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PREFACE 

This book is written in the hope that it will serve as a companion 
volume to my first monograph. The first monograph was largely devoted 
to the probabilistic aspects of the inverse Gaussian law and therefore 
ignored the statistical issues and related data analyses. 

Ever since the appearance of the book by Chhikara and Folks, a 
considerable number of publications in both theory and applications of 
the inverse Gaussian law have emerged thereby justifying the need for 
a comprehensive treatment of the issues involved. This book is divided 
into two sections and fills up the gap updating the material found in 
the book of Chhikara and Folks. Part I contains seven chapters and 
covers distribution theory, estimation, significance tests, goodness-of-fit, 
sequential analysis and compound laws and mixtures. The first part 
forms the backbone of the theory and wherever possible I have provided 
illustrative examples for easy assimilation of the theory. 

The second part is devoted to a wide range of applications from 
various disciplines. The applied statistician will find numerous instances 
of examples which pertain to a first passage time situation. It is indeed 
remarkable that in the fields of life testing, ecology, entomology, health 
sciences, traffic intensity and management science the inverse Gaussian 
law plays a dominant role. Real life examples from actuarial science and 
ecology came to my attention after this project was completed and I 
found it impossible to include them. 

I began this project during my sabbatic year spent in the Depart­
ment of Mathematics at the University of Western Australia. I am most 
grateful to Tony Pakes and his colleagues for providing me an ideal en­
vironment for research. During the course of the writing I have profit ted 
from some correspondence I had with Satish Iyengar, Qiming Liao and 
Dr.M.W.Levine. The manuscript was first typed by Dr.lvano Pinneri in 
Perth. Upon my return to McGill additional typing was done by Heather 
MacAuliffe and Sithamparapillai Ambikkumar. Dan Bododea helped me 
with the cumbersome task of preparing the figures. Subsequently I have 
enjoyed the hospitality of the Mathematics Department at San Diego 
State University through the kind efforts of Dr. Anantha. The project 
was completed in the congenial atmosphere of their computing labora­
tory. I am very appreciative of the hospitality afforded to me there. 
Nikolaus Kleiner and Ahilan Anantha used their expertise with 'lEX to 
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format and prepare some complicated tables. I am very grateful to them 
for their assistance. I thank Raffaella Bruno who spent several hours 
proof-reading and eradicating many spelling errors. A special word of 
thanks is due to John Kimmel for his guidance and generosity. I wish 
to thank my wife and family for their constant encouragement and the 
patience they have shown during my long hours of absence from home. 
Financial support from the Natural Sciences and Engineering Research 
Council of Canada is gratefully appreciated. 

I would like to dedicate this work to Etienne Halphen and Ken 
Tweedie without whose pioneering efforts this distribution would not 
have attained the popularity it enjoys today. Etienne Halphen had the 
foresight to discover the generalized inverse Gaussian law but his life was 
cut short by tragedy. Ken Tweedie was the first to launch this law into 
the statistical world. I have had a brief correspondence with Ken while 
he was in a nursing home in Liverpool (I learned this from C.A.B.Smith) 
and was hoping to visit him on my return from Australia. Alas that was 
not to be since I received word from his daughter that Ken had passed 
away peacefully in April 1996. 

Montreal, June 1998 V. Seshadri 
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PART I STATISTICAL THEORY 

CHAPTER 1 

DISTRIBUTION THEORY 

1.0 Introduction 

The inverse Gaussian distribution has a history dating back to 1915 when 
Schrodinger and Smoluchowski presented independent derivations of the 
density of the first passage time distribution of Brownian motion with 
positive drift. The drift free case had already been published by Bache­
lier in 1900 in his doctoral thesis on the theory of speculation. Among 
the early advocates of this distribution one should single out Hadwiger 
(1940a, 1940b, 1941, 1942) and Halphen. The first of Hadwiger's expo­
sitions dealt with the inverse Gaussian law as a solution to a functional 
equation in renewal theory. The other papers dealt with applications 
of the distribution to the reproduction functions arising in the study 
of population growth. Halphen is credited with the first formulation of 
what is now known as the generalized inverse Gaussian distribution. His 
discovery arose from the need to model hydrologic data whose behaviour 
was subject to decay for both large and small values. A general discus­
sion of the early history can be found in Seshadri (1993) and Chhikara 
and Folks (1988). The modern day statistical community became aware 
of this law through the pioneering work of Tweedie (1941, 1945, 1946, 
1947, 1956, 1957a, 1957b). The very name "inverse Gaussian" is Tweed­
ie's creation and is based on his observation that the cumulant function 
of this law is the inverse of the cumulant function of the normal law. 
From the point of view of probability and mathematical statistics the 
distribution can be regarded as a natural exponential family generated 
by the one-sided stable law with index ~. Thus if ). > 0 and 

J.L(dx) = J 27r~3 exp (- 2~) 1R+(x)dx, 

then the Laplace transform of J.L( dx) is 

100 e9XJ.L(dx) = -v'-2)'() for () E (-00,0]. 
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2 Distribution theory 

Thus the natural exponential family generated by 1-£( dx) is 

J 2:x3 exp ( - 2~ + Ox + .; -2AO) 1R+ (x)dx. (1.1). 

Writing 0 = -~, 1-£ > 0 we obtain the familiar form in which 
Tweedie presented this law (abbreviated IG(/-L, A)), namely, 

(1.2). 

It is clear from (1.1) and (1.2) that the Laplace transform is given 
by 

Tweedie also provided three other versions corresponding to the 
parametrizations where (/-L, A) is replaced by (a, A), (/-L, cp) and (cp, A) 
with A = /-LCP,/-L = (2a)-t,a > O. The respective densities are 

h (x; a, A) = J 2:x3 exp ( - 2~ - aAX + AV2'a) 1R+ (x), 

h(x; 1-£, cp) = J 2~~3 exp ( - ~: - ~: + cp) 1R+ (x), and 

13 (x; cP, A) = J 27r~3 exp ( - 2~ - ~2: + cp) 1R+ (x). 

Each of these forms is suitable for data analysis in different disciplines. 
One can readily verify the following relationships. 

f(X;/-L,A) = /-L-1h (~;l,CP) = A-1h (X;CP,l) 

Thus the parameters /-L and A are of the same physical dimension as 
the random variable X. When /-L = 1, the density is referred to as the 
standardized inverse Gaussian law or more simply as Wald's distribution 
(Zigangirov,1962), since the same family emerges as the limiting law of 
the sample size in a special case ofWald's sequential analysis (1944).The 
distribution function F(x) is 

where 

F(x) = <T>(a(x)) + exp (2:) <T>(a(x)) 

a(x) = x - /-L vA/x, a(x) = _ x + /-L VA/X. 
/-L /-L 
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The parameter 1> determines the shape of the distribution and the 
density is highly skewed for moderate values of 1>. As 1> increases the 
inverse Gaussian tends towards the normal law. Some densities are pre­
sented in Figures 1.1 and 1.2 for various values of J..L(>' = 1) and >'(J..L = 1). 
The density is unimodal with the mode located at 
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9 1 3 
X mode = J..L{(1 + 41>2)'2 - 21>} · 
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1 
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Figure 1.1 Density functions of IG(J..L , A) for fixed A and increasing J..L 
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z.s 

z Parameter value: 

1-1=1 

loS 

1 

o.s 

o 0. 5 1 1. 5 z z.s 

Figure 1.2 Density functions of IG(J.L, A) for fixed J.L and increasing A 

Moreover the Laplace transform of t has the form 

which is the product of two Laplace transforms, namely, that of a gamma 
law, r(~, ~) and that of an inverse Gaussian law, IG(~, ;2). Thus the 
IG law has both positive and negative moments and it can be shown 
that for real k they are related by the formula 

lE (~ r = lE (:) k+1 

We will now briefly examine some limit laws of X and X-I when 
.c(X) = IG(J.L, A). 
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1.1 Limit Laws 

From the Laplace transform of X, namely 

we have upon writing ¢ = ~ 

IE (exp(-OX)) = exp [+ -(1+ 2:n 1 

Suppose ¢ -? 00. Then 

Hence 

lE {exp ( - 0:) } -? exp( -0). 
This shows that as ¢ -? 00 ~ -? 1 in probability. Note that this is 
independent of how A and j.£ behave individually, as long as ¢ -? 00. 

When j.£ is fixed and A -? 00, we get X -? j.£ in probability as 
X-I -? j.£-1 in probability. 

On the other hand we could have A, j.£ -? 00 or A -? 00, j.£ -? 0 or 
A, j.£ -? O. 
(a) limit law of v'¢( 2ft - 1) = Y1 · 

lE [exp {-O/¢ (~ - 1) }] = exp(O/¢)lE [exp { - oV:X}] 
= exp(O"q) exp {¢ _ ¢ (1+ 20; ~:) t} 
= exp(O"q)exp {¢ -¢ (1+ ~n 
= exp {O/¢ -O/¢ + 022 (1 + 0(1))} 

02 
=} exp 2 as ¢ -? 00. 

Pakes' continuity theorem (1978) for moment generating functions now 

yields v'¢ (* - 1) -? N(O, 1). 



6 Distribution theory 

(b) limit law of Y2 = /¢ (~ - 1). We can write Y1 = /¢ (~ - 1) 

as X /¢ (~ - :k). If JL remains fixed then from (a) and Slutsky's 

lemma, Y2 behaves like JL/¢ (~ - :k) so that JL/¢ (:k - ~) ---7 

N(O,l). This suggests /¢ (~ - 1) ---7 N(O, 1), if ¢ ---7 00, regardless 
of how JL behaves. Direct verification involves computation of 

Whitmore and Yalovsky (1978) observed that the convergence to 

normality of /¢ (,* - 1) was not fast enough. From the expression for 

the distribution function of X, namely F(x; JL, >,) we have for x = 1, a 
power series expansion as ¢ ---7 00 yielding 

1 
F(I; ¢) = "2 + exp(2¢)<I>( -2.,f¢) 

1 1 
~ "2 + y'81f¢' 

Thus the transformation X f--t /¢( '* -1) results in an error of at least 

b. This error exceeds 0.006 unless ¢ » 1000. Hence Whitmore 
V 87ft/> 
and Yalovsky propose the transformation 

to obtain a much closer approximation to normality. Denoting by X Q 

and ZQ the IOOath percentile of the IG and the standard normal law re­
spectively the above transformation provides the following approximate 
relations between X Q and ZQ. 

( ZQ 1 ) X ~JLexp ---
Q .j¢ 2¢ . 
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1.2 Sampling distributions 

We now develop some basic results concerning the sampling distri­
butions associated with the inverse Gaussian distribution. These distri­
butions are used in subsequent chapters that deal with statistical infer­
ence. Throughout this book we use the notation £(X) = IG(f.L, A) to 
indicate that a random variable X follows the inverse Gaussian law with 
mean parameter f.L and A a secondary parameter. Since the IG law is 
a special member of the Halphen family, known more commonly as the 
generalized inverse Gaussian law, we will, as the occasion demands, use 
the notation GIG(a, X, 'IjJ) to denote the Halphen family. We remind the 
readers that when a = -~, X = A and 'IjJ = ;r we obtain the IG(f.L, A) 

law, and when a = ~,X = A and 'IjJ = ;2 we obtain the reciprocal inverse 
Gaussian law which is abbreviated as RIG(f.L, A). For a random sample 
of fixed size n from IG(f.L, A), denoted by Xl, ... ,Xn , the log likelihood 
I (f.L, A) is proportional to 

(1.3) 

where X = (Xl + .. + Xn)/n and X_ = Ci1 + ... + L )/n. Differenti­
ating (1.3) with respect to f.L and A we obtain the maximum likelihood 
estimates p, = X and ~ -1 = ~ E (L - ~). These results readily follow 

from exponential family theory. Moreover T = (X, X _) forms a minimal 
sufficient statistic for (f.L, A). Not only is T complete for the family but 
by an application of the Lehmann-Scheffe theorem (fl, 5. -1) are minimum 
variance unbiased estimators of (f.L, A-I). To generalize this slightly we 
consider a random sample (Xl' ... ' Xn) such that £(Xi ) = IG(f.L, Ai) 
where Ai = AOWi' with Wi > 0 and known and AO > O. Then it follows 
that 

n n 

p, = LWiXdLwi (1.4) 
i=l i=l 

and 

'-1 1 Ln 1 1 AO = - Wi(- - -:-). 
n X· 11. 

i=l % r' 

(1.5) 

To obtain the distribution of p, we consider the Laplace transform 
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Lp.(O). 

Lp.(O) = ITLXi (:'iO.) 
i=l L....Wz 

n (( 1)) AOWi 2f..L20 '2 
= IIexp - 1- (1+-.) 

i=l f..L Ao~Wz 

= exp (AO~Wi (1- (1 +~) t)) . 
f..L AO~Wi 

This formula says that 

yielding us the following proposition. 

Proposition 1.1 The sampling distribution of the mean of n indepen­
dent observations from IG(f..L, AOWi), f..L, Ao, Wi > 0 is IG(f..L, Ao~Wi)' 

Next we examine the sampling distribution of Q = ~ E wiCk; -7;)' 
The joint distribution of (Xl,'" ,Xn ) is 

so that conditionally given p, the joint law of (Xl!'" ,Xn ) is 

( AO) n2"l I1~-1 wit p,! (AO '" ( 1 1)) 
211" (EWi)t I1x! exp -"2 L..JWi Xi - P, 

The Laplace transform of AO E Wi (i; - t) in this conditional distribution 

does not contain p, and is (1 + 2(1)-(n;1) so that AO EWi(i; - t) JL P, 
(is independent of) and follows a X~-l law. 

This gives us the next proposition. 

Proposition 1.2 Suppose that X = (Xl!'" ,Xn ) where the Xi is a 

sample from IG(f..L, AOWi), where f..L, AO, Wi > O. Then p, = E~~:~:; is 

independent of 
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When J.£ = ati and Ai = at~ the distributional result was given in 
Seshadri (1993). Under the hypothesis of Proposition 1.2 it is a simple 
exercise to verify the next proposition. 

Proposition 1.3 Let Qo = -4 (E~_lWi:i-tt)E~_lwi) and 
tt 2:i=lWiXi 

- ~Wi(Xi-J.£)2 - 2 2 
Q = Ao ~ 2X ; then £(Q) = Xn and £(Qo) = Xl 

i=l J.£ ~ 

It is easily verified that Q = Q + Qo and the decomposition parallels 
that for the normal law. In fact Q admits of a further decomposition 
as stated in the following theorem. Its proof is similar to the case when 
£(Xi) = IG(ati' atn for a, ti > 0 and can be found in Seshadri (1993). 

Theorem 1.1 Let £(Xl , ... , Xn) = IG(J.£, AOWl) 0 '" 0 IG(J.£, AOWl) 
and define 

k = 1,2, ... , n - 1. Then (Ql,'" , Qn-l, E~~ll WiXi) is a sequence of 
independent random variables and £( Q k) = X~' 

Suppose that £(X) = IG(J.£, >.). What is the distribution of Y = 
J>,..(X - J.£)/ J-L,fX? This is given in the next theorem, due to Chhikara 
and Folks (1974). 

Theorem 1.2 Let £(X) = IG(J-L,>') and define Y = J>,..(X -J-L)/W/X. 
Then the density of Y is 

Proof The map X --t Y represents a bijection from .IR+ to R. Now 

dy = ~:3-W). So if we let t = y'x we obtain the equation 

whose admissible solution is 
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Since x + J.L = t2 + J.L = (J.L2+4>'J.L)+~~v'J.L2y2+4>'J.L, writing t1 = J.L2y2 + 4AJ.L 
we have 

Hence 

This shows that Y has a weighted standard normal law where the 
weight w(y) satisfies w(y) + w( -y) =constant. 

Theorem 1.2 leads to the following corollary. 

Corollary 1.1 For a random sample (Xl, ... , Xn) from IG(J.L, A), the 
density of ..;;J.(X - J.L)/J.LVx is the density given in {1.6} with nA re­
placing A. 

Chhikara and Folks also studied the sampling distributions of a few 
other statistics which we now develop. 

Mimicking the results for the normal law it is possible to study the 
density of the ratio 

(1. 7) 

where 
n (1 1 ) V=L-,-=' 

i=l X t X 

Theorem 1.3 Let T be defined as in {1.7} based on a random sample 
from IG(J.L, A). The density of T is 

where 

(1 - h(t))(1 + b )-~ 
v'n"=1Be(~, n'21) 

n-l 

t 100 X-2- exp( -x) d ht =-- x 
() r(~) 0 2(n-l+t2)n¢+t2x 
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with ¢ = AI fl.. (Be(a, /3) refers to the Beta function}. 

Proof The joint law of Z = VnXjjJL) and U = AV is, using (1.6), 
JL x 

11 

1 ( z) n-3 (v z2 ) 
Pl(Z,U) = V21f2n21r(n;-1) 1- ..)z2+4n¢ u-2-exp -'2-2" . 

With the change of variables v = u, t = J a the Jacobian being 
u/{n-l) 

J n~l' the density is 

with support (t E JR, v E JR+). Hence integrating with respect to v, we 
obtain 

A final change of variable y = ¥ (1 + nt~l) gives 

where 

( 
2 ) -n/2 1 + _t_ n-l 

fr(t) = Vn=1Be(~, n;-l) (1- w(t)) 

n-l 
t 100 y-2-e-Ydy 

w(t) = 1- -n . "-
r("2) 0 Jt2y + 2n¢(t2 + n - 1) 

(1.8) 

Equation (1.8) shows that T has a weighted Student's law with (n -
1) degrees of freedom, the weight satisfying w(t) + w( -t) = constant. 
Observe that the density is a function of nand ¢. As ¢ --+ 00 ITI has a 
folded 't' distribution while T2 has the F distribution with 1 and (n - 1) 
degrees of freedom. 
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The next sampling distribution we consider is that of Z = XV / (n -
1). The statistic Z was shown (Seshadri 1988) to be a U-statistic. Indeed 
we have 

where cp(a, b) = (a2~~)2 is the symmetric kernel of degree 2. From the 
Lehmann-Scheffe theorem it follows that Z is the uniformly minimum 
variance unbiased estimator of~. We now derive the distribution of Z. 

The joint law of (X, .AV) is, over (1R+)2 

( n.A )1/2 v.!!jl exp (-¥) (n.A (x-p,)2) 
-- exp -- . 
2nx3 2 n;l f(n;-l) 2p,2 x 

Letting Zl = XV the density P(Zl) is 

( n.An) exp (~ ) z~ ()() x-l}-l ex (_ n.Ax _ .A(n + Zl)) dx 
n2n r (n;-l) Jo p 2p,2 2x . 

Using the definition of the modified Bessel function we obtain the density 
of Zl as 

1/2 (n.>.) n R 
2 (~~) exp Ii" zn;3 (1+ Zl)T K!! (n.A 1+ Zl). 

n2np,n r(n21) 1 n 2 p, n 

Finally the density of Z with support 1R + is 



Sampling distributions 13 

Using the formula 6.596:3 (page 705) from Gradshteyn and Ryzhik(1963), 
the moments of Z are easily computed. In particular 

J.I. 
E(Z) = ~, J.l.2 ( (n + I)J.I.) 

Var(Z) = (n _ I)A2 2 + nA . 

We have thus proved 

Theorem 1.4 Let X be the sample mean of n independent identically 
distributed random variables from IG(p" A) and define V = ~~=l L~i 
-'* ). Then Z = XVI (n - 1) is a U -statistic whose density is given in 
{1.9}. 

The maximum likelihood estimate of ¢ = AI J.I. can be shown to be 
W = (nIXV) whose distribution depends on J.I. and A only through the 
ratio ¢ = AI J.I.. Its density can be directly obtained from (1.9) by writing 
W = nl(n-l)Z. The next theorem due to Folks (1972) gives the density 
ofW. 
Theorem 1.5 The sampling distribution of the maximum likelihood 
estimator of ¢ = AI J.I. based on a random sample from IG(J.I., A) is 

(n+2) 

(n¢t exp(n¢)w 4 K vT+W 1 
y1iT(n;1)2n;1(I+w)V/2(n_l) v(n¢ +w) R+(W) 

where v = n12. 

We leave the verification as an exercise. However, we give an ex­
pression for the distribution function Hq,{w) based on a result due to 
Hsieh (1990). 

where 

P[W :::; w] = Ht/>(w) = exp((n¢)(I- v'1 + w- 1 )) S{w) 
v'1 + w-1 

S(w) = I: ( (n¢)i ~ (i + s)! ) . 
i=O i![2wv'1 + w-1] ~ s!(i - s)![2n¢v'1 + w l]s 

Let P[W < Wa I ¢ = ¢o] = a, (0 < a < 1). Then for any fixed ¢ < ¢o 
Ht/>(wa ) ~ 1 as n ~ 00. Moreover Ht/>(w) is decreasing in ¢. These 
properties are discussed by Hsieh who shows that tests of hypotheses 
on ¢ based on Ware consistent (see Chapter 4 Section 4.4). Our next 
result concerns the ratio R = l. 
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Theorem 1.6 The distribution function of R = l based on a random 

sample of size n from IG(J-L, >.) is 

F ( ) _ 1 _ (_ n¢ ) ~ (r - 1)i ~ (i + j)!(n¢)i-j 
R r - exp r;; L...J ',L...J ' ill±! 

V r - 1 i=O ~, j=O j!(i - j)!2i+3r' 2 

if n is odd and 2: 3, 

= f Gy (n(r : 1)¢) C:~3 )! exp ( -n¢ C~ + ~ - 1) ) dz 

ifn is even, 

Here Gy (.) is the distribution function of a chi-squared variable with 
(n - 1) degrees of freedom. This theorem is due to Patil and Kovner 
(1976). (There are some minor misprints in their paper). 

Proof Rewrite Y = >.V as Y = n>. (.x_ - ~) or Y = nJ-L (Rj-l) ¢' 

Then, we have, from the independence of Y and X, 

00 1. 

P(YX ~ t) = 11" fx{x)fy(y)dydx 

= 100 Gy (£) fx(x)dx, 

If n ~ 3 and is odd, Gy (,) has the following closed form expansion 

Gy (!) = 1 _ (n~/2 (t/~X)i exp (_~) . 
x L...J~! 2x 

i=O 

This enables the calculation of Fyx{t) as 

(
n>.) t n¢ (n-3)/2 {t/2)i 100 exp ( - (t~;)') - ~) 

1 - -2 e L -,,- '+3/2 dx 
71' i=O Z, 0 Xl 

(
n>.) t (n-3)/2 en¢(t/2)i i (i + j)! ( r:-:t)-j 

= 1- 271' ?=, ( t )i ?= (i _ j)!j! 2n¢y 1 + ;X 
~=O z! J-L + n¢ J=O 

exp (-n¢J1 + ;),) 
x -~======-~ 

In¢ (1 + nt),) 

= 1- exp (-n¢Jl + t,) (n~/2 {t/2J.L)i w. 1E{Z)-i 
nA i=O i! (1 + ;),) 2 
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where 

.c(Z) ~ IG (I'VI + :>..,n>.. (1 + :>..) ) . 
Finally we note that 

since Y X :S t ~ R :S 1 + n\' This proves the result for n odd and ~ 3. 
If n is even 

('0 ( t) ( nA ) t (n¢x nA ) 
Fyx{t) = 10 Fyx;- 27fx3 exp - 2JL - 2x + n¢ dx. 

Letting z = ~, t = nA{r - 1) we obtain the result. "-

1.3 Conditional distributions 
Consider the following transformations Tl = nX, T2 = n{X _ + X) 

on the sample space and let us write (h = ~ (1 - :2 ), (}2 = - ~ so that 

We state and prove a theorem concerning the conditional law of Tl given 
T2 • 

Theorem 1. 7 The conditional law of Tl given T2 where Tl = nX and 
T2 = n{X + X_) based on a sample from IG{JL = 1, A) is 

where 

(1.10) 

Proof Since X is independent of AV, the joint law of (X, AV) is, over 
(JR+)2 

nA ncp nA nA V-2- AV H£ n-3 

--e ex --x-- ex --
27fx3 p (2JL2 2X) 2~r (~) p ( 2)' 

2 

We write tl = nx, t2 = n{x_ + x) = tl + V + ~l and transform from 

(x, AV) to (tb t2) obtaining for 0 < ~ + * < ~ < 00, the joint law of 
(tl,t2) as 
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(1.11) 

We first consider the case J.L = 1. What is the marginal law of T2? 
Setting J.L = 1 in (1.11) we need to evaluate the integral (apart from the 
constants) 

S 1 · 2 2 b . tdv!(t2-2n )(t2+2n ) o vmg t2 + n - tlt2 = 0 we 0 tam tl = 2 . Clearly 
t2 > 2n and if we let z = t2 - 2n we have for the region of integration 

Dtl = {tl I .../ z + 2n - J Z2 + 4nz < tl < .../ z +2n + J z2 + 4nz} . 

Thus we need to evaluate 

Let v = t~1/2. Then Dv = {v I v'z + 4n- viz < v < v'z + 4n+ viz} and 

Finally we let r = nV7z-1; then Dr = {r Ilrl ~ I}, and dv = nfJ-2 dr. 

Solving nv2 - rvlzv - 1 = 0 we obtain 

rvlz + .../r2 z + 4n 
v = or 

2n 

Therefore 

-2 r2 z + 2n - rvlz.../r2 z + 4n 
v = and 

2 

n + v-2 P - rvlz.jP 
= viz 2 viz 

where P = r2 z + 4n. This gives us 

viz = 2 viz ( v'P + rvlz} = 2v1z (1 _ rvlz ). 
n + v-2 .jP(P - r2z) 4n v'r2 z + 4n 
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Hence 
I = 2 ( .:) n;-3 rI JZ2 z (1 _ r2) n;-3 dr. 

n J-I n 

Since v'r2z14n is an odd function of r we can write y = 1 - r2 and easily 
show that the integral reduces to a Beta integral. We then have 

Thus when 1-£ = 1, the marginal law of T2 is 

(1.12) 

From this one obtains the conditional law of TI given T2 = t2 for 1-£ = 1, 
as given by (1.10). When 1-£ =1= 1, the marginal law of T2 is complicated 
and involves the parameter 1-£. We give an integral expression for this 
density fOI (t2) as 

2n ( ~ ) ~ (t2 - 2n) ~ exp ( - ~ (t2 - 2n)) 1 (0 ) 
r(~)r(n2I) I (1.13) 

where 

The next three theorems deal with the conditional laws of Xl given 
various statistics. They are due to Chhikara and Folks. 

Theorem 1.8 Let X = (Xl, ... ,Xn ) be a random sample from IG(I-£, oX). 
Then the conditional law of X I given X is for 0 < Xl < nx 

(1.14). 

Proof We start with the joint law of X I and X I = 2:7=2 Xi / (n - 1) = 

n:=~I, over (1R+)2 and transform to (Xl, X) obtaining 
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After division by the density of X we obtain after substantial simplifi­
cation for 0 < Xl < nx the required density. .. 

The distribution of Xl given Z = L:7=1 (Xi - J.£)2 Xi is provided by 

Theorem 1.9 Let Xl, ... , Xn be a random sample from IG(J.£, >.). 
Then the conditional law of Xl given Z = L:7=1 (X~t)2 is 

where 

(1.15) 

Proof Let TI = L:7=2 (X~t)2. Then the joint law of Xl and TI is 

(since £. (trTI) = XLI) 

while that of (XI, Z) is 

where D = {O < (Xl~p.)2 < z}. Since £. (;2Z) = X~, we at once have 

The next theorem concerns the conditional law of Xl given (X, V). 
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Theorem 1.10 Let X I, ... , X n be a random sample from I G (fL, >.) . 
Then the conditional law of Xl given (X, V) is for Xl ED 

yfii,(n-l) ( x 3 )! ( n(xl-x)2 )n;4 
_ 1- _ _ ID Xl 

Be (~, ~) vxr(nx - xd 3 vXlx(nx - Xl) ( ) 

(1.16) 
where D = {Xl I L < Xl < U} and L, U are the 2 roots of the equation 
n(xi - x)2 - vXlx(nx - xd = O. 

We omit the proof. 

1.4 Bayesian sampling distributions 

Consider the IG(fL, >.) law with the parametrization 8 = 1/ fL. The 
likelihood function based on a random sample of size n, X = (Xl, ... , Xn) 
is 

(1.17). 

Banerjee and Bhattacharyya (1979) obtain some Bayesian results with 
the use of a prior, known as a vague prior 

for some arbitrary constant c. With this prior, the posterior distribution 
of X is 

where, as usual v = 2:;=1 (li - *). The denominator when first inte­
grated with respect to >. gives 

h· h . h h t £ . t 2 n(ox-l)2. ld w Ie ,Wit t e rans ormatIOn -1 = Yle s n- vx 

r(~)r(~)Sn-l (~) 
n _.!. 

(~P (nvx) 2 
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where Sn-l(-) is the distribution function of Student's It' with (n - 1) 
degrees of freedom. We thus obtain the following theorem. 

Theorem 1.11 Suppose that X = (Xl, ... ,Xn ) is a random sample 
from JG(~, >.) and we use a vague prionr(8, >.) <X >. -\ then the posterior 
distribution of (8, >.) given the data X is 

where D = {(8, >.) I >. E JR., 8> O}. 

Corollary 1.2 With the same prior as in Theorem 1.11, the posterior 
distribution of 8 is 

(1.19) 

It is clear from the density that we have a truncated Student's t 
(truncated from the left at zero) with location parameter ~ and scale 

parameter J n(n~l)x· 
Corollary 1.3 With the same prior as in Theorem 1.11, the posterior 
distribution of >. is 

Banerjee and Bhattacharyya call this law a modified gamma and 
denote it by r (~, n;-l, ¥). They show that this law is unimodal. To 
obtain a family which is a natural conjugate family for (8, >.) they con­
sider a family of priors which is proportional to the likelihood (1.17) thus 
obtaining 
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where J-l > 0, v> 1, z > 0 and K is a suitable normalizing constant. By 
comparing with (1.18) we have 

We are then lead to 

Theorem 1.12 With a natural conjugate family for (6,)') as defined 
in (1.21), the posterior density of (6,)') given the data X is 

(1.22) 

where m = n + (v - 1) y = nxtvz and w = v + u + ~ + ~ _ ntv . 
'nt(v-l) x z (nxtz)2' 

Kc is the suitable normalizing constant. 

It is interesting to note the similarities between (1.18) and (1.22). 
This should account for the marginal posterior of the latter exhibiting 
a behaviour analogous to the former. One can further show that the 
conditional posterior of 6 given ), is a truncated normal (truncated to 
the left at the origin), the mean being ~ and the variance y. Banerjee 
and Bhattacharyya also point out that these results are similar to the 
Bayesian results for the normal model. 

Betro and Rotondi (1991) have derived Bayesian sampling laws us­
ing a prior not belonging to any conjugate family. This method provides 
parameter estimates whose computation relies heavily on numerical in­
tegration. Their parametrization of IG(/-L,),) gives 

which can be rewritten as 

The prior chosen by these authors is 

where 
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and 

with a, 'T}, w, 'Y > O. 



CHAPTER 2 

ESTIMATION 

2.0 Introduction 

We have seen briefly that the principal parameters /-L and A are es­
timated by their maximum likelihood estimators. The moment estimate 
for the variance m3jA is 82 = I:~=1(Xi - x)2j(n - 1). As a result it 
is possible to show that as a consistent estimator of A -1, 82/x3 has an 
asymptotic efficiency of ¢ / (¢ + 3). For small ¢, the estimator is not 
reliable. The reciprocal of X can be used to estimate 1/ /-L, but has a 
bias equal to 1/ A, and a mean squared error equal to (¢ + 3) / A 2 . We 
reproduce in Table 2.1 uniformly minimum variance unbiased estimators 
(UMVUE) of several parametric functions of /-L and A as given by Iwase 
and Seta (1983) as well as Korwar (1980). Uniformly minimum vari­
ance unbiased estimators for cumulants and the density itself were given 
by Park et al. (1988). We state two propositions in the next section 
that provide these estimators. Also presented is Table 2.2 indicating 
estimates of the reliability R(t) = 1 - F(t). 

Quite recently Balakrishnan and Chen (1997) have prepared exten­
sive tables for the determination of means,variances and covariances of 
order statistics from the inverse Gaussian law. These quantities are very 
useful in the derivation of best linear unbiased estimators of the loca­
tion and scale parameters. They present formulas for their derivation 
and furthermore discuss the best linear unbiased estimation methods for 
complete as well as Type-II censored samples. Extensive tables are de­
voted to the variances and covariances of these best linear unbiased esti­
mators for sample sizes upto 25 for various values of the shape parameter 
at various levels of censoring. The use of these tables is demonstrated 
with numerical examples. Finally they present a useful application of the 
means of order statistics in constructing Q-Q plots as well as developing 
formal correlation-type goodness-of-fit tests. 
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2.1 Estimation 

Table 2.1 UMVU estimators 

Parameter 

¢ = A/m 

m 

3 

V1 
15 
¢ 

Uniformly minimum variance unbiased estimator 

*(n-3)/V 

V/(n - 1) 

r«(n-l)/2)VX3V F(1 3 n. X V ) 
V2r(n/2) n x 4' 4' 2' - n n 

*(n - 3)/Xn V -I/n 

(1/ Xn) - V/n(n - 1) 

*(n - 3)/X~V - 6/nX~ + 3V/n2(n - I)Xn 

3r((n-l)/2) (X V)t x F (_1 I.!!. _ Xn v) 
V2r(n/2) n 4'4'2' n 

15Xn V/(n - 1) 

r((n-l/2)(X V)tF (_1 I.!!. _XnV) 
V2r(n/2) n 4' 4' 2' n 

r(r~l) r(¥) X21'-lV1'-l 
,fo r(Y+1'-l) n 

xF (r -1 21'-1. n+21'-3. _XnV) 
, 2' 2 ' n 

r((n-l)/2) X- 1V 1'- 1 
r((n-l)/2+1') n 

X {r(1'-l/2) (n-l + r) + ((1'-l)! - ~) X V} 
,fo 2 2 2n,fo n 

n 2: 4 for * and n 2: 2 elsewhere. 



Estimation 25 

Table 2.2 Umvu estimators of R(t) 

Parameter umvue 

status 

A known 
x> nXn 

x<o 
2{n-l)A 

n~2 e nXn <p( -W2) otherwise 

where 

~(x - Xn) JX {nXn + (n - 2)x} 

WI = Jx(nX n _ X)Xn' W2 = JnXn(nXn _ x)x . 

m known R(x; A) = 1, { 
0, x > ~ {(2m + t) + v4mt + t2} 

x < ~ {(2m + t) - v4mt + t2} 
n-2 

Gn-I(wd- {t+:m } -2- Gn - I (W2) otherwise 

where 

WI = vn=I(x - m) , W2 = vn=-r(x + m) , t = L (Xi - m)2 
Jtx - (x - m)2 Jtx - (x - m)2 Xi 

and G denotes the right tail of Student's t with (n -1) degrees of freedom. 

1 
0, x> U 
1, x < L 

m, A unknown R(x; m, A) = _ n-2 [ 4(n-I)] n~3 
Gn- 2(wd n 1 + nVxn 

xGn- 2(W2) 

where 
In(n - 2)(x - Xn) 

Wl= , 

JVxXn(nXn - x) - n(x - Xn)2 

_ In(n - 2) [Xn + n~2x] 
W2 - , 

JVxXn(nXn - x) - n(x - Xn)2 

L= Xn {n(2+VXn)-J4n(n-1)VXn+n2v2x~} 
2(n + VXn) 

u= (Xn ){n(2+VXn)+J4n(n-l)VXn+n2v2x~}, 
2 n+ VXn 
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and G denotes the right tail of Student's t with (n- 2) degrees of freedom. 

Proposition 2.1 Uniformly minimum variance unbiased estimators 
for the rth cumulant of IG(/l-, )..0), where )..0 is known is given by 

( )
2r-2 00 ( ) 

Kn(x) =:0 ~x3r-2n3-4r L r -! + k r(r + k - 2) 
k=O 

for r = 1,2, ... 

Proposition 2.2 A uniformly minimum variance unbiased estimator 
of the density f(x; /l-, )..0) of the inverse Gaussian law is 

( (n-1)5)..o)t( X)! ()..o(x-nx) 
2 5-3 =--- exp - 2 (- )- l(o,x)(x). 1C'nx x-x xx-xx 

The Fisher information based on a single observation from IG(/l-,)..) 
is 

where (h = - ~ and O2 = - ~. Expressed in terms of /l-, ).. we have 

( tJ.\'+fr -X). 
_I!:. i£ 

>. >. 

Table 2.1 can be used to estimate quantities like the coefficient of 
variation~, the skewness 3~ and kurtosis 15~. 

If K,2 denotes the uniformly minimum variance unbiased estimator 
of the variance of the inverse Gaussian law IG(/l-,)..) then it is known 
that the variance of the estimator, for large values of n, is approximately 
equal to 

2.2 A shifted model 
Padgett and Wei (1979) extended the IG(/l-,)..) law by introducing 

a threshold parameter Q. Thus if £(X) = IG(/l-, Q,)..) then 

(2.1) 
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The extra parameter a varies in (-00, 00 ). For this law A is a scale 
parameter and /-L* = /-L + a is the mean. This law has been proposed 
as an alternative to the three parameter lognormal, gamma and Weibull 
laws investigated by several authors. One peculiarity with respect to 
these models is that maximum likelihood estimators can yield estima­
tors that may be inconsistent and do not have asymptotic normality 
since the usual regularity assumptions are not satisfied. The likelihood 
may become infinite as the threshold parameter a tends to the minimum 
order statistic. Cheng and Amin (1981) show that for the IG(/-L, a, A) 
model maximum likelihood estimation is numerically straightforward 
and cannot produce inconsistent estimators. First we consider moment 
estimators of a, /-L and A. The cumulant function of IG(/-L, a, A) is 

¢ (1 - (1 + ¥) t) -at and therefore the first three cumulants are 

K - /13 K _ 3/15 
Kl = /-L + a, 2 - T and 3 - v· 
Hence 

fj,=X-ii 
-3 -3 

- nX X 
A = ~n (X _ X)2 = S2 (2.2) 

L .... n=l ~ 

The following theorem due to Padgett and Wei gives the asymptotic 
normality of the vector (ii, fj,,~) of moment estimators. 

Theorem 2.1 Let (ii, fj" fj,) be as defined in {2.2}. Then (ii - a, fj, -
/-L) - A)t converges in distribution to N3 (Q,~) where ~ = G AGt, 

and 
3(/-L2 - /-LI)2 

9l(/-Ll,/-L2,/-L3) = a = /-Ll - 3 + 2 2 
/-L3 - /-Ll/-L2 /-L2 

g2(/-Ll, /-L2, /-L3) = /-L = /-Ll - a 

ILr 
g3(/-Ll,1L2,/-L3) = A = ( )2' 

/-L2 - ILl 
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,\,n X. ,\,n X2 
Proof By the Central Limit Theorem, ..jn( ~ - /-Lt, ~ - /-L2, 

L:: xl _ /-L3) t converges in law to N3 (Q., A). The functions 9i are differ­
entiable and an application of Rao's theorem (1973) shows that 

converges in law to N 3 (Q., G AGt). .,. 

One can simplify L:ME (the covariance matrix of the moment esti­
mator) to obtain 

Using consistent estimates of /-L and ¢ an estimate of L:ME can be ob­
tained. 

2.2.1 Maximum likelihood Estimation 

The log-likelihood corresponding to IG(fJ-, a, A) is 

n ( A ) 3 I:n A I: (x - fJ- - a)2 l(/-L,a,A) = -log - - - log (Xi - a) - - ~ . 
2 21f 2 2//2 x'-a 

i=l r ~ 

(2.3) 
For every fixed a, the maximum of l(/-L, a, A) can be obtained as 

(l=x-a 

~-1(a) = n-1 (t,(Xi -a)-1 - ~-1(a)) . (2.4) 

N ow let us write 
£*(a) = .cx(a; fl(a), ~(a)) 

where 

3 

.cx(a; fl(a))(a)) = (n- 1 I: ((Xi - a)-l - (x _ a)-I) ) -'2 

n 

X II (Xi - a)-t l[a<X(1)l(Xl,'" , xn) (2.5) 
i=l 
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and where X(1) is the smallest order statistic. Observe that (2.5) repre­

sents the likelihood function using the estimates jl and~. The maximum 
likelihood estimate of a is obtained by maximizing C* (a). Once the max­
imizing value of & of a is determined, p,(&) and ~(&) are obtained by 
substitution. 

Returning to (2.5) we can now write 

n-3 

£*(a) = (X(l) - a)-:-

( 1 ",n X(l)-a _ x.<!)-a) 2' TIn (x. _ a)f 
n L..J~=1 xi-a x-a ~=2 (~) 

When a --+ X(l) the denominator can be shown to converge to a con­
stant. Therefore if n > 3 10gC*(a) --+ -00 as a --+ x(1)' When 
n > 3, for a fixed set of observations it turns out that L:*(a) converges 

to (~L:(Xi - x)2f1f as a --+ -00. To show this let us consider a series 
expansion of the log-likelihood function (2.3). Observe first that 

while 

Hence 

Next 

1 1 x x 
--~--+---. 
X - a a a2 a3 

1 nIl 1 2 
-''---_ ~--"(Xi-X). n ~ X· - a x - a na3 ~ i=l ~ 

so that the first two terms of (2.3) give approximately 

n 2 3n ( 1 ) --log(2ns )+-x+O - . 
2 2a a 2 

The third term is roughly equal to 

which reduces to 

S-2 ( 2 nx3 L~=l X~) 0 ( 1 ) -- ns +-+ + -. 
2 a a a2 
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Thus 

where 91 is the sample skewness. Finally we can write 

l(p"a,>.) = lo + ±h + 0 (~2)' 

As a -t -00 we note that l(p" a, >.) -t a constant lo. So for -00 < a < 
X(l), l(p" a, >.) is bounded above. Furthermore if the sample skewness 
91 > 0, l(p" a, >.) decreases as a -t -00. Thus l(p" a, >.) considered as a 
function of a must attain a global maximum at a stationary point where 
g! = O. When 91 < 0, l(p" a, >.) can achieve its overall maximum at 
a = -00. Padgett and Wei(1979) report that empirical evidence points 
to a monotone decrease of the likelihood function. Cheng and Iles (1990) 
show that in this case (when a -t -00) lo is just the log-likelihood 
function corresponding to a normal model, called an embedded two­
parameter model. A similar situation obtains for the three-parameter 
gamma and log normal models. The embedded two-parameter case cor­
responds to infinite parameter values in the original model. We will now 
describe following Cheng and Iles the relation between the parameters 
of the 3-parameter model and the embedded two parameter model and 
the recipe for deciding which model is appropriate. 

Let f(x - a, (}) be a probability defined for x > a > -00, a being a 
threshold parameter and (), a vector of parameters excluding a. Denote 
by £(a,(}) the log-likelihood based on X = (Xl,'" ,Xn ) a random sam­
ple. To examine the behaviour of £(a, 0) as a -t -00, one should first 
look for a transformation 'Ij; = (~) where p, = p,( a, (}) and a = a( a, (}) are 
respectively the mean and standard deviation of f(x - a, (}). Let £( a, 'Ij;) 
be the log-likelihood after the parametrization and assume that we can 
expand £ in an asymptotic series in a in -00 < a < X(1) (including the 
limit as a -t -(0), X(1) being the minimum order statistic. Thus let 

(2.6) 
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In the above we will further assume that £0, £1 are twice continuously 
differentiable in 1/J and R( 1/J, a) is continuously differentiable in 1/J and 
R(1/J, a) and its derivative are of the order O(a-2) as a -t -00 locally 
uniformly in 1/J. Cheng and nes establish the following theorem which 
we state without proof. 

Theorem 2.2 Let the log-likelihood of the three-parameter model have 
the structure (2.6). Then 
(a) £o( 1/J) is the log-likelihood of a two-parameter embedded distribution, 

(b) if C (a) = max", £( a, 1/J) and ~ is a stationary maximum of £0 (1/J) 
and the matrix of second partial derivatives ~~~ is non-singular in the 

neighbourhood of~, there exists ~(a) maximizing £(a, 1/J) = £(a, ~(a)) 
such that ~(a) -t ~ as a -t -00 and moreover C(a) = £o(~) + 
a-I £1 (~) + O(a-2). 

In the case of the three-parameter IG(f-L, a, >.) model, we first let 
>. = f3, and then parameterize 

( f-L( a, (}) ) ( a + , ) 
1/J = a( a, (}) = 1,1 v11 

where f3 > 0 and x > a if, > 0 while x < a if, < O. The density (2.1) 
takes the form 

( (3, )t ((3(x-a-,)2) 
2n(x - a)3 exp - 2,(x - a) . 

On expanding the log-likelihood it turns out that 

and 

£1(1/J) = ~ t(Xi - f-L) - L~=1~:i2 - f-L)3 
~=1 

Furthermore £1 (~) = - ~ 8g1 where 8 is the sample standard deviation 
and gl the sample skewness. The question as to when to fit the IG 
model and when to fit the normal model is settled by examining gl. If 

gl > k~ for k > 0 (to be determined) the IG model is appropriate. 

Otherwise the normal model is fitted. If the underlying law is the IG 
model it turns out that gl f'V N (0, *). The constant k is chosen so that 
the probability of fitting the IG model when the true model is Gaussian 
is small. For k = 1.64 the probability is about 5%. The estimate for a is 
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obtained by solving the implicit equation a.c;la) = o. A recommended 
method due to Cheng and Amin (1981) is to use an iterative procedure 
starting with 

ao = a(1) - {2s2Iogn)-1(x - X(1»)3 

( 3,,( )-1 (-2 L:(Xi - ak)-2)) ak+1 = ak + ; ~ Xi - ak + Ak mk - n 

x (3m;; 1 A;;1 + 12A;;2) , k = 0,1, ... 

where mk, Ak are the estimates evaluated at a = ak. For further details 
the reader should consult Cheng and Amin. They also show that as 
n -+ 00, there exists in law a stationary point (&, p)) of C such that 
vn(&-a, P-J.L, A-A) is asymptotically N3(Q, L:MLE) where the elements 
of L:MLE are given by d- 10"ij, when 

d = ~ A -2 -4 + 3A -3 -3 4 J.L J.L , 

1 -1 -3 
O"u = 2"A J.L , 

_1'_1 -2+ 3 ,-3 -1+3,-4 0"22 - 2"1\ J.L 41\ J.L 1\, 

9 -5 21 -4 21 -1 -3 
0"33 = 2"AJ.L + 2J.L + 2A J.L , 

1 -1 -3 
0"12 = -2"A J.L , 

3 -4 -1-3 
0"13 = -2"(J.L + A J.L ), and 

0"23 = -0"13· 

More simply 

( 
1 

L =A -1 
MLE -B 

-1 -B) C B 
B B 

where A = ;(~2.t:), B = 3(4) + 1), C = 2<1>3~!t+12, and D = 3(24)2 + 

74> + 7). 
The above expressions are due to Jones and Cheng (1984) who also found 
the joint asymptotic efficiency of the moment estimators as defined by 

The asymptotic relative efficiencies (ARE) of the moment estimators of 
a, J.L, A with respect to the maximum likelihood estimators are given as 
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follows. 

ARE(&/a) = ¢} (3(</> + 4)(</> + 6)2)-1 

ARE(flI fJ,) = (2</>3 + 3</> + 12) (3(</> + 4) (1 + 2(</> + 6)2) r 1 

ARE(,\/,\) = </>3(3</>2 + 7</> + 7) ((</> + 4) (</> + 3(</> + 5)(</> + 4)))-1. 
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When '1'1 = 3/#, the population skewness lies in (0.4,4), the relative 
efficiencies of the moment estimators appear quite low; when '1'1 -+ 0 the 
relative efficiency reaches 1. This happens because the IG(/-L, A) tends 
to the normal law as </> -+ 00 (see section 1.1). In this instance both 
estimators perform equally well. 

An alternative version of IG(/-L, a, a) 

2 

Using the parametrization A = ~, a > 0, Chan (1982), Chan, 
Cohen and Whitten (1983, 1984) and Cohen, Whitten (1985) discuss 
estimation procedures and bias reducing techniques using the coefficient 
of skewness '1'2 , the first order statistic x(1) and the sample size n. We 
now consider some of the issues discussed by these authors. 

The distribution function of the standardized variable Z = x -;-J.t 
is 

( z) (2) (_(z+l)) 
G(z; (3) = <.P v'1+7h + exp (32 <.P ~ 

where 

Since lE [F(X(l))] = n~l' one can obtain values of,2 as a function ofthe 
standardized first order statistic Z(l) and the sample size n from tables 
of G(z; (3). Armed with an estimate of '1'2 (and hence of (3) one now solves 
the moment equations a+/-L = X, a2 = 8 2 = L~=l (Xi-X)2 /(n-1), and 
~ = 1f = (3, to obtain the modified moment estimators. These values 
are then used in an iterative way to obtain modified maximum likelihood 
estimators. The maximum likelihood estimators are the solutions to 

n2 + 3a2 b2 - 3nab - na2 c = 0 

fl = a (2.7) 

a = a[(ab/n) - I]! 

h - X ~ b - ",n (X ~)-l d - ",n (X ~)-2 were a - - a, - wi=l i-a ,an c - wi+1 i-a . 
The equations (2.7) are solved iteratively for Ii and the estimates fl 

and a obtained from the last two equations in (2.7). 
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The asymptotic variances and covariances as given by Chan et al. 
are 

where 

and 

2 
¢11 = D' ¢12 = -¢n. ¢13 = 3{33 

¢22 = ¢u + 1, ¢23 = -3{3(e - AE)/D 

¢33 = (Be - E2)/D 

9{32 21{34 A 
A = (32 + 1, B = -2- + 1, e = B + -2-

E = 9{3; A + 1, D = 2(Be - E2) + 9{32(2AE - A2 B - e). 

Cohen and Whitten caution that these quantities are strictly appli­
cable only for the maximum likelihood estimates. However, simulations 
seem to indicate that they approximate the corresponding quantities for 
the moment estimates. A final warning is given that the above variances 
and covariances are not to be used unless 12 > 1(3{3 > 1). 

In the version studied by Balakrishnan and Chen (1997) they use 
the symbol k for the shape parameter. Thus their k corresponds to 3{3, 
or the coefficient of skewness. 

We conclude the discussion with two examples provided by Cohen 
and Whitten, which is illustrative of the computational aspects of these 
procedures. We also present the best linear unbiased estimators of the 
mean and the standard deviation as well as the standard errors of the 
estimators for some selected values of the coefficient of skewness. 

Example 2.1 The maximum flood levels in millions of cubic feet per 
second for the Susquehanna River at Harrisburg, Pennsylvania over 20 
four-year periods from 1890-1969 are 

0.654 0.613 0.315 0.449 0.297 
0.402 0.379 0.423 0.379 0.3235 
0.269 0.740 0.418 0.412 0.494 
0.416 0.338 0.392 0.484 0.265. 

From the above data we have 

X(1) = 0.265, X = 0.423125, n = 20 

0- = s = 0.1253, Z(l) = -1.262. 
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From Fig 2.1 for n = 20 and Z(l) = -1.262 we find "(2 = 1.25 that 

(} = 0.423125 - 0.301 = 0.122 P, = 33;'2 = 0.301. 

Computer calculations using a FORTRAN program developed by 
Chan et al.,(1983) confirm the closeness of the approximations of the 
estimates. 

The best linear unbiased estimates of the mean and standard de­
viations using the order statistic approach together with their standard 
errors are given below for a few chosen values of "(2, the coefficient of 
skewness. 

Table 2.1 Best Linear Unbiased Estimates 

"(2 JL* a* s.e(JL *) s.e(a*) 

1.0 0.42202 0.11892 0.02655 0.02082 

1.5 0.42321 0.13231 0.02938 0.02511 

2.0 0.42733 0.15147 0.03327 0.03169 

Example 2.2 Data from fatigue life in hours of 10 bearings of a certain 
type reported by McCool (1974) are 

152.7 
216.5 

172.0 
234.9 

172.5 
262.6 

173.3 
422.6 

193.0 204.7 

For this data X(1) = 1.52.7, X = 220.48 s = 78.406 and Z(l) = 
-0.864. From Figure 2.1 the estimated value of "12 = 2.45. This gives a 
value of {l = 96.0 and hence a = 124.5. These values are quite close to 
the exact values as shown by Cohen and Whitten (1985). 
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- 2.00-7~ ~· f. . tt::-:; !tfT~~':'~; ;'!~::H J< ~~ : 
~ :/~ .r.:-:-:. _. II •... r:-r:- .. . " ' T 

Figure 2.1 Graphs of 'Y2 as a function of Z{l) and n 
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2.3 Estimation under truncation 
Assuming small and large observations from IG(J-L, A) are truncated, 

Patel (1965) has examined the problem of parameter estimation. Let Xl 

and X2 be two numbers such that 0 < Xl < X2 < 00. If IG(J-L, A) is 
truncated at the points Xl and X2, the density has the form 

where K is the normalizing constant. If f(x) is the untruncated density, 
then differentiating f (x) with respect to X we obtain 

af = (_~ + ~ _ ~) f(x). 
ax 2x 2x2 2J-L2 

Now multiply both sides by XS and integrate from Xl to X2 to obtain 

where 

s = O,±1, ... 

When the moments J-L~ are estimated by the sample counterparts, denot­
ing by M, hand c 

M= [ ~~ m~ 
m' 3 

-m'-2 
-m'-l 

-1 
-m~ 

we obtain the equation 

-2 
-2Xl 

-2x~ 
-2x~ 

2] [ ~ ] [-3m'] 
p2 -1 

2X2 ), -1 
2x~ , h = f(xd ' c = m~ 
2x~ f(X2) 3m~ 

Mh=c 

whose solutions provide the estimates of J-L and ),. 



CHAPTER 3 

SIGNIFICANCE TESTS 

3.0 Introduction 

This chapter is devoted to tests of hypotheses for parameters of 
IG(Jl., )..). We derive the likelihood ratio tests for the mean parameter 
as well as the lambda parameter in the one and two sample cases; we 
also consider tests for the Brownian motion process. The power of these 
tests is examined briefly. We study interval estimation from both the 
frquentist as well as the Bayesian points of view. Prediction intervals 
and tolerance limits are examined in detail and numerous illustrative 
examples are provided. A section is devoted to tests of separate families 
first considered by Cox (1961) and we illustrate this with applications 
to simulated and physiological data to test inverse Gaussian against the 
lognormal and vice versa. Finally we discuss Bahadur efficient tests. 

3.1 Likelihood ratio tests - one sample case 

(i) Tests for the mean Jl. ().. known). 

Let X = (Xl, ... , Xn) be a random sample from IG(Jl., )..). The null and 
alternative hypotheses are 

Writing 

Ho: Jl. = Jl.o, ().. known) vs HA: Jl. =/: Jl.o, ().. known). 

n = ((Jl.,)..) 10 < Jl. < 00,0 <).. < oo}, and 

no = ((Jl.,)..) I Jl. = Jl.o, 0 < ).. < 00, } 

the standard procedure calls for rejection of Ho for small values of 

A = L(~o) 
L(n) 

where L(Oo), L(O) are the maxima of the likelihoods under Ho and 
{Ho U HA} respectively. Routine calculation gives us 

A = exp ().. (t (Xi _-!)2 _ t (X~ - Jl.~)2)) 
i=l 2XiX i=l XiJl.o 
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so that Ho is rejected at level a when the difference between the two 
sums is small. Upon simplification we have the result that Ho is rejected 

if - n(x-~o)2 is small. The test is therefore equivalent to rejecting Ho for 
X/Lo 

large values of '~~Xlx°) ,. Since>. is known, this says that we reject Ho 
when 

WI = I Vn~::;o) I> constant 

where the constant is determined subject to P(IYI > constant I Ho) ~ 
a. From Corollary 1.1 we see that this rejection rule provides a critical 
region given by {Y < kd u {Y > k2 } where 

l k2 ( y) V0. (y2 ) 1- -- exp -- dy = 1- a. 
kl Jy2 + 4n>. ~ 2 

/Lo 

(3.1) 

Chhikara and Folks (1976) use Lehmann's criterion for uniformly most 
powerful unbiasedness of the test and show that kl and k2 should also 
satisfy 

(3.2) 

Evaluating (3.2) (see Theorem 1.2) we have upon writing M(x.;r0) = y, 
/Lo x 

since ~ ax = ~/LOX and ~X/Lo = J.L (1 + /LoY ) . Hence 
V'i dy X+/Lo X+/Lo 0 v'/L5y2+4n>'/Lo 

Thus 

l k2 ( y) ~>. (n>.y2) 1 + - exp - -- dy = 1 - a. 
kl J y2 + 4 n>. 27r 2 

/Lo 

(3.3) 

From (3.1) and (3.3) we readily see that kl = -k2 = -Zl- ~, the 100(1-
%)% point of the standard normal distribution. Therefore the likelihood 
ratio test of Ho against HA recommends rejection of Ho at level a if 
WI > Zl- ~. One sided hypotheses J.L ~ J.Lo (J.L 2:: J.Lo) against J.L > J.Lo 
(J.L < J.Lo) can be handled using the same statistic Y. These tests are 
uniformly most powerful at level a. 
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(ii) Tests for the mean (A unknown). 

As in (i) let us consider the two-sided alternative HA: Ji- =1= Ji-o. Rou­
tine computations give us the maximum likelihood estimate of A under 

Ho (Ji- = Ji-o) as L:~=l ~~g~~)2 , while under n = {Ho U HA}, p, = x and 

~ = L:~=l f~ -~)' Hence the likelihood ratio is 

The likelihood ratio test therefore recommends rejection of Ho at level 
O! for large values of IT* I (see 1.7) where 

IT*I = 
v'n(x - Ji-o) 

This amounts to rejecting Ho when 

ITI= 
(rg) 

. n (1 1) A IS large, where V = Ei=1 Xi - X = n/ A. The distribution of T is 

given in Theorem 1.3 and we are led to an equal-tails test as in the pre­
vious case, the only difference being that we reject Ho if ITI > t1-1-,n-1' 

Alternatively one could reject by using the a-fractile points of a Beta 
distribution with parameters n~1 and ~ or using an F test statistic with 
1 and (n - 1) degrees of freedom, an observation due to Miura (1978). 
For one-sided tests Chhikara and Folks reduce the tests to a test of 

H~: () ::; 0 (() ~ 0) against H~: () > 0 (() < 0) 

where () = ~ (1 - tz) and Ji-o is taken as 1. Uniformly most powerful 

unbiased tests are obtainable using the conditional law of T1 given T2 
where T1 = nX and T2 = n(X + X_), (see Theorem 1.7). Indeed we 
have 
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where D = {h I 0 < t1(~;: J:) < 1}. With the substitution 

which is none other than w = 
weighted Student's law 

n(n-l)(x-l) 
_ , one is again led to a 
xv 

--==--1---:-:----:-:- (1- (n - 1)WVt2 - 2n ) (1 + ~)-"'i 
.;n=lBe (~, n21) y'4n(n -1) + (t2 + 2n)w2 n - 1 

The critical region is equivalent to W > constant (W < constant) and 
the constant c can be shown to satisfy the equation 

Sn-l(·) being the distribution function of Student's t with (n-1) degrees 
of freedom. When testing for 1'0 other than 1, one uses the statistic 

y'n(n - 1)(X - 1'0) 

1'0VxV 

and now the critical value c is determined by solving 

S ( 4 + 2 ~ (Xi + 1'0)2 
n-l - m c 1'0 ~ 

i=l Xi 
=a. 

When n is large (or ~ is large) both the one-sided tests (known>. as 
well as unknown >.) have critical values well approximated by the normal 
and Student's table values. 

(iii) Tests for>. (I' known). 

This is by far the simplest test. From basic theory in Chapter 2 we 
know that 
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Hence for testing Ho: A = AO or equivalently t = 10 , p, known against 

H ., ....t. , 1 ....t. 1 k h t·· Y "n (Xi-/L)2 
A·A f AO or X f AO' P, nown we use testa lStiC = L..ti=l Xi ' 

to obtain a uniformly most powerful unbiased test of size a with critical 
region of the form {Y::S; kd or {Y ~ k2 } where gn(Y), the density of * 
satisfies lk2 

gn(y)dy = (1 - a) 
kl 

(3.4) 

and lk2 

ygn(y)dy = n(l- a). 
kl 

(3.5) 

Using the technique used by Lehmann one can show that ygn(Y) = 
ngn+2(y). Letting Gn{-} denote the distribution function of X~ law, 
(3.4) and (3.5) yield 

Gn(k2 ) - Gn(kl ) = Gn+2(k2 ) - Gn+2(kl ) = 1 - a 

and kl and k2 are then found from the tables. For large n or A » p, an 
equal-tails test can be used. 

(iv) Tests for A (p, unknown). 

We are concerned with the test of 

1 1 . 1 1 
Ho: A" = >'0' J1, unknown agamst HA: A" 1= >'0' J1, unknown. 

Here n = {(p" A) I 0 < p, < 00, 0 < A < oo} and no = {(p" >.) I 0 < p, < 
00, >. = >.o}. The likelihood ratio test can be shown to be based on the 

familiar statistic V = l:~=1 (L - ~) and Ho is rejected either for large 
values of V or small values of V. The two-tailed test with critical region 
{V :S kI} or {V 2:: k2 } can be handled as in (iii). The one-sided optimum 
tests are similar in spirit to testing (72 in the normal distribution when 
the mean is unknown. 
Remarks Bar-Lev and Reiser (1982) have shown that for some ex­
ponential models there exists an exponential sub-family which admits 
uniformly most powerful unbiased test based on a single test statistic. 
The IG(p" A) law is one such model. In this case we write (see Seshadri 
1993) 

x-I (~ ) f(x;8) = J21rexp -;+82x-k(81,82) 1(0,00) (x) 

where ((h,82 ) = (-~, -~) and k(O) = -2y'8102 - ! log(-O). If we 

write tl(X) = ~, t2(X) = x, then from Theorem 1.7, Seshadri (1993) 
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w' = tl - H(t2) is independent of t2 where H(a) = ~, tl = ~ E~=l ii 
and t2 = E~=l Xi' Moreover the distribution of w' depends only on (h 
and therefore the IG(J.L, A) family admits of a uniformly most powerful 
unbiased test for testing hypotheses of the form 
(a) (}1 ~ ()~ versus (}1 > ()~ 
(b) (}1 ~ ot or 01 ~ ()~ versus ot < 01 < o~ 
(c) (}t ~ (}1 ~ ()~ versus (}1 < (}t or (}1 > o~ 
(d) 01 = o~ versus 01 i= ()~. Note that w' is * = ~ E~=l (ii - ~). 
3.2 Brownian motion process 

Suppose that W{x) is a Brownian motion process with drift /.I and 
diffusion constant a2 , with W{O) = O. The first passage time X to a 

• 2 
(barner) state a follows the IG{J.L, A) law where J.L = ; and A = ~. When 
the drift /.I = 0, J.L = 00 and conversely (unless we have negative drift). 
Thus for a fixed a hypotheses tests concerning /.I can be translated to 
tests for J.L. The special case of zero drift was first investigated by Ncidas 
(1973) for known A and by Seshadri and Shuster (1974) for unknown A. 

(a) Tests on /.I; (A known). Consider testing 

Ho:/.I = O,A known against HA:/.I > O,A known. 

Clearly in this case the test statistic is Y = vn;~tL), which reduces 

to (/.I = 0 => J.L = 00) Yo = -.[iii. Now P(IYI < y) = GIY1(y) can be 
differentiated to yield 

the half normal law. Hence Yo has this density with support on R-. 
Using standard techniques, a uniformly most-powerful level a test of 
J.L = 00 against J.L < 00 can be shown to give a critical region of the form 

{ -fTij < Z~ } or equivalently {X > z::~ } . 
(b) Tests on /.I; (A unknown). 

When A is unknown the test-statistic is based on T, and for J.L = 

00 we have as statistic To = JnC;~l). Hence the critical region of a 
uniformly most powerful level a test of 

Ho: /.I = 0, A unknown against HA: /.I> 0, A unknown 

is given by {XV ~ ;:~:~ll.~}, F1,n-l,Q being the 100a% point of the F 
distribution with one and (n - 1) degrees of freedom. 



44 Significance tests 

3.3 Power considerations 
We consider briefly the power of the optimum tests for the mean /l. 

Patil and Kovner (1979) have studied the power of tests of 
( a) /l::; 1 against /l > 1, as well as 
(b) /l = 1 against /l =1= 1. 
Case (a) is best handled by using the conditional law Tl given T2 (see 
Theorem 1.7 as well as (ii) of section 3.1) hh (h I t2) which is 

where D = {tl I (t2 - 2n) - Jt~ - 4n2 < tl < (t2 - 2n) + Jt~ - 4n2}. 

Writing FoJ I t2) for the distribution function of fOl (. I t2) we 
can express P(T1 ::; c I h) as P(V > Jc) under the transformation 

_1 
Tl 2 = V. Then letting 

j /7r ( (nv V_l)2)n;3 (()) 
G(c) = 1 - - 2 exp -2 dv 

i. t2 - n V2 vc 

where J = Vt2 + 2n + Vt2 - 2n we see that 

G(c) 
F01 (clt2)= G(o:) 

when n is odd and> 3 the exponential term should be expanded as a 
power series. Then the second term in the integral expression for G(c) is 
developed using the binomial expansion; upon integrating with respect 
to v, G(c) has the form 

00 n;3 2k (n-3) (2k) (() )j n2k -1 
~{;t;(-l)k+1 ~ I ; j!{3(t2-2n)k 

for c such that c E D and {3 = 2(k - j - I) + 1. When n is even the 
second sum (on k) becomes an infinite sum. Now the power of the test 
of /l ::; 1 against /l > 1 is given by 

k* being the critical value given by 
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For the two-sided test the power is given by 

7l"((h) = FBI (k; I t2) - FBI (kr I t2) 

where J:f !O(tl I t2) = 1 - a. The power of the likelihood ratio test 
I 

of 1-£ = 1-£0 against 1-£ -=/: 1-£0 when>. is unknown has been investigated 
by Miura (1978) using simulation studies for n = 5, 10, 15, 20 and 30, 
and (1-£0 = 1, >. = 1) at level a = 0.05. Miura's results are given in the 
following table. 

Table 3.1 Power of the LR test-a simulated study 

n 1-£ =0.50 1.67 2.50 5.00 6.67 10.00 

5 0.21 0.14 0.28 0.59 0.68 0.67 

10 0.59 0.27 0.51 0.87 0.86 0.94 

15 0.76 0.43 0.79 0.96 0.97 0.99 

20 0.92 0.54 0.92 0.99 0.99 0.99 

30 0.99 0.69 0.98 1.00 1.00 1.00 

3.4 Two sample tests 

We now consider two independent random samples X = (Xl"'" 
Xm) and Y = (Yl , ... , Yn) where £(Xi ) = IG(I-£l, >.) and £(Y;) = 
IG(1-£2, >.), i = 1, ... ,m and j = 1, ... ,n. 

(i) Tests on I-£i (>. known). 

The likelihood ratio test of 

Ho : J.£l = J.£2, (>. known) against HA : J.£l -=/: J.£2, (>. known) 

is based on A where 

A=exp (_~ ((m+n)2 _ m _ n)). 
2 mX+nY X Y 

To see this observe that under H 0 the maximum likelihood estimate of 
ml = m2 is m~$~Y, while under (Ho U HA) it is given by ill = X, 
il2 = Y. Therefore rejecting Ho for small A is equivalent to rejecting 
when 

Jmn(X - Y) > constant = c (say). 
VXY{mX +nY) 

Chhikara (1975) obtained this result when he considered uniformly most 
powerful unbiased tests of size a for testing one-sided tests on I-£i, namely 

H~ : J.£1 ::; J.£2 (J.£1 ;::: J.£2) against H~ : J.£1 > J.£2 (J.£1 < J.£2)' 
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The constant c for these one-sided tests is obtained as the solution of 
the equation 

q>(c) + -- exp (1 - q>{c')) = 1 - a n -m (2mnA) 
n+m mX +nY 

1 

where c' = (c2 + m~;~Y ) 2. In the case of the two-sided test the con-

stant c reduces to ZI-t, the 100(1 - ~)% point of a standard normal 
law. When m = n, note that the constant is ZI-a for a two-tailed test 
and tl-a for one-sided tests. 
(ii) Tests on /1-i (A unknown). 

We consider the following hypotheses. 

Ho: /1-1 = /1-2, (A unknown) against HA: /1-1 1= /1-2, (A unknown ). 

Under Ho, it is easily shown that 

Under (Ho U HA), [;,1 = X, [;,2 = Y while ~ = ;$~2 where VI = 

L:l (i, - ~) and V2 = L~=l (t, - ~ ). Routine computations now 
give 

A = VI + V2 < constant 
",m (X,_iL)2 ",n (Yi-~)2 
wi=1 Xi[J,2 + wi=1 Yi[J, 

as the critical region. The denominator of A can be expressed as 

which simplifies as 

- -2 
V V mn(X - Y) 

1 + 2 + XY{mX + nY) . 

Letting 
Q = mn(X _ y)2 

XY(mX + nY)(VI + V2 ) 

we obtain A = l~Q' Thus the likelihood ratio test calls for rejection of 

Ho for large values of IQI!· 
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Using similar regions to construct uniformly most powerful unbiased 
tests Chhikara shows that one obtains the same statistic. We leave this 
as an exercise. 

In fact ((m + n - 2)Q)t has the well-known t distribution with 
(m + n - 2) degrees of freedom. Thus the recipe for the two-sided testing 

problem is to reject Ha if I(m + n - 2)tQtl > t1-~' the 100(1- ~)% 
point of Student's t law with m + n - 2 degrees of freedom. 

(iii) Tests of Ai (/-L1, /-L2 known). 
We suppose that the two independent random samples X and Y 

are such that C(Xd = IG(/-L1, AI) i = 1, ... ,m while C(Yi) = IG(/-L2, A2) 
i = 1, ... ,n. We consider the likelihood ratio test of 

Under Ha, A the common value of Al and A2 is estimated by S7$;2 where 

8 "m (Xi -/.'1)2 d 8 "n (Yi-JL2)2 h'l d (H H) 
1 = Di=l X'JL2 an 2 = Di=l YJL2 ,w 1 e un er a U A we 

1. 1 1. 2 

have 

Therefore 
m+n .ill. 11 

A = (m + n)-2- 812 822 

m n m+n· 
mTn"2 (81 + 82)-2-

Thus apart from a constant factor A is a function of Q = ~, namely 
m+n 

Q~ C~Q) -2-. Moreover, it can be shown that A is increasing for 

Q < ~ and decreasing for Q > ~, so that the likelihood ratio test is 
based on the F ratio where F has nand m degrees of freedom. One-sided 
uniformly most powerful unbiased tests of size a can also be shown to 
be based on the statistic Q. 

(iv) Tests on Ai (/-L1, /-L2 unknown). 

We assume that the X and Y samples are distributed as in (iii) and 
consider the likelihood ratio test of 

Under Ha, ill = X, il2 = Y while the common value of A is estimated by 

~:~2' Under (HaUHA), ill = X, il2 = Y, ~1 = ~, ~2 = ~2' Therefore 
we have 
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Once again, apart from a constant factor writing Q = ~, A becomes 

= Q ~ (1 + Q) - mtn. Davis (1980) shows that the first derivative of In A 
with respect to Q is > 0 if Q < ~ and < 0 if Q > ~. Thus rejection of 
Ho for small A is equivalent to rejection of Ho for either large or small 
values of Q. Since Q is the ratio of two independent chi-squares we 
have another F test based on (n - 1), (m - 1) degrees of freedom. The 
likelihood ratio tests are also equivalent to the optimum one-sided tests. 

(v) Tests on J.Li (>'1, A2 unknown). 

We now turn to the situation where we have £(Xi ) = IG(J.L1, AI), i = 
1,2, ... ,m, and £(Yi) = IG(J.L2, A2), i = 1,2, ... ,n, the X and Y samples 
being independent, and we wish to test for equality of the means when 
Al and A2 are unknown. 

Samanta (1985) has studied this problem in detail. We now describe 
his procedure. We denote by e = {J.Lb J.L2, AI, A2} and note that for 
testing 

against 
HA : J.L1 =I J.L2, (AI, A2 unknown and different). 

the estimates of J.L1, J.L2, Al = A2 = A under Ho are given by mxtnY , vm 
m n I 

and {J2 respectively while under (Ho U HA) they are given by X, Y and 

~ = m+n where V = ~ + !l;, - m+n respectively. Therefore the 
VI +V2+V X Y mX+nY 

likelihood ratio statistic 

m N 

where N = m + n. Now under H o, A is distributed as U;'i" (1 - Ud ~ Ul" 
where for independent U1, U2,we have £(U1) = Be (m21, n'21) and 
£(U2) = Be ( N 22 , ~). To see why, note that if J.L1 = J.L2 and Al = A2 = A 
(say) AV1, A V2 and A V have independent X2 laws with m - 1, n - 1 and 
one degrees of freedom respectively. Therefore if we let U1 = VI + 'J2 + v' 

U2 = VI +~+V' U3 = VI +~2+V' it follows that (U1, U2 , U3 ) has a Dirichlet 
law with parameters (C¥1 = m21, C¥2 = n'2 1, C¥3 = ~). 

Despite this distributional result the evaluation of P(A ~ const I 
Ho) is formidable. Samanta now uses a X2 approximation recommended 
by Box (1949) by considering the statistic -2plogA, where p = 1 -
~ (;k + ~) - liN' It turns out £( - 2p log A) = X~ and an approximate 
level c¥ test rejects H ° if - 2p log A > xL". 

An alternative test is based on a ~ethod due to Perng and Littel 
(1976). This involves conducting a preliminary test of the hypothesis 
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)11 = A2 against Al i= A2 at level 0!1. This test is described in (iv) and is 

based on the F statistic g;:=-~»~l. The hypothesis is accepted at level 0!1 

if and only if Fn - 1 m-ll-~ < F < Fn - 1 m-l ~. Following acceptance 
, , 2 " 2 

one considers the test of 

Hb : J.Ll = J.L2 given Al = A2 against H~ : J.Ll i= J.L2 given Al = A2. 

In this case A reduces to Vl':tt~V. One can then use the test statistic 

(~l-:~~ which under Hb has an F1,n-2 distribution. Equivalently a 'tn -2' 

can also be used. Then Hb is accepted at level 0!2 if and only if 

(n - 2)V 
Fl 21 ~< <Fl 2~· ,n- , - 2 VI + V2 ,n- , 2 

These tests have all been shown to be uniformly most powerful unbiased 
by Chhikara (1975). A test which combines the two procedures described 
above will now be developed based on Fisher's technique (1950). 

To do so we define 

W = {2(1- G(F))) if G(F) ;::: ~ 
2G(F) otherwise 

where G(·) is the distribution function of an F random variable with 
n - 1 and m - 1 degrees of freedom. 

T= 

Then the following two propositions due to Samanta help in using Fish­
er's method of combining the two tests. 

Proposition 3.1 T and Ware independently distributed if Al = A2. 

This proposition is proved using Lukacs theorem (1964). Note that 
~ is independent of VI + V2 when Al = A2 = A. V is a function of 

X, Y and VI + V2 while W is a function of ~~. Hence T and Ware 
independent. 

Proposition 3.2 .L:(W) = uniform [0,1] if Al = A2. 

Conditionally on G(F) ;::: ~, G(F) is uniform [~, 1] and similarly G(F) is 
U[O, ~] conditionally on G(F) < ~. It then follows that .L:(W) = U[O, 1]. 

From the definition of W we have [W ::; w] if and only if F ;::: 
G- 1 (1 - ~) or F ::; G- 1 (~). Therefore a level 0!1 two sided F test of 
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Al = A2 corresponds to rejecting if W ~ al. A test that combines W 
and T in testing Al = A2 and J.1.1 = J.1.2 in succession is based on 

Qn = -2log 2[1 - Sn-2(!TJ)] - 2log W, 

Sn-2(-) being the distribution function of Students's t. Under Ho (J.1.1 = 
J.1.2, Al = A2), [,(Qn) = X~ and a level a test rejects Ho if Qn > X~ o· , 

(vi) Tests on ¢ = ~. 
Hsieh (1990) considers the likelihood ratio test of ¢ and indicates 

how similar tests can be extended to tests on the coefficient of variation, 
skewness and kurtosis. We first consider testing 

Ho: t = ko against HA : t = kl' 

where 0 < ko < kl and ko, kl are fixed constants. Under HA, J.1. = koA. 
Then if ~A is the maximum likelihood estimate of >., we have 

Similarly under Ho the maximum likelihood estimate of>. is 

(1+J1+~) 
A ko 1 + 10 
Ao = = -=- (say). 

2X_ 2X_ 

Now note that ~o, ~A satisfy the equation 

where ~i is ~o or ~A' The log-likelihood ratio log A, apart from a constant 
factor, is 

which simplifies to 
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Thus 

log A = ~ (lOg 1 + 10 - (Io - 11)) . 
2 1 +h 

The derivative of log A with respect to T is (T = X X _) 

n (dI 0 ( 2 ) dh ( 2 ) ) 
"2 dT -k~(1+Io) + dT kr(1+h) 

=n(kr(1~h) - k~(l~Io)) <0 

for all T ~ O. This then implies that log A is a strictly decreasing function 
ofT. Moreover T is independent of k1 and P(T > const) is increasing in 
X so that the size of the critical region for testing X ::; ko against X > ko 

is unaffected. Therefore W = (iv + 1) < constant is the critical 

region. Hsieh provides tables of critical values of W. In particular, 
quantiles (1%, 2.5%, 5%, 95%, 97.5%, and 99%) are given for odd n. For 
even n, one has to use the average of consecutive odd integers (n - 1) 
and (n + 1). In summary the likelihood ratio test of size a for testing 

H 0 : cP ~ CPo against H a : cP < CPo 

has critical region of the form {W < waJ where W = iv + 1 and 
Pq,o(W < wa) = a. Hsieh also shows that these tests are consistent. By 
examining the distribution function Hq,( w) (Theorem 2.5) one can see 
that if w > 0 and n ~ 3, Hq,(w) is decreasing in cp. This means that the 
power of the likelihood ratio test increases as cp decreases. The tests can 
be extended to tests on cp-t, 3cp-t and 15cp-l since they are monotone 
fucntions of cp. 

The various tests that were developed thus far provide the basis for 
the construction of confidence intervals on the parameters and paramet­
ric functions of IG(JL, .\). Table 3.2 summarizes the typical 100(1- a)% 
confidence intervals for the parameters. 
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3.5 Interval estimation 

Table 3.2 Interval estimates 

Parameter 

f.-£(>.. known) 

(n or </> large) 

f.-£(>.. unknown) 

(n or </> large) 

>..(f.-£ known) 

>..(f.-£ unknown) 

A.-I _ !!! 
'I' - A 

Interval 

X (1 + {KZl- rr ) -1, X (1- {KZl_ rr )-l 

( [l;Zl-rr < 1) 
X (1 + {KZl-rr ) -1 , 00 

(approximate) 

2 x2 
Xl_~ --.1. 

V ' V 
((n - 1) dJ. for X2 ) 

XV fr xv fr ----Z'" -+--Z", n-l In-l 2"' n-l In-l 2" 

(0- = ¢-lV2 + ¢-1 n large) 

Prediction intervals Prediction intervals are quite useful in quality 
control and reliability studies. A number of results on predictive in­
ference have been derived by Chhikara and Guttman (1982), Padgett 
(1982) and Padgett and Tsoi (1986). Chhikara and Guttman obtained 
exact prediction intervals using both the frequentist and Bayesian ap­
proaches. Their methods did not always lead to two-sided intervals. On 
the other hand Padgett's method, through approximate not only pro­
vides two-sided intervals but performs better in terms of estimated cov­
erage probabilities and smaller estimated mean widths for sample sizes 
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at least as large as 15. We examine their methods in the ensuing dis­
cussion and conclude with some comments on Bayes prediction intervals 
considered by Upadhyay et al,(1994). 

Padgett's method Let X = (Xl, ... ,Xm ) be a random sample from 
IG(J.L,)..) and Y be the sample mean based on n independent future 
observations from the same IG(J.L, )..). We seek two statistics T(X), T(X) 
such that for 0 < Q' < 1 

P(T(X) ::; Y ::; T(X)) = 1 - Q'. 

First observe that 
( ) I' (nA{Y-/-L)2) _ 2 
a J..- y - Xl! 

(b) C()"V) = X~-l and 

( ) V - " ( I I ) Jl Y Th £ I' ((m-l)n{Y _/-L)2) - F c - L...J Xi - X . ere ore J..- /-L2yv - l,n-l, 

and from the tables of the F distribution, Fo: can be found such that 

P ((m - l)n(V - J.L)2 < F ) = 1- Q'. 

J.L2yV - 0: 

When J.L is known the expression inside the brackets can be solved for 
Y and an exact 100(1 - Q')% prediction interval is obtained. When J.L is 
unknown approximations are to be used. Padgett first replaces J.L2 in the 

denominator by X2. The term J.L appearing in (Y - J.L)2 is replaced by 

m!$~Y the updated mean incorporating the extra information available 

and the equation is then solved for Y. Thus the approximated coverage 
probability statement is 

( 
-2 2-2 ) - X (m+n) X VFo: -

P Y + -=- ::; 2 ( ) + 2X ~ 1 - Q'. Y m n m-1 

We now solve 

2 -2 

y2 _ C(X)Y +X2 = 0 where C(X) = (m+n) X VFo: 
m n(m-1) 

obtaining two real positive roots T(X) and T(X). 

Chhikara and Guttman's method Chhikara and Guttman obtain 
an exact prediction interval using a form of the Chi-square decomposition 
of Theorem 2.1. (There is a subtle flaw in their arguments despite the 
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correct conclusion.) From Theorem 2.1 with Wi = 1 let us define PI and 
P2 by 

PI =).. L - - =n;;---( 
n 1 n2) 

i=1 Xi Li=1 Xi 

( 1 n2 (n + 1)2 ) 
P2 =).. - + "n - "n , 

y L....i=1 Xi Y + L....i=1 Xi 

where Y is the new observation from IG(J.L, )..). Since PI Jl P2 with 
£(PI ) = X;-I' and £(P2 ) = xf it follows that regardless of what J.L and 
).. are 

P ((n - 1)P2 < F ) = 1 - a 
PI - a 

and a rearrangement of terms inside the brackets gives T(X) and T(X) 
where 

( 1)-1 2 2 -
T X = ~ VFa VFa Fa V 2 

-() X + 2(n - 1) + en -l)X + 4(n - 1)) , and 

Since there is a positive probability T(X) can be negative this method 
does not always guarantee two-sided intervals. Padgett and Tsoi have 
done a Monte Carlo simulation study of both the exact and approximate 
methods and computed the width of the intervals together with the num­
bers of intervals containing Y. The average interval lengths from 1000 
pairs as well as the proportion of intervals containing Y were obtained 
as estimates of the mean interval lengths and coverage probabilities. 
This procedure was repeated for many values (n, m,)..) and a = 0.01, 
0.05 and 0.10. Their results are summarized in Tables 3.3-3.5. They 
note that for small ).. a sizeable proportion of the samples do not yield 
a two-sided interval using the Chhikara and Guttman (C&G) method. 
The estimated coverage probabilities were low as well for small n. With 
increasing (1 - a) the approximate method seems superior in terms of 
larger estimated coverage probabilities and (or) smaller estimated mean 
widths. 
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Table 3.3 Simulation Results for 'Y = 0.90 

Average Width Coverage 

Probability 

J.L A n C&G Padgett C&G Padgett 

1 0.25 5 30.2 46.1 0.705 0.897 

3 0.25 5 24.4 739.9 0.738 0.895 

1 4 15 2.1 2.0 0.903 0.893 

5 4 15 51.4 31.9 0.903 0.887 

Table 3.4 Simulation Results for 'Y = 0.95 

Average Width Coverage 

Probability 

J.L A n C&G Padgett C&G Padgett 

1 0.25 5 26.0 73.4 0.828 0.942 

1 0.25 30 849.1 21.9 0.945 0.962 

3 0.25 5 28.1 1441.8 0.759 0.948 

3 0.25 30 577.0 226.0 0.932 0.957 

1 1 15 12.0 7.2 0.951 0.956 

1 1 50 6.4 6.0 0.963 0.960 

1 4 5 30.3 4.4 0.946 0.959 

1 4 30 2.4 2.4 0.937 0.944 

5 1 15 782.4 198.0 0.940 0.973 

5 1 30 776.9 138.5 0.948 0.948 

5 4 5 201.0 100.6 0.905 0.956 

5 4 30 45.3 37.5 0.961 0.942 
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Table 3.5 Simulation Results for, = 0.99 

Average Width Coverage 

Probability 

J.L >. n C&G Padgett C&G Padgett 

1 0.25 5 30.2 208.3 0.806 0.983 

1 0.25 30 583.2 38.4 0.991 0.989 

3 0.25 5 36.5 3430.0 0.933 0.977 

3 0.25 30 1895.5 368.1 0.957 0.990 

1 1 15 103.8 12.4 0.988 0.993 

1 4 5 47.6 9.2 0.986 0.988 

1 4 15 4.6 4.1 0.993 0.994 

1 4 30 3.7 3.5 0.990 0.991 

5 1 15 550.3 332.8 0.947 0.990 

5 4 5 403.6 220.0 0.945 0.989 

5 4 30 96.1 62.8 0.987 0.992 

Example 3.1 Maintenance data on 46 active repair times in hours for 
an airborne communication transceiver reported by von Alven (1964) 
have been analyzed by Chhikara and Folks (1977) who conclude that 
the IG model was a good fi.t.The data appears below. 

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 

0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0 

1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 

2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 

4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 

7.5 8.8 9.0 10.3 22.0 24.5 

For the von Alven data set with m = 46 and n = 10, Padgett reports 
a 95% prediction interval for the mean of the next 10 repair times to be 
(1.2009, 10.8311). For n = 1, the interval is (0.3185,40.8393). 
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Bayes prediction intervals Bayesian philosophy relies on the use of 
a prior or even guess values of a parameter to enhance the performance of 
an estimator in terms of its efficiency. Thompsons's work (1978) pertains 
to shrinking an estimator towards the guessed value (}o of the unknown 
parameter. A shrinkage estimator T = 0'.0 + (1 - 0'.)00 where 0 < a. < 1 
is then examined for its efficiency. Upadhyay et al., (1994) consider this 
approach and introduce a general class of priors which places a constant 
weight on the guess values of the IG parameters <50 = ...L and Ao, while 

1'0 
distributing the rest of the mass over a suitable interval. The Bayes 
predictive procedure is then used to obtain prediction limits for future 
failure times or even the unused components of a system or process. 
They compare their procedure with the frequentist approach advanced 
by Padgett and conclude that their method works well, if not better. We 
now describe their procedure. 

Consider the parametrization 8 = -f; and the associated likelihood 

Let (<5o,Ao) be guess values of (8, A) and take q(8,A) = t1R+(A). For a 
real a such that 0 ~ a ~ 1 define 

{ I - a if <5 = 80 , A = Ao, 
<p(8, A) = aq(8, ~), otherwise. 

Suppose X = (Xl,'" ,Xn) represent failure times such that L(8, A) cor­
responds to their likelihood, then the distribution of X is 

a 100 100 
L(<5, A)dAd8 + (1 - a)L(c5o, Ao). 

The integral a IoOO IoOO L(c5, A)dAdc5 gives 

With the substitution £1 = n(ox-l)2 we obtain 
n- vx 

r (~) lIn ~! J7rv(n - 1) r (~) s (In(n - 1)) 
a()n x, (n) n-l 7rV "2 i=l r 2" y'n(n - l)x va: 
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where Sn-I(-) is the distribution function of Students's t with (n -1) 
degrees of freedom. Upon simplification it reduces to 

ay?rf (y) v-~ IT x:-~ Sn-I (In(n = 1)) = h(x)n IT x:-~. 
(27f) 2" ..;:nii i=1 t vx (27f) 2" i=1 t 

The posterior of (0, A) is therefore 

(1 - a)A! exp ( -~ (1 + n(oo:x- I )2)) 

(1- a)Ao~ exp (-~ (1 + n(O~:-I))) + h(x) 

aA if-I exp ( - >'2v (1 + n(O~~1)2)) 

+ (1 - a)A! exp ( -~ (1 + n(O~:-I))) + h(x) 

= p(o, A I x) (say). 

If now Y is a future observation from IG(/-L, A), after parametrization in 
terms of 0, the predictive density of Y given X is 

'IjJ(y I x) = J J jy(y 1o, A)p(O, A I x)dodA. 

The 100(1 - a)% confidence interval for Y is obtained by solving for 
constants Cl and C2 (for an equal-tail prediction limit) the integrals 

l C! 100 a 
'IjJ(y I x)dy = 'IjJ(y I x)dy = 2' 

° C2 

A similar argument applies for the prediction of the mean of a sample of 
m future observations. The integrals can be solved by Gauss-Legendre 
quadrature or other numerical methods. 

3.6 Examples 

Example 3.1(continued) For the von Alven data set X = 3.61, n~1 = 
0.60, t45,0.95 ~ 2.00 

X (I + J n(:~ l)t1-~) -1 = 2.518 

X (1- V n(~~ I)"- f ) -1 = 6.356 

-3 

0-2 = ~ = 28.227. and 
A 
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A 95% confidence interval for J1. is (2.518,6.356). 
A 95% confidence interval for oX is (1.052,2.421). 
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Now consider testing Ho : J1. ~ 1 against J1. > 1. I:n Xi = 165.9, 
I:n Xi + I:n ii = 206.4. The critical value k* (see Section 3.3) to 
65.49. Patil and Kovner find 7r((h = 0.1) = 0.163, 7r(t'h = 0.4) = 0.934 
and 7r(0.5) = 0.992. 

Upadhyay et al., have used the von Alven data of Example 3.1 to 
compare their method with that of Padgett, choosing three different val­
ues of a (0.25,0.50,0.75) and several values of (80 , Ao). Their tabulated 
values indicate that their methods always yield narrower intervals. 

Example 3.2 Nadas (1973) reports that a sample of 10 electronic de­
vices were tested under high stress conditions until all of them failed due 
to mass depletion at the critical location. The data yielded X = 1.352, 
V = 2.083. It is desired to test if there was zero drift in the Brownian 
motion. In terms of the first passage times T of Brownian motion with 
positive drift /J one wishes to test /J = 0 or equivalently J1. = 00. 

Now nfn~l) = 0.0313 and with a = 0.05, -p 1 = 0.195. Thus the 
1,9,0.95 

observed value of the test statistic falls in the critical region (see Section 
3.2.(b)), and the hypothesis of zero drift at level a = 0.05 is rejected. 

A 95% confidence interval for J1. is (0.966,2.249). 
Chhikara and Folks considered the test of J1. = 1 against J1. t= 1. 

Using the W statistic (see (ii) of section 3.2) namely W = Jn~~l) (X -

1) we find W = 1.99 and at level a = 0.05 there is no evidence to reject 
Ho (J1. = 1). If on the other hand one tests J1. ~ 1 against J1. > 1, the 
observed value of W = 1.99 should be compared with the critical value 
c determined by solving 

(43)4 
Sg( -c) + "3 Sg( -J 40 + 43c2 ) = 0.05. 

(Note that T2 = 23.) This value of c is determined to be c = 1.90. Hence 
Ho is rejected. 

The power of the test corresponding to zero drift was considered by 
Patil and Kovner. The critical value is obtained by numerical integration 
(using Gaussian approximation) with (h = 0 in the integral (see 3.3) 

(X) !Ol=O(tl I t2) dt l = 0.05. 
Jk* 

Patil and Kovner find that k* = 13.12. They find by numerical integra­
tion of G(c) (section 3.3) that 

7r(/h = 0.5) = 0.121, 

7r(fh = 1) = 0.244. 
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Example 3.2 (continued) Bayesian analysis Observe that the con­
fidence interval for J.l when converted to an interval for 8 = 1 becomes 

J1. 
(0.444,1.031). If we are using a Bayesian approach and applying the 
notion of highest posterior density intervals, then it is best to use the 
marginal posterior of 8 developed in Corollary 1.2. Banerjee and Bhat­
tacharyya have examined this situation and they note that over the in­
terval (O,~) the posterior of 8 (see equation 1.19) is symmetric and its 
mode 8mode = ~. Therefore when P{8 ~ ~ I X) ~ 1- a, then necessar-

ily 8 ~ S;;~l (l~Q) and conversely. Thus the highest posterior density 

interval corresponds to 

[ 1 J V -1 ( ( ~))l 0, ~ + n(n _1)?i/n-1 1- aSn-1 V ~ . (3.6a) 

When /!fi gets large, the highest posterior density interval is centered 
at the mode and is 

[
.!. ± / v S-l (1 + {I - a)Sn-1 ( w.) )]. 
x V n(n - l)x n-1 2 (3.6b) 

Tables of incomplete Beta integrals are needed to make the calculations. 
In the frequentist approach the transformed (8 = t) intervals are 

if In(n - 1) < S-l (1 _ ~) 
vx n-1 2 

(3.7a) 
and 

(.!. ± J v S-l (1 - ~)) 
x n{n - l)x n-1 2 

if In{n - 1) > S-l (1 _ ~) 
vx - n-1 2 

(3.7b) 
These are the uniformly most accurate unbiased confidence intervals as 

developed by Chhikara and Folks. If n is large Sn-1 ( In(~;l)) -+ 1 

and we see that when comparing 3.6b and 3.7b both methods give al­
most identical results. On the other hand comparisons betweens (3.6a) 

and (3.7a) are not meaningful since for large n, small values of In(~;l) 
cannot materialize. For the Nadas data, the 95% highest posterior den­
sity interval is identical to the interval given by the frequentist approach. 
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Highest posterior intervals on>. are obtained by using (1.20) and solving 
for >'L and >'u where (see Corollary 1.3) 

('L 1>.(>'1 X)d>' = 1- a. 
l>.u 

Banerjee and Bhattacharyya find the interval to be (1.419,9.742) as op­
posed to the frequentist result of (1.296,9.132). 

Example 3.3 Ang and Tang (1975) considered runoff amounts at Jug 
Bridge, Maryland given by the following data set. 

0.17 0.39 0.52 0.66 0.78 1.12 

0.19 0.39 0.56 0.70 0.95 1.24 

0.23 0040 0.59 0.76 0.97 1.59 

0.33 0045 0.64 0.77 1.02 1.74 

2.92 

This set was analyzed by Folks and Chhikara (1978) who judged 
it as being well descriptive of an IG model. For this data X = 0.803, 
V = 1. 7375. Using this data Hsieh (1990) considered a test of Ho : ¢ ~ 2 
against HA : ¢ < 2. The likelihood ratio statistic is W = Xv = 1.792. 
From the tables of the quantiles of W the critical value at level a = 0.01 
being 1.078, Ho is rejected. Hsieh uses a linear interpolation of the quan­
tile values of W to obtain (0.875,2.706), (0.755,2.943) and (0.627,3.236) 
as confidence intervals at levels 90%, 95% and 98% respectively. An ex­
act 95% confidence interval for the coefficient of variation .JFf is found 
to be (0.583,1.150). 

3.7 Tolerance limits 

The inverse Gaussian law has been proposed as a failure time model 
in reliability analysis by Chhikara and Folks (1977), fatigue failure mod­
els by Bhattacharyya and Fries (1980), general stochastic wear-out by 
Desmond (1985) and Goh et al. (1989). Its importance in these ap­
plications is due to the fact that it represents the first passage time 
distribution of Brownian motion to a critical level. This makes it an 
ideal candidate for studying safety limits of equipments. In particu­
lar lower tolerance limits can be constructed which will guarantee some 
kind of safety in the design of equipments. There exists a relationship be­
tween the confidence limit of a quantile and a one-sided tolerance limit. 
Tang and Chang (1994) exploit this link to derive upper (lower) toler­
ance limits. The following discussion describes their strategy. Denote by 
F(x; IL, A) the distribution function of the IG(IL, A) law. Let xp denote 
the lOOp percentile of the IG law. Thus xp satisfies 

F(xp : IL, A) = p. 
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Suppose there exists a random variable L such that for 0 ::; "( ::; 1, 
P(L ::; xp) ~ "(, then P(F(L) ::; p) ~ "( and conversely. Hence if 
.c(X) = IG(J-t, A), 

P[P(X ~ L) ;::: 1 - p) ;::: "( {:=:::> P(L::; xp) ;::: "(. 

Definition 3.1 L is a one-sided 100"(% confidence limit of Xp if and 
only if it is also a lower (1 - p) content one-sided tolerance limit with 
confidence coefficient 100"(%. 

This implies then that we can restrict attention to the problem of 
finding a 100"(% confidence limit of xp for constructing tolerance inter­
vals. 

(a) Tolerance limits when J-t is known and A is unknown. 
When .c(X) = IG(J-t, A) we obtain via the transformation Y = t, the 

law of Y to be .c(y) = IG(l, ¢) where ¢ = *. The distribution function 
of Y, written G (y, ¢) expressed in terms of the distribution function of 
X, namely F(X;J-t,A) is 

G(y, ¢) = F(y; 1, ¢) 

= 1 - iI> ( ~(l- y)) + exp(2¢)iI> ( -~(l + y)) . 

We now solve for yp = ~ (using this form of F(y; 1, ¢)) from the 
equation 

F(yp; 1, ¢) - p = O. 

This is done using different values of ¢ and plotting a graph of ¢ versus 
YP for values of p ranging from 0.1 to 0.95 (see Figure 3.1). From the 
figure it is clear that YP is not a monotonic function of ¢. The minimum 
yp occurs at the end points of any fixed intervals of ¢. For p ::; 0.7 it 
turns out that yp is monotone increasing in ¢. 

Let us denote by L(yp, "() the unique solution given by 

where 

L(yp,"() =min[{y I F(y;l'¢L) =p}, {y I F(y;l,¢u) =p}] 

¢ X;,l-')' ¢u = X;,,), and S = ~ (Xi - 1)2 
L = -8-' 8 L....J Xi 

i=l 

Then J-tL(yp, "() is a one-sided (1 - p) content tolerance limit with confi­
dence coefficient 100"(%. 
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For p :S 0.7, of course, L(yp, 'Y) is the unique solution of {y I F(y; 1,1;) = 
p}. Note that 1;L and 1;u are the lower and upper lOO'Y% confidence 
limits on 1;. 

4.' .--------.----..,--- -,..---------.-----.-- - --, 

Y=xJ1l 
3.5 

3 

2S 

2 

1.S =:--::-:-----====1 - ------- o.e __________ ~ 

__ -------0.7 -------~ 

__ ----- --0.6 -;;0.~s~~===3 
-=- . 4 

0 . 3 __ ------ 0~.~2 =----------~ 
~-- O . I 

3 4 6 

Figure 3.1 The pth percentiles as a fucntion of AI J-L 

(b) Tolerance limits when J-L is unknown and A is known. 
When £(X) = IG(J-L, A) the law of Z = t is £(Z) = IG(O, 1) where 

o = 1;-1 and hence the distribution function H(z,O) of Z expressed in 
terms of that of X is 

H(z,1;) = F(z; 0,1) 

~ 1- ~ (~(1-~)) +exp m ~ (-~ (1 +~)). 
Proceeding as in case (a) we solve for zp = !f from the equation 

F(z; OL, 1) - P = 0 using various values of 0 and p. The resulting graph 
(see Figure 3.2) shows that zp is monotone in O. Then denoting by 
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L(zp , ,) the unique solution of F(z;fh, 1) = p, we see that AL(zp, ,) is 
a one-sided (1 - p) content tolerance limit with confidence coefficient 
100,%. Here OL is a lower 100,% confidence limit on 0, given by 

OL = [~+ JX1~l' z nz 

1 n 
, Z= - LZi. 

n i=l 

Note that 0 E (OL,OO) {:::=} zp E (L(zp,,),oo) since zp is monotone 
increasing in 0, so that 

12 
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Z=xI)' 
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Figure 3.2 The pth percentiles as a fucntion of J.L/ oX 
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(c) Tolerance limits when both 1-£ and A are unknown. 
The results from the previous two cases can be combined to derive a 
conservative one-sided (1- p) content tolerance limit L with confidence 
coefficient 100(2, - 1)% by appealing to the Bonferroni inequality. In­
deed the resulting limit is given by 

L = min[{x I F(X,I-£L,AL) = p}, {x I F(x; I-£L, AU) = p}] 

( 
VF -1 ( 2 where I-£L = ,l, + l,n-l,l and (AL AU) = Xl-1 

X Xn(n-1) , v 
To see why, we have from the Bonferroni inequality 

P(xp E (L,oo)) = P[I-£ E (I-£L,OO), A E (A£,OO)] 

:::: 1- P[I-£ E (I-£L, oo)c]_ P[A E (AL,OO)C 

= 1 - (1 - ,) - (1 - ,) = 2, - 1 

(A£is the value of A corresponding to p ~ 0,7). 

3.8 Tests of separate families 

Definition 3.2 Suppose there are two families of density functions 
{f(x I a) I a E Sf} and {g(x I (3 E Sg}; according to Cox (1961,1962), 
they are said to be separate, for any ao[(3o], if f(x I ao)[g(x I (30)] cannot 
be approximated arbitrarily closely by any g(x I (3)[f(x I a)]. 

Examples of such separate families are the log-normal and exponen­
tial families, the lognormal and inverse Gaussian families. 

Let X1,,,,,Xn be a random sample from f(x I a) under Hf and 
g(x I (3) under Hg where a, (3 are parameters such that dim Sf = d1 and 
dim S 9 = d2 . Further let 

for 1 ~ k ~ n, 1 ~ i,j ~ d1• Moreover, let GR, Gk ,{3j' Gk ,{3i,{3j be 
similarly defined for 1 ~ i,j ~ d2 . Cox (1961,1962) based his statistic 
on L f 9 defined by 

L ~l f(Xi I a) 
fg = L..J og A 

i=1 g(Xi I (3) 

where a, ~ are the maximum likelihood estimates of a and (3 under H f 
and Hg for testing Hf, the null hypothesis against the alternative Hg. 
The test statistic is 

nTf = Lfg -Ea,(Lfg) 

where Ea,(Lfg) is the expectation taken under Hf when a is replaced 
by a. In many situations Tf = h( a,~) and h( a, (30.) = 0 where (30. is a 
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value such that under f: S~(3a. If h(a, S) is approximated by a linear 
function of (a - a, S - (3) so that 

h(a,S) = (& - a,S - (3)la 

where la is gradient vector, the variance of Tf is 

Va(Tf) = l~Cala 

where C a is the covariance matrix of (&, S) under H f. The test of 
separate families is based on the asymptotic (standard) normality of the 
statistic 

T I - Tf 
f-

ylVa(Tf ) 

It is at once evident that the roles of f and g can be switched to yield 

TI = Tg 
9 ylViJ(Tg ) 

Now in using each of Tj or T~ there are three possible conclusions, 
namely: 
(a) consistency with Hf (Hg), 
(b) evidence of departure in the direction of Hg (Hf), 
(c) evidence of departure away from Hg (Hf ). 

An application of Tj and T~ then leads to 32 qualitatively different con­
clusions. 

Test for lognormal vs the inverse Gaussian 

Let us consider first the test of Hr lognormal vs Hg : inverse Gaussian. 
Under the null hypothesis that H f is lognormal, a = (a1' a2; a2 > 0) 

f(x I a) = ~exp (_ (logx - ai )2) 1R+(X). 
x 2na2 2a2 

Under the alternative that Hg is IG((31,(32) where (3 = ((31,(32;(31 > 
0, (32 > 0) then 

~ ((3~(x - (3d 2 ) () g(x I (3) = V ~ exp - 2(3ix 1R+ x . 

The maximum likelihood estimates of a and (3 are respectively 

A I:~=110g Xi A I:~=1 (log Xi - &1 )2 
a1 = , a2 = 

n n 

A I:n 1 Xi -f31 = t- = X, 
n 

A X 
f32 = X X -1 - 1· 
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Thus we can show that 

and 

( f(x I Ii)) 1 
IEa log A = -(al -loga2 -logfJ2,a) 

g(x I tJ) 2 

so that 

T ' - 1 1 (fJ2,a ) f - - og -A- . 

2 fJ2 

Now 

and 

Finally for testing H f against Hg we use 

yin log {3~,a 
fh 
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(3.8) 

and for large negative values we conclude that there is evidence of de­
parture from H f in the direction of H g. 

Test of IG vs the lognormal 

Under H 9 as null hypothesis we have 

A a.s. 1 P. A ( 1 ) al-7a l{3 = ogl-'l + IJ -"2 

A a.s. A, ( 1) 
a2-7 IJ --

2 

where 

K).. (0) being the modified Bessel function of the third kind. 
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Now 

( g(x I (3)) 1 
IE,8 f(x I a,8) = 2{loga2,,8 + logf32 - a1,,8) 

and 

( g(x I (3) ) 
nTg = Lgf - IEp f(x I a,8) 

= i (lo<~ + (".r ad) 
Using only the linear term in the expansion of Tg , Liao (1995) has 

shown that 

where 

t ( 1 8 ( 2A) 1 ( 48 A 2 
) ) l,8= -1, AI,-2 f31 A+ A' 'f32 1+28A+ 7 ' 

and the asymptotic covariance of (&1, &2, ~1' ~2) under H 9 is given by 

Replacing 8 by {) = t one rejects for large negative values of 

(3.9) 

where 
(V = l~C,8l,8), 

as evidence of departure from Hg in the direction of Hf. 

Applications to simulated and physiological data 

In this section, we consider the above results as applied to the simulated 
data and real data by Liao. He conducted the following tests: (1) Ho: 
lognormal (LN) against H l : exponential (EX); (2) Ho: exponential (EX) 
against H l : lognormal (LN); (3) Ho: lognormal (LN) against H l : inverse 
Gaussian (IG); (4) Ho: inverse Gaussian (IG) against H l : lognormal 
(LN). Since sample sizes in the data were large enough (about 1000), 
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high power could be expected for all tests.Using (3.8), and (3.9), we have 
presented the test statistics in Table 3.6 for all the data sets. IMSL was 
used by Liao to evaluate the modified Bessel function of the third kind 
and its derivatives involved in the test for the inverse Gaussian against 
lognormal, and MINITAB package for the rest of the computations. He 
used a = 0.05, for which Co: = -1.645. For the inverse Gaussian against 
lognormal, all statistics are greater than -1.64, so we cannot reject the 
null hypothesis that the model is the inverse Gaussian; meanwhile, all 
statistics are less than -1.64 for the lognormal against inverse Gaussian, 
and so we reject the null hypothesis in favor of the alternative that the 
model is the inverse Gaussian. 

The results of Liao (1995) on separate tests applied to simulated 
and physiological data, for tests relating to Ho: lognormal (LN) against 
HI: inverse Gaussian (IG) as well as Ho: inverse Gaussian (IG) against 
HI: lognormal (LN), are summarized in Table 3.6 for all the data sets. 

Table 3.6 The test statistics for lognormal against inverse Gaussian 
(LNvsIG) and inverse Gaussian against lognormal (IGvsLN) are based 
on (3.8) and (3.9) respectively. 

Noise distribution or data NvsIG GvsLN 

Normal -3.360 0.589 

Gamma -1.741 -0.159 

Uniform -3.245 0.672 

f68.dat -5.727 4.305 

f72.dat -5.129 3.239 

f75.dat -5.689 4.291 

f78.dat -7.374 7.022 

fBO.dat -7.508 7.072 

fB2.dat -6.934 5.492 

fB3.dat -6.864 5.531 

fB7.dat -6.377 4.530 

f90.dat -6.629 5.294 

f98.dat -4.795 3.184 

At a level a = 0.05 with Zo: = 1.645 all statistics are greater than 
-1.64 for testing IG against LN implying that we cannot reject the null 
hypothesis that the model is IG: On the other hand all statistics for 
testing LN against IG are less than -1.64 and hence the null hypothesis 
of lognormality is rejected in favour of the inverse Gaussian. 
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The inverse Gaussian therefore seems to be the best model among 
the candidates. (Liao also has tested exponentiality vs lognormality 
and vice versa and concluded that lognormality was more plausible than 
exponentiality) . 

3.9 Bahadur-efficient tests 

Let us recall that Bahadur efficiency considers the relative rates at 
which the attained significance levels for two tests converge to zero for a 
fixed alternative and power as the sample size becomes large. 

Under the regularity conditions (necessary) for the existence of the 
Cramer-Rao lower bound, if the maximum likelihood estimators are con­
sistent, then their asymptotic effective variance is equal to the Cramer­
Rao lower bound; when this happens these two estimators are said to be 
Bahadur-efficient. Durairajan (1985) proposed a test for the parameters 
of the inverse Gaussian law based on Fisher's method of combining in­
dependent tests and showed that the test is Bahadur-efficient. We now 
outline this procedure in the ensuing section. 

We assume that X = (XI,··· ,Xn ) is a random sample from IG{/L, A) 
and let 

8 = {e = (/L, A) I 0 < /L < 00, 0 < A ~ AO (known)} 

and 

8 0 = {O I /L = /Lo, A = AO where /Lo, AO are both known}. 

We wish to test 
Ho: e E 8 0 

against 
HA: e E 8\80 • 

From section 3.1 (ii) we know that for testing 

H~ : /L = /Lo (A unknown), 

against 
H~ : /L i= /Lo (A unknown), 

the uniformly most powerful unbiased test is based on T (equivalently 
T2) where 

and where Un and Vn are defined by 

- 2 
U _ nA(X - /LO) 

n - X 2 ' /Lo 
n (1 1 ) Vn = AO L X- - = . 

i=l ' X 
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Moreover, from section 3.1 (iv) it is known that the uniformly most 
powerful unbiased test of 

H~ : >. = >'0 (p unknown), 

against 
H1 : >. < >'0, p unknown 

is based on Vn . 

Now define Qn by 

Qn = -2IogP(Un > u I Ho) - 2logP(Vn > v I Ho) 

where u and v are the observed values of Un and Vn respectively. 
Fisher's method of combining independent tests for testing Ho 

against HA (it being assumed that Un is the statistic used for testing H~ 
against HAl is based on Qn and the critical region of the test is given 
by Qn ~ c, c being chosen to attain the desired level a. Since Un and 
Vn are independently distributed according to the chis quare law indeed 
then £(Qn) = x~· 

The following propositions due to Durairajan lead to the proof of 
the Bahadur efficiency of the test based on Qn. 

Proposition 3.3 The exact slope of the sequence of tests {Un}, {Vn} 
and {Qn} are given respectively by Cu(O), Cv(O) and CQ(O) where for 
every 0 E 8\80 

(i) Cu(O) = >'0 (PO - p)2 
P Po 

(ii) Cv(O) = AO; A -log (~ ) 

and 
(iii) CQ(O) = Cu(O) + Cv(O). 

Proof We first recall that the exact slope C A (0) of a sequence of tests 
{ An} is given by 

{ f(x I 0) } 
lE8 log f(x I (0 ) for each 0 E 8\80 , 

where f(x I 0) is the inverse Gaussian density IG(p, >.). 
Let U1(n) = ~. Since £(Un ) = X~, it can be shown that for fixed 

t > 0 and large n 
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Hence 

--logP(Un 2: nt) = - + -- + - - -log 1 + 0 -1 clog n t 1 [ ( 1 ) ] 
n n 2n 2 n n 

c being a constant independent of n. Thus 

lim {-~ 10gP(Un 2: nt)} = ! 
n-too n 2 

and it follows from the definition of U1 (n) that 

Since Uj;) tends almost surely (0) for every 0 E 8\80 to ~ (/1:~~/L r, 
Cu(O), the exact slope of U1 (n), and U1(n) are increasing in Un, both 
Un and U1(n) have the same slope. 

In like manner, since £(Vn) = X~-l' we can define V1(n) = ~ 
and show that Vj;) tends almost surely (0) to ~ for every 0 E 8\80 • 

Furthermore 

. { 1 } 1 hm --log P(V1(n) 2: y'iit I Ho) = -(t - 1) logt. 
n-too n 2 

Therefore the exact slope of VI (n) is 

Ao (Ao) -:\ - 1 - log -:\ 

which is the (same) exact slope of Vn-
Finally the exact slope of Qn is obtained by adding Cu(O) and 

Cv(O). Note that for every 0 E 8\80 

so that 

f(xIO) Ao I-Lo-I-L Ao Ao 
[ { }] ( ) 2 ( ) 1E9 log f(x I (0 ) = -; ---;;;;- + -:\ - 1 -log -:\ = CQ(O). 

Thus the test based on Qn is Bahadur-efficient. ... 



CHAPTER 4 

SEQUENTIAL METHODS 

4.0 Introduction 

One of the recommendations of a sequential testing procedure is 
that when both the type I and type II errors are specified, it requires a 
smaller sample on the average than when a fixed sample scheme is used. 
Thus in reliability testing and acceptance sampling where cost consider­
ation and time constraints are of the essence sequential sampling plans 
have a distinct edge over fixed sampling schemes. We therefore describe 
some sequential methods which have been considered by Wasan (1969), 
Edgeman and Salzburg (1991), Joshi and Shah (1990) and Chaturvedi 
(1991). 

4.1 Sequential probability ratio test 

We assume that the random variables Xl, ... , X n are drawn sequen­
tially from IG{J.L, >.) where we further assume that>. is known. In the 
language of sequential analysis we take a (type I error) as the producer's 
risk and {3 (the type II error) as the consumer's risk to be fixed numbers. 
The hypotheses concern the mean of a process to be at a level J.Lo as 
opposed to a level J.Ll > J.Lo. At any stage as samples are drawn one by 
one the probability ratio 

is computed. We then select two numbers A and B depending on a and 
{3 satisfying the requirement 

1-{3 
A<--- , a 

B>~ 
-I-a 

where 0 < {3 < 0.5 < 1 - a < 1. Then by Wald's sequential probability 
ratio test, as long as B < Ln < A, we keep drawing additional samples. 
But at the first instance Ln ~ A, the process is terminated with the 
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rejection of Ho (accepting HA) and at the first instance Ln ~ B, the 
process is again terminated and Ho is accepted. It is well-known that 
such a test terminates with probability one. Denote by Zi the ratio 

In terms of Zi, a more convenient form for the sequential rule is to 
terminate sampling if either 2:~=1 Zi ~ log A or 2:~=1 Zi ~ log B. Thus 
for the IG(It, oX) situation we continue sampling if 

that is, if 

+2n ItOItI . 
Itl - Ito 

Therefore we accept if 

~ X < (1 _f3_) 2ltflt5 + 2nlt1ltO 
~ • - og 1 2 2 
i=l - a Itl - Ito Itl - Ito 

and reject if 

(4.1) 

It should be borne in mind that since the probabilities of the excess over 
the boundaries are neglected the test is an approximate test. 

Operating Characteristic function 

Let h(lt) be a function of It and consider 

Then 
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Thus Lh(l-') f(x; J.t) = g(x; J.t) is a frequency function for all values of J.t if 
(4.2) holds. We now will determine h(J.t). Consider the integral equation 

= 1. According to Wald (1947) the integral equation has at least one 
non-zero value of h(J.t) as solution. Let 

a = h(J.t) - - - +-( 1 1 ) 1 
J.t~ J.t~ J.t2 

b = h(J.t) - - - +-. ( 1 1) 1 
J.t1 J.to J.t 

The exponent when expanded in powers of x is 

Suppose that a i=- 0 and ~ = 1. The integral reduces to the familiar 
integral of an IG (!,>.) law which gives us the value of h(J.t) as the 
solutions to b2 = a, or 

h2(J.t) (~_ ~)2 + 2h(J.t) (~_~) + ~ = h(J.t) (~_~) +~. 
J.t1 J.to J.t J.t1 J.to J.t2 J.t~ J.t~ J.t2 

Simplifying we have 

Thus if J.t1 i=- J.to, h(J.t) satisfies 

( ..!... _ ..!...) _ 1 ~ (II. + II. ) 

h(J.t) = 1-'1 1-'0 I-' = I-' - ,..0 ,..1 (4.3). 

( ..!... - ..!...) J.to - J.t1 
1-'1 1-'0 

It is clear h(J.to) = 1 and h(J.td = -1 satisfy the above equation (4.3). 
This result is due to Wasan (1969) and has been obtained independently 
by Edgeman and Salzberg. The operating characteristic function is given 
by 
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1 + 1 2 

where h(J.L) = 1'1..L~0..L I' One could plot L(J.L) against J.L or regard h(J.L) 
1'1 1'0 

as another parameter and plot L(J.L) versus h(J.L). Note that J.L = 2J.t+OJl1 
_P.P J.t1 

is also a point on the operating characteristic curve. The famous Wald's 
identity gives the expected sample size as 

E(N) = E(Zn) 
E(Z) 

where Zn is a random variable that approximately takes the value log A 
with probability 1 - L(J.L) and the value log B with probability L(J.L). 
(These are the only two values for the sampling to terminate.) The 

variable Z = log (~ ~:~~ ) and the expectation is taken with respect to 

IG(J.L, )..). Thus 

E(N( )) = L(J.L) 10gB + (1- L(J.L))logA 
J.L E(Z) . (4.4) 

It is easy to find E(Z). Indeed we have 

E(Z) = E (_~ (X - J.Ll)2 + ~ (X - J.LO)2) 
2X J.Li 2X J.L6 

= ~ (J.Li;- ~6 J.L _ 2(J.Ll - J.LO)) (4.5) 
2 J.LOJ.Ll J.LOJ.Ll 

= )"J.L (-\ _ -\) +).. (~ _ ~) . 
2 J.Lo J.Ll J.Ll J.Lo 

Finally E(N(J.Lo)) and E(N(J.Ll)) are easily calculated using (4.4) and 
(4.5). Edgeman and Salzberg consider an example of times to failure of 
air conditioning equipment first examined by J0rgensen (1982) in rela­
tion to the inverse Gaussian law. Specifically they are concerned with a 
decrease in mean times to failure which implies an increase in the recip­
rocals of the mean times to failure. Assuming that a preliminary test of 
fit is deemed satisfactory one wishes to test if J.Lo = 20 against J.Ll = 15 
with a = 0.05, (3 = 0.10 and)" = 1. In terms ofreciprocals ....L = 0.05 and 

J.to 

....L = 0.0667. The sequential rule then recommands acceptance of Ho 
f? the sum of the reciprocals of the life test times::; -0.0257 + 0.0571, 
and rejection if this sum ~ 0.0330 + 0.0571 using (4.1). If J.L = 116 , 

h(J.L) = -0.60 and L(J.L) ~ 0.2235. Finally E(Z) = 0.476 so that the 
average sample number is 3.66. 

The second sequential probability ratio test concerns a test of Ho : 
).. = )..0, J.L = 1 against HA : ).. = )..1 > )..0, J.L = 1. Using arguments 
similar to the test of the mean we can arrive at a rule: Reject Ho if 
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and accept Ho if 

As for the operating characteristic function we have to determine h{A) 
from the integral equation 

{;f, ( A(X _1)2) d - 1 
-23exp- x-. 

7fX 2x 

Therefore we have 

Integrating the now familar IG{l, A + (AI - Ao)h{A)) law we have 

( AI) h(A) ...r>: _ 1 
AO JA + (Al - Ao)h(A) - . 

Therefore h{A) satisfies the equation 

(
A ) h(A) 

A A~ = A + (Al - Ao)h{A). (4.6) 

Taking the logarithmic derivative of (4.6) gives 

Hence, noting that h{AO) = 1 and h{Ad = -1 satisfy (4.6) we obtain 

and 
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(¥t>')-l 
This shows that L(A) = (¥t(>')_(~)h(>') is increasing in h(A) and 

that when A = AO and A = Al (AI> AO) L(A) is decreasing in A. One 
can show that the average sample number is 

E(N(A)) = L(A) 10gB + (1- L(A)) log A . 
1 (log~ _ (>'1->'0») 
2 >'0 >. 

4.2 Sequential test for the mean and asymptotics 

In the case of a fixed sample size n we have seen that the likelihood 
ratio test of J.£ = 00 versus J.£ < 00 has optimum properties. Formulated 
in terms of the underlying Brownian motion the hypothesis tests for the 
drift v namely Ho : v = 0 against HA : v > 0, for the density function 
(see Section 3.2) 

f(t: a, v, a) = ~ exp {_ (a; ~t)2} l(o,oo)(t) 
a 27rt3 a t 

the likelihood ratio test rejects Ho if 

when A = ;;. is known. Here Zo./2 is the upper 100~% point of the stan-
n 

dard normal law. Lombard (1978) observes that, writing Sn = L: Xi, 
i=l 

if and only if, for some k = 1,2,··· ,n 

Thus if the n observations are taken one by one and Ho is accepted 
at stage k(~ n) if and only if 

then the sequential procedure will result in the same power as the fixed 
sample rule and in many cases result in a smaller sample necessary to 
reach the decision. 
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Lombard shows that when). is unknown the sequential procedure 
corresponding to the likelihood ratio test based on the rule reject Ho if 

V n2 

( ) Sn < 2 
n - 1 tn - 1,0I./2 

still retains the power asymptotically and results in a saving of observa­
tions, when Ho is true. (tn - 1,0I./2 being the upper 100a/2 percent point 
of Student's t based on (n - 1) degrees of freedom). 

(a) 

(b) 

(c) 

We now describe the procedure as outlined by Lombard. 
Recall the following facts 

P[T ~ t] = F(tj a, v, a) 

= <I> (a -vt) + exp (2va) <I> (_ a + vt) 
a..;t a2 a..;t 

[av { ( 2a2
(}) t}] E[exp( -(}T)] = exp a2 1- 1 + --;;2 

. [S[nz] I Y] ( ) hm P -2- ~ tn v = - --+ F tjaz,Y,a 
n-+oo n n 

for any fixed Y and a sequence {tn } --+ t > 0, and where [nz] denotes the 
integer part of nz. 

(i) 

(d) 

(e) 

(ii) 

Define for n 2: 2 

P [Sk 2: b for some [nd] :S k :S [nz] Iv = ;] 

= P [S[nz] 2: b Iv =;] whenever b,y > 0 and 0 < d < z. 

for y 2: 0 and 'if; 2: 0 

G(Yj 'if;, a) = 1-<I> (z 'if; - YZOl./2) -exp(2'if;y)<I> (- Z'if; - YZOI./2) . 
01./2 01./2 

Lombard states and proves the following two theorems which provide 
results on the asymptotic power and lead to the assertions made at the 
outset. 
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Theorem 4.1 For testing Ho : v = 0 against HA : v > 0 at a level 
a where 0 < a < 1 
(i) P(reject Ho I v = 0) = a 

(ii) lim P (reject Ho I v = "p(2) = 1- G(1j"p,a). 
n-4OO na 

Proof Rejection of Ho given v = 0 implies that 

When v = 0, £. (::8:) = X~ and moreover, from the independence of 

Sn and Vn and the fact that £. (~: Vn) = £'(>' Vn) = X~-l' it follows that 

[ Sn Vn n2 I 1 P ( -1) < 2 Ho = a. 
n tn - 1,a/2 

To prove (b) one has to obtain an estimate of P [fnn!'r) < t2 n 2 I HA]' 
n-l,a/2 

Thus for 0 < c < ~ 

(n2>.)(n2>,)"p2 

X~/2(n2>')2 
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= 1- G(l;'ljJ,a). 

Using Chebychev's inequality it can be shown that 

Thus 

lim sup P (reject Ho III = 'ljJ(2
) ::; 1 - G(l; 'ljJ, a). 

n-too na 

Likewise it can be established that 

lim inf P (reject Ho III = 'ljJ( 2
) ~ 1 - G(l; 'ljJ, a) 

n-too na 

and hence that 

lim P (reject Ho III = 'ljJ( 2
) = 1 - G(l; 'ljJ, a). 

n-too na 

The sequential version of the fixed sample rule of the likelihood ratio 
test recommends that we stop taking observations when 

N(n) = min(N, n) observations are taken 

where N is the first k ~ 2 such that 

The sequential rule says that Ho is rejected if N > n. .. 
The next theorem due to Lombard provides the asymptotic distri­

bution of N~n). 

Theorem 4.2 For all 'ljJ ~ 0 

. [N(n) 'ljJa2 ] hm P --::; Y III = - = G(y;'ljJ,a) 
n-too n na 

for 0 ::; y ::; 1. 
The proof consists in showing that 

lim P [N:S [nyJ III = 'ljJa2
] = G(y;'ljJ,a) for all y ~ O. 

n-too na 
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A lower bound K1(n,d) and an upper bound K1(n,d) + K2(n,d) 
are used for fixed 0 < d < y and it is shown that 

lim K1(n,d) = G(y;'IjJ,(J), 
n-too 

and 

lim lim K 2 (n, d) = 0 
d-tO n-too 

Here 

K (n d) = P [Sk Vk > n2 

1 , k - 1 - t 2 for some [nd] ~ k ~ [ny] I /J = -'IjJ(J2] 
na n-l,a/2 

and 

K (n d) = P [S k Vk > n 2 

2 , k - 1 - t 2 for some 2 ~ k ~ [nd] I /J = - . 'IjJ(J2] 
na n-l,a/2 

The local asymptotic power of the sequential procedure is the same 
as that of the fixed sample procedure and equals 1 - G(l; 'IjJ, a) for /J = 
'l/HT2 

an 

From Theorem 4.2 it is clear that N~n) converges in distribution to 
a mixed type random variable Y with distribution function 

{ 
0 for y < 0 

pry ~ y] = G(y;'IjJ, a) for 0 < y < 1 
1 Y ~ 1 

There is thus an atom 1 - G(l; 'IjJ, a) at y = 1. 
The local relative efficiency (in the Pitman sense) of the fixed sample 

procedure to that of the sequential procedure is 

e('IjJ, a) = lim n-1]E N(n) I /J = - . ( 'IjJ(J2) 
n-too an 

When 'IjJ = 0 we have 

where </J(.) is the standard normal density. 
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2Z 
L tt · X y 0/2 

e mg = 2 

For'I/J > 0 

since 

1 fflz~/2 
e(O,o:)=-Z - e-Xdx 

0/2 7f 0 

( Z~/2) 
= 13. 1- e--2 

V -; ZO/2 

e('I/J, 0:) = 1 - G(l; 'I/J, 0:) 

lEN(n) = (1[1 _ P(Y ~ y)]dy 
n Jo 

= 1 -11 
dG(y; 'I/J, 0:) 

= 1 - G(l; 'I/J, 0:). 

83 

When 'I/J > 0 and 0: --+ 0, G(l; 'I/J, 0:) --+ 0 while when 'I/J = 0 it can be 
shown that lim e(O,o:) = (7flogo:- 1)-t, thus establishing the asymp­

o-tO 
totic superiority of the sequential procedure under Ho. 

Lombard has done some Monte Carlo studies to verify the speed of 
the approximation for the power when v = O. Since the joint law of ~k!f 

does not depend on A ( = ~:), P(reject Ho I v = 0) and lE(N(n) I v = 0) 

were computed by taking A = 1. On the basis of 5000 independent runs 
he reports the results given in the Table 4.1. 

Table 4.1 Error probability estimates and expected sample sizes (for 
v = 0) 

JE(N(n)) n 0: Ii 

5 0.10 0.0922 3.02 

0.05 0.0492 2.81 

0.01 0.0076 2.44 

10 0.10 0.0960 5.07 

0.05 0.0500 4.36 

0.01 0.0140 3.74 
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4.3 Tests with known coefficient of variation 

Joshi and Shah (1990) have studied a sequential probability-ratio 
test of the inverse Gaussian mean where [(Xi) = IG (J-L, ~), a being 
a known coefficient of variation. For testing H 0 : J-L = J-Lo against H A : 

J-L = J-LI it turns out that the maximum of the expected sample number 
occurs when the mean J-L is approximately equal to the geometric mean 

of J-Lo and J-LI and depends on J-Lo and J-LI only through the ratio (~) and 

not on a. We now describe the steps leading to this sequential analysis. 
Suppose that [(Xi) = IG (J-L, ~) and J-LI > J-Lo. Then 

Z = log (f(X;J-LI)) 
f(X; J-Lo) 

= log [fft exp ((X - J-LO)2 _ (X - J-LI)2)] 
..fiiO 2a2 X J-Lo 2a2 X J-LI 

= ~ log J-LI __ 1_ (X J-Lo - J-LI + J-LI - J-Lo) . (4.7) 
2 J-Lo 2a2 J-LOJ-LI X 

The sequential probability-ratio test gives rise to the following stopping 
rule for 0 < {3 < 1 < A. Stop taking observations when N is such that 
L:~I Zi ~ log B or L:~I ~ log A. We can express this by saying that 

N = inf { n " 1 I t z, <; log B or t Z, " log A } . 

By the Wald approximation rule A and B satisfy A ~ 1~(3 and B ~ I~Ct. 
Now L:~=I Zi ~ log B implies that 

~ log J-LI + (J-LI - J-Lo) t X - (JkI - Jko) L ~ < log B 
2 Jko 2a2 JkIJkO i=1 ~ 2a2 Xi -

or 

_1_ tXi _ t ~ ~ 2a2 (10g B _ ?!: log J-LI) . 
J-LIJ-LO i=1 i=1 Xi JkI - Jko 2 J-Lo 

Likewise, L:~=I Zi ~ log A implies that 

_1_ t Xi - t ~ ~ 2a2 (log A - ~ log J-LI) . 
JkIJkO i=1 i=1 Xi JkI - Jko 2 Jko 

To obtain the operating characteristic function we note that IEJ-I (Lh(J-I») = 
IEJ-I{exph(Jk)Z) and we then have to solve 

1 100 (J-LI) h<r) ( J-L ) t (PX Q) e ~ - exp - - - -- dx = 1 
o Jko 2na2x3 2a2 2a2x 
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where P(p,) = h(l1-) - h(l1-) + 1, and Q(p,) = h(p,)(P,1 - P,o) + p,. When 
11-1 11-0 11-

P(p,) 2: 0 the integral can be evaluated and we obtain 

h(,,) 1 

(~~) -2 (Q1p,)) 2: exp (:2 (1- JP(p,)Q(p,))) = 1. (4.8) 

We note that when p, = P,o, h(p,o) = 1 and when p, = P,1, h(P,1) = -1. 
Taking logarithms of both sides of (4.8) and rearranging we have 

-log ~ h(p,) + -log p, - -log {p, + (P,1 - P,o)h(p,)} a2 (p,) a2 a2 

2 P,o 2 2 

(1 (1 1) )~ 1 = -+ --- h(p,) {(p,+(p,1-P,0)h(p,)p. 
P, P,1 P,o 

Differentiating both sides with respect to p, and substituting h(P,o) = 1 
or h(P,1) = -1 we get 

Hence 

and 
2 2 

a2 11-1 -11-0 + 11-02-11-1 

hl(P,O) = 11-011-1 11-011-1 • (4.10) 
a2 (log (1!:1.) _ f!:1..:::..l!:.) + (11-1-11-0)2 

11-0 11-0 11-011-1 

To see that hI (P,1) < 0 we note that the numerator> 0 and the coefficient 
of a2 in the denominator is always < 0 for 1!:1. > 0 (log 1!:1. < 1!:1. - 1). 

11-0 11-0 11-0 
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(We have assumed here that 1-£1 > 1-£0.) In a similar manner it can be 
argued that h' (1-£0) < o. This proves that L (1-£) is strictly increasing 
in h(l-£) and that when 1-£ = 1-£0 and 1-£ = 1-£1, L(I-£) is decreasing. Thus 
the sequential test can also be extended to testing one-sided composite 
hypothesis 1-£ ::; 1-£0 against 1-£ > 1-£0· 

A verage sample number 

To calculate 1E(N(I-£)) we first compute 1E(Z). From (4.7) it follows 
that 

Hence 

1E(N(I-£)) = 2(L(I-£) 10gB + (l-L(I-£))logA) . 

log (1&) + (1 - 1&) - 1 (H:Q. + 1& - 2) 
ILo ILo Q.2 IL 1 ILo 

Under Ho, h(l-£o) = 1 and a = 1 - L(I-£) while under HA, h(l-£l) = 1 
and L (1-£) = 1 - (3. Therefore 1E H 0 (N (1-£)) and 1E H A (N (1-£)) are easily 
obtainable. Joshi and Shah show that the value of 1-£ for which 1E(Z) = 0, 
say I-£s is given by 

which is approximately equal to y'1-£01-£1 = {L for H:Q. near unity. In prac­
ILl 

tice, they claim that H:Q. can deviate significantly from unity and still 
ILl 

have 1E(Z I M close to zero, as shown in Table 4.2. 

Table 4.2 Values of H:Q. versus 1E(Z I M 
I-Lt 

H:Q. 1E(Z I M 
0.50 -0.006980 

0.60 -0.002786 

0.70 -0.000947 

0.80 -0.000231 

0.90 -0.000024 

0.95 0.000003 

The maximum value of the average sample number occurs in the 
vicinity of I-£s where 1E(Z) = 0 (Ghosh 1970, p. 125). Then 

1E(N( )) ~ logAlogB 
I-£s ~ 1E(Z21 I-£s)· 
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The denominator when estimated at P,8 = jl has the value (with r = ~) 
III 

(r - 1) logr 

2vr 
The maximum of the average sample number can then be calculated for 
selected values of a, /3, a and r. Joshi and Shah claim that JE(N(p,)) 
calculated for p, = P,s and p, = jl are in close agreement. Table 4.3 shows 
the values of JE(N(p,)) for p, = P,o, P, = jl and p, = P,1 for a = /3 = 0.5 
and P,o = 1 (P,1 is determined from r = ~). ILl 

Table 4.3 Values of the Average Sample Number 

Values of ASN 

a r 0.5 0.6 0.7 0.8 0.9 

0.25 Eo 0.63 1.19 2.48 6.40 28.87 

~jL 1.05 1.97 4.08 10.50 47.28 

E1 0.64 1.21 2.50 6.43 28.93 

0.50 Eo 2.29 4.33 9.04 23.36 105.58 

~jL 3.85 7.82 14.98 38.53 173.39 

El 2.41 4.50 9.28 23.75 106.41 

1.00 Eo 6.56 12.54 26.43 68.95 314.31 

EjL 11.55 21.67 ~4.95 115.59 520.18 

El 7.64 14.04 ~8.61 72.46 321.76 

2.00 Eo 12.27 23.81 ~0.94 134.66 621.44 

Eji. 23.11 43.34 ~9.90 231.19 1040.36 

El 16.65 29.86 59.57 148.69 651.24 

4.4 Asymptotically risk-efficient sequential estimation 

Chaturvedi et al., (1991) have developed a class of sequential pro­
cedures for point estimation of the parameter of a population under a 
family of loss functions together with a cost function. The method is 
applicable in the presence of an unknown nuisance parameter. A condi­
tion on the initial sample size necessary to ensure the asymptotic risk­
efficiency is also given. We will not prove the general theorem which 
guarantees this procedure but will state it together with the preliminary 
assumptions made by the authors and then show it can be applied to 
the IG(p" oX) model. 

Assumptions 
(a) Let {Xdi=l' i = 1, ... be a sequence of independent identically 

distributed random variable from ad-variate (d ~ 1) absolutely 



88 Sequential methods 

continuous population !(Xj8,'IjJ), where 8 is a (d x 1) vector of 
unknown parameters of interest, 'IjJ is a scalar nuisance parameter 
assumed unknown. Thus (8, 'IjJ) E R d X R + , 

(b) Xl' ... ' Xn is a random sample of size n (~ d + 1). 
(c) 8n = 8(XI , ... , Xn) and ;j;n = 'IjJ(X1 , ... ,Xn) are estimates of 8 

and 'IjJ respectively. 
(d) There exist a known (d x d) positive definite matrix Q, a number 

8 E (0,1J and an integer r (~ 1) such that 

n'IjJ-I((8n - 8)tQ(8n - 8))6 '" X~. 

(e) For all n ~ d + 1, 8n Jl ;j;n. 
(f) There exist integers p ~ 1, q ~ 1 such that for all n ~ q + 1, 

p{n - q);j;n = I: z?) 
'IjJ j=l 

where ZJp) are independent identically distributed random variables 

such that .c(Z~p») = X;. 
(g) ;j;n is a consistent estimator of 'IjJ. 
(h) The loss function is given by 

L(8,8) = A((8n - 8)tQ(8n - 8))lk + C~ 

where A, a, C and t are known positive constants. Using (h) and (d) 
the risk can be shown to be 

The value of no which minimizes Rn (C) is 

6 

n = ~ 6 2 'IjJ~Hd ( 
Af ( ~ + 2)) (Q+6d) 

o 8 cd2! 

and the minimum risk is 

( 8t) t Rno(C) = 1 + ~ Cno· 

The sequential procedure begins with a sample of size m ~ max( d+ 1, q+ 
1). A stopping variable N == N(c) is introduced as the smallest-positive 
integer n ~ m such that 

6 

( 
K ) ii'+O'd A Q a f (~ + !:.) n> - ""QHd where K = -A 6 2. 

- Cd 'l'n, 8 2~ 



Asymptotically risk-efficient sequential estimation 89 

After stopping e is estimated by eN' Chaturvedi et aI., now estabilish 
several lemmas used to prove the following theorem, 

Theorem 4.3 

'f 2a2 

Z m> q + 6p(a+Od) 

J 2a2 
Z m = q + 6p(a+Od) 

J 2a2 
Z m < q + 6p(a+Od) 

where ;~ ~~) is defined as the risk-efficiency of the procedure, 

Application to IG(j.L, >.) 
To apply Theorem 4,3 we first observe that d = 1, e = j.L, 7/J = t, 

~ - - v en = X n, 7/Jn = n-l' We take Q = j.L-3, 8 = 1 and verify at once that 
assumptions (d), (e), (f) and (g) hold when we have r = p = q = 1. The 
loss is 

L(j.L, X) = A ((X ~r;U)2) s + Cnd 

for some positive constants A, C and s, Then 

Rn(C) = ( ~) (>.n)-S + Cnd 

no = (~d) S;d r s~d , 

Rno(C) = (1 + ~) Cnod, 

and 

Two key lemmas used in the proof of Theorem 4,3 state that limc-to 

1E (.~ ) A == 1 for fixed>. > 0 and that 

lim 1E (no) A = { ~ + K 
c-tO N 

00 

'f 2aA 
1 m < q + p(a+Od) ' 
'f 2aA 
1 m = q+ p(a+Od) , 
'f 2aA 
1 m> q + p(a+Od) ' 

'f 2s2 
1 m> 1 + s+d' 
'f 2s2 
1 m = 1 + s+d' 
'f 1 2S2 
1 m < + s+d' 
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4.5 Control charts 

Control charts are a device for monitoring the stability of process 
output. They provide a visual display of the changes in the process mean 
and dispersion as measured by the sample estimate of the population pa­
rameters. A control chart is typically based on normality assumption of 
the process output or often when the Central Limit Theorem is appli­
cable. For small samples, however, the Central Limit Theorem is no 
longer valid. Edgeman (1989) presents inverse Gaussian control charts 
and discuses their sensitivity through simulation studies. His findings 
are discussed in the next section. We assume that the process output 
follows an IG(J.L, >.) law and that M samples of n items each have been 
selected from the process when it is in control. Denote by X j the jth 
sample mean and by Vj the value of V for the jth sample. Further let 

M is chosen between 20 and 25. The idea now is to use X in the expres­
sion for the confidence intervals for J.L. Writing LCL and UCL for the 
lower and upper control limits respectively we have 

X [max {o, 1- Z1-~ Vx/n>.}] -1 = UCL 

and 

X [max {o, 1 + Z1-~ Vx/n>.}] -1 = LCL 

when>. is known, and 

and 

x[max{0,1+t1_~vxv/n(n-l)}]-1 =LCL 

when A is unknown. This is allowed since X is still uniformly mini­
mum variance unbiased for J.L and V is a linear unbiased estimator of A -1. 

The centre line on each chart is given by X and the charts are 
then plotted in standard fashion. Edgeman cautions that when the LCL 
becomes infinite, one should construct charts for the reciprocal process 
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centrality. The centre line for this chart will be (~), the UCL will be 

the reciprocal of the LCL and the new LCL the reciprocal of the old 
UCL. Thus for example the UCL for the reciprocal process centrality is 

1 Zl-a./2 

X + Vn)..X· 

These limits can be obtained directly by examining the confidence limits 
on ~ control charts for the process dispersion is based on substituting V 

for V and using the fact that £()"V) = X;-l' The charts that monitor 
the reciprocal process dispersion will have (see Table 4.1) confidence 
interval limits for ).., J.£ (unknown) as 

(4.11) 

Designating this chart as the V chart, one observes that, it has the 
blemish that the 'center line' is not a true center line because of the 
asymmetry of the X2 law. If the process is in control, the values of V 
will fluctuate around V. The control chart is constructed by positioning 
horizontal lines at the control limits given by (4.11) and a center line 
at V. Observed values from sucessive samples are then plotted on the 
vertical axis of the chart corresponding to the sample number on the 
horizontal axis. Kappenman (1979) has shown that X and V are in­
dependent and hence the process should be monitored by simultaneous 
maintenance of an X (*) chart for centrality and a V chart for process 
dispersion. A Monte Carlo study done by Edgeman examines the sensi­
tivity of the i' and V charts instead of the X and R charts. His results 

indicate that for small )..1 J.£ the X chart gives progressively better (yet 
still poor) results with increasing n. The trend for the R chart is in the 
opposite direction. The * and V charts are generally recommended for 
small ¢ = ~. 

/.L 



CHAPTER 5 

RELIABILITY AND SURVIVAL ANALYSIS 

5.0 Introduction 

We now consider the IG(JL, oX) law from the point of view of mod­
elling for reliability and survival analysis. The reliability of a system at 
time t is defined as the probability of the system lasting at least until 
a time t. Thus if X represents failure time, then symbolically R(t) the 
reliability is given by P(X ~ t). Since the random variable X has a dis­
tribution indexed by a parameter (J it is more convenient to write R( tj (J) 

for the reliability function. For the IG distribution we will write from 
now on R(tj JL, oX) to denote this function. Since 

F(t) =~ [~(; -1)] +exp(~) ~ [-~ (1+;)]' 
R(t;I',AH [~(1-;) ]-exp c:) 

~ [-~ (1+;)]. (5.1) 

The estimation of R(tj JL, oX) depends on the status of (JL, oX). One 
method which guarantees an unbiased estimate with smallest variance is 
based on the Rao-Blackwell principle. 

5.1 Estimation of Reliability 

(i) Point estimate of R(tj JL, oX): (oX known, JL unknown). 

In this case the minimum variance unbiased estimate of R(tj JL, oX) is 
based on the conditional law of Xi ( say Xl) given the compelete sufficient 
statistic for JL. We use Theorem 1.8 to obtain R(tj JL, A) as 

rx 
R(tj JL, oX) = it P(Xl I X)dXl' 
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A change of variable Y = J(XI-X) transforms the integral into the 
Xlx(nx-xt} 

range (y*, 00) and permits the evaluation of the transformed integral in 
terms of the standard normal distribution. Thus 

R( *. ,\) -100 (1 _ (n - 2)yVx ) d..( )d 
y,J.L, -yo y'4n(n-1),\+n2xy2 'PYY 

¢(y) being the standard normal density, and y* = j(t-X) . If we let 
tx(nx-t) 

z = J y2 + 4n(:;I». 

100 YVx¢(y) 2(n-:.l)A ( /4n( n - 1)'\ *2) 
--;:::.:::;::::::=~==;<===dy = e nx <1> - + Y . 

y' y'n(n - 1)'\ + n2xy nx 

Then we obtain 

R(x;J.L,'\) =1E(P(XI > x I X)) 

R(t; J.L,'\) = <1>( _y*) _ n - 2 exp (2(n ~ 1),\) 
n nx 

;r,. ( J4(n - 1)'\ 2) x'*' - _ + y* 
nx 

= RI (y*), (say) 

for y* E JR. Thus we have the desired estimate as 

{
It < 0 

R(t;J.L,>-')= RI(Y*) O<t<nx 
o t> nx. 

(ii) Point estimate of R(t; J.L, ,\): (,\ unknown, J.L known) 
We use Theorem 1.9 and the density f(XI I z). The clever idea is 

to convert the integral to one involving a weighted Student's t. This is 
achieved by writing 

where Y E JR. It turns out that Xl E (L,J.L) when Y E (-00,0) and 
Xl E (J.L, U) when Y E (0,00) where 

L = ~ ( 2J.L + z - J Z2 + 4J.Lz) , U = ~ (2J.L + z + J z2 + 4J.Lz) . 
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After a tedious computation one obtains 

{
It < L 

R(t;j1.,A) = oSn-l(a(t)) - (Z~4JL)1}-1 Sn-l(b(t)) L < t < U 
t> U 

where 
In=-l(t - m) 

a(t) = , 
Jzt - (t - m)2 

b(t) = In=-l(t + m) . 
Jzt-(t-m)2 

(iii) Point estimate of R(t; j1., A): (j1., A unknown) 
In this case we use Theorem 1.10 and an appropriate transformation 

to obtain tail areas of Student's t as in the previous case. We omit the 
cumbersome details since they are of mere academic interest. All these 
estimates are due to Chhikara and Folks (1974). 

(iv) Bayes estimate 

Padgett (1979) has presented Bayes estimators of R(t; j1., A) for the 
case when j1. is known. He employs vague priors as well as a conjugate 
family of priors. However when both j1. and A are unknown an estimator 
is proposed which, besides its ease of computation, seems to perform 
well for large t. The likelihood based on the data X = (Xl, ... , xn) is 
preportional to 

l(j1.,).,) ex A 1} exp [(nA) - ~x - ~ '" x:-l] . j1. 2j1.2 2 L z 

Now the Fisher information matrix has determinant (Aj1.3)-1 so that 
Jeffrey's prior is given by 

Since this prior does not yield tractable results one resorts to the non­
informative prior (improper) n(A) ex A-I for known j1. to obtain the 
following posterior distribution. 

where 

c = r t%l [2:' t, (Xi ~;~)2 r 
It is clear that f(A I X, j1.) is a gamma law of the form 
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where a = ~, (J = L~=12¥. For a squared error loss, routine calcu­

lations give the Bayes estimator of A as 

The Bayes estimator of R(tj p., A) with respect to the improper prior and 
a squared error is then 

Thus we need to compute 

EAH(W(I-t)}]­
EA[exp(~)~{ (_~)t (l-~) }]. 

The first term (from Lemma 1 of Padgett and Wei (1977) has the value 

where a and {3 are as defined previously and T2a is a Student 't' random 
variable with 2a = n degrees of freedom. Likewise the second term yields 

[ 1] 2{3 -a t a{Jp. 2" (1 --) P T2a < - (1 --) ( ). 
f.L f.L t(f.L - 2{J) 

These two probabilities are easily evaluated from the tables of a 'tn' and 
RB(t) can be obtained. One could use a more general gamma family as 
the prior for A and obtain parallel results. When A and f.L are unknown 
one can obtain a modified Bayes estimator by using X as the estimator 
of p.. Padgett provides results based on Monte Carlo simulation which 
give the average estimated reliability, the average squared error for the 
estimators based on the maximum likelihood, the minimum variance un­
biased estimator, and the modified estimator using X in place of f.L. The 
simulated results suggest that the last estimator behaves conservatively 
with a larger average squared error for small t but improves considerably 
for large t. 
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Example 3.1 (continued) For the von Alven data the estimates of reli­
ablility are given in the following table. 

Table 5.1 Estimates of Reliability 

t 1 2 3 5 10 15 

RB{t) .4578 0.33305 .0789 0.0388 

MLE 0.3325 .0791 0.0386 

MVUE .4618 0.3368 .0829 .0396 

5.2 Confidence bounds and tolerance limits 

The problem of confidence intervals has been investigated by Pad­
gett (1979) and more recently by Goh et al., (1989) and Tang and Chang 
(1993). We will follow the trail of the latter authors where the develop­
ment is based on optimization methods. When the reliability function 
is monotone in the parameter, confidence bounds are obtained by using 
the idea of equivariant confidence sets as proposed in Lehmann (1986). 
In the case of IG{IL, A), unfortunately, R{t; IL, A) is not monotone with 
respect to A, although it is monotone with respect to IL. Nevertheless, in 
realistic situations it is highly improbable that anyone of the parameters 
is known to the experimenter. Goh et al., have proposed lower confidence 
bounds for R{t; IL, A) when the version of the IG law is parametrized in 
the following form 

1 ( (8t-1)2) f(t;8,(1) = exp - 22 1R+{t) 
v'21r(12t3 (1 t 

(5.2) 

where 8 = ~ and (12 = t, (1 > 0,8> O. In the model (5.2) the parameters 
8 and (12 carry meaningful interpretations with respect to the Weiner 
process assumptions underlying the IG law. Thus if we are dealing with 
wear-out models or fatigue failure models, X(t) is a Weiner process with 
drift v and variance parameter (1'2 so that X(t) '" N{vt, (1'2t). If X{t) is 
measured at fixed time intervals tlt we are dealing with a Wiener process 
with stationary independent increments and Xi{tlt) = X{ti) - X{ti-l) 
where tlt = ti - ti-I. i = 1, ... ,no (One can take tlt = 1.) As X{t) 
changes with time, failure will be defined as the instant when the process 
X{t) > a called a barrier or threshold value. In this case the reliability 
can be shown to be (Goh et al., 1989) 

<I> (_a (1- vt)) _ exp (2av) <I> ( __ a (1 + vt)) . 
(1' Vt a (1'2 (1' Vt a 

Writing 8 = ~ (1 = 0" a' a 

( 1 - 8t) ( 28) ( 1 + 8t) R{t; 8, (1) = <I> (1Vt - exp (12 <I> - (1Vt . (5.3) 
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We state the following theorem due to Tang and Chang which de­
scribes a method of construction of confidence intervals for R( tj 8, (J) as 
well as R(tj j.L, >.), 

Theorem 5.1 (a) A 100(1 - 0!1)(1 - 0!2)% confidence interval for 
R( tj 8, (J) is given by the interval 

for each t, where 

and 
S2 = _1_ "(Xi _ j.L)2, 

n-1L.,.. 

(b) A (1- O!l - 0!2 + 0!10!2) level confidence interval for R(t; j.L, >.) in (5.1) 
is given by the interval 

for each t, where 

{ ~ }-l] 1 V 
-- t ~ 
X n(n - l)X 1- 2 

and 

Proof The confidence coefficient (1- 0!r)(1- 0!2) of an interval (T, T) 
for q( (}) is defined as the largest possible confidence level, that is to say 

i~f P (I:(X) :S q((}) :S T(X)) 
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giving the minimum probability of coverage (see Bickel and Doksum, 
1977). Therefore, one has to show that 

To do so we first observe that R(tj 8, a) is monotone decreasing in 8, since 

8R 2 (28) ( 1+8t) 88 = - a2 exp a2 cp - a...;t :S 0, Va,t. 

Now we apply the Kuhn-Tucker optimality criterion, which we state 
below. Let x* be a relative minimum point for the problem -minimize 
f(x) subject to h(x) = 0, g(x) :S 0 and suppose that x* is a regular 
point for the constraints (i.e. Vhi(X*), Vgj(x*), 1 :S i :S m, j E J a set 
of indices for which gj(x*) = 0, are linearly independent). Then there 
exists a vector A E E and a vector J.L E EP with J.L ~ 0 such that 

Vf(x*) + AtVh(x*) + J.LtVg(x*) = 0 

J.LtVg(x*) = O. 

(Here 9 is a p-dimensional function.) We then have 

inf_ R(tjc5,a) = inf_R(tj8,cr) 
0<0<0 £~u~u 
i~u~u 

and 
sup R(tj 8, cr) = sup R(tj Q., a). 
i~0~5 £~u~u 
£~u~u 

Denoting by A( 8, a) = {Q. :S 8 :S 8, Q.:S a :S u}, we get 

inf R(tj8,cr):S R(tj8,a):S sup R(tj8,a). 
A(o,u) A(o,u) 

An equivariant set of A(8,a) is ..4(8, a) given by 
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Therefore 

P ( inf R(tj8,a)::; R(tj8,a)::; sup R(t j8,a)) 
A(5,u) A(5,u) 

;::: P(A(<5,JL)) = P(A(<5,JL)) = (1- 0!1)(1- 0!2) 

since J JL a. The proof of (b) is analogous to the above. First we verify 
that ~: ;::: 0 for all ..\ > 0 and t ;::: 0 and then use the fact p, JL ~. 

As observed by Tang and Chang, over the region where R(tj <5, a) 
(R( tj JL, ..\)) is monotone with respect to both parameters 

infP ( inf R(tj <5, a) ::; R(tj 8, a)::; sup R(tj 8, a)) 
5,u A(5,u) A(5,u) 

= P (A(8, a)) = (1 - 0!1)(1 - 0!2) 

thus reinforcing the efficiency of the procedure. For the density (5.2) 
leading to R( tj 8, a) note that R( t; 8, a) is monotone decreasing in a for 
all t ::; ~ just as R( tj JL, ..\) is monotone increasing in ..\ for all t ::; JL. 
Therefore we have 

Likewise 

1 - -
t::; ""i =? inf _R(tj<5,a) = R(tj<5,a) 

u £:~u~u 

and sup R( tj §., a) = R( tj §.,Q.). 
£:~u~O' 

t:S JL =? inf _R(t;JL,..\) = R(t;JL,~~.) 
~~A~A - -

and sup R( tj P;, ..\) = R( t; P;, X). ... 
~~A~X 

When t > JL the authors recommend a graphical approach. Either 
we plot R( tj 8, a) against a I VJ for several values of 8t or we plot R( t; JL, ..\) 
against ..\IJL for different values of tlJL (Figure 5.1, Figure 5.2). Padgett 
gives an approximate point of change from increasing R(t; JL,..\) to de-

creasing R(t; JL,..\) when JL is known as ..\o(t, JL) = 2t2 / (1 + t) 2 (t - JL). 

U sing the graphical method, how does one obtain the lower (..\:i (t) ) 
and upper (..\u(t)) bounds? In Figure 5.2 concentrate on the range 
(M f!:., XI!:!:..) and choose that one which gives the smallest R(t; JL, ..\). This 

determines ..\L(t). Similarly considering the range (Mp;, X/m choose 
that one giving the maximum R(tj JL, ..\), to obtain ..\u(t). A similar 
strategy is employed to determine at (t) and air (t). 



100 

0.5 

0.45 

0.4 

0.35 

0.3 

R(t;O,Il) 
0.25 

0.2 

0.15 

0.10 

0.05 

Reliability and survival analysis 

2 3 4 5 6 
a/I/O 

Figure 5.1 R(t) as ajucntion oju/Vb 



Confidence bounds and tolerance limits 

0 .45 

0.4 

0.35 
R(t;~) 

0.3 

0.25 

0.2 

0.15 

0.10 

0.05 

00 , 2 3 

Figure 5.2 R(t) as afucntion of)../J.l 

Example 3.1 (continued) 

tlj.I= l ~_----

1.2---__ _ 

1.4 _____ 

'.6 _______ 

'.8 _____ 
2.0 _____ :---

.1.------
6 

101 

For the von Alven data, n = 46, P, = 3.61 and .\ = 1.66. Taking 
al = a2 = 0.05, 95% confidence limits for J.l and>' are respectively 

J.l E [2 .500; 6.471J, >. E [1.023, 2.359J . 

To determine 90.25% confidence bounds for R(t; J.l, >.) one has to mini­
mize R(t; 2.500, >.) subject to>. E [1.023, 2.359J iteratively for some fixed 
t , thus obtaining the lower bound; and then maximizing R(t; 6.471 , >.) 
subject to the same constraint obtain the upper bound (see Figure 5.3) . 
The same procedure can be adapted to obtain tolerance limits as in the 
case of the distribution function. 
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Figure 5.3 90.25% confidence bound for R(t) 

5.3 Hazard rate 
Definition 5.1 The hazard rate of a system is defined as 

h{t) = f(t) = f(t) . 
R{t) F(t) 

30 

Strictly speaking h{t)dt is the probability that a system of age t will 
fail in the interval (t, t + dt) i.e., 

h(t) = lim {p{system of age t fails in (t, t + ~t))} . 
At-tO t::.t 

Other names for the hazard rate are intensity function, Mill's ratio and 
force of mortality. For a good discussion of the various types of failure 
see Mann et al., (1974). For IG{/L, >.) 
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we have 

1 ( ,\(t-I.ll) 
( 

.\ ) '2 exp - 2J1.2t 

h( tj /-£, .\) = 27rt3 <I> (vA(J.L-t)) + e 2; <I> (_ vA(J.L+t)) . 
wit wit 

Chhikara and Folks show that h(tj /-£,.\) is not a monotone function of 
t in (0,00) and that it increases from zero at time t = ° till it attains 
a maximum at some critical time t* and then decreases to a non-zero 
asymptotic value. A phenomenon of this nature makes the IG law a 
good candidate for modelling lifetimes with high early failure rates. The 
following proposition relates to the non-monotonic aspect of h(tj /-£, .\). 

Proposition 5.1 The hazard rate h(t; /-£,.\) is increasing in (0, tm) 
where tm is the mode of IG(/-£, .\). Moreover there exists a value t* at 
which h(tj /-£,.\) attains its maximum and t* E (tm, to) where to is a value 
such that the hazard rate is decreasing for t > to. 

Proof The mode tm of IG(/-£,.\) is given by 

Clearly f(t) increases in (0, tm) while F(t) is decreasing in (0, tm). Thus 
h(t) is increasing in (0, tm). Consider the logarithmic derivative of h(t). 

h'(t) f'(t) 
h(t) = f(t) + h(t). 

Now denote by p(t) 

f'(t) 3 .\ .\ 
p(t) = - f(t) = 2t + 2/-£2 - 2t2 · 

Observe that 
a) p'(t) = -~ + fa < ° if t > 23'\ = to (say), 
b) p' ( t) > ° if t < to, 
c) tm < to, 

and 
d) p(t) is decreasing in t if t > to. 

Now let 

h'(t) = 1!..(t) (100 f'(x) dx + f(t)) 
h(t) F(t) t p(x) p(t)· 
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From this representation it follows that 

h'(t) p(t) ( 1 100 
, f(t)) 

h(t) < F(t) p(t) t f (x)dx + p(t) = O. 

Thus log h(t) and therefore h(t) is decreasing in t for t > to. But h(t) is 

increasing in t for t < tm. Hence there exists a root of ~(W in t E (tm, to). 
We now show that there is at most one such root. To do so define 

Then 

Moreover 

100 f'(x) f(t) 
g(t) = t p(x) dx + p(t)' 

'(t) = _f(t)p'(t) 
9 p2(t) . 

{ 
< 0 tm < t < to, 

g'(t) = = 0 t = to, 
> 0 t > to. 

Now g(t) is decreasing in t E (tm, to) and g(t) is increasing for t > to 
whereas p(t) > 0 for t > tm and ~(W = pW(~~t) < 0 for t > to. Therefore 

g(t) vanishes at one point in t E (tm, to) implying that ~(W can have at 

most one root for t > tm. Thus h(t) attains its maximum at t* E (tm, to). 
Since 

d A 3 A 
dt log h(t) = - 2fL2 - 2t + 2t2 + h(t) 

t* is a solution of -it log h(t) = 0 so that h(t*) = 2~2 + 2~' -~. Clearly 
ast-too 

lim h(t) = lim - JJ'((t)) = lim p(t) = \. ... 
t-too t-too t t-too 2fL 

5.4 Estimation of critical time 
Case (a) fL, A known. The problem of estimation of the critical time is 
useful in reliability studies to determine the duration of a burn-in. Hsieh 
(1990) examines several methods of estimation and finds that there is 
no estimator among those investigated that is uniformly better in terms 
of root mean square error and bias. However, he recommends just two 
estimators and develops an algorithm for one of them. We describe below 
his technique. 

Note that the critical time t* is a root of 

A 3 A 
h(t; fL, A) - 2fL2 - 2t + 2t2 = 0 (5.4) 
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where t* E (tm , 2; ) . When /1- and A are known one has to construct 
tables to solve the equation iteratively. To reduce the number of param­
eters we let 

T A 
X = -, ¢ = -, where £.(T) = IG(/1-, A). 

A /1-

Multiplying (5.4) by A and substituting we have the equation 

¢2 3 1 
g(x, cp) = Ah(t; /1-, A) - "2 - 2x + 2x2 = o. 

Since h(t; /1-, A) = kt!;;~',~~ and f(t; /1-, A) becomes f(x; cp-l, 1) under the 

transformation X = t, ¢ = *, we have 

f(x; ¢-l, 1) cp2 3 1 
g(x,¢) = R(X;¢-l,l) -"2 - 2x + 2x2 = 0 

¢2 3 1 
= p(x; ¢) - - - - + - = O. 

2 2x 2x2 

Now we solve g(x; ¢) by the Newton-Raphson method using the modal 
value Xm as the initial value. Iteration is based on the equation 

(5.5) 

and Xm = ~ ( ~ + i ( 1 + 2:2 )! - ~ ). If x* is the solution obtained 

by iteration of (5.5) then AX* = t* is the desired estimate of the critical 
time. 

Case (b) /1-, A unknown. Hsieh remarks that of six estimators investi­
gated by him two estimators of the critical time stand out as desirable. 
Estimators of the critical time are obtained as solutions to an equation 
containing maximum likelihood estimators of A and ¢. These are biased 
and have large root mean square errors. He is led to the choice of two 
estimators of A, ¢ namely (X, ¢) and (X, ¢) where 

and 
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With sample sizes of n = 10, 20 and 5000 repetitions Hsieh concludes 
that an estimator based on (X, ¢) performs better for values of if; < 5 in 
terms of smaller bias and root mean square error while for if; ~ 5 Hsieh 
recommends an estimator based on (X, ¢). Using the Jackknife method 
Hsieh proposes construction of confidence intervals for t*. We will see 
how the technique of Chang (1994) and Tang and Chang (1994) can 
be used to obtain confidence intervals for the hazard rate as well as for 
the critical time. Their method depends on the solution of a non-linear 
programming problem when both parameters are unknown. 

5.5 Confidence intervals for hazard rate 

The following theorem is due to Chang (1994). 

Theorem 5.2 The 100(1-al)(1-a2)% confidence interval for h(t; 1-', A) 
is given by the interval 

for each t where (1-', Ji) and (~, 'X) are the 100(1- al)% and 100(1- (2)% 
confidence interv01s for I-' and A respectively. 

Proof Define 11 = {(I-', A) I I-' ~ I-' ~ Ii, ~ ~ A ~ 'X}. Then for 
(I-', A) E 11 -

inf h(tj 1-', >.) ::; h(t; 1-', >.) ::; sup h(t; 1-', >.). 
n n 

Hence 

P (igfh(t;I-',>')::; h(t;1-', >.) ~ S~Ph(t;I-"A)) 
~ P (I-' ::; I-' ~ Ii, ~ ~ A ~ X) = 1 - al - a2 + al a2 

since p, JL A. (1-', Ii,~, 'X are defined in Table 4.2.) Observe that h(t; 1-', A) 
is monotone decreasing in 1-'. Therefore 

inf h(t; 1-', A) = inf _ h(t; Ii, A) 
n ~$A$A 

and 
sup h(t; 1-', A) = sup h(t; 1-', A). 
n ~9:5X-

This then yields the desired reuslt. " 

Example 3.1 (continued) For the von Alven data fl = 3.6065 and 
>. = 1.6589, and n = 46. The 97.5% confidence intervals for I-' and A 
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are respectively [2.3911,7.3639J and [0.9548, 2.5411J. We can then plot 
h(ti fL, A) as well as the trajectories of AL(t) and AU(t). Therefore, it 
turns out that the failure rate for the inverse Gaussian distribution is 
monotone decreasing in fL. Hence, it follows that 

and 
suph(tifL,A) = sup h(tifL,A). 
n !!.:5A::;X-

Furthermore 
p, = 3.6065 and ~ = 1.6589. 

The 95.0625% confidence bounds for h(ti fL, A) are shown in Figure 5.4 
and the ALB (t) and ADB (t) that give these bounds can be plotted likewise. 

h(t) 
\ .... 

o 

......... 
........... 

..... .... 
.................. 

... .. .. 

Time 

.. .......... ..................... 
• ... 1 . . . ... ... . . .......... . 

Figure 5.4 The 95.0625% confidence bounds of h(t) 
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Confidence interval for critical time 

Case (a) J1. known, >. unknown. 
We make the substitution X = r. where £(T) = IG(J1., >.) and ¢ = .1. 

J1. J1. 
in both the density and the reliability function to obtain the hazard rate 
as hI (x, ¢). An estimate of the critical time is now J1.x* = t* where x* is 
the root of 

A A 

¢ 3 ¢ 
hl(x, ¢) + 2X2 - 2x - "2 = 0 

(see equation 5.4). (Here ¢ = *.) Using a graph where x* is plotted 
against ¢, one can see that x* is increasing monotonically in ¢ so that for 
fixed J1., x* is increasing in >.. Under the transformation X = ;, a com-

plete sufficient statistic for ¢ is L:~=I (X~il)2 = S, while the maximum 

likelihood estimate is l Since £ ('¥) = X;', a 100(1 - a)% confidence 

interval for ¢ is (¢L = x~S-W, ¢u = x~,~_~ ). The monotonicaity of x* 

implies that 

Hence 

¢ E (c/JL, ¢u) if and only if x* E (xl" xu) say. 

P(t* E (t'i,tu)) = P(J1.x* E (J1.x'i,J1.Xu)) 

= P(¢ E (¢L,¢U)) 

= 1- a. 

Therefore from the graph (see Figure 5.5) one can obtain bounds for x* 
from the bounds ¢L, ¢u for ¢ and then construct J1.xt, J1.Xu· 

Case (b) J1. unknown, A known. 
We now use the transformation (cf. Hsieh's method) Y = t, , = ~ 

where £(T) = IG(J1., A). Proceeding exactly as in (a) we substitute J1. 
by its maximum likelihood estimate and obtain t* = AY where y* is the 
root of 

1 3 1 
h2(y ,) + - - - - - = 0 , 2y2 2y 212 

where 1 = ~ and h2(y, ,) the transformed hazard rate. We plot y* 
against , = ~. Tang and Chang point out that the range of interest 
is at the higher extremity indicating a large variance for the IG variate 
as burn-in has proven useful in reducing the variability of the life of a 
device. The graph (Figure 5.6) shows that y* is monotone decreasing in 
,(J1.) and approaches the value 0.383328 asymptotically, being the root 
of 

1 3 
h2 (y,oo) + - - - = O. 

2y2 2y 
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The maximum likelihood of "( is Y = i and I:- (n(~~i)2) = xi so that 

(see Table 3.2) 

(The usual caution about the upper bound being positive is necessary). 
Thus y* being a monotone decreasing function of"( E bL' "(u) if and 
only if y* E (yr, Yu) and given bL' "(u) one can construct (yL. Yu) and 
hence (>'YL. >'Yu) from the graph. 

l~--~----~--~----~----~--~--~ 

u 

1.6 

1.4 
x* 

1.2 

0.8 

0.6 

0.4 

0.2 

0.5 1.5 1 2.5 3 3.5 

Figure 5.5 x* = critical time/ p, vs ¢ = A/ p, 
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Case (c). Both J1 and A unknown. 
As observed by Hsieh several choices are available as estimators for the 
critical time. Tang and Chang select the maximum likelihood estimates 
of J1 and A and their corresponding 100(1 - a)% confidence intervals 
(J1L'/.LU) and (AL' AU) (see Table 3.2). With this choice one then solves 
for the critical time t* (/.L, A) from the equation 

>. 3 >. 
h(tj /.L, A) - 2/.L2 - 2t + 2t2 = O. 

Now the authors use two nonlinear programs 
i) minimize t*(/.L, >.) subject to 

n = {(/.LL::; /.L::; /.LL) n (AL::; A::; AU)}. 

(5.6) 

ii) maximize t* (/.L, A) subject to n. From the 2 graphical plots (Figure 
5.5, Figure 5.6) it is clear 

a) that t*(/.L, A) is increasing in>. for every fixed /.L and 
b) that t* (J1, A) is decreasing in /.L for every fixed A so that ~t; > 0 and 

~~ < O. 

0.7 

0.65 

y.O.6 

0.55 

O.S 

0 .• ' 

0 .• 

0.350 2 6 8 10 12 14 
Y 

Figure 5.6 y* = critical time/A vs , = /.L/ >. 
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The Kuhn-Tucker optimality condition then implies that I-" ::; Ji 
and 6. ::; A must be tight in 0 so that I-" = Ji and A = 6. when the first of 
the nonlinear programs (i) attains its optimality. In like manner I-" = ~ 
and A = X provide optimal solutions for the second of the nonlinear 
programs. Hence we can solve (5.6) with (1-", A) replaced by (Ji,6.) for 
the first program and (1-", A) replaced by (b X) for the second program. 
Thus 

t* E (solution under program (i), solution under program (ii)) 

whenever (1-", A) EO. This then implies that 

(1-", A) E 0 ~ {t* I t* E (solution under (i), solution under (ii))). 

Finally 

P (t* E (solution under program (i), solution under program (ii))) 

~ P(~ ::; I-" ::; Ji,6. ::; A ::; X) 

~ 1 - P( {~ ::; I-" ::; Ji}C) - P( {6.::; A ::; X}C) (Bonferroni) 

= 1 - 20'. 

This solution scheme suggests that in practice one can obtain tt by 
using (I-"u, Ad and til by using (I-"L, AU). Moreover, using the Bonferroni 
inequality an improvement in the minimum coverage probability can be 
obtained by using (1 - 0')2 instead of 1 - 20'. Lastly this methodology 
works in the case of censored data also. Tang and Chang point out 
that despite the fact that the analytic approach is exact when both 
parameters are unknown the width of the confidence intervals may be too 
wide and hence too conservative. The figures seems to indicate that when 
I-" > A (the situation when burn-in is practical and effective) the critical 
time is more sensitive to variation in A and hence the estimated critical 
time also shares the same sensitivity to variability in the estimated value 
of A between random samples. They recommend that it may then be 
reasonable to treat I-" as known in order to obtain an interval whose 
confidence level is identical with the coverage probability as is the case 
in case (a). They propose an approximate method which is given in the 
next proposition. 

Proposition 5.2 An approximate 100(1 - 0')% confidence interval of 
the critical time is given by I-" replaced by the maximum likelihood esti­
mate fl and X; replaced by X;-l in case (a). 

This proposition is substantiated by a Monte Carlo simulation where 
they find that the approximate method yields smaller intervals with its 
coverage probability very close to the desired confidence coefficient. 
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Example 3.1 (continued) The maximum likelihood estimate of the 
critical time is obtained from 

..\ 3 ..\ 
h{t; 1-£,..\) - 21-£2 - 2t + 2t2 = 0 

where 1-£ is replaced by fl = 3.6065 and ..\ is replaced by >. = 1.6589. 
Then i* = 0.6934. At level a = 0.025 the 97.5% confidence intervals for 
..\ and 1-£ are respectively {2.389, 7.357) and {0.9540, 2.484). Therefore a 
confidence interval of t* with at least 95% coverage is obtained by letting 
1-£ = 2.484 and ..\ = 2.389 in the equation and solving for tt, and then 
solving the equation with 1-£ = 0.9540 and ..\ = 7.357 to obtain tiT. This 
gives 

(tL' tiT) = (0.3751, 1.142). 

Using Proposition 5.1 one computes Xi = ~ for i = 1, ... ,46 and then 
proceeds as in case (a). This time the 95% confidence interval turns out 
to be (0.4141,1.020) with a width of 0.606 as against a width of 0.767 
using the analytic approach. 

Remarks One may wonder why two different models have been ad­
vanced leading to equations (5.1) and (5.3) for the reliability function. 
The parameters in the modelling of the two have different physical in­
terpretations. In the case of (5.3) the drift and variance parameters 
are estimated from the increments (wear) of the deterioration process. 
Moreover, both the time variable and the 'physical wear' have been nor­
malized by the threshold value. 

Tang et al., (1988) have studied the reliability of components sub­
ject to sliding wear. They have questioned the conventional approach 
employed in sliding wear theory. Wear factors are derived from the mea­
sured wear rates through what is known as Archard's law. Tang et al. 
view Archard's law as a mere empirical relation that ignores the random 
effects in the modelling of the reliability of sliding components. They 
introduce a time-independent random effect of reliability as an exten­
sion to Archard's law. The Archard wear theory models the volume V 
of material removed by a wear process using a normal load L, when the 
room temperature hardness of the softer material is Ho, u is the sliding 
velocity and t is the time interval in which the volume V is removed. 
This relationship is given by 

V _ k (~) 
ut - Ho' 

Here k is a dimensionless coefficient known as the Archard wear fac­
tor which characterizes the extent of wear damages. In the modified 
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approach the wear factor is regarded as a stationary discrete random 
process k( t, w). This leads to a time-averaging process of k( t, w) given 
by 

1 l(i+l)~t 
k~t(i, w) = A k(t, w)dt, 

I..l.t i~t 

where !:::.t is a fixed-time sampling interval. The 8 and a referred to in 
equation (5.3) can be explained as 

8 = 8~t and a = a ~t x !:::.t 

quantities obtainable experimentally with sampling interval !:::.t. In relia­
bility studies, say, of a low-alloy steel shaft rotating in its housing under 
an unlubricated condition if V* is the critical wear volume beyond which 
failure occurs as specified by the designer, the threshold value or critical 
barrier 'a' is then 

V*Ho 
a--­- uL . 

The time to failure T of the sliding component is defined as the first 
value such that 

uL rT 
V* = Ho io k(t, w)dt. 

The discrete nature of k and its implicit relation to T does not permit 
the evaluation of R(t) = P(T > t). Tang et al., surmise that T fits the 
inverse Gaussian description as suggested by empirical studies. 



CHAPTER 6 

GOODNESS-OF-FIT 

6.0 Introduction 

Goodness-of-fit tests for continuos distributions are generally han­
dled by the Kolmogorov-Smirnov test which in its classical form requires 
that the distribution is completely specified. In practice this is seldom 
the case and one then resorts to estimating parameters from the data 
and then examining Kolmogorov-Smirnov "type" tests. The standard 
tables can no longer be used and modifications are necessary. 

The inverse Gaussian distribution offers good competition to distri­
butions like the Weibull and lognormal and enjoys a similarity in shape 
befitting long-tailed data. It is quite important in model selection that 
tests discriminate well between distributions of dissimilar shapes. In 
the discussion that follow we consider several approaches based on the 
work of Edgeman et al., (1988, 1992), Edgeman (1990) and O'Reilly and 
Rueda (1992). 

6.1 A modified Kolmogorov-Smirnov-type test 

Edgeman et al., begin by scaling the random variable X whose law 
is JG(fL, >.) by the factor 1 to get Y = 2£ so that .c(y) = JG(l, ¢). 

M M 
They then scale the observed data X = (Xl, ... ,Xn ) by an estimate of 
fL, namely X and then test the hypothesis 

Ho : .c(Yi) = JG(l, ¢) = Fo (say) 

against 
H A : Ho is false 

by employing the statistic Dn = max(D;t, D:;;) where 

Dt = mrx {~ - Fo (Y(i)) } 

and 
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Here Fo (Y(i)) is the distribution function of IG(l, ¢) evaluated at 
.th - - A n 

the z ordered value of (XI! X, ... , Xn/ X), and ¢ = VX' Whenever 
the observed value of Dn exceeds the critical value of Dn given by 

at level O!, Ho is rejected. They present a set of tables of this modified test 
including values of the coefficients bl , b2 , b3 at critical values of the Dn 
statistic at significance levels 0.20,0.10,0.05 and 0.01. Also published are 
approximate power results against alternatives such as the exponential, 
lognormal, uniform and Weibull. According to their conclusion the test 
indicates a good dicriminating ability between the IG and densities of 
different shapes, but poor ability to distinguish between similarly shaped 
densities. By way of an example they study the data set analysed by 
Jorgensen (1982). 

Example 6.1 The intervals in operating hours between successive fail­
ures of airconditioning equipment in a Boeing 720 aircraft (#13) are: 
102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61 and 34. Are 
these values from an IG(J.L,)..) law? 

To use the modified Kolmogorov-Smirnov test we proceed thus. 

- A 16 
X = 82, ¢ = V(82) = 1.0968. 

The scaled data (=¥) are put in ascending order as 

0.1707 0.1707 0.3293 0.3902 0.4146 0.6585 

0.6951 0.7195 0.7439 0.8049 0.8171 1.2439 

1.6341 1.8537 2.5488 2.8409 

Dl6 based on this standardized data is 0.2641. From Table 6.1 Dr6 
(¢ = 1.0) and Dr6 (¢ = 1.5) are computed and then Di6 (¢ = 1.0968) 
obtained by interpolation as 1.3912. Similarly using interpolation one 
obtains Di6,.o5 from the table. This value 1.421 when compared with 
the observed value 1.3912 shows that Ho is not rejected at the 5% level, 
but the result is significant at the 10% level since Dr6,.lO = 1.294. 

An approximate method 
A second method recommended by Edgeman (1990) involves the use 

of 

<P [(X(i) - X)/XVXV/n -1] 
in place of FO(Y(i)) in calculating Dt and D;; and then modifying the 
value Ln = max(Dt,D;;) by L~ = Ln(fo - 0.01 + 0.85/fo). Finally 
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the null hypothesis is rejected at level a if L~ exceeds the upper tail 
percentage points given in Table 6.2. Edgeman's power studies indicate 
that the approximate powers are uniformly larger and within the margins 
of error of the results in Edgeman et al (1988). 

Example 6.1 (continued) For the aircraft (#3) data we obtain D;i = 
0.2635, D:;; = 0.2010, Ln = 0.2035 and L~ = 0.2635[4 - 0.01 + 0.2125] = 
1.107. The 1% table value is 1.035 and this test indicates that the IG 
assumption is questionable. 

6.2 Anderson-Darling statistic 

Goodness-of-fit based on the empirical distribution of the Anderson­
Darling statistic A2 (to be made precise) has been advanced by O'Reilly 
and Rueda (1992) mainly due to its good power properties. This has 
also been investigated by Pavur et al. (1992) who have examined two 
other members of the Cramer-von Mises family, namely, the Cramer-von 
Mises statistic U2 and the Watson statistic W 2 where 

For computational purposes we let Zi = F{Xi ), where X = (Xl,'" , 

Xn ), the random sample is taken from F{·) and Z(i) the ordered values 
of Z. Then 

O'Reilly and Rueda have studied the asymptotic distribution of A2 when 
the parameters are estimated by maximum likelihood or another asymp­
totically efficient method - the Rao-Blackwell distribution function es­
timator method. They conclude that in either case the same asymptotic 
law holds for A 2 . We consider their approach first and then examine the 
modified approach suggested by Pavur et al. 

Proposition 6.1 Let Z(i) = F{X(i); j.£, 'x), i = 1, ... , nand Z(i) = 

F{X(i); fl, 'x). Then the asymptotic distribution oJ..42 when Z(i) is used 

depends only on e = *. 
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Consider the process y'n{Fn(x) - F(x; it))} evaluated at F(x; it,~) 
= i, where Fn (-) is the sample distribution function. This process con­
verges weakly to the Gaussian process {Y(t); t E (0,1)} with mean zero 
and covariance 

where I is the Fisher information matrix based on a single observation 
and 

T( ) = (8F(X; p,,'\) 8F(x; p" ,\)) 
g t 8p,' 8'\ 

evaluated at t = F(x; p" '\). Now recall that £ e(~2i)2) = xL so that 

we can calculate I 

( 3 ) ( ) 
/!:.:.. 0 2 () 0 

1= A 1 =p, l' o 2A2 0 282 

Moreover 

g(t) = _ J.L J.L J.L 
1 [- ..;>:;i¢(R) - 2Ae28q,(L) + e28 ¢(L) ..;>:;ij 

p, !f!:¢(L) + 2e28 q,(L) + e28¢(L)# 

where R = ..;>:;i - ~ and L = _..;>:;i - ~ and A, is the standard 
J.L V x J1. V x' <p 

normal density function. 
Since 

( (i v0.x ) 28 ( (i v0.x ) F(x) = q, -y -; + ---;- + e q, -y -; - ---;- , 

1 . x 
ettmg z = -

p, 

Direct differentiation of F(x) gives 

or 

Similarly 
8F R L 

p,- = - ¢(R) + 2e28 <ll(L) + - e28 ¢(L) 
8'\ 2() 2()' 
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Hence the expression -gT(t)I-1gT(s) is strictly a function of e only. 
Here z = F- 1(t; 1, e). 

O'Reilly and Rueda now state and prove the following theorem. 

Theorem 6.1 If e -t 00 then a(s, t) -t min(s, t) - 8t- H4>(x)x4>(y)y+ 
4>(x)4>(y)} with x = <1>-1(t) and y = <1>-1(s), while if e -t 0 a(8, t) = 
min(s,t)-st-{24>(x)x4>(y)y} with x = <1>-1 (1-~) andy = <1>-1 (1- ~). 

These two limiting cases correspond to the process arising in tests 
of normality or chi-squaredness. The authors provide a table, Table 6.1, 
of the asymptotic upper tail critical values of A 2 for various values of e 
against a = 0.20,0.10,0.05,0.025 and 0.01. The second method where 
the Rao-Blackwell distribution function estimator of F(x; J.L, A) is used 
leads to a theorem which asserts that the same asymptotic process is 
obtained. In particular it is shown that 

with probability one. We omit the details of the proof. 

Example 6.2 A data set on the endurance of deep groove ball bearings 
analyzed by Lieblein and Zelen (1956) consists of the number of million 
revolutions before failure for each of 23 ball bearings used in a life test. 
The data set is as follows. 

17.88 

28.92 

33.00 

41.52 

42.12 

45.60 

48.48 

51.84 

51.96 

54.12 

55.56 

67.80 

68.64 

68.64 

68.88 

84.12 

93.12 

98.64 

105.12 

105.84 

127.96 

128.01 

173.4 

The calculated value of A2 is 0.692 corresponding to the estimated e = 
3.21. The p-value obtained by interpolation from Table 6.1 is close to 
0.095. 

Pavur et al. (1992) also propose a modified procedure for use with 
the Anderson-Darling, Cramer-von Mises and Watson tests. Their proce­
dure uses regression relationships between sample size and critical values. 
In particular if Tn is the test statistic then Tn is modified by 

They produce tables of the empirical critical values for the three quadratic 
statistics corresponding to selected values of 4>. The critical values C (4)) 
are provided for a = 0.20, 0.10, 0.05 and 0.01. 
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Table 6.1 Asymptotic distribution for A 2 . a = significance level (upper 
tail)· e = ~ 

, J.L 

Critical value 

e a = 0.20 0.10 0.05 0.025 0.01 

0 0.90 1.19 1.50 1.83 2.27 

2- 10 0.89 1.18 1.49 1.82 2.26 
2-9 0.89 1.18 1.48 1.81 2.24 

2-8 0.88 1.17 1.47 1.79 2.22 

2-7 0.86 1.15 1.45 1.76 2.19 

2-6 0.84 1.12 1.41 1.71 2.13 

2-5 0.81 1.07 1.35 1.64 2.03 

2-4 0.77 1.01 1.27 1.53 1.90 

2-3 0.72 0.93 1.16 1.40 1.73 

2-2 0.66 0.85 1.05 1.26 1.54 

2-1 0.61 0.78 0.95 1.13 1.37 

20 0.57 0.72 0.87 1.02 1.23 

21 0.54 0.68 0.82 0.96 1.14 

22 0.53 0.66 0.79 0.92 1.09 

23 0.52 0.65 0.77 0.90 1.07 

24 0.52 0.64 0.76 0.89 1.05 

25 0.51 0.64 0.76 0.88 1.05 

00 0.51 0.63 0.76 0.88 1.04 

Example 6.2 (continued) For the ball bearings data we have the fol­
lowing table. 

Table 6.2 Critical values of C(¢) for a = 0.10,0.05. 

¢ /31 /32 C. lO (¢) C. 05 (¢) 
4.0 33.9452 -43.5218 6.8142 8.0254 

3.0 44.9027 -58.1030 7.6985 9.0749 

Using the observed value of A~ = 0.684 

A~2 (4) = 0.684 [V23 + 33.9452 ( vb) -43.5218 (L)] = 6.827 

A~2(3) = 0.684 [53 + 44.9027 (vh) -58.1030 (213)] = 7.956. 
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By interpolating one obtains 

A~2(3.21) = 7.719, 0.10(3.21) = 7.512, 0.05 (3.21) = 8.85 

The p-value is approximately 0.09 which is in conformity with that ob­
tained using the method of O'Reilly and Rueda. 



CHAPTER 7 

COMPOUND LAWS AND MIXTURES 

7.0 Introduction 

The versatility of the IG law and its interpretability as a first pas­
sage time distribution make it a strong candidate in modelling data in 
diverse disciplines. Several authors have employed this law as a mixing 
distribution to generate compound distributions that have many appeal­
ing features in fitting long-tailed data. In this chapter we examine some 
of its ramifications. 

7.1 Poisson-inverse Gaussian -P-IG(J-L, A) 

One of the first to consider the I G as a mixing tool was Holla (1966). 
He assumed that the mean parameter () of a Poisson law followed the 
IG(J-L, A) distribution and arrived at the compound law which came to be 
known as the Poisson-inverse Gaussian law, abbreviated at P-IG(J-L, A). 
Thus if 

and 

then 

f(x I ()) = ()X exp,( -()) , 
x = 0,1,2, ... 

x. 

p(x) = 100 f(x I ())7r(()) d() 

~ {[;exp m G + ~ (-I) ~! K"_t{ VA (2+ M~)} 
x = 0,1,2 ... 

(7.1) 
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is the Poisson-inverse Gaussian law. Its Laplace transform has the simple 
form 

The probability generating function P(s) is 

From (7.2) it is readily seen that if Xl' ... ' Xn are independently dis­
tributed as P-IG(p., ,x), 

(a) c(t,x;) = P-IG(nl',nA) a property inherited from the mixing 

parent 
(b) If p. is fixed and ,x --+ 00 (7.2) converges to exp{p.(et -I)} indicating 

a Poisson-like behaviour in the limit 
3 

(c) lE(Xi ) = p., Var(Xi ) = p. + T 
(d) Pearson's coefficient of skewness /31 and kurtosis /32 are given by 

where ¢ = ~ 
J1. 

(e) P-IG(p.,,x) is unimodal. This is due to a result on the modality of 
compound laws due to Holgate (1970) 

Sankaran (1968) also derives this law and gives a recurrence relation 
to calculate the probabilities Px for any x. This relation is 

p.2 {2X -II} 
(f) Px+1 = (1 + '¥-) ,x(x + 1) Px + x(x + 1) Px-l ,x = 1,2, ... 

(g) P-IG(p.,,x) is infinitely divisible. An asymptotic result for the prob­
ability function given by Teugels and Wilmott (1987) is 

p(x) rv ~ exp (p.3) ( 2 2 )x- t 
V~ ,x A(1:'¥-) 
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Holla's motivation for introducing this law is based on an applica­
tion in the theory of accident proneness. Suppose that the number of 
accidents X sustained by an individual in a fixed period of time is Pois­
son distributed with mean e, and suppose that this mean varies from 
individual to individual according to the IG(J.l., A) law; assume that e 
retains this law over the successive time period and Y is the number 
of accidents in this period. Holla shows that (X, Y) has the following 
distribution 

f§ ~ 2A el'-

7r x!y! 
( ) 

l(x+y_l) A 2 2 

2(2 +~) 

x = 0,1, ... , y = 0,1, ... 
(7.3) 

Holla shows that, given that we consider individuals who are accident­
free in the first time period, the mean number of accidents in the second 
time period tends to decrease. Sichel, in a series of papers (1971, 1973a, 
1973b, 1974, 1975, 1982, 1985a, 1985b, 1986) advanced the P-IG law as 
a viable alternative to the negative binomial law and applied it to exam­
ine its fit to distributions involving word frequencies, sentence lengths 
in texts, theory of repeat-buying by customers of a single brand of a 
product, and size of diamonds in marine deposits of southwest Africa. 

Ord and Whitmore (1986) consider this law to describe species abun­
dance - a subject with a venerable history dating back to the days of 
Fisher (1943), Willmot (1986, 1988), Teugels and Willmot (1987) have 
used this law to fit automobile claim data. They indicate that this law 
can be justified from a physical standpoint to reflect heterogeneity of 
risk characteristics within an insurance portfolio or as a model to reflect 
the possibility of multiple claims from a single accident. 

Stein et al., (1987) have examined parameter estimation and in­
troduced a new parametrization which induces parameter orthogonality. 
They have also proposed some multivariate extensions. Atkinson and 
Yeh (1982) consider inference for a generalized compound distribution 
using the generalized inverse Gaussian - GIG(r, x, 'lj;) law - and show 
how to study tests on the shape parameter 'Y. Surprisingly all these 
investigators have resorted to different parametrizations to suit their as­
sumptions. We present a synopsis of this in the following table. We 
write the mixing IG law in the form 

where X > O,'lj; ~ o. 
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Table 7.1 Various parametrizations of the generalized inverse Gaus­
sian law 

X Mean Variance 

AjY 
a{3 a-2{J 1:/L {J2...;a 

a> 0,0 < {3 < ~ -{J-
...ja-2{J «a-2{J)3/2 

HjSjOjW ,\ 3 
), 

p,2 Jl+ If 

a 28 2(1-8) a82 Si -2- a8 

a> 0, ° ~ () ~ 1 8 2VI-8 4(1-8)3/2 

W 
2 

St a> 0, !!!. 
Jl Jl+ ~ 

w = J Jl2 + a2 - Jl 
p, 

Wi (a) 
{3-1 Jl2 

(3-1 Jl(1 + (3) 
({3 > 0) 

(b) 
p,(Jp,2+62_p,) Jp,2+62_p, p,2(Jp,2+62+p,) 

0 
6>0 p,o 0 

A=Atkinson, Y=Yeh, H=Holla, S=Sankaran, O=Ord, W=Whitmore, 
Si=Sichel, St=Stein et aI, Wi= Willmot. 

The compound distribution corresponding to the parametrizations are 
given below 



Inference 125 

Remarks Atkinson and Yeh stick to the original notation used by 
Barndorff-Nielsen and point out that this is handy for making inference 
about the shape parameter, when the mixing law is GIG(-y, x, 'IjJ). Stein 
et al., use a parametrization which has an interpretational edge over 
the Sichel version and also leads to asymptotically uncorrelated maxi­
mum likelihood estimates as does the parametrization of Willmot (b). 
In Sichel's parametrization a characterizes the frequencies for low values 
of the random variable X while e is descriptive of the tail behaviour. 

7.2 Inference The calculation of probabilities and derivations of the 
likelihood function is facilitated by the use of the following relations 
where a > O. 

(i) Kx+da) = 2: Kx(a) + KX-1(a). 

(ii) K~_t (a) = -~Kx_~ (a) - ~Kx+t (a). 

(iii) R~(a) = R;_t(a) + 2(XQ-1) Rx-t (a) -1. 

K~+t (0) 
where Rx_!{a) = K (0)' 

2 ~- t 

K:_t(o) _ 2x-1 
(iv) K~_t(Q) - -Rx-t(a) + 20' 

(v) Rx(a) = {2x;3 + Rx- 1 (a)} -1. 

To obtain the maximum likelihood estimates of a, (3 (in parametriza­
tion (1)) we see that if the observations are no, n1, ... , n x , ... , the log­
likelihood is for h (x) 

where 

00 

£( a, (3) = I: ni log Pi + constant 
i=O 

121 
logpi = 2'loga+(a -2a(3)2 +ilog(3+1ogKi _t(a). 
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Solving :~ = 0, we obtain 

8t ~ ini 2 1 - = ~ - - a( a - 2a(3) 2 = 0 
8(3 i=O (3 

1_ y'a 
-x - = 0 :::} 
(3 va - 2(3 

, - (3y'a 
J1-=x= . va - 2(3 

Equating g~ to zero, we have 

Thus using (iv) 

~ + n(a - (3) _ ~ ni R-_l(a) + ~ ni(2i -1) = O. 
2a J a 2 - 2a(3 ~ t 2 ~ 2a 

t=O 

Hence 

and we have 

Since /:1 = Ja J (} - 2/:1 we obtain 

The admissible root then yields 

and 
,2 2'(3' ,2 + 2-2 2-J-2 + '2 a-a=a x-xx a, 

so that 
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Moreover 

---;==== = ---;:=;:::===;;;:--J &2 - 2&/3 v' &2 + X 2 - X 

and we then have 

(7.4) 

Since 

and 

we see that equation (7.4) can be solved numerically for & using Newton­
Raphson iteration. On the other hand in Sichel's parametrization it can 
be shown that 

at = 0 
ae 

so that solving for e one obtains 

&e 
x= --== 

2V1- e 

e = !! {V x2 + &2 - x} . 
Similarly solving &! = 0 gives 

~ n.' Ki-t (a) _ 1 {. / } ~ . & V x2 + &2 - X + 1 = 0 
i=O Ki-t(a) 

(7.5) 

a formula to be solved by iteration for & and then substituted in (7.5) 
to obtain O. In the parametrization of Stein et al. clearly p, = x while 
the maximum likelihood estimate of a is obtained by solving 

Proposition 7.1 The asymptotic variances of p, and & are given by 
nvar(p,) = J1. (1 +~) and 

( -) _ [-J1. {(w + J1.)(2(w + J1.) + 1) + J1.(1- 2(w + J1.))} -1 
nvar a - 2( ) w w+J1. 

+ 1E (R~_t (a)) ]-1 
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To see this, consider the derivatives of the log-likelihood £( a, n) with 
respect to a and /-L. Using the parametrization of Stein et al., the log­
likelihood is proportional to 

£(a, /-L) ex: ~ log a + V /-L2 + a 2 -/-L + i log (;) + ilog ( V /-L2 + a 2 -/-L) 

+ log Ki_l. (a). 
2 

82£ V /-L2 + a 2 (/-L - i)/-L i 

8/-L2 = (/-L2 + a2) (/-L2 + a2)t /-L2 

1 (/-L - i)/-L Z 
= V fL2 + a 2 (fL2 + a 2)t fL2· 

( 
82 £ ) 1 1 /-L - V /-L 2 + a2 w 

:IE 8fL2 = V/-L2 + a2 - j;, = fLVfL2 + a2 = - fL(W + /-L)" 

8e a ia 
- = + -R- l(a). 
8a V fL2 + a 2 fL2 + a 2 - fLV fL2 + a 2 ~- 2 

82e 1 a 2 i 
- = - 3 + -::---=----;:.~=~ 
8a2 V fL2 + a 2 (fL2 + a2) 2 fL2 + a 2 - fLV fL2 + a2 

2ia2 ia2/-L 
-:-:---:----r=;;:==:=:-+-:-::::--::---;==========:-::--;=:;::==== 
(/-L2 + a 2 - /-LV /-L2 + a2) (/-L2 + a2 -/-LV fL2 + a 2)2V fL2 + a 2 

Since R~_l.(a) = RLl.(a) - ~Ri-1.2(a) -1, we can simplify the above 
2 2 

expression to obtain 

82 e fL2 i(fL2 - a 2 - fLV fL2 + a2) 

8a2 = (fL2 + a 2) t + (fL2 + a2 - fLV fL2 + a2)2 

ia2 fL 2 2i + - Ri 1 (a) + -Ri_l. (a) + 1. 
(fL2 + a2 - fLV fL2 + a2)2V fL2 + a 2 -2 a 2 
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Now we need to compute lE [iRi_~(a)]. 

Taking expectations we have 

( [Pi) w 
lE -8J.L2 = J.L(J.L+w)' 

and after some simplification 

( v'f=.O)~ 
K 1 (av'f=.O) x 

2 
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lE (_ 82.e) = _ J.L [J J.L2 + a2 (1 + 2J J.L2 + a2) + J.L(I - 2J J.L2 + a2)] 
8a2 (J J.L2 + a2 - J.L)2J J.L2 + a2 

- 1 + lE [RL ~ (a)] . 

The maximum likelihood estimates of the parameters can also be ob­
tained from the probability generating function. Let us illustrate this 
method in the case of fs(x) following Willmot's arguments. This is also 
applicable for h(x). 

First consider the logarithmic derivative of 

P(s) = exp [~{I- 2(3(s - I)}~] 
PIS) 1 

P(s) = J.L{1- 2(3(s - I)} -2". 

Then 
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Now 

~P(s) = P(s) [1- {1- 2,8(s - l)}t] 
8J.L ,8 

P(s) P'(s){l- 2,8(s - I)} 
= - - ---'--'-'------'----'-'-

,8 J.L,8 

= P(s) _ (1 + 2,8) pl(S) + ~PI(S). 
,8 J.L,8 J.L 

Equating the coefficients of sk on both sides and then dividing by Pk we 
have 

~ logpk = ~ _ (1 + 2,8) (k + 1) Pk+I + 2k. 
8J.L ,8 J.L,8 Pk J.L (7.6) 

Hence solving the loglikelihood equation we obtain 

f nk {~ - (1 + 2,8) (k + I)PT+! + 2k} = O. 
k=O ,8 J.L,8 PI' J.L 

W 't' t (HI) n mg k = Pk+ll Pk 

Likewise 

Therefore 

x={L 

ap(s) [J.L J.L 1 fij3 = P(s) - ,82 + ,82 {I - 2,8(s - 1)}2 

1 

+ J.L(s;; 1) {I _ 2,8(s _ I)} ]-2" 

J.L [ 1] = - ,82P(S) 1 - {I - 2,8(s - I)P 

(s - 1) 1 + ,8 P(s)J.L {I - 2,8(s - 1)}-2" 

= _!!:. ~ P () (s - 1) P ( ) pI (s ) 
,8 8J.L s +,8 s P(s) 

= _!!:. ~ P( ,) (s - 1) P'( ) 
,8 aJ.L 5 +,8 s . 

(7.7) 
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This in turn implies 2: kr/k nk = 0 and we obtain 

00 

g({3) = L nktk - nx = O. 
k=O 

To solve for ~ we start with the relation 

(k + l)PHI 
tk = -'----"'-'-

Pk 

otk = (k + 1) {P~+I PHI _ 
o{3 PHI Pk 

= (k + 1) PHI {P~+I _ 
Pk PHI 

PHI p~} 
Pk Pk 

p~} . 
Pk 

To obtain El.. we note that 
Pk 

Hence 
, 

Pk+I 
Pk+1 

using (7.6). Hence 

Finally, since 

8(3 J.L 0 k - tk ~ ( ) Pk = -~ OJ.L logpk + -(3-' 

'() ~ Otk 9 {3 = ~ nk o{3 = 0 
k=O 

131 

(7.8) 
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we have 

~ is a solution to g({3) = 0 (see 7.8) and therefore we can use Newton­
Raphson iteration techniques to estimate {3. As a starting value we can 

take the moment estimate of {3, S2X- 1 _ 1 where s2 = E~=l (Xi - X)2, 
n 

to iterate 

A similar technique can be adopted for the density h(x). In this 
case one obtains 

apr APr A(r + 1) 
aJ.L = - J.L2 + J.L3 Pr+b r = 0,1, ... 

and 
apr A + TJ.L (A + J.L)2 
aA = ~ Pr - (r+ 1) Pr+1 AJ.L2 . 

If the distribution h(x) (in particular) is truncated at X = 0, the log­
likelihood is 

00 00 

t(J.L, A) = L nr log Pr - L nr log(l - Po). 
r=l r=l 

Therefore g! = 0 yields 

~ (APr A(r+ 1) ) n~ = O. 
L...J nr --2 + 3 Pr+l + I-po 
r=l J.L J.L 

But 

Hence 

at = 0 =* A {~(T + 1) Pr+1 _ nJ.L + n(pl - J.Lpo)} = O. (7.9) 
8J.L J.L3 ~ Pr 1 - Po 

Likewise 
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Hence 

! \ [nJ1.>' + nJ1.2X - (J1.2 + >.) f nr{r + 1) pr+1] 
J1. /I r=l Pr 

at 
a>. = 0 => 

(7.10) 

+ >'J1.2(; _ Po) [>,J1.po - (>. + J1.2)p1] = O. 

Equations (7.9) and (7.10) have to be solved numerically to obtain the 
maximum likelihood estimates. 

The moment estimates of the parameters are provided in Table 7.2. 

Table 7.2 

1. 

2. 

3. 

4. 

5. 

Moment estimates 

_ xJx(x + 2s2) 
a = ---'---::---

S2 

X-I = L:~=1 (Xi - X)2 

2xM 
a= e 

_ _ _ 1 (x + s2 ) 2 a-x ---
S2 

(J- 2--1 1 = s x -

- xVi 
(J = ----r==~ ../x + 2S2 

ji=x 

e = 1 _ (2;2 _ 1) -1 

ji=x 

ji=x 

Sichel remarks that the moment estimators are extremely inefficient and 
should be used only if the coefficient of variation is ::; 35%. In the 
truncated case his recommendation for obtaining parameter estimates 
involves solving 

, no 
Po =­

n 
_ ,00 

x Po L 
n = VI + 2f 1 - po' i=l ni = n 

log (::) ~ ~ - ~ l + 2r . 
Sichel also recommends varying the estimates until the total X2 is 

minimized (minimum chi-squared method). 

7.3 Examples 

Example 7.1 As a first example consider the data(see Table 7.3 on 
the distribution of European corn beans taken from Kemp and Kemp 
(1965). Sankaran used this data set to examine the adequacy of the 
P - IG(J.L, >.) fit and compared it with the Hermite law. Sankaran used 
moment estimates of J.L and A. As can be seen the fit is quite good. 
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Table 7.3 Distribution of European corn beans data together with ex­
pected frequencies based on the new distribution, and Hermite distribu­
tion {M.L.} from Sprott (1958, Table 6) and quoted by Kemp and Kemp 
(1965, Table 1) 

~xpected frequenceies 

no. of Larvae observed Hermite 

per plant frequencies P-IG (M.L.) 

0 423 425.2 427.7 

1 414 412.9 389.3 

2 253 246.7 262.0 

3 117 120.1 131.0 

4 53 53.0 55.8 

5 22 22.3 20.6 

6 4 9.1 6.8 

7 5 3.7 2.0 

8 3 1.5 0.6 

9 2 0.6 0.2 

total 1296 1295.1 1296.0 

Example 7.2 Willmot (1988) presents six data sets analyzed by Gos­
siaux and Lemaire (1981) of automobile insurance claims per policy over 
a fixed time period. We present one data set (# 1) for illustration. 

Table 7.4 Auto-insurance claims per policy 

No. of No. of 
claims policies 

k Fk NB P-IG 
0 103704 103723.61 103710.03 
1 14075 13989.95 13989.95 

2 1766 1 857.08 1 784.91 

3 255 245.19 254.49 
4 45 32.29 40.42 
5 6 4.24 6.94 
6 2 0.56 1.26 
Total 119853 119852.92 119852.70 
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For this example the M.L.E for the NB is -54,615.315 and for the P-IG is 
-54,609.758 . As for the Pearson goodness-of-fit, the Chi-squared values 
based on 3 degrees of freedom are 12.37 and 0.78 giving p-values of 0.006 
and 0.855 respectively. 

Example 7.3 This example is from Sichel (1974) who studied sentence-
length distributions from Macaulay, fitted to both the P-IG model and 
the negative binomial. The data set in Table 7.5 comes from Yule (1939). 

Table 7.5 Senetence-length distributions 

P-IG !Negative binomial 

Ob. no. of Ex. no. of Ex. no. of 

No. of words sentences sentences sentences 

1-5 46 57.8 110.3 

6-10 204 201.0 185.7 

11-15 252 244.6 202.6 

16-20 200 209.1 184.2 

21-25 186 157.5 152.3 

26-30 108 113.0 118.6 

31-35 61 79.5 88.6 

36-40 68 55.6 64.4 

41-45 38 38.9 45.7 

46-50 24 27.3 31.9 

51-55 20 19.2 32.0 

56-60 12 13.6 14.9 

61-65 8 9.6 10.1 

66-80 14 15.2 14.1 

81-90 4 4.3 3.2 

91+ 6 4.8 2.4 

Since the expected frequencies for x = 1 were very small they were 
combined in the first cell, the frequency class corresponding to 1-5 words 
and zero truncation was unneccesary. The P-IG performs quite well and 
is far superior to the negative binomial fit. The next example is also 
from Sichel one involving a market survey of repeat-buyers. 

Example 7.4 The observed frequency distribution of the number of 
bars of toilet soap bought by 614 households during an 8-month period 
in 1978, for the entire product field, is shown in Table 7.6. Of particular 



136 Compound laws and mixtures 

interest is the fact that all households bought at least two bars of toi­
let soap during this lengthy period. (For the shorter periods a certain 
number of non-buyers was recorded.) 

Table 7.6 Frequency distribution of toilet soap bars 

Number of households 

Number of 

units bought Observed Expected 

r fo NBD IGP 

0-3 10 27 13 

4-7 69 79 76 

8-7 136 106 122 

12-15 113 105 117 

16-19 19 88 92 

20-23 68 68 65 

24-27 47 49 44 

28-31 23 33 29 

32-35 19 22 19 

36-39 10 14 13 

40-43 10 9 8 
44-51 11 9 9 

52 and over 6 5 7 

Totals 614 614 614 

X2 - 27 6 

d.f. - 10 10 

P{x2 /d.f.) - 0.003 0.8 

7.4 A compound inverse Gaussian model 
In marketing purchase incidence models are needed to obtain an 

idea of the number of purchases of a low-cost consumer product in a 
fixed time interval and the waiting period between successive purchases. 
A popular model for purchasing behaviour of a customer on successive 
buys has been the Poisson process. This naturally leads to Erlang in­
terpurchase times. The consumer population is quite heterogeneous and 
the studies of the pioneering investigators in this area like Anscombe 
(1961), Chatfield (1966, 1973) and Ehrenberg (1959) have slowly shifted 
to models in which the shape parameter ofthe gamma was held fixed at a 
value equal to two and letting the scale parameter account for consumer 



A compound inverse Gaussian model 137 

heterogeneity. Banerjee and Bhattacharyya (1976) have questioned the 
validity of this hypothesis. They postulate the IG{/-l,.x) law as an inter­
purchase time distribution and then adopt a natural conjugate family of 
bivariate laws to justify the heterogenous behaviour of the population of 
consumer households. Thus they use a two stage scheme in the model 
formulation. Following are the steps of their procedure. 

(I) Check the fit of the IG model, IG{j,.x) 

(2) If the fit is satisfactory then examine how the estimated parame­
ter values are distributed across a large sample N of households. 
To do this one really needs data on (6,.x) which is not observable. 
However, they are estimated from the interpurchase time data, and 
a bivariate frequency table is constructed for this sample. The pa­
rameters for the distribution of (6,.x) are estimated using moment 
estimators. The observed frequencies in this table are then com­
pared with the theoretical frequencies which have to be obtained by 
numerical integration. From this bivariate frequency table one can 
obtain the corresponding marginal frequency distributions for 6 and 
.x also and a X2 fit is assessed for each. 

(3) Lastly the observed frequency distribution of N{t) the number of 
purchases in a time period t is obtained and checked against the 
theoretical model. 

Example 7.S Banerjee and Bhattacharyya have analyzed a random 
sample of 289 households who have made at least 20 purchases of tooth­
pastes during a five year period. 

First they considered households who purchased at least 100 times 
in the 5 year period. They found 12 which fitted this requirement and 
then fitted an IG{j,.x) model to each of the 12 households by construct­
ing histograms of observed time between successive purchases and then 
comparing them with the theoretical I G ( j, ~) model (where the parame­
ters are estimated by maximum likelihood). They found that in each case 
the p-values of the X2 goodness of fit ranged from 0.053 to 0.634. Thus 
at the 5% level the fit was satisfactory. At the next step 8, ~ were esti­
mated for each of the 289 sampled households and a bivariate frequency 
distribution constructed. This observed distribution was compared to 
the theoretical law (which is the natural conjugate to the IG(j,.x) law). 
Denoting this law by 'Trc(a, /3,,) (see equation 1.21), first the parameters 
a, /3 and, were estimated using the method of moments and then the 
theoretical probabilities obtained by numerical integration. We repro­
duce in Table 7.7 the observed and expected frequency distribution of 
(h.x) as obtained by these authors. Then a X2 goodness of fit was per­
formed for (a) the bivariate model (b) the marginal model for t, and (c) 
the marginal model for A. Since none of these were found significant at 
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the 5% level, they proceeded to obtain the observed frequency distribu­
tion of N{t), the number of purchases in t weeks and finally compared it 
with the expected frequencies. The results are given in Table 7.8. The 
fit is quite good. 

Table 7.7 Observed and expected frequency distribution of {1/8,>..} 

~ .43 .43-.70 .70-.97 .97-1.24 1.24-1.51 ~1.51 

~1.0 13.0 23.0 23.0 7.0 7.0 11.0 

(20.1) (24.1) (22.2) (12.2) (6.9) (8.2) 

1.0-1.88 19.0 31.0 17.0 8.0 2.0 2.0 

{23.5} {25.1} {16.4} {7.3} (1.3) {1.1} 

1.88-2.76 15.0 25.0 15.0 2.0 1.0 

{15.6} {19.0} {17.8} {2.2} {0.2} 

2.76-3.64 14.0 15.0 1.0 

{13.2} {13.4} {2.1} 

3.64-4.52 9.0 7.0 

(7.2) (8.0) 

4.52-5.40 7.0 3.0 

{4.5} {5.2} 

~5.4 9.0 3.0 

{4.3} {7.6} 

Expected frequencies are displayed in parentheses. 
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Table 7.8 Observed and Expected Frequency Distributions of N(t) for 
the Toothpaste Data 

t 

n 1 2 3 4 5 

0 143 (155.5) 82 (80.6) 54 (48.6) 28 (32.9) 16 (24.3) 

1 119 (92.8) 110 (103.2) ~3 (79.2) 71 (57.2) 57 (41.9) 

2 20 (25.4) 61 (57.8) 84 (70.8) 74 (66.2) 63 (55.2) 

3 5 (8.1) 23 (24.0) 40 (41.3) 47 (52.0) 55 (53.5) 

4 2 (3.2) 8 (10.4) 16 (21.1) 27 (32.1) 36 (40.2) 

5 (1.4) 3 (5.2) 12 (11.0) 15 (18.2) 17 (26.0) 

6 (1.2) 1 (2.9) 5 (6.1) 8 (10.4) 15 (15.9) 

7 (0.9) 1 (1.7) 2 (3.5) 11 (6.4) 12 (9.8) 

8 (0.3) (1.2) 2 (2.3) 3 (4.0) 10 (6.4) 

9 (0.2) (0.6) 1 (1.4) 4 (2.6) 1 (4.3) 

10 (0.6) (0.9) (1. 7) 3 (2.9) 

11 (0.3) (0.6) (1.2) 3 (2.0) 

12 (0.3) (0.6) (0.9) (1.4) 

13 (0.2) (0.6) 1 (0.6) (1.2) 

14 (0.3) (0.6) 1 (0.9) 

15 (0.3) (0.6) (0.6) 

16 (0.2) (0.3) (0.6) 

17 (0.2) (0.3) (0.3) 

18 (0.3) (0.3) 

19 (0.3) (0.3) 

20 (0.2) (0.3) 

21 (0.3) 

22 (0.2) 

23 (0.2) 

7.5 A normal-gamma mixture 
Whitmore (1986) introduced a family of normal-gamma mixtures 

based on a similar family studied by Banerjee and Bhattacharyya. The 
difference between the two approaches lies in the requirement that the 
drift parameter can be negative under Whitmore's model. Whitmore 
advances his case by noting that when the drift 1I is close to zero, a 
realistic assumption about the associated Wiener process having either 
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zero drift or negative drift is quite reasonable. In support of this theory 
he argues that in the case of an employee's level of dissatisfaction with 
his job, the employee service time W(t) may drift towards zero (v > 0) 
or away from the threshold (tolerance) level of dissatisfaction (v < 0). 
If v < 0 he decides to call it quits. It is well known that if {XII(t)lt ~ O} 
is a Brownian motion process on R with drift v and diffusion constant 
± (>. > 0) the first passage time distribution for the process to reach the 
level 1 (assuming XII(O) = 0 and writing Tl = X for the first time level 
1 is attained) is 

rT {>'(VX - 1)2 } 
p(x 1 v,>') = V ~exp - 2x 1R+(X). (7.11) 

When v ~ 0 Tl = X < 00 with probability one and when v < 0 P[T1 = 
X < 00] = exp( -2>.lvl) since Tl = 00 with positive probability. Thus 
P(T1 = 00) = 1 - exp(2)'v), v < O. 

Theorem 7.1 Under the assumptions stated above if 

£(>') = r(a,,6) and £(v I >.) = N (~, X) 
where a,,6, a > 0 and ~ E R, the unconditional law of X is 

r(a + ~) 1 {I (xe - 1)2 }-o-t 1 () (712) 
r(a) {21r,6x3 (ax + I)} t + 2,6x(xa + 1) R+ X • 

We omit the proof. The density f(x) is improper since p(x I v, >.) 
is improper for v < O. As corollaries we consider the cases v = ~,a = 0 
and>' = ~ and take the limit as a -+ 00. 

Corollary 7.1 If in Theorem 7.1, we let v = ~, a = 0 

Corollary 7.2 If in Theorem 7.1, we let>. = ~ and take the limit as 
a -+ 00 

( >. ) t {>.(xe - 1)2 } 
h(x I >.) = 21rx3 (ax + 1) exp - 2x(ax + 1) lR+(x). (7.14) 

Remarks 
(1) Both (7.13) and (7.14) are improper densities 
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(2) If v < 0, F( 00 lv, A) = exp(2vA) 

(3) Fl (00 I ~) = (1 -1-) -a if V < o. 
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Whitmore analyzes three data sets using this normal-gamma mix­
ture. The first study deals with the situation when all the sample values 
are finite and uncensored - namely the complete sample case. In this 
context the probability of an infinite first passage time is negligible. The 
second study has some sample observations censored to the right due to 
a non-negligible infinite first passage time. The final study contains only 
finite observations while the number of infinite observations is unknown; 
so the density is truncated at a. Whitmore refers to this sample as an 
incomplete sample. We present for illustrative purposes an analysis 
of the von Alven data set. 

Example 3.1 (concluded) We have seen in Chapter 6 that a good­
ness of fit has shown a satisfactory fit. Thus parameter heterogeneity 
can be checked by fitting the normal-gamma mixture. Table 7.9 pro­
vides the maximum likelihood estimates and the sample log-likelihood 
for both (7.11) and (7.12). It appears that both laws fit equally well 
which suggests that there is little or no variation in the parameters and 
that the extra parameters in the mixture model have not contributed to 
the sample likelihood. 

Table 7.9 Maximum likelihood estimates and sample log-likelihoods 

Model Estimates 

Normal-gamma d = 2.773 X 10-1 11=4756 

mixture v = 3.749 X 10-6 b=2865 

Unmixed J = 2.773 X 10-1 ~ = 1.659 

7.6 A normal-inverse Gaussian mixture 

Sample 

og-likelihood 

-99.06 

-99.06 

Suppose that .c(Xi ) = N(O, a 2 ) and that a 2 varies from observation 
to observation according to IG(JL, A). Then Sankaran (1968) showed that 
the resulting mixture leads to the following unconditional law for Xi 

f(x) = ~ exp (~) A Kl (VA(X2 + A)) 
/I ,.. WJx2 + A JL 

with Laplace transform 
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The intractability of the Bessel function spelled the doom and no further 
studies were made. Bhattacharya (1987) on the other hand considered 
a different line. He assumed that 

C(X I m, a) = N(m, a2), C(mla) = N(/-£o, a2), a> 0 

and C(a2) = IG(/-£, a) so that 

where a > 0,/-£ > O. 

(7.15) 

These considerations proved worthwhile and made Bayesian esti­
mation of /-£ feasible. The following theorem provides an estimator of /-£ 
under quadratic loss. 

Theorem 7.2 Let X = (Xl"'" Xn) be a random sample such that 
C(Xi ) = N(m, a2). Further let the prior of m given a and the prior of a 
be defined respectively by C(m I a) = N(/-£o, a2), and {7.15}. Then with 
respect to quadratic loss the Bayes estimator of /-£ is 

A nX + /-£0 
mB = (n + 1) . 

Proof The likelihood function is proportional to 

where ns2 = 2:~=1 (Xi - x)2. The posterior of (m, a) can be obtained by 
integrating out m and a in 

The posterior of (m, a) will be proportional to 

-n-3 [{ns2+n(m-x)2+(m-/-£0)2+ a } aa2] 1 ( ) 
a exp - 2a2 - 2/-£2 RxR+ m,a . 

We can now simplify the term in the exponent 

2 2 [2 (nx + /-£0)] n(m-x) +(m-Jlo) =(n+1) m -2m n+1 

( 1) ( nX+Jlo)2 (nx+Jlo)2 
= n + m - + -'----'--'-'--

n+1 n+1 



A mixture inverse Gaussian 143 

so that writing 

nx + /La b _ n(/La - X)2 + n(n + 1)s2 + (n + l)a 
a = n + l' - (n + 1)2 ' 

the posterior of (m, cr) is proportional to 

n 3 {acr2 (n+1) ( )2)} () cr- - exp --2 - 2 (b+ m - a 1RxR+ m,cr. 
2/L 2cr 

(7.16) 

The marginal posterior of m can be obtained from (7.16). By writing 
cr2 = Y, the posterior of m is proportional to 

where 

roo n+2 1 {X 'ljJy } 
Ja y--2-- exp - 2y - 2 dy 

a 
X = (n + l)(b + (m - a)2), 'ljJ = -2' 

m 

The integral being the familiar GIG ( - n;2 , X, 'ljJ) law we see that the 
posterior of m, is apart from a normalizing factor c 

K ( yn+lQ{b+(m-a)2}) 
c nt 2 1-'2 

7r(mlx) = {b + (m _ a)2} nt2 1R (m). 

Since in JR (m - a)7r(m I x)dm, the integrand is an odd function, E(m­
a Ix) = 0 as is E( m - a). Therefore with respect to squared error loss 
the Bayes estimator of m is 

Theorem 7.2 admits of a generalization to an arbitrary prior for cr with 
the requirement that it be non-negative over lR,+ and such that the 
posterior of (m, cr) exists. Then, as shown by Bhattacharya, the Bayes 
estimator with respect to quadratic loss has still the same form. 

Independently of Bhattacharya, Athreya (1986) has considered a 
GIG (/I, X, 'ljJ) law for the marginal prior of cr2 and shown that the marginal 
posterior of cr2 given the data is again a GIG law. 

7.7 A mixture inverse Gaussian - M-IG(/L,)..,p) 

Jorgensen et al. (1991) used the distribution function of IG(/L,).) 
as a basis for deriving a generalization of the IG(/L, A). The resultant 
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law is termed the mixture inverse Gaussian law. First we recall that the 
distribution function of the IG law is expressible as a linear combination 
of standard normal law. Indeed 

F(x) = <I>(a(x)) + exp (2;) <I>(a(x)) (7.17) 

where 
( ) _ )..{x-j.L) _() _ )..(x + j.L) 

ax - r;;;' ax - r;;; 
j.LyX j.LyX 

(7.18) 

possess an interesting symmetry, namely 

a(x) = -2xa'(x) and a(x) = -2xa'(x). (7.19) 

The pair (a(x), a(x)) constitutes an independent solution set of Euler's 
differential equation 

4x2 y"(X) + 4x y'{x) - y(x) = O. 

Consider a pair (a, a) satisfying (7.19) which generates a distribution 
function F(x) satisfying (7.17). It can be shown that the distribution 
function is of the form 

Gp(x) = <I>(a(x)) + (1 - 2p)<I>(a(x)) 

where 0 :::; p :::; 1. The density corresponding to Gp(x) is 

gp(x) = J 27r~3 {(I - p) + P:} exp { - )..(~j.L~:)2} 1R+ (x) 

=1'+Xj(x) 
1'+j.L 

(7.20) 

where j(x) is the density of IG(j.L, )..). From (7.20) it is clear that gp(x) 
is a finite mixture of IG(j.L,)..) with its length-biased density x..{g}, the 

weights being (1 - p) and p for 0 :::; p :::; 1 and p = ili,1' 2: O. When 

I' = a, gp reduces to IG(j.L,)..) and when I' = 0 one obtains RIG()", )"j.L-2). 
Finally when I' = j.L, gp (x) is the family studied in detail by Birnbaum and 
Saunders (1969). Desmond (1986) has noted this mixture representation 
for the case I' = j.L. When a random variable X has the density (7.20) 
we say that X has the M-IG(j.L, A,p) law. Following are some salient 
characteristics of this law (for details see Seshadri 1993). 

(A) M-IG(j.L, A,p) is unimodal 

(B) For c> 0, £(x) = M-IG(j.L, A,p) =} £(cx) = M-IG(cj.L, cA,p) 
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(C) £(X-I) = M-IG(fL- I ,('t)-I(l- p)) 

(D) £ (~~JL») = N(O, 1) when £(X) = M-IG(fL, A,~) 
3 

(E) For fixed fL, as A --t 00 M-IG(fL, A,p) --t N(fL, T) for any p E (0,1) 

(F) M-IG(fL, A,p) is infinitely divisible 

(G) £ (A(~21)2) = xi if £(X) = M-IG(fL, A,p) 

(H) For fixed " M-IG (fL, A, ili) is a two-parameter exponential family 

2 3 

(I) If £(X) = M-IG(fL, A,p), lE(X) = fL + PT and var(X) = T + 
e04p(3 - p) 

(J) M-IG(fL, A,p) is a convolution of IG(fL, A) with a compound Bernoulli 
law 

To see (J) let £(XI) = IG(fL, A) and define V as 

= {O 2 with probability (1 - p) 
V Txi with probability p 

Further let Xl Jl V. Then £(X) = £(XI + V). 

(K) M-IG (fL, A, ili) is a special instance of J0rgnesen's concept of 

mixtures of exponential dispersion models. 

Inference - estimation 

The subclass of M-IG(fL, A,p) with p = ~/Y ::::: 0 is a full and 
steep model if 1 is known and is regular if 1 E [0,00). Writing fir = 

-~,02 = -~ where e = {(01,02) I -00 < 01 < 0, -00 < O2 < O} the 
canonical representation of (7.20) is 

where 
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From exponential family theory, it can be shown that by solving the 
likelihood equations 

lE(X) = ~ = /1-2 -afh /1- + )(y + /1-) = X 

lE (~) - ~ - .!. ' - X X - a(h - /1- + >.({ + /1-) - - . 

These relations lead to the two equations 

(7.21) 

(7.22) 

which have a unique solution if and only if all Xi > 0 and X X _ > l. 
Since X ~ /1- and X _ ~ ~, the maximum likelihood estimator of /1- is 

bounded and )L ~ P, ~ X. Noting that fICiJ < 0 and fI(X) > 0 we 

conclude that fI (/1-) has exactly one root in (i _ ' X). 

If now, is assumed unknown, we must also solve 

n n 1 --'" -, + /1- - f:t ' + Xi . 
(7.23) 

The system of equations (7.21) - (7.23) has multiple solutions. Two of 
them correspond to (, = 0, /1- = i_) and ({ = 00, /1- = X). There is 
perhaps at least one solution in the interior. For fixed, one first obtains 
a solution pair (/1-, >.) and then searches numerically for a global optimum 
of, in [0,00) to determine the maximum likelihood estimator (p,), 1'). 
Suppose we parametrize by (m, (}2,,) where m = lEX = /1-+ /1-3 />'(/1-+,), 
then the maximum likelihood estimators of m and (}2 are easily obtained 
from those of /1-, >. and,. Consider 

where 

a(x,,) = ~, b(x) = .!. and 
21fx3 x 

k(O"O,,~) ~ -2';0,0, - ~ log(-20,) + log (~+ ~) . 
When, is known, m and (}2 are orthogonal and when (}2 is known, m 
and, are orthogonal. These facts can be verified from Barndorff-Nielsen 
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(1978 pages 182-183 and 184). Therefore the observed information ma­
trix for (m, (}2, 'Y) has the form 

where the entries are obtained by tedious computation 

We omit the details. The estimated covariance matrix for (m, (2 ) when 
'Y is known is the negative inverse of the upper diagonal (2 x 2) submatrix 
of the observed information matrix. The negative inverse of the whole 
matrix gives the asymptotic covariance matrix of (m, O2 , il 
Example 7.6 J0rgensen et al (1991) considered the aircraft data 
of Proschan (1963) Table 7.10 which has been analyzed by Cox and 
Lewis(1966) and J0rgensen (1991). The data in Table 7.10 are inter­
vals in operating hours between successive failures of air-conditioning 
equipment in 13 Boeing 720 aircraft. A good fit of the RIG law was 
reported by J0rgensen. Since the M-IG family contains the RIG, the 
MIG(f.L, )..,p) was fitted to the data except for aircraft #11 (only two 
failures are available) and thus on the whole 211 observations from 12 
aircraft are analyzed using the following scheme 
(1) For each of the 12 aircraft all three parameters are estimated sepa­

rately accounting for 36 estimated parameters. 

(2) Then a common 'Y is fitted to all aircraft and f.L, >. are estimated for 
each of the 12 craft so that there are 25 estimated parameters. 

(3) In the third stage 'Y is set at zero b = 0 =} p = 1 =} £(x) = 
RIG) and f.L, >. estimated for all 12 aircraft. Thus 24 parameters are 
estimated. 

(4) Lastly'Y is set at zero and a common (f.L, >.) used for all 12 aircraft so 
that only 2 parameters are estimated. The fitting procedure involves 
solving the likelihood equations with 'Y fixed. In the case where 'Y 
has to be estimated the search for the global maximum is used until 
the maximum likelihood estimate is identified. The results are given 
in Tables 7.11 and 7.12. 
We are concerned here with a sequence of rested hypotheses on = 

Ho ;2 HI ;2 H2 ... , each Hi being a subset of on and incorporating an 
extra constraint on the parameter space. The standard procedure is to 
go from HI by checking its adequacy and then testing H2 under HI. If 
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Table 7.10 Numbers of operating hours between successive failures of 
air-conditioning equipment in 13 aircraft. 

Aircraft 

1 2 3 4 5 6 7 8 9 10 11 12 13 

194 413 90 74 55 23 97 50 359 50 130 487 102 
15 14 10 57 320 261 51 44 9 254 493 18 209 
41 58 60 48 56 87 11 102 12 5 100 14 
29 37 186 29 104 7 4 72 270 283 7 57 
33 100 61 502 220 120 141 22 603 35 98 54 

181 65 49 12 239 14 18 39 3 12 5 32 
9 14 70 47 62 142 3 104 85 67 

169 24 21 246 47 68 15 2 91 59 
447 56 29 176 225 77 197 438 43 134 
184 20 386 182 71 80 188 230 152 
36 79 59 33 246 1 79 3 27 

201 84 27 15 21 16 88 130 14 
118 44 153 104 42 106 46 230 
34 59 326 35 20 206 5 66 
31 29 326 5 82 5 61 
18 118 12 54 36 34 
18 25 120 31 22 
67 156 11 216 139 
57 310 3 46 210 
62 76 14 111 97 
7 26 71 39 30 

22 44 11 63 23 
34 23 14 18 13 

62 11 191 14 
130 16 18 
208 90 163 

70 1 24 
101 16 
208 52 

95 

H2 is accepted one then proceeds to test H3 under H2 and finally if H3 
is accepted one tests H4 under H3. The check is based on the p-value 
of the associated chi-square statistic (here - twice the difference in log-
likelihood rv X} where f is the number of extra parameters estimated 
i.e, dim(Hi) - dim(Hi+1))' When a significant result is obtained at a 
certain stage, it is customary to retain the last hypothesis accepted as 
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the best explanation that the data has to offer. Based on this reasoning 
we have the following inferences for the aircraft data. 

(I) Test of H2 under HI has (36 - 25) = 11 dJ., 2{4.14) is the observed 
X~I' The p-value corresponding to this is between 0.70 and 0.60 
indicating non-rejection of H2• 

(2) 'Y = 0 being a boundary value, the asymptotic X2 law is strictly 
not valid for testing H3 under H2• Nevertheless the difference in 
likelihoods is negligible and H3 does not suffer rejection. 

(3) Test of H4 under H3 gives a X~2 = 40.92 yielding a p-value between 
0.01 and 0.001, small enough to cause rejection of a common model 
for all 12 aircraft. 

If H4 is rejected then H3 offers the best explanation - a fact con­
firmed by J(Ilrgensen's findings. 

Table 7.11 Maximum likelihood estimates of J.t and (52 and the log­
likelihood contribution for each aircraft under Hypothesis 3 (for which 
'Y = 0 and p = 1). 

log-likelihood 
Aircraft n p, (52 contribution 

1 6 36.03 28.14 -31.88 
2 23 30.73 14.53 -126.18 

3 29 42.45 43.87 -154.43 
4 15 40.24 19.99 -85.42 
5 14 61.09 53.48 -81.31 
6 30 11.18 2.581 -151.14 
7 27 14.50 3.376 -145.92 
8 24 18.26 7.270 -123.39 
9 9 8.59 0.3854 -53.96 
10 6 17.68 3.519 -33.35 
12 12 14.78 2.340 -67.21 
13 16 42.89 47.05 -84.79 

Total -1138.97 
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Table 7.12 Sample log-likelihoods for the nested hypotheses 

Number of Sample 
Hypothesis estimated log-likelihood 

parameters 

1. Separate /-L, (}2, 'Y 36 -1134.55 
2. Separate /-L, (}2 

Common 'Y 25 -1138.69 
3. Separate /-L, (}2 

Common 'Y 24 -1138.97 

4. Common /-L, (}2, 'Y = O(p = 1) 2 -1159.43 

Remarks What did we accomplish by fitting the M-IG(/-L, )..,p) model? 
Since the RIG model is a subset of the M-IG model we are testing the 
right hypothesis, when 'Y is set at zero. 

When .c(X) = M-IG(/-L, )..,p) we have seen that .c(X) = .c(XI + V) 
where Xl and V are independently distributed with .c(XI) = IG(/-L, A) 
and V a compound Bernoulli variable. The variable V takes the value 
zero with probability (1 - p), that is to say a defect in the equipment 
occurs instantaneously with probability (1 - p). On the other hand if 
there is a random delay in the defect occurring, the probability is p and 
the randomness proceeds according to a xi law. The random variable 
X I is the time - the first time that the defect develops into a failure 
of the equipment (ie, from the start of the defect to actual failure) -
and is well represented by the first passage time of a Wiener process 
to reach a critical level. The parameter p describes the general state of 
conservation of the equipment. For perfect conservation p = 1 and the 
RIG law describes this state. Thus the M-IG model is well qualified to 
describe the physical process of the system we are examining. 

7.8 Exponential-inverse Gaussian mixtures 

Bhattacharya and Kumar (1986) proposed a model for a life time 
distribution by compounding the exponential distribution with the IG 
law, to obtain the E-IG(/-L, A) law. The density is 
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where C( i) = IG (j.tJ >.yx , ,X + 2X) for ,x, j.t > O. Thus the density is 

f(x) = ~ C~+ A:2x) exp{; (1- V1+ ~)} la+(x), 

(7.24) 
The moments of X are obtained by using conditional expectation. The 
mean and variance are 

One can now routinely compute the hazard rate and reliability. Thus 

{£ ,Xtexp(~) Kl ( ,X(,X+2X)) R(xjj.t,'x) = P(X > x) = -
j.t1f ('x+2x)t 2 j.t2 

and the hazard rate is 

1 1~ 
h(xjj.t,'x) = ,x + 2x + ~V ~. 

Since h' (Xj j.t,'x) < 0 for all x E (0,00) and ,x, j.t > 0, the hazard rate 
is monotone decreasing in x. The asymptotic variances of the moment 
estimators of j.t and ,x are given by 

These authors have also suggested a p-variate E-IG model with density 

p+t 

f(x) = f§ exp (;) 
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which yields as marginal laws density proportional to 

Pursuing this lead Whitmore and Lee (1991) define a multivariate sur­
vival model as an inverse Gaussian mixture of exponential laws. 

Definition 7.1 Let £(T) = IG(/-£, >.), and X = (Xl, ... ,X) a random 
p 

vector such that £(XIT = t) = II £(XiIT = t) = tP exp{ -tSp}lR~ (x) 
i=l 

P 

where Sp = 2:)i. Then the unconditional law of the vector X is said to 
i=l 

have a multivariate exponential-inverse Gaussian mixture distribution. 
It follows easily from the definition that 

100 A {f; 3 {>. (>. ) } £(X) = ell - r P "2 exp -- - - + Sp t dt 
o 27T 2t 2/-£2 

{ I} >. 2/-£2 "2 

= exp -;;, (1 + >:Sp) E(Tf) 

(7.25) 

where 

In survival analysis T is considered as a hazard rate of a process, and 
each of the variables Xl, . .. ,Xp has the same hazard rate T which is 
randomly distributed as the first passage time distribution of a Brownian 
motion with positive drift. The multivariate survival function is 

(7.26) 

where the expectation is taken with respect to IG(/-£, >.) and all x~s ~ o. 
Thus the survival function is proportional to the Laplace transform of 
IG(/-£, >.) and depends on (Xl' ... ' Xp) only through the sum Sp. This 
construction introduces a dependency on the random variables Xi which 
were independent to begin with. 

Whitmore and Lee establish a few useful properties associated with 
(7.25). Among the salient ones are 
(A) The distribution (7.25) is dependent by total positivity of order 2 

in each pair of variables (i.e., TP2 in pairs) (i,j) with the remaining 
variables held fixed 
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(B) The distribution (7.25) is positively dependent being a mixture of 
independent p-variate distributions 

(C) 

P 

lE(Xfl ... X;p) = II ki ! lE(T-P) 
i=l 

= IIP k. I lE(TP+I) (_1_) 
z· j.£2p+1 

i=l 

2+ ~ 2 
(D) 0 < Pij = Jl. 2 < "5' 1 5: i =1= j 5: p 

5+~+(*) 
(E) If (i l , ... , ik) is any subset of (1, ... ,p) 

is increasing in (Xil' ... ,Xik) where Xi'S> 0 
(F) The conditional hazard rate function defined by 

is decreasing in (Xl, ... ,xi-d for every Xi 

(G) When the hazard rate function is conditioned by the event {X I > 
Xl, ... ,Xk- l > xk-d, the resulting hazard rate function is decreas­
ing in (Xl, ... xi-d for any Xi. 

Relation to the P - IG(j.£, >.) 
Stein et al., (1987) have discussed a multivariate extension of the 

P-IG distribution, called the multivariate Sichel distribution (see also 
Rolla 1966). Its construction is as follows. 

Let Xi{i = 1, ... ,p) be p independent Poisson random variables 
with mean >.ti. That is 

Suppose now that the parameter>' has the IG{l, w) law, then, using the 
parametrization of Stein et al., 
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for Xi = 0,1, ... and a, tl,'" , tp > O. 
The model of Whitmore and Lee is based on the random time inter­

vals Yl , ... Yp of the consecutive events in a Poisson process where the 
parameter follows an IG law. 

7.9 Birnbaum-Saunders distribution 

Based on considerations of a fatigue process Birnbaum and Saunders 
(1969) introduced a two-parameter family of distributions. We have seen 
briefly that this is a subfamily of the M-IG(p., A,p) family for p = ~. 
The fatigue process involves some key assumptions that are summarized 
below. 
(a) fatigue failure is due to a continued cyclic stress on a material 
(b) the cyclic stress induces a dominant crack in the material which 

grows until it attains a critical dimension w beyond which fatigue 
failure is certain 

(c) the crack extensions L l , L 2 , •.. are independent 
(d) the total crack extension at the nth stage Zn = ~~=l Li has an ap­

proximate normal law by an application of the Central Limit The­
orem. 

The failure time distribution is given by 

(7.27) 

As noted in Section 7.7, Desmond (1986) pointed out a simple re­
lationship between the Birnbaum-Saunders law and the IG law, thus 
predating a similar observation by J(Ilrgensen et al. (1991). 

Specifically if .c(Xl) = IG(p., A) and .c(Xil) = IG (~, If) then, if 

P(U = 0) = P(U = 1) = ~, the random variable T = UXI + (1- U)X2 
has the Birnbaum-Saunders law - with parameters p. and A. Recall 
(from Seshadri (1993)) that Fletcher (1911) had first considered this 
law. Schrodinger had accused Konstantinowsky (1914) (who had cited 
Fletcher's work) of making a false claim that (7.27) represented the first 
passage time of Brownian motion with positive drift. (Schrodinger, later 
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offered a retraction realizing that the claim was due to Fletcher.) In the 
case of IG(J.', >.) it is to be noted that 
(A) the cumulative fatigue in time period [0, t] is a Wiener process with 

positive drift 
(B) the fatigue failure time is to be construed as the first passage time 

of the Wiener process to the critical level w. 
Bhattacharyya and Fries (1982) pointed out that the assumption of 

normality of Zn, the total crack extension, presupposes that the possibil­
ity of Zn assuming negative values with non-zero probability is ignored. 
Therefore they argued that the Birnbaum-Saunders law should only be 
regarded as an approximate solution. Since the IG law was an exact 
solution they suggested that it was more appropriate in fatigue failure 
models. 

Desmond (1986), however, argues that, since crack size is strictly 
a positive random variable hence crack increments tend to be positive. 
Thus probabilities of negative values should be excluded from considera­
tion. Moreover, Desmond has shown that the assumption of normality is 
not a key issue in the derivation of the Birnbaum-Saunders law and that 
there exist many laws for crack size which lead to (7.27). Furthermore 
it is possible to allow the crack increment to depend on the crack size at 
the start of operations and still obtain a law of the Birnbaum-Saunders 
type. This dependency does not work in the IG model due to the in­
dependent increments implicit in a Wiener process. From the point of 
view of statistical analysis, however, the IG model comes out the win­
ner, since censored data can be handled without problems due to the 
exponential family structure of the IG law. We present below an outline 
of Desmond's derivation of the Birnbaum-Saunders law. Random stress 
environments leading to failure are modelled as stationary continuous 
time stochastic processes, as for example, varying response like voltage 
or temperature. Desmond uses a biological model considered by Cramer 
(1946) to develop (7.27). In this model 

Yi+1 = Yi + 1Ti+1g(Yi) i = 0,1, ... (7.28) 

where 1Ti denotes a random variable describing the magnitude of the ith 
impulse, Yi the crack size after the application of the ith impulse, g(y) 
a continuous function of y, and Yo is the initial crack size. The crack 
growth at stage (i + 1), LlYi = Yi+1 - Yi is considered sufficiently small. 
Hence 

LlYi 
1Ti+1 = g(Yi) 

and I:~=1 1Ti can then be approximated by 
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By applying the Central Limit Theorem (assuming its applicability and 
that the 7ri have a common mean J.L and variance a2), the law of L:?=l 7ri is 
approximately normal. Hence if Y (t), the crack size at time t is regarded 
as a continuous time stochastic process 

G(Y(t)) = rY(t) dy ~ 1 exp {_ (Y(t) - J.Lt)2 } . 
Jo g(y) V27rt a 2ta2 

Let Yc > Yo be the critical crack size at which failure occurs. Then the 
time to fatigue failure T is 

T = inf{t I Y(t) > Yc}. 

Let Ft(y) = P(Y(t) ~ y) be the distribution function of Y(t) at time t 

{T ~ t} = {Y(t) ~ Yc}. 

The distribution function of T is then equal to 

P(Y(t) ~ Yc) = P[G(Y(t) > G(Yc)] 

= 1- P[G(Y(t)) ~ G(Yc)] 

= <I> (tJ.L - G(Yc)) . 
a...;t 

Thus regardless of the form of g(y) the model (7.28) leads to the failure 
laws in the Birnbaum-Saunders family. Desmond points out that the 
choice of g(y) determines to what extent the rate of crack growth depends 
on the previous crack size. From empirical evidence he suggests using 
g(y) = yO (8 > 0) (8 being a parameter relevant to the material under 
stress). Then the distribution function of T is 

FT(t; 8) = {
<I> (Ycl-6_Yol-6+(0-I)tJ.l.) 

00"(0-1) 

<I> (y;-6_ Ycl-6+(1-0)tJ.l.) 
JiO"(I-6) 

For 8 = 0 one obtains the Birnbaum-Saunders law. 
Inference 

8>1 

8 < 1 

Chang and Tang (1993) describe a graphical method for estima­
tion of J.L and>' as well as checking for goodness-of-fit. Since maximum 
likelihood estimation and confidence interval procedures are quite cum­
bersome (Birnbaum and Saunders, Engelhardt et al., (1969, 1981)), the 
graphical approach is very similar to probability plotting and seems quite 
practical. The distribution function, of the Birnbaum-Saunders law is 
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Let us first reparametrize by a = JTf., (3 = /l and then solve the above 
equation for t. Thus we have 

where F*(t;{3,a) = F(t;/l,>-')' We now write 

to obtain the linear equation 

t = (3 + a/fJp = a + bp. 

The idea is to plot the failure times tl, ... , tn against the Pi values 
where 

If the failure times follow the Birnbaum-Saunders law the plot should 
indicate an approximate linear relationship. The question now is, what 
is P*(ti)? Following Johnson (1951) we use the median rank 

P*(ti) = i - 0.3 . 
n+O.4 

Thus a visual analysis provides a quick check of goodness-of-fit. One 
may also use the R2 statistic proposed by Shapiro and Wilk (1965) to 
examine the fit. As for estimation we can use the method of least squares 
to obtain 

and 

(7.29) 

Recalling that for the Birnbaum-Saunders law (3 is the median, we 
note that the intercept a gives us the estimate. Furthermore a increases 
with b and decreases with a. When a is fixed (7.29) gives us a unique 
value a in terms of b and conversely. Therefore 

and we have since A ~ B, 

P(B) ~ P(A) 

~ 1- P[{Q ~ a ~ a;}rp[{Q ~ b ~ b}C] 
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by the Bonferroni inequality. Thus 

where [,q, a] and [fl, b] are the approximate 100(1-1'1)% and 100(1-1'2)% 
confidence intervals respectively for a and b. Finally we can write [51, a] 
as [fl/ -via, b / Va]. Chang and Tang have analyzed the example originally 
studied by Birnbaum and Saunders (see Table 7.13). We consider this 
example to illustrate their graphical technique. 

Example 7.7 This is an example given in Birnbaum and Saunders on 
the fatigue life (in cycle) of 6061-t6 aluminum coupons cut parallel to 
the direction of rolling. The data consist of n = 101 observations under 
a maximum stress of 31,000 psi with 18 cycle/s oscillation. The Shapiro­
Wilk statistics R2 = 0.977 suggests that the failure data are indeed 
conforming to the Birnbaum-Saunders distribution. From the slope and 
intercept, the least square estimates for the parameters together with 
their respective 90% confidence intervals are summarised in Table 7.14. 

Besides the results obtained from complete data, a similar set of 
results with right censoring are also given in Table 7.14 where last 21 
failure data are ignored. Both the R2 value and the estimates compare 
favourably with that of the complete data. 

Table 7.13 Birnbaum-Saunders data 

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 
112, 112, 113, 114, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 
124, 124, 124, 124, 124, 128, 128, 129, 130, 130, 130, 130, 131, 131, 131, 
131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138, 
138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 
146, 148, 148, 151, 151, 152, 152, 155, 156, 157, 157, 157, 157, 158, 159, 
162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212. 

Table 7.14 Least square estimates and their 90% confidence intervals 
for complete and type II censored data 

& ~ [51, a] [~, i3l R2 

complete ~.1686 131.9 [ 0.163, 0.174 ] [ 131.3, 132.5 ] 0.977 

TypeII 
0.1750 132.5 [ 0.168,0.182 ] [ 132.0, 133.0 ] 0.965 

censoring 

MLE ~.1704 131.8 [ 0.153, 0.193 ] [ 128.3, 135. 5] 
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In Table 7.14 we also list the MLE of f3 which is given by the positive 
root of 

where 

[ 2 n] 1 [ n -] B = =- + n -1 ,c = =- n -1 + t . 
L l:i=l (f3 + ti) L l:i=l (f3 + td 

and MLE of a given by 

&= [~+~L-f' 
7.10 Linear models and the P-IG law 

Since the P-IG(J.L, >.) law is a useful model for fitting overdispersed 
data, Stein and Juritz (1988) employ it in modelling response which 
comes in the form of counts by introducing a linear model with a P-IG 
error distribution. The model proposed by them is 

C(Yi) = IG(J.Li, a) i = 1,2, ... ,n 

where g(J.Li) = Xd3, {3 being a (p xl) vector of unknown constants, Xi a 
set of explanatory variables and a a shape parameter. We describe their 
approach and discuss the assessment of the fit together with an example 
on fish species data examined by them. In what follows we stick to the 
parametrization of Stein et al., (see 4 of Table 7.1). Recall that the 
probability function is 

The log-likelihood £(0) = £({3, a) where 0 = (J.L1,'" ,J.Ln, a) = (f3o, ... , 

f3p , a), is proportional to 

£ (f3, a) ex ~ log a + t, ( J J.Lf + a 2 - J.Li) + t, Yi log (~ ) 

+ t, Yi log ( J J.Lf + a2 - J.Li) + t, log K Yi - t (a) 

The J.Li are related to {3 by 

p 

g(J.Li) = 'f/i = f30 + L f3j X ij. 
j=l 
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Now 

But 

and 

Hence 

Since 

Compound laws and mixtures 

8£ 8£ 8Jti 8"'i 
8{3j = 8Jti 8"'i 8{3/ i = 1, ... , n, j = 0,1, ... ,po 

j=O,l, ... ,p 

~ K~i_t(a) ~ ~ Yi n 
tt Kyi-t(a) = - ttRYi-t(a) + tt a - 2a 

(see (iv) of section 7.2), we have, 

8t ~ a ~ ( Yi ) ~ R () 
8a=~Ju?+a2+a~ u?-\-a2-u.Ju2+a2 -~ Yi-t a 

1=1 1""1 1=1 1""1 I""t 1""1 1=1 

The expected information matrix for fixed a is (using Fisher's scoring 
method) XtWX, where W = diag(w1,'" ,wn ) and 

( 8Jti ) 2 1 
Wi = 8"'i var(Yi),"'i = g(Jti), i = 1, ... ,n, 

due to parameter orthogonality. Recall that 

Jt? 
Var(Yi) = t + Jti 

J Jt~ + a 2 - Jti 

- W [ J Jt~ + a 2 1 
- 1 J JtJ + a 2 - Jti 
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so that 
1 1 1 

VarYi Jl.i JJl.~ + a2' 

and finally 

( 8Jl.i)2 ( 1 1) 
Wi = 8'f/i Jl.i - J Jl.~ + a 2 . 

The following steps are used by Stein and Juritz to estimate a and 
{3. 
(1) Use Newton-Raphson iteration to obtain &, the maximum likelihood 

estimate of a (assuming (3o = 9 (Jl.i) ) 
(2) Use this value of & and an iterated nonweighted least squares method 

to obtain the maximum likelihood estimate {3 
(3) Now use g(Jl.i) = x i{3 and reestimate a 
(4) Repeat steps (2) and (3) until convergence is attained. The con­

vergence will be rapid due to the asymptotic uncorrelated structure 
between {3 and &.( The fitting procedure uses GLIM.) 
In order to assess the adequacy of the fit it is necessary to see if 

the extra parameter introduced, a, has contributed in improving the 
fit. If the P-IG fit is assessed appropriate it is then essential to verify 
the linearity of the model. These can be done as follows. First note 
that P-IG(Jl., a) --t the Poisson in the limit as a --t 00. Therefore the 
first assessment is checked by a test of Ho : a = 00 (Poisson) against 
HA : (a < 00) (P-IG). When (3 is known this poses no problem since a 
likelihood ratio test solves the issue. Stein and Juritz suggest using the 
statistic 

2 (l({3HA , &) - l({3Ho)) 

which is approximately X~. Here l({3HA'&) and l({3Ho) denote the max­
imized log-likelihood under the P-IG model and the Poisson model re­
spectively. Testing for linearity implies testing for ({3o, ... , (3p). Two 
cases now arise depending on whether a is known or not. Ifa is known 
the adequacy of the linear model can be tested by the deviance 

which has an asymptotic X2law with n-(p+1) degrees of freedom. When 
a is unknown the maximum likelihood estimate of a cannot be obtained 
under the saturated hypothesis (more parameters than observations).In 
this case one obtains an alternative estimate & from the null model, 
namely 
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N ow test using the deviance 

2 [fp-IG(~n,£1Ho) - fp-IG(~Ho,£1Ho)] 

= 2 t, [J yi + &2 - Yi + Yi log { Yi J yi + &2 - Yi } 1 

- 2 t, [J M + &2 - Pi + Pi log {Pi ( J M + &2 - Pi) } 1 

which has an approximate X2 law with n - p - 2 degrees of freedom. 
A sequence of nested hypothesis is tested in similar fashion. Stein and 
Juritz also advocate a graphical display plot using Pi = P(Y ~ Yi I 
fi,i, (1) i = 1, ... , n, the estimated exceedance probabilities to examine 
any departure from uniformity. (Compare with expected uniform order 
statistics). Barbour and Brown (1974) have analyzed the fish species 
diversity of 70 lakes of the world. They postulated a power function 
model for the data set. Stein and Juritz have examined the data set and 
obtained the following numerical results based on a log link with the 
log-lake area as the covariate. 

Table 7.15 Analysis of deviance 

Error law Model Deviance degrees of freedom 

Poisson f30 2646 69 

f30 + f31 xi 1538 68 

P-IG f30 104 68 

f30 + f31 x i 64 67 

Parameter estimates and their asymptotic standard errors are 
& = 11.62 s.d. = 10.12 
~o = 2.52 s.d. = 0.17 
~1 = 0.15 s.d. = 0.03 

When testing for linearity the deviance value of 64 based on 67 
degrees of freedom shows a good fit of the P-IG model. A test of 
H 0 : f3 = f30 against H A : f3 = (f3o, (31) t yields a deviance of 104 - 64 = 40. 
Based on one degree of freedom this indicates the need for the log lake 
area as an explanatory variable. Finally they produce a graphical display 
of the estimated exceedance probabilities plotted against the expected 
uniform order statistics (Figure 7.1) which shows concordance of unifor-
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mity of the computed statistics. 
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Figure 7.1 Estimated exceedance probabilities vs expected uniform or­
der statistics 

7.11 P-IG regression model 

Dean et al. (1989) consider another model called a Poisson-inverse 
Gaussian regression model. It is a multiplicative Poisson-random effects 
model which takes into account a random effect to the response variable 
with a Poisson distribution. 

To make the above more precise assume that with the fixed explana­
tory variables X = (Xl, .. . , Xp)t (called covariates) there is associated a 
positive valued function f.L(X) depending on a vector of unknown param­
eters {3 = ({3l, . . . ,(3p) t. For fixed X, the random response Y is assumed 
to be Poisson distributed with mean (Vf.L(X)) where the random variable 
v has the IG(l, ~) distribution for T > O. Thus 

(X) e-vp,(X) 1 ( (v _ 1)2) 
pry = y I Xl = io y! (Vf.L(X))Y~ exp - 2VT dv. 



164 Compound laws and mixtures 

It follows from section 7.1 that the probability function is 

J.L2(X) )Y 1 

1 + 2TJ.L(X) y! 

while the probability generating function is 

exp [~{ 1 - (1 + 2TJ.L(X)(1- s))t}] . 

The mean and variance are easily found to be J.L(X) and TJ.L2(X) respec­
tively. The recurrence formulae for the probabilities is (see (f) section 
7.1) for y = 1,2, ... 

TJ.L(X) (2Y - 1) J.L2(X) 1 
Py+l = 1 + 2TJ.L(X) Y + 1 Py + 1 + 2TJ.L(X) y(y + 1) Py-l 

with 

Po = exp [~{ 1- (1 + 2TJ.L(X))t}] 

1 

Pl = J.L(X) {I + 2TJ.L(X)} -2" Po. 

Estimation 
Consider the data (Yi, Xd, i = 1, ... , n where each Yi takes the value 

0, 1, .... We first write 

where 

Now 
8CXi 8CXi 8J.Li 
=--

8{3"( 8J.Li 8{3"( 

1 8w 
= (1 + 2TJ.Li)-"2 8{3: 

8CXi 2 1 1 1 
8T = -T (1 + 2TJ.Li)2 + T- (1 + 2TJ.Li)-2 J.Li 

1 1 
= -2'(1 + TJ.Li) (1 + 2TJ.Li)-2". 

T 
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The log-likelihood of PYi is proportional to 

1 1 
li ({3,T)CX -log ai+-+ Yi (logJLi-IogT-logai) 

2 T 

+ 10gKyo_.l (ai) 
• 2 

so that 

we have for r = 1, ... , P 

- = - - 1 Ur({3, T), (say). 8li (Yi Ry;_t(ai)) 8JLi = 
8{3r JLi (1 + 2TJLi) 2" 8{3r 

Likewise we obtain 

= 

Gathering all these 

and 

Dean et al., recommend that Ur ({3, T) = 0 be solved first to obtain /3( T), 
and then the profile likelihood l(/3( T), T) maximized with respect to T 
to yield f and /3(f). The estimates /3(T) are found using the Newton­
Raphson iteration or the scoring algorithm. The information matrix 
1(/3, f) can be computed from the following. 

82l i = (2 + TYi) _ {I + (1 + TJLi)2} R 1 (a o) 
8T2 T3 T3(1 + 2TJLi)t y;-2" t 

(1 + TJLi)2 R' () 
- T4(1+2TJLi) y;-t ai 

82l t (Yi RY;_.l(ad ) 82JLi 
8{3r8{3s = i=l JLi - (1 + 2~JLd t 8{3r8{3s 
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_ t (Yi _ Ry;_t(ai)) 821£i 
- i=l I£i (1 + 2Tl£i)t 8/3r8/3s 

n R~;_t(ai) (8I£i) (8I£i) 
- ~ (1 + 2Tl£i) 8/3r 8/3s 

t (Yi TRy;_t(ai)) (8I£i) (8I£i) 
- i=l 1£; + (1 + 2Tl£i)! 8/3r 8/3s 

821 1 ~ (1 + Tl£i) I 81£i 
8/3r8T = T2 ~ (1 + 2Tl£i) Ry;_t(ai) 8/3r ,=1 

+ t l£iR~;_t(a:) (8I£i) 
i=l (1+2Tl£i)2" 8/3r 

Tests and confidence intervals on /3i's and T are obtained by using 
asymptotics, in particular, (S - /3, f - T) rv Np=l(O,I-1). As in the 
previous section a test of T = 0 corresponds to a test of a Poisson model 
and may be based on the statistic 

A = 2 [1(,8, f) - 1(,8(0),0)] . 

When T = 0 P(A = 0) = ! while £(A) follows a !X~ law for A > 0 (a 
result due to Chernoff (1954)). 
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A. Actuarial Science 

Claim Cost analysis 
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In the field of insurance mathematics it is important to specify the 
probability distribution for the cost of a single claim. From this speci­
fication one calculates the probability distribution for the total number 
of claims. According to Seal (1969) by far the greatest number of grad­
uations of observed individual claim amounts have been based on the 
logmormal distribution, where it is assumed that the logarithm of the 
amount claimed follows the Gaussian law. The specification of a partic­
ular law for the cost of a single claim may not always be justifiable on 
axiomatic grounds, but nevertheless the tractability of the distribution 
is often a motivation behind its choice. Seal (1978) and Berg (1980) 
have advocated the use of the inverse Gaussian law in modelling claim 
cost distributions. In the following discussion we consider the approach 
taken by Berg to analyze loglinear claim cost analysis. 

Let Y denote a claim cost and assume that .c(y) = IG(I-£, .x), 
parametrized by 1-£ and ¢ = * has density 

r;:¢ {¢I-£ ¢y } f(y 11-£, ¢) = Y ~ exp - 2y - 21-£ + ¢ 1R+ (y). 

Denote by Yr the total claim costs based on nr claims where r = 1, ... , R. 
Then the density function ofYr, f(Yr 1 nrl-£r,nr¢r) is 

I-£r¢; exp {_ nr¢r (nrl-£r + ~ - 2)} 1R+(Yr). 
27rYr 2 Yr nr/-Lr 

Consider the following log-linear parametrization, in the spirit of the 
generalized linear models a la NeIder and Wedderburn (1972): 

log I-£r = X/~(3 } 
log¢r = Zr'Y 

r = 1, ... ,R, 

where the (K x 1) vector Xr and (L x 1) vector Zr are explanatory 
variables characterizing a risk group, an insurance line or a time period. 
The vectors ((K x 1) and (L x 1) respectively) (3 and 'Yare parameters. 
(In many instances Xr and Zr could take the values 0 or 1.) 

Furthermore we use the following matrix notation. 

N = diag(nl, ... , nR), 

<I> = diag(¢l, ... , ¢R), 

X = [Xl, ... , XR]t an R x K matrix 

Z = [Zl' ... ' ZR]t an R x L matrix 



168 Actuarial science 

Here the first columns of X and Z are taken as the unit vector e = 
(1, ... ,I)t. The (K x K) matrix XtNX and the L x L matrix ZtNZ 
are both assumed to be non-singular. Although it is not essential for the 
analysis that follows, it is further assumed that as the nr increase 

N -
lim-N=N 

tr 

exists making X t N X and zt Z both singular. Under these assumptions 
it is easily verified that et N e = trN = 1. 

Using the parametrization introduced above the log-likelihood func­
tion t({3,,) is proportional to 

R 
1 tIt 1~ (t t) t({3,,) ex '2 e X{3 + '2 e Z, - '2 L...." Yr exp zr' - xr{3 

r=l 
R R 

- ~ L n~ y;l exp (x~{3 + z~,) + L nr exp(z;,). 
r=l r=l 

The likelihood equations are now obtainable by differentiation with re­
spect to {3 and, and we obtain 

R 
at 1 t 1 ~ ( t t) 
a{3 = '2X e + '2 L...." Yr exp zr' - xr{3 Xr 

r=l 

To obtain the Hessian H of the log-likelihood we differentiate again and 

obtain H = (h~p hp-y) where 
hp-y hn 

~ = _! ~ -hr (Yr + n~l-'r) t L...." 'I' Xr Xr = hpp 
a{3a{3t 2 r=l I-'r Yr 

a2n R ( 2) {. 1 Yr nrl-'r t 

aaa t = -2 L <Pr - - -- Xr Zr = hp-y 
JJ , r=l I-'r Yr 

R ( 2 ) 1 ~ Yr nrl-'r t L...." <Pr - + - - 2nr Zr zr = h-y-y. 
2 r=l I-'r Yr 
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Note that hfJfJ and h" are negative definite matrices and H is not neg­
ative definite for all (3 and, implying that l({3,,) is not concave in the 
whole parameter space. But for fixed" l({3,,) is concave and vice-versa. 
Therefore by a lemma due to Oberhofer and Kmenta (1974) l{{3,,) can 
be maximized iteratively by first using an initial value ,(0) of, and 
maximizing £({3,'Y(0») with respect to (3. If ~b(O») is the value maximiz­
ing l({3, 'Y(O») one proceeds iteratively using this zig-zag procedure. The 
lemma guarantees convergence yielding the values (~, i). Equivalently 
one can use the E-M algorithm. 

The information matrix I({3,,) is obtained from the Hessian matrix. 
Indeed 

and 

Thus 

~ t ¢rl1rn; (_1_ + : 2) XrX; 
r=l nrl1r I1r rnr 

1 R 1 R 

= 2" L nr¢rxrx; + 2" L(¢rnr + l)xrx; 
r=l r=l 

R 1 R 

= L nr¢rXrX; + 2" L xrx; 
r=l r=l 

= XtNipX + ~xtx 
2 ' 

1 R 1 R 1 R 
-lE(hfJ,) = -2 Lnr¢rXrZ; + 2 Lnr¢rXrZ; + 2 LXrZ; 

r=l r=l r=l 

= ~xtz 
2 

-1E(hll ) = zt NipZ + ~zt Z - zt NipZ 

= ~ztZ. 

~xtZ) . 

lZtZ 
2 

This matrix can be inverted to yield the covariance matrix of ( ~) . 
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Var((3) = [xt[N¢+~(I_Z(ztZ)-1Zt)lX]-1 =v1((3), say, 

Yarer) = 2(ZtZ)-1 + (ZtZ)-1 [zt XVar((3)Xt Z] (ZtZ)-l, 

and 

Cov((3,.y) = -Var((3)XtZ(ztZ)-1. 

It may be of interest to know if there is any loss of information in the 
estimation of fj, when'Y is fixed, due to considering total claims rather 
than individual claims. In this situation we form the likelihood function 
for individual claims. Thus 

R R 

l(fj, 'Y) ex: L njx~fj + L njz}'Y + L nj¢j 
j=1 j=1 

1 R ( nj 1) 1 R ¢. 
-2 L ¢jJ1.j L -:;; - 2 L ~Yj. 

j=1 k=1 YJ j=1 J1.J 

This shows that when we form the Hessian matrix, and then take ex­
pectations we have some modifications to contend with arising from the 

term L¢j J1.j t ~ . Then 
R (n. ) 

j=1 k=1 YJ 

-JE (a~~~t) = ~XtN<PX + ~ tJ1.j¢j (~(~ + ~~.)) XjX~ 
~ ~ j=1 k=1 J1.J J1.J~J 

= ~XtN<PX + ~XtN<PX + ~XtNX 
222 

-JE (aa~l t) = ~ZtN<PZ + ~ t¢jJ1.j (t (~+ ~~.)) ZjZJ 
'Y 'Y j=1 J1.J J1.J ~J 

and 

R 

- '" n·~ ·z·z~ ~ J~J J J 
j=1 

= ~ZtNZ 
2 ' 
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In this instance the covariance matrix for S is 

When X = ZC (i.e. the columns of X are linear combinations of the 
columns of Z) both the expressions for V (S) reduce to 

This means that there is no loss of efficiency. On the other hand by 
considering the asymptotic case and examining lim tr NV1 (S) - lim tr 
NV2 (S) it is possible to obtain a positive semidefinite matrix, namely 

This clearly shows that there is a loss of efficiency, due to aggregation. 
Finally Berg considers a logarithmic transformation of the aggregate Yr 
in the hope that for large nr a more symmetric density close to the 
normal will emerge. For this log transformation one has asymptotically 

Wr = 10g(Yr/nr) 

= 10g(Yr) 

1 1 [ Yr - Ilr] = og Ilr + og 1 + Ilr 

~ 1 + Yr - Ilr 1 (Yr - Ilr) 2 
~ ogllr - -

Ilr 2 Ilr 
3 

JE(Wr ) = logllr - 2 Il; 2 
nr rllr 

1 
= logllr - -2 '" nr'f'r 
= x~f3 - (2nr¢r)-1. 

Var(wr ) = (nr¢r)-l. 

This model, when the term (2nr¢r)-1 is neglected has been analyzed by 
Harvey (1976). Berg considers a model of the form 

where d takes two values 0 and 1, and shows that regardless of whether 
d = 0 or 1 the asymptotic variance of ~ has the value (X t Nif!X)-l. 
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B. Analysis of reciprocals 

Tweedie (1956) introduced a method for the analysis of residuals 
from an inverse Gaussian population paralleling the analysis of variance 
in normal theory. He called it the "analysis of reciprocals". The analysis 
of variance is invariant under linear transformations whereas the anal­
ysis of reciprocals is invariant under scale changes only. Furthermore 
the analysis of reciprocals is restricted to nested classifications thereby 
limiting its application. We first consider the one and two way layouts 
and then discuss an analysis of two factor experiments examined by Fries 
and Bhattacharyya (1983). 

One way classification 

In this model we assume that there are ni items from the ith popu-
lation each of which is distributed as IG(J..Li, >.) where i = 1, ... , I. Thus 
we have independent observations Xij, j = 1, ... , ni, i = 1, ... ,I such 

that £(Xij ) = IG(J..Li, >.). In all there are n = 2::=1 ni observations. We 
also assume that >. is an unknown positive constant which is the same 
from sample to sample and that J..Li > O. The parameters J..Li and>' lie in 
the set 

n = {(J..Lb"·, J..LI, >.) 10 < J..Li < 00,0 < >. < oo}. 

Let us now consider the following problem, namely, of testing Ho : J..Ll = 
... = J..LI; >. unknown against HA : Ho is false. Then the likelihood 
function is proportional to 

and differentiation with respect to J..Li and>. easily yields the estimates 

I ni 

nAn1 = L L (x;/ - xi!.) . 
i=1 j=1 

Under Ho the maximum likelihood estimates are 

( 
I ni ) / fl = L LXij n = x, 

~=1 3=1 
I ni 

nA:l = L L (x;/ - x-I). 
i=1 j=1 
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Hence the likelihood ratio A satisfies 
A 1 

A* = n~n 
\ -1 

nl\w 

Now Q can be decomposed as 

I 

Qo 
Q 

(say). 

Q = Qo + L nix;1 - nx-1 = Qo + Ql (say). 
i=1 

Moreover, it is clear that 

Thus the likelihood ratio test calls for rejection of Ho at level 0: if 

(n-I) Ql 
(I - 1) Qo = FI-l,n-I > F 1- a · 
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The following example from Tweedie (1956) illustrates this test. 

Example B.l Four IG (J.ti , A) populations with ni = 5 yield the fol­
lowing values 

Population i 1 2 3 

8.7 8.5 8.4 

9.0 8.6 9.0 

8.4 8.4 8.9 

8.6 8.3 8.5 

8.4 8.8 8.8 

8.62 8.52 8.72 

X= 8.54 

Q = 0.002058, Qo = 0.001274, Q1 = 0.000784. 

The following is the analysis of reciprocals table. 

Table B.l Analysis of Reciprocals 

4 

8.1 

8.4 

8.5 

8.1 

8.4 

8.30 

Sources of degrees of Sum of differences F 

variation 

Between 

Within 

Total 

freedom 

3 

16 

19 

of reciprocals 

Q1 = 0.000784 

Qo = 0.001274 

Q = 0.002058 

3.28 
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The tabulated FO.95 = 3.24 < observed F = 3.28 leading to rejection of 
Ho at level a = 0.05. 

Suppose that we wish to test for homogeneity of the ..\'s, i.e., 

Ho : A1 = A2 = ... = AI; f.£i unknown against HA : Ho is false. 

In this instance 

The likelihood function is proportional to 

I 1 {I I 
}] Al exp -2" t; 

and routine computations give 

while under Ho 

I ni 

fJ,i = xi-, n~ -1 = L L (xi/ - xd = Q 
i=1 j=1 

Then the likelihood ratio is 

The distribution of A is complicated so that we use the fact that under 
Ho, -2 In A is approximately a X2 variable. Since under Ho £(AQ1) = 
X~i-1 an approximation due to Bartlett (1937) provides a modified test 
function, namely 

where 

A* = (n - I) In (Q/n - I) - ~[-1 (ni - 1) In (Qdni - 1) 
g(I) 



An application in environmental sciences 175 

Finally one has C{A *) ~ X~-l' 

Example B.2 For the data in Example B.1let us omit X15,X34,X35, 
X44 and X45' Then we have 

Xl. = 8.5, X2. = 8.52, X3. = 8.6, X4. = 8.43, X = 8.51, 

Q = 0.00082, Ql = 0.00006, Q2 = 0.00025, Q3 = 0.00022, Q4 = 0.00001. 

4 

Writing Qo = L ni (X;1 - X-I), we obtain Qo = 0.00028, and g(I) = 
i=1 

1.0975, so that 

A * = 13ln (~) - 3 {In ( Sf) + In (~) + In (~)} - 4ln (~) 
1.0975 

= 11.96. 

The X~05 value for 3 degrees of freedom being 7.81, we reject Ho. 

Suppose that we had tested the hypothesis that the means are all dif­
ferEmt when>. is the same for all four groups we would then obtain the 
following analysis of reciprocals table. 

Table B.2 Analysis of Reciprocals 

Sources of degrees of Sum of differences F 

variation freedom of reciprocals 

Between 3 Qo = 0.00028 F3,16 = 1.901 
Within 11 Q - Qo = 0.00054 

Total 14 Q = 0.00082 

With the tabulated FO•95 at 3.59, we would conclude that Ho is not 
significant at the 5% level. 

An application in environmental sciences 
The movement of chemicals in the soil media has been modelled 

using the Brownian motion process with drift by Helge Gydesen (1984). 
Problems concerning ground water pollution arise in the movement of 
chemicals in the soil. The amount of chemical leaching through a hand­
packed soil column of given length can be observed as a function of time 
or of the volume of leaching water. 

Water is supplied at a certain flow rate at the top of a soil column 
from a reservoir using a peristaltic pump. A chemical is applied at the 
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upper surface of the soil column and leaching amounts are collected at 
the bottom of the soil column. Fractions of leachate are then taken 
for chemical and physical analysis. In modelling this experiment the 
position of a particle at time t, namely X(t), is not observed but rather 
the travelling time of a particle measured from the top of the soil column 
to the bottom. Thus the quantity observed is 

where d is the length of the soil column. Although the diffusion process 
is not unrestricted in that the particle cannot move out of the column 
(due to the flow being quite large) normal distribution theory serves as 
a reasonable approximation. Indeed if X(t) is the position of a particle 
at time t, assuming X(O) = xo, and infinitesimal drift v and variance 
a2 are constant over time and position, the density p(xo,x;t) for X(t) 
satisfies the differential equation 

and the solution for p is the normal density N(xo + vt, a2t), while the 
distribution of T is given by 

d exp [_ -'-( d--::-----;:v:-'t ),--2] 
av27rt3 2a2t' 

The parametrization p. = ~, A = ~ gives us at once the standard 
form of the IG(p., A) density. 

Now suppose that ni particles have gone through the soil columns 
at times ti(i = 1"" , k) we can use the formulae obtained in Section 1.2 
to determine the maximum likelihood estimates of p. and A (see Equation 
1.4 with ni replacing wd. 

If m different soil columns are observed and it is desirable to know 
if there is a difference between the behaviour of the soil columns, then, 
we test first for the homogeneity of the A values and follow it up with a 
test of the equality of the p. values. 

Example B.3 In the experimental analysis reported by Gydesen, three 
chemicals - ethylene glycol, ethanol and sodium chloride - were tested on 
several soil columns. Ethylene glycol was tested on two soil columns (1,2) 
and ethanol on six soil columns (3-8). The sodium chloride compound 
was tested on four soil columns, two together with ethylene glycol (1,2) 
and two together with ethanol (3,4). Undisturbed moraine sand from 
one metre depth was the soil used in the experiment. Porosity varied 
in the range 30-50% and percolation was performed in nearly saturated 
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conditions. The water flow was vertically downward in columns (1-3) 
and upward in columns (5-8) respectively. The variation in waterflow in 
single experiments was accounted for by estimation of a mean flow rate. 

Table B.3 Results for 8 soil columns 

Meas- Convective Dispersion 

Soil uring flow coefficient 

Column Chemical method {J ..\ v(mS- 1 ) D(m2O- 1 ) 

1 1 EG 14C 53.93 171.40 1.5 x 10-7 4.7 X 10-9 

2 EG GC 54.60 225.72 1.5 x 10-7 3.6 X 10-9 

3 C 53.28 163.59 1.5 x 10-7 6.0 X 10-9 

2 4 EG 14C 54.41 227.90 3.8 x 10-8 9.1 X 10-9 

5 EG GC 57.87 281.34 3.6 x 10-8 7.4 X 10-9 

6 C 54.68 226.11 4.1 x 10-8 1.1 X 10-9 

3 7 E 14C 45.73 139.24 1.5 x 10-7 5.0 X 10-9 

8 E GC 44.86 140.74 1.5 x 10-7 4.9 X 10-9 

9 C 51.20 182.21 1.3 x 10-7 3.1 X 10-9 

4 10 E 14C 55.29 98.81 1.1 x 10-7 6.6 X 10-9 

11 E GC 54.14 92.78 1.2 x 10-7 7.0 X 10-9 

12 C 57.56 97.69 1.1 x 10-7 6.6 X 10-9 

5 13 E 14C 42.89 94.07 4.3 x 10-8 2.0 X 10-9 

14 E GC 41.12 96.63 4.5 x 10-8 1.9 X 10-9 

6 15 E 14C 39.42 48.42 6.5 x 10-8 4.1 X 10-9 

16 E GC 37.94 46.33 6.7 x 10-8 5.0 X 10-9 

7 17 E 14C 61.20 178.65 1.1 x 10-7 3.8 X 10-9 

18 E GC 58.11 182.85 1.2 x 10-7 3.7 X 10-9 

8 19 E 14C 55.65 215.75 1.2 x 10-7 3.2 X 10-9 

20 E GC 54.90 212.75 1.3 x 10-7 3.2 X 10-9 

EG=Ethylene glycol, C=Chloride, E=Ethanoi. 

Table B.3 gives the maximum likelihood estimates of J1. and ..\ as 
well as /I and a2 • Two methods were used in the estimation process. 
In the first method radioactive (140) labelled chemicals were detected 
and quantified by unspecific counting of the sum of unchanged and pos-
sible degradation products marked with 140 while in the second method 
gas chromatography was used for measuring the amount of specific test 
chemical. 
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Figure B.l . Estimated density and observed frequencies for EG mea­
sured by 14 C in soil column 1 

Gydesen notes that 
(a) the effect of diffusion was small in comparison with convective dis­

persion. The flow rate was not always constant and the amount 
of water passing through a soil column was used as a time variable. 
The actual measurement was a quantity proportional to the number 
of particles. 

(b) The exact leaching time was not measured and only the quantity of 
chemical which had been leaching during fixed time intervals was 
measured. 

(c) The time of occurence was assumed to be the mid-point of the time 
interval. 
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Figure B.2 Estimated density and observed frequencies for Ethylene 
Glycol measured by GC in soil column 2 
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Figure B.5 Estimated density and observed frequencies for Ethanol 
measured by GC in soil column 6 
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Figure B.6 Estimated density and observed frequencies for Ethanol 
measured by 14 C in soil column 8 

Conclusions From the figures it is clear that the IG model is 
quite adequate for six of the 20 experiments performed by Gydesen, 
Since there is a tendency of the estimated density to peak a little ahead 
of the observed frequencies, it maybe that a GIG model is called for. 

Using the tests of hypothesis outlined in the theoretical discussion, 
it turned out that the calculated test values were found highly signifi­
cant. Gydesen surmises that this could have arisen from the fact that 
the only randomness in the model originates from the movement of each 
particle and concludes that the randomness arising from the experimen­
tal error could have been estimated, had there been replications in the 
experimental set-up. On the other hand the hypothesis of homogeneity 
of the parameters for the two methods of measurement seems acceptable. 

Analysis of two-factor experiments 

In this layout we assume that the independent random variables X ijk 

have the distribution £(Xijk ) = IG(/-L + CYi + (3j, A) where /-L > 0, /-L + 
I J 

CYi + (3j > 0, LCYi = 0 and L (3j = O. Further we assume that there 
i=1 9=1 
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are nij observations in cell (i,j). The row (i) and column (j) effects are 
denoted by (}:i and {3j respectively. As Tweedie was quick to point out, 
the algebraic identity for the main effects and interactions in the analysis 
of reciprocals, does not give independent components. Indeed we have 

I J I J I J 

L L (xi:? - X-I) = L L (X;1 - X-I) + L L (x:/ - X-I) 
i=1 j=1 i=1 j=1 i=1 j=1 

I J 

+ L L (xi? - X;1 - xjl + X-I). 
i=1 j=1 

Unfortunately the third sum does not have a chi-square law since it has 
a finite probability of taking negative values, the reason why crossed 
classifications cannot be handled. 

Miura (1978) has studied the problem of testing for row (column) effects 
for this model, i.e., testing 
Ho : (}:1 = ... = (}:1 

against 
HA : Ho is false. 
Routine computations of the likelihood ratio statistic yield A = ~ 
where 

I J nij / I J 

Qij = L L L (xij~ - xij~) L L (nij - I), 
i=1 j=1 k=1 i=1 j=1 

I J 

L L (nij -I), 
i=1 j=1 

The denominator Q can be further decomposed as 

I J n;j I J n;j 

L L L (xij~ - xij~) + L L L (xij~ - xj.l) 
i=1 j=1 k=1 i=1 j=1 k=1 

so that 
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Observe that Qij is an estimate of >.-1 by cells and Q is an estimate of 
>.-1 by columns and that Qij is independent of Xij. for every (i,j). 

The distribution of A, apart from a constant is a Beta((n - 1 J)/2, (1 J­
J)/2) random variable, which can be transformed to an F random vari­
able with J(1 - 1) and n - 1 J degrees of freedom. Note that unlike 
Qij, Q is unbiased for>. only under Ho. It can be shown that JE(A) = 1 
and Ho is then rejected if A is close to unity. 

Shuster and Miura (1972) have considered a modified analysis of recipro­
cals when JE(X)/Var(X) remains constant from sample to sample. Thus 
if we have 1 populations and Xij , j = 1, ... ,n, i = 1, ... ,1 are all inde­
pendent such that £(Xij) = 1G(Pi, >.) where ~ = 4, i = 1, ... ,n, then 

JL i 

it follows that a one-way analysis of reciprocals can be carried out with 
the test function 

A _ EI (x;1 - x-I) 
- "I "n (-1 --1)· L..ti=1 L..tj=1 Xij - Xi. 

The details are omitted and the verification left as an exercise. A sim­
ilar study for a two-way layout considered by these authors assumes 
£(Xijk ) = 1G(pi + (3j + Q:ij, >'), i = 1, ... , 1,j = 1, ... , J and k = 

1, ... ,K. Further it is assumed that min(1, J, K) > 1 and E{=1 Q:ij = 
Ef=1 Q:ij = O. A test for main effects can be reduced to a test of 

Ho : {31 = ... = {3J against HA : Ho is false. 

This test again reduces to a one-way analysis of reciprocals by consider-
ing 

A test for interaction is blemished by the fact that it requires an equal 
number of replicates per cell. 

Fries and Bhattacharyya (1983) have investigated a reciprocal linear 
model for the factor effects in a factorial experiment. The inference pro­
cedures for a balanced two factor experiment are outlined in the ensuing 
discussion. 

Suppose that there are two factors, A at 1 levels and B at J levels 
and that there are n observations per cell (i,j). Then we can consider 
the independent random variables Yijk (i = 1, ... ,1, j = 1, ... ,J, k = 
1, ... ,n) as distributed according to the law £(Yijk) = 1G(8ij , a) where 
a > 0 8ij > 0 and 
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In standard terminology J-L represents a general (main) effect, the ai the 
row effect and the {3j the column effect. The parameter space n is of 
dimension I + J and 

n = {()* = (J-L, at, (3t , a) I eta = et {3 = 0, J-L + ai + {3j > 0, a > O} 

where et = (1, ... ,1), a = (a1,'" ,aI) and {3 = ({31,'" ,(3J). 

Let us define 

n J n 

Sij = L Yijk = n¥ij., Si. = L L Yijk = nJ¥i. 
k=l j=l k=l 

I n I J n 

S.j= L L Y:"k = nIY· 2J .J., s··=L L L Yijk = nIJ¥. .. 
i=l k=l i=l j=l k=l 

I J n 

nIJY = L L L ~jk1, 
i=l j=l k=l 

and 

D=diag (Yu, ... , Y1 J) an (I J x I J) matrix. 

From this it follows that 

--1 -1 a --1 -1 a (a)2 JE(Y. ) = 8 .. + -, Var(Y. ) = 8.. - + 2 - . 
2J 2J n 2J. lJ n n 

A method of obtaining estimates of the unknown parameters consists of 
first using the constraints to eliminate two parameters a I and {3 J and 
then redefining 

(1) '¢ = ((}t,a)t where () = (/-L,a1,'" ,aI-1,{31, ... ,{3J_1)t 
(2) Xij is an (I + J - 1) x 1 vector of -1,0 and 1 such that (}tXij = 

J-L + ai + {3j 
(3) the (I + J -1) x IJ matrix X = (xu, ... ,x}J)t 
(4) M the symmetric positive definite random matrix (I + J - 1) x 

(I + J - 1) is defined as 

M=XtDX 

(5) Xte = I Jei = 8 (say) where ei = (1,0, ... ,0). With this notation 
the log likelihood is proportional to 



Tests for model adequacy 

The estimates of 0 and a are obtained from 

at = ~ [0 - MOl = ° ao a 
at n1 J 1 - ] . - = -- + - [n1JY - 2nOto + nOtMO = ° 
aa 2a 2a2 

These equations have a unique solution 

0= M- 10 

a = (I J)-l [I JY - ot M- 1l5] . 

Moreover the matrix 

IJ~-2 ] 
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(B.l) 

is positive definite, so that (B.l) indeed maximizes the likelihood in 
terms of'ljJ. For I = J = 2, ~ is the maximum likelihood estimator 
inside n as well, as shown by Fries (1982). For 1, J > 2 the problem is 
still unresolved. 

Nevertheless ~ is unique and as n -t 00, ~ tends to the maximum 
likelihood estimator with probability one. 

The following theorem due to Fries and Bhattacharyya concerns the 
consistency and asymptotic distribution of {) and a. 
Theorem B.l The estimators 0 = M- 16 and a = (1 J)-1[1 JY -
6t M- 16] are strongly consistent and furthermore 

(aj Fn(O - 0) has a limit law 
NI+J-l (0, ar- 1) 

(bj Fn(a - a) has a limit law N(O, 2a2(IJ)-1) where r = X t \1X, and 
\1 = diag (611 , ... ,6IJ). 

Tests for model adequacy 

Consider a sequence of nested hypothesis 

where 

H4 : 6i/ = /-l+ai+{3j, H3 : 0;/ = /-l+ai+{3j; eta = et{3 = 0 (additive 

model), H2 : 8;/ = /-l+ai; eta = ° (no B effects), HI: 6;/ = /-l+{3j; 
et{3 = ° (no A effects), Ho : 6;/ = /-l (no factor effects). 
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In each of these models a is an unknown nuisance parameter. H 0 is the 
general model and corresponds to the so-called saturated hypothesis or 
unrestricted hypothesis. 

Let l(o'H;) represent the maximized log-likelihood under Hi(i = 0, ... ,4) 
and D(Hi) the deviance associated with Hi, namely 

Then the statistic D(Hi) - D(Hi- 1) = 2 [l(o'Hi_l) -l(o'HJ] and in 

terms of the likelihood ratio statistic, in order to test Hi under Hi- 1 we 
use 

Ai-1,i = 2 [l(o'HJ -l(o'Hi_l)] . 

Since under Hi l(o'Hi) = (- n~J) (lOg(ai) + 1) for j > i we have 

The corresponding ai, being the MLE under Hi, are 

I J 
- ~ ~ - 1 n 1Ja4 = n 1 J Y- - n ~ ~ Yij . 

i=l j=l 

I J 
- ~ ~ ~ 1 n 1 J £13 = n 1 J Y- - n ~ ~ 80 . 

i=l j=l 

J 

n1Ja2=nI J"Y_-nJ L Yi~l. 
j=l 

I 
- ~ - 1 n 1 Jal = n I J Y_ - n 1 ~ Y:; . 

i=l 

For large n we use the fact the Aij (i < j) has an approximate X2 law 
with degrees of freedom = dim(Hj ) - dim(Hi). 

In order to use the analysis of reciprocals we define 
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and observing that 

we can use the test based on Tij instead. 
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The analysis of reciprocals for the respective effects are defined in terms 
of the sums of the differences of reciprocals as follows. 

The variation due to the A effects denoted by SSA is estimated by 

I J 

SSA = n I J (0- 1 - 0-3 ) = n L L (8i/ - f:t), 
i=1 j=1 

that due to the B effects is 

I J 

n L L (8ij1 - fi~1), 
i=1 j=1 

the variation due to the interaction SSAB is 

I J 

SSAB = n I J (0-3 - 0-4) = n L L (fij1 - 8ij1), 
i=1 j=1 

and the variation due to random error is 

I J 

SSE = n I J 0-4 = n I J Y- - n L L 
i=1 j=1 

- -1 r:j .. 

A justification for these formulae can be advanced by noting the 
easily verified identity 

Y-:-k1 = y_ + (8:-: 1 _ y-:-1) + (8:-: 1 _ 9:- 1) + (9:-:- 1 _ 8:-: 1) 
~J ~J .J. ~J ~.. ~J. ~J 

-1 --1 --1 --1 - ~-1 + (r:jk - r:j . ) + (r:.. - Y: j . - Y- - 8ij ). 

Note that Yij1 estimates 8i/ in the absence of a constraint and 8ij1 
estimates 8i/. Based on a reciprocal scale (r:j~ -Yij.1) can be considered 
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as a residual. The very last term can be regarded as a non-orthogonality 
component. Summing the identity over i,j and k yields SSA etc. The 
analysis of reciprocals is 

Table B.4 Analysis of Reciprocals 

Source dJ. 

Factor A I-I 

Factor B J - 1 

A x B (I - I)(J - 1) 

Residual (n-l)IJ 

Sum of differences 
of reciprocals 

SSA 

SSB 

SSAB 

SSE. 

Approximate F 

(n - I)IJ SSA 
(I -1) SSE 

(n -1)IJ SSB 
J -1 SSE 

(n - I)IJ SSAB 
(I - I)(J - 1) 

We remark that the null distribution of S;E is an exact X2 law with 
(n-l)I J degrees of freedom and SSE lL SSAB. The laws of SSA, SSB 
and SSAB are only in an asymptotic sense. We omit the proof. 

A least squares approach based on a preliminary reduction of the data 
through sufficiency is also possible. For details we refer the reader to 
Fries and Bhattacharyya. We conclude with the example considered by 
them. Shuster and Miura had analyzed it by making the assumption of 
a constant AI fL2 across samples. 

Example BA From each of 5 lots of insulating material, 10 length­
wise specimens and 10 crosswise specimens are cut. Table B.5 gives the 
impact strength in foot-pounds from tests on the specimens. We shall 
analyze and interpret the data. 
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Table B.5 Impact strength in foot-pounds 

Lot Number 

Type of Cut I II III IV V 

1.15 1.16 0.79 0.96 0.49 

0.84 0.85 0.68 0.82 0.61 

0.88 1.00 0.64 0.98 0.59 

0.91 1.08 0.72 0.93 0.51 

Lengthwise 0.86 0.80 0.63 0.81 0.53 

specimens 0.88 1.01 0.59 0.79 0.72 

0.92 1.14 0.81 0.79 0.67 

0.87 0.87 0.65 0.86 0.47 

0.93 0.97 0.64 0.84 0.44 

0.95 1.09 0.75 0.92 0.48 

0.89 0.86 0.52 0.86 0.52 

0.69 1.17 0.52 1.06 0.53 

0.46 1.18 0.80 0.81 0.47 

0.85 1.32 0.64 0.97 0.47 

Crosswise 0.73 1.03 0.63 0.90 0.57 

specimens 0.67 0.84 0.58 0.93 0.54 

0.78 0.89 0.65 0.87 0.56 

0.77 0.84 0.60 0.88 0.55 

0.80 1.03 0.71 0.89 0.45 

0.79 1.06 0.59 0.82 0.60 

The analysis of reciprocals test is presented in Table B.6. 

Table B.6 Analysis of Reciprocals 

Source Sum of Degrees of MR F Ratio 

reciprocals freedom (approx p value) 

Cut .11985 1 .11985 5.39 (.024) 

Lot 6.56334 4 1.64084 73.78 (~ .001) 

Interaction .25922 4 .06481 2.91 (.025) 

Error 2.00150 90 .02224 
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Table B.7 MLE and LSE of impact strengths (10 reps. per cell) 

Lot Number 

Type of Cut I II III IV V 

Lengthwise y 0.919 0.997 0.690 0.870 0.511 

MLE 0.855 1.051 0.673 0.916 0.550 

LSE 0.854 1.058 0.676 0.922 0.552 

Crosswise y 0.743 1.022 0.624 0.899 0.526 

MLE 0.803 0.972 0.640 0.856 0.527 

LSE 0.795 0.969 0.638 0.853 0.526 

a- = .02261, ¢ = (1.342, -.039, -.134, -.352, .182, -.212)t, (j = .02224, 
¢ = (1.342, -.044, -.128, -.354, .181, -.214)t. 

The corresponding estimates for the cell means are calculated by using 
the relation X <p = e-1e. These estimated cell means and the sample 
cell means are given in Table B.7. 
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C. Demography 

In the theory of population projection (Keyfitz 1968) an integral equation 
of fundamental importance is 

B(t) = G(t) + lot B(t - x) p(x) m(x) dx. (C.1) 

Here G(t) represents the children born at time t for all parents surviving 
from time zero, B(t) is the density of births and p(x) m(x) is called 
the net maternity function. In demographic language p(x) is the life 
table number-living on radix unity and m(x), the age-specific birth rate. 
The net maternity function, written ¢(x)(= p(x)m(x)) is then fitted by 
a curve involving three constants, the moments of order zero, one and 
two. Thus the constants describing ¢(x) are 

Ri = 1a/3 xi ¢(x) dx ,i =0,1,2 

where Ro is called the net reproduction rate, Rtf Ro = J.L is the mean 

age of child bearing in the stationary population, ~ - (~) 2 = a2 , the 

variance of age at childbearing in the stationary population. 

It is customary to substitute a "graduated form" of ¢(x) in the integral 
equation (C. 1) to obtain an approximate solution to B(t). 

Three graduations are popular, due respectively to Lotka (1939), Wick­
sell (1931) and Hadwiger (1940). Lotka used the Gaussian law for ¢(x) 
while Wicksell found the gamma a superior fit by virtue of the fact that 
the net maternity function is based on the inverse Gaussian law and is 
due to Hadwiger. He introduced a reproduction function that fitted suc­
cessive generations from purely mathematical considerations. We give 
below a brief account of his derivation. 

Let ¢1 (x) denote the probability of a girl child born from a girl Jo at age 
x, the age being measured not from her own birth date but from the birth 
date of the ancestor Jo. Hadwiger calls this the reproduction function. 
The child born of Jo will be denoted by J1, that born to J1 by J2 and so 
on. Then the set of all I n forms a generation of a population descending 
from Jo. If ¢(x) represents the probability of a girl child I n produced at 
time x, assuming some stability in the population. Hadwiger arrives at 
the equation 

¢n+l (x) = lox ¢n (x - t) ¢1 (t) dt 

and hence by iteration 

¢n+m (x) = fox ¢n (x - t) ¢m (t) dt. (C.2) 
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Suppose we introduce a parameter a > 0 and let 

<PI (x) = 'Ij; (x,a) (:::} <Pn (x) = 'Ij;(x,na)) 

it follows from (C.2) that 

'Ij; (x, na + ma) = fox 'Ij; (x - t, na) 'Ij; (t, ma) dt. 

Given p > 0, q > 0 and an arbitrary € > 0 one can find a number a and 
two integers nand m such that 

Ip - nal < € and Iq - mal < €. 

Hence 

'Ij;(x,p + q) = fox 'Ij; (x - t,p) 'Ij; (t, q) dt. (C.3) 

Hadwiger now claims that a solution to (C.3) is 

'Ij; (x, a) = v:x3 exp {ca - (: + AX) } 

for some constants A, c > O. 

Since the reproduction law must be the same for the individual in the 
nth generation Gn , one gets 

na { (n2a2 
)} <(In (x) = V7rX 3 exp n ca - -x- + Ax . 

Now let B(x) be the children born at time x for all parents starting from 
10 . Then 

00 

B(x) = L <Pn (x) 
n=l (C.4) 
ae-Ax 00 { 2 2} - -- L n exp n ca - n xa 

- V7rX 3 
n=l 

represents a convergent series in each finite interval of time. 

In terms of the reproductions from 10 at time x and the births during 
time x - t one obtains the integral equation similar to (C.1) namely 

B (x) = <P1 (x) + fox B (x - t) <P1 (t) dt. (C.5) 
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One can again verify that (C.4) is a solution to (C.5). In demographical 
studies one is interested in equating the Laplace transform of ¢(x), L((J) 

to unity and solve for (J in terms of the moments of ¢. This is equivalent 
to solving 

exp {a( c - 2v' A + (J) } = 1. 

Thus a(2v' A + (J - c) = 2mri, and 

(J = (~ ± 7r;i) 2 _ A, n = 1, 2, " " 

Letting (J = u + iv, we get for n = 0, 1,2, ... 

These quantities are used in the Hadwiger graduation scheme. We shall 
refrain from going into the details and rtlfer the reader to Keyfitz (1968). 
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D. Histomorphometry 

Villman et al., (1990) have studied the histomorphometrical analysis 
of the influence of soft diet on masticatory muscle development in the 
muscular dystrophic mouse. The muscle fibre size distributions were 
fitted by an inverse Gaussian law. We discuss the nature of the problem 
and the investigation as developed by these authors. 

Muscles of mastication and postcranial muscles are differentially af­
fected in the muscular dystrophic mouse. It turns out that the masseter 
muscle, regardless of the age, is more seriously affected than the digras­
tic muscle. One of the reasons is that slow fibres being more resistant 
to dystrophy than fast fibres, most muscles containing slow fibres suffer 
less damage. Masticatory muscles in rodents contain a large amount of 
fast fibres. A second explanation is that muscles of survival (respiratory) 
contain protective mechanism. The third reason is that the severity of 
the disease in a given muscle is dependent on the amount of exertion 
and the muscle that does more work becomes more affected. The main 
muscle that is activated during chewing is the masseter and it shares the 
most work load in contrast to the digrastic muscle. The experiment con­
ducted by Villman et al., examines this third premise. This experiment 
is justified by the observation that substitution of the normal laboratory 
diet of hard food pellets by a soft diet induces a marked change in the 
masticatory pattern in rodents. 

The experiment involved 40 mice, 20 of which were dystrophic and 
the rest normal. When they were 3 weeks old, 10 dystrophic and 10 nor­
mal mice were fed on a soft diet and the rest were given food comprising 
hard pellets. The soft diet group was caged in an environment that had 
no hard parts. The mice were weighed at weekly intervals until they 
were seven weeks of age. At the end of seven weeks the mice were put to 
death and the masseter and the anterior belly of the digrastic muscles 
were dissected free. The muscles were frozen in isopentene cooled to 
-150°C with liquid nitrogen and later cut in 6p.m sections. The stained 
sections were studied by light microscopy, photographed and analyzed. 

Fibre size within a given area was measured as the minimum diam­
eter of the cross-section of each fibre in the area studied. Quantitative 
differences between the muscles were calculated in terms of the variances 
in fibre size. The results can be summarized as follows. 

Normal Mice 

Weight lO.4g 
at 3 weeks a = 1.1 

Dystrophic Mice 

7.8g 
a = 1.4 
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Ordinary Soft Ordinary Soft 
diet diet diet diet 

Weight 18.7g 18.2g 9.9g 12.6g 
at 7 weeks a = 1.7 a = 1.6 a = 1.8 a = 1.3 

Measurements were made of muscle fibre from 8 groups of mice, 
namely normal-masseter-soft, normal-masseter-ordinary, normal-digrastic­
soft, normal-digrastic-ordinary and a similar classification for the dys­
trophic mice. 

Table D.1 Estimated means and standard errors for varying sample 
szzen 

Normal Group 

M/F Di n p, s.d. ¢ s.d. 

Ma soft 499 85.09 (0.77) 24.64 (1.57) 

Ma ord 499 106.41 (0.80) 35.21 (2.24) 

D soft 495 78.68 (0.72) 24.22 (1.56) 

D ord 500 98.35 (0.78) 31.78 (2.03) 

Dystrophic Group 

M/F Di N P, s.d. ¢ s.d. 

Ma soft 500 93.31 (1.93) 4.70 (0.31) 

Ma ord 483 101.27 (2.35) 3.84 (0.26) 

D soft 498 87.99 (1.15) 11.85 (0.77) 

D ord 500 98.63 (1.24) 12.58 (0.81 ) 

M=Muscle, F=Fibre, Ma=Masseter, D=Digrastic, Di=Diet. 

Their estimated mean values, the ¢ values and their corresponding 
standard errors based on different sample sizes n are given in Table D.1 , 
based on the assumption that the fibre diameters all come from IG(p" >'). 

Due to the large sample sizes, hypotheses about the mean and ¢ 
values were based on the Wald statistic for the normal law. Table D.2 
gives a summary of a survey of differences between the measured muscles 
and the associated p-values. 

Vilmann et al., conclude that the experimental findings confirm their 
suspicion that the greater weight gain of dystrophic mice on a soft diet 
relative to those on an ordinary diet may be because they cannot chew 
enough hard food and are hence underfed. 
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Figure D.l Estimated inverse Gaussian density functions for muscle 
fibre-size distributions. The dotted curves refer to the soft-diet groups 
and the solid curves refer to the ordinary-diet groups. M. n-masseter 
normal M.dy-masseter dystrophic, D.n- digrastric normal,D-dy-digrastic 
dystrophic. 
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Table D.2 Survey of differences between the measured muscles 

A.Differences 

Muscles groups 

s.no./o.no. 

s.dy/o.dy 

m/m s.no./s.dy 

o.no./o.dy 

s.no./o.no. 

s.dy/o.dy 

did s.no./s.dy 

o.no./o.dy 

s.no./s.no. 

o.no./o.no. 

mid s.dy/s.dy 

between means 

p 

0.000 0> 8 

0.000 0> s 

0.000 dy > no 

0.04 no> dy 

0.000 0> 8 

0.000 0> 8 

0.000 dy > no 

0.85 

0.000 m> d 

0.000 m> d 

0.02 m> d 

o.dy/o.dy 0.32 

B .Differences between dispersions 

Muscles groups 

s.no./o.no. 

s.dy/o.dy 

m/m s.no./s.dy 

o.no./o.dy 

s.no.jo.no. 

s.dy/o.dy 

did s.no./s.dy 

o.no./o.dy 

p 

0.000 

0.03 

0.000 

0.000 

0.003 

0.51 

0.000 

0.000 

s.no./s.no. 0.85 

o.no./o.no. 

mid s.dy/s.dy 

o.dy/o.dy 

0.19 

0.000 

0.000 

8>0 

0>8 

dy> no 

dy > no 

8>0 

dy/no 

dy/no 

m>d 

m>d 

m= masseter, d= digastricus, s=soft diet, o=ordinary diet, 

no=normal, dy=dystrophic. 
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E. Electrical networks 

Barndorff-Nielsen (1994) considers a finite tree whose edges are en­
dowed with random resistances, and shows that, subject to suitable re­
strictions on the parameters, if the resistances are either inverse Gaussian 
or reciprocal inverse Gaussian random variables, then the overall resis­
tance of the tree follows a reciprocal inverse Gaussian law. Barndorff­
Nielsen and Koudou (1996) have generalized the idea to infinite trees. 

Random electrical networks which possess the structure of rooted 
trees can be endowed with independent stochastic edge resistances. The 
overall resistance RT of such networks is then determined from the edge 
resistances by the laws of Ohm and Kirchoff. The general problem of 
determining the distribution of RT is indeed difficult (Grimmet 1991), 
but is computable when the edge resistances follow the inverse Gaussian 
or reciprocal inverse Gaussian laws. 

In order to understand the theory we begin with some terminology 
and review some properties of the inverse Gaussian law. 

A tree T = (V, E) is an undirected and connected graph where V 
denotes the set of vertices v and E the set of edges e (E is contained 
in the set of subsets of V with two elements) without loops. When the 
number of vertices is finite, T is called a finite tree. If we select one vertex 
s in V, then (V, E, s) becomes a rooted tree. The vertex s is called the 
initial vertex or the root. This induces a natural map 'Y : V\ {s} -+ V 
such that b(v),v} E E. 

There is a natural distance d on V defined by d(v, VI), namely the 
length of the shortest path from v to VI and d(-y(v) , s) = d(v, s) - 1. In 
addition there is a partial order on V : V < VI if either v = VI or there 
exists n > 0 such that 'Yn(v l ) = v. 

We also denote by Vv the subset of V consisting of all terminal 
vertices that can be reached by a path starting from v. We write Re for 
the resistance (positive) of an edge and RT for the overall resistance. 

If the edges are numbered and R1 and R2 are two resistances con­
nected in series, the overall resistance RT = (R1 + R2) while if R2 and 
R3 are two resistances connected in parallel the overall resistance is 
given by (R2"1 + R3"1)-1. Thus the total resistance for the network 
is R1 + (R2"1 + R3"1 )-1. 

In order to simplify calculations we adopt the notation used by 
Barndorff-Nielsen rather than the conventional one for the inverse Gaus­
sian and reciprocal inverse Gaussian laws. Let t and T be two positive 
real numbers.Then we write 
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for the inverse Gaussian law with parameters (t2r2) and 

RIG(t, r)(dx) = J;1l"X etT exp { - ~: - r2
2 
x} l(o,oo)(x)dx 

for the reciprocal inverse Gaussian law with parameters (t2, r2). The 
Gamma law with parameter r2 is defined as 

Ga(r)dx = ~ exp {- r2 x} l(o,oo)(x)dx. 
y21l"x 2 

The following convolution results will be needed in the sequel. 

IG(tl, r) * IG(t2, r) = IG(tl + t2, r) 

RIG(tl, r) * IG(t2, r) = RIG(tl + t2, r) 

IG(t, r) * Ga(r) = RIG(t, r) 

C(X) = IG(t,r) <=> C(X- l ) = RIG(r,t). 

Some compatibility criteria are needed for deriving convolution laws 
relating to the inverse Gaussian and reciprocal inverse Gaussian laws. 

When working with three resistances Rl , R2, R3 suppose that 
(1) tl + t2 = h + t3, (2) rl = r2 + r3 

then, if 

we have 

and 

so that 

and finally 

C(R21 + R31 ) = IG( r2 + r3, t2) (since t2 = t3) 
= IG(rb t2) 

When a tree T has only two vertices, then RT is the resistance of 
the single edge. Suppose now that RT is defined whenever the number 
of edges, say 1 E I, is ~ m - 1. 

Consider a tree T with initial vertex s and such that 1 E 1= m. 
Further let ,-1(s) = {SI,···, sd be the set of vertices linked with s. 
Denote by Ti the subtree of T with initial vertex Si, 1 ~ i ~ k. For 
k = 4 Figure E.1 illustrates the situation when 1 E 1= 23 = m. 
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Figure E.1 A finite tree with four vertices 
Define RT as 

Electrical networks 

terminal vertex 
accessi ble from s 

{E. 1) 

With each vertex v E V, we associate two real numbers tv > 0 and 
Tv > 0 such that 

(1) Tv = LTv' 

v'EVv 

where Vv is the set of all terminal vertices that are accessible from v 

(2) t= L tv 
vElI"\{s} 

and the sum t is the same along any path 'If starting from s and ending 
at a terminal vertex. 
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These two conditions will be known as the compatibility conditions. 
Barndorff-Nielsen's result on the distribution of the total resistance RT 
of the tree T can now be stated as 

Theorem E.1 Let Xv, v E V\ {s} be a collection of independent ran­
dom variables such that Xv is the random resistance of the edge b( v), v} 
and suppose that 

£(Xv) = RIG(tv, Tv) if v is a terminal vertex 

= IG(tv, Tv) otherwise. 

Further let tv and Tv satisfy the conditions 
a) t = LVE7r\{s} tv is the same along all paths IT starting from sand 

ending at a terminal vertex 

b) Tv = Lv'EVv Tv' 
Vv being the set of all terminal vertices accessible from v. Then the total 
resistance RT of T follows the RIG(t, T) law where 

Proof The theorem is proved by induction on the number of edges 
of T. The conclusion of the theorem is obvious if T has only one edge. 
Suppose that the theorem is true when the number of edges 1 E I:::; m -1. 
Let T be a tree such that 1 E 1= m, s be the initial vertex and 

denote the set of vertices linked with s. 
For 1 :S i :S k let Ti = (Ui , Ed be the subtree with root Si. Thus 

for all i the number of edges of Ti namely I E I:S m - 1. Finally let 

Kv = Ltv' 
v'E 7rv\{v} 

for v E V and any path IT v starting from v and ending at a terminal ver­
tex. (As a consequence of (2) the sum is independent of the path.) (Now 
v -t Kv is a decreasing function on the vertices of T.) 

Clearly the restriction of the map v -t (tv, Tv) to the vertices of 
Ti satisfies (1) and (2). Thus the theorem is true for the tree Ti . 
This implies that the distribution of the total resistance of Ti , namely 
£(RTJ = RIG(Ksil TsJ. Denoting by RT the total resistance we have 
from (E.1) 
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Now 

so that 

£(RTJ = RIG(Ksil 7sJ 

£(XsJ = IG(ts;> 7sJ 

Electrical networks 

£(Xs; + RTJ = IG(7s;> Ks; + tsJ 

= IG(7Sil Ks)· 

Then by the laws relating to convolution 

c (Dx,. + R,.)-t) = IG (t T,,,K,) 

c [t(X" + R,,)-f = RIG ( K" t T,,) 
= RIG(Ks, 7S)· 

Since Ks and 7s are respectively equal to t and 7, the theorem is proved. 
We remark in conclusion that the number of free 7 parameters equals 

the number of terminal vertices and it can be proved that dT , the number 
of free t parameters is 

dT =1 T I-p 
where 1 T 1= the number of vertices and p is the number of terminal 
vertices. ... 
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F. Hydrology 

The analysis of floods, or the monthly flow in rivers by statistical 
methods began as early as 1913. Although the normal law was used by 
Horton (1913) to describe annual floods, it soon became evident that an­
nual flood series form positively skewed data and that other models were 
needed. Hazen (1914) used the log-normal law with some success. Foster 
(1924) gave detailed methods for modelling floods by the Pearson's Type 
I and III. Later on Gumbel's theory of extreme values (1941 , 1958) be­
came the vehicle for the analysis of flood data. In the early studies it was 
generally accepted that flood distribution be endowed with a minimum 
of three parameters. This was what motivated Halphen to develop the 
generalised inverse Gaussian law in 1941. Halphen fitted several series 
of mean monthly flow of water in the rivers with the harmonic law. Not 
satisfied with the adequacy of the fit Halphen introduced the Type B 
distribution which assumes a variety of forms leading to unimodal laws 
with positive or negative skewness with various kinds of algebraic de­
crease near the origin. Towards 1956 one of Morlat's co-workers, Larcher 
introduced a third distribution known as Type B-1, obtained by con­
sidering the reciprocal of a Type B law. These laws came to be known 
as Halphen's system of distributions. 

Denoting by f.L'-1'f.L~,f.L~ the moments of order -1, quasi-zero and 1 
respectively (Bobee and Ashkar, 1988, Morlat 1956) the moment ratios 
01 = fn(f.L~/ f.L~) and 02 = fn{f.L~/ f.LD provide a useful display of the 
symmetry of the Halphen system of distributions. 

2 .5 

2 '\ ~ Type A 

Type B 
(I) > 0) ~ 

I 1.5 ~ 
0. Type A 

( I) < 0) 

t 
0.5 

~ 
Type B-1 

~ 
0 

0 0.5 1 .5 2 2 .5 
cSt 

Figure F.l Halphen's laws in the (01, 02) scale 



204 Hydrology 

Emptiness of a dam 
Gani and Prabhu (1963) presented a general theory of storage for 

dams subject to a steady release. At time t ~ 0 consider a dam with 
infinite capacity having a random content Z{t) ~ O. Let X{t) ~ 0 
be the input during time t (one often assumes that the law of X (t) is 
infinitely divisible), while the dam is subject to a steady release at a 
constant unit rate except when it is empty in which case the release 
stops. The transient behaviour of Z{t) can then be evaluated. Hasofer 
(1964) introduced an inverse Gaussian type input for X{t) which permits 
the calculation of the probability of emptiness of the dam and the mean 
content in a nice closed form. Hasofer's analysis uses the inversion of 
Laplace transforms and the equation 

"1(8) = 8 + ~("1(8)) (F.1) 

where exp(-t~(8)) is the Laplace transform of the input law and 
exp( - Zo"1( 8)) is the Laplace transform of the time of the first empti­
ness T(zo), Zo being the initial content of the dam. 

Kendall (1957) had conjectured a relation between the two densities 
whose cumulant transforms are related by (F.1). Jain and Khan (1979) 
used this relation (to be made precise) to generate exponential families 
(see also Hassairi 1995). 

Assume that the volume X of a river discharge which flows into a 
semi-infinite reservoir during time t is a homogeneous process with non­
negative and independent increments with probability density p(Xj t). 
Let a certain substance which is uniformly distributed in the fluid (x 
units of the fluid contain rx units of the substance, say) be analyzed 
at a unit rate per unit of time. Suppose the analysis starts when the 
reservoir holds Zo units. Then the probability g(Xj zo)dx that a quantity 
X of the fluid flows into the reservoir before it gets emptied for the first 
time after a quanity Zo + rx has been analyzed is given by 

Zo 
g(XjZo) = p(x;zo +rx) for x > O,r > 0 vr < 1 

Zo + rx 

where £(X) = IG(vt, t2 ) and JE(X) = vt. 

Now let 

{;f, { t2 x t} p{x;t)=t --exp ----+- . 
27l"x3 2x 2v2 V 

Then 

Zo {;f, {(X - v{zo + rx))2} 
g(x;zo) = (zo +rx) -2 3 exp - 2 2 

Zo + rx 7l"X v x 

_ {;f, {(x - v(zo + rx))2} 
-Zo -2 3 exp - 22 . 

7l"X V X 

(F.2) 
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Thus 

( ) f;f, { Z5 (1 - rll)2x zo(1- rll)} 
9 Xj Zo = Zo -- exp -- - + . 

27rX3 2x 2112 11 
(F.3) 

This shows that we still have an inverse Gaussian law IG ((l~z~II)' z5). 
Note that if T = T{zo) denotes the time of first emptiness, then 

taking r = 1 and writing x = T-zo, the density ofT(zo) is for T ~ Zo > 0 

Zo {z5 (1 - 1I)2(T - zo) zO(1- II)} 
--;::=====:::;;: exp - - + .....:.....:---.:... 
J27r{T - zo)3 2{T - zo) 2112 11· 

It is clear that if we had assumed for p(x, t) the stable law with 
exponent ~ namely, 

t (t2) p{Xjt) = ~exp --2 1R+{X) 
V 27rX3 x 

we would have obtained for T ~ Zo the density 

(T{z ). z ) = Zo exp( -zo) { z5 (T - zo)} 
go, 0 J27r(T _ z)3 exp 2(T - zo) - 2 

(a result given by Wasan, 1968). 
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G. Life tests 

Shelf life failures 
The definition of time to failure in sensory testing is purely subjec­

tive. The mean time to failure based on simple averages is biased by 
the inclusion of unfailed data. One way to overcome this is by defining 
failure time as the time required for a sample to reach a median or an 
average panel score of 3.5 on a 7-point rating scale. 

"Storage life", a term associated with failure time, is defined as 
the time required for various deteriorative changes in a freshly packed 
food product to accumulate for a panel to judge it at the limit of its 
acceptability. 

The term "just noticeable difference" is defined as the first time 
when a difference between a product and a control could be detected by 
a panel of experts. 

The distribution of shelf life of a product by sensory evaluation is a 
key to the improvement of the method of estimation of shelf life. 

A sample of n items of a product is evaluated for failures at pre­
designated periods and the age to failure is recorded. When the alloted 
experimental time elapses, the age of the samples that did not fail are 
also recorded. The total experimental time is arbitrarily chosen by the 
examiner. Thus life testing produces two sets of data, the time to failure 
of the flawed items and the running time of the unflawed items. 

The basis of recording failure was based on the average panel score 
of 3.5 (on a 7 point off-flavour rating scale - the contribution from the 
presence of yeasts and high bacterial count rendering the product un­
suitable for taste was also a factor). Either the lack of samples or the 
expiration of the total time from the date of production was a factor de­
ciding running time, the samples being obtained from the manufacturer 
and sent to the laboratory for sensory testing. 

Gacula and Kubala (1975) have analyzed shelf life of several prod­
ucts using the normal, log-normal, exponential, Weibull and extreme­
value distributions. The adequacy of the fit was examined using both the 
graphical method of Nelson (1969, 1972) and the Kolmogorov-Smirnov 
statistic. The data set given below was studied by Chhikara and Folks 
and the IG law was found to be a good fit. 
The times to failure (days) for product M reported by Gacula and Kubala 
are: 24, 24, 26, 26, 32, 32, 33, 33, 33, 35, 41, 42, 43, 47, 48, 48, 48, 50, 
52, 54, 55, 57, 57, 57, 57, 61. 
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Accelerated life tests 
The IG distribution is useful in modelling fatigue growth in a mate­

rial, as for instance when the failure is caused by accumulated fatigue or 
depletion of its strength exceeding a critical limit a > O. Let us suppose 
that fatigue develops over a period of time according to a Wiener process 
with drift 1/ > 0 and diffusion constant a2 > 0, so that the first passage 

time to failure is IG (p. = ~, A = ~~). Further let x denote the intensity 

of the stress which causes the fatigue. Then the mean fatigue growth 
can be expressed as a linear function of x. By considering a reciprocal 
linear regression structure a la Bhattacharyya and Fries (1982) we then 
have 

p.-l = a + f3x, a ~ 0, f3 ~ 0, a + f3 > 0, x > 0 

and 
A = constant > O. 

The constancy of A is quite analogous to the homoscedasticity of the 
variance in the normal model. In consonance with the range of the 
stress x, one requires that a + f3x > 0 on a finite interval of x. 

Observations (Xi, Yi), i = 1,···, n are taken from n replicates of an 
accelerated life test, Yi denoting independent failure times corresponding 
to the stress levels Xi. Further we assume that £(Yi) = IG(p.i, A) where: 

p.;l = a + f3xi. 

Denote by 8 the parameter space where 

8 = {a,f3,A) I a ~ O,f3 2 O,a + f3 > O,A > O}. 

From general exponential theory it can be seen from the log likeli­
hood f = f(a,f3, A) where 

l = ~ log (2;) _ { >';' ny + >.af3 t,XiYi + >.~2 t,X;Yi + ~ny_ } 

3 n 

- 2 LlogYi 
i=l 

that (Y, 2:~=1 xiYi, 2:~=1 xtYi, Y -) constitutes a 4- dimensional suffi­
cient statistic for the 3-dimensional natural parameter space 8, thereby 
complicating statistical inference. 

However, ignoring this set-up, maximization of f with respect to 
(a, f3, A) = 'if; yields 

ae n a = A L {l- (a + f3xi)Yi} = 0 
a i=l 

ae n 

- = AL{l- (a + f3xdYdxi = 0 
8f3 i=l 
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and 

Letting Vi = ~ E~l XiYi j = 0, I, 2, we have 

aVo + .8V1 = 1 
aV1 + .8V2 = X 

Life Tests 

and the likelihood equations give the unique root (aL'~L)L) = '¢L 
where 

and 

All [~l A 1 AI. =;;, L)Yi - aL - .8L Xi) 
~=l 

= y_aL - ~LX. 

From the Cauchy-Schwarz inequality, Vo V2 - V12 2 0 with equality 
holding if and only if.,fiii = C.,fiiiXi for some constant c and i = 1,··· ,n, 
it can be shown that aL and ~L are well defined and thus with probability 
I, they are the unique solutions to the likelihood equations. 

When x > 0 we o?serve that not both aL and fh are negative. 
Moreover we note that AL = 0 with probability 1. 

In order to show that aL, ~L and ~L maximize l we consider the 
negative of the matrix of second partial derivatives of l, namely 

J,) 
2 L 

and note that the right side is positive definite with probability 1 since 
~L > 0 and Vo V2 - V12 > O. Thus we can conclude that the maximum 
likelihood root estimators aL'~L)L as they will be referred to, indeed 
maximize i. We still have to examine to see if they lie in 8. 

Firstly ~L > 0 with probability and it is seen that at most one of aL 
and ~L can be negative. In the situation where the solutions lie outside 
8, we should consider the maximization of l on the boundaries a = 0, 
.8 = o. 
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Now with a = 0, the equations 

8£(0, (3, ,\) = 0 
8{3 , 

yield the unique solutions 

!'.l_ -IT-I 
/J- XV 2 , 

and the maximum value 

8£(0, (3, ,\) = 0 
8'\ 

£a = £(0, ~a, ~a) = constant + ~ log ~a. 
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Similarly when {3 = 0 the corresponding solutions turn out to be 

A IT-I 
a{3 = Vo , 

with the maximum equal to 

n A 

£{3 = constant + 2" log '\{3. 

Using the same arguments as before it can be shown that w.p.1 all 
these estimators are positive. From a comparison of £a and £{3 we note 
that £a > £{3 if and only if ~{3 > ~a or equivalently ~LX - aL > O. When 
aL < 0 and ~L > 0 we have ~LX - O:L > 0 giving us the maximum 
likelihood estimators as a = 0, ~ = ~a. Thus if aL < 0 the maximum 
likelihood estimate of a is pulled to the value zero and the estimate of 
/3 changes to /la. Similar arguments hold when /lL < O. Collecting these 
results we state the following theorem. 

Theorem G.1 Based on a random sample of n observations from 
IG ((a + /3xi)-I) The maximum likelihood estimator (a,/l,).) of(a,/3,>..) 
E e is 

while 

The behaviour of these estimators under scale changes in x or y is 
provided in the next theorem. 

Theorem G.2 Dejine-¢;L = (aL'~L'~L) = -¢;dx,y) and-¢; = -¢;(x,y) = 
-¢;(a,/l,).), xt = (Xl,"',Xn), yt = (Yl,''',Yn) and et = (1, .. ·,1) the 
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(1 x n) unit vectors. Further let d and k be two constants such that d > 0 
and k > - min(xl,··· ,xn). Then 
(a) -J;L(x, dy) = (d-1aL(x, y), d-I~L(X, y), d~L(x, y)), 
(b) -J;L(dx, y) = (aL(x, y), d-l~L(x, y), ~L(x, y)), 
(c) -J;L(x + ke,y) = (aL(x,y) - k~L(x,y),~L(x,y))L(x,y)). 
Moreover -J; satisfies only (a) and (b). 

In concluding this discussion we remark that the above theory can 
be extended to a multiple regression model where £(Yi) = IG( ((3t Xi)-l, 
>.), (3 E ]RP Xi E 1RP and have positive entries for all i, XiI = 1, for 
every i and the p x n matrix (Xl,···, Xn) has rank p. 

Bhattacharyya and Fries conclude their discussion of the maximum 
likelihood estimator by proving the strong consistency of -J;L and -J; as 
well as the limiting normal distribution of y'n( -J;L - -J;) and the almost 
sure convergence of the sample information matrix. 

The approximate variances of a, ~ and ~ are given by 

where D = VOV2 - V12. 

Vara = (n~D)-IV2 
Var~ = (n~D)-IVo 

Var~ = 2n- 1 ~2 

These can be used in constructing large sample confidence intervals 
for (a, (3, >.). 

The next section is devoted to a least squares approach for replicated 
designs. 

Least squares 

In the least squares approach one assumes that k stress levels Xi,···, 
Xk are available and that (Yil, ... , Yin;) are ni independent failure times 
observed at level Xi. The Yij are all assumed to be independent for 
j = I,···,ni, i = I,···k and £(Yij) =IG((a+(3xi)-I,>.). 

Consider the quantities (a + (3xi) = J1.il as free parameters; it 

is immediately clear that fh = (L;~l Yij) /ni and Q = L~=l L;~l 
(Yi/ - Yil) are jointly sufficient for (J1.i, >.). From the distribution the­
ory seen in Chapter 1 

k 

(2) £(>.Q) = X"1v-k where N = I:ni 

(3) 

(4) 

i=l 
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(5) y;1 - (ni .x)-1 = ti Jl .x -1 = N ~ k 

(6) ti and .x -1 are the uniformly minimum variance unbiased estima­
tors of J1.i 1 and ).. 
Since ti are the bias corrected reciprocal means one has the linear 

model1E(ti) = a + (3xi with covariance structure given by 

Var(ti) = (a + {3xi)(ni).)-1 + 2(ni).)-2 [1 + (N - k)-1] , 

COV(ti, tj) = 2 [ninj(N - k)-l] ).-2, i i= j. 

One can employ the weighted least squares E:=l ni[ti -1E(ti)j2 and 
minimizing this gives the following estimators of a and (3 

where 

Simplifying we obtain 

When nl = ... = nk = n, fi Jl .x. 
Ignoring terms of order N-2 one can show that 

A) Var(.x-1) = (N_2k).2' Cov(a,.x- 1) = Cov(fi,.x-1) =0 

B) otT (-) = am2d2 + (3m 1d3 
var a N)'d2 

2 

C) Var(fi) = ad2 + (3~I:~d~ + d3 ) 

2 

D) C (- (3-) = _ am1d2 + {3d3 
ova, N)'d2 

2 
where 
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E) ~ = (a, ~))t is strongly consistent and IN(~ -~) -7 N3 (0, r) the 
entries of r being the limits of N times the corresponding expres­
sions given in (A) - (D). 

Example G.! The illustrative data set studied by Nelson (1971) and 
considered by Bhattacharyya and Fries is reproduced in Table G.1. The 
data represent times to first failure of insulation material in a motorette 
test at temperature levels of 1900 , 2220 , 2400 and 2600 • Ten units were 
put on test at each temperature level. Duplicate failure times indicate 
that the test was not monitored continuously. A recorded time is the 
time midway between the last time of inspection when the motorette 
was operative and the first time of inspection for which the motorette 
was inoperative. 

The original purpose of the experiment was to determine if the mean 
time to failure at a temperature of 180°C exceeded a specified minimum 
requirement. It was later discovered that the data set for 260°C had 
been taken on a batch different from the batch used at other stress lev­
els. It was therefore important to investigate whether or not the data set 
at 260°C was consistent with the remainder. Nelson's graphical and an­
alytic techniques are based on the assumptions that the log failure times 
are normally distributed with constant variance and a mean depend­
ing on the absolute temperature Ti through the Arrhenius relationship, 
namely, mean = a + bTi- 1 . 

Table G.! Times to failure (thousands of hoursJin an accelerated life 
test of insulation material. 

1900 2200 2400 2600 

7.228 1.764 1.175 0.600 

7.228 2.436 1.175 0.744 

7.228 2.436 1.521 0.744 

8.448 2.436 1.569 0.744 

9.167 2.436 1.617 0.912 

9.167 2.436 1.665 1.128 

9.167 3.108 1.665 1.320 

9.167 3.108 1.713 1.464 
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10.511 3.108 1.761 1.608 

10.511 3.108 1.953 1.896 

Bhattacharyya and Fries assume that the distribution of failure 
times is IG(J1.i, A) where 

Ti being measured in degrees centigrade. They implicitly assume that 
the wear of the insulation material increases until a critical amount has 
disintegrated. Since the insulating materials of the first three levels have 
a common source a common A seems appropriate. The relationship of 
J1.i indicated above is based on the following considerations 
(1) regressing ¥i-Ion Tl resulted in a value of R2 = 99.9% 
(2) (Sample variances)t were approximately linear in Tl 
(3) the change Ti -7 Tl - 1803 gave positive maximum likelihood esti­

mates. 

In Table G.2 the estimates based only on the first three levels are 
displayed. Calculations were done using the formulae developed for &, a 
etc. 

Table G.2 Parameter estimates and standard errors for the(TableG.1) 
data using the first three levels 

g fi !l-I 

MLE .0371 7.3260 .0102 
(.0129) (.3557) (.0026) 

LSE .0320 7.4316 .0097 
(.0141) (.3747) (.0026) 

The standard errors are based on large sample normal approxima­
tions for the MLE while for the LSE they are based on the expressions 
(A) - (D). Both methods of estimation seem comparable. 

The next table, Table G.3 gives the estimated mean failure times. 
The standard errors are based on the approximation 

where fl is either the one based on the MLE or the L8E. 
The MLEs obtained exclusively from the 260°C data set are then 

compared with the estimates using only the first three levels. 
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Table G.3 Estimated mean failure times and standard errors (thou-
sands of hours) based on(TableG.2) 

Temp(OC) 190 220 240 

Sample Mean 8.782 2.638 1.581 

MLE 8.902 2.565 1.606 
(0.094) (0.029) (0.033) 

LSE 8.863 2.565 1.598 
(0.101 ) (0.030) (0.034) 

fi,4 corresponding to 260°C is, for example, 

fi,4 = [0.0371 + (7.3260)10-8 (2603 - 1803)r 1 

= [0.0371 + 0.897446r1 

= 1.114. 

260 

1.116 

1.114 
(0.037) 

1.105 
(0.038) 

The MLE of A4 for the data set corresponding to T = 260° C, namely 
~41 = 0.1311 differs from ~-l and ~-l found in Table G.2. An F test 
with 9 and 27 degrees of freedom was performed to assess this discrep­
ancy, and resulted in a value of 15.01 with a p-value < < 0.001. In 
agreement with Nelson, Bhattacharyya and Fries also reach the same 
conclusion that the two batches of insulating material are significantly 
different. 

Variable stress accelerated tests 

Accelerated life tests are intended to obtain quick information on 
the lifetimes of products. Experimental units are subjected to severe 
stress conditions than normal so that more failure data can be generated 
in a limited time. In addition the stress level is increased at specific times 
on the surviving units. This method is commonly known as step-stress 
ALT or VALT (for variable step-stress accelerated life test) and reduces 
losses due to censoring. When the initial stress level Xo is higher than 
the normal stress we have a fully accelerated life test, as opposed to a 
partial accelerated test. Applications of such models are cited in Nelson 
(1980, 1990), De Groot and Goel (1979), Bhattacharyya and Soejetti 
(1989) and the references therein. Doksum and Hoyland (1992) consider 
such a step-stress model in which accumulated decay is governed by a 
Wiener process W (y). We describe in the ensuing sections their model 
assumptions and analysis. 
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Model Assumptions 

(1) n units operating independently are put on test at time t = 0, 
simultaneously at a stress level (normal level) Xo and the failure 
times over a specified interval [0, t] are recorded. 

(2) Starting at time t, the surviving units are subjected to different 
stress level Xi, (accelerated) until they all fail. 

(3) The accumulated decay Wo(Y) is assumed to be a Wiener process 
{Wo(Y) I y ~ O} with positive drift v and diffusion constant a2 > O. 
Furthermore Wo(O) = 0 and 1E(Wo(Y)) = vy. 

(4) Failure of a unit occurs when Wo(y) crosses a threshold value (bar­
rier) a> O. 

(5) When the stress is changed at time t from Xo to X, on the units that 
have not failed, there begins a new process WI (y) with initial value 
Wo(t) such that 

W ( ) - {Wo(Y), y < t 
I Y - Wo(t+a[y-t]), y~t, a>O 

(observe that when a > 1,XI > xo) 

(6) Define e(y) = 1E(W(y)) for y > 0, and let e(y) exist at y. Then we 
will say that e (y) is the decay rate at y and e (y) is the cumulative 
(integrated) decay rate 
(In a two step-stress model the decay rate changes from v to av as 
y crosses the time point t at which time the stress is changed from 
Xo to Xl) 

(7) The failure time Y of a unit is the first time point at which W (y) ~ a 

(8) The non-accelerated time (effective time) is defined as Ta (y) = Z 
(as opposed to the true (calendar) time Y) where 

{ y y'5:t 
Ta(Y)= t~a(y-t), y>t 

(9) £(Z) = IG (/1- = ~, A = ~~). 
(Thus the model says that a monotone map of the failure time Y 
has an inverse Gaussian law.) 

Denote by Fo (.) the distribution function of the random variable Z = 
T a (y) corresponding to the normal stress level Xo. As the stress changes 
from Xo to CXo for known c the decay process W (y) can be modelled as a 
Wiener process with drift v changing to cv in [t, 00) implying that 0: = C. 
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Given a sample of failure times YI , ... , Yn and the number r of 
failures at or before time t, we note that 1 < r < n - 1. Let the 
likelihood be La (fL, A). Then 

n 

La(fLIA) = an - r II fO(Ta(Yi)). 
i=l 

Thus when a is assumed known, the parameter estimates of fL and 
A are quite straightforward since all we do is transform from the Yi to 
Ta(Yi) = Zi and invoke the method of Chapter 3. 

When a is unknown we have another parameter to contend with 
and so the log-likelihood now becomes 

l(fL, A, a) oc (n - r) loga + n (; + ~ log A) 

Once again the maximum likelihood estimates can be obtained by 
using the methods of Chapter 3. The estimators &, fl, ~ are jointly 
asymptotically normal and standard techniques are employed to obtain 
asymptotic confidence intervals. This is left as an exercise. 

The extension to multiple stress levels will be considered next. 
Corresponding to (k+ 1) stress levels xo, Xl, ... ,Xk over the intervals 

[0, td, ... , [tk' (0), accumulated decay W(y) is again modelled by the 
Gaussian process W(y). 

W( ) = {Wo(y), 0::;; Y < t, . 
Y Wi(y), ti::;; Y < ti+l' Z = 1, ... , k (tk+l = (0). 

As in the two step-stress case Wo (y) is a Wiener process with drift 
l/ and diffusion constant (]'2 > O. Furthermore for i = 1, ... ,k 

Wi(Y) = Wi-l(ti + a(y - ti)) ti ::;; y < ti+!. 

Finally we can write W(y) compactly in terms of WO(T(Y)) through 
the function T(y) as follows 

i 
Define f3i = n aj, aD = 1, f3(y) = f3i for y E [ti, ti+d, i = 

g=o 
0,1, ... ,k, to = O. Then 

0::;; y < tl 
... + f3i-l(ti - ti-d 
+ f3i(y - ti), ti ::;; y < ti· 
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The function (3(y) holds the key in describing T(Y). Indeed we have 

T(Y) = laY (3(x)dx. 

Hence W(y) = WO(T(Y)) Y ? O. 

Thus we have a continuous Gaussian process with decay rate in­
creasing from v to v(ao al ... ai) = v{3i in the time interval [ti, ti+I)' 
Here ai is descriptive of the change in stress level from Xi-I to Xi during 
[ti, ti+d while (3i describes the change in stress level from Xo to Xi as Y 
crosses successively the time points t l , ... ,ti' In general observe that ai 
is a function of Xi-I and Xi and can be parametrized in several forms 
two of which are 

(a) ai = exp[O(xi - Xi-I)] :::} (3i = exp[O(Xi - Xo)] 

(b) ai = ( x~:d /I :::} {3i = ( ~ r 
for some real unknown parameter O. 

These parametrizations have the interesting feature which models 
the decay rate v{3i as a function of the initial stress Xo and the current 
stress only in the interval [ti' ti+d. 

The failure time Y is again modelled by the time transform Z = 
T(Y) assumed to follow an inverse Gaussian law IG(p" )..). Recall that 
T(Y) = J~ {3(x)dx where (3(x) = (3i for X E [ti' ti+I), i = 0,1, ... ,k. 

The question of estimation depends again on whether the (3i are 
known or not. When the drift v{3I = lI(ao, ... , ai) with ai known and 
the stress levels are regarded as aixi-I then we have a straightforward 
extension to the two step-stress level case. The case when the f3i are 
unknown requires care. When a model stipulates that the decay rate 
n{3i is proportional to the stress level, as for example exp{ O(Xi - xo)} or 
exp{O(logxi -logxo)} for some unknown 0, then the likelihood becomes 

n 

L(p,,)..,{3) II (3(Yj) fO(T(Yj))· 
j=1 

Suppose further that a random sample of n units are divided into 
c groups with respective counts nl, ... ,nc in each group. If the stress 
levels are indicated by Xij at time tij (i = 0, 1, ... , k, j = 1, ... ,c) (tOj = 
0). The initial stress levels XOI, ... ,XOc are all different for each group, 
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vaOl, ... ,vaOe being the corresponding initial decay rates. Then 

i 

{3ij = II arj, {3j(Y) = {3ij, Y E [tij, ti+l j), 
r=O 

i = 0, ... ,kj -1 

= Tj(Y) = aojY 
i-I 

= L {3rj(tr+lj - trj) + {3ij(Y - tij), 
r=O 

tij~y<ti+lj, i=1, 2, ... ,kj 

and of course we have in compact form 

Corresponding to the failure times (YjI, ... , Yjnj), j = 1, ... ,C, one can 
write the likelihood as 

c nj 

II II {3j (Yij) fo (Tj (Yij)) 
j=1 i=1 

extending the notation defined for the two step-stress case. The stress 

change modeled by aiJ" can be parametrized by (~)(J for example, so 
X.-I] 

that {3ij = exp {O(log Xij - log Xoj)}. 
In case there are censored observations with Yij = min(Yij, Cij ), 

OJ = I (Yij ~ Cij ) where Yj is the failure time such that T(Yij) rv 

IG (J-L, )..), and {Cij } are i.i.d. censoring times independent of {Yij} ,the 
likelihood now takes the form 

e nj 
II II [Jj(Yij)]Oi j [1 - Fj(Yij)P-Oij 

j=1 i=1 

where fj(Yij) = {3j (Yij)fO(Tj (Yij)). 

Example G.2 The example considered by Doksum and Hoyland is taken 
from Nelson (1980) and relates to an analysis of step stress test of cable 
insulation involving 2 groups (Nelson used 6 groups). Time was mea­
sured in minutes, the initial stress level being 400 volts/millimeter. 5 
units were tested in group I at 10 time intervals of length 240. The 
stress levels XiI = 896.6 + i(86.2) (i = 0,1, ... ,9). In the 5th interval 
[960,1200) where the stress was 1,241.4 the observed failure times were 
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1,056.9 and 1,057.9. In the 6th time interval [1200,1440) at a stress 
level of 1,326.6 the observed data was 1,209, 1,293, 1,293* (censored). 
Nine items were tested in group II at 10 time intervals of length 960. 
The stress levels Xi2 = 866.7 + i(83.3), i = 0,1, ... ,9. The data con­
sists of Y{2 = 323.9*, Yl2 858.4* in the first interval at a stress level of 
866.7, Y32 = 1,120.0 at a stress level of 950 observed in the 2nd in­
terval, Y42 = 2,420.9, Y;2 = 2,420.9*, Y62 = 2,660.4, Y72 = 1,922.9 
observed in the 3rd interval corresponding to a stress level of 1,033.3, 
YS2 = 2,833.9 observed in the 4th interval where the stress level was 
1,116.6 and Y92 = 4,102.1 in the 5th interval at a stress level of 1,199.9. 

It was assumed here that (3j (y) = exp {B(log Xij - log xo)} with Xo = 
400. Doksum and Hoyland report the following estimates based on the 
non-linear least squares maximum likelihood routine of the SAS. 

p, = 786,024.5, ~ = 1,830,477.7, {j = 6.38 with estimated standard 
errors of 358,170.0, 740,251.6 and 0.328. 

The estimate of the point beyond which one expects 95% of the 
insulation material to last under normal stress, namely FO- 1 (0.5) = 
786,024.4. Finally they give a percentage-percentage plot of {(Fi(Y(j)i), 

Fo(fi(Y(j)i)); j = 1, ... dd where Y(l)i < Y(2)i ... < Y(di)i are the distinct 
ordered failure times for group i. Fi is the Kaplan-Meier estimate of Fi . 
Based on this plot the fit appears reasonably good. 

There is another aspect to the changing stress levels in that it is con­
ceivable that stress is increased on a continuous scale. In this situation 
(3(y) can be expressed in terms of the changing stress x(y). 

More generally if r(y) is a non-negative strictly increasing contin­
uous function of Y on [0,00) with r(O) = 0, then for a Wiener process 
{Wo(Y) I y > o} with drift v and diffusion constant a2 > 0, the first 
passage time Y for Wo (y) to cross the barrier it yields the result that 

£(r(y)) = fG (JL = ~,A = ~). 
As a final word of caution note that, in the estimation problem, when 

there are no failures under normal stress (i.e, r = 0) it is impossible to 
obtain estimates of a, JL and A. On the other hand when all items fail 
under normal stress a cannot be estimated. 
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H. Management 

Labour turnover 

Management 

Whitmore (1979) uses the inverse Gaussian model to explain em­
ployee job attachment and length of service in particular. In his formula­
tion X (t) is the employee's level of job attachment as a function of length 
of service. With the standard assumptions of a Wiener process for X(t), 
the first passage time T from the initial level of attachment denoted by 
X(O) = c to the separation threshold arbitrarily set at X(T) = 0 has a 
defective inverse Gaussian law 

1/ being the drift and a 2 the diffusion constant. When 8 < 0 there is 
a tendency to drift towards the separation threshold. For 8 ~ 0 sepa­
ration occurs in finite time with probability one. For 8 > 0 separation 
theoretically never occurs. Thus we have a defective (improper) proba­
bility law with positive probability concentrated at T = 00, which says 
that the probability that the length of service is infinite when 8 > 0 is 
P(T = 00) = 1 - exp( - 2c// / a2). The mean and variance of T given that 
the length of service is finite are 

c 
mean = ~' 

ca2 

variance = ~. 

The model assumes that the level of job attachment is a stationary pro­
cess, the level of the separation threshold is fixed and that length of 
service is determined purely by the person's level of personal job attach­
ment and not by any external factors. 

The empirical results of Whitmore relate to the validation of the 
defective inverse Gaussian law as applied to homogeneous employee co­
hort studies (no parametric variation within an employee cohort). Four 
completed length of service distributions compiled by Silcock (1954) have 
been studied by Whitmore. The data relate to male and female entrants 
of J. Bibby and Sons Ltd, for the years 1950 and 1951, for a single fac­
tory of a British firm engaged in manufacturing animal feeds and soap. 
Furthermore only employees who left the firm and had to be replaced 
are in the study while those declared redundant have been excluded. It 
is assumed that the cohorts are homogeneous. 
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Table H.1 Distributions of employees of J. Bibby and Sons Ltd, by 
completed length of service 

(a) Entrants of 1950 

N umber of entrants 

Length of service Males Females 

(in months) Obse- Expe- Obse- Expe-

rved cted rved cted 

O-under 3 182 181.3 25 23.5 

3-under 6 103 103.2 26 30.2 

6-under 9 60 54.6 22 19.4 

9-under 12 29 34.9 13 13.3 

12-under 15 31 24.7 15 9.8 

15-under 18 23 18.7 7 7.6 

18-under 21 10 14.7 5 6.1 

21-under 24 8 12.0 1 5.0 

24-under 27 7 10.0 4 4.2 

27 or more 176 174.9 51 49.8 

Total 629 629.0 169 169.0 

X2 = 7.94, d.f.=7 X2 = 7.18, d.f.=7 

(b) Entrants of 1951 

Number of entrants 

Length of service Males Females 

(in months) Obse- Expe- Obse- Expe-

rved cted rved cted 

O-under 3 147 144.2 38 38.6 

3-under 6 54 68.2 29 26.6 

6-under 9 47 34.5 15 14.6 

9-under 12 21 21.4 9 9.5 

12-under 15 12 14.8 5 6.8 

15 or more 237 234.9 77 76.9 

Total 518 518.0 173 173.0 

X2 = 8.14, d.f.=3 X2 = 0.71, d.f.=3 
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Table H.2 A comparison of minimum X2 and maximum likelihood fits 
for Bibby aLS data 

Data Sample Minimum X2 

set size d.f. {) 11 X2 

M 1950 629 7 0.0007 0.2964 7.94 

M 1951 518 3 0.0624 0.3576 8.14 

F 1950 169 7 -0.0243 0.1356 7.18 

F 1951 173 3 0.0177 0.2417 0.71 

Total 20 23.97 

Data Sample Maximum likelihood 

set size d.f. {) 11 X2 

M 1950 629 7 0.0024 0.3015 7.99 

(0.0047) (0.0885) 

M 1951 518 3 0.0673 0.3665 8.22 

(0.0241) (0.0219) 

F 1950 169 7 -0.0219 0.1406 7.27 

(0.0081) (0.0100) 

F 1951 173 3 0.0187 0.2432 0.71 

(0.0120) (0.0317) 
Total 20 24.19 

M=Males, F=Females. 

The results presented in Table H.1 show that the model (defective 
inverse Gaussian) is indeed good. A pooled chi-square based on the four 
cohorts amounts to 23.97 corresponding to 20 degrees of freedom yielding 
a p-value of about 0.75. Whitmore points out that the IG model provides 
a better fit than that obtained by Silcock except in the case of the male 
entrants of 1951. Whitmore also gives a comparison of the estimates 
of the parameters and their asymptotic standard errors. The estimates 
permit the prediction of cohort attrition and of long-service experience 
for different types of employees. From Table H.2 a negative estimate 
of the drift for female entrants of 1950 is indicative of the fact that 
all employees in the cohort will leave the company eventually. For the 
remaining entrants the drift is away from the separation threshold ({) > 
0) indicative of a steady increase in the expected level of job attachment 
with longer service. On the other hand for male entrants of 1950 the 
estimate of {) is close to zero and in all likelihood the employees might 
eventually leave. 

Examination of the survival function reveals that the probability of 
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eventual separation, P(T < (0) = exp(-2cf)/a-2 ) ~ 0.7055 for the male 
entrants of 1951, implying that of the 237 male entrants who have been 
with the company for 15 months or more about (0.2945)(518) = 153 
can be expected to stay for a long time. Other deductions can be made 
regarding employee satisfaction or discontent. For a fuller analysis and 
interpretation the reader is referred to Whitmore (1979). 

Duration of strikes 

A strike is a stoppage of work with a dispute over terms and condi­
tions of employment. Two measures of strike duration can be used. The 
first, derived from the strikers, involves the average number of working 
days lost per striker, and is independent of the number of work stoppages 
and strike magnitude. The second measure is derived from the actual 
length of individual strikes. Lancaster (1972) constructs a model where 
the strike duration is a random variable with a probability distribution 
whose parameters "embody the systematic determinants of duration" 
and such that these parameters are approximately the same for some 
observed set of strikes. Suppose that a dispute emerges between a group 
of workers and management over a pay claim and let the workers demand 
$b while the management is willing to offer $a. As the strike progresses 
the demand and the offer change and at some point of time when this 
difference has fallen to zero the strike is over. Lancaster postulates the 
existence of a scalar measure of the difference between the parties and 
assumes that the duration of the strike is a function of this difference. 

The model assumptions 

Let t be the time, varying on a continuous scale measured from an 
origin, say, the start of the strike and the unit time period be a working 
day. For each t, X(t) denotes the measure of difference between the 
parties at time t. (We can change the origin and start at time t = 0 and 
let X(O) = 0.) Suppose the strike stops when X(t) = 1. Then X(t) is a 
random variable such that 

(1) for any tl < t2, JF(X(t2) - X(tl)) = V(t2 - td, v> 0, which simply 
says that the average progress towards settlement is proportional to 
the time involved. Since X(O) = 0 and X(t) = 1, v represents the 
mean proportionate rate of drift to settlement per working day. 

(2) for any pair of non-overlapping intervals the changes in X(t) are 
independent. This implies that given our knowledge of the differ­
ence between the parties when the strike began, knowledge of the 
differences before the strike started is of no help in predicting their 
differences at a future time and gives no clue as to how long the 
strike will last. 
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(3) for any tl < t2, X(t2) - X(tl) rv N(II(t2 - t 1),a2(t2 - t)). This 
assumption implies that the change in the differences can be neg­
ative (drifting apart) and the probability of this event is smaller, 
the longer the time interval and the more rapid the drift towards 
agreement. 

These assumptions make X(t) a Wiener process, and the first time 
T when X(t) = 1 is the IG(p, = ~,A = ;2). 

The data sets analyzed and fitted by Lancaster pertain to the list of 
strikes recorded by the Ministry of Labour beginning in 1956. The data 
was divided into 8 industries and a scatter diagram of duration and num­
ber of men (size) involved was inspected to see if there was any evidence 
of lack of independence of duration and size. (All strikes of duration 
less than a day and involving fewer than 10 workers were not recorded.) 
For seven industries the evidence was in favour of independence. Thus 
it appeared that the recorded proportion of strikes of different durations 
were not systematically different from the corresponding proportions of 
all strikes. Moreover the data reported represents truncated data (at 
T = 1). The observations arising in grouped form are reproduced from 
Lancaster in the following tables. Maximum likelihood estimates of p, 
and a 2 as well as a comparison of the observed and fitted data together 
with the Pearson goodness-of-fit statistics are provided. 

Newby and Winterton (1983) found that the duration of unofficial 
strikes is log normally distributed and that the duration of official strikes 
is exponential. Chhikara and Folks (1983) applied Bartlett's test for 
testing the homogeneity of A = ;2 of the dataset for the eight industries 
and concluded that the idea of a common A should be rejected. They 
point out that a careful scrutiny should be made about the distribution 
of the truncated data, and the estimates of A and p, that Lancaster used 
in his analysis. 
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Table H.3 Observed(O) and predicted(P) numbers of strikes by dura­
tion(D) in eight industry groups 

1.Metal Manufacture 2.Non-electrical Engineering 

D 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11-15 

16-20 

21-25 

26-30 

31-40 

41-50 

> 50 

o 
43 

37 

21 

19 

11 

8 

8 

9 

3 

16 

4 

4 

3 

3 

5 

4 

198 

P D 

47.1 2 

30.1 3 

21.0 4 

15.3 5 

11.6 6 

9.2 7 

7.4 8 

6.1 9 

5.1 10 

16.7 11-15 

9.1 16-20 

5.6 21-25 

3.7 > 25 

4.3 

2.3 

3.7 

o 
41 

28 

18 

8 

9 

3 

7 

5 

3 

11 

4 

4 

8 

P 

43.3 

24.9 

16.1 

11.3 

8.3 

6.4 

5.1 

4.1 

3.4 

10.6 

5.4 

3.1 

6.0 

fl = 0.137, a- = 0.612 fl = 0.197, & = 0.721 

& / fl = 4.47, XI3 = 12.4 & / fl = 3.66, XIo = 5.8 

3.Distributive Thades 4.Vehicles 

2 

3 

4 

5 

>5 

14 

13 

4 

6 

17 

54 

16.7 

9.6 

6.2 

4.3 

17.3 

2 

3 

4 

5 

6 

7 

8 

9 

34 

19 

10 

8 

6 

5 

2 

3 

34.0 

18.2 

11.3 

7.7 

5.6 

4.2 

3.3 

2.6 
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Table H.3 (ctd.) 
D 0 P D 0 P 

10 2 2.1 

11-15 6 6.5 

16-20 4 3.0 

> 20 4 4.3 

103 

P. = 0.231, a = 0.697 P. = 0.255, a = 0.811 

alP. = 3.02,x~ = 3.1 alP. = 3.18,X~ = 1.3 

5.Construction 6. Shipbuilding 

2 44 44.3 2 27 28.2 

3 33 34.6 3 19 18.4 

4 28 25.3 4 19 12.5 

5 23 19.0 5 7 9.0 

6 11 14.7 6 4 6.8 

7 12 11.7 7 5 5.3 

8 8 9.4 8 3 4.2 

9 6 7.8 9 1 3.5 

10 13 6.5 10 2 2.8 

11-15 16 21.0 11-15 11 9.0 

16-20 7 11.0 16-20 6 4.6 

21-25 6 6.4 > 20 8 7.8 

26-30 6 4.0 112 

> 30 11 9.2 

225 

P. = 0.134, a = 0.502 P. = 0.165, a = 0.605 

a I P. = 3.75, X~l = 13.1 alP. = 3.67,X~ = 8.3 

7.Transport 8.Electrical Machinery 

2 50 43.0 2 24 23.5 

3 19 18.3 3 5 11.6 

4 10 10.3 4 16 7.1 

5 5 6.7 5 6 4.9 

6 2 4.7 6-7 5 6.3 
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Table H.3 (ctd.) 

D 

7-20 

> 20 

7. Transport 

0 P 

13 16.5 

3 2.6 

102 

8. Electrical machinery 

D 0 P 

8-10 6 5.5 

> 10 10 13.1 

72 

P, = 0.988, a = 2.895 P, = 0.233, a = 1.093 

a / p, = 2.93, X~ = 4.0 a / p, = 4.69, X~ = 16.2 
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Table H.4 All industry groups apart from transport and electrical ma­
chinery 

Duration Observed Predicted 

2 203 212 

3 149 136 

4 100 92 

5 71 66 

6 49 50 

7 33 39 

8 29 31 

9 26 26 

10 23 21 

11 14 18 

12 12 15 

13 9 13 

14 11 11 

15 15 10 

16 6 9 

17 7 7.7 

18 6 6.9 

19 4 6.1 

20 4 5.5 

21-25 17 20.5 

26-30 16 12.9 

31-35 8 8.6 

36-40 8 5.8 
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Table H.4( ctd.) 

Duration Observed Predicted 

41-50 

> 50 

12 

8 

7.0 

8.8 

840 

fl = 0.160, a = 0.617, alfl = 3.86 

X~2 = 17.3 

Table H.5 
Duration of stoppages in conn-

ection with disputes over 

claims for wage increases 

Industries 1-6 pooled 

Dura- Obse- Pred-

tion rved icted 

2 88 92.3 

3 65 60.5 

4 52 51.5 

5 26 29.7 

6 21 22.4 

7 16 17.5 

8 15 14.0 

9-10 16 21.0 

11-15 31 30.4 

16-20 13 15.7 

21-30 14 14.9 

> 30 16 13.3 

373 

fl 0.159, a = 0.603 

alfl = 3.79,X~ = 6.4 

Duration of stoppages in conn-

ection with disputes over the 

employment of particular persons 

or classes 

Industries 1-6 pooled 

Dura- Obse- Pred-

tion rved icted 

2 53 56.0 

3 42 37.0 

4 22 25.4 

5 29 18.5 

6 13 14.1 

7 10 11.1 

8 6 9.0 

9 9 7.4 

10 4 6.3 

11-15 16 20.5 

16-20 9 11.2 

21-30 11 11.4 

> 30 17 13.0 

241 

fl = 0.133, a = 0.604 

a I fl = 4.54, X~o = 12.3 
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Table H.6 Duration of stoppages in connection with disputes over 
working arrangments, rules, discipline 

Industries 1-6 pooled 

Duration Observed Predicted 

2 43 43.9 

3 24 21.6 

4 12 13.2 

5 8 9.0 

6 9 6.6 

7 3 5.1 

8 5 4.0 

9 4 3.3 

10 4 2.7 

11-15 6 8.6 

16-20 4 4.6 

21-30 5 4.5 

> 30 5 4.9 

132 

P, = 0.249, a = 1.093 

alP, = 4.39,X~o = 4.2 
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I. Meteorology 

Frequency distributions of wind speed near the surface of the earth 
are of special interest to meteorologists because of the potential deriva­
tion of electrical energy from wind power. Most distributions are known 
to be skewed to the right with the mean far exceeding the median. Stew­
art and Essenwanger (1978) have fitted a three-parameter Weibull dis­
tribution and found that it adequately describes the frequency of occur­
rence of high speed winds. They show that the three parameter Weibull 
is preferable to the two parameter model particularly for predicting 90-
99% thresholds in missile climatology. 

In modelling windspeed frequency distributions it is customary to 
regard the wind vector as a function of wind speed and wind direction 
and use a bivariate distribution system. Essenwanger (1959) shows that a 
square or cube root transformation of wind speed results in approximate 
normality. Large masses of data are divided into classes with boundaries 
corresponding to the square or cube of the wind speed. 

Stewart and Essenwanger have observed that the introduction of 
the third parameter (the threshold parameter) brings in difficulties in 
the estimation stage. A positive value of the location parameter leads to 
an unrealistic condition of zero probability of wind speeds less than the 
parameter value. Data arises from potential wind energy sites possessing 
low probabilities of low wind speeds when the location parameter is 
positive. 

Bardsley (1980) recommends the use of the inverse Gaussian law 
IG(J.L, A) as an alternative to the three-parameter Weibull for describ­
ing wind speed with low frequencies of low speeds. Bardsley observes 
that when ¢ = ~ is quite large the inverse Gaussian exhibits an abrupt 
increase in the probability density, corresponding to the 0.0001 quantile. 

Let (0001 be such that P(X < (0001) = 0.0001. Then by plotting 

(J.L3/ (J.L2)3/2, T = S.~~Ol ), Bardsley is able to mimick the Weibull law 

by the inverse Gaussian law whose 0.0001 quantile is set equal to the 
Weibulllocation parameter ([). Thus for the IG(J.L, A) we have 

and for the Weibull ([,fl, {3) we have 

Gw(w) ~ 1 - exp { - (w ; ~ n (w ~ "(). 

The Weibull mean is 
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A measure of similarity suggested by Bardsley is 

M = max IFIG(x) - Gw(x)1 

where FIG(r) = 0.0001, i.e., (0001 = 'Y. The comparison between the 
two laws is made with 'Y = (0001 and the mean of the IG, namely J1, set 
equal to J1,w = 'Y + () T(1 + (3-1). Since M is independent of the units 
of measurement of X or W, J1, is taken equal to unity. Therefore if 

one can plot M for values of (R, (3). To see this, note that 'Y + () T(l + 
(3-1) = 1 =* R = 'Y =* () = rd;.t 1) so that Gw(w) is a function of R 
and (3 only. 

Values of M near zero indicate the closeness of the two laws and 
contours of M will depend on Rand (3. Bardsley finds that an approx­
imate correspondence between the two laws occurs when the variances 
are equal. The similarity contours can then be constructed for choices 
of (R, (3). Finally points corresponding to positive values of'Y from the 
Tables of Stewart and Essenwanger were superimposed on the contours 
and this revealed the fact that a sufficient number of points (R, (3) lay 
within the M = 0.1 contour to justify the use of the IG law. Bardsley 
recommends the use of the IG(J1" >.) law as a substitute for the three­
parameter Weibull when ¢ is large. On the other hand when ¢ is low 
the IG law is useful for describing frequency laws with high peaks near 
zero and long right tails. Although such wind speed distributions may 
be uncommon the IG law could be a very viable alternative to the two­
parameter Weibull. 

The wind energy flux Z = 21pX3 where X is the wind speed, p 
being the air density. The energy flux distribution denoted by hz(z) can 
be shown to tend to zero for Z --7 O. Thus P[Z < z] = Hz(z) can be 
expressed in terms of F(·) and power duration curves can be constructed 
for wind speed. 

The mean wind energy flux J1,z is estimated by 

When data available at a site is given in terms of speed measure­
ments averaged over a long time interval b.T, this can be converted into 
speed values averaged over small intervals b.t where b.t = ¥, for an 
integer K. 
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J. Mental health 

Whitmore and Neufeldt (1970) examine a model to describe the 
mental health of an individual. Mental health is a function of several 
variables and cannot be qualitatively assessed in terms of the factors 
such as socio-economical, physiological, psychological or temporal. Nev­
ertheless these factors do playa key role to the proper understanding of 
the characteristics underlying the mental function. 

Individuals are often grouped into two categories, non-patient and 
inpatient at time t and their state at time t + dt can be modelled by a 
Markov process. The parameters defining the conditional probabilities 
of moving from one group into the other can be taken to determine the 
characteristics of the state of an individual's mental health. The param­
eters specify an individual's rate of admission or rate of discharge and 
establish the pattern of entry and departure. In the jargon of mental 
health, length of stay in hospitals(los), the expected time spent in the 
non-patient state after each discharge (called time off books), the ex­
pected observation period spent in the inpatient state (being on books) 
and the expected number of times the individual is admitted to a psychi­
atric unit are important statistics in assessing the mental health status 
of a representative patient. Quite often the parameters of the model are 
functions of the socio-economic characteristics, the diagnostic classifica­
tion and the method of treatment, the age and sex of the individual. In 
the absence of knowledge of the functional relation the analysis becomes 
quite complex and statistical tools are needed for its estimation. 

Whitmore and Neufeldt also consider a more sophisticated model 
which regards the patient's state of mental health X as measured on 
a continuous scale. Since X changes with time the modelling can be 
achieved in terms of a diffusion process depending on endogenous as 
well as exogenous factors. To be more specific, let the state of mental 
health X (t) be a Wiener process. At the start of the observation period 
t = 0, X(O) represents the state of mental health of an individual. Sup­
pose further that a and b (a < b) are two limits such that when X(t) 
drops to the value a, the individual is admitted to a psychiatric unit for 
observation and treatment while when X(t) reaches level b the patient 
indicates recovery and is discharged from the hospital. Indicating the 
drift of the Wiener process by v (the propensity of the individual to 
move towards the barriers) and the diffusion constant a2 (which mea­
sures the extent to which an individual's mental health varies from an 
average mental health state), the probability for the time t to reach the 
state c = b - a is (assuming X(O) = 0) 

c {( c - vt)2 } 
f(t) = V27ra2t 3 exp - 2a2t . 
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Table J.l Cumulative distribution for observed data (Obs) and four 
LOS models. Cumulative proportion released by end of interval 

Time Obs Wei r LN IG 

10 .049 .094 .097 .049 .015 

20 .130 .167 .168 .131 .096 

30 .212 .230 .230 .209 .189 

40 .283 .286 .286 .277 .270 

50 .337 .337 .336 .337 .338 

60 .392 .383 .382 .389 .394 

70 .445 .425 .424 .435 .442 

80 .481 .463 .462 .475 .484 

90 .520 .499 .498 .511 .519 

100 .549 .532 .531 .543 .550 

110 .582 .562 .562 .572 .578 

120 .604 .590 .590 .598 .602 

130 .627 .616 .616 .621 .624 

140 .643 .640 .641 .642 .644 

150 .662 .662 .664 .662 .662 

160 .681 .683 .685 .680 .679 

170 .691 .702 .705 .696 .694 

180 .709 .720 .724 .711 .707 

190 .723 .737 .741 .725 .720 

200 .732 .753 .757 .738 .732 

300 .802 .865 .872 .828 .815 

400 .848 .924 .932 .878 .863 

500 .882 .957 .963 .909 .894 

600 .903 .975 .980 .920 .916 

700 .915 .985 .989 .945 .932 

800 .925 .991 .994 .955 .944 

900 .931 .995 .997 .963 .953 

1,100 .940 .998 .999 .974 .967 

1,300 .949 .999 .981 .975 

1,500 .955 .985 .982 

2,000 .962 .992 .990 
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The maximum absolute deviation turns out to be .076, .084, .034 and 
.034 respectively for the Weibull{Wei), gamma, Lognormal{LN) and IG. 

Thus we encounter the inverse Gaussian law again in the modelling of 
length of stay of patients in hospitals. 

Whitmore and Eaton (1977) have studied the length of stay as a 
stochastic process and applied the inverse Gaussian law to schizophrenic 
cohort data. Among the several laws fitted to this data only the inverse 
Gaussian and log normal laws stand out as satisfactory. Table J.1 sum­
marizes the several distributions fitted to the observed data. For this 
cohort data Whitmore and Eaton found a drift value of 0.00463 and the 
diffusion constant (volatility parameter) of 0.0154. The inverse Gaussian 
model admits the possibility that a patient may suffer a relapse during 
his stay in the hospital. This is in contrast to the other models exam­
ined. A relapse can be said to take place if the probability of discharge 
in some fixed period of time gets smaller. 
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K. Physiology 

The tracer method is a familiar technique in physiology for studies 
of blood circulation and body fluids. Organic dye labels are often used 
with which plasma is traced. It is customary to inject a radionuclide 
such as 47 Ca or 45Ca into the bloodstream and estimate the specific 
activity of calcium in plasma from a specific activity time curve. The 
injected substance goes from plasma to non-plasma several times until 
it settles in the bone or is eventually excreted. Sheppard and Savage 
(1951) considered a random walk process as a first approximation to 
the distribution of circulation times of the outflowing tracer. Sheppard 
(1968), Sheppard and Uffer (1969) proposed the inverse Gaussian law 
JG(1, k- 2 ) as the distribution of the first exit time from plasma. The 
physical theory is explained as follows. The label or dye is carried by 
the fluid with a uniform drift and is simultaneously dispersed by random 
interaction. At the terminus the dye is swept out of the system as if a 
barrier with a filter allows the fluid to pass but is absorbing for the dye. 

Subsequently Wise et al (1968), Wise (1971a, 1971b, 1974, 1979) 
gave a detailed account of a stochastic model for turnover of radio calcium 
based on observed power laws. They interpreted the hitherto accepted 
theory in terms of the cycle times from plasma to non-plasma and sojourn 
times inside and outside plasma of the injected tracer. 

When physiological data are analyzed one first obtains tracer dilu­
tion curves, which describe the concentration of the tracer measured on 
a continuous scale. The concentration of tracer in a capillary or artery 
is plotted using the times from injection of the tracer in a vein. Quite 
often the curves are bimodal and the second component is considered as 
arising from the "recirculating" tracer that has passed through the heart 
more than once. Ignoring this part, what is left accounts for the cardiac 
output Q- the rate blood is pumped out by the heart. Thus 

M 
Q = Jooo C(t)dt 

where M is the mass of tracer injected and C(t) is mass per unit volume 
of the tracer that has passed only once through the heart. This primary 
curve C(t) needs to be extrapolated and researchers have constructed 
an "inflection triangle" (formed by the inflection tangents) and used its 
parameters to fit a log-normal curve or a gamma curve. 

Tracer dilation curves 
In contrast to the above analysis, Wise argues that in the concentra­

tion curve, the concentration of blood is often proportional to the rate 
of excretion at that instant and hence the curve gives the ordinates of 
the probability density of the time spent within the body. In his view­
point the typical fate of small particles of tracer is to go from plasma 
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to non-plasma several times completing many independent cycles. Each 
cycle is completed with a probability p and a particle is lost by excretion 
with probability 1-p = q. If N cycles are completed then the total time 
T of a particle from the time of injection to excretion (final departure) 
is approximately the sum of the time ta spent in plasma from injection 
to its first exit from plasma, t J the time spent in plasma from its last 
return to plasma to its final exit and the time due to the N transitions 
from plasma to non-plasma. Thus formally one writes 

N 

T = (ta + tJ) + L ti 
i=l 

From a physical point of view Wise claims that the density of (ta + t J ) 
is negligible since the cycle time densities tend to predominate. This 
means that we can regard T as a random sum of independent times, 
with N, the number of cycles considered as a geometric random variable 
truncated at zero. 

Let C(t) denote the density of T,1l1(s) = E(e-Ts ) and ((s) the 
Laplace transform of each ti (which consists of a random sample of size 
n from the distribution of one complete cycle). Then 

00 

.,p(s) = fJ. LpnC(s) 
p n=l 

q p(s) 
= pI - p(s)" 

(K.1) 

Wise assumes a gamma law for the total residence time T and for small 
q finds an approximate solution to equation (K.1). We can state this 
result as a proposition. 

Proposition K.l Suppose that the Laplace transforms of the total 
residence time T and the independent identically distributed recircula­
tion times satisfy (K.1) for small q < 1. Then if 1/J(s) is the Laplace 
transform of a gamma law, namely r ( ~, (3), the Laplace transform of the 
recirculation time ti is that of an inverse Gaussian law. 

Proof Solving (K.1) for (s) we have 

(s _ ""(s) 
( ) - q+p1/J(s) 

1 1 

= p+q/1/J(s) = 1-q{1- ,p(S)}" 
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Now take logarithms and let 'IjJ(8) = (1 - ~) -0:. We then obtain 

log (( 8) = - log [1 _ q { 1 _ (1 _ ~ ) O:} ] . 

For small q the right side can be expanded to yield approximately, 

(K.2) 

This says that the cumulant transform of the recirculation time for small 
q and a = ! is that of an inverse Gaussian distribution. Letting q = 
* < 1, f3 = ~, a = !, equation (K.2) gives 

. >. 2/-L28 2" { I} 
log ((8) = ~ 1- (1- ->.-) 

the cumulant transform of IG(/-L, >.). 
Wise obtains the same result except that his procedure involves 

equating the first few cumulants on either side of Equation (K.1). His 
method usus ally involves fitting curves to match these cumulants. He 
uses numerical tables to generalize the theory to the case a i= !. When 
a is not too close to ! and if W = 1 - a, Wise shows that the single 
recirculation time distribution can be approximated by 

(K.3) 

For a > +! the implication is that there are many cycle times, while 
for a ::; -! there is just one cycle. Wise asserts that for specific activities 
in plasma experimental evidence points to this conclusion. This fact has 
been corroborated by Weiss (1983, 1984). 

Pharmacokinetics 

Weiss (1982, 1983, 1984) based his analysis on a stochastic pharma­
cokinetical model which mirrors the topological properties of the circula­
tory system and reinterprets the findings of Wise and demonstrates that 
the distribution of circulation times of drug molecules through the body 
can be approximated by the inverse Gaussian law. We describe very 
briefly his modelling which relies heavily on the use of linear systems 
and transport functions. 

Suppose that ti is the time required for a drug molecule to pass 
through the ith tissue during systemic circulation, Fi = Ioco hi(t)dt ~ 1 
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the fraction of drug going through the system and Pi(t), the probability 
density of ti is 

hi(t) 
Pi(t) = Iooo hi (t)dt . 

Denote by /-Li, al the mean and variance of Pi (t). Further let Fpul de­
note the fraction of drug going through the pulmonary circulation, and 
/-Lpul the mean of the time distribution corresponding to this circulation. 
Finally let qi = ~i where Qi is the blood flow volume of the ith tissue 

N 
and Q = 2: Qi is the cardiac output. 

i=l 
Assuming linear pharmacokinetic systems Weiss shows that the den-

sity function of the transit times (assuming exponentially distributed 
transfer times across tissues) is 

n ( )()( )( ) 
Fpul qiFi 1 1 _.l... -?-

h(t) = L - -. - - ---:- e ti - e pul • 

i = 1 /-Lpul /-Lt /-Lpul /-Lt 

Weiss claims that simulations have shown an excellent agreement be­
tween the transit time densities h(t) and 

(K.4) 

If F denotes the fraction of the drug that traverses the circulation in a 
single pass, then Weiss approximates h(t)j F by p(t). The parameters a 
and f3 are given by 

1 
a=--, 

/-Ltrans 

f3 = atrans 

/-Ltrans 

where /-Ltrans and atrans are the mean and standard deviation of the transit 
time distribution. 

Weiss also discusses the theory leading to the analysis of 
concentration-time data fitted by power functions of time, namely 
C(t) = Ara exp( -bt), which is equivalent to the assumption of gamma 
distributed residence times of drugs. This, in turn, implies the assump­
tion of a random walk model of circulatory drug transport. In pharma­
cokinetics the mean of the residence time distribution represents a basic 
parameter and of particular importance is the square of the coefficient 
of variation. When a = ~, the coefficient of variation is approximately 
equal to 2 and the density of circulation times assumes the form (K.4). 

The circulatory system can be regarded as an open-loop or single 
pass system (the time course of drug concentration following a single pas­
sage around the circulatory system without recirculation) or the closed­
loop system. In the latter system recirculation appears as a recurrent 
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event process consisting of a sequence of independent identical recircula­
tion times TI , T2 , ... , Tn. Thus {Tn} is a renewal process and if q = 1-p 
is the probability that a molecule is eliminated and hc{t) is the density 
of Ti , then the renewal density is 

00 

hr{t) = <J. Lpnh~n(t), 
p n=l 

(K.5) 

n 
h~n(t) being the density of L: Ti . Here Weiss interprets hr(t) as the 

i=I 
residence time distribution of the drug molecule. 

Following the arguments of Wise, Weiss concludes that it appears 
physically reasonable to assume the generalized inverse Gaussian law as 
a circulation time model. 

Homer and Small (1977) had used practically the renewal theory 
argument to determine the concentration of tracer in the face of renal 
excretion as 

C(t) = M fpn j*n 
F 1 

M being the mass of tracer injected and F the average flow of blood 
between the injection site and the sampling site. Furthermore they as­
sumed an fG (i, Q~2) law (a, a > 0) for f(t) and tried to estimate F 
and the mean circulation time t (where ltt--tooC(t) = t). Thus from the 
relation 

C () M ~ n (n / a) {( n - at) 2 } t = - L.; p exp - -'-------=--
F n=l J2rrt3 a 2ata2 

the parameters F,p, a and a are estimated using non-linear regression 
to obtain the fitted curve C(t). 

Interspike train interval analysis 

The neuron is a nerve cell and forms a basic unit of the nervous 
system. Its function is to process and transmit information. The output 
or phase of spontaneous activity of a neuron consists of a sequence of 
voltage impulses - a stream of point events - which possesses the char­
acteristics of a stochastic process. Intercommunication among neurons 
takes places at the synapses between the axonal terminals of neurons 
and the dendrites of other neurons. The input signals are integrated 
and transmitted through its axon to the cell bodies of other neurons. 
The cylindrical membrane of a neuron is electrochemically sensitive and 
movements of ions across the membrane cause changes of membrane po­
tential. The diffusion creates an electric field which opposes the chemi­
cal field and causes a potential difference. When there is no stimulation 
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or input there is equilibrium and the membrane potential maintains a 
constant value called the resting potential. When the incoming stimuli 
excite the neuron, the membrane potential shifts towards positivity until 
this large depolarization causes the potential to cross a certain thresh­
old. At this instant the neuron "fires" or sends an action potential along 
its axon. The neural signal contains coded information in a sequence of 
action potentials (a sequence of impulses). These impulses have a wave 
form and the message is conveyed by a sequence of point events in time. 
Owing to the spiky appearance of these sequences these waves are known 
as "spike trains" . 

Following a spike discharge the neuron undergoes an absolute re­
fractory period and a relative refractory period before the membrane 
potential returns to its resting potential. When the stimulus, during a 
relative refractory period, is sufficiently intense another spike discharge 
follows. The spontaneous activity in neurons can then be likened to a 
stochastic process since this "firing" activity occurs at random. For an 
excellent review of the statistical methods used in neuronal spike train 
analysis the reader is referred to Yang and Chen (1978) and the refer­
ences therein. 

The recording of the potential difference X (t) (measured in m V) of 
a neuron at every instant of time t over a period [0, bJ gives us a data set 
{X(t)j t E [0, b]}. The amplitude for the spikes remain nearly constant 
and the velocity at which it propagates along the fibre is independent 
of the stimulus so that spikes can be regarded as indistinguishable and 
instantaneous. A typical spike train data set consists of the times of 
occurrence of the spikes (TI' T2' ... ) taken over [0, bJ instead ofthe precise 
volts X(t). Alternatively we can denote the data by {N(t)jt E [O,b]} 
where N(t) is the number of spikes in (0, t). 

Consider {X(t)j t E [O,oo)} as a stochastic process which represents 
the voltage difference between the membrane potential and the resting 
potential at the trigger zone of the neuron. Let (J(t) which stands for the 
threshold potential be a monotonic threshold function defined on [0, 00) 
to [0, 00). For neuronal models one is often interested in the first passage 
time Te(t) of the process X(t) to reach the threshold (J(t), namely, 

Te(t) = inf {t ;::: ° I X (t) ;::: (J(t)} 
= 00, if X(t) < (J(t) for all t. 

Thus Te(t) is the time that the membrane potential X(t) takes to reach 
a critical level (J(T) in order to generate a spike. 

As is customary with neuronal models we assume that spike occur­
rences are regenerative, which says that {N(t)} is a renewal process. 
Suppose there is a spike at time 0. Then X(to) is reset to a value Xo 
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(say), and when X(t) reaches the threshold level e(t) at time T, and 
generates a spike then (0, T1) represents one cycle of the membrane po­
tential change. After resetting its potential to Xo, X(t) starts afresh 
at Tl and goes on to produce spikes in succession at times T2, T3 ,··. 

Therefore, from the theory of renewal processes, the interspike intervals 
T1, T2 - Tl , ... constitute a sequence of independent and identically dis­
tributed random variables (an argument valid only for spontaneous spike 
train activity and not for the simulated variety). 

Denote by F( t) the distribution function of the non-negative random 
variables Uj = Tj -Tj - 1 (j = 1,2, ... , To = 0). Then the mean of N(t) 
is 

R(t) = JE[N(t)] t ~ 0 

and the properties of the spike train are either describable by means of 
R(t) or F(t). When F'(t) exists and is equal to f(t), N(t) can also be 
described by means of the hazard rate 

h(t) = f(t) 
1 - F(t) 

An interspike interval (lSI) distribution has to be assumed in order 
to analyze the spike train data. Several models are employed, as for 
example, the gamma, the Weibull, the log normal, and the random walk 
model. 

In the random walk model { ... ,-1,0, 1, ... ,(}} is the state space 
of X(t) where zero corresponds to the resting potential and () a con­
stant threshold function. {X (t) I t ~ O} is considered to be a time­
homogeneous Markov Chain with () as an absorbing barrier. 

The diffusion model approach assumes that the membrane potential 
is a one-dimensional diffusion process, the value of which is reset to the 
resting potential xo, at the instant corresponding to the time of the 
previous spike activity. To be precise let {W(t) I t ~ O} be a standard 
Wiener process and p,O and (TO two continuous functions (known as 
the infinitesimal mean and variance). The membrane potential X (t) is 
defined as the solution of the equation 

dX(t) = p,(X(t))dt + (T(X(t))dW(t), t ~ 0 

Xo = Xo < e. 

The interspike intervals are independent realizations of the random 
variable T(J defined by 

T(J = inf{t 2: 0 I X(t) 2: O}. 
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The theory of stochastic differential equations enables us to obtain (un­
der assumptions on j.£(') and 0"(')) the transition probability density func­
tion f(x, t I xo, s) of X(t) as the solution to the Fokker-Planck equation 

af a 1 a2 
- = --[j.£(x)fl + --[0"2{x)fl 
at ax 2 ax2 (K.6) 

with 

p{x, s I xo, s) = c5{x - xo), p(±oo, t I xo, s) = o. 
The distributions of To are known for some special cases of j.£ and 

0". 
When j.£ and 0" are assumed positive constants we are led to the 

Wiener process model (in this case the neuronal model is called the 
perfect integrator) and the solution of (K.6) with j.£(x(t)) = j.£ and 
O"{X(t)) = O"{j.£ 2: 0,0"> 0) is 

f(x, t I xo, 0) = (21T0"2t)-t exp {_ {x - Xo - j.£t)2 } 
20"2t 

and the first passage time distribution of To is 

() - Xo {(() - Xo - j.£t)2 } 
p(t I (),xo) = ~ exp - 2 2 10,oo(t) 

0" 21Tt3 (y t 

for () > xo, which when reparametrized by f3 = o~XQ, 1/ = ~ gives 

the inverse Gaussian law IG{~,(32). When m = 8~xQ,>. = (8~~Q)2, we 
obtain the IG{m, >.) law. 

For details about the assumption of the Ornstein-Uhlenbeck process 
model the reader can consult Yang and Chen (1978) or Lansky and Smith 
(1989) and the references therein. A good mathematical treatment of the 
spike train activity and the underlying stochastic process can be found 
in Tuckwell (1988, 1990). 

Tuckwell identifies twelve general shapes that can be fitted with lSI 
histograms and the basic mechanism that leads to these shapes. Even 
when a particular shape has been chosen there still remains the issue of 
parameter estimation to obtain the best fit. Levine (1991) used simulated 
data using three noise distributions and fitted both the simulated data 
and real data to four models including the log normal and the inverse 
Gaussian and found that they provided better fit than the hyperbolic 
normal and the reciprocal gamma. He found that the lSI distribution 
reveals the neuron's processing much more than it explains the nature 
of the noise. 
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Liao (1995) has examined both simulated data and real data in his 
thesis on model selection and proposes the GIG law as a larger family 
to model interspike interval data. 

The four distributions considered by Levine and Liao are the hy­
perbolic normal, the reciprocal gamma, the lognormal and the inverse 
Gaussian. The left end point of the interspike interval distribution is 
considered at zero (thus the neuron's refractory period is excluded in 
the modelling). 

1. Hyperbolic normal. Suppose that £(X) = N(/-L, a2 ) then £(X-I) 
given that X-I> 0 is defined as the hyperbolic normal law. The 
density is given by (writing Y = X-I) 

¢(~) 
f(y I /-L,a) = <I>(l~) 2 1R+(Y)' 

(f ay 

2. Reciprocal gamma. If £(X) = f( a, 1/ {3) then £(X-I) is defined to 
be the reciprocal gamma law. 

3. Lognormal. Let £(X) = N(/-L, a2 ). Then £(exp X) has a lognormal 
law. 

4. Finally we consider the I G ( ~, {32) for the inverse Gaussian model. 

In his work Liao used ten data sets from the retinal ganglia of gold­
fish collected by Levine. The data sets include the record length, record 
number, run time, stimulus positions, changes of shutter state, spike 
numbers in different channels and spikes. The experiment times were 
over a period of 30 seconds and the firing rates ranged from 29 to 42 
per second. Liao reports that the data sets have similar histogram type 
with peaks near b with a substantial number of lSI intervals with length 
exceeding 100. The means are different from the medians and the coef­
ficient of variation for the actual data are larger (~ 1.1) than that for 
the 3 sets of simulated data. We reproduce histograms of three data 
sets from the real data and artificial data in Figure K.l - Figure K.6 
The histogram is fit with the IG and log normal in Figure K.la - Figure 
K.6a while the fit is made with the reciprocal gamma and the hyperbolic 
normal in Figure K.lb - Figure K.6b. 

Levine had used the mean squared difference between the interval 
histogram and the theoretical curve for 0 < t ~ 200 ms as a measure of 
the goodness of fit and Liao used the same measure in his work. From 
Table K.l based on the calculated mean-squared errors it appears that 
the winner is the reciprocal gamma. Table K.2 contain the MLE of the 
data sets f82dat, f83dat, f87dat, f90dat and f98dat together with relevant 
statistics. 
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Figure K.l Interval histogram (solid curve) from simulated data 1 
with mean firing rate=26. 738 and eV=O.5S. a (top) : fitting with inverse 
Gaussian distribution (dotted curve) and lognormal distribution (dashed 
curve) . b(bottom): fitting with reciprocal gamma distribution (dotted 

curve) and hyperbolic normal distribution( dashed curve) 
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Figure K.2 Interval histogram solid curve from simulated data 2 with 
mean firing rate=29.644 and CV=O.696. a (top): fitting with inverse 
Gaussian distribution (dotted curve) and lognormal distribution (dashed 
curve). b (bottom) : fitting with reciprocal gamma distribution (dotted 
curve) and hyperbolic normal distribution (dashed curve). 
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Figure K.3 Interval histogram {solid curve} from simulated data 3 
with mean jiring rate=25.884 and CV=O.614. a {top}: jitting with in­
verse Gaussian distribution {dotted curve} and lognormal distribution 
{dashed curve}. b {bottom}: jitting with reciprocal gamma distribution 
{dotted curve} and hyperbolic normal distribution {dashed curve} 
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Figure K.4 Interspike interval histogram (solid curve) from goldfish 
data set f68.dat with mean firing rate=36.855 and CV=1.074. a (top): 
fitting with inverse Gaussian distribution (dotted curve) and lognormal 
distribution (dashed curve). b (bottom): fitting with reciprocal gamma 
distribution (dotted curve) and hyperbolic normal distribution (dashed 
curve) 
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Figure K.5 Interspike interval histogram (solid curve) from goldfish 
data set f72.dat with mean firing rate=36.991 and CV=1.020. a (top): 
fitting with inverse Gaussian distribution (dotted curve) and lognormal 
distribution (dashed curve) and lognormal distribution (dashed curve). b 
(bottom): fitting with reciprocal gamma distribution (dotted curve) and 
hyperbolic normal distribution (dashed curve) 
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Figure K.6 Interspike interval histogram (solid curve) from goldfish 
data set f75.dat with mean firing rate=36.452 and CV=1 .119. a (top): 
fitting with inverse Gaussian distribution (dotted curve) and lognormal 
distribution (dashed curve). b (bottom): fitting with reciprocal gamma 
distribution (dotted curve) and hyperbolic normal distribution (dashed 
curve) 
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Table K.l Mean squared errors (computed using mle) 

Statistics of Fits 

Noise 

distribution 

or data 

Normal 

Gamma 

Uniform 

f68.dat 

f72.dat 

f75.dat 

f78.dat 

fBO.dat 

fB2.dat 

fB3.dat 

fB7.dat 

f90.dat 

f98.dat 

Mean Squared Error x 106 

Hyper­

bolic 

normal 

5.418 

7.91 

8.527 

7.843 

9.482 

7.646 

10.082 

11.053 

9.366 

10.942 

9.854 

12.757 

9.275 

Recip­

rocal 

gamma 

1.205 

2.649 

1.991 

6.686 

8.441 

5.823 

7.781 

10.329 

6.024 

7.199 

9.214 

10.505 

8.700 

Log­

normal 

3.126 

0.814 

1.282 

12.970 

12.982 

8.238 

19.043 

24.642 

13.060 

12.664 

20.944 

20.594 

11.972 

Inverse 

Gaussian 

2.621 

1.013 

0.775 

7.881 

8.524 

5.580 

11.543 

15.366 

7.911 

8.136 

12.257 

12.731 

8.549 

The inverse Gaussian is slightly better than the lognormal for data 
3 and slightly inferior for data 2. 

For the real data shown in Figures K.4 - K.6 the IG gives the best 
fit for data sets f72 and f75 as does the reciprocal gamma, while the 
reciprocal gamma is again the superior choice for f68. Over all the IG 
fits are better than the log normal fits and the reciprocal gamma fits 
are superior to the hyperbolic normal fits. Liao concludes that "while 
there is no overriding reason to choose models among the reciprocal 
gamma, the hyperbolic normal, the log normal and the inverse Gaussian 
for fitting the interspike intervals, it is clear that the hyperbolic normal 
should be eliminated because we can find a model to provide better fit 
for data under any circumstance". Since the GIG model includes the IG, 
the gamma and the reciprocal gamma as special cases, and represents 
the distribution of the first hitting time to level zero of a variety of time­
homogeneous diffusions on [0,00) (Barndorff-Nielsen et al. 1978), Liao 
suggests the use of the GIG as a model to fit the lSI data. Moreover, 
since the log normal and the IG, as also the lognormal and the GIG are 
separate families, Liao uses Cox's approach for testing hypotheses of the 
separate families (see Section 3.8). His thesis contains an integration of 
existing methods together with a new "limited" test statistic for testing 



Interspike train interval analysis 251 

separate hypotheses. 

Table K.2 The basic statistics of the data f82.dat, f83.dat, f87.dat, 
f90.dat, and f98.dat, and the MLEs of the parameters of the four models: 
inverse Gaussian, lognormal, reciprocal gamma, and hyperbolic normal. 

Data 

Esti-

mates 

Mod- of para- f82. f83. f87. roO. ro8. 

els meters dat dat dat dat dat 

Bs Mean 29.42 29.13 29.41 30.04 42.65 

Median 12.00 12.00 13.00 13.00 20.00 

Mode 5.90 5.10 5.54 5.25 7.03 

SD 33.09 33.52 31.30 32.86 44.04 

IG f3 3.76 3.62 3.81 3.68 4.28 

D 0.128 0.124 0.129 0.123 0.100 

Ln p, 2.76 2.73 2.79 2.77 3.13 
fy 1.12 1.15 1.12 1.15 1.18 

Rg & 0 0 0 0 0 

~ 0.105 0.111 0.103 0.107 0.078 

Hn p, -0.206 -0.273 -0.561 -0.321 -1.063 

a 0.201 0.227 0.278 0.234 0.308 

Note that the values of & of reciprocal gamma distribution were taken as 
the closest integers of the maximum likelihood estimates in both Tables 
K.1 and K.2. 
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L. Remote sensing 

Photogrammetry 

Detection of objects from aerial surveys often depends on the size 
and the detection probability is generally a function of film, season, ter­
rain location in addition to size. In agricultural crop surveys where the 
size of the fields varies among farms, in forestry surveys designed to de­
tect human destruction and insect infestation or in wildlife management 
surveys designed to estimate the number of ponds and lakes available for 
breeding waterfowl, the size plays a key note. The smallest items which 
cannot be captured on camera escape detection. Very large members 
of the population also may not be recognized if they exceed the image 
frame. Furthermore, even if they are detected it is necessary to capture 
the images of adjoining quadrats to obtain a good measure. 

Of the different analytical approaches to size-dependent detection 
the parametric size-dependent method has been investigated in great 
detail both for its novelty and power and versatality by Maxim and 
Harrington (1982). Chief among the advantages of this method over 
the "scale up" technique or the discrete size-dependent detection is the 
ability to extract the maximum information from limited amounts of 0 
"ground truth" data - a jargon which applies to ground data used in 
remote sensing to imply that the data are error-free, the authors claim 
that this approach is robust to shifts in the parameters of the population, 
changes that could confound or nullify the calibration between imagery 
interpretation and ground truth. 

In this approach it is assumed that the size X, of the objects within 
the region of interest (say fields) is a random variable with density f(x I 
B), B being a parameter. The region of interest could be stratified if 
necessary. In addition to the parent distribution f(x I B), one assumes 
a detection function D (x I 'ljJ) involving a parameter 'ljJ, which specifies 
the dependence of detection probability upon the field size X. D(x I 'ljJ) 
is assumed to be a monotone non decreasing function of X in [O,lJ. 
The larger the field size the greater the probability of detection. (To 
incorporate nonsize-dependent aspects of detection D can be multiplied 
by a E (0, 1J.) Thus one can see that D(x I 'ljJ) is a distribution function. 

The so-called "cookie cutter" detection function defined as 

D(x I c) = {O x ~ c 
1 x> c 

assumes that all fields below the threshold value c will go undetected 
while those above are certain to be detected. 

Based on this statistical model we can define the sample that arises 
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in the imagery or aerial survey has a density 

g(x I O,'¢) = 
f(x I 0) D (x I '¢) 

The denominator on the right side expresses the overall fraction of fields 
that are detected. Thus g(x I 0, '¢) represents the probability density of 
the size of the detected fields. 

Maxim and Harrington recommend the use of the inverse Gaussian 
law IG(I£, >.) as an appropriate candidate for the field size distribution 
(parent distribution) f(xIO). Consider then 

r;:¢ {¢I£ ¢} f(x I 1£, ¢) = V ~ exp (¢) exp - 2x - 21£ X lR+ (x) 

and an analytically compatible detection function known as the extreme 
valve distribution, namely, 

The compatibility arises from the fact that g(xll£, ¢, '¢) is also an 
inverse Gaussian law! To see this we calculate 

['Xl e<P y'ii¢ { Jo f(x I 1£, ¢)D(x I '¢)dx = ¢I£ + 2'ljJ exp -

so that writing ,/,* = ¢(¢I£ + 2'ljJ) * - VJ1.('PJ1.+2..p) 
'f' ,1£ - <P' 

1£ 
r;;::;; { ¢* 1£* ¢*} g(x I 1£, ¢, '¢) = V ~it; exp(¢*) exp -Tx - 21£* x lR+ (x). 

Thus the density function of the detected field sizes is IG(I£*, >'*) where 
>'* = ¢*I£*, and clearly g(x I I£,¢,'¢) = f(x I I£*,¢*). 

It is interesting to note that ;; = t, and for larger field sizes, 

since the density function is dominated by the term exp ( - ~) so is the 

density of the aerial survey data. 
The expected size of detected fields is 1£*, while the fraction of fields 

detected is 

r-;;¢ { ¢(I£¢ : 2'¢) } . V~ exp ¢-
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Finally the expected fraction of the area detected is 

It is impossible to obtain estimates of all the three parameters with­
out additional "ground truth" data. Indeed using the maximum likeli~ 
hood principle we have from the aerial survey data 

n ( ) * _ *-1 * * -1 1 1 1 
Jl = x, A = (¢ Jl) = - L - - -=- . 

n i=1 Xi X 

Hence we have 

and 

Jl Jl* 
Thus ¢ = ¢* can be estimated. 

Observed detection results can be used to obtain estimates of '1/;. 
The data consists of (Xi, Ud from a matched ground truth and imagery 
experiment. (Imagery from an area of known ground truth is interpreted 
and the correspondence between detection and size is noted.) Here Xi 
is the field size of the ith field and Ui = 1 if the ith field is detected and 
Ui = 0 otherwise. 

For a fixed 'I/; 

P(Ui = 11 Xi) = e-l; 
i 

P(Ui = 0 I Xi) = 1 - e Xi • 

Thus if Pi denotes the probability of Ui given Xi 

The log likelihood of the outcomes U = Ui (i = 1, ... ,n) is 

l ~ log (n Pi) ~ t, log(p,) 
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and 
a nn ( ) -.:I!... 

-.!:.... = _ '"' Ui + '"' 1 - Ui e Xi 

an'. ~ X' ~ ( _.:I!...) 
'f' i=l ~ i=l Xi 1 - e Xi 
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Noting that ;~ is monotone decreasing in 'ljJ it is possible to use numer­

ical methods to find -j; such that ;f I . = O. Maxim and Harrington 
'ljJ .p=.p 

use a binary search technique called Bolzano's method in determing -j; 
based on the results of an imagery and ground truth experiment given 
below. 

Field Size Xi Detection outcome Ui 

10 1 

2 0 

10 0 

2 0 

8 1 

14 1 

1 0 

7 1 

8 0 

The maximum likelihood estimate -j; = 4.58. Using this estimate fl and 
~ can then be determined completely. 

The example analyzed by Maxim and Harrington concerns the data 
from a study by Podwysocki (1976). In this data set the distribution of 
field sizes for various major grain producing countries were empirically 
estimated from fields detected on Landsat imagery (unmanned polar 
orbiting earth resources satellite). The use of the IG law seems very ap­
propriate since all the distributions are highly peaked and skewed toward 
small sizes. A total of 147 grain fields detected on Landsat imagery in one 

!Jj3 fL* 
sample region in Kansas yielded fL* = 13.795 and a* = V ~ = ff = 
10.77. This gives ¢* = 1.64, and a mode equal to 6.078. 

Since Landsat's capability to detect small fields is limited, the au­
thors resort to the use of ground truth. To this end they use a ground 
truth survey of sizes of agricultural fields of 10 midwestern states in the 
U.S as an approximation. Using the modal value of 2.5 as ground truth, 
they proceed to estimate all the three parameters of the model. 

Use of the extreme value detection function has therefore increased 
the modal value from 2.5 to 6.078. Therefore this information is used in 
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calculating J-L and ¢ as follows 

J-L{Jl+ 9 -~}=2.5. 4¢2 2¢ 

S· I!:. - ~ - 13.795 - 841 - 841'" H "'Jl 9 - 9.5 mce ¢ - ¢* - 1:64 - . ,J-L - . '/'. ence '/' + 4¢2 - 8.41 + 
1.5 = 1.8 and ¢2 = 0.99 or ¢ = 0.99. Thus J-L = 8.32 and 'if; is obtained 

from the relation J-L* = J ~(2'if; + J-L¢) as 'if; = 7.19. 

The values of J-L, ¢ will then completely determine the parent distribution 
f(x I J-L, ¢) and the updated estimate of 'if; = 7.19 gives the best fit 
detection function D(x I 'if;). By constructing a graph one can verify 
the adequacy of the fit to the observed data and the area detection 
probabilities for different sizes of fields. 

It is also possible to ascertain an optimal ground truth sample by 
studying the asymptotic variance of the maximum likelihood estimate of 
'if; which was obtained by numerical methods. Indeed we have 

[ (82£)]-1 
Var (~) = -JE 8'if;2 

By differentiating %~ and simplifying we can show that 

In order to find out the field sizes Xi which minimize Var(~), that is 
maximize (Var ~)-1 (since the denominator in the right side> 0) we 
differentiate (Var ~)-1 with respect to Xi and solve for Xi. Thus 

gives the equation 

The finite solution for Xi is given by 
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Thus the optimal ground truth sample would be to select fields of size 
1.~94 with a detection probability D(x I 'l/J) = e-1.594 ~ 0.203 

Cookie cutter detection 

Suppose that the parent distribution is inverse Gaussian and the 
detection function D(x I c) is the "cookie cutter". We then have 

f(x I j.L,¢) 
g(x I j.L, ¢, c) = fcoo f(x I j.L, ¢)dx 1[c,00)(x), 

j.L* = 100 
x g(x I j.L, ¢, c) dx, 

r 1(xll',1) dX~I-~(1¥ G-l)) 
-e"~(-I¥ (~-l)) 

and the fraction of area detected is 

j.L* 100 
- f(x I j.L,¢) dx. 

j.L c 

The maximum likelihood estimates of the parameters can be obtained 
using the approach of Gupta (1969) as solutions to the equations 

{L* = m~ + x(l - F(c)) 

~* = [ml 1 + (1- F(C)) ~ ~ _ 2.]-1 
- n ~ X· rI'* 

i=1 ~ r 

where m~ are the sample moments. 
Ferguson et al. (1986) have adopted the approach of Maxim and 

Harrington to study the field size distributions for selected crops in the 
United States and Canada based on an enlarged field size data base. 
The data deals with field sizes measured in length width and area for ten 
agricultural crops across several states. Detailed tests of fit are presented 
to check the adequacy of the IG model for crop field size in terms of 
width, length and area. 

An interesting aspect of the above analysis shows that both the 
inverse Gaussian and the reciprocal inverse Gaussian laws arise in a 
natural way in the area of remote sensing. To see this consider the 
following. 
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Let the field size distribution f(Xi I X) be a X2 law with one degree 
of freedom so that 

Further let the detection function D (Xi I 'if;) be defined by 

D(Xi I 'if;) = exp (_.3L) . 
2Xi 

Then 

the reciprocal inverse Gaussian law. In general the GIG ()..,XI,'if;) law 
with D(x I X2) gives us a GIG ().., Xl + X2, 'if;) law as the resultant density 
function. 
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M. Traffic noise intensity 

In the field of transportation research it is of interest to calculate 
the noise-producing properties of a stream of equidistant acoustic sources 
moving at constant speed. Weiss (1970) developed a probabilistic model 
of traffic noise intensity from vehicles on a long straight highway. We 
discuss his derivation of the model and related articles on the subject 
relevant to the IG law by Kurze (1971a, 1971b, 1974) Marcus (1973, 
1974, 1975), Takagi et al., (1974). 

Model assumptions 
(a) Traffic move in a single stream along an infinitely long straight high­

way. 
(b) The noise-measuring apparatus is assumed to be placed at a distance 

d from the highway at its point of closest approach. 
(c) Each car on the highway is modelled as a point source of sound. 
(d) Let X denote the position of the vehicle and let X = 0 be the point 

of closest approach to the noise-measuring device. 
( e) Assume that each car generates the same amount of noise and the 

acoustic power of a single car is a constant q. 

(f) Assume vehicles travel independently of each other along the high­
way. 

(g) Denote by I(x) the intensity of noise at the measurement point 
generated by a car at coordinate x, where 

q 
I(x) = 2 d2 · 

X + 

(h) Let the reference noise level be the noise due to a car ar x = 0 and 
denote the normalized intensity J(x)jI(O) = J(x), so that 

J(x) = ( 2) . 
1 + (~) 

1 

(i) The respective positions X on the highway are realisations of a 
stationary Poisson process so that the probability density for gaps 
between successive cars is p exp( - pX) where p is the vehicular con­
centration. 
Then if Xn represents the location of the nth car in the stream the 

total noise intensity generated by an infinite stream of identical sound 
generators is 

00 

n=-oo 
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The Laplace transform of J is 

£(0) = i: e-f)J J(J)dJ = ek(fJ) (say), 

where J(J) is the probability density of the normalized noise intensity. 
It turns out that J can be represented as a shot noise process (Cox and 
Miller, 1965) and hence 

(using the change of variable x = ud). Weiss showed that 

where 1i7r Io(x) = - exp(-xcosO)dO 
n 0 

is the integral representation for the Bessel function of imaginary argu­
ment. (In(x) is a modified Bessel function of the first kind of order n 
with argument x). For small J using a Tauberian argument to k(O) an 
approximation to J(J) can be obtained. For large 101 

and therefore 
£(0) "" exp { -2pdM} 

so that for small J 

A change of variable>. = 2np2d2 then gives 

..f). (>. ) J(y) "" ~ exp -- 1R+(Y)· 
V 2ny3 2y 

Marcus, on the other hand, simplified the problem by assuming that 
the acoustic power of a single car Q is itself a random variable with a 
heavy tailed distribution h( Q). In this case one has to calculate 

lE {lE(k(O I Q))} = k (0) 
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where 

k (e I Q) = -7f pd e -~ {Io (~~) + h (~~) } 
(i.e, we deal with I(x) instead of J(x)). 

Under these circumstances by taking the limit as d -t 0 (the ob­
server is on the highway) Marcus obtains for Re(O) ~ 0 

k(O) = -2vrrp v'e E( y'Q). 

We then obtain the stable law for the noise intensity as 

The distribution of Q could be modelled by the lognormal, Erlang, 
the improper Pareto (unnormalized) or the inverse Gaussian law viz., 

Let the distribution of decibel noise levels L be related to that of Q 
by 

L = 10 logIO (1 Qd2 ) 
ref ref 

where Dref = 50 feet. 
By choosing I ref = 1 and J.L = 1, Marcus provides a graphical com­

parison of emission distributions h( Q). He notes that empirical distri­
butions of emission intensity usually have values of A between 0.5 and 
1.0, and observed values of 1 also have values of A between 0.5 and 
1.0 and therefore the comparisons are made for c = 0.5 for the lognor­
mal, Erlang (shape parameter = 4) and the IG and for c = 1.0 for the 
lognormal, Erlang (1) and the IG. His comparisons show that the IG ap­
proximates the lognormal when L is between L99 and LO.5, particularly 
at important values like LlO and L50 for 0.5 ::; A ::; 1.0. Here Lo: is 
the 100 ex percentile of the noise level distribution. 

Marcus recommends the IG as a model to use in routine analysis of 
traffic noise data. If the traffic is extremely heavy, or if the observer is far 
from the road, then the representation of the process as a linear filter of 
the point process of vehicle locations guarantees that the distributions of 
1 (or of L) will be approximately inverse Gaussian with a small coefficient 
of variation. 
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N. Market Research 

Whitmore (1986a) considered an inverse Gaussian ratio estimation 
model and applied it to a marketing survey study. In reality the ratio 
estimation problem involves a regression setting where for a > 0 and 
(3 > 0, C(Yi) = IG(axi,(3xn, i = 1, ... ,no Thus the variance of 
Yi is proportional to Xi. When a = (3 = 1 the densities of Y display 
increasing skewness with small values of Xi. For large values of Xi the 
law of Y approaches a lognormal form. 

Suppose that C(Yi) = IG(axf,(3x~) for some constants a and b, 
then we have C(Y/) = IG(ax~ (3x~2) where Y/ = x~-2a y; x~ = x~-a 

I P I I I ., Z I· 

The log-likelihood based on a sample of size n is proportional to 

and the maximum likelihood estimates of a, (3 are given by 

- n 2 -2 
& = ~ n~-l = '" Xi _ n_x 

X' L...J y; y2· 
i=l Z 

It now follows from the distributional results of Chapter 1 (Propositions 
1.1 and 1.2), that 

(1) £(&) = IG(a, n(3x) 

(2) £(7) = X;-l 

(3) ~ Jl & 

and 

(4) £ [(n-I),8X(a-a)2] = F 
a2 & . l,n-l 

Inferences on a and (3 can now be routinely carried out. Moreover, given 
a sample of n observations, one can predict the population total of N ob­
servations. Suppose that for i = 1, ... , N the independent observations 
Yi are such that £(Yi) = IG(axi,(3x~). 

Let T2 = L:f:n+1 Yi, Xl = L:~=l Xi, X 2 = L:f:n+1 Xi. The pre­
dictor ofT2 is &X2 = T2, and C(1'2) = IG(aX2,(3X1X 2). On the other 

hand, since (~:l = constant = ~, C(T2) = IG(aX2,(3X~). Now con­

sider two indep~ndent samples, one of size (Xl, X 2 ) and the other of size 
Xi from IG(aX2,(3). The sample mean corresponding to the sample of 
size (X1,X2 ) then has the law IG(aX2,(3XI X 2), the same as that ofT2. 
Similarly the sample mean from the second sample of size (X?) follows 
the law IG(aX2, (3X?) which is the same as that of T2. 
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N n 

Denote by T = L Yi. Then T = L Yi+T2' so that T = &X2+T2· 
i=l i=l 

Furthermore from the distributional results of Chapter 1 (Propositios 1.1 
and 1.2), 

Therefore a prediction interval for T2 as well as T can be deduced from 
the above distribution. 

The following example considered by Whitmore on a market survey 
report illustrates these ideas. 

Example N.! The projections of annual dollar sales for all products 
(N) of all companies in a particular consumer product industry are made 
by monitoring sales amounts in a panel of retail sales outlets. Denote 
by Yi the actual sales for the n products of a company, and by Xi the 
projected amounts. It is required to make inferences on sales for the com­
petitor's products (Yn+l , ... ,YN ) from the corresponding known projec­
tions (Xn +l, ... , XN)' Table N.1 contain the figures for the projected and 
actual sales of 20 products of a company. 

Table N.! Projected (PS) and Actual Sales (AS) of 20 products 

Product PS AS Product PS AS 

#i Xi Yi #i Xi Yi 
1 5959 5673 11 527 487 

2 3534 3659 12 353 463 

3 2641 2565 13 331 225 

4 1965 2182 14 290 257 

5 1738 1839 15 253 311 

6 1182 1236 16 193 212 

7 667 918 17 156 166 

8 613 902 18 133 123 

9 610 756 19 122 198 

10 549 500 20 114 99 

We then obtain 

Xl = 21,930, X2 = 359,561 
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20 20 2 

LYi = 22,771, L i = 21,463 
i-l i=l 

& = 1.0383, ~ = 0.05838. 

A 95% confidence interval for f3 is (0.9785,1.1060), and a 95% pre­
diction interval for Y at x = 100 is given by (43.2,250.8). Finally a 95% 

N 

prediction interval for T2 = LYi is (351,190 - 398,398). 
i=21 

The adequacy of the model can be assessed by computing the rela-
tive squared residuals ri 

,i = 1, ... ,n 

and then plotting (n~l' P(F ::; ri)) where £(F) is F1,n-l. Another 

method involves plotting (n~l' p[Yi ::; YiJ) where p(Yi ::; Yi) is the 
estimated distribution function. 
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O. Regression 

Whitmore (1979b,1983) studies multiple regression methods for com­
plete and censored data and remarks that exact inference details are 
unavailable although asymptotic results, when the degree of censoring 
is moderate, turn out to be reasonably accurate even when the sample 
sizes are small. The likelihood and factorization strongly resemble those 
of the normal model. 

Consider n independent observations Ii from IG(8;1, II-I) where 
8i = Xd3, Xf = (XiI, ... ,Xip)t is a (p x 1) vector of covariates and (3t = 

(fJ" ... , fJ,) a vector of p regression parameters. We write X ~ (::), 

et = (1, ... ,1) and let Y be the n x n diagonal matrix diag(YI, ... ,Yn). 
The log-likelihood is proportional to 

n (3t X t Y X (3 - 2et X (3 + et y-I e 
- - log II - '------'-------'------

2 2II 

and the maximum likelihood estimates of (3 and II can be found as 

and 
et y-I e - et X ~ a= --------------

n 

Whitmore points out that when r5 = X t (3 is negative or zero the condi­
tional variable (Y I y < 00) is distributed as IG(181-1,~) and inference 
procedures do not pose any difficulties. 

When (n - r) observations are censored on the right at the points 
ar+l, . .. ,an the likelihood function is, writing 0 = ((3, II), 

n n 

£(0) = II f(Yi, 0) II P[Ii > ail· 
i=1 i=r+1 

This can be written compactly as 
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= C(fJ) (say) 

where 

S = {Y1 = Yb"" Yr = Yr, YrH > ar+l··· Yn > an}. (0.1) 

The maximum likelihood estimation of fJ is obtained by solving 
a~b(J) = 0 or equivalently 1E. (t ~~) = 0, L being the likelihood for 
the complete sample and 1E. (.) denotes the expectation in the censored 
sample space S. Thus we have to solve 

and 

resulting in the equations 

tJ = (Xt1E.(Y)X)-l Xte 

A et1E.(y-l)e - etxtJ 
a= . 

(0.2) 

n 

In the above expressions 1E. (Y) will be a n x n diagonal matrix with the 
first r diagonal elements, the uncensored observations and the remain­
ing (n - r) elements, the conditional expected values 1E(Yr+1 I y"+1 > 
arH),'" ,1E(Yn 1 Yn > an). The same applies to 1E.(y-1). 

Indeed, if F(y) represents the distribution function of Y, 

( 1 ) F(~) 
1E Y Y > a = 8(1 _ F(a)) 

and 

1E (~IY > a) = a + 821E(Y I> a) - :a:~~~). 
These relations are proved as follows 

1 ) - faoo xf(x 1 p" >')dx 
1EX X > a-I _ P[X < a I p" >.]. 

Writing Y = ~ in the integral we have 

100 (~n:- { ¢ (y 1)2 } 
a xf(x I p,,>')dx = p, Jo Y ~exp"2 Y dy 

= p,FX (~I1,¢), 
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where 
Fx(c 11, </J) = P[X ::; c I £(X) = IG(I, </J)]. 

Moreover 

P[X < a I It,,x] = P [~ < ; 11, </J] , 

that is 

Fx(a I It,,x) = Fx (; II,</J). 

Hence 

1E(X I X > a) = ItFx (~ 11, ¢) . 
1- Fx (~ 11, ¢) 

Suppose now that £(Z) = IG(I,</J) and £(X) = IG(0-I,a- 1 ). Then it 
is easy to see that Z = oX, ¢ = ~ (It = j, ,x = ~) allows us to go from 
£(Z) to £(X) and therefore 

Hence 

Similarly 

Finally 

P (Z < ~ II,¢) = P (OX < o~ 10-I,a-1) 

= P (X < a~2 I 0-1, a-I) . 

Fz (~ 11,¢) = P (z < ~ 11,¢) 

= P(X < a I 0-I,a-1 ) 

= F(a). 

1 F(ah-) 
1E(X I X > a) = "8 [1 _ F(a)]' 

To obtain the second relation we need some details from conditional 
moments. For x > a > 0, the density of X is 

f(x) 
g(x) = 1- F(a) IR+(x). 

Suppose now we want 1E(xr I X > a) for r > 1. 

1 roo 
1E(xr I X > a) = 1 _ F(a) Ja xr f(x)dx = Vr say. 
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When I(x) is the IG(J1.,)..) density 

I , () ( ).. - 2 3 -1 )..) () x = -x - -x - - I x 
2 2 2J1.2 

so that 

).. 100 -2"2 xr I(x)dx. 
J1. a 

Now the left side gives us 

and after multiplication of both sides by 1-;(a) we obtain 

Hence we obtain 

2ar /(a) ).. 
1 _ F(a) + (2r - 3)Vr-1 = J1.2 vr - )..Vr-2 

when r = 1, 1E(Xr - 1 I X > a) = 1, i.e., Vo = 1 and 1E(X I X > a) = 
J1.Fz (~ II,</» 

V1 = (~ I ). (Here £(Z) = IG(I, </»). 
1- Fz a I,</> 

Thus 

Writing J1. = 8-1 and)" = a-1 we then obtain 

8F(~) -2aaf(a) 
V-1 = 1 _ F(a) + a. 

The likelihood equations 0.2 can be solved iteratively using the EM 
algorithm starting with initial estimates of f3 and a. 
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In the absence of exact distributional results, Whitmore presents an 
asymptotic theory in which the information matrix I has the form (when 
there is no censoring) 

(
XtyX 

1= fI o o ) n . 
2fI2 

One then uses asymptotic normal theory to perform routine statistical 
inference. In the presence of censoring the sample information matrix has 
a slightly more complicated structure since it involves taking conditional 
expectations, namely, 

We omit the details and refer the reader to Whitmore (1983). 
Next we consider the asymptotic approach due to Bhattacharyya 

and Fries (1982) who also consider a reciprocal linear model. 
The reciprocal linear model of Bhattacharyya and Fries (1982) as­

sumes that the failure time Y has the distribution IG(fL = t, A = ~); 
we let lSi = :i = x~f3 where Xi is a p x 1 vector of covariates and 13 a 
(p x 1) vector of unknown parameters. (Thus the drift is assumed to be a 
linear function of the covariates.) Suppose that there are k design points 
Xi E lRP(i = 1"", k) and that there are independent observations ni 
in number, ~j(j = 1,,,,, ni), then we may now write ~j rv IG(fLi, a) 
where fLil = xT 13. Assume further that k ~ p + 1. We shall use the 
following notation 

~ - -l~ - -l~~ 
N = L..t ni, Y i = ni L..t ~j, Y = N L..t L..t ~j, 

i j j 

R = N- I LLJijl, V = L L (Jijl - y;l), X = N- I Lnixi 
i j i 

C = diag (nl,'" ,nk), D = diag (Y i " .. ,Y k), X t = (Xl,' .. ,Xk), 

et = (1,,,,,1) 

S = XtCDX, Q(f3) = L LYi/(YijX~f3 - 1)2 

= (DXf3 - e)tCD-I(DXf3 - e) + V. 

The likelihood L is proportional to 

N 
a - 2 exp( -Q(f3)/2a). 



270 Regression 

The partial derivatives of log L with respect to {3 and a give equations 

whose solutions provide estimates of {3 and a. When X has full rank so 
does Sand S is invertible with probability one and the unique roots S 
and fr do indeed maximize L thus yielding 

S = S-l XtCe, fr = R - Stx 

= NS- 1x. 

Note, however, that the roots are not necessarily the maximum like­
lihood estimators since (Stxi )-l may be negative! Some authors refer 
to them as pseudo-maximum likelihood estimators. When N is not too 
small this is not a serious problem, and one can resort to asymptotics. 

Asymptotics 
The asymptotic case, as sketched by Bhattacharyya and Fries, con­

cerns the situation where k, the number of design points Xi remains fixed 
and the number of replications ni goes to infinity at a fixed rate. That 
is as N -+ 00, we let N = hi > 0 for i = 1"" ,k. We will see later how 
Jogesh Babu and Chaubey (1996) treat the situation where the number 
of replications is small and the number of design points k is large. 

Define the diagonal matrices M, b. and H as follows. 

M = diag (1511 = ILl,"', 15;;1 = ILk), H = diag (hI,"', hk) 

Ll = XtHMX. 

Then 

b.{3 = X tHMX{3 and since X{3 = M- 1e, MX{3 = e 

so that 
b.{3 = XtHe. 

Also note that Nx = XtCe by definition of x. As N -+ 00 we note 
that N- 1C -+ H. The next proposition shows that Sand fr are strongly 
consistent. 

Proposition 0.1 The pseudo-maximum likelihood estimators /J and fr 
are strongly consistent. 

First we note that 
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Applying the strong law of large numbers to Y i and nil L:j Yij1 
we have with probability 1 

i) D -t M 
ii) R -t etHM- 1e + a 

Hence with probability 1 
iii) N- 18 = N- 1X tCDX -t XtHMX = t:. 
iv) ~ = 8-1 XtCe -t 8-1 XtCMxfi = fi 
v) X~ -t Xfi = M-1 e 

vi) 0- = R - ~tx = R - N-1~tXtCe = R - N- 1etCXfi -t a. 
--1 A 

Writing VI = L:i niYi - Nfitx, we have NO- = V + VI. 
The following theorem of Bhattacharyya and Fries then gives the 

asymptotic normality of the estimates of fi and a 

Theorem 0.1 As N -t 00 and N- 1C -t H 
(a) VN(~ - fi) ~ Np(O, at:. -1) 

(b) ~ ~xLp so that VN (~-1) -t N(O,2) 

(c) ~ and 0- are asymptotically independent. 

Proof Letting Ui = Yibi, i = 1,···, k, we obtain U = DM- 1e = 
DXfi. This implies that 

S-lXtCU = S-lXtCDXfi 

= fi· 

Since 8-1 XtCe = ~ we have 

~ - (3 = _S-l XtC(U - e). 

Since Ui are independent, applying the Central Limit Theorem we 
see that for each i = 1,···, k 

so that 
VN(U - e) ~Nk(O,aMH-1). 

Now N- 18 -t t:. with probability 1 and N- 1C -t H. Therefore 

VN(~ - fi) = - VN8- 1 XtC(U - e) 

= - VN(NS- 1)Xt(N- 1C)(U - e) 

VN(~ - (3) -t - VN t:. -1 X t H(U - e) 

and the limit law of VN(~ - fi) is thus seen to be Np(O, at:. -1). 
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Next to prove (b) we have 

etCX(3 = etCD- 1e 

Vi = etCD- 1e - N~tx = etCD- 1e - ~tXtCe 

= etCD- 1e - etCX~. 

Moreover from the equation 

~ - (3 = _8- 1 XtC(U - e) 

we have 

~ = (3 - 8-1 XtC(U - e) 

etCX~ = etCX(3 - etCX 8-1 XtC(U - e) 

= etCM- 1e - etCM- 1 (U - e) + (U - e)tCX8- 1 XtC(U - e) 

since UtCX 8-1 X- 1C(U - e) = et M- 1C(U - e). 

A Taylor expansion of y~1 around JLi 1 = tJi gives 

Now multiply both sides by ni and sum from 1 to k to obtain 

N- 1 L ni¥i-l = N- 1 L nitJi - N- 1 L nitJi(Ui - 1) 
i 

+N- 1 L ni6i(Ui - 1)2 + Op(l). 
i 

This gives us 

Hence 

VI = (U - e)t [CM- 1 - CX 8- 1 XtC] (U - e) + Op(l). 

Observe that CX8- 1X tC = N [N- 1CX(N8- 1 )XtN- 1C] 

~ N H X 6.Xt H with probability 1 and we have that the limit law of VI 
is the same as that of 

Since VN(U - e) ~Nk(O,aMH-l), the quadratic form N(U - e)t 
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[H M- 1 - HX!:l.Xt H](U - e) has a X~-p law, it being verifiable that the 
associated matrix of the quadratic form is symmetric idempotent with 
trace (k - p). 

To show that v'N (~ - 1) ~ N(O, 2) it suffices to note that C( ¥) = 

X~-k (Tweedie) and hence that v'NC}Nc, - 1) ~ N(O, 2). Moreover 

since ~ ~ xLp it follows that um is Op(l). As a result, from the 
equation 

VN (~ - 1) = VN (~ - 1) + ~ 
a aN av'N 

we can assert that the limit law of v'N (~ - 1) is indeed N(O, 2). Note 
that from Tweedie's result, V and VI are independent. "-

Analysis of Reciprocals (revisited) 
Based on a combination of exact theory and the asymptotic results 

developed so far an inverse Gaussian analogue to the normal theory of 
analysis of variance table (ANOVA) can be pursued. 

When there is a replicated design and the model accommodates 
a constant term so that ni 2:: 2 for all i, letting X = (e,Xd,/3 = 
({3o,/3d t , Bhattacharyya and Fries consider an analysis of reciprocals 
akin to ANOVA. Here {31 is a (p - 1) vector and Xl is a k x (p - 1) 
matrix of covariates. In the spirit of the ANOVA setup they consider 
the identity 

y. -y = x.f4 -Y + y. -x J1 + y. -yo -1 --1 (t A --1) (--1 t A) (-1 --1) 
~J ~fJ ~ ~fJ ~J ~. 

The deviation of an observed reciprocal variable from the grand 
mean is accounted for in terms of three components, the regression con­
tribution due to !31 (given !3o), and the contribution arising from pure 
error. Summing over i and j one obtains 

where 

"""" ( -1 --1) ~~ Yij -y = Qreg+ Qlof +Qe 
i j 

Qreg = L L (x~fi - y-l) = N (xtfi _ y-l) 
i j 

k 

Qlof = L ni (y;1 - x~fi) 
i=1 

"""" ( -1 --1) Qe = ~ ~ Yi j - Yi . 
i j 
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Here Qreg measures the contribution due to regression, Qlof the lack of 
fit and Qe the pure error. The sum total is the total corrected sum of 
reciprocals analogous to ANOVA. 

From inverse Gaussian theory due to Tweedie C(Qe/a) = X~-k 
and Qe JL of Qreg and Qlof. As to what part is played by Qlof and Qreg 

in the analysis can be gleaned from the likelihood ratio test for certain 
hypotheses of interest, namely 

H 2 J-Li = 8i I unrestricted 

HI J-Li l = x~13 the reciprocal linear model 

Ho J-Li 1 = 130 lack of regression. 

The likelihood ratio test for hypotheses Hi nested within Hj is usu­
ally given by 

Aij = -2 [fmax(Hi) - fmax(Hj)] 

where fmax(Hi) is the maximum of the likelihood function under Hi 
i = 0,1,2. We then consider efficient likelihood estimators of a under 
each Hi, say ai (i = 0,1,2) and form the statistics 

Define ai i = 0,1,2 as follows 

Clearly 

Hence 

a2 = y _ - N-I Ly;1 = N-IQe 
i 

al=y_-xt/J 
- --1 ao = y - - y . 

=N (L -~n.y~l) 
= N (a1 - (2) > 0. 



Regression diagnostics 

where 
F _ Qlor/(k - p) 

I. - Qe/(N - k)" 

Thus the likelihood ratio test for H2 rejects for large values of Fl.. 

275 

--1 A 

Observe that QI. is none other than VI = L:i niYi - Nxt{3 and 
Qe = V. From the asymptotic xLp distribution of Qda under HI and 
the exact X~-k law of Qe/a and their independence it follows that FI. 
has an approximate F distribution with (k - p) and (N - k) degrees of 
freedom. We remark that the only approximation involved is that of the 
distribution of Qlof.(lof means lack-of-fit) 

Suppose that we define Freg as 

F, Qreg/(p-1) 
reg = Qe/(N - k) , 

we note that the numerator is> 0 and under Ho, C,(Qreg/a) is asymptot­
ically X;-I so that we obtain for Freg an F law with (p -1) and (N - k) 
degrees of freedom. 

The likelihood ratio test of Ho under the model HI needs a subtler 
analysis as outlined cleverly by Bhattacharyya and Fries. First of all 
Qreg = N(o-o - 0-1 ) whereas NO-I = Qlof + Qe, so that 

A - Qreg 
01 -

Qlof + Qe 

whereas Freg is simply equal to const 't:g • But when 0 < , < 1, 

N~~lQf --+ 0 in probability because fjf --+ a in probability and ~ ~ 
Xk-p' Thus Qlof is of a smaller order of magnitude compared to Qe 
and the test based on Freg is asymptotically equivalent to AOI • Thus 
Freg preserves the F law and this approximation is more effective in 
moderate sized samples. 

The detailed analysis of reciprocals can be given as 

Table 0.1 Analysis of Reciprocals 

Source Reciprocal component d.f App.F ratio 
Regression N(xt~ _ y-I) p-1 N-k Qreg 

p-I Qe 

Residuallof L: (--1 -t~) k-p N-k~ 
ni Yi - Xi k-p Q. 

error L: L:( -1 _ --1) 
Yij Yi N-k 

Regression diagnostics 
Diagnostics for checking the model assumptions pertain to the ex­

amination of residuals that measure departures of the data from the 
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fitted equation as well as the (assumption) hypothesis that the data are 
indeed from an inverse Gaussian distribution. 

In the one-sample case this means that £(Yi) = IG(p, = !, (j), Z = 
1"" , N. Then the standardized residuals 

have a half-normal distribution. We substitute the estimates Y and a­
for p, and (j to form estimated residuals given by 

A y"]\TYi I Yi- 1 _ 17-1 I 
Ci = V"£i(Yi- 1 _ y-1) , 

i = 1,···,N. 

The construction of a half-normal plot based on the ordered esti­
mated residual along the lines of Daniel (1959) and Birnbaum (1959) 
then provides a graphical check. If the model is appropriate a plot of 

the ordered Ei say E(i) against <1>-1 (~ + i~~2) fall along the 45° line 

through the origin. 
To measure the departures from the 45° line one could use the cor­

relation coefficient to check for linearity, and the least squares estimate 
of the slope which should be close to one if the model holds. (Moderately 
large N will be needed.) 

Alternatively one could plot E(i) against the expected values of C(i), 

the ordered Ci values. Tables of expected values provided by Govin­
darajulu and Eisenstat (1965) as well as Pearson and Hartley (1972) are 
useful in this context. 

An extension to the k-sample case yields the estimated residuals as 

which are then used in an analogous fashion. 
We conclude this analysis with an example considered by Bhat­

tacharyya and Fries to illustrate the techniques used. The example is 
taken from Nelson (1971). 

Example G.1 (continued) Returning to the example on failure times 
of two batches of insulation material in a motorette test performed at 
elevated temperature settings, the fit of an IG reciprocal linear model 
yields the following analysis of reciprocals table for the first three levels 
(190°C, 220°C and 240°C). 
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Table 0.2 Analysis of Reciprocals for failure times 

Source d.f 
Reciprocal F p - value 
Component (App) (Approx) 

Regression 1 4.3268 398.4 « 0.001 

Residual 
1 0.0042 0.3868 ~ 0.52 

lack of fit 

pure error 27 0.2932 

Total 29 4.6242 

The regression component is highly significant and there is no evidence 
of lack-of-fit. 

Referring back to the maximum likelihood estimators given by Whit­
more the estimators ~ and 0- are called pseudo maximum likelihood es­
timators by Jogesh Babu and Chaubey (1996) since there is no guar­
antee that x~~ > 0 for all i. Whitmore's model circumvents this with 
the assumption that when the drift is negative the density has a de­
fective distribution, and a further assumption that the estimators are 
non-negative. 

Jogesh Babu and Chaubey study the asymptotics of the estimators 
~ and 0- under general assumptions on the design points and show that 
the estimators have many desirable properties. A bootstrap procedure 
is suggested and it is shown that the bootstrap estimates are close to the 
crude estimates and provides an estimate of the bias and variance of the 
pseudo maximum likelihood estimators. 

Recall that the parameter space is e = {/3 = (/31,' .. ,/3p), v = 11- 1 I 
x~/3 > a}. This is replaced by the stronger assumption infi x~/3 > 0 for 
all i and /3 E e. 

Let us write r:- 1 = Oi + Ci so that it is readily seen that 

lic~ li(r:- 1 - Oi)2 
= -'-"----'--

II II 

are i.i.d. xi random variables. The following two theorems relate to the 
asymptotic laws of functions of f) and~. Details of the proof are to be 
found in Jogesh Babu and Chaubey (1996). 

Theorem 0.2 Suppose for each /3 E e, there exists a constant cf3 > 0 
satisfying 

i) x~/3 ~ Cf3 for all i 
ii) max II xy II to ((xtX)-l) --+ 0 as n --+ 00. 

1:S2:Sn 
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and 

(b) U2 = JXt:X (p-!3). 
Then C(U1, Un -t Np+l(O,I(p+l)). 

Here M is the diagonal matrix with diagonal entries mi = 8;1 and 
by (X t M X) t we mean the unique positive definite square root of the 
symmetric positive definite matrix X t M X. 

We remark that X t M X is positive definite (since mi > 0 for all i) 
whenever X t X is positive definite. 

Observe that condition (a) implies that E(~i) are bounded away 
from zero. Condition (b) holds if for some sequence of positive real 
numbers qn -t 00 

(c) max II Xi 11= 0 (q!) l:::;t:::;n 
and 
(d) q;;l(XtX) -t S, a positive definite matrix. 

The proof of Theorem 0.2 is based on the following lemmas which 
we state without proof. 

Lemma 0.1 Let din = X~A-IXi where A = X t MX, and dn = max din. 
l:::;i:::;n 

Then from condition (b) of the theorem dn -t 0 as n -t 00. 

Lemma 0.2 Under conditions (a) and (b) of Theorem 0.2 the positive 
definite matrix C where C = A(zty X)A in probability to Ip. 

Lemma 0.3 Let yt = (Yl,···, Yn), and V = Xt(I - M-1y). Then 
under the hypothesis of Theorem 0.2 

where 
n 

nfj = ~)1- 8i Yi)2Yi-1. 
i=l 

Proof of Theorem 0.2 Since p -!3 = (XtYX)-lV, from Lemma 
0.3, the vector {~(fj - v), ({3 - (3)t(xty X)A} -t N(p+l) (0, vlp+1). 
This, together with Lemma 0.2 shows that (xt MX)1/2({3 - (3), C-l 
and C are bounded in probability. (Note that A(XtyX)(P - (3) = 
C(XtMX)1/2({3 - (3)). Therefore (XtMX)1/2({3 - (3) - A(XtYX)({3-
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(3) = (I - C)(xt M Xl/2(~ - (3) -70 in probability. Thus (xt M X)l/2(~_ 
(3) tends in law to 

(0.3) 

Furthermore since niiv- l = L:~=l Yictv-l (the sum of n independent x~ 
random variables) we see that 

From equation 0.1 and Lemma 0.2, 

V-l(~ - (3)t(xtyX)(~ - (3) 

= /-L-l(~ - (3)t(XtMX)l/2C(XtMX)l/2(~ - (3) -7 xi 

in law. Hence fo(f) - f)) -7 0 in probability. • 

Remarks 
(1) It can be shown (using the spectral decomposition and the Cauchy­
Schwarz inequality) that tr((XtMX)-l) ~ (m!lx mil) tr((XtX)-l). 

l<~<n 

Since the right side tends to zero from the hypothesis of Theorem 0.2, 

in probability, (Note that XtJX ~II x 112 trJ, and xtJ2x ~II X 112 
(trJ)2) and we obtain the weak consistency of ~. 

(2) From Theorem 0.2 the weak consistency of f) follows automatically. 

(3) Suppose that n-l(XtMX) -t T for a positive definite matrix then 
under the hypothesis of Theorem 0.2 

The usefulness of Theorem 0.2 is restricted by the fact that M is 
usually unknown. However, the same limit law can be obtained if Y 
replaces M as shown in the next theorem. 

Theorem 0.3 Under the hypothesis of Theorem 0.2 

where 

( 
t )! U; = X ~ X (~- (3). 
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Proof From Theorem 0.2 

The right side tends to zero in probability. Furthermore for any two 
symmetric non-negative definite matrices C, D if C2, D2 -+ I it can be 
shown that CD -+ I. Using this fact and Equation 0.4 one can show 
that ((XtMX)I/2)-I(XtYX)I/22..tlp. '" 

Strong consistency and bootstrap 
The strong consistency of the estimators /:J and f) are needed to 

study bootstrap methodology. Jogesh Babu and Chaubey establish a 
Theorem using some stronger conditions than those used in Theorem 
0.2. We state this result in the next theorem. 

Theorem 0.4 Assume that the hypothesis (aJ of Theorem 0.2 holds. 
Furthermore suppose that (logn) max II Xi 112 tr((XtX)-I) -+ 0 as 

1:5~:5n 

n -+ 00. Then /:J - f3 -+ 0 and f) - v -+ 0 almost everywhere. 
The proof of the theorem rests on showing 

(1) C = A(Xty X)A -+ Ip a.s., 
(2) D = (XtMX)-I(XtyX) -+ Ip a.s., 
(3) C- 1 -+ Ip a.s., 
(4) D-1 -+ Ip a.s .. 

To prove (1) one first shows that P(I2:(Yi -mi)ain I> c:) = O(n-2) 
for any set of constants ain, i = 1, ... ,n, provided 

n 

( max mi I ain I) logn -+ 0 and (logn) " mra7n -+ O. (0.5) 
1<~<n ~ - - i=1 

Using (0.5), then the Borel-Cantelli lemma the almost sure conver­
gence of 2:~=1 (Yi - mi)ain to zero follows. Now take ain to denote the 
(k,l)th element ofAxix~A to verify the above convergence results. We 
omit the details. 

To prove (2) take ain as the (k, l)th element of (Xt M X)-lXiX~ 
and show that a;n ~II f3 112 (maxi:5j:5n II Xj 11 6 )(tr(XtX)-1)2 and 
2:n mra7n ~II f3 II C"j2( m~x II Xj 11 3 )tr(XtX)-1 thus verifying the 

l:5J:5n 
above convergence results. The results in (3) and (4) follow from the 
fact that I C I and I D I converge to 1 and the (i,j)th cofactor goes to 1 
or 0 according as i = j or not. 

Using these 4 results 

/:J - f3 = ((XtYX)-l - (XtMX)-I) Xte 

= (D- 1 - Ip)f3 -+ 0 a.s. 
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The strong consistency of f) is proved by showing that 

The sampling distribution of the estimators ~ and f) are estimated 
by a bootstrap procedure. 

Consider 1i* i = 1,,,,, n which are i.i.d IG Ci~' f)) and let y* = 
diag (1i*,'" , Y;). Given the original sample Y the pseudo maximum 
likelihood estimator of ~ is 13* = (Xty* X)-1 Xte. 

Now 

so that 

Hence under the hypothesis of Theorem 0.2 we have 

and under the hypothesis of Theorem 0.4 inf x~j3 > 0, for all large 
1<i<n 

n and for almost all sample sequences. The next theorem shows the 
asymptotic normality of the bootstrap estimator. 

Theorem 0.5 Under the hypothesis of Theorem 0.4 we have for al­
most all sample sequences 

where IV! = diag (x~~"'" x;}). Consequently for almost all sample 
sequences 

:~Kp 1 P* ( ( Xt IV! X) 1/2 (13* - ~) ~ z) 
-P((XtMX)~ (~-j3) ~z) 1-+0. 

Here P* denotes the probability measure induced by the bootstrap sam­
pling procedure given the original data. 

Babu and Chaubey also remark that under general conditions of Xi 

it can be shown that for any () > 0 and a p-dimensional Borel set H, 

P (AXtyX (~- (3) E vH) 
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- P* ( ( xt if x) 1/2 Xty* X ((3* - ~) E f) H) = 0 ( n -1/2 ) 

+0 (cpp(8H)8/.fii) . 

Example G.1 (continued) As an application Babu and Chaubey con­
sider the example studied by Bhattacharyya and Fries. Recall that these 
authors had found that the reciprocal linear model provided an adequate 
fit of the failure time data studied by Nelson. Let us recall that the Xi 

values are Xi = 1O-8(t~ - 1803) and the model is 

8i = J.t:;1 = a + (3xi. 

In analyzing the Nelson data, Babu and Chaubey used the entire data 
set (batches I and II) to arrive at their estimates unlike Bhattacharyya 
and Fries. They have 

and 

a = 0.037310 

~ = 7.317285 

f) = 0.040233. 

Theorems 0.3 and 0.4 provide crude estimates of the covariance 
matrix as f)(Xty X)-1. The asymptotic normality of the estimators 
can be used to obtain confidence intervals for a, ~ and other related 
parameters. 

Estimates of the variances of a, and ~ are 

Vai-(a) = 5.593833 x 10-4 

Vai-(~) = 0.242709. 

Thus a 100(1 - a)% confidence interval for a is a ± Za./2VVa:ra where 
Za./2 is the 100(1 - a)th percentile of the standard normal. 

Based on 500 bootstrap samples (a(i)' ~(i)' f)(i»)' i = 1"" ,50, the 
averages of these give the bootstrap estimates as 

and 

a* = 0.039949 

~* = 7.326207 

f)* = 0.038258. 

Estimates of the biases of the pseudo maximum likelihood estimates 
are, therefore 

a* - a = 0.002639 

~* - (3 = 0.008922 
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and 
D* - II = -0.001987. 

Also the sample variances from the bootstrap scheme gives estimates of 
var & and var /J as 

var(&*) = 5.214227 x 10-4 and var(/J*) = 0.245392, 

values which are quite close to the crude estimates. However, the useful­
ness of the bootstrap technique lies in the computation of the estimates 
of the bias and variance of the pseudo maximum likelihood estimators. 
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P. Slug lengths in pipelines 
A new technology termed the multiphase production system deals 

with a search for low cost recovery schemes for offshore hydrocarbon 
fields. Applications of this system are to be found in TOTAL'S de­
velopment programs in Indonesia, Argentina, Egypt, Thailand and the 
North Sea. The past and the future developments require an estimation 
of slug characteristics in order to facilitate downstream process design­
ing. Slug length data from BHRG pipelines have been analyzed carefully 
by Dhulesia, Bernicot and Deheuvels (1991) and the superiority of the 
inverse Gaussian fit over the close competitors, the lognormal and the 
gamma laws has been established. 

Most of the multiphase pipelines encounter a slug flow regime at the 
outlets, caused by long distances, upstream changes in flowrate, depres­
surization of pipeline and the like. To obtain a reasonable estimate of 
the pressure drop the average slug length prediction is a key factor. The 
maximum possible slug length, too, enters the analysis. Dhulesia et al., 
propose the IG law to fit the entire slug length distribution for the data 
sets of a wide range of liquid and gas superficial velocities. They also 
present studies to predict the slug length distribution. 

Continuous measurements of slug length and velocity were observed 
at three different locations of the pipe loops over an extended time period 
and upto one thousand slugs at each site were collected. The air and 
water were maintained at a constant flow rate. In all thirty sets of 
experimental data were obtained over ten series of experiments. The 
final analysis involved only 28 data sets (two being declared unworthy). 
To make the data sets homogeneous the slug lengths larger than one 
metre were retained. The sample sizes for these 28 data sets varied from 
223 to 999. 

The authors noted that an individual slug is generated at the inlet of 
a pipeline and moved towards the outlet. Denoting by X(t) the distance 
of the slug from the inlet at time T > 0, they found it reasonable to 
assume that X(t) followed a Brownian motion process with drift v and 
diffusion constant cr2 . Thus 

X(t) = vt + crW(t) 

where {W(t) It;::: O} is a standard Wiener process. They also assume 
that the total liquid hold-up at t = 0 inside the pipeline is proportional 
to the cumulative slug lengths present in the pipeline at t = O. More­
over,they concluded that the total liquid hold-up at v = 0 is proportional 
to the residence time of an individual slug at t = O. 

Thus if a is the length of the pipeline, Y(a) the residence time of 
slug passing through the pipeline and Z(a) is the cumulative length of 
all slugs present in the pipeline at time t = 0, then for a proportionality 
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constant C 
Y(a) = CZ(a) 

so that 
Z(a) = C-1Y(a). 

• 2 
Smce the first passage through a of a slug follows I G (J.L = ~, A = ~) 

it follows that Y (a) follows the same law and finally Z (a) is distributed as 
IG (~, ~). Now because of infinite divisibility and self decomposability 
of the IG law it is clear that individual slug lengths are IG distributed. 

Dhulesia et al., have fitted an IG law with a threshold O! (see Section 
2.2) , namely IG(J.L, O!, A) since the slug lengths are at least 1m long. 

Table P.l Parameter estimates for data sets 20 and 27 

data set number 20 27 

O=J.L+O! 4.19 10.01 

0= J.L3/ A 2.81 14.05 

¢ = A/J.L 13.39 23.87 

The method proposed by Cheng and Amin (1981) was used to fit 
the IG(J.L, O!, A) law. The estimates of the parameters 0 and a 2 are given 
in Table P.l. 

Since the lognormal and the IG fits are indistinguishable, the close­
ness of the fits was examined by using the Kolmogorov distance norm, 
viz 

d(F, G) = sup I F(x) - G(x) I . 
x 

The authors conclude on the basis of this statistic that at both the 1 % 
and 5% levels the IG model was superior to the lognormal model. 

Dhulesia et al., also report a non-linear transformation of the pa­
rameters 0, a and O! to a new set of parameters characterizing the fluid 
properties, the pipeline geometry and the operating conditions. They 
then find the maximum likelihood estimators by a non-linear optimiza­
tion software package OPTOR developed by TOTAL and fit the IG(J.L, O!, 

A) model. They conclude that the slug length distributions are, in gen­
eral, well fitted by the IG law (except for small slug length). With the 
non-linear transform, the entire slug length distribution seemed to be 
well predicted, as evidenced by slug length measured on a real pipeline 
of 42 km and 12" diameter. 
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Q. Ecology 
A good description of stochastic population growth uses a discrete 

state space with population numbers taking on integer values. De­
mographic transitions like birth, death and growth are subject to two 
sources of variation. One is demographic stochasticity - in simple terms 
sampling randomness - and the other is environmental stochasticity or 
variation between individuals. Demographic stochasticity is caused by 
finite population size. The basic theory of population growth in fluctu­
ating environments was first presented by Cohen (1977) and Tuljapurkar 
and Orzack (1980). Based on this theory Lande and Orzack (1988) de­
rive a diffusion approximation for the logarithm of total population size 
in a population subject to density - independent fluctuations in vital 
rates. We describe, in the following discussion their development. 

Time till extinction 
We first digress to introduce the projection matrix first considered 

by Leslie (1945) which maps the state of an age structured population 
from one time to the next - the transition into the next state being 
assumed to depend only on the current state of the population. 

Consider the method of computing the female population in one 
unit's time, given any arbitrary age distribution at time t. Let 
nx(t) = the number of females in the age group x to x + 1 at time t, 

Px(t) = the probability that a female aged x to x + 1 at time t will be 
alive in the age group x + 1 to x + 2 at time t + 1, 

ix(t) = the number of daughters in the interval t to t + 1 per female 
alive aged x to x + 1 at time t, who will be alive in the age group 0 - 1 
at time t + l. 

Working from an origin of time, the age distribution at the end of 
one unit's interval is given by (m + 1) linear equations (assuming m to 
m + 1 is the last age group in the life table description), 

m 

I: h(t)ni(t) = no(t + 1) 
i=O 

po(t)no(t) = nl(t + 1) 

Pl(t)ni(t) = n2(t + 1) 

or in compact matrix notation 

A(t)n(t) = n(t + 1) 
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where for i = 0,1, ... , 

and 

A(t) = 

fo(t) 
Po(t) 

o 

o 
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o 
is a square matrix of size (m + 1) x (m + 1). This matrix is known as 
the Leslie matrix with age-specific fecundity rates in the first row, age­
specific survival probabilities along the subdiagonal and zero elsewhere. 
Since the matrix projects the present state of a population into the future 
it is called a projection matrix in population biology. (No relation to 
projection operators.) 

Lande and Orzack assume that the projection matrices change with 
time such that each of the entries (vital rates) constitutes a stationary 
time series. A further assumption on the life history, with non-periodic 
fecundities, is that no matter what the initial population size vector n(O) 
is, the probability distribution of the natural logarithm of the total pop­
ulation size is asymptotically normal. In most cases it turns out that 
the rate of convergence to normality is fast enough to let changes in log­
arithmic population size, even for short periods, to be approximated by 
a diffusion process with constant infinitesimal mean J.L and infinitesimal 
variance a2 . 

Since the individuals of different ages contribute unequally to the 
future population growth, the initial age distribution has a consider­
able effect on extinction probabilities. An accurate approximation of 
the effect of the initial age distribution on the total population size at 
timet is given by the initial total reproductive value in the population, 
Va =< v, n(O) > where v is the dominant left eigenvector of the average 
projection matrix E(A(t)). 

When the fluctuations in the vital rates are "small" (assuming seri­
ally independent environments), a useful approximation for the asymp­
totic rates of change of mean and variance of the probability distribu­
tion of the logarithm of the population size is obtained from Tuljapurkar 
(1982). The infinitesimal mean J.L and variance a 2 are given by 

a 2 

J.L ~ log 1.0 -""2 
a2 ~ Xo2t5 t Ct5 

where 1.0 is the dominant eigenvalue of the average projection matrix 
A* = E[A(t)] (containing the average vital rates Aij ), 15 is a column 
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vector of sensitivity coefficients t2.~j = <~,r:.J>, Vi and Uj denoting the 
ith and jth elements of the dominant left and right eigenvectors of A *, 
and C is the covariance matrix of the multivariate distribution from 
which the elements of A(t) arise. 

It is also possible to estimate f.L and a2 fairly accurately from a single 
time series of observations on total population size because the growth 
rates form an ergodic series. (a2 must be calculated over segments of 
the sample path which are much longer than the characteristic autocor­
relation time). The infinitesimal variance a 2 = 2(.enAo - f.L) easily gives 
an estimate of f.L. 

Let N(t) denote the total population size at time t and X(t) = 
enN(t) (the natural logarithm of N(t)). Further let X(O) = .en(O) be 
the adjusted initial value at t = O. Then 

P [X(t) = x at time t I X(O)] = p(x, t I xo) 

approaches the solution of the diffusion equation for the Wiener process 

8p 8p a2 82p 
8t = - f.L 8x + "2 8x2 

with initial boundary condition p(x, 0 I xo) = o(x - xo), the Dirac mass 
at Xo. When no extinction boundary is specified, the solution to p is 
N(xo + f.Lt, a2t) where f.L and a2 are the asymptotic results stated above. 
If, however, an extinction boundary (extinction below a population size 
of one) is imposed then 

p(O, t I xo) = O. 

With an absorbing barrier, the solution to the diffusion equation is 

p(x, t) = ~ [exp {_ (x -;02-f.Lt)2} 
ay27rt a t 

_exp{-2f.LXO _ (x+xO-f.Lt)2}]. 
a 2 2a2t 

If g(t I xo)dt denotes the probability of extinction in (t, t + dt), 

d ['lO 
g(t I xo) = - dt io p(x, t I xo)dx 

Xo {(xo + f.Lt)2 } - exp -
- av'27rt3 2a2t' 

and the probability of extinction before time t is P[T :::; t] given by 

G(t I xo) = lot g(y I xo)dy 

= ~ ( -X;;tt) + exp ( _ 2~~0) (1 _ ~ ( x:-;t) ) . 
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The probability of ultimate extinction is 

{ I if JL:::;O 
G(oolxo)= exp{_2~;o} if JL>O. 

The conditional probability distribution of extinction times, considering 
only sample paths in which the population eventually becomes extinct 
and excluding those in which extinction never occurs in 

*(t I xo) = g(t I xo) = Xo exp {_ Xo - (JL)t)2} . 
g G(oo I xo) aV2nt3 2a2t 

The conditional law of extinction times for JL > 0 is exactly the same 
as that for JL < 0 and hence the proper distribution of extinction times 
depends only on the magnitude and not on the sign of JL. This result 
follows from the theory of conditional diffusion processes (the infinitesi­
mal variance of the conditional process for JL > 0 is the same as that for 
unconditional processes with JL < 0). The distribution is recognizable as 
IG whose mean and variance are 

Xo xoa2 
lE[T] = r;T , Var[T] = W· 

The mode of the extinction time distribution is less than the mean 
and when JL = 0, the moments do not exist. (It is assumed that the 
fluctuations in the projection matrix are small or moderate.) 

Lande and Orzack show by computer simulations that the extinc­
tion dynamics of density-independent age-structural populations in a 
fluctuating environment can be modeled and predicted accurately as a 
diffusion process for the natural logarithm of total population size. They 
also note that the extinction of a population with a large value of JL is 
expected to be rapid, when it occurs, although eventual extinction is a 
low probability event. An explanation of this is given by the authors 
as follows. "When JL is positive there is a deterministic force acting to 
increase the population size. If the population goes extinct, it is most 
likely to happen near the beginning of the sample path (in a series of 
time intervals with unusually low population growth), before the popu­
lation attains a size large enough that the same environmental sequence 
would not cause extinction. The more positive the long run growth rate, 
the more rapid and extreme must be the intervals of low growth in order 
to overcome the opposing deterministic force." 

Endangered species 
Survival or extinction of a population is a random phenomenon. The 

classical theory of demography is governed by a fixed Leslie matrix A of 
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vital rates. Faced with an uncertain life, it is only natural that vital rates 
should change over time in the most unpredictable ways. When this is 
taken into account the specification of uncertainty becomes a key issue. 
For an excellent review of the development the reader should consult 
Thljapurkar (1989). 

Here we consider the estimation of growth and extinction param­
eters of an endangered species as outlined by Dennis, Munholland and 
Scott (1991). These authors follow the development of Lande and Orzack 
in their statistical analyses. Recall that Lande and Orzack showed using 
computer simulations based on the Wiener process (with drift), that the 
approximation for extinction-related quantities are reasonably accurate. 

Dennis et al., consider a stochastic exponential growth model 

N(t + 1) = A(t)N(t + 1) 

where the entries of A(t) are chosen randomly for each t from the same 
fixed multivariate population, independent of previous years. There 
may be correlation bewteen vital rates but there is no serial corre­
lation between rates at different times. It is assumed that X (t) = 
logN(t), where N(t) is the total population size at time t (= etn(t), et = 
(1,1"",1)) is approximately N(xo + J.Lt,a2t) as t becomes large. Here 
Xo = logN(O), N(O) being the initial population size. 

Now X(t) could possibly cross any lower threshold size Xl starting 
from Xo. This means that N(t) reaches a lower barrier exp(xl) = nl, 

say starting from no = N(O). For nl = 1, Xl = 0 and the population is 
wiped out. As seen in the previous study nl > 1 is often considered as 
a policy threshold. Denote by Xd 

Xd = Xo - Xl = log (:: ) 

the distance (on the logarithmic scale) from an initial population size to 
a lower threshold size. Then from Lande and Orzack (1988), given that 
the threshold is reached (conditional on all sample paths reaching the 
threshold), T the first time to reach the threshold is 

The distribution of the time to attain an upper threshold, given 
this threshold is attained, is also inverse Gaussian with a slight change, 
namely, with 

Xd = Xu - Xo = log ( ::) . 
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(In actual practice, Xd is specified by the experimenter.) 

Suppose that a population is observed at times 0, t1, ... ,tm and the 
recorded values are n(O) = no, n(td = n,'" ,n(tm) = nm. The time 
intervals (not necessarily equal) are T1 = h - 0"" Tm = tm - tm-1· 

Since N(t) = exp(X(t)) is also a diffusion process with stationary 
transition probabilities, (indeed a Markov process) the probability distri­
bution of each ni given ni-l is p(ni' Ti I ni-d representing the likelihood 
of the system moving from ni-l to ni in a time interval Ti is a log-normal 
distribution, namely 

Hence the log-likelihood of the sample observations (no, ... ,nm), namely 
f(p" (12) is 

m 

f(p,,(12) = - Llog(ni) - ; log (12 - Llog(27fti)1/2 
~=l 

m 1 -L 22(logni -lOgni-l - p,Ti)2. 
i=l (1 Ti 

The maximum likelihood estimates are found to be 

Armed with these estimates it is possible to check model assump­
tions using a linear regression approach and estimate growth parameters, 
extinction parameters, or times to extinction. We consider briefly some 
of these issues. 

The parameter representing the continuous rate of increase is de­
noted by r and figures in the stochastic differential equation of exponen­
tial growth. The exponential growth equation is (see Karlin and Taylor 
1981 page 359) 

dN(t) = r(t)N(t) 
dt 

where r(t) is an instantaneous rate of growth at time t. To take into 
account the random environmental effects one stipulates that 

r(t) = r + aW(t) 
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where 
W(t) = dB(t) 

dt ' 

Ecology 

and obtains the stochastic differential equation for the population size 
N(t) at time t as 

dN(t) = rN(t)dt + aN(t)dB(t). 

Here r is constant and dB(t) t'.J N(O, dt). 
In terms of the statistical properties of the stochastic process N(t), 

rn denotes the infinitesimal mean of N(t); that is to say rn.6.t ~ average 
amount of change in N(t) over .6.t given N(t) = n. Now r has to be 
estimated from time series observations. 

The quantity r is related to fL and a2 by the equation 

a 2 

r=fL+-
2 

and can be estimated using the estimates of fL and a2 which depend on 
m and tm . 

Dennis et al., point out that the fundamental discrete-time nature 
of population growth for many vertebrate species suggests the use of 
the Ito interpretation of the stochastic differential equation for N(t), 
especially when dealing with endangered species. Under the Ito calculus 

r is the rate constant in E(N(t)) = no exp [(fL + ~2) t]. Under the 

Stratonovich Calculus r is the rate constant in the geometric mean of 
N(t), i.e., exp{E(X(t))} = exp{E(1ogN(t))} = noexp(fLt). 

An estimate of the finite rate of increase denoted by ..\ = 
exp {fL + a2 /2} (the mean population size after one year divided by the 
initial size no) can also be calculated. Dennis et al., interpret ..\ as ap­
proximating the dominant eigenvalue of the projection matrix. They 
also show that as m and tm become large 

- (m - 1 m - 1 ) 
..\ = exp(MoFl -2-; -4-0-2 ---+ N(..\,c2 ) 

where 
00 i 

of 1 (v; z) = L )z( ")' (V)i = v(v + 1) ... (v + i-I) with Vo = 1, 
i=O V ~ z. 

and c2 = ..\2 [exp ~ of 1 (m;-l (~~y2 a2 ) - 1]. The authors warn that 

convergence to normality may be slow and recommend use of the ap­
·2 

proximate normal distribution of r = fl + (:~1)2' namely 

( 
a2 a 4 ) 

r~N r, tm +2(m-1) 
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for confidence interval construction. 
The growth rate of the geometric mean population size is denoted 

by a (Tuljapurkar 1982) and equals exp(J.L), and is a better descriptor of 
the growth rates of the typical sample paths. Its estimate is given by 

(} = exp({L) 

or 

Given the observations no,'" , nm at times to = 0, tl,' .. , tm, it may 
be desirable to predict the state of the system at t > t m , or predict the 
value of logN(t) = X(t). Using the Markovian nature of the diffusion 
process it can be shown that 

and the mean squared prediction error (the unconditional expectation of 
(X(t) - 1')2 over all possible realizations of the process) is given by 

For estimating the probability of reaching a lower threshold Xd we 
have 

{
I if fl::; 0 

P = exp ( - 2t;d ) if fl > O. 

Taking the latest value of n, namely nm as the 'initial value' and writing 

Xd = log ( ~ ) we have, for fl > 0 

This value can be plotted as a function of ne or even nm - ne in order 
to asses the rate of decrease of the probability as nl decreases. 

The approximate variance of p is given as 

when J.L > 0 and p converges to a normal law with mean p and the above 
variance. 
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As an illustration of the principles in the discussion above we first 
consider the California Condor population studied by Dennis et al. 

Example Q.l One of the most endangered bird species is the Califor­
nia Condor. By 1987 all condors remaining in the wild had been taken 
into captivity and as reported in 1980 only a flock of 32 birds with 11 
potential breeding pairs (now) remained. Data collected from 1965 till 
1980 indicate a phenomenal decline in the condor population. The re­
sults of a survey by Wilbur (1980) and Snyder and Johnson (1985) yield 
the following estimates 

Table Q.l Estimates of Condor population 
Year Estimate Year Estmate 

65 38 73 19 

66 51 74 23 

67 46 75 29 

68 52 76 22 

69 53 77 13 

70 28 78 13 

71 34 79 19 

71 36 80 12 

The maximum likelihood estimates of the various parameters are as fol­
lows. 

A log (~ ) log (*) -1.15202 
J.L = tm = 15 = 15 

= -0.0768 

0-2 = ~ f (log (~) _ p,)2 
14 . nl-l 

~=l 

= 0.1199 
_ A 0-2 

r=J.L+-
2 

= 0.0169 

~ = exp(p,)oFl (7; ~0-2 ) 
= 0.9792 

a = exp(p,)oFl (7; 4g4) 0-2 ) 

= 0.9297. 
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One can now plot both the IG law,namely, IG (ftj,!!f) and the 

distribution function 

P(T < t) = cp (-Xd+ 1 p, 1 t) +ex ( 2Xd 1 P, I) cp (-xd-I p, 1 t). 
- fJ0 P fJ2 fJ0 

Using n15 = 12 as the starting population size and nl the lower threshold 
as = 1 for extinction we see clearly that 

p = 1 since p,::; O. 

The mean number of years to extinction is estimated as 

Xd _ log \2 _ 248.49 _ 2 
1 P, 1 - 0.0768 - 7:68 - 3 .3. 

This enabled the managers to attempt to arrest the dwindling popula­
tion. The probability of extinction within twenty years is close to 0.4 and 
the most likely time to extinction (model can be shown to be under 15 
years. The growth rate estimates of p" r, A and a indicate a slow decline 
but the high value of a2 is an ominous indication of the extinction of the 
population. 

Example Q.2 The next example deals with a Whooping Crane popu­
lation - a one extremely endangered species now undergoing a promising 
recovery program. The Whooping Crane is a long-lived bird which stands 
1.5m tall and has a wingspan of 2.1m. It becomes sexually mature at 
age 5 and lays 2 eggs per clutch and often only one chick is raised to 
fledging age. 

A census of Whooping Cranes begun in 1938 has continued to the 
present day and Dennis et al., report that there is evidence of an overall 
trend of exponential growth. The Whooping Crane recovery program 
calls for downlisting the species from endangered to threatened status 
when 40 nesting pairs would correspond to a total population of 153 
birds. 

As a result of major programs one wild population that winters 
in the Aransas National Wildlife refuge on the Gulf Coast of Texas in­
creased from 18 birds in 1938 to 146 birds in 1989. The data analyzed 
by Dennis et al.,(first considered by Binkley and Miller in the Canadian 
Journal of Zoology(1983)vol.61,p.2769 and later updated by Boyce) are 
given in Table Q.2. 
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Table Q.2 Whooping Crane (Aransas, Texas) 

Year J Population 
size nj-l nj Yj = fn(nj/nj_d 

38 1 18 22 0.20067070 

39 2 22 26 0.16705408 
40 3 26 16 -0.48550782 
41 4 16 19 0.17185 
42 5 19 21 0.10009 
43 6 21 18 -0.15415 
44 7 18 22 0.20117 
45 8 22 25 0.12783 
46 9 25 31 0.21511 
47 10 31 30 -0.03279 
48 11 30 34 0.12517 
49 12 34 31 -0.09238 
50 13 31 25 -0.21511 
51 14 25 21 -0.17435 
52 15 21 24 0.13353 
53 16 24 21 -0.13353 
54 17 21 28 0.31468 
55 18 28 24 -0.15415 
56 19 24 26 0.08004 
57 20 26 32 0.20764 
58 21 32 33 0.03077 
59 22 33 36 0.08701 
60 23 36 39 0.08005 
61 24 39 32 -0.19783 
62 25 32 33 0.03077 
63 26 33 42 0.24116 
64 27 42 44 0.04652 
65 28 44 43 -0.01298 
66 29 43 48 0.11000 
67 30 48 50 0.04082 
68 31 50 56 0.11333 
69 32 56 57 0.01770 
70 33 57 59 0.03448 
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Table Q.2 (ctd.) 

Year J Population 
size nj-1 nj Yj = In(nj/nj_1) 

71 34 59 51 -0.14571 
72 35 51 49 -0.04000 
73 36 49 49 0.00000 
74 37 49 57 0.15123 
75 38 57 69 0.19105 
76 39 69 72 0.04256 
77 40 72 75 0.04082 
78 41 75 76 0.01325 
79 42 76 78 0.02597 
80 43 78 73 -0.06625 
81 44 73 73 0.00000 
82 45 73 75 0.02703 
83 46 75 86 0.13686 
84 47 86 97 0.12037 
85 48 97 110 0.13126 
86 49 110 134 0.19736 
87 50 134 138 0.02941 
88 51 138 146 0.05635·· . 
89 52 146 

The 1940-1941 transition was deleted as an outlier. Thus the calcu­
lations based on 50 transitions give 

log (26) + log (146) 
P, = IS 16 = 0.05156 

0-2 = 0.1475 

r = 0.5895 

A = 1.061 

a = 1.053. 

50 

Starting from a population size of 110 birds the mean time to reach 
153 birds is estimated as 7.34 years; thus the threshold is reachable by 
1993, and in this case p = 1. 
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R. Entomology 
Biological models for describing the life history of an insect popu­

lation through the various stages of its life-cycle have been constructed 
by several authors, as for example, Read and Ashford (1968), Kemp­
ton (1979), Munholland (1988), Munholland and Kalbfleish (1991) and 
Munholland and Dennis (1992). These statistical models are character­
ized by semi-Markov processes with discrete state space corresponding 
to the various stages of the life-cycle of an individual and are known as 
microscopic models. We follow this development in the spirit of the work 
due to Munholland and Kalbfleish and illustrate it with some examples 
considered by Munholland and Dennis. 

A stochastic model 
The development of an insect can be regarded as an aggregation of 

small increments of growth over time measured on a variety of scales 
like weight and age, and possibly some losses of development. The net 
growth accumulated upto a time t > 0 of an individual will be denoted 
by X{t). The process {X{t) I t ~ O} is assumed to be a Brownian 
motion process with positive drift parameter 1I (the development rate) 
and variance parameter a2 = 1. It is assumed that 1I does not change 
with the various life stages. When t = 0 (the origin) the growth level 
X{O) = O. In actual practice X{t) is not observable and instead a discrete 
development stage is observed and the number of adults and any other 
insects in immature stages is recorded. The growth level X{t) is related 
to the observed life stage by requiring that an amount ai is necessary for 
molting into stage i. Let there be (k + 1) stages ao < al < ... < ak < 00 

where ao = 0, and suppose that the first time Ti for the development 
process X{t) to attain ai in stage i has an inverse Gaussian law with 
parameters f..£i and Ai, i.e., IG{f..£i, Ai), i = 1"" ,k. Thus an individual 
is alive in stage i at time t if an9 only if 

The parameters f..£i and Ai are stage dependent and 

ai, 2· 1 k f..£i = -, Ai = ai ~ = ,"', . 
1I 

The molting threshold ao = 0 implies that To = 0 with probability 1. 
The entry time Ti into stage i is also referred to as recruitment time or 
molting time to stage i. 

We remark that some investigators have a different definition of 
stage occupancy as for example, ai ~ X{t) < ai+1 if and only if an 
individual is in stage i. This definition permits a biological inconsistency 
in that an individual in stage i at time t can possibly enter an earlier 
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stage at time t. By defining stage occupancy in terms of entry times the 
inconsistency is avoided. 

The time spent in stage i (sojourn or residence time) is defined as 

and the net development accumulated in stage i is (3i = ai+l - ai· 
The above definition of sojourn time in stage i clearly shows that 

So far we have assumed that there is no mortality in any of the 
stages. In real life it is meaningful to introduce an age-dependent mor­
tality rate O(t) or stage-dependent mortality rate Oi(S). Stage frequency 
data on live insects, however, seem to be less informative for the estima­
tion of mortality parameters, besides adding to the complexity. 

As a simple approximation, the mortality rate O(t) can be assumed 
to be a constant 0, and this then implies that the stage duration times of 
an individual are exponentially distributed with parameter O. Thus with 
this assumption of a constant death rate we can calculate the probability 
of an individual insect being in stage i at time t as 

Pi(t) = P (survival to time t) P(Ti ~ t ~ Ti+l I survival to time t). 

Now 

while 

P(survival to time t) = exp( -Ot) 

P(Ti ~ t ~ Ti +1 I survival to time t) 

=P [(Ti ::; t) n (Ti+l > t) I survival to time t] 

=P [(Ti + Si > t) n (Ti ::; t) I survival to time t] 

=Gi(t) - Gi+l(t) 

where Gi(t) = P(Ti ~ t). 
Thus for i = 0,1"" ,k we obtain 

(R.1) 

an equation which describes the structure of the insect population at 
arbitrary points of time besides giving the probabilities at various stages. 

It is worth mentioning that Kempton (1979) advanced three distri­
butions for Gi(t), namely, the normal, gamma and the inverse Gaussian 
due to the additive properties associated with these laws. But the mo­
tivation behind the use of the IG law as proposed by Munholland and 
Kalbfieish is based on biological factors and the resulting homogeneous 
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semi-Markov model for the life history process thus represents a contin­
uous process in continuous time, allowing for biological interpretation of 
the parameters of the model. We now turn to the problem of estimation. 

Estimation and model adequacy 
A population under study deals with individuals randomly dispersed 

over a confined homogeneous area with independent life histories de­
scribed by Pi(t) as in equation (R.1). Assume that sampling is conducted 
at times ti < t2··· < tm and that at time tj a proportion, c, of the area 
is sampled and nij, the number of insects in stage i is observed in the 
jth sample, i = 1,···, k, j = 1,··· ,m. Furthermore it is assumed that 
when c is small, the nij have independent Poisson distributions, i.e., 

£(nij) = Po(rJPi(tj)), 

where rJ denotes the expected abundance over the sampling area, c and 
the Pi(t) are defined as in equation R.1. 

Letting 'lj; = (v, {30,{'l,···, (3k-l,{J, rJ), the log-likelihood function 
l( 'lj;) is 

m k 

l('lj;) = L L nij log [rJPi (tj)] - rJPi(tj) -log(nij!). (R.2) 
j=li=l 

Since stage frequency data usually carry little information about 
to, the likelihood function tactitly assumes that chronological time and 
development time have coincidental origins at t = o. Strictly speaking to 
should enter into the likelihood and tj should be adjusted as dj = tj -to. 
The analysis performed by Munholland and Kalbfleish assumes that the 
development time origin is a known constant. 

Nonlinear regression packages like the NLIN procedure of SAS (SAS 
institute 1985) can be used in determining the maximum likelihood esti­
mates, the asymptotic or approximate correlation matrix and standard 
errors of the parameter estimates. 

As a rule, initial estimates of the parameters are required for itera­
tive calculations. These are usually guessed by the entomologists. 

A particularly useful approximation of Pi(t) for i = 1,··· ,k - 1, is 
given by 

Pi(t) = { <P ( ai+0 vt) _ <P (ai ~vt) } exp( -(Jt). 

The adequacy of the model can be tested either by a goodness of 
fit test or residual analysis. Pearson's chi-square is the yardstick for the 
former, namely 

k m 

X2 = L L [nij -7]Pi(tj)]2 / [7]Pi(tj)]. 
i=l j=l 
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An alternative method uses the statistic 
k m 

-2 In A = 2 L L nij log [nij/(~Pi(tj))l· 
i=l j=l 

Munholland and Dennis remark that these two statistics are special 
instances of the family of power-divergence statistics of Read and Cressie 
(1988), namely 

H, = 2 [tt,nij { (ryp:(~j)r -I} 1 jA(H 1). 

Observe that when A = 1, H1 = X 2 while for A -+ 0, H>. -+ -2 In A. 
All the three statistics have an approximate chi-square law with 

mk - (k + 3) degrees of freedom when null hypothesis of model adequacy 
holds. Because of the prevalence of a large number of cells with zero 
frequencies and small expected frequencies the X 2 statistic turns out to 
be superior to -2 In A. Read and Cressie recommend using H2/ 3 (A = 
2/3) to get the best approximation Munholland and Dennis propose the 
use of the residual 

Tij = ~ [nt - (~Pi(tj))2/3] /(~Pi(tj))i 
which, under the null hypothesis of model adequacy is asymptotically 
normal. 

Other parameters of biological interest that can be estimated are 
a) 7ri - the probability an individual enters stage i 
b) Pi - the expected recruitment to stage i per area sampled 
c) mi - the probability that an individual in stage i will die before 

entry to stage i + 1 (wrongly referred to as stage specific mortality 
rate) 

d) Ti - the mean residence time in stage i 
e) 7ri,i+1 - the conditional residence time in stage i given entry to stage 

i+1 
These parameters depend on the distribution of Si = Ti+1 - Ti . 

When the mortality rate is constant, so that stage duration times 
are exponentially distributed with parameter (), we can calculate 7ri as 
follows 

7ri = 100 
gi(t) exp( -(}t)dt. 

Taking gi(t) as the inverse Gaussian density fG (~i, an it is easy to see 
that 7ri is the Laplace transform of gi(t), i.e., 
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From this it follows that Pi = "'Pi. Now 1I"~:1 represents the conditional 
probability that an individual enters stage i + 1 given that it enters stage 
i so that mi = 1- 1I"~:1. This is then the probability that the individual 
dies in stage i given entry to stage i. 

In the absence of mortality, the sojourn time Si = Ti+1 - Ti in 

stage i has the inverse Gaussian law IG (~ ,fit). Denoting its density 

by h(x) and the survivor function of Si by Fi(X) we have 

Finally 7ri,Hl is obtained from the following integral 

The expected proportion qi(t) of individuals in stage i at time is 
given by 

The time tim at which qi(t) attains its maximum value is the solution of 

aqi(t) = O. 
at 

Estimates of both the quantities can be obtained by using the maximum 
likelihood estimates of the parameters involved in the equations. 

Consider the subpopulation of individuals that survive to enter stage 
i, and let 'l/Jiy denote the time at which 100y% of the subpopulation has 
been recruited to stage i, we can determine 'l/Jiy as the value of t such 
that 

y = <P ( ct ·;t~i ) + exp(2C(¥i)<P ( _ ct ~ti ) 
where c = (112 + 28)1/2. 
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Finally if A( t) represents the expected number of individuals at time 
t in the population, per area sampled, and Ai(t) the corresponding ex­
pected number in stage i 

k 

A(t) = 11 LPi(t) and Ai(t) = 1IPi(t). 
i=l 

Estimates and standard errors of these parameters are calculated 
using the 8- method. 

Table R.1 Comparison of observed (0) and expected (E) numbers of 
grasshoppers 

Instar 1 Instar 2 Instar 3 Instar 4 Adult 

Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp 

5 5.2±2.7 <0.5 
6 7.5±2.1 0.7±0.5 

14 1l.3±2.7 2.0±0.9 <0.5 
10 10.8±2.6 1 3.4±1.1 0.5±0.3 
7 8.2±2.1 5 4.8±1.4 1 1.3±0.6 <0.5 
1 6.2±1.7 10 5.2±1.5 o 2.0±0.8 1.0±0.5 
1 5.1±1.5 8 5.1±1.4 1 2.3±0.8 1 1.4±0.6 
3 3.8±1.2 8 4.7±1.3 4 2.5±0.9 2 1.9±0.7 <0.5 
7 3.0±1.0 12 4.3±1.2 6 2.6±1.0 o 2.4±0.8 0.5±0.3 
0 2.1±0.8 7 3.7±1.1 6 2.6±1.0 6 2.4±0.9 0.8±0.4 
1 1.6±0.7 1 3.2±1.0 6 2.5±0.9 4 3.2±1.0 1 1.1±0.5 

0.8±0.4 1 2.1±0.7 3 2.1±0.8 2 3.6±1.0 1 1.9±0.7 
O.5±O.3 4 1.6±O.6 4 1.7±O.7 4 3.6±l.O 5 2.5±O.9 
<0.5 o 1.3±0.5 1 1.5±0.6 3 3.4±1.0 2 2.8±1.0 

1 0.9±0.4 1 1.2±0.5 5 3.2±0.9 6 3.3±1.1 
1 0.7±0.3 1 0.9±0.4 2 2.9±0.9 5 3.7±1.1 

0.5±0.3 0.7±0.4 o 2.6±0.8 6 4.0±1.1 
<0.5 1 0.6±0.3 0 2.2±0.8 6 4.3±1.1 

<0.5 1 1.7±O.7 6 4.5±1.1 
1 1.2±0.5 1 4.5±1.1 

1.0±0.5 3 4.4±1.0 
0.7±0.4 3 4.3±1.0 
0.5±0.3 5 4.0±1.0 

<0.5 3 3.8±1.1 
4 3.5±1.1 
2 3.1±1.2 
2 2.9±1.3 
2 2.5±1.4 
1 2.1±1.4 
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Munholland and Dennis have analyzed data sets first studied by 
Qasrawi (1966) and reported in Ashford et al. (1970). These pertain 
to the study of the grasshopper Chorithippus parallelus over a site 3,500 
square metres in area over which the environmental conditions, soil types, 
and vegetation were reasonably homogeneous. The grasshopper overwin­
ters in the egg stage and hatching begins the following spring. In addition 
to the egg and adult stages, the insect goes through four instar during its 
life cycle. The adult female lays eggs in the late summer and all adults 
die prior to the winter season. Mortality may occur at any time during 
development. 

In all 29 samples were collected at 3-4 day intervals between May 
20, 1964 and September 23, 1964. The data consist of the number of 
observed insects in each of the four instars and the number of adults. Egg 
counts are not recorded and individuals are recruited to the population 
via the first instar. The data set is given in Table R.1. A constant 
mortality rate is assumed. Using the model given by Equation R.1 the 
observed likelihood yields -2 In A = 95.2622. Based on {5 x 29- (5+3)) 
137 degrees of freedom the model seems reasonably adequate with a p­
value larger than 0.95. The X 2 statistic has the value 26.544 based on 
20 degrees offreedom with a P-value larger than 0.1. 

The model is fitted simultaneously to all stages (as opposed to stage­
wise estimation) Munholland and Dennis report that residual analysis 
revealed no apparent outliers or influential observations. Table R.2 gives 
the parameter estimates, the standard errors and the correlation matrix 
for the fitted model. 

Table R.2 Parametric estimates(SE) and correlation matrix 

f30 f31 f32 f33 f34 1/ (J 'Tl 

38.730 12.620 12.420 7.540 9.520 0.796 0.021 71.200 
2.850 1.820 1.460 1.290 1.600 0.053 0.003 18.230 

f30 1.000 0.033 0.340 0.248 0.270 0.840 0.288 0.318 

f31 1.000 0.103 0.128 0.152 0.496 -0.422 -0.480 

f32 1.000 -0.100 0.052 0.495 -0.095 -0.111 

f33 1.000 -0.154 0.311 -0.024 -0.030 

f34 1.000 0.329 -0.016 -0.021 
1/ 1.000 -0.030 -0.042 
(J 1.000 0.961 

'Tl 1.000 
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S. Small area estimation 
Inference techniques for unbalanced and balanced two-factor exper­

iments under an inverse Gaussian model can be used in the area of es­
timation for small regions. Chaubey et al., (1996) consider the analysis 
of variance methodology for the inverse Gaussian law and adapt it for 
estimation of small area parameters in finite populations. We now turn 
to the details of this development as outlined by Chaubey et al. 

A finite population U = {I, 2"" k··· N} is divided into D non­
overlapping domains Ul-, U2."", UD., the size of domain i being N i .. 

The population is also divided along another line into G non- overlapping 
regions called groups denoted by U 1 , U 2 ,"', UG, the size of group j 
being N.j. This leads to a cross-classification of domains and groups 
resulting in DG cells denoted by Uij the size of which is Nij (say). Thus 
the entire population size N = Li Ni . = Lj N. j = Li Lj Nij . The 
domains may represent geographical areas being sampled whereas the 
groups may be less numerous than the domains and represent age or 
sex. 

A probability sample s of size n, being a subset of U is drawn 
according to a simple random sampling plan. Denote the parts of s 
that fall within Ui ., U j and Uij by Si., s.j and Sij, respectively. Their 
respective sizes are denoted by ni., n-j and nij' 

Associated with the kth population unit is the value Yk of a variable 
of interest y. For the sample s, one observes Yk for k E s. The domain 
totals are denoted by Ti where 

Ti = 2: Yk for i = 1"" ,D. 
kEU;. 

The problem is to estimate Ti . 

In the regression context, (we have seen in the section on acceler­
ated life tests) suppose that C(Yk) = IG(ILk, A) where ILk l = xt.B, an 
estimator of.B akin to that proposed by Sarndal (1984) is 

~ = (2: Xkxt yk ) -1 2: Xk 
s ~k s ~k 

where ~k = P{k E s). In the case of simple random sampling ~k is a 
constant N for all k. 

Writing 'Uk = xt~ and ek = Yk - 'Uk the ith domain total Ti has the 
following modified regression estimator 
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The additive effects model for the data based on an inverse Gaussian 
population is 

(8.1) 

with I: ai = I: {3j = 0, and ai, {3j representing the domain effect and 
group effect respectively and J.L is an overall effect. Of course we have 
J.Lij > 0 for all cells (i, j) and>. > O. Recall that with a = * 

With the parametrization arising from Equation 8.1, we note that 
the parameter space n is 

n = {(J.L, ai,"', aD,{3l,'" ,(3G, a) I L ai = L{3j = 0, J.L + ai + {3j > 0, 

a> O}. 

Conditional on the population and sample sizes nij, the log-likelihood 
f is 

Now with the nij known the dimension of the parameter space is (2 + 
(D - 1) + G - 1). Routine computation of the derivative of e with respect 
to J.L, ai, {3i now yields 

D-l G-l 

{LY·l. + I: ai(Yi. - YD') + I: Sj(Y-j - Y.G) = n .. , 
i=l j=l 

D-l 
{L(Yi. - YD.) + aiYi. + L aiYD· 

i=l 

G-l 

+ I: Sj {(Yij - YDj) - (YiG - YDG)} = ni· - nD·, 
j=l 

D-l 
{L(Y-j - Y·G) + L ai {(Yij - YiG) - (YDj - YDG)} 

i=l 

G-l 

+SjY-j + I: Sj(Y.G = n-j - n·G· 
i=l 

(8.2) 

In equation 8.2 the totals and means follow the standard notations. 
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The solutions for (P" &i, ~j) are known as the pseudo-maximum like­
lihood estimators and may not be nonnegative. But as nij -7 00 they 
coincide with the MLE. 

It is not difficult to show that for a model with interaction term lij 
the estimator of the ith domain total Ti is 

the post-stratified estimator which is not of great interest in small area 
estimation. In the absence of interaction the corresponding estimator is 

j j 

where 
A n··N 

N ij = _'_J_. 
n .. 

Sarndal and Hidiroglou (1989) proposed a modified regression es­
timator for small area estimation. Chaubey et al. have compared the 
performances of both ti and ti (suitably modified) with their estimator 
given by 

where 

and 

ti = L Ni/ilj + L FJrij (fhj - Y.j) 
j 

if fh ~ Ni · 

otherwise 

The comparison is based on the mean absolute error and absolute 
relative bias. The modified estimator ti is 

j j 

Household income data for Canadians in 1986 obtained from Statis­
tics Canada (1987) was used for generating the values of the parameters 
in a simulation study. The data was divided into 10 provinces (for do­
mains) and 6 educational groups. An IG model is first fitted and then 
using the estimates of the parameters an inverse Gaussian super popu­
lation model is considered. Values of D, G and N ij are then chosen from 
this population. Sets of values of J.Lij and a are obtained by varying the 
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parameters I-'ij by 1O-c1l-'ij and u by C2U for selected combinations of 
(Cll C2). Large Cl values correspond to small means while large C2 values 
are indicative of an increased dispersion. One thousand random samples 
are chosen from the IG values generated using a sampling fraction of 1 % 
and 5% with replacen:ent. For each sample the totals are estimated over 
the domains using ti, ti and ti. 

The mean absolute error of an estimator {j is based on 

while the absolute relative error is calculated using 

Chaubey et al., note that reductions in biases are pronounced for 
many samples and that the mean absolute relative error as well as the 
absolute relative bias tends to diminish with decreasing values of the 
mean and dispersion parameter. Larger gains in both these areas seem 
to go with small values of the coefficient of variation. 
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T. CUSUM 

Cusum charts 

Optimum cumulative sum control charts for location and shape pa­
rameters of the IG distribution have been suggested by Hawkins and 01-
well(1997) and these charts are used for detecting step changes in both 
parameters. These authors have also examined a data set which involves 
the task completion times of crews of workers at a General Motors Plant 
in Oshawa,Ontario,first considered by Desmond and Chapman(1993). 
One example involved data which had been well modelled by an inverse 
Gaussian law. Increases in the mean J.L or decreases in >. will tend to 
decrease the service rate and cause a slowdown in the overall process in 
an assembly line. On the other hand a decrease in J.L and increase in >. 
allows the management in determining factors that will help in improv­
ing service rates and diminish the variation. This is a typical example 
of the Cusum chart at work. 

Cusum charts- construction 

From the discussion found in Hawkins (1992) and the references 
therein the upward Cusum for a member of the general exponential fam­
ily 

is defined by 

f(x) = exp {a(x)b(fJ) + c(x) + d(fJ)} 

s;t = max (0, S;;_l + Tn - k+) 

Tn = a(Xn) 

k+ = {d(fJo) - d(fJd } 
b(fJ1 ) - b(fJo) . 

Here fJo and fJ1 are the values of the parameter in control and out 
of control respectively. The downward Cusum is defined by 

s; = 0 

S;; = max (0, S;;_l + Tn - k-) 
Tn = a(Xn) 

k- = {d(fJ1 ) - d(fJo)} 
b(fJd - b(fJo) . 
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Cusurn charts for location 

We assume that for the inverse Gaussian law with parameters J-L, A .the 
A parameter is fixed. Thus we have from the exponential family rep­
resentation b(J-L) = -(A/2J-L2) , d(J-L) = (A/2) , and Tn = X n. Now 
the reference values k+ and k- simplify to (the plus sign indicates the 
in-control value and the minus sign the out-of-control value) 

k+ = 2J-LJ-L+ /(J-L + J-L+) ,and k- = -2J-LJ-L- /(J-L + J-L-). 

The Cusum scheme for upward detection of location consists of a chart 
given by equations involving S: ,s;t, and k+ and likewise the scheme 
for downward detection involves the equations given by S;; ,S;;, and k-. 
The k values depend on the in-control and the out-of-control values to 
which the Cusum is to be " tuned " in order to obtain the maximum 
sensitivity. 

Thus the scheme signals when either s;t > h+ or S;; < h- where the 
h-values are set by considering the average run lengths (ARL),namely 
the average number of samples until s;t > h + or S;; < h -, resulting in 
a false signal when the process remains in control. 

Tables of the average run lengths for the inverse Gaussian distribution 
law require four entries involving the specification of the values of J-L,A,k 
and h.If we use the transformation Yn = AXn / J-L2 = pXn , then since the 
random variable Yn follows the IG(¢, ¢2) law where ¢ = A/ J-L, the table 
now requires only three entries,namely those of </J, J-L and k. Thus the 
Cusum of the Xn values will involve a rescaling of the transformed Yn 

values and we then have the Cusum 

S;; = max (0,S;;_1 +Tn - k). 

The rule - signal if s;t > h + - for the above Cusum has the same 
meaning as the rule - signal if T;t > ph + for the Cusum 

T;t = max (0,T;t_1 + pXn - pk). 

This means that the desired Cusum of Xn can be designed by di­
viding the reference value k by p, then finding the the interval ph that 
gives the needed ARL for the transformed Cusum and then dividing this 
value by p to obtain the h-value for the Xn Cusum. Hawkins and Olwell 
(1997) provide tables of the transformed h-values (for the Yn variables) 
corresponding to a few values of k and </J for selected decreasing choices 
of </J (i.e.,increasing values of the mean)while another table shows the 
h-values for selected increasing choices of </J. For more detailed infor­
mationconcerning the computational procedure the reader is advised to 
contact Olwell. 
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The authors also have published another table which presents ARL 
values for various shifts in the mean p,. The Cusum parameters have been 
selected for maximum power in order to detect changes to the indicated 
out-of-control state value. 

Cusum charts for shape parameter 

When the mean is fixed one can treat the IG law as a one-parameter 
exponential family with a(x) = (x - p,)21 (xp,2) , b(A) = -A/2 and 

d(A) = In(A/2). 

The scheme for the Cusum for A then involves the equations 

s+ = ° o 

S;; = max (0, S;;_1 + a(Xn) - k) 

Tn = a(Xn) 

k = {d(AO) - d(A) } 
b(Ao) - b(A) 

= {In(AoIA)}. 
Ao - A 

We now let Yn = {A(X - p,)2 Xp,2} = Aa(X) so thatYn has a Chi­
squared law with one degree of freedom and therefore a shift in A is 
equivalent to a scale shift of a gamma law with parameters (1/2,2). A 
scale shift for the gamma (a, (3) law uses the upward Cusum scheme 
which has the equations 

s+ = 0 o 

S;; = max (0, SL1 + Yn - k) 

= {(a{3{3+)ln({3I{3+)} 
k {3+ - {3 . 

This scheme now signals s;t > h+ or S;; < h- , the h-values being 
determined by the desired in-control ARL. Since f3 = 2 for the Chi­
squared law, when A shifts to A + the law of Yn shifts to the r (~, * ) 
law. Thus the out-of control value of the gamma scale parameter {3 shifts 
to the value (2A 1 A +). Finally the Cusum scheme becomes 

S+ = ° o 

S;; = max (0,S;;_1 + Aa(Xn) - k) 

k = {Aln(>.+ IA) }. 
>.->.+ 
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Downward shifts are defined analogously. 

Cusums for>. thus involve(using the above scale changes) the use 
of a Chi-squared one law. Tables and software for these Cusums are 
available from Hawkins (1992). Hawkins and Olwell also provide tables 
of h-values and corresponding ARLs for upward as well as downward 
shifts in >. for selected values of k. They apply the Cusum scheme to 
a data set analyzed by Desmond and Chapman (1993) involving the 
task completion times of crews of workers at the G.M plant in Oshawa, 
Ontario. The task completion times are accurately described as inverse 
Gaussian random variables (after screening for outliers and removing 
the"outliers" or bogus readings). For this data set they found J.I. to be 
estimated by 42.6257 and>' to be estimated by 66.282. The units of time 
were in seconds. Table T.1 and T.2 give the ARL values for the Cusum 
for the lambda and the mean parameters respectively. In both tables an 
in-control ARL of 100 is used for J.I. = 42.6257 and>' = 66.282. Moreover 
Table T.1 is a Cusum of individual observations. Hawkins and Olwell 
point out that these schemes provide for a quick response to shift in J.I. and 
>. allowing quick identification and remedy of out-of-control conditions. 
The Cusum of individual observations does not display increased ARLs 
for out-of-control states with increased>. as was noted by Olwell using 
the Shewhart scheme. 

Table T.1 A verage run lengths for the Cusum for the lambda param­
eter for the General Motors data 

ARLs out-of-control 

10.000 
20.000 
30.000 
40.000 
50.000 
60.000 
66.282 
70.000 
80.000 
90.000 

100.000 
110.000 
120.000 
130.000 
140.000 
150.000 

ARL 

3.05 
5.79 

10.27 
18.05 
32.52 
62.59 

100.00 
80.82 
52.60 
38.92 
31.06 
26.01 
22.51 
19.95 
18.06 
16.50 
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Table T.2 Average run lengths for the Cusurn for J1. for the General 
Motors data set 

ARLs out-of-control 

20 
25 
30 
35 
40 
42.6257 
45 
50 
60 
70 
80 

ARL 

6.93 
11.32 
18.83 
33.16 
62.59 

100.00 
64.42 
34.28 
16.54 
10.86 
8.23 
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U. Plutonium Estimation 

Model development 

Plutonium Estimation 

A probabilistic model that incorporates the nature of radioactive 
contamination of a nuclear weapons site has been proposed by Wise and 
Kabaila (1989).The interest has focussed on regions of significant con­
tamination that have resulted from local fallout from nuclear weapons 
tests and from explosive fragmentation of plutonium in safety trials. Plu­
tonium here refers to a mixture of three isotopes of plutonium with mass 
numbers 239,240 and 241. These are initially formed in a nuclear reactor 
and they may be detected when freshly deposited on the soil surface but 
are difficult to be detected when the isotopes begin migrating through the 
soil surface. Several techniques exist for determining the concentrations 
of plutonium in soil. The Australian Radiation Laboratory has done a 
number of radiological surveys of nuclear explosions which the United 
Kingdom Atomic Weapons Research Establishment conducted between 
1953 and 1963 at the Monte Bello Islands, Mu and the Maralinga test 
range in Australia. The model developed by Wise and Kabaila involves 
direct sampling of the soil and indirect observation of emitted radium 
using the N aI detector. 

The model 

In the simplest version of the model- called the one-component 
model- it is assumed that activity is confined to particles which are uni­
formly and randomly distributed throughout a volume at a rate A and 
that the paricles have activities which are randomly distributed with a 
probability density K(a) = {3 exp (-{3a). A general expression for the 
Laplace transform of the probability density for the measurement re­
sults as well as a numerical analysis of the transform has revealed that 
it approximates the transform for the inverse Gaussian law. 

Suppose that U denotes the set of position vectors of particles uni­
formly distributed with rate A per unit volume in a three dimensional 
region S. Let the activity of the particle located at u be denoted by au a 
random variable with probability density k(au ). Further let f(u) denote 
the response of the measuring instrument for a particle of unit activity 
with position vector u. Then it turns out that the total contribution to 
the measurement result, V(S) is 

V(S) = L f(u)au . 

u 
Using a method due to Karlin and Taylor (1981, Section 16.2) the trans­
form of the density of V(S) . using the circular symmetry of f(.), has 
been shown to be 

¢X(T; S) = exp (-ArnsT / p(T + {3)) 
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where ms = d2tp1f / 4 , the mass of the soil sample , p , the density of 
the soil sample and X is a random variable denoting the soil sample 
activity. Here d is the diameter of the corer and S is the cylinder (r 
< d/2). The distribution of X is obtained from inverting the Laplace 
transform ¢X(T, S) and will be denoted by PX(Xi ms, >',{3). 

Let Y be a random variable denoting the number of counts observed. 
Then the Laplace transform, ¢y (T, S) of the density of Y has an excellent 
approximation which is that of an inverse Gaussian law IG(J-L, (}) and 
will be denoted by f(Yi J-L, >.). In terms of the parameters of the inverse 
Gaussian law we have the first two cumulants given by 

J-L = KT1 (h)>'/{3 and () = KTf(h)e2/{2T2(h){3). The moment esti­
mates of the rate>. and the exponential parametero {3 are 

~ = 2T/(Jf , ~ = 2T2p/ms(Jf where T is the mean of the sampled 
activity and (Jf is the sample variance. 

In practical applications, in order to use maximum likelihood meth­
ods of estimation Wise and Kabaila approximate the probability density 
of the N aI detector data by 

PY(Yi >.,{3) = f(y -"pi >.,{3) 

where "p is a threshold parameter. As pointed out by the authors, this 
model ignores the Poisson nature of the NaI detector counting process. 
Had this counting process been included in the model then the probabil­
ity density of the NaI detector data would be that of a Poisson-inverse 
Gaussian mixture. 

Given n sample masses mi and activities Xi , i = 1, ... ,n, the corre­
sponding loglikelihood is 

n 

Lx(>.,{3) = Llogpx(xi,mi,>',{3). 
i=l 

Likewise, given N NaI detector counts Yi, the parameters can be 
estimated from the associated loglikelihood function, namely 

N 

Ly(>., {3) = L logpY(Yii >., {3). 
i=l 

Estimates of the parameters >. and {3 are calculated from the equations 
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Zi = Yi - 'if; i = 1, ... , n 
N 

Nz= LZi 
i=l 

N 

Plutonium Estimation 

W= N/zL[z;l-rl] 
i=l 

~ = 2T2 (h)W /Tl(h) 

S = Tl(h)K~/z. 

Wise and Kabaila found that the one-parameter model was not ade­
quate for their purpose and suggested the use of a two-component model. 
A low activity component of a two-component model is one that has a 
larger (3. Estimates of the parameters of this model is obtained by max­
imizing the sum of the loglikelihoods for the soil sampling data and the 
N aI detector data. 

The density for the NaI detector data in a two-component model is 
approximated as follows. The NaI detector data is considered as the sum 
of two independent counts from (i) a high activity component (ii) a low 
activity component and (iii) a constant background-'if;. Their detailed 
analysis which included the Poisson nature of the radiation detector 
counting process showed that the high activity component is approxi­
mated by the law fy(y, >'1, (31) while the combined factors arising from 
(ii) and (iii) could be described by a density /2(Yj >'2, (32) which was 
approximately Gaussian with mean J.L and variance 0-2 given by 

J.L = 'if; + 1238>'2 (K / (32) 

0-2 = J.L + 277>.2(K / (32)2. 

For the data analysed by Wise and Kabaila they found that the 
two-component model was quite satisfactory as evidenced by a sufficient 
reduction in the loglikelihood. 
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GLOSSARY 

£(X) = IG{j.t, A) law of the random variable X is inverse 
Gaussian with parameters j.t and A 

lR+ (x) = the indicator random variable X 
lE{X) = expected value of the random variable X 

r(a, ,8) a gamma law with shape parameter a and 
scale parameter ,8 

Be{a.,8) = the Beta function with two arguments a,,8 
:::} tends to 
~ approximates to ~ 

GIG{a, x,'I/J) generalized inverse Gaussian law (Halphen's 
law), where a is a shape parameter, X is the 
coefficient of the term in x -1 and 'I/J the 
coefficient of the term in x 

RIG{j.t, A) = the reciprocal inverse Gaussian law obtained 
from the generalized inverse Gaussian by let-

ting a = 1/2,x = A and 'I/J = A/ j.t2 
M - IG{j.t, A, p) a mixture inverse Gaussian law with parameters 

j.t,A,p 
P - IG{j.t, A) a compound Poisson-inverse Gaussaian law 

with parametes j.t, A 
ex = is proportional to 
2 the Chi-squared law (n degrees of freedom) Xn 

tn Student's t (n degrees of freedom) 

Fa,b = Snedecor's F (with parameters a,b) 
Np{O, A) p-variate Gaussian with zero mean and 

covariance matrix A 
K>.(.) = Bessel function of the third kind{indexA) 

18) a symbol for product measure 
li = is independent of 

tr A trace of the matrix A 
xt transpose of vector(matrix) X 

X-I inverse of the matrix X 
e identity vector 

VALT (variable) accelerated life test 
ARL average run length 
ASN = average sample number 

Cusum = cumulative sums 
LCL{UCL) = lower { upper) control limits 

LN lognormal 
MLE = maximum likelihood 

{U)MVUE {uniformly)minimum variance unbiased estimator 
= is distributed as 

E belongs to 
D 

---t tends in law to 
UMPU = uniformly most powerful unbiased 
SPRT sequential probability ratio test 
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