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Preface  

 

This volume collects the revised versions of the invited and selected papers that were  
presented at the Second EPOS––Epistemological Perspectives on Simulation––Workshop,  
held in Brescia, Italy, in October 2006. EPOS is a bi-annual cross-disciplinary workshop on 
simulation originally established by Ulrich Frank and Klaus G. Troitzsch, with a first edi-
tion held in Koblenz in July 2004. EPOS aims to provide a forum for scholars from various 
disciplines, such as the social sciences, computer sciences, engineering and natural sciences, 
who are interested in discussing epistemological aspects of computer simulation across 
disciplinary boundaries. The common belief behind the workshop is the recognition that the 
time has come to seriously reflect on epistemological and methodological preconditions, 
processes and consequences of simulation as a research tool. 

During the fist edition in Koblenz 2004, a number of interesting topics were care-
fully addressed: the link between theory and simulation models, the empirical valida-
tion of agent-based models in the natural and the social sciences, the relation between 
models and truth, as well as the role of stylized facts in evidence-based models. A 
good cross-disciplinary atmosphere permeated the workshop, making possible the 
exchange of knowledge and ideas beyond any disciplinary boundary. The first EPOS 
proceedings were edited by Ulrich Frank and Klaus G. Troitzsch and published in the 
Journal of Artificial Societies and Social Simulation, Vol. 8, No. 4, 2005. 

The second edition in Brescia 2006 was led by social scientists, after a careful and 
strong selection process that limited the number of presented papers from 35 submis-
sions to 11 presentations. Nigel Gilbert and Rosaria Conte were the invited speakers. 
Topics addressed ranged from epistemological and methodological contents, such as 
the relevance of empirical foundations for agent-based simulations, the role of theory, 
the concepts and meanings of emergence, the trade-off between simplification and 
complexification of models. The discussion among the participants was vivid and 
vibrant, confirming the common interest in these issues. Given the high-level contents 
of the discussions, together with Ulrick Frank and Klaus G. Troitzsch, who attended 
the workshop, we decided to write an introductory chapter, where most of the contents 
of the discussions have a representative synthesis. 

 
 
 

November 2008 Flaminio Squazzoni  
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EPOS-Epistemological Perspectives on Simulation: 
An Introduction  

Ulrich Frank1, Flaminio Squazzoni2, and Klaus G. Troitzsch3 

1 University of Duisburg-Essen, Germany 
ulrich.frank@uni-due.de 

2 Department of Social Sciences, University of Brescia 
Via San Faustino 74/B, 25122 Brescia, Italy 
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3 University of Koblenz-Landau, Germany 
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1   Introduction 

There is strong evidence that computer simulation is increasingly recognized as an 
important analytical tool in many social sciences disciplines and fields. During the last 
ten years, a number of new journals, which are devoted to this field, have been founded 
and others have increased their influence (i.e., JASSS, CMOT, Social Science Com-
puter Review, Autonomous Agent and Multi-Agent Systems, Journal of Economic 
Dynamics and Control, Computational Economics, Computational Management Sci-
ence). Special issues and extensive reviews of the literature have been published in 
influential and standard journals1. At the same time, new international associations and 
societies were born, with an increasing number of members (i.e., ESSA in Europe, 
NAACSOS in North America, The Society for Computational Economics), many 
research centers and institutes have been successfully launched2, many workshops, 
conferences and congresses are organized every year (with the first world congress on 
social simulation held in 2006 in Tokyo and the second one in Washington in 2008), 
and an open market of tools and simulation platforms (i.e., Swarm, Repast, Ascape, 
NetLogo), based on a vast community of developers and users, is steadily growing. 
                                                           
1
 Special issues in «American Behavioral Science» in 1999, «Journal of Economic Dynamics 
and Control» 2001 and 2004, «Computational Economics» 2001 and 2007, «Proceedings of 
the National Academy of Sciences» 2002, «Journal of Economic Behavior and Organization» 
2004, «Journal of Public Economic Theory» 2004, «American Journal of Sociology» 2005; 
«Advances on Complex Systems» 2008; reviews and/or papers in «Nature», «Science», 
«Physica A.», «Journal of Theoretical Biology», «American Sociological Review», «Annual 
Review of Sociology», «Philosophy of the Social Sciences», «Artificial Intelligence Review». 

2 For example: Santa Fe Institute in New Mexico, USA; Center on Social and Economic Dy-
namics, at the Brookings Institution, Washington, USA; Centre for Policy Modeling in Man-
chester, UK; Centre for Research in Social Simulation in Guildford, UK; Laboratory of 
Agent-Based Social Simulation, CNR, Rome, Italy; Center for Social Complexity at George 
Mason University, Virginia, USA; Center for Computational Analysis of Social and Organ-
izational Systems at Carnegie Mellon, Pittsburgh, USA; Center for the Study of Complex 
Systems, University of Michigan, USA. 
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In these last years, a significant number of influential papers, handbooks, tutorials 
and books on simulation have been published in many disciplines. For instance, in the 
social sciences, Axelrod (1997) and Nowak and Sigmund (1998; 2005), independent 
of each other, launched a very influential research program on the study of coopera-
tion and reciprocity via computer simulation, with numerous followers not only in the 
social sciences. Epstein (2007) recently suggested a coherent manifesto to what he 
called “generative social science”, where agent-based models are used as the best-
suited modeling instrument to formalize micro-macro models of social and economic 
phenomena. In his influential manifesto of analytical sociology, Hedström (2005) did 
the same, locating agent-based models at the core of his programmatic argument. 
Sawyer (2005) argued the relevance of computer simulation to understanding social 
emergence. From a methodological perspective, de Marchi (2005) suggested a coher-
ent approach to integrate computational methods with statistical and empirical meth-
ods in the social sciences. 

Agent-based computational economics is a well recognized field, especially by 
evolutionary, institutional and applied economists (Saviotti 2003; Pyka and Arhweiler 
2004), with good examples of relevant handbooks, tutorials or methodological books 
on computer simulation and modeling (i.e., Kendrick, Mercado and Amman 2005; 
Tesfatsion and Judd 2006). In geography and urban studies, there is currently an ef-
fective cross-fertilization between computer simulations and other methods and tools, 
like Geographical Information Systems and statistical surveys and data (i.e. Gimblett 
2002; Batty 2005). Computer simulation is used also in anthropology, ecology and in 
environmental studies (Janssen 2002; Volker and Railsback 2005). In organizational 
and management studies (Prietula, Carley and Gasser 1998; Lomi and Larsen 2000), 
as well as in business engineering and industrial processes planning and control (i.e. 
van Elst, Abeker and Dignum 2004), computer simulation is a well-established tool 
and an innovative method. Scholars in the areas of artificial intelligence and robotics 
are using simulation to explore and design intelligent cooperative systems (i.e., Bona-
beau, Dorigo and Theraulaz 1999). A good number of general textbooks, tutorials and 
introductory books on the usage of computational tools and modeling have been re-
cently published, contributing to the promotion of such an approach in the new gen-
eration of scholars (i.e., Suleiman, Troitzsch and Gilbert 2000; Wooldridge 2002; 
Gilbert and Troitzsch 2005; Shiflet and Shiflet 2006; Gilbert 2008). 

This introduction aims to present an overview on epistemological debates on com-
puter simulation in the social sciences. Does computer simulation mean a new scien-
tific paradigm or is it just a tool? What is the difference between simulation modeling 
and traditional analytic models? Does simulation allow for a new relation between 
theory and data? What are the preconditions for a proper use of simulation? These are 
just a few questions on which the community is recently focusing (Frank and 
Troitzsch 2005). 

In this introduction, we argue that simulation constitutes an inspiring new research 
perspective in the social sciences. As we see in the following sections, as well as in 
most chapters of this book, there are sound substantive and methodological reasons 
for this argument. First, the possibility of using the computer as a tool for formalizing 
generative models of social phenomena, with the aim to foster theory building, explo-
ration and testing, allows us to enlarge the space of application of analytical ap-
proaches in the social sciences. Simulation indeed requires formal models of social 
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phenomena, thereby contributing to a rationalistic approach to research. Thus it pro-
vides an alternative to those streams in the social sciences that are dominated by post-
modernism and by all those approaches that deny the possibility of using formalized 
models in the social sciences. Secondly, by deploying computers, simulation offers 
the chance to produce - and test - patterns of knowledge that would hardly be possible 
without this tool. Thirdly, agent-based simulation is a way to cope with complexity 
and to develop rich, differentiated scenarios at the same time, with several positive 
consequences at the level of realism and empirical foundation of models. 

To give a clear picture of this innovation, the second section summarizes a set of 
epistemological and methodological open issues on which the community is carefully 
focusing at the present. The debate is mostly expressed in terms of vivid disputes on 
dichotomies as follows: generative vs. causal explanations via simulation; meanings 
and forms of emergence, with a confrontation of ontological and epistemological 
meanings; theoretical abstraction vs. empirical foundations; theoretical vs. practical 
purposes. As we see, most of these issues have been explicitly addressed by the au-
thors of this book, making possible to undertake some step forward. As a matter of 
fact, computer simulation helps secularize such philosophical debates by bringing 
them away from a mere foundational and philosophical to a more pragmatic and evi-
dence-oriented level. The varied, even contradictory, positions are an indication of 
this burgeoning, innovative field of research. 

In the third section, we propose our assessment of the future of this field of re-
search. In particular, according to the relevant issues of the present, we attempt to 
identify some epistemological, methodological and substantive puzzles which need to 
be solved. It is our firm belief that the solution to these puzzles would improve the 
scientific progress of simulation. Finally, the fourth section offers a description of the 
book chapters, which are all devoted to clarifying relevant epistemological and meth-
odological issues. 

2   Epistemological and Methodological Issues 

Computer simulations, and specifically agent-based models, should be viewed as an 
epistemological innovation, because they permit and promote a generative approach 
to the modeling and the explanation of social phenomena, strengthening an agent-
based paradigm to social science (Epstein and Axtell 1996; Epstein 2007). A “genera-
tive approach” is based on the following constituents: 

1. The target of the model is a macro phenomenon of interest, let us say a given 
statistical empirical regularity, evidence or a stylized fact; 

2. The model comprehends a set of theoretical hypotheses about a population of 
agents, rules, constraints and interaction structures, which the modeler be-
lieves to be a system that maps those generative causal processes that are sup-
posed to be responsible for the phenomenon; 

3. The simulation of the model allows us to produce a set of artificial data, which 
are controlled by means of a set of indicators, and which are also used to ad-
just and verify the initial hypotheses; 

4. These data are then compared to the empirical data, evidence, or to stylized 
facts that are the explanatory target of the modeler. 
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The epistemological assumption is if we are able to generate or grow a macro 
phenomenon via an agent-based model, on the basis of theoretically or empirically 
plausible assumptions on the micro-foundations, then we can consider these assump-
tions as sufficient, even if not necessary conditions for explaining it. Therefore, the 
simulation model is seen as an engine to find candidate explanations of macro social 
phenomena (Epstein 2007). This position is a kind of standard in social simulation. 

2.1   Generative Explanation 

As the readers will see by going through some chapters of this book, the generative 
assumption has been both criticized and developed on two main facets: the difference 
between a generative and a causal explanation and the difference between a “pure” 
theoretical explanation and a multi-level empirically-founded model. 

Regarding the first facet, it is standard practice to assume that a generative 
explanation would differ from a standard covering law, a statistical or a narrative 
explanation because the former would be based on a mechanisms-based explanation 
(Goldthorpe 2000; George and Bennett 2004). In this perspective, explaining a macro 
empirical phenomenon of interest means referring to a set of entities and processes 
(agents, action and interaction) that are spatially and temporally organised in such a 
way that they regularly bring about that phenomenon (Hedström and Swedberg 1998). 
In other words, a social mechanism is “a constellation of entities and activities that are 
linked to one another in such a way that they regularly bring about a particular type of 
outcome” (Hedström 2005, 11). As George and Bennett correctly pointed out (2004, 
141), the difference between a law and a mechanism means a difference between a 
static correlation (“If X, then Y”) and a specification process (“X leads to Y though 
steps A, B, C”) (George and Bennett 2004, 141). 

In order to take such a process into account in the social sciences, it is necessary to 
identify what James Coleman (1990) defined as the chains of macro-micro-macro 
links: macro-micro situation mechanisms, micro-micro interaction mechanisms, and 
micro-macro transformation mechanism. According to the so called “Coleman bath 
tub”, a mechanisms-based explanation should first dissect and then combine the jointed 
action of situational mechanisms (macro-micro), action-formation mechanisms (micro-
micro), and transformational mechanisms (micro-macro). The analogy of the bath tub 
symbolizes that macro outcomes are what can be seen on surface, hopefully expressed 
in formal terms of empirical regularities, such as statistical properties or stylised facts. 
But, to understand why and how the surface moves, researchers should go under the 
surface, to see the causal engine of the movement (Squazzoni 2008). 

It is well known that mechanisms are often brought about by bundles or 
configurations of mechanisms, “some of which contribute to the effect and some of 
which may operate to counteract the effect or reduce its magnitude”. The following is 
a simple example, which has been reported by Paul Humphreys:  

“a car went off a road at a curve because of excessive speed and 
the presence of sand on the road and despite clear visibility and 
an alert driver. He notes that the addition of another mechanism 
or contextual factor can change a contributing cause to a counter-
acting one, or vice-versa: sand decreases traction on a dry road, 
but increases traction when there is ice on the road” (George and 
Bennett 2004, 145-146). 
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If this is true, how is it possible to specify what kind of mechanism is working in the 
phenomenon of interest, and in what direction they are conducting the bath tub? There 
is no space to get into more detail on this point, but the argument we would like to 
emphasize here is as follows: a) the possibility to use an agent-based model to generate 
a phenomenon does not automatically mean to be in a position to have a causal expla-
nation; b) given the famous arguments of the so-called “multiple realizability” (George 
and Bennett 2004; Sawyer 2005), according to which a mechanisms-based explanation 
closely depends on the capability of combining theoretical assumptions and empirical 
specifications. This is based on the famous arguments of the so-called “multiple re-
alizability” (George and Bennett 2004; Sawyer 2005): the same micro-mechanism 
could produce different macro outcomes, and the same macro outcome could be pro-
duced by different micro mechanisms, Just the reference to empirical evidence can 
help discriminate among potential alternative theoretical explanations. 

2.2   Empirical Foundations and Validation of Simulation Models 

There is growing literature on the quest of the empirical foundations and validation of 
computer simulation models, in particular in the field of agent-based models (i.e., 
Boero and Squazzoni 2005; Windrum, Fagiolo and Moneta 2007). As the reader will 
see, four of the chapters of this book deal exactly with this topic. The question is: is 
the theory behind a model really enough to do good science? 

Social simulation researchers seem implicitly split on this question. One faction 
considers computer simulation as a method for theory building and exploration, as 
though the computer is a complete substitute for laboratory experiments and empirical 
analyses. The other faction denies that computer simulation is a self-exhaustive ex-
perimental tool and believe that the purpose of social science, also that of computa-
tional social science, is primarily to explain empirical phenomena, with the recourse 
to empirical data. 

The first faction believes in the intrinsic added value of the “artificial societies” as a 
means to strengthen the theoretical foundations of social sciences. This faction believes 
that the problem with the development of the social sciences lies in the weakness of the 
theoretical pillars. This faction believes in the “synthetic” features of simulation, i.e. in 
the use of computer simulation to synthesize all the aspects of the complex nature of 
social life. The second faction believes that computer simulation is just a tool that 
allows the social scientist to explain empirical phenomena, a tool that should be used 
with other tools and empirical methods. This faction believes that the problem lies in 
the excess of theoretical accounts and models, and the need for strengthening the ca-
pacity of modeling and understanding specific empirical phenomena. 

This is basically the epistemological side of the debate on the empirical founda-
tions and validation of simulation models. Some chapters of this book explicitly or 
implicitly focus on this side (Chapter 2 by Rosaria Conte, Chapter 4 by Scott Moss 
and Chapter 10 by Paul Ormerod and Bridget Rosewell). Regarding the methodologi-
cal side, a good number of contributions and examples have recently started to eluci-
date part of the complicated implications of available methodological practices (i.e., 
Moss and Edmonds 2005; de Marchi 2005; Windrum, Fagiolo and Moneta 2007). For 
instance, given the micro-macro link that dominates the social phenomena, an inter-
esting methodological issue is the need for a multi-level validation of the model, 
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where empirical data on the macro level are combined with empirical data on the 
micro level (Boero and Squazzoni 2005). The challenge is to understand how to foster 
standard methodological practices of validation that could be shared and tested by the 
community. 

2.3   Emergence 

The concept of emergence is tied up with the concept of simulation (Sawyer 2005). 
Two of the chapters in this book try to explicitly deepen such a tie (Chapters 5 and 6 
by Alex Schmid and Martin Neumann). In fact, emergence is closely related to “prop-
erties”, “structures”, “regularities”, “patterns” and “phenomena” that are macro con-
sequences of basic generative processes that can only be explored via simulations 
(Bedau 1997). Therefore, it seems that simulation is a suitable approach to reconstruct 
and explain emergence. 

From an epistemological viewpoint, the debate in social simulation seems to be 
stuck in the middle of two extremes (Squazzoni 2008): the ontological meaning of 
emergence and the micro-reductionism. 

A first faction of social scientists vindicates the reductionistic approach to simula-
tion, refusing any possible ontological meaning of emergence (Hedström 2005; Ep-
stein 2007). The position is extremely coherent: if a theoretical explanation of a 
macro social phenomenon of interest means the creation of a simulation model to 
explore plausible theoretical micro assumptions that generate and explain the phe-
nomenon, then macro patterns, phenomena, or processes under study are the resultant 
implications of micro-assumptions explored inside a formalised model. Particularly, 
counter-intuitive and intriguing macro phenomena, which would be said “to emerge” 
by the supporters of social emergence, can be in principle and de facto reduced to a 
set of mechanisms at the lower level (Kim 2006). In the social sciences, such a posi-
tion totally conforms to the methodological individualism (Coleman 1990), where the 
ontological existence of “invisibles” or “social entities” and their supposed “causal 
power” are ontologically and methodologically rejected (Hedström 2005). It is recog-
nized that social science theory requires the explicit generative reference to individual 
action and interaction to avoid the risk of reifying and evoking macro categorical 
concepts, such as “class”, “culture”, or “system”, which are often used as explanatory 
categories in a tautological way. The division between the micro and the macro levels 
of a model and the analysis of their relation are simply epistemological practices exe-
cuted by the scientist for analytic purposes, and not an ontological feature of the so-
cial reality in itself (Gilbert 2005; Squazzoni 2008). 

On the contrary, a second faction of scientists suggests a kind of radical emergen-
tism (Sawyer 2005). Strongly based on a long tradition in philosophy, as well as on 
classic macro sociology, this faction argues the ontological nature of social emer-
gence. Societal phenomena would belong to a different ontological level of reality 
compared to individual phenomena. This results in social scientists replacing the 
causal determinism of the micro level of the reductionists with the causal determinism 
of the macro level, assigning macro causal power and ontological autonomy to social 
entities. 

In the middle, there is the pragmatic attitude of many social simulation researchers 
who see emergent properties and phenomena simply as epistemological features of 
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the scientific inquiry. This last faction refuses to accept the ontological meaning of 
emergence, the supposed causal power of macro social entities, and even the idea that 
emergence properties are intrinsic features of the reality (Bedau 1997). They instead 
believe that emergence is a concept with an epistemological value in itself and is 
created by the scientist with the aim to identify and refer to macro dynamics and 
change in quantitative and qualitative terms (Gilbert 2002; 2005). Social simulation 
strengthens links and integrative frameworks, and “secularises” this dispute, by bring-
ing it away from a foundational and philosophical level to a more pragmatic one 
(Squazzoni 2008). In any case, as some of the chapters of this book demonstrate 
(Chapter 3 by Rosaria Conte and the three chapters on emergence by Alex Schmid, 
Martin Neumann and Camille Roth), the dispute is still wide open and deserves fur-
ther contributions. 

3   Future Prospects 

The relation between theory, models and empirical validation should be considered as 
the next frontier for the advancement of social simulation. If theoretical abstraction 
should be naturally viewed as an essential part of scientific research, the development 
of computer simulations in the social sciences should be related to their capacity to 
foster the explanation of empirical phenomena. This is to avoid the risk of the self-
referential nature of theoretical models as well. 

If this is true, a challenge for the future is the appropriate combination of computer 
simulation with other methods. Instead of seeing computer simulation as a different 
method, or as an exhaustive method per se, a good practice would be to work towards 
combining different formal, experimental, statistical and empirical methods and try to 
exploit the best of each one (de Marchi 2005). The epistemological consequence 
would be also to expand upon the analysis of the qualities and properties that perhaps 
make computer simulation different from other methods and tools. But the recogni-
tion of these prospective differences does not imply, as thought by many computa-
tional social scientists, that computer simulation models should be necessarily judged 
outside the standard framework and practices of science.  

From a methodological viewpoint, many scholars have already recognized a future 
prospect in the field of verification/ validation/ sharing/ communication of models and 
results (Axelrod 2006; Windrum, Fagiolo and Moneta 2007). As Gintis correctly 
outlined (2007), computer simulation models, in particular agent-based models, are 
profoundly penalized within the standard scientific community because of many prob-
lems of scientific communication and inter-subjective control. The case of economics 
is emblematic. In economics, agent-based models are sometimes introduced as theo-
retical models to be used as an alternative to formal analytical economic theory, 
sometimes as empirical models from which one could infer properties that could be 
analytically systematized, or on which one could build comparisons among particular 
cases. In any case, the lack of transparency and the impossibility/difficulty to enter  
in all the details of a model and of a set of simulations make evaluation of a simula-
tion model often impossible. Only an expert in the computer language used or the 
expert who designed precisely those simulations presented in that paper understand 
the details. The result may be that referees of journals are forced to take the author’s 



8 U. Frank, F. Squazzoni, and K.G. Troitzsch 

assertions on faith alone. This is where standard analytic models are superior to agent-
based computational ones at the present. Moreover, let us suppose that a model is the 
result of a collaboration between a social scientist and a computer scientist, as often 
happens. In such a case, the problem of the verification is generally underestimated. 
Nuno David correctly emphasizes this in his chapter: there is a risk of underestimating 
possible misunderstandings and hidden differences between the theoretical and the 
implemented model, which are a natural source of theoretical invalidation of simula-
tion results and, as a consequence, of the theoretical inferences conducted on them. 

This observation strongly supports our final claim that the future of social simula-
tion and the appropriate usage of computer simulation in the social sciences will de-
pend on the investment that the leading scholars and institutions in this field will do 
on the training and education of young scholars, PhD and undergraduate students in 
simulation languages. This is necessary for raising a generation of young social scien-
tists able to advance the scientific frontier of social simulation and to embed computer 
simulation in the standard toolkit of the social scientist of the 21st century. What is 
needed is to slowly but surely get out of the current “hand-crafted” phase, to be able 
to enter in a new phase, where standard practices, methods and scientific communica-
tion can get stronger and cumulate step-by-step. 

4   Summary of the Book 

The chapters of this book are very heterogeneous in their contents, but they can all be 
subsumed under the same general purpose. They are good examples of the present 
quest for the pre-conditions, processes and consequences of computer simulation in 
the social sciences, combined with the methodological, epistemological and substan-
tive issues. 

The second chapter, “The Epistemologies of the Social Simulation Research” is an 
invited contribution by Nigel Gilbert and Petra Ahrweiler. The authors aim to fertilize 
the epistemological debate on social simulation with the philosophical debate in the 
social sciences. They conclude with a critical and pragmatic position on the need for 
an epistemological and methodological unified perspective, arguing that evaluation 
criteria for simulation research need to be tuned to research aims, methodological 
positions and domains of study, rather than being conditioned by epistemological 
and/or methodological pre-established viewpoints. 

The third chapter, “From Simulation to Theory (and Backward)” is an invited con-
tribution by Rosaria Conte. It focusses on the “generative approach” to computational 
social sciences, which has been synthesized in the recent “generativist manifesto” by 
Epstein (2007). The author argues against the tendency to conflate theory and simula-
tion, as well as explanation and computational generativeness. She proposes a body of 
arguments to emphasize the relevance of a computational social science theory that 
should be able to combine bottom-up theory of general local rules and top-down 
downward causation. In doing so, she locates herself in the recent debate on the dis-
tinctive features of social emergence (Sawyer 2005). 

The fourth chapter, “Talking about ABSS: Functional Descriptions of Models”, by 
Scott Moss, attempts to integrate empirical and abstracted models, with the aim of re-
ducing the divide between the practices and the approaches of empirical and theoretical 
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analyses in social simulation. The author suggests a framework to foster the discussion 
of epistemological issues, such as prediction, validation and verification. 

The fifth, sixth and seventh chapters constitute a sub-section focused on emer-
gence. Alex Schmid proposes a review of ontological and epistemological meanings 
of emergence, with a contextualization of the particular role of computer simulation 
as an analytical tool for studying emergent properties and processes, while Martin 
Neumann reassesses the literature to propose a conceptual framework for understand-
ing the autonomy of the emergent properties in social spheres. Finally, Camille Roth 
argues that reductionism and emergentism fail at the same time in detecting ill-
conceived modeling ontology. 

The eighth chapter, “Narrative Scenarios, Mediating Formalisms, and the Agent-
Based Simulation of Land Use Change” by Nick Gotts and J. Gary Polhill, inaugurates 
the methodological chapters of this book. The authors move on from the evidence that 
the kinds of systems studied through agent-based models in the social sciences are first 
understood in terms of narrative languages and descriptions, with the consequence that 
a set of problems arise because of the difference between the semantics of natural lan-
guage and programming languages. Using examples taken from simulation of land use 
change, they articulate an ontological framework and a formalism to mediate between 
the two. The following two chapters focus on the relevant quest of the verifica-
tion/validation of simulation models. Nuno David suggests distinguishing between 
verification and validation, as well as clarifying their meanings and their relation. 
Moreover, he tries to embed the methodological debate on the relevant quest of what 
“truth” and what “knowledge” are generated  by means of simulations. Paul Ormerod 
and Bridget Rosewell cope with the quest of the empirical validation of agent-based 
models in the social sciences. They reconstruct some of the difficulties in establishing 
verification and validation of agent-based models, and suggest simplifying the theo-
retical building blocks of the models at most, so that comparison and acceptance of 
models could be improved. Moreover, they bring empirical evidence that supports the 
so called KISS (Keep It Simple, Stupid) principle of agent-based modeling, namely 
that agents in real situations tend to act intuitively rather than rationally. In this per-
spective, they criticize the supposed “naturality” of the cognitive approach to agent-
based models. 

The eleventh chapter, “Abductive Fallacies with Agent-Based Models and System 
Dynamics” by Tobias Lorenz, elaborates on the abductive nature of simulation, with 
particular attention to the role of simulation methodologies in conditioning the model-
ing process. The twelfth chapter, “Algorithmic Analysis of Production Systems Used 
as Agent-Based Social Simulation Models” by Jim Doran, is an exploration of the 
algorithmic analysis of simulation models as a means to systematize model abstrac-
tion. To demonstrate the potential of his exploration, the author refers to an applied 
example, namely the Iruba model of a guerrilla war. Last but not least, the thirteenth 
chapter, “The Nature of Noise”, by Bruce Edmonds, works up a comprehensive ex-
ploration on the concept of noise. The author argues that noise and randomness are 
not the same and thoughtlessly conflating them can result in misleading assumptions. 
This exploration has relevant implication for the modeling and understanding of com-
plex phenomena. 
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Abstract. What is the best method for doing simulation research? This has been 
the basis of a continuing debate within the social science research community. 
Resolving it is important if the community is to demonstrate clearly that simula-
tion is an effective method for research in the social sciences. In this paper, we 
tackle the question from a historical and philosophical perspective. We argue 
that the debate within social simulation has many connections with the debates 
that have echoed down the years within the wider social science community 
about the character of social science knowledge and the appropriate epistemo-
logical and methodological assumptions on which social science research 
should rest. 
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1   Introduction 

What is the best method for doing simulation research? This has been the basis of a 
continuing debate within the social science research community. Resolving it is im-
portant if the community is to demonstrate clearly that simulation is an effective 
method for research in the social sciences. In this paper, we tackle the question from a 
historical and philosophical perspective. We argue that the debate within social simu-
lation has many connections with the debates that have echoed down the years within 
the wider social science community about the character of social science knowledge 
and the appropriate epistemological and methodological assumptions on which social 
science research should rest.   

In section 1, we review the debate that was conducted primarily within German po-
litical economy at the beginning of the twentieth century about the degree to which it 
is appropriate to search for ‘laws’ of society. In section 2, we show that many of the 
                                                           
* An earlier version of this chapter was presented under title, ‘Kiss and tell: in praise of abstrac-

tion? Starbucks or Café Florian’ to the workshop on Epistemological Perspectives on Simula-
tion  - II, held in Brescia, Italy on October 25-26, 2006. We are indebted to the participants at 
the workshop, and especially Flaminio Squazzoni, for their good company, their wise com-
ments and their hospitality. This chapter is a sequel to a paper, ‘Caffè Nero: the Evaluation of 
Social Simulation’, presented at the first EPOS workshop and subsequently published as 
Ahrweiler and Gilbert (2005). 
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arguments formulated then by luminaries such as Weber, Schumpeter, Schmoller and 
Menger are still relevant to the current debate about methodological approaches to 
social simulation. In section 3, we propose that these arguments lead to the conclusion 
that, contra to some present-day commentators, there is no one best epistemological 
or methodological approach. We conclude that evaluation criteria for simulation re-
search need to be tuned to research aims, methodological positions and domains of 
study, and it is not right to judge all simulation research using the same set of evalua-
tion instruments. 

2   The Knowledge Claims of the Social Sciences: Mathematics or 
History 

2.1   Background: Rationalism and Empiricism 

How can we be sure about our knowledge of the world? Two contrasting answers 
have been proposed, under the names of rationalism and empiricism. Rationalism says 
that it is reason or rationality that provides certainty. Reason is constituted by two 
properties: the first is an intuition concerning final knowledge foundations, that is, the 
ultimate principles and ideas that form a set of axiomatic-terminological conditions 
for all further knowledge and theory building; the second is the human ability to en-
gage in deductive reasoning.  Starting from axiomatic principles, we can extend our 
knowledge to yield theoretical systems (Specht in Schnaedelbach 1984: 72ff) such as 
mathematics, the discipline that for Descartes represented the idea of science (gr. 
mathema = science).  

In contrast, the common denominator of empiricism is reference to the senses: cer-
tainty of knowledge can only be achieved by the direct experience of an individual 
case. Locke challenged Descartes with “Nihil est in intellectu, quod non prius fuerit in 
sensu” (Nothing is in the understanding that was not earlier in the senses). However, 
the outcome of inductive reasoning is problematic: each generalising statement that 
goes beyond a limited class of individual cases is uncertain and its truth completely 
depends on its empirical foundation. For Hume’s radical empiricism, inductive rea-
soning was therefore out of the question. The same scepticism can later be found in 
Popper’s “We do not know, we just guess”. In his view, theories in empirical sciences 
cannot be inductively verified but – using deductive principles – they can be contra-
dicted by elementary observations, that is, they can be falsified.  

The debate between rationalists and empiricists over the foundations of knowledge 
is still unsolved. In the following, we enter a version of this debate at a time that  
was important for sociology and economics as they became established as academic 
disciplines. 

2.2   The Methodological Dispute (Methodenstreit) in Continental Political 
Economy 

In the 19th century, the French philosopher Auguste Comte (1798-1857) had postulated 
that social philosophy should leave all speculative ideas and follow the positivist exam-
ple of natural science: “for positivist philosophy all processes follow deterministic laws. 
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There is no use in looking for first causes or final purposes” (Comte 1974: 5). To inves-
tigate the laws of the social realm, Comte introduced the notion of Sociologie which was 
interpreted by him as “social physics”. In political economy in the 1850s, the so-called 
elder historical school (Wilhelm Roscher, Karl Knies) had tried to establish a histori-
cally-oriented, experience-based empirical version of economics in contrast to the pre-
vailing Austrian “theoretical” economics. In the 1880s, the debate had focussed around 
Gustav Schmoller, the teacher of Max Weber and representative of the younger histori-
cal school, and his adversary Carl Menger. In his study Investigating the Methods of the 
Social Sciences, especially Political Economy (1883), Menger distinguished between 
theoretical, historical and practical sciences: he himself spoke for the theoretical realm 
which he further differentiated into an empirical-realistic and an “exact” position. The 
latter was supposed to work mathematically and to find social laws analogous to physi-
cal laws. Schmoller responded with his article Methodology of the political and the 
social sciences in which he accused Menger of dogmatism, of producing only hypo-
thetical statements derived from other hypothetical statements, and of maintaining only 
an appearance of exactness and hard science.   

Max Weber (1864-1920) rejected the proposition that rationalism is the only candi-
date for scientific, objective and valid knowledge claims and that all other approaches 
to knowledge were still proto-scientific and imperfect. As his contemporary Schum-
peter put it, Weber saw “no objection of principle to what economic theorists actually 
did, though he disagreed with them on what they thought they were doing” (Schum-
peter 1954: 819)1. Instead Weber looked for an approach that was also able to fulfil 
other tasks: “The question as to how far, for example, contemporary “abstract theory” 
should be further elaborated is ultimately also a question of the strategy of science, 
which must, however, concern itself with other problems as well” (Weber 1949: 89)2. 

Although he was Schmoller’s pupil, Weber was no proselyte of the historical 
school. While he agreed that “a science of man, and that is what economics is, inquires 
above all into the quality of man who are brought up in those economic and social 
conditions of existence” (Weber: 1980: 437), and that, in his eyes, “the science of 
economic policy is a political science” (Weber 1980: 438), he criticised the position of 
the historical school for its epistemological and methodological deficiencies (Weber 
1975). In his eyes, the historical school lacked a clear terminology and an exactness in 

                                                           
1 For Schumpeter, Max Weber was an “intellectual leader”,  a “prince of science“, a “knight in 

shining moral armour”, and a polymath of unparalleled erudition. In Schumpeter’s view, his 
main achievement was to have transcended the limits of the German Historical School, inaugu-
rating a “scientific” approach to history” (Osterhammel 1987: 107). Later, Schumpeter himself 
“was confronted with the alternatives “theory or history” that lingered on, even though the 
methodological dispute between Menger and Schmoller had cooled down by the turn of the 
century. From the start, Schumpeter refused to takes sides” (Osterhammel 1987: 108). 

2 In his study Varieties of Social Economics: Joseph A. Schumpeter and Max Weber,  Oster-
hammel investigates the commonalities and differences between the two authors concerning 
this methodological dispute: “Both are opposed to Carl Menger´s ‘realist’ or ‘Aristotelian’ 
views, according to which the ‘laws’ of economics, analogous to those of the natural sciences, 
possess an objective existence.[…]. Weber and Schumpeter both favour a ‘nominalist’ posi-
tion, but for different reasons. Weber is indebted to Neo-Kantian epistemology, whereas 
Schumpeter is influenced by Henry Poincaré´s ‘conventionalism’” (Osterhammel 1987: 110f). 
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concept formation, was too wedded to an unclear notion of “values” and could not 
show how eclectically heaping case study on case study would improve scientific un-
derstanding of the economy3.   

Weber’s own solution was that there is a legitimate scientific interest in single cases, 
empirical detail and historical knowledge. Although he believed that there is an area of 
science where laws are of lesser interest, he was not satisfied with releasing this area 
from epistemological and methodological requirements. His solution is both histori-
cally interesting, because at the beginning of the 20th century Weber’s methodology 
was instrumental in securing sociology as an academic discipline, and epistemologi-
cally interesting, because of its relevance to the methodology of social simulation.  

2.3   The Nomothetic and Ideographic Worlds in Neo-Kantianism 

The position held by Kant and the Neo-Kantian school of philosophy in the rational-
ism/empiricism debate mentioned above offered a solution to the Methodenstreit for 
Weber. The disparity between the law-oriented, mathematically-based natural sci-
ences and ‘history’ (meaning the historical sciences, the science of history, and histo-
riography, the academic treatment of history as an object) was an important topic for 
Weber’s contemporaries in the philosophy of science. From them, Weber borrowed 
concepts to establish the academic and scientific claims of early sociology. Kant him-
self had distinguished between (natural) scientific knowledge and historical knowl-
edge. According to Oakes (1987: 437), he argued that natural science is justified by 
the rationalist approach to “discover the necessary and universally valid laws that 
account for the properties of the phenomenal world. Historical claims to knowledge, 
on the other hand, are particular and contingent. In the final analysis, history has an 
inferior cognitive status, because it fails to qualify as a science according to the crite-
ria for scientific knowledge that Kant elaborates in his Critique of Pure Reason: his-
torical propositions lack the necessity and general validity that would qualify them as 
possible objects of scientific knowledge”.     

The philosophers of the Southwest German School of Neo-Kantianism accepted 
Kant’s distinctions about legitimate knowledge claims, but tried to find a sound foun-
dation for historical knowledge. Wilhelm Windelband (1848-1915) in History and 
Natural Science (Geschichte und Naturwissenschaft) and Heinrich Rickert (1863-
1936) in The Limits of Concept Formation in Natural Science (Die Grenzen der natur-
wissenschaftlichen Begriffsbildung) established the notions “nomothetic” (law-making 
and law-finding) for the natural sciences and “idiographic” (individualistic and de-
scriptive) for the historical sciences (cf. Windelband 1915: 144ff) following Kant’s 
original distinction. However, they did not accept that historical knowledge had an 
inferior cognitive status. 

For Windelband, the “idiographic” feature of historical knowledge necessarily im-
plied a special social science methodology. Oakes’ resumé of Windelband’s position 
is so exemplarily clear that we repeat it here at length:  

                                                           
3 Some proponents of the historical school were even more radical: “Everything concerned with 

exact notions and formal correctness is restricted to the natural sciences. Sciences of history, 
economy, law, literature and society, however, have to avoid this abuse because it leads them 
astray” (Prewo 1979: 16f, own translation). 
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“This theoretical interest [in the particular, contingent and individually signifi-
cant] cannot be satisfied by natural science, which abstracts from the unique 
and qualitatively distinctive properties of real phenomena in order to disclose 
the laws on which they depend. This is the sense in which natural science is 
nomothetic. It has no intrinsic interest in the individual events of concrete real-
ity. On the contrary, the individual datum is relevant to natural science only to 
the extent that it can be represented as a type, an instance of a generic concept, 
or a case that can be subsumed under a general law. This is a consequence of 
the ultimate theoretical purpose of natural science, which is to produce a sys-
tem of maximally abstract and general laws, nomological regularities that gov-
ern all events. Nomothetic knowledge, therefore, represents the triumph of  
abstract thought over our perception of concrete reality. The interest of histori-
cal science, on the other hand, is idiographic. Here the purpose of knowledge 
is to comprehend the distinctive properties of the unique event itself. […] The 
occurrence of individual events cannot be explained by general laws. Put an-
other way, there is no set of nomological statements, regardless of how ex-
haustive and precise, from which any description of an individual event can be 
deduced. This is why our theoretical interest in individual phenomena cannot 
be satisfied by natural science. As Windelband claims, nomothetic and idio-
graphic cognitive interests are independent and juxtaposed to one another: The 
law and the event remain as the ultimate and incommensurable entities of our 
world view. But if natural science cannot establish knowledge of individual 
phenomena, how is such knowledge possible? […] Even though individual ex-
istence is subsumed under laws, it does not follow from them. Therefore, the 
law and reality, or concepts and reality, are incommensurable quantities” 
(Oakes 1987: 437ff)  

2.4   Max Weber’s Foundations for the Social Sciences 

This is the point where Weber took up the argument in order to derive his own posi-
tion in this methodological dispute. He did not simply adopt either nomothetic or 
idiographic concepts. Windelband had already noted that the difference between law-
based knowledge and historical knowledge did not emerge from a difference in the 
object (nature versus culture): one and the same object could be considered nomo-
thetically and idiographically. The differences came from the epistemic aims and 
interests of the sciences – differences in aims and interests that remain today.   

Some sciences are especially concerned with objects of cultural significance and 
meaning (e.g. modern Western capitalism, Greek democracy, Roman law, the French 
revolution, the Lisbon agenda etc.) and with people acting with reference to these 
meaningful objects and frameworks. It is certainly possible to deal with these objects 
nomothetically – not by using them in conjunction with universal quantors (e.g. “all 
Lisbon agendas are x”), but as examples for more general statements (e.g. “all agen-
das are x, as illustrated by the Lisbon agenda”). Although it is easy to think of episte-
mological problems connected to such a statement, it is certainly meaningful and does 
carry some useful knowledge. However, the sciences concerned with objects of cul-
tural significance and meaning normally have more ambitious epistemic interests. 
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In the sciences concerned with empirical social reality, the aim is to reconstruct 
human actions scientifically according to the significance and meaning assigned to 
them (a method called verstehen). This is the special advantage that the social sci-
ences can offer. However, it has to rely on some idiographic features.  The significant 
and meaningful objects we refer to (e.g. western capitalism) are related to culture and 
history. They are – as Weber called them – “historical individuals”, single cases. 
Investigating them in great detail gives us an understanding of the regularities we 
observe in social reality. It explains the why and how of social phenomena. As Weber 
puts it:  

 

“Social science is an empirical science of experienced reality. The aim is to un-
derstand social reality that surrounds us in its peculiar character – on the one hand 
the contemporary framework and cultural meanings of all the single phenomena 
we observe now, and on the other hand, the reasons for their historical path that 
led to their special characteristics” (Weber 1988: 170f, own translation).     

 

Cultural significance and meaning are not only important to explain social phe-
nomena, but are also the general selection mechanism that all social knowledge pro-
duction relies on for object formation. Following Kant’s argument that the object per 
se cannot be perceived, but just its appearance for us, objects for the social sciences 
are only available for study if they have cultural meaning and significance. Every-
thing else is just noise. The mechanism of object formation guarantees that the social 
sciences are not concerned with a fixed combination of raw material but with a con-
stant formation process of permanently changing objects that has the effect of making 
each of the objects individual.     

A second individualistic feature of the social sciences relates to the science of ac-
tion. An acting individual assigns meaning and significance to their actions according 
to their culture, history, socialisation experience, educational background and so on, 
and each “subjectively assigned meaning” forms a single case. Weber is interested in 
individual actions, not for their own sake, but to derive typologies and learn about 
regularities resulting from social and cultural frameworks such as institutions. 

These idiographic features of Weber’s foundation for the social sciences did not 
exclude the nomothetic tradition.  Weber also relied on the Neo-Kantian philosopher 
Heinrich Rickert, who had developed Windelband’s distinctions in a methodological 
direction. If cultural significance and meaning are the selection mechanism for per-
manently changing social science object formation, then the notions and concepts to 
name these individual objects and their relations cannot claim to represent social 
reality per se, as they would have to if they were to be a pre-requisite for law state-
ments. Instead, concept formation has to match object formation. The objects of social 
science are not representations of some natural kinds, they are constructed by apply-
ing a selection mechanism. The concepts, accordingly, are not images of reality that 
map representations and they have to follow the same fluent construction mechanism 
as applied in object formation. Concept formation proceeds “individualistically”.     

This is achieved by the Weberian ideal type. An ideal type is an instrument of con-
cept formation “that is specific and indispensable for any sciences concerned with 
human culture” (Weber 1988: 190). To form an ideal type, a conceptual extreme is 
constructed from empirical reality. This gives it a logical consistency that enables it  
to serve as a formal instrument and heuristic tool. “The ideal type is constructed by 
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partially emphasising one or more characteristics and by combining many diffuse and 
discrete, more or less - sometimes not at all – present individual phenomena – a pro-
cedure which allows one to build a unified thought concept from these partially  
emphasised characteristics.  In its conceptual purity the ideal type does not exist in 
empirical reality, it is a utopia. For historical work the task remains to state for each 
single case how close or how distant reality comes to this thought concept” (Weber 
1988: 191). An ideal type is a kind of heuristic jig pattern: with this descriptive tool 
we can describe empirical reality, develop typologies, and characterise single objects, 
regularities and processes. The value of an ideal type depends on its utility: if an ideal 
type does not assist research it should be modified or even abandoned4.  

This method of concept formation permits a very exact account of the way that sci-
entific statements are generated. The ‘recipe’ of concept formation is completely trans-
parent. One no longer needs to consider ontological or epistemological problems such 
as references to reality or classification hierarchies. Instead, one can remain on the 
level of scientific logic: whosoever follows the concept formation procedure will arrive 
at the same descriptions, conclusions and results. This is the nomothetic implication in 
Weber’s solution. Exact notions and precise formal criteria for scientific statements are 
as important in the social sciences as in the natural sciences. This is the way that the 
social sciences concerned with single cases using single concepts can produce results 
that are universally valid for everybody, everywhere (Weber 1988: 156).     

2.5   Epistemic Aims and Interests – A Continuum 

Weber (e.g. 1988: 12ff) describes what mathematics can offer the social sciences and 
where law-finding strategies can be useful, but he also indicates where and why a 
different approach is a necessary complement in order to provide additional knowl-
edge5. The social sciences are not a ‘pre-science’ waiting to approximate the state of 
the natural sciences via more and more discovery and mathematisation of the laws of 
the social realm.  Weber’s solution should have finalised the methodological dispute 
in political economy: as Joseph Schumpeter put it, it was “substantially a history of 
wasted energies which could have been put to better use” (1954: 814). But, since a 
similar debate in social simulation between the proponents of “abstract social proc-
esses” and those of “history-friendly and stakeholder-sensitive models” continues, it 
might be useful to see what lessons we can learn from the dispute.    

If we leave aside the sometimes colonising and patronising rhetoric of “good sci-
ence” in the present debate about social simulation, the Weberian view makes plain 
the differences in the epistemic aims and interests that lead to different – but never-
theless scientifically sound – simulation methodologies.  

                                                           
4 With this approach, Weber again was in accordance with Joseph Schumpeter: “To claim that 

the ‘laws’ of economic theory were nothing but “hypotheses made up by us”, “just arbitrary 
as definitions” and only to be judged in terms of their “utility” was to fly in the face of Vi-
enna orthodoxy. […] Weber was a methodological constructivist, and Schumpeter, as one of 
the very few economists, joined him in this at an early stage” (Osterhammel 1987: 111).  

5 Weber agreed that there were law-like regularities in the social world that could be expressed 
mathematically but also argued that the abstract level of such statements missed the object 
and the scientific task of the social sciences. 
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The nomothetically dominated sector is characterised by an interest in the most ab-
stract and general features of the social world and the mathematically tractable axi-
oms and theorems that surround them (left side of figure 1). A law in this sector has to 
be well-formed (a scientific hypothesis) and must provide generality:  

 

“that is, we demand that at least one of the variables occurring in the law for-
mula be prefixed by the operator ‘for every’, ‘for almost every’, or ‘for most’; 
if the former is the case, i.e. if the law is a strict universal hypothesis, then we 
usually dispense with the explicit addition of the quantifier. If the law refers to 
an individual (as in the case of the geophysical laws, which refer to our 
planet), we require that the statement expresses the regular behaviour of the 
individual as shown by a universal quantifier with respect to time; the quanti-
fier may be unrestricted or bounded, and it may be manifest  or tacit but must 
be there: otherwise the proposition would be singular rather than general. If, on 
the other hand, the law formula does not refer to an individual but to a class, 
we may tolerate quasi-generality (…). ‘Most’ and ‘almost all’ are not treated 
with respect by logicians, who lump them together with ‘there is at least one’, 
but in science their status is much higher than that of the existential operator: 
an almost-all-formula may be a law proper, and a most-formula may promise a 
universal law” (Bunge 1967: 334f).   

 

Single cases are not excluded in this perspective, as Bunge notes. However, it is 
important in what way they are of interest. Either they are just examples: the aim is to 
arrive at law statements for classes of objects, the closer to universal the better, and 
single cases just instantiate the law. Or, if single cases are treated as individuals, they 
must provide the required generality in the time dimension.  

Bunge argues that, though this approach relies on a realist ontology, it only needs 
epistemological consideration: statements about laws are something other than the 
underlying structures that the statements refer to.  Science only refers to statements:  

 

“‘Law’ (or ‘objective law’, or ‘nomic structure’) designates an objective pat-
tern of a class of facts (things, events, processes), i.e. a certain constant rela-
tion or mesh of constant relations really obtaining in nature, whether we know 
it or not. A law, in this sense of nomic structure, is an extraconceptual object, 
like the flow of a river. But, unlike the flow of a river, its laws cannot be 
pointed too: they are imperceptible. In short: the concept of objective law is 
empirically meaningless: which shows that it is not trivial. We cannot exhibit a 
specimen of an objective law but we can utter a definite description (…). 
Whether we acknowledge the existence of objective laws or not we need this 
concept, if only to argue against the philosophical hypothesis that there are 
laws underlying the law statements. 
‘Law formula’ (or ‘nomological statement’) designates a proposition or a pro-
positional function that is usually supposed to describe a law or a part of a law 
(nomic structure). A law formula is a conceptual object, namely a scientific 
hypothesis satisfying certain requisites of generality, corroboration, and sys-
temicity” (Bunge 1967: 344).  

 

The idiographically dominated area is characterised by an interest in the particular 
and singular features of social phenomena and the detailed descriptions and history that  
contextualise them (right side of figure 1). Single cases are of special interest for their 
own sake – not only as representative of features that are constant or generalisable over 
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time. On the contrary, the ever changing context, i.e. the exact time and location, is the 
most important determinant for each observable. The researcher acts like an anthro-
pologist and ethnographer, reconstructing a social field in a permanently changing 
cultural context, where:  

 

“we do not have direct access, but only that small part of it which our infor-
mants can lead us into understanding. This is not as fatal as it sounds, for, in 
fact, not all Cretans are liars, and it is not necessary to know everything in or-
der to understand something. But it does make the view of anthropological 
analysis as the conceptual manipulation of discovered facts, a logical recon-
struction of a mere reality, seem rather lame. To set forth symmetrical crystals 
of significance, purified of a material complexity in which they were located, 
and then attribute their existence to autogenous principles of order, universal 
properties of the human mind, or vast, a priori weltanschauungen, is to pretend 
a science that does not exist and imagine a reality that cannot be found” 
(Geertz 1973: 20). 

 

Since object formation is part of the procedure, a constructivist approach to knowl-
edge production is implied. However, again we need not necessarily refer to ontology: 
only epistemological issues such as theory formation using ideal types as heuristic 
tools are involved at the level of scientific discourse.  

It is hard to envisage any empirical academic discipline implementing either ex-
treme of the continuum. However, looking at the academic spectrum as a whole, theo-
retical mathematics and narrative hermeneutical history are located near the poles, 
and all the empirical sciences may be placed somewhere in between. 

Nomothetic

 Mathematics

 Comte’s sociology
          Menger’s economics             
                                             Weberian sociology

Schumpeterian economics 
                                                                                             History 

Idiographic
 

Fig. 1. Continuum of epistemological approaches, and the positions taken by some early social 
scientists 

3   Nomothetic and Ideographic in Social Simulation 

Using agent-based models, it is claimed that we can find “the trade-off between sim-
plicity and abstracting in modelling, and [take] into account the complexity of (…) 
reality” (Pyka and Grebel 2006: 17). How is this trade-off realised according to the 
epistemological continuum visualised in Figure 1? 



 The Epistemologies of Social Simulation Research 21 

In some simulation studies, the term social mechanism is used as a synonym for 
social law, implying a nomothetic approach. However, as Mayntz states  “a still in-
complete list of definitions assembled by Mahoney counts 24 different definitions by 
21 authors. Mechanisms are considered to be lawful processes, yet they are also op-
posed to laws” (Mayntz 2003: 3). One can find definitions which stress that mecha-
nisms are “truncated abstract descriptions” generalising causal propositions (e.g. 
Machamer, Darden and Craver 2000: 15).  However, one can also find the opposite 
where a social mechanism (SM) is a “well-articulated set of causes responsible for a 
given social phenomenon. With the exception of typical simple ones, SMs tend to be 
idiosyncratic and singular” (Boudon 1998: 172).  

The term mechanism is most useful, not to distinguish between nomothetically and 
idiographically oriented simulation studies, but to point to commonalities. For 
Mayntz, a mechanism – as opposed to propositions about correlations6 - is a causal 
reconstruction of a social event, structure or development. “There should not be too 
much proximity between cause and effect”, “mechanisms state how, by what interme-
diate steps, a certain outcome follows from a set of initial conditions”, a process 
which “can contain feedback loops, and each unit involved in the process may un-
dergo changes” (Mayntz 2003: 4f).     

This idea of mechanism lies at the heart of social simulation. “Agent-based models 
provide computational demonstrations that a given microspecification is in fact suffi-
cient to generate a macrostructure of interest. (...) Thus, the motto of generative social 
science, if you will, is: If you didn’t grow it, you didn’t explain its emergence“ (Ep-
stein 2006: 8). All agent-based models involve more or less elaborated, complex, and 
detailed social mechanisms in this sense. The reason that modellers employ different 
degrees of generality is related to their epistemic aims and interests and can therefore 
be visualised on the continuum shown in Figure 1. Figure 2 gives a rough illustration 
of how one might use such a visualisation. 

Nomothetic

Mathematics

Models of abstract social processes
    Empirically-grounded models

                                                      History-friendly models
                                                One-to-one simulation

History 
Idiographic

 

Fig. 2. A Typology of Simulation Studies 

                                                           
6 The same opposition applies to the covering-law model of causal explanation, by the way, as 

Mayntz states citing Bunge and Hedström & Swedberg: “The covering-law model is often 
criticized for the same reason brought against correlational analysis: a nomological-deductive 
explanation involving lawlike prepositions supplies no understanding, it gives no clue what-
soever as to why a relationship exists: covering-law explanations in the social sciences there-
fore normally are ‘black-box’ explanations” (Mayntz 2003: 3).  
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As an example, consider the general human concept of neighbourhood. There are 
nomothetically-oriented simulation studies that assume that there is a law that states 
that every neighbourhood interaction involves a transfer which depends on the attrib-
utes of the actors involved and the kind of contact. This is an idea taken from classical 
epidemiology in biology and applied to the sociology of neighbourhoods7. If we treat 
epidemic as an underlying abstract social process we can find simulation studies using 
this general “social law” (you get what your neighbours have) to model social phe-
nomena such as innovation diffusion, segregation, and opinion dynamics (e.g. Bagni et 
al., 2002; Deffuant, 2006; Dunham, 2005; Hegselmann & Krause, 2002; Huang et al., 
2005; Otter et al., 2001; Salzarulo, 2006; Srbljinovic et al., 2003; Stauffer et al., 2004). 

However, the criteria of nomothetic modelling are not completely met by these ap-
proaches. Neighbourhood dynamics modelling could be considered to be like a law 
statement “if and only if (i) it is general in some respect and to some extent; (ii) it has 
been empirically confirmed in some domain in a satisfactory way, and (iii) it belongs 
to some scientific system” (Bunge 1967: 361). Concerning the second requirement, 
often only anecdotal evidence is presented when targeting the empirical confirmation 
of epidemic social processes. The third requirement, however, is nearly always dis-
pensed with. To belong to a scientific system, it would have to be embedded in a 
theory, i.e. refer to a given subject matter, in which every member of its set of partici-
pating scientific hypotheses is either an initial assumption (axiom, subsidiary assump-
tion, or data) or a logical consequence of one or more initial assumptions, and which 
provides explanation and predictions that are testable (cf. Bunge 1967: 381ff).  

We would have to consider carefully the epistemic claims of modelling “epidemic 
social processes” to see where and how these requirements are covered. So far, simu-
lation studies that model neighbourhood interaction are usually rather unconnected to 
the body of existing social theory and unconcerned about empirical validation issues. 

Looking at the right side of the continuum, we find completely different concerns. 
For idiographically oriented modellers, the aim is to understand and explain a special 
case, the history of an individual formation. For example, the modellers of the Kay-
enta Anasazi population in Long House Valley state: “Our model closely reproduces 
important spatial and demographic features of the Anasazi in Long House Valley from 
about A.D. 800 to 1300. To ‘explain’ an observed spatiotemporal history is to specify 
agents that generate - or grow - this history. By this criterion, our strictly environ-
mental account of the evolution of this society during this period goes a long way 
toward explaining this history“ (Axtell et al. 2002: 7279). 

Such idiographic modelling, which starts from data not from theory, inherits the 
problems of empiricism: it assumes the possibility of “innocent data” provided by 
pure observations that will in the end give the complete picture. “The base of empiri-
cal science becomes [...] a system of a priori theories. If their claims are false, it is 
only because they are inconsistent: if they are true, they are a priori true. Bed-rock 
theory-elements of empirical science would have exactly the same epistemological 

                                                           
7 Maassen and Weingart (2000) identify the facilitation of cross-domain communications as one 

of the main advantages of  transferring metaphors in science. However, to what extent such a 
conceptual transfer can successfully be completed is critically discussed  (e.g. in the chapters 
of Weingart and Stehr 2000). 
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status as formal systems of logic. ” (Balzer, Moulines and Sneed 1987: 417). We will 
not elaborate on the complex interactions of empiricism, constructivism, and relativ-
ism (cf. Ahrweiler 2001), but they certainly lurk behind the farthest end of the contin-
uum’s idiographic end.  

4   Evaluating Simulation Studies 

As we have argued elsewhere (Ahrweiler and Gilbert 2005), a simulation is good when 
it serves our epistemic aims and interests. In this chapter, we have pointed out that 
there is not just one legitimate aim for simulation studies, but a continuum between the 
nomothetic and idiographic extremes. Whether particular studies are “good” or “bad” 
depends on the criteria defined by their particular user group, that is, the group defining 
their specific epistemic aims and interests. The evaluation of any simulation is guided 
by the expectations, anticipations and experience of the communities that use it.  

Accordingly, there is a range of evaluation criteria, corresponding to the continuum 
of objectives. Although these criteria should rightfully be defined by the communities 
themselves, we can review attributes that we know to be of some importance for them. 

For nomothetically oriented modellers, the simplicity of their models seems to be 
crucial. So, for example, after exulting that “Occam's razor slashed again” (Kennedy 
and Eberhart 1996: section 3.7), the conclusion of a particle swarm simulation of 
social behaviour states: 

 

“The goals in developing it have been to keep it simple and robust, and we 
seem to have succeeded at that. The algorithm is written in a very few lines of 
code, and requires only specification of the problem and a few parameters in 
order to solve it. This algorithm belongs ideologically to that philosophical 
school that allows wisdom to emerge rather than trying to impose it, that emu-
lates nature rather than trying to control it, and that seeks to make things  
simpler rather than more complex. Once again nature has provided us with a 
technique for processing information that is at once elegant and versatile” 
(Kennedy and Eberhart 1996: section 6).  

 

Where the epistemic interest points to an empirically-rich idiographic modelling 
strategy, criteria such as the model’s fits to data, its predictive adequacy, its practical 
usability and its transparency are important issues for evaluation. Sometimes, the 
hoped-for achievements can be argued quite strongly: the article Towards Good Social 
Science (Moss and Edmonds 2005) is introduced as “as propounding a neo-positivist 
position — that the social sciences should be more like the natural sciences”. In par-
ticular the authors argue for the following:  

• “The fundamental priority of observation and evidence over models and theory  
• The importance of the multiple validation of theory  
• Not relying on theory that is not sufficiently validated (and certainly not as a 

justification for further theory generation)  
• That evidence should not be excluded if at all possible, especially anecdotal 

evidence from stakeholders  
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• That much more effort should be expended towards developing new tech-
niques for the observation of social phenomena  

• That much descriptive modelling at a low, concrete level will probably be 
necessary before successful and useful more general theory can be developed  

• That some of the modelling and description needs to be of a formal (but 
probably computational and not analytic) nature so that we know what we 
are comparing and talking about  

• That agent-based simulation can help facilitate the above” (Moss and Ed-
monds 2005: 7.1-7.2)  

In contrast, we have suggested that this is only one of a range of possible and justi-
fiable positions.  

Summarising, the debate within social simulation has many connections with the 
debates that have echoed down the years within the wider social science community 
about the character of social science knowledge and the appropriate methodological 
assumptions on which social science research should rest. Learning from this debate 
and its resolution, evaluation criteria for simulation studies need to be tuned to their 
research aims, methodological positions and domains of study.  Communities have to 
offer and develop explicitly their own “best practices” of doing simulation research, 
rather than having their epistemological approach dictated to them by methodologists. 
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Abstract. Of late, due to the perceived advantages of the generative paradigm 
(Epstein 2002, 2005; Arthur 2004), a generative variant of agent based model-
ling and simulation, i.e. Agent Based Generative Social Simulation (ABGSS), 
has received a great impulse. In this paper, weak ABGSS, i.e. the thesis that 
growing a social effect is necessary but insufficient to explain it, is supported. 
Casting a critical eye on the debate about generative simulation, it will be  
argued that ABGSS needs to be fed by, but at the same time provides feedback 
to, two theoretical complxements which must be formulated prior and inde-
pendent of simulation itself: (a) bottom-up theory of general local rules, and of 
the process from them to macroscopic effects; (b) theory of downward causa-
tion, showing how local rules are modified by the effects they contribute to 
achieve. This twofold thesis will be carried out while discussing three main ex-
amples of social phenomena: the witness effect, Schelling’s segregation model 
and the ethnic homogeneity of violence, and the minority game.  

Keywords: Agent-based generative social simulation, bottom-up theory, top-
down theory, multiple realizability, social emergence. 

1   Introduction 

In the last few years, Agent Based Social Simulation (ABSS) has received a great 
impulse, owing among other reasons to the perceived advantages of the generative 
paradigm (Epstein, 2002; 2005; Arthur, 2004). 

Epstein formulated a variant of agent based social simulation, i.e. Agent Based 
Generative Social Simulation (ABGSS), which he explicitly asserts to be necessary 
for explanation: 

For all x(not G x materially implies not E x) 

In words, if you do not grow something, you cannot explain it. However, the author 
warns the reader that since there may be several paths leading to the same result, grow-
ing x is said to be not sufficient to explain it1. Hence, two theses about ABGSS emerge: 

• Weak: Grow is necessary but not sufficient to Explain (Ex ⊃ Gx)), 
• Strong: Grow is not only necessary, but also sufficient to Explain; Grow = Ex-

plain (Gx = Ex) 
                                                           
1 One ought to be clear in keeping distinct the approach, which is said to be necessary but insuf-
ficient, from the explanation it allows, precisely because the latter is said to be sufficient but 
not necessary. 
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Epstein supports the weak thesis. 
In this paper, I will argue in favour of weak ABGSS for reasons which overlap 

only in part with Epstein’s. Casting a critical eye on the debate about generative simu-
lation, I will argue that ABGSS is an innovative process crucial to produce effects 
upon which to theorize, in principle allowing to open the black box during behav-
ioural experimentation. However, is no theory per se: not (only) because, as Epstein 
recognizes, there may be several ways to obtain the explanandum, but also because: 

Often, generation turns into a shortcut: much as happened for a long time with ex-
perimental behavioural sciences, the general precept “what are the minimal conditions 
under which x occurs” leads to ad hoc2 analytical as well as simulation models. 
Hence, a bottom-up generative theory is needed to generate the explanandum in a 
scientifically significant way. 

In the variant formulated by Epstein, ABGSS is only a bottom-up paradigm, ignor-
ing downward causation and the micro-macro link. This limits the explanatory and, 
for that matter, generative power of simulation. A generative theory of downward 
causation is also needed, showing how local rules are modified by the effects they 
contribute to achieve. 

In other words, generative simulation is an invaluable tool for explanation if it is 
both theory-making (from simulation to theory) and theory-driven (from theory back 
to simulation). I will show this by some examples: the witness effect, Schelling's 
segregation model and the ethnic homogeneity of violence, and the minority game.  

1.1   Organization of the Paper 

In the first section, both notions of generation and explanation will be re-examined. In 
the following two sections, the necessity of ABGSS for social theory will be argued, 
provided both downward and upward theories are included according to the schema 
below: 

Macro Regularity 
(MR)

Downward 
theory 

Upward 
theory 

local rules 
(lr)  

 

Fig. 1. ABGSS 

 

where upward theory concerns the process from local rules at one level of explanation 
(individuals), in one direction (bottom-up), to a theory of social processes and proper-
ties, and downward theory concerns the process leading from social effects back to local 
rules. 
                                                           
2 Indeed, the semantics of “minimal conditions” ought to be clarified: are they to be meant as 

simplest possible local rules, or most general? Unlike the latter, the former semantics of mini-
mal conditions include ad hoc models. 
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2   Re-discuss ABGSS 

For Epstein, to generate a social phenomenon by means of agent-based simulation 
requires one to  

  

“situate an initial population of autonomous heterogeneous agents (see 
also Arthur) in a relevant special environment; allow them to interact 
according to simple local rules, and thereby generate - or ‘grow’ - the 
macroscopic regularity from the bottom up” (Epstein 1999, 41; italics 
are mine). 

 

Fully to appreciate the heuristic value of ABGSS, one needs to clarify what is 
meant by explanation. We will turn to this task below. 

2.1   Generation and Causal Explanation 

This is not the forum for a survey on the philosophical and epistemological debate on 
explanation and causal typologies. Far too many notions and types of explanation 
have been identified in the last two thousand years or so to provide an exhaustive 
survey of the subject matter. However, the idea that explaining phenomena has some-
thing to do with generating them is not new. Explanation (cf. Hall3 2004; but see also 
Gruene-Yanoff 2006) is often grounded on different types of causes, a subset of 
which goes back to Hume and his notion of producing causes. What is and how can 
we tell a producing cause? 

 

 “I find in the first place, that whatever objects are considered as causes 
or effects are contiguous; and that nothing can operate in a time or 
place, which is ever so little removed from those of its existence. Two 
distant objects may sometimes seem productive of each other, they are 
commonly found upon examination to be linked by a chain of causes, 
which are contiguous among themselves, and to the distant objects” 
(Hume, 1739, 75) 

 

For the purpose of the present discussion, what is interesting about this definition is 
the procedural nature of explanation: for the British philosopher, to explain a given 
event means to bridge the gap from producing causes to resulting effects, unfolding 
the “linked chain of causes” in between. Hence, the process called for by the philoso-
pher is a sort of reverse engineering: reconstruct the whole chain from remote causes 
to observed effect. But where to start, or better, how far back should one go to avoid 
ad hoc explanation? I will suggest that producing causes and their link to effects must 
be hypothesized independent of generation: rather than wondering “which are the 
sufficient conditions to generate a given effect?”, the scientist should ask herself what 
is a general, convincing explanation, and only afterwards, she should translate it into a 
generative explanation.  

To see why, I turn the reader to an interesting discussion of generative simulation 
in Gruene-Yanoff (2006). He seems to have an analogous intuition when he observes 
                                                           
3 For Hall, explanation is either based on counterfactual dependence – i.e. explanandum being 

removed by removing explanans – or on a producing cause. 
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that producing events are insufficient for causal explanation unless they are shown to 
be typical or regular causes by means of “evidential support from independent 
sources” (ibid.), such as direct observation, well-confirmed theory, or transferable 
results from experiments. A producing cause is necessary and sufficient for what the 
author calls a “constitutional” explanation of the produced event, an expression that in 
a successive rewriting of the paper he replaced with that, far more ambiguous, of 
“functional” explanation. A functional explanation is usually intended to explain 
phenomena in terms of the effects they bring about and from which they are repro-
duced (as Aristotle’s “final cause”), a subset of which are the goals agents pursue, the 
final causes of their actions. Instead, a “constitutional” explanation, if I understand 
correctly the point Gruene-Yanoff tries to make, is a form of reverse engineering, 
reconstructing the process to a given effect, much as Hume suggests.  

For Gruene-Yanoff, a generative simulation is neither sufficient for causal expla-
nation (which is something Epstein would agree with), unless there is independent 
evidential support, nor necessary for causal explanation (which instead is something 
Epstein would not agree with), essentially because there is a lot of theories that pro-
vide causal explanation without running on a computer (Simmel effect, Witness ef-
fect, etc.), but it is both necessary and sufficient for constitutional explanation. 

Plenty of reasons for discarding the strong variant of ABGSS are now available, so 
I will not address the argument of insufficiency any further4. Instead, the argument 
made by Gruene-Yanoff on necessity, and in particular his point about regularity 
deserves attention. 

Indeed, many interesting social theories never received a generative explanation. 
This is true not only for analytical theories, such as game theory, which can easily be 
translated into programs running on computers (what is the case with simulation-
based studies of the evolution of cooperation, as in the immense literature that took 
impulse from Axelrod’s work in the early 80s). Nor is this the case only with highly 
dynamic theories, such as Simmel’s theory of fashion, which in fact has recently been 
translated into simulation models (cf. Pedone and Conte, 2000). It is true also of theo-
ries like the Witness Effect (WE, cf. Latané and Darley, 1962), which apparently 
describes no large-scale, dynamic phenomena resulting from heterogeneous agents in 
interaction. Let us turn our attention to the WE. Is it a good explanation? What would 
a generative variant of this theory be like? And what would the value added of such a 
generative variant be? 

The WE occurs in social emergencies: whenever bystanders reach and overcome 
number three, the probability of intervention to the victim’s help has been found (La-
tané and Darley, 1970) to drop dramatically. Indeed, the probability of a stalemate 
increases with the number of bystander. Why? 

Latané and Darley account for the WE in terms of a majority rule, on the grounds 
of which agents monitor one another and receive inputs as to how interpret and react 

                                                           
4 However, it should probably be observed that G-Y argument is weaker than Epstein’s: al-

though one might concede that current simulation-based theories of social phenomena are 
poorly verified cross-methodologically, there is no reason why in principle this should not 
happen, and indeed it starts to happen as this type of research is on the increase (see also Di 
Tosto et al. 2007; Paolucci et al., 2006). Instead, in principle there is no way to ascertain that 
what the program simulates is a necessary way to get to a given result. Hence, as Epstein 
states, one given generative explanation can never be said to be necessary. 
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to (social) events. As three is the minimum number required for a majority to exist, it 
is also a critical threshold in the occurrence of the WE. This theory, very simple and 
elegant, has received a great number of evidential support from both experiments and 
observations, as well as theory-based confirmations (see the psycho-social literature 
on the influence of majority). 

Making an instructive exercise, let us ask ourselves how translate such a theory 
into an agent-based simulation model. The answer may be easy: implement the major-
ity rule as a simple local rule, and look at its effects. 

Why does such a use of simulation appear inexorably boring? There is more than 
one reason. 

First, this type of generative simulation would be based upon a previous causal ex-
planation, namely Latané and Darley’s theory. Rather than providing an explanation 
of its own, the simulation shows whether an existing one actually works, producing 
the expected effects. The generative simulation is therefore used as a proxy of the 
analytical model, once a causal explanation is available. 

Secondly, and moreover, whereas the theory by Latané and Darley has the heuristic 
and innovative power of a good scientific explanation, its above-described simulation 
variant would be completely ad hoc. Why, one might ask, the psychosocial theory is 
explanatory and the simulation model is ad hoc, if in both cases, the same explanan-
dum - i.e. WE - is consequent to the same explanans - i.e. the majority rule? 

Giving it a second thought, the explanans is not exactly the same. The psychoso-
cial theory does not simply have the majority rule producing WE. Furthermore, ac-
cording to this theory agents have a majority rule somehow operating in their minds! 
This is no hair-splitting: in looking for a causal theory, scientists do not content them-
selves with any producing factor. They seek an informative explanation, which incor-
porates additional understanding of the level of reality that the phenomena of study 
belong to. In our example, an explanation that adds understanding on social individu-
als. That a majority rule leads to WE under specified conditions tells us nothing new 
about agents’ behaviours. Instead, that agents are governed by an internal majority 
rule, and consequently may interfere negatively with one another under specified 
conditions, is interesting news. This we learned from the work of Latané and Darley, 
independent of generative simulation. 

Let us go back to Hume and his procedural characterization of generative explana-
tion, according to which the causes of any given event are found out to the extent that 
one has reconstructed the whole chain leading to the event being brought about. This 
type of explanation is feasible only if a sufficiently informative cause has already 
been singled out, i.e. if a theory already exists! Per se, the generative explanation 
does not tell you where one should stop in the reverse engineering starting from the 
event to be explained. Which producing event is sufficiently informative to provide a 
causal explanation? To state it with Hartmann: "There is no understanding of a proc-
ess without a detailed understanding of the individual contributions to the dynamic 
model. Curve fitting and adding more ad hoc terms simply doesn’t do the job" (Hart-
mann, 1996; italics are mine). 

2.2   Generate and Reproduce 

Consider natural experiments: the behaviours that are observed in laboratory are some-
times explained in the sense required by Gruene-Yanoff. But are they also generated? 
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In laboratory, independent variables are manipulated to observe their effects on the 
target phenomenon, and by this means to reproduce it. Most certainly, Epstein and 
Hume would convene that in laboratory one cannot unfold the whole chain of events 
from independent variable to observed effect, which is precisely what a generative 
explanation is supposed to do. 

However if generate means find out local rules allowing the phenomenon to occur5, 
then generation is also allowed in laboratory. Certainly, experimental simulation is 
better than natural experiments at formulating and observing the effect of local rules. 
But it won’t tell us if these are irrelevant, ad hoc, poorly informative etc. Like a clas-
sic black box experiment, which tells us little about what went on between the ma-
nipulated variables and the effect observed, simulation per se tells us neither how far 
to proceed in the reverse engineering from the effect backward to find out interesting 
local rules, nor whether the algorithm produces the “linked chain” from causes to 
effects, or a simple shortcut! Where is the difference between the two methodologies? 
They both look for the minimal sufficient conditions for the effect to occur. Is this 
what is meant by growing? This time, we believe that Hume would divorce from  
Epstein: whereas the Santa Fe simulator defines growing as finding the minimal suffi-
cient conditions for a given explanandum to occur, for the British philosopher remote 
causes are not explanations until all the intermediate factors from remote causes to the 
effects are reconstructed. And, I would add, unless those causes are not formulated 
prior to and independent of generation. Indeed, the ability to provide a generative 
explanation is no more inherent to simulation than it was to laboratory experiments. 
In both cases, what makes the difference is whether the search for local rules and the 
link from rules to effect are theory-based or not. 

2.3   ABGSS Redefined  

To be convincingly backed up, any explanation ought to be tested by means of a gen-
erative simulation. From the previous discussion, we draw two other lessons: 
 

• Generative explanation requires a theory of the causes from which to grow the 
effect, otherwise the explanation is irrelevant and a hoc.  

• Generative explanation requires a theory of the linked chain of events from those 
causes to effects, otherwise there is no generative explanation but mere reproduction 
of the effect. 

Still, to what extent would social properties be explained by a truly generative 
ABGSS, based on both theories just mentioned? Only to a partial extent, unfortu-
nately. Let us go back to Epstein’s definition for a moment: 

“situate an initial population of autonomous heterogeneous agents (see 
also Arthur) in a relevant special environment; allow them to interact 
according to simple local rules, and thereby generate - or ‘grow’ - the 
macroscopic regularity from the bottom up” (Epstein, 1999, 41; italics 
are mine). 

 

                                                           
5 “Ultimately, ‘to explain’ (...) society (...) is to identify rules of agent behaviour that account 

for those dynamics” (Dean et al. 1999, 201). 



 From Simulation to Theory (and Backward) 35 

As I will try to show in the rest of the paper, this view of ABGSS prevents it from 
being applied to account for the downward process from social properties to local 
rules. But if this is not accomplished no full account of social phenomena is provided, 
since causal autonomy of social systems is ruled out. 

Let us start from a more detailed discussion of the necessity for a complex theory 
of the upward process, and then I will turn to the theory of the complementary, 
downward process. 

3   Bottom-Up Theory 

Two components of a generative theory of the upward process from local rules to 
macroscopic effects must be provided, a general theory of local (individual) systems, 
and a theory of the linked chain. The example discussed below is intended to clarify 
both components. 

3.1   Segregation and Violence 

The famous segregation model by Schelling (1971) is usually interpreted as a visual 
metaphor for social, even ethnic segregation. He discovered that by placing pennies and 
dimes on a chess-board - where each square represents a house or a lot in a city and 
pennies and dimes any two groups in society - he could represent the interplay among 
residential preferences of neighbors. He let agents move around according to various 
rules. One obvious rule is simply stick to own current location if happy with own 
neighbors and move to another, or possibly just exit the board entirely, if unhappy. 

The author found that a strongly segregated pattern emerges when agents are un-
happy with other-type neighbors. Surprisingly, however, this was also the case even 
with agents expressing a mild preference for own-type neighbors6. As any other good 
Cellular Automata model, it shows a number of interesting things, namely that equi-
librium states are not the norm in social phenomena (see later on in the paper); there-
fore simulations, which do not have this bias, are particularly apt to investigate them, 
not to mention that simulations are very good at incorporating time and space.  

Now, consider the following passage, quoted from another site where a re-
elaboration of the Schelling’s model is presented: “rather than a full understanding of 
the highly complex outcomes of processes, this type of simulations allows us to un-
derstand the decision rules of a small number of individual actors” (quoted from: 
http://web.mit.edu/rajsingh/www/lab/alife/schelling.html; italics are mine). The inter-
est in this passage is twofold: first, it explicitly gives up the objective of a full under-
standing of the process at hand; secondly, and more interestingly, it states that this 
type of simulations allows us to understand individuals’ decision rules. 

The latter assertion is unfortunately too optimistic. Indeed, the segregation model 
itself is much less ambitious than this particular supporter believes to be the case: 
rather than an understanding of individual decisions, it shows the macro-social effects 
of individual decisions. In a sense, the model shows that social dynamics, imple-
mented on individual decisions, contributes decisively to social results; there is no 

                                                           
6 The reader is invited to specify different happiness rules and check their effects on a demo 

board, by visiting the following site: 
http://www.econ.iastate.edu/tesfatsi/demos/schelling/schellhp.htm#intro 
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need, in sum, for deeply racist individual deciders to obtain a segregated society: such 
an undesirable effect is produced by members with a mild preference for their own 
kind. Societies can be more segregated than their members want them to be. This is 
interesting news. But what does it tell us about individual deciders? Not much.  

First of all, and obviously, one might obtain the same result by implementing resi-
dential rules that have nothing to do with racist attitudes, for example a preference for 
homogenous (even if different from own) environments over mixed ones, or charac-
terizing the two subpopulations with different, but internally consistent, attitudes to 
migrate: this might be interpreted as a metaphor for a different purchasing capacity or 
a different mobility inherent to different social groups, but has nothing to do with 
racist attitudes. Precisely because segregation is an emergent effect of different local 
rules, it says nothing about these. Hence, it says nothing about the cause of segrega-
tion: no bottom-up theory is available. 

Secondly, and more interestingly, simulation per se says little about the emergent 
process either, i.e. the dynamics leading from decisions to the effects. How is this pos-
sible, one could ask, if one can stop the simulation at any given tick and see how things 
are proceeding? Unless one has a theory of intervening factors, what one sees in the 
simulation is only the consequence, so to speak, of local rules. For example, how com-
plex is the emergent process leading to segregation? To what extent does it interfere, if 
it does so, with local rules? We will come later to this point.  

In the meantime, let us look into some detail one important social phenomenon, 
which apparently is tightly linked to segregation, i.e. violent crime. It is largely rec-
ognized that 95% of it is ethnically homogeneous. According to Kelly (2000), “Vio-
lent crime is better explained by urban flight than inequality”. What does he mean? 
Suppose one decides to turn to simulation for an explanation. By means of simulation, 
one might generate the phenomenon with simple ad hoc rules of the type “rob out-
groups” and “kill in-groups”, but I am afraid one would not advance far deep into 
understanding the phenomenon of interest.  

To say the truth, the segregation model might help find an answer: if neighbours 
are homogeneous, people will kill in-groups more often then out-groups.  

True. But how do we explain that people rob out-groups? Rather than another set of 
ad hoc rules, of the sort “kill neighbours” and “rob non-neighbours”, another causal 
theory is needed, about the difference between crimes against person and crimes 
against property, and the respective underlying motivations. Rather trivially, one might 
say that, unlike property crime, violence against the person requires no social differ-
ences. In addition, and consequently, violence is frequently unplanned, if not uninten-
tional. Far from migrating elsewhere to perpetrate it, violence and riots blow up here 
and there among neighbours. Perhaps, a less trivial hypothesis suggests that violence 
against persons derives from competition over the same (scarce) resources, what is 
often the case among equals and is frequent in poor homogenous neighbours, which 
probably represent the majority. A still less trivial hypothesis would propose that vio-
lence against the person is the consequence of social desegregation, loss of self-esteem 
and self-derogatory attitudes, and therefore is directed against same-type agents.  

Now, one or the other of these hypotheses is needed in order to understand the 
rules of individual deciders: a causal theory of homogeneity in violent crime is 
needed in order to and before building up a non-trivial simulation of the phenomenon 
under observation.   
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In sum, ABGSS needs upward theory to answer two questions prior to and rela-
tively independent of simulation: 

 

• Which local rules? There are three possible answers 
 Simple rules: these cannot be an acceptable answer because they ad hoc rules are 

included 
 Plausible rules (see Esptein 2005): this is too vague and again includes ad hoc 

rules 
 Suggested by a general explicit theory of individual interacting systems. For the 

theory not to be ad hoc, two properties need be attributed to such systems: they must be 
autonomous (otherwise the macro-regularity will be hardwired), but liable to down-
ward causation7 (on this last property, we will come back in the following section). 
• Which process from local rules to macroscopic effect? As the violent crime ex-

ample shows, although segregation is sufficient to generate the effect, several hy-
potheses might be brought about as to the intermediate factors (corresponding to 
Hume’s contiguous causes). Hence, segregation is not only one among many 
possible explanations, but also an incomplete one. Can a generative explanation 
be incomplete? If we consented, we would be bound to accept traditional experi-
mental science as providing generative explanation. Where would the novelty of 
ABGSS be, then. Hence, rather than accept as an explanation what is sufficient to 
obtain the macroscopic effect, we accept as generative only a theory-driven, as 
complete as possible, explanation of the linked chain from cause to effect. 

4   Top-Down Theory 

In fig. 2, we have a representation of Epstein’s argument of ABGSS insufficiency: 
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Fig. 2. ABGSS insufficiency 

Indeed, this picture is a representation of the argument of multiple realizations, ac-
cording to which a higher-level property is realized by multiple local rules, and vice 
versa the same local rule may give rise to multiple macroscopic effects. 

                                                           
7 The combination of these two properties, indeed, gives rise to what is called social intelligent 

agents (see Conte 1999). 
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This argument has led Sawyer (2003) to state that social properties cannot be ex-
plained in terms of lower-level rules or mechanisms, which instead, in Epstein’s view, 
is what ABGSS is supposed to do. Who is right? 

4.1   Multiple Realizability  

Let us consider Sawyer’s argument about multiple realizability: 
 

“For example, properties of groups like ‘being a church’ or ‘having an 
argument’ can be realized by a wide range of organizational structures, 
cultural practices, interactional patterns, and individual beliefs and dis-
positions.” 

 

One given social phenomenon is realized by means of several different local enti-
ties. Whether all of them can be described on the grounds of the same mechanism is 
an option that Sawyer finds empirically irrelevant, if ever possible: 

 

“For example, (…) one can identify a mechanism for the social prop-
erty “having an argument” such that all possible realizations of this 
property can be described in systemic terms. If each token instance of 
the social property has a different mechanistic realization, then the 
mechanism explaining any one token instance would not be a complete 
explanation of the property. (…) Sawyer (2002b) showed that a social 
property might be multiply realized in different systems that are not 
meaningfully related, using Fodor’s (1974) term wild disjunction for 
such higher-level properties. ‘Having an argument’ or ‘being a church’ 
could be realized on one token instance by one mechanism and realized 
on another occasion by a radically different type of mechanism. If the 
different realizing mechanisms are not meaningfully related, then the 
mechanistic, methodologically individualist approach would have lim-
ited explanatory power for that social property; an identification of the 
mechanism on one occasion would indeed provide an explanation of 
how that social property emerged on that occasion, but the explanation 
would not extend to the other realizing mechanisms container within 
that same social property.” (p. 268-9) 

 

Hence, social properties are said not to be reducible to the same underlying mecha-
nism, because they are realize on unrelated (wildly disjunctive) multiple realizations 
of individuals and their interactions.  

Sawyer’s finds that the property of wildly disjunctive multiple realizations of one 
social property on diverse and semantically unrelated producing mechanisms strongly 
limits the explanatory power of local mechanisms. Epstein instead believes that this 
property only shows that such explanatory power is insufficient but necessary. 

In the following, I will suggest that Sawyer is right in arguing that such an explana-
tion is fairly limited. However, as I see it, the problem does not reside in the corre-
spondence between properties at one level and mechanisms at the other: following 
Hale (1996) and Janich and Psarros (1998), I can easily accept that higher level prop-
erties are ontologically dependent on lower level mechanisms. However, this by  
no means prevents higher-level properties having causal power on properties and 
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mechanisms at the lower level.  But since the view of generative explanation dis-
cussed so far is bottom-up, it will never account for this property at the higher level. 
More specifically: 

 

• Although higher-level (social) entities and properties are realized (implemented) 
on lower-level mechanisms, nonetheless  

• They can have causal power and, consequently, must be brought into play in both 
the causal and generative explanation of lower-level phenomena, and that this is 
the case with social effects of individual rules. 

• They impact on lower-level entities (say, individuals), thereby modifying the 
mechanisms on which they are implemented. (If this is what boils down at the 
bottom of the wild disjunctive argument, so much the better.) 

In sum, the problem with ABGSS is not correspondence between levels, but 
downward causation from social properties to local rules. To see why, we will exam-
ine the argument of correspondence between mind and brain.  

Sawyer draws upon a well-known debate that is taking place between epistemolo-
gists and philosophers of the mind since the mid-70s. Although the debate goes back 
to the first formulation of Putnam’s computational functionalism, it received impulse 
from the first appearance of a famous work by Jerry Fodor, titled Special Science. The 
Disunity of science. In this work, Fodor claims that the mind is independent of the 
brain because a mental state is implemented upon a variety of brain states or patterns 
and vice versa. The consequence the author derives from this premise is that the two 
levels, the mind and the brain, cannot collapse on one level only. Indeed, to separate 
the mind from the brain is possible and necessary to understand common (universal) 
aspects of the mind independent of substrate. 

4.2   The Size of the Grain 

Such a thesis has undergone several vicissitudes. Denied and restated more than once, 
at the end of the nineties it encountered a knock-down argument expressed by two 
neuroscientists, Bechtel and Mundale (1997). In essence, their argument unfolds in 
two steps: 
 
1. While connecting mental states (for ex. hunger) to brain areas in different spe-

cies, individuals or moments in time in the same individual, the size of the grain 
is different 

2. If the size were kept equal, the argument of multiple realizations would fall: how 
tell that hunger in men is the same as in mice, or that Jules’s pain is the same as 
Jim’s?  

 
Analogously, going back to social properties, who tells that having an argument 

implemented on different local rules would be the same? 

4.3   Between Reductionism and Multiple Realizations 

Between relying on the argument of multiple realizations and resigning to accept a 
strong form of reductionism, which takes the social sciences as superfluous constructs 
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entirely reducible to the study of individuals, another possibility exists. This consists 
of defining social properties and entities as ontological dependent on lower levels but 
endowed with autonomous causal power: 
 

• Ontological dependence: all higher levels of reality (not only the macro-social) 
are ontologically dependent on the lower levels, in that they are implemented on 
lower levels until the very lowest: higher levels are not ontologically autono-
mous, since each level of reality is implemented or realized on top of the lower-
level one, until the (so far) lowest, i.e. the physical particles’.  

• Causal autonomy: at any given level of reality, entities may have the power to 
cause effects at the other levels. Hence, they are necessary for explaining the oc-
currence of these effects. 

 

Causal autonomy does not require ontological autonomy: to say that a higher level 
property is implemented on a lower-level mechanism, even a specific one, does not 
mean to deny causal autonomy to the higher levels. Even if there is no multiple reali-
zations between a given organism and its genes, still no-one would deny causal 
autonomy to the former on the replication of the latter, nor epistemic necessity in 
explaining genes’ reproduction. 

The necessity to distinguish different levels of reality does not depend on their on-
tological autonomy, i.e. on their having a “life of their own”. On the other hand, a 
one-to-one correspondence between lower level realizations and higher level proper-
ties should not lead to eliminativism (strong reductionism). Think of the big fuss that 
has been made with regard to mental causation: disturbing Descartes and the  
epistolary that he shared with the Queen of Poland, some authors (Kim, 2005) have 
re-proposed the problem whether a mental state can cause or not a behavioural move-
ment. How is that possible? Obviously thanks to the causal process leading from the 
mental state to the behavioural terminals through a long chain of intermediates, such 
as synaptic connections, etc. With a somewhat incomprehensible syllogism, from the 
premise that if it is true, as it is, that any mental state activates a given brain pattern, 
Kim jumps to the conclusion that there is no need to distinguish one from the other. 
Such a conclusion is unwarranted at least in the case of proactive action (more on this 
point, later on in this paper). A mental state is no epiphenomenon of the brain, but a 
partial and prior cause of action. Analogously, a sequence of instructions running on a 
computer is not a way to describe the computer, but a cause of the events taking place 
on the screen when the program is run. It is an intermediate cause of its observed 
behaviour. 

4.4   Weak Thesis and Social Properties  

From this digression, we get confirming evidence of what Nagel meant when he said 
that diverse levels of reality are implemented on one another and reducible to one 
another through bridge-laws, without denying autonomy and epistemic necessity to 
any of them. If reductionism asserts only ontological dependence, we can but embrace 
reductionism. If instead, reductionism is meant as denying causal autonomy to higher 
levels, in particular the existence of bidirectional relationships among levels - which 
is a typical feature of complex systems - and considering higher level properties as 
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epiphenomena of the lower level mechanisms, then reductionism is logically unwar-
ranted and scientific dangerous. To adopt it means to entomb several other disciplines 
together with the social sciences, including cognitive and neuroscience as well as 
biology, to give room to physics only - at least until this will resist the attacks of the 
antimatter! 

As to the mind-brain correspondence, let us consider the following example and 
ask ourselves what happened to the protagonist: 

 

“If Susan had not had the sudden migraine headache, she would not 
have experienced frightful anxiety (example taken from Kim, 2005)”.  

 

For the sake of simplicity, let us assume one-to-one correspondence between men-
tal and brain states and in particular that migraine is both a mental state (MS1) cou-
pled with a brain state (BS1), and analogously that frightful anxiety is characterized by 
the coupling of another mental state (MS2) with another brain state (BS2). Still, there 
are two different paths leading from one pattern to the other, and two different, 
equally possible, configurations corresponding to two different interpretations of the 
above story. 

In story 1, Susan’s migraine activates a brain state and the corresponding mental 
state that she experienced before a tumour was surgically removed from her brain. 
Hence, she is scared to death. The link between migraine and anxiety is, so to speak, 
from the bottom-up: activation spreads through synaptic connections and linked brain 
states are influenced from one another. Consequently, given the premised one-to-one 
correspondence, corresponding mental states are brought about (see fig. 2). 

Now, consider story 2. Suppose migraine (MS1 + BS1) is something Susan is not 
used to. Not knowing how to interpret it, the protagonist will be led to consider it as a 
novel symptom, perhaps the indicator of a serious disease and this will lead to a state 
of frightful anxiety (MS2 + BS2). The link between the two mental/neuronal complex 
states in story 1 is via mental reasoning and inference (see fig. 3). 

 

MS1

BS1 BS2

MS2

 

MS1 MS2

BS1 BS2  
(a) (b) 

Fig. 3. (a) Brain states activate mental states through activated brain states. (b) Mental states 
activate brain states by activating other mental states. 

How to account for the two stories if MSs collapse on BSs? Independent on one-to-
one correspondence Vs multiple realizations, each level may have causal autonomy 
and determine effect on the other. Hence, both levels are needed to give different 
explanations for the same effect. Individual rules are to social processes what brain 
patterns are to mental processes: both generate higher level properties but are insuffi-
cient to explain them.  
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Going back again to the generative paradigm, the problem with ABGSS is neither 
insufficiency or, which is the same, multiple realizations. The problem is how account 
for causal autonomy of social properties. Can ABGSS give such an account? 

In his most recent treatment of the generative paradigm, Epstein (2007) explicitly 
mentions micro-macro mapping as one of the advantages of agent-based computa-
tional modeling for behavioural research. Nonetheless, even there, he describes gen-
erative explanation as a bottom-up process. According to such a definition, therefore, 
a generative paradigm fails to account for a fundamental aspect of social theory, 
namely the way down of the micro-macro process, or, which is a another way to put 
it, downward causation (see fig. 4).   

Hence, Sawyer has reason to worry about reductionism in ABGSS not so much be-
cause macro-social properties are multiple unrelated realizations of the same local 
rules, but rather because the impact of social properties on local rules is not an object 
of study, at least according to Epstein’s definition of AGBSS.  

In the remaining part of this paper, I will endeavour to show that not only a theory 
of downward causation is crucial for social theory, but also that it is essential for 
finding plausible (read, scientifically relevant and informative) local rules on which to 
construct AGBSS. Emergent properties of social phenomena and entities retroact on 
the agents producing them, and determine second-order emergent effects (Dennett 
1995; Gilbert 2001): they start to be perceived by the agents involved, modifying their 
beliefs and, by this means, reinforcing the corresponding behaviors. To go back to the 
segregation model, what might happen in residential decisions is the interplay be-
tween second-order emergence and the initial local rules. In other words, segregation 
might initially be determined by mild preferences, but these might be reinforced as 
soon as agents perceive the effect of segregation (see Gilbert 2001). A strongly segre-
gated pattern resulting from second-order emergence might not be due to a strong 
preference, but to a process of social “learning”. Although the simulation helps inves-
tigate this alternative explanation, the latter does not come out from the generative 
explanation, but from a fruitful interplay between an explorative use of simulation and 
theoretical advances in causal explanation at the evolutionary level (the theory of 
downward causation). 

4.5   Dynamic Agents and Perpetual Novelty 

Back in 1995, Axelrod observed that one bad thing about the mainstream game theoretic 
accounts of social phenomena was the static view of agents, taken as “given”; con-
versely, one good thing about agent-based modelling and simulation was a dynamic view 
of individuals, receiving inputs from their environment, and undergoing social influence. 

However, not much simulation research has been carried out about the micro-
macro link.  Individuals are designed as learning entities, gaining ever more accurate 
information from the effects of their actions or more successful strategies from ob-
serving others’ behaviours. In substance, reinforcement learning is shaped on the 
model of evolution, a fitness formula being always implied. This essentially has led to 
implement agents’ capacity to gain more accurate information.  

But this is only part of the job required by a dynamic model of agent-hood. Agents 
undergo social influence, come to share the same beliefs and expectations, squeeze 
into the same practices, and this type of social influence sometimes leads them to 
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form inaccurate, even wrong beliefs. Agents do not read the fitness formula in the 
others’ looks or behaviours: what leads them to imitate whom? Why do agents imitate 
others, and how do they select their social models? A theory of intelligent social 
learning is badly needed (Conte and Paolucci 2001).  

Furthermore, entities and properties emerging from agents’ interaction sometimes 
modify their internal mechanisms and rules. Macro-regularities provide not only new 
inputs to existing rules, but also new rules. How account for downward causation, by 
means of a generative paradigm as described above? Let us see some examples of the 
necessity for a dynamic view of agents that is not reduced to learning.   

Agents act on the grounds of beliefs about world-states that they contribute to 
modify, and which will be modified by their actions.  

A typical example of this phenomenon is the minority game, a famous metaphor of 
which is the El Farol bar problem; until very recently, the El Farol bar was a trendy 
pub in Santa Fe, where scholars and students intending to spend their time there found 
it crowded. To be able to enter, they ought first to guess when it was less crowded. 
But how avoid that making the same guess all drop into the bar the very same night 
and find it still frustratingly crowded?  

As this example clearly indicates, agents act not only on their goals and expecta-
tions about the future (see Bickhard 2005; Castelfranchi 2005; Lorini and Falcone 
2005), but on a representation of the future that will necessarily prove inadequate, 
since the future will be modified by their actions.  

Note that representations play two different roles in the mind: thanks to their be-
liefs, which usually are representations of the present world, agents act to achieve 
their goals, which are representations of the future as agents want it to be. Beliefs not 
only concern current world states, but also future ones: in the attempt to reach their 
goals, agents have expectations about the world, letting these and other beliefs guide 
their actions. Where do expectations about future world states come from, especially 
since they refer to world states that are affected by own and others’ actions? This has 
to do with the coordination games Lewis (1969) referred to (not surprisingly, Lewis 
found that agents achieve convergence on salient equilibriums); but in a minority 
game, agents have the goal not to do what others are doing. Suppose a given option 
(go to the bar on Friday night) is expected to be preferred by the majority, any option 
that is different from it – any other night in the week - will be chosen provided the 
goal to avoid the crowd is more important than that of going out on Friday night. If 
this is not the case, coordination is not achieved, since agents will not be surprised to 
find the pub crowded on Friday night. If instead the need for a quiet, peaceful envi-
ronment is stronger, agents will probably distribute themselves on a wide range of 
alternatives: they will content themselves with stopping at the bar for a bier or two in 
any other night of the week. No convergence will emerge as the number of alterna-
tives is too high, and agents will find an easy solution to their problem.  

Rather than a paradox, this is a problem of coordination in which the shared pref-
erence is not to converge on one solution. Obviously, the best way to achieve coordi-
nation is to avoid the convention. Agents will do so under the conditions that their 
goal to avoid the crowd is more urgent than the goal to follow the convention. But in 
any case, whether they follow the convention or not, agents won’t learn the solution to 
the present problem from experience but from social beliefs: they are aware that regu-
larity (crowd) follows from convention (go out on Friday night). 
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As Arthur warns us, the schema of the minority game may be found to apply to a 
wide range of interesting real-world settings, such as the financial market, and crucial 
decisions, such as investments.  

In a simulation-based study of stock market (reported on in Arthur, 2005), inves-
tors were given different hypotheses about price determination, and were endowed 
with the capacity to act on the most accurate and learn by creating new hypotheses 
and discarding poorly performing ones.  

The market evolves in one of two regimes: if hypotheses change slowly, agents 
converge on rational expectations; if they change fast, a chaotic dynamics follows. No 
convergence emerges. 

In the simulation, agents learn to converge by forming hypothetical expectations, 
which will then be confirmed or disconfirmed through experience. But if change is 
too fast and no convergence emerges, expectations will always be disconfirmed. 
When possible, convergence is reached on the most accurate expectations. The lesson 
drawn by Arthur from these and other examples is the property of perpetual novelty 
of complex social systems, which call for a dynamic approach, focussed on Equilib-
rium Formation (EF) rather than selection. 

But in the real world, agents may also converge on the wrong expectations! In the 
real life, the alternative is not either accurate information or no regularity. In real 
stock markets, sudden crises of trust, whether manipulated and inflated on purpose or 
not, may be based upon volatile information of the most irrational sort (such as gos-
sip). People draw from one another which option to prefer, which convention to fol-
low, which behaviour to conform to, whom to look after, which expectation to fulfil, 
etc. Rather than guiding actions to achieve independent goals, expectations often tell 
agents which goals to achieve.  

Although Arthur is right in emphasising the perpetual novelty of societies, one 
should not underestimate the probability that local equilibriums be determined, not so 
much by reinforcement learning as by complex mechanisms of downward causation: 
not only agents modify the world by means of actions based on expectations, but also 
the world, especially the social world produced by agents, modifies their expectations 
and their goals, the so-called local rules. 

If this is the case, then generating effects only from the bottom up - as in Epstein’s for-
mulation – is insufficient. Downward causation is a rather complex phenomenon in its 
turn consisting of three distinct but equally frequent and often complementary alternatives: 

 

o Learning:  
 Agents act on the grounds of the expectations they have about the future,  
 Form expectations from the effects they produce, and sometimes these effects 

change so fast that agents have no time to get adjusted to them. This is the lesson that 
we draw from the Santa Fe artificial stock market. 
o Social influence: 

 Agents form expectations by observing and interpreting others 
 Expectations will break current equilibriums or produce novel, however fragile, 

ones. 
o Immergence: 

 Rules for interpreting others and forming expectations are affected by social 
properties and entities (norms, authorities, leaders, etc.) 



 From Simulation to Theory (and Backward) 45 

 Rules of action are affected and modified by social properties and entities: 
agents’ preferences are modelled on others’ preferences, or on what they believe to be 
others’ preferences, or finally on what they believe others (especially well-reputed 
authorities) want them to prefer. 
 

Rather than from the bottom up, the process of EF goes through multiple loops, 
from micro to macro and from the latter back to micro again. To understand this proc-
ess, a theory of local rules is needed, and more specifically a theory of how they are 
modified by the same effects local rules contribute to produce. 

5   Summary and Concluding Remarks 

Agent based generative simulation (ABGSS) is a powerful tool for constructing and 
checking social theories. However, generative simulation should not be meant to 
replace explanatory theory.  

In particular, if it dispenses away with upward theory - i.e. a theory about (a) which 
local rules, hypothesized prior to and independent of simulation, lead to the observed 
effect, and (b) how far back in the reverse engineering process from effects to its 
internal or local causes to go – generative simulation may generate effects without 
explaining them. 

On the other hand, if ABGSS is meant to generate macroscopic regularities only 
from the bottom up, then it will dispense away with downward theory, thereby ignor-
ing a fundamental ingredient of perpetual novelty and equilibrium formation, which is 
one main features of social complex systems, i.e. the micro-macro loop. To understand 
this, not only reinforcement learning, but a general theory of downward causation is 
needed. 

To sum up, the present paper is a warning against a view of science in which the 
formal tool, be it computational or mathematical, precedes and replaces the theory. 
This is a mistake, which is not done only by means of equations, but also by means of 
agent based programming. 

Usually, simulation is meant in one or more of the following ways: 

 •  simulation = theory, i.e. generate the phenomena to be explained 
 •  simulation = test the theory. 

 

In all of these cases, the theory is but a metaphor that renders either formulas or 
equations or programs, or their results, “readable”. 

I would like to suggest that there is, or should be, a third way to understand simula-
tion, based upon an interdisciplinary synergetic effort. This synergy ought to converge 
on providing: 

 

• (computational) theories of individual systems, rather than plausible local rules, 
enriched with mechanisms of downward causation, prior and independent of 
simulation 

• upward theories about which mechanisms at the individual agents might lead to 
observed effects, thanks to evidential support, pre-existing theories and theoreti-
cal intuition and translate them into simulation models thereby checking their ex-
plicitness and generative power  
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• downward theories of possible loops from effects obtained back to individuals, 
taking advantage of the mechanisms of downward causation, thereby checking 
the generative power of the theory in the complementary direction.  

 

It is in this third way of conceptualizing simulation, that the present work is 
framed. No methodological revolution can spare scientists the task of searching for 
good theories, good candidates for explanation. Not even simulation. Indeed, "What 
can we learn from simulating poorly understood systems?"  (Simon, 1969). 
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Abstract. Social simulation research lacks a common framework within which 
to integrate empirical and abstract models. This lack reflects an epistemological 
divide within the field. In an attempt to span that divide and in hope that it will 
lead to subsequent work on integrating abstract and empirical agent based social 
modelling research, I suggest here that a possibly suitable framework would de-
rive from the mathematical notion of a function as a mapping between a well 
specified domain and a well specified range. The use of the function as an in-
formal framework for the discussion of epistemological issues such as predic-
tion, validation and verification is demonstrated as well as its use for structuring 
controversy about modelling techniques and applications. An example is drawn 
from the literature on opinion dynamics to explore the latter use. 

Keywords: Agent-based social simulation, validation, verification, model 
space, opinion dynamics. 

1   Introduction 

How much of the literature on social simulation is about modelling for modellers? 
Conversely, how much of the literature is directly about the world in which we live – 
that is, about society? As of the turn of October, 2006, the 20 most frequently 
downloaded papers in the flagship journal of the field, JASSS included a couple of 
reviews, 13 papers that cited no direct evidence and five that did report and use quali-
tative and/or numerical evidence. By way of comparison, the leading economics jour-
nal Econometrica at the same date listed among its 20 most frequently cited papers, 
seven papers (including the single most frequently cited paper) that reported and used 
empirical evidence. While the comparison is by no means exhaustive or definitively 
scientific, it does not indicate an extravagant interest in empirically based, descriptive 
modelling amongst leading ABSS researchers. At the very least, it is not obvious that 
social simulation modellers value empirical studies more than conventional and  
                                                           
∗ Jim Doran offered helpful comments, for which I am immensely grateful, on a previous draft. 

He bears no responsibility for the resulting amendments to that draft. The point of departure 
for my thinking about this paper is a previous paper I wrote with my (then) young colleague, 
Bruce Edmonds, building on his notion of the “volume” of a model [Edmonds and Moss, 
1998]. All failures of understanding or sound analysis in the present paper were introduced by 
me alone. 
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traditional social scientists. Our models are sometimes more complicated but, even 
then, simplicity is still seen as a virtue. 

Evidently, while there are empirical papers of which we, as a research community, 
can and should be proud, the bulk of the work in ABSS is abstract. The abstract mod-
els are sometimes intended to reflect some aspect of reality and sometimes to prepare 
the way for a new kind of social theory and sometimes just to explore the characteris-
tics and robustness of modelling approaches. Without shame, I take the view that the 
only meaningful purpose of social science is to understand society and social proc-
esses thereby to inform social and related policy formation. Producing and under-
standing modelling techniques to support that objective is clearly important. But  
producing and understanding modelling techniques that have no relationship to soci-
ety and real social processes is, I submit, mere self-indulgence. To absorb resources 
for such self-indulgence that might otherwise be used for empirically and socially 
valuable development is a scandalous waste. 

These issues are epistemological in nature. What knowledge do we seek? What do 
we know? Why do we think that we know it? 

If the knowledge we seek is knowledge about models or modelling technique, then 
it is hard to see that what we know will be of any wider social value. Because a model 
space (in the sense described in this paper) is narrowly circumscribed, we can explore 
that space extensively and, as a result, convince ourselves and others interested in that 
space that we do indeed know a lot about it. The issue is much more difficult when 
we turn to human societies. 

The whole question of the value of modelling for modellers is not often addressed 
in the ABSS literature. Perhaps this is because we have not developed a basis for that 
discourse. Perhaps the basis for discourse has not developed because the issue has not 
been deemed sufficiently important. Whether the absence of discourse is one, the 
other or some combination, the purpose of this paper is to raise the question of the 
value of modelling without direct empirical input. In fact, as modellers we are collec-
tively rank amateurs in comparison with economists or physicists who do physics (as 
distinct from physicists who do social science). To see the difference in sophistication 
and detail of the models and the techniques for analysing model properties, have a 
look at the 20 most frequently cited papers in Econometrica at www.blackwell-
synergy.com/loi/ecta. Comparing JASSS with Econometrica makes social simulation 
look primitive. Where ABSS papers in JASSS and elsewhere look good (at least to 
me) in comparison with papers in Econometrica and other social science journals is 
where the ABSS models are evidence driven. 

If these observations have any validity, then a key epistemological question for so-
cial simulation modellers and users is whether the bulk of ABSS papers that are not 
empirically driven are likely to inform or even to provide the foundations for empiri-
cally driven social simulation models. 

The purpose of this paper is to propose a framework within which to couch a dis-
course on that issue. To achieve that purpose, I will describe the framework and then 
consider within that framework an example of a discourse about models for modellers 
and to suggest why, in that case at least, the modelling is not clearly useful in under-
standing the social processes that are purportedly represented. 
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2   The Models as Functions 

An elementary definition in secondary school mathematics (as least, as I was taught 
mathematics) is that a function is a mapping of values in a domain into values in a 
range. This is essentially the role of a simulation model. We define a set of initial 
conditions and then run a computer program that produces an output trajectory. The 
set of all sets of initial conditions that the program can process for the production of 
output trajectories is the model domain. The set of all output trajectories that the 
model can produce is the model range. 

Much of what follows is so natural as hardly to need stating. It is stated only for 
purposes of clarity. 

The initial conditions of any run of an ABSS model includes a set of agents. Each 
agent is itself a function. At each time step, it perceives aspects of its environment. It 
processes those perceptions and then executes some action affecting itself and/or its 
environment. What the agent can perceive is its domain and the changes it can evoke 
are its range. The environment of an agent includes the other agents it can perceive. 
The social network is therefore an element of the model domain determining the net-
work perceived by each agent as part of its individual domain. At each time step, the 
program maps the prevailing element of the domain into an element in the same space 
– that is the same collection of potential agents and possible social networks. An out-
put trajectory is a sequence of elements in that same space so that the range of the 
model is a sequence of points in the space of the domain. In a rulebased system, it is 
typically possible for rules to define new rules, thereby to add new elements to the 
range space that were not present in the domain space. 

2.1   The Model Space 

More than 10 years ago, Bruce Edmonds and I [Edmonds and Moss, 1998] defined 
the model volume as the Cartesian product of the range and the domain sets (the no-
tion of a model volume was Bruce’s). More recently, Bruce has coined the term 
“model space” to mean, I think, the same thing. In this paper we shall refer to the 
Cartesian product of the domain and the range as the model space. In some models, 
such as those in which agent behaviour is determined by rules it is possible for the 
model space to expand with passing time steps. Perhaps this is a general characteristic 
of models in which agents learn. In such cases, the model space itself is endogenous 
to the model. The model space is a useful concept because one of the issues to be 
considered below in section 6 is the “exploration of the model space”. 

2.2   The Mapping Function 

The mapping function of a model is essentially the programming language and librar-
ies that cause the agents to become active and process their perceptions to arrive at 
their actions. So the mapping function would include the scheduler in Swarm, RePast 
and MASON. In models that, for example, incorporate the Jess declarative program-
ming libraries with (say) RePast, the mapping function includes the inference engine, 
the conflict resolution mechanism, database procedures and so on of Jess as well as 
the RePast scheduler determining the order in which agents are activated and the code 
for storing and manipulating data for the model as a whole. 



 Talking about ABSS: Functional Descriptions of Models 51 

In general, we do not know the formal properties of the mapping function. We do 
know that programs written in any language, if they do not crash, are sound and con-
sistent with respect to that language and that we can assume that they are decidable if 
programs complete under a wide range of input configurations (or domain elements). 
We cannot rely on completeness. The only attempts of which I am aware to develop 
programming languages that give an element of formal proof to the mapping func-
tions of ABSS models were SDML and DESIRE. 

3   Data Generating Mechanisms 

Econometricians have defined data generating mechanism [Phillips and Perron, 1988, 
p. 336] to mean a function with lagged values (e.g., an autoregressive process) that, 
given a set of initial values, will produce by repeated application a stream of succes-
sor states. This is equivalent to defining the data generating mechanism as the do-
main, mapping function and range of a model. A model is, in this sense, an artificial 
DGM. When models are intended to capture aspects of social reality we are in effect 
supposing that there is an underlying correct DGM. Sometimes, models are intended 
to capture the perceptions of specific individuals (or shared within a group of indi-
viduals). Incorporating those perceptions in a model is intended to inform the artificial 
DGM as a representation of a perception of the relevant aspects of the social (real) 
DGM. To maintain the parallel with artificial DGMs, we should say that the social 
state prevailing at the initial time of a social study is the relevant element of the do-
main and the time pattern of the later observations is said to be an element of the 
domain. The specification of the mapping function will depend on the institutional 
and physical infrastructure. If the target social processes are, for example, the proc-
esses that comprise a financial market, then the communications infrastructure and the 
administrators and clerical staff that process data and publicise prices and volumes 
could comprise the mapping function. 

In practice, the choice of elements of society that we treat as the social mapping 
function naturally depends on the problem being addressed. In the example of the 
financial markets, it is entirely possible that the informational and administrative 
arrangements would themselves be part of the subject of interest. In that case, the 
relevant individual decision makers and those who follow prescribed procedures 
would be represented in the model domain and range space and would therefore be 
considered in the initial conditions and therefore the domain of the societal DGM. 

4   Prediction 

One example of the utility of treating models as functions, is in discussions of predic-
tion. This is not an entirely trivial issue for social simulation whenever we seek to 
understand broad properties of a system without capturing the same scale or, fre-
quently enough, being able to choose time steps for the model that correspond to the 
available data. This is particularly important when some data is at a much finer grain, 
and therefore exhibits different properties, than other data series. This was an issue 
facing Moss and colleagues [Moss and Edmonds, 2005] in modelling household water 
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demand. The model with monthly data about precipitation and temperature, calculat-
ing ground water values using an algorithm based on month-based parameters, pro-
duced domestic water consumption values with episodes of clustered volatility, hence 
leptokurtosis, that did not show up in monthly water consumption data. However, we 
recognised that using course grain data (monthly rather and, say, daily data) amounts 
to taking the average of observations of more fine grain data and, by the central limit 
theorem, the distribution of averages converges to the normal distribution whether or 
not the underlying data is normally distributed. Collaborators from the Swedish Envi-
ronment Institute were able to obtain daily water consumption data for residential 
neighbourhoods which confirmed the prediction that distributions of household water 
consumption volumes are leptokurtic. 

This result is a different, and much less precise, kind of prediction than (say) 
econometric forecasting where, using monthly or quarterly data, predictions are made 
regarding future values at a grain of time not less than the minimum time grain of the 
data. In the water demand model, the prediction was about the presence of leptokurto-
sis and also the unpredictability of volatile episodes of changes in water consumption 
volumes. There were no predictions of specific values of consumption volumes. The 
water demand prediction was, in this sense, a weaker form of prediction than econo-
metric prediction. At least up to the present, we have no means of predicting any the 
values of any of the moments of the distribution other than to say that the fourth mo-
ment (kurtosis) is large relative to the same moment of any distribution drawn from a 
population with finite variance. As Fama [1963] has pointed out, none of the standard 
forecasting and goodness-of-fit algorithms are applicable in these conditions. 

We therefore distinguish between strong and weak prediction. Strong prediction is 
the assertion that the current social state maps into a point in the model domain that 
itself maps into a specific output trajectory in the model range. Weak prediction is the 
assertion that the range of a model or some subset of the range constituting the image 
of some subset of the domain has specified properties such as leptokurtosis. 

5   Validation and Verification 

Prediction has, of course, conventionally been associated with model validation. 
Economists in particular, following Friedman [1953], typically assert that theories are 
validated by their predictions without regard for the realism of their assumptions. In 
the framework reported here, this amounts to the assertion that 

 

• every element in the domain of the social DGM maps into an element in the 
domain of the model DGM 

• every element in the model domain space maps into an element in the model 
range space 

• every element in the model range space maps into an element in the range of 
the social DGM 

 

If it is allowed that models can be expected to generate correct predictions only when 
specified conditions of application are satisfied, then the first item in the list above is 
modified to state that a subset of the elements in the social DGM maps into the model 
domain. Moreover, if there is no mapping from the currently prevailing element of the 
social DGM into the model DGM domain, then no prediction is to be made. 
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Evidently, this account of prediction and validation turns on the feasibility of 
strong prediction. When strong prediction is not possible, we have to rely on weak 
prediction for model validation. In this case, 

 

• a subset of the social DGM domain maps into the model DGM domain 
• the range of the model DGM has a set of characteristics that might be statis-

tical (such as leptokurtosis) or might be qualitative or some combination of 
the two. 

 

Each element of the model DGM domain and range has an associated set of agents 
with their current states as well as the macro state of the model. It is therefore possible 
to compare the micro (agent) states with the circumstances and behaviour of real 
decision makers and also to compare the macro state with more highly aggregated 
data from the real world. This is what Moss and Edmonds [2005] called cross-
validation. While cross-validation relies on weak prediction at macro level, it is more 
confirmatory at micro level. That is, micro validation involves checking with infor-
mants and other domain experts that the behaviour of the agents conforms to that of 
the individuals or organisational units the agents represent. 

Verification – the process of formally proving the properties of a model – is not 
normally an issue in social simulation modelling. However, it is possible that treating 
models explicitly as functional relations could support some verification. For exam-
ple, we know from the Brouwer fixed point theorem that any function mapping a 
domain into itself has at least one element of the domain that maps into that same 
element. This is uncomfortable for those of us who abhor the notion of a social equi-
librium since this is a sufficient condition for an equilibrium to exist. On the other 
hand, even if there is such an equilibrium configuration, it is a formal possibility that, 
in social models with real numbered variables, the equilibrium is unrealisable with 
finite precision arithmetic as inevitably used in computational models. It would be 
surprising of other formal relations could not be proved for models as functions but, if 
they can, it will be important to distinguish between such formal results and computa-
tionally feasible results. Since decision makers cannot in fact use infinite precision 
arithmetic in reaching their decisions, such formal but computationally infeasible 
properties of models can surely be ignored. 

6   Exploring the Model Space 

Model space exploration frequently takes the form of a sequence of random selections 
of elements in the model domain and then some graphical or statistical processing of 
data from the resulting output trajectories. There are also more selective and also 
formal approaches to model space exploration. We distinguish four such approaches: 

 

• Random exploration: Monte Carlo studies and the like. 
• Selective exploration: Choose elements from a subset of the domain that is 

claimed to be in some sense realistic or relevant. 
• Formal exploration: Use logical (including mathematical) means to identify 

the boundary of the meaningful or feasible subset of the domain and explore 
the range corresponding to that subset. Terán [2001] demonstrated the feasi-
bility of formal model exploration by exploiting the features of SDML, a 
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strictly declarative modelling language that was sound and consistent with 
respect to a fragment of strongly grounded autoepistemic logic. 

• Mixed formal-random exploration: Choose random values for initial states of 
a model and use, for example, constraint logic to determine whether it is fea-
sible. If it is feasible, then run the model to determine the corresponding out-
put trajectory. Repeated applications will determine trajectories in the range 
of the model and others that are not in the range of he model, thereby to de-
termine with increasing fineness the boundaries of both the domain and the 
range. 

7   Example: Opinion Dynamics 

In the opinion dynamics literature, opinions are usually represented by real numbers in 
the unit interval1. The virtues of the numerical representation of essentially qualitative 
phenomena such as opinions are (1) the greater efficiency of numerical calculation 
over the manipulation of symbols and (2) the ability to apply numerical processing 
techniques, especially those such as mean field theorems that are commonly used by 
physicists. In restricting values to numerical fields, both the model domain and the 
model range are within sets of numbers – in the opinion dynamics case, usually the 
field of real numbers in the unit interval. 

There are two question to be addressed in this regard. The first is whether the re-
sults are sensitive to the particular choice of numerical representation. A second ques-
tion is whether real numbers can provide a useful representation of opinions. These 
questions, which are considered in turn, are essentially questions about the appropri-
ate representation of the social domain and range. 

7.1   Deffuant-Edmonds Controversy 

Deffuant’s most recent version of the opinion dynamics model [Deffuant, 2006] sup-
plements the representation of opinion by real numbers with a probability distribution 
to represent an agent’s certainty about its opinion. The mean of the distribution is the 
current opinion and uncertainty is indicated by the variance in the usual way [Tobin, 
1958]. In addition, each agent can be influenced by other agents. The influence of one 
agent upon another is represented by a function of the opinion of that other agent. 
Deffuant tries different functional forms. The agents known to each agent is deter-
mined by a social network in which the links represent acquaintanceship and the 
nodes represent agents. Deffuant explores his model space by running simulations 
with different probabilistic distributions (formulae for uncertainty), different functions 
determining inter-agent influence, different social network structures, and some other 
differences. He determines the regions of his model space where opinions converge to 
one or to both extremes in the unit interval. 

Bruce Edmonds [2006] replicated the structure of earlier versions of the Deffuant 
model that obtained much the same results on extremism and showed that similar but 
different functional representations of the strength of influence between agents were 
more likely to lead to moderation rather than extremism. 
                                                           
1 Other numerical representations are sometimes used. 
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Deffuant’s [Deffuant, 2006] response was this: 
 

“As suggested in Edmonds (2006), a good way to test the robustness of the re-
sults is to check if the addition of some noise changes the results. However, in 
Edmonds proposal the same noise is applied to all individuals. Therefore, ex-
tremists can suddenly strongly change their opinion. This is in contradiction 
with the assumption of the model stating that the extremists are very convinced 
of their opinion. To keep the rationale of the model, we consider that the level 
of random variations in the opinion is moderated by the level of uncertainty.” 

 

On this basis, Deffuant assumed that variance of the probability function tends to 
be smaller at the extremes than in the middle of the unit interval. With this change in 
the Edmonds specification, opinion clustering at the extremes of the unit interval was 
re-established. 

7.2   Critique and Response in the DGM Framework 

In effect, the domain and range of the Edmonds model differed from that of the extant 
opinion dynamics models only in the representation of uncertainty of opinion and the 
functional representation of inter-agent influence. There were no obvious substantive 
differences in the mapping functions of the two models. As in Fig.1, we can imagine 
an abstract domain comprised by agents that have numerically valued opinions and 
functional forms relating other agents’ opinions to changes in their own opinions, 
probability functions to represent uncertainty of opinion for each agent and social net-
work structures. There might be some intersection between the subsets of that abstract 
domain representing the Edmonds and Deffuant models, respectively, but there is also 
a substantial difference. The ranges of the respective models are non-intersecting since 
the output trajectories of the Deffuant model and its predecessors are extreme opinion 
clusters whilst, in the Edmonds model, the opinion clusters are moderate. 

Model
Domain

Edmonds
Domain

Edmonds
Range

Deffuant
Range

Deffuant
Domain

 

Fig. 1. Domains and ranges implied by Deffuant [2006] and Bruce Edmonds [2006] 

Neither Edmonds nor Deffuant suggests any specific mapping from their abstract 
model domains to any social domain. Indeed, Edmond’s concerns are strictly to ex-
plore the consequences of using number to represent qualitative phenomena. Essen-
tially, his point was that the results obtained by representing opinions by real numbers 
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are sensitive to the particular functions that take those numbers as arguments and, at 
the same time, there is no obvious way to identify any specific, actual social processes 
and human behaviour represented by the numerical representations and the functions 
into which they enter. Deffuant is more concerned with the social implications of his 
model but he is careful not to make any claims that would be interpreted here as a 
direct mapping between his model space and actual social phenomena. In his words, 

 

“The analysis of these differences (and particularly the differences between the 
convergence patterns obtained on a lattice and the ones obtained on a random 
network with 4 neighbours on average) led us to identify several explanatory 
features of these results. One of them seems particularly noticeable: The single 
extreme convergence takes place when the moderates remain clustered and 
isolated as long as possible from the moderates. In this case, the extremists re-
main influential, without being influenced by the moderates. The clustering of 
the moderates is favoured by networks where the individuals are all close to 
each other in the graph. 

This observation could be associated to the following interpretation: to re-
main effective, the extremists must always remain different from the mass of 
moderates. The big risk for them is to become normalized. This result holds for 
all the studied model variants.” [Deffuant, 2006] 

 

There are certainly societies in which extremism is dominant or, at least, where the 
extremists are far more visible than moderates. Northern Ireland through the 1970s 
and 1980s is a fairly recent and obvious example. There are other societies where 
extremism appears to be socially marginal and extremists do not constitute large clus-
ters. Either these models are nothing more than explorations of formal relations or 
they have some empirical content. In the terminology used here, if they have empiri-
cal content there will be a mapping between the model domain and range on the one 
hand and some clear description of the state of societies on the other. Whether such a 
mapping exists depends on whether there is some unambiguous (if not univalent) 
mapping between real numbers in the unit interval on the one hand and a natural rep-
resentation of opinions on the other. If there is such a mapping, then we can take 
further steps to investigate how to map the other aspects of the model into the real 
world. 

7.3   Opinions as Numbers 

The question addressed here is not the technical one raised by Edmonds but rather the 
question of whether a real number in the unit interval (or in any other number) is a 
useful analytical representation of the semantics of opinion. In order to investigate 
this issue, I have looked at opinion research into a topic where extreme views are held 
with more or less conviction on both sides of an argument: gun ownership and gun 
control in the USA. Questions and results from a range of surveys conducted over the 
past 20 years were, at the time of writing, available from the web site of the Roper 
Center for Public Opinion Research in the University of Connecticut2. Those that 
would allow for different degrees of certainty include this, conducted by the Gallup 
Organization in December, 1993: 
                                                           
2 http://www.ropercenter.uconn.edu 
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QUESTION: Next, I’m going to read you some things people say would occur if 
there were stricter laws on the buying and owning of guns. For each one, please tell 
me whether you strongly agree, somewhat agree, somewhat disagree, or strongly 
disagree.)... Stricter laws would give too much power to the government over average 
citizens. 

ANSWERS: 
Strongly agree 30 
Somewhat agree 22 
Somewhat disagree 26 
Strongly disagree 21 
Don’t know/Refused 1 
 

There were a range of such statements though the Roper Center does not report 
them or the responses to them. 

Another question from a survey by ICR Survey Research Group, in August, 1997 
was: Do you think that the current collection of laws that govern gun ownership and 
regulation are very adequate, somewhat adequate, not too adequate, or not at all 
adequate? with the response distribution: 

 

Very adequate 10 
Somewhat adequate 38 
Not too adequate 21 
Not at all adequate 23 
Don’t know 7 
Refused 1 
 

These surveys were undertaken by different organisations in different years. Both 
surveys were conducted by telephone interview but the first sample size was about 
1000 and the second about 2000. It is possible that a given sample of respondents 
would feel more strongly – more certain, in Deffuant’s terms – about the statement 
concerning stricter laws than they would about the adequacy of existing laws. But we 
cannot assert that. The essential point here is that polling organisations ask a range of 
questions to probe respondents views about different aspects of an issue. Some ques-
tions are check questions to ensure that respondents are giving thoughtful answers. 
But, in general, issues such as gun control are relatively complicated and do not read-
ily, or for some purposes usefully, map into a single real number. In this terminology, 
we would have to say that there is a real data generating mechanism and a sui generis 
set of data generating mechanisms under the rubric of opinion dynamics. Deffuant 
and his co-authors describe their data generating mechanisms using words that give 
the impression that they are related to social processes giving rise to changing distri-
butions of opinions in actual societies though, as we have seen, Deffuant is careful not 
to state that his is in any sense a correct representation of such processes. Edmonds 
does not address the relationship between his data generating mechanism and societal 
data generating mechanisms at all. He is simply exploring relationships among do-
mains, mapping functions and ranges, demonstrating that some apparently innocuous 
modifications in domains have non-trivial consequences for the definition of corre-
sponding ranges. 
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8   Conclusion 

The problem raised in this paper is the lack of discussion about what in general terms 
constitutes a good or an acceptable agent based formal representation of real target 
societies and social institutions. The lack of any general framework for such a discus-
sion can hardly be an encouragement foe social simulation modellers to address the 
issues involved. As a first step in providing such a framework, I have suggested that 
we recognise explicitly that models have the properties (and formally are) functions in 
the sense of mappings from a domain of agents (which are themselves functions) into 
a range of agents. Any particular simulation experiment will have a set of initial con-
ditions defined by a particular set of agents and their own parameters and functions 
including possibly rulebases and databases. Each set of initial conditions will map 
into a sequence of subsequent states. In discussing the utility of any particular model 
or set of models, it might be helpful to consider explicitly the ways in which the do-
mains and ranges map into the target institutions and the correspondence between the 
mapping function of the model and observed social processes. 

The example of opinion dynamics was adduced to exemplify the issues. The do-
main of opinion dynamics issues includes agents have associated numbers said to 
represent their opinions and a process (mapping) leading from the opinion of each 
agent at one time step to agent’s opinion at the next time step. Edmonds pointed out 
the sensitivity of the mapping to the functional form and its parameters. Evidence 
from opinion surveys was cited to indicate that some opinions are apparently multi-
faceted and that a single real number is not an obviously descriptive representation of 
something as complex as an opinion. 

The point is not simply to criticise Guillaume Deffuant and his colleagues or to at-
tack the opinion dynamics literature but to create a framework in which such discus-
sions can usefully take place. The value of the framework – whether that suggested 
here or some other framework – is to enable us to collect issues, disagreements and 
criticisms in a coherent fashion. I do not believe that we have yet succeeded in com-
bining breadth and coherence in the discussions of our different approaches to agent 
based social simulation. 
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Abstract. Emergence is generally considered a fundamental property of com-
plex systems. Being a central but notoriously ill defined notion, concepts of 
emergence fundamentally oscillate between epistemological and ontological in-
terpretations. The paper relates these philosophical perspectives of emergence 
to the interpretation of emergence in computer simulation. It concludes that 
most arguments point to the fact that computer simulation deals with epistemo-
logical emergence only. However, there is no conclusive argument that com-
puter simulation in principle is unable to model ontological emergence. Finally, 
the paper argues for mathematics being a restricted description what concerns 
all possible emergent levels not yet realised. 
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1   Introduction 

An important aspect of computer simulation, especially the simulation of dynamic 
non-linear complex systems, consists in the analysis of novel emergent phenomena 
where micro-behaviours generate “unexpected”, seemingly unpredictable macro-
behaviours of some kind. Especially in social simulation where a high complexity is 
given, the investigation of emergent properties or macro-states based on the behaviour 
of micro-states of systems or agents are one of the main goals of computer simulation. 
Unfortunately in most cases, not only in respect to computer simulation, the exact 
meaning of the term “emergence” and its use is rarely specified. Although research 
and use of the term emergence spans from quantum physics (Laughlin, 2005) to com-
plex biological systems (Kauffman, 2000) and cosmology (Smolin, 1999), there is no 
agreed taxonomy of emergence neither in science, philosophy of science nor in phi-
losophy in general. 

In this paper I will argue in favour of the most promising philosophical distinction 
of emergence at the moment, namely between epistemological emergence and onto-
logical emergence, and some conclusions are drawn what regards this interpretation of 
emergence and computer simulation. The research question can be summarized as 
follows: given that one or both of these kinds of emergence hold in reality, what kind 
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of emergence does and can computer simulation represent or emulate? Do computer 
simulations based on their specific means and properties represent epistemological as 
well as ontological emergence, or just one of them, and what are the technical and 
philosophical or epistemological reasons for this specific kind of representation?  

The question is not only classificatory, but of fundamental importance for the epis-
temological and scientific standing of computer simulation. The central question can 
be summarized as follows: By conducting simulation studies, do computers just allow 
to calculate and mimic the vast complexity of systems and their emergent properties 
that can be reduced in principal to simpler parts and behaviours (i.e. epistemological 
emergence) or are we able to reproduce by computation the true genesis of new, un-
reducible levels of reality (i.e. ontological emergence)? 

2   Emergence and Part-Whole Reductionism 

The most general definition of emergence states that a part-whole reductionism does 
not apply. Part-whole reductionism says that all system (whole) properties can be 
deduced from and reduced to their constituent and basic parts. In turn, what character-
izes emergent properties is that they cannot (or only partially) be deduced – and ex-
plained -  from the properties or interactions of the parts. 

Part-whole reductionism belongs to the cornerstones of science, as Scharf (1989) 
states: “the program for the unity of science is a program for universal micro-reduction”. 
Also the most widely accepted model of scientific explanation, the deductive-nomologi-
cal model, is largely inspired by this universal micro-reduction statement.  

Today, the most fruitful classification of different types of emergence seems to be 
the differentiation between “epistemological” and “ontological” emergence. I will 
briefly resume this difference. Epistemological emergence can be defined as follows: 
 

“A property of an object or system is epistemologically emergent if the property is 
reducible to or determined by the intrinsic properties of the ultimate constituents of 
the object or system, while at the same time it is very difficult for us to explain, 
predict or derive the property on the basis of the ultimate constituents. Epistemo-
logically emergent properties are novel only at the level of description” (Silber-
stein, McGeever, 1999). 

 

Consequently, ontological emergent features are features of systems or wholes that 
“possess causal capacities not reducible to any of the intrinsic causal capacities of the 
parts nor to any of the (reducible)  relations between them” (Silberstein, McGeever, 
1999). It is important here to hold in mind the distinction of real “causal capacities”, 
connections or actions versus logical causality or abstract relations. We will see that 
the former is a distinctive feature of the description of ontological emergence, the 
latter of epistemological emergence. In addition, synergism (combined or cooperative 
effects between objects or systems), novelty, irreducibility, unpredictability, coher-
ence and historicity are further prominent properties of emergence in literature (Achi-
nov/Fuchs, 2003). Of these concepts I will use only those that are important for the 
topic in question. In addition to the distinct properties of emergence, there always has 
to be considered the objects of emergence. The question is what is specifically emerg-
ing, properties, entities, new laws or dynamics or other sorts of emerging phenomena 
(Silberstein/Geever, 1999)?   
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Thinking about the reality and distribution of epistemological and ontological 
emergence in the universe, we can find three different propositions that might de-
scribe a solution: 

 

1) reality contains epistemological as well as ontological emergence,  
2) reality contains either epistemological or ontological emergence, but not both,  

and  
3) neither epistemological nor ontological emergence are true in this world, but 

another description or process we don’t know yet.  
 

Obviously, proposition 3) is the most unlikely, since if 3) would be true, all scien-
tific knowledge up to this day would be nothing but some sort of illusion. Silberstein 
and McGeever give a further account of 1) by stating: “Most cases of emergence are 
epistemological.” (Silberstein/McGeever, 1999) Most emerging properties in the 
universe are reducible to the properties and behaviours of their parts, but there re-
mains the question if ontological emergence exists at all. Having a closer look at 1), 
Silberstein and McGeever conclude that epistemological  emergence logically cannot 
entail ontological emergence, because it is defined to preclude it. If something is re-
ducible in principle it cannot be irreducible at the same time. Still, this argument is 
consistent with 1) postulating that epistemological emergence can co-exists with onto-
logical emergence. 

2) seems to be  a solution of 1) insofar we would find out that 1) is wrong, we 
would be committed to 2) – excluding 3) as the most unlikely – namely that reality 
contains either epistemological or ontological emergence. 

According to Silberstein and McGeever it is also not necessarily true that ontologi-
cal emergence entails epistemological emergence. This would only be the case if 
ontological emergence would presuppose epistemological emergence, either logically, 
causally or otherwise. This means that it could be that ontological emergence is some-
thing “on top and above” epistemological emergence whatever specific relation that 
would be.  

From the standpoint of philosophy of science it is obvious that the more interesting 
question regarding emergence deals with ontological emergence that directly opposes 
scientific reductionism, whereas epistemological emergence follows the scientific 
paradigm. Therefore I will state the central argument of the relation of computer 
simulation and emergence as follows:  

Given the possibility that reality exhibits to some extent ontological emergence, 
what is the exact relation of computer simulation to ontological emergence? Is com-
puter simulation capable to simulate and reconstruct ontological emergence? And if 
not, what exactly makes it impossible for computer simulation to emulate or elicit 
ontological emergence? 

3   Mathematics, Computation and Emergence 

To put the conclusion first: It is very likely that computer simulation mainly has to do 
with epistemological emergence, following the aforementioned statement by Silber-
stein and McGeever.  



 What Does Emergence in Computer Simulations? 63 

Computer simulation is basically the mathematical and logical reconstruction and 
dynamic approximation of the complex properties, dynamics and relations of the 
components of a natural, social or artificial system, coded as a computer program. For 
our purpose, the specific simulation technique, be it difference equations, cellular 
automata, agent-based modelling, genetic algorithm or any other modelling approach, 
is not important. We concentrate only on the most general features of the “description 
mode” of computer simulation and these are mathematics and logic. Of course, 
mathematics includes logic, but we separate logic to point out  semantic, logical and 
language-based simulations for example in artificial intelligence that don’t rely exclu-
sively on mathematics. After all, mathematics, natural and formal languages are the 
main “tools” we have for modelling natural or social systems.  

To take up an epistemological and mathematical view on simulation inevitably 
brings forth considerations  upon different concepts in philosophy of mathematics, 
departing from mathematical realism and empiricism to constructivism, fictionalism 
or social constructivism (Shapiro, 2000). Do we have to analyse all these concepts to 
evaluate the relation of mathematics to epistemological and ontological emergence?  

The fundamental point or divergence in philosophy of mathematics is the question 
if mathematical entities – numbers, axioms etc. – depend on the existence of human 
mind or if they are independent entities. Are they objective facts or subjective con-
structs? Do there exist mathematical entities in the universe even if there would have 
never been any human mind (objective view of mathematics) or is mathematics a 
(social) construct of human mind that is subject to revision like any other empirical 
endeavour of human kind (subjective view of mathematics)? All theories in philoso-
phy of mathematics tend to one or the other side, although most philosophers of 
mathematics today would not commit themselves solely to one of the extreme posi-
tions. It seems that mathematics involves objective as well as subjective/constructive 
properties. 

For our purpose, we don’t have to be committed to any specific interpretation in 
philosophy of mathematics concerning the relationship between mathematics and 
reality. It is enough to assume two propositions: 

 

1) it is true that mathematics has at least one common property with reality 
2) it is  true that mathematics cannot have all the properties that constitute reality.  
 

In other words, 1) mathematics has some relation with reality and it is impossible 
that it has an “unconnected” existence separate from causalities of reality, 2) it is a 
fundamental property of mathematics  to be abstract since the properties of the two 
“worlds” cannot be identical. The fundamental abstraction implied in the concept of a 
“model” is another way to state 2). The specific property of this minimal relation, be 
it  representational, descriptive or any other property, is not important. For example, if 
we assume that ontological emergence exists, then by 1) we can conclude that 
mathematics in principle is capable of participating in some way in ontological emer-
gence, and by 2) that it cannot “be” in an existential way ontological emergence. 

Bertuglia and Vaio (2005) state this fact as follows: 
 

“Mathematics…can be defined as the art of creating models, extremely abstract and 
simplified models, models, so to speak, in black and white, that describe the deepest 
essence, the skeleton (or, rather, what seems to us to be such) of a real situation.” 
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I would not agree with the term “essence” used in this statement, but it describes 
the true abstract nature of mathematics that will never be ontological equivalent to 
reality. 

Having defined mathematics for our purpose, there remains the task to analyse the 
epistemological status of computer programs in relation to emergence. Thus the ques-
tion: does the further coding of a mathematical model add anything decisive to the 
aforementioned argument? From an epistemic perspective I would argue that com-
puter coding adds nothing fundamentally new to the aforementioned argument. 1) and 
2) also apply for coding although one might suspect that there is a gradual difference 
between mathematical and coded models. 

4   Simulation and Emergence 

If we assume that ontological emergence exists, how can we further analyse the rela-
tion between simulation and given ontological emergence, having examined proper-
ties of mathematics and emergence? It seems obvious that the computed emergent 
properties of a simulation model must be reducible or must be able to be derived “in 
principle” from the underlying mathematical structure. Therefore, it seems that the 
encoded laws and relations of a mathematical model can’t generate in principle new 
laws that are not reducible to the underlying laws. Theoretically, if these mathemati-
cal or encoded laws and regularities have any similarity with real facts and processes 
then the “in principle” conclusion is wrong (according to proposition 1), since these 
“real” facts and processes are capable in nature to generate this non-reducible onto-
logical emergent properties, and mathematics can in principle participate in this gene-
sis – even if this means to capture the “one and only” ontological property which 
would possibly have an astronomically small probability to happen. 

Generally, there are at least three possible arguments concerning the implication of 
emergence in computer simulations: 

 

1) Simulation can only restate or emulate epistemological emergence -  it is the 
only goal and capability of simulation to overcome the “difficulty” of (analytic) de-
scription through the numerical solutions of the complex interactions and relations of 
the parts. Simulated or computed emergence remains therefore always on the level of 
epistemological emergence: the emergent ant hill has no emergent ontological proper-
ties, in fact, we are only incapable to analytically describe the emergence of the hill 
through interactions of thousands of ants and their behaviours. Simulation “resolves” 
this descriptive gap and adds a new descriptive (and reductive) way to the understand-
ing  and calculation of such utterly complex phenomena. There might be some onto-
logical emergence “out there”, but there is no way to capture the evolution and the 
dynamics of these new levels using computer simulation. 

2) Given that simulation restates epistemological emergence only, the failure of 
epistemological explanation or simulation is still a “negative prove” of ontological 
emergence - it is possible to argue that the failure of epistemological reconstruction 
and explanation is in principle a sign of ontological emergence. In other words,  
we are sometimes lacking the ability to reduce certain phenomena to the underlying 
level only because they “really” are novel also on an ontological level. Given that 
reality produces ontologically emergent properties, they must be within some reach of 
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computer simulation – even if only negatively by failing to simulate ontological 
emergence directly. If we don’t know how any reducible relation would have to be 
constructed, then we could, to a certain extent, be assured that this inability - poten-
tially in a diminishing small number of cases - demonstrates ontological emergence. 

3) Computer simulations are fundamentally involved in ontological emergence – if 
ontological emergence is a fundamental property of reality and mathematics is in 
principle capable representing this reality, then we can assume that computer simula-
tion should be capable to model and emulate ontological emergence in most but no all 
cases where ontological indirectly emergence is present. 

 

What seems to be the most plausible of these arguments? I previously argued that 
proposition 1), stating that computer simulation can emulate epistemological emer-
gence only, is the most convincing suggestion. I will outline the main argument for 
this conclusion based on the following assumption: epistemologically, the encoded 
mathematical relations “mimic” real causal relations but are not in any sense these 
causalities themselves or identical with them. The further exposition of this argument 
will also be an evaluation of the other propositions. 

5   Ontological-Material and Mathematical-Formal Causality  

The argument for epistemological emergence and computer simulation is that ontological 
emergence has fundamentally to do with “real” causality and not abstract mathematical 
causality. To make the point clearer, I will relate the argument to some definitions of 
causality that go back to Aristotle, namely the distinction between material causes and 
formal causes. Material causes are those from which a thing comes into existence as 
from its parts, constituents, substratum or materials. This reduces the explanation of 
causes to the parts (factors, elements, constituents, ingredients) forming the whole 
(system, structure, compound, complex, composite, or combination) (the part-whole 
causation). For example, the material cause of a table is the wood it is made of. 

On the other hand, formal causes tell us what a thing is, that any thing is determined 
by the definition, form, pattern, essence, whole, synthesis, or archetype. It embraces 
the account of causes in terms of fundamental principles or general laws, as the whole 
(macrostructure) is the cause of its parts (the whole-part causation). For example, the 
formal cause of a statue is the idea of the sculptor, the material cause the marble it is 
made of.  

Although there is debate on these distinctions in general, they exemplify the main 
argument. We can assume that ontological emergence presupposes material causes, 
the sum of physical ingredients down to atoms and quarks and their interactions and 
relations, whereas computer simulation deals with formal causes only, that is with 
(mathematical) patterns, laws and relations. 

Therefore, to generate or replicate ontological emergence we would have to repli-
cate reality itself - and this of course would be no model at all. There might be no way 
to model or capture in any abstractive way ontological emergence, be it through 
mathematics, language or any other abstract descriptive formal system. Ontological 
emergence might be an undeniable fact of the dynamics and evolution of this uni-
verse, but no abstract activity can replicate these transitions to higher levels, simply 
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from the fact that ontological emergence is based on all the necessary facts and real 
causalities down to every single physical atom that enables the emergent transition.  

Every abstraction from this complex whole is in great danger to possibly cut one of 
the important factors for emergent transition, and from chaotic systems we might 
conclude that even the slightest deviation from that holistic transition can damage or 
alter the whole transition as such. Modifying the famous word “truth is the whole” of 
the German philosopher Hegel, we could state “ontological emergence is the physical 
whole”, and this not only in a static way at some point in time, but dynamically. For 
example, if we theoretically assume that the emergence of life  at some point in time 
in the history of our planet is dynamically based on the physical evolution of the uni-
verse since the big bang, then we might imagine how difficult it would be to model 
this – presumably - ontological emergence. There might be more to the phase transi-
tion to life than just the reaction of some biochemical ingredients at some point in 
time in the history of earth, without referring to some dubious designer arguments. 

From these conjectures we better understand why ontological emergence is funda-
mentally and by definition non-reductionist, since it is based on the whole physical 
process and is not compatible with any abstraction whatsoever. Yet scientific reduc-
tionism necessarily entails abstraction. 

6   Simulation and Mental States  

If we assume that mathematics is in most cases incapable to model ontological emer-
gence based on its property of abstraction, what about language and logic based simu-
lation as in artificial intelligence? What about social simulation in general, simulation 
based on human decisions, strategies, logic, basic ingredients and capabilities of mind 
and consciousness? Are we able to capture ontological emergence through social, 
only partial mathematical modelling?  

I would argue that we do not capture ontological emergence neither by mathemati-
cal modelling of natural systems nor by simulating higher level, mind-based phenom-
ena in social simulation. What we are capable to do is modelling different levels with 
the appropriate formal language but not transitions of levels, and that is exactly what 
emergence is all about; the transition or emergence from a lower level of causal con-
nections to a higher level.  

For example, there is still no solution or simulation model in sight that could ex-
plain or model the emergence of mental states based on neuro-physical brain states. 
Apart from the fact that this would mean a major philosophical breakthrough in phi-
losophy of mind as a possible solution to the mind-body problem, it is not clear - 
based on the idea of ontological emergence – if this is possible in principle. Modelling 
of transition would mean reduction in principle, since if we want to simulate the 
emergence of a higher level out of lower level, we need to understand the “laws” of 
emergence, the variables and transitions rules that generate the properties of the 
higher level – and this means to generate mental states from mathematical descrip-
tions. This might be possible in principle, given that epistemological emergence pre-
vails – but as of yet we have no idea how this could happen. But the fundamental 
objection remains: the emergence – or philosophically speaking the supervenience - 
of mental states on physical states is presumably a case of ontological emergence and 
presupposes the sum of all physical facts of reality.  
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7   Epistemological Emergence with a Hope  

To summarize the different arguments of the relation of computer simulation and 
different concepts of emergence, it seems to be reasonable to favour the argument that 
computer simulation deals in most cases,  but perhaps not in all cases,  with epistemo-
logical emergence only.  

The “in principle” exclusion argument can be stated as follows: if there exists onto-
logical emergence at all – of which quantum entanglement is one of the most cited 
candidates (Silberstein, 1999, Esfeld, 2002) – then given at least some “ontological 
correspondence” between mathematical constructs and reality, computer simulation 
should be able “in principle” to capture – by chance or rationally -  ontological emer-
gence, even if there are strong arguments against it. Obviously, these would include a 
“weak” interpretation of the necessity of the “physical whole” for the evolution of 
ontological emergence. 

Still, the “in principle” argument holds up a hope that with computer simulation, 
even  simply by negatively detecting the mathematical non-reducibility of certain 
emergent features, we can compute a “glimpse at the borders” of true ontological 
emergence that might constitute the “creativity machine” of our universe.  

Consequently, we might be happy simulating the possibly small range – compared 
to all possible emergent levels in the ongoing history of the universe – of all mathe-
matically accessible phenomena  that now exist and leave the “simulation” of not yet 
born levels to our descendants. 

Another interesting, more fare reaching conclusion is this: if ontological emer-
gence is true of this universe – and in this case there have and will emerge more onto-
logical levels in the future - then it is evidently false to conclude that is possible to 
reach any full description of reality by mathematics alone as for example TOE’s 
(Theories Of Everything) in modern physics suggest. We can describe reality with 
mathematics very successful on the apparently lowest level, the fundamental micro-
level of physics, and we understand something about the mental and conscious level, 
but we understand these two levels only of a possibly infinite range of other ontologi-
cal levels that have and will emerge. 

Coming back to computer simulation, we can summarize the central question as 
follows:  

How far can mathematics asymptotically approximate the necessary real causality 
that is necessary to elicit ontological emergence – given that it is not necessary to 
replicate reality to emulate ontological emergence? 

As a possible answer to the questions I am tempted to say: We have to simulate – 
and see! 
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Abstract. This article investigates the notion of emergence in Artificial Socie-
ties. Roughly, two competing approaches to the foundations of social science 
exist: A micro foundation of social theory on the one hand and a notion of an 
emergent holistic social theory on the other. This dichotomy re-appears also in 
Artificial Societies. It will be argued that philosophical decisions made on the 
methodological level of how to interpret the concept of emergence will result in 
different sociological theories. This will be demonstrated by re-examining con-
siderations on emergence undertaken by Joshua Epstein, who argues for a micro 
foundation of social theory. These considerations are then settled in the context 
of the long-lasting debates about emergence in sociology and philosophy of sci-
ence. Considerations from the complexity theory and Philosophy of Science 
will be utilised to develop a concept of emergence which leads to the notion of 
an autonomous social sphere. It is demonstrated by two examples that this con-
cept can be applied to Artificial Societies.  
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1   Introduction: The Puzzle of Emergence 

Artificial Societies are becoming an increasingly widely used methodological tool for 
investigating human societies. They provide a virtual laboratory to view the growth of 
social macro phenomena by the use of agent-based modelling technologies. As it is 
the case in laboratory experiments, simulation allows to achieve control in order to be 
able to test hypotheses. Social macro phenomena can be grown from the ‘bottom-up’, 
namely by the interaction of individual agents. For example, in the classic Sugarscape 
model [1] agents collect and exchange resources. Thereby the allocation of resources 
can be observed, which is a fundamental objective of microeconomics. This quasi 
experimental approach of viewing “artificial societies as laboratories” [1, p. 4] seems 
promising for a social science which commonly lacks such lab investigations.  

In particular, the notion of emergence is widely used to denote the macro patterns 
that are generated in the case of these virtual experiments [2, 3]. If it is possible to 
“discover a concise description of the global state of the system” [4, p. 148] one can 
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talk of emergence. For example, the ‘emergence of role differentiation’ [5] or the 
evolution of the social contract [6] are global states of a system that can be grown 
from the bottom-up by agent-based simulation models. In the course of the simulation 
run, agent-based models are able to produce novel structures by local interaction ac-
cording to simple rules [7–9]. Moreover, these effects are often unforeseen by the 
model designer himself; this proves the usefulness of these virtual laboratories. 
Hence, emergence is at the heart of agent-based modelling technologies. It should 
allow us to answer questions such as how cooperative relations among unrelated indi-
viduals emerge and become stable, or how social institutions, norms, and values 
evolve [10]. In summary, the promise of multi-agent simulation is seen to provide a 
tool for studying emergent processes in societies [11].  

The focus of this paper is an examination of the contribution of the methodology of 
Artificial Societies for the foundations of sociological theory. However, a number of 
attempts have been made to clarify the concept of emergence and the notion of emer-
gence is applied in highly different scientific disciplines such as complexity theory, 
sociology and the philosophy of life and mind. The aim of this paper is to link some 
of these different streams of the discourse on emergence such that findings from one 
field may illuminate others. A closer link between theory and methodology will dem-
onstrate that epistemological considerations are highly relevant to the foundations of 
sociological theory; the philosophical decisions made on this point are decisive for the 
resulting sociological theory. This thesis will then be utilised to investigate the ques-
tion as to whether Artificial Societies should aim at a micro foundation of social phe-
nomena [e.g. 12] or whether it is possible to generate a social sui generis by means of 
Artificial Societies [13, 14]. In fact, Epstein [15] and Sawyer [16] have argued that 
agent-based modelling techniques imply a micro foundation of social theory. At first 
sight this seem to be quite straightforward: namely, agent-based models operate with 
individual agents. However, a rearrangement of some well-known facts from various 
disciplines will uncover an argument for the contrary position.  

This will be done in the following steps: first, the problem of emergence will be 
outlined by following considerations of Epstein on sociological explanations and 
emergence in Artificial Societies. Next, the problem will be settled in a wider frame-
work of the problem of emergence in sociology and the philosophical roots of this 
concept. Then considerations on emergence based on philosophy and complexity 
theory will be developed which enable a conceptual clarification of the notion of 
emergence in Artificial Societies to be made. This will be illustrated by two examples. 
Finally it will be demonstrated how Artificial Societies might uncover an emergent 
sociality. 

The puzzle of emergence in Artificial Societies can nicely be illustrated by a notion 
of a generative social science developed by Epstein [15]. He holds that agent-based 
computational models permit a distinctive approach to social science, which he calls 
‘generative’. This is closely connected to the bottom-up approach of agent-based 
modelling techniques: it is characterised firstly by a Generative question and secondly 
by a Generative experiment. The question reads as follows: “how could the decentral-
ized local interaction of heterogeneous autonomous agents generate the given regular-
ity?” [15, p. 41]. 
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This question is answered by the Generative Experiment. Of course, the experi-
ment involves running an agent-based simulation model. The general structure of the 
experiment is as follows: 
 

“Situate an initial population of autonomous heterogeneous agents in a relevant 
spatial environment; allow them to interact according to simple local rules, and 
thereby generate - or grow up - the macroscopic regularity from the bottom up.” 
[15]  
 

This experiment is the explanation of the phenomenon. Thus, the explanation of a 
social macro phenomenon is provided by generating it in the computer experiment. 
Now, this grown up regularity is commonly denoted by the term emergence. 
However, the question remains unanswered as to when to talk of emergence or 
“whether the emergent behaviours ... are in some sense programmed in” [4, p. 149]. 
The first and simplest answer to this question originated from the natural language: 
namely, to denote macro patterns as emergent if the local rules on the micro level are 
not intentionally programmed to produce these patterns. This means, referring to the 
surprising effects that simulation models can produce, to denote surprise as an 
instantiation of emergence:   
 

“A particular loose usage of emergence simply equates it with surprising or unex-
pected, as when researchers are unprepared for the kind of systematic behaviour 
that emanates from their computers.“ [1]  

 

However, this is a subjective notion. As Epstein and Axtell already noted, if one 
equates emergence with ‘surprising’ it has to be asked: Surprising to whom [1, 17]? 
Yet this cannot be a scientific concept of emergence. This vagueness surrounding the 
word emergence caused Joshua Epstein [15] to undertake a more comprehensive 
investigation of the epistemology of emergence, asking how the classical concept of 
emergence could be used in generative agent-based social science.  

For this purpose Epstein investigates the example of a swarm of bees creating a 
hive. He argues that “typical of classical emergentism would be the claim: no descrip-
tion of the individual bee can ever explain the emergent phenomenon of the hive” [15, 
p. 55]. A hive could be seen as a typical example of a stable macro pattern that may 
even – virtually - be generated by the means of Artificial Societies – even though in 
this case it is not a human society under investigation. In fact, the so-called MANTA 
model [18] simulated an artificial ant society. Since it is possible to discover a concise 
description of this macro pattern this might be seen as a typical example of an emer-
gent phenomena; e.g. the MANTA model is able to show “the emergence of a divi-
sion of labour within a nest of ‘simple’ ants” [18, p. 190] and thereby reproduce the 
sociogenesis of an ant colony. The same holds for the hive created by the bees: it is a 
macro phenomenon emerging from local interactions.  

However, the question arises, as to how these patterns are generated. Obviously, an 
agent-based model produces the results by local interactions between the agents. Ac-
cording to the generative social science, these rules of interaction have to be part of 
the description of the individuals. In the case of the bees, these rules must include that 
an individual bee, put together with other bees, will create a hive. Epstein then con-
cludes that “it is precisely the adequate description of the individual bee that explains 
the hive” [15]. Otherwise the definition of the bee is incomplete. Hence, the purpose 
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of generative social science is reduction; namely, to explain a social macro phenome-
non by a precise definition of the micro level. This includes that social phenomena 
have to be inherent in the definition of the individuals. Yet emergence disappears; 
while the Generativist Motto reads ‘not generated implies not explained’, the notion 
of emergence implies the converse relation, namely that that the emergent is more 
than the sum of individual properties [15]. This is denied by Epstein. For this reason 
Keith Sawyer [16] also assumes the position that the methodology of agent-based 
modelling is a reductive approach to social theory1. Consequently, in a later paper on 
‘Remarks on the Foundations of agent-based generative Social Science’ [19], the 
word emergence is not mentioned.  

Hence, this is the puzzle: originating from the intuitive notion that agent-based 
modelling provides a tool for the investigation of emergent social processes, further 
examination of the notion of emergence resulted in a complete rejection of emergence 
at all: one the one hand, it is obvious that the simulation outcomes are a result of the 
model assumptions. Yet, on the other hand, of what interest could the simulation be, if 
the social properties of the model would merely be a part of the definition of the 
agents? Are emergent properties necessarily programmed in?  

Moreover, these methodological considerations are highly relevant to social theory: 
obviously, ants and bees are not human beings. However, by biological analogy, Ep-
stein draws a sociological conclusion: namely, that any explanation of social facts 
should be a reduction to the level of individual actors. Hence, by discussing the phi-
losophical question of emergentism, Epstein is pleading for micro reductive social 
science: The individuals are the ultimate source of social phenomena. This implies 
that the social sphere is a mere epiphenomenon that can be eliminated from an expla-
nation without loss of explanatory power. Sociologically, this is the theoretical posi-
tion of methodological individualism. However, this is exactly the opposite position 
to classical sociological emergentism. In the following, therefore, a brief outline of 
the long-running debate on individualism and collectivism will be given.    

2   The Historical Problem Setting 

2.1   Emergence in Sociology 

Within sociological debates the concept of emergence appears in foundational issues. 
Some basic components of this concept will be outlined in this section. However, it 
must be emphasised that shortcomings and simplifications of this long-running debate 
cannot be avoided in a brief summary. For a comprehensive review compare e.g. 
Sawyer [16]. 

Broadly speaking, since the very beginning of the development of sociological 
theories, two major approaches towards the foundations of sociology can be distin-
guished: methodological individualism and methodological holism. This is one of the 
central distinctions in the history of sociology [22, 23], sometimes called the micro-
macro distinction, methodological individualism versus methodological holism, or 
                                                           
1 In fact, even in the case of bees the situation is not so simple: research on swarm intelligence 

[20, 21] arrived at the result that “the complexity of an individual insect is still not sufficient 
to explain the complexity of what social insect colonies do.” [20, p. 6]. 
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action versus structure [4, 24–27]. In fact, in recent decades there have been numer-
ous attempts to overcome this strict opposition, for example, Giddens’ [28] structura-
tion theory or Margaret Archer’s [24] morphogenetic approach. But for the sake of 
argument, the two extreme positions of methodological individualism and holism are 
under consideration.  

Individualists claim that – at least in principle – every social fact has to be ex-
plained in terms of its individual actors [12, 29–32]. This is a reductionistic approach 
to social reality. It is motivated by philosophical considerations about ontology [24]. 
In particular, reductionists claim that every entity has to be capable of being perceived 
by sense data. It is therefore claimed that only men of flesh and blood are observable 
entities [33]. Seen from this point of view, every purely sociological explanation 
without reference to individual actors is suspected of reification.  

The holistic approaches, on the other hand, refer to a social reality with properties 
or laws that are not reducible to laws and theories of lower level domains such as 
those dealt with by psychology or biology. In particular, this point of view is con-
nected with the idea of  an autonomous science of society, namely the science of 
sociology. This goes back to the early protagonist of the very name sociology, August 
Comte [34]. Emil Boutroux introduced the idea of a hierarchy of irreducible levels of 
analysis [35]. In contemporary theories, this idea of an independent social level of 
reality is particularly elaborated in the tradition of Talcott Parson’s sociological sys-
tems theory [36]. Further examples can be found in Blau’s structuralism [37] or 
Bhaskar’s social realism [38]. Some theories [e.g. 39] utilise the concept of autopoi-
esis to denote the autonomy of social laws.  

The most crucial point that has to be clarified by these theories is the question of 
what social reality consists of. Hence, these theories have to say something about the 
relationship between social structure and individual action. Nowadays, debates on this 
topic usually refer to Emil Durkheim as a starting point for the debate [40]. In his 
famous ‘rules of sociological methods’, Durkheim [13] refers to society as both an 
entity, which is “not a mere sum of individuals“ and to the idea that “Social things are 
actualised only through man: they are a product of human activity“. At first sight this 
seem to be contradictory: Is society more than the mere sum of individuals or is it just 
the product of human activity?  

However, he holds the view that the composition of individual elements generates 
a new level of reality. According to Durkheim, this new level of reality contains col-
lective forces ‘as real as cosmic forces’ [41]. In particular, his example of collective 
forces determining suicide rates has become very famous. It has to be emphasised that 
Durkheim himself never used the term emergence but denoted this by the term sui 
generis. Yet, at this point the term emergence comes into play [16, 40]: a concept of a 
social reality that in fact is created by individual actors but nevertheless cannot be 
reduced to the actor level. It is claimed that social structure is different to the mere 
sum of individuals.  

What is not provided by Durkheim and subsequent theories, however, is a theory 
of how exactly a new level of reality emerges. For this reason, adherents of social 
reality assumed a defensive position [42]. This is the case because they were unable to 
clarify the ontological status of the emergent phenomena. One example is the position 
of Goldstein, which Archer [24] calls descriptive emergence:    
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“No sociological theory needs to make explicit reference to sociological emer-
gence. When methodological individualists assail this or that theory as holistic, ...its 
defenders have always the possibility of pointing to methodological emergence ...” 
[43, p. 281]. 

 

In conclusion, it has to be remarked that within sociological discourse the notion of 
emergence is to denote exactly the opposite of a bottom-up approach: namely, emer-
gentism is the opposite of methodological individualism, as favoured by Epstein.  

However, adherents of an emergent view on society failed to clarify the ontological 
status of the emergent level of social reality. Emergence is not explained but merely 
introduced at the point where an explanation would be required. In the following, 
therefore, a brief outline of the epistemological roots of emergence will be given. 

2.2   Epistemology of Emergence 

Obviously many details of the long-running philosophical debate on emergentism will 
have to be left aside for the purpose of this paper. For a more comprehensive descrip-
tion, readers may refer to McLauglin [44], or Stephan [45, 46]. In short, classical 
emergentism can be characterised as non-reductive naturalism. This consists of the 
following ideas:   
 

1) As a form of naturalism it rejects the existence of any non-naturalistic entities. Yet, 
as non-reductive naturalism, this involves a hierarchy of levels of reality which can 
not be reduced to one another even though they are closely dependent. Examples are 
the relation of the mind and brain, the relation of chemical substances and living be-
ings, or the relation between human individuals and society [47].  
2) The central assumption of emergentism concerns the question of how these levels 
are related to one another. Following Bedau, [48] the core principles of emergentism 
can be summarised as follows:   
 

a) Emergent phenomena are somehow constituted by and generated from underlying 
processes.  

b) Emergent phenomena are somehow autonomous from underlying processes. 
 

Aspect 2a) can be found in both the sociological discourse on emergence and in 
Artificial Societies: As Durkheim already noted, emergent social processes are con-
stituted by individual human beings. Also the phenomena generated in Artificial 
Societies are generated by agents’ interactions. What is contested by Epstein and the 
methodological individualists is the second part of this definition, namely that the 
social level of reality is nevertheless autonomous from its individual actions. A his-
torical recourse therefore might help clarify what is – or can be – the meaning of 
Bedau’s sketchy phrase ‘somehow autonomous’.   

The basic ideas of the notion of emergence can already be found in the mid 19th cen-
tury in the work of John Stuart Mill. In Volume III of his ‘A System of Logic’ [49], 
Mill distinguished between merely resultant causal effects of a composition of causes 
and a type of causation where the effect of the joint action of two or more types  
of causes is not the sum of the effects each type of cause would have if it had acted as  
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the sole causal factor [44]. One example of the former is Newton’s laws of motion, 
where two forces acting in different directions are summed up by vector addition. One 
example of the latter is chemical laws emerging from physical laws or biological laws 
emerging from chemical laws. Yet although Mill introduced the differentiation be-
tween resultant and non-resultant, i.e. emergent causal effects with respect to chemical 
reactions, he was a reductionist with respect to social sciences [46].   

The very terminus ‘emergence’ was introduced by Georg Henry Lewes [50]. Finally 
in the 1920s emergentism was mostly influential in the work of Samuel Alexander 
[51], Lloyd Morgan [52], and C.D. Broad [53]. Alexander distinguished between lower 
levels of existence and higher levels of existence which emerge from the lower ones. 
He claimed that the laws governing the emergent levels can by no means be explained 
in terms of the lower levels, but have to be “accepted with the natural piety of the in-
vestigator” [51, p. 46]. Examples of such emergent levels of existence are the existence 
of life and mind. This idea was elaborated by Lloyd Morgan: he contrasted emergen-
tism to dualistic explanations as can be found in vitalism on the one hand as well as to 
what he called a mechanistic, i.e. reductionist, cosmology on the other. Thus, as Broad 
finally puts it, emergentism is opposed to the idea that ”it would be theoretically possi-
ble to deduce the characteristic behaviour of any element from an adequate knowledge 
of the number and arrangement of the particles in its atoms ...” [53, p. 70]. It is impor-
tant to note that emergentism does not imply that no knowledge of such a whole can be 
gained once it has been observed, but rather stresses that “in no case could the behav-
iour of a whole composed of certain constituents be predicted merely from a knowl-
edge of the properties of these constituents, taken separately ...” [53, p. 63].  

Note that this is an ontological claim. In particular, chemical synthesis served as a 
constant example for these early emergentists. E.g. the transparency of water is seen 
as emergent from its molecular components. Obviously, water is constituted by the 
underlying molecular level. However, the properties of water, such as its transpar-
ency, is – or was – not explainable by the properties of molecules. Hence, they are 
vied as ‘somehow’ autonomous from the underlying level. Therefore water was re-
garded as a different entity to its constituent molecules.   

Until the discovery of quantum mechanics, no scientific laws were known that 
could reduce chemical reactions to underlying atomic processes [44]. This qualifies 
emergentism as a philosophy of science. However, with the advent of quantum me-
chanics, the appeal of emergentism diminished rapidly. In particular, this led mem-
bers of Logical Positivism to hold a highly sceptical view of emergentism. According 
to Hempel and Oppenheim [54] and Nagel [55], a property is only emergent relatively 
to the state of a theory; as indicated by the example of chemical reactions, a phe-
nomenon not explainable by one theory might be explainable by another. To denote a 
phenomenon as emergent mainly indicates a lack of knowledge:  

 

“Emergence is not an ontological trait inherent in some phenomena; rather it is in-
dicative of the scope of our knowledge at a given time; thus, it has no absolute, but 
a relative character; and what is emergent with respect to the theories available to-
day may lose its emergent status tomorrow.” [54, p. 263] 
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Hence, starting as an ontological claim, scientific progress caused the notion of 
emergence to transform into an epistemological one. However, the situation is differ-
ent now to mid 20th century chemistry: due to scientific progress, the notion of emer-
gence is appears again. This is particularly driven by computer science and the newly 
available computational power.  

The study of nonlinear dynamical systems, complex adaptive systems and computa-
tional theory has led to the concept of emergence in self-organising systems, which 
emphasises the notions of radical novelty of the emergent phenomena. These are not 
pre-given wholes but arise on the macro level as complex systems evolving over time 
[7]. Obviously, the development of Artificial Societies rests on this stream of research.  

Yet, viewing Artificial Societies as a tool for studying emergent processes in socie-
ties [11] leaves open the question as to whether the emphasis is on the word ‘tool’ 
hence, on the epistemological side, or on ‘processes in societies’, which would stress 
an ontological statement.  

3   Concepts of Emergence 

Thus, at some point a terminological confusion remains. However, this can be dis-
solved by inventing a terminological distinction, developed by Stephan [56]. Follow-
ing Stephan, three core principles can be identified in the concept of emergence, 
namely2: 

 

• Only physical explanations in the broadest sense are introduced. In particular, 
entities like a res cogitans in the Philosophy of Mind or the vitalistic principle of 
vigour are rejected.  

• The system’s properties depend nomologically on its microstructure. Thus, if 
there are no differences in the constellation of the system, no differences in the 
systemic properties are assumed.  

• There are two kinds of properties in a system: firstly, properties that can be found 
in the components of the system and secondly, properties that are not properties of 
any components of the system. These are the emergent properties of the system. 

 

These principles comprise the minimal conditions for emergent properties: namely, 
the claim that systemic properties exist [comp. also 47, 57]. They can capture the 
systematic points of the historical debate as outlined above. However, by adding fur-
ther assumptions to these core principles, this emergentism can be expanded to what 
Stephan denotes as either synchronic or diachronic emergentism [56]:  

 

                                                           
2 Stephan denotes the basic principles of emergence as weak emergence, which can be ex-

panded to what he calls strong emergence by the additional features of synchronic and  
diachronic emergence. The same distinction between  weak and strong emergence is also in-
troduced by Mark Bedau, who will be considered later. However, Bedau denotes something 
completely different by the same terminology. To avoid terminological confusion, the termi-
nology of weak and strong emergence will be avoided completely in this article. 
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• Synchronic emergentism claims that the emergent properties are irreducible to 
the properties and relations of their parts and are thus not explainable at all. For 
example, this is the position of Samuel Alexander3. Thus, this is a notion of 
emergence that can be found in the old debate on emergentism about the Philoso-
phy of life and mind. 

• Diachronic emergentism, on the other hand, stresses the novelty of the emergent 
features. If the further assumption is added that these phenomena are not even pre-
dictable, this concept of emergence is called structural diachronic emergentism. 
This is not identical with the notion of irreducibility. In fact, it is the case that irre-
ducible phenomena are also not predictable, but the contrary is not the case. A 
phenomenon might be not predictable but nevertheless explainable: A typical ex-
ample is the mathematical chaos theory. An essential result of chaos theory is that 
mathematical functions with an unpredictable behaviour exist because marginally 
different initial values can produce completely different trajectories. Hence, this is 
the notion of emergence which is applied in the ‘new’ debates on complexity.  

 

In fact, the concept of emergence in sociology is a concept of synchronic emer-
gence: The problem with which sociological explanations are faced is the synchronic 
determination of individual actors by the emergent level of social structure. The clas-
sic example is Durkheim’s claim that suicide rates are determined by social factors, 
i.e. the collective forces.  

Yet, within Artificial Societies the situation is different: Already the notion of 
‘growing’ Artificial Societies indicates that there is a temporal dimension inherent in 
the simulation process; hence, the Generative experiment to grow up the macrostruc-
tures of interest is a case of diachronic emergence: Within the simulation experiment 
the emergent macrostructures are novel phenomena; they appear only in the course of 
the simulation. For example, in the case of the hive, this is emergent because it is built 
by the bees. Hence, if the concept of diachronic emergence is taken into account, 
there is no need to reject that it is an emergent phenomenon.  

 
                                                           
3 This is similar to a concept of so-called horizontal emergence, as introduced by Sullis [58]. 

Namely, the simultaneous existence of the underlying and emergent level of reality. Sullis 
emphasises that culture is a prominent example of horizontal emergence. In fact, this is a cen-
tral problem for the social sciences: social structure exists at the same time as the actor level 
of social reality. However, Sullis is originated in the tradition of complex dynamical systems, 
which typically investigates changes of variables in the course of time, in particular the emer-
gence of novel phenomena. Therefore for Sullis, the paradigmatic case of emergence is what 
Stephan calls diachronic emergence, while social scientists are more concerned with syn-
chronic- or horizontal emergence. This is a source of confusion in debates about emergence: 
the fact that emergence occurs in different sciences with different traditions and different 
problems. Hence it is not unusual for the same terminology to sometimes denote something 
different, as is the case with the notion of weak and strong emergence employed by Stephan 
and Bedau, while in this case a similar distinction is denoted by a different terminology. 
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However, the question remains as to whether or not the behaviour of an agent-
based simulation model is predictable4. If it cannot be deduced without simulation, the 
situation is analogous to the mathematical chaos theory; one can talk of structural 
diachronic emergence. This can be formulated more precisely by a concept of  emer-
gence based on Complexity Theory. Darley [59] formulated a definition of emergence 
based on the computation times required to derive a solution. He compared the com-
putation times for an analytical solution and for a simulation:  

Let u(n) be the computation time for an analytical solution. Analogously, let s(n) 
be the computation time for the simulation. Even though Darley is not explicit about 
his definition of computation time, for instance computational complexity theory 
could be used here. Computation time can then be defined as the number of steps used 
by an abstract machine – such as a Turing machine – in a particular computation. This 
is a standard definition of complexity classes. Then, Darley defines emergence in the 
following manner:   

 

u(n) < s(n) ⇒ The system is not emergent 
                                 u(n) ≥ s(n) ⇒ The system is emergent 
 

Obviously, this is a gradual concept of emergence. Moreover, there is a temporal 
dimension inherent in this distinction: it might be possible to find a solution for an 
equation which has not yet been solved5. However, the final limits of analytical solu-
tions are reached if it holds that: 

 

                                                      u(n) → ∞ 
 

In 1936, Turing proved that such a limit of knowledge exists. His famous halting 
problem states that it is not decidable if a computer program will eventually halt or 
not. This means that it is not decidable if an analytical solution is possible at all, i.e. if 
it holds that u(n) < ∞ [60]. Hence, complexity considerations can shed light on Be-
dau’s sketchy phrase of ‘somehow’ autonomous.  

This terminology can be utilised to investigate Epstein’s consideration of emer-
gence. At first sight, his stream of argumentation seems to be straightforward: Classi-
cal emergentism claims that emergent phenomena are not explainable, but within 
Artificial Societies emergence is the principle of an explanation. Hence, it is incom-
patible with classical emergentism. Nevertheless, an objection to this conclusion can 
already be formulated on the methodological level: If Darley’s definition of emer-
gence is applied to the above example of the definition of a bee, it is obvious that the 
                                                           
4 Of course, it is possible to predict a phenomenon once an instance of it has been observed. For 

example, if it is known that bees will create a hive, it is possible to predict that this event will 
occur in the future. If one relies on the assumption of a stable course of the world, no insight 
into the mechanisms that generate the phenomenon is needed. However, this is simply a rule 
of thumb. Some classical theories of social emergence provide an example of the description 
of such regularities. However, this is not a generative explanation. The question under inves-
tigation here is whether emergence is consistent with a generative bottom-up approach to so-
cial theory. 

5 In fact, there is still even a subjective element inherent in this concept of emergence: Darley 
[59] cites Richard Feynman, who found a problem overwhelmingly complex, but when he 
explained the problem to Fermi, he was easily able to predict the solution.  
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hive is not an emergent phenomenon at all, given Epstein’s definition of a bee: If a 
bee is simply defined as an entity that, put together with other bees, creates a hive, 
then it holds that: 

 

                                                        u(n) < s(n).   
 

Namely, a brief look at the definition of a bee will suffice to state that it will create 
a hive. A simulation of this process would then be superfluous and, in conclusion, the 
concept of emergence is not needed at all. However, the behaviour of the simulation 
models is not usually so obvious. In such cases a concept of emergence could be use-
ful. In fact, there is already a definition of emergence for the science of complexity 
with simulation at the core of its argument. This is given by Mark Bedau [48]6:  

Macrostate P of S with microdynamic D is emergent if P can be derived from D 
and S’s external conditions but only by simulation.  

The most important aspect of this definition is the word only. Note, that by simula-
tion Bedau means computer simulation. A more formal notation of this definition 
would thus be to rely on computational times, i.e. the case in which the computational 
time for an analytic solution would reach infinity: 
 

                                                        u(n) → ∞ 
  

Presumably, in the case of problems studied by Artificial Societies, it typically 
holds that u(n) ≥ s(n). For example, an economic equilibrium might be unstable [61] 
or may only be reached after a long process of convergence [62]. In these cases, it 
appears to be reasonable to assume that insights can only be gained by simulation and 
it can reasonably be neglected that the emergent results are already ‘programmed in’. 
Moreover, the final limit is reached when the equation is analytically unsolvable. 
Therefore, the question remains as to whether an example of a social phenomenon can 
be found which fulfils this definition7.  
                                                           
6 He calls this weak emergence. However, this notation is different from the concept of weak 

emergence as introduced by Stephan. 
7 Moreover, at this point the tricky question of downward causation comes into play: While the 

so-called upward causation is a causal link from the underlying level to the emergent level of 
reality, in the case of downward causation the causal chain works in the opposite direction. 
Sometimes it is claimed that emergent phenomena have a causal influence on the underlying 
level. A typical example is a thunderstorm: a thunderstorm is an emergent phenomenon which 
is generated by particles of water and air. However, the motion of these particles is deter-
mined by the emergent phenomenon of the thunderstorm. While upward causation is widely 
accepted as unproblematic, the notion of downward causation is regarded as problematic: 
Originally introduced by Campbell [63], the notion of downward causation has stimulated 
controversial discussions. For critical comments see, for example, Kim [64]. Other authors 
employ the notion of downward causation as a useful tool, in particular, for the analysis of 
biological phenomena. See Emmeche et al. [65]. In the case of social sciences, downward 
causation is introduced, for example, by Hodgson [66]. To concentrate on only one problem, 
namely the question of emergence, the problem of downward causation is not taken into ac-
count in this article. Thus, it is solely investigated whether it is possible to introduce the no-
tion of an autonomous social sphere, but not if and how this social sphere is able to influence 
the actor level of social reality. The argument can be developed without reference to down-
ward causation. However, it has to be emphasised that Durkheim, in his famous investigation 
on suicide [41], claims the existence of downward causation: Actions of individuals, namely 
to commit suicide, are determined by emergent collective forces. 
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4   Emergence in Artificial Societies 

4.1   Examples 

Now let us take some examples from the social sciences. The problem turns out to be 
the question of whether an example can be found where it can be proven that compu-
tational times for an analytic solution reach infinity. It will be demonstrated that this 
is crucial for the sociological theory. Namely, whether the claim that Artificial Socie-
ties provide a tool for studying emergent processes in societies is an epistemological 
or an ontological statement.  
 

a) Economic equilibrium prices  
In fact, Walrasian models of general equilibrium are a well-known example. They can 
serve as an example because on the one hand microeconomics provides one of the 
strongest forms of methodological individualism and on the other hand the terminol-
ogy of the economic theory is highly formalised. This allows for an analytical treat-
ment of the problem. Thus, they serve as a proof of existence. Moreover, there are 
simulation models which are able to generate local prices by the interaction of indi-
vidual agents. The most famous model is the classical Sugarscape model. Formally, 
Walrasian models of general equilibrium are the mapping of a space of choice func-
tions of consumers and producers into the space of real numbers; Thus, they are a 
structure of the following form [67]:    
 

                                 A= <Ñ  (m+n)l, I, J,{Xi, xi}iœI{Yj, hj}jœJ> 
 

with the following definitions:  
 
l: dimension of commodity space 
I: cardinality m of consumers 
J: cardinality n of producers 
(Xi, xi), (Yj, hj) feasible space of alternatives. 
 

It has been proven by Kramer [68] and Lewis [67, 69] that this problem is not solv-
able; i.e. u(n) → ∞. For the argument it is important to note that microeconomics is a 
social theory purely on the actor level. In the terminology of classical emergentism 
provided e.g. by Broad, the objective of microeconomics is to derive the properties of a 
social fact R(A,B,C), i.e. a ‘whole’, from the complete knowledge of the properties of 
the individual elements A, B, and C. Yet, the equilibrium price is a macrostructure that 
cannot be derived by analytical means from the actor level. Hence, it can be proven 
that the invisible hand is in fact invisible. Even complete knowledge of the actor level 
is not sufficient to predict the resulting equilibrium price. This shows the limits of a 
purely microsocial analysis and, in this sense, the autonomy of the structural level of 
social reality; i.e. the macrolevel. The notion that social phenomena should be ex-
plained ‘in principle‘ in terms of individual actors [e.g. 29] can be reversed: it can be 
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proven that social macro phenomena exist which ‘in principle’ cannot be predicted by 
the means of individual actors8.  

If the behaviour of the system cannot be predicted by the underlying assumptions 
then it is reasonable to apply the notion of structural diachronic emergence to it. 
Moreover, the fact that simulation models exist which generate unpredictable local 
prices demonstrate, that this example fulfils Bedau’s definition of emergence: follow-
ing Bedau’s definition, prices can be denoted as the macrostate P  of the market, 
which is the system S. The micro dynamic D of the system S can by identified by the 
local interactions of the actors in the market. The simulation models prove, that (semi-
stable) local prices can be generated by the agent’s interactions D and S’s external 
conditions by simulation. However, the proof that Walrasian equations are not ana-
lytically solvable demonstrates, that this macro state P can only be derived by simula-
tion. Hence, Bedau’s definition is fulfilled: the behaviour of the system cannot be 
predicted, only generated.  

 

b) Cross-validation 
From the standpoint of Artificial Societies, a perhaps even more interesting example is 
described by Moss and Edmonds [70]: They develop the notion of cross-validation of an 
agent-based simulation model. In particular the notion of cross-validations implies that 
agent-based models, validated on the micro level, allow the generation of statistical 
patterns on the macro level which are in accordance with empirical observations: there 
are a widespread number of cases where the aggregate data exhibits unpredictable clus-
ters of volatility. In fact, this feature can be reproduced by the means of agent based 
simulation models. Moss and Edmonds  stress that “this result does not occur because 
we tune our models to produce these kind of time series but rather seems to be a conse-
quence of the characteristics we put into our models” [70, pp. 1121 f.]. They presume 
that the mechanisms to arrive at this result can be identified with the social embedded-
ness of the actors in the agent-based model. The particular feature of agent-based mod-
els that the agents are able to interact and influence one another is responsible for this 
result. Note that this is a crucial difference to the actor model of the neo-classical eco-
nomic theory. However, this is the mechanism which leads to increasing complexity 
and, in turn, to the unpredictability of the results. Thus, the model exhibits typical fea-
tures of complex adaptive systems, which give rise to emergent phenomena.  

Hence, the notion of cross-validation implies the assumption that validation on the 
micro- and macro level are independent of one another. This, however, means that the 
statistical macro patterns cannot be derived analytically from the design of the agents 
on the micro level as is indicated by Epstein’s claim about the definition of bees. If 
these patterns were to be a logical consequence of a micro-validated model they 
                                                           
8 In fact, Sawyer [71] has investigated a variety of mechanisms of emergence, in particular, 

supervenience and multiple realisability. Sawyer argues that in the case of social sciences 
these conditions are in fact met. In the case of Artificial Societies another mechanism is of 
greatest importance: the interaction of the agents. This will be demonstrated in the next ex-
ample. Yet, the focus of this article is on definitions, not on mechanisms of emergence. In 
fact, there are also interactions which do not lead to the emergence of any phenomena. How-
ever, of importance to the argument is the fact that emergence does not necessarily imply  
irreducibility. 
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would not be unpredictable and the notion of cross-validation would make no sense. 
Yet such an impossibility result is not available and is presumably hard to derive at 
all. Nevertheless, it will presumably also not be possible to prove the contrary; the 
state of the art makes it highly plausible that it holds that u(n) ≥ s(n), i.e. that the  
statistical macro patterns can at best be generated by simulation. Hence, it fulfils Be-
dau’s definition of emergence: the statistical macro level is computationally autono-
mous from the micro level, since it can be derived only by simulation.   

On the one hand, the things these two examples have in common is that they dem-
onstrate the usefulness of Artificial Societies as a tool for studying social processes 
which exceed the ability of mathematical theory to produce analytical solutions. 
Hence, reference to emergence can be regarded as an epistemological statement. Yet, 
the sociological theory following Durkheim made an ontological claim - even though 
it was left unexplained.  

On the other hand, they also represent features of social reality. Prices are social 
facts and the notion of cross-validation implies that unpredictable cluster of volatility 
can in fact be observed on a statistical macro level. Thus, the question still remains 
unanswered as to whether the notion that Artificial Societies are a ‘tool for studying 
emergent processes in societies’ is an epistemological or an ontological statement. 
This question will be examined in the following section.  

4.2   Emergence in Artificial Societies 

For an analysis of this problem, it should be taken into account that Artificial Socie-
ties provide a virtual laboratory: they enable the researcher to investigate social phe-
nomena that otherwise might not be possible to generate. This, however, is a quite 
typical feature of laboratories. Hence, it might be useful to take findings from the 
philosophy of experimental science into account. In fact, the lab has gained a lot of 
attention in the past decades in the philosophy of science. Even though a by no means 
comprehensive review of the philosophical findings can be undertaken here [comp. 
e.g. 72–75 ], reference will be made to some arguments developed by Ian Hacking 
[76, 77] concerning scientific realism: in particular, he argues for laboratory realism. 

Hacking explains this position by the example of the history of the atom: in the 19th 
century it was highly contested that electrons really exist. Phenomenological accounts 
described atoms as merely a useful terminus but neglected that they ‘really’ exist. It 
was admitted that the phenomena of heat and electricity exist and that the theory of 
atoms might help to predict some phenomena of interest. Nevertheless, atoms them-
selves were regarded as fictitious. Hence, they were merely regarded as an epistemo-
logical tool. However, gradually it became possible to undertake more and more  
experiments. In these experiments it became possible to manipulate and use atoms in a 
controlled manner. Atoms therefore became what Hacking calls experimental entities: 
they can be used by the experimentalist. Hacking regards this ability to intervene as a 
practical argument for realism. Thus, atoms became a part of the furniture of the world.  

This leads to the sociological question: in fact, Artificial Societies provide a labo-
ratory for sociologists. As outlined in the section on emergence in sociology, the as-
sumption of a social reality is comparable to the situation of the ontological status of 
atoms in the 19th century: so far it has gained a more or less hypothetical status: by 
enhancing the explanation of variance the introduction of social facts is useful for 
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empirical research [24], but the question of what emergence consists of remained 
unanswered. Statistical research does not necessarily make ontological statements. 
However, this can be done by means of Artificial Societies: Note that theories of 
emergence do not claim that the emergent phenomenon is an entity separate from the 
processes from which it emerges. All theories of emergence start from the idea that 
the emergent phenomena are constituted by underlying processes [48]. In fact, Sawyer 
[71] demonstrates possible mechanisms. But theories of emergence claim that, never-
theless, the emergent level is autonomous from the underlying processes. This is con-
tested by methodological individualists and the bottom-up approach to social theory.  

However, by the notion of diachronic emergence, prediction and explanation have 
to be separated. It implies that the emergent phenomena are not predictable even 
though they are explainable. Again, this is well in line with emergentism: Already 
C.D. Broad [53] claimed, that even though complete knowledge of the underlying 
level might be insufficient to predict emergent phenomena before, they might be ex-
plained once their factual appearance has been observed. Note, however, that predic-
tion is the central concept of positivistic theories of explanation [comp. 78]. This 
sheds light on the explanatory value of Artificial Societies: The reflexive nature of the 
relation between social reality and social theory and the high degrees of freedom of 
social systems might be possible borderlines for an account to subsume social sci-
ences under the (classical) explanatory mode of the natural sciences, i.e. the notion of 
prediction as an explanation of a phenomenon. Moss and Edmonds [70] claim that the 
paradigm of prediction has failed completely even in the most rigorous social science, 
namely economics. However, this does not imply that it is impossible to gain any 
knowledge of emergent social relations.  

Artificial Societies, as a case of diachronic emergence, show in what sense the 
emergent phenomena are constituted by the underlying process; simply since they can 
be generated from it. However, Artificial Societies show also in what sense it can be 
said that they are autonomous from the underlying process: its behaviour cannot be 
predicted. Hence, the result of complexity considerations shed light on the limits of 
explanatory reduction. Artificial Societies do not overcome the limitation of unpre-
dictability. In particular, a mathematical analysis of agent-based models is usually 
impossible. Even if it is possible to grow phenomena on a computer screen, it is not 
possible to deduce the results of such a simulation experiment by purely analytical 
means. This is demonstrated by the examples above. By generating a phenomenon, 
one does not even need to fully understand the mechanisms of this process. Hence, 
emergence is in fact an explanatory principle; emergence is of epistemological value.    

However, epistemology and ontology are closely connected: The laboratory is an 
epistemological tool. It is a common assumption among laboratory scientists, however, 
that the objects studied in the lab belong to the domain of the world. Obviously, the 
virtual lab on the computer screen is different from the physical lab.9 Yet it can provide 
insights into the question of how society became an autonomous level of reality:  
                                                           
9 In particular, the credibility of the assumption of the existence of an unobservable entity is 

greatly enhanced if it can be found in different independent laboratory experiments. For in-
stance the Avogadro’s number N can independently derived by 13 different experiments. It is 
a common assumption to regard this as an argument for the reality of molecular particles [79]. 
So far, something comparable is missing in the lab of Artificial Societies.   
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To recall the examples, the notion of cross-validation indicates, that the statistical 
features generated by local interactions of individual agents cannot be deduced with-
out the means of generating them in a simulation experiment. They cannot even be 
deduced with a complete knowledge of the individual agents, i.e. the underlying level 
of reality. Nevertheless, the simulation results are in accordance with empirical obser-
vations. In fact, the statistical patterns are a feature of reality. Thus, Artificial Socie-
ties provide insights into phenomena that would otherwise not be accessible. Thereby 
they demonstrate the possibility of an emergent, unpredictable social level of reality. 
Hence, Artificial Societies might help to open up the black box of emergence [7]. 
This is the problem left unanswered by social theorists so far. Due to the complexity 
of its generating mechanism, social structure is irreducible to the actor level of reality. 
By generating macro patterns Artificial Societies allow the experimentalist to inter-
vene in the experimental setting. Following Hacking, it can be argued that Society 
became an experimental entity by means of Artificial Societies.  

Thus, Artificial Societies do in fact provide insights into the micro-macro dichot-
omy: By growing emergent phenomena, the bottom-up approach of Artificial Societies 
fills the explanatory gap left open in classic sociological accounts. Artificial Societies 
show how it is possible to clarify the notion of an autonomous social sphere10. Note, 
that the situation is the reverse of the situation in chemistry after the discovery of quan-
tum mechanics. In the mid 20th century, scientific progress diminished the attractive-
ness of an ontological concept of emergence. In contrast, it takes scientific progress to 
show e.g. the unsolvability of the microeconomic equation. The concept of emergence 
is of growing interest due to scientific progress.  

5   Conclusion and Perspectives 

Obviously, to rely on structural diachronic emergence is a considerably weak notion 
of autonomy. It is not claimed that social structure cannot be explained. In fact, this 
can be done by means of Artificial Societies. It is merely claimed that the shape of the 
emerging social structure cannot be predicted by means of individual actors. This 
holds even for the case of complete knowledge of individual agents. This is indicated 
by the term ‘structural diachronic emergence’. Yet prediction and explanation have to 
be differentiated. While it is possible to explain an emergent feature ex post, it is 
impossible to predict it ex ante. Thereby the emergent feature gains its autonomy: 
                                                           
10 The result of these considerations is nearly the opposite of the conclusion drawn by Epstein; 

However, it shall be emphasized that these findings might not be as contrary to Epstein’s ac-
count as this theoretical conclusion seems to indicate: Epstein defines what he calls a ‘hard 
social problem’ [15, p. 50] exactly by considerations about computational time and claims 
that “there are social problems that are undecidable in principle” [15, p. 50]. However, given 
his definition of a bee as a paradigmatic example of a sociological explanation, it could be 
contested that hard social problems exist at all. However, the example of the computation of 
an equilibrium price demonstrates their existence. Nevertheless, by separating prediction and 
explanation, the sociological conclusion is the opposite: a phenomenon like an equilibrium 
price cannot be deduced by analytical means from terms of the level of individual actors. It 
is actually an autonomous emergent phenomenon. Agent-based simulations models are a 
means to study structural diachronic emergence. 
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Since it is impossible to predict it, it is impossible to deduce it from underlying proc-
esses. In contrast to reductive explanations in chemistry in the mid 20th century, it 
takes scientific progress to prove this impossibility result. This concept of emergence 
is different to the defensive usage of emergence in classical sociological theories, 
which Archer denotes as descriptive emergence: these theories introduce the notion of 
emergence to explain macro structures only in terms of other macro structures. How-
ever, this difference demonstrates how different streams of thought may illuminate 
each other. Here, emergence is made explicit. 

Finally, separating prediction and explanation sheds light on the scientific status of 
Artificial Societies: Within the humanities it is a common notion to differentiate be-
tween ‘explaining’ and ‘understanding’. While science is concerned with explanation, 
the humanities aim to understand their object of investigation. However, the process 
of understanding does not yield a prediction of events, as an explanation in the do-
main of the sciences does. Hence, with respect to their explanatory principle, namely 
emergence, the investigation of Artificial Societies can be regarded as a contribution 
to the humanities. 
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Abstract. In front of unsuccessful models and simulations, we suggest that re-
ductionist and emergentist attitudes may make it harder to detect ill-conceived 
modeling ontology and subsequent epistemological dead-ends. We argue that 
some high-level phenomena just cannot be explained and reconstructed from 
unsufficiently informative lower levels. This eventually requires a fundamental 
viewpoint change in not only low-level dynamics but also in the design of low-
level objects themselves, considering distinct levels of description as just dis-
tinct observations on a single process.  

Keywords: Modeling Methodology, Reconstruction, Emergence, Downward 
Causation, Complex Systems. 

1   Introduction 

Models aim at rebuilding certain aspects of real phenomena using some given level of 
description. Complex systems science in particular endeavors at rebuilding complex 
high-level behavior from more simple, more reliable and better-understood “atomic” 
mechanisms at an allegedly lower level. More precisely, with the help of low-level 
descriptions, it aims at (i) checking whether some already-known high-level descrip-
tions are properly reconstructed (validation of higher-level phenomena), or (ii) discov-
ering new high-level descriptions (new unexpected and potentially counterintuitive 
phenomena). This attitude has a crucial epistemological advantage over strictly high-
level descriptions: it works with simpler and, often, more reliable mechanisms, thus 
complying with Occam’s razor law. Simulation-based models are frequently used, as 
analytical solutions are seldom available and limited to singular, possibly non-realistic 
hypotheses. In turn, the simulated system should correctly render the evolution of a 
selection of high-level stylized facts. To this end, a reductionist attitude is usually 
adopted; in other words, modeling efforts are focused on low-level items only — for 
instance, when attempting to rebuild psychological laws by iterating neural activity, the 
simulation relies on neuron-based properties and dynamics in order to reproduce psy-
chological properties and dynamics, which are then traditionally said to “emerge”. 
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Here, we intend to review and comment the appraisal of unsuccessful models and 
corresponding simulations, then discuss in a broader framework the epistemological 
consequences of failed reconstructions on model and level design. 

2   Reductionist Approach 

2.1   Micro-founding the Higher Levels 

In a reductionist setting, models rely on low-level items which are thus in charge of 
the whole reconstruction. This approach discards theories of the higher level to focus 
on “micro-founded” science — as such, it discards all impermeability between scien-
tific fields. For instance, instead of using laws and theories of psychology, one may be 
willing to rebuild them by iterating the activity of neurons, which compose here the 
lower level, governed by biological laws (this is a current issue in computational 
neuroscience, e.g. for explaining adaptive change capabilities from neural plasticity, 
see Destexhe & Marder, 2004). 

High-level properties must therefore be first translated into low-level properties by 
a mapping function P expressing the higher level H from the lower level L, such that 
P(L)=H. Without P, it would be unlikely to expect saying anything about high-level 
phenomena by just playing with low-level items. The higher level H may in turn be 
easily or directly described in the “natural language” of a given discipline (psycho-
logical mechanisms, sociological features such as communities), whereas L usually 
corresponds to more formal and simple descriptions (neural states, relationships be-
tween agents). 

To achieve successful reconstruction, low-level dynamics observed through P must 
be consistent with higher-level dynamics, that is, a sequence of low-level states 
mapped by P should correspond to a valid sequence of high-level states. More for-
mally,1 denoting by λ (resp. η) the dynamics or transfer function of a low-level state L 
(resp. high-level state H) to another one L' (resp. H') — in short, λ(L)=L', η(H)=H' — 
this means that P must form a commutative diagram with λ and η such that (Rueger, 
2000, Nilsson-Jacobi, 2005, Turner & Stepney, 2005):  

 P ο λ=η ο P (1) 

Indeed, the left side of Eq. 1 is the high-level result of a low-level dynamics, while 
the right side yields the direct outcome of a high-level dynamics. The aim of the re-
construction is to equate the latter with the former (see Fig. 1–left). 

 2.2   Commutative Reconstruction 

Commutativity is the cornerstone of the process: should this property not hold, the re-
construction would fail. How to check it? Since P is a definition stemming from the 
ontological design of levels L & H, and λ is designed by the modeler, η is truly the 
benchmark of the reconstruction. There are nevertheless two ways of considering η:  

                                                           
1 Although formulated in a specific way, this formalism could be easily transposed for a wide 

range of kinds of dynamics, discrete or continuous. 
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Fig. 1. Relationships between levels and their dynamics in the case of (1) reductionism, (2) 
emergentism (or dualism), and (3) “observationism”, or levels as observations (solid lines: 
causal links, dashed lines: informational dependence) 

(i) either η stems from a priori knowledge of higher-level dynamics – it 
comes from a series of measurements or a well-established theory (e.g., 
“can we rebuild these Zipf laws arising in that context? ”); or  

(ii) η is discovered a posteriori from the model – it comes from the observa-
tion of the model (e.g. “what unexpected phenomena may emerge? are 
they empirically valid? ”).  

Verifying Eq. 1 in the first case simply refers to a successful reduction, while in the 
second case it induces new knowledge for the scientist, because the challenge is to 
exhibit a novel solution η to Eq. 1, knowing P and λ; and then to test this stylized 
theoretical solution against reality.2 

The success of the reconstruction endeavor depends on the capacity of “P ο λ” to 
rebuild η — Eq. 1 should hold in any case. This argument actually remains valid 
whether the underlying model is simulation-based or purely analytical: either, rarely, 
analytical proofs are available (e.g. gas temperature reduced to molecular interac-
tions), or, more often, if an analytical resolution is hardly tractable, simulation meth-
ods are invoked (only proofs on statistically sufficient simulation sets are possible, 
using several initial states L). This is plausibly an empiricist attitude, yet each simula-
tion is a proof on a particular case (Epstein, 2005) so the reconstruction may be  

                                                           
2 In more details: in the first case “(i)”, consider an example where one already knows the em-

pirical dynamics ηe of a given law of city size distribution (ηe 
(H)=H’, where both H and H' 

follow Zipf laws) (Pumain, 2004). The high-level state H is composed by P of low-level ob-
jects (cities and their populations) whose dynamics is deemed to be λ. Initially, P(L)=H. Sup-
pose now that P ο λ (L)=H'': if H''=H',  P λ = ηe P , the reconstruction succeeded, otherwise 
it failed. Validity is appraised through a comparison of η(H) and ηe (H)?”. In the second case 
“(ii)”, consider an example where one wants to observe the adoption rate of an innovation (a 
high-level dynamics) from low-level agent interactions (Deroian, 2002). Here also, P and λ 
are defined by the modeler, only η is induced by assuming the commutativity, i.e. this comes 
to find a η that satisfies Eq. 1. Often, this approach stops here: it rests on the stylized high-
level dynamics η deduced from the interplay of P and λ. But at this point it should be straight-
forward to compare the empirically measured ηe

 to the modeled η – at this point, this is 
equivalent to the kind of empirical validations carried out in the first case: “does η(H)= ηe 
(H)?”. 
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considered a success as long as Eq. 1 holds true for statistically enough particular 
cases.3  

Hence, for η is the objective of the reconstruction, when commutativity does not 
hold, because we assume η to be empirically appraised, the failure must be due either 
to λ or to P. Suppose that we stick to the fact that H is always correctly described by 
P(L), i.e. the fact that the correspondance between low- and high-level items is valid.4  

Then λ must be jeopardized. In this case the low-level dynamics entails, through P, a 
high-level dynamics different from the one given by η: the model provided by λ fails 
by missing something and λ(L) is invalid, otherwise P(L') would equate H'.  

Solutions consist in improving the description of the low-level dynamics until 
commutativity holds. In this paradigm, reductionism could fail only for practical rea-
sons, for instance if commutativity requires an intractably complicated λ5. 

3   Emergentist Approach 

3.1   Alleging an Independent Higher Level 

Despite this, it may also be that reductionism fails for essential reasons: even with an 
ideally perfect knowledge of λ, reconstruction attempts fail because H is inobservable 
from L: “Psychology is not applied biology” (Anderson, 1972). Here the whole is said 
to be more than its parts, and H enjoys some sort of independence, even when ac-
knowledging that everything ‘concretely’ stems from the lower level (or is grounded 
in it). 

This refers traditionally to the emergentist position (Humphreys, 1997, Kim, 1999).  
The point is to bridge the possible failures of reductionism: the higher level is not 

reducible, the whole is more than the sum of its parts, even in theory; but it is 
grounded in the lower level so it needs to emerge from the lower level (Humphreys, 
1997). No dualism is supposed a priori, but the cumulated, aggregated action of small 
objects somehow leads to the emergence of novel higher-level objects irreducible to 
lower-level objects: as Hüttemann (2005) underlines, this position “is meant to cap-
ture the intuition that there might be some sense in which the behavior of a compound 
system is independent vis-à-vis the behavior of the parts.” In many cases where re-
ductionism actually fails in spite of a solid, credible and/or reliable λ, complex system 
methodology tends to agree with this emergentist stance.  

What to do with such “irreducible” emergent phenomenon when dealing with simu-
lation-based or analytical models? Either one considers that the emergent phenomenon 

                                                           
3 Equivalently, an analytical solution can be considered as simulations whose outcome is 

known a priori. For an extensive discussion on the wide spectrum of criteria, accurate or less 
accurate, that make a simulation-based model successful, see (Küppers & Lenhard, 2005). 

4 I.e., P(L)=H for all empirically valid couple of low- and high-level states (L,H). Note that this 
is necessarily the case when H describes higher-level patterns on L: this is what some authors 
seem to call second-order properties (Kim, 1998). 

5 For the sake of practicality some models also assume that λ depends on H. However, because 
P(L)=H, which amounts to nothing more than repeat that λ depends on L, through the instru-
mental “simplifier” P. 
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has no causal power, making it a mere epiphenomenon.6 Yet, by being irreducible to 
what is being modeled at the lower-level, it is unlikely that a model, a fortiori a com-
puter-run simulation, could inform us about such an epiphenomenon. One would then 
consider that the emergent phenomenon has causal powers onto the lower level. But 
again, it is unlikely that a simulation would help us in this regard: this would mean that 
a computer program creates something that in turn has an effect onto the program and 
therefore the code which the modeler has instructed the computer to execute. Likewise, 
a model itself would not be eager to exhibit such causal feedback – this would in fact 
be as if someone, writing and deriving equations, was perturbed in the very writing of 
these equations by an invisible hand adding some formulas here and there. 

We would thus hope that neither a simulation nor actually any kind of model suf-
fers “downward causation” (Campbell, 1974), which would hence be bound to exist 
in the real world only. 7 

Now, to take into account emergent phenomena, the modeler would have to design 
influences between both levels; in other terms, η would be enriched to take L into 
account, η(L,H)=H', and λ would take H into account by assuming downward causa-
tion: λ(L,H)=L' – see case (2) on Fig. 1.8 However then, assuming both that (i) the 
lower level causes high-level phenomena which (ii) have in turn a downward influ-
ence on low-level objects is nonetheless likely to raise inconsistency issues regarding 
low-level property violations.  

Indeed, in an emergentist framework, where both upward and downward causa-
tions are present, interactions of low-level items create a higher-level object which in 
turn, is supposed to have an influence on the lower-level items (L → H → L′ ). For 
instance, cell interactions produce some emergent psychological feature (e.g. stress) 
which in turn induces biological changes (blood pressure increase). Similarly, con-
sciousness is considered causally efficient on the activity of the body from which it is 
believed to originate (Thompson & Varela, 2001). Quite widely spread, this concep-
tion could be surprising: even in vivo, can a lower level create a higher level which in 

                                                           
6 The argument is fundamentally as follows: denoting lower-level states by “L” and higher-

level states by “H”, L causes L', however at the same time L causes H and L' causes H'; so 
why would we need H and H' for?  These two properties seem in fact merely epiphenomenal. 
Thus, “[i]f emergent properties exist, they are causally, and hence explanatorily, inert and 
therefore largely useless for the purposes of causal/explanatory theories” (Kim, 1999). But 
then, epiphenomenality does not differ much from reductionism, and as Bitbol (2006) empha-
sizes, “emergentists are inclined to require productive causal powers of the emergent proper-
ties on the basic properties.” 

7 Donald Campbell, who introduced the term ‘downward causation’, “[a]ll processes at the 
lower levels of a hierarchy are restrained by and act in conformity to the laws of the higher 
levels” (Campbell, 1974): downward causation corresponds to the situation where a system of 
objects which integrates into a larger whole is in turn affected by the larger whole. More pre-
cisely, Campbell illustrates this idea as follows: “The organisational levels of molecule, cell, 
tissue, organ, organism, breeding population, species, in some instances social system (...) are 
accepted as factual realities rather than as arbitrary conveniences of classification, with each 
of the higher orders organising the real units of the lower level” (ibid.).  

8 In such an emergentist setting, models then simulations would thus attempt to intertwine high-
level objects in the low-level dynamics in order to rebuild emergent phenomena. This is for-
mally close to dualism, at least in the simulation implementation. 
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turn influences the lower level? Detractors of emergentist downward causation argue 
essentially that it is redundant and, even worse, that it violates the causal rules 
defining the lower level; hence, they suggest, a critically erroneous principle — see 
e.g. (Emmeche et al., 2000).  

In terms of model design, this suggests that one is likely to model something that is 
not even causally valid in the real world. As Bitbol (2006) sums up:  

 

“Consider the crucial case of “downward causation”, namely causation 
from the emergent level to a basic level : from the social to the mental 
level; from the mental to the biological level; and from the biological to 
the physical level. Within their predominantly substantialist framework 
of thought, the emergentists are inclined to require productive causal 
powers of the emergent properties on the basic properties. And nothing 
of the sort is in sight. At most, one can find ways of seing some complex 
mutual interactions of large numbers of basic components as “trans-
scale” causation.” 

3.2   Levels as Observations 

To avoid strictly dualist models and causal & epistemological concerns, one should 
consider that properties at any level are instead the result of an observational opera-
tion (Bonabeau & Dessalles, 1997, Gershenson & Heylighen, 2003, Bitbol, 2006): the 
only emergence is that of several modes of access to a same process, where each 
observation level may provide overlapping information. The higher level may indeed 
yield sufficient information about an underlying process, so that we can have an idea 
of what happens and what does not happen at the lower level, and vice-versa. For 
example, when some individual expresses some stress (a psychological observation), 
one could guess that the blood pressure is higher (a biological observation). Informa-
tion gained from the observation of some level specifies the dynamics of another 
level, and dynamics could be rewritten as λ(L|H)=L' and η(H|L)=H' — see Fig. 1. 
Knowing for instance that the higher level has a far slower time-scale, one could fruit-
fully bind the low-level dynamics to some high-level parameters, thereby significantly 
easing the understanding of the low-level dynamics. 

Obviously, high-level reconstruction strictly from valid low-level models is possible 
only when the higher level is deducible from the lower level. When the reconstruction 
fails despite robust λ and η, one must envisage that the chosen lower level L does not 
yield enough information about H, and we have to check whether we are not missing 
something crucial when designing levels. Lane (2006) underlines this effect with a 
striking metaphor about “details”: there is basically no use trying to explain crises from 
dynamics on social classes, when the relevant item that is informative of the high-level 
crisis is actually at a very lower level concerning individual action. In other words, 
sometimes there are details that may account for the high-level dynamics such that the 
chosen decomposition into a lower-level dynamics is essentially inefficient for high-
level prediction. Here, it may simply be that observing L will never yield enough in-
formation about H, and this bears identical consequences for modeling. 
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4   Questioning Level Design 

This leads to a significant change in viewpoint: first, there is no “substantial” reality 
of levels, which a simulation is allegedly trying to reproduce, but an observational 
reality only.9 Consequently, there is no reciprocal causation between levels, but sim-
ply informational links: higher and lower levels are simultaneous observations of a 
same underlying process that may or may not yield overlapping information about 
other levels. Most importantly, some phenomena cannot be rebuilt from some given 
lower level descriptions – not because of higher level irreducibility but because of an 
essential deficiency of the lower level description.  

Put differently, it is not that the whole is more than its parts, it is that the whole we 
are observing at a higher level is more than these parts we focused on.  

Slightly paraphrasing the way Bedau (1997) presents the puzzle of emergence, our 
argument suggests that if an emergent phenomenon is somehow autonomous from 
underlying processes, then this emergent phenomenon is constituted and generated 
not only by these underlying processes. In this respect, reductionism makes the intui-
tive yet audacious bet that there is a ultimate level which yields enough information 
about any other “higher” level, at least in principle — which, when it works in some 
particular cases, gives the impression that a high-level phenomenon is reducible, 
while in fact it is simply fully deducible. 

More to the point, what should happen when simulating, for instance, neural activ-
ity in order to provoke the emergence of a psychological phenomenon like learning, 
while in fact there are crucial data in glial cells which would make such attempt irre-
mediably unsuccessful (Pfrieger & Barres, 1996)?  As such, emergentism could be a 
dangerous modeling approach. Yet, reductionism would not be more helpful by as-
suming the existence of a lowest level for which mapping functions P towards any 
higher level do exist. When neurons are the lowest level, attempting to model the 
emergence of learning could also be a problem. 

Similarly and to provide another example, a social network model ignoring crucial 
semantic features which in fact determine real-world interactions is likely to enjoy a 
limited success. It is not infrequent that some social network-based community emer-
gence model seeks to reconstruct knowledge communities without having recourse to 
any semantic space. In this case, “social glial cells” may just have been ignored. In con-
trast, what constitutes the vocabulary and the grammar of the corresponding simula-
tions—agents, interactions, artifacts, etc.—may well need to be enriched in order to ex-
plain several key features in e.g. knowledge-based social networks. Yet, the belief that a 
social network is obviously sufficient to reconstruct many real-world social structures 
seems to be widespread, even when such attempts appear to require incredibly and possi-
bly unrealistically complicated dynamics (Roth, 2007). 

 
Rethinking Levels. Therefore, it may be mandatory to rethink levels. A quite fre-
quent need is that of a third level, intermediary between higher and lower levels: a 
“meso-level” deemed more informative than the macro-level while more assessable 
than the micro-level; sometimes crucial to understand some types of phenomena 

                                                           
9 This situation is moreover clearly consistent with the means of a simulation: all significant 

operations are indeed happening in silico. 
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(Laughlin et al., 2000). A triad of macro-, meso- and micro-levels seems rather arbi-
trary, and one may well imagine that some research topics involve even more levels 
(such as e.g. studying a (i) system of (ii) cities made of (iii) coalitions of (iv) agents 
who are (v) learning neural networks). In contrast, introducing new levels could also 
be simply more convenient — and this, harmlessly and at no epistemological cost, 
because levels are merely observations. Rather than claiming that each level exists as 
such, substantially, this approach simply claims that observation devices exist as such.  

Now, how to design new levels? Various authors support the idea that introducing 
a new level is interesting insofar as it makes possible a better understanding and/or 
prediction of the system (Crutchfield, 1994, Clark, 1996, Shalizi, 2001, Gershenson & 
Heylighen, 2003, McGregor & Fernando, 2005). More precisely, the argument is 
essentially that emergent properties are high-level properties that “are ‘easier to fol-
low,’ or ‘simplify the description,’ or otherwise make our life, as creatures attempting 
to understand the world around us, at least a little easier” (Shalizi, 2001). This calls 
clearly for choosing an observation level that provides easily key information on a 
given phenomenon. Here, instead of considering (emergent) high-level properties as 
something complicated, impossible to understand, or even irreducible – a negative 
and slippery definition – this informational attitude regards the high-level as some-
thing that must enable a more convenient understanding and prediction of the phe-
nomenon — a positive definition. 

This stance is very enlightening theoretically: in order to give meaning to complex 
systems we design new observational instruments and description grammars which 
help reduce reality dimensions and complexity. Going further operationally, compel-
ling methods (Crutchfield, 1994) and effective algorithms (Shalizi & Shalizi, 2004) 
have been proposed to find and build automatically & endogenously a new level of 
observation (i) based on low-level phenomena and (ii) simplifying their description. 
In any case, these tools appear to be powerful for detecting higher-order properties 
and informative, relevant patterns, for it yields an immediate description of H and, if 
the grammar is simultaneously built, a valid η too. However, as Shalizi (2001) notes, 
“the variables describing emergent properties must be fully determined by lower-level 
variables.” It becomes clear then that the new simplified “high-level” description is a 
clever mapping function P of the lower level.  

More generally, such methods produce “high-level” description grammars which 
are still based on an initial lower level (Bonabeau & Dessalles, 1997). In addition, 
while simpler, the newly created levels are not necessarily (i) more natural and intui-
tive or (ii) more importantly, complete: their efficiency is indeed limited in case the 
reductionist approach fails, i.e. when the chosen lower levels are not informative 
enough about the considered phenomenon.  

The question now goes deeper: can an automatic (bottom-up) process yield an es-
sentially new vision on things? This sounds as if a deterministic machine could ad-
dress the problem of ontological uncertainty. In short, it may be hopeless to expect a 
machine to yield a truly innovative insight starting from already deficient levels. We 
thus wish to underline that efforts should not necessarily be focused on improving the 
the design of the model of the dynamics of a given level, using a fixed ontology – 
although this latter attitude could be encouraged by a reductionist or emergentist 
stance, as is often the case. 
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5   Concluding Remarks 

On the whole, mistakes are not to be found necessarily in λ, η nor in putative projec-
tion functions; but rather in the definition itself of levels L and H. In front of unsuc-
cessful models and simulations, we hence suggest that reductionist and emergentist 
attitudes in designing models and appraising simulation failures may make it harder to 
detect ill-conceived modeling ontology and subsequent epistemological dead-ends: 
some high-level phenomena cannot be explained and reconstructed without a funda-
mental viewpoint change in not only low-level dynamics but also in the design of 
low-level objects themselves — e.g. introducing new glial cells or new semantic 
items, artifacts. In other words, a successful reconstruction may require not only to 
find a valid and efficient grammar (λ & L), but also to rethink the very bricks that 
constitute any potential grammar. As suggested above, social and neural network 
models, at the minimum, could benefit from such hindsight. 

Acknowledgements 

I wish to thank Michel Bitbol, Paul Bourgine, David Lane, Claes Andersson, David 
Chavalarias for very fruitful discussions and suggestions. Credit also goes to four 
anonymous referees and Yannick Kalantzis for interesting feedback. This work has 
been partially supported by the CNRS. Additionally, some meetings of the EU-funded 
project “ISCOM” helped framing this paper. 

References 

1. Anderson, P.: More is different. Science 177, 393–396 (1972) 
2. Bedau, M.A.: Weak emergence. In: Tomberlin, J. (ed.) Philosophical perspectives: Mind, 

causation, and world, vol. 11, pp. 375–399. Malden, Blackwell (1997) 
3. Bitbol, M.: Ontology, matter and emergence. Phenomenology and the cognitive science (to 

appear, 2006) 
4. Bonabeau, E., Dessalles, J.-L.: Detection and emergence. Intellectica 25(2), 85–94 (1997) 
5. Campbell, D.T.: Downward causation. In: Ayala, F., Dobzhansky, T. (eds.) Hierarchically 

Organized Biological Systems. Studies in the philosophy of biology, pp. 179–186. Mac-
millan Press, Basingstoke (1974) 

6. Clark, A.: Emergence and Explanation. In: Being there: Putting brain, body, and world to-
gether again, ch. 6, pp. 103–128. MIT Press, Cambridge (1996) 

7. Crutchfield, J.P.: The calculi of emergence: Computation, dynamics, and induction. 
Physica D 75, 11–54 (1994) 

8. Deroian, F.: Formation of social networks and diffusion of innovations. Research pol-
icy 31, 835–846 (2002) 

9. Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431, 
789–795 (2004) 

10. Emmeche, C., Koppe, S., Stjernfelt, F.: Levels, emergence, and three versions of down-
ward causation. In: Andersen, P.B., Emmeche, C., Finnemann, N.O., Christiansen, P.V. 
(eds.) Downward causation. Minds, bodies and matter, pp. 13–34. Aarhus University 
Press, Aarhus (2000) 



98 C. Roth 

11. Epstein, J.M.: Remarks on the foundations of agent-based generative social science. Tech. 
rept. 00506024. Santa Fe Institute (2005) 

12. Gershenson, C., Heylighen, F.: When can we call a system self-organizing? In: Banzhaf, 
W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), 
vol. 2801, pp. 606–614. Springer, Heidelberg (2003) 

13. Humphreys, P.: Emergence, not supervenience. Philosophy of science 64, S337–S345 
(1997) 

14. Hüttemann, A.: Explanation, emergence, and quantum entanglement. Philosophy of sci-
ence 72(1), 114–127 (2005) 

15. Kim, J.: Mind in a physical world. MIT Press, Cambridge (1998) 
16. Kim, J.: Making sense of emergence. Philosophical studies 95, 3–36 (1999) 
17. Küppers, G., Lenhard, J.: Validation of simulation: Patterns in the social and natural sci-

ences. Journal of artificial societies and social simulation 8(4) (2005), http://jasss. 
soc.surrey.ac.uk/8/4/3.html 

18. Lane, D.A.: Hierarchy, complexity, society. In: Hierarchy in natural and social sciences. 
Methodos Series, vol. 3. Springer, Heidelberg (2006) 

19. Laughlin, R.B., Pines, D., Schmalian, J., Stojkovic, B.P., Wolynes, P.: The middle way. 
PNAS 97(1), 32–37 (2000) 

20. McGregor, S., Fernando, C.: Levels of description: A novel approach to dynamical hierar-
chies. Artificial life 11(4), 459–472 (2005) 

21. Nilsson-Jacobi, M.: Hierarchical organization in smooth dynamical systems. Artificial 
life 11(4), 493–512 (2005) 

22. Pfrieger, F.W., Barres, B.A.: New views on synapse-glia interactions. Current opinion in 
neurobiology 6, 615–621 (1996) 

23. Pumain, D.: Scaling laws and urban systems. SFI Working Paper 04-02-002 (2004) 
24. Roth, C.: Empiricism for descriptive social network models. Physica A 378(1), 53–58 

(2007) 
25. Rueger, A.: Robust supervenience and emergence. Philosophy of science 67(3), 466–489 

(2000) 
26. Shalizi, C.R.: Causal architecture, complexity and self-organization in time series and cel-

lular automata, ch. 11. Ph.D. thesis, University of Wisconsin at Madison, U.S.A. (2001) 
27. Shalizi, C.R., Shalizi, K.R.: Blind construction of optimal non-linear recursive predictors 

for discrete sequences. In: Chickering, M., Halpern, J. (eds.) Proceedings of the 20th con-
ference on Uncertainty in artificial intelligence, pp. 504–511 (2004) 

28. Turner, H., Stepney, S.: Rule migration: Exploring a design framework for modelling 
emergence in CA-like systems. In: ECAL Workshop on Unconventional Computing 
(2005) (to appear in International Journal of Unconventional Computing) 



F. Squazzoni (Ed.): EPOS 2006,  LNAI 5466, pp. 99–116, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Narrative Scenarios, Mediating Formalisms, and the 
Agent-Based Simulation of Land Use Change 

Nicholas M. Gotts and J. Gary Polhill 

Macaulay Institute, Aberdeen, Scotland, UK 
{n.gotts,g.polhill}@macaulay.ac.uk 

Abstract. The kinds of system studied using agent-based simulation are intui-
tively, and to a considerable extent scientifically, understood through natural 
language narrative scenarios, and that finding systematic and well-founded 
ways to relate such scenarios to simulation models, and in particular to their 
outputs, is important in both scientific and policy-related applications of agent-
based simulation. The paper outlines a projected approach to the constellation 
of problems this raises – which derive from the gulf between the semantics of 
natural and programming languages. It centers on the use of mediating formal-
isms: ontologies and specialised formalisms for qualitative representation and 
reasoning. Examples are derived primarily from ongoing work on the simula-
tion of land use change. 

Keywords: Narrative scenarios, qualitative ontologies semantics simulation. 

1   Introduction 

The paper sketches an ambitious programme of work currently at an early stage. It 
argues that simulation in general, and agent-based simulation in particular, can benefit 
from the development and use of mediating formalisms, to link natural language texts 
on the one hand, with the program code and input-output behaviour of computational 
simulation models on the other. These formalisms should have strong qualitative 
aspects, be computer-readable, and, where possible, support computationally tractable 
reasoning. The paper concentrates on the role of such formalisms in relation to the 
potential uses of narrative scenarios in building spatially explicit agent-based models 
of land use change. A narrative scenario, in the sense used here, is a description of the 
past, or a possible future, with a strong temporal component: a story about what has 
happened or might happen. Such scenarios may be produced by groups of experts or 
stakeholders, then used as an input to simulation modelling; or conversely, they may 
be produced from simulation output, then compared with descriptions of real-world 
sequences of events, and/or presented to experts or stakeholders for judgments of 
plausibility. 

Computer simulation models are, in general, not readily accessible. Even if the code 
is available, and well-commented, it is difficult and time-consuming for anyone other 
than the programmer to understand it. If design documents are not available, it is also 
necessary to reverse-engineer from the program to the design, to link the code with the 
high-level description of the model given in any source text (such as a journal paper). 
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Even if design documents are available, the source code may not necessarily imple-
ment the design as expected, as illustrated by Edmonds and Hales’s (2003) exploration 
of Riolo et al.’s (2001) model. 

There are several contexts in which it is desirable to link such a model, its input pa-
rameters, or its output, to natural language texts, and this raises additional problems. 
Issues arising when these texts are academic publications, or interview transcripts, are 
explored in Polhill and Ziervogel (2006), and Polhill and Gotts (2006), and here we 
consider issues in relation to narrative scenarios, but the main source of the difficul-
ties is that computer programs are written in formal languages, and expressions in 
natural and formal languages acquire meanings in very different ways. If expressions 
in a formal language are assigned meanings, this is done by specifying a formal se-
mantics, within which elementary terms are given precisely specified meanings, and 
complex expressions’ meanings are defined using rules for combining the meanings 
of these elementary terms. In the case of programming languages, the formal seman-
tics will refer to mathematical objects such as partial functions from input to output 
(denotational semantics: Stoy 1977) or sequences of computational steps (operational 
semantics: Plotkin 1981) – in any case, the terms of the language refer to nothing 
beyond the computational domain. Natural language expressions, by contrast, do not 
have formal semantics, acquiring their meanings from their use in real-world contexts. 
Expressions within natural languages do not generally have precise meanings, al-
though precision can be increased if desired (if I say “I saw a tall man near the park”, 
my interlocutor may ask “How tall?” or “Where exactly?” for example). Furthermore, 
natural language is far more expressive than any formal language. The claim made 
here is that intermediate languages, formal but designed to refer to and support rea-
soning about real-world things and processes, can help bridge the natural language – 
programming language gap. 

2   Narrative Scenarios and Historical Social Sciences 

The kinds of system we study using social simulation are intuitively (and to a consid-
erable extent scientifically) understood using narratives: natural-language stories 
about what has happened, might happen, or might have happened, almost always 
including attributions of causality as an important aspect. Such narratives can be di-
vided into a number of classes, of which the following are most relevant here: 
 

a) Historical narratives: accounts of what has actually happened over some period in 
the past, within some geographical area and domain of human activity, or to some 
person or group of people. We are concerned here with narratives intended by 
their authors to be accurate, although any such narrative is bound to be selective. 

b) Possible future narratives:  narratives describing what might happen in future. 
Such narratives may be produced to help prepare for future contingencies, or to 
justify current policies or argue for particular future ones. 

c) Counterfactual narratives or “alternative histories”. Such narratives, when not 
intended purely for entertainment, may be intended to illuminate the causal struc-
ture of what actually happened (e.g. Schmalberger 1998). 
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d) Simulation narratives derived from simulations or games. Agent-based models, 
and computer games such as those used in military strategy training, produce se-
quences of events which can either be considered as occurring within a computa-
tional context – as steps in the implementation of an interactive program – or 
treated as the basis of possible future or counterfactual narratives about the real 
world. 

 

Historical narratives are an important aspect of what might be called historical so-
cial sciences, which include economic history, aspects of social and political history 
and political science, archeology, paleoanthropology, and historical geography among 
others. The aims of the historical social sciences include the following, to all of which 
narrative scenarios are centrally relevant: 

 

a) Reconstructing events and sequences of events. What constitutes an 
“event”, and how we know whether an event occurred, varies from case to 
case. While “James McDonald sold Danesbridge Farm to John Robertson 
for £250,000 on 14th August 1997”1 is a straightforward case, and ways of 
verifying or falsifying it are clear (seeking documentary evidence, inter-
viewing the participants and other witnesses), “McDonald became con-
vinced there was no future in farming during the mid-1990s”, “The price of 
Scottish farmland rose between 1990 and 2000” and “Many Scottish farm-
ers considered leaving farming because of the 2003 CAP reform” are, for 
different reasons, much less straightforward. In the first of the three, the 
event concerned is an apparently private one for which we have to rely on 
McDonald’s memory – although we might seek evidence of statements he 
made or actions he took – and its temporal location is vague. In the second, 
the “event” is a summary description of a large set of events (sales of farm-
land); we might question whether it is an “event” at all, and if it is, what in-
formation we need about individual sales to assess its truth: for example, 
what if records of some sales are missing? The third case combines the dif-
ficulties arising in the first two, and adds additional vagueness in its use of 
“Many”. Turning from single events to sequences of events, narrative sce-
narios become indispensable to understanding and to further investigation: 
without the temporal and causal structure that a narrative provides, all we 
have is a set of unconnected happenings. 

b) Explaining particular events. Explanation in the historical social sciences 
rarely takes the form, frequently found in the experimental physical sci-
ences, of specifying a set of initial conditions and a presumed natural law 
which ensures that given those initial conditions, the event to be explained 
must occur (there may be rather trivial exceptions: e.g. explaining the death 
of King Charles I of England and Scotland, given the initial conditions that 
he was a human being and that he was decapitated). Rather, an (implicit or 
explicit) range of possibilities is considered, and causal factors are speci-
fied in the absence of which the event being explained would have been 
impossible or less likely, and some alternative(s) certain or more likely. For 
example, we might explain Charles losing the Civil War (as opposed to his 

                                                           
1  The example is an invented one. 
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winning it, or a negotiated settlement or stalemate occurring) in terms of 
his personal qualities, those of his enemies, the balance of ideological 
and/or class forces in England, military innovations, interactions between 
English, Scottish and Irish politics, or some combination of these. 

c) Discovering regularities across time and space. Two of the “events” re-
ferred to above could also be described as regularities: a rise in the price of 
farmland across Scotland, and the deliberations of “many” farmers follow-
ing CAP reform. Other regularities, or patterns of events, are more complex, 
taking the form of correlations between variables, e.g. between agricultural 
subsidy levels and the price of farmland; or of spatio-temporal patterns of 
change, such as the spread of agricultural innovations. Some cases of corre-
lations between variables can be investigated without involving narrative 
scenarios: those which occur at one time but across space, for instance. 
However, describing co-variation across time at a single spatial location, or 
co-variation patterns involving both space and time, necessarily involves a 
narrative element. 

d) Explaining regularities across time and space. Sometimes the explanation 
of a regularity may take something like a law-and-initial-conditions form. 
For example, when the average price of a commodity rises, demand for it 
generally falls, while supply (perhaps after a lag) rises. Specific instances 
of such patterns of events (which are themselves regularities, as they neces-
sarily involve multiple attempts to buy and sell)  may be explained by ref-
erence to this economic “law”. However, such “laws” do not always hold: 
for example, a price rise may be taken as a signal that further rises will oc-
cur, boosting demand. Frequently, explaining social or historical regulari-
ties involves specifying a mechanism or principle claimed to underlie  
instances of the regularity, that will produce such instances if nothing else 
interferes. This can also be said of most laws in the physical sciences – but 
there, the experimental method can often be used to satisfy this implicit 
condition. 

e) Explaining possibilities: how could entities/events of type X exist/happen? 
A central theme in recent social (and biological) science is the explanation 
of altruistic behaviour (see Gotts, Polhill and Law 2003 for a review), 
given the obvious advantages of selfishness (in economic and genetic 
terms). There are in fact a number of plausible candidate explanations, with 
controversy continuing about which of them contribute. 

             
The last three classes of aim listed indicate how and why the historical social sci-

ences depend on the comparative method: finding events or groups of events which 
share important features, but differ in one or more crucial respects; and which illumi-
nate regularities across space and time, and patterns of causal influence. If we wish to 
investigate the rising Scottish farmland prices in the 1990s, for example, we already 
have a class of events with many features in common. We might then divide them 
into subclasses (by size or location of farm, date of sale, main agricultural products, 
age of farmer), and also compare the change in 1990s Scotland prices with changes in 
England or Wales over the same period, and in Scotland over the 1980s and 1970s, to 
explain the observed regularity, fit it into wider patterns, and redescribe it in more 
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illuminating ways. While maps, diagrams and tables can be important in presenting 
the results of such investigations, none of these will be intelligible without a connect-
ing narrative scenario. 

As well as asking whether a historical narrative scenario is accurate – in its account 
of the course of events, and in causal attribution – we can also ask whether it is ade-
quate, in the sense of mentioning the most important events and causal connections. 
Adequacy must be assessed relative to the narrative’s length and function, but given 
these, the adequacy of two accurate narratives of the same event sequence might be 
compared by asking whether either fits only of a proper subset of those event se-
quences the other could truly describe: adequacy thus defines a partial order on accu-
rate historical narrative scenarios. 

Turning to possible future scenarios, these are more relevant to policy development 
than to scientific investigation. Questions about whether they are accurate cannot be 
answered until the time they refer to, and they can be of considerable use even if the 
events they describe never happen. However, judgments of plausibility are intrinsic to 
their use in policy development: only narratives policy professionals or stakeholders 
judge plausible are likely to help them prepare for the future. Judgments of plausibil-
ity may be made by asking a range of experts or stakeholders whether they consider a 
scenario plausible – and if not, what parts or aspects of it are implausible, and why; or 
by examining it in the light of particular theories of social and historical processes.  

Counterfactual narratives are used in historical social sciences, notably in political 
and military history (Schmalberger 1998), epidemiology (Kay, Prüss and Corvalan 
2000) and macroeconomics (Cooper 2004); but many of the same questions concern-
ing plausibility, and the same range of possibilities for assessing this, arise as for 
possible future scenarios. However, counterfactual scenarios also have an important 
role in assessing the attributions of causality in historical narrative scenarios: if a 
causal attribution is valid, then changing a factor to which an important causal role is 
attributed in bringing about some event should lead plausibly to a scenario in which 
that event does not occur. 

Narrative scenarios derived from computer simulations or games can have impor-
tant roles in assessing and improving the accuracy and adequacy of historical narra-
tive scenarios, and in assessing the plausibility of possible future and counterfactual 
narrative scenarios. With regard to historical narrative scenarios, while evidence from 
the real world will always be the final arbiter of descriptions of the course of events 
and of regularities, and of proposed causal explanations, simulations have already 
been used both to test the adequacy of proposed explanations (Lansing and Kremer 
1994), and to direct the search for new evidence (Dean et al 1999). We sketch below a 
systematic approach which fully recognises the role of historical narrative scenarios in 
historical social sciences, and makes maximum use of the properties of simulation 
models. This approach would use two largely independent procedures: 

 

a) Building a simulation model which can produce simulation narratives as 
similar as possible to an existing historical narrative, from theoretically 
and/or empirically grounded causal mechanisms, while minimising the num-
ber and complexity of additional assumptions required. 

b) As a step in validating an existing simulation model, select two or more pa-
rameter sets which can be interpreted in terms of real-world differences in 
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initial conditions. Provided runs using each parameter set produce outputs 
which differ systematically in some respect, aspects of the model can then be 
tested by finding real-world examples of the different kinds of initial condi-
tions, and checking whether real-world outcomes differ in ways correspond-
ing to the differences between simulation outputs. This approach can be 
adopted without using narrative scenarios, but doing so could greatly 
strengthen it: because simulation models produce sequences of events, com-
parison with real-world sequences provides a rich source of information for 
assessing the model.  

 

Approaches (a) and (b) can be adapted for use with future and counterfactual sce-
narios: (a) to test the plausibility of an existing future or counterfactual scenario, and 
(b) to generate a range of new plausible scenarios. 

3   Agent-Based Simulations, Narrative Scenarios, and Mediating 
Formalisms 

In this section, we outline some possible intermediate formalisms. 
Within computer science, an ontology has been defined as “a formal, explicit 

specification of a shared conceptualisation” (Gruber 1993). Ontologies formulate 
relationships between the meanings of a set of terms, combining taxonomies of con-
cepts with information about relations that may hold between entities belonging to 
specified elements of the taxonomy (e.g. “woman” and “man” might be immediate 
sub-concepts of “human being”, with additional information specifying possible bio-
logical and familial relationships between instances of these concepts).  Relations, as 
well as concepts, can be given a taxonomy: so “father-of” and “mother-of” would 
both be sub-relations (specialisations) of “parent-of”. Christley et al. (2004) and Pol-
hill and Gotts (2006) argue that ontologies can mitigate problems caused by the ad-
hoc way in which agent-based models are programmed. This paper argues that they 
can also serve to link simulation models and their output to narrative scenarios. 

Useful work with ontologies requires a formalism in which to express them: OWL 
(Antoniou and van Harmelen 2004) is supported by the semantic web community,  is 
compatible with useful ontology-related software (notably Protégé (http:// protege. 
stanford.edu/)), and has a sound logical basis in the well-understood description logic 
SHIQ (Baader, Horrocks and Sattler 2004). Using automated reasoning software an 
OWL ontology can be checked for consistency, satisfiability of and equivalences 
among concepts can be inferred, and entities described can be inferred to be instances 
of particular concepts. 

How do we know what a simulation model, a part of that model, or its input and 
output, represent? In general, the model is described in natural language, possibly 
accompanied by diagrams, and this description is accompanied by a description of the 
real world entity or situation (or type of entity or situation) the model is intended to 
represent. This again is generally couched in some combination of natural language 
and diagrams; and in fact the description of the model, and of what it is intended to 
represent, may not be distinguished. There will always be many relevant aspects of 
the real world not represented in the model, and conversely, many components of the 
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software implementing the model that are not intended to represent aspects of the real 
world, but are needed to produce a working program. To the extent it is specified 
exactly which aspects of the real world are represented in the model, we can say that a 
conceptual model has been defined. To the extent it is specified exactly which com-
ponents of the model represent these aspects of the real world, the relationship of this 
conceptual model to the simulation model has been pinned down. 

We contend that both the conceptual model, and its relationship to the simulation 
model, can be greatly clarified by the use of ontologies. This does not require the 
existence of an ontology common to the social simulation community (let alone to 
social scientists in general): the point is for the authors of a particular simulation 
model or set of models to share with wider communities a precise specification of 
what they intend their model (and its inputs and outputs) to represent, and which parts 
of the computer code concerned have representational significance. In fact, a number 
of ontologies are needed: our ideas on this are still evolving, but figure 1 illustrates 
one possible setup, showing four types of ontology.  

The right of the figure shows a scenario ontology, represented by the darkest and 
frontmost oval (with other scenario ontologies indicated behind it). The concepts and 
relations in a scenario ontology represent the types of entity (and individual entities) 
existing in a part of the real world – or of a possible world as envisaged in a possible 
future or counterfactual narrative scenario. The scenario may, but need not, be de-
scribed by one or more natural language narratives of the kind discussed above. 

The left of the figure shows a model ontology, again with others of the same kind 
indicated behind it. The concepts and relations in a model ontology represent the 
types of software entity (and individual entities) that exist in a simulation model: 
instances of the concepts in a model ontology will be pieces of code or of data, de-
pending on the concept. 

At the top of the figure is the domain structure ontology. This is intended to capture 
what is common to the structure of a set of real-world scenarios and a set of models. 
Each concept in a scenario ontology will be a sub-concept (specialisation) of some 
concept in the domain structure ontology, as will each concept in a model ontology. 
Each model ontology or scenario ontology will “import” the domain structure ontology 
(copy its structure and contents), then add its own sub-concepts and sub-relations. 

The bottom of the figure contains the representation ontology. This imports one 
scenario ontology and one model ontology, and has the sole purpose of defining the 
relationship between the two, linking real-world concepts and instances with those 
representing them in the model. It will include two additional concepts, heading the 
taxonomies of real-world and software entities. 

To give a more concrete idea of what constructing ontologies involves, we include 
here a draft of the upper layers of a domain structure ontology for use in the land use 
domain – that is, in relating real-world land use scenarios to agent-based models of 
land use. The concepts in the ontology are described in real-world terms, but are in-
tended to cover both real-world entities, and the software entities corresponding to 
them in an agent-based model. The lowest-level entries are examples of (relatively) 
low-level concepts (not instances). The sub-concepts below any specific concept are 
not taken to be exhaustive. 
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Fig. 1. Ontology relationships 
 

 
Particular [The top-level node: anything that cannot 
itself have instances.] 

Endurant [Entities that “are ‘in time’, they are 
‘wholly present’ (all their proper parts are  
present) at any time of their existence.” (Masolo, 
Borgo et al 2003). They are “things” rather than 
“processes”, contrasting with “Perdurants” – see 
below.] 

  PhysicalEndurant 
AmountOfMatter [For example, a tonne of 
grain, a litre of water.] 
PhysicalThing 

PhysicalObject [Something you 
could pick up and throw – if you 
were the right size.] 

LivingThing 
NonHumanOrganism 

DomesticAnimal 
Sheep, 
Cow, 
 

 
  

 

Domain Structure Ontology 
 

Scenario 
Ontology 
 

Representation  
Ontology 

Model 
Ontology 
 

Import and 
subclass 

Import Import 
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CropPlant 
CornPlant, 
BeanPlant, 

HumanBeing 
Adult,  
FemaleHumanBeing 

NonLivingPhysicalObject 
Tractor, Fence, 

FieldOfCrop [Taken to be a  
conglomeration of PhysicalObjects and 
AmountsOfMatter.] 

FieldOfWheat, FieldOfTomatoes 
HerdOfAnimals [A collection of  
DomesticAnimals. A herd can remain “the 
same herd” even while individual  
animals come and go.] 

HerdOfSheep, HerdOfCows, 
Feature [A “Feature” is dependent on a 
specific PhysicalThing, to which it 
“belongs”.] 

    GapInFence, SkinOfCow, 
NonPhysicalEndurant 

MentalThing 
Memory, Attitude, 

SocialThing 
ImpersonalSocialThing 

Law, Currency, 
SocialFormation 

EthnicGroup, Class, 
SocialNetwork 

KinshipNetwork,  
FriendshipNetwork… 

Organisation 
  FarmersUnion, Corporation, 

SocialRole 
FormalSocialRole 

Spouse, Landlord, 
InformalSocialRole 

Friend, RoleModel, 
Agent [This subsumes HumanBeing and  
Organisation, producing the only examples of 
multiple inheritance in this concept  
hierarchy.] 

Perdurant [States, events, activities, processes – 
things which have proper parts in different  
temporal locations. All Perdurants involve  
Endurants as “participants”. All Endurants  
participate in Perdurants.] 
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AgentivePerdurant [A Perdurant involving  
intentionality on the part of at least one 
Agent.] 

CourseOfAction 
LandUse [Apply a land use to a 
specific LandParcel or  
LandParcels.], Irrigate, 

OneOffAction 
Sell, Buy, Ask, Tell, 

NonAgentivePerdurant 
OnGoingOccurrence 

IllHealthBout, Infestation, 
OneOffOccurrence 

PriceChange, Death, 
Location [Endurants and Perdurants “occupy”  
Locations, and Locations are necessarily defined in 
relation to Endurants and/or Perdurants.] 

  SpatialLocation 
   Province,LandParcel,LandHolding, 
  TemporalLocation 
   Year, January, 
  Spatio-TemporalLocation 
 Abstract 

NetworkThing [Both PhysicalThings and  
SocialNetworks have a network structure. 
However, they can change their topology while 
remaining the same network – which a network 
considered as a mathematical structure  
cannot: the current mathematical structure of 
a real-world Network is thus regarded as a 
relationship it has with that mathematical 
structure.] 
 Network 

Tree, DirectedNetwork,  
UndirectedNetwork, 

   Node 
Link 

DirectedLink, UndirectedLink,  
LabelledLink 

Clique 
Procedure [A CourseOfAction may involve  
following a Procedure (as written down, or 
encoded in memory).] 

   LandUseProcedure, VeterinaryProcedure,  
 

Ontologies can be used to describe processes and spatio-temporal relationships, but 
capturing the rich structure of human-produced narrative scenarios, or the output of 
agent-based simulation models (particularly where these are spatially explicit), is 
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likely to require additional, specialised formalisms. The most promising include Al-
len’s temporal interval calculus (Allen and Kautz 1985),  the Region Connection 
Calculus (RCC) (Cohn et al 1997),  and Qualitative Differential Equations (QDE) 
(Kuipers 2001). These are all primarily qualitative, an important advantage in mediat-
ing between natural language narratives (which almost always have important qualita-
tive aspects) and simulation output. 

Allen’s temporal interval calculus is based on a set of 13 mutually exclusive and 
jointly exhaustive qualitative relations which two temporal intervals can have (figure 
2). Partial knowledge about which of them holds between an interval pair can be ex-
pressed by specifying a subset of the 13 asserted to include the true relation. RCC is a 
somewhat similar set of topological spatial relations. Again, any two regions (which 
can be of any dimensionality, provided both are of the same dimensionality) must 
have one and only one of these relations; but in this case, the regions can consist of 
multiple pieces. The names of the eight relations as given in figure 3 are abbreviations 
standing for equal (EQ), externally connected (EC), disconnected (DC), partial over-
lap (PO), tangential proper part (TPP) and non-tangential proper part (NTPP), plus 
inverses of TPP and NTPP (TPPi and NTTPi).  

Both Allen’s calculus and RCC have been extensively investigated with regard to 
their computational properties. For RCC, the full first-order language is undecidable 
(Grzegorczyk 1951, Gotts 1996); it would be surprising if the situation were different 
with Allen’s calculus, although its first-order language does not appear to have been 
investigated explicitly. For both, the “constraint language” is decideable – that is, given 
any finite set of relations among regions, it can be determined in finite time whether it 
could be satisfied; but the problem is NP-hard (Vilain, Kautz and van Beek 1990, Ben-
nett 1994, 1996). For both calculi, subsets of this class of problems are known for 
which difficulty can be shown to increase with some polynomial function of problem  
 

 
 

Fig. 2. Allen’s 13 qualitative temporal interval relations 
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Fig. 3. RCC’s eight basic topological relations 

 
size (Vilain, Kautz and van Beek 1990, Bennett 1994, 1996, Renz and Nebel 1999). 
Bennett et al (2002) show that RCC and Allen’s calculus can be combined to express 
spatial and temporal relations simultaneously without losing decidability. 

Both Allen’s calculus and RCC leave large gaps in what can be said about spatial 
and temporal properties and relations (they have no metric component, and RCC as 
presented above says nothing about shape, although there are extensions allowing the 
convexity of a region to be asserted (Davis, Gotts and Cohn 1999) and for the exis-
tence of regions without definite boundaries (Cohn et al 1997)). However, what they 
can express is highly relevant to questions of causality: in the everyday world, a cause 
must not come after its effect, and the two must be spatio-temporally connected (di-
rectly or via some intermediate). Qualitative temporal relationships are also central to 
the description of plans and procedures, and concerns about boundaries and the spatial 
continuity of parcels of land are highly relevant to land management, and to the eco-
logical implications of land use change. Given this, and the extensive literature about 
the expressivity and computational properties of the two formalisms, we intend to 
investigate combining them with ontologies in representing narrative scenarios. 

In a QDE representation of a system, each numerical variable is assigned a quantity 
space: a finite, totally ordered set of qualitatively important “landmark” values. In a 
land use context, taking rainfall over the growing season as an example, the landmark 
values might be those (not necessarily specified exactly) necessary to make various 
crops viable. Variables can be related by algebraic constraints (e.g., the return from a 
crop is the multiple of its yield with the price per unit weight), or by differential ones 
(e.g. the relation of the rate of pollutant inflow to a closed body of water to the quantity 
of that pollutant in the lake); functional constraints assert that increasing one variable 
will increase (or decrease) another, without further specifying the form of the depend-
ence. Transition conditions may be attached to a set of QDE constraints, specifying 
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when they cease to apply (e.g. increasing the number of sheep in a field will increase 
their total rate of weight gain, but only up to the point where they eat the grass faster 
than it can grow). 

4   From Narrative Scenarios to Simulations…and Back 

We sketch here a development of the proposed “story and simulation” approach to 
scenario development (European Environment Agency 2001): 

 

“The storyline describes in story form how relevant events unfold in the fu-
ture, while the model calculations complement the storyline by presenting 
numerical estimates of future environmental indicators and helping to main-
tain the consistency of the storyline.” 

 

A small set of storylines, each based on different assumptions, is developed by a 
“scenario panel” of experts and/or stakeholders. A modelling team then creates a 
simulation to match each storyline; the additional (quantitative) detail and any caveats 
about consistency are fed back to the scenario panel, this process being repeated as 
necessary. However, the process of getting from storyline to model is not described in 
any detail, nor is the kind of feedback given. We suggest the following sequence of 
steps, beginning with a set of natural language possible future narrative scenarios, an 
initial domain structure ontology, qualitative formalisms such as those described in 
the preceding section, and possibly a set of existing scenario ontologies. All the steps 
listed require further decomposition. We assume that the domain structure ontology 
includes at least the concepts in the taxonomy in section 3: 

 

1. Identify concepts in the narrative scenarios possibly relevant to simula-
tion modelling, and instances of those concepts. Natural language proc-
essing software such as GATE (Cunningham, Maynard et al 2002), 
which can pick out words and phrases using syntactic and semantic cri-
teria, may be useful here and in later stages, but full automation is a long 
way from feasibility. 

a. Identify the Agents (HumanBeings or SocialFormations) in the 
narratives. 

b. Identify the non-agentive Endurants (Physical and NonPhysical). 
c. Identify the AgentivePerdurants, and the Endurants involved in 

each. 
d. Identify the NonAgentivePerdurants, and the Endurants involved 

in each. 
e. For each Perdurant and Endurant, identify any Locations men-

tioned in connection with it. There may be SpatialLocations, 
TemporalLocations and/or SpatioTemporalLocations specifying 
where and when the Perdurant happened. 

2. Identify relations between instances of the concepts identified in step 1, 
and properties of those instances. Particularly important will be relations 
between the Locations identified in step 1e: existing systematisations of 
such relations, such as those described above, should be part of the do-
main structure ontology. 
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3. For each concept identified in step 1, find the most specific concept in the 
domain structure ontology of which it can be considered a sub-concept. 

4. Where more than one of the concepts identified in step 1 has the same 
immediate super-concept in the domain structure ontology, consider 
whether any of that set of concepts should be grouped under more spe-
cific, intermediate concepts. If so, add these to the scenario ontology. 

5. Carry out analogues of steps 3-4 for relations and properties. 
6. On the basis of commonsense knowledge, stakeholder knowledge and/or 

existing theoretical and empirical literature, consider what additional 
real-world concepts, properties and relations should be added to the sce-
nario ontology. 

7. Construct a formal description of each narrative scenario, in terms of the 
scenario ontology and the set of qualitative formalisms being used. This 
formal description would take the form a labelled, directed graph. De-
tails are still under consideration, but provisionally: 

a. Assign a node to each of the specific Endurants, Perdurants and 
Locations mentioned in that narrative scenario or inferred by com-
bining it with background knowledge, labelled with the concepts 
of which it is an instance. 

b. Link each Perdurant to all the Endurants involved in it, with a label 
on the link identifying the role played by that Endurant. 

c. Link each Perdurant to the TemporalLocation it occupied, and to 
one or more SpatialLocations (one of these would be the spatial 
union of all the SpatialLocations involved; further details remain 
to be decided). 

d. Instances of relations between Endurants, between Perdurants, be-
tween Endurants or Perdurants and Abstracts, and relations be-
tween an Endurant and a Perdurant other than that of participation 
(e.g., a HumanBeing learning of a Perdurant) should also have 
nodes, with edges linking them to each of the concept-instances 
involved in the relation-instance, and an edge linking the relation 
instance to the TemporalLocation during which it held (one such 
node would represent the “universal” TemporalLocation, indicat-
ing that a Perdurant or relation linked to it continued or held 
throughout the time covered by the scenario). 

e. Properties of Endurants and Perdurants should also have nodes, 
with a link to one Endurant or Perdurant, and to a set of Tempo-
ralLocations, the latter labelled with the values holding during that 
TemporalLocation (these could be taken from a QDE-type quantity 
space in the case of numerical properties).  

f. SpatialLocations could have RCC-labelled links with each other, 
TemporalLocations interval-relation links with each other. 

g. Pairs of property-nodes could also be linked to nodes representing 
QDE algebraic, differential or functional constraints. 

8.  Decide on a subset of the concepts, relations and properties identified to 
be represented in the simulation model, and determine how to represent 
them. 
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9. On the basis of step 8, construct a model ontology. A concept in the sce-
nario ontology is likely to have relations and properties which the model 
ontology concept for the class of software entity representing that real 
world entity does not have, and vice versa. Polhill and Gotts (2006) dis-
cusses the information to be encoded in the concepts of a model ontology. 

10. For each pair of corresponding concepts (relations, properties) in the 
scenario and model ontology, consider whether a new concept (relation, 
property) subsuming both (and nothing else) should be added to the do-
main structure ontology. This should be done if and only if two concepts 
(relations, properties) share structural relationships with other items in 
their respective ontologies which do not hold for their current common 
super-concept in the domain structure ontology. 

11. Build the model. This process may modify an existing model, may re-
quire a new model to be built within an existing modelling system (see 
Polhill and Gotts (2006) for discussion of modelling systems), or may 
require an entirely new modelling system. 

12. Experiment with the model, exploring its parameter space to discover 
whether simulation runs giving rise to simulation scenarios similar to the 
members of the original set of narrative scenarios can be produced, and 
if so, how easily, and where the greatest difficulties lie. 

13. Feed back information from step 12 to the experts/stakeholders (along 
with a description of the simulation model), and if there were indeed sig-
nificant difficulties in producing simulation narratives similar to the origi-
nal narrative scenarios, ask whether they can adjust these accordingly. 

 

Given a simulation model based on an ontology, it should be possible to arrange 
for output from a simulation run to take the form of a directed, labelled graph such as 
that described in step 8 above. Matching such structures against each other should 
also be possible, using adaptations of existing graph-matching algorithms such as that 
described in Feng, Goldstone and Menkov (2004), which is designed for aligning 
conceptual systems, and allows for post-matching adjustment by the user. This would 
allow systematic comparison with the output from a different run of the same model; 
with outputs from different models, and with narrative scenario structures produced 
from natural language narratives, and perhaps other sources such as time series. We 
intend to explore how a natural language narrative scenario could be created from 
such a labelled, directed graph – specifically, whether there are existing natural lan-
guage generation algorithms that could be adapted to partially automate the process.  

5   Conclusions 

Narrative scenarios play crucial roles in both intuitive and scientific understanding of 
the kinds of system agent-based social simulation models. Indeed, this fact is closely 
related to the advantages of agent-based models in studying particular types of sys-
tem: where we conceive of a system as consisting of a set of interacting agents, each 
with a characteristic range of behaviors (and perhaps perceptions, abilities and goals); 
then an agent-based model can mirror the structure of the system as we conceive and 
describe it far more readily than a model based on a system of differential equations. 
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As Chattoe (1996) argues, this gives agent-based modelling considerable methodo-
logical advantages, in particular making it easier to identify the part of the model 
responsible for poor performance. Such systems are also among those about which a 
great deal can usefully be said in qualitative terms, even if little quantitative informa-
tion is available (although not unique in that regard). 

Since agent-based models naturally produce outputs with a quasi-temporal struc-
ture, and spatially explicit models produce outputs with quasi-spatial structure, ways 
must be found to match such outputs against natural language narrative scenarios, if 
such models are to fulfill their potential in historical social sciences and in policy 
development. However, the transparency which both scientific and policy-related 
applications require of agent-based simulation modelling in areas such as land use 
change, cannot be achieved by any combination of program code and natural lan-
guage description alone. Ontologies, combined with existing qualitative formalisms 
designed to express spatial, temporal and dynamical relationships and associated with 
useful results concerning expressivity and computational complexity, could be of 
great benefit in this regard, and specifically in enabling simulation model outputs to 
be linked to and compared with natural language narrative scenarios. 
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Abstract. The terms ‘verification’ and ‘validation’ are widely used in science, 
both in the natural and the social sciences. They are extensively used in simula-
tion, often associated with the need to evaluate models in different stages of the 
simulation development process. Frequently, terminological ambiguities arise 
when researchers conflate, along the simulation development process, the tech-
nical meanings of both terms with other meanings found in the philosophy of 
science and the social sciences. This article considers the problem of verifica-
tion and validation in social science simulation along five perspectives: The 
reasons to address terminological issues in simulation; the meaning of the terms 
in the philosophical sense of the problem of “truth”; the observation that some 
debates about these terms in simulation are inadvertently more terminological 
than epistemological; the meaning of the terms in the technical context of the 
simulation development process; and finally, a comprehensive outline of the re-
lation between terminology used in simulation, different types of models used 
in the development process and different epistemological perspectives. 

Keywords: Verification, validation, pre-computerized, post-computerized mod-
els, terminology. 

1   Introduction: On the Reasons to Address Terminology 

Verification and validation are two extensively used terms in simulation. They are 
widely used in science in general, both in the natural and the social sciences. They 
have plethora of different methodological significances, in diverse epistemological 
perspectives, upon different beliefs, and expectations. They are used often with the 
same or interchangeable meanings. They are the subject of numerous scientific and 
philosophical debates, and connected to diverse disciplinary, interdisciplinary and 
multidisciplinary contexts. In spite of recalcitrant debates, a standard meaning is 
unlikely to emerge. The terms carry an ineluctable relationship to the problem of 
“truth”. In simulation, their affirmative character, alluding to a positive result claim, is 
often criticized (e.g. see Oreskes et al. 1994). Terminological disputes seem unlikely to 
be useful. Consensus in meaning seems improbable. In effect, it would seem reason-
able to ask: Would it be useful, or even reasonable, to discuss these terms on strict 
terminological grounds without discussing their epistemological underpinnings? 
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There are, however, methodological contexts where the terms acquire an increased 
pragmatic semantics. While scientific practice tends to lead scientific communities 
towards using common methods, as well as common languages and meanings, the use 
of these terms tends to become considerably pragmatic. Particularly in disciplines that 
make use of computerized models, like in simulation, the terms verification and valida-
tion are associated with the need to evaluate models in different stages of the software 
development process. In social science simulation, common definitions are usually 
imported from computer science, as well as from numerical and technical simulation, 
having intended distinct – but not infrequently conflated – meanings. In the strict con-
text of the simulation development process, it would not be unsafe to say that the pur-
poses of verifying and validating a simulation have become reasonably consensual: 

 

Verification – Most researchers define verification as referring to the per-
formance of the program code, for instance, as “the process of checking that 
a program does what it was planned to do” (Gilbert and Trotzsch, 1999, 
p.21), or “checking that the representation is faithful to the simulator’s inten-
tions” (Edmonds, 2003, p.108); 
Validation – According to Gilbert and Troitzsch (1999, p.22), “While verifi-
cation concerns whether the program is working as the researcher expects it 
to, validation concerns whether the simulation is a good model of the target”, 
or, according to Edmonds (2003, p.108), that “the expression of the simula-
tion in terms of outcomes is faithful to the relevant social phenomena.” 

 

Comparable definitions abound in the literature. At any rate, given the strong epis-
temological character of both terms it is always possible to perceive differences 
among similar definitions. Consider for instance the term validation. Whereas Gilbert 
and Troitzsch seem to define it with reference to the process of simulation as a whole, 
Edmonds emphasises the expression of the simulation in terms of its outcomes. How-
ever, as Küppers and Lenhard (2005) have shown, it is not unusual to construct useful 
simulations with faithful outcomes even when new assumptions that contradict the 
intended conceptual model are introduced in the specification and the corresponding 
programs. Whereas the simulation program may not be a good model of the target, the 
resulting data output model may reflect a good model of it. There is in fact more than 
one model involved. Could we say that in Gilbert and Troitzsch’s sense the simulation 
would not be validated, but that it would be so in Edmonds’ sense?  

Although useful in specific contexts, terminological debates would not seem useful 
if the attempt was to confront or falsify definitions of terms on comprehensive con-
texts. In effect, as it is widely recognized, several chains of intermediate models are 
developed before obtaining a satisfactory simulation. Moreover, given the multi-
paradigmatic character of the social sciences, many kinds of models will be used in 
different simulations. And this begs the question: Is it useful to discuss patterns of 
terminology without outlining the specific methodological context of a simulation and 
its intrinsic epistemological ambiguity?  

Epistemological significances are, after all, the fundamental ingredients to outline a 
logic of the method of simulation.1 Indeed, the significances of these terms are often 

                                                           
1  Previous work on the analysis of intentional and empirical adequacy of computer programs in 

social science simulation is such an example (see David et al. 2005). 
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built over tacit assumptions, which tend to evolve as a cultural aspect of the disci-
pline, as a function of paradigmatic diversity and change – there are not and there 
should not be strict rules about it. On the other hand, if the issue is methodological 
clarity there may be reasons to address a terminological analysis. If the goal is delim-
iting peculiar concepts for particular terms, relative to particular methods – or, in 
other words, if the goal is to disambiguate the mapping between pragmatic termino-
logical use and ontological/epistemological significances – there may be room for 
useful argument. Why would that be interesting? Essentially because in social science 
simulation there are two distinct senses in which the terms verification and validation 
are used, which support the reasons for writing this article: verification and validation 
in the computational modelling sense and verification, validation and confirmation in 
the traditional philosophical sense. I will often call the former VERIFICATION AND 

VALIDATION IN THE SIMULATION DEVELOPMENT SENSE and the latter VERIFICATION, 
VALIDATION AND CONFIRMATION IN THE BROAD SENSE. 

2   On the Goals and the Structure of This Article 

The lack of consensus with respect to the nature of scientific knowledge suggests that 
the terms represented by ‘verification’ and ‘validation’ will never be completely free 
from a certain degree of ambiguity. The ambiguity seems somehow more salient in 
social science simulation insofar as researchers conflate the meanings of both terms 
along the simulation development process with other meanings found in philosophy 
of science and the social sciences. The goal of this article is the clarification of termi-
nology. I will suggest that the identification of distinct phases along the construction 
of a simulation contributes to clarify the use of the terms. Particular emphasis will be 
given to the importance of recognizing the construction of two distinct kinds of con-
ceptual models in the simulation development process, one before the implementation 
and execution of the simulation programs – THE PRE-COMPUTARIZED MODEL – and 
another after the implementation and execution – THE POST-COMPUTARIZED MODEL.  

This somehow obvious distinction among pre-computational, post-computational 
and actual computerised models does not appear to be methodologically relevant in 
computer science or technical simulation, but its tacitness contributes to increased 
ambiguity in usage of the terms in social science simulation. The consideration of 
different kinds of intermediate models in the logic of the method of simulation helps 
us situate the roles of the terms in the development process and thus into the real 
epistemological debate. Additionally, the consideration of the meaning of both terms 
in the development process sense, on the one hand, and in the broad sense, on the 
other hand, helps us describe the different categories of knowledge involved in build-
ing simulations. It will further allow us to observe that many debates around the prob-
lem of “truth” in simulation are inadvertently more of a terminological nature than of 
an epistemological nature.  

3   On the Meaning of Verification, Validation and Confirmation of 
Models in a Broad Sense 

The well known paper of Oreskes et al. (1994) is arguably the reference of criticism to 
an alleged misleading use of terms in simulation. For some researchers, it is actually a 
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criticism to simulation as method. The paper emphasised the role of numerical models 
in the earth sciences and its influence on public policy. Today, in the era of global 
warming, no one would deny the importance of computers and simulation in the natu-
ral sciences for public policy. In any case, the claim is their abstract is undoubtedly the 
following: “Verification and validation of numerical models of natural systems is im-
possible” (Oreskes et al. 2004, 641). More than ten years after the publication of this 
article, refutations abound in the literature. In a widely accessed lecture on the inter-
net,2 Tetsuji Iseda, a philosopher and former research assistant of Frederick Suppe3, 
confronts Suppe’s and Oreskes’ ideas on the value of simulation. A debate which, 
according to Iseda, should converge to a central question: “Can simulation models 
yield knowledge about the real world?” And the answers of Suppe and Oreskes, in the 
view of Iseda, are the following: 
 

“Oreskes et al: We can not verify simulation models, so scientists cannot ob-
tain knowledge from simulation modelling.” 
“Suppe: Simulation models can be verified in some sense, so we can obtain 
knowledge from them.” 

 

The common term at stake is the word “verification”. For Iseda, however, there are 
various degrees of certainty on the problem of “truth”. These are identified by the 
terms verification, confirmation and validation, recalled by Oseda in the light of 
Oreskes’ critique of simulation: 

 

Firstly, VERIFICATION stands for absolute truth, “To say that a model is veri-
fied is to say that its truth has been demonstrated, which implies its reliability 
as a basis for decision-making” (Oreskes et al. 2004, 641). Models cannot be 
verified insofar as the real world is never a closed system, and so there can-
not be a logical proof that a model is true. Closed systems come up only in 
purely logical structures, such as proofs in formal logic. Secondly, VALIDA-

TION stands for a “model that does not contain known or detectable flaws and 
is internally consistent” (ibidem, 642). Models can be validated by compar-
ing different solutions, or by calibrating models to adjust known data. But 
this does not mean that models have been verified, insofar as “the agreement 
between measures and numerical outputs does not demonstrate that the 
model that produced the output is an accurate representation of the real sys-
tem” (ibidem, 642). Finally, CONFIRMATION stands for plausible theories in 
terms of evidence. “If empirical observations are framed as deductive conse-
quences of a general theory and these observations can be shown to be true, 
then the theory is confirmed and remains in contention for truth” (ibidem, 
643). Hence, as Iseda remarks, models may be confirmed but this means only 
the model is probable, not that the model is true. 

 

In summary, for Oreskes et al., simulations can be validated and confirmed but never 
verified. The primary value of simulation would be to “offer evidence to strengthen 
what may be already partly established, or to offer heuristic guidance as to further re-
search, but never susceptible to proof.” For Oreskes, a simulation is thus more like a 

                                                           
2 Iseda (1997), see http://carnap.umd.edu/phil250/oreskes/oreskes.html (retrieved March 2007). 
3 The author, among others, of the “Semantic Conception” of scientific theories. 
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fiction: “A model, like a novel may resonate with nature, but it is not a “real” thing” 
(ibidem, 644). Conversely, for Iseda, verification is possible in some sense. A simula-
tion is a representation of aspects of the real world and thus yields knowledge about the 
real world: Oreskes’ way of defining “verify” would be too strict – “it would make 
empirical knowledge impossible” (Iseda 1997). Arguably, it may not be unsafe to say 
that Osedas’ view is shared by many researchers doing simulation. However, rather than 
an epistemological debate, this seems to be a terminological discussion. My objection to 
Isedas’ interpretation about Oreskes essay would be the following: 

 

(i) Oreskes’ view is not incompatible with Suppe’s; Oreskes’ criticism is 
mainly on the use of terminology, claimed to be misleading; (ii) Oreskes 
criticism to terminology does not show that simulation models cannot be 
validated and/or confirmed; (iii) it is true that Oreskes sense of the term veri-
fication is strict and thus simulations cannot be verified in the sense defined, 
but whether Oreskes has suggested or not that simulation cannot yield 
knowledge about the real world is by no means clear in Oreskes’ paper.  

 

Rather than questioning if simulation yields knowledge, there is another question, 
which has not been addressed by Oreskes or Iseda, which would be perhaps more 
illuminating: What kind of knowledge can simulation yield about the real world? 

Not only this question is more pertinent from an epistemological point of view, but 
we argue to be useful for clarifying the mapping of terminological usage to epistemo-
logical significances, avoiding what could be a mere debate around the use of the 
same terms in distinct contexts. The simulation development process involves the 
construction of several models, built according to different methods, serving different 
purposes, ultimately embedded in the simulation and eventually yielding different 
kinds of knowledge to the researcher. And this brings us back our central remark: the 
terms verification, validation and confirmation of models are usually discussed in the 
broad philosophical sense, but are often conflated with their use in the development 
process sense. An ambiguity that led Oreskes to state the following contentious sen-
tence about verification: 

 

“Numerical models may contain closed mathematical components that may 
be verifiable, just as an algorithm within a computer program may be verifi-
able.” (Oreskes et al., 1994, p.641). 
 

And further suggesting that the following definition of validation, given by the In-
ternational Atomic Energy Agency, is erroneous: 

 

“A validated model is one that provides a good representation of the actual 
processes occurring in a real system.” (Oreskes et al., 1994, p.642) 

 

However, outside the traditional sense of computer science, the first quoted sen-
tence may also be erroneous. Whether an algorithm within a computer program is 
verifiable or not depends on whether the program may be qualified as a pure logical 
structure or as a causal model of a logical structure that instantiates a particular algo-
rithm (see Fetzer, 1999 and also David et al. 2005). Even the simplest program may  
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not be verified in Oreskes’ sense. Moreover, whereas the second quoted sentence may 
be misleading when interpreted in the light of the philosophical sense of validation, it 
would be actually consensual in the strict computational modelling sense of simula-
tion, in which the goal is to evaluate whether the specification and the results of a 
simulation are good models of the target, which are two well defined steps in the 
simulation development process. In short, whether validation in the computational 
modelling sense stands for verification, validation or confirmation in the broad phi-
losophical sense, it may well be a relevant terminological debate, but not necessarily a 
useful epistemological debate. For someone not familiar with simulation and from an 
epistemological point of view the terms may indeed lead to confusion, but are not 
necessarily erroneous. 

4   On Four More Examples of Terminological Dilemmas in Social 
Science Simulation 

Isedas’ note on Oreskes vs. Suppe is mostly related to simulation in the natural sci-
ences. Likewise, not considering terminological and epistemological traditions in the 
computer and the social sciences may yield misleading methodological analyses of 
social science simulation. Apart from the conflation of the terms in the development 
sense with the philosophical broad sense, there are other relevant ambiguities that may 
have a terminological rather than an epistemological origin. This observation is not a 
criticism of the methodological literature in the field. It is rather a natural consequence 
of an intense interdisciplinary field with exciting new methodological challenges. In 
any case, the clarification of terms and the resultant emergence of epistemological 
debates is a positive contribution to the field. The following topics are examples liable 
to terminological dilemmas, with potential influence on epistemological debates – or 
simply epistemological misunderstandings, mostly arising as a product of the encoun-
ter of the computer and the social sciences: 

Experimental vs. Empirical vs. Quasi-empirical Methodology. To the extent that 
simulation is an experimental methodology, it has been considered as a quasi-
empirical approach (e.g. Küppers and Lenhard, 2005, paragraph 2.2). Moreover, inso-
far as it is programs that are executed and tested, and not the phenomena that they 
presumably represent, the term “quasi-empirical” has replaced the term “empirical.” 
Both terms used in this sense seem to be borrowed from the natural sciences, and not 
from the sense of building and evaluating social science simulations with gathered 
empirical data. If the intention is to indicate that simulation resembles empirical re-
search to some degree, in the sense that gives a quasi-access to a real experiment with 
the social phenomena, the term may become highly controversial, and indeed may be 
claimed misleading. Rather than stating that simulation is quasi-empirical, consider 
the ambiguity in stating that simulation makes “quasi-experiments” with the social 
phenomena. Moreover, just like the use of hypotheses confirmed by observation does 
not necessarily imply using experiments, there may be not any reasons to suggest that  
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simulation, as a definitive experimental exercise with computerized models, resem-
bles empirical science in the sense of experimental science. At the very least, if the 
term empirical is used to characterize the logic of the method of simulation, its in-
tended meaning should be clarified. 

Formal inference in the classical computer theory sense vs. inference in the discursive 
intentional sense (for more details, see David et al. 2005). Epstein (1999), among 
others, has used the “formal symbol manipulation” conception of the classic theory of 
computation, which describes computers as formal inference machines, to character-
ize generative simulation as necessarily deductive. The terms “generative” is now 
widely adopted in social science simulation. However, to understand simulation ac-
cording to such formal conception of computation requires understanding the infer-
ence mechanism in the exclusive grounds of first-order logical sentences. But there 
are not reasons to suppose that the semantically rich social phenomena represented in 
simulations can be expressed simply with first-order logical sentences. The building 
and evaluation of simulations involve the use of rhetorical and intentional discourse, 
usually acquired in the context of limited consensus. While those simulations may be 
formally described in the sense of being abstract, it should be remarked that the term 
formal in such a sense does not necessarily translate to the sense of “formal symbol 
manipulation” utilized in classic computer science. 

Deduction in the formal sense vs. deduction in the empirical sense (for more details, 
see David et al. 2007). While Axelrod characterised simulation as a contrast to both 
induction and deduction, induction was defined as the “discovery of patterns in em-
pirical data” and deduction as the specification of a “set of axioms and proving con-
sequences that can be derived from assumptions.” Deduction, in this sense, seems to 
refer to pure mathematical-logical demonstrations, as opposed to deduction as a kind 
of ampliative reasoning in an empirical sense. Yet, there is no strong reason for not 
viewing deduction as a kind of empirical enquiry. Popper, like many other deductiv-
ists in the philosophy of science, would say that there is no such thing as induction. 
Indeed, to define the epistemic specificities of simulation based on the contrast be-
tween induction and deduction does not seem to be methodologically informative. 
Whether the epistemic conception of empirical enquiry may be understood as induc-
tive, deductive or even abductive is by no means a specific dilemma of simulation. 

Abduction vs. generativism. The notion of “generative” was initially posed as the 
specific epistemic characteristic of simulation that contrasts with deduction and in-
duction, a sort of new methodological conception of doing science, often described as 
a “third way of doing science”.4

 At any rate, the term “generative” seems to be just a 
synonymous of “abductive”. Indeed, what the term generative has been characterising 
seems to be similar to Pierces’ second conception of abduction, in which hypothetical 
explanations are inquired in order to explain a given explanandum. If that is the case, 
from an epistemological point of view the term “generative” does not seem to de-
scribe a new methodological conception in science. Moreover, “generativist” claims 
may well run the risk of being considered overenthusiastic or even misleading. 

                                                           
4 See Epstein (1999). See also Axelrod (1997). 
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Fig. 1. Simplified version of the development process in technical simulation, according to 
Sargent (1998) 

5   On the Relation of Verification and Validation to the Simulation 
Development Process 

In the strict context of the simulation development process, could verification and 
validation acquire a less contentious meaning? Rigorously speaking, none of the terms 
can avoid acquiring significances dissociated from the philosophical problem of 
“truth”. In social science simulation, other terms are sometimes used to refer to the 
verification step, such as “internal validation”5 or “program validation”6. Notwitstand-
ing, the usual terminology adopted from computer science and technical simulation 
seems to prevail, and is adopted by most researchers. References from simulation in 
computer science and engineering, such as Sargent (1998), are often used as the inspi-
ration to define the terms. Whether the terminological mapping from technical to social 
science simulation is appropriate depends on how well the development process of 
technical simulation can be mapped to the development process of social science simu-
lation. I will argue that this mapping can only be partial. However, I will argue that the 
usual terminology will remain. 

In technical simulation, verification and validation are usually defined in terms of 
two kinds of models: the conceptual and the computerised model. That is, according to 
the simplified development process of Figure 1, a single conceptual model mediates 
between the problem entity and the computerized model. The problem entity is the 
ultimate subject of inquiry. The conceptual model is usually a mathematical/ logical/ 
verbal representation of the problem entity. Meanwhile, whereas the evaluation of 
technical simulations is essentially a quantitative analysis of the outputs, the evaluation  
 

                                                           
5 Axelrod (1997, p.27). 
6 Richiardi et al. (2005, paragraph 4.28). 
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Fig. 2. The development process in social science simulation: representing explicit post-
computerized models 

 
of complex social models is also qualitative and highly conceptual. A fact that requires 
recognizing the construction of two distinct kinds of conceptual models during the 
simulation development process, one before the implementation and execution of the 
simulation programs – THE PRE-COMPUTARIZED MODEL – and another after the imple-
mentation and execution – THE POST-COMPUTARIZED MODEL. This requires recognizing 
that two subjects of inquiry exist in simulation, rather than one: the target theory or 
phenomenon and the executing computerized model, represented in Figure 2. In short, 
two conceptual models mediate between two subjects of inquiry. 

The conceptual model on the right, designated here as the pre-computarized model, 
is a representation in the minds and writing of the researchers, which presumably 
represents the target social phenomenon or theory. This model must be implemented 
as a computerized executable model, by going through a number of intermediate 
models such as textual programs written in high-level programming languages. The 
inquiry of the executing model give rise to one or more conceptual models on the left, 
designated here as the post-computerized models. They are constructed based on the 
observation of execution behaviours and output data, often through graphing, visuali-
sation and statistical packages. The whole construction process results in categories of 
description which may not have been used for describing the pre-computerized 
model. This gives rise to the usual idea of emergence, when interactions among ob-
jects specified through pre-computerized models at some level of description give rise 
to different categories of objects at different levels of description, observed in the 
executing model and specified accordingly through post-computerized models. 

As a canonical illustration, consider the well known culture dissemination model of 
Axelrod (1997b) whose goal is to analyse the phenomena of social influence. At a 
certain level of description, the pre-computerized model defines the concept of actors 
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distributed on a grid, the culture of each actor is defined as a set of five features and 
interaction mechanisms are specified with a bit-flipping schema.7 The executing 
model gives rise to other categories of objects like the concepts of regions and zones 
on the grid, resulting from the interaction of several individual cultures, associated 
with properties of interest and conditions in which they form. A great deal of the 
simulation proposed by Axelrod concerns inquiring properties of regions and zones in 
the context of a new conceptual model proposed, such as the relation between the size 
of a region formed and the number of features per individual culture. These concepts 
are later interpreted in relation to the target social phenomena of social influence. 

I will now situate the role of verification and validation in the simulation develop-
ment sense. The goal is not to establish any kind of standard definition for these terms. 
Rather, the intention is to show that once the full set of different kinds of models are 
denoted explicitly in the development process, the mapping to the problem of “truth” 
in the philosophical sense is facilitated, insofar as the epistemological underpinnings of 
each model involved may be analysed – and thus run fewer risks of reducing epistemo-
logical debates to terminological ones. Recall that the reason for distinguishing the 
terms verification and validation in the development process is pragmatic, related to 
the need to determine the adequacy of several kinds of models against two distinct 
subjects of inquiry. In this context, consider the following definitions: 

COMPUTERISED MODEL VERIFICATION is defined as checking the adequacy among 
conceptual models and computerized models. It is primarily concerned with ensuring 
that the pre-computerized model has been implemented adequately as an executable 
computerized model, according to the researcher and/or stakeholders’ intentions in the 
parameter range considered, and also that the post-computerized model adequately 
represents the executing model in the parameter range considered. You may now inter-
ject, What is the meaning of adequate? Indeed, this would return us to the epistemo-
logical debate, considered elsewhere, where adequateness can be explained according 
to a number of epistemological perspectives, such as the notions of formal, empirical 
and intentional knowledge.8 Our goal is essentially terminological. A minimal defini-
tion could be the following: adequateness means that the execution behaviours of the 
computerized model coincide with the semantics of both the pre- and the post-
computerized models, in accord with the researcher’s intentions. 

Finally, CONCEPTUAL MODEL VALIDATION is defined as ensuring that both the pre- 
and post-computerised models are adequate models of the target social theory or 
phenomenon. The term adequate, in this sense, may stand again for a number of epis-
temological perspectives, such as empirical or arbitrarily interpretative. Given the 
difficulty in establishing standards for the construction of social theory or the survey-
ing of social facts, it is an epistemological issue beyond simulation with no easy solu-
tion. From a practical point of view, adequateness may be established according to the 
intuition of the researchers or the stakeholders involved in a participative-based simu-
lation. In any case, the interest of validation is to assess whether the target social the-
ory or phenomenon is adequately represented by relevant micro-levels of description 
of the pre-computerised model and relevant micro and macro-levels of description of 
the post-computerised model.  

                                                           
7  In which the probability of interaction between two actors is set proportional to a measure of 

similarity between two cultures. 
8 See David et al. (2005). See also David et al. (2007). 
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Table 1. Some examples of common techniques and approaches for verifying or validating 
models in the simulation development process sense. Corresponding methodological perspec-
tives are referenced as footnotes. 

 Pre-Computerized Models Post-Computerized Models 

Validation 

Formal Modelling 
Theory-driven Discourse 

Empirical Methods9 
Participative-based Approaches 

 

Statistical Signatures 
Stylised Facts10 

 
Participative-based Approaches 

 
Cross-Model Validation  
(“Model-to-Model”)11 

Verification 

Structured Programming 
(e.g. modularity, 

object-oriented programming) 
 

Model Embedding12  
(e.g. compilation,  

software reuse of components) 
 

Static Methods 
(e.g. code walk-throughs) 

Dynamic Methods 
(program testing, sensitivity 

analysis) 
 

Replication for Alignment 
 

Participative-based Approaches 

Table 2. A mapping between terminology and epistemological perspectives on simulation, 
related to validation and verification 

 

Given the simulation development process described, are there any crucial differences 
between verification and validation in the simulation development process? From an 
epistemological point of view there are certainly differences, but from a terminological 
                                                           
 9 See Boero and Squazzoni (2005). 
10 See Bernd-O et al. (2005). 
11 See Hales et al. (2003). 
12 See David et al. (2005). 
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point of view it is a distinction that results from the computational methodology. 
Whereas verification is essentially a form of evaluating the logical inferences established 
between micro and macro concepts with reference to the computerised model, validation 
is essentially a form of evaluating the adequateness of both those logical inferences and 
concepts with close reference to the target social theory or phenomenon. 

6   On Epistemological Perspectives 

Can simulation yield knowledge about the social world? This is a philosophical ques-
tion in the social sciences, but it is by no means the only important question. Whereas 
the body of research that simulation in the social sciences provides has been intense in 
the last two decades, the increase in philosophical literature came to the surface much 
more recently. Philosophical interest is an indication that simulation has become a 
consolidated discipline, with its influence on society, contributing with knowledge 
and critical thinking, with its own eclectic dilemmas, methods and techniques. Once 
we look into Figure 2, we may realize that a number of approaches and techniques 
can be identified for each quadrant of the simulation development process, described 
in Table 1. Details on these approaches and techniques are out of the scope of this 
essay, although some references on methodological and epistemological perspectives 
are indicated as footnotes. The point is that if simulation is to be analysed as a 
method, its established tools and techniques are to become ingredients of analysis, 
together with their role in the simulation development process. This will preclude us 
from running the risk of driving epistemological debates by means of terminological 
ambiguities. 

What kind of knowledge can each model and technique provide? What is the range 
of purposes for these models and techniques, their methodological limits, ranges of 
application, what type of consensus can they achieve or provide? Once we realize that 
simulation is a complex type of model embedding13, and realize the meaning of verifi-
cation and validation in the development process sense, the mapping from terminol-
ogy and types of models to different categories of knowledge may become easier to 
investigate. Whether the question is whether simulation yields knowledge or the kind 
of knowledge that simulation provides, that is a philosophical debate that can be 
stated in the terms of Table 2, which illustrates a mapping between terminology and 
examples of epistemological perspectives, such as Oreskes et al. (1994), Iseda (1997) 
and David et al. (2005). An indication that acknowledges the consideration of explicit 
post-computerized models in the logic of the method of simulation, which helps us 
situate the roles of the terms verification and validation, and thus into the real episte-
mological debate.  
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Abstract. This paper considers some of the difficulties in establishing verificac-
tion and validation of agent based models. The fact that most ABMs are solved 
by simulation rather than analytically blurs the distinction between validation 
and verification. We suggest that a clear description of the phenomena to be ex-
plained by the model and testing for the simplest possible realistic agent rules of 
behaviour are key to the successful validation of ABMs and will provide the 
strongest base for enabling model comparison and acceptance. In particular, the 
empirical evidence that in general agents act intuitively rather than rationally is 
now strong. This implies that models which assign high levels of cognition to 
their agents require particularly strong justification if they are to be considered 
valid. 

Keywords: Verification, validation, agent-based models, agents, behaviour. 

“Where do correct ideas come from? Do they drop from the skies? No. Are they 
innate in the mind? No. They come from social practice, and from it alone; they 
come from three kinds of social practice, the struggle for production, the class 
struggle and scientific experiment.” 
Mao Tse Tung, 1963 

1   Introduction 

This last kind of ‘social practice’ in the quote above, namely scientific experiment, is 
one of the few areas where the tradition of English empiricism blends with the more 
dogmatic nature of Marxist thought. In this paper, we argue that the best way to make 
progress in the validation of ABMs involves two clearly defined stages. The first is to 
construct correct criteria by which the output of a model is to be judged. The second 
is by exploration, by trying various approaches and seeing what works in practice to 
best meet these criteria.  In this context, theory is led by practice. Abstract musing is 
of little or no value. 

Agent based models (ABMs) in the social sciences are relatively new. In general 
they rely on numerical simulation to discover their properties instead of the more tradi-
tional route, within economics at least if not the other social sciences, of analytical 
solution. And numerical simulation in turn relies on the massively enhanced power of 
the personal computer. In short, ABMs are essentially a recent innovation which has 
only become feasible to implement over the past ten years or so. 



 Validation and Verification of Agent-Based Models in the Social Sciences 131 

For this reason, no firm conclusions have been reached on the appropriate way to 
verify or validate such models. We are in a period of rapid evolutionary change fol-
lowing an innovation. The innovation is ABMs, and the evolutionary process which is 
taking place involves a wide range of methodological issues around ABMs, one of 
which is the method of validation. 

From the outset, it is important to emphasise that verification and validation are 
two distinct processes. Much of the literature focuses on validation, but verification is 
equally important. Pilch et al.(2000) and McNamara et al. (2007) characterise the 
distinction as follows: 

• Verification 
–  The process of determining that a computational software implementation 
correctly represents a model of a process 
–  The process of determining that the equations are solved correctly 

• Validation 
–  The process of assessing the degree to which a computer model is an accu-
rate representation of the real world from the perspective of the models in-
tended applications 
–  The process of determining that we are using the correct equations. 

2   Verification 

2.1   Simulation and Solution 

We start with the issue of verification. This is essentially the question: does the model 
do what we think it is supposed to do? This is conceptually quite distinct from the 
issue of validation. Whenever a model has an analytical solution, a condition which 
embraces almost all conventional economic theory, verification is a matter of check-
ing the mathematics.   

But there is no inherent superiority in this approach to that of numerical simulation.  
An everyday example, in a scientific context, is the solution of partial differential 
equations by numerical methods. A notorious example of this is the proof of the Four 
Colour Problem, which asked whether a map could be coloured with only four col-
ours so that no two adjacent areas had the same colour. No one has yet found an ana-
lytical solution but the advent of computers meant that a brute force simulation based 
solution could be produced by looking at over 2000 possible cases. Such a proof, 
written out, would require so long to check that it could not effectively be verified and 
not all mathematicians accept that this has the status of a proof at all (see Stewart 
1996). 

For most of human history, the inability to conduct such simulation tests has meant 
that analytical solution has been the only possible approach to model verification. 
Suppose for a moment, however, that the Greeks had invented the computer and sta-
tistical theory rather than algebra. We might now have not an analytical but a statisti-
cal concept of proof.  Imagine that since the time of Antiquity there had been a stream 
of developments in computing power. A ‘proof’ of Fermat’s Last Theorem might well  
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be given by calculating that the relevant equality was not satisfied by any power (be-
yond 2) up to and including ten to the million raised to the million, a number unimag-
inably larger than any number which might ever be used in practice.  

Mainstream economics has limited itself by its inability to go beyond analytical re-
sults. This also constrains the modelling strategy itself as we show when considering 
the validation issues. 

The downside of ABMs in the verification process is that it is not as straightfor-
ward as with analytical solutions. We do not even have widely recognised routines 
such as the Runge-Kutta approach to numerical solutions of differential equations. 

2.2   Replication 

A key aspect of verification is replicability. Rand and Wilensky (2006) discuss this in 
detail, in particular the three criteria developed by Axelrod (1997). These are, first, 
numerical identity, showing that the original and replicated model produce exactly the 
same results. This seems less relevant now than perhaps it was ten years ago, because 
the behavioural rules in many ABMs typically contain stochastic elements.   

The second point, distributional equivalence, covers this point. The properties of 
the original and replicated model should be statistically indistinguishable from each 
other.  Note that the replication needs to be carried out over the same number of solu-
tions as the original, especially when distributions of outcomes are right-skewed so 
that solving the replicated model for, say, two orders of magnitude more times than 
the original might generate a really extreme outcome not encompassed in the original 
results.  

This in turn leads to the separate question of the number of times a stochastic ABM 
needs to be solved in order to establish its properties. There is little discussion of this 
in the literature, and in practice, certainly with small ABMs, 500 or 1,000 solutions 
are often quoted.  This is an area which deserves more attention. 

Axelrod’s third point is ‘relational alignment’ by which is meant if input variable x 
is increased in both models then if output variable y increases in the original model it 
should also increase in the replicated model. Stated like this, the criterion seems rather 
weak, and should be extended to be ‘if input variable x is increased in both models by 
a given amount, the distribution observed in the changes in output variable y should 
be statistically indistinguishable. 

There is a parallel in replication with the world of econometrics. The ability to per-
form regressions, except of the simplest kind, was severely limited until the 1970s by 
access to computer power. There was then a proliferation of articles on applied 
econometrics, which turned into a torrent during the 1980s with the development of 
the personal computer. Initially, published papers carried the results but no data. Even 
the descriptions of data sources were often cursory if not cryptic. Replicating some-
one else’s results was a time consuming task, which often failed (the career of one of 
the present authors started as an applied econometrician). Gradually, a better code of 
practice in describing data sources evolved, followed by an increasing insistence by 
the leading journals that the actual data used in the regressions (including all the 
transformations used) be made available to other researchers, initially in the paper 
itself and now via the web. 
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So econometrics has seen a gradual evolution of better replication practice, enabled 
by successive waves of technology. Even so, we conjecture that only a tiny fraction of 
published results are ever replicated by third parties, and these will be ones that in 
general emerge as being considered important by the applied econometric community1. 
A similar sort of process will presumably take place with ABMs. The Journal of Artifi-
cial Societies and Social Simulation, for example, requires that the code for published 
models is made accessible to other researchers. This is an excellent move.   

But for the model builders themselves, apart from checks within the group that the 
code appears to be written as intended, verification is by no means straightforward.  A 
variant of Axelrod’s ‘relational alignment’ is of some use. Namely, if input variable x 
is increased, does the direction (and possibly size) of the change in output variable y 
accord with prior beliefs. This is only a partial check, because one of the properties of 
an ABM may be the emergence at the macro-level of a phenomenon which could not 
be deduced from the micro-behavioural rules. 

This also suggests that testing ABMs may blur the boundary with which we started 
between verification and validation. If we test the ABM in question by changing the 
various input variables to test the range of possible output values that the model pro-
duces then we have to have some means of judging whether that range is consistent 
with the model operating correctly or not. In most cases, this can only be done by 
considering the plausibility of the outcome with reference to the input ranges that 
have been chosen. This in turn will generally be based on the range of reality that the 
model is attempting to explain.   

This is one reason why a clear description of the problem to be modelled and how 
the output should be judged is essential to both verification and validation. 

3   Validation 

3.1   Describing the Problem 

It is easy to overlook this crucial stage of validation. Modellers often plunge into the 
difficulty of setting up a set of rules and building a model. Yet the process of valida-
tion requires a clear view of what the model is attempting to explain and for what 
purpose. What are the key facts that the model needs to explain and how well must it 
do it? 

Without some answer to this question, it becomes impossible to judge the validation 
process. Since no model outputs will ever completely describe reality, then we need to 
know both something about what parts of reality we are trying to get most grip on. 

There are likely also to be trade-offs in this description. A model which is trying to 
capture the range of consumer preferences will need to explain the variety of products 
but may be unable to precise about product innovation and growth.  A model focused 
on how cities concentrate will focus on a measure of clustering that may have a very 
simplified geography. 

                                                           
1 Occasionally, of course, a very bad but influential article will attract a lot of replication. A 

notorious example is a paper by Benjamin and Kochin in the Journal of Political Economy in 
the early 1980s which claimed that unemployment in inter-war Britain was caused by high 
benefits paid to the unemployed. It attracted many replications and rebuttals. 
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An aspect of a problem description which is often overlooked and becomes even 
more central for ABMs than other modelling strategies is that of time. ABMs are 
typically solved in steps.  But what is the equivalent in real time with the step in any 
given ABM?  

Conventional economic theory rarely if ever faces this crucial question. An ana-
lytical solution is obtained, and an equilibrium solved for a certain set of parameters 
and exogenous variables values. A change is posited, and a new equilibrium solution 
calculated. The time taken between these equilibria is almost never considered as an 
issue. A brilliant exception to this was published as early as 1969 by Atkinson. He 
showed, inter alia, that the typical time scale of transition from one equilibrium 
growth path to another in the Solow model was over 100 years. But this article  
appears to have been exorcised from student reading lists; its implication that econo-
mies, even in a strictly neo-classical world, spend a long time out of equilibrium pre-
sumably being too disturbing. 

Economists often regard the difficulty of translating steps in a model into real time 
as a weakness of ABMs. But in fact this difficulty is a great strength, in two ways.  
First, mapping a step into a real time equivalent can be a useful part of the model 
calibration process. For example, Ormerod (2002, 2004) has a simple ABM from 
which several key empirical features of the US business cycle emerge. In calculating 
the size of the growth rate of aggregate output in the model, which emerges from the 
decisions of firms, the actual range experienced by the US economy during the 20th 
century is a key way of fixing a step in the model to be equivalent to a year in real 
time. Second, and more important, it is a valuable aspect of model validation. A sen-
sible rationale has to be provided, in many applications, for the real time equivalent of 
each step in the model and this is an important of establishing what phenomena are 
under investigation. In the example quoted above, the model aimed to explain the 
characteristics of the business cycle over years, so the ability to replicate annual time 
steps was a useful test. 

Another aspect of problem description is to establish what kind of agents are under 
consideration. As Windrum et al. (2007) note, economists have reacted to the success 
of ABMs by extending their own framework to incorporate certain aspects of, for 
example, agent heterogeneity, bounded rationality and increasing returns. All theories, 
even those like quantum physics which have been subjected to extremely rigorous 
empirical testing, are approximations to reality. The question is always, how  
reasonable are the approximations to the features of any particular problem being 
considered. By restricting themselves in general to models with analytical solutions, 
economists restrict the set of areas where their assumptions might be reasonable ap-
proximations to reality. A way of thinking about this question is the table below. 

Table 1. Behavioural Models of Agent Cognition  

 
Type of theory 

Ability of agents to 
gather information 

Ability of agents to 
process information 

Rational Full Maximise 
Bounded rational Partial Maximise 

Behavioural rational Partial Rule of thumb 
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In standard theory, agents are assumed to gather all relevant information. This im-
mediately restricts the range of problems which can be usefully examined to ones 
where the dimension is relatively low. Bounded rationality potentially extends this 
dramatically, by allowing only partial (and asymmetric) information gathering. But 
with these types of models, the assumption that the decision processing rule is one of 
maximisation further restricts the closeness of the approximation of the model to 
reality.  Almost the entire discipline of psychology, for example, suggests that agents 
in general do not behave in this way. 

Any individual modelling strategy has to decide what kind of agents are to mod-
elled. Are the agents going to be required to process large amounts of information or 
can the problem be addressed by simpler ones. 

In general, we consider that simpler agents with simpler rules are to be preferred. The 
simpler the rule, the easier it becomes to test the model and discover its implications. 
Occam’s razor should apply. The key aspect to validation is that the outcomes of the 
model explain the phenomenon. If the model explains the phenomenon under considera-
tion better than previous models do, it becomes the current best explanation. This is the 
best we can expect to do. 

3.2   Testing the Outcomes 

The key distinguishing feature of ABMs is that the macro properties of the system 
under consideration emerge from the behavioural rules which are assigned to agents 
at the micro level. Conventional economists are often resistant to ABMs because of 
the proliferation of decision making rules which appears to be possible. As Vernon 
Smith pointed out in his Nobel lecture, “Within economics there is essentially only 
one model to be adapted to every application: optimization subject to constraints due 
to resource limitations, institutional rules and /or the behavior of others, as in Cour-
not-Nash equilibria”. But Smith followed this immediately with the sentence: “The 
economic literature is not the best place to find new inspiration beyond these tradi-
tional technical methods of modeling”. So modelers developing the ABM tradition 
can hardly expect to find understanding within mainstream economics. 

Both the present authors, and the experience is widely shared amongst ABM mod-
elers, have encountered from economists a view which can be summarized as follows: 
you have presented one set of behavioural rules to explain your chosen phenomenon, 
but there must be many such sets which do this, so how do you know yours are cor-
rect? Some economists even go on to imply that it is easy to construct successful 
ABMs, an opinion which merely reveals their ignorance of the difficulties involved. 
The fact that they do not appear to appreciate that the rules of behaviour incorporated 
into much standard economic analysis are of a very special kind which does not stand 
up well to experiment should not blind us to the need to provide a sound basis for the 
choice of the rules of behaviour for any individual ABM application. 

One key test is that the behavioural rules should be capable of justification using 
evidence from outside the model. The better this evidence, the more credible the 
rules. If evidence is absent, then the appropriate response is to create simple agents 
whose rules of behaviour are easy to understand. For example, if the agents are firms 
then there is a large body of evidence that profit seeking behaviour will be observed, 
even if it is modified and overlaid by other motivations. On the other hand, if the 
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problem is to consider how cities grow, where there will be multifarious agents whose 
rules of behaviour would be hard to describe, it may be better to test growth patterns 
by choosing simple agents, such as a unit of geography and allow it just to choose its 
mix of activities. 

Another test is to compare the success in meeting a description of the phenomenon 
under consideration of different models. At present, there is little competition between 
ABMs attempting to explain the same set of macro phenomena. We are still at the 
stage where only one ABM exists which accounts for any given set of macro features.  

This does not, however, mean that such an ABM is not scientific. On the contrary, 
the inherent methodology of ABMs is far more scientific than that of conventional 
economics. We identify a set of empirical macro features, and plausible behavioural 
micro rules are designed from which the macro properties emerge. This is a much 
more scientific methodology than econometrics, for example, much of which is mere 
curve fitting and is not modeling in any real sense of the word. And outcomes of 
ABMs can be compared with the explanations given by more traditional models. 

In an important sense, the current process of building ABMs is a discovery proc-
ess, of discovering the types of behavioural rules for agents which appear to be con-
sistent with phenomena we observe. Once we leave behind the comfort blanket of 
maximization, we need to find out what works. We return to this point below. 

3.3   Comparing Model Outcomes 

One area where competing agent based models exist is the business cycle. Three are 
described here. All are successful in that from simple behavioural rules, a range of 
complex macro features of reality emerge. But they differ in scope and scale. 

The simplest is the model of Ormerod (2002). In this model, the only agents are 
firms. We know that ex post most of the fluctuations in output over the course of the 
cycle arise from the corporate sector, so this is a reasonable approximation to reality. 
The agents are heterogeneous, both in size and in how they take into account uncer-
tainty. They are myopic, and look only one period ahead with limited information. 
Firms use very simple rules to decide their rate of growth of output and their senti-
ment about the future, their ‘animal spirits’ in Keynes’ phrase. From these simple 
behavioural rules emerge several key features of the business cycle: 
 

• Positive correlations in output growth between individual firms  over the cycle 
• The autocorrelation properties of real US output growth in the 20th century 
• The power spectrum of real US output growth in the 20th century 
• The exponential distribution of the cumulative size of recessions 
 

The model of Dosi et. al. (2006) contains considerably more features. In addition 
to firms, workers/consumers also appear in the model. There are two types of firm, 
one of which carries out research and development and produces machine tools, the 
other buys machine tools and produces the consumption good.  Profits and wages are 
determined within the model. There is technical change and firm entry and exit. This 
model embraces more features of capitalist economies, but the behavioural rules 
within the model remain simple. Rather, the agents operate under imperfect informa-
tion, are myopic and use rules of thumb behaviour rather than maximization.   
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From this model emerge considerably more empirical phenomena observed in 
capitalism, but the set of phenomena reported does not overlap with the previous, 
much smaller model. An important extension of the Dosi model from that of Ormerod 
is that the latter assumes (with strong empirical justification) that most of the fluctua-
tions in output arise from firms rather than from the consumption of the personal 
sector. This stylized fact emerges from the rules of the Dosi model rather than being 
assumed. In addition, the Dosi model is consistent with the following stylized facts: 
 

• Investment and consumption tend to be pro-cyclical and coincident variables 
• Employment and unemployment are lagging variables, the former being pro-

cyclical and the latter anti-cyclical 
• Productivity dispersion across firms is large at any point in time, and is persis-

tent over time 
• Firm size distributions are considerably right skewed  
• Firm growth rate distributions are not Gaussian and can be proxied by fat-tailed 

tent-shaped densities 
 

These two models, then, appear at first sight to be diverse. But closer inspection 
shows that they have a lot in common. In each model, a key feature of its ability to 
replicate macro phenomena is the heterogeneity amongst individual agents. The ‘rep-
resentative agent’ of neo-classical theory has to be discarded completely. Further, in 
each model decision makers are myopic, and operate under both uncertainty and im-
perfect information. It is as if decision makers in each of the models operates with 
low cognition. They are short-sighted, gather uncertain and limited information, and 
use simple rules with which to make decisions. The results of both models also con-
tain a more complete description of the business cycle than non agent based models. 

The model of Wright (2005) reduces the level of cognition assigned to agents even 
further. The model has nine rules which attempt to capture the social relations of 
production under capitalism. Almost all of these are purely stochastic, so it is as if 
agents are operating with zero cognitive ability. The deterministic aspect of the model 
is simply that firms must have enough money to pay the labour force, and if not they 
fire workers (at random) until this constraint is satisfied. In the model, a small class of 
capitalists employ a large class of workers organized within firms of various sizes that 
produce goods and services for sale in the marketplace. Capitalist owners of firms 
receive revenue and workers receive a proportion of the revenue as wages. 

Again, the stylized facts which emerge from the model contain some overlap with 
the Dosi et. al. (2006) model, but additional ones as well: 
 

• The power law distribution of firm size 
• The Laplace distribution of firm growth 
• The lognormal distribution (when aggregated over time) of firm extinctions 
• The lognormal-Pareto distribution of income 
• The gamma-like distribution of the rate of profit of firms 
 

Deciding which of these models is more valid (we assume that they are equally 
verified) is not straightforward. They each produce results which are consistent with 
what is observed and do so with agent decision rules which are easy to describe and 
explain. The elements of reality which are explained are in each case more compre-
hensive than the standard model but add different levels of explanation.   
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3.4   Simple Agents, Simple Rules 

One criterion that might be used to determine performance is simplicity of behaviour, 
on the principle that if simple agent rules can produce a good description, this is better 
than having complicated ones. 

Another way of expressing this is to ensure that agents are only required to have 
the minimum necessary ability to process information or to learn. The issue of low, or 
even zero, cognition of agents is, we believe, an important aspect of the validation of 
ABMs. The idea that agents act, in general, in a way far removed from the precepts of 
rational choice economics is now supported by an impressive body of evidence (i.e. 
Kahenman 2003). It is models which assign, implicitly or explicitly, a high level of 
cognition to agents which need special justification rather than those which do not. 

We suggest that a model that can only work if agents have high levels of cognition 
(information processing and learning) will only be able to capture a limited set of 
outcomes. Indeed one way of testing an ABM in the social sciences is to assign in-
creasing levels of cognition to agents to see at what point the model ceases to provide 
a description of reality.   

An example here is Ormerod and Roswell (2003). Two key stylised facts have 
been established about the extinction patterns of firms. First, the probability of extinc-
tion is highest at the start of the firm’s existence, but soon becomes more or less in-
variant to the age of the firm. Second, a recent finding, that the relationship between 
the size and frequency of firm extinctions is closely approximated by a power law. 
The model is in the spirit of the Wright model, in that the focus is on the structural 
relationships between firms rather than on specific rules of agent behaviour. 

In the basic model, firms by definition have zero cognition. Firms are assigned at 
random an initial level of fitness. A matrix, whose elements are initially chosen at 
random, describes both the sign and the size of the impact of all other firms on the 
fitness of any given firm. The actions of a firm can increase the fitness of another (e.g. 
if it is an efficient supplier to that firm) or decrease it (e.g. if they are direct competi-
tors in the labour market). Despite the stark simplicity of the model, it contains a key 
feature of reality which is absent from most of conventional economics. The focus of 
the latter is upon competition between firms, whether in the output or the labour mar-
kets. But in reality, a great deal of economic activity is business-to-business in which 
the success of any given firm is beneficial to those which it supplies. 

In each step of the model, one of the elements of the matrix of connections is up-
dated at random for each firm. A firm is deemed extinct if its fitness falls below zero. 
So the firms are unable by definition to acquire knowledge about either the true im-
pact of other firms’ strategies on its own fitness, or the true impact of changes to its 
own strategies on its fitness. 

From this model with simple rules of behaviour, the observed stylised facts 
emerge. We then go on to examine the effects of allowing firms different amounts of 
knowledge about the effects of strategy in the context of the agent-based evolutionary 
model. There are very considerable returns in the model to acquiring knowledge. 
There is a sharp increase in the mean agent age at extinction for agents with even a 
small amount of knowledge compared to those without. Indeed, we find that as both 
the amount of knowledge available to firms increases and as the number of firms 
capable of acquiring such knowledge rises, the lifespan of agents begins to approach 
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the limiting, full information paradigm of neo-classical theory in which agents live for 
ever. However, even with relatively low levels of knowledge and numbers of agents 
capable of acquiring it, the model ceases to have properties which are compatible with 
the two key stylised facts on firm extinctions. The clear implication is that firms have 
very limited capacities to acquire knowledge about the true impact of their strategies.   

By starting with simple rules, we establish that key facts emerge from the interac-
tions of the model. Giving the agents more complicated rules in fact turns out to de-
stroy this feature. Only by starting with the simplest possible configuration could this 
be discovered. 

4   Conclusion 

Agent Based Models face a variety of issues in verification and validation which are 
new, precisely because ABMs offer the opportunity to model a wider class of phe-
nomena than has been possible before. 

Because such models are based on simulation, the lack of an analytical solution (in 
general) means that verification is harder, since there is no single result the model 
must match. Moreover, testing the range of model outcomes provides a test only in 
respect to a prior judgment on the plausibility of the potential range of outcomes. 

In this sense, verification blends into validation. We take the Popperian position 
that validation can never be proof and that we are therefore seeking for models which 
explain more than their predecessors and are not falsified. Thus we stress that an im-
portant part of validation is a clear description of what is being explained. This should 
also ideally include a description of what is not explained by the current best practice. 

Our second stress is on simplicity. The validation of models with complicated 
agents and complicated rules is impossible in our current state of knowledge. It may 
be that over time the validation of simpler models will then lead to the ability to make 
them more complicated as levels of validation are built up. Proofs in mathematics 
now often require this nested approach. 

However, agent based models have not yet reached this position and in our view 
will not do so unless there is rigorous testing of the simplest possible models at the 
outset. Thus we do not believe that a model with complicated agents should be ac-
cepted unless and until it has been shown that simpler (lower information, lower cog-
nition, less processing, less learning) ones will not explain the phenomenon just as 
well. In particular, we believe that the growing empirical body of evidence which 
shows that in general agents act in an intuitive rather than rational way is an essential 
part of model validation. Models which assign high levels of cognition to their agents 
need particularly strong justification if they are to be considered valid. 
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Abstract. Increasing usage of computer simulation as a method of pursuing 
science makes methodological reflection immanently important. After discuss-
ing relevant philosophical positions Winsberg’s view of simulation modeling is 
adapted to conceptualize simulation modeling as an abductive way of doing sci-
ence. It is proposed that two main presuppositions determine the outcome of a 
simulation: theory and methodology. The main focus of the paper is on the 
analysis of the role of simulation methodologies in simulation modeling. The 
fallacy of applying an inadequate simulation methodology to a given simulation 
task is dubbed ‘abductive fallacy’. In order to facilitate a superior choice of 
simulation methodology three respects are proposed to compare System Dy-
namics and Agent-based Modeling: structure, behavior and emergence. These 
respects are analyzed on the level of the methodology itself and verified in case 
studies of the WORLD3-model and the Sugarscape model. 

Keywords: Abduction, System Dynamics, Agent-based Modeling, Methodol-
ogy, Multi-Paradigm Modeling. 

1   Methodological Preliminaries 

Working with computer simulations as a method of scientific research is becoming 
more and more common in the social sciences and gives rise to new fields such as 
experimental pragmatics, socionics or Agent-Based computational economics. This 
makes methodological reflection upon these new disciplines immanently important.  

In order to understand the philosophy of science of computer simulation some ba-
sic concepts have to be clarified. A simulation is to be understood here as a param-
eterized instantiation of a model, i.e. a generated time series. A model comprises 
more. It is to be discriminated from the program code because it is more abstract and 
temporally prior to it [22]. It constitutes the totality of possible simulations. This 
model as well as the simulation rests meaningless without some semantic framework 
around it. The model itself is assumed to be influenced by two elements: theoretical 
foundations and computational methodology. The theoretical foundations are com-
posed by causal relationships which are formulated in a scientific field. Methodology 
stands for the chosen way to translate that theory into a simulation model. While  
being translated into a simulation model the theory is adapted to the chosen method-
ology. Simulation modeling is to mean the whole process of doing research via simu-
lations. Nevertheless the methodology of this simulation modeling process remains 
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unclear and has to be assessed: “These methods are called ‘simulations’, or ‘numeri-
cal experiments’; names that strongly evoke the metaphor of experimentation. At the 
same time, the mathematical models that drive these particular kinds of simulation are 
motivated by theory. Prima facie, they are nothing but applications of scientific theo-
ries to systems under the theories’ domain. So where ‘on the methodological map’ do 
techniques of computer simulation lie?” [24] 

A recent discussion within philosophy of science tries to answer this question. It is 
part of the broader discussion about the methodological role of models in general – 
not only computational models intended for simulation – which can neither be easily 
classified with the existing categories of philosophy of science. One prominent posi-
tion held by Mary Morgan and Margaret Morrison sees models as “mediating instru-
ments” [13] or “autonomous agents” [14]. Thereby they want to make explicit that 
building models is a fruitful way of pursuing science which is neither purely theory-
driven nor purely data-driven. This partial independence of both world and theory 
allows models to mediate between theory and data.  

In another article Morgan analyses the effect of an increased fraction of immaterial-
ity in experiments through computer support. Apart from traditional laboratory ex-
periment and purely mathematical computation she discriminates between “’virtually’ 
experiments, ones in which we have nonmaterial experiments on (or with) semi-
material objects, and ‘virtual’ experiments, ones in which we have nonmaterial ex-
periments but which may involve some kind of mimicking of material objects” [12]. 
She concludes: 

 

“The qualities of these in-between hybrids turn out to run along several dimen-
sions. They involve a mix of models and experiments. They mix mathematical and 
experimental modes of demonstration. They mix types of control by assumption 
with experimental controls. They mix nonmaterial and material elements. They 
represent the world via mixed modes of representation and representativeness. […] 
I have taken materiality to be one of the prime characteristics of interest in these 
hybrids and suggest that when faced with such a hybrid experiment, we need to 
look carefully at where and how much materiality is involved, and where it is lo-
cated, before we can say much more about its validity.” [12] 

Though Morgan does not give a systematic definition of materiality1, the opposition 
between material and immaterial experiments rests intuitively clear. Immaterial ex-
periments bring us closer to the phenomenon to be analyzed here, computer simulation. 
Simulation modeling shares this hybrid character of Morgan’s hybrid experiments. 

According to Eric Winsberg simulation modeling is neither mere calculation of 
theoretically motivated equations nor real experimentation. It departs from mere cal-
culation of theoretically motivated equations by its use of extra-theoretical techniques 
to calculate (e.g. discretization) and to draw conclusions from the simulation. It de-
parts from real experimentation “because it assigns experimental qualities only to 

                                                           
1 Morgan tries to get hold of the notion of materiality through the following passage: “From the 

use of a vacuum pump to supercolliders, however artificial the environment that is created, 
however artificial the outcome, the experimental intervention itself involves an action upon or 
the creation of a material object or phenomenon. In contrast, modern economics tends, in the 
main, to function by using extended thought experiments in which the material domain re-
mains absent.” [12]. 
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those aspects of simulation reasoning that occur after it is assumed that the simulation 
algorithm ‘realizes’ the system of interest.” [24] Simulation modeling diverges from 
both ways of pursuing science and is independent because there is a tradition of tech-
niques of how to carry out simulations, which have a ‘life of its own’. These tech-
niques of simulation modeling comprise “the whole host of activities, practices, and 
assumptions that go into carrying out a simulation.” [24] 

As these techniques are being partly based on subjective experience and partly on 
customs of a community, simulation modeling is more creative but also more local 
than traditional ways of doing science. It is due to this fact that simulation results are 
only accepted relative to a scientific community and methods for validation are hard to 
define [16]. In addition these techniques are usually incorporated on a pragmatic basis 
to produce simulations.2  

Thereafter these techniques “carry with them their own history of prior successes 
and accomplishments, and, when properly used, they can bring to the table independ-
ent warrant for belief in the models they are used to build.” [24] 

After these techniques have made their way into the tradition of a community they 
have a tendency to be pursued unreflectedly, contrary to calls to reflection.3 If tech-
niques are being accepted without methodological reflection upon their adequacy, 
they become dogmatic and constitute a paradigm. A paradigm is here to mean a set of 
assumptions which is to a large extent not questioned within its scientific community. 
The point to be stressed here is that these paradigms are relative to a scientific com-
munity. Donella Meadows and Jennifer Robinson for example postulate that “Differ-
ent modeling paradigms cause their practitioner to define different problems, follow 
different procedures, and use different criteria to evaluate the results.” [11]  

 

 

Fig. 1. Idealized version of the modeling process 

                                                           
2 Compare the following for a general pragmatic account of modeling: “On this way of think-

ing, the scientific practices of representing the world are fundamentally pragmatic. […] S uses 
X to represent W for purposes P. Here S can be an individual scientist, a scientific group, or a 
larger scientific community. W is an aspect of the real world. So, more informally, the rela-
tionship to be investigated has the form: Scientists use X to represent some aspect of the 
world for specific purposes”. [5] 

3 “And we argue against these: […] that any particular technique (including agent-based simula-
tion) will always be appropriate for all modeling tasks, rather the domain should guide the 
choice of technique from a large palette of possibilities”. [15] 
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In order to understand better the effect of these paradigms in the process of com-
puter simulation an idealized description of this process is to be developed. To simu-
late is to parameterize a model in order to reproduce data of a real world phenomenon 
by a simulation. This means to generate a certain effect representing a real phenome-
non within a simulation. Having achieved this, the simulation is used to abduce the 
cause of the real world phenomenon. 

Simulation modeling is an abductive process. Also classical science runs the risk of 
applying theories inadequately to a phenomenon. What is to be focused on here is the 
additional risk of applying an inadequate simulation methodology for translating 
theoretical statements into a computable model4. The choice of an inadequate meth-
odology causes an abductive fallacy.  

 

 

Fig. 2. Induction, deduction and abduction 

Induction infers a valid law through the repeated observation of cause and effect. 
Deduction infers a necessary effect from a law and an observed fact. Abduction on the 
other hand infers a hypothesized cause for an explanandum via a simulation. This way 
of doing science can only make an explanation plausible. Due to the fact that abduc-
tive inferences can infer sufficient causes but not necessary ones [4], there is a risk to 
apply an inadequate simulation for explanation. This application of a wrong simula-
tion to a given real-world phenomenon constitutes a fallacy. If the model underlying 
the simulation is derived from a problem-adequate theory but an inadequate method-
ology, it is an abductive fallacy in the sense employed here. To get a clearer percep-
tion of possible points of fallacy the constitutive elements of a model have to be  
developed. Winsberg proposes a list of elements, which need to be taken into account 
in order to transform theoretical structures into a computer simulation model: 

• A calculational structure for the theory. 
• Techniques of mathematical transformation. 
• A choice of parameters, initial conditions, and boundary conditions. 

                                                           
4 “Successful numerical methods, therefore, invariably require of the simulationists that they 

transform the model suggested by theory in significant ways. Idealizations, approximations, 
and even self-conscious falsifications are introduced into the model. In the end, the model that 
is used to run the simulation is an offspring of the theory, but it is a mongrel offspring. It is 
also substantially shaped by the exigencies of practical computational limitations and by in-
formation from a wide range of other sources”. [24] 
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• Reduction of degrees of freedom. 
• Ad hoc models. 
• A computer and a computer algorithm. 
• A graphics system. 
• An interpretation of numerical and graphical output coupled with an 

assessment of their reliability. [23]  
 

In the following two different methodologies which have led to separate communi-
ties rarely taking note of each other shall be compared. Literature regarding criteria 
for choosing between these two methodologies is hard to find [1], [9]. The point of 
departure between these communities depends mostly upon the way to reproduce a 
social phenomenon in terms of models, it depends upon a calculational structure for 
the theory and techniques of mathematical transformation.  

2   System Dynamics and Agent-Based Modeling5 

Two methodologies shall be analyzed with respect to their influence upon the devel-
opment of simulation models: System Dynamics and the younger field of Agent-
Based Modeling. 

System Dynamics is based on differential equations and tries to capture systems 
with the so-called stock-and-flow-notation. This notation singles out aggregations and 
analyzes their change through feedback mechanisms. In Agent-Based Modeling, “the 
individual members of a population such as firms in an economy or people in a social 
group are represented explicitly rather than as a single aggregate entity.” [21]. “This 
massively parallel and local interactions can give rise to path dependencies, dynamic 
returns and their interaction.” [7]  

Through its focus on individual entities, Agent-based approaches can be character-
ized as follows. They are suitable to: 

  

a) describe and demonstrate how the interaction of independent agents create 
collective phenomena; 

b) identify single agents whose behavior has a predominant influence on the 
generated behavior; 

c) identify crucial points in time, at which qualitative changes occur. [7] 
 

Both System Dynamics and Agent-based Modeling are regularly utilized to explain 
socio-economical phenomena but differ in the way they approach their explanandum. 
System Dynamics typically looks for a reference mode of the central variable (which is 
to be reproduced and explained), whereas in Agent-based models an agent with indi-
vidual behavior is being modeled and the emergent behavior arising out of the interac-
tion of a population of those agents is being observed. Through this fact one might 
discriminate System Theory from Complexity Theory as being either confirmatory or 
exploratory [18]. Nevertheless both methodologies can be characterized as abductive, 
since their intention is to find explanations for given phenomena via simulation. 

Nadine Schieritz and Peter Milling have compared Agent-based Modeling and Sys-
tem Dynamics by the following criteria: 
                                                           
5 For a more comprehensive analysis also including Discrete Event Simulation compare [9]. 
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Table 1. Comparison of System Dynamics and Agent-Based Modeling [20] 

 System Dynamics Agent-based Simula-
tion 

Basic building block Feedback loop Agent 

Unit of analysis Structure Rules 

Level of modeling Macro Micro 

Perspective Top-down Bottom-up 

Adaptation Change of dominant 
structure 

Change of structure 

Handling of time Continuous Discrete 

Mathematical formulation Integral equations Logic 

Origin of dynamics Levels Events 
 
Although this list is excellent to inspire reflection it does not offer a satisfying con-

cept of discrimination of both methodologies.6 Other directions to discriminate both 
methodologies can be found in the diverging approaches to individuals and observ-
ables [17] or the concept of emergence. Here the methodologies shall be discrimi-
nated with respect to three dimensions: structure (How is the model built?), behavior 
(What are the central generators of behavior?) and emergence7 (Can the model cap-
ture emergence?). 

System Dynamics and Agent-based Modelling diverge in a number of points, which 
also put the notion of “structure” of a model to discussion. The structure of a model 
built according to the System-Dynamics-Methodology is static, whereas in an Agent-
Based model, structure is dynamic, i.e. it changes over time. This is constituted by the 
fact that in Object-oriented programming new objects can be instantiated while running 
the simulation thereby changing the structure of the model. In System Dynamics the 
structure is being developed in advance and then used for mere calculation of the pa-
rameters. In addition System Dynamics and Agent-based Modeling differ in the num-
ber of levels they model. Whereas Agent-based Modeling comprises at least a micro 
level and a macro level, System Dynamics only models on one level, it stays ‘flat’.8 

Furthermore both methodologies diverge in the elements which are supposed to 
generate behavior9

. Two assumptions about the elements generating behavior are 
regarded as central in System Dynamics: a) feedback is central in generating behavior 
and b) accumulations are central in generating behavior. 

Agent-based Modeling relies on a different set of basic assumptions: a) Micro-
Macro-Micro feedback is central in generating behavior and b) interaction of the 
systems elements is central in generating behavior. 
                                                           
6 For a detailed critique of the Schieritz/ Milling approach compare [8].  
7 Emergence here refers to the definition by Jeffrey Goldstein as interpreted by Peter Corning, 

who cites Goldstein’s concept of emergence as “the arising of novel and coherent structures, 
patterns and properties during the process of self-organization in complex systems.” Emer-
gence is characterized by (1) radical novelty, (2) coherence or correlation, (3) a global or 
macro “level”, (4) evolution, (5) perceivability; [3]. 

8 Compare “[…] the ‘number of levels’ refers to whether the techniques can model not just one 
level (the individual or the society), but the interaction between levels.” [6], System Dynam-
ics is characterized as having only one level. 

9 For a detailed discussion compare [9]. 
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Regarding a) one sees that both methodologies somehow incorporate feedback. But 
the feedback differs: In System Dynamics – due to the fact that it incorporates only 
one level of modeling – the feedback is ‘flat’ whereas in Agent-based Modeling – 
incorporating at least two levels – there is inter-level feedback. R. Keith Sawyer 
works this out as emergence and downward causation [19]. 

This leads to another point of departure between the methodologies: the concept of 
emergence. Emergence is made possible by the multilevel structure of Agent-based 
Modeling whereas the mono-level structure of System Dynamics is insufficient for 
emergence. Whereas the latter observes the same level it also models, the former 
models one level - the micro level - and analyzes another level - the macro level. The 
phenomena emerging on the latter can then be related to the algorithms of the micro 
level. The causal relationship between cause (on the micro level) and effect (on the 
macro level) seems less tight compared to the causal relationship between variables 
on the same level as in System Dynamics. As emergence presupposes at least two 
‘levels’ (micro and macro) and System Dynamics as a methodology only works with 
one level, emergence is not possible in System Dynamics models.10  

3   Structural Case-Study 

These conceptual differences are now to be exemplified in the structure of two simu-
lation models. Two outstanding examples of both fields have been chosen: the Sugar-
scape model as described in “Growing artificial socities” [4] and the WORLD3-model 
as described in “Limits to growth” [10] for the analysis of a System Dynamics model. 

The Sugarscape model in its basic form consists of a square with a length of 50 
spots. Each spot has a level of sugar and a sugar capacity and can host one agent.  
Sugar is being harvested by the agents and replaced by new sugar every time step. 
Each agent has two central properties: its metabolism and its vision. The metabolism 
is the amount of sugar the agent needs per time step and the vision is the number of 
spots horizontally as well as vertically which the agent can perceive. The agents hold 
an initial supply of sugar and can stock up without limits. Movement of the agents is 
regulated by a set of movement rules, which is iterated every time step. 

As developed above the multilevel structure is a prominent property of Agent-
based models. It is now central to see that whereas rules are developed for the indi-
vidual, the focus of the observation is on a different level, it is on the macro-structure 
emerging out of these individual rules. As the authors themselves state: “Understand-
ing how simple local rules give rise to collective structure is a central goal of the 
sciences of complexity” [4]. 

Chapter III of their book introduces sexual reproduction of the agents11 into the 
model and through the instantiation of new agents a more dynamic structure. Every 
new agent is being created as a new object. This new element of evolution “gives rise 
to a rich variety of global, or macroscopic, population dynamics” [4]. 

 

                                                           
10 “A technique capable of modelling two or more levels is required to investigate emergent 

phenomena.” [6] 
11 Compare Agent sex rule S, it states among others “If the neighbour is fertile and of the oppo-

site sex and at least one of the agents has an empty neighboring site (for the baby), then a 
child is born”; [4]. 
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Fig. 3. Typical Animation of the Sugarscape Model [4] 

“Indeed, the defining feature of an artificial society model is precisely that funda-
mental social structures and group behaviors emerge from the interaction of individ-
ual agents operating on artificial environments under rules that place only bounded 
demands on each agent’s information and computational capacity” [4]. The feedback 
from the macro-structure back down to the micro-level is a little harder to grasp, but 
as Joshua Epstein and Robert Axtell state in a footnote: “The term “bottom up” can be 
somewhat misleading in that it suggests unidirectionality: everything that emerges is 
outside the agent. But in models with feedback from institutions to individuals there is 
emergence inside the agents as well” [4]. The theses regarding behavior and emer-
gence are therefore justified for this specific model. Picture 3 is a graphical represen-
tation of the macro level showing the effect of some specific micro level algorithm. 

The WORLD3-model utilized in “Limits to growth” is based on the System Dy-
namics. It interconnects de- and increasing aggregations via feedback loops. These 
interconnections are based on causal relationships. As there are plenty of such rela-
tionships in the WORLD3-model it is harder to grasp in its completeness. In order to 
get an impression the demography sector is shown below.  
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Fig. 4. Demographics Sector of the World3 Model12 
 

                                                           
12 The WORLD3-version coming along with the VENSIM® library has been utilized here. 
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This sector consists of an aging chain, modeling different age cohorts and causal 
relationships, e.g. life expectancy, influencing the in- and outflows of the cohorts. 
What is being observed in the System Dynamics model is the change over time in the 
behavior of the modeled variables themselves. 

So whereas in Agent-based modeling at least two levels are necessary (micro and 
macro), in System Dynamics there is only one level, whose dynamics are observed. In 
this example, the behavior of the variable ‘population’ which is shown in the Stock-
and-Flow-diagram above is also subject to observation and analysis. The structure is 
‘flat’. 

The behavior of the WORLD3-model is based on the feedback thought. “We can 
begin our dynamic analysis of the long-term world situation by looking for the posi-
tive feedback loops underlying the exponential growth in the five physical quantities 
we have already mentioned” [10]. Apart from positive feedback negative feedback is 
also incorporated. As developed above, due to the ‘flat’ structure of System Dynamics 
models, emergence is not incorporated. 
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Fig. 5. Output of a System Dynamics Model 

4   Beyond Fallacy 

One area, in which both methodologies seem suitable, is diffusion dynamics [4], [21]. 
Whereas System Dynamics stresses the feedback aspect of diffusion, Agent-based 
Modeling stresses the interactional aspect of diffusion. In addition Agent-based Mod-
eling has the advantage of being able to represent spatially. Nevertheless the question 
about the adequate simulation methodology remains open. Even a guiding framework 
for the characterization of the adequate methodology is out of hand. On the other hand 
the choice of methodology subjectively by the individual modeler seems insufficient. 

In order to make simulation modeling more objective, the premises of the existing 
methodologies have to be worked out in detail to derive a set of situational character-
istics which define the adequacy of a specific methodology in a given situation. 

In addition to the risk of an abductive fallacy, the advance of graphical interfaces 
gives rise to another fallacy, which is constituted by the misinterpretation of data 
generated by a simulation model as empirical data. This fallacy can be analyzed fol-
lowing Hans Vaihinger’s theory of fiction and shall be dubbed realistic fallacy. The 
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more realistic graphical output of simulation modeling becomes, the harder it gets to 
grasp its being generated by a simulation model. “So psychologically, at the very 
least, working with a simulation is much more like doing an experiment if the simula-
tion produces life-like images reminiscent of laboratory photographs” [24]. 

Rigorous care about the underlying sources of such data is necessary in order to 
avoid this fallacy. 

5   Conclusion 

In order to overcome abductive fallacies rigorous methodological reflection is neces-
sary while working with computer simulation. Therefore criteria for when to apply 
given methodologies are necessary. One step towards a framework for these criteria 
might be to discriminate between the phenomenon (What is being modeled?) and the 
purpose (Why is it being modeled?) of a model. The characteristics of the methodol-
ogy have to fit these two. Therefore these questions have to be answered rigorously 
before choosing the methodology to be used for the simulation model. According to 
the answers the methodology can be selected through its inherent characteristics: 
Agent-based Modeling might then be suitable for phenomena, which are governed by 
interacting entities, the necessity of a spatial distribution and heterogeneity of the 
individuals, whereas System Dynamics would be suitable for phenomena governed by 
‘flat’ feedback and nonlinearities [9]. 
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Abstract. Algorithmic analysis of models is a standard tool in general, but is 
rarely attempted in the context of computer models for agent-based social simu-
lation. We explore the algorithmic analysis of simulation models that take the 
form of production systems as defined in computer science. Several imple-
mented analysis algorithms for a particular type of production system are de-
scribed, including algorithms for model abstraction and for agent discovery. 
Examples of the use of these algorithms are given and their significance and  
potential considered. In particular, it is explained how an algorithm for model 
abstraction, developed in the context of production system models, has been 
successfully applied to the Iruba model of a guerrilla war, a complex multi-
agent model programmed in C, a general purpose programming language. 

Keywords: Model analysis, production systems, agent discovery, model ab-
straction, guerrilla warfare, Iruba model. 

1   Introduction: Model Analysis 

Agent-based social simulation relies upon the precise specification of a model in, 
typically, a computer programming language such as C++ or Prolog, or a multi-agent 
system oriented software environment such as SWARM or SDML, and then the re-
peated execution of the model on a computer to acquire sufficient experimental data 
for reliable conclusions about its behaviour to be drawn. However, as has long been 
recognised, this is not the only possible way to proceed (e.g. Doran and Gilbert, 1994, 
section 1.2.2; Teran, Edmonds, and Wallis, 2001; Gilbert and Troitzsch, 2005). A 
model’s structure can sometimes be directly analysed to obtain information about its 
behaviour without its ever being executed. This can be a much faster means of obtain-
ing properties of a large and complex model than are systematic experimental trials 
(see Doran, 2005). Furthermore, such analysis is arguably more natural in the sense 
that it corresponds more directly to the mental processes of human beings when they 
reflect upon dynamic systems and their behaviour. 

However, it is also true that direct analysis of computer programs is very difficult, 
often intractable. This prompts consideration of production systems (in the computer 
science sense e.g. Wulf et al, 1981 pp 550-555; Russell and Norvig, 1995, p 314). In 
effect, production systems are programs in a certain class of specialised “program-
ming languages” (CLIPS is a well known example – see, for example, Giarratano and 
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Riley, chapters 7-10) that have full computational power but are simple in structure 
and hence relatively easy to analysis. Production systems are efficient for simulation. 
They have often been associated with models of cognition and also with “intelligent 
knowledge based systems” (IKBS). We emphasise that production systems can cap-
ture complex social phenomena, including agents that learn and communicate, just as 
well (or as badly) as any other program.  

Here we define a class of production systems, and hence production system mod-
els, and use this definition to seek to design algorithms of practical use that analyse 
realistic models, particularly as regards the agents that they contain, the abstractions 
that they support, and the interactions between agents and abstraction. 

2   Production Systems 

Definition: A production system (PS) as we define it (definitions elsewhere vary in 
detail) comprises three parts: 

 

A set of variables each with its own associated possible value set. No vari-
able may be associated with (i.e. bound to) more than one of its values at the 
same time. A set of bindings that associates a value with each variable is a 
state. 

 

 A set of rules each in the form 
 

set of variable/value bindings  => single variable/value binding 
 

in some suitable syntax. A rule has a “left hand side” (LHS) – the binding set 
-- and a “right hand side” (RHS) – the single binding. Rules are not to be in-
terpreted to specify logical entailment, but rather consequence in time. Given 
a state, the rules generate a successor state. 

 

An execution procedure that matches all rule LHSs to the existing state 
variable/value bindings and executes in parallel all those rules that match by 
asserting the corresponding RHS bindings. Hence the current set of bindings 
is updated and a successor state generated. Bindings that are not updated by a 
rule execution persist unaltered to the successor state (compare frame axioms 
and their use, Russell and Norvig, 1995, page 206).  

 

Importantly, we specify that matching rules must be executed in parallel. The 
“conflict resolution” issue prominent in alternative formulations of production sys-
tems is thus not an issue here. It is replaced by the need to avoid assertion of contra-
dictory bindings. 

The execution procedure is invoked repeatedly, and a production system thus gen-
erates a sequence of states. More abstractly, a production system implements repeated 
invocation of a many-one mapping over the set of possible states. 

The production systems we have just defined are simple in structure and this has a 
number of important consequences for the programmer. Firstly, there are no intra-rule 
variables, that is, rule LHSs do not have unbound variables that are bound during  
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matching and the bindings then used on the RHS. The disadvantage of this simplifica-
tion is that it greatly increases the number of rules typically required. Secondly, since 
matching rules are executed in parallel, the rule set of a PS must never set contradic-
tory bindings, that is, it must never happen that as one rule sets X/a another sets X/b. 
Thirdly, it is assumed that value sets are finite and relatively small. Thus we must 
work with quantitative variables as if they were qualitative and design rules sets ac-
cordingly. Finally, pseudo-random numbers are not easily made available. 

These simplifications make algorithmic analysis more tractable. The burden of 
conforming to them falls upon the designer of the rule set i.e. the “programmer”. 

3   Two Examples of Production Systems 

Definition: A production system model is a production system that is being used as a 
model.  

As a first example of a PS model, consider the following small set of rules that 
model an aircraft landing (or crash landing!): 

 

flight_status/in_air & engines/running &  
pilot_status/ok => flight_status/landed  

 
flight_status/landed => engines/not_running 
 
engines/running & fuel/4 => fuel/3 
engines/running & fuel/3 => fuel/2 
engines/running & fuel/2 => fuel/1 
engines/running & fuel/1 => fuel/0 
 
fuel/0 => engines/not_running 
 
engines/not_running => altitude/ground-level 

A plausible initial state is:  

flight_status/in_air  
 engines/running  
 fuel/4 
 pilot_status/ok[contrast with  
pilot_status/faulty] 

Given this initial state, then the next state will be: 

flight_status/landed 
 engines/running  
 fuel/3 
 pilot_status/ok 

From these rules, it is easy to see that in all circumstances the aircraft must arrive 
at ground level with engines not running, whether or not pilot_status is initially ok. 
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A second example PS model, this time modelling in outline a lecture being given, 
is the following standard lecture model: 

lecturer/speaking-well & content/knowledgeable 
=> class/very-interested 
 
lecturer/speaking-poorly & content/knowledgeable & 

class/bored   => class/somewhat-interested 
 

lecturer/speaking-poorly & content/knowledgeable &  
class/very-interested   => class/somewhat-interested 
 
lecturer/speaking-well   & content/ignorant  & 

class/bored           
=> class/somewhat-interested  
 

lecturer/speaking-well & content/ignorant  &  
class/very-interested    => class/somewhat-interested 

 
lecturer/speaking-poorly & content/ignorant    => 

class/bored 
 
class/bored => lecturer/speaking-well  

//the lecturer tries 
harder! 

 
lecturer/ speaking-poorly & class/somewhat-interested   
=> class/bored 
 

content/ignorant  & class/somewhat-interested  => 
class/bored 

 

A possible initial state for this model is: 

lecturer/speaking-poorly 

content/ignorant 

 class/very-interested 
 

It is reasonably easy to see by inspection of these rules that whenever content is ig-
norant there will be an oscillation in the class’s level of interest between somewhat-
interested and bored. 

In this model there are, intuitively, just two agents: the lecturer and the class (col-
lectively). In the model each of these agents comprises a single variable, which is 
counter-intuitively simple. In general an agent within such a model will consist of a 
subset of the system’s variables, some of them to be interpreted as representing as-
pects of the agent’s mental state, with associated rules. 
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4   Analysis Algorithms 

Working from the foregoing definition of a production system, algorithms have been 
designed, programmed (in the C language) and tested to: 

(a) Execute a production system 
(b) Discover the prerequisite initial conditions of a specified state of a PS 
(c) Discover the stable states of a given PS 
(d) Generate “powerful” abstractions of a given PS model.  
(e) Identify the (minimal) agents in a given PS model 

Algorithm (a), RUN PS, executes a PS and is relatively straightforward. In  
pseudo-code: 
 
Repeat 
{ 

Match all rule LHSs against current state 
and set RHS bindings of matching rules into 
current state, overwriting existing bindings 
as required 

 } 

 
Algorithm (b), PRECURSOR, uses “backward chaining” to find the precursor 

states of a particular PS model state. In the aircraft-landing model, for example, it 
enables algorithmic discovery of the fact that from all initial states the aircraft arrives 
at ground level with engines still. It also enables discovery of all initial states for the 
lecture model that lead to the class ending the lecture “very-interested”. The algorithm 
is relatively complex because of the need to handle the “frame problem” (Russell and 
Norvig, 1995, page 207). 

Algorithm (c), STABLE STATES, finds stable states for the production system, 
that is states that once reached are never left.  

A stable state of the standard lecture model turns out to be: 
 

 lecturer/speaking-well 
content/knowledgeable 

 class/very-interested 
 

Finding stable points is a standard and useful method of analysis for systems of dif-
ferential equations. Indeed, systems of differential equations have much in common 
with production systems. This is illustrated by the fact that the standard methods of 
simulating systems of differential equations (e.g. Runge-Kutta) proceed by first re-
placing them by, in effect, a production system. In some respects production systems 
generalize systems of differential equations by permitting specification of more dis-
continuous relationships between variables. 
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5   Abstraction of a PS Model 

A model of a lecture can be created at many levels of abstraction. For example, a 
more refined (detailed) model than the standard lecture model given above might 
include representations of a chairman, of slides and slide showing, and of a clock. 
More interesting and complex (and more obviously social) are lecture models that 
include representations of the mental states of the individual members of the class, of 
learning processes in individuals, and of interactions between class members. In fact, 
an elaborated lecture model has been created and experimented with at approaching 
this last level of detail (see Fig 1). It is a production system with over one hundred 
rules. It includes simple representations of slides being shown, of (three) class mem-
bers learning, and even of two of the class members playing the little game of “paper, 
scissors and stone”.  

class2 / bored  gam e-display3 / paper => gam e-display2 / stone 

class2 / bored  gam e-display3 / scissors => gam e-display2 / paper 

class2 / bored  gam e-display3 / stone => gam e-display2 / scissors 

class3 / bored  gam e-display3 / stone => gam e-display3 / paper 

class3 / bored  gam e-display3 / paper => gam e-display3 / scissors 

class3 / bored  gam e-display3 / scissors => gam e-display3 / stone  

gam e-display2 / stone  gam e-display3 / scissors 

=> gam e-score2 / w inning 

gam e-display2 / stone  gam e-display3 / scissors 

=> gam e-score3 / losing  

Fig. 1. A fragment of the elaborated lecture model. It refers to two members (class2 and class3) 
of the three-member class playing  “paper, scissors and stone”. 

Several researchers have investigated algorithmic abstraction of models, notably 
Zeigler (1990), Fishwick (1995), and Ibrahim Y and Scott P (2004). Their objective 
has been to find automatic ways of discarding irrelevant detail from a given model, 
and homing in on its essential features and processes. It is standard to see models that 
are abstractions of a base model as the outcome of behaviour preserving homomor-
phisms. The difficulty is to decide what is meant by “good” abstractions and actually 
to find them given an original base model. We here take the view that abstraction 
should be applied to a production system without reference to any interpretation it 
may have as a model or to any particular type of structure (e.g. agents) that an inter-
pretation may recognise within it. 

More specifically, a set (or “space”) of alternative abstractions of a given base 
model may be generated by alternative sequences of abstraction steps. We specify an 
abstraction step to be the combination of two randomly chosen model variables into 
one, with the value set of the new combined variable obtained as the result of applying 
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a heuristically chosen (possibly random) many-one mapping to the cross-product set of 
the value sets of the two original variables. The cardinality of the value set of the new 
combined variable is normally much less than the cardinality of the cross-product set 
of the two original variables. 

In the work reported here (algorithm (d) above, ABSTRACTION) these abstrac-
tion steps are used within a heuristic locally guided search (also called hill-climbing 
search, see Russell and Norvig, 1995, 112). Successive abstraction steps are chosen 
and appended to the existing sequence of adopted abstraction steps. The choice be-
tween alternative abstraction steps is made by always selecting the abstraction step 
that is heuristically assessed as leading to the least indeterminacy.  

An 
abstraction 
step

78

24549
Growth 

point

Initial 
Model

Locally 
guided 
search

 

Fig. 2. Locally guided search through the space of model abstractions 

The indeterminacy of an abstraction step is essentially measured as the number of 
indeterminate (ie one-many) abstracted state successions to which the proposed ab-
straction step (and preceding step sequence) gives rise from a sample of basic model 
state trajectories generated for the purpose. The rationale for this approach is that we 
accept a “class”, say, as an abstraction of a set of “students” if we find the concept of 
a class useful as a means to simple and sound predictions and explanations. 

In outline pseudo-code, the algorithm ABSTRACTION is: 
  

Input the base model 
 
Until no further abstraction is possible 
 { 
  Generate a set, S, of alternative abstraction 

steps 
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Select and adopt the least indeterminate 
abstraction step from S by testing each pos-
sible abstraction step on an ad hoc sample of 
state trajectories. 

 } 
Applying ABSTRACTION to the standard lecture model yields the following sim-

ple abstract model that highlights the possible oscillation in the class’s level of inter-
est between somewhat-interested and bored. 

 

   V/x   => V/x 
   V/p => V/q 
   V/q => V/p 
 

This highly abstracted model has just one variable, and it is apparent that either its 
state is constant (V/x) or it alternates between V/p and V/q. 

Finding powerful abstractions potentially provides insight into the essential and 
significant behaviour of a model and of the phenomena that it models. The existing 
algorithm can generate a range of abstract models from the standard lecture model 
listed above and highlights key behaviours. Experimental application of ABSTRAC-
TION to the elaborated lecture model is ongoing. 

To reiterate, the major difference between this approach to model abstraction and 
those mentioned earlier is that we define abstraction operations at the “fine-grained” 
level – at a level below that at which such macro-phenomena as agents are naturally 
considered -- and that we have deployed a standard heuristic search procedure to 
locate good abstracted models in the space of possible abstracted models. 

Abstraction steps

Indeterminacy

 

Fig 3. Poor abstractions increase indeterminacy (the blue line). Effective abstractions reduce 
indeterminacy (the dashed green line). 
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6   The Iruba Model: A Full Scale Example 

Crucially, it turns out that the method of model abstraction just described is applicable 
not merely to models in PS form, but to a much wider range of programmed models. 
To explain and illustrate how this is achieved we describe the Iruba model of a guer-
rilla war and the way in which this method of abstraction has been applied to it. 

The Iruba project at the University of Essex (Doran, 2005, 2006) is following stan-
dard agent-based social modelling procedure to construct and experiment with a holis-
tic generic model of a guerrilla war sufficiently realistic to offer new insights into 
guerrilla war dynamics or to further develop existing insights. In the model agents 
correspond to guerrilla bands, regime bases or outposts, and to headquarters on each 
side. A particular objective is to establish sets of conditions expressed in terms of the 
model’s parameters and structures that guarantee that an insurgency will succeed or, 
alternatively, will fail.  

The Iruba model has been made broadly realistic having regard to the relevant lit-
erature. In particular, the model is loosely based on (extensive descriptions of) guer-
rilla wars that took place in the last century in Ireland (1919-1921) and in Cuba 
(1956-1959), with some further features drawn from the Arab Revolt against the 
Turks in the Hejaz (1917-1918) towards the end of the First World War.1 A reliable 
source for these conflicts is Beckett (2001) but there are many others. The most im-
portant structural and behavioural concepts used in building the Iruba model are 
drawn from the Irish insurgency: near autonomous regions (on an island) with only 
limited central control; mobility notably in the form of “flying columns”; limited 
weaponry; the importance of terrain; and the importance of ideology and popular 
support.  

The Iruba model is structured as a network of 32 relatively autonomous regions 
that vary in terrain and population. The population of a region provides a (finite) re-
cruitment pool for both insurgents and regime forces. Initially the regime forces are 
relatively numerous, distributed in bases over the island, and relatively static, whilst 
the insurgents are small in number, localised, mobile and hard to find. As indicated, 
computational agents represent guerrilla cells/bands and regime bases and insurgent 
and regime headquarters. Attacks take place within regions following simple rational 
strategies. For example, a guerrilla band may attack a poorly defended regime base, 
with the outcome dependent upon terrain, relative numbers and weaponry, and ran-
dom factors. A successful attack may well lead to capture of weapons. Movement of 
insurgent or regime forces between neighbouring regions takes place under appropri-
ate conditions. For example, neither the forces that are moved nor those that remain 
behind are left at significant risk (but see later – hyper-mobility). Recruitment to in-
surgents and to regime forces (and defection from regime forces) reflects the numbers 
and attitudes of the so far uncommitted general population of the region in question. 
This population will partially support the insurgents, and will partially be aware of the 
insurgency, depending upon the conflict history in that region. These two “attitude” 
variables and their use are intended to go some way towards capturing the dynamics 
of population opinion and its impact upon the course of the insurgency. 

                                                           
1 In each of these examples, the insurgents proved (more or less) successful. However, as stated, 

the structure of the Iruba model equally allows for regime success. 
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The core cycle of the model may be expressed in outline pseudo-code as: 
 

Repeat 
 Attacks and their impact 
HQ decisions 
 Recruitment 
 Force movement 
Until termination 
 

As indicated above, a degree of central control by “headquarters” agents is possible 
for both sides. If an insurgency grows, regime forces may be concentrated into re-
gions where the insurgency is at its strongest. Furthermore, faced with a dangerous 
insurgency the regime may take “all out” measures (comparable with, for example, 
the so called  “Salvador option”).2 On the other side, in appropriate circumstances the 
insurgents may be switched into “hyper-mobile” mode (comparable with the use of 
“flying columns” by the IRA in Ireland) and/or an “all out” attack across a range of 
regions or even the entire island, may be triggered (compare the Tet Offensive in the 
Vietnam war).  

Victory in this model is a matter either of insurgent annihilation, or of the insur-
gents achieving numerical superiority and hence, by assumption, political power. At 
several points the model invokes chance factors (using a pseudo-random number 
generator) so that the success or failure of an insurgency may vary with the pseudo-
random number stream seed even if all other model setting are the same.  

The Iruba model has been implemented in the C programming language. In total 
the model contains well over a hundred variables, of diverse types. Although some 
model variables (e.g. population support for insurgents) are updated by simple 
mathematical relationships, many aspects of the model structure are more complex. 
For example, agents (guerrilla bands, regime bases and HQs) are essentially expressed 
as sets of conditional rules.   

7   Initial Abstraction Results from the Iruba Model 

Within the ABSTRACTION algorithm the Iruba model in its entirety is, in effect, 
repeatedly executed as a subroutine in order to generate multiple model trajectories to 
which alternative sequences of mappings may be applied. A search is conducted 
through the space of abstraction, or compound mappings, of the Iruba model (cur-
rently a subset only of the model’s variables) as indicated earlier in Figure 2. 

It has proved quite possible to obtain meaningful abstractions of the Iruba model in 
under a minute on a standard PC. For example, initial results highlight that total in-
surgency size tends to zero (insurgent defeat) or to a maximum (insurgent victory), 
excluding oscillation. This result is obtained although there is no variable for total 
insurgency size in the Iruba model itself, which represents the insurgency as distrib-
uted over multiple regions. More difficult is to tune the heuristic search process to 
select automatically the most powerful abstracted models, and this is a focus of cur-
rent experimentation.  
                                                           
2 For a discussion of the  “Salvador option” see Michael Hirsh and John Barry, NEWSWEEK, 

Jan 10th, 2005. 
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8   Agents in a PS Model 

Can a PS model contain (representations of) agents? The answer is surely yes (see 
earlier). With each agent in the model interpretation there may be associated a subset 
of the model’s set of variables, some of them reflecting presumed “mental” and “emo-
tional” attributes. A subset of the rules may also be associated with a particular agent. 
Other variables and rules will represent interactions and the agents’ collective envi-
ronment. It is thus natural to ask the following question. Can the agents that a model 
creator(s)’s interpretation of the model suggests to be present within it, be detected by 
an “objective” algorithm that has no access to the interpretation?  

For example, in the standard lecture model (above) there are intuitively just two 
agents, the lecturer and the class. But would an objective analysis of the production 
system itself reveal these two agents. In other words, do the agents in an agent-based 
model have a real computational existence beyond the interpretation read into the 
model by its designer and users? Should they? Can there be other agents in the model 
that its creator is not aware of, that is, which are in some sense emergent from the 
model’s structure? We suggest that the ability to discover the minimal agents formally 
present in a PS model is useful. It enables comparison with the set of agents the 
model’s designer conceives as present, possibly leading either to modification of the 
model or of the model design concept. 

However, defining in computational terms just what is an agent in the context of a 
PS is difficult, and widely recognised to be so. Standard textbook definitions are ei-
ther too specialised or too ambiguous to offer much help3. We define a minimal agent 
in a production system by reference to the notion of “influence” as follows (adapted 
from Doran, 2002): 

 

One variable in a production system is said to influence another when 
there exists at least one rule that refers to the former on its LHS and binds the 
latter on its RHS. 

A minimal agent is a non-empty subset of the variables of a production 
system. These variables must each be one of input, output, or internal vari-
ables where the meaning of these agent variable types is defined by reference 
to influence.  

 

• An input variable is influenced only by variables external to the 
agent and influences only output variables and/or variables in-
ternal to the agent. 

• An output variable is influenced only by input variables and/or 
internal variables of the agent and influences only variables ex-
ternal to the agent. 

• An internal variable is influenced by, or influences, only other 
variables of the agent i.e. internal, input or output variables. 

 

                                                           
3 E.g. “An agent is a computer system that is situated in some environment and that is capable 

of autonomous action in this environment in order to meet its design objectives” (Wooldridge, 
2002, p.15). 
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An agent must contain at least one input variable and one output variable, 
and must include ALL variables that are internal consequent on these input 
and output variable sets. 

 

The rationale for this definition is to express a minimum intuitive requirement for 
an agent: an agent “perceives”, “decides”, and “acts”. A minimal agent according to 
this definition may be very simple, no more than an input and an output, or it may be 
highly complex and “cognitive” – neither is precluded. Typically, the agents (or rep-
resentations of agents depending on your viewpoint) in current agent-based social 
simulation studies rarely comprise more than a few rules and variables. Notice that 
according to this definition two agents may or may not be disjoint – consider that the 
audience in a lecture is both a single agent and made up of many agents. Agents may 
also be nested. 

Algorithm (e), FIND AGENTS, is able to discover the agents, in this sense, in a 
production system. However, at present it is limited to finding agents that have ex-
actly one input variable and exactly one output variable. In outline pseudo-code FIND 
AGENTS is as follows: 

Foreach possible pair of variables V_input, V_output 

 
{Find the set of variables S1 directly or indirectly  
influenced by V_input 
Find the set of variables S2 that directly or indirectly 
influence V_output 
If V_input is not itself a member of S1  
and V_output is not itself a member of S2 
then, provided the intersection of 1 and S2 is not null, 
the union of S1 and S2 is an agent 
} 
 

When applied to the standard lecture PS model given earlier, this algorithm finds no 
agents as is to be expected. There are only three variables in the model, and its struc-
ture is too simple for it to have agent content. However, when the model is developed 
so that explicit perceptual input and appearance output variables are associated with 
the class (for details see Appendix A), then the three variables now constituting the 
class are indeed recognised as an agent, as also are the variables that together constitute 
the “environment” of the class. 

Using the above definition it is possible to make precise, for example, how two or 
more minimal agents may be viewed as a single agent (compare Bosse and Treur, 
2006). It is an open question how best to strengthen the definition to render the agents 
it delimits more clearly cognitive whilst keeping the definition sufficiently precise for 
purpose. 

It is natural to ask what agents FIND AGENTS will discover when this algorithm 
is applied to the Iruba model. The question is all the more interesting because whilst it 
is natural to see insurgent and regime groups as agents (as suggested earlier), from a 
more spatial perspective it is also natural to view regions as agents. There is a sub-
stantial difficulty in practice. The Iruba model is not in PS form. Therefore, before 
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FIND AGENTS can be applied the Iruba model must be converted to PS form. More 
precisely, the influence “skeleton” of the Iruba model must be extracted from the code 
(by hand or otherwise) and made available to the FIND AGENTS algorithm. This 
investigation is ongoing. 

9   Agents and Abstraction 

It is natural to ask under what conditions agents existing in a PS model are preserved 
under the abstraction process. A plausible conjecture is that if abstraction steps are 
constrained always to use pairs of variables that are either both within or both outside 
every agent in the model, those agents will either be preserved or reduced to a single 
variable (thereby ceasing to be an agent) by abstraction.  Agents will never be intro-
duced by the abstraction step. However, were two variables one within and one out-
side an agent to be combined, then this would be likely to destroy agenthood. Hence it 
seems that there do exist conditions under which abstraction preserves agents until 
they are reduced to single variables. The significance of this insight is that if the 
original set of agents in a model is an important part of our view of the target system 
to which the model relates, in practice we may wish an abstraction process to have 
this agent-preserving property. More generally, we can ask for each type of macro-
structure that we find of interest in the PS model under what conditions it is preserved 
under abstraction. 

10   Discussion and Conclusions 

This paper has addressed automatic analysis of a model to gain insights into its behav-
iour. Few would dispute that in principle such analysis can be useful. But the practical 
value of the lines of attack presented depends not just upon the computational feasi-
bility of the algorithms discussed, which has been shown at least for simple cases, but 
also on the possibility of creating non-trivial PS models in the first place. There is no 
doubt that constructing PS models of the type we have considered is potentially labo-
rious and intricate, primarily because there are no intra-rule variables, and because the 
value sets must be small. Some systematisation of the model creation process looks 
essential. Models with “spatial” structure may be relatively easy to construct. There 
are other options. It may be possible to specify models in a higher-level language and 
then automatically compile them down to the simple PS level considered here. If this 
proves effective, then the burden upon the PS model creator(s) will be correspond-
ingly reduced. We conclude that to the extent that valid PS models can be created, and 
analysis algorithms of the type described above applied to them – and analysis of 
large models comprising hundreds of rules is quite tractable – then these techniques 
promise to be useful alongside (not, of course, instead of) the standard methods of 
agent-based social simulation. 

However, there is another possible road to practicality – to develop algorithms in 
the context of PS models, but then to extend their model domain. Thus, as reported 
earlier, it has been shown that the ABSTRACTION algorithm, in particular, is use-
fully applicable to a full-scale model (the Iruba model) written in a general purpose 
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programming language. We may therefore see production system models as a testing 
ground for insights and algorithms that can then sometimes be recast in fully general 
form. 

Although this paper has primarily been about methods, there are some more gen-
eral epistemological points to be made. The first point is to reiterate that more can be 
done with a simulation model that just to run it on a computer to generate simulation 
traces. A simulation model can be analysed, including algorithmically. Analogues of 
mathematical styles of analysis are possible. It is implicit in these assertions that a 
model is really no more than a knowledgeable description that admits of certain types 
of reliable inference procedure. This paper has concerned ways in which to extend the 
set of available inference procedure for a certain class of model.  

Secondly, discovery of abstract models is akin to concept discovery. Concepts are 
abstractions from sets of instances. It follows that model abstraction process may also 
be viewed as concept discovery processes. 

Thirdly, the inference processes we apply to models need not (and often should 
not) distinguish between those parts of models that correspond to agents (whether or 
not the agents are in some sense  “social”) and those that correspond to non-agents.  

Finally, the difference between an “agent-based model” and a “diagnostic expert 
system” (ES) or “intelligent knowledge based system” (IKBS), in the traditional sense, 
is much less substantial than it at first appears. Consider an agent-based model used to 
determine whether or not a guerrilla war will be won by insurgent or regime forces 
(looking back to the Iruba project). The simulation model must incorporate domain 
knowledge and use it to determine the likely outcome of the war just as a medical ex-
pert system might use domain knowledge to predict the outcome of a course of treat-
ment for some disease for a particular patient. And, indeed, there are well-known 
medical expert systems (e.g. CASNET/GLAUCOMA, Weiss et al., 1978) that use 
simulation as a component of their processing. To relate agent-based modelling to 
expert systems in this way is unusual but offers insights that may prove helpful. 
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Appendix 

There follows the rule set for the standard lecture model with added structure. This 
structure takes the form of a variable classp that mediates perceptions made by the 
class and a variable classa that mediates the external appearance of the class. The 
three variables classp, class and classa are then collectively recognised as an agent by 
the algorithm FIND AGENT. The variables classa, lecturer, content and classp are 
also collectively recognised as an agent (in effect, the agent’s “environment”), itself a 
sequential combination of two agents. 
 
lecturer / speaking-well & content / knowledgeable =>  
classp / well-k 
 
classp  / well-k => class / very-interested 
 
lecturer / speaking-poorly & content / knowledgeable =>  
classp / poorly-k 
 
classp / poorly-k & class / bored  =>  
class / somewhat-interested 
 
classp / poorly-k & class / very-interested   =>  
class / somewhat-interested 
 
lecturer / speaking-well & content / ignorant  =>  
classp / well-i 
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classp / well-i & class / bored => class / somewhat-

interested  
classp / well-i & class / very-interested  =>  
class / somewhat-interested 
  
lecturer / speaking-poorly & content / ignorant   => 

classp / poorly-i 
 
classp / poorly-i => class / bored 
 
class / very-interested => classa / very-interested 
 
class / somewhat-interested  => classa / somewhat-

interested 
 
class / bored => classa / bored 
 
classa / bored => lecturer / speaking-well 
 
classp / poorly-k & class / somewhat-interested  =>  
class / bored 
 
classp / poorly-i & class / somewhat-interested  =>  
class / bored 
 
classp / well-i & class / somewhat-interested => class 

/ bored  
 
classp / poorly-i & class / somewhat-interested =>  
class / bored  
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Abstract. The idea of noise is now widespread in many fields of study. How-
ever to a large extent the use of this term is unexamined. It has become part of 
the practice of science without entering to a significant extent as part of its ex-
plicit theory. Here I try to produce a clearer and more coherent account of the 
term. I start with a picture of noise from electrical engineering. I then generalise 
this to the widest conception: that of noise as what is unwanted. A closely re-
lated conception is noise as what is unexplained. A particular case of this later 
usage is where a source of randomness can be used to stand-in for this residual. 
I argue that noise and randomness are not the same. I explore the possible rela-
tion between noise and context, and propose a new conception of noise: namely 
that noise is what can result from an extra-contextual signal. I finish with an ap-
plication of the analysis of noise to the relation of determinism and randomness. 

Keywords: Noise, relevance, modelling, explanation, randomness, residual, 
context, determinism, philosophy, science. 

1   Introduction 

The idea of noise now plays a prominent (if subsidiary) part in many fields of study; it 
is casually mentioned in numerous papers as if its nature was well established. How-
ever to a large extent the term is not examined, but simply used. In other words, it has 
become part of the practice of science without entering to a significant1 extent as part 
of its explicit theory2. 

The Oxford English Dictionary presents the following account (after a list of de-
scriptions of more mundane uses referring to the older, non-technical uses of the word 
noise): 

“11. a. In scientific and technical use: random or irregular fluctuations 
or disturbances which are not part of a signal (whether the result is au-
dible or not), or which interfere with or obscure a signal; oscillations 
with a randomly fluctuating amplitude over a usually continuous range 
of frequencies. Also in extended use: distortions or additions which in-
terfere with the transfer of information.… 

                                                           
1 The exception being in Electrical Engineering where some attention has been paid to this area, 

however this is specific to where it is possible to include some properties of the noise within 
an explicit (statistical) model. For more on this see the second section. 

2 (Habermas 1963), this seems to relates to the distinction in (Cartwright 1983) on bridging 
rules and theory. 
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b. In non-technical contexts: irrelevant or superfluous information or 
activity, esp. that which distracts from what is important.” 

Thus we have a veritable “hairball” of related ideas, including: randomness; irregu-
larity; disturbance; interference; obscuration; non part of a signal; distortion; addition; 
irrelevance; superfluity; and distraction applying to either a signal or to “what is im-
portant”. I think this accurately represents the term as it is used in technical papers 
(both in terms of content and in its vagueness). In this paper I try to produce a clearer 
and more coherent account of the term – an account that moves towards a more gen-
eral account of noise and, in particular, an account that will be of use to computational 
modellers. 

I start with a picture of noise from electrical engineering, since this seems to be 
where the concept arose first in academic papers3 and so frames much of the scientific 
thinking on the subject. I then generalise this picture to the widest conception: noise as 
that which is unwanted, which relates to our aural experience. A closely related con-
ception that has developed in the scientific literature is noise as what is unexplained – 
the residual after what can be explained (or modelled) is factored out. A particular case 
of this later usage is where a source of randomness can be used to stand-in for this 
residual. This strategy has lead some to almost identify noise and randomness. How-
ever I argue that noise and randomness are not the same and thoughtlessly conflating 
them can result in misleading assumptions. I explore the possible relation between 
noise and context, and propose a new conception of noise, namely that noise is what 
can result from an extra-contextual signal. I claim that this is not only a psychologi-
cally plausible account of its origin (and hence relates well to common usage) but is 
also a useful way of conceptualising it. I finish with an application of the analysis of 
noise to the relation of determinism and randomness. 

2   A Picture of Noise in Electrical Engineering 

The close correspondence between electrical and acoustic phenomena allows the 
transfer of the term “noise” from an audible description to that which describes ele-
ments in the electrical phenomena that generates the sounds via a loud speaker. When 
you hear reproduced sound that is generated by electrical apparatus and compare it to 
the original sound, it has changed: a “hiss” has been added that sounds like (and acts 
like) noise. Thus noise becomes a technical term by analogy, however the way it was 
done is important and seems to have influenced the idea’s subsequent development. 

The focus of much work in electrical engineering is the manipulation of identifiable 
electrical signals. These signals are the patterns or values encoded by the properties of 
a real electric current or field. To be precise, the signals are the intended patterns or 
values that are represented in actual (i.e. implemented or observed) flows of electrons 
and the forces between electrons. This distinction between electrical signal and elec-
trical phenomena is important because it marks the shift from a scientific point of 

                                                           
3 The Oxford English Dictionary’s first quote from the academic literature is from the Tele-

graph and Telephone Journal in 1923 (vol. 9 pp. 119/2) “The variations in noise were plotted, 
and their effect at times was to reduce the intelligibility to 20 or 30 per cent.”. Obviously, the 
non-technical senses of the word are much older. 
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view, where one is trying to discover the properties of the observed world, to an engi-
neering perspective, where one is trying to manipulate parts of the world to obtain a 
desired effect. Of course, there are no well-defined boundaries between these two ap-
proaches, and in practice many who work with electrical phenomena will, at different 
times and for different purposes, swap between scientific and engineering viewpoints. 
It is noticeable that ‘noise’ enters the scientific literature exactly when we were able to 
control these effects sufficiently in order to be able to manipulate electrical phenomena 
in intended ways. 

In electrical engineering you have a set of inputs and outputs that pass through a 
set of (usually well-defined) circuitry. The aim is to effect an intended transformation 
upon the inputs, which become the outputs. The transformations are implemented by 
(on-the-whole carefully manufactured) components such as transistors, diodes etc. 
The heat and nature of these devices means that the intended transformation is imper-
fect. For example an amplifier may be supposed to evenly increase the amplitude of a 
signal but otherwise leave it unchanged, but in reality will also distort it, add ‘hiss’ 
that is audible when broadcast etc. This situation is illustrated below in Fig. 1. 

   
An electrical 

component or 
circuit 

inputs outputs 

A model of the 
intended 

transformation representation 
of inputs 

representation 
of outputs 

adjusted to 
be as similar 
as possible 

similar but 
with some 
disparity 

 
Fig. 1. The disparity between the actual and ideal outputs of a circuit 

 
In electrical engineering there are relatively good models for the action of such 

components (or conversely, we have learnt to manufacture components so that they 
are well represented by our models). Often these models not only specify the principal 
transformation effected by a component but also the give some information about the 
nature and extent of the imperfections, particularly the result of heat (and other en-
tropy producing processes). This kind of understanding goes back to (Einstein 1905) 
which seems to pre-date the technical use of the word “noise”. Although the detail of 
this noise is unpredictable, it is particularly well characterised in terms of its general 
properties and is closely mimicked by a random statistical process – we call this 
‘white’ noise. Thus many models of electrical components reify this as a distinct 
‘noise term’, which may be otherwise undefined, or may have a defined probability 
distribution and related its magnitude to conditions such as temperature. The source of 
this particular kind of imperfection is relatively well understood, predictable and 
perceptible – it thus is natural to conceptually separate it out and label it (and the 
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Fig. 2. The smaller  disparity when noise it reified and explicitly represented 

analogy with sound suggests the label ‘noise’). Thus the notions of the intended signal 
and the actual phenomena diverge. I illustrate the result of this process of abstraction 
in Fig. 2. 

This shows that it can be undoubtedly useful to think of noise as a separate and 
identifiable extraneous factor that is ‘added’ to the signal to obtain a more realistic 
prediction of the results. The combined model is composed of two submodels: the 
original and the model of the residual4. This coincides with the ‘shift’ from a scientific 
viewpoint of such circuits to an engineering viewpoint. As Wong (2003) puts it: 

 

“Particularly, to the physicist the noise in an electronic system repre-
sents a practical manifesting of the phenomena described by statistical 
mechanics, and an understanding of its practical consequences helps to 
illuminate and clarify some concepts of the physical theory; to the elec-
tronics engineer, noise is a constraint of the real systems, but a better 
understanding of its physical origins helps the engineers to minimize its 
effects by informed and careful design.” 

 

Within electrical engineering there is a continuing awareness that the randomness 
is just a model for the noise and that this model has its limitations. Pierce makes it 
clear that the noise is the primary descriptor and randomness part of the model when 
he says (1956): 

“Many sorts of electrical signals are called noise … many engineers 
have come to regard any interfering signal of a more or less unpredict-
able nature as noise. … The theory of noise presented here is not valid 
for all signals or phenomena which the engineer may identify as noise.” 

                                                           
4 Alternately one can consider the conceptual and phenomenal models as separate (Hughes 

1997). 
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This sort of practice is now quite common in many fields, often indicated by the 
appearance of a ‘noise’ term5

 in equations. However it should be remembered that the 
above case is quite a special one. This particular kind of distortion found in electrical 
engineering is particularly well-understood, predictable and separable. It is also only 
one particular kind of distortion that can occur, albeit often a dominant one – other 
kinds such as resonance, interference, distortion etc. also occur and are more difficult 
to predict/model partly because they are less separable from an intended (or signifi-
cant6) pattern. Mimicking this step of using a single reified source called noise to 
stand for a general disparity between explained and actual outcomes is likely to be 
much less useful in many other domains.  

Some of what makes the electrical engineering case special (i.e. justifies the attri-
bution of ‘noise’ to error) can be summarised as follows: 

 

• The input signal and the intended results are known; 
• There are good predictive model of the intended transformations  

involved; 
• The whole system is engineered in a controlled way – the composition of 

the parts is explicitly known; 
• The principal disparity between ideal and actual is well-understood; 
• Many of the disparity’s characteristics are predicatively modelled as a 

separate part of the model; 
• This disparity can be characterised numerically so that the total disparity 

for a system can be estimated mathematically; 
• This disparity is easy to identify and even directly perceive. 

 

These conditions have made the reification of noise as kinds of randomness a use-
ful, if minor, field of study7. Analogous conditions are evidently not true for many 
other domains of study, and yet this idea of a separable source of noise being mixed in 
with a significant signal has become a common one. In the next section I consider a 
generalisation of the concept of noise to include the wider cases. 

3   Noise as Unwanted Interference 

Noise can be seen as a largely a negative idea – as humans we are often interested in 
specific sound signals in terms of communication, music etc. and other sounds may 
make the task of identifying these signals more difficult. The difference between a set 
of measurements and an ideal is often attributed to ‘noise’ – in this case it is precisely 
what is not the ideal. This is the older use of the term, that precedes its entrance into 
the academic literature. If you are trying to listen to the radio and there are busses 
travelling outside or even people talking you may lump these together as 'noise', since 
                                                           
5 Although frequently this has no predictive function but is merely an apology for the disparity 

between the prediction and what is observed, i.e. it is does not predict the extent or nature of 
the disparity (as is frequently the case in electrical engineering) but is there as an admission of 
incompleteness. In these cases it is more correct to call this an ‘error term’. 

6 Of course, what is considered significant is a movable feast – but this is the point: attributions 
of ‘noise’ are results of relevance decisions, even if these are implicit. 

7 Useful collections of sources about electrical noise are: (Gupta 1977, Ritter 2003). 
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they are extraneous to what you were concentrating upon. One pair of people talking 
may be noise from the point of view of another pair of people talking and vice versa.  

Noise here, actually or potentially, gets in the way of a perception or observation. 
A signal that has no chance at all of interfering with another is simply an irrelevant 
signal. Even if my neighbour's car generates a lot of sound inside its engine as a side 
effect of its operation, it is not noise if its silencer is such that this never escapes so as 
to disturb me. Thus a silencer on a car eliminates noise, even if the sound levels inside 
that engine remain the same. It is critical that if one counterfactually imagines the 
sound as escaping then it is natural to think of this as potential noise.  

This conception of noise has, by analogy, now extended beyond aural noise – it is 
now commonly used as a generalisation of this idea. Thus an electric drill might be 
said to generate electrical ‘noise’ which might interfere with the reception of my TV. 
The essential aspects of this generalised conception seem to be that: 

 

• there is an identifiable source of the ‘noise’ 
• that interferes with the reception of a target signal 
• such that the noise is not intrinsic (or essential) to the signal and its trans-

mission. 
 

A non-electrical example of this kind of noise is interferences in gene expression 
(Blake et al. 2003). 

4   Noise as Unmodelled Residual 

To a modeller, noise is that which prevents one from modelling a process with com-
plete accuracy. In a way the noise is something that is interfering with the modelling 
results, and so can be seen as analogous to the characterisation of noise in the previ-
ous section. Thus an econometric model may be composed of an identified trend plus 
a noise term to 'account' for the deviations from this trend. 

This is a presumptuous use of the term – it implies that the ‘noise’ is something 
which may mask the hypothesised trend but is judged to be ultimately irrelevant to it. 
It thus suggests that the disparity is not simply due to modelling error, i.e. that there is 
not an accessible better model that would match the known evidence more closely. 

Nonetheless attributing modelling error to noise is sometimes appropriate – if you 
count the number of children at a children's party where children are not allowed to 
enter or leave and you get a different count each time then one can safely attribute the 
error to measurement “noise” (expressed in the chaotic movement of the children) 
rather than fundamental model error (the model being that there is a fixed integral 
number, n, of children in the room). You can sensibly model the sequence of counts 
as a fixed constant plus a noise term (which might usefully be given a random nature). 

Whatever the purpose of the modelling, a discrepancy between the model outputs 
and target data gained from measurement of the modelling target is an indication that 
there is something in the target+measurement processes that is not captured by the 
model. In other words, the data itself is another model, a “data model” (Suppes 1962). 
If one has some good reasons to attribute this discrepancy to some factors that are not 
relevant to (in the sense of “arbitrary with respect to”) the model and its purpose, then 
it can be properly called noise. 
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When modelling complex phenomena (e.g. social phenomena) it is inevitable that 
one is not going to be able to capture all aspects of one’s target in any single model 
and hence one would expect that there will be a disparity between a model's outputs 
and the corresponding data obtained from the target. The key question is whether this 
discrepancy is due factors that are relevant to the modelling task or originate from a 
process that is independent and (for the current purposes) irrelevant. 

Conflating noise and fundamental model error can be very unhelpful. I will illus-
trate this with an example. 

 
Example 1: The estimation of insurance claims  

 

This case concerns the estimation of the frequency of events in the in-
surance industry. Before 1990, the distribution of insurance claims was 
thought to be roughly normal, that is when one plotted a the frequencies 
of periods with different levels of claims the result fitted a normal curve 
well except for a few periods with a very high level of claims However 
these few cases were discounted as due to particular circumstances and 
hence unmodellable.  This model of a normal distribution plus some ar-
bitrary events was used to set premiums. However more recently a se-
ries of models which explicitly includes and predicts such “extreme” 
events have been re-discovered and applied (Black 1986, Andersen and 
Sornette 2001). 
 

Many social models attempt to use statistical models to separate out social trends 
from the 'noise', under the assumption that human actions can be represented en masse 
as trends plus arbitrary actions that tend to cancel each other out (in large samples). If 
that ‘noise’ is supposed to be effectively random, then this is a hypothesis that can be 
tested, since in increasingly large samples the noise will not grow as fast as the signal 
and will thus fall as a proportion of the population size (something that is not obvi-
ously true of many social systems, e.g. stock markets). This is called the “law of large 
numbers”. This may be justified as in (Dichev 2001) but in other cases it is not, as 
demonstrated by the models of (Kaneko 1994, Edmonds 1999a). 

Indeed we are so used to the idea of separating out a signal from added random 
noise that we forget what a special case this is, as (Van Kempen 2001) put it: 

 

“The amazing thing therefore is not that they [fluctuations] give rise to 
irregular phenomena. The amazing thing is that a collective behavior 
emerges, which is regular and can be described by general law...” 

5   Noise and Randomness 

In the special case where we are trying to model a particular data-generating process, 
we may well get to the stage where we have included in the model any systematic 
pattern we can detect in the data. In such a case what is left is precisely what we can 
not systematically model, namely a residue that is effectively unpredictable8. This 

                                                           
8 Or, to put it in a weaker form: effectively unexplainable. 
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residue is, by construction, not modelled. However it might be possible to adjust the 
model so that the secondary characteristics of this residue are modellable. For exam-
ple, although each point is unpredictable, the statistical moments of an increasingly 
large sample of this data may converge to particular values. These values can be used 
to construct a sort of model of these residuals – a statistical model. Such a statistical 
model is composed of a particular probability distribution, from which values can be 
randomly (or pseudo-randomly) generated. This random series of values is not the 
same as the unmodelled residual but 'looks' the same to us as modellers – each has the 
same known distribution and the same unpredictable content within this. If we deem 
that the unpredictable residue is not relevant then we can say that in all relevant as-
pects the random series and the residue are the same. Thus it is that we often think of 
this unmodellable residue as random – they look the same to us and (by construction) 
from the point of view of the model their detail is equally irrelevant9. 

Such a perspective might lead one to conflate such noise and randomness and iden-
tify noise as randomness. However, this is simply to confuse a model (randomness) 
with what is modelled (noise). That they are not necessarily the same as the following 
examples show. 

 
Example 2: The interspersed coded-messages  

 

Imagine two different messages (strings a and b) that are both en-
crypted (to strings x and y) by different people (A and B respectively) so 
that each appears to be a random sequence to anyone but the person 
who encoded it. Then the two sequences are interspersed to form a sin-
gle sequence (c). To A the part of c that is y is just noise, there is noth-
ing modellable about y, only x has meaning. To B the part of c that is x 
is the noise whilst the y part has meaning.  

 
The part that is noise for one person is the signal for the other and vice versa. Thus 

either randomness is a relative concept or it is different from noise (which in this case 
is clearly relative).  

One might think that such a type of sequence would not result from any natural 
process, but this is only an assumption. If it is possible to make an unguessable binary 
sequence, then it is possible to implement such a data-generating process as a pro-
gram on a computer. Thus if we had such a computer attached to a Geiger counter and 
a small lump of radioactive material (to generate the random input), and we always 
plug more memory into it as required, we could produce such a sequence. Thus al-
though highly contrived such an example is not beyond the bounds of possibility for a 
natural process. 

 
Example 3: The sabotaged random number generator  

 

Imagine a company that sells good quality random sequences, that is 
sequences with well-defined long-term statistical properties but with no 

                                                           
9 There are a few approaches that move towards defining randomness as the unmodellable 

residual, e.g. (Compagner 1991). It also turns out that patterns that are not compressible by a 
Turing Machine (Kolmogorov 1965) passes many of the traditional tests for randomness.  
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guessable patterns in the detail at all10. Say that they did produce se-
quences which passed all the requisite tests for randomness. Now say 
that an agent for a rival company interfered with the set-up by adding 
an extraneous signal to the process which caused the product to now 
fail some of the tougher tests for randomness.  
 

That agent evidently introduced some noise into the system, but it was not purely 
random because it decreased the randomness of the result. Here randomness and 
noise are not the same but are opposed. 

What is the case is that sometimes (as in the electrical engineering case above) it is 
useful to think of this unmodelled residual as arbitrary (particularly if one has good 
reason to believe that it is irrelevant to the modelling task in hand) and can be usefully 
represented by a random distribution. This is a natural thing to do since randomness is 
a positive way to think about noise which otherwise is a negative (what we don't 
want/understand/represent). In many modelling techniques (e.g. many simulations), it 
is useful to use a random source to ‘stand-in’ for parts of the model thought to intro-
duce such arbitrariness. Then one can use techniques such as ‘Monte Carlo Sampling’ 
to try and separate out the effects of these parts from the tendencies exhibited by the 
rest of the model.  

However arbitrariness and randomness are not the same as one can not guarantee 
that an arbitrary signal will not suddenly exhibit some pattern, which may turn out  
to be significant. This is shown clearly in the example of the ‘Millennium Bridge’ in 
London. 

Example 4: The Millennium Bridge  

The Millennium Bridge is a beautifully elegant structure that spans the 
river Thames from the bank below St. Paul’s to the Tate Modern gal-
lery. This was carefully designed and the design was extensively simu-
lated before being built. However, a few weeks after it was opened it 
had to be closed again for dampeners to be fitted, as it was prone to os-
cillations that were deemed a danger to the public. It seems that what 
happened is that in the simulations of the design the movements of peo-
ple were assumed to be random, but with large numbers of people they 
reacted to small movements in the bridge so as to amplify the move-
ment. The small oscillations had the effect of synchronising peoples’ 
reactions and hence having a much greater effect. The result was that 
the unmodelled reactions of individuals and their coupling via small 
swayings of the bridge were far from random. Indeed, if they had not 
happened to cause this particular effect they could have safely regarded 
as arbitrary and hence modelled using a random ‘stand-in’, however 
that did not turn out to be the case (ARUP 2001, BBC News 2000). 

                                                           
10 There are such companies – I read of a Californian firm which claimed to use light detectors 

as a source of noise to provide the seeds for algorithms that produce ‘high-quality’ random 
numbers for sale (Peterson 1997).  
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6   Noise and Context 

Let us look back at the picture of noise that we started with, that of electrical noise 
originating in electronic circuits. In one sense this is a very odd usage – noise here 
does not come from an arbitrary source but is part of the intrinsic nature of the electri-
cal components. From a more objective point of view it is amazing that it is possible 
to construct ensembles of components that act so as to effect the desired transforma-
tions with such an astounding degree of accuracy. It would be less strange if such an 
ensemble only produced white noise whatever its input than it transforms the inputs to 
the desired outputs with such accuracy. It is only due to the huge scientific and engi-
neering effort that has lead to a situation where we can expect such perfection and 
hence reify any shortcomings as a separate entity called ‘noise’. 

Similar shifts occur in other situations; if one is trying to listen to person A talking 
then person B talking may be noise, and vice versa. What is noise depends on who 
one is trying to listen to. 

A possible explanation for this is the context-dependency of modeling/ understand-
ing. Any model of observed phenomena has a set of conditions under which it is effec-
tively applicable. Not all of these are explicitly included in models but rather the kind 
of context where a model is applicable is recognisable. The context ensures that, on the 
whole, these implicit conditions hold and that the model can be represented in a rela-
tively simple and manageable form. The ‘fuzziness’11 of the context recognition allows 
the model content to be relatively well-defined and ‘crisp’. This crispness allows us to 
reason about the content of such models. This necessary context-dependency in model-
ling is quite a separate matter from whether the model is generally applicable in theory. 
For example, the laws of Newtonian physics presumably hold to an astounding degree 
of accuracy (in circumstances where relativistic and quantum effects are negligible), 
but may not be practically applicable in a situation where well-defined objects are 
difficult to identify.  

The context-dependency of learning and application of knowledge and models 
makes these processes much more feasible. However, this ‘trick’ only works when the 
conditions under which a model is learnt are effectively recognisable, so that one 
knows when one can reliably apply a model. For more on the pragmatic roots of con-
text see (Edmonds 1999b). 

Error in a model's output's compared with observations could be due to several 
things: it could be due to sheer model error within the context; the context itself could 
have been wrongly identified; or the error could originate from without the assumed 
context. A coherent picture of noise comes about when the source originates from 
outside the assumed context – we do not want to reject the model (this still works at 
some level), and the assumed context seems to be the appropriate one (many other 
models associated with this context are working well) so the source of the error must 
lie elsewhere. 

This picture of an extra-contextual cause of model error accounts for all the proper-
ties of noise we have identified above. In turn it accounts for: 

                                                           
11 I am using the term ‘fuzzines’ here in a loose way, and not necessarily in the sense of Zahdeh 

(1965). 
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• The arbitrariness of noise, since it comes from outside the context (since a 
modelling context is supposed to contain everything pertinent); 

• The dependency of the identification of noise on context – thus in the 
“Two person's talking” example for each person the context focused on 
excluded the other talking; 

• That the noise has to be able to interfere in the foreground model, since 
otherwise it has not entered the context as in the “Car Engine” example it 
depended on whether we imagined the sound escaping into our context 
(unless we imagined it doing so); 

• That the shift from detecting the random fluctuations in the potential dif-
ference across a piece of conducting material at thermal equilibrium to the 
attempt to reduce interference with an audio signal in an amplifier corre-
sponds to the reification of noise. 

7   Noise and the “Un-Excluded Middle” between Randomness and 
Determinism 

The thesis of determinism is widely held. To a thorough determinist any randomness is 
merely a result of incomplete modelling. In other words, all apparent randomness is 
only an unmodelled residue12 – in principle it could all be modelled. Quantum mechan-
ics forces many to accept that there is also irreducible randomness in the universe13. 
Thus the assumption of many is that, in principal everything can be satisfactorily mod-
elled as deterministic processes, except for a random residual – that is the world is 
neatly divided between the deterministic and the purely random. Certainly there are 
many that assert that almost all macroscopic events and processes are essentially  
deterministic14, in the sense that all relevant parts of the process can be satisfactorily 
represented as a deterministic process and the rest is not significant and so represent-
able by random noise. 

This picture coincides with the common modelling practice of using a pseudo-
random source as a stand-in for an unmodelled residual. This can be an appropriate 
approach when there is good reason to suppose that the residual is arbitrary to the 
modelled process so that the pattern of this residual does not make any significant 
difference to the model outcomes (which depends on the model use). A conflation of 
this modelling approach and a deterministic bias seems to lead some to the conviction 
that any unmodellable residual (a residual that is not capturable in a model in theory) 
must be random.  

A particular case of such a conviction is that anything that is not deterministic must 
be random. That is the view that the world is divided between the random and the 
determined. In this view it may be that some things that appear random turn out to be 

                                                           
12 Indeed Compagner (1991) argues in the reverse direction – namely that randomness can be 

defined as what is uncorrelated. 
13 Of course this does not convince convinced die-hard determinists who live in hope that quan-

tum mechanics will be reduced to deterministic principles someday, as with Einstein’s fa-
mous quip “God does not play dice with the universe”. 

14 Despite the evidence from chaotic processes and models. 
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merely very complex (i.e. we find a way to explicitly model the phenomena where we 
previously used a random/statistical proxy), and it may be that some things that ap-
pear deterministic are so only because of some grand “averaging out” of randomness 
at the detailed level (such as the atoms in a gas), but ultimately that is all there is: 
deterministic processes and random ones. 

Such a view is closely related to the view that there are no essentially correct mod-
els that are necessarily context-dependent. That is to say, that is it always possible to 
reformulate a model to arbitrarily widen its scope – so that an essentially context-free 
model is possible. Given such an assumption it is always possible to claim that any 
unmodelled residual can be eliminated by expanding the model. A slightly weaker 
form of this assumption is that any non-random unmodelled residual is thus eliminable.  

However if, on the other hand, some models are intrinsically context-dependent 
then this is far from necessary, the residual might not be modellable from within any 
appropriate context and the model might not be possible from within other (e.g. 
wider) contexts. Another way of putting this is that even the most appropriate context 
is not hermetically sealed, for there is inevitably some ‘interference from without. In 
this case the ‘interference’ might not be modellable but there is no reason to suppose 
that it is best ‘represented’ as a random term either15.  

In many mundane cases it is clear that ‘noise’ does not have to be random. The 
noise of a bus in the street that is interfering with listening to a radio programme is 
not random just as the “ringing” of transistors after they have switched is not random. 
Neither are many chaotic systems random, as one can tell by an inspection of their 
mechanism, even if it is difficult to distinguish their outcomes from random out-
comes16. As (Boffetta et al 2002) puts it: “the distinction between chaos and noise … 
makes sense only in very peculiar cases, e.g., very low-dimensional systems”. 

One response of those who model electrical circuits to the inadequacy of modelling 
all electrical noise as “white noise” (that is noise which includes, at random, all fre-
quencies) is to enrich the modelling of noise with properties other than the pure form 
of regulated randomness that characterises “white noise”. As Ritter (2003) put it: 

 

“Both are fundamental sources of "white" noise, meaning that we have 
a deep statistical understanding of how these sources behave. Unfortu-
nately, this may not be particularly useful if the noise we have is actu-
ally due to variable processing-related problem”. 
 

Thus a variety of kinds of noise have now been developed, including “grey” and 
“black”. If it is right that noise is inherently context-dependent and not necessarily ran-
dom then there will be no “new” kind of proxy for noise that will always be applicable. 

                                                           
15 Presumably the reason our cognition has divided the world into such contexts means that the 

amount of critical inter-contextual interference is minimal for its purposes, however the pur-
poses of scientific modelling may be very different and this sort of pragmatic division of the 
world is heuristic in nature – it is not something that can be relied upon. 

16 This distinction between determining randomness via inspection of the mechanisms vs. by 
testing the outcomes is made clear in (L'Ecuyer 1992). This is interesting because it is pre-
cisely the aim of writing a random-number generating algorithm to separate the external and 
internal contexts w.r.t. to the generator – from the outside it looks random, whilst from the 
inside it is deterministic. 
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Determining what might be the most appropriate proxy for an unmodelled residual is an 
extremely difficult problem, one where it is difficult, in principle, to know what is most 
appropriate because this would require knowing something about modelling the unmod-
elled residual, which is not easily ameanable to explicit modelling. 

8   Conclusion 

Noise, in its more general usage can be usefully though of as extra-contextual intefer-
ance in what is being modelled. All effective modelling is context-dependent, and no 
context is completely “water tight” to influences from outside the context, influences 
that – due to the nature of context – are unmodellable. It is these influences that may 
interfere with the accuracy (and, indeed, applicability) of our model – we call these 
influences “noise”. We often model these influences with a random “proxy” because 
randomness is also unmodellable (in the sense of point-by-point detail).  

Although many take randomness to be an essential property of noise, it should be 
clear from the analysis above that noise is not necessarily random but can be merely 
arbitrary with respect to the target. The confusion comes about because we use often 
randomness as an archetypal model for noise. Noise may be of almost any nature 
considered in isolation – it is only the poverty of our imagination that insists on cast-
ing it as its archetype.  
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