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Introduction
This introduction will give an overview as to what the book is about, who the 
author—me, is, how the book is laid out, what you should learn by its end, and 
more information about R - if you choose to use it.

What the Book Is About
This book is designed to highlight typical misconceptions non-statistics users 
can have, to show common pitfalls that (new) statisticians and those dipping 
their toes in the water can fall into, and to suggest solutions to correct and 
avoid them.

Although the book is written from my viewpoint and therefore the statistician’s 
viewpoint, the emphasis is on translating the output correctly to aid evidence-
based business decision making.

Statistics can seem like a tricky subject at first, but once you can get your mind 
around the basic ideas, the rest will come easily. The general process, which we 
will walk through in the book, has a clear order from designing an experiment, 
through analysis, to reporting the results. However once understanding has 
been achieved in certain terms and ideas, such as confidence intervals,  
p-values, and so forth, this can make the more complicated methods simpler.  
For example, some of the more complex models are just extensions of simple 
hypothesis tests in terms of the output and the results you would pull out.

Once immersed in the world of statistics it is very easy to get lost in the 
language - however this book is written with the non-statistician customer in 
mind. Don’t worry, there won’t be any complicated algebra or proofs included 
as there are plenty of other texts for that purpose.

The key to effective decision making is to make full use of all available 
relevant data. However if this is not in an accessible language then sometimes 
important information can be ignored. This is where being able to translate 
the statistical jargon into English is vital, and this can be a whole new skill in 
itself. Throughout the book we discuss how to make reporting the results an 
easy and understandable task.



Introductionxiv

Each section contains advice about how to proceed with each type of data, 
method, and so forth along with potential pitfalls and misconceptions related 
to the topic. There is dummy example data provided, however the case studies 
they refer to in the majority of cases are real scenarios. R code is provided to 
help you run through the examples should you wish, but it is not necessary 
that you have previous knowledge of R. The text is written in such a way that 
the example code is extra information to that which is already provided.

The main aim throughout is to make sure the right methods are being used 
on the right data, so the right output is produced and the right conclusions 
are translated to the customer. We want to avoid ending up giving wrong or 
misleading conclusions to the customer due to something going awry at one 
of the many points throughout the design and analysis process.

Who Is the Author?
I am a senior statistician, so day to day I am absorbed in consulting on statistics, 
creating experimental designs, and conducting analysis. However I work for a 
defense organization where most of my customers and colleagues have never 
done statistics, or have done very little, so it is my job to help them understand 
the messages in their data. A lot of statistical output can be produced, but it 
would be unproductive for them to see it all. The challenging task is to pick 
out the important information, which should include main assumptions and 
“negative” results, and then condense it to a manageable size.

My day job involves working with military, industry, academic, and government 
colleagues and customers. Part of a statistician’s task is to learn about the 
subject matter so the results can be translated accordingly, which is why I 
made the choice of having a wide variety of case studies in the book.

I have never been a fancy wordsmith, but that has actually been extremely 
beneficial in being able to simplify statistical terms to those who haven’t 
studied the subject. This also has helped with the internal Introduction to 
Statistics course I run for those who want to improve their statistical ability, 
as I’ve found I can teach the course without people being completely baffled 
by the, quite frankly, backward statistics language.

How Is the Book Laid Out?
Presumably you will have read the contents page, but I will go into a bit more 
detail about each of the sections. At this point there may be terms you are 
unfamiliar with, don’t worry, these will be explained in the relevant chapters.

There will be examples and figures included throughout the book; many of 
the examples will be run in R, but for those not wishing to use R there are 
sections translating the output at each stage with summaries at the ends.
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Chapter 1: Design of Experiments: What Do I Need to Do to Get 
the Data?

Every experiment, study, or trial needs to begin with design of experiments 
(DoE), which may sound logical; however it isn’t always followed in practice. 
Even when there is some type of design planned, people sometimes cut 
corners, either intentionally or unintentionally. Even if there are constraints 
on the number of repeats that can be run or available time, the experimental 
design phase should still be undertaken and it can account for these limitations. 
This chapter investigates: establishing the point of the study; thinking about 
the variables, including interactions and confounding; achieving the required 
power and confidence levels; and determining the appropriate designs, for 
both physical and computer experiments. It also briefly looks at survey design.

Chapter 2: Data Collection: How Do I Get the Data?

Many issues can arise with data collection and some are unforeseeable. 
However there are ways of minimizing these as much as possible. There 
also can be the added complication of data formatting, and depending on the 
planning that was put in place initially, can determine the amount of time spent 
on this theme. This chapter looks into both of these areas and some of the 
methods that can help avoid such things as missing data and time being wasted.

Chapter 3: Exploratory Data Analysis: What Data Do I Have?

Once the data has been collected you shouldn’t go straight into analysis, there 
is a step before to make sure you’re on the right analysis path and that’s 
exploratory data analysis (EDA). EDA is about getting to know the data you 
have, which mainly involves visualization techniques, so you know what you 
can and can’t proceed to do with the data. This chapter explores the pieces 
that make up EDA: identifying different data types, viewing the data with 
basic plots, detecting potential outliers, discovering the data distribution, and 
revealing possible trends.

Chapter 4: Descriptive Statistics: What Can the Data Tell Me?

Descriptive statistics is a good place to start with the initial numerical 
investigation of your data, as your data is only a sample from a larger 
population. This stage is still in relation to learning more about your data 
before conducting any types of hypothesis tests. There are many descriptive 
statistics that will look at the location, dispersion, and shape of continuous 
data along with a smaller number of methods for investigating discrete data, 
and we delve into them in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2256-0_1
http://dx.doi.org/10.1007/978-1-4842-2256-0_2
http://dx.doi.org/10.1007/978-1-4842-2256-0_3
http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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Chapter 5: Measuring Uncertainty: How Good Is the Data?

No analysis will ever give you an exact answer. Unless you can test the entire 
population, there will always be some inherent uncertainty in the results. 
There are multiple ways to determine uncertainty depending on the focus of 
the overarching question, and this chapter looks at some of the most common 
including confidence intervals, tolerance intervals, and prediction intervals 
along with some examples.

Chapter 6: Hypothesis Testing: What Differences Are in the Data?

Though the official statistical language and meaning is all backward, for 
simplicity we say that hypothesis testing is used to find whether differences 
are likely due to chance or likely due to a significant difference. This chapter 
discusses “simple” hypothesis testing, and by simple it just means looking at 
one explanatory variable using tests, such as t-tests, proportion tests, and 
nonparametric equivalents. It is split into two main sections, a section that 
details the components that make up hypothesis testing, such as p-values, 
differences (significant, practical, etc.), and a section that looks at some of the 
available tests given specific data types.

Chapter 7: Statistical Modeling: What Is Actually Going On in the 
Data?

Once there starts to be more explanatory variables in your study, the analysis 
needs to move up to statistical modeling, though generally the same theories 
from simple hypothesis testing hold. Models can be used to test the importance 
of different variables, predict future outcomes, or to assign uncertainty to the 
results. This is the largest chapter of the book as statistical modeling is a 
large part of statistical analysis. The chapter is split into two main sections, 
the model components (i.e., the process to follow, common outputs, etc.) 
and some of the more common types of statistical models themselves. There 
are multiple examples in the second section as one of the easiest ways to 
understand and translate model outputs is to go through examples.

Chapter 8: Multivariate Analysis: What Have I Found in My Larger 
Data?

When you begin to have more response variables you need to dig into the 
data using multivariate methods. This data is generally “large” however it isn’t 
necessarily as large as that which the term big data represents. There are 
numerous multivariate techniques a lot of which overlap and as such not all 
could be shown. Within this chapter we inspect three of the most common 
methods appropriate for this type of data (whilst being the most different to 
each other): MANOVA, PCA, and Q methodology. There is guidance in how 
to start reading the output as it's not such a straight forward task, as with 
statistical modeling output.

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
http://dx.doi.org/10.1007/978-1-4842-2256-0_6
http://dx.doi.org/10.1007/978-1-4842-2256-0_7
http://dx.doi.org/10.1007/978-1-4842-2256-0_8
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Chapter 9: Graphs: What Does the Data Look Like?

Graphing results is an easy way to emphasize the key messages that the analysis 
output indicated; as long as the plots are kept clear and concise. Although we 
touched on viewing the data in the EDA chapter, this chapter probes deeper 
into general advice about the pitfalls to avoid, highlights how to change the 
aesthetics in plots created in R, and then shows how to create some of the 
common plot types.

Chapter 10: Translation and Communication: How Do I Get the 
Message Across?

Being able to translate the statistical jargon into understandable language is, as 
I mentioned previously, a skill all by itself. Throughout the book I have tried to 
demonstrate ways to convert the output into an understandable message that 
can be used for effective decision making. This final chapter aims to tie this all 
together along with guidance on what information to include, where it’s best 
placed, how to structure the message, and what other considerations need to 
be considered. It also provides four examples drawn from previous chapters 
to show what information should be picked from the output to present to the 
customer, and how to do this clearly and efficiently.

What Will Be Learned?
In an ideal world by the end of this book you shouldn’t need it anymore. 
However in reality there is a lot to remember and this will be a good guide to 
keep handy for reference of good practice in statistics. We only have a finite 
brain storage capacity, and if statistics is not something you use daily then it’s 
easy to forget and start slipping into those pitfalls again. It doesn’t even matter 
how much of a veteran in statistics you are, it can be easy to make mistakes, 
especially in new fields and this can serve as a refresher. Although I don’t claim 
to cover everything, it would be a much larger book for a start, this is a good 
basic book of the most common topics non-statisticians and beginners alike 
would use. Even then some of the advice will be relevant for more specific 
complex studies, for example, DoE, EDA, graphs, translation.

The aim of this book is to be a guide for recognizing potential mistakes and 
learning techniques for avoiding them or overcoming them at each section 
of the study. It should lead you down the correct path of thinking and make 
sure that you have thought about each stage progressively so in the long run 
time and money won’t have been wasted and the results presented will be 
meaningful.

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
http://dx.doi.org/10.1007/978-1-4842-2256-0_10
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The whole reason we carry out statistics is to inform decision making so we 
need to make sure we produce useful, reliable, defendable results, and working 
in defense I know how serious getting those key messages wrong could be. 
Along with this we also need to make sure the associated assumptions and 
uncertainty is understood.

If you chose to try out R, download for free from https://cran.r-project.org/, 
then this book is also an initial introduction to some of the code and packages 
available. The data will be included at the start of all the examples and the R 
code will include instructions detailing the use of each line. By the end of the 
book you will be able to refer back to the appropriate code to use on your 
own data and understand which bits you need to tweak to make it work for 
your data.

If you are interested in using R then the next section will give more details, 
otherwise you can skip ahead to Chapter 1.

Using R
At the time of writing this book, the R version used was R v3.3.1, and as such 
the packages listed and code may need to be tweaked for future versions.

If you have never used R before it can seem quite daunting, as when you open 
it up, there is only a mostly blank box. Don’t worry, that’s just where you will 
be copying and pasting the code I have created; it’s also where the output will 
be displayed.

Whenever there is a new package listed, for example MASS, you will need to 
click on the menu bar: Packages/Install package(s)…, you then need to choose 
a “mirror”—one that is local to you. Once that has been done a long list of 
packages will be shown, and you need to find the one needed, here MASS. 
Once that has been done you just need to run the R code as usual, and when 
you get to library(MASS), it will load the library into your session. Note that 
once you have installed a package from the list, you only ever need to run the 
library() command to load it, you won’t need to install it each time unless 
you are using a different computer or a new version of R. All packages and R 
commands that are in the body text of the book will be shown in the same 
font as used above.

There also will be dependencies for certain packages, but these should 
automatically be installed once you have installed the main package. If there 
is any command listed that you would like more information on you can 
type help() and put the command within the parentheses, for example, 
help(pwr.t.test) for the pwr.t.test() command in Chapter 1.

https://cran.r-project.org/
http://dx.doi.org/10.1007/978-1-4842-2256-0_1
http://dx.doi.org/10.1007/978-1-4842-2256-0_1
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If you want to preemptively install the R packages, then the list of packages to 
be used throughout the book are: pwr, AlgDesign, Rmisc, Hmisc, tolerance, 
RcmdrMisc, exact2x2, ggplot2, car, PairedData, MASS, lsmeans, brglm, 
pscl, AER, HH, lmerTest, mvnormtest, biotools, mvoutlier, RVAideMemoire, 
shotGroups, corrplot, FactoMineR, factoextra, and qmethod.

As a side note, R does not like the quotation marks that Word creates, so 
while every effort has been made to replace these with R friendly versions 
the odd one may have been missed. Therefore, if you get an error this may be 
one of the reasons why.

In some cases the plots in the examples may not match the R code provided, 
they may show just the basic plot, and this is purely for space saving in the 
book. Chapter 9 explains how to add details in ggplot() so if you wanted to 
go back to try to replicate the graphs in previous chapters you can. In addition 
the plots were created to include color, which will be shown in the electronic 
version, however they won’t be in the print version; although the output in R 
will show you the expected colors.

The examples using R comprise four components: a line explaining what the 
R code is about to do, which always starts with the number symbol (#); the 
R code itself; a print out of the results; and an explanation of what the results 
actually mean. Any lines beginning with # can be entered into the R script 
window as it recognizes it as text that isn’t an R command.

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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C H A P T E R 

Design of 
Experiments
What Do I Need to Do to Get the Data?

To call in the statistician after the experiment is done may be no more 
than asking him to perform a post-mortem examination: he may be able 
to say what the experiment died of.

—R. A. Fisher1

As Sir Ronald Fisher so eloquently put it, if an experiment isn’t designed well 
then any conclusions made from the resulting data may not be useable or may 
have to be reported with too many accompanying caveats.

The point of an experimental design is to systematically investigate the problem 
space to a required minimized risk level, basically so you get the most out of 
your relevant collected data. However the main thing to note here is that it 
doesn’t take long to design a good experiment, you just need to think about in 
the right order.

Figure 1-1 shows the suggested process to follow when thinking about design-
ing any experiment with the following sections delving into more detail for 
each part of the process.

1

1Presidential Address to the First Indian Statistical Congress, 1938.
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Straight away you can see that experimental design is more than just a ques-
tion of “how many do I need to do?” That is a common misconception. With 
that in mind, let’s go through the steps in the process.

Forming the Study Question
The first item that needs to be done is to actually define the question. 
Generally the customer will give you a task such as “how good are these new 
detectors?” Then the initial stage of the process is to establish what they 
really want to know and why.

You need to gain as much (sensible) information as possible so that the exper-
iment doesn’t go down the wrong route and the resulting data will be able 
to adequately answer the customer’s question. Knowing the key questions to 
ask can facilitate the discussion and help the customer understand why this 
information is important. It also ensures that you are both on the same page 
about what is required, and how the project will progress.

Forming Hypotheses
The reason for delving into the exact study question is due to the fact that it 
helps form the hypothesis to be tested in the analysis, an in depth description 
can be found in Chapter 6. Briefly, you have a null hypothesis, which is your “no 
action” case and your alternative hypothesis, which is your “take action” case. 
Therefore with a customer question of is the new method better than our 
own, the null hypothesis would be there is no difference between the current 
and new methods and the alternative would be that the new method is better 
than the current with the latter requiring things to be changed to use the new 
method, hence action case.

Figure 1-1.  Design of experiments thought process

http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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Hypotheses also can be either one-sided or two-sided. This just means that 
for a one-sided hypothesis you are interested in your sample being either 
larger or smaller than a value or another sample but not both. Two-sided 
means you are interested in a general difference between samples or between 
the sample and a threshold value regardless of direction.

This information about sidedness is important as it has an effect not only on 
the analysis but also on the power and sample size calculations as the risk cal-
culated for each is split differently, more in Chapter 5. Generally, if the interest 
is only one-sided then a smaller sample size will be required as there will be 
no information about the other “side” of the data. However, it is important to 
note that this needs to be decided before the experiment and not changed 
afterward, otherwise the design of experiments may not be suitable.

Information Required
A lot of the time the design of experiments process needs to be iterative due 
to resource constraints, such as having limited funds or time, but here are 
some key points to discuss up front:

•	 What is the question you want answered? This can help lead 
you to form a hypothesis and also to define the other 
questions.

•	 Why does it need answering? By getting more detail it can 
actually change the emphasis of the question they want 
answered and should focus the design and testing that 
will be required (e.g., “are the new detectors better than 
our current detector and which ones are best?”). It also 
can help highlight any subquestions.

•	 What do you want investigated? Asking this question will 
enable the customer to think about the variables that will 
be used in the design along with the numerical ranges of 
interest. It also could uncover any variables that may have 
been overlooked, see the Experimental Design section.

•	 How are the results going to be applied? This can lead to 
thoughts about applicability to other areas as well as high-
lighting the assumptions that need to be made—more in 
the Defining the Scope of the Study section.

•	 What level of risk is acceptable? You want to know about 
the confidence and power levels. Translating this informa-
tion into risk, however, can be much more accessible for  
non-statisticians, see more detail in the Power and Sample 
Size section.

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
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•	 Can you explain some of the subject matter to me? This bul-
let may be optional dependent on your background - if 
the subject matter is new to you. By getting more details 
about the practical side allows you to comprehend what 
is realistically doable in terms of conducting the experiment 
(e.g., applying complete randomization to an experiment 
that requires 30 min. to set up each iteration is not 
practical).

You need to start with the broad questions then lead into the more precise 
questions, such as those about risk levels, to get the answers you need to 
continue. Once you have all the information required and have moved to the 
process of using any existing data, it can soon highlight issues about achieving 
the required risk levels due to possible constraints or large variation. This 
would necessitate further discussions about the scope of the study and the 
variables themselves—hence the process being an iterative one.

Power and Sample Size
Before looking at the information needed as well as how to actually run the 
calculations there are some misconceptions that need to be addressed.

Contrary to popular belief bigger is not always better, at some point the rela-
tive gain will plateau off, therefore doing more repeats would be a waste of 
resources. The sample size will vary depending on the type of data you are 
looking at, the variation of the data, and what risk levels you need to achieve.

On the other hand, it is wrong to use a sample size of 3 just because you 
could get published. Many non-statistical journals are now improving their 
review process by demanding a power calculation be included in the paper, 
which is good practice. In terms of animal studies, although we all must 
adhere to using as small a number of animals as possible, there is no point 
running an experiment if the power is weak as that means the results will be 
worthless and therefore a waste of those lives. It would be better not to run 
the experiment rather than gain inconclusive results just from trying to look 
as if you are using fewer animals. The ethical review process requires power 
calculations to be included, as under-powered proposals will be rejected due 
to that last point.

Another common misconception is about significance; generating a larger 
sample size will not guarantee significant results. If there are significant effects 
to be found then an adequate sample size will be efficient for finding them. 
However, there always will be your defined level of risk that they aren’t found, 
which is one minus the power level—see the Risk section. There is also the 
fact that there may not be any significant differences to find in the first place.
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A significant difference may not be a practical difference and this can occur 
when the sample size is overly large. If the data you are collecting has very 
little variation and you have arbitrarily chosen to do 1,000 repeats, you may 
find a significant difference of no importance. Say the 1,000 repeats were to 
compare the top two marathon runners’ completion times; you may find a 
significant difference of 5 seconds. Is that data really useful? Also is it practical 
that the runners have to complete 1,000 marathons? There will be a practical 
difference that is of interest and this information will be used in the calcula-
tions, but it also can be stated in the analysis if something like the this occurs: 
e.g., the analysis showed that A runs significantly quicker than B, however this 
is a statistically significant difference and not a practical difference due to the 
fact that it is only on average by 5 seconds.

Calculation Information
When conducting a power or sample size calculation there is certain information 
required that you will need to get from the customer. The type of information 
depends on the type of data you will be collecting and what you are looking to 
obtain. Here I look at simple examples of the two most common types: means 
from continuous data and proportions from binary data. First I explain risk in 
terms of confidence and power as that is required in both example cases, in fact 
at least one of the two risks will be required in all calculations.

Risk (Confidence and Power Levels)
For any calculation you will require a confidence level, a power level, or both, 
depending on whether you require a power calculation, a confidence level, or 
a sample size. If you have a set sample size due to resource constraints then 
you won’t need to set one of the power or confidence levels, but you will still 
need to understand what they mean. Figure 1-2 shows a table of the possible 
errors that any experiment can have.

Figure 1-2.  Possible errors in an experiment
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The labels across the top show the results found in the experiment and the 
labels down the left show the truth if the entire population could be tested. 
There are clearly the situations where the experiment matches the population 
truth (shown in green), which is what we are aiming for by reducing the chance 
of the other errors.

In the top left box of the four colored boxes, if we find a significant difference 
when there shouldn’t have been one in reality, that’s called a Type 1 error. This 
is where the terms confidence and significance are associated. They are one 
minus each other, e.g., 95% confidence is equivalent to 5% significance. If we 
think about our detector example it may be that we find a spurious difference 
between similar detectors and unnecessarily spend money on the new detec-
tor, so here we have found something we should not have and wasted money.

In the bottom right box of the four colored boxes, if we don’t find a significant 
difference when there should have been one in reality, that is called a Type 2 
error. This is where the term power is associated. There is no official term for 
one minus power. So it may be that we find no significant difference between 
dissimilar detectors, we keep using our old detector, miss detections, and 
potentially result in loss of life. Essentially we have missed a real effect. This 
error is harder to account for.

One of these errors will be more important than the other, in our detector 
example loss of life and therefore the power level was more important. An 
example of the inverse could be associated with improvised explosive devices 
(IEDs) where we could be investigating a new technique for rendering them 
safe. If we say the technique has no effect when it does in reality (power), then 
that isn’t as important as saying the technique has an effect, and therefore 
declaring it safe, when in reality it doesn’t (confidence), as that could result in 
loss of life if taken forward.

Numbers translated: 90% confidence means that there is a 10% risk, or a 1 in 
10 chance, that we could find a significant difference when we shouldn’t have. 
95% power means that there is a 5% risk, or a 1 in 20 chance, that we may miss 
a significant difference when there should have been one.

Ideally we want to minimize the risk of these errors. However by doing so 
we increase the sample size needed, so it’s a balance between an acceptable 
level of risk and an affordable sample size. It’s quite complicated, but if you can 
translate confidence and power to your customer in terms of risk and what 
that would mean in the study you’re working on, it should make it clear so you 
can get the values, or range of values, you need.

Continuous Data
When dealing with continuous data you need three of the following four: a 
confidence level, a power level, an effect size, and a sample size. The fourth is 
only needed if your sample size is limited.
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The effect size is calculated from a meaningful difference and an estimate of 
the standard deviation. It is the difference divided by standard deviation, and 
this is then used in the calculation.

A meaningful difference is a difference that is of scientific interest and is 
quoted in the units that will be measured. It is also known as the delta. 
Using our marathon runners’ example, a meaningful difference may be 60 
seconds.

An estimate of the standard deviation can be tricky. The first step is to deter-
mine whether there is any historical data that can be used. If there is, problem 
solved, otherwise you may need to look down other avenues. One is through 
literature, if there are relevant examples available. Another option is to first 
run a pilot study, and then run a power calculation using the standard devia-
tion from that data to decide how many more samples need to be taken to 
satisfy the required power or confidence levels.

If you are constrained by resources you may already have a set sample size, 
in which case you would be running the calculation to find the effect size, the 
power, or the confidence level to determine whether it has achieved a satis-
factory value.

Binary Data
If you are dealing with binary data you need three of the following four: a con-
fidence level, a power level, an effect size, and a sample size. Again you need 
the fourth only if the sample size is limited.

The effect size here is just a difference in proportions, e.g., a difference of 
0.1, which is equivalent to 10%. However due to the binomial distribution 
being bound by 0 and 1, you need to specify where that proportion will 
be and this is what is known as worst case proportions. For example, if you 
know what you are testing, let’s use detectors, will be at the high end, say 
around 90% and you were interested in a 10% difference, then you could 
chose a worst case proportion of (0.85, 0.95). However if you have no idea 
about the performance of the detectors then you would need to choose 
(0.45, 0.55), which straddles the 50% mark. The sample size will be larger 
using the middle values as opposed to either end due to the fact that the 
values are not near the bounds, but this is required if there is no previous 
knowledge.

An effect size is then calculated from these worst case proportions by the 
software and is used in the calculation.
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Conducting the Calculations
The main package I use in R to run these calculations is called pwr. Within the 
pwr package there are multiple commands for the different data types and 
also test types. The structure for a continuous data calculation is as follows:

pwr.t.test( n = , d = , sig.level = power = , type = , alternative = ).

Broken down, this is what each section represents:

•	 pwr.t.test is the command for running a power or sample 
size calculation for testing means of continuous data

•	 n is the sample size

•	 d is the effect size

•	 sig.level is the significance level, one minus the confidence 
level

•	 power is the power level

•	 type stands for which type of test you will be using in the 
analysis; options include: “one.sample”, “two.sample”, 
and “paired”; the default is “two.sample”; more on 
type below.

•	 alternative stands for what your alternative hypothesis 
will be and the options include: “two.sided”, “less”, and 
“greater”; the default is “two.sided”.

Type means whether you will have one sample of data, one set of numbers 
that you want to compare against a single figure; two samples, two groups that 
you want to compare against each other; or paired samples, two measure-
ments per participant.

Example 1.1 shows how to run and interpret a sample size calculation for 
continuous data.

EXAMPLE 1.1

We are looking for a sample size calculation for our experiment involving two groups 
who throw a javelin. We just want to look for a difference between them. We have 
data from a previous experiment that suggests a standard deviation of 0.81 meters, 
and we are interested in a meaningful difference of 1 meter. Thinking about the risks, 
we are happy to take a 5% chance of seeing a spurious difference and a 10% chance 
of missing a real effect.



Translating Statistics to Make Decisions 9

# Load library
library(pwr)

# Run sample size calculation
pwr.t.test(n = NULL, d = (1/0.81), sig.level = 0.05, power = 0.90,
    type = "two.sample", alternative = "two.sided")

Two-sample t test power calculation

n = 14.81761
d = 1.234568
sig.level = 0.05
power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

Here we can see that each group needs to do 15 repeats (always round up) to achieve 
the specified confidence and power levels. So you can say 15 repeats are required in 
each group to achieve a confidence of 95% and a power of 90%.

Fifteen repeats is quite a reasonable number to complete. However if the 
sample size was much larger you may need to adjust the calculation by reduc-
ing the confidence or power levels, or alternatively increasing the effect size.

The structure for a binary data calculation is as follows:

pwr.p.test( n = , h = , sig.level = power = , alternative = ).

Broken down, this is what each section represents:

•	 pwr.p.test is the command for running a one propor-
tion power or sample size calculation for testing propor-
tions of binary data; for two proportions the command 
is pwr.2p.test().

•	 n is the sample size

•	 h is the effect size; with the command being h = ES.h(wcp1, 
wcp2) where wcp is the worst case proportion 1 and 2

•	 sig.level is the significance level; one minus the confidence 
level

•	 power is the power level

•	 alternative stands for what your alternative hypothesis 
will be and the options are the same as with the continu-
ous calculation

Currently there is no code to run a power or sample size calculation for 
paired proportions. However using the pwr.2p.test will be conservative and 
therefore can be used as a substitute.
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Example 1.2 shows how to run and interpret a power calculation for binary 
data.

EXAMPLE 1.2

We are looking for a power calculation for our experiment involving two new detectors 
and we want to see if either one is better than the other. We can only run 10 repeats 
on each detector, but we have an idea of the performance through literature that 
states detection rates around 85%. We are interested in establishing a 10% difference 
between the detection rates, but we only want to take a 10% chance of seeing a 
spurious difference.

# Load library
library(pwr)

# Run power calculation
pwr.2p.test(n = 10, h = ES.h(0.80, 0.90), sig.level = 0.10,
    power = NULL, alternative = "two.sided")

Difference of proportion power calculation for binomial distribution

h = 0.2837941
n = 10
sig.level = 0.1
power = 0.1675034
alternative = two.sided

NOTE: same sample sizes

Here we can see the experiment would only achieve a power less than 17%, which 
means there’s an 83% chance of missing a real effect. It is clear that this would not 
be acceptable so further discussion with the customer would be required to determine 
whether the sample size could be increased, otherwise it wouldn’t be worth running 
the experiment as the results could be misleading.

In general a larger sample size will be required for binary data compared to 
continuous data. This is due to the fact that with binary data there are only 
two possible outcome responses, whereas for continuous data there is finer 
granularity. You can always convert continuous data into binary data for analy-
sis if required, however you cannot do the inverse.

There are also options for power and sample size calculations for ANOVA, 
general linear models, chi-square tests, and so forth. However, these would 
require much more details and explanations so that can be left for your own 
further investigation.
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Defining the Scope of the Study
All experiments are designed to have precision, coverage, and validity; gener-
ally there will be a balance between precision and coverage due to resource 
constraints. Through this there will also be assumptions that need to be stated.

Applicability of Results
It is very easy to start covering a wide range of scenarios, increasing the 
number of variables measured along with the number of repeats that would 
need to be run to cover the study space. It may be necessary to reduce the 
scope of the study to increase the precision concerning the reduced number 
of scenarios.

It is important to discuss the balance with the customer to determine whether 
being highly precise about a specific scenario is adequate to answer the study 
question. On the other hand, you may need to reach a certain level of preci-
sion that will put a limit on the breadth of coverage.

When determining the applicability of results some of the items that need 
to be considered could be environmental conditions or multiple operators. 
For example, if a piece of kit is being tested in cold and wet conditions, those 
results may not be able to be transposed to hot and sunny conditions. It may 
be that in your study that detail isn’t important as the use will always be under 
the same conditions, but if not this needs to be accounted for. If there can be 
multiple operators it is not usually recommended to reduce the scope of the 
study by reducing it to one operator, there will be natural variation between 
operators and this needs to be recorded and taken into consideration when 
stating the results.

Assumptions
All assumptions need to be stated and recorded. These include assumptions 
about reducing the scope of the study, the variables, and the data. Assumptions 
about representativeness are very common: the test equipment, the opera-
tors, and the environment. There can be assumptions that the range within 
the variables chosen are adequate to cover the question space; that the varia-
tion between operators will be less than that of the natural variation in the 
system; that some methods used, such as randomization, will reduce the risk 
of bias in the results; and more.
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Experimental Design
The design of experiments is planned such that the problem is investi-
gated systematically to ensure sufficient relevant data is collected so that 
parameters can be estimated, the importance of variables can be tested, 
and consequently the study question can be effectively answered.

A poor experimental design, or a lack of one, can mean that any results 
need to be heavily caveated and may be misleading. In most cases a good 
experimental design can be created in a couple of hours, so even if there is 
a “fastball,” there is still time to plan a design.

Variables
Choosing the appropriate variables and their ranges is linked with defining 
the scope, as it is the variables that are removed and/or reduced as necessary 
to reduce the scope of the study. There are multiple variables to think about:

•	 response variable: this is the metric for assessing the study 
question, there may be multiple response variables. It 
also can be referred to as the outcome or the dependent 
variable.

•	 explanatory variable: this is the measurement that may 
cause variations in the response variable, generally there 
are multiple explanatory variables. It also can be referred 
to as a factor and sometimes an independent variable.

•	 nuisance factors: these are things that can cause variation  
in the response variable, but they are not of interest 
themselves, such as day, operator, and so forth. These 
should be recorded for investigation in the analysis.

•	 sources of variation: these are things that also can cause 
variation in the response variable but cannot be con-
trolled, such as the manufacturing process, temperature 
(sometimes), and so forth.

Interactions
When you are investigating explanatory variables against the outcome and are 
only concerned with the independent effect of each, this is termed as main 
effects. Figure 1-3 shows an example where only main effects are having an 
impact on the response.
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In Figure  1-3, Material A gives faster Time than Material B regardless of 
Temperature, and High Temperature gives faster Time than Low Temperature 
regardless of Material, although this needs to be tested not just plotted.

In some cases there may be interactions between the factors and the 
experimental design needs to be planned to account for this possibility. An 
interaction means two or more factors have a joint effect on the outcome. 
Figure 1-4 shows two examples of interactions.

Figure 1-3.  Example of main effects only
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The first plot in Figure 1-4 highlights that the interaction between Temperature 
and Material has an effect on Time due to the gradient slope. High Temperature 
gives faster Time than Low Temperature regardless of Material; however the 
slope of the gradient for Material B is much steeper, changing the Temperature 
has more of an effect on Time for Material B than Material A.

The other example of an interaction is due to the gradient changing direction. 
High Temperature gives faster Time than Low Temperature for Material A, 
but Low Temperature gives faster Time than High Temperature for Material 
B. Both of these interactions may have been missed if the experimental design 
wasn’t done properly to include the possibility of interactions.

Confounding
If an experimental design doesn't account for these possible interactions then 
there may be confounding due to the fact you won’t be able to tell which 
variable is having the effect on the response. For example, testing two cars 
on separate days, one car on each day, and finding a significant difference in 
the analysis. You wouldn’t be able to confidently state whether the difference 
found was due to the cars or the days.

Example 1.3 shows a design that leaves itself open to possible confounding 
results, then a design using the same number of repeats that would allow the 
full testing of interactions.

Figure 1-4.  Example of interactions
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EXAMPLE 1.3

There is a fastball that is investigating the accuracy of a weapons system. There are 
two factors that may have an effect on the probability of hitting a target. The two 
factors, height projectile is fired and angle of firing, both have four levels and there 
was money to fire 420 projectiles. Figure 1-5 shows a poor experimental design.

Figure 1-5.  Poor experimental design

Figure 1-6.  Good experimental design

Although 60 repeats will give good precision, there is bad coverage due to the gaps in 
the design space. An analysis was run on the results and it was found that 1m gave 
significantly better probability of hit and 45° gave significantly better probability of  
hit. However we have no information about the relationship between the two factors. 
Due to this we don’t really know which factor has the effect on the probability of hit: 
It may be one or it may be both.

Considering we have 420 projectiles we can run a better design while still obtaining 
good precision. Figure 1-6 shows a better design that would allow for testing the 
interaction as well as the main effects.

There are 26 repeats at each level that will still give good precision, and even leaves 
four tests left over in case anything goes wrong.
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This time let’s say that conducting the analysis on these results shows that the 
interaction was significant, which would have been missed using the last design. It 
was shown that if you use 1m then 15° was the best angle whereas if you use 3m 
then 45° was the best angle. This information would have been lost in the previous 
analysis and incorrect results would have been quoted to the customer.

It’s not always feasible to run repeats at each combination of all the variables, 
and this is when it may be acceptable to have some confounding in an experi-
ment. However, there are designs that can be used to allow for confounding 
while still retaining as much of the information as possible, see the Factorial 
and Optimal Designs section.

Designed Experiments
One of the primary ways in which data is collected is through designed exper-
iments. In addition there are two main types of experiments: These are physi-
cal experiments and computer (or synthetic) experiments.

Figure 1-7 shows a quick comparison of physical and computer experiments.

Figure 1-7.  Comparison of various elements between physical experiments and computer 
experiments
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Physical Experiments
There are a large number of design techniques for physical experiments, with 
the most common being factorial or optimal designs. I couldn’t list all the 
available designs however I have mentioned a few of the other useful designs 
including adaptive designs in addition to the factorial and optimal designs.

To reduce the risk of bias it is good practice to use randomization where 
practically possible. Pure randomization will, as the name suggests, chose a 
random order from all the runs you need to complete. If that’s not appropri-
ate, then there is stratified randomization, which will still randomize the runs 
but will be bound by a factor.

Example 1.4 gives an example of how to use pure randomization and also 
stratified randomization.

EXAMPLE 1.4

We want to investigate two different paper test styles: differences in language, 
formatting, font, and so forth. There will be an equal split of Army and Navy personnel, 
each force type consisting of 20 participants. If we wanted to use pure randomization 
we would only use the sample() command in R.

# Create the list of test options
Test = rep(c("Test1", "Test2"), each = 20)

# Create a random sample list
Assignment = sample(Test, 40, replace = FALSE)

# Show the start of the random sample list
head(Assignment)

"Test2" "Test1" "Test2" "Test1" "Test2" "Test1"

Note that your output in both sections of this code will be different to mine as it 
involves randomization.

We could then assign each person walking through the door the next test on the list. 
However, this would be a case where we wouldn’t want to use pure randomization 
as we may end up with all the Army participants sitting Test 1 and all the Navy 
participants sitting Test 2. We need to come up with a stratified random sampling list.

# Create a dataset of force type and participant
data = data.frame(Type = rep(c("Army", "Navy"), each = 20),
Participant = sample(1:40, 40))

# Split by force type then assign randomization to pick half of each
sp = split(seq_len(nrow(data)), data$Type)
samples = lapply(sp, sample, 10)
data = data[unlist(samples), ]

# Order list by participant number
data2 = data[order(data$Participant), ]
head(data2)
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Type    Participant
Navy         1
Army         5
Navy         6
Army         7
Navy        11
Army        12

We now have a list of participants to assign to Test 1 and by default anyone else will 
be assigned to Test 2; and we will have an equal split of the forces between the two 
test types and therefore reduce bias.

Randomization is a good way of reducing bias and prevents some types of 
confounding that would impair analysis results. However it is not always prac-
tical and/or possible to completely randomize an experiment and this will 
need to be taken into consideration.

For example, you may be bound by a large piece of equipment that takes 20 
minutes to set up each movement iteration. In these cases it would be more 
sensible to conduct several repeats while in one position. One way to coun-
teract a possible bias could be to repeat the experiments again another day 
with the movement iterations in a different order. Otherwise the reason for 
not using randomization just needs to be stated in the technical report, such 
as the practicality of moving heavy equipment each time.

Factorial and Optimal Designs

The best design to be used in all cases, in an ideal world, is the full factorial design 
as this would provide you with all the information about the variables you have 
collected data for in addition to all their interactions. However, as the number of 
variables increases the required runs without any repetition increases immensely.

When all factors only have two levels the number of runs will be 2f, where f 
is the number of factors. For example, with 2 factors the number of runs will 
be 4, for 4 factors it will be 16, for 8 factors it will be a huge 64, and so forth.

The full factorial design lets you completely cover the design space and look 
at all the interactions including the higher interactions; it also is balanced  
(see Example 1.5).

A fractional factorial design is based on a subset of the full factorial—such as 
half, quarter, and so forth. It allows for an investigation of all the main effects 
and some of the interactions between them. The advantage of the fractional 
factorial design is that it is balanced, which makes interpretation slightly easier.

An optimal design is also a subset of the full factorial but it’s a noninteger frac-
tion, such as 11 out of 16. It permits investigation of some or all of the main 
effects and some of the interactions, but there is more confounding. It is rarely 
balanced, which makes the analysis and interpretation slightly harder.
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Example 1.5 uses the AlgDesign package.

EXAMPLE 1.5

We want to explore through-barrier detection where the aim is to see inside a 
container. We have decided to look at four factors each with two levels: the type of 
container (A, B), the chemical inside the container (C1, C2), possible interferents (I1, 
I2), and two concentrations (Low, High). We look at three possible cases, first if we 
could do the full factorial; second if we could only do half, fractional factorial; and last 
if we could only do eleven combinations, optimal design. In all examples I show a 
tidier example of the output data from R.

# Load library
library(AlgDesign)

# Create the full design and print the results
# This is also the full factorial design
des = gen.factorial(levels = 2, nVars = 4, center = FALSE,
varNames = c("Concentration", "Interferent", "Chemical", 
"Container"))
des

Figure 1-8 shows the full factorial design with the factor levels translated from 1 and 
2 (R output) to the levels described earlier. Figure 1-9 shows the breakdown of options 
to highlight the balance in this design.

Figure 1-8.  Full factorial design

Figure 1-9.  Full factorial design balance
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# Create the fractional factorial design – 8 out of 16 combinations
half.des = optFederov(data = des, nTrials = 8, approximate = FALSE)
half.des$design

Figure  1-10 shows the fractional factorial design with the factor levels translated 
from 1 and 2 (R output) to the levels described in this example. Figure 1-11 shows the 
breakdown of options to show the gaps but also to highlight the balance in this design.

Figure 1-10.  Fractional factorial design

Figure 1-11.  Fractional factorial design balance

# Create the optimal design – 11 out of 16 combinations
op.des = optFederov(data = des, nTrials = 11, approximate = FALSE)
op.des$design

Figure 1-12 shows the optimal design with the factor levels translated from 1 and 2 
(R output) to the levels described in this example. Figure 1-13 shows the breakdown 
of options to highlight both the gaps and the imbalance in this design.

Figure 1-12.  Optimal design
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The first example shows the complete balance by running all the experiments, the 
second shows that there is still balance while containing gaps in the design, and 
the third shows how due to the difficult number of experiments balance can’t be 
maintained, although the design does its best. The examples also show how simple it 
is to generate the designs in R.

You should remember that when using a fractional factorial or optimal to 
take care when interpreting some main effects or interactions that will be 
confounded with higher term interactions.

An example of acceptable confounding would be to confound a lower-order 
effect, such as an interaction between two factors, with a higher-order effect, 
such as an interaction between three factors, as it can be hard to interpret the 
higher-order interactions. Here we make the assumption that the observed 
differences are due to the lower-order effect rather than the higher-order 
effect.

Adaptive Designs

There may be some cases where an adaptive design is required, and this just 
means exactly that, the design is adapted during the experiment due to the 
results found.

Some examples of this are when you look for limits of detection for a new 
piece of equipment, survivability curves, or protection rates at different threat 
levels.

There are some common methods used when dealing with binary response 
data in terms of a continuous explanatory variable, one of which is the Langlie 
method (see Figure 1-14).

Figure 1-13.  Optimal design balance
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Based on subject matter expert (SME) judgment a “window” of values is cho-
sen where you are sure that the lower end will definitely produce negative 
results and the upper end will definitely produce positive results or vice versa 
depending on the scenario.

Here the first experiment is run at almost the 0 concentration level, which 
gave a negative response. Then the second experiment is run at the 10  
concentration level, which gave a positive response. The third experiment is 
run at half the concentration between the two, and as this produces a negative 
response the fourth experiment is run at halfway between the concentra-
tion of Experiment 2 and Experiment 3, as we know we need to increase the 
concentration for a positive result. This continues until you have reached a 
concentration level you are happy with, or until your repeats run out. This will 
however only let you know the 50% detection limit.

The issue with this method is there is no correction for either false positives 
or false negatives. For example, in Figure 1-14 let’s say that Experiment 5 was a 
false positive, for the rest of the trial all experiments will be conducted under 
that concentration level; however the actual area of interest lies between 
the concentration levels of Experiments 4 and 5, which now will never be 
investigated.

Another common method is the Staircase method, see Figure 1-15.

Figure 1-14.  Example of the Langlie method

Figure 1-15. An example of the Staircase method



Translating Statistics to Make Decisions 23

Based on SME judgement both a “window” of values and a step size is chosen 
so you not only have each “end” of the trial, but also set steps between those 
values. It can be tricky to pick a sensible step size as you need it to be big 
enough that you reach the area of interest without lots of repeats, but you 
also need it small enough that it’s a sensible set of values.

Here you can start at either end. We started at the lower end, and then ran 
the first experiment. This was a non-detect so Experiment 2 was run at the 
next step up in concentration. This continues going up or down steps depend-
ing on whether the response was detect or non-detect.

A positive thing about this method is that it can account for false positives and 
false negatives, as circled in Figure 1-15, as the next time that step is reached 
there is a chance of the correct result. At some point the area of interest will 
be reached and you will “bounce” between the steps, so you will know you 
are in the correct location, as shown by the dark grey lines. The downside of 
this is the step size defines the granularity you can see.

This leads on to adaptive designs, the Staircase method is a good way of nar-
rowing down the area of interest with a small sample size. You can then take 
that step, concentration level 2 and 3 in Figure 1-15, and divide that up into 
sections for further testing, which is the adaptive part of the design.

This can be split into as many sections as you wish, but you should include 
some repeats at each section. You should also include a section within the 
20% to 30% area and within the 70% to 80% area to obtain the most informa-
tion as a curve will be fitted to the results, see Figure 1-16.
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From Figure 1-16 you can now find any other probability of detection, not 
just the 50% mark. You also can add different level confidence intervals to the 
curve.

Other Designs

There are many other designs; however I will only mention a few key designs 
used for different types of experiments.

Screening designs are used when a large number of factors need to be 
explored using a small number of experiments, such as only being able to use 
12 experiments for 11 factors each with 2 levels. A common type of screening 
design is the Plackett–Burman. These designs are useful only if the main effects 
are important and not the interactions as the main effects will be confounded 
with the two-way interactions.

Figure 1-16.  Probability of detection curve
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Randomized control trials are used most frequently in medical research and 
participants are randomly assigned to groups. The objective of these trials is 
to compare treatments to assess the efficacy of interventions where partici-
pants can only take one treatment. An alternative where it’s appropriate to 
take multiple treatments is called a cross-over design. However, the process 
of randomization of participants can be quite complex.

Mixture experiments are used when the volume/mass is fixed and the inves-
tigation is for the proportions of the components. The constraint with this 
approach is that the level of one component is automatically defined once the 
other component levels are fixed. The design space can get quite complex 
with multiple factors and if there are constraints on the mixture itself. These 
designs are very common in the food sciences.

Computer Experiments
There are no standard approaches for deterministic computer experiments 
as there is no variation in the results, if you ran the model 20 times with the 
same factor set up you would get exactly the same answer each time.

Stochastic computer experiments have the variation modeled in, a lot of the 
time this will have been through a mix of physical trials and/or SME judgment. 
Again, as with the previous section I only discuss a few standard designs in 
addition to physical design methods.

Latin hypercube sample (LHS) is a commonly used design. The factors are 
scaled from 0 to 1 and are scaled based on the minimum and maximum val-
ues for each one. If the computer experiment has time to run to completion 
this is a recommended method as it will thoroughly cover the system space. 
However if the experiment has to be stopped early then there may be spaces 
with no information due to the randomization of placing the points.

Low discrepancy sequence also has its factors scaled from 0 to 1 by the mini-
mum and maximum values. However the advantage of this over the LHS is if 
the simulation may be stopped early as this method pushes the points around 
the design space. The algorithm works by trying to fill the empty spaces so if 
it does have to finish early there is still a good spread of information around 
the design space. The disadvantage though is that it takes longer to run than 
the LHS. Figure 1-17 shows an example of the difference between the LHS 
and the low discrepancy sequence if stopped after 10 runs instead of 25 runs.
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Uniform designs are useful if you are only interested in an average, which may 
not be ideal if the response is complex and has regions of extreme change. 
This design is another that scales the factors from 0 to 1, but it then puts 
points on a neat grid rather than randomly scattered through the space.

An example where a uniform design wouldn’t be appropriate is using a simu-
lated motorcycle accident, as data shown in Figure 1-18.

Figure 1-17.  LHS and low discrepancy sequence designs stopped after 10 runs
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The measurements recorded are head acceleration across time after impact. 
It is clear that this is a complex relationship as the head jerks back and forth 
in an accident. Figure  1-19 shows the difference between using a uniform 
design compared to a LHS design for investigating the relationship between 
the variables.

Figure 1-18.  Relationship between variables from a motorcycle accident
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If the uniform design had been used a lot of important information would be 
missing and we wouldn’t have seen the pattern discovered through using the 
LHS design.

When there are very complex models that take days to run iterations of the 
simulations, meta-models can be developed to give a quick response. A sample 
will be required to train the meta-model, and it should include uncertainty 
about the predictions. Once trained it should be a good representation of the 
complex model that will produce much quicker results. The tradeoff is that 
the response will be less precise, but it’s a good indicator before the complex 
model results are completed.

At the observation points of the meta-model there is little or no variation, 
however between the points the variance increases, and once beyond the 
limits of the outer points the variance increases exponentially, so care should 
be taken with the estimates made outside the recorded range.

Surveys
The other primary way in which data is collected is through surveys. Some 
of the advice also can be used in questionnaires given to participants during 
a designed experiment. However survey design as a data collection method 
generally refers to the case where the participants are not known or are 
assigned beforehand.

Figure  1-20 shows the suggested process to follow when thinking about 
designing any survey.

Figure 1-19.  Uniform design compared to a LHS design to model a motorcycle accident
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Once you have assessed who the population includes and the population size, 
a representative sample size will need to be calculated. However this will need 
to be tweaked due to nonresponses. Response rates for surveys can be quite 
low, so you will need to send out extra surveys to account for this. Additional 
thought should be given to the reasons for nonresponses and how this may 
cause bias in the results and affect the scope of the study.

When designing the survey itself and this applies to designed experiments 
questionnaires as well, there is quite a lot to think about. Personally I consult a 
human factors specialist as it’s not my area of expertise, but the following are 
general areas for consideration.

Wording of the questions can be quite tricky, especially if a suitable survey 
design doesn’t already exist. Keep the language simple but precise as to what 
you are asking, keep the questions short, avoid leading questions, determine 
whether the question is multiple choice, and don’t always be biased toward 
using positive statements.

Think about the question response type and the implications during analysis 
they may have. For example, if an open text box was the only response option 
available, which analysis methods could be used? However, it can be useful 
to provide an optional text box as it can help clarify why participants have 
selected a specific answer. Likert responses are a popular method for ques-
tionnaires, but thought needs to be given to whether there is an even or odd 
number of categories, that is, do you allow an “on the fence” option. There 
are multiple opinions about this, but it’s ultimately a choice whether you want 
to force a subject to pick a positive or negative answer when they may not 
want to or allow a neutral answer that may not be informative in the analysis.

Figure 1-20.  Survey design thought process
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Demographics also should be collected whether it’s a key focus of the sur-
vey or not, as they can help inform results during the analysis. Again there is 
discussion as to whether this should be placed at the beginning or the end of 
the questionnaire.

It’s always recommended to run a pilot study first as this will highlight any 
ambiguity in the questions, suggest where closed questions should include 
more response options, show where a question would be better placed in a 
different format, and also indicate whether the survey is a manageable length.

Once the experimental design has been completed, the next item to do is 
think about is collecting the data and formatting it.

Summary
This chapter delved into the thought that needs to go into designing experi-
ments and showed a suggested process to follow to make sure all the relevant 
information is collected. It was split into four main sections corresponding to 
the four steps shown in the design of experiment process in Figure 1-1.

The first of which showed how to form the study question that will then be 
turned into a hypothesis. It explained briefly how hypotheses are formed and 
also described the type of questions that should be asked of the customer.

The second section looked at power and sample size calculations and showed 
some common misunderstandings involved with the “how many” question. 
Within this section the first subsection explained the information needed to 
run the calculations, such as risk and other values dependent on data type, 
and how to translate that to get it from the customer. The second subsection 
then delved into how to actually conduct the calculations using R and how to 
interpret the results.

The third section discussed defining the scope of the study including thinking 
about the applicability of results in other scenarios and also the assumptions 
that need to be justified and recorded.

The last section was the largest and moved onto how to design the experi-
ments themselves. This was split into three subsections, variables, designed 
experiments, and surveys.

The first subsection described some common terminology linked to vari-
ables, and then went on to explain interactions and confounding effects with 
examples.

The second subsection probed into some of the available designs for both 
physical and computer experiments. This included factorial and optimal 
designs, adaptive designs, and some of the other popular designs for physical 
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experiments, as well as some off the common computer experiments designs 
including Latin hypercube samples, low discrepancy sequences, and uniform 
designs.

The final subsection briefly investigated survey design including a suggested 
process of what needs to be thought about along with some further details 
of each stage.

Chapter 2 moves to actually collecting the data and what considerations 
should be given before jumping straight into carrying out the experimental 
design created. It also looks at the formatting side of things once the data is 
being/has been collected.

http://dx.doi.org/10.1007/978-1-4842-2256-0_2
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C H A P T E R 

Data Collection
How Do I Get the Data?

The main aim of writing an experimental design is to make sure you collect 
the relevant data to answer the customer’s question. The next step is to cre-
ate a data collection plan to ensure that the actual data is both available as 
soon as possible and also in a useable format.

Collecting the Data
When collecting data the most important thing is to create a data collection 
plan. This informs everyone involved as to what data needs to be collected, 
how it is to be collected, when it needs to be collected, and why it is being 
collected (i.e., which key question that particular data will help to answer).

Along with this plan there should be clear instructions to the observers, 
where applicable, who will be gathering the data, and this information will vary 
dependent on the type of data that is being collected; mainly split into objec-
tive and subjective data.

Figure 2-1 shows the suggested process to follow when thinking about all the 
aspects involved in data collection.

2
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More detail will be given during the later sections of the chapter. However a 
brief description about each section of the process as shown in Figure 2-1 is 
given here.

The first section of the data collection process is actually a repeat of the final 
section in the design of the experiment’s plan, as thinking about the data col-
lection plan stems from the design of experiments plan. This will just get you 
rethinking about the different variables and what you will actually be collecting 
along with the units in which these measurements will be taken.

Second is to think about how the data will be collected. Therefore by initially 
dividing the variables into whether they are objective data or subjective data 
will affect the following questions. Methods of collection need to be decided, 
and these will generally vary dependent on the answer to the previous parti-
tioning; for example, questionnaires will mainly be used to collect subjective 
data. The final slightly disjointed item to be considered is concerning the col-
lection of the data and whether the collected data will be initially recorded on 
hard or soft copies, or a mix of both.

The next section involves considering who will be collecting the data, again 
this may vary dependent on the data types chosen earlier. Whether you just 
need to assign participants, recorders of objective data, or observers, they 
all need clear guidance as to what is expected. In addition to this, adding the 
personal benefits to participants you have chosen to partake in the trial will 
encourage full thoughtful answers.

Finally all of this needs to be recorded in a data collection plan for reference. 
There also should be a section within this plan for the data formatting guide-
lines, see the Formatting section.

Figure 2-1.  Data collection thought process
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Objective Data
Objective data collection generally applies to observers recording figures 
according to machine or tool readouts. It is slightly confusing as it also can 
apply to measurements not strictly taken using a tool, but more of a subjective 
statement of an objective measurement—see the example in the Variation 
section. In this section I discuss objective data as that collected during a physi-
cal experiment by recorders.

Variation
Dependent on the measurement type, the value stated can vary between 
recorders due to natural human variation even during a physical experiment.

For example, if you are asked to note the time when liquid has started to 
absorb through a material and changes the color of the material, your answer 
may not be exactly the same as someone else’s looking at the same test. 
This is why multiple observers are recommended even with objective data; 
unless it is a machine readout that states the figure and just needs copying. 
Although the absorption time is, strictly speaking, a subjective measurement, 
it is defined more as an objective measurement due to the fact that a machine 
could record it, if one existed. It is not truly subjective, the variation between 
observers will be slight and due to eyesight or something similar rather than 
personal opinion.

Tied in with using machines is the fact that there most likely will be machine 
variation that will need to be accounted for as with human variation. Both 
of these things need to be considered during the design of experiments 
phase. Where appropriate, consideration should be given to calibration of the 
machines: is it necessary to ensure multiple machines have been calibrated at 
similar times, have they been recently calibrated or was it a long time ago, also 
what if one machine needs to be calibrated half way through the experiment? 
This is a data collection issue as the design of experiments will have only 
covered the fact that you need multiple machines to cover process variation.

Repeats
It is good practice to take multiple measurements within recorder tests as this 
also can have some variation. For example, when testing ammunition one of 
the tests looks at the dimensions and another test looks at the weight. For the 
first test the recorder is measuring the ammunition with a ruler and is record-
ing the values, for the second test the recorder is using a set of scales. The 
same answer may not be achieved for every repeat of the same ammunition 
and therefore a few repeats should be taken to account for both the recorder 
and machine (scales) variation. In terms of extra data for analysis it will add 
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no time at all, and in terms of recording the extra measurements it will add 
on very little time and effort to the experiment; plus it will also give a much 
better estimate of the real result.

Precision
Additional information should be given about the precision requirements for 
the measurements taken. For example, should the recorders note the result 
to one decimal place, two, three, and so forth? This is important to state 
upfront as otherwise you may get one recorder that rounds the figures to the 
nearest whole number while your experiment requires specific detail about 
the equipment performance.

Frequency of measurements also needs to be stated before the experiment 
begins. For example, if there were a set of runners that were recording their 
heartrate over a set period of time they need to know how often they should 
record it so the measurements are consistent across the runners and therefore 
will be comparable in the analysis. In this instance each runner should have 
the same type of equipment, which would have been covered in the design of 
experiments. However, each piece of equipment should be tested on a single 
participant beforehand to establish an initial idea of the variation in the equip-
ment; this is so the equipment variation can be accounted for during the analysis 
when human variation comes into play, and therefore won’t be confounded with 
that variation. There should also be a record about which piece of equipment 
has been assigned to which participant.

How to record missing data or erroneous data, such as a value too low for 
the machine to detect, should be identified before the experiment begins to 
reduce the data formatting time. For example, Figure 2-2 shows some possible 
responses for missing data I have come across when dealing with Ct values,1 
which should be a continuous value.

1A Ct is the number of cycles taken for a fluorescent signal to cross a threshold (cycle 
threshold); this is used to detect a positive reaction in a PCR (Polymerase chain reaction) 
assay.
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Subjective Data
Subjective data applies to both responses from participants about their opin-
ions and also observer notes about participants they have been asked to 
observe.

Participants
When collecting data from participants, this is primarily done by question-
naires. For this section we focus on questionnaires that are physically filled out 
by the participants themselves.

Instructions

The key thing is to give instructions to the participants not only about what is 
required from them, but also about why the information is needed. This may 
seem like an obvious statement but the second point isn’t always applied.

There’s no better incentive than one that shows exactly how the responses col-
lected can directly benefit the participant. For example, working with military 
participants, they aren’t too enthralled about filling in multiple questionnaires, but 
if the benefits are made clear, such as this will directly aid with which body armor 
you will be using in the future, then they are much more willing to put in the 
time and answer the questions thoughtfully. There’s nothing worse than receiving 
blank questionnaires or questionnaires where no thought has gone into it. For 
example checking exactly the same response throughout or always checking the 
neutral response due to them being either too busy and/or not engaged.

Figure 2-2.  Missing data responses for Ct values
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Giving clear instructions about how to fill in the questionnaires properly will 
reduce the data formatting time immensely. Even with a well-planned and 
produced questionnaire, participants can still answer incorrectly, in terms of 
the response data type that is required for the analysis. For example, if you are 
using a Likert-type scale such as in Figure 2-3 for the likelihood of an event 
occurring, definition needs to be given as to the responses you are expecting 
to see.

Figure 2-3.  Likelihood of an event ocurring response options

Figure 2-4.  Likelihood of an event ocurring responses

Figure  2-4 shows an example of some of the responses received that we 
would class as “incorrect” for use in the analysis due to there being multiple 
options chosen. “AC-AI” in the figure below stands for “Almost Certain–
Almost Impossible” on the scale in Figure 2-3, and so forth.

In the questionnaire provided, the question simply stated “what is the likeli-
hood of the event occurring?” with the Likert scale in Figure 2-3 shown on its 
side at the edge of the page, and a blank line for the participants response. The 
first “incorrect” response could clearly be discounted from the analysis as the 
participant had covered the entire response option space however the other 
responses are understandable as they are within a close range of each other. 
A lesson learned from this would be to either specifically define up front that 
only one likelihood could be chosen or to offer boxes stating that to check 
one option only.

A recommended extra for questions similar to the one in the previous para-
graph would be to include a confidence level. For example, in the question-
naire, below each question, we included a five-point Likert confidence scale 
from very confident to very unconfident. The advantage of this was that it 
specified their confidence in the answer they chose so it aimed to improve 
the understanding of the analysis. You could see when someone really wasn’t 
sure about an answer, and may have just chosen it because they knew they 
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needed to note an answer, and also when someone was very confident about 
the response they had chosen. This isn’t always applicable though, such as for 
questions about comfort, ease of use, preference, and so forth.

Repeats

It may be necessary to gather multiple questionnaire responses from the same 
participants over time, in which case this needs to be accounted for during 
the analysis. It is during the design of experiments phase that the number of 
questionnaires per participant needs to be decided on dependent on the rela-
tive gain of useful information. However, it’s worth noting that running a pilot 
study may improve the estimate.

Taking this approach, while beneficial to answer the customer question, it 
can be cumbersome to the participant and thought needs to be given to that 
aspect. Imagine that you were the participant having to answer all these ques-
tionnaires, could you give thoughtful answers each time?

We conduct multiple studies where we piggyback, as it were, onto military 
training exercises; so they are performing their everyday routines without any 
interference from us except for giving out the questionnaires. From our point 
of view we want to gather lots of information from them once we have added 
something extra to their training, such as different vehicles, storage, cloth-
ing, and so forth, and from their point of view they just want to get on with 
the training. We have to come up with a balance of gaining our information 
without annoying or distracting them which would result in noncooperation 
or unrealistic responses. An easy starting point, as I’ve mentioned earlier, is 
making sure they understand the direct benefit to themselves by giving us this 
information, then making sure the questionnaires are as clear and concise as 
possible, and finally having the potential to be a bit flexible. For example with 
the last point, you don’t want to be stopping them mid-fire with the “enemy”; 
postponing the questionnaire until just after would produce much better 
results as they won’t be rushing to get back to the action.

Observers
In some cases the subjective data will be collected by observers watching 
other people, the participants, carry out an experiment, or training using the 
military example. This also can be done in addition to the participants directly 
filling in questionnaires themselves.
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Instructions

Clear instructions need to be given to the observers as well as to the par-
ticipants, as the observers need to know how their responses will fit into 
answering the key customer questions. They also need to know exactly what 
the participants will be doing.

The observers need to be made aware of the type of things to look out for 
so that the notes they are making can be applied to one or more of the key 
question areas. For example, is it of interest for them to record who speaks to 
whom, the stress levels, if anyone is not being included, and so forth.

Tied in to this is defining who the observers will be watching, will there be dif-
ferent observers per participant or group of people, or will there be multiple 
observers generally watching the whole room?

If things such as stress levels are of interest should it just be recorded in note 
form or would it be preferable to record stress in a structured format, such 
as on a Likert scale, so there is comparison across both time and the observ-
ers? It’s good practice to have the observers noting some of the same things 
that the participants themselves have been asked, such as work load, as it’s 
interesting to compare the observers opinions to what the participants have 
actually recorded.

There is also the practical aspect of how long can the observer actually be 
alert to what is going on. There should be planned breaks for the observers 
with replacements coming in so the experiment doesn’t need to be paused 
and the flow disrupted.

Authority

The observers need to know their place in a completely non-negative way. 
If their role is just to observe the room then they need to make sure they 
are as invisible as possible. They need to make sure they don’t engage with 
the participants by asking or answering questions. The participants should be 
made aware that they are not to become involved with the observers. The 
observers also need to ensure that they stay impartial.

If the observer’s role includes issuing and collecting questionnaires, or asking 
the participants the questions directly, then they need to the lead with this 
aspect. For example, there may be missing questionnaires in the results due 
to the observers feeling that as the military participant was a very high rank, 
they didn’t feel they had authority to tell them what to do. It needs to be made 
clear that in an experiment they have the authority to stop the participant, in 
line with a sensible stopping time, to gain the responses required. The partici-
pant may get annoyed, but with reiteration of the personal gain from providing 
the responses, it should pave the way to get sensible responses rather than 
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a rush through to get it done or a pure dismissal of the questions. This boils 
down to having good communication between the observers and the partici-
pants and it may mean changing observers around as sometimes there are 
personality clashes that just cannot be avoided.

Variation

There will be variation between the observed participants and that is what we 
want to collect through the experiment. However, there also will be variation 
between the observers, as there should always be multiple observers, and this 
we want to minimize as much as possible. A good starting point is to run a 
pilot study to highlight the type of items you want them to notice, collect, or 
do. This way they can practice as well as see the methods other observers use.

There are some statistics that can be used during analysis, or in the initial pilot, 
to measure inter-rater agreement and also internal consistency, two common 
statistics being Cohen’s kappa and Cronbach’s alpha. To be able to calculate 
these statistics an observer ID should be recorded.

Formatting
If the data collection instructions have not been very clear then the format-
ting of the data for analysis can take a long time, sometimes it can take longer 
than the analysis.

If the data has been collected by hand, that is, on paper; this will then need 
to be inputted into a computer. Thought should be given as to where these 
documents are stored to avoid being lost; how they can be distinguished from 
each other; a naming convention on the top is recommended; and when they 
should be inputted as soft copies, for example, at the end of each day, at the 
end of the experiment, and so forth.

Contrary to some advice given in statistics, when entering the data from hard 
copy to soft copy, this is generally best done by one person. This way there 
will be a much lower risk of data duplication and of different naming conven-
tions. There also will be a point of contact for questions. However, for quality 
assurance the data also can be entered independently by another person, 
depending on the time burden, then both data sets can be compared on the 
computer to check for possible errors through human input.

If data has already been collected in soft copies then the task is to merge all 
the data and/or to check for the same mistakes that could be made inputting 
the data from hard copies, which we will look at later. Make sure there are 
always back up files for all soft copy data, the worst thing would be to lose a 
whole trial worth of data.
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Generally speaking, how software requires the data to be set up for analysis 
usually isn’t pleasing to the eye, so sometimes there will be a “viewable” data 
set and an analysis data set. If you are using R, it requires data to be stacked as 
in Figure 2-5, with the middle section deleted for space saving; unless you are 
dealing with paired data, which is discussed in Chapter 3.

Figure 2-5.  Example of stacked data

It’s always better to start with the complete data set like this as it’s very simple 
to subset out sections, such as per question, rather than start with separate 
columns for questions and have to merge them later on.

Different software may require the data to be set out in different formats, so 
you need to be aware of what format is required as this will drive how you 
structure the soft copy data.

I also recommend using Excel to store the data in csv files as it’s accessible by 
almost all companies and can be converted if they have an older version. It is 
easy to use and can be read in most software packages.

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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That said, no matter whether you are inputting the data from hard copies or 
are having to check already entered soft copy data for errors/discontinuity, 
there are certain things you should be aware of:

•	 Get to know the software you will be using for analysis 
and what structure the data will need to be in.

•	 Make sure the data template is set up first, which means 
make sure you have all your column headers in place so 
you know where all the data fits.

•	 Ensure the column headings are kept as simple and clear 
as possible as a lot of software will convert spaces and/or 
symbols to a full stop. This doesn’t apply to group levels 
within a variable as spaces and symbols can be included 
within these.

•	 Keep track of the data so you can avoid multiple entries 
or missing out data.

•	 If applicable, make sure the participants have an ID num-
ber, whether the questionnaires are anonymous or not, 
you may need to refer to it later on.

•	 Ensure you enter all the raw data rather than averages, any 
summary statistics can be done later using the software.

•	 Use the same value for missing data, whether it’s a blank 
space or specific text.

•	 If there are zeros in the recorded data, check whether they 
represent zeros or missing data and input appropriately.

•	 When repeating text, such as group names, copy and 
paste is the best to use, as this way you avoid misspelling 
words, inserting an extra space, and so forth.

•	 If you are dragging a cell down for copying in Excel and 
it contains a number, make sure it copied correctly: copy 
the cell as opposed to continuing the sequence.

•	 Save the document in a useable extension for the soft-
ware, for example R can read .xlsx files using certain 
packages but it’s much simpler and quicker to save a  
.csv file.

Once the data has successfully been inputted and checked you can still double 
check items within the software. The software will soon highlight an error if 
the data is in an unreadable format; if there are extra unnamed variables, usu-
ally if there is a space in one cell; or if the data is unbalanced when it shouldn’t 
be, if you haven’t filled in all the data for one variable.
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The following example of formatting checks, including some errors that may 
be seen, are shown using R, so skip to the end of the chapter if you won’t be 
using that software.

Reading in data to R will immediately show if the data set is complete.

data = read.csv("MyData.csv")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
  cannot open file 'MyData.csv': No such file or directory

Common solutions to this error may be that R is linking to a folder that 
doesn’t contain the data in which case you need to change the working direc-
tory, or make sure the data set is saved using the same extension as R is asking 
for.

Once the data has been read, successfully check the class of your variables to 
verify they are in a format you expect, it may be that you need to tweak one. For 
example, if Day was recorded as 1, 2, 3, then R will assume it to be an integer, 
treated as continuous data in models, and you may want it to be a factor.

class(data$Gender); class(data$Day)
[1] "factor"
[1] "integer"

data$Day = factor(data$Day); class(data$Day)
[1] "factor"

You also can check the levels of factors to ensure there haven’t been any spell-
ing mistakes or missing/extra levels.

levels(data$Smoker); levels(data$Likert)
[1] "N" "y" "Y"
[1] "1"  "12" "2"  "3"  "4"  "5"

You clearly can see there has been a typo when entering data for whether 
someone smokes or not (Smoker), and there also has been an error enter-
ing the Likert responses. With Smoker it is obvious that the “y” should be 
changed to a “Y” to tie in with the capital “N.” However with the Likert 
response you don’t know whether the value of 12 should have been a 1 or a 
2, so either the hard copies will need to be referred to or the data may have 
to be excluded if there’s no way of verifying the correct answer.

With numerical data you can investigate the minimum to maximum values to 
ensure that these give the range you were expecting, if there is an anomaly it 
may have been missed if only the mean was investigated.

min(data$Age); max(data$Age)
[1] 0
[1] 220
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mean(data$Age); median(data$Age)
[1] 59.5
[1] 42

A quick look at the mean shows a sensible age, though it is a bit high if you also 
checked the median. However by including the minimum and maximum values 
we can see that there have obviously been some errors made with the data 
input. The age of 0 is clearly incorrect, but does it mean N/A or has another 
number been missed before the zero? Likewise with 220, should it have been 
22, 20, or neither? These would both need to be checked and changed if pos-
sible; otherwise they would need to be excluded from the analysis.

As a side note if summary(data$Age) was used this would show the mini-
mum, first quartile, median, mean, third quartile, and maximum of the data, 
more in Chapter 4.

You will be able to see if all the data has been entered, especially if you have 
equal groups of participants.

length(data$Response)
[1] 16

xtabs( ~ data$ParticipantGroup)
data$ParticipantGroup
    A  B  C  D
1  4  4   4  3

Although the length is correct for the number of responses we should have, 
the groups are not correct. One participant is not in a group when they 
should have been in Group D. The most likely explanation for this is that the 
last label was left off the spreadsheet by accident and is easily rectified.

Summary
This chapter has shown the thought process behind collecting the data in 
terms of what will be collected, how it will be collected, who will be collecting 
it, and the possible problems that can occur within each if not given enough 
consideration. It also looked at the issues that can occur with data formatting.

The data collection section was split into objective data and subjective data, as 
the two have different concerns with information that needs to be provided 
to recorders, participants, and observers and what is detailed in the data col-
lection plan. The first gave thought to variation, repeats, and precision and the 
latter split into participants and observers. Attention was given to instructions 
and repeats for the participants, and instructions, authority, and variation for 
the observers.

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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The second section of the chapter then delved into issues that can arise with 
data formatting in terms of either inputting data from hard copy to soft copy, 
or just checking the original soft copy data. These issues included missing data, 
incorrectly labeled data, and having the data in the wrong format for use with 
statistical software, with the focus here being the R software. It also included 
other important points to consider. Examples with R code were provided to 
check for data formatting errors using the R software, some errors have been 
highlighted with suggestions as to why these errors may have occurred.

Chapter 3 takes us to after the experiment has been run and the data 
collected in a useable format. It looks at the first step before any analysis 
is conducted, which is exploratory data analysis (EDA). EDA is concerned 
with data types: viewing the data visually, identifying suspect data points, and 
choosing which distribution the data follows.

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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C H A P T E R 

Exploratory 
Data Analysis
What Data Do I Have?

The first thing to do with any data set is to get to know it. This is done not 
only to familiarize yourself with all the data you have collected, but also to 
reduce the workload during analysis. The initial data investigation has been 
termed exploratory data analysis or EDA and it primarily focuses on visually 
inspecting the data. The main aim of EDA is to understand what data you 
have, what possible trends there are, and therefore which statistical tests will 
be appropriate to use.

Figure 3-1 shows the suggested process to follow when conducting EDA.

3
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The following sections delve into more detail for each of the steps shown in 
Figure 3-1. However the general idea is to identify the data types you have 
for each variable, for example, whether the data is continuous or discrete will 
lead to which plots can be created. These plots are initial investigations and 
Chapter 9 goes into more explanations about how to make clear, concise graphs 
to present to a customer as opposed to these quick and dirty inspections.

The next step is to identify any unusual data points and establish whether they 
are real outliers by using the plots. Once these have been dealt with the family 
of the data needs to be classified (e.g., normal distribution). By carrying out 
all these steps you can then move on to the final step that determines which 
tests can be performed on the data, but this is covered in other chapters.

Data Types
The type of data being collected should have been considered during both the 
design of experiments and data collection phase, however it is good practice 
to verify and if you haven’t been involved from the beginning of the study it’s 
a good place to start.

The main way to classify data types is into quantitative data or qualitative data; 
however the data also can be classed as univariate, bivariate, or multivariate. 
The latter three terms simply refer to the number of variables being recorded: 
uni (one), bi (two), multi (three or more).

Figure 3-1.  Exploratory data analaysis (EDA) process

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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In addition there are also the classifiers of objective or subjective data, which 
were mentioned in the previous chapters. The data being objective or sub-
jective won’t affect the tests used during analysis, however it will affect the 
assumptions and statements made in the conclusions.

Quantitative Data
Quantitative data is the term given to any data that is recorded as a numeri-
cal value. The subcategories within this are continuous data and discrete data.

Continuous Data
Continuous data is data that can be recorded as any value between an interval 
and as such it can be recorded with decimal points and still make sense (e.g., 
the strength of a signal in decibels or accuracy of a projectile in meters from 
a target).

Although age is usually recorded in integer form, it is generally considered to 
be continuous data due to the fact that you can be 21.5 years, but you just 
wouldn’t record it as such.

Discrete Data
Discrete data is data that can only be recorded as an integer; it would not 
make sense to have 2.5 people for instance. Other examples include the num-
ber of canine detections or the number of survey responses.

Qualitative Data
Qualitative data is the term given to any data that is non-numerical and gener-
ally subjective. Qualitative data can be assigned a number to aid with analysis. 
However the precise value of the number itself is meaningless. The subcatego-
ries within this are binary data, nominal data, and ordinal data.

Binary Data
Binary data has two responses such as yes/no, heads/tails, and so forth (e.g., 
a detector detecting a target or the outcome of flipping a coin). When using 
binary data in analysis it is generally coded to 0 and 1 with 1 being the mea-
surement of interest.

Binary data is actually a special type of nominal data, one with only two cat-
egories. When discussing the graph types later, any reference to nominal data 
will also include the case of binary data.
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Nominal Data
Nominal data also is commonly referred to as categorical data, this is data 
that contains multiple groups that could be given a numerical value but have 
no natural ordering. For example, different types of vehicles such as bike, car, 
truck, boat, plane, could be assigned the numbers 1 to 5 for ease of analysis. 
However the values themselves are meaningless and have no ordering, car has 
the value 1 greater than bike by assignment only and not because it’s “better.”

Ordinal Data
On the other hand, ordinal data also can be given a numerical value but it does 
have a natural ordering. For example, reactions to a chemical could be none, 
rash, or blistering and they could be assigned the values 1 to 3 with 3 clearly 
being more severe than 1, but not necessarily 3 times more severe.

Another example of ordinal data is Likert responses from questionnaires, 
there is a clear progression from strongly disagree to strongly agree, or the 
equivalent. This data is not always treated as ordinal data as it should be, and 
as such the results can be misleading, see more in Chapter 7.

Viewing the Data
As mentioned earlier, in this section I discuss some of the different plot types 
that can be created given the types of data you have, although this list is by no 
mean exhaustive.

In EDA graphs are drawn to “get to know the data,” so it’s about noticing 
trends and structure for testing as opposed to drawing “pretty” plots. Chapter 
9 is more focused on the effective presentation of graphs to highlight mes-
sages to the customer, including R code examples for amending color, labels, 
and so forth.

When plotting data regardless of the type of plot, the response variable should 
be on the y-axis, the vertical axis, and the explanatory variable should be on 
the x-axis, the horizontal axis. If there are multiple explanatory variables then 
this can be covered by different colors, shapes, or facets on the plot, for more 
information on graphs see Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
http://dx.doi.org/10.1007/978-1-4842-2256-0_9
http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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Bar Charts
Bar charts are suitable for discrete data and counts of nominal data. There are 
many different variations such as stacked, percentage, and so forth, but they 
are very good to compare the frequency of different groups.

Figure 3-2 shows an example of the counts of different car makes bought at 
a local garage within one month. It clearly shows the order of car type sales: 
Ford, Vauxhall, Audi, Nissan, and then BMW.

Figure 3-2.  Bar chart of cars bought at a local garage
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Dot Plots
Dot plots can be used in a similar manner to bar charts and are less cluttered 
as they show a single point as opposed to a bar. They can be used to show a 
single statistic, such as a mean, more clearly than a bar chart in which the filled 
bar below the top line of the bar would be redundant.

Figure 3-3 shows a dot plot of the average waiting times for baggage at 
selected United Kingdom airports, confidence intervals around the mean 
could be added to this plot for more information. At first glance the general 
trend is that the waiting times are shorter for Birmingham, East Midlands, and 
Manchester and are longer for Edinburgh, Gatwick, and Heathrow; which may 
be expected due to their size and popularity.

Figure 3-3.  Dot plot of average waiting times for baggage at UK airports
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Parallel Lines Plots
Parallel lines plots can be used to show paired data as the emphasis should be 
on the relative change for each subject. This information would be lost using 
any other plot listed. When creating a parallel lines plot the data shouldn’t be 
stacked; there should be a separate column for subject, then two more col-
umns for the items each person will be doing.

Figure 3-4 shows a parallel lines plot of the time to complete a task both 
before and after training for each subject. You can see that in all but one case 
the subjects completed the task quicker after receiving training.

Figure 3-4.  Parellel lines plot of training effect on task completion time
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Histograms
Histograms are appropriate for continuous data only, they show the frequency 
counts given in set “bin” sizes. The software being used will choose appropriate 
bin sizes automatically. Histograms can be useful for highlighting distributions, 
such as a bell curve to suggest normality, however there is a better plot for 
investigating this assumption that is shown later in the chapter.

Figure 3-5 shows a histogram of heights from a sample of 100 people; in this 
case there is a bell curve that would suggest we could assume the data follows 
a normal distribution.

Figure 3-5.  Histogram of heights sampled from 100 people
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Scatter Plots
Scatter plots are useful for two continuous variables with or without a nomi-
nal data variable. These plots are handy for highlighting trends in the data as 
well as possible differences between any groups.

Figure 3-6 shows a scatter plot of yield by log concentration with a line of best 
fit. There is undoubtedly a positive trend between log concentration and yield 
and the points are quite close to the line of best fit. The line is plotted from a 
linear model, which is explained in Chapter 7.

Figure 3-6.  Scatter plot of yield by log concentration with line of best fit

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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Line Graphs
Line graphs are very similar in style to scatter plots. They are used for the 
same data types, but will generally have a time element across the x-axis. 
These points will be connected by a line to each individual point instead of a 
smooth trend.

Figure 3-7 shows a line graph of survey response rates by year; there was a 
sharp drop in 2011, but since then the trend seems to be picking up again.

Figure 3-7.  Line graph of survey response rates by year
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Box Plots
Box plots are extremely useful as they can show a lot of information in a 
condensed manner. These plots are suitable for a continuous variable and a 
nominal variable. They can be used to investigate the distribution, equal sec-
tions suggest normality, however as earlier there is a better plot for this, and 
more important they can be very useful for highlighting differences between 
nominal groups.

A box plot also can be termed a box and whiskers plot as it principally con-
cerns a box with some lines coming from each end. It contains the following 
information (descriptions of all of the summary statistics listed below are 
contained in Chapter 4):

•	 Median: the line within the box.

•	 Q1 and Q31: the bottom line and top line of the box, 
respectively.

•	 IQR2: the length of the box itself.

•	 Range (minus statistical outliers): the length of the 
whiskers.

•	 Statistical outliers: any points outside the whiskers. The 
limits outside which a value is classed as an outlier are 
usually calculated as 1.5 times the IQR added to/sub-
tracted from the quartiles.3

1Quartile 1 and Quartile 3
2Interquartile range
3Lower limit: Q1 – 1.5*IQR and upper limit: Q3 + 1.5*IQR

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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Figure 3-8 shows a boxplot of summer temperatures across the months June 
to August for popular holiday destinations. The larger the box and whiskers, 
the more variable the temperature, as for example Las Vegas; whereas the 
smaller the box and whiskers, the less variable the temperature, as for exam-
ple London. In addition we also can start to see some possible differences we 
may find during testing, such as London and Paris having much colder tem-
peratures than the other destinations and Florida and Las Vegas having much 
warmer temperatures.

Figure 3-8.  Box plot of summer temperatures by popular holiday destinations
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Likert Plots
Likert plots are a clearer, more preferable way to view ordinal data rather 
than using bar charts. These plots are used to highlight the spread of data over 
the ordinal levels for different nominal groups. They can show the raw values 
or percentage values, which are preferable with unequal groups, along with the 
numerical count to the side.

Figure 3-9 shows a Likert plot of responses to three statements, “the equip-
ment was easy to use,” “the equipment was comfortable,” and “the equipment 
was reliable over the week,” for 15 participants.

Figure 3-9.  Likert plot of statement responses for the test equipment

The red and orange on the left represent the negative views, the yellow in the 
middle represents the neutral views, and the greens on the right represent  
the positive views. It can be seen that ease of use and reliability was rated 
more positive than negative. However, comfort was divided fairly equally 
between positive and negative.
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Trellis Graphs
Trellis graphs are very useful for viewing multivariate data in a clear man-
ner. This plot is limited to a maximum of two continuous variables, but can 
have multiple nominal variables. The limitation is dependent on the number of 
nominal variables given the number of levels within each variable. For example, 
if you had five nominal variables each with ten levels, it would not be sensible 
to plot them all on the trellis graph. A trellis graph creates multiple panels for 
nominal variables and also has the option to use shapes and colors for addi-
tional nominal variables.

Figure 3-10 shows a trellis plot of accuracy of a projectile by four explana-
tory variables: distance, ammunition type, operator, and target size. These four 
explanatory variables have 6, 2, 3, and 3 levels, respectively.

Figure 3-10.  Trellis graph of projectile accuracy by distance, ammo type, operator, and target size
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In all cases it seems that the accuracy decreased the further away from the tar-
get you got, which is probably to be expected. It also shows that the accuracy 
decreases as the size of the target decreases, again expected. There doesn’t 
seem to be any major differences between the operators, comparing the left 
two boxes, to the middle two, to the right two boxes. There also doesn’t seem 
to be any differences between the ammunition types, comparing the top three 
boxes to the bottom three boxes.

At initial glance it appears that there are no interactions of interest as there is 
no change of direction, such as the accuracy increasing as distance increases, 
in any of the boxes. There also is no change in gradient, such as the accuracy 
decreasing as distance decreases more rapidly, in any of the boxes; however, 
this should still be tested in the model.

These plots should be drawn to start to identify trends and group differences; 
however no conclusions should be drawn at this stage. Statistical testing needs 
to be undertaken to confirm the trends and add levels of uncertainty to the 
results due to the sample size and the data variation.

Outliers
There are two types of outliers, and each should be treated very differently 
otherwise any conclusions drawn from the data may be misleading. These can 
be classed as data entry errors/technical errors, or statistical outliers.

Data entry errors or technical errors are clearly incorrect data, such as 250% 
or someone who is 143. In both example cases the raw data would need to 
be checked to see if the true value could be obtained. However if there was 
no way of verifying this, then the values need to be removed from the dataset 
as they will heavily skew the data and influence the results.

Statistical outliers are those values that are highlighted as outliers through 
box plots and other similar graphs or through statistical testing for outliers 
such as using Grubbs’ test. These outliers are possible, but are either at the 
extreme ends of the possible values or are just disjointed from the trend of 
the rest of the data. For example, someone with a height of 6’9” is a realistic 
value; however it will appear an outlier next to general height recordings. This 
should be double checked, and if the value was recorded correctly it should 
not be removed from the data set.
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Drawing graphs can help highlight suspect data points that can then be inves-
tigated further to determine which type of outlier the points are.

For example, Figure 3-11 shows a scatter plot of the time taken to complete 
a race by participants of varying ages. It contains a data entry error that, if left 
in, would completely skew the results.

Figure 3-11.  Scatter plot of time to complete a race by age, including a data entry error
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Figure 3-12 shows the same dataset, but this time with the data entry error 
removed to highlight the difference that one data point would have made on 
the results. Now we can start to see a trend of race time decreasing with age 
until the “sweet spot” around the late twenties, and then see the race time 
increasing with age.

Figure 3-12.  Scatter plot of time to complete a race by age, excluding the data entry error
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Figure 3-13 shows a box plot of the time taken to read a 300 page book by 
different school year groups. This highlights a few outliers, which can occur 
quite often, that are shown as circles; however these are clearly statistical 
outliers only due to human variation and should therefore be left in and used 
in the analysis.

Figure 3-13.  Box plot of reading time of a 300 page book by year group

It is important to remove data entry errors and technical errors so that the 
conclusions from the analysis have not been skewed by these points.

It is equally important to not remove genuine data, those points that are 
statistical outliers but are still within realistic bounds, as these need to be 
included to present the whole picture during the conclusions section.
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Figure 3-14.  Standard normal distribution

Distribution
There are many different distributions, or families, that data sets can take with 
arguably the most well-known, for continuous data at least, being the normal 
distribution, also called the Gaussian distribution.

Figure 3-14 shows an example of a normal distribution that has the nice bell 
curve shape. You should be able to see how a histogram can aid in determin-
ing whether your data can be classed as approximately normal. The “tails” on 
this plot actually extend from minus infinity to plus infinity. This will not be the 
same for other distributions.
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When determining if your data follows a normal distribution the best method 
to use is drawing a graph rather than using formal normality tests, such as the 
Anderson–Darling or Shapiro–Wilk test. The most useful plot is a quantile-
comparison plot, which also can be called a quantile-quantile plot or a Q–Q 
plot. This plot will draw the ordered values you have observed against theo-
retical expected values from a normal distribution.

Figure 3-15 shows an example of a Q–Q plot where we could assume nor-
mality in our data. Generally you want the points to line up nicely from the 
bottom left of the plot to the top right of the plot, along the y = x line.

Figure 3-15.  Quantile–Quantile (Q–Q) plot
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You soon will notice an issue if there is curvature in the line or if the line of 
points is on a more horizontal line, in which case a transformation may help, 
see more in Chapter 4.

The reason formal tests are not recommended is that they can be misleading, 
especially with a large sample size. For example, in Figure 3-16 using the Q–Q 
plot you would be able to assume normality on that data, however the formal 
tests suggest strong non-normality. This is purely down to the fact that as 
there is such a large sample size, those slight deviations at the tails are enough 
for the formal test to say “non-normality.”

Figure 3-16.  Q–Q plot of a large sample size

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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Other common continuous data distributions include the exponential and 
the gamma distributions. The exponential distribution is a special case of the 
gamma distribution with a fixed shape parameter of 1. A good way to think 
about an exponential distribution is modeling the time until an event occurs. 
The “tails” on this plot extend from zero to infinity.

Figure 3-17 shows an example exponential distribution with a rate of 1, the 
higher the rate the more the line will curve into an “L” shape.

Figure 3-17.  Exponential distribution with a rate of 1
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The gamma distribution is a generalization of the exponential distribution and 
has a distinct shape, it is frequently used to model general waiting times, so 
modeling the time until the next n events.

Figure  3-18 shows an example gamma distribution with a rate of 1 and a 
shape of 2. Generally speaking, though it’s not quite this simple, the higher the 
rate the more “squashed” the curve will become, and the higher the shape  
the further to the right the curve will move. The “tails” again extend from 
zero to infinity.

Figure 3-18.  Gamma distribution with a rate of 1 and a shape of 2
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The most commonly known discrete data distribution is the binomial distri-
bution. This distribution is the probability of “success”, which will be between 
0 and 1 plotted against the number of trials.

Figure 3-19 shows an example binomial distribution with a size of 50 and a 
probability of 0.1, the size is just the number of trials, and the probability is the 
probability of success. The “tails” for a binomial distribution extend from zero 
to n, which in this case is 50.

Figure 3-19.  Binomial distribution with a size of 50 and a probability of 0.1
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Figure 3-20.  Poisson distribution with a lambda of 3

Another common distribution for discrete data is the Poisson distribution. 
This distribution is used for count data plotted against time, generally with 
there being a much larger count at the lower end of the plot.

Figure 3-20 shows an example Poisson distribution with a lambda of 3, the 
lambda dictates where the central peak of the curve will be. The “tails” extend 
from zero to infinity.
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The list is by no means exhaustive, but those are the most commonly used 
distributions. Ideally if the data can be assumed to be normally distributed 
then that is the easiest way forward, however that isn’t always the case and as 
such the relevant distribution needs to be identified.

Tests
Once you have progressed through each step of the EDA process and have 
learned more about the data, then you can move to deciding which tests, and 
descriptive statistics, would be appropriate. The key is not to jump straight 
to this step as valuable time and money may be wasted if the analysis is com-
pleted including a data entry error, or if the wrong analysis is performed due 
to not thinking about which data types are being used.

Continuous Data
If your continuous data approximately follows a normal distribution the types 
of tests used are called parametric tests. If the distribution is not normal and a 
transformation either doesn’t help or is not appropriate then nonparametric 
tests may be more appropriate.

Generally speaking, nonparametric tests have less power than parametric 
tests, that is, there’s a higher risk of missing a real effect by using nonparamet-
ric tests. This is due to the fact that nonparametric tests are distribution free 
and have to be conservative to account for this fact.

There are nonparametric equivalents for each parametric test and these 
will be shown alongside each other in the later chapters. The key difference 
between the tests, in addition to the power mentioned above, is that paramet-
ric tests use the means and nonparametric tests use the medians of the data.

In terms of satisfying the normality assumptions, data can actually be non-
normal while still being applicable to parametric tests. There are some general 
rules of thumb to note: each case should be visually investigated to confirm 
whether appropriate to use parametric tests. As long as the sample size is 
above 15 for each group and the data is only slightly skewed, parametric tests 
can be used; or if the sample size is very large and the data clearly doesn’t fol-
low another distribution, parametric tests can be used.

Nonparametric tests are commonly used when there is a very small sample 
size due to the fact that the distribution won’t be able to be identified. They 
also can handle statistical outliers and ranked data quite well. The downside 
of some nonparametric tests is that they assume that the groups have equal 
variation, which may not always be an appropriate assumption.
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Discrete Data
To add slightly more confusion to the terms, if you had binary data that is 
clearly not continuous, then the type of tests you would use are parametric 
tests based on the binomial distribution. There are also parametric tests for 
Poisson and other distributions.

Basically parametric tests refer to traditional tests relevant to the data type, 
and nonparametric tests refer to tests used when the data violates the assump-
tions to be able to use the traditional tests. Most of the time parametric and 
nonparametric are associated with continuous data (and normality) only, but 
it’s worth noting that these terms apply to all data types.

Thought needs to be given as to which type of tests are most appropriate 
to the data set you have collected, thinking about things such as data types, 
sample size, skewness, and variation. You also need to remember that all tests 
have assumptions, even nonparametric tests, and they need to be satisfied.

Summary
This chapter investigated the sections that make up exploratory data analysis 
(EDA), which should be performed before undertaking any type of statistical 
analysis. It was split into five sections corresponding to the five steps shown in 
the EDA process in Figure 3-1.

The first was identifying the data types for each variable in the data set as this 
will lead to the second section of plotting the data.

Plotting the data is dependent on which data types you have, as this dictates 
which plots can be drawn. This section showed a selection of commonly used 
plots and described the information to be gained from each. One main point 
in this section was that the plots drawn in EDA are for familiarity with the data 
only; Chapter 9 focuses on creating clear plots to deliver the main messages 
to the customer.

The third section discussed outliers in the data and that there are two types 
of outliers; data entry errors, which should be removed and statistical outliers, 
which should remain in the data during analysis.

The next section related to the family of the data, or the distribution. It listed 
the most common distributions used for continuous data and discrete data 
with an emphasis on checking for normality. It also highlighted that when 
checking for normality, plots such as the Q–Q plot should be used instead of 
formal tests.

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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The final section discussed the use of parametric and nonparametric tests 
and the benefits and downfalls of each of these along with the fact that these 
terms do not just apply to continuous data.

Chapter 4 looks at the descriptive statistics that can be gleaned from the 
data, again before testing is undertaken. It defines the difference between 
samples and populations, explains the different measures of shape, location, 
and spread; shows how to transform non-normal continuous data; highlights 
descriptive statistics for binary data; and also looks at what correlation can 
and can’t tell you.

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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C H A P T E R 

Descriptive 
Statistics
What Can the Data Tell Me?

The aim of calculating descriptive statistics is to summarize the sample you 
have collected. The key thing here is that these values or plots correspond 
only to the sample, there is no uncertainty and therefore the results can’t be 
generalized to describe the population that step is the basis of Chapter 5.

Figure 4-1 shows the relationship between samples and populations with the 
following description:

•	 Top left: the population consists of the entirety of every-
thing you are interested in, for example, all of the lupine 
flowers in the world.

•	 Top right: if the height of all those lupines were mea-
sured, a probability distribution of the results could be 
drawn. These results wouldn’t need any uncertainty, so 
the descriptive statistics reported would be the correct 
answer, until more grew or died.

•	 Bottom left: you clearly cannot measure the population 
of lupines, so you take a representative sample, defined by 
power and sample size calculations.

4
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•	 Bottom right: this sample will produce a probability dis-
tribution and therefore descriptive statistics that you 
hope will represent the population. As mentioned previ-
ously though, the descriptive statistics can only be used 
to describe the sample and not infer the population, not 
until uncertainty has been introduced.

Figure 4-1.  Relationship between samples and populations

Exploratory data analysis (EDA), which is mainly drawing plots, can sometimes 
be included in descriptive statistics due to the fact that it involves summariz-
ing the collected data only. For the rest of the chapter the term descriptive 
statistics will refer to the numerical values and not EDA.

The majority of descriptive statistics are used to describe continuous data 
sets. Some of the methods can be used for discrete or qualitative data but not 
all; although in both cases they can be misused. The following sections explore 
the available options for the different data types.
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Continuous Data
The three main characteristics that are of interest when dealing with continu-
ous data are the shape, the location, and the spread of the data. The shape 
investigates the distribution of the data, the location looks at the center point, 
and the spread examines the dispersion of the data.

Shape
The shape of the data dictates the distribution of the sample, with the ideal 
shape being the bell curve corresponding to normality. However the shape 
also can inform you about symmetry through the skewness and kurtosis.

Skewness
Skewness measures the symmetry of the sample data. The recommended way 
of discerning symmetry is by plotting the data; if the tail is longer to the left 
and the hump is to the right then this is termed a negative skew or left skewed, 
and if the tail is longer to the right and the hump is to the left then this is 
termed a positive skew or right skewed, which is highlighted in Figure 4-2.

Figure 4-2. Visual examples of skewness

If the sample is negatively skewed, the median will be larger than the mean, and 
if it’s positively skewed, the mean will be larger than the median (for definitions, 
see the Location section).

Skewness also can be defined in numerical terms; for the two graphed examples 
in Figure 4-2 the skewness would be –0.6 and +0.6, respectively, as they are mir-
ror images of each other.
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A perfectly symmetrical distribution would have a skewness of 0.

A general rule of thumb is,

•	 If the sample skewness is smaller than –1 then it is highly 
negatively skewed.

•	 If the sample skewness is larger than –1 but smaller than 
–0.5 then it is negatively skewed.

•	 If the sample skewness is larger than 0.5 but smaller than 
1 then it is positively skewed.

•	 If the sample skewness is larger than 1 then it is highly 
positively skewed.

However you can see how it is more useful to show a plot of the skewness as 
opposed to quoting the value of skewness.

Kurtosis
Kurtosis is used less often than skewness, one of the reasons being it is harder 
to interpret. The best way of describing kurtosis is to think about the peak of 
the sample data, with a sharper, higher peak meaning a higher level of kurtosis 
and a flatter, lower peak meaning a lower level of kurtosis. However in terms 
of calculations, kurtosis is defined using the tails of the data more than the 
“peak” of the data. Due to this, it will be more affected by outliers than skew-
ness would be. Figure 4-3 shows an example of positive kurtosis and negative 
kurtosis.

Figure 4-3. Visual examples of kurtosis
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Kurtosis also can be defined in numerical terms; however excess kurtosis, 
which is (kurtosis – 3), is quoted more often, the reasoning behind this is given 
later. For the two graphed examples in Figure 4-3, the excess kurtosis would 
be 1.2 (kurtosis of 4.2) and –1.2 (kurtosis of –4.2), respectively.

The kurtosis for a normal distribution is 3, and the excess kurtosis is there-
fore 0; this is generally why excess kurtosis is quoted as 0 and is a more useful 
reference point. An excess kurtosis of 0 is also referred to as mesokurtic.

A general rule of thumb is as follows:

•	 If the sample excess kurtosis is smaller than 0 then it has 
negative kurtosis or is platykurtic.

•	 If the sample excess kurtosis is larger than 0 then it has 
positive kurtosis or is leptokurtic.

However again you can see how it is more useful to show a plot of the kurto-
sis as opposed to quoting the value of kurtosis or excess kurtosis.

Transformations
If the data is skewed often the first thing that should be tried is a transforma-
tion of the data as this could mean being able to use parametric tests on the 
sample.

For example, consider the data in Figure 4-4, which are weekly temperatures 
(°C) in the United Kingdom. The two plots shown are a histogram and a 
quantile-comparison plot.

Figure 4-4.  Skewed data plots
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This data cannot be assumed to follow a normal distribution, and as such para-
metric tests could not be used. One of the most common transformations 
for positively skewed data is the log10 transformation. This is because it works 
on a lot of similarly shaped data sources and it’s easy to explain: log10(10) 
is 1, log10(100) is 2, log10(1,000) is 3, and so forth. Essentially it squashes the 
extreme values in the right tails closer to the left making the data much more 
symmetrical. Figure 4-5 shows the histogram and quantile-comparison plot 
for the log10 transformed data.

Figure 4-5. Transformed data plots

This data is clearly more symmetrical and can be assumed to follow a normal 
distribution, so parametric tests could be used.

When quoting descriptive statistics for transformed data remember that 
these have been calculated using the transformed scale, so it either needs to 
be made clear that log, or equivalent, values are being quoted or, preferably, 
the descriptive statistics should be back transformed to the original scale.

Figure 4-6 shows the R code for common transformations, some notes of 
their use, and back transformations with examples.
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Data transformations, if required, should be carried out on the data before 
conducting any testing as they are designed to satisfy symmetry/normality 
assumptions and not to “force a significant result.”

Location
The location is concerned with where the peak of the data lies. There are 
three common measures of location: the mode, median, and mean. For data 
that follows a normal distribution the median and the mean will be roughly 
the same.

There is also the weighted mean that can be a very useful measure of location 
for either unequal sample sizes or to amend population representation within 
the sample.

Mode
The mode is the most common value in the data set, for example the mode 
in Figure 4-7 would be 2.

Figure 4-6.  Common transformations
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Strictly speaking the mode is used for discrete data; however it is always 
grouped with the mean and the median when describing measures of location. 
The mode can be calculated for continuous data however it is not recom-
mended due to the fact there is unlikely to be any repeated values.

Median
The median is the center value of the data, the values are ordered and the 
middle value is the median. If there are an odd number of values the median is 
just the center value, if there are an even number of values the median is the 
average of the middle two values.

Example 4.1 shows how to calculate the median for both skewed data and 
normally distributed data.

Figure 4-7.  Histogram of the number of children per family sampled
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EXAMPLE 4.1

Calculate the median from skewed data (data3), then calculate the median for 
simulated normal data (data4).

# Create some skewed data
data3 = c(6.61, 7.88, 7.54, 8.08, 8.07, 7.2, 6.81, 6.45, 7.34, 6.27,
	    6.19, 6.63, 19.98, 7.36, 7.18, 7.86, 7.33, 19.02, 8.03,
	    8.04, 7.16, 7.14, 7.61, 7.3, 6.75, 6.71, 20.23, 7.67, 6.89,
	    7.15, 7.52, 8.17, 7.55, 6.8, 19.72, 6.43, 8.05, 6.88, 13.08,
	    10.16)

# Calculate the median for the skewed data
median(data3)

[1] 7.35

# Simulate some normally distributed data
data4 = rnorm(40, mean = 7, sd = 0.75)

# Calculate the median for the normally distributed data
median(data4)

[1] 6.951663

Note that answers may vary for the normal data median due to the fact that the 
rnorm() command generates random data from the normal distribution with a mean 
of 7 and a standard deviation of 0.75.

The median will always be the center of the data to emphasize this we will use 
the same data examples in the next section.

Mean
The mean, also called arithmetic mean, is the average of the results; the values 
are all added together and then divided by the number of samples. When the 
data follows a normal distribution the mean will be approximately equal to the 
median and therefore the center of the data.

It is important to note that when the data is skewed the mean will not rep-
resent the center of the data as it will be heavily influenced by the extreme 
values. In these cases it would be better to quote the median.

As a side note, there is also a geometric mean that can be used on lognormal 
data or data from different ranges, such as 2/5 and 10/100. It is calculated by 
the nth root of the product of the numbers, so for example to calculate the 
geometric mean for three numbers you would multiply the three together 
and then take the cube root of that answer.

Example 4.2 shows how to calculate the mean for both previous sets of data 
and then compares these results to the medians.
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EXAMPLE 4.2

Calculate the mean for the skewed data (data3), then calculate the mean for the 
simulated normal data (data4).

# Calculate the mean for the skewed data
mean(data3)

[1] 8.721

# Calculate the mean for the normally distributed data
mean(data4)

[1] 6.989539

If you compare the mean results with the previous median results you can see that the 
skewed data gave different results: 7.35 compared to 8.72, whereas the normal data 
gave similar results: 6.95 compared to 6.99.

Figure 4-8 shows the plotted data for both the skewed data and the normally 
distributed data with the medians and means highlighted.

Figure 4-8.  Density plots of skewed and normal data

There may be cases where you need to calculate a mean for each group as 
opposed to an overall mean, see Example 4.3.
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EXAMPLE 4.3

Calculate the mean temperature (°F) for each location and an overall mean for the 
data given below.

# Create the data
Temp = c(72, 70, 71, 70, 90, 88, 87, 83, 75, 89, 91, 79, 93, 74, 86,
	   84, 86, 90, 92, 75, 74, 87, 83, 81, 90, 50, 61, 59, 51, 55,
	   58, 52, 52, 56, 55, 52, 61, 54, 56, 59, 57, 53, 72, 67, 83,
	   76, 80, 65, 85, 77, 83, 71, 84, 78, 74, 65, 72, 75, 79, 76,
	   69, 78, 71, 74, 65, 69, 66, 76, 70, 79, 66, 69)
Groups = c(rep("A", 25), rep("B", 17), rep("C", 30))
data5 = data.frame(Temp, Groups)

# Calculate means for each group
tapply(data5$Temp, data5$Groups, mean)

       A          B          C
82.40000   55.35294   73.80000

# Calculate the overall mean
mean(data5$Temp)

[1] 72.43056

Here you can see that the mean temperatures for each location are very different to 
each other and it would be incorrect to have just calculated an overall mean.

Careful consideration needs to be given to using the mean, it may not always 
be the most appropriate statistic to quote; if the data is skewed then a median 
would be better for summarizing the location of the center of the data.

Weighted Mean
In some cases a weighted mean may be preferable as it accounts for unequal 
sample sizes. In Example 4.3 there was no need to combine the temperature 
data as the locations were independent, however imagine if the same data was 
test scores from three classes and we only had the means.

Say you want to calculate an overall average score from a set of group means, 
but there are unequal sample sizes that need to be accounted for. To calculate 
a weighted mean you need to find the proportion the sample size of each 
group represents in relation to the total number. These values are then mul-
tiplied by the group means and added together to give an overall weighted 
mean, see Example 4.4.
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EXAMPLE 4.4

Calculate the overall mean test score from the group means, then calculate the 
weighted mean test score for the data and compare to the arithmetic mean as if all 
data was available.

# Change the name of the data
data5$Scores = data5$Temp

# Calculate the means per group
tapply(data5$Scores, data5$Groups, mean)

       A          B          C
82.40000   55.35294   73.80000

# Calculate the mean ignoring different group sizes
mean(c(82.4, 55.35294, 73.8))

[1] 70.51765

# Recall the sample size of each group
tapply(data5$Scores, data5$Groups, length)

 A   B   C
25  17  30

# Calculate the proportions of each group
25/(25+17+30); 17/(25+17+30); 30/(25+17+30)

[1] 0.3472222
[1] 0.2361111
[1] 0.4166667

# Calculate the weighted mean
(0.3472222*82.4) + (0.2361111*55.35294) + (0.4166667*73.8)

[1] 72.43056

# Calculate the arithmetic mean from the raw data
mean(data5$Scores)

[1] 72.43056

Here the overall mean of the means would have been 70.52, which would be incorrect 
as it doesn’t account for the different group sample sizes. Accounting for the unequal 
class sizes brings the weighted mean up to 72.43, which is equal to that of the 
arithmetic mean if all data was available.

Using a weighted mean gives more influence to the larger groups, therefore 
thought needs to be given to whether this is appropriate for the data you are 
dealing with.
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Spread
The spread investigates the dispersion of the data, essentially looking at how vari-
able the sample data is. The most common measurements of spread are standard 
deviation, variance, range, quantiles and percentiles, and interquartile range (IQR).

Other useful measurements for dispersion include the median absolute devia-
tion (MAD) and the coefficient of variation (CV).

Standard Deviation and Variance
The standard deviation is the most common statistic quoted for the dispersion of 
data. However it is only useful when the data follows a normal distribution. If the 
data is skewed or has extreme values, the standard deviation will be misleading.

The standard deviation is measured using the same units as the data, which 
makes it slightly easier to interpret. The larger the standard deviation is the 
larger the dispersion of the data. Figure 4-9 highlights this using data showing 
time to complete a task.

Figure 4-9. Varying standard deviations
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In addition if the data follows the normal distribution well, it can be said that 
roughly 68% of the sample values are contained within 1 standard deviation 
from the mean, 95% within 2 standard deviations, and 99.7% within 3 standard 
deviations, see Figure 4-10.

Figure 4-10.  Data contained in varying standard deviations from the mean

However if the data is even slightly skewed or has extreme values, these cal-
culations will be wrong. It’s also worth noting that quoting these values have 
no associated statistical confidence and are not measurements of uncertainty, 
which will be discussed in Chapter 5.

Variance is simply the standard deviation squared. The issues with using the 
variance as a statistic for dispersion instead of the standard deviation are 
mainly twofold. First is that the result is not in the same units as the original 
data and therefore it is hard to reference back to the values. Second is that as 

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
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the values are squared, it will give more emphasis to the extreme data points, 
which may not be representative.

To calculate the standard deviation and the variance in R, the commands are 
sd(x) and var(x), respectively, where x represents a column of continuous data.

Range
The range looks at the complete spread of the data and is calculated as the 
maximum value minus the minimum value. It isn’t always the most helpful 
statistic for dispersion. However it can inform you if there are extreme 
values, especially if your subject area has thresholds that cannot be crossed 
and if there have been data entry errors as well.

The range can be quoted as a single value or as the range itself, see Example 4.5.

EXAMPLE 4.5

Calculate the range for both the earlier skewed data and the simulated normal data.

# Calculate the range for the skewed data
range(data3)

[1]  6.19   20.23

# Calculate the range as a single value for the skewed data
max(data3) - min(data3)

[1] 14.04

# Calculate the range for the normally distributed data
range(data4)

[1] 5.342806   8.605029

# Calculate the range as a single value for the normally distributed data
max(data4) - min(data4)

[1] 3.262223

Here you can see that the range is much larger for the skewed data, and this is linked 
to the extreme values in the data set.

The range is very difficult to estimate as it essentially contains 100% of the 
data and a sample will rarely include the extremes.
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Quantiles and Percentiles
Quantiles divide the data set up into equal groups, the number of which can 
be any positive value.

Many quantiles have a specific name with regard to the number of sections the 
data is divided into; Figure 4-11 shows these names.

Figure 4-11.  Special quantile names

Quantiles can split the data into as many intervals as required. For example, if 
the data is split into permilles, then there would be quantile values for every 
0.1% of the data. As an aside, percentiles also can be known as centiles.

When calculating quantiles in R, the length specified needs to be the number 
you need plus one. For example if you need quintiles, which is five sections, 
you would need to specify the length as six. This is due to the fact that it will 
give you the values at 0%, 20%, 40%, 60%, 80%, and 100%; so while there it has 
divided the data into five sections, it will quote the six values.
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Quartiles are the most well-known and most often used quantiles, they split 
the data into four intervals with generally only three being quoted:

•	 Q1: the first quartile is the value below which is 25% of 
the data.

•	 Q2: the second quartile is the value below which is 50% 
of the data, it is also the median.

•	 Q3: the third quartile is the value below which is 75% of 
the data.

Percentiles split the data into the percentages of the data, for example the 
20th percentile is where 20% of the data would fall below the given value. 
Percentiles are usually only whole percentages, however there is clearly over-
lap as the 20th percentile is the equivalent to the 1st quintile.

Example 4.6 shows how to calculate quantiles, quartiles, and percentiles using 
the previous data sets.

EXAMPLE 4.6

Calculate the quintiles, the quartiles, and the 95th and 99th percentiles for the skewed 
and simulated normal data.

# Calculate quintiles for both the skewed and the normally 
distributed data
quantile(data3, prob = seq(0, 1, length = 6))
quantile(data4, prob = seq(0, 1, length = 6))

   0%    20%      40%     60%     80%     100%
6.190   6.790   7.192   7.574   8.072   20.230

      0%        20%        40%        60%        80%       100%
5.342806   6.409402   6.840612   7.145605   7.575320   8.605029

# Calculate quartiles for both the skewed and the normally 
distributed data
quantile(data3); quantile(data4)

     0%     25%      50%      75%      100%
6.1900   6.8625   7.3500   8.0425   20.2300

      0%        25%        50%        75%       100%
5.342806   6.543953   6.951663   7.472544   8.605029

# Calculate 95th and 99th percentiles for the skewed and the normally
# distributed data
quantile(data3, prob = c(0.95, 0.99))
quantile(data4, prob = c(0.95, 0.99))
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    95%       99%
19.7330   20.1325

     95%        99%
8.150095   8.601126

You can see how much closer and evenly spread the normal data results are compared 
to the skewed data results. In addition you can see that the skewed data is fairly 
consistent in dispersion for up to 80% of the data that means that the extreme values 
are all at the higher end of the data, which is confirmed by previously plotting the data.

Technically there is always a Q0 that would be the equivalent of the minimum. 
However it is rarely reported as such, similar for the last quantile, which is the 
maximum (which for quartiles would be Q4). However, these are generally left 
as the minimum and maximum values or the range.

IQR and SIQR
The interquartile range (IQR) represents the middle 50% of the data, that is, 
Q3 minus Q1. It is less affected by outliers and skewed data compared to the 
standard deviation or variance.

The IQR can be quoted as a single value or as the range Q1 to Q3 the same 
as when quoting the range. The IQR is the main section of a box plot, with the 
top line being Q3 and the bottom line being Q1. Figure 4-12 shows a box plot 
with the sections labeled.

Figure 4-12.  Box plots of the skewed and normal data
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As described in Chapter 3, the whiskers will only represent the range if there 
are no statistical outliers. Here it also highlights that the mean and median are 
very close together for the normal data, but are quite far apart for the skewed 
data, in fact the mean is above Q3 for the skewed data.

A less commonly used measure of spread is the semi-interquartile range 
(SIQR), which represents half the IQR. It is more robust against skewed data 
than the standard deviation but is not necessary if the data follows a normal 
distribution.

To calculate the IQR and the SIQR in R, the commands are IQR(x) and 
IQR(x)/2, respectively, where x represents a column of continuous data.

MAD
The median absolute deviation (MAD) is another good measure of dispersion 
in the data, and it is more robust to outliers than the standard deviation.

The MAD is calculated by finding the positive difference between each value 
and the median of the data, and then finding the median of all those results.

Example 4.7 walks through the method for calculating the MAD and then 
shows a shortcut using an R command.

EXAMPLE 4.7

Calculate the MAD for the following data: 1, 4, 3, 5, 6, 2, 4, 2, 3, 4.

Rearrange the order of the data:
1, 2, 2, 3, 3, 4, 4, 4, 5, 6

Calculate the median of the values:
3.5

Subtract the median from all values in the data:
(1 – 3.5), (4 – 3.5), (3 – 3.5), (5 – 3.5), (6 – 3.5), (2 – 3.5),
(4 – 3.5), (2 – 3.5), (3 – 3.5), (4 – 3.5)

This will equal:
-2.5, 0.5, -0.5, 1.5, 2.5, -1.5, 0.5, -1.5, -0.5, 0.5

Take absolute values:
2.5, 0.5, 0.5, 1.5, 2.5, 1.5, 0.5, 1.5, 0.5, 0.5

Rearrange the order of the data:
0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 2.5, 2.5

Calculate the median of the values:
1

This can be done simply in R with the following command:

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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# Create the data
x = c(1, 4, 3, 5, 6, 2, 4, 2, 3, 4)

# Calculate the MAD
mad(x, constant = 1)

[1] 1

The MAD for the data is 1, as this is small it suggests that the median value is a good 
representation for the other values in the data.

The MAD can also be used to highlight outliers by calculating the absolute 
deviation from the median for each point, then dividing them by the MAD. This 
will show the distance of the values from the center of the data in terms of 
the MAD, see Example 4.8.

EXAMPLE 4.8

Determine if there are any outliers from the previous data set. Repeat the same 
question replacing the value of 1 with 10.

# Create the data
x = c(1, 4, 3, 5, 6, 2, 4, 2, 3, 4)

# Calculate the distance from the center in terms of the MAD
abs(x - median(x)) / mad(x, constant = 1)

[1]  2.5  0.5  0.5  1.5  2.5  1.5  0.5  1.5  0.5  0.5

# Create the data swapping 1 for 10
x2 = c(10, 4, 3, 5, 6, 2, 4, 2, 3, 4)

# Calculate the distance from the center in terms of the MAD for the new data
abs(x2 - median(x2)) / mad(x2, constant = 1)

[1]  6  0  1  1  2  2  0  2  1  0

For the first set of data the values are all quite similar and not that different to the MAD 
of 1, so we can conclude there are no statistical outliers. For the second set of data, 
which still has a MAD of 1, the new value of 10 is clearly a statistical outlier as the 
distance of 6 is much larger than all the other values and the MAD itself.

There can be some confusion as MAD also can be used to refer to the mean 
absolute deviation, which I call the average absolute deviation (AAD) to avoid 
this issue.

The AAD will tell us on average how far the values are from the mean, and the 
MAD will tell us the median distance of the values from the median. If the data 
is skewed the MAD is preferable to the AAD, however the results for both will 
be similar if the data follows a normal distribution as Example 4.9 highlights.
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EXAMPLE 4.9

Calculate the MAD and the AAD for the skewed data and the normal data and 
determine if there are any statistical outliers.

# Calculate the MAD for the skewed data
MADs = mad(data3, constant = 1); MADs

[1]  0.575

# Calculate the AAD for the skewed data
AADs = mean(abs(data3 - mean(data3))); AADs

[1]  2.4932

# Calculate the MAD for the normally distributed data
MADn = mad(data4, constant = 1); MADn

[1]  0.5043415

# Calculate the AAD for the normally distributed data
AADn = mean(abs(data4 - mean(da ta4))); AADn

[1]  0.6003418

# Calculate the distance from the center in terms of the MAD for the 
skewed data
abs(data3 - median(data3))/ MADs

[1]  1.28695652   0.92173913   0.33043478  1.26956522   1.25217391
[6]  0.26086957   0.93913043   1.56521739  0.01739130   1.87826087
[11] 2.01739130   1.25217391  21.96521739  0.01739130   0.29565217
[16] 0.88695652   0.03478261  20.29565217  1.18260870   1.20000000
[21] 0.33043478   0.36521739   0.45217391  0.08695652   1.04347826
[26] 1.11304348  22.40000000   0.55652174  0.80000000   0.34782609
[31] 0.29565217   1.42608696   0.34782609  0.95652174  21.51304348
[36] 1.60000000   1.21739130   0.81739130  9.96521739   4.88695652

# Calculate the distance from the center in terms of the AAD for the 
skewed data
abs(data3 - mean(data3))/ AADs

[1]  0.8467030  0.3373175  0.4736884  0.2570993  0.2611102
[6]  0.6100594  0.7664848  0.9108776  0.5539066  0.9830740
[11] 1.0151612  0.8386812  4.5158832  0.5458848  0.6180812
[16] 0.3453393  0.5579175  4.1308359  0.2771539  0.2731429
[21] 0.6261030  0.6341248  0.4456121  0.5699503  0.7905503
[26] 0.8065939  4.6161559  0.4215466  0.7343976  0.6301139
[31] 0.4817103  0.2210011  0.4696775  0.7704957  4.4115996
[36] 0.9188994  0.2691320  0.7384085  1.7483555  0.5771699
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# Calculate the distance from the center in terms of the MAD for the 
normally distributed data
abs(data4 - median(data4))/ MADn

[1]  0.09080554  1.26333645  0.05428266  1.61245704  1.51548306
[6]  1.05829284  3.27826681  0.48997753  0.86828270  1.22988689
[11] 0.57145605  1.45430428  0.11157321  0.45287171  1.02429604
[16] 0.25993697  0.05428266  3.25842509  0.09118028  3.19001510
[21] 2.06479142  2.65414407  0.28295510  0.55616482  0.79607567
[26] 1.68002831  1.06347187  0.94021016  2.04742818  2.83061775
[31] 0.05428266  2.32980034  0.84537759  0.64911573  0.17834543
[36] 0.68850967  1.72453982  0.97570396  1.12204528  2.11762467

# Calculate the distance from the center in terms of the AAD for the 
normally distributed data
abs(data4 - mean(data4))/ AADs

[1]   0.13937556  0.99822635  0.10869304  1.41770062  1.21005234
[6]   0.82597115  2.69095033  0.47471618  0.66634542  0.97012569
[11]  0.41698415  1.28483798  0.15682228  0.44354394  0.79741075
[16]  0.15527991  0.01748833  2.67428149  0.01350901  2.74299226
[21]  1.79770247  2.29281207  0.30079859  0.53031950  0.73186634
[26]  1.34828525  0.95650337  0.72677100  1.65693441  2.44106594
[31]  0.01748833  1.89415260  0.77328441  0.48222532  0.21291699
[36]  0.64150116  1.51186031  0.75658901  1.00571033  1.71590582

Comparing the MAD and the AAD for the skewed data you can see there is quite a 
difference in results compared to the MAD and the AAD for the normal data, which 
produce similar values. When looking for outliers: the MAD for the skewed data 
confirms four extreme outliers and suggests two less extreme outliers, whereas the 
AAD really only picks out the four extreme outliers, which are highlighted in bold in the 
R output. There are no outliers in the normal data, which is to be expected.

CV
The coefficient of variation (CV) is very useful if you want to compare data 
sets with different units. Another common area of use is to compare disper-
sion at differing concentration levels.

The CV is calculated as the standard deviation divided by the mean, which 
means that the value is normalized and can be compared across different 
groups as it is “unitless.” Due to this, the CV gives a measure of relative disper-
sion whereas the standard deviation gives a measure of absolute dispersion.

It is also commonly converted to a percentage by multiplying the CV by 100, 
to give the percentage coefficient of variation (%CV).

Example 4.10 shows how to calculate the %CV from the previous datasets 
and compares this to the standard deviations.
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EXAMPLE 4.10

Compare the mean, standard deviation, and %CV for both the skewed data and the 
normal data.

# Calculate the mean for both the skewed and the normally distributed data
mean(data3); mean(data4)

[1] 8.721
[1] 6.989539

# Calculate the standard deviation for both the skewed and the 
normally distributed data
sd(data3); sd(data4)

[1] 3.893894
[1] 0.771864

# Calculate the percentage coefficient of variation for both the 
skewed and the normally distributed data
(sd(data3) / mean(data3))*100; (sd(data4) / mean(data4))*100

[1] 44.64963
[1] 11.04313

The means for the skewed data and the normal data are similar to each other, but 
we can clearly see from the standard deviation that the skewed data is more variable 
than the normal data. However we can’t directly compare these values. Calculating 
the %CV lets us do that; the skewed data has a %CV of 44.6% and the normal data 
a %CV of 11.0%, these values are now directly comparable and we can say that the 
skewed data is four times more dispersed than the normal data.

Discrete Data
There are fewer descriptive statistics when dealing with discrete and qualita-
tive data due to the nature of the data. In general the only things that can be 
done are to summarize the counts, turn the counts into proportions or per-
centages, or calculate the mode.

For example, if you were collecting data on the colors of passing cars you 
couldn’t calculate a mean or a standard deviation, you could however calculate 
the mode. Figure 4-13 shows some example calculations you could make on 
the data; the mode for this data would be “black.” However the mode isn’t 
always the most useful piece of information on its own as it may not be a good 
representation of the data, in the example below under a quarter of the cars 
are “black.”
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It is worth noting that the more groups there are, the easier it is to see in 
a plot as opposed to tables of counts. Likert response data in particular is 
always clearer to view in a Likert plot as opposed to tables of counts. On the 
other hand if you just have a binary response for one group, this would be 
better presented in a table than a plot.

Figure 4-13.  Displaying discrete data
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Bivariate Data
Bivariate data simply refers to data with two variables that are recorded. This 
can apply to both discrete and continuous data. The methods to calculate 
descriptive statistics that describe the relationship between the variables dif-
fer for the different data types. With discrete data a common approach is to 
create contingency tables and with continuous data a common approach is to 
look at correlation.

Contingency Tables
Contingency tables are a good way to display the counts for two discrete, or 
quantitative, variables. As with univariate data a good accompaniment to the 
tables is a bar chart.

Example 4.11 shows how to create a contingency table for discrete data.

EXAMPLE 4.11

Create a contingency table from the given data.

# Create the data
gender = rep(c("M","F"), each = 25)
smokes = sample(c(0,1), 50, replace = TRUE)
data6 = data.frame(gender, smokes)

# Create a contingency table
xtabs( ~ gender + smokes, data = data6)

           smokes
gender     0    1
       F  13   12
       M  15   10

Note that answers may vary as the sample() command randomly choses 0 or 1 
values. This xtabs command can be run on variables with more than two levels as 
well as more than two variables.

Correlation and Covariance
The covariance between two continuous variables shows how the two vari-
ables are related in terms of a positive or a negative linear relationship.

This alone is not very useful, so the correlation coefficient is a normalized 
measurement to give more information. Correlation is calculated by dividing 
the covariance by the product of their standard deviations.
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A general rule of thumb is as follows:

•	 If the correlation coefficient is close to –1 then the two 
variables are strongly negatively correlated.

•	 If the correlation coefficient is close to 0 then the two 
variables are either not correlated or very weakly 
correlated.

•	 If the correlation coefficient is close to 1 then the two 
variables are strongly positively correlated.

There are two important items to note when using and quoting the correla-
tion coefficient:

•	 Correlation only implies a linear relationship between 
the variables. The variables may have a perfect relation-
ship with each other; however if it’s not on a straight line 
then the correlation won’t recognize the relationship.

•	 Correlation does not mean causation—just because the 
data has a strong correlation does not mean that one 
variable has an effect on the other variable.

Figure  4-14 shows examples of differing correlations with the correlation 
coefficients.
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The top left box shows a positive correlation however it is very noisy data, 
which is why the coefficient is 0.5. The top right box shows no trends or 
patterns, which is why the coefficient is almost 0. The bottom left box shows 
a strong negative correlation with hardly any noise in the data, which is why 
there is a correlation coefficient of -0.95. The bottom right box clearly has 
a strong relationship between the variables, however the trend down on the 
left and up on the right cancel each other out which is why the coefficient is 
nearly 0, remember correlation only shows the linear relationship, which is 
not always useful to know.

To calculate the correlation in R use the command cor(y = variable1, 
x = variable2), where variable1 and variable2 represent two continuous 
variables.

Figure 4-14.  Examples of correlations
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Summary
The beginning of the chapter described the relationship between samples and 
populations; then went on to investigate the different elements of descriptive 
statistics for continuous data, discrete data, and bivariate data.

The continuous data section was split into three main sections: shape, loca-
tion, and spread.

The shape section looked at the statistics that could be used to describe the 
distribution and symmetry of the data, such as skewness and kurtosis. It also 
delved into transformations that can be used on asymmetrical data.

The location section identified the statistics that could be used to find the 
center of the data, such as the mode, median, and the mean, with explanations 
about when each is appropriate to use. It also showed how to calculate a 
weighted mean when sample sizes are unequal.

The spread section discussed the many statistics that could be used to explain 
the dispersion of the data, such as the standard deviation, variance, range, 
quantiles, percentiles, IQR, SIQR, MAD, AAD, and the CV. There are examples 
in each section, whether visual or exercises, showing the calculations for each 
along with their benefits.

Next was a small section on discrete data, as the descriptive statistics for this 
type of data are limited to counts, proportions, percentages, and the mode.

The final section related to bivariate data and was split into two main sections: 
contingency tables and correlation and covariance.

The contingency tables section showed how to create the tables, which are 
just an extension of summarizing counts in the discrete section.

The correlation and covariance section gave a brief description of covariance, 
and then went on to highlight how correlation should be interpreted.

Although this chapter was used to describe the sample data, Chapter 5 
includes the uncertainty surrounding these estimates so statements can be 
made about the population that the sample was derived from; the main ele-
ments of the chapter will be confidence intervals, tolerance intervals, and 
prediction intervals.

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
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C H A P T E R 

Measuring 
Uncertainty
How Good Is the Data?

Any sample collected is done to obtain information representative of the 
population. And as such there will be uncertainty on the measurements taken 
due to not being able to test the entire population.

Uncertainty around any type of estimate should always be quoted to empha-
size the level of statistical confidence in the results, to show whether the 
estimate can be relied on when making an evidence-based decision, and quite 
simply, to show the range of values the estimate of the population could fall 
within.

As mentioned in Chapter 4, quoting uncertainty as “95% of measurements 
fall within 2 standard deviations” is not always a correct statement, and it 
does not include statistical confidence. As such those measurements are not 
recommended, especially when it isn’t difficult to produce uncertainty with 
statistical confidence.

The three most common types of uncertainty surrounding an estimate are 
confidence intervals, tolerance intervals, and prediction intervals. This chapter 
is split into three sections to describe each one.

5

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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Confidence Intervals
Confidence intervals are used when you are interested in the uncertainty 
around a sample estimate such as the mean.

Confidence intervals can be one-sided or two-sided, which means that you 
either quote one confidence limit from one end of the data or both limits 
from either end. The confidence interval values are called the lower confidence 
limit/bound and the upper confidence limit/bound. Therefore, for a one-sided  
confidence interval you would quote either the lower bound or the upper bound, 
whereas for a two-sided confidence interval you would quote both bounds

The decision about calculating a one-sided or two-sided interval should be 
decided during the experimental design stage, as your power or sample size 
calculation would have been carried out using this information. It would be 
incorrect to quote just one bound from a two-sided confidence interval calcu-
lation as the confidence level associated with the statement would be wrong.

The reason you may use a one-sided confidence interval is if you are only 
interested in one end of the data. For instance, you only care about how bad 
a detector is but not really how good it can be, in which case you would only 
want a lower bound.

Figure 5-1 shows the risk, which is the significance level, associated with both 
a one-sided and two-sided 90% confidence interval for continuous data.

Figure 5-1.  Division of risk for two-sided and one-sided confidence intervals
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For a one-sided interval the risk is put at one end of the distribution with 
there being no information about the other end. Looking at Figure 5-1, 10% of 
the risk is at the lower end, so really the upper limit is infinity as there is no 
information at the upper end, if the risk was all at the higher end the lower 
limit would be minus infinity.

Thinking about multiple journey times to a location that involves heavily con-
gested roads, you may not be interested in how quick the journey could be, 
but how long it may take. With a one-sided upper interval you would be able 
to say the average journey time will be no greater than z hours, but you can’t 
make any kind of statement about how quick the journey could be.

For a two-sided interval the risk is split equally at each end, as you can see 
in Figure 5-1 there is 5% risk at each end. Therefore the lower bound here 
would be a smaller number than the lower bound of the one-sided interval.

With a two-sided interval you could state that the average journey time could 
be as long as x hours but also could be as quick as y hours. However the upper 
bound of x hours here would be a larger value than that of the z hours in the 
one-sided interval, as you are not as sure about each end in the two-sided 
case compared to the one-sided case.

The following sections look at calculating confidence intervals for continuous 
and binary data, with the information about sides also applying to binary data. 
The only difference is that the limits at the ends that are not of interest, in 
the one-sided interval case, are no longer minus infinity and infinity, but are 
0 and 1 as binary data is bounded.

Continuous Data
To calculate a confidence interval for the mean of continuous data that approx-
imately follows a normal distribution the following information is required:

•	 The mean of the sample.

•	 The variability of the sample: the standard deviation.

•	 The number of measurements in the sample: the sample 
size.

•	 The confidence level required or the level of risk that is 
acceptable.

•	 The interval of interest: one-sided or two-sided bounds.
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Example 5.1 shows not only how to manually calculate a confidence interval 
in R to understand the steps involved, but also shows the shortcut using the 
Rmisc package. This shortcut only works for two-sided intervals unless you 
adjust the confidence level to compensate.

After creating the data, jump straight to “# Load library” if you are only inter-
ested in using the shortcut.

Part of the error calculation uses a critical value from the t distribution, which 
is based on the specified confidence level, the sample size, and whether the 
test is one-sided or two-sided.

EXAMPLE 5.1

Calculate a 90% two-sided confidence interval and a 90% one-sided lower confidence 
bound for the mean on the following data.

# Create some data
data7 = c(26.33, 27.31, 27.38, 26.63, 26.87, 26.67, 28.36, 28.52,
	    26.91, 28.90, 27.99, 27.17, 28.32, 26.93, 26.93, 26.65,
	    27.73, 26.93)

# Calculate the mean, standard deviation, and sample size for the data
# Assign the confidence level
x = mean(data7); s = sd(data7); n = length(data7); c = 0.90
x; s; n; c

[1] 27.36278
[1] 0.7585885
[1] 18
[1] 0.9

# Calculate the two-sided error
se = s/sqrt(n)
t2 = qt(c + (1 - c)/2, df = n - 1)
error2 = se*t2; error2

[1] 0.3110435

# Calculate the one-sided error
t1 = qt(c, df = n - 1)
error1 = se*t1; error1

[1] 0.2384096

# Calculate the lower and upper two-sided confidence intervals
# Calculate the one-sided lower bound
lower.2s.CI = x - error2; upper.2s.CI = x + error2
lower.1s.CI = x - error1
lower.2s.CI; upper.2s.CI
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[1] 27.05173
[1] 27.67382

lower.1s.CI

[1] 27.12437

# Load library
library(Rmisc)

# Shortcut to calculate the two-sided interval
CI(data7, ci = 0.90)

   upper      mean     lower
27.67382  27.36278  27.05173

# Shortcut to calculate the one-sided interval with amendment
CI(data7, ci = 0.80)

   upper      mean     lower
27.60119  27.36278  27.12437

The two-sided confidence interval is (27.05, 27.67) or 27.36 ± 0.31 due to symmetry, 
and the one-sided lower bound is 27.12.

Note: If using the shortcut to calculate a one-sided interval you will need to double 
the significance level, here from 0.1 to 0.2, and make sure you only quote one side 
and not both.

In Example 5-1, if both the lower and upper one-sided bound had been calcu-
lated and incorrectly quoted as a two-sided interval, the values would be the 
same as calculating an 80% two-sided confidence interval, as 10% of risk would 
be at each end of the distribution totaling 20% risk overall.

Translating the output from a confidence interval is important as you need 
to remember the interval is around an estimate and not a proportion of the 
data. Using Example 5.1 you could state that you are “90% confident that the 
true mean lies within 27.05 and 27.67,” or as the interval is symmetrical you 
could say that you are “90% confident that the true mean is 27.36 (± 0.31),” 
using an appropriate number of decimal points dependent on the required 
degree of accuracy.

The confidence level used will have a strong effect on the width of the con-
fidence interval. For example, if you need a more precise interval around the 
mean then you could accept a lower confidence level. However this would 
result in a higher risk of being misled and that would result in a higher risk 
of the true mean being outside those interval values. If you need a high con-
fidence level that would result in a lower risk of being misled, this would give 
a less precise interval.
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The sample size used also will have a strong effect, as a larger sample size will 
provide a more precise interval whereas a smaller sample size will give a less 
precise interval.

In addition, the variation in the data also will have an effect with noisier data 
giving a larger and therefore less precise interval. Note that the variation of 
the data cannot be controlled.

Example 5.2 uses the same data as Example 5.1, data7, but this time looks at 
using a lower confidence level of 70%, then using a larger sample size of 25 to 
highlight the earlier points.

EXAMPLE 5.2

Calculate a 70% two-sided confidence interval for the original data, data7, and then a 
90% two-sided interval for the following data, which has a larger sample size.

# Calculate the two-sided confidence interval at the 70% confidence level
CI(data7, ci = 0.70)

   upper       mean      lower
27.55392   27.36278   27.17163

# Create the larger sized data
data8 = c(data7, 26.01, 28.33, 26.62, 26.99, 27.48, 27.74, 27.89)

# Calculate the two-sided confidence interval for the larger data
CI(data8, ci = 0.90)

   upper       mean      lower
27.60178   27.34360   27.08542

The original confidence interval with a sample size of 18 and a confidence level 
of 90% was ±0.31, decreasing the confidence level to 70% reduces that to ±0.19; 
increasing the sample size to 25 with 90% confidence level (while maintaining a 
similar mean and variation) reduces that to ±0.26.

The calculations in Example 5-2 can be used to determine confidence inter-
vals if one of the three assumptions in the following is satisfied,

•	 The data approximately follows a normal distribution.

•	 The data has a reasonable sample size and a symmetrical 
distribution.

•	 The data has a large sample size.

If none of these three points can be satisfied, one option is to use nonparametric  
confidence intervals however they can be quite complicated to compute. 
Although they do have fewer assumptions, they will give a less precise answer.
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A better option to try first would be to transform the data using one of the 
transformations listed in Chapter 4. The key to remember when doing this is 
to back transform the information at the end to give the correct confidence 
interval. It is also worth noting that the interval will no longer be symmetrical 
around the arithmetic mean but it will be symmetrical around the geometric 
mean, which is also mentioned in Chapter 4.

Example 5.3 looks at an example where the data needs to be transformed for 
a confidence interval to be calculated.

EXAMPLE 5.3

Calculate a 95% two-sided confidence interval for the following skewed data and 
compare that to a confidence interval ignoring the normality assumption requirement.

# Create skewed data
data9 = c(9.2, 7.4, 10.7, 3.6, 4.3, 3.2, 14.2, 30.1, 15.7, 6.8, 8.9,
	    9.1, 8.2, 7.5, 7.4, 14.9, 19.7, 26.3, 6.4, 14.2, 8.3, 6.9,
	    8.5, 11.5, 22.7, 16.9, 31.4, 10.7, 17.9, 10.0)

# Transform the skewed data
data10 = log10(data9)

# Check normality – output plot ommited
qqnorm(data10); qqline(data10)

# Calculate the two-sided confidence interval for the transformed data
ci = CI(data10, ci = 0.95); ci

    upper        mean       lower
1.1183646   1.0246775   0.9309905

# Back-transform values to original scale
10^ci

    upper        mean      lower
13.133019   10.584675   8.530814

# Calculate the incorrect two-sided confidence interval for the 
skewed data
CI(data9, ci = 0.95)

    upper        mean      lower
15.189851   12.420000   9.650149

The back-transformed confidence interval is (8.53, 13.13), which would be a lower 
bound of 10.58 (- 2.05) and an upper bound of 10.58 (+2.55), which is clearly not 
symmetrical due to the skewed distribution.

If you compare that to the incorrectly calculated confidence interval of (9.65, 15.19), 
which is 12.42 (±2.77) you can see how different the two answers are and how the 
incorrect confidence interval could be misleading.

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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If you need to calculate confidence intervals in Excel use the following 
functions for two-sided and one-sided confidence intervals, respectively:

= AVERAGE(data) – T.INV.2T(alpha, (COUNT(data) – 
1)) * STDEV.S(data) / SQRT(COUNT(data)).

Where data is the column of data you are using and where alpha is the 
significance level you are interested in, remember significance is one minus 
confidence. Also don’t forget to repeat the line above for the upper confidence 
limit by replacing the first minus sign with a plus sign.

= AVERAGE(data) – T.INV(alpha, (COUNT(data) – 
1)) * STDEV.S(data) / SQRT(COUNT(data))

Again chose the sign to match which one-sided confidence limit you require, 
minus for lower and plus for upper.

Binary Data
To calculate a confidence interval for a proportion in binary data, known as 
either a binary confidence interval or a binomial confidence interval, the 
following information is required,

•	 The number of successes or equivalent metric of interest.

•	 The number of trials in the sample: the sample size.

•	 The confidence level required or the level of risk that is 
acceptable.

•	 The interval of interest: one-sided or two-sided bounds.

Example 5.4 shows not only how to manually calculate a binary confidence 
interval in R to understand the steps involved, but also shows the shortcut 
using the Hmisc package. This shortcut only works for two-sided intervals 
unless you adjust the confidence level to compensate.

Jump straight to “# Load library” if you are only interested in the shortcut.

EXAMPLE 5.4

Calculate a 90% two-sided confidence interval and a one-sided upper confidence 
bound for 20 successes out of 25 trials.

# Assign the successes, trials, and significance level
x = 20; n = 25; alpha = 0.10

# Assess the probability of success
x/n

[1] 0.8
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# Assign degrees of freedom for the critical values
# from the exact binomial method
df1l = 2*(n - x + 1); df2l = 2*x
df1u = df2l + 2; df2u = df1l - 2

# Calculate the two-sided confidence interval
lci = ifelse(x > 0, x / (x + qf(1 - alpha/2, df1l, df2l) *
	  (n - x + 1)), 0)
uci = ifelse(x < n, ((x + 1) * qf(1 - alpha/2, df1u, df2u)) /
	  (n - x + (x + 1) * qf(1 - alpha/2, df1u, df2u)), 1)
lci; uci

[1] 0.6245949
[1] 0.9177091

# Calculate the one-sided upper bound – replace alpha/2 with alpha
uci1 = ifelse(x < n, ((x + 1) * qf(1 - alpha, df1u, df2u)) /
	   (n - x + (x + 1) * qf(1 - alpha, df1u, df2u)), 1)
uci1

[1] 0.8993822

# Load library
library(Hmisc)

# Shortcut to calculate the two-sided interval
binconf(x = 20, n = 25, alpha = 0.1, method = "exact")

PointEst      Lower      Upper
     0.8  0.6245949  0.9177091

# Shortcut to calculate the one-sided interval with amendment
binconf(x = 20, n = 25, alpha = 0.2, method = "exact")

PointEst      Lower      Upper
     0.8  0.6603411  0.8993822

The two-sided confidence interval is (0.625, 0.918) or 62.5% to 91.8%. Note that the 
probability of success was 80% that would make the intervals minus 17.5% and plus 
11.8%, which is not symmetrical due to the probability of success being bound by 
100%. The one-sided upper bound is 0.899 or 89.9% which is closer to 80% due to 
the risk placement.

Note: If using the shortcut to calculate a one-sided interval you will need to double 
the significance level, here from 0.1 to 0.2, and make sure you only quote one side 
and not both.

Translating the output from a binary confidence interval is important as you 
need to remember the interval is around an estimate and not a proportion 
of the sample. Using Example 5.4 you could state that you are “90% confident 
that the true success rate lies within 62.5% and 91.8%.” You cannot state the 
sample success rate ± a value as the confidence limits are not symmetrical due 
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to the bounding of 0 and 1. For the one-sided intervals you could state that 
you are “90% confident that the true success rate is less than 89.9%.”

As binary data has far less “detail” than continuous data, the result is 0 or 1 
as opposed to being any decimal place between two values. A much larger 
sample size will be required for a more precise interval. As with the continu-
ous data examples, the confidence level and the sample size will have a large 
effect on the precision of the interval.

Example 5.5 uses the same data as Example 5.4 but this time looks at using 
a lower confidence level of 70%, then using a much smaller sample size of 5 
trials with 4 successes.

EXAMPLE 5.5

Calculate a 70% two-sided confidence interval from the values in the previous 
example, then a 90% two-sided interval for 4 successes out of 5 trials, which is a 
much smaller sample size.

# Calculate the confidence interval at 70% confidence
binconf(x = 20, n = 25, alpha = 0.3, method = "exact")

PointEst      Lower      Upper
     0.8  0.6838798  0.8856574

# Calculate the confidence interval for the smaller sample size
binconf(x = 4, n = 5, alpha = 0.1, method = "exact")

PointEst      Lower      Upper
     0.8  0.3425917  0.9897938

The original confidence interval width with a sample size of 25 and a confidence level 
of 90% was roughly 29.3% (91.8% - 62.5%), decreasing the confidence level to 70% 
reduces that width to roughly 20.2% (88.6% - 68.4%); decreasing the sample size to 
5 with a confidence level of 90% (while maintaining the same probability of success) 
increases that width to 64.7% (99.0% - 34.3%).

There are many methods for calculating binary confidence intervals, but argu-
ably the three most common ones are the asymptotic normal interval or 
Wald interval, the Wilson interval, and the exact method, also known as the 
Clopper–Pearson interval.

The asymptotic normal interval is a normal approximation for binary data, and 
as such has some strong assumptions. As it is based on the normal distribution 
the interval will be symmetrical; it could go above 1 and below 0. It should 
only be used with large sample sizes and when the probability of success is not 
very small or very large, otherwise the results will be misleading.

The Wilson interval is more robust to deviations from the normal distribution 
than the asymptotic normal interval, and the intervals are not symmetrical so 
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will converge at 0 or 1. It is easier to compute than the exact method and may 
be preferable with a medium to large sample size.

The exact method, which was used in the earlier examples, is the recom-
mended method to use with small or medium sample sizes. The equations 
however are complicated to explain and they can use either the F distribution 
or the beta distribution to calculate the binomial cumulative density function 
(cdf), as such that will be left to personal investigation if you are interested. 
This method also can cope if the probability of success is 0 or 1 however it 
will produce conservative results meaning the confidence intervals will be 
wider than the other methods.

If you need to calculate binary confidence intervals in Excel, use the following 
functions for the lower and upper bounds for the two-sided interval, this uses 
the exact method:

= IF(x = 0, IF(x = n, (alpha/2)^(1/n), BETA.INV(alpha/2, 
x, n – x + 1))).

=IF(x = n, 1, IF(x = 0, 1 – (alpha/2)^(1/n),  
BETA.INV(1 – alpha/2, x + 1, n – x))).

Where x is the number of successes, n is the number of samples/trials, and 
alpha is the significance level, which is one minus the confidence level.

For the one-sided intervals use the following functions again this uses the 
exact method:

= IF(x = 0, IF(x = n, alpha^(1/n), BETA.INV(alpha, x, 
n – x + 1))).

=IF(x = n, 1, IF(x = 0, 1 – (alpha)^(1/n),  
BETA.INV(1 – alpha, x + 1, n – x))).

Make sure you chose only one of the functions from the two above, either 
the top line for the one-sided lower bound or the lower for the one-sided 
upper bound.

Tolerance Intervals
Tolerance intervals are used when you are interested in the uncertainty 
around a proportion of the population, which is termed the coverage.

Although you would want a confidence interval around the journey time to a 
specific location, average experience; you may not want a confidence interval 
around flying hours. For example, if you were trying to restrict flying hours 
to deal with pilot fatigue, it is much more sensible to calculate a tolerance 
interval, individual experience.

A confidence interval would show their average flying hours with uncertainty, 
whereas a tolerance interval would show a percentage (i.e., 95%) of their 
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flying hours with uncertainty, which gives you far more information than the 
average of 50%.

As with confidence intervals, tolerance intervals can be one-sided or two-sided 
and that means that you either quote one tolerance limit or both limits. The 
tolerance interval values are called the lower tolerance limit/bound and the 
upper tolerance limit/bound; so for a one-sided tolerance interval you would 
quote either the lower bound or the upper bound, whereas for a two-sided 
tolerance interval you would quote both bounds

Tolerance intervals still incorporate confidence, but this is around the cover-
age and not around a sample estimate such as the mean.

The next sections look at calculating tolerance intervals for continuous and 
binary data and the information concerning sides also applies to binary data.

Continuous Data
To calculate a tolerance interval for continuous data that approximately fol-
lows a normal distribution the following information is required:

•	 The mean of the sample.

•	 The variability of the sample: the standard deviation.

•	 The number of measurements in the sample: the sample size.

•	 The confidence level required: or the level of risk that is 
acceptable.

•	 The coverage level required: what percentage of the data 
is of interest.

•	 The interval of interest: one-sided or two-sided bounds.

Example 5.6 shows not only how to manually calculate a tolerance interval 
in R to understand the steps involved, but also shows the shortcut using the 
tolerance package.

Jump straight to “# Load library” if you are only interested in the shortcut.

EXAMPLE 5.6

Calculate a 75% coverage, 90% confidence two-sided tolerance interval and a 75% 
coverage, 90% one-sided lower tolerance bound for the first data set in the chapter, data7.

# Calculate the mean, standard deviation and sample size for the data
# Assign the coverage level and the confidence level
x = mean(data7); s = sd(data7); n = length(data7); P = 0.75
conf = 0.9; x; s; n; P; conf
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[1] 27.36278
[1] 0.7585885
[1] 18
[1] 0.75
[1] 0.9

# Calculate the values needed in the equation, including critical values
# from the Gaussian distribution and the Chi-squared distribution
n2 = (n - 1)*(1 + 1/n)
ncrit = (qnorm((1 - P)/2))^2
ccrit = qchisq(1 - conf, n - 1)

# Calculate the two-sided k
k2 = sqrt((n2*ncrit)/ccrit); k2

[1] 1.53445

# Calculate the two-sided tolerance interval
lower.2s.TI = x - k2*s
upper.2s.TI = x + k2*s
lower.2s.TI; upper.2s.TI

[1] 26.19876
[1] 28.52679

# Calculate the values needed for the one-sided tolerance interval
ncritcov = qnorm(P)
ncp = sqrt(n) * ncritcov
tcrit = qt(conf, df = n - 1, ncp = ncp)

# Calculate the one-sided k
k1 = tcrit/sqrt(n); k1

[1] 1.070626

# Calculate the one-sided lower tolerance bound
lower.1s.TI = x - k1*s; lower.1s.TI

[1] 26.55061

# Load library
library(tolerance)

# Shortcut to calculate the two-sided interval
normtol.int(data7, alpha = 0.1, P = 0.75, side = 2, method = "HE2")

  alpha     P     x.bar  2-sided.lower   2-sided.upper
1   0.1  0.75  27.36278       26.19876        28.52679

# Shortcut to calculate the one-sided interval
normtol.int(data7, alpha = 0.1, P = 0.75, side = 1)

  alpha     P     x.bar  1-sided.lower  1-sided.upper
1   0.1  0.75  27.36278       26.55061       28.17494

The two-sided tolerance interval is (26.20, 28.53) or 27.36 ± 1.16 due to symmetry, 
and the one-sided lower bound is 26.55.
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Note: You can see that these bounds are larger than those for the confidence intervals, 
(27.05, 27.67) and 27.12, respectively, due to tolerance intervals covering a proportion 
of the data and not just the mean.

As shown in Example 5.6 if both the lower and upper one-sided bound had 
been calculated and incorrectly quoted as a two-sided interval, the values 
would be the same as calculating an 80% two-sided confidence interval—as 
10% of risk would be at each end of the distribution totaling 20% risk overall.

Translating the output from a tolerance interval is important as you need to 
remember the interval is around a coverage or proportion. Using Example 5.6 
you could state that you are “90% confident that at least 75% of the popula-
tion lies within 26.20 and 28.53,” or you could say that you are “90% confident 
that at least 70% of the population will be greater than 26.55” using an appro-
priate number of decimal points dependent on required degree of accuracy.

As before, the confidence level and the sample size will have a large effect 
on the precision of the interval. In addition to this, the larger the coverage 
required the larger the interval will be.

Example 5.7 uses the same data as Example 5.6, data7, but this time looks at 
using a lower confidence level of 70% with the same coverage as before, then using 
a higher coverage of 95% with the same confidence level as before to highlight 
the previous points. The sample size will remain the same as the previous 
examples have already shown the benefits of increasing the sample size.

EXAMPLE 5.7

Calculate a 75% coverage, 70% confidence two-sided tolerance interval, then a 95% 
coverage, 90% confidence two-sided tolerance interval for the first data set, data7.

# Calculate the two-sided tolerance interval at 75% coverage,
# 70% confidence
normtol.int(data7, alpha = 0.3, P = 0.75, side = 2, method = "HE2")

    alpha        P      x.bar     1-sided.lower   1-sided.upper
1     0.3     0.75   27.36278          26.35784        28.36772

# Calculate the two-sided tolerance interval at 95% coverage,
# 90% confidence
normtol.int(data7, alpha = 0.1, P = 0.95, side = 2, method = "HE2")

    alpha        P      x.bar     1-sided.lower   1-sided.upper
1     0.1     0.95   27.36278          25.37953        29.34603

The original tolerance interval with a coverage of 75% and a confidence level of 90% 
was ±1.16, decreasing the confidence level to 70% while maintaining 75% coverage 
reduces that to ±1.00; increasing the coverage to 95% while maintaining 90% 
confidence increases that to ±1.98.
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The above calculations can only be used to determine tolerance intervals if:

•	 The data can be assumed to follow a normal distribution.

If this doesn’t apply, one option is to use nonparametric tolerance intervals. 
However they can be quite complicated: They can either be very large due to 
being distribution free, or they will just be bound by the minimum and maxi-
mum values of your sample.

A better option to try first would be to transform the data using one of the 
transformations listed in Chapter 4. The key thing to remember when doing 
this is to back transform the information at the end to give the correct confi-
dence interval. It is also worth noting that the interval will no longer be sym-
metrical. There is no example included but the data in Example 5.3 (data9 and 
data10) would be suitable to try for yourself.

If you need to calculate tolerance intervals in Excel there are aids online, 
however I would recommend using R for its simplicity, as you’ve seen above 
using the shortcut.

The key difference between confidence intervals and tolerance intervals is 
that tolerance intervals will always be wider due to the fact that a tolerance 
interval accounts for a proportion of data whereas a confidence interval only 
accounts for an estimate such as the mean.

Figure 5-2 shows similar summer temperatures data to that in Chapter 3, with 
both confidence and tolerance intervals marked, each location had 20 samples.

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
http://dx.doi.org/10.1007/978-1-4842-2256-0_3


Chapter 5 | Measuring Uncertainty118

Here we are 95% confident that the true mean lies within the red bounds 
for each location, and we are 95% confident that 95% of the population data 
lies within the green bounds. Note that these statements rely on the sample 
data being representative of the population that should have been satisfied by 
creating a good experimental design.

Binary Data
To calculate a tolerance interval for binary data, such as for acceptable or 
defective batches, the following information is required:

•	 The number of successes or equivalent metric of interest.

•	 The number of trials in the sample: the sample size.

Figure 5-2.  Difference in width between confidence intervals and tolerance intervals
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•	 The confidence level required: or the level of risk that is 
acceptable.

•	 The coverage level required: what percentage of the data 
is of interest.

•	 The interval of interest: one-sided or two-sided bounds.

Example 5.8 shows not only how to manually calculate a tolerance interval 
in R to understand the steps involved, but also shows the shortcut using the 
tolerance package.

Jump straight to “# Load library” if you are only interested in the shortcut.

EXAMPLE 5.8

Calculate a 75% coverage, 90% confidence two-sided tolerance interval and a 75% 
coverage, 90% confidence one-sided lower tolerance bound for 20 successes out of 
25 trials.

# Assign the successes, trials, coverage level, and significance level
x = 20; n = 25; P = 0.75; alpha = 0.10

# Assign the significance level and the coverage level for the
# two-sided interval
alpha = alpha/2; P = (P + 1)/2

# Calculate the two-sided tolerance interval using the exact method
lower.p = (1 + ((n - x + 1) * qf(1 - alpha, df1 = 2 * (n - x + 1),
	      df2 = (2 * x)))/x)^(-1)
upper.p = (1 + (n - x)/((x + 1) * qf(1 - alpha, df1 = 2 * (x + 1),
	      df2 = 2 * (n - x))))^(-1)
lower.p = max(0, lower.p); upper.p = min(upper.p, 1)
lower = qbinom(1 - P, size = n, prob = lower.p)
upper = qbinom(P, size = n, prob = upper.p)
lower; upper

[1] 13
[1] 24

# Reassign the successes, trials, coverage level and significance level
x = 20; n = 25; P = 0.75; alpha = 0.10

# Calculate the one-sided lower bound using the exact method
# Note same equation as previous with alpha left at 0.10
# Same would apply to an upper bound
lower.p = (1 + ((n - x + 1) * qf(1 - alpha, df1 = 2 * (n - x + 1),
	      df2 = (2 * x)))/x)^(-1)
lower.p = max(0, lower.p)
lower = qbinom(1 - P, size = n, prob = lower.p)
lower
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[1] 15

# Load library
library(tolerance)

# Shortcut to calculate the two-sided interval
bintol.int(x = 20, n = 25, P = 0.75, alpha = 0.1, side = 2,
	 method = "CP")

  alpha     P      p.hat  2-sided.lower  2-sided.upper
1   0.1  0.75        0.8             13             24

# Shortcut to calculate the one-sided interval
bintol.int(x = 20, n = 25, P = 0.75, alpha = 0.1, side = 1,
	 method = "CP")

  alpha     P      p.hat  1-sided.lower  1-sided.upper
1   0.1  0.75        0.8             15             24

The two-sided tolerance interval is (13, 24), which would be roughly 52% to 96%. 
Note that the number of successes was 20 and that would make the intervals -7 
and +4, which is not symmetrical due to the successes being bound by 0 and 1. The 
one-sided lower bound is 15 or roughly 60%, which is closer to 20 due to the risk 
placement.

Note: You can see that these two-sided bounds are larger than those for the confidence 
intervals, (62.5, 91.8), due to tolerance intervals covering a proportion of the data and 
not just the mean.

Translating the output from a binary tolerance interval is important as you 
need to remember the interval is around a coverage or proportion. Using 
Example 5.8 you could state that you are “90% confident that at least 75% 
of future acceptable/defective batches lie within 13 and 24,” you could state 
it as between 52% and 96%, however these figures have been rounded due 
to finding whole numbers in the calculation. You cannot state the sample 
successes plus/minus a value as the tolerance limits are not symmetrical due 
to the bounding of 0 and 1. For the one-sided interval you could say you are 
“90% confident that at least 75% of future acceptable/defective batches will 
be greater than 15.”

Note that these calculations should only be used when future experiments 
will be using the same or a larger sample size, otherwise the results will not 
be correct.

As binary data has far less “detail” than continuous data, the result is 0 or 1 as 
opposed to being any decimal place between two values; a much larger sample 
size will be required for a more precise interval. As before, the confidence 
level, sample size, and coverage will have a large effect on the precision of the 
interval.
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Example 5.9 uses the same data as Example 5.8 but this time looks at using 
a lower confidence level of 70% with the same coverage as before, then using a 
larger coverage of 95% with the same confidence level as before to highlight 
the earlier points. The sample size will remain the same as the previous exam-
ples have already shown the benefits of increasing the sample size.

EXAMPLE 5.9

Calculate a 75% coverage, 70% confidence two-sided tolerance interval, then a 95% 
coverage, 90% confidence two-sided tolerance interval for 20 successes out of 25 
trials.

# Calculate the two-sided tolerance interval at 75% coverage,
# 70% confidence
bintol.int(x = 20, n = 25, P = 0.75, alpha = 0.3, side = 2,
	 method = "CP")

  alpha     P       p.hat  2-sided.lower  2-sided.upper
1   0.3  0.75         0.8             14             24

# Calculate the two-sided tolerance interval at 95% coverage, 90% 
confidence
bintol.int(x = 20, n = 25, P = 0.95, alpha = 0.1, side = 2,
	 method = "CP")

  alpha     P       p.hat  2-sided.lower  2-sided.upper
1   0.1  0.95         0.8             11             25

The original tolerance interval width with a coverage of 75% and a confidence level 
of 90% was roughly 11 (24 - 13), decreasing the confidence level to 70% while 
maintaining 75% coverage reduces that width to roughly 10 (24 - 14); increasing the 
coverage to 95% while maintaining 90% confidence increases that width to roughly 
14 (25 - 11).

There are many methods for calculating binary confidence intervals that I 
won’t discuss, but the method used here is the exact method as with the 
confidence intervals. Although the interval is more conservative, it is more 
reliable with small or medium sample sizes.

It would get quite fiddly to calculate binary tolerance intervals in Excel, so 
again I would recommend using R for simplicity.

Figure 5-3 shows the number of detections per piece of equipment on the left 
and the same data as detection rate per piece of equipment on the right with 
both confidence and tolerance intervals marked. Depending on the emphasis 
of your study, you may want values (defective units) or proportions (detection 
rate). The sample size associated with each piece of equipment was 15, 13, 14, 
and 11, respectively, always quote the sample size with your results.
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Here we are 95% confident that the true success rate lies within the red 
bounds for each location, and we are 95% confident that 95% of the popula-
tion data lies within the green bounds. Note that these statements rely on 
the sample data being representative of the population that should have been 
satisfied by creating a good experimental design.

Prediction Intervals
Prediction intervals are used when you are interested in the uncertainty 
around a future measurement.

For example, if you have measured the yield at certain concentrations, such as 
3, 4, and 5, you may want to know the uncertainty around the next concentra-
tion at 6 or around a concentration you haven’t recorded such as 4.5.

Prediction intervals are wider than confidence intervals as there is more 
uncertainty around a single value compared to a mean, which is made up of 
multiple values. Tolerance intervals can be larger or smaller than prediction 
intervals depending on how much coverage of the data is required.

As with confidence intervals and tolerance intervals, prediction intervals can 
be one-sided or two-sided, so make sure only one limit is quoted with one-
sided intervals. The prediction interval values are called the lower prediction 
limit/bound and the upper prediction limit/bound.

Prediction intervals are generally used once a model has been fitted. We won’t 
cover that until Chapter 7, so for now I will leave prediction intervals as just a 
description of what they are and deal with the calculations later.

Figure 5-3.  Difference in width between confidence intervals and tolerance intervals

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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Figure 5-4 shows an example of data that has been fitted to a model with the 
linear model or line of best fit, confidence intervals, tolerance intervals, and 
prediction intervals included to highlight the differences in interval width.

Figure 5-4.  Difference in intervals for a fitted model

In this data there were 12 data points recorded, and then 3 extra points were 
used for predictions; at concentrations of 3, 4.5, and 8 with two of these being 
outside the originally recorded range.

The confidence intervals were calculated at the 95% confidence level. You can 
see how the lines approach the linear model, or line of best fit, where there is 
a lot of data and start to expand out at the extremes.

The prediction intervals also were calculated at the 95% confidence level; 
these aren’t very reliable for data points outside the recorded range. You 
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may be fine quoting the range at the concentration of 3 as it’s quite close to 
the originally recorded data, however it wouldn’t be advisable to make any 
assumptions about the concentration of 8 as it’s far away from all the other 
sample data.

The tolerance intervals were calculated at 95% coverage and 95% confidence, 
and as such are larger than the prediction intervals, but they may not always 
be so. For example, if the tolerance intervals were calculated at 75% coverage 
and 95% confidence, in this example they would have been smaller than the 
prediction intervals.

Summary
The beginning of the chapter described what uncertainty is and the three 
most common types of intervals; confidence, tolerance, and prediction. It then 
went on to investigate these different intervals for both continuous data and 
binary data.

The confidence intervals section described that they represent uncertainty 
around a mean. It went into detail about intervals being either one-sided 
or two-sided, which holds for all other intervals. The section discussed the 
change in width of the intervals by altering either the confidence level or 
the sample size. It included worked examples for calculating continuous and 
binary confidence intervals both long-hand and using shortcuts in R.

The tolerance intervals section showed that they represent uncertainty 
around a coverage of the population with associated confidence. It demon-
strated how changing the confidence level or the coverage level will affect the 
tolerance interval width. It compared the size of tolerance intervals to confi-
dence intervals. The section also included examples for calculating continuous 
and binary confidence intervals.

The prediction intervals section was short due to the fact that these are 
calculated on data fitted to a model, which is not covered until Chapter 7. 
However, it explained that prediction intervals represent uncertainty around 
a value, such as a future measurement. The section did show how the size 
of these intervals compares to that of confidence intervals and tolerance 
intervals.

Chapter 6 moves on to “simple” hypothesis testing, with “simple” meaning 
only one or two variables are involved. Hypothesis testing forms the basis for 
most statistical testing; it involves comparing data to investigate for significant 
differences and the size of this difference or effect. The ideas of one-sided and 
two-sided will be carried across into hypothesis testing, and all output results 
in Chapter 6 includes confidence intervals you now are familiar with.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
http://dx.doi.org/10.1007/978-1-4842-2256-0_6
http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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C H A P T E R 

Hypothesis 
Testing
What Differences Are in the Data?

Hypothesis testing involves looking for significant differences within the sample 
of data you have, with significant being the important word here. It is easy 
to see if there has been a difference in results, between two sets of data for 
example, however hypothesis testing is used to determine if the difference is 
likely to be due to chance or likely to be a real effect in the population.

The idea of what hypothesis testing is doing is quite simple to understand, 
however the exact definition, the number of tests available for use, and the 
correct and incorrect language associated can be quite complicated. As such 
I always go along the lines of “you can think about the language incorrectly in 
your head for ease of understanding, but you must report it properly.”

Hypothesis Test Components
No matter which hypothesis test method you use, the components will be 
the same in each. You will always require the data type and distribution to 
ascertain the correct method to use; you need to know what the actual 
hypotheses are; whether to conduct a one-sided or two-sided test, which 
would have been stated in the experimental design; and you also need to 

6
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know the corresponding level of confidence/significance that you are working  
toward. In addition the majority of tests will output a p-value, along with 
confidence intervals and a summary statistic such as the mean.

The second half of this chapter deals with the different hypothesis test 
methods that are available, and this section looks at the other components 
listed in the preceding paragraph.

Hypotheses
A hypothesis test has two hypotheses, the null hypothesis and the alternative 
hypothesis. The null hypothesis is what you are looking for evidence against. 
This hypothesis is generally the case where no action would need to be taken. 
The alternative hypothesis is what you are looking for evidence for, in an indi-
rect way as this only occurs if there is evidence against the null, which isn’t 
quite the same thing (see the “backward” p-value definition in the P-values 
section). The alternative hypothesis is generally the case where action would 
need to be taken.

For example, testing the current detector against a new detector, the cus-
tomer wants to know if the new detector is significantly better than our cur-
rent detector (see the Significant Differences section for more explanation on 
using the term significant). The null hypothesis here is that either there is no 
difference between the detectors, or the new detector performs worse than 
the current detector that is, if the new detector performs the same or worse 
than the current detector we will stick with the current detector, hence no 
action taken. The alternative hypothesis is that the new detector performs 
better than the current detector therefore, if the new detector performs 
better than the current detector we will need to purchase the new detector, 
hence action taken.

When dealing with the results you can simply think that if the p-value is big, 
the null hypothesis is likely and there is no significant difference. If the p-value 
is small, the alternative hypothesis is likely and there is a significant difference. 
However, do not ever quote the results as I’ve described them in that sen-
tence as that is just an easy way to think about it in your head. As I’ve said 
previously when reporting results you will need to tweak the language to be 
correct.

Nothing is ever true or accepted in hypothesis testing, there is always “evi-
dence against.” For example, you wouldn’t “accept the null hypothesis,” there 
is just “no evidence to reject the null hypothesis,” which suggests no evidence 
of a significant difference. In addition you wouldn’t “accept the alternative 
hypothesis,” there is just “evidence to reject the null hypothesis,” which sug-
gests evidence of a significant difference.
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In terms of big and small p-values, that is only a general rule of thumb to 
remember which way indicates a significant difference. However, the value of 
the p-value that represents a significant difference depends on set confidence 
levels, which is discussed in the P-values and Significant Differences sections.

Sides or Tails
As with the intervals in Chapter 5 the side, or tail, of the test should have 
been decided during the experimental design phase, as it will have affected the 
required sample size.

A two-sided or two-tailed test means that you are looking for a significant dif-
ference on either side. For example, you want to know if there is a difference 
between the protection levels of Kit A and Kit B, so testing whether Kit A is 
better than Kit B and also whether Kit B is better than Kit A.

A one-sided or one-tailed test means you are looking for a significant differ-
ence at one particular side. For example, you want to know if Kit A is signifi-
cantly better than Kit B, but you aren’t concerned with the reverse scenario, 
as with the detector example in the Hypotheses section above.

It doesn’t matter which hypothesis test method you decide you need to use 
due to the data you have collected, all hypothesis test methods will have the 
option to run a one-sided or two-sided test.

Similar to the uncertainty intervals, running a one-sided hypothesis test in both 
directions and quoting the results would be incorrect. If you are interested in a 
difference regardless of direction, then a two-sided test needs to be conducted.

P-values
When conducting hypotheses tests, the majority of them will give output that 
includes a p-value. There is a common misconception that a p-value repre-
sents the probability of the null being correct, which isn’t strictly true. Given 
that the null hypothesis is true, the p-value shows how likely it is that you will 
see a sample such as the one you have found, hence my statement about the 
definition being “backward.”

For example, if you were testing for a significant difference between two 
materials and the output showed a p-value of 0.003; and then if in reality there 
was no difference between the two materials, there is a 0.3% likelihood of 
seeing a sample as extreme as the one we have just collected. In other words, 
if we assume there is no difference between the materials in the population, it 
is very unlikely we would obtain a sample such as we have, therefore we can 
state evidence of a significant difference between the materials. A key thing to 
note here however is that the p-value is quoted on the assumption of “if the 
null hypothesis is true.”

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
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Most people won’t state p-values and significant differences in terms of the 
proper definition, they will just state that there is evidence of a significant dif-
ference at the x% confidence level. This is fine as long as it is understood what 
the p-value actually represents and therefore what conclusions can be drawn 
from the results.

Significant Differences
To determine whether a p-value represents a significant difference it needs to 
be compared to a significance level, which would have been decided during 
the experimental design stage. Do not fall into the trap of just using 95% con-
fidence/5% significance, just because that is the most widely used value. Refer 
back to Chapter 1 to remind yourself about confidence and power levels and 
what they mean in terms of risk.

Say the customer had decided to work at 95% confidence, which is 5% signifi-
cance, and the p-value came out as 0.02 from the hypothesis test. Then we 
could state evidence of a significant difference, as 0.02 is smaller than 0.05. 
However, if the p-value had been 0.08 then we could not state evidence of a 
significant difference, as 0.08 is larger than 0.05. It may be worth noting there 
was evidence of a significant difference at 90% confidence, or just quote the  
p-value. On the other hand if the p-value had been 0.006 it would be worth 
stating that there was evidence of a significant difference at the 99% confi-
dence level, not just at the 95% confidence level that we were working toward.

Significant differences also can be stated in terms of significance levels, for 
example saying there is evidence of a significant difference at the 90% confi-
dence level is the equivalent of saying there is evidence of a significant differ-
ence at the 10% significance level.

It’s worth getting into the habit of saying “there was evidence of a significant 
difference” rather than just “there was a significant difference” due to the 
uncertainty involved in the results including the big assumption about the null 
hypothesis being true.

To add even more translation options, significant differences also can be 
quoted in terms of strength of evidence:

•	 Strong evidence of a significant difference: is when the  
p-value < 0.01.

•	 Evidence of a significant difference: is when the p-value 
< 0.05.

•	 Weak evidence of a significant difference: is when the  
p-value < 0.1.

http://dx.doi.org/10.1007/978-1-4842-2256-0_1


Translating Statistics to Make Decisions 129

However not everyone is aware of this general rule of thumb, so it is preferable 
to state significant differences in relation to confidence or significance levels.

Make sure the sample size is quoted with all significance statements or  
p-values as this can help with interpretation of the results. For example, seeing 
a nonsignificant p-value with a sample size of 50 has much more weight for 
decision making than seeing the same nonsignificant p-value with a sample size 
of 3 as there is clearly not enough data to make an evidence-based decision.

Practical Differences
In all statistical testing the practical application needs to be considered at the 
forefront. It may be that evidence of a significant difference was found during 
the testing, however in practical terms that result is meaningless. The one 
thing that experimental design and general planning can’t account for is the 
variation of the data. It may be that an adequate sample size was used, but the 
variation was much smaller than expected, and therefore a smaller difference 
between the two groups was classed as significant.

For example, an exaggerated example, if a study was conducted with a large 
sample size and the results showed that women ran a race in an average of 15 
minutes and men in an average of 16 minutes, but both only had a standard 
deviation of 30 seconds and this resulted in evidence of a significant difference, 
this would not be practical. Obtaining a significant difference of 1 minute, 
in this example, would be meaningless and as such could be quoted as follows, 
there was evidence of a significant difference between the genders, however 
this difference was on average by 1 minute and therefore is not a practical 
difference or is not a difference of scientific interest.

The converse also could be true, if there was a study being conducted to 
determine whether future funding should be given to a new research area, 
then while evidence of a significant difference may not have been found per-
haps due to cost restrictions on sample sizes, a practical difference may be of 
interest to the decision makers regardless.

There is always a balance between the output of a hypothesis test and the 
practicality of the size of the effect.

Plots
As mentioned in Chapter 3, box plots are a very useful tool for highlighting 
significant differences. However care needs to be taken when using them. 
They should only be used to highlight results found from a hypothesis test as 
the plots themselves cannot be used to determine significant differences, see 
Figure 6-1.

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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Just because two boxes on a box plot do not overlap does not necessarily 
mean there will be a significant difference between the groups, which is a 
common misconception. For example, it may be due to a small sample size, so 
while there may look like a difference on the plot, there is not enough data for 
the test to determine that it’s not just due to chance that the sample looks 
like it does. Although it is more likely that if the boxes largely overlap there is 
unlikely to be a significant difference, it still needs to be tested.

You cannot use a plot to make significance statements, a hypothesis test always 
needs to be carried out; this is why sample sizes should be quoted along with 
p-values of significance statements.

Interpretation
In terms of interpreting the output of a hypothesis test, as long as you follow 
a step-by-step pattern, until you are more familiar with the output, you should 
get the correct answer:

•	 Run the correct test for the data collected and obtain a  
p-value—see the Hypothesis Tests section for the differ-
ent methods available.

•	 Compare the p-value to the predetermined significance 
level.

•	 Decide whether that means you have evidence to reject 
the null hypothesis.

Figure 6-1.  Example box plots of nonoverlapping and overlapping groups
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•	 Turn that statement back into English while still thinking 
about null and alternative hypotheses.

•	 Answer the initial question posed.

For example, consider the question “is there a difference between Machine 
A and Machine B in terms of average computation time.” Having run a two-
sample t test and obtaining a p-value of 0.02 and working to 95% confidence, 
we now follow the remaining steps:

•	 p-value of 0.02 is less than the significance level of 0.05.

•	 Therefore there is evidence to reject the null hypothesis.

•	 Therefore there is evidence to reject that the two 
machines have the same computation time.

•	 There is evidence of a significant difference between the 
computation times of the machines at the 95% confi-
dence level, with Machine A being quicker on average by 
10 minutes.

It is clear that without data that last part of the example was made up, but the 
principal holds that in addition to stating evidence of a significant difference, 
you also need to qualify that in terms of direction and size of the difference.

Hypothesis Tests
Now that you have an idea of the components that make up a hypothesis test, 
what they mean, and what the output will include, it’s time to look at some of 
the tests available to use.

The tests in this chapter are limited to one or two sample groups only as 
Chapter 7 deals with larger data sets though the interpretation of the output 
will be roughly the same as with these tests.

The type of test to use depends on three things, the type of data you have, 
the number of samples, and the relationship between multiple samples. So 
you need to know if you have one sample of data or two samples, then within 
two samples whether the data is independent or paired. In terms of data type 
there will be continuous or binary, then within continuous data whether it is 
normally distributed or not. You also should remember that the continuous 
data tests are conducted on the averages.

Figure 6-2 shows which hypothesis tests should be used dependent on the 
data you have collected.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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It is worth noting though that the output from all the tests will look similar, 
the difficulty is initially choosing the correct test to use and then interpreting 
the output correctly, again there will be some similarities with this as well.

Another item to be aware of is conducting multiple tests and quoting signifi-
cant differences for each one independently. For example, if you had a continu-
ous normally distributed data set with 4 groups and you wanted to test for 
significant differences between each one, it would require 6 tests. These tests 
would not be independent and corrections for running multiple tests will need 
to be applied, such as Bonferroni corrections (more on this in Chapter 7).

Binary Data
With binary data there are only three possible options to choose between, 
one-sample, two-sample independent, or paired.

One-Sample Binary Data
With binary data that has one sample of data to be compared to a value, such 
as a threshold limit, the hypothesis test to use is an exact binomial test.

It’s worth noting that there is an alternative proportions test that could be 
used, either with or without Yates’s continuity correction dependent on sam-
ple size. However, this is only an approximation; it is a simpler calculation than 
that of the exact binomial test. As calculations no longer need to be calculated 
by hand, the exact binomial test is recommended as it is preferable with a 
smaller sample size anyway, and even if the sample size is large the p-value will 
be roughly equal to that of the proportions test.

Figure 6-2.  Flowchart that shows recommended hypothesis tests depending on the data

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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Setting up an exact binomial test requires the number of “successes”; the 
number of trials; a null hypothesis that will be a threshold value or equivalent; 
an alternative hypothesis that will take the form “less,” “greater,” or “two.
sided” in R; and a confidence level.

Example 6.1 shows how to run a one-sample exact binomial test using protec-
tion levels.

EXAMPLE 6.1

The customer wants to know if our equipment is providing greater than 70% protection 
for our troops at 95% confidence. Note here that to “prove” they are protected our null 
hypothesis will assume that they aren’t protected. We had 30 participants and 26 of 
them were protected in the trial.

# Run the one-sample binomial test
binom.test(x = 26, n = 30, p = 0.7, alternative = "greater",
	 conf.level = 0.95)

Exact binomial test

data:  26 and 30
number of successes = 26, number of trials = 30, p-value = 0.03015
alternative hypothesis: true probability of success is greater than 0.7
95 percent confidence interval:
0.7203848    1.0000000
sample estimates:
probability of success
    0.8666667

The p-value is 0.030, which is smaller than our significance level of 0.05, which 
suggests evidence to reject the null hypothesis. In terms of answering the question we 
can say that there is significant evidence that the troops are protected.

In addition the output shows the sample “probability of success,” which is 86.7% 
and it also shows a 95% lower confidence limit, which is 72.0%. This highlights how 
to interpret the results as even the lower confidence limit for the mean protection is 
above our threshold limit of 70%.

In Example 6.1 the null hypothesis is that the protection level is 70% or less, 
which makes the alternative hypothesis that the protection level is above 70% 
as in this case we want to assume the worst scenario and “prove” the best 
scenario. This is why in the R code the alternative is chosen as “greater.”

The conclusion from the example is that there was evidence that the protec-
tion of our troops is significantly higher than the threshold of 70% at the 95% 
confidence level. Therefore our troops are sufficiently protected as the lower 
bound for protection is 72.0%.
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Two-Sample Binary Data
With binary data that has two samples of data to be compared against each 
other, the hypothesis test to use is either a Fisher’s exact test or a chi-square 
test with Yates’s continuity correction. The chi-square test doesn’t provide 
confidence intervals on the results, so the best way to conduct that test is to 
run a proportions test with continuity correction.

The first thing to do is create a contingency table, a 2 × 2 table, of the counts. 
A general rule of thumb is that if any of these counts are below 10 then you 
need to use Fisher’s exact test, but if all the cell counts are 10 or above the 
Fisher’s is still best, but you can use the chi-square test if you prefer. With a 
large sample size the Fisher’s exact test will give similar results to the chi-
square test.

Generally binary data is recorded as 1 for the results of interest and 0 for 
those that aren’t, however to aid with the examples the results will be labeled 
with text.

Example 6.2 shows how to run both a Fisher’s exact test and a chi-square test. 
In addition there is a shortcut to creating row percentages that can be run 
using the RcmdrMisc package.

EXAMPLE 6.2

The customer wants to know if there is a difference between the two treatments A and 
B at 99% confidence. Note here that subjects couldn’t have both treatments, hence 
independence. We had 30 subjects for each treatment and the count of those cured 
was 25 and 16 for each treatment, respectively.

# Set up the data
results = matrix(c(25, 5, 16, 14), ncol = 2, byrow = TRUE)
rownames(results) = c("A", "B")
colnames(results) = c("Cured", "X")

# Assign the data to a table and print results
Table = as.table(results)
Table

  Cured   X
A    25   5
B    16  14
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As one of the cell values in the contingency table was below 10, Fisher’s exact test 
should be used. Note if all cell values had been 10 or above you could use the chi-
square test.

# Load library and create row percentages
library(RcmdrMisc)
rowPercents(Table)

  Cured     X  Total  Count
A  83.3  16.7    100     30
B  53.3  46.7    100     30

# Run the appropriate test – Fisher’s exact test
fisher.test(Table, conf.level = 0.99, alternative = "two.sided")

Fisher's Exact Test for Count Data

data:  Table
p-value = 0.02506
alternative hypothesis: true odds ratio is not equal to 1
99 percent confidence interval:
0.8322165    28.7131182
sample estimates:
odds ratio
 4.263791

The p-value is 0.025, which is not smaller than our significance level of 0.01, which 
suggests there is no evidence to reject the null hypothesis at 99% confidence. In 
terms of answering the question we can say that there is no evidence of a significant 
difference between the two treatments at the 99% confidence level. It may be worth 
noting there was evidence of a difference at 95% confidence, however due to the 
fact the data is from drug responses, the higher confidence level is probably a hard 
requirement.

Using a Fisher’s exact test gives the odds ratio between the treatments, so here it is 
saying that the odds of being Cured using Treatment A is 4.26 times the odds of being 
Cured using Treatment B. However there is a confidence interval around this, so the 
odd ratio could be as small as 0.83 times or as large as 28.71.

# Create a plot of results
barplot(t(Table), main = "Outcome by Treatment", xlab = "Treatment",
        ylab = "Count", space = NULL, ylim = c(0,25), beside = TRUE,
        legend.text = TRUE, col = c("dodgerblue3","firebrick3"))
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# Example code to show how to run the chi-square equivalent test
prop.test(Table, conf.level = 0.99)

2-sample test for equality of proportions with continuity correction

data:  Table
X-squared = 4.9294, df = 1, p-value = 0.0264
alternative hypothesis: two.sided
99 percent confidence interval:
-0.02618514   0.62618514
sample estimates:
   prop 1     prop 2
0.8333333  0.5333333
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The code and output using the chi-square test also has been shown. In this example 
both outputs produced the same conclusions that there is no evidence of a significant 
difference between the Treatments at 99% confidence. However you can see that the 
chi-square test p-value is more conservative, 0.026 compared to 0.025, and this is 
due to it being an approximation rather than an exact calculation. The difference could 
be much larger in other studies so you need to make sure the correct calculation is 
chosen dependent on the contingency table cell frequencies.

The confidence interval here is around the difference between the two proportions of 
being Cured. The difference is 0.83 – 0.53, which is 0.30, however this could be as 
small as -0.03 or as large as 0.63. The negative value just means that in certain cases 
Treatment B may cure more than Treatment A.

In Example 6.2 one of the cell counts in the contingency table was 5, which is 
below 10 so Fisher’s exact test is the appropriate test to use.

The customer just wanted to know if there was a difference between the 
treatments, which makes the null hypothesis that the treatments are equal 
and the alternative hypothesis that the treatments are different—hence the 
alternative being “two.sided” in the R code.

The conclusion from the example is that although Treatment A cured more 
subjects than Treatment B, 83.3% and 53.3%, respectively, there was no evi-
dence of a significant difference between the treatments at the 99% confi-
dence level.

Paired Binary Data
With binary data that has two samples of data that is paired, the hypothesis 
test to use is a McNemar test.

Again, as with the previous example, a contingency table will need to be cre-
ated, then run the McNemar test on that table.

Example 6.3 shows an example of running a McNemar test using an example 
about hazmat suits. To run the test the R package exact2x2 will be used, note 
this package does have dependencies. To plot the data the R package ggplot2 
and its dependencies will be required. Details about the structure of creating 
a ggplot is be discussed in Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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EXAMPLE 6.3

The customer wants to know if there is a difference between two hazmat suits at 95% 
confidence. There were 32 subjects and each subject tried to complete a set course 
with both hazmat suits. They either completed the course in the hazmat suit, or had to 
remove it. The response data will be shown in the following example.

# Set up the data
results = matrix(c(8, 15, 5, 4), ncol = 2, byrow = TRUE)
rownames(results) = c("Suit 1 Complete", "Suit 1 Remove")
colnames(results) = c("Suit 2 Complete", "Suit 2 Remove")

# Assign the data to a table and print results
Table2 = as.table(results)
Table2

                Suit 2 Complete  Suit 2 Remove
Suit 1 Complete               8             15
Suit 1 Remove                 5              4

# Load the library and run the McNemar test
library(exact2x2)
mcnemar.exact(Table2)

Exact McNemar test (with central confidence intervals)

data:  Table2
b = 15, c = 5, p-value = 0.04139
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.03647   10.55115
sample estimates:
odds ratio
    3

# Create plot of results
library(ggplot2)
data11 = as.data.frame(Table2)
ggplot(data11, aes(Var2, Var1)) + geom_tile(aes(fill = Freq),
        colour = "black") + scale_fill_gradient(low = "white",
        �high = "steelblue") + theme_bw() + xlab("Suit 2") +
        ylab("Suit 1") +
        ggtitle("Frequency of Task Completion in Each Suit")
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The p-value is 0.041, which is smaller than our significance level of 0.05, which 
suggests there is evidence to reject the null hypothesis at 95% confidence. In terms 
of answering the question we can say that there is evidence of a significant difference 
between the two hazmat suits at the 95% confidence level.

The next item to answer is how the two hazmat suits are different; if you look at the 
table of counts we can ignore the cases where the subjects completed the course 
with both suits and also where they removed both suits. The remaining values are 5 
and 15, and if you look at the bottom of the McNemar test output you can see an odds 
ratio of 3, so the odds of completing the course is 3 times higher using Hazmat Suit 
1 compared to using Suit 2 and there is a confidence interval around this odds ratio.

The McNemar test in Example 6.3 deals with odds ratios, so here the null 
hypothesis is that the odds ratio between the hazmat suits is 1, or that they 
are the same, and the alternative hypothesis is that the odds ratio between 
them is not equal to 1, or that they are different.
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The conclusion from the example is that there was evidence of a significant 
difference between the two hazmat suits at the 95% confidence level, with the 
odds of completing the course in Hazmat Suit 1 being 3 times higher than the 
odds using Hazmat Suit 2. Therefore Hazmat Suit 1 is the preferable option.

Continuous Data
With averages of continuous data there are the same options as with binary 
data: one-sample, two-sample, or paired. In addition though, the distribution 
needs to be checked to determine whether parametric tests can be used 
with normally distributed data, or whether nonparametric tests need to be 
used with non-normally distributed data. However as mentioned in Chapter 4, 
always remember to try a transformation on the data first if the data appears 
non-normal or use the rule of thumb given for the confidence intervals for a 
mean concerning symmetry and sample size.

One-Sample Normally Distributed Data
For continuous data that has one sample of normally distributed data to be 
compared to a value, such as a threshold limit, the hypothesis test to use is a 
one-sample t test.

To assume normality you will need to visually check the distribution first—
this requires the R package car, once that is confirmed then you can move 
on to conducting the one-sample t test. The test requires a null hypothesis, 
which will be the threshold value or equivalent an alternative hypothesis with 
the same options as those for the exact binomial test and a confidence level.

Example 6.4 shows an example for running a one-sample t test on quality 
control data.

EXAMPLE 6.4

The customer wants to know if our equipment passes quality control at the 90% 
confidence level; the threshold limit for the average weight of the equipment is 33kg 
and the batch will fail if it rises above this value. We had 19 measurements and the 
raw data will be shown in the example below.

# Set up the data
data12 = c(32.5, 32.8, 35.7, 34.6, 34.8, 33.7, 32.9, 35.3, 33.7,
         32.3, 32.0, 32.9, 33.6, 33.4, 34.1, 32.8, 32.5, 32.5, 34.0)

# Load the library and check for normality
library(car)
qqPlot(data12, dist = "norm", main = "Q-Q Plot for Normality",
        xlab = "Norm Quantiles", ylab = "Weight (kg)")

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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A quantile comparison plot shows the data to be approximately normally distributed—
the line is roughly from the bottom left of the plot to the top right.

# Run the one-sample t test
t.test(data12, mu = 33, alternative = "greater", conf.level = 0.90)

One Sample t-test

data:  data12
t = 1.977, df = 18, p-value = 0.03178
alternative hypothesis: true mean is greater than 33
90 percent confidence interval:
33.15665      Inf
sample estimates:
mean of x
33.47895

# Create plot of results with the threshold limit and mean
boxplot(data12, xlab = "Batch of Equipment", ylab = "Weight (kg)",
        ylim = c(32,36), main = "Weight of Equipment")
abline(h = 33, lty = "dashed", col = "red")
points(mean(data12), pch = 19, col = "blue")
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The p-value is 0.032, which is smaller than our significance level of 0.10, which suggests 
there is evidence to reject the null hypothesis at 90% confidence. In terms of answering 
the question we can say that there is significant evidence that the batch has failed.

In addition the output shows the sample mean, which is 33.48kg and it also shows 
the 90% lower confidence limit, which is 33.16kg. This highlights how to interpret the 
results as even the lower confidence limit for the mean weight is above the threshold 
limit of 33kg—also marked on the plot.

Example 6.4 states that the equipment will fail quality control if the average 
weight is significantly greater than 33kg, so this is the case where we would 
take action. This makes the null hypothesis that the weight is 33kg or less and 
the alternative hypothesis that the weight is above 33kg—hence why alternative 
is “greater” in the R code.

The conclusion from the example is that there was evidence that the aver-
age weight of the equipment is significantly higher than the threshold limit of 
33kg at the 95% confidence level so the batch has failed as the lower bound 
of weight of equipment is 33.16kg.
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One-Sample Non-Normally Distributed Data
For continuous data that has one sample of non-normally distributed data to 
be compared to a value, such as a threshold limit, the hypothesis test to use is 
a one-sample Wilcoxon signed-rank test.

Once you have visually confirmed the data is non-normal and have tried a 
transformation on the data, you can proceed with the one-sample Wilcoxon 
signed-rank test. This test requires a null hypothesis, which will be the thresh-
old value or equivalent; an alternative hypothesis; and a confidence level.

In addition to the list in the previous paragraph, the default code does not 
produce a summary statistic or confidence intervals, so we need to specify 
if we want those. The summary statistic is a pseudomedian, and this will not 
necessarily match the median of the raw data as the pseudomedian is calcu-
lated from the median of the mean of pairs of data points. It is also worth 
specifying that an exact p-value should be calculated but with sample sizes less 
than 50 it will default to this case anyway.

Example 6.5 looks at a one-sample Wilcoxon signed-rank test for UK tem-
perature data.

EXAMPLE 6.5

The customer wants to know if the average weekly UK temperatures are less than 
12.5°C at the 90% confidence level, as this will require purchasing new clothing. 
We will use the weekly UK temperature data from Chapter 4, shown here, which 
contained 50 measurements.

# Set up the data
data13 = c(9.246734, 7.399515, 10.747294, 3.569408, 4.337869,
         3.172818, 14.205624, 30.076914, 15.747489, 6.751340,
         8.868595, 9.067760, 8.168440, 7.499503, 7.377515,
         14.883616, 19.688646, 26.299868, 6.351835, 14.180845,
         8.291489, 6.923344, 8.540164, 11.488742, 22.694856,
         16.868368, 31.439693, 10.700027, 17.887367, 10.008738,
         10.678093, 13.064685, 24.202956, 12.361150, 12.772815,
         13.436628, 14.336022, 4.701801, 6.078979, 16.039244,
         13.830606, 11.857714, 11.927977, 4.661250, 28.652883,
         6.391380, 4.378959, 8.361308, 11.056678, 7.521961)

# Load the library and check for normality
library(car)
qqPlot(data13, dist = "norm", main = "Q-Q Plot for Normality",
	 xlab = "Norm Quantiles", ylab = "Temperature (°C)")

http://dx.doi.org/10.1007/978-1-4842-2256-0_4
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A quantile comparison plot shows the data is not normally distributed, the line is not 
straight from the bottom left of the plot to the top right, it is curved.

# Assume transformation didn’t work
# Run the one-sample Wilcoxon signed-rank test
wilcox.test(data13, mu = 12.5, alternative = "less",
        conf.level = 0.90, conf.int = TRUE, exact = TRUE)

Wilcoxon signed rank test

data:  data13
V = 492, p-value = 0.08147
alternative hypothesis: true location is less than 12.5
90 percent confidence interval:
-Inf   12.44044
sample estimates:
(pseudo)median
   11.15571

# Create plot of results with the threshold limit
boxplot(data13, xlab = "Sample", ylab = "Temperature (°C) ",
        ylim = c(0,35), main = "Weekly UK Temperatures")
abline(h = 12.5, lty = "dashed", col = "red")
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The p-value is 0.081, which is smaller than our significance level of 0.10 that 
suggests there is evidence to reject the null hypothesis at 90% confidence. In terms of 
answering the question we can say that there is significant evidence that the average 
weekly UK temperature is less than 12.5°C.

In addition the output shows the pseudomedian, which is 11.16°C and it also shows 
a 90% upper confidence limit, which is 12.44°C. This highlights how to interpret the 
results as even the upper confidence limit for the pseudomedian temperature is below 
the threshold limit of 12.5°C, which is marked on the plot.

In Example 6.5 the customer would need to take action and buy new clothing, 
if the average weekly UK temperature was above 12.5°C. This makes the null 
hypothesis that the “median” temperature is equal or greater than 12.5°C, and 
the alternative hypothesis that the “median” temperature is less than 12.5°C.

The conclusion from the example is that there was evidence that the median 
weekly UK temperatures are significantly lower than the threshold value of 
12.5°C at the 90% confidence level. Therefore new clothing needs to be pur-
chased as the upper bound of the average temperature is 12.44°C.
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Two-Sample Normally Distributed Data
For continuous data that has two independent samples of normally distrib-
uted data with averages to be compared against each other, the hypothesis 
test to use is a two-sample t test.

After the normality check, as there are two samples you should check for equal 
variances. The default of the two-sample t test is to assume the variances are 
unequal, as this will provide a more conservative result, however if an equal 
variance test shows that you can assume equal variance, then you can amend 
the two-sample t test accordingly. The best way to check for equal variance is 
visually, using box plots, however there are also formal tests that can be used.

For data with two or more samples with an assumed normal distribution the 
equal variance test to use is called Bartlett’s test. There is a two-variance F 
test for data with two samples and an assumed normal distribution, however 
Bartlett’s test also covers this case so is the preferred method to use.

Once equal variances have been checked, you can move on to running the 
two-sample t test. This test requires an alternative hypothesis, a confidence 
level, and whether equal variances can be assumed.

Example 6.6 shows a two-sample t test on temperature data, it includes a for-
mal equal variance test. However the box plot at the end of the example also 
can be used to assess the assumption of equal variances.

EXAMPLE 6.6

The customer wants to know if there is a difference between the average temperature 
readouts of two thermometers, new and old, at the 99% confidence level. We had 19 
measurements for each thermometer and the raw data will be shown in the following 
example.

# Set up the data
Temp = c(21.6, 20.7, 22.8, 23.7, 22.4, 23.1, 20.9, 21.6, 22.2, 21.7,
       20.5, 23.4, 22.6, 22.4, 21.3, 20.6, 21.7, 21.9, 22.3, 22.9,
       23.6, 24.7, 25.1, 24.9, 23.7, 25.6, 24.7, 24.1, 23.1, 23.9,
       24.6, 25.2, 24.7, 24.3, 23.5, 23.8, 24.6, 25.0)
Type = rep(c("New", "Old"), each = 19)
data14 = data.frame(Temp, Type)

# Load library and check for normality
library(car)
qqPlot(data14$Temp, dist = "norm", main = "Q-Q Plot for Normality",
        xlab = "Norm Quantiles", ylab = " Temperature (Celsius)")
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A quantile comparison plot shows the data to be approximately normally distributed 
as the line is roughly from the bottom left of the plot to the top right.

# Check for equal variances
bartlett.test(Temp ~ Type, data = data14)

Bartlett test of homogeneity of variances

data:  Temp by Type
Bartlett's K-squared = 0.86468, df = 1, p-value = 0.3524

The Bartlett’s test for equality of variance gave a p-value of 0.352, which is larger than 
the general significance level of 0.05, this suggests there is no evidence to reject the 
null hypothesis therefore we can assume equal variance. This test backs up the box 
plot that shows roughly similar shaped box and whiskers for each Thermometer type.

# Run the two-sample t test
t.test(Temp ~ Type, alternative = "two.sided", conf.level = 0.99,
        var.equal = TRUE, data = data14)

Two Sample t-test

data:  Temp by Type
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t = -8.582, df = 36, p-value = 3.126e-10
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
-3.091205   -1.603532
sample estimates:
mean in group New   mean in group Old
    21.96842            24.31579

# Create plot of results with the mean for each group
boxplot(Temp ~ Type, data = data14,
	 main = "Temperature Readout by Thermometer",
	 xlab = "Thermometer", ylab = "Temperature Readout (°C)")
points(mean(data14$Temp[data14$Type == "New"]), pch = 19,
     col = "blue")
points(mean(data14$Temp[data14$Type == "Old"]), x = 2, pch = 19,
     col = "blue")

The p-value of the two-sample t test is 0.000, rounding to 3 significant figures, which 
is smaller than our significance level of 0.01, which suggests there is evidence to reject 
the null hypothesis at 99% confidence. In terms of answering the question we can say 
that there is evidence of a significant difference between the two thermometer readouts.
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The output also shows the sample means for the two thermometers that shows the 
direction of the significant difference. They are 21.97°C and 24.32°C, respectively, 
which means that the new thermometer is showing significantly lower temperature 
readouts compared to the old thermometer. The average difference in temperature 
readout between them is 2.35°C, and note the confidence interval around this average 
difference is 1.60°C to 3.09°C.

Initially in Example 6.6 a box plot needed to be drawn to investigate equal 
variances as long as the size of the box and whiskers is similar then the vari-
ances can be assumed similar. A Bartlett’s test also was run to confirm these 
findings, which is generally done at the 95% confidence level. The null hypoth-
esis of this test is that the variances of the two samples are equal, and the 
alternative is that they are unequal.

The customer just wants to know if there is a difference between the tem-
perature readouts, so this makes the null hypothesis that the readouts are the 
same, and the alternative hypothesis that the readouts are different—hence 
choosing alternative as “two.sided” in the R code.

The conclusion from the example is that there was evidence of a significant 
difference between the thermometers at the 99% confidence level, with the 
new thermometer showing lower temperature readouts, between 1.60°C to 
3.09°C lower than the old thermometer.

Two-Sample Non-Normally Distributed Data
For continuous data that has two independent samples of non-normally dis-
tributed data to be compared against each other, the hypothesis test to use is 
a Mann–Whitney test, which also can be called the Wilcoxon rank-sum test.

After the normality check and confirming a transformation would not work, 
you need to check for equal variances. One of the assumptions of the Mann–
Whitney test is that the samples have equal variance, so the test to use to 
establish whether this assumption is justified is called Levene’s test.

Once equal variances have been checked, you can proceed with the Mann–
Whitney test. This test uses the same code as the one-sample Wilcoxon 
signed-rank test with some amendments, so it requires two samples of data, 
an alternative hypothesis, and a confidence level.

The same extra specifications apply as with the previous use with regards to 
including a pseudomedian of the difference, confidence intervals, and using the 
exact calculation.

Example 6.7 looks at a Mann–Whitney test using distances fired for different 
projectiles. The package car is also used to conduct the Levene’s test.
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EXAMPLE 6.7

The customer wants to know if there is a difference in average distance fired between 
batches of projectiles made by two different companies at the 95% confidence level. 
We had 10 measurements for each companies’ projectiles and the raw data is shown 
in the following example.

# Set up the data
A = c(80.1, 78.6, 70.9, 75.6, 77.4, 73.1, 65.7, 53.6, 52.8, 30.1)
B = c(31.8, 51.2, 49.8, 35.9, 71.7, 82.3, 80.2, 78.8, 46.7, 79.9)

# Load the library and check for normality
library(car)
qqPlot(A, dist = "norm", main = "Q-Q Plot for Normality",
        xlab = "Norm Quantiles",
        ylab = "Distance (m) for Projectiles A")
qqPlot(A, dist = "norm", main = "Q-Q Plot for Normality",
        xlab = "Norm Quantiles",
        ylab = "Distance (m) for Projectiles B")

A quantile comparison plot shows both groups of data are not normally distributed. 
The lines are not straight from the bottom left of the plots to the top right; they are curved.

# Create a data frame
Dist = c(A, B)
Group = rep(c("A", "B"), each = 10)
data15 = data.frame(Dist, Group)

# Assume transformation didn’t work and check for equal variances
leveneTest(Dist ~ Group, data = data15)

Levene's Test for Homogeneity of Variance (center = median)
      Df  F value  Pr(>F)
group  1    2.188  0.1564
      18
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The spread is similar on the plots and Levene’s test for equality of variance gave a  
p-value of 0.156, which is larger than the general significance level of 0.05 which 
suggests there is no evidence to reject the null hypothesis so we can assume equal 
variance.

# Run the Mann-Whitney test
wilcox.test(data15$Dist ~ data15$Group, alternative = "two.sided",  
	 conf.int = TRUE, conf.level = 0.95, exact = TRUE)

Wilcoxon rank sum test

data:  data15$Dist by data15$Group
W = 52, p-value = 0.9118
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-9.3    26.4
sample estimates:
difference in location
        1.35

# Create plot of results
boxplot(Dist ~ Group, data = data15, ylim = c(20,90),
        main = "Distance Fired by Projectile", xlab = "Projectile",
        ylab = "Distance Fired (m)")
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The p-value of the Mann–Whitney test is 0.912, which is larger than our significance 
level of 0.05, which suggests there is no evidence to reject the null hypothesis at 95% 
confidence. In terms of answering the question we can say that there is no evidence 
of a significant difference between the median distances fired for the two companies’ 
projectiles.

The output also shows the sample difference in location between the two groups, 
which is 1.35 m, which means that the distance fired for projectile A is further than 
that of projectile B, but not significantly so. The confidence interval around this 
difference is -9.3m to 26.4m, which suggests large variation for a small sample size.

For Example 6.7, initially a Levene’s test was run to investigate equal variances; 
this is generally done at the 95% confidence level. The null hypothesis is that 
the variances of the two samples are equal, and the alternative is that they are 
unequal and this was backed up by the box plot.

The customer wants to know if there is a difference between the distance 
fired of the projectiles, so this makes the null hypothesis that the distances 
are the same. The alternative hypothesis was that the distances are different, 
hence choosing alternative as “two.sided” in the R code.

The conclusion from the output is that there was no evidence of a significant 
difference between the companies’ projectiles at the 95% confidence level.

Paired Normally Distributed Data
For continuous data that has two samples of normally distributed data that is 
paired, the hypothesis test to use is a paired t test.

After the normality check on the differences, as that is the metric of interest 
with paired data, you can move on to running the paired t test. This test requires 
an alternative hypothesis, a statement that the data is paired, and a confidence 
level.

To plot the data the R package PairedData and its dependencies will be 
required.

Example 6.8 shows how to run a paired t test on data involving performance 
before and after training.
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EXAMPLE 6.8

The customer wants to know if subjects can complete a task quicker after training 
at the 95% confidence level. Each subject completed a task before training and then 
completed a similar task after training and the completion time in minutes was recorded. 
There were 9 subjects and the raw data will be shown in the following example.

# Set up the data
Subject = c(1:9)
BeforeTraining = c(15.02, 18.54, 17.66, 16.75, 13.60, 18.30, 14.34,
        18.94, 16.71)
AfterTraining = c(10.83, 16.47, 12.89, 12.46, 13.70, 15.95, 15.56,
        16.32, 13.84)
data16 = data.frame(Subject, BeforeTraining, AfterTraining)

# Load library and check for normality – on the differences
library(car)
qqPlot((data16$BeforeTraining - data16$AfterTraining),
        dist = "norm", main = "Q-Q Plot for Normality",
        xlab = "Norm Quantiles", ylab = "Time Difference (mins)")
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A quantile comparison plot of the differences shows the data to be approximately normally 
distributed that the line is roughly from the bottom left of the plot to the top right.

# Run the paired t test
t.test(data16$BeforeTraining, data16$AfterTraining,
    alternative = "greater", conf.level = 0.95, paired = TRUE)

Paired t-test

data:  data16$BeforeTraining and data16$AfterTraining
t = 3.6331, df = 8, p-value = 0.003328
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
1.184611      Inf
sample estimates:
mean of the differences
       2.426667

# Load library and create plot of results
library(PairedData)
paired.plotMcNeil(data16, "BeforeTraining", "AfterTraining",
    subjects = "Subject") + theme_bw() +
    scale_colour_manual(values = c("red", "blue")) +
    scale_x_continuous(limits = c(10,20), breaks = seq(10,20,
        by = 2)) + ylab("Subject") +
    xlab("Time to Complete a Set Task (mins)") +
    ggtitle("Time to Complete a Set Task Before and After Training")

The p-value is 0.003, which is smaller than our significance level of 0.05, which 
suggests there is evidence to reject the null hypothesis at 95% confidence. In terms 
of answering the question we can say that there is evidence that training significantly 
reduces the time taken to complete the task, with an explanation of why “reduces” was 
stated given in the paragraph following the example.



Translating Statistics to Make Decisions 155

The output also shows the sample mean of the differences between the before 
and after completion times (which is 2.43 minutes), which means that subjects are 
significantly quicker after training on average by 2.43 minutes; it would be a negative 
value if they were slower. The 95% lower confidence limit of this average difference 
is 1.18 minutes.

By wanting to know if training made participants complete the task quicker 
in Example 6.8 this makes the null hypothesis that the training had either no 
effect or a negative effect, that is, they completed the task in a slower time. 
Therefore the alternative hypothesis is that they performed the task in a 
quicker time after training.

If you think about time, if you want before training to be the slower time 
and after training to be the quicker time, then before training will be a larger 
number than after training: so before minus after will be a positive number. 
Therefore the alternative hypothesis is that the difference in means is greater 
than 0, as that equates to a positive effect from training, which is alternative is 
“greater” in the R code.

As a side note, if you had chosen to do after training minus before training 
this would make the difference negative. Therefore the alternative hypothesis 
would need to be that the difference in means is less than 0, which would 
make the alternative “less” in the R code.

The conclusion from the example is that there was evidence that training sig-
nificantly decreased the time taken to complete a task at the 99% confidence 
level with a lower bound on the average difference of 1.18 minutes.

Paired Non-Normally Distributed Data
For continuous data that has two samples of non-normally distributed data 
that is paired, the hypothesis test to use is a Wilcoxon signed-rank test.

Once the normality check on the differences, as this is the metric of interest, 
has been run and a transformation has been tried, you can move onto running 
the Wilcoxon signed-rank test. This test requires an alternative hypothesis, a 
statement that the data is paired, and a confidence level.

The same extra specifications apply as with the previous use with regards to 
including a pseudomedian of the difference, confidence intervals, and using the 
exact calculation.

To plot the data the R package PairedData and its dependencies will be 
required.

Example 6.9 looks at running a Wilcoxon signed-rank test using paired data 
obtained from testing which cage the mice prefer.
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EXAMPLE 6.9

The customer wants to know if there is a difference in which cage the mice prefer 
at the 85% confidence level, the confidence level was set at 85% due to the low 
cost implications of purchasing new cages. Each mouse spent 30 minutes in each 
cage and their behavior was monitored through various metrics with the output 
being combined to give total time spent relaxed and was rounded to the nearest 15 
seconds. There were 9 mice involved in the study and the raw data will be shown in 
the following example.

# Set up the data
Mouse = c(1:9)
CageA = c(27.5, 10.25, 24.25, 20.5, 23.75, 25.0, 26.25, 18.25, 10.0)
CageB = c(17.0, 9.25, 16.75, 9.5, 26.75, 23.25, 15.25, 18.0, 12.75)

# Load the library and check for normality – on the differences
library(car)
qqPlot(CageA - CageB, dist = "norm", main = "Q-Q Plot for Normality",
    xlab = "Norm Quantiles", ylab = "Time Difference (mins)")
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A quantile comparison plot of the differences shows the data is not normally distributed 
as the line is not straight from the bottom left of the plot to the top right, it is curved.

# Assume the transformation didn’t work and run the Wilcoxon signed-rank test
wilcox.test(CageA, CageB, alternative = "two.sided", paired = TRUE,
        exact = TRUE, conf.int = TRUE, conf.level = 0.85)

Wilcoxon signed rank test with continuity correction

data:  CageA and CageB
V = 36, p-value = 0.1232
alternative hypothesis: true location shift is not equal to 0
85 percent confidence interval:
0.2500363   7.4999727
sample estimates:
(pseudo)median
   4.124959

# Load the library and create plot of results
library(PairedData)
data17 = data.frame(CageA, CageB, Mouse)
paired.plotMcNeil(data17, "CageA", "CageB", subjects = "Mouse") +
        theme_bw() + scale_colour_manual(values = c("red", "blue")) +
        scale_x_continuous(limits = c(0,30), breaks = seq(0,30,
        by = 5)) + ylab("Mouse") +
        xlab("Time Spent Relaxed (mins)") +
        ggtitle("Time Spent Relaxed in Cage A and Cage B")

The p-value is 0.123, which is smaller than our significance level of 0.15, which 
suggests there is evidence to reject the null hypothesis at 85% confidence. In terms 
of answering the question we can say that there is evidence of a significant difference 
between the cages with Cage A being the preferred cage.
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The output also shows the pseudomedian of the differences between the time 
spent relaxed within each cage which is 4.12 minutes, which means that the mice 
are significantly more relaxed in Cage A on “average” by 4.12 minutes. The 85% 
confidence interval around this difference is 0.25 minutes to 7.50 minutes.

Wanting to know if there was a difference in time spent relaxed in Example 
6.9 this makes the null hypothesis that there was no difference between the 
cages, and the alternative hypothesis that there was a difference between the 
cages, hence the alternative being “two.sided” in the R code.

The conclusion from the example is that there was evidence of a significant 
difference between the cages at the 85% confidence level, with Cage A being 
the preferred cage. Cage A should be purchased and the “average” difference in 
time spent relaxed is between 15 seconds to 7.5 minutes better than Cage B.

Summary
The beginning of the chapter described what hypothesis testing actually is:  
A way of testing whether a difference was likely due to chance or likely due to 
a significant difference. It then split into two main sections, the components of 
hypothesis testing and the methods that can be used to carry out the testing.

The components of hypothesis testing were broken into seven sections; 
hypotheses, sides and tails, p-values, significant differences, practical differ-
ences, plots, and interpretation.

Hypotheses looked at the two competing hypotheses used in testing, the null 
hypothesis and the alternative hypothesis, with the former being the “take no 
action” case and the latter being the “take action” case.

Sides and tails was concerned with whether the test is being used to look for 
a difference, regardless of direction, or that you are interested in the sample 
being better, or worse, than a value or another sample.

The p-values section detailed the correct definition of what a p-value actu-
ally represents in its “backward” language and showed an example to better 
explain the quite complex value.

Significant differences described how differences are termed as significant, by 
comparing a p-value to a specific significance level. It also showed that there 
are multiple ways to quote a significant difference, through confidence levels, 
significance levels, or strength of evidence.

Practical differences highlighted that it’s not all about statistical differences, the 
practical size of the differences also need to be taken into consideration when 
forming conclusions.
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Plots showed that just because two box plots do not overlap doesn’t neces-
sarily mean there is a significant difference between the samples, a hypothesis 
test still needs to be run.

Interpretation explained the steps to go through to convert the test output 
into answering the customer question.

The second section detailed the methods that can be used, initially showing 
a flowchart marking which data types and number of samples require which 
test. It also clarified that this chapter is only concerned with data that has 
one or two samples as Chapter 7 deals with bigger data sets and the issue 
of multiple testing. This was then broken into nine sections corresponding to 
some possible combinations of data types and samples.

The first three concerned binary data with one sample, two samples, and 
paired data. They indicated that the three hypothesis test methods to use are 
the exact binomial test, Fisher’s exact test, or chi-square test dependent on 
cell counts, and the McNemar test, respectively. Each section also contained 
details of the method and a worked example in R with conclusions.

The next two sections investigated both cases of continuous data of one 
sample in which the data was normally distributed and where it wasn’t and 
couldn’t be transformed. They showed that the hypothesis test methods to 
use are the one-sample t test and the one-sample Wilcoxon signed-rank test, 
along with descriptions and worked examples for each.

The following two sections looked at both cases of continuous data with two 
samples, again normally and non-normally distributed data. They explained 
that there was a test to run before the hypothesis test, which is a test for 
equal variance, with Bartlett’s being used in the first case and Levene’s being 
used in the second. Then they presented the hypothesis test methods to use 
for each case, the two-sample t test and the Mann–Whitney test with details 
and examples of each.

The last two sections described both cases of continuous data with paired 
samples, with the hypothesis test methods to use being the paired t test and 
the Wilcoxon signed-rank test. Once again, both sections had descriptions of 
the method and a worked example.

Chapter 7 progresses on from hypothesis testing on small data sets to 
hypothesis testing on larger data sets through statistical modeling. The 
complexity comes from having more variables with probably more levels 
within each variable, understanding which models to use based on the data 
collected, and considering the assumptions associated with each. However 
models are still concerned with hypothesis testing and the output from 
most of the models will include a p-value, so it is just an extension of what 
was learned in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
http://dx.doi.org/10.1007/978-1-4842-2256-0_7


© Victoria Cox 2017 
V. Cox, Translating Statistics to Make Decisions, DOI 10.1007/978-1-4842-2256-0_7

C H A P T E R 

Statistical 
Modeling
What Is Actually Going On in the Data?

Statistical modeling is the next step up from simple hypothesis tests; it involves 
a larger number of explanatory variables, a larger number of levels within each 
explanatory variable, or both. At this stage we are still only concerned with 
one response variable.

Models are fit to test the importance of different variables in relation to the 
response variable, to predict future outcomes, and to assign uncertainty and 
repeatability to the results.

For example, you may want to test if a variable has a significant effect on an 
outcome, or you could test what outcome may occur given an untested level 
of an explanatory variable, or you can assign uncertainty around the model 
estimates and assess how well the model fitted the data.

There are numerous statistical models and I can’t cover all the options, so I 
have chosen some of the more commonly used ones to discuss. Most of the 
models will have a similar output; the key is to use the correct model depen-
dent on your data type, led principally by the response variable. In addition all 
the models will have certain assumptions that need to be satisfied.

7
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The first section of this chapter looks at the generics of model assumptions, 
model structure, and model output. The second then delves into some of the 
commonly used models with explanations of their purpose, R examples, and 
interpretation of the output.

Statistical Model Components
The key elements involved when using a statistical model for analysis is the 
input, the methodology, the assumptions, and the output.

Initially when conducting exploratory data analysis (EDA) you should have 
identified the data types of your response variable and your explanatory vari-
ables. It is this information that will determine which methodology to use to 
create the statistical model—this is discussed more in the Statistical Models 
section.

Once the correct model has been chosen you will need to confirm that the 
data satisfies the assumptions of that model type. Depending on sample size 
and balance of design, some assumptions could be violated without making 
the model output invalid.

If the assumptions have been satisfied to a certain degree, then the model 
needs to be formed: the structure. Regardless of the model chosen, this will 
have a fairly consistent formula to follow.

When the initial model is fitted, it is unlikely that this will be the final model 
quoted, so you need to follow the process to simplify or expand the model 
to its best fit.

Finally the model will produce output that will need to be translated correctly 
for the customer. Again, the model output will be fairly consistent regardless 
of model type. Most models in this chapter will produce a p-value as with the 
hypothesis test methods in Chapter 6, along with other useful information.

Model Assumptions
One of the main assumptions for all the models is that the correct data types 
are being used with the correct models.

The main set of models used are called linear models (LMs), this title contains 
many different types of model, which is confusing as it is not just your straight 
line fit. With all types of LMs the following assumptions should be met:

•	 The relationship between the response variable and the 
explanatory variable should be approximately linear.

•	 The residuals should be independent: residuals are the 
difference in measurements and model estimates.

http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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•	 The residual variation should be normally distributed.

•	 The variability in the errors should be consistent: they 
shouldn’t depend on a latent variable or time.

Residuals are the difference between the observed values of the variable and 
the predicted values from your model.

For the first assumption a simple plot of the data will suffice, Figure 7-1 shows 
data that satisfies the linearity assumption and data that does not.

Figure 7-1.  Scatter plots to verify linearity assumptions

The residuals being independent include having little or no autocorrelation. 
This means that a data point is not dependent on the previous data point; for 
example, stock prices would not have independent residuals due to the cur-
rent price being linked to the previous price.

The last two assumptions can only be checked after running the model, and the 
checks are done through drawing objects called diagnostic plots; Figure 7-2 
shows one of the plots in a diagnostic plot.
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This plot shows the residuals and should be approximately normally distributed, 
by showing a straight line from the bottom left to the top right as described in 
previous chapters.

Figure 7-3 shows the other important plot in a diagnostic plot that concerns 
the variability in the errors.

Figure 7-2. An example of a residual normality plot from a diagnostic plot
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The points on this plot should be roughly scattered with no discernible pat-
tern, with the red line being fairly horizontal at y = 0. If the points are close 
together on the left and spread out on the right, this suggests that the varia-
tion is not consistent, that is, time may be having an effect on the variation. In 
addition if there are other clear patterns this may be due to another unknown 
variable. There can be some slight pattern involved vertically, that is stripes, if 
the explanatory variables are categorical. Figure 7-4 highlights time having an 
effect on the variation and an acceptable pattern due to categorical variables.

Figure 7-3. An example of an errors variability plot from a diagnostic plot
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When creating a diagnostics plot, sometimes four plots can be drawn; how-
ever these are the two important plots.

Another assumption for all models is that the model is a good fit for the data; 
again this is another assumption that can only be checked postmodel, there 
are more in the examples in the Statistical Models section.

Model Structure
The most basic model structure involving a response and an explanatory vari-
able is y ~ x. So here you are testing to see if group x has a relationship with 
the outcome y.

This can get more complicated by adding:

•	 More explanatory variables: y ~ x1 + x2.

•	 Interactions: y ~ x1*x2.

•	 Polynomials: y ~ (x1)2 + x1.

An interaction, if you recall from Chapter 1 is when the outcome depends on 
a combination of variables. For example, the outcome may depend on both 
humidity and kit type: Type A may give a better outcome in humid conditions 
whereas Type B may give a better outcome in dry conditions.

Polynomials are a confusing case as while they fit a nonlinear shape to the data, 
the parameters themselves are linear; therefore polynomials are classed as a 
special type of LM. A first degree polynomial includes main effects and looks 

Figure 7-4.  Example of an unacceptable and acceptable independence plot

http://dx.doi.org/10.1007/978-1-4842-2256-0_1


Translating Statistics to Make Decisions 167

like a straight line, a second degree polynomial includes squared terms and is 
curved, a third degree polynomial includes cubed terms can look like an “S”, 
and so on. Figure 7-5 shows examples of polynomials.

Figure 7-5.  Examples of polynomial models

All those three model structures listed earlier—more variables, interactions, 
and polynomials, can clearly include even more variables and a multitude of 
levels within each variable.

Model structures can get even more complicated by including mixed effects 
or nesting. Mixed effects models contain a random effect such as the same 
subjects repeating the experiment for each group or treatment. This particu-
lar example also can be termed repeated measures. Nested models contain 
variables within other variables, for example class is nested within school.
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Model Process
Models can either be built up or down, personally I find it easier to start with 
the most complex model and simplify it down. However it does depend on 
the number of variables you begin with.

Let’s say we had a model that we knew roughly followed a straight line, so 
no polynomials, but it could include interactions and our most complicated 
model was y ~ x1*x2*x3. For the example we will look at below, the y and xs 
translate to “Weight ~ Height*Age*Gender.”

This model includes all main effects, all two-way interactions and the three-
way interaction: “Height,” “Age,” “Gender,” “Height*Age,” “Height*Gender,” 
“Age*Gender,” and “Height*Age*Gender.” Generally when simplifying a model 
you would start by excluding the term with the largest p-value with the most 
complicated interaction.

In this example, if the three-way interaction p-value was significant then we 
cannot simplify the model as there is evidence that the three-way interaction 
is having a significant effect on the response, a three-way interaction or higher 
is quite hard to translate. In some cases it may be simplified, but this is down 
to judgment about the validity of the three-way interaction and also whether 
any two-way interactions are actually having a larger effect on the response 
compared to the three-way interaction.

If the p-value for the three-way interaction didn’t imply significance then we 
could simplify the model. But remember to add in all the two-way interactions 
again, so our new model would be y ~ x1*x2 + x1*x3 + x2*x3.

This model has all the main effects, as all the terms are listed in the model and 
all the two-way interactions as well. Consider Figure 7-6 for two examples of 
model output at this stage, only the p-values are shown here.

Figure 7-6.  Example model output
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In the output on the left the largest p-value happens to be for a two-way inter-
action “Age*Gender,” which is in boldface, so that would be the next term to 
exclude when refitting the model (highlighted in yellow). Remember to only 
exclude one term at the time, so although there are two, two-way interactions 
with a nonsignificant p-value: “Age*Gender” and “Height*Age,” only the larg-
est should be removed. In some cases, terms that were borderline significant, 
to the level you are working at, can actually become significant as the model is 
simplified.

In the output on the right the largest p-value is for a main effect “Age,” which 
is in boldface, however this term should not be removed yet as there are still 
nonsignificant two-way interactions. Remember it is easier to explain a main 
effect than an interaction. So the term to be removed is the two-way interac-
tion with the biggest p-value, which is “Height*Age” (highlighted in yellow).

You may move on to excluding main effects terms once the two-way interac-
tions have been cut to only include those with a significant p-value. You can 
only remove the nonsignificant main effects that are not included in the inter-
action. Sometimes you may have a main effect that is not significant, but it is 
significant in the interaction, this can get tricky to explain.

Once you have simplified your model as far as you can you will need to, check 
the assumptions, look at the goodness of fit for the model, and also compare 
the current model to previous models to verify you were justified in simplify-
ing it—more in the Statistical Models section.

Further tests may need to be performed such as least-squares means con-
trasts. The summary of a model will show that the explanatory variable had an 
effect on the response. However if there are more than two levels within the 
explanatory variable, then you don’t know which ones are having the effect. 
This is where the least-squares means contrasts will compare each level of 
the explanatory variable to each other in terms of the response, it also will 
correct for conducting multiple testing.

Model Output
Most models will show similar things in the output: information about the 
residuals, estimates for the variables, errors for the variables, p-values for the 
variables, information about the degrees of freedom, and information about 
the goodness of fit.

Figure 7-7 shows some example LM output.
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Here the most important sections of the output have been highlighted. The 
yellow output shows p-values, these are calculated from testing the effect of 
the levels of the explanatory variable “Type” on the response “Bottle.Weight” 
in relation to each other. The significant intercept means that the “Bottle.
Weight” for “TypeA” is significantly different to zero. R orders factors alpha-
betically. In this example it has taken out “TypeA” so as not to over fit the 
model. Here “TypeB” is significantly different to “TypeA” at the 99% confi-
dence level, but “TypeC” is not significantly different to “TypeA”. In this sce-
nario you would also want to test for the difference between “TypeB” and 
“TypeC”, and this is done with multiple comparison testing, which can be seen 
later in Figure 7-8.

The green output shows the estimates, or coefficients, so the intercept is 
either where the data crosses the y-axis (with a continuous explanatory vari-
able) or the response value for the first level of the factor (with a categorical 
explanatory variable). The estimates of levels of “Type” show the increase or 
decrease in “Bottle.Weight”:

•	 For “TypeA” the “Bottle.Weight” will be 21.81g.

•	 For “TypeB” the “Bottle.Weight” will be (21.81 + 2.56) 
= 24.37g.

•	 For “TypeC” the “Bottle.Weight” will be (21.81 + 0.377) 
= 22.18g; this also highlights why there’s not a significant 
difference between “TypeA” and “TypeC.”

Figure 7-7.  Example linear model output
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The blue output shows how much of the variation has been explained by the 
model, how well the model has fit the data. In this case 62.6% of the variation 
has been explained by the model, which is quite good.

In addition you would run the model diagnostics to check the assumptions, 
calculate confidence intervals for the estimates, determine which “Type” 
was significantly different to which, and plot the data, which is all shown in 
Figure 7-8.

Figure 7-8.  Example of additional model output
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The top left plot indicates that the model residuals can be assumed approxi-
mately normal, and the top right plot shows a random scattering of the points. 
Remember for categorical variables there won’t be any horizontal variation.

The bottom left plot shows the multiple comparisons test using least-squares 
means contrasts with the Tukey method correcting for multiple comparisons; 
this is suitable for balanced designs. Another commonly known method for 
controlling for multiple testing is Bonferroni corrections.

The p-values show that “TypeB” is significantly different to both “TypeA” and 
“TypeC” at the 99% confidence level, but there is no significant difference 
between “TypeA” and “TypeC.”

Below this are 95% confidence intervals on the estimates, so whilst the aver-
age “Bottle.Weight” estimates have been given in the model output, this 
shows the confidence intervals around those estimates. If you want specific 
confidence intervals around average values for each level, the best to use are 
those shown in the top section of the lsmeans() output. So although the aver-
age values are 21.81g, 24.37g, and 22.18g for “TypeA,” “TypeB,” and “TypeC,” 
respectively, these three values could be as low as 21.41g, 23.97g, and 21.79g 
or as high as 22.21g, 24.77g, and 22.59g.

The bottom right plot shows the data visually and helps to explain the direc-
tion of the differences between the “Types,” it is clear to see why there is no 
significant difference between “TypeA” and “TypeC.” It also clarifies the direc-
tion of the difference for “TypeB,” it gives significantly heavier “Bottle.Weight” 
than the other “Types.” It also highlights that the mean and median for each 
“Type” are similar to each other, which is another check for normality.

Statistical Models
The statistical model to use will mainly depend on the data type of the 
response variable, but can sometimes be dependent on the explanatory vari-
ables data type.

There will be other types of models that aren’t listed in this chapter as there 
are so many, however these will be the ones most commonly used.

Each section will discuss the reason to use the model, its assumptions, 
how to construct the model using an R example, and how to translate the 
results.
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Simple Models
These simple models are the most well-known models, the linear model (LM) 
and analysis of variance (ANOVA). I have included examples due to this rea-
son; however there really aren’t major differences between these two options. 
In addition, there is also another model that is very similar to the LM called 
the generalized linear model (GLM).

Linear Model
LMs fit a number of explanatory variables against a continuous response vari-
able. The explanatory variables can be discrete or continuous. In a lot of 
places you will see recommendations to have more continuous than discrete 
variables, but this is not necessary.

The assumptions of a LM have been discussed earlier in the chapter, but as a 
recap they are linearity, independence, residual normality, and consistent error 
variation.

Example 7.1 will walk through a LM example in R, looking at whether concen-
tration “Conc” has an effect on yield “Yield.”

In the interest of space when plotting the graphs in any of the examples in 
this chapter, only the basic ggplot() code will be shown; however the plots I 
create will include more detail than the basic code produces, this detail will be 
explained in Chapter 9. In addition to this, usually you would plot basic graphs 
for EDA at the beginning of the analysis along with well-presented graphs to 
visually complement the output summary; to save space I will only be creating 
the final plot. To plot the graphs we will be using the R package ggplot2, which 
have a lot of dependencies.

EXAMPLE 7.1

We have a response variable of Yield and an explanatory variable of Concentration; 
both the response and explanatory variables are continuous. We are looking to see if 
Concentration has an effect on Yield.

# Input the data
Yield = c(498,480.3,476.4,546,715.4,666,741.2,522,683.6,574,804,637,
        700,750,600,650,590)
Conc = c(3.9,3.8,3.6,4.2,5.7,5,5.5,3.7,4.9,4,6,5,5.2,5.9,4.8,4.7,4.3)
data18 = data.frame(Yield, Conc)

# Fit the model and print the output
mod = lm(Yield ~ Conc, data = data18)
summary(mod)

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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Call:
lm(formula = Yield ~ Conc, data = data18)

Residuals:
    Min       1Q  Median      3Q     Max
-35.737  -23.542   5.458  19.435  37.481

Coefficients:
            Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)   40.425      40.338    1.002    0.332    
Conc         124.023       8.442   14.692  2.6e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.43 on 15 degrees of freedom
Multiple R-squared:  0.935,     Adjusted R-squared:  0.9307
F-statistic: 215.8 on 1 and 15 DF,  p-value: 2.602e-10

The model output shows that Concentration is having a significant positive effect on 
Yield at the 99% confidence level, p-value of 2.6e-10. For every 1 unit increase in 
Concentration there is a 124 unit increase in Yield the estimate by Conc is 124.023. 
It also shows that the model accounts for 93.1% of the total variation, which is very 
good—adjusted R2 of 0.9307.

# Check the diagnostics
plot(mod, which = 2)
plot(mod, which = 1)

The diagnostic plots show that we can roughly assume normality on the residuals, 
it’s not great but it is good enough, and that there is consistent error variation as the 
points are roughly scattered.
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# Calculate confidence intervals for the estimates
confint(mod)

                 2.5 %    97.5 %
(Intercept)  -45.55406  126.4039
Conc         106.03008  142.0167

The confidence intervals highlight that for every unit increase in Concentration 
the increase in Yield could be between 106 and 142. The confidence intervals for 
the intercept also include 0, which is good as we would expect a Yield of 0 at a 
Concentration of 0.

# Plot the data
library(ggplot2)
ggplot(data18, aes(x = Conc, y = Yield)) + theme_bw() +
        geom_point() + geom_smooth(method = "lm")

Finally the scatter plot highlights the linearity of the data and shows the line of best fit 
with confidence intervals. This clearly emphasises the positive relationship between 
Concentration and Yield.
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Once the data has been input, you assign a model to the data and call it a 
name, in this case “mod.” The lm( ) stands for linear model, then the response 
variable is specified followed by the explanatory variable(s), finally the data set 
to be used is included.

The next few commands are carried out on this “mod” object, so the summary() 
gives a summary of the model output. Next the diagnostic plots are drawn, 
by specifying the “which =” part allows us to define which diagnostic plot 
we would like drawn. The confint( ) calculates 95% confidence intervals by 
default of the model estimates, to change this level you would amend the code 
as follows: confint(mod, level = 0.99).

Finally using ggplot( ) I plotted a scatter plot including the line of best fit from 
the linear model that has 95% confidence interval shading.

As an aside, a model can be fitted without an intercept term. This just means 
that the slope of the fit is forced through the origin, (0,0), which in some cases 
makes sense but in others may not.

ANOVA
Many people have heard of ANOVA, it is simply an extension of a two-sample 
t test. As with LMs, they also are used to fit a number of explanatory variables 
against a continuous response variable. Again, the explanatory variables can be 
discrete or continuous. However in a lot of places you will see recommenda-
tions to have more discrete variables than continuous variables, this should be 
adhered to, otherwise you can just run a LM instead.

The key thing to note here is that there isn’t much difference between fitting a 
LM or an ANOVA. You can in fact get the same ANOVA results by computing 
an ANOVA table of the LM results. The main difference between the two is 
that with a LM it doesn’t matter what order you put the explanatory variables 
into the model, whereas it does matter for the general ANOVA model.

The LM will use t-values to calculate the p-values; the t-values test the mar-
ginal impact of the levels of the explanatory variables given the fact that all 
the other variables are present. The ANOVA will use F-values to calculate 
the p-values; the F-values test whether the explanatory variable as a whole 
reduces the residual sum of squares (SS) compared to the previous explana-
tory variable(s). So for explanatory variable one this will be tested against the 
response, then explanatory variable two will be tested given explanatory vari-
able one is present, and so forth.

An advantage of the ANOVA table is that it can tidy up high level explana-
tory variables. A LM will show the estimate parameters, that is, one row per 
explanatory variable level, whereas an ANOVA will show the variables, that is, 
one row per explanatory variable. For example, a LM output of one explana-
tory variable with 10 levels will show 9 rows, whereas an ANOVA will only 



Translating Statistics to Make Decisions 177

show 1 row. It can be simpler to use an ANOVA table to simplify the model; 
however I would compare the two along the way, and always use a LM output 
for the final results.

The assumptions of the ANOVA are similar to that of the LM including inde-
pendence, consistent error variation, and residual normality. It also includes 
the assumption that the levels of the explanatory variable have similar varia-
tion. The recommended test to use for this is Bartlett’s, along with plotting a 
box plot, recall Chapter 6.

Example 7.2 will look at an ANOVA example in R, looking at whether the 
either of the two materials “Material” or any of the four methods of imple-
mentation “Method” have an effect on the total volume produced “Volume.” 
It will also show a LM output of the same model along with how you can 
calculate an ANOVA table from that output.

As there are multiple “Methods” we may need to carry out multiple compari-
sons, if so we will need to use the R package lsmeans. Least-squares means can 
be calculated for each explanatory variable combination along with their con-
trasts to determine if there are significant differences between multiple groups.

EXAMPLE 7.2

We have a response variable of Volume and two explanatory variables of Material 
and Method. The response variable is continuous and both explanatory variables are 
discrete. We are looking to see if Material, Method, or an interaction between the two 
has an effect on Volume.

# Input the data
Volume = c(28.756,29.305,28.622,30.195,27.736,17.093,17.076,17.354,
         16.353,15.880, 36.833,35.653,34.583,35.504,35.236,30.333,
         30.030,28.339,28.748,29.020,32.591,30.572,32.904,31.942,
         33.653, 20.725,22.198,21.988,22.403,21.324,38.840,40.137,
         39.295,39.006,40.731,32.136,33.209,34.558,32.782,31.460)
Material = rep(c("A","B"), each = 20)
Method = rep(c("I","II","III","IV"), each = 5, 2)
data19 = data.frame(Volume, Material, Method)

# Check for equal variances
bartlett.test(Volume ~ interaction(Material,Method), data = data19)

Bartlett test of homogeneity of variances

data:  Volume by interaction(Material, Method)
Bartlett's K-squared = 2.6181, df = 7, p-value = 0.9179

The Bartlett’s test gave a p-values of 0.918 that suggested no evidence to reject the 
null hypothesis, which means we can assume equal variances and that was also 
confirmed by the roughly equal sizes of the box and whiskers on the box plot at the 
end of Example 7.2.

http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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# Fit the full model and print the output
mod = aov(Volume ~ Material*Method, data = data19)
summary(mod)

                 Df  Sum Sq  Mean Sq  F value    Pr(>F)    
Material          1   159.2    159.2  197.662  3.03e-15 ***
Method            3  1742.4    580.8  721.025   < 2e-16 ***
Material:Method   3     3.8      1.3    1.572     0.215    
Residuals        32    25.8      0.8                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output of the full ANOVA model that contains the interaction showed that the 
interaction was not significant to Volume with a p-value of 0.215. This is backed by 
the plot of the data that shows a similar pattern and gradient for Material and Method. 
As such the model can be simplified by removing the interaction term.

# Simplify the model and print the output
mod2 = aov(Volume ~ Material + Method, data = data19)
summary(mod2)

           Df  Sum Sq  Mean Sq  F value    Pr(>F)    
Material    1   159.2    159.2    188.4  1.18e-15 ***
Method      3  1742.4    580.8    687.3   < 2e-16 ***
Residuals  35    29.6      0.8                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Once simplified the model output showed that both Material and Method had a 
significant effect on Volume at the 99% confidence level, again it’s clear to see a 
difference between the two Methods and you also can see that there is a consistent 
difference between the Materials using the final plot. This means that the model 
cannot be simplified any further.

The ANOVA output showed us that there is a difference between Method A and B and 
looking at the box plot we can see that Method B gives a higher Volume. However we 
don’t know if all Methods are different to each other, and this is what the lsmeans 
output will show us.

# Check for differences between all Methods
library(lsmeans)
lsmeans(mod2, pairwise ~ Method)

$lsmeans
Method      lsmean         SE  df  lower.CL  upper.CL
     I     30.6276  0.2906892  35  30.03747  31.21773
    II     19.2394  0.2906892  35  18.64927  19.82953
   III     37.5818  0.2906892  35  36.99167  38.17193
    IV     31.0615  0.2906892  35  30.47137  31.65163
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Results are averaged over the levels of: Material
Confidence level used: 0.95

$contrasts
contrast  estimate         SE  df  t.ratio  p.value
  I – II   11.3882  0.4110966  35   27.702   <.0001
 I – III   -6.9542  0.4110966  35  -16.916   <.0001
  I – IV   -0.4339  0.4110966  35   -1.055   0.7183
II – III  -18.3424  0.4110966  35  -44.618   <.0001
 II – IV  -11.8221  0.4110966  35  -28.757   <.0001
III – IV    6.5203  0.4110966  35   15.861   <.0001

Results are averaged over the levels of: Material
P-value adjustment: tukey method for comparing a family of 4 
estimates

Using the second section of the lsmeans output we can see that all Methods are 
significantly different to each other at the 99% confidence level except Method I and 
Method IV, which are not significantly different to each other—p-value of 0.7183. 
Using the first section of the lsmeans output and/or the box plot shown at the end 
of the example, you also can order the Methods accordingly, from highest Volume to 
lowest: Method III, Method IV and Method I, then Method II.

# Compare the two models
anova(mod, mod2)

Analysis of Variance Table

Model 1: Volume ~ Material * Method
Model 2: Volume ~ Material + Method
 Res.Df     RSS  Df  Sum of Sq       F  Pr(>F)
1    32  25.777                           
2    35  29.575  -3    -3.7984  1.5718  0.2154

To check the model could be simplified an ANOVA comparing the two models was run, 
comparing the simpler model to the more complex model. This showed a p-value of 
0.215 that suggests no significant difference between the two models, hence it is fine 
to use the simpler model.

# Check the diagnostics
plot(mod2, which = 2)
plot(mod2, which = 1)
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The diagnostic plots show that we can roughly assume normality on the residuals and 
that there is consistent error variation, the points are roughly scattered. These plots 
will be exactly the same if they were run on the LM output.

# Calculate confidence intervals for the estimates
confint(mod2)

                  2.5 %     97.5 %
(Intercept)  27.9726891   29.29226
MaterialB     3.4001196    4.58038
MethodII    -12.2227704  -10.55363
MethodIII     6.1196296    7.78877
MethodIV     -0.4006704    1.26847

The downside of the ANOVA summary output is that it doesn’t show the estimates 
for each level of the explanatory variables; however this could be calculated from 
the confidence intervals output, as they are symmetrical. For example, the estimate 
for Material A would be (27.97 + ((29.29 – 27.97)/2)) = 28.63, which you will see 
matches the LM output next.

# Fit linear model and print results
mod3 = lm(Volume ~ Material + Method, data = data19)
summary(mod3)

Call:
lm(formula = Volume ~ Material + Method, data = data19)

Residuals:
     Min        1Q    Median       3Q      Max
-2.05073  -0.59837  -0.03905  0.69276  1.56253

Coefficients:
            Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)  28.6325      0.3250   88.100   < 2e-16 ***
MaterialB     3.9903      0.2907   13.727  1.18e-15 ***
MethodII    -11.3882      0.4111  -27.702   < 2e-16 ***
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MethodIII     6.9542      0.4111   16.916   < 2e-16 ***
MethodIV      0.4339      0.4111    1.055     0.298    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9192 on 35 degrees of freedom
Multiple R-squared:  0.9847,    Adjusted R-squared:  0.9829
F-statistic: 562.6 on 4 and 35 DF,  p-value: < 2.2e-16

By fitting the LM we can see that the Volume for Material A and Method I is 28.63, the 
Volume for Material A and Method II is (28.63 – 11.39) = 17.24, through to the Volume 
for Material B and Method IV, which is (28.63 + 3.99 + 0.43) = 33.05. We also can see 
that the model explains 98.3% of the variation.

# Calculate confidence intervals – only first section of output shown
lsmeans(mod2, pairwise ~ Method*Material)

$lsmeans
 Method  Material    lsmean         SE  df  lower.CL  upper.CL
      I         A  28.63247  0.3250004  35  27.97269  29.29226
     II         A  17.24427  0.3250004  35  16.58449  17.90406
    III         A  35.58667  0.3250004  35  34.92689  36.24646
     IV         A  29.06637  0.3250004  35  28.40659  29.72616
      I         B  32.62272  0.3250004  35  31.96294  33.28251
     II         B  21.23452  0.3250004  35  20.57474  21.89431
    III         B  39.57692  0.3250004  35  38.91714  40.23671
     IV         B  33.05662  0.3250004  35  32.39684  33.71641

If we wanted confidence intervals on each group level, we could use the output from 
a least-squares means output, which includes the interaction term. So the confidence 
interval values we would get for the three examples above are 27.97 to 29.29, 16.58 
to 17.90, and 32.40 to 33.72, respectively.

# Create ANOVA table from linear model results
anova(mod3)

Analysis of Variance Table

Response: Volume
           Df   Sum Sq  Mean Sq  F value     Pr(>F)    
Material    1   159.22   159.22   188.43  1.183e-15 ***
Method      3  1742.40   580.80   687.34  < 2.2e-16 ***
Residuals  35    29.58     0.85                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By creating an ANOVA table from the LM output we can see that it gives exactly the 
same results as running the original ANOVA model on the data.

# Plot data
ggplot(data19, aes(x = Method, y = Volume)) + theme_bw() +
        facet_wrap( ~ Material) + stat_boxplot(geom = "errorbar") +
        geom_boxplot()
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Finally the box plot highlights the differences found between the explanatory 
variables in terms of Volume: All four boxes in the B box give a higher Volume than 
their corresponding boxes in the A box, and the order of the Materials is the same 
regardless of the Method. It also emphasises the similar variation as mentioned 
previously, in fact showing that there was very little variation due to the boxes and 
whiskers being so small.

Once the data has been input, you check for equal variance using the Bartlett’s 
test, bartlett.test( ), then assign a model to the data and call it a name, which 
in this case “mod.” The aov( ) stands for ANOVA, then the response variable 
is specified followed by the explanatory variables and interaction, finally the 
data set to be used is included.

The next few commands are carried out on this “mod” object or “mod2” 
object, which was our simplified model so the summary( ) gives a summary 
of the model output. The summary can show us differences between the 
“Materials” as there were only two, but it cannot show us differences between 
the “Methods.” Therefore lsmeans( ) does that by specifying the model along 
with which explanatory variable is of interest, in this case “Method.”
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Next the ANOVA run is to test between the two models, the full model and 
the simplified model. The diagnostic plots are drawn and by specifying the 
“which =” part in the plot( ) command allows us to define which diagnostic 
plot we would like drawn. The confint( ) calculates 95% confidence intervals 
by default of the model estimates, to change this level you would amend the 
code as follows: confint(mod, level = 0.99). For confidence intervals around 
the average per variable level, the output from the lsmeans( ) was used.

The LM was fit in the same way as described in Example 7.1 and an ANOVA 
table of the results was calculated to show their similarities.

Finally using ggplot( ) I plotted a box plot with the mean and statistical outli-
ers clearly highlighted. As the interaction was not significant I didn’t need to 
plot both variables on one graph, I could have plotted a box plot showing 
“Material” against “Volume” and another showing “Method” against “  Volume.”

This example highlights that fitting an LM and an ANOVA are very similar 
procedures. The recommendation would be to use an LM over an ANOVA, 
except if a long complicated table needs to be tidied up for comprehension.

Generalized Linear Model
GLMs are one step up from a simple LM due to the fact that you can add in 
a distribution. A GLM will be able to fit a multitude of distributions, some of 
which include a Gaussian model, a Poisson model, a negative-binomial model, 
and a binomial model. This lets you model all types of discrete data. However 
in all cases the set-up of the response and explanatory variables is the same, 
algebraically and using software.

The model summary output of the default GLM, which is the Gaussian distri-
bution, will be exactly the same as the LM output. The difference will be seen 
in the confidence intervals of the estimates, this is because the GLM uses the 
normal distribution whereas the LM uses the t distribution.

When comparing GLM models this is done using the same test as in the 
ANOVA example, however the test type chosen depends on the data type. 
For Gaussian GLMs the F test is recommended, whereas for Poisson, negative 
binomial and binomial GLMs the chi-square test is more appropriate.

Gaussian GLM
The Gaussian GLM is the default if no other distribution is chosen. It will pro-
duce the same results as running a simple LM, so it’s down to personal choice 
whether you use a GLM Gaussian distribution or a simple LM. As such, it also 
has the same assumptions as those of the LM.
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Example 7.3 looks at a GLM with a Gaussian distribution example in R, it 
also shows that running a simple LM gives you the same results. The example 
investigates whether any of the three machines “Machine,” either of the oper-
ators “Operator,” or the concentration that is recorded as low, medium, or 
high “Concentration” has an effect on the time taken to find the substance of 
interest in minutes “Time.Taken.”

EXAMPLE 7.3

We have a response variable of Time.Taken and three explanatory variables of 
Machine, Operator, and Concentration. The response variable is continuous and all 
three explanatory variables are discrete. We are looking to see if Machine, Operator, 
Concentration, or any interactions between them has an effect on Time.Taken.

# Input the data
Time.Taken = c(48.1,46.3,47.2,47.9,47.6,49,48,38.6,39.8,40.9,41.7,39.9,
             40.8,39.7,33.3,34.6,35.8,34,32,35.4,34.5,44.3,45.8,46.5,48.7,
             45.3,48.8,49.4,38.8,38.2,38.7,39.2,39.1,40,41.9,34.2,33.6,
             33.7,34,34.3,35.1,35.8,33.4,32.1,34.8,35.7,34.6,35.7,38.4,
             30.9,31,30.7,31.1,31.8,32.6,33.2,28,28.6,27.7,28.3,29,28.4,
             29.1,35.8,33.2,37.1,36.4,37.6,38.9,39.2,31.1,30.5,30.4,31.6,
             31.9,32.6,33.7,28.7,28.9,27.8,29.1,29,28.4,28.7,47.6,46.3,
             47.9,46.7,49.8,48.9,49.4,39.1,38.5,38.4,38.7,39.5,40.5,42.3,
             35.3,34.4,34.2,34.2,34.7,35,34.6,47.8,45.1,48.8,48.4,49.7,
             49.2,47,40.1,39.9,39.5,38.9,40.9,40.6,42,34.9,34.2,34.7,35,
             33.8,33.1,34.5)
Machine = rep(c("A","B","C"), each = 42)
Operator = rep(c("Op1","Op2"), each = 21, 3)
Concentration = rep(c("Low","Medium","High"), each = 7, 6)
data20 = data.frame(Time.Taken, Machine, Operator, Concentration)

# Order the levels of the Concentration variable
data20$Concentration = factor(data20$Concentration,
        levels = c("Low","Medium","High"))

R will order the levels of a variable alphabetically; this would mean Concentration 
would be High, Low, then Medium, which clearly isn’t what we want. By using the 
command above we have reordered the Concentration explanatory variable to the 
correct order.

# Fit the full GLM including all interactions (label abbr. in some cases)

mod = glm(Time.Taken ~ Machine*Operator*Concentration,
        family = gaussian, data = data20)
summary(mod)
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Call:
glm(formula = Time.Taken ~ Machine * Operator * Concentration,
        family = gaussian, data = data20)

Deviance Residuals:
    Min       1Q   Median      3Q     Max  
-3.6857  -0.6143  -0.1000  0.6679  3.4429  

Coefficients:
                             Estimate Std. Error  t value Pr(>|t|)    
(Intercept)                    47.729      0.473  100.919  < 2e-16 ***
MachineB                      -12.771      0.669  -19.095  < 2e-16 ***
MachineC                        0.357      0.669    0.534   0.5945
OperatorOp2                    -0.757      0.669   -1.132   0.2601
ConcentrationMedium            -7.529      0.669  -11.256  < 2e-16 ***
ConcentrationHigh             -13.500      0.669  -20.184  < 2e-16 ***
MachineB:OperatorOp2            2.686      0.946    2.839   0.0054 **
MachineC:OperatorOp2            0.671      0.946    0.710   0.4793
MachineB:ConcentrationMedium    4.186      0.946    4.425 2.31e-05 ***
MachineC:ConcentrationMedium   -0.986      0.946   -1.042   0.2997  
MachineB:ConcentrationHigh      6.986      0.946    7.385 3.36e-11 ***
MachineC:ConcentrationHigh      0.043      0.946    0.045    0.964
OperatorOp2:ConcentrationMed   -0.029      0.946   -0.030    0.976
OperatorOp2:ConcentrationHigh   0.914      0.946    0.967    0.336
MachineB:OperatorOp2:ConcMed   -1.829      1.338   -1.367    0.175
MachineC:OperatorOp2:ConcMed    0.814      1.338    0.609    0.544
MachineB:OperatorOp2:ConcHigh  -2.629      1.338   -1.965    0.052 .
MachineC:OperatorOp2:ConcHigh  -1.143      1.338   -0.854    0.395
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.565714)

Null deviance: 5156.4  on 125  degrees of freedom
Residual deviance:  169.1  on 108  degrees of freedom
AIC: 432.64

Number of Fisher Scoring iterations: 2

The output of the full GLM is quite cumbersome to go through at this stage, with 
this many levels of explanatory variables it’s quite difficult to see which terms are 
significant to the model so we calculate an ANOVA table of the results.

# Tidy the output up with an ANOVA table (label abbr. in some cases)
anova(lm(mod))

Analysis of Variance Table

Response: Time.Taken
                        Df   Sum Sq  Mean Sq   F value     Pr(>F)    
Machine                  2  2077.67  1038.84  663.4899  < 2.2e-16 ***
Operator                 1     0.50     0.50    0.3164    0.57497    
Concentration            2  2722.01  1361.01  869.2552  < 2.2e-16 ***
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Machine:Operator         2     7.57     3.79    2.4175    0.09396 .    
Machine:Concentration    4   168.05    42.01   26.8320  1.834e-15 ***
Operator:Concentration   2     0.88     0.44    0.2823    0.75461    
Machine:Operator:Conc    4    10.59     2.65    1.6904    0.15747    
Residuals              108    169.10    1.57                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output of the ANOVA table from the full GLM that contained all the main effects 
and interactions showed that the first term to remove is the three-way interaction 
between Machine, Operator, and Concentration, p-value of 0.157.

# Simplify the model by removing one interaction or explanatory 
variable at a time
# Output omitted for space saving – except for the final model
mod2 = glm(Time.Taken ~ Machine*Operator + Machine*Concentration +
        Operator*Concentration, family = gaussian, data = data20)
summary(mod2)
anova(lm(mod2))

The next term to be removed once the model was refitted, including the three two-
way interactions, was the interaction between Operator and Concentration, p-value 
of 0.760.

mod3 = glm(Time.Taken ~ Machine*Operator + Machine*Concentration,
        family = gaussian, data = data20)
summary(mod3)
anova(lm(mod3))

Refitting, the next model showed that the interaction between Machine and Operator 
could be removed, p-value of 0.096.

mod4 = glm(Time.Taken ~ Machine*Concentration + Operator,
        family = gaussian, data = data20)
summary(mod4)
anova(lm(mod4))

The next model fit showed that the interaction between Machine and Concentration 
was still significant, however the main effect of Operator was not significant, p-values 
of 2.373e-15 and 0.582, respectively. As Operator was not included in the interaction 
term this could be removed and the model simplified once more.

mod5 = glm(Time.Taken ~ Machine*Concentration, family = gaussian,
        data = data20)
summary(mod5)

Call:
glm(formula = Time.Taken ~ Machine * Concentration, family = 
gaussian,
        data = data20)
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Deviance Residuals:
    Min       1Q   Median      3Q     Max  
-3.8214  -0.7393  -0.0143  0.7321  3.2786  

Coefficients:
                     Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)           47.3500      0.3394  139.530   < 2e-16 ***
MachineB             -11.4286      0.4799  -23.814   < 2e-16 ***
MachineC               0.6929      0.4799    1.444     0.151
ConcentrationMedium   -7.5429      0.4799  -15.717   < 2e-16 ***
ConcentrationHigh    -13.0429      0.4799  -27.177   < 2e-16 ***
MachineB:ConcMedium    3.2714      0.6787    4.820  4.35e-06 ***  
MachineC:ConcMedium   -0.5786      0.6787   -0.852     0.396
MachineB:ConcHigh      5.6714      0.6787    8.356  1.53e-13 ***
MachineC:ConcHigh     -0.5286      0.6787   -0.779     0.438
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1.612253)

Null deviance: 5679.24  on 125  degrees of freedom
Residual deviance:  544.71  on 117  degrees of freedom
AIC: 562.03

Number of Fisher Scoring iterations: 2

anova(lm(mod5))
Analysis of Variance Table

Response: Time.Taken
                       Df   Sum Sq  Mean Sq  F value     Pr(>F)    
Machine                 2  2077.67  1038.84  644.338  < 2.2e-16 ***
Concentration           2  2722.01  1361.01  844.164  < 2.2e-16 ***
Machine:Concentration   4   168.05    42.01   26.058  1.868e-15 ***
Residuals             117   188.63     1.61
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The final model output showed that Machine, Concentration, and the interaction 
between Machine and Concentration were significant to the model at the 99% 
confidence level. The residual deviance (544.71) is much smaller than the null 
deviance (5679.24) that suggests this model is a lot better than the null model.

By looking at the estimates of the GLM we can see that the Time.Taken for Machine-A 
and Concentration-Low is 47.35, the Time.Taken for Machine-A and Concentration-
Medium is (47.35 – 7.54) = 39.81, through to the Time.Taken for Machine-C and 
Concentration-High, which is (47.35 + 0.69 – 13.04 – 0.53) = 34.47. A table with 
all the estimates is shown below, this is just to highlight the values you would get by 
using the estimates output—it won’t be repeated in other examples to save space.
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# Calculate estimate confidence intervals
confint(mod5)

                                    2.5 %       97.5 %
(Intercept)                    46.6848790   48.0151210
MachineB                      -12.3691945  -10.4879483
MachineC                       -0.2477659    1.6334802
ConcentrationMedium            -8.4834802   -6.6022341
ConcentrationHigh             -13.9834802  -12.1022341
MachineB:ConcentrationMedium    1.9411866    4.6016705
MachineC:ConcentrationMedium   -1.9088134    0.7516705
MachineB:ConcentrationHigh      4.3411866    7.0016705
MachineC:ConcentrationHigh     -1.8588134    0.8016705

If we wanted confidence intervals on the estimates we can use the earlier values.

# Calculate confidence intervals – only first section of output shown
lsmeans(mod5, pairwise ~ Machine*Concentration)

$lsmeans
Machine    Conc    lsmean         SE  df  asymp.LCL  asymp.UCL
      A     Low  47.35000  0.3393537  NA   46.68488   48.01512
      B     Low  35.92143  0.3393537  NA   35.25631   36.58655
      C     Low  48.04286  0.3393537  NA   47.37774   48.70798
      A  Medium  39.80714  0.3393537  NA   39.14202   40.47226
      B  Medium  31.65000  0.3393537  NA   30.98488   32.31512
      C  Medium  39.92143  0.3393537  NA   39.25631   40.58655
      A    High  34.30714  0.3393537  NA   33.64202   34.97226
      B    High  28.55000  0.3393537  NA   27.88488   29.21512
      C    High  34.47143  0.3393537  NA   33.80631   35.13655

Results are given on the identity (not the response) scale.
Confidence level used: 0.95

If we wanted confidence intervals on each group level, we could use the output from 
a least-squares means output that includes the interaction term. So the confidence 
interval values we would get for the three examples above are 46.68 to 48.02, 39.14 
to 40.47, and 33.81 to 35.14, respectively.

# Check for differences between all Machines, Concentrations and the
# interaction between the two
# Only contrasts shown, and last lsmeans omitted for space saving
lsmeans(mod5, pairwise ~ Machine)
lsmeans(mod5, pairwise ~ Concentration)
lsmeans(mod5, pairwise ~ Machine*Concentration)
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NOTE: Results may be misleading due to involvement in interactions
$contrasts
contrast    estimate         SE  df  z.ratio  p.value
   A – B   8.4476190  0.2770811  NA   30.488   <.0001
   A – C  -0.3238095  0.2770811  NA   -1.169   0.4720
   B – C  -8.7714286  0.2770811  NA  -31.657   <.0001

Results are averaged over the levels of: Concentration
P-value adjustment: tukey method for comparing a family of 3 
estimates

$contrasts
     contrast   estimate         SE  df  z.ratio  p.value
 Low – Medium   6.645238  0.2770811  NA   23.983   <.0001
   Low – High  11.328571  0.2770811  NA   40.885   <.0001
Medium – High   4.683333  0.2770811  NA   16.902   <.0001

Results are averaged over the levels of: Machine
P-value adjustment: tukey method for comparing a family of 3 
estimates

The model output can tell us whether the explanatory variables were significant to 
the model. However as both Machine and Concentration have more than two levels, 
lsmeans is required to define where those differences are.

Looking at the lsmeans output for Machine, it showed that Machine-B gave significantly 
quicker Time.Taken than both Machine-A and Machine-C at the 99% confidence level. 
There was no significant difference between Machine-A and Machine-C, p-value of 0.472.

The lsmeans output for Concentration showed that all Concentrations were significantly 
different to each other at the 99% confidence level, with Concentration-High giving 
the quickest Time.Taken, then Concentration-Medium, then Concentration-Low. 
However, both these and the Machine values are calculated by averaging over the 
other explanatory variable due to the interaction term, so the interaction term output 
is the most important to look through.

The output was not shown due to saving space, but using the p-values and the box 
plot drawn in the next command as a visual aid, the output is as follows (with M = 
Machine and C = Concentration):

•	 “MB–CHigh” gave significantly quicker Time.Taken than all other 
combinations at the 99% confidence level.

•	 “MB–CMedium” gave significantly quicker Time.Taken than all 
other remaining combinations at the 99% confidence level.

•	 Both “MA–CHigh” and “MC–CHigh” gave significantly quicker 
Time.Taken than “MA–CLow,” “MC–CLow,” “MA–CMedium,” 
and “MC–CMedium” at the 99% confidence level. They also gave 
significantly quicker Time.Taken than “MB–CLow” at the 95% 
and 90% confidence level, respectively.
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•	 “MB–CLow” gave significantly quicker Time.Taken than “MA–
CMedium,” “MC–CMedium,” “MA–CLow,” and MC–CLow” at the 
99% confidence level.

•	 Both “MA–CMedium” and “MC–CMedium” gave significantly 
quicker Time.Taken than both “MA–CLow” and “MC–CLow” at 
the 99% confidence level.

# Plot the box plot to aid with lmeans interpretation
ggplot(data20, aes(x = Concentration, y = Time.Taken)) + theme_bw() +
        facet_wrap(~ Machine) + stat_boxplot(geom = "errorbar") +
        geom_boxplot()

# Compare the models
anova(mod, mod2, mod3, mod4, mod5, test = "F")

Analysis of Deviance Table

Model 1: Time.Taken ~ Machine * Operator * Concentration
Model 2: Time.Taken ~ Machine * Operator + Machine * Concentration +
        Operator * Concentration
Model 3: Time.Taken ~ Machine * Operator + Machine * Concentration
Model 4: Time.Taken ~ Machine * Concentration + Operator
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Model 5: Time.Taken ~ Machine * Concentration
  Resid. Df  Resid. Dev  Df  Deviance       F   Pr(>F)  
1       108      169.10                            
2       112      179.68  -4  -10.5870  1.6904  0.15747  
3       114      180.57  -2   -0.8840  0.2823  0.75461  
4       116      188.14  -2   -7.5702  2.4175  0.09396 .
5       117      188.63  -1   -0.4953  0.3164  0.57497  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To check the model could be simplified an ANOVA comparing all the models was run 
that compared the simpler models to the more complex models. All these p-values 
suggest no significant difference between the models, hence it is fine to use the 
simpler model; these p-values are actually the p-values of the removed terms.

# Check the diagnostics
plot(mod5, which = 2)
plot(mod5, which = 1)

The diagnostic plots show that we can assume normality on the residuals and that 
there is consistent error variation as the points are roughly scattered. These plots will 
be exactly the same if they were run on the LM output.

# Run the simple linear model – output omitted except the last few lines
# due to replication and space saving
summary(lm(mod5))

Residual standard error: 1.27 on 117 degrees of freedom
Multiple R-squared:  0.9634,    Adjusted R-squared:  0.9609
F-statistic: 385.2 on 8 and 117 DF,  p-value: < 2.2e-16

If you run the LM of the same GLM final model you will see that the outputs were 
exactly the same, it also gives the additional information that 96.1% of the variation 
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was explained by the model, even though we have removed interactions and a main 
effect.

# Plot full data and final model data
ggplot(data20, aes(x = Concentration, y = Time.Taken)) +
        theme_bw() + facet_wrap(~ Operator + Machine) +
        stat_boxplot(geom = "errorbar") + geom_boxplot()

The final plot shows the Time.Taken by all the explanatory variables, as there was no 
difference between the Operators there is no need to include that in the plot. However 
it’s still a good idea for visualization of the data plus we have already plotted the 
equivalent box plot for our final GLM model earlier.

Once the data has been input, you need to make sure the categorical explana-
tory variables are in the order you want. By redefining them as factors and 
using “levels =,” you can order the levels as you wish.
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You then assign a model to the data and name it, in this case “mod.” The 
glm(   ) stands for the generalized linear model, and the fact that there is no 
distribution defined means it will treat the distribution as Gaussian or normal. 
The response variable is specified followed by the explanatory variables and 
interactions, then the data set to be used is included.

The next few commands are carried out on this “mod” object or “mod5” 
object, which was our simplified model, so the summary(   ) gives a summary 
of the model output. The summary can show us that the explanatory vari-
ables had an effect on “Time.Taken,” but not where the differences were, so 
lsmeans(   ) does that by specifying the model along with which explanatory 
variable is of interest: “Machine”, “Concentration”, and then the interaction  
“Machine*Concentration.” It also was used to calculate the confidence 
intervals for each factor level. A box plot was drawn to aid in interpreting the 
lsmeans(   ) output.

Confidence intervals were calculated on the estimates using the confint(   ) 
command. An ANOVA was run to test between all the models, and then the 
diagnostic plots were drawn.

The summary of the LM was run to highlight the similarities in the output.

Finally using ggplot(   ), I plotted a box plot with the mean and statistical outliers 
clearly highlighted. As “Operator” was not significant I didn’t need to include 
it on the plot, but did just to visualize the data fully.

The example also highlights that fitting a Gaussian GLM and a LM will pro-
duce the same summary results. It also shows the importance of interpret-
ing the interaction term correctly, as although across all “Machines” the 
“High Concentration” produced the quickest “Time.Taken,” then “Medium 
Concentration,” then “Low Concentration,” the gradient of that drop in 
“Time.Taken” depends on which “Machine” is being used.

Poisson GLM
A Poisson GLM concerns itself with count data, so the response variable will 
be counts and the explanatory variables can be either continuous or discrete. 
It can handle a few zero values, but if there are too many the model won’t be 
a good fit and a zero-inflated Poisson model should be considered, an example 
is given later. In addition the mean and the variance should be close, if the 
variance is larger than the mean then there is over dispersion and a Poisson 
GLM will not be the best model to use, – see Negative Binomial GLM section.

The key thing to note when fitting a Poisson GLM is that the values given are 
on the log scale and will need to be transformed using the exponential to be 
given on the original response scale. Due to this fact sometimes this model is 
referred to as a log-linear model.
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Example 7.4 investigates whether the income salary band people are in 
“Income” has any relationship with the number of children they have “Children.”

EXAMPLE 7.4

We have a response variable of Children and an explanatory variable of Income. The 
response variable is discrete, counts, and the explanatory variable is also discrete. We 
are looking to see if Income has a relationship with the number of children the family 
has, Children.

# Input the data
Children = c(1,1,1,1,2,1,0,1,0,0,2,0,0,2,0,0,0,1,0,0,0,2,1,1,3,1,0,2,
           1,0,0,0,1,0,1,2,0,3,0,1,0,2,1,2,1,2,1,0,1,1,3,2,1,3,3,0,3,
           3,2,3,4,0,2,3,2,2,4,2,2,4,4,2,4,3,1,2,2,2,4,4,0,1,1,2,3,1,
           1,2,1,2,1,3,1,1,2,2,4,1,2,2,4,3,4,1,3,4,3,3,5,2,1,1,2,2,3,
           2,3,2,4,2,4,4,3,3,2,2,4,3,4,3,3,2,3,2,3,3,4,2,1,2,3,1,3,2,
           3,2,3,2,0,2)
Income = rep(c(">$50k","$25k-$50k","<$25k"), each = 50)
data21 = data.frame(Children, Income)

# Order the levels of the Income variable
data21$Income = factor(data21$Income, levels = c(">$50k",
        "$25k-$50k", "<$25k"))

R will order the levels of a variable “alphabetically”; this would mean Income would be 
$25k-$50k, <$25k, then >$50k which clearly is not the order we require. By using the 
command above we have reordered the Income explanatory variable appropriately.

# Look at the mean and variance of the Income groups
tapply(data21$Children, data21$Income, mean)

>$50k  $25k-$50k  <$25k
 0.86       2.18   2.64
tapply(data21$Children, data21$Income, var)

   >$50k  $25k-$50k     <$25k
0.735102   1.293469  1.051429

The variances are quite similar to the means with the exception of Income <$25k, 
differences of 0.12, 0.89, and 1.59, but more important the variances are not larger 
than the means, they are all smaller.

# Fit the full GLM and print the output
mod = glm(Children ~ Income, data = data21, family = poisson)
summary(mod)

Call:
glm(formula = Children ~ Income, family = poisson, data = data21)
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Deviance Residuals:
    Min       1Q  Median      3Q     Max  
-2.2978  -0.8952  0.1471  0.5251  1.7935  

Coefficients:
                Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)      -0.1508      0.1525   -0.989     0.323    
Income$25k-$50k   0.9301      0.1801    5.165  2.40e-07 ***
Income<$25k       1.1216      0.1756    6.388  1.68e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 159.03  on 149  degrees of freedom
Residual deviance: 108.39  on 147  degrees of freedom
AIC: 445.54

Number of Fisher Scoring iterations: 5

The output of the Poisson GLM showed that Income was significant to the model. The 
residual deviance (108.39) was also a lot lower than the null deviance (159.03), which 
suggests this model is better than the null model.

By looking at the estimates of the GLM, and back transforming using the exponential, 
we can see that the average number of Children for an Income of >$50k is  
exp(-0.1508) = 0.86, the average number of Children for an Income of $25k–$50k 
is exp(-0.1508 + 0.9301) = 2.18, and the average number of Children for an Income 
of <$25k is exp(-0.1508 + 1.1216) = 2.64. When back transforming the values, 
all addition needs to be carried out before using the exponential calculation, rather 
than using the exponentially transformed values and adding those values. If we were 
rounding that would give us 1, 2, and 3 Children for an Income of >$50k, $25k-$50k, 
and <$25k, respectively.

You can see that the estimate values here for number of children per income band are 
the same as the summary statistics calculated—the means. This is due to the fact 
that this is only a simple model, however the estimates should always be the values 
used as in more complex models they may differ from the summary statistics.

# Calculate confidence intervals for the estimates
confint(mod)

                      2.5 %     97.5 %
(Intercept)      -0.4653798  0.1338905
Income$25k-$50k   0.5852679  1.2931358
Income<$25k       0.7866078  1.4767534

If we wanted confidence intervals on the estimates we can use the earlier values.

# Check for differences between all Incomes
lsmeans(mod, pairwise ~ Income)
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$lsmeans
   Income      lsmean          SE  df   asymp.LCL  asymp.UCL
    >$50k  -0.1508229  0.15249819  NA  -0.4497138  0.1480681
$25k-$50k   0.7793249  0.09578263  NA   0.5915944  0.9670554
    <$25k   0.9707789  0.08703883  NA   0.8001859  1.1413719

Results are given on the log (not the response) scale.
Confidence level used: 0.95

$contrasts
         contrast    estimate         SE  df  z.ratio  p.value
>$50k - $25k-$50k  -0.9301478  0.1800833  NA   -5.165   <.0001
    >$50k - <$25k  -1.1216018  0.1755889  NA   -6.388   <.0001
$25k-$50k - <$25k  -0.1914540  0.1294221  NA   -1.479   0.3009

Results are given on the log (not the response) scale.
P-value adjustment: tukey method for comparing a family of 3 
estimates
Tests are performed on the log scale

The least-squares means results are also on the log scale, so these will need to be 
back transformed to be on the response scale. Those with an Income of <$50k had 
significantly fewer Children than both those with an Income of $25k–$50k and an 
Income of <$25k at the 99% confidence level. There was no significant difference in 
the number of Children between those with an Income of $25k-$50k and those with 
an Income of <$25k, p-value of 0.30.

If we wanted confidence intervals on each group level, we could use the top section 
of the output. So the confidence interval values, once exponentially transformed, we 
would get are 0.64 to 1.16, 1.81 to 2.63, and 2.23 to 3.13, respectively or rounding 1, 
2, to 3, and also 2 to 3 for an Income of >$50k, $25k-$50k, and <$25k.

# Check the goodness of fit
1 - pchisq(summary(mod)$deviance, summary(mod)$df.residual)

[1] 0.9927758

As the distribution is not Gaussian the diagnostic plots do not need to be run, to test 
the goodness of fit for Poisson GLMs, the earlier command is used. The model fit was 
tested and the result showed that the model wasn’t a bad fit, as 0.993 > 0.05; we can 
never directly say it is a good fit from this test.

# Plot data
ggplot(data21, aes(x = Children)) + theme_bw() +
        facet_wrap(~Income) + geom_bar()
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A bar chart is drawn to show the number of Children by the different Income salary 
bands, it does help to highlight the different shape of the >$50k Income compared to 
the other two.

The tapply(   ) command can be used to calculate summary statistics, such as 
the mean and variance, for different groups without too much hassle.

In this example the glm(   ) still stands for the generalized linear model, but this 
time the distribution is defined in the “family = poisson” section.

The rest follows the same processes as before with the only differences being 
that as the results are on the log scale they need to be back transformed using 
the exponential to give the response scale, and that the goodness of fit tests, 
or model fit, are slightly different

As the response variable is discrete, count data, a bar chart is drawn to show 
the data visually.
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Make sure you check the model fit as if the data is over dispersed and a 
Poisson GLM is used instead of a negative binomial GLM, you increase the 
chance of detecting a significant difference between treatments when there 
shouldn’t be one, which increases the likelihood of a Type 1 Error.

Negative Binomial GLM
A Poisson GLM may not always be appropriate with count data, if there aren’t 
too many zeros and the data fails the Poisson GLM goodness of fit check, then 
you can try a negative binomial GLM (NBGLM). In general, NBGLMs are used 
when over dispersion in count data occurs, that is, when the variance is much 
larger than the mean.

Example 7.5 looks at the total fish caught in a 3-hour period “Fish.Caught” and 
whether the fact that tourists or locals “Group” caught them had an effect on 
the total count. To run a NBGLM, the R package MASS is required.

EXAMPLE 7.5

We have a response variable of Fish.Caught and an explanatory variable of Group. 
The response variable is discrete, counts, and the explanatory is also discrete. We are 
looking to see if Group has an effect on Fish.Caught.

# Input the data
Fish.Caught = c(0,3,3,0,4,8,6,1,2,1,0,1,1,2,4,1,3,3,4,3,1,3,1,2,2,3,8,5,
              2,2,4,2,2,5,3,2,0,4,3,1,5,0,1,4,1,2,2,2,0,3,2,9,9,1,5,7,2,
              4,6,8,1,4,2,16,10,11,3,5,12,11,1,0,5,2,3,8,1,7,5,10,13,4,
             10,1,0,2,7,7,3,1,9,4,2,2,2,1,10,2,9,2)
Group = rep(c("Tourists","Locals"), each = 50)
data22 = data.frame(Fish.Caught, Group)

# Look at the mean and variance of the Groups
tapply(data22$Fish.Caught, data22$Group, mean)

Locals  Tourists
  5.22      2.50

tapply(data22$Fish.Caught, data22$Group, var)

   Locals  Tourists
15.726122  3.479592

The variances are not similar to the means, especially for Locals, with differences of 
10.51 and 0.98. More important the variances are larger than the means that suggests 
over dispersion; we will fit a Poisson GLM to verify.
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# Fit a Poisson GLM and check the goodness of fit
mod = glm(Fish.Caught ~ Group, data = data22, family = poisson)
1 - pchisq(summary(mod)$deviance, summary(mod)$df.residual)

[1] 3.455791e-12

The goodness of fit test for the Poisson GLM showed that the model was not a good 
fit, p-value < 0.05, which suggests over dispersion in correlation with the above 
information.

# Fit a Negative Binomial GLM and print the output, and check the 
goodness of fit
library(MASS)
mod2 = glm.nb(Fish.Caught ~ Group, data = data22)
summary(mod2)

Call:
glm.nb(formula = Fish.Caught ~ Group, data = data22,
        init.theta = 3.008476736, link = log)

Deviance Residuals:
    Min       1Q   Median      3Q     Max  
-2.4605  -0.9010  -0.2462  0.6199  2.0030  

Coefficients:
              Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)     1.6525      0.1024   16.143   < 2e-16 ***
GroupTourists  -0.7362      0.1585   -4.644  3.41e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial (3.0085) family taken to
be 1)

Null deviance: 128.35  on 99  degrees of freedom
Residual deviance: 106.50  on 98  degrees of freedom
AIC: 467.68

Number of Fisher Scoring iterations: 1

             Theta:     3.008
         Std. Err.:     0.791

2 x log-likelihood:  -461.683

The output of the NBGLM showed that Group was significant to the model at the 99% 
confidence level. The residual deviance (106.50) was also slightly lower than the 
null deviance (128.35) that suggests this model is better than the null model. Theta 
represents the shape parameter of the distribution, so the dispersion is 3.01. The 
closer theta is to 0 the more dispersed the data and the larger theta is the closer it is 
to a Poisson model.
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By looking at the estimates and back transforming using the exponential, we can see 
that the number of Fish.Caught for Locals is exp(1.6525) = 5.22 and the number of 
Fish.Caught for Tourists is exp(1.6525 – 0.7362) = 2.50. If we were rounding that 
would give us 5 and 3 Fish.Caught for Locals and Tourists, respectively.

# Calculate estimate confidence intervals
confint(mod2)

                   2.5 %      97.5 %
(Intercept)     1.453493   1.8551163
GroupTourists  -1.048322  -0.4266079

If we wanted confidence intervals on the estimates we could use the earlier values.

# Calculate confidence intervals – only first section of output shown
lsmeans(mod2, pairwise ~ Group)

$lsmeans
   Group     lsmean         SE  df  asymp.LCL  asymp.UCL
  Locals  1.6524974  0.1023685  NA  1.4518589   1.853136
Tourists  0.9162907  0.1210284  NA  0.6790794   1.153502

Results are given on the log (not the response) scale.
Confidence level used: 0.95

If we wanted confidence intervals on each group level, we could use the output from 
a least-squares means that includes the interaction term. So the confidence interval 
values, once exponentially transformed, we would get are 4.27 to 6.38, and 1.97 to 
3.17, respectively or rounding 4 to 6, and 2 to 3 for Locals and Tourists.

# Check the goodness of fit
1 - pchisq(summary(mod2)$deviance, summary(mod2)$df.residual)

[1] 0.2618407

The model fit was tested and the result showed that the model wasn’t a bad fit, as 
0.262 > 0.05, we can never directly say it is a good fit from this test.

# Plot data
ggplot(data22, aes(x = Fish.Caught)) + theme_bw() +
        facet_wrap(~Group) + geom_bar()
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A bar chart is drawn to show the number of Fish.Caight by the different Groups, Locals 
and Tourists, it does help to highlight the different shapes of the two distributions and 
highlights the over dispersion in the Locals Group.

In this example the glm.nb(   ) stands for the NBGLM. The rest then follows the 
same processes as with the Poisson GLM example.

The main things to remember when fitting a NBGLM is to look at the mean 
and variance of the data, then fit a Poisson GLM before the NBGLM, and also 
that the values given are also on the log scale and will need to be transformed 
using the exponential for the response scale.
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Binomial GLM
A binomial GLM is used when the response variable is binary data. The explan-
atory variables can be either discrete or continuous. The model doesn’t cope 
very well if there is a clear separation of zeros and ones in different groups, in 
which case a bias-reduction binomial-response GLM should be used, there is 
an example given later.

The key thing to note when fitting a binomial GLM is that the values given are 
on the log odds scale and will need to be transformed using the exponential 
to be given on the odds ratio scale. Due to this fact sometimes this model is 
referred to as a logistic regression model or a logit model. When the odds 
ratio of A to B is less than 1 it is easier to interpret if it is swapped B to A by 
dividing 1 by the odds ratio that is less than 1, then the odds can also be stated.

Example 7.6 investigates whether the device used “Device” or the three types 
of terrain covered “Terrain” has an effect on whether a detection was indi-
cated or not “Detection.”

EXAMPLE 7.6

We have a response variable of Detection and two explanatory variables of Device and 
Terrain. The response variable is discrete, binary, and both explanatory variables are 
also discrete. We are looking to see if Device, Terrain, or the interaction between the 
two has an effect on Detection.

# Input the data
Detection = c(1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,
            1,1,1,0,1,0,0,0,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,
            0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,
            0,0,0,0)
Device = rep(c("A","B"), each = 15,3)
Terrain = rep(c("Flat","Bumpy","Marsh"), each = 30)
data23 = data.frame(Detection, Terrain, Device)

# Order the levels of the Terrain variable
data23$Terrain = factor(data23$Terrain,
        levels = c("Flat","Bumpy","Marsh"))

# Fit the full Binomial GLM model and print the output
mod = glm(Detection ~ Terrain*Device, data = data23,
        family = binomial)
summary(mod)

Call:
glm(formula = Detection ~ Terrain * Device, family = binomial,
        data = data23)

Deviance Residuals:
    Min       1Q   Median      3Q     Max  
-2.0074  -0.5350  -0.3715  0.6681  2.3272  
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Coefficients:
                      Estimate  Std. Error  z value  Pr(>|z|)   
(Intercept)            1.38629     0.64550    2.148   0.03174 *
TerrainBumpy          -1.79176     0.83333   -2.150   0.03155 *
TerrainMarsh          -3.25810     0.99679   -3.269   0.00108 **
DeviceB                0.48551     0.99679    0.487   0.62621   
TerrainBumpy:DeviceB   0.05349     1.24065    0.043   0.96561   
TerrainMarsh:DeviceB  -1.25276     1.62540   -0.771   0.44086   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.366  on 89  degrees of freedom
Residual deviance:  86.838  on 84  degrees of freedom
AIC:  98.838

Number of Fisher Scoring iterations: 5

The output of the full binomial GLM that contained all the main effects and interaction 
showed that the first term to remove was the two-way interaction.

# Simplify the model by removing one interaction or explanatory variable
# at a time
# Output omitted for space saving – except for the final model
mod2 = glm(Detection ~ Terrain + Device, family = binomial,
        data = data23)
summary(mod2)

When the model was refitted it then showed that the Device variable could be 
removed, p-value of 0.598.

mod3 = glm(Detection ~ Terrain, family = binomial, data = data23)
summary(mod3)

Call:
glm(formula = Detection ~ Terrain, family = binomial, data = data23)

Deviance Residuals:
    Min       1Q   Median      3Q     Max  
-1.8930  -0.4590  -0.4590  0.6039  2.1460  

Coefficients:
             Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)    1.6094      0.4899    3.285   0.00102 **
TerrainBumpy  -1.7430      0.6115   -2.850   0.00437 **  
TerrainMarsh  -3.8067      0.7812   -4.873   1.1e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.366  on 89  degrees of freedom
Residual deviance:  87.994  on 87  degrees of freedom
AIC:  93.994

Number of Fisher Scoring iterations: 4
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The final output of the binomial GLM showed that Terrain was significant to the model. 
The residual deviance (87.99) was lower than the null deviance (124.37) that suggests 
this model is better than the null model.

By looking at the estimates of the binomial GLM we can see that when there is 
Bumpy Terrain instead of Flat Terrain, the log odds of Detection decreases by 1.74, 
so therefore the odds ratio of Detection is exp(-1.74) = 0.175. In other words for Flat 
Terrain instead of Bumpy Terrain the odds of Detection is almost 6 times greater, 
(1/0.175) = 5.71.

For Marsh Terrain instead of Flat Terrain, the log odds of Detection decreases by 3.81, 
so therefore the odds ratio of Detection is exp(-3.81) = 0.022. In other words for Flat 
Terrain instead of Marsh Terrain the odds of Detection is 45 times greater, (1/0.022) 
= 45.00.

For Marsh Terrain instead of Bumpy Terrain, the log odds of Detection decreases by 
(-3.81 – (-1.74)) = -2.06, so therefore the odds ratio of Detection is exp(-2.06) = 
0.127, in other words for Bumpy Terrain instead of Marsh Terrain the odds of Detection 
is almost 8 times greater, (1/0.127) = 7.88.

# Calculate confidence intervals
confint(mod3)

                   2.5 %      97.5 %
(Intercept)    0.7327236   2.6955982
TerrainBumpy  -3.0280653  -0.5979537
TerrainMarsh  -5.5264219  -2.4067335

The confidence intervals for the differences are also calculated on the log-likelihood 
scale, so if we wanted confidence intervals on the earlier values, we would have 
to transform them using the exponential. The confidence interval values we would 
get are 0.048 to 0.550 and 0.004 to 0.090, which is the equivalent of the odds of 
Detections on Flat Terrain being 2 times to 21 times greater than on Bumpy Terrain, 
and the odds of Detections on Flat Terrain being 11 times to 251 times greater than 
on Marsh Terrain.

To calculate the difference between Bumpy Terrain and Marsh Terrain, you need to 
subtract the values again, so the log odds confidence interval would be (-5.53 – 
(-3.03)) = -2.50 to (-2.41 – (-0.60)) = -1.81. This would make the interval for the 
odds ratio 0.082 to 0.164, which is the equivalent of the odds of Detections on Bumpy 
Terrain being 6 to 12 times greater than on Marsh Terrain.

# Check for differences between all Terrains
lsmeans(mod3, pairwise ~ Terrain)

$lsmeans
Terrain      lsmean         SE  df   asymp.LCL  asymp.UCL
   Flat   1.6094379  0.4898979  NA   0.6492556   2.569620
  Bumpy  -0.1335314  0.3659625  NA  -0.8508048   0.583742
  Marsh  -2.1972246  0.6085305  NA  -3.3899224  -1.004527



Translating Statistics to Make Decisions 205

Results are given on the logit (not the response) scale.
Confidence level used: 0.95

$contrasts
     contrast  estimate         SE  df  z.ratio  p.value
 Flat - Bumpy  1.742969  0.6114970  NA    2.850   0.0122
 Flat - Marsh  3.806662  0.7812230  NA    4.873   <.0001
Bumpy - Marsh  2.063693  0.7100971  NA    2.906   0.0102

Results are given on the log (not the response) scale.
P-value adjustment: tukey method for comparing a family of 3 
estimates
Tests are performed on the log scale

The lsmeans results are also on the log-likelihood scale, so these will need to be 
back transformed to be on the response scale. The log odds of getting a Detection 
was significantly greater on the Flat Terrain compared to both the Bumpy and Marsh 
Terrain at the 95% and 99% confidence level, respectively. Also the log odds of getting 
a Detection was significantly greater on the Bumpy Terrain compared to the Marsh 
Terrain at the 99% confidence level.

# Check the goodness of fit
1 - pchisq(summary(mod3)$deviance, summary(mod3)$df.residual)

[1] 0.4500269

The model fit was tested and the result showed that the model wasn’t a bad fit, as 
0.450 > 0.05. However, we can never directly say it is a good fit from this test.

# Compare the models
anova(mod, mod2, mod3, test = "Chisq")

Analysis of Deviance Table

Model 1: Detection ~ Terrain * Device
Model 2: Detection ~ Terrain + Device
Model 3: Detection ~ Terrain
 Resid. Df  Resid. Dev  Df  Deviance  Pr(>Chi)
1       84      86.838                     
2       86      87.715  -2  -0.87609    0.6453
3       87      87.994  -1  -0.27947    0.5970

To check the model could be simplified an ANOVA comparing all the models was 
run using the chi-square test instead of the F test due to non-normality. All these  
p-values suggest no significant difference between the models; hence it is fine to use 
the simpler model.

# Create table of counts and plot data
Table3 = as.table(ftable(Detection ~ Terrain + Device, data = data23))
data24 = as.data.frame(Table3)
ggplot(data24, aes(x = Terrain, y = Freq, fill = Detection)) +

       theme_bw() + facet_wrap(~Device) +
    geom_bar(stat = "identity", position = "dodge")
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Due to the setup of the data it is easier to create a table of results for plotting purposes. 
A bar chart is drawn to show the number of Detections by the different Terrains and 
the two Devices. As Device was not significant to the model it doesn’t need to be 
included in the plot, however for visualization purposes I have included it. The graph 
does help to highlight the differences in Detections between the three Terrains as well 
as show the similarities across Devices.

In this example the glm(   ) still stands for the generalized linear model, but this 
time the distribution is defined in the “family = binomial” section.

The rest follows the same processes as previous GLM examples with the only 
differences being that as the results are on the log odds scale they need to be 
back transformed using the exponential to give the odds ratio scale, and that 
the goodness of fit tests, or model fit, are the same as those for the Poisson 
GLM and NBGLM.
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Bias-Reduction Binomial-Response RGLM
A bias-reduction binomial-response (BRGLM) should be used when the 
response is binary data but there is either a clear separation of zeros and ones 
in different groups; that is, Group A has all zeros and Group B has all ones, 
or mostly so. The same may be true when the response is continuous, but 
isn’t always necessarily so; however it is always worth comparing the Binomial 
GLM and BRGLM if you are unsure.

As with the binomial GLM, the results will be on the log odds scale and will 
therefore need to be transformed to the odds ratio scale using the exponen-
tial transformation.

Example 7.7 investigates whether the concentration “Concentration” has an 
effect on whether there was a detection indicated or not “Detection.” To 
fit a BRGLM the R package required is called brglm; another package that is 
needed for parts of this example is MASS.

EXAMPLE 7.7

We have a response variable of Detection and an explanatory variable of Concentration. 
The response variable is discrete, binary, and although the explanatory was recorded 
as a discrete variable, it is classed as continuous for the analysis. It makes sense to be 
able to have Concentrations between those recorded and assume it follows the same 
pattern. We are looking to see if Concentration has an effect on Detection.

# Input the data
Detection = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
            0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,
            1,0,0,1,1,1,0,0,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
            1,1,1,1,1,1,1,1,1,1)
Concentration = rep(c(100,120,140,160,180,200,220,240,260,280,300,
        320,340,360,380,400), each = 6)
data25 = data.frame(Detection, Concentration)

# Fit a Binomial GLM and print the output
library(brglm)
mod = brglm(Detection ~ Concentration, family = binomial,
        data = data25)
summary(mod)

Call:
brglm(formula = Detection ~ Concentration, family = binomial,
        data = data25)

Coefficients:
                Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)    -7.106552    1.375278   -5.167  2.37e-07 ***
Concentration   0.027312    0.005176    5.277  1.31e-07 ***
---
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.397  on 95  degrees of freedom
Residual deviance:  65.611  on 94  degrees of freedom
Penalized deviance: 52.71343
AIC:  69.611

The output of the BRGLM showed that Concentration was significant to the model at 
the 99% confidence level. The residual deviance (65.61) and the penalized deviance 
(52.71) also were around half the null deviance (124.40) that suggests this model is 
better than the null model.

By looking at the estimates we can see that for a one unit increase in Concentration, 
the log odds of Detection increases by 0.027, so therefore the odds ratio of detection 
is 1.0277.

# Calculate confidence intervals for the estimates
confint(mod)

                      2.5 %       97.5 %
(Intercept)    -10.84743941  -4.72744612
Concentration    0.01835369   0.04144744

The confidence intervals also are calculated on the log-likelihood scale, so if 
we wanted confidence intervals on the Concentration estimate we would have to 
transform it using the exponential. The confidence interval values we would get are 
1.019 to 1.042.

# Check the goodness of fit
1 - pchisq(summary(mod)$deviance, summary(mod)$df.residual)

[1] 0.9885665

The model fit was tested and the result showed that the model wasn’t a bad fit, as 
0.989 > 0.05; we can never directly say it is a good fit from this test.

# Calculate concentrations for given probabilities of detection
library(MASS)
dose.p(mod, p = c(0.5, 0.75, 0.95, 0.99))

               Dose        SE
p = 0.50:  260.1943  11.19369
p = 0.75:  300.4182  13.66244
p = 0.95:  368.0000  23.48199
p = 0.99:  428.4368  33.99168

We can calculate the required Concentration, termed “Dose” in the R code, for given 
probabilities of detection (PDet) using the fitted model. We can see that if we want a 
PDet of 50% the Concentration required is 260.19 whereas if we need a PDet of 99% 
the Concentration required is 428.44.
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# Predict values using the model and create 95% confidence intervals
# around the Concentration values
xcis = dose.p(mod, p = seq(0.01, 0.99, 0.01))
tempv50 = data.frame(prop = seq(0.01,0.99,0.01),
        v50 = as.numeric(xcis), v50.se = as.numeric(attr(xcis,"SE")))
tempv50$lowerv50 = tempv50$v50 - (1.96*(tempv50$v50.se))
tempv50$upperv50 = tempv50$v50 + (1.96*(tempv50$v50.se))
tempConc = seq(80, 420, 1)
tmpModFit = data.frame(Concentration = tempConc,
Proportion = predict(mod, newdata = data.frame(
Concentration = tempConc), type = "response"))

This section of the code sets up a new data set then predicts new Concentration 
values from the probability of detections, from 0.01 to 0.99 by steps of 0.01. The 
predictions are calculated given the fit of the BRGLM, so we can plot a “line of best fit” on 
the data along with 95% confidence intervals around those new Concentration values.

# Plot data with line of best fit and confidence intervals
ggplot(data25, aes(Concentration, Detection)) +
        geom_point() + theme_bw() +
        geom_line(aes(Concentration, Proportion), tmpModFit) +
        geom_line(aes(lowerv50, prop), tempv50) +
        geom_line(aes(upperv50, prop), tempv50)
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A bar chart of these results or a plain scatterplot of PDet vs Concentration would not 
be very useful, so we create a scatterplot that includes the BRGLM fitted model along 
with 95% confidence intervals around the Concentration values. This highlights the 
curve of the model and we can see roughly what Concentration is required for given 
PDets or we can use the dose.p() command.

In this example the brglm(   ) stands for the BRGLM.

The rest follows the same processes as the binomial GLM example and as 
before the model output results are on the log odds scale, so they need to be 
back transformed using the exponential to give the odds ratio scale. The only 
difference between the examples, in terms of output, is that as the explana-
tory variable is continuous in the BRGLM we can overlay a fitted curve to the 
plot and predict which “Concentrations” are required for given PDets.

The key thing to remember when deciding between using a binomial GLM and 
a BRGLM is the separation of zeros and ones. In this example we had a few 
lower “Concentrations” that were all zeros, and a few higher “Concentrations” 
that were all ones, hence fitting a BRGLM instead of a binomial GLM.

Zero-Inflated Models
In some cases you will have count data that may include a lot of zeros, and fit-
ting a Poisson GLM or a NBGLM to this data may give incorrect results due to 
this. It’s used when there are two processes occurring, for example the chance 
of seeing a shooting star is one process, and if they can be seen, how many can 
be seen is the second process.

You wouldn’t want to exclude the zeros from the data so you can fit one of 
the previous count models, and likewise you wouldn’t want to just convert the 
count data into binary data to run a binomial GLM or a BRGLM. This is where 
the zero-inflated models come into play as they will fit both types of models, 
binary and count, to the data to account for the large number of zeros.

When thinking about fitting zero-inflated models always try the Poisson GLM 
and NBGLM first to assess their goodness of fit. If they don’t fit the data, then 
try a zero-inflated Poisson (ZIP) model, double checking there are more zeros 
in the data than would be expected from a regular Poisson GLM. Consider the 
zero-inflated negative binomial (ZINB) model as well; if the dispersion param-
eter, theta, is significant then choose the ZINB model over the ZIP model, but 
if it’s not significant then stick with the ZIP model.

Note that as with the Poisson GLMs and NBGLMs, the count results from 
the ZIP and ZINB models will be given on the log scale and will need to be 
transformed using the exponential to be given on the original response scale. 
In addition, the zero-inflation section replicates a binomial GLM, so the results 
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will be given on the log odds scale and will need to be transformed using the 
exponential to be given on the odds ratio scale.

To compare zero-inflated models to their count data equivalents we can-
not use the ANOVA test as we have done before as this test only works 
when models are nested (i.e., a model with two main effects is nested within 
a model with the two main effects and the interaction between them). To 
compare a zero-inflated model to its counterpart we use Vuong’s non-nested 
hypothesis test. However you can only compare a Poisson GLM to a ZIP and 
a NBGLM to a ZINB, you cannot use it to compare a NBGLM to a ZIP or a 
Poisson GLM to a ZINB.

Example 7.8 investigates whether the location, City or Countryside, people 
live in “Location” has any relationship with the number of shooting stars they 
saw in a period of an hour “Shooting.Stars.” To run a zero-inflated model in R 
the package pscl is required.

EXAMPLE 7.8

We have a response variable of Shooting.Stars and an explanatory variable of 
Location. The response variable is discrete, counts, and the explanatory variable is 
also discrete. We are looking to see if Location has a relationship with the number of 
shooting stars seen in an hour—Shooting.Stars.

# Input the data
Shooting.Stars = c(3,0,4,3,0,1,4,2,0,2,0,1,1,1,0,3,0,0,0,0,3,0,3,4,0,0,4,
                 2,3,0,2,1,3,2,1,2,2,2,0,0,0,0,3,1,1,4,5,0,2,2,5,4,6,4,
                 5,5,7,6,0,4,6,6,0,5,4,4,3,0,6,4,2,5,1,4,5,6,7,0,7,4,4,
                 6,6,2,0,5,7,1,4,3,7,7,3,7,7,7,7,4,5,4)
Location = rep(c("City", "Countryside"), each = 50)
data26 = data.frame(Shooting.Stars, Location)

# Fit a Poisson GLM and check the goodness of fit
mod = glm(Shooting.Stars ~ Location, data = data26,
        family = poisson)
1 - pchisq(summary(mod)$deviance, summary(mod)$df.residual)

[1] 7.415786e-05

# Fit a Negative-Binomial GLM and check the goodness of fit
library(MASS)
mod2 = glm.nb(Shooting.Stars ~ Location, data = data26)
1 - pchisq(summary(mod2)$deviance, summary(mod2)$df.residual)

[1] 0.002797011

Both the Poisson GLM and the NBGLM were not good fits for the data, both p-values 
< 0.05.
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# Load library, fit a zero-inflated Poisson model and print the 
output
library(pscl)
mod3 = zeroinfl(Shooting.Stars ~ Location, data = data26)
summary(mod3)

Call:
zeroinfl(formula = Shooting.Stars ~ Location, data = data26)

Pearson residuals:
     Min        1Q   Median       3Q      Max
-1.74379  -0.96316  0.03156  0.62335  2.22068

Count model coefficients (poisson with log link):
                   Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)          0.7497      0.1352    5.544  2.96e-08 ***
LocationCountryside  0.8341      0.1516    5.501  3.77e-08 ***

Zero-inflation model coefficients (binomial with logit link):
                    Estimate  Std. Error  z value  Pr(>|z|)  
(Intercept)          -0.9828      0.4152   -2.367    0.0179 *
LocationCountryside  -1.2940      0.6555   -1.974    0.0484 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 9
Log-likelihood: -186.8 on 4 Df

The zero-inflated section of the ZIP model output showed that there were significantly 
more zeros than would be expected in a Poisson model at the 95% confidence level,  
p-value of 0.0179. It also showed that Location was significant to the number of zeros 
at the 95% confidence level, p-value of 0.048. The count section of the ZIP model 
showed that Location was significant to the number of Shooting.Stars at the 99% 
confidence level, p-value of 3.77e-08.

The results are given in logs for the count section and log odds for the zero-inflation 
section, so the average number of Shooting.Stars seen in the City when they can 
be seen is exp(0.7497) = 2.12, and the average number of Shooting.Stars seen in 
the Countryside is exp(0.7497 + 0.8341) = 4.87, or rounded is 2 and 5 for City and 
Countryside, respectively.

In addition, the log odds of not seeing any Shooting.Stars (seeing zero Shooting.Stars) 
in the Countryside compared to the City is -1.294, so therefore the odds ratio of 
not seeing any Shooting.Stars is exp(-1.2940) = 0.274. In other words for the City 
instead of the Countryside the odds of not seeing any Shooting.Stars is almost 4 times 
greater: (1/0.274) = 3.65.

# Calculate confidence intervals for the ZIP model estimates
confint(mod3)
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                                2.5 %        97.5 %
count_(Intercept)           0.4846500   1.014759264
count_LocationCountryside   0.5369426   1.131297025
zero_(Intercept)           -1.7965771  -0.168984653
zero_LocationCountryside   -2.5788261  -0.009143994

The confidence intervals for the estimates are also calculated on the log and the 
log-likelihood scale. We can use this output to calculate the confidence intervals 
around the difference between Countryside and City in terms of the odds of seeing 
a Shooting.Star, and we can use it for the confidence interval around the average 
number of Shooting.Stars seen in the City.

So the log odds confidence interval of the difference between Countryside and City, 
in terms of seeing a Shooting.Star is -2.579 to -0.009, so the odds ratio is 0.076 to 
0.991. In other words, the odds of not seeing any Shooting.Stars in the City compared 
to the Countryside is 1 to 13 times greater. The confidence interval around the City 
average number of Shooting.Stars is between 2 and 3.

# Predict expected number of shooting stars per location from the 
model
data27 = expand.grid(levels(data26$Location))
colnames(data27) = c("Location")
data27$Est.ShStars = predict(mod3, data27); data27

     Location  Est.ShStars
1        City     1.540001
2 Countryside     4.419998

So taking into account the zeros and the counts of Shooting.Stars, the predicted 
average number of Shooting.Stars seen in the City will be 1.54, or 2, and the predicted 
average number of Shooting.Stars seen in the Countryside will be 4.42, or 4.

# Compare Poisson model to zero-inflated Poisson model
vuong(mod, mod3)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
 null that the models are indistinguishible)
-------------------------------------------------------------
             Vuong z-statistic              H_A   p-value
          Raw        -2.222958  model2 > model1  0.013109
AIC-corrected        -1.869046  model2 > model1  0.030808
BIC-corrected        -1.408046  model2 > model1  0.079559

Comparing the Poisson GLM against the ZIP model using the Vuong test showed 
that the ZIP model was better than the Poisson GLM as the p-value < 0.05. The null 
hypothesis here is that the models are the same or model 1 (Poisson GLM) is better, 
and the alternative hypothesis is that model 2 (ZIP) is better. However, we should still 
fit a ZINB to check whether that would be a better fit for our data.
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# Fit a zero-inflated Negative Binomial model and print the results
mod4 = zeroinfl(Shooting.Stars ~ Location, dist = "negbin",
        data = data26)
summary(mod4)

Call:
zeroinfl(formula = Shooting.Stars ~ Location, dist = "negbin",
        data = data26)

Pearson residuals:
     Min        1Q   Median       3Q      Max
-1.74379  -0.96315  0.03156  0.62334  2.22068

Count model coefficients (negbin with log link):
                    Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)           0.7497      0.1352    5.544  2.96e-08 ***
LocationCountryside   0.8341      0.1516    5.501  3.77e-08 ***
Log(theta)           12.9491     88.2420    0.147     0.883    

Zero-inflation model coefficients (binomial with logit link):
                    Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)          -0.9828      0.4152   -2.367    0.0179 *
LocationCountryside  -1.2940      0.6555   -1.974    0.0484 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta = 420450.1598
Number of iterations in BFGS optimization: 40
Log-likelihood: -186.8 on 5 Df

Checking the ZINB model shows that theta, the dispersion parameter, was not 
significant to the model, p-value of 0.883. This means that the ZIP model is better 
suited to the data than the ZINB model.

# Plot data
ggplot(data26, aes(x = Shooting.Stars)) + theme_bw() +
        facet_wrap(~Location) + geom_bar()
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A bar chart is drawn to show the number of Shooting.Stars seen in an hour by the 
different Locations, City and Countryside; it does help to highlight the different shapes 
of the two distributions.

In this example the zeroinfl(   ) stands for the zero-inflated model. If there is no 
distribution specified it assumes the Poisson, ZIP, but if the “dist = negbin”, then 
it uses the negative binomial, ZINB.

The rest follows the same processes as previous Poisson GLM and NBGLM 
examples with the only differences being that the results are given in both the 
log scale and the log odds scale dependent on which section of the model 
output you are looking at. The goodness of fit test requires the zero-inflated 
model to be compared to the count equivalent using Vuong’s hypothesis test.

The key thing to remember when fitting zero-inflated models is to verify that 
a Poisson GLM or NBGLM doesn’t fit the data first, then to fit the ZIP, then to 
fit the ZINB and compare them.
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Ordinal Logistic Regression
An ordinal logistic regression (OLR) model is used when the response vari-
able is ordinal; the explanatory variables can be either discrete or continuous.

The key thing to note when fitting an OLR model is that, as with the binomial 
GLM, the values given are on the log odds scale and will need to be trans-
formed using the exponential to be given on the odds ratio scale. Due to 
this fact sometimes this model is referred to as a proportional odds logistic 
regression model.

The OLR output will produce t-values instead of p-values. A general rule 
of thumb is that a t-value < -2 or a t-value > 2 means that the explanatory 
variable is significant to the model. There is a lot of discussion surrounding 
whether it is appropriate to calculate p-values from these t-values. However it 
can be done and I have included the R code to do so if you prefer.

A key assumption with OLR is that the steps between the response variable, 
for example, strongly agree to agree, agree to disagree, disagree to strongly dis-
agree, are all equal or in other words, they are all linear.

Example 7.9 investigates whether the any of the five systems “System” or 
either of the groups of participants “Group” gave different Likert responses 
“Likert.Responses” in relation to whether the system performed poorly or 
well with their current equipment. There are two packages required to run 
the OLR model in R, MASS and AER. There is an additional package required 
to create the Likert plot called HH.

EXAMPLE 7.9

We have a response variable of Likert.Response and two explanatory variables of 
System and Group. The response variable is discrete, ordinal, and both the explanatory 
variables are discrete. We are looking to see if the System, Group, or the interaction 
between the two has a relationship with the Likert.Response of participants.

# Input the data
System = rep(c("A","B","C","D","E"), each = 4, 2)
Likert.Response = rep(c("VP","P","W","VW"), 10)
Group = rep(c("Group A","Group B"), each = 20)
Response = c(4,6,1,0,6,5,0,0,0,1,4,6,1,4,5,1,0,3,7,1,5,5,2,0,5,6,
           1,0,0,0,7,5,2,2,6,2,2,3,6,1)
Subjects = rep(c(11,12), each = 20)
data28 = data.frame(System, Likert.Response, Group, Response)

# Make sure variable is ordered correctly
data28$Likert.Response = factor(data28$Likert.Response,
        levels = c("VP","P","W","VW"),
        labels = c("Very Poorly", "Poorly", "Well", "Very Well"))
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It is crucial to verify that the ordinal response scale is in the correct order, otherwise 
the model output will be meaningless.

# Fit the full OLR model and print the output
library(MASS)
mod = polr(Likert.Response ~ System*Group, weights = Response,
        data = data28)
summary(mod)

Re-fitting to get Hessian

Call:
polr(formula = Likert.Response ~ System * Group, data = data28,
        weights = Response)

Coefficients:
                          Value  Std. Error    t value
SystemB               -0.719159      0.7985  -0.900674
SystemC                4.704055      0.9417   4.995497
SystemD                2.001315      0.8282   2.416463
SystemE                2.678277      0.8380   3.196078
GroupGroup B          -0.003012      0.7803  -0.003861
SystemB:GroupGroup B   0.551690      1.1076   0.498091
SystemC:GroupGroup B  -0.280103      1.1257  -0.248815
SystemD:GroupGroup B   0.483906      1.1458   0.422347
SystemE:GroupGroup B  -0.696591      1.1253  -0.619018

Intercepts:
                      Value  Std. Error  t value
Very Poorly|Poorly  -0.3962      0.5599  -0.7077
Poorly|Well          1.7775      0.6083   2.9220
Well|Very Well       4.5998      0.7449   6.1754

Residual Deviance: 233.0714
AIC: 257.0714

The full OLR model showed that the interaction was not significant to the model.

# If you would prefer p-values use the code below
library(AER)
coeftest(mod)

Re-fitting to get Hessian

z test of coefficients:
                        Estimate  Std. Error  z value   Pr(>|z|)    
SystemB               -0.7191594   0.7984678  -0.9007   0.367762    
SystemC                4.7040550   0.9416590   4.9955  5.868e-07 ***
SystemD                2.0013154   0.8282002   2.4165   0.015672 *  
SystemE                2.6782767   0.8379884   3.1961   0.001393 **
GroupGroup B          -0.0030124   0.7803013  -0.0039   0.996920    
SystemB:GroupGroup B   0.5516897   1.1076083   0.4981   0.618420    
SystemC:GroupGroup B  -0.2801032   1.1257495  -0.2488   0.803504    
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SystemD:GroupGroup B   0.4839063   1.1457544   0.4223   0.672772    
SystemE:GroupGroup B  -0.6965910   1.1253158  -0.6190   0.535904    
Very Poorly|Poorly    -0.3962264   0.5599147  -0.7077   0.479160    
Poorly|Well            1.7775387   0.6083210   2.9220   0.003477 **
Well|Very Well         4.5998077   0.7448544   6.1754  6.598e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you can see the estimates and the standard errors are the same as the OLR output, 
the t-values have been quoted as z-values, and a p-value has been calculated for 
each one.

# Simplify model and print the final output
mod2 = polr(Likert.Response ~ System + Group, weights = Response,
        data = data28)
summary(mod2); coeftest(mod2)

The next model showed that Group was not significant to the model – t-value of 0.025 
or a p-value of 0.980.

mod3 = polr(Likert.Response ~ System, weights = Response,
        data = data28)
summary(mod3)

Re-fitting to get Hessian

Call:
polr(formula = Likert.Response ~ System, data = data28,
        weights = Response)

Coefficients:
           Value  Std. Error  t value
SystemB  -0.4279      0.5521  -0.7751
SystemC   4.5076      0.7193   6.2666
SystemD   2.2172      0.6157   3.6012
SystemE   2.3173      0.6094   3.8026

Intercepts:
                      Value  Std. Error  t value
Very Poorly|Poorly  -0.3896      0.4005  -0.9728
Poorly|Well          1.7657      0.4644   3.8020
Well|Very Well       4.5560      0.6282   7.2524

Residual Deviance: 234.7583
AIC: 248.7583

The final model showed that System was significant to the model.

The results are given in the log odds scale as with the binomial GLMs and BRGLMs,  
so the results will need to be transformed on the exponential scale to get the odds 
ratio. The interpretation of the results is however slightly different due to the ordinal 
scale. If we used System C instead of System A, the odds of Very Well versus any 
of the three other Likert.Responses is exp(4.5076) = 90.70 times greater. Likewise 
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the odds of Very Well or Well Versus Poorly or Very Poorly is also 90.70 times greater 
for System C instead of System A. The same odds value is due to the assumption of 
linearity, or response variable steps being equal, that I mentioned earlier.

If we used System B instead of System A, the log odds of Very Well versus any of the 
other Likert.Responses is -0.428, and the odds ratio is exp(-0.428) = 0.652. In other 
words if we used System A instead of System B, the odds of Very Well versus any 
other Likert.Response is (1/0.652) = 1.53 times greater. The same odds would apply 
for Very Well and Well versus Poorly and Very Poorly, as well as for Very Well, Well, and 
Poorly versus Very Poorly for using System A instead of System B.

The table showing the log odds, odds ratio, and odds tries to clarify the earlier output; 
however remember that these values apply equally for all “steps” on the response 
variable.

# Calculate confidence intervals
confint(mod3)

             2.5 %     97.5 %
SystemB  -1.523818  0.6516329
SystemC   3.155909  5.9890214
SystemD   1.042077  3.4667028
SystemE   1.155180  3.5549860

The confidence intervals around the differences are also calculated on the log-
likelihood scale, so if we wanted confidence intervals on these values, we would have 
to transform them using the exponential. Looking at the confidence intervals around 
the difference between System A and System B, and also System A and System C 
for some examples would give us odds ratios of 0.22 (or the inverse which is 4.59) to 
1.92, and 23.47 to 399.02, respectively.

The confidence interval for System A and C is easier to interpret—the odds of Very 
Well versus the other Likert.Responses with System C is 23 times to 399 times greater 
than with System A. However for the confidence interval for the difference between 
System A and System B, it’s a bit trickier, the odds of Very Well versus the other Likert.
Responses with System A is 5 times greater than with System B to System B being 
2 times greater than System A. The latter result is highlighted by the Likert plot that 
suggests no significant difference between System A and System B.
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# Obtain p-values
coeftest(mod3)

Re-fitting to get Hessian

z test of coefficients:
                    Estimate  Std. Error  z value   Pr(>|z|)    
SystemB             -0.42790     0.55208  -0.7751  0.4382946    
SystemC              4.50759     0.71931   6.2666  3.691e-10 ***
SystemD              2.21721     0.61568   3.6012  0.0003167 ***  
SystemE              2.31733     0.60940   3.8026  0.0001432 ***
Very Poorly|Poorly  -0.38959     0.40050  -0.9728  0.3306686    
Poorly|Well          1.76572     0.46442   3.8020  0.0001435 ***
Well|Very Well       4.55596     0.62820   7.2524  4.093e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again this just gives p-values instead of t-values.

# Plot the data
library(HH)
plot.likert(System ~ Likert.Response|Group, value = "Response",
        data = data28, layout = c(1,2), as.percent = TRUE,
        main = "How Poorly/Well did the System Perform
        with your Current Equipment?", ReferenceZero = 2.5,
        xlab = expression(bold("Percent")),
        ylab = expression(bold("System")),
        col = c("firebrick3","indianred1","springgreen","forestgreen"))
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Likert plots are much clearer at displaying ordinal results compared to bar charts and 
other plots. It highlights that System C clearly displayed the best results, followed by 
System D and System E, which don’t look too dissimilar, followed by System A and 
System B, which both gave very poor results, but were similar to each other. It also 
highlights that there isn’t much of a difference between the two Groups, so the Likert 
plot could have been created without splitting into the two Groups, A and B.

In this example the polr(   ) stands for the OLR model, or the proportional 
odds logistic regression model. In this example I added “weights = “Freq”  ” to 
the model, this is because I didn’t have one row per participant in the dataset 
I just had the count of responses at each “Likert.Response.”

The rest follows the same processes as previous GLM examples with the 
only differences being that the results are given on the log odds scale and also  
t-values are shown instead of p-values; although the latter can be overcome 
if required.

Finally a Likert plot was drawn to show its utility at displaying ordinal data 
along with highlighted differences between “Systems.”

The key thing to remember when fitting OLR models is to verify that the 
ordinal response variable is in the correct order otherwise the model output 
will be meaningless.

Linear Mixed-Effects Models
Linear mixed-effects models (LMMs) can be thought of as extensions to LMs 
or GLMs, but instead of fitting only fixed effects as with all previous examples, 
they can also fit random effects. By using a random effect the assumption of 
independence is satisfied as a different baseline is assumed for each subject.

LMMs can sometimes be referred to as repeated measures models, as they are 
generally used when you are repeating measures on a subject. For example 
the response measurement is taken from the subject at multiple time points, 
or you have each subject using each piece of equipment, and so forth. Clearly 
this violates an assumption of the LM in that the responses are not inde-
pendent, so this needs to be accounted for when fitting a model, hence the 
random effects.

Another important reason for adding in random effects are that although 
you may not be interested in the differences between subjects, you need to 
account for the fact that there are always going to be differences between 
them—natural variation.

There are two commonly referenced LMMs, those that vary a random effect 
or more on the intercept and those that vary a random effect or more on 
the intercept and slope. The first will give different baseline results for let’s 



Chapter 7 | Statistical Modeling222

say all participants. Whereas the second will give different baseline results for 
all the participants as well as different results due to the explanatory variable 
chosen, such as exercise as you wouldn’t expect everyone to react the same 
to exercise.

When dealing with a categorical explanatory variable it is difficult to picture 
a slope. So although this is the official terminology, from now on it will be 
called the pattern—as it’s the change in nonlinear pattern across the variable 
of interest, time for example.

Nesting is another complication that arises in data sets and this is best dealt 
with using mixed-effects models, however it’s worth noting that it also can be 
done using LMs.

Nesting occurs when variables sit within other variables, for example if you 
had taken measurements across six batches (batch) and had taken three mea-
surements from within each batch (repeat), then repeat would be nested 
within batch. There could also be another layer of nesting added in this exam-
ple of factory, so repeat would be nested within batch which would be nested 
within factory.

In this section we will look at three examples, a simple LMM with one random 
effect on the intercept, a LMM with one random effect on the intercept and 
pattern, and a more complicated LMM that also includes nesting.

A mixed-effect model will produce t-values instead of p-values as with OLR. If 
you are happy with interpreting t-values then the lme4 package will need to 
be loaded, however if you would like to compute approximate p-values from 
the t-values, the lmerTest package will need to be loaded in R. The latter 
package uses the Satterthwaite approximation to calculate degrees of free-
dom; I will use this latter package for ease of interpretation.

The LMMs can be fit using either restricted maximum likelihood (REML) or 
maximum likelihood (ML). The best way of describing the difference between 
the two is the REML estimates for the fixed effect are biased and the esti-
mates for the random effects are unbiased, whereas the ML estimates for the 
fixed effects are unbiased and the estimates for the random effects are biased. 
In the examples I have used the ML as it gives the AIC, BIC, log likelihood, 
deviance, and residual degrees of freedom whereas the REML only gives the 
REML criterion.

Example 7.10 investigates the heart rate “Heart.Rate” of subjects “Subject” 
for two different treatments “Treatment.” Each subject completed the course 
twice per treatment and their heart rate was recording from resting, 0 seconds, 
and then every 10 seconds until the end of the experiment at 60 seconds. 
There was a prolonged period of rest between each completion of the course. 
This example looks at whether the time or treatment had an effect on subject’s 
heart rate. It will fit a varying intercept model using the “Subject” random effect 
variable as each “Subject” will have a different baseline “Heart.Rate.”
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EXAMPLE 7.10

We have a response variable of Heart.Rate, two explanatory variables of Treatment 
and Time, and a random effect of Subject. The response variable is continuous, and 
the explanatory variables and random effect are discrete. We are looking to see if 
Treatment, Time, or the interaction between the two has a relationship with the Heart.
Rate of Subjects.

# Input the data
Heart.Rate = c(66,80,92,94,124,159,181,66,79,87,92,144,147,168,67,80,90,
            97,124,161,190,66,80,89,94,143,148,168,54,70,104,128,165,
            174,189,52,64,91,110,120,164,194,55,68,108,126,166,176,189,
            50,66,91,115,121,165,195,54,78,89,121,144,172,200,53,76,83,
            109,154,165,179,53,80,89,125,145,170,198,51,78,83,112,151,
            167,180,70,88,95,100,121,168,175,72,80,88,110,148,171,178,
            71,90,94,104,125,170,175,70,81,90,110,147,172,180,49,87,91,
            115,131,158,178,51,61,64,103,146,167,168,50,89,90,117,132,
            159,180,48,59,64,108,145,169,171,64,87,94,115,135,160,196,
            68,81,97,108,138,155,193,66,87,92,117,135,162,194,67,80,95,
            108,140,157,195,66,87,95,130,158,171,193,63,67,96,110,148,
            154,194,65,86,97,129,160,171,195,63,66,100,110,146,156,195,
            55,86,107,116,132,172,180,55,68,80,100,107,155,182,57,88,
            106,118,135,176,182,55,70,81,100,105,160,183,65,68,88,110,
            139,182,187,66,74,82,90,108,155,189,66,70,86,107,138,185,
            189,67,75,86,91,110,157,189,53,67,94,121,141,183,199,52,64,
            75,103,111,158,169,51,68,97,125,141,185,200,53,66,73,101,
            113,159,175)
Subject = rep(c(1:10), each = 28)
Treatment = rep(c("A","B"), each = 7, 20)
Time = rep(c(0,10,20,30,40,50,60), 40)
data29 = data.frame(Heart.Rate, Subject, Treatment, Time)

# Make sure variables are discrete
data29$Time = factor(data29$Time)
data29$Subject = factor(data29$Subject)

# Fit the full mixed effects model and print the anova output
library(lmerTest)
mod = lmer(Heart.Rate ~ Treatment*Time + (1|Subject), REML = F,
        data = data29)
anova(mod)

Analysis of Variance Table of type III  with  Satterthwaite
approximation for degrees of freedom
                Sum Sq  Mean Sq  NumDF  DenDF  F.value     Pr(>F)    
Treatment         4290     4290      1   270     52.74  4.076e-12 ***
Time            525357    87560      6   270   1076.43  < 2.2e-16 ***
Treatment:Time     848      141      6   270      1.74     0.1124    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The ANOVA table showed that the interaction between Treatment and Time was not 
significant to the model, p-value of 0.112 and therefore could be removed from the 
model.

# Simplify model and print the anova output and the summary output
mod2 = lmer(Heart.Rate ~ Treatment + Time + (1|Subject),
        REML = F, data = data29)
anova(mod2)

Analysis of Variance Table of type III  with  Satterthwaite
approximation for degrees of freedom
           Sum Sq  Mean Sq  NumDF  DenDF  F.value     Pr(>F)    
Treatment    4290     4290      1    270    50.78  9.422e-12 ***
Time       525357    87560      6    270  1036.41  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When the model was refitted it showed that both Treatment and Time were significant 
to the model at the 99% confidence level.

summary(mod2)

Linear mixed model fit by maximum likelihood t-tests use 
Satterthwaite
  approximations to degrees of freedom [lmerMod]
Formula: Heart.Rate ~ Treatment + Time + (1 | Subject)
   Data: data29

   AIC     BIC   logLik  deviance  df.resid
2072.1  2108.4  -1026.0    2052.1       270

Scaled residuals:
     Min        1Q    Median       3Q      Max
-2.70142  -0.69578  -0.01159  0.68426  2.60040

Random effects:
Groups           Name  Variance  Std.Dev.
Subject   (Intercept)     10.81     3.289  
Residual                  84.48     9.191  
Number of obs: 280, groups:  Subject, 10

Fixed effects:
            Estimate  Std. Error       df  t value  Pr(>|t|)
(Intercept)   63.539       1.870   58.780   33.986   < 2e-16 ***
TreatmentB    -7.829       1.099  270.000   -7.126  9.42e-12 ***
Time10        16.350       2.055  270.000    7.955  4.95e-14 ***
Time20        30.200       2.055  270.000   14.694    <2e-16 ***
Time30        50.350       2.055  270.000   24.498   < 2e-16 ***
Time40        76.275       2.055  270.000   37.112   < 2e-16 ***
Time50       105.750       2.055  270.000   51.453   < 2e-16 ***
Time60       125.750       2.055  270.000   61.184   < 2e-16 ***
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Correlation of Fixed Effects:
            (Intr)  TrtmnB  Time10  Time20  Time30  Time40  Time50
TreatmentB  -0.294                                          
Time10      -0.550   0.000                                   
Time20      -0.550   0.000   0.500                            
Time30      -0.550   0.000   0.500   0.500                     
Time40      -0.550   0.000   0.500   0.500   0.500              
Time50      -0.550   0.000   0.500   0.500   0.500   0.500       
Time60      -0.550   0.000   0.500   0.500   0.500   0.500   0.500

The output of the random effects shows that the variability in the Heart.Rate due 
to Subjects was 3.29 standard deviations, and that of unknown variables is 9.19 
standard deviations. This could be due to something like the different pieces of 
recording equipment, different temperature, or weather conditions, and so forth, 
which was not recorded.

The output of the fixed effects shows that the average resting Heart.Rate, Time 0, for 
Treatment-A was 63.54 and that of Treatment-B was (63.539 – 7.829) = 55.71. For 
examples of other calculations the average Heart.Rate with Treatment-A at 30 seconds 
was (63.539 + 50.350) = 113.89, and the average Heart.Rate with Treatment-B at 60 
seconds was (63.539 – 7.829 + 125.75) = 181.46.

# Calculate confidence intervals
confint(mod2)

                 2.5 %      97.5 %
.sig01        1.840527    5.962966
.sigma        8.467535   10.024775
(Intercept)  59.807072   67.271499
TreatmentB   -9.989453   -5.667690
Time10       12.307362   20.392638
Time20       26.157362   34.242638
Time30       46.307362   54.392638
Time40       72.232362   80.317638
Time50      101.707362  109.792638
Time60      121.707362  129.792638

The confidence intervals show the 95% intervals around the estimates, with .sig01 
referring to the standard deviation of the Subject random effect, 1.84 to 5.96 standard 
deviations, and .sigma referring to the standard deviation of the residual random 
effect, 8.47 to 10.02 standard deviations.

# Check assumptions
qqnorm(resid(mod2)); qqline(resid(mod2))
plot(mod2)
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The diagnostic plots show that the residuals are normally distributed and that the 
variability in the errors was consistent.

# Print baseline values for each subject
coef(mod2)

$Subject
(Intercept) TreatmentB  Time10  Time20  Time30  Time40  Time50  Time60  
1  60.40626  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
2  65.82344  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
3  65.51628  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
4  65.06950  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
5  59.68024  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
6  66.27022  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
7  68.64372  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
8  61.38358  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
9  61.60697  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75
10 60.99265  -7.828571   16.35    30.2   50.35  76.275  105.75  125.75

attr(,"class")
[1] "coef.mer"

The average Heart.Rates we calculated using the coefficients assume a constant 
baseline across Subjects that we have actually amended by including Subject as 
a random effect. So looking at the coefficients output we can see the amended 
calculations per subject. Here you can see the intercept, resting Heart.Rate for 
Treatment A, changes per Subject, however the Treatment and Time coefficients 
remain the same. We expect the Treatment effect to be constant across Subjects, but 
probably the Time effect will vary per subject, which is also apparent in the plot of the 
data, in which case we need to refit the model to allow for random pattern varying 
intercept and slope/pattern LMM.
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# Plot the data
ggplot(data29, aes(x = Time, y = Heart.Rate, colour = Treatment,
        shape = Treatment)) + theme_bw() +
        facet_wrap(~Subject) + geom_point()

The scatterplot shows the Heart.Rate per Subject by Time and Treatment. It’s clear 
to see the upward trend of Heart.Rate over Time, which is to be expected, and also 
shows some differences between the two Treatments.

In this example the lmer(   ) stands for the LMM. The response is entered first 
followed by the fixed effects and any interactions. Then the random effects are 
entered, here the random effect is (1 | Subject) and this means that only the 
intercept will vary per “Subject.” I also specified that “REML = F”, which means 
that the model will give me the ML estimates. Finally the data set used is specified.

The rest follows the same processes as previous GLM examples with the only 
differences being that the results shown will be for both the random effects 
and the fixed effects.



Chapter 7 | Statistical Modeling228

Coefficients are calculated for each “Subject” but you can see that the 
“Treatment” and the “Time” remains constant for each “Subject.”

Finally a scatter plot was drawn to show the trend of “Heart.Rate” over 
“Time” for each “Subject” and “Treatment.”

The key thing to remember when fitting LMMs is to consider what your ran-
dom effects are; if they are appropriate; and if just a varying intercept, baseline, 
is adequate for your question.

In Example 7.10 it is probably unrealistic to assume that each subject’s heart 
rate will not vary given time, as everyone’s body works differently; so Example 
7.11 will look at including this random pattern due to time. This example will 
fit a varying pattern and varying intercept model using the “Subject” variable, 
varying the pattern of the “Subject” variable by “Time.” Each subject will have 
a different baseline heart rate and a different heart rate at each time point.

EXAMPLE 7.11

We will be using the same data as in the last example, but this time we will allow the 
pattern of the Time variable to vary by Subject. We are still looking to see if Treatment 
or Time has a relationship with the Heart.Rate of Subjects.

# Fit the final mixed effects model and print the anova output
# and the summary output
mod3 = lmer(Heart.Rate ~ Treatment + Time + (1 + Time|Subject),
        REML = F, data = data29)
anova(mod3)

Analysis of Variance Table of type III  with  Satterthwaite
approximation for degrees of freedom
           Sum Sq  Mean Sq  NumDF   DenDF  F.value     Pr(>F)    
Treatment    4290     4290      1  230.00    79.58   <2.2e-16 ***
Time       238946    39824      6   12.95   738.74  1.221e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The ANOVA table showed that both Treatment and Time were significant to the model 
at the 99% confidence level.

summary(mod3)
Linear mixed model fit by maximum likelihood t-tests use 
Satterthwaite
  approximations to degrees of freedom [lmerMod]
Formula: Heart.Rate ~ Treatment + Time + (1 + Time | Subject)
   Data: data29

   AIC     BIC  logLik  deviance  df.resid
2052.2  2186.7  -989.1    1978.2       243
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Scaled residuals:
     Min        1Q   Median       3Q      Max
-2.43272  -0.68328  0.00068  0.64156  2.76617

Random effects:
Groups        Name Variance  Std.Dev.   Corr                               
Subject (Intercept)   43.60     6.603                                      
            Time10    14.72     3.837  -0.69                              
            Time20    37.46     6.120  -0.69 0.38                        
            Time30   147.86    12.160  -0.86 0.60 0.90                  
            Time40   141.41    11.892  -0.62 0.65 0.66 0.84            
            Time50    90.23     9.499  -0.93 0.47 0.69 0.84 0.50     
            Time60    79.40     8.910  -0.72 0.26 0.94 0.92 0.70 0.75
Residual              53.91     7.342                                      
Number of obs: 280, groups:  Subject, 10

Fixed effects:
            Estimate  Std. Error        df  t value  Pr(>|t|)
(Intercept)  63.5393      2.4291   10.9300   26.157  3.32e-11 ***
TreatmentB   -7.8286      0.8776  230.0000   -8.921  2.22e-16 ***
Time10       16.3500      2.0415   13.4100    8.009  1.80e-06 ***
Time20       30.2000      2.5379   10.9200   11.899  1.36e-07 ***
Time30       50.3500      4.1811   10.0000   12.042  2.82e-07 ***
Time40       76.2750      4.1032   10.1000   18.589  3.86e-09 ***
Time50      105.7500      3.4232   10.2800   30.893  1.78e-11 ***
Time60      125.7500      3.2611   10.3100   38.560  1.74e-12 ***

Correlation of Fixed Effects:
            (Intr)  TrtmnB  Time10  Time20  Time30  Time40  Time50
TreatmentB  -0.181                                          
Time10          -0.622   0.000                                   
Time20          -0.668   0.000   0.434                            
Time30          -0.815   0.000   0.483   0.759                     
Time40          -0.621   0.000   0.517   0.590   0.789              
Time50          -0.861   0.000   0.437   0.615   0.774   0.495       
Time60          -0.705   0.000   0.337   0.783   0.828   0.657   0.686

The LMM output of the random effects shows that the variability in the Heart.Rate 
due to Subjects was 6.60 standard deviations, and that of unknown variables is 7.34 
standard deviations. There are also contributions to the random effects from the 
different Time points.

The output of the fixed effects shows that the average resting Heart.Rate for 
Treatment-A was 63.54 and that of Treatment-B was (63.5393 – 7.8286) = 55.71. For 
examples of other calculations, the average Heart.Rate with Treatment-A at 30 seconds 
was (63.5393 + 50.35) = 113.89, and the average Heart.Rate with Treatment-B at 60 
seconds was (63.5393 – 7.8286 + 125.75) = 181.46. This output is the same as the 
varying intercept LMM in Example 7.10 as they are average estimates, however the 
coefficients per Subject will be different.
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# Check assumptions
qqnorm(resid(mod3)); qqline(resid(mod3))
plot(mod3)

The diagnostics plots show that the residuals are normally distributed and that the 
variability in the errors was consistent.

# Print baseline values for each subject
coef(mod3)

$Subject
(Intercept) TreatmentB  Time10  Time20  Time30  Time40  Time50  Time60
1   70.653      -7.829  15.581  20.640  31.550  65.406  90.933 111.555
2   57.853      -7.829  17.101  39.490  66.519  87.837 115.137 139.418
3   58.794      -7.829  19.687  33.923  62.561  92.012 111.608 132.156
4   71.409      -7.829  14.972  23.062  37.331  67.105  97.483 113.708
5   54.748      -7.829  22.983  29.621  58.667  87.020 114.054 125.620
6   70.108      -7.829  13.722  30.112  43.849  72.922  95.700 124.191
7   66.121      -7.829  15.927  34.119  56.475  89.041 101.726 131.783
8   62.390      -7.829  16.385  31.689  48.008  64.996 108.233 124.466
9   67.790      -7.829  10.577  25.133  39.082  60.524 103.971 121.440
10  55.946      -7.829  16.563  34.211  59.458  75.887 118.655 133.165

attr(,"class")
[1] "coef.mer" 

The average Heart.Rates we calculated assume a constant baseline across Subjects 
that we have amended by including Subject as a random effect. So looking at the 
coefficients output we can see the amended calculations per subject. Here you can 
see the intercept, resting Heart.Rate for Treatment A, changes per Subject, along 
with the pattern at each Time measurement. However the Treatment coefficients 
remain the same. So using the examples given earlier but for a specific Subject, say 
Subject 1, the resting Heart.Rate with Treatment A was 70.65 and for Treatment B 
was (70.65331 – 7.828571) = 62.82. Treatment A at 30 seconds was (70.65331 + 
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31.55024) = 102.20, and Treatment B at 60 seconds was (70.65331 – 7.828571 + 
111.5545) = 174.38. If you compare the same four readings (70.65, 62.82, 102.20, 
and 174.38) to the same readings for Subject 10 (55.95, 48.12, 115.40, and 181.28), 
you can see the differences.

This example followed exactly the same process as Example 7.10 except that 
instead of just varying the intercept by “Subject,” it also varied the pattern of 
“Time” by “Subject.”

Again, the key thing to remember when fitting LMMs is to consider what 
your random effects are; if they are appropriate; and if just a varying intercept, 
baseline, is adequate for your question. Was it appropriate that subjects had 
different starting heart rates? Yes. Was it more appropriate that the heart rate 
per time point went up consistently across subjects or that the heart rate was 
allowed to vary per subject? The latter.

Example 7.12 looks at a LMM that includes nesting. The test scores “Test.
Score” for different school subjects, English and Maths, “Subjects” have been 
recorded to see if there are any significant differences between the results. 
The test scores were recorded for a number of students from two different 
classes “Class” within three different schools “School.” Each class contained 
twenty students that recorded their English and Maths test scores.

This example will fit two models; a varying intercept model as well as a varying  
pattern and varying intercept model, both using the nested “Class” and 
“School” variables. The second LMM varying the slope of the nested variables 
by “Subject.”

EXAMPLE 7.12

We have a response variable of Test.Score, an explanatory variable of Subject, and two 
random effects of School and Class, with Class nested within School. The response 
variable is continuous, and the explanatory variable and random effects are discrete. 
We are looking to see if the different Subjects result in different Test.Scores.

# Input the data
Test.Score = c(94,88,86,90,94,87,87,92,89,92,87,94,93,91,89,92,91,91,95,91,
            82,84,90,81,92,89,85,94,88,94,94,94,86,94,93,84,82,92,92,
            83,89,83,81,87,84,80,81,83,88,82,81,90,82,85,87,82,86,84,
            87,88,82,91,95,77,88,87,79,75,91,77,82,91,95,92,89,83,79,
            90,83,83,82,79,79,78,83,82,81,77,80,79,84,83,81,78,77,75,
            76,76,84,75,78,78,71,79,70,75,75,78,76,71,76,76,73,71,80,
            70,71,78,71,74,76,74,74,77,81,78,79,76,82,79,80,73,72,83,
            72,81,81,72,79,74,67,75,71,66,65,71,73,69,65,67,71,72,68,
            73,65,65,74,67,72,72,82,70,72,86,89,87,87,88,74,92,70,89,
            86,63,68,74,88,71,88,91,76,86,75,79,76,69,86,71,78,67,67,
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            73,69,81,79,78,80,72,81,69,72,75,76,68,72,78,78,77,71,73,
            70,77,75,75,69,77,74,76,68,78,76,75,68,74,69,78,76,70,79,
            78,67,65,86,88,65,88,73, 66,65,85)
School = rep(c("A","B","C"), each = 80)
Class = rep(c("1","2"), each = 20,6)
Subject = rep(c("English","Maths"), each = 40, 3)
data30 = data.frame(Test.Score, School, Class, Subject)

# Make sure variables are discrete
data30$Class = factor(data30$Class)

# Fit the nested mixed effects model varying the intercept and
# print the summary output
mod = lmer(Test.Score ~ Subject + (1|School/Class), REML = F,
        data = data30)
summary(mod)

Linear mixed model fit by maximum likelihood t-tests use 
Satterthwaite
  approximations to degrees of freedom [lmerMod]
Formula: Test.Score ~ Subject + (1 | School/Class)
   Data: data30

   AIC     BIC  logLik  deviance  df.resid
1500.0  1517.4  -745.0    1490.0       235

Scaled residuals:
    Min       1Q  Median      3Q     Max
-3.1638  -0.6607  0.1033  0.5817  2.8737

Random effects:
 Groups               Name  Variance  Std.Dev.                               
 Class:School  (Intercept)     6.909     2.629                                      
 School        (Intercept)    26.500     5.148                               
 Residual                26.676     5.165                                      
Number of obs: 240, groups:  Class:School, 6;  School, 3

Fixed effects:
             Estimate  Std. Error        df  t value  Pr(>|t|)
(Intercept)   81.6083      3.1949    3.0700   25.543  0.000113 ***
SubjectMaths  -4.1083      0.6668  234.0000   -6.161  3.12e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
             (Intr)
SubjectMths  -0.104      

The output of the varying intercept model showed that Subject was significant to the 
model at the 99% confidence level. The output of the random effects showed that the 
variability in the Test.Score due to School was 5.15 standard deviations, the variability 
due to Class within School was 2.63 standard deviations, and the variability due to 
unknown variables was 5.17 standard deviations.
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The output of the fixed effects shows that the average Test.Score for English was 
81.61 and that of Maths was (81.6083 – 4.1083) = 77.50.

# Calculate confidence intervals
confint(mod)

                  2.5 %       97.5 %
.sig01         1.210701     8.058294
.sig02         0.000000    16.136540
.sigma         4.730076     5.670659
(Intercept)   72.723753    90.492950
SubjectMaths  -5.420591    -2.796076

The confidence intervals show the 95% intervals around the estimates, with .sig01 
referring to the standard deviation of the Class within School random effect, 1.21 to 
8.06 standard deviations; .sig02 referring to the standard deviation of the School 
random effect, 0.00 to 16.14 standard deviations; and .sigma referring to the standard 
deviation of the residual random effect, 4.73 to 5.67 standard deviations.

# Check assumptions
qqnorm(resid(mod)); qqline(resid(mod))
plot(mod)

The assumptions plots show that the residuals are normally distributed and that the 
variability in the errors was consistent.

# Calculate predicted values for each subject
pred = with(data30,expand.grid(Class = levels(Class),
        Subject = levels(Subject), School = levels(School)))
pred$Test.Score = predict(mod, newdata = pred)
pred

  Class  Subject  School  Test.Score
1     1  English       A    89.52065



Chapter 7 | Statistical Modeling234

2     2  English       A    89.04186
3     1    Maths       A    85.41231
4     2    Maths       A    84.93353
5     1  English       B    80.12441
6     2  English       B    74.35618
7     1    Maths       B    76.01607
8     2    Maths       B    70.24784
9     1  English       C    79.34083
10    2  English       C    77.26609
11    1    Maths       C    75.23249
12    2    Maths       C    73.15775

To obtain average Test.Scores using the model we use the predict(   ) command. 
So looking at the results we can get a rough idea about the average Test.Scores 
within School and Class. At School A we can see the overall average English Test.
Score was ((89.52+89.04)/2) = 89.28 and the overall average Maths Test.Score was 
((85.41+84.93)/2) = 85.17. We can take averages of averages as there were equal 
sample sizes within each group. We shouldn’t take averages of the Class ignoring 
School as Class is nested within School.

# Fit the nested mixed effects model varying the slope and the 
intercept
# and print  the summary output
mod2 = lmer(Test.Score ~ Subject + (1 + Subject|School/Class),
        REML = F, data = data30)
summary(mod2)

Linear mixed model fit by maximum likelihood t-tests use 
Satterthwaite
  approximations to degrees of freedom [lmerMod]
Formula: Test.Score ~ Subject + (1 + Subject  | School/Class)
   Data: data30

   AIC     BIC  logLik  deviance  df.resid
1507.0  1538.3  -744.5    1489.0       231

Scaled residuals:
    Min       1Q  Median      3Q     Max
-3.2745  -0.6834  0.0497  0.6448  2.7733

Random effects:
 Groups                Name  Variance  Std.Dev.   Corr                               
 Class:School   (Intercept)    7.2247    2.6879                                      
             SubjectMaths    1.5559    1.2474  -0.23
 School         (Intercept)   28.5719    5.3453                               
             SubjectMaths    0.1446    0.3803  -1.00
 Residual                26.2401    5.1225                                      
Number of obs: 240, groups:  Class:School, 6;  School, 3
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Fixed effects:
             Estimate  Std. Error      df  t value  Pr(>|t|)
(Intercept)   81.6083      3.3086  3.0030    24.67  0.000145 ***
SubjectMaths  -4.1083      0.8631  5.3320    -4.76  0.004277 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
             (Intr)
SubjectMths  -0.359  

Repeating the model but this time varying the Subject pattern by School and Class, 
as the Subject Test.Scores will probably vary across the Schools and Classes due to 
teaching methods, still showed that Subject was significant to the model at the 99% 
confidence level.

The output of the random effects showed that the variability in the Test.Score due 
to School was 5.35 standard deviations, that due to Class within School was 2.69 
standard deviations, and that due to unknown variables was 5.12 standard deviations. 
It also shows the contribution of the Subject to the random effects.

The output of the fixed effects shows that the average Test.Score for English was 
81.61 and that of Maths was (81.6083 – 4.1083) = 77.50, which is the same as the 
last model.

# Check assumptions
qqnorm(resid(mod2)); qqline(resid(mod2))
plot(mod2)

The assumptions plots show that the residuals are normally distributed and that the 
variability in the errors was consistent.

# Calculate predicted values for each subject
pred2 = with(data30,expand.grid(Class = levels(Class),
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        Subject = levels(Subject), School = levels(School)))
pred2$Test.Score = predict(mod2, newdata = pred2)
pred2

  Class  Subject  School  Test.Score
1     1  English       A    90.05978
2     2  English       A    89.03245
3     1    Maths       A    84.87723
4     2    Maths       A    84.94755
5     1  English       B    79.69718
6     2  English       B    74.45768
7     1    Maths       B    76.44381
8     2    Maths       B    70.13846
9     1  English       C    79.77354
10    2  English       C    76.62937
11    1    Maths       C    74.79930
12    2    Maths       C    73.79365

To obtain average Test.Scores using the model we use the predict(   ) command. 
So looking at the results we can get a rough idea about the average Test.Scores 
within School and Class. At School A we can see the overall average English Test.
Score was ((90.06+89.03)/2) = 89.55 and the overall average Maths Test.Score was 
((84.88+84.95)/2) = 84.91. We can take averages of averages as there were equal 
sample sizes within each group. We shouldn’t take averages of the Class ignoring 
School as Class is nested within School. It’s also worth noting that these results are 
very similar to those produced from the first model, so it would be more preferable to 
use the simpler model; therefore this would suggest that the varying intercept LMM 
was adequate.

# Plot the data
ggplot(data30, aes(x = Subject, y = Test.Score)) + theme_bw() +
        facet_wrap(~School + Class) +
        stat_boxplot(geom = "errorbar") + geom_boxplot()
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The box plot shows the Test Scores by Subject, School, and Class. It highlights how 
the Maths scores are generally lower than the English scores, and that there seem 
to be slight differences between the Schools, but not so much between the Classes 
within the Schools.

This example followed exactly the same process as Example 7.10 and Example 
7.11 with the only difference being the nested effects of “Class” within “School.”

Remember to account for mixed effects, random effects, and nested variables.

Summary
The beginning of the chapter described what models are and how they are 
the next step up from simple hypothesis testing. Models can account for more 
explanatory variables or more levels within explanatory variables and their 
relationship to the single response variable. The chapter was then split into 
two main sections, statistical model components and statistical models.
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The statistical model components discussed the elements that make up mod-
eling; it was divided into four sections; model assumptions, model structure, 
model process, and model output.

Model assumptions looked at the main assumptions for linear models show-
ing not only examples of where the assumptions have been satisfied but also 
where they have been violated.

The model structure showed the simplest form of linear models and how they 
can be built to include more explanatory variables, interactions, or polynomial 
terms. It also introduced the idea of mixed-effect models and nesting.

The model process explained the procedure for beginning with the most 
complicated model, then simplifying it by removing the nonsignificant terms 
with the highest p-value and the most complicated interaction. It also included 
examples of how to do this and presented multiple-comparison testing by 
using least-squares means contrasts.

The model output section showed examples of linear model output and how 
to interpret the various sections of output such as the coefficients, the p-values, 
and the R2 value. It then highlighted the diagnostic plots for checking assump-
tions, along with an example of multiple comparison testing, then finally a suitable 
plot to emphasize the results visually.

The statistical models section described some of the more commonly used 
models and was split into five main parts, each one describing the model or 
models, when they should be used, and examples to show how they are used 
along with translation.

The first statistical model section was simple models, which included lin-
ear models (LMs) and analysis of variance (ANOVA). It discussed the use of 
both with a continuous response variable with both continuous and discrete 
explanatory variables. It highlighted some of the similarities and differences 
between the two calculations and ended up recommending using LMs except 
when a complicated output table needs tidying up for interpretation.

The next section was generalized linear models (GLMs), which included 
Gaussian GLMs, Poisson GLMs, negative binomial GLMs (NBGLMs), binomial 
GLMs, and bias-reduction binomial-response GLMs (BRGLMs).

Gaussian GLMs were shown to be no different to LMs, but the example also 
highlighted how to conduct model simplification, multiple comparison test-
ing, which included interpretation of an interaction output, and also testing 
between different models.

The Poisson GLM and NBGLM were closely linked, as both cases dealt with a 
discrete response variable, more specifically count data. They both also gave their 
output on the log scale and so must be back transformed using the exponential 
to get the values back to the response scale. The main difference between the 
two GLMs is that the NBGLM is used for over dispersed count data.
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The next two GLMs are also closely linked, the binomial GLM and the BRGLM, 
as they are both concerned with binary response data. This time both GLMs 
gave their model output on the log odds scale, so they must be back trans-
formed using the exponential to get the odds ratio scale. As such interpreta-
tion can be tricky, and where an odds ratio is less than one, it is advised to 
switch the explanatory variables and report the relationship in the opposite 
direction by dividing one by the odds ratio for the positive odds ratio. The 
main difference between the two GLMs is that the BRGLM should be used 
when there is clear separation of zeros and ones in different groups.

The third statistical models section described the zero-inflated models: the 
zero-inflated Poisson (ZIP) model and the zero-inflated negative binomial 
(ZINB) model. It showed that these models were used when there were 
significantly more zeros in the data than would be expected for both the 
Poisson GLM and the NBGLM. The zero-inflated models output is split into 
two sections, that for the count data which is on the log scale, and that for the 
zero-inflated data which is on the log odds scale. The example showed how 
to run and interpret these models and output including how to compare the 
zero-inflated models to their GLM counterpart by using the Vuong non-nested 
hypothesis test, as well as how to decide between using the ZIP or the ZINB.

The next statistical model explained was the ordinal logistic regression (OLR) 
model, which is used with ordinal response data. It discussed that although the 
output uses t-values instead of p-values, there is a way to calculate p-values 
if needed. It also highlighted that the values are given on the log odds scale 
and needed to be translated in terms of the ordinal response, which must be 
ordered correctly or the model will be useless. It also showed that a Likert 
plot is very good at displaying ordinal data.

The final statistical models described were linear mixed-effects models (LMMs) 
which can cover both random effects and nested explanatory variables. Two 
simple LMMs were shown, one with a varying intercept and one with a vary-
ing intercept and pattern. The first means that the random effect variable 
will have a different baseline per level, but all other variables will remain at 
a constant rate. Whereas the second means that the random effect variable 
will not only have a different baseline per level, but also different rates of the 
chosen fixed effect variable. The third LMM used nesting, measurements taken 
from a variable that sits within another variable, and looked at both a vary-
ing intercept and a varying intercept and pattern model including the nested 
random effect variables.

Chapter 8 progresses on from univariate responses to multivariate responses 
and looks at some of the more common multivariate techniques available. 
With many multivariate methods the interpretation is very subjective, so the 
chapter will only be a guide as to what possibilities there are rather than 
instruction to use certain methods on certain data types as in this chapter.

http://dx.doi.org/10.1007/978-1-4842-2256-0_8
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C H A P T E R 

Multivariate 
Analysis
What Have I Found in My Larger Data?

Multivariate analysis should be used on data with multiple response variables. 
I have termed the data as large as the data doesn’t necessarily have to fall into 
the category of “big data.”

For example, a data set with two nonindependent response variables could 
be analyzed using a multivariate analysis of variance (MANOVA), which is a 
multivariate technique. However the data is not “big data.”

With most multivariate techniques the interpretation of the analysis is quite 
subjective. The next sections of this chapter look at a few of the more com-
mon methods and show examples of what can be done. However, there are 
no real rules on which methods should be used instead of others due to data 
type and so forth as there was in Chapter 7.

The aim of multivariate analysis is to investigate any trends or patterns that 
may be in the data; most of the time condensing high dimensional data down 
into smaller dimensions for easier interpretation.

8
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To delve into the different multivariate techniques would require another 
book in itself, so I have chosen three frequently used methods that are suf-
ficiently different from each other, as there is a lot of overlap with multivariate 
methods. The three multivariate methods are MANOVA, principal compo-
nent analysis (PCA), and Q methodology.

Other methods you may have come across, but this is not an exhaustive list, 
include the following:

•	 Factor analysis (FA): similar to PCA but uses different 
mathematics.

•	 Correspondence analysis (CA): sometimes referred to as 
the categorical equivalent to PCA.

•	 Cluster analysis: looks to reduce data to representative 
cases rather than features as with PCA.

•	 Linear discriminant analysis (LDA): similar to PCA but 
tries to model differences between classes and has an 
assumption of multivariate normality.

•	 Artificial neural network (ANN): uses a training data set 
and a testing data set, can do dimension reduction itself 
or can be run on components from PCA.

•	 Spatio-temporal analysis: methods for analyzing data with 
both a spatial (space) and temporal (time) aspect; many 
still being developed.

As I have stated, there are many multivariate techniques and this chapter only 
aims to give you a taste of a few differing methods: MANOVA is closely related 
to ANOVA in interpretation but with multiple response variables instead 
of one; PCA concerns reducing multiple factors into a few more manage-
able dimensions/variables; and Q methodology works to group subjects into 
groups by consensus and distinguishing viewpoints.

Multivariate Analysis of Variance
MANOVA is used when there are two or more response variables and one 
of more explanatory variables. This is one of the least subjective multivariate 
methods as it is more closely related to statistical modeling principals.

The difference between ANOVA and MANOVA is that with ANOVA you 
are testing the difference between the means of the groups, whereas with 
MANOVA you are testing the difference between vectors of means of the 
groups.
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I frequently use MANOVA on shot data as clearly the X and Y coordinates 
data can’t be classed as independent to each other. By using MANOVA I can 
look for differences between groups, such as weapons, ammo, distances, and 
so forth, as well as investigating the accuracy and precision of the shots.

There are several assumptions associated with running a MANOVA, how-
ever the data can violate some of the assumptions and still be analyzed using 
MANOVA:

•	 Multivariate normality: the dependent response variables 
must follow multivariate normality for each level within 
the explanatory variables.

•	 Linearity: all relationships between all pairs of response 
variables should be linear.

•	 Homogeneity of variance–covariance matrix: this assump-
tion will automatically be satisfied with a balanced design. 
If the design is unbalanced then Box’s M test can be used 
to test the assumption using a p-value of 0.001 as a cutoff.

•	 Homogeneity of variance: the variance of the response 
variables should be roughly equal across the explanatory 
variables. This can be tested with Levene’s test and if the 
assumption is violated the recommendation is to adjust 
the MANOVA p-value cutoff to 0.025 or 0.01.

•	 Independence: the assumption that all the subjects/shots 
are independent.

•	 Multicollinearity and singularity: there should be moder-
ate correlation between the response variables. General 
advice is if the correlation is larger than 0.8/0.9 then 
consider combining the response variables into one, and 
when the correlation is very low, below 0.1, consider run-
ning separate ANOVAs on them.

•	 Outliers: MANOVA is sensitive to outliers, and as such 
they should be investigated using Mahalanobis distance. 
MANOVA can cope with a few outliers if the sample size 
is large and the outliers aren’t too extreme. 

•	 Sample size: the recommended minimum sample size at 
each combination of explanatory variables is around 20. 
However, MANOVA can be robust with smaller sample 
sizes by using a different test statistic.

There are multiple test statistics that can be used with MANOVA, which is 
different to ANOVA that only uses the F test to generate p-values, but the 
recommended test statistic to use is Pillai’s trace. Pillai’s trace is more robust 
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to assumption violations, small sample sizes, and unequal groups, but therefore 
will give a more conservative result.

MANOVA output will inform whether there’s evidence that the explanatory 
variables are significant to the response variables in general. Follow-up tests 
can be done, such as running univariate ANOVA’s to see if the explanatory 
variables had more of an effect on one response variable than another. If these 
are carried out it’s recommended to use a p-value of 0.025, if you’re working 
at 95% confidence, as a cutoff to correct for multiple testing. More multiple 
comparisons can be run at the MANOVA level if you have multiple levels 
within an explanatory variable, but again these should undergo some multiple 
comparison testing corrections.

The easiest way to understand MANOVA is to run through an example, 
so Example 8.1 looks at the X and Y coordinates of shots “Point.X” and 
“Point.Y” from multiple weapon systems “Weapon” and distances fired “Dist.” 
To check the assumptions, plot confidence ellipses, and also run multiple com-
parisons tests the following R packages are required; mvnormtest, biotools, 
car, mvoutlier, RVAideMemoire, and shotGroups.

The ggplot2 package is required for the graphs, and as before only the basic 
code will be shown to create the plots. Refer to Chapter 9 to see how to 
include all other details.

EXAMPLE 8.1

We have two dependent response variables of Point.X and Point.Y and two explanatory 
variables of Weapon and Dist; both the response variables are continuous and both 
the explanatory variables are discrete. We are looking to see if Weapon, Dist, or the 
interaction between the two has an effect on the shots fired.

# Input the data
Point.X = c(-43,-40,-28,16,-30,-29,-44,-36,-32,-31,2,-8,8,12,-5,-6,
          11,-7,11,22,19,5,-1,16,2,15,-17,-7,6,-15,15,-68,2,-80,-26,
          -42,-43,-46,-52,-22,-67,-25,-80,-23,-54,-62,-83,4,-46,-12,
          33,8,8,23,18,15,14,-24,2,-8,15,32,34,15,-14,-7,-6,12,-5,42,
          -19,9,-10,7,45,-8,-31,2,-10,8,10,6,14,-12,33,22,-12,-7,10,
          0,-13,-77,-54,-95,-85,-67,-61,-56,-69,-27,-87,-85,-55,-80,
          8,-13,-75,-120,-77,-13,-50,60,-3,-25,35,56,22,45,-50,35,42,
          9,-13,52,-10,52,35,0,-15,62,25,17,-17,-23,10,11,34,10,35,
          -17,51,5,-31,32,-37,0,-7,-2,11,-62,-103,48,15,-55,-62,20,
          -56,-114,56,-21,-142,10,-65,-76,-87,-105,-168,-66,58,-100,4,
          74,-55,-68,43,-44,63,15,-63,31,95,23,-79,-9,12,15,70,48,-5,
          96,-49,-12,0,75,31,-10,21,34,17,-32,-18,6,-20,20,18,16,60,
          33,4,-29)
Point.Y = c(76,42,25,11,44,27,39,17,38,39,55,28,36,33,37,38,26,45,
          25,37,54,22,36,40,90,41,47,63,82,56,9,52,-30,-20,-30,29,25,

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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          33,-48,-2,13,35,47,34,-35,3,26,10,-25,16,-5,15,-20,24,1,
          -12,-14,15,35,-16,15,-44,20,-21,-20,4,2,27,58,-22,-30,-8,0,
          45,-24,-29,19,-53,12,0,25,-44,54,-26,6,-18,-47,-9,-3,-53,
          -43,-6,-66,-39,-14,-33,-6,-46,-91,-37,-53,-56,-65,-101,-24,
          -43,-58,-29,-31,-43,-37,-17,-75,20,-87,-30,-100,-88,25,-55,
          -91,-92,-27,-42,-81,-11,27,-45,-58,-65,-129,16,-48,-98,-4,
          -103,-171,-12,-23,-107,-100,-148,-48,19,-32,-35,-35,-52,-46,
          -142,-210,-176,-73,-81,-195,-157,-120,-116,-112,-58,-95,
          -135,-143,-135,-166,-120,-118,-141,-201,-254,-123,-91,-110,
          -143,-145,-232,-185,-166,-198,-122,-183,-96,-165,-113,-158,
          -120,-193,-220,-104,-93,-239,-171,-74,-180,-169,-127,-201, 
          -154,-211,-122,0,3,-101,-143,-43,-158,-250,-136,-131,-130)
Dist = rep(c(5,10,15,20), c(30,60,60,60))
W1 = rep(c("A","B","C"), each = 10); W2 = rep(c("A","B","C"),
        each = 20, 3)
Weapon = c(W1, W2)
data31 = data.frame(Point.X, Point.Y, Weapon, Dist)
data31$Dist = factor(data31$Dist)

# Plot the data
library(ggplot2)
ggplot(data31, aes(x = Point.X, y = Point.Y, colour = Weapon,
        shape = Weapon)) + facet_wrap( ~ Dist, ncol = 2) +
        geom_point() + theme_bw()
ggplot(data31, aes(x = Point.X, y = Point.Y, colour = Dist,
        shape = Dist)) + facet_wrap( ~ Weapon, ncol = 2) +
        geom_point() + theme_bw()

The initial plots potentially show some differences between Weapon A and the other 
Weapons, however this seems less clear at a Distance of 20m. In addition there seems 
to be some differences between the shots across the Distances, with the variation 
increasing as the Distance increases.
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# Check the assumptions – only run on first combinations
# Multivariate normality
library(mvnormtest)
mshapiro.test(t(data31[data31$Weapon == "A" & data31$Dist == "5",
        1:2]))

Shapiro-Wilk normality test

data:  Z
W = 0.66844, p-value = 0.000366

Where the following assumption tests require repetition for all combinations of 
Weapon and Distance only the first combination has been shown on the output to save 
space—the combination of Weapon A and Dist 5. The multivariate normality tests 
show that all combinations of Weapon and Distance can be assumed to be normally 
distributed except “Weapon A, Dist 5” and “Weapon A, Dist 10.”

# Homogeneity of Variance-Covariance Matrix
library(biotools)
boxM(data31[,1:2], data31$Weapon)

Box's M-test for Homogeneity of Covariance Matrices

data:  data[, 1:2]
Chi-Sq (approx.) = 24.943, df = 6, p-value = 0.0003499

boxM(data31[,1:2], data31$Dist)

Box's M-test for Homogeneity of Covariance Matrices

data:  data[, 1:2]
Chi-Sq (approx.) = 92.827, df = 9, p-value = 4.402e-16

As the design was unbalanced, there were less repeats for Distance 5m, Box’s M test 
was run. The output suggests that we cannot assume homogeneity of the variance-
covariance matrix for either Weapon or Distance, therefore we should use Pillai’s trace 
when running the MANOVA.

# Homogeneity of Variance
library(car)
leveneTest(Point.X ~ Weapon, data = data31)

Levene's Test for Homogeneity of Variance (center = median)
        Df  F value     Pr(>F)
group    2   7.7502  0.0005678 ***
       207
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

leveneTest(Point.Y ~ Weapon, data = data31)

Levene's Test for Homogeneity of Variance (center = median)
        Df  F value   Pr(>F)
group    2   0.5048   0.6044
       207
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Levene’s test for Weapon shows that we can assume equal variance for the Y 
Coordinates, but not for the X Coordinates. The same test for Distance shows than we 
can’t assume equal variance for either the X or Y Coordinates. As such the MANOVA  
p-value cutoff point should be amended to 0.025 or 0.01.

# Multicollinearity and Singularity
cor(data31$Point.X[data31$Weapon == "A" & data31$Dist == "5"],
        data31$Point.Y[data31$Weapon == "A" & data31$Dist == "5"],
        method = "spearman")

[1] -0.5835893

The correlation shows that for Weapon A, there is moderate correlation for Distances 
of 5m and 10m and very low correlation for 15m and 20m. For both Weapon B and 
Weapon C there is moderate correlation for all Distances.

# Outliers
library(mvoutlier)
aq.plot(data31[data31$Weapon == "A" & data31$Dist == "5", 1:2])

$outliers
   1      2      3     4      5      6      7      8      9     10
TRUE  FALSE  FALSE  TRUE  FALSE  FALSE  FALSE  FALSE  FALSE  FALSE
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Looking at all the combinations, there are outliers for “Weapon A, Dist 5”; “Weapon 
A, Dist 10”; “Weapon B, Dist 15”; “Weapon B, Dist 20”; “Weapon C, Dist 15”; and 
“Weapon C, Dist 20.” However, there are only one or two outliers that could be classed 
as extreme so the decision is to proceed with MANOVA.

# Fit the full model and print the output
mod = manova(cbind(Point.X,Point.Y) ~ Dist*Weapon, data31)
summary(mod)

              Df   Pillai  approx F  num Df  den Df  Pr(>F)
Dist           3  0.73903    38.681       6     396  <2e-16 ***
Weapon         2  0.37189    22.613       4     396  <2e-16 ***
Dist:Weapon    6  0.05997     1.020      12     396  0.4292
Residuals    198
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The full model output shows that the interaction of Distance and Weapon is not 
significant to the model, so it can be removed from the model.

# Fit the simplified model and print the output
mod2 = manova(cbind(Point.X,Point.Y) ~ Dist + Weapon, data31)
summary(mod2)

              Df   Pillai  approx F  num Df  den Df        Pr(>F)
Dist           3  0.73335    39.370       6     408  <2.2e-16 ***
Weapon         2  0.36431    22.718       4     408  <2.2e-16 ***
Residuals  204
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The model output shows that there is evidence that both Distance and Weapon are 
significant to the model at the 99% confidence level, we were looking for a p-value < 
0.025 or 0.01 anyway due to the violation of homogeneity of variance.

# Conduct univariate ANOVA’s
summary.aov(mod2)

Response Point.X :
            Df  Sum Sq  Mean Sq  F value  Pr(>F)
Dist         3     954      318    0.252  0.8599
Weapon       2  146519    73260   58.035  <2e-16 ***
Residuals  204  257517     1262
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Response Point.Y :
            Df  Sum Sq  Mean Sq   F value  Pr(>F)
Dist         3  906834   302278  183.1591  <2e-16 ***
Weapon       2    1787      893    0.5413  0.5828
Residuals  204  336673     1650
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The univariate ANOVA shows that there is evidence that Weapon has an effect on the X 
Coordinates at the 99% confidence level, but there’s no evidence that Distance does. 
It also shows that there is evidence that Distance has an effect on the Y Coordinates 
at the 99% confidence level, but no evidence that Weapon does.

# Conduct multiple comparisons testing
library(RVAideMemoire)
pairwise.perm.manova(data31[,1:2], data31$Dist, nperm = 500)

Pairwise comparisons using permutational MANOVAs (test: Pillai)

data:  data[, 1:2] by data$Dist
500 permutations

        5     10     15
10  0.002      -      -
15  0.002  0.002      -
20  0.002  0.002  0.002

P-value adjustment method: fdr

pairwise.perm.manova(data31[,1:2], data31$Weapon, nperm = 500)

Pairwise comparisons using permutational MANOVAs (test: Pillai)

data:  data[, 1:2] by data$Weapon
500 permutations

       A      B
B  0.003      -
C  0.003  0.285

P-value adjustment method: fdr

As there are multiple Weapons and multiple Distances, multiple comparisons need to 
be run to determine where the differences are. All Distances are significantly different 
to each other at the 99% confidence level. Weapon A is significantly different to both 
Weapon B and Weapon C at the 99% confidence level, but there is no difference 
between Weapon B and Weapon C.

# Plot the data
ggplot(data31, aes(x = Point.X, y = Point.Y, colour = Weapon,
        shape = Weapon)) + geom_point() + theme_bw()
ggplot(data31, aes(x = Point.X, y = Point.Y, colour = Dist,
        shape = Dist)) + geom_point() + theme_bw()



Chapter 8 | Multivariate Analysis250

Plotting the data helps to visualize the differences. The plot on the left shows why 
there was no evidence of a difference on the Y Coordinates, as the spread of all three 
Weapons is similar, but you can see that for the X Coordinates Weapon A shots were 
more to the left of the aim point (0,0).

The plot on the right emphasizes the differences between the four Distances for the 
Y Coordinates; it can clearly be seen that as the shooter gets further away from the 
target, the shots start to drop below the aim point, they also get more dispersed. For 
the X Coordinates, although there was no evidence of a significant difference, you can 
see that the shots become more dispersed on this axis too.

# Add 75% confidence ellipses using the shotGroups shortcut
library(shotGroups)
data31$Series = data31$Weapon
compareGroups(data31, xyTopLeft = FALSE, CEPlevel = 0.75)
data31$Series = data31$Dist
compareGroups(data31, xyTopLeft = FALSE, CEPlevel = 0.75)
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Finally using the shotGroups package to compare the groups will output lots of 
information and many plots including a box plot of distance to center, the distance 
to center with Rayleigh mean radius and confidence intervals, the extreme spread 
bounding boxes, and also confidence ellipses.

The most useful here is the confidence ellipses, these were run at the 95% confidence 
level and contain 75% of the shots, and both of these values can be amended. 
Confidence ellipses can be more useful than circular error probable (CEP) and extreme 
spread as they also show the direction of dispersion. CEP will only draw circles that 
contain only 50% of the shots, and the extreme spread is very sensitive to outliers 
and should not be used due to this. For example, in the left plot the data is dispersed 
along the Y Coordinates more than the X Coordinates—this information would have 
been lost using the CEP. However, the right plot would look very similar to the CEP in 
terms of shape, but will be larger due to containing 75% of the shots instead of 50%.

Here you can see the use of MANOVA in determining differences between 
groups for multiple dependent response variables. Some people will just skip 
the assumptions section and go straight to the MANOVA analysis using Pillai’s 
trace as it is more robust, as long as there is a reasonable sample size, fairly 
balanced groups, and no extreme outliers, this can be done. However I would 
recommend that the correlation of the dependent response variables be 
checked to determine whether MANOVA is needed.

It also shows how useful the confidence ellipses are at highlighting the dis-
persion of the shots. It emphasizes the direction of the spread, which is an 
added advantage over other methods such as the CEP, as well as being able to 
account for whatever percentage of data you are interested in.

Principal Component Analysis
PCA is used when you have a lot of response variables, usually more than the 
number of responses from subjects. In addition there should be more continu-
ous variables than discrete variables.

The mathematics is very complicated, but basically it tries to convert the raw 
data into a set of principal components using orthogonal linear transformation. 
This results in a smaller number of “variables” than the original number of 
variables, which in turn should be easier to interpret and use in further analysis.

The drawbacks of PCA are that it makes no assumptions about the distribu-
tion, the data reduction can result in a loss of information, and it assumes that 
dimensions with larger variance correspond to interesting features whereas 
dimensions with smaller variance correspond to “noise.”

The first principal component will always account for the largest variation 
within the data, then the second, then the third, and so forth.
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PCA is usually just one stage of analysis, it’s used to find the smaller number 
of components; then they are then taken forward into statistical analysis. This 
is more of an EDA technique, albeit a very complicated one.

Example 8.2 looks at an example of PCA. This is a simple example to show 
how the output will look and also some ways of interpreting the results. The 
data involves students’ scores for 10 different school subjects.

There are a few packages in R for running PCA but the one we are using is 
FactoMineR, with factoextra; in addition to plot the initial data we are using 
the corrplot package. In more complicated data sets you can add in other 
variables (discrete or continuous) that you don’t want included in the data 
reduction, but you do want to view visually such as different schools or year 
groups if we had that extra data in relation to Example 8.2.

EXAMPLE 8.2

The test scores for 24 students across 10 school subjects have been recorded. We are 
looking to see if there is any relationship between the subjects.

# Input the data
English = c(75,71,86,85,40,61,87,94,73,63,59,73,69,82,56,74,55,95,
          87,49,51,72,81,60)
Maths = c(48,90,70,64,70,77,62,68,88,60,76,67,74,50,72,86,76,52,48,
          88,95,31,39,51)
Chemistry = c(50,95,74,63,68,71,78,52,88,90,63,85,82,61,65,84,62,
          53,46,92,82,35,43,53)
Biology = c(60,77,79,67,61,80,71,74,72,99,64,56,87,64,90,79,61,48,
          55,84,84,39,37,54)
Physics = c(52,90,71,61,73,72,54,55,92,57,80,62,99,52,83,76,60,45,
          46,86,92,32,36,52)
French = c(80,70,87,81,53,85,93,96,54,97,64,81,55,62,61,81,75,91,95,
          56,60,76,79,64)
Spanish = c(76,75,85,80,41,57,79,85,89,69,61,64,77,83,69,82,50,96,
          86,48,50,71,82,63)
History = c(81,67,79,90,48,81,99,92,69,51,54,96,62,81,73,40,35,70,
          68,78,71,76,84,94)
Geography = c(55,65,75,85,75,60,63,50,70,78,60,76,67,59,61,45,41,
          55,46,88,92,79,73,95)
Art = c(59,83,76,95,78,66,85,76,59,55,53,65,63,86,54,41,20,51,40,90,
          99,74,87,98)
data32 = data.frame(English, Maths, Chemistry, Biology, Physics,
          French, Spanish, History, Geography, Art)

# Plot the initial data
library(corrplot)
cor.mat = round(cor(data32),2)
corrplot(cor.mat, type = "lower", order = "FPC", tl.col = "black",
        tl.srt = 45, diag = F, outline = T)
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This correlation plot was drawn ordering the School Subjects by the first Principal 
Component (PC1) scores. We can already see the groupings of Subjects by the size 
of the circles, the larger the circle the stronger the correlation; and by the color, 
red indicates a negative correlation while blue indicates a positive correlation. For 
example, high scores in Physics are correlated to high scores in Maths, whereas high 
scores in Physics are correlated to low scores in French.

# Run the PCA on the data and plot the variables map
library(FactoMineR)
p = PCA(data32, scale.unit = T, graph = F)
plot(p, choix = "var")
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The variables factor map shows the first two PCs or Dimensions, it also shows the 
percentage of variation explained by these Dimensions, so 43.5% for Dimension 1 
and 23.2% for Dimension 2, therefore the first two Dimensions account for 66.7% of 
the variation.

This plot is also useful for trying to determine what the Dimensions represent. For 
example, looking at Dimension 1 we can see Chemistry, Biology, Physics, and Maths 
are strongly toward 1 whereas English, Spanish, and French are strongly toward 
–1. In addition History is weakly toward –1, but Art and Geography are near 0. This 
Dimension could therefore represent science subjects versus language subjects.

Looking at Dimension 2 shows History, Geography, and Art are strongly toward 1, 
whereas the other subjects are weakly toward –1. This Dimension could represent 
more creative subjects versus noncreative subjects.

# Print the PCA eigenvalues
p$eig

        eigenvalue  % of variance  cumulative % of variance
comp 1  4.34515923     43.4515923                  43.45159
comp 2  2.32216780     23.2216780                  66.67327
comp 3  1.66011974     16.6011974                  83.27447



Translating Statistics to Make Decisions 255

comp 4  0.67669161      6.7669161                  90.04138
comp 5  0.35969445      3.5969445                  93.63833
comp 6  0.28062679      2.8062679                  96.44460
comp 7  0.18110805      1.8110805                  98.25568
comp 8  0.12340070      1.2340070                  99.48968
comp 9  0.03092235      0.3092235                  99.79891
comp 10 0.02010928      0.2010928                 100.00000

Printing the eigenvalues shows the raw values we use to plot the scree plots below. 
Eigenvalues should be large for the first Dimension, then gradually diminishing. It also 
helpfully shows the cumulative percentage of variance; here it refers to “comp” for 
component, which is the equivalent of a PC or Dimension. One way of determining 
how many Dimensions should be included in the final dataset is when the cumulative 
variance reaches a certain value, such as the commonly used 80% cutoff.

# Print the two scree plots
library(factoextra)
fviz_screeplot(p, choice = "variance")
fviz_screeplot(p, choice = "eigenvalue", geom = "line")

The scree plot on the left shows the percentage of variance explained by each 
Dimension. Another way of determining how many Dimensions to include is to look at 
this scree plot and decide where the shape of the curved line changes and tails off, 
sometimes referred to as a “break.”

The scree plot on the right shows the eigenvalues for each Dimension. The third 
way of determining how many Dimensions to include is to draw a line at 1, and any 
Dimensions with an eigenvalue larger than 1 should be kept. This is due to the fact 
that eigenvalues larger than 1 indicate that the Dimension accounts for more variation 
than one of the original variables.
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The three techniques should produce fairly similar answers, maybe only differing by 1 
Dimension; it’s just personal judgment along with these options to decide how many 
Dimensions to retain. In this example all three methods agree that 3 Dimensions 
should be kept. Therefore 3 Dimensions contain 83.27% of the variation of the original 
10 variables, a big reduction.

# Refit PCA with 3 dimensions and print the variable coordinates
p2 = PCA(data32, scale.unit = T, graph = F, ncp = 3)
p2$var$coord

                     Dim.1        Dim.2       Dim.3
English        -0.77124549  -0.15716831  0.57766591
Maths           0.86379191  -0.21427753  0.28766160
Chemistry       0.78299456  -0.09753364  0.47112565
Biology         0.70314911  -0.21508135  0.47866252
Physics         0.90376338  -0.11123149  0.25636420
French         -0.65110862  -0.31377262  0.32960466
Spanish        -0.62829343  -0.25407596  0.58367037
History        -0.41639534   0.66881011  0.44793897
Geography       0.28989976   0.86438103  0.03728038
Art             0.06159328   0.90881046  0.27481517

Rerunning the PCA and printing the variable coordinates show the “loadings” of each 
variable or School Subject. This means how strongly the variable is associated with 
each Dimension and whether it’s a positive or negative relationship.

This information ties into the variables factor map from before, so here we can see 
the values used to construct this plot. English, French, and Spanish have a strongly 
negative relationship (-0.77, -0.65, and -0.63) whereas Maths, Chemistry, Biology, and 
Physics have a strongly positive relationship (0.86, 0.78, 0.70, and 0.90). History has 
a negative relationship (-0.42), and Geography and Art don’t really have a relationship 
within Dimension 1 (0.29 and 0.06).

They do however have a very strong positive relationship within Dimension 2 (0.86 
and 0.91) in addition History has a strong positive relationship (0.67). All the other 
subjects have quite a weak negative relationship (ranging from -0.10 to -0.31).

Finally in Dimension 3 all the relationships are positive, with English and Spanish having 
a strong relationship (both 0.58), Chemistry, Biology, and History having a relationship 
(0.47, 0.48, and 0.45), Maths, Physics, French, and Art having a weak relationship 
(0.29, 0.26, 0.33, and 0.27) with Geography not really having any relationship (0.04).

# Print out the dimension descriptions
dimdesc(p2, axes = 1:2)

$Dim.1
$Dim.1$quanti
              correlation       p.value
Physics         0.9037634  1.439630e-09
Maths           0.8637919  5.420262e-08
Chemistry       0.7829946  6.096205e-06
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Biology         0.7031491  1.269044e-04
History        -0.4163953  4.297043e-02
Spanish        -0.6282934  1.010126e-03
French         -0.6511086  5.692025e-04
English        -0.7712455  1.025939e-05

$Dim.2
$Dim.2$quanti
          correlation       p.value
Art         0.9088105  8.153942e-10
Geography   0.8643810  5.182722e-08
History     0.6688101  3.528839e-04

dimdesc(p2, axes = 2:3)

$Dim.2
$Dim.2$quanti
          correlation       p.value
Art         0.9088105  8.153942e-10
Geography   0.8643810  5.182722e-08
History     0.6688101  3.528839e-04

$Dim.3
$Dim.3$quanti
          correlation      p.value
Spanish     0.5836704  0.002751891
English     0.5776659  0.003115670
Biology     0.4786625  0.017970219
Chemistry   0.4711257  0.020135919
History     0.4479390  0.028156977

The dimension descriptions just highlight which School Subjects are associated with 
which Dimensions. So at the top it does show that History should be included in the 
negative relationship of Dimension 1, as it is significant to that Dimension.

For Dimension 3 it does not include the weak relationships of Maths, Physics, French, 
and Art. In addition you can see the p-values for the remaining subjects, although 
still significant are larger than previous Dimensions. This Dimension is quite difficult 
to interpret, as there’s no clear linking of the subjects said to be significant. This 
can happen quite often on the lower Dimensions. However, the first two Dimensions 
account for a lot of the variation and do lend themselves to a reasonable interpretation, 
so there is less worry about this Dimension, Dimension 3.

# Plot the first three principal components
loadings = as.data.frame(p2$var$coord)
loadings$var = colnames(data32)
library(ggplot2)
ggplot(loadings, aes(x = var, y = Dim.1)) +
        geom_bar(stat = "identity")
ggplot(loadings, aes(x = var, y = Dim.2)) +
        geom_bar(stat = "identity")
ggplot(loadings, aes(x = var, y = Dim.3)) +
        geom_bar(stat = "identity")
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The final plots emphasize the size and direction of the relationship of each School 
Subject within each of the chosen Dimensions.

As you can see, interpretation of PCA output is very subjective, the data shows 
which variables have loaded on which components, but defining what those 
components represent can be quite tricky.

However PCA does condense the data down into a more manageable size, in 
this example three components are enough to describe the variation from the 
10 original variables. This is much more useful with larger data sets and vari-
ables that aren’t so obviously linked. It was no surprise that the PCA grouped 
the scientific school subjects and so forth.
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Q Methodology
Q methodology is used to group people’s opinions into factors, as opposed to 
grouping variables as with PCA.

This analysis can be used to prioritize areas of funding, capabilities, and so 
forth or alternatively to gather opinions on a topic (such as new training) to 
determine whether there are different thoughts from different “populations.”

A set of statements are created, called a Q-set, and participants can agree 
with, disagree with, or be neutral toward these statements. These statements 
must be representative of the overarching question, aim of the study, but 
should cover smaller issues linked to that question. It’s a good idea to hold 
panels to decide which statements should be used. The reason for this is peo-
ple will interpret things differently so the clearest sentence structure should 
be formed, as well as others potentially pointing out gaps in the statements, so 
new statements can be created.

Once the final set of statements has been completed a Q-grid needs to be 
created. These will be triangles for the participants to fit the statements into 
with the furthest left being negative, the statements they disagree with; to 
the furthest right, which will be positive, the statements they agree with. 
Figure 8-1 shows some example Q-grids for 16 statements, 36 statements, 
and 22 statements.

Figure 8-1.  Examples of Q-grid

These Q-grids can have a longer tail in the middle or can be wide and thin 
depending on what you are looking for. The grid should remain symmetrical 
and should be roughly triangular in shape.

The Q-sort is the title given to the process of the participants ordering their 
statements; this can be done by hand or on a computer. Initially they should 
sort their statements into three piles, statements they agree with, disagree 
with, and are neutral about. Personally I think it’s better if it’s defined that 
these three piles should be roughly equal, this makes the next stage of the  
Q-sort easier.
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The participants will then take a pile, say the statements they agree with, and 
put those into the right side of the triangle. The furthest right cell(s) will be 
the statement they agree with the most, and then they should work their way 
left until that have no more statements they agreed with. They should then 
take the opposite pile, the statements they disagree with, and do the same 
thing but this time starting from the furthest left cell(s), which would be the 
statement they disagree with most. Finally they should go through the neutral 
pile filling in the blank spaces. At any point they can re-jig their Q-sort until 
they are completely happy with their final response.

The data is collected and the Q method is run on the data. Participants that 
gave similar rankings in the Q-sort will load significantly on the same factor; 
these factors can be thought of as perspectives or viewpoints. The output will 
split the data into factors then show Q-sorts that are most representative of 
each perspective, however some people may not load onto a factor if the way 
they have done their Q-sorts fits into multiple factors, though this is generally 
only a small number of people.

As with PCA the number of factors to retain is a subjective decision, however 
the same guidelines apply regarding eigenvalues larger than 1, cumulative vari-
ance around 80%, or a “break” in the tail. The problem here with eigenvalues 
is that they will be inflated for big data, however Q methodology wouldn’t be 
used with a large sample size as it was designed for small to medium sample 
sizes. Additional pieces of information to use for determining the number of 
factors to retain are that a decent number of people have loaded onto the 
factor, and that there is a good number of distinguishing statements for all the 
factors—more on the latter in Example 8.3.

Using the consensus and distinguishing statements you can start to form a 
picture around the perspectives of different groups. Quite often demographic 
information is collected from the participants as this can sometimes help 
explain why certain groups of people have done their Q-sorts in a similar 
manner, though this isn’t guaranteed.

The R package to run the Q methodology is called qmethod, it does contain 
an example data set called lipset regarding the values patterns of democracy 
that has 9 Q-sorts and 33 statements, so you can see that this analysis can be 
run on a small sample size. The dummy data we use in Example 8.3 concerns 
effective working, our overarching question is “which factors are the most 
important to you being happy and effective at work” and the reason we want 
this question answered is to determine which areas the business should focus 
on, although this may be different for different groups.
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Our final set of 16 statements is as follows:

1.	 Good pay grades in line with equivalent roles in other 
companies.

2.	 Good pension scheme.

3.	 Ability to work flexible hours.

4.	 High amount of annual leave days.

5.	 Interesting work.

6.	 Up-to-date IT and software.

7.	 Independent working.

8.	 Hot desking.

9.	 Availability of relevant training opportunities.

10.	 Ability to publish papers on the work undertaken.

11.	 Management being open to advice and ideas.

12.	 Involvement in decisions made by senior management.

13.	 Feeling safe to challenge disagreeable behaviors.

14.	 Working at an organization that embraces diversity.

15.	 Affordable catering facilities being provided.

16.	 Establishing friendships with colleagues. 

We asked 10 participants to sort those statements into the first grid shown 
in Figure 8-1 in order of importance answering the overarching question. So 
instead of agreeing and disagreeing, they had piles of very important, not impor-
tant, and neutral.

EXAMPLE 8.3

The 10 Participants sorted 16 Statements into Q-sorts answering the question “which 
factors are the most important to you being happy and effective at work.” We also 
collected some demographic data; whether they were in a technical or nontechnical 
role, whether they had dependents, and what stage of their career they were at: 
graduate, nonsenior role, or senior role.

# Input the data
S1 = c(0,1,2,3,2,1,-1,0,-2,0,0,1,-1,-1,-3,-2)
S2 = c(1,0,2,2,3,1,-2,0,0,-2,-1,-1,-1,-3,0,1)
S3 = c(1,-1,3,1,2,-2,0,0,-1,-3,0,1,0,-1,-2,2)
S4 = c(1,-2,1,0,3,2,-1,-2,0,0,0,2,-1,-1,-3,1)
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S5 = c(0,0,0,-1,1,-2,1,3,0,-3,1,2,-1,2,-2,-1)
S6 = c(3,0,2,1,2,-2,1,-1,0,0,-1,-2,1,-1,-3,0)
S7 = c(2,-1,3,1,0,-2,0,-1,1,-3,0,1,0,2,-2,-1)
S8 = c(2,0,1,2,3,0,-1,-2,-1,-2,0,1,-1,-3,0,1)
S9 = c(1,-2,1,0,2,0,-1,-1,2,1,-1,-2,-3,0,0,3)
S10 = c(2,-1,1,1,3,-1,0,-2,0,0,0,-3,-1,-2,1,2)
data33 = data.frame(S1,S2,S3,S4,S5,S6,S7,S8,S9,S10)

# Plot the initial data – need to reshape the data to “long” format
data34 = reshape(data33, varying = list(1:10), idvar = "Statement",
        timevar = "Participant", direction = "long",
        v.names = "Response")
data34$Participant = factor(data34$Participant)
library(ggplot2)
ggplot(data34, aes(y = Response, x = Participant,
        fill = Participant)) + geom_bar(stat = "identity") +
        facet_wrap(~Statement) + theme_bw()
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The initial plot looks at the distribution of Responses for each Statement, you can start 
for form a picture of which Statements people agreed and disagreed with, in general 
and in comparison to each other. For example, people seemed to agree with each other 
on Statement 5, interesting work was important. Whereas they disagreed more with 
each other on Statement 12, involvement in decisions made by senior management 
was important to some people and not important to others, in comparison to the other 
Statements.

# Run the Q-methodology on the original data and print the summary
library(qmethod)
qm = qmethod(data33, nfactors = 3, rotation = "varimax")
summary(qm)

Q-method analysis.
Original data:            16 statements, 10 Q-sorts
Forced distribution:      TRUE
Number of factors:        3
Rotation:                 varimax
Flagging:                 automatic
Correlation coefficient:  pearson

Factor scores
    fsc_f1  fsc_f2  fsc_f3
1        1       2       2
2        0      -1      -1
3        2       1       3
4        2       0       1
5        3       3       1
6        1      -1      -2
7       -2       0       0
8        0      -2       0
9       -1       1       0
10      -1       0      -3
11       0       0       0
12       1      -3       1
13      -1      -2      -1
14      -3      -1       2
15      -2       0      -2
16       0       2      -1

                                     f1     f2     f3
Average reliability coefficient    0.80   0.80   0.80
Number of loading Q-sorts          4.00   2.00   3.00
Eigenvalues                        2.89   2.56   2.21
Percentage of explained variance  28.87  25.62  22.07
Composite reliability              0.94   0.89   0.92
Standard error of factor scores    0.24   0.33   0.28

Due to the number of Participants 3 factors were chosen for the Q method. The output 
shows the most representative Q-sorts for each of the 3 factors; so this highlights 
which statements were positively or negatively associated with the factors and also 
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the strength of that association. The plot below, created from the first output, shows 
the top 3 most important statements in shades of green (5, 3, and 1) and the 3 least 
important statements in shades of red (14, 12, and 10). You can see that the greens 
stay fairly high across all three factors, whereas the reds are split across the Q-sorts 
for the different factors. It is likely that the “perspectives” were split into three more 
so from the “negative” statements, the statements of things that weren’t important to 
people, as there seems to be a fair amount of agreement on the most important things.

The next set of outputs show that all three factors have eigenvalues larger than 1 
and show the percentage of variation explained by each factor, totaling 76.56%. 
It also shows the number of Participants that loaded onto each factor, 4, 2, and 3, 
respectively. This means that one Participant didn’t load onto any factor. 

# Print the Q-method loadings and flagged Q-sorts
qm$loa

              f1           f2            f3
S1    0.86152724  -0.23766219   0.169804927
S2    0.75022766   0.48389174   0.035115411
S3    0.49682774   0.29219127   0.713349044
S4    0.69460242   0.23480173   0.143712479
S5   -0.06938019  -0.40538253   0.760998161
S6    0.31608729   0.48960577   0.513287267
S7    0.13835638   0.05971983   0.888139998
S8    0.80138354   0.41395274   0.124590881
S9    0.06212871   0.85144371  -0.016674981
S10   0.28695064   0.90922804  -0.009836156

qm$flagged

   flag_f1  flag_f2  flag_f3
S1    TRUE    FALSE    FALSE
S2    TRUE    FALSE    FALSE
S3   FALSE    FALSE     TRUE
S4    TRUE    FALSE    FALSE
S5   FALSE    FALSE     TRUE
S6   FALSE    FALSE    FALSE
S7   FALSE    FALSE     TRUE
S8    TRUE    FALSE    FALSE
S9   FALSE     TRUE    FALSE
S10  FALSE     TRUE    FALSE
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The loadings output shows which factor each Participant loaded on and the strength 
of that loading. Looking at the flagged output does the work for you and shows you 
exactly which Participant loaded on which factor. So Participants 1, 2, 4, and 8 loaded 
on Factor 1, Participants 9 and 10 loaded on Factor 2, and Participants 3, 5, and 7 
loaded on Factor 3; Participant 6 didn’t load on any factor.

The demographics data was as follows, sorted by factors:

I’ve highlighted some patterns in the demographics; Factor 2 separates the graduates’ 
perspective from the senior and nonsenior Participants, Factor 1 separates the 
remaining technical Participants, and Factor 3 the remaining nontechnical Participants. 
Apart from the graduates the career stage doesn’t seem to have any impact on the 
perspectives, nor does having any dependents. This could be useful information to 
take forward when thinking about areas to focus on within groups.

# Print the distinguishing and consensus statements
# Values rounded for space saving
qm$qdc

           dist.and.cons    f1_f2 sig    f1_f3 sig    f2_f3 sig
1              Consensus  -0.4279      -0.2988       0.1290
2                          0.9619 *     0.5996      -0.3624
3                          0.5169      -0.4519      -0.9688 *
4  Distinguishes f1 only   1.1263 **    1.1721 **    0.0458
5  Distinguishes f3 only   0.2043       1.4880 **    1.2836 **
6      Distinguishes all   1.0807 **    2.0985 **    1.0178 *
7                         -0.6449      -1.0635 **   -0.4186
8  Distinguishes f3 only   0.4600      -0.7327 *    -1.1927 **
9  Distinguishes f1 only  -1.2570 **   -1.0311 **    0.2259
10     Distinguishes all  -0.9250 *     1.4698 **    2.3947 **
11             Consensus   0.0976      -0.3210      -0.4186
12 Distinguishes f2 only   2.2989 **   -0.3272      -2.6261 **
13                         0.4079      -0.5690      -0.9769 *
14 Distinguishes f3 only  -0.5918      -2.4373 **   -1.8455 **
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15 Distinguishes f2 only  -1.6230 **    0.2255       1.8484 **
16 Distinguishes f2 only  -1.6849 **    0.1792       1.8641 **

The distinguishing and consensus statements output shows for each statement 
whether there were significant differences between the factors, an asterisk (*) is at 
95% confidence and two asterisks (**) is at 99% confidence.

There were only two statements that “distinguishes all,” which means all factors were 
significantly different to each other in the perspectives, for Statement 6 (up-to-date 
IT and software) and Statement 10 (ability to publish papers on the work undertaken). 
“Distinguishes f1 only” means that Factor 1 was significantly different in perspective 
to Factor 2 and Factor 3, but there was no difference between Factor 2 and Factor 
3. Consensus means that all three factors were in agreement with the statement, so 
there was consensus in perspective for Statement 1 (good pay grades in line with 
equivalent roles in other companies) and Statement 11 (management being open to 
advice and ideas). Sometimes the consensus statements can be just as important as 
the distinguishing statements.

# Plot the z-scores
plot(qm, legend = T)
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Plotting the z-scores is a really useful way of visualizing the output from the 
distinguishing and consensus statements. It orders the statements in terms of 
most differing perspectives to least differing perspectives, so you will always have 
the consensus statements at the bottom, however you may not always have the 
“distinguishes all” statements at the top.

In this plot the perspective of the graduates for Statement 12 (involvement in decisions 
made by senior management) is so different to that of everyone else that it’s at the 
top of the plot, above the “distinguished all” statements. By the point being out to the 
left, a negative z-score means that this statement was one of the least important to 
the graduates.

The points are filled when it’s involved in a distinguishing statement, which is why the 
point for Factor 2, the graduates, is filled next to Statement 12 as the distinguishing 
and consensus output tells us that Statement 12 “distinguishes f2 only.” 

As mentioned before, the consensus statements can be just as important. Although 
there was consensus for Statement 11 (management being open to advice and ideas), 
this was a neutral choice, whereas the consensus for Statement 1 (good pay grades 
in line with equivalent roles in other companies) was a more positive, and therefore 
important, choice for the Participants.

By combining all the output we can see that the items of most importance to technical 
staff are interesting work, flexible hours, and annual leave (Statements 5, 3, and 4), 
and the items of least importance are organization embracing diversity, independent 
working, and affordable catering (Statements 14, 7, and 15). For graduates the most 
important items are interesting work, good pay, and friendships (Statements 5, 1, and 
16), and the least important items are involvement in senior managers decisions, 
up-to-date IT and software, and challenging disagreeable behaviors (Statements 12, 
6, and 13). For nontechnical staff the items of most importance are flexible hours, 
good pay, and embracing diversity (Statements 3, 1, and 14), and the items of least 
importance are publishing papers, up-to-date IT and software, and affordable catering 
(Statements 10, 6, and 15).

If you were restricted in what areas could be focused on, then using the representative 
Q-sorts and the z-scores plot, the things recommended to take forward would be 
interesting work, flexible hours, good pay, and annual leave, although this is a 
subjective judgment. It may be that the organization has no control over the hours, 
pay, and leave, in which case while you may know it will have some effect on the 
happiness and efficiency of the staff, it isn’t an area the business can focus on 
improving, which is the aim of the study. As such statements like that shouldn’t be 
included in the original Q-set, which is why careful consideration needs to be given to 
the initial set of statements. 
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As with PCA, interpretation of Q methodology output is very subjective. 
Sometimes it won’t be clear why different people have grouped together in 
the way that they have, unlike our example where the demographics showed 
a link between them.

In an ideal situation there would be consensus among everyone and there 
would only be one representative Q-sort, however in practice this is unlikely 
to happen. It’s up to you to determine how different the Q-sorts are on each 
factor to decide whether different action should be taken for each group or 
whether there is enough consensus that you can consider just one approach.

The example highlights how useful the z-scores plot is for visualizing the dis-
tinguishing and consensus statements of each group of people. It’s also handy 
to create Q-sorts from the representative Q-sorts to look for common pat-
terns with the statements.

Summary
This chapter extends the statistical modeling into data that has multiple 
response variables. It has looked at a very small selection of multivariate 
methods, however they have been chosen due to being dissimilar enough with 
regard to the data type and the aim of the question, as well as being arguably 
the most common methods to use in those cases. It also briefly mentioned 
some other multivariate techniques that can be looked up if more information 
is required.

The first technique investigated was multivariate analysis of variance 
(MANOVA), which is the most similar to univariate statistical modeling 
methods. It is still concerned with looking for significant differences between 
explanatory variables, but uses two or more dependent response variables. 
This section also described the assumptions related to conducting MANOVA 
testing and what to do if the assumptions are violated.

The example given used shot data, the response variables were the X and Y 
Coordinates, and the explanatory variables were Weapon and Distance. The 
example highlighted how to test the assumptions, run the MANOVA, run mul-
tiple comparisons tests, and plot and interpret the results.

The second method examined was principal component analysis (PCA), which 
is used when there are many correlated response variables with or with-
out some independent explanatory variables such as a grouping variable. It 
described how PCA is used to compress the original variables into a smaller 
subset of components losing as little information as possible. It described the 
limitations of PCA, and also highlighted how it’s more of an exploratory step 
before then using the components found in further analysis, as well as being 
highly subjective.
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The example presented looked at finding a relationship between the test 
scores of participants in 10 school subjects. It showed how to run the PCA 
on the data, how to determine the best number of components to retain, how 
to see which variables have loaded on which components, and how to plot 
and interpret the final results.

The third and final technique described was Q methodology, which is used 
when there are many subject viewpoints that need to be grouped to find 
overall perspectives. It described how to collect the data, by creating a set of 
statements, Q-set; and a preset grid, Q-grid; and asking participants to sort 
those statements into the grids, Q-sort. It then gave some information about 
what the Q method output will be able to tell you, as well as the fact that it 
is useful to collect demographic data from the participants to potentially be 
used with the Q method output.

The example looked at the Q-sorts of 10 participants answering a ques-
tion about happiness and efficiency in the workplace using 16 statements. It 
showed how to run the Q method on the data, how to determine the final 
number of factors to retain, how to see who has loaded on to which factors, 
how to understand the distinguishing and consensus remarks, and how to plot 
and interpret the results.

Chapter 9 concentrates on how to present useful, clear graphs to the customer 
to visually highlight any results found in simple hypothesis testing, statistical 
modeling, or multivariate data analysis. It focuses on which aspects keep a plot 
simple but effective, as well as highlighting common mistakes that just confuse 
or detract from the key message.

The examples are run in R showing the useful bits of code for changing struc-
ture, color, axes, labels, and general plot aesthetics. The graphs are those used 
in previous chapters to highlight the simple tweaks to take a basic plot to one 
that clearly shows all the information that needs to be shown, in a format that 
can be included in final reports, papers, or presentations.

http://dx.doi.org/10.1007/978-1-4842-2256-0_9
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C H A P T E R 

Graphs
What Does the Data Look Like?

The best way to convey a key message is through visualization, so picking the 
most clear and concise graph to do that is crucial.

Contrary to popular belief, using Excel to plot data isn’t necessarily the easiest 
software to use or the most appropriate. Once you understand the ggplot() 
code in R, it is very easy to create simple but informative graphs for all differ-
ent data types.

Chapter 3 described which plots could be drawn for which data types, so I will 
not repeat that here. However more detail will be given as to how to improve 
the look of plots in R along with some general advice about what makes a 
better graph and what to avoid.

The first section looks at some general things to avoid doing when plotting 
graphs; the next discusses the commonalities between all the ggplot() codes, 
such as creating titles, axis limits, and so forth; and the final section illustrates 
some R code that produces the different types of plots, including code in R 
that doesn’t use the ggplot2 package.

Common Plotting Mistakes
There are many common graphs but not all are suitable for all data types as dis-
cussed in Chapter 3. In addition, more thought and detail should be given to the 
plots that will be presented to the customer as they can convey a lot of informa-
tion. However, the more impressive the plot does not always mean it is better; it 
still should be kept as simple as possible while still conveying the same message.

9

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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3D and Pie Charts
One of the most commonly misused feature with plots is 3D. In most cases 
making the graph 3D will not add any extra information and in fact will probably 
make the plot harder to interpret.

Linked to this is a pie chart, especially a 3D pie chart, as they are very com-
mon plots yet are one of the most difficult to comprehend. There is nothing 
that can be plotted in a pie chart that couldn’t be plotted, more clearly, in a 
bar chart. In addition to this, if a 3D pie chart had been created, then depend-
ing on the angle of the pie chart, the segment sizes seem different visually. 
Figure 9-1 shows two rotations of a 3D pie chart and the same information 
in a bar chart.

Figure 9-1.  3D pie charts

In the first 3D pie chart the Management section appears larger than the R&D 
section even though it is a lower number. If the 3D pie chart is rotated 180° 
the Management section looks smaller than the R&D section, except now the 
Policy section looks a similar size to the Management section.

The bar chart shows the same information but is much clearer, there’s no 
confusion about which spend-by-area is greater or smaller than the others; 
if more detail was required about the exact amounts these could either be 
added on to the bars or shown simply in a table.

There will be cases where a 3D plot will be necessary, for example, when 
there are three continuous variables, see Figure 9-2.
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These plots show the errors in the x and y coordinates, azimuth and elevation, 
over time. The plot itself can be rotated within R to get the best view, whereas 
I have chosen three rotations of the plot, to show in the flat figure, to high-
light the different views that can be seen. This plot was drawn using plot3d() 
within the rgl package. It also could have been plotted using scatterplot3d() 
within the scatterplot3d package, however this latter plot cannot be rotated 
manually, see Figure 9-3.

Figure 9-2.  3D plot with rotation

Figure 9-3.  3D plot with no rotation

In this plot the red is lighter at times closer to 0 and darker at times closer 
to 50.
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Plotting Averages
A common mistake is to plot averages using a bar chart; this should be avoided 
as bar charts should be used for total counts or percentages. A bar implies 
“this whole amount” whereas an average is exactly that, an average. There are 
data values above the average point as well as below the average point, but a 
bar chart will only color the values below, which is misleading.

In situations like this, a dot plot or a line graph should be created, preferably 
with error bars. For example, if you had multiple subjects that showed a simi-
lar trend, such as with the heart rate data in Chapter 7, Example 7-10, then 
a line graph with error bars would be a good representation of the data, see 
Figure 9-4.

Figure 9-4.  Line graph with error bars

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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It is not always preferable to calculate the average of the data, sometimes 
it would be worth plotting the raw data to show the variation between 
groups. For example, if you had different trends between categorical groups 
you wouldn’t want to just plot an average with error bars. Figure 9-5 shows 
the average data, the average data with error bars, and the raw data for 
Temperature by Day.

Figure 9-5.  Comparison of line graphs

It’s worth noting that the average data without error bars is very misleading as 
it suggests an upwards trend. It is also on a different y-axis scale to the other 
two plots and doesn’t state that the data shown are averages.

Adding in error bars, here 95% confidence intervals, reduces the appearance 
of a positive trend somewhat and shows there is large variation within the 
data.

Finally, the last plot gives all the information, as it shows that there are differ-
ent trends for different locations, so an average would not have been appro-
priate even with error bars.

Multiple Plots
If you have multiple explanatory variables with multiple levels, a lot of plots are 
limited by the number of variables that can be shown in one go—therefore 
the need for multiple plots. However this takes up a lot of space, separates 
the information up when it may not be independent, and means you may miss 
visual patterns and trends.

The way around this is to use trellis plots that can display a lot of informa-
tion from multiple variables without taking up too much space and without 
overcrowding a plot. Although this obviously has limitations, you should use 
common sense when deciding on this.
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A visual example has not been shown here as there is an adequate plot in 
Example 9.1 in the next section, the second of the two plots. This plot shows 
four explanatory variables, Distance, Target Size, Operator, and Ammo Type 
with 6, 3, 3, and 2 levels, respectively against a response variable of Accuracy. 
This information is still very clear to see, however the decision was made not 
to include error bars, though there were multiple repeats per point, as this 
would have overcrowded the plot unnecessarily.

Another advantage is to swap the order of the explanatory variables; it can 
change the emphasis within the plot. If the analysis showed differences or 
trends between two of the four variables, the plot can be amended to display 
that more clearly. The trellis plot in Example 9.1 easily highlights any key mes-
sages from the statistical analysis undertaken.

Plotting Ordinal Data
Ordinal data is frequently treated incorrectly in both analysis and graphs; the 
data has a natural ordering and should be treated as such. The data should 
never be used as continuous, so no averages.

Bar charts could be used as essentially you are counting how many of each 
response there are, but there is a much clearer plot that can be used: a Likert 
plot, see Figure 9-6.

Figure 9-6.  Likert plot for ordinal data
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These plots clearly show the order of the responses as well as coloring them 
appropriately. In addition the scales can be shown in percentages, as above, 
while also displaying the sample size for each group, which is on the right in 
this example.

Open Text Responses
When surveys have open text boxes data can still be highlighted visually using 
word maps. In R you can use the tm, wordcloud, and SnowballC packages to 
create attractive word maps.

There are many options along the way to remove punctuation, spaces, and 
more important stop words, such as the, it, and, and so forth. You also can add 
in color and size dependent on the frequency of words, see Figure 9-7.

Figure 9-7. Word map

One issue that can arise by using the different commands to whittle the data 
down to “useful” terms is that the end of the words can be chopped off. In 
the example above a few words have lost the e, such as update, awesome, and 
please.
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Unnecessary Plots
In the majority of cases a plot will display information much clearer than gen-
eral text or a table, however there are some cases where this is not the case. 
Plots shouldn’t be drawn for the sake of it.

In some cases it may be preferable to have a table with figures alongside a plot, 
but it also may be preferable to have a table instead of a plot when there isn’t 
much data. For example, consider the counts of respondents that smoke or 
not split by gender—this information boils down to four numbers. Figure 9-8 
shows a plot and a table of the results.

Figure 9-8.  Plot versus tables

In this case the plot is fairly redundant and takes up more space than the table. 
If there were more explanatory variables, or more groups within a variable 
such as more than Yes or No for the smoking question, then a plot may be 
more desirable. However in this case the table will suffice and be clear enough 
without the plot.

Display
The term display here covers all manner of details, but they are all very impor-
tant to the effectiveness of the plot. Once the correct plot has been chosen, 
the main things to think about are labels, colors, shapes, and fonts.
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Make the labels as clear and concise as possible; units can be a good piece 
of information to include next to an axis title, especially if the data had to 
be logged. You should exclude the type of plot from the title, it will be clear 
which plot you have chosen or you can mention it in the text. Make sure any 
abbreviations of variable levels or variables themselves are extended for the 
plot, unless this makes the text too long in which case a key will be required.

Adaptation of color may be required dependent on the media to be used or 
the audience. R has many shades of gray if color can’t be seen in the chosen 
media. In addition some people may be color blind, which requires avoiding 
certain combinations of colors, there is a list of all the colors you can choose 
in R.1

Linked to color is shape, whether this is different shapes for points or differ-
ent line types. There are many options that can be combined with different 
colors to reduce the risk of a viewer not being able to differentiate groups 
for any reason.

Finally the font, this applies to the font itself as well as the text size, whether 
the text is bold, italics, and so forth. Both the labels and the numerical axes 
should be clear, concise, and a decent size in relation to the plot itself. A good 
rule-of-thumb is to have the title in the largest size, the axes labels and any leg-
end or facet labels the next size, then finally the axes check marks—whether 
numerical or not, the smallest size while still being legible.

Graph Aesthetics in R
This section moves on to the actual code for plotting graphs in R using the 
ggplot2 package. Although it may seem contradictory to start with the details 
of creating a plot in R, this is because the aesthetics are common across all 
the different ggplot() graphs and a good plot can’t be created without sorting 
these details out first.

Example 9.1 shows a basic plot without the extra aesthetics, then another 
including the extra aesthetics. After the example, each section of the code is 
detailed but not all available options have been included for reasons of space.

If you are not interested in the R code then skip to the next section after 
viewing the example.

1http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf is invaluable for picking 
colors in R.

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
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EXAMPLE 9.1

This example uses the data from Figure 3-10 in Chapter 3 that shows a trellis graph.

# Input the data
Accuracy = c(37.8,35.2,39.1,38.4,39.6,40.9,33.4,32.1,34.8,35.7,34.6,
        35.7,33.1,32.5,32.4,33.6,33.9,34.6,31.7,31.9,30.8,32.1,32,
        31.4,30.9,31,30.7,31.1,31.8,32.6,28,28.6,27.7,28.3,29,28.4,
        45.3,42.8,47.5,49.7,46.3,49.8,39.8,39.2,39.7,40.2,40.1,41,
        37.1,35.3,39.2,38.4,39.6,40,36.2,35.6,35.7,36,36.3,37.1,33.6,
        33.8,33.9,33.7,34.9,35.8,31.3,31.6,31.8,31,32,31.4,49.8,47.1,
        50.8,53.4,51.7,54.2,45.6,44.3,47.9,43.7,49.8,53.9,42.1,42.9,
        41.5,41.9,42.9,43.6,39.1,38.5,38.4,38.7,39.5,40.5,38.9,38.2,
        38.7,39,37.8,37.1,35.3,35.4,35.2,35.2,35.7,36)
Target = rep(c("Small","Medium","Large"), each = 36)
Ammo = rep(c("A","B"), 54)
Operator = rep(c("Op1","Op2","Op3"), each = 2, 18)
Distance = rep(c(1:6), each = 6, 3)
data35 = data.frame(Target, Ammo, Operator, Distance, Accuracy)

# Plot a basic plot
library(ggplot2)
ggplot(data35, aes(x = Distance, y = Accuracy, colour = Target)) +
	 facet_wrap(~ Ammo + Operator) + geom_point()

http://dx.doi.org/10.1007/978-1-4842-2256-0_3#Fig10
http://dx.doi.org/10.1007/978-1-4842-2256-0_3
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The basic plot uses the variables as axis labels, cannot create a title, calculates the 
x-axis and y-axis limits and check marks, and adds labels; and generally doesn’t look 
very pretty.

# Plot a better presented plot
library(ggplot2)
ggplot(data35, aes(x = Distance, y = Accuracy, colour = Target)) +
        theme_bw() + facet_wrap(~ Ammo + Operator,
                labeller = label_wrap_gen(multi_line = FALSE)) +
        geom_point() + xlab("Distance (m)") + ylab("Accuracy\n") +
        ggtitle("Accuracy by Distance, Ammo Type,
                Operator and Target Size") +
        scale_colour_manual("Target", values = c("firebrick3",
                "forestgreen","dodgerblue3")) +
        scale_x_continuous(limits = c(1,6), breaks = seq(1,6,
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                by = 1)) +
        scale_y_continuous(limits = c(25,55), breaks = seq(25,55,
                by = 5)) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        strip.text = element_text(size = 12, face = "bold"),
        legend.background = element_rect(linetype = "dashed",
                colour = "black", fill = "grey85"),
        legend.key = element_rect(colour = "grey30", size = 0.5),
        legend.position = "top",
        legend.title = element_text(size = 12, face = "bold"),
        legend.text = element_text(size = 10),
        axis.text = element_text(size = 9, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))

This plot is much clearer to see, has been appropriately titled, moved the legend for 
better spacing, improved the colors, and more.
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Breaking the initial ggplot code into its components:

•	 data – this is the data set you are working with.

•	 x = Distance – this is the explanatory variable you want 
on the x-axis/horizontal axis, here we used Distance.

•	 y = Accuracy – this is the response variable to be put on 
the y-axis/vertical axis, here we used Accuracy.

•	 colour = Target – this is an optional explanatory variable 
you want to show using different colors, here we picked 
Target.

•	 facet_wrap( ~ Ammo + Operator) – this is the “panels” 
for each level of the additional explanatory variables you 
supply, here we used Ammo and Operator.

•	 geom_point() – this let’s R know that we want to create 
a scatterplot.

Now adding on the extra aesthetics:

theme_bw()

This just gives a nicer structure to the overall plot, makes sure the background 
is white and that the axes and panels have a black line.

facet_wrap( ~ Ammo + Operator, labeller = label_wrap_gen(multi_line 
= FALSE)

This lets you change the position of the “panel” labels to be next to each 
other and separated by a comma, instead of placed on top of each other as in 
the original plot, which uses up unnecessary space.

xlab(“ ”), ylab(“ \n”), and ggtitle(“ ”)

These let you amend the x-axis and y-axis labels and add a title to the plot. 
By adding \n at the end of the text within a command, a carriage return is left 
between the bottom of the label and the plot, therefore it is only used with 
ylab() and ggtitle(). Instead of adding \n you also can put a carriage return in 
yourself instead, as I did for the plot title in Example 9.1.

scale_colour_manual(“Target”, values = c(“firebrick3”, “forestgreen”, 
“dodgerblue3”))

Here you can define which colors to use in the plot, remember you need 
to list the same number of colors as levels in the chosen explanatory vari-
able. The color would change to fill for bar charts and box plots, and can 
be replaced with shape to list the different shapes if that has been specified 
earlier on.
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scale_x_continuous(limits = c(1,6), breaks = seq(1, 6, by = 1))

This command lets you set the limits of the x-axis as well as defining where 
the check labels should be. So here the x-axis will be labeled 1, 2, 3, 4, 5, and 
6; it may be that you want more space at the edges and could have the limits 
as c(0.5, 6.5) but leave the breaks as they are. The same command is used for 
the y-axis using scale_y_continuous().

The next set of commands are all held within theme(); they control the font 
sizes, appearances, and all details contained within the legend.

Using the commands including element_text(); plot.title = element_text(), 
strip.text = element_text(), legend.title = element_text(), axis.text = ele-
ment_text(), and axis.title = element_text() lets you control all the text in 
the plot. Within each command you can change the following:

•	 font size: size = 12, gives a font size of 12.

•	 Emphasis: face = “plain”, face = “italic”, face = “bold”, 
and face = "bold.italic", gives you the four possible 
options.

•	 color: colour = “black”, or color = “black”, both would 
make the text black.

•	 rotation: angle = 45, gives a 45° rotation to the text but 
can be any degree between 0 and 360.

•	 Justification: h = 1 or v = 1, mainly used when a rotation 
of text has been used, h is primarily used with an x-axis 
rotation and v is primarily used with a y-axis rotation.

To separate the commands for each axis independently, instead of axis.text 
you would specify axis.text.x or axis.text.y.

The next few lines let us control elements linked to the legend.

legend.position = "top"

This lets you specify the position of the legend. It can either be one of four 
main positions outside the plot; “top,” “left,” “bottom,” or “right,” or it can 
be put inside the plot region using c(0.2, 0.7). You may need to play around 
with the numbers so that the data isn’t hidden beneath the legend.

legend.background = element_rect()

legend.key = element_rect()

The first of these is concerned with the background of the legend as a whole, 
whereas the second relates to the individual sections of the legend; the labels 
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for the levels of the variable, see Example 9-1. In both cases, and in fact any 
element_rect() commands, the following can be changed:

•	 border line size: size = 1, gives a border line size of 1.

•	 background fill color: fill = “grey85”, gives you a light gray 
background.

•	 border line color: colour = “black”, or color = “black”, 
both would make the border line color black.

•	 border line type: linetype = “solid”, gives a solid bor-
der line, the other main options are “dashed,” “dotted,” 
"dotdash,” “longdash,” “twodash”; or the numbers 1 
to 6 can be used, respectively.

The last line lets you add grid lines to the plot to make identifying the position 
of the data easier.

panel.grid.major = element_line(colour = “grey90”)

The following can be changed with any element_line() commands:

•	 grid line size: size = 1, gives a grid line size of 1.

•	 grid line color: colour = “grey90”, or color = “grey90”, 
both would make the grid line a light shade of gray.

•	 grid line type: linetype = “solid”, gives a solid border line, 
the other main options are as previous.

As a side note, if you wish to resize the plot you can use the command 
windows(); for example windows(6,6) will give a square plot, whereas win-
dows(7,4) will give a long thin plot.

The next section looks at the different R commands to plot the graphs using 
the ggplot2 package and others where more appropriate than using ggplot2. 
Commands listed earlier for the aesthetics will be used without extra expla-
nation due to the details being given, however they will be common across all 
ggplot2 package plots.

Graphs in R
We now look at some of the graphs that can be plotted in R to show a clear 
message for the customer, this should be done along with relevant text that 
sums up the output.
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Bar Chart
Using the data from Chapter 7, Example 7.6, we can plot a bar chart showing 
the number of detections that highlights a detection is a good thing using the 
green color. We also can show what the counts would be in percentages by 
each terrain within each device in Example 9.2.

The geom_bar() is what allows us to create the bar chart, and we have cho-
sen “identity” as we want to use the raw values rather than sum up binary 
counts, “dodge” as we want the bars next to each other and not stacked, and 
“black” as we want black lines around the bars.

The geom_text() section lets us add the percentage labels to the plot defin-
ing exactly how they should be calculated and where they should be placed.

EXAMPLE 9.2

Creating a bar chart in R using data from Example 7.6, data24, as this was created 
from the table of frequencies.

ggplot(data24, aes(x = Terrain, y = Freq, fill = Detection)) +
        geom_bar(stat = "identity", position = "dodge",
                colour = "black") +
        facet_wrap( ~ Device) + theme_bw() + xlab("Terrain") +
        guides(fill = guide_legend(ncol = 2)) + ylab("Detection") +
        scale_fill_manual("Detection", values = c("darkred",
        	 "forestgreen")) +
        scale_y_continuous(limits = c(0,15), breaks = seq(0,15, 
                by = 1)) + ggtitle("Frequency of Detections by
                Terrain and Device\n")+
        geom_text(aes(y = Freq, label = paste(round(Freq/15*100,1), 
                �"%")), position = position_dodge(width=0.99),
                size= 2.5, vjust = -0.5) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        legend.background = element_rect(linetype = "dashed",
                colour = "black"),
        legend.position = c(0.11,0.91),
        strip.text = element_text(size = 12, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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These colors can always be amended dependent on the audience and media to be 
used.

If you are only showing percentages on a bar chart remember to include the 
sample size of the groups somewhere, as for example 100% can look very 
impressive until it’s highlighted that the sample size was 2.

Tile Plot
A tile plot can be used to display small amounts of discrete data, using the 
data from Chapter 6, Example 6.3, we can show the split between the paired 
data of task completion with different suits in Example 9.3. The example also 
shows how to create a tile plot for larger than 2 × 2 tables using the data 
from Example 9.2.

http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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The geom_tile() is what lets us create the tiles themselves, and we have cho-
sen “Freq” as we want it to fill the colors using the frequencies, and “black” 
as we want the tiles to have a border.

The scale_fill_gradient() section here lets us define the limits and colors we 
want to use. If the plot was run without this it would assume the largest fre-
quency was the upper limit and therefore color it with the “top” color, which 
could be misleading.

The geom_text() as before allows us to add the percentage labels to the plot.

EXAMPLE 9.3

Creating a tile plot in R using data from Example 6.3, data11, and from Example 9.2, 
data24.

ggplot(data11, aes(Var2, Var1)) + geom_tile(aes(fill = Freq),
        colour = "black") + theme_bw() +
        scale_fill_gradient(limits = c(0,32),  breaks = seq(0,32,
                by = 4), low = "white", high = "deepskyblue3") +
        xlab("Suit 2") + ylab("Suit 1") +
        ggtitle("Frequency of Task Completion in Each Suit") +
        geom_text(aes(label = paste(round(Freq/32*100,0),"%"))) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        legend.background = element_rect(linetype = "dashed",
                colour = "black"),
        legend.title = element_text(size = 12, face = "bold"),
        legend.text = element_text(size = 9),
        axis.text = element_text(size = 10, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"))
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This tile plot has been amended from the one in Example 6.3 so that the upper limit of 
32 is the darkest color as opposed to the highest frequency.

ggplot(data24[data24$Detection == 1,], aes(Terrain, Device)) +
        geom_tile(aes(fill = Freq), colour = "black") +
        scale_fill_gradient(limits = c(0,15), breaks = seq(0,15,
                by = 3), low = "red", high = "forestgreen") +
        theme_bw() + xlab("Terrain") + ylab("Device\n") +
        ggtitle("Frequency of Detections by Terrain and Device") +
        geom_text(aes(label = paste(round(Freq/15*100,0),"%"))) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        legend.background = element_rect(linetype = "dashed",
                colour = "black"),
        legend.title = element_text(size = 12, face = "bold"),
        legend.text = element_text(size = 10, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"))
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This tile plot was only conducted on the Detections data and just gives an example of 
a tile plot larger than 2 × 2. Although with this data the bar chart is probably a clearer 
plot to use. These colors can always be amended dependent on the audience and 
media to be used

Tile plot colors can be changed depending on the data, for example, with 
the detections data clearly more detections is a good thing, hence green for 
higher values and red for lower values. However with the task completion 
data the completion and removals are both part of the variables, so a higher 
value doesn’t necessarily mean a good thing, hence a more neutral color.
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The first plot clearly shows that more participants Completed the course 
with Suit 1 and not Suit 2, and the second plot shows the clear separation 
between the three Terrains, but not much separation between the Devices.

Scatter Plot
Using the data from Chapter 7, Example 7.1, we can plot a scatter plot with a 
line of best fit showing the relationship between Yield and Concentration in 
Example 9.4.

The geom_point() is what allows us to create the scatter plot, then the 
geom_smooth() lets us add the line of best fit to the data. By choosing “lm” 
we are forcing the plot to fit a linear straight line to the data, which was 
chosen due to the fitted model output. The default in geom_smooth() adds 
standard errors to the line, which is shown by the gray area.

EXAMPLE 9.4

Creating a scatter plot in R using data from Example 7.1, data18, and adding a line 
of best fit.

ggplot(data18, aes(x = Conc, y = Yield)) + theme_bw() +
        geom_point() + geom_smooth(method = "lm") +
        xlab("Concentration") + ylab("Yield\n") +
        ggtitle("Yield by Concentration\n") +
        scale_y_continuous(limits = c(450,815),
                breaks= seq(450,815, by=50)) +
        theme(plot.title = element_text(size = 18, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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There are different methods for fitting the line of best fit, and you also can specify that 
it doesn’t include the standard error region.

This clearly shows the positive relationship between Yield and Concentration. 
An additional piece of information that could be added to the plot is a reference 
line if there was a specific Yield required or a standard Concentration used.

Parallel Lines Plot
The parallel lines plot while not strictly a ggplot(), but instead requires the 
PairedData package, actually uses all the same aesthetics as a ggplot() would.

Using the data from Chapter 6, Example 6.8, we can plot a parallel lines plot 
for paired data to show the difference between the before training time and 
after training time for each participant in Example 9.5.

The paired.plotMcNeil() command required the data set, the two variables 
containing the paired data, and what the subjects will be; the variable doesn’t 
have to be named Subject.

http://dx.doi.org/10.1007/978-1-4842-2256-0_6
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EXAMPLE 9.5

Creating a parallel lines plot in R using data from Example 6.8, data16.

library(PairedData)
windows(7,4)
paired.plotMcNeil(data16, "BeforeTraining", "AfterTraining",
        	 subjects = "Subject") + theme_bw() +
        scale_colour_manual(values = c("red", "blue")) +
        scale_x_continuous(limits = c(10,20), breaks = seq(10,20,
                by = 1)) +
        ggtitle("Time to Complete a Set Task Before and After
                Training\n") +
        xlab("Time to Complete a Set Task (mins)") +
        ylab("Subject\n") +
        theme(plot.title = element_text(size = 16, face = "bold"),
        legend.position = c(0.11,0.85),
        legend.background = element_rect(linetype = "dashed", 
                colour = "black"),
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10),
        strip.text = element_text(size = 10, face = "bold"),
        axis.text = element_text(size = 12, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))

The plot automatically orders the subjects by a combination of the highest numbers 
mixed with the largest gap that at the moment unfortunately cannot be changed.
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For any continuous paired data, these parallel lines plots are one of the best 
plots to use as they really emphasize the gaps within each participant.

Line Graph
Using data from a couple of the plots from Figure 9-5 earlier in the chapter, we 
can plot a line graph for the Temperature over Time per Location, and then 
pretend there was no difference between the Locations to plot the average 
Temperatures with confidence intervals in Example 9.6.

The geom_point() lets us define the points as before, then the geom_line() 
lets us add the lines connecting the points over Time—note that this will only 
work if the x-axis is ordered, such as with Time.

In the second plot the geom_errorbar() lets us add the confidence intervals 
that we could have ascertained using the CI() command in the Rmisc pack-
age mentioned in Chapter 5. The width defines the width of the confidence 
interval “ends.”

EXAMPLE 9.6

Creating a line graph and a line graph with confidence intervals in R using data from 
Figure 9-5.

Temperature = c(43,55,47,64,60,53,57,50,60,62,50,58,56,55,58,57,60,
              58,58,56,64,64,53,53,60,67,66,62,48,55)
Day = rep(c(1:6), each = 5)
Location = rep(c("South East","South West","East of England",
        "The North", "Midlands"), 6)
data36 = data.frame(Temperature, Day, Location)
ggplot(data36, aes(x = Day, y = Temperature, colour = Location)) +
        geom_point(size = 2) + geom_line(size = 1) + theme_bw() +
        ggtitle("Temperature (°F) by Day and Location\n") +
        xlab("Day") + ylab("Temperature °F\n") +
        guides(colour = guide_legend(ncol = 2)) +
        scale_y_continuous(limits = c(42,68), breaks = seq(42,68, 
                by = 2)) +
        scale_x_continuous(limits = c(1,6), breaks = seq(1,6,
                by = 1)) +
        scale_colour_manual("Location", values = c("firebrick3",
                "forestgreen","dodgerblue3","orange","purple")) +
        theme(plot.title = element_text(size = 18, face = "bold"),
        legend.position = c(0.77, 0.11),
        legend.background = element_rect(linetype = "dashed",
                colour = "black"),
        legend.title = element_text(size = 12, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
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        panel.grid.major = element_line(colour = "grey90"),
        axis.title = element_text(size = 12, face = "bold"))

xbar = c(53.8,56.4,55.4,57.8,58.8,59.6)
Day = c(1:6)
LCI = c(42.93,50.28,51.32,55.96,51.92,49.64)
UCI = c(64.67,62.52,59.48,59.64,65.68,69.56)
data37 = data.frame(xbar, Day, LCI, UCI)
ggplot(data37, aes(x = Day, y = xbar)) + geom_line(size = 1) +
        geom_errorbar(aes(ymin = LCI, ymax = UCI), width = 0.25,
                size = 1) +
        geom_point(size = 3, pch = 21, fill = "white") +
        theme_bw() + ggtitle("Average Temperature by Day
        with 95% Confidence Intervals\n") +
        xlab("Day") + ylab("Average Temperature (°F)\n") +
        scale_y_continuous(limits = c(42,70), breaks = seq(42,70, 
                by = 2)) +
        scale_x_continuous(limits = c(0.75,6.25), breaks = seq(1,6,
                by = 1)) +
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        theme(plot.title = element_text(size = 18, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"),
        axis.title = element_text(size = 12, face = "bold"))

For the first plot you could add in different line types as well as or instead of different 
colors. In addition the legend can be moved around to suit the plot better. 

The second plot made the choice to fill the points in white just to be able to highlight 
where that average temperature lies. The y-axis label and the title also have been 
amended to clearly define that these are average temperatures.

There should never be a plot of averages or medians without some sort of 
confidence interval or error bars. However thought should be given as to 
whether summarizing the data is the best option and testing for differences 
between the groups should always be carried out first.
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Box Plot
Using the data from Chapter 7, Example 7.3, we can plot a box plot to show 
the difference between the concentrations and machines in regards to time 
in Example 9.7.

The geom_boxplot() lets us plot the box plot and define what our statistical 
outliers should look like. However stat_boxplot() lets us add the “ends” to 
the “whiskers” on the boxes.

The stat_summary() command allows us to add extra information to the 
plot, in this case by adding a mean point to see how it differs to the median 
values.

EXAMPLE 9.7

Creating a box plot in R using data from Example 7.3, data20.

ggplot(data20, aes(x = Concentration, y = Time.Taken)) + theme_bw() +
        facet_wrap(~ Machine) + stat_boxplot(geom = "errorbar") +
        geom_boxplot(outlier.colour = "red", outlier.shape = 7,
                outlier.size = 1.5) +
        ggtitle("Time Taken by Concentration \n and Machine\n") +
        xlab("Concentration") + ylab("Time Taken (Mins)\n") +
        stat_summary(fun.y = mean, geom = "point", shape = 8,
                size = 2, col = "blue") +
        scale_y_continuous(limits = c(25,50), breaks = seq(25,50,
                by = 5)) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        strip.text = element_text(size = 12, face="bold",
                lineheight = 3),
        axis.text = element_text(size = 12, face = "bold"), 
        axis.text.x = element_text(size=9, face="bold", angle=45,
                h = 1),
        axis.text.y = element_text(size = 9, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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Box plots are an excellent way to show differences found between categorical variables 
during statistical analysis. They also are very handy for showing the variation within 
each group and whether the mean and median are at similar values.

Just to reiterate that just because a box plot doesn’t overlap with another 
box plot, this does not mean there will be a significant difference between the 
groups; although likely, it very much depends on the sample size.
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Likert Plot
There are a couple of ways to plot a Likert plot for ordinal data, however I 
prefer to use the version within the HH package, so again not a ggplot().

Using the data from Chapter 7, Example 7.9, we can plot a Likert plot to 
show the spread of responses to a specific question over different systems in 
Example 9.8.

The initial section of the Likert plot is set up similar to a model, however the 
left side of the model is what should be plotted on the y-axis and isn’t actually 
the response variable. If you have the frequencies of the responses, then you 
will need to define that here value = “Responses.”

You can define that the results be shown in percentages as well as showing the 
sample size in each group by letting as.percent = TRUE.

You can also play with the ReferenceZero value to change where the middle 
line should be. This is more relevant when there is a neutral category as the 
reference line can either be in the middle of this, or the neutral category can 
fall into the “negative” or “positive” side of the plot.

EXAMPLE 9.8

Creating a Likert plot in R using data from Example 7.9, data28.

library(HH)

windows(7,5)
plot.likert(System ~ Likert.Response|Group, value = "Response",
        data = data28, layout = c(1,2), as.percent = TRUE,
        ReferenceZero = 2.5,
        main = "How Poorly/Well did the System Perform
                with your Current Equipment?",
        xlab = expression(bold("Percent")),
        ylab = expression(bold("System")),
        col = c("firebrick3","indianred1","springgreen",
                "forestgreen"),
        scales = list(x = list(limits = c(-102,102),
                at = seq(-100,100,10), labels = abs(seq(-100,
                100, 10)), cex = 0.65, tck = 0.5))) 

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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Likert plots are really good at displaying ordinal data, as there will be appropriate 
coloring for the ordered data. In addition to be able to define the “middle” allows for 
more control over neutral categories and whether they are viewed as positive, neutral, 
or negative.

There are some preset color patterns that can be used. They are from the 
RColourBrewer package, which should automatically have been loaded with 
other packages such as ggplot2. In Example 9.8 the list of colors could be 
replaced with:

col = brewer.pal(4, "RdYlGn").

This would tell it to look at the colors in the “RdYlGn” set and chose four 
of them, the number of Likert responses, to use in the Likert plot. There 
are other color sets though they generally have a limit to how many Likert 
responses there can be.

Trellis Plot
Using the data from Chapter 7, Example 7.10, we can plot a trellis plot to 
show the trend of heart rate over time for two treatments per participant in 
Example 9.9.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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The geom_point() lets us plot the data, which will be both colored and 
shaped by the treatment variable.

EXAMPLE 9.9

Creating a trellis plot in R using data from Example 7.10, data29.

ggplot(data29, aes(x = Time, y = Heart.Rate, colour = Treatment,
        shape = Treatment)) + theme_bw() + geom_point() +
        facet_wrap( ~ Subject) + xlab("Time (Secs)") +
        ylab("Heart Rate\n") +
        ggtitle("Heart Rate by Time and Treatment
                per Subject\n") +
        scale_y_continuous(limits = c(0,201), breaks = seq(0,200,
                by = 50)) +
        scale_colour_manual("Treatment", values = c("firebrick3",
                "dodgerblue3")) +
        scale_shape_manual("Treatment", values = c(3,4)) +
        theme(plot.title = element_text(size = 16, face = "bold"),
        legend.position = c(0.75,0.18),
        legend.background = element_rect(linetype = "dashed",
                colour = "black"),
        legend.title = element_text(size = 10, face = "bold"),
        legend.text = element_text(size = 10),
        strip.text = element_text(size = 10, face = "bold"),
        axis.text.x = element_text(size = 9, angle = 45,
                hjust = 0.5, vjust = 0.5),
        axis.text.y = element_text(size = 9, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))
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By grouping the data within participants we can see the relative differences between 
the treatments, as the data is not independent.

Trellis plots are really easy to create but can show a lot of information. The 
trellis plot can be created for any type of ggplot(), for example, box plot, scat-
ter plot, and so forth.

Logistic Curve
Using the data from Chapter 7, Example 7.7, we can plot a logistic curve to 
show the probability of detection by concentration in Example 9.10.

http://dx.doi.org/10.1007/978-1-4842-2256-0_7
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To plot the curve some analysis should have already been completed, which 
was done in Example 7.7. This requires predicting values based on the fitted 
model and assigning them to a new dataset, here called tmpModFit.

The geom_point() lets us plot the raw binary data, then the geom_line() 
allows us to add in the predicted probability curve as well as adding in the 95% 
confidence intervals around this later in the code.

The geom_segment() lets us add in a reference line, here at a probability of 
detection of 0.95; one from the y-axis to the curve, and one from the curve 
to the x-axis. The corresponding concentration can be found out using the 
dose.p() command in the MASS package, as was done in Example 7.7.

The annotate() command allows us to add in text to explain the reference 
line.

EXAMPLE 9.10

Creating a logistic curve in R using data from Example 7.7, data25. The whole of 
Example 7.7 will need to be run first to calculate the curve and confidence intervals 
to be used in the plot.

windows(6,6)
ggplot(data25, aes(Concentration, Detection)) + geom_point() +
        geom_line(aes(Concentration, Proportion), tmpModFit) +
        �xlab("Concentration") + ylab("Probability of Detection\n") +
        ggtitle("Probability of Detection
                by Concentration (95% CI)\n") +
        guides(colour = FALSE) + theme_bw() +
        geom_segment(aes(x = 0, y = 0.95, xend = 368, yend = 0.95), 
                colour = "blue", linetype = "dotted") +
        geom_segment(aes(x = 368, y = 0.95, xend = 368, yend = 0),
                colour = "blue", linetype = "dotted") +
        annotate("text", x = 447, y = 0.1, colour = "blue",
                label = "Average \n Concentration for
                95% Detection") +
        geom_line(aes(lowerv50, prop), tempv50, colour = "red",
                linetype = "dashed") +
        geom_line(aes(upperv50, prop), tempv50, colour = "red",
                linetype = "dashed") +
        scale_x_continuous(limits = c(0,500), breaks = seq(0,500,
                by = 50)) +
        scale_y_continuous(limits = c(0,1), breaks = seq(0,1,
                by = 0.1)) +
        theme(plot.title = element_text(size = 18, face = "bold"),
        axis.text = element_text(size = 10, face = "bold"),
        axis.title = element_text(size = 12, face = "bold"),
        panel.grid.major = element_line(colour = "grey90"))
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The logistic curve needs to be fitted with predictions from the final model, and it’s 
always advisable to include confidence intervals to show the variability. There may 
be very little data at one end so the confidence interval would then be very wide. A 
reference line can be quite helpful if there is a threshold or a requirement for a certain 
probability of detection.

These curves also can be known as logit or probit curves. This is just a link 
option when fitting the model with the default being logit. They both pro-
duce very similar results, but generally the probit link is chosen if the data 
approaches zero or one quite rapidly.
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Summary
This chapter was split into three main sections, general tips as to what to 
avoid when creating plots, how to amend the aesthetics in R plots, and finally 
common plot types in R and how to create them.

Within the general tips some common plotting mistakes were described such 
as using 3D unnecessarily, incorrectly plotting averages, using plots when a 
simple table would be preferable, and more. Chapter 3 covered the informa-
tion about which plot type should be used for which data types so it was not 
repeated here; though using the wrong plot for the data is one of the most 
common mistakes.

The second section gave an example of a plot created in R without adding 
in any aesthetic details, then creating the plot again with these details. It then 
went on to discuss what each section of the R code controls and how to 
amend it for future plots.

The final section looked at some of the more common plots, mainly using 
data and examples from previous chapters, including how to create them in 
R including all the aesthetic details. It showed which sections were the main 
commands to create the plots along with other details that could be included 
within them.

Chapter 10 delves into translating and communicating results to customers. 
Advice about this has been dotted throughout the book, especially at the end 
of examples where the results have been summarized, however Chapter 10 
ties all this information together.

http://dx.doi.org/10.1007/978-1-4842-2256-0_3
http://dx.doi.org/10.1007/978-1-4842-2256-0_10
http://dx.doi.org/10.1007/978-1-4842-2256-0_10
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C H A P T E R 

Translation and 
Communication
How Do I Get the Message Across?

The most important thing, apart from conducting the right analysis on the 
right data, is to be able to translate the results to the customer. Although this 
has been done through all the examples in the previous chapters, this chapter 
pulls everything together.

The chapter is divided into two sections, the first includes general advice, and 
the second a few examples of suggested ways to present the information.

General Advice
The following includes some issues that can arise when attempting to get the 
message across as well as some general guidance for translation.

Review
Analysts can get wrapped up in both the subject they deal with and the sta-
tistical methodology they use. Therefore, they may not write the results as 
clearly as possible, which will be picked up in the review process.

10
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In addition, depending on the size of the project undertaken, my advice is 
always to first run your planned analysis by another statistician. There is noth-
ing worse than finding out you haven’t chosen the right method, or that there 
may be a new development you have not heard about.

There should be at least two reviewers involved at the final stage, both on 
the subject matter side and the statistical side. The subject matter expert 
can check that the assumptions and conclusions are viable in a realistic sense 
while the statistician can check that the data has been treated correctly and 
the conclusions match the analysis output.

Provide the Right Level of Information
Providing a sufficient level of information to the customer needs to be a bal-
ance of getting the key messages across without excluding assumptions or 
adding too much detail.

The best way to do this is to have a separate summary of the analysis that can 
be read independently of other reports, then to add a technical report either 
as an annex to a project report or as a standalone report. The summary of 
analysis should fit on a side or two of US letter (A4 paper), which depends on 
the size of the plots, as they take up the most space.

The summary of analysis should include a brief introduction of the data along 
with why the analysis was being carried out, an overview of the more impor-
tant assumptions plus the sample size used, the key messages found from the 
analysis along with relevant visual aids, and any recommendations. An advan-
tage to the short summary of analysis is that information shouldn’t get lost 
along the way, sometimes if you provide a technical report, someone else will 
pick the key messages out to include in a project report that can lead to them 
being quoted incorrectly or assumptions being left out.

The technical report can then include all the analysis carried out; although I 
would still never include actual software output, I would always translate it. 
There also should be a detailed methodology section so it is clear what type 
of analysis was run on which sections of the data. In addition if R was used, the 
version and the packages installed should be listed.

Include Assumptions
The analysis conducted will not apply for all cases and scenarios, there clearly 
will be limitations to the conclusions and as such, they need to be listed. There 
will be varying degrees of importance for each of the assumptions, and these 
should be clear within your own study. For example, assumptions about the 
type of scenario the results can be applied to are quite important, whereas 
assumptions about the distribution of the data are much less so in the eyes 
of the customer.
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Prioritize the assumptions and list only the important ones in the summary of 
analysis. Linked closely to this are the limitations; for example, if confounding 
has occurred it needs to be specified as you can’t clearly state that the effect 
is down to one variable over another.

Adapt Language
The language should be adapted to suit the customer. You may need to use 
different language when reporting to the military as opposed to a CEO of a 
company or compared to an academic partner. You should be able to deter-
mine this through conversations throughout the project with the customer.

It may be just at the formal/informal writing level, the use of abbreviations, 
or it could even be at the details level. For example do they prefer stating 
evidence of a significant difference, at a specific percentage confidence, or do 
they actually require p-values to be shown?

Give the Correct Answer
There are two pitfalls that people can fall into here, either letting themselves 
be bullied into giving the “right” answer or not wanting to show a “negative” 
answer.

Occasionally a decision may have already been made about an option or piece 
of equipment, or it may just be that they have a favorite in mind. However, it’s 
always a good idea to keep the analyst independent of this as it helps with 
the robustness of the analysis. However, in these cases you can have pressure 
put on you to show the result that they want to see. Although it can be dif-
ficult you shouldn’t let yourself be swayed and should quote the conclusions 
as they are found. It helps if you don’t know the preferences as then you can’t 
be biased in either direction. I also would push to be a reviewer of any final 
project report, this way you can check that they haven’t misquoted the analy-
sis or purely excluded it.

Linked to this is giving a negative answer, especially if a lot of money has been 
spent on a project. A negative answer is still a valid answer. This especially 
holds when looking at new research ideas; it may be that the item or idea isn’t 
feasible for what was intended. This answer is just as important as if it had 
worked; in fact I think more “negative” answer papers should be published. 
Showing a negative answer can prevent future funds being wasted by pursuing 
the idea, it can highlight whether the idea was completely wrong, or if it just 
needs tweaking. It’s this final point that needs to be conveyed to the customer, 
it’s not that no work was conducted; it’s that the research showed that the 
product/idea/methodology wasn’t appropriate and so future funds should be 
placed elsewhere.
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Translate the Answer
Quite simply, make sure the answer has been translated to English. If the 
answer is left in “statistics speak” then people could disengage or may not 
understand the results.

Make sure the emphasis is in the subject matter language and that units are 
reintroduced to give more of an idea about the size of the effect or the level 
of uncertainty in the results.

Examples of Translation
Using examples from previous chapters, I provide summaries of analyses from 
previous examples to highlight the length required to actually get the key mes-
sages across, how to translate the statistical output into English, and how to 
include assumptions.

I look at four examples of varying complexity from Chapters 5, 6, and 7. No 
analysis will be shown in the examples as this has already been undertaken in 
the chapters, the only information will be the theoretical discussion with the 
customer and the final translation of the key messages.

Translation Example 1
Let’s say that the data provided in Example 5.1, data7, are the peak operat-
ing temperatures for a piece of machinery. The results quoted are pulled 
from Example 5.1 and Example 5.6, which calculated confidence and tolerance 
intervals.

The initial question from the customer was “how variable is the peak operating 
temperature?” This clearly needed better definition to be answered properly, 
so through discussions both confidence intervals and tolerance intervals were 
explained in practical terms.

•	 A confidence interval shows the uncertainty around the 
average peak temperature.

•	 A tolerance interval shows the uncertainty around a pro-
portion of peak temperatures, such as 90%.

The customer was interested in both statistics for differing reasons, so the 
next step was to explain risk so we knew which confidence and coverage to 
use in the calculations.

http://dx.doi.org/10.1007/978-1-4842-2256-0_5
http://dx.doi.org/10.1007/978-1-4842-2256-0_6
http://dx.doi.org/10.1007/978-1-4842-2256-0_7


Translating Statistics to Make Decisions 311

•	 How much risk are you willing to accept that the interval 
doesn’t contain the true average peak temperature? Then 
this value can be turned into a confidence level and also 
can be used for the tolerance interval.

•	 What proportion of total peak temperatures should fall 
within the interval?

The time and cost limitations meant that a sample size of 18 could be 
recorded. The customer decided on a confidence level of 90% and a cover-
age level of 75%.

The results were as follows:

•	 We are 90% confident that the average peak operating 
temperature is between 27.1°C and 27.7°C.

•	 We are 90% confident that at least 75% of peak operating 
temperatures are within 26.2°C and 28.5°C.

•	 The data was assumed to follow a normal distribution 
after visual examination. A confidence level of 90% means 
there is a 10% risk that the intervals do not contain the 
required value of peak temperature—either the average 
or the proportion of 75%. A coverage level of 75% means 
that 25% or less of the peak temperatures will be outside 
the bounds.

This made the uncertainty around the peak operating temperatures very clear 
to the customer and due to the results showing little variation, no further 
action or testing needed to be undertaken.

As a side note, no plot was necessary for this output as it would not have 
made the key messages any clearer.

Translation Example 2
We use Example 6.2–Table, which concerns whether there was a difference 
between two treatments in terms of curing an ailment.

As this treatment is a drug the customer wants to work at a confidence level 
of 99%. One of the treatments is the current treatment, but to keep impartial-
ity the identity of the current treatment has not been disclosed. Therefore 
the hypothesis test to be carried out will look for a difference in either direc-
tion rather than just seeing if the new treatment is better than the current 
treatment.

Due to cost the risk of a false negative, the risk that no significant difference 
is found when there should have been one, was decided to be a lower prior-
ity and was chosen at 20%. This meant that the power was 80% that led to a 
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sample size of 30 per group, 60 total being acceptable for the study, which also 
satisfied the ethical review.

The results were as follows:

•	 The data was recorded in binary form, either the subjects 
ailment was cured or it wasn’t. There were also different 
subjects in each group to eliminate cross-over effects.

•	 There was no evidence of a significant difference between 
the treatments at the 99% confidence level (p-value of 
0.026). Treatment A cured more than Treatment B in 
the sample, 83.3% compared to 53.3%, respectively, see 
Figure 10-1.

Figure 10-1.  Plot for Translation Example 2
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•	 The size of the effect or difference between the treat-
ments was 30%, however the difference could be as large 
as 62.6% or as small as 0.03%, which means Treatment B 
could cure more than Treatment A.

It transpired that Treatment A was the current treatment, which did actually 
produce significantly better results at the 99% confidence level, so no action 
needed to be taken.

An additional piece of information that should be included in a technical 
report is the methodology used and its justification.

Translation Example 3
We use Example 7.3, data20, which looked at the time taken to find a sub-
stance of interest in terms of machine, operator, and concentration.

The sample size for each factor combination is 7, however if there are no 
significant interactions, this soon increases. We believed that there was no 
difference between Operators, however it was included for completeness but 
without a difference the sample size was 14.

The results were as follows:

•	 The data was approximately normally distributed so a lin-
ear model was run with the resulting model being a good 
fit explaining 96.1% of the variation.

•	 The final model showed that Machine, Concentration, 
and the interaction between Machine and Concentration 
was significant at the 99% confidence level.

•	 Machine B gave significantly quicker time taken than both 
Machine A and Machine C at the 99% confidence level.

•	 High Concentration gave significantly quicker time taken 
than both Medium and Low Concentration at the 99% 
confidence level. Medium Concentration gave significantly 
quicker time taken than Low Concentration at the 99% 
confidence level.

•	 In general terms, the interaction between Machine and 
Concentration was significant as the downward gradi-
ent for Machine B by Concentration was less extreme 
than those for Machine A and Machine C, see the plot 
in Figure 10-2 and the technical report for more details.
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•	 The model estimates for varying Machines and 
Concentrations are shown in Figure 10-3.

Figure 10-2.  Plot for Translation Example 3
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In this study the differences between the Concentrations were expected, 
however the differences between the Machines were not expected so further 
investigation will be given as to why Machine B gave such different results than 
Machine A and Machine C.

Translation Example 4
This example translates the output from Example 7.7, data25, which investi-
gated the number of detections at different concentrations.

The initial design of experiments used the Staircase method to narrow the 
concentration area of interest to between 100 and 400; measurements were 
then taken at every 20 units with 6 repeats at each as agreed with the customer.

The results were as follows:

•	 As there were Concentrations that resulted in all non-
detects or detects, a bias-reduction binomial-response 
generalized linear model (BRGLM) was used to account 
for this.

•	 The model showed that Concentration was significant at 
the 99% confidence level—Figure 10-4 shows the curve 
of Probability of Detection by Concentration.

Figure 10-3.  Model Estimates for Translation Example 3
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•	 For a one unit increase in Concentration the odds ratio 
of Detection is 1.028, with a 95% confidence interval of 
1.019 to 1.042

•	 The required Concentration level with 95% confidence 
intervals for varying Probabilities of Detection is shown 
in Figure 10-5.

Figure 10-4.  Plot for Translation Example 4
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The last figure in this example clearly shows the required concentrations to 
give a certain probability of detection, and while this is the most important 
piece of information for the customer, the model needed to be a good fit to 
produce useful values.

Summary
This chapter was split into two sections, general tips for what to avoid and 
what to ensure with translation and communication of results, then four 
examples using data from previous chapters.

Within the general tips some common pitfalls are discussed such as including 
unnecessary information in the summary, not undertaking a sufficient level of 
review, and trying to coerce the results to show the “right” answer. Whether 
that’s what the customer has been pushing for or to avoid showing a “nega-
tive” answer. It also highlights some guidance about including assumptions, 
adapting the language for the audience, and making sure the results are trans-
lated from the statistical jargon into English.

The second section looked at four translation examples to highlight that it 
doesn’t take much space to emphasize the key findings to the customer, and 
that adding figures and tables also can visually help to improve understanding 
of the results. Also a reminder to make sure any main assumptions are made 
clear up front, such as those including confounding variables, outliers, and state 
the sample size. Any details of analysis, explaining the methodology and other 
information can be and should be included in a separate technical report. In 
addition I also would include the “key messages” part at the beginning of the 
technical report.

Figure 10-5.  Required Concentrations for Translation Example 4
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Hopefully, this book has shed some light on the confusing world of statistics, 
emphasizing that while the analysis needs to be conducted correctly, the final 
output should be as clear and concise as possible. It has delved through the 
general process for a statistical study beginning with the design of experi-
ments and data collection; through the exploratory data analysis, descriptive 
statistics, measuring uncertainty, and simple hypothesis testing; on to the more 
complex statistical modeling and multivariate analysis; and then finally how to 
produce detailed plots and translate the output to a nonstatistically minded 
customer. It has looked at statistical analysis from the viewpoint of someone 
carrying out the analysis, however it also has highlighted the key issues and 
pitfalls that those not conducting the analysis should be looking out for in 
addition to explaining unknown or previously baffling statistical terms.
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