

A Riemannian structure on M is not a metric on M. However, on a con-

nected manifold M, a Riemannian structure induces a on M, given by

ρg(p,q) := inf




∫ 1

0

[
g

(
dc

dt
,

dc

dt

)

c(t)

]1/2

dt



 , p,q ∈M, (3.55)

where the infimum is taken over all rectifiable curves c : [0,1] → M with

c(0) = p,c(1) = p.

The length of a rectifiable curve c : [a,b] →M is given by

Lb
ac =

∫ b

a

√
g(

dc

dt
,

dc

dt
)dt (3.56)

and its arc length is the nondecreasing function s : [a,b] →R+, given by

s(t) =

∫ t

a

√
g(

dc

du
,

dc

du
)du (3.57)

If the curve c is injective, then the arc length is a one-to-one function, and can

be used to re-parameterize it.

One can show that ρg given by

ρg(u1,u2) = inf
γ(α)=u1,γ(β )=u2

L
β
α γ (3.58)

has the properties of a distance on (M,g); this is the Riemannian distance
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(Chavel (1993, p. 19) [68]). It is also called the geodesic distance on (M,g).
Given two points p1, p2 on M, we consider the space Ω (p1, p2), set of piece-

wise differentiable paths c : [0,1] → M. An important functional defined on

Ω (p1, p2) is the the (kinetic) energy functional E : Ω (p1, p2) →R, given by

E(γ) =
1

2

∫ 1

0
g(

dγ

dt
,

dγ

dt
)dt. (3.59)

DEFINITION 3.2.2. A curve c ∈ Ω (p1, p2) is geodesic if it is a minimizer of

the energy functional in (3.59).

In the language of Physics, geodesics are trajectories of particles following

the general principle of least action, where given a Lagrangian (structure) L :

TM→R+ on a manifold and its associated action S : Ω (p1, p2) →R :

S(c) =

∫ 1

0
L(

dc

dt
)dt. (3.60)

one states that the free falling particles run along a curve c minimizing the ac-

tion in (3.60).

Note that given any two points p1 = c(s1), p2 = c(s2) on a geodesic c parame-

terized by its arc length s, since ‖ dc
ds
‖ = 1,

(Ls2
s1

c)2 = 2Es2
s1

c = 2(s2 − s1)2. (3.61)

On the other, from the definition of the geodesic, and from the Cauchy–

Schwartz inequality, it follows that for any piecewise differentiable curve γ,
parameterized by arclength, we have

2Es2
s1

c ≤ 2Es2
s1

γ ≤ (Ls2
s1

γ)2. (3.62)

From (3.61) and (3.62) it follows that a geodesic is locally a minimizer of the

length functional.

To derive the ordinary differential equations of a geodesic in local coordi-

nates, we consider a chart (U,ϕ) onM. Note that if c∈Ω (p1, p2) is a geodesic,

and 0 < t1 < t2 < 1, are such that c(t) ∈ U,∀t, t1 ≤ t ≤ t2, then the restriction

c|[t1, t2] is a geodesic on U with the induced Riemannian structure g|U. Indeed

for any rectifiable path λ : [t1, t2] →U,λ (ta) = c(ta),a = 1,2, one can define the

path γ : [0,1]→M, that equals to λ on [t1, t2] and with c outside [t1, t2]. Since

the energy c is smaller than the energy of γ , it turns out that E(c|[t1, t2])≤E(λ ).
Let x(t) = ϕ(c(t)) be the local representative of the restriction of c to [t1, t2],

then x(t) is a minimizer of the action

S(x) =

∫ t2

t1

L(x(t),
dx

dt
)dt, (3.63)
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where L, the local representative of the Lagrangian L with respect to the chart

(TU,T ϕ) in (3.4), (3.5) is given by

L(x1, . . . ,xm,y1, . . . ,ym) =
m

∑
a,b=1

gab(x1, . . . ,xm)yayb, (3.64)

and gi j = ϕgi j are given in equation (3.28). The path t 7→ x(t), t1 ≤ t ≤ t2 is a

solution of the Euler-Lagrange equations

∂L(x(t),x′(t))
∂xa

− d

dt

∂L(x(t),x′(t))
∂ya

= 0 for a = 1, . . . ,m. (3.65)

Let (gab)a,b=1,...,m be the inverse of (gab)a,b=1,...,m. The Christoffel symbols of

the first kind are defined by

[ab,c] = 1/2(
∂gac

∂xb
+

∂gbc

∂xa
− ∂gab

∂xc
). (3.66)

and the Christoffel symbols of the second kind are given by

Γ c
ab = gcr[ab,r]. (3.67)

In this notation, from the o.d.e. system (3.65), it is straightforward to obtain

the following equivalent ODE system:

d2xk

dt2
+Γ k

ab

dxa

dt

dxb

dt
= 0,∀k = 1, . . . ,m. (3.68)

An equivalent definition of geodesics is via .

DEFINITION 3.2.3. The Levi-Civita connection on a Riemannian manifold

is an operator ∇ : Γ (TM)×Γ (TM) → Γ (TM), with the properties

∇( f X +Y,Z) = f∇(X ,Z) +∇(Y,Z)

∇(X , fY ) = f∇(X ,Y ) + X( f )Y

∇(X ,Y )−∇(Y,X) = [X ,Y ]

X(g(Y,Z)) = g(∇(X ,Y ),Z) + g(Y,∇(X ,Z)). (3.69)

The common notation for ∇(X ,Y ) is ∇XY.

One can show that the Levi-Civita connection is unique and a geodesic on

a Riemannian manifold is a curve that is autoparallel (∇ dc
dt (0)

dc
dt

(0) = 0). For

curves on a submanifold M of RN , with the Riemannian structure induced by

the scalar product in RN , we have the following characterization

THEOREM 3.2.2. A curve c : (a,b) →M is a geodesic on the if and only if

∀t ∈ (a,b), d2c
dt2 (t) ⊥ Tc(t)M.
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EXAMPLE 3.2.4. A point on a geodesic on the round sphere, travels at con-

stant speed on a great circle on the sphere. Indeed if u,v are vectors of norm

one in RN ,uT v = 0, then c(t) = R(cos t
R

u + sin t
R

v), then ∀t, d2c
dt2 (t) ⊥ Tc(t)SN−1,

therefore c is the unique geodesic with c(0) = u, dc
dt

(0) = v.

Since a geodesic equation is an ODE system of second order, for any point

(u,v) ∈ TM, there is a unique geodesic γ(t), defined on an interval (−ε,ε)

around t = 0 with γ(0) = u, dγ
dt

(0) = v.
Since the equations (3.68) are homogeneous, if t → c(t) is a geodesic, then

so is the path t → c(at), for any nonzero a. Therefore one can assume, by

scaling the tangent vector at time t = 0 if necessary , that there is a neigh-

borhood V of 0 ∈ TpM such that for any v ∈ V, the unique geodesic γv with

γv(0) = p, γ̇(0) = v is defined at t = 1. The map Expp : V →M given by

Exppv = γv(1) (3.70)

If V is small enough, the Riemannian exponential map is a one-to-one from V

to Expp(V ).

REMARK 3.2.1. Positive curvature pulls geodesics closer, negative curvature

sends geodesics apart, and zero curvature does not have any local effect on the

angle made by two geodesics. See Figure 3.3.

A Riemannian manifold is geodesically complete, if for any pair of its

points p,q there is a minimal geodesic joining p and q. A useful result, given

with a full proof in Chavel (2006, p. 26) [69] is the following

THEOREM 3.2.3. (Hopf–Rinow) The following three statements are equiv-

alent (i) (M,ρg) is geodesically complete, (ii) Expp is defined on the entire

tangent space TpM, (iii) (M,ρg) is complete as a metric space.

These three equivalent properties of completeness in theorem 3.2.3 are in

turn equivalent to a third property: all closed bounded subsets of (M,ρg) are

compact (Chavel (2006, p. 28) [69]).

If, moreover, Expp : TpM→M is one to one, then the Riemannian mani-

fold is diffeomorphic to Rm.
Riemannian manifolds are curved, so that geodesics starting at a point p

may meet for a second time in the cut locus of p. Technical details on cut locus

and normal coordinates are as follows.

If the manifold is complete, its exponential map at p is defined on the entire

tangent space TpM. An open set U ⊂M is said to be a normal neighborhood

of p (∈ U), if Expp is a diffeomorphism on a neighborhood V of the origin

of TpM onto U , with V such that tv ∈ V for 0 ≤ t ≤ 1, if v ∈ V . Suppose

U = ExppV is a normal neighborhood of p. Then (x1,x2, ...,xm) are said to be

the normal coordinates of a point q ∈U w.r.t. a fixed orthobasis (v1,v2, ...,vm)

of TpM if

q = Expp(x1v1 + x2v2 + ...+ xdvm). (3.71)
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Figure 3.3: Behavior of geodesics dictated by curvature.

Let v ∈ TpM, be such that g(v,v) = 1. The set of numbers s > 0, such that

the geodesic segment {Expptv : 0 ≤ t ≤ s} is minimizing is either (0,∞) or

(0,r(v)], where r(v) > 0. We will write r(v) = ∞ in the former case. If r(v) is

finite, then Expqr(v)v is the cut point of p in the direction v (Kobayashi and

Nomizu, (1996) [199], p.98). Let SpM = {v ∈ TpM : gp(v,v) = 1}; then the

largest open subset of M in which a normal coordinate system around p is

defined is Expp(V (p)), where V (p) = {tv : 0 ≤ t < r(v), v ∈ SpM}.

DEFINITION 3.2.4. The cut locus of p is C(p) = Expp{r(v)v : v ∈ SpM, r(v)

finite} (Kobayashi and Nomizu (1996) [199], p. 100).

Note that C(p) has volume measure 0, and M is the disjoint union of

Expp(V (p)) and C(p). The injectivity radius at the point p is rp = inf{r(v) :

v ∈ SpM}.

EXAMPLE 3.2.5. For the m-dimensional sphere of radius one, with the Rie-
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mannian structure induced by the infinitesimal Euclidean metric on Rm+1, the

exponential map is given by

Expp(v) = cos(‖v‖)p + sin(‖v‖)‖v‖−1v, (v ∈ TpSm, v 6= 0). (3.72)

Also, V (p) = {v ∈ TpSm : ‖v‖< π} and C(p) = −p.

We may now determine the exponential map when M is a real (com-

plex) projective space RPd (CPd/2 for d even) of constant (constant holo-

morphic) curvature. In this case M is a quotient of a round sphere S, and

the projection map π : S → M is a Riemannian submersion. If we denote by

Exp the exponential map for both the sphere and projective space, we have

Expπ(p)dπ(v) = π(Expp(v)). If p∈ Sd , then since RPd is a homogeneous space,

for [p] ∈ RPd , we may assume without loss of generality that p = (1,0, ..,0).

Then C([p]) = {[q] : q = (0,q1, ...,qd) ∈ Sd} = RPd−1 is the projective hyper-

plane from infinity of the point [p]. Similarly, we may assume that the point

[u] ∈CPd/2 is represented by u = (1,0, ..,0) and in this case C([p]) is CPd/2−1

the complex projective hyperplane at infinity of the point [u].

The sectional curvatures associated with a orthocoframe (ω i), i = 1,m are

the functions Ω i
ji j,1 ≤ i < j ≤ m, defined in (3.46). A Riemannian manifold

has nonpositive curvature if all the sectional curvatures are negative or zero.

For following result, see Helgason (1978) [147], p. 74.

THEOREM 3.2.4. (Hadamard-Cartan) If (M,g) is a simply connected Rie-

mannian manifold of nonpositive sectional curvature then for any point p∈M,
the cut locus C(p) = ∅ and Expp : TpM→M is a distance expanding diffeo-

morphism.

From theorem 3.2.4, we arrive to the following

DEFINITION 3.2.5. A complete Riemannian manifold of nonpositive sec-

tional curvature is called Hadamard manifold, or Cartan-Hadamard manifold

An isometry τ of (M,g) is a diffeomorphism of M such that

g(τ(q))(dτq(v),dτq(v)) = g(q)(v,v)

for all v ∈ TqM.

DEFINITION 3.2.6. Isometries of a Riemannian manifold (M,g) form a

group IgM. The isotropy group of the action of IgM on M will be labeled

Hp = IgMp. If there is a point p ∈ M such that the orbit IgM(p) = M, the

manifold (M,g) is a Riemannian homogeneous space.

Riemannian homogeneous spaces can be also described algebraically as

follows (see Kobayashi and Nomizu (1969 )[199], ch. 14). A Riemannian

structure g on M is called K-invariant if α̃k is an isometry for all k ∈K; i.e. if

gα̃k(q)(d(α̃k)q(u),d(α̃k)q(v)) = gq(u,v), ∀ q ∈M, u,v ∈ TqM. (3.73)
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(In other words, for all k,q as above, d(α̃k)q is a linear isometry from the

inner-product space (TqM,gq) to the inner-product space (Tα̃k(q)M,gα̃k(q)).)

A Riemannian homogeneous space for a Lie group K is a Riemannian ma-

nifold (M,g), where M is a homogeneous space for K, and the Riemannian

structure g is K-invariant. The following is a standard result from the theory of

Riemannian homogeneous spaces.

LEMMA 3.2.1. Let α̃ be a smooth, transitive action of a Lie group K on

a manifold M, let q0 ∈ M, and let H be the isotropy group at q0. A scalar

product gq0
on Tq0

M can be extended to a K-invariant Riemannian metric on

M if and only if the inner product gq0
is H-invariant, in which case there is a

unique K-invariant extension.

Partial proof. Necessity is obvious. To prove sufficiency, assume that for each

q ∈M, choose an arbitrary k1 = k1(q) ∈ Cq (so α̃k1
(q0) = q) and define an inner

product gq on TqM by gq(u,v) = gq0
(((dα̃k1

)q0
)−1(u), ((dα̃k1

)q0
)−1(v)). Then

clearly (3.73) is satisfied with q = q0 and k = k1. Furthermore gq0
is the only

inner product on TqM for which this is true, establishing uniqueness. Then

for any k ∈ Cq, we have k = k1h for some h ∈ H, and using the group-action

properties and the chain rule for maps between manifolds, we have

(dα̃k)q0
= (dα̃k1

)q0
◦ (dα̃h)q0

. (3.74)

A straightforward computation shows that for u,v ∈ Tq0
M we have

gα̃k(q0)(((dα̃k)q0
)(u), ((dα̃k)q0

)(v)) = gq0
(u,v).

Hence for all k ∈ Cq, (dα̃k)q0
is a linear isometry from (Tq0

M,gq0
) to

(TqM,gq), and (dα̃k−1 )q =
(
(dα̃k)q0

)−1
is a linear isometry in the other di-

rection. Now let q1,q2 ∈M be arbitrary, and let k ∈K be such that α̃(q1) = q2.

Transitivity implies that there exist ki ∈ Cqi
, i = 1,2, such that k = k2k−1

1 . Then

(dα̃k)q1
=
(
(dα̃k2

)q0

)−1 ◦ (dα̃k1
)q0

, a composition of linear isometries, hence a

linear isometry.

It remains only to establish that the assignment q 7→ g(q) is smooth. The Lie

theory technique behind this result would require additional definitions and a

significant departure from the main path of this chapter. For details, we refer

the reader to Helgason (1978) [147].

DEFINITION 3.2.7. A complete Riemannian manifold (M,g) with the prop-

erty that for each point p ∈ M the geodesic symmetry sp : M→M given by

sp(Expp(v)) = Expp(−v) (3.75)

is an isometry and is said to be symmetric.
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REMARK 3.2.2. Any Riemannian symmetric space M is a Riemannian ho-

mogeneous space, since for any pair of points p1, p2 ∈M, if we consider the

midpoint p of a minimal geodesic joining these two points (which exists by

completeness), then the geodesic symmetry sp takes p1 to p2. Conversely, if

(M,g) is Riemannian homogeneous space, it is also complete, therefore to

show that (M,g) is symmetric it suffices to prove that the geodesic symmetry

at one point only, is an isometry.

Assume G is a transitive group of isometries of the Riemannian homoge-

neous space (M,g) and p0 ∈ M is a fixed point on M. Let H = Gp0
be the

isotropy group at p0. If the geodesic sp0
is an isometry, then the automorphism

σ : G → G given by

σ (g) = sp0
gs−1

p0
(3.76)

is involutive, that is σ2 = IdG . Therefore if e = 1G is the unit element in G, it

turns our that the differential se = deσ is a linear idempotent isomorphism of

the Lie algebra g of G. Note that

(sp0
hs−1

p0
)(expp0

(v)) = sp0
h(expp0

(−v) =

= sp0
(expp0

(−dp0
h(v)) = expp0

(dp0
h(v)) = h(expp0

(v)),

thus if h ∈ H, then σ (h) = h. It follows that if h is the Lie algebra of H, and

x∈ h, then se(x) = x. Set m = {x∈ g,se(x) =−x}. If x ∈ h,y∈m, then se([x,y]) =

[se(x),se(y)] = [x,−y] = −[x,y], thus [x,y] ∈m. On the other hand, if x ∈m,y ∈
m, then se([x,y]) = [se(x),se(y)] = [−x,−y] = [x,y], thus [x,y]∈ h, which proves

the following

PROPOSITION 3.2.1. (canonical decomposition). The Lie algebra g admits

the decomposition g = h⊕m, where

[h,h] ⊆ h, [h,m] ⊆m, [m,m] ⊆ h. (3.77)

DEFINITION 3.2.8. Assume } is a Lie algebra. The center of g is z = {x ∈
g, [x,y] = 0,∀y ∈ g}. A pair (g,s) is called an orthogonal symmetric algebra if s

is an involutive Lie algebra automorphism of g, such that h = {x ∈ g,s(x) = x.}
is a compactly embedded Lie subalgebra of g and z∩h = 0.

DEFINITION 3.2.9. Assume H is a Lie subgroup of the Lie group G, and σ
is an involutive group automorphism of G, such that H = {g ∈ G,σ (g) = g.}.
The triple (G,H,σ ) is called a symmetric triple.

From Kobayashi and Nomizu (1969, pp.231-232), one can show the fol-

lowing

THEOREM 3.2.5. Assume G is a transitive group {αg,g ∈ G,} of isometries

of the Riemannian manifold M, and assume H is the isotropy group of a given

point p0 ∈M, such that (G,H,σ ), is a symmetric triple. Let π : G → M, be

given by π(g) = αg(p0). Then, given X ∈ g, any geodesic starting at p0, with
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the tangent vector deπ(X), is of the form exp(tX)(p0) where exp(tX) is the one

parameter subgroup of G, with the tangent vector at e equal to X ∈ g.

DEFINITION 3.2.10. A is an embedding j : M→ Rk of a Riemannian ma-

nifold (M,g) for which the geodesic distance ρg is the arc distance induced by

j. A Riemannian embedding is said to be at a point p of M, if every isometry

of j(M) that keeps j(p) fixed is the restriction of an Euclidean isometry. A two

point homogeneous space is a Riemannian manifold such that for each two

pairs of its points (p,q), (p′,q′) with ρg(p,q) = ρg(p′,q′), there is an isometry

τ with τ(p) = p′ and τ(q) = q′.

It is known that M is a two point homogeneous space if and only if, for

each p ∈ M, the isotropy group Hp is transitive on every geodesic sphere

S(p,r) := {x ∈ M : ρg(x, p) = r}, r > 0 (Chavel (1993) [68], p. 147). That is,

given q,q′ ∈ S(p,r) there exists h ∈ Hp such that h ·q = h ·q′. Finally, note that

Kobayashi (1968) [196] gave a general construction of an isometric embedding

of a compact symmetric space, which can be used to provide an equivariant

embedding of any two point homogeneous space (including the Cayley plane)

into an Euclidean space.

The volume of a Borelian set included in the domain U of a chart, is

Volg(B) =

∫

B

√
|g|λm(dx), (3.78)

where |g| is the determinant of the matrix (gi j)i, j=1,m, and λm is the Lebesgue

measure on Rm. For example, the volume of a surface M (two-dimensional

submanifold) in RN , can be obtained as follows. Let gi j be the first fundamental

form (induced Riemannian structure) defined by (3.30) and |g|. The area of a

Borelian subset B ⊂U is given by the integral

Areag(B) =

∫∫

B

√
|g| dx1dx2 (3.79)

The area of M is then given by

Areag(M) = ∑
α

∫∫

Uα

ηα

√
|gα | dxα

1 dxα
2 , (3.80)

where (Uα )α∈A is an open cover with domain of charts on M and (ηα )α∈A is

a partition of unity subordinated to (Uα )α∈A.

3.3 The Laplace–Beltrami Operator

The space of differentiable functions on manifolds is a linear space, that is

open and dense in a Hilbert space of functions. Therefore functional analy-

sis on manifolds is not as much affected by curvature, and borrows most of

its ideas from linear functional data analysis. Here, we assume that M is
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a compact connected orientable Riemannian manifold with the Riemannian

structure g. The Riemannian structure locally is given by the metric tensor

(gi j(x)),x ∈ U associated with a chart (U,ϕU ) on M. Let ρg denote the in-

duced Riemannian distance. The Riemannian structure g induces a natural iso-

morphism Θg : T ∗M→ TM between the tangent and cotangent bundle, given

by

Θg(v)(w) = gp(v,w),∀v,w ∈ TpM. (3.81)

The gradient of a differentiable function f on M, is the vector field gradg f

given by

gradg f = Θ−1
g d f , (3.82)

where d f is the differential of f . The divergence of a vector field X w.r.t. g is

given by

divgX = Tr(Y →∇Y X), (3.83)

where ∇ is the Levi–Civita connection.

Finally, the Laplace–Beltrami operator applied to a differentiable function

f on M, is ∆g f given by

∆g f = divggradg f . (3.84)

In Chavel (2006, p.150) [69] one shows that in terms of local coordinates, the

expression of the Laplace–Beltrami operator is given by

∆g = − 1√
G(x)

∑
j,k

∂

∂x j
(g(x) jk

√
G(x)

∂

∂xk
), (3.85)

where (g(x)i j) is the inverse of the matrix (g(x)i j), and G(x) is the determinant

of this matrix. Note that since for any two functions f ,h on M,< f ,∆h >=<
∆ f ,h >, and < ∆ f , f >= ‖d f‖2, it follows that the Laplace-Beltrami operator

is elliptic symmetric, positive semidefinite second order differential operator

on C∞(M) (see Chavel (2006) [69], Chapter III), and its eigenfunctions are

forming a complete orthonormal basis for L2(M), the space of square inte-

grable functions on M.

Let ∆
.
= ∆g : C∞(M) → C∞(M) Laplace-Beltrami operator on (M,g)

given in (3.84). Let φλ and λ be an eigenfunction and the corresponding eigen-

value, respectively. Note that there are countably many eigenvalues, multiplic-

ity included, and λk ≥ 0, k ∈ N with no upper bound. This means that for each

λk, a corresponding eigenfunction (which in general will occur with multiplic-

ity) will be denoted by φλk
= φk, k ∈N. Furthermore, we will use the convention

that λ0 = 0 with φ0 = 1 and that λk ≤ λk+1 for k ∈ N.

We extend the operator ∆ to a linear operator on functions f : M → C.
Denote by ‖ · ‖2 and ‖ · ‖∞ the L2 and L∞ norms on M, respectively. Let

Ek ⊂ L2(M), k ∈ N, denote the eigenspace associated with the eigenvalue λk,
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k ∈N. The dimension of Ek will be denoted by dimEk <∞ for k ∈N. The mul-

tiplicity of eigenfunctions whose eigenvalues are less than a certain constant is

determined by Weyl’s formula (see Weyl (1912)[335]

lim
Λ→∞

Λ−dimM/2#{λk|λk < Λ} =
volg(M)

(2
√

π)dimMΓ (1 + dimM/2)
, (3.86)

where # denotes the cardinality of a finite set, dimM denotes the dimension

of M, volg(M) denotes the volume of (M,g) and Γ (·) is the gamma function

(see Minakshisundaram and Pleijel (1949) [244]). We note that if φk is a com-

plex valued eigenfunction of ∆ , then so is φ k where overbar denotes complex

conjugation. Consequently, a real basis for L2(M), made of eigenfunctions of

the Laplace-Beltrami operator can be chosen, and for h ∈ L2(M), the “compo-

nents” ĥk relative to this basis will be defined by

h =
∞
∑
k=0

∑
Ek

ĥkφk, where ĥk =

∫

M
hφ k, (3.87)

for all k ∈ N. We note that summation over Ek means over all eigenfunctions

φk in the eigenspace Ek, k ∈ N and integration is defined by the usual partition

of unity argument.

For concreteness, let us consider specific examples. The sphere Sm−1 ⊂Rm

is the set of unit vectors in p−dimensional Euclidean space. In the case where

m = 3, we note that any point in S2 can almost surely be represented by

ω = (cosϕ sinϑ ,sinϕ sin ϑ ,cosϑ )′, (3.88)

where ϕ ∈ [0,2π), ϑ ∈ [0,π), and superscript ′ denotes transpose.

The orthogonal group O(m) consists of the space of m×m real orthogo-

nal matrices, however, this group is not connected. The connected component

consisting of those real orthogonal matrices having determinant equal to unity,

SO(m), is called the special orthogonal group. Again in the case of m = 3, SO(3)

can be represented in the following way. Let

u(ϕ) =




cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1


 , a(ϑ ) =




cosϑ 0 sinϑ
0 1 0

−sinϑ 0 cosϑ


 ,

where ϕ ∈ [0,2π), ϑ ∈ [0,π). The well known Euler angle decomposition says,

any element of SO(3), can almost surely be uniquely written as:

g = u(ϕ1)a(ϑ )u(ϕ2),

where ϕ1 ∈ [0,2π), ϕ2 ∈ [0,2π), ϑ ∈ [0,π).

Consider S2, which can be identified with the quotient space SO(3)/SO(2).
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The following is an example of construction of orthonormal bases for this

space. Let

φkq(ω) =





√
2

√
(2k + 1)(k− q)!

4π(k + q)!
Pk

q (cosϑ )cos(qϕ) q = 1, . . . ,k

√
(2k + 1)

4π
Pk

0 (cosϑ ) q = 0

√
2

√
(2k + 1)(k−|q|)!

4π(k + |q|)! Pk
|q|(cosϑ ) sin(|q|ϕ) q = −1, . . . ,−k

(3.89)

where ϕ ∈ [0,2π), ϑ ∈ [0,π), Pk
q are the Legendre functions, −k ≤ q ≤ k and

k ∈ N. We note that we can think of (3.89) as the vector entries to the 2k + 1

vector

φk(ω) =
(

φkq(ω)
)

,

|q|≤ k and k ∈N0. In this situation {φkq : |q|≤ k,k ∈N0} are the eigenfunctions

of the Laplace-Beltrami operator on S2 with eigenvalues λk = k(k + 1), k ∈ N0

and hence form a complete orthonormal basis over L2(S2).

In another example, in the case of SO(3), let

Dℓ
q1q2

(ϕ1,ϑ ,ϕ2) = e−iq1ϕ1dℓ
q1q2

(cosϑ )e−iq2ϕ2 , (3.90)

where, dℓ
q1q2

for −ℓ ≤ q1,q2 ≤ ℓ, ℓ = 0,1, . . . are related to the Jacobi polyno-

mials. Define the (2ℓ+ 1)× (2ℓ+ 1) matrix by

Dℓ(g) =
(

Dℓ
q1q2

(g)
)
, (3.91)

where −ℓ≤ q1,q2 ≤ ℓ, ℓ≥ 0 and g ∈ SO(3). We note that (3.91) constitute the

collection of inequivalent irreducible representations of SO(3). In this situation

{
√

2ℓ+ 1Dℓ
q1q2

: |q1|, |q2| ≤ k,k ∈ N} are the eigenfunctions of the Laplace-

Beltrami operator on SO(3) with eigenvalues λℓ = ℓ(ℓ+ 1)/2, ℓ ∈ N and hence

form a complete orthonormal basis over L2(SO(3)) . Here we used the exten-

sion of the Laplace–Beltrami operator to a linear space, extension of C∞(M)

over the field of complex numbers, a standard technique for studying the spec-

trum of a symmetric operator vis a self-adjoint extension.)

3.3.1 Harmonic Analysis on Homogeneous Spaces

Recall that a Riemannian homogeneous space admits a transitive group of

isometries K, acting transitively on M. For every p0 ∈ M, let Kp0
= {w ∈

K : wp0 = p0} denote the isotropy subgroup of p0. As shown in Section 3.1, if
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M is a homogeneous compact connected Riemannian manifold, then for ev-

ery p ∈M, Kp is a closed subgroup of K and there exists a diffeomorphism of

K/Kp ≃M. The classical example is the diffeomorphism of the 2–sphere S2

with the quotient set of 3× 3 rotation matrices modulo 2× 2 rotation matrices

SO(3)/SO(2). A differentiable function f : M→ R is called a zonal function

with respect to p0 ∈ M if it is constant on the orbit Kp0
p of a point p ∈ M.

Furthermore, we note that if M is homogeneous,

∑
Ek

|φk(p)|2 = dimEk ∀p ∈M (3.92)

for k = 0,1, . . . (see Giné (1975) [124]). If, in addition M is a two point homo-

geneous space, then for any p,q ∈M, with ρg(p, p0) = ρg(q, p0), there exists

a τ ∈ Kp0
such that τ p = q. Our primary example of harmonics on two point

homogeneous space is the m− 1 dimensional round hypersphere, Sm−1, for

m ≥ 3. Indeed, for some ω = (ω1, . . . ,ωm)t ∈ Sm−1, the m−1 spherical coordi-

nates can be represented by:

ω1 = sinθm−1 · · · sinθ2 sinθ1 (3.93)

ω2 = sinθm−1 · · · sinθ2 cosθ1

...

ωm−1 = sinθm−1 cosθm−2

ωm = cosθm−1

where θ1 ∈ [0,2π) and θ j ∈ [0,π) for j = 2, . . . ,m− 1. The invariant measure

is

dω =
Γ (m/2)

2πm/2
sinm−2 θm−1 · · · sinθ2dθ1 · · ·dθm−1.

Let C
µ
r (t), t ∈ [−1,1] be a polynomial of degree r determined by the power

series

(1− 2tα + α2)−µ =
∞
∑
r=0

Cµ
r (t)αr. (3.94)

One notices that C
1/2
r (t) are the classical Legendre polynomials. Thus for gen-

eral µ , these polynomials are generalizations of the classical Legendre polyno-

mials and are called the Gegenbauer (ultraspherical) polynomials.

Let k = (k1,k2, . . . ,km−2) and Kℓ = {ℓ ≥ k1 ≥ k2 ≥ ·· · ≥ km−2 ≥ 0}. The

collection of eigenfunctions of ∆ is usually written as

{
Y
ℓ,i
k : k ∈ Kℓ, ℓ≥ 0, i = 1,2

}
, (3.95)

where

∆Y
ℓ,i
k = λℓY

ℓ,i
k , and λℓ = ℓ(ℓ+ m− 2),
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ℓ > 0. Thus each ℓ≥ 0, determines the eigenspace Eℓ, where

dimEℓ =
(2ℓ+ m− 2)(l+ m− 3)!

ℓ!(m− 2)!
. (3.96)

Collectively, (3.95) is called the spherical harmonics for L2(Sm−1) and (3.95)

forms a complete orthonormal basis (see Müller (1998) [250]).

3.3.2 Harmonics on Semi-Simple Lie Groups

If in addition the manifold has a group structure with the group action and

inverse mapping being continuous hence is a Lie group, more refinements can

be made. Let K be a compact connected semi-simple Lie group and fix once

and for all, a maximal torus T. Let g and t be the corresponding Lie algebras

and denote by t∗ the dual space of t possessing the Weyl group invariant inner

product. Let K ⊂ t∗ be the fundamental Weyl chamber and denote by Φ , the set

of real roots. Let Φ+ = {α ∈ Φ : 〈α,β 〉> 0,β ∈ K} be the set of positive roots.

Finally denote by I∗ ⊂ t∗ the integral portion of t∗. Thus we can define K̄ ∩ I∗,

where the overbar in this case denotes set theoretic closure. Thus associated

with K will be the dual objects K̂ = K̄ ∩ I∗.

Consider an irreducible representation U : K → Aut(V ), where V is some

finite dimensional vector space and Aut(V ) are the automorphisms of V . Then

the collection of inequivalent irreducible representations of K can be enumer-

ated as {Uν : ν ∈ K̂} (see Bröcker and tom Diek (1985) [52, p. 242]). The

dimension of the irreducible representations are

dν = ∏
α∈Φ+

〈α,ν + ρ〉
〈α,ρ〉

for ν ∈ K̂ where ρ = 2−1 ∑α∈Φ+
α , the half sum of the positive roots and the

inner product is induced by the Killing form.

The Killing form induces also a Riemannian structure on K. Consequently,

let ∆ be the Laplace-Beltrami operator on K. The components of the irre-

ducible representations are the eigenfunctions of ∆ so that
{√

dν Uν : ν ∈ K̂
}

(3.97)

is a complete orthonormal basis of L2(K). We note that the eigenvalues are

λν = ‖ν + ρ‖2 −‖ρ‖2 (3.98)

for ν ∈ K̂ where the norm is with respect to the Killing form. The multiplicity

of the eigenfunctions with respect to a fixed eigenvalue is therefore d2
ν for

ν ∈ K̂. Weyl’s formula (3.86) for K is thus

lim
T→∞

T−dimK/2 ∑
λν<T

d2(ν + ρ) =
vol (K)

(2
√

π)dimKΓ (1 + dimK/2)
. (3.99)
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See Minakshisundaram and Pleijel (1949) [244], Giné (1975) [124], or Hen-

driks (1990) [150].

The primary example of a Lie group is the space of N×N rotation matrices,

SO(N). For N = 2k + 1 odd, let

K̂ =
{

j ∈ Zk : j1 ≥ j2 ≥ ·· · ≥ jk ≥ 0
}
, (3.100)

for N = 2k even, let

K̂ =
{

j ∈ Zk : j1 ≥ j2 ≥ ·· · ≥ | jk| ≥ 0
}
, (3.101)

where Z denotes the set of all integers. One notices that in the even case, an

extra set of indices come from the relation | jk|. The particular form of K̂, as

classified by the Dynkin diagrams, for SO(N) when N = 2k + 1 reflects the Bk

root structure k ≥ 2, while N = 2k reflects the Dk root structure k ≥ 3 (see

Bröcker and T. tom Diek (1985) [52]).

Consider ∆ the Laplace-Beltrami operator on SO(N). For N = 2k + 1, the cor-

responding eigenvalue is

λ j = j2
1 + · · ·+ j2

k + (2k− 1) j1 + (2k− 3) j2 + · · ·+ jk (3.102)

while for N = 2k

λ j = j2
1 + · · ·+ j2

k + (2k− 2) j1 + (2k− 4) j2 + · · ·+ 2 jk−1. (3.103)

Further details of the eigenstructure of SO(N) are provided in Appendix B in

Kim (1998) [187].

3.4 Topology of Manifolds

In this section we present a technical overview of homology as used in our

procedures. For a detailed treatment see Greenberg and Harper (1981) [131],

Milnor (1963) [242] and Spanier (1981) [313].

3.4.1 Background on Algebraic Topology

In algebraic topology, one associates to topological spaces and continuous

functions between them, algebraic objects and morphisms between these ob-

jects. This association is functorial in the sense of category theory (see Mac

Lane (1998, Ch I) [226]), therefore, as a result, two spaces having the same

homotopy type one associates isomorphic objects.

Assume (M,τM), (N,τN) are topological spaces and C(M,N) is the space of

continuous functions from (M,τM) to (N,τN). A homotopy between f0, f1 ∈
C(M,N) is a continuous function F : [0,1] × M → N, such that F(a,x) =
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fa(x),∀a = 0,1,∀x ∈ M. Notation f0
∼= f1 We say that (M,τM) and (N,τN) have

the same homotopy type if there are continuous functions f ∈ C(M,N),g ∈
C(N,M) such that g ◦ f ∼= IdM, f ◦ g ∼= IdN .

Homology is an algebraic functor for “counting holes in various dimen-

sions” in topological spaces. Roughly speaking, the homology of X , denoted

H∗(X), is a sequence of commutative groups (Z - modules) {Hk(X) : k =

0,1,2,3, . . .}, where Hk(X) is called the k-dimensional homology group of X .

The rank of Hk(X) (as a Z-module), called the k-th Betti number of X , βk, is

a coarse measurement of the number of different holes in the space X that can

be “sensed” by using subcomplexes of dimension k. The k-th Betti number of

X can be also interpreted as the dimension βk of the vector space Hk(X ,R), if

real coefficients are used instead.

For example, if M is a topological space, β0 is equal to the number of con-

nected components of M. These are the types of features (holes) in M that can

be detected by using points and edges– with this construction one is answer-

ing the question: are two points connected by a sequence of edges or not? The

simplest basis for H0(M,R) consists of a choice of vertices in M, one in each

path-component of M (the points p0, p1 on M are in the same path-component,

if there is a continuous map γ : [0,1]→ M, with γ(0) = p0,γ(0) = p1). Likewise,

the simplest basis for H1(M) consists of loops in M, each of which surrounding

a 1D hole in M. For example, if M is a graph, then the space H1(M,R) is a

vector space, whose dimension encodes the number of “independent” cycles in

the graph.

3.4.2 Homology

There are numerous variants of homology: here we begin by using simplicial

homology with integer coefficients. Given a set V , a k-simplex is an unordered

subset {v0,v1, . . . ,vk} where vi ∈ V and vi 6= v j for all i 6= j. The faces of this

k-simplex consist of all (k−1)-simplices of the form {v0, . . . ,vi−1,vi+1, . . . ,vk}
for some 0 ≤ i ≤ k. Geometrically, the k-simplex can be described as follows:

given k+1 points in Rm (m≥ k), the k-simplex is a convex body bounded by the

union of (k− 1) linear subspaces of Rm of defined by all possible collections

of k points (chosen out of these k + 1 points). Topologically, a k-simplex in

(M,τM) is a continuous function from a geometric k-simplex to (M,τM).
A simplicial complex is a collection of simplices with vertices V , which

is closed with respect to inclusion of faces. A triangulated surface gives a

concrete example, where the vertices of the triangulation correspond to V . The

orderings of the vertices correspond to an orientation. Any abstract simplicial

complex on a (finite) set of points V has a geometric realization in some Rm.

Let X denote a simplicial complex.

Let X denote a simplicial complex. Define for each k ≥ 0, the Z-module

Sk(X) whose basis is the set of oriented k-simplices of X ; that is, a k-
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simplex {v0, . . . ,vk} together with an order type denoted [v0, . . . ,vk] where

a change in orientation corresponds to a change in the sign of the coeffi-

cient: [v0, . . . ,vi, . . . ,v j, . . . ,vk] = −[v0, . . . ,v j, . . . ,vi, . . . ,vk] if odd permutation

is used. For k larger than the dimension of X , we set Sk(X) = 0. The boundary

map is defined to be the linear transformation ∂k : Sk(X)→ Sk−1(X) which acts

on basis elements [v0, . . . ,vk] via

∂k[v0, . . . ,vk] :=
k

∑
i=0

(−1)i[v0, . . . ,vi−1,vi+1, . . . ,vk]. (3.104)

This gives rise to a : a sequence of Z-modules and linear transformations

· · · ∂k+2→ Sk+1(X)
∂k+1→ Sk(X)

∂k→ Sk−1(X) · · · ∂k−1→ S2(X)
∂2→ S1(X)

∂1→ S0(X) (3.105)

Consider the following two submodules of Sk(X): the cycles (Zk(X), sub-

complexes without boundary) and the boundaries (Bk(X), subcomplexes which

are themselves boundaries) formally defined as:

• k− cycles: Zk(X) = ker(∂k : Sk(X) → Sk−1(X))

• k− boundaries: Bk(X) = im(∂k+1 : Sk+1(X) → Sk(X))

One may show that ∂k ◦∂k+1 = 0; that is, the boundary of a chain has empty

boundary. It follows that Bk(X) is a Z-submodule of Zk(X). This has great im-

plications. The k-cycles in X are the basic objects which count the presence

of a “hole of dimension k” in X . But, certainly, many of the k-cycles in X are

measuring the same hole; still other cycles do not really detect a hole at all –

they bound a subcomplex of dimension k + 1 in X . We say that two cycles ζ
and η in Zk(X) are homologous if their difference is a boundary:

[ζ ] = [η] ↔ ζ −η ∈ Bk(X).

The k-dimensional homology of X , denoted Hk(X) is the quotient Z -

module

Hk(X) :=
Zk(X)

Bk(X)
. (3.106)

Specifically, an element of Hk(X) is an equivalence class of homologous k-

cycles. This inherits the structure of a Z -module in the natural way [ζ ] + [η] =

[ζ + η] and c[ζ ] = [cζ ].

REMARK 3.4.1. By arguments utilizing barycentric subdivision, one may

show that the homology H∗(M) is independent of the choice of the simplicial

complex on M. For a simple example, the reader is encouraged to contemplate

the “physical” meaning of H1(M). Elements of H1(M) are equivalence classes

of (finite collections of) oriented cycles in the 1-skeleton of M, the equivalence

relation being determined by the 2-skeleton of M.
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REMARK 3.4.2. Note that singular homology is functorial. Let f : X →
X ′ be a continuous simplicial map: f takes each k-simplex of X to a k′-
simplex of X ′, where k′ ≤ k. Then, the map f induces a linear transformation

Sk( f ) : Sk(X) → Sk(X ′). One can show that Sk( f ) takes cycles to cycles and

boundaries to boundaries; hence there is a well-defined linear transformation

Hk( f ) : Hk(X) → Hk(Y ).

For the category of topological spaces and continuous maps, functoriality

means that if f : M → N,g : N → P are continuous functions then Hk(g ◦ f ) =

Hk(g)◦Hk( f ).
An exact sequence is a sequence

· · · → Hk →ik Hk−1 →jk H1 →∂k H0. (3.107)

of groups Hk,k≥ 0, and homomorphisms jk, such that the kernel of jk−1 equals

the range of jk. The exact sequence is short, if it contains at most three nonzero

terms.

Given a subset A ⊂ M, of a topological space, with the induced topology,

one may form the short exact sequence

0 → S∗(A) → S∗(M) → S∗(M)/S∗(A) → 0 (3.108)

where S∗(M) denotes the simplicial complex on M. The boundary map on

S∗(M) leaves S∗(A) invariant and therefore induces a boundary map on the quo-

tient complex. The corresponding homology, Hk(M,A) = Hk(S∗(M)/S∗(A)),
is called relative simplicial homology of the pair (M,A), and is denoted by

Hk(M,A). Note that relative homology is given by the relative cycles, chains

whose boundaries are chains on A, modulo the relative boundaries (chains that

are homologous to a chain on A, i.e. chains that would be boundaries, modulo

A again).

If (M,A), are as above and U is a subset of A, we say that U can be excised if

the inclusion map of the pair (M\U,A\U) into (M,A) induces an isomorphism

on the relative homologies Hk(M,A) to Hk(M\U,A\U).

THEOREM 3.4.1. (Excision theorem). If the closure of U is contained in the

interior of A, then U can be excised.

The Eilenberg-Steenrod (E-S) axioms (see Eilenberg and Steenrod (1952)

[100] apply to a homology theory, sequence of functors Hk,k ∈ N, from the

category of pairs (M,A) of topological spaces to the category of abelian groups,

together with a natural transformation ∂ : Hk(M,A) → Hk−1(A,∅) called the

boundary map. These axioms are:

• Homotopy axiom: Homotopic maps induce the same map in homology. That

is, if g : (M,A) → (N,B) is homotopic to h : (M,A) → (N,B), then their

induced maps are the same.

• Excision axiom: If (M,A) is a pair and closure of U is contained in the

interior of A, then U can be excised.
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• Dimension axiom: Let ⋄ be the one-point space; then Hk(⋄) = 0∀k 6= 0.

• Additivity axiom: If M =⊔α Mα , the disjoint union of a family of topological

spaces Mα , then Hk(M) ∼= ⊕α Hk(Mα).

• Exactness axiom: Each pair (M,A) induces a long exact sequence in ho-

mology, via the inclusions i : A → M and j : M → (M,A), where M is the

shorthand for (M, ) :

· · · → Hk(A) →ik Hk(M) →jk Hk(M,A) →∂k Hn−1(A) → ··· . (3.109)

The coefficient group of a homology theory is H0(⋄). The following result is

due to Milnor (1962) [241].

THEOREM 3.4.2. Let Hk,k ∈N be an additive homology theory on the cate-

gory W consisting of all pairs (X ,A) such that both X and A have the homotopy

type of a CW-complex; and all continuous maps between such pairs, with co-

efficient group G. Then for each (X ,A) in W , there is a natural isomorphism

between Hk(X ,A) and the k-th singular homology group of (X ,A) with coeffi-

cients in G.

We are now showing that the homotopy axiom holds true for the singular

cubic homology. Assume that the coefficient group is the additive group of in-

tegersZ. We consider the cube Ik, where I = [0,1], and the set of singular cubes

in a topological space (M,τ) : Ik(M) = {F : Ik → M,Fcontinuous}. Consider

the chain complex Ck(M) generated by Ik(M), and the corresponding boundary

operators ∂k : Ck(M) →Ck−1(M),

(∂kF)(t1, . . . , tk−1) =
k

∑
j=1

(−1) j(F(t1, . . . ,1 j, . . . t
k−1)−F(t1, . . . ,0 j, . . . t

k−1)).

(3.110)

The singular cubic homology groups are given by Hk(M) =
Ker∂k

Im∂k−1
.

Consider the cubical complexes C∗(M) and C∗(N). Let f : M → M be a contin-

uous map: f takes each k-cube in X to a k-cube of Y . Then, the map f induces

a linear transformation fk : Ck(M) →Ck(N).

DEFINITION 3.4.1. Given chain complexes (A,∂ A), (B,∂ B) and chain com-

plexes morphisms f ,g : A → B, a chain homotopy from f to g is a collec-

tion of maps hk : Ak → Bk+1 such that fk − gk = ∂ B
k+1hk + hk−1∂ A

k , or simply
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f − g = ∂ Bh + h∂ A.

. . .
∂ A

k+2
// Ak+1

∂ A
k+1

//

gk+1

��

fk+1

��

hk+1

⑥
⑥
⑥
⑥
⑥
⑥
⑥

~~⑥⑥
⑥
⑥
⑥
⑥
⑥
⑥

Ak

∂ A
k

//

gk

��

fk

��

hk

⑥
⑥
⑥
⑥
⑥
⑥
⑥

~~⑥⑥
⑥
⑥
⑥
⑥
⑥

Ak−1

∂ A
k−1

//

gk−1

��

fk−1

��

hk−1

⑤
⑤
⑤
⑤
⑤
⑤
⑤

~~⑤⑤
⑤
⑤
⑤
⑤
⑤

. . .

hk−2

⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

~~⑤⑤
⑤
⑤
⑤
⑤
⑤

. . .
∂ B

k+2
// Bk+1

∂ B
k+1

// Bk

∂ B
k

// Bk−1

∂ B
k−1

// . . .

(3.111)

From definition 3.4.1, if we apply the identity f −g = ∂ Bh +h∂ A to a boun-

dary ∂ Aa, the result is a boundary, an immediate proof of

PROPOSITION 3.4.1. If h is a homotopy from f to g between chain com-

plexes, then the induced maps in homology are equal, f∗ = g∗.

Note that if H : I ×M → N is a homotopy between two continuous maps

f ,g : M → N, then the map hk : Ck(M) →Ck+1(N) given by

hk([F]) = [H ◦ (IdI ×F)]. (3.112)

is a chain homotopy from f∗ to g∗, thus the induced maps in the cubic sin-

gular homology Hk( f ),Hk(g) : Hk(C∗M) → Hk(C∗N) are equal. Moreover the

definition of the relative cubic homology of a pair (M,A) is similar with the

simplicial counterpart. One may form the short exact sequence

0 →C∗(A) →C∗(M) →C∗(M)/C∗(A) → 0 (3.113)

The boundary map on C∗(M) leaves C∗(A) invariant and therefore induces

a boundary map on the quotient complex. The corresponding homology,

Hk(M,A) = Hk(C∗(M)/C∗(A)), is called relative singular cubic homology of

the pair (M,A), and by abuse of notation, is also denoted by Hk(M,A). From

(3.113) and from the long exact sequences of homology (3.107) of the pairs

(M,A), and (N,B), due to the fact that Hk( f ) = Hk(g), in the absolute homol-

ogy, and a type of argument, one can show that Hk( f ) = Hk(g), in the relative

homology, thus proving the Homotopy axiom, for the singular cubic homology.

The other E-S axioms are easier to prove, and are left to the reader.

DEFINITION 3.4.2. If f : X → X ′ is a morphism of cubical chain com-

plexes, the sequence of homomorphism Hk( f ) : Hk(X) → Hk(X ′), fk([ζ ]) =

[Ck( f )(ζ )],k = 0,1, . . . are homology homomorphisms induced by f .

A homotopy equivalence is a continuous function f : M → M, for which

there is a function g : N → M, such that g ◦ f ∼= IdM, f ◦ g ∼= IdN .
Due to functoriality and the homotopy axiom, it follows that if f : M → N is a

homotopy equivalence, then Hk( f ) : Hk(M) → Hk(N) induces an isomorphism
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and, in particular, the ranks of the homology groups , called ( Betti numbers )

are equal, that is rkHk(M) = rkHk(N). Therefore the Betti numbers are homo-

topy invariants.

Assume p0 is a point on a topological space M, and C(M, p0) = { f : S1 →
M, f (1) = p0, f continuous}. A point base preserving homotopy in (M, p0) is

a homotopy H : I × S1 → M,H(t,1) = p0,∀t ∈ I The fundamental group of

a connected topological space M, π1(M), is set of all point base preserving

homotopy classes of functions f ∈ C(M, p0). The fundamental group has a

group structure can be obtained by extending the composition structure given

by [ f ]∗ [g] = [h], where

h(e2πt) =





f (e4πt), for 0 ≤ t ≤ 0.5

g(e2π(2t−1)), for0.5 ≤ t ≤ 1

(3.114)

By way of example, π1(S1) = Z. Given a topological space M, its kdimensional

homotopy group, πk(M), set of all homotopy classes of functions f : Sk → M,
has a group structure. This group structure can be obtained by extending the

composition structure ∗ of π1(M) to higher dimensions.

In the category of topological spaces and continuous functions, a map

π : E → B has the homotopy lifting property (h.l.p.) with respect to M if: for

any homotopy f : I×M →B and for any map f̃0 : M →E lifting f0 = f |{0}M×M

(i.e., so that f0 = π f̃0 ), there exists a homotopy f̃ : I×M → E lifting f (i.e., so

that f = π f̃ ) with f̃0 = f̃ |M×{0} . A is a map f : E → B, that has the h.l.p. with

respect to any topological space M. The fiber of this fibration (over a point b0

in B) is F = Fb0
= f−1({b0}), where, given such a fibration, there is a long exact

sequence of morphisms :

· · · → πk(F) → πk(E) → πk(B) → πk−1(F) → ··· → π0(B). (3.115)

Note that the last two arrows are not morphisms; they are functions.

Two points u1,u2 on S(H) represent the same point on P(H) iff there is a

complex number z of modulus 1, such that u2 = zu1. Thus P(H) is a quotient

P(H) = S(H)/S1, and one may consider the fibration

S1 → S(H) → P(H). (3.116)

From the exact sequence of the fibration (3.116), it follows that π2(P(H)) = Z

and all the other homotopy groups of P(H) are trivial.

The homotopy group πk(M, p0) can be also described in terms of contin-

uous functions between pairs, as set of homotopy classes of continuous func-

tions from (Ik,∂ Ik) → (M, p0), therefore one may define the Hurewicz map

Hk : πk(M) → Hk(M) by associating to the homotopy class of F : Ik → M, its

corresponding singular cubic homology class.
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THEOREM 3.4.3. (Hurewicz) If M is (k - 1)-connected, the Hurewicz map is

an isomorphism ∀ j ≤ k when k ≥ 2 and also the Hurewicz homomorphism is

an epimorphism from πk+1(M) to Hk+1(M) whenever M is (k− 1)-connected,

for k ≥ 2.

As an application of Theorem 3.4.3, one may compute the homotopy

groups of P(H)). See exercise (58)

3.4.3 Differential Topology

In Differential Topology one studies the homeomorphism type of topological

manifolds, by using differentiable structures on them, as well as differentiable

functions between them. One of the key tools, Morse theory, has been instru-

mental in classifying manifolds [309]. A classic reference is Milnor (1963)

[242].

For some smooth function on a d-dimensional manifold f : M→ R, con-

sider a point p ∈M where the differential dp f vanishes. In local coordinates

we have ∂ fx/∂x1(x(p)) = 0, . . . ,∂ fx/∂xd(x(p)) = 0, where fx = f ◦ x−1. Then

the point p is called a critical point , and the value f (p) is called a critical

value. A critical point p ∈M is called non-degenerate if the Hessian matrix

(
∂ 2 fx

∂xi∂x j (x(p)))i, j=1,...,d is nonsingular. A function that has only non-degenerate

critical points is aid to be a Morse function.

Since the Hessian matrix at a critical point is non-degenerate, it has a mix-

ture of positive and negative eigenvalues. The number η of negative eigenval-

ues of the Hessian at a critical point called the Morse index at that point. In

Milnor(1963)[242] one shows that

PROPOSITION 3.4.2. (Morse Lemma) Given a critical point p ∈ M of f

with index η , there is a chart (U,x) around p, x = (x1, . . . ,xd) so that

f (x(q)) = f (0)− x1(q)2 −·· ·− xη(q)2 + xη+1(q)2 + · · ·+ xd(q)2

for all q ∈U.

DEFINITION 3.4.3. Let Dk be the unit disk in Rk, whose boundary ∂Dk is

the unit sphere Sk−1. Assume ϕ : Sk−1 → M is a continuous function. Take the

disjoint union M ⊔Dk = ({0}×M)∪ ({1}×Dk) and consider the equivalence

relationship, where (0,ϕ(z)) ≡ (1,z),∀z ∈ Sk−1. The quotient space under ≡
with the quotient topology is the space M ⊔ϕ ek, obtained by attaching to M a

k-dimensional cell along ϕ .

Based on this result, one is able to show that at a critical point p ∈ M
of a Morse function, with f (p) = a say, that the sublevel set M f≤a has the

same homotopy type as that of the sublevel set M f≤a−ε (for some small ε >
0) with an η-dimensional cell attached to it. In fact, for a compact M, its

homotopy type is that of a cell complex with one η-dimensional cell for each
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critical point of index η . This cell complex is known as a CW complex, if

the cells are attached in the order of their dimension. The homology of a CW

complex Y , can be obtained from the description of the cell attachment maps

(see Greenberg and Harper (1981) [131]), with one generator of Hq(Y ) for each

q-dimensional cell that does not bound a q+1-dimensional cell, therefore given

a Morse function on a manifold M, one may derive its homology H∗(M).
As an illustration, due to Bubenik et al. (2010)[53], that will be used in

Section 26.1.1, let us consider a real valued function f that is a mixture of two

bump functions on the disk of radius 10 in R2, see Figure 3.4.

Figure 3.4 A mixture of two bump functions and various contours below which are the

sublevel sets. (Source: Bubenik et al. (2010), Figure 2.1. Reproduced by permission of

American Mathematical Society).

In this example, the maximum of f equals 2, so M f≤2 = M. This sublevel

set is the disk and therefore has no interesting topology since the disk is con-

tractible. In contrast, consider the sublevel sets when r = 1, 1.2, and 1.5 (see

Figures 3.5, 3.6, and 3.7).

In these cases, the sublevel sets M f≤r have non-trivial topology, namely

one, two and one hole(s) respectively, each of whose boundaries is one-

dimensional. This topology is detected algebraically by the first integral ho-

mology group H1(M f≤r) which will be referred to as the homology of degree

1 at level r. This group enumerates the topologically distinct cycles in the sub-

level set. In the first and third cases, for each integer z ∈ Z, there is a cycle

which wraps around the hole z times. We have H1(M f≤r) = Z. In the second

case, we have two generating non-trivial cycles and so H1(M f≤r) = Z⊕Z.

By way of another example let us consider the d-dimensional sphere Sd =

{x ∈ Rd+1,‖x‖ = 1} and the height function h : Sd → R, with h(x1, . . . ,xd+1) =

xd+1. One may show that h is a Morse function, and using the indices at the

two critical points, one may derive the homology H∗(Sd). See exercise 56. The

famous set of Morse inequalities (see Milnor (1963) [242]) states that if βk is
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Figure 3.5 The sublevel set at r = 1 has one hole. (Source: Bubenik et al. (2010), Figure

2.2. Reproduced by permission of American Mathematical Society).

Figure 3.6 The sublevel set at r = 1.2 has two holes. (Source: Bubenik et al. (2010),

Figure 2.3. Reproduced by permission of American Mathematical Society).

the k−th Betti number and mk is the number of critical points of index k, then

β0 ≤ m0

β1 −β0 ≤ m1 −m0

β2 −β1 + β0 ≤ m2 −m1 + m0 (3.117)

· · ·

χ(M) =
d

∑
k=0

(−1)kβk =
d

∑
k=0

(−1)kmk

Figure 3.7 The sublevel set at r = 1.5 has one hole. (Source: Bubenik et al. (2010),

Figure 2.4. Reproduced by permission of American Mathematical Society).
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where χ denotes the Euler characteristic. Note that in the case of CPd, with

the Morse function (3.166) the Morse inequalities (3.117) become equalities.

Such a Morse function is said to be a perfect Morse function.

An example of a perfect Morse function is give in Nicolaescu (2011, p.

64)[254]. As a result, one can show that CPd , has the homotopy type of a 2d

dimensional CW complex with one 2 j-dimensional cell, ∀ j = 0, . . . ,d, there-

fore

Hk(CPd) =





Z, for k = 2 j, j = 0, . . . ,d

0, otherwise

(3.118)

For details see exercise 57.

3.5 Manifolds in Statistics

The numerical space Rm is the basic example of a manifold arising as an ob-

ject space in statistics. Therefore, multivariate data analysis is a key particular

example of data analysis on manifolds. As a specific example, we consider the

space Sym+(m) of m×m symmetric positive-definite (SPD) matrices, a convex

open subset of the space Sym(m) of all real symmetric m×m matrices. When

endowed with the metric g0 inherited from Sym(m)∼= R
m(m+1)

2 , g0(u,v) = Tr(uv),
the space Sym+(m) is flat, and therefore provides an example in which the ex-

trinsic sample mean has a simple closed-form expression. However, with this

metric the analysis may require to keep track of the boundary of Sym+(m) in

Sym(m), since the space (Sym+(m),g0) is incomplete.

As an alternative, Arsigny et al. (2006) [5] and Schwartzman (2006) [301]

consider a GL+(m)-invariant metric on Sym+(m) associated with the left action

of α+ given in equation (3.163) which is a transitive Lie group action. The

isotropy group of α+ is SO(m). According to (3.73), given H ∈ GL+(m), with

α+(H, Im) = S, and ∀U,V ∈ Sym(m) = TIm Sym+(m) this canonical metric gcan is

given by

gcan(S)(dImα+
H (U),dImα+

H (V )) = g0(U,V ), (3.119)

which is independent of H (since the isotropy group of α+ is SO(m), which

leaves invariant the metric g0). Sym+(m), with respect to which Sym+(m) is

a Cartan-Hadamard symmetric space. The space Sym+(m) with this metric is

complete but curved, suggesting an intrinsic analysis.

In recent years, there has been a rapid development in the application of

nonparametric statistical analysis on manifolds to medical imaging. In particu-

lar, data taking values in the space Sym+(3) appear in diffusion tensor imaging

(DTI), a modality of magnetic resonance imaging (MRI) that allows visual-

ization of the internal anatomical structure of the brain’s white matter (Basser

and C. Pierpaoli (1996) [14], LeBihan et al. (2001) [213]). At each point in

the brain, the local pattern of diffusion of the water molecules at that point is
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described by a diffusion tensor (DT), a 3× 3 SPD matrix. A DTI image is a

3D rectangular array that contains at every voxel (volume pixel) a 3× 3 SPD

matrix that is an estimate of the true DT at the center of that voxel. (Thus

DTI differs from most medical-imaging techniques in that, at each point, what

the collected data are used to estimate is a matrix rather than a scalar quan-

tity.) At each voxel, the estimated DT is constructed from measurements of the

diffusion coefficient in at least six directions in three-dimensional space. The

eigenvalues of the DT measure diffusivity, an indicator of the type of tissue and

its health, while the eigenvectors relate to the spatial orientation of the under-

lying neural fibers. The first papers on nonparametric inference for diffusion

tensors are due to Osborne (2012) [257] and Osborne et al. (2013) [258].

Curves and surfaces naturally occurring in the real world provide another

important class of manifolds with carrying data on them. In addition these ele-

mentary examples, some special manifolds or more generally, some orbifolds,

play a key role in statistical data analysis.

REMARK 3.5.1. Unlike vector spaces, or spaces of diffusion tensors, object

spaces that are encountered in object data analysis, such as spaces of direc-

tions, spaces of axes, and shape spaces, which are described in the following

subsections have the distinct property of being compact. For this reasons, in

addition to usual extensions of the notion of mean vector, this property leads

to new parameters and statistics associated with random objects, such as the

antimeans, which are specific for data analysis on manifolds (see Patrange-

naru et.al(2014a)[270]). Such new developments are to be the discussed in

current and future research in Object Data Analysis (see Patrangenaru et.

al(2015a)[271]).

3.5.1 Spaces of Directions, Axial Spaces and Spaces of Frames

A simple example is the unit circle S1 = {z∈C,zz = 1}, which may be regarded

as a sample space for periodic events, or for directions at a given location in a

plane.

Statistics on a higher dimensional sphere Sm = {x ∈ Rm+1,xTx = 1} have

also been studied by statisticians. Important contributions in this area is due

to Watson (1983) [333]. Directional data analysis includes data analysis on

spheres, on special orthogonal groups SO(m), which are particular cases of

Stiefel manifolds or on real projective spaces RPm,m ≥ 2, also known as axial

data analysis.

In vector - cardiography (Downs, 1972) [88] and in astronomy (Prentice,

1986, 1989 [283, 284]) one comes across observations on Stiefel manifolds

V3,2. The Stiefel manifolds Vm,r is the set of orthonormal r-frames in Rm. In

can be shown that Vm,r are homogeneous spaces that can be identified with the

quotient space O(m)/O(m− r). Hendriks and Landsman (1998) [154] studied

asymptotic distributions of extrinsic means on Stiefel manifolds.
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3.5.2 G-Shape Spaces

An important class of object spaces having a manifold structure or a manifold

stratification that is relevant in landmark based high level image analysis, is the

class of G-shape spaces associated with a transitive action of a Lie group G on

the space of configurations of k labeled landmarks in Rm (see Patrangenaru and

Patrangenaru (2004) [275]). To be more specific, given an action α : G×Rm →
Rm, we consider the associated diagonal action αk : G× (Rm)k → (Rm)k, given

by:

αk(g, (x1, . . . ,xk)) = (α(g,x1), . . . , (α(g,xk)). (3.120)

The orbits of (3.120) are called G-shapes. The quotient (Rm)k/G, space of such

orbits has a structure of orbifold with singularities. An obvious singularity is

the orbit of 0k = (0, . . . ,0) ∈ Rk. Even if this orbit is removed, singularities

might still be present. A subspace of (Rm)k/G, made of G-shapes of generic

configurations, will be called G-shape space. Examples of G-shape spaces that

have a manifold structure are given subsequently in this chapter.

3.5.3 Kendall Shape Spaces

In this subsection, G is the group direct similarities of Rm. A similarity is a

function f : Rm →Rm, that uniformly dilates distances, that is, for which there

is k > 0, such that ‖ f (x)− f (y)‖ = k‖x− y‖,∀x,y ∈ Rm. One can show (see

Exercise 49) that a similarity is of the form

f (x) = Ax + b,AT A = cIm,c > 0. (3.121)

A direct similarity is given by (3.121), where A has a positive determinant.

Direct similarities form under composition, the group of direct similarities. The

sample spaces considered here are due to David G. Kendall (1984) [177], who

called them shape spaces of k-ads in Rm, and used the notation Σ k
m; technically,

in the language of G-shapes, these are spaces of direct similarity shapes of k-

ads. A k-ad in m dimensions is an ordered set of points in Rm. A comprehensive

account of Kendall’s shape spaces in arbitrary dimensions can be found in

Kendall et al. (1999) [179].

The orbit of a k-ad under the action of the group of direct similarities,

is called a direct similarity shape. Here we consider only k-ads in which the

k points are not all equal. The Kendall shape(direct similarity shape) can be

also obtained as follows. First one removes translation by centering the k-ad

x = (x1, . . . ,xk) to

ξ = (x1 − x, . . . ,xk − x). (3.122)

Note that the set of all centered k-ads lie in a vector subspace Lm
k in (Rm)k

of dimension mk−m,Lm
k = {ξ = (ξ 1, . . . ,ξ k) ∈ (Rm)k : ξ 1 + · · ·+ ξ k = 0}, and,
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Lm
k
∗ = Lm

k \{0}. If the size is not relevant, its effect is removed by scaling ξ to

unit size as

u =
ξ

|ξ | . (3.123)

Since size is not relevant in this case, its effect is removed by scaling ξ to unit

size as u =
ξ
|ξ | . The quantity u, often called preshape, lives on S(Lm

k
∗), the unit

sphere in Lm
k called the preshape sphere. Note that S(Lm

k
∗) ∼ Smk−m−1, the unit

sphere centered at the origin in Rmk−m. Finally, the Kendall shape [x] of this

k-ad is the orbit, of u = (u1, . . . ,uk) under all rotations around 0m in Rm (Dryden

and Mardia (1998, pp. 56-57)) [91]. That is,

[x] = {Au = (Au1, . . . ,Auk) : A ∈ SO(m)}. (3.124)

Thus the Kendall shape space, set of direct similarity shapes of k-ads in m

dimensions is the compact orbifold Σ k
m = S(Lm

k
∗)/SO(m) ∼ Smk−m−1/SO(m).

For m > 2 (and in particular m = 3), Σ k
m = S(Lm

k
∗)/SO(m) have singularities,

for the same reasons as SΣ k
m does, as described above.

In the case m = 2, the Kendall shape space Σ k
2 has a particularly nice ma-

nifold structure though. Indeed, if we regarding each k-ad in the plane as an

ordered set of k complex numbers z = (z1, . . . ,zk), the centered k-ad

ζ = (ζ 1, . . . ,ζ k) (3.125)

ζ j = z j − z,∀ j = 1, . . . ,k,

has the same direct similarity shape as z = (z1, . . . ,zk), and lies in the complex

hyperplane

Lk = {ζ ∈ Ck : ζ 1 + · · ·+ ζ k = 0} ∼ Ck−1. (3.126)

It we consider a second k-ad z′ = (z′1, . . . ,z′k), having the same Kendall shape

as the k-ad z = (z1, . . . ,zk), they differ by a translation, followed by a rotation

and a scaling. That is

z′ j = ρeiθ z j + b,∀ j = 1, . . . ,k,ρ > 0,b ∈ C,θ . (3.127)

From (3.127), the centered k-ad ζ ′ = (ζ ′1, . . . ,ζ ′k),ζ ′ j = z′ j − z′,∀ j = 1, . . . ,k
satisfies the following:

ζ ′ j = ρeiθ ζ j ,∀ j = 1, . . . ,k,ρ > 0. (3.128)

If in (3.128) we set λ = ρeiθ , then λ ∈ C∗ = C\{0}, and from this equation,

we see that the two k ads have the same Kendall shape, if and only if

ζ ′ = λ ζ . (3.129)

Note that ζ ′,ζ are nonzero complex vectors in Lk. The k-ads z,z′ have the

same Kendall shape if and only if the centered k-ads ζ ′,ζ differ by a complex

multiple, which is same as saying [ζ ′] = [ζ ] ∈ P(Lk). Therefore we obtained

the following
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THEOREM 3.5.1. The Kendall planar shape space Σ k
2 can be identified with

the complex projective space P(Lk). Moreover, since Lk has complex dimension

k− 1, P(Lk) ≃ P(Ck−1) = CPk−2, therefore the Kendall planar shape analysis

is data analysis on the complex projective space CPk−2.

3.5.4 Planar Size-and-Shape Manifolds

In this example m = 2 and G is the group roto-translations of the Euclidean

plane. Consider k-ads, k > 2, ordered set of k points in the numerical plane, not

all the same. A manifold of interest in shape analysis is the planar size-and-

shape space SΣ k
2 (see Dryden and Mardia (1998, p. 57) [91]). Two planar k-ads

have the same size-and shape if they differ by a direct isometry of the Euclidean

plane. Translate a k-ad x by −x (i.e. center x) to get a k-ad ξ = (ξ 1, . . . ,ξ k)∈ L2
k

given by (3.137). Two k-ads x,x′ have the same direct similarity size-and-shape

if there is a w ∈ S1 = {ζ ∈ C, |ζ | = 1}, such that ξ ′ = wξ , where ξ ,ξ ′ ∈ L2
k

are the centered x,x′ respectively. Let [x]S, [x] and r(x) be the size-and-shape,

shape, and size of x, respectively, where r2(x) =: ∑k
i=1 |ξ i|2. Define the one-to-

one map Ψ : SΣ k
2 → (0,∞)×Σ k

2 given by

Ψ ([x]S) = (r(x), [x]), (3.130)

where Σ k
2 was introduced in subsection 3.5.3. Since an Euclidean similarity is

obtained from an isometry, followed by a scaling it follows that

THEOREM 3.5.2. The planar size-and-shape space SΣ k
2 can be identified

with (0,∞)×Σ k
2, a differentiable manifold of dimension 2k− 3.

In the representation (3.130), the second coordinate on the right side is

the planar similarity shape of a k-ad, thus allowing a natural mathematical

modeling for the change in shape with size growth.

3.5.5 Size-and-Shape Manifolds in Higher Dimensions

In this example the group G is the full group Em of isometries of the m dimen-

sional Euclidian space. The size-and-reflection-shape [x]RS of the k-ad x in Rm

is the En-orbit of x, under the action α(A,b),x) = (Ax1 + b, . . . ,Axk + b),A ∈
O(m),b ∈Rm, of the En on the set of all centered k-ads. The terminology (size-

and-reflection-shape) is due to Dryden and Mardia (1998, p. 57)) [91]. The set

of all size-and-reflection-shapes of centered k-ads in general position ξ , i.e.

k-ads for which {ξ1, . . . ,ξk} spans Rm, is the size-and-reflection-shape space

SRΣ k
m,0. This space is a manifold, since the action of an orthogonal matrix on

Rm is uniquely determined by its action on a basis of Rm, and a centered k-ad

in general position includes such a basis. Recall that, by the fundamental the-

orem of Euclidean geometry, any isometry of the Euclidean space is a linear
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transformation of Rm of the form

x′ = Bx + b,BT B = Im, (3.131)

therefore, if one centers the k-ad x to ξ = (x1 −x, . . . ,xk −x) ∈ Lm
k , then [x]RS =

[ξ ]RS, and if a k-ad x′, having the same reflection-shape as x, differs from x by

the isometry (3.131), then

x′ = Bx + b. (3.132)

Therefore ξ ′ = Bξ , where ξ ′ ∈ Lm
k is obtained by centering the k-ad x′. Thus,

if we set Lk,m,0 = {ξ ∈ Lm
k , rkξ = m}, the manifold SΣ k

m,0 can be represented as

a quotient Lk,m,0/O(m) and the manifold dimension of SΣ k
m,0 is km− m(m+1)

2 .

3.5.6 Size-and-Reflection Shape Manifolds in Higher

Dimensions

In higher dimensions, it is easier, and equally important, to study shapes of con-

figurations with respect to the full group of isometries, as opposed to studying

SO(m)-shapes only. The size-and-reflection shape of the k-ad x is orbit of the

centered k-ad ξ under the action of the orthogonal group, defined for the set

Ck,m,0 of all k-ads x in general position, i.e., k-ads such that the linear span of

{ξ j, j = 1, . . . ,k} (of the centered x) is Rm :

[x]RS = {Aξ : A ∈ O(m)}. (3.133)

A k-ad is said to be if it is not contained in any hyperplane of Rm; in particular

for such a k-ad, k > m. The set of all size-and-reflection shapes of k-ads in

general position in Rm, is the size-and-reflection-shape manifold SRΣ k
m,0 which

is the set

SRΣ k
m,0 = {[x]R,x in general position } = {[x]RS, rkx = m.}, (3.134)

where rkx is the rank of x. The manifold dimension, codimension of the O(m)

-orbits in (Rm)k, is dim SRΣ k
m,0 = km− m(m+1)

2
.

3.5.7 Linear Shape Spaces and Affine Shape Spaces as

Grassmannians

This subsection is concerned with a description of object spaces of linear shape

spaces and reflection-affine shapes. Here, the groupG considered in Subsection

3.5.2 is the general linear group GL(m,R), in the case of linear shapes, and the

affine group in m dimensions, A f f (m), in the case of reflection-affine shapes.

The linear shape space as an object space was first considered in con-

nection with analysis of 2D gel electrophoresis images (see [235]), and the

affine shape space, was first considered for data analysis via nonparametric
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statistical analysis of landmark based affine shape data in which each obser-

vation x = (x1, . . . ,xk) is a k-ad, k > m + 1 in m dimensions, where the points

x j, j = 1, . . . ,k represent k locations on a scene, such as landmarks on a re-

mote planar scene observed in aerial or satellite images (see Patrangenaru and

Mardia (2013) [274]). An affine transformation γ = γA,b of Rm is given by

γ(x) = y = Ax + b,A ∈ GL(m,R),b ∈Rm. (3.135)

Let (x1,x2, ...,xk) be a k-ad of points in Rm. The affine group A f f (m), is the

group of transformations given in equation (3.135). The action α of A f f (m)

on Rm induces a diagonal action αk : A f f (m)× (Rm)k → (Rm)k, given by

αk((A,b), (x1, . . . ,xk)) = (γA,b(x1), . . . ,γA,b(xk)),A∈GL(m,R),b∈Rm. (3.136)

To be specific, we consider only k-ads in general position. The reflection-

affine shape space AΣ k
m of such k-ads, is the space of orbits of this action.

The reflection-affine shape of the k-ad x is labeled aσ̃ (x), and the reflection-

affine shape space is the space of AΣ k
m
∼= (Rm)k/A f f (m), of all such orbits.

To identify topologically this space of objects, we first remove translation ( the

vector b in equation (3.135)), by centering the k-ad x = (x1, . . . ,xk) to

ξ = (ξ1, . . . ,ξk) (3.137)

ξ j = x j − x,∀ j = 1, . . . ,k.

Note that the set of centered k-ads lies in the vector subspace Lm
k in (Rm)k

of dimension mk−m,Lm
k = {ξ = (ξ1, . . . ,ξk) ∈ (Rm)k : ξ1 + · · ·+ ξk = 0}, and,

Lm
k
∗ = Lm

k \{0}. k ≥ m of set (Rm)k. The group of affine transformations acts

diagonally on left on (Rm)k. The action (3.136) induces an action βk of GL(m, )
on Lm

k , given by

βk((A, (ξ1, . . . ,ξk)) = (Aξ1, . . . ,Aξk),A ∈ GL(m,R), (ξ1, . . . ,ξk) ∈ Lm
k ,w
(3.138)

whose orbit set is in a one to one correspondence with the orbit set of the action

(3.136). Indeed, the reflection-affine shape space can be regarded as the space

of orbits of the action (3.138) on Lm
k . Since k− 1 > m, the centered k-ads (at

0 ∈ Rm) (ξ1, . . . ,ξk) and (η1, . . . ,ηk) (of x and y respectively), are in the same

orbit of (3.136), iff the k-ads x and y have the same reflection-affine shape.

DEFINITION 3.5.1. A configuration is in general position if the affine sub-

space spanned by x1, . . . ,xk is Rm.

If we consider only k-ads in general position, then ξ and η are on the same

orbit of βk iff their columns span the same m-dimensional space. Therefore a

reflection-affine shape in L1
k of a k-ad in general position, can be represented

as point on Gm(L1
k). We arrived at the following
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THEOREM 3.5.3. If k > m + 1 then the reflection-affine shape space of k-ads

in general position in Rm is in a one-to-one correspondence with the space of

m-dimensional linear subspaces of L1
k .

COROLLARY 3.5.1. The reflection affine shape space of k-ads in general

position in Rm, with k > m + 1, is in a one-to-one correspondence with the

Grassmann manifold Gm(Rk−1).

This result, due to Sparr (1998) [315], is given here the a new proof (see Pa-

trangenaru and Mardia[274]). The reflection-affine shape space AΣ k
m of k-ads

in m-dimensions can be stratified as follows: AΣ k
m = (AΣ k

m)m∪(AΣ k
m)m−1∪·· ·∪

(AΣ k
m)0, where (AΣ k

m)m is the space of reflection-affine shapes if the configu-

ration is in general position in Rm, and (AΣ k
m)r is the space of reflection-affine

shapes if the configuration spans a subspace of dimension r,∀r = 0, . . . ,m. We

will focus on (AΣ k
m)m. If the space spanned by the columns of ηT is the same as

the space spanned by the columns of ξ T , then y and x have the same reflection-

affine shape.

THEOREM 3.5.4. (Sparr) If k > m + 1 then the reflection-affine shape space

of k-ads in general position in Rm is in a one-to-one correspondence with the

space of m-dimensional linear subspaces of L1
k .

Recalling the stratification of the reflection-affine shape space, in view of

Theorem 3.5.4, AΣ k
m can be viewed as a union of Grassmann manifolds: AΣ k

m =

Gm(L1
k)∪Gm−1(L1

k)∪ . . .G1(L1
k).

A direct affine transformation of Rm is given by

y = Ax + b,A ∈ GL(m,R),b ∈ R,det(A) > 0. (3.139)

The direct affine shape aσ (x) of the k-ad x, is similarly defined as

the orbit of x under the diagonal action αk of the group of direct affine

transformations A f f+(m) on (Rm)k, which is induced by the action of

A f f+(m) given by (3.139) on each of the Rm factors of (Rm)k. In other

words, (x1, . . . ,xk) and (y1, . . . ,yk) have the same affine shape if (y1, . . . ,yk) =

αk((A,b), (x1, . . . ,xk),det(A) > 0). Since to each k-ad (x1, . . . ,xk), we asso-

ciate the k-ad (ξ1, . . . ,ξk) which is centered at 0 ∈ Rm (ξ̄k = 0), and the k-ads

(x1, . . . ,xk) and (ξ1, . . . ,ξk) have the same affine shape, it follows that two k-

ads x and y have the same reflection-affine shape iff their corresponding cen-

tered k-ads y j = Ax j +b, ∀ j = 1, . . . ,k,det(A)> 0. Summing up over j results in

ȳk = Ax̄k +b,det(A)> 0. Therefore, the k-ads x and y have the same direct affine

shape iff the center k-ads ξ ,η , given by x j− x̄k = ξ j and y j− ȳk = η j differ by an

orientation preserving linear transformation, η j = Aξ j,∀ j = 1, . . . ,k,det(A)> 0.
This filters out translation, thus αk induces an action βk of GL+(m,R) on

Lm
k , given by βk(A,ξ ) = Aξ = η .

The direct affine shape space A+Σ k
m of k-ads in m-dimensions can be strati-

fied as follows: A+Σ k
m = (A+Σ k

m)m∪ (A+Σ k
m)m−1∪·· ·∪ (A+Σ k

m)0, where (A+Σ k
m)m

is the space of direct affine shapes if the configuration is in general position in
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Rm, and (A+Σ k
m)r is the space of direct affine shapes if the configuration spans

a subspace of dimension r,∀r = 0, . . . ,m− 1. We will focus on (A+Σ k
m)m. If the

space spanned by the columns of ηT is the same as the space spanned by the

columns of ξ T , then y and x have the same direct affine shape.

THEOREM 3.5.5. The direct affine shape space of k-ads in general position

inRm,k>m+1 is in a one-to-one correspondence with the Grasmann manifold

Go
m(L1

k), space of oriented m-dimensional linear subspaces L1
k .

Similarly, for k > m, the orbits of the diagonal action of the general linear

group G = GL(m,R) on k-ads in Rm form the orbifold LΣ k
m, linear shape space

that admits a stratification

LΣ k
m = LΣ k,m

m ∪·· ·∪LΣ k,1
m ,

where LΣ k,r
m is the space of k-ads x1, . . . ,xk such that the sampling matrix x =

(x1 . . .xk) has rank r. For fixed r the rows of the sampling matrix span an r-plane

in Rk, therefore we have the following result

THEOREM 3.5.1. For r = 1, . . . ,m the linear space LΣ k,r
m is in a one-to-one

correspondence with Gr(R
k).

In particular the top stratum LΣ k,m
m , of linear shapes of k-ads in general

position, form a Grassmann manifold Gm(Rk).

3.5.8 Projective Shape Spaces

A d - dimensional projective subspace of RPm is a projective space P(V ),

where V is a (d + 1)-dimensional vector subspace of Rm+1. A codimension one

projective subspace of RPm is also called a hyperplane. The linear span of a

subset D of RPm is the smallest projective subspace of RPm containing D. We

say that k points in RPm are in general position if their linear span is RPm. If k

points in RPm are in general position, then k ≥ m + 2.
The numerical space Rm can be embedded in RPm, preserving collinearity.

An example of such an affine embedding is

h((u1, ...,um)) = [u1 : ... : um : 1] = [ũ], (3.140)

where ũ = (u1, . . . ,um,1)T , and in general, an affine embedding is given for any

A∈Gl(m+1,R), by hA(u) = [Aũ]. The complement of the range the embedding

h in (3.140) is the hyperplane RPm−1, set of points [x1 : · · · : xm : 0] ∈ RPm.
Conversely, the inhomogeneous (affine) coordinates (u1, . . . ,um) of a point

p = [x1 : x2 : · · · : xm+1] ∈RPm\RPm−1 are given by

u j =
x j

xm+1
,∀ j = 1, . . . ,m. (3.141)

Consider now the linear transformation from Rm+1 to Rm′+1 defined by the
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matrix B ∈ M(m + 1,m′ + 1;R) and its kernel K = {x ∈ Rm′+1,Bx = 0}. The

projective map β :RPm′\P(K)→RPm, associated with B is defined by β ([x]) =

[Bx]. In particular, a projective transformation β of RPm is the projective map

associated with a nonsingular matrix B ∈ GL(m+1,R) and its action on RPm :

β ([x1 : · · · : xm+1]) = [B(x1, . . . ,xm+1)T ]. (3.142)

In affine coordinates (inverse of the affine embedding (3.140)), the projective

transformation (3.142) is given by v = f (u), with

v j =
a

j
m+1 + ∑m

i=1 a
j
i ui

am+1
m+1 + ∑m

i=1 am+1
i ui

,∀ j = 1, . . . ,m (3.143)

where detB = det((a
j
i )i, j=1,...,m+1) 6= 0. An affine transformation of Rm,v = Au +

b,A ∈ GL(m,R),b ∈ Rm, can be regarded as a particular case of projective

transformation α, associated with the matrix B ∈ GL(m + 1,R), where

B =

(
A b

0T
m 1

)
. (3.144)

A projective frame in an m dimensional projective space (or projective basis in

the computer vision literature, see e.g. Hartley (1993) [142]) is an ordered set

of m + 2 projective points in general position. An example of projective frame

in RPm is the standard projective frame is ([e1], . . . , [em+1], [e1 + · · ·+ em+1]).
In projective shape analysis it is preferable to employ coordinates invariant

with respect to the group PGL(m) of projective transformations. A projective

transformation takes a projective frame to a projective frame, and its action on

RPm is determined by its action on a projective frame, therefore if we define

the projective coordinate(s) of a point p ∈ RPm w.r.t. a projective frame π =

(p1, . . . , pm+2) as being given by

pπ = β−1(p), (3.145)

where β ∈PGL(m) is a projective transformation taking the standard projective

frame to π , these coordinates have automatically the invariance property.

REMARK 3.5.2. Assume u,u1, . . . ,um+2 are points in Rm, such that π =

([ũ1], . . . , [ũm+2]) is a projective frame. If we consider the (m + 1)× (m + 1) ma-

trix Um = [ũT
1 , . . . , ũ

T
m+1], the projective coordinates of p = [ũ] w.r.t. π are given

by

pπ = [y1(u) : · · · : ym+1(u)], (3.146)

where

v(u) = U−1
m ũT (3.147)

and

y j(u) =
v j(u)

v j(um+2)
,∀ j = 1, . . . ,m + 1. (3.148)
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Figure 3.8 Projective coordinates for m = 1. Projective frame π = (p1, p2, p3) and a

projective point p (left) and projective coordinates of p with respect to π (right).

This representation of projective coordinates is displayed in Figure 3.8 for

m = 1. In this figure on the left one constructs the coordinates y1,y2 of f with

respect to the frame π = ([ f1], [ f2], [ f3]) and on the right hand side one shows

the corresponding projective point [y1 : y2]. Note that in our notation, the su-

perscripts are reserved for the components of a point whereas the subscripts

are for the labels of points. The projective coordinate(s) of x are given by the

point [z1(x) : · · · : zm+1(x)] ∈ RPm.

DEFINITION 3.5.2. Two configurations of points in Rm have the same pro-

jective shape if they differ by a projective transformation of Rm.

Unlike similarities or affine transformations, projective transformations of

Rm do not have a group structure under composition (the domain of definition

of the composition of two such maps is smaller than the maximal domain of a

projective transformation in Rm), therefore rather than considering the projec-

tive shapes of configurations in Rm, we consider projective shapes of configu-

rations in RPm. A projective shape of a k-ad (configuration of k landmarks or

labeled points) is the orbit of that k-ad under projective transformations with

respect to the diagonal action

αk(h; p1, . . . , pk) = (αh(p1), . . . ,αh(pk)). (3.149)

Since the action (3.149) of h∈ PGL(m) on [x]∈RPm, when expressed in inho-

mogeneous coordinates (3.141) reduces to (3.143), if two configurations Γ1,Γ2

of points in Rm have the same projective shape, then h(P1),h(P2) have the same

projective shape in RPm ( h is the affine embedding given by (3.140)).

REMARK 3.5.3. Patrangenaru (2001) [268] considered the set G(k,m)

of k-ads (p1, ..., pk),k > m + 2 for which π = (p1, ..., pm+2) is a projective

frame. PGL(m) acts simply transitively on G(k,m) and the projective shape
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space PΣ k
m, is the quotient G(k,m)/PGL(m). Using the projective coordinates

(pπ
m+3, . . . , pπ

k ) given by (3.145) one can show that PΣ k
m is a manifold diffeo-

morphic with (RPm)k−m−2.

The projective frame representation has two useful features: firstly, the pro-

jective shape space has a manifold structure, thus allowing to use an asymptotic

theory for means on manifolds in Bhattacharya and Patrangenaru (2003, 2005)

[42, 43], an secondly, it can be extended to infinite dimensional , such as pro-

jective shapes of curves, as shown in Munk et al. (2008) [252]. This approach

has the advantage of being inductive in the sense that each new landmark of

a configuration adds an extra marginal axial coordinate, thus allowing to de-

tect its overall contribution to the variability of the configuration as well as

correlation to the other landmarks.

In general, the manifolds considered in this book are homogeneous spaces.

The first results in density estimation on homogeneous manifolds are due to

Beran (1968) [19].

REMARK 3.5.4. A new, label independent methodology to projective shape

analysis of k-ads in general position, was developed by Kent and Mardia

(2012) [185] (see also Kent and Mardia (2006) [184]). However, their ap-

proach was not yet used in practical applications beyond dimension 1, possibly

due to the fact that it requires nonlinear approximations to the matrix solution

of the equation in A

A =
m

k

k

∑
i=1

xix
T
i

xT
i A−1xi

(3.150)

in terms of a k-ad of points in RPm given in their spherical representation , the

key step in Kent and Mardia(2012)[185] description of a projective shape.

3.6 Exercises

Exercise 15. The following are manifolds: (i) Any open set in Rm is an m-

dimensional manifold. (ii) The unit sphere in Rm is an (m-1)-dimensional ma-

nifold. (iii) The torus T N = (S1)N is an N-dimensional manifold.

Exercise 16. Show that the orthogonal group O(m) is a submanifold of dimen-

sion m(m−1)
2 of Mm(R), the Euclidean space of m×m matrices.

Hint (Victor Pambuccian)). O(m) = {A∈Mm(R),AAT = Im}, Note that F(A) =

AAT − Im = 0 is symmetric, and the dimension of the space of symmetric matri-

ces is dim(Sym(m,R) = m + (m− 1) + · · ·+ 1 = m(m+1)
2

O(m) is the set of zeros of the function F, therefore it suffices to show that F

is differentiable, and for any matrix A ∈ O(m), the differential dAF : Mm(R) →
Sym(m,R) is onto. Since

F(A + H)−F(A) = AHT + HAT + HHT , (3.151)
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and since the function L : Mm(R) → Sym(m,R),

L(H) = AHT + HAT (3.152)

is linear and the function ω : Mm(R) → Sym(m,R),

ω(H) = HHT (3.153)

has the property that limH→0
ω(H)

H
= limH→0HT = 0, we have

F(A + H) = F(A) + L(H) + ω(H), limH→0
ω(H)

H
= 0 (3.154)

Thus F is differentiable at A and the differential at A is dAF = L that is

dAF(H) = AHT + HAT . (3.155)

dAF is onto for any A ∈ O(m), if the equation dAF(X) = Y has a solution

X ∈ Mm(R),∀Y ∈ Sym(m,R). Take X = 1
2
YA, then dAF(X) = AXT + XAT =

A( 1
2YA)T + 1

2YAAT = 1
2 AATY T + 1

2Y = 1
2Y T + 1

2Y = Y is symmetric 1
2Y + 1

2Y = Y.

Exercise 17. Show that the projective space CPd is an analytic manifold of

real dimension 2d.

Exercise 18. Show that if p > 1 is an integer, the function z → zp is an immer-

sion from S1 to R2, which is not an embedding.

Exercise 19. Show that if M is an m-dimensional manifold, then its tangent

space TM is a 2m dimensional manifold. Also show that the projection map

Π : TM→M, given by Π ( dc
dt

(0) = c(0), is a differentiable map .

Exercise 20. Note that even if an immersion j : M → Rd is one-to-one,

its range j(M) may not be a manifold. Give such an example of immersion

j : (0,1) → R2.

Exercise 21. (i) Show that O(m + 1) acts transitively on Rm via A · [x] = [Ax].
(ii) Show that the restriction of the action (13.35) to O(m)×Sym+(m+1), is an

action of the orthogonal group on the set of positive semi-definite symmetric

matrices. (iii) Show that Veronese-Whitney map (12.3) in (12.3) is an equivari-

ant embedding.

Exercise 22. Show that the projective plane RP2 is a surface that can not be

embedded in R3.

Exercise 23. Show that the surface of a bagel-like solid of revolution, obtained

by rotation of a circle or radius R = 1 around a line in the plane of that circle

at distance 2 from its center, is a submanifold of the Euclidean space of codi-

mension one (a surface). This is a torus of revolution.
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Solution. We have the following parametrization of the torus, as a surface of

revolution:

x = (2 + cosθ )cosφ

y = (2 + cosθ ) sinφ

z = sinθ ,θ ,φ ∈ R. (3.156)

We eliminate the parameters θ ,φ in (3.156) and obtain the implicit equation

(2−
√

x2 + y2)2 + z2 = 1, (3.157)

which, after removing the square root is equivalent to the implicit equation for

a point u = (x,y,z) on the torus:

F(x,y,z) = (x2 + y2 + z2 + 3)2 − 16(x2 + y2) = 0 (3.158)

Note that the gradient ∇uF = 0 only if u = 0 or u satisfies to x2 + y2 = 5,z = 0.
Such a point u does not lie on the torus, therefore for any point u on the torus,

duF 6= 0, thus rankduF = 1 and the torus of revolution, set F−1(0) is a surface

in R3 (submanifold of codimension 1 of R3).

Exercise 24. Show that the m dimensional torus in 3.1.13 can be embedded as

a hypersurface in an Euclidean space.

Hint. For p = 2 see exercise 22. Then use induction. For details, see Patrange-

naru (1984)[263].

Exercise 25. The Lie algebra of a Lie group. Recall that the Lie algebra of

a Lie group is the tangent space at the identity, of the group, together with

an internal operation generated by the commutator operation in the group.

Assume g is the Lie algebra of the Lie group G. If g(t),h(t) are curves in G

with g(0) = h(0) = 1G whose tangent vectors at 0 are respectively v,w ∈ g, then

the Lie algebra operation [v,w] is defined as the tangent vector at 0 of the curve

c(t) = g(
√

t)h(
√

t)g−1(
√

t)h−1(
√

t) (3.159)

Exercise 26. Show that the Lie algebra bracket operation is anticommutative.

Exercise 27. We showed that in gl(m), Lie algebra of the general linear group

GL(m,R) the bracket operation is given by [v,w] = vw−wv.

Exercise 28. Show that for any linear Lie group (Lie subgroup of GL(m,R)),
the Lie algebra bracket is the same as the bracket in gl(m).

Exercise 29. A classical result clams that the exponential map A → eA = I +

A + 1
2!

A2+ gives a local diffeomorphism from the Lie algebra of a Lie group to

a neighborhood of the identity of that group.

Exercise 30. Show that if A ∈ so(m) then eA ∈ SO(m).
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Exercise 31. A homogeneous space M can be represented as a quotient K/H

of two groups. Indeed, because a transitive group action implies that there is

only one group orbit, M is isomorphic to the quotient space G/H where H is

the isotropy group Gu. The choice of u ∈M does not affect the isomorphism

type of G/Gu because all of the isotropy groups are conjugate.

Exercise 32. Show that the sphere Sm is the quotient space O(m + 1)/O(m).

Exercise 33. Show that the projective space in example 3.1.16 is a Hilbert

manifold.

Hint. Define the distance between two vector lines as their angle, and, given

a line L⊂ H, show a neighborhood UL of L can be mapped, via a homeomor-

phism ϕL onto an open neighborhood of the orthocomplement L⊥ by using the

decomposition H = L⊕L⊥. Then for two perpendicular lines L1 and L2, show

that the transition maps ϕL1
◦ ϕ−1

L2
are differentiable as maps between open

subsets in L⊥
1 , respectively in L⊥

2 . Use a countable orthobasis of H and the

lines Ln,n ∈ N generated by the vectors in this orthobasis to cover P(H) with

the open sets ULn ,n ∈ N. Finally use the fact that for any line L⊥ and H are

isometric as Hilbert spaces.

Exercise 34. What is the surface area of the torus in Exercise 20?

Exercise 35. Let g = gx and h = gy be the local matrices associated with the

Riemannian structure g on M. Show that

gi j(x(u)) =
∂ya

∂xi
(x(u))

∂yb

∂x j
(x(u))hab(y(u)) (3.160)

Exercise 36. The Riemannian structure on the unit sphere. Consider the unit

sphere Sm ∈ Rm+1. Let x = x(u) be the inverse of the stereographic projection

from the North pole, u : Rm → Sm. Show that

u(x) =

(
2x

‖x‖2 + 1
,
‖x‖2 − 1

‖x‖2 + 1

)
∈ Sm ⊂ Rm+1. (3.161)

and compute the induced Riemannian structure xgi j with respect to these coor-

dinates, and the infinitesimal squared geodesic distance ds2 in equation (3.34).

Exercise 37. Show that the unit sphere Sm has constant sectional curvature.

Exercise 38. Find all the surfaces of rotation of constant positive curvature in

R3, and show that the only surfaces of rotations of positive curvature that are

complete are the round spheres.

Hint. Integrate the differential equation (3.54), in the case k(u,v) = 1
R2 .

Exercise 39. Poincaré model for hyperbolic geometry. An example of an

abstract Riemannian structure is

ds2 =
dx2 + dy2

(1− x2− y2)2
(3.162)
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defined on a unit open disk in plane. This is the Poincaré hyperbolic disk. Show

that the Poincaré disk is a Riemannian manifold of constant curvature k = −1.

Exercise 40. Show that the great circles are the geodesics on the sphere.

Exercise 41. Find the geodesics of the Poincaré disk in Exercise 24, and show

that the exponential map is defined on the entire tangent plane to the Poincaré

disk at any point on this Riemannian manifold, thus the Poincaré disk is com-

plete as a Riemannian manifold.

Exercise 42. Find two perpendicular geodesics passing through the point u =

(1,0,0) of the torus in Exercise 2.

Exercise 43. Show that the set of isometries of a Riemannian manifold IgM.

Show that the isotropy group Hp in 3.2.6 is a subgroup of IgM
Show that the group O(m + 1) acts on Sm with the Riemannian metric induced

by Rm+1 as a group of isometries, via the matrix multiplication A · p = Ap. What

is the isotropy group of this action at the North Pole p = (0, . . . ,0,1)?

Exercise 44. Show that the actions α given by

α : GL(m)× Sym+(m) → Sym+(m),α(H,S) = HSHT , (3.163)

and its restriction and α+ : GL+(m)× Sym+(m) → Sym+(m) are transitive Lie

group actions on Sym+(m).

Exercise 45. Usually, in directional statistics, one regards an axial distribution

as one corresponding to an Sm valued random variable X such that X and −X

have the same distribution (Watson (1983) [333], Ch. 5, Fisher et al. (1996)

[116], Beran and Fisher (1998)[18]). Show that this is the same as giving a

probability distribution on RPm.

Exercise 46. (i) Show that RPm is a quotient of the action by isometries of the

multiplicative group −1,1 on Sm via (−1) · x = −x.
(ii) Show that RPm carries a Riemannian structure of constant sectional cur-

vature 1.

(iii) Show that if p = [1 : 0 : . . . ,0], the cut locus C(p) = RPm−1 is the projective

hyperplane from infinity of the point p.

Exercise 47. (i) Show that the Veronese–Whitney map defined in (3.1.15) is

an SO(m) - equivariant embedding of RPm into the space (S(m + 1,R) of real

symmetric matrices, where the action of SO(m) on (S(m + 1,R) is induced by

the adjoint action (13.35).

(iii) Show that the Euclidean distance d0 on (S(m + 1,R) is given by

d0(A,B) = Tr((A−B)(A−B)t) = Tr((A−B)2), (3.164)

(iv) Show that the embedding in (i) is an isometric embedding, where RPm

carries a Riemannian structure in exercise 2.(ii) and (S(m + 1,R) has the Eu-

clidean distance in (3.164).
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Exercise 48. Show that the projective space RRm is the quotient space O(m +

1)/(O(m)×O(1)).

Exercise 49. Show that a similarity of Rm is given by an equation of the form

(3.121).

Hint. Assume k > 0, such that ∀x,y,‖ f (x)− f (y)‖ = k‖x− y‖. Define the func-

tion g : Rm → Rm,g(x) = 1
k

f (x). Note that g is an isometry, and by the Funda-

mental theorem of geometry, it is a composition of at most m + 1 reflections in

hyperplanes. Then show that a reflection is an affine map, and use induction,

to prove the claim.

Exercise 50. Consider the centering matrix Hk = Ik − 1
k

1k1T
k .

(i) Show that H2
k = HkHT

k = HT
k = Hk, and rank(Hk) = k−1. (ii) Show that the

range of the linear endomorphism h of Ck, given by h(z) = Hkz is the subspace

Lk in (3.126). (iii) If we regard Ck−1 as a the subspace {(z,0),z ∈ Ck−1} of

Ck, show that the restriction h1 = h|Ck−1 is an isomorphism of vector spaces,

and the inverse of h1 is given by h−1
1 (ζ ) = HT ζ , where H is the matrix of the

first k−1 columns of Hk. (iv) The linear isomorphism h−1
1 induces a bijection

from the projective space P(Lk) to CPk−2. (v) If z ∈ Ck = M(1,k;C) is a k-

ad, then the map ψ given by ψ(σ (z)) = [HTHkz] is a bijection from Kendall’s

shape space Σ k
2 to CPk−2.

Exercise 51. Let (S(k− 1,C) be the set of k− 1 by k− 1 self adjoint matrices.

Define the (complex) Veronese Whitney map j : Ck−2 → (S(k− 1,C) by

j([ζ ]) = ζζ∗, (3.165)

(i) Show that j is an embedding.(ii) Show that the unitary group U(k− 1) of

(k− 1)× (k− 1) complex matrices A with A∗A = I acts on CPk−2 via A · [ζ ] =

[Aζ ], and on (S(k − 1,C) via the adjoint action (13.35). (ii) Show that the

embedding (3.165) is U(k− 1)-equivariant.

Exercise 52. Show that the complex projective space CPm can be represented

as the quotient space U(m + 1)/(U(m)×U(1)).

Exercise 53. Show that the Grassmann manifold Gm(Rd), has a structure of

m(d−m) dimensional differentiable manifold.

Exercise 54. Show that Grassmann manifold of m-dimensional subspaces in

Rm+r can be represented as O(m + r)/(O(m)×O(r)).

Exercise 55. Let x = (1,2, . . . ,m + 1) ∈ Rm+1 be the point. Find the rep-

resentation as a point RPm, of the projective shape of the m + 2-ad

([e1], . . . , [em+1], [e1 + · · · + em+1], [x]) with respect to the standard projective

frame ([e1], . . . , [em+1], [e1 + · · ·+ em+1].

Exercise 56. Show that the height function h : Sd → R, with h(x1, . . . ,xd+1) =

xd+1 is a Morse function on the unit sphere. Derive the homology H∗(Sd).
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Exercise 57. Show that the function f : CPd →R :

f ([z0, . . . ,zd] =
∑d

j=0 j|z j |2

∑d
j=0 |z j |2

. (3.166)

is a perfect Morse function, and prove that the homology groups H∗(CPd) are

given by (3.118).

Hint. Recall that the sets Ak,k = 0, . . . ,d,Ak = {[z] ∈ CPd ,zk 6= 0} give an

atlas on CPd, and for k = 0, . . . ,d, the affine coordinates v j = v j(k) = z j

zk are

defined for [z] ∈ Ak. an open set in Cd . Show that f |Ak has only one critical

point pk ∈ Ak, with v j(k) = 0, j = 0, . . . ,d, j 6= k, and pk is nondegenerate to the

index η(pk) = 2k.

Exercise 58. The homotopy groups of the projective space of a separable com-

plex Hilbert space P(H) are given by

πk(P(H)) =





Z, for k = 2,

0, otherwise

(3.167)
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4.1 Introduction

In a visionary paper, Fréchet (1948) introduced the notion of random element

in a metric space, and noted that those new concepts and results “are setting the

bases of a new Chapter, that we believe will insure a great future of Probability

theory” as they have important implications in both Statistics and Experimen-

tal Sciences. In that paper, Fréchet defined the mean of a probability measure

on a separable metric space (M,ρ), and hinted at a proof of the consistency of

the sample mean for a random sample from such a distribution. Consistency,

this important feature required of an estimator, was given a complicated first

proof by Ziezold (1977) [345]. Essentially Ziezold showed that the Fréchet

sample mean set is a consistent estimator of the Fréchet mean set if (M,ρ)

is compact, and according to Huckemann (2011)[164], Ziezold’s proof goes

through without any difficulty in the case that (M,ρ) is complete as well. Bhat-

tacharya and Patrangenaru (2003)[42] gave a new proof of the consistency of

the Fréchet sample mean on a complete separable metric space, which includes

the case of a random object (r.o.) on a complete space with a manifold stratifi-

cation. They also introduced the Fréchet total variance of a r.o. in a 2002 paper

[41], and showed that this parameter is consistently estimated by the Fréchet

total sample variance if (M,ρ) is complete. Given a probability measure Q

on a manifold M, the Fréchet moments of Q were called by Patrangenaru

(1998)[266] extrinsic moments, if ρ is induced by the chord distance via an

embedding of M into an Euclidean space, respectively intrinsic moments, if

157
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ρ is the Riemannian distance induced by a Riemannian structure g on M. A

generic consistency result for extrinsic sample means on submanifolds, due

to Hendricks (1990a) [151], was extended by Patrangenaru (1998) [266] and

Bhattacharya and Patrangenaru (2003) [42] to extrinsic sample means on j-

nonfocal distributions on a manifold M, with an embedding j

4.2 Fréchet Means and Cartan Means

In this section we consider a M-valued random object (r.o.) X , i.e. a measur-

able map on a probability space (Ω ,A,Pr) into (M,BM), where BM denotes

the Borel sigma-algebra generated by open subsets of M. To each r.o. X , we

associate a probability measure Q = PX on BM given by Q(B) = Pr(X−1(B)),
therefore from now, when we are referring to probability measures or distribu-

tions on M, we mean probability measures defined on BM. The aim of this

section is to develop nonparametric statistical inference procedures for mea-

sures of location and spread of distributions on arbitrary complete manifolds.

In statistics one mainly considers two types of distances on a manifold M :

a geodesic distance (arc distance), that is the Riemannian distance ρg associ-

ated with a Riemannian structure g on M (see Chapter 3) and a chord distance,

the distance ρ j induced by the Euclidean distance on RN via an embedding

j : M→RN , that is given by

ρ j(p,q) = ‖ j(q)− j(p)‖2
0. (4.1)

An intrinsic data analysis on a manifold is a statistical analysis of a probability

measure, using a Riemannian distance based statistics, while an extrinsic data

analysis is a statistical analysis based on a chord distance based statistics. If

for a given probability measure Q on a metric space (M,ρ), the function pρ :

M→ R,p ρ(q) = ρ(p,q), is in Lr
Q(M), we define the r-th Fréchet function on

M that associates to each point p ∈M its expected r-th power of the distance

to a random point on M, Fr(p) =
∫

ρ r(p,x)Q(dx). In statistical analysis on

manifolds, the most studied Fréchet function, is F2, therefore for the rest of

this chapter F = F2 :

F (p) =

∫
ρ2(p,x)Q(dx), (4.2)

DEFINITION 4.2.1. If Q is a probability measure on M, the total Fréchet

variance of Q, tΣF (Q), is the the infimum of the value of the Fréchet function;

this is the lowest value of F on M if (M,ρ) is complete. If ρ = ρg is a geodesic

distance on M the total Fréchet variance is called the total intrinsic variance

tΣg,I(Q). If ρ is the chord distance induced on M via an embedding j : M→
RN the total Fréchet variance is called the total extrinsic variance tΣ j,E (Q).

These indices of spread are also labeled tΣI and tΣE , if we consider a given

Riemannian structure g or embedding j, and study only one distribution Q.
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For the rest of this chapter we will assume that for any distance ρ consid-

ered, (M,ρ) is complete as a metric space.

EXAMPLE 4.2.1. The terminology in definition 4.2.1 is motivated by the clas-

sical notion of total variance of a random vector in multivariate analysis. For

a given multivariate distribution Q of a random vector X on RN , having finite

second moments, the intrinsic total variance of X is the mean and the total

variance of X, ∑N
i=1 σ2

i , sum of variances σi of the marginal distributions Xi of

X .

DEFINITION 4.2.2. Let Q be a probability measure on M with a distance

ρ . The set of minimizers of F in (4.2) is called the Fréchet mean set. If F has a

unique minimizer, this is called the Fréchet mean of Q, and is labeled µF (Q).
If (M,g) is a Riemannian manifold, the Fréchet mean (set) with respect to arc

distance ρg is called the intrinsic mean (set) of Q. If the intrinsic mean exists,

it is labeled µg,I(Q), or µg(Q) or µg, or µI . The intrinsic mean set is labeled

I(g,Q) or I(Q). If j : M→ RN is an embedding, the Fréchet mean (set) with

respect to the induced chord distance is called the extrinsic mean (set) of Q. If

the extrinsic mean exists, it is labeled µ j,E (Q), or µE (Q) or µ j, or µE .

EXAMPLE 4.2.2. The uniform distribution on a compact Riemannian mani-

fold, is a probability measure whose p.d.f. relative to the volume measure (25.6)

is given by f (p) = 1/vol(M),∀p ∈M. The intrinsic mean set of the uniform

distribution on a Riemannian homogeneous space M is the entire space M.

In general, the Fréchet mean set was introduced and first studied by Ziezold

(1977) [345]. The points in the intrinsic mean set bear different names in the lit-

erature. Kobayashi and Nomizu (1996) [199], Karcher (1977) [174] and Emery

and Mokobodzki (1991) [108] call them centers of mass or barycenters, while

Kendall (1990) [180] and Le (1998) [210] use the name of Karcher means

and Pennec and Ayache (1998) [280] call them Fréchet expectations. In fact

the earliest considerations on sample means on Riemannian manifolds are

due to Cartan (1927)[57]; it would most appropriate to call a minimizer of the

second order Fréchet function associated with an empirical distribution for a

Riemanian distance, a Cartan mean. Therefore, often an intrinsic sample mean

will be called a Cartan mean.

REMARK 4.2.1. The set of parameters of a finite dimensional probability dis-

tributions model was equipped by C. R. Rao (1945) [287] with a Riemannian

metric, called the Fisher information metric. This led to subsequent differential

geometric developments with applications to second order efficiency by Efron

(1975) [95] and Amari (1985) [3]. In this context, mean values defined by

Oller and Corcuera (1995) [256] turn out to be critical points of F , while the

intrinsic means defined here are minimizers of F . This explains, for example,

why in Oller and Corcuera (1995) [256] the von Mises distribution on Sd is

found to have two mean values, while in fact there is only one intrinsic mean.

If Q is a probability measure on a complete Riemannian manifold (M,g),
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let C(q) be the cut-locus of a point q ∈M. We set C(Q) = ∪q∈I(Q)C(q). For a

point q ∈M, with Q(C(q)) = 0, we denote by λQ = λQ,q the image measure of

Q under Exp−1
q on M\C(q).

THEOREM 4.2.1. Assume (M,g) is a complete connected Riemannian ma-

nifold. Let I(Q) be the intrinsic mean set of Q and set C(Q) = ∪q∈I(Q)C(q). (a)

If there is a point p on M such that F (p) is finite, then the intrinsic mean set

is a nonempty compact set. (b) If q ∈ I(Q) and Q(C(Q)) = 0, then
∫

V (q)
vλQ(dv) = 0. (4.3)

(c) Suppose (M,g) has nonpositive curvature, and M is simply connected.

Then every probability measure Q on M has an intrinsic mean, provided F (p)

is finite for some p.

Proof. (a) It follows from the triangle inequality (for ρg) that if F (p) is

finite for some p, then F is finite and continuous on M. To show that a min-

imizer exists, let l denote the infimum of F and let pn ∈ M be such that

F (pn) → l as n → ∞. By the triangle and the Schwartz inequalities, and by

integration w.r.t. Q, one has

ρ2
g (pn, p1) ≤ 2ρ2

g (pn,x) + 2ρ2
g(x, p1),∀ x ∈M,

ρ2
g (pn, p1) ≤ 2(F (pn) +F (p1)). (4.4)

Hence since F(pn) (n ≥ 1) is a bounded sequence, so is pn (n ≥ 1). By com-

pleteness of M, pn has a subsequence converging to some point p∗. Then

F (p∗) = l, so that p∗ is a minimizer. Also the inequalities (4.4) applied this

time to p∗ and an arbitrary minimizer µ , show that ρ2
g (µ , p∗) ≤ 4l. In other

words, the set of minimizers is bounded. It is also a closed set, since its com-

plement is clearly open, proving compactness of the intrinsic mean set.

To prove (b), note that Expq(V (q)) has Q-probability 1. Consider an arbitrary

point x in Expq(V (q)); then with probability one there is a unique geodesic, say

γx,µ joining x and µ with γx,µ (0) = x, γx,µ (1) = µ . Also let µv(t) be the geodesic

starting at µ (µv(0) = µ) with tangent vector v ((dµv(t)/dt)(0) = v). Let αv,x

be the angle made by the vectors tangent to these geodesics at µ . Then (see

Helgason (1978)[147], p. 77, and Oller and Corcuera (1995)[256], Proposition

2.10)

dµF (v) = 2

∫
ρg(x,µ)‖v‖cos(αv,x)Q(dx). (4.5)

Select a point q ∈ I(Q) and write the integral in (4.5) in normal coordinates on

TqM. If µ ∈ I(Q), then µ is a critical point of F . Then we select µ = q, and

evaluate the right hand side of (4.5) at v = vi = ∂
∂xi . Note that given that Expq is

a radial isometry, the right hand side of (4.5) in this case is 2
∫

xiλQ(dx), where

xi are the normal coordinates of an arbitrary point of Expq(V (q)). Then in such

coordinates, (4.5) becomes (4.3)
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For part (c) of the theorem, we adapt the proof of Kobayashi and Nomizu

(1996)[199], Theorem 9.1, to our situation as follows. By part (a) there is a

point q in the intrinsic mean set. By theorem 3.2.4, since M is simply con-

nected and complete, C(q) = ∅, and we define a map G on M by

G(p) =

∫

M
‖Exp−1

q (p)− v‖2λQ(dv). (4.6)

Since on a simply connected manifold of nonpositive curvature Expq is ex-

panding, we have G(p) ≤ F (p). On the other hand by part (b), G(p) = G(q) +

‖Exp−1
q (p)‖2 and, since Expq is a radial isometry, F (q) = G(q). Therefore, q

is in fact the unique minimizer of F . If M has points with positive curvature

or is not simply connected, the existence of the intrinsic mean is not granted

in general. If M is flat a sufficient condition for the existence of the intrin-

sic mean is that the support of Q is contained in a geodesically convex open

normal neighborhood of M and F (p) is finite for some p. In general, if the

infimum of the injectivity radii is a positive number r(M) and the scalar cur-

vature of (M,g) is bounded from above by (π/r(M))2, and if the support of Q

is contained in a closed geodesic ball Bρ of radius ρ = r(M)/4, then the intrin-

sic mean exists. To see this, note that, when restricted to the closed geodesic

ball B2ρ , F has a unique minimum at some point in Bρ (see Karcher (1977),

Theorem 1.2). Clearly, this minimum value is no more than ρ2. On the other

hand, if p∈ (B2ρ )c, then F (p)≥ ρ2
g (p,Bρ )> ρ2. This proves the uniqueness of

the minimum of F in M, when the support of Q is contained in Bρ . Necessary

and sufficient conditions for the existence of the intrinsic mean of absolutely

continuous radially distributed probability measures on CPd/2 are given in Le

(1998) and in Kendall et al. (1999).

DEFINITION 4.2.3. If C(q) has Q-measure zero, for some q ∈ M, an in-

trinsic moment w.r.t. a given set of normal coordinates of an arbitrary order

s = (s1, ...,sd) ∈ Zd
+ can be defined by

∫
xsλQ(dx),wherexs = (x1)s1

...(xd)sd

(4.7)

if the integral in (4.7) is finite.

REMARK 4.2.2. Recall that the first considerations on intrinsic sample

means are due to Élie Cartan in his 1927 edition of his Geometry of Rieman-

nian Spaces (see Cartan (1946) [59] for the second edition). For this historical

reason, if the intrinsic sample mean would carry a person’s name, that should

be Cartan mean.

A general constructive algorithm for the Cartan mean, due to Groisser

(2004)[133], is given here. The idea is to express the Cartan mean as a fixed

point of a one parameter group of diffeomorphisms generated by a vector field
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X on M (see Chapter 3 for a definition), or equivalently as the unique zero of

X in a certain convex neighborhood.

DEFINITION 4.2.4. Let (A,dA), (B,dB) be metric spaces and let k ∈ [0,1).
We call a map F : A → B a contraction with constant k if dB(F(x),F(y)) ≤
dA(x,y),∀x,y ∈ A.

The Groisser algorithm is proved using a version of the following Con-

tracting Mapping Theorem:

THEOREM 4.2.2. Let B = Bρ (p0) be an open ball in a metric space (A,dA),
with (closure(B),dA) complete. Suppose that B ⊂ U ⊂ A, that F : U → A is a

contraction with constant k, and that d(p0,F(p0))< (1−ρ)k. Then F preserves

B and has a unique fixed point p. Furthermore p ∈ B and limn→∞ Fn(q) =

p,∀q ∈ B.

The maps we use arise from certain vector fields, perhaps defined only

locally, on a Riemannian manifold. To describe these maps, let ∇ be the Levi-

Civita connection on a Riemannian manifold (M,g), not assumed complete. If

X is a C1 vector field defined on some open set V ⊂M, then at each point p∈V

we can view the covariant derivative ∇.X : TpM→ TpM, given by v →∇vX

as a linear endomorphism of TpM. Call X nondegenerate on a subset U ⊂ V

if this endomorphism (∇vX)p is invertible for all p ∈ U. When referring to

bounds on ((∇vX)p)−1 and other linear transformations, throughout this paper

we use the operator norm: ‖T‖ = sup‖v=1‖‖T (v)‖. A C1 vector field X defined

on an open set in M and nondegenerate on a subset U defines a map ΦX : U →
M by

ΦX (p) = Expp(((∇vX)p)−1Xp, (4.8)

assuming that Expp(−((∇vX)p)−1Xp) is defined for all p ∈U. (In this section

we use both Xp and X(p) to denote the value of a vector field X at a point p.)
Note that zeroes of X are fixed-points of ΦX , and if X is not too large pointwise

then the converse is true as well. Groisser (2004)[133] proved the following:

THEOREM 4.2.3. Let (M,g) be a Riemannian manifold and let U ⊂M be

open. Given ε > 0,k1 > 0,k2 > 0, let Xε,k1,k2
(U) denote the set of nondegen-

erate vector fields X on U satisfying the following conditions pointwise on U:

(i) ‖X‖ ≤ ε (ii)‖(∇vX)−1‖ ≤ k1, and (iii) ∇∇X‖ ≤ k2. If both εk1 and k2k−1
1

are sufficiently small, and X ∈ Xε,k1,k2
(U), then ΦX : U →M is a contraction,

where the distance function on U is the geodesic distance on M. If U is a ball

B = Bρ (p0), and if ρ is sufficiently small and ε,k1,k2 are as above, then there

exists a positive ε1 ≤ ε such that if ‖X(p0) ≤ ε1,‖ then ΦX preserves B and

hence has a unique fixed point p in B; the point p is also the unique zero of X

in B. For all q in some possibly smaller open ball centered at p0, the iterates

(ΦX )n(q) converge to p.

Now let q1, . . . ,qn be a finite set of a geodesic convex subset U ⊂M, and
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let the vector field Y on U defined by

Y (p) =
1

n

n

∑
i=1

Logp(qi) ∈ TpM, (4.9)

where Logp is the inverse of the Riemannian exponential map on TpM. This

inverse is globally defined if (M,g) is a Hadamard-Cartan manifold (see Chap-

ter 3).

For the structure of probability measures which are invariant under a group

of isometries one has the following simple result.

PROPOSITION 4.2.1. Suppose K is a group of isometries of (M,g) which

leaves the measure Q invariant. Then the intrinsic mean set is left invariant by

K. In this case Q induces a quotient measure on the space of orbits M/K and

the mean set of Q is a union of orbits.

Proof. Since ρg(p,q) = ρg(τ(p),τ(q)) for all p,q ∈ M, if Q is invariant

under τ then one has F (τ(p)) =F (p) (See (4.2)). In particular, this is true when

p is a minimizer of F and τ ∈ K. The claim follows from these observations.

4.2.1 Consistency of Fréchet Sample Means

DEFINITION 4.2.5. Let X1, ...,Xn be independent random variables with a

common distribution Q on a metric space (M,ρ), and consider their empiri-

cal distribution Q̂n = 1
n ∑n

k=1 δXk
. The Fréchet sample mean (set) is the Fréchet

mean (set) of Q̂n, i.e. the (set of) minimizer(s) p̂ of p → 1
n ∑n

j=1 ρ2(X j, p). If

(M,g) is a Riemannian manifold, then the Fréchet sample mean (set) of Q̂n

for the distance ρ = ρg is called the Cartan mean (set ). If j : M→ RN is an

embedding, the Fréchet sample mean (set) of Q̂n for the chord distance on M
is called the extrinsic sample mean (set).

REMARK 4.2.3. The lack of a closed formula for xI is one of the main draw-

backs of intrinsic analysis on a nonflat Riemannian manifold. Even for any

distribution Q on a simply connected manifold of nonpositive curvature, for

which according to theorem 4.2.1, the intrinsic mean exists if F ∈L2(Q), there

is no exact formula for xI. The computation of the intrinsic mean set of a proba-

bility measure on a nonflat manifold M often involves nonstandard numerical

algorithms, even if M has a Riemannian metric of maximum degree of mobil-

ity.

The following result, due to Bhattacharya and Patrangenaru (2003) [42],

establishes the strong consistency of the Fréchet sample mean as an estimator

of the Fréchet mean of the underlying distribution.

THEOREM 4.2.4. Let Q be a probability measure on a metric space (M,ρ)

such that every closed bounded subset of M is compact. Assume F is finite

on M. (a) Then, given any ε > 0, there exist a P–null set N and n(ω) < ∞
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∀ ω ∈ Nc such that the Fréchet (sample) mean set of Q̂n = Q̂n,ω is contained

in the ε-neighborhood of the Fréchet mean set of Q for all n ≥ n(ω). (b) If

the Fréchet mean of Q exists then every measurable choice from the Fréchet

(sample) mean set of Q̂n is a strongly consistent estimator of the Frećhet mean

of Q.

Proof. (a) We will first prove that for every compact subset K of M one

has

sup
p∈K

|Fn,ω (p)−F (p)| −→ 0 a.s. as n →∞,

Fn,ω(p) :=
∫

ρ2(x, p)Q̂n,ω(dx) ≡ 1
n ∑n

j=1 ρ2(X j, p). (4.10)

To prove (4.10) first observe that for a given p0 ∈ K one has, in view of the

strong law of large numbers (SLLN) applied to n−1 ∑n
j=1 ρ(X j, p0),

sup
p∈K

1

n

n

∑
j=1

ρ(X j, p)

≤ 1

n

n

∑
j=1

ρ(X j, p0) + sup
p∈K

ρ(p, p0)

≤
∫

ρ(x, p0)Q(dx) + 1 + diam K = A,say, (4.11)

which holds for all n ≥ n1(ω), where n1(ω) <∞ outside a P-null set N1. Fix

ε ′ > 0. From (4.11) one obtains, using the inequality |ρ2(X j, p)−ρ2(X j, p′)| ≤
{ρ(X j, p) + ρ(X j, p′)}ρ(p, p′), the bound

sup
{p,p′∈K:ρ(p,p′)<δ1}

|Fn,ω (p)−Fn,ω(p′)| ≤ 2Aδ1 = ε ′/3 ∀n ≥ n1(ω) (ω 6∈ N1),

(4.12)

where δ1 := A/6ε ′. For the next step in the proof of (4.10), let δ2 > 0 be such

that |F (p)−F (p′)|< ε ′/3 if p, p′ ∈ K and ρ(p, p′) < δ2. Let δ = min{δ1,δ2},

and {q1,q2, . . . ,qr} a δ -net in K, i.e., ∀ p ∈ K there exists q(p) ∈ {q1, . . . ,qr}
such that ρ(p,q(p))< δ . By the SLLN, there exists a P-null set N2 and n2(ω)<
∞ ∀ω 6∈ N2 such that

max
i=1,2,...,r

|Fn,ω (qi)−F (qi)|< ε ′/3 ∀n ≥ n2(ω) (ω 6∈ N2). (4.13)

Note that by (4.12), (4.13), and the fact that |F (q(p)|−F (p)|< ε ′/3 ∀ p ∈ K,
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one has

sup
p∈K

|Fn,ω(p)−F (p)| ≤

sup
p∈K

|Fn,ω (p)−Fn,ω(q(p))|+ sup
p∈K

|Fn,ω (q(p))−F (q(p))|

+ sup
p∈K

|F (q(p)−F(p)|

ε ′/3 + ε ′/3 + ε ′/3 = ε ′ ∀ n ≥ n(ω) := max{n1(ω),n2(ω)}, (4.14)

outside the P-null set N3 = N1 ∪N2. This proves (4.14).

To complete the proof of (a), fix ε > 0. Let C be the (compact) Fréchet

mean set of Q, ℓ := min{F (p) : p ∈ C}. Write Cε := {p : ρ(p,C) < ε}. It is

enough to show that there exist θ (ε) > 0 and n(ω) <∞ ∀ω outside a P-null

set N such that

Fn,ω(p) ≤ ℓ+ θ (ε)/2 ∀ p ∈C

Fn,ω(p) ≥ ℓ+ θ (ε) ∀ p ∈M\Cε , ∀ n ≥ n(ω) (ω 6∈ N). (4.15)

For (4.15) implies that min{Fn,ω (p) : p ∈ M} is not attained in M\Cε and,

therefore, the Fréchet mean set of Q̂n,ω is contained in Cε , provided n ≥ n(ω)

(ω 6∈ N). To prove (4.15) we will first show that there exists a compact set

D containing C and n3(ω) < ∞ outside a P-null set N3 such that both F (p)

and Fn,ω (p) are greater than ℓ+ 1 ∀ p ∈ M\D, for all n ≥ n3(ω) (ω 6∈ N3).

If M is compact then this is trivially true, by taking M = D. So assume M is

noncompact. Fix p0 ∈ C and use the inequality ρ(x,q) ≥ |ρ(q, p0)−ρ(x, p0)|
to get

∫
ρ2(x,q)Q(dx) ≥

∫
{ρ2(q, p0) + ρ2(x, p0)− 2ρ(q, p0)ρ(x, p0)}Q(dx),

or,

F (q) ≥ ρ2(q, p0) +F (p0)− 2ρ(q, p0)F
1
2 (p0). (4.16)

Similarly, using Q̂n,ω in place of Q,

Fn,ω (q) ≥ ρ2(q, p0) +Fn,ω(p0)− 2ρ(q, p0)F
1
2

n,ω(p0). (4.17)

SinceM is unbounded, one may take q at a sufficiently large distance ∆ from C

such that, by (4.16), F (q)>ℓ+1 on M\D, where D := {q : ρ(q,C)≤ ∆}. Since

Fn,ω (p0) →F (p0) a.s., by (4.17) one may find a P-null set N3 and n3(ω) <∞
such that Fn,ω (q) > ℓ + 1 on M\D ∀ n ≥ n3(ω) (ω 6∈ N3). This proves the

italicized statement above.

Finally, let Dε := {p ∈ D : ρ(p,C) ≥ ε}. Then Dε is compact and ℓε :=

min{F (p) : p ∈ Dε} > ℓ, so that there exists θ = θ (ε), 0 < θ (ε) < 1, such
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that ℓε > ℓ+ 2θ . Now apply (4.14) with K = D to find n4(ω) < ∞ outside a

P-null set N4 such that ∀n ≥ n4(ω) one has (i) Fn,ω (p) ≤ ℓ+ θ/2 ∀ p ∈ C and

(ii) Fn,ω (p) > ℓ + θ ∀ p ∈ Dε . Since Fn,ω (p) > ℓ + 1 on M\D ∀n ≥ n3(ω)

(∀ω 6∈ N3), one has Fn,ω(p) > ℓ+θ ∀ p ∈ Dε ∪ (M\D) = M\Cε if n ≥ n(ω) :=

max{n3(ω),n4(ω)} for ω 6∈ N, where N = N3 ∪N4. This proves (4.15), and the

proof of part (a) is complete.

Part (b) is an immediate consequence of part (a).

REMARK 4.2.4. A theorem of Ziezold (1977) [345] for general separable

(pseudo) metric spaces implies the conclusion of part (b) of Theorem 4.2.4, but

was formulated in a less transparent way. In metric spaces such that all closed

bounded subsets are compact, the present theorem provides (i) strong consis-

tency for Fréchet sample means and (ii) uniform convergence to the Fréchet

mean of Q of arbitrary measurable selections from the sample mean set. This

applies to both intrinsic and extrinsic means of Q and Q̂n on manifolds. It is

also a significant fact, that on non-compact spaces the proper topological con-

dition ensuring that the uniqueness of the Fréchet mean implies strong consis-

tency of its sample counterpart, a fact first pointed out in Bhattacharya and

Patrangenaru (2003) [42].

Under the hypothesis of Theorem 4.2.4(a), the Hausdorff distance between

the Cartan mean set and the intrinsic mean set does not in general go to 0, as

the following example shows.

EXAMPLE 4.2.3. Consider n independent random variables X1, ...,Xn with

the same distribution on S1, that is absolutely continuous w.r.t. the uni-

form distribution. Then with probability one, we may assume that for i 6= j,

Xi 6= X j. Assume X j = eiθ j , and let X∗
j = eiθ j = −X j, where the arguments

θ∗
j are in the increasing order of their indices. F (eiθ ) is periodic with pe-

riod 2π and is a piecewise quadratic function; on each interval [θ∗
j ,θ

∗
j+1],

F (eiθ ) = ∑n
k=1(2πεk, j + (−1)εk, j(θ − θk))2 where εk, j ∈ {0,1}. Therefore, the

points of local minima have the form 1
n ∑n

k=1(θk + 2πε j,k(−1)ε j,k) and each lo-

cal minimum value m j = m j(θ1,θ2, ...,θn) is a quadratic form in θ1, ...,θn. Since

εk, j ∈ {0,1}, there are at most 2n such possible distinct quadratic polynomials.

Given that the each of the variables θ j is continuous, the probability that there

is a fixed pair of indices i 6= j, such that mi(θ1, ...,θn) = m j(θ1, ...,θn) is zero.

This shows that, with probability one, all the local minima are distinct and the

Cartan mean exists. On the other hand, the intrinsic mean set of the uniform

measure on the circle is the whole circle, proving that in this case the Haus-

dorff distance between the Cartan mean and the intrinsic mean set is π with

probability one.

Let X1, ...,Xn be independent random variables with a common distribution

Q. The intrinsic total sample variance tΣi(Q̂n) is the intrinsic total variance of

the empirical Q̂n.
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DEFINITION 4.2.6. Let Q be a probability measure on M with a distance

ρ . If F1 in (4.2) has a unique minimizer, this is called the Fréchet median of Q,

and is labeled νF (Q). If (M,g) is a Riemannian manifold, the Fréchet median

(set) with respect to arc distance ρg is called the intrinsic median (set) of Q.

REMARK 4.2.5. The Fréchet function F1, and related asymptotic results

have been also obtained by Hendricks and Landsman (2007) [155]. Note that

the square root of a distance function is a distance function as well. Therefore

the median set of a probability measure Q w.r.t. the distance ρ is the mean set of

the same probability measure relative to the distance
√

ρ. Thus all the asymp-

totic results for Fréchet sample median estimator can be derived in terms from

the corresponding results for Fréchet sample means.

THEOREM 4.2.5. Let Q be a probability measure on (M,g) with finite F .

Then the sample intrinsic total variance tΣI(Q̂n) is a strongly consistent esti-

mator of the population intrinsic total variance tΣI

Proof. In the proof of Theorem 4.2.4, one showed that 1
n ∑n

j=1 ρ2
g (X j, p)

converges a.s. to F (p) uniformly for all p belonging to the compact intrinsic

mean set I(Q). Thus outside a P -null set N1, ∀δ > 0 there exists n
(1)
δ (ω) with

the property

sup
p∈I(Q)

|1
n

n

∑
j=1

ρ2
g (X j(ω), p)− tΣ I(Q)|< δ ,∀n ≥ n

(1)
δ (ω),ω /∈ N1 (4.18)

Let Y n,I be a measurable selection, for each n, from the Cartan mean set. Fix

δ > 0. Again, from Theorem (4.2.4), with probability one, for all sufficiently

large n, I(Q) is contained in the δ -neighborhood of I(Q). Then, there exists

pδ (ω) ∈ I(Q) and n
(2)
δ

(ω) such that

ρg(Y n,i(ω), pδ (ω)) < δ ,∀n ≥ n
(2)
δ (ω),ω /∈ N2, (4.19)

where N2 is a P-null set independent of δ . Hence ∀ω /∈ N1 ∪ N2 and ∀n ≥
max{n

(1)
δ (ω),n(2)

δ (ω)}, one has

|1
n

n

∑
j=1

ρ2
g (X j(ω),Y n,i(ω))− tΣ i(Q)| ≤ |1

n

n

∑
j=1

ρ2
g (X j(ω), pδ (ω))− tΣ i(Q)|+

+ |1
n

n

∑
j=1

ρ2
g (X j(ω),Y n,i(ω))− 1

n

n

∑
j=1

ρ2
g (X j(ω), pδ (ω))|<

< δ +
1

n

n

∑
j=1

{ρg(X j(ω),Y n,i(ω))+ ρg(Yn, j(ω), pδ (ω))} ·ρg(Y n,i(ω), pδ (ω)) <

< δ + δ{2

n

n

∑
j=1

ρg(X j(ω), pδ (ω))+ δ} ≤ δ + δ 2 + δ · 2

n

n

∑
j=1

ρg(X j(ω), pδ (ω)) ≤

≤ δ + δ 2 + 2δ (tΣ i(Q) + δ )
1/2, (4.20)

  



168 CONSISTENCY OF FRÉCHET MOMENTS ON MANIFOLDS

which proves the desired result.

REMARK 4.2.6. The main drawback of intrinsic data analysis is that there

are no known necessary and sufficient conditions for a probability measure Q

on a complete Riemannian manifold (M,g) for the existence of µg,I(Q). Im-

portant results in this direction, including a algorithm for µg,I(Q) for a fairly

concentrated probability measure Q are due to Groisser (2004)[133].

Fortunately, this situation is not encountered with extrinsic means. Here

we consider a general metric space M, that is embedded in a numerical space

as a closed subset, with the distance on M induced by the Euclidean distance

in the numerical space, where M is embedded. If j : M → RN is such an

embedding, so that M with the induced chord distance is complete as a metric

space, it follows that j(M) is a closed subset (or a closed submanifold in case

M is a manifold ) of RN .

DEFINITION 4.2.7. Assume ρ0 is the Euclidean distance in RN . A point x of

RN such that there is a unique point p in M for which ρ0(x, j(M)) = ρ0(x, j(p))

is called j-nonfocal. A point which is not j-nonfocal is said to be j-focal.

For example, the only focal point of Sm in Rm+1 is the origin.

A probability measure Q on M induces a probability measure j(Q) on RN .

DEFINITION 4.2.8. A probability measure Q on M is said to be j-nonfocal

if the mean µ of j(Q) is a j-nonfocal point.

If x is a j-nonfocal point, its projection on j(M) is the unique point y =

Pj(x) ∈ j(M) with ρ0(x, j(M)) = ρ0(x,y).

THEOREM 4.2.6. If µ is the mean of j(Q) in RN . Then (a) the extrinsic

mean set is the set of all points p ∈M, with ρ0(µ , j(p)) = ρ0(µ , j(M)) and (b)

If µ j,E (Q) exists then µ exists and is j-nonfocal and µ j,E (Q) = j−1(Pj(µ)).

Proof. (a) If p, q∈M, then ‖ j(p)− j(q)‖2 = ‖ j(p)−µ‖2 +2〈 j(p)−µ ,µ−
j(q)〉+‖µ − j(q)‖2 and if we integrate this identity over M w.r.t. Q, given that∫
M xQ(dx) =

∫
Rk x j(Q)(dx) = µ , we get

F (p) = ‖ j(p)− µ‖2 +

∫

M
‖µ − x‖2 j(Q)(dx). (4.21)

In particular for any points p,q ∈M, F (p)−F (q) = ρ2
0 (µ , j(p))−ρ2

0 (µ , j(q))

and (a) follows by selecting j(q) to be a minimizer of F . (b) If µ j,E (Q) exists

then µ exists and from part (a) it follows that the distance from an arbitrary

point on j(M) to µ has the unique minimizer j(µ j,E (Q)), that is µ is nonfocal

and since ρ0(µ j,E (Q),µ) = ρ0(µ , j(M)), that is j(µ j,E (Q)) = Pj(µ).

For the next theorem, to keep notations simple we will assume that M is a

submanifold of RN ( the embedding j is the inclusion map ). The result can be

rephrased by assuming instead that j is an arbitrary embedding, since j(M) is

a submanifold of RN .
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THEOREM 4.2.7. The set of focal points of a submanifold M of RN that has

no flat points with the induced Riemannian structure, is a closed subset of RN

of Lebesgue measure 0.

Proof. A point p is nonfocal, with ρ0(p,M) = r, if and only if the (hy-

per)sphere S(p,r) of radius r centered at p has a unique point x in common

with M. In this case the interior of the ball B(p,r) is included in RN\M and

TxM ⊆ TxS(p,r); x is the point of absolute minimum of the function Lp de-

fined on M by Lp(y) = ρ2
0 (p,y). Let u = (u1, ...,ud) be coordinates of points

y = y(u) on M, with y(0) = x. In Milnor (1963) [242], p. 36, it is shown

that x is a degenerate critical point of Lp if and only if p is a focus. More-

over from the computations in Milnor (1963) [242], p. 35, it follows that if

K1,K2, ...,Ks are the nonzero principal curvatures of M at the point x, and

|t|< min{|K1|−1, |K2|−1, ..., |Ks|−1} for any unit vector ν in νxM, the normal

space at the point x, the matrix

((∂y/∂ui(0)) · (∂y/∂u j(0))− tν · (∂ 2y/∂ui∂u j(0)))

is positive definite. In particular since r < min{|K1|−1, |K2|−1, ..., |Ks|−1}, the

matrix

((∂y/∂ui(0)) · (∂y/∂u j(0))− (p− y(0)) · (∂ 2y/∂ui∂u j(0)))

is positive definite. There is a neighborhood N of p and an open neighborhood

U of 0 such that for any u ∈ U and q ∈ N the matrix of the second partial

derivatives of Lq(y(u)), namely,

((∂y/∂ui(u)) · (∂y/∂u j(u))− (q− y(u)) · (∂ 2y/∂ui∂u j(u))),

is positive definite. Since the manifold topology of M coincides with the

induced topology, one may assume that there is a ball B(x,ε), such that

y(U) = M∩B(x,ε). Let ε be as small as necessary. Since x is the only common

point of M and S(p,r), and the set M\ Int B(x,ε) is closed, there is a number

δ , r > δ > 0, such that ρ0(p,M\ Int B(x,ε)) = r + δ . Let q ∈ Int B(p,δ/2),

and z ∈ M\ Int B(x,ε). Then ρ0(q,z) > |ρ0(q, p)−ρ0(p,z)| > r + δ − δ/2 >
ρ0(q,x). It follows that ρ0(q,M) = ρ0(q,M∩ IntB(x,ε)). If y ∈ Int B(x,ε)\{x}
is such that ρ2

0 (q,y) = ρ2
0 (q,M) it follows by the positive definiteness of the

displayed matrix above that y is an isolated point of minimum of Lq, proving

that the set of nonfocal points is open.

Let G(∞) be the set of foci of M, and let G be the set of focal points. It

is known (Milnor (1963) [242], p. 33) that G(∞) has Lebesgue measure zero.

If x is a point on M, we define G(x) to be the set of all points f in RN such

that there is at least another point x′ ( 6= x) on M with ρ0(x, f ) = ρ0(x′, f ) =

ρ0( f ,M). Another description of G(x) is as the set of all centers f of spheres

of RN that are tangent to M at least at two points, one of which is x, and
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whose interiors are disjoint from M. The tangent space TxM is included in

the tangent space at x to such a sphere. Therefore the normal line at x to such

a sphere is included in the normal space νxM, which means that a point in

G(x) is in νxM. We show that on each ray starting at x in νxM (x is the zero

element, if νxM is regarded as a vector space) there is at most one point in

G(x). Indeed if f1, f2 are two distinct points on such a ray starting at x, assume

f1 is closer to x than f2. Let x′,x′′ be such that ρ0(x′, f1) = ρ0(x, f1) = ρ0( f1,M),

ρ0(x′′, f2) = ρ0(x, f2) = ρ0( f2,M). Then x′ is a point of M in the interior of

S( f2,ρ0( f2,M)), a contradiction. Given that G(x) intersects the radii coming

out of x in νxM at most at one point, the Lebesgue measure of G(x) in νxM is

zero.

Let NM be the disjoint union of νxM, x ∈M. NM is the normal bundle

of M and it is a manifold of dimension k. We define the map N : NM→Rk by

N((x,vx) = x + vx. One may show (Milnor (1963)[242]) that the critical values

of N are the foci of M. Therefore if f = N((x,vx)) is a focal point that is not

a focus, f is a regular value of N. Thus, if λ represents the Lebesgue volume

form in Rk, then N∗λ is a volume form on N−1(Rk\G(∞)), and the Lebesgue

measure of G\G(∞) is

λ (G\G(∞)) ≤
∫

NM\G(∞)
N∗λ .

If we apply Fubini’s theorem integrating over the base M the integral in each

fiber (normal space νxM)) , we see that the integrand in νxM is a volume form

that is a multiple C(x) of the Lebesgue measure in νxM. Therefore

∫

NM\G(∞)
N∗λ =

∫

M
C(x)

(∫

G(x)
λx(dv)

)
volM(dx),

which is zero since ∫

G(x)
λx(dv) = λx(G(x)) = 0.

The following theorem links the intrinsic mean of Q on a Riemannian ma-

nifold with its extrinsic mean under an embedding which is equivariant at a

point p (see definition 3.2.10). Note that for every h in the isotropy group Hp

defined in 3.2.6 the differential dh maps TpM into itself.

THEOREM 4.2.8. Let j : M → Rk be a Riemannian embedding which is

equivariant at p. Assume that 0 ≡ (p,0) is the only fixed point of TpM under

the family of maps {dh : h ∈ Hp}. Assume also that Q is a probability measure

on M which is invariant under the isotropy group Hp, and µ( j(Q)) is finite

and nonfocal. (a) Then either µE (Q) = p or µE (Q) ∈ C(p), the cut locus of p.

The same holds for the intrinsic mean µg(Q) if it exists. (b) If, in addition to the

hypothesis above, M is a compact two point homogeneous space other than

the round sphere and µg(Q) exists, then µg(Q) = µE (Q) = p.
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Proof. (a) The mean µ( j(Q)) of Q, regarded as a measure on the ambient

Euclidean space, is invariant under each Euclidean isometry ĥ, say, which ex-

tends h ∈ Hp. For Q, as a measure on the Euclidean space, is invariant under

ĥ, ∀h ∈ Hp, due to the equivariant embedding at p and of the invariance of

Q on M under Hp. It now follows that µE (Q) is invariant under Hp. Suppose

now that µE (Q) 6= p. We will show that in that case µE (Q) ∈C(p). If this is not

so then µE (Q) ∈ Expp(V (p)). Then there exists a unique minimizing geodesic

joining p and µE (Q). Because of uniqueness this geodesic, say γ , is left in-

variant by the isometries h ∈ Hp. Then γ̇(0) is invariant under dh ∀ h ∈ Hp,

contradicting the hypothesis that 0 is the only invariant vector in TpM under

{dh : h ∈ Hp}.

Suppose next µg(Q) exists. Then µg(Q) is invariant under Hp, since F (y) =

F (hy)∀h ∈ Hp due to the invariance of Q under Hp. The same argument as

above now shows that either µg(Q) = p or µg(Q) ∈C(p).

(b) It follows from a classification theorem due to Wang (1952) that be-

side the round spheres, there are only four types of two point homogeneous

spaces, namely, the real projective spaces, complex projective spaces, quater-

nionic projective spaces and the Cayley projective planes (see also (Helgason

(1978) [147], p. 535)). It is known from Warner (1965)[332] that for any point

p ∈M,C(p) is a strong deformation retract of M\{p}, and in particular C(p)

has the homotopy type of M\{p}. On the other hand, if M is one of the two

point homogeneous spaces other than a sphere given by Wang’s classification,

then the cohomology of M\{p} is not trivial. This shows that in this case

M\{p} is not homotopically trivial, and therefore C(p) is also not homotopi-

cally trivial. This implies that if M is not a sphere, C(p) has at least two points

q,q′. Moreover since the isotropy group Hp is transitive on the geodesic sphere

S(p,ρg(p,q)), we may assume that ρg(p,q) = ρg(p,q′) = r . Hence if µE (Q) ∈
C(p) there exists q′ ∈C(p)\{µE(Q)} such that ρg(p,µE (Q)) = ρg(p,q′). By the

transitivity of Hp on S(p,r) there exists h ∈ Hp such that h(µE(Q)) = q′, con-

tradicting the invariance of µE (Q). By (a), µE (Q) = p.

The same argument applies to µg(Q) if it exists.

EXAMPLE 4.2.4. Let Q be a probability measure on a sphere, with µ( j(Q)) 6=
0, such that the group leaving Q invariant is the stabilizer of a given point

p. Then µE (Q) is either p or the antipodal point of p on the sphere. The

same is true of µg(Q) if it exists. Such examples of probability distributions

are given in Watson (1983) [333], p. 136, and Fisher (1993), including the

von Mises distributions. Another example of an invariant distribution is given

by the Dimroth–Watson distribution on the real projective plane RP2, whose

Radon–Nykodim derivative at the point [x] w.r.t. the volume measure of a con-

stant curvature Riemannian structure on RP2 is proportional to exp[k(p · x)2],

x ∈ S2, and is O(2) invariant. A general O(2) invariant measure with a den-

sity on RP2 has the Radon–Nykodim derivative w.r.t. the volume form at the
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point [x] proportional to f ((p · x)2), x ∈ S2, where f is a density of an abso-

lutely continuous positive measure on a finite interval. An example of equiv-

ariant embedding of RP2 furnished with a Riemannian structure with con-

stant curvature into the space of symmetric matrices S(3,R) is provided by the

Veronese-like map j[u] = uuT . The Euclidean distance ρ0 on S(3,R) is given

by ρ2
0 (A,B) := Tr((A− B)(A− B)). As such if u,v are in S2, ρ2

0 ( j[u], j[v]) =

Tr(uuT − vvT )(uuT − vvT ) = Tr(uuT uuT − 2uuT vvT + vvT vvT ) = 2(1− (u · v)2).

The fact that the embedding is equivariant follows from the action of isometries

of O(3) on S(3,R), by simultaneous left and right multiplication. For details see

exercises 3 and 4 for at the end of this section.

DEFINITION 4.2.9. Consider an embedding j :M→RN . Assume (x1, ...,xn)

is a sample from a j-nonfocal probability measure Q on M, and the function

p → ∑n
r=1 ‖ j(p)− j(xr)‖2 has a unique minimizer on M; this minimizer is the

extrinsic sample mean.

From Theorem 4.2.6 the extrinsic sample mean is given by

xE := j−1
(
Pj( j(x))

)
(4.22)

THEOREM 4.2.9. Assume Q is a nonfocal probability measure on the mani-

fold M and X = {X1, . . . ,Xn} are i.i.d.r.o.’s from Q. (a) If the sample mean X

is a j-nonfocal point then the extrinsic sample mean is given by j−1(Pj(X)).
(b) XE is a strongly consistent estimator of µ j,E (Q).

Proof. (a) If X is a j-nonfocal point then by Theorem 4.2.6, applied to the

empirical Q̂n, the image via j of the extrinsic sample mean estimator is the

projection of the extrinsic sample mean estimator, j(X j,E ) = Pj( j(X)).
(b) By the SLLN, X converges to the mean µ of j(Q) almost surely. Since

Fc is open, by theorem 4.2.7, and the projection Pj from Fc to j(M) is contin-

uous, j−1(Pj( j(X))) converges to µE (Q) almost surely.

REMARK 4.2.7. In particular from Theorem 4.2.6 , if Q is focal, the extrinsic

mean set has at least two points. Therefore by Theorem 4.2.4 the extrinsic

sample mean set may have more than one point, and a sequence of selections

from the extrinsic sample mean set may not have a limit.

COROLLARY 4.2.1. Assume M, Q and the equivariant embedding j are as

in Theorem 4.2.7(b). Then the extrinsic sample mean is a strongly consistent

estimator of the intrinsic mean of Q.

4.3 Exercises

Exercise 59. Show that set F of Veronese–Whitney focal points of RPm in

S(m + 1,R) is contained in the set of matrices in S+(m + 1,R) and consists of

those matrices whose largest eigenvalues are of multiplicity at least 2. The pro-

jection Pj : S+(m + 1,R)\F → j(RPm) associates to each nonnegative definite
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symmetric matrix A with a largest eigenvalue of multiplicity one, the matrix

j([m]) where m is the eigenvector of A. corresponding to that eigenvalue.

Hint S+(m+1,R) is convex, so the mean under Q of matrices in S+(m+1,R)

is a matrix in S+(m + 1,R). Therefore, we are interested in determining only

the projection of a semipositive matrix on M. If A is in S(N,R) and T is an

orthogonal matrix, then d0(A,M) = d0(T (A),M). Given A in S+(m + 1,R) there

is T in O(m + 1) such that T (A) = diag(ηa)a=1,...,m+1 = D, and the entries of D

are all nonnegative, in increasing order. Let x = (xa) be a unit vector in Rm+1.

After elementary computations we get

ρ2
0 (D, j([x])) = 1 +∑η2

a − 2∑ηa(xa)2 ≥ ρ2
0 (D, j([em+1])), (4.23)

where em+1 is the eigenvector of D of length one corresponding to the highest

eigenvalue. Note that if ηm+1 has multiplicity two or more, then for any t ∈
[0,2π], and for any unit vector x = (xa) ∈ Rm+1, we have

ρ2
0 (D, j[x]) ≥ ρ2

0 (D, j[costem + sintem+1]) = ρ2
0 (D, j[em+1]), (4.24)

and D is focal.

If ηm+1 is simple, i.e. has a multiplicity of one, then ρ2
0 (D, j[x]) ≥

ρ2
0 (D, j[em+1]) and the equality holds only if [x] = [em+1]. In this last case D

is a nonfocal and PM(D) = j([em+1]).

Exercise 60. Assume Y = [X], where XT X = 1 is a random variable on RPm,
Show that a probability distribution PY on RPm is Veronese–Whitney nonfocal

if the highest eigenvalue of E[XXT ] is simple and in this case the extrinsic

mean of Y is µE = [m], where m is a unit eigenvector of E[X1XT
1 ] corresponding

to the highest eigenvalue.

Exercise 61. Under [x1], . . . , [xn] is a sample on RPm. Show that the Veronese–

Whitney sample mean [x]E exists if and only if the highest eigenvalue of Kn =
1
n ∑n

n=1 xrxT
r is simple, and in this case [x]E = [m], where m is a unit eigenvector

of Kn.

Exercise 62. Show that the Veronese–Whitney sample mean [x]E in exercise

61 is also the MLE for the mean of a Bingham distribution (see Kent (1992)

[181]), whose density function is proportional to exp(xT Ax), where A is a sym-

metric matrix, and for the mean of the Dimroth–Watson distribution, whose

density function at [x] is proportional to exp(k(µ · x)2), where k is a constant.

Exercise 63. (a) Show that the intrinsic mean axis of the Dimroth–Watson

distribution is the same as the Veronese-Whitney mean.

(b) If [X] = {[X1], ..., [Xn]} are i.i.d.r.v.’s from a and that the Veronese–Whitney

sample mean [X]E of a Dimroth–Watson distribution with µ 6= 0, show that

[X]E is a consistent estimator of the intrinsic mean of that distribution.

(c) If the largest eigenvalue of the symmetric matrix A is simple, show that

the extrinsic sample mean or of the Bingham distribution in exercise 63 is a

consistent estimator of the extrinsic mean of that distribution.
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Exercise 64. Show that set F of Veronese–Whitney focal points of CPk−2 in

S(k− 1,C) is contained in the set of nonnegative definite self adjoint matrices

S+(k− 1,C), and consists of those matrices whose largest eigenvalues are of

multiplicity at least 2. The projection Pj : S+(k − 1,C)\F → j(RPk−2) asso-

ciates to each nonnegative definite self adjoint matrix A with a largest eigen-

value of multiplicity one, the matrix j([m]) where m is the eigenvector of A.

corresponding to that eigenvalue.

Exercise 65. (Bhattacharya and Patrangenaru (2003) [42])Assume Y = [Z],
where Z∗Z = 1 is a random variable on CPk−2, Show that a probability distri-

bution PY on CPk−2 is Veronese–Whitney nonfocal if the highest eigenvalue of

E[ZZ∗] is simple and in this case the extrinsic mean of Y is µE = [m], where m

is an eigenvector of E[ZZ∗] corresponding to the highest eigenvalue,m∗m = 1.

Exercise 66. (Patrangenaru (1998) [266]) Under [ζ1], . . . , [ζn] is a sample

on CPk−2. Show that the Veronese–Whitney sample mean [ζ ]E exists if and

only if the highest eigenvalue of Kn = 1
n ∑n

n=1 ζrζ
∗
r is simple, and in this case

[ζ ]E = [m], where m is a unit eigenvector of Kn.

Exercise 67. Show that the Veronese–Whitney sample mean [x]E in exercise 8

is also the MLE for the mean of a complex Bingham distribution (Kent, 1994),

whose Radon–Nikodym derivative w.r.t. the uniform distribution has the ex-

pression

fA(z) = C(A)−1 exp(z∗Az), z ∈CSk−2 (4.25)

where A is a Hermitian matrix.

Exercise 68. The Dryden–Mardia distribution on CPk−2 is induced by a Ck−1

valued random variable Z which has a multivariate normal distribution with

mean ν and covariance matrix σ2I2k−2. The variable X on CPk−2 correspond-

ing to Z is X = [Z]. Assume j is the Veronese–Whitney embedding of CPk−2 and

let Q = PX . (i) Show that

µ( j(Q)) = αIk−1 + β νν∗, (4.26)

where α > 0, α + β > 0. (ii) Show that the Dryden–Mardia distribution is

Veronese–Whitney nonfocal, and the extrinsic sample mean is a consistent es-

timator of the extrinsic mean.

Hint. For (i) see Kent and Mardia (1997) [183], for (ii) select the orthogo-

nal coordinates with the first axis along ν , we notice that as a matrix, E( j(X))

is conjugate with a diagonal matrix whose diagonal entries are all α except for

the entry α + β in the upper left corner, showing that E( j(X)) is nonfocal for j.

By Theorem 4.2.9 the extrinsic mean of the Dryden–Mardia distribution exists

and the extrinsic sample mean is a consistent estimator of the extrinsic mean.

Exercise 69. When is the extrinsic sample mean of the complex Bingham dis-

tribution in (4.25) inconsistent?

Solution. Assume λA is the largest eigenvalue of A and let VA be the eigenspace
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corresponding to λA. Then the extrinsic mean set of the complex Bingham dis-

tribution for planar shapes is the set {[µ]|µ ∈VA\0}. The extrinsic mean exists

only if VA has dimension one over C. Therefore if dimCVA ≥ 2, even if the ex-

trinsic sample mean (Procrustes estimate) exists, it is inconsistent by Theorem

4.2.9.
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5.1 Introduction

Recall that a Fréchet mean of a probability measure Q on a complete metric

space (M,ρ) is the unique minimizer of the function F (x) =
∫

ρ2(x,y)Q(dy)

(see Fréchet (1948) [121]). A Fréchet mean associated with a geodesic dis-

tance ρg determined by the Riemannian structure g on a complete manifold

M is said to be an intrinsic mean, µg(Q). It is known that if Q is sufficiently

concentrated then µg(Q) exists (see Theorem 5.4.2 (a) below). Also recall that

the extrinsic mean µE (Q) = µ j,E (Q) of a probability measure Q on a complete

manifold M relative to an embedding j : M → Rk is the Fréchet mean associ-

ated with the restriction to j(M) of the Euclidian distance in Rk. In Chapter 4,

it was shown that such an extrinsic mean of Q exists if the ordinary mean of

j(Q) is a nonfocal point of j(M), i.e., if there is a unique point x0 on j(M) hav-

ing the smallest distance from the mean of j(Q); in this case µ j,E (Q) = j−1(x0).

DEFINITION 5.1.1. A probability distribution Q has small flat support on a

Riemannian manifold M if supp(Q) is included in a flat geodesic ball.

In general is is easier to compute an extrinsic mean, except for the case

when Q has small flat support. It may be pointed out that if Q is highly con-

177
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centrated, as may be the case with medical imaging data (see the example in

Bhattacharya and Patrangenaru (2003) [42]), the Cartan and extrinsic means

are virtually indistinguishable.

We now provide a summary of the main results in this chapter. The first

part of Section 5.2 is devoted to nonparametric inference for the total intrinsic

variance of a probability measure Q on a manifold M. In Theorem 5.2.1, it is

shown that for i.i.d. observations, the sample total intrinsic variance is asymp-

totically normal around the total intrinsic variance with an explicit formula of

the covariance matrix; additional results are given for the nonparametric boot-

strap counterparts (see Corollary 5.4.3), and for asymptotic distributions of the

sample total intrinsic variance for a distribution with small flat support. Sec-

tion 5.2 is also focused on asymptotic distributions of Fréchet mean sets, and

Fréchet means, assuming the Fréchet population mean is unique. In 5.4.1 it is

shown that under some rather general assumptions, the image of the Fréchet

mean under a chart ϕ that contains the Fréchet mean in its domain, is asymp-

totically normally distributed around the image of the Fréchet mean of Q. This

leads to the asymptotic distribution theory of the intrinsic sample mean on a

Riemannian manifold M (Theorems 5.4.2, 5.4.3). In Corollaries 2.3 and 2.4,

bootstrap confidence regions are derived for the Fréchet mean, with or without

a pivot.

Section 5.4 is devoted to asymptotics of extrinsic sample means. The orig-

inal results due to Hendriks and Landsman (1998) [154] and Patrangenaru

(1998) [266] were independent of each other and used different estimators

for the extrinsic mean. In this chapter, we present an extension of Patrange-

naru’s approach. Extrinsic means are commonly used in directional, axial, and

shape statistics. In the particular case of directional data analysis, i.e. when

M = Sm−1 is the unit sphere in Rm, Fisher et al. (1996) [116] provided an ap-

proach for inference using computationally efficient bootstrapping which gets

around the problem of increased dimensionality associated with the embedding

of the manifold M in a higher dimensional Euclidean space. In Corollary 5.5.2

confidence regions (c.r.) are derived for the extrinsic mean µ j,E (Q) Nonpara-

metric bootstrap methods on abstract manifolds are also derived in this section

(Theorem 5.5.3, Proposition 5.5.3).

If one assumes that Q has a nonzero absolutely continuous component with

respect to the volume measure on M, then from some results in Section 2.13

(see also Bhattacharya and Ghosh (1978) [38], Babu and Singh (1984) [9],

Beran (1987) [16], Hall (1988, 1997) [136, 137]), one derives bootstrap based

confidence regions for µE (Q) with coverage error Op(n−2) (Theorem 5.5.1)

(see Section 2.13, Bhattacharya and Qumsiyeh (1989) [45], Bhattacharya and

Denker (1990) [36]). One may also use the nonpivotal bootstrap to construct

confidence regions based on the percentile method of Hall (1997) [137] for

general Q with a coverage error no more than Op(n−m/(m+1)), where m is the

dimension of the manifold (see Remark 5.4.4 and Proposition 5.5.3). For a
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definition of the coverage error, see Section 2.13. This is particularly useful in

those cases where the asymptotic dispersion matrix is difficult to compute.

5.2 Asymptotic and Bootstrap Distributions of Fréchet Total Variances

on Manifolds

The main focus of this section is the derivation of asymptotic distributions

of total intrinsic sample variance, intrinsic and extrinsic sample means, and

of confidence regions based on these distributions. We provide classical CLT-

based confidence regions and tests based on them, as well as those based on

Efron’s bootstrap (Efron (1982) [97]).

The total Fréchet variance explains the variability of a random object in its

entirety. A random variable X on M is constant if and only if tΣF (PX ) = 0. In

particular, given a Riemannian structure g on M, it is useful to estimate tΣg(Q)

with confidence. Let X1, . . . ,Xn be independent identically distributed random

objects (i.i.d.r.o.’s) with a common distribution Q on M, for which µg exists.

Consider the random variable

Tn = n−1
n

∑
k=1

ρ2
g (µg,Xk). (5.1)

THEOREM 5.2.1. Let X1, . . . ,Xn be independent identically distributed ran-

dom objects (i.i.d.r.o.’s) with a common distribution Q = PX1
on M, for which

µg exists, and assume Q(C(µg)) = 0 and the intrinsic moments (defined in Chap-

ter 4) of order four or less about µg are finite, then n1/2(Tn − tΣg) converges in

law to N (0,E[ρ4
g (µg,X1)]− (tΣg)2).

Proof. We define the TµgM-valued vector valued random variables Vk such

that ExpµgVk = Xk. Vk are i.i.d.r.v.’s with the probability density λQ = λQ,µg .

The mean and variance of ‖V1‖ can be estimated in terms of the first four

order moments of λQ. Since V1 has mean zero, it turns out that E(‖V1‖2) =

TrΣ (λQ) and Var(‖V1‖2) = E(‖V1‖4) − (E(‖V1‖2)2 = E((∑n
j=1(V1

j)2)2) −
(TrΣ (λQ))2. As such, Wn = n1/2(n−1 ∑n

k=1 ‖Vk‖2) − (TrΣ (λQ))2 is asymptot-

ically N(0,E((∑n
j=1(V1

j)2)2) − (TrΣ (λQ))2). Since Expµg is a radial isome-

try, d(µg,Xk) = ‖Vk‖ and the asymptotic distribution is N(0,E[ρ4
g (mug,X)]−

(tΣg)2).

REMARK 5.2.1. Since n1/2(Tn−tΣg) converges weakly to N(0,E[d4(µg,X1)]−
(tΣg)2), it follows that Tn converges in probability to tΣg, thus tΣg(Q̂n)− tΣg

and Tn − tΣg are asymptotically equivalent. However, this falls short of say-

ing that n1/2(tΣg(Q̂n)− tΣg) and n1/2(Tn − tΣg) are asymptotically equivalent,

which together with Theorem 5.2.1 would suffice to yield percentile confidence

regions for tΣg.

A useful weaker result of Theorem 5.2.1 is the following:
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THEOREM 5.2.2. If Q has small flat support on M and has finite moments

up to the fourth order, then n1/2(tΣ̂g,n − tΣg) converges in law to a random

vector with a N (0,Var(ρg
2(X1,µg))) distribution.

Proof. Given the small support assumption, let W1, . . . ,Wn be i.i.d.r.~v’s in

Rm representing the i.i.d.r.o.’s X1, . . . ,Xn with the distribution Q = PX1
. Assume

E(W1) = µ .

tΣ̂g,n − tΣg = Tr(
1

n

n

∑
i=1

(Wi −W )(Wi −W )T −TrE((W1 − µ)(W1 − µ)T ) =

=
1

n

n

∑
i=1

Tr((Wi −W )(Wi −W )T )−TrE((W1− µ)(W1 − µ)T ) =

=
1

n

n

∑
i=1

Tr((Wi − µ)(Wi− µ)T )−TrE((W1− µ)(W1 − µ)T ) =

=
1

n

n

∑
i=1

‖Wi − µ‖2−E(‖W1 − µ‖2). (5.2)

From the C.L.T. (applied here for a random sample from the probability distri-

bution of distribution of ‖W1 − µ‖2), it follows that

√
n(tΣ̂g,n − tΣg) =

√
n(‖W − µ‖2 −E(‖W1− µ‖2) →d Y, (5.3)

where Y ∼N (0,Var(‖W1 − µ‖2) = N (0,Var(dg
2(X ,µg))), done �

Under the assumptions of Theorem 5.2.2 if we set S2 = 1
n ∑n

i=1(ρg
2(Xi,Xg)−

ρg
2(X ,Xg))2, then we obtain

COROLLARY 5.2.1. If Q has small flat support on M then

n
1
2 (

(tΣ̂g,n − tΣg)

S
) (5.4)

converges in distribution to a random variable with a standard normal distri-

bution.

Further, we get

COROLLARY 5.2.2. A 100(1−α)% large sample symmetric confidence in-

terval for tΣg is given by

(tΣ̂g,n − z α
2

s√
n
, tΣ̂g,n + z α

2

s√
n

) (5.5)

.

Note that for any affine coordinate U we have

LEMMA 5.2.1. Assume U1, . . . ,Un are i.i.d.r.v.’s from a probability distribu-

tion Q with finite mean µ , variance σ2, third and fourth moments about zero
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µ3,0,µ4,0, and let Ua = 1
n ∑n

i=1Ua
i be the sample estimator of µa,0. Then for n

large enough,
√

n(σ̂2 −σ2) →m W where σ̂2 = U2 −U
2

and

W ∼N (0,σ2(6µ2 −σ2) + 3µ4− 4µ3,0µ + µ4,0), (5.6)

therefore if we assume σ2(6µ2 −σ2) + 3µ4 − 4µ3,0µ + µ4,0 > 0. and stu-

dentize we obtain the following:

PROPOSITION 5.2.1. Under the hypothesis of Lemma 5.2.1 if we set

T =

√
n(σ̂2 −σ2)

(σ̂2(6U
2 − σ̂2) + 3U

4 − 4U3U +U4)
1
2

, (5.7)

then T has asymptotically a standard normal distribution.

COROLLARY 5.2.3. A large sample 100(1−α)% confidence interval for σ2

is given by

(σ̂2 − zβ√
n

(σ̂2(6u2 − σ̂2) + 3u4 − 4u3u + u4)
1
2 ,

σ̂2 +
zγ√

n
(σ̂2(6u2 − σ̂2) + 3u4 − 4u3u + u4)

1
2 ), (5.8)

where β + γ = α.

If Q has small support, the Cartan mean estimator Xn,g exists and is unique.

Let Vk
(n) ∈TXn,g

M be such that Xk = ExpXn,g
(Vk

(n)). The intrinsic sample covari-

ance estimator is

Σ̂I =:
1

n
(

n

∑
j=1

(V j
(n) −V (n))(V j

(n) −V (n))t (5.9)

where V (n) is the sample mean of V j
(n), j = 1, ...,n

We have the studentized asymptotic result:

THEOREM 5.2.3. If X1, ...,Xn are i.i.d.r.v.’s with a common distribution Q of

small flat support on M, then

Tn,g := (nΣ̂I)
−1/2Expµg

−1(Xn,g)

converges in law to Nm(0, Im).

Assume gx is the Riemannian structure at x∈M. If Q has small flat support,

since X1, ...,Xn are i.i.d.r.o.’s with a common distribution Q for which Xn,g

exists, we get

COROLLARY 5.2.4. Under the hypothesis of Theorem 5.2.3,

T = gµg(Tn,g,Tn,g)

converges in law to a χ2
m distribution.
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The statistic T = T (Q,µg) in Corollary 5.2.4 is asymptotically pivotal, since

it converges in law to a distribution independent of unknown parameters. One

may use then the standard bootstrap procedure to get a statistic T∗(Q∗,X∗|X)

from T , by random sampling {X∗
r }r=1,...,n with repetition from the empirical

Q̂n, conditionally given {Xr}r=1,...,n. Let Σ̂g
∗

be the statistic obtained from Σ̂g

by substituting X∗
r for Xr when r = 1, ...,n. Then T∗(Q∗,X∗|X) is obtained from

T (Q,µg) by substituting X∗
1 , ...,X

∗
n for X1, ...,Xn, Xn,g for µg and Σ̂g

∗
for Σ̂g.

Using the standard bootstrap techniques via Edgeworth expansions as shown

in [36], or in Hall (1997) [137], we get

THEOREM 5.2.4. If Q is a probability distribution with small support which

has a nonzero absolutely continuous component w.r.t. the volume measure of

the flat Riemannian manifold M, then the distribution of the statistic T given

in Corollary 5.2.4 can be approximated uniformly by the bootstrap distribution

of T ∗(Q∗,X∗|X) with an error 0p(n−1).

Theorem 5.2.4 yields an effective computational method for confidence re-

gions of nominal coverage (1−α) based on Efron’s method (see Efron(1982)

citeEfron:1982) with a coverage error Op(n−1) (see, e.g. Bhattacharya and

Denker (1990) [36]). A (1−α)100% bootstrap confidence region for µg with

an error 0p(n−1) can be obtained as follows: let P∗ denote the conditional dis-

tribution of X∗
1 , ...,X

∗
n under the empirical. We set

cn(1−α) := sup{c|P∗(T ∗(Q∗,X∗|X) ≤ c) ≤ 1−α}

and obtain the following

COROLLARY 5.2.5. A (1−α)100% bootstrap confidence region for µg is

given by

{µ : T (Q,µ) ≤ cn(1−α)} (5.10)

Such a confidence region is approximately the ExpXn,g
- image of an ellip-

soid in TXn,g
M. Note that once the coordinates in the regular geodesic neigh-

boring ball are given, simultaneous confidence intervals can also be derived in

terms of these coordinates.

An index of spread of a probability measure Q on a Riemannian manifold

M, which coincides with the total variance when M is an Euclidian space can

be defined as follows:

DEFINITION 5.2.1. Assume Q is the probability distribution of the M-

valued variate X and x ∈ M is an element in the intrinsic mean set of Q.

The intrinsic total variance of Q (intrinsic second total moment about µg) is

tΣg = E(dg
2(X ,x)). In particular if µg exists, tΣg = E(dg

2(X ,µg)). Higher in-

trinsic total moments about µg can be similarly defined.

In [41] one shows that if X1, ...,Xn are i.i.d.r.v.’s with a common distribution
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Q, the total intrinsic sample variance tΣ̂g,n, which is the intrinsic total variance

of Q̂n, is a strongly consistent estimator of tΣg. There, one defines Tn as :

Tn = n−1
n

∑
j=1

d2
g(µg,Xk)

and shows that if µg exists, the intrinsic moments of order four about µg are fi-

nite, and the cut-locus of µg has Q-measure zero, then n1/2(Tn− tΣg) converges

in law to N(0,E[d4(µg,X1)]− (tΣg)2).

For the rest of the section we will prove a similar result and give confidence

intervals for tΣg. If A is a matrix, we label by ∆ (A) the vector of diagonal entries

of A, and by S(A) the sum of all entries of A. We assume in addition that Q has

small support and to studentize this result, we need the following extension to

the general multivariate case of Theorem 8 in [113] .

LEMMA 5.2.2. Assume V1, ...,Vn are i.i.d.r.v.’s in Rp with finite moments of

order four. For j,k = 1, p, let µ4; j,k = E((V1, j − µ j)
2(V1,k − µk)2) If Σ4 is the

matrix (µ4; j,k), then n1/2(∆ (S)−∆ (Σ )) converges in law to N(0,Σ4)

Assume X1, ...,Xn are real i.i.d.r.v.’s with the common distribution Q with

small support included in s flat topological disc U of the manifold M. Select

a point q ∈ supp(Q), and let Vk be the TqM valued random vectors, such that

Xk = Expq(Vk). Under the small support assumption, the total intrinsic sample

covariance estimator is

tΣ̂g,n =:
1

n
(

n

∑
j=1

‖V j −V‖2
) = TrSn =

n

∑
j=1

s j j (5.11)

where S is the sample covariance of V1, ...,Vn. On the other hand, again by the

small support assumption, it follows that

tΣg = Tr(Cov(V1)) =
n

∑
j=1

σ j j. (5.12)

Note that the formulas are independent of q, since the local holonomy group of

U is trivial. Let Σ4 be the matrix in the Lemma 5.2.2 corresponding to V1.

THEOREM 5.2.5. If Q has small flat support on M then n1/2(tΣ̂g,n − tΣg)

converges in law to N(0,S(Σ4)).

For a proof, it suffices to use the delta method for the function g : Rp → R,

given by g(x1, ...,xp) = x1 + ...+ xp.

We studentize the previous theorem, by selecting a matrix estimator Σ̂ (V )4 of

Σ4 corresponding to the i.i.d.r.v.’s V1, ...,Vn
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COROLLARY 5.2.6. If Q has small flat support on M then

n
1
2

(
(tΣ̂g,n − tΣg)

S(Σ̂(V )4)
1/2

)
(5.13)

converges in law to N(0,1).

and get

COROLLARY 5.2.7. A 100(1−α)% large sample symmetric confidence in-

terval(c.i.) for tΣg is given by

(tΣ̂g,n − S(Σ̂(V )4)1/2)z α
2
, tΣ̂g,n + S(Σ̂(V )4)1/2)z α

2
) (5.14)

.

5.3 Elementary CLT for Extrinsic Means

We consider now asymptotic distributions of Fréchet means. We start with an

elementary method for constructing confidence regions for extrinsic means

µE (Q) on closed submanifolds RN . The embedding j is the inclusion map

of M in RN , and the projection Pj is the projection PM on M. Let H be

the projection on the affine subspace µE (Q) + TµE
M. We would like to de-

termine the asymptotic distribution of H(X). While H(X) is not the same as

PM(X), its asymptotic distribution is easier to compute. For large samples the

extrinsic sample mean is close to the extrinsic mean and, therefore, H(X) and

PM(µ) will be close to each other. When M is a linear variety of RN , the

two maps coincide. Thus for concentrated data the delta method for H gives

a good estimate of the distribution of the extrinsic sample mean. Assume that

around PM(µ) the implicit equations of M are F1(x) = .... = Fc(x) = 0, where

F1, ...,F c are functionally independent. Then X −H(X) is in νPM(µ)M, the

orthocomplement of TPM(µ)M; thus it is a linear combination of the gradi-

ents gradPM(µ)F
1, ...,gradPM(µ)F

c. We need to evaluate the differential of the

map H at µ , in terms of F1, ....,Fc. Set να = ‖gradPM(µ)F
α‖−1gradPM(µ)F

α

(α = 1, ...,c), and

(hαβ (µ))α ,β =1,...,c = ((hαβ (µ))α ,β =1,...,c)
−1,hαβ (µ) = να ·νβ (5.15)

Then x−H(x) = ∑β tβ (x,µ)νβ where tβ (x,µ) = ∑α hαβ (µ)(x−PM(µ)) · να .

Therefore,

H(x) = x + hαβ (µ)((PM(µ)− x) ·να)νβ ,dµH(v) = v−∑
α

hαβ (µ)(v ·να)νβ ,

(5.16)

that is

G
j
i =

∂H j

∂xi
(µ) = δi j − ∑

α ,β

hαβ (µ)ν i
α ν j

β
(5.17)
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where δi j = 1 or 0 according as i = j or i 6= j. By the delta method we arrive at

THEOREM 5.3.1. Let {Xk}k=1,...,n be a random sample from a nonfocal dis-

tribution Q on the submanifold M, given in a neighborhood of µE (Q) by the

equations F1(x) = · · · = Fc(x) = 0. Assume Q has mean µ and covariance ma-

trix Σ as a distribution in the ambient numerical space. If G is the matrix given

by (5.17), then n
1
2 (H(X)−PM(µ)) converges weakly to NN−c(0,GΣGt) in the

tangent space of M at the extrinsic mean µE (Q) = PM(µ) of Q.

Since the sample counterpart of

Γ = GΣGt (5.18)

may be difficult to compute and one may use Efron’s percentile bootstrap (see

Efron (1982) [97]) to obtain a confidence region for µE (Q).

COROLLARY 5.3.1. Under the hypothesis of Theorem 5.3.1, one may con-

struct an asymptotic (1−α)-confidence region for µE (Q) = PMµ , using the

bootstrapped statistic n
1
2 (H(X

∗
)−H(X)). Here H(X) is the projection of X on

the affine subspace XE + TXE
M, and X

∗
is the mean of a random sample with

repetition of size n from the empirical Q̂n considered as a probability measure

on the Euclidean space in which M is embedded.

REMARK 5.3.1. Suppose F is finite and Q is nonfocal. By Theorem 4.2.7,

there exists δ > 0 such that X is nonfocal, if ‖X − µ‖ < δ . Since P(‖X −
µ‖ ≥ δ ) = O(n−1), one may define XE to be any measurable selection from the

sample extrinsic mean set, if X is focal. Theorem 5.3.1 and a corresponding

version of Corollary 5.3.1 hold for this XE .

5.4 A Central Limit Theorem for Fréchet Means and Bootstrapping.

Given q ∈ M, the exponential map Expq : U → M is defined on an open neigh-

borhood U of 0 ∈ TqM by the correspondence v → γv(1), where γv(t) is the

unique geodesic satisfying γ(0) = q, γ̇(0) = v, provided γ(t) extends at least to

t = 1. Thus if (M,g) is geodesically complete or, equivalently, (M,ρg) is com-

plete as a metric space, then Expq is defined on all of TqM. In this chapter,

unless otherwise specified, all Riemannian manifolds are assumed to be com-

plete.

Note that if γ(0) = p and γ(t) is a geodesic, it is generally not true that the

geodesic distance between p and q = γ(t1) , say, is minimized by γ(t),0≤ t ≤ t1
( consider e.g. the great circles on the sphere S2 as geodesics). Let t0 = t0(p) be

the supremum of all t1 > 0 for which this minimization holds. If t0 <∞, then

γ(t0) is the cut point of p along γ . The cut locus C(p) of p is the union of all

cut points of p along all geodesics γ starting at p ( For example, C(p) = {−p}
on S2).
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In this section we deal with both intrinsic and extrinsic means. Hence we

will often consider a general distance ρ on a complete differentiable manifold

M. In particular, (M,ρ) with the metric topology is complete as a metric space.

We consider only those probability measures Q on M for which the Fréchet

mean µF =: µF (Q) exists.

REMARK 5.4.1. (Bhattacharya and Lin(2013)[39]) The additional assump-

tion in Bhattacharya and Patrangenaru (2005)[43] on the existence of a

chart (U,φ ) such that Q(U) = 1, or Remark 5.5. in Bhattacharya and

Bhattacharya(2012)[27] are in fact unnecessary, due to the consistency of the

Fréchet mean (see also Bhattacharya and Patrangenaru(2014)[44]).

Consider a chart (U,ϕ) on M, with µF ∈ U. If Xi(i = 1, . . . ,n) are i.i.d.

with common distribution Q and defined on a probability space (Ω ,A,P), let

µn,F be a measurable selection form the Fréchet mean set (w.r.t. ρ) of the

empirical Q̂n = 1
n ∑n

i=1 δXi
. Let µn = φ (µn,F ) be a measurable selection from

the Fréchet mean set of Q̂n = 1
n ∑n

i=1 δXi
. Assume ρ2 is twice differentiable as

a function on M ×M. It follows that the Fréchet function in equation (4.2)

is twice differentiable on M. We consider the local representative Fφ of the

Fréchet function. Since µ is the point of minimum of

Fφ (θ ) :=

∫

M
ρ2(φ−1(θ ),q)Q(dq) = E(ρ2(φ−1(θ ),X), (5.19)

where X is a random object onM with PX = Q. Similarly µn is a local minimum

of

Fφ
n (θ ) :=

∫

M
ρ2(φ−1(θ ),qQ̂n(dq) =

1

n

n

∑
i=1

ρ2(φ−1(θ ),Xi). (5.20)

Write the Euclidean gradient of θ → 1
2
ρ2(φ−1(θ ),q) as

Ψ (u;θ ) =
1

2
gradθ (ρ2(φ−1(θ ),q)) = (

1

2

∂

∂θ r
(ρ2(φ−1(θ ),q)))m

r=1 = (Ψ r(q;θ ))m
r=1.

(5.21)

For the 1
2 scalar multiple, see Schwartzman (2014)[302]. One has the Taylor

expansion

0 =
1√
n

n

∑
i=1

Ψ r(Xi; µn) =
1√
n

n

∑
i=1

Ψ r(Xi; µ) +

+
1

n

n

∑
i=1

m

∑
r′=1

Dr′Ψ
r(Xi; µ))

√
n(µ r′

n − µ r′) + Rr
n, (1 ≤ r ≤ d) (5.22)

where

Rr
n =

m

∑
r′=1

√
n(µ r′

n − µ r′)
1

n

n

∑
i=1

{Dr′Ψ
r(Xi;θn)−Dr′Ψ

r(Xi; µ)}, (5.23)
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and θn lies on the line segment joining µ and µn (for sufficiently large n). We

will assume

E|Ψ (X1; µ)|2 <∞,

E|Dr′Ψ
r(X1; µ)|2 <∞(∀r,r′). (5.24)

To show that Rr
n is negligible, write

ur,r′(x,ε) := sup
{θ :‖θ−µ‖≤ε}

|Dr′Ψ
r(x;θ )−Dr′Ψ

r(x; µ)|

and assume

δ r,r′ (c) := Eur,r′(Xi,c) → 0,as c ↓ 0, (1 ≤ r,r′ ≤ m). (5.25)

One may then rewrite (5.22) in vectorial form as

0 =
1√
n

n

∑
i=1

Ψ (Xi; µ) + (Λ + δn)
√

n(µn − µ) (5.26)

where

Λ = E((Dr′Ψ
r(Xi; µ)))m

r,r′=1 (5.27)

and δn → 0 in probability as n → ∞, if µn → µ in probability. If, finally, we

assume Λ is nonsingular then (5.26) leads to the equation

√
n(µn − µ) = Λ−1(

1√
n

n

∑
i=1

Ψ (Xi; µ)) + δ ′
n (5.28)

where δ ′
n goes to zero in probability as n → ∞. We have then arrived at the

following theorem, due to Bhattacharya and Patrangenaru (2005)[43].

THEOREM 5.4.1. (CLT for Fréchet sample means.) Let Q be a probability

measure on a differentiable manifold M endowed with a metric ρ such that ev-

ery closed and bounded set of (M,ρ) is compact. Assume (i) the Fréchet mean

µF exists, (ii) the map θ → (ρφ )2(θ ,u) is twice continuously differentiable on

φ (U), (iii) the integrability conditions (5.24) hold as well as the relation (5.25),

and (iv) Λ , defined by (5.27), is nonsingular. Then (a) every measurable selec-

tion µn from the ( sample ) Fréchet mean set of Q̂
φ
n = 1

n ∑n
i=1 δX̃i

is a consistent

estimator of µ , and (b)
√

n(ϕ(µn)−ϕ(µ) →d Nm(0,Λ−1Σ (Λ T )−1), (5.29)

where Σ is the covariance matrix of Ψ (X1; µ).

The proof given here is from Bhattacharya and Patrangenaru (2005)[43].

Part (a) follows from Theorem 2.3 in Bhattacharya and Patrangenaru

(2003)[43]. The proof of part (b) is as outlined above, and it may also be

derived from standard proofs of the CLT for M-estimators (see e.g. Huber

(1980)[163], pp. 132-134). �

As an immediate corollary one obtains
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COROLLARY 5.4.1. Let (M,g) be a Riemannian manifold and let ρ = ρg

be the geodesic distance. Let Q be a probability measure on M. Assume that

(i) the intrinsic mean µg = µF exists, (ii) the map ρ2 : M×M→ R is twice

continuously differentiable and Λ , defined by (5.27), is nonsingular. Then the

conclusions of Theorem 5.4.1 hold for the Cartan mean µn,g of Q̂n = 1
n ∑n

i=1 δXi
,

with µ = φ (µg).

We now prove one of the main results of this section.

THEOREM 5.4.2. (CLT for Cartan means.) Let (M,g) be a Riemannian ma-

nifold and let ρ = ρg be the geodesic distance. Let Q be a probability mea-

sure on M whose support is contained in a closed geodesic ball Br ≡ Br(x0)

with center x0 and radius r which is disjoint form the cut locus C(x0). Assume

r < π
4K

, where K2 is the supremum of sectional curvatures in Br if this supre-

mum is positive, or zero if this supremum is nonpositive. Then (a) the intrinsic

mean µg ( of Q ) exists, and (b) the conclusion of Theorem 2.1 holds for the im-

age µn = φ (µn,g) of the Cartan mean µn,g of Q̂n = 1
n ∑n

i=1 δXi
, under the inverse

φ of the exponential map, φ = (Expx0
)−1.

Proof. (a) It is known that under the given assumptions, there is a local

minimum µg, say, of the Fréchet function F, which belongs to Br and that this

minimum is also the unique minimum in B2r (Karcher (1977) [174], Kendall

(1990) [180], Theorem 7.3), and Le (2001) [211]). We now show that µg is

actually the unique global minimum ofF . Let p∈ (B2r)
c. Then ρ(p,x)> r,∀x∈

Br. Hence

F (p) =

∫

Br

ρ2(p,x)Q(dx) >

∫

Br

r2Q(dx) = r2. (5.30)

On the other hand,

F (µg) ≤F (x0) =

∫

Br

ρ2(x0,x)Q(dx) ≤ r2 (5.31)

proving F (p) > F (µg).
(b) In view of Corollary 5.4.1, we only need to show that the Hessian matrix

Λ ≡ Λ (µ) of F ◦ φ−1 at µ := φ (µg) is nonsingular, where φ = Exp−1
x0

. Now

according to Karcher (1977) [174], Theorem 1.2, for every geodesic curve γ(t)

in Br, t ∈ (c,d) for some c < 0,d > 0,

ρ2

dt2
F (γ(t)) > 0 (c < t < d). (5.32)

Let ψ = Expµg denote the exponential map at µg, and let γ(t) be the unique

geodesic with γ(0) = µg and γ̇(0) = v , so that γ(t) = ψ(tv). Here we identify the

tangent space TµgM with Rm. Applying (2.16) to this geodesic ( at t = 0), and

writing G = F ◦ψ , one has

ρ2

dt2
F (ψ(tv))|t=0 = ∑viv j(DiD jG)(0) > 0,∀v 6= 0, (5.33)
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i.e., the Hessian of G is positive definite at 0 ∈ Rm. If x0 = µg, this completes

the proof of (b).

Next let x0 6= µg. Now F ◦φ−1 = G◦ (ψ−1 ◦φ−1) on a domain that includes

µ = φ (µg) ≡ (Expx0
)−1(µg). Write ψ−1 ◦φ−1 = f . Then in a neighborhood of

µ ,

∂ 2(G◦ f )

∂ur∂ur′
(u) = ∑

j, j′
(D jD j′G)( f (u))

∂ f j

∂ur
(u)

∂ f j′

∂ur′
(u) +

+∑
j

(D jG)( f (u))
∂ 2 f j

∂ur∂ur′
(u). (5.34)

The second sum in (5.33) vanishes at u = µ , since (D jG)( f (µ)) = (D jG)(0) = 0

as f (µ) = ψ−1φ−1(µ) = ψ−1(µg) = 0 is a local minimum of G. Also f is a

diffeomorphism in a neighborhood of µ . Hence , writing Λr,r′(µ) as the (r,r′)
element of Λ (µ),

Λr,r′(µ) =
∂ 2(F ◦φ−1)

∂ur∂ur′
(µ) = ∑

j, j′
(D jD j′G)(0)

∂ f j

∂ur
(µ)

∂ f j′

∂ur′
(µ).

This shows, along with (5.32), that Λ = Λ (µ) is positive definite �

REMARK 5.4.2. If the supremum of the sectional curvatures (of a complete

manifold M) is nonpositive, and the support of Q is contained in Br then the

hypotheses of Theorem 5.4.2 are satisfied, and the conclusions (a), (b) hold.

One may apply this even with r = ∞.

REMARK 5.4.3. The assumptions in Theorem 5.4.2 on the support of Q for

the existence of µg is too restrictive for general applications. But without ad-

ditional structures it can not be entirely dispensed with, as is easily shown

by letting Q be the uniform distribution on the equator of S2. For the com-

plex projective space CP
m
2 , m-even, necessary and sufficient conditions for the

existence of the intrinsic mean µg of an absolutely continuous (w.r.t. the vol-

ume measure) Q with radially symmetric density are given in Le(1998)[210],

Kendall et al. (1999) [179].

It may be pointed out that it is the assumption of some symmetry, i.e., the

invariance of Q under a group of isometries, that often causes the intrinsic mean

set to contain more than one element ( see, e.g. Bhattacharya and Patrangenaru

(2003)[42], Proposition 2.2.). The next result is therefore, expected to be more

generally applicable then Theorem 5.4.2.

THEOREM 5.4.3. (CLT for Cartan means.) Let Q be absolutely continuous

w.r.t. the volume measure on an m dimensional Riemannian manifold (M,g).
Assume that (i) µg exists, (ii) the integrability conditions (2.9) hold, (iii) the
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Hessian matrix Λ of F ◦φ−1 at µ = φ (µg) is nonsingular and (iv) the covari-

ance matrix Σ of Ψ (X̃i; µ) is nonsingular. Then

√
n(µn − µ) →d Nm(0,Γ ), (5.35)

where Γ = Λ−1Σ (Λ T )−1.

This theorem follows from Theorem 5.4.1 and Remark 5.4.2.

By replacing Λ and Σ by their sample counterparts Λ̂ and Σ̂ , respectively, and

assuming that Σ is nonsingular, one obtains the following:

n[ϕ(µn)−ϕ(µ)]T (Λ̂ Σ̂−1Λ̂ T )[ϕ(µn)−ϕ(µ)]
L−→ χ2

m, (5.36)

where χ2
m is the chi-square distribution with m degrees of freedom. From (5.36)

one obtains a confidence region for ν (and of µ = ϕ−1(ν)).

In order to obtain a confidence region for µF using the CLT in Theorem

5.4.1 in the traditional manner, one needs to estimate the covariance matrix

Γ = Λ−1Σ (Λ T )−1. For this one may use proper estimates of Λ and Σ , namely,

Λ̂ (θ ) :=
1

n

n

∑
i=1

(GradΨ)(X̃i,µn), Σ̂ = CovQ̂φ
n ,

Γ̂ := Λ̂−1Σ̂ (Λ̂ t )−1, Γ̂ −1 = Λ̂ t Σ̂−1Λ̂ (5.37)

The following corollary is now immediate. Let χ2
m,1−α denote the (1−α)-th

quantile of the chi-square distribution with m degrees of freedom.

COROLLARY 5.4.2. Under the hypothesis of Theorem 5.4.2, if Σ is nonsin-

gular, a confidence region for µF of asymptotic level 1−α is given by Un,α :=

φ−1(Dn,α), where Dn,α = {v ∈ φ (U) : n(µn − v)tΓ̂ −1(µn − v) ≤ χ2
m,1−α}.

We now turn to the problem of bootstrapping a confidence region for µF .
Let X∗

i,n be i.i.d. with common distribution Q̂n (conditionally, given {Xi : 1 ≤
i ≤ n} ). Write X̃∗

i,n = φ (X∗
i,n),1 ≤ i ≤ n and let µ∗

n be a measurable selection

from the Fréchet mean set of Q̂
∗,φ
n := 1

n ∑n
i=1 δX̃∗

i,n
. Let E∗

n,α be a subset of φ (U),

such that P∗(µ∗
n − µn ∈ E∗

n,α) → 1−α in probability, where P∗ denotes the

probability under Q̂n.

COROLLARY 5.4.3. In addition to the hypothesis of Theorem 5.4.1, assume

C is nonsingular. Then φ−1({(µn −E∗
n,α)∩ φ (U)}) is a confidence region for

µF of asymptotic level (1−α).

Proof. One may write equation (5.19) and relation (5.19), with µ and µn

replaced by µn and µ∗
n , respectively, also replacing X̃i by X̃∗

i in (5.22). To show

that a new version of (2.11) holds with similar replacements (also replacing Λ
by Λ̂ ), with a δ∗

n (in place of δn) going to zero in probability, one may apply

Chebyshev’s inequality with a first order absolute moment under Q̂n, proving
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that Λ̂∗ − Λ̂ goes to zero in probability. Here Λ̂∗ = 1
n ∑n

i=1(GradΨ)(X̃∗
i ; µ∗

n ).
One then arrives at the desired version of (5.19) , replacing µn,µ ,Λ , X̃i by

µ∗
n ,µn,Λ̂ , X̃∗

i , respectively, and with the remainder ( corresponding to δ
′

n ) go-

ing to zero in probability. �

REMARK 5.4.4. In Corollary 5.4.3, we have considered the so called per-

centile bootstrap of Hall (1997) [137] (also see Efron (1982) [97]), which does

not require the computation of the standard error Λ̂ . For this as well as for the

CLT based confidence region given by Corollary 5.4.3, one can show that the

coverage error is no more than Op(n−m/(m+1)) or O(n−m/(m+1)), as the case

may be (Bhattacharya and Chan (1996) [35]). One may also use the bootstrap

distribution of the pivotal statistic n(µn − µ)T Γ̂ −1(µn − µ) to find c∗n,α such

that

P∗(n(µ∗
n − µn)T Γ̂ ∗−1(µ∗

n − µn) ≤ c∗n,α ) ≃ 1−α, (5.38)

to find the confidence region

D∗
n,α = {v ∈ φ (U) : n(µn − v)T Γ̂ −1(µn − v) ≤ c∗n,α}. (5.39)

In particular, if Q has a nonzero absolutely continuous component w.r.t.

the volume measure on M, then so does Qφ w.r.t. the Lebesgue measure

on φ (U)) (see do Carmo (1992) [87], p.44). Then assuming (a) c∗n,α is such

that the P∗-probability in (2.23) equals 1−α + Op(n−2) and (b) some addi-

tional smoothness and integrability conditions of the third derivatives of Ψ ,
one can show that the coverage error (i.e. the difference between 1−α and

P(µ ∈ D∗
n,α) is Op(n−2) (see Bhattacharya and Ghosh (1978) [38], Chandra

and Ghosh (1979) [62], Hall (1988) [136], (1997) [137] and Bhattacharya and

Denker (1990) [36]). It follows that the coverage error of the confidence region

φ−1(D∗
n,α ∩φ (U)) for µF is also O(n−2). We state one such result precisely.

COROLLARY 5.4.4. (Bootstrapping the Cartan mean) Suppose the hypoth-

esis of Theorem 5.4.3 holds. Then

sup
r>0

|P∗(n(µ∗
n − µn)T Γ̂ ∗−1(µ∗

n − µn) ≤ r)−

−P(n(µn− µ)T Γ̂ −1(µn − µ) ≤ r)| = Op(n−2),

and the coverage error of the pivotal bootstrap confidence region is = Op(n−2).

REMARK 5.4.5. The assumption of absolute continuity of the probability

measure Q is reasonable for most applications. Indeed this is assumed in most

parametric models in directional and shape analysis (see, e.g. Watson (1983)

[333], Dryden and Mardia (1998) [91]).

REMARK 5.4.6. The results of this section may be extended to the two-sample

problem, or to paired samples, in a fairly straightforward manner. For example,
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in the case of paired observations (Xi,Yi), i = 1, · · · ,n, let Xi have (marginal)

distribution Q, and intrinsic mean µg, and let Q2 and νg be the corresponding

quantities for Yi. Let φ = Exp−1
x0

for some x0, and let µ ,ν and µn,νn be the

images under φ of the intrinsic population and sample means. Then one arrives

at the following

√
n(µn − µ)−√

n(νn −ν) →d Nm(0,Γ ), (5.40)

where Γ is the covariance matrix of Λ−1
1 Ψ (X̃i; µ)−Λ−1

2 Ψ (Ỹi;ν). Here Λi is

the Hessian matrix of F ◦φ−1 for Qi(i = 1,2). Assume Γ is nonsingular. Then

a CLT-based confidence region for γ := µ − ν is given in terms of γn := µn −
νn by {v ∈ Rm : n(γn − v)Γ̂−1(γn − v) ≤ χ2

m,1−α}. Alternatively, one may use

a bootstrap estimate of the distribution of
√

n(γn − γ) to derive a confidence

region.

5.5 The CLT for Extrinsic Sample Means and Confidence Regions for

the Extrinsic Mean

From Theorem 5.4.1 one may derive a CLT for extrinsic sample means similar

to Corollary 5.4.2. In this section, however, we use another approach which,

for extrinsic means, is simpler to apply and generally less restrictive.

Recall that the extrinsic mean µ j,E (Q) of a nonfocal probability measure

Q on a manifold M w.r.t. an embedding j : M → RN , when it exists, is given

by µ j,E (Q) = j−1(Pj(µ)), where µ is the mean of j(Q) and Pj is the projection

on j(M) (see Bhattacharya and Patrangenaru (2003)[42], Proposition 3.1, for

example). Often the extrinsic mean will be denoted by µE (Q), or simply µE ,

when j and Q are fixed in a particular context. To insure the existence of the

extrinsic mean set, in this section we will assume that j(M) is closed in RN .

Assume (X1, ...,Xn) are i.i.d. M-valued random objects whose common

probability distribution is Q, and let XE := µE (Q̂n) be the extrinsic sample

mean. Here Q̂n = 1
n ∑n

j=1 δX j
is the empirical distribution. Two different CLT’s

for the extrinsic sample mean are currently available. The first one, concerns

a distribution on a submanifold M of RN (with j the inclusion map) and was

derived by Hendriks and Landsman (1996, 1998)[152],[154]. Independently,

Patrangenaru (1998)[266] derived a CLT for distribution on an embedded ma-

nifold, using a different estimator. Differentiable manifolds that are not apriori

submanifolds of RN arise in new areas of data analysis such as in shape ana-

lysis, in high level image analysis, or in signal and image processing (see e.g.

Dryden and Mardia (1998) [91], Kendall (1984 [177], 1995 [178]), Kendall et

al. (1999) [179], Goodall (1991) [125], Srivastava and Klassen (2001) [318],

Mardia and Patrangenaru (2001a) [232]). These manifolds, known under the

names of shape spaces and projective shape spaces, are quotient spaces of sub-

manifolds of RN (spaces of orbits of actions of Lie groups), rather than sub-

manifolds of RN . Our approach is a generalization of the adapted frame method
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of Patrangenaru (1998)[266] to closed embeddings in RN . This method leads

to an appropriate dimension reduction in the CLT and, thereby, reduces compu-

tational intensity. This method extends the results of Fisher et al. (1996) [116]

who considered the case M = Sm.
Assume j is an embedding of an m dimensional manifold M such that

j(M) is closed in RN , and Q is a j-nonfocal probability measure on M such

that j(Q) has finite moments of order two (or of sufficiently high order as

needed). Let µ and Σ be, respectively, the mean and covariance matrix of j(Q)

regarded as a probability measure on RN . Let F be the set of focal points of

j(M), and let Pj : F c → j(M) be the projection on j(M). Pj is differentiable

at µ and has the differentiability class of j(M) around any nonfocal point.

In order to evaluate the differential dµPj we consider a special orthonormal

frame field that will ease the computations. Assume p → ( f1(p), . . . , fm(p))

is a local frame field on an open subset of M such that, for each p ∈ M,

(dp j( f1(p)), . . . ,dp j( fm(p))) are orthonormal vectors in RN . A local frame field

(e1(y),e2(y), . . . ,eN(y)) defined on an open neighborhood U ⊆ RN is adapted

to the embedding j if it is an orthonormal frame field and

er( j(p)) = dp j( fr(p),∀r = 1, . . . ,m,∀p ∈ j−1(U). (5.41)

Let e1,e2, . . . ,eN be the canonical basis ofRN and assume (e1(y),e2(y), . . . ,eN(y))

is an adapted frame field around Pj(µ) = j(µE ). Then dµPj(eb) ∈ TPj (µ) j(M) is

a linear combination of e1(Pj(µ)),e2(Pj(µ)), . . . ,em(Pj(µ)):

dµPj(eb) =
m

∑
a=1

(
dµPj(eb)

)
· ea

(
Pj(µ)

)
ea

(
Pj(µ)

)
,∀b = 1, . . . ,N. (5.42)

By the delta method, n
1
2 (Pj( j(X))−Pj(µ)) converges weakly to a random vec-

tor V having a NN(0,Σµ ) distribution. Here j(X) = 1
n ∑n

i=1 j(Xi) and

Σµ =

[
m

∑
a=1

dµPj(eb) · ea(Pj(µ))ea(Pj(µ))

]

b=1,...,N

Σ

[
m

∑
a=1

dµPj(eb) · ea(Pj(µ))ea(Pj(µ))

]T

b=1,...,N

, (5.43)

where Σ is the covariance matrix of j(X1) w.r.t. the canonical basis e1, . . . ,eN .
The asymptotic distribution NN(0,Σµ ) is degenerate and can be regarded as a

distribution on TPj(µ) j(M), since the range of dµPj is TPj(µ) j(M). Note that

dµPj(eb) · ea(Pj(µ)) = 0, for a = m + 1, . . . ,N.

REMARK 5.5.1. An asymptotic distribution of the extrinsic sample mean can

be obtained as a particular case of Theorem 5.4.1. The covariance matrix in
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that theorem depends both on the way the manifold is embedded and on the

chart used. We provide below an alternate CLT, which applies to an arbitrary

embedding, leading to pivots and are independent of the chart used.

The tangential component tan(v) of v ∈ RN w.r.t. the basis ea(Pj(µ)) ∈
TPj(µ) j(M),a = 1, . . . ,m is given by

tan(v) = (e1(Pj(µ))T v . . .em(Pj(µ))T v)T . (5.44)

Then the random vector (dµE
j)−1(tan(Pj( j(X))−Pj(µ))) has the following co-

variance matrix w.r.t. the basis f1(µE ), · · · , fm(µE ):

Σ j,E = (ea(Pj(µ))T Σµeb(Pj(µ)))1≤a,b≤m =
[
∑dµPj(eb) · ea(Pj(µ))

]
a=1,...,m

Σ
[
∑dµPj(eb) · ea(Pj(µ))

]T
a=1,...,m

. (5.45)

DEFINITION 5.5.1. The matrix Σ j,E given by (5.45) is the extrinsic

covariance matrix of the j-nonfocal distribution Q ( of X1 ) w.r.t. the

basis f1(µE ), . . . , fm(µE).

When j is fixed in a specific context, the subscript j in Σ j,E may be omitted.

If, in addition, rank Σµ = m, ΣE is invertible and we define the j-standardized

mean vector

Z j,n =: n
1
2 ΣE

− 1
2 (X

1
j . . .X

m
j)

T . (5.46)

PROPOSITION 5.5.1. Assume {Xr}r=1,...,n are i.i.d.r.o.’s from the j-nonfocal

distribution Q, with finite mean µ = E( j(X1)), and assume the extrinsic co-

variance matrix Σ j,E of Q is finite. Let (e1(y),e2(y), . . . ,eN(y)) be an orthonor-

mal frame field adapted to j. Then (a) the extrinsic sample mean X j,E has

asymptotically a normal distribution in the tangent space to M at µ j,E (Q)

with mean 0 and covariance matrix n−1Σ j,E , and (b) if Σ j,E is nonsingu-

lar, the j-standardized mean vector Z j,n given in (5.46) converges weakly to

a Nm(0m, Im)-distributed random vector.

As a particular case of Proposition 5.5.1, when j is the inclusion map of a

submanifold of RN , we get the following result for nonfocal distributions on

an arbitrary closed submanifold M of RN :

COROLLARY 5.5.1. Assume M ⊆ RN is a closed m dimensional subma-

nifold of RN . Let {Xr}r=1,...,n be i.i.d.r.o.’s from the nonfocal distribution Q

on M with the finite mean vector µ = E(X1) and covariance matrix Σ . Let

(e1(y),e2(y), . . . ,eN(y)) be an orthonormal frame field adapted to M. Let ΣE :=

Σ j,E , where j : M → RN is the inclusion map. Then (a) n
1
2 tan( j(XE )− j(µE ))

converges weakly to Nm(0m,ΣE ), and (b) if Σ induces a nonsingular bilinear

form on Tj(µE ) j(M), then ‖Z j,n‖2 in (5.46) converges weakly to the chi-square

distribution χ2
m.
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REMARK 5.5.2. The CLT for extrinsic sample means as stated in Proposition

5.5.1 or Corollary 5.5.1 can not be used to construct confidence regions for ex-

trinsic means, since the population extrinsic covariance matrix is unknown.

In order to find a consistent estimator of Σ j,E , note that j(X) is a consistent

estimator of µ , d j(X)Pj converges in probability to dµPj, and ea(Pj( j(X))) con-

verges in probability to ea(Pj(µ)) and, further,

S j,n = n−1 ∑( j(Xr)− j(X))( j(Xr)− j(X))T

is a consistent estimator of Σ . It follows that

[
m

∑
a=1

d j(X)Pj(eb) · ea(Pj( j(X)))ea(Pj( j(X)))

]
S j,n

[
m

∑
a=1

d j(X)Pj(eb) · ea(Pj( j(X)))ea(Pj( j(X)))

]T

(5.47)

is a consistent estimator of Σµ , and tanPj( j(X))v is a consistent estimator of

tan(v).

If we take the components of the bilinear form associated with the matrix

(5.47) w.r.t.

e1(Pj( j(X))),e2(Pj( j(X))), ...,em(Pj( j(X))), we get a consistent estimator of

Σ j,E , called the the sample extrinsic covariance matrix, given by

S j,E,n =

[[
∑d j(X)Pj(eb) · ea(Pj( j(X)))

]
a=1,...,m

]
·S j,n

[[
∑d j(X)Pj(eb) · ea(Pj( j(X)))

]
a=1,...,m

]T

, (5.48)

and obtain the following results:

THEOREM 5.5.1. (Adapted frame CLT) Assume j : M →RN is a closed em-

bedding of M in RN . Let {Xr}r=1,...,n be a random sample from the j-nonfocal

distribution Q, and let µ = E( j(X1)) and assume j(X1) has finite second or-

der moments and the extrinsic covariance matrix Σ j,E of X1 is nonsingular.

Let (e1(y),e2(y), . . . ,eN(y)) be an orthonormal frame field adapted to j. If the

sample extrinsic covariance matrix S j,E,n is given by (5.48), then for n large

enough S j,E,n is nonsingular ( with probability converging to one ) and (a) the

statistic

n
1
2 S

− 1
2

j,E,ntan(Pj( j(X))−Pj(µ)) (5.49)

converges weakly to Nm(0m, Im), so that the following

n‖S
− 1

2
j,E,ntan(Pj( j(X))−Pj(µ))‖2 (5.50)
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converges weakly to χ2
m, and (b) the statistic

n
1
2 S

− 1
2

j,E,ntanPj( j(X))(Pj( j(X))−Pj(µ)) (5.51)

converges weakly to Nm(0m, Im), so that

n‖S
− 1

2
j,E,ntanPj( j(X))(Pj( j(X))−Pj(µ))‖2 (5.52)

converges weakly to χ2
m.

COROLLARY 5.5.2. Under the hypothesis of Theorem 5.5.1, a confidence

region for µE of asymptotic level 1 − α is given by (a) Cn,α := j−1(Un,α),

where Un,α = {ν ∈ j(M) : n‖S
− 1

2
j,E,ntanν(Pj( j(X)) − ν)‖2 ≤ χ2

m,1−α}, or by

(b) Dn,α := j−1(Vn,α), where Vn,α = {ν ∈ j(M) : n‖S
− 1

2
j,E,ntanPj( j(X))(Pj( j(X))−

ν)‖2 ≤ χ2
m,1−α}.

REMARK 5.5.3. To simplify the notation, ∀a = 1, . . .n, let Ya = j(Xa). Then, if

Ȳn is the sample mean vector of the i.i.d.r.vec.’s Y1, . . . ,Yn,
√

n[Pj(Ȳn)−Pj(µ)] =
√

n[(DPj)µ (Ȳn − µ)] + oP(1) →d NN(0,Σµ ) asn →∞,
(5.53)

where, from (5.43), we have

Σµ = (DPj)µΣ (DPj)
T
µ . (5.54)

In equation (5.54), (DPj)y is the N ×N Jacobian matrix of Pj at y.
Given that Pj : U ⊂ RN → j(M) is a differentiable function between ma-

nifolds ( here U is an open subset of the set of nonfocal points), it follows

that the differential dµPj maps RN to TPj (µ)( j(M)), regarded as a subspace

of TPj (µ)(R
N) = RN . For this reason it was convenient to express the val-

ues of this differential on the canonical basis of TPj(µ)(R
N) = RN as linear

combinations of a basis in of TPj(µ)( j(M)). Therefore, in (5.43), we selected

a convenient local section of the bundle of orthonormal frames of M, say

y → (e1(y),e2(y), . . . ,em(y)) of the subspace Ty( j(M)) ⊂ Ty(RN) = RN (for y

in a neighborhood of Pj(µ) in j(M)). The following proposition then follows

from (5.53).

PROPOSITION 5.5.2. Assume Q is j nonfocal, and E‖Y1‖2 <∞. Let B de-

note the m×N matrix whose rows eT
i (Pj(µ)), i = 1, . . . ,m, form an orthonormal

basis of TPj(µ)( j(M)) regarded as a subspace of RN . Then

√
n[B(Pj(Ȳn)−Pj(µ))] →d Nm(0m,ΣE )as n →∞. (5.55)

Also, writing Bn for the m×N matrix whose rows are eT
i (Pj(Ȳn)), i = 1, . . . ,m,

one has √
n[Bn(Pj(Ȳn)−Pj(µ))] →d Nm(0m,ΣE ) as n →∞. (5.56)
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Proof. Equation (5.55) follows from Proposition 5.5.1, while (5.56) follows

from (5.55) and a Slutsky type argument (see Theorem 2.8.3).

REMARK 5.5.4. The extrinsic covariance matrix of Q w.r.t. the orthogonal

basis e1(Pj(µ)), . . . ,em(Pj(µ)) is ΣE = BΣµBT . Note that (5.55) expresses the

asymptotic multivariate normal distribution Nm(0m,n
−1ΣE ) of the coordinates

(V1n, . . . ,Vmn)T of the random vector tan(Pj(Ȳn)− Pj(µ)) with respect to the

basis eT
a (Pj(µ)),a = 1, . . . ,m. Under broad conditions, the extrinsic covariance

matrix ΣE is a nonsingular m×m matrix. For this it is sufficient to require that

the distribution of tanPj(Y1) does not have support on a (m− 1)- dimensional

subspace of TPj (µ)( j(M)).

The following is a consequence of Theorem 5.5.1:

THEOREM 5.5.2. Let the hypothesis of Theorem 5.5.1 hold. Then (a) one has

the following asymptotic of the extrinsic Hotelling statistic:

√
n[Bn(Pj(Ȳn)−Pj(µ))] →d V ∼Nm(0,ΣE ) as n →∞, and

n[Bn(Pj(Ȳn)−Pj(µ))]T (̂S j,E )−1[Bn(Pj(Ȳn)−Pj(µ))] →d T ∼ χ2
m,

as n →∞. (5.57)

Here S j,E , is the sample extrinsic covariance matrix given by

S j,E = Bn(DP)Ȳn
Σ̂ (DP)T

Ȳn
BT

n , (5.58)

Σ̂ being the sample covariance matrix of Yi, i = 1, . . . ,n. Also, (b) a confidence

region for Pj(µ) of asymptotic level 1−α is given by

C1−α =

= {ν ∈ j(M),n[Bn(Pj(Ȳn)−ν)]T S j,E
−1[Bn(Pj(Ȳn)−ν)] ≤ (5.59)

≤ χ2
m(1−α).

Theorem 5.5.1 and Corollary 5.5.2 involve pivotal statistics. The advan-

tages of using pivotal statistics in bootstrapping for confidence regions are well

known (See, e.g., Babu and Singh (1984) [9], Beran (1987) [16], Hall (1988)

[136], (1992) [137], Bhattacharya and Qumsiyeh (1989) [45] and Bhattacharya

and Denker (1990) [36]).

At this point we recall the steps that one takes to obtain a bootstrapped

statistic from a pivotal statistic. If {Xr}r=1,...,n is a random sample from the un-

known distribution Q, and {X∗
r }r=1,...,n is a random sample from the empirical

Q̂n, conditionally given {Xr}r=1,..,.n, then the statistic

T (X ,Q) = n‖S
− 1

2
j,E,ntan(Pj( j(X))−Pj(µ))‖2

given in Theorem 5.5.1.a has the bootstrap analog

T (X∗, Q̂n) = n‖S∗j,E,n
− 1

2 tanPj( j(X)))(Pj( j(X∗))−Pj( j(X)))‖2.
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Here S∗j,E,n is obtained from S j,E,n substituting X∗
1 , .....,X

∗
n for X1, .....Xn, and

T (X∗, Q̂n) is obtained from T (X ,Q) by substituting X∗
1 , .....,X

∗
n for X1, ....,Xn,

j(X)) for µ and S∗j,E,n for S j,E,n.

The same procedure can be used for the vector valued statistic

V (X ,Q) = n
1
2 S

− 1
2

j,E,ntan(Pj( j(X))−Pj(µ)),

and as a result we get the bootstrapped statistic

V∗(X∗, Q̂n) = n
1
2 S∗j,E,n

− 1
2 tanPj( j(X)))(Pj( j(X∗))−Pj( j(X))).

For the rest of this section, we will assume that j(Q), when viewed as a

measure on the ambient space RN , has finite moments of sufficiently high or-

der. If M is compact then this is automatic. In the noncompact case finiteness

of moments of order twelve, along with an assumption of a nonzero absolutely

continuous component, is sufficient to ensure an Edgeworth expansion up to

order O(n−2) of the pivotal statistic V (X ,Q) (See Bhattacharya and Ghosh

(1978) [38], Bhattacharya and Denker (1990) [36], Hall (1988) [136], Fisher

et al. (1996) [116] and Chandra and Ghosh (1979) [62]). We then obtain the

following results:

THEOREM 5.5.3. Let {Xr}r=1,...,n be a random sample from the j-nonfocal

distribution Q which has a nonzero absolutely continuous component w.r.t. the

volume measure on M induced by j. Let µ = E( j(X1)) and assume the co-

variance matrix Σ of j(X1) is defined and the extrinsic covariance matrix Σ j,E

is nonsingular and let p → (e1(p),e2(p), . . . ,eN(p)) be an orthonormal frame

field adapted to j. Then the distribution function of

n‖S
− 1

2
j,E,ntan(Pj( j(X))−Pj(µ))‖2

can be approximated by the bootstrap extrinsic Hotelling distribution of

n‖S∗j,E,n
− 1

2 tanPj( j(X))(Pj( j(X∗))−Pj( j(X)))‖2

with a coverage error 0p(n−2).

One may also use nonpivotal bootstrap confidence regions, especially when

S j,E,n is difficult to compute. The result in this case is the following ( see Bhat-

tacharya and Chan (1996)[35]).

PROPOSITION 5.5.3. Under the hypothesis of Proposition 3.1, the distribu-

tion function of n‖tan(Pj( j(X))−Pj(µ))‖2 can be approximated uniformly by

the bootstrap distribution of

n‖tanPj( j(X))(Pj( j(X∗))−Pj( j(X)))‖2

to provide a confidence region for µE with a coverage error no more than

Op(n−
m

m+1 ).
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REMARK 5.5.5. Note that Corollary 5.5.1(b) provides a computationally

simpler scheme than Corollary 5.5.1(a) for large sample confidence regions;

but for bootstrap confidence regions Theorem 5.5.3, which is the bootstrap

analog of Corollary 5.5.1(a), yields a simpler method. The corresponding

100(1−α)% confidence region is C∗
n,α := j−1(U∗

n,α) with U∗
n,α given by

U∗
n,α = {µ ∈ j(M) : n‖S

− 1
2

j,E,ntan(Pj( j(X))−Pj(µ))‖2 ≤ c∗1−α}, (5.60)

where c∗1−α is the upper 100(1−α)% point of the values

n‖S∗j,E,n
− 1

2 tanPj( j(X))(Pj( j(X∗))−Pj( j(X)))‖2 (5.61)

among the bootstrap resamples. One could also use the bootstrap analog of the

confidence region given in Corollary 5.5.1(b) for which the confidence region

is D∗
n,α := j−1(V∗

n,α) with V∗
n,α given by

V∗
n,α = {µ ∈ j(M) : n‖S

− 1
2

j,E,ntanPj( j(X))(Pj( j(X))−Pj(µ))‖2 ≤ d∗
1−α}, (5.62)

where d∗
1−α is the upper 100(1−α)% point of the values

n‖S∗j,E,n
− 1

2 tanPj( j(X∗))(Pj( j(X∗))−Pj( j(X)))‖2 (5.63)

among the bootstrap resamples. The region given by (5.62) and (5.63) has

coverage error Op(n−2).

5.6 Exercises

Exercise 70. If Q is rotationally symmetric on Sm (such as the von Mises dis-

tribution), then the intrinsic mean set of Q is a union of parallel m− 1 di-

mensional spheres or poles of the axis of rotation, since the space of orbits is

1-dimensional. Let SO(m) be the special orthogonal group (or group of rota-

tions). The SO(m) invariant measures on Sm depend on one function of one real

variable, as shown in Watson (1983)[333], Section 4.2.

Exercise 71. Let M = Sm, be the unit sphere centered at the origin of Rm+1.

a. Show that a probability measure Q is nonfocal on Sm, if µ =
∫

Rm+1 xQ(dx) 6= 0.
b. Show that if Q is nonfocal, then the extrinsic mean is given by µE =

µ
‖µ‖ .

c.Show that H defined in (5.16) is given by

H(X)− µ = X − µQ −{(X − µQ) ·µ}µ . (5.64)

Exercise 72. Use Exercise 71, to show that :

a.
√

n(H(X)− µ) converges in distribution to a m-dimensional normal distri-

bution supported by the tangent space TµSm identified with the linear subspace

  



200 NONPARAMETRIC DISTRIBUTIONS OF FRÉCHET MEANS

{v ∈ Rm+1 : vT µ = 0}.

b. As a measure on Rm+1, the distribution in part a. has mean 0 and covariance

matrix Γ in (13.37) given by Γ := Σ +(µT Σ µ)µµT −2Σ (µµT ), where Σ is the

covariance matrix of Q viewed as a measure on Rm+1.
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6.1 Introduction

Hendriks and Landsman (1998) [154] developed asymptotic test statistics for

the equality of two extrinsic means on a submanifoldM of the Euclidean space

RD, based on independent samples drawn from the two distributions. Using a

general local orthonormal frame field methodology, developed in Patrangenaru

(1998) [266], and in Bhattacharya and Patrangenaru (2005) [43], one may find

an alternate two sample test statistic for the equality of two extrinsic means.

Such an approach is due to A. Bhattacharya (2008) [25], who tested the equal-

ity of mean extrinsic objects by taking the pooled extrinsic sample mean as an

estimator of the hypothesized extrinsic mean in two correlated pairs (or not)

of objects on a manifold embedded in the Euclidean space; note that this test

statistic can not be extended to matched pairs, since it is derived from the a

test for the equality of two extrinsic means, by pooling without pairing the

observations measured for each individual.

Nonparametric tests for the difference between mean vectors in matched

pairs in Rm are built using standard asymptotic distributions for the sample

mean difference of the matched pairs, or for the difference between sample

means in the unmatched case, and are leading to χ2
m-tests; the key algebraic

201
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property used to derive such asymptotics, is the additive group structure of

Rm, under the operation of vector sum. Similarly, comparison of mean axes

(Beran and Fisher (1998) [18]), or of extrinsic mean planar projective shapes

(see Mardia and Patrangenaru (2005) [233]), as well as estimation of 3D mo-

tion in computer vision (eg. Tuzel et al. (2005) [324]), leads to natural infer-

ence problems on groups of rotations, as additional examples of matched pairs

analysis on Lie groups.

However, in most situations, the dimension of the Lie group G of transfor-

mations is higher than the dimension of the sampling manifold M on which G
is acting. Ideally, the dimensions of transitive Lie group G and of M should be

the same. This is the case if the sampling manifold M itself has a Lie group

structure. In Section 6.3 we define the change C in a matched pair of random

objects X ,Y on a Lie group (G,◦) by C = X−1 ◦Y. This allows us to reduce a

two-sample testing question for means in paired data on G, to a one-sample

mean change test on G. These are applied the nonparametric inference for test-

ing for a one-sample extrinsic mean on a manifold developed in Section 6.3.

Section 6.6 is dedicated to developing a nonparametric methodology for com-

paring the extrinsic means of two populations on a manifold.

6.2 Two-sample Test for Total Extrinsic Variances

In this short section, we present a large samples test for comparing the to-

tal intrinsic variances in two independent populations, due to A. Bhattacharya

(2008) [25]. Here we will use the asymptotic distribution of the sample total

extrinsic variance to construct nonparametric tests to compare two probability

distributions Q1 and Q2 on an embedded manifold M.
Let X1, . . . ,Xn1

and Y1, . . . ,Yn2
be two iid samples from Q1 and Q2, respec-

tively, that are mutually independent. Let µi,E and Vi denote the extrinsic means

and total variances of Qi, i = 1,2, respectively. Similarly denote by µ̂i,E and V̂i

the sample extrinsic means and total variances. We want to test the hypothesis

H0 : V1 = V2 +δ . From fact that the samples are independent, and the asymptotic

distribution of the total sample extrinsic variance if n = n1 +n2,
na
n
→ pa,a = 1,2

as n →∞, we get that, under H0,

√
n(V̂1 − V̂2) →d Y,Y ∼N (δ ,

σ2
1

p1
+

σ2
2

p2
), (6.1)

V̂1 − V̂2 − δ√
s2
1

n1
+

s2
2

n2

→d Z,Z ∼N (0,1), (6.2)

where σ2
1 =Var[d2(X1,µ1,E )],σ2

2 =Var[d2(X2,µ2,E )] and s2
1,s

2
2 are their sample
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estimates. Hence to test if H0 is true, we can use the test statistic

T =
V̂1 − V̂2 − δ√

s2
1

n1
+

s2
2

n2

. (6.3)

For a test of asymptotic size α, we reject H0 if |T |> z α
2
.

REMARK 6.2.1. One can also construct a bootstrap confidence interval for

V1 −V2 − δ and use that to test H0 : V1 −V2 = δ , for example by taking for

a = 1,2 bootstrap resamples X∗
a,ia

, ia = 1, . . . ,na, from each of the two samples

Xa,ia , ia = 1, . . . ,na, and compute the pivotal bootstrap statistics

T∗ =
V̂∗

1 − V̂∗
2 − δ√

s2∗
1
n1

+
s2∗
2
n2

, (6.4)

and, for a large number N of resamples, compute the upper and lower α
2

the

bootstrap percentiles T ∗
1− α

2
,T ∗

α
2
. The hypothesis is rejected at level α if 0 is not

in the interval (T ∗
1− α

2
,T ∗

α
2

).

6.3 Bhattacharya’s Two-Sample Test for Extrinsic Means of

Independent Populations on a Manifold

We now turn to two-sample tests for extrinsic means of distributions on an

arbitrary m dimensional manifold M given in Bhattacharya and Patrangenaru

(2014) [44]). There is a large sample test for equality of two extrinsic means,

originally due to A. Bhattacharya (2008) [25] (see also Bhattacharya and Bhat-

tacharya (2012) [27], p.42). Let Xaka
: ka = 1, . . . ,na,a = 1,2 be two indepen-

dent random samples drawn from distributions Qa,a = 1,2 on M, and let

j be an embedding of M into RN . Denote by µa the mean of the induced

probability Qa ◦ j−1 and Σa its covariance matrix (a = 1,2). Then the ex-

trinsic mean of Qa is µa, j = j−1(Pj(µa)), assuming Qa is nonfocal. Write

Yaka
= j(Xaka

)ka = 1, . . . ,na,a = 1,2 and let Ȳa,a = 1,2 be the corresponding

sample means. Assuming finite second moments of Ya1,a = 1,2, which is au-

tomatic if M is compact, one has, by Theorem 5.5.2

√
naBa[Pj(Ȳa)−Pj(µa)] →d Nm(0,Σa, j),a = 1,2, (6.5)

where Σa, j is the extrinsic covariance matrix of Qa, and Ba are the same as in

Proposition 5.5.2 and Theorem 5.5.2, but with Q replaced by Qa (a=1,2). That

is, Ba(y) is the m×N matrix of an orthonormal basis (frame) of Ty( j(M)) ⊂
Ty(RN) = RN for y in a neighborhood of Pj(µa), and Ba = Ba(Pj(µa)). Similarly,

Ca
.
= Σµa,a = (DPj)µaΣa(DPj)

T
µa
, (a = 1,2). The null hypothesis H0 : µ1, j = µ2, j,
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say, is equivalent to H0 : Pj(µ1) = Pj(µ2) = π , say. Then, under the null hypoth-

esis, letting B = B(π), one has B1 = B2 = B, and

[B(
1

n1
C1 +

1

n2
C2)BT ]−1/2B[Pj(Ȳ1)−Pj(Ȳ2)] →d Nm(0m, Im),

as n1 →∞,n2 →∞. (6.6)

For statistical inference one estimates Ca by

Ĉa = (DPj)Ȳa
Σ̂a(DPj)

T
Ȳa

(6.7)

where Σ̂a is the sample covariance matrix of sample a(a = 1,2). Also B is re-

placed by B̂ = B(π̂) where π̂ is a sample estimate of π . Under H0, both Pj(Ȳ1)

and Pj(Ȳ2) are consistent estimates of π , so we take a “pooled estimate”

π̂ = Pj(
1

n1 + n2
(n1Pj(Ȳ1) + n2Pj(Ȳ2))). (6.8)

We, therefore, have the following result due to Bhattacharya and Bhattacharya

(2012)[27].

THEOREM 6.3.1. Assume the extrinsic sample covariance matrix Σ̂a, j is non-

singular for a = 1,2. Then, under H0 : µ1, j = µ2, j, one has:

(B̂[Pj(Ȳ1)−Pj(Ȳ2)])T [B̂(
1

n1
Ĉ1 +

1

n2
Ĉ2)B̂T ]−1(B̂[Pj(Ȳ1)−Pj(Ȳ2)])

→d χ2
m, (6.9)

as n1 →∞,n2 →∞�

For the two-sample intrinsic test, given a Riemannian structure g on M,
let µ1,g,µ2,g denote the intrinsic means of Q1 and Q2, assumed to exist, and

consider H0 : µ1,g = µ2,g. Denoting by µ̂1,g, µ̂2,g the sample intrinsic means,

(5.29) implies that, under H0,

(
1

n1
Λ−1

1 +
1

n2
Λ−1

2 )−1/2[ϕp(µ̂1,g)−ϕp(µ̂2,g)] →d Nm(0, Im),

as n1 →∞,n2 →∞, (6.10)

where ϕp = Exp−1
p for some convenient p in M, and Λa,Σa are as in Theorem

5.4.3 with Qa in place of Q(a = 1,2). One simple choice for p is the pooled

estimate lying on the distance minimizing geodesic connecting µ1,g,µ2,g at a

distance
n2
n

ρg(µ1,g,µ2,g) from µ1,g. With this choice we write ϕ̂ for ϕp. Let Σ̂a

and Λ̂a be the same as Σ̂ ,Λ̂ in Theorem 5.4.3 and Corollary 5.4.2, but using

the a-th sample and with ϕ̂ for ϕ(a = 1,2). We thus arrive at the following
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THEOREM 6.3.2. The test to reject H0 : µ1,g = µ2,g iff

[ϕ̂(µ̂1,g)− ϕ̂(µ̂2,g)]T Σ̃−1
p [ϕ̂(µ̂1,g)− ϕ̂(µ̂2,g)] > χ2

m(1−α) (6.11)

has asymptotic level of significance α, where

Σ̃p = [(
1

n1
Λ̂−1

1 Σ̂1Λ−1
1 +

1

n2
Λ̂−1

2 Σ̂2Λ−1
2 )]

REMARK 6.3.1. In an effort to address the problem of testing for the equality

of extrinsic means in matched pairs on arbitrary manifolds, in Subsection 4.6.2

of Bhattacharya and Bhattacharya (2012) [27], one considers the more gen-

eral case of correlated r.o.’s. The matching there does not seem to play a role

in the methodology developed, since the test statistic is obtained by first inde-

pendently projecting the sample means ¯j(X1) and ¯j(X2). Such a choice ignores

the matching, given that applying a permutation in the sample indices of the

observations in the second sample say, does not affect the value of the statis-

tic Ȳ2, and ultimately of the test statistic, so essentially only the sample means

are paired, not the values Xa,1,Xa,2 of individual observations a = 1, . . . ,n. Note

that while in the multivariate case, the mean of the difference is the difference of

the means, for an arbitrary manifold valued data, individual differences have

no meaning, and by pairing ¯j(X1) and ¯j(X2) one ignores the within samples

matching. While the extension of a to sample problem for correlated r.o.’s will

be addressed in a series of exercises at the end of this chapter, in the next sec-

tion, we will take a different approach of extending the classical methodology

for hypothesis testing for matched pairs, that also allows for null hypotheses

when the means are not necessarily equal.

6.4 Test for Mean Change in Matched Pairs on Lie Groups

In some particular cases when there is a Lie group G acting on the ma-

nifold M, such that for each pair of points p1, p2 ∈ M, one may find a

unique element g = g(p1, p2) ∈ G, with g · p1 = p2, given matched samples

(Xi,Yi), i = 1, . . . ,n from two distributions on M, one may associate a random

sample Gi = g(Xi,Yi), i = 1, . . . ,n on G, thus moving the matched sample ana-

lysis on G. A general example of this kind is provided by the left action or by

the adjoint action of a Lie group G on itself. However, this approach may be

extended to the more general case, when the existence of the element unique

g = g(p1, p2)∈G, with g · p1 = p2, is insured only for pairs (p1, p2) of points that

are not too far apart. This approach was used for example in Beran and Fisher

(1998) [18] with M = RP2, and G = SO(3), the group of rotations in R3, and

in Mardia and Patrangenaru (2005) [233] with M = PΣ k
2 , and G = SO(3)k−4,

thus reducing the two-sample test for extrinsic mean multiple axes to a one-

sample test for extrinsic mean multiple rotations. The drawback in Mardia and
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Patrangenaru (2005) [233] is that such an analysis leads to an increase in di-

mensionality, forcing the extrinsic sample covariance matrices to be degener-

ated, when the sample sizes are small, an impediment in computing pivotal

statistics, that are preferred for a lower coverage error.

Recall that the case of paired random vectors X ,Y in Rm, comparing their

mean vectors, is usually done in terms of the difference vector D = Y −X to

eliminate much of the influence of extraneous unit to unit variation (Johnson

and Wichern (2007 [170], p. 274)), without increasing the dimensionality. Sim-

ilarly, for matched pairs on the unit circle Z1,Z2 ∈ S1 (matched circular data),

rather than testing for the equality µ j,1 = µ j,2 of the two extrinsic means, one

may test if the extrinsic mean of Z̄1Z2 is the unit of S1. In both these cases, one

deals with matched paired data on a commutative Lie group. In this section we

extend these technique to paired random objects on an arbitrary Lie group, that

is not necessarily commutative.

Assume X and Y are paired r.o.’s on a Lie group(G,◦) (see Section 3.1 ). The

change from X to Y was defined by Crane and Patrangenaru (2011) [78] as the

r. o. C =: X−1 ◦Y. We say that there is no mean change from X to Y if the mean

change from X to Y is the identity of the group G, that is the null hypothesis is

H0 : µC = 1G, (6.12)

where µC is the extrinsic mean of C with respect to an embedding of G in RD.
The particular case, for testing H0 in (6.12), on the group (RP3)q is analyzed

in detail in Chapter 24.

In general, to compute the p-value for the hypothesis 6.12 one may use the

asymptotic χ2
m distribution in Chapter 5, leading to the following result.

THEOREM 6.4.1. Assume J : G → Rk is a closed embedding of the m-

dimensional Lie group G in Rk. Let {Xr,Yr}r=1,...,n be a random sample of

matched pairs for which the change C1 = X−1
1 ◦Y1 has a the j-nonfocal dis-

tribution, and let µ = E( j(C1)) and assume j(C1) has finite second order

moments and the extrinsic covariance matrix Σ j,E of C1 is nonsingular. Let

(e1(p),e2(p), ....,ek(p)) be an orthonormal frame field adapted to j. If G(J,C)n

is the extrinsic sample mean covariance matrix, since for n large enough

G(J,C)n is nonsingular (with probability converging to one) then the p-value

associated with H0 is given by

p = Pr(T > n‖G(J,C)
− 1

2
n tan(Pj( j(C))−Pj( j(1G)))‖2), (6.13)

where T has a χ2
m distribution

Given the i.i.d.’s matched pairs (Xi,Yi) ∈ G2, i = 1, . . . ,n, and the correspond-

ing changes Ci = X−1
i Yi ∈ G, i = 1, . . . ,n, it is known (see Bhattacharya and

Patrangenaru (2005) [43]) that

√
ntan( j(C̄)− j(µ j)) →d Nm(0,Σ j), (6.14)
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where Σ j is the extrinsic covariance matrix of C, and tan(v) is the tangential

component in Tµa, j j(G) of a vector v ∈ RN with respect to the decomposition

RN = Tµa, j j(G)⊕ (Tµa, j j(G))⊥.
Let S j,n be the sample extrinsic covariance matrix, obtained from the i.i.d.r.o.’s

{Xr}r=1,...,n from the unknown distribution Q. At this point we recall from

Bhattacharya and Patrangenaru (2005) [43] the steps that one takes to obtain a

bootstrapped statistic from a pivotal statistic. If {X∗
r }r=1,...,n is a random sam-

ple from the empirical Q̂n, conditionally given {Xr}r=1,...,n, then the studentized

vector valued statistic

V (X ,Q) = n
1
2 S

− 1
2

j,n tan(P( j(X))−P(µ)) (6.15)

leads to the bootstrapped statistic

V ∗(X∗, Q̂n) = n
1
2 S∗j,n

− 1
2 tanP( j(X)))(Pj( j(X∗))−Pj( j(X))). (6.16)

Here S∗j,n is obtained from S j,n substituting X∗
1 , .....,X

∗
n for X1, ....,Xn, and

T (X∗, Q̂n) is obtained from T (X ,Q) by substituting X∗
1 , .....,X

∗
n for X1, ....,Xn,

j(X) for µ and S∗j,n for S j,n.

COROLLARY 6.4.1. A (1−α)100% bootstrap confidence region for µ j is

C∗
n,α := j−1(U∗

n,α) with U∗
n,α given by

U∗
n,α = {µ ∈ j(G) : n‖S

− 1
2

j,n tan(P( j(X))−P(µ))‖2 ≤ c∗1−α}, (6.17)

where c∗1−α is the upper 100(1−α)% point of the values

n‖S∗j,n
− 1

2 tanP( j(X))(P( j(X∗))−P( j(X)))‖2 (6.18)

among the bootstrap resamples.

6.5 Two-Sample Tests for Extrinsic Means on a Manifold that Admit a

Simply Transitive Lie Group Action

Recall that given an embedding j : M→ RN , we consider the chord distance

on M, given by d(x1,x2) = d0( j(x1), j(x2)), where d0 is the Euclidean distance

in RN . If Xaka
: ka = 1, . . . ,na,a = 1,2 are i.i.d.r.o.’s drawn from distributions

Qa,a = 1,2 on a M, if we denote by µa the mean of the induced probability

Qa ◦ j−1 and by Σa its covariance matrix (a = 1,2), then the extrinsic mean of

Qa is µa, j = j−1(P(µa)), assuming Qa is j-nonfocal, and the extrinsic sample

mean is X̄a, j = j−1(P(Ȳa)). Here, again, P is the projection from RN to j(M),
and is we write Yaka

= j(Xaka
)ka = 1, . . . ,na,a = 1,2 then Ȳa,a = 1,2 is the corre-

sponding sample mean. Assuming finite second moments of Ya1,a = 1,2, which

is automatic if M is compact, from (6.14) we have

√
natan( j(X̄a, j)− j(µa, j)) →d Nm(0,Σa, j),a = 1,2, (6.19)
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where Σa, j is the extrinsic covariance matrix of Qa, and tan(v) is the tangential

component in Tµa, j j(M) of a vector v ∈ RN with respect to the decomposition

RN = Tµa, j j(M)⊕ (Tµa, j j(M))⊥.

DEFINITION 6.5.1. An action of a Lie group G on a manifold M, is a dif-

ferentiable function α : G×M→M, such that

α(1G ,x) = x,∀x ∈M,

α(g,α(h,x)) = α(g⊙ h,x),∀g ∈ G,∀h ∈ G,∀x ∈M. (6.20)

M has a simply transitive Lie group of isometries G, if there is an Lie group

action α : G×M→M by isometries with the property that given x ∈M, for

any object y ∈M, there is a unique g ∈ G such that α(g,x) = y.

A two-sample hypothesis testing problem for extrinsic means on the embed-

ded manifold M that admits a simply transitive Lie group of isometries G, can

be formulated as follows:

H0 : µ2, j = α(δ ,µ1, j)

versus

H1 : µ2, j 6= α(δ ,µ1, j). (6.21)

Given a fixed object x ∈M, the mapping αx : G → M,αx(g) = α(g,x) is bi-

jective, therefore the hypothesis problem (6.21) is equivalent to the following

hypothesis testing problem on the Lie group G :

(1) H0 : (αµ1, j )−1(µ2, j) = δ ,

versus

H1 : (αµ1, j )−1(µ2, j) 6= δ (6.22)

Let H : M2 →G, defined by

H(x1,x2) = (αx1)−1(x2). (6.23)

THEOREM 6.5.1. Assume Xa,ka
,ka = 1, . . . ,na are identically independent

distributed random objects (i.i.d.r.o.’s) from the independent probability mea-

sures Qa,a = 1,2 with finite extrinsic moments of order s,s ≤ 4 on the m di-

mensional manifold M on which the Lie group G acts simply transitively. Let

n = n1 + n2 and assume lim
n→∞

n1
n
→ π ∈ (0,1). Let ϕ : g→G and Lδ be respec-

tively, a chart with ϕ(1G) = 0g, and the left translation by δ ∈ G. Then under

H0,
(i.) The sequence of random vectors

√
n(ϕ ◦L−1

δ
(H(X̄n1, j, X̄n2, j))) (6.24)

converges weakly to Nm(0m,Σ j), for some covariance matrix Σ j that depends
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linearly on the extrinsic covariance matrices Σa, j of Qa,a = 1,2.
(ii.) If (i.) holds and Σ j is positive definite, then the sequence

n(ϕ ◦L−1
δ (H(X̄n1, j, X̄n2, j)))

T Σ−1
j (ϕ ◦L−1

δ (H(X̄n1, j, X̄n2, j))) (6.25)

converges weakly to χ2
m distribution.

The following result is a direct consequence of Cramer’s delta method, ap-

plied to functions between embedded manifolds.

LEMMA 6.5.1. Assume F : M1 → M2 is a differentiable function between

manifolds. For a = 1,2, assume dim Ma = ma, and ja : Ma → RNa is an em-

bedding. Let Xn be a sequence of r.o.’s on M1 such that

√
ntan j1(ν)( j1(Xn)− j1(ν)) →d Nm1

(0,Σ ), (6.26)

then

√
ntan j2(F(ν))( j2(F(Xn))− j2(F(ν))) →d Nm2

(0,dνFΣ (dνF)T ), (6.27)

where dνF : TνM1 → TF(ν)M2 is the differential of F at µ .

By the inverse function theorem, the mapping H : M×M → G is con-

tinuous. Given that, according to Bhattacharya and Patrangenaru (2003) [42],

for a = 1,2, the extrinsic sample mean X̄na, j is a consistent estimator of µa, j,

for a = 1,2, by the continuity theorem (Billingsley (1995) [48], p.334) a con-

sistent estimator for (αµ1, j )−1(µ2, j) is H(X̄n1, j, X̄n2, j). From Bhattacharya and

Patrangenaru [43], for a = 1,2,

√
natanµa, j( j(X̄na, j)− j(µa, j)) →d Nm(0m,Σa, j), (6.28)

and, since na
n
→ π , it follows that

√
ntan(µ1, j,µ2, j )( j2((X̄n1, j, X̄n2, j))− j2((µ1, j,µ2, j))) →d N2m(02m,Σ ), (6.29)

where

Σ =

(
1
π Σ1, j 0

0 1
1−π Σ2, j

)
. (6.30)

We apply Lemma 6.5.1 to the function F :M2 →G, given by F = Lδ−1 ◦H, and

select a convenient chart ϕ , and obtain equation (6.24). Theorem 6.5.1ii. is an

immediate consequence of part (i.) plus a weak continuity argument (Billings-

ley (1995) [48], p.334) �

COROLLARY 6.5.1. (Two sample test on a homogeneous space) For a = 1,2,
assume Xa, ja , ja = 1, . . . ,na, are i.i.d.r.o.’s from independent populations on the

m dimensional embedded manifold M on which the Lie group G acts simply

transitively. Let n = n1 + n2, and assume lim
n→∞

n1
n
→ π ∈ (0,1). Assume Σ j is
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positive definite and Σ̂ j is a consistent estimator for Σ j. The asymptotic p-

value for the hypothesis testing problem 6.21 is given by p = P(T ≥ T 2
δ ) where

T 2
δ = n((ϕ ◦L−1

δ
(H(X̄n1, j, X̄n2, j)))

T (Σ̂ j)
−1(ϕ ◦L−1

δ
(H(X̄n1, j, X̄n2, j))), (6.31)

and T has a χ2
m distribution.

If the distributions are unknown and the samples are small, an alternative

approach is to use Efron’s nonparametric bootstrap (see Efron (1982) [97]). If

max(n1,n2) ≤ m
2 , the sample mean Σ̂ j in Corollary 8.4.1 does not have an in-

verse, and pivotal nonparametric bootstrap methodology can not be applied. In

this case one may use a nonpivotal bootstrap methodology for the two-sample

problem H0 (see Bhattacharya and Ghosh (1978) [38], Hall and Hart (1990)

[138], Fisher et al. (1996) [116] or Hall (1997) [137]).

REMARK 6.5.1. Beran and Fisher (1998) [18] were the first to use group

actions in hypothesis testing problems, a technique later used in Mardia

and Patrangenaru (2005)[233]. The drawback in Mardia and Patrangenaru

(2005)[233] was that their analysis led to an increase in dimensionality, forc-

ing the extrinsic covariance matrices to be degenerated. In this section we

consider in particular case when M itself has a Lie group structure ⊙, and

the group action is by left translations: α : M2 → M,α(g,x) = g⊙ x. Given

two objects x,y the change from x to y is c = x−1⊙y. Given two random objects

X ,Y, from Theorem 6.5.1 we may estimate the change from the extrinsic mean

of X to the extrinsic mean of Y. Note that this change of means is the mean

change defined in Section 6.3 only if X ,Y are matched pairs on a commutative

Lie group (G,⊙).

REMARK 6.5.2. The methodology of simply transitive groups on manifolds

for two sample hypothesis testing problem, was first used by Osborne [257] in

the context of intrinsic means. That case parallels the case of extrinsic means,

with some specific adjustments as shown in Chapter 8.

6.6 Nonparametric Bootstrap for Two-Sample Tests

The primary referencees for this section are Bhattacharya and Patrangenaru

(2014) [44] and Osborne et al.(2013) [258]. The topic here concerns the use of

Efron’s bootstrap (Efron (1979) [96]) for the approximation of true coverage

probabilities for confidence regions for the Fréchet means and for p-values of

two-sample tests for equality of Fréchet means. That the bootstrap outperforms

the traditional approximation of the distribution of the standardized sample

mean by the CLT when the underlying distribution is absolutely continuous

was first proved by Singh (1981) [307]. Extensions to studentized, or pivoted,

(multivariate) sample means were obtained by Babu and Singh (1984) [9], who

derived asymptotic expansions of the distribution.
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Indeed, such an expansion holds for more general statistics which are

smooth functionals of sample means or which admit a stochastic expansion

by a polynomial of sample means (Bhattacharya (1987) [30] ). This is derived

from refinements of the multivariate CLT by asymptotic expansions (Bhat-

tacharya (1977) [29], Bhattacharya and Ghosh (1978) [38], Chandra and Ghosh

(1979) [62]). As a consequence, the chi-square approximation of the distribu-

tions of statistics appearing in (5.36), for example, has an error of the order

O(n−1), whereas the bootstrap approximation of these distributions has an er-

ror O(n−2) (See, e.g., Beran (1988) [17], Hall (1987) [135], Bhattacharya and

Qumsiyeh (1989) [45], Hall (1997) [137]). Therefore, bootstrapping the statis-

tics such as appearing in (5.36) would lead to smaller coverage errors than the

classical chi-square approximations. In the two-sample case with sample sizes

m and n, the error of approximation by bootstrap of the distributions of asymp-

totically chisquare statistics is O(N−2) where N = min{m,n}. In the present

context of generally high-dimensional manifolds, often the bootstrap approx-

imation of the covariance is singular, which sometimes makes the bootstrap

approximation of the distributions either not feasible, or subject to further er-

rors in case of rather arbitrary augmentations.

THEOREM 6.6.1. (Osborne et al. (2013) [258]). Under the hypotheses of

Theorem 6.5.1i., assume in addition, that for a = 1,2 the support of the distri-

bution of Xa,1 and the extrinsic mean µa, j are included in the domain of the

chart ϕ and ϕ(Xa,1) has an absolutely continuous component and finite mo-

ments of sufficiently high order. Then the joint distribution of

V =
√

n(ϕ ◦L−1
δ

(H(X̄n1, j, X̄n2, j))) (6.32)

can be approximated by the bootstrap joint distribution of

V∗ =
√

n(ϕ ◦L−1
δ

(H(X̄∗
n1, j

, X̄∗
n2, j

)) (6.33)

with an error Op(n−
1
2 ), where, for a = 1,2, X̄∗

na, j
are the extrinsic means of the

bootstrap resamples X∗
a,ka

,ka = 1, . . . ,na, given Xa,ka
,ka = 1, . . . ,na.

We briefly describe now bootstrapping procedures for two independent sam-

ples, or match pairs, testing problems on manifolds. Consider, for example, the

test H0 : Pj(µ1) = Pj(µ2) for the equality of extrinsic means of two distributions

on M. Let θ = Pj(µ1)−Pj(µ2), and write T (X |θ ) for the statistic on the left of

(6.9), but with Pj(Ȳ1)−Pj(Ȳ2) replaced by Pj(Ȳ1)−Pj(Ȳ2)− θ . Whatever the

true θ is, the asymptotic distribution of T (X |θ ) is chi-square with m degrees of

freedom. Hence a bootstrap-based test of asymptotic level α is to reject H0 iff

T (X |0) > c∗1−α , where c∗1−α , is the (1−α)th quantile of the bootstrapped val-

ues T (X |Ȳ1)−Pj(Ȳ2). It follows that the p-value of the test is given by: p-value

= proportion of bootstrapped values T (X∗|Pj(Ȳ1)−Pj(Ȳ2) which exceed the ob-

served value of T (X |0). Similar bootstrapping procedures apply to testing the

equality of sample intrinsic means, and to match pair problems.
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As pointed out above, for a manifold of a high dimension m, the bootstrap

version of the covariance matrix, as appears, for example, within square brack-

ets [ ] is often singular if the sample size is not very large. Suppose the classical

chi-square approximation is not considered reliable enough, especially if the p-

value that it provides is only marginally small. Then, instead, one may consider

the very conservative Bonferroni procedure(see 2.68) of looking individually

at each of the d contrasts provided, for example, by a P.C.A. (see Section 2.11)

of the sample covariance matrix, and compute d p-values for the m tests for

the m population contrasts, using the bootstrap approximations of the m dis-

tributions of sample contrasts. The estimated p-value is then set at d-times the

minimum of these p-values. It should be pointed out that one should not just

pick only the principal components which account for the largest variability.

If the variability due to a particular contrast is small, while its true population

mean value is nonzero, then the corresponding test will bring out the differ-

ence with high probability, i.e., with a small p-value (See Bhattacharya and

Bhattacharya (2012) [27], p. 16).

6.7 Exercises

Exercise 73. (a) Show that if j is an embedding of the m dimensional manifold

M intoRN , then j̃(x,y) = ( j(x), j(y)) is an embedding of M×M intoRN ×RN .
(b) Show that if Qa,a = 1,2 are j-nonfocal probability measures on M, then

their product measure Q is a j̃ nonfocal probability measure on M×M.

Exercise 74. Consider the probability measures Qa,a = 1,2 as in exercise

73. Let µ j,a be the extrinsic means of Qa, (a = 1,2). Once again, we are

interested in testing H0 : µ j,1 = µ j,2 = µ j, say. (a) Show that the extrinsic

mean of Q is µ j̃ = (µ j,1,µ j,2). (b) If for a = 1,2,Ȳa is the sample mean of

Ya,k = j(Xa,k),k = 1, . . . ,n on RN , with E(Ya1) = µa, then the extrinsic sample

mean is µ j̃ = ( j−1(Pj(µ1)), j−1(Pj(µ2)).

Exercise 75. Consider the manifold M as in exercise 73. If Pj is the projection

operator on the set of all nonfocal points in RN into j(M), then the projection

on j̃(M) is P̃j = Pj ×Pj : RN ×RN → j(M)× j(M).

Exercise 76. Consider the probability measures Qa,a = 1,2 as in exer-

cise 74. Let B denote the m ×N matrix of m orthonormal basis vectors of

Tj(µ j)( j(M)) ⊂ Tj(µ j)(R
N). Under H0, show that

n1/2B([Pj(Ȳ1)−Pj(Ȳ2)]) →d Nm(0,Σ j,1 + Σ j,2 −Σ j,12 −Σ j,21), as n →∞.
(6.34)

On the right, Σ j,a is the extrinsic covariance matrix of Xa1, while Σ j,ab =

B(DPj)µaCov(Ya1,Yb1)(DPj)µb
BT ,a 6= b.

Exercise 77. Same assumptions as in exercise 76. From (6.34) derive the fol-

lowing result by the usual Slutsky type argument: The test which rejects H0
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iff

nB̂([Pj(Ȳ1)−Pj(Ȳ2)])T [Σ̂ j,1 + Σ̂ j,2 − Σ̂ j,12 − Σ̂ j,21]B̂([Pj(Ȳ1)−Pj(Ȳ2)])

≥ χ2
m(1−α) (6.35)

has the asymptotic confidence coefficient 1 − α. Here B̂ is the m × N ma-

trix whose rows are orthonormal basis vectors of Tj(µ̂ j )( j(M)), with j(µ̂ j) =

Pj(
1
2 [Pj(Ȳ1) + Pj(Ȳ2)]). Also, Ĉa, Σ̂a are as in (6.9)
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7.1 Introduction

This results in this chapter, the first part is mainly due to our friend Peter T.

Kim, a top expert in the area of function estimation on Riemannian manifolds.

We thank him for his generous introduction to this fascinating area.

In addition to estimation and inference on means, a common problem in

statistics is that of nonparametric density and function estimation. In the case

where the sample space is Euclidean, this problem has been extensively stu-

died, dating back to an extension to the classical histogram in Rosenblatt

(1956) [292] and a kernel density estimator in Parzen (1962) [262]. As with

many other areas of statistics on manifolds, density estimation was first ex-

tended to the circle and sphere. Methodologies of this sort are described in

Mardia (1975) [229], Watson (1983) [333], and Jupp and Mardia (1989) [173].

Subsequently, a number of papers extended these ideas to density and function

estimation on compact manifolds. Amongst these are Ruymgaart [294], Mair

and Ruymgaart [227] and Rooij and Ruymgaart (1991) [328].

In this chapter, we consider two approaches to function estimation on com-

pact manifolds. The first one, which follows from Kim and Koo (2005) [190],

utilizes the Laplace–Beltrami operator to perform statistical inverse estimation

215
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. The second, due to Pelletier (2005) [278], extends the notion of kernel esti-

mators to Riemannian manifolds.

7.2 Statistical Inverse Estimation

Following the Euclidean version (see Cavalier and Tsybakov (2002) [61], Koo

(1993) [200]), we will now define a statistical inverse problem on M. Con-

sider a regression function f , of the response variable Y , on the measurement

variable X ∈M, so that E(Y |X) = f (X), where X is uniformly distributed on

M and E denotes conditional, or, unconditional expectation. In particular, con-

sider the signal plus noise model

Y = f (X) + ε, (7.1)

where Eε = 0 and Eε2 = σ2 > 0. Let T be a (possibly unbounded) operator on

L2(M).

A statistical inverse problem on M, is an attempt to statistically estimate

T ( f ), where the statistical aspect comes from not knowing T ( f ), but by ob-

serving a random sample of size n, {(X1,Y1), . . . , (Xn,Yn)}, coming from the

joint distribution of (X ,Y ). With this information we can form an empirical

version of the Fourier coefficients from the data,

f̂ n
k =

1

n

n

∑
j=1

Yjφk(X j) (7.2)

and define an appropriate nonparametric regression estimator of f by

f n
Λ (x) = ∑

λk≤Λ

f̂ n
k φk(x), x ∈M. (7.3)

This allows us to define a statistical estimator T ( f n
Λ ) of T ( f ) with the objective

then to understand convergence properties for large samples.

The difficulty of recovering T ( f ) largely boils down to whether the operator

T is bounded or unbounded. In the former situation, as long as f n
Λ is a consis-

tent estimator of f , then T ( f n
Λ ) will consistently estimate T ( f ). This problem

can be deduced from the Fourier series-based estimator in Hendricks (1990)

[150]. The unbounded situation, which is otherwise known as an ill-posed

problem, is obviously more difficult but usually of more practical relevance.

Thus the degree of ill-posedness (unboundedness) dictates the manner in which

T ( f ) can be recovered by T ( f n
Λ ) as n →∞ (see Rooij and Ruymgaart (1991)

[328], Wahba (1977) [330]). It is indeed with respect to ill-posed estimation

that we will proceed.

Consider an unknown probability distribution P f depending on the regres-

sion function f in (7.1), belonging to some function class F ⊂ L2(M) and sup-

pose {bn} is some sequence of positive numbers. Let T : L2(M) → L2(M) be
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a (possibly unbounded) linear operator. This sequence is called a lower bound

for T ( f ) if

lim
c→0

liminf
n

inf
T n

sup
f∈F

P f

(
‖T n −T ( f )‖2 ≥ cbn

)
= 1, (7.4)

where the infimum is over all possible estimators T n based on {(X1,Y1), . . . ,
(Xn,Yn)}. Alternatively, the sequence in question is said to be an upper bound

for T ( f ) if there is a sequence of estimators {T n} such that

lim
c→∞

limsup
n

sup
f∈F

P f

(
‖T n −T ( f )‖2 ≥ cbn

)
= 0. (7.5)

The sequence of numbers {bn} is called the optimal rate of convergence for

T ( f ) if it is both a lower bound and an upper bound with the associated estima-

tors {T n,n ≥ 1}, being called asymptotically optimal (see Stone (1980) [321]).

We will use the following notation. For two positive (random) sequences {an}
and {bn}, let an ≪ bn (≪P) mean an = O(bn) (OP) as n →∞. If an ≪ bn (≪P)

and bn ≪ an (≪P) then denote this by an ≍ bn (≍P). Let E denote the expec-

tation.

The main results will be presented in terms of appropriate function sub-

spaces of L2(M). First, on the space C∞(M) of infinitely continuous differen-

tiable functions on M, consider the so-called Sobolev norm ‖ · ‖Hs of order s

defined in the following way. For any function h = ∑k ∑Ek
ĥkφk, let

‖h‖2
Hs

= |ĥ0|2 + ∑
k≥1

∑
Ek

λ s
k |ĥk|2. (7.6)

One can verify that (7.6) is indeed a norm. Denote by Hs(M) ⊂ L2(M) the

(vector-space) completion of C∞(M) with respect to (7.6). This will be called

the Sobolev space of order s. For some fixed constant Q > 0, define

Hs(M,Q) =
{

h ∈Hs(M) : ‖h‖2
Hs

≤ Q
}
. (7.7)

We will need some regularity conditions. In particular, let P1 and P2 denote

probability distributions having densities p1 and p2, respectively, where p1 and

p2 are defined on M. The Kullback–Leibler information divergenceD(P1‖P2)

is defined by

D(P1‖P2) =

∫
p1 log

(
p1

p2

)
. (7.8)

Conditional on X = x, the response variable Y has a probability distribution of

the form

P f (x)(dy) = p(y|x, f (x))dy. (7.9)

The Gaussian distribution has the form of

p(y|x, f (x)) = {2πσ2(x)}−1/2 exp
{
− |y− f (x)|2

2σ2(x)

}
. (7.10)
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We have the following conditions:

A1) There is a positive constant 0 <CKL <∞ such that

D(P f1(x)‖P f2(x)) ≤CKL| f1(x)− f2(x)|2.

A2) There is a positive constant 0 <CV <∞ such that

var(Y |X = x) = E
(
|Y − f (x)|2

∣∣∣X = x
)
≤CV for x ∈M.

A3) X is uniformly distributed on M.

THEOREM 7.2.1. (Koo and Kim (2005)) Suppose A1),A2),A3) hold and T

induces the operator Tk : Ek →Ek, k ≥ 0, such that

c0λ
β
k ≤ inf

‖v‖2=1
‖Tk(v)‖2

2 ≤ sup
‖v‖2=1

‖Tk(v)‖2
2 ≤ c1λ

β
k (7.11)

for some β ≥ 0 and c0,c1 > 0. If f ∈ Hs+β (M,Q) with s > dimM/2 and

β ≥ 0, then n−s/(2s+2β +dimM) is the optimal rate of convergence.

In this theorem, the degree of ill-posedness (7.11) is polynomial in the eigen-

values. Thus the optimal rate of recovery of the signal is inverse to the sample

size n. As a side benefit, Theorem 7.2.1 provides us with optimal rate of recov-

ery of the regression function f when β = 0.

COROLLARY 7.2.1. Suppose A1), A2), A3) hold and f ∈ Hs(M,Q) with

s > dimM/2. If Λ ≍ n1/(2s+dimM), then f n
Λ achieves the optimal rate of con-

vergence n−s/(2s+dimM) for f .

Another norm to consider is the following. Again, for any function h =

∑k ∑Ek
ĥkφk, let

‖h‖2
As,β

= |ĥ0|2 + ∑
k≥1

∑
Ek

λ s
k exp{λ

β
k }|ĥk|2, (7.12)

for s ≥ 0 and β ≥ 0. One can verify that (7.12) is also a norm. For some

fixed constant Q > 0, let As,β (M,Q) denote the smoothness class of functions

h ∈ As,β (M) which satisfy

‖h‖2
As,β

≤ Q.

We will call As,β (M) ⊂ L2(M), the class of analytic functions of order β .

THEOREM 7.2.2. (Koo and Kim(2005)) Suppose A1), A2), A3) hold and T

induces the operator Tk : Ek →Ek for k ≥ 0 such that

c0 exp(λ
β
k ) ≤ inf

‖v‖2=1
‖Tk(v)‖2

2 ≤ sup
‖v‖2=1

‖Tk(v)‖2
2 ≤ c1 exp(λ

β
k ) (7.13)
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for some β > 0 and c0,c1 > 0. If f ∈As,β (M,Q) with s≥ dimM/2 and β > 0,

then

(logn)−s/(2β )

is the optimal rate of convergence.

Notice that in this situation, where the degree of ill-posedness is exponential

(7.13), the optimal rate of recovery of T ( f ) is logarithmic and hence much

slower than in the polynomial case (7.11). Indeed, we have that the more ill-

posed the problem, the slower will be the optimal rate of recovery.

Consider the following remarks about these results. First, this approach is

formulated in terms of the inverse operator where the eigenfunctions are con-

tained in the orthonormal basis of the Laplace–Beltrami operator. An alterna-

tive approach, is to state the problem in terms of the direct operator, which in

our notation would be T−1, and use the orthonormal basis of the direct opera-

tor. The two approaches are equivalent and therefore the choice is of personal

preference. The direct approach is presented in Rooij and Ruymgaart (1991)

[328], Rooij and Ruymgaart (2001) [329], Ruymgaart (1993) [296].

A second remark is that one can also define minimaxity in L2-risk (modulo

a constant) as follows. If there exists a positive constant CL such that

inf
T n

sup
f∈F

E f ‖T n −T ( f )‖2 ≥CLbn,

then bn is a lower bound in L2-risk. Here the infimum is also taken over all

possible estimators {T n} of T ( f ). On the other hand, if there exists a positive

constant CU and a sequence of estimators T n such that

sup
f∈F

E f ‖T n −T ( f )‖2 ≤CU bn,

then bn is an upper bound in L2-risk. One can easily modify the method of

proof as in Yatracos (1988) [341], in order to prove minimaxity in L2-risk.

Consequently, the optimal rates of convergence in Theorem 7.2.1 and Theorem

7.2.2 are L2-minimax rates of convergence as well.

Third, this theory holds intact for density estimation, though the theory has

been presented in terms of regression. The only modification would be that the

random sample would be based on X1, . . . ,Xn with (7.2) replaced by

f̂ n
k =

1

n

n

∑
j=1

φk(X j), (7.14)

for k ∈ N.

Finally, let us point out that as far as L2(M)−rates of convergence are con-

cerned, they only depend on dimM and that these results are the same for an

Euclidean space of the same dimension. However, it is expected that the geom-

etry of M affects the constants of the sharp bound, i.e., constant plus rate of

convergence.
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7.2.1 Applications and Examples

In most cases it turns out that the operator T is diagonalizable by {φk : k ∈N}.

This means that there is a sequence {tk : k ∈ N} such that Tk = tkIdimEk
, for

k ∈N where IdimEk
: Ek →Ek denotes the identity operator. Thus,

T ( f ) =
∞
∑
k=0

∑
Ek

tk f̂kφk. (7.15)

In this case the estimator in question would appear as

T ( f n
Λ ) = ∑

λk≤Λ

tk f̂ n
k φk (7.16)

for x ∈M.

Let q be a polynomial of finite degree degq <∞. Consider the case of T =

q(∆ ). In this situation,

‖Tk(v)‖2
2 = q(λk)‖v‖2

2,

for all v ∈ Ek, k = 0,1,2, . . .. Thus

T ( f )(x) = ∑
λk

q(λk) f̂kφk(x),

for x ∈M and

c0λ degq
k ≤ inf

‖v‖2=1
‖Tk(v)‖2

2 ≤ sup
‖v‖2=1

‖Tk(v)‖2
2 ≤ c1λ degq

k .

Thus the nonparametric estimator would be

T ( f n
Λ )(x) = ∑

λk≤Λ

q(λk) f̂ n
k φk(x)

for x ∈ M and the optimal rate of recovery of T ( f ) would be

n−s/(2s+2degq+dimM) as n → ∞ for f ∈ Hs+deg q(M,Q), s > dimM/2 and

degq > 0.

Now suppose the operator T = exp{q(∆ )}. In this situation,

‖Tk(v)‖2
2 = exp{q(λk)}‖v‖2

2,

for all v ∈ Ek, k = 0,1,2, . . .. Thus

T ( f )(x) = ∑
λk

exp{q(λk)} f̂kφk(x),

for x ∈M and

c0 exp(λ
deg q
k ) ≤ inf

‖v‖2=1
‖Tk(v)‖2

2 ≤ sup
‖v‖2=1

‖Tk(v)‖2
2 ≤ c1 exp(λ

degq
k ).
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Thus the nonparametric estimator would be

T ( f n
Λ )(x) = ∑

λk≤Λ

exp{q(λk)} f̂ n
k φk(x),

for x ∈M and the optimal rate of recovery of T ( f ) would be (logn)−s/(2degq)

as n →∞ if f ∈ As,deg q(M,Q), s > dimM/2 and degq > 0.

For a particular example, consider an extension of Section 7.2 of Mair and

F.H. Ruymgaart (1996) [227] to M. Let u : M× [0,L] → R, for some L > 0

that satisfies the “heat” equation on M
(
∆ + ∂t

)
u = 0, (7.17)

with initial condition r(x) = u(x,0), for x ∈M.

The problem is to determine the initial state r from the data {(X1,Y1), . . . ,
(Xn,Yn)} at some fixed point in time t = t0 > 0 satisfying

Yj = u(X j, t0) + ε j for j = 1, . . . ,n, (7.18)

where it is assumed that the random errors ε j are independent (with mean 0 and

finite variance) of the uniformly distributed design points X j ∈M, j = 1, . . . ,n.

At t = t0, the solution to (7.17) is of the form

u(x, t0) = ∑
k∈N

∑
Ek

exp(−t0λk)r̂kφk(x), x ∈M . (7.19)

An unbiased estimator of r̂k is therefore

r̂n
k = exp(t0λk)

1

n

n

∑
j=1

Yjφk(Z j) for k ∈ N.

Consequently, an estimator for r is

rn
Λ (x) = ∑

λk<Λ

r̂n
k φk(x), x ∈M .

One can see that the bound on the operator is that of Theorem 7.2.2, hence for

u(·, t0) ∈As,1(M,Q), the optimal rate of recovery of r(·) = u(·,0) is (logn)−s/2.

In the situation where M = S2,

r̂n
kq = exp(t0k(k + 1))

1

n

n

∑
j=1

Yjφ kq(Z j) for , |q| ≤ k, k ∈ N.

and therefore,

rn
Λ (x) = ∑

k(k+1)<Λ

k

∑
q=−k

r̂n
k φkq(x), x ∈ S2 .
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For M = SO(3),

r̂ℓ,nq1q2
= exp(t0ℓ(ℓ+ 1)/2)

1

n

n

∑
j=1

YjD
ℓ
q1q2

(Z j) for , |q1|, |q2| ≤ ℓ, ℓ ∈ N.

and therefore,

rn
Λ (x) = ∑

ℓ(ℓ+1)/2<Λ

ℓ

∑
q1=−ℓ

ℓ

∑
q2=−ℓ

(2ℓ+ 1)r̂ℓ,nq1q2
Dℓ

q1q2
(x), x ∈ SO(3) .

7.3 Proofs of Main Results

We will prove Theorem 7.2.1 and Theorem 7.2.2 by first finding upper bounds.

Following this we will establish lower bounds for the smoothness classes in

question and demonstrate that the upper and lower bounds match so that the

resulting bounds are optimal.

The approach of Healy and Kim (1996) [145] will be used for calculating

the upper bounds, while the approach of Koo (1993) [200], Koo and Chung

(1998) [201] and Kim and Koo (2002) [189], will be used to find the lower

bounds.

We will let C1,C2, . . . denote positive constants independent of the sample

size n.

7.3.1 Upper Bounds

LEMMA 7.3.1. If h ∈Hs(M,Q) with s > dimM/2, then

‖h‖∞ ≤C(M,Q,s),

where C(M,Q,s) is a constant depending only on M, Q and s.

Proof. Write h = ∑k ∑Ek
ĥkφk. Observe that

|h(x)|2 ≤
(
∑
k

∑
Ek

λ s
k |ĥk|2

)(
∑
k

∑
Ek

λ−s
k |φk(x)|2

)

≤ QZ(x,s),

where Z(x, s̃) is the zeta function of ∆ defined by

Z(x, s̃) = ∑
k

∑
Ek

λ−s̃
k |φk(x)|2, x ∈M, s̃ ∈ C.

It is known that Z(x, s̃) is a continuous function of x for fixed Re(s̃) > dimM/2

(see Minakshisundaram and Pleijel (1949) [244]). Since M is compact,

sup
x∈M

Z(x,s) ≤C(M,s)
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for a constant C(M,Q,s) <∞. �

LEMMA 7.3.2. Suppose f ∈ Hs+β (M,Q) with s > dimM/2. If T satisfies

(7.11) with β ≥ 0, Then

E‖T ( f n
Λ )−ET ( f n

Λ )‖2
2 ≪

Λ β +dimM/2

n
.

Proof. Observe that

var( f̂ n
k ) =

1

n
var(φk(X)) ≤ 1

n
E|φk(X)Y |2 ≤ 1

n
{‖ f‖2

∞ +CV}‖φk‖2
2. (7.20)

From Lemma 7.3.2, ‖ f‖∞ ≤ C(M,Q,s). By the definition of Tk, (3.86) and

(7.20),

E‖T ( f n
Λ )−ET ( f n

Λ )‖2
2 = E ∑

λk≤Λ

∥∥∥Tk

(
∑
Ek

( f̂ n
k − f̂k)φk

)∥∥∥
2

2

≪ ∑
λk≤Λ

λ
β
k ∑

Ek

var( f̂ n
k )

≪ Λ β n−1{C(M,Q,s)2 +CV}#{λk ≤ Λ}
≪ n−1Λ β +dimM//2.

We note that Weyl’s formula (3.86) is used to get the final line. �

We note that As,β (M,Q) ⊂ Hs+β (M,Q) ⊂ Hs(M,Q) for β ≥ 0, hence

Lemma 7.3.1 applies to analytic functions. Through a slight modification to

the proof of Lemma 7.3.2, one has the following.

LEMMA 7.3.3. Suppose f ∈ As,β (M,Q) with s > dimM/2 and β ≥ 0. If T

satisfies (7.13) with β ≥ 0, Then

E‖T ( f n
Λ )−ET ( f n

Λ )‖2
2 ≪

Λ s+dimM/2 eΛβ

n
.

LEMMA 7.3.4. Suppose that f ∈Hs+β (M,Q) with s > dimM/2. If T satis-

fies (7.11) with β ≥ 0, then

‖T ( f )−ET ( f n
Λ )‖2

2 ≪ Λ−s.

Proof. Note that

‖T ( f )−ET ( f n
Λ )‖2

2 =
∥∥∥ ∑

λk>Λ

Tk

(
∑
Ek

f̂kφk

)∥∥∥
2

2

≪ ∑
λk>Λ

λ
β
k ∑

Ek

| f̂k|2

≤ ∑
λk>Λ

| f̂k|2λ
s+β
k λ−s

k

≤ QΛ−s. �
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In fact, again with only minor modifications, the same can be said about

analytic functions.

LEMMA 7.3.5. Suppose that f ∈ As,β (M,Q) with β ≥ 0 and s > dimM/2.

If T satisfies (7.13) with β ≥ 0, then

‖T ( f )−ET ( f n
Λ )‖2

2 ≪ Λ−s.

By putting together Lemma 7.3.2, Lemma 7.3.3, Lemma 7.3.4, and Lemma

7.3.5, upper bound estimates can be established as

‖T ( f n
Λ )−T ( f )‖2

2 ≪P

{
n−1Λ β +dimM/2 +Λ−s if f ∈Hs+β (M,Q)

n−1Λ β +dimM/2 eΛβ
+Λ−s if f ∈As,β (M,Q)

as n →∞. Thus the upper bound rates for Sobolev and analytic functions are

n−s/(2s+2β +dimM) and (logn)−s/(2β ),

respectively.

7.3.2 Lower Bounds

To show that the upper bound rates are optimal rates, we calculate lower bound

rates of convergence and show that these are the same as the upper bounds. In

calculating the lower bounds we follow the popular approach:

• specify a subproblem;

• use Fano’s lemma to calculate the difficulty of the subproblem.

7.3.2.1 Polynomial Ill-Posedness

Let Nn be a positive integer depending on n and define

Vn =
{

(k, l) : l = 1, . . . ,dimEk, k = Nn, . . . ,bNn

}
,

where b > 0 can be chosen such that

C1N
dim M/2
n ≤ #Vn ≤C2N

dim M/2
n

for n sufficiently large using (3.86).

Let τ = τ(n) = {τ l
k : (k, l) ∈Vn}, where τ l

k ∈ {0,1}, and consider the function

fτ = C3N
−(s+β )/2−dimM/4
n ∑

Vn

∑
Ek

τ l
kφ l

k, (7.21)

where C3 is a positive constant to be chosen below. Finally, let

Fn =
{

fτ : τ ∈ {0,1}#Vn

}
.

Under the assumption that s > dimM/2, we have the following lemma.
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LEMMA 7.3.6. For n sufficiently large, Fn ⊂Hs+β (M,Q).

Proof. Applying the Sobolev norm to (7.21), we get

‖ fτ‖2
Hs

= C2
3N

−(s+β )−dimM/2
n ∑

Vn

∑
Ek

(τ l
k)2λ

s+β
k

≤ C2
3bs+β N

−dimM/2
n #{Nn ≤ λk ≤ bNn}

≤ C2
3bs+βC2.

again Weyl’s formula (3.86) is used in the last line. Choose C3 so that

C2
3bs+βC2 ≤ Q and Consequently, we have shown that fτ ∈Hs+β (M,Q). �

Now let f ,g ∈ Fn with f 6= g. Set δ = f − g and δ = ∑Vn
δk with δk ∈ Ek.

Observe that

‖T (δ )‖2
2 = ∑

Vn

‖Tk(δk)‖2
2

≥ C4 ∑
Vn

λ
β
k ‖δk‖2

2

≥ C5N
−s−dim M/2
n . (7.22)

It follows from (7.22) and Lemma 3.1 of Koo(1993) [200] that there exists an

F∗
n ⊂Fn such that for all f1, f2 ∈ F∗

n with f1 6= f2,

‖T ( f1)−T ( f2)‖2 ≥C6N
−s/2
n and log(#F∗

n − 1) ≥C7N
dim M/2
n . (7.23)

Observe that

ED(P f1(X)‖P f2(X)) ≤CKL‖ f1 − f2‖2
2 ≪ N−(s+β )

n for any f1, f2 ∈ F∗
n . (7.24)

By Fano’s lemma (see Birgé (1983) [49], Koo (1993) [200], Yatrakos (1988)

[341]), if T n is any estimator of T ( f ), then

sup
f∈Hs+β (M,Q)

P f (‖T n −T ( f )‖2 ≥ cN
−s/2
n |X1, . . . ,Xn)

≥ sup
f∈F∗

n

P f (‖Tn −T ( f )‖2 > cN
−s/2
n |X1, . . . ,Xn)

≥ 1− ∑n
j=1 max f1, f2∈F∗

n
D(P f1(X j )‖P f2(X j )) + log2

log(#F∗
n − 1)

. (7.25)

Choose Nn ≍ n1/(s+β +dimM/2). By A1, (7.23), (7.24) and (7.25), we have

lim
c→0

liminf
n

inf
T n

sup
f∈Hs+β (M,Q)

P f (‖T n −T ( f )‖2 > cn−s/(2s+2β +dimM)) = 1.
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7.3.2.2 Exponential Ill-Posedness

Let

fτ = C8N
−s/2−dimM/4
n e−Nβ

n /2 ∑
Nn≤λk≤bNn

∑
Ek

τ l
kφ l

k

and

Fn = { fτ : τ ∈ {0,1}#Vn}.
Under the assumption that s > dimM/2, we have the following lemma which

can be proved by the argument for Lemma 7.3.6.

LEMMA 7.3.7. For n sufficiently large, Fn ⊂As,β (M,Q).

Now let f1, f2 ∈Fn with f1 6= f2. Set δ = f1 − f2 and δ = ∑Vn
δk with δk ∈ Ek.

Observe that

‖T (δ )‖2
2 = ∑

Vn

‖Tk(δk)‖2
2

≥ C4 ∑
Vn

eλ
β
k ‖δk‖2

2

≥ C5N
−s−dim M/2
n . (7.26)

It follows from (7.26) and Lemma 3.1 of Koo (1993) [200] that there exists an

F∗
n ⊂Fn such that for all f1, f2 ∈ Fn with f1 6= f2,

‖T ( f1)−T ( f2)‖2 ≥C9N
−s/2
n and log(#F∗

n − 1) ≥C10N
dim M/2
n . (7.27)

Observe that

ED(P f1(X)‖P f2(X)) ≤CKL‖ f1 − f2‖2
2 ≪ N−s

n e−Nβ
n for any f ,g ∈ F∗

n . (7.28)

Choose Nn ≍ (logn)1/β . By A1, (7.25), (7.27) (7.28) and , we have

lim
c→0

liminf
n

inf
T n

sup
f∈As,β (M,Q)

P f (‖T n −T ( f )‖2 > c(logn)−s/(2β )) = 1.

7.4 Kernel Density Estimation

As with the previous methodology, let (M,g) be a compact Riemannian mani-

fold without boundary having dimension d. Furthermore, assume that (M,ρg)

is a complete metric space, where ρg is the Riemannian distance. Let X be

a random object on M whose image measure is absolutely continuous with

respect to the Riemannian volume measure νg, resulting in an almost surely

continuous density f on M.

Now, let K : R+ → R be a function generating a kernel density on Rm in

the sense of Section 2.14. K is a nonnegative continuous function, with the

following properties:
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• ∫Rm K(‖x‖)λm(dx) = 1,

• ∫Rm K(‖x‖)xλm(dx) = 0,

• ∫Rm ‖x‖2K(‖x‖)λm(dx) <∞,

• supp K = [0;1],

• sup K(x) = K(0),

where λm is the Lebesgue measure on Rm. K is thus an isotropic kernel on Rm

supported by the closed unit ball.

Let p and q denote two points on M. The volume density function θp(q) is

defined as

θp(q) =
µExp∗p g

λp

(
Exp−1

p (q)
)
.

That is, θp(q) is the quotient of the canonical measure associated with the Rie-

mannian structure Exp∗pg on Tp(M) over the Lebesgue measure or the Eu-

clidean structure gp on Tp(M). θp(q) = θq(p) for p and q within a normal

coordinate neighborhood on M, defined in Section 3.2, as shown in Willmore

(1993)[338].

DEFINITION 7.4.1. Let X1,X2, . . . ,Xn be i.i.d. random objects on M with

density f . A Pelletier density estimator of f is the mapping fn,K : M→R that

associates the value

fn,K(p) =
1

n

n

∑
i=1

1

rm

1

θXi
(p)

K

(
ρg(p,Xi)

r

)
(7.29)

for every p ∈M, where r denotes the bandwidth.

This Pelletier density estimator is a valid probability density on M that is

consistent with the usual Euclidean kernel density estimators in (2.125) when

(M,g) = (Rm,g0) is the Euclidean space, and K(‖ · ‖) is an isotropic kernel

on Rm. Indeed, the estimator fn,K in (25.1) is nonnegative. Furthermore, let

p1, . . . , pn be a realization of X1, . . . ,Xn. Then

∫

M
fn,K(p)volg(d p) =

∫

M

1

n

n

∑
i=1

1

rm

1

θpi
(p)

K

(
ρg(p, pi)

r

)
volg(d p) =

=

∫

M

1

rm

1

θp1
(p)

K

(
ρg(p, p1)

r

)
volg(d p) =

=

∫

Br(p1)

1

rm

1

θp1
(p)

K

(
ρg(p, p1)

r

)
volg(d p) =

=

∫

Br(0)

1

rm
K

(‖x‖
r

)
λm(dx) = 1, (7.30)

thus fn,K is a probability density. Note that like in the Euclidean case, if the
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bandwidth is small enough, the kernels involved in Pelletier density estimators

are centered on the observations, in the sense that the observations are intrin-

sic means for the distributions representing those kernels (see Pelletier (2005)

[278]).

The key result is that under broad assumptions (r ≤ r0, where 0 < r0 <
in jg(M) and in jg(M) is the injectivity radius of (M,g)), the Pelletier density

estimator is a consistent estimator of f :

THEOREM 7.4.1. Let f be a twice differentiable probability density on M
with a bounded second covariant derivative and fn,K be the estimator defined

in (25.1). If r < r0, then there exists a constant C f such that

E f ‖ fn,K − f‖2
L2(M)

≤C f

(
1

nrm
+ r4

)

Furthermore, for r ∼ n−1/(m+1), E f ‖ fn,K − f‖2
L2(M)

= O
(
n−4/(m+4)

)
.

For a proof, we consider the usual decomposition of E f (‖ fn,K − f‖2) (see

Van der Vaart (1998) [327], or (2.110)):

E f ‖ fn,K− f‖2
L2(M)

=
∫

M
(E f ( fn,K(p))− f (p))2volg(d p) +

∫

M
Var f ( fn,K(p))volg(d p),

(7.31)

and then, we find upper bounds for the right hand terms in (7.31). These are

stated in the next two lemmas.

LEMMA 7.4.1. Assume f is a probability density on M and fn,K is the Pel-

letier estimator, such that the conditions in Theorem 7.4.1 are satisfied. Then

there is a constant Cb such that the biased term has the upper bound
∫

M
(E f ( fn,K(p))− f (p))2volg(d p) ≤Cbr4. (7.32)

For a proof we first note that the pointwise bias B(p) = E f ( fn,K(p))− f (p)

can be written as follows:

B(p) =

∫

Br(p)

1

rm
K

(
ρg(p,q)

r

)(
f (q)

θq(p)
− f (p)

θp(q)

)
volg(d p) =

=

∫

Br(p)

1

rm
K

(
ρg(p,q)

r

)
1

θp(q)
( f (q)− f (p))volg(d p). (7.33)

If we consider the local representative of f in normal coordinates (3.71), rela-

tive to an orthogonal basis in TpM, a representative that for simplicity we label

by f as well, then from the differentiability assumptions

f (x) = f (0) +
m

∑
j=1

c jx
j + R2(p,x), (7.34)
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where |R2(p,x)| ≤Cr‖x‖2,∀x,‖x‖ ≤ r. From (7.30) and (7.34), and given that∫
Rm K(‖x‖xλm(dx) = 0, it follows that

|B(p)| = |
∫

Br(0)

1

rm
K

(‖x‖
r

)
R2(p,x)λm(dx)| ≤

≤
∫

Br(0)

1

rm
K

(‖x‖
r

)
Cr‖x‖2λm(dx) = r2

∫

B1(0)
K(‖u‖)Cr‖u‖2λm(du), (7.35)

therefore

B2(p) ≤ Dr4 (7.36)

where D is a positive constant, and, given that the volume of the compact ma-

nifold M is finite the inequality in (7.32) follows by integrating the inequality

(7.36) over M with respect to the volume measure associated with the Rie-

mannian structure g.

LEMMA 7.4.2. Assume f is a probability density on M and fn,K is the Pel-

letier estimator, such that the conditions in Theorem 7.4.1 are satisfied. Then

there is a constant Cv such that

∫

M
Var f ( fn,K(p))volg(d p) ≤ Cv

nrm
. (7.37)

For a proof we first note that the pointwise variance is given by

Var f ( fn,K(p)) = Var f (
1

n

n

∑
i=1

1

rm

1

θXi
(p)

K

(
ρg(p,Xi)

r

)
) =

=
1

nr2m
Var f (

1

θX1
(p)

K

(
ρg(p,X1)

r

)
) ≤

≤ 1

nr2m
E f (

1

θX1
(p)

K

(
ρg(p,X1)

r

)
)2 =

=
1

nr2m

∫

M

1

θ 2
q (p)

K2

(
ρg(p,q)

r

)
volg(dq). (7.38)

Note that since M is compact, M2 is compact as well. Therefore there is a
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positice constant C1, s.t. ∀(p,q) ∈M, 1
θq(p)

≤C1. From (7.38), we get

∫

M
Var f ( fn,K(p))volg(d p) ≤

≤ C1

nr2m
volg(M)

∫

M
K2

(
ρg(p,q)

r

)
volg(dq) =

=
C1

nr2m
volg(M)K2(0)

∫

Br(p)

1

θq(p)
volg(dq) =

=
C1

nr2m
volg(M)K2(0)

∫

Br(0)

1

θq(p)
λm(dx) =

=
C1volB0(r)

nr2m
volg(M)K2(0) =

Cv

nrm
, (7.39)

done �

Theorem 7.4.1 now follows directly from (7.31) and Lemmas 7.4.1, 7.4.2.

REMARK 7.4.1. In a recent paper, Kim and Park (2013) [192] focus on a

kernel function defined on the tangent space TpM at a point on an m dimen-

sional Riemannian manifold, in terms of the exponential map. They establish

that the formula of the asymptotic behavior of the bias and the mean square

error contains geometric quantities expressed by terms of polynomials in the

component of the curvature tensor and its covariant derivatives. It is natural to

replace Xi − p in (2.125) by Expp(Xi), which enabled Kim and Park (2013) to

define the kernel density estimator of a probability density function f in terms

of a smoothing parameter h > 0 as follows:

f̂n(p) =
1

hmCh

n

∑
i=1

K

(
1

h
Expp(Xi)

)
, (7.40)

where
∫

TpM K(v)λm(dv) = 1 and Ch is a positive constant such that

hmCh =

∫

M
K

(
1

h
Expp(x)

)
volg(d p). (7.41)

The integral on the right hand side of (7.4.1) is independent of x, (see Kim and

Park (2013) [192]). Moreover Kim and Park (op.cit.) show that the estimator

(7.40) is consistent and establish upper bound for its convergence in L2(M).

REMARK 7.4.2. Bhattacharya and Dunson (2010) [28] developed a non-

parametric Bayesian method for density estimation of a r.o. on a separable

metric space, and in particular on a manifold (see also Chapter 12 in Bhat-

tacharya and Bhattacharya (2012) [27]). They combined a family of Pelletier

density estimators in definition 7.4.1 (see Pelletier (2005) [278]) with a prior

kernel. Thus, a class of mixture models for nonparametric density estimators
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on compact manifolds was introduced, and the consistency of these estima-

tors was studied as well. The performance of their proposed Bayesian density

estimator was evaluated through a stimulation study using Dirichlet process

mixtures of complex Watson kernels (Dryden and Mardia (1998) [91], p. 114)

and for density estimation based on Kendall planar shape gorilla skulls data

(Dryden and Mardia (1998) [91], p. 317).
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Chapter 8

Nonparametric Statistics on

Homogeneous Hadamard Manifolds

8.1 Introduction 235

8.2 Considerations for Two-Sample Tests 236

8.3 Intrinsic Means on Hadamard Manifolds 239

8.4 Two-Sample Tests for Intrinsic Means 243

8.1 Introduction

This idea of analyzing data on non-Euclidean sample spaces gained traction

as computational power increased, allowing for this new direction to be im-

plemented practically. Non-Euclidean data analysis includes directional data

(Watson (1983) [333]), direct similarity shape (Kendall (1984) [177]), tectonic

plates (Chang (1988) [63]), certain Lie groups (Kim (2000) [188]), Stiefel ma-

nifolds (Hendricks and Landsman (1998) [154]), projective shape manifolds

(Patrangenaru (2001) [268]), and affine shape manifolds (Patrangenaru and

Mardia (2003) [274]). A common features of all these sample spaces is that

they are all homogeneous spaces. Given a homogeneous space, it is a statisti-

cian’s choice to select an appropriate homogeneous Riemannian structure on

the sample space, that in her or his view would best address the data analy-

sis in question. While the analysis of directional and shape data that domi-

nated object data analysis in its initial phase are on compact, more recently, in

brain imaging , proteomics, and astronomy, homogeneous spaces of noncom-

pact type arose as well (see Dryden et al. (2009) [89] and Bandulasiri et al.

(2009) [10]).

Statistical analysis on general homogeneous spaces was first considered in

the context of density estimation with the ground breaking paper by R. J. Beran

(1968) [19], and in the context of function estimation via harmonic analysis

on Lie groups , which are also homogeneous spaces, in Kim (1998, 2000)

[187, 188], Koo and Kim (2008, 2008a) [202, 203]). For two-sample tests for

235
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means on Lie groups we refer to Chapter 6; the results in Section 6.4 are made

more explicit here and extended somewhat.

The purpose of this chapter is to present a nonparametric methodology for

analysis of data on a noncompact Riemannian space of nonconstant curvature

that admits a simply transitive group of isometries. These methods follow from

Osborne et al. (2013) [258]. The chapter is thus organized as follows. Section

8.2 reviews the general concepts of homogeneous spaces, homogeneous met-

ric spaces, Riemannian homogeneous spaces, and the simply transitive group

of isometries. General definitions and results concerning intrinsic means on

Hadamard manifolds, including on Hadamard manifolds that are homogeneous

spaces, are also summarized in Section 8.3. In Sections 8.2 and 8.3, we recall

the construction of an invariant Riemannian metric (see Kobayashi and No-

mizu (1963) [199], p.154, or Chapter 3). Here we focus on the case of such a

metric on Sym+(m), that was coined by Schwartzman (2006) [301] as the gen-

eralized Frobenius metric. Section 8.4 presents a two-sample test statistic for

intrinsic means on a Hadamard manifold that admits a simply transitive Lie

group of isometries. The asymptotic distribution of this statistic is also pre-

sented, along with a result from nonparametric bootstrap that can be applied to

this two-sample problem when sample sizes are small.

8.2 Considerations for Two-Sample Tests on Riemannian Homogeneous

Spaces

A minimal requirement to enable comparisons of distributions is the homo-

geneity of the sample space that contains the data. To begin with, we consider

a metric space without a differentiable structure. It is assumed that any two

observations (points) on such a sample space (M,ρ) can be brought into coin-

cidence by a distance-preserving automorphism of this sample space. Formally,

this property amounts to the transitivity of the left action of the isometry group

on the sample space (M,ρ).

DEFINITION 8.2.1. If (K, ·) is a group with the identity element e ∈ K, and

M a set, then

• a map α : K×M→M is called a left action of K on M if the following

two properties are satisfied:

αk·h = αk ◦αh ∀k,h ∈K, (8.1)

and αe = identity map M→M, (8.2)

and for all k ∈K, we define αk : M→M, by αk(x) := α(k,x).

• Given a left-action α : K×M→ M, for x ∈M, the isotropy group at x,

is the subgroup Kx = {k ∈ K : αk(x) = x} ⊂ K, and the orbit of x is the set

K(x) = {αk(x),k ∈ K}.

  



CONSIDERATIONS FOR TWO-SAMPLE TESTS 237

• The left action α is called transitive , if for all x1,x2 ∈ M, there exists a

k ∈ K such that αk(x1) = x2. If, the action α is transitive, then the set M is

called K - homogeneous space, or simply a homogeneous space.

This algebraic definition 8.2.1 may be considered too abstract for the pur-

poses of statistical analysis because we are primarily interested in analyzing

distributions on metric spaces (M,ρ), rather than an abstract set. For this rea-

son, we will only consider K - homogeneous spaces, relative to a subgroup

K of the group of isometries I(M,ρ), where the group structure is given by

the composition of functions. In such a situation, the action α : K×M→M
is α( f ,x)) = f (x). Such a homogeneous space will be called a homogeneous

metric space. As discussed in Section 8.1, Euclidean spaces, spheres, , projec-

tive spaces, groups of rotations, and Stiefel manifolds endowed with extrin-

sic distances are all homogeneous metric spaces. For illustrative purposes, we

will focus on a particular non-compact homogeneous space, that being the set

Sym+(p) of p× p positive definite matrices due to its utility for certain applica-

tions. Sym+(2) is the sample space for CMB data and Sym+(3) is that for DTI

data .

PROPOSITION 8.2.1. If GL+(p,R) is the group of matrices of positive de-

terminant and let α : GL+(p,R)× Sym+(p) → Sym+(p) be given by

α(k,x) := αk(x) = kxkT , (8.3)

then α is a transitive left action of GL+(p,R) on Sym+(p), and the isotropy

group at Ip is the special orthogonal group SO(p).

Proof. If x(1),x(2) ∈ Sym+(p) and for a = 1,2,λ1(a) ≥ . . .λp(a) > 0 are the

eigenvalues of x(a) in their decreasing order, and x1(a), . . . ,xp(a) eigenvec-

tors of x(a) with x(a)xi(a) = λi(a)xi(a),∀i = 1, . . . p,x j(a)T xi(a) = δ ji,∀i, j =

1, . . . , p, then by the SVD x(a) = ∑
p
i=1 λi(a)xi(a)xi(a)T . If we define r(a) =

∑
p
i=1

√
λi(a)xi(a)xi(a)T , then r(a) ∈ Sym+(p), and, r(a)2 = x(a). If we set k =

r(2)r(1)−1 ∈ GL+(p,R), then αk(x(1)) = x(2). Hence α is transitive.

Given a sample space M, in order to perform two sample tests for data

M, one may first endow M with a structure of K - homogeneous space, and,

next find a distance ρ , such that (M,ρ) becomes a K - homogeneous metric

space. There are two general methods of endowing M with a distance ρ , so

that α becomes an action of K by isometries of (M,ρ). From now on, we will

assume in addition that M is a manifold, K is a Lie group and the left action

α : K×M→M is smooth.

DEFINITION 8.2.2. An isometric embedding of the metric space (M,ρ) is

an injective map J : M → RD such that ‖J(x)− J(y)‖ = ρ(x,y),∀x,y ∈M. If

in addition (M,ρ) is a K-homogeneous metric space for the left action α :

K×M→M. such an embedding is called isometric equivariant embedding.
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Given a Riemannian metric g on M, an isometric embedding of the Rie-

mannian manifold (M,g) is an embedding J : M→ RD, such that

gx(ξ ,η) = dxJ(ξ )T dxJ(η),∀x ∈M,∀ξ ,η ∈ TxM.

The existence of an isometric embedding of a Riemannian manifold in RD

given by Nash (1956) [253] does not provide explicitly the equations of such

an embedding. The existence of an isometric embedding of a Riemannian ho-

mogeneous space is highly non-trivial (see Moore (1976) [249]). In the absence

of an equivariant embedding of a homogeneous K-space, one has to look for

K-invariant Riemannian structures on M.

REMARK 8.2.1. Isometric equivariant embeddings were previously used in

statistics for two sample tests for means. The inclusion of the round sphere

SN−1 as a subset of RN is an example of isometric equivariant embedding that

was used for directional data two sample tests (see Beran and Fisher (1998)

[18]). The map J : RPN−1 → Sym(N),J([x]) = xxT

xT x
, is an isometric equivari-

ant embedding that was used for paired two sample tests for mean projec-

tive shapes by Crane and Patrangenaru (2011) [78]. In these examples the

sample spaces are compact. It is more difficult to find an isometric equiv-

ariant embedding of a noncompact homogeneous space. For example, for the

set H = {x = (x1, . . . ,xN ,xN+1) ∈ RN+1,−∑N
j=1 x2

j + x2
N+1 = 1}, with the distance

ρ(x,y) =−∑N
j=1(x j−y j)

2 +(xN+1−yN+1)2, there is no explicit isometric embed-

ding into an Euclidean space. The sample space Sym+(p) is also noncompact,

so we will consider another method to provide this space with a structure of

homogeneous metric space.

From Lemma 3.2.1 in Chapter 3, we know that for any homogeneous space

M with a transitive group K, whose isotropy group at q0 is H, a scalar product

gq0
on Tq0

M can be extended to a K-invariant Riemannian metric on M if and

only if the inner product gq0
is H-invariant, in which case such a K-invariant

extension is unique.

Recall that if U is an open set in RD, then the tangent space at a point x ∈U

is TxU = {x}×U, and the tangent bundle of U is TU = ∪x∈U TxU = U ×RD.

In particular, if x ∈ Sym+(p) and TxSym+(p) = {x}× Sym(p) then the tangent

bundle T Sym+(p) is Sym+(p)× Sym(p). Bearing this in mind, given a tangent

vector (x,u) ∈ T Sym+(p), and referring to the action in equation (8.3), we get

(dxαk)((x,u)) = (kxkT ,kukT ),∀(x,u) ∈ T Sym+(p). (8.4)

The Frobenius scalar product on Sym(p) is given by u ·F v = Tr(uv).

DEFINITION 8.2.3. The generalized Frobenius metric on Sym+(p) is the

GL+(p,R)-invariant metric gF associated with the scalar product gIp on

TIp Sym+(p) given by the Frobenius scalar product:

gIp ((Ip,u), (Ip,v)) =: u ·F v = Tr(uv). (8.5)
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Élie Cartan introduced following notion of simply transitive groups (see Car-

tan (1946, pp.275-293) [59]).

DEFINITION 8.2.4. An action α of a Lie group G on a manifold M is simply

transitive if one of the equivalent statements (i) or(ii) holds true: (i) for any two

points x1,x2 ∈M,x1 6= x2, there is a unique k ∈ G, such that αk(x1) = x2, and,

(ii) if x ∈M, and αx : G →M is given by αx(k) = α(k,x), then αx is bijective.

The proof of the equivalence of (i) and (ii) in Definition 8.2.4 is elementary.

REMARK 8.2.2. Beran and Fisher (1998) [18] and Mardia and Patrange-

naru (2005) [233] reduced a two sample problem for mean location on a cer-

tain homogeneous space (a sphere, or a projective space RPm) to a one sample

problem on a Lie group acting on that homogeneous space (SO(3), respectively

SO(m + 1)). This procedure is local, and has the drawback that it increases the

dimensionality of the manifold where the data analysis is performed, since the

dimension of a transitive Lie group K acting transitively on a manifold M, is

at least higher than the dimension of M. Therefore, wherever the data is on a

K-homogeneous space, it is useful to check on the existence of a subgroup G
of K that is simply transitive with the induced action α|G×M. In this case, the

dim G = dim M, and the procedure does not increase the dimensionality.

LEMMA 8.2.1. A left action α of a group G on M is transitive, if and only if

there is a point x0 ∈M such that the orbit G(x0) = M.

For proof of Lemma 8.2.1, assume x1,x2 ∈M are arbitrary. From the hy-

pothesis there exist t1, t2 ∈ G, such that x1 = αt1 (x0) and x2 = αt2 (x0). From the

properties of the action α , we obtain x0 = αt1
−1(x1) therefore αt2 (αt1

−1 (x1)) =

x2, which can be also written as αt2t1
−1 (x1) = x2; that is, there exists a t =

t2t1
−1 ∈ G, such that αt (x1) = x2. This proves the transitivity of the group action

α of G on M.

PROPOSITION 8.2.2. The group T +(p,R) of lower triangular p× p, ma-

trices with positive diagonal entries, with the restriction of the action 8.3 to

T +(p,R)× Sym+(p), is transitive on Sym+(p).

The proof is immediate, since by the Cholesky decomposition of a positive

definite covariance matrix Σ , there exist a unique matrix t ∈ T +(p,R) such that

Σ = ttT . We will set t = c(Σ ). This is same as saying that, given the action

α in (8.3), for any matrix Σ ∈ Sym+(p), ∃t ∈ T +(p,R) such that αtx(Ip) = Σ .

This shows that the orbit T +(p,R)(Ip) = Sym+(p), and the result follows from

Lemma 8.2.1.

8.3 Intrinsic Means on Hadamard Manifolds

Recall from Chapter 4 some general results for the intrinsic mean of a random

object X .

DEFINITION 8.3.1. Assume (Ω ,A,P) is a probability space, (M,g) is a
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complete Riemannian manifold, and BM is the Borel σ -filed generated by

open subsets of M. A random object (r.o.) is a mapping X : Ω → M, that

is (A,BM)-measurable.

In Chapter 3 we considered, in this context, the intrinsic mean set for X .

Let ρ = dg be the geodesic distance on M. Following Patrangenaru (1998)

[266], we introduced the Fréchet function F : M → R, given in (4.2). As-

suming F (a) is finite for some a ∈ M, Patrangenaru (2001) [268] called the

minimum of F on M to be total intrinsic variance tΣg of X with respect to

the Riemannian structure g. When F has a unique minimizer, that minimizer

was called the intrinsic mean (with respect to the Riemannian structure g) of

X and was labeled µg. Using Theorem 9.1 in Kobayashi and Nomizu (1969,

p.109) [198], Patrangenaru (1998) [266] noted that µg exists if M is simply

connected Hadamard manifold (see Definition 3.2.5).

Also recall that the Cartan mean (set) of a finite set {x1, . . . ,xn} of points on

M is the intrinsic mean (set) of the empirical distribution Q̂n = 1
n ∑n

i=1 δxi
. In

1928, Cartan ([58]) showed that the baricenter (Cartan mean) of a finite set of

points on a Hadamard manifold exists (see Cartan (1946) [59], p. 354), which

in practice means that the sample mean vector from Multivariate Analysis na-

turally extends to a unique Cartan mean of a sample of points on a Hadamard

manifold. Note that the Cartan mean set may have more than one point on a

positively curved Riemannian manifold.

THEOREM 8.3.1. The space (Sym+(p),gF ) a Hadamard manifold, with the

Riemannian exponential mapping at Ip, given by ExpIp(w) = exp(w), ∀w ∈
TIp Sym+(p) = Sym(p), where exp(w) = ∑∞

r=0
1
r!

wr.

Proof. From Proposition 8.2.2, the group T +(p,R) is a noncommutative

simply transitive group of isometries of Sym+(p). Moreover, the mapping t →
h(t) = ttT = α(t, Ip), endows T +(p,R) with the left invariant Riemannian struc-

ture h∗gF , thus (T +(p,R),h∗gF ) is a Riemannian homogeneous space in itself.

Therefore, ∀t ∈ T +(p,R), t → t−1 there is an isometry of (T +(p,R),h∗gF ),

which is same as saying that for any geodesic γ, with γ(0) = Ip, the geodesic re-

flection on (T +(p,R),h∗gF ), at the point Ip, given by γ(s)→ γ(−s), is an isome-

try of (T +(p,R),h∗gF ). Thus (T +(p,R),h∗gF ) is a symmetric space in the sense

of Cartan at the point Ip. This turns the space (T +(p,R),h∗gF ), into a globally

symmetric space in the sense of Cartan, given that for each point t ∈ T +(p,R),

the left translation Lt (u) = tu is also an isometry of (T +(p,R),h∗gF ), that takes

geodesics to geodesics, thus forcing the geodesic reflection at the point t ∈
T +(p,R) to be as well an isometry of (T +(p,R),h∗gF ). This is a noncompact

symmetric space, since T +(p,R) is an open subset in a linear space of matrices.

From Theorem 3.1. in Helgason (1962) [146] stating that all the sectional cur-

vatures of a symmetric space of noncompact type are non-positive and since

an isometry between two Riemannian manifolds preserves the sectional cur-
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vature at corresponding points, and h : (T +(p,R),h∗gF ) → (Sym+(p),gF) is an

isometry, it follows that (Sym+(p),gF) a Hadamard manifold.

For the second claim, note that a geodesic γ on a Lie group G with a left in-

variant Riemannian metric, with γ(0) = 1G is a one parameter subgroup (Helga-

son (1978)[147], p.94) of G and it is elementary to show that the one parameter

subgroups of GL(p,R) are given by γ(s) = expsv, ∀s∈R, for some v∈M(p,R).
In particular, since G = T +(p,R) is a Lie subgroup of GL(p,R), the one param-

eter subgroups of T +(p,R) are of the form s → exp(sv), ∀s ∈R, for some v ∈ g,

where g is the set of lower triangular matrices, Lie algebra of G, therefore the

geodesics γ , of (T +(p,R),h∗gF ), with γ(0) = Ip, are given by γ(s) = exp(sv),

∀s ∈ R, for some v ∈ g. Finally, since h is an isometry, with h(Ip) = Ip, if

s → λ (s) is a geodesic on (Sym+(p),gF ), with λ (0) = Ip, then γ(s) = h−1(λ (s))

is a geodesic on (T +(p,R),h∗gF ), with γ(0) = Ip. Thus γ(s) = exp(sv), ∀s ∈ R,

for some v ∈ g, and λ (s) = h(γ(s)) = γ(s)γ(s)T = exp(sv)(exp(sv))T = exp(sw),

where w ∈ Sym(p). �

Given that two distinct points x,y on a Hadamard manifold (M,g), they can

be joined by a unique geodesic

γx,y : R→M,γx,y(0) = x,γx,y(dg(x,y)) = y, (8.6)

and an explicit formula of the geodesic γx,y in equation (8.6) is very useful

for computing the geodesic distance dg(x,y). We are in particular interested in

this formula dgF
(x,y), given x,y ∈ Sym+(p), which is a direct consequence of

theorem 8.3.1.

COROLLARY 8.3.1. The geodesic distance dgF
(x,y) on Sym+(p) is given by

d2
gF

(y,x) = Tr
(

(log(c(x)−1x(c(x)−1)T ))2
)
, (8.7)

where log : Sym+(p) → Sym(p) is the inverse of the matrix exponential map

exp : Sym(p) → Sym+(p).

Proof. Recall that Expx : TxSym+(p) → Sym+(p) is the Riemannian expo-

nential at the point x ∈ Sym+(p), Expx(w) = γx,w(1), where γx,w it the geodesic

on Sym+(p) with γx,w(0) = x,
dγx,w

ds
(0) = w ∈ Sym(p). Here, for any point x ∈

Sym+(p), we identify (x,w) ∈ TxSym+(p) = {x}× Sym(p) with w ∈ Sym(p).

Note that if x ∈ Sym+(p) then the αc(x) : Sym+(p) → Sym+(p), is an isom-

etry taking geodesics centered at Ip to geodesics centered at x and since

αc(x)(z) = c(x)zc(x)T ,dzαc(x)(v) = c(x)vc(x)T ,∀v ∈ Sym(p). In addition, it fol-

lows that

Expx(c(x)vc(x)T ) = γx,c(x)vc(x)T (1) = γx,dIp αc(x)(v)(1) = (8.8)

= γx,dIp αc(x)(v)(1) = γαc(x)(Ip),dIp αc(x)(v)(1) =

= αc(x)(γIp,v(1)) = c(x)ExpIp (v)c(x)T ,
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and from Theorem 8.3.1 and equation (8.8) we get

Expx(c(x)vc(x)T ) = c(x)exp(v)c(x)T . (8.9)

Given w ∈ TxSym+(p) ≃ Sym(p), if we solve for v in the equation c(x)vc(x)T =

w, we get v = c(x)−1w(c(x)−1)T , therefore, from equation (8.9) we see that

Expx(w) = c(x)exp(c(x)−1w(c(x)−1)T )c(x)T . (8.10)

Assume y = Expx(w), then d2
gF

(y,x) = gF x(w,w). One can easily show that

gF x(w,w) = Tr((x−1w)2). (8.11)

We solve equation y = Expx(w) for w by using equation (8.10), to obtain

w = c(x) log(c(x)−1y(c(x)−1)T )c(x)T , (8.12)

where log is the inverse of the mapping exp : Sym(p)→ Sym+(p), so that log(Σ )

can be obtained as follows : assume Σ = AΛAT , where Λ is the diagonal matrix

diag(λ1, . . . ,λp),λ j > 0,∀ j = 1, . . . , p, and A ∈ O(p), then

log(Σ ) = A diag(ln(λ1), . . . , ln(λp))AT . (8.13)

If we plug w = w(x,y) into the expression on the right hand side of equation

(8.11), we get d2
gF

(x,y) = Tr((x−1c(x) log(c(x)−1y(c(x)−1)T )c(x)T )2). Given

that x = c(x)c(x)T , we have x−1 = (c(x)T )−1c(x)−1, therefore

d2
gF

(y,x) = Tr((c(x)T )−1 log(c(x)−1y(c(x)−1)T )c(x)T )2), (8.14)

or, in a more compact form

d2
gF

(y,x) = Tr((log(c(x)−1y(c(x)−1)T ))2). (8.15)

�

The intrinsic mean of a random object X on Sym+(p) with respect to the

generalized Frobenius distance gF , which is the minimizer of the function

F : Sym+(p) → [0,∞), will be called the generalized Frobenius mean and is

labeled µF , and the intrinsic covariance matrix will be called the generalized

Frobenius covariance matrix will be labeled ΣF . As a consequence of equation

(8.15) we obtain the following

COROLLARY 8.3.2. (a) The generalized Frobenius mean of X is given by

µF = argmin
y∈Sym+(p)

E[Tr((log(c(X)−1y(c(X)−1)T ))2)]. (8.16)

The generalized Frobenius mean of a sample x1, . . . ,xn of points on Sym+(p) is

given by

µF = argmin
y∈Sym+(p)

n

∑
i=1

(Tr((log(c(xi)
−1y(c(xi)

−1)T ))2)). (8.17)

In order to compute the generalized Frobenius sample mean in (8.17), one

may use fast algorithms, such as the ones given in Groisser (2004) [133] and

also suggested independently by Pennec et al. (2006) [281].
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8.4 Two-Sample Tests for Intrinsic Means on Homogeneous Hadamard

Manifolds

Assume that the Hadamard homogeneous space (M,dg) admits a simply tran-

sitive group of isometries G. Under theis assumption, a two sample problem

for intrinsic means on M can be transferred to a one sample problem on the

Lie group G, as follows. Note that the left action α : G ×M → M is simply

transitive, which means that in the isotropy group Gx, there is a trivial sub-

group consisting in the identity element 1G . More generally, given a fixed ob-

ject x ∈M, the mapping αx : G →M is bijective. Therefore, the two sample

mean hypothesis test for linear data H0 : µ1 = µ2 +δ vs. H1 : µ1 6= µ2 +δ can be

formulated in our more general setting for intrinsic means as follows:

(1) H0 : µ1,g = α(δ ,µ2,g)

versus

H1 : µ1,g 6= α(δ ,µ2,g). (8.18)

(8.18) can be translated to a hypothesis testing problem on the Lie group G, as

follows:

(1) H0 : (αµ1,g)−1(µ2,g) = δ ,

versus

H1 : (αµ1,g)−1(µ2,g) 6= δ (8.19)

Let H : M2 →G, defined by

H(x1,x2) = (αx1)−1(x2). (8.20)

THEOREM 8.4.1. Assume Xa, ja , ja = 1, . . . ,na are identically independent

distributed random objects (i.i.d.r.o.’s) from the independent probability mea-

sures Qa,a = 1,2 with finite intrinsic moments of order s,s ≤ 4 on the m di-

mensional Hadamard manifold M on which the Lie group G acts simply tran-

sitively. Let n = n1 + n2 and assume lim
n→∞

n1
n
→ p ∈ (0,1). Let exp : g→G and

Lδ be, respectively, the Lie group exponential map and the left translation by

δ ∈ G. Then under H0,
i. The sequence of random vectors

√
n((Lδ ◦ exp)−1(H(X̄n1,g, X̄n2,g)) (8.21)

converges weakly to Nm(0m,Σg) for some covariance matrix Σg that depends

linearly on the intrinsic covariance matrices Σa,g of Qa,a = 1,2.
ii. If (i.) holds and Σg is positive definite, then the sequence

n((Lδ ◦ exp)−1(H(X̄n1,g, X̄n2,g))T Σ−1
g ((Lδ ◦ exp)−1(H(X̄n1,g, X̄n2,g)) (8.22)

converges weakly to the χ2
m distribution.
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By the multivariable inverse function theorem, the mapping H : M×M→
H is continuous. Given that, according to Bhattacharya and Patrangenaru

(2003) [42], for a = 1,2, the Cartan mean X̄na,g is a consistent estimator of µa,g,

for a = 1,2. By the continuity theorem (Billingsley (1995) [48], p.334), a con-

sistent estimator for (αµ1,g)−1(µ2,g) is H(X̄n1,g, X̄n2,g). From Bhattacharya and

Patrangenaru (2005) [43], under the null hypothesis, for a = 1,2, the asymp-

totic distribution of
√

naExp−1
µa,g(X̄n1,g) is multivariate normal Nm(0m,Σa,g),

where Σa,g is the intrinsic covariance matrix of Qa (the intrinsic covariance

matrix is the covariance matrix in the CLT for Cartan means in Bhattacharya

and Patrangenaru (2005) [43]). Since lim
n→∞

n1
n
→ p ∈ (0,1), from Cramér’s

delta method it follows that asymptotically
√

n((Lδ ◦ exp)−1(H(X̄n1,g, X̄n2,g))

has Nm(0m,Σg), where Σg depends on the intrinsic covariance matrices of

the two populations Xa,1,a = 1,2 as described in Theorem 8.4.1(i). Theorem

8.4.1(ii). is an immediate consequence of part (i) and is a weak continuity ar-

gument (Billingsley (1995) [48], p.334).

COROLLARY 8.4.1. For a = 1,2, assume xa, ja , ja = 1, . . . ,na, are random

samples from independent populations on the m dimensional Hadamard ma-

nifold M on which the Lie group G acts simply transitively. Let n = n1 + n2,
and assume lim

n→∞
n1
n
→ p ∈ (0,1). Assume Σg is positive definite and Σ̂g is a

consistent estimator for Σg. The asymptotic p-value for the hypothesis testing

problem (8.18) is given by p = P(T ≥ T 2
δ ) where

T 2
δ = n((Lδ ◦ exp)−1(H(x̄n1,g, x̄n2,g))T (Σ̂g)−1((Lδ ◦ exp)−1(H(x̄n1,g, x̄n2,g)),

(8.23)

and T has a χ2
m distribution.

Often in practice, the sample sizes are too small to obtain reliable statisti-

cal results using parametric models. If the distributions are unknown and the

samples are small, an alternative approach is for one to use Efron’s nonpara-

metric bootstrap (see Efron (1979) [96]). If na ≤ m,∀a = 1,2, the estimator Σ̂g

in Corollary 8.4.1 does not have an inverse, and pivotal nonparametric boot-

strap methodology can not be applied. In this case, one may use nonpivotal

bootstrap for the two-sample problem H0, following Bhattacharya and Ghosh

(1978) [38], Babu and Singh (1984) [9], Hall and Hart (1990) [138], Fisher et

al. (1996) [116], Hall (1997) [137] and others.

THEOREM 8.4.2. Under the hypotheses of Theorem 6.5.1i., assume in addi-

tion, that for a = 1,2 the distribution of Exp−1
µg,a

Xa,1 has an absolutely contin-

uous component, and finite moments of sufficiently high order. Then the joint

distribution of

V =
√

n(exp)−1(H(X̄n1,g, X̄n2,g))

can be approximated by the bootstrap joint distribution of

V∗ =
√

n(exp)−1(H(X̄∗
n1,g

, X̄∗
n2,g

)) (8.24)
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with an error Op(n−
1
2 ), where, for a = 1,2, X̄∗

na,g are the Cartan means of the

bootstrap resamples X∗
a, ja

, ja = 1, . . . ,na, given Xa, ja , ja = 1, . . . ,na.

  



  



Chapter 9

Analysis on Stiefel Manifolds
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9.1 Stiefel Manifolds

This chapter presents the results from Hendriks and Landsman (1998) [154].

Let Matp,r be the vector space of real p×r,r ≤ p matrices, with the inner prod-

uct (A,B) = TrAT B, so that ‖A−B‖2 = Tr(A−B)T (A−B). This corresponds to

the Euclidean inner product with respect to the identification of Matp,r with

Rpr by putting the matrix entries in one column of size pr. Let Sym(r) be

the vector space of symmetric r × r matrices, and Sym+
r the subset of semi

positive-definite symmetric r × r matrices. Let Er denote the r × r unit ma-

trix. Then M = Vp,r ⊂ Matp,r denotes the Stiefel manifold M = Vp,r = {V ∈
Matp,r,V

TV = Er ∈ Sym(r)} whose dimension is m = pr − r(r+1)
2

. M can be

considered as a compact submanifold of the vector space Matp,r given by the

equation

f (X) = XT X = Er, (9.1)

where f is considered as a mapping between vector spaces with inner product

f : Matp,r → Sym(r). Therefore, a point in the Stiefel manifold is a p× r ma-

trix with orthogonal columns of Euclidean norm 1. As a particular case Vk,1

corresponds to the sphere Sk−1, and Vp,p equals the orthogonal group O(p) of

p× p-matrices X such that XT X = Ep.
Recall that the Stiefel manifold M = Vp,r is a homogeneous space with re-

spect to the Lie group O(p) where the action is defined as the restriction of the

action by matrix multiplication

O(p)×Matp,r � (g,X) 7→ gX ∈ Matp,r. (9.2)

As a matter of fact, M admits the larger symmetry group O(p)×O(r), where

247
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the action is defined by restriction of the action

(O(p)×O(r))×Matp,r � (g,h,X) 7→ gXhT ∈ Matp,r. (9.3)

It is clear that these symmetries are in fact isometries. Namely, it can be shown

that ‖g(x− y)hT‖2 = ‖(x− y)‖2. If U ∈ Matp,r, then the elements X of M for

which LU (X) = ‖U −X‖2 = (U −X ,U −X) is minimal are characterized by the

condition that U = Xc, where c∈ Sym+
r is the (semi) positive-definite symmetric

square root of UTU . X is uniquely defined if c is non singular, thus if U is

of rank r. In that case, X is a non degenerate critical point of the function

LU : M → R. If U is of rank less than r, uniqueness of X fails as there is a

1-1 correspondence between isometric (injective) mappings Y : Ker U →(Im

U)⊥ and solutions V to the equation U = Vc, given by Y = V |kerU . As such, the

cut-locus C consists exactly of the p× r-matrices U that are not of maximal

rank, r. The nearest-point mapping Φ : Matp,r \C →M will be given by

Φ(U) = U(UTU)−1/2,U /∈ C (9.4)

Notice that the linear mapping D f |X : Matp,r → Sym(r) is given by

D f |X (H) = HT X + XT H and that its transpose (or rather adjoint with respect to

the inner products) (D f |X )T : Sym(r) → Matp,r is given by (D f |X )T (c) = 2Xc.

Thus, for µ ∈M, we have D f |µ (D f |µ )T (c) = 4c.

The orthogonal projection on the tangent space Tµ (M) will be given by

tanµ(U) = U − (D f |µ)T (D f |µ (D f |µ )T )−1D f |µ (U) = U − 1

2
µ[µTU +UT µ].

For µ ∈ M, a normal vector nµ ∈ Nµ (M) ⊂ Matp,r must lie in the range of

(D f |µ )T , so that nµ = (D f |µ )T (s) = 2µs for some s ∈ Sym(r). Thus, 2s = µT nµ

and µT nµ is symmetric and nµ = µ[µT nµ]. Since Tµ (M) is precisely the or-

thogonal complement, it consists of the matrices W ∈ Matp,r for which µTW

is skew-symmetric. To calculate the Weingarten mapping at the point µ in the

normal direction nµ , notice that nµ is extended to a field of normal vectors

on M by nα = α[µT nµ],α ∈ M. And the Weingarten mapping is defined

as the mapping Anµ : Tµ (M)T → Tµ (M)T with Anµ (W ) = −tanµ(DW (n)) =

−tanµ(W µT nµ ). Therefore for W ∈ Tµ (M),

Anµ (W ) = −W µT nµ + 1
2

µ[µTW µT nµ + nT
µ µW T µ]

= 1
2 [Ep − µµT ]WnT

µ µ − 1
2 [WnT

µ − nµW T ]µ (9.5)

= −W µT nµ − 1
2 µW T nµ + 1

2 nµW T µ

REMARK 9.1.1. Let M = O(p) be the set of orthogonal matrices. It coin-

cides with the Stiefel manifold Vp,p. Then µµT = Ep and Anµ may be simplified
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slightly (cf. Hendriks and Landsman (1996a) [152], Example ii)

Anµ (W ) = −1

2
[W T

n − nµW T ]µ = −1

2
W µT nµ −

1

2
nµ µTW,W ∈ Tµ (M).

REMARK 9.1.2. Let M = Sk−1 be the unit sphere in Rk. It is a special case

of Stiefel manifold Vk,1. In this case C = {0}, U = Rk \ {0} and Φ(a) = a/‖a‖
for a ∈ U. Let a ∈ U be the population mean then µ = a/‖a‖, µn = Xn/‖Xn‖,

tanµn = Ek −µnµT
n , and Gn = ‖Xn‖tanµn + µnµT

n . See Hendriks and Landsman

(1996a, 1996b) [152, 153].

9.2 Special Orthogonal Groups M = SO(p)

The discussion differs of SO(p) from the one on Stiefel manifolds only in the

determination of the cut-locus and a necessary modification to the nearest-point

mapping Φ .

Let U ∈ Matp,p, then the elements X of M for which LU (X) = ‖U −X‖2 =

(U − X ,U −X) is stationary are characterized by the condition that U = Xc

where c ∈ Symp is a symmetric square root of UTU . In order to have mini-

mal distance, we need the square root with the largest trace. This means that

if det(U) > 0, we can use the positive-definite root. If det(U) < 0, we must

allow a negative root of the smallest eigenvalue of UTU, which will give rise

to non uniqueness if the smallest eigenvalue has multiplicity greater than 1. In

the same vein, if det(U) = 0 and the eigenvalue 0 has multiplicity greater than

1 then X is not unique. However, if 0 is a simple eigenvalue of UTU , the condi-

tion that det(X) = 1 determines a single solution. Moreover one can prove that

if det(U) > 0 or that if both det(U) ≤ 0 and the lowest eigenvalue of UTU is

simple, then the minimum X is non degenerate. Therefore, the cut-locus C is

the set of p× p matrices U such that det(U) ≤ 0 and the lowest eigenvalue of

UTU is not simple.

9.3 Intrinsic Analysis on Spheres

For the d-dimensional unit sphere , M = Sd = {p ∈ Rd+1 : ‖p‖ = 1}, is the

Stiefel manifold Vd=1,1. Sd is equipped with the Riemannian metric induced by

the Euclidean metric on Rd+1, the exponential map at a given point p ∈ Sd is

defined on the tangent space TpM and is given, according to Bhattacharya and

Patrangenaru (2005) [43], by

Expp(v) = cos(‖v‖)p + sin(‖v‖)‖v‖−1v, (v ∈ TpSd , v 6= 0). (9.6)

If x ∈ Sd,x 6= −p, then there is a unique vector u ∈ TpM such that x = Exppu,
and we will label this vector by u = Logpx. Since TpSd = {v ∈ Rd+1,v · p = 0},
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it follows that

Logpx = (1− (p · x)2)−
1
2 arccos(p · x)(x− (p · x)p) (9.7)

In particular, for d = 2, we consider the orthobasis e1(p),e2(p) ∈ TpS2, where

p = (p1, p2, p3)t ∈ S2\{N,S}(N = (0,0,1),S = (0,0,−1)) :

e1(p) = ((p1)2 + (p2)2)−
1
2 (−p2, p1,0)t (9.8)

e2(p) = (−((p1)2 + (p2)2)−
1
2 p1 p3,−(x2 + y2)−

1
2 p2 p3, ((p1)2 + (p2)2)

1
2 )t

The logarithmic coordinates of the point x = (x1,x2,x3)T are given in this case

by

u1(p) = e1(p) ·Logpx

u2(p) = e2(p) ·Logpx (9.9)

For computations, one may use a ·b = atb.
In the case of the sphere S2 from Example 12.1, it follows that if we consider

an arbitrary data point u = (u1,u2), and a second point θ = Logpλ = (θ 1,θ 2),
and evaluate the matrix of second order partial derivatives w.r.t. θ 1,θ 2 of

G(u,θ ) = arccos2(cos||u||+ sin||u||
||u|| (u1θ 1 + u2θ 2)− 1

2
||θ ||2cos||u||), (9.10)

then
∂ 2G

∂θ r∂θ s
(u;0) =

4urus

||u||2 (1− ||u||
tan||u||) +

4δrs||u||
tan||u|| (9.11)

where δrs is the symbol of Kronecker and ||u||2 = (u1)2 + (u2)2. The matrix

Λ̂ = (λrr′)r,r′=1,2 has the entries

λrr′ =
1

n

n

∑
i=1

∂ 2G

∂θ r∂θ r′
(ui;0). (9.12)

Assume Ĉ is the sample covariance matrix of u j, j = 1, ...,n; A large sample

confidence region for the intrinsic mean is given by Corollary 5.2.with µn = 0.
In the case of a hypersphere in Rk, j(x) = x and Pj = PM. We evaluate the

statistic ‖Z j,n‖2 = n‖Σ j,E
− 1

2 tan(PM(X) − PM(µ)))‖2. The projection map is

PM(x) = x/‖x‖. PM has the following property: if v = cx then dxPM(v) = 0; on

the other hand if the restriction of dxPM to the orthocomplement of Rx is a con-

formal map, that is if v ·x = 0, then dxPM(v) = ‖x‖−1v. In particular, if we select

the coordinate system such that x = ‖x‖ek, then one may take ea(PM(x)) = ea,

and we get

dxPM(eb) · ea(PM(x)) = ‖x‖−1δab, ∀ a,b = 1, ...,k− 1,dxPM(ek) = 0.
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Since ek(PM(µ)) points in the direction of µ , dµPM(eb) ·µ = 0 ∀ b = 1, ...,k−1,

and we get

ΣE = ‖µ‖−2E([X · ea(µ/‖µ‖)]a=1,...,k−1[X · ea(µ/‖µ‖)]t
a=1,...,k−1) (9.13)

which is the matrix G in formula (A.1) in Fisher et al (1996) [116].

EXAMPLE 9.3.1. In the case of the sphere, one may approximate the asymp-

totic distribution in theorem 5.3.1 using the so the bootstrap distribution

in Corollary 5.3.1 as follows: Consider a random sample with repetition

ν∗
1 , .....,ν

∗
n from a sample of unit normals ν1, ...,νn , and project the mean

ν∗ of ν∗
1 , .....,ν

∗
n on the tangent space to the sphere at ν . If the number of such

resamples is large (in the order of thousands), then the distribution of projec-

tions of the points ν∗ on the tangent plane at , is approximately the same as

the distribution of H(ν) in TµS2. The probability error is of order 0P(n−1/2)

Hendriks and Landsman (1998)[154] consider simulations of observations

on the Stiefel manifold V3,2 from the distributions with densities fµ,κ , with

respect to the uniform distribution on V3,2, given by

fµ,κ (X) = Cκ exp(−κTr(X − µ)T (X − µ)) =

= C′
κ exp(2κµT X),µ ∈V3,2,κ > 0, (9.14)

Cκ and C′
κ being a normalizing constant. The parameters µ and κ are the mean

location and the concentration parameter, respectively. This model is a sub-

model of the von Mises–Fisher model (Khatri and Mardia (1977) [186]). They

were interested in the performance of the χ2-type procedures in the one-sample

and two-sample cases, and showed that in spite of the seeming complexity in

the formulation of the procedures everything can be implemented easily and

performs well.

The method for generating uniform variates on Stiefel manifolds is to char-

acterize it as the distribution which is invariant under the left action by O(p).

This property is shared by the multivariate standard normal distributions on

Mat3,2 and preserved by the mapping Φ (cf. Chikuse (1990) [70], James (1954)

[169], Watson (1983b) [333]).

REMARK 9.3.1. We note that the asymptotic results in this chapter seem

to indicate that a more appropriate model for distributions on spheres Sd =

Vd+1,1, that takes into account an arbitrary extrinsic covariance matrix could

be modeled by distributions with densities fµ,Σ , with respect to the uniform

distribution, given by

fµ,Σ (X) = CΣ exp(−(X − µ)T Σ−1(X − µ)),µ ∈Vd+1,1,Σ > 0, (9.15)
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Projective shape analysis is one of the areas where data analysis on a real pro-

jective shape plays a crucial role. In Chapter 3, we showed that real projective

spaces are sample spaces for axial data, and complex projective space are sam-

ple spaces for direct similarity planar shape data (see Kendall (1984) [177]).

10.1 Asymptotic Distributions of the Sample Total Intrinsic Variance

for Distributions with Small Support on Real Projective Spaces

Projective shape analysis is concerned with the properties of configurations of

points, as they are seen in a central projection by external observers, in what

can be considered a simplified analysis of vision in the absence of occlusions.

A simple model for monocular vision is given by real projective geometry, the

geometry of the projective plane RP2.

We recall from Chapter 3 that RPm is the set of vector lines in Rm+1, that is if

X = (X1, ...,Xm+1) ∈Rm+1\0, the projective point [X] = [X1 : ... : Xm+1] ∈RPm

is

[X] = {λ X ,λ ∈ R\0} (10.1)

The coordinates (X1, ...,Xm+1) of [X] defined in (10.1) are called homogeneous
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coordinates and are determined up to a multiplicative constant, opposed to

affine coordinates (x1, ...,xm) of [X] , obtained by “dehomogenizing” one vari-

able, which are unique. The affine coordinates of [X] = [X1 : · · · : Xm+1] ∈RPm

w.r.t. the last variable are

x j =
X j

Xm+1
(10.2)

A linear variety V of dimension d is given by

V = {[X],X ∈V\0}, (10.3)

where V is a (d + 1)- dimensional subspace of Rm+1.
In projective shape analysis, we associate a random object to a (finite) ran-

dom configuration of observed points. Recall from Section 3.5, that m + 2 la-

beled points in RPm form a projective frame if any subset of m + 1 of these

points are not included in a linear variety of dimension m−1. For k >m+1, we

denote by G(k,m) the set of ordered systems of k projective points (p1, . . . , pk),

such that (p1, ..., pm+1) are in general position. The group of projective trans-

formations acts on G(k,m) as in (3.142). The orbit of the k-ad (p1, ..., pk) via

this action is a projective shape of this k-ad.

In Section 3.5, we showed that PΣ k
m, the space of projective shapes of

such k-ads, called the projective shape space, is a manifold diffeomorphic to

(RPm)k−m−2. Accordingly, inference for projective shapes is based on a sta-

tistical analysis on this product manifold and can be regarded as inference for

multivariate axial analysis.

We defined the projective coordinate of an observation (p1, ..., pk) in general

position, with respect to a projective frame. We associate with the j-th projec-

tive point p j = [x j
t : 1] in RPm, the (m + 1)× (m + 1) matrix Um = [x̃1, ..., x̃m+1].

Recall that the projective coordinate of the configuration of Euclidean points

(x1, . . . ,xk) is given by

(pπ
j , j = m + 3, ...,k)

where

pπ
j = [

z1(x j)

‖z(x j)‖
: ... :

zm+1(x j)

‖z(x j)‖
],

z j(x) =
v j(x)

v j(xm+2)
, f or j = 1, ...,m + 1

and

(v1(x), ...,vm+1(x)) = U−1
m x̃.

The projective coordinates pπ
j and the projective invariants (ιs j),s =

1, . . . ,m, j = m+3, ...,k of a projective shape due to Goodall and Mardia (1999)

[127] determine each other; the relations between the two representations of a

projective shape are :

pπ
j = [ι1 j : ... : ιm j : 1], (10.4)
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showing that these invariants are locally the affine coordinates of (pπ
j , j = m +

3, ...,k) whenever the last homogeneous coordinate of each of the pπ
j
′
s is not

zero.

In planar image analysis data, the landmarks are often pictured sitting on an

almost flat surface. In such a situation or when one takes into account only the

small errors in data collection, there is little variability, which makes it appro-

priate to regard such observations as coming from a probability distributions

of small flat support on (RP2)k−4

In this section, we therefore confine ourselves only to probability measures

Q with a small flat support on PΣ k
2. Since any flat metric is locally isometric

to an Euclidean metric, we consider a metric on PΣ k
2 which is Euclidean in a

neighborhood of the support of our distribution. In the invariant coordinates on

the support of Q, and in particular if x1,x2 are two observations from Q with

xr = ([ιr,1 j : ιr,2 j : 1]) j=4,...,k, (10.5)

we may consider the distance

d2(x1,x2) =
k

∑
j=4

2

∑
s=1

(ι1,s j − ι2,s j)
2. (10.6)

In this case, if we use the invariant representation for random configurations of

k landmarks, the intrinsic sample means and total sample variance are ordinary

sample means and total sample variances , for which classical large sample

and nonparametric bootstrap theory can be used. This approach requires a less

computational complexity than for extrinsic means .

Assume X1, ...,Xn are i.i.d.r.v.’s with a common distribution Q of small flat

support on PΣ k
m. For each r,r = 1, ...,n, assume Xr has the invariant representa-

tion

Xr = (pπ
r, j), j = m + 3, ...,k, (10.7)

where

pπ
r, j = [ιr,1 j : ιr,2 j : 1]. (10.8)

Then the intrinsic sample mean Xn,I is given in invariant representation by

Xn,g = (pπ
j ), j = 4, . . . ,k, (10.9)

where

pπ
j = [ι.,1 j : ι.,2 j : 1]. (10.10)

Patrangenaru (1999) [267] showed that if an external observer travels in 3D and

records images of a configuration of points with with an ideal pinhole camera,

then, with respect to a projective frame of presumably marked coplanar points,

the recorded configuration is planar if and only if the projective coordinates are
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independent of the position of the observer. In the basic case, we assume m = 2

and k = m + 3 = 5. The corresponding hypothesis testing problem is

H0 : tΣg = 0 vs. H1 : tΣg 6= 0, (10.11)

where tΣg is the intrinsic total variance of a probability measure Q with small

flat support on PΣ5
2.

Note that PΣ5
2 is diffeomorphic to RP2 and, in invariant representation, the

random variable associated with Q is

X = [ι,1 : ι,2 : 1]. (10.12)

In this case, the intrinsic mean, and intrinsic total variance of X are respectively

the mean and total variance of the random vector ι = (ι,1, ι,2)T and if X1, . . . ,Xn

are i.i.d.r.v.’s the common distribution Q, and we similarly associate with Xr

the random vector ιr = (ιr,1, ιr,2)T , we have

Xn,I = ιn = (ι ,1ι ,2) (10.13)

and

tΣ̂I,n = n−1
2

∑
j=1

n

∑
r=1

(ιr, j − ι, j)
2. (10.14)

The value of the Σ̂ (V )4 given in Theorem 5.2.5, is in this case given by

Σ̂ (V )4 = n−1
m

∑
i, j=1

n

∑
r=1

(ιr,i − ι,i)
2(ιr, j − ι, j)

2. (10.15)

As a consequence of Corollary 5.2.5, we obtain the following result.

THEOREM 10.1.1. Assume x1, ...,xn is a large random sample from a prob-

ability distribution with small flat support on PΣ 5
2. Then we reject the null

hypothesis in equation 10.11 at level α if

tΣ̂I,n > (S(Σ̂(V )4)
1/2

)z α
2
. (10.16)

Indeed, from Corollary 5.2.5, it follows that a 100(1−α)% symmetric large

sample confidence interval for tΣg is given by

(tΣ̂i,n − (S(Σ̂(V )4)
1/2

)z α
2
, tΣ̂i,n + (S(Σ̂(V )4)

1/2
)z α

2
) (10.17)

and the condition in the theorem says that 0 is not in this confidence region.
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10.2 Asymptotic Distributions of VW-Means on Real Projective Spaces

In this section, we focus on the asymptotic distribution of sample means in

axial data analysis and planar shape analysis.

The axial space is the (N−1) dimensional real projective space M =RPN−1,

which can be identified with the sphere SN−1 = {x ∈RN |‖x‖2 = 1} with antipo-

dal points identified (see e.g., Mardia and Jupp (2000) [230]). If [x] = {x,−x}∈
RPN−1,‖x‖ = 1, the tangent space at [x] can be described as

T[x]RPN−1 = {([x],v),v ∈ RN |vtx = 0}. (10.18)

We consider here the general situation when the distribution on RPN−1 may

not be concentrated. Note that for N odd, RPN−1 cannot be embedded in RN ,

since for any embedding of RPN−1 in Rk with N odd, the first Stiefel–Whitney

class of the normal bundle is not zero (Milnor and Stasheff (1974) [243], pp.

51).

The Veronese–Whitney (VW) embedding is defined for arbitrary N by the

formula

j([x]) = xxt ,‖x‖ = 1. (10.19)

The embedding j maps RPN−1 into a 1
2 N(N + 1)− 1 dimensional Euclidean

hypersphere in the space S(N,R) of real N ×N symmetric matrices, where the

Euclidean distance d0 between two symmetric matrices is

d0(A,B) = Tr((A−B)2).

This embedding, which was used by Watson (1983) [334], is preferred over

other embeddings in Euclidean spaces because it is equivariant (see Kent

(1992) [181]). This means that the special orthogonal group SO(N) of orthogo-

nal matrices with determinant +1 acts as a group of isometries on RPN−1 with

the metric of constant positive curvature. It also acts on the left on S+(N,R),

the set of nonnegative definite symmetric matrices with real coefficients, by

T ·A = TAT t . Also, j(T · [x]) = T · j([x])∀T ∈ SO(N),∀[x] ∈ RPN−1.
Note that j(RPN−1) is the set of all nonnegative definite matrices in S(N,R)

of rank one and trace one. The following result (see Patrangenaru (1998)

[266]), based on the geometry of real quadratic forms, is left to the reader

as a useful exercise.

PROPOSITION 10.2.1. (Patrangenaru (1998)) (a) The set F of the VW fo-

cal points of j(RPN−1) in S+(N,R) is the set of matrices in S+(N,R) whose

largest eigenvalues are of multiplicity at least 2. (b) If j is the VW embedding

in (10.19), the projection Pj : S+(N,R)\F → j(RPN−1) assigns to each non-

negative definite symmetric matrix A with a largest eigenvalue of multiplicity

one, the matrix j([m]), where m(‖m‖ = 1) is an eigenvector of A corresponding

to its largest eigenvalue.

The following result of Prentice (1984) [282] is also needed in the sequel.
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PROPOSITION 10.2.2. (Prentice (1984) [282]) Assume [Xr], ‖Xr‖ = 1,

r = 1, ...,n is a random sample from a j-nonfocal, probability measure Q on

RPN−1. Then the sample (VW-)extrinsic covariance matrix S j,E is given by

S j,Eab
= n−1(ηN −ηa)−1(ηN −ηb)−1 ∑

r

(ma ·Xr)(mb ·Xr)(m ·Xr)
2, (10.20)

where ηa,a = 1, ...,N, are eigenvalues of K := n−1 ∑n
r=1 XrX

t
r in increasing order

and ma,a = 1, ...,N, are corresponding linearly independent unit eigenvectors.

Here we give a proof of formula (10.20), based on the equivariance of j, to

prepare the reader for a similar but more complicated formula of the analogous

estimator given later for CPk−2.

Since the map j is equivariant, w.l.o.g. one may assume that j(XE ) =

Pj( j(X)) is a diagonal matrix, XE = [mN] = [eN] and the other unit eigen-

vectors of j(X) = D are ma = ea,∀a = 1, ...,N − 1. We evaluate dDPj. Based

on this description of T[x]RPN−1, one can select in TPj (D) j(RPN−1) the or-

thonormal frame ea(Pj(D)) = d[eN ] j(ea). Note that S(N,R) has the orthoba-

sis Fb
a ,b ≤ a where, for a < b, the matrix Fb

a has all entries zero except for

those in the positions (a,b), (b,a) that are equal to 2−
1
2 ; also Fa

a = j([ea]).

A straightforward computation shows that if ηa,a = 1, ...,N, are the eigen-

values of D in their increasing order, then dDPj(F
b
a ) = 0,∀b ≤ a < N and

dDPj(F
N
a ) = (ηN −ηa)−1ea(Pj(D)); from this equation it follows that, if j(X) is

a diagonal matrix D then the entry S j,Eab
is given by

S j,Eab
= n−1(ηN −ηa)−1(ηN −ηb)−1 ∑

r

Xa
r Xb

r (XN
r )2. (10.21)

Taking j(X) to be a diagonal matrix and ma = ea formula (10.20) follows.

Note that µE, j = [νN], where (νa),a = 1, ...,N are unit eigenvectors of E(XX t) =

E( j(Q)) corresponding to eigenvalues in their increasing order. Let T ([ν]) =

n‖S j,E
− 1

2 tan(Pj( j(X))−Pj(E( j(Q))))‖2 be the statistic given by (5.50).

We can now derive the following theorem as a special case of Theorem 5.5.1

(a).

THEOREM 10.2.1. Assume j is the Veronese–Whitney embedding of RPN−1

and {[Xr],‖Xr‖ = 1,r = 1, ...,n} is a random sample from a j-nonfocal prob-

ability measure Q on RPN−1 that has a nondegenerate j-extrinsic variance.

Then T ([ν]) is given by

T ([ν]) = nνt [(νa)a=1,...,N−1]S j,E
−1[(νa)a=1,...,N−1]tν, (10.22)

and, asymptotically, T ([ν]) has a χ2
N−1 distribution.

Proof. Since j is an isometric embedding and the tangent space T[νN ]RPN−1

has the orthobasis ν1, ...,νN−1, if we select the first elements of the

adapted moving frame in Theorem 5.5.1 to be ea(Pj(νE, j) = (d[νN ] j)(νa)
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then the a− th tangential component of Pj( j(X))−Pj(ν) w.r.t. this basis of

TPj(E( j(Q))) j(RPN−1) equals up to a sign the a-th component of m− νN w.r.t.

the orthobasis ν1, ...,νN−1 in T[νN ]RRN−1, namely νt
am. The result follows now

from Theorem 5.5.1(a), �.

REMARK 10.2.1. If we apply Theorem 5.5.1(b) to the embedding j, we ob-

tain a similar theorem due to Fisher, Hall, Jing and Wood (1996)[116], where

T ([ν]) is replaced by T ([m]).

10.3 Asymptotic Distributions of VW-Extrinsic Means of Complex

Projective Spaces

Similar asymptotic results can be obtained for the large sample distribution of

Procrustes means of planar shapes , as we discuss below. From Theorem 3.5.1

in Chapter 3, recall that the planar shape space M = Σ k
2 of an ordered set of k

points in C, at least two of which are distinct, can be identified in different ways

with the complex projective space CPk−2 (see, for example, Kendall (1984)

[177], Bhattacharya and Patrangenaru (2003) [42]).

Here we regard CPk−2 as a set of equivalence classes CPk−2 = S2k−3/S1,
where S2k−3 is the space of complex vectors in Ck−1 of norm 1, and the equiv-

alence relation on S2k−3 is by multiplication with scalars in S1 (complex num-

bers of modulus 1). A complex vector z = (z1,z2, ...,zk−1) of norm 1 corre-

sponding to a given configuration of k landmarks, with the identification de-

scribed in Bhattacharya and Patrangenaru (2003) [42], can be displayed in the

Euclidean plane (complex line) with the superscripts as labels. If, in addition,

r is the largest superscript such that zr 6= 0 then we may assume that zr > 0. Us-

ing this representative of the projective point [z] we obtain a unique graphical

representation of [z], which will be called the spherical representation.

The Veronese–Whitney (or simply VW) embedding of CPk−2 in the space

of hermitian matrices S(k− 1,C) given in this case by j([z]) = zz∗ where, if z

is considered as a column vector, z∗ is the adjoint of z, i.e., the conjugate of

the transpose of z. The Euclidean distance in the space of hermitian matrices

S(k− 1,C) is d2
0(A,B) = Tr((A−B)(A−B)∗) = Tr((A−B)2).

Kendall (1984) [177] showed that the Riemannian metric induced on

j(CPk−2) by d0 is a metric of constant holomorphic curvature. The associ-

ated Riemannian distance is known as the Kendall distance and the full group

of isometries on CPk−2 with the Kendall distance is isomorphic to the special

unitary group SU(k−1) of all (k−1)× (k−1) complex matrices A with A∗A = I

and det(A) = 1.

A random variable X = [Z],‖Z‖ = 1, valued in CPk−2 is j-nonfocal if the

highest eigenvalue of E[ZZ∗] is simple, and then the extrinsic mean of X

is µ j,E = [ν], where ν ∈ Ck−1,‖ν‖ = 1, is an eigenvector corresponding to

this eigenvalue (see Bhattacharya and Patrangenaru (2003) [42]). The extrin-

sic sample mean [z] j,E of a random sample [zr] = [(z1
r , . . . ,z

k−1
r )],‖zr‖ = 1,r =
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1, . . . ,n, from such a nonfocal distribution exists with probability converging

to 1 as n →∞, and is the same as that given by

[z] j,E = [m], (10.23)

where m is a highest unit eigenvector of

K := n−1
n

∑
r=1

zrz∗r . (10.24)

This means that [z] j,E is the full Procrustes estimate for parametric families

such as Dryden–Mardia distributions or complex Bingham distributions for

planar shapes (see Kent (1992 [181],(1994 [182])) . For this reason, µ j,E = [m]

will be called the Procrustes mean of Q.

PROPOSITION 10.3.1. Assume Xr = [Zr],‖Zr‖ = 1,r = 1, ...,n, is a random

sample from a j-nonfocal probability measure Q with a nondegenerate j-

extrinsic covariance matrix on CPk−2. Then the j-extrinsic sample covariance

matrix S j,E as a complex matrix has the entries

S j,Eab
=

n−1(ηk−1 −ηa)−1(ηk−1 −ηb)−1
n

∑
r=1

(ma ·Zr)(mb ·Zr)∗|mk−1 ·Zr|2. (10.25)

The proof is similar to that given for Proposition 10.2.2 and is based on

the equivariance of the VW map j, w.r.t. the actions of SU(k− 1) on CPk−2

and on the set S+(k− 1,C) of nonnegative semidefinite self adjoint (k− 1) by

(k − 1) complex matrices (see Bhattacharya and Patrangenaru (2003) [42]).

Without loss of generality we may assume that K in (10.24) is given by K =

diag{ηa}a=1,...,k−1 and the largest eigenvalue of K is a simple root of the char-

acteristic polynomial over C, with mk−1 = ek−1 as a corresponding complex

eigenvector of norm 1. The eigenvectors over R corresponding to the smaller

eigenvalues are given by ma = ea,m
′
a = iea,a = 1, ...,k−2, and yield an orthoba-

sis for T[mk−1] j(CPk−2). For any z∈ S2k−1 which is orthogonal to mk−1 in Ck−1

w.r.t. the real scalar product, we define the path γz(t) = [costmk−1 +sin tz]. Then

TPj(K) j(CPk−2) is generated by the vectors tangent to such paths γz(t), at t = 0.

Such a vector, as a matrix in S(k− 1,C), has the form zm∗
k−1 + mk−1z∗. In par-

ticular, since the eigenvectors of K are orthogonal w.r.t. the complex scalar

product, one may take z = ma, a = 1, ...,k− 2, or z = ima, a = 1, ...,k− 2, and

thus get an orthobasis in TPj (K) j(M). When we norm these vectors to have unit

lengths we obtain the orthonormal frame

ea(Pj(K)) = d[mk−1] j(ma) = 2−
1
2 (mam∗

k−1 + mk−1m∗
a ),

e′a(Pj(K)) = d[mk−1] j(ima) = i2−
1
2 (mam∗

k−1 −mk−1m∗
a ).
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Since the map j is equivariant we may assume that K is diagonal. In this case

ma = ea, ea(Pj(K)) = 2−
1
2 Ek−1

a and e′a(Pj(K)) = 2−
1
2 Fk−1

a where Eb
a has all en-

tries zero except for those in the positions (a,b) and (b,a) that are equal to 1,

and Fb
a is a matrix with all entries zero except for those in the positions (a,b)

and (b,a) that are equal to i, respectively −i. Just as in the real case, a straight-

forward computation shows that dKPj(E
b
a ) = dKPj(F

b
a ) = 0,∀a ≤ b < k− 1 and

dKPj(E
k−1
a ) = (ηk−1−ηa)−1ea(Pj(K)), dKPj(F

k−1
a ) = (ηk−1−ηa)−1e′a(Pj(K)).

We evaluate the extrinsic sample covariance matrix S j,E given in (3.8) using

the real scalar product in S(k− 1,C), namely, U ·V = ReTr(UV∗). Note that

dKPj(E
k−1
b ) · ea(Pj(K)) = (ηk−1 −ηa)−1δba, dKPj(E

k−1
b ) · e′a(Pj(K)) = 0

and

dKPj(F
k−1
b ) · e′a(Pj(K))t = (ηk−1 −ηa)−1δba, dKPj(F

k−1
b ) · ea(Pj(K)) = 0.

Thus we may regard S j,E as a complex matrix noting that in this case we get

S j,Eab
= n−1(ηk−1 −ηa)−1(ηk−1 −ηb)−1

n

∑
r=1

(ea ·Zr)(eb ·Zr)
∗|ek−1 ·Zr|2,

(10.26)

thus proving formula (10.25) when K is diagonal. The general case follows by

equivariance.

We now consider the statistic

T ((X)E ,µE ) = n‖S j,E
− 1

2 tan(Pj( j(X))−Pj(µE ))‖2

given in (5.49) in the present context of random variables valued in complex

projective spaces to get

THEOREM 10.3.1. Let Xr = [Zr], ‖Zr‖ = 1, r = 1, ...,n, be a random sample

from a Veronese-nonfocal probability measure Q on CPk−2. Then the quantity

(5.50) is given by :

T ([m], [ν]) = n[(m ·νa)a=1,...,k−2]S j,E
−1[(m ·νa)a=1,...,k−2]∗ (10.27)

and asymptotically T ([m], [ν]) has a χ2
2k−4 distribution.

Proof. The tangent space T[νk−1]CPk−2 has the orthobasis specified by

ν1, ...,νk−2,ν
∗
1 , ...,ν

∗
k−2. Note that since j is an isometric embedding, we may

select the first elements of the adapted moving frame in Corollary 5.5.1 to be

ea(Pj(µ)) = (d[νk−1] j)(νa), followed by e∗a (Pj(µ)) = (d[νk−1] j)(ν∗
a ). Then the a−

th tangential component of Pj( j(X))−Pj(µ) w.r.t. this basis of TPj(µ) j(CPk−2)

equals up to a sign the component of m−νk−1 w.r.t. the orthobasis ν1, ...,νk−2
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in T[νk−1]CPk−2, which is νt
am; and the a∗−th tangential components are given

by ν∗
a

tm, and together (in complex multiplication) they yield the complex vec-

tor [(m · νa)a=1,...,k−2]. The claim follows from this and formula (10.20) as a

particular case of Corollary 5.5.1 �

We may derive from this the following large sample confidence regions:

COROLLARY 10.3.1. Assume Xr = [Zr], ‖Zr‖ = 1, r = 1, ...,n, is a ran-

dom sample from a j-nonfocal, probability measure Q on CPk−2. An asymp-

totic (1−α)-confidence region for µ
j

E (Q) = [ν], is given by Rα (X) = {[ν] :

T ([m], [ν]) ≤ χ2
2k−4,α}, where T ([m], [ν]) is given in (5.4.9). If Q has

a nonzero-absolutely continuous component w.r.t. the volume measure on

CPk−2, then the coverage error of Rα (X) is of order O(n−1).

For small samples the coverage error could be quite large, and a bootstrap

analogue of Theorem 10.3.1 is preferable.

THEOREM 10.3.2. Let j be the VW embedding of CPk−2, and let Xr = [Zr],

‖Zr‖ = 1, r = 1, ...,n be a random sample from a j–nonfocal distribution Q on

CPk−2, having a nonzero absolutely continuous component w.r.t. the volume

measure on CPk−2. Assume in addition that the restriction of the covariance

matrix of j(Q) to T[ν] j(CPk−2) is nondegenerate. Let µE (Q) = [ν] be the extrin-

sic mean of Q. For a resample {Z∗
r }r=1,...,n from the sample consider the matrix

K∗ := n−1 ∑Z∗
r Z∗∗

r . Let (η∗
a )a=1,...,k−1 be the eigenvalues of K∗ in their increas-

ing order, and let (m∗
a )a=1,...,k−1 be the corresponding unit complex eigenvec-

tors. Let S∗j,E
∗ be the matrix obtained from S j,E by substituting all the entries

with ∗–entries. Then the bootstrap distribution function of

T ([m]∗, [m]) := n[(m∗
k−1 ·m∗

a )a=1,...,k−2]S∗j,E
∗
)−1[(mk−1 ·m∗

a )a=1,...,k−2]∗

approximates the true distribution function of T ([m], [ν]) given in Theo-

rem 10.3.1 with an error of order Op(n−2).

REMARK 10.3.1. For distributions that are reasonably concentrated one may

determine a non-pivotal bootstrap confidence region using Corollary 5.5.1(a).

The chart used here features affine coordinates in CPk−2. Recall that the

complex space Ck−2 can be embedded in CPk−2 preserving collinearity.

Such a standard affine embedding , missing only a hyperplane at infinity, is

(z1, . . . ,zk−2) → [z1 : ... : zk−1 : 1].

This leads to the notion of affine coordinates of a point

p = [z1 : ... : zm : zk−1],zk−1 6= 0,

to be defined as

(w1,w2, ...,wk−2) =

(
z1

zk−1
, ...,

zk−2

zk−1

)
.

To simplify the notation the simultaneous confidence intervals used in the next
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section, can be expressed in terms of simultaneous complex confidence inter-

vals. If z = x + iy,w = u + iv,x < u,y < v then we define the complex interval

(z,w) = {c = a + ib|a ∈ (x,u),b ∈ (y,v)}.

10.4 Nonparametric Estimation and Testing for the Projective Shape of

a Finite Configuration

In general, if f : M1 → M2 is a differentiable function defined from the mani-

fold M1 to the manifold M2 and x ∈ M1, the differential of the function f at

x is labeled Dx f . Assume J : M → RN is an embedding of the d dimensional

complete manifold M (Spivak (1979) [316]). Recall from Chapter 4 that the

extrinsic mean µJ of a J−nonfocal random object (r.o.) Y on M by

µJ =: J−1(PJ(µ)), (10.28)

where µ = E(J(Y )) is the mean vector of J(Y ) and PJ : F c → J(M) is the

ortho-projection on J(M) defined on the complement of the set F of focal

points of J(M) (see Chapter 4). Also recall that the extrinsic covariance ma-

trix of Y with respect to a local frame field y → ( f1(y), . . . , fd(y)) for which

(DyJ( f1(y)), . . . ,DyJ( fd(y))) are orthonormal vectors in RN was defined in

Bhattacharya and Patrangenaru (2005) [43].

If Σ is the covariance matrix of J(Y ) regarded as a random vector on RN ,
then PJ is differentiable at µ . In order to evaluate the differential DµPJ one

considers a special orthonormal frame field to ease the computations. A lo-

cal ortho-frame field (e1(p),e2(p), . . . ,eN(p)) defined on an open neighborhood

U ⊆ RN of PJ(M) is adapted to the embedding J if ∀y ∈ J−1(U), (er(J(y)) =

DyJ( fr(y)),r = 1, . . . ,d.

Let e1,e2, . . . ,eN be the canonical basis of RN and assume (e1(p),e2(p), . . . ,
ek(p)) is an adapted frame field around PJ(µ) = J(µJ), and let ΣE be the extrin-

sic covariance matrix of Y with respect to ( f1(µJ), ..., fd(µJ)), given by (5.45).

From Subsection 3.5.8, PΣ k
m is homeomorphic to M = (RPm)q,q = k−m−2

and since RPm, as a particular case of a Grassmann manifold, can be equivari-

antly embedded in the space S(m + 1) of (m + 1)× (m + 1) symmetric matrices

(see Dimitric (1996) [86]) via j : RPm → S(m + 1),

j([x]) = xxT ,xt x = 1. (10.29)

Mardia and Patrangenaru (2005) [233] considered the resulting equivariant em-

bedding of the projective shape space PΣ k
m :

J = jk : PΣ k
m = (RPm)q → (S(m + 1))q

defined by

jk([x1], ..., [xq]) = ( j([x1]), ..., j([xq])), (10.30)

where xs ∈Rm+1,xT
s xs = 1,∀s = 1, ...,q.

  



264 ASYMPTOTIC DISTRIBUTIONS ON PROJECTIVE SPACES

REMARK 10.4.1. The embedding jk in (10.30) yields the fastest known com-

putational algorithms in projective shape analysis. Basic axial statistics re-

lated to Watson’s method of moments such as the sample mean axis (Wat-

son(1983) [333]) and extrinsic sample covariance matrix (Prentice (1984)

[282]) can be expressed in terms of jm+3 = j.

A random projective shape Y of a k-ad in RPm is given in axial representa-

tion by the multivariate random axes

(Y 1, . . . ,Y q),Y s = [X s], (X s)T X s = 1,∀s = 1, . . . ,q = k−m− 2. (10.31)

From Bhattacharya and Patrangenaru (2003) [42] or Mardia and Patrangenaru

(2005) [233] it follows that in this representation, the extrinsic mean pro-

jective shape of (Y 1, . . . ,Y q) exists if ∀s = 1, . . . ,q, the largest eigenvalue of

E(X s(X s)T ) is simple. In this case µ jk is given by

µ jk = ([γ1(m + 1)], . . . , [γq(m + 1)]) (10.32)

where λs(a) and γs(a),a = 1, . . . ,m + 1 are the eigenvalues in increasing order

and the corresponding unit eigenvector of E(X s(X s)T ).
If Yr,r = 1, . . . ,n are i.i.d.r.o.’s (independent identically distributed random

objects) from a population of projective shapes (in its multi-axial representa-

tion), for which the mean shape µ jk exists, from a general consistency theorem

for extrinsic means on manifolds in Bhattacharya and Patrangenaru (2003) [42]

it follows that the extrinsic sample mean [Y ] jk,n is a strongly consistent estima-

tor of µ jk . In the multivariate axial representation

Yr = ([X1
r ], . . . , [Xq

r ]), (X s
r )T X s

r = 1;s = 1, ...,q. (10.33)

Let Js be the random symmetric matrix given by

Js = n−1Σn
r=1X s

r (X s
r )T , s = 1, . . . ,q, (10.34)

and let ds(a) and gs(a) be the eigenvalues in increasing order and the corre-

sponding unit eigenvector of Js, a = 1, . . . ,m+1. Then the sample mean projec-

tive shape in its multi-axial representation is given by

Y jk,n = ([g1(m + 1)], . . . , [gq(m + 1)]). (10.35)

REMARK 10.4.2. Some of the results in this section can be found without

a proof in Mardia and Patrangenaru (2005) [233]. Their proofs are given in

Patrangenaru et al. (2010) [272], and for completeness we are giving them

below as well.

If a is a positive integer, 1,a is the set of indices from 1 to a. To determine

the extrinsic covariance matrix ΣE of (10.31), we note that the vectors

f(s,a) = (0, . . . ,0,γs(a),0, . . . ,0), (10.36)
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with the only nonzero term in position s, s ∈ 1,q, a ∈ 1,m yielding a basis

in the tangent space at the extrinsic mean Tµ jk
(RPm)q, that is orthonormal

with respect to the scalar product induced by the embedding jk. The vectors

e(s,a),∀s ∈ 1,q,∀a ∈ 1,m defined as follows :

e(s,a) =: Dµ jk
jk( f(s,a)). (10.37)

form an orthobasis of Tjk(µ jk
)(RPm)q. We complete this orthobasis to an or-

thobasis of q-tuples of matrices (ei)i∈I for (S(m + 1))q, that is indexed by the

set I, the first indices of which are the pairs (s,a),s = 1, . . . ,q;a = 1, . . . ,m in

their lexicographic order.

Let Eb
a be the (m + 1) × (m + 1) matrix with all entries zero, except for

an entry 1 in the position (a,b). The standard basis of S(m + 1) is given

by eb
a = Eb

a + Ea
b ,1 ≤ a ≤ b ≤ m + 1. For each s = 1, ...,q, the vector (se

b
a) =

(0m+1, ...,0m+1,e
b
a,0m+1, ...,0m+1) has all the components zero matrices 0m+1 ∈

S(m + 1), except for the s-th component, which is the matrix eb
a of the standard

basis of S(m + 1,R); the vectors se
b
a,s = 1, . . . ,q,1 ≤ a ≤ b ≤ m + 1 listed in the

lexicographic order of their indices (s,a,b) give a basis of S(m + 1)q.
Let Σ be the covariance matrix of jk(Y 1, . . . ,Y q) regarded as a random vector

in (S(m+1))q, with respect to this standard basis, and let P =: Pjk : (S(m+1))q →
jk((RPm)q) be the projection on jk((RPm)q). From (5.45) it follows that the

extrinsic covariance matrix of (Y 1, . . . ,Y q) with respect to the basis (10.36) of

Tµ jk
(RPm)q is given by

ΣE =
[
e(s,a)(P(µ)) ·DµP(re

b
a)
]

(s=1,...,q),(a=1,...,m)
·Σ

·
[
e(s,a)(P(µ)) ·DµP(re

b
a)
]T

(s=1,...,q),(a=1,...,m)
. (10.38)

Assume Y1, . . . ,Yn are i.i.d.r.o.’s from a jk-nonfocal probability measure on

(RPm)q and µ jk in (10.32) is the extrinsic mean of Y1.

PROPOSITION 10.4.1. In the case of the VW embedding j = jk, the sam-

ple extrinsic covariance matrix estimator S jk,E,n in (5.48) is given by the

(mq) × (mq) symmetric matrix S j,E,n, with the entries in pairs of indices

(s,a),s = 1, . . . ,q;a = 1, . . . ,m, in their lexicographic order given by

S j,E,n(s,a),(t,b)
= n−1(ds(m + 1)− ds(a))−1(dt(m + 1)− dt(b))−1 ·

·
n

∑
r=1

(gs(a)T X s
r )(gt(b)T X t

r )(gs(m + 1)T X s
r )(gt(m + 1)T X t

r ). (10.39)

The proof of Proposition 10.4.1, based on the equivariance of the VW map

jk and similar to that given for Proposition 10.2.2, is left to the reader.

From Chapter 5, it follows that S jk,E,n is a strongly consistent estimator of

  



266 ASYMPTOTIC DISTRIBUTIONS ON PROJECTIVE SPACES

the population extrinsic covariance matrix in (10.38). In preparation for an

asymptotic distribution of Y jk ,n we set

Ds = (gs(1) . . .gs(m)) ∈M(m + 1,m;R),s = 1, . . . ,q. (10.40)

If µ = ([γ1], . . . , [γq]), where γs ∈ Rm+1,γT
s γs = 1, for s = 1, . . . ,q, we define a

Hotelling’s T 2 type-statistic

T (Y jk,n; µ) = n(γT
1 D1, . . . ,γ

T
q Dq)S j,E,n

−1(γT
1 D1, . . . ,γ

T
q Dq)T . (10.41)

THEOREM 10.4.1. Assume (Yr)r=1,...,n are i.i.d.r.o.’s on (RPm)q, and Y1 is

jk-nonfocal, with ΣE > 0. Let λs(a) and γs(a) be the eigenvalues in increasing

order and corresponding unit eigenvectors of E[Xa
1 (Xa

1 )T ]. If λs(1) > 0, for s =

1, . . . ,q, then T (Y jk ,n; µ jk ) converges weakly to χ2
mq.

If Y1 is a jk-nonfocal population on (RPm)q, since (RPm)q is compact, it

follows that jk(Y1) has finite moments of sufficiently high order. According

to Bhattacharya and Ghosh (1978) [38], this along with an assumption of a

nonzero absolutely continuous component, suffices to ensure an Edgeworth ex-

pansion up to order O(n−2) of the pivotal statistic T (Y jk ,n; µ jk ), and implicitly

the bootstrap approximation of this statistic.

COROLLARY 10.4.1. Let Yr = ([X1
r ], . . . , [Xq

r ]),XT
st Xst = 1,s = 1, . . .q,r =

1, . . . ,n, be i.i.d.r.o.’s from a jk-nonfocal distribution on (RPm)q which has a

nonzero absolutely continuous component, and with ΣE > 0. For a random

resample with repetition (Y∗
1 , . . . ,Y

∗
n ) from (Y1, . . . ,Yn), consider the eigenval-

ues of 1
n ∑n

r=1 X∗
rsX

∗T
rs in increasing order and corresponding unit eigenvectors

d∗
s (a) and g∗s (a),a = 1, . . . ,m+1. Let S j,E,n

∗ be the matrix obtained from Gn, by

substituting all the entries with ∗−entries. Then, from Section 2.13, the boot-

strap distribution of the statistic

T (Y
∗
jk

;Y jk ) = n(g1(m + 1)T D∗
1 , . . . ,gq(m + 1)TD∗

q ) S j,E,n
∗−1

(g1(m + 1)T D∗
1 , . . . ,gq(m + 1)T D∗

q )T (10.42)

approximates the true distribution of T (Y jk ; µ jk ) given by (10.41), with an error

of order 0p(n−2).

REMARK 10.4.3. The above corollary can be also found in Mardia and

Patrangenaru (2005) [233]. Patrangenaru et al.(2010) [272]) noted that the

condition ΣE > 0 is missing from the corresponding result in Mardia and Pa-

trangenaru (2005) [233] though, as well as in their Theorem 4.1.

Theorem 10.4.1 and Corollary 10.4.1 are useful in estimation and testing for

mean projective shapes. From Theorem 10.4.1 we derive large sample confi-

dence region for µ jk .

COROLLARY 10.4.2. Assume (Yr)r=1,...,n are i.i.d.r.o.’s from a jk−nonfocal
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probability distribution on (RPm)q, and ΣE > 0. An asymptotic (1 − α)-

confidence region for µ jk = [ν] is given by Rα(Y) = {[ν] : T (Y jk ,n; [ν]) ≤
χ2

mq,α}, where T ([Y jk , [ν]) is given in (10.41). If the probability measure of

Y1 has a nonzero-absolutely continuous component w.r.t. the volume measure

on (RPm)q, then the coverage error of Rα (Y) is of order O(n−1).

For small samples the coverage error could be quite large, and the bootstrap

analogue in Corollary 10.4.1 is preferable. Consider for example the one sam-

ple testing problem for mean projective shapes:

H0 : µ jk = µ0 vs. H1 : µ jk 6= µ0. (10.43)

COROLLARY 10.4.3. The large sample p-value for the testing problem

(10.43) is p = Pr(T > T (Y jk,n; µ0)), where T (Y jk,n; µ) is given by (10.41).

In the small sample case, problem (10.43) can be answered based on Corol-

lary 10.4.1 to obtain the following 100(1−α)% bootstrap confidence region

for µ jk :

COROLLARY 10.4.4. Under the hypotheses of Corollary 10.4.1, The corre-

sponding 100(1−α)% confidence region for µ jk is

C∗
n,α := j−1

k (U∗
n,α) (10.44)

with U∗
n,α given by

U∗
n,α = {µ ∈ jk((RPm)q) : T (y jk,n

; µ) ≤ c∗1−α}, (10.45)

where c∗1−α is the upper 100(1−α)% point of the values of T (Y
∗
jk

;Y jk ) given

by (10.42). The region given by (10.44)–(10.45) has coverage error Op(n−2).

For the one sample hypothesis testing problem for mean projective shapes

10.43, if Σ jk ,E,n is singular and all the marginal axial distributions have positive

definite extrinsic covariance matrices, one may use simultaneous confidence el-

lipsoids to estimate µ jk . Assume (Yr)r=1,...,n are i.i.d.r.o.’s from a jk−nonfocal

probability distribution on (RPm)q. For each s = 1, . . . ,q let Σ jk,s be the extrin-

sic covariance matrix of Y s
1 , and let Y

s
jk ,n

and S jk,s,n be the extrinsic sample

mean and the extrinsic sample covariance matrix of the s-th marginal axial and

the probability measure of Y s
1 has a nonzero-absolutely continuous component

w.r.t. the volume measure on RPm. For s = 1, . . . ,q and for [γs]∈RPm,γT
s γs = 1,

we consider the statistics:

Ts = Ts(Y
s

jk ,n
, [γs]) = nγT DsS jk,E,n

−1DT
s γ (10.46)

and the corresponding bootstrap distributions

T ∗
s = Ts(Y

s∗
j ,Y

s
j,n) = ngs(m + 1)T D∗

s S jk,s,n
∗−1D∗T

s gs(m + 1). (10.47)

Since by Theorem 10.4.1 Ts has asymptotically a χ2
m distribution, we obtain

the following
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COROLLARY 10.4.5. For s = 1, . . . ,q let c∗
s,1−β be the upper 100(1−β )%

point of the values of T ∗
s given by (10.47). We set

C∗
s,n,β := j−1

k (U∗
s,n,β ) (10.48)

where

U∗
s,n,β = {µ ∈ RPm : Ts(y

s
j,n; µ) ≤ c∗s,1−β}. (10.49)

Then

R∗
n,α = ∩q

s=1C∗
s,n, α

q
(10.50)

with C∗
s,n,β ,U

∗
s,n,β given by (10.48)-(10.49) is a region of approximately at least

100(1−α)% confidence for µ jk . The coverage error is of order Op(n−2).

REMARK 10.4.4. If Σ jk,E,n is singular one may construct confidence regions

for µ jk using nonpivotal bootstrap.

10.5 Two-Sample Tests for Means for Projective Shapes

We consider the problem of testing for the equality of the Fréchet means of two

populations of projective shapes. We will assume that Q1,Q2 are probability

measures on PΣ k
m, and µF (Qi) = µi exists, for i = 1,2. We treat separately, the

cases m = 1 and m > 1,m 6= 3. Recall that q = m− k− 2.
If m = 1, we assume in addition that there is a point p∈ PΣ k

1 = (S1)q such that

for i = 1,2, the support of Qi and µi = µI(Qi) are contained in the complement

of the cut locus of p. We identify the tangent space Tp(S1)q with Rq and use

the formula (3.70) in Chapter 3 for the exponential map at p, and set

νi = Exp−1
p (µa),a = 1,2. (10.51)

If (Xa,ra),a = 1, . . . ,na;a = 1,2, are random samples from Qa, then we can ob-

tain corresponding (Ua,ra),a = 1, . . . ,na, as a random sample from a multivariate

distribution on Rq of mean νa. Assume that n1 − k + 3 and n2 − k + 3 are large

enough. A large sample χ2 confidence region can be determined using standard

multivariate methods (see (2.69)) : a 100(1−α)% confidence hyper-ellipsoid

for ν1 −ν2 is given by

[Ū1 −Ū2 − (ν1 −ν2)]T [
1

n1
S1 +

1

n2
S2]−1[Ū1 −Ū2 − (ν1 −ν2)] ≤ χ2

k−3(α).

(10.52)

Here we used the fact that PΣ k
1 = (S1)k−3 has a Riemannian structure of a lo-

cally flat torus, therefore, if the two population means are not too far apart,

which is the case when a two sample test for means is necessary, the restriction

of the confidence region for the “difference of intrinsic means” is indepen-

dent of the selection of the point p. Moreover, if the two samples are not large
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enough, one can use instead a bootstrap confidence region, by using nonpara-

metric bootstrap (see Section 2.13).

For m > 1, we compare VW means (for a definition of the VW-embedding,

see Subsection 3.5.8). Using the spherical representation, we reduce the prob-

lem to axial statistics. Since for b = 1,2, µb ∈ (RPm)q, we set in spherical rep-

resentation µb = (µb1, ...,µb,q). Without loss of generality, we may assume that

for each j, the angle between µ1, j and µ2, j are π
2

or less, and we consider the

unique rotation rm, j ∈ SO(m + 1), such that rm j(µ1 j) = µ2 j and the restriction of

rm, j to the orthocomplement of the plane determined by µ1, j and µ2, j in Rm+1

is the identity.

The equality µ1 = µ2 is equivalent to rm, j = Im+1, j = 1, ...,q where Im+1 is

an (m + 1)× (m + 1) identity matrix. Assume (X1,r)r=1,...,n1
, (X2,s)s=1,...,n2

are

random samples from Q1,Q2 respectively. A consistent estimator of the Lie

group valued random variable rm = (rm, j , j = 1, ...,q) is ρm = (ρm, j, j = 1, ...,q),

where for each j = 1, ...,q; ρm, j ∈ SO(m + 1) is the unique rotation defined as

above, that brings the extrinsic sample means (mean directions) in coincidence,

that is, superimposes X̄1, j,E onto X̄2, j,E .

A particular case of practical interest is when m = 2. In this case, we will

consider only the subcase k = 5, for which we give an application in the next

section. In this case, we test the equality r2 = I3 in SO(3). If R ∈ SO(3),R 6= I3,

let V1,V2,V3 be an orthogonal basis of R3, such that T (V3) = V3. If we set

H(T ) = [(V1 ·T (V1), (V1 ×T (V1))T )], then the map H : SO(3) −→RP3 is a well

defined diffeomorphism from SO(3) to the axial space RP3. Modulo the diffeo-

morphism H, the equality µ1 = µ2 amounts to H(r2) = [1 : 0 : 0 : 0]. The distribu-

tion of the resulting consistent estimator H(ρ2) of H(r2) is essentially given in

Beran & Fisher (1998) [18], Theorem 2.1). Assume neither n1 nor n2 is small

compared with n = n1 +n2. Let G(r) be the affine coordinates of H(r); if H(r) =

[H0(r) : H1(r) : H2(r) : H3(r)], then G(r) = (G1(r),G2(r),G3(r)), with Ga(r) =

Ha(r)/H0(r),a = 1,2,3. Using Equation (5.13) of Beran & Fisher (1998,

p.489) [18], it turns out that n1/2(ρ2 − r2) has a trivariate Gaussian distri-

bution and is independent of n. Then by Cramér’s delta method (see Fergu-

son (1996) [115], p.45, or Chapter 2), under the null hypothesis, it follows

that if there are two constants c1,c2, such that for b = 1,2, nb/n → cb, then

n1/2{G(ρ2)−G(r2)} has a trivariate Gaussian distribution which is indepen-

dent of n. Consequently, from Chapter 2, if one considers the resamples under

the empirical n1/2{G(ρ2
∗)−G(ρ2)}, by nonpivotal bootstrap, this distribution

will have asymptotically the same distribution as that of n
1
2 {G(ρ2)−G(r2)}.

10.5.1 A Lie Group Structure on the Manifold of 3D Projective Shapes of

Configurations Containing a Projective Frame

Note that, as shown in Crane and Patrangenaru [78] and Buibas et al. (2012)

[55], unlike in other dimensions, the projective shape manifold PΣ k
3 ,k ≥ 5,
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has a Lie group structure , derived from the quaternion multiplication. Recall

that if a real number x is identified with (0,0,0,x) ∈ R4, and if we label the

quadruples (1,0,0,0), (0,1,0,0), respectively (0,0,1,0) by
−→
i ,

−→
j , respectively−→

k , then the multiplication table given by

⊙ −→
i

−→
j

−→
k

−→
i -1

−→
k −−→

j
−→
j −−→

k -1
−→
i−→

k
−→
j −−→

i -1

where a⊙ b product of a on the first column with b on the top row, is listed

on the row of a and column of b, extends by linearity to a multiplication ⊙
of R4. Note that (R4,+,⊙) has a structure of a noncommutative field, the field

of quaternions, usually labeled by H. Note that if h,h′ ∈ H, then ‖h⊙ h′‖ =

‖h‖‖h′‖, and the three dimensional sphere inherits a group structure, the group

of quaternions of norm one.

Moreover, since RP3 is the quotient S3/x ∼−x

[x]⊙ [y] =: [x⊙ y], (10.53)

is a well defined Lie group operator on RP3, called the group of p-quaternions.

Note that if h = t + x
−→
i + y

−→
j + z

−→
k , its conjugate is h̄ = t − x

−→
i − y

−→
j − z

−→
k , and

the inverse of h is given by

h−1 = ‖h‖−2h̄, (10.54)

As shown in Section 3.5.8, as a manifold, PΣ k
3 is diffeomorphic with (RP3)q,

where q = k− 5. With this identification, PΣ k
3 ∼ (RP3)q inherits a Lie group

structure from the group structure p-quaternions RP3 with the multiplication

given by

([h1], . . . , [hq])⊙ ([h′1], . . . , [h′q]) := ([h1]⊙ [h′1], . . . , [hq]⊙ [h′q]) =

= ([h1 ⊙ h′1], . . . , [hq ⊙ h′q]). (10.55)

The identity element is given by

1(RP3)q = ([0 : 0 : 0 : 1], . . . , [0 : 0 : 0 : 1]), (10.56)

and given a point h = ([h1], . . . , [hq]) ∈ (RP3)q, from (10.54), its inverse is

h−1 = h = ([h̄1], . . . , [h̄q]).

10.5.2 Nonparametric Bootstrap Tests for VW Mean 3D Projective Shape

Change

Given two elements x,y in a Lie group (G,◦), we define the change c from x

to y by c = x−1 ◦ y. Similarly, following Section 6.4, given a (matched) pair of
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random objects X ,Y on a Lie group (G,◦) we define the change C from X to Y

by C = X−1 ◦Y. This allows us to transfer a two sample problem for means of

matched pairs on G, to a one sample problem for the mean change on G.
In particular, given (RP3)q, has a Lie group structure given by (10.55), and,

again, since from Section 3.5.8, PΣ k
3 is homeomorphic to M = (RP3)q,q = k−5,

we define the 3D projective shape change between matched pairs H1,H2 of

projective shapes, as the change from H1 to H2, in terms of the induced Lie

group structure on PΣ k
3 . Then, testing the existence of mean 3D projective

shape change Y from H1 to H2 is transferred to the hypothesis testing problem

H0 : µ jk = 1(RP3)q vs. H1 : µ jk 6= 1(RP3)q , (10.57)

where µ jk is the VW-mean of Y (certainly other Fréchet mean may be consid-

ered, but we prefer the VW-mean, for which necessary and sufficient condi-

tions of existence are known (see Section 10.4)). The explicit expression of the

identity element 1(RP3)q in (10.57) is given in (10.56).

Once the hypothesis testing problem 10.57 was set, we apply the Corollaries

10.4.5, 10.43 from Section 10.4 to 3D mean projective shapes.

Assume (H1,r,H2,r)r=1,...,n are i.i.d.r.o.’s from paired distributions on

(RP3)q, such that Y1 = H̄1,1H2,1 has a jk-nonfocal probability distribution on

(RP3)q. Testing the hypothesis 10.57 in the case m = 3, at level α, amounts

to finding a 1−α confidence region for µ jk given by Corollary 10.4.5, and, if

the sample is small and the extrinsic sample covariance matrix is degenerate,

checking if 1(RP3)q is in a 1−α confidence region, amounts to finding the upper
α
q

cutoffs for the bootstrap distributions of the test statistics T ∗
s ,s = 1, . . . ,k−5,

and checking if the values of Ts, for µ jk = 1(RP3)q are all in the corresponding

confidence intervals. That is

REMARK 10.5.1. For m = 3,s = 1, . . . ,q = k − 5 let c∗
s,1−β be the upper

100(1−β )% point of the values of T∗
s given by (10.47). We set

C∗
s,n,β := j−1(U∗

s,n,β ) (10.58)

where

U∗
s,n,β = {µs ∈ RP3 : Ts(Y

s
j,n; µs) ≤ c∗s,1−β}. (10.59)

Then

R∗
n,α =

q

∏
s=1

C∗
s,n, α

q
, (10.60)

with C∗
s,n,β ,U

∗
s,n,β given by (10.58)–(10.59), is a region of approximately at

least 100(1−α)% confidence for µ jk . Then we fail to reject at level α the

hypothesis that there is a nontrivial mean change in the 3D projective shapes

H1,H2 if 1(RP3)q ∈ R∗
n,α .

We consider now the case of a two sample test for VW mean projective
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shapes based on independent samples, using the general tests developed in

Section 10.4. Here M = G = (RP)q,δ = 1(RP3)q ,q = k− 5, and

ϕ([x1], . . . , [xq]) = (ϕm+1([x1]), . . . ,ϕm+1([xq])). (10.61)

In our examples we considered the group action α : (RP)q × (RP)q → (RP)q

given by the multiplication (10.55):

α(h,k) = h⊙k. (10.62)

Therefore the hypothesis testing H0 : µ1, jk = µ2, jk on the Lie group ((RP)q,⊙)

is equivalent to the testing problem

H0 : µ−1
1, jk

⊙ µ2, jk = 1(RP3)q . (10.63)

From Section 2.13, if the sample sizes n1,n2 are small, it suffices to compute

the bootstrap distribution of

D∗ = ϕ(H(X̄∗
n1, jk

, X̄∗
n2, jk

)), (10.64)

where H(h,k) = h⊙k and ϕ is given by (10.61).

REMARK 10.5.2. Given that ϕ(1(RP3)q) = 0 ∈ (R3)q, testing the hypothesis

(10.63) at level α is equivalent to testing if 0 is inside a 100(1−α)% bootstrap

confidence region for ϕ(µ). Since the group multiplication in ((RP3)q,⊙) is a

product of projective quaternion multiplications (10.53), one may use simul-

taneous bootstrap confidence intervals, based on the q affine marginal boot-

strap distributions (D∗
1 , . . . ,D

∗
q ) = D∗ in (10.64). From the Bonferroni inequal-

ity 2.68, for each j = 1, . . . ,q, we obtain a 100(1− α
q

)% confidence region C∗
j ,

that can be visualized as a 3D box, product of three 100(1− α
3q

)% simultaneous

confidence intervals.
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11.4 A One-Sample Test of the Neighborhood Hypothesis 278

Chapters 4 through 6 provided general theory for adapting inferential metho-

dology for multivariate data to the analysis of data lying on finite-dimensional

manifolds. However, for data arising on infinite-dimensional Hilbert mani-

folds, methodology for inference must be adapted instead from techniques de-

veloped for data analysis on Hilbert spaces, as described in Chapter 2. As far

as infinite dimensional data analysis is concerned, in this chapter our scope is

limited to considering only the extension of the neighborhood hypothesis me-

thodology on Hilbert spaces in Section 2.15, to the case of Hilbert manifolds.

Applications of this material to shape analysis of planar contours can be found

in Chapter 18. The primary reference for this chapter is Ellingson et al. (2013)

[104].

11.1 Introduction

A number of statistical methodologies have been developed for the analysis

of data lying on Hilbert spaces for the purpose of studying functional data.

Some multivariate methods, such as PCA, have useful extensions in functional

data analysis (Loève [223]). For dense functional data, the asymptotics of the

resulting eigenvalues and eigenvectors were studied by Dauxois et al. (1982)

[80]. Even for sparse functional data, these methods have been proved use-

ful (see Hall et al. (2006) [139], Müller et al.(2006) [239]) and have multiple

applications.

There are, nevertheless, techniques defined for multivariate analysis that

273
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often fail to be directly generalizable to infinite-dimensional data, especially

when such data is nonlinear. New methodologies have been developed to ac-

count for these high dimensional problems, with many of these presented in a

standard text by Ramsay and Silverman (2005) and given by references therein.

For high dimensional inference on Hilbert spaces, Munk and Dette (1998)

[251] utilized the concept of neighborhood hypotheses for performing tests

on nonparametric regression models. Following from this approach, Munk et

al. (2008) [252] developed one-sample and multi-sample tests for population

means, as discussed in Chapter 2.

However, these methods do not account for estimation of means on infinitely

dimensional curved spaces, such as Hilbert manifolds. In order to properly

analyze such data, these methods must be further generalized and modified.

A key example in which such data arises is in the statistical analysis of direct

similarity shapes of planar contours (see [101]), which will be discussed in

detail in Chapter 19.

This chapter will focus on the theory for analysis of data on general Hilbert

manifolds. Section 12.1 will describe Hilbert manifolds. The second section

will describe extrinsic analysis on such spaces and the last section will adapt

the neighborhood hypothesis of Munk et al. (2008) [252] to this setting.

11.2 Hilbert Manifolds

In this section, we assume that H is a separable, infinite dimensional Hilbert

space over the reals. Any such space is isometric with l2, the space of se-

quences x = (xn)n∈N of reals for which the series ∑∞
n=0 x2

n is convergent, with

the scalar product < x,y >= ∑∞
n=0 xnyn. A Hilbert space with the norm ‖v‖ =√

< v,v >, induced by the scalar product, becomes a Banach space . Differen-

tiability can be defined with respect to this norm.

DEFINITION 11.2.1. A function f defined on an open set U of a Hilbert

space H is Fréchet differentiable at a point x ∈ U, if there is a linear operator

T : H → H, such that if we set

ωx(h) = f (x + h)− f (x)−T(h), (11.1)

then

lim
h→0

‖ωx(h)‖
‖h‖ = 0. (11.2)

Since T in Definition 11.2.1 is unique, it is called the differential of f at x

and is also denoted by dx f .

DEFINITION 11.2.2. A chart on a separable metric space (M,ρ) is a one

to one homeomorphism ϕ : U → ϕ(U) defined on an open subset U of M to

a Hilbert space H. A Hilbert manifold is a separable metric space M, that

admits an open covering by domain of charts, such that the transition maps

ϕV ◦ϕ−1
U : ϕU (U ∩V ) → ϕV (U ∩V ) are differentiable.
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As an example of a Hilbert manifold, we can consider the projective space

P(H) of a Hilbert space H, which is the space of all one dimensional linear

subspaces of H. The following provides details for why this is a Hilbert mani-

fold.

EXAMPLE 11.2.1. First, define the distance between two vector lines as their

angle. Now, given a line L⊂ H, a neighborhood UL of L can be mapped via a

homeomorphism ϕL onto an open neighborhood of the orthocomplement L⊥

by using the decomposition H = L⊕L⊥. Then for two perpendicular lines L1

and L2, it is easy to show that the transition maps ϕL1
◦ϕ−1

L2
are differentiable

as maps between open subsets in L⊥
1 and L⊥

2 , respectively. A countable or-

thobasis of H and the lines Ln, n ∈N, which is generated by the vectors in this

orthobasis, is used to cover P(H) with the open sets ULn
,n ∈ N. Finally, use

the fact that for any line L, L⊥ and H are isometric as Hilbert spaces.

Note that the line L spanned by a nonzero vector γ ∈ H is usually denoted

by [γ] when regarded as a projective point on P(H).
Similarly, one may consider complex Hilbert manifolds, modeled on Hilbert

spaces overC. A vector space overC can be regarded as a vector space over the

reals by restricting the scalars to R. Therefore, any complex Hilbert manifold

automatically inherits a structure of real Hilbert manifold.

11.3 Extrinsic Analysis of Means on Hilbert Manifolds

Since a Hilbert manifold does not have a linear structure, standard methods for

data analysis on Hilbert spaces, such as those described in Chapter 2 cannot

directly be applied. To account for this nonlinearity, one may instead perform

extrinsic analysis, in a manner similar to what is described in Chapter 4, by

embedding this manifold in a Hilbert space.

DEFINITION 11.3.1. An embedding of a Hilbert manifold M in a Hilbert

space H is a one-to-one differentiable function j : M→H, such that for each

x∈M, the differential dx j is one to one, and the range j(M) is a closed subset

of H and the topology of M is induced via j by the topology of H.

We now return to the previous example of P(H) and consider a useful em-

bedding of this space.

EXAMPLE 11.3.1. We embed P(H) in LHS = H⊗H, the space of Hilbert–

Schmidt operators of H into itself, via the Veronese–Whitney (VW) embedding

j given by

j([γ]) =
1

‖γ‖2
γ ⊗ γ. (11.3)

If ‖γ‖ = 1, this definition can be reformulated as

j([γ]) = γ ⊗ γ. (11.4)
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Given that γ∗(β ) =< β ,γ > equation (11.4) is equivalent to

j([γ])(β ) =< β ,γ > γ. (11.5)

The range of this embedding is the submanifold M1 of rank one Hilbert–

Schmidt operators of H.

To define a location parameter for probability distributions on a Hilbert ma-

nifold, the concept of extrinsic means from Bhattacharya and Patrangenaru

(2003, 2005)) is extended to the infinite dimensional case as follows:

DEFINITION 11.3.2. If j : M→H is an embedding of a Hilbert manifold in

a Hilbert space, the chord distance ρ on M is given by ρ(x,y) = ‖ j(x)− j(y)‖,
and given a random object X on M, the associated Fréchet function is

F j(x) = E(‖ j(X)− j(x)‖2). (11.6)

The set of all minimizers of F j is called the extrinsic mean set of X . If the

extrinsic mean set has one element only, then that element is called the extrinsic

mean and is labeled µE, j or simply µE .

The following proposition provides some additional details about extrinsic

means on Hilbert manifolds.

PROPOSITION 11.3.1. Consider a random object X on M that has an ex-

trinsic mean set. Then (i) j(X) has a mean vector µ and (ii) the extrinsic mean

set is the set of all points x ∈M, such that j(x) is at minimum distance from

µ . (iii) In particular, µE exists if there is a unique point on j(M) at mini-

mum distance from µ , the projection Pj(µ) of µ on j(M), and in this case

µE = j−1(Pj(µ)).

Proof. Let Y = j(X). Note that the Hilbert space H is complete as

a metric space, therefore infy∈H E(‖Y − y‖2) = miny∈H E(‖Y − y‖2) ≤
miny∈ j(M) E(‖Y − y‖2). From our assumption, it follows that infy∈H E(‖Y −
y‖2) = miny∈H E(‖Y − y‖2) is finite, which proves (i). To prove (ii), assume

that ν is a point in the extrinsic mean set, and that x is an arbitrary point on

∈M. Since E(‖ j(ν)−Y‖2) ≤ E(‖ j(x)−Y‖2) and j(ν)− µ and j(x)− µ are

constant vectors, it follows that

‖ j(ν)− µ‖2 ≤ ‖ j(x)− µ‖2 + 2E(< j(x)− j(ν),µ −Y >). (11.7)

It is obvious that the expected value on the extreme right-hand side of equation

(11.7) is zero.

We now consider a property that is critical for having a well-defined, unique

extrinsic mean, which will address item (iii) in Proposition 11.3.1.

DEFINITION 11.3.3. A random object X on a Hilbert manifold M embed-

ded in a Hilbert space is j-nonfocal if there is a unique point p on j(M) at

minimum distance from E( j(X)).
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To illustrate this idea, consider the following example involving a unit

Hilbert sphere.

EXAMPLE 11.3.2. The unit sphere S(H) = {x ∈H,‖x‖ = 1} is a Hilbert ma-

nifold embedded in H via the inclusion map j : S(H) →H, j(x) = x. A random

object X on S(H) of mean µ is j-nonfocal, if µ 6= 0.

Using this property, one may give an explicit formula for the extrinsic mean

for a random object fon P(H) with respect to the VW embedding, which we

will call the VW mean.

PROPOSITION 11.3.2. Assume X = [Γ ] is a random object in P(H). Then

the VW mean of X exists if and only if E( 1
‖Γ‖2 Γ ⊗Γ ) has a simple largest

eigenvalue, in which case, the distribution is j-nonfocal. In this case the VW

mean is µE = [γ], where γ is an eigenvector for this eigenvalue.

Proof. We select an arbitrary point [γ] ∈ P(H),‖γ‖ = 1. The spectral de-

composition of Λ = E( 1
‖Γ‖Γ ) is Λ = ∑∞

k=1 δ 2
k Ek,δ1 ≥ δ2 ≥ . . . where for all

k ≥ 1,Ek = ek ⊗ ek,‖ek‖ = 1, therefore if γ = ∑∞
k=1 xkek,∑

∞
k=1 x2

k < ∞, then

‖ j(γ)− µ‖2 = ‖γ ⊗ γ‖2 + ∑∞
k=1 δ 2

k − 2 < Λ ,γ ⊗ γ > . To minimize this distance

it suffices to maximize the projection of the unit vector γ ⊗ γ on Λ . If δ1 = δ2

there are the vectors γ1 = e1 and γ2 = e2 are both maximizing this projection,

therefore there is a unique point j([γ]) at minimum distance from Λ if and only

if δ1 > δ2.

A definition of a covariance parameter is also needed in order to define

asymptotics and perform inference on an extrinsic mean. The following re-

sult is a straightforward extension of the corresponding finite dimensional

result in Bhattacharya and Patrangenaru (2005) that was discussed in previ-

ous chapters. The tangential component tan(v) of v ∈ H w.r.t. the orthobasis

ea(Pj(µ)) ∈ TPj (µ) j(M),a = 1,2, · · · ,∞ is given by

tan(v) =
∞
∑
a=1

(ea(Pj(µ)) · v)ea(Pj(µ)). (11.8)

Then given the j-nonfocal random object X , extrinsic mean µE , and covariance

operator of Σ̃ = cov( j(X)), if fa(µE) = d−1
µE

(ea(Pj(µ))),∀a = 1,2, . . . , then X

has extrinsic covariance operator represented w.r.t. the basis f1(µE ), · · · by the

infinite matrix Σ j,E :

Σ j,E =
[
∑dµPj(eb) · ea(Pj(µ))

]
a=1,...

Σ̃
[
∑dµPj(eb) · ea(Pj(µ))

]T
a=1,...

. (11.9)

With extrinsic parameters of location and covariance now defined, the asymp-

totic distribution of the extrinsic mean can be shown as in the final dimensional

case (see Bhattacharya and Patrangenaru (2005) [43]):
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PROPOSITION 11.3.3. Assume X1, . . . ,Xn are i.i.d. random objects (r.o.’s)

from a j-nonfocal distribution on a Hilbert manifold M, for a given embed-

ding j : M → H in a Hilbert space H with extrinsic mean µE and extrinsic

covariance operator Σ . Then, with probability one, for n large enough, the ex-

trinsic sample mean X̄n,E is well defined. If we decompose j(X̄n,E )− j(µE) with

respect to the scalar product into a tangential component in Tj(µE ) j(M) and a

normal component N j(µE ) j(M), then

√
n(tan( j(X̄n,E)− j(µE))) →d G, (11.10)

where G has a centered Gaussian distribution in Tj(µE ) j(M) with extrinsic

covariance operator Σ j,E .

11.4 A One-Sample Test of the Neighborhood Hypothesis

Following from a neighborhood method in the context of regression by Munk

and Dette (1998) [251], Munk et al. (2008) [252] developed tests for means

of random objects on Hilbert spaces. We now consider the adaptation of this

methodology from Ellingson et al. (2013) [104] for tests for extrinsic means.

Assume Σ j is the extrinsic covariance operator of a random object X on the

Hilbert manifold M with respect to the embedding j : M→ H. Let M0 be a

compact submanifold of M. Let ϕ0 : M→R be the function

ϕ0(p) = min
p0∈M0

‖ j(p)− j(p0)‖2, (11.11)

and let Mδ
0 ,B

δ
0 be given respectively by

Mδ
0 = {p ∈M,ϕ0(p) ≤ δ 2},

Bδ
0 = {p ∈M,ϕ0(p) = δ 2,}. (11.12)

Since ϕ0 is Fréchet differentiable and all small enough δ > 0 are regular values

of ϕ0, it follows that Bδ
0 is a Hilbert submanifold of codimension one in M.

Let νp be the normal space at a points p ∈ Bδ
0 , orthocomplement of the tangent

space to Bδ
0 at p. We define B

δ ,X
0

B
δ ,X
0 = {p ∈ B0,Σ j|νp is positive definite}. (11.13)

DEFINITION 11.4.1. The neighborhood hypothesis consists of the following

two alternative hypotheses:

H0 : µE ∈ Mδ
0 ∪B

δ ,X
0 ,

H0 : µE ∈ (Mδ
0 )c ∩ (B

δ ,X
0 )c. (11.14)
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Here, we consider neighborhood hypothesis testing for the particular sit-

uation in which the submanifold M0 consists of a point m0 on M. We set

ϕ0 = ϕm0
, and since Tm0

{m0} = 0 we will prove the following result.

THEOREM 11.4.1. If M0 = {m0}, the test statistic for the hypotheses specified

in (11.14) has an asymptotically standard normal distribution and is given by:

Tn =
√

n{ϕm0
(µ̂E )− δ 2}/sn, (11.15)

where

s2
n = 4〈ν̂,SE,nν̂〉 (11.16)

and

SE,n =
1

n

n

∑
i=1

(tan ˆ̃µ d j(X)n
Pj( j(Xi)− j(X)n))⊗

⊗(tan ˆ̃µ d j(X)n
Pj( j(Xi)− j(X)n)) (11.17)

is the extrinsic sample covariance operator for {Xi}n
i=1, and

ν̂ = (dµ̂E,n
j)−1t̂an j(µ̂E,n)( j(m0)− j(µ̂E,n)). (11.18)

For the proof of this result, we first need the following useful extension of

Cramer’s delta method. The proof of this result is left to the reader.

THEOREM 11.4.2. For a = 1,2 consider an embedding ja : Ma → Ha of a

Hilbert manifold Ma in a Hilbert space Ha. Assume X1, . . . ,Xn are i.i.d. r.o.’s

from a j1-nonfocal distribution on M1 for a given embedding j1 :M1 →H1 in

a Hilbert space H1, with extrinsic mean µE and extrinsic covariance operator

Σ . Let ϕ : M1 → M2 be a differentiable function, such that ϕ(X1) is a j2-

nonfocal r.o. on M2. Then

√
ntan j2(ϕ(µE ))( j2(ϕ(X̄n,E))− j2(ϕ(µE))) →d Y, (11.19)

where Y ∼N (0,dµE
ϕ∗ΣdµE

ϕ). Here dµE
ϕ∗ is the adjoint operator of dµE

ϕ .

With this result, we now turn back to prove Theorem 11.4.1

Proof. The function ϕ0 given in equation (11.11) defined on M can be written

as a composite function ϕ0 = ΦA ◦ j, where ΦA(x) = ‖x−A‖2 is differentiable

on H\{A}, with the differential at x given by dxΦA(y) = 2 < y,x−A > . Since

j(M) is a submanifold of H, the restriction φA of ΦA(x) to j(M) is a differen-

tiable function, with the differential

dpφA(y) = 2 < y, p−A >,∀y ∈ Tp j(M). (11.20)

Note that ϕm0
(p) = φ j(m0)( j(p)), therefore, given that the differential dp j is a

vector space isomorphism, we obtain

dpϕm0
(u) = 2 < dp j(u), j(p)− j(m0) >,∀u ∈ TpM, (11.21)
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and in particular

dµE
ϕm0

(u) = 2 < dµE
j(u), j(µE )− j(m0) >,∀u ∈ TµE

M, (11.22)

that is

dµE
ϕm0

= 2dµE
j⊗ tan( j(µE)− j(m0)). (11.23)

Since the null hypothesis (11.14) is accepted as long as ϕm0
(µE ) < δ 2, we de-

rive the asymptotic distribution of ϕm0
(µ̂E ) under ϕm0

(µE ) = δ 2. From Theorem

11.4.2, it follows that

√
n(ϕm0

(µ̂E )−ϕm0
(µE )) →d Y, (11.24)

where Y ∼N (0, (dµE
ϕm0

)∗ΣEdµE
ϕm0

), we see that the random variable

Zn =

√
n(ϕm0

(µ̂E)−ϕm0
(µE ))√

(dµE
ϕm0

)∗ΣEdµE
ϕm0

(11.25)

has asymptotically a standard normal distribution. From equation (11.23), if

we set

ν = (dµE
j)−1tan( j(µE)− j(m0)),

σ2 = 4 < ν,ΣE ν >, (11.26)

then

Zn =

√
n(ϕm0

(µ̂E )− δ 2)

σ
(11.27)

Finally we notice that ν̂ in (11.18) is a consistent estimator of ν in (11.26).

Therefore s2
n in equation (11.16) is a consistent estimator of σ2 in equation

(11.26) and, from Slutsky’s theorem, it follows that the test statistic Tn in equa-

tion (11.15) has asymptotically a N (0,1) distribution.
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This chapter is concerned with nonparametric statistical analysis of landmark-

based shape data, for which the effects of magnification and differences are

taken into account. Our objective is to analyze extrinsic mean reflection-size-

and-shapes associated with a random object on the reflection-size-and-shape

manifold SRΣ k
m,0 introduced in equation (3.134) in Section 3.5.5.

12.1 Introduction

It is a main focus of this chapter to construct equivariant embeddings of

reflection-size-and-shape manifolds into vector spaces of matrices using an

important representation of Schoenberg (1935) [300] that relates an Euclidean

distance matrix of squared inter-point distances of a set of k points in Rm and

the k×k positive semidefinite matrix of the inner products of the corresponding

centered points. It is then appropriate to apply the general nonparametric theory

in Chapter 5. A first approach to size-and-shape analysis using an Euclidean

distance matrix, which differs from this one, is due to Lele (1993) [217]. Here,

we introduce the Schoenberg embedding of the size-and-reflection-shape ma-

nifold SRΣ k
m,0. The extrinsic sample mean size-and-reflection-shape under this

embedding turns out to be the sample estimate [MDSm(W )]RS in Dryden and

281
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Mardia (1998, p. 281). We also provide the main ingredients for asymptotic

nonparametric inference based on Schoenberg means on SRΣ k
m,0. The nec-

essary and sufficient condition for a probability measure Q on SRΣ k
m,0 to be

Schoenberg-nonfocal is that, in their decreasing order, the eigenvalues of rank

m and m + 1 of the mean matrix of the push forward distribution are distinct.

A second result of significance is the identification of the space SΣ k
2 of size-

and-shapes [x]S of planar k-ads x, with a noncompact manifold – the direct

product of Σ k
2 and (0,∞), where

[x]S = {wξ : w ∈C, |w| = 1}. (12.1)

In Section 12.2, an equivariant embeddeding φ of the planar size-and-shape

manifold SΣ k
2 , extending the Veronese–Whitney embedding of the Kendall’s

shape space in Bhattacharya and Patrangenaru (2003) [42], is given. We show

that the extrinsic mean size-and-shape of a probability measure Q on SΣ k
2 ex-

ists (i.e. Q is φ -nonfocal) if and only if the largest eigenvalue λk of the push

forward probability measure φ (Q) = Q◦φ−1 is simple, and in this case the ex-

trinsic mean size and shape is [λku0]S, where u0 is a unit eigenvector of the

mean matrix µ̃ of Q◦φ−1. This provides a proper venue for a future study of

allometry - the dependence of shape on size, in various contexts.

12.2 Equivariant Embeddings of SΣ k
2 and RSΣ k

m,0

Recall from Chapter 10 the complex representation of the Kendall shape σ (x)

of a planar k-ad x. If the scaling effect is removed by scaling ξ to unit size as

u =
ξ

|ξ | , (12.2)

the transformed quantity u is called a preshape. The quadratic Veronese–

Whitney embedding of Σ k
2 into S(k,C), the linear space of selfadjoint complex

matrices of order k, (or simply the Veronese–Whitney map) is j : Σ k
2 → S(k,C),

where with u representing the preshape as in (13.1),

j([x]) = uu∗,u∗u = 1. (12.3)

Extend (12.3) to an embedding φ of the product model of SΣ k
2 in Theorem

3.5.2 into Ck2
(regarded as the set of all k× k complex matrices) given by

φ ([x]S) = ruu∗,r > 0,u ∈ Lk,u
∗u = 1. (12.4)

Note that the range of φ in (12.4) is a closed noncompact submanifold of

S(k,C).
The distance ρ on SΣ k

2 is the Euclidean distance inherited from the embed-

ding φ .
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The embedding φ (as well as j) is G-equivariant, where G is isomorphic to

the group SU(k− 1) of (k− 1)× (k− 1) unitary matrices with determinant 1

(See Kendall et al. (1999), Bhattacharya and Patrangenaru (2003) [42]).

In higher dimensions, using an approach based on well known result MDS

result due to Schoenberg (1935) [300] (see also Mardia et al. (1972, p. 397)

[231]), presented in Bandulasiri and Patrangenaru (2005) [11] introduced the

Schoenberg embedding of reflection shapes in higher dimensions (see Chapter

13). Let S(k,R) denote the set of all k×k real symmetric matrices. The embed-

ding considered here, of the size-and-reflection-shape manifold J : SRΣ k
m,0 →

S(k,R), is given by

J([ξ ]RS) = ξ T ξ . (12.5)

The following result will be used to derive formulas for extrinsic parameters

and for their estimators.

THEOREM 12.2.1. The range of the Schoenberg embedding of SRΣ k
m,0 is the

subset SMk,m of k× k positive semidefinite symmetric matrices A with rkA =

m, A1k = 0.

Consider a (k−1)×k matrix H, whose rows are all of unit length, orthogonal

to each other and orthogonal to the row vector 1T
k .

PROPOSITION 12.2.1. Let Mk be the space of k× k symmetric matrices A

with A1k = 0. The map φ from Mk to S(k− 1,R), given by φ (A) = HAHT is an

isometry. In addition, Tr(φ (A)) = Tr(A).

Proof. Since φ in Proposition 12.2.1 is a linear map, it suffices to show

that ‖φ (A)‖ = ‖A‖. Here we consider the Euclidean norm of a matrix M

given by ‖M‖2 = Tr(MMT ). The claims are easily verified from the rela-

tions HHT = Ik−1,HH = Ik − 1
k
1k1T

k , and the fact that for any matrices A,B,

Tr(AB) = Tr(BA), whenever both products make sense �

We may then define an embedding ψ of the size-and-reflection-shape manifold

as ψ : SRΣ k
m,0 → S(k− 1,R), given by

ψ([ξ ]R) = Hξ Tξ HT. (12.6)

From Proposition 12.2.1, it follows that the Schoenberg embedding and the

embedding ψ induce the same distance on SRΣ k
m,0.

REMARK 12.2.1. The range of ψ is the set of (k− 1)× (k − 1) symmetric

matrices of rank m. Note that for k = m+1, the range is the open convex subset

Sym+(k−1,R)⊂ Sym(k−1,R) of positive definite symmetric matrices and the

induced distance on SRΣ k
m,0 is an Euclidean distance.

REMARK 12.2.2. Let O(k) act on SRΣ k
m,0 as ([ξ ]RS,A) → [ξ A]RS,A ∈ O(k).

Then the embedding (12.5) is O(k)-equivariant. This action is not free. But in

view of Proposition 12.2.1, the Schoenberg emebedding can be “tightened” to

an O(k− 1)− equivariant embedding in S(k− 1,R).

  



284 ANALYSIS ON SPACES OF CONGRUENCES OF K-ADS

12.3 Extrinsic Means and Their Estimators

We recall from Chapter 5 that the extrinsic mean µJ,E (Q) of a nonfocal prob-

ability measure Q on a manifold M w.r.t. an embedding J : M → RN , when it

exists, is the point from which the expected squared (induced Euclidean) dis-

tance under Q is minimum. It is given by µJ,E (Q) = J−1(PJ(µ)), where µ is

the usual mean of J(Q) as a probability measure on RN and PJ is its projec-

tion on J(M) (see Chapter 5, or Proposition 3.1 [42]). When the embedding J

is given, and the projection Pj(µ) is unique, one often identifies µ j,E with its

image Pj(µ), and refer to the later as the extrinsic mean. The term “nonfocal

Q” means that the projection (the minimizer of the distance from µ to points in

J(M)) is unique. Often the extrinsic mean will be denoted by µE (Q), or simply

µE , when J and Q are fixed in a particular context.

Assume (X1, . . . ,Xn) are i.i.d. M-valued random objects whose common

probability measure is Q, and let XE := µJ,E (Q̂n) = µE (Q̂n) be the extrinsic

sample mean. Here Q̂n = 1
n ∑n

j=1 δX j
is the empirical distribution.

In this section we will consider extrinsic means associated with embeddings

of the two types of manifolds described in this chapter.

12.3.1 Mean Planar Shape and Mean Planar Size-and-Shape

We first describe the extrinsic mean of a probability measure Q on Σ k
2 with

respect to the Veronese–Whitney map j given in (12.3).

The squared distance in the space S(k,C) of self adjoint matrices is

d2
0(A,B) = Tr((A−B)(A−B)∗) = Tr((A−B)2).

A probability measure Q on Σ k
2 may be viewed as a distribution of a ran-

dom shape [U], where U is a random preshape. This probability measure Q

is J-nonfocal if the largest eigenvalue of E(UU∗) is simple, and in this case

µJ,E (Q) = [µ], where µ ∈ S(L2
k) is a unit eigenvector corresponding to this

largest eigenvalue (see Bhattacharya and Patrangenaru (2003) [42]).

The extrinsic sample mean direct similarity planar shape [X]J,E of a random

sample [Xr] with preshapes Ur = [U1
r : · · · :Uk

r ], 1T
k Ur = 0,‖Ur‖ = 1,r = 1, . . . ,n,

from such a nonfocal distribution exists with probability converging to 1 as

n →∞ (see Bhattacharya and Patrangenaru (2003) [42]) and is given by

[X]J,E = [U], (12.7)

where U is a unit eigenvector in S(L2
k) corresponding to the largest eigenvalue

of

K := n−1
n

∑
r=1

UrU∗
r . (12.8)

This means that [X]J,E is given by a formula that is similar to the one for

the full Procrustes estimate of the mean shape in parametric families such as
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Dryden–Mardia type distributions or complex Bingham type distributions for

planar shapes on Σ k
2 (Kent (1992) [181], (1994) [182]) . For this reason, the

Veronese-Whitney extrinsic sample mean shape may be called the Procrustes

mean estimate.

To compute the extrinsic mean of probability measures on SΣ k
2 , we proceed

exactly as in the case of Σ k
2 , but under the additional assumption that the image

of Q under φ , namely Q ◦ φ−1, regarded as a probability measure on Ck2
(≈

R2k2
) has finite second moments. With this assumption, let µ̃ be the mean

(k × k matrix) of φ (Q) = Q ◦ φ−1. Then µ̃ is a Hermitian matrix, which is

positive semidefinite. There exists a complex orthogonal matrix T such that

T µ̃T ∗ = D = diag(λ1, . . . ,λk), where 0 ≤ λ1 ≤ ·· · ≤ λk are the eigenvalues of

µ̃ . Then if v =
√

rTu, the squared distance between µ̃ and an element φ ([x]S)

of φ (SΣ k
2) is given by

Trace(µ̃ − ruu∗)2 = Trace(D− vv∗)2 =

= ∑
j

λ 2
j +∑

j

|v j|4 − 2∑
j

λ j|v j|2 + ∑
j 6= j′

|v j v̄
′
j|2 =

= ∑
j

λ 2
j +∑

j

|v j|4 − 2∑
j

λ j|v j|2 +∑
j

|v j|2 ∑
j

|v′j|2 −∑
j

|v j|4 =

= ∑
j

λ 2
j − 2∑

j

λ j|v j|2 + r2(x) (12.9)

noting that |v|2 = r(x). We first minimize (12.9) for a given size r = r(z). Clearly

this is achieved by letting v =
√

rek (or
√

reiθ ek for some θ ), where ek has 1 as

its last (k-th) coordinate, and zeros elsewhere. Then u = 1√
r
T ∗v is an eigenvec-

tor of µ̃ in the eigenspace of the largest eigenvalue λk. With this choice (12.9)

becomes

∑
j

λ 2
j − 2rλk + r2 (12.10)

The minimum of (12.10) over all r > 0 is attained with r = λk. Hence the min-

imum of the (12.9) is achieved by an element u = u0 where u0 is a unit vector

in the eigenspace of λk, i.e., by the element φ ([x]S) = φ ([λku0]S) of φ (SΣ k
2). If

λk is a simple eigenvalue of µ̃, then this minimizer is unique. In this case the

extrinsic mean µE of Q is the size-and-shape of λku0. Hence the consistency

theorem in Bhattacharya and Patrangenaru (2003)[42] applies in this case. The

size of the mean µE is λk.
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12.3.2 Extrinsic Mean Size-and-Reflection-Shapes

We consider now a random k-ad in general position X, centered as X0 = (X1 −
X , . . . ,X k −X) ∈ (Rm)k ≃ M(m,k;R). Set

C = E(X0
T X0). (12.11)

Obviously, C1k = 0,C ≥ 0.
The extrinsic mean size-and-reflection-shape of [X]RS exists if Tr(C−ξ T ξ )2

has a unique solution ξ ∈ M(m,k;R) up to an orthogonal transformation, with

ξ 1k = 0, rkξ = m (12.12)

That is the same as saying that given C, ξ is a classical solution in Rm to the

MDS problem, as given in Mardia et al. (1972, p. 408) [231] in terms of the first

largest m eigenvalues of C. Assume the eigenvalues of C in their decreasing

order are λ1 ≥ ·· · ≥ λk. The classical solution of the MDS problem is unique

(up to an orthogonal transformation) if λm > λm+1 and ξ T can be taken as the

matrix

V = (v1v2 . . .vm), (12.13)

whose columns are orthogonal eigenvectors of C corresponding to the largest

eigenvalues λ1 ≥ ·· · ≥ λm of C, with

vT
j v j = λ j,∀ j = 1, . . . ,m. (12.14)

Since the eigenvectors v1, . . . ,vm are linearly independent, rkξ = m. If v is an

eigenvector of C for the eigenvalue λ > 0, since C1k = 0 it follows that v1k = 0.
Therefore the classical solution ξ derived from the eigenvectors (12.13) satis-

fies (12.12) . In conclusion we have:

THEOREM 12.3.1. Assume C = ∑k
i=1 λieie

T
i is the spectral decomposition of

C = E(XT
0 X0), then the extrinsic mean µE size-and-reflection-shape exists if

and only if λm > λm+1 and if this is the case, µE = [ξ ]RS where ξ T can be taken

as the matrix (12.13) satisfying (12.14).

From theorem 12.3.1, it follows that given k-ads in general position in Rm,

{x1, . . . ,xn},x j = (x1
j , . . . ,x

k
j), j = 1, . . . ,n, their extrinsic sample mean size-and-

reflection-shape is [x]E = [ξ̂ ]RS, where ξ̂ is the classical solution in Rm to the

MDS problem for the matrix

Ĉ =
1

n

n

∑
j=1

ξ T
j ξ j. (12.15)

Here ξ j is the matrix obtained from x j after centering , assuming λ̂m > λ̂m+1.

Here λ̂1 ≥ ·· · ≥ λ̂k are the eigenvalues of Ĉ. Indeed, the configuration of the

sample mean is given by the eigenvectors corresponding to the m largest eigen-

values of Ĉ.
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REMARK 12.3.1. From Remark 12.2.1, in the case k = m + 1, the projection

Pψ is the identity map, therefore any distribution Q is ψ-nonfocal and ψ(µE,ψ )

is the mean µ of ψ(Q).

12.4 Asymptotic Distribution of Extrinsic Sample Mean

Size-and-Reflection-Shapes

The reflection shape manifold RΣ k
m,0 is the set of size-and-reflection-shapes in

general position of size one, submanifold of SRΣ k
m,0. Recall the embedding in

(12.6), namely,

ψ([ξ ]RS) = HJ([ξ ]RS)HT = Hξ T ξ HT , (12.16)

From Proposition 12.2.1 and with the notation in Theorem 12.2.1, it follows

that φ (SMk,m) which is also the range of ψ in (12.16) is the set Ñm,k of (k−1)×
(k− 1) positive semidefinite symmetric matrices of rank m, and the restriction

of φ to SMm,k is an isometry from (SMm,k,dk,0) to (Ñm,k,dk−1,0) where dr,0 is the

restriction of the Euclidean distance on the space of r× r symmetric matrices.

REMARK 12.4.1. If, for η = ξ H, we set s̃σ (η) = [ξ ]RS, the embedding ψ is

equivariant with respect to the group actions of O(k− 1) on SRΣ k
m,0 and on

S(k− 1,R) :

α(s̃σ (η),A) = s̃σ (ηA)

β (S,A) = ASAT . (12.17)

In this section we will derive the asymptotics for the extrinsic sample mean

size-and-reflection-shape for samples from a ψ-nonfocal distributions Q on

SRΣ k
m,0. For this purpose we will use the general results for extrinsic means

on a manifold in Bhattacharya and Patrangenaru (2005) (Theorem 3.1. and its

corollaries) [11]. The tangent space to Ñm,k at ψ([ξ ]RS) is the range of the

differential of ψ at [ξ ]RS. If we set η = ξ HT , then rank(η) = m and ψ([ξ ]RS) =

ηT η , and

Tψ(s̃σ (η))Ñm,k = TηT η Ñm,k = {v∈ S(k−1,R) : v = yT η +ηT y,y∈M(k−1,m,R)}
(12.18)

Since ηηT has an inverse, for any y ∈M(k−1,m,R) we define the symmetric

matrix S = 1
2
(ηT (ηηT )−1y + yT (ηηT )−1η) and obtain the following represen-

tation of the tangent space in (12.18):

TηT η Ñm,k = {v ∈ S(k− 1,R),v = SηηT + ηT ηS,S ∈ S(k− 1,R)}. (12.19)

Given the equivariance of ψ , if ηT η = AΛAT , with A ∈ O(k− 1) and Λ the

diagonal matrix with diagonal elements λ1, . . .λm,0, . . . ,0, then

TηT η Ñm,k = ATΛ Nm,kAT . (12.20)
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From (12.19), it follows that the tangent space at Λ is given by

TΛ Ñm,k = {v ∈ S(k− 1 : R),v =

(
Vm W

W T 0

)
,

Vm ∈ S(m,R),W ∈M(k− 1−m,m;R)}. (12.21)

A standard orthonormal basis in S(k − 1,R) given in Bhattacharya and Pa-

trangenaru (2003) [42] is the basis

Ẽ = (E1
1 , . . . ,E

k−1
k−1 ,2

− 1
2 (E

j
i + E i

j),1 ≤ i < j ≤ k− 1), (12.22)

where E
j
i has all entries zero, except for the entry in the ith row and jth column,

which equals 1. From (13.9) it follows that TΛ Ñm,k is spanned by the orthobasis

e(Λ ) = (E1
1 , . . . ,E

m
m ,2

− 1
2 (E

j
i + E i

j),1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k− 1).
(12.23)

Since, for any A ∈ O(k− 1), the map v → AvAT is an isometry of S(k− 1,R),
an orthobasis in the space TηT η Ñm,k is given then by

e(ηT η) = (E1
1 (η), . . . ,Em

m (η),2−
1
2 (E

j
i (η) + E i

j(η)), (12.24)

for 1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k− 1, where E
j
i (η) = AE

j
i AT .

REMARK 12.4.2. Since the asymptotic results are often presented in vector

notation, it will be useful to order the orthobasis (12.22) in the following non-

canonical way

E =(E1
1 , . . . ,E

m
m ,2

− 1
2 (E

j
i + E i

j),1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k− 1,

Em+1
m+1 , . . . ,E

k−1
k−1 ,2

− 1
2 (E

j
i + E i

j),m + 1 ≤ i < j ≤ k− 1). (12.25)

The extrinsic mean µE = µψ,E (Q) of a Schoenberg nonfocal probability mea-

sure Q on SRΣ k
m,0 is given by µE = ψ−1(Pψ (µ)), where µ is the mean of ψ(Q)

in S(k− 1,R) and Pψ is the projection on Ñm,k. Following Bhattacharya and

Patrangenaru (2005) [43], the extrinsic covariance operator ΣE = Σψ,E is the

restriction of the self-adjoint linear operator dµPψΣdµPT
ψ to TPψ (µ)Ñm,k. The

extrinsic covariance matrix is the matrix associated to ΣE with respect to an

orthobasis e1(Pψ(µ)), . . . ,ed(Pψ(µ)) of TPψ (µ)Ñm,k,d = m
2 (2k−m− 1).

LEMMA 12.4.1. Assume the mean µ of ψ(Q) is a diagonal matrix Λ . The

differential of the projection Pψ at Λ with respect to the ordered orthobasis

(12.25) is given by

dΛ Pψ(E i
i ) =

{
E i

i i ≤ m

0 i > m
, dΛ Pψ (E l

j + E
j
l ) =





E l
j + E

j
l j < l ≤ m

λ j

λ j−λl
(E l

j + E
j
l ) j ≤ m < l

0 m < j < l.
(12.26)
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Given the equivariance of the embedding ψ , from Lemma 12.4.1 we obtain

the following

PROPOSITION 12.4.1. If the spectral decomposition of the mean µ of ψ(Q)

is µ = ∑
k−1
i=1 λiẽiẽ

t
i, with λ1 ≥ ·· · ≥ λm > λm+1 ≥ ·· · ≥ λk−1, then

(i) the tangent space Tψ(µE )Nm,k = T1 ⊕T2, where T1 has the orthobasis

(ẽ1ẽT
1 , . . . , ẽmẽT

m,2
− 1

2 (ẽiẽ
T
j + ẽ jẽ

T
i ),1 ≤ i < j ≤ m)), (12.27)

and T2 has the orthobasis

(2−
1
2 (ẽ jẽ

T
l + ẽl ẽ

T
j ),1 ≤ j ≤ m < l ≤ k− 1). (12.28)

(ii) Let N be the orthocomplement of Tψ(µE )Nm,k Then if

dµPψ |T1 = IdT1
,

dµPψ(ẽ j ẽ
T
l + ẽl ẽ

T
j ) =

λ j

λ j −λl

(ẽ j ẽ
T
l + ẽl ẽ

T
j ),∀( j, l),1 ≤ j ≤ m < l ≤ k− 1,

dµPψ |N = 0. (12.29)

An orthobasis of N in Proposition 13.4.2 is

2−
1
2 (ẽ j ẽ

T
l + ẽl ẽ

T
j ),m < j < l ≤ k− 1). (12.30)

The two orthobases (12.27), (13.53) and (13.55) yield an orthobasis ẽ of S(k−
1,R). From proposition 13.4.2 it follows that the matrix D associated with the

differential dµPψ relative to the orthobasis ẽ is diagonal:

D =




I m(m−1)
2

0 0

0 ∆m(k−m−1) 0

0 0 0


 , (12.31)

where

∆m(k−m−1) =




λ1
λ1−λm+1

. . . 0

. . . . . . . . .

0 . . . λm
λm−λk−1


 . (12.32)

The space of symmetric matricesS(k− 1,R) regarded as its own tangent space

at µ splits in three orthogonal subspaces

S(k− 1,R) = T1 ⊕T2 ⊕N, (12.33)

leading to a decomposition of the covariance matrix Σ of ψ(Q), with respect
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to the orthobasis of S(k− 1,R) obtained by augmenting the orthobasis (13.47)

by an orthobasis of N, as follows:

Σ =




Σ11 Σ12 Σ13

ΣT
12 Σ22 Σ23

ΣT
13 ΣT

23 Σ33


 . (12.34)

If we change the coordinates in Rk−1 by selecting an orthobasis ẽ, the eigen-

vectors ẽ1, . . . , ẽk−1 of µ , in such a coordinate system, the mean is a diagonal

matrix Λ and the matrix Σµ = DΣDT , defined in Bhattacharya and Patrange-

naru (2005) [43] is

Σµ =




Σ11 Σ12∆ 0

∆ΣT
12 ∆Σ22∆ 0

0 0 0


 , (12.35)

and the extrinsic covariance matrix ΣE defined in Bhattacharya and Patrange-

naru (2005)[43], with respect to the basis d−1
µψ (e(Λ )), with e(Λ ) as defined in

(13.47), is

ΣE =

(
Σ11 Σ12∆

∆ΣT
12 ∆Σ22∆

)
, (12.36)

We assume now that Y1, . . . ,Yn are independent identically distributed random

reflection objects from a ψ-nonfocal probability distribution Q on SΣ k
m,0, with

λm > λm+1 and let s̃σ (η) be the mean of ψ(Q) and Σ the covariance matrix of

ψ(Q) with respect to the orthobasis ẽ defined above. Let ~W be the vectorized

form of a matrix W ∈ S(k− 1,R) with respect to the basis Ṽ . Assume tan~W

denote the component of ~W tangent to ~̃Nm,k at ~ψ(µψ ).

THEOREM 12.4.1. (a) The random vector n
1
2 tan(~ψ(Y E )−~ψ(µE )) converges

weakly to a random vector having a N(0,ΣE ) distribution, where ΣE is given

in (13.61).

(b) If ΣE is nonsingular, then n tan(~ψ(Y E ) − ~ψ(µE))T Σ−1
E tan(~ψ(Y E ) −

~ψ(µE))T converges weakly to a χ2

km−m(m+1)
2

distribution.

From Theorem 13.4.2 we obtain the following result:

COROLLARY 12.4.1. Let G be a normally distributed matrix in S(k−1,R),

weak limit of n
1
2 (Y −µ). Assume the spectral decomposition of µ is µ = VΛV T .

Set GV = V T GV = (gV
jl) and G̃V = (g̃V

jl) be determined by

g̃V
jl =





gV
jl 1 ≤ j ≤ l ≤ m
λ j

λ j−λl
gV

jl 1 ≤ j ≤ m < l ≤ m− 1

0 m < j ≤ l ≤ k− 1

(12.37)

Then n
1
2 (ψ(Y E )−ψ(µE)) converges in distribution to the normally distributed

random matrix VGVV T .
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From Theorem 13.4.2 it follows that the extrinsic mean size-and-

reflection-shape can be easily estimated using non-pivotal bootstrap . As-

sume {x1, . . . ,xn} is a random sample of configurations x j = (x1
j , . . . ,x

k
j), j =

1, . . . ,n. We resample at random and with repetition N times from this sample,

where N is a reasonably large number, say N ≥ 500. For each such resample

x∗1 , . . . ,x
∗
n we compute the extrinsic sample mean [x]RS

∗
E . We then use a lo-

cal parametrization of SRΣ k
m,0 and find (1−α)100% Bonferroni simultaneous

confidence intervals for the corresponding km− m(m+1)
2 local coordinates.

Tests for the equality of two extrinsic mean size-and-shapes can be derived

from the general theory for two sample tests for extrinsic means on manifolds

developed by A. Bhattacharya (2008) [25].

REMARK 12.4.3. For extrinsic mean size-and-reflection-shapes, k = m + 1,
from Remark 12.2.1, it follows that the space SRΣm+1

m,0 is isometric to a con-

vex open subset of an Euclidean space of dimension m(m+1)
2

and, in view of

Remark 12.3.1 this isometry carries the extrinsic means to ordinary means

in this Euclidean space, and inference for means on SRΣm+1
m,0 follows from

multivariate analysis. In particular, for k = m + 1, at level α, a nonpivotal

bootstrap test for the matched paired hypothesis H0 : µ1,E = µ2,E can be ob-

tained as follows. Given matched pair samples [x1,i]RS, [x2,i]RS, i = 1, . . . ,n,
consider 100(1−α) simultaneous confidence intervals for the mean differ-

ence matrix ψ(µ1,E) − ψ(µ2,E) obtained from the bootstrap distribution of

ψ([x1]RS)−ψ([x2]RS), and reject H0 if at least one of these intervals does not

contain 0.

12.5 Mean Size-and-Shape of Protein Binding Sites

To illustrate a practical situation in which the Schoenberg mean size-and-shape

is useful, we consider binding sites of proteins, as discussed in Chapter 1. It

is commonly hypothesized in bioinformatics literature that the structure and

function of binding sites of proteins are in some way related. A first step to-

wards exploring this problem involves finding common atoms of groups of

binding sites and computing the Schoenberg sample mean size-and-shape of

these structures.

To demonstrate, we will now present a few examples. First, we consider 4

protein binding sites, as in Ellingson (2011) [101]. These sites, obtained from

the RCSB Protein Data Bank and shown in Figure 12.1, are found in the pro-

teins 1phf, 1phg, 2cpp, and 1m85 and bind to the ligand heme. The matching of

atoms can be performed using a number of algorithms, but for this example, we

utilize TIPSA, a method presented in Ellingson and Zhang (2012) [107]. The

sample extrinsic mean size-and-shape is shown in 12.2. As a second example,

we return to the two sets of binding sites presented in Figures 1.8 and 1.9 in

Chapter 1. As in the previous example, the atoms common to each sample of
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Figure 12.1 Binding sites that bind to heme for proteins 1phf, 1phg, 2cpp, and 1m85.

(Source: Bhattacharya et al.(2012), Figure 7. Reproduced by permission of John Wiley

& Sons LTD).

binding sites were obtained. Figure 12.3 shows the Schoenberg sample mean

size-and-shape calculated for each of these samples.
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Figure 12.2 The Schoenberg extrinsic mean reflection size-and-shape of the atoms com-

mon to the binding sites. (Source: Bhattacharya et al.(2012), Figure 7. Reproduced by

permission of John Wiley & Sons LTD).

Figure 12.3 The Schoenberg extrinsic mean reflection size-and-shape for samples of

serine proteinase and acid proteinase, binding sites, as shown in Figures 1.8 and 1.9.
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13.1 Introduction

In this chapter, we are concerned with a landmark based nonparametric ana-

lysis of similarity shape data. For landmark based shape data, one considers a

k-ad x = (x1, . . . ,xk) ∈ (Rm)k, which consists of k labeled points in Rm that rep-

resent coordinates of landmarks (see Chapter 1). Each landmark represents a

location on an object having a certain significance, which may have a geomet-

ric or anatomical meaning. The landmark coordinates, themselves, are of no

interest in shape analysis, as they depend on the position of the object relative

to the device, such as a digital camera, that recorded the data.

The physical principle behind the data acquisition process is key in the

selection of the transformation by which the coordinates of two landmark

configurations are identified. For example, if the pixel coordinates of land-

marks in a frontal digital camera image of a still scene are recorded, the coordi-

nates obtained from two such photographs taken at the same distance differ by

a congruence, and one may consider the size-and-shape of the k-ad, sσ (x), as

discussed in the previous chapter, which is defined as the orbit of ξ under the

295
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action of SO(m), where ξ = (ξ 1, . . . ,ξ k) represents the centered configuration,

given in (3.122).

On the other hand, if the landmark coordinates differ by a composition of a

rotation, translation and scaling, one considers the direct similarity shape [x] of

a k-ad in Rm, as defined in (3.124). In the latter case, one “discards” the effects

of magnification and differences that may arise because of variation in size or

in equipment used or due to the manner in which images are taken and digitally

recorded. In the language of group actions developed in Chapter 3, the trans-

formations in this case would belong to the group of direct isometries, if size

is taken into account, or the one generated by direct isometries and scaling, as

proposed in a pioneering paper by Kendall (1984) [177] for measuring shapes,

if the size is ignored. A general concept of G-shape, associated with the action

of a Lie group G on Rm is due to Patrangenaru and Patrangenaru (2004) [275].

Once the type of G-shape data was identified, the sample space is known, and

the main focus is the choice of a distance on it.

In this chapter, we consider only G-shapes, where G = SO(m) or G = O(m).
For reasons that will be evident in Chapter 22, our preference is for extrinsic

distances. Our main focus here is to to construct (in Section 13.2) equivariant

embeddings of such O(m)-spaces into vector spaces of matrices, using an im-

portant representation of Schoenberg (1935) [300] relating a matrix of squared

Euclidean inter-point distances of a set of k points in Rm and the k× k pos-

itive semidefinite matrix of the inner products of the corresponding centered

points, which is for size-and-shapes. It is then appropriate to apply the general

nonparametric theory from Chapter 5. Recall from Section 3.5 that the reflec-

tion shape space is the manifold Σ k
m,0 of reflection shapes of k-ads for which

{ξ1, . . . ,ξk} spans Rm. The manifold approach to reflection-shape analysis, in-

cluding Schoenberg embeddings and connections to MDS in Section 2.12 was

initiated by Bandulasiri and Patrangenaru (2005) [11].

REMARK 13.1.1. Note that the mean reflection-shape, introduced by Dryden

et al. (2008) [90], which in Bandulasiri et al. (2009) [10] was called MDS-

mean reflection shape, is not an extrinsic mean, as pointed out in Section 5

of A. Bhattacharya (2009)[25]. The first correct formula for the Schoenberg

reflection-shape is in fact the one given in Bandulasiri et al. (2009) [12], and,

independently, in A. Bhattacharya (2009) [24].

Given Remark 13.1.1, the manifold based reflection-shape analysis approach

in this chapter has limited connection with the MDS based mean reflection-

shape estimators in Dryden and Mardia (1998 [91], p. 281).

In Section 13.3, we introduce the Schoenberg embedding of the reflection-

shape manifold Σ k
m,0. The extrinsic sample mean reflection-shape under this

embedding turns out to be the sample estimate [MDSm(W )]RS in Dryden and

Mardia (1998 [91], p. 281). However, the population mean defined by the lat-

ter (see Dryden and Mardia (1998 [91], pp. 88, 279), in the parametric or
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semiparametric setting, is in general different from the extrinsic mean de-

scribed here, unless the underlying distribution has additional structure (such

as isotropy, in the case m = 2). It now follows from the general results on the

consistency of the extrinsic sample mean as an estimator of the extrinsic mean

(see Chapter 4) that the estimate in Dryden and Mardia (1998) [91] is a con-

sistent estimate of their target population parameter only for certain special

classes of distributions.

Section 13.3 provides the main ingredients for asymptotic nonparametric

inference based on Schoenberg means on Σ k
m,0. The necessary and sufficient

condition for a probability measure Q on Σ k
m,0 to be Schoenberg-nonfocal is

that, in their decreasing order, the eigenvalues of rank m and m + 1 of the mean

matrix of the push forward distribution are distinct. The extrinsic sample mean

differs from the MDS sample mean estimate in Dryden and Mardia (1998) [91]

or in Kent (1994) [182] (in the case m = 2).

13.2 Equivariant Embeddings of Σ k
2 and RΣ k

m,0

Recall that in the complex representation of a Kendall shape σ (x) of a planar

k-ad x, if the scaling effect is removed by scaling ξ to unit size as

u =
ξ

|ξ | , (13.1)

the transformed quantity u is called a preshape. The quadratic Veronese–

Whitney embedding of Σ k
2 into S(k,C), the linear space of selfadjoint complex

matrices of order k, (or simply the Veronese–Whitney map) is j : Σ k
2 → S(k,C),

where with u representing the preshape as in (13.1),

j([x]) = uu∗,u∗u = 1. (13.2)

We now consider the case m ≥ 3. Sinceξ ∈ Lm
k , one may consider the map

J : RΣ k
m,0 → Lk ⊂ Sym(k,R), where Lk is the linear subspace Lk = {A ∈

Sym(k,R),A1k = 0}, where 1k is the k× 1 vector (1 . . .1)T , is given by:

A = J([x]R) = uTu, (13.3)

where u = ξ/‖ξ‖ and ξ = (x1 − x, . . . ,xk − x) ∈ (Rm)k identified with

M(m,k;R). This is the Schoenberg embedding .

REMARK 13.2.1. The Schoenberg in (13.3) can be extended to the orbifold

RΣ k
m,+ of similarity shapes of ordered configurations of k points Rm that are

not all the same. One may select an orthobasis of Lk (with the Euclidean

norm induced from Sym(k,R)), and obtain the embedding ψ of this orbifold

in Sym(k− 1,R), considered by Dryden et al. (2008) [90]. The theory devel-

oped in this chapter is valid only on the regular part of this orbifold, and given

that the singular part has measure zero, this situation is fairly general.
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Since J is differentiable, to show that J is an embedding it suffices to show

that J and its derivative are both one to one. If J([x]R) = J([x′]R), from (13.3)

the Euclidean distances between corresponding landmarks of the scaled con-

figurations are equal

‖ui− u j‖ = ‖u′i − u′ j‖, ∀i, j = 1, . . . ,k. (13.4)

Moreover since ∑k
i=1 ui = ∑k

i=1 u′i = 0, by the fundamental theorem of Euclidean

geometry, there is a matrix T ∈ O(m) such that u′i = Tui,∀i = 1, . . . ,k. If we set

B =
‖ξ ′‖
‖ξ‖ T, b = x′−Bx, it follows that x′i = Bxi +b,∀i = 1, . . . ,k with BT B = cIm,

and from (3.121), we see that [x]R = [x′]R. Thus J is one to one. The proof of

the injectivity of the derivative of J is left to the studious reader.

THEOREM 13.2.1. The range of the Schoenberg embedding of RΣ k
m,0 is the

subset Mk,p of positive semidefinite matrices of trace 1 in Lk.

Since Lk isometric to Sym(k− 1,R), rather than using this embedding, one

may embed RΣ k
m,0 directly in Sym(k− 1,R), via ψ given by

ψ([x]R) = HJ([x]R)HT , (13.5)

where H is a (k− 1)× k matrix, with HTH = Ik−1.

COROLLARY 13.2.1. The range of ψ is the set M̃k,p of rank m and trace 1

matrices in Sym(k− 1,R).

The tangent space to M̃m,k at ψ([ξ ]R) is the range of the differential of ψ at

[ξ ]R. If we set η = ξ HT , then rank(η) = m and ψ([ξ ]R) = ηT η , and

Tψ(σ̃ (η))M̃m,k = TηT ηM̃m,k

= {v ∈ Sym(k− 1,R) : Trv = 0,v = yT η + ηT y,y ∈M(k− 1,m,R)}
(13.6)

Since ηηT has an inverse, for any y ∈M(k−1,m,R) we define the symmetric

matrix S = 1
2 (ηT (ηηT )−1y + yT (ηηT )−1η) and obtain the following represen-

tation of the tangent space in (13.6):

TηT η M̃m,k = {v ∈ Sym(k− 1,R),Trv = 0,v = SηηT + ηT ηS,S ∈ S(k− 1,R)}.
(13.7)

Given the equivariance of ψ , if ηT η = AΛAT , with A ∈ O(k− 1) and Λ the

diagonal matrix with diagonal elements λ1, . . .λm,0, . . . ,0,∑λ j = 0, then

TηT ηM̃m,k = ATΛ Mm,kAT . (13.8)

From (13.7) it follows that the tangent space at Λ is given by

TΛ M̃m,k = {v ∈ Sym(k− 1 : R),v =

(
Vm W

W T 0

)
,Vm ∈ S(m,R),

TrVm = 0,W ∈M(k− 1−m,m;R)}. (13.9)
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13.3 Extrinsic Mean Planar Shapes and Their Estimators

We recall from Chapter 5 that the extrinsic mean µ j,E (Q) of a nonfocal prob-

ability measure Q on a manifold M w.r.t. an embedding j : M→ RN , when

it exists, is the point from which the expected squared (induced Euclidean)

distance under Q is minimum.

In this section we will consider extrinsic means associated with embeddings

of the two types of manifolds described in Section 13.2.

13.3.1 Mean Planar Direct Similarity Shape

We first describe the extrinsic mean of a probability measure Q on Σ k
2 with

respect to the Veronese–Whitney map j given in (13.2). The squared distance

in the space S(k,C) of self adjoint matrices is d2
0(A,B) = Tr((A−B)(A−B)∗) =

Tr((A−B)2).
A probability measure Q on Σ k

2 may be viewed as a distribution of a random

shape [U], where U is a random preshape (see (3.124)). According to Prob-

lem 4.3.6, this probability measure Q is J-nonfocal if the largest eigenvalue

of E(UU∗) is simple, and in this case µJ,E (Q) = [µ], where µ ∈ S(L2
k) is a unit

eigenvector corresponding to this largest eigenvalue (see also Bhattacharya and

Patrangenaru (2003) [42]).

The extrinsic sample mean direct similarity planar shape [X]J,E of a random

sample [Xr] with preshapes Ur = [U1
r : · · · :Uk

r ], 1T
k Ur = 0,‖Ur‖ = 1,r = 1, . . . ,n,

from such a nonfocal distribution exists with probability converging to 1 as

n →∞ (see Bhattacharya and Patrangenaru (2003) [42]) and is given by

[X]J,E = [U], (13.10)

where U is a unit eigenvector in S(L2
k) corresponding to the largest eigenvalue

of

K := n−1
n

∑
r=1

UrU∗
r . (13.11)

We may consider an orthogonal basis over C and identify S(L2
k) with the unit

sphere in Ck−1. W.r.t. this basis the unit vector Ur corresponds to a random

point Zr on that sphere, and the mean is the shape of the unit eigenvector cor-

responding to the largest eigenvalue of

K̂ = n−1
n

∑
i=1

ZiZ
⋆
i . (13.12)

This means that [X]J,E is given by a formula that is similar to the one for the full

Procrustes estimate of the mean shape in parametric families such as Dryden-

Mardia type distributions or complex Bingham type distributions for planar
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shapes on Σ k
2 (Kent (1992) [181], (1994) [182]). For this reason, the Veronese-

Whitney extrinsic sample mean shape may also be called the Procrustes mean

estimate .

Let λ̂1 > λ̂2 ≥ . . . ≥ λ̂k−1 denote the eigenvalues of the matrix K̂ in 13.12.

Write

R̂ = diag{(λ̂1 − λ̂2)
−1

, . . . , (λ̂1 − λ̂k−1)−1}, (13.13)

Ĉ =
1

n

n

∑
i=1

|z⋆i m̂|2M̂k−2ziz
⋆
i M̂⋆

k−2 (13.14)

and

Ĝ = R̂ĈR̂, (13.15)

where M̂k−2 is a matrix of dimension (k−2)× (k−1) such that M̂k−2m̂ = 0k−2,

the (k− 2)-vector of zeros; m̂ is such that [m̂] is the sample mean shape; and

M̂k−2M̂⋆
k−2 = Ik−2, the (k−2)× (k−2) identity matrix. An explicit construction

for M̂k−2 is given in Amaral et al. (2007) [2]. The pivotal T statistic is defined

by

T (m) = 2nm⋆M̂⋆
k−2Ĝ−1M̂k−2m (13.16)

where [m] is a candidate mean shape, and m a corresponding pre-shape (the

particular choice of pre-shape m does not matter). The factor 2 is present due

to the standard definition of the complex multivariate normal; see Dryden and

Mardia (1998, formula 6.3) [91].

13.3.2 Extrinsic Mean Reflection Shapes

We consider now a random k-ad in general position X, centered as X0 = (X1 −
X , . . . ,X k −X) ∈ (Rm)k ≃ M(m,k;R), and then scaled to U :

U = X0/‖X0‖. (13.17)

Set

B = E(UTU). (13.18)

Obviously Tr(B) = 1,B1k = 0,B ≥ 0.
The formula for the extrinsic mean reflection shape of [X]R, has been found

by A. Bhattacharya (2008) [25], and independently by Bandulasiri et al. (2008)

[12]. This mean exists if

Tr(B−uT u)2 (13.19)

has a unique minimizer u ∈ M(m,k;R) up to an orthogonal transformation,

satisfying the constraints

u1k = 0,Tr(uT u) = 1. (13.20)
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THEOREM 13.3.1. Assume B = ∑k
i=1 λiei(B)ei(B)T is the spectral decom-

position of B, then the extrinsic mean reflection shape exists if and only if

λm > λm+1. If this is this case, then uT can be taken as the matrix

V = (v1v2 . . .vm), (13.21)

whose columns are orthogonal eigenvectors of B corresponding to the largest

eigenvalues λ1 ≥ ·· · ≥ λm of B, with

(a) vT
j 1k = 0

and

(b) vT
j v j = λ j − λ̄ +

1

m
,∀ j = 1, . . . , p,where λ̄ =

1

m
(λ1 + · · ·+ λm). (13.22)

We give here a proof of Theorem 13.3.1 following Bandulasiri et al. (2008)

[12]. The extrinsic mean exists if

Tr(B−uT u)2 (13.23)

has a unique minimizer u ∈ (Rm)k up to an orthogonal transformation, satisfy-

ing the constraints

(a) u1k = 0

and

(b) Tr(uT u) = 1. (13.24)

If v is an eigenvector of B, from B1k = 0 it follows that vT 1k = 0. In addition,

since B ≥ 0,TrB = 1, we have λ j ≥ 0, j = 1, . . . ,k,λ1 + · · ·+λk = 1. Let e1, . . . ,ek

be corresponding unit eigenvectors of B.
Assume u is minimizer of (13.23) subject to the constraints (13.24).

Let ω1 ≥ ·· · ≥ ωk be the eigenvalues of uT u, and assume f1, . . . , fk

are corresponding unit eigenvectors. Let E respectively F be the matri-

ces having as columns e1, . . . ,ek respectively f1, . . . , fk. If Λ respectively

Ω are the matrices having the only possibly nonzero diagonal entries

λi, i = 1, . . . ,k respectively ωi, i = 1, . . . ,k, then B = EΛET ,uT u = FΩFT ,
and Ψ = Tr(EΛET − FΩFT )2 = Tr(E(Λ − ET FΩFT E)ET )2 = TrE(Λ −
ET FΩFT E)2ET = Tr((Λ − ET FΩFT E)2ET E) = Tr((Λ − ET FΩFT E)2). If

we set G = ET F , we get

Ψ = Tr((Λ −GΩGT )2), (13.25)

where G ∈ O(k). For fixed Ω the quantity Ψ is minimized when G = Ik, (see

Mardia et al. (1979, p.423)). Since ωm+1 = · · · = ωk = 0, it follows that Ψ ≥
∑m

i=1(λi −ωi)
2. On the other hand, from (13.24)(b), it follows that ω1 + · · · +

ωm = 1, so we have to minimize the sum ∑m
i=1(λi−ωi)

2 subject to the constraint
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ω1 + · · · + ωm = 1. If we use Lagrange multipliers we obtain the minimizers

ω j = λ j + 1
m

(λm+1 + · · · + λk),∀ j = 1, . . . , p. Note that Ψ attains its minimum

when G = Im, which is equivalent to F = E. It follows that, without loss of

generality, we may assume that the eigenvectors of uT u are proportional to the

corresponding eigenvectors of B. Therefore, the minimizer u of Ψ is given by

the transposed matrix of the matrix

V = (v1v2 . . .vm) (13.26)

whose columns are orthogonal eigenvectors of B corresponding to the largest

eigenvalues λ1 ≥ ·· · ≥ λm of B, with

vt
jv j = ω j = λ j +

1

m
(λm+1 + · · ·+ λk) = λ j − λ̄ +

1

m
,∀ j = 1, . . . , p. (13.27)

�

COROLLARY 13.3.1. If σ̃ (U) is a Schoenberg non-focal random reflection-

shape, and µ̃ = E(UTU), there is a small open neighborhood N ⊂ Lk of µ̃,
such that for any µ ∈ N , the projection P = PJ is given by

P(µ) =
m

∑
j=1

(λ j − λ̄ +
1

m
)WjW

T
j , (13.28)

where λ1 ≥ ·· · ≥ λm > λm+1 ≥ ·· · ≥ λk, are the eigenvalues of µ in their non-

decreasing order, λ1 + · · ·+ λk = 1, and

µ =
k

∑
j=1

λ jWjW
T
j , (13.29)

is the spectral decomposition of µ .

13.4 Asymptotic Distribution of Mean Shapes

13.4.1 Asymptotic Distributions of Veronese–Whitney

Sample Mean Direct Similarity Planar Shapes

Theorem 13.4.1 below is from Amaral et al. (2010) [1]. It generalizes the χ2

limit result of Prentice (1984) and Watson (1984) from real to complex unit

vectors. We give sufficient conditions for T (m) in (13.16) to have a χ2
2k−4 null

asymptotic distribution and cover technical issues not mentioned in these ear-

lier papers, such as sufficient conditions for the relevant covariance matrix to

be positive definite. Theorem 13.4.1 is also a version of Theorem 4.2 in Bhat-

tacharya and Patrangenaru (2005), but note that the former differs from the

latter as their identification of a shape with a point in CPk−2 is not the same as

ours.

As in the introduction, Σ = E(ZZ⋆), where Z is a random pre-shape.
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THEOREM 13.4.1. Suppose the underlying population F of pre-shapes Z

is such that (i) the largest eigenvalue of Σ = E(ZZ⋆) is distinct (so that the

corresponding eigenvector is well-defined up to scalar multiplication); (ii) the

distribution F has a non-zero component which is absolutely continuous with

respect to the uniform distribution on the complex unit sphere; (iii) the density

of the absolutely continuous component is strictly positive on an open subset

of the complex unit sphere. Then if m is a pre-shape of the population mean

shape [m], T (m) has an asymptotic χ2
2k−4 distribution.

We first state two results used in the proof of Theorem 13.4.1. First, by the

multivariate central limit theorem for Ŝ,

n1/2(Ŝ−Σ ) →d W, (13.30)

where W is a (k− 1)× (k− 1) Hermitian matrix whose entries are jointly nor-

mally distributed with zero mean. Second, by applying the complex versions

of the matrix perturbation results in Watson (1983, p.216), using (13.30) and

condition (i) in the theorem, we obtain

n1/2(P̂1 −P1) →d ∑
k>1

PkWP1 + P1WPk

λ1 −λk

, (13.31)

where Pj = m jm
⋆
j , P̂j = m̂ jm̂

⋆
j and the λi are the ordered eigenvalues of Σ , as

defined in Section 2 of Amaral et al. (2010). Note that Theorem 13.4.1 assumes

that λ1 is strictly larger than the other eigenvalues. We shall write m1 = m so

that P1 = mm⋆. We define Mk−2 to be the population analogue of M̂k−2 so

that Mk−2m = 0k−2 and Mk−2M∗
k−2 = Ik−2, and also, under the non-degeneracy

assumption of the theorem, M̂k−2 →p Mk−2.

For simplicity, we shall assume that λ2 > .. . > λk−1, i.e. all the inequali-

ties are strict. However, with a longer proof it can be shown that Theorem A

remains true even when some of the λ2, . . . ,λk−1 are equal.

Proof of Theorem 13.4.1. This is broken into 4 steps.

Step 1 - Show ||n1/2M̂k−2m + n1/2Mk−2(m̂−m)|| →p 0 as n →∞.

We have the identity

−n1/2M̂k−2m = n1/2M̂k−2(m̂−m)

= n1/2Mk−2(m̂−m) + n1/2(M̂k−2 −Mk−2)(m̂−m).

Thus

||n1/2M̂k−2m + n1/2Mk−2(m̂−m)||
= ||n1/2(M̂k−2 −Mk−2)(m̂−m)||
≤ const.||M̂k−2 −Mk−2||.||n1/2(m̂−m)|| →p 0,
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using the results that (a) Ŝ →p Σ implies that M̂k−2 →p Mk−2, and (b) as a conse-

quence of (13.31) we have ||n1/2(m̂−m)|| = Op(1).

Step 2 - Show that

n1/2Mk−2(m̂−m) →d RMk−2Wm ∼ CNk−2(0k−2,G),

where G = Rcov(Mk−2Wm)R;

R = diag{(λ1 −λ2)−1, . . . , (λ1 −λk−1)−1} (13.32)

is the population analogue of R̂ in (13.13); and G, the population analogue of

Ĝ defined in (13.15), is given by G = RCR, where

C = E[|z⋆m|2Mk−2zz⋆M⋆
k−2] (13.33)

is the population analogue of Ĉ in (13.14).

Pre-multiplying the left hand side of (13.31) by Mk−2 and postmultiplying

by m we obtain

n1/2Mk−2(P̂1 −P1)m = n1/2Mk−2m̂m̂⋆m,

since P̂1 = m̂m̂⋆ and Mk−2P1m = 0k−2 by definition of the quantities involved.

Moreover,

n1/2Mk−2m̂m̂⋆m = n1/2Mk−2m̂ + n1/2Mk−2(m̂⋆m− 1)m̂.

Therefore

||n1/2Mk−2m̂m̂⋆m− n1/2Mk−2(m̂−m)|| = ||n1/2Mk−2(m̂⋆m− 1)m̂|| →p 0

(13.34)

since m̂⋆m →p 1 and n1/2Mk−2m̂ = Op(1).

Now consider the right hand side of (13.31). Pre-multiplying by Mk−2 and

post-multiplying by m we obtain

Mk−2

[
k−1

∑
j=2

PjWP1 + P1WPj

λ1 −λ j

]
m = Mk−2

[
k−1

∑
j=2

1

λ1 −λ j
Pj

]
W m

= RMk−2Wm ∼ CNk−2(0k−2,G),

where G is defined above. We have used the fact that Mk−2 has the form

∑
k−1
j=2 r j−1m⋆

j , where {r j}k−2
j=1 is a set of orthonormal (k− 2)-vectors; and con-

sequently

Mk−2

[
k−1

∑
j=1

1

λ1 −λ j
Pj

]
=

k−1

∑
j=2

1

λ1 −λ j
Mk−2Pj

=
k−1

∑
j=2

1

λ1 −λ j
r j−1m⋆

jm jm
⋆
j

= RMk−2.
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Therefore the result follows from the fact that the left hand side of (13.31),

pre-multiplied by Mk−2 and post-multiplied by m, becomes n1/2Mk−2(m̂−m),

and the corresponding right hand side is RMk−2Wm which has distribution

CNk−2(0k−2,G).

Step 3 - Show that Ĝ→p G = RCR, where Ĝ, R and C are defined in, respectively,

(13.15), (13.32) and (13.33).

The ( j,h) element of matrix Ĝ may be written in the form

n−1Â⊤
jh

n

∑
i=1

Xi = Â⊤
jhX̄ ,

where Xi is a vector whose components are of the form

ziα z̄iβ ziγ z̄iδ where α,β ,γ,δ ∈ {1, . . . ,k− 1}

and Â jh is a vector whose components are polynomial functions of the com-

ponents of R̂, M̂k−2 and m̂. By the law of large numbers, 1
n ∑Xi converges

in probability to E(X1) = γ, say, where the components of γ are of the form

E(z1α z̄1β z1γ z̄1δ ). Moreover, since R̂,M̂k−2 and m̂ converge in probability to

their population analogues R, Mk−2 and m, it follows that Â jh →p A jh, where

A jh is obtained from Â jh by replacing R̂, M̂k−2 and m̂ by their population val-

ues.

Step 4 - G has full rank.

By the Lebesgue decomposition theorem we may write

F = εFac + (1− ε)Fr,

where F is the distribution of Z, Fac is the component which is absolutely

continuous, in the present context with respect to the uniform distribution on

the complex unit sphere, and Fr is the remaining component. By assumption

(ii), ε ∈ (0,1]. Write µac and Ωac for, respectively, the mean and covariance

matrix of Fac, with similar definitions for µr and Ωr. Now, writing Ω = cov(Z),

Ω = ε(Ωac + µacµ⋆
ac) + (1− ε)(Ωr + µrµ⋆

r )

−(εµac + (1− ε)µr)(εµac + (1− ε)µr)
⋆

= εΩac + (1− ε)Ωr + ε(1− ε)(µac− µr)(µac − µr)
⋆.

Assumption (iii) ensures that Ωac is positive definite; see Bhattacharya and

Ghosh (1978). Therefore, since the second and third terms are nonnegative

definite, it follows that Ω is also positive definite.

Define a(Z) = m⋆ZZ⋆m and let Y = Mk−2Z, where Z ∼ F . Then a(Z) ∈ [0,1]

since m and Z are both complex unit vectors. Note that

E[YY ⋆] = Mk−2ΩM⋆
k−2 = diag{λ2, . . . ,λk−1}
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which is positive definite since Mk−2 has full rank and Ω is positive definite.

Therefore the result will follow if we can show that, for some ε > 0, G ≥
εE[YY ⋆], where “≥” should be understood in terms of the partial ordering of

non-negative definite matrices.

We have, for any δ > 0,

G = E[a(Z)YY ⋆]

= E
[
a(Z)I(a(Z) > δ )ZZ⋆

]
+ E
[
a(Z)I(a(Z) ≤ δ )YY ⋆

]
.

≥ E
[
a(Z)I(a(Z) > δ )YY ⋆

]

≥ δE
[
I(a(Z) > δ )YY ⋆

]
.

But it follows from assumption (ii) of the theorem that

E[YY ⋆] = lim
δ→0

E[I(a(Z) > δ )YY ⋆],

and so there exists a δ̃ > 0 such that

E
[
I(a(Z) > δ̃ )YY ⋆

]
≥ 1

2
E
[
YY ⋆

]
,

from which it follows that

G ≥ δ̃

2
E
[
YY ⋆

]
,

and therefore G is positive definite.

Finally, by Step 1 and Step 2,

n1/2M̂k−2m →d CNk−2(0,G),

Steps 3 and 4 state that Ĝ →p G and G has full rank. Thus the inverse of Ĝ exists

in probability as n →∞ and the statistic

T (m) = 2nm⋆M̂⋆
k−2Ĝ−1M̂k−2m,

is well-defined in the limit. Thus

T (m) →d χ2
2k−4

as required.

Note that we can obtain a slightly more general result by imposing condi-

tions ii) and iii) on the underlying distribution in the shape space, as opposed

to the underlying distribution in the pre-shape space. Since our proof does not

depend on the particular choice of pre-shape, we obtain the same result under

these more general conditions.

The above result enables us to give bootstrap confidence regions for a single
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population mean shape. When two or more mean shapes are available and we

wish to construct multi-sample tests or associated confidence regions based

on the bootstrap, then there are various procedures available, e.g. Amaral et

al. (2007), Bhattacharya (2008a) [24], Bhattacharya and Bhattacharya (2008),

Bhattacharya (2008b), and Bhattacharya and Bhattacharya (2012) [27]. Also

note that similar results are available for alternative notions of mean shape,

for example extrinsic means from equivariant embeddings (Bandulasiri et al.

(2009) [10]; Bhattacharya, 2008b [25]).

13.4.2 Asymptotic Distributions of Schoenberg Sample Mean

Reflection Shapes

[Asymptotic Distributions of Schoenberg Sample Mean Reflection Shapes]

Recall that the reflection shape manifold RΣ k
m,0, can be regarded as a subma-

nifold of SRΣ k
m,0, as size-and-reflection-shapes of k-ads in general position of

size one. Also, recall that its embedding J in (13.3) into the Euclidean vector

subspace Lk of k× k symmetric matrices, is given by

J([u]R) = uT u.

From Theorem 13.2.1, it follows that, if k ≥ p, the range of J in (13.3) is the

set Mm,k of trace one k× k positive semidefinite symmetric matrices A of rank

m, with A1k = 0.

REMARK 13.4.1. Consider the action of the orthogonal group O(k) on

S(k,R) :

β (S,A) = ASAT . (13.35)

Let Ok be the subgroup of O(k) that leaves invariant the subspace R1k of Rk

under the natural action on Rk. It follows that Ok leaves invariant the subspace

Lk under the action (13.35). The Schoenberg embedding is equivariant with

respect to the group actions of Ok, α on RΣ k
m,0 in equation (22.27) given by

α([u]R,A) = [uA]R, (13.36)

and β on in (13.35).

In this section, we will derive the asymptotics for the extrinsic sample mean

reflection shape for samples from a Schoenberg-nonfocal distribution Q on

RΣ k
m,0. For this purpose, we will use the general results for extrinsic means on

a manifold in Bhattacharya and Patrangenaru (2005) [43] (Theorem 3.1. and its

corollaries). Consider first the map P = PJ : N (µ̃) → Lk, as in Corollary 13.3.1,

P(µ) = ∑m
j=1(λ j(µ)− λ̄ (µ) + 1

m
)Wj(µ)Wj(µ)T as in Theorem 13.3.1. Hence for

µ ∈ N(µ̃),λm(µ) > λm+1(µ). Let γ(t) = µ̃ + tv be a curve in Lk with γ(0) = µ̃ ,
and γ̇(0) = v ∈ Lk. Let µ̃ = WΛW T ,W = (W1 . . .Wk),Λ = diag(λ1, . . . ,λk) be a

s.v.d. of µ̃ as in Corollary 13.3.1. Then

γ(t) = W (Λ + tWT vW )W T = W γ̃(t)WT , (13.37)
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where γ̃(t) = Λ + tW T vW. Then γ̃(t) is a curve in Lk starting at Λ , with the

derivative ˙̃γ(0) = W T vW. From (13.37) and the definition of P, we get that

P[γ(t)] = WP[γ̃(t)]WT . (13.38)

Differentiate (13.38) at t = 0, noting that (P(γ(t)])′(0) = dµ̃P(v) and

(P(γ̃(t)])′(0) = dΛ P(ṽ), to get that

dµ̃P(v) = W dΛ P(ṽ)W T . (13.39)

The equation (13.39) shows that it suffices to compute the differential of P at a

matrix Λ ∈ Lk that is diagonal w.r.t. a convenient orthobasis in Lk. If E
j
i = eie

T
j ,

where (e1, . . . ,ek) is the standard basis of Rk, we set Fj = (1 + ( j−1)2)−
1
2 (E1

1 +

E2
2 + . . .E

j−1
j−1 − ( j− 1)E

j
j ), j = 2, . . . ,k. An orthonormal basis in Lk is given by

Ẽ = (F2,F3, . . . ,Fk,2
− 1

2 (E
j
i + E i

j),1 ≤ i < j ≤ k). (13.40)

Note that the matrix Λ = diag(λ1, . . . ,λk) ∈ Lk has the s.v.d.

Λ =
k

∑
j=1

λ je je
T
j , (13.41)

therefore, by Corollary 13.3.1 its projection on Mm,k is also diagonal. From

Theorem 13.2.1, it follows that TΛ Mm,k is the vector subspace of Lk spanned

by the orthobasis

e(Λ ) = (F2,F3, . . . ,Fm,2
− 1

2 (E
j
i + E i

j),1 ≤ i < j ≤ p or 1 ≤ i ≤ p < j ≤ k− 1).
(13.42)

Since, for any A ∈ O(k− 1), the map v → AvAT is an isometry of Sym(k−
1,R), an orthobasis in the space TηT η M̃m,k is given then by

e(ηT η) = (F2
2 (η), . . . ,Fm

m (η),2−
1
2 (E

j
i (η) + E i

j(η)), (13.43)

for 1 ≤ i < j ≤ p or 1 ≤ i ≤ p < j ≤ k−1, where for any symmetric matrix F,

F(η) = AFAT .
In order to find (P(γ̃(t)])′(0), we first note that since the set of matrices with

simple eigenvalues is generic ( open and dense ), without loss of generality, we

may assume that λ1 >λ2 > · · ·> λk. Then we can choose a s.v.d. for γ̃(t) : γ̃(t) =

∑k
j=1 λ j(t)w j(t)w j(t)

T such that {λ j(t),w j(t)}k
j=1 are some smooth functions of

t satisfying w j(0) = e j and λ j(0) = λ j, where {e j}k
j=1 is the canonical basis for

Rk. Since w j(t)
T w j(t) = 1, we get by differentiating,

w j(t)
T ẇ j(0) = 0, j = 1, . . . ,k. (13.44)

  



ASYMPTOTIC DISTRIBUTION OF MEAN SHAPES 309

Also, since γ̃(t)w j(t) = λ j(t)w j(t), we get that

ṽe j +Λ ẇ j(0) = λ j(0)ẇ j(0) + λ̇ j(0)e j, j = 1, . . . ,k. (13.45)

A standard orthonormal basis in the space of matrices V ∈ S(m,R),TrV = 0,
is given by the

Ẽ(m) = (2−
1
2 (E1

1 −E2
2 ),6−

1
2 (E1

1 + E2
2 − 2E3

3), . . . ,

(1 + (m− 1)2)−
1
2 (E1

1 + E2
2 + . . .Em−1

m−1 − (m− 1)Em
m),

2−
1
2 (E

j
i + E i

j),1 ≤ i < j ≤ p), (13.46)

where E
j
i has all entries zero, except for the entry in the ith row and jth column,

which equals 1. From (13.9) it follows that TΛ M̃m,k is spanned by the orthobasis

e(Λ ) = (Ẽ(m),2−
1
2 (E

j
i +E i

j),1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k−1). (13.47)

For j = 2, . . . , p, let us set F
j
j = 1 + ( j−1)2)−

1
2 (E1

1 + E2
2 + . . .E

j−1
j−1 − ( j−1)E

j
j ).

Since, for any A∈ O(k−1), the map v → AvAT is an isometry of Sym(k−1,R),
an orthobasis in the space TηT ηM̃m,k is then given by

e(ηT η) = (F2
2 (η), . . . ,Fm

m (η),2−
1
2 (E

j
i (η) + E i

j(η)), (13.48)

for 1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k−1, where for any symmetric matrix F,

F(η) = AFAT .

REMARK 13.4.2. Since the asymptotic results are often presented in vector

notation, it will be useful to order the orthobasis (13.46) in the following non-

canonical way

E = (F2
2 , . . . ,F

m
m ,2−

1
2 (E

j
i + E i

j),1 ≤ i < j ≤ m or 1 ≤ i ≤ m < j ≤ k− 1,

Em+1
m+1 , . . . ,E

k−1
k−1 ,2

− 1
2 (E

j
i + E i

j),m + 1 ≤ i < j ≤ k− 1). (13.49)

Also note that if (e1, . . . ,ek−1) is the standard basis of Rk−1 identified with the

set of m× 1 real matrices, then E
j
i = e je

T
j .

From Section 5, it follows that the extrinsic mean µJ,E (Q) = of a Schoen-

berg nonfocal probability measure Q on RΣ k
m,0, given by µJ,E (Q) = J−1(PJ(µ)),

where µ is the mean of ψ(Q) in S(k,R) and Pψ is the projection on Mm,k, is the

same as the extrinsic mean µψ,E (Q). This will be simply labeled µE (Q) or µE .
Following Bhattacharya and Patrangenaru (2005) [43], the extrinsic covari-

ance operator ΣE = ΣJ,E is the restriction of the self-adjoint linear operator

dµPψΣdµPT
ψ to TPψ (µ)M̃m,k. The extrinsic covariance matrix is the matrix asso-

ciated to ΣE with respect to a basis e1(Pψ(µ)), . . . ,ed(Pψ(µ)) of TPψ (µ)M̃m,k,d =
m
2 (2k−m− 1)− 1. We now compute the differential of the projection PJ, fol-

lowing A. Bhattacharya (2008b) [25].
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PROPOSITION 13.4.1. The differential of PJ at µ is given by

dµP(A) =
m

∑
i=1

k

∑
j=m+1

(λi −λ j)ai jUFi jU
T , (13.50)

where A = ∑1≤i≤ j≤k ai jUFi jU
T and {UFi jU

T ,1 ≤ i ≤ j ≤ k} is the orthoframe

for S(k,R).

LEMMA 13.4.1. Assume the mean µ of ψ(Q) is a diagonal matrix Λ . The

differential of the projection Pψ at Λ with respect to the ordered orthobasis

(13.49) is given by

dΛ Pψ (F i
i ) = F i

i ,2 ≤ i ≤ p

dΛ Pψ (E i
i ) = 0 i > p,

dΛ Pψ (E l
j + E

j
l ) =





E l
j + E

j
l j < l ≤ p

λ j

λ j−λl
(E l

j + E
j
l ) j ≤ p < l

0 p < j < l.

(13.51)

Given the equivariance of the embedding ψ , from Lemma 13.4.1 we obtain

the following

PROPOSITION 13.4.2. If the spectral decomposition of the mean µ of ψ(Q)

is µ = ∑
k−1
i=1 λiẽiẽ

t
i , with λ1 ≥ ·· · ≥ λm > λm+1 ≥ ·· · ≥ λk−1, then

(i) the tangent space Tψ(µE )Mm,k = T1 ⊕T2, where T1 has the orthobasis

2−
1
2 (ẽ1ẽT

1 − ẽ2ẽT
2 , . . . , (1 + (m− 1)2)−

1
2 (ẽ1ẽT

1 + · · ·+ ẽm−1ẽT
m−1 − (m− 1)ẽmẽT

m),

2−
1
2 (ẽiẽ

T
j + ẽ jẽ

T
i ),1 ≤ i < j ≤ p), (13.52)

and T2 has the orthobasis

(2−
1
2 (ẽ jẽ

T
l + ẽl ẽ

T
j ),1 ≤ j ≤ p < l ≤ k− 1). (13.53)

(ii) Let N be the orthocomplement of Tψ(µE )Mm,k Then

dµPψ |T1 = IdT1
,

dµPψ (ẽ jẽ
T
l + ẽl ẽ

T
j ) =

λ j

λ j −λl

(ẽ j ẽ
T
l + ẽl ẽ

T
j ),∀( j, l),1 ≤ j ≤ p < l ≤ k− 1,

dµPψ |N = 0. (13.54)

An orthobasis of N in proposition 13.4.2 is

2−
1
2 (ẽ jẽ

T
l + ẽl ẽ

T
j ), p < j < l ≤ k− 1). (13.55)

The two orthobases (13.52), (13.53) and (13.55) yield an orthobasis ẽ of
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Sym(k− 1,R). From proposition 13.4.2 it follows that the matrix D associated

with the differential dµPψ relative to the orthobasis ẽ is diagonal:

D =




I m(m−1)
2

0 0

0 ∆m(k−m−1) 0

0 0 0


 , (13.56)

where

∆m(k−m−1) =




λ1
λ1−λm+1

. . . 0

. . . . . . . . .

0 . . . λm
λm−λk−1


 . (13.57)

The space of symmetric matrices Sym(k− 1,R), regarded as its own tangent

space at µ , splits into three orthogonal subspaces

Sym(k− 1,R) = T1 ⊕T2 ⊕N, (13.58)

leading to a decomposition of the covariance matrix Σ of ψ(Q), with respect to

the orthobasis of Sym(k−1,R) obtained by augmenting the orthobasis (13.47)

by an orthobasis of N, as follows:

Σ =




Σ11 Σ12 Σ13

ΣT
12 Σ22 Σ23

ΣT
13 ΣT

23 Σ33


 . (13.59)

If we change the coordinates in Rk−1 by selecting an orthobasis ẽ, the eigen-

vectors ẽ1, . . . , ẽk−1 of µ , in such a coordinate system, the mean is a diagonal

matrix Λ and the matrix Σµ = DΣDT , defined in Bhattacharya and Patrange-

naru (2005) [43], is

Σµ =




Σ11 Σ12∆ 0

∆ΣT
12 ∆Σ22∆ 0

0 0 0


 , (13.60)

and the extrinsic covariance matrix ΣE defined in Bhattacharya and Patrange-

naru (2005), with respect to the basis d−1
µψ (e(Λ )), where e(Λ ) is as defined in

(13.47), is

ΣE =

(
Σ11 Σ12∆

∆ΣT
12 ∆Σ22∆

)
, (13.61)

We assume now that Y1, . . . ,Yn are independent identically distributed random

reflection objects from a ψ-nonfocal probability distribution Q on Σ k
m,0 with

λm > λm+1. Let s̃σ (η) be the mean of ψ(Q) and Σ be the covariance matrix of

ψ(Q) with respect to the orthobasis ẽ defined above. Let ~W be the vectorized

form of a matrix W ∈ Sym(k−1,R) with respect to the basis Ṽ . Assume tan~W

denote the component of ~W tangent to ~̃Nm,k at ~ψ(µψ ).
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THEOREM 13.4.2. (a) The random vector n
1
2 tan(~ψ(Y E )−~ψ(µE )) converges

weakly to a random vector having a N(0,ΣE ) distribution, where ΣE is given

in (13.61).

(b) If ΣE is nonsingular, then n tan(~ψ(Y E )−~ψ(µE ))T Σ−1
E tan(~ψ(Y E )−~ψ(µE ))T

converges weakly to a χ2

km−m(m+1)
2

distribution.

From Theorem 13.4.2 we obtain the following result:

COROLLARY 13.4.1. Let G be a normally distributed matrix in Sym(k−
1,R) with a weak limit of n

1
2 (Y − µ). Assume the spectral decomposition of µ

is µ = VΛV T . Set GV = V T GV = (gV
jl) and G̃V = (g̃V

jl) be determined by

g̃V
jl =





gV
jl 1 ≤ j ≤ l ≤ m
λ j

λ j−λl
gV

jl 1 ≤ j ≤ m < l ≤ m− 1

0 m < j ≤ l ≤ k− 1

. (13.62)

Then n
1
2 (ψ(Y E )−ψ(µE)) converges in distribution to the normally distributed

random matrix VGVV T .

From Theorem 13.4.2, it follows that the extrinsic mean reflection-shape

can be easily estimated using non-pivotal bootstrap. Assume {x1, . . . ,xn} is

a random sample of configurations x j = (x1
j , . . . ,x

k
j), j = 1, . . . ,n. We consider

N bootstrap resamples from this sample, where N is a reasonably large num-

ber, say N ≥ 500. For each such resample x∗1 , . . . ,x
∗
n , we compute the extrinsic

sample mean [x]RS
∗

E . We then use a local parametrization of SRΣ k
m,0 and find

(1−α)100% Bonferroni simultaneous confidence intervals for the correspond-

ing km− m(m+1)
2 local coordinates.

Two sample tests for extrinsic means on can be be derived from the general

theory for two sample tests for extrinsic means on manifolds recently devel-

oped by A. Bhattacharya (2008) [24].

13.5 A Data Driven Example

In Sharvit et al. (1998) [306], the authors provided matching sketches against

a small database consisting of a variety of fish, planes, etc., that were later

classified by Klassen et al. (2004) [194] using a geodesic distance on a infinite

dimensional space of shapes of contours. We selected an example of a sam-

ple of sting rays for display in Figure 13.1. Given that the computations are

ultimately discrete, we compute the sample mean for a discrete version of the

silhouette of 100 pseudolandmarks, and the nonpivotal bootsrap distribution of

mean shapes based on 500 resamples.

Note that while the individual features within the sample are smoothed out in

the process, the bootstrap distribution is fairly well centered around the sample
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Figure 13.1 Sample of 20 curves of sting ray fish. (Source: Amaral et al.(2010), Figure

1. Reproduced by permission of Elsevier).

Figure 13.2 Bootstrap distribution of sample mean shapes of sting ray fish. (Source:

Amaral et al.(2010), Figure 2. Reproduced by permission of Elsevier).

mean shape. One of the main difficulties is that the matching of the pseudoland-

marks is automatic, based on the labeling on the preshape of the silhouette.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-16&iName=master.img-219.jpg&w=323&h=194
http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-16&iName=master.img-220.jpg&w=215&h=130
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According to Section 3.5.7, affine shape analysis of configurations of k-ads in

general position utilizes techniques for data analysis on Grassmann manifolds.

Therefore, in order to perform an extrinsic analysis, one has to find appropriate

chord distances on Grassmannians that are associated with convenient equiv-

ariant embeddings. In this chapter, we will explore the theory necessary to do

so.

14.1 Equivariant Embeddings of Grassmann Manifolds

Assume k <m and let Gk(Rm) denote the real Grassmann of k dimensional sub-

spaces in Rm (see Section 3.5.7). Let j : Gk(Rm) → Sym(m,R) be the function

which, with respect to a fixed orthonormal basis e of Rm, maps an element V

in Gk(Rm) to the matrix associated with the orthogonal projection onto V with

respect to e. It is known (see Dimitric (1996) [86]) that this map is an embed-

ding, which we will call the Dimitric embedding . Dimitric (1996) [86] proved

that this embedding is equivariant and embeds the Grassmannian minimally

into a hypersphere. The Dimitric embedding is an extension of the Veronese-

Whitney embedding of projective spaces (see Section 10.2 or Bhattacharya and

Patrangenaru (2003) [42]). This was commonly used for axial data (see Mardia

and Jupp (2000 ([230]) and for multivariate axial data (Mardia and Patrange-

naru (2005) [233]).

Later on, the Dimitric embedding was used in computer vision literature un-

der the name of projection embedding (see Helmke et al. (2007) [149], Harandi

et al. (2014) [140]). The explicit formula for the Dimitric embedding in terms

of a m× r matrix x with orthogonal norm one columns spanning an r-plane

315
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V ∈ Gk(Rm, i.e., xT x = Ik, is

j(V ) = xxT . (14.1)

Obviously, the Dimitric embedding generalizes the VW-embedding of RPm−1,
that can be obtained by taking k = 1.

Another important embedding can be obtain from classical algebraic geom-

etry, is the Plücker embedding, defined below. The Plücker embedding (see

Harandi et al. (2014) [140]) is the map jP defined by

jP : Gk(Rm) → P(∧kRm)

span(v1, . . . ,vk) →R(v1 ∧·· ·∧ vk) (14.2)

14.2 Derivation of a Formula for the Dimitric Mean of a Random

Object on a Grassmann Manifold

Now, let us suppose that a probability measure Q is given on Gk(Rm). Using the

embedding j, we may define the image probability measure j(Q) on Sym(m,R).

Let µ j(Q) be the mean of j(Q) on Sym(m,R). It was first stated in Patrange-

naru and Mardia(2003) [274] that the Dimitric mean, which is the extrinsic

mean with respect to the Dimitric embedding (14.1), is the k-dimensional sub-

space spanned by the eigenvectors corresponding to the k-largest eigenvalues

of µ j(Q). Note that a projection map of to j(Gk(Rm)) is generically defined on

Sym(m,R). This way, the Dimitric mean may be defined as the projection of

µ j(Q) onto j(Gk(Rm)). Our first objective of this section is to prove this claim.

The proof is due to Sughatadasa (2006) [322].

For the sake of simplicity, let us denote µ j(Q) by E . We first note that

each orthogonal symmetry matrix is positive semidefinite, hence E is sym-

metric positive semidefinite. Let A denotes an element of Sym(m,R) in the

vicinity of E . Then A is symmetric and positive definite as well, hence its

eigenvalues are real and nonnegative, and there exists an orthonormal basis

of Rm consisting of eigenvectors of A. Let us denote the eigenvalues of A as

λ1(A)≥ λ2(A) · · · ≥ λm(A) and the corresponding orthogonal basis of eigenvec-

tors as {e1(A),e1(A), · · · ,em(A)}. For the sake of simplicity, we will drop the

argument A. The probability measure Q is j-nonfocal iff λk > λk+1 for E and

for all elements of Sym(m,R) in a suitably small neighborhood of E (a nec-

essary and sufficient condition to have a unique point on Gk(Rm) at minimal

distance from A).
Let U be such a neighborhood of E . Recall that the standard inner product

in Sym(m,R) is given by < C,D >= Tr (CD), hence the Euclidean norm is

‖C‖ =
√
{Tr (C2)}. We claim that the map,

φ : U → j(Gk(Rm)), (14.3)
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where φ (A) is equal to the orthogonal projection matrix onto the subspace

spanned by e1(A), · · · ,ek(A), has the property that, for any A ∈U ,

‖A−φ (A)‖ ≤ ‖A−C‖ for all C ∈ j(Gk(Rm))

Equality holds if and only if C = φ (A). Thus, this map is indeed the projection

on j(Gk(Rm)) as suggested in [274]. Now, we proceed to prove this claim.

For a fixed A ∈ U , let λi, i = 1, · · ·m and ei, i = 1, · · ·m be the eigenvalues

and orthogonal eigenvectors as described above. Let B an arbitrary element of

j(Gk(Rm)). So B is an orthogonal projection matrix onto some k dimensional

subspace, hence in particular we note that B is positive semi-definite. Now,

‖A−B‖2 = < A,A >−2 < A,B > + < B,B > (14.4)

= Tr(A2) + Tr(B2)− 2−Tr(BA) (14.5)

=
m

∑
i=1

λ 2
i + k− 2

m

∑
i=1

λi < B(ei),ei >, (14.6)

where the last inner product < B(ei),ei > is the standard inner product on Rm.

The only term in the right hand side that depends upon B is the third term

Tr(AB) = ∑m
i=1 λi < B(ei),ei >, so we need to show that φ (A) provides that

unique B which maximizes

Tr(AB) =
m

∑
i=1

λi < B(ei),ei > .

Let us first notice that when B = φ (A), B(ei) = ei if i ≤ k and 0 if i > k, hence

Tr(AB) = ∑k
i=1 λi. Now let us consider an arbitrary B ∈ j(Gk(Rm)) and write

αi =< B(ei),ei >. Since B is positive semidefinite αi ≥ 0 and by the Cauchy-

Schwartz inequality, αi ≤ 1. Hence, 0 ≤ αi ≤ 1 for all i. Also

n

∑
i=1

αi =
n

∑
i=1

< B(ei),ei > (14.7)

= Tr{B(
n

∑
i=1

ei ⊗ e′i)} (14.8)

= Tr{B(id)} (14.9)

= Tr(B) = k. (14.10)

Let θi = 1−αi. Then from what we have concluded about αi so far, it follows

that 0 ≤ θi ≤ 1 and

n

∑
i=k+1

αi −
k

∑
i=1

θi =
n

∑
i=1

α1 − k = 0. (14.11)
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From

Tr(BA) =
k

∑
i=1

λi +
n

∑
i=k+1

λiαi −
k

∑
i=1

λiθi

and the inequalities ∑n
i=k+1 λiαi ≤ λk+1 ∑n

i=k+1 αi and ∑k
i=1 λiθi ≥ λk ∑k

i=1 θi, it

follows that Tr(BA) ≤ ∑k
i=1 λi with equality holding if and only if (since we

have assumed λk > λk+1) ∑n
i=k+1 αi = 0 = ∑k

i=1 θi. In other words, αi = 1 if

i < k + 1 and 0 if i > k. This is precisely the definition of φ (A). This proves the

claim.

14.3 Extrinsic Sample Covariance Matrix on a Grassmann Manifold

Recall that, in general, if j : M → RN is an embedding of an abstract mani-

fold into RN and Q is a j-nonfocal distribution on M, one may introduce a

j-extrinsic covariance matrix of Q in terms of a j-adapted frame on M that

is locally defined around the extrinsic mean µ j (see Chapter 4). Moreover if

{Xr}r=1,...,n are i.i.d.r.o.’s from such a distribution Q, then the sample extrin-

sic covariance estimator is defined as the j-extrinsic covariance matrix of the

empirical distribution

Q̂n = n−1
n

∑
i=1

δXi
.

Using this terminology, an explicit formula of the sample Veronese-extrinsic

covariance matrix of a Veronese-nonfocal distribution on RPm was first ob-

tained by Prentice (1984) [282].

Our goal in this section consists of calculating the extrinsic sample covari-

ance of a j-nonfocal distribution on a Grassmann manifold, thus extending the

Prentice’s result.

First, let us observe that the tangent space to j(Gk(Rm)) at some B ∈
Sym(m,R) may be characterized as follows. Let t → σ (t) may be a smooth

curve in j(Gk(Rm)) with σ (0) = B. Let us write σ (t) = B + tC + o(t). Then, from

the requirements that σ (t) is symmetric and a projection matrix of rank k, it

follows that

BC +CB = C, (14.12)

C = CT . (14.13)

In other words, C is an eigenvector of the operator

L : Sym(m,R) → Sym(m,R),

L(F) = BF + FB.

Now, let VB = Range(B) and WB be the orthogonal complement of VB in Rn.
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It is seen easily that, for a ∈ VB and b ∈ WB, F = abT + baT is symmetric and

satisfies L(F) = F . As such, it is a tangent vector of j(Gk(Rm))). Moreover, the

vector subspace of Sym(m,R),

SB = span{abT + baT|a ∈ VB,b ∈ WB}, (14.14)

has dimension equal to k(m−k), which is the dimension of j(Gk(Rm))). There-

fore, we conclude that the tangent space TB( j(Gk(Rm))) = SB.

It is convenient to use tensor product representation of matrices in the calcu-

lations. In what follows, if {e1, . . . ,em} is a basis of a vector space, then its dual

basis will be denoted by {e′1, · · · ,e′m}. Thus, a linear map from the vector space

into itself can be generally represented as ∑i, j ai, jei⊗e′j. This notation will pri-

marily be useful to represent linear maps between vector spaces of matrices

since basis elements themselves are denoted using double indices. For exam-

ple, if {Fα ,β |(α,β ) ∈A} is a basis of a linear space of matrices S, then we may

represent a linear map from S into itself as ∑α ,β ,γ,δ a(α ,β ),(γ,δ )Fα ,β ⊗F ′
γ,δ .

Secondarily, we notice that covariance of probability measures transform as

a covariant two tensor, and hence may be represented as ∑i, j gi, jei ⊗ e j with

respect to a given basis {ei}. Thus, if the vector space under consideration is a

space of matrices, once again the tensor product notation with double suffixes

under basis elements will help keep track of how covariance will change under

linear maps.

Let us assume that n i.i.d.r.o.’s are taken from a Gk(Rm) valued distribu-

tions. Without loss of generality, we assume that these are given in the form of

matrices Yr;r = 1, . . . ,n where each Yr ∈ Sym(m,R) is an m×m matrix. Then

Yr = XrX
T
r , where Xr is a m× k matrix whose columns are orthogonal and of

norm one. Let us denote the sample mean and covariance of Yr,r = 1, . . . ,n,
by Ȳ and SY respectively. Of course, Ȳ = 1

n ∑n
r=1 Yr ∈ Sym(m,R). However, it

is convenient for us to treat Ȳ as a covariant two tensor on Sym(m,R). Let us

express Ȳ in terms of components with respect to a particular basis now. Since

Ȳ is a symmetric matrix, we may write down an orthonormal basis {e1, . . . ,em}
of Rm consisting of eigenvalues of Ȳ . Let us write down the basis of Sym(m,R),

F
β
α =

{
eα ⊗ e′α if α = β

1√
2
(eα ⊗ e′β + eβ ⊗ e′α) if α 6= β ,

(14.15)

where 1 ≤ α ≤ β ≤ m. It is clear that this basis is orthonormal with respect to

the standard Euclidean inner product of Sym(m,R).

Let us write down the sample covariance tensor SY with respect to this basis

as

SY = ∑
1≤α≤β≤m, 1≤γ≤δ≤m

g(α ,β ),(γ,δ )Fα ,β ⊗Fγ,δ , (14.16)

where g(α ,β ),(γ,δ ) are real numbers for which we will derive formulas now.
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Since SY is a covariant two tensor, we may write,

g(α ,β ),(γ,δ ) =
1

n

n

∑
r=1

< F
β
α ,Yr − Ȳ >< Fδ

γ ,Yr − Ȳ > . (14.17)

At this point, we may derive expressions for all g(α ,β ),(γ,δ ). However, in the

derivation of formulas for the j−extrinsic sample covariance we will only need

a subset in which α < β and γ < δ . When this restriction is imposed,

< F
β
α ,Ȳ > = Tr(F

β
α Ȳ) = Tr

n

∑
j=1

1√
2

(eα ⊗ e′β + eβ ⊗ e′α)(λjej ⊗ e′j)

= Tr
1√
2

(eα ⊗ e′β + eβ ⊗ e′α) = 0, (14.18)

where {λ j} denotes the eigenvalues of Ȳ . Hence for α < β ,

g(α ,β ),(γ,δ ) =
1

n

n

∑
r=1

< F
β
α ,Yr >< Fδ

γ ,Yr >=
1√
2n

n

∑
r=1

Tr(F
β
αYr)

1√
2

Tr(Fδ
γ Yr)

=
1

2n

n

∑
r=1

[(Yr)α ,β + (Yr)β ,α}{(Yr)γ,δ + (Yr)δ ,γ ]

=
2

n

n

∑
r=1

(Yr)α ,β (Yr)γ,δ , (14.19)

where the notation (Yr)i, j is used to denote the (i, j)th element of the matrix Yr.

Next, we focus on the projection map from a neighborhood of Ȳ to

j(Gk(Rm)) and how its derivative transforms the sample covariance of Y , SY to

give the extrinsic sample covariance tensor Σ̂ j. Here, we make the genericity

assumption that the eigenvalues {λ j} of Ȳ satisfy λk > λk+1, where the eigen-

values are arranged in decreasing order. Let Y j denote the j-extrinsic sample

mean of Y1, . . . ,Yn. Then, from what we have discussed at the beginning, it

follows that

Y j =
k

∑
i=1

ei ⊗ ei. (14.20)

Recall also that we have an explicit description of the tangent space of

j(Gk(Rm)) at Y j as,

TY j
( j(Gk(Rm)) = span{ei ⊗ e′j + ej ⊗ e′i|l ≤ i ≤ k,k < j ≤ m}

= span{F
β
α |α ≤ k < β}. (14.21)

Let U be a small neighborhood of Ȳ in Sym(m,R) on which the projection
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φ : U → j(Gk(Rm)) is defined. Let dφȲ : Sym(m,R) → TY j
( j(Gk(Rm))) denote

the derivative of φ at Ȳ . Let us first show that its tensor coefficients satisfy the

following. Here we follow the convention that α ≤ β .

dφȲ (F
β
α ) =





0 if α = β
0 if β ≤ k

0 if α > k
1

λα−λβ
F

β
α if α ≤ k < β .

(14.22)

Let us now proceed to prove (14.22). The main idea is to use appropriate curves

through Ȳ to represent various tangent vectors at Ȳ , map them by φ , and com-

pute the derivatives. It turns out that it is possible to produce curves in the

first three cases in such a way that φ maps them to the constant point Y j. The

fourth case is a bit tedious. Here, we have constructed a special curve via a

trial and error method that simplify the computation significantly. Below, case

numbers 1 through 4 refer to the lines 1 through 4 of (14.22). In all cases, the

smooth curves to be constructed will be denoted by ν : (−ε,ε) → Sym(m,R)

with ν(0) = Ȳ .

Case 1: α = β .

Consider the curve ν(t) = Ȳ + teα ⊗ e′α . Notice that ν(t) has exactly the same

eigenvectors as Ȳ . As far as eigenvalues are concerned, only λα has changed to

λα + t and the remaining eigenvalues are unchanged. However, for small values

of t, it will still be true that the invariant subspace of the first k eigenvalues will

be span{e1, · · · ,ek}. This follows from our assumption that λk > λk+1. There-

fore we have φ (ν(t)) = Y j for small t, hence dφȲ (Fα
α ) = d

dt
φ (ν(t))|t=0 = 0.

Case 2: α < β ≤ k

Consider the curve ν(t) = Ȳ + tF
β
α . Since β < k, ek+1, · · · ,em will remain eigen-

vectors of ν(t) and they will be orthogonal to the invariant subspace of the

k largest eigenvalues since eigenvalues will be perturbed only slightly, if any.

Therefore, φ (ν(t)) = Y j for small t and it follows that dφȲ (F
β
α ) = 0.

Case 3: k < α < β

This case is similar to the previous case. Along the curve ν(t) = Ȳ + tF
β
α , only

the smallest m− k eigenvalues and their eigenspaces get perturbed, which are

irrelevant as far as φ (ν(t)) is concerned.

Case 4: α ≤ k < β
This is an interesting case since it will perturb the invariant subspace of the

k largest eigenvalues. Computation of this perturbation is tedious unless a

judicious choice of ν is made that will ensure that the perturbations of the

eigenspaces can be easily represented, perhaps at the expense of expressions

for eigenvalues. Through trial and error, we have come up with the curve
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ν(t) = Ȳ +
√

2θ (t)F
β
α , where

θ (t) =
(λα −λβ )2t

(λα −λβ )2 − t2
. (14.23)

It is clear that for s 6= α and s 6= β , λs will be an eigenvalue of ν(t) with corre-

sponding eigenvector es. Thus, there are only two eigenvectors and eigenvalues

that gets possibly perturbed; eα ,eβ and λα ,λβ . Indeed, we claim that

ẽα =
1√

(λα −λβ )2 + t2
(λα −λβ )eα + teβ and λ̃ = λ ,

where the tildes denote perturbed values. This is shown by the following ex-

plicit computation.

ν(t)[(λα −λβ )eα + teβ ] = {λα +
t2(λα −λβ )

(λα −λβ )2 − t2
}(λα −λβ )eα +

{λβ +
(λα −λβ )3

(λα −λβ )2 − t2
}teβ (14.24)

=
λα (λα −λβ )2 − t2λβ

(λα −λβ )2 − t2
[(λα −λβ )eα + teβ ]. (14.25)

Here, ẽα = 1√
(λα−λβ )2+t2

[(λα −λβ )eα + teβ ] is the perturbation of eα along the

curve ν . Therefore,

φ (ν(t)) = e1 ⊗ e′1 + · · ·eα−1 ⊗ e′α−1 + ẽα ⊗ ẽ′α + eα+1 ⊗ e′α+1 + · · ·+ ek ⊗ e′k.

(14.26)

Therefore,

d

dt
φ (ν(t))|t=0 =

d

dt
(ẽα ⊗ ẽ′α)|t=0

=
1

λα −λβ
(eα ⊗ e′β + eβ ⊗ eα)

√
2

λα −λβ
F

β
α . (14.27)

Furthermore, we observe that

d

dt
ν(t)|t=0 =

√
2F

β
α . (14.28)

The fourth line of (14.22) now follows.

Now, we are in a position to state the Prentice formula for this generalized

situation. Recall that F
β
α , α ≤ k < β forms a basis of Tj(Y j )

j(Gk(Rm)). The
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Prentice formula will state the coefficients of the j extrinsic sample covariance

Σ̂ j with respect to this basis. Recall that Σ̂ j is the projection of SY via dȲ φ .

As such, we finally are in the position to give an the explicit Prentice-type of

formula for the j extrinsic sample covariance w.r.t. our embedding j:

Σ̂ j = (dȲ φ )SY = ∑
1≤α≤β≤m, 1≤γ≤δ≤m

g(α ,β ),(γ,δ )(dȲ φ )(F
β
α ⊗Fδ

γ )

= ∑
1≤α≤β≤m, 1≤γ≤δ≤m

g(α ,β ),(γ,δ )[(dȲ φ )F
β
α ]⊗ [(dȲφ )Fδ

γ ]

= ∑
1≤α≤k<β≤m, 1≤γ≤k<δ≤m

1

λα −λβ

1

λγ −λδ
g(α ,β ),(γ,δ )F

β
α ⊗Fδ

γ

= ∑
1≤α≤k<β≤m, 1≤γ≤k<δ≤m

1

λα −λβ

1

λγ −λδ

2

n

n

∑
r=1

(Yr)α ,β (Yr)γ,δ F
β
α ⊗Fδ

γ

(14.29)

This yields the following result:

THEOREM 14.3.1. The extrinsic sample covariance matrix of a nonfocal
probability distribution on Gk(Rm) is given by

Σ̂ j = ∑
1≤α≤k<β≤m, 1≤γ≤k<δ≤m

1

λα −λβ

1

λγ −λδ

2

n

n

∑
r=1

(XrX
T
r )α ,β (XrX

T
r )γ ,δ F

β
α ⊗F

δ
γ .

(14.30)

REMARK 14.3.1. From Bhattacharya and Patrangenaru (2005) [43], it fol-

lows that

n‖Σ̂
− 1

2
j tanPj( j(X))(Pj( j(X))−Pj(µ))‖2 (14.31)

converges weakly to χ2
k(m−k). The result will be used in estimation and testing

for the extrinsic mean of a population on a Grassmann manifold. In particular,

given i.i.i.r.o.’s from a distribution of affine shapes of k-ads in general position

in Rm, the squared norm of the studentized extrinsic sample mean affine shape

has asymptotically a χ2
k(m−k) distribution.
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Chapter 15

DTI Data Analysis

15.1 Introduction 327

15.2 Tests for Equality of Generalized Frobenius Means 328

15.3 Application to Diffusion Tensor Imaging Data 330

15.1 Introduction

In Chapter 8, we presented general theory for nonparametric statistical ana-

lysis of data from homogeneous Riemannian manifolds . Amongst other ap-

plications of this methodology are diffusion tensor imaging (DTI) and cosmic

microwave background radiation (CBR) (Schwartzman et al. (2008) [303]).

Both of these applications led to the analysis of random objects on the set of

positive definite symmetric matrices Sym+(m), for some dimension m ≥ 2. In

this chapter, we will concentrate on application to DTI data analysis.

Until recently, the main statistical techniques used for DTI data analysis

were parametric in nature (Schwartzman (2006) [301], Schwartzman et al.

(2008) [303] and Schwartzman et al. (2008a) [304]). Recently, though, Hucke-

mann (2011) [164], and Haff et al. (2011) [134] used new geometric methods

for analyzing DTI data, which are related to the approach described here, which

follows primarily Osborne et al. (2013) [258] as well as Ellingson et al. (2013)

[102].

The application presented here extends from an experiment considered in

Schwartzman et al. (2008) [303] in which diffusion direction maps were ac-

quired for two groups of subjects in order to find locations where such maps

differ. The objective of that analysis was to find regions of the brain in which

the corresponding diffusion directions differ between the groups. That was at-

tained by first computing a test statistic for the difference in direction at every

brain location using the Watson model for directional data. While a perfect

correspondence between brain locations is impossible, we will assume never-

theless that such a correspondence within and between groups was achieved

for at least some region of the brain. As such, the goal for the analysis shown

327



328 DTI DATA ANALYSIS

in this chapter is limited to an illustration of the nonparametric inference meth-

ods developed in Chapter 8 and is by no means meant to depict discovery for

child behavior based on brain imaging.

This chapter is organized as follows. In Section 15.2, we detail the two sam-

ple test for generalized Frobenius means on the space of symmetric matrices in

terms of Cholesky decompositions, as shown in Theorem 15.2.1 and in Theo-

rem 15.2.2. In Section 15.3, this methodology is applied to a small DTI dataset

previously analyzed by Schwartzman et al. (2008) [303], which was kindly

provided by the first author of that paper. This analysis consists of a voxelwise

comparison of spatially registered DT images belonging to two groups of chil-

dren, one with normal reading abilities and one with a diagnosis of dyslexia.

These methods are illustrated for a single voxel that was found in Schwartzman

et al. (2008) [303] to exhibit a strong difference between the two groups using

parametric methodology.

15.2 Tests for Equality of Generalized Frobenius Means via Cholesky

Decompositions

In this section, we apply the results developed in Section 8.4 to the case of dis-

tributions on the Hadamard manifold (M,g) = (Sym+(p),gF ) with the simple

transitive group action of G = T +(p,R) given in Proposition 8.2.2. The Rieman-

nian structure considered here and in Chapter 8 was first used in DTI literature

by Fletcher (2004) [119], Moakher (2005) [248], Arsigny et al. (2006,2006a)

[5, 6], Deriche et al. (2006) [83], and Pennec et al. (2006) [281]. From equa-

tion (8.16), the generalized Frobenius sample mean of a sample x1, . . . ,xn of

matrices on Sym+(p) is given by

µF = argmin
y∈Sym+(p)

1

n

n

∑
i=1

[Tr((log(c(xi)
−1y(c(xi)

−1)T ))2)], (15.1)

where ∀i = 1, . . . ,n,xi = c(xi)c(xi)
T is the Cholesky decomposition of xi.

REMARK 15.2.1. The Cholesky decomposition was used for DTI also by

Wang et al. (2004) [331], although they did not use the generalized Frobenius

distance in their paper, as Osborne et al. (2013) [258] did.

From Section 8.4, we see that given two independent populations on

Sym+(p) with generalized Frobenius means µa,F ,a = 1,2, the testing problem

H0 : µ1,F = δ µ2,F δ T

versus

H1 : µ1,F 6= δ µ2,F δ T (15.2)
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is equivalent to testing on G = T +(p,R)

H0 : c(µ1,F )c(µ2,F)−1 = δ

versus

H1 : c(µ1,F )c(µ2,F)−1 6= δ . (15.3)

For testing, suppose for a = 1,2 we are given the i.i.d.r.o.’s Xa,1, . . . ,Xa,na ∈
Sym+(p) with the total sample size n = n1 + n2. For a = 1,2, the corresponding

sample generalized Frobenius means are X̄a,F . Note that, in our case, the matrix

valued function H in equation (6.23) is given by

H(x1,x2) = c(x1)c(x2)−1. (15.4)

A consistent estimator of H(µ1,F ,µ2,F ) is T = H(X̄1,F , X̄2,F ), and Theorem 6.5.1

becomes

THEOREM 15.2.1. Assume Xa, ja , ja = 1, . . . ,na are i.i.d.r.o.’s from the inde-

pendent probability measures Qa,a = 1,2 generalized Frobenius moments of

order s,s ≤ 4 on the Sym+(p). Let n = n1 +n2 and assume lim
n→∞

n1
n
→ q ∈ (0,1).

Let log : T +(p,R) → T (p,R) be the inverse of exp given in a neighborhood of

Ip by

log(Ip +v) = v− 1

2
v2 + · · ·+ (−1)r+1

r
vr + . . . ,∀v ∈ T (p,R),Tr(vvT ) < 1. (15.5)

Then under H0,
i. The sequence of random vectors

√
n(log(δ−1(H(X̄1,F , X̄2,F )))) (15.6)

converges weakly to N p(p+1)
2

(0 p(p+1)
2

,ΣF (q)), for some covariance matrix ΣF (q)

that depends linearly on the generalized Frobenius covariance matrices Σa,F

of Qa,a = 1,2.
ii. If (i.) holds and ΣF is positive definite, then the sequence

n((log(δ−1(H(X̄1,F , X̄2,F ))))T ΣF (q)−1(log(δ−1(H(X̄1,F , X̄2,F ))))) (15.7)

converges weakly to χ2
p(p+1)

2

distribution.

Theorem 6.6.1, becomes in our case

THEOREM 15.2.2. Under the hypotheses of Theorem 15.2.1i., assume in ad-

dition, that for a = 1,2 the distribution of Exp−1
µF,a

Xa,1 has an absolutely contin-

uous component, and finite moments of sufficiently high order. Then the joint

distribution of

Vδ =
√

n(log(δ−1H(X̄1,F , X̄2,F )))
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can be approximated by the bootstrap joint distribution of

V∗
δ =

√
n(log(δ−1H(X̄∗

1,F , X̄
∗
2,F ))) (15.8)

with a coverage error Op(n−
1
2 ), where, for a = 1,2, X̄∗

a,F are the sample gen-

eralized Frobenius means of the bootstrap resamples X∗
a, ja

, ja = 1, . . . ,na, from

Xa, ja , ja = 1, . . . ,na.

Each bootstrap resample in Theorem 15.2.2 of the total sample is obtained

by sampling with replacement from the samples of sizes n1,n2 from Q1 and

Q2, respectively. The matrix valued bootstrap statistics (15.8) are recomputed

N times. To insure accuracy, one usually takes N to be at least 5,000. The

bootstrap values of V and T̂ are given by:

T̂∗ = T̂ ∗
1 T̂−1∗

2 and V∗
δ = log(δ−1T̂∗), where (15.9)

T̂∗
a = c(X̄∗

a,F ),a = 1,2.

We construct (1−α) bootstrap confidence regions C∗
α for τ = c(µ1,F )c(µ2,F )−1

and R(δ )∗α for log(δ−1τ) based on the bootstrap distributions of T̂ ∗ and V∗
δ .

COROLLARY 15.2.1. i. We fail to reject H0 in (15.3) at level α if δ ∈ C∗
α

with an error OP(n−
1
2 ).

ii. We fail to reject H0 in (15.3) at level α if 0p ∈ R(δ )∗α with an error OP(n−
1
2 ).

REMARK 15.2.2. It is known that there are many choices for bootstrap con-

fidence regions (see e.g. Fisher et al.(1996) [116]). Computationally, it is of-

ten convenient to use simultaneous confidence intervals, even if the coverage

is a bit enlarged. In this case, we reject H0 at level α if δ /∈ C∗
α or, equiva-

lently, 0p /∈ R(δ )∗α . That is the same as saying that we will reject H0 if the

Bonferroni 100(1−α)% simultaneous bootstrap confidence intervals for the

nonzero entries τi j of τ do not contain 1 in at least one of the diagonal entries

(when i = j) or 0 in at least one of the off-diagonal entries (when j < i). Simi-

larly, we will reject H0 if the Bonferroni 100(1−α)% simultaneous bootstrap

confidence intervals for the log(δ−1τ)i j does not contain 0 in at least one of

the diagonal or off-diagonal entries, when j ≤ i. Such Bonferroni simultane-

ous bootstrap confidence intervals are formed by cutting off the lower and the

upper 100
( α

2m

)
% of the bootstrap distributions of T̂ ∗

i j and V∗
i j , respectively.

Here m = p(p+1)
2 .

15.3 Application to Diffusion Tensor Imaging Data

In this section, we apply the methodology presented in Section 15.2 to a con-

crete DTI example, using a dataset kindly provided by A. Schwartzman. The

data was collected from two populations of children: a group of children with
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normal reading abilities and a group of children with a diagnosis of dyslexia.

For each population, spatially registered DT images were obtained for a sample

of 6 children, resulting in a total of 12 observations.

Commonly in DTI group studies, a typical statistical problem is to find re-

gions of the brain whose anatomical characteristics differ between two groups

of subjects. Typically, the analysis consists of registering the DT images to

a common template so that each voxel corresponds to the same anatomical

structure in all the images, and then applying two-sample tests at each voxel.

Here, we present the analysis of a single voxel at the intersection of the corpus

callosum and corona radiata in the frontal left hemisphere that was found in

Schwartzman et al. (2008) [303] to exhibit the strongest difference between

the two groups based on a parametric data analysis. Table 15.1 shows the data

at this voxel for all 12 subjects. The di j in the table 15.1 are the entries of the

DT on and above the diagonal (the below-diagonal entries would be same since

the DTs are symmetric).

Table 15.1 DTI data in a group of control (columns 1–6) and dyslexia (columns 7–12)

1 2 3 4 5 6

d11 0.8847 0.6516 0.4768 0.6396 0.5684 0.6519

d22 0.9510 0.9037 1.1563 0.9032 1.0677 0.9804

d33 0.8491 0.7838 0.6799 0.8265 0.7918 0.7922

d12 0.0448 −0.0392 0.0217 0.0229 −0.0427 0.0269

d13 −0.1168 −0.0631 −0.0091 −0.1961 −0.0879 −0.1043

d23 0.0162 −0.0454 −0.1890 −0.1337 −0.1139 −0.0607

7 8 9 10 11 12

d11 0.5661 0.6383 0.6418 0.6823 0.6159 0.5643

d22 0.7316 0.8381 0.8776 0.8376 0.7296 0.8940

d33 0.8232 1.0378 1.0137 0.9541 0.9683 0.9605

d12 0.0358 −0.0044 −0.0643 0.0309 −0.0929 −0.0635

d13 −0.2289 −0.2229 −0.1675 −0.2217 −0.1713 −0.1307

d23 −0.1106 −0.0449 −0.0192 −0.0925 −0.0965 −0.1791

For this analysis, the primary goal is to demonstrate that that the nonpara-

metric two-sample testing procedure presented in Section 15.2 is able to detect

a significant difference between the generalized Frobenius means of the clini-

cally normal and dyslexia groups without increasing the dimensionality in the

process or making any distributional assumptions.

Given two independent populations with i.i.d. samples of random SPD ma-

trices X1,1,X1,2, . . . ,X1,n1
∈ Sym+(3) from the clinically normal population and

X2,1,X2,2, . . . ,X2,n2
∈ Sym+(3) from the dyslexia population with sample sizes
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of n1 = 6 and n2 = 6 and the total sample size n = n1 + n2 = 12, where, for

a = 1,2,Xa,1 ∼ µF,a, the sample generalized Frobenius mean for the clinically

normal population and dyslexia population is given by

x̄1,F =




0.6318 0.0046 −0.0924

0.0046 0.9863 −0.0873

−0.0924 −0.0873 0.7803


 and

x̄2,F =




0.6146 −0.0261 −0.1910

−0.0261 0.8118 −0.0901

−0.1910 −0.0901 0.9537


 .

Diffusion tensors are commonly visualized as ellipsoids constructed from

their spectral decompositions. Ellipsoids representing the two sample general-

ized Frobenius means are provided in Figure 15.1. The ellipsoids are shown

from three views for both groups to better display the differences between the

means.

The values of the test statistics T̂ and V are given by

T̂ =




0.9862 0.0000 0.0000

−0.0485 0.9067 0.0000

−0.1487 −0.0152 1.0781


 and

V =



−0.0139 0.0000 0.0000

−0.0513 −0.0980 0.0000

−0.1446 −0.0153 0.0752


 .

In addition, let t̂i j and vi j correspond to the entries of the test statistics T̂ and V

on and below the diagonal (since the test statistics T̂ and V are lower triangular

matrices).

In order to test hypothesis (15.2) or hypothesis (15.3) for δ = I3, we repeat-

edly resample observations from the original data and compute the generalized

Frobenius sample mean for each respective group. The generalized Frobenius

sample means are computed as described in Section 8.3. Tables 15.2 and 15.3

display a five number summary for the bootstrap distribution of the General-

ized Frobenius sample means for the clinically normal and dyslexia groups. To

generate the summary statistics presented in tables 15.2 and 15.3, 10,000 boot-

strap resamples were used. Figure 15.2 displays a visualization of the bootstrap

distributions of the Generalized Frobenius sample means.

In addition, for each bootstrap resample, we calculate the Cholesky decom-

position of the bootstrap generalized Frobenius sample mean for each respec-

tive group and then proceed to calculate the bootstrap distribution of our test
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Figure 15.1 Ellipsoids representing the sample generalized Frobenius means of the

control group (left) and the dyslexia group (right).

statistics T̂ and V as described in (15.9). Figures 15.3 and 15.4 display a visu-

alization of the bootstrap distributions of our test statistics T̂ and V .

After visually examining Figures 15.3 and 15.4, we informally conclude that

there is significant difference between the generalized Frobenius means of the
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Table 15.2 Five Number Summary of the bootstrap distribution of the generalized

Frobenius sample means for the clinically normal group

Generalized Frobenius sample means

Quartiles Min Q1 Median Q3 Max

d11 0.4902 0.6004 0.6318 0.6662 0.8408

d22 0.9018 0.9608 0.9863 1.0131 1.1402

d33 0.6951 0.7649 0.7819 0.7991 0.8429

d12 −0.0422 −0.0064 0.0046 0.0151 0.0413

d13 −0.1852 −0.1093 −0.0924 −0.0757 −0.0202

d23 −0.1788 −0.1063 −0.0873 −0.0692 0.0058

Table 15.3 Five Number Summary of the bootstrap distribution of the generalized

Frobenius sample means for the dyslexia group

Generalized Frobenius sample means

Quartiles Min Q1 Median Q3 Max

d11 0.5626 0.6036 0.6149 0.6276 0.6745

d22 0.7269 0.7935 0.8129 0.8317 0.8940

d33 0.8232 0.9348 0.9561 0.9763 1.0291

d12 −0.0880 −0.0410 −0.0261 −0.0113 0.0358

d13 −0.2289 −0.2012 −0.1910 −0.1809 −0.1307

d23 −0.1791 −0.1025 −0.0896 −0.0767 −0.0192

clinically normal and dyslexia group, since the T̂ ∗
22 and V∗

22 values does not

overlap with δ22 = 1, respectively with 03,22 = 0. Moreover, we also observed

that the distributions of T̂ ∗
33, V∗

33 and T̂ ∗
31, V∗

31 barely touch δ33 = 1, 03,33 = 0 and

δ31 = 0, 03,31 = 0.

These results are formally confirmed at level α; there is sufficient evidence

that the clinically normal and dyslexia children display, on average, signif-

icantly different DTI responses. The results were obtained by performing a

100(1−α)%-simultaneous bootstrap confidence intervals, as described in Re-

mark (15.2.2), for T̂i j and Vi j. Tables 15.4 and 15.5 display the results of the

Bonferroni 100(1−α)%-simultaneous bootstrap confidence intervals for T̂i j

and Vi j at the following significance levels: α = 0.06,0.03, and 0.006, where

for each marginal we consider a 100(1− α
12

)% confidence interval. The signif-

icant differences are marked with an asterisk in those tables.

  



APPLICATION TO DIFFUSION TENSOR IMAGING DATA 335

0.
45 0.

5
0.
55 0.

6
0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0

500

1000

1500

2000

2500

3000

0.
7

0.
8

0.
9 1

1.
1

1.
2

0

500

1000

1500

2000

2500

0.
65 0.

7
0.
75 0.

8
0.
85 0.

9
0.
95 1

1.
05

0

500

1000

1500

2000

2500

3000

−0
.1

−0
.0
8

−0
.0
6

−0
.0
4

−0
.0
2 0

0.
02

0.
04

0.
06

0

500

1000

1500

2000

2500

3000

−0
.2
5

−0
.2

−0
.1
5

−0
.1

−0
.0
5 0

0

500

1000

1500

2000

2500

3000

−0
.1
5

−0
.1

−0
.0
5 0

0

500

1000

1500

2000

2500

3000

3500

Figure 15.2 Marginals of the bootstrap distribution for the generalized Frobenius sam-

ple means for d11, d22, d33, d12, d13, and d23; clinically normal (light) vs dyslexia

(dark).
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Figure 15.3 Bootstrap distribution of our test statistics T̂ : The images (1 - 3) in the

first row corresponds to the diagonal entries of the matrices T̂∗: t11, t22, t33 and images

(4 - 6) in the second row corresponds to the lower triangular off-diagonal entries of

the matrices T̂∗: t21, t31, t32. (Source: Osborne et al.(2013), Figure 2. Reproduced by

permission of Elsevier).
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Figure 15.4 Bootstrap distribution of our test statistics V : The images (1 - 3) in the first

row corresponds to the diagonal entries of the matrices V∗: v11, v22, v33 and images

(4 - 6) in the second row corresponds to the lower off-diagonal entries of the matrices

V∗: v21, v31, v32. (Source: Osborne et al.(2013), Figure 3. Reproduced by permission

of Elsevier).

Table 15.4 Bonferroni 100(1−α)% multiple comparison simultaneous bootstrap con-

fidence intervals for T̂i j

Bootstrap Confidence Intervals

94% 97% 99.4%

t11 (0.8865, 1.0916) (0.8787, 1.1019) (0.8589, 1.1179)

t22 (0.8488, 0.9600)* (0.8449, 0.9633)* (0.8352, 0.9701)*

t33 (1.0085, 1.1465)* (1.0015, 1.1542)* (0.9844, 1.1712)

t21 (−0.1413, 0.0513) (−0.1482, 0.0590) (−0.1619, 0.0748)

t31 (−0.2749, −0.0269)* (−0.2905, −0.0145)* (−0.3085, 0.0018)

t32 (−0.1136, 0.0768) (−0.1214, 0.0859) (−0.1398, 0.0975)
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Table 15.5 Bonferroni 100(1−α)% multiple comparison simultaneous bootstrap con-

fidence intervals for Vi j

Bootstrap Confidence Intervals

94% 97% 99.4%

v11 (−0.1205, 0.0876) (−0.1293, 0.0970) (−0.1521, 0.1115)

v22 (−0.1640 −0.0409)* (−0.1686, −0.0374)* (−0.1801, −0.0304)*

v33 (0.0084, 0.1367)* (0.0015, 0.1434)* (−0.0157, 0.1580)

v21 (−0.1501, 0.0539) (−0.1580, 0.0627) (−0.1754, 0.0796)

v31 (−0.2584, −0.0272)* (−0.2668, −0.0141)* (−0.2859, 0.0000)

v32 (−0.1153, 0.0775) (−0.1241, 0.0843) (−0.1421, 0.0963)
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16.1 Introduction

The solar nebula theory hypothesizes that planets are formed from an accretion

disk of material that, over time, condenses into dust, small planetesimals, and

that the planets should have, on average, coplanar, nearly circular orbits. If the

orbit of Pluto has a different origin from the other planets in the Solar System,

then there will be tremendous repercussions on modeling the spacecrafts for

a mission to Pluto. We test here the nebula theory for Pluto. We apply the

general theory for asymptotic distributions of extrinsic means on a manifold in

Chapter 5 to spherical data analysis. Then we use the derived nonparametric

bootstrap based on the large sample distribution of the sample mean direction.

Our nonparametric analysis provides very strong evidence that the solar nebula

theory does not hold for Pluto.

16.2 The Pluto Controversy

Last century, the solar system was considered to have been divided into

planets- the big bodies orbiting the Sun, their satellites- smaller objects orbit-

ing the planets, asteroids - small dense objects orbiting the Sun, and comets-

small icy objects with highly eccentric orbits. Still the Solar System is more
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complex than such a simple classification would imply, since there are several

moons larger than Pluto, and two larger than Mercury. There are also several

small moons considered, that are probably trapped asteroids, etc.

Pluto was considered as the ninth planet since its discovery in 1930. Pluto

has always been a kind of a misfit among the other planets in the solar system.

It does not fit in the group of Jovian planets, which are large, gaseous, low

density worlds. It also does not fit into the Terrestrial group because it lies far

away from the sun, as a Jovian planet does.

There were numerous press reports generated in March of 1996 on the eve

of the release of new Hubble Space Telescope images of Pluto. Most of these

reports focused on the question of whether or not Pluto is a planet.

At the time, there were astronomers who thought Pluto would be better clas-

sified as a large asteroid or comet rather than as a planet. Some considered it to

be the largest of the Kuiper Belt objects (also known as Trans-Neptunian ob-

jects). There is considerable merit to the latter position; Pluto’s orbit is highly

eccentric, Pluto rotates in the opposite direction from most of the other planets

and its orbital inclination is also much higher than the other planets.

However, although Pluto has historically been classified as a planet, it be-

came more and more unlikely to remain classified as such (IAU press release,

2008 [326]). Exploring the contrasts with other planets was not easy, since

at the time, Pluto was the only planet that had not been visited by a space-

craft until 2015. The Pluto system (consisting of Pluto and Charon and other

moons) was visited by the New Horizons probe for the first time in 2015, when

this space probe seemingly took detailed measurements and images of Pluto’s

neighborhood.

Still, considering that Pluto’s orbit is so inclined, reaching Pluto may still

appear as a fiction turned to reality scenario. And since Pluto’s orbit is much

more eccentric, is it a planet in the Solar system, or is it rather an entrapment

by the Sun of an extrasolar object? Since the questioning about Pluto’s nature

started, many other Pluto-like transneptunian objects called plutoids, which

have a large inclination to Earth’s ecliptic orbital plane, have been discovered

(see Li et al. (2014) [221]).

In Section 16.3, we give a sketch of the Solar Nebula Theory. In Section

16.4, we applied the results from Chapter 5 to obtain asymptotic and nonpara-

metric bootstrap distributions of extrinsic mean directions, regarded as points

on a round sphere of radius one. In Section 16.5, we describe the planet data set

used in this chapter to test the null hypothesis that Pluto has the same origin as

the other eight planets in the Solar System, as far as its orbit is concerned. Since

the sample is small, we also implement in Section 16.5 our new nonparametric

approach of Section 16.4. Finally, the chapter ends with a discussion.
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16.3 The Solar Nebula Theory

In an attempt to avoid looking into differences between planets, and rather

consider what they share in common, we accept the nebula origin theory of the

solar system.

According to this theory, the present motions of the planets and of the Sun

were inherited from the original motion of the solar nebula. As originally

proposed by Kant, Laplace, and others, the solar system is presumed to be

formed from a nebula that evolved into a disk. The initial nebula presumably

looked like the molecular cloud cores, where we find stars forming today (see

Williams and Cieza (2011) [337]).

The solar nebula theory proposes that the Solar System began as a contract-

ing cloud of gas and dust and flattened into a rotating disk. The center of this

cloud became the Sun and the planets eventually formed into the disk of the

nebula. The nebula contracted, but the tendency to conserve angular momen-

tum caused the gas to spin faster and to flatten, forming – in the case of the

Solar System – an accretion disk. In the late stages of accretion, material in the

disk condensed into dust. The dust agglomerated into many small planetesi-

mals, most of which grew by collisions into planets. According to this theory,

the planets should have, on average, coplanar and nearly circular orbits. Even

if one them, Pluto’s orbit is more eccentric and more tippy.

16.4 Large Sample and Nonparametric Bootstrap Distributions for the

Mean Direction

To each object orbiting around the Sun, we associate a unit vector, that is

perpendicular on the orbital plane. In this manner, given the masses grav-

itating in the Solar System, we obtain a distribution on the round sphere

S2, regarded as a surface in R3. In general, as a submanifold of Rm+1, the

sphere Sm can be regarded as a set of zeros of the function F1((x1, . . . ,xm+1)) =

(x1)2 + · · ·+ (xm+1)2 − 1. As shown in Section 5.3, a non-parametric bootstrap

method was developed based on large sample theory for extrinsic means of

probability distributions on submanifolds M of RN given by implicit equa-

tions F1(x) = · · · = Fc(x) = 0, where F1, . . . ,Fc are functionally independent and

c is the codimension of M in RN . It was shown that if H is the projection on

the affine subspace µE (Q) + TµE
M, the asymptotic distribution of H(X) given

in Theorem 5.3.1 is given by

n
1
2 (H(X)−PM(µ)) →d NN−c(0,GΣGt ), (16.1)

where G is the matrix with entries G
j
i given by (5.17), PM is the projection

on M, µ is the mean vector of the nonfocal distribution Q in the ambient

numerical space RN and Σ is its covariance matrix.
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Note that, in the low sample size case, rather than using the asymp-

totics in (16.1), Corollary 5.3.1 shows that one may construct an asymptotic

(1−α)-confidence region for µE (Q) = PMµ using the bootstrapped statistic

n
1
2 (H(X

∗
)−H(X)), where H(X) is the projection of X on the affine subspace

XE + TXE
M, and X

∗
is the mean of a random sample with repetition of size n

from the empirical Q̂n considered as a probability measure on RN .
We now apply the results above to spheres. Let M = Sm, be the unit sphere

centered at the origin of Rm+1. The probability measure Q is non-focal on Sm,
of mean

µQ =

∫

Rm+1
xQ(dx) 6= 0. (16.2)

If we use the terminology of directional statistics (see Mardia and Jupp (2000)

[230]), in this case, the extrinsic mean is the population mean direction

µE =
1

‖µ‖µ , (16.3)

where µE is given by (16.2). Assume X1, . . . ,Xn are independent identically

distributed directions (objects on Sm). From (16.3), the extrinsic sample mean

direction is

X̄E =
1

‖X̄‖ X̄ , (16.4)

and with this preparation it is elementary to show that

H(X) = X − µE −{(X − µE) ·µE}µE . (16.5)

Hence we obtain the following result, including a correction of a similar result

in Patrangenaru and Mardia (2004) [273]:

THEOREM 16.4.1. Given i.i.d.r. directions X1, . . . ,Xn from a probability dis-

tribution Q on Sm, the quantity
√

n(H(X)− µE ) converges in distribution to

n m-dimensional multivariate normal distribution supported by the tangent

space TµE
Sm, identified with the linear subspace {v ∈ Rm+1 : vT µE = 0}. As

a measure on Rm+1 this distribution has mean 0m+1 and covariance matrix

ΓE = GΣGT , (16.6)

where G is associated with the linear transformation TG given by

TG(u) = Gu = u− µT
E uµE . (16.7)

Here Σ = Cov(X1), with X1 regarded as a random vector in Rm+1.

An asymptotic (1−α)100%-confidence region for µE may be constructed

using the estimate Σ̂n of Σ and obtained by replacing µE by the extrinsic sam-

ple mean direction X̄E in (16.4), thus studentizing
√

n(H(X)− µE ) in Theo-

rem 16.4.1. Moreover, if the sample size n is small, one may approximate this

asymptotic distribution using the nonparametric bootstrap approximation (see

Hall (1997) [137]), which can be formulated as follows.
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COROLLARY 16.4.1. Consider a random sample with repetition X∗
1 , . . . ,X

∗
n

from the random unit normals X1, . . . ,Xn, and let us project the mean X̄∗ of

X∗
1 , . . . ,X

∗
n onto the tangent space to the sphere at X̄E . If the number of such

resamples is large (thousands), then the distribution of projections of the points

X̄∗ on this tangent plane, is approximately the same as the distribution of H(X̄)

in TµE
Sm. The probability error is of order OP(n−

1
2 ).

16.5 Implementation of the Nonparametric Approach

If the probability measure of the distribution of the unit normals to the parti-

cles’ orbits in the solar nebula is Q and

µQ =

∫

S2
nQ(dn) (16.8)

is the mean of this distribution, seen as a distribution in R3, then we estimate

that the mean unit normal is the µ = 1
‖µQ‖µQ by considering the sample mean

normal for the nine “planets”. Note that if µE = (ν1ν2ν3)T , in our case, m = 2,

the matrix G in (16.7) is given by

G =




1− (ν1)2 −ν1ν2 −ν1ν3

ν1ν2 1− (ν2)2 −ν2ν3

−ν1ν3 −ν1ν3 1− (ν3)2




We calculate the directional sample mean normals for the sample of unit nor-

mals. Next, we calculate the sample average and the projections of the unit

normals to orbital planes on the tangent space to the sample mean. These are

displayed in Figure 16.1. We redo these computations for a reduced sample

of unit normals by excluding Pluto from the sample. These are displayed in

Figure 16.2.

We then randomly resample with replication 5000 times from these projec-

tions and then evaluated the bootstrap distribution of the projections of the

resamples. We then determined the similar bootstrap distribution in the case of

the reduced sample, for the data with Pluto excluded.

The results from Patrangenaru (1998) [266] are displayed in Figure 16.3.

Note the elliptic appearance of the bootstrap distributions of means when Pluto

is removed is in agreement with Corollary 5.3.1, unlike the situation when

Pluto is in the sample, showing that Pluto is too strong of an “outlier” if in-

cluded in the group of major planets of the solar system. As of 2015, Pluto is

classified as the largest dwarf planet in the Solar system.
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Figure 16.1: Planet data with Pluto included in the sample.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-20&iName=master.img-074.jpg&w=246&h=206
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Figure 16.2: Planet data without Pluto.

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-20&iName=master.img-083.jpg&w=251&h=218
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Figure 16.3: Bootstrap distributions with Pluto in (top) and out (bottom).

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-20&iName=master.img-092.jpg&w=275&h=470


Chapter 17

Applications of Direct Similarity

Shape Analysis in Medical Imaging

17.1 Introduction 347

17.2 University School X-ray Data Analysis 347

17.3 LEGS Data Analysis 349

17.1 Introduction

As an application of the theoretical results in Chapter 13, here we give a large

sample confidence region for the extrinsic mean shape of a configuration of

eight landmarks obtained from X-rays of midfaces of clinically healthy eight

year old children in terms of simultaneous confidence intervals for the affine

coordinates of the extrinsic sample mean shape. We also illustrate a test for the

difference between 3D mean shapes in a problem involving the detection of

glaucomatous mean shape change.

17.2 University School X-ray Data Analysis

As an application of the methodology from Chapter 13, we give a nonpivotal

bootstrap confidence region for the mean shape of a group of eight landmarks

on the skulls of eight year-old, North American children taken from a growth

study of normal children (see Tables 1.4, 1.5, 1.6, and 1.7). The sample used is

from the University School data (Bookstein (1991) [51], pp. 400-405). Recall

that the data set represents coordinates of anatomical landmarks whose names

and positions on the skull are given in Bookstein, op. cit. The corresponding

scatterplot is displayed in Figure 17.1 The presentation of raw data is similar

to other known shape data displays (see Dryden and Mardia (1998) [91] p.46).

The shape of the 8 landmarks on the upper mid face is valued in a planar shape

space CP6, which has real dimension equal to 12. A spherical representation

of a shape, in this case, consists of seven marked points. We display such a

347
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Figure 17.1: Scatterplot for University School data.

representation of this data in Figure 17.2. A representative for the extrinsic

sample mean (in spherical representation) is

(− 0.67151 + 0.66823i,0.76939 + 1.05712i,−1.03159−0.15998i,

− 0.57776− 0.87257i,0.77871−1.36178i,−0.17489 + 0.82106i,

1.00000 + 0.00000i)

The nonpivotal boostrap distribution was derived using a simple program in

S-Plus4.5 that was run for 500 resamples. A spherical representation of the

bootstrap distribution of the extrinsic sample means is displayed in Figure 17.3.

Here, we added a representative for the last landmark (which is the opposite of

the sum of the other landmarks since observations are centered at 0).

Note that the bootstrap distribution of the extrinsic sample mean is very

concentrated at each landmark location. This is in agreement with the theory,

which predicts, in this case, a spread of about 6 times smaller than the spread

of the population. It is also an indication of the usefulness of the spherical

coordinates. We determined a confidence region for the extrinsic mean using

the six 95% simultaneous bootstrap complex intervals for the complex affine

coordinates, and found the following complex intervals (see also Bhattacharya
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Figure 17.2: Spherical representation of University School data.

and Patrangenaru (2005) [43]):

w1 : (−0.677268 + 0.666060i,−0.671425 + 0.672409i)

w2 : (0.767249 + 1.051660i,0.775592 + 1.058960i)

w3 : (−1.036100− 0.161467i,−1.029420−0.154403i)

w4 : (−0.578941− 0.875168i,−0.574923−0.871553i)

w5 : (0.777688− 1.366880i,0.782354−1.358390i)

w6 : (−0.177261 + 0.820107i,−0.173465 + 0.824027i).

17.3 LEGS Data Analysis

The data set for this second application consists of a library of Scanning Con-

focal Laser Tomography (SCLT) images of the complicated ONH topography

(see Burgoyne et al. (2000) [56]). Those images are also called range images.

A range image is, loosely speaking, like a digital camera image except that

  



350 DIRECT SIMILARITY SHAPE ANALYSIS IN MEDICAL IMAGING

-0.4 -0.2 0.0 0.2 0.4

-0
.4

-0
.2

0
.0

0
.2

0
.4



Boostrap Distribution of 500 Extrinsic 
 Sample Mean Configurations

x

y















Figure 17.3 Bootstrap distribution - extrinsic sample mean shape for University School

data.

each pixel stores a depth rather than a color level (see Figure 1.6 in Chapter

1). It can also be seen as a set of points in 3D. The range data acquired by 3D

digitizers, such as optical scanners, commonly consist of depths sampled on

a regular grid. In the mathematical sense, a range image is a 2D array of real

numbers which represent those depths. All of the files (observations) are pro-

duced by a combination of modules in C++ and SAS that take the raw image

output and process it. The 256×256 arrays of height values are the products of

this software. Another byproduct is a file which we will refer to as the “abxy”

file. This file contains the following information: subjects’ names (denoted by:
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1c, 1d, 1e, 1f, 1g, 1i, 1j, 1k, 1l, 1n, 1o, 1p), observation points that distinguish

the normal and treated eyes, and the 10 or 15 degree fields of view for the ima-

ging. The observation point “03” denotes a 10 degree view of the experimental

glaucoma eye, “04” denotes a 15 degree view of the experimental glaucoma

eye, “11” and “12” denote respectively the 10 degree and the 15 degree view

of the normal eye.

The two-dimensional coordinates of the center (a,b) of the ellipses that

bound the ONH region, as well as the sizes of the small and the large axes

of the ellipses (x,y), are stored in the so called “abxy”file. To find out more

about the LSU study and the image acquisition, see Burgoyne et al. (2000)

[56].

The program (created in C++ by Gordana Derado) determines the three-

dimensional coordinates of the landmarks for each observation considered in

our analysis. It also determines the fifth Bookstein coordinate for each obser-

vation. Each image consists of a 256× 256 array of elevation values which

represent the “depth” of the ONH. By “depth,” we mean the distance from an

imaginary plane, located approximately at the base of the ONH cup, to the

“back of the ONH cup”.

To reduce the dimensionality of the shape space to 5, out of five landmarks

T , S, N, I, V recorded, only four landmarks (X1 = T,X2 = S,X3 = N,X4 = V )

were considered.

The original data were collected in experimental observations on Rhesus

monkeys, and after treatment a healthy eye slowly returns to its original shape.

For the purpose of increased intraocular pressure (IOP) increment detection, in

this section only the first set of after treatment observations of the treated eye

are considered.

This example is relevant in glaucoma detection. Although it is known that

IOP may cause a shape change in the eye cup, which is identified with glau-

coma, it does not always lead to this shape change. The data analysis presented

shows that the device used for measuring the topography of the back of the

eye, as reported in Burgoyne et al. (2000) [56], is effective in detecting shape

change.

We give a nonpivotal bootstrap confidence region for the mean shape change

of the eye cup due to IOP. Glaucoma is an eye disorder caused by IOP that

is very high. Due to the increased IOP, as the soft spot where the optic nerve

enters the eye is pushed backwards, eventually the optic nerve fibers that spread

out over the retina to connect to photoreceptors and other retinal neurons can be

compressed and damaged. An important diagnostic tool is the ability to detect

increased depth (cupping) of the ONH structures. Depth data is tabulated in

tables 1.24, 1.25, and 1.26 in Chapter 1. The processed images of the ONH

cup surface from before and after the IOP was increased are shown in Figure

17.4.

The laser image files are, however, huge dimensional vectors, and their sizes
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Figure 17.4 Change in the ONH topography from normal (left) to glaucomatous (right).

usually differ. Even if we were to restrict the study to a fixed size, there is

no direct relationship between the eye cup pictured and the coordinates at a

given pixel. A useful data reduction process consists of registering a number of

anatomical landmarks that were identified in each of these images. Assume the

position vectors of these landmarks are X1, . . . ,Xk,k ≥ 4. Two configurations of

landmarks have the same shape if they can be superimposed after a translation,

a rotation, and a scaling. With the notation in Subsection 3.5.3, the shape of the

configuration x = (x1, . . . ,xk) is labeled [x], a point on the Kendall space Σ k
m,

introduced in that subsection of Chapter 3.

We come back to the shape of an ONH configuration in animal models,

described in Section 1.2. This ONH region resembles a “cup” of an ellipsoid

and its border has a shape of an ellipse. The first three landmarks, S (superior),

T (temporal), and N (nasal), are chosen on this ellipse when referring to the

left eye. The last landmark V (vertex) is the point with the largest “depth”

inside the ellipse area that determines the border of the ONH. Therefore, in

this example, the data analysis is on the Kendall shape space of tetrads Σ4
3 ,

which is topologically a 5 dimensional sphere (see Kendall et al. (1999) [179],

p.38).

On the other hand, it is known that if a probability distribution on Σ k
m has

small support outside a set of singular points, the use of any distance that is

compatible with the orbifold topology considered is appropriate in data ana-

lysis (Dryden and Mardia (1998) [91], p.65). Our choice of the Riemannian

metric chosen in equation (17.4) is motivated by considerations of applicabil-

ity of results in Chapter 5 and computational feasibility. Dryden and Mardia

(1998) [91], pp.78-80) have introduced the following five coordinates defined

on the generic subset of Σ4
3 of shapes of a nondegenerate tetrads that they called

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-21&iName=master.img-050.jpg&w=310&h=109
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Bookstein coordinates:

v1 = (w12w13 + w22w23 + w32w33)/a

v2 =
(
(w12w23 −w22w13)2 + (w12w33 −w32w13)2 + (w22w33 −w23w32)2

)1/2
/a

v3 = (w12w14 + w22w24 + w32w34)/a

v4 = (ab1/2)−1
(
w2

12(w23w24 + w33w34) + w2
22(w13w14 + w33w34)+

+ w2
32(w13w14 + w23w24)−w12w13(w22w24 + w32w34)+

−w22w32(w23w34 + w33w24)−w12w14(w22w23 + w32w33)
)

v5 = (w12w23w34 −w12w33w24 −w13w22w34+

+ w13w32w24 + w22w33w14 −w32w23w14)/(2ab)1/2

(17.1)

where

a = 2(w2
12 + w2

22 + w2
32)

b = w2
12w2

23 + w2
12w2

33 − 2w12w13w22w23 + w2
13w2

22 + w2
13w2

32−
− 2w12w13w32w33 + w2

33w2
22 + w2

23w2
32 − 2w22w32w23w33,

(17.2)

where wri are given by

wri = xr
i − (xr

1 + xr
2)/2∀i = 2,3,4,∀r = 1,2,3. (17.3)

These coordinates carry useful geometric information on the shape of the

4-ad; v1 and v3 give us information of the appearance with respect to the bi-

sector plane of [X1X2],v2 and v4 give some information about the “flatness”

of this 4-ad, and v5 measures the height of the 4-ad (X1,X2,X3,X4) relative to

the distance ||X1 −X2||. Assume U is the set of Kendall shapes [X] such that

(X1,X2,X3,X4) is an affine frame in R3 and φ : U → R3k−7 is the map that as-

sociates to [X] its Bookstein coordinates. U is an open dense set in Σ k
3 with the

induced topology. In the particular case k = 4,Σ4
3 is topologically a 5 dimen-

sional sphere and, by from a classical result of Smale (1961) [309], Σ4
3 has a

differentiable structure diffeomorphic with the sphere S5. Moreover, if L is a

compact subset of U, there is a finite open covering U1 = U, . . . ,Ut of Σ4
3 and a

partition of unity ϕ1, . . . ,ϕt , such that ϕ1([X]) = 1∀[X] ∈ L.
We will use the following Riemannian metric on Σ4

3 : let (y1, . . . ,y5) be the

Bookstein coordinates of a shape in U1 and let g1 = dy2
1 + · · ·+dy2

5 be a flat Rie-

mannian metric on U1. For each j = 2, . . . , t, we consider any fixed Riemannian

metric g j on U j. Let g be the Riemannian metric given by

g =
t

∑
j=1

ϕ jg j. (17.4)
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Table 17.1: Abbreviated filenames and wi j -coordinates.

Filename w12 w13 w14 w22 w23 w24 w32 w33 w34

1a1pn -610 1830 610 800 800 2400 -69 -124 136

1a1p0 -610 1830 610 800 800 2400 -19.5 -267 52

1a1cn -520 1560 520 640 640 1920 -78 -217 108.5

1a1c0 -520 1560 520 640 640 1920 -69 -162 150

1a1dn -590 1770 590 900 900 2700 -8 -147 54

1a1d0 -600 1800 600 850 850 2550 -24 -100 171

1a1en -650 1950 650 830 830 2490 -15 -138 238

1a1e0 -660 1980 660 810 810 2430 -86 -21 241

1a1fn -690 2070 690 880 880 2640 -31 4.5 94

1a1f0 -690 2070 690 880 880 2640 -23 -119 108

1a1gn -620 1860 620 750 750 2250 -20 -153 199

1a1g0 -620 1860 620 750 750 2250 11 -48 166

1a1in -650 1950 650 920 920 2760 -155 -131 174

1a1i0 -650 1950 650 880 880 2640 -91 -48 224

1a1jn -580 1740 580 810 810 2430 -187 -175 50.5

1a1j0 -600 1800 600 800 800 2400 -200 -90 -38

1a1kn -630 1890 630 810 810 2430 -135 -91 146

1a1k0 -630 1890 630 810 810 2430 -33 -77 208

1a1ln -570 1710 570 790 790 2370 -84 -174 246

1a1l0 -570 1710 570 790 790 2370 -122.5 -161 253

1a1nn -660 1980 660 840 840 2520 -120.5 -93 148

1a1n0 -660 1980 660 840 840 2520 -78 -115.5 158.5

1a1on -600 1800 600 740 740 2220 -37 -160 129

1a1o0 -600 1800 600 740 740 2220 5 -260 95.5

The space (Σ4
3 ,ρg) is complete and flat in a neighborhood of L. In this example,

the two distributions of shapes of tetrads before and after the increase in IOP

are close. Hence, L, which contains supports of both distributions, consists of

shapes of nondegenerate tetrads only.

Computations for the glaucoma data in Table 1.17 yield the Bookstein coor-

dinates given in the Table 17.1.

The p-value of the test for equality of the intrinsic means was found to be

0.058 based on the bootstrap distribution of the chi-square-like statistic dis-

cussed in Remark 5.4.6. The number of bootstrap resamples for this study was

3,000. The chi-square-like density histogram is displayed in Figure 17.5. A

matrix plot for the components of the nonpivotal bootstrap distribution of the

sample mean differences γ∗n in Remark 5.4.6 is displayed in Figure 17.6.

The nonpivotal bootstrap 95% confidence intervals for the mean differences
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Figure 17.5 χ2 like bootstrap distribution for equality of intrinsic mean shapes from

glaucoma data.

Figure 17.6 Glaucoma data, matrix plot for the bootstrap mean differences associated

with Bookstein coordinates due to increased IOP.
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γ j, j = 1, · · · ,5 components of γ in Remark 5.4.6 associated with the Bookstein

coordinates v j, j = 1, · · · ,5 are:

γ1 : (−0.0377073,−0.0058545)

γ2 : (0.0014153,0.0119214)

γ3 : (−0.0303489,0.0004710)

γ4 : (0.0031686,0.0205206)

γ5 : (−0.0101761,0.0496181).

Note that the individual tests for difference are significant at the 5% level for

the first, second and fourth coordinates. However, using the Bonferroni in-

equality, combining tests for five different shape coordinates each at 5% level

leads to a much higher estimated level of significance for the overall shape

change.
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In this chapter, we will discuss problems associated with a nonparametric ana-

lysis of direct similarity shapes of planar contours. In addition to the metho-

dology for performing inference, which is a particular case of the material

covered in Chapter 11, this chapter will describe some of the computational

challenges associated with the study of such data. After detailing a method

for addressing these challenges, we will conclude by applying these methods

to a problem involving the corpus callosum data presented in Chapter 1. The

primary resources for this chapter are Ellingson (2011) [101], Ellingson et al.

(2013) [106], Ellingson et al. (2013a) [104], and Qiu et al. (2014) [285].
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18.1 Introduction

The study of shape analysis of shapes lying in the plane has progressed consid-

erably differently than functional data analysis. In the latter case, researchers

began by studying dense functional data and have since adapted methodology

for sparse functional data. On the other hand, planar shape analysis in its mod-

ern form originated with D. G. Kendall (1984) [177], which described shapes

of finite-dimensional planar configurations and the space of such shapes. Start-

ing midway through the 1990s, many researchers have become interested in

studying shapes of planar curves as infinite-dimensional objects. Due to the

nature of these configurations, a statistical analysis of such data must draw on

methodologies developed for both shape analysis and functional data analysis.

While Kendall (1984) [177] showed that the space Σ k
2 of direct similar-

ity shapes of nontrivial planar configurations of k points is a complex pro-

jective space CPk−2, definitions of location and variability parameters for

probability distributions were not considered until years later. Kent (1992)

[181] defined the full Procrustes estimate of a mean shape and Ziezold (1994)

[346] introduced a nonparametric definition of a mean shape based upon the

notion of Fréchet population means (see Fréchet (1948) [121] and Ziezold

(1977) [345]). This approach was subsequently followed by Ziezold (1998)

[347], Le and Kume (2000) [212], Kume and Le (2000 [206], 2003 [207]), Le

(2001) [211], Bhattacharya and Patrangnearu (2003) [42], and Huckemann and

Ziezold (2006) [166].

While a majority of these methods has defined means in terms of Rieman-

nian distances, as initially suggested by Patrangenaru (1998) [266], a Veronese-

Whitney (VW) extrinsic mean similarity shape was also introduced by Pa-

trangenaru (op.cit.) in terms of the VW embedding of CPk−2 into the space

S(k−1,C) of selfadjoint (k−1)× (k−1) matrices. The asymptotic distribution

of this extrinsic sample mean shape and the resulting bootstrap distribution are

given in Bhattacharya and Patrangenaru (2005) [11], Bandulasiri et al. (2009)

[10] and Amaral et al. (2010) [1]. These results are discussed in Chapters 10

and 13 with some applications shown in Chapter 17.

The trend toward considering shapes of infinite-dimensional planar config-

urations began with Grenander (1993) [132], which was motivated by the pi-

oneering work of Zahn and Roskies (1972) and other applications in object

recognition from digital images. A manifold model for direct similarity shapes

of planar closed curves, first suggested by Azencott (1994) [7], was then pur-

sued in Azencott et al. (1996) [8] and detailed by Younes (1998 [342], 1999

[343]). This idea further gained ground at the turn of the millennium, with

more researchers studying shapes of planar closed curves (for example, see

Sebastian et al. (2003) [305]).

Continuing this trend, Klassen et al. (2004) [194], Michor and Mumford

(2004) [240], and Younes et al. (2008) [344] followed the methods of Small

  



SIMILARITY SHAPE SPACE OF PLANAR CONTOURS 359

(1996) [311] and Kendall by defining a Riemannian structure on a shape mani-

fold. Klassen et al. (op. cit) and the related papers Mio and Srivastava (2004)

[245], Mio et al. (2007) [246], Srivastava et al. (2005) [317], Mio et al. (2005)

[247], Kaziska and Srivastava (2007) [176], Joshi it et al. (2007) [171], and

Kurtek et al. (2012) [209] compute an intrinsic sample mean similarity shape

of a closed curve. In many of these cases, the researchers define shape modulo

reparameterizations in addition to the traditional similarity transformations, us-

ing a Riemannian metric of their preference.

However, these above approaches are focused on mathematical and compu-

tational aspects of shape analysis. While a number of them include descriptive

statistics, such as sample means, they do not address fundamental definitions of

populations of shapes, population means, and population covariance operators.

As such, the idea of statistical inference is absent from these papers.

Ellingson (2011) [101] described methodology for a nonparametric statisti-

cal analysis of shapes of planar contours and considerations for approximating

the contours for computational purposes. Ellingson et al. (2013) [104] refined

these ideas and extended the methodology for general Hilbert manifolds, as

discussed in Chapter 11. This chapter presents methodology and results that

originate from these two sources and is organized as follows.

Section 18.2 presents the definition of the direct similarity shape of pla-

nar contours and their space. Following this, Section 18.3 defines the extrinsic

mean shape and its sample analogue and presents examples from the Kimia

contour database. Section 18.4 describes the asymptotic distribution of the ex-

trinsic sample mean shape and its derivation. Sections 18.5 and 18.6, apply the

neighborhood hypothesis test, detailed in Chapter 11, to this problem. Section

18.7 presents confidence regions for the extrinsic mean shape using nonpara-

metric bootstrap with a non-pivotal statistic. Section 18.8 then addresses com-

putational considerations necessary for working with digital imaging data in

practice, including the approximation of the contours and the correspondence

problem. Lastly, Section 18.9 applies these methodologies to the corpus callo-

sum problem introduced in Chapter 1.

18.2 Similarity Shape Space of Planar Contours

Features extracted from digital images are represented by planar subsets of un-

labeled points. If these subsets are uncountable, the labels can be assigned in

infinitely many ways. Here, though, we will consider only contours, which are

unlabeled boundaries of 2D topological disks in the plane. To keep the data

analysis stable, and to assign a unique labeling, we make the generic assump-

tion that there is a unique point p0 on such a contour at the maximum distance

to its center of mass so that the label of any other point p on the contour is

the counterclockwise travel time at a constant speed from p0 to p. As such,
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the total time needed to travel from p0 to itself around the contour once is the

length of the contour.

Therefore, we consider direct similarity shapes of nontrivial contours in

the plane as described here. A contour γ̃ is then regarded as the range of

a piecewise differentiable function, which is parameterized by arclength, i.e.

γ : [0,L] →C, such that γ(0) = γ(L), and is one-to-one on [0,L). Recall that the

length of a piecewise differentiable curve γ : [a,b] →R2 is defined as follows:

l(γ̃) =

∫ b

a
‖dγ

dt
(t)‖dt. (18.1)

Its center of mass (the mean of a uniform distribution on γ̃) is given by

zγ̃ =
1

L

∫

γ
zds. (18.2)

The contour γ̃ is said to be regular if γ is a simple closed curve and there is a

unique point z0 = argmaxz∈γ̃‖z− zγ̃‖.
A direct similarity is a complex polynomial function in one variable of de-

gree one. Two contours γ̃1 and γ̃2 have the same direct similarity shape if there

is a direct similarity S : C → C such that S(γ̃1) = γ̃2. The centered contour

γ̃0 = γ̃ − zγ̃ = {z− zγ̃ ,z ∈ γ̃} has the same direct similarity shape as γ̃.

DEFINITION 18.2.1. Two regular contours γ̃1, γ̃2 have the same similarity

shape if γ̃2,0 = λ γ̃1,0, where λ is a nonzero complex number.

In order to construct the space of direct similarity shapes, we note the fol-

lowing.

REMARK 18.2.1. A function γ : S1 →C is centered if
∫

S1 γ(z)ds = 0. We con-

sider regular contours since the complex vector space spanned by centered

functions γ yielding regular contours γ̃ is a pre-Hilbert space. Henceforth, we

will be working with the closure of this space. This Hilbert space H can and

will be identified with the space of all measurable square integrable centered

functions from S1 to C.

Let Σ reg
2 be the set of all direct similarity shapes of regular contours, which

is the same as the space of all shapes of regular contours centered at zero.

REMARK 18.2.2. From Definition 18.2.1 and Remark 18.2.1, we associate

a unique piecewise differentiable curve γ to a contour γ̃ by taking γ(0) = z0,
the point at the maximum distance to the center of C, and by parameterizing γ
using arc length in the counter clockwise direction. Therefore Σ reg

2 is a dense

and open subset of P(H), the projective space corresponding to the Hilbert

space H. Henceforth, to simplify the notation, we will omit the symbol ˜in γ̃ and

identify a regular contour with the associated closed curve, without confusion.
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18.3 The Extrinsic Mean Direct Similarity Shape

The space P(H) is a Hilbert manifold. From Example 11.3.1, this space can be

embedded in the Hilbert space LHS via the Veronese-Whitney (VW) embed-

ding j given by

j([γ]) =
1

‖γ‖2
γ ⊗ γ. (18.3)

From Proposition 11.3.1, the VW extrinsic mean shape µE of a random object

X = [Γ ] in P(H) is [e1], where e1 is the eigenvector corresponding to the largest

eigenvalue of µ = E( 1
‖Γ‖2 Γ ⊗Γ ). From this, the VW extrinsic sample mean

shape can be computed similarly.

PROPOSITION 18.3.1. Given any VW-nonfocal probability measure Q on

P(H), then if γ1, . . . ,γn is a random sample from Γ , then the VW sample mean

µ̂E,n is the projective point of the eigenvector corresponding to the largest

eigenvalue of 1
n ∑n

i=1
1

‖γi‖2 γi ⊗ γi.

To illustrate the behavior of the VW extrinsic sample mean shape, we will

now present some examples using selected planar contours from Ben Kimia’s

contour database. A few samples of contours and their extrinsic sample mean

shapes are given below.

(b)(a)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

1th G

Figure 18.1: (a) Sample of 4 contours of ’t’ gestures and (b) the extrinsic mean shape.

Our computations display many of the characteristics of the VW extrinsic

mean shape. Similarly to the standard arithmetic mean, we see that the extrinsic

mean provides a summary of the shapes by reducing the variability. This is best

shown with the contours of the dogs in Figure 18.2. For this data, there is a large

amount of variability in the contours, especially in the legs and tail, resulting

in the sample extrinsic mean shape capturing less detail in these regions. This

result is also very noticeable with the worm fish (Figure 18.4), the red snapper

(Figure 18.5), and the pears (Figure 18.6).
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(a) (b)
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1th G

Figure 18.2: (a) Sample of 9 contours of dogs and (b) the extrinsic mean shape.

(a) (b)
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0.04
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Figure 18.3: (a) Sample of 20 contours of sting rays and (b) the extrinsic mean shape.

Also of note is the VW extrinsic mean shape (Figure 18.3 (a)) of the sample

of contours of sting rays (Figure 18.3 (b)). In this case, 15 of the 20 sting rays

have straight tails. The other 5 have tails that are curved to varying degrees and

in different directions. Despite these differences in the tails of the observed

contours, the extrinsic mean shape has a straight tail, but is wider in order to

account for the curved tails.

It is apparent from these examples that we can describe each sample of pla-

nar contours very well by the VW mean shape. Moreover, the extrinsic mean

shape preserves geometric characteristics of a random family of shapes.
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(a) (b)
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Figure 18.4: (a) Sample of 20 contours of worm fish and (b) the extrinsic mean shape.

(a) (b)
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Figure 18.5 (a) Sample of 20 contours of red snapper fish and (b) the extrinsic mean

shape.

18.4 The Asymptotic Distribution of the Extrinsic Sample Mean Direct

Similarity Shape

We can now derive the asymptotic distribution of µ̂E,n based upon the general

formulation specified in Proposition 5.5.1. The asymptotic distribution of j(X)n

is as follows: √
n( j(X)n − µ) →d G as n →∞, (18.4)

where G has a Gaussian distribution NLHS
(0,Σ ) on LHS with zero mean and

covariance operator Σ . From Proposition ??, it follows that the projection Pj :

LHS → j(P(H)) ⊂ LHS is given by

Pj(A) = νA ⊗νA, (18.5)
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(a) (b)
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Figure 18.6: (a) Sample of 20 contours of pears and (b) the extrinsic mean shape.

where νA is the eigenvector of norm 1 corresponding to the largest eigenvalue

of A, Pj(µ) = j(µE ), and Pj( j(X)n) = j(µ̂E,n) . Applying the delta method to

(18.4) yields

√
n( j(µ̂E,n)− j(µE)) →d NLHS

(0,dµPjΣ (dµPj)
T ), (18.6)

as n→∞, where dµPj denotes the differential, as given in Definition 11.2.1, of

the projection Pj, evaluated at µ . It remains to find the expression for dµPj. To

determine the formula for the differential, we must consider the equivariance

of the embedding J. Because of this, we may assume without loss of generality

that µ = diag{δ 2
a }a=1,2,3,.... As defined previously, the largest eigenvalue of µ

is a simple root of the characteristic polynomial with e1 as the corresponding

complex eigenvector of norm 1, where µE = [e1].
An orthobasis for T[e1]P(H) is formed by ea, iea, for a = 2,3, . . . , where ea is

the eigenvector over R that corresponds to the a-th eigenvalue. For any γ which

is orthogonal to e1 w.r.t. the real scalar product, we define the path ψγ (t) =

[cos(t)e1 + sin(t)γ]. Then Tj([e1]) j(P(H)) is generated by the vectors tangent to

such paths at t = 0. Such vectors have the form γ ⊗ e1 + e1 ⊗ γ . In particular,

since the eigenvectors of µ are orthogonal w.r.t. the complex scalar product,

we may take γ = ea,a = 2,3, . . . , or γ = iea,a = 2,3, . . . to get an orthobasis for

Tj([e1]) j(P(H)). Normalizing these vectors to have unit lengths, we obtain the

following orthonormal frame for a = 2,3, . . . :

dµ j(ea) = 2−1/2(ea ⊗ e1 + e1 ⊗ ea), (18.7)

dµ j(iea) = i2−1/2(ea ⊗ e1 + e1 ⊗ ea), (18.8)
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As stated previously, since the map j is equivariant, we may assume that j(X)n

is a diagonal operator D, with the eigenvalues δ 2
1 > δ 2

2 ≥ ... In this case,

dµE
j(ea) = 2−1/2E1

a = F1
a , (18.9)

dµE
j(iea) = i2−1/2E1

a = iF1
a , (18.10)

where Eb
a has all entries zero except those in the positions (a,b) and (b,a) that

are all equal to 1. From these formulations and computations of the differential

of Pj in the finite dimensional case in Bhattacharya and Patrangenaru (2005),

it follows that dDPj(E
b
a ) = 0, for all values a ≤ b, except for a = 1 < b. In this

case,

dDPj(F
b
1 ) =

1

δ 2
1 − δ 2

b

Fb
1 ,dDPj(iF

b
1 ) =

1

δ 2
1 − δ 2

b

iFb
1 . (18.11)

Equation (18.11) implies that the differential of the projection Pj at µ is the

operator Q1 given by

Q1 =
∞
∑
k=2

1

δ 2
1 − δ 2

k

Ek, (18.12)

where δ 2
1 ,δ

2
2 , . . . are the eigenvalues of E( 1

‖Γ‖2 Γ ⊗Γ ) and E1,E2, . . . are the

corresponding eigenprojections. Also, in this situation, G is a normally dis-

tributed random element in LHS. This results in the tangential component of

the difference between the j - images of the VW sample mean and of the VW

mean having an asymptotic normal distribution, albeit with a degenerate co-

variance operator. From these computations, the asymptotic distribution of this

difference can be expressed more explicitly in the following manner.

√
n(tan( j(µ̂E,n)− j(µE)))

d−→ Q1G, (18.13)

where tan(v) is the tangential component of v ∈ j(P(H)) with respect to the

basis ea(Pj(µ)) ∈ TPj (µ) j(P(H)), for a = 2,3, . . . and is expressed as

tan(v) = (e2(Pj(µ))T v,e3(Pj(µ))T v, , . . . )T . (18.14)

However, this result cannot be used directly because Q1, which is calculated

using the eigenvalues of E( 1
‖Γ‖2 Γ ⊗Γ ), and µE are unknown. This problem is

solved by estimating µE by µ̂E,n and Q1 in the following manner.

Q̂1 =
∞
∑
k=2

1

δ̂ 2
1 − δ̂ 2

k

Êk, (18.15)

where δ̂1, δ̂2, . . . are the eigenvalues of

µ̂ =
1

n

n

∑
i=1

1

‖γi‖2
γi ⊗ γi (18.16)
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and Ê1, Ê2, . . . are the corresponding eigenprojections. Using this estimation,

the asymptotic distribution is as follows:

√
n(t̂an( j(µ̂E,n)− j(µE)))

d≈ Q̂1G, (18.17)

where “
d≈” denotes approximate equality in distribution and t̂an is the tangen-

tial component relative to the tangent space of j(P(H)) at j(µ̂E,n) as in (18.14),

where µ is replaced with µ̂ in equation (18.16). Applying this result to (18.6),

we arrive at the following result.

THEOREM 18.4.1. If Γ1, . . . ,Γn are i.i.d.r.o.’s from a VW-nonfocal distribu-

tion Q on P(H) with VW extrinsic sample mean µ̂E,n, then

√
n( j(µ̂E,n)− j(µE))

d≈ dµ̂n
PjG as n →∞, (18.18)

where µ̂n = j(X)n is a consistent estimator of µ .

It must be noted that because of the infinite dimensionality of G, in prac-

tice, a sample estimate for the covariance that is of full rank cannot be found.

Because of this issue, this result cannot be properly studentized. Rather than

using a regularizarion technique for the covariance that leads to complicated

computations, we will drastically reduce the dimensionality via the use of the

neighborhood hypothesis methodology presented in Chapter 11.

18.5 The One-Sample Neighborhood Hypothesis Test for Mean Shape

Suppose that j : P(H) → LHS is the VW embedding in (11.3) and δ > 0 is a

given positive number. Using the notation in Chapter 12, we now can apply

Theorem 11.4.1 to random shapes of regular contours. Assume xr = [γr],‖γr‖ =

1,r = 1, . . . ,n is a random sample from a VW-nonfocal probability measure Q.
Then equation (18.18) shows that, asymptotically, the tangential component of

the VW-sample mean around the VW-population mean has a complex multi-

variate normal distribution. Note that such a distribution has a Hermitian co-

variance matrix (see Goodman, 1963 [128]). Therefore, in this setting, the ex-

trinsic covariance operator and its sample counterpart are infinite-dimensional

Hermitian matrices. In particular, if we extend the CLT for VW-extrinsic sam-

ple mean Kendall shapes in Bhattacharya and Patrangenaru (2005) to the in-

finite dimensional case, the j-extrinsic sample covariance operator SE,n, when

regarded as an infinite Hermitian complex matrix has the following entries

SE,n,ab = n−1(δ̂ 2
1 − δ̂ 2

a )−1(δ̂ 2
1 − δ̂ 2

b )−1 (18.19)
n

∑
r=1

< ea,γr >< eb,γr >
∗ |< e1,γr > |2,a,b = 2,3, . . .
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with respect to the complex orthobasis e2,e3,e4, . . . of unit eigenvectors in the

tangent space Tµ̂E,n
P(H). Recall that this orthobasis corresponds via the differ-

ential dµ̂E,n
with an orthobasis (over C) in the tangent space Tj(µ̂E,n) j(P(H)).

Therefore, one can compute the components ν̂a of ν̂ from equation (11.18)

with respect to e2,e3,e4, . . . , and derive for s2
n in (11.16) the following expres-

sion

s2
n = 4

∞
∑

a,b=2

SE,n,abν̂aν̂b, (18.20)

where the SE,n,ab given in equation (18.19) are regarded as entries of a Her-

mitian matrix. The test statistic Tn in equation (11.15) is defined on an infinite

dimensional Hilbert manifold.

18.6 Application of the One-Sample Test for Mean Shape

The most likely applications involve having a known extrinsic mean shape de-

termined from historical data. In such cases, the hypothesis test can be used

to determine whether there is a significant deviation from the historical mean

shape. One application in agriculture could be determining whether the use of

a new fertilizer treatment results in the extrinsic mean shape of a crop signif-

icantly changing from the historical mean. Similarly, this test could be per-

formed for quality control purposes to determine if there is a significant defect

in the outline of a produced good.

In practice, δ will be determined by the application and the decision for

a test would be reached in the standard fashion. However, for the examples

presented here, there is no natural choice for δ , so one can instead consider

setting Z = ξ1−α and solving for δ to show what decision would be reached

for any value of δ . To do so, it is important to understand the role of δ . The

size of the neighborhood around m0 is completely determined by δ . As such,

it follows that smaller values of δ result in smaller neighborhoods. In terms

of H0, this places a greater restriction on Mδ and Bδ , requiring µE to have a

smaller distance to m0.

For the examples presented here, the contours are approximated using k =

300 sampling times, so the shape space is embedded into S(300,C) to conduct

analysis. In this environment, consider having two k-gons that are identical

except for at one time. If this exceptional point for the second k-gon differs

from the corresponding point in the first k-gon by a difference of 0.01 units,

then the distance between the shapes inherited from S(300,C) is approximately

0.0141. For the hypothesis test, if δ = 0.0141, then the neighborhood around

m0 would consist of distances between shapes similar in scope to the situation

described above.

First, consider an example for which the one-sample test for extrinsic mean

shape is performed for sting ray contours. In this case, the sample extrinsic

mean shape for a sample of contours of n = 10 sting rays is the shape shown on
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Figure 18.7 The extrinsic sample mean shape of a sample of 10 sting rays and, respec-

tively, the hypothesized extrinsic mean shape.

the left hand side in Figure 18.7. After performing the calculations, it was de-

termined that for an asymptotic level 0.05 test, the largest value of δ for which

we would reject the null hypothesis is 0.0290. For perspective, this neighbor-

hood has a radius roughly 2 times larger than the example with the nearly

identical k-ads described above. This means that we would only reject the null

hypothesis if we required the sample extrinsic mean to be nearly identical to

the hypothesized mean. It should also be noted here that the sample size is

small here, but that the conclusion agrees with intuition based upon a visual

inspection of the contours.

Now consider two examples involving contours of pears. In this first case,

the sample consists of n = 87 pears. The sample extrinsic mean shape and hy-

pothesized extrinsic mean shape are shown in Fig 18.8. It was determined that

for an asymptotic level 0.05 test, the maximum value of δ for which we would

reject the null hypothesis is 1.2941. This value of δ is almost 92 times greater

than the distance between the nearly identical k-ads. This suggests that even if

we greatly relax the constraints for similarity, the null hypothesis would still

be rejected. This again agrees with intuition.

In this last example, consider another sample of contours of pears. In this

scenario, we consider a sample of n = 83 pears. The sample extrinsic mean

shape and hypothesized extrinsic mean shape are shown in Fig 18.9. After per-
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Figure 18.8 The sample extrinsic mean shape of a sample of 87 pears and, respectively,

the hypothesized extrinsic mean shape.

forming the calculations, we determined that for an asymptotic level 0.05 test,

the largest value of δ for which we would reject the null hypothesis is 0.1969,

meaning that our procedure does not reject the null hypothesis, unless δ is

smaller then 0.1969. For perspective, this neighborhood has a radius nearly 14

times larger than the example with the nearly identical k-ads described above.

Unlike in the previous two examples it is unclear whether the null hypothesis

should be rejected in this case without having a specific application in mind

and, as such, this could be considered a borderline case.

18.7 Bootstrap Confidence Regions for the Sample Mean

Another method for performing inference, which we consider now, is through

the use of nonparametric nonpivotal bootstrap. By repeatedly resampling from

the available data and computing the distance between each resampled mean

and the sample mean, we can obtain a confidence region for the extrinsic mean

shape (for the finite-dimensional case, see Bandulasiri et al. (2008) [10] and

Amaral et al (2010) [1]).

Below are examples of 95% bootstrap confidence regions for the same sets

of contours as provided previously. These regions are based upon 400 resam-

ples from the data. These computations reveal that these regions behave as
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Figure 18.9 The sample extrinsic mean shape of a sample of 83 pears and, respectively,

the hypothesized extrinsic mean shape.
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Figure 18.10 Bootstrap 95% confidence region for the extrinsic mean shape of (a) the

”t” hand gesture and (b) the dogs.

would be expected. For instance, the confidence region for the ’t’ hand gesture

in Figure 18.10(a) is wider in the portions of the shape where there is more

variability in the sample (Figure 18.1), such as the knuckle and finger areas,

but is narrower in the portions where there is less variability in the sample,

  



APPROXIMATION OF PLANAR CONTOURS 371

such as the wrist. This is also evident in the confidence region for the sting

rays 18.11(a) since the bands are thicker in the regions corresponding to the

tail of the fish, where, as shown in Figure 18.3, the variability is the greatest.

(a) (b)
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Figure 18.11 Bootstrap 95% confidence region for the extrinsic mean shape of (a) the

sting rays and (b) the wormfish.

It is also noticeable that the samples with less variability have narrower con-

fidence regions, as well. Comparing the samples of dogs, wormfish, and pears

(Figures 18.2, 18.4, & 18.6, respectively), it is easy to see that the contours of

the dogs have more variability than the contours of the wormfish, which have

more variability than the contours of the pears. This is reflected in the widths

of the confidence regions for these three groups of contours, as seen in Figures

18.10(b), 18.11(b) and 18.12(b).

18.8 Approximation of Planar Contours

Ideally, the shapes of planar contours could be studied directly. However, when

performing computations, it is necessary to approximate the contour by evalu-

ating the function at only a finite number of times. If k such sampling times are

selected, then the linear interpolation of the yielded sampling points is a k-gon

z, for which each sampling time is a vertex. As with the contour, z is a one-

to-one piecewise differentiable function that can be parametrized by arclength.

Let Lk denote the length of the k-gon. For j = 1, . . . ,k, let z(t j) denote the jth

ordered vertex, where t j ∈ [0,Lk) and z(t1) = z(0) = z(Lk). It follows that, for

s ∈ (0,1), the k-gon can be expressed as follows:

z(sLk) =





(t2 − sLk)z(0) + sLkz(t2) 0 < sLk ≤ t2

(t j − sLk)z(t j−1) + (sLk − t j−1)z(t j) t j−1 < sLk ≤ t j

(Lk − sLk)z(tk) + (sLk − tk)z(0) tk < sLk < Lk

(18.21)
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Figure 18.12 Bootstrap 95% confidence region for the extrinsic mean shape of (a) the

red snapper fish and (b) the pears.

for j = 3, . . . ,k. As such, the space of direct similarity shapes of non-self-

intersecting regular polygons is dense in the space of direct similarity shapes of

regular contours. Therefore, the theory and methodology discussed in sections

3 through 5 hold for the shapes of these functions, as well. For the purposes

of inference using the neighborhood hypothesis, then, it suffices to use the test

statistic as derived previously. However, when considering these approxima-

tions, it is important to choose the sampling times appropriately so that the

contour is well approximated by the polygon. Additionally, one must take cor-

respondence across contours into consideration when working with a sample.

We will first present an algorithm for choosing sampling times in such a way

that the k-gon well represents the contour and converges to it accordingly. Fol-

lowing that, we will address considerations for working with samples.

18.8.1 Random Selection of Sampling Times

To obtain approximations, we propose to randomly select a large number k

of sampling times t j from the uniform distribution over [0,L). By doing so,

we insure, on one hand, that we ultimately use a sufficiently large number of

vertices so that the k-gon well represents the contour. On the other hand, we

ensure the desired density of sampling points.

In order to maintain the within sample matching for a sample of regular

contours, we first find the point z0 at the largest distance from the center of

the contour and choose that as z(0). We then randomly select k− 1 sampling

times from the uniform distribution to form the k-gon, making sure to main-

tain the proper ordering, preventing the k-gon from self-intersecting. This is

accomplished by sorting the selected sampling times in increasing order.
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It is important to choose an appropriate number of sampling times for the

given data. The selected sampling points will be distributed fairly uniformly

around the contour for large values of k, ensuring that the curve is accurately

represented by the k-gon. However, choosing too many sampling times will

needlessly increase the computational cost of performing calculations. This

will be most noticeable when utilizing bootstrap techniques to compute confi-

dence regions for the extrinsic mean shape.

Choosing too few sampling times, though, while keeping computational cost

down, can be extremely detrimental as the sampling points may not be suffi-

ciently uniform to provide adequate coverage of the contour. This can signifi-

cantly distort the k-gon, as shown in Figure 18.13. In this particular instance,

the 200-gon of the dog includes no information about one of the ears and very

little detail about one of the feet. It should be noted that the extraction and
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Figure 18.13 A dog represented by 1000 and, respectively, 200 randomly chosen sam-

pling points.

approximation of a contour and the previously described eigenanalysis can be

automated, or semi-automated, allowing for efficient execution of the metho-

dology. An example of this sampling point selection process from start to fin-

ish is shown in Figure 18.14. Please note that the sampling point selection

considered here is analogous to the landmark selection method considered by

Ellingson (2011) [101] for approximating a contour as a k-ad.

The length of the contour L can be used to assist in determining an appro-
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(a) (b)

(c) (d)

Figure 18.14 An image of the contour of a boot from the Kimia image database (a) as

a silhouette, (b) as a contour, (c) as 200 randomly selected sampling points, and (d) as

a contour constructed from the chosen sampling points.

priate number of sampling points to be chosen. After selecting an initial set of

k sampling times as describe above, the length Lk of the k-gon is

Lk =
k+1

∑
j=2

‖z(t j)− z(t j−1)‖, (18.22)

where z(tk+1) = z(0). An appropriate lower bound for the number of sampling

points can be determined by randomly selecting times for various values of k.

Compute Lk for each of these k-gons using (18.22) and compute the relative

error compared to L. This should be repeated many times to obtain a mean

relative error and standard deviation of the relative error for each value of k

used. To determine an appropriate number of sampling points to use, compare

the mean relative error to a desired threshold. Additionally, the distributions of

the relative errors could also be examined. It should be noted, however, that

since digital imaging data is discrete by nature, the contour will be represented

by K pixels. As such, it is often necessary to replace L by LK , the length of the

closest approximation to the contour, which can be calculated similarly to Lk.

When using this algorithm to select sampling points, it follows that the k-gon
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will converge to the contour. However, when selecting an additional sampling

time t j′ , care must be taken to properly alter z in such a way that ensures that

there is no self-intersection of the k-gon. To do so, simply reorder the sampling

times in increasing order and apply the resulting permutation to the sampling

points. It follows that, with probability 1, the length of the k-gon between suc-

cessive sampling points will converge to 0 as the number of sampling times

tends to infinity. This can be stated more formally as follows.

LEMMA 18.8.1. If sampling times s1,s2, . . . ,sk are selected from a uniform

distribution over [0,1), then

Lmax = max
2,k+1

‖z(s jLk)− z(s j−1Lk)‖ p−→ 0.

Proof.

P(Lmax > ε) = P(All k sampling points are within the remaining Lk − ε)

= P

(
All k sampling times are within the remaining 1− ε

Lk

)

We can assume without loss of generality that the section of the k-gon for

which the distance between successive sampling times is greater than ε∗ is

over the interval (0,ε). In addition, since the sampling times are independently

chosen,

P(Lmax > ε) =

(
F(1)−F

(
ε

Lk

))k

=

(
1− ε

Lk

)k

where F is the cdf for the uniform distribution over the interval [0,1). Taking

the limit of this expression as k →∞ results in Lmax
p−→ 0 since

lim
k→∞

P(Lmax > ε) = lim
k→∞

(
1− ε

Lk

)k

= 0

The center of mass of the k-gon is calculated in the following manner.

zk =
1

2Lk

k+1

∑
j=2

‖z(t j)− z(t j−1)‖
(
z(t j) + z(t j−1)

)
(18.23)

This differs from the Kendall definition of the center of mass for a k-ad, which

in this situation, would depend only on the vertices. It follows immediately

from the definition that the center of mass of the k-gon converges to the center

of mass of the contour.

While the k-gon z converges to the contour γ , it is also of great interest

to consider the convergence of [z] to [γ]. Since z and γ are objects in the same
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space, the disparity in their shapes can be examined by considering the squared

distance ‖ j([z])− j([γ])‖2 in LHS. However, for the purposes of computational

comparisons, it is necessary to evaluate the functions at m > k times using

(18.21) and approximate the distance in S(m,C), the space of self-adjoint m×m

matrices. To illustrate, consider the contour considered in Figure 18.15. The

Figure 18.15: The digital image of the contour of a stingray.

digital representation of this contour consists of K = 764 pixels. sampling times

were selected using the above algorithm to form k-gons for k = 3, . . . ,763. Each

k-gon was then evaluated at 764 times corresponding to the each of the pixels

on the digital image of the contour. As such, squared distances between the

k-gons and the contour were computed in S(764,C). After this was repeated

50 times, the means and standard deviations of the squared distances were

calculated for each value of k and are shown in Figure 18.16. The mean squared

distance to the contour converges quickly, showing that the distance between

[zk] and [γ] only diminishes slightly for k > 100. Moreover, the variability

introduced by selecting the sampling times randomly also rapidly approaches

0. As such, it is clear that [γ] is well approximated using k << K. However,

while the overall shape is well approximated, it is unclear from this alone how

well the details of γ are approximated. As such, using the distance between

shapes may not be the best indicator for determining a lower bound for k. For

this purpose, it may be more helpful to consider (LK −Lk)/LK , the relative error

in the approximation of the length, as described previously. For the contour in

Figure 18.15, the relative error in length is shown in Figure 18.17. Here, while

the variability approaches 0 quickly, the average relative error approaches 0 at

a lower rate. As such, if it is desirable to keep the relative error below 0.05, for

this example, no fewer than 300 sampling times should be selected.  
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Figure 18.16 The mean and standard deviation of the squared distance of shapes of

k-gons to the shape of the contour, as evaluated in S(764,C).
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Figure 18.17 The mean and standard deviation of the relative error of the length of the

k-gons.

18.8.2 Considerations for Samples of Contours

In addition to ensuring that each contour in a sample is well approximated,

since each contour must be evaluated at m times for computations, it is nec-

essary that each be evaluated at the same times to maintain correspondence

across the n observations. In the ideal scenario, if each contour is well approx-

imated by a k-gon, then select k sampling times s1, . . . ,sk ∈ [0,1) using the
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algorithm as described above. For j = 1, . . . ,n, the sampling points for z j can

then be obtained by evaluating γ j at times s1 ·L j , . . . ,sk ·L j , where L j denotes

the length of of γ j. Figure 18.18 shows two examples of utilizing this proce-

dure for samples of contours of hand gestures. Using the same sampling times

for each observation, 6 sampling points are highlighted in red to illustrate the

correspondence across the sample.

Figure 18.18 Correspondence of 6 sampling points for contours of hand gestures of

(a) the number ’5’ and (b) the letter ’L’. (Source: Ellingson et al.(2013), Figure 5.

Reproduced by permission of Elsevier).

Alternatively, if contour j requires k j sampling points for adequate approx-

imation, where ki 6= k j for at least one pair i, j, then select sampling times for

each contour. Let T j denote the set of sampling times that generate the k j-gon

z j. In order to maintain correspondence, evaluate z j at the m times contained

in ∪n
i=1Ti for j = 1, . . . ,n. This approach may also be utilized if each contour

is approximated using k sampling points, but at different times. Finally, even

if the conditions of either of the previous scenarios are met, it may be desired

to consistently work within the same shape space when working with multi-

ple samples, so it may be preferred to instead first consider approximating the

contours and then approximating each at m subsequently chosen times, thus

separating the issues of approximation and correspondence. However, for each

of these scenarios, the selection of sampling points, evaluation of the k-gon at

m times, and subsequent analysis can be either semi-automated or fully auto-

mated, allowing for efficient execution of the methodology.

18.8.3 Approximation of the Sample Mean Shape

Whenever one is dealing with an object that is conceptually of infinite, or very

high, dimension, a suitable dimension reduction must inevitably take place to

enable computers to handle this object. Because this process is usually a pro-

jection from an infinite dimensional sample space of which the original object
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is an element, onto a finite dimensional subspace, we will for convenience refer

to it as a “projection”. In the current situation, the infinite dimensional object

is the average of projection operators µ̂ in equation (18.16), which is a positive

element in the Hilbert space of Hilbert-Schmidt operators. Above, this object

has been approximated by rather high-dimensional projection and then succes-

sively by projections of lower dimension, in order to arrive at an approximation

of sufficiently low dimension that is still a good representative of the original

object. What constitutes “good” here has not been established rigorously, but

instead primarily on eye ball fitting, which may, in many cases, work rather

well.

Ellingson and Prematilake (2013) [105] follows up the above approach with

the aim to form a more concrete methodlogy for determining an appropriate

approximation for a single contour. However, it is still driven by making a

choice about what constitutes a “good” approximation. A more sophisticated,

theoretically-based approach seems possible, however, and might be based on

a method employed by Gaines (2012) [122] to determine a suitable number of

points at which the values of a Brownian motion process should be simulated.

This was accomplished by using results from perturbation theory to ensure that

the largest eigenvalues of the covariance operator of the projection sufficiently

approximated those of the original process. Since µ̂E is the largest eigenvalue

of Γ̂ , a similar approach should, in principle, be appropriate in the this context.

18.9 Application to Einstein’s Corpus Callosum

We will now return to a problem that was introduced in Chapter 1 involving

Albert Einstein’s corpus callosum. Recall that Einstein’s brain was removed

and extensively studied after his death. Motivated by Falk et al. (2013) [110]

and Man et al. (2014) [228], which showed that the midsatigittal cross section

of Einstein’s corpus callosum was thicker than average, Qiu et al. (2014) [285]

utilized the methodology described above to investigate this problem.

The contours of corpora callosa for Einstein and a sample of similarly aged

people from Fletcher (2013) [118] are shown in Figure 1.2 and, respectively,

Figure 1.2. Qiu et al. (2014) [285] obtained matched sampling points for the

observed contours by using the methodology described in Section 18.8.

Qiu et al. (2014) [285] subsequently performed an analysis using the re-

maining methodology discussed in this chapter. An icon for the extrinsic sam-

ple mean shape is displayed in Figure 18.9, where it is superimposed on the

contour for Einstein’s corpus callosum. This figure suggests that there may be

some differences in shape between these contours.

The two inference procedures discussed in this chapter suggest that the

cross-section of Einstein’s corpus callosum does indeed differ in shape from

the average. Performing the neighborhood hypothesis test revealed that the

largest value of δ for which the null hypothesis would be rejected is 0.1367,

  



380 SIMILARITY SHAPE ANALYSIS OF PLANAR CONTOURS

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60

90

120

150
180

210 240

270

1

Landmark of P11

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60
90

120

150

180

210

240

270

1

Landmark of P1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60

90

120

150

180

210

240

270

1

Landmark of P2

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60

90

120

150
180

210

240

270

1

Landmark of P3

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30
60

90

120

150 180

210 240

270

1

Landmark of P4

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60
90

120

150

180

210 240

270

1

Landmark of P5

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60
90

120

150 180

210
240

270

1

Landmark of P6

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

6090

120

150 180

210
240

270

1

Landmark of P7

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60
90

120

150
180

210
240

270

1

Landmark of P8

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30
60

90

120

150

180

210 240

270

1

Landmark of P9

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

30

60
90

120

150

180

210 240

270

1

Landmark of P10

Figure 18.19 Matched sampling points on the CC contours. Einstein’s is the upper left

CC.

Figure 18.20 Superimposed icons for the similarity shapes of contours of corpus callo-

sum midsections: sample mean vs Albert Einstein’s.

which is rather large compared to the amount of variability present in the data.

This finding is further bolstered by the 95% bootstrap confidence region for

the extrinsic mean shape, which is depicted in Figure 18.9. Comparing Figures

18.9 and 18.9 reveals that the Einstein’s contour is not contained within the

confidence region, thus suggesting that the shape of Einstein’s corpus callo-

sum cross section is significantly different than average.
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Figure 18.21 95% bootstrap confidence region for the extrinsic mean CC contour by

1000 resamples.
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Chapter 19

Estimation of Mean Skull Size and

Shape from CT Scans, with

Applications in Planning

Reconstructive Plastic Surgery in

Young Adults
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19.2 CT Scans 384

19.3 Bone Surface Segmentation 384

19.4 Skull Reconstruction 386

19.5 Landmark-Based Size-and-Shape Analysis 386

In this chapter, we consider an application of size-and-shape analysis arising

from images obtained from CT (computed tomography) scans. We return to

the data set introduced in Chapter 1 involving CT scans of human skulls. This

chapter will discuss image processing techniques necessary for obtaining data

in the appropriate form for landmark-based shape analysis and the subsequent

nonparametric statistical analysis, as described in Chapter 12. The primary ref-

erences for this chapter are Osborne (2012) [257], Osborne et al. (2012) [259],

and Osborne et al. (2015) [260].

19.1 Introduction

As mentioned in Chapter 1, CT scans are a valuable resource for imaging var-

ious parts of the human anatomy. One particular application is in the planning

of surgery, where it is appropriate to take the size and shape of the body into

account. As such, it is sensible to appeal to statistical methods for analyzing
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size-and-shape for such purposes. However, it is highly non-trivial to produce

useful landmarks from CT data. Here, we will present the methodology de-

tailed in Osborne (2012) [257] to obtain such data for the purposes of studying

the size-and-shape of the bones found in the skull.

This procedure can be broken down into a number of steps. First, the bone

must be isolated from the CT scans. Then, the bone structures from various

scans from a single individual are used to produce a 3D reconstruction of the

skull. Subsequently, relevant anatomical landmarks can be obtained from these

reconstructions for the purposes of size-and-shape analysis, where the obser-

vations are regarded as points on the size-and-reflection-shape space SRΣ k
3,0,

that was introduced in Chapter 12.

The remainder of this chapter will be organized as follows. First, we will

present an overview of CT scans. We will then describe the techniques used to

isolate the bone structures. After that, we will discuss the reconstruction proce-

dure. We will then conclude with an aplication of the nonparametric techniques

described in Chapter 12 to landmarks obtained from this procedure.

19.2 CT Scans

A CT or CAT (computed assisted tomography) scan uses X-rays to make de-

tailed pictures of structures inside of the body. As described in Chapter 1, CT

scans can be used to study all parts of the human body. CT scans can also

take pictures of the body organs, such as the bladder, liver, lungs, pancreas, in-

testines, kidneys, and heart. Additionally, they can be used to study the spinal

cord, blood vessels, and bones. Because of their great utility, specialized soft-

ware was designed for retrieval of volumetric data from the CT X-rays.

Figure 19.1 shows a flowchart describing the process involved with obtain-

ing a series of CT scans from acquisition through representation as an image.

The value associated with a given voxel in a CT scan, which is typically con-

verted to a grayscale intensity for displaying, represents the material, such as

bone, fat, or air, found in the corresponding location within a person’s body.

Figure 19.2 details the relationship between the materials and their depiction in

a CT scan. Good contrast sensitivity is desirable in medical imaging. CT ima-

ges provide a high level of this, especially for distinguishing bone from soft

tissue.

19.3 Bone Surface Segmentation

The data set used in Osborne (2012) [257] contains CT scans of skulls for 20

individuals. Each observation consists of roughly 100 CT slices of one person’s

head above the mandible, as displayed in Figure 1.20. Since it is necessary to

virtually reconstruct the skulls for the size-and-shape analysis, after the obser-

vations were obtained, the surfaces of the bone structures had to be extracted.
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Figure 19.1: The process of CT image acquisition.

Figure 19.2 Various materials are represented as a grayscale intensity for a given

voxel.
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In other words, the surface is reconstructed from the curves that separate the

softer flesh tissue from the hard bone tissue. Since these tissues are represented

by different voxel intensities, finding these curves amounts to detecting the

edges between different gray levels.

There are various methods for accomplishing this goal, including thresh-

olding and semi-thresholding. The basic ideas behind such an approach is to

simplify the image by applying a threshold T based on the grayscale intensity

of each voxel. This classifies each voxel x into one of two classes: B (bone) and

B̄ (non-bone). For a voxel x with intensity I(x),

x ∈
{

B, if I(x) ≥ T

B̄,otherwise

This is made more complicated by the fact that an appropriate value of T

may vary considerably across regions of the skull within even a single in-

dividual. An alternative approach for doing this is based on a segmentation

technique introduced by Caselles et al. (1997) [60] called the Geodesic Active

Contour model, which is an extension of the snake model of Kass et al.(1988)

[175]. The method used by Osborne (2012) [257] was the total variation seg-

mentation algorithm of Unger et. al (2008) [325]. Figure 19.3 displays some

examples of bone structures extracted from CT slices form a single individual.

19.4 Skull Reconstruction

Because each individual CT image from an individual represents a cross-

section of their head at a given height, in order to virtually reconstruct a per-

son’s skull from the extracted bone, the images must be stacked atop each other.

The general idea behind this process is shown in Figure 19.4. Examples of 3D

reconstructions for four individuals are shown in Figure 19.5.

19.5 Landmark-Based Size-and-Shape Analysis

With the reconstructed skulls obtained, Osborne (2012) [257] carefully chose 9

matched landmarks around the eye sockets on each of the 20 skulls. The set of

skulls and the chosen landmarks are displayed in Figure 19.6. The researchers

then performed a size-and-shape analysis using the k-ads formed from these

landmarks. More specifically, they sought to estimate the Schoenberg mean

size-and-reflection-shape, as described in Chapter 12.

To do this, they used 500 bootstrap resamples to obtain 90% simultaneous

confidence regions for the coordinates of the landmarks with respect to a con-

venient coordinate system. The lower and upper bounds for the coordinates

of these rectangular regions are shown in Table 19.1. To help better visualize
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Figure 19.3 Examples of bone structures extracted from CT slices of a single individual.

Figure 19.4: Reconstruction of volume data from CT images.
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Figure 19.5: 3D Reconstruction of the bone surface-total variation approach.

Table 19.1 Simultaneous Bootstrap Confidence Intervals for the Mean Size and Shape

of the Distribution of Configurations

90% Low Confidence Limit for the Bootstrap Distribution of the Sample Mean Configuration

Landmark No. 1 2 3 4 5 6 7 8 9

x −45.76 −28.65 −9.75 −32.06 −0.90 7.84 27.15 40.79 26.28

y 10.10 −2.37 −5.91 0.27 −19.20 −3.84 0.86 10.04 −0.06

z −0.19 9.73 4.24 −11.67 −8.06 3.00 −12.70 −1.70 9.36

90% Upper Confidence Limit for the Bootstrap Distribution of the Sample Mean Configuration

Landmark No. 1 2 3 4 5 6 7 8 9

x −42.03 −24.44 −7.27 −28.29 0.41 10.19 30.65 44.52 30.30

y 11.85 −0.93 −3.39 1.82 −15.92 −1.69 2.52 12.83 4.17

z 1.43 11.12 5.93 −10.02 −5.73 4.83 −11.25 −0.32 13.08

these regions, bootstrap distributions for the landmarks of the Schoenberg sam-

ple mean are displayed with respect to the same coordinate system are shown

in Figure 19.7. For the purpose of convenient comparison, they are displayed

alongside a template skull.
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Figure 19.6 The 20 virtual reconstructions of the skulls with the chosen landmarks

labeled.

Figure 19.7 Bootstrap distributions for the landmarks of the Schoenberg sample mean

based on 500 resamples.
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20.4.1 2D Gel Electrophoresis (2DGE) 397
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Using the Dimitric Distance on the Grassmannian 400

20.4.4 Results 402

20.1 Introduction

A study of affine shape and linear shape is needed in certain problems that

arise in in bioinformatics and in pattern recognition . In particular, affine shape

analysis is useful in the reconstruction of a larger area from a number aerial

images, and linear shape is helpful in the the analysis of 2D electrophoresis

images.

A typical example, given in Figure 20.1, is when two aerial images taken

by a squadron from different distances of a ground scene need to be merged

to create a larger contiguous image that contains the information in both these

images.

Another problem consists in identifying or matching configurations of pro-

teins on marked 2D gel electrophoresis. See Figure 20.2. Such problems in-

volve image warping that may be based on linear shapes of configurations of

selected landmarks. When it comes to affine shape, researchers from computer

vision use a different definition than the one in Section 3.5. In Section 20.2, we

introduce the computer vision definition due to A. Heyden (1995) [157] and
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Figure 20.1: Aerial photographs of two sections of a ground scene.

compare it to the one in Subsection 3.5.7, showing that the two definitions are,

in fact, equivalent.

As a consequence, either definition allows considering the affine shape space

of configurations of k points in general position to be regarded as a real Grass-

mann manifold (see Subsection 3.5.7). Therefore, statistical analysis of affine

shape naturally leads to data analysis on a real Grassmann manifold. The pre-

ferred data analysis, given its simplicity and computational speed, is an extrin-

sic analysis based on the Dimitric embedding in (14.1) defined in Section 20.3.

In Section 14.2, the Dimitric mean of a distribution Q on Gk(Rm) was deter-

mined as the linear envelope of the eigenvectors corresponding to the k largest

eigenvalues of the regular mean regarded as point on Sym(m,R). The Dim-

itric sample mean is the key statistic considered in this chapter for 2D image

reconstruction.

2D-gel electrophoresis (2DGE) is a widely used technique for separating

protein molecules for identification purposes. Different proteins have different

molecular weights and electrical charges, and hence behave differentially in an

applied electric field. In 2DGE protein molecules are allowed to move in a gel

medium under an X-Y electric field, and a snapshot is taken once molecules

have had sufficient time to move away from the initial point. Due to the vari-

ability of gels density and strength of electric fields, a protein molecule is gen-

erally considered to be moved to a certain position in each of the perpendicular

directions. Their coordinates in two experiments, say (X ,Y ) and (X ′,Y ′) differ

via a linear equation

X ′ = aX ,Y ′ = bY,a,b > 0, (20.1)

so two configurations of proteins from the same medium, but pictured in dif-

ferent settings, may differ by a linear transformation 20.1. Therefore, up to

measurement errors, the linear shape of the configuration of the protein config-

uration should be independent of experimental settings. The problem of match-
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Figure 20.2: Marked electrophoresis gels.

ing electrophoresis configurations in 2DGE images, modulo linear transforma-

tions, is discussed with an example in Section 20.3.

20.2 The Affine Shape Space in Computer Vision

Recall from subsection 3.5.7 that, for k ≥ m + 1, the reflection-affine shape

space AΣ k
m of k-ads in general position in Rm, is in a one to one correspondence

with the Grassmann manifold Gm(Rk−1). In that section, a reflection-affine

shape aσ̃(x) was defined as the orbit of a k-ad x = (x1, . . . ,xk) under the diagonal

action 3.136 of the affine group A f f (m) on k-ads in Rm.
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Another definition of affine shape is given by A. Heyden (1995) [157] and

G. Sparr (1998) [315]:

DEFINITION 20.2.1. In computer vision, an affine shape in the sense of Hey-

den ασ [x] of the k-ad x in general position Rm is the linear subspace of Rk

given by

ασ [x1, ...,xk] = {ξ = (ξ 1, ...,ξ k),
j=k

∑
j=1

ξ jx j = 0,
j=k

∑
j=1

ξ j = 0} (20.2)

We can prove the following:

PROPOSITION 20.2.1. There is a natural one to one correspondence be-

tween reflection-affine shapes in statistical shape analysis and affine shapes in

computer vision in definition 20.2.1.

Let αΣ k
m,m be the set of affine shapes in the sense of Heyden, as given

in definition 20.2.1. Consider the function H : AΣ k
m,m → αΣ k

m,m, given by

H(ασ [x1, ...,xk]) = aσ̃(x). Note that this function is well defined. Indeed, if

x and y have the same affine shape, then from the definition of the reflection-

affine shape in Subsection 3.5.7, there is a matrix A ∈ GL(m,R), such that,

∀i = 1, . . . ,k, we have ξ iA = ξ ′i, where (ξ 1 . . .ξ k) and (ξ ′1 . . .ξ ′k) are, respec-

tively, the the centered data obtained from the sampling matrices x and x′. This

is the case since the translation part, b, of the transformation x′ = Ax + b dis-

appears via centering. Therefore, if we multiply the equations in (20.2), which

are satisfied by ξ , on the right hand side by A, then those equations are also

satisfied by ξ ′. It is elementary to show that H is one to one and onto.

20.3 Extrinsic Means of Affine Shapes

Affine shape distributions have been considered by Goodall and Mardia (1993)

[126], Leung, Burl, and Perona (1998) [220], Berthilsson and Heyden (1999)

[23], and others. In view of results in Chapter 14, Dimitric sample means of

distributions of reflection affine shapes can be determined using the general

approach in Chapter 4. Recall that via Dimitric embedding j, Gm− j(R
k−1) is

mapped to Sym(k− 1) by identifying each m− j-dimensional vector subspace

L with the matrix pL of the orthogonal projection into L.

Assume a probability distribution Q of affine shapes of configurations in

general position is nonfocal w.r.t. this embedding j. In this case, from Section

14.2, the Dimitric mean of Q is the vector subspace spanned by unit eigen-

vectors corresponding to the first m− j eigenvalues of µ j(Q), mean of j(Q).
Assume (π1, ...,πn) is a sample of size n of m− j-vector subspaces π1, ...,πn

in Rk−1, and the subspace πr is spanned by the orthonormal unit vectors

{xr,a}a=1,...,m− j and set xr = (xr,a)a=1,...,m− j. The Dimitric sample mean of this

sample, when it exists, is the m− j-vector subspace π generated by the unit

  



EXTRINSIC MEANS OF AFFINE SHAPES 395

Figure 20.3 Reconstruction by Gordana Derado of a larger view of the scene in images

in Figure 20.1, based on an extrinsic mean affine shape.

eigenvectors corresponding to the first largest m − j eigenvalues of ∑r xxxt
r.

This can be compared with the Procrustes sample mean in the sense of Chikuse

(1999 [71], 2003 [72])). There are exceptional distributions, such as the uni-

form distributions (Chikuse and Watson (1995) [73]), for which the extrinsic

mean does not exist, and therefore the Procrustes sample mean is inconsistent.

Nevertheless, the condition of existence of the mean of a distribution on a

Grassmann manifold is generic and, for a given random sample, the extrinsic

mean exists with almost no exception. The extrinsic sample mean is useful in

averaging images of remote planar scenes by adapting the standard method

of image averaging of Dryden and Mardia (1998) [91] as shown in Mardia et

al. (2001) [234]. This method can be used in reconstruction of larger planar

scenes, as in Faugeras and Luong (2001) [112], as shown in Figure 3.

Patrangenaru et al. (2012) [269] applied this methodology for the recon-

struction of an almost planar ground scene (2 1
2 D scene) by fusing three aerial

images of the city Amiens, France, that are given in Figure 20.4.

The reconstruction, including texture, is displayed in Figure 20.5. It clearly

shows some partial blurring around the shared portions of the original images,
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Figure 20.4: Aerial partially overlapping images of a city.

essentially due to the camera movement. Note that, given the pixel size (about

10 inches in ground units), the blurring effect could not be removed by any

smoothing.

20.4 Analysis of Gel Electrophoresis (2DGE)

Our next focus is on the field of proteomics. Proteomics, or proteome analysis,

has become an increasingly important part of the life sciences, especially after

the completion of sequencing the human genome. Proteome analysis is the sci-

ence of separation, identification, and quantization of proteins from biological

samples with the purpose of revealing the function of living cells. Applications

range from prognosis of virtually all types of cancer over drug development to

monitoring environmental pollution.

Currently, one leading technique for protein separation is two-dimensional

gel electrophoresis (2DGE), resulting in grey level images showing the sepa-

rated proteins as dark spots on a bright background (see Figure 20.6 from Sug-

hatadasa (2006) [322]). Such an image can represent thousands of proteins.
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Figure 20.5 Reconstruction of a 2 1
2 D scene from images in Figure 20.4 based on 2D

extrinsic mean affine shapes.

20.4.1 2D Gel Electrophoresis (2DGE)

Gel electrophoresis is an inexpensive technique for separating proteins in a

biological sample on a gel. The resulting protein patterns are by captured as

digital images of the gel. This image is then analyzed in order to determine the

relative amount of each of the proteins in the sample in question or to compare

the sample with other sample or a database. The task of analyzing the images

can be tedious and is subjective if performed manually.

The most important issues and challenges related to digital image analysis

of the gel images are segmentation of the images and the matching the corre-

sponding protein spots. The segmentation of the images is beyond the scope of

this dissertation. We will analyze the current matching methods used and will

propose a new method.

2DGE enables separation of mixtures of proteins due to differences in their

isoelectric points (pI) in the first dimension and, subsequently, by their molec-

ular weight (MWt) in the second dimension (see Berth et al. (2007) [22]).

The change in protein expression, for example in the development of cancer,

are subtle: a change in the expression level of a protein of a factor 10 is rare

and a factor 5 is uncommon. Furthermore, few proteins change; usually fewer

than 200 proteins out of 15,000 would be expected to change by more than a

factor of 2.5. Multiple samples need to analyzed because of the natural varia-
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Figure 20.6: 2D gels.

tion between individuals. Therefore, it is necessary to be able to rely on perfect

matching of patterns of the new images.

20.4.2 The Laboratory Process

Even though this book is in the area of statistics, how gel electrophoresis is

done in a laboratory is of interest in order to understand the mathematics behind

the process. Because of this, we will describe the basic steps for the laboratory

process, as it is practiced in CPA, of going from a biological sample of living

cells, such as from a biopsy or blood sample, to separated proteins on a gel.

Because some steps and details have necessarily been omitted, please refer to

Berth et al. (2007) [22] for a detailed description of the procedure.

The procedure described here uses radioactive labeling, IPG for the first

dimension, SDS polyacrylamide gels for the second dimension, and phosphor

imaging to capture digital images of the protein patterns.

Labeling: A radioactive amino acid is “fed” to the living cells and all the pro-

teins synthesized de novo may then contain the radioactive amino acid [35S]-

methionine in place of the non-radioactive one. The radioisotope used for the
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labeling is typically [35S], but other radioisotopes, e.g. [32P] or [14C] can also

be used. The radioactive labeling enables detection of the proteins later on.

he usual labeling time interval used is 20 hours, but this can be changed for

specific purposes or situations.

Solubilization: The cells’ structures are broken down and the proteins are dis-

solved in a detergent lysis buffer. The lysis buffer contains urea, thiourea, de-

tergent (NP40 or CHAPS), ampholytes, and dithiothreitol. All of these have the

purpose of dissolving the proteins, unfolding them and preventing proteolysis.

The actual procedure used depends on the sample itself and can take from less

than 1 minute to 2 days.

1st dimension - isoelectric focusing: On an immobilized pH gradient (IPG)

gel, in a glass tube or on a plastic strip, the proteins are separated according

to their isoelectric point (pI). An electric field is applied across the gel and

the charged proteins start to migrate into the gel. The proteins are differently

charged and the electric field will pull them to the point where the pH cast into

the IPG gel is the same as the pI of the protein, i.e., the pH value at which the

number of positive and negative charges on the protein are the same. At this

point, no net electrical force is pulling the protein (See Figure 20.6). Eventu-

ally, all proteins will have migrated to their pI state of equilibrium. This process

usually lasts between 8–48 hours, depending on the pH range of the IPG gel.

For example, it might require 17.5 hours for IPG pH in the range from 4 to 7.

Incubation: In the incubation step, the 1st dimension gel is washed in a de-

tergent ensuring (virtually) the same charge on all proteins per unit length.

Proteins are linear chains of amino acids that fold up and can be cross-linked

by disulphide bridges. The solutions that are used at CPA contain urea, thiourea

and detergents which cause the proteins to unfold into long random-coil chains.

This portion of the procedure takes roughly 30 minutes.

2nd dimension - Molecular weight (MWt) separation: The incubated 1st

dimensional gel strip is positioned on the upper edge of a polyacrylamide gel

slab (See Figure 20.6). The second dimension acts like a molecular sieve so

that the small molecules can pass more quickly than the large. Again, an elec-

trical field is applied, but this time in the perpendicular direction, and proteins

migrate into the gel. As all proteins have the same charge per unit length now,

the same electrical force is pulling them. However, small proteins meet less

obstruction in the gel and will migrate with higher velocity through the gel.

The larger proteins meet more resistance and migrate slower. Proteins with the

same pI will migrate in the same column but will now be separated by molecu-

lar weight (MWt). As opposed to the 1st dimension process, the 2nd dimension

has no equilibrium state because the proteins keep moving as long as the elec-

tric field is applied. The small proteins reach bottom of the gel first and the

process has to be halted before they migrate out of the bottom of the gel. This

portion of the procedure requires approximately 16 hours.
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Drying, etc: The gel is dried on paper support requiring some manual han-

dling, which takes roughly 20 minutes.

Image generation: The dry gel is put in contact with a phosphor plate which

is sensitive to emissions. The radiation from the labeled proteins excites the

electrons of rare earth atoms in the plate at positions where there is protein

present in the gel. The larger amount of protein present at a specific location

in the gel, the more electrons in the plate will be excited at that location. The

amount of radioactive protein in the samples can be quite small at the picogram

level, so the level of radiation is also small and the time required to expose

the phosphor plate is long. After exposure, the phosphor plates are read using

phosphor imaging technology where a laser beam excites the already excited

electrons to an even higher energy state. The electrons return to their normal

state while emitting electro-magnetic radiation (light). A CCD chip captures

the light and a digital image is generated. The exposure time is usually 5 days,

but the capturing of the image capture requires roughly only 1 minute.

20.4.3 Matching Landmarks on 2D-Gel Electrophoresis Image Data Using

the Dimitric Distance on the Grassmannian

Here, we discuss the problem of matching proteins from two 2DGE images

under the assumption that the image points are matched onto each other via a

linear or an affine transformation. A data set consisting two images from the

same protein sample consisting of k = 35 data points is used to illustrate the

methodology discussed. In this data set, the first 10 points have already been

already matched.

Let us suppose that two images of 2DGE are to be matched, and the images

have been annotated with coordinates of k data pairs {xi = (xi,1,xi,2)}k
i=1 and

{yi = (yi,1,yi,2)}k
i=1, respectively. Let us assume that the first m data points have

been matched. We are seeking a permutation σ ∈ Sk−m which yields a match

for the remaining k−m points.

Let us consider the group action, Σ ×G×R2k → R2k,

(π × g).[xT
1 , · · · ,xT

k ]T = [(xπ(1)g)T , · · · , (xπ (k)g)T ]T .

Recall that, according to Theorem 3.5.1, the linear space LΣ k
2,2 is the Grass-

mann manifold G2(Rk). In the case when G = GL(2,R), we may identify the G

orbit of a point in (Rk)2 with the two dimensional subspace in Rk spanned by

the vectors [x1,1, · · · ,xk,1]T and [x1,2, · · · ,xk,2]T .

Now, if we want to considered only unlabeled landmarks, we may act by

the permutation group Σk on this Grassmannian. Thus the matching problem in

2DGE amounts to finding a permutation in the Grassmann so that the distance

between the two images, in the sense of the distance in the Grassmannian, is

minimized. Let us recall that the distance ρ(V,W ) between points V and W of a

Grassmann is naturally defined as the distance between the two linear operators
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corresponding to orthogonal projections in ℜk onto V and W respectively. Thus

we have the following problem.

Given two subspaces V and W in Gk(Rm) and an integer m < k, we want

to find the permutation π on the last k −m elements of an ordered set of n

elements, such that ρ(π(V),W ) is minimized.

Now, we describe a numerical scheme which is guaranteed to converge to

the permutation that solves our problem. This algorithm appears to scale rea-

sonably well with the size k of the problem. Though a careful analysis of the

algorithm has not been done, those experiments that have been done

Let us begin with an orthogonal basis {v1,v2} of V and {w1,w2} of W re-

spectively. When π is a permutation, let us denote π(vi) by vπ
i . Let PV and PW

denotes orthogonal projection operators from ℜk onto V and W , respectively.

Then we have,

ρ(V,W )2 = ‖PV −PW‖2

= ‖PV‖2 +‖PW‖2 − 2 < PV ,PW >

= 4 + 4− 2trace(PVPW).

Thus, we are searching for a permutation π∗ such that Tr(Pπ∗(V )PW ) ≥
Tr(Pπ(V )PW ) for all allowable permutations π . Since PV = [v1,v2][v1,v2]T , we

may state

TrPπ(V )PW = ∑
i, j=1,2

[(vπ
i )T w j]

2. (20.3)

A straightforward search over all permutations isn’t possible since it will in-

volve examining (k −m)! rearrangements. The algorithm proposed by Sug-

hatadasa (2006) [322] is as follows.

1. For i=m+1:k-1

(a) Set π to be the permutation which transposes m + 1 and i.

(b) Use formula (20.3) to find i that maximize Tr(Pπ(V )PW ) − Tr(PV PW ).

(c) Interchange rows m + 1 and i of the vectors v1 and v2.

2. Repeat step 1 until no i can be found.

3. Repeat steps 1 and 2 with m + 1 replaced by m + 2,m + 3, · · · ,k− 1.

Observe that each step terminates with a larger value of Tr(Pπ(V )PW ) than

before, hence the algorithm proceeds in the right direction. However, due the

quadratic nature of the formula (20.3), it may run into a situation in which

no transposition will improve the error, yet there are still acceptable permuta-

tions that will improve the error. The way out of this is to use a three element

permutation to get started again. This follows from the following

LEMMA 20.4.1. Suppose that there exists a permutation π ∈ id× Sk−m such

that Tr(Pπ(V )PW ) − Tr(PV PW ) > 0. Then, for generic subspaces V and W, π
may be found so that it only permutes three elements.

  



402 AFFINE SHAPE AND LINEAR SHAPE APPLICATIONS

The key idea is to notice that any permutation may be written as a linear

combination of permutations involving only three elements at a time in such a

way that the coefficients in the linear combination are nonnegative. This fol-

lows by dimension counting. Therefore, if a permutation exists that decrease

the matching error, then at least one of the three element permutation also must

decrease the error.

20.4.4 Results

The following data set presented by Horgan (1992) [160] was tested using the

numerical scheme. For an additional results obtained from a larger data set, we

send the reader to Sughatadasa (2006) [322] and the references therein.

Method Error

Ignore expert match, a match for top 20 matches 0.0903

Holding the top 10 matched by experts and matching 0.1316

additional 10

Holding the top 10 matched by experts and matching 0.1878

additional 25

Ignore expert match, a match for all 35 0.1401

Ignore expert match, a match for top 10 0.0387

Top 10 matched by experts 0.0927

  



Chapter 21

Projective Shape Analysis of Planar

Contours

21.1 Introduction 403

21.2 Hilbert Space Representations of Projective Shapes 403

21.3 The One-Sample Problem for Mean Projective Shapes 406

21.3.1 Image Processing and Shape Registration Using the Projective

Frame 406

21.3.2 Hypothesis Testing 407

21.1 Introduction

In this chapter, the problem of identifying the projective shape of a planar

curve is considered as a practical application of the neighborhood hypothe-

sis test presented in Chapter 11, a data-driven example where we determine

δ , the smallest radius of the neighborhood hypothesis for which the neighbor-

hood hypothesis is not rejected. The theory is applied to the recognition of the

projective shape of a planar curve extracted from digital images of a flat scene.

21.2 Hilbert Space Representations of Projective Shapes of Planar

Curves

Planar projective shape analysis of a planar scene is concerned with under-

standing the scene modulo projective transformations. As described in Ma et

al. (2005) [225], well-focused digital camera images may be assumed to have

come from an ideal pinhole camera. Recall from Chapter 3 that the real pro-

jective plane RP2 is a geometric model for the set of axes in R3. This space

also models the pinhole camera view. Assume the pinhole is the origin 0 in

the ambient Euclidean space R3. The photographer can take a picture of any

point x except of 0. Thus, two points in space yield the same projective point

on the film if they are collinear with the origin. The projective point associ-
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ated with u ∈ R3\0 is p = [u] = (R\0). If u = (x,y,1)T and u′ = (x′,y′,1)T dif-

fer by a projective transformation of the form shown in equation (21.1), then

[u′] = [Au] = α([u]).
Two images of the same planar scene differ by a composition of two central

projections in R3 from an observed plane to a receiving plane (such as film,

retina, etc.) Such a map is therefore a projective transformation, which depends

on a nonsingular matrix matrix A = (ai j), and is given by

x′ =
a11x + a12y + a10

a01x + a02y + a00

y′ =
a21x + a22y + a20

a01x + a02y + a00
(21.1)

In m dimensions, a projective transformation has the equations y = f (x), with

y j =
∑m

i=0 a
j
i xi

∑i a
j
0xi

,∀ j = 1, ...,m (21.2)

where det((a
j
i )i, j=0,...,m) 6= 0.

From Subsection 3.5.8, recall that two configurations of points in Rm have

the same the projective shape if they differ by a projective transformation of

Rm. Unlike similarities or affine transformations, projective transformations of

Rm do not have a group structure under composition. This is because the do-

main of definition of a projective transformation depends on the transformation

and the maximal domain of a composition has to be restricted accordingly. To

avoid such unwanted situations, rather than considering projective shapes of

configurations in Rm, one may consider configurations in RPm with the pro-

jective general linear group action that is described in Subsection 3.5.8. The

resulting group action of the projective general linear group PGL(m,R) as a

group of transformations of RPm is described in Subsection 3.5.8.

Scientists are looking for new computational algorithms, including statistical

methods, to deal with digital imaging libraries. Images of approximately planar

scenes are very common and they need to be analyzed in their full complexity.

Until Munk et al. (2008) [252], only finite configurations were analyzed even

though the actual scenes are more complex, often depticting curves and regions

bounded by these curves. A toy example of such images, from the so-called

“BigFoot” data set is displayed in Chapter 1 in Figure 1.11.

REMARK 21.2.1. The study of direct similarity shapes of planar contours

under the group of direct similarities of the Euclidean plane was preceded by

that of data analysis of projective shapes of contours, given that data analysis

on a a Hilbert space (see Section 2.15) is more elementary than data analysis

on a Hilbert manifold (see Chapter 11).

Our approach to projective shapes of planar closed curves is based on the
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idea of registration with respect to a projective frame. To keep things simple,

assume that, in addition to a closed planar curve, four labeled control points,

that yield a projective frame are also known. Two closed curves have the same

projective shape if they differ by a planar projective transformation that brings

the projective frame in the first configuration into coincidence with the projec-

tive frame in the second configuration.

REMARK 21.2.2. In the context of scene recognition, the frame assumption

is natural, given that a scene pictured may contain more information than a

curved contour, including featured landmarks that can be spotted in different

images of such a scene.

Assume x1, . . . ,xm+2 are points in general position and x = (x1, . . . ,xm) is an

arbitrary point in Rm. Note that, in our notation, the superscripts are reserved

for the components of a point, whereas the subscripts are for the labels of

points. In order to determine the projective coordinates of p = [x : 1] w.r.t. the

projective frame associated with (x1, ...,xm+2), we set x̃ = (x1, ...,xm,1)T and

consider the (m + 1)× (m + 1) matrix Um = [x̃1, ..., x̃m+1], whose jth column is

x̃ j = (x j,1)T , for j = 1, . . . ,m + 1 (see Remark 3.5.2). Also, recall from Subsec-

tion 3.5.8 that, if we define an intermediate system of homogeneous coordi-

nates

v(x) = U−1
m x̃ (21.3)

and write v(x) = (v1(x), . . . ,vm+1(x))T , then we can set

z j(x) =
v j(x)

v j(xm+2)
/|| v j(x)

v j(xm+2)
||, j = 1, ...,m + 1 (21.4)

so that the last point xm+2 is now used. Finally, the projective coordinate(s) of x

are given by the point [z1(x) : .... : zm+1(x)], where (z1(x))2 + ....+(zm+1(x))2 = 1.
If zm+1(x) 6= 0, the affine representative of this point with respect to the last

coordinate is (ξ 1(x), ...,ξ m(x)), where

ξ j(x) =
z j(x)

zm+1(x)
, j = 1, ...,m. (21.5)

Assume x(t), t ∈ I, is a curve in Rm, such that ∀t ∈ I,zm+1(x(t)) 6= 0. Such curves

will be said to be in a convenient position relative to the projective frame π
associated with (x1, ...,xm+2).

THEOREM 21.2.1. There is a one to one correspondence between the set of

projective shapes of curves x(t), t ∈ I, in a convenient position relative to π and

curves in Rm. In this correspondence, closed curves in a convenient position

relative to π correspond to closed curves in Rm.

We will use the representation Theorem 21.2.1 for projective shapes of

closed curves in the projective space that avoid a hyperplane. These correspond

to closed curves in the Euclidean space. In particular, in two dimensions, we
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consider closed curves in the planar projective plane, avoiding a projective line.

If we assume that (x(t),y(t)), t ∈ [0,1] is a closed planar curve, then [x(t) : y(t) :

1], t ∈ [0,1] is such a projective curve. Using a projective frame π , we associate

with this curve the affine affine representative (ξ (t),η(t)), t ∈ [0,1] of its curve

of projective coordinates [x(t) : y(t) : 1]π , which yield another planar curve. If

two curves are obtained from a planar curve viewed from different perspective

points, then the associated affine curves are the same. This affine representa-

tive of the projective curve of a (closed) curve is used in the rmainder of this

chapter. Here, we are concerned with recognition of closed curves. That is, we

have a closed curve

γ(t) = (ξ (t),η(t)), t ∈ [0,1], (ξ (0),η(0)) = (ξ (1),η(1)) (21.6)

that is observed with random errors

Γ (t) = (ξ (t),η(t)) + (εX(t),εY (t)), t ∈ [0,1], (21.7)

where εX (t),εY (t) are stochastically independent error processes with the

restriction that (εX (0),εY (0)) = (εX (1),εY (1)). As such, the observed curve

can, for instance, be considered as a random element in the Hilbert space

H = L2(S1,R2).

21.3 The One-Sample Problem for Mean Projective Shapes of Planar

Curves

The idea of Hilbert space representation of the projective shape with respect

to a projective frame is summarized in Theorem 21.2.1. To identify the mean

projective shape of a curve, one may now use the neighborhood hypothesis test

described in Chapter 11.

This is because, in practice, two curves will not have exactly the same shape

even if they should agree according to some theory. In this case, therefore, us-

ing the neighborhood hypothesis that states approximate equality of the shapes

of the curves seems appropriate.

In our case, the neighborhood hypothesis to be tested is Hδ : µ ∈ γ0 +Bδ , for

some δ > 0. In this case, the linear subspace M is the trivial subspace, which

is the infinite dimensional analog of the classical null hypothesis H0 : µ = γ0.
The constant δ > 0 in (2.147) is to be determined from the data. We consider

an application of this technique to the ”Bigfoot” data set and a new image not

necessarily belonging to this data set.

21.3.1 Image Processing and Shape Registration Using the Projective

Frame

Before the hypothesis test could be performed, however, the data needed to be

put into the proper form. Image processing was performed using the Image Pro-

cessing Toolbox in MATLAB 7.1. and Microsoft c©Paint 5.1. After processing
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the images using the projective coordinates w.r.t. the selected projective frame,

the image was registered and the contour of the foot was extracted using the

Sobel edge detector. Finally, locations of pixls were put in clockwise order so

as to define a piecewise-linear projective curve. The M-file used for this was

written by Alister Fong and is available for download from the MATLAB Cen-

tral File Exchange website.

As an example, Figure 21.1 shows one observation in its original and pro-

cessed forms. Note that the ordering of pixel locations, in effect, rotates the

curve by 90◦ since the first point on the projective curve corresponds to the

first pixel location (when moving from top to bottom and from left to right)

lying on the curve in the original image.

The projective curves for the entire sample of “BigFoot” images, as well as

their sample mean, are shown in Figure 21.2.

21.3.2 Hypothesis Testing

One of the classical problems in pattern recognition is the identification of a

scene for which previous information is known. One typical problem in this

area arises when researchers have a number of images from a known planar

scene and acquire a new image that may also depict the same scene. In this

scenario, the researchers wish to identify whether the new image does, in fact,

depict that scene.

As an example, the observations in 1.11 are known to belong to the “Big-

Foot” data set. An additional image is shown in Figure 21.3. We can use the

neighborhood hypothesis test to conclude whether it depicts the same scene as

the “BigFoot” data set.

Using the same image processing techniques as described in the previous

section, a curve γ0 was extracted from the new image. This curve is displayed

with the sample mean of the “BigFoot” data in Figure 21.4. As a method to ex-

plore the feasibility that γ0 is from the same data set as the other observations,

we can consider the null hypothesis H0 : µ ∈ γ0 + Bδ , for some δ > 0, which is

equivalent to (2.147).

Similarly to the cases considered in Chapter 18, we can use the notion of a

p-value curve to identify the maximum value of δ for which we would reject

the null hypothesis. Here, it was determined that if δ < 10.7151, we would

reject the approximate equality of the mean projective shape of the “BigFoot”

population of curves and the projective shape of the new curve. As this value

of δ is quite large, the evidence suggests that the projective mean shape of the

first “BigFoot” planar scene is significantly different from that of the curve in

Figure 21.3. As a result, it appears that γ0 depicts a different scene than the

original data set.

It should be noted that, since the sample size was small, nonparametric boot-

strap could have been used in place of the asymptotic results. Nevertheless, the
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Figure 21.1 The first “Bigfoot” image in its original form (top) and final processed

form (bottom). (Source: Munk et al.(2008), Figure 4 and Figure 5. Reproduced by per-

mission of Elsevier).

errors are quite insignificant since they depend only on the pose of the scene,

which is essentially flat. As such, even for this fairly small sample, the result

is reliable.  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-25&iName=master.img-056.jpg&w=200&h=136
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Figure 21.2 Empirical sample mean of the observations from the first group. (Source:

Munk et al.(2008), Figure 7. Reproduced by permission of Elsevier).

Figure 21.3 The new image, which includes a natural projective frame and curve, that

depicts an unknown scene. (Source: Munk et al.(2008), Figure 8. Reproduced by per-

mission of Elsevier).
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Figure 21.4 Plot of the mean “Bigfoot” curve and the new image curve. (Source: Munk

et al.(2008), Figure 9. Reproduced by permission of Elsevier).
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22.1 Introduction

Until recently, statistical analysis of similarity shape from images was re-

stricted to a small amount of data since the appearance of similarity shape

is relative to the camera position with respect to the scene pictured. In this

chapter, we study the shape of a 3D configuration from pictures of this config-

uration in 2d images without requiring any restriction for the camera position-

ing respect to the scene pictured. This methodology uses standard reconstruc-

tion methods from computer vision. In absence of occlusions, a set of point

correspondences in two views can be used to retrieve the 3D configuration

of points. A key result due to Faugeras (1992) [111] and Hartley, Gupta, and

Chang (1992) [143] states that two such reconstructions differ by a projective

transformation in 3D. Sughatadasa (2006) [322] noticed that the object that is

recovered without ambiguity is actually the projective shape of the configura-
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tion. This cast a new light on the role of projective shape in the identification

of a spatial configuration.

Projective shape is a natural approach to shape analysis from digital images

since the vast majority of libraries of images are acquired via a central projec-

tion from the scene pictured to the black box recording plane. Hartley and Zis-

serman (2004 [141], p.1) noted that “this often renders classical shape analysis

of a spatial scene impossible, since similarity is not preserved when a camera is

moving.” Advances in statistical analysis of projective shape have been slowed

down due to overemphasized importance of similarity shape in image analysis

while ignoring the basic principle of image acquisition. Progress was also ham-

pered by the lack of a geometric model for the space of projective shapes, and

ultimately by insufficient dialogue between researchers in geometry, computer

vision and statistical shape analysis.

For the reasons presented above, projective shapes have been studied only

recently, starting with Sughatadasa (2006) [322]. Examples of concrete 3D

projective shape analysis are considered in Patrangenaru et al. (2010) [272],

Crane and Patrangenaru [78], Qiu et al. (2014) [277], and recent conference

presentations that are not yet in refereed publications. However, the remainder

of the projective shape literature, including Maybank (1994) [238], Goodall

and Mardia (1999) [127], Patrangenaru (2001) [268], Paige et al. (2005) [261],

Mardia and Patrangenaru (2005) [233], Kent and Mardia (2006 [184], 2013

[185]) and Munk et al. (2008)[252] has considered linear or planar projective

shape data analysis.

Our main goal here is to derive a natural concept of 3D shape that can be

extracted from data recorded from regular camera images. This statistical me-

thodology for estimation of a mean 3D projective shape is based on Efron’s

bootstrap (see Efron [96]). In this chapter, a 3D projective shape is regarded

as a random object on a projective shape space. Since sample size for ima-

ges is typically small, in order to estimate the mean projective shape we use

nonparametric bootstrap for the studentized sample mean projective shape on a

manifold, as shown in Chapter 5. In the case of projective shapes, the bootstrap

distribution was essentially derived in Mardia and Patrangenaru (2005) [233]

(also see Chapter 10).

The chapter is organized as follows. Section 22.2 includes a test for copla-

narity of a 3D scene. This test is based on the asymptotic distribution of the

total sample variance developed in Chapter 5, which is applied to 2D projec-

tive shapes. Section 22.3 is devoted to the 3D reconstruction algorithm. Here,

we introduce the essential matrix and, respectively, the fundamental matrix,

which are associated with a pair of camera views of a 3D scene that is needed

in the reconstruction of that scene from both 2D calibrated and noncalibrated

camera images. For reconstruction of a configuration of points in space from its

views in a pair of images, we refer to the computational algorithms in Ma et al.

(2006) [225]. In Section 22.4, we reformulate the Faugeras–Hartley–Chang–
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Gupta result on the ambiguity of 3D reconstruction of a scene up to a projective

transformation in Theorem 22.3.2. This result opens the statistical shape ana-

lysis door to computer vision and pattern recognition of 3D scenes, including

face analysis. In Section 22.5 we consider a toy model example for 3D pro-

jective shape reconstruction and an empirical principle based example of face

identification.

22.2 Test for Coplanarity

Projective shape analysis is concerned with the properties of a configuration

of collinear or coplanar points, as they are seen in a central projection by an

external observer in what can be considered a simplified analysis of vision in

absence of occlusions.

Recall that the projective coordinates pπ
j and the projective invariants

(ιs j),s = 1, ...,m, j = m+3, ...,k of a projective shape due to Goodall and Mardia

(1999) [127] determine each other. The relations between the two representa-

tions of a projective shape are:

pπ
j = [ι1 j : ... : ιm j : 1], (22.1)

showing that these invariants are locally the affine coordinates of (pπ
j , j = m +

3, ...,k) whenever the last homogeneous coordinate of each of the pπ
j
′
s is not

zero.

If no assumption is made on the probability distribution Q on a projective shape

space, it is appropriate to use a location parameter, such as a Fréchet mean,

associated with the distance induced on PΣ k
m.

In 3D projective shape data, sometimes the landmarks pictured are sitting

on an almost flat surface. In such a situation, when one registers the landmark

coordinates in a configuration extracted from a digital camera, there is little

variability in the 2D projective shape of that configuration, which makes it

appropriate to regard such observations as coming from a probability distribu-

tions of small flat support on (RP2)k−4.

In this section, we confine ourselves only to probability measures Q with

a small flat support on our space. The advantage is that in this case we can

use the technique in Section 2. Since any flat metric is locally isometric to an

Euclidean metric, we consider a metric on (RP2)k−4 which is Euclidean in the

invariant coordinates on the support of Q, and in particular if x1,x2 are two

observations from Q with

xr = ([ιr,1 j : ... : ιr,m j : 1]) j=m+3,...,k, (22.2)

their distance is

d2(x1,x2) =
k

∑
j=m+3

m

∑
s=1

(ι1,s j − ι2,s j)
2 (22.3)
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In this case, if we use the invariant representation for random configurations of

k landmarks, the intrinsic sample means and total sample variance are ordinary

sample means and total sample variances, for which classical large sample

and nonparametric bootstrap theory can be used. This approach requires less

computational complexity than for extrinsic means.

Assume X1, ...,Xn are i.i.d.r.v.’s with a common distribution Q of small flat

support on PΣ k
m. For each r,r = 1, ...,n, assume Xr has the invariant representa-

tion

Xr = (pπ
r, j), j = m + 3, ...,k, (22.4)

where

pπ
r, j = [ιr,1 j : ... : ιr,m j : 1] (22.5)

Then the intrinsic sample mean Xn,I is given in invariant representation by

Xn,I = (pπ
j ), j = m + 3, ...,k, (22.6)

where

pπ
j = [ι.,1 j : ... : ι.,m j : 1]. (22.7)

[267] shows that if an external observer travels in the 3D space and registers

images of a configuration of points with respect to a projective frame of marked

coplanar points, then this configuration is planar if the projective coordinates

are independent of the position of the observer. We assume m = 2 and k = 5.
The corresponding hypothesis testing problem is

H0 : tΣI = 0 vs. H1 : tΣI 6= 0, (22.8)

where tΣI is the intrinsic total variance of a probability measure Q with small

flat support on PΣm+3
m .

Note that PΣm+3
m is diffeomorphic to RPm and, in invariant representation,

the random variable associated with Q is

X = [ι,1 : ... : ι,m : 1]. (22.9)

In this case, the intrinsic mean and intrinsic total variance of X are, respectively,

the mean and total variance of the random vector ι = (ι,1, ..., ι,m)T . If X1, ...,Xn

are i.i.d.r.v.’s with common distribution Q and we similarly associate Xr with

the random vector ιr = (ιr,1, ..., ιr,m)T , we have

Xn,I = ιn = (ι ,1ι ,m) (22.10)

and

tΣ̂I,n = n−1
m

∑
j=1

n

∑
r=1

(ιr, j − ι, j)
2 (22.11)

  



PROJECTIVE GEOMETRY FOR PINHOLE CAMERA IMAGING 415

The value of the Σ̂ (V )4 given in Corollary 5.2.1 is, in this case, given by

Σ̂ (V )4 = n−1
m

∑
i, j=1

n

∑
r=1

(ιr,i − ι,i)
2(ιr, j − ι, j)

2 (22.12)

As a consequence, we obtain the following result.

THEOREM 22.2.1. Assume x1, ...,xn is a large random sample from a prob-

ability distribution with small flat support on PΣm+3
m . Then we reject the null

hypothesis in equation (22.8) at level α if

tΣ̂I,n > (S(Σ̂(V )4)
1/2

)z α
2
. (22.13)

Indeed, it follows that a 100(1−α)% symmetric large sample confidence

interval for tΣI is given by

(tΣ̂i,n − (S(Σ̂(V )4)
1/2

)z α
2
, tΣ̂i,n + (S(Σ̂(V )4)

1/2
)z α

2
) (22.14)

and the condition in the theorem says that 0 is not in this confidence region.

An example of application of Theorem 22.2.1 was given in Patrangenaru

and Pruett (1999) [276], where a random sample of 41 scanned images of a

large boulder where analyzed to determine whether the scene is actually flat.

Five fixed landmarks were identified in each of these images and their coor-

dinates were registered in Adobe Photoshop. One of the images is displayed

in figure 1.10 and the recorded landmark coordinates are given in Table 1.20.

Computations yielded the following values: tΣ̂I,n = 0.58 and S(Σ̂(V )4) = 2.63.

According to Theorem 22.2.1, we fail to reject the flatness of the scene at level

α = 0.05.

22.3 Basic Projective Geometry for Ideal Pinhole Camera Image

Acquisition

Image acquisition from the 3D world to the 2D camera film is based on a cen-

tral projection principle. Therefore, projective geometry governs the physics

of ideal pinhole cameras. A point in the outer space and its central projection

via the camera pinhole determine a unique line in space. As such, an image

point captured on the camera film can be regarded as a line going through

the pinhole, leading to the definition of the real projective plane RP2 as the

space of all lines going through the origin of R3. Projective geometry also

provides a logical justification for the mental reconstruction of a spatial scene

from binocular retinal images, playing a central role in vision. In subsection

3.5.8, we reviewed some of the basics of projective geometry that are useful in

understanding of image formation and 3D scene retrieval from a pair of ideal

pinhole camera images.

Consider a matrix B ∈ M(m + 1,m′ + 1;R) and the linear subspace K = {x ∈
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Rm′+1,Bx = 0} of Rm′

. The projective map β : RPm′\P(K) → RPm associated

with B is defined by β ([x]) = [Bx]. In particular, a projective transformation β
of RPm, considered in Subsection 3.5.8, is the projective map associated with

a nonsingular matrix B ∈ GL(m + 1,R) and its action on RPm :

β ([x1 : · · · : xm+1]) = [B(x1, . . . ,xm+1)T ]. (22.15)

In this chapter, we will use the projective frame approach to projective shape

analysis, as given in Subsection 3.5.8. Given a k-ad u1, . . . ,uk in general po-

sition in Rm, for k > m + 2, such that π = ([ũ1], . . . , [ũm+2]) is a projective

frame, from Remark 3.5.3, the projective shape of the k-ad ([ũ1], . . . , [ũk]) is

uniquely determined by the projective coordinates of the last k − m − 2 la-

beled points from k-ad, with respect to π , where the projective coordinate of

a projective point w.r.t. of projective frame is given by (3.145). Ideal pinhole

camera image acquisition can be thought of in terms of a central projection β
from RP3\RP2 to RP2, whose representation in conveniently selected affine

coordinates (x,y,z) ∈ R3, (u,v) ∈ R2 is given by

u = − f
x

z

v = − f
y

z
, (22.16)

where f is the focal length, which is the distance from the image sensor or film

to the pinhole or principal plane of the lens RP2, complement of the domain of

β . In homogeneous coordinates [x : y : z : w], [u : v : t] the perspective projective

map β can be represented by the matrix B ∈ M(3,4;R) given by:

B =



− f 0 0 0

0 − f 0 0

0 0 1 0


 . (22.17)

In addition to the projective map (22.17), image formation in digital cameras

assumes a composition with matrices accounting for camera internal calibra-

tion parameters, such as the pixel aspect ratio, skew parameter, origin of im-

age coordinates in the principal plane (principal point) and for a change of

coordinates between two camera positions involving a roto-translation (R, t) ∈
SO(3)×R3. The projective map of pinhole camera image acquisition π̃ , in

homogeneous coordinates, is associated with the matrix:

B̃ = CintBE =




ku kc u0

0 kv v0

0 0 1





− f 0 0 0

0 − f 0 0

0 0 1 0



(

R t

0T
3 1

)
= NE, (22.18)

where ku and kv are scale factors of the image plane in units of the focal length

f , and θ = cot−1kc is the skew, (u0,v0) is the principal point. The matrix N
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contains the internal parameters and the perspective map (22.17), while E con-

tains the external parameters. The matrix B̃ can be decomposed into a 3× 3

matrix P and a 3× 1 vector p

B̃ = ( P p) (22.19)

so that

P = AR and p = At. (22.20)

22.3.1 Essential and Fundamental Matrices

We now consider a pair of cameras viewing a point [u] ∈ RP3. This point

projects onto the two image planes to m1 = [u1] ∈ RP2 and, respectively, to

m2 = [u2] ∈ RP2. Since we are working in homogeneous coordinates, [u] is

represented by a 4×1 column vector and m1,m2 are each represented by 3×1

column vectors. If we assume the camera’s internal parameters are known (the

camera is calibrated), then m1,m2 are each given with respect to its camera’s

coordinate frame, so Cint = I3.

DEFINITION 22.3.1. The epipolar constraint refers to the fact that the vector

from the first camera’s optical center to the first imaged point, the vector from

the second optical center to the second imaged point, and the vector from one

optical center to the other are all coplanar.

If we use only one coordinate system, say the coordinate system of the sec-

ond camera, the vector from the first camera’s optical center to the first imaged

point is t + Ru1, the vector from the second optical center to the second im-

aged point is u2, and the vector from one optical center to the other is t. Here

the change of coordinates between the Euclidean frames of the two cameras is

given by a roto-translation (R, t) ∈ SO(3)×R3. The epipolar constraint can be

expressed via a zero exterior product u2 ∧ (t + Ru1)∧ t = 0, which is equivalent

to

uT
2 (t × (Ru1)) = 0. (22.21)

By defining t× as the matrix associated with the linear operator y → t × y, we

can rewrite the equation (22.21) as follows

uT
2 (t×Ru1)) = uT

2 Eu1 = 0, (22.22)

where E = t×R is the so called essential matrix. If the cameras are uncalibrated,

then the matrices A1,A2 from (22.20), which contain the internal parameters of

the two cameras, are needed to transform the camera bound Euclidean coordi-

nates into pixel coordinates:

v1 = A1u1

v2 = A2u2.
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This yields the following equations:

(A−1
2 v2)T (T ×RA−1

1 v1) = vT
2 A−1

2 (T ×RA−1
1 v1) = 0, (22.23)

and we obtain

vT
2 Fv1 = 0, (22.24)

where F = (A−1
2 )T EA−1

1 is the fundamental matrix. The fundamental matrix

depends only on the relative position of the two cameras and their internal

parameters. It has rank two and depends on seven real constants.

22.3.2 Reconstruction of a 3D Scene from Two of its 2D Images.

If we conveniently select the coordinates for the first camera, incorporating

the internal parameters, we may assume that the matrix associated with β̃1 in

(22.18) is B1 = (I|0) and the fundamental matrix factors as F = [t]×R, with

B2 = (R|t) corresponding to β̃2, being a realization of the fundamental (or es-

sential) matrix F (here, R is nonsingular and it does not necessarily represent

the matrix of a rotation). Let [u1], [u2] ∈ RP2 be a pair of matched points in

the two images. We seek a point [u] ∈RP3 such that [ui] = β̃i[u], i = 1,2. From

the relation uT
2 Fu1 = uT

2 t×Ru1 = uT
2 (t ×Ru1) = 0, it follows that u2,Ru1, t are

linearly dependent. We may assume that Ru1 = bu2 −at and, since the position

vector u1 is defined up to a scalar multiple, we may assume that Ru1 = u2 − at

and define the corresponding landmark position [u] ∈ RP3 by u = (uT
1 ,a)T .

Now, B1u = (I|0)u = u1 and B2u = (R|t)u = Ru1 + at = u2, so if β1,β2 are the

projections associated with B1,B2, it follows that βa([u]) = [u]a, for a = 1,2
and [u] is a desired solution to the reconstruction problem. As shown, [u] is

determined by the two camera projection matrices B1 and B2. If we choose a

different pair of camera matrices B1H and B2H realizing the same fundamental

matrix F, then in order to preserve the same pair of matched image points, the

point [u] must be replaced by [H−1u].

PROBLEM 22.3.1. The problem of the reconstruction of a configuration

of points in 3D from two ideal noncalibrated camera images with unknown

camera parameters is equivalent to the following: given two camera images

RP2
1 ,RP2

2 of unknown relative position and internal camera parameters and

two matching sets of labeled points {pa,1, . . . , pa,k} ⊂RP2
a ,a = 1,2, find all the

sets of points in space p1, . . . , pk in such that there exist two positions of the

planes RP2
1 ,RP2

2 and internal parameters of the two cameras ca,a = 1,2 with

the property that the ca-image of p j is pa, j,∀a = 1,2, j = 1, . . . ,k.

The above discussion proves the following theorem (Faugeras (1992) [111],

Hartley et al. (1992) [143]):

THEOREM 22.3.2. The reconstruction problem for two non calibrated cam-

era images has a solution in terms of the realization of the fundamental matrix
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F = t×R. Any two solutions can be obtained from each other by a projective

transformation in RP3.

REMARK 22.3.1. Note that, although the configurations in correspondence

are finite, their size is arbitrarily large, and the assumption of finite matching

labeled pairs can be replaced by an assumption of parameterized sets in cor-

respondence. Therefore, in absence of occlusions, a 3D configuration can be

reconstructed from 2D images and this reconstruction is unique up a projective

transformation.

22.3.3 Estimation of the Fundamental Matrix

Since equation (22.24) is homogeneous as a linear equation in F and F has

rank two, this matrix depends on seven independent parameters. Therefore,

in principle, F can be recovered from corresponding configurations of seven

points. Due to the fact that the nature of digital imaging data is inherently

discrete and other errors in landmark registration, F can be estimated using

configurations of eight or more points pa,i,a = 1,2, i = 1, . . .k,k ≥ 8, whose

stacked homogeneous coordinates are the k×3 matrices ya,a = 1,2. The linear

system for F is

yT
2 Fy1 = 0. (22.25)

This can also be written as

f TY = 0, (22.26)

where f is a vectorized form of F. If k is large, the linear homogeneous system

is over-determined and the optimal estimated solution f̂ can be obtained using

simple least squares algorithm by minimizing ‖Y T f‖2 subject to ‖ f‖ = 1 (see

Hartley and Zisserman (2004) [141], p. 593).

22.4 3D Reconstruction and Projective Shape

DEFINITION 22.4.1. Two configurations of points in Rm have the same pro-

jective shape if they differ by a projective transformation of Rm.

Unlike similarities or affine transformations, projective transformations of

Rm do not have a group structure under composition (the domain of definition

of the composition of two such maps is smaller than the maximal domain of a

projective transformation in Rm.) To avoid this complication, rather than con-

sidering the projective shapes of configurations in Rm, we consider projective

shapes of configurations in RPm. A projective shape of a k-ad (a configura-

tion of k landmarks or labeled points) is the orbit of that k-ad under projective

transformations with respect to the diagonal action

αk(p1, . . . , pk) = (α(p1), . . . ,α(pk)). (22.27)
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Since the action (3.142) of β ∈ PGL(m) on [x] ∈ RPm, when expressed in

inhomogeneous coordinates (3.141) reduces to (3.143), if two configurations

Γ1,Γ2 of points in Rm have the same projective shape, then h(Γ1),h(Γ2) have the

same projective shape in RPm (h is the affine embedding given by (3.140)).

Patrangenaru (1999 [267], 2001 [268]) considered the set G(k,m) of k-ads

(p1, ..., pk),k >m+2 for which π = (p1, ..., pm+2) is a projective frame. PGL(m)

acts simply transitively on G(k,m) and the projective shape space PΣ k
m, is

the quotient G(k,m)/PGL(m). Using the projective coordinates (pπ
m+3, . . . , pπ

k )

given by (3.145), one can show that PΣ k
m is a manifold diffeomorphic with

(RPm)k−m−2. The projective frame representation is an alternative to the pro-

jective invariants-based representation, which was used previously for projec-

tive shape analysis by Goodall and Mardia (1999) [127].

The projective frame representation has two useful features. First, the pro-

jective shape space has a manifold structure, thus allowing to use the an asymp-

totic theory for means on manifolds in Bhattacharya and Patrangenaru (2003

[42], 2005 [43]). Secondly, it can be extended to infinite dimensional projec-

tive shape spaces, such as projective shapes of curves, as discussed in Chapter

21. This approach has the advantage of being inductive in the sense that each

new landmark of a configuration adds an extra marginal axial coordinate, thus

allowing to detect its overall contribution to the variability of the configuration

and correlation to the other landmarks. The effect of change of projective co-

ordinates due to projective frame selection can be understood via a group of

projective transformations, but is beyond the scope of this chapter.

We return to the reconstruction of a spatial configuration. Having in view

the definition 22.4.1 of a projective shape of a configuration, Theorem 22.3.2

can be stated as follows:

THEOREM 22.4.1. A spatial R reconstruction of a 3D configuration C can

be obtained in absence of occlusions from two of its ideal camera views. Any

such 3D reconstruction R of C, has the same projective shape as C.
REMARK 22.4.1. Since the output in a reconstruction algorithm is a projec-

tive shape and multiplying by an imposed internal camera parameters matrix

keeps the projective shape of the reconstruction unchanged, one may use the

essential matrix estimate using the eight point algorithm (see Ma et al. (2006)

[225], p. 121) for a conveniently selected internal parameters matrix. Refined

eight point algorithms for the estimate F̂ of the fundamental matrix, which can

be found in Ma et al. (2006) [225] on pages 188 and 395, could also be used,

given the projective equivalence of any two 3D reconstructions.
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22.5 Applications

22.5.1 Estimation of the Mean 3D Projective Shape of a Polyhedral Surface

from its Images

Theorem 22.3.2 lays down the geometric principle of binocular vision that trig-

gers 3D perception in combination with certain neurological mechanisms. The

projective ambiguity of the reconstructed scene stated in that theorem was first

recognized by Faugeras (1992) [111] and by Hartley et al. (1992) [143]. In this

chapter, it is assumed that cameras are non-calibrated, meaning that images of

the same scene are available and nothing is known about the cameras internal

parameters that recorded these images or the camera’s relative position. Since

the reconstruction algorithms in computer vision were initially designed for

calibrated cameras (see Longuet–Higgins (1981) [224]), the projective ambi-

guity of the reconstructed scene for non-calibrated cameras was perceived as a

lack of information and research was directed mostly towards camera calibra-

tion.

REMARK 22.5.1. Theorem 22.4.1 sheds a new light in pattern recognition

of a 3D scene imaged by pairs of non-calibrated cameras since the projec-

tive shape of a reconstructed configuration does not depend on the reconstruc-

tion scheme. As such, the projective shape already provides useful information

about the imaged 3D scene, an important point in scene identification that was

previously ignored in the literature.

Due to landmark registration, camera distortion or rounding errors in the

reconstruction algorithms, 3D projective shapes from pairs of images can be

regarded as random objects on the projective shape space PΣ k
3 . In our first

example, we consider the 3D polyhedral object manufactured from three cubes

based on a blueprint displayed on the left hand side of Figure 1.13 in Chapter

1. The object is manufactured from three cubes that sit on the top of each other,

which should match the blueprint, whose sides from top to bottom are four, six

and ten units.

To see if the projective shape of the object matches the original blueprint,

one may take a number of random pictures of the object to estimate its 3D

projective shape. We assume the faces of the object are flat and, consequently,

its visible surface is determined by the visible corners. On the right hand side of

Figure 1.13 is displayed a digital image of such an object with visible corners,

taken as landmarks, numbered as specified in Section 1.3. The 2D coordinates

of the landmarks selected are and listed in Table 1.22.

Camera images were organized as pairs, each of which were used to recon-

struct a 3D object in RP3, such as the ones displayed in Figure 22.1. Using a

reconstruction algorithm (see Ma et al.(2006) [225], p. 121 or p.188) for each

pair of corresponding planar configurations, we obtain a 3D reconstructed con-

figuration. Homogeneous coordinates of the seven reconstructed objects using

the standard reconstruction algorithm are displayed in the Table 22.1 and the
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sample of 3D configurations of points that are joined to reassemble the original

object is displayed in Figure 22.1.

Table 22.1: Reconstructed Object Coordinates of the Eight Configurations

Landmark No. 1 2 3 4 5 6 7 8 9 10

x −0.09 −0.18 −0.08 0.01 −0.19 −0.09 0.00 −0.24 −0.08 0.05
Reconstructed

y 0.37 0.31 0.25 0.31 0.18 0.12 0.18 0.15 0.06 0.15
3D Config 1

z 2.51 2.44 2.27 2.36 2.53 2.35 2.44 2.49 2.23 2.35

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.25 −0.09 0.04 −0.35 −0.09 0.13 −0.36 −0.10 0.14
Reconstructed

y −0.04 −0.12 −0.03 −0.11 −0.22 −0.08 −0.45 −0.53 −0.38
3D Config 1

z 2.62 2.36 2.49 2.55 2.13 2.33 2.78 2.35 2.56

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x 0.43 0.11 0.27 0.59 0.11 0.26 0.59 −0.05 0.17 0.66
Reconstructed

y 1.39 1.30 1.13 1.22 0.99 0.81 0.91 0.93 0.69 0.81
3D Config 2

z 6.89 6.78 6.52 6.65 6.90 6.64 6.79 6.76 6.47 6.68

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.07 0.16 0.65 −0.38 −0.00 0.81 −0.39 −0.01 0.80
Reconstructed

y 0.47 0.23 0.35 0.39 −0.02 0.19 −0.36 −0.77 −0.58
3D Config 2

z 6.99 6.69 6.86 6.89 6.32 6.66 7.15 6.61 6.97

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x 0.22 0.06 0.11 0.27 0.05 0.09 0.26 −0.03 0.03 0.27
Reconstructed

y 0.62 0.61 0.54 0.55 0.45 0.38 0.39 0.43 0.33 0.35
3D Config 3

z 3.28 3.30 3.16 3.16 3.30 3.17 3.15 3.30 3.10 3.08

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.04 0.02 0.25 −0.21 −0.10 0.29 −0.22 −0.11 0.26
Reconstructed

y 0.20 0.10 0.13 0.18 0.01 0.06 −0.18 −0.35 −0.28
3D Config 3

z 3.30 3.09 3.07 3.29 2.96 2.93 3.31 2.96 2.90

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x 0.00 −0.31 −0.11 0.20 −0.32 −0.11 0.20 −0.48 −0.16 0.29
Reconstructed

y 1.47 1.36 1.15 1.27 1.03 0.83 0.94 0.96 0.69 0.84
3D Config 4

z 8.10 7.90 7.38 7.61 8.17 7.61 7.80 8.09 7.29 7.56

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.50 −0.18 0.30 −0.83 −0.27 0.47 −0.87 −0.28 0.51
Reconstructed

y 0.46 0.21 0.36 0.34 −0.06 0.19 −0.57 −0.89 −0.63
3D Config 4

z 8.55 7.70 7.98 8.37 7.10 7.43 9.23 7.69 8.11

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x −0.13 −0.43 −0.19 0.10 −0.46 −0.19 0.11 −0.62 −0.23 0.20
Reconstructed

y 1.72 1.69 1.43 1.50 1.36 1.11 1.17 1.30 0.99 1.07
3D Config 5

z 8.10 8.19 7.35 7.51 8.69 7.74 7.76 8.57 7.49 7.44

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.68 −0.25 0.23 −1.06 −0.31 0.43 −1.19 −0.34 0.51
Reconstructed

y 0.77 0.47 0.59 0.67 0.24 0.42 −0.46 −0.81 −0.52
3D Config 5

z 9.48 8.14 8.22 9.45 7.62 7.54 11.02 9.01 8.88

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Landmark No. 1 2 3 4 5 6 7 8 9 10

x 0.00 −0.16 −0.07 0.10 −0.19 −0.09 0.07 −0.28 −0.13 0.12
Reconstructed

y 0.52 0.47 0.33 0.38 0.32 0.18 0.24 0.29 0.08 0.17
3D Config 6

z 2.99 2.98 2.83 2.85 3.12 2.97 2.99 3.12 2.89 2.92

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.32 −0.17 0.08 −0.50 −0.25 0.17 −0.56 −0.31 0.12
Reconstructed

y 0.07 −0.13 −0.04 0.00 −0.33 −0.17 −0.36 −0.70 −0.51
3D Config 6

z 3.31 3.09 3.10 3.31 2.94 2.98 3.64 3.28 3.31

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x −0.01 −0.12 0.10 0.20 −0.17 0.05 0.15 −0.23 0.09 0.25
Reconstructed

y 0.80 0.70 0.58 0.68 0.47 0.36 0.45 0.41 0.25 0.40
3D Config 7

z 4.44 4.31 4.06 4.18 4.41 4.14 4.24 4.35 3.95 4.16

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.31 0.02 0.17 −0.44 0.11 0.35 −0.56 −0.01 0.25
Reconstructed

y 0.06 −0.07 0.08 −0.06 −0.26 −0.01 −0.63 −0.78 −0.51
3D Config 7

z 4.48 4.10 4.25 4.39 3.74 4.01 4.65 3.96 4.21

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 1 2 3 4 5 6 7 8 9 10

x −0.04 −0.06 −0.03 −0.01 −0.06 −0.04 −0.02 −0.08 −0.04 −0.00
Reconstructed

y 0.11 0.11 0.11 0.12 0.08 0.08 0.09 0.07 0.08 0.09
3D Config 8

z 0.56 0.56 0.60 0.59 0.59 0.63 0.62 0.59 0.65 0.64

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x −0.08 −0.04 −0.01 −0.11 −0.04 0.02 −0.12 −0.05 0.02
Reconstructed

y 0.03 0.03 0.04 0.02 0.01 0.04 −0.06 −0.09 −0.05
3D Config 8

z 0.64 0.69 0.68 0.64 0.74 0.72 0.72 0.84 0.81

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

We selected landmarks 8,12,17,18, and 19 in this order to form a projective
frame. The projective coordinates of the remaining landmarks in their original

labeling order, with respect to this frame, yield a sample of points in (RP3)14

(19−3−2 = 14), with each point representing a projective shape in axial repre-
sentation. The extrinsic mean of the eight projective shapes was computed and
is displayed in Figure 22.2(a). The spherical coordinates of the landmarks are
given in Table 22.2. Given the large number of covariates in the tangent space
(forty two), we display only the “heat map” of the sample extrinsic covariance
matrix (10.39), shown here in Figure 22.3.

Table 22.2: Extrinsic Sample Mean
Proj. Sp. Copy 1 2 3 4 5 6 7

x 0.21 0.29 -0.29 -0.25 0.54 -0.10 -0.07
j19 Ext. Samp. Mean y 0.75 0.67 0.46 0.63 0.66 0.57 0.51

z -0.41 0.36 0.46 -0.50 0.08 0.10 -0.77

w 0.47 0.58 0.70 0.54 0.51 0.81 0.38

Proj. Sp. Copy 9 10 11 13 14 15 16

x -0.45 -0.28 0.85 -0.00 0.65 -0.43 -0.32
j19 Ext. Samp. Mean y 0.10 0.40 0.41 0.24 0.10 -0.41 0.08

z 0.64 -0.79 0.02 -0.96 0.71 0.77 -0.93

w 0.62 0.37 0.32 0.15 0.24 0.22 0.15

We formulate the original question as a hypothesis testing problem

H0 : µ j19
= µ0 vs. H1 : µ j19

6= µ0, (22.28)

where µ0 is the projective shape of the blueprint, given in 22.5.1, and µ j19

is the extrinsic mean projective shape of the random 3D configuration of 19
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Figure 22.1 The eight reconstructed 3D projective shapes. (Source: Patrangenaru et

al.(2010), Figure 4. Reproduced by permission of Elsevier).

Table 22.3: Coordinates of the blueprint
Landmark No. 1 2 3 4 5 6 7 8 9 10

x 10.00 10.00 0.00 10.00 0.00 0.00 4.00 4.00 0.00 4.00

Blue y 0.00 10.00 10.00 10.00 6.00 0.00 0.00 4.00 4.00 0.00

print z 0.00 0.00 0.00 10.00 10.00 20.00 20.00 20.00 20.00 16.00

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark No. 11 12 13 14 15 16 17 18 19

x 4.00 0.00 6.00 6.00 0.00 6.00 6.00 10.00 0.00

Blue y 4.00 4.00 0.00 6.00 6.00 0.00 6.00 0.00 10.00

print z 16.00 16.00 16.00 16.00 16.00 10.00 10.00 10.00 10.00

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vertices on the polyhedral surface of the object as recovered from its pictures,

corresponding tho the embedding j19.
It suffices to check that, for a significance level α, µ0 is in a (1−α)100%

confidence region of µ19. Since the sample size (eight) is so small, the ex-

trinsic sample covariance matrix is a degenerate matrix, so one can not use

pivotal bootstrap for the mean projective shape of the entire configuration of

nineteen landmarks, as given in Corollary 10.4.4. Nevertheless, we could find
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22.2 (a) The estimated extrinsic mean shown as a 3D projective shape. (b)-(h)

Randomly selected estimated extrinsic means based on bootstrap samples. In each case,

a projective transformation is applied to each shape so that landmarks 13, 15, 17, 18, 19

match that of reconstructed 3D images as shown in Figure 22.1. (Source: Patrangenaru

et al.(2010), Figure 5. Reproduced by permission of Elsevier).

(1−α)100% confidence regions using pivotal bootstrap based on Corollary

10.4.5.

There are q = 14 marginal axial distributions corresponding to the four-

teen existing landmarks besides those that are part of the projective frame.

To achieve a reliable conclusion, we used 20,000 resamples from the origi-

nal sample. For example, µ0 is in the 95% confidence region for µ j19
if, for

each s = 1, . . . ,14, the value of Ts = T (Y
s
j,7; µ0,s) in (10.41) corresponding to

the s− th marginal is between the 72nd ranked and the 19928th ranked obser-

vation of the corresponding bootstrap distribution (values of degenerate G∗
s,7

have been omitted). The results are as follows:

- First marginal (Landmark 1): T1 = 3.0279647168E+00 is between 6301

(T*=3.0243210949E+00) and 6302 (T* = 3.0294218108E+00).

- Second marginal (Landmark 2): T2 = 2.6459766362E+00 is between 3942

(T*=2.6434475892E+00) and 3943 (T* = 2.6920988816E+00).

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-26&iName=master.img-1404.jpg&w=292&h=236


426 3D PROJECTIVE SHAPE ANALYSIS OF CAMERA IMAGES

Figure 22.3 Extrinsic sample covariance matrix shown as an image. (Source: Patrange-

naru et al.(2010), Figure 6. Reproduced by permission of Elsevier).

- Third marginal (Landmark 3): T3 = 1.5175491E-01 is between 397

(T*=1.4510789E-01) and 398 (T* = 1.5271147E-01).

- Fourth marginal (Landmark 4): T4 = 3.7407490E+00 is between 7379

(T*=3.7288447E+00) and 7380 (T* = 3.7464786E+00).

- Fifth marginal (Landmark 5): T5 = 2.6168385E+00 is between 5355

(T*=2.6166643704E+00) and 5356 (T* = 2.6216985741E+00).

- Sixth marginal (Landmark 6): T6 = 1.7898784E+00 is between 3294

(T*=1.7859106E+00) and 3295 (T* = 1.7914946E+00).

- Seventh marginal (Landmark 7): T7 = 3.9364703E+00 is between 7194

(T*=3.9191776E+00) and 7195 (T* = 3.9388019E+00).

- Eighth marginal (Landmark 9): T8 = 1.5700171E+00 is between 4432

(T*=1.5687626E+00) and 4433 (T* = 1.5748148E+00).

- Ninth marginal (Landmark 10): T9 = 5.0491394E+00 is between 8507

(T*=5.0407173E+00) and 8508 (T* = 5.0521943E+00).

- Tenth marginal (Landmark 11): T10 = 1.3735517E+01 is between 15155

(T*=1.3706638E+01) and 15156 (T* = 1.3750192E+01).

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-26&iName=master.img-1414.jpg&w=245&h=246


APPLICATIONS 427

Table 22.4: Projective coordinates of the blueprint

Landmark No. 1 2 3 4 5 6 7

x 0.22 0.26 −0.31 −0.26 0.52 −0.09 −0.05

Blue y 0.77 0.66 0.46 0.66 0.67 0.58 0.58

print z −0.33 0.39 0.46 −0.39 0.09 0.13 −0.68

w 0.50 0.59 0.69 0.59 0.52 0.80 0.45

Landmark No. 9 10 11 13 14 15 16

x −0.42 −0.31 0.85 0.00 0.68 −0.47 −0.39

Blue y 0.11 0.46 0.42 0.31 0.11 −0.47 0.10

print z 0.64 −0.69 0.00 −0.92 0.68 0.70 −0.89

w 0.64 0.46 0.32 0.23 0.25 0.26 0.22

- Eleventh marginal (Landmark 13): T11 = 2.0352336E+00 is between 4198

(T*=2.0327469E+00) and 4199 (T* = 2.0412641E+00).

- Twelfth marginal (Landmark 14): T12 = 3.9488573860E+00 is between 6837

(T*=3.9442688E+00) and 6838 (T* = 3.9573099E+00).

- Thirteenth marginal (Landmark 15): T13 = 3.6973595941E+00 is between

7857 (T*=3.6946285E+00) and 7858 (T* = 3.6986865E+00).

- Fourteenth marginal (Landmark 16): T14 = 2.8730067E+00 is between 5065

(T*=2.8723605E+00) and 5066 (T* = 2.8770536E+00).

These results show that we fail to reject H0 for any reasonable level α, thus

proving that the projective shape of the object is following the projective shape

of the blueprint closely.

Simultaneous confidence intervals for affine coordinates of the extrinsic

mean projective shape, using nonpivotal bootstrap, as in Remark 10.4.4, yield

similar results, but are less reliable given the poorer coverage error of nonpara-

metric bootstrap. Such results can be provided by the authors by request and

can be found in Liu et al. (2007) for a similar data set with different relative

sizes of cubes.

22.5.2 Face Identification Example

Our second example is in the area of face recognition. This example is based

on a data set used in the live BBC program “Tomorrow’s World”. The example

was introduced in Mardia and Patrangenaru (2005) [233], where six landmarks

(at the ends of eyes plus ends of lips) have been recorded from fourteen digital

images of the same person (an actor posing in different disguises) in fourteen

pictures. Face appearance in these pictures may be neither frontal nor lateral.

The data was obtained from cropped images are displayed in Figure 1.12 in
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Chapter 1. Table 1.21 in that chapter contains the coordinates of the eight land-

marks that were used in this analysis.

In Mardia and Patrangenaru (2005) [233], seven of the frontal pictures and,

respectively, seven one-quarter pictures were used, for which the coordinates

of six anatomically landmarks that are approximately coplanar were recorded

(four corners of the eyes canthus and two end points of the lips mouth edge

points). Using the four eye-corner landmarks as the projective frame, the land-

mark coordinates were converted into bivariate axial observations. An empir-

ical test was performed in that paper, which showed evidence that the frontal

and one quarter views of the group of landmarks could be of the same person.

In this section, we use two additional landmarks (the “bridge of the nose”

and “tip of the nose”). The eight landmarks considered are significantly not

coplanar, as shown by Crane (2010) [77]. Therefore, a 3D projective shape

analysis is more appropriate for this configuration. If one compares the non-

parametric bootstrap distributions of the extrinsic sample mean 2D projective

shape of a configuration of 5 points, in one-quarter views versus frontal views

of the actor, we notice that even for close-to-coplanar configurations, these re-

gions have only a small overlap. In Figure 22.4, one may notice this effect

when the fifth landmark called the “bridge of the nose” is added to a configu-

ration of four coplanar landmarks, showing the limitations of the 2D projective

shape analysis of spatial scenes.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Gray=Front  Black=Side for the Nose−bridge  XbyZ, YbyZ

Figure 22.4 Affine views of the bootstrap distribution of the extrinsic mean axial coordi-

nate corresponding to the “bridge of nose” landmark. Frontal Views = +. One Quarter

Views = ◦. (Source: Patrangenaru et al.(2010), Figure 8. Reproduced by permission of

Elsevier).
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In Figure 1.12, the matched configurations from 1 to 8 are for frontal views

and from 9 to 14 for one-quarter views. The 3D reconstruction was obtained

for each pair of the images, with 1 and 2 being the first pair, 3 and 4 being the

second pair, and so on. In total, there are four reconstructed 3D facial landmark

configurations using the front views and three reconstructed 3D faces using the

side views. The 3D projective projective frames are given by landmarks 1 to 5.

REMARK 22.5.2. Note that an asymptotic chi-square two-sample test statis-

tic for the hypothesis testing problem µ j19,1 = µ j19,2 that is similar to the statis-

tic Tn1n2
in formula (3.16) in Bhattacharya and Bhattacharya (2008) [32]

for the equality of two extrinsic means on CPk−2 may be derived also on

(RPm)k−m−2. However, such a test statistic assumes the sample extrinsic co-

variance matrices are nonsingular, while, in our example, the sample sizes

n1 = 4, n2 = 3 are too small to insure this property for these 9× 9 matrices.

Therefore, we give only a heuristic computational justification for the equal-

ity of the extrinsic mean projective shapes of the reconstructed configurations

from frontal images and from one-quarter images, which is similar to the one

used in Mardia and Patrangenaru (2005) [233]. We use nonpivotal bootstrap ,

as mentioned in Remark 10.4.4. The affine coordinates of the extrinsic sample

mean 3D projective shapes of the configurations of eight landmarks retrieved

from the side images falls inside seven out of nine 95% simultaneous boot-

strap confidence intervals for the affine coordinates of the extrinsic mean 3D

projective shapes of the corresponding configurations retrieved from the frontal

images. The joint 95% confidence regions for the two means overlap.

Simultaneous 95% bootstrap confidence intervals for the affine coordinates

of the extrinsic mean 3D projective shapes of spatial configurations of land-

marks obtained from pairs of frontal images (red) and, respectively, from pairs

of one quarter images (blue) are displayed in Figure 22.5. On the horizon-

tal axis, we have the nine affine coordinates (three for each projective space

marginal of the multi-axial representation). For each affine coordinate, the si-

multaneous confidence intervals are displayed on the vertical of that coordi-

nate. Note that according to Hall (1997, p. 283), if n is the sample size, the

number of atoms for nonparametric bootstrap is
(

2n−1
n

)
. In our example, n = 4

for reconstructions from frontal images and we have
(

7
4

)
= 35 bootstrap atoms.

Similarly, n = 3 for reconstructions from frontal images and, for this group, we

have only
(

5
3

)
= 10 bootstrap atoms. The affine coordinates of bootstrap means

in the two groups are displayed in figure 22.5 as small circles and, respectively,

as small crosses.

The intersection interval along each of the affine coordinates is given below:

Intersection interval for the 1st coordinate is 0.099812 0.642128 with length

0.542315.

Intersection interval for the 2nd coordinate is -0.160658 0.450349 with

length 0.611007.
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Figure 22.5 95% simultaneous bootstrap confidence intervals for affine coordinates of

mean 3D projective shapes of 8 facial landmarks in front views and one quarter views.

(Source: Patrangenaru et al.(2010), Figure 9. Reproduced by permission of Elsevier).

Intersection interval for the 3rd coordinate is 0.185366 0.292291 with length

0.106926.

Intersection interval for the 4th coordinate is -0.002991 0.657261 with length

0.660252.

Intersection interval for the 5th coordinate is -0.376397 0.983902 with length

1.360299.

Intersection interval for the 6th coordinate is -1.092520 -0.001708 with

length 1.090812.

Intersection interval for the 7th coordinate is -0.002792 1.131982 with length

1.134774.

Intersection interval for the 8th coordinate is -0.769301 1.474715 with length

2.244016.

Intersection interval for the 9th coordinate is -1.992983 -0.008885 with

length 1.984098.

REMARK 22.5.3. No matter what model of 3D projective shape space is

used, the dimension of that manifold is 3k−15. Therefore, for each additional

landmark, ideally one should increase the sample size by at least six addi-

tional images. For this reason, Corollary 10.4.5, based on the multivariate

axial model, offers a reasonable way of bypassing this high dimensionality -

small sample problem, as seen in our application. This is a promising feature of
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our methodology for solving pattern recognition questions from digital images

of a scene.
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23.1 Projective Shape Analysis Examples in 1D and 2D

The applications in this chapter are related to a target recognition problem.

EXAMPLE 23.1.1. The aim of this 1D example, due to Mardia and Patrange-

naru (2005) [233], is to distinguish between buildings that have some common

architectural features. A number of different views of buildings on the Univer-

sity of Leeds campus in the United Kingdom, including the Education Building,

were taken for this goal. Note that, for these illustrative examples, the sample

size n is small. Nevertheless, these methods are applicable to larger sample

sizes.

We start with a basic one-sample test before comparing two architectural

styles. One set consists of photographs of the Education Building at Leeds

University taken at five random angles and the aim is to verify the equi-spacing

of the windows. Unlike other examples, which involve larger data sets, for this

toy example, image data and landmark coordinates are given here, as opposed

to being in the data chapter.

Four consecutive windows and four intersection points of the central part

of these four windows (see Figure 23.1) were marked. The problem is also of

433
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relevance in machine vision when different types of buildings are to be dis-

criminated (see, for example, Hartley and Zisserman (2004) [141], pp.14-37).

Four collinear points p1, p2, p3, p4 were digitized and the coordinates (xi,yi) of

pi were recorded for i = 1,2,3,4.

Figure 23.1 One view of a building on the Leeds University campus with four collinear

points on consecutive windows marked by white rings at the center of the windows.

We fix the projective frame π = ([x1 : 1], [x2 : 1], [x3 : 1]) and determine the

cross-ratio c and computed projective coordinate of [x4 : 1]π . Using an angu-

lar representation, [x4 : 1]π = [cosφ : sinφ ] and, doubling the angle, we get a

circular representation of [x4 : 1]π in terms of the angle ψ = 2φ .

Table 23.1 Horizontal coordinates of collinear points on the Education Building at five

different views

View x1 x2 x3 x4

1 22.90 35.7 48.3 61.10

2 23.10 29.1 35.5 45.50

3 41.40 44.3 47.3 50.70

4 39.00 47.0 53.9 60.00

5 42.25 46.9 50.5 53.85

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b18969-27&iName=master.img-018.jpg&w=234&h=190


PROJECTIVE SHAPE ANALYSIS EXAMPLES IN 1D AND 2D 435

If the landmarks were equidistant, their cross-ratio would be c = 4/3 and the

corresponding direction is ψ0 = 1.287 rad. Therefore, testing the hypothesis for

projective equidistance is equivalent to the problem for the intrinsic mean ψI .

Here, we consider the testing problem

H0 : ψI = ψ0, vs. H1 : ψI 6= ψ0. (23.1)

Given that the sample size n = 5 is small, according to Section 2.13, we base

our P-value on a nonparametric pivotal bootstrap derived from the studen-

tized large sample distribution of the mean ψ̄I . That is, based on T (Q,ψ) =

n
1
2 S−1(ψ̄I −ψI), where S is the sample standard deviation and ψk,k = 1, . . . ,n,

is a random sample from Q. If ψ∗
k ,k = 1, . . . ,n is a random resample with rep-

etition from ψk,k = 1, . . . ,n, then the bootstrap distribution of

T ∗(Q∗,ψ∗|ψ) = n
1
2 (S∗)−1(ψ̄∗

I − ψ̄I)

approximates T (Q,µI) with an error of order Op(n−1) (see Section 2.13),

where S∗√
n

is the sample standard deviation of ψ∗
k ,k = 1, . . . ,n. The p-value

of the observed statistic t = n
1
2 (ψ̄I −ψ0)/s, is 2P∗(T∗(Q∗,Ψ∗|Ψ ) < t) if t < 0.

Here, P∗ denotes the empirical distribution. That is, for a large number of re-

samples, half the P-value is the percentage of observed values of T ∗ less than t.

The observed value of t is −1.69. Using 5000 pseudorandom resamples from

the directions ψk,k = 1, . . . ,n, we obtained the pivotal bootstrap distribution of

T∗(Q∗,ψ∗|ψ) and ranked the values of T ∗(Q∗,ψ∗|ψ). Ultimately, a p-value of

0.105 was obtained. We find that the 95% bootstrap confidence interval based

on the observed distribution of T ∗ is (−2.133,6.969). In conclusion, we fail to

reject the equidistance hypothesis for the landmarks selected on the Education

building at the 5% level of significance.

EXAMPLE 23.1.2. We now compare the styles of two buildings with a similar

architecture on the University of Leeds campus; one of which is the Education

building described in Example 23.1.1 and another is the Careers building. One

of the views of the Careers building is shown in Figure 23.2.

Two groups of identically positioned noncollinear landmarks A1,A2,A3,A4,
and A5 were marked on five frontal photographs of the Education Building and

four of the Careers Building, so that n1 = 5 for the Education building and n2 = 4

for the Careers building. We selected the projective frame π = ([A1 : 1], [A2 :

1], [A3 : 1], [A4 : 1]) and determined the coordinates of the views in the sample

using a spherical representation. These spherical coordinates are displayed in

Table 23.2.

Here, the extrinsic sample mean projective shapes of views from the Edu-

cation Building and Careers Building are given in the spherical representation

by Y1,E = [0.8037 : 0.5632 : 0.1922] and Y2,E = [0.7907 : 0.5834 : 0.1855], re-

spectively. Now, consider the problem of estimating the distribution of the axis
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Figure 23.2 One view of the Careers Buildings (University of Leeds) with five land-

marks.

Table 23.2 Spherical coordinates for the Education Building (1 to 5) and the Careers

Building ( 6 to 10)

View Id z1 z2 z3

1 0.8142 0.5547 0.1718

2 0.8038 0.5610 0.1977

3 0.8067 0.5591 0.1917

4 0.8150 0.5513 0.1787

5 0.7773 0.5890 0.2211

6 0.7859 0.5768 0.2228

7 0.8170 0.5712 0.0791

8 0.7639 0.6041 0.2268

9 0.7893 0.5766 0.2110

H(ρ2), as defined in Section 10.5. Since the smaller sample size is 4 and the

eigen-analysis has to be repeated for each resample, we limited ourselves to

250 pseudorandom resamples and determined the corresponding nonpivotal

bootstrap distribution of G(ρ∗
2 ). Let ρ2 = ρ and ρ∗

2 = ρ∗. The corresponding

distribution of 3G(ρ∗) is displayed in Figure 23.3, which indicates that the

sample mean of G(ρ) is close to (0,0,0).

The rotation that brings X̄1,E and X̄2,E into coincidence is identified with a
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Figure 23.3: Nonparametric bootstrap distribution of 3G(ρ)

4D axis and turns out to be, in spherical coordinates, given by

H(ρ) = [.9997 : −0.0077 : 0.0029 : 0.0231].

We determined the coordinates of the distribution of 3(G(ρ∗) −G(ρ)) and,

for this distribution, we successively sorted and trimmed the distribution of

3G(ρ∗) = {3G1(ρ∗),3G2(ρ∗),3G3(ρ∗)} and obtain the following 93% simulta-

neous bootstrap confidence intervals: [−4.36,3.02) for 3G1(ρ∗), [−3.59,2.67)

for 3G2(ρ∗), [−2.70,3.40) for 3G3(ρ∗). This analysis shows that (0,0,0) is in

the 93% percentile confidence region, which is the identity in the correspond-

ing 93% bootstrap confidence region for r2 on SO(3). Therefore, we fail to

reject that µ1,E = µ2,E at the significance level α = 0.07.

Mardia and Patrangenaru (2001) [232] showed that the affine shape ap-

proach performs more poorly for this data.

23.2 Test for VW Means of 3D Projective Shapes

In this section, we apply the results from Section 10.5, along with previous

results in projective shape analysis, to two-sample tests on the projective shape

space PΣ k
3 in the context of image analysis of 3D scenes.

23.2.1 Two-Sample Tests for VW Mean 3D Projective Shapes from Stereo

Images - Matched Pairs

We first consider an application for matched pairs of 3D projective shapes from

digital images. The theory for such a two-sample test (a test for mean projective

shape change) was developed in Crane and Patrangenaru [78], where it was

applied to stereo medical imaging. Here, we consider a toy example consisting

of two random samples of polyhedral objects. The first data set (see Figure 1.14

in Chapter 1) was considered in Chapter 22. It consists of 16 digital images of

a polyhedral surface taken by a uncalibrated digital camera. For a second data

set of 16 digital images, a related polyhedral scene were taken with a different
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camera that had different internal camera parameters. The second scene was

obtained by a slight modification of the first polyhedral object, as displayed in

Figure 1.15 of Chapter 1.

Using the algorithm from Hartley and Zisserman (2004) [141] or Ma et al.

(2005) [225] (see Chapter 22 for details), the 3D configuration of visible cor-

ners was reconstructed from the paired landmark data in Table 1.23. The wire

frame representations of these 3D reconstructions are displayed in Figure 23.4.

The 3D reconstructions correspond to the similar landmark selection as in Fig-

ure 1.13 in Chapter 1.

Figure 23.4 3D Reconstructions of configurations of corners in Figure 1.15. (Source:

Patrangenaru et al.(2014), Figure 4. Reproduced by permission of Taylor & Francis).

From the reconstructed configurations of 19 landmarks (visible corners) car-

rying the same labels for corresponding corners, we selected a projective frame

made of the first five labeled landmarks. Therefore, in this example the projec-

tive shape data is carried over to PΣ19
3 = (RP3)14, which is a sample space

that has a Lie group structure according to Subsection 10.5.1. Given that the

two objects are obtained from two lower blocks by adding a third cube at the

top, we regard the resulting data as matched pair observations on (RP3)14. We

considered the projective shape change hypothesis in Subsection 10.5.2, and,

following the computational steps in that subsection of Chapter 10, from the

resulting bootstrap distribution of Veronese-Whitney sample means, we com-

puted the 14 marginal T ∗
s ,s = 1, . . . ,14 statistics on the Lie group RP3.

For s = 1, . . . ,14, the values of the statistics Ts in (10.46), which under the

null hypothesis are all larger than the corresponding T∗
s for the 95% simulta-

neous confidence sets (shown in Figure 23.5 as cutoffs) are:

T1 = 1735771.3, T2 = 2234801.4, T3 = 24260037.4, T4 = 949014.2, T5 =

942757.9, T6 = 148967185.2, T7 = 15847127.4, T8 = 3342761.1, T9 =

8042772.6, T10 = 15528559.7, T11 = 3800842.3, T12 = 35097853.3, T13 =

24107515.0, T14 = 7085996.9.

On the other hand, the corresponding values of the bootstrap cutoffs T ∗
s ,s =

1, . . . ,14 are:

T ∗
1 = 23.9831, T∗

2 = 38.9948, T∗
3 = 441.3134, T ∗

4 = 44.4325, T ∗
5 = 25.1901,

T ∗
6 = 305.9000, T ∗

7 = 74.7575, T ∗
8 = 24.2130, T∗

9 = 35.1296, T∗
10 = 204.4511,

T ∗
11 = 42.3008, T∗

12 = 40.7353, T∗
13 = 113.6289, T ∗

14 = 26.3761.
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The nonexistence of projective shape change from the first object to the sec-

ond object is therefore rejected at level α = 0.05. We infer that, based on the

data, the two polyhedral objects are not the same, which is a confirmation of

the usefulness of the Lie group methodology.
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Figure 23.5 Cutoffs of the T∗ marginal bootstrap statistics. (Source: Patrangenaru et

al.(2014), Figure 5. Reproduced by permission of Taylor & Francis).

23.2.2 Example 2 - Two-Sample Test for Means of

Independent Pairs

In this example, the data consists of twenty four photos taken of the busts

of the Greek philosopher Epicurus, which are displayed in figure 1.16. The

number of images from the one-head statue differs from that of the double-

head statue. Therefore, a matched pairs test can not be used in this exam-

ple. The landmark coordinates and the reconstructed 3D configurations ob-

tained from 2D matched configurations in pairs of images are posted at

www.stat.fsu.edu/∼vic/NSM. Landmarks 1, 4, 5, 6, 8 were utilized to con-

struct the projective frame. For the confidence region, we computed 2,000,000

bootstrap VW sample means based on landmarks 2, 3, 7, 9.

For the 4 landmarks, the point (0,0,0) is in the 12 confidence intervals of

the affine coordinates, so we fail to reject the null hypothesis that there is no

change on average from the one-headed statue to the double-headed one. Thus,
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Figure 23.6 Simultaneous confidence regions for the statue data. (Source: Patrange-

naru et al.(2014), Figure 9. Reproduced by permission of Taylor & Francis).

Table 23.3 Simultaneous confidence affine intervals for mean projective shape change

- statue data
Bootstrap simultaneous confidence intervals for statue landmarks 2, 3, 7, 9

Axis 2 3 7 9

x (−11.5,11.6) (−28.6,30.8) (−2.0,1.9) (−46.7,42.6)

y (−11.3,12.0) (−32.1,32.6) (−1.8,1.9) (−47.2,46.4)

z (−12.3,12.5) (−24.1,26.3) (−1.2,1.4) (−40.1,37.1)

the fact that the two statues are portraying the same person is not statistically

significant.

  



Chapter 24

Glaucoma Index from HRT Imaging

and Mean Glaucomatous Projective

Shape Change Detection from

Stereo Pair Images

24.1 Introduction 441

24.2 Glaucoma and LEGS Stereo Eye Fundus Data 443

24.3 Shape-based Glaucoma Index 444

24.4 Reconstruction of 3D Eye Fundus Configurations 447

24.1 Introduction

In Chapter 17 we showed that similarity shape analysis can be used for de-

tection of glaucomatous change from Heidelberg Retina Tomograph (HRT)

outputs. It would be nevertheless useful to have a simple geometric marker for

detection of the glaucoma onset. Such a measurement, called glaucoma index

was developed in Derado et al (2004) [82] for HRT data in animal models.

This index, which is presented in Section 24.3 was considered by glaucoma

experts (see Sanfilippo et al. (2009) [312], Hawker et al. (2007) [144]). One

of the problems is that HRT like devices are quite expensive, therefore only a

few medical cabinets have them available. For this reason, a different metho-

dology for glaucoma detection, based on inexpensive imaging technology had

to be considered as well. That methodology is developed in this chapter (also

see Crane and Patrangenaru (2011)[78]). The afferent statistical analysis is on

the projective shape space of k-ads in 3D (RP3)k−5, which has a Lie group

structure (see Section 10.5).

Statistical analysis on Lie groups was first considered by Beran (1968) [19]

in the context of testing for uniformity of a distribution on a compact homoge-

neous space. Nonparametric density estimation on Lie groups via deconvolu-

441
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tion like techniques and Fourier analysis was developed by Kim (1998 [187],

2000 [188]), Healy et al. (1998) [145], Lesosky et al. (2008) [218] and Koo

and Kim (2008)[202]; these have applications in medical imaging, robotics,

and polymer science (see Yarman and Yazici(2005) [340], Yarman and Yazici

(2003) [339], Koo and Kim (2008a)[203]).

Statistical inference on certain Lie groups in a parametric setting context was

considered also in concrete estimation problems in paleomagnetics (see Wat-

son( 1983) [333]), plate tectonics (see Chang (1986) [64], Chang (1988) [63],

Chang (1989) [65], Chang and Ko (1995) [67], Kirkwood et al. (1999) [193],

Rivest and Chang (2006) [290]), biomechanics (see Rivest (2005) [288], Rivest

and Chang (2006) [290], Rivest et al. (2008) [289]). The idea of statistical Lie

group model is due to Chang (2004) [66].

Correlation of two images of the same object (see Chang and Ko (1995)

[67]), comparison of mean axes (see Beran and Fisher (1998) [18]), or of ex-

trinsic mean planar projective shapes (see Mardia and Patrangenaru (2005)

[233]), as well as estimation of 3D motion in computer vision (e.g. Tuzel et al.

(2005) [324]), leads also to natural inference problems on Lie groups.

In general, if the sampling manifold is a homogeneous space, often times

the dimension of the Lie group is higher than the dimension of the space on

which the Lie group is acting. Since the matched pairs data analysis is on this

Lie group, the increase in dimensionality requires even larger samples. In the

other case this kind of data analysis is relevant in problems in medical imaging,

face analysis and the like where the sample sizes are often moderate or small.

Ideally the dimensions of the Lie group and of the sampling manifold where

the group is acting should be the same, which is the case if and only if the sam-

pling manifold with a homogeneous space structure has a Lie group structure

in itself. Fortunately, this is the case if a projective shape analysis is pursued

for 3D medical imaging data, and luckily again, following the methodology

developed in Chapter 22, such 3D projective shape data can be recovered from

stereo pairs of images of the eye fundus (see Crane(2010) [77], Crane and Pa-

trangenaru (2011) [78]). Stereo data of the eye is a most common imaging

data for eye disease detection and control. The stereo pairs in our analysis are

from the Louisiana Experimental Glaucoma Study (LEGS) in Rhesus monkeys

(see Burgoyne et al. (2000) [56]). Although the data were collected in the year

2000, they were not analyzed immediately; the analysis was postponed par-

tially due to the hurricane Katrina, when sadly, the animals participating in the

study were lost.

Section 24.4 is dedicated to an application of 3D projective shape analysis

to mean glaucomatous projective shape change detection, from stereo data of

the ONH. Since glaucoma is a disease affecting the 3D appearance of the ONH

region due to high IOP, it leads to a change in the 3D projective shape of this

region. The results obtained are statistically significant.
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24.2 Glaucoma and LEGS Stereo Eye Fundus Data

Glaucoma is a group of eye disorders caused mainly by intraocular IOP that

is too high for the maintenance of the normal eye, and in later stages, causes

blindness. There are two fluid chambers in the eye, the anterior chamber, most

of which we see behind the clear part of the eye (the cornea) in front of the

iris (colored part of the externally visible eye), and the posterior chamber. It

is in the anterior chamber that aqueous humor is produced, and it is this fluid

production, and its slow release from the eye via the trabecular meshwork that

maintains the IOP at normal levels. In glaucoma the trabecular meshwork re-

leases less fluid, leading to an increased IOP in the eye. This pressure pushes

against the walls of the eyeball, which is solid, except for its ONH region,

where the optic nerve fibers enter the eyeball. The retinal neurons are thus

compressed, damaged and pushed outside the eyeball, a phenomenon leading

to a tunneling effect of vision in the diseased eye, leading to gradual loss of

the peripheral view. The Louisiana Experimental Glaucoma Study, the ONHs

of both eyes of mature Rhesus monkeys were imaged on separate sessions on

one hand with an TopSS Scaning Conformal Laser Tomograph (also known as

HRT) and a Topcon TRC-WT stereo eye fundus camera. Moderate levels of

elevated IOP were then induced by laser treatment of the trabecular meshwork

of one eye (the treated eye) of each monkey and both eyes were then imaged

a number of times per session, on separate sessions to establish variability in

normals. Then experimental glaucoma was induced in one eye of each animal,

and the fellow eye was maintained as an untreated control. In this chapter, only

a set of after treatment independent observations are considered, for which data

was provided. The data set consists of a 15 sets of pairs of stereo images of the

complicated ONH topography, that are displayed in Figure 1.7 in Chapter 1.

Recall that during the LEGS experiment, of the two eyes of one animal

one was given experimental glaucoma, and the other was left untreated (nor-

mal) and imaged over time as a control. The coordinates of nine landmarks

on the approximate elliptic contour that determines the ridge of the ONH are

recorded, as well as those of certain blood vessels junctions and estimated lo-

cation of the deepest point are tabulated in Tables 1.24, 1.25, 1.26 in Chap-

ter 1. The nine landmarks considered are S(superior), I(inferior), N(nasal),

T(templar), V(vertex-the deepest point of the ONH cup), SM(mid-superior),

IM(mid-inferior), NM(mid-nasal) and TM(mid-templar), and their positions

in the ONH cup are schematically displayed in the Figure 1.19 in Chapter 1.

The landmarks N, T, S, I and V have been used before in statistical analysis

for glaucomatous change detection from 3D confocal tomography images, of-

ten known as Heidelberg Retina Tomograph (HRT) outputs (see Patrangenaru

et al. (2000), Derado et al. (2004), Bhattacharya and Patrangenaru (2005), A.

Bhattacharya (2008), Bandulasiri et al. (2009a), Bandulasiri et al. (2009b), A.

Bhattacharya (2009)).
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24.3 A Shape-based Glaucoma Index for Tomographic Images

From the clinical experience, it is known that the ONH area contains all the

relevant information related to glaucoma onset. Figure 1.7 in Chapter 1 shows

the relevant area with four landmarks, namely, S for the superior aspect of the

retina toward the top of the head, N for the nasal or nose side of the retina, T for

temporal, the side of the retinal closest to the temple or temporal bone of the

skull and V for the ONH deepest point. That is, the first three are anatomical

landmarks and the fourth is a mathematical landmark.

Figure 24.1 Schematic picture of the four landmarks N, S, T and V in the ONH eye area.

(Source: Bandulasiri et al.(2009), Figure 3. Reproduced by permission of Elsevier).

Figure 24.1 gives a schematic picture depicting the geometry of the four

landmarks. Some experimental data on Rhesus monkeys have been available

and a shape analysis has been performed by Bhattacharya and Patrangenaru

(2005) [43] (also see Chapter 17) using Bookstein coordinates (see Dryden

and Mardia (1998) [91]) but they found that the shape change is barely sig-

nificant. Since the eyeball, and in particular the papilla is rigid, the size of the

configuration of the first three landmarks S, N, T remains unchanged during

the glaucomatous change. Further, from medical experience, it is known that

the physiology of glaucoma triggers a change in shape due to the increased

IOP, the soft tissue of eyecup is pushed back, where the ONH enters the eye-

ball, thus the its depth grows. Therefore, we define the glaucoma index, G, a

shape measure, as the depth of the eyecup normalized by the distance between

the two specific landmarks on the papilla. That is, the ratio of the height from

V of the tetrahedron S, T, N and V to its edge ST. Such a quantity has been

used in practice (qualitatively) by clinicians.

In order to determine the 3D coordinates (x1,x2,x3) of the four landmarks, we

first found the coordinates of the three landmarks N,S,T from the TopSS out-

put, using the knowledge that N,S,T lie on an ellipse. The (x1,x2) coordinates

of V are straightforward to obtain, and we get its x3-coordinate as the point of

minimum inside the ONH cup. Thus, we get a set of four landmarks. We now
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define the glaucoma index G, which was mentioned in the first section. We re-

label the four landmarks as X1 = T,X2 = S,X3 = N,X4 =V. Assume the landmark

coordinates are given by the 3×1 column vectors X j = (x1
j x2

j x3
j )

T , j = 1, . . . ,4.

DEFINITION 24.3.1. The glaucoma index G is the height from X4 of the

tetrahedron defined by (X1,X2,X3,X4) relative to the distance ‖X1 −X2‖ (see

Figure 24.2).

Figure 24.2 Geometric interpretation of the glaucoma index G where X1 and X2 are

transformed to (0,0,0) and (1,0,0) and the third coordinate of X3 is 0. (Source: Derado

et al.(2001), Figure 4. Reproduced by permission of Taylor & Francis).

Explicitly, G is given by the formulas:

G =
Y

‖(X2 −X1)× (X3−X1)‖‖X2−X1‖
, (24.1)

where:

Y = det(

(
1 1 1 1

X1 X2 X3 X4

)
)

Obviously G is a shape coordinate on the space of tetrads (X1,X2,X3,X4) in

general position. Figure 17.4 in Chapter 17 shows the ONH topography for a

monkey, before and after treatment. Figure 24.3 gives a schematic diagram of

the same information in terms of the landmarks. Thus there is empirical evi-

dence that G does measure the shape change. We proceed with the statistical

analysis. Table 1 in Derado et al. (2004) [82] contains before and after the treat-

ment values of the glaucoma index G in the 12 of the monkeys for which the

HTR data was available (G2 denotes before the treatment, and G1 the after the
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Figure 24.3 Change in glaucoma index G due to increased internal ocular pressure

level. (Source: Derado et al.(2001), Figure 6. Reproduced by permission of Taylor &

Francis).

treatment values) for LEGS. The nonparametric bootstrap distribution T ∗ of

the studentized mean change in the glaucoma index, based on 5,000 resamples

with repetition, is displayed in Figure 24.4 below (see Derado et al. (2004) [82]

for details).

Figure 24.4 Bootstrapped distribution of the studentized mean change in the glaucoma

index G. (Source: Derado et al.(2001), Figure 7. Reproduced by permission of Taylor

& Francis).

The 95% - pivotal bootstrap confidence interval (see Section 2.13) for the

mean change in the glaucoma index for the treated eye, with three exact dec-

imals, was found to be (0.018,0.063) which does not contain zero! This data

analysis suggests that changes in the G coordinate are a statistically significant

measure for the glaucomatous eye, which is in agreement with some clinicians

way of detecting the onset of the illness.
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24.4 Reconstruction of 3D Landmark Configurations from Stereo

Images and Detection of Extrinsic Mean Glaucomatous Projective

Shape Change Detection from Stereo Pairs Data

It is no accident that most of the living creatures having the ability to see, from

insects and snails to mammals and humans, have binocular vision. Stereopsis

helps humans mentally recreating a 3D scene from the two retina 2D views of

that scene. Nevertheless, this mental reconstruction is far from being similar to

the observed scene, since two observed parallel lines, seem to meet at a point in

space in their mental reconstructions. In fact the mentally reconstructed scene,

most likely differs from the observed scene by a projective transformation of

the surrounding Euclidean space. While the “ancient” mechanism of 3D binoc-

ular vision is not yet fully understood, in a nutshell, the results in Chapter 22

mean that all we see are 3D projective shapes.

For the mathematical and numerical aspects of the reconstruction of the pro-

jective shape of a 3D configuration from the pixel coordinates of two of its

digital images, we refer the reader to Chapter 22, and the references therein.

REMARK 24.4.1. We should point out that extracting the 3D projective

shapes from stereo pairs of images is optimal in absence of access to the cam-

era, or to additional useful information, that helps estimate the internal cam-

era parameters. If information, such as a calibration stereo rig is available,

the internal camera parameters can be obtained, thus making possible a 3D

reflection shape analysis from digital camera images (see Lester et al. (2015)

[219]).

Using a reconstruction algorithm from Ma et al. (2006) [225], p. 121, for

each eye stereo pair of corresponding planar configurations in Tables 1.24,

1.25 in Chapter 1, Crane (2010) [77] obtained in MATLAB R2007 a 3D recon-

structed configurations of landmarks (S, I, N, T, V, SM, IM, NM, TM) in both

control and treated eyes. These were the input data for testing if there is any

mean glaucomatous projective shape change, based on the bootstrap methodo-

logy developed in Section 2.13. Note that the reconstructed configurations are

only projectively equivalent to the observed ones. The reconstructions can be

found at http:www.stat.fsu.edu/∼vic/JMVA-09-179. MATLAB codes for de-

riving the bootstrap distributions for testing the extrinsic mean projective shape

change can be found at the same web address.

In our analysis we selected the projective frame π = (N,T,S, I,V ) and used

the projective coordinates [h1, ji], [h2, ji], [h3, ji], [h4, ji], j = 1,2, i = 1, . . . ,15 of

the other anatomic landmarks with respect to this frame. Then we obtained the

sample (y1,i,y2,i,y3,i,y4,i) ∈ (RP3)4, i = 1, . . . ,15 from the change in projective

shape, using quaternion multiplication:

ya,i = [h̄a,1i ·ha,2i],a = 1,2,3,4, i = 1, . . . ,15. (24.2)

The extrinsic sample covariance matrix in Section 10.5 is singular; therefore
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to estimate the extrinsic sample mean change, we computed the bootstrap

T ∗
s ,s = 1,2,3,4, for 20,000 resamples and obtained the following cutoffs upper

simultaneous bootstrap .95-quantiles:

• for T ∗
1 : 20.0663,

• for T ∗
2 : 16.5607,

• for T ∗
3 : 25.7405,

• for T ∗
4 : 21.7158.

The histograms for the bootstrap distributions of T ∗
s ,s = 1,2,3,4 correspond-

ing to the marginal axes are displayed below: The values of the statistics
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Figure 24.5 Histograms for the bootstrap distributions of T∗
s , s = 1,2,3,4 for 20,000 re-

samples. (Source: Crane and Patrangenaru(2011), Figure 4. Reproduced by permission

of Elsevier).

Ts,s = 1,2,3,4 under the null hypothesis that there is no 3D projective shape

change are:

T1 = 1474.7,T2 = 2619.9,T3 = 860.2,T4 = 1145.7, and since the T1,T2,T3 and

T4 are much larger than the corresponding cutoffs given above, there is a sig-

nificant mean projective shape change due to the increased IOP in the treated

eye.

REMARK 24.4.2. If instead of considering the change on a Lie group given

by the C = X−1Y, we look at C1 = Y X−1, we obtain the same conclusion that

Ta is larger than the cutoff for T∗
a , for a = 1,2,3,4, as expected.

We close the section by noting that while previous results in literature, which

are referred to in this chapter, show that there is mean similarity shape change,

or similarity size-and-shape change, as well. However, those studies are based

on HRT outputs and most ophthalmologists can not afford an HRT while any

ophthalmologist has access to stereo cameras designed for eye fundus imagery.
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25.1 Introduction

In this section we present results in Lee et al. (2004) [214]. The landmark data

reduction approach in high level image analysis has led to significant progress

to scene recognition via statistical shape analysis (see Dryden and Mardia

(1998) [91]). While a number of families of similarity shape densities have

proven useful in landmark based data analysis, parametric models have seldom

been considered in the context of projective shape or affine shape (see Mardia

and Patrangenaru (2005) [233]). Sample spaces of interest in Statistics (see

Section 3.5) that have the geometric structure of symmetric spaces (see Sec-

tion 3.2) are spheres (as spaces of directions), real projective spaces as spaces

of axes, complex projective spaces as planar direct similarity shape spaces (see

Kendall (1984) [177]), real Grassmann manifolds as spaces of affine shapes

(see Sparr (1992) [314], and products of real projective spaces as spaces of

projective shapes of configurations of points in general position (see Patrange-

naru (2001) [268], Mardia and Patrangenaru (2005) [233]). Therefore, density

estimation of distributions, regarded as points on such symmetric spaces and

arising from directional data or from digitizing landmarks in images, was nec-

essary.

Henry and Rodriguez (2009) [156] used the Pelletier estimator for in di-

rectional paleomagnetism data and Di Marzio et al. (2011)[236] used kennel

density estimators for data on the torus.

In Section 25.4, following Pelettier (2005) [278], we consider kernel density

449
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estimation on general Riemannian manifolds. Note that those results however

hold only in homogeneous spaces (for a definition of a homogeneous space

see Chapter 3). This is good enough for image analysis, since any sample

spaces considered there are symmetric spaces, and a symmetric space is ho-

mogeneous. Pelletier density estimators generalize the density estimators on

certain homogeneous spaces introduced by Ruymgaart (1989), by H. Hendriks

et al. (1993) and by Lee and Ruymgaart (1998). In this chapter, we propose

a class of adjusted Pelletier density estimators on homogeneous spaces that

converge uniformly and almost surely at the same rate as naive kernel den-

sity estimators on Euclidean spaces. A concrete detailed example of projective

shape density estimation of 6-ads arising from digitized images of the “actor”

data set in Table 1.21.

25.2 Pelletier Density Estimators on Homogeneous Spaces

Given that no chapter was devoted to density estimation in Part II, in this sec-

tion, we first consider some necessary definitions and results on this subject.

A kernel density estimator of a probability distribution on an arbitrary com-

plete Riemannian manifold (M,g) of dimension m was introduced in Pelletier

(2005) [278]. Assume ρg is the geodesic distance on M associated with the

Riemannian structure g (see (3.58)) and let B denote the Borel σ−field of M.
Let (Ω ,F ,P) denote an underlying probability space and let X be a random

object on M, and let Q be the probability measure on M associated with X .
If dV =

√
|g|λm(dx), is the volume measure associated with the invariant Rie-

mannian metric g on M (see (25.6)) and Q has a probability density f w.r.t. the

volume measure dV, Pelletier defines the density estimator fn,K of f as follows:

let K : R+ → R be a nonnegative map with support in [0,1] such that K(‖×‖
is a density with finite moments of order p ≤ 2. Then fn,K is defined by

fn,K(p) =
1

n

n

∑
i=1

|g(p)|− 1
2

1

rm
K(

ρg(p,xi)

r
), (25.1)

where |g(p)| is the determinant of the metric, and r is the radius considered

above.

Equation (25.1) needs to be used with caution since the coefficients of the

Riemannian metric depend on the choice of a coordinate system around p. If

in addition we assume that the (M,g) is homogeneous, then for any pair of

indices i, j there is an isometry h : M→M, with h(xi) = x j, which insures that

fn,K is a density.

REMARK 25.2.1. If M is an arbitrary compact Riemannian manifold, one

may modify equation (25.1) as follows and get a probability density function:

for each i = 1, . . . ,n one should consider gi(p) instead of g(p), where gi is the

determinant of g w.r.t. the the log-chart centered at the observation xi. The

log-chart is the inverse of the exponential map at xi considered in (3.70).
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To assess the quality of this estimator we shall consider the MSE

MSE(x) = E{ fn,K(x)− f (x)}2 = Var( fn,K)(x) +{ fn,r(x)− f (x)}2, (25.2)

and the mean integrated squared error on the Riemannian manifold M (MISE)

MISE =

∫

M
MSE(x)dV(x). (25.3)

that is a generalization to the nonlinear case of the MISE in (2.111), Section

2.14. The following result due to Pelletier (2005) [278] extends a result of

Ruymgaart (2004) [298]:

THEOREM 25.2.1. If f is of class C2 on M and fn,K is the density estimator

in (25.1), then MISE ≤ C f ( 1
nrm + r4). Consequently for r = O(n−

1
m+4 ) we have

MISE = O(n−
4

m+4 )

For a proof, see Pelletier (2005) [278].

25.3 Density Estimation on Symmetric Spaces

If (M,g) is a simply connected compact Riemannian symmetric space, with

the isometry group G equipped with a G invariant measure, it is known that

M factors as a product irreducible symmetric spaces (see Kobayashi and No-

mizu (1963) [197]). Therefore, any symmetric space M is locally isomet-

ric to a direct product M1 × ·· · ×Mq of irreducible symmetric spaces. As-

sume p = (p1, . . . , pq) is a fixed point on such a product. A vector u tangent

to M at p can be represented as u = (u1, ...,uq),ua ∈ TpaMa∀a = 1, ...,q, and

with these identifications, the exponential map at p is given by Expp(u) =

(Expp1
(u1), ...,Exppq(uq)). Since exponential maps are easy to compute in ir-

reducible symmetric spaces, for such products, rather than using caps Cr(p),
it is more convenient to use products of caps Cra(pa) in the irreducible factors

Ma,a = 1, ...,q. Also, instead of using the density estimator in (25.1), we use an

estimator f̂n,K(p) that is compatible with the decomposition in irreducible fac-

tors. If the random sample is X = (x1, ...,xn), where xi = (xi1, ...,xiq),∀i = 1, ...,n,
and p = (p1, ..., pq) is an arbitrary point as above then

f̂n,K(p) =
1

n

n

∑
i=1

Π
q
a=1|gia(pa)|− 1

2
1

r
ma
a

K(
ρga(pa,xia)

ra
). (25.4)

In (25.4), |gia(pa)| is the determinant of the metric tensor of Ma at Logxia
pa,

and ma is the dimension of Ma. For convenience, one may take equal radii

ra,a = 1, ...,q. The density estimator f̂n,K(p) has the same asymptotic order of

error as fn,K(p) mentioned in Theorem 25.2.1.
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25.4 An Example of Projective Shape Density Estimation

Mardia and Patrangenaru (2005) [233] have shown that the projective shape

space PΣ k
m, of projective k–ads with first m + 2 points of the k-ad in general

position in Pm is a manifold diffeomorphic with a direct product of q = k−m−
2 copies of Pm (see Subsection 3.5.8). Using the projective frame approach

they considered the so called spherical representation of a shape of such a k-

ad. When a distribution on the PΣ k
m is concentrated, one may simply regard it as

a distribution on a product of q unit spheres Sm, given that the projective space

RPm is obtained from Sm by identifying antipodal points (see Chapter 3). The

planar case (m=2), is relevant in high level image analysis. In this particular

case q = k−4. Caution should be taken in the selection of landmarks: while the

actual physical landmarks of the scene pictured are in 3D, one should select a

group of landmarks that are approximately coplanar.

Recall from Chapter 1, that the “actor” library is a data set of images of

an individual who appears in different disguises in front of a camera. A small

number of such images have been digitized and six approximately coplanar

landmarks (ends of eyes and lips–see coordinates of landmarks (3) to (8) in

Table 1.21) have been used in a planar projective shape density estimation ex-

ample, using Ruymgaart’s spherical caps (see Ruymgaart (2004) [298]) where

K is a step function. Figure 25.1 displays graphs of smoothed histogram es-

timators of type fn,r for the distribution of spherical coordinates, of the two

spherical marginals associated with the k-ads, for k = 6 is given by

fn,r(φ ,θ ) =
1

ncn(r)

n

∑
i=1

1Br(φ ,θ )(xi),x ∈ R2 (25.5)

where Br(φ ,θ ) is a small disc of area cn(r) with center (φ ,θ ) ∈ R2 and radius

(bandwidth) r. Here we consider a small geodesic ball of radius 0< r < diamRP2

2

and refer to is as the cap Cr(x), with center x ∈ RP2 and radius r. The volume

of such a cap has the form

|Cr(x)| = cn(r) = O(r2). (25.6)

In fact the formula of the area of the cap is known from elementary geometry

to be cn(r) = 2πrh, where h is the height of the corresponding cap on S2. In

our actor data example given that q = 2, there are two axial marginals. The

marginal densities are pictured in Figure 25.1
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Figure 25.1 Actor data: marginal densities of kernel estimates in spherical coordinates.
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26.1 Introduction

This section is essentially due to Bubenik et al. (2010) [53], who gracefully

introduced us to the fascinating new area of topological data analysis (TDA).

The prerequisites for this TDA section are Chapter 3, with an emphasis on

Subsection 3.4.3.

Big and complex data raise new challenges for quantitative scientists of di-

verse backgrounds who are being asked to apply the techniques of their spe-

cialty to data which is greater in both size and complexity than that which has

been studied previously. Massive, data sets on manifolds, for which traditional

linear methods are inadequate, pose challenges in representation, visualization,

interpretation and analysis. A common finding is that these massive multivari-

ate data sets require the development of new statistical methodology and that

these advances are dependent on increasing technical sophistication. Two such

data-analytic techniques that have recently come to the fore are computational

algebraic topology and statistics on manifolds.
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Commonly, one starts with data obtained from some induced geometric

structure, such as a curved submanifold of a numerical space, or, even a singu-

lar algebraic variety, set of zeroes of a polynomial function in more variables.

The observed data is obtained as a random sample from this space, and the

objective is to statistically recover features of the underlying space.

In computational algebraic topology, one attempts to recover qualitative

global features of the underlying data, such as connectedness, or the number of

holes, or the existence of obstructions to certain constructions, based upon the

random sample. In other words, one hopes to recover the underlying topology.

An advantage of topology is that it is stable under deformations and thus can

potentially lead to robust statistical procedures. A combinatorial construction

such as the alpha complex or the Čech complex, see for example Zomorodian

(2005) [348], converts the data into an object for which it is possible to com-

pute the topology. However, it is quickly apparent that such a construction and

its calculated topology depend on the scale at which one considers the data.

A multi–scale solution to this problem is the technique of persistent homol-

ogy. It quantifies the persistence of topological features as the scale changes.

Persistent homology is useful for visualization, feature detection and object

recognition. Applications of persistent topology include protein structure ana-

lysis (see Sacan et al. (2007) [299]) and sensor networks (see de Silva and

Ghrist (2007) [81]). In an application to brain image data (see Chung et al.

(2009) [74]), a demonstration of persistent topology in discriminating between

two populations was exhibited.

In geometric statistics, one uses the underlying Riemannian structure to

recover quantitative information concerning the underlying probability dis-

tribution and functionals thereof. The idea is to extend statistical estimation

techniques to functions over Riemannian manifolds, utilizing the Riemannian

structure. One then considers the magnitude of the statistical accuracy of these

estimators. Considerable progress has been achieved in terms of optimal es-

timation which include works by Hendriks (1990) [150], Efromovich (2000)

[94], Kim and Koo (2005) [190], Pelletier (2005, 2006) [278], [279], Koo and

Kim (2008) [202], and Kim, Koo and Luo (2009) [191]. Other related works

include Rooij and Ruymgaart (1991) [328], Ruymgaart (1993) [296], Mair and

Ruymgaart (1996) [227], Angers and Kim (2005) [4], and Bissantz, Hohage,

Munk and Ruymgaart (2007) [50]. There is also a growing interest in func-

tion estimation over manifolds in the learning theory literature. Some papers

that have direct relevance are Cucker and Smale (2002a) [79], Smale and Zhou

(2004) [310], and Belkin and Niyogi (2004) [15]; see also the references cited

therein.

Although computational algebraic topology and geometric statistics appear

dissimilar and seem to have different objectives, it has recently been noticed

that they share a commonality through statistical sampling. In particular, a

pathway between them can be established by using elements of Morse the-
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ory. This is achieved through the fact that persistent homology can be applied

to Morse functions and comparisons between two Morse functions can be as-

sessed by a metric called the bottleneck distance. Furthermore, the bottleneck

distance is bounded by the sup–norm distance between the two Morse func-

tions on some underlying manifold. This framework thus provides just enough

structure for a statistical interpretation. Indeed, consider a nonparametric re-

gression problem on some manifold. Given data in this framework one can

construct a nonparametric regression function estimator such that the persistent

homology associated with this estimated regression function is an estimator

for the persistent homology of the true regression function, as assessed by the

bottleneck distance. Since this will be bounded by the sup-norm loss, by pro-

viding a sharp sup–norm minimax estimator of the regression function, we can

effectively bound the expected bottleneck distance between the estimated per-

sistent homology and the true persistent homology. Consequently, by showing

consistency in the sup-norm risk, we can effectively show consistency in the

bottleneck risk for persistent homology which is what we will demonstrate. Let

us again emphasize that the pathway that allows us to connect computational

algebraic topology with geometric statistics is Morse theory. This is very in-

triguing in that a pathway between the traditional subjects of geometry and

topology is also Morse theory.

We now summarize this chapter. In Section 26.1.1 we will lay down the

topological preliminaries needed to state our main results. In Section 26.2, we

go over the preliminaries needed for nonparametric regression on a Rieman-

nian manifold. Section 26.3 states the main results where sharp sup-norm min-

imax bounds consisting of constant and rate, and sharp sup-norm estimators

are presented. The connection to bounding the persistent homology estimators

thus ensues. Following this in Section 26.4, a brief discussion of the imple-

mentation is given. Proofs to the main results are collected in Section 26.5.

26.1.1 Persistent Topology

Edelsbrunner et al. (2001) [92] and Zomorodian and Carlsson (2005) [348]

provide a computational procedure for determining how the homology persists

as the level r changes. In the example in Section 3.4 there are two persistent

homology classes (defined below). One class is born when r = 1.1, the first

sublevel set that has two holes, and dies at r = 1.4 the first sublevel set for which

the second hole disappears. The other class is born at r = 0 and persists until

r = 2. Thus the persistent homology can be completely described by the two

ordered pairs {(1.1,1.4), (0,2)}. This is called the reduced persistence diagram

(defined below) of f , denoted D̄( f ). For a persistent homology class described

by (a,b), call b−a its lifespan. From the point of view of an experimentalist, a

long-lived persistent homology is evidence of a significant feature in the data,

while a short-lived one is likely to be an artifact.
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A precise definition follows:

DEFINITION 26.1.1. Let k be a nonnegative integer. Given f : M→ R and

a ≤ b ∈R the inclusion of sublevel sets iba : M f≤a →֒M f≤b induces a map on

homology

Hk(iba) : Hk(M f≤a) → Hk(M f≤b).

The image of Hk(iba) is the persistent homology group from a to b. Let β b
a be its

dimension. This counts the independent homology classes which are born by

time a and die after time b.

Call a real number a a homological critical value of f if for all sufficiently

small ε > 0 the map Hk(ia+ε
a−ε ) is not an isomorphism. Call f tame if it has

finitely many homological critical values, and for each a ∈ R, Hk(M f≤a) is

finite dimensional. In particular, any Morse function on a compact manifold is

tame.

Assume that f is tame. Choose ε smaller than the distance between any

two homological critical values. For each pair of homological critical values

a < b, we define their multiplicity µb
a which we interpret as the number of

independent homology classes that are born at a and die at b. We count the

homology classes born by time a + ε that die after time b− ε . Among these

subtract those born by a−ε and subtract those that die after b +ε . This double

counts those born by a− ε that die after b + ε , so we add them back. That is,

µb
a = β b−ε

a+ε −β b−ε
a−ε −β b+ε

a+ε + β b+ε
a−ε .

The persistent homology of f may be encoded as follows. The reduced per-

sistence diagram of f , D̄( f ), is the multiset of pairs (a,b) together with their

multiplicities µb
a . We call this a diagram since it is convenient to plot these

points on the plane. We will see that it is useful to add homology classes which

are born and die at the same time. Let the persistence diagram of f , D( f ),

be given by the union of D̄( f ) and {(a,a)}a∈R where each (a,a) has infinite

multiplicity.

26.1.2 Bottleneck Distance

Cohen–Steiner, Edelsbrunner and Harer (2005) [75] introduced the following

metric on the space of persistence diagrams. This metric is called the bottleneck

distance and it bounds the Hausdorff distance. It is given by

dB(D( f ),D(g)) = inf
γ

sup
p∈D( f )

‖p− γ(p)‖∞, (26.1)

where the infimum is taken over all bijections γ : D( f ) → D(g) and ‖ · ‖∞
denotes supremum–norm over sets.

For example, let f be the function considered at the start of this sec-

tion. Let g be a unimodal, radially-symmetric function on the same do-

main with maximum 2.2 at the origin and minimum 0. We showed that
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D̄( f ) = {(1.1,1.4), (0,2)}. Similarly, D̄(g) = (0,2.2). The bottleneck distance

is achieved by the bijection γ which maps (0,2) to (0,2.2) and (1.1,1.4) to

(1.25,1.25) and is the identity on all ‘diagonal’ points (a,a). Since the diagonal

points have infinite multiplicity this is a bijection. Thus, dB(D( f ),D(g)) = 0.2.

In Cohen–Steiner, Edelsbrunner and Harer (2005) [75], the following result

is proven:

dB(D( f ),D(g)) ≤ ‖ f − g‖∞ (26.2)

where f ,g : M → R are tame functions and ‖ · ‖∞ denotes sup–norm over

functions.

26.1.3 Connection to Statistics

It is apparent that most articles on persistent topology do not as of yet incor-

porate statistical foundations although they do observe them heuristically. One

approach that combines topology and statistics is that of Niyogi, Smale and

Weinberger (2008) [255]. They calculate how much data is needed to guaran-

tee recovery of the underlying topology of the manifold. A drawback of their

technique is that it supposes that the size of the smallest features of the data

is known a priori. To date the most comprehensive parametric statistical ap-

proach is contained in Bubenik and Kim (2007) [54]. In this chapter, the un-

known probability distribution is assumed to belong to a parametric family of

distributions. The data is then used to estimate the level so as to recover the

persistent topology of the underlying distribution.

As far as we are aware no statistical foundation for the nonparametric case

has been formulated although Cohen–Steiner et al.(2005) [75] provide the

topological machinery for making a concrete statistical connection. In parti-

cular, persistent homology of a function is encoded in its reduced persistence

diagram. A metric on the space of persistence diagrams between two functions

is available which bounds the Hausdorff distance and this in turn is bounded by

the sup–norm distance between the two functions. Thus by viewing one func-

tion as the parameter, while the other is viewed as its estimator, the asymptotic

sup–norm risk bounds the expected Hausdorff distance thus making a formal

nonparametric statistical connection. This in turn lays down a framework for

topologically classifying clusters in high dimensions.

26.2 Nonparametric Regression on Manifolds

In general, given two embedded manifolds ja : Ma → Rda ,a = 1,2, and a ran-

dom pair (X1,X2) on M×N , we assume that ∀x1 ∈ M1, the r.o. X2|X1 = x1

is j2-nonfocal. The regression function of predictor X1 and response X2 is the

function f12 : M1 →M2 given by

f12(x1) = E j2(X2|X1 = x1), (26.1)
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where the right hand side of (26.1) is the conditional extrinsic mean of X2,
for X1 = x1. In particular if M2 = Rd2 , the right hand side is the conditional

mean vector of X2, for X1 = x1. In this later case, we may assume in a different

formulation, that

X2 = f12(x1) + ε, (26.2)

where ε has mean vector 0d2

Consider in particular the following nonparametric regression problem

y = f (x) + ε, x ∈M, (26.3)

where M is a d−dimensional compact Riemannian manifold, f : M → R is

the regression function and ε is a normal random variable with mean zero and

variance σ2 > 0.

For a given sample (y1,x1), . . . , (yn,xn), let f̃ be an estimator of f based on

the regression model (26.3). We will assess the estimator’s performance by the

sup–norm loss:

‖ f̃ − f ‖∞= sup
x∈M

| f̃ (x)− f (x)|. (26.4)

Furthermore, we will take as the parameter space, Λ (β ,L), the class of Hölder

functions

Λ (β ,L) = { f : M→R | | f (x)− f (z)| ≤ Lρ(x,z)β ,x,z ∈M}, (26.5)

where 0 < β ≤ 1 and ρ is the Riemannian metric on M, i.e., ρ(x,z) is the

geodesic length (determined by the metric tensor) between x,z ∈M.

For w(u), a continuous non-decreasing function which increases no faster

than a power of its argument as u →∞ with w(0) = 0, we define the sup-norm

minimax risk by

rn(w,β ,L) = inf
f̃

sup
f∈Λ (β ,L)

Ew(ψ−1
n ‖ f̃ − f ‖∞), (26.6)

where the ψn → 0 is the sup–norm minimax rate, as n → ∞, and E denotes

expectation with respect to (26.3) where ε is normally distributed.

26.2.1 Asymptotic Equidistance on Manifolds

Consider a set of points zi ∈M, i = 1, · · · ,m. We will say that the set of points

is asymptotically equidistant if

inf
i6= j

ρ(zi,z j) ∼
(volM)1/d

m
(26.7)

as m →∞ for all i, j = 1, . . . ,m, where for two real sequences {am} and {bm},

am ∼ bm will mean |am/bm| → 1 as m →∞, this implies that

max j mini6= j ρ(zi,z j)

min j mini6= j ρ(zi,z j)
∼ 1 , (26.8)
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as m →∞. It will be assumed throughout that the manifold admits a collection

of asymptotically equidistant points. This is certainly true for the sphere (in

any dimension), and will be true for all compact Riemannian manifolds since

the injectivity radius is strictly positive. We note that Pelletier [279] makes use

of this condition as well.

We will need the following constants

C0 = Ld/(2β +d)

(
σ2volM (β + d)d2

volSd−1β 2

)β/(2β +d)

, (26.9)

ψn =

(
logn

n

)β/(2β +d)

, (26.10)

and “vol” denotes the volume of the object in question, where Sd−1 is the

(d − 1)−dimensional unit sphere with vol Sd−1 = 2πd/2/Γ (d/2) and Γ is the

gamma function.

Define the geodesic ball of radius r > 0 centered at z ∈M by

Bz(r) = {x ∈M|ρ(x,z) ≤ r} . (26.11)

We have the following result whose proof will be detailed in Section 26.5.1

LEMMA 26.2.1. Let zi ∈M, i = 1, · · · ,m, be asymptotically equidistant. Let

λ = λ (m) be the largest number such that
⋃m

i=1 Bzi
(λ−1) = M, where Bzi

(λ−1)

is the closure of the geodesic ball of radius λ−1 around zi. Then there is a

C1 > 0 such that limsupm→∞ mλ (m)−d ≤C1.

26.2.2 An Estimator

Fix a δ > 0 and let

m =

[
C1

(
L(2β + d)

δC0dψn

)d/β
]
,

where C1 is a sufficiently large constant from Lemma 26.2.1, hence m ≤ n and

m →∞ when n →∞ and for s ∈ R, [s] denotes the greatest integer part.

For the design points {xi : i = 1, . . . ,n} onM, assume that
{

xi j
∈M, j = 1, . . . ,m

}

is an asymptotically equidistant subset on M. Let A j, j = 1, . . . ,m, be a parti-

tion of M such that A j is the set of those x ∈M for which xi j
is the closest

point in the subset {xi1 , . . . ,xim}. Thus, for j = 1, . . . ,m,

A j =

{
x ∈M | ρ(xi j

,x) = min
k=1,...,m

{ρ(xik ,x)}
}
. (26.12)

Let A j, j = 1, . . . ,m be as in (26.12) and define 1A j
(x) to be the indicator
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function on the set A j and consider the estimator

f̂ (x) =
m

∑
j=1

â j1A j
(x), (26.13)

where for L > 0, 0 < β ≤ 1,

â j =
∑n

i=1 Kκ ,xi j
(xi)yi

∑n
i=1 Kκ ,xi j

(xi)
,

Kκ ,xi j
(ω) =

(
1− (κρ(xi j

,ω))β
)

+
,

κ =

(
C0ψn

L

)−1/β

,

and s+ = max(s,0), s ∈ R. We remark that when m is sufficiently large hence κ
is also large, the support set of Kκ ,xi j

(ω) is the closed geodesic ball Bxi j
(κ−1)

around xi j
for j = 1, . . . ,m.

26.3 Main Results

We now state the main results of this chapter. The first result provides an upper

bound for the estimator (26.13), where the function w(u) satisfies w(0) = 0,

w(u) = w(−u), w(u) does not decrease, and w(u) increases not faster than a

power as u →∞.

THEOREM 26.3.1. For the regression model (26.3) and the estimator

(26.13), we have

sup
f∈Λ (β ,L)

Ew
(

ψ−1
n

∥∥ f̂ − f
∥∥
∞

)
≤ w (C0) ,

as n → 0, where ψn = (n−1 logn)β/(2β +d).

We have the asymptotic minimax result for the sup–norm risk .

THEOREM 26.3.2. For the regression model (26.3)

lim
n→∞

rn(w,β ,L) = w (C0) .

In particular, we have the immediate result.

COROLLARY 26.3.1. For the regression model (26.3) and the estimator

(26.13),

sup
f∈Λ (β ,L)

E
∥∥ f̂ − f

∥∥
∞ ∼C0

(
logn

n

)β/(2β +d)

as n →∞.
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We note that the above generalizes earlier one-dimensional results of Ko-

rostelev (1993) [204], and Korostelev and Nussbaum (1996) [205], where the

domain is the unit interval. Klemelä (2000) [195] generalizes this result to

higher dimensional unit spheres.

Now that a sharp sup–norm minimax estimator has been found we would

like to see how we can use this for topological data analysis. The key is the sup–

norm bound on the bottleneck distance for persistence diagrams. In particular,

for the regression function f in (26.3) and f̂ the estimator (26.13), we have the

persistence diagram D( f ) as well as an estimator of the persistence diagram

D( f̂ ). Using the results of Section 26.1.2, and in particular (26.2), we have

dB

(
D( f̂ ),D( f )

)
≤
∥∥ f̂ − f

∥∥
∞ . (26.1)

Let Λt (β ,L) denote the subset of tame functions in Λ (β ,L). By Corollary

26.3.1, the following result is immediate.

COROLLARY 26.3.2. For the nonparametric regression model (26.3), let f̂

be defined by (26.13). Then for 0 < β ≤ 1 and L > 0,

sup
f∈Λt (β ,L)

EdB

(
D( f̂ ),D( f )

)
≤ Ld/(2β +d)

(
σ2volM (β + d)d2

volSd−1β 2

logn

n

)β/(2β +d)

as n → 0.

26.4 Discussion

To calculate the persistence diagrams of the sublevel sets of f̂ , we suggest that

because of the way f̂ is constructed, we can calculate its persistence diagrams

using a triangulation, T of the manifold in question.

We can then filter T using f̂ as follows. Let r1 ≤ r2 ≤ . . .≤ rm be the ordered

list of values of f̂ on the vertices of the triangulation. For 1≤ i≤m, let Ti be the

subcomplex of T containing all vertices v with f̂ (v) ≤ ri and all edges whose

boundaries are in Ti and all faces whose boundaries are in Ti. We obtain the

following filtration of T ,

φ = T0 ⊆ T1 ⊆ T2 ⊆ ·· · ⊆ Tm = T .

Because the critical points of f̂ only occur at the vertices of T , Morse theory

guarantees that the persistent homology of the sublevel sets of f̂ equals the

persistent homology of the above filtration of T .

Using the software Plex, one calculates the persistent homology, in degrees

0, 1, 2, ..., d of the triangulation T filtered according to the estimator. Since

the data will be d–dimensional, we do not expect any interesting homology in

higher degrees, and in fact, most of the interesting features would occur in the

lower degrees.
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A demonstration of this is provided in Chung et al. (2009) [74] for brain

image data, where the topology of cortical thickness in an autism study takes

place. The persistent homology, in degrees 0, 1 and 2 is calculated for 27 sub-

jects. Since the data is two-dimensional, we do not expect any interesting ho-

mology in higher degrees. For an initial comparison of the autistic subjects and

control subjects, we take the union of the persistence diagrams, see Figure 4

in Chung et al. (2009) [74] page 392. We note the difference in the topological

structures as seen through the persistent homologies between the autistic and

control group, particularly, as we move away from the diagonal line. A test

using concentration pairings reveal group differences.

26.5 Proofs

The proofs will use the ideas from Klemelä (2000) [195] and Korostelev (1993)

[204].

26.5.1 Upper Bound

We first prove the earlier lemma.

Proof [Proof of Lemma 26.2.1]. Let (U , (xi)) be any normal coordinate

chart centered at xi, then the components of the metric at xi are gi j = δi j, so√
|gi j(xi)| = 1, see [215]. Consequently,

vol(Bxi
(λ−1)) =

∫

B(λ−1)

√
|gi j(expxi

(x))|dx

=
√
|gi j(expxi

(t))|
∫

B(λ−1)
dx

∼ vol(B(λ−1))

= vol (B(1))λ−d

= vol(Sd−1)λ−d/d .

The first line uses the integration transformation, where expxi
: B(λ−1) →

Bxi
(λ−1) is the exponential map from the tangent space TMxi

→M. The sec-

ond line uses the integral mean value theorem and r is the radius from the

origin to point x in the Euclidean ball B(λ−1). The third line is asymptotic as

λ → ∞ and uses the fact that |gi j(expxi
(t))| → 1 when λ →∞. In the fourth

line vol(B(1)) is the volume of d-dimensional Euclidean unit ball. The last line

uses the fact vol (B(1)) = vol(Bd−1)/d.

Let λ ′ = λ ′(m)> 0 be the smallest number such that Bxi
((λ ′)−1) are disjoint.

Then

λ−1 = c(m)× (λ ′)−1
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where c(m) > 1 and c(m) → 1 as m →∞. Consequently

vol (M) ≥
m

∑
i=1

vol(Bxi
((λ ′)−1)) ∼ mvol(Sd−1)(λ ′)−d/d.

Thus

limsup
m→∞

mλ (m)−d = limsup
m→∞

c(m)dm(λ ′)−d ≤ dvol(M)

vol (Sd−1)
.

We now calculate the asymptotic variance of â j for j = 1, . . . ,m. Let

M =

[
nvol(Bxi j

(κ−1))

vol(M)

]

var(â j) =
σ2

∑
n
i=1 K2

κ ,xi j
(xi)

(∑n
i=1 Kκ ,xi j

(xi))2

∼

σ2vol (Bxi j
(κ−1))

∫
Bxi j

(κ−1)(1− (κρ(xi j
,ω))β )2dω

M(
∫

Bxi j
(κ−1)(1− (κρ(xi j

,ω))β )dω)2

=

σ2vol (Bxi j
(κ−1))

∫
B(κ−1)(1− (κr)β )2

√
|gii j

(expxi j
(x))|dx

M (
∫

B(κ−1)(1− (κr)β )
√

|gii j
(expxi j

(x)))|dx)2

=

σ2vol (Bx ji
(κ−1))

√
|gii j

(expxi j
(t))|

∫ κ−1

0

∫ π
0 · · ·

∫ π
0

∫ 2π
0 (1− (κr)β )2rd−1drdσd−1

M |gii j
(expxi j

(t′))|(
∫ κ−1

0

∫ π
0 · · ·

∫ κ−1

0

∫ π
0 · · ·

∫ π
0

∫ 2π
0 (1− (κr)β )2rd−1drdσd−1)2

∼
σ2vol (Bxi j

(κ−1))dvol (Bd)
∫ κ−1

0 (1− (κr)β )2rd−1dr

M d2vol (Bd)2(
∫ κ−1

0 (1− (κr)β )rd−1dr)2

= σ2κd vol (M)2d(β + d)

nvol (Sd−1)(2β + d)

as n →∞, where dσd−1 is the spherical measure on Sd−1.

LEMMA 26.5.1.

lim
n→∞

P

(
ψ−1

n ‖ f̂n −E f̂n ‖∞> (1 + δ )C0
2β

2β + d

)
= 0

Proof. Denote Zn(x) = f̂n(x)−E f̂n(x). Define

D2
n = var(ψ−1

n Zn(x j)) = ψ−2
n var(â j) ∼

2β 2C2
0

d(2β + d) logn
.

Denote y = (1 + δ )C02β/(2β + d). Then

y2

D2
n

=
2d(1 + δ )2 logn

2β + d
.
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For sufficiently large n, Zn(x j) ∼ N(0,ψ2
n D2

n), hence as n →∞,

P

(
‖ ψ−1

n Zn ‖∞> y
)
≤ P

(
max

i=1,··· ,m
ψ−1

n |Zn(x j)|> y

)

≤ mP

(
D−1

n ψ−1
n |Zn(x j)|>

y

Dn

)

≤ mexp

{
−1

2

y2

D2
n

}

= mexp

{
−d(1 + δ )2 logn

2β + d

}

= n−d((1+δ )2−1)/(2β +d)(logn)−d/(2β +d)Dn

(
L(2β + d)

δC0d

)d/β

.

LEMMA 26.5.2.

limsup
n→∞

sup
f∈Λ (β ,L)

ψ−1
n ‖ f −E f̂n ‖∞≤ (1 + δ )C0

d

2β + d

Proof. We note that

‖ f −E f̂ ‖∞ = max
j=1,...,m

sup
x∈A j

| f (x)−E f̂ (x)|

≤ max
j=1,...,m

sup
x∈A j

(
| f (x)− f (x j)|+ |E f̂ (x j)− f (x j)|

)

≤ max
j=1,...,m

(
|E f̂ (x j)− f (x j)|+ L sup

x∈A j

ρ(x,x j)
β

)
.

When m is sufficiently large, A j ⊂ Bx j
(λ−1), hence by Lemma 26.2.1

limsup
n→∞

sup
x∈A j

ρ(x,x j) ≤ limsup
n→∞

λ−1 ≤ limsup
n→∞

(
C1

m

)1/d

.

Thus

limsup
n→∞

sup
x∈A j

ψ−1
n ρ(x,x j)

β ≤ limsup
n→∞

ψ−1
n

(
C1

m

)β/d

≤ δC0d

L(2β + d)
.
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For j = 1, · · · ,m,

|E f̂ (xi j
)− f (xi j

)| = |Eâ j − f (xi j
)|

=

∣∣∣∣∣
∑m

j=1 Kκ ,xi
(xi j

) f (xi j
)

∑m
j=1 Kκ ,xi

(xi j
)

− f (xi)

∣∣∣∣∣

≤ ∑m
j=1 Kκ ,xi

(xi j
)| f (xi j

)− f (xi)|
∑m

j=1 Kκ ,xi
(xi j

)

≤
L
∫

Bxi
(κ−1)(1− (κρ(xi,ω))β )ρ(xi,ω))β dω
∫

Bxi
(κ−1)(1− (κρ(xi,ω))β )dω

∼ L

κβ

d

2β + d

= C0ψn
d

2β + d

as n →∞.

Proof [Proof of the upper bound].

lim
n→∞

P

(
ψ−1

n ‖ f̂ − f ‖∞> (1 + δ )C0

)

≤ lim
n→∞

P

(
ψ−1

n ‖ f̂ −E f̂ ‖∞ +ψ−1
n ‖ E f̂ − f ‖∞> (1 + δ )C0

)

≤ lim
n→∞

P

(
ψ−1

n ‖ f̂ −E f̂ ‖∞ +(1 + δ )C0
d

2β + d
> (1 + δ )C0

)

= lim
n→∞

P

(
ψ−1

n ‖ f̂ −E f̂ ‖∞> (1 + δ )C0
2β

2β + d

)
= 0

the second inequality uses Lemma 26.5.2 and the last line uses Lemma 26.5.1.

Let gn be the density function of ψ−1
n ‖ f̂ − f ‖∞, then

limsup
n→∞

Ew2(ψ−1
n ‖ f̂n − f ‖∞)

= limsup
n→∞

(∫ (1+δ )C0

0
w2(x)gn(x)dx +

∫ ∞

(1+δ )C0

w2(x)gn(x)dx

)

≤ w2((1 + δ )C0) + limsup
n→∞

∫ ∞

(1+δ )C0

xα gn(x)dx

= w2((1 + δ )C0)

≤ B <∞,

where the constant B does not depend on f , the third lines uses the assumption

on the power growth and non-decreasing property of the loss function w(u).

  



470 PERSISTENT HOMOLOGY

Using the Cauchy–Schwartz inequality, we have

limsup
n→∞

Ew(ψ−1
n ‖ f̂n − f ‖∞)

≤ w((1 + δ )C0) limsup
n→∞

P

(
ψ−1

n ‖ f̂ − f ‖∞≤ (1 + δ )C0

)

+limsup
n→∞

{
Ew2(ψ−1

n ‖ f̂n − f ‖∞)P(ψ−1
n ‖ f̂ − f ‖∞> (1 + δ )C0)

}1/2

= w((1 + δ )C0).

26.5.2 The Lower Bound

We now prove the lower bound result on M.

LEMMA 26.5.3. For sufficiently large κ , let N = N(κ) be such that N → ∞
when κ → ∞ and xi ∈ M, i = 1, · · · ,N, be such that xi are asymptotically

equidistant,and such that Bxi
(κ−1) are disjoint. There is a constant 0<D <∞

such that

liminf
κ→∞

N(κ)κ−d ≥ D. (26.1)

Proof. Let κ ′ > 0 be the largest number such that
⋃N(κ)

i=1 Bxi
((κ ′)−1) = M.

Then

(κ ′)−1 = c(κ)×κ−1

where c(κ) > 1 and c(κ) → const. ≥ 1 as κ →∞.

vol (M) ≤
N

∑
i=1

vol(Bxi
((κ ′)−1)) ∼ Nvol(Sd−1)(κ ′)−d/d

Thus

liminf
κ→∞

N(κ)κ−d = liminf
κ→∞

c(κ)−dN(κ ′)−d ≥ const.× dvol(M)

vol (Sd−1)
.

Let Jκ ,x : M→R, and

Jκ ,x = Lκ−β Kκ ,x(x) = Lκ−β (1− (κd(x,x))β)+,

where κ > 0,x ∈M. Let N = N(κ) be the greatest integer such that there exists

observations xi ∈M, i = 1, · · · ,N (with possible relabeling) in the observation

set {xi, i = 1, · · · ,n} such that the functions Jκ ,xi
have disjoint supports. From

(26.1)

liminf
κ→∞

N(κ)κ−d ≥ const.

Let

C(κ ,{xi}) =

{
N

∑
i=1

θiJκ ,xi
: |θi| ≤ 1, i = 1, · · · ,N

}
,
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where C(κ ,{xi}) ⊂ Λ (β ,L) when 0 < β ≤ 1. The complete class of estimators

for estimating f ∈ C(κ ,{xi}) consists of all of the form

f̂n =
N

∑
i=1

θ̂iJκ ,xi
(26.2)

where θ̂i = δi(z1, · · · ,zN), i = 1, · · · ,N, and

zi =
∑n

j=1 Jκ ,xi
(x j)y j

∑n
j=1 J2

κ ,xi
(x j)

.

When f̂n is of the form (26.2) and f ∈ C(κ ,{xi}) then

‖ f̂n − f ‖∞ ≥ max
i=1,··· ,N

| f̂n(xi)− f (xi)|

= |Jκ ,x1
(x1)| ‖ θ̂ −θ ‖∞

= Lκ−β ‖ θ̂ −θ ‖∞

Hence

rn ≥ inf
f̂n

sup
f∈C(κ ,{xi})

Ew(ψ−1
n ‖ f̂n − f ‖∞)

≥ inf
θ̂

sup
|θi|≤1

Ew(ψ−1
ε Lκ−β ‖ θ̂ −θ ‖∞),

where the expectation is with respect to a multivariate normal distribution with

mean vector θ and the variance-covariance matrix σ2
NIN , where IN is the N×N

identity matrix and σ2
N = var(z1) = σ2/∑N

j=1 J2
κ ,xi

(x j).

Fix a small number δ such that 0 < δ < 2 and

C′
0 = Ld/(2β +d)

(
(2− δ )vol(M)(β + d)d2

2vol(Sd−1)β 2

)β/(2β +d)

and

κ =

(
C′

0ψε

L

)−1/β

.  
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Since

σ−1
N = σ−1

√√√√
N

∑
j=1

J2
κ ,xi

(x j)

∼
√

(2− δ )d

2β + d
logn

≤
√

(2− δ )(log(logn/n)−d/(2β +d))

=
√

2− δ
√

log(cons×κd)

=
√

2− δ
√

logN

by (26.1), it follows that if

σ−1
N ≤

√
2− δ

√
logN

for some 0 < δ < 2, then

inf
θ̂

sup
|θi|≤1

Ew(‖ θ̂ −θ ‖∞) → w(1),

as N →∞, but

ψ−1
n Lκ−β = C′

0.

By the continuity of the function w, we have

inf
θ̂

sup
|θi|≤1

Ew(ψ−1
n Lκ−β ‖ θ̂ −θ ‖∞) → w(C′

0),

when N →∞. Since δ was chosen arbitrarily, the result follows.
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27.1 Introduction

Throughout this text, a number of locally homogeneous spaces (see Patrange-

naru (1994) [264]) have been discussed that arise as sample spaces in data

analysis. These manifolds are smooth, including Rp for multivariate analysis

and the spheres Sp−1 for directional data analysis. Certain Lie groups, such

as the special orthogonal groups for the analysis of the movement of tectonic

plates (see Chang (1988) [63]) and the group of positive definite symmetric

matrices for DTI analysis (see Osborne et al. (2013) [258]), also fall into this

category. Additionally, real and complex Grassmann manifolds arise for the

analysis of affine shape spaces (see Patrangenaru and Mardia (2002) [274]),

Kendall’s similarity shape spaces (see Kendall (1984) [177]), and in signal

tracking problems. Products of real projective spaces are found in projective

shape analysis (see Mardia and Patrangenaru (2005) [233]).

Due to the increase of the use of nonparametric statistics on manifolds, in-

cluding those discussed above, the growth of both methodology and applica-

tions of such methods prevents us from exhaustively presenting the entire field
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in this manuscript. However, we wish to mention some recent developments in

a number of these areas in the second section of this chapter. In the third sec-

tion, which follows from Bhattacharya et al. (2012) [37]), we will touch upon

some computational issues that arise when analyzing data.

27.2 Additional Topics

As has been discussed throughout this text, nonparametric methods for statis-

tical analysis on data with manifold sample spaces have tended to develop in

at least one of two manners. First, many of these methods serve to general-

ize standard methods for Euclidean data analysis for sample spaces that have

been previously studied. Secondly, the methods are often developed to extend

nonparametric statistics on manifolds to new types of data. In this section, we

will first discuss two developments that fall into the first category, those being

principal component analysis and spatial statistics. We will then consider shape

analysis of 3D surfaces, which fits into the second category. Finally, we will

discuss a further generalization of statistical methods to spaces with a manifold

stratification.

27.2.1 Principal Component Analysis

For multivariate data, principal component analysis (PCA) greatly aids in un-

derstanding the primary directions of variation. These can, in turn, be used to

perform dimension reduction by considering only those principal components

that contribute greatly to the variability. For data on manifolds, understanding

the principal directions of variation is of great use to help visualize the vari-

ability, especially due to the abstract nature of the sample spaces.

Dryden and Mardia (1998) [91] and Fletcher et al. (2004) [120] suggest to

perform Euclidean PCA for data on manifolds by, respectively, projecting data

onto the tangent space of the extrinsic mean or using the inverse Riemannian

exponential map. However, in recent years, the focus has shifted to performing

analogues of PCA directly on the manifold. Huckemann and Hotz (2009) [165]

and Huckemann et al. (2010) present notions of geodesic principal component

analysis for, resepctively, planar shape spaces under a Riemannian metric and

general Riemannian manifolds. Jung et al. (2012) [172] introduced the idea

of principal nested spheres as a decomposition of Sp to capture non-geodesic

variation on a unit sphere using nested sub-manifolds of decreasing dimension.

Principal nested spheres are also shown to be applicable to Kendall’s shape

space under some modifications.
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27.2.2 Spatial Statistics

Spatial statistics is an area of study largely concerned with spatial characteriza-

tion and spatial dependency of data. Spatial methods have useful applications

in geography and meteorology, among many others. These two are of parti-

cular note here, though, as data points tend to lie on the surface of the earth,

and as such, can be modelled as though they are on a sphere. For applications

in these areas in which the data is located within a region well approximated

using a plane, traditional methods are suitable. However, when this is not the

case, the standard methods may not be suitable due to the curvature of the

earth’s surface. As such, techniques for statistics on manifolds may be of great

use. Recently, Hitczenko and Stein (2012) [158] considered such a problem

and utilize sphericial harmonics to model Gaussian processes on a sphere.

27.2.3 Shape Analysis of Surfaces

Planar shape analysis developed from initially being concerned with shapes of

finite dimensional configurations to those of contours. Similarly, theory and

methodology have been developed for shapes of configurations in higher di-

mensions. While most of this work has been done for either finite dimen-

sional configurations or curves, recent years have given rise to the study of

shapes of surfaces in three dimensions. Of particular note, Kurtek et al. (2012)

[208] uses a parametrization-invariant Riemannian metric to analyze shapes of

parametrized surfaces.

27.2.4 Statistics on Stratified Spaces

In recent years, many researchers have also become interested in studying data

that arise on spaces that are not manifolds, but rather are stratified spaces,

where each stratum is a manifold. The Data Analysis on Sample Spaces with

a Manifold Stratification working group from the 2010-2011 SAMSI Program

on Analysis of Object Data delved into problems arising in this area. Bhat-

tacharya et al. (2011) [34] presents an overview of a number of problems aris-

ing in this area. One specific area of interest that this group studied is that

for a number of these spaces, Fréchet sample means exhibit a property known

as stickiness. In short, stickiness refers to the occurrence of a Fréchet sample

mean remaining at a given location when the underlying probability distribu-

tion is perturbed. Hotz et al. (2013) [162] presents asymptotic results on a par-

ticular space known as an open book. Ellingson et al. (2014) [103] discusses

stickiness on sample spaces that are low-dimensional stratified spaces.

A specific type of stratified space that has garnered great interest is the space

of phylogenetic trees, which was introduced in Billera et al. (2001) [47] and

is discussed in the papers referenced above. Barden et al. (2013) [13] presents

asymptotic results for Fréchet sample means on the space of phylogenetic trees.
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Among other topics, Feragen et al. (2013) [114] presents methodology for per-

forming principal component analysis and a permutation test for problems in-

volving tree-valued data. Skwerer et al. (2014) [308] applies ideas developed

for phylogenetic trees to the structure of brain arteries.

27.3 Computational Issues

As seen throughout this text, Fréchet means have been shown to be very im-

portant for nonparametric analysis of data arising from sample spaces that are

manifolds. The asymptotic distributions of Fréchet sample means for a ran-

dom sample from a probability measure on a smooth manifold were derived

by Bhattacharya and Patrangenaru (2005) [43], as described in Chapter 5, pro-

viding methodology for inference. However, computations of Cartan means (or

intrinsic sample means) for a given geodesic distance are, in general, based on

iterative algorithms, making evaluation of Cartan means time consuming.

While manifolds like the sphere, the torus, and the surface of a pretzel are

easy to comprehend as submanifolds of Euclidean spaces, other manifolds na-

turally arising in statistics have abstract descriptions, such as the spaces of

axes and shape spaces. For the latter case, these manifolds have to be embed-

ded into a numerical space RN for a better understanding. Whitney showed that

any smooth m-dimensional manifold can be embedded in R2m+1. A manifold

that is embedded in RN naturally inherits a Riemannian structure. Therefore,

an embedded manifold automatically inherits two distances: a chord distance

and a Riemannian distance. The pioneers of differential geometry (Gauss, Rie-

mann, Cartan) considered geometric properties of a surface, meaning a 2D

manifold that is embedded in the Euclidean space, to be extrinsic if they are

derived from the chord distance or intrinsic if they are derived from the restric-

tion of the infinitesimal chord distance, also known as infinitesimal geodesic

or arc distance.

Following from these classical ideas, a Fréchet statistic (mean, mean set,

total variance, etc.) that is associated with a random sample on a manifold M
is said to be an extrinsic statistic (mean, mean set, total variance, etc.) if the

distance on the manifold is the chord distance associated with an embedding of

the manifold in RN . Respectively, a Fréchet statistic associated with a manifold

M is said to be an intrinsic statistic (mean, mean set, total variance etc) if the

distance on the manifold is the geodesic distance associated with the induced

Riemannian structure on that manifold.

The notions of intrinsic and extrinsic means on abstract manifolds were first

introduced by Patrangenaru (1998) [266]. Extrinsic means extend the notion

of the means of distributions on a sphere or a real projective space, using the

method of the center of mass and, respectively, the method of moments of

inertia in directional data analysis (see Watson (1983) [333]). Means of random
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vectors on submanifolds, as defined by Hendricks and Landsman (1998) [154],

are extrinsic means.

Note that Riemannian structures on an abstract manifold can be also ob-

tained via a partition of the unity, leading to the question: Are there Rie-

mannian manifolds that cannot be isometrically embedded in some Euclidean

space? The answer to this question is negative and is due to J. F. Nash (1956)

[253], who considered this result more important than his other achievements

for which he was awarded the Nobel Prize in Economics. Moreover, any ho-

mogeneous Riemannian manifold, and in particular any symmetric space, can

be equivariantly embedded in an Euclidean space (Moore, 1976 [249]). This

shows that there are both infinitely many extrinsic means and infinitely many

intrinsic means that can be associated with a probability measure on a mani-

fold. This is true even on a homogeneous space, given the metric classification

of Riemannian homogeneous spaces (Patrangenaru 1994, 1996 [264, 265]).

Despite all of the above, many years after the well established isometric em-

bedding theorem of Nash, confusion seems to persist in some circles about the

roles of extrinsic and intrinsic means in statistics. It is sometimes argued that

intrinsic analysis, based on “the” Riemannian distance, is to be preferred to

extrinsic analysis because the latter is based on an arbitrary embedding among

infinitely many possible embeddings (See, for example, Srivastava and Klassen

(2002) [319]). The implication in this argument that there is a unique Rieman-

nian metric tensor on a manifold is, of course, false; indeed, there are in general

infinitely many metric tensors on a manifold. The argument of a unique Rie-

mannian metric on a manifold was nevertheless taken at face value by many

computational scientists, who prefer performing an intrinsic analysis for the

above reasons. The idea that intrinsic means (or their local version, Karcher

means (Srivastava and Klassen, 2004 [320]) are “more important” has made

swift gains among large segments of electrical engineers, computer scientists,

and statisticians.

As the above arguments show, other things being equal, intrinsic and ex-

trinsic means have comparable theoretical statures for statistical inference. But

other things are not equal! Unfortunately, there are no verifiable general cri-

teria for the existence of a unique intrinsic mean, with the exception of those

requiring a small support of the underlying distribution (see Karcher (1977)

[174] and Kendall et al. (1999) [179]). Even in the case of the circle S1, there

is no simple broad criterion for uniqueness. Furthermore, when distributions

have small support, intrinsic and extrinsic sample means are generally indis-

tinguishable (see Bhattacharya and Patrangenaru (2005) [43] and Bhattacharya

and Bhattacharya (2008, 2009) [26, 33]).

As such, intrinsic means inherit the poor properties of arbitrary Fréchet

means and the computation of Cartan means can be very slow, which can

limit their utility in data analysis on manifolds. This is especially true when re-

sampling methods, such as the nonparametric bootstrap, are employed. Cartan
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means have the additional disadvantage that their sample counterparts depend

on the choice of the initial point used in the iterative computational algorithm.

Due to this, it is possible for the algorithm to converge to a critical point of

the Fréchet function that is not the intrinsic mean. Indeed, such an algorithm

may, in some cases, converge even to a point of maximization of the Fréchet

function.

By contrast, the necessary and sufficient condition for the existence of the

extrinsic mean of random object X on a manifold M embedded via j : M→
RN is that the mean vector of j(X) is a nonfocal point of j(M) (see Chapter 4

or Bhattacharya and Patrangenaru (2003) [42]). Additionally, extrinsic means

can be computed easily.

One should note, though, that in Physics there are sometimes considerations

of Mechanics which dictate the use of a particular metric tensor and the cor-

responding intrinsic mean. However, this is infrequently the case in statistics,

where a main problem is discrimination among different distributions.

Throughout the remainder of this section, we present examples of various

types of data analysis on manifolds. For each type of data analysis, a metho-

dology is described for the calculation of an extrinsic mean and for an intrinsic

mean. Examples of computations are then performed using both methodologies

for a given sample and are presented with the required computational time. For

timing purposes, all computations were performed using MATLAB on a ma-

chine running Windows XP on an Intel Core 2 Duo processor running at 2.33

GHz.

It should be noted, though, that there certainly exist alternative algorithms

for computing intrinsic means, such as the one given in Groisser (2004) [133].

As other algorithms may result in somewhat reduced computational costs, the

computational times provided for these examples are intended solely for illus-

trative purposes.

27.3.1 Directional Data

We first consider directional data analysis. Given a random vector X on the

unit sphere Sm ⊂ Rm+1, XT X = 1, and the extrinsic mean is µE = 1
‖E(X)‖E(X).

For this example, m = 2. For observations x1, . . . ,xn ∈ S2, the extrinsic sample

mean µ̂E is calculated using the formula:

µ̂E =
x̄

‖x̄‖ , (27.1)

where x̄ is the usual Euclidean mean and ‖·‖ is the standard norm. This mean is

based upon the chord distance between points. For observations x1, . . . ,xn ∈ S2,
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the Cartan mean µ̂I , which is the minimizer of the Fréchet function:

F(p) =
n

∑
i=1

ρ2
1 (xi, p), (27.2)

where ρ1(x,y) is the arc distance between points x and y on the round sphere

of radius 1 (and sectional curvature 1 as well), has no closed form. Instead, an

iterative algorithm must be used. Such an algorithm is given as follows:

1. Make an initial estimate µ̃I of µ̂I; i.e. Use µ̂E

2. For each xi, compute

vi = ui ∗ arccos
xiµ̃

T
I√

uiu
T
i

,

where ui = xi − (xiµ̃
T
I )µ̃T

I

3. Compute v̄ and update µ̃I in the following manner:

µ̃I,new = cos(ε
√

v̄v̄T )µ̃I + sin(ε
√

v̄v̄T )
v̄√
v̄v̄T

,

where ε > 0.

4. Repeat until
√

v̄v̄T < ε .

To illustrate these computations and the time required to perform such tasks,

we consider a set of wind direction data from Fisher, Lewis, and Embleton

(1987, p.308) [117]. The data consist of 29 observations and is provided as

pairs of colatitude and longitude. Figure 1.1 displays this data on S2 in four

views.

The extrinsic and intrinsic means were calculated using the methods de-

scribed above and are shown in Figure 27.1, though in order to calculate the

extrinsic mean, it was first necessary to convert to Cartesian coordinates. Ad-

ditionally, the Fréchet function of which the intrinsic mean is the minimizer

is displayed for a grid of values of colatitude and longitude in Figure 27.1.

The amount of time required to compute µ̂E was : 9.531× 10−5 seconds. The

amount of time required to compute µ̂I was 10.88 seconds.

To further illustrate the disparity in computational cost, we consider the cal-

culation of bootstrap means. Using the same methodology as previously, 200

resamples were taken and both types of means were obtained for each. To ob-

tain the bootstrap means, as displayed in Figure 27.3.1, the methodology was

applied again on the sample of means. For the extrinsic mean, the computa-

tional time required was 0.016762 seconds. For the intrinsic mean, the compu-

tational time required was 1572 seconds.
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Figure 27.1 (a) The extrinsic and intrinsic means for the data (b) The Fréchet function

using arc distance as a function of colatitude and longitude. (Source: Bhattacharya et

al.(2012), Figure 5, p.227. Reproduced by permission of John Wiley & Sons LTD).
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Figure 27.2 The extrinsic and intrinsic bootstrap means means for the data compared

to the extrinsic and intrinsic means. (Source: Bhattacharya et al.(2012), Figure 6,

p.228. Reproduced by permission of John Wiley & Sons LTD).

27.3.2 Congruences of k-ads in 3D

We now consider data for which we are interested in analyzing both the shape

and size of objects. For such data, each observation is represented as a k-ad, an
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ordered set of k points. A k-ad in Rp is said to be in general position if the k-ad

spans Rp. For our purposes, we consider the case that p=3.

Let {x1, . . . ,xn}, where x j = (x1
j , . . . ,x

k
j), j = 1, . . . ,n, be a sample of k-ads

in general position in R3. The extrinsic sample mean reflection size-and-shape

is [x]E = ˆ[ξ ]RS, where ξ̂ is given by the eigenvectors corresponding to the 3

largest eigenvalues of

Ĉ =
1

n

n

∑
j=1

ξ T
j ξ j

assuming that λ̂3 is strictly greater than λ̂4, where λ̂1 ≥ ·· · ≥ λ̂k are the eigen-

values of Ĉ, and ξ j = x− x̄ (Bandulasiri et al (2009) [10]). If λ̂3 = λ̂4, which

occurs with probability 0, then there is not a unique extrinsic mean.

The Cartan mean size-and-shape µ̂I is the minimizer of the Fréchet function:

F(p) =
n

∑
i=1

d2(xi,p) =
n

∑
i=1

inf
Γi∈SO(3)

‖p− xiΓi‖2, (27.3)

where ‖ ·‖ is the standard norm in R3 and Γi is a special orthogonal matrix. As

with the spherical data, there is no closed form solution for the intrinsic mean

size-and-shape. Instead, the following iterative algorithm is used (Dryden and

Mardia (1998) [91]):

1. Make an initial estimate µ̃I of µ̂I; i.e. Use µ̂E

2. For each xi, find the optimal “rotation” matrix Γi using Procrustes alignment

and compute

Vi = ξiΓi − µ̃I, (27.4)

3. Compute V̄ and update µ̃I in the following manner:

µ̃I,new = µ̃I + εV̄ , (27.5)

where ε > 0.

4. Repeat until ‖V̄‖< ε .

To demonstrate, we performed the above computations for a data set con-

sisting of 4 protein binding sites. The binding sites, obtained from the RCSB

Protein Data Bank and shown in Figure 12.1, are found in the proteins 1phf,

1phg, 2cpp, and 1m85 and bind to the ligand heme. As shown in Figure 12.2,

the extrinsic mean size-and-shape, obtained after atoms matching, is visually

indistinguishable from the intrinsic mean-size-and-shape.

To detail the computational speeds of the two types of analysis, bootstrap

means are computed, similarly to the wind direction data. To examine the effect

of sample size on the computational cost, these calculations were performed for

samples of size 4, 5, 6, 8, 12, and 16. For the samples of size greater than 4,

the observed data was simulated based upon the original sample. The times, in
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Table 27.1 The times required to compute the mean size-and-shape for various sample

sizes

Sample Size Extrinsic Intrinsic Ratio

4 15.9 29.3 1.84

5 15.3 32.0 2.09

6 15.2 36.2 2.38

8 14.8 60.2 4.07

12 15.3 92.1 6.01

16 16.5 123.6 7.49

seconds, required for these computations are shown in Table 27.1. Increasing

the sample size has no significant effect on the computational cost for calcu-

lating the extrinsic mean-size-and-shape. However, increasing the sample size

has a large effect on the computational cost for calculating the intrinsic mean-

size-and-shape.

27.3.3 Direct Similarity Shapes of Planar Contours

In this section, we consider data analysis of shapes of planar contours (See

Chapter 18). A digital representation of contour is represented as a k-gon,

where each vertex on the object is a point in C. Let ζζζ 1, . . . ,ζζζ n be a sample

of centered k-gons. The Veronese–Whitney extrinsic sample mean shape is the

unit eigenvector corresponding to the largest eigenvalue of ∑n
i=1

1
‖ζζζ i‖2 ζζζ iζζζ

∗
i as-

suming that the largest eigenvalue is simple.

The recently developed elastic framework for shape analysis of planar curves

utilizes an intrinsic analysis (See Joshi et al. (2007) [171]). As with the previ-

ously discussed types of data, there is no closed form for the intrinsic mean

shape, so an iterative algorithm similar in concept to that used for the wind

direction data must be used to perform computations.

Computations for both approaches were performed on a sample of 4 obser-

vations of contours of the “l” hand gesture, shown in Figure 1.3. To illustrate

the difference in computational cost, 95% bootstrap confidence intervals were

computed for both the extrinsic mean shape and the intrinsic mean shape using

400 resamples and 300 randomly chosen stopping times (vertices). These con-

fidence regions are shown in Figure 27.3. For the extrinsic mean shape, these

calculations required 48 seconds to complete. However, for the intrinsic mean

shape, these calculations required 47.9 hours.

As a second example, these methods were also performed on a sample of 4

observations of contours of dogs, which is shown in 27.4. Again, 95% boot-

strap confidence regions were computed for both approaches, using 300 resam-

ples, where each contour is provided as 100 evenly spaced landmarks. These
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Figure 27.3 Bootstrap 95% confidence regions using 400 resamples for (a) the extrin-

sic mean shape of the “l” hand gesture and (b) the intrinsic mean shape of the “l” hand

gesture. (Source: Bhattacharya et al.(2012), Figure 10, p.230. Reproduced by permis-

sion of John Wiley & Sons LTD).

confidence regions are shown in Figure 27.3. For the extrinsic mean shape,

these calculations required 5.6 seconds to complete. However, for the intrinsic

mean shape, these calculations required 8.9 hours.

Figure 27.4 9 observations of contours of a side view of a dog. (Source: Bhattacharya

et al.(2012), Figure 11, p.231. Reproduced by permission of John Wiley & Sons LTD).
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Figure 27.5 Bootstrap 95% confidence regions using 400 resamples for (a) the extrinsic

mean shape of the 4 dogs and (b) the intrinsic mean shape of the 4 dogs. (Source:

Bhattacharya et al.(2012), Figure 12, p.231. Reproduced by permission of John Wiley

& Sons LTD).

27.4 Summary

Much of modern data analysis consists of problems involving data on mani-

folds. Among the fields in which such data occurs are medical imaging, direc-

tional data analysis, pattern recognition, and visual quality control. To conduct

a statistical analysis for this data, either extrinsic or intrinsic analysis may be

used.

The computational cost of performing extrinsic analysis on manifold data

is, as shown here, often substantially less than the computational cost of per-

forming intrinsic analysis for the same data. This is especially noticeable when

working with large data sets and/or performing analysis requiring large num-

bers of repetitions, as with nonparametric bootstrap techniques. As shown with

the protein data, in many cases, the extrinsic and intrinsic means are indistin-

guishable from each other despite the difference in computational time, provi-

ding strong support for the use of extrinsic analysis in such situations.

In other scenarios, one must look to the requirements for the application

at hand. For instance, extrinsic means exist outside a negligible singular set,

whereas intrinsic means are not, in general, guaranteed to exist. Furthermore,

for a given embedding J, the extrinsic mean is the projection on J(M), but

there is no natural description of the intrinsic mean. Due to these considera-

tions, extrinsic analysis is often preferable for statistical analysis.
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[49] L. Birgé. Approximation dans les espaces metriques et theorie de

l’estimation (in french). Z. Wahrsch. verw Gebiete, 65:181–237, 1983.

[50] N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart. Convergence rates

of general regularization methods for statistical inverse problems and

applications. SIAM J. Numerical Analysis, 45:2610–2636, 2007.

[51] F. L. Bookstein. Morphometric Tools for Landmark Data, Geometry

and Biology. Cambridge University Press, Cambridge, 1991.
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géométries à groupe fondamental simple. (french). Ann. Sci. École
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dans une variété., pages 220–233. Springer, Berlin, 1991.

[109] V. A Epanechnikov. Nonparametric estimation of a multidimensional

probability density. Theory of Probability and Applications, 14:156–

162, 1969.

[110] D. Falk, F. E. Lepore, and A. Noe. The cerebral cortex of Albert

Einstein: a description and preliminary analysis of unpublished pho-

tographs. Brain, pages 1304–1327, 2012.

[111] O. Faugeras. What can be seen in three dimensions with an uncalibrated

stereo rig? Proc. European Conference on Computer Vision, LNCS 588,

pages 563–578, 1992.

[112] O. Faugeras and Q. T. Luong. The geometry of multiple images. With

contributions from Theo Papadopoulo. MIT Press, Cambridge, MA,

2001.

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1137%2F1114019
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F3-540-55426-2_61
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2Fj.jmva.2013.08.010


BIBLIOGRAPHY 493

[113] H. D. Fegan. Introduction to Compact Lie Groups. Singapore: World

Scientific, 1991.

[114] A. Feragen, M. Owen, J. Petersen, M. M. W. Wille, L. H. Thomsen,

A. Dirksen, and M. de Bruijne. Tree-space statistics and approxima-

tions for large-scale analysis of anatomical trees. Information Process-

ing in Medical Imaging, Lecture Notes in Computer Science, 7917:74–

85, 2013.

[115] T. Ferguson. Large Sample Theory. Chapman & Hall/CRC, 1996.

[116] N. I. Fisher, P. Hall, B. Y. Jing, and A. T. A. Wood. Properties of prin-

cipal component methods for functional and longitudinal data analysis.

J. Amer. Statist. Assoc., 91:1062–1070, 1996.

[117] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of

Spherical Data. Cambridge University Press, Cambridge, 1987.

[118] P. T. Fletcher. Geodesic regression and the theory of least squares on

Riemannian manifolds. Int. J. Comput. Vis., 105:171–185, 2004.

[119] P. T. Fletcher. Statistical variability in nonlinear spaces: Application to

shape analysis and DT-MRI. Ph.D. Thesis, University of North Caro-

lina, 2004.

[120] P. T. Fletcher, C. Lu, S. M. Pizer, and S. C. Joshi. Principal geodesic

analysis for the study of nonlinear statistics of shape. IEEE Trans. Med.

Imaging, 23(8):995–1005, 2004.
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Cartan–curvature forms, 112

case of concentrated data, 178
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consistency of the sample mean,
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convergece in distribution, 60
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corpus callosum, 7, 379–380

cotangent space, 107, 111
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covariance, 53

covariance matrix, 52, 53

covariance operator, 54

coverage error, 67, 178

Cramer’s delta method, 66

craniosynostosis, 5

critical point, 135

critical value, 135

CT scans, 384–386

cumulants, 72

curvature, 110, 113

curvature function, 110, 113

curve, 99

cut locus, 118

data analysis on CPk−2, 142

data analysis on spheres, 3

data matrix, 55

data on projective plane, 4

data on spheres, 4
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density estimation on Riemannian
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density estimator

Bayesian, 231

kernel, 215, 450
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Pelletier, 450

diffeomorphic manifolds, 99
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differentiable left action, 104
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differential operator, 112
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diffusion tensor imaging, 138
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directional data analysis, 139, 178,
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DTI, 237, 327–334
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Edgeworth expansion, 71, 74
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Dimitric, 315, 394

equivariant, 237, 257, 263
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of Hilbert manifold, 275
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projection, see also Dimitric

Schoenberg, 283, 297

Veronese–Whitney, 257, 259,

275, 282, 297, 316
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empirical distribution on a metric
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exponential map, 103

extrinsic covariance, 258, 277

on a Grassmannian, 318–323

extrinsic covariance matrix, 194

extrinsic data analysis, 158

extrinsic Hotelling statistic, 197

extrinsic mean, 177, 255, 276, 284

asymptotic distribution, 258,
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flat torus, 97, 105
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Fréchet expectations, 159

Fréchet function, 53, 240

Fréchet mean, 159

Fréchet mean set, 157, 159

Fréchet median set, 167

Fréchet sample mean (set), 163

Fréchet sample mean set, 157

Fréchet sample median, 167

Fréchet sample total variance, 157

Fréchet total variance, 157

free action, 107

Frobenius scalar product, 238

Fubini’s theorem, 51

function estimation, 235

on Riemannian manifolds, 215

functional data, 82

functional delta method, 87

functoriality, 131

fundamental group, 134

Gaussian curvature, 110

gel electrophoresis, 392, 396–402

general linear group, 143
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Generalized Darboux theorem, 97

generalized Frobenius metric, 238

generalized Slutsky theorem, 65

generalized variance, 54

geodesic, 115, 241

distance, 241

geodesic distance, 115

geodesic on the round sphere, 117

geodesically complete, 117

geology, 3

geometric statistics, 458

glaucoma, 8, 351–356

Glivenko–Cantelli theorem, 76

Grassmann manifolds, 145

Grassmannian, 106

Groisser algorithm, 162

group action, 105

group of direct similarities, 140

Hadamard-Cartan manifold, 163

  



INDEX 513

Hausdorff, 97

Hausdorff distance, 460

Helly-Bray theorem, 60

Hilbert manifold, 108

Hilbert space, 108, 403–408

homeomorphism, 96, 98

homogeneous coordinates, 254

homogeneous space, 107, 235,

237, 247, 450

homology, 129

homology theory, 131

homotopy, 128

homotopy equivalence, 133

homotopy invariants, 134

homotopy type, 128, 129

Hotelling-type test statistic, 85

human brain, 7

Hurewicz map, 134

hyperbolic geometry, 110

hyperplane, 146

hypothesis test

coplanarity, 413–415

for mean change, 206

matched pairs, 202, 270–271

matched-pair, 448

neighborhood, 278–280, 366–

369, 406–408

one-sample, 267–268, 433

total variance, 256

two-sample, 238, 243–272,

328–334, 435–440

extrinsic means, 201, 203

intrinsic means, 204

on a homogeneous space,

209

total variance, 203

i.i.d.r.o.’s, 179

image analysis, 3

image probability measure, 52

immersion, 102

independent, 54

independent events, 47

independent, identically distributed,

54

induced Riemannian structure, 109

induced topology, 96

infinite dimensional Hilbert spaces,

82

inhomogeneous (affine) coordinates,

146

inner product, 238, 247

integrable with respect to Q, 52

integral, 50

integral with respect to the mea-

sure, 49

intrinsic covariance, 242

intrinsic data analysis, 158

intrinsic mean, 240, 255, 354–356

computation of, 476–484

generalized Frobenius, 242,

328

intrinsic mean (set), 159

intrinsic moments of a r.o., 158

invariance of the domain theorem,

98

irreducible representations, 127

isometry, 248

isotropy group, 105

joint cumulative distribution func-

tion (c.d.f.), 52

joint probability density function,

54

joint probability density function

(p.d.f.), 54

k-ad, 254, 282, 295

Kendall distance, 259

Kendall planar shape analysis of k-

ads, 142

Kendall shape, 140, 231, 282, see

direct similarity shape

Kendall shape space, 141

kernel density estimator, 77

kernel estimator, 78
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Killing form, 127

label free projective shape analy-

sis, 149

Lagrangian (structure), 115

landmark, 5

landmark based high level image

analysis, 140

Laplace–Beltrami operator, 123,

219

large sample c. i. for total intrinsic

variance, 184

large sample c.r. for extrinsic mean,

178

Large Sample Theory, 59

Lebesgue integrable, 50

Lebesgue integral, 50

Lebesgue measure, 48

Legendre polynomials, 126

length functional, 115

Levi–Civita connection, 123

Levi-Civita connection, 116

Lie algebra, 103

Lie bracket of two vector fields,

101

Lie group, 103, 235, 247, 270

Lie group actions, 104

Lie groups, 441

Lie subgroup, 107

linear connections, 116

linear shape space, 143, 146

local representative, 99

locally compact, 98

logarithmic coordinates, 250

low sample size high dimensional,

82

m-dimensional manifold, 98

main drawback of intrinsic data

analysis, 168

manifold

Grassmann, 315–323, 395, 449

Hadamard, 240, 328

Hilbert, 275

homogeneous, 327

sphere, 237, 249, 449

Stiefel, 237, 247

manifold diffeomorphism, 99

manifold stratification, 140

marginal cumulative distribution

functions (c.d.f.’s), 52

marginal distributions, 52

matched pairs, 68

mathematical landmark, 8

mean integrated squared error, 78

mean squared error, 451

integrated, 78, 451

mean vector, 52

means, 52

measurable function, 48

measure space, 46

median set, 53

medical imaging, 3, 8, 235, 347–

356

meteorology, 3

metric space, 96

minimaxity, 219

MISE, 78

monotone convergence theorem,

50

Morse function, 135

Morse Lemma, 135

moving frames, 110

MRI, 7

multidimensional scaling, 70

multinomial trial, 52

multivariate analysis, 54

multivariate data analysis, 138

multivariate Lindeberg-Feller-Levy

CLT, 64

multivariate normal distribution,

59

multivariate observations, 55

neighborhood hypothesis, 83, 86

nominal coverage, 67
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nonparametric bootstrap, 69, 71

nonparametric bootstrap c.r. for

extrinsic mean, 178

Nonparametric Data Analysis, 59

nonparametric regression model,

465

nonparametric regression on a ma-

nifold, 459

nonparametric regression problem,

462

nonparametric statistical analysis,

3

nonpivotal statistics, 76

norm, 218

nuisance parameter, 67

object spaces, 3

one parameter groups of diffeo-

morphisms, 101

one parameter subgroup of a Lie

group, 103

open neighborhood, 97

optic nerve head, 8, 349–356, 442–

448

optimal estimation, 458

optimal rate of recovery, 218, 219,

221

orbifold, 105, 140

orbifolds, 139

orbit, 105

orbital plane, 3

orthoframe field, 110

orthogonal group, 237, 247

orthogonal projection, 248

paracompact, 97

parameter, 54

particles, 115

partition of the unity, 97

pattern recognition, 391

percentile method, 76

percentile method for nonparamet-

ric bootstrap c.r., 178

persistent homology, 458

Pfaff form, 107

planar contours, 12

planar size-and-shape space, 142

Poincaré’s lemma, 112

pooled extrinsic sample mean, 201

population (probability measure),

54

precise hypothesis, 83

principal component, 69

principal components, 474

principle of least action, 115

probability, 46

probability distribution on a mani-

fold, 158

probability mass function, 52

probability measure, 46

probability measure on M associ-

ated with a r.o., 158

probability measure on a manifold,

157

probability space, 47

Procrustes mean, 259, 260, 285,

300

product, 99

product measure, 51

projection map, 250

projective basis, 147

projective coordinate(s), 147

projective frame, 147, 254

projective invariants, 254

projective point, 254

projective shape, 148, 253, 254,

263–272, 433–440, 449,

452

2D, 403–408

3D, 269, 411–431, 441–448

reconstruction, 419–420, 447

projective shape space, 149

projective shape spaces, 149

projective space, 108, 237

projective spaces

Complex, 449
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Real, 449

projective transformation, 12, 147

protein, 291–292

proteins, 9

quaternion multiplication, 270

quotient space, 105

quotient topology, 97

r-th Fréchet function, 158

r.o.’s on a Lie group, 206

random object, 240

random object (r.o.), 157

random sample, 54

random variable (r.v.), 51

random vector (r. vec.), 51

range image, 8

real projective space, 105

reduced persistence diagram, 459

reflection-affine shape space, 144,

145

reflexive relationship, 96

regression estimator, 216

regression function of predictor X1

and response X2, 462

regularization, 82

relationship, 96

relative simplicial homology, 131

relative singular cubic homology,

133

Riemann integral, 49

Riemannian distance, 114

Riemannian distance ρg, 158

Riemannian embedding, 122

Riemannian exponential map, 117

Riemannian homogeneous space,

120

Riemannian manifold, 109

Riemannian structure, 108, 235

Riemannian symmetric space, 121

sample covariance matrix, 56

sample extrinsic covariance ma-

trix, 195, 197

sample mean vector, 55

sample space, 46

sampling distribution, 55

sampling matrix, 56

sampling points, 7

scalar curvature, 161

sectional curvatures, 119

separable, 97

shape, 4

shape analysis

2D, 259

significance level, 69

similarity, 140

similarity shape, 295–313, 347–

356, 449

2D, 299–300

3D, 386–388

of planar contours, 360

approximation, 371–378

of surfaces, 475

simplicial complex, 129

simply transitive group, 239

singular cubic homology, 132

size-and shape, 142

size-and-reflection shape, 143

size-and-reflection-shape, 142, 283

size-and-reflection-shape manifold,

143

size-and-reflection-shape space, 142

size-and-shape, 282

skew symmetric tensors, 111

small flat support, 177

Sobolev norm, 217

spaces of orbits, 104

special orthogonal group, 249

spectrum of a symmetric operator,

125

spherical representation, 149

statistical inference, 55

statistical inverse problem, 216

statistics, 3

step-functions, 48

stereo images, 15
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Stiefel manifolds, xix, 139

stratification, 146

stratified spaces, 475–476

strong consistency of the Fréchet

sample mean, 163

studentization, 71

studentized sample mean vector,

66

submanifold, 104, 192

sup-norm minimax bounds, 459

sup-norm minimax risk, 462

symmetric kernel density, 80

symmetric positive-definite matri-

ces, 237

symmetric relationship, 96

symmetric spaces, 449

symmetry group, 247

system of local coordinates, 109

tangent bundle, 101, 238

tangent map, 102

tangent space, 100, 238

tangent space of a manifold, 101

tangent vector, 99

topological data analysis, 457

topological space, 96

torus of revolution, 105

total extrinsic variance, 158

total Fréchet variance, 158

total intrinsic sample variance, 183

total intrinsic variance, 158, 240

total sample variance, 255

total variance, 54, 69

transitive action, 237

transitive relationship, 96

triangulated surface, 129

true M-almost everywhere, 50

true coverage, 67

two point homogeneous space, 122

union-intersection principle, 82

unit circle, 139

variances, 52

vector field, 101

Veronese-Whitney map, 107

Weingarten mapping, 248

Whitney’s embedding theorem, 102

Wishart distribution, 59

X-ray image analysis, 347–349

zonal function, 126
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σ -field generated by C, 46

j-focal point, 168

j-nonfocal distributions, 158

j-nonfocal point, 168

j-nonfocal probability measure, 192
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k-dimensional homology group,

129

k-simplex, 129

k-th Betti number, 129

kdimensional homotopy group, 134

r-th cumulant, 72

1 - differential form, 111

2-differential form, 112

2-skew symmetric form, 111

2D gel electrophoresis, 143

2D projective shape, 12

3D projective shape, 13

3D size-and-shape data, 8

3D-direct similarity shape data, 8
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joint probability distribution func-

tion (p.d.f.), 54

Levi–Civita connection forms, 112

a Fréchet mean, 177

absolutely continuous, 77

Adapted frame CLT, 195
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adjoint action, 105

affine coordinates, 254, 262

affine embedding, 146

affine group, 143

affine shape, 391–402, 449

affine shape space, 143

affine transformation, 144

anthropology, 3

antimeans, 139

Apert syndrome, 5

astronomy, 3, 235, 339–343

asymptotic distribution of Hotelling

T 2, 66

asymptotic distribution of the stu-

dentized sample mean,

66

asymptotic minimax for the sup–

norm risk, 464

asymptotically pivotal distribution,
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asymptotics, 86

asymptotics of extrinsic sample

means, 178

asymptotics of sample total intrin-

sic variance, 178
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191

Borel measurable, 48

Borel sets, 47

bottleneck distance, 459, 460

bracket operation, 104

Cartan mean, 159, 161, 240

Cartan mean (set ), 163

Cartan–curvature forms, 112

case of concentrated data, 178

category theory, 128

CC midsagittal sections, 7

centers of mass, 159

Central Limit Theorem, 63

central projection, 11

chain complex, 130

chain homotopy, 132

change on a Lie group, 206

characteristic function, 73

characteristic function of a r. vec.,

53

chart, 98

Chebyshev’s inequality, 56

Cholesky decomposition, 328

chord distance, 157

chord distance ρ j, 158

Christoffel symbols of the first

kind, 116

Christoffel symbols of the second

kind, 116

closed set, 96

closure, 96

CLT for Cartan means, 190

CLT for extrinsic sample means,

185, 192

CLT for Fréchet sample means,

187

Cochran’s theorem, 59

complete orthonormal basis over

L2(SO(3)), 125

complex projective space, 106

computational algebraic topology,

458

computed tomography, 16

computer vision, 3

conditional probability, 47

conditional probability measure,

47

confidence level, 67

confidence region, 67, 262, 268

connected, 97

consistency, 56, 264

consistency of the Fréchet sample

mean set, 157

consistency of the sample mean,

57

consistency of the sample mo-

ments, 58

consistent estimator, 56, 78, 216

continuity theorem, 60

continuous, 96

continuous function, 48

contours, 5

convergece in distribution, 60
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converges in probability, 56

corpus callosum, 7, 379–380

cotangent space, 107, 111

counting measure, 48

covariance, 53

covariance matrix, 52, 53

covariance operator, 54

coverage error, 67, 178

Cramer’s delta method, 66

craniosynostosis, 5

critical point, 135

critical value, 135

CT scans, 384–386

cumulants, 72

curvature, 110, 113

curvature function, 110, 113

curve, 99

cut locus, 118

data analysis on CPk−2, 142

data analysis on spheres, 3

data matrix, 55

data on projective plane, 4

data on spheres, 4

dense, 96

density estimation on Riemannian

manifolds, 215, 219, 226–

231

Bayesian, 230

density estimator

Bayesian, 231

kernel, 215, 450

on Riemannian manifolds,

216

Pelletier, 450

diffeomorphic manifolds, 99

diffeomorphism, 98

differentiable function, 98

differentiable function between ma-

nifolds, 99

differentiable left action, 104

differentiable section, 108

differential, 102, 274

differential forms, 111

differential operator, 112

Differential Topology, 135

diffusion tensor, 139

Diffusion tensor images, 19

diffusion tensor imaging, 138

dimension reduction, 69, 82

direct affine shape, 145

direct affine transformation, 145

direct isometry of the Euclidean

plane, 142

direct similarity, 140

direct similarity shape, 5, 296

direct similarity shapes, 140

directional data analysis, 139, 178,

339–343

disjoint events, 47

distribution, 216

uniform, 251

von Mises-Fisher, 251

DTI, 237, 327–334

Dynkin diagrams, 128

dyslexia, 19

ecliptic, 3

Edgeworth expansion, 71, 74

Einstein’s summation convention,

111

elliptic geometry, 110

embedding, 102

affine, 262

Dimitric, 315, 394

equivariant, 237, 257, 263

isometric, 237

of Hilbert manifold, 275

Plücker, 316

projection, see also Dimitric

Schoenberg, 283, 297

Veronese–Whitney, 257, 259,

275, 282, 297, 316

empirical distribution, 55

empirical distribution on a metric

space, 163
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equivalence class, 96

equivalence relationship, 96

equivariant, 122

estimator, 54

Euclidean space, 237

events, 46

exact 1-form, 112

exact sequence, 131

expected value of a function, 52

exponential map, 103

extrinsic covariance, 258, 277

on a Grassmannian, 318–323

extrinsic covariance matrix, 194

extrinsic data analysis, 158

extrinsic Hotelling statistic, 197

extrinsic mean, 177, 255, 276, 284

asymptotic distribution, 258,

287–291, 302–312, 323,

341, 363–366

computation of, 476–484

Dimitric, 316–318, 394

Schoenberg, 286–287, 300

Veronese–Whitney, 259, 277,

284–285, 299, 361

extrinsic mean (set), 159

extrinsic mean as projection of the

mean vector, 177

extrinsic moments of a r.o., 157

extrinsic sample mean (set), 163

extrinsic sample mean as projec-

tion of the mean vector,

172

extrinsic sample means on sub-

manifolds, 158

face recognition, 12, 427–431, 452

fibration, 134

first fundamental form, 122

Fisher information metric, 159

five lemma, 133

flat torus, 97, 105

focal points, 257

Fourier coefficient, 216

Fréchet expectations, 159

Fréchet function, 53, 240

Fréchet mean, 159

Fréchet mean set, 157, 159

Fréchet median set, 167

Fréchet sample mean (set), 163

Fréchet sample mean set, 157

Fréchet sample median, 167

Fréchet sample total variance, 157

Fréchet total variance, 157

free action, 107

Frobenius scalar product, 238

Fubini’s theorem, 51

function estimation, 235

on Riemannian manifolds, 215

functional data, 82

functional delta method, 87

functoriality, 131

fundamental group, 134

Gaussian curvature, 110

gel electrophoresis, 392, 396–402

general linear group, 143

general position, 143, 146

Generalized Darboux theorem, 97

generalized Frobenius metric, 238

generalized Slutsky theorem, 65

generalized variance, 54

geodesic, 115, 241

distance, 241

geodesic distance, 115

geodesic on the round sphere, 117

geodesically complete, 117

geology, 3

geometric statistics, 458

glaucoma, 8, 351–356

Glivenko–Cantelli theorem, 76

Grassmann manifolds, 145

Grassmannian, 106

Groisser algorithm, 162

group action, 105

group of direct similarities, 140

Hadamard-Cartan manifold, 163
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Hausdorff, 97

Hausdorff distance, 460

Helly-Bray theorem, 60

Hilbert manifold, 108

Hilbert space, 108, 403–408

homeomorphism, 96, 98

homogeneous coordinates, 254

homogeneous space, 107, 235,

237, 247, 450

homology, 129

homology theory, 131

homotopy, 128

homotopy equivalence, 133

homotopy invariants, 134

homotopy type, 128, 129

Hotelling-type test statistic, 85

human brain, 7

Hurewicz map, 134

hyperbolic geometry, 110

hyperplane, 146

hypothesis test

coplanarity, 413–415

for mean change, 206

matched pairs, 202, 270–271

matched-pair, 448

neighborhood, 278–280, 366–

369, 406–408

one-sample, 267–268, 433

total variance, 256

two-sample, 238, 243–272,

328–334, 435–440

extrinsic means, 201, 203

intrinsic means, 204

on a homogeneous space,

209

total variance, 203

i.i.d.r.o.’s, 179

image analysis, 3

image probability measure, 52

immersion, 102

independent, 54

independent events, 47

independent, identically distributed,

54

induced Riemannian structure, 109

induced topology, 96

infinite dimensional Hilbert spaces,

82

inhomogeneous (affine) coordinates,

146

inner product, 238, 247

integrable with respect to Q, 52

integral, 50

integral with respect to the mea-

sure, 49

intrinsic covariance, 242

intrinsic data analysis, 158

intrinsic mean, 240, 255, 354–356

computation of, 476–484

generalized Frobenius, 242,

328

intrinsic mean (set), 159

intrinsic moments of a r.o., 158

invariance of the domain theorem,

98

irreducible representations, 127

isometry, 248

isotropy group, 105

joint cumulative distribution func-

tion (c.d.f.), 52

joint probability density function,

54

joint probability density function

(p.d.f.), 54

k-ad, 254, 282, 295

Kendall distance, 259

Kendall planar shape analysis of k-

ads, 142

Kendall shape, 140, 231, 282, see

direct similarity shape

Kendall shape space, 141

kernel density estimator, 77

kernel estimator, 78
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Killing form, 127

label free projective shape analy-

sis, 149

Lagrangian (structure), 115

landmark, 5

landmark based high level image

analysis, 140

Laplace–Beltrami operator, 123,

219

large sample c. i. for total intrinsic

variance, 184

large sample c.r. for extrinsic mean,

178

Large Sample Theory, 59

Lebesgue integrable, 50

Lebesgue integral, 50

Lebesgue measure, 48

Legendre polynomials, 126

length functional, 115

Levi–Civita connection, 123

Levi-Civita connection, 116

Lie algebra, 103

Lie bracket of two vector fields,

101

Lie group, 103, 235, 247, 270

Lie group actions, 104

Lie groups, 441

Lie subgroup, 107

linear connections, 116

linear shape space, 143, 146

local representative, 99

locally compact, 98

logarithmic coordinates, 250

low sample size high dimensional,

82

m-dimensional manifold, 98

main drawback of intrinsic data

analysis, 168

manifold

Grassmann, 315–323, 395, 449

Hadamard, 240, 328

Hilbert, 275

homogeneous, 327

sphere, 237, 249, 449

Stiefel, 237, 247

manifold diffeomorphism, 99

manifold stratification, 140

marginal cumulative distribution

functions (c.d.f.’s), 52

marginal distributions, 52

matched pairs, 68

mathematical landmark, 8

mean integrated squared error, 78

mean squared error, 451

integrated, 78, 451

mean vector, 52

means, 52

measurable function, 48

measure space, 46

median set, 53

medical imaging, 3, 8, 235, 347–

356

meteorology, 3

metric space, 96

minimaxity, 219

MISE, 78

monotone convergence theorem,

50

Morse function, 135

Morse Lemma, 135

moving frames, 110

MRI, 7

multidimensional scaling, 70

multinomial trial, 52

multivariate analysis, 54

multivariate data analysis, 138

multivariate Lindeberg-Feller-Levy

CLT, 64

multivariate normal distribution,

59

multivariate observations, 55

neighborhood hypothesis, 83, 86

nominal coverage, 67
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nonparametric bootstrap, 69, 71

nonparametric bootstrap c.r. for

extrinsic mean, 178

Nonparametric Data Analysis, 59

nonparametric regression model,

465

nonparametric regression on a ma-

nifold, 459

nonparametric regression problem,

462

nonparametric statistical analysis,

3

nonpivotal statistics, 76

norm, 218

nuisance parameter, 67

object spaces, 3

one parameter groups of diffeo-

morphisms, 101

one parameter subgroup of a Lie

group, 103

open neighborhood, 97

optic nerve head, 8, 349–356, 442–

448

optimal estimation, 458

optimal rate of recovery, 218, 219,

221

orbifold, 105, 140

orbifolds, 139

orbit, 105

orbital plane, 3

orthoframe field, 110

orthogonal group, 237, 247

orthogonal projection, 248

paracompact, 97

parameter, 54

particles, 115

partition of the unity, 97

pattern recognition, 391

percentile method, 76

percentile method for nonparamet-

ric bootstrap c.r., 178

persistent homology, 458

Pfaff form, 107

planar contours, 12

planar size-and-shape space, 142

Poincaré’s lemma, 112

pooled extrinsic sample mean, 201

population (probability measure),

54

precise hypothesis, 83

principal component, 69

principal components, 474

principle of least action, 115

probability, 46

probability distribution on a mani-

fold, 158

probability mass function, 52

probability measure, 46

probability measure on M associ-

ated with a r.o., 158

probability measure on a manifold,

157

probability space, 47

Procrustes mean, 259, 260, 285,

300

product, 99

product measure, 51

projection map, 250

projective basis, 147

projective coordinate(s), 147

projective frame, 147, 254

projective invariants, 254

projective point, 254

projective shape, 148, 253, 254,

263–272, 433–440, 449,

452

2D, 403–408

3D, 269, 411–431, 441–448

reconstruction, 419–420, 447

projective shape space, 149

projective shape spaces, 149

projective space, 108, 237

projective spaces

Complex, 449
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Real, 449

projective transformation, 12, 147

protein, 291–292

proteins, 9

quaternion multiplication, 270

quotient space, 105

quotient topology, 97

r-th Fréchet function, 158

r.o.’s on a Lie group, 206

random object, 240

random object (r.o.), 157

random sample, 54

random variable (r.v.), 51

random vector (r. vec.), 51

range image, 8

real projective space, 105

reduced persistence diagram, 459

reflection-affine shape space, 144,

145

reflexive relationship, 96

regression estimator, 216

regression function of predictor X1

and response X2, 462

regularization, 82

relationship, 96

relative simplicial homology, 131

relative singular cubic homology,

133

Riemann integral, 49

Riemannian distance, 114

Riemannian distance ρg, 158

Riemannian embedding, 122

Riemannian exponential map, 117

Riemannian homogeneous space,

120

Riemannian manifold, 109

Riemannian structure, 108, 235

Riemannian symmetric space, 121

sample covariance matrix, 56

sample extrinsic covariance ma-

trix, 195, 197

sample mean vector, 55

sample space, 46

sampling distribution, 55

sampling matrix, 56

sampling points, 7

scalar curvature, 161

sectional curvatures, 119

separable, 97

shape, 4

shape analysis

2D, 259

significance level, 69

similarity, 140

similarity shape, 295–313, 347–

356, 449

2D, 299–300

3D, 386–388

of planar contours, 360

approximation, 371–378

of surfaces, 475

simplicial complex, 129

simply transitive group, 239

singular cubic homology, 132

size-and shape, 142

size-and-reflection shape, 143

size-and-reflection-shape, 142, 283

size-and-reflection-shape manifold,

143

size-and-reflection-shape space, 142

size-and-shape, 282

skew symmetric tensors, 111

small flat support, 177

Sobolev norm, 217

spaces of orbits, 104

special orthogonal group, 249

spectrum of a symmetric operator,

125

spherical representation, 149

statistical inference, 55

statistical inverse problem, 216

statistics, 3

step-functions, 48

stereo images, 15
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Stiefel manifolds, xix, 139

stratification, 146

stratified spaces, 475–476

strong consistency of the Fréchet

sample mean, 163

studentization, 71

studentized sample mean vector,

66

submanifold, 104, 192

sup-norm minimax bounds, 459

sup-norm minimax risk, 462

symmetric kernel density, 80

symmetric positive-definite matri-

ces, 237

symmetric relationship, 96

symmetric spaces, 449

symmetry group, 247

system of local coordinates, 109

tangent bundle, 101, 238

tangent map, 102

tangent space, 100, 238

tangent space of a manifold, 101

tangent vector, 99

topological data analysis, 457

topological space, 96

torus of revolution, 105

total extrinsic variance, 158

total Fréchet variance, 158

total intrinsic sample variance, 183

total intrinsic variance, 158, 240

total sample variance, 255

total variance, 54, 69

transitive action, 237

transitive relationship, 96

triangulated surface, 129

true M-almost everywhere, 50

true coverage, 67

two point homogeneous space, 122

union-intersection principle, 82

unit circle, 139

variances, 52

vector field, 101

Veronese-Whitney map, 107

Weingarten mapping, 248

Whitney’s embedding theorem, 102

Wishart distribution, 59

X-ray image analysis, 347–349

zonal function, 126
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