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PREFACE

Symmetry gives us a sense of beauty, and group theory is a study of symme-
try in molecules. When one is dealing with an object that appears symmetric, 
group theory can help us with its analysis. As the structure and behavior 
of molecules and crystals depend on their different symmetries, group the-
ory becomes an essential tool in many important areas of chemistry. Group 
theory is a part of mathematical sciences. It is a quite powerful theoreti-
cal tool to predict many basics as well as some characteristic properties of 
molecules. Where quantum mechanics provide solutions of some chemical 
problems on the basis of complicated mathematics, group theory puts for-
ward these solutions in a very simplified and fascinating manner.

Apart from chemical applications of group theory, it has been also applied 
to robotics, computers, medical image analysis, crystallography, mathemati-
cal music theory, statistics, cosmological, stellar and atomic particle abstrac-
tions, modeling of vibrational modes of virus, molecular systems biology, 
mathematical biology, spectroscopy, etc.

Group theory has been successfully applied to many chemical problems. 
Students and teachers of chemical sciences have an invisible fear from this 
subject due to inadvertence with the mathematical jugglery and an active 
sixth dimension required to understand the concept as well as to apply it to 
solve the problems of chemistry. The subject of group theory is difficult to 
understand by the readers of chemical sciences lacking strong mathematical 
background. The main aim of this book is to avoid mathematical complica-
tions and present it in a form that the student, teacher, as well as researcher 
will find friendly.

A number of chemists have helped us in finalizing the script of group 
theory at various stages, and worth mentioning are Dr. Jitendra Vardia, 
Vadodara, Dr. Dipti Vaya, Delhi, Dr. Aarti Ameta, Udaipur and would-be Dr. 
Meenakshi Singh Solanki, Udaipur.

Rakshit Ameta, PhD
Suresh C. Ameta, PhD
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1.1  HISTORY

The origin of group theory is almost two-and-a-half centuries back. Lagrange, 
Abel and Galois are considered the founding workers in the field of group 
theory. A treatise on theories des fonctions analytiques by Joseph-Louis 
Lagrange laid some of the foundations of the group theory; of course, it was 
not named as group theory at that time. It was followed by work of Niels 

SYMMETRY
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Henrik Abel, who showed that there is no general algebraic solution for the 
root of quintic equation or higher. To solve this, he invented an important 
branch of chemistry, which is now known as group theory. However, the 
credit of the foundation of group theory goes to Evariste Galois as he was 
the first to use the term Group (in French Groupe). Group theory is a branch 
of algebra. Basic applications of group theory were for some puzzles, like 
15-puzzle and Rubik’s cube.

Broadly speaking, group theory is a study of symmetry. When one is 
dealing with an object that appears symmetric, group theory can help us with 
its analysis. As the structure and behavior of molecules and crystals depend 
on their different symmetries, group theory becomes an essential tool in 
many areas of chemistry like hybridization, molecular vibration, spectros-
copy, molecular orbital theory, etc. Various scientists have excellently pre-
sented this subject from time to time.

Apart from chemical applications of group theory, it has been also applied 
to robotics, computers, medical image analysis, crystallography, mathemati-
cal music theory, statistics, cosmological, stellar and atomic particle abstrac-
tions, modeling of vibrational modes of virus, molecular systems biology, 
mathematical biology, spectroscopy, etc.

1.2  SYMMETRY

Symmetry is a kind of balancing act, which generates beauty in anything, 
a  picture, material, molecule, etc. although symmetry alone may not be 
enough to substantiate beauty. Its presence gives us a sense of beauty. 
In Koeslter’s words “Artists treat facts as stimuli for the imagination, while 
scientists use their imagination to coordinate facts.”

Symmetry becomes quite important, when it interprets the facts and 
delights us particularly, when it limits our study of chemistry with the world of 
order, pattern, beauty and satisfaction. As a matter of fact, chemistry, like any 
other science, resembles the art and the chemist has a potential of creativity.

1.2.1  SYMMETRY IN NATURE

There is a well-known proverb that “God always geometrizes.” Symmetry is 
present all over the world, i.e., in plant, animals, architecture, etc.
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(i) Plants

Plants have symmetric structures in their components like leaves, fruits, 
seeds, flowers, etc., mostly a radial symmetry. Coniferous plants show 
cone shape symmetry. Parts of the plants such as leaves, flowers, fruits, 
etc. are the best examples of bilateral, radial and multidimensional sym-
metries. The symmetry present in flower makes it beautiful to look at. Here 
are few examples,

(ii) Animals

All animals possess at least bilateral symmetry in their physical shapes. 
All most all the animals can be divided into two equal halves. If animals 
possess colored marks on their bodies such as tiger, zebra, etc., then the 
color spread bears a high degree of symmetry in length, width and angle of 
the marking. Besides these, birds and butterflies also represent such sym-
metry pattern of colors. Animals show symmetry and rhythm not only in 
their physique and the color, but they also exhibit a sense of order or pattern 
in their inhabitance and activity. For example, the reptiles sleep by folding 
themselves into a spiral loop and crawl in a curved path.
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The birds, when they fly in a group, also follow some rules of symmetry. 
While flying in the sky, the group is always lead by a single bird and then it 
is followed by many birds in the fashion of Pascal’s triangle.

1.2.2  SYMMETRY IN ARCHITECTURE

Not only living beings such as animals and plants possess symmetry but it 
also exists in buildings. Normally, symmetric buildings are made because 
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symmetry gives us a sense of beauty. For example, world’s seventh wonder 
Taj Mahal is highly symmetric. it can be divided into two equal parts by 
a vertical plane. Like Taj Mahal, many other buildings of world also show 
a high degree of symmetry.

The very first sight of an object might appeal to us as symmetric 
or unsymmetric. This is because the brain automatically does the work 
of different operations, i.e., rotation and/or reflection through imaginary 
axes and/or planes without your asking it to do so. The brain has been 
so educated and trained. And it becomes abstract (alike Group theory 
to be dealt latter), the moment one goes poetic recalling, “A thing of 
beauty is a joy for ever” or “Beauty is the truth and truth is the beauty…” 
Unknowingly, we connect “Symmetry” of the object through abstract 
thinking to the objects of the physical world around us. It is this concept 
of the application of symmetry through abstract group theory that we 
shall develop here to understand certain problems of chemistry in an 
easy way with essentials of some mathematical manipulations. Thus, the 
concept of symmetry will be made quantitative to simplify the problems 
associated with the structure (geometry) of a molecule, the bonding of 
its constituent atoms in it, spectral properties, etc. It is for these rea-
sons that group theory may alternatively be considered the “Algebra of 
Geometry.” We shall be dealing with isolated molecules.

In coordinate geometry, the ordinary Cartesian coordinates follow the 
left hand rule, i.e., the thumb represents X-axis, index finger represents 
Y-axis, and middle finger represents Z-axis. Just to have a difference, right 
hand rule was considered applicable in group theory. The center of a mol-
ecule (often termed as the center of gravity of the molecule) is considered to 
be coincident with the center of the Cartesian coordinate system, which will 
follow the right hand rule.
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1.3  RIGHT HAND RULE

The thumb, index, and middle finger of the right hand are extended in three 
mutual perpendicular (⊥) directions. The directions, in which the thumb, 
index and middle fingers point, are positive (+) X, Y and Z directions (Axes), 
respectively.

Z-axis is always kept aligned with the principal axis of the molecule. 
If Z-axis is in the plane of the molecule, then X-axis will be perpendicular 
to the plane while if the Z-axis is perpendicular to the plane of the molecule, 
then X-axis is the axis, which passes through maximum number of atoms. 
Y-axis is then accordingly placed in the molecule.

It will be used throughout this book. No physical importance should be 
attached to any coordinate system because in calculating observable quanti-
ties of a molecule, it turns out to be immaterial; how the original coordinate 
system was chosen?

To make the idea of molecular symmetry as useful as possible, some rigid 
criteria of symmetry should be developed. To do this, we first consider the 
kind of symmetry elements, a molecule can have. These symmetry elements 
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are geometrical entities, which are intricately related to the effect of symme-
try operations. These include a line, a plane or a point with respect to which 
one or more symmetry operations can be carried out. The symmetry ele-
ments, of their own, do not ask one to perform the operation, although the 
same is implied. The symmetry elements are static entities, while the opera-
tions are dynamic in nature. It is the final products (effects) of the operations 
that indicate the existence of any of the symmetry elements.

So to generate this kind of effect, we have a more intuitive approach of 
symmetry operators. An operator is a symbol for a rule for transforming 
a given mathematical function into another function.

1.4  MATHEMATICAL OPERATORS

Mathematical operator is a symbol, which alone does not have any value. 
But when an operator is attached to a function, then it gives another function.

For example,

	
d
d

(sin ) cos 
x

x x= 	

Here, d
dx

 is an operator, which transform sin x function into its derivative 

cos x with respect to x. Some such other operators are + (carry out addi-
tion), – (subtraction), × (multiplication), ÷ (division), etc. Operators are des-
ignated by putting a circumflex (^) over the symbol of a symmetry element. 
When more than one operators are there, then rules of operator algebra is 
followed, according to which, operations are to be carried out from right to 
left. Thus, operator asks for a particular operation to be performed on the 
function to produce the resultant function, a new function.

When a symmetry element does not have circumflex on it, then it is sim-
ply a geometrical entity, but when circumflex is written on it, that symmetry 
element becomes symmetry operation and acts as an operator. This operator 
operates on molecule to result into an another equivalent or identical figure 
or structure.

A symmetry operation is a movement of the body (an object, a figure or 
a function) such that after the movement has been carried out, every point 
in the body is coincident with an equivalent point (or the same point) of 
the body in its original form. This direction to carry out the movement is 



8	 Chemical Applications of Symmetry and Group Theory

provided by an operator, which acts on the body. When the original points of 
the body coincide with the equivalent points, the resulting configuration is 
called equivalent configuration. When these are the same points, the resul-
tant is termed as identical configuration.

1.5  EQUIVALENT SYMMETRY ELEMENTS AND ATOMS

If a symmetry element A is carried into the element B by an operation gen-
erated by a third element X, then B can also be carried back into A by the 
application of X−1. Then two elements A and B are said to be equivalent.

If A can be carried into still a third element C, then there will also be 
a  way of carrying B into C, and the three elements A, B and C form an 
equivalent set of elements. In general, any set of symmetry elements, in 
which any member can be transformed into each and every other member of 
the set by the application of some symmetry operation, is said to be a set of 
equivalent symmetry elements.

In a planar triangular molecule (BF3), each of the two fold symmetry axis 
(C2) lying in the plane can be carried into coincidence with each of the others 

by rotation of 2π/3 or 360
3







  or 2 × 2π/3, which are symmetry operations. 

Thus, all these three two fold axes are said to be equivalent to one another.

In a square planar AB4 molecule, there are four two-fold axes (C2) in the 
molecular plane and one four-fold axis (C4) perpendicular to all the two-fold 
axes. Two of two-fold axes are along BAB and other two are bisecting the 
angles BAB. Let us place set of two-fold axes along B-A-B bonds in C2 
group while other set bisecting BAB angles in C2′ group. Then C2 group axes 
are equivalent to each other, while C2′ group axes are also equivalent to each 
other. But C2 and C2′ groups axes are not equivalent to each other.

Such a molecule also contains four symmetry planes, each of which is 
perpendicular to the molecular plane and intersects it along one of two-fold 
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axis. Two planes, (σ) which are along C2 group of axes are equivalent to 
each other, while other two (σ′) are placed along C2′ group of axes are also 
equivalent. But σ and σ′ planes are not equivalent to each other.

All the three symmetry planes in BF3, which are perpendicular to the 
molecular plane are equivalent to each other. However, two reflection planes 
(molecular and vertical planes) in water are not equivalent to each other, i.e., 
there is no operation, which can carry σv to σv′ and vice-versa.

In benzene molecule, there are two sets of three two-fold axes. 3 C2 axes 
passing through two opposite carbon atoms form a set and 3 C2′ axes, which 
bisect two opposite C-C bonds of the benzene form another set of equivalent 
axes. Similarly, there are two sets of 3-reflection planes, along C2 and C2′ 
axes, which are equivalent to each other.

If an atom of a molecule can be interchanged with another atom of the 
molecule, then these atoms are said to be equivalent atoms. Of course, 
equivalent atoms must be of same chemical species. Thus, all the hydrogen 
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atoms in methane, ethane, benzene or cyclopropane are equivalent to each 
other. Similarly, all the fluorine atoms in SF6 (regular octahedron) are 
equivalent to each other. All the carbon and oxygen atoms in Cr(CO)6 are 
also equivalent.

However, all five atoms in the PF5 (trigonal bipyramid) are not equiva-
lent because axial P-F bonds are longer than the equatorial P-F bonds. Axial 
F atoms (two atoms) are equivalent to each other while equatorial F atoms 
(three atoms) are also equivalent to each other. No operation can interchange 
an equatorial fluorine atom with axial fluorine atom, but it can interchange 
with another equatorial fluorine atom by rotation around C3 axis. Hence, 
three equatorial fluorine atoms are equivalent to each other.

Similarly, an axial fluorine atom can interchange with another axial fluo-
rine atom by rotation around C2 axis. Hence, these two axial fluorine atoms 
are equivalent to each other.

1.6  SYMMETRY OPERATIONS AND SYMMETRY ELEMENTS

By more inspection of a molecule, one can say that a particular molecule 
have high symmetry, low symmetry or no symmetry. In order to have better 
knowledge about molecular symmetry, it is very important to develop some 
rigid mathematical criteria of symmetry. For this purpose, one should first 
discuss about various symmetry elements that a molecule may possess and 
then the symmetry operation produced by those symmetry elements.

The term symmetry element and symmetry operation are often creates 
a state of confusion and are interchangeably used as these terms are inextri-
cably related. Therefore, it becomes essential to have a clear understanding 
of the difference between them.
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1.6.1  SYMMETRY OPERATION

Symmetry operation is a movement of a molecule from its original orien-
tation to an equivalent orientation (sometimes identical orientation also). 
It can be rotation around an axis, reflection through a plane and inversion 
at a point or any combination of these operations. After movement, every 
point of molecule is coincident with equivalent point of the molecule in its 
original orientation. It can be said that the orientation and position of a mol-
ecule before and after operation are indistinguishable, i.e., one cannot deter-
mine the difference between molecules, before and after operation. In other 
words, symmetry operation results into equivalent structure (configuration). 
A symmetry operation, which brings the molecule to its starting original 
position, is termed as identity operation.

1.6.2  SYMMETRY ELEMENT

A symmetry element is a geometrical entity such as an axis, a plane, or 
a  point (a center) with respect to which symmetry operations are carried 
out. One or more than one symmetry operations can be operated at a time in 
a molecule. Thus, symmetry element is associated with one or more symme-
try operations and these two terms are interrelated. One of the simplest way 
to distinguish a symmetry operation and symmetry element is the presence 
of a circumflex (cap, ^) written over the symbol of that symmetry element, 
but in common practice, it is seldom used.

Five kinds of operations and the symmetry elements are normally used 
(Table 1.1).

TABLE 1.1  Symmetry Elements and Operations

Element Operation Symbol

Identity To leave molecule as it is (unchanged)/No operation E
Proper axis Rotation about an axis through an angle θ Cn

Plane Reflection in a plane σ
Centre Inversion through center i
Improper axis Rotoreflection, i.e., rotation followed by reflection in a plane 

⊥ to the rotation axis
Sn
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(i) Identity (E)

This element is obtained by an operation called ‘identity operation.’ It is a 
‘doing nothing’ operation. After this operation, the molecule remains as 
such. This situation can be visualized in two ways. Either (i) we do not do 
anything to the molecule, or (ii) we rotate the molecule by 360° (θ = 360°).

So we can write,

C1 = E, σ2 = E, i2 = E, Cn
n = E

The product of the element and its inverse also gives identity. It can be rep-
resented as,

(Cn) (Cn)
−1 = E

Here, Cn is an axis of symmetry and (Cn)
−1 is its inverse symmetry element.

In case of H2O molecule,

C2.C2
−1 = E

Therefore, it can be concluded that if the product of any two operations 
is identity, then it means that the two operations are inverse to each other.

Plane of symmetry (σ) is inverse of itself. Therefore, product of plane of 
symmetry give identity, i.e., σ.σ = E. The product or combination of identity 
operation (or element) with any operator (or element) always gives the same 
operator (or element). For example,

	 Cn.E = E.Cn = Cn	

	 E.σ = E.σ = σ	

Relationship between identity operation and other operations.

	 Cn
n = E  If n = Even or odd	

	 Sn
n  = E  If n = Even	

	 Sn
n  = σh  If n = Odd	

	 Sn
2n  = E  If n = Odd	

	 σ n
n  = E  If n = Even	

	 σn = σ  If n = Odd	
	 in = E  If n = Even	
	 in = i  If n = Odd	
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An element generated by this ‘leave-it-alone’ operation is trivial and is as 
important as the other symmetry elements. Every molecule has this element 
of symmetry and it coexists with the identity of the molecule and hence, it 
has been named as ‘identity element.’ This is denoted by a special symbol E 
(the first letter of the word Einbeit from German) or I (Identity).

(ii) Axis of Symmetry (Cn)

When a molecule is rotated along an imaginary line or axis and it gives an 
equivalent or identical configuration, then such an operation is called proper 
rotation and the imaginary line, with respect to which molecule is rotated, 
is called proper axis of symmetry. The symbol Cn is used for designating 
both; the proper axis of rotation and the proper rotation operation. Here, 
subscript n denotes the order of axis. Order is highest value of n, when mol-
ecule is rotated through 2π/n (360°/n) to give an equivalent configuration. 
Hence, n can be represented as,

n = 2π/θ or (θ = Minimum angle of rotation)

when n is equal to 2, 3 or 4, then it is called two-fold, three-fold or four-
fold axis of symmetry, respectively. C2 is a symmetry element. When H2O 
molecule is rotated through 180 °C around this axis, it is known as C2 sym-
metry operation. When H2O molecule (a) is rotated through 180° around 
this C2 axis, which bisects the ∠ HOH angle, gives structure (b) and it is 
indistinguishable from the starting one. If this rotation is done once again, 
then orientation (c) is obtained. Here, (a) and (b), as well as (b) and (c) are 
equivalent structures, but (a) and (c) are identical structures.
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BF3 molecule has the following structure.

Here, a line perpendicular to the plane and passing through the center of 
BF3 molecule (B atom) is a proper axis of rotation with n = 3, because com-
plete rotation of molecule through an angle 360° (in 3 steps of 120°) around 
this axis gives two equivalent and one identical configuration.

In this example, minimum angle of rotation is 120°, to have an equivalent 
configuration and therefore, the order of the proper axis is 360°/120° = 3. 
Thus, three symmetry operations can be carried out in succession as shown 
above, which are written as C3

1, C3
2, and C3

3. The last operation gives original 
configuration back, and hence, it is equal to identity operation, i.e., C3

3 = E. 
Thus, a C3 axis of symmetry is present in BF3 molecule and it is called a three-
fold axis of symmetry.

It can be concluded that axis of symmetry of order n, (Cn), has n – 1 sym-
metry operations to give equivalent configurations while Cn

n operation gives 
identical or same configuration.

Besides this axis of three-fold symmetry, there are three more axes of 
two-fold symmetry (3 C2). These are passing through the central boron atom 
as well as one of the fluorine atoms.
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These three C2 axes are perpendicular to C3 axis.
Similarly, in case of benzene, the n may be 6, 3, 2 (all these axes, C6, C3 

and C2, coincide with each other), i.e., on rotation by 60°, 120° and 180°, we 
get equivalent configurations.

A molecule can possess more than one axis of rotation. The axis with high-
est order is called principal axis. Therefore, in benzene, C6 axis is considered 
as principal axis of symmetry. Let us consider the operation C6

2 , which is one 
of operations generated by C6 axis. This is a rotation by 2 × 2π/6 = 2π/3 and 
it may be written as C3. Similarly, operations C6

3  and C6
4  can be also written 

as C2 and C3
2, respectively.

Thus, C6, C6
2, C6

3, C6
4, C6

5, C6
6 can be written as C6, C3, C2, C3

2, C6
5 and E.

Examples of Symmetry Axis

	 (i)	 Many molecules do not have any axis of proper rotation, i.e., 
FClSO, but they contain identity element, which is equivalent to C1.

	 (ii)	 Linear molecules have infinite fold axis of proper rotation, which is 
collinear with molecular axis. Since all the atoms are in a line, then 
any minimum angle of rotation (almost approaching zero, i.e., less 
than a degree, minute or second) through this linear molecular axis 
will give its equivalent configuration, the n = 360°/0 = ∞ and hence, 
this axis of symmetry be designated as C∞ (…. O = C = O ….).

		  It means, when θ tends to zero (θ → 0°), then n tends to infinity 
(n →∞). Examples for C∞ axis of symmetry are H2, CO2, HCl, 
OCS, HCN, etc.

	(iii)	 Water molecule has one two-fold axis of symmetry, which is bisect-
ing the angle HOH and passing through the oxygen atom. Rotation 
around this axis through an angle of 180° will give equivalent con-
figuration or indistinguishable configuration. This axis of rotation 
is called C2 (i.e., n = 360°/180° = 2).
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	(iv)	 If more than one axes of same order are present, then the axis pass-
ing through maximum number of atoms is called Principal axis of 
symmetry. Ethylene molecule has three two-fold axes of symmetry 
(3 C2). One C2 axis of symmetry, which is collinear with C = C 
axis, of the molecule is designated principal axis of symmetry. The 
second axis is perpendicular to plane of molecule and bisecting 
the C = C bond. The third one is in the plane of the molecule but 
perpendicular to first two and intersecting both the C2 axes at the 
center of the C = C bond.

		  The principal axis of symmetry will be that C2 axis, which is pass-
ing through C = C bond and cutting two carbon atoms, because 
other two C2 axes are not cutting any atom.

	 (v)	 CH2Cl2 molecule also has one two-fold axis of symmetry (C2) 
bisecting the opposite angles H-C-H and Cl-C-Cl.

	(vi)	 Allene (CH2 = C = CH2) molecule possess three two-fold axes 
of symmetry (3 C2). One of them is passing through three car-
bon atoms along the molecular axis. Other two axes (C2) are per-
pendicular to the molecular axis and passing through the central 
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carbon atom. C2 axis, which is passing through three carbon atoms, 
is called principal axis of symmetry, as the other two C2 axes pass 
through only one carbon atom (central C atom).

	(vii)	 Pyramidal AB3 molecule like NH3 has only one three-fold axis of 
symmetry passing through N atom and perpendicular to the plane 
of three H atoms. Although the angle H-N-H is around 107° in case 
of ammonia, but rotation around this axis through an angle of 120° 
will give equivalent configurations and hence, this axis of symme-
try is called C3.

	(viii)	 Planar AB3 molecule like BF3 has one three-fold axis of symmetry 
(C3) passing through the B atom and perpendicular to the plane of 
three F atoms. BF3 molecule also possesses three two-fold axes of 
symmetry (3 C2), which are perpendicular to the three-fold axis 
and passing through each of the B-F bond.
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	(ix)	 Tetrahedral AB4 molecule like CH4 molecule has four three-fold 
axes (4 C3), each containing central atom C and one of the H atom, 
i.e., collinear with C-H bond. Besides this, CH4 has three two-fold 
axes of symmetry (3 C2) passing through central carbon atom and 
bisecting the two opposite H-C-H angles.

	 (x)	 Planar AB4 molecule like PtCl4
2− ion has one four-fold axis (C4) 

passing through the central atom Pt and perpendicular to the plane 
of molecule. It also has four two-fold axes (4 C2) perpendicular to 
this C4, all of them are in the plane of the ion. Two of them (2 C2) 
are containing central atom Pt and pass through two opposite Cl 
atoms. The other two pass through the central atom Pt and bisect-
ing the opposite Cl – Pt – Cl angles.

	(xi)	 Pentagonal AB5 molecule like C5H5
− ion has one five-fold axis 

(C5) passing through the center and perpendicular to the plane 
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of molecule (or ion). Besides this, pentagonal molecule has five 
two-fold axes (5 C2) in the molecular plane. These axes are per-
pendicular to the principal axis C5.

	(xii)	 Hexagonal AB6 molecule like C6H6 has one six-fold axis (C6) passing 
through the center of molecule and perpendicular to molecular plane. 
It also has six two-fold axes (6 C2) perpendicular to principal axis C6, 
all of these are in plane of molecule. Three of them (3 C2) are contain-
ing center and passing through two opposite C-atoms. The other three 
are passing through center and bisect two opposite C-C bonds.

	(xiii)	 Octahedral AB6 molecule like SF6 has three four-fold axes (3 C4) 
passing through the central atom S and 2 F atoms located at trans-
positions. It coincides with C2 axes also. A regular octahedral mole-
cule also has four three-fold axes (perpendicular to each other) (4 C3) 
passing through the center of opposite triangles of three F atoms.
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	(xiv)	 Planar (C7H7) (Tropylium) ion possesses seven-fold axes of 
symmetry (C7).

	(xv)	 (C8H8)2V (Vanadocene) like molecule possesses eight-fold axis of 
symmetry (C8) (Table 1.2).

The rotation of 3D body by 360°/n results into equivalent configuration, 
which comprises a C2 symmetry operation. If some operation is performed 
twice in successive steps (Cn. Cn), then it is equal to 2, which may be written 
as Cn

2. In case n is even, the n/2 is integer and the rotation reduces to Cn /2. 
In essence, a Cn

m can be reduced by their least common division, such as

C  = C6
3

2
1

Here, n/m = 6/3 = 2

TABLE 1.2  Axis of Symmetry

Molecule
Order (n) = 

360o

θ
Representation Proper axis

H2O 360
180

= 2
C2

NH3
360
120

= 3

C3

[Ni(CN)4]
2−

360
90

= 4

C4

C5H5
−

360
75

= 5

C5

C6H6
360
60

= 6

C6
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The set of operations generated from continued rotation in successive 
steps by 360°/n can be given as,

C , C  C  C  ....C  (= E)n n
2

n
3

n
4

n
n, , ,

As Cn
n means 360° rotation and therefore, it gives identical configuration (E). 

Thus,

	 C  = C Cn
n + m

n
n

n
m⋅ 	

	 = E. Cn
m

	
	 = Cn

m
	

(iii) Plane of Symmetry (Mirror plane) (σ)

It is defined as an imaginary plane that bisects the molecule in such a way 
that the two parts (two halves) are mirror images of each other. This element 
of symmetry is represented by the symbol σ. The corresponding operation to 
a mirror plane is reflection. It should be noted that the operation of reflection 
gives a configuration equivalent to original one. If the operation is carried 
out twice on the molecule, then we get the original configuration. Hence, 
a mirror plane generates only one distinct operation σn = σ, if n is odd and 
σn = E, if n is even.

Plane of symmetry and the corresponding reflection operation both; are 
denoted by σ. It has certain properties such as

•	 The symmetry plane should always be present within the molecule, 
i.e., the plane can’t exist completely outside the body of molecule.

•	 The atoms lying in the plane of the molecule makes a special case because 
reflection of these atoms in the plane does not move any one of them from 
their original positions. Therefore, any planar molecule is bound to have 
at least one plane of symmetry; namely its molecular plane.

•	 All atoms of a given molecule, which do not lie in the plane must occur 
in even numbers. Since each one must have a twin on the other side of 
the plane.

When symmetry operation σ is carried out once, we get configuration 
equivalent to the original one, but the application of the same σ twice pro-
duces a configuration identical with the original.
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	 σn = E (If n is even)  e.g., σ2 or σ2n = E	
	 σn = σ (If n is odd)  e.g., σ3 or σ2n+1 = σ	

Plane of symmetry can be classified into three types,

(a)	Vertical plane of symmetry (σv)

The plane passing through or containing the principal axis is called vertical 
plane of symmetry. It is represented as σv.

(b)	Horizontal plane of symmetry (σh)

The plane perpendicular to the principal axis is called horizontal plane of 
symmetry. It is represented as σh.

(c)	Dihedral plane of symmetry (σd)

The plane passing through the principal axis and bisecting the angle between 
two C2 axes is called dihedral plane of symmetry or if the angle between two 
planes of symmetry is bisected by a C2 axis, then that set of planes is also 
called dihedral plane of symmetry. It is represented as σd.

Let us consider benzene molecule to explain clearly all the three types 
of planes. Benzene is a planar molecule having principal axis of symme-
try C6. The plane passing through all the six carbon atoms is perpendicular 
to principal axis (C6), and hence, it is called horizontal plane of symmetry 
(σh). Besides this, it has six planes, each passing through C6 and one of the 
C2 axis. Hence, there are two sets of these six planes. Three of them, pass-
ing through two opposite C atoms are represented as σd planes. Other three 
planes passing through the center of opposite edges or bisecting C-C bond 
are represented as σv planes.
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Examples of Planes of Symmetry

	 (i)	 Molecules, which are not planar and have odd number of all the 
atoms, do not contain any symmetry plane, for example, FClSO.

	 (ii)	 Linear molecule possesses an infinite number of symmetry planes. 
These planes are passing through molecular axis of the molecule 
and hence, all these will be σv (∞ σv) planes.

	(iii)	 Molecule like F2SO has only one symmetry plane, which passes 
through S and O atoms and is perpendicular to the F-F-O plane and 
bisecting the angle F-S-F.

	(iv)	 The V-shaped molecule like water has two symmetry planes. One 
is the molecular plane, which does not move any of the atoms. 
Another plane is passing through O atom and is perpendicular to 
the molecular plane and bisects angle H-O-H. Both these planes are 
along the principal axis C2, and hence, these are vertical planes (σv).

	 (v)	 Tetrahedral AB2C2 type molecule like CH2Cl2 has two mutually 
perpendicular planes of symmetry. One plane is passing through 
H-C-H atoms and reflection through it will leave these three atoms 
unchanged while reflection interchanges the two Cl-atoms. The 
same is true for other plane, which passes through Cl-C-Cl atoms 
and reflection through it interchanges H atoms and three atoms Cl, 
C and Cl remain unchanged.
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	(vi)	 Allene molecule has three C2 axes, one passing through molecu-
lar axis and other two are perpendicular to it. The planes passing 
through the molecular axis and H1, H2 or H3, H4 are planes of sym-
metry. H1, H2 and H3, H4 are present in different planes and these 
planes lie in between subsidiary axes (C2). Thus, the two planes are 
passing through principal axis and bisecting the angle between C2 
axes. Hence, these are called dihedral planes of symmetry (σd).

	(vii)	 Pyramidal AB3 molecule like NH3 has three vertical planes of sym-
metry (σv). Each plane is passing through N atom and one of H atoms 
and bisecting the opposite angle HNH. As all these planes contain the 
principal axis (C3), these are called vertical planes of symmetry (3 σv).
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	(viii)	 Planar AB3 molecule like BF3 possesses four symmetry planes. 
One plane is perpendicular to principal axis (C3). It is in molecular 
plane and is termed as horizontal plane (σh). Other three planes are 
perpendicular to the molecular plane and passes through central B 
atom and one of F atom and bisect opposite angle FBF. All these 
planes are vertical planes of symmetry (3σv).

	(ix)	 A planar molecule AB4 like PtCl4
2− ion has five planes of sym-

metry. One plane is perpendicular to principal axis (C4). It is the 
molecular plane of PtCl4

2− and termed as σ h. Other four planes 
are perpendicular to the molecular plane and bisect the oppo-
site ClPtCl angles (two of them) or passing through diagonal 
(the other two planes). All these there planes are called vertical 
planes (4 σv).

	 (x)	 Tetrahedral AB4 molecule like CH4 possesses six planes of sym-
metry. Symmetry planes containing the following atoms (i) CH1H2 
(ii) CH1H3 (iii) CH1H4 (iv) CH2H3 (v) CH2H4 and (vi)  CH3H4. 
These are six planes of symmetry. All these planes bisect the angle 
between the remaining two H-C-H angles, for example, plane 
passing through C, H1 and H2 atoms bisects the angle H3CH4 and 
the plane containing C, H2 and H3 atoms bisects the H1CH4 angle 
and so on.
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	(xi)	 Octahedral AB6 molecule like SF6 possesses nine symmetry planes. 
These planes involve following atoms:

•	 Plane including A, B1, B2, B3, B4 atoms.
•	 Plane including A, B2 B4, B5, B6 atoms.
•	 Plane including A, B1, B3, B5, B6 atoms.
•	 Plane including A, B5, B6 atoms and bisecting B1–B2 and B3–B4 lines
•	 Plane including A, B1, B3 atoms and bisecting B2–B5 and B4–B6 lines.
•	 Plane including A, B2, B4 atoms and bisecting B3–B5 and B1–B6 lines.
•	 Plane including A, B5 B6 atoms bisecting the molecule.
•	 Plane including A, B2, B4 atoms and bisecting the molecule.
•	 Plane including A, B1, B3 atoms and bisecting the molecule.

(iv) Centre of Symmetry (Inversion) (i)

Centre of symmetry or inversion center can be explained with the help of 
Cartesian coordinate system. Suppose the value of Cartesian coordinates of 
atom are xi, yi, and zi and let this atom be taken to a point, where value of 
its coordinate become –xi, –yi, and –zi. If by doing such an operation with 
all atoms of the molecule, an equivalent configuration is obtained, then it is 
called the inversion center of molecule. In other words, inversion center is 
a point from which if a straight line is drawn from every atom of a molecule 
on one side and extended to an equal distance on the other side, it must come 
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across another identical atom. A molecule with such a point is said to possess 
a center of symmetry or an inversion center.

When a center of inversion exists in a molecule, then certain restrictions 
are placed on the number of all the atoms or all but one atom. Since the cen-
ter is a point, only one atom may be present at the center of the molecule. 
If there is an atom at the center of the molecule, it is unique from the point 
of view that it is the only atom in the molecule, which does not shift on per-
forming inversion operation. All other atoms must occur in pairs. Each other 
atom must have a twin, with which it is exchanged, when the inversion is 
performed. From this, it is clear that one need not bother to look for a center 
of symmetry in molecule, which contains an odd number of more than one 
species of atoms.

The symbol for the inversion is i. Like a plane of symmetry in the mol-
ecule, a center is also an element, which generates only one operation. The 
effect of carrying out the inversion operation n times may be expressed as,

in = E, when n is even.
in = i, when n is odd.
Another way to express inversion center is a rotation through an angle 

180° followed by a reflection in the plane perpendicular to the axis of rota-
tion. A molecule symmetrical with respect to this transformation is also said 
to have a center of symmetry.

So that i = S2 = C2

Examples of Center of Symmetry

	 (i)	 A linear molecule of ABA type has an inversion center at center of 
atom B, while in ABB type molecule, there is no inversion center.

	 (ii)	 Planar AB4 molecule has inversion center at center of atom A. 
Similarly, trans – AB2C2 and regular octahedral molecule AB6 also 
have inversion center of the molecule at center of atom A.

	(iii)	 Benzene molecule has an inversion center at the center of the 
molecule.

	(iv)	 Regular tetrahedral AB4 molecule does not contain an inversion 
center though the number of B atoms are even and an atom A is at 
the center of the molecule.

	 (v)	 Planar pentagonal (C5H5
−) ion has no inversion center.

	(vi)	 Planar AB3 type molecule has no inversion center as these two 
structures are not equivalent or identical.
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	(vii)	 Trans-dichloroethylene has a center of symmetry while cis-
dichloroethylene does not. By doing inversion on the trans-form, 
the atom Cla shifts to the position of Clb; Ha to the position of Hb 
and C1 to the position of C2 and vice versa.

		  Thus, it gives an equivalent structure of the original molecule, 
which is indistinguishable. On the other hand, a similar operation 
on the cis-form causes the atom Cla to shift to the position of Hb; 
Ha to Clb and C1 to the position of C2 vice versa.

		  This structure can be easily distinguished from the original struc-
ture and therefore, this molecule in not symmetric with respect to 
inversion or it does not contain the center of symmetry.

(v) Improper Axis of Symmetry (Alternate axis) (Sn)

An improper rotation may be thought of taking place in two steps. In this 
case, the molecule is rotated along Cn axis by an angle 2π/n and then all the 
atoms are reflected through a plane perpendicular to the Cn axis. In some 
cases, these two operations can be carried out in reverse order also, but not 
in all. If by doing so, an equivalent configuration is obtained, then this axis 
is called an improper axis of symmetry and it is symbolized as Sn.

In other words, a molecule is said to possess an improper axis of rotation 
of the order n, if rotation by 2π/n about this axis is followed by a reflection in a 
plane perpendicular to this axis, then it leaves the molecule in an indistinguish-
able orientation. The axis, about which the rotation is carried out, is called an 
axis of improper rotation. This operation is also known as rotation-reflection 
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symmetry operation and the axis is called a rotation-reflection axis. The opera-
tion of improper rotation by 2π/n is denoted by symbol Sn.

Mathematically, it is represented as,

Sn = σh.Cn or sometimes Sn = Cn.σh

where n is the order of improper axis. Operation is carried out from right 
to left.

An inversion operation is the simplest rotoreflection (rotation followed 
by reflection) operation and is given the name S2 or i.

If in any molecule, an axis Cn and a perpendicular plane exist indepen-
dently, then Sn must also exist in that molecule. However, Sn can exist in 
a molecule even if the Cn or the perpendicular plane does not exist sepa-
rately. In such cases, Sn becomes important because Cn axis and a perpen-
dicular plane to it (σh); both are absent in the molecule.

The element Sn, in general, generates a set of operations Sn
1 , Sn

2, Sn
3…Sn

n-1, Sn
n. 

There are differences in the sets generated for even and odd numbers. So these 
two cases should be considered separately. Let us consider that Sn axis (n is 4) 
is collinear with Z-axis of coordinate system and that the plane, through which 
the reflection operation is carried out, is the xy plane. An improper axis Sn of 
even order generates sets of operations Sn, Sn

3…Sn
n-1. Sn

n means that Cn and σv 
operations are carried out in sequence (n = 1, 2, 3…) until in all, Cn and σ each 
have been carried out n times.

S  = Cn
n

n
n n⋅σ

where n is even and hence, 

	 σn = E	

	 S  = C E = Cn
n

n
n

n
n⋅ 	

but Cn
n = E.

Hence, Sn
n = Cn

n. E = E.E = E
Beyond Sn

n, if Sn
n+1 and Sn

n+2 are also taken, representation of operations 
will take form of Sn

1  and Sn
2 , respectively.

S  = S S  = E.S  = Sn
n+1

n
n

n
1

n
1

n
1.

S  = S S  = E.S  = Sn
n+2

n
n

n
2

n
2

n
2.
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Thus, in any set of operations generated by an even order Sn, certain Sn
n 

may be written in some other ways, for example, if we take the set of S6, this 
will generate – S6, S6

2 , S6
3 , S6

4 , S6
5 , S6

6 .

	 (i)	 S6
1  can be written in no other way than S6.

	 (ii)	 S6
2 = C6

2.σ h
2 = C6

2.E = C6
2 = C3

	(iii)	 S6
3 = C6

3.σ h
3 = C2.σ = S2 or i

	(iv)	 S6
4 = C6

4.σ h
4  = C3

2.E = C3
2

	 (v)	 S6
5 can be written in no other way than S6

5

	(vi)	 S6
6 = C6

6.σ h
6 = E.E = E

So S6 generates a set of S6, C3, S2 or i, C3
2, S6

5 and E. We can make a useful 
observation here. This set contains C3, C3

2 and E, which are just the opera-
tions generated by a C3 axis also. Hence, the existence of the S6 axis auto-
matically requires that the C3 axis exists in the molecule. In general, the 
existence of Sn axis of even order always requires the existence of a Cn/2 axis 
and a center of inversion.

Now let us consider an improper axis of rotation Sn, (n is odd), which is 
collinear with Z-axis of a coordinate system and that the plane is the xy plane 
through which, the reflection operation is carried out. The most important 
property here is that an odd order Sn requires that Cn and σ perpendicular to 
this axis must exist independently. The elements Sn generates the operations 
Sn, Sn

2, Sn
3…, Sn

2n.
Let us consider Sn

n, when n = odd,
Sn

n  = Cn
n .σn = E.σh = σh; since n is odd.

Sn
2n = Cn

2n.σn
2n = E.E = E.

In other words, the element Sn
n generates a symmetry operation σ, but if 

the symmetry operation σ exists, the plane, to which it is referred, must be 
a symmetry element, in its own sight.

An improper axis of rotation Sn with odd order generates certain distinct 
operations. Consider an example of S5 axis.

S5
1  can be written in no other way then S5

S  = C  C E = Ch 55
2

5
2 2 2

5
2. .σ =

S  = C  C  = Sh h5
3

5
3 3

5
3

5
3. .σ σ=
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	 S  = C  C E = Ch5
4

5
4 4

5
4

5
4. .σ = 	

	 S  = C  E  =  h h h5
5

5
5 5. .σ σ σ= 	

	 S  = C  C E = C  (C  = C )h n
n+1

5
6

5
6 6

5 5. .σ = n 	

	 S  = C  C  Sh h5
7

5
7 7

5
2

5
2. .σ σ= 	

	 S  = C  C E = Ch5
8

5
8 8

5
3

5
3. .σ = 	

	 S  = C  C  = Sh h5
9

5
9 9

5
4

5
4. .σ σ= 	

	 S  = C  = E.E = Eh5
10

5
10 10.σ 	

From the above example, it is clear that if n is odd, then total operations to 
reach identity is not Sn

n (unlike, if n is even) and it requires 2n operations. 
In other words, we can say that Sn

n ≠ E, if n is odd. In this case, Sn
2n = E. Out 

of ten operations, four can be represented by proper axis Cn, four by S5 and 
one each by σ and E operations.

Examples of Improper Axis of Symmetry

	 (i)	 A regular tetrahedral molecule does not contain C4 axis and per-
pendicular plane, separately but an improper axis S4 exists in such 
molecules.

		  Let us consider the example of the CCl4. A rotation of 90° about the 
Z-axis followed by a reflection in a plane perpendicular to Z-axis 
(σxy) results into a configuration, which is indistinguishable from 
the original one. Hence, CCl4 molecule possesses an improper axis 
of order 4, which is represented as S4.



32	 Chemical Applications of Symmetry and Group Theory

		  From the figure, it is also clear that a rotation of 90° about the 
Z-axis or a reflection in xy plane alone may not give the indistin-
guishable configuration, but the combination of these two gives 
indistinguishable orientation. CCl4 molecule has three equivalent 
S4 axis at right angles to one another viz S4 (x), S4 (y), and S4 (z).

	 (ii)	 The planar benzene molecule possesses S6 axis, which is coinci-
dent with the C6 axis.

	(iii)	 Consider ethane molecule in its staggered conformation, which has 
S6 axis, where as in it eclipsed conformation, it has a S3 axis. As the 
diagram shows that (b) and (c) are equivalent to each other but 
neither of them is equivalent to first, for example, neither σ nor C6 
by itself is a symmetry operation in this case, but the combination 
of both in either order, C6.σh = σh.C6 = S6, is a symmetry operation. 
It produces structure (d), which is equivalent to structure (a). Also 
S6 implies the existence of (i) C3 axis coincident with the S6 and 
(ii) center of symmetry (i).

		  The distinct operations are S6
1 and S6

5, since weknow that S6 axis 
will generate S6, C3, S2 or i, C3

2, S6
5 and E

	(iv)	 Every molecule with a plane of symmetry only, has S1 axis per-
pendicular to the plane of symmetry. In chloroethylene, the plane 
of symmetry is the molecular plane (xy plane) and the Z-axis is 
then S1 axis.
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In this way, symmetry elements can be determined in any given molecule.

1.7.SYMMETRY IN ENGLISH ALPHABETS

It was very interesting to notice that plants, flowers, birds, molecules, etc. 
have various symmetry elements, in the same way capital letters of English 
alphabets also possess different elements of symmetry. English alphabets can 
be classified into various point group, which may be said as “Alphabetical 
Point Groups.” Alphabetical point groups depend on their symmetry.

According to point groups or combination of symmetry elements, 
26 English alphabets can be categorized into four sets:

First set consists of 11 alphabets (A, B, C, D, E, M, T, U, V, W, Y). These 
alphabets possess identity (E), two-fold axis of symmetry (C2) and two verti-
cal planes of symmetry (2 σv) elements and thus, belongs to C2v point group. 
C2 and 2 σv symmetry elements in these alphabets are,

Second set comprises of 8 alphabets, namely F, G, J, K, L, P, Q and R. 
These alphabets have only two symmetry elements, i.e., E and σ (plane of 
the alphabet). It means alphabets belonging to these set do not have any axis 
of symmetry. Hence, belongs to Cs symmetry.
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Third set belong to C2h point group and includes alphabets N, S and Z 
with identity (E), two-fold axis of symmetry (C2) as principal axis passing 
through inversion center (i) and a horizontal plane, i.e., ⊥ to the plane of the 
letters.

N  S  Z

Last four remaining alphabets, i.e., H, O, I and X belong to last set with 
D2h point group. It consist of E + C2 + 3 C2 + 2 σv + σh + i. Here, it is interest-
ing to notice that O is not a perfect circle and lines of X are not intersecting 
at exactly right angle (90°). Therefore, these are placed in D2h point group.

1.8  SYMMETRY AND OPTICAL ACTIVITY

A compound is said to be optically active, if its mirror image is non-
superimposable upon structure of the original compound. For example, 
ethane consists of infinite numbers of conformations. Let us consider the 
conformation of almost eclipsed form of ethane. This conformation is in 
between staggered and eclipsed conformation and it is optically active 
because it is not superimposable to its mirror image. Now, ethane remains 
optically active only, if ethane is frozen in this state.

Almost eclipsed conformation of ethane (Optically active)

But as ethane has a C – C single bond, on which it can easily rotate 
even in presence of small activation energy. Rotation around C – C bond 
gives number of other conformations (more precisely six conformations), 
i.e., three staggered and three eclipsed conformations.
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Staggered form of ethane has plane of symmetry as well as center 
of symmetry whereas eclipsed form has only plane of symmetry, which 
shows that mirror image of staggered form is superimposable on origi-
nal staggered conformation and similarly, mirror image of eclipsed form 
is superimposable upon its original. It means ethane is optically inactive 
because mirror image of every conformation is superimposable upon its 
original.

One should know, whether a compound has superimposable mirror 
image or not, i.e., it is optically active or not? The presence of asymmetric 
center in a molecule (without symmetry) is essential, that is with an atom 
with all different valences or molecule should be least symmetric case of 
dissymmetric. It is considered the criterion for a compound to be optically 
active. A molecule with carbon with four different valences, Cabcd, is non-
superimposable to its mirror image; here, the central carbon atom is called 
“asymmetric carbon atom.”

In the case, when molecule is complicated, sometimes it becomes quite 
difficult to identify, whether the four groups attached to a particular carbon 
are different. Apart from this, many optically active compounds do not have 
an asymmetric carbon atom.

A single criterion is sufficient to prove any compound to be optical 
active, i.e., absence of Sn axis of symmetry. A molecule with Sn axis of 
order higher then two-fold such as in case of spiran, which do not possess 
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either a plane of symmetry or a center of symmetry. Even though, spirans 
are optically inactive. The reason is that a spiran possess Sn axis of sym-
metry, which is a vertical axis bisecting both the rings and passing through 
the spiran nitrogen atom.

Spiran (Optically inactive)

Spirans have S4 axis of symmetry but not C2 axis and therefore, it is opti-
cally inactive. Some other examples having Sn axis are allenes, cummulenes 
and cyclohexane (chair and boat forms).

S1, S2 and S6 axes are present.
On the contrary, it is important to note that compounds, which possess an 

ordinary axis of symmetry (element of symmetry) but no Sn axis of symmetry 
are optically active, i.e., trans-1,2-dichlorocyclopropane.

Non-superimposable mirror image (Optically active)
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Cis-dimethylketopiperazine has C2 axis of symmetry perpendicular to 
the plane of ring, but no Sn axis. Hence, it is also optically active. Whereas, 
its trans-form is optically inactive due to presence of center of symmetry 
(S2 ≡ i).

Non-superimposable mirror image (Optically active)

So, it may be concluded that optical active compounds need not be asym-
metric (without symmetry), but must be dissymmetric (without Sn axis of 
symmetry of any order). All asymmetric compounds are dissymmetric but 
reverse may not always be true.

Most of the compounds having point groups like C1, Cn and Dn show 
optical activity, i.e., [Co(en)3]

3+.

H2O2 belongs to C2 point symmetry and it is optically inactive because 
of free rotation around O-O bond, which permits its mirror image to be 
superimposable on original one. A special case is biphenyl, when Sn axis 
is absent, still this compound is optically inactive, because when it is 
rotated around 4, 4′-C-C single bond of mirror image, then new orientation 
of molecule is superimposable on its original structure and thus, creates 
pseudo-Sn axis.
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Biphenyls (Optically inactive)

1.9  SYMMETRY AND DIPOLE MOMENTS

When sum of all of the individual bond moment vectors is not equal to zero 
(non-zero), then that molecule will possess a dipole moment. If a molecule 
contains a center of symmetry, then charge on one side of the molecule gets 
canceled by the equal and opposite charge on the other side of the molecule. 
Hence, overall dipole moment becomes zero.

If a molecule has more than one element of symmetry, then also dipole 
becomes zero. When more than two Cn axes are present in a molecule, then 
dipole cannot exist because at a time, dipole vector cannot lie along more 
than one axis. The presence of a horizontal plane also prevents from having 
dipole moment or such molecule has no dipole.

Therefore, it can be concluded that if a molecule has an inversion center, 
and symmetry axis in a plane not parallel to the principal axis, then it does 
not have dipole. It means that a molecule having a symmetry plane and more 
than one axis of symmetry does not have dipole.

So, dipole moment is present only in such molecules, which have dipole 
along symmetry axis and a plane of symmetry, i.e., however, presence of one 
or more vertical mirror plane (σv) do not prevent a molecule from having 
dipole moment.

Group with symmetry allowed dipole moment ⇒ C1, C2, Cn, Cnv, Cs
Group with symmetry forbidden dipole moment ⇒ Ci, Sn, Dn, Dnh, Dnd, 

Td, Oh, Ih
Example of molecules with zero dipole moment is trans-N2F2, staggered 

ferrocene, etc.
Molecule with dipole moment are cis-N2F2, O = N-Cl, etc.
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Molecules like S = C = Te, cis-FN = NF, CO, SbH3, FClO3, etc., have 
small, but finite dipole moment.

1.10  SOME MORE EXAMPLES

Examples of some molecules are given here, which have slightly compli-
cated structures.

(i) Cyclohexane (Chair form)

The chair form of cyclohexane (C6H12) consists of 6 axial bonds (C-Ha) and 
six equatorial bonds (6 C-He).

•	 Cyclohexane has a C3 axis, which passes through the center of the 
molecule in such a way that 120° rotation along this axis will give 
equivalent (indistinguishable) configuration. 6 C-Ha bonds are parallel 
to C3 axis.

•	 Three C2 axes are present, which are perpendicular to C3 axis in such 
a manner that each C2 passes through the middle of the two opposite 
C-C bond. The remaining 6 C-He bonds are somewhat perpendicular 
to C3 axis.

•	 Cyclohexane consists of three σd reflection planes passing through two 
opposite carbon atoms.

•	 An inversion center is also present in chair form, which is absent in 
boat form of cyclohexane.

•	 S6 axis of symmetry is also present, which is coincident with C3 axis.
•	 Therefore, the chair form of cyclohexane contain E + C3 + 3 C2⊥ C3 + 

S6 + 3 σd + i.

(ii) Spiropentane (C5H8)

In spiropentane, each carbon atom has sp3 hybridized form.
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•	 It has a C2 axis as principal axis, which passes through central carbon 
atom and middle of the two opposite C-C bonds.

•	 Two σv are present, which pass through the C2 axis.
•	 Thus, C5H8 have E + C2 + 2 σv symmetry elements.

(iii) Cyclooctatetraene (C8H8)

•	 Cyclooctatetraene have tub like structure.

•	 This molecule consists of a S4 axis.
•	 Coincident with this S4 axis, there also exists a C2 axis.
•	 Two more C2′ axis perpendicular to C2 (collinear with S4) are present 

in a plane perpendicular to S4-C2 axis are present.
•	 This molecule has two σd planes of symmetry, each bisecting two 

opposite double bonds and passing between the C2′ axis.
•	 Thus, symmetry elements of cyclooctatetraene are E + C2 + 2 C2′⊥ 

C2 + 2 σd.

(iv) 1, 3, 5, 7-Tetramethylcyclooctatetraene
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•	 It has a S4 axis of symmetry and horizontal C2 axis as described in 
C8H8. Due to presence of methyl groups, all the vertical planes are 
absent.

•	 It is important to note that this molecule does not have an inversion 
center, or plane of symmetry, even though it is not dissymmetric.

•	 Therefore, the element present in the molecule are E + C2 + S4.

(v) S8 Molecule

This molecule have cyclic crown structure.

From top view, it appears staggered pair of square of sulfur atoms.

•	 There is a C4 axis of symmetry, which passes through center of the 
crown conformation.

•	 There are 4 C2⊥ C4, passing through two opposite sulfur atoms. The 
molecule on rotation by 180° gives indistinguishable configuration.

•	 Four σd planes passing through a pair of sulfur atoms present diago-
nally on the either of the square planes.

•	 S8 axis is present collinear with C4 axis
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(vi) Tetraphenylmethane, C(C6H5)4

This molecule has only one S4 axis, and therefore, possesses only E + S4.

(vii) Boric acid, B(OH)3

•	 The boron atom in boric acid is sp2 hybridized with planar geometry. 
This molecule has only three elements of symmetry, for example, 
E + C3 + σh.

•	 C3 axis of symmetry passes through center of molecule perpendicular 
to the plane of the molecule. σh plane is a molecular plane, which is 
perpendicular to the principal axis of symmetry, C3.
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(viii) Ru (1, 10-phenanthroline)2 Cl2

•	 Cis-isomer of the complex has only one C2 axis, which bisects the 
Cl-Ru-Cl angle. Therefore, this low symmetry molecule has E + C2 
symmetry elements.

•	 In trans-isomer of the complex, two phenanthroline rings are copla-
nar. In this molecule, C2 axis is present as a principal axis and passes 
through the Cl-Ru-Cl bonds.

•	 2 C2′⊥ C2 are also present in trans-form.
•	 σh plane and inversion center are also present in trans-form of this 

complex. Therefore, trans-isomer has E + C2 + σh + i.

(ix) fac- and mer-[RhCl3(pyridine)3]

•	 Fac-isomer, possesses C3 axis and three σv planes passing through Cl 
atom and pyridine ring and this molecule has E + C3 + 3 σv.

•	 In mer-isomer, three N atoms are coplanar, and in the same way, 3 Cl 
atoms are also coplanar. Therefore, mer-isomer has C2 axis passing 
through N-Rh-Cl and have two vertical planes (2 σv). One σv includes 
the 3 Cl, central N donor atoms and other includes 3 N and the central 
Cl donor atom. So this molecule has E + C2 + 2σv.
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(x) Triphenylphosphine (PPh3)

Triphenylphosphine has three phenyl groups arranged in propeller like struc-
ture about the trigonal pyramidal P atom.

•	 This molecule has only C3 axis. Thus, it has only two symmetry ele-
ments, i.e., E + C3.

(xi) [Ru(1,10-phenanthroline)3]
2+

This molecule has C3 axis (principal axis of symmetry), which passes 
through center of Ru atom and perpendicular to the plane of paper and 3 C2⊥ C3.  
Thus, it has E, C3, 3 C2⊥ C2.

KEYWORDS
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•• Symmetry operation
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2.1  MOLECULAR POINT GROUPS

A molecule consists of an assembly of symmetry operations. All the sym-
metry elements possessed by any molecule, pass through a fixed point in the 
molecule and this point do not change its position during any operations. 
Therefore, all the operations generated by symmetry elements is said to form 
a symmetry or point group. It means point group is a symbol, which repre-
sents symmetry elements present in that molecule. The fixed-point group is 
also a group in its mathematical sense. Hence, it must also satisfy the neces-
sary characteristics of a group in general.

Basically, there are two sets of nomenclature to represent symme-
try operations. Schoenflies nomenclature, which is useful aid in prob-
ing the properties of the molecule and is often used in spectroscopy and 
Hermann-Mauguin nomenclature, which is used in describing structure 
or crystallography.

Most of the molecules can be classified into 32-point group symmetry 
(with few exceptions) by short hand notations using Schoenflies symbols. 
The assignment of molecule to an appropriate point group can be purely for-
mal, i.e., it satisfies certain conditions of mathematical basis, such as there 
must be an identity element (E) in group, the existence of an inversion oper-
ation (A.A–1 ≡ 1), the product of two operations is also another operation is 
the group, and associative multiplication of operations.

2.2  CLASSIFICATION

Molecules can be classified into point groups based on various possible 
combinations of symmetry elements possessed by them. In general, there 
are four major types of point groups and these are given as follows:

	 (i)	 Groups with very high symmetry (cubic point groups);
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	 (ii)	 Groups with low symmetry;
	(iii)	 Groups with n-fold rotational axis (Cn);
	(iv)	 Dihedral groups (Dn).

2.2.1  GROUPS WITH VERY HIGH SYMMETRY (CUBIC POINT 
GROUPS)

Cubic point group is a group with large number of characteristic symme-
try elements. In general, these point groups are related to regular geom-
etries. They possess more than two proper axes of order greater than two. 
It includes three types of point groups with cubic symmetry, namely,

•	 Tetrahedral (Td, Ti and Th);
•	 Octahedral (Oh and O);
•	 Icosahedral (Ih) (Dodecahedral).

2.2.1.1  Tetrahedral Group

A regular tetrahedral molecule (AB4) has E + 8 C3 + 3 C2 + 6 S4 + 6 σd sym-
metry operations. The tetrahedral molecule has four C3 axes, three C2 axes, 
six mirror planes, and three S4 improper rotational axes.

Therefore, molecules with regular tetrahedral geometry belong to Td 
point group, for example, methane.

If a center of symmetry (i) is also present in tetrahedron, then Ti group is 
formed. The element of Ti are same as those of tetrahedron group, i.e.,

Point group T is further divided into 2 point groups.
(a) Td group;
(b) Ti or Th group.
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(i) Td Group

The addition of σd plane in T group generates the Td group, for example, 
methane, CCl4. Td group has following elements:

•	 Three S4 axes coinciding with X−, Y− and Z− axes, each of which 
generates S4, S4

2 = C2, S4
3 and S4

4 = E.
•	 Three C2 axes coinciding with X−, Y− and Z− axes and each of which 

generates an operation C2. However, these have already been gener-
ated by S4

1 .
•	 Four C3 axes, each of which passes through one apex and the center of 

the opposite face. Each of them generates C3 and C3
2  operations, i.e., 

eight operations in all.
•	 Six plane of symmetry (6 σd), each of which generates a symmetry 

operation. These planes lie on six faces of the cube.

This entire set of the operations will also include E. Six improper rota-
tions (S4

1 ′s and S4
3 ′s), three two-fold proper rotations, eight three-fold proper 

rotation (C3′s and C3
2′s) and six reflection planes having 24 operations in all.

(ii) Ti or Th Group

If a center of symmetry is added to T group, then Ti group is formed. The 
elements of Ti are same as those of T group and also each of those operations 
multiplied by i.

Six planes of symmetry (6 σd) are present. Each generates a symmetry 
operation. These planes lie on six faces of the cube.

Finally, there is one more group in T, which has additional set of σh plane, 
which contain pair of C2 axes. It is designated by Th.

2.2.1.2  Octahedral Group

Octahedral group has four C3 axes, three C4 axes, six C2 axes, four S6 axes, 
three σh planes, six σd planes, and a center of symmetry. In addition, there 
are three C2 and three S4 axes that coincide with the C4 axes. Therefore, total 
symmetry operations for a regular octahedral molecule are 48.

Example of molecules with Oh point group are SF6, [Co(NH3)6]
3+, 

[AlF3]
6−, Mo(CO)6, etc.
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	 (i)	 4 C3 axes pass through opposite apices of octahedron, i.e., Axes 
passing through center of the two opposite faces of the octahedron. 
As there are 8 faces in an octahedron, there are 4 C3 axes present.

	 (ii)	 3 C2 and 3 S4 axes, which are collinear with the C4 axis of symmetry.
	 (iii)	 6 C2 axes bisecting the opposite edges. There are 12 edges and 

each pair of them generates an operation C2.
	(iv)	 4 S6 axes coincident with 4 C3. Each of them is passing through 

the center of pair of opposite triangular faces and generates a set of 
operations S6, C3, i, C3

2  and S6
5 .

	 (v)	 3 σh – There are 3 C4 proper axes of symmetry and each horizontal 
plane is perpendicular to a particular C4 axis.

	 (vi)	 6 σd – Dihedral planes passing through two apices and bisecting 
opposite edges.

	(vii)	 2 S4 axes, each of them is passing through a pair of opposite apices 
generating the operations S4, C2 and S4

3 .
	(viii)	 3 C4 – Axes passing through the center of opposite faces of the 

cube.
	 (ix)	 i is inversion center. This operation is generated by each of the S6 

axis.
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2.2.1.3  Icosahedral (Ih) and Dodecahedral Group

	 (i)	 These groups have five-fold axes in addition to three-fold and 
two-fold axes. The addition of a σh plane perpendicular to the 
two-fold axes leads to the center of symmetry and then the group 
is called Ih group. This group has total 120 symmetry operations. 
These symmetry elements and operations are as follows:

	 (ii)	 6 S10 – A set of six S10 axes is present. In the dodecahedron, these 
axes pass through the opposite pairs of pentagonal faces, while in 
the icosahedron, they pass through the opposite vertices. Each of 
the S10 axis generates these operations S10, S10

2  = S5, S10
3 , S10

4  = S5
2, 

S10
2  = i, S10

6  = C5
3, S10

7 , S10
8  = C5

4 , S10
9 , E.

	(iii)	 10 S6 – In dodecahedron, these axes pass through opposite api-
ces of vertices, while in icosahedron, they pass through pairs of 
opposite faces. Each of these axis generates the following opera-
tion S6

1; S6
2  = S3, S6

3 = S2 = i, S6
4  = S3

2  = C3
2, S6

5 , E. Out of these, i and 
E have already been observed.

	(iv)	 6 C5 – There are six S5 axes collinear with S10 axis. They generates 
C5, C5

2 , C5
3 and C5

4  operations, which have already been counted 
under S10.

	 (v)	 10 C3 – There are ten C3 axis collinear with S6 axis. These generate 
C3 and C3

2  operations, which have been already counted with S6.

	(vi)	 15 C2 – Each of these C2 axes bisects opposite edges. These axes 
generate 15 C2 operations.

	(vii)	 There are 15 mirror planes, each one of them contains two C2 axes 
and two C5 axes. They generate 15 reflection operations.

	(viii)	 In all, there are 120 elements and these are given by E, 12 C5, 12 
C5

2 , 20 C3, 15 C2, i, 12 S10, 20 S6 and 15 σ. These elements consti-
tute a group that is called Ih group.
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•	 The group Td and a pure rotational subgroup T is of order 12. It con-
sists of the following classes – E, 4 C2, 4 C3

2 , 3 C2.
•	 The group Oh has a pure rotational subgroup O of order 24. It consists 

of the following classes E, C3, 6 C4, 3 C2, 8 C3, 6 C2.
•	 The group Ih has a pure rotational subgroup I of order 60. It consists of 

the following classes – E, 12 C5, 12 C5
2 , 20 C3 and 15 C2.

All taken together, there are following seven groups, which contain mul-
tiple high order axes.

•	 T, Th and Td
•	 O and Oh
•	 I and Ih

2.2.2  GROUP WITH LOW SYMMETRY

Low symmetry groups possess only one or two symmetry elements. There 
are three group of low symmetry.

2.2.2.1  C1 Group

One-fold rotational axis. The molecule has only one symmetry element, i.e., 
E. All the irregular molecules or chiral molecules with an asymmetric center 
belong to this point group. Examples of this point group are:

2.2.2.2  Cs Group

Only symmetry element plane is present in the molecule. This molecule has two 
operations E and σ. Thus, although they have very low symmetry, they are not 
chiral. Order (h) of this group is equal to two. Examples of this point group are:

The combination of E + σ = Cs (or S1).
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2.2.2.3  Ci Group

Molecules with this point group has element i (inversion) along with E, for 
example, (E + i = Ci). This is also a group with order two and it equals to S2. 
Example of this point group is:

2.2.3  GROUPS WITH N-FOLD ROTATIONAL AXIS (Cn)

2.2.3.1  C2 Group

Cn group has n fold axis of symmetry (operation) besides the identity opera-
tion (E). Here n varies from 2–6. C2 point group has one two-fold axis of 
symmetry C2 and E. Example of C2 point group are:

2.2.3.2  C3 Group

C3 point group has symmetry elements C3, C3
2 , and C3

3 (= E), for example, 
Molecules of this point group contain only one three-fold axis. Examples of 
C3 point group are:
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These molecules are in this most stable conformations having C3 symmetry.

2.2.3.3  C4 – C6 Groups

C4 point group has C4, C4
2  (= C2), C4

3 , and E symmetry elements. C5 point 
group has C5, C5

2 , C5
3, C5

4 and E and similarly C6 point group has C6, C3, C2, 
C3

2 , C6
5 and E.

C6
2 = C3, C6

3 = C2, C6
4 = C3

2 , C6
6 = E

Cn belongs to cyclic point group and all the elements in the cyclic group 
commute with each other and hence, a cyclic group is always an Abelian 
group.

2.2.3.4  Cnv Group

Presence of n vertical planes of symmetry (σv) containing the rotation axis 
Cn gives Cnv point groups.

The symmetry operations in Cnv are E + Cn + n σv. In Cnv, n can vary from 
2–6. Some example of Cnv are H2O (C2v), NH3 (C3v), trans-[CoCN3)5Cl]2+ 
(C4v), etc.

The point group of H2O is C2v as it has 1 C2 + 2 σv symmetry elements.

Similarly, NH3 has a pyramidal geometry with 1 C3 + 3 σv symmetry 
elements.
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2.2.3.5  Cnh Group

If a horizontal plane perpendicular to principal axis (Cn) is present in a mol-
ecule, then the molecule is said to have Cnh symmetry. Such groups have 
Cn + σh + E symmetry elements. Even if vertical planes are present in addi-
tion of Cnh, the point group remains Cnh. Examples of point group Cnh are 
trans-dichloroethylene (C2h), B (OH)3 (planar) (C3h), etc.

C2h – Trans-dichlorocthylene belongs to C2h point group as it contains E, 
C2 and σh apart from i.

C3h – Boric acid (planar shape) is an example of C3h point group as it has 
E, C3 and σh.

2.2.3.6  C∞v Group

It has an infinite fold rotation axis (C∞) and infinite number of vertical planes 
(∞σv) passing through principal axis. Linear molecules can be rotated about 
its principal axis to any desired degree and have an infinite number of verti-
cal planes (σv). e.g., HCl, HCN, NO, OCS, ICl, etc.

In general, molecules belonging to C∞v point group are linear without 
center of symmetry (inversion element).

C∞ + ∞ σv = C∞v

2.2.4  DIHEDRAL GROUPS

Molecules having n two-fold axis (n C2) perpendicular to the principal axis 
(Cn) belong to the dihedral groups, i.e., (n C2⊥ Cn) and C2 axis ⊥ to Cn is 
called dihedral axis. The combination of Dn group is:

E + Cn + n C2⊥ Cn = Dn (n = 2–6)
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2.2.4.1  Dn Groups

Molecules with Dn group do not have plane of symmetry or mirror plane. 
Examples of D2 point group is skew ethylene while tris(ethylenediamine) 
cobalt (III) cation belongs to D3 point group.

2.2.4.2  Dnd Group

When plane of symmetry contains the principal axis and bisects the angle 
between two adjacent C2 axes, it is said to be a dihedral plane. The pres-
ence of σd (dihedral plane) operation in Dn group gives the Dnd point group. 
Examples of Dnd group are:

Staggered conformation of ethane (D3d), staggered conformation of fer-
rocene (D5d), S8 molecule (D4d), etc.

The combination of operation in this case is:

E + Cn + n C2⊥ Cn + n σd = Dnd

2.2.4.3  Dnh Group

In Dnd point group, there are only D2d and D3d because from D4d onwards to 
D6d, σh is also present and therefore, the point group becomes Dnh. It means, 
when Dn group have σv plane in addition to σh, then these are considered 
under Dnh group. The combination of Dnh group is:

E + Cn + n C2⊥ Cn + σh + σv = Dnh
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Examples are BF3, XeF4, XeF5, Benzene, etc.

2.2.4.4  D∞h Group

Linear molecules, which have center of symmetry along with an infinite 
number of C2 axes ⊥ to the principal axis and also horizontal plane, fall in 
point group D∞h. e.g., O2, O = N = O, Br2, BeF2, H2, etc.
The symmetry elements are ∞ C∞ + ∞ C2 + σh + ∞σv + i + ∞ S∞ + E.

2.2.5  GROUP WITH IMPROPER AXIS OF SYMMETRY (Sn)

All the groups discussed earlier are group with proper axis of symmetry. But 
there are molecules, which do not superimpose on their mirror image; these 
are referred as dissymmetric molecules. Such molecules posses improper 
axis of symmetry.

In Sn point group, n is the order of rotation axis. If Sn axis (n = even) 
exists in the molecule, then it implies the presence of Cn/2 axis in the mol-
ecule independently, collinear with Sn. The plane of symmetry (σ) perpen-
dicular to Cn/2 or Sn axis will not be present independently. e.g., CH4.



Point Groups	 59

Methane molecule possess S4 axis, which passes through C2 axis and 
it also has another 3 C2 axes. Thus, 3 S4 axes exist in one CH4 molecule. 
Symmetry operations for S4 axis are:

S4
1  = C4

1 .σh	 (New operation)
S4

2  = C4
2.σh

2 = C2
1.E = C2

S4
3  = C4

3 .σh
3 = C4

3.σh	 (New operation)
S4

4  = C4
4.σh

4 = E.E = E

S4
2 and S4

4 operations do not result into new operation. Therefore, only S4
1 

and S4
3 symmetry operations of S4 are considered.

When Sn (n = odd) is present in the molecule, then horizontal plane of 
symmetry (σh) will also be present independently and total operation will be 
2n. Examples of this point group are Gauche ethane, naphthalene, etc. Let us 
take example of BF3 for finding symmetry operation of S3 axis.

BF3 molecule has S3
1, S3

2 , S3
3, S3

4 , S3
5 and S3

6 operations. Among these, 
only two symmetry operations are considered. They are S3

1, and S3
5 because 

S3
2  = C3

2 , S3
3 = E, S3

4  = C3, S3
6 = E, which are already counted in symmetry 

operation of BF3 molecule.
Thus, it can be concluded that as Cn and σh commute, and we obtain Sn = 

Cn.σh for the general rotoreflection operations. When order of axis n (in Sn) 
is even, then Sn axis requires simultaneous independent existence of n Cn/2 
rotation axis and inversion center. Whereas, in case of n = odd, rotoreflection 
axis requires independent existence of a Cn axis and a σh symmetry element.

Common point groups with their symmetry elements are:

Point group Symmetry elements

C1 E
Cs E + σh

Ci E + i
Cn E + Cn

Dn E + Cn + n/2⊥ C2
1 , n/2⊥ C2

2

E + Cn + n ⊥ C2

CnV E + Cn + n/2σv + n/2σd

E + Cn + n σv
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2.3  DETERMINATION OF POINT GROUP

The following sequence of steps will decide the point group of a molecule.

Step 1: First step is to determine, whether the molecule belongs to any 
special group (C∞v, D∞h) or multiple high-order axis. It is simple to iden-
tify molecule, which belongs to C∞v or D∞h because only linear molecule 
belong to these groups. If molecule is not linear, then we must look for high 
symmetry groups, which include cubic group such as T, Th, Td, O and Oh. 
They require 4 C3 axes, whereas Ih need 10 C3 and 6 C5. Therefore, these 
multiple C3 and C5 axes are the key things to look for Ih group, but only C3 
axes for other cubic groups.

All linear molecules belong to either C∞v or D∞h group depending upon 
whether a center of symmetry is present (D∞h group) or absent (C∞v group).

All the cubic groups T, Th, Td and Oh require four C3 axes while I and Ih 
require ten C3′s and six C5′s. If the molecule appears to belong to Td (CH4), 

Point group Symmetry elements

Cnh E + Cn + σh + Sn + i
E + Cn + σh + Sn

Dnh E + Cn + σh + n/2⊥ C2
1 + n/2⊥ C2

2 + Sn + n/2σv + n/2 σd + i
E + Cn + σh + n ⊥ C2+ Sn + n σv

Dnd E + Cn + n C2
1 + Sn + n σd

E + Cn + n ⊥ C2 + S2n + n σd+ i

Sn n = Even only E + Sn + Cn/2 and i, if n/2 is odd
T E + 4 C3 + 3 C2

Td E + 4 C3 + 3 C2 + 3 S4 + 6 σd

Th/Ti E + 4 C3 + 3 C2 + 4 Sn + i + 3 σh

O E + 3 C4 + 4 C3 + 6 C2

Oh E + 3 C4 + 4 C3 + 6 C2 + 4 S6 + 3 S4 + i + 3 σh + 6 σd

I E + 6 C5 + 10 C3 + 15 C2

Ih E + 6 C5 + 10 C3 + 15 C2 + i + 6 S10 + 10 S6 + 15 σ
Kh E, ∞ number of all symmetry elements

CONTINUED
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Oh [Fe (CN)6]
4- and Ih [Boron compounds (B6H12

2-)], it has to be confirmed as 
one is not sure that a molecule belongs to that particular group until one has 
verified it element by element that all the required symmetry elements are 
indeed present in the molecule.

Step 2: If the molecule does not belong to any of the special group as 
mentioned above, then, we look for whether any other axis of symmetry 
is present? If it has only proper or improper axis of symmetry, then the 
point group of the molecule is searched by Step 3. If no axis of symmetry is 
present, then we look for a plane of symmetry or an inversion center. If only 
a plane of symmetry is present, then the point group is Cs. If only a center 
of symmetry is present in the molecule, then it belongs to the group Ci. If no 
symmetry element exists, then the molecule belongs to the trivial group C1, 
which contains only the identity operation.

Step 3: If an improper axis of even-order is present in the molecule 
(S4, S6 or S8 is commonly present), but no plane of symmetry or any proper 
axis except a collinear one (or more); whose presence is automatically 
required by the presence of improper axis, then the point group of the 
molecule is S4, S6, S8…. The presence of S4 axis requires a C2 axis and S6 
axis requires a C3 axis and S8 axis requires C4 and C2 axes. Here, it should 
be noted that Sn (n is even) group consists exclusively the operations 
generated by the Sn axis. If any additional operation is possible, then the 
molecule will belong to Dn, Dnd or Dnh group. Molecules belonging to 
these groups are relatively rare.

Step 4: If the molecule has more than one axes of rotation, then we have 
to locate some axis of highest order. This axis of highest order is termed as 
principal axis. Sometimes, there may not be any such unique principal axis 
of highest order. In such a case, we look, if one of them is geometrically 
unique in some sense; for example in allene, there are three C2 axes. All the 
three axes are two fold axes and therefore, an axis of highest order cannot be 
decided. In such a case, it is observed that two C2 axes pass through one car-
bon atom only while third C2 axis passes through three carbon atoms. Hence, 
it is unique in nature as compared to other two C2 axes that it passes through 
maximum number of atoms. Therefore, it can be designated as principal 
axis.
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Now we look, whether a set of n C2 axes perpendicular to the Cn axis is 
present or not? If yes, then proceed to Step 5. If not, then search for one of 
these groups Cn, Cnv or Cnh. If there are no symmetry elements other than the 
Cn axis, then the point group of the molecule is Cn.

Step 5: If in addition to the principal axis Cn, n C2 axes are present perpen-
dicular to the Cn axis, then the molecule belongs to one of the groups Dn, Dnh 
or Dnd. If there are no symmetry elements other than Cn and n C2 axes, then 
the molecule belongs to Dn group. If there is a horizontal plane of symmetry 
in the molecule along with Cn and n C2 axes, then the point group is Dnh. 
This Dnh group necessarily contains n vertical planes also. If n vertical planes 
(σv) are present along with Cn, then point group of molecule is Cnv. The pres-
ence of horizontal plane (σh) along with Cn, gives point group Cnh; however, 
it may possess vertical planes also.

The five-step procedure may be explained as follows:
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An alternate method of determination of point group is also there. One 
can easily find out the point group of a molecule by going in a sequence by 
replying certain simple questions, like whether a particular symmetry ele-
ment is present or not?

2.4  CHANGE IN POINT GROUP

The point group of a molecule changes on variation in its symmetry. If an 
atom B is replaced by another atom X one by one in a molecule belonging to 
a particular symmetry, then its point group will also change based on its new 
symmetry. Some examples will clarify it.

	 (i)	 If B atoms of a triangular planar molecule AB3 (D3h group) are 
exchanged by X one by one, then it changes its symmetry as well 
as point group as AB2X and then ABX2. These molecules belong to 
group C2v.
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	 (ii)	 AB3 molecule is pyramidal and it changes its point group for C3v to 
Cs by replacing B atoms by X atom one by one.

	(iii)	 If B atoms of a tetrahedral molecule AB4 (Td group) are exchanged 
in sequence by X atoms, one by one; then, it changes its symmetry 
from Td group to C3v (in case of AB3X and ABX3) and then C2v (in 
case of AB2 X2).

	(iv)	 If B atoms of a square planar molecule AB4 (D4h) are exchanged by 
X atoms, one by one, then it changes its symmetry as well as point 
group from D4h to C2v and D2h in different cases.

	 (v)	 If B atoms of a square pyramidal molecule AB4 (C4v) are exchanged 
by X atoms, one by one, then it changes its symmetry as well as 
point group from C4v to Cs and C2v in different cases.
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	(vi)	 If B atoms of a square pyramidal molecule AB5 (C4v) are exchanged 
by X atoms, one by one, then it changes its symmetry as well as 
point group from C4v to C2v and Cs in different cases.

	(vii)	 If B atoms of a trigonal bipyramidal molecule AB5 (D3h) are 
exchanged by X atoms, one by one, then it changes its symmetry 
as well as point group from D3h to C3v, C2v, D3h, Cs and D3h in differ-
ent cases.
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	(viii)	 If B atoms of an octahedral molecule (AB6) (Oh) are exchanged by 
X atoms, one by one, then the molecule AB6 changes its symmetry 
as well as point group for Oh to C4h, C2v, C3v and D4h in different 
cases.

	(ix)	 In case of benzene (D6h group), if the H-atoms at different positions 
are substituted by X in various combinations, then it also changes 
its symmetry as well as point group from D6h to C2v, D2h and Cs 
points groups in different mono-, di- and tri- substituted benzenes.



Point Groups	 67

On the basis of this classification, point groups of different molecules/
ions may be determined. Some examples of molecules with their point 
group, order of the group and symmetry elements are given in Table 2.1.

TABLE 2.1  Different Point Groups

Point 
group

Order of 
group

Symmetry elements Example

C1 1 E CH3CH(OH)COOH, CHFClBr, 
SiBrClFI, NbF5, TeCl2Br2

C2 2 E + C2

Non-planar H2O2, F2O2, Gauche 
CH2Cl-CH2Cl,  
Cis-[Co (en)2Cl2]

+

C3 3 E + C3
1 + C3

2 CH3CF3, PPh3

Cs 2 E + σh

2-Bromonaphthalene, HOCl, 
POBrCl2, HCOCl, CH2ClBr, 
1,2-Benzpyrene

Ci 2 E + i CHFCI – CHFCI

C2v 4
E + C2 + 2 σv

σv (xz) + σv (yz)

H2O, SO2, CH2Cl2, ClF3, 
SO2Cl2, SiCl2 Br2, Cis-CHCl 
= CHCl, BClF2 Cyclohexane 
(Boat form), Pyridine, 2-Butene 
(Cis), C6H5X, C6H4X2 (Ortho & 
meta), Cyclopentadiene, Cis-
[Pt (NH3)4 Cl2]

2+, Cis-[Pt 
(NH3)2, Cis-[Co (py)2 Cl2], 
Cis- H2O2
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Point 
group

Order of 
group

Symmetry elements Example

C3v 4 E + C3 + 3 σv
NH3, PH3, PCl3, CHCl3, POCl3, 
CH3Cl, PF4Cl

C4v 8 E + C4 + 2 σv + 2 σd + C2 (C4
1 + C4

3)
SF5Cl, Mn(CO)5, [Co(NH3)4 
Cl(H2O)]2+ Square pyramidal 
AB4/AB5, SbF5, WOF4

C∞v ∞ E + C∞v + ∞ σv HCl, CO, HCN, OCS, HBr, NO

C2h 4 E + C2 + σh + i

Trans-CHCl=CHCl, Trans-
H2O2, Trans- −2-butene; 
1,4-Difluoro. 2,5- 
dichlorobenzene, Glyoxal, P2F4, 
1,1, 2,2-Tetrabromoethane 
(Staggered), (Cu2Cl8)

4-

C3h 6 E + C3 + Ãh + S3 (C3
1 + C3

2)  
(S3 + S3

5)
H3BO3 (planar), Bicyclo [3.3.3] 
undecane

D2 4 E + C2 Skew ethylene, Skew biphenyl
D3 6 E + C3 + 3C2 Gauche ethane

D2h 8 E + 3 C2 + 3 σ + i [C2 (x), C2(y), C2 
(z)] [σ (xy), σ (xz), σ (yz)

Naphthalene, Ethylene, Trans-
[Pt(NH3) Cl2] N2O4 (Planar), 
C6H4X2 (para), C2F4, B2H6, 2, 
2-Cyclophane

D3h 12 E + C3 + 3 C2⊥ C3+ 3 σV + σh + 2 S3 
(C3

1 + C3
2)

BF3, PF5, C2H6 (Eclipsed), 
Tribromobenzene (Planar), 
Mesitylene, CO3

2−, NO3
−, 

Borazole, 1,4-Diazabicyclo 
[2.2.2] octane.

D4h 16
E + 2 C4 + 4 C2 ⊥ C4 + 4 σv + σh + 
C2 and 2 S4 (Colinear with C4) + i 
(2 C2′ + 2 C2″) (2 σv + 2 σd)

Cyclobutane, PtCl4
2−, Ni(CN)4

2−, 
Trans-[Co(NH3)4Cl2]

+, Square 
planar AB4 [Ni (NH3)4]

2+

D5h 20
E + 2 C5 + 5 C2⊥ C5 + σh + 5 σv + 
C2 and S5 (Contained within C5)  
(2 C5 + 2 C5

2) (2 S5 + 2 S5
3)

Cyclopentane, Ferrocene 
(Eclipsed),  
Cyclopentadiemide ion

D6h 24

E + C6 + 6 C2⊥ C6 + 6 σv + σh + C2 
and S6 (with C6) + i (2 C6) (2 C3) 
(3 C2′ + 3 C2″) (2 S3) (2 S6) (3 σv + 
3 σd)

Benzene, 
Dibenzenechromium (Eclipsed)

D2d 8 E + 3 C2 (Mutually ⊥ + 2 S4  
(with one C2) + 2 σd

Allene, Biphenyl, 
Cycloctatetraene twisted form.

D3d 12 E + 2 C3+ C2 ⊥ C3+ S6 (with C3) +  
i + 3 σd (2 S6)

Cyclohexane, Ethane 
(Staggered)

TABLE 2.1  Continued
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•• Tetrahedral

Point 
group

Order of 
group

Symmetry elements Example

D∞h ∞ E + C∞ + ∞ C2 ⊥ C∞ + ∞ σv + σh + i H2, Br2, CH ≡ CH, CO2, BeCl2, 
XeF2

Td 24 E + 8 C3 + C2 + 6 S4 + 6 σd
Ni (CO)4, CH4, CCl4, SiCl4 
[Zn(CN)4]

2−

Oh 48 E + 8 C3+ 6 C2 + 6 C4 + 3 C2 (= 
C4

2) + i + 3 σh + 6 S4 + 8 S6 + 6 σd

PCl6
−, SF6, [Co(NH3)6]

3+, 
[PtCl6]

2−, IrCl6
2− Cubane (C8H8)

Ih 120 E + 12 C5 + 12 C5
2 + 20 C3 + 

15 C2 + i + 12 S10 + 12 S10
3 + 20 S6 + 

15 σ

Dodecaborane (B12H12
2−), 

Dodecahedrane (CH)20

TABLE 2.1  Continued
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Molecules having all the symmetry elements similar are placed in same 
group and these groups are termed as point group. For example, H2O, SO2, 
both the molecules are structurally different, but have same four symmetry 
elements, i.e., E, C2, 2 σv. Therefore, these are assigned the same point group, 
i.e., C2v. A complete set of symmetry operations follows some mathematical 
group rules. A mathematical group is a collection of elements, which are 
interrelated according to rules of group theory.

GROUP THEORY
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3.1  RULES OF GROUP THEORY

Group theory has four rules. These are: (1) identity rule; (ii) closure rule; 
(iii) associative law of multiplication; and (iv) inverse rule.

3.1.1  IDENTITY RULE

Group must have one element, which commute with all other elements of 
that group and leave them unchanged. Such an element is known as the iden-
tity element (E). Mathematically, 

X.E or E.X = X

The combination of E with X element in any order gives element X. For 
example C2 operation followed by E operation or vice-versa gives:

E.C2 = C2 or C2.E = C2

3.1.2  CLOSURE RULE

The combination (or multiplication) of any two elements in the group must 
result into an element (symmetry operation), which is also member of the 
same group.

AB2 molecule is operated upon by C2 and σv (xz) element (operation), 
then we get σv (yz) as the resultant product.

Operation
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3.1.2.1  Cyclic Group

When all the elements of a group can be produced from one element, then 
the group is termed as a cyclic group of n order. The Cn and Dn point group 
are examples of such cyclic groups.

X, X2, X3, ……Xn
n = E

3.1.2.2  Abelian Group

A group is said to be Abelian, if all the elements commute with each other, 
i.e., follows commutative law. e.g., AB2 has C2v point group with E + 1 C2 
+ 2 σv symmetry operations. We see that combination of these elements do 
commute, i.e., A.B = B.A.

C . (xz) (xz) C2 v v 2σ σ=

3.1.3  ASSOCIATIVE LAW OF MULTIPLICATION

The elements of a mathematical group should obey this law of association:

A. (BC) = (AB). C

C2 (σv (yz). σv (xz)) = (C2. σv (yz). σv (xz))
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Thus,	 C2 (σv (yz). σv (xz)) = (C2. σv (yz)). σv (xz)	

	 C2.C2 = σv (xz). σv (xz)	

	 E = E	

Resultant products on both the sides are identical.

3.1.4  INVERSE RULE

In a mathematical group, all the elements should have a reciprocal to itself, 
which is also a member of the same group. The combination of that element 
and its reciprocal results into the identity element (E) of the group.

Mathematically,

	 X. X−1 = X−1. X = E	
	 C3

+. C3
− = E	
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In case of two or more elements (operations), the reciprocal of elements 
are equal to product of the reciprocal in the reverse order.

(XYZ)−1 = Z−1. Y−1. X−1

The number of elements in a finite group is known as the order of the 
group (h).

As a convention, multiplication of elements in a combination is done 
from right to left.

These rules can be applied on different molecules like water and ammo-
nia molecules.

3.2  H2O MOLECULE

H2O molecule has four symmetry elements. These are:

C2v = {E, C2, σv (xz), σv (yz)}

Now C2 axis of symmetry generates one distinct symmetry operation, 
i.e., C2 only, because C2

2 equal to E.

Rule 1:Identity rule

The presence of E is very much there in point group C2v. E is an element, 
which on combining (right or left) with any other element of the group leave 
them unchanged.

	 E.C2 = C2.E = C2	

	 E.σv (xz) = σv (xz).E = σv (xz)	

	 E.σv (yz) = σv (yz).E = σv (yz)	

	 E.E = E2 = E	

Hence, every element of the group obeys this rule.
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Rule 2:Closure rule

Product of any two elements of a group must be an element of that group.
C2. σv (xz) = σv (yz)

The resultant orientation by two successive symmetry operations σv (xz) 
and C2 can be directly obtained by a single operation of σv (yz). Therefore, 
the result of the product C2. σv (xz) is σv (yz), which is also the element of 
this group. Same rule can be applied to any two elements of the group. Now 
let us take another combination of C2 and σv (yz).

C2. σv (yz) = σv (xz)

Thus, combination of C2 and σv (yz) gives σv (xz), which is also an ele-
ment of the C2v group. Let us consider combination of planes but before 
applying it, one rule is to keep in mind that the plane designated initially in 
the configuration of the molecule will remain as such and it is not affected by 
the result of any operation. H2O molecule has two planes, σv (xz) and σv (yz). 
So, on performing σv (xz). σv (yz) combination, first σv (yz) is performed on 
initial configuration followed by σv (xz). The position of σv (xz) remained 
same as designated initially in the molecule.

σv (xz). σv (yz) = C2

The combination of these two planes gives C2 element, which is also element 
of the same group.
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Thus, each elements of this point group obeys closure rule.

Rule 3:Associative law of multiplication

Hence	 C2 (σv (xz).σv (yz)) = (C2.σv (xz)).σv (yz)	

	 C2.C2 = σv (yz).σv (yz)	

	 E = E	

Hence, associative property is satisfied by the elements of this group.

Rule 4:Inverse rule

The product of any element and it inverse (reciprocal) is equal to iden-
tity element.

	 C2.C2
−1 = C2.C2 = E	

	 σv (xz).σv
−1 (xz) = σv (xz).σv (xz) = E	

	 σv (yz).σv
−1 (yz) = σv (yz).σv (yz) = E	

Hence, inverse rule is also followed by all the elements of this point group.

3.3  NH3 MOLECULE

There are six symmetry operations present in ammonia molecule. These are 
E, C3 (or C3

+), C3
− (or C3

2), σv (a), σv (b), and σv (c). Now, let us see, how these 
elements collectively from a mathematical group by obeying all the rules of 
a group theory?

Rule 1: Identity rule

	 E.E = E2 = E	
	 E.C3

+ = C3
+.E = C3

+	

	 E.C3
− = C3

−.E = C3
−	

	 E.σv (a) = σv (a).E = σv (a)	
	 E.σv (b) = σv (b).E = σv (b)	
	 E.σv (c) = σv (c).E = σv (c)	

Hence, each element in combination with identity element E, remained 
unchanged. Thus, these obey identity rule.
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Rule 2:Closure rule

C3
+.σv (a) = σv (c)

The configuration of NH3 molecules obtained by two successive opera-
tions of C3

+ and σv (a), can be obtained directly by only σv (c) operation. 
Hence, the combination of C3

+.σv (a) is σv (c), which is also an element of 
the C3v group.

Similarly σv (a).σv (b) = C3
+ (or C3

1)

Therefore, σv (a).σv (b) give C3
1 or C3

+, which is also element of this 
group. As mentioned earlier in case of planes in H2O molecule, in point 
group C3v also, σv (b) is operated first, and then σv (a) is performed, but in the 
same plane as designated initially σv (a) in the molecule, and not the σv (a) 
obtained after rotation.

Rule 3:Associative law of multiplication

Let us see, whether σv (a), σv (b) and σv (c) followed associative law or not?

σv (a). (σv (b). σv (c)) = (σv (a). σv (b)). σv (c)
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σv (a). (σv (b). σv (c))

= σv (a). C3
+

After successive operation of σv (b) and σv (c), we obtain C3
+. Now, this 

combination is used to obtain final result. First performing C3
+ and then σv 

(a) on the molecule.

Over all, it may be written as:

	 σv (a) (σv (a). σv (c))	

	 = σv (a). C3
+	

	 = σv (b)	

On the other hand, 

	 σv (a). σv (b) = C3
+	

	 (σv (a). σv (b)). σv (c)	

	 = C3
+. σv (c)	

Now combination of C3
+. σv (c), is performed and we get,
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	 (σv (a). σv (b)). σv (c)	

	 = C3
+. σv (c)	

	 = σv (b)	

The over all result is same and therefore, elements of this group obey 
associative property.

Rule 4:Inverse rule

Identity element is the inverse of identity element itself, i.e., E.E = E, and 
thus, it is the member of the group.

C3
−.C3

+ = C3
+.C3

− = E

C3
− is inverse of C3

+. Their product gives element E in any order.
σv (a), σv (b) and σv (c) are inverse of σv (a), σv (b) and σv (c), respectively, 

and therefore, their multiplication will give identity. For example,

	 σv (a).σv (a) = E	

	 σv (b).σv (b) = E	

	 σv (c).σv (c) = E	

From above description of H2O (C2v) and NH3 (C3v) molecules, it has 
become clear that molecules belonging to C2v and C3v point groups obey all 
rules of forming a mathematical group, In the same way, these rules can be 
applied to all other symmetry point groups.

3.4  GROUP MULTIPLICATION TABLES

If we have a complete and nonredundant list of h elements of a finite group, 
then the group is completely and uniquely defined. The forgoing information 
can be presented most conveniently in the form of the group multiplication 
table (GMT). This table consists of h rows and h columns. Each column as well 
as row is labeled with an element of that group. The entry in the table under 
a given column and row is the product of the element, which heads that column 
and that row. Here, multiplication is usually noncommutative, and therefore, 
we must have to follow certain rules for the order of multiplication. Arbitrarily, 
we shall take the factors in the order (column element) × (row element).
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We can better explain these tables by rearrangement theorem. 
According to this theorem, “Each row and each column in the group 
multiplication table lists each of the group elements once and only once.” 
In other words, we can say neither two rows nor two columns may be 
identical in this table. Thus, each row and column is a rearranged list of 
the group elements.

Let us explain these tables by constructing them one by one. Firstly, start-
ing with smallest order of group, which is designated as G1 and contains only 
one element, i.e., identity element E.

G E
E E

1

Then constructing the multiplication table for group G2, which contains 
two elements, i.e., one is E and another is A.

G E A
E
A

2

A particular sequence must be maintained for writing these elements in 
the row and column. E must be the first element in both; the row and col-
umn, since it is a trivial element. Now multiplying in the order column × 
row and entering that product element at the cross section of the corre-
sponding row and column. Thus, the multiplication table for G2 group is 
represented as:

G E A
E E A
A A E

2

Any element remains unchanged, when multiplied with identity E and 
hence, 

E.A = A.E = A

Element A is also inverse of itself.

A.A = E
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There is no other way than this for writing a group multiplication table 
using the two elements E and A.

Similarly, a group with three elements E, A, and B will form group mul-
tiplication table of order G3 in the following way:

G E A B
E E A B
A A B E
B B E A

3

If multiplication is commutative, then

A.B = B.A = E

These elements (A and B) do not have their inverse as themselves, but 
one element is the inverse of the other, so that:

	 A.A = B	

and	 B.B = A	

3.4.1  C2V POINT GROUP

Let us take C2v point group for explaining group multiplication table.
The top left corner has the symbol for the point group to which that mole-

cule belongs. The rows and columns have all symmetry operations in sequence.

First operation to be per formed 

Se
co

nd
 o

pe
ra

tio
n

to
 b

e 
pe

rf
or

m
ed

C E C (xz)  (yz)
E * * * *
C * * * *
 (xz) * * * *
 (yz) * * * *

2v 2 v v

2

v

v

σ σ

σ
σ

If, we want to know the combination of C2.σv (xz), then first perform σv 
(xz) from the upper horizontal row followed by C2 in the left vertical col-
umn. The product element (resultant) is placed at the junction of that row 
and column.
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Similarly, all other combinations can be determined by putting the prod-
ucts obtained at crossing point (junction) of that row and column, i.e., col-
umn operation multiplied by row operation (column element × row element).

Let us explain this table by taking example of H2O molecule having C2v 
point group. C2v point group possess four symmetry elements E, C2, σv (xz), 
σv (yz). The number of symmetry elements and symmetry operations are 
same. Here, total number of symmetry elements is 4, which is also the order 
of this group. Now to construct the multiplication table, the symbol, C2v, for 
point group is written in top left corner. Then on top row and first left col-
umn, all the four symmetry elements of the group are written.

C E C (xz) (yz)
E * * * *
C * * * *
(xz) * * * *
(yz) * * * *

2v 2 v v

2

v

v

σ σ

σ
σ

In the first row, the elements at star (*) are produced by multiplica-
tion of all symmetry elements by E on right side, i.e., E.E = E, C2.E = C2, 
σv (xz).E = σv (xz), σv (yz).E = σv (yz). These are represented in first row.

The products represented by star (*) are same in first column and these 
may be obtained by combination of any element followed by identity ele-
ment (E). These are represented in first column.

C E C  (xz  (yz
E E C  (xz  (yz
C C * * *
 (xz  (xz

2v 2 v v

2 v v

2 2

v v

σ σ
σ σ

σ σ

) )
) )

) )) * *
) ) * *

*
 (yz  (yz *v vσ σ

Other binary operations can be obtained in same manner as described 
earlier. Now, let us find product of the elements C2 with C2.
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Therefore C2.C2 = E
Similarly, the product of C2.σv (xz) is:

C2.σv (yz) = σv (xz)
The product of C2.σv (yz) is:

Hence, C2.σv (yz) = σv (xz)
The product of σv (yz).C2 is:

Hence, σv (yz).C2 = σv (xz)
The product of σv (xz).C2 is:

Hence, σv (xz).C2 = σv (yz)
Putting these values in their respective places, we obtain:

C E C (xz) (yz)
E E C (xz) (yz)
C C E (yz) (xz)
(xz)

2v 2 v v

2 v v

2 2 v v

v

σ σ
σ σ
σ σ

σ σvv v

v v v

(xz) (yz) * *
(yz) (yz) (xz) * *

σ
σ σ σ



Group Theory	 85

Similarly, products of remaining binary operations can also be deter-
mined as:

	 σv (xz).σv (xz) = E	

	 σv (yz).σv (xz) = C2	

	 σv (xz).σv (yz) = C2	

	 σv (yz).σv (yz) = E	

Thus, the complete multiplication table of point group C2v is:

C E C (xz) (yz)
E E C (xz) (yz)
C C E (yz) (xz)
(xz)

2v 2 v v

2 v v

2 2 v v

v

σ σ
σ σ
σ σ

σ σvv v 2

v v v 2

(xz) (yz) E C
(yz) (yz) (xz) C E

σ
σ σ σ

This multiplication table is useful for understanding the properties of a 
group. Using this table, one can verify that the symmetry point group is also 
a mathematical group, as it satisfies all the four rules of group theory.

3.4.2  C3V POINT GROUP

Now, let us construct multiplication table of point group C3v. This point 
group consists of six elements {E, C3

+, C3
−, σv (a), σv (b), σv (c)}.

C E C C (a) (b) (c)
E * * * * * *

C * * * * * *
C * * * * * *

(a) * * *

3v 3 3 v v v

3

3

v

+ −

+

−

σ σ σ

σ ** * *
(b) * * * * * *
(c) * * * * * *

v

v

σ
σ

At the top left corner, the symbol of point group of the molecule is writ-
ten, C3v. and in top most row and left column, all the six symmetry elements 
are written in sequence.
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Now, we have to find out the products of all the binary combinations of 
the element of this group. The product of the combination is obtained by actu-
ally performing symmetry operation on the molecules. Therefore, the prod-
ucts in first row and column produced by operation on any element followed 
by identity and vice-versa are E.E = E, C3

+.E = C3
+, C3

–.E = C3
–, σv (a).E = σv 

(a), σv (b).E = σv (b), and σv (c).E = σv (c) in rows. Similarly, E.E = E, E.C3
+ = 

C3
+, E.C3

− = C3
−, E.σv (a) = σv (a), E.σv (b) = σv (b) and E. σv (c) = σv (c).

C E C C (a) (b) (c)
E E C C (a) (b) (c)

C C * * * *

3v 3 3 v v v

3 3 v v v

3 3

+ −

+ −

+ +

σ σ σ
σ σ σ

**
C C * * * * *

(a) (a) * * * * *
(b) (b) * * * * *
(c) (c) * * * * *

3 3

v v

v v

v v

− −

σ σ
σ σ
σ σ

Again, the vacant places of products shown by are filled by the results of 
binary combinations of column and row elements.

C  . C C
C  . C E

(a) . C (c)
(b) . C (a)

3 3 3

3 3

v 3 v

v 3 v

+ + −

− +

+

+

=
=

=
=

σ σ
σ σ
σσ σv 3 v(c) . C (b)+ =














C  . C E
C  . (a) (b)
C  . (b) (c)
C  . (c)

3 3

3 v v

3 v v

3 v

+ −

+

+

+

=
=
=
=

σ σ
σ σ
σ σvv (a)











Then

C E C C (a) (b) (c)
E E C C (a) (b) (c)

C C C E

3v 3 3 v v v

3 3 v v v

3 3 3

+ −

+ −

+ + −

σ σ σ
σ σ σ
σσ σ σ

σ σ σ
σ σ σ

v v v

3 3

v v v

v v v

(c) (a) (b)
C C E * * * *

(a) (a) (b) * * * *
(b) (b)

− −

((c) * * * *
(c) (c) (a) * * * *v v vσ σ σ
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Now, let us find further products:

  C .C C

(a) . C (b)

(b) . C (c)

(c) . C

3 3

v 3 v

v 3 v

v 3

− − +

−

−

−

=

=

=

3

σ σ

σ σ

σ ==











σv (a)

C (a) (c)

C (b) (a)

C (c) (b)

3 v v

3 v v

3 v v

+

+

+

=

=

=









.

.

.

σ σ

σ σ

σ σ

Putting these values in multiplication table of point group C3v, we get:

C E C C (a) (b) (c)
E E C C (a) (b) (c)

C C C E

3v 3 3 v v v

3 3 v v v

3 3 3

+ −

+ −

+ + −

σ σ σ
σ σ σ
σσ σ σ
σ σ σ

σ σ σ σ

v v v

3 3 3 v v v

v v v v

(c) (a) (b)
C C E C (b) (c) (a)

(a) (a) (b)

− − +

((c) * * *
(b) (b) (c) (a) * * *
(c) (c) (a) (b) * * *

v v v v

v v v v

σ σ σ σ
σ σ σ σ

Similarly, rest all other binary combinations can be determined and final 
multiplication table of point group C3v can be constructed.

ECC(b)σ(a)σ(c)σ(c)σ
CEC(a)σ(c)σ(b)σ(b)σ
CCE(c)σ(b)σ(a)σ(a)σ

(a)σ(c)σ(b)σCECC
(b)σ(a)σ(c)σECCC
(c)σ(b)σ(a)σCCEE
(c)σ(b)σ(a)σCCEC

33vvvv

33vvvv

33vvvv

vvv333

vvv333

vvv33

vvv333v

−+

+−

−+

+−−

+++

−+

−+

It is very clear from the observation that each row and each column does 
not repeat any element in the multiplication tables.
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3.5  SUBGROUPS

A group consists of number of symmetry elements (operations). Total 
number of elements in that group is called its order, and is denoted by h. 
Generally, a smaller set of symmetry elements exists in the total symmetry 
elements, which also form a symmetry group (point group), following all 
the four rules of a mathematical group, i.e., closure, association, identity and 
inverse rules. Thus, such smaller groups existing within a larger group are 
called subgroups. These are of two types and these are:

(i) Trivial Subgroup
When subgroup of a group consists of only one symmetry element, i.e., 
identity element (E), then it is known as trivial subgroup. Identity element is 
itself a group of order 1.

(ii) Non-Trivial Subgroup
When subgroup does not solely of the identity element but also contain more 
elements other than E in the group, then it is known as non-trivial subgroup.

E, A; E, B; E, C; Order of subgroup (g) = 2
E, D, F; Order of subgroup (g) = 3

There is another group also, which is recognized as a cyclic group G3, in 
which D2 = F, D3 = DF = FD = E.

3.5.1  RELATIONSHIP BETWEEN ORDER OF GROUP (H) AND 
SUBGROUP (G)

If order of any group is h and order of its subgroup is g, then both these 
orders are related to each other by the relation.

	 h = kg (k = Integer greater than one)	

	 = k	 (3.1)

It follows the Lagrange’s theorem, i.e., the order of any subgroup (g) of 
a group of order (h) must be a divisor of h.

Although, it has been shown that the order of any subgroup (g) must be 
a divisor of h, but reverse may generally not true that there are subgroups of 
all orders that are divisors of h.
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Let us take an example of C2v point group, containing the following sym-
metry elements.

C2v = E, 1 C2, 2 σv

The order of this group (h) is 4. As the order of subgroup (g) must be an 
integral divisor of h. Therefore, this group has two possible subgroups with 
order (g), 1 and 2. Using multiplication table, following subgroups can be 
easily recognized.

C1 = {E}	 where	 (g = 1)
C2 = {E, C2}	 (g = 2)
Cs = {E, σv (xz)}	 (g = 2)
Cs = {E, σv (yz)}	 (g = 2)

It can be seen that value of h can be divided by 1 (as an integer) and it 
contain only symmetry element E and hence, it will be a subgroup of any 
other group.

Hence, there are 4 subgroups of C2v (C1, C2, Cs and Cs). We can form 
group multiplication tables for these subgroups as:

	 C E
E E

1
  C E C

E E C
C C E

2 2

2

2 2

  C E
E E

E

3 v

v

v v

σ
σ

σ σ
	

Some other sets like {E, C2, σv} or {E, σv (xz), σv (yz)} have order 3, which 
is not integral divisor of the group order 4. It means these two possible sets 
are not the subgroup of C2v group.

In case of C3v point group, E, C3
+, C3

−
,σv (a), σv (b), σv (c) symmetry ele-

ments are present, which gives it an order of 6, one can easily identify as 
many as five subgroups in this point group having order 3, 2 and 1. Therefore, 

C1 = {E}	 (g = 1)
C3 = {E, C3

+, C3
−}	 (g = 3)

Cs
a = {E, σv (a)}	 (g = 2)

Cs
b = {E, σv (b)}	 (g = 2)

Cs
c = {E, σv (c)}	 (g = 2)

Hence, there are four subgroup in C3v point group (C1, C3, Cs
a, Cs

b, Cs
c). 

We can form group multiplication tables for these subgroups as:
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C E
E E

1

 

C E C C
E E C C
C C C E
C C E C

3 3 3

3 3

3 3 3

3 3 3

+ −

−

+ + −

− − +
 

C E (a)
E E (a)

(a) (a) E

s
a

v

v

v v

σ
σ

σ σ

C E (b)
E E (b)

(b) (b) E

s
b

v

v

v v

σ
σ

σ σ
, 

C E (c)
E E (c)

(c) (c) E

s
c

v

v

v v

σ
σ

σ σ

D6h point group has the order 24, and it consists of subgroups with order 
6, for example, C6 = {E, 5 C5} and Oh point group (h = 18). O is the subgroup 
with only rotational operation and E.

O = {E, 9 C4, 8 C3, 6 C2}	 (g = 24)

There can be more than one subgroup of a given order. As subgroups 
follow all the rules of a mathematical group and it must, therefore, contain 
the identity element (E). The subgroups are always Abelian like because the 
elements of a group do commute essentially. On the contrary, the elements 
of main group need not necessarily commute.

Besides subgroups, there is one more way by which symmetry elements 
of group may be separated into smaller sets known as classes. In simple 
words, the geometrically equivalent symmetry elements are placed in 
one class. For examples AB4 molecule having square planar geometry 
possesses 4 C2 axes in the plane of the molecule. Among these 4 C2 axis, 
two C2′ axes belong to same class due to geometrical equivalence and other 
two C2” axes belong to other class because of the same reason. It means, 
2 C2′ and 2 C2” belong to two different classes.
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In order to understand classes present in a group in detail, a mathemati-
cal process known as similarity transformation of elements must be defined.

We know that there are some smaller groups or set of elements present in 
a large group. One way to separate these smaller sets of elements is to form 
subgroups or in another way, the elements of group may be separated into 
smaller sets known as classes. Before defining a class, one must consider a 
mathematical operation known as similarity transformation.

3.6  SIMILARITY TRANSFORMATION

Similarity transformation is an operation, which defines the classes in more 
general and mathematical way. Suppose a group is having X, A, and B ele-
ments, then according to the similarity transformation.

B = X−1. A. X

where X−1 is the reciprocal (inverse) of X. Then B is said to be similarity 
transform of A by X. It may also be said that A and B are conjugate to each 
other. B is obtained, when operations are performed in the order as X, then A 
followed by X−1. Such conjugate elements will form a class.

Conjugate elements have three properties:

	 (i)	 Every element is conjugate with itself, i.e., if we select any particu-
lar element, let A, then there must be an element X in that group, 
such that:

A = X−1. A. X

On multiplying both the sides by A−1, we get:

A−1. A = E = A−1. X−1. A. X

	 = (XA)−1. (AX)	

This relationship holds good only, when A and X commute with 
each other. The X may be E or it may be any other element, which 
commute with element A.

	 (ii)	 If A is conjugate with B, then B must also be conjugate with A.

A = X−1. B. X
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Then there must be some another element Y present in the group, 
such that

B = Y−1. A. Y

It can be proved by appropriate multiplication that

X. A. X−1 = X. X−1.B.X.X−1 = B

Thus, if Y = X−1 (or Y−1 = Y), then

B = Y−1. A. Y

It is possible only, when any element (X) has an inverse element (Y).
	 (iii)	 If A is conjugate with B and C, then latter two, i.e., B and C are also 

conjugate to each other.

Therefore, a class is a set of conjugate elements and these conjugate ele-
ments are related by similarity transformation.

In order to determine class within a group, we begin with one element and 
work out all its transform, using all elements present in that group, including 
itself. Then select any other element, which is not among those found to be 
conjugate to the first. All the transforms corresponding to each element of 
the group are determined in this way, until all elements in that group have 
been placed in one class or another.

We can determine by this procedure, whether a particular element belongs 
to class or not?

	 (i)	 E forms its own independent class and no other elements are present 
in this class.

	 (ii)	 Axes form their own class and no other elements are included in it.
	 (iii)	 Planes have their own class and no other elements are present in 

their class.
	 (iv)	 Inversion center has its own separate class like identity E.

Let us consider the group G3. Each element is tried one by one, starting 
from E.

	 E−1.E.E = E.E = E	
	 A−1.E. A = A−1. A. = E	
	 B−1.E. B = B−1. B. = E	
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It means that E is not conjugate with any other element except itself. 
Thus, E is a class of order 1. Now let us take other elements of same group, 
like A. B, C and others. If the following relations hold good.
	 E−1. A.E = A	
	 A−1. A. A = A	
	 B−1. A. B = C	
	 C−1. A. C = B	
	 D−1. A. D = B	
	 F−1. A. F = C	

Thus, the element, A, B and C are conjugate to each other and therefore, 
belong to the same class. Now consider remaining element, for example D, 
which can be expressed as:

	 E−1. D.E = D	
	 A−1. D. A = F	
	 B−1. D. B = F	
	 C−1. D. C = F	
	 D−1. D. D = D	
	 F−1. D. F = D	

Similarly, every transformation of F gives either D or F element. 
Therefore, D and F constitute a class having order Z. Here, it can be noticed 
that the order of all classes must be integral factors of the order of the group.

3.7  DETERMINATION OF CLASSES

Using similarity transformation, classes can be determined in different point 
groups. Let us see that whether the 2 σv planes in C2v group form a class or not?

There are four symmetry elements in this point group {E, 1 C2, 2 σv}. 
E and C2 form their own classes all alone with the order 1. Now the class of 
planes may be determined.
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If we observe the class of σv (xz) by right multiply it by C2 and left 
multiplying by C2

−1 (or C2), then mathematically, 

C2
−1 (or C2). σv (xz). C2

The symmetry operations are performed on H2O molecule, one by one 
from right to left.

	 σv (xz) = C2
−1. σv (xz). C2	

	 σv (xz) = σv (xz)	

It means σv (yz) and σv (xz) are not conjugate to each other and the resul-
tant product is σv (xz). Therefore, σv (xz) is an independent class of its own.

Similarly, considering σv (yz) and applying similarity transformation 
with C2, Mathematically, 

C2
−1. σv (yz). C2
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	 σv (yz) = C2
−1. σv (yz). C2	

	 σv (yz) = σv (yz)	

Here also σv (yz) is conjugate to itself and it is not conjugate to σv (xz).
Thus, σv (xz) and σv (yz) are not conjugate elements because both are not 

related by similarity transformation relation. They are conjugate to them-
selves, so σv (xz) and σv (yz) planes will form two separate classes of their 
own. Therefore, C2v possess four classes.

1 E, 1 C2, 1 σv (xz), 1 σv (yz)

It is quite interesting to note that two different planes form two different 
classes in C2v group, but C3v group has three planes, i.e., σv (a), σv (b) and 
σv (c) and all these three planes form a class.

C3v point group have six symmetry elements (E, C3
+, C3

−, σv (a), σv (b), 
σv (c). E always remains all-alone as a class. Now, let us find out the conjugate 
of C3

+, if any? For this, applying σv (a) on right side and its inverse σv (a)−1 on 
left side of C3

+, which is the element under observation. Mathematically, it is:

σv (a)−1. C3
+. σv 

¬ (a)

The resultant is C3
−.

Similarly, 	 C3
2 or C3

− = σv (a)−1. C3
+. σv (a)	

Hence, C3
+ and C3

− are conjugate to each other and belong to same class 
and it can be proved that:

C3
+ = σv (b)−1. C3

−. σv (b)
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Now let us determine the class of any plane, i.e., σv (a). For this purpose, 
we have to multiply σv (a) by C3

+ on right side and its inverse C3
− = C3

2 on 
the left side.

σv (c) = C3
−. σv (a). C3

+

Hence, σv (a) and σv (c) are conjugate to each other. As these are conju-
gate elements, they will form a class. Now take σv (b) and applying similar-
ity transformation on it. Mathematically.

C3
−1. σv (b). C3

+
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σv (a) = C3
−. σv (b). C3

+

σv (b) = C3
−. σv (c). C3

+

Hence, σv (b) and σv (a) are also conjugate to each other. Thus, as per the 
property of conjugate element, it is clear that when σv (a) is conjugate with 
σv (c) and σv (a) is conjugate with σv (b), then σv (b), σv (c) and σv (a) are also 
conjugate to each other.

So, σv (a), σv (b) and σv (c) will form a class and written as 3 σv in the 
character table of the symmetry point group C3v

Hence, other possibility on similarity transformation on C3 gives:

	 C3
− = σv (c). C3

+. σv (c), 	

	 σv
−1. C3

−. σv = C3
+	

	 C3
− = σv (b). C3

+. σv (b)	

	 C3
+ = C3

+. C3
+. C3

−	

	 C3
+ = C3

−. C3
+. C3

+	

	 C3
+ = E. C3

+. E	

C3
+ and C3

− are conjugate elements. Hence in C3v point group, there will 
be three classes, i.e., 1 E, 2 C3, and 3 σv and over all order of the group 
is six.

It is quite interesting to note that three planes of C3v point group, σv (b), σv 
(b) and σv (c) form a class 3 σv, where as only two planes in C2v point group 
do not form a class and cannot be represented as 2 σv, but separate classes as 
σv (xz) and σv (yz). 
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4.1  MATRICES

Group element corresponds to symmetry element, which are carried out on 
spatial coordinates resulting into change in configuration of the molecule. 
But in order to show its effect on mathematical basis, some numerical rep-
resentation is required. These are represented in the form of matrices. When 
these operations are represented as linear transformation with respect to the 
Cartesian coordinate system, matrices are obtained. They follow general 
rules of matrix to the group of symmetry operations. In essence, matrices are 
useful in describing the symmetry operation mathematically, which is oth-
erwise a tedious job because it requires many equations of relation between 
the set of coordinates on which each atom of a molecule is present.

Thus, matrices are representation of the symmetry group with each 
element corresponding to a particular matrix. The matrices for symme-
try operations are derived from vectors and the vectors are basic of the 
representation.

Matrix is a rectangular array, in which combinations of numbers are 
arranged and it is combined with another matrix following a definite rules of 
matrices. Generally, matrix is given in the form of square brackets. Matrix 
made up of a numbers of rows (m) and number of columns (m) as:
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x x x ... x
x x x ... x
x x x ... x
x x x ... x

11 12 13 1n

21 22 23 2n

31 32 33 3n

m1 m2 m3 mmn m n



















×

The number of rows and number of columns is termed as dimension of 
matrix. It means that the dimension of such a matrix is m × n, which is writ-
ten on right bottom corner of the matrix. Matrix can be symbolized as [x] or 
[xij] in which ‘x’ is the element of the matrix, which is present in ith row and 
jth column.

4.2  TYPES OF MATRICES

There are different type of matrices such as square matrix, unit matrix, diag-
onal matrix, symmetric matrix, transpose matrix, vector matrix and many 
more.

4.2.1  SQUARE MATRIX

It includes matrix with equal number of rows and columns (m = n). It is use-
ful for symmetry and group theory considerations.

4.2.2  UNIT MATRIX

In this matrix, diagonal element (xii) is equal to one and rest all elements 
(diagonal element) (xij, when i≠ j) are equal to zero. It is represented as E, 
I or 1. It is also called unitary matrix.

Example of unit matrix is:

1 0 0
0 1 0
0 0 1

















×3 3

aij = δij (Represent unit matrix)



102	 Chemical Applications of Symmetry and Group Theory

δij is a Kronecker delta 
1       (i = j)

2       (i    j)

4.2.3  DIAGONAL MATRIX

In this matrix, all diagonal elements (xij) are different and all other elements 
are zero.

Example of a diagonal matrix is:

2 0 0 0
0 6 0 0
0 0 4 0
0 0 0 1



















×4 4

4.2.4  TRANSPOSE MATRIX

It involves interchange of the elements across the diagonal.

1 2 3 4
5 6 7 8
9 1 2 4
6 7 8 9

1 5 3 4
2 6 1 8
9 7 2 8
6 7 4 9



















 →












×4 4 






×4 4

Transposed matrix

4.2.5  SYMMETRIC MATRIX

In this matrix, equal elements are symmetrically disposed along the diago-
nal, which has xij = xji relationship.

Example of a symmetric matrix is:

5 1 2 6
1 2 4 3
2 4 3 7
4 3 7 6



















×4 4
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4.2.6  VECTOR MATRIX

Matrix with single row or single column is called a vector matrix. Example 
of vector matrix is:

	
1
2
3

















×3 4

  1 2 3
1 3[ ] ×

	

	 Column matrix  Row matrix	

Suppose, vector OA
� ����

 is in three-dimensional space with point A having 
x, y, and z Cartesian coordinates.

Then these three coordinates can be represented as row and column 
matrix, respectively to show OA

� ����
 vector.

[xyz] and 
x
y
z

















4.2.7  SCALAR MATRIX

When all the diagonal elements are equal and other elements are zero, then 
the matrix is called scalar matrix.

2 0 0
0 2 0
0 0 2

3 3

















×
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4.2.8  NULL OR ZERO MATRIX

Null or Zero matrix is a matrix consisting of all zero elements.

0 0 0
0 0 0
0 0 0

3 3

















×

4.3  CHARACTERS OF CONJUGATE MATRICES

Character is the sum of the diagonal element of a square matrix. It is an 
important property of a square matrix and denoted by χ (Greek chi).

χ = Σxii

Different symmetry operations have different characters of matrix. 
For example, identity rotation, reflection, inversion and improper rotation 
operations have 3, 2 cos θ + 1, 1, –3, and 2 cos θ – 1 character of matrix, 
respectively.

4.4  EQUALITY, ADDITION AND SUBTRACTION

Mathematical matrices should have identical dimensions for equality, addi-
tion and subtraction. Two matrices, A and B, which are of m × n dimensions; 
then each one of these matrices is said to be equal if aij = bij; i = 1 to m and 
j = 1 to n.

Addition or subtraction of A and B matrices consists of addition or sub-
traction of their corresponding elements, i.e.,

A ± B = C means aij ± bij = cij

For example, if A = 
2 1
6 8









 and B = 

4 7
3 5











Then A + B =
2 4 1 7
6 3 8 5

6 8
9 13

+ +
+ +









 =










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and A − B = 
2 4 1 7
6 3 8 5

2 6
3 3

− −
− −









 =

− −









4.5  MULTIPLICATION

For multiplication, the matrices should be confirmable, i.e., if A × B = C; 
then number of columns in A should be equal to number of rows in B. Hence, 
if dimensions of A is m × p, then that of B should be p × n.

Dimensions of C will be m × n. Thus,

cik = ai1b1k + ai2b2k + ai3b3k + … + aipbpk

For example,

	 A = 
2 3
1 8
5 6

















and B = 
1 3 0
4 2 1−









 	

	 A × B = 
2  1 3  ( 4) 2  3 3  2 2  0 3  1
1 1 8  ( 4) 1  3 8 

× + × − × + × × + ×
× + × − × + ×  2 1  0 8  1

5  1 6  ( 4) 5  3 6  2 5  0 6  1
× + ×

× + × − × + × × + ×

















	

or	 C = 
−
− −
−

















10 12 3
31 19 8
19 27 6

	

That is, multiply elements of ith row of A by corresponding elements of 
kth column of B and add these to obtain cik.

The following points should be noted in multiplication of matrices.

	 (i)	 Multiplication of any matrix by unit matrix (identity matrix) of 
appropriate dimensions leaves the matrix unchanged. Thus,

A × E = A

	 (ii)	 Generally, matrix multiplication is non-commutative, i.e.,

A × B ≠ B × A
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	 (iii)	 An inverse of a matrix is defined as:

A × B = E

In this case, B is the inverse of A, i.e., B = A−1 and therefore,  
A × B = A × A−1 = E.

It is to be noted here that only square matrices can have an inverse matrix. 
Inverse of a matrix involves the division of a cofactor by the determinant 
of the matrix, i.e., |A|, |A|≠0, this cofactor should not be singular. It has 
to be non-singular, i.e., non-zero. As only square determinants can be non-
zero and hence, only square matrices can have the corresponding inverse 
matrices.

Since we shall be dealing mostly with square matrices here, it is impor-
tant to note their relevant properties. These are:

	 (i)	 An important property is its character or (Trace), which is repre-
sented by χ (chi) = Σaij, i.e., sum of the diagonal elements.

	 (ii)	 If the product of two matrices A and B are AB = C and BA = D, then 
their characters χ(C) = χ(D), are equal.

	 (iii)	 Conjugate matrices have identical characters. Conjugate matrices, 
like conjugate elements of group are related by similarity transfor-
mation and then there is a third matrix X such that A = X−1. B. X.

These properties of matrices closely parallel those of group elements 
(symmetry operators/operations).

4.6  INVERSE OF A MATRIX

This concept will be useful in evaluating the coefficients aij of equivalent 
hybrid orbital. Consider linear homogeneous equations:

	 x’ = a1x + b1y + c1z	 (4.1)

	 y’ = a2x + b2y + c2z	 (4.2)

	 z’ = a3x + b3y + c3z	 (4.3)

analogous to LCAOψs in hybridization.

	 ψ1 = a1φ1 + b1φ2 + c1φ3	 (4.4)

	 ψ2 = a2φ1 + b2φ2 + c2φ3	 (4.5)
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	 ψ3 = a3φ1 + b3φ2 + c3φ3	 (4.6)

This can be put in matrix form as:

x'
y'
z'

'

a b c
a b c
a b c

x
y
z

R T

1 1 1

2 2 2

3 3 3
r

















=
































R

Mathematically, R’ = Tr. R
To obtain x, y, z (or R) in terms of primed variables x,’ y,’ z’ (or R’), we 

can use inverse of the transformation matrix, Tr
−1:

x
y
z

a b c

a b c

a b c

 
x
y

1 1 1

2 2 2

3 3 3

















=

′ ′ ′

′ ′ ′

′ ′ ′



















′
′
′′

















−

z

R T Rr
1

Mathematically, R = Tr
−1 R’

To obtain the elements of Tr
−1 (primed letters), Tr is treated as a determi-

nant. Thus, its value |Tr| is obtained. Elements of Tr are now replaced by their 
cofactors divided by determinant of Tr, i.e., |Tr|. The cofactor of elements ij of 
matrix Tr (a1, b1, etc.) is equal to the minor of element ij multiplied by (–1)i+j. 
The minor of the element ij is the determinant obtained by striking out the 
ith row and jth column in the matrix Tr. This matrix of cofactors is:

T

b c
b c

T

a c
a c

T

a b
a b

T

b c
b c

T

a c
a c

T

a
r

2 2

3 3

2 2

3 3

2 2

3 3

1 1

3 3

1 1

3 3

r r r

r r

= −

− +

− 11 1

3 3

1 1

2 2

1 1

2 2

1 1

2 2

b
a b

T

b c
b c

T

a c
a c

T

a b
a b

T

r

r r r

−







































108	 Chemical Applications of Symmetry and Group Theory

The inverse of the transformation matrix will be:

−

−

−

b c
b c

T

b c
b c

T

b c
b c

T

a c
a c

T

a c
a c

T

a c
a

2 2

3 3

1 1

3 3

1 1

2 2

2 2

3 3

1 1

3 3

1 1

r r r

r r

22 2

2 2

3 3

1 1

2 2

1 1

2 2

c
T

a b
a b

T

a c
a c

T

a b
a b

T

r

r r r

−







































Example: Consider the matrix

A = 
1 1 0
1 1 1
0 1 1

−
−

















=  Tr

The value of A = +1. Then its inverse transformation matrix will be:

T

1 1
1

1

1 1
0

1

1 1
0

1
1 0
1

1

1 0
1

1

1 1
0

1
1 0
1

1

r
1− = −

−
−

+

−
−

+

−
−

+

−
+

−
+

−

+

−
+

1 1 1

1 1 1

1
−−

+
−

+

































1 0
1

1

1 1
1

1
1 1

Tr
1− =

−
− −
−

















0 1 1
1 1 1
1 1 1

A is a symmetric matrix and its inverse is also symmetric.
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In hybridization, we deal with similar linear homogeneous equation 
obtained by LCAO method:

ψi = aij j
j 1

n
 ϕ

=
∑

Since ψi are orthogonal wave functions, the transformation matrices 
obtained by collection of their coefficients aij (the elements) are also orthog-
onal matrices. Inverse of such orthogonal matrices are their transposed 
matrices. The elements of orthogonal matrices follow the relation:

a a a  a (Kronecker delta) 1,  if  j kij ki ij ik jk
j 1

n
 

=
∑ = = = =δ

4.7  REPRESENTATION OF GROUP BY MATRIX

One of the very convenient methods of representation of a point group is to 
attach one or more vectors to it, i.e., lines of specified length and direction 
to the molecule and to see the objects after the operations by the vectors 
attached.

We shall show that each of the five types of symmetry operations of mol-
ecules can be described by a matrix.

4.7.1  IDENTITY OPERATION (E)

Identity operation is a trivial operation even though it has much impor-
tance in group theory. When a point on the vector r (OA) with coordinates 
x1, y1 and z1, is subjected to identity operation, then it gives new coor-
dinates (x2, y2, z2), which is same as the initial one, i.e., E keep vectors 
unaltered. Therefore, linear homogeneous equation can be expressed as:

x2 = 1 x1 + 0 y1 + 0 z1

y2 = 0 x1 + 1 y1 + 0 z1

z2 = 0 x1 + 0 y1 + 1 z1
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This may be expressed in the form of a matrix as:

x
y
z

1 0 0
0 1 0
0 0 1

x
y
z

2

2

2

1

1

1

















=
































or 
r = E. r.
Identity matrix is a unit matrix, where diagonal elements are equal to 

1 and all other elements are zero. It is a square matrix of order 3 × 3. The 
matrix of identity element can also represented as:

E = 
1 0 0
0 1 0
0 0 1

















Thus, identity is represented by unit matrix of order 3 × 3, in which x1, y1, 
and z1 set of coordinates resulted into another set of coordinates x2, y2, and 
z2 on applying the identity operation.

4.7.2  AXIS OF SYMMETRY (PROPER ROTATION) (Cn)

Consider that a vector r is having coordinates x, y, and z with an angle α on 
X-axis.
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Rotation of this vector through an angle θ (anticlockwise) will give new 
location of the vector with coordinate such as x,’ y,’ and z.’

As sin α = Perpendicular
Hypotenuse

=
y
r

, and therefore, 

	 y = r sin α	 (4.7)

As cos α = Base
Hypotenuse

=
x
r

 and therefore, 

	 x = r cosα	 (4.8)

After rotation through an angle θ, 

	 sin (α + θ) = y
r
' and therefore	

	 y’ = r sin (α + θ)	 (4.9)

We know from trigonometry that sin (A + B) = sin A cos B + sin B cos A

Hence	 y’ = r sin α cos θ + r sin θ cos α	 (4.10)

Putting the values of x, and y from equation (4.7) and (4.8) in equation 
(4.10), we get

	 y’ = ycos θ + x sin θ	 (4.11)

Similarily, 

cos (α + θ) = x
r
'  and therefore

x’ = r cos (α + θ)

As from trigonometry, cos (A + B) = cos A cos B − sin A sin B.

	 x’ = r cos α cos θ − r sin α sin θ	 (4.12)

Putting the values of x and y from equation (4.7) and (4.8) into (4.12)
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	 x’ = x cos θ -y sin θ	 (4.13)

Since rotation occurs in xy plane; z vector remains unchanged after rota-
tion. In other words, we can say z’ = z

Cn (z).r = 
x'
y'
z'

cos sin 0
sin cos 0

0 0 1

x
y
z

















=
−



















θ θ
θ θ 












Operation is always done in a clockwise direction. Hence, for conversion 
of this relation into clockwise direction, we replace θ by (-θ) and then, the 
matrix becomes:

Cn (z).r = 
cos ( sin ( 0
sin ( cos ( 0

 0 0 1

x
y
z

− − −
− −

























θ) θ)
θ) θ)







Because cos (–θ) = cos θ and sin (–θ) = – sin θ

Cn (z).r = 
cos sin 0
sin cos 0

 0 0 1

x
y
z

θ θ
θ θ

−































4.7.3  PLANE OF SYMMETRY (REFLECTION)

If a plane of symmetry is selected along or coplanar with one of the principal 
Cartesian plane, i.e., xy, xz or yz plane, respective planes are designated as 
σxy, σxz, or σyz. The reflection plane changes the sign of the coordinate lying 
perpendicular to that plane, while the two coordinates remain unchanged, 
whose axes are in the plane.
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Relation between x1, y1 and z1 and x2, y2 and z2, for reflection in yz plane 
is represented by the equations:

	 x2 = (–1) x1 + 0 y1 + 0 z1	

	 y2 = 0 x1 + 1 y1 + 0 z1	

	 z2 = 0 x1 + 0 y1 + 1 z1	

The equation can be represented in form of a matrix as:

x
y
z

1 0 0
  0 1 0
  0 0 1

x
y
z

2

2

2

1

1

1

















=
−































	 r′ = σyz.r	

or	 σyz = 
−















1 0 0
  0 1 0
  0 0 1

	

Thus, reflection in other two principal planes will be–

σxy = 
1   0 0
0 1 0
0 0 1−

















 and σxz = 
1    0   0
0 1   0
0    0 1

−
















It is to be noted that the reflection in σyz plane changes the sign of the 
coordinate x. in the same manner, the reflection in σxy and σxz planes changes 
the sign of the coordinate z and y, respectively.

4.7.4  CENTRE OF SYMMETRY (INVERSION)

Inversion changes the sign of all the coordinates. Therefore, x, y and z coor-
dinates of vector r are transformed into their respective negative coordinates 
(–x, –y, and –z). Thus, for inversion operation, the equations will be:

x2 = (–1) x1 + 0 y1 + 0 z1
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y2 = 0 x1 + (–1) y1 + 0 z1

z2 = 0 x1 + 0 y1 + (–1) z1

The matrix representation for these equations may be expressed as:

x
y
z

1    0    0
   0 1    0
   0    0 1

x2

2

2

















=
−

−
−

















11

1

1

y
z

















Hence, transformation matrix for inversion will be:

i = 
−

−
−

















1    0    0
   0 1    0
   0    0 1

Thus, the center of symmetry matrix representation is a negative unit matrix.

4.7.5  IMPROPER ROTATION (Sn)

Any improper rotation through an angle θ involves two successive symme-
try operations, i.e., rotation followed by reflection in perpendicular plane, 
which may be represented as the product of the two matrices. Thus, 

	 Sn (z) = Cn (z). σh	

Sn (z) = 
cos sin 0
sin cos 0

 0 0 1

θ θ
θ θ−

















× 
1 0 0
0 1 0
0 0 1

















Thus, matrix representation of Sn(z) will be

	 =
cos sin 0
sin cos 0

 0 0 1

θ θ
θ θ−
















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This equation represents the matrix for an improper rotation about the 
Z-axis. As the operation is σh, i.e., σxy, and therefore, only the sign of coor-
dinate z changes.

It should also be noted that the set of matrices describing symmetry 
operations of a point group can be multiplied (combined) together and the 
product matrix operations also belong to that group. Thus, a point group may 
be also represented in terms of a set of matrices corresponding to each opera-
tion. The collection of matrices obeys the definition of a group.

4.8  C2h MOLECULE

Now let us consider the group C2h as an example. The multiplication table 
for the point group C2h is:

C E C (z)   i   
E E   C   i   
C (z) C   E     i
i  i    E   C

2h 2 h

2 h

2 2 h

h

σ
σ

σ
σ 22

h h 2   i  C   Eσ σ

We shall make use of a vector having three Cartesian components 
as a base set. We get the following matrices:

	 E = 
1 0 0
0 1 0
0 0 1

















	

C
cos sin 0
sin cos 0

 0 0 1
2 =

















θ θ
θ θ

	 i = 
−

−
−

















0 0 0
0 1 0
0 0 1
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σh =
−

−

















1 0 0
0 1 0
0 0 1

As we know that cos 180° = –1 and sin 180° = 0, putting these value in 
matrix for operation C2. Therefore, matrix for C2 will be:

C2 =
−

−
















1 0 0
0 1 0
0 0 1

If all the four characteristics of a group are applied to the above set of 
matrices.

4.8.1  IDENTITY RULE OR LAW OF COMMUTATION

One element in the group must be such that it should leave all the other ele-
ments unchanged or in other words, it is commutative will all other elements 
in the group, i.e.,

E.C2 = C2.E = C2

1 0 0
0 1 0
0 0 1

E
1 0 0
0 1 0
0 0 1

   C
1 0 0
0 1 0
0 0

2

















⋅
−

−
















=
−

−
11

   C2

















−
−

















⋅
−

















=
−

−
1 0 0
0 1 0
0 0 1

   C
1 0 0
0 1 0
0 0 1

E
1 0 0
0 1 0
0

2

00 1

   C2

















4.8.2  LAW OF COMBINATION

The product of any two elements must be also an element of the group. Let 
us consider the product i.C2 = σh.
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−
−

−

















⋅
−

−
















=
1 0 0
0 1 0
0 0 1

  i
1 0 0
0 1 0
0 0 1

    C
1 0 0
0

2

11 0
0 0 1

h

−

















σ

The product of the two matrices i and C2 is the matrix, which is repre-
sented by the operations σh. Likewise the product C2.σh = i

−
−

















⋅
−

















=
−

−
1 0 0
0 1 0
0 0 1

   C
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0

2 hσ

00 0 1

  i

−

















These results show that the combination of any two matrices (product) 
obey the rule of combination.

4.8.3  LAW OF ASSOCIATION

The associative law must also hold good.

	 C2.(σh.i) = (C2.σh).i	

	 C2.C2 = i.i	

	 E = E	

The L.H.S.: C2.(σh.i) is:

−
−

−

















⋅
−

















=
−

−
1 0 0
0 1 0
0 0 1

  i
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0

hσ

00 1

    C2

















Then

−
−

















⋅
−

−
















=
1 0 0
0 1 0
0 0 1

  C
1 0 0
0 1 0
0 0 1

   C
1 0 0
0 1

2 2

00
0 0 1

E















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The R.H.S. (C2.σh).i can be solved as

−
−

















⋅
−

















=
−

−
1 0 0
0 1 0
0 0 1

    C
1 0 0
0 1 0
0 0 1

 
1 0 0
0

2 hσ

11 0
0 0 1

   i

−

















−
−

−

















⋅
−

−
−

















=
1 0 0
0 1 0
0 0 1

  i
1 0 0
0 1 0
0 0 1

  i
1   0   00
0 1 0
0 0 1

E
















Hence, R.H.S. is equal to the L.H.S. These results obey the associative law.

4.8.4  LAW OF INVERSE

Every elements of the group must have its reciprocal (inverse) also as 
a member of that group.

If the multiplication of any element with another element gives the ele-
ment identity, then it is called its reciprocal. In the group C2h, each element is 
its own reciprocal or inverse. It can be checked by determining the products 
of the elements with themselves.

−
−

















⋅
−

−
















=
1 0 0
0 1 0
0 0 1

    C
1 0 0
0 1 0
0 0 1

    C
1 0

2 2
00

0 1 0
0 0 1

E
















−
−

−

















⋅
−

−
−

















=
1 0 0
0 1 0
0 0 1

    i
1 0 0
0 1 0
0 0 1

  i
1 0 0
0 11 0
0 0 1

E
















1 0 0
0 1 0
0 0 1

    
1 0 0
0 1 0
0 0 1

 
1 0 0
0 1 0
0

h h

−

















⋅
−

















=

σ σ

00 1

E















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Thus, the collection of the above matrices does represent the group C2h.

4.9  CHARACTER OF MATRIX

The character of a matrix is often called trace of the matrix. Thus, 

Γ = 

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

11

22

33

44

nn























It is obvious that its character is:

	 χ = a11 + a22 + a33 + a44 + ….+ ann	 (4.14)

or	 χ = aii
i 1

n

=
∑ 	 (4.15)

It means character is simply the sum of its diagonal elements, which run 
from upper left to lower right. 

4.9.1  WATER MOLECULE

To illustrate the term character, we shall consider the transformation matri-
ces of H2O molecule, which belongs to the C2v point group. The molecule has 
3 atoms (N = 3). In this case, the 3N Cartesian coordinate vectors attached to 
the atom can be represented as:
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The matrices describing the symmetry transformations of identity (E) 
can be written as:













































































=







































o

o

o

2

2

2

1

1

1

o

o

o

2

2

2

1

1

1

z

y

x

z

y

x

z

y

x

100000000

010000000

001000000

000100000

000010000

000001000

000000100

000000010

000000001

z

y

x

'z

'y

'x

'z

'y

'x
E

χ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9
χ = 9
In this case, the sum of the diagonal elements is 9 and it is called the 

trace (spur) of the matrix and actual numerical value of the trace is called 
the character of the representation. Hence, character χ (E) is 9. Similarly, the 
symmetry transformation matrix for C2 axis of symmetry, σv (xz) and σv (yz) 
planes are:

x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

o

o

o

'
'
'
'
'
'



































=

−0 0 0 1 00 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0

−

−
−

00 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−
−



































   C22

1

1

1

2

2

2

o

o

o

x
y
z
x
y
z
x
y
z


































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χ = 0 + 0 + 0 + 0 + 0 + 0 − 1 − 1 + 1
χ = −1

x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

o

o

o

'
'
'
'
'
'



































=

0 0 0 1 0 00 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0

−

−

11 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

−



































σv (xz)
x11

1

1

2

2

2

o

o

o

y
z
x
y
z
x
y
z



































χ = 0 + 0 + 0 + 0 + 0 + 0 + 1 – 1 + 1
χ = 1

x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

o

o

o

'
'
'
'
'
'



































=

−1 0 0 0 00 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0

−

−−



































1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

σv (yz)
xx
y
z
x
y
z
x
y
z

1

1

1

2

2

2

o

o

o



































χ = −1 + 1 + 1 − 1 + 1 + 1 − 1 + 1 + 1
χ = 3
χ (σv(yz)) = (–1) + 1 + 1 + (–1) + 1 + 1 + (–1) + 1 + 1 = 3
The character of the C2 matrix will be
χ (C2) = 0 + 0 + 0 + 0 + 0 + 0 + (–1) + (–1) + 1 = –1
χ (σv(xz)) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + (–1) + 1 = 1
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A little observation of the above transformations indicates that the diago-
nal elements occur only, when a given symmetry operation leaves the posi-
tion of an atom unchanged. Hence, the character of representation matrix 
can be obtained by taking into consideration the displacement vectors of 
the atoms, whose position remain unchanged as a result of the symmetry 
operation.

Thus in case of H2O, the vector, which remains unchanged contribute 
+1 while the vectors, which are reversed contribute -1 along the diagonal. 
Consequently, the character for operations E is 9 and C2 is -1. Similarly, 
it can be confirmed that χ for σv(xz) is 1 and for σv(yz), it is 3.

Conjugated matrices have identical characters. The conjugated matrices 
also follow the same rule, which is obeyed by the conjugated elements of 
a group, i.e., when matrix R is conjugate to matrix P, then their must be 
another matrix A, so that:

R = A−1. P.A

4.10  REPRESENTATION OF GROUPS

Each operation in a point group is represented by set of numbers (matrices). 
When any two matrices, representing two operations, are multiplied, then 
it results into another matrix. It represents an operation of the group. Thus, 
a representation is a set of matrices, which represent the operation of a point 
group. A representation is donated by T.

C2v point group has four symmetry element E + C2 + σv (xz) + σv (yz). 
Thus, 

Γ = 
1 0 0
0 1 0
0 0 1

E
















−
−

















1    0    0
   0 1    0
   0    0    1

 C2

1    0   0
0 1   0
0    0   1

v  (xz)

−
















σ
−















1  0  0
   0  1  0
   0  0  1

v  (yz)σ

If two symmetry operations in point group, say, σv (xz).C2 gives σv (yz), 
then matrix corresponding to C2 and σv (xz) must multiply to give a result the 
matrix corresponding σv (yz).

σv(xz).C2 = σv (yz)
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1   0   0
0 1   0
0   0   1

−
















. 
−

−
















1   0   0
  0 1   0
  0   0   1

 = 
−















1  0  0
  0  1  0
  0  0  1

Similarly, if we consider symmetry element σv (xz).σv(xz), then the prod-
uct is equal to identity element (E). The corresponding matrices multiply 
together in same way will give a matrix corresponding to E.

1   0   0
0 1   0
0   0   1

−
















. 
1   0   0
0 1   0
0   0   1

−
















 = 
1  0  0
0  1  0
0  0  1

















σv(xz). σv(xz) = E

The large size diagonal matrices of element of group C2v can also be con-
structed with ± 1 as the diagonal number as:

E C (xz) (yz)
[1] [ 1] [1] [ 1]
[1] [ 1] [ 1] [1]
[1] [1] [1

2 v v 

1

1

1

σ σ
Γ
Γ
Γ

− −
− −

]] [1]

Thus, representation for x, y and z coordinates can also be shown by this 
table.

Let us take another point group C2h, which consists of four symmetry ele-
ments, i.e., E + C2 + σh + i. Matrix for each element is as follows:

	 C2h = E, C2, σh, i	

Γ = 
1 0 0
0 1 0
0 0 1

1 0   0
0 1 0
0 0 1

1   0 0
0 1 0
0 0

E    C2

















−
−















 −−

















−
−

−















1

1 0 0
0 1 0
0 0 1

h   iσ

or Γ = [3] [–1] [1] [–3]
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Now binary combination of two symmetry elements C2.σh = i can be 
represented as:

C2.σh = i
So	 –1 × 1 = –1
Hence, 

Γ = 
1 0
0 1









 .

1 0
0 1









 = 

1 0
0 1











or [1] × [1] = [1]

4.11  REDUCIBLE AND IRREDUCIBLE REPRESENTATIONS

4.11.1  REDUCIBLE REPRESENTATION

Suppose, we have a set of matrices A, B, C, D and X, which is a represen-
tation of group. If we perform similarity transformation on each matrix (big 
matrices), we get new set of matrices (smaller matrices).

For example,
X−1. A. X = A′
X−1. B. X = B′
X−1. C. X = C′
X−1. D. X = D′ and so on
Thus, on making same similarity transformation on matrices (A, B, C, 

D, …), we obtain new set of matrices (A′, B′, C′, D′, …). The new sets of 
matrices are also representation of the group. This can be proved mathemati-
cally as:

A . B = C then A′ . B′ = C′
Therefore,	 = (X−1. A. X) (X−1. B. X)
	 = X−1. A. (X. X−1) B. X
	 = X−1 (A. E). B. X
	 = X−1 (A. B) X
	 = X−1. C. X
	 = C′
It means all products is the set of matrices A′, B′, C′, …, will run parallel 

to those in the representation A, B. C, …. Thus, the prime set also constitutes 
a representation.
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When the matrix of any element in a group is transformed to new element 
using some other matrix, then we can find a new matrix in a block-factored 
matrix as follows:

A′ = X−1. A. X = 

A1'
CH

3

CH
3

CH
3

CH
3

A2'

A3'

A4'

Now, a combination (product) of element matrices gives the following 
form:

A1. B1 = C1

A1

A2

A3

CH
3

CH
3

CH
3

CH
3

. 
B1

B2

B3

CH
3

CH
3

CH
3

CH
3

=
C1

C2

C3

CH
3

CH
3

CH
3

CH
3

Thus, C′ is a small dimension matrix and must be the product of A′ and 
B′. Similarly, each of the matrices block out in the same manner, correspond-
ing block of each matrix can be multiplied together (binary combination) 
separately. Thus, equation can be written as:

C2 = A2. B2

C3 = A3. B3

In essence, representations of higher dimension, which can be reduced to 
representation of lower dimension by similarity transformation process are 
block diagonal matrices. The similarity transformation matrix, which cannot 
be reduced further to representation of lower dimension is called irreducible 
representation.

Let us take general example to explain representation. Suppose A, B and 
X are three symmetry element in which A, B, X are of same dimension 
whereas B matrix may be a block diagonal matrix, then
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A = 
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

















Reducible representation

On similarity transformation, X−1 A X, A becomes:

A = 
b b 0
b b 0
0 0 b

or
B

B

11 12

21 22

33

1

2





























[B1]	 [B2]

Irreducible representations

This is known as block diagonal matrix. Here, similarity transformation 
of matrix A of 3 × 3 dimension gives two matrices B1 and B2. B1 is of 2 × 2 
dimension and B2 is of 1 × 1 dimension. Thus, these representations are reduc-
ible because similarity transformation has block diagonalized the original 
matrix to matrices of reduced order in block form. If this reducible matrix does 
not reduce further, then the representation is called irreducible representation. 
It is irreducible representation of a group that is of fundamental importance for 
application of group theory to various chemical problems.

Here Γ1 = 2 x 2 Dimension representation
Irreducible representation

Γ2 = 1 x 1 Dimension representation

Matrix, which is broken down by using similarity transformation, also 
represents the group.

4.11.2  IRREDUCIBLE REPRESENTATION

When dimension of any of the representation may not be reduced by using 
similarity transformation, then the final representation, which has set of 
matrix of 1 × 1 dimension is said to be irreducible representation. The num-
ber of irreducible representations for a point group will depend on the classes 
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of symmetry operations of the group, i.e., irreducible representation will be 
equal to number of classes. The irreducible representations are the character-
istics of the group, and are also known as symmetry species. Thus, it can be 
concluded that an irreducible representation is one, which cannot be broken 
down into matrices with smaller dimensions. In other words, an irreducible 
representation cannot be further reduced to a simpler representation.

Point group C2v contains four elements, which indicates that the order of 
group is 4. This order cannot be reduced by similarity transformation and 
hence, there are four classes. Therefore, four irreducible representations are 
there in point group C2v whereas in C3v point group, the order of group is 6, 
which can be further reduced into three classes, and hence, there are three 
irreducible representations of point group C3v.

4.11.3  RELATIONSHIP BETWEEN REDUCIBLE AND 
IRREDUCIBLE REPRESENTATIONS

We can reduce any reducible representation without knowing the transfor-
mation matrix. The relationship between the reducible and irreducible repre-
sentations is expressed as:

	 ai = 1/h [nRnRχi (R) χ (R)]	 (4.16)

where ai is the number of times ith reducible representation occurred in 
a  reducible representation, h is the order of group. χi (R) is the character 
of the ith irreducible representation corresponding to operation (R), and χ 
(R) is the character of reducible representation corresponding to the same 
operation.

Thus, we can determine the number of times the ith irreducible represen-
tation will occur in a reducible representation, if only the characters of the 
representation are known. Let us consider examples of group C3v and C2v to 
make this idea more clear.

4.11.4  C3V GROUP

In the group C3v, the irreducible representations are Γ1, Γ2 and Γ3 and two 
reducible representations are Γa and Γb.
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C E    2 C  3 
1   1   1
1   1 1
2 1   0
5   2 1
7   1 3

3v 3 v

1

2

3

a

b

σ
Γ
Γ
Γ
Γ
Γ

−
−

−
−

Using Eq. (4.16), for Γa

	 aΓ1
 = 1/6 [1(1)(5) + 2(1)(2) + 3(1)(–1)]	

	 = 1/6 [5 + 4 – 3]
	 = 1/6 (6) = 1

So	 aΓ1
 = 1

	 aΓ2
 = 1/6 [1(1)(5) + 2(1)(2) + 3(–1)(–1)]	

	 = 1/6 [5 + 4 +3]
	 = 1/6 (12) = 2

So	 aΓ2
 = 2

	 aΓ3
 = 1/6 [1(2)(5) + 2(–1)(2) + 3(0)(–1)]	

	 = 1/6 (10 − 4 + 0) or = 1/6 = 1
So	 aΓ3

 = 1

For Γb

	 aΓ1′
 = 1/6 [1(1)(7) + 2(1)(1) + 3(1)(–3)]	

	 = 1/6 (7 + 2 − 9)
	 = 1/6 (0) = 0

So	 aΓ1′
 = 0

	 aΓ2′
 = 1/6 [1(1)(7) + 2(1)(1) + 3(–1)(–3)]	

	 = 1/6 [7 + 2 + 9] = 1/6–18 = 3
So	 aΓ2′

 = 3
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	 aΓ3′
 = 1/6 [1(2)(7) + 2(–1)(1) + 3(0)(–3)]	

	 = 1/6 (14 − 2 − 0)
	 = 1/6 (12) = 2
So	 aΓ3′

 = 2

The results obtained above will be found to satisfy Eq. (4.14).
For Γa
As aΓ1

, aΓ2
 and aΓ3

 are 1, 2 and 1, respectively; so Γ1 and Γ3 are written 

once only but Γ2 is 2 and therefore, it is to be written twice.

E 2 C 3 
1   1   1
1   1 1
1 1   
2
5 2 1

3 v

1

2

2

3

a

σ
Γ
Γ
Γ
Γ
Γ

−
−

−
−

1
1 0

For Γb
Similarly for Γb, aΓ1

, aΓ2
 and aΓ3

 are 0, 3 and 2, respectively and hence, Γ1 
is not written, but Γ2 and Γ3 are written thrice and twice, respectively.

E     2 C   3 
1   1 1
1   1 1
1 1   1
2 1 0
2 1 0
7 1 3

3 v

2

2

2

3

a

b

σ
Γ
Γ
Γ
Γ
Γ
Γ

−
−
−

−
−

−

4.11.5  C2V GROUP

We can determine the irreducible components of ΓR, i.e., Γ1, Γ2, Γ3 and Γ4. In 
this case, the irreducible representation for E will be:
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C E        C (xz) (yz)
1    1    1    1
1    1 1 1
1 1   

2v 2 v v

1

2

3

σ σ
Γ
Γ
Γ

− −
−   1 1

1 1 1    1
9 1    1    3

4

R

−
− −
−

Γ
Γ

	 aΓ1
 = 1/4 [1(1)(9) + 1(1)(–1) + 1 (1)(1) + 1(1) (3)]	

	 = 1/4 [9 – 1 + 1 + 3]
	 = 1/4 (12) = 3
	 So aΓ1

 = 3

	 aΓ2
 = 1/4 [1(1)(9) + 1(1)(–1) + 1 (–1)(1) + 1(–1) (3)]	

	 = 1/4 [9 – 1 – 1 – 3] = 1/4 (4) = 1
	 So aΓ2

 = 1

	 aΓ3
 = 1/4 [1(1)(9) + 1(–1)(–1) + 1 (1)(1) + 1(–1) (3)]

	 = 1/4 [9 + 1 + 1–3] = 1/4 (8) = 2
	 So aΓ3 = 2

	 aΓ4
 = 1/4 [1(1)(9) + 1(–1)(–1) + 1 (–1)(1) + 1(1) (3)]	

	 = 1/4 [9 + 1 – 1 + 3] = 1/4 (12) = 3
	 So aΓ4

 = 3

Similarly,	 ΓR (C2) = 3(1) + 1 + 2(-1) + 3(-1) = -1	

	 ΓR (σv) = 3(1) − 1 + 2(1) + 3(-1) = 1	

	 ΓR (σv’) = 3(1) − 1 + 2(-1) + 3(1) = 3	

Hence, we can write that

	 ΓR = 3 Γ1 + Γ2 + 2 Γ3 + 3 Γ4	

Thus,	 ΓR (E) = 3(1) + 1 + 2(1) + 3 (1) = 9	



Matrices	 131

KEYWORDS

•• Character

•• Irreducible

•• Matrix

•• Reducible

•• Representation



http://taylorandfrancis.com


CHAPTER 5

CONTENTS

5.1  The Great Orthogonality Theorem....................................................134
5.2  Construction of Character Table.......................................................137
	 5.2.1  The C2V Group.......................................................................137
	 5.2.2  C3v Group...............................................................................141
5.3  Presentation of Character Tables.......................................................143
	 5.3.1  Character Table for C2v Point Group.....................................145
	 5.3.2  Character Table of C3v Point Group......................................147
	 5.3.3  Character Table for C2h Point Group.....................................149
Keywords...................................................................................................150

There are two theorems of fundamental importance. These are known as 
Schur’s lemmas. These lemmas are useful for the study of irreducible rep-
resentation (IR).
Schur’s lemma 1: If Γi is an irreducible representation of a group and if a 
matrix P commutes with all the matrices of this irreducible representation, 
then this matrix P must be a constant matrix, i.e., P = C × E, where C is scalar 
quantity. It means that if a nonconstant-commuting matrix exists, then the 
representation is reducible. On the other hand, if none exists, then the repre-
sentation is irreducible.
Schur’s lemma 2: If Γi and Γj are two irreducible representations of a group 
G = {Ai, i = 1, 2, 3, …, n} with li and lj dimensions, respectively and a matrix 
M (of the order li and lj) satisfy the following relation.

Γi (Ai) (M) = M Γj (Ai) Ai ∈ G

CHARACTER TABLES
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Then there are two possibilities.
Either	 (i) M = 0; the none matrix;
or	 (ii) M ≠ 0; in this case Γi and Γj are equivalent representations.
It is clear that two representations Γi and Γj can be equivalent only in the 
condition, if their dimensions are equal. In this case, if li ≠ lj, then case (ii) is 
not valid and hence, case (i) is applicable.

5.1  THE GREAT ORTHOGONALITY THEOREM

For a particular point group, there could be number of reducible representa-
tions (R), but the irreducible representations are finite in number. The num-
ber of irreducible representation remains same for the molecules of a specific 
point group, i.e., irreducible representations are different in two different 
point groups. In order to derive all the properties of group representation 
and their character, “Great Orthogonality Theorem” (GOT) was introduced. 
Basically, this theorem is related to the element of matrices, which constitute 
the irreducible representations of a group. Therefore, it can be said that GOT 
is used to derive the properties of irreducible representations.

Mathematically, the great orthogonality theorem may be stated as:

	
 [  (R) ]  [  (R) ] h   i mn j m'n'

*

R i j
ij mm' nn'Γ Γ δ δ δ=∑ l l

	 (5.1)

It means that if in a set of matrices (constituting any irreducible represen-
tation), any set of corresponding matrix element (one from each matrix) 
behaves as the component of vector in h-dimensional space in such a way 
that all these vectors are orthogonal to each other and each one of them is 
normalized so that the square of its length equals to h/li.

Here h denotes the order of a group, Γi and Γj are the ith and jth irreduc-
ible representations of a point group of the order h with dimension li and lj, 
respectively. The matrix element of the mth row and nth column corresponding 
to an operation R, belonging to ith irreducible representation is represented 
as Γi (R)mn and [Γj (R)m’n’]

+ is complex conjugate of the mth and nth matrix ele-
ment. It is very important to consider complex conjugate of one factor on the 
left hand side, in case when complex or imaginary numbers are involved. δ is 
Kronecker delta function.
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The Kronecker deltas (δ) may have values, 0 or 1 depending on ith, jth, 
mth, nth, m’th, and n’th. Thus, δ have following properties.

	 (i)	
1

0

nδij =
1    (When i = j)

0    (When i    j)

	(ii)	
1

0

nδmm' =
1    (When m = m')

0    (When m    m')

	(iii)	
1

0

nδnn' =
1    (When n = n')

0    (When n    n')

If matrix elements are real, then Eq. (5.1) can be represented as:

	 Γ Γi m'n' j m'n'(R) (R)= 	 (5.2)

On assuming that the matrix element are real, Eq. (5.1) can be represented in 
the form of three simpler equations:
(i)	For two different irreducible representations.

i ≠ j, m = m’ and n = n’

Then, 

	
Γ Γi mn j m'n'

R
 (R)   (R) 0=∑ 	 (5.3)

(ii) For the same irreducible representations.

i = j, m ≠ m’ and n ≠ n’

Then, 

	
  (R)   (R) 0i mn j m'n'

R
Γ Γ =∑ 	 (5.4)

(iii)	 For irreducible representations.

i = j, m = m’ and n = n’
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Γi mn

2
i

R
 (R)  h[ ] =∑ /l 	 (5.5)

The vectors are orthogonal, if they are selected from matrices of different 
representation (Eq. 5.3; i ≠ j) or if they belong to the same representation but 
different sets of elements in the matrices representations (Eq. 5.4; m ≠ m’ 
and/or n ≠ n’). While according to Eq. (5.5), the square of the length of such 
vector is equals to h/li.

Five important rules (properties) about the irreducible representation and 
their character can be derived from this theorem, which are as follows:
(i)	 The number of irreducible representations of a group is equal to the 

number of classes in that group.
(ii)	 The sum of the squares of the dimensions of the irreducible representa-

tions of a group is equal to the order of the group, i.e.,

	 l1
2 + l2

2 + l3
2 + …+ ln

2 = Σ li
2 = h	 (5.6)

As the dimension of an irreducible representation is equal to the char-
acter of its E operation. Therefore, the sum of the square of character of 
identity operation of the irreducible representation is equal to the order 
of the representation, we can say that

	
[  (E)] hi

2
i

χ =∑  	 (5.7)

χi (E) is the character of the representation of E in the ith irreducible 
representation.
That is, the sum of squares of character of identity operation of the irre-
ducible representation of group is equal to the order of the group.

(iii)	 The sum of the square of the characters in any irreducible representa-
tion is equal to order of the group h, i.e.,

	
[χ  ( )] =2

i
R

R h∑ 	 (5.8)

(iv)	 The vectors, whose components are the characters of two different irre-
ducible representations, are orthogonal, i.e., the character of the sym-
metry operation in two different irreducible representations satisfy the 
following relation.
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  (R)   (R) 0i mn j m'n'

R
Γ Γ =∑ 	 (5.9)

when i ≠ j.
	 Here n is the order of the class and χi (R) and χj (R) is the character 
of the same symmetry operations in the ith and jth irreducible representa-
tion. It can be said that character of the irreducible representations of the 
same group or two different irreducible representations of a group are 
orthogonal.

(v)	 The character of a matrix does not change by the process of similarity 
transformation on it. Therefore in a given representation (R or IR), the 
characters of the element of all matrices belonging to operation in the 
same class are identical, i.e.,

  (Irreducible)  (Reducible)χ χ=∑

i.e., the sum of the characters of the irreducible representation matrices 
and reducible representation matrix are equal.

5.2  CONSTRUCTION OF CHARACTER TABLE

Let us consider the irreducible representations of some typical point groups 
and construct their character table by using five rules derived from great 
orthogonality theorem.

5.2.1  THE C2V GROUP

Step 1: According to rule (i), number of irreducible representation of a 
point group is equal to number of classes of the group. As C2v consists 
of four elements of symmetry (E, C2, σv (xz), σv (yz)) and each of them 
is a separate class also, i.e., E, C2, σv (xz), σv (yz). Hence, according to 
this rule, number of irreducible representation will also be four and may 
represented as Γ1, Γ2, Γ3 and Γ4. Therefore, initially character table can be 
represented as:
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C E C (xz) (yz)2v 2 v v

1

2

3

4

σ σ
Γ
Γ
Γ
Γ

Step 2: As per rule (ii), the sum of squares of the dimensions of these repre-
sentations should be equal to order of group (h). Order of group C2v is four, 
and therefore, 

l 4i
2

i 1

4

=
=
∑

The sum of l1
2, l2

2, l3
2 and l4

2 will be equal to 4 (four) only, if l1 = l2 = l3 = 
l4 = +1, i.e., 12 + 12 + 12 + 12 = 4.

The dimension of a representation is equal to the character of the identity 
operation of irreducible representation. Thus, +1 should be written as the 
character of E operation for all the four irreducible representations, i.e.,

C E C (xz) (yz)2v 2 v v

1

2

3

4

σ σ
Γ
Γ
Γ
Γ

1
1
1
1

Step 3: Applying rule (iii), i.e., the sum of squares of the character must be 
equal to order of the group (h). Hence, 

χi
R

R h( )  = =∑ 2
4

This is valid only, if

[χ (E)]2 + [χ (C2)]
2 + [χ (σv (xz))]2 + [χ (σv (yz))]2 = 4

or 12 + 12 + 12 + 12 = 4
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It means that among all the irreducible representations of a group, one irre-
ducible representation will have all the character equal to +1. Let us say, that 
Γ1 will have all the character equal to +1, then

C E C (xz) (yz)2v 2 v v

1

2

3

4

σ σ
Γ
Γ
Γ
Γ

1 1 1 1
1
1
1

Step 4: Now before applying rule (iv), let us assume
Γ2 has characters A, B, C
Γ3 has characters P, Q, R, and
Γ4 has characters X, Y, Z.

C E C (xz) (yz)
1 1 1 1
1 A B C
1 P Q R
1 X Y Z

2v 2 v v

1

2

3

4

σ σ
Γ
Γ
Γ
Γ

Then, according to rule (iv), the orthogonality condition is applied.

n  (R), (R) 0i j.χ χ =∑

It means sum of the product of the characters under two irreducible repre-
sentations along with order of that class should be equals to zero.
Considering orthogonality of Γ1 and Γ2, we have:

For Γ1.Γ2 = �nE.χ1 (E).χ2 (E) + n.χ1 (C2).χ2 (C2) + n.χ1 ((σv (xz)).χ2 
((σv (xz)) + n.χ1 ((σv (yz)).χ2 ((σv (yz)) = 0

In this case, n for each class is equal to one, and therefore, 

1.1.1 + 1.1.A + 1.1.B + 1.1.C = 0

1 + A + B + C = 0
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It is possible only, when out of remaining three characters one character is 
+1 and the other two are –1.
Let A = 1 and B = C = –1, then
1 + 1 + (–1) + (–1) = 0
In the same manner, 

For Γ1.Γ3 = �n.χ1 (E).χ3 (E) + n.χ1 (C2).χ3 (C2) + n.χ1 (σv (xz)).χ3 (σv (xz)) 
+ n.χ1 (σv (yz)).χ3 (σv (yz)) = 0

1.1.1 + 1.1.P + 1.1.Q + 1.1.R = 0

1 + P + Q + R = 0

Now this is only possible, when out of remaining three characters, one char-
acter is +1 and the other two are –1.
Let P = R = –1 and Q = +1
Then, 1 + (–1) + 1 + (–1) = 0
Similarly, 

Γ1. Γ4 = �n.χ1 (E).χ4 (E) + n.χ1 (C2).χ4 (C2) + n.χ1 (σv (xz)).χ4 (σv (xz)) + n.χ1 
(σv (yz).χ4 (σv (yz)) = 0

1.1.1 + 1.1.X + 1.1.Y + 1.1.Z = 0

1 + X + Y + Z = 0

Again, it is possible, if

X = Y = –1 and Z = +1

So that 1 + (–1) + (–1) + 1 = 0
Finally, character table for C2v point group can be written as:

C E   C   (xz)   (yz)
1    1    1    1
1    1
1    

2v 2 v v

1

2

3

σ σ
Γ
Γ
Γ

− −
−

1 1
1 11

1    14

−
− −

1
1 1Γ
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5.2.2  C3V GROUP

Step 1: It consists of following six elements, i.e., E, C3
+, C3

–, σv (a), σv (b), 
σv (c) and the classes are – E, 2 C3, and 3 σv. Hence, according to rule (i), there 
are three irreducible representations for this group as there are three classes.

C E  2 C 3 3v 2 v

1

2

3

σ
Γ
Γ
Γ

Step 2: The order of this group is equal to number of elements in this group, 
i.e., six and hence, h = 6. If we denote their dimensions by l1, l2 and l3; then, 
according to rule (ii), we have

l1
2 + l2

2 + l3
2 = 6

The only values of li, which satisfy these requirements are 1, 1 and 2.

i.e.,	 12 + 12 + 22 = 6

As the dimension of representation is equal to the character of the identity 
operation of irreducible representation. Therefore, 

E1 = l1 = 1

E2 = l2 = 1

E3 = l3 = 2

E     2 C   3 
1
1
2

3 v

1

2

3

σ
Γ
Γ
Γ

It mean l1 and l2 are one dimensional and l3 is two dimensional.
Thus, these values will also satisfy rule (ii), i.e.,  [  (E)] hi

2χ =∑
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Step 3: In any group, always there will be a one-dimensional representation, 
whose all characters are equal to 1. Thus, we have χ1 = χ2 = χ3 = 1.

C E 2 C 3 
1
1
2

3v 3 v

1

2

3

σ
Γ
Γ
Γ

1 1

For Γ1

(1)2 + 2 (1)2 + 3 (1)2 = 6

It will satisfy rule (iii), i.e.,

[  (R)] hi
2

R
χ =∑

Step 4: According to rule (iv), the Γ2 should be orthogonal to Γ1. It means 
that, one out of both the characters χ (C3) and χ (σv) must have negative value 
so that the condition of orthogonality can be satisfied. The only possibility 
seems to satisfy this condition is χ (C3) = + 1 and χ (σv) = –1

C E 2 C 3 
1 1 1
1 1 1
2

3v 3 v

1

2

3

σ
Γ
Γ
Γ

−

This will satisfy the rule (iv), i.e.,

n  (R)  (R) 0i j
R

χ χ =∑
= 1 (1) (1) + 2 (1) (1) + 3 (1) (–1)

= 1 + 2–3 = 0

Now our third representation Γ3 is of dimension 2, i.e., χ3 (E) = 2. In order 
to find out the values of χ3 (C3) and χ3 (σv), we make use of orthogonality 
relationship according to rule (iv).

χ χ1 3R R( ) ( )∑
R

 = 1 (1) (2) + 2 (1) [χ3 (C3)] + 3 (1) [χ3 (σv)] = 0
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χ χ2 3R R( ) ( )∑
R

 = 1 (1) (2) + 2 (1) [χ3 (C3)] + 3 (–1) [χ3 (σv)] = 0

Solving these

	 2 χ
3 (C3) + 3 χ

3 (σv) = –2	  (5.10)

	 2 χ
3 (C3) – 3 χ

3 (σv) = –2	  (5.11)

Addition of Eqs. (5.10) and (5.11) gives:

4 χ
3 (C3) = –4

χ
3 (C3) = –1

Putting this value of χ3 (C3) in Eq. (5.10), we get

2 (–1) + 3 χ
3 (σv) = –2

3 χ
3 (σv) = 2–2 = 0

or	 χ
3 (σv) = 0

Thus, the complete set of characters of the irreducible representations of 
group C3v is:

C E C  
   1    1    1
   1 1 1

1    0

2v 3 v

1

2

3

2 3

2

σ
Γ
Γ
Γ

−
−

We may note here that there is still a check on the correctness of Γ3. According 
to rule (ii), the expression [χi (R)]2 = h must be satisfied. Putting the values, 
we see that this is true.

1 (2)2 + 2 (–1)2 + 3 (0)2 = 6

5.3  PRESENTATION OF CHARACTER TABLES

When the motion of a molecule belonging to a particular point group is rep-
resented in the form of transformation matrices, then it can be arranged in a 
tabular form. Such a table is called the character table of a particular point group. 
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Character table is formed by mathematical technique, which is based on the 
properties of irreducible representation using several special basis sets. One can 
derive many useful information about different properties of a molecule from 
the character tables, like hybridization, crystal field theory, modes of fundamen-
tal vibrations, IR and Raman activity, bond order, delocalization energy, free 
valency, bond length, etc.
In general, the character table can be divided in six different areas as:

I II
III IV V VI

Different areas of the character table have been assigned Roman numerals 
for differentiation:
Area I: It gives Schoenflies notation for the point group.
Area II: It lists the distinct elements of the group in the form of classes.
Area III: It lists the special symbols, used to designate the irreducible repre-
sentation, which are known as Mulliken symbols. They provide information 
in an extremely concise form about the nature of irreducible representation. 
Their meaning are as follows:

	 (i)	 All one dimensional irreducible representations are designated with 
A and B, all two dimensional representations as E, three dimensional 
representations as T or F and so on.

	(ii)	 One dimensional irreducible representation is labeled as A, if it 
is symmetric with respects to rotation about the proper principal 
axis Cn (Symmetric means χ (Cn) = + 1), but if it is antisymmetric 
with respect to rotation about Cn (i.e., χ (Cn) = –1), then it is des-
ignated is B.

	(iii)	 If the irreducible representation is symmetric with respect to rota-
tion about a C2 axis perpendicular to Cn or symmetric with respect to 
reflection in a σv plane, a subscript one (1) is attached to A and B to 
give A1 and B1. If it is antisymmetric in this respect, a subscript two 
(2) is attached to A and B to give A2 and B2.

	(iv)	 Primes (') and double primes ('') are attached to those representa-
tions, which are symmetric and antisymmetric, respectively with 
respect to reflection in a σh plane.
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	(v)	 Finally, subscript g (German gerade = even) and u (ungerade = 
uneven) are given to representations, which are symmetric and anti-
symmetric, respectively with respect to center of symmetry (i).

	(vi)	 The use of numerical subscript for E’s and T’s also follows certain 
rules, but these cannot be that easily stated.

Area IV: It consists of character for irreducible representation correspond-
ing to class.
Area V: It shows the irreducible representation for which the coordinates 
x, y and z as well as the rotations about the axis specified in the subscripts, 
i.e., Rx, Ry and Rz provide the bases.
Area VI: It lists how the functions corresponding to the binary combina-
tions of x, y and z provide bases for certain irreducible representations?

5.3.1  CHARACTER TABLE FOR C2V POINT GROUP

Area I: Its Schoenflies notation is C2v.
Area II: It lists the distinct classes of group for C2v point group. These are

C2v = {E, C2, σv (xz), σv (yz)}

Area III: It contains Mulliken symbols. All the irreducible representations 
of C2v are one dimensional. They are designated as A or B. In order to dif-
ferentiate these representations, we proceed to the next operation, i.e., C2, in 
this point group. It may be seen that Γ1 and Γ2 are symmetric with respect to 
rotational axis C2. Since χ (C2) = + 1. Hence, these are designated as A. The 
other two representations Γ3 and Γ4 are antisymmetric with this respect to C2, 
i.e., χ (C2) = –1, and hence, both of these are labeled as B.

Γ1 and Γ2 can be further differentiated with respect to the reflection plane 
σv (xz). Γ1 is symmetric with respect to reflection plane; σv (xz) = + 1 and 
hence, it is designated as A1 whereas Γ2 is designated as A2 as it is antisym-
metric with respect to reflection plane σv (xz). Similarly, Γ3 and Γ4 can be 
differentiated by σv (xz). Γ3 is symmetric and it is designated as B1 whereas 
Γ4 is antisymmetric and hence, it is designated as B2.
Area IV: It gives the characters for irreducible representation of each class, 
which have already been calculated with the help of great orthogonality the-
orem earlier.
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A A
A A
B A
B A

C E C (xz) (xz)
1    1    1    1
1   

1

2

1

2

2v 2 v v

1

2

← ←
← ←
← ←
← ←

σ σ
Γ
Γ   1 1 1

1 1    1 1
1 1 1    1

3

4

− −
− −
− −

Γ
Γ

Area V: It represents translational coordinates x, y, z as well as rotation 
axes Rx, Ry and Rz. For assigning Cartesian coordinates, all symmetry opera-
tions are performed with each irreducible representation. Then characters 
are written, if unchanged then +1 and inverted, then –1.

Consider a vector along Z-axis. The E, C2, σv (xz) and σv (yz) do not 
change the direction of head of vector. Hence, character of Z vector is 1, 
1, 1, 1. Character of Z vector matches with the irreducible presentation A1. 
Similar operations along X and Y vectors belong to irreducible representa-
tion B1 and B2, respectively.

Vector E C2 σv (xz) σv (yz) Symbol

z 1 1 1 1 A1

y 1  –1  –1 1 B2

x 1  –1 1  –1 B1

For assignment of Rx, Ry and Rz, a curved arrow should be considered around 
the axis and all symmetry operations are to be performed along this arrow. 
If direction of head of arrow does not change after operation, the character 
is +1 and if it becomes opposite, then the character is –1. Character of Rx, Ry 
and Rz matches the irreducible representation of B2, B1 and A2, respectively.

E C2 σv (xz) σv (yz) Symbol

1  1 –1 –1 A2
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E C2 σv (xz) σv (yz) Symbol

1 –1  1 –1 B1

1 –1 –1  1 B2

Area VI: It shows binary coordinates. It can be obtained by product of two 
Cartesian coordinates.

E C2 σv (xz) σv (yz)

x 1 –1  1 –1
y 1 –1  –1  1
z 1  1 1  1

E C2 σv (xz) σv (yz) Symbol

x.x 1.1 = 1 –1. –1 = 1  1. 1 = 1 –1. –1 = 1 A1

x.y 1.1 = 1 –1. –1 = 1  1. –1 = –1 –1. 1 = –1 A2

x.z 1.1 = 1 –1. 1 = –1  1. 1 = 1 –1. 1 = –1 B1

y.z 1.1 = 1 –1. 1 = –1 –1. 1 = –1  1. 1 = 1 B2

Now character table of C2v point group is given by –

C2v E C2 σv (xz) σv (yz)

A1 1  1  1  1 z x2, y2, z2

A2 1  1 –1 –1 Rz xy
B1 1 –1  1 –1 x, Ry xz
B2 1 –1 –1  1 y, Rx yz

5.3.2  CHARACTER TABLE OF C3V POINT GROUP

Area I: Its Schoenflies notation is C3v.
Area II: It lists the distinct classes of point group C3v. These are C3v = {E, 
2 C3, 3 σv}.
Area III: It contains Mulliken’s symbols. The characters of identity operation 
having one dimension for Γ1 and Γ2 whereas Γ3 represents two dimensional 
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representation. Hence, Γ1 and Γ2 both are represented either by symbol A 
or B while Γ3 is represented by E. Both Γ1 and Γ2 representation are sym-
metric with respect to proper axis C3 and, hence, designated as A. Now, we 
should differentiate Γ1 and Γ2 representation. For this, we proceed to next 
symmetry operation, σv. Γ1 is symmetric with respect to σv plane and hence, 
designated as A1 whereas Γ2 is represented as A2 because it is antisymmetric 
with respect to σv.
Area IV: It gives the character for irreducible representation of each class.
Area V: It represents translational coordinates x. y and z as well as rotational 
axes Rx, Ry and Rz.

The vector along Z-axis remains unchanged with respect to E, C3 and σv 
operation. Hence, its characters are 1, 1, and 1, which belong to irreducible 
representation of A1.

Vectors along x and y coordinates are not independent of each other while 
performing irreducible representation of two-dimension, i.e., E.

Similarly, rotational axis Rz can be designated as a curve arrow around 
Z-axis. During operation E and C3, the direction of head of arrow remained 
same, while its direction changes after operation σv. Hence, the characters 
are 1, 1, and –1, which are similar to the irreducible representation of A2. 
Ry and Rz form a two-dimensional representation and, hence, these belong to 
irreducible representation E.
Area VI: It shows binary coordinates. It can be obtained, by product of 
Cartesian coordinates, which one can calculate as –

E 2 C3 3 σv Symbol

x.y 2 –1 0 E
z 1  1 1
x.z 2 –1 0 E
y.z 2 –1 0 E
z2 1  1 1 A1

The character table of C3v is:

C3v E 2 C2 3 σv

A1 1 1 1 z x2 + y2, z2

A2 1 1  –1 Rz

E 2  –1 0 (x, y) (Rx, Ry) (x2 – y2, xy) (xz, yz)
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5.3.3  CHARACTER TABLE FOR C2h POINT GROUP

Area I: Its Schoenflies notation is C2h.
Area II: It lists the distinct classes of C2h point group. These are C2h = 
{E, C2, i, σh}.
Area III: It represents Mulliken symbols. All the irreducible representa-
tions of C2h group are one dimensional. These are designated as A or B. In 
order to differentiate between these representations, we proceed to the next 
operation, i.e., C2, in the present case. It is shown that Γ1 and Γ3 are sym-
metric with respect to rotational axis C2, since χ (C2) = + 1. Hence, they are 
designated as A, while other two representations Γ2 and Γ4 are antisymmetric 
with this respect to C2, i.e., χ (C2) = –1, and thus, these can be labeled as B.

Γ1 and Γ2 can be further differentiated using symmetry with respect to 
inversion center (i). Γ1 is symmetric with respect to inversion center and 
therefore, it is represented as Ag (g = gerade) whereas Γ3 is designated as 
Au (ungerade), due to its antisymmetric character with respect to inversion 
center. Similarly, Γ2 and Γ4 can also be differentiated using symmetry with 
respect to inversion center and these are designated as Bg and Bu, respectively.
Area IV: It gives the characters for irreducible representation of each class 
operation, which has been already calculated with the help of great orthogo-
nality theorem.
Area V: It represents translational coordinates (x, y, z) as well as rotational axes 
Rx, Ry, and Rz. For assigning Cartesian coordinates, all symmetry operations are 
performed with each irreducible representation. Then characters are written, if 
it remain unchanged, i.e., χ (R) = + 1 and if it inverts, then χ (R) = –1.

Considering vector along Z axis, E and C2, operations on this vector do not 
change the direction of its head. But operations i and σh inverts the vector z. 
Hence, character of z vector is 1, 1, –1, –1 and it matches the irreducible presen-
tation of Au. Similar operations along x and y vectors also belong to irreducible 
representation of Bu as the operations E and σh do not change the direction of 
vectors while operations C2 and i give the opposite vectors.

For assignment of Rx, Ry and Rz, a curved arrow should be considered 
around the axis and all symmetry operations are performed along this. If 
the direction of head of arrow does not change after operation, the character 
is +1 and if it becomes opposite after that operation, the character is –1. 
Characters of Rx and Ry match the irreducible representation of Bg, while Rz 
matches to Ag representations.



150	 Chemical Applications of Symmetry and Group Theory

Area VI: It shows binary coordinates. These can be obtained by products of 
two Cartesian coordinates.

Now complete character table of C2h is given by.

C2h E C2  i σh

Ag 1  1  1  1 Rz x2, y2, z2, xy
Bg 1 –1  1 –1 Rx, Ry xz, yz
Au 1  1 –1 –1 z
Bu 1 –1 –1  1 x, y
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The concept of hybridization of orbitals, i.e., mixing the atomic orbitals 
(AOs) having relatively closer energy and their redistribution into equiva-
lent hybrid orbitals, was introduced to explain the tetracovalency of carbon 
in methane. Hybridization in the case of methane (CH4) is sp3. Other kinds 
of hybridization are also known, i.e., sp, sp2, sp3d, sp3d2, sp3d3, dsp2, etc. This 
concept of hybridization can be given a mathematical background on the 

HYBRIDIZATION
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basis of group theory and one can prove that there is a measure contribution 
of sp3 hybridization in methane.

6.1  HYBRIDIZATION

Construction of hybrid orbitals can be divided into two parts:

•	 Determination of appropriate AO’s of the central atom, which on com-
bination will give the hybrid orbitals of the desired symmetry of mol-
ecule/ion and

•	 Actual determination of the hybrid orbitals as a function of linear com-
bination (LCAO) of AOs including the values of the coefficients in it.

The subscript of an orbital symbol indicates that how an atomic orbital 
is transformed? These are Cartesian coordinates or their binary products, 
which are given in the character table of the point group to which the mol-
ecule/ion belongs. Hence, AOs can be selected on the basis of the repre-
sentation properties of the subscripts, such as x, y, z, representing px, py, pz 
orbitals, respectively.

6.2  CONSTRUCTION OF SIGMA HYBRID ORBITALS

The hybrid orbitals, which form sigma bonds, can be treated as vectors. 
These form the basis of representation.

	 (i)	 Point group of the molecule/ion is decided.
	(ii)	 All symmetry operations of the class of the point group are 

performed.
	(iii)	 Matrices are constructed to represent these operations.
	(iv)	 Character of each symmetry operation of the class is written under 

its column. This is reducible representation of molecule/ion.
	(v)	 Now, reducible representations (R) are reduced to irreducible repre-

sentation (IRs) using reduction formula:

ai = Σ nR χ (R) χi (R)

Each IR so obtained, points to the transformation properties of the Cartesian 
coordinate mentioned against each IR in the extreme right column of the 
character table. This gives the AOs to form the hybrid orbitals.
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6.2.1  TRIGONAL PLANAR MOLECULE AB3 (BF3)

It has three vectors r1, r2, and r3 corresponding to each B-F bond. This 
molecule belongs to D3h point group.

Its molecular formula and the geometry suggest that it is necessary to 
construct three equivalent orbitals of boron (central atom) to form three 
σ-bonds pointing along the directions of B-F bonds. These three equivalent 
orbitals form a basis of representation. The character χ (R) is equal to sum of 
the diagonal characters of the matrix.

Operation Matrix 
notation

Characters  χ (R)

E r1 = 1.r1 + 0.r2 + 0.r3

r2 = 0.r1 + 1.r2 + 0.r3

r3 = 0.r1 + 0.r2 + 1.r3

1 0 0
0 1 0
0 0 1

















3

C3 (z) r1 = 0.r1 + 1.r2 + 0.r3

r2 = 0.r1 + 0.r2 + 1.r3

r3 = 1.r1 + 0.r2 + 0.r3

0 1 0
0 0 1
1 0 0

















0

C2 (x)

or σv (x)

r1 = 1.r1 + 0.r2 + 0.r3

r2 = 0.r1 + 0.r2 + 1.r3

r3 = 0.r1 + 1.r2 + 0.r3

1 0 0
0 0 1
0 1 0

















1

σh r1 = 1.r1 + 0.r2 + 0.r3

r2 = 0.r1 + 1.r2 + 1.r3

r3 = 0.r1 + 0.r2 + 1.r3

1 0 0
0 1 0
0 0 1

















3

S3 (z) = σh.C3 (z); since χ C3 (z) = 0 and hence, S3 (z) = 0.
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Therefore, reducible representation for this case is given by:

D E 2 C (z) 3 C 2 S 3 
(R) 3 0 1 3 0 1
3h 3 2 h 3 vσ σ

Γσ

Here, some general rules are used to determine the character of matrices 
corresponding to a given symmetry operation.

(i)	 The vector, which shifts its position, contributes zero (0).
(ii)	 The vector, which does not shifts contributes one (1).
(iii)	 The vector, which rotates from its position contributes cos θ, where 

θ is the angle of rotation.
Character table for point group D3h is:

D E 2 C 3 C 2 S 3 
A ' 1    1 1 1 1 1 x y ,z
A ' 1    1 1 1 1 1 R

3h 3 2 h 3 v

1
2 2 2

2 z

σ σ
+

− −
EE' 2 1 0 2 1 0 (x, y) (x y ,xy)

A " 1 1 1 1 1 1
A " 1 1 1 1 1 1 z
E" 2 1 0 2

2 2

1

2

− − −
− − −

− − −
− 11 0 (R ,R ) (xy, yz)

(R) 3 0 1 3 0 1
x y

Γσ

Using reduction formula:

aA1’ = �1
12

 (1 × 1 × 3 + 2 × 1 × 0 + 3 × 1 × 1 + 1 × 1 × 3 + 2 × 1 

× 0 + 3 × 1 × 1) = 1

aA2’ = �1
12

 (1 × 1 × 3 + 2 × 1 × 0 + 3 × –1 × 1 + 1 × 1 × 3 + 2 × 1 

× 0 + 3 × –1 × 1) = 0

aE’ = �1
12

 (1 × 2 × 3 + 2 × –1 × 0 + 3 × 0 × 1 + 1 × 2 × 3 + 2 × –1 

× 0 + 3 × 0 × 1) = 1

aA1” = �1
12

 (1 × 1 × 3 + 2 × 1 × 0 + 3 × 1 × 1 + 1 × –1 × 3 + 2 × –1 

× 0 + 3 × –1 × 1) = 0
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aA2” = �
1

12
 (1 ×1 × 3 + 2 × 1 × 0 + 3 × –1 × 1 + 1 × –1 × 3 + 2 × –1 

× 0 + 3 × 1 × 1) = 0

aE” = �
1

12
 (1 × 2 × 3 + 2 × 1 × 0 + 3 × 0 × 1 + 1 × –2 × 3 + 2 × 1 

× 0 + 3 × 0 × 1) = 0

Thus, reducible representation can be reduced as:

Γσ (R) = 1.A1′ + 0.A2′ + 1.E′ + 0.A1'' + 0.A2'' + 0.E''

or	 Γσ (R) = A1′ + E′

These representations represent orbitals. Cartesian coordinates x, y and z in 
character table represents px, py and pz, respectively. Similarly (x2 + y2), z2, 
(x2 – y2), xy, yz, xz represent s, d

z2, dx y2 2−
, dxy, dyz and dxz orbital, respectively.

A1′	 E′
s	 px, py

d
z2	 d

x y2 2−
, dxy

Thus, there are four possible combination; s.px.py; s.dx
2
–y

2.dxy; dz
2.px.py and 

d
z2·dx y2 2−

·dxy.
Total wave function is the linear combination of all these possibilities.

ψσ = a (sp2) + b (sd2) + c (dp2) + e (d3)

where a, b, c and e are coefficients of these hybrial orbitals, indicating their 
contribution in formation of hybrid orbitals. Values of coefficients can be 
determined by using variation method. In this case, the values of b, c and e 
coefficients are much less and these are considered negligible. Secondly, the 
last three terms involve the participation of d orbitals, which has no signifi-
cance in boron atom as there are no d orbitals and therefore, their contribu-
tion is almost zero. Thus, resultant hybridization of BF3 molecule can be 
represented as:

ψ
BF3

 = sp2
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6.2.2  SQUARE PLANAR ION AB4 [PTCL4]
2–

It has four vectors r1, r2, r3 and r4 corresponding to each Pt – Cl bond. This 
ion belongs to D4h point group.

Molecular formula and the geometry of this ion suggest that it is neces-
sary to construct four equivalent orbitals of Pt (central) atom to form four 
σ-bonds pointing along the direction of Pt – Cl bonds. These four equivalent 
orbitals form a basis of representation. The character χ (R) is equal to sum of 
the diagonal characters of the matrix.

Operation Matrix notation Characters χ (R)

E r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















4

C4 (z) r1 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r4 = 1.r1 + 0.r2 + 0.r3 + 0.r4

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



















0

C2 (z) r1 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



















0

C2′ r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



















2
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Operation Matrix notation Characters χ (R)

C2” r1 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r2 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r4 = 0.r1 + 0.r2 + 1.r3 + 0.r4

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



















0

i r1 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



















0

σh r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















4

S4 (z) = σh.C4 (z) = σh.0 = 0

	 σv are along C2′ and hence, χ (R) = 2	

	 σd are along C2” and hence, χ (R) = 0	

Therefore, reducible representations for this ion are:

D E 2 C C 2 C ' 2 C " i 2 S 2 2 
(R) 4 0 0 2 0 0 0 4 2 0
4h 4 2 2 2 4 h v d

Ã

σ σ σ
Γ

The character table for point group D4h is:

D E 2C   C 2C '    2C "   i 2S 2 2
A 1   1     1   1   1   1  

4h 4 2 2 2 4 h V d

1g

σ σ σ
  1   1   1   1 x , y ,z

A 1   1     1 1 1   1   1   1 1 1 R
B 1 1  

2 2 2

2g z

1g

− − − −
−     1   1 1   1 1   1   1 1 x y

B 1 1     1 1   1   1 1   1 1   1 x

2 2

2g

− − −
− − − −

−
yy

E 2   0 2   0   0   2   0 2   0   0 (R ,R ) (xz, yz)
A 1   1     1   

g x y

1u

− −
11   1 1 1 1 1 1

A 1   1     1 1 1 1 1 1   1   1 z
B 1 1     1   1

2u

1u

− − − − −
− − − − −

− −− − − −
− − − − −

−

1 1    1 1 1   1
B 1 1     1 1   1 1    1 1    1 1
E 2   0 2   0  

2u

u   0 2    0   2    0   0 (x, y)−
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Using reduction formula

aA1g = �
1

16
[1 × 1 × 4 + 2 × 1 × 0 + 1 × 1 × 0 + 2 × 1 × 2 + 2 × 1 × 0 + 1 × 

1 × 0 + 2 × 1 × 0 + 1 × 1 × 4 + 2 × 1 × 2 + 2 × 1 × 0] = 
1

16
× = 1

aA2g
 = �

1
16

[1 × 1 × 4 + 2 × 1 × 0 + 1 × 1 × 0 + 2 × –1 × 2 + 2 × –1 × 0 + 

1 × 1 × 0 + 2 × 1 × 0 + 1 × 1 × 4 + 2 × –1 × 2 + 2 × –1 × 0] = 0

aB1g
 = �

1
16

 [1 × 1 × 4 + 2 × –1 × 0 + 1 × 1 × 0 + 2 × 1 × 2 + 2 × –1 × 0 

+ 1 × 1 × 0 + 2 × –1 × 0 + 1 × 1 × 4 + 2 × 1 × 2 + 2 × –1 × 0] = 1

aEg
 = �

1
16

 [1 × 2 × 4 + 2 × 0 × 0 + 1 × –2 × 0 + 2 × 0 × 2 + 2 × 0 × 0 + 

1 × 2 × 0 + 2 × 0 × 0 + 1 × –2 × 4 + 2 × 0 × –2 + 2 × 0 × 0] = 0

aEu
 = �

1
16

 [1 × 2 × 4 + 2 × 0 × 0 + 1 × –1 × 0 + 2 × 0 × 2 + 2 × 0 × 0 

+ 1 × 2 × 0 + 2 × 0 × 0 + 1 × 2 × 4 + 2 × 0 × 2 + 2 × 0 × 0] = 1

Similarly, B2 g = A1u = A2u = B1u = B2u = 0
Thus, reducible representation for this case can be reduced as:

Γσ (R) = �1.A1 g + 0.A2 g + 1.B1 g + 0.B2 g + 0.Eg + 0.A1u + 0.A2u + 0.B1u + 
0.B2u + 1.Eu

or	 Γσ (R) = A1 g + B1 g + Eu

These representations represent orbitals. Cartesian coordinates x, y, and 
z in character table respresent px, py and pz, respectively. Similarly x2+ y2, z2 
and x2–y2 represent s, dz

2 and dx
2
–y

2 orbitals, respectively.

A1 g	 B1 g	 Eu
s	 d

x y2 2−
	 px, py

d
z2

Thus, there are two possible combinations. There are:

s, d
x y2 2−

.px.py and d
z2.dx y2 2−

.px.py
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Total wave function is the linear combination of all these possibilities.

ψσ = a (dsp2) + b (d2p2)

where a and b are coefficient of these hybrid orbitals and values of these 
coefficients can be determined by variation method. The value of b was 
found negligible and therefore, resultant hybridization of [PtCl4]

2– is:

ψ
PtCl42– = dsp2

6.2.3  TETRAHEDRAL MOLECULE AB4 (CH4)

CH4 molecule has 4 vectors r1, r2, r3 and r4 corresponding to each C-H bond. 
This molecule belongs to Td point group.

Its molecular formula and geometry suggest that it is necessary to con-
struct four equivalent orbitals of carbon atom (central atom) to form four 
σ-bonds pointing along the directions of C-H bonds. These four equivalent 
orbitals form a basis of representation. The character χ (R) is equal to the 
sum of the diagonal characters of the matrix. 

Operation Matrix notation Characters χ (R)

E r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















4

C2 r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



















1
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Operation Matrix notation Characters χ (R)

C2 (x) r1 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r3 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r4 = 1.r1 + 0.r2 + 0.r3 + 0.r4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



















0

σd (along 
CH1H2)

r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4

r3 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r4 = 0.r1 + 0.r2 + 1.r3 + 0.r4

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



















2

S4 (x) r1 = 0.r1 + 0.r2 + 1.r3 + 0.r4

r2 = 0.r1 + 0.r2 + 0.r3 + 1.r4

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



















0

Therefore, reducible representations for this case are:

T E 8 C 3 C 6 S 6 
(R) 4 1 0 0 2

d 3 2 4 d

Ã

σ
Γ

Character table of Td group point is:

T E 8 C 3 C 6 S 6 
A 1   1    1   1   1 x   y   z
A 1   1    1

d 3 2 4 d

1
2 2 2

2

σ
+ +

−11 1
1 1
1 1

−
− − − − −
− −

E 1    1   1 (2z x y , x  y )
T 1    1   1 (R , R ,

2 2 2 2 2

1 x y   R )
T 2   0   0   0 (x, y, z) (xy, xz, yz)

z

2 −2

Using reduction formula:

aA1
	= �

1
24

 [1 × 1 × 4 + 8 × 1 × 1 + 3 × 1 × 0 + 6 × 1 × 0 + 6 × 1 × 

2] = 1

aA2
	= �

1
24

 [1 × 1 × 4 + 8 × 1 × 1 + 3 × 1 × 0 + 6 × –1 × 0 + 6 × –1 × 

2] = 0
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aE	 = �
1
24  [1 × 2 × 4 + 8 × – 1 × 1 + 3 × 2 × 0 + 6 × 0 × 0 + 6 × 0 × 

2] = 0

aT1
	= �

1
24

 [1 × 3 × 4 + 8 × 0 × 1 + 3 × –1 × 0 + 6 × 1 × 0 + 6 × –1 

× 2 = 0

aT2
	= �

1
24

 [1 × 3 × 4 + 8 × 0 × 1 + 3 × –1 × 0 + 6 × –1 × 0 + 6 × 1 

× 2] = 1

Thus, reducible representation for this case can be reduced as:

Γσ (R) = 1.A1 + 0.A2 + 0.E + 0.T1 + 1.T2

or	 Γσ (R) = A1 + T2

These representations represent orbitals. Cartesian coordinates x, y, and z 
represent px, py and pz, respectively. Similarly, x2 + y2 + z2, xy, yz and xz 
represent s, dxy, dyz and dxz, respectively.

A1	 T2
s	 (px, py, pz)
	 (dxy, dyz, dxz)

Hence, there are only two possibilities of combinations. These are s, px, py, 
pz and s, dxy, dyz, dxz. Total wave function is a linear combination of these two 
possibilities.

ψσ = a (sp3) + b (sd3)

where a and b are coefficients and values of these coefficients can be calcu-
lated by variation method. The value of coefficient b is negligable as there 
is no significant contribution of d orbitals in carbon atoms (d orbitals are not 
there in the ground state of carbon) and therefore, sd3 will not contribute in 
hybridization and resultant hybridization of CH4 molecule is represented as:

ψ
CH4

 = sp3
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6.2.4  TRIGONAL BIPYRAMIDAL MOLECULE AB5 (PCl5)

It has five vectors r1, r2, r3, r4 and r5 corresponding to each P-Cl bond. This 
molecule also belongs to D3h point group.

Phosphorous atom forms five equivalent hybrid orbitals to form five σ-bonds 
pointing along bond directions of P-Cl. These five equivalent hybrid orbitals 
form a basis of representation. The character χ (R) is equal to the sum of the 
diagonal characters of the matrix. 

Operation Matrix notation Characters 
χ (R)

E r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1























5

C3 r1 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1























2

C2 r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r3 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0























1
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Operation Matrix notation Characters 
χ (R)

σh r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0























3

C2 (x) r1 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0























1

σd r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5

r3 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1























3

The characters of S3 = σh.C3 = 0 because all the vectors shift from their origi-
nal positions. Therefore, reducible representation for this case is:

D E 2 C 3 C 2 S 3 
(R) 5 2 1 3 0 3
3h 3 2 h 3 dσ σ

Γσ

Character table of D4h point group is:

D E  2C  2C   2S 3
A ' 1   1   1   1    1   1 x y ,z
A ' 1   1

3h 3 2 h 3 v

1
2 2 2

2

σ σ
+

−11   1    1 1 R
E' 2 1   0   2 1   0 (x, y) (x y , xy)
A " 1   1   1 1 1

z
2 2

1

−
− − −

− − −−
− − −

− −

1
A " 1   1 1 1 1   1 z
E" 2 1   0 2    1 (R ,R ) (xz, yz)

2

x y0
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Using reduction formula

aA1′ = �[1 × 1 × 5 + 2 × 1 × 2 + 3 × 1 × 1 + 1 × 1 × 3 + 2 × 1 × 0 
+ 3 × 1 × 3] = 2

aA2′ = �[1 × 1 × 5 + 2 × 1 × 2 + 3 × –1 × 1 + 1 × 1 × 3 + 2 × 1 × 0 
+ 3 × –1 × 3] = 0

aE′ = �[1 × 2 × 5 + 2 × –1 × 2 + 3 × 0 × 1 + 1 × 2 × 3 + 2 × –1 × 0 
+ 3 × 0 × 3] = 1

aA1
′′ = �[1 × 1 × 5 + 2 × 1 × 2 + 3 × 1 × 1 + 1 × –1 × 3 + 2 × –1 × 0 

+ 3 × –1 × 3] = 0

aA2
′′ = �[1 × 1 × 5 + 2 × 1 × 2 + 3 × –1 × 1 + 1 × –1 × 3 + 2 × –1 

× 0 + 3 × 1 × 3] = 1

aE′′ = �[1 × 2 × 5 + 2 × –1 × 2 + 3 × 0 × 1 + 1 × –2 × 3 + 2 × 1 × 0 
+ 3 × 0 × 3] = 0

Thus, reducible representation for this case can be reduced as:

	 Γσ (R) = 2.A1′ + 0.A2′ + 1.E′ + 0.A1′′ + 1.A2′′ + 0.E′′	

	 Γσ (R) = 2 A1′ + E′ + A2′′	

These representations represent orbitals, Cartesian coordinates x, y and z 
represent px, py and pz respectively. Similarly,

	 A1′	 A2′′	 E′
	 s	 p

z
	 (px, py)

	 d
z2			   (dxy, dx y2 2−

)

A1′ occur twice in Γσ (R) and hence, following six combinations are possible.

	 (i)	 s, s, pz, px, py
	(ii)	 s, d

z2, pz, px, py
	(iii)	 d

z2, dz
2, pz, px, py

	(iv)	 s, s, pz, dxy, dx y2 2−
	(v)	 s, d

z2, pz, dxy, dx y2 2−
	(vi)	 d

z2, dz2, pz, dxy, dx y2 2−
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Total wave function is a linear combination of all these possibilities:

ψσ = a (s2p3) + b (sp3d) + c (d2p3) + e (s2pd2) + f (spd3) + g (pd4)

where a, b, c, e, f and g are coefficients of these hybrid orbitals and values 
of these coefficients can be determined by variation method. The values of 
coefficients of a, b, c, e, f and g are negligibly small and therefore, resultant 
hybridization of PCl5 is

ψ 
PCl5

 = sp3d

6.2.5  OCTAHEDRAL MOLECULE AB6 (SF6)

It has six vectors r1 to r6 corresponding to each S-F bond. The molecule 
belongs to Oh point group.

Its molecular formula and geometry suggest that it is necessary to construct 
six equivalent hybrid orbitals of S atom to form six σ bonds along the direc-
tion of S-F bonds. These six equivalent orbitals form basis of representation. 
The character χ (R) is equal to the sum of diagonal characters of the matrix.

Operation Matrix notation Characters 
χ (R)

E r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r3 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5 + 0.r6

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5 + 0.r6

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5 + 0.r6

r6 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 1.r6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



























6
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Operation Matrix notation Characters 
χ (R)

C3 r1 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5 + 0.r6

r2 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5 + 0.r6

r3 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r4 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 1.r6

r5 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5 + 0.r6

r6 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0



























0

When C2 is in between bonds, in that case, all vectors shift from their posi-
tions and hence, the character of C2 = 0 

C4 r1 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r2 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5 + 0.r6

r3 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5 + 0.r6

r4 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5 + 0.r6

r6 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 1.r6

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



























2

As C2 is coinciding with C4, its character will be 2

i r1 = 0.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5 + 0.r6

r2 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5 + 0.r6

r3 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r4 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 1.r6

r6 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5 + 0.r6

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



























0

But i = S4 = S6 and hence, character of S4 and S6 will also be 0, as the charac-
ter of i is zero. As σd also concides with C2, it character will also be 2

σh r1 = 1.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r2 = 0.r1 + 1.r2 + 0.r3 + 0.r4 + 0.r5 + 0.r6

r3 = 1.r1 + 0.r2 + 1.r3 + 0.r4 + 0.r5 + 0.r6

r4 = 0.r1 + 0.r2 + 0.r3 + 1.r4 + 0.r5 + 0.r6

r5 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 0.r5 + 1.r6

r6 = 0.r1 + 0.r2 + 0.r3 + 0.r4 + 1.r5 + 0.r6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0



























4
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Therefore, reducible representation for this case is:

O E 8 C 6 C 6 C 3 C i 6 S 8 S 3 6 
(R) 6 0 0 2 2 0 0 0 4 2
h 3 2 4 2 4 6 h dσ σ

Γσ

Character Table of Oh point group is:

O E 8 C   6 C 6 C 3C ( C )    i   6 S 8 S 3 6 
A 1    1   

h 3 2 4 2 4
2

4 6 h d

1g

= σ σ
  1    1        1    1     1    1    1    1 x y z

A 1    1 1 1   

2 2 2

2g

+ +
− −       1    1 1    1    1 1

E 2 1    0    0        2    2     0 1    g

− −
− − 22    0 (2z x y , x y )

T 3    0 1    1 1    3     1    0 1 1 (R

2 2 2 2 2

1g

− − −
− − − − xx y z

2g

1u

,R , R )
T 3    0    1 1 1    3 1    0 1    1 (xz, yz, xy)
A 1  

− − − −
   1    1    1        1 1 1 1 1 1

A 1    1 1 1        1 1     12u

− − − − −
− − − −11 1    1

E 2 1    0    0        2 2     0    1 2    0
T 3    0 1   

u

1u

−
− − −

−   1 1 3 1    0    1    1 (x, y, z)
T 3    0    1 1 1 3     1    0  2u

− − −
− − −    1 1−

Using reduction formula:

aA1g
	=	� 1

48
[1×1×6 + 8×1×0 + 6×1×0 + 6×1×2 + 3×1×2 + 1×1×0 

+ 6×1×0 + 8×1×0 + 3×1×4 + 6×1×2] = 1

aEg
	 =	� 1

48
 [1×2×6 + 8×–1×0 + 6×0×0 + 6×0×2 + 3×2×2 + 1×2×0 

+ 6×0×0 + 8×–1×0 + 3×2×4 + 6×0×2] = 1

aT1u
	=	� 1

48
 [1×3×6 + 8×0×0 + 6×–1×0 + 6×1×2 + 3×–1×2 

+ 1×–3×0 + 6×–1×0 + 8×0×0 + 3×1×4 + 6×1×2] = 1

aT1g
	=	� 1

48
 [1×1×6 + 8×1×0 + 6×–1×0 + 6×–1×2 + 3×1×2 + 

1× 1×1 + 6×–1×0 + 8×1×0 + 3×1×4 + 6×–1×2] = 0

Similarly aT2 g
 = aA1u

 = aA2u
 = aEu

 = aT2u
 = 0

Thus, reducible representation for this case can be reduced as:

Γσ (R) = �1.A1 g + 0.A2 g + 1.Eg + 0.T1 g + 0.T2 g + 0.A1u + 0.A2u 
+ 0.Eu + 1.T1u + 0.T2u

Γσ (R) = �A1 g + Eg + T1u
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These representations represent orbitals. Cartesian coordinates x, y and z 
in the character table represents px, py and pz orbitals, respectively. Similarly 
x2 + y2 + z2, x2–y2, 2z2–x2–y2, represents s, dx

2
–y

2 and dz
2 respectively

A1 g	 Eg	 T1u

s	 (dz
2, dx

2
–y

2)	 (px, py, pz)

By this, only one combination is possible for hybridization, i.e., sp3d2 and 
hence, hybridization in SF6 is sp3d2.

6.3  HYBRIDIZATION SCHEMES FOR p-BONDING

A similar principle is involved in the construction of π-hybrid orbitals as 
σ-hybrid orbitals. The basic difference between σ- and π-orbitals, from sym-
metry point of view, is that, the π-orbitals have nodal plane containing the bond 
axis, whereas σ-orbitals do not have nodal planes containing the bond axis.

6.3.1  PLANAR MOLECULE ION AB3 (BF3 OR NO3
–)

BF3 molecule belongs to D3h point group. The orbitals on the F-atoms suit-
able for π-BF bonds are px and py orbitals, since pz orbitals of the F-atoms 
are used for σ-bonding with sp2-hybrid orbitals of boron. It is known that 
px and py orbitals of the F-atoms are either perpendicular or parallel to the 
molecular plane. Hence, a maximum of two π AOs are permitted on each 
F-atom. We are now interested to know, which boron orbitals can overlap 
with those orbitals of fluorine atom to form π-perpendicular [π (⊥)] and 
π-parallel [π (||)] bonds. The same procedure is used for π-bonding as fol-
lowed for σ-bonding. The vectors representing the p-orbitals of the fluorine 
atoms, which are perpendicular and parallel to the molecular plane, are used 
to determine the characters of reducible representation of the system. The 
orientations of the six vectors attached to the fluorine atoms are:



Hybridization	 169

The rules used previously for the σ-systems are also applicable here with 
only one change. Here, one may find that if a vector inverts (may changes 
into its own negative vector) due to symmetry operation, it contributes –1 to 
the character of the class.

In D3h system, no symmetry operation interchanges an out-of-plane vec-
tor with an in-plane vector. Therefore, these two sets may be considered 
independently.

In case of Γ(π) in the plane for E, the three vectors in the plane remain 
unshifted and hence, contributes +3 to its character, while C3 shifts one vec-
tor into the other and therefore, χ (C3) = 0. C2 shifts each Γ(π) vector into 
its own negative and hence, χ (C2) = –1, while other two (π) vectors mutu-
ally exchange with each other. In case of σh, all the three (π) vectors remain 
unshifted and hence, χ (σh) = +3. Similarly, χ (S3) = 0 as χ (C3) = 0. As σv is 
similar to C2; hence, χ (σv) = – 1.

Thus, Γ(π) is:

D E 2 C 3 C     2 S  3 
3 0    3 0
3 0

3h 3 2 h 3 vσ σ
Γ
Γ

||

⊥

− −
− −

1 1
1 3 0 1

Similar pattern is followed with Γ(⊥), which differs in planes only. In case 
of σh, all the Γ(⊥) vectors are converted into their own negative vectors and 
thus, contributes – 1. Hence, χ (σh) = –3. σv causes two vectors to exchange 
mutually with each other and contributes zero, while one vector remains 
unshifted, i.e., χ (σv) = 1.

Thus, we get the total π orbitals representation by adding both represen-
tations, i.e., Γπ (⊥) + Γπ (||) and the results are as follows:

D E 2 C 3 C 2 S 3 
(R) 6 0 2 0 0 0
3h 3 2 h 3 ½σ σ

Γπ −

On reducing, Γ⊥ and Γ|| separately using character table of D3h point group 
and the reduction formula to obtain irreducible representations (IRs), one 
obtains:

Γ⊥ = A2″ + E″

Here	 A2″ = pz; E″ = (dxz, dyz), dx
2
–y

2
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Γ|| = A2′ + E′

Here	 A2′ = None; E′ = (px, py) and (dxy, dx
2
–y

2)

It is found from the character table of D3h, that atomic orbitals of A2″ 
symmetry, i.e., pz and E″ symmetry, i.e., dxz, dyz are appropriate for Γπ (⊥) 
representation (out-of-plane vectors) whereas atomic orbitals A2′ symmetry, 
i.e., none and E′ symmetry, i.e., px, py and dx

2
–y

2, dxy are appropriate for Γπ (||) 
representation (in-plane vectors).

Thus, in order to form π bonds ⊥ to the plane of molecule, the central 
atom B must use three hybrid orbitals; one transforming as A2” and two 
as E”. The orbitals having these transformation properties are A2” = pz and 
E” = (dxz, dyz). Therefore, only one combination is possible, i.e., pz + (dxy, dyz), 
which leads to pd2 hybrid. Thus, this gives a set of three equivalent hybrid 
orbitals for forming π (⊥) bonds.

The Γ|| set is found to have A2′ = none and E’ = (px, py) and (dx
2
–y

2; dxy). 
Hence, two sets (combination) are possible.

0 + px, py = p2

or	 0 + (dxy, dxz) = d2

Since there is no d-orbital on B atoms having suitable energy, and hence, 
in-plane π-bond cannot be formed. This result further suggests that only 2pz 
orbitals of boron will be available for one π (⊥) bond formation, because 2 
s, 2px and 2py orbitals are used to form a set of three σ-hybrid orbitals (sp2). 
This indicates that 2pz orbital of boron can be used to form a π-bond with 
2p orbital of any one of fluorine atom. This gives rise to three equivalent 
resonance structures for BF3.

The nonavailability of the A2′ orbitals does not mean that no π bonds 
can be formed, nor does it mean that only two bonds of the B-atom can 
be π bonded further. It only means that there can be only two π bonds 
shared equally among the three B atoms. This general situation, i.e., lack 



Hybridization	 171

of a  complete set of AOs to form a complete set of π-bonds arises very 
frequently in other systems also.

Thus, it can be concluded that, in AB3 type molecules, there are two pos-
sibilities by which central atom can form π-bond using its d-orbital having 
appropriate energy. These possibilities are:

•	 A set of 3π – (⊥) hybrid orbitals; and
•	 A set of 2π – (||) hydrid orbitals.

6.3.2  TETRAHEDRAL MOLECULE AB4

In order to have eight possible AB-π bonds, which from a basis of represen-
tation, we attach two vectors to each B atoms, along the direction ⊥ to the 
bonds and also ⊥ to each other as:

B2

B1

B4

B3

It can be noted that all the eight vectors are equivalent because they can be 
interchanged by symmetry operation (σd) of the tetrahedral molecule. The 
characters of the reducible representation for this system are obtained by 
carrying out all the symmetry operations. These vectors are:

T E 8 C 3 C 6 S 6 
(R) 8 0 0 0
d 3 2 4 dσ

Γπ −1

C3 operations have zero character because it shift all the six vectors at the 
corner of triangular face. When x and y vectors along the principal axis are 
rotated by 120°, then

x'
y'

x
y









 =

− −

−



























1
2

3
2

3
2

1
2
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χ (C )3 = −1
	

The reducible representation of Td can be reduced to sum of irreducible rep-
resentations using reduction formula, we get:

	 Γπ = E + T1 + T2	

Following s, p, and d orbitals belonging of the irreducible representations 
constituting Γπ are:

E = dx
2
–y

2, dz
2; T1 = None; T2 = px, py, pz and dxy, dyz, dzx

There AOs belonging to the same representations are required for both; 
σ- and π-bonding, σ hybridization required AOs of A1 and T2 symmetry. 
In situation like this, it is usually assumed that the σ-bond formation takes 
precedence over π-bond.

σ-hybrid

1

0

n

Set  I = s + px + py + pz (= sp3)

Set II = s + dxy + dxz + dyz (= sd3)
A1 + T2

π-hybrid

1

0

nE + T1 + T2

Set   I = d      + d  + px + py + pz (= d2p3)x2−y2 z2

Set  II = d      + d  + dxy + dxz + dyz (= d5)x2−y2 z2

There are no AOs belonging to T1 symmetry and, therefore, if px, py and pz 
are used for σ-hybrid, i.e., sp3, then, a set of only five hybrid orbitals may be 
formed of the central atom A possessing s, p and d valence orbitals.

If A requires sp3 hybrids for σ-bonding, then the pure set of d5 is constructed 
from two orbitals of E and 3 orbitals of T2 representation. If A requires sd3 
hybrids for bonding, then only p3d2 set is available for π-hybrids.

Finally, there is a whole range of intermediate cases, in which σ-orbitals 
are a mixture of the sp3 and sd3 limiting cases and then π-orbitals are a com-
plementary mixture of the d5 and p3d2 limiting cases. Only group theory 
alone can suggest such various possibilities.



Hybridization	 173

6.3.3  SQUARE PLANAR MOLECULE AB4

In AB4 type molecules having square planar structure, the central atom (A) 
either uses dx

2
–y

2, s, px and py atomic orbitals, i.e., dsp2 hybrids or dz
2, dx

2
–

y
2, px and py, i.e., d2p2 hybrid to form σ-hybrid. But among these, two dsp2 

σ-hybrids are most appropriate for σ-hybrid formation.
These molecules belong to point group D4h. We divide the eight possible 

bonds into two subsets, four of them are perpendicular to molecular plane 
and the other four are lying in the molecular plane.

Here, z axis is perpendicular (⊥) to the plane of paper.
On rotating along x and y axis, only the vectors in one direction will 

interchange. But as x and y are not operations of the group and therefore, 
four ⊥ and four || vectors (two set of vectors) may be operated indepen-
dently. It means eight possible π-bonds can be divided into above two sets of 
vectors. The total character of the two representations, of which two sets of 
vectors form the basis, can be worked out as:

D E 2 C C 2 C ' 2 C " i 2 S 2 2 
4 0 0 2 0 0 0 4 2 0

4h 4 2 2 2 4 h dσ σ σ
Γ (⊥)
Γ ( ||

ν

π

π

− −
  ) 4 0 0 2 0 0 0 4 2 0− + −

The combination of the two representations gives total π-representation as:

Γπ (R) = Γπ (⊥) + Γπ (||)

The total π-representations can be reduced to following irreducible represen-
tations using standard reduction formula as:

Γπ (⊥) = A2u + B2u + Eg

Γπ (||) = A2 g + B2 g + Eu
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The atomic orbitals corresponding to these irreducible representations are:

From this, it can be noticed that Γπ (⊥) can have combination of one p and 
two d orbitals, i.e., pz + dxz + dyz = pd2 hybrid.

Similarly, Γπ (׀׀) can have combination of one d and two p orbitals, i.e.,

dxz + px + py = dp2 hybrid

But both these sets are not complete, as these sets do not possess B2u and 
A2g orbital in atom A. Therefore, in this case, there may be three perpendicu-
lar π-bond, which may be shared among all the four A-B bonds. pz, dxz and 
dyz orbitals are not used for σ-bond formation because pz is perpendicular to 
molecular plane and dx

2
–y

2 orbital is required. So, pz, dxz and dyz orbital may 
be used for formation of π-bond (⊥) between A-B.

Therefore, π-bonds in-plane of σ-bond may be formed by utilization of 
the dxy, px and py orbitals. As px and py orbitals have already been used to form 
σ-hybrid, only dxy orbital of the central atom can be used to form one π-bond. 
This π-bond will be shared equally by all four A-B pairs of the molecules.

6.3.4  OCTAHEDRAL MOLECULE AB6

AB6 type octahedral molecule belongs to Oh point group, in which 12 
possible A-B π-bonds form a basis. Two vectors can be attached to each 
B atom. In such molecules, one vector can be exchanged with rest of the 
11 vectors by one symmetry operation (C4) or by any other operations. 
It shows that possible 12 π-bonds belong to same set (all the 12 vectors are 
equivalent).
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A BB

B

CH
3

B

B

Z
Y

XB2

B3

B4

B5

B1

B6

A

The total character is obtained by performing the operation of each class. 
If vectors shift, then character becomes zero, if it remains unshifted, then 
character is +1 and, if there is a change in the direction (opposite to original), 
then character becomes –1.

O E 8C 6C 6C 3C i 6S 8S 3 6
( ) 12 0 0 4 0 0 0 0

h 3 2 4 2 4 6 h d( )=
−
C

R
4

2

0 0
σ σ

Γπ

The total π-representations will be the addition of reducible representations, 
then the irreducible representation becomes:

Γπ (R) = T1 g + T2 g + T1u + T2u

The atomic orbitals corresponding to these irreducible representations are:

1

0

0

0

nΓπ

Atomic orbital symmetry T1g       None

Atomic orbital symmetry T2g       dxy, dxz, dyz

Atomic orbital symmetry T1u       px, py, pz

Atomic orbital symmetry T2u       None

It gives a conclusion that 12 π-bonds cannot be formed because the atomic 
orbital T1 g and T2u are not available on atom A. As T1u orbitals (px, py and 
pz) have already been used for σ-bond formation between A-B; thus, these 
orbitals cannot be of any use for π-bonding. Now, only one atomic orbital, 
T2 g having dxy, dxz and dyz orbitals are present for π-bonding.
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Therefore, there is a possibility that three π-bonds can be formed between 
A-B, which is shared equally among the 6 A-B pairs of AB6 molecules. In 
T2 g atomic orbital, dxy orbital can form π-bond with 4 B atoms (B1, B2, B3 
and B4) equally. In the same manner dxz orbital can form π-bond with four B 
atoms (B1, B2, B5 and B6) equally, and dyz orbitals of central atom also form 
π-bonds equally well with B3, B4, B5 and B6 atoms. It means, that there is 
actual sharing of π-bond equally among six A-B bonds. This will result in 
the one-half of a π-bond per A-B pair in AB6 octahedral molecules.

+

−−

− +

+

B3

Y

B1 XB2

B4

+

−

+−

+ −

+

−−

− +

+

B5

Z

B1 XB2

B6

+

−

+−

+ −

dxy dxz

+

−−

− +

+

B5

Z

B
1 B3 YB4

B6

+

−

+−

+ −

dyz

6.4  MATHEMATICAL FORM OF THE EQUIVALENT HYBRID 
ORBITALS

It has been explained that how one can obtain the symmetry orbitals 
required to construct a set of equivalent orbitals suitable for σ and π bonds 
in a given system using group theory. However, it has not been explained 
that what proportions of each AOs is used regarding the bond strengths, 
energies and overlap integrals, which requires the use of equivalent hybrid 
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orbitals? It is often necessary to make use of the algebraic expression 
known as mathematical forms of the combination by considering the set of 
equivalent orbitals as a linear combination of AOs. Now, one can find out 
linear coefficients.

Let us consider the ith hybrid ψi, which is obtained by a linear combina-
tion of φi AOs. Thus:

	 ψ
i = Ci1 φ1 + Ci2 φ2 + Ci3 φ3 + … + Cij φj	

	 ψ
i = 

j

N

CijφjCijφj∑ 	

where Cij are the linear coefficients of AOs used to construct the equivalent 
hybrid orbital ψi and φi representing AOs of ith atom.

As we are interested in evaluating these coefficients, two principles are 
used here:

	 (a)	 The set of equivalent orbitals forms an orthonormal set.
	 (i)	 Each equivalent orbital of the set may be normalized, i.e.,

∫ψi ψk
* dτ = 1  if i = k or ∫ψ2 dτ = 1

	 (ii)	�Each orbitals of the equivalent set must be orthogonal to all the 
other hybrid orbitals of the set.

∫ ψi ψk
* dτ = 0  if i ≠ k

	(b)	 Each hybrid orbital is equivalent to the other hybrid orbitals in the 
set under the appropriate symmetry operations of the group. The 
coefficients must be so adjusted that when a symmetry operation 
(R) is carried out on one hybrid orbital of the set, then it is trans-
formed into its equivalent member, i.e.,

R. ψj = ψj, i.e., R jk
j

C∑  φj = ki
j

C∑  φi

6.4.1  LINEAR MOLECULE AB2 (sp HYBRID ORBITALS)

Linear molecules belong to special category of the Cnν and Dnh point groups.

•	 AB2 type molecules with center of symmetry belong to D∞h, e.g., 
BeCl2, BeH2.
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•	 BAC type molecules without center of symmetry belong to C∞v point 
group, i.e., COS, HCN.

Generally, composition of σ hybrids is known form reduction of the 
reducible representation to the irreducible representation components. But 
in AB2 type linear molecule, it is very simple to identify σ-hybrid. Here, 
σ-hybrid is formed from s and pz orbitals with equal contribution form each 
orbital.

In C∞v and D∞h infinite order groups, C2v subgroup and D2h subgroup, 
respectively are selected, which have low order, where x and y coordinates 
do not intermix by rotation operation of the subgroup.

Correlation between infinite group with subgroup are:

C              C
A A
A A
E B B
E A A

v 2v

1 1

1 2

1 1 2

2 1 2

∞
+

−

= →
= →
= → +
= → +

∑
∑
π
∆

D       D

A

B

B B
A B

B

A

h 2h

g

1g

g 2g 3g

g g 1g

1u

u

∞

+

−

+

−

→

→

→ +
→ +

→

→

∑
∑

∑
∑

g

g

u

u

π
∆

πuu 2u 3u

u u 1u

B B
A B

→ +
→ +∆

The total character for the two σ hybrid representations have σ hybrid 
along the X-axis (internuclear axis), which form basis of group D2h.

Total σ-representations are:

E C (z) C (y) C (x) i
(R) 2 0 0 2 0 2 2 0

2 2 2 xy xz yzσ σ σ
Γσ
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In D2h point group, Ag becomes ∑g
+ and B1u becomes ∑

u
+. The atomic orbit-

als corresponding to irreducible representations are:

•	 Atomic orbital with Ag symmetry is s.
•	 Atomic orbital with B1u symmetry is pz.

Therefore, there can be one combination possible, i.e., s + pz (= sp hybrid), 
but there is one more possibility of combination, i.e., dz

2 + pz (= dp hybrid) 
as dz

2 also belongs to Ag. If we take example of BeCl2, then Be does not have 
d orbitals, so set of dp hybrids cannot be considered.

If φ
1
 and φ

2
 are the two combining atomic orbitals, the resulting hybrid-

ized orbitals are ψ
h1

 and ψh2
:

Hence, σ hybrid in BeCl2 is formed of:

ψ ψ ψh s 1 z1

1
2

 b p= +

and	 ψ ψ ψh s 2 z2

1
2

 b p= −

	 ψ
h1

 = a
1
 φ

1
 + b1 φpz	  (6.1)

	 ψ
h2

 = a
2
 φ

1
 + b2 φpz	  (6.2)

Since s orbital is spherically symmetric, it contributes equally to the making 
of two hybrid orbitals.

Therefore, 	 a1 = a2 = 
  1
2

	  (6.3)

Now ψ1 = 
  1
2

 φs + b1 φpz
 since is normalized.

Therefore, a1
2 + b1

2 = 1

1
2

+ b1
2 = 1
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or	 b1
2 = 1

2
	

or	 b1 = 
  1
2

	  (6.4)

Now considering that ψ1 and ψ2 are orthogonal to each other.

	 a1 a2 + b1 b2 = 0	

or	 1
2

 + 
  1
2

 b2 = 0	

	 b2 = –
  1
2

	  (6.5)

Hence, 	 ψh2 = 
  1
2

 φs – 
  1
2

 φpz = 
  1
2

 (φs – φpz)	  (6.6)

6.4.2  TRIGONAL PLANAR MOLECULE AB3 -sp
2 HYBRID 

ORBITALS

The composition of the three hybrid orbitals can be shown as:

	 ψ1 = a1 φs + b1 φpx + C1 φpy	  (6.7)

	 ψ2 = a2 φs + b2 φpx + C2 φpy	  (6.8)

	 ψ3 = a3 φ + b3 φpx + C3 φpy	  (6.9)

Since s orbital is spherically symmetric, it contributes equally to the making 
of the three hybrid orbitals.

Therefore, 	 a1 = a2 = a3 = 1/ 3 	

ψ
h1

 is formed along X-axis and hence, it cannot has any contribution from 
py, i.e., C1 = 0
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Therefore, 

ψ1 = 
  1
3

 φs + b1 φpx  since ψ1 is normalized

Therefore,	 a1
2 + b1

2 = 1	

	 1
3

 + b1
2 = 1	

or	 b1
2 = 2

3 	

or	 b1 = 2
3 	

So	 ψ
1
 = 

  1
3  
φs + 2

3  
φpx	  (6.10)

Now considering that ψ1 and ψ2 are orthogonal to each other, we have:

	 a1 a2 + b1 b2 = 0 	

or	 1
3

 + 2
3

 b2 = 0 	

or	 b2 = –   1
6

	 (6.11)

Further, the normalization condition requires that a2
2 + b2

2 + c2
2 = 1

	 1
3

 + 1
6

 + c2
2 = 1 	

or	 c2
2 = 1

2
	

or	 c2 = 
  1
2

	 (6.12)

Hence,	 ψ2 = 1
3

 φs –   1
6

 φpx + 
  1
2

 φpy	
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Considering orthogonality of ψ1 and ψ3, we have,

	 a1 a3 + b2 b3 + c2 c3 = 0	

Hence,	 1
3

 + 2
3

 b3 = 0 	

or	 b3 = –   1
6

	 (6.13)

Again ψ2 and ψ3 are also orthogonal and hence,

	 a2 a3 +b2 b3 + c2 c3 = 0	

or	 1
3

 + 1
6

 + 
  1
2

 c3 = 0 	

or	
  1
2

 c3 = 1
2

	

or	 c3 = –
  1
2

	 (6.14)

Hence,	 ψ3 = 
  1
3

 φs –   1
6

 φpx – 
  1
2

 φpy	 (6.15)

6.4.3  TETRAHEDRAL MOLECULE AB4 (sp
3 HYBRID ORBITALS)

The composition of the four hybrid orbitals can be shown as:

	 ψ1 = a1 φs + b1 φpx + c1 φpy + d1 φpz	 (6.16)

	 ψ2 = a2 φs + b2 φpx + c2 φpy + d2 φpz	 (6.17)

	 ψ3 = a3 φs + b3 φpx + c3 φpy + d3 φpz	 (6.18)

	 ψ4 = a4 φs + b4 φpx + c4 φpy + d4 φpz	 (6.19)

Considering four hybrid wave functions and that ψ1 is in direction of Z-axis 
(i.e., θ = 00) and hence, φpx and φpy do not contribute, i.e., c1 = 0 and d1 = 0
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	 ψ1 = a1 φs + b1 φpz	 (6.20)

Square of Eq. (6.20) on integration gives –

∫ψ1
2 dτ = a1

2 ∫φs
2 dτ + b1

2 ∫φpz
2 dτ + 2a1, b1 ∫φs φpz dτ

ψ1, φs and φpz are normalized and mutually orthogonal and hence, 

	 a1
2 + b1

2 = 1	 (6.21)

Since s-orbital is spherically symmetric and therefore, it contributes equally 
for making the four hybrid orbitals, 

Therefore, 	 a1
2 = a2

2 = a3
2 = a4

2 = 1
4 	

	 a1 = a2 = a3 = a4 = 1
2

	 (6.22)

Placing value of a1 in Eq. (6.21)

	 1
4

+ b1
2 = 1	

or	 b1
2 = 3

4 	

or	 b1 = 3
2

	 (6.23)

Now putting the values of both; a1 and b1 in Eq. (6.20).

	 ψ1 = 1
2

 φs + 3
2

 φpz	 (6.24)

Secondly, hybrid orbital is in xz plane and hence, 

	 ψ1 = 1
2

 φs + b2 φpz + c2 φpx	 (6.25)

Square of the Eq. (6.25) on integration gives:

	 1
4

 + b2
2 + c2

2 = 1	 (6.26)
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Since all the hybrid orbitals are orthogonal to each other, 

	 ∫ψ1 ψ2 dτ = 0	 (6.27)

hence,	 1
4

 + 3
2

c2 = 0	

or	 c2 = – 1
4

 . 2
3 	

or	 c2 = – 1
2 3

 	 (6.28)

Putting the value of c2 in Eq. (6.26), we have,

	 1
4

+ b2
2 + 1

12
= 1	

or	 b2
2 = 1 – 1

4
– 1

12
= 8

12
 = 2

3 	

or	 b2 = ± 2
3

	 (6.29)

Hence,	 ψ2 = 1
2
φs + 2

3
φpx – 1

2 3
 φpz	

Hence, the complete wave equations of hybrid orbitals are given as,

	 ψ1 = 1
2
φs + 3

2
φpz	 (6.30)

	 ψ2 = 1
2
φs + 2

3
φpx – 1

2 3
 φpz	 (6.31)

	 ψ3 = 1
2
φs –   1

6
φpx + 

  1
2

 φpy –
1

2 3
 φpz	 (6.32)

	 ψ4 = 1
2
φs –   1

6
φpx – 

  1
2

 φpy –
1

2 3
 φpz 	 (6.33)
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A correlation between irreducible representation and orbitals like s, px, py, pz, 
dxy, dz

2, etc. can be obtained by using mathematically function as bases. We 
shall use only atomic wave function, which are of importance to a chemist 
as these atomic wave functions define atomic orbitals. Symmetric proper-
ties of atomic orbitals are also important in determining their participation 
in the formation of hybrid orbitals. Angular wave functions ψ (θ, φ) of s, p 
and d orbitals are only used, as radial part is not affected by any symmetry 
operation. These wave functions are hydrogenic function (orbitals) and are 
normalized. Angular wave functions of these atomic orbitals are –

Atomic orbital Wave function ψ (θ, φ)

s 1
4π









1 2/

px 3
4π









1 2/
 sin θ cos φ

py 3
4π









1 2/
 sin θ sin φ

pz 3
4π









1 2/

cos φ

dz
2

5
16π









1 2/

(3 cos2 θ – 1)

dxz 15
4π









1 2/

sin θ cos θ cos φ

dyz 15
4π









1 2/
 sin θ cos θ sin φ

dx
2
–y

2 15
16π









1 2/
 sin θ cos 2 φ

dxy 15
16π









1 2/
 sin2 θ sin 2 φ

Here, s-orbital is highly symmetric as ψ (θ, φ) for s-orbital is independent 
of θ and φ and remains unchanged by any operation R like E, Cn, σv, σh, i, Sn, 
etc., for example, R (ψs) = + 1 (ψs).
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In case of spherically symmetric environment of a free ion, the three p 
and five d orbitals are degenerate, but in case of other symmetry, they may 
loose their degeneracy.

Let us consider the case of water molecule, which belongs to C2v point 
group. This point group has four operations, i.e., E, C2, σv (xz), σv (yz).

	 E (ψs) = (+1) ψs = ψs	

	 C2 (ψs) = (+1) ψs = ψs	

σv (xz) (ψs) = (+1) ψs = ψs

σv (yz) (ψs) = (+1) ψs = ψs

Similarly, for p-orbitals

	 E (ψpz) = E (cos θ) = (+1) cos θ = cos θ = ψpz	

	 C2 (ψpz) = C2 (cos θ) = (+1) cos θ = cos θ = ψpz	

	 σv (xz) (ψpz) = σxz (cos θ) = (+1) cos θ = cos θ = ψpz	

	 σv (yz) (ψpz) = σyz (cos θ) = (+1) cos θ = cos θ = ψpz	

	 E (ψpx) = �E (sin θ cos φ) = (+1) sin θ cos φ = sin θ cos φ =  ψpx

C2 (ψpx) = �C2 (sin θ cos φ) = sin θ cos (φ + 180) sin θ (–cos φ) = 
(–1) sin θ cos φ = (–1) ψpx

σv (yz) (ψpx) = σv (xz).(sin θ cos φ) = sin θ cos φ = (+1) ψpx

σv (yz) (ψpx) = �σv (yz).(sin θ cos φ) = sin θ (cos φ + 180) = sin θ  
(–cos φ) = (–1) sin θ cos φ = (–1) ψpx
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Similarly, it can be proved that:

	 E (ψpy) = (+1) ψpy	

	 C2 (ψpz) = (–1) ψpy	

	 σv (xz) (ψpy) = (–1) ψy	

	 σv (yz) (ψpy) = (+1) ψpy	

Summarizing all these observations, we get:

C E C (xz) (yz)
A 1 1 1 1
A 1 1 1 1  
B 1 1 1 1  

2v 2 v v

1 s

1 pz

1 px

σ σ
ψ
ψ
ψ

+ + + +
+ + + +
+ − + −

BB 1 1 1 1  2 py+ − − + ψ

Carrying out same process with d-orbitals, one can determine the irreducible 
representation corresponding to a particular d-orbital like dxy, dyz, dxz, dz

2 and 
dx

2
–y

2.
For dxy

E. (ψdxy
) = �E.(sin2 θ. sin 2 φ) = (+1) sin2 θ sin 2 φ = ψdxy

C2. (ψdxy
) = �C2. (sin2 θ. sin 2 φ) = sin2 θ. sin 2 (φ + 180) = sin2 θ. sin 

(2 φ + 360) sin2 θ sin 2 φ = (+1) ψdxy

σ v (xz). (ψdxy
) = �σv (xz). (sin2 θ. sin 2 φ) = sin2 θ. sin 2 (φ + 90) = sin2 θ. 

sin (2 φ + 180) sin2 θ. 2 cos φ (–sin φ) = –sin2 θ  
sin 2 φ = (–1) ψdxy

σv (yz): (ψdxy
) = �σv (yz).(sin2 θ. sin 2 φ) = sin2 θ. sin 2 (φ + 90) = sin2 θ. 

sin (2 φ + 180) sin2 θ. 2 cos φ – (sin φ) = –sin2 θ  
sin 2 φ = (–1) ψdxy

Thus, 

C E C  (xz)  (yz)
A 1 1 1 1

2v 2 v v

2 d xy

σ σ
ψ+ + − −
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Similarly, it can be proved that ψdz2 and ψdx2–y2 in point group C2v will 
have A1 representation and ψdxz

 and ψdyz will have B1 and B2 representation, 
respectively.

These correlations between irreducible representation and orbitals var-
ies from one to other character table and therefore, it should be determined 
individually for each case.
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Molecular orbital theory (MOT) was introduced to explain the abnormal 
behavior of O2 molecule in the ground state. Valence bond theory (VBT) 
suggests the diamagnetic behavior of O2 molecule with a double bond char-
acter, which is not true. If VBT is used to explain the paramagnetic behav-
ior of O2 molecule corresponding to two unpaired electrons, then it cannot 
explain the double bond character. On the other hand, if it explains the dou-
ble bond character than it is unable to explain the paramagnetic behavior of 
oxygen molecule. This was the first failure of VB theory and the beginning 
of success story of MOT, which has successfully explained both these facts 
simultaneously, i.e., double bond character and paramagnetic behavior of O2 
molecule in its ground state.

Group theory can be applied to obtain some of the important properties 
of a molecule like charge density, electron density, bond order, free valence, 
delocalization energy, etc. of course, utilizing MO theory. This is being done 
by constructing M.O. by linear combination of atomic orbitals (LCAO) and 
solving the corresponding secular determinant.

MOLECULAR ORBITAL THEORY
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7.1  SECULAR DETERMINANT

A secular determinant of nth order is reduced to determinants of reduced 
sizes, perhaps with a 3 × 3 as the largest one (instead of N × N, where N is 
the number of carbon atoms of the conjugated molecules). The conjugated 
molecules may be acyclic or cyclic. These organic molecules are having 
alternate single and double bonds. Thus:

The secular determinant is used to calculate the energy of the p-electrons. 
The Schrodinger equation is used with Huckel approximation to evaluate the 
energy of molecular orbitals using LCAO (Linear Combination of Atomic 
Orbitals) concept. The wave equation for the MO is:

	 H ψ = E ψ	 (7.1)

where H is Hamiltonian operator, ψ is the wave function and E is Eigen 
value (Energy of the system).

The usual method of constructing MO is the linear combination of AOs. 
For ith MO, it can be generalized as:

	 ψi = Cij j
j

n

ϕ
=
∑

1

 	 (7.2)

For i = 1 and n = 2 (Diatomic molecule ethylene)

	 ψ1 = C11 φ1 + C12 φ2	 (7.3)

The energy of this MO is obtained with the help of Eq. (7.1). Thus, H ψ1 = 
E ψ1 is multiplied by ψ1 (ψ1 is a real function) on both sides and integrated 
with respect to dτ (dx, dy, dz). Then expression for E is:

	 E = 
ψ ψ τ

ψ ψ τ
1 1

1 1

 H  d

  d
∫
∫

	 (7.4)
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Putting the value of ψ1 from Eq. (7.3) in Eq. (7.4), we get:

	 E = 
(C    C  ) H (C    C  ) d

(C    C  )
11 1 12 2 11 1 12 2

11 1 12 2

ϕ ϕ ϕ ϕ

ϕ ϕ

+ +

+
∫ τ

22 dτ∫
	

or	 E = 
C  H  d  2 C  C   H  dÄ  C   H  d

C
1 1 11 12 1 2 2 211

2
12
2

1

ϕ ϕ ϕ ϕ ϕ ϕτ τ+ + ∫∫∫
11

2
12
2ϕ ϕ ϕ ϕ2 2

1 2
 d  2 C  C    d  C   d11 12 1 2τ τ τ+ + ∫∫∫

	

	 = 
C H 2 C C H C H
C S 2 C C S C S
11
2

11 11 12 12 12
2

22

11
2

11 11 12 12 12
2

22

+ +
+ +

	 (7.5)

where Hij = Hji = ∫ φi H φj dτ, i.e., H12 = H21 = ∫ φ1 H φ2 dτ = ∫ φ2 H φ1 dτ;

	 H11 = ∫ φ1 H φ1 dτ; H22 = ∫ φ2 H φ2 dτ	

	 Sij = ∫ φi φj dτ	

	 S12 = ∫ φ1 φ2 dτ	

	 S11 = ∫ φ1
2 dτ and S22 = ∫ φ2

2 dτ.	

Hij is called Coulomb integral (when i = j), Hij resonance integral; (when i ≠ j) 
and Sij is overlap integral Sij = 1, (when i = j) and Sij = 0 (when i ≠ j).

To determine coefficients, C11 and C12, we have to minimize energy E 
with respect to each using Eq. (7.5). Thus, differentiating w.r.t. C11, we get:

∂
∂

=
+ + +E

C
(C S 2 C C S C S ) (2 C H 2 C H )

(C11

11
2

11 11 12 12 12
2

22 11 11 12 12

111
2

11 11 12 12 12
2

22
2S 2 C C S C S )+ +

 

− + + +(C H 2 C C H C H ) (2 C S 2 C S )
(C S

11
2

11 11 12 12 12
2

22 11 11 12 12

11
2

11 ++ +
=

2 C C S C S )11 12 12 12
2

22
2 0

or	 (C S 2 C C S C S ) (2 C H 2 C H )  11
2

11 11 12 12 12
2

22 11 11 12 12+ + + − 	

	 (C H 2 C C H C H ) (2 C S 2 C S )  11
2

11 11 12 12 12
2

22 11 11 12 12+ + + = 0 	

or	 (C S 2 C C C S ) (2 C H 2 C H )11
2

11 11 12 12
2

22 11 11 12 12+ + + 	
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= + + +(C H 2 C C H C H ) (2 C S 2 C S )11
2

11 11 12 12 12
2

22 11 11 12 12

or	 (C11 H11 + C12 H12)	

	 =
+ + +

+
(C H 2 C C H C H ) (C S C S )

(C S 2 C
11
2

11 11 12 12 12
2

22 11 11 12 12

11
2

11 111 12 12 12
2

22C S C S )+
= 0 	 (7.6)

From Eqs. (7.5) and 7.6) we get:

C11 H11 + C12 H12 = E (C11 S11 + C12 S12)

or	 C11 (H11 – E S11) + C12 (H12 – E S12) = 0	 (7.7)

Similarly ∂
∂

E
C12

 = 0 gives:

	 C11 (H21 – ES21) + C12 (H22 – ES22) = 0	 (7.8)

Equations (7.7) and (7.8) are called Secular equations. These are homoge-
neous linear equations in C11 and C12. The only nontrivial solution of this 
system requires that the determinants of C11 and C12 should vanish, i.e.,

	
H ES       H ES
H ES     H ES

11 11 12 12

21 21 22 22

− −
− −

= 0 	 (7.9)

This is the secular determinant for ethylene. Generalizing it for n carbon 
atoms (np electrons) gives:

	

H ES H ES .... H ES
H ES H ES H ES

11 11 12 12 1n 1n

21 21 22 22 2n 2n

− − −
− − −....

..... .... .... ....
....H ES H ES H ESn1 n1 n2 n2 nn nn− − −

= 0 	  (7.10)

The Huckel approximation assumes that:

	 (i)	 All Sij are equal to zero if i ≠ j and
	(ii)	 Hij = Hji = 0 for non-neighbor (not adjacent) i and j atoms, i.e., 

H13 = H14 = H24 but β for neighboring atoms, i.e., H12 = H23 = H34; 
Hii = α, i.e., H11 = H22 = H33 ….etc. = α. For i = j. We have already 
seen that Sii = 1, i.e., S11 = S22 …. = 1 and Sij = 0, i.e., S12 = S23 = 
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S13 = …. = 0. Putting these values in (7.10) simplifies the secular 
determinant to give:

	

± E ² 0 0 ... 0
² ± E ² 0 ... 0
0 0 ± E ² ... 0
... ... ... ... ... ...
0 0 0 0 ... ± E

−
−

−

−

 	 (7.11)

For a molecule like naphthalene, the secular determinant is of larger size, 
i.e., 10 × 10. In such a case, evaluation of E is a laborious take and time con-
suming process. Since MOs encompass whole of the molecule, and group the-
ory can be applied to the problem in reducing a large secular determinant to 
smaller determinants of 1 × 1, 2 × 2 and 3 × 3 sizes, their solutions become easy.

Step 1: Each π-orbital is labeled and then point group of the molecule is 
determined. A lower group involving rotation symmetries can be used and 
the reducible representation Γπ is obtained on the basis of the character of 
the operation (R).

If the orbital changes the sign of its wave function, then the contribution 
to χi is negative, but if it is unaffected, then it is positive.

Step 2: The reducible representation Γπ is then reduced using the reduc-
tion formula or by inspection. A little practice will enable one to reduce the 
reducible representation.

Step 3: The molecular orbitals (ψi) can be obtained by the symmetry-adapted 
linear combination (SALC) of atomic orbitals. These are then normalized.

Step 4: The secular determinant is then set up using these SALC’s in various 
representations, and solved for determining levels of the system and wave 
functions coefficients. These energy levels and coefficients are in terms of 
SALC of AO’s, which can be converted back in terms of starting AO’s.

Let us apply these four steps in case of the ethylene molecule.

7.2  ETHYLENE

Step 1: Ethylene belong to D2h point group. Γπ for ethylene molecule can 
be obtained using a simple point group C2 considering only rotational axis).
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C E    C
A 1   1
B 1 1

“ (R) 2   0

2 2

À

−

Step 2: Using the reduction formula ai = 1
2

 Σχ (R) nR χi (R)

We have:

aA = 1
2

[1 × 1 × 2 + 1 × 1 × 0] = 1
2

[2 + 0] = 1
2

[2] = 1

It means that irreducible A representation occurs once only. Similarly:

aB = 1
2

[1 × 1 × 2 + 1 × –1 × 0] = 1 = 1
2

[2 + 0] = 1
2

[2] = 1

Hence, irreducible representation B also occurs once only.
Therefore,

Γπ(R) = A + B

Step 3: Each irreducible representation can be represented by one wave 
function. Since, these is a set of carbon atoms (two atoms) with the wave 
functions φ1 and φ2, therefore:

	 ψA = φ1 + φ2	 (7.12)

	 ψB = φ1 – φ2	 (7.13)

Normalized SALC’S are therefore:

	 ψA = 1
2

 (φ1 + φ2)	 (7.14)
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	 ψB = 1
2

 (φ1 – φ2)	 (7.15)

Step 4: These two wave functions are represented by secular determinant 
equation.

H ES       H ES
H ES     H ES

11 11 12 12

21 21 22 22

− −
− −

= 0

Huckel Approximation in this case is:

	 HAA = α	

	 HAB = β, if A and B are adjacent C-atoms.	

	 HAB = 0, if A and B are non-adjacent C-atoms.	

	 SAA = 1	

	 SAB = 0 (Zero) Differential overlap integral	

Now

	 H11 = 1
2

 1
2

 ∫ (φ1 + φ2) H (φ1 + φ2) dτ	

	 = 1
2

[ ∫ φ1 H φ1 dτ + + φ1 H φ2 dτ + ∫ φ2 H φ1 dτ + ∫ φ2 H φ2 dτ]	

	 = 1
2

[H11′ + H12′ + H21′ + H22′]	

Applying the Huckel approximation

	 H11 = 1
2

 [α + β + β + α]	

	 H11 = α + β	

Similarly:

	 H12 =
1
2

 1
2

∫ (φ1 + φ2) H (φ1 – φ2) dτ	
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= 1
2

 [ ∫ φ1 H φ1 dτ – ∫ φ1 H φ2 dτ – ∫ φ2 H φ1 dτ + ∫ φ2 H φ2 dτ]

	 = 1
2

 [H11’ – H12’ – H21’ + H22’]	

	 = 1
2

(α – β – α + β)	

or 	 H12 = 0	

Similarly	 H21 = 0	

	 H22 = 1
2

 1
2

∫(φ1 – φ2) H (φ1 – φ2) dτ	

	 = 1
2

 [ ∫ φ1 H φ1 dτ – ∫ φ1 H φ2 dτ – ∫ φ2 H φ1 dτ + ∫ φ2 H φ2 dτ]	

	 = 1
2

[H11’ – H12’ – H21’ + H22’]	

	 = 1
2

[α – β – β + α]	

or	 H22 = α – β	

Placing these values in secular determinant, we get:

The dimension of matrix is 2 × 2 and it can be reduced to 1 × 1 by “block 
out” method.

	 α + β – E = 0	 (7.16)

or	 E1 = α + β	

	 α – β – E = 0	

or	 E2 = α–β	 (7.17)
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Thus, two MOs in ethylene molecule can be represented as:

Out of these two wave functions, only filled energy level is used further in 
calculation.

	 MO with lower energy is ψ1 = (φ1 + φ2)	 (7.18)

(i)  Electron density
Electron density of a conjugate system is given by the following formula:

	 EDi = 2
ij

occ MOs

J
C∑ 	 (7.19)

where, nij = Number of electrons in jth energy level; Cij = Coefficient of ith 
atom in jth energy level.

The electron density on two carbon atoms of ethylene can be calculated 
by putting the value of nij Cij in the Eq. (7.19).

ED1 = 2 × 1
2

2








  = 1

	 ED2 = 2 × 1
2

 = 1	
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(ii)  Charge density
Charge density is the charge or electron deficiency of an atom and it can be 
calculated by following formula:

	 qi = 1 – E Di	 (7.20)

The charge density on two carbon atoms of ethylene molecule can be deter-
mined by putting the value of E Di in Eq. (7.20).

where qi = Charge of ith atom, and E Di = electron density of ith atom.

q1 = 1–1 = 0

q2 = 1–1 = 0

(iii)  Bond order
It represents the strength of a bond. Higher is the bond order, more stronger 
will be the bond. In other words, bond order is related to the bond strength. 
Bond order is always calculated between two atoms and it can be done by 
using the formula:

	 p n  C  Ckl
J

j kj ij
J

occ MOs
= ∑  	 (7.21)

where nj = number of e– in jth energy level; Ckj = coefficient of kth atom in jth 

energy level; Cej = coefficient of ith atom in jth energy level.

p12 = 2 × 1
2

 × 1
2

 = 1

(iv)  Free valence
The concept of free valence at an atom is used as an index to indicate the 
possibility of attack at that atom. In other words, it represents reactivity of 
that atom. More is the free valence, more reactive that atom is. Free valence 
can be calculated using the formula:

	 Fr = Nmax – Nr	 (7.22)

where Nmax = maximum possible bonding than an atom is capable to have, 
i.e., 4.73 (3 + 3); Nr = actual σ-bond formed + bond orders for the other 
bonds formed by that atom.
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F1 = 4.73 – (3 + 1) = 0.73

F2 = 4.73 – (3 + 1) = 0.73

Results show that both the carbon atoms of ethylene are having same free 
valence and therefore, these are equally reactive.

7.3  BUTADIENE

Step 1: Trans-butadiene belongs to C2h group (cis-butadiene belongs to C2v 
group). Γπ can be obtained using C2 point group as it is a simple form of both, 
C2v and C2h point groups.

C E    C
A 1    1
B 1 1
(R) 4    0

2 2

−
ΓΓππ

Step 2: Using reduction formula ai = Σχ (R) nR χi (R)
We have

aA = 1
2

[1 × 1 × 4 + 1 × 1 × 1 + 0] = [4] = 2

That is, A is the irreducible representation, which occurs twice.

Similarly, aB = 1
2

[1 × 1 × 4 + 1 × (–1) × 0] = [4] = 2

Irreducible representation B also occurs twice. Therefore, Γπ (R) =  
2 A + 2 B
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Step 3: There are also non-equivalent wave functions represented by each 
irreducible representation. Since, in case of butadiene, there are two sets of 
carbon, i.e., terminal carbons (1,4) and central carbons (2,3). The wave func-
tions for irreducible representation A are:

ψA (1) = φ1 + φ4

ψA (2) = φ2 + φ3

Normalized SALC’S are therefore

	 ψA (1) = 1
2

(φ1 + φ4)	 (7.23)

	 ψA (2) = 1
2

(φ2 + φ3)	 (7.24)

Similarly for irreducible representation B, we have:

ψB (1) = φ1 – φ4

ψB (2) = φ2 – φ3

Normalization of these wave functions gives:

	 ψB (1) = 1
2

(φ1 – φ4)	 (7.25)

	 ψB (2) = 1
2

(φ2 – φ3)	 (7.26)

Step 4: These four wave functions are represented in the form of following 
Secular determinant:

According to Huckel approximation:

	 HAA = H11, H22 … = α;	
	 HAB = β, if A and B are adjacent C-atoms;	
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	 HAB = 0, if A and B are non-adjacent C-atoms;	
	 SAA = 1 (Normal sized overlap integral); and	
	 SAB = 0 (Zero overlap integral).	

Now:

	 H11 = 1
2

∫ (φ1 + φ4) H (φ1 + φ4) dτ	

	 = 1
2

∫ [φ1 H φ1 dτ + ∫ φ1 H φ4 dτ + ∫ φ4 H φ1 dE + ∫ φ4 H φ4 dτ]	

	 = 1
2

 [H11′ + H14′ + H41′ + H44′]	

Putting the values of different columbic integral, we get:

	 H11 = 1
2

 [α + 0 + 0 + α]	

or	 H22 = H33 = H44 = α	 (7.27)

Similarly,

	 H12 = H21 = 1
2

∫ (φ1 + φ4) H (φ2 + φ3) dτ	

	 = 1
2

 (H12′ + H13′ + H42′ + H43′)	

	 = (β + 0 + 0 + β)	

or	 H12 = H21 = β	 (7.28)

H13 = H31 = 1 ∫(φ1 + φ4) H (φ1 – φ4) dτ

	 = [H11′ – H14′ + H41′ – H44′]	

	 = 1
2

 [α – 0 + 0 – α]	

or	 H13 = H31 = 0	 (7.29)
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Hence,	 H14 = H41 = 0	

	 H24 = H42 = 0	

	 H22 = 1
2

[ ∫ (φ2 + φ3) H (φ2 + φ3) dτ	

	 = 1
2

 (H22′ + H23′ + H32′ + H33′)	

	 = 1
2

 [α + β + β + α]	

or	 H22 = α + β	 (7.30)

	 H33 = 1
2

∫ (φ1 – φ4) H (φ1 – φ4) dτ	

	 = 1
2

(H11′ – H14′ – H41′ + H44′)	

	 = 1
2

(α – 0 – 0 + α)	

or	 H33 = α	 (7.31)

	 H34 = 1
2

∫ (φ1 – φ4) H (φ2 – φ3) dτ 	

	 = 1
2

(H12′ – H13′ – H42′ + H43′)	

	 = 1
2

(β – 0 – 0 + β)	

	 H34 = β	 (7.32)

	 H44 = 1
2

∫ (φ2 – φ3) H (φ2 – φ3) dτ	

	 = 1
2

(H22′ – H23′ – H32′ + H33′)	

	 = 1
2

[α – β – β + α]	

or	 H44 = α – β	 (7.33)
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These calculated values are then placed in secular determinant.

The above determinant is of the order 4 × 4. It can be reduced to form two 
smaller blocks by “blocking” method, each with the order 2 × 2. Out of 
these four 2 × 2 determinants, two are having zero only. Hence, the rest two 
determinants are:

These can be further solved by dividing by β and substituting x in place of 

the α
β
− E :

Then these are further solved to find out values of x

	 x (x + 1) – 1 = 0	

	 x2 + x – 1 = 0	

or	 x = + 0.621, or – 1.621	

	 x (x – 1) – 1 = 0	 (7.34)

	 x2 – x – 1 = 0	 (7.35)
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or	 x = – 0.621, or + 1.621	

Putting all these values of x, we have four values of energy, i.e., E1, E2, E3 
and E4

	 x =
 

α
β
− E  = – 1.621	

or	 E1 = α + 1.621 β	 (7.36)

	 x = α
β
− E  = – 0.621	

or	 E2 = α + 0.621 β	 (7.37)

x = α
β
− E  = + 0.621

or	 E3 = α – 1.621 β	 (7.38)

x = α
β
− E  = + 1.621

or	 E4 = α – 1.621 β	 (7.39)

Thus, four MOs in butadiene molecule can be represented as:

As there are four electrons in all, two bower MOs will be filled with two 
electrons each. Therefore, total energy of the system will be:

Total energy = 2 (α + 1.621 β) + 2 (α + 0.621 β)

	 = 4α + 4.472 β	 (7.40)
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The total energy of butadiene molecule is less than the energy of two ethyl-
ene molecules. As the energy of ethylene molecule is 2α + 2β. Therefore, for 
two ethylene molecule, it will be 4α + 4β.

The value of β is negative and therefore there is a loss of 0.472 β energy 
in case of butadiene.

This loss in energy in case of butadiene molecule is because of reso-
nance, as two double bonds are in conjugated position. Had there been no 
resonance in butadiene molecule, then the total energy of butadiene should 
be number of ethylene components multiplied by number of electrons and in 
there, the energy of an electron in ψ1 orbital = 2 × 2 × (α + β), i.e., 4α + 4β.

It seems that the energy of butadiene molecule (4α + 4.472 β) is 0.472 β 
larger than the energy of two-ethylene molecule (4α + 4β) but it is not like 
that, rather these is a loss of energy due to resonance because the value of β 
is negative.

Resonance Energy = Actual energy – Energy of two ethylene molecules.
= (4α + 4.472 β) – 2 (2α + 2 β)
Resonance energy = 0.472 β
Four equations can be derived from the secular determinant. These are:

	 C1x + C2 = 0	 (7.41)

	 C1 + C2x + C3 = 0	 (7.42)

	 C2 + C3x + C4 = 0	 (7.43)

	 C3 + C4x = 0	 (7.44)

Putting the value of x = + 0.618 in Eq. (7.41), we get:

	 C1 (0.618) + C2 = 0	

	 C1 = – C2/0.618	 (7.45)

Putting the value of C1 in Eq. (7.42).

−C
0.618

2  + C2 (0.618) + C3 = 0

	 C2 = C3	 (7.46)
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Putting the value of C2 and C3 in Eq. (7.43).

	 – 0.618 C1 + C3 (0.618) + C4 + 0	

	 – 0.618 C1 – (0.618) (0.618) C1 + C4 + 0	

	 C1 = C4	 (7.47)

The sum of the squares of the coefficients is equal to unity. Hence, 

	 C C C C1
2

2
2

3
2

4
2 1+ + + = 	 (7.48)

Putting the value of C2, C3 and C4 in Eq. (7.48).

	 C C C C1
2

2
2

3
2

4
2 1+ + + = + (– 0.618 C1)
2 + (– 0.618 C1)

2 + C C C C1
2

2
2

3
2

4
2 1+ + + = = 1	

	 C C C C1
2

2
2

3
2

4
2 1+ + + = + 0.372 C1

2 + 0.372 C C C C1
2

2
2

3
2

4
2 1+ + + = + C C C C1

2
2
2

3
2

4
2 1+ + + = = 1	

	 2.744 C C C C1
2

2
2

3
2

4
2 1+ + + = = 1	

	 C1 = 1
2 744.

 = 0.602	 (7.49)

Then value of C2 = – 0.618 × 0.602 = – 0.378

	 C3 = C2 = – 0.378	

	 C4 = C1 = 0.602	

Now using the values of coefficients C1, C2, C3 and C4, the third function 
ψ3 is:

	 ψ3 = 0.602 φ1 – 0.372 φ2 – 0.372 φ3 – 0.602 φ4	 (7.50)

Similarly, using the value of x = –1.621, the coefficients C1, C2, C3 and C4 
can be determined and putting their values, the wave function ψ1 is:

	 ψ1 = 0.372 φ1 + 0.602 φ2 + 0.602 φ3 + 0.372 φ4	 (7.51)

The wave function ψ2 can be determined by finding out values of coeffi-
cients C1, C2, C3 and C4 by putting the value of x = – 0.621 as:



Molecular Orbital Theory	 207

	 ψ2 = 0.602 φ1 – 0.372 φ2 – 0.372 φ3 – 0.602 φ4	 (7.52)

The wave function ψ4 can also be derived by using x = + 1.621 as:

	 ψ4 = 0.372 φ1 – 0.602 φ2 + 0.602 φ3 – 0.372 φ4	 (7.53)

Thus, four wave functions ψ1, ψ2, ψ3 and ψ4 for butadiene can be written as:

	 ψ1 = 0.372 φ1 + 0.602 φ2 + 0.602 φ3 + 0.372 φ4	

	 ψ2 = 0.602 φ1 – 0.372 φ2 – 0.372 φ3 – 0.602 φ4	

	 ψ3 = 0.602 φ1 – 0.372 φ2 – 0.372 φ3 – 0.602 φ4	

	 ψ4 = 0.372 φ1 – 0.602 φ2 + 0.602 φ3 – 0.372 φ4	

Then, these wave functions are diagrammatically presented as:

Out of four π-electrons, two electrons are accommodated in each, i.e., ψ1 and 
ψ2, while ψ3 and ψ4 remain vacant.

(i)  Electron density
Using the equation for electron density
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	 EDi = 2
j ij

occ MOs

J
n  C∑ 	

where nij = number of electrons in jth energy level; Cij = coefficient of ith atom 
in jth energy level.

	 ED1= 2 × (0.372)2 + 2 × (0.602)2 = 1	

	 ED2 = 2 × (0.602)2 + 2 × (0.372)2 = 1	

Similarly, ED3 = ED4 = 1.

(ii)  Charge density
It can be calculated on the basis of electron density.

	 qi = 1 – E Di	

	 q1 = 1 – E D1 = 1–1 = 0	

Similarly,	 q2 = q3 = q4 = 0.	

(iii)  Bond order
The bond order between different carbon atoms of butadiene can be 
calculated.

p n  C  Ckl
J

j kj ej
J

occ MOs
= ∑

nj = Number of electron in jth energy level.

	 p12 = 2 × 0.372 × 0.602 + 2 × 0.602 × 0.372	
	 = 0.896	

	 p23 = 2 × 0.602 × 0.602 + 2 × 0.372 × (– 0.372)	
	 = 0.448	

	 p34 = 2 × 0.602 × 0.372 + 2 × (– 0.372) × (– 0.602)	
	 = 0.896	
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If there is no delocalization of π-electrons in butadiene molecule, then the 
bond order due to π-electron between C2 – C3 atom should be zero and the 
bond order between C1 – C2 as well as C3 – C4 atom should be one.

But this is not observed as bond orders between C1 – C2 and C3 – C4 has 
reduced to 0.896. On the other hand, the bond order between C2 – C3 is 0.448. 
This clearly reflects that delocalization of π-electrons is taking place in buta-
diene molecule; thus, reducing the π-bond character between C1 – C2 and 
C3 – C4 atoms and developing some π-bond character between C2 – C3 atoms.

(iv)  Free valence
The concept of free valence at an atom is used as an index to indicate the 
possibility of attack at that atom. In other words, it represents reactivity of 
that atom. More is the free valence, more reactive that atom is. Free valence 
can be calculated by using the formula

	 Fr = Nmax – Nr	 (7.54)

where Nmax = Maximum possible bonding than an atom is capable to have, 
i.e., 4.73 (3 + 3).
Nr = Actual σ-bond formed + Bond orders for the other bonds formed by 
that atom.
Hence for carbon atom = 3 + 3 = 3 + 1.73 = 4.73

F1 = 4.73–3.896 = 0.834

F2 = 4.73–3.896 = 0.834

For carbon atom 2, the total π-bond order is p12 + p23 = 0.896 + 0.448 = 1.344

	 F2 = 3 – 1.344	

	 = 0.388	

	 F3 = 0.388	

Results show that first and fourth positions are more reactive.
As the free valence is more at C1 and C4; therefore, C1 and C4 show more 

reactivity as compared to C2 and C3. It is clearly reflected in the formation of 
1, 4-substitution product the major one and 1, 2-substitution product only in 
minor amount under ordinary conditions.
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7.4  CYCLOBUTADIENE

The cyclobutadiene has square planar geometry, in which σ-skeleton is 
made up of sp3 hybridized carbon atoms. In ring, two adjacent carbon and 
hydrogen atom are bonded with σ bond along with all four carbon atoms 
have p-orbital perpendicular to the plane of the molecules, which combine 
to form 4 π-MO’s. Among these 4 π-MO’s, two are non-degenerate and two 
are doubly degenerate.

Step 1: This molecule belongs to point group D4h.

Γπ can be obtained by C4 group.

C E       C C ( C )   C
A   1       1   1    1
B   1 1   1 1

E
1
1

4 4 2 4
2

4
3=

− −



 −

−
−

− 



      i
i

1
1

i
     i

(R)   4      0    0    0Γπ

Step 2: Using reduction formula a
1
h

n  (R). (R),i R iR
= ∑ χ χ  we have:

Γπ (R) = A + B + E

Step 3: Here, number of carbon atoms are equal to order C4 group, hence, 
wave function is given by:

	 ψA 1 2 3 4= + + +ϕ ϕ ϕ ϕ 	  (7.55)
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	 ψB 1 2 3 4= − + −ϕ ϕ ϕ ϕ 	  (7.56)

	 ψE 1 2 3 4i i = + − −ϕ ϕ ϕ ϕ 	  (7.57)

	 ψE 1 2 3 4i i ' = − − +ϕ  ϕ ϕ ϕ 	  (7.58)

Normalization of above equation gives:

	 ψA 1 2 3 4= + + +
1
2

 (ϕ ϕ ϕ ϕ ) 	 (7.59)

	 ψB 1 2 3 4= − + −
1
2

 (ϕ ϕ ϕ ϕ ) 	 (7.60)

Equations (7.57) and (7.58), represent two dimension representations. These 
are combined and then normalized.

	 ψ
E1

 = ψE + ψE′	

	 = 2 φ1 – 2 φ3 ≅ φ1 – φ3	

	 = 1
2 1 3ϕ ϕ−( ) 	  (7.61)

Subtracting Eq. (7.58) from Eq. (7.57) and dividing by i, and then on nor-
malization, we get:

	 ψE2 = ψ ψE E'
i
− 	

	 = 2 φ2 – 2 φ4 ≅ φ2 – φ4	

	 = 
1
2 2 4ϕ ϕ−( ) 	 (7.62)

Thus, the four π-MO’s wave functions are represented by Eqs. (7.59)–(7.62).
The secular determinant for this system is:

H ES H ES H ES H ES
H ES H ES H ES H

11 11 12 12 13 13 14 14

21 21 22 22 23 23 2

− − − −
− − − 44 24

31 31 32 32 33 33 34 34

41 41 42 42 43

ES
H ES H ES H ES H ES
H ES H ES H

−
− − − −
− − −− −



















=

ES H ES45 44 44

0
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Using Huckel approximations

	 H 1
2

. 1
2

 H  d11 1 2 3 4 1 2 3 4= + + +( ) + + +( )



∫ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ τ 	

	 = α + 2 β	

Similarly, H22 = α – 2 β

	 H23 = H44 = α	

	 H34 = H43 = 0	

Step 4: The secular determinant for this system is:

α β
α β

α
α

+ −
− +

−
−



















=

2 E 0 0 0
0 2 E 0 0
0 0 E 0
0 0 0 E

0

The determinant of 4 × 4 dimension can be reduced into determinant 1 × 1 
dimensions by block out method.

α + 2 β – E1 = 0

or	 E1 = α + 2 β	

α – 2 β – E2 = 0

or	 E2 = α – 2 β	

	 α – E3 = 0	

or	 E3 = α = E4	

and, therefore, four energy levels are obtained as:

	 E1 = α + 2 β	

E2 = α – 2 β

E3 = E4 = α
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Total energy (Eπ) of the system is:

	 Eπ = 2 (α + 2 β) + α + α	
	 = 4 α + 4β	

Delocalization energy (ED) is:

	 ED = Eπ – 4 (α + β)	

Here, 4(α + β) is π-electron energy of two isolated ethylenic linkage.

	 ED = 4 α + 4 β – 4 (α + β) = 0	

The HMO’s of C4H4 and its nodal characteristics are:
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Using coefficient of AO’s in wave function, Huckel parameters like electron 
density, charge density, bond order and free valence can be determined.

(i)  Electron density

	 ED n .cr i
2

i

Occ.MOs

ij
= ∑ 	

	 ED  at carbon (1) 2  1
2

1 1
2

01

2 2

= × 





 + × 







 + 	

	
= + =

1
2

1
2

1 00. 	

	 ED  at carbon (2) 2  1
2

0 1    1
22

2 2

= × 





 + + × 







 	

	 =1 00. 	

	 ED  at carbon (3) 2  1
2

  1    1
23

2 2

= × 





 + × −







 + 0 	

	 =1 00. 	

	 ED  at carbon (4) 2  1
2

  0  1   1
23

2 2

= × 





 + + × −







 	

	 =1 00. 	

(ii)  Charge density (qr)

	 qr = 1 – E Dr	

For all the four carbon atoms, electron density is zero and hence, the charge 
density will be

	 q = 1–1.00 = 0	

It means, that each carbon atom have zero charge density.

(iii)  Bond order
The bond order lies between 1 and 2, because ψA have two π electrons and 
ψE1

 and ψE2
 have one π-electron in each.
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	 P 2 1
2

1
2

1 1
2

0 1 0  1
2

1
212 = × ×






 + ×







 + ×







 = 	

	 P 2 1
2

1
2

1 0 1
2

1 1
2

 0 1
223 = × ×






 + × −







 + ×







 = 	

	 P 2 1
2

1
2

1 1
2

 0 1 0 1
2

1
234 = × ×






 + − ×







 + × −







 = 	

and	 P 2 1
2

1
2

1 1
2

 0 1 0 1
2

1
214 = × ×






 + ×







 + × −







 =

	

It shows that all the 4 C – C bond are equivalent in C4H4 molecule, i.e., each 
carbon atom is bonded to two other carbon by partial double bond.

(iv)  Free valence (Fr)
Total π bond order for C1 is:

	 P12 + P14 = 1/2 + 1/2 = 1.0	

Therefore	 Fr = Nmax – Nr	

	 F1 = 4.732–4.0	

	 = 0.732	

In the same manner, π bond order for C3 is:

	 P23 + P34 = 1/2 + 1/2 = 1.0	

	 F3 = 4.732–4.0	

	 = 0.732	

Similarly for C2 and C4 carbon atoms, free valence is:

	 F2 = F4 = 4.732–4.0 = 0.732	
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Thus, in cyclobutadiene molecule, all the 4 C – C bonds are equivalent and 
there are two true double bonds. Each carbon atom is equally reactive for attack 
by any kind of reagent as all the four atoms are having same free valence.

Therefore, change density in C4H4 molecule at each carbon atom is 0.0, the 
π-bond order for each bond is 0.5, and free valence at each C is 0.732.

7.5  BENZENE

Step 1: Benzene belongs to D6h point group. Γπ can be obtained using a sim-
pler point group C6.

C   E    C   C C C C C C  C
A   1      1        1      1

6 6 6
2

3 6
3

2 6
4

3 6
5= = =

      1    1
B   1 1        1 1      1 1
E   1      1    1

* *

− − −
− − −ε ε ε ε

   1      1    
E   1      1

  1      1

* *

2
* *

*

ε ε ε ε
ε ε ε ε
ε ε

− − −
− − − −
− − − εε ε

Γπ

− *

  6      0       0      0      0    0
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Step 2: Using reduction formula ai = R i
1 χ (R) n  χ (R)
h ∑

We have the contribution of irreducible representation in reducible repre-
sentation as:

aA = �
1
6

 [1 × 1 × 6 + 1 × 1 × 0 + 1 × 1 × 0 + 1 × 1 × 0 + 1 ×  

1 × 0 + 1 × 1 × 0] = 6
6

 = 1

aB = �
1
6

 [1 × 1 × 6 + 1 × (–1) × 0 + 1 × 1 × 0 + 1 × (–1) ×  

0 + 1 × 1 × 0 + 1 × (–1) × 0] = 
6
6

 = 1

Step 3: Here, number of carbon atoms in benzene are equal to order of C6 
group and hence, wave function is given by:

	 ψ
A = φ1 + φ2 + φ3 + φ4 + φ5 + φ6	 (7.63)

	 ψ
B = φ1 – φ2 + φ3 – φ4 + φ5 – φ6	 (7.64)

	 ψ
E1 = φ1 + εφ2 – ε*φ3 – φ4 – εφ5 – ε*φ6	 (7.65)

	 ψ
E1′ = φ1 + ε*φ2 – εφ3 – φ4 – ε*φ5 – εφ6	 (7.66)

	 ψ
E2 = φ1 – ε*φ2 – εφ3 + φ4 – ε*φ5 – εφ6	 (7.67)

	 ψ
E2′ = φ1 – εφ2 – ε*φ3 + φ4 – εφ5 – ε*φ6	 (7.68)

Normalization of Eqs. (7.63) and (7.64) gives:

	 ψA = 
1
6

 (φ1 + φ2 + φ3 + φ4 + φ5 + φ6)	

	 ψB = 
1
6

 (φ1 – φ2 + φ3 – φ4 + φ5 – φ6)	

Equations (7.65) and (7.66) represent two dimension representations. Firstly, 
these are combined and then normalized.

ψ
E1

 + ψE1
′ = 2φ1 + (ε + ε*) φ2 – (ε + ε*) φ3–2φ4 – (ε + ε*) φ5 + (ε + ε*) φ6
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but ε + ε* = 1 and hence, 

	 ψ
E1

 + ψE1
′ = 2φ1 + φ2 – φ3–2φ4 – φ5 + φ6	 (7.69)

ψ
E1

 – ψE1
′ = (ε – ε*) φ2 + (ε – ε*) φ3 – (ε – ε*) φ5 + (ε* – ε) φ6

Above equation is divided by i

ψ ψE E1 1
'

i
−

 = ( *)
i

ε ε−  φ2 + ( *)
i

ε ε−  φ3 – ( *)
i

ε ε−  φ5 + ( * )
i

ε ε−  φ6

but	 = ( *)
i

ε ε−  = 3 	

	 ψ ψE E'
i
−  = 3  φ2 + 3  φ2 – 3  φ5 – 3 φ6 	  (7.70)

Normalization of Eqs. (7.69) and (7.70) gives:

	 ψE1 + ψE1′ = 1
12

 (2φ1 + φ2 – φ3 – 2φ4 – φ5 + φ6)	

	 ψE1 + ψE1′ = 1
2

(φ2 + φ3 – φ5 – φ6)	

Similarly, Eqs. (7.67) and (7.68) gives:

ψ
E2

 + ψE2
′ = �2φ1 – (ε + ε*) φ2 – (ε + ε*) φ3 + 2φ4 – (ε + ε*) φ5 –  

(ε + ε*) φ6

	 = 2φ1 – φ2 – φ3 + 2φ4 – φ5 – φ6	 (7.71)

	 ψ
E2

 + ψE2
′ = (ε – ε*) φ2 + (ε* – ε) φ3 – (ε* – ε) φ5 – (ε – ε*) φ6	

	 = φ2 – φ3 + φ5 – φ6	 (7.72)

Normalization of Eqs. (7.71) and (7.72) gives:

	 ψE2 + ψE2′ = 1
12

 (2φ1 – φ2 – φ3 + 2φ4 – φ5 – φ6)	

	 ψE2 – ψE2′ = 1
2

 (φ2 – φ3 + φ5 – φ6)	
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The secular determinant obtained using the SALS’s is:

Using Huckel Approximation

H11 = � 1
6

. 1
6

 ∫ (φ1 + φ2 + φ3 + φ4 + φ5 + φ6) H (φ1 + φ2 + φ3 + φ4 +  

φ5 + φ6) dτ

H11 = �1
6

 [H11′ + H12′ + H13′ + H14′ + H15′ + H16′ + H21′ + H22′ + H23′ + 

H24′ + H25′ + H26′ + H31′ + H32′ + H33′ + H34′ + H35′ + H36′ + H31′ 
+ H32′ + H33′ + H34′ + H35′ + H36′ + H31′ + H32′ + H33′ + H34′ + 
H35′ + H36′ + H31′ + H32′ + H33′ + H34′ + H35′ + H36′ + H41′ + H42′ 
+ H43′ + H44′ + H45′ + H46′ + H51′ + H52′ + H53′ + H54′ + H55′ + 
H56′ + H61′ + H62′ + H63′ + H64′ + H65′ + H66′]

H11 = �1
6

 [α + β + 0 + 0 + 0 + β + β + α + β + 0 + 0 + 0 + 0 + β + 	

α + β + 0 + 0 + 0 + 0 + β + α + β + 0 + 0 + 0 + 0 + β + α + 	
β + β + 0 + 0 + 0 + β + α]

= 1
6

[6α + 12β] = α + 2β

Similarly, 

H22 = � 1
6

 . 1
6

∫ (φ1 – φ2 + φ3 – φ4 + φ5 – φ6) H (φ1 – φ2 + φ3 – φ4+ 

φ5 – φ6) dτ
= α – 2 β

H33 = α + β
H44 = α + β and
H55 = α – β
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Similarly, H12 = H13 = H14 = H15 = H16 = 0
Secular determinant is:

The determinant of 6 × 6 dimension can be reduced into determinants of 1 × 
1 dimensions by block out method.

	 α + 2 β – E = 0	 (7.73)

	 α – 2 β – E = 0	 (7.74)

	 α – β – E = 0	 (7.75)

	 α + β – E = 0	 (7.76)

and therefore six energy levels are obtained as

	 EA = E1 = α + 2 β	

	 EE = E2 = α + β (Doubly degenerate)	

	 EE = E3 = α – β (Doubly degenerate)	

	 EB = E4 = α – 2 β	

These are diagrammatically represented as:

As the six electrons are filled in three levels, E1 and E2 (doubly degenerate), 
total energy E of the system will be
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	 E = 2 (α + 2 β) + 4 (α + β)	
	 = 6 α + 8 β	

Benzene is made up of three ethylene units and if there is no resonance, it 
energy will be 3 times of ethylene, i.e., 3 (2 α + 2 β) = 6 α + 6 β. But the 
energy of benzene is 6 α + 8 β.

	 So, resonance Energy = �Actual energy – Energy of three 
ethylene

	  = (6 α + 8 β) – 3 (2 α + 2 β)
Resonance Energy of benzene = 2 β

The SALC’s themselves are the HMO’S. The electron configuration of 
benzene is ground state (G.S.) may be thus denoted as A2 E1

4 (when full sym-
metry of benzene is considered, it is A1u

2E1 g
4).

The HMO’s of benzene and their nodal characteristics are represented.

Out of six wave functions, only three are used for further calculation, which 
are having electrons.

	 ψ1 = ψA = (φ1 + φ2 + φ3 + φ4 + φ5 + φ6)	
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	 ψ2 = ψE1 = (2φ1 + φ2 – φ3–2φ4 – φ5 + φ6)	

	 ψ3 = ψE1 = (φ2 + φ3 – φ5 – φ6)	

(i)  Electron density

E Di = 2
j ij

j

occ MOs
 n  C∑

nj = Number of electrons in jth energy level;
Cij = Coefficient of ith atom in jth energy level.

E D1 = 	2 × 1
6

2








  + 2 × 2

12

2








  + 2 × (0)2 	 = 1

E D2 = 	2 × 1
6

2








  + 2 × 2

12

2








  + 2 × 1

2

2






  = 1

E D3 = 	2 × 1
6

2








  + 2 × −









1
12

2

 + 2 × 1
2

2






  = 1

E D4 = 	2 × 1
6

2








  + 2 × −









2
12

2

 + 2 × (0)2 	 = 1

E D5 = 	2 × 1
6

2








  + 2 × −









1
12

2

 + 2 × −







1
2

2

 = 1

E D6 = 2 × 1
6

2








  + 2 × 1

12

2








  + 2 × −








1
2

2

 = 1

(ii)  Charge density

	 qi = 1 – EDi	

	 q1 = 1–1 = 0	

Similarly,	 q2 = q3 = q4 = q5 = q6 = 0	
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(iii)  Bond order

p n  C  Ckl
J

j kj ej
J

occ MOs
= ∑

nj = Number of electrons in jth energy level;
Ckj = Coefficient of kth atom in jth energy level.

p12 = 2 × 1
6

 × 1
6

 + 2 × 2
12

 × 1
12

 + 0 = 2
3

 = 0.66	

p23 = 2 × 1
6

 × 1
6

 + 2 × 1
12

 × − 1
12

 + 2 × 1
2

 × 1
2

 = 2
3

= 0.66

p34 = 2 × 1
6

 × 1
6

 + 2 × − 1
12

 × − 2
12

 + 2 × 1
2

 × 0 = 2
3

= 0.66	

	 p45 = 2 × 1
6

 × 1
6

 + 2 × − 2
12

 × − 1
12

 + 2 × 0 × − 1
2

 = 2
3

= 0.66	

	 p56 = 2 × 1
6

 × 1
6

 + 2 × − 1
12

 × − 1
12

 + 2 × − 1
2

 × − 1
2

 = 2
3

= 0.66	

	 p61 = 2 × 1
6

 × 1
6

 + 2 × 2
12

 × 1
12

+ 2 × 0 × − 1
2

 = 2
3

= 0.66	

This show all the six C – C bonds in benzene are equivalent and the bonds 
are not true double bonds.

(iv) Free valence

In benzene, all the six position are equivalent and each carbon atom is joined 
to two others by partial double bond. e.g., For carbon atom 1, the total π-bond 
order will be

p12 + p16 = 2
3

 + 2
3

 = 4
3

Free valence at position 1 is:

F1 = 4.73–4.33
	 = 0.40	
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Similarly, all the six carbon atoms have the same free valence:

F2 = F3 = F4 = F5 = F6 = 0.40

Therefore, all the six positions in benzene are equally reactive.
Thus, in benzene molecule, charge density at each carbon is 0.0, the 

π-bond order for each bond is 0.66 and the free valence at each C is 0.40.

7.6  CYCLOPROPENYL GROUP (C3H3)

This is the simplest carbocycle with a delocalized π-system. The carbocyclic 
system is characterired by a general formula (CH)n. It is assumed that in 
the carbocyclic system, the carbon atom uses sp2 hybrids to form σ bonds. 
If the molecular plane is xy, it contains p orbitals specifically px and py. 
There remains one pz-orbital on each carbon atom, which is perpendicular 
to the molecular plane. These pz-orbitals may combine to form π-molecular 
orbitals.

Step 1: This molecule belongs to point group D3h.
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Γπ can be obtained by C3 group, (a simpler group).

C E C C
A 1 1 1
E 1  

1  
3 0 0

3 3 3
2

*

*

ε ε
ε ε

Γπ

Step 2: Using reduction formula ai = 1
h

 (R) n  Ç (R)R iχ∑  we have:

	 Γπ = A + E	 (7.77)

Step 3: Here, number of carbon atoms in cyclopropenyl system equal to 
order C3 group, hence, wave function is given by:

	 ψA = φ1 + φ2 + φ3	 (7.78)

	 ψE = φ1 + ε φ2 + ε* φ3	 (7.79)

	 ψE′ = φ1 + ε* φ2 + φ3	 (7.80)

Normalization of Eq. (7.78) gives:

	 ψ1 = 1
3

(φ1 + φ2 + φ3)	 (7.81)

Equations (7.79) and (7.80) represent two dimension representation. They 
are first combined and then normalized.

	 ψE – ψE′ = 2 φ1 + (ε – ε*) φ2 + (ε*– ε) φ3	

But 	 ε – ε* = cos 2π
3

+ sin 2π
3

– sin 2π
3

	

	 = 2 cos 2π
3

= 2 cos 120o = 2 −







1
2

= – 1	



226	 Chemical Applications of Symmetry and Group Theory

	 ψE – ψE′ = 2 φ1 – φ2 – φ3	 (7.82)

Then it is normalized to give:

	 ψEa = 1
6

(2 φ1 – φ2 – φ3)	 (7.83)

Then Eqs. (7.79) and (7.80) are subtracted and normalized.

ψ ψE E'
i

−
−

= ( *)
i

ε ε−
−

 φ2 + ( * )
i

ε ε−
−

 φ3

( *)
i

ε ε−
−

= 1
−i

 [cos 2π
3

– i sin 2π
3

– cos 2π
3

+ i sin 2π
3

] = 3

ψ ψE E'
i

−
−

 = 3 (φ2 – φ3)

	 ψEb = (φ2 – φ3)	 (7.84)

After normalization it gives:

	 ψEb = 1
2
φ2 – 1

2
φ3	 (7.85)

Secular determinant obtained using the SALS’s takes this form:

Using Huckel approximation

	 H11 = 1
3

 . 1
3

[∫(φ1 + φ2 + φ3) H (φ1 + φ2 + φ3)] dτ	

	 = α + β	
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H22 = 1
6

 . 1
6

 [∫ (φ1 – φ2 – φ3) H (2φ1 – φ2 – φ3)] dτ

	 = α + β	

	 [H33 = 1
2

 . 1
2

 [∫ (φ2 – φ3) H (φ2 – φ3)] dτ	

	 = α]	

Step 4: The secular determinant for this system is:

Now	 H11 = H22 = H33 = α	

	 S11 = S22 = S33 = 1	

	 S12 = S21 = S13 = S31 = S23 = S32 = 0	

and	 H12 = H21 = H13 = H31 = H23 = H32 = β	

(because here C1 and C3 are also neighbors)

	 Dividing all the elements by β and putting α
β
− E  = x, we get
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or	 x (x2 – 1) –1 (x – 1) + 1 (1 – x) = 0	
or	 x3 – x – x + 1 + 1 – x = 0	
or	 x3–3 x + 2 = 0	

It can be rewritten as

or	 x3 – 2 x2 + x + 2 + 2 x2 – 4 x = 0	
or	 x2 (x + 2) – 2 x (x + 2) + 1 (x + 2) = 0	
or	 (x + 2) (x2–2 x + 1) = 0	
or	 (x + 2) (x – 1)2 = 0	

Therefore, the roots of equation are x1 = – 2 and x2 = x3 = 1
The corresponding energy levels are

	 ( E)α
β
−  = – 2	

or	 E1 = α + 2β	

	 ( E)α
β
−  = 1	

or	 E2 = E3 = α – β	

Thus, two levels (E2 and E3) are degenerate.
The ground state π-electron distribution in the three HMO’S of the cyclo-

propenyl carbonuim ion, radical and the carbonuim is shown diagrammati-
cally as:
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The total energy Eπ and the delocalization energy for these three systems is:

Cation	 Eπ = 2 (α + 2 β) = 2 α + 4 β	

	 D.E. = 2 (α + 2 β) – 2 (α + β) = 2 β	

Radical	 Eπ = 2 (α + 2 β) + (α – β) = 3 α + 3 β	

	 D.E. = (3 α + 3 β) – 2 (α + β) – α = β	

Anion	 Eπ = 2 (α + 2 β) + 2 (α – β) = 4 α + 2 β	

	 D.E. = (4 α + 2 β) – 2 (α + β) – α – α = 0	

Out of three wave functions, two are used for anion and radical cycloprope-
nyl and one for cationic system.

	 ψ1 = 1
3

 (φ1 + φ2 + φ3)	

	 ψ3 = ψEA = 1
6

 (2 φ1 – φ2 – φ3)	

	 ψ2 = ψEB = 1
2

 (φ2 – φ3)	

(i) Electron density

EDi = 
ij

2
j

occ MOs

J
n  C∑

Cation
It has 2 e– in ψ1 and no electron in ψ2 and ψ3.

	 ED1 = 2 × 1
3

2








  = 2

3
	

	 ED2 = 2 × 1
3

2








  = 2

3
	



230	 Chemical Applications of Symmetry and Group Theory

	 ED3 = 2 × 1
3

2








  = 2

3
	

Radical
In cyclopropenyl radical, two-electrons are in ψ1 and third electron may be 
placed in either ψ2 or ψ3 (degenerate). In such a case, the electron density 
is calculated by assuming that half of the available electron is in each of the 
degenerate MO’s ψ2 and ψ3.

	 ED1 = 2 × 1
3

2








  + 1

2
(0)2 + 1

2
 × 2

6

2








  = 1	

	 ED2 = 2 × 1
3

2








  + 1

2
 1

2

2








 + 1

2
× −











1
6

2

 = 1	

	 ED3 = 2 × 1
3

2








  + 1

2
 −









1
2

2

+ 1
2

 −










1
6

2

 = 1	

Anion
Like radical, considering ψ2 or ψ3 (degenerate).

	 ED1 = 2 × 1
3

2








  + 1 × (0)2 + 1 × 2

6

2








 	

	 = 2
3

+ 0 + 4
6

= 4
3

	

	 ED2 = 2 × 1
3

2








  + 1 × 1

2

2








 + 1 × −











1
6

2

	

	 = + + =
2
3

1
2

1
6

4
3

	

	 ED3 = 2 × 1
3

2








  + 1 × −









1
2

2

1 × −










1
6

2

	

	 = + + =
2
3

1
2

1
6

4
3
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(ii) Charge density

qi = 1 – EDi

For cyclopropenyl cation

	 q1 = q2 = q3 = 1 – 2
3

 = 1
3

	

For cyclopropenyl radical

	 q1 = q2 = q3 = 1 – 1 = 0	

For cyclopropenyl anion

	 q1 = q2 = q3 = 1 – 4
3

= – 1
3

	

(iii) Bond order

p n  C  Ckl
J

j kj ej
J

occ MOs
= ∑

where nj = number of electron in jth energy level; Ckj = coefficient of k atom 
in jth energy level.

For cyclopropenyl cation

	 p12 = 2 × 1
3

 × 1
3

= 2
3

0 666= . 	

Similarly, 

	 p23 = p31 = 2
3

0 666= . 	

For cyclopropenyl radical

	 p12 = 2 × 1
3

 × 1
3

 + 1
2

 × 0 × 1
2

 + 1
2

 × 2
6

 × −










1
6
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	 = 2
3

 + 0 – 1
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3
6

1
2

0 50= = = . 	
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2

 × −



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


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 × −



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


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1
6

	 = 2
3

 – 1
4

+ 1
12

	

	 = 8 3 1
12

− +  = 6
12

 = 1
2

0 50= . 	

	 P31 = 2 × 1
3

 × 1
3

 + 1
2

 × −









1
2

 × (0) + 1
2

 × − 1
6

 × 2
6

	

	 = 2
3

 + 0 – 1
6

0 50= . 	

	 = 4 1
6
−  = 3

6
 = 1
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For cyclopropenyl anion

	 p12 = 2 × 1
3

 × 1
3

 + 1 × 2
6

 × 1
6

 + 1 × (0) × 1
2

	

	 = 2
3

 – 2
6

 = 1
3

0 33= . 	

p23 = 2 × 1
3

 × 1
3

 + 1 × 1
2

 × − 1
2

 + 1 × − 1
6

 × − 1
6

	 = 2
3

 – 1
2

 = 1
6

	

	 = 8 3 1
12

− +  = 2
6

 = 1
3

0 333= . 	

	 p31 = 2 × 1
3

 × 1
3

 + 1 × − 1
2

 × (0) + 1 × − 1
6

 × 2
6
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	 = 2
3

 + 0 – 2
6

 = 2
6

= 1
3

0 333= . 	

(iv) Free valence

In C3H3
+ ion, all three positions are equivalent and each carbon join another 

carbon atom by a partial double bond.
For cyclopropenyl cation
Thus, the total π-bond order for carbon will be:

	 = P12 + P31	

	 = 0.666 + 0.666 = 1.332	

So, Fr	 = 4.732 – 4.332	

	 = 0.40	

Similarly, 
For cyclopropenyl radical
Total bond order = 0.50 + 0.50 = 1.0
So free valence = 4.732 – 4.0 = 0.732
For cyclopropenyl anion
Total bond order = 0.333 + 0.333 = 0.666
Hence, free valence = 4.732 – 3.666 = 1.066
It may thus be concluded that reactivity of these species will be in the 

order:
Cyclopropenyl anion > Cyclopropenyl radical > Cyclopropenyl cation
Reverse will be the order of their stability-
Cation > Radical > Anion
Cyclopropenyl cation is stabilized because of resonance.

7.7  CYCLOPENTADIENYL GROUP

Such molecules have planar geometry, where each carbon atom is sp2 
hybridized. All carbon atoms have pz orbital perpendicular to the plane of 
the molecule. These π-orbitals combine to form 5 π MO’s, in which one is 
non-degenerate and other two sets are doubly degenerate MO’s.

Step 1: The C5H5 belongs to D5h point group.
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Γπ can be obtained by using C5 group
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Step 2: Using reduction formula, 

Γπ (R) = A + E1 + E2

Step 3: Because, number of carbon atoms are equal to order of C5 group. 
Therefore, wave function are:

	 ψA 1 2 3 4 5= + + + +ϕ ϕ ϕ ϕ ϕ 	  (7.86)

	 ψ
ψ

ψE
E 1 2 3 4 5

E 1
*

2
*

2
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µ µ µ µ

' µ µ µ µ
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2 2
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

  ϕ
	 (7.87)

	 ψ
ψ

ψE
E 1 2 3 4 5
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2
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ϕ ϕ ϕ ϕ ϕ
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* ϕϕ5






	 (7.89)

On normalization of Eq. (7.86), we get:

	 ψA 1 2 3 4 5= + + + +
1
5

 (ϕ ϕ ϕ ϕ ϕ ) 	 (7.91)
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On adding Eqs. (7.87) and (7.88) and normalization, it gives:

	 ψ
E1

 = ψE1
 + ψE1′	

 = 2 φ1 + (ε + ε*) φ2 + (ε2 + ε2*) φ3 + (ε2* + ε2) φ4 + (ε* + ε) φ5

As	 ε ε
π π π π

+ = +





 + −








* cos 2
5

i sin 2
5

cos 2
5

i sin 2
5

	

	 = 2 cos  2
5
π 	

and	 ε ε π 
i

 2 sin  2
5

*−
= 	

Also,	 ε ε
π2 2*  2 cos  4
5

+ = 	

and	 ε ε π2 2* 
i

 2 sin  4
5

−
= 	

Note	 2
5

2  180
5

72
o

oπ
=

×
= 	

	 4
5

2  7 1 oπ
= × =2 44 	

Therefore,	

ψ ψ
π π π

E E 1 2 3 3 51
1

2 2  cos 2
5

2  cos 4
5

2  cos 4
5

2  cos+ = + + + +' ϕ ϕ ϕ ϕ ϕ
22
5
π

  = + + + +( 2
5

  cos  72  cos  144  cos  144  cos  721 2
o

3
o

4
o

5
oϕ ϕ ϕ ϕ ϕ ))   (7.92)

and on subtracting, Eqs. (7.87) and (7.88) and dividing by i, then normaliza-
tion give

 
ψE E '

1
o

3
o

4
o

5
o1 1

i
 2

5
 in 72  sin 144  sin 144  sin 72− = + − −(ϕ ϕ ϕ ϕs ))   (7.93)

on ψE1
 and ψE1

′, ψE2
 and ψE2

′ are also operated, which results into:
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ψ ψE E ' 1 2
o

3
o

4
o
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 2
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  cos  144  cos  72  cos  72  co+ = + + + +ϕ ϕ ϕ ϕ ϕ ss  144o( )

(7.94)
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The five π-MO’s wave functions are expressed by Eqs. (7.91)–(7.95).
The secular determinant for the system is:

H ES H ES H ES H ES H ES
H ES H ES H
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Using Huckel approximation, all the off-diagonal elements in the secu-
lar determinant will vanish. Integral in which the π-MO’s wave functions 
belonging to same symmetry but orthogonal to each other will also vanish. 
Thus we get, 

	 H11 = α + 2 β	

	 H22 = α + (2 cos 72°). β	

	 H33 = α + (2 cos 72°). β	

	 H44 = H55 = α + 2 cos (144°). β	

Step 4: The secular determinant for this system will be:

α β
α β

α β
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(
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2 cos 144 ) E 0

0 0 0 0 2 cos 144 ) E
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o
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α β

00

The determinant of 5 × 5 dimension can be reduced into determinant of  
1 × 1 dimensions by block out method.
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	 E1 = α + 2 β – E = 0	
	 E2 = E3 = α + (2 cos 72°) β – E = 0	
	 E4 = E5 = α + (2 cos 144°) β – E = 0	

and therefore, five energy levels are:

	 E1 = α + 2 β	
	 E2 = E3 = α + (2 cos 72°) β	
	 E4 = E5 = α + (2 cos 144°) β	

C5H5
+ cation

The total π-electron energy of C5H5
+ is:

Eπ = 2 (α + 2 β) + 1 (α + 2 β cos 72°) + 1 (α + 2 β cos 72°)
	  = 4 α + 5.236 β	

Delocalization energy is:

	 Eπ (0) = Eπ – 4 (α + β)	
	 = 4 α – 5.236 β – 4 α – 4 β	
	 = 1.236 β ≅ (4 cos w) β	

C5H5 radical
The total energy (Eπ) of the radical C5H5 system is:

Eπ = 2 (α + 2 β) + 2 (α + 2 β cos 72°) + 1 (α + 2 β cos 75°)
	 = 2 α + 4 β + 3α + 6 β cos 72 (cos 72 = 0.3090)	
	 = 5 α + 5.854	
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Delocalization energy (ED) for C5H5 radical is:

	 Eπ (0) = EA – [4 (α + β) + α] = 5 α + 5.854 β – 4 α – 4 β – α	
	  = 1.854 β ≅ (6 cos w) β	

where w = 72°.

C5H5
− anion

Eπ for C5H5
− anion:

	 Eπ = 2 (α + 2 β) + 2 (α + 2 β cos 72°) + 2 (α + 2 β cos 72°)	
	 = 6 α + 6.472 β	

Delocalization energy of C5H5
− is:

Eπ (0) = 6 α + 6.472 β – 4 (α + β) – 2 α

Here, 4 (α + β) – 2α is the π-electron energy of localized ethylenic linkage.

Eπ (0) = 2.472 β ≅ (8 cos w) β

The HMO’s of C5H5 and its nodel characteristics are:

Huckel parameters can be determined by using coefficient of AO’s in wave 
function.
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(i)  Electron density
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It shows that total electron density of C5H5
− anion is:

1.2 + 1.2 + 1.2 + 1.2 + 1.2 = 6.0

(ii)  Charge density (qr)
In C5H5

− ion

qr = 1 – E Dr

As the electron density of all the 5 carbon atoms are equal
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q1 = q2 = q3 = q4 = q5 = 1.2

Charge density of each carbon atom will be:

	 = 1–1.2	

	 = – 0.2 = – 1/5	

(iii)  Bond order
Bond order for C5H5

− will be calculated from π-bond order between any two 
adjacent carbon atoms:
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 0.309 	

	 = 0.647	

In same way, P34 = P45 = P15 or P51 = 0.647
It shows that all five C – C bonds are equivalent, but these are not true 

double bonds.

(iv)  Free valence
In C5H5

− ion, all five positions are equivalent and each carbon join another 
carbon atom by a partial double bond.

Thus, the total π-bond order for carbon will be:

	 = P12 + P51	

	 = 0.647 + 0.647 = 1.294	

So,	 F1 = 4.732–4.294	

	 = 0.438	
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Similarly, the free valence at all the carbon atoms in C5H5
− anion is 0.438. 

It means all five carbons will be equally reactive.
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8.1  NORMAL MODES OF VIBRATION

The complex vibrations of a molecule are the superposition of relatively 
simple vibrations, which are called the normal mode of vibration. Suppose 
a molecule has N number of atoms, then total degrees of freedom for that 
molecule is 3 N. The normal mode corresponds to coordinates at X-, Y- and 
Z-axes.

Each normal mode of vibration has a fixed frequency. Molecules have 
translational, rotational and vibrational motions, and therefore, total degrees 
of freedom (3 N) can be determined for each motion depending on type of 
motion.

8.1.1  TRANSLATIONAL MOTION

In this motion, molecule moves from one place to other but without changing 
its shape. It means that molecule moves as a whole unit. Translational motion 
uses all the three coordinates. Therefore, number of translational degrees of 
freedom is 3.
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8.1.2  ROTATIONAL MOTION

Rotational degrees of freedom depend on shape of molecule. In linear 
molecules, rotation occurs about X- and Y-axes, whereas in non-linear mol-
ecules, rotation occur along all the three axes X-, Y- and Z-. Therefore, linear 
molecules have two rotational degrees of freedom while non-linear mol-
ecules have three rotational degrees of freedom.

8.1.3  VIBRATIONAL MOTION

It is determined by the difference between total degrees of freedom and the 
sum of translational and rotational degrees of freedom, i.e., [3 N – (Trans + 
Rot.)]. Thus, 

	 Normal mode for a linear molecule = 3 N – (3 + 2) = 3 N – 5	
	 Normal mode for a non-linear molecule = 3 N – (3 + 3) = 3 N – 6	

At room temperature, all the molecules are in their lowest vibrational energy 
level with quantum number equal to zero for each mode. The most probable 
vibrational transition is form v = 0 to v = 1. This transition, i.e., v = 0 → 1 
gives strong IR and Raman bands and is called a fundamental normal mode.

8.2  MOLECULAR VIBRATIONS

The vibrations in molecule can be classified into two types:

•	 Bond stretching vibrations and
•	 Bending or deformation vibrations.

8.2.1  BOND STRETCHING VIBRATIONS

Stretching vibrations occur due to displacement of atoms along the bond and 
it leads to change in bond length. This mode is represented by a change in 
bond length while keeping the bond angle fixed showing the direction of the 
movement of atoms along the bond. The change in bond length is given by 
the symbol ν or (strictly speaking Δr) and represents internal coordinate of 
bond vector. The stretching of the bond has been conventionally designated 
as ν. There are two types of stretching modes/coordinates. These are:
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8.2.1.1  Symmetric Stretching Vibration (νs)

It involves stretching or compressing of bond from both the sides simultane-
ously, i.e., together movement of atoms in the same direction along the bond. 
For example in xy2 molecule:

8.2.1.2  Asymmetric Stretching Vibration (νas)

It involves simultaneous movement of atoms in the different directions 
along the bond. It means that when one bond is being stretched, then the 
other bond is compressed.

Asymmetric stretching vibrations have greater energy than energy of sym-
metric stretching vibrations.

8.2.2  BENDING VIBRATIONS

This mode represents a change in the angle between two bonds while keep-
ing the bond length constant (unaltered). Bond angle changes because of the 
movement of atoms in-plane or out-of-plane of the molecule. The individual 
angle bending coordinates are represented by α, β, γ, etc. For the angle bend-
ing, the atoms connected by the bonds move in such a way that the direction 
of displacement of these atoms is perpendicular to the bonds. Such an angle 
bending has been represented by δ and it is represented as:
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Two types of angle bending deformations are therefore called as in-plane 
mode and out-of-plane mode.

8.2.2.1  In-Plane Mode

All the atoms lie in the same plane during in-plane bending vibrations (plane 
mode). Plane mode can be of two types:

(i) Scissoring mode (Symmetric) – It involves change in both; the internal 
coordinates separated by α and β. It is designated as δs.

(ii) Rocking mode (Asymmetric) – It involves changes only in β type coor-
dinates while α remains constant. It is designated as δr.

The scissoring and rocking vibrations are represented as:

8.2.2.2  Out-of-Plane Mode

In out-of-plane bending vibration, atoms do not remain in the plane but they 
move out-of-plane.
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(i) Wagging mode (Symmetric) – This type of vibrational motion results, 
where both the X-Y bonds go out-of-plane and come back also simulta-
neously and it is therefore, designated as δW.

	 Out-of-plane movement can be represented by ⊕ and  sign. ⊕ Sign shows 
atom is moving above-the-plane of the molecule. On the other hand,  
sign indicates that the atoms are moving below-the-plane of the molecule.

(ii) Twisting mode (Asymmetric) – In this case, one X-Y bond moves above 
the plane (⊕) and the other bond move below the plane ( ). This coordi-
nate results in the asymmetric displacement of XY2 unit and pushes both 
the X-Y bonds out of the main frame of molecular plane.
It is represented by δt. The two kinds of out-of-plane bending vibrations are:

In addition to these, there are other types of out-of-plane modes in planar 
molecules (tetratomic XY4-) as:

Here, central atom (X) is pulled out of the plane and the final configura-
tion of the molecule resembles a pyramid. Thus, this is a type of ‘breathing 
mode,’ labeled as π.
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Thus, it can be concluded that out of six vibrational modes in a linear 
molecule, rocking and twisting are rotating around Y- and Z-axes and thus, 
they do not absorb in IR region. In contrary to non-linear molecule (bent 
molecule), wagging is partly rotating around X-axis in linear molecule. It is 
so, as in rotational mode in a linear molecule, rotation around the molecular 
axis is not considered. Hence, the total number of vibration in linear tri-
atomic molecule is 3 N – 5 = (3 x 3) – 5 = 4.

In non-linear (bent) molecules, rocking, wagging and twisting vibrations 
are part of rotation around X-, Y- and Z-axes, respectively, This means these 
three vibrations are inactive in IR region and do not absorb in the IR region. 
Therefore, symmetric, asymmetric stretching and scissoring bending are 
possible mode of vibrations.

Hence, total number of fundamental vibrations for a triatomic (XY2) non-
linear molecule is 3 N – 6 = 3 x 3) – 6 = 3, while it was 4 for linear molecule.

The bending vibration has lower energy than a stretching vibration. The 
order of energies for the vibrations are:

νas > νs > δ

8.3  SELECTION RULES FOR IR AND RAMAN SPECTRA

The selection rule/transition rule constrains the possible transition from one 
quantum state to another. According to quantum mechanics and as per selection 
rule, vibrational transitions are allowed when Δv = +1 and Δ J = ± 1. Vibrational 
spectroscopy (IR and Raman) depends on two concepts. Firstly, change in dipole 
moment (for IR) and second, change in polarizability (for Raman) of molecule.

It means, when dipole moment changes during the vibration, the vibra-
tional transition will be IR active, but when polarizability of molecule 
(α) changes, then vibrational transition will be Raman active. It can be 
expressed as:

	

∂
∂

≠
µ
ϕ

i 0 	 (IR active)

and 	
∂

∂
≠

α

ϕ
ij 0	 (Raman active)
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Here, μi is the one of the component of dipole moment, φ is normal coor-
dinate with internuclear distance (r) and αij is one of the component of the 
polarizability tensor.

Dipole moment has three components μx, μy and μz along X-, Y- and 
Z-axes and polarizability has six components, i.e., αxx, αyy, αzz, αxy, αyz, and 
αxz. Majority of the molecules with μ = 0 are IR inactive but it is not always 
true. In case of homonuclear diatomic molecule (such as N2, O2, H2, Cl2), 
there will be no permanent dipole. So, they will not give any IR spectrum but 
hetronuclear diatomic molecule (such as CO, NO) will be IR active. When 
molecules do not have permanent dipole moment, even then they may pro-
duce change in dipole moment during vibration because they contain bonds, 
which have dipole moments. For example CO2.

In equilibrium position, symmetric stretching of CO2 has μ = 0 but during 
asymmetric stretching and bending, μ ≠ 0 and therefore, in these two cases, 
CO2 will be IR active.

The allowed and forbidden transitions in term of the symmetry of ground 
and excited wave functions and the symmetry of the operation can be 
expressed as:

P=  (Operator)  dground excitedψ ψ τ∫

Here, P = Transition moment integral.
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A molecule need not possess a permanent dipole moment for absorption 
of infrared radiation. Only a change in dipole moment is necessary during 
a vibration. Using the dipole moment operator μ for IR and polarizability 
tensor α for Raman, the transition moment integral (Pgi) for absorption in IR 
can be written as:

	 Pgi = ϕ µϕ τv
g

v
i d∫ 	 (8.1)

where, ϕv
g  refers to the vibrational wave function in the ground state and 

ϕv
i  refers to the vibrational wave function in the ith excited state. μ can be 

written as μ = μx + μy + μz, where these refer to the components of the dipole 
moment operator along the three axes X-, Y- and Z-, respectively. They can 
be written as:

μx = e.x; μy = e.y; and μz = e.z

where e refers to the electronic charge and x, y, and z refer to the Cartesian 
coordinates. Thus, if any one of these components changes during the vibra-
tion, then transition moment integrals can be written as:

	 Pgi (x) = e ϕ µ ϕ τv
g

x v
i d∫ 	  (8.2)

	 Pgi (y) = e ϕ µ ϕ τv
g

y v
i d∫ 	  (8.3)

	 Pgi (z) = e ϕ µ ϕ τv
g

z v
i d∫ 	  (8.4)

The integral e ϕ ϕ τ
−∞

∞

v
g

v
ix d∫  is non-zero, if the direct product representation 

is totally symmetric. The same procedure can be used to find out other inte-
grals (i.e., these may have non-zero value or not). For a fundamental transi-
tion (ν = 0 → 1) to occur by absorption of infrared radiation, it is necessary 
that one of the integrals be non-zero. Let us consider the integral:

	 e ϕ ϕ τ
−∞

∞

v
g

v
ix d∫ 	 (8.5)
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The direct product of the symmetry species of the integrand is totally 
symmetric only, if the integral e    x    d0

g
1
iψ ψ τ∫   is not equal to zero (non-zero). 

This condition occurs only, when ψ1
i function has the same symmetry as x.

In this integral, ψ0
g is ground state vibration wave function, which is 

totally symmetric for all molecules except free radicals and ψI
i is excited 

wave function, which has all symmetry of the normal mode.

Here	 ϕv
g sin ν = 0 and

	 ϕi
g sin ν = 1

Thus, a fundamental will be IR active, if the excited normal model modes 
have the same symmetry as one of the Cartesian coordinates.

A vibrational mode in a molecule will be Raman active, if the polariz-
ability of the molecule changes during the vibration. Using the polarizability 
operator α, the transition moment integral can be written as:

	 Pgi = ϕ α ϕ τv
g

v
i d

−

∞

∫ ∞
 	 (8.6)

The integral e      dv
o

v
iψ α ψ τ

−∞

+∞

∫  must be non-zero for a vibrational mode to 

be Raman active and it is possible only, when direct product representation 
of the integrand leads to totally symmetric representation or the direct prod-
uct representation containing a totally symmetric irreducible representation. 
The polarizability operation has axis component and the symmetric species 
of the component is same as the binary product of Cartesian coordinates, i.e., 
x2, y2, z2 xy, yz and xz. Other combinations like x2 – y2, y2 + z2, etc., are pre-
sented in the character table of a point group, to which the molecule belongs. 
Therefore, by using character table, the symmetry species of polarizability 
operator can be identified.

Thus, a fundamental transition will be Raman active, if the normal mode 
involved belongs to same representation as one or more components of the 
polarizability tensor of the molecule. Here α′s are components of the polariz-
ability tensor or we can say fundamental transition is Raman active, if the vibra-
tion has the same irreducible representation as one of the quadratic or binary 
Cartesian coordinates. If the electrical vector of the electromagnetic radiation 
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can interact with the oscillating dipole moment of the molecule resulting in 
resonance, then the molecule gives rise to the spectrum during that vibration.

When a molecule contains two equal but opposite charges (± q), which 
are separated by a finite distance r, then the electric dipole moment may be 
given by the relation μ = qr, (µ is a vector quantity and its unit is Debye D 
(1D = 10−18 e.s.u.). It has three components μx, μy and μz.

	 μt = μp + μi	 (8.7)

The condition for infrared activity is that at least one of the dipole moment 
component derivatives (μ1 = μx, μy or μz) with respect to the normal coordi-
nate φ, measured at equilibrium position, should be non-zero.

	

∂µ
∂ ϕ

i

o

0








 ≠  	 (8.8)

Atoms and molecules consist of collections of oppositely charged particles, 
whose relative positions can be altered by the application of an external 
electric field. This alteration leads to an electric dipole moment (μind) being 
induced in the system. The magnitude of this induced moment will be pro-
portional to the applied electric field (E), i.e., μind = α E. The proportionality 
constant α is called the polarizability of the molecule. As molecules vibrate, 
the polarizability (α) of the molecule changes. The normal mode is Raman 
active only, when the polarizability change with the normal coordinate at the 
equilibrium configuration is non-zero, i.e.,

∂ α
∂ ϕ

≠ 0

For atoms, where the symmetry is spherical, the polarizability will be same 
in all directions (isotropic). This can be expressed by scalar quantity whereas 
for molecules with less than spherical symmetry, the polarizability in all 
directions is not same (anisotropic) and it is described by a tensor (a square 
matrix). thus, one can write

	
µ
µ
µ

α α α
α α α
α α α

ind

ind

ind

xx xy xz

yx yy yx

zx zy z

(x)
(y)
(z)

















=

zz
















 

E
E
E

x

y

z
















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where	 αxx = 
∂µ
∂

x

xE








 	

	 αxy = 
∂µ
∂

x

yE








 	

	 αxz = 
∂µ
∂

x

zE








 	

Since polarizability tensor is symmetric, i.e., αij = αji (such as αxy = αyx, αyz = 
αzy, etc.), only six of the nine components are distinct, i.e., αxx, αyy, αzz, αxy, 
αyz and αzx. In order for the vibration to be Raman active, the change is 
polarizability of the molecule with respect to vibrational motion must not be 
zero at equilibrium position of the vibration.

8.4  THE MUTUAL EXCLUSION RULE

Consider a molecule, which has a center of symmetry (i). Point group of mol-
ecules with this element of symmetry has two sets of irreducible representa-
tions. The representations, which are symmetric with respect to inversion 
are called g representation. The representations, which are antisymmetric 
to inversion are called u representations. Let us consider the inversion of 
a Cartesian coordinate x through the center of inversion. The coordinate x 
becomes – x. Therefore, all representations generated by x, y or z must belong 
to a u representation. On the other hand, the product of two coordinates, (i.e., 
xy, yz, zx) does not change sign on applying inversion operation. Therefore, 
it follows that all such binary products, which represent the components of 
the polarizability tensor, belong to g representations.

From these rules, we can conclude that in centrosymmetric molecules, 
only fundamental modes belonging to g representations can be Raman 
active and only fundamental modes belonging to u representations can be 
infra-red active. This rule is called mutual exclusion rule. It is also obvious 
that the same must be true for other transitions besides fundamentals, since 
the reasoning is completely general. Another way of explaining this rule is 
as follows:
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If a molecule has a center of symmetry, then any vibration that is active in 
the IR, will be inactive in the Raman and vice versa. Therefore, one can infer 
that a molecule has no center of symmetry, if the same vibration appears in 
both; IR and Raman spectra.

This rule is very important to get structural details. If center of symmetry 
is present, then there will be no common band in IR and Raman spectra. This 
is because Raman active vibration may be very weak to be noticed. But if in 
a case, center of symmetry is absent in the molecule, then certainly there will 
be some common vibration (band) in IR and Raman spectra.

Let us take examples of CO2 and N2O. Symmetric stretching vibration is 
IR inactive, but Raman active in CO2, which clearly indicates the presence of 
center of symmetry in the molecule. In N2O, there is a uncertainty to arrive 
at any conclusion related to center of symmetry, because some vibrations are 
present in both; Raman and IR spectra. It means, N2O molecule is non-linear.

Molecule Point group Symmetry species IR Active Raman active

CO2 D∞h A1 g, A1u, E1u A1u, E1u A1 g

C2H2 D∞h 2A1 g, E1 g, E1u, A1u E1u, A1u A1 g, E1 g

N2F2 C2h 3Ag, Au, 2Bu Au, Bu Ag

According to selection rule

	

∂µ
∂ ϕ

≠

∆ = ±

i 0

(  v 1)
(For IR spectra)

 

∂ α

∂ ϕ
≠

∆ = ±

ij 0

v 1
(For Raman spectra)

	

Here φ represents displacement coordinate. φ is a measure of change in 
bond angle from equilibrium position for bending vibration and extension or 
compression of bond during stretching vibration.
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8.5  NORMAL MODE ANALYSIS

A molecule with N atoms has a total of 3 N degrees of freedom, out of which 
3 degrees of freedom correspond to translational motion and 3 more degrees 
of freedom for non-linear and 2 for linear molecule correspond to rotational 
motion. The remaining, (3 N – 6) for non-linear and (3 N – 5) for linear mol-
ecules, degrees of freedom is due to vibrational motion, and these are called 
normal modes. These are further divided into stretching and bending modes. 
In order to determine the symmetry of these normal modes of vibration, a 
kind of representation is considered for the molecule by choosing a variety 
of basis systems. There are two group theoretical methods

•	 Cartesian coordinate method; and
•	 Internal coordinate method.

In Cartesian coordinate method, the complete set of 3 N vectors are con-
sidered for representation in the molecular point group, in which a set of 
three will be located along X-, Y- and Z-axes on each atom of the molecule.

Firstly, a total reducible representation for 3 N degrees of freedom is 
determined (Γ3N). It is obtained by performing symmetry operation on this 
vector; which forms representation basis and represent vibrational mode. 
The character of particular symmetry operation in Γ3N representation is 
determined by product of number of unshifted atom (NUA) and contribu-
tion per unshifted atom, i.e., only vector on unshifted atom is considered.

Χ (R) = NUA × Contribution per unshifted atom (equivalent to character 
of full matrices for the operation)

Now after getting Γ3N, i.e., total reducible representation, reduction 
formula is used to obtain irreducible representation corresponding to the 
symmetries of the 3 N degrees of freedom. Translational and rotational 
motion can be obtained, using character table of point group to which mol-
ecule belongs. Then irreducible representation for 3 N – 6 for non-linear 
molecule and 3 N – 5 (for linear molecule), normal modes are determined 
by subtracting transitional and rotational representation from reducible 
representation (Γ3N).

	 Γvib. = Γ3N – ΓTrans. – ΓRot.	 (8.9)

The normal mode analysis involves determination of symmetry by taking 
each normal mode of vibration as basis for irreducible representation of the 
point group of the molecule.



Molecular Vibrations	 257

8.5.1  GENERAL SEQUENCE OF STEPS FOR NORMAL MODE 
ANALYSIS

Group theoretical analysis of vibrations follows a particular sequence of 
steps and these are:

	 (i)	 The geometry of the given molecule has to be assessed correctly and 
its point group is determined. Its order and number of classes is also 
found.

	 (ii)	 The total number and the symmetry of the Cartesian coordinates is 
determined, which should be equivalent to the total degrees of free-
dom, i.e., 3 N.

	 (iii)	 Translational and rotational representations are subtracted from the 
total representation to obtain vibrational modes.

ΓVib. = Γ3N – ΓTrans. – ΓTot.

	 (iv)	 The internal coordinates are classified and defined into some sets 
and their individual symmetry is determined.

	 (v)	 The spurious modes are recognized and eliminated, which generally 
occur in internal coordinates and their place in new coordinates are 
defined.

	 (vi)	 I.R. and Raman spectral activity of all the vibrational modes so 
obtained is determined.

	 (vii)	 The normal modes of vibration based on the skeletal framework of 
the molecule are written and represented as per their symmetry.

8.6  AB2 MOLECULES (C2V POINT GROUP)

Examples of this group are H2O or SO2.

8.6.1  CARTESIAN COORDINATE METHOD

Water molecule belongs to C2v point group. Each atom of molecule has 
Cartesian coordinates (x, y and z). Z-axis is considered as the principal 
axis and yz plane is the molecular plane. Since H2O has three atoms and 
each atom has 3 displacement vectors. So, H2O molecule will have in 
total 9 vectors.
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Operation E

The identity operation simply means doing nothing. Therefore, all the coor-
dinates will remain same after operation E also, i.e., x1, y1, z1 x2, y2, …, etc. 
will be x1, y1, z1, x2, y2, …, etc.

x x y y z z
x x y y z z
x x y

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3

' ' '
' ' '
'

 →  →  →
 →  →  →
 → '' ' →  →y z z3 3 3

Thus, this transformation can be represented as:

E.

x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

3

3

3

'
'
'
'
'
'
'
'
'



































=

11 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 00 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

x
y
z

1

1



































11

2

2

2

3

3

3

x
y
z
x
y
z



































χ [E] = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9

The character of E is equal to the value of 3 N degrees of freedom

χ (E) = 3 N  (N = Number of atoms)
	 9 = 9
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Operation C2

On two-fold rotation of molecule along Z-axis, two H atoms change their posi-
tions. (They exchange their positions, i.e., H1 becomes H2 and vice-versa), 
but oxygen atom remains unshifted. It leads to following transformation.

x x y y z z
x x y y z z
x

1 3 1 3 1 3

2 2 2 2 2 2

3

' ' '
' ' '
'

 → −  → −  →
 → −  → −  →
 → −−  → −  →x y y z z1 3 1 3 1' '

Thus, the matrix can be shown as:

C

x
y
z
x
y
z
x
y
z

2

1

1

1

2

2

2

3

3

3

.

'
'
'
'
'
'
'
'
'



































==

−
−

−
−

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0

1
1

1
1

00 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−
−































1

1 




































x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

3

3

3

χ (C2) = (–1) + (–1) + 1 = –1

σv (xz) Operaton

On σv (xz) operation, the two H atoms will exchange their positions, but 
oxygen atom will remain unshifted. It reverses all the 4 vectors.

Thus, the matrix can be shown as:

σv

1

1

1

2

2

2

3

3

3

(xz)

x
y
z
x
y
z
x
y
z

.

'
'
'
'
'
'
'
'
'



































=

−
0 0   0   0   0   0 0   0
0 0 0 0 0   0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0

1
0 1

1
1
00 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−

−

















1 0

1
1

1
















































x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

3

3

3





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χ (σv (xz) = 1 + (–1) + 1 = 1
σv (yz) operation
In σyz operation, all the atoms remained on same position but all their x vec-
tors are reversed.

Therefore, the matrix can be represented as:

σv

1

1

1

2

2

2

3

3

3

(yz)

x
y
z
x
y
z
x
y
z

.

'
'
'
'
'
'
'
'
'



































=

−

−

1 0
1 0

0
1

  0   0   0   0   0 0   0
0 0 0 0 0   0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
00 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0

0 1
0

0

−































































x
y
z
x
y
z
x
y
z

1

1

1

2

2

2

3

3

3








χ (σv (yz) = (–1) + 1 + 1 + (–1) + 1 + 1 + (–1) + 1 + 1 + 1 = 3

The set of characters obtained is a 9-dimensional representation and is 
reducible. Hence, Γ3N in C2v (H2O) is:

C E C (xz) (yz)
9 1 1 3

2v 2 v v

3N

σ σ
Γ −

The character table for C2v is

C E    C (xz) (yz)
A 1    1    1    1 z x , y , z
A 1    1    1   

2v 2 v v

1
2 2 2

2

σ σ

  1 R xy
A 1 1    1 1 x,R xz
A 1 1 1    1 y,R yz

z

3 y

4 x

− −
− −

Using the reduction formula:

ai = 
1
h
ΣnR χi(R) χj(R)

aA1 = 
1
4

 [1 × 1 × 9 + 1 × 1 × (–1) + 1 × 1 × 1 + 1 × 1 × 3] = 3
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aA2 = 
1
4

 [1 × 1 × 9 + 1 × 1 × (–1) + 1 × (–1) × 1 + 1 × (–1) × 3] = 1

aB1
 = 

1
4

 [1 × 1 × 9 + 1 × (–1) × (–1) + 1 × 1 × 1 + 1 × (–1) × 3] = 2

aB2
 = 

1
4

 [1 × 1 × 9 + 1 × (–1) × (–1) + 1 × (–1) × 1 + 1 × 1 × 3] = 3

Thus Γ3N = 3 A1 + A2 + 2 B1 + 3 B2
The irreducible representation for translational and rotational repre-

sentations can be known using third column of character table of C2v. The 
Cartesian vectors x, y, and z transfer as B1, B2 and A1, respectively and Rx, Ry 
and Rz rotational vectors transfer as B2, B1 and A2, respectively. Therefore, 

	 ΓTrans. = A1 + B1 + B2	

	 ΓRot. = A2 + B1 + B2	

Thus, the contribution due to vibrational motion is given as:

	 Γvib = Γ3N – (ΓTrans + ΓRot)	

	 = 3 A1 + A2 + 2 B1 + 3 B2 – (A1 + B1 + B2 + A2 + B1 + B2)	
	 Γvib = 2 A1 + B2	

Total degrees of freedom will be 3 N – 6 = (3 x 3) – 6 = 3. Here, out of 3 
modes of vibration, two belong to A1 irreducible representation while one 
belongs to B1 irreducible representation. Each vibrational mode form the 
basis of irreducible representation of the point group of the molecule and by 
performing the symmetry operation of the point group on each atom vibra-
tional mode, the symmetry of each mode can be determined.

Vibration mode E       C  (xz) (yz)
1       1    1 1 A
1   

2 v v

1 1

2

σ σ
ν
ν      1    1 1 A

1 1 1 1 B
1

3 2ν − −

χ (C2) = –1
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Simply by direction of the arrow, the character of each operation is deter-
mined. From the table, it can be easily found out that ν1, ν2, and ν3 vibration 
mode belongs to symmetry A1, A1 and B2, respectively and therefore, once the 
symmetry of normal mode of vibration is known, one can find out whether 
the vibration mode is IR or Raman active or not by using the selection rule.

Let us understand it by using example of H2O molecule. The integral ∫ ψ0 μ 
ψ1 dτ can be found out in terms of symmetry by direct product of ψ0, μ and ψ1.

ψ0 belongs to A1 (totally symmetric representation), μ belongs to irreducible 
representation to which x, y, z belongs. ψ1 belongs to symmetry of any vibration 
mode for example ν3 (asymmetric stretching), which belongs to B2 symmetry.

A  . B  . B
A  . B  . B
A  . A  . B

B  . B
B  .

1 1 2

1 2 2

1 1 2

1 2

2

















=   B
A  . B

A
A
B

2

1 2

2

1

2

















=
















ν3 vibration mode is IR active, because the direct product is totally 
symmetric irreducible representation. In the same way, ν1, and ν2 are also 
IR active. Thus, three absorption bands can be observed in H2O molecule.

This method is quite cumbersome and time consuming as the matrices 
are 3 N × 3 N dimensional. However, there is a simple way also to obtain 
the characters without going through the details of applying each of the 
group operations to each of the 3 N Cartesian coordinates. Now, the matrix 
contributing to the overall characters lies on the diagonal only, when the 
operation leaves atom unchanged or unshifted. Therefore, the problem of 
finding the character for each class of operation is simplified to the level of 
simply determining the number of atoms unshifted (NUA) during the opera-
tion and it is multiplied by character of the unshifted atom. Thus, the overall 
character is then equal to the character of number of such unshifted atoms 
multiplied by the per unshifted atom (UA). The character of unshifted atom 
depends on change in X-, Y-, Z-axes on performing symmetry operation. Its 
value is + 1, when axis remains unchanged and –1, when direction of axis 
is reversed.

Now we know that matrices for various elements of symmetry are as:
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(z)C

100
0θ cosθsin 
0θsin  θ cos 

E

001
001
001

2


































 

(xz)σ

10  0
0  1  0
0  0  1

(z)S

100
0  θ cosθsin 
0  θsin  θ cos 

vn




































 

 

 
−

−
−

















−















1   0   0
  0

  0

i (

  0 1
  0 1

v

1 0 0
0 1 0
0 0 1

σ yyz) (xz)v

1 0 0
0 1 0
0 0 1

−
















σ

The characters of all these basic matrices can be tabulated as:

Symmetry element E C (z) S (z)   i
 (R) UA 3 1 2 cos 1 2 cos 1

n n σ
χ θ θ/ + − + −−3 

The total character for each class of operation, χ (R), can be easily obtained 
by multiplying χ (R)/UA with the number of unshifted atom (NUA). Thus.

χ (R) = (NUA) x (χ (R)/UA)

For water molecule:

E C (z) (xz) (yz)
 (R) UA 3 1

E C (z) (xz) (yz)
NUA 3

2 v v 2 v vσ σ
χ

σ σ
/ −1 1 1 1 3

There Γ3N (Total) = NUA x χ (R)/UA

C E C (z) (xz) (yz)
9

2v 2 v v

3N

σ σ
Γ −1 1 3
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8.6.2  INTERNAL COORDINATE METHOD

The possible internal coordinate or internal displacement coordi-
nates can be classified as bond vectors: r1 and r2 (O–H bonds) = 2 and 
bond angles: α (∠ H1OH2) = 1 and hence, the total number of internal 
coordinates = 2 (r1 and r2) + 1 (α) = 3.

For symmetry identification of the normal modes in terms of the these 
internal coordinates, a series of matrix representations for each of the C2v 
class will have to be worked out. If the changed coordinates after the opera-
tion can be represented as r1 → r1,’ r2 → r2′ and α → α’. Then, 

Then, one can write:

r '
r '

'

Transformation
matrix of
coefficients

1

2

α

















=
































r
r
1

2

α

Thus, 

r
r

1 0 0
0 1 0
0 0 1

r
r

1

2

1

2

E

α α

















=
































χ (E) 3=

 

r '
r '

'

0 1 0
1 0 0
0 0 1

r
r

1

2

1

2

C

α α

















=
































2
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χ (C ) 12 =

 

r '
r '

'

0 1 0
1 0 0
0 0 1

r
r

1

2

1

2

v(xz)

α α

σ
















=
































χ σ ( (xz)) 1v =

r '
r '

'

1 0 0
0 1 0
0 0 1

r
r

1

2

1

2

v(yz)

α α

σ
















=
































χ σ ( (yz)) 3v =

The character of the symmetry operation thus obtained are:

C E C (z) (xz) (yz)
3 1 1 3

2v 2 v v

Int

σ σ
Γ

Using the standard reduction formula and the character table of C2v, ΓInt can 
be calculated as:

ΓInt = 2 A1+ B2

The result is same as that obtained in the case of ΓVib from Cartesian coor-
dinate method. Since no symmetry operation of this group interchanges 
bond vectors (r) with bond angle (α), the two vectors r1 and r2 form an 
independent basis for 2 x 2 representation, Γr, and Γα form a basis for 
representation

Hence,	 ΓInt = Γα + Γr	

The matrix can also be represented in form of 2 x 2 matrices for bond 
vector as:
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r '
r '

1 0
0 1

r
r

1

2

1

2

    E








 =





















χ (R) 1 1 2= + =

r '
r '

0 1
1 0

r
r

1

2

1

2

2     C








 =





















χ (R) 0 0 0= + =

r '
r '

0 1
1 0

r
r

1

2

1

2

    v(xz)








 =





















σ

χ (R) 0 0 0= + =

r '
r '

1 0
0 1

r
r

1

2

1

2

    v(yz)








 =





















σ

χ (R) 1 1 2= + =

and matrices of 1 x 1 for bond angle

E   C   
[ ] [1][ ] [1] [1] [1]
 (R) 1 1 1 1

2 xz yzσ σ
α α

χ

Finally, the result can be represented as:

C E C (z) (xz) (yz)
2 0 0 2
1 0 1 1

2v 2 v v

r

σ σ
Γ
Γα
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Using the reduction formula or by inspecting the character table, Γα = A1 
and Γr = A1 + B2.

Internal coordinate method has advantageously classified the nature of 
fundamentals into bond stretching and bending types.
	 (i)	 Bond stretching mode: Γr = A1 and B2;
	 (ii)	 Bending mode: Γα = A1.

The three pure vibrational modes (3 N – 6 = 3) for H2O are:

	 (i)	 One pure bond stretch, i.e., B2 of O-H bonds (ν3)
	 (ii)	 Two of A1 symmetry – Combination of O-H bond stretch and H-O-H 

bond angle deformation. with ν1 and ν2 mode (A1) have intermixed 
character. It means that one mode has some character of other. The 
asymmetric stretching with ν3 (B2) is only pure mode, which is 
important for determination of structure of molecule.

It can be assumed that ν1 (364 cm–1) and ν2 (1595 cm–1) are different 
modes. But difference in observation of calculated and experimental value 
shows that there is interaction between two normal modes because they have 
same symmetry.

Once the fundamental mode of vibration is determined. It is now easy 
to predict, which of them will be active in the infra-red and which one in 
Raman spectra. The functions x, y and z in the character tables represent the 
irreducible representations or symmetry species to which the corresponding 
components μx, μy and μz of the dipole moment belong. Infra-red transition 
transitions originate from the dipole moment operator, whose symmetry is 
same as the vector along X-, Y- and Z-axes. These are generally asymmetric 
vibrations from character table of C2v, z transforms as A1 species. Therefore, 
the fundamentals belonging to A1 species (ν1 and ν2) is infra-red active. 
Similarly, fundamentals belonging to B1 and B2 should also be infra-red 
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active as they correspond to x and y functions, respectively. However, in 
H2O molecule A1 and B2 type of fundamentals occur and both of them are 
infra-red active.

Since Raman spectral absorption does not depend on the dipole moment 
operator, but on the polarizability operator (α), which contains binary and 
quadratic Cartesian functions such as x2, y2, z2, xz, yz, xy and their com-
binations. The normal mode species will have to be checked against these 
functions. If any of these functions are found against the irreducible repre-
sentation representing the fundamental, then the fundamental is said to be 
Raman active. From C2v character table, it is found that A1 and B2 both are 
Raman active. Thus,

Mode Infra-red Raman Nature of vibration

2 A1 (+) Active (+) Active Mixed
B2 (+) Active (+) Active Pure

The number of coincidences = 3 (Number of vibrations common in both)
Thus, there are three irreducible representations and three Raman (coin-

cident with the infra-red) bands.

8.7  AB3 PYRAMIDAL MOLECULES (C3V GROUP)

Example of this type of molecules/ions are NH3, POCl3, PH3, CH3Cl, 
CHCl3, etc.

8.7.1  CARTESIAN COORDINATE METHOD

The motion of atoms in NH3 molecules are represented by a set of Cartesian 
coordinates. For convenience and clarity, the pyramidal NH3 is depicted as 
lying in the plane of paper. But it should always be assumed that N atom is at 
the apex of the trigonal pyramid and the Z-axis is perpendicular to the plane 
of the paper and the basal triangle of three H atoms, passes through N atom 
and the centroid of this triangle. The number of atoms unshifted (NUA), 
their characters and resulting characters are as follows:



Molecular Vibrations	 269

C  E  2 C 3 
NUA  4    1   2
 (R) UA  3    0   1

12    0   2

3v 3 v

3N

σ

χ
Γ

Using the standard reduction formula, we get Γ3N (Total) = 3 A1 + A2 + 4 E
This representation includes all matrices of the molecules. Now

	 ΓTrans = A1(z) + E (x, y) and ΓRot = A2 (Rz) + E (Rx, Ry)	
	 ΓTrans. = A1 + E	
and	 ΓRot. = A2 + E	
Hence	 ΓVib. = ΓTotal – (ΓTans. + ΓRot.)	
	 ΓVib. = 3 A1 + A2 + 4 E – (A1 + E + A2 + E)	
	 ΓVib = 2 A1+ 2 E	

Thus, out of six modes, two vibrational modes belong to A1 symmetry and 
rest four vibration modes are two pair of doubly degenerate mode, i.e., E 
symmetry.

8.7.2  INTERNAL COORDINATE METHOD

The internal coordinates of NH3 consist of three bond stretch vectors and 
three bond angles.
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Bond vectors: r1 – r3 (N–H bond) = 3
Bond angles: α1– α3 (H–N–H angle) = 3
Total number of internal coordinates = 3 + 3 = 6
Since bond vectors do not exchange symmetry operations of this group, 

the transformation matrices corresponding to each category of internal coor-
dinates can be separated and written as:

r '
r '
r '

1 0 0
0 1 0
0 0 1

E
r
r

1

2

3

1

2

















=






























α

χ (R) = 3

r '
r '
r '

0 1 0
0 0 1
1 0 0

C
r
r
r

1

2

3

1

2

3

3
















=
































χ (R) = 3

r '
r '
r '

1 0 0
0 0 1
0 1 0

r
r
r

1

2

3

1

2

3

v

















=
































σ

χ (σv) = 3

α
α
α

α
α
α

1

2

3

1

2

3

'
'
'

1 0 0
0 1 0
0 0 1

E
















=
































χ (E) = 3

r '
r '
r '

0 1 0
0 0 1
1 0 0

C
r
r
r

1

2

3

1

2

3

3
















=































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χ (C3) = 0

r '
r '

'
=

1 0 0
0 0 1
0 1 0

r
r

1

2

3

1

2

3

v

α

σ

α

















































χ (σv) = 1

 

Thus, the result are:

C  E  2 C 3 
 3    0   1
 3    0   1

3v 3 v

r

σ
Γ
Γα

The two representations can be reduced using reduction formula.

	 Γr = A1 + E	
	 Γα = A1 + E	
Hence	 ΓInt = Γr + Γα	

	 ΓInt = 2 A1 + 2 E	

Results obtained from internal and Cartesian coordinate methods are same.
Out of the six normal modes of vibration (3 N – 6), two are totally 

symmetric (A1 type) and the other four are two pairs of double degener-
ate (E type) modes. Two symmetrical modes will consist of a simultaneous 
symmetrical stretching of all N-H bonds and a symmetry movement of all 
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H-N-H angles in an umbrella like manner. On the other hand, the double 
degenerate E  modes cannot be easily understood. Further from character 
table, it is found that A1 and E modes are both infra-red and Raman active. 
(E is combination of bond stretching and bending modes).

Mode Infrared Raman Nature of vibration

2 A1 (+) Active (+) Active Mixed
2 E (+) Active (+) Active Mixed

The number of coincidences = 4

8.8  AB4 MOLECULES (Td POINT GROUP)

Examples of this type of molecules/ions are CH4, BH4
+, SiH4, ClO4

− or SO4
2−.

Such molecules have Td symmetry. As the molecule is non-linear, five atomic 
species will have 3 x 5–6 = 9 vibrational modes (degrees of internal freedom).
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8.8.1  CARTESIAN COORDINATE METHOD

The set of 15 Cartesian displacement vectors along the Cartesian coordinate 
axes X-, Y-, and Z- on each atom of the molecule forms a basis for the fol-
lowing representation.

T E   8 C  3 C   6 S   6 
NUA 5 2    1    1 3

 (R) UA 3 0 1 1 1

d 3 2 4 d

3N

σ

χ
Γ

− −
((Total) 15 0 1 1 3− −

Using standard reduction formula, this can reduced as Γ3N (Total) = A1 + 
E + T1 + 3 T2

From character table, it follows that ΓRot. = T1 (Rx, Ry, Rz) and ΓTrans = T2 
(x, y, z)

Hence, the vibration modes are
ΓVib = Γ3N (Total) – (ΓRot. + ΓTrans.) = A1 + E + T1 + 3 T2 – (T1 + T2) = A1 + 

E + 2 T2

8.8.2  INTERNAL COORDINATE METHOD

A-B bond lengths and bond angles ∠ B-A-B form the basis for a representa-
tion to find the contribution of the internal coordinates.

Bond Angles: As a1 to α6 = 6; Bond vectors: r1 to r4 = 4, therefore, total 
number of internal coordinates will be 6 + 4 = 10 (one more than 3 N – 6)

T E   8 C  3 C   6 S  6 
4 1 0 0 2
6 0 2

d 3 2 4

r

σ
Γ
Γα 2 0



274	 Chemical Applications of Symmetry and Group Theory

Using standard reduction formula and character table of Td, it is found that 
Γr = A1 + T2 and Γα = A1 + E + T2 and hence ΓInt = Γα + Γr = 2 A1 + E + 2 T2.

It will be seen that the total dimensionality of these two representations is ten 
(one is excess of the correct number calculated by 3 N – 6 formula). Specifically, 
there is an extra A1 representation. It is easy to determine that the representa-
tion is the one in Γα, although it is possible for all the four of A-B (C-H) dis-
tances (bond lengths) to change independently, it is not possible for all the six 
bond angles to change independently. If any five are arbitrarily changed, then 
the change of the sixth one is automatically fixed. For A1 vibration, all the six 
angles would have to change in the same way at the same time (i.e., all increase 
or all decrease), and it is clearly impossible. Hence, we obtain the results that 
the A1 vibration of CH4 consists purely of C-H stretching, and the E vibration is 
purely HCH angle deformation, while both; bond stretching and angle bending, 
contribute to each of the normal vibrations of T2 symmetry. Thus, 

Γα = E + A2

Here, A1 is not included.
IR and Raman active vibrations can be determined as:

Mode Infrared Raman Nature of vibration

A1 (–) Inactive (+) Active Pure stretching
E (–) Inactive (+) Active Pure bending
2 T2 (+) Active (+) Active Mixed

The character table also shows activities of these fundamentals.
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The spectral activity of vibration for molecules of Td point group are repre-
sented below:

Point group IR Active Raman active Polarized Number of 
coincidences

Td 2 
2 T2

4  
A1, E, 2 T2

1  
A1

2 
2 T2

ν3, ν 4 1 + 1 + 2  
ν1 + ν2 + ν3 + ν4

ν1 ν3, ν4

8.9  AB6 MOLECULES (Oh POINT GROUP)

Example of this type of molecule is SF6.

8.9.1  CARTESIAN COORDINATE METHOD

This molecule belongs to Oh point group. It has 3 × 7–6 = 15 degrees of 
internal freedom. The 21 Cartesian displacement vectors along X-, Y-, and 
Z-axes in each of molecule generates the representation Γ3N as:

O E 8 C 6 C   6 S 3 C  ( C     6 S   8 S   3  6 
NUA

h 3 2 4 2 4
2

4 6 h d' )= i σ σ
77 1    1  3    3    1    1 1 5 3

 (R) / UA 3 0 1 1
(Total) 213N

χ
Γ

− − − −1 3 1 0 1 1
00 1  3− − − −3 3 1 0 5 3

Using reduction formula, the representation ΓTotal reduced as follows:

Γ3N = A1 g + Eg + T1 g + 3 T1u + T2 g+ T2u = 21 mode

The character table of the point group shows that the rotation and transla-
tion belong, respectively to the T1 g and T1u representation. Hence, the vibra-
tional modes are:
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ΓTrans. = T1u (x, y, z) and ΓRot. = T1 g (Rx, Ry, Rz)
ΓVib. = ΓTotal – (ΓRot + ΓTrans.)

= A1 g + Eg + T1 g + 3 T1u + T2 g + T2u – (T1 g + T1u)
= A1 g + Eg + T2 g + 2 T1u + T2u = 15 vibrational mode

8.9.2  INTERNAL COORDINATE METHOD

The set of six S-F bonds and the set of 12 FSF angles also forms the repre-
sentation. Thus, 

Bond vectors are r1 to r6 = 6
Bond angles are α1 to α12 = 12
Total number of internal coordinates = 6 + 12 = 18
These are 3 more than calculated; (3 N – 6) = 3 x 7–6 = 21–6 = 15
The results can be expressed in tabular form as:

O E 8 C 6 C ' 6 C 3 C i 6 S 8 S 3 6 
6 0 0 2 2 0 0 0 4 2

12 0 2 0 0 0

h 3 2 4 2 4 6 h d

r

σ σ
Γ
Γα 00 0 4 2

Using standard reduction formula and character table of point group Oh, 
Γr and Γα can be reduced as:

	 Γr = A1 g + Eg + T1u
	 Γα = A1 g + Eg + T2 g + T1u + T2u

Therefore, ΓInt. Γr + Γα = 2 A1 g + 2 Eg + T2 g + 2 T1u + T2u
So total degrees of freedom = 18, which exceeds 15 by 3. Obviously, 

there is some redundancy here. Since the S-F coordinates (Γr) are com-
pletely independent and the before, redundancy must be entirely in ΓFSF (Γα). 



Molecular Vibrations	 277

By comparing ΓInt. with genuine internal modes ΓVib., we see that the A1 g and 
Eg occurring in Γα are the spurious one. Therefore, Γα = T2 g + T1u + T2u

Hence, ΓInt. = A1 g + Eg + T2 g + 2 T1u + T2u
Thus, we conclude that each of the two T1u modes will involve a combi-

nation of bond stretching and angle deformation will be IR active (ν3 and ν4). 
The A1 g and Eg modes will involve only bond stretching and will be Raman 
active (ν1 and ν2), while T2 g (ν5) and T2u (ν6) modes will involve only angle 
deformation mode. Hence, T2 g will be Raman active and T2u mode will be 
inactive in IR and Raman spectra, both.

The character table also shows activities of these fundamentals.

Using character table of Oh point group, we can identify the IR and 
Raman active vibrations:

Mode Infrared Raman Nature of vibration

A1 g (–) Inactive (+) Active Bond stretching (pure)
Eg (–) Inactive (+) Active Bond stretching (pure)
T2 g (–) Inactive (+) Active Angle deformation (pure)
2 T1u (+) Active (–) Inactive Mixed, i.e., stretching + bonding
T2u (+) Active (–) Inactive Angle deformation (pure)

From this table, we can see that mutual exclusion rule is satisfied, which 
means molecules have center of symmetry.
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8.10  A2B2 MOLECULES (C2h GROUP)

Example of this type of molecule is trans – N2F2.
This molecule has plane or but non-linear structure. It belongs to the 

point group C2h. It is a non-linear four atomic molecule and it has 3 × 4–6 = 
6 degrees of internal freedom.

8.10.1  CARTESIAN COORDINATE METHOD

The set of 12 Cartesian displacement vectors for the entire molecule gener-
ates the following reducible representation:

C E   C    i    
NUA 4    0    0    4

 (R) UA 3 1 3
 (Total)

2h 2 h

3N

σ

χ
Γ

− − 1
112    0 0 4

This can be reduced as follows:

Γ3N = 4 Ag + 2 Bg + 2 Au + 4 Bu

From the character table, it is found that

ΓRot. = Ag + Bg + Bg = Ag + 2 Bg

ΓTrans. = Au + Bu + Bu = Au + 2 Bu

Thus, the genuine normal vibrations for this molecule is

	 ΓVib. = Γ3N (Total) – (ΓRot. + ΓTrans.)	

	 = 4 Ag + 2 Bg + 2 Au + 4 Bu – (Ag + 2 Bg + Bg + Au + 2 Bu)	

	 = 3 Ag + Au + 2 Bu = 6 (Normal modes)	

8.10.2  INTERNAL COORDINATE METHOD

The nature of these six vibrations may be further specified in terms of the 
contribution made to each one of them by the various internal coordinates. 
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Ag and Bu vibrations must involve only motions within the molecular plane, 
since the characters of the representation Ag and Bu with respect to σh are 
positive. The Au vibration will however, involve out-of-plane deforma-
tion, since the character of Au with respect to σh is negative. Thus, we may 
describe the normal mode of Au symmetry as out-of-plane (∞p) deformation. 
The symmetry table for this can be worked out as:

C E C i IR
1 1 1 1 A

2h 2 h

p u

σ
Γ∞ − −

In order to treat the remaining five in-plane vibration, we need a set of 
five internal coordinates such that changes in them may occur entirely in 
the molecular plane. A suitable set, related to the bonding in the molecule, 
consists of two N-F distances, the two NNF angles, and the N = N distance. 
It is found that two N-F distances form the basis for the representation Γr2

, ν3 
the two angles NNF for Γα and the N=N distance for Γr1

.
Thus, Bond vectors: r1 to r3 = 3
Bond angles: α1 and α2 = 2
Total number of internal coordinates = 5 (One less than the 3 N – 6) mode

C E  C  i   IR
1   1  1   1  A

, r 2   0  0   2  A B

2   0  

2h 2 h

r g

r 3 g u

1

2

σ
Γ

Γ

Γα

+

00   2  A Bg u+

From character table, it is found that:

	 Γr1
 = Ag; Γr2

, r3 = Ag + Bu and Γα = Ag + Bu	

Thus	 ΓInt. = Γr1
 + Γr2

, r
3
 + Γα = 3 Ag + 2 Bu = 5	

The missing sixth mode is obviously an out-of-plane mode. With the 
addition of Γ∞p, ΓInt. now becomes ΓInt. = 3 Ag + 2 Bu + Au
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Therefore, it follows that the three Raman active vibrations (Ag) will 
be compounded to symmetric N-F stretching, symmetric NNF bending and 
N = N stretching, the relative amount of each involved in each normal mode 
depend, of course, on the actual value of the force constants and atomic 
masses. Similarly, the two N-F stretching and NNF angle bending. 

Mode Infrared Raman Nature of vibration

3 Ag (–) Inactive (+) Active Mixed
2 Bu (+) Active (–) Inactive Mixed
Au (+) Active (–) Inactive Pure, out-of-plane deformation

8.11  OVERTONES AND BINARY/TERNARY COMBINATION BANDS

The number and spectral activities of the fundamental transition of the nor-
mal mode of a polyatomic molecule can be determined by normal mode 
analysis. But changes (less or more) in band are often observed, when actual 
spectra are studied. This variation in band in comparison to the results of 
normal mode analysis may be because of other bands called overtones, com-
binations and Fermi resonance bands.

8.11.1  OVERTONE BANDS

When a molecule absorbs radiation of appropriate energy, then transition 
occur from the ground state to its first vibrationally excited state and in 
one vibration mode, Δv = ± 1. Such transition gives a fundamental band. 
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But  overtone band occurs due to excitation to the second, third or even 
fourth vibrational excited state, i.e., (v0 → v2, v0 → v3, v0 → v4). It means 
overtone band appears because of the excitation beyond v = 1 level by single 
photon. Therefore, 

Band Vibrational mode
 2 2
 3 3
 4 4
 n n

(First1

1

1

1

ν
ν
ν
ν

→ ±
→ ±
→ ±
→ ±

  overtone)
(Second overtone)
(Third overtone)

Overtones have low intensity band than fundamental band and therefore, 
they are very weak. When molecule in first vibrational state is excited to 
third vibrational level, then energy required for this transition is not exactly 
twice of that energy, which is required for excitation to the second vibra-
tional level. It is so, because higher levels lie relatively closer together than 
lower levels.

8.11.2  COMBINATION BANDS

When single photon has exact (precise) energy to excite two vibrations at 
the same time, then another type of overtone like band is created, which is 
known as combination band. For this, the energy of the combination band 
must be exactly the sum of two independent frequencies. Suppose νi and νj 
are two different fundamental bands, then sum of νi and νj (νi + νj) gives a 
combination band.

8.11.3  DIFFERENCE BANDS

There is another type of band, called difference band, which occurs rarely 
but these are reported at higher temperature. Difference bands have νi – νj 
frequency. Again like combination band, difference band has low intensity 
than fundamental band.

Higher order combination bands are seldom observed.
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Vibration level diagram

The symmetry of overtone and combination species and their spectro-
scopic activity (Infrared and Raman) can be easily determined. When two 
or more non-degenerate vibrations combine, the symmetry of that level is 
given by the direct product of the representations to which that individual 
vibration belongs. The fundamentals may combine to give binary, ternary, 
etc., combination bands, which may be of overtone or combination (sum or 
difference) band type.

For example, consider a combination band arising out of Γi (ν1) and Γj (ν3) 
fundamentals. A direct product of these two is taken, Γi × Γj, which is quite 
often reducible to a combination of some irreducible representations. If some 
of these irreducible representations correspond to x, y, z or αij functions in 
the character table of that molecular point group, then that combination band 
may occur in either infrared or Raman spectrum. Similar considerations also 
apply to overtones, except that the direct product has to be taken of the same 
irreducible representations (Γi × Γj). It is enough, if one of the species of irre-
ducible representations of the product satisfies the requirement.

Let us try to illustrate it by taking BF3 molecule as an example, which 
belongs to D3h point group. The normal mode analysis has shown that the 
normal modes of this molecule belong to A1,′′ 2 E′ and A2″ species.

D3h character table indicates that A1′ is infrared inactive, whereas A2″ and 
E′ are infra-red active. If we consider a combination band of A′1 (ν1) and (ν3) 
modes, which can be written as (ν1 ± ν3), then the direct product of A1′ and E′ 
gives A1′ x E′ = E′ (Infra-red active).

Consider the first overtone of A2″ (ν2 + ν2 = 2 ν2), whose direct product 
gives the species as:

A2″ × A2″ = A1′ (Infra-red inactive)



Molecular Vibrations	 283

While the fundamental A2″ being infrared active, its first overtone 
becomes inactive in infrared. Similarly, the second overtone of A2″ (3 ν2) is

A2″ × A2″ × A2″ (Infra-red active)

The second overtone, though active in the infrared, occurs as a very weak 
band. The infra-red and Raman activity of other combinations can be simi-
larly worked out.

Consider another example of SO2 molecule, which belongs to C2v point 
group. SO2 is predicted to have three normal modes as (3 N – 6) = 3, but the 
spectral data show the presence of more than three bands. The bands at 1361, 
1151 and 519 cm–1 are the three fundamentals designated as ν3, ν1 and ν2, 
respectively. They can be easily identified based on their intense character.

Since all these fundamentals are also active in Raman spectrum, some 
of these binary combinations can also be obtained in Raman with decreased 
intensity. Coupling of group vibrations occurs, if these are of the same sym-
metry type. For example, in case of acetylene, the symmetric C-H stretching 
vibration and C-C stretching vibration are of the same symmetry type, and 
these are highly coupled. The determination of the species contained in an 
overtone of a degenerate fundamental is difficult and we have to consider, 
what are called symmetrical products. A variant of the direct product is the 
symmetrical products, which must be used in ascertaining the symmetry of 
the overtones of degenerate fundamentals.

The IR and Raman spectra of a molecule generally exhibit a number 
of strong bands due to fundamentals and a rather large number of weaker 
bands, which correspond to the overtone and combination bands of the 
molecule.

The completely assigned infra-red bands of SO2 molecule is:

 ν (cm−1) Frequency Mode symmetry Assignment

519 ν2 A1 Fundamental band
606 ν1 – ν2 A1 Difference band
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 ν (cm−1) Frequency Mode symmetry Assignment

1151 ν1 A1 Fundamental band
1361 ν3 B2 Fundamental band
1871 ν2 + ν3 B2 Combination (sum) band
2305 ν1 A1 Overtone of n1

2499 ν1 + ν3 B2 Combination (sum) band

Therefore, it can be concluded that diatomic molecules, may at the most 
have some overtones in addition to their fundamentals, whereas in polyatomic 
molecules, overtones as well as some combination bands will occur, in addi-
tion to the number of fundamentals permitted by 3 N – 6 (non-linear) or 
3 N – 5 (linear) formula. Overtones may occur at frequencies approximately 
twice those of the corresponding fundamental vibration. Combination (sum 
or difference) tones/bands may occur at frequencies approximately equal to 
the sum or difference of the frequencies of any two or more fundamentals. 
Thus, the overtones and combination bands are called as binary, ternary or 
quaternary combinations depending on whether two, three or four fundamen-
tals are involved. Fundamentals occur generally as intense bands whereas the 
binary and other combination appear as weak intensity band in the spectrum.

The activity or allowedness of an overtone or a combination band in 
infra-red and Raman spectra depends on the overall symmetry of the combi-
nation. The allowed combinations appear as weak bands in the infra-red, but 
are usually too weak to be observed in Raman. Higher order combinations 
are still even weaker.

If a binary or any other combination and a fundamental vibration have 
the same symmetry and approximately the same frequency, then the two may 
interact to give rise to a pair of bands of comparable intensity. This interaction 
is termed as ‘Fermi resonance.’ ψ1 and ψ2 with energies E1 and E2 belong to 
the same irreducible representation, and they interact by a typical quantum 
mechanical resonance. Then the energy of interaction, E′, is given by

	 E′ = ∫ψ1Hψ2dτ	 (8.10)

where H is the Hamiltonian for the interaction. As a result of this interaction, 
the states ψ1 and ψ2 mix to give rise to two new states ψ′1 and ψ′2 having 
energies E′1 and E′2, such that E′1 = E1 + E′ and E′2 = E2 – E′ (if E1 > E2).

Considering the example of CO2 molecule, bands at 2349, 1340 (which 
is infact a doublet at 1286 and 1388 cm−1) and 667 cm−1 have been assigned 
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to ν3, ν1 and ν2, respectively. The band at 1340 cm−1 (ν1) belongs to sym-
metry species whereas the one at 667 cm−1 (ν2) belongs to πu species. The 
assignment of the band at 1340 cm−1 has actually been simplified, which 
is an intense doublet. The resonance interaction between the fundamental 
mode ν1 (at 1340 cm−1) and the first overtone of ν2 [i.e., 2 ν2, Σ8

+ = 2 x 667 = 
1334 cm−1], both being active in Raman, takes place as they occur almost at 
the same frequency. 2 ν2 has the same symmetry ( Σ8

+ ) and same frequency 
(1334 cm−1) as that of the fundamental ν1. Here, ν1 is expected to be much 
more intense than 2 ν2. In fact, after the interaction, these were found to be 
of same intensity. The weak overtone band (2 ν2) is said to have borrowed 
intensity from the fundamental band (ν1). In this process, ν1 is raised from 
1340 to 1388 cm−1 and 2 ν2 is depressed from 1334 to 1286 cm−1. Thus, the 
energy of interaction, E′ corresponds to 48 cm−1 and the new bands are sepa-
rated by 96 cm−1 (2 E′).

8.12  FERMI RESONANCE

When two atoms attached to a common atom vibrates with similar frequency, 
then coupling vibration may occur by interaction of fundamental vibration 
with the overtone of some other vibration (i.e., overtone or combination) of 
same energy and symmetry. Such coupling is called Fermi resonance, Fermi 
resonance has high intensity because overtone or combination band borrows 
intensity from the fundamental band of the same symmetry. Basically, in 
Fermi resonance, two bands (fundamental band and the overtone or com-
bination band) interact and split, losing their individual identity and form a 
pair of bands of similar energy.

Fermi resonance is named after Enrico Fermi, who discovered it. The 
mixing of two bands shift both the energy levels away, which leads to shift 
of higher energy band to higher energy and lower energy band shift to lower 
energy side and both have approximately equal intensity. The interacted 
band can be said as accidentally degenerated.

For example, if fundamental vibration (totally symmetric) has same 
frequency as that of first overtone (totally symmetric) of non-degenerated 
fundamental, then there will be an accidental degeneracy, i.e., double degen-
eracy for non-degenerated totally symmetric species.

Thus, the possibility of Fermi resonance should be considered, whenever 
the spectrum shows a doublet of bands while only one band is expected. 
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Fermi resonance may even occur between any two combination bands, when 
both belong to the same irreducible representation and have approximately 
the same frequency. One may be an overtone and the other may be a suitable 
combination band of any order. However, since overtones and combination 
bands occur as very weak bands, the resonance interaction that might take 
place between them may not be often noticeable.

8.13  SOLID STATE EFFECTS

The vibrations of an individual molecule in the gas phase are subject only 
to the symmetry restrictions based on its own intrinsic point symmetry, but 
when the molecule resides in a crystal, it is in principle, subject only to the 
symmetry restrictions arising out of its crystalline environment.

To be completely rigorous, the molecule cannot even be treated as a dis-
crete entity; instead the entire array of molecules must be analyzed. However, 
such a completely rigorous approach is essentially impossible for practical 
reasons and unnecessary for most of the purposes, and therefore, approxi-
mations have been made. Two levels of approximation have frequently been 
used.

•	 The site symmetry approximation, and
•	 The correction field (sometimes called factor group) approximation.

The first is conceptually very simple and very often, it is entirely ade-
quate. However, sometimes it fails, and then the more abstruse correlation 
field treatment must be employed. These approximations are:

8.14  SITE SYMMETRY APPROXIMATION

The number of vibrations or bands depends on the symmetry of the mol-
ecule. When symmetry changes from higher to lower side due to change in 
the state of the compound, then the number of bands increases in number. 
Increase in band number may the due to splitting or formation of new band.

Site of symmetry is the main criteria for analysis of any spectra of a 
crystalline sample. It is the symmetry of the environment of a molecule in 
the crystal. In gaseous or liquid state, the symmetry may be higher, whereas, 
in solid state, the symmetry is lowered. This mechanism is called site sym-
metry lowering. The number of vibration changes in the different state of 
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molecule. Lowering of symmetry will lead to splitting of degenerate vibra-
tions. It shows transitions, which were forbidden in gas liquid state.

This phenomenon occurs due to site symmetry lowering, strong intermo-
lecular force, lattice vibration, and intermolecular vibration coupling in con-
dense phase. When unit cell consists of more than one chemically equivalent 
molecule, then vibration in the individual molecule may couple with each 
other and increases complication in the spectrum.

Effects of site symmetry lowering

•	 Change in selection rule
•	 Splitting of degeneracies

(i)  Change in selection rule
Selection rules used for IR and Raman spectra are valid for gaseous and then 
for liquid state. But, for solid state, new selection rule is required.
(ii)  Splitting of degeneracies

IR spectrum of liquid/gas state gives one band, but by site symmetry 
lowering, number of bands increases due to splitting. Therefore, it has been 
observed that band, which is forbidden in gas and liquid state, appears in the 
solid state. For differentiating crystal structure, infra-red spectrum are more 
sensitive in comparison to X-ray diffraction method.

Therefore, in solid state, the selection rule for vibrational spectrum is 
governed by site symmetry.

A non-degenerate vibration may be inactive in the high symmetry of the 
free molecule but active in the symmetry of one or more subgroups of the 
same molecule. For example, the A1′ mode of the carbonate ion (totally sym-
metric C-O stretching) is not infra-red active under the full D3h symmetry of 
CO3

2−. The compound CaCO3 occurs in two crystallographically different 
forms, calcite and aragonite. In the former, the site symmetry of the CO3

2− 
ion is D3, while in the latter, Cs totally symmetric vibrations are infra-red 
active. In agreement with these expectations, the symmetric C-O stretching 
mode of CO3

2− (known from the Raman spectrum of solutions of carbonates) 
is not observed in calcite but it appears weakly in aragonite.

The effect of low site symmetry in splitting degeneracy can also be dem-
onstrated in different forms of CaCO3. The E′ representation of the group 
D3h correlates with the E representation in D3. Hence, in calcite, both ν3 and 
ν4 are observed as single peaks. In the group Cs, there are no representa-
tions of order greater than 1, which means that the degenerate vibrations of 
CO3

2− must be split by the Cs site symmetry of aragonite. Actually ν3 is still 
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observed as a single peak, indicating that the magnitude of the splitting is too 
small to permit resolution or that one component has very low intensity, but 
ν4 is distinctly split into two peaks separated by 14 cm–1.

Total six normal modes  
of vibrations in CO3

2– ion = 3 N – 6
	 = (3 × 4) – 6 = 6	
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9.1  SPLITTING OF LEVELS AND TERMS IN A CHEMICAL 
ENVIRONMENT

In order to determine representation of point group of a particular environ-
ment (like Oh, Td), we use wave function as basis. Firstly, the elements of 
the matrix were determined and then the sum of diagonal elements of matrix 
gives χ (α). Character of each symmetry operation can be known with help 
of this formula. Character of these symmetry operations will then be charac-
ter of representation of that particular environment.

As wave function ψ(r, θ, φ) is equal to r.θ.φ. Ψs, it is assumed that spin 
function r is invariant to all operations in a point group. The function θ 
depends only on angle θ. Therefore, if all the rotations are carried out about 
an axis, from which θ is measured, θ will be invariant. Thus, by always 
choosing the axis of rotation in this way, only the function φ will be altered 
by rotation. The explicit form of φ function, aside form a normalizing con-
stant is:

φ = eimφ

If the function eimφ is taken and rotated by an angle α, the set of φ wave func-
tion I becomes wave function II by α rotation.
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The matrix necessary to produce this transformation is:
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and the character of this representation becomes:
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The formula is also valid for the case, when α = 0

χ (E) = 2 l + 1

This result can also be obtained as:
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Let us proceed with set of five d orbitals, having m value l, l – 1, …., 0, 
….1 – l, – l, namely 2, 1, 0, – 1, – 2. The matrix after rotation of angle φ by 
an angle α will be:
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This five dimensional matrix is only a special case for a set of d function.
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Now keeping l = 2 and α = π (i.e., 180°) the character χ (α) of the repre-
sentation is determined.

For two-fold rotation (C2)

	
χ

π
π

π
π

 (C ) sin (2 1 / 2) 
sin  / 2

sin 5  / 2
sin  / 22 =

+
=

	

	
= = =

sin 50
sin 90

1
1

o

o

4 1
	

For three-fold rotation (C3)

χ
π

π
 (C ) sin 5  / 3

sin  / 3
sin 300
sin 60 0.863

o

o= = =
−

= −
0 86 1.

For four-fold rotation (C4)

	
χ

π
π

 (C ) sin 5  / 4
sin  / 4

sin 225
sin 45 0.704

o

o= = =
−

= −
0 70 1.

	

	 χ (E) = 2 l + 1 = 2 × 2 + 1 = 5	

For l = 1 (p level)
For two-fold rotation (C2)

χ
π

π
π

π
 (C ) sin (1 1 / 2) 

sin  / 2
sin 3  / 2
sin  / 2

sin 270
si2

o

=
+

= =
nn 90o =

−
= −

1
1

1̀

For three-fold rotation (C3)

χ
π

π
 (C ) sin 3  / 3

sin  / 3
sin 120
sin 60 0.703

o

o= = = =
0 0

For four-fold rotation (C4)

	
χ

π
π

 (C ) sin 3  / 4
sin  / 4

sin 135
sin 45 0.704

o

o= = = =
0 70 1.

	

	 χ (E) = 2 l + 1 = 2 × 3 + 1 = 7	
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For l = 3 (f level)

χ
π

π
π

π
 (C ) sin (3 1 / 2) 

sin   / 2
sin 7   2
sin   2

sin 630
s2

o

=
+

= =
iin 90o =

−
= −

1
1

1

χ
π

π
 (C ) sin 7  / 3

sin  / 3
sin 420
sin 60 0.803

o

o= = = =
0 86 1.

χ
π

π
 (C ) sin 7  / 4

sin  / 4
sin 315
sin 45

0
   0.704

o

o= = =
−

= −
.70 1

χ (E) = 2 l + 1 = 2 × 3 + 1 = 7

and for l = 4 (g level)

χ
π

π
π

π
 (C ) sin (4 1 / 2) 

sin  / 2
sin 9  / 2
sin  / 2

sin 810
si2

o

=
+

= =
nn 90o =

−
=

1
1

1

χ
π

π
 (C ) sin 9  / 3

sin  / 3
sin 540
sin 60 0.703

o

o= = = =
0 0

χ
π

π
 (C ) sin 9  / 4

sin  / 4
sin 405
sin 45

0
   0.704

o

o= = =
−

=
−.70 1

1
==1

χ (E) = 2 l + 1 = 2 × 4 + 1 = 9

Character can be determined in a similar manner for h, i level and so on.
All these results are summarized in the following table:

Type of level l χ (E) χ (C2) χ (C3) χ (C4)

s 0 1  1  1  1
p 1 3 –1  0  1
d 2 5  1 –1 –1
f 3 7 –1  1 –1
g 4 9  1  0  1
h 5 11 –1 –1  1
i 6 13  1  1 –1
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The orbitals, which are degenerate in the free atom or ion, do not remain 
degenerate, when an atom or ion is placed in an environment with Oh, Td or 
any other symmetry. So before finding representations or splitting in differ-
ent environment, one should know that small letter is used to represent the 
state for a single electron in the environment of various symmetries, corre-
sponding with the use of small letters, s, p, d, f, …, to represent their state in 
the free atom while capital letter is used to represent the state, after splitting 
terms of the free ion in a specific environment For example, an f state of 
a free ion will be split into the state A2, T1 and T2, when ion is placed in the 
center of a tetrahedral environment. Now, the splitting or representations in 
various symmetry of environment can be the find out.

Type of level l χ (E) χ (C2) χ (C3) χ (C4) Irreducible 
representations spanned

s 0 1 1 1 1 A1g

p 1 3 –1 0 1 T1u

d 2 5 1 –1 –1 Eg + T2g

f 3 7 –1 1 –1 A2u + T1u + T2u

g 4 9 1 0 1 A1g + Eg + T1g + T2g

h 5 11 –1 –1 1 Eu + 2 T1u + T2u

i 6 13 1 1 –1 A1g + A2g + Eg + T1g + 2 T2g

The proof of this splitting is that sum of the character of irreducible rep-
resentation taken from character table is equal to the character of reducible 
representation Γd.

9.1.1  SPLITTING OF d LEVELS IN Oh SYMMETRY 
ENVIRONMENT

O Ç (E) Ç (C )  Ç (C )  Ç (C )
E 2 0 1    0
T 3 1    0 1
“ 5 1 1 1

h 2 3 4

g

2g

d

−
−

− −

When characters of irreducible representation (Eg and T2g), i.e., 2 and 
3, respectively (taken from Oh character table), are added, then the result is 
equal to Γd, i.e., 5. Therefore, it proof that the d orbital (5 set of d orbitals) 
split into Eg + T2g in Oh symmetry.
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Another example is for f level in Oh symmetry:

O Ç (E) Ç (C )  Ç (C )  Ç (C )
A 1 1 1 1
T 3 1 0    1
T 3    1 1

h 2 3 4

2u

1u

2u

− −
−

−0
““ 7 1 1 1d − −

Similarly, it can be determined for s, p, g, h, i levels and so on.
g and u subscripts are used. g is used, when environment has center of 

symmetry and u is used, when environment is antisymmetric to inversion. 
All AOs are centrosymmetric and if the l is even (s, d, g…) to inversion then 
these will be of g character, while antisymmetric AOs, for which l is add  
(p, f, h….) to inversion, will be of u character.

9.1.2  SPLITTING IN Td SYMMETRY ENVIRONMENT

Type of level Symmetry of environment Td

s a1

p t2

d e + t2

f a2 + t1 + t2

g a1 + e + t1 + t2

h e + t1 + 2 t2

i a1 + a2 + e + t1 + 2 t2

As there is no subscript, it only means that this environment has no 
center of symmetry. Five set of d orbitals split into e + t2 in Td symmetry 
environment.

T Ç (E)   Ç (C )   Ç (C )
E 2 1
T 3 1    0
“ 5    1

d 2 3

2

d

2

0

−
−



296	 Chemical Applications of Symmetry and Group Theory

Taking the characters of irreducible representations from Td character 
table, sum of character of irreducible representations e + t2 gives the char-
acter of Γd.

For f levels in Td symmetry environment.

T Ç (E)   Ç (C )   Ç (C )
A 1 1   1
T 3 1   0
T 3 1 0
“ 7 1   1

d 2 3

1

1

2

d

−
−
−

Similarly, it can be determined for s, p, g, h, i levels and so on.

9.1.3  SPLITTING IN D4h SYMMETRY ENVIRONMENT

Type of level Symmetry of environment Td

s a1g

p a2u + eu

d a1g + b1g + b2g + eg

f a2u + b1u + b2u + 2 eu

g 2 a1g + a2g + b1g + b2g + 2 eg

h a1u + 2 a2u + b1u + b2u + 3 eu

i 2 a1g + a2g + 2 b1g + 2 b2g + 3 eg

where, a, or b is one set of orbital, while e is two set of orbitals.
Five set of d orbitals split into a1g + b1g + b2g +, i.e., in D4h environment 

(Lower symmetry environment).

D Ç (E)   Ç (C )   Ç (C )
A 1 1   1
B 1    1 1
B 1    1 1
E 2 2 0

4h 2 4

1g

1g

2g

g

−
−

−
““ 5 1 1d −
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Taking characters of irreducible representations from D4h character table, 
sum of character of irreducible representations of a1g + b1g + b2g +, i.e., is the 
character of Γd.

Similarly, it can be determined for s, p, d, g, h, i, levels and so on.
In a similar manner, one can determine splitting of various set of com-

plexes belonging to D2d, C2v, D3, etc. symmetry. Splitting of one electron for 
D3 and D2d symmetry is given here.

Type of level Symmetry of environment

D3 D2d

s a1 a1

p a2 + e b2 + e
d a1 + 2 e a1 + b1 + b2 + e
f a1 + 2 a2 + 2 e a1 + a2 + b1 + 2 e
g 2 a1 + a2 + 3 e 2 a1 + a2 + b1 + b2 + 2 e
h a1 + 2 a2 + 4 e a1 + 2 a2 + b1 + 2 b2 + 3 e
i 3 a1 + 2 a2 + 4 e 2 a1 + a2 + 2 b1 + 2 b2 + 3 e

Another point is to be mentioned here regarding the splitting of terms of 
the free ion in chemical environment, and it is concerned with the spin multi-
plicity. The chemical environment doesn’t interact directly with the electron 
spin; thus, all of the states, into which a particular term is split, have the spin 
multiplicity as the parent term.

In order to illustrate the splitting of terms of a d2 configuration in differ-
ent environments, the states for a d2 ion in several point group are:

Free ion term State of point groups

Oh Td D4h

1S 1A1g
1A1

1A1g
1G 1A1g 

1T2g

1Eg 
1T1g

1A1–
1T2

1E 1T1

21A1g 
1B2g

1A2g 2
1Eg 

1B1g
3P 3T1g

3T1
3A2g 

3Eg
1D 1Eg 

1T2g
1E 1T2

1A1g 
1Eg 

1B1g 
1B2g

3F 3A2g 
3T1g 

3 T2g
3A2–

3 T2–
3T1

3A2g 2
3Eg

3B1g 
3B2g
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9.2  SPLITTING OF d ORBITALS

According to quantum mechanics, maximum number of d orbital is five.

	 Number of orbitals = 2 l + 1 (l = 2 for d orbital)	

	 = 2 × 2 + 1	

	 = 5 orbitals	

These are dxy, dyz, dxz, dx
2
–y

2 and dz
2 orbitals.

 There is a misconception about the shape of d-orbital that they are all having 
dumb-bell shapes. The four d-orbitals are dumbbell shaped except dz

2. The 
shape of dz

2 orbital is different from other four d-orbitals. There is a possi-
bility of six d-orbitals, i.e., dxy, dyz, dxz, dx

2
–y

2, dy
2
–z

2, and dz
2
–x

2. Three of them 
are in between the axes and remaining three are along axes. As six d-orbital 
are not possible, a linear combination of dy

2
–z

2 and dz
2
–x

2 was taken to form 
dz

2 orbital. Linear combination of these two orbitals does not take place in 
same way as presently they are. The lobes along Z-axis in dy

2
–z

2 and dz
2
–x

2 
have different orientations. So, when these are to be combined, dy

2
–z

2 has to 
be rotated by 90° and it results in dz

2
–y

2.

Now, this dz
2
–y

2 may combine with dz
2
–x

2 as:

dz
2
–y

2 + dz
2
–x

2 = d2z
2
–x

2
–y

2

d2z
2
–x

2
–y

2 is written in abbreviated form as dz
2. Therefore, lobes along 

Z-axis are larger in size than the lobes of other four d-orbitals.
The d2z

2
–x

2
–y

2 (= dz
2), orbital consists of four lobes in xy plane, which on 

overlap look like a ring while two lobes are along Z-axis and these are larger 
in size in comparison to other four lobes.
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Crystal field theory considers that the ligand ions create an electrical field 
around the metal ion and thus, they perturb the energies of the metal orbitals. 
If the electrical field is spherical, it raises the energies of s, p or d orbitals 
uniformly. In other words, due to the presence of the negatively charged 
ligand field, the electrons in the metal orbitals in the vicinity feel repulsion 
and hence, the energy of metal orbitals is raised. But in such circumstances, 
spherical field still retains the triple degeneracy of p orbitals or penta-degen-
eracy of d orbitals.

However, in case of an octahedral complex, the ligands are present at 
the corners (apices) of an octahedron, they still affect the p orbitals equally, 
because px, py and pz are along the axes, Thus, the triple degeneracy to 
p orbitals is retained.

Five d orbitals are oriented in different ways. dx
2
–y

2 and dz
2 orbitals are 

along the axes while dxy, dxz and dyz orbitals are in between the axes. Thus, 
in case of a non-spherical field, the effect of the ligand field is different on 
the different d orbitals and their degeneracy is resolved. In such a case, five 
d energy level are split depending upon the environment of the ligands, i.e., 
tetrahedral, square planar, octahedral, etc.

The splitting of these d orbitals can be understood in terms of group 
theory.

Any mathematical function (wave function) can be a basis of representa-
tion. The symmetries of atomic orbitals (AOs) in various geometries (point 
groups) have also been summarized. It is also known that subscripts of the 
orbitals indicate its transformation properties in point groups. Thus, in cubic 
symmetry (Oh or Td), the five d orbitals are split into t2g and, eg and t2 and e in 
Oh and Td, respectively. Using pictorial description of d atomic orbitals wave 
function (or vectorial representations along these lobes) and considering the 
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cubic symmetry (Table 9.1). Embodying octahedron and tetrahedron, we can 
tabulate the results of carrying out only rotation operations of Oh, i.e., O sub 
group and corresponding operations of Td.

TABLE 9.1  Transformation Properties of d Orbitals in Cubic Symmetry (O and Td)

Td E 8 C3 3 C2 (σh.C4) = S4 (i.C1
2) = σd

O E 8 C3 3 C2 6 C4 C1
2

dxy dxy (1) dxz (0) dxy (+1) – dxy (–1) dxy (+1)
dyz dyz (1) dxy (0) dyz (–1) dxz (0) – dxz (0)
dxz dxz(1) dyz(0) – dxz (–1) – dyz (0) – dyz (0)
dx

2
–y

2 dx
2
–y

2 (1) – dx
2
–z

2* (–1) dx
2
–y

2 (+1) – dx
2
–y

2 (–1) – dx
2
–y

2 (–1)
dz

2 dz
2 (1) +d2y

2
–x

2
–z

2* (0) dz
2 (+1) dz

2 (+1) dz
2 (+1)

Gd 5 –1 1 –1 1

*In terms of original dx
2

–y
2 and dz

2, where dx
2

–y
2 = 3

2
 (x2 – y2) and dz

2 = 1
2
 (2z2 – x2 – y2), the two orbitals 

transform as the linear combination of the two. Thus,

– dx
2

–z
2 = – 1

2
 dx

2
–y

2 + 3
2  dz

2 and dz
2 = – dx

2 – 2 – 1
2
 dz

2 and in matrix form:

C
d

d
d

d3
x y

z

x y

z

2 2

2

2 2

2
− −







 =

− +

− −





























1
2

3
2

3
2

1
2

χ (C3) = – 1
2

 – 
1
2

 = + 1
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Overall Γd values are obtained by utilizing the well known deduction that 
unshifted functions (vectors) contribute + 1 to the character, and those that 
shifted to their negative forms (+ lobe replacing – lobe in pictorial descrip-
tion or + vector replacing – vector in vectorial representation) contribute – 1. 
But when it is totally shifted to a new wave function (orbital designation, i.e., 
dxy → dxz, etc.), then they contribute zero to the character of matrices of rep-
resentation. All these χS are indicated in brackets in each class of operation.

In order to arrive at the resolution of d orbital degeneracy in tetrahedral 
field, operations of Td point group are performed on the d orbitals and the 
total character of the reducible representation is obtained. This is reduced to 
the irreducible representation.

Γd = E + T2

Similarly for octahedral (Oh) and square planer complexes, (D4h) the irre-
ducible representation Γd can be reduced to:

	 Γd (Oh) = T2g + Eg	

	 Γd (D4h) = A1g + B1g + B2g + Eg	

Though the group theory shows that the two sets have different energies, 
it does not indicate the order.

The tetrahedral point group has no inversion operation (center of sym-
metry) and hence, there will be no subscript g or u in the symbols of the 
irreducible representations.

The orbitals corresponding to the irreducible representations are as 
follows:

E = dx
2
–y

2, dz
2; T2 = dxy, dxz, dyz

Thus, the tetrahedral field also splits the penta-degenerate d orbitals into 
two sets, a higher energy triply degenerate orbitals and a lower energy dou-
bly degenerate orbitals, t2 and e, respectively. The energies of the two sets 
can be worked out by considering tetrahedral perturbation over the d orbital 
wave functions.

	 dxy, dyz, dxz (t2) = + 4 Dq = 0.4 ∆t	

	 dx
2
–y

2, dz
2 (e) = – 6 Dq = – 0.6 ∆t	
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It can be seen that there is a reversal in the order of energies of the two 
sets of tetrahedral as compared to the octahedral field. If the orientation of 
the ligands is considered in the tetrahedral field, they are at the opposite 
corners of the two opposite faces of a cube and the metal ion at the center. 
In other words, the ligands are located between two axes. Hence, the elec-
trons going to the orbitals in between the axes (dxy, dyz and dxz) face greater 
repulsion from the ligand field, than those along the axis, (dx

2
–y

2 and dz
2). 

Thus, t2 set of d-orbitals is greater in energy than e set of orbitals.
It is further expected that in case of tetrahedral structure, the field is cre-

ated by the charges on the four ligands, and hence, Δt should be 2/3 Δ0, where 
there are six charged ligands. Δt is further reduced to 4/9 Δt because the 
ligands at the opposite corners of two opposite faces in tetrahedral com-
plexes are not exactly in between the two axes. Hence, the relative order of 
stabilization and destabilization of e and t2 is not same as in the octahedral 
complexes. These two factors result in Δt = 4/9 Δ0.

Effect of distortion

There can be distortion in tetrahedral complexes also. In the case of 
elongation (distortion) (C2v), the angle L-M-L between two pairs of ligands 
becomes less than the tetrahedral angle, and consequently, the field along the 
Z- axis is more than in the equatorial plane.

In case of flattening (distortion) (C2v), the angle L-M-L increases and 
hence, field along Z- axis is less than in the equatorial plane. The splitting of 
e and t2 sets is reverse to that in case of elongation. Crystal field theory can 
explain the spectra, magnetic properties, thermodynamic and kinetic proper-
ties of complexes very well but it has a serious limitation.

Crystal field theory considers the metal ion and ligand ion or ligand 
dipole as a point charge and the metal ligand interaction is considered to be 
purely electrostatic.
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In octahedral complexes, the ligands are oriented at the corners of the 
axes, the d orbitals directed towards the axes, i.e., dx

2
–y

2 and dz
2 experience 

greater repulsion from the negative ligand field, the electron is raised to 
higher energy in populating these orbitals and therefore, i.e., orbitals are 
higher in energy. The dxy, dxz and dyz orbitals, being in between the axes, 
feel less repulsion and hence, these are lowered in energy. The lowering and 
raising of the energy is with respect to the energies of the d orbitals in the 
spherical field.

The separation in the energy of the two sets is called crystal field splitting 
energy and symbolized as ∆o (o is subscript signifying octahedral). Since 
there is no external source of energy, the quantum mechanics requires that 
the total energy of the d orbitals should be same. In other words, the increase 
in the energy of the eg, orbitals should be equal to the lowering in the energy 
of the t2g orbitals. It can thus be shown that t2g orbitals are lowered down by – 
2/5 ∆o and, i.e., orbitals are raised by 3/5 ∆o.

Splitting of d-orbitals

The value of ∆o depends on different parameters. An octahedral 
perturbation over d orbitals can be calculated and this gives the energy of 
the d orbitals quantitatively.

	 Eg = dx
2
–y

2, dz
2  eg = 6 Dq = 0.6 ∆o	

	 T2g = dxy, dxz, dyz  t2g = – 4 Dq = – 0.4 ∆o	

	 ∆E = E (eg) + E (t2g)

	 = 2 (+ 6 Dq) + 3 (–4 Dq)

	 = 0
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It mans splitting occur in such a way that no net change in energy take 
place. The difference of energy ∆o is fixed, i.e., 10 Dq, where D and q are 
dependent on some parameters of the complex.

	 D = 35 Ze
4 a

2

5
  and q = 2 (r )

105
2

4

	

	 Dq = 
1
6

 
Z e  (r )

a

2
2

4

5  	

where e = electronic charge; z = charge on ligand; r2 = radius of d orbital 
stationary; (r )2

4  = fourth power of mean average radius of d-orbitals; a = dis-
tance between metal and ligand.

Thus, depending on the nature of the metal ion and the ligand, the value 
of crystal field splitting (Dο) changes. If the value of Dο is high, the ligand 
is said to create a strong field and if Dο is less, the crystal field is said to 
be weak.

Rearrangement of electrons in these split d orbitals results in lowering of 
total orbital energy, which is called crystal field stabilization energy (CFSE).

Depending on the strength of the field, Dο may be greater than pairing 
energy (P) or lower. This does not affect the CFSE calculation upto d3 case. 
From d4 to d7, pairing of electrons takes place in t2g orbitals in strong field 
ligand (∆o > P), whereas in weak field ligand, high spin complex are formed 
(i.e., ∆o < P)

The difference in energy between t2 and e set of orbitals is denoted by ∆t 
(= 10 Dq). The relationship between crystal field splitting energy of Oh and 
Td is:

Δt = 4
9

Δo or 0.45 Δo

Distorted octahedral complexes of the type ML6 can be formed due to 
Jahn-Teller effect. The two ligands in the axial direction are at a greater or 
smaller distance from the metal ion than the remaining four in the equatorial 
plane.

Distorted octahedral field also exists in trans complexes of the type [ML4 
X2], where two X ligands along the axial direction create a different field 
than the four ligands (L) present in the equatorial plane.
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Thus, the symmetry of the ligand field is reduced to D4h (square planer 
complex). In order to work out the splitting of the d orbitals in D4h field, the 
operations of D4h point group are performed, and the total character, and the 
reducible representation are obtained. The total character can be reduced to 
following irreducible representations:

Γd = A1g + B1g + B2g + Eg

It can, therefore, be concluded that in a D4h field, the d orbitals split up 
into four sets, three are non-degenerate and one is doubly degenerate. The 
d orbitals corresponding to the irreducible representations are as follows:

Orbitals

a1g dz
2

b1g dx
2
–y

2

b2g dxy

eg dyz, dxz

Thus, the doubly degenerate set, i.e., in octahedral field splits up into two 
levels, an upper b1g (dx

2
–y

2) and a lower a1g (dz
2) in D4h field. Similarly, triply 

degenerate t2g set splits up into one non-degenerate set b2g (dxy) and one dou-
bly degenerate set eg (dxz, dyz).

The order of energies can be determined quantitatively, one has to make 
use to quantum mechanics. However, qualitatively, the order can be arrived 
at by simple method also.

In tetragonally distorted octahedral field, the field along the Z-axis being 
less than in the xy plane, dz

2 (a1g) orbital has lower energy than dx
2
–y

2 (b1g). 
Similarly, electrons in dxz and dyz orbitals feel less repulsion form the ligands 
than one in present dxy orbital. Thus, dxz and dyz orbitals are lowered in energy 
than dxy orbital.

Splitting of d-orbitals in different environments
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In square planar complexes also, the field symmetry is D4h and hence, 
the splitting pattern remains same as that of tetragonal complex. However, 
there is a change in the order of their energy levels. Since, there is no ligand 
along Z-axis, the repulsion felt by the electron in dz

2 orbitals is very small 
and dz

2 orbital is even lowered than dxy. One will expect dz
2 orbital to be even 

lower in energy than dxz and dyz, as dz
2 orbital is oriented along Z-axis and is 

farther from the ligands situated along X and Y-axes than dxz and dyz orbitals. 
However, the electrons in the dz

2 orbitals have 1/3 probability of occurring 
along the collar in the xy plane and hence, feel the repulsion due to equa-
torial ligands. dxz and dyz have nodes along xy plane. The energy spacing 
between b2g (dxy) and b1g (dx

2
–y

2) level is designated as ∆.
If the square planar complexes are of [ML2X2] type (cis- or trans-), the 

field symmetry is reduced to C2v or D2h, respectively.
The doubly degenerate set (eg) gets split into two non-degenerate sets b2g 

(dxz) and b3g (dyz) in D2h and b1 (dxz) and b2 (dyz) in C2v point group.
The square planar geometry is favored by d8 configuration in presence 

of strong field. In this condition, ∆ is so large that all the eight electrons are 
paired in dxz, dyz and dxy orbitals, while dx

2
–y

2 remains unoccupied and thus, 
form low spin complexes.

It can be concluded that this distortion results in descending symmetry 
from Oh to D4h, which leads to loss of degeneracy. The correlation table of 
Oh with other point group is given in Tables 9.2 and 9.3.

TABLE 9.2  Correlation Table

Oh O Td D4h C2v

A1g A1 A1 A1g A1

A2g A2 A2 B1g A2

Eg E E A1g + B1g A1 + A2

T1g T1 T1 A2g + Eg A2 + B1 + B2

T2g T2 T2 B2g + Eg A1 + B1 + B2

A1u A1 A1 A1u A2

A2u A2 A2 B1u A1

Eu E E A1u + B1u A1 + A2

T1u T1 T1 A2u + Eu A1 + B1 + B2

T2u T2 T2 B2u + Eu A2 + B1 + B2
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The splitting in type of orbitals in various fields are represented in the 
table.

Similarly, splitting pattern can be obtained for g, h, and i, orbitals also.

9.3  ELECTRONIC SPECTRA OF COMPLEXES

A spectrum arises because the electrons may be promoted from one energy 
level to another. Such electronic transitions are of high energy, and in addi-
tion, much lower energy vibrational and rotational transitions always occur. 
The vibrational and rotational levels are too close in energy to be resolved 
into separate absorption bands, but they result in considerable broadening of 
the electronic absorption bands in d–d spectra. Bandwidths are commonly 
found to be of the order of 1000–3000 cm–1.

All the theoretically possible electronic transitions are not actually 
observed. The position is formalized into a set of selection rules, which 
distinguish between allowed and forbidden transitions. Allowed transitions 
occur quite commonly. While forbidden transitions do occur, but less fre-
quently, and they are consequently of much lower intensity.

9.3.1  LAPORTE ORBITAL SELECTION RULE

According to Laporte rule, only those transitions are possible, in which 
change in parity occurs. That is:

Orbitals with centrosymmetry are represented by gerade (g) and without 
centrosymmetry by ungerade (u).

TABLE 9.3  Splitting of Different Orbitals in Various Fields

Orbitals Oh Td D4h D2d

s a1g a1 a1g a1

p t1u t1 a2g + eu b2 + e
d eg + t2g e + t2 a1 + b1g + b2g + eg a1 + b1 + b2 + e
f a2u + t1u + t2u a2 + t1 + t2 a2u + b1u + b2u + 2 eu a1 + a2 + b2 + 2 e
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s p d f ....... so on
g u g u

According to this rule, d–d transitions are formally forbidden. But UV/
vis spectroscopy and optical spectroscopy for complexes involves d–d tran-
sition. This is due to relaxation in selection rule. Due to this relaxation, d–d 
transitions can occur, but only at low intensities.

The selection rule can be relaxed, when unsymmetrical vibrations of 
complexes temporarily destroy its centrosymmetry, and allowed transition, 
which would otherwise be Laporte forbidden.

In tetrahedral complex, there is no center of symmetry and therefore, 
orbitals have no g or u. On splitting d orbitals in Td orientation, they will form 
e and t2 orbitals. Among these two, e is pure form of atomic d orbitals and 
thus, their g character is maintained even in the complex. On the other hand, 
t2 molecular orbitals are formed from atomic d (gerade) and p  (ungerade) 
orbitals, i.e., by d–p mixing, which give u character to the t2   level in the 
complex. Thus, Laporte rule is relaxed.

9.3.2  SPIN SELECTION RULE

An electron does not change its spin during transitions between energy lev-
els, that is DS = 0. In d2 configuration in an octahedral field, the ground state 
(T1g) has a multiplicity of 3 and that three are three excited states with the 
same multiplicity (3T2g, 

3A2g, and 3T1g). Thus, spin allowed transition is:

3
1g

3
2gT T →

3
1g

3
2gT A →

3
1g

3
1gT T (P) →

Transitions from triplet ground state to singlet excited are spin forbidden.
Thus, in the case of Mn2+ in a weak octahedral field, such as [Mn(H2O6]

2+, 
the d–d transitions are spin forbidden because each of the d orbitals is singly 
occupied. Many Mn2+ compounds are off white or pale flesh colored, but the 
intensity is only about one hundredth of that for a spin allowed transition. 
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Since the spin forbidden transitions (ΔS = 0) are very weak, analysis of the 
spectra of transition metal complexes can be greatly simplified by ignoring 
all such spin forbidden transitions and considering only those excited states, 
which have the same multiplicity as the ground state.

There are incomplete d orbitals in transition metals. The penta-degen-
erate d orbitals get split up into t2g and eg sets in an octahedral field. 
Rearrangement of electrons takes place in such a way that the energy is 
least (minimum). In case of d1 metal ion, the arrangement is t2g

1 eg
0 in an 

octahedral field. On being excited, the electron in the t2g orbitals absorbs 
energy equal to the crystal field splitting and moves to the eg orbitals. Since 
the value of Dο is low, absorption takes place in the visible region and the 
transition metal complexes are colored. This d → d transition appears to be 
the simple explanation for the color in the transition metal salts and com-
plexes. However, the absorption spectra of the octahedral complexes show 
that the molar absorbance of such d → d transition bands are low. This is 
because of the selection rules.

	 (i)	 In case of octahedral complexes, d → d transitions are t2g → eg tran-
sition, i.e., g → g transitions, which can not cause any change in 
the dipole moment i.e. ψ µ ψ τ  *d  0aM

2

∫ =  for the octahedral com-

plexes with center of symmetry, d → d transitions should be Laporte 
forbidden.

9.3.3  RELAXATION IN SELECTION RULES

However, such forbidden transitions do become allowed in complex com-
pounds due to the following reasons:

	 (a)	 Octahedral symmetry may get distorted during the vibration of 
the molecule and the center of symmetry is lost. d → d transitions 
become allowed in octahedral complexes and low intensity bands 
are observed because of coupling of the electronic and vibrational 
wave functions, i.e., vibronic coupling.

	 (b)	 There may be some mixing of d and p orbitals in the complex and 
thus, t2g → eg, i.e., transitions are not purely d → d transitions.

	 (c)	 The intensity of the bands in some complexes is much greater than 
it can be expected from these two reasons. This can be explained by 
considering that the metal d orbitals overlap with the ligand orbitals 
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and as a result, the pure d orbital character is lost. This is an evi-
dence for metal and ligand orbital overlap in complex compounds 
and is also in support of ligand field theory.

	 (ii)	 Number of unpaired spins or the multiplicity should not change 
during d → d transitions. However, in [Mn(H2O)6]

2+ complex 
with d5 configuration, the ground state has multiplicity six but 
the excited state will have lower multiplicity 4. Thus, the elec-
tronic transition in [Mn(H2O)6]

2+ is doubly forbidden (Laporte 
and spin) and the intensity of the bands is very low. This is the 
reason, why bivalent manganese salts or complexes are very light 
pink in color.

		  Spin forbidden transitions, though less intense, are relatively 
sharper than the spin allowed transitions. This is because of the 
fact that there is change in the position of the ligands during the 
vibration of the molecule. In this case, ligand field undergoes 
change and as a result, there is change in the extent of splitting of 
the d orbitals. The spin allowed electronic transitions, which are 
dependent on ∆, differ in energy for different states of vibration 
in different molecules and hence, these give broad band. The spin 
forbidden transitions are not dependent on the value of ∆ and 
therefore, there is no such significant broadening due to vibra-
tional change.

	 (iii)	 Simultaneous excitation of more than one electron does not take 
place. However, low intensity bands, corresponding to two electron 
transitions, are observed in some complexes.

Hund’s rules are used in order to find out the ground state of a free 
metal ion.

•	 The magnetic quantum number is maximized. The highest magnetic 
quantum number corresponds to the total angular momentum quantum 
number L. The state with highest L has the lowest energy.

•	 The state with highest spin has the lowest energy.
•	 For a multiple state with different possible J values, (L + S → L – S), 

the state with the lowest J value is lowest in energy, provided that 
the atomic orbitals are less than half-filled. But in the case, where the 
atomic orbitals are more than half filled, the state with the highest 
value of J has the lowest energy.
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However, ∆ is normally greater than spin orbit coupling, i.e., separation 
between J values, so J states are not distinguished in considering the splitting 
of the ground state.

In d1 case, the highest value of mL = + 2 and hence, L = 2 and S = ½. The 
ground state is (2 S + 1)LJL+S

 and (2 S + 1)LJL-S
, i.e., 2D5/2 and 2D3/2.

In case of multi-electronic atoms, the ground state and higher energy 
states may be S, P, D, F, etc. The spectral states split up on application of the 
ligand field.

The terms S, P, D, F, etc. have same symmetry corresponding to s, p, d, f, 
etc., orbitals. It means D term is split by an octahedral field in exactly same 
pattern as a set of d orbitals and F term is split in same manner as a set of 
f orbitals in Oh and so on.

9.4  ORGEL DIAGRAMS FOR TETRAHEDRAL COMPLEXES

It has been observed that the splitting pattern of the orbitals in the tetrahedral 
field are same as in octahedral field and spitting of free ion states in tetrahe-
dral complexes are also same as in octahedral complexes, but the order of 
the split up states are, however, reversed.

d1 case

In d1 case, the ground state 2D splits up into 2E and 2T2 states. The ground 
state electronic configuration is e1t2

0 and hence, the ground state is 2E (dx
2
–y

21 
dz

20 t2
0, dx

2
–y

20 dz
21 t2

0). The electronic configuration in the excited state is e0 t2
1 

and therefore, it is a T2 state (e0 dxy
1 dxz

0 dyz
0, e0 dxy

0 dxz
1 dxz

0, e0 dxy
0 dxz

0 dxz
1). 

The spectral transition can be shown as E → T2, and this corresponds to ∆. 
Since the tetrahedral complex has no center of symmetry, subscript g has not 
been used.

d9 case

In case of d9 the ground state electronic configuration is e4 t2
5 with one 

unpaired electron in the t2 orbital. Here, the state is T2 (e
4 t2

5, i.e., e4 dxy
2 dxz

2 
dyz

1, e4 dxy
1 dxz

2 dyz
2, e4 dxy

2 dxz
1 dyz

2). In the excited state, the electron moves to 
the t2 orbital resulting in the configurtion e3 t2

6. The unpaired electron is now 
in the e orbital, so the state is 2E. (dx

2
–y

22 dz
21 t2g

6, dx
2
–y

21 dz
22 t2g

6. The transition 
can be shown as 2E ← 2T2.
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d6 and d4 are similar to that in cases of d1 and d9.

d4 case

d4 ground state is 5T2 (e
3 t2

2, i.e., e3 dxy
1, dxz

1 dyz
0 e3 dxy

0 dxz
1 dyz

1, e2 dxy
1 dxz

0 dyz
1). 

The excited state configuration is e1 t2
3 and it corresponds to 5E state (dx

2
–y

21 
dz

20 t2
3, dx

2
–y

20 dz
21 t2

3).

d6 case

d6 ground state is 5E2, e
3 t2

3, i.e., (dx
2
–y

22 dz
21 t2g

3, dx
2
–y

21 dz
22 t2

3) and excited 
state is 5T2 (e

2 t2
4, i.e., e2 dxy

2 dxz
1 dyz

1, e2 dxy
1 dxz

2 dyz
1, e2 dxy

1 dxz
1 dyz

2).

In all these cases, the transition energy corresponds to ∆. It has been 
known that for the same ligands, Δt is 4/9 of Dο. Thus, the transition energy 
in the tetrahedral complexes is less and the band occurs in the higher wave-
length region.

Further, the tetrahedral complexes have no center of symmetry and there-
fore, d → d transitions are not Laporte forbidden. d → d transitions will 
result in change in the dipole moment and the intensity of the transitions in 
tetrahedral complexes is high. Thus, a high intensity transition in the higher 
wavelength region indicates that the structure is tetrahedral.

In all these cases, it has been presumed that the field is weak. Pairing of the 
electrons does not take place in d4 and d6 cases, i.e., the separation between 
the free ion ground state and higher energy state of lower multiplicity is 
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more and hence, the crystal field splitting cannot mix the ground state with 
the higher state.

Orgel has suggested diagrams for such weak field cases. He has plotted 
the splitting of the ground spectral state as a function of crystal field split-
ting. One diagram can represent the splitting pattern in d1, d4, d6 and d9 metal 
ions in octahedral and tetrahedral fields.

d1, d6 ← Dq → d9, d4

In d2 configuration, levels split into 1S, 3P, 1D, 3F and 1G terms because of 
interelectronic repulsion. 3F is the ground with lowest energy and 3P, 1G, 1D 
and 1S are excited states. The transition between 3F → 3P is allowed, whereas 
transition from 3F → 1S, 1D, and 1G are forbidden according to spin selection 
rule. F state breaks up into A2, T2 and T1, while P state gets converted to T1.

The d orbitals get split up into lower energy e and higher energy t2 orbit-
als in the tetrahedral field. The ground electronic arrangement is e2 t2

0 and 
corresponds to non-degenerate A2 (dx

2
–y

21 dz
21 t2

0).
On excitation of one electron, the arrangement is e1 t2

1 and it corre-
sponds to two triply degenerate states T2(F) and T1(P). Two electron excita-
tion results in the electronic arrangement e0 t2

2 and this corresponds to triply 
degenerate T1(F) state (e0 dxy

1 dxz 
1dyz

0, e0 dxy
0 dxz

1 dyz
1, e0 dxy

1 dxz
0 dyz

1).
Similarly, it can be seen that splitting pattern of d2 is same as d7, whereas 

d3 and d8 cases in tetrahedral field are inverse of d2 and d7.
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9.5  ORGEL DIAGRAMS FOR OCTAHEDRAL COMPLEXES

The spectral states get split up in octahedral field. The combination of the 
irreducible representations in Oh character table represents the considered 
atomic orbitals with a particular spectral terms. These are:

S – A1g
P – T1g

D – Eg, T2g
F – A1g, T1g, T2g

This means a non-degenerate (only one symmetric electron arrangement) 
spectral state remains nondegenerate in the Oh field also. A triply degenerate 
D state remains triply degenerate, though the energy is affected. However, 
a penta-degenerate D state gets split up into a doubly degenerate state Eg and 
a triply degenerate state T2g. A hepta-degenerate F state splits up into a non-
degenerate A2g, and two triply degenerate states, T1g and T2g. Let us consider 
different cases now.

d1 Case

In this case, the ground state is 2D. It splits up into T2g and Eg states in the octahe-
dral field. Group theory does not tell us, which state will be of the lower energy 
and which one will be the higher energy state? This can be understood by seeing 
the electronic arrangement. The d orbitals split up into t2g orbitals and eg orbitals 
in the octahedral field. In the lower energy arrangement (t2g

1 eg
0), the electron in 

the t2g orbital will correspond to the irreducible representation T2g and hence, the 
lower energy state is T2g. There are three electronic arrangements with the same 
energy dxy

1 dxz
0 dyz

0, dxy
0 dxz

1 dyz
0 or dxy

0 dxz
0 dyz

1, making the state triply degener-
ate. In the excited state, t2g

0 eg
1, the electron is in Eg state. Doubly degenerate 

arrangements are dx
2
–y

21 dz
20 or dx

2
–y

20 dz
21. Thus, the transition t2g

1 eg
0 → t2g

0 eg
1 is 

transfer of electron from T2g state to Eg state and it is written as T2g → Eg transi-
tion. The band corresponding to this transition will involve energy equal to ∆. 
It should be kept in mind that the atomic orbitals are always represented by small 
letters, whereas spectral states (terms) are represented by capital letters.

d9 Case

In the arrangement of nine electrons in d orbitals, the highest magnetic quan-
tum number works out to be + 2 and hence, L = 2.
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	 L = 2  i.e. D	

	 S = 
1
2 	

	 2 S + 1 = 2	

Therefore, spectral state (term) is 2D.
The magnetic quantum numbers of all the orbitals with electrons are 

added. If two electrons are present in an orbital, then its magnetic quantum 
number is added twice. There is one unpaired electron and hence, the free 
ion ground state is 2D. It is same as in case of d1, because in d9, there is a hole 
(vacancy) instead of an electron. There can be ten possible arrangements.

In d9 configuration, 2D splits into T2g and Eg. The ground state electronic 
configuration t2g

6 eg
3 has one unpaired electron in the eg orbital. The symme-

try of the state is determined by the unpaired electron only. The paired elec-
trons correspond to a totally symmetrical irreducible representation. Hence, 
the ground state is Eg. The two electronic arrangements of same energy are 
t2g

6 dx
2
–y

22 dz
21 or t2g

6 dx
2
–y

21 dz
22.

The excited state configuration is t2g
5 eg

4, and here, the unpaired electron 
is in the t2g orbital. Now the state is T2g (dxy

1 dxz
2 dyz

2 eg
4, dxy

2 dxz
1 dyz

2 eg
4, dxy

2 
dxz

2 dyz
1 eg

4). The electronic transition is represented as 2Eg
 → 2T2g. Thus, the 

splitting pattern in d9 case is opposite of the d1 case.

d6 Case

In this case, there are half filled d orbitals and an extra electron. Following 
the same method of finding highest magnetic quantum number, one observes 
that L = 2 and S = 2, 
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	 L = 2  (i.e., D)	

	 S = 2	

	 2 S + 1 = 5	

Therefore, term symbol is 5D.
The free ion ground state is 5D. In an octahedral field, this 5D state gets 

split up into T2g of lower energy (t2g
4 eg

2, i.e., dxy
2 dxz

1 dyz
1 eg

2, dxy
1 dxz

2 dyz
1 eg

2 
and dxy

1 dxz
1 dyz

2 eg
2) and Eg of higher energy (t2g

3 eg
3, i.e., t2g

2 dx
2
–y

22 dz
21 and t2g

2 
dx

2
–y

21 dz
22). Thus, the transition can be shown as 5T2g → 5Eg. This is similar 

to that in case of d1 metal ion.

d4 Case

Here, one electron is less than the half filled d orbital. The ground state has 
L = 2 and S = 2 and hence, it is also a 5D state. This gets split up in an octa-
hedral field into 5Eg state of lower energy (t2g

3 eg
1, i.e., t2g

3 dx
2
–y

21 dz
20 or t2g

3 
dx

2
–y

20 dz
21) and excited state 5T2g (t2g

2 eg
2, i.e., dxy

1 dxz
1 dyz

0 eg
2, dxy

0 dxz
1 dyz

1 eg
2, 

and dxy
1 dxz

0 dyz
1 eg

2). Thus, the transition can be shown as 5T2g → 5Eg.

On imposing a field due to the ligand, the spectral states get split up. Two 
cases may arise, which are weak field and strong field.

(i) Weak field

d2 Case

The octahedral perturbation is less than the inter-electronic repulsion in such 
cases. Thus, the splitting of the individual spectral states is less than the separa-
tion between them and there cannot be any mixing of the spectral states under 
the influence of the crystal field. The splitting of the individual spectral states 
is only considered. The spectral states of d2 system also split up in the same 
way as corresponding atomic orbitals as per group theoretical considerations:
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State Irreducible representation
1S 1A1g (No splitting)
1G 1Eg, 

1T1g, 
1T2g, 

1A1g
3P 3T1g (No splitting)
1D 1Eg, 

1T2g
3F 3T1g, 

3T2g, 
3A2g

In weak field case only, the splitting of the free ion ground spectral state 3F 
and the higher state of some multiplicity 3P has to be considered. Transitions 
to split up states from 1D are possible but they will be both Laporte and spin 
forbidden and hence, their intensity is very low.

Group theory does not tell about the order of the energies of the split up 
states of 3F. This can be understood by seeing the electronic arrangements. 3F 
and 3P states correspond to the microstates with parallel spins. The d orbitals 
get split up into t2g and eg orbitals in an octahedral field. The lowest energy 
arrangement is t2g

2 eg
0. It has triple degeneracy (dxy

1 dxz
1 dyz

0 eg
0, dxy

1 dxz
0 dyz

1 
eg

0 and dxy
0 dxz

1 dyz
1 eg

0 and is termed 2T1g. On excitation of electron, the 
arrangement t2g

1 eg
1 is obtained. This results in six possibilities. (dxy

1 dxz
0 dxz

0 
dx

2
–y

21 dz
20, dxy

0 dxz
1 dyz

0 dx
2
–y

22, dz
20, dxy

0 dxz
0 dyz

1 dx
2
–y

21 dz
20, dxy

1 dxz
0 dyz

0 dx
2
–y

20 
dz

21, dxy
1 dxz

0 dyz
0 dx

2
–y

2 dz
21 dxy

0 dxz
0 dyz

1 dx
2
–y

2 dz
21).

So 3T1g is the ground state and it is triply degenerate. Next higher term 
is 3T2g and highest term is 3A2g. In 3T1g, subscript 1 denotes symmetric with 
respect to rotation axis other than principal axis of symmetry and in 3T2g, the 
subscript 2 shows that it is antisymmetric with respect to the other rotational 
axis.

Thus three electronic transitions are possible, t2g
2 eg

0 → t2g
1 eg

1 corre-
sponding to two transitions T2g (F) ← T1g (F) and T1g (P) ← T1g (F). The 
second transition t2g

2 eg
0 → t2g

0 eg
2 can be represented in spectral terms as 

3A2g (F) ← 3T1g (F).
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Thus, three bands can be expected in the spectrum of the octahedral com-
plexes of d2 ions (3F spectral state). The lowest energy first band 3T2g (F) 
→ 3T2g (F) corresponds to transfer of one electron from t2g to eg orbital and 
hence, the band energy is equal to the difference in energies of eg and t2g 
orbitals, i.e., equal to ∆.

The splitting pattern can be shown as follows:
∆ depends on ligand field. When ∆o is small then 3T1g (P) and 3A2g (F) 

tend to cross over, and therefore, only two transitions take place. As a result, 
2 bands may be observed.

3
1g

3
2gT  (F)  T  (F) →

3
1g

3
2g

3
1gT  (F)  A  (F) ( T  (P) → =  

e. g. in (V (H2O)6)
3+ 2 Bands (2 Transitions)

but in (V (NH3)6)
3+ 3 Bands (3 Transitions)

d8 Case

The possible microstates can be worked out in the cases of ions with more 
than two electrons in d orbitals also and the ground state can be obtained. 
In d8 case, there are two vacancies (hole) in d orbitals. Their positions can be 
altered in the same way as those of the two electrons and 45 arrangements 
can be obtained. This corresponds to 3F, 3P, 1D, 1G, and 1S, out of which the 
ground state is 3F. Ground state can also be calculated by finding the highest 
values of magnetic quantum number.

L = 3 and S = 1 and hence, 8F

3F state gets split up into A2g, T1g (F) and T2g and 3P gets converted to 
T1g (P) in the octahedral field. The electronic arrangements corresponding 
to these states can be understood. In an octahedral field, the ground state 
arrangement is t2g

6 eg
2. This is non-degenerate (t2g

6 dx
2
–y

21 dz
21) and hence, it is 

3A2g. On excitation of one electron, t2g
5 eg

3 arrangement is obtained. There 
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are six electronic arrangements possible corresponding to T2g (F) and T2g (P). 
With two-electron excitation, the possible corresponding arrangement is t2g

4 

eg
4. This is triply degenerate (dx

2
–y

22 dxz
1 dyz

1 eg
4, dxy

1 dxz
2 dyz

1 eg
4 and dxy

1 dxz
1 

dyz
2 eg

4). This forms 3T1g (F) state.
Three electronic transitions are also possible. t2g

6 eg
2 → t2g

5 eg
3, which 

corresponds to 3T2g (F) ← 3A2g and 3T1g (P) ← 3A2g transitions while t2g
6 eg

2 
→ t2g

4 eg
4 corresponds to 3T1g (P) ← 3A2g transition. Thus, three bands can be 

expected. The lowest energy band 3T1g ← 3A2g corresponds to ∆. Thus, there 
is a reversal in the energies of the spectral states in d8 ions as compared to 
d2 case.

d7 Case

The free ion ground state is 4F, as highest magnetic quantum number is 3, 
i.e., L = 3 and S = 3/2.

Another state of same multiplicity is 4P. 4F and 4P states split up into 4T1g 
(F), 4T2g, 

4T1g (P), and 4A2g, in an octahedral field. The ground state electronic 
arrangement t2g

5 eg
2 corresponds to triply degenerate 4T1g. Excitation of one 

electron gives rise to electronic arrangement t2g
4 eg

3 corresponding to T2g (F) 
and T2g (F). Two-electron transition gives rise to t2g

3 eg
4, a non-degenerate A2g 

state. Thus, the spectral states and their energies are same as in d2 case and 
three transitions are possible giving rise to three bands.

4
1g

4
2gT     T →
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4
1g

4
2gT     A →

4
1g

4
2gT  (F)    T (P) →

d3 Case

d3 case has the following electronic arrangement in the free ion.

The highest magnetic quantum number is 3 and S = 3/2 and hence, the 
ground state is 4F. This is a case similar to d8 with two holes. Another spec-
tral state of same multiplicity is 4P. The splitting pattern of 4F and 4P is same 
as in case of d8. The ground state is 4A2g and three transitions are possible 
4T2g ← 4A2g, 

4T1g (F) ← 4A2g, 
4T1g (P) ← 4A2g.

Thus, d2 and d7 configuration of Oh have same splitting as in case of d3 
and d8 configuration of Td while d3 and d8 configuration of Oh have same 
splitting as that of d2 and d7 configuration of Td.

General Orgel diagram:

Thus, it can be concluded that

	 (i)	 dn (Td) = d10-n (Oh)
		  (Same splitting and multiplicity)
	 (ii)	 dn (Td) inverse of d10-n (Td)
		  dn (Oh) inverse of d10-n (Oh)
		  (Inverse of splitting but same multiplicity)
	 (iii)	 d5 (Td) ≡ d5 (Oh)
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Case/Configuration Ground Excited term  
(same multiplicity)Td Oh

d1 d9 2E2
2T2

d2 d8 3A2
3T2, 

3T1 (F), 3T1 (P)
d3 d7 4T1 (F) 4T2, 

4A2, 
4T1 (P)

d4 d6 5T2
5E2

d5 d5 6A1 None
d6 d4 5E2

2T2

d7 d3 4A2
4T2, 

4T1 (F), 4T1 (P)
d8 d2 3T1 (F) 3T2, 

3A2, 
3T1 (P)

d9 d1 2T2
2E2

This table also gives information about number of allowed transition in 
Td and Oh.

For example, d1, d4, d6 and d9 configurations with weak field ligands in Oh 
give one allowed transition, whereas d2, d3, d7, and d8 give three spin allowed 
transitions. But in d5 case, the spin allowed transition occurs.

(ii) Strong Field

In these complexes, crystal field splitting of a free ion spectral state may be 
more than the separation between the two free ion states.

Individual splitting of the free ion states are not considered in such cases. 
Spitting of the d orbitals by the ligand field is first considered. The electrons 
are arranged in the split up d orbitals and their interactions are considered to 
arrive at the probable spectral states resulting on imposing the crystal field.

Let us consider the d2 case. The free ion states are 3F, 3P, 3D, 1G and 1S. 
Their splitting in a weak Oh field has already been considered. In a strong 
field also, d orbitals get split up into eg and t2g sets. The possible electronic 
configurations are t2g

2 eg
0, t2g

1 eg
1 and t2g

0 eg
2. The electrons in the different 

configurations undergo orbital and spin interactions resulting in microstates.
For t2g

2 case, orbital degeneracy is three and spin degeneracy is two. 
There are two unpaired electrons and hence, the number of microstates is 
equal to 6 × 5/2 = 15.

d5 Ions

The d5 configuration occurs with Mn(II) and Fe(III) ions. In high spin octahedral 
complexes formed with weak ligands, for example [MnF6]

4−, [Mn(H2O)6]
2+ and 



322	 Chemical Applications of Symmetry and Group Theory

[FeF6]
3−, there are five unpaired electrons with parallel spins. Any electronic tran-

sition within the d level must involve a reversal of spins, and in common with all 
other ‘spin forbidden’ transitions, any absorption bands will be extremely weak. 
This accounts for the very pale pink color of most Mn(II) salts, and the pale 
violet color of iron(III) alum. The ground state term is 6S. None of the 11 excited 
states can be attained without reversing the spin of an electron, and hence, the 
probability of such transitions is extremely low. Of the 11 excited states, the four 
quartets 4G, 4F, 4D and 4P involve the reversal of only one spin. The other seven 
states are doublets, and these are doubly spin forbidden, and therefore, these are 
unlikely to be observed. In an octahedral field, these four states split into ten 
states, and hence, up to ten extremely weak absorption bands may be observed. 
Several features in the spectrum of [Mn(H2O)6]

2+ are unusual.
The Orgel energy level diagram for octahedral Mn2+ is:

Orgel energy level diagram for Mn2+ (d5) in octahedral field.

Only the quarter terms have been included because transitions to the 
others are doubly spin forbidden.

It is to be noted that the ground state 6S does not split, and transforms to 
the 6A1g state, as shown along the horizontal axis. It is to be noted also that the 
4Eg (G). 4A1g, 

4Eg (D), and 4A2g (F) terms are also horizontal lines on the diagram, 
so their energies are independent of the crystal field. The ligands in a complex 
vibrate about mean positions, so the crystal field strength 10 Dq varies about 
a mean value. Thus, the energy for a particular transition varies about a mean 
value, and hence, the absorption peaks are broad. The degree of broadening of 
the peaks is related to the slope of the lines on the Orgel diagram. Since the slope 
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of the ground state term 6A1g is zero, and the slopes of the 4Eg (G), 4A1g, 
4Eg (D), 

and 4A2g (F) terms are also zero, transitions from the ground state to these four 
states should give rise to sharp peaks. By the same reasoning, transitions to states 
with appreciable slope such as 4T1g(G) and 4T2g(G) give broader bands.

The bands are assigned as follows:
6A1g → 4T1g	 18,900 cm–1

6A1g → 4T2g(G)	 23,100 cm–1

6A1g → 4Eg	 24,970 and 25,300 cm–1

6A1g (S) → 4A1g (G)
6A1g → 4T2g (D)	 28,000 cm–1

6A1g → 4Eg (D)	 29,700 cm–1

The same diagram applies to tetrahedral d5 complexes, if the g subscripts 
are omitted.

9.6  TANABE–SUGANO DIAGRAMS

The simple Orgel energy level diagrams are useful for interpreting spectra, 
but they have two important limitations:

	 (i)	 They treat only the high-spin (weak field) case.
	 (ii)	 They are only useful for spin allowed transitions, when the number 

of observed peaks is greater than or equal to the number of empirical 
parameters: crystal field splitting Dq, modified Racah parameter B′ 
and bending constant X.

Tanabe–Sugano diagram for d2 case, i.e., V3+
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Though it is possible to add low-spin states to an Orgel diagram, Tanabe–
Sugano diagrams are commonly used instead for the interpretation of spectra 
including both—weak and strong fields. Tanabe–Sugano diagrams are simi-
lar to Orgel diagrams as they also show, how the energy levels change with 
Dq. but they differ in several ways:

	 (i)	 The ground state is always taken as the abscissa (horizontal axis) 
and provides a constant reference point. The other energy states are 
plotted relative to this.

	 (ii)	 Low-spin terms, i.e., states, where the spin multiplicity is lower than 
the ground state, are included.

	 (iii)	 In order to make the diagrams general for different metal ions with 
the same electronic configuration, and to allow for different ligands 
both of which affect Dq and B (or B′), the axes are plotted in units 
of energy/B and Dq/B.

A different diagram is required for each electronic arrangement. Only 
two examples are given here. The Tanabe–Sugano diagram for a d2 case such 
as V3+. It is to be noted that in this case, there is no fundamental difference 
between strong and weak fields.

Tanabe–Sugano diagram for d6 case, i.e., Co3+

This is a simplified version and only the singlet and quintet terms are 
shown. There is a discontinuity at 10 Dq/B = 20, and this is shown by a 
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vertical line. At this point, spin pairing of electrons occurs. On left of this 
line, we have high spin complexes (weak ligand field) and on right, we have 
low spin complexes (strong ligand field). The free ion ground state is 5D. This 
is split by an octahedral field into the 5T2g ground state and the 5Eg excited 
state. The singlet state in the free ion is of high energy. This is split by the 
octahedral field into five different states, out of which the 1A1g is important. 
This state is greatly stabilized by the ligand and drops rapidly in energy as 
the ligand field strength increases. At the point, where 10 Dq/B = 20, the 
1A1g line crosses the horizontal line for the 5T2g state (which is the ground 
state). At still higher field strengths, the 1A1g state is the lowest in energy, and 
becomes the ground state. Since the ground state is taken as the horizontal 
axis, the right hand part of the diagram must be redrawn.

Since the fluoride ion is a weak field ligand, the complex [CoF6]
3−  is 

high spin. The complex is blue in color, and a single peak occurs at 13000 cm−1. 
This is explained by the transition 5T2g → 5Eg shown as an arrow in the 
left hand part of the diagram. The spectrum of a low spin complex such 
as [Co(ethylenediamine)3]

3+ should show the transitions 1A1g → 1T1g and 
1A1g → 1T2g (shown as two arrows in the right hand part of the diagram).

9.7  ORGEL AND TANABE–SUGANO DIAGRAMS

In the Orgel diagram, the splitting of the free ion spectral state is considered 
in the weak field, and the energies of the split up spectral states (in cm–1) is 
plotted as a function of Dq (also in cm–1). Ground state of the complex is 
derived from the ground spectral state of the free ion and hence, the mul-
tiplicity of the ground state in the complex remains same as of the free ion 
ground state. The splitting pattern of the higher energy free ion states is not 
of much importance in the Orgel diagram.

However, it has been seen that in a strong field, there is greater interelec-
tronic repulsion and hence, the ground state of the complex may be derived 
from a free ion state of higher energy and lower multiplicity than the free ion 
ground state. Hence, the splitting pattern of the ground and also the higher 
spectral states of the free ion as a function of Dq in weak and strong fields 
has been considered by Tanabe and Sugano. The diagrams have following 
characteristics:

	 (i)	 In these diagrams, the energies of the split up states divided by 
Racah parameter B, i.e., E/B is plotted against Dq/B. (The values 
of E are obtained as in Orgel diagram and the value of B for a metal 
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ion is obtained from the emission spectrum). Thus, the positions of 
the spectral states are shown as a function of two parameters Dq 
and B and hence, the Tanabe–Sugano diagrams are valid for all cen-
tral ions of a particular configuration dn. For example, d5 diagram 
is valid for both; Mn2+ and Fe3+, where for each metal ion, the cor-
responding B value is used.

	 (ii)	 In transition state diagrams, the ground term is made the horizontal 
base line so that the energy of the transition of electrons from the 
ground to the excited states can be calculated by the vertical dis-
tance from the base line. But in Orgel diagram, such determination 
becomes difficult because no splitting of terms occur as horizontal 
base line.

	 (iii)	 For d1, d2, d3, d8, and d9 cases, the ground state remains the same 
in weak and strong fields. For d4, d5, d6, and d7 cases, there is cross-
ing of terms for a critical value of field strength. A state with lower 
multiplicity derived from a higher free ion spectral state becomes 
ground state with increasing ∆. In case of d4 metal ions in the 
weak octahedral field, ground electronic configuration is t2g

3 eg
1 and 

it results in a quintet state 3Eg derived from free ion 5D. However, 
in a strong Oh field, the ground state electronic configuration is 
t2g

4 eg
0 and it results in a triplet 2T1 state derived from free ion 2H 

state. The crossing point and the multiplicities of the ground states 
in other cases, can be seen in the Tanabe–Sugano diagrams. In all 
these cases, a higher state becomes ground state in the strong field 
and becomes the base line. Thus, there is a break in the original 
ground state and a sharp change in the slopes of all the lines. But 
these breaks in the lines are due to the change in the base line of the 
diagram and they do not represent any discontinuity in the energies 
of the states.

	 (iv)	 In Tanabe–Sugano diagrams, some spectral states are shown by 
curved rather than straight lines. This is because of the fact that there 
is interaction between states of same symmetry and same multiplic-
ity derived from different free ion spectral states.

9.8  CONSTRUCTION OF ENERGY LEVEL DIAGRAMS

Orbital is one electron wave function, and if more than one electron is pres-
ent in systems, then interelectronic repulsion should be taken into consider-
ation. The electron-electron repulsion gives rise to the energy state called the 
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term. Now the question arises, what the relative energy of these state are and 
how these energies depend on the strength of the chemical interaction of the 
ion with its surroundings?

The energy level diagrams are based on the so-called one electron 
model, even if the atom or ion has more than one d electrons, i.e., the effect 
of interelectronic repulsion has been ignored. First, energy level diagrams 
of d2 configuration are developed and then, the effect of interelectronic 
repulsion and the surrounding environment are added. The separation of 
the two sets of orbitals into which the group of five d-orbitals is split can be 
taken as a measure of this interaction. The magnitude of Δo or Δt is plotted 
as abscissa and energy as ordinate. In free ion term, the value of energies 
Δo or Δt is zero.

Relative energies of e and t2 orbital resulting from the splitting of the set 
of d orbitals in Oh and Td environment.

Now the method of constructing an energy level diagram by treating d2 
in Oh environment will be described. For d2 configuration, electron-electron 
interaction comes in play; thus, giving rise to ground state free ion term (3F) 
and numbers of excited state terms (3P, 1G, 1D and 1S). Terms in order of 
increasing energy are:

3F < 1D < 3P < 1G < 1S

In limit of an extremely large splitting of d-orbitals, the following 3 con-
figurations, in order of increasing energy are possible:

t2g
2, t2g. eg, eg

2

Now, if the strong interaction of the environment with the ion is allowed 
to relax so that the electron starts feeling the presence of one another. 
It  results in coupling, in such a way that it gives rise to a set of state of 
the entire configuration.
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Configuration     Direct product    States
 t        t t

2g

2
2g 2× gg 1g g 1g 2g

2g g 2g g 1g 2g
2

     A E T T

    t  e       t e      T T
e

g

+ + +

× +
        e e         A A Eg g 1g 2g g× + +

These are the symmetries of the orbital state produced by interaction of 
electrons.

Let us see, how these states can be obtained from direct product. For 
example, eg

2 = eg × eg giving A1g, A2g, and Eg states.

O E C i S
e 2 0 2 0
e 2 0 2 0

4 0 4 0

h 2 4

g

g

PΓ

The direct product of degenerate representation is a reducible represen-
tation. No irreducible representation has order greater than 3; however, the 
direct product ΓP must be reducible. Now ΓP decomposes as A1g, A2g, and Eg.

This decomposition is that sum of the character for the irreducible repre-
sentations are the character of the reducible representation, ΓP.

Similarly, t2g
2 = t2g × t2g gives A1g + Eg + T1g + T2g

O E   C   C
t 3 1 1
t 3 1 1

9 1    1

h 2 4

2g

2g

P

−
−

Γ

Since product representation is greater than 3, ΓP decomposes as dis-
cussed earlier. The sum of the character for the irreducible representation is 
the character of the reducible representation ΓP. In same way, direct product 
of eg.t2g gives T1g + T2g. This decomposition can be explained.

Thus, it can be concluded that symmetry of state can be determined by 
multiplying character of the operations to obtain the total character for two 
electrons. After then, application of reduction formula to reducible represen-
tation will reduce it into the sum of irreducible representations.
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The character of the representation of a direct product is equal to the 
product of the character of the representation based on the individual sets of 
functions. It is bases of the direct product method.

χ
Direct product (R) = χa (R). χb (R). χc (R)… χi (R)

In Oh point group, total character of reducible representations, i.e., direct 
product representation of the irreducible representations of Oh group are:

O E  8 C 3 C  ( C ) 6 C 6 C
A 1    1    1    1    1
A 1    1    

h 3 2 4
2

2 4

1g

2g

=

11 1 1
E 2 1    2    0    0
T 3    0 1 1    1
T 3    0 1    1 1

T

g

1g

2g

2

− −
−

− −
− −

× TT 9    0    1    1    1
T E 6    0 2    0    0
E E 4    1    4    0    

2

2 × −
× 00

Hence, direct product representation of Oh group for two electrons in t2g, 
t2g.eg and eg are:

O E    8 C 6 C  6 C   3 C    i    6 S 8 S   3  6 h 3 2 4 2 4 6 h d

T T2g 2

σ σ
Γ

× gg

2g 2g

g g

9 0 1 1    1     9 1 0    1 1

6 0 0 0 2    6 0 0 2 0

4 1 0 0  
T ' T '

E E

Γ

Γ
×

×

− −

   4    4 0 1    4 0

Now we have to determine multiplications of strong field state. As 2 elec-
trons are involved, they must be either singlet or triplet according to (2 S + 1). 
Considering first t2g

2 configuration, it may be regarded that as a set of six boxes 
for t2g level.
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Total degeneracy of t2g
2 = 

6 5
2

15×
= .

Here, 2 in denominator stands for indistinguishability of the electrons.
It means that the number of ways, in which two electrons can occupy the 

6 boxes, are 15. When strong field is decreased (relaxed), then the orbital 
state separate into A1g, Eg, T1g and T2g. Total degeneracy of these states must 
remain 15.

t2g × t2g = a.A1g + b.Eg + c.T1g + d.T2g

1.a + 2.b + 3.c + 3.d = 15

where a, b, c, and d are either 1 or 3. Now making combination of 1 and 
3 for a, b, c, and d in such a way that on putting these values in this equation 
should give total as 15. So such possibilities can be:

a b c d
I 1 1 1 3
II 1 1 3 1
III 3 3 1 1

I set	 1 × 1 + 2 × 1 + 3 × 1 + 3 × 3 = 15
II set	 1 × 1 + 2 × 1 + 3 × 3 + 3 × 1 = 15
III set	 3 × 1 + 2 × 3 + 3 × 1 + 3 × 1 = 15

Set second seems to be more correct, which can be proved by correlation 
diagram.

For t2g.eg configuration, one can place electron in any of the 6 boxes and 
other electron in any of the 4 boxes; thus, total 24 arrangements are possible. 
Here, it must be noted that there is no possibility of two electrons being in 
the same box. It means that in all arrangements spin may be either paired or 
unpaired. Configuration t2g.eg gives rise to T1g and T2g states.

These states may be singlet or triplet. Thus, t2g.eg gives 1T1g, 
3T1g, 

1T2g, 
and 3T2g states.

t2g.eg = 1T1g + 3T1g + 1T2g + 3T2g

3 × 1 + 3 × 3 + 3 × 1 + 3 × 3 = 24
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Similarly, in eg
2 configuration, two electrons can be placed in four boxes. 

Thus, total degeneracy will be 4 3
2
×  = 6.

eg × eg = a.A1g + b.A2g + c.Eg

1.a + 1.b + 2.c = 6

Possible combination of 1 and 3 for a, b, c can be

a b c
I 1 3 1
II 3 1 1

I set	 1 × 1 + 1 × 3 + 2 × 1 = 6
II set	 1 × 3 + 1 × 1 + 2 × 1 = 6

Set second is correct, which can also be confirmed by correlation diagram.
Order of energy in spectral state can be obtained by modified Hund’s 

rules.
	 (a)	 Higher is the multiplicity (2S + 1), lower will be the energy.
	 (b)	 When 2S + 1 is same, then orbital degeneracy is considered. Higher 

is the orbital degeneracy, lower will be the energy.

e.g., T E A
Triply degenerate Doubly degenerate Non degenerate

〉 〉
−

Correlation Diagram of d2 Ions

In correlation diagram, extreme left shows free ion with zero field ligand 
field and extreme right shows complex with strong ligand field. The increas-
ing order of energy (in strong field) has configuration (t2g)

2 (ground state), 
(t2g)

1, (eg)
1 and (eg)

2 at highest state. The electronic states for some d orbitals 
are given in Table 9.4.

Construction of correlation diagram follows two principles:

	 (i)	 As one goes from weak to the strong interaction with the environ-
ment, the symmetry properties of the system is not changed. Thus, 
there must be same number of each kind of state through out.
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	 (ii)	 As the strength of the interaction changes, state of same spin degen-
eracy and symmetry cannot cross. It is called non-crossing rule.

Correlation diagram for Oh

In this diagram, left side shows the state of free ion and right side shows 
the state, into which these free ion state split under the influence of octahe-
dral environment.

Now, the multiplicity of all states is known. At extremely right side 
(hypothetical), a case of strong interaction, whereas immediately to its left 
side is strong but not infinitely strong. In order that each state on the left side 

TABLE 9.4  Electronic Configuration

Free ion Ion in octahedral Electronic state

d1, d9 (eg)
1 2Eg

(t2g)
1 2T2g

d2, d8 (eg)
2 3A2g + 1A1g + 1Eg

(t2g)
1 (eg)

1 3T1g + 3T2g + 1T1g + 1T2g

(t2g)
2 3T1g + 1A1g + 1Eg + 1T2g
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goes over into a state of the same kind on the right without violation of the 
non-crossing rule.

9.9  MOLECULAR ORBITALS FOR σ-BONDING IN MLn 
COMPLEXES

9.9.1  TETRAHEDRAL COMPLEXES (ML4)

In tetrahedral complex, [ZnCl4]
2−, the ligands L are at the corners of tetrahe-

dron as:

It can be represented in cube as:

The operations of Td point group are performed on ligand AO’s to deter-
mine the symmetries of the σ MOs.

We first need to find out the reducible representation, for which entire set 
of σ orbitals form a basis. For this purpose, we may represent each σ orbital by 
a vector pointing from M to L atom, and denote these vectors as r1, r2, r3, and r4.

	 (i)	 Applying E (Identity) operation, we obtain new vector set as r1′, r2′, 
r3′, and r4′.
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Because if the complex is rotated through 0° or 360°, all the vectors 
remained at their respective positions.

The new vectors are related to original vectors as:

r ' r 0.r 0.r 0.r
r ' 0.r r 0.r 0.r
r ' 0.r 0.r

1 1 2 3 4

2 1 2 3 4

3 1

= + + +
= + + +
= +

1
1

.
.

22 3 4

4 1 2 3 4

r 0.r
r ' 0.r 0.r 0.r r

+ +
= + + +

1
1

.
.

r '
r '
r '
r '

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

r
r
r

1

2

3

4

1

2



















=



















33

4r



















Matrix representation

	 (ii)	 For C3 operation, set of vector is rotated by 2π/3 = 120° about the C3 
axis, and we get:

r '
r '
r '
r '

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

r
r
r

1

2

3

4

1

2



















=



















33

4r



















Matrix representation

χ (C ) 13 =

Proceeding in the same way for C2, S4 and σd operation.
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C2 operation

r ' r 0.r 0.r 1.r
r ' 0.r 0.r r 0.r
r ' 0.r 1.r

1 1 2 3 4

2 1 2 3 4

3 1

= + + +
= + + +
= +

0
1

.
.

22 3 4

4 1 2 3 4

0.r r
r ' 1.r r 0.r 0.r

+ +
= + + +

0
0

.
.

r '
r '
r '
r '

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

r
r
r

1

2

3

4

1

2



















=



















33

4r



















 χ (C ) 02 =

S4 operation

r ' r 0.r 1.r 0.r
r ' 0.r 0.r r 1.r
r ' 1.r 0.r

1 1 2 3 4

2 1 2 3 4

3 1

= + + +
= + + +
= +

0
0

.
.

22 3 4

4 1 2 3 4

0.r r
r ' 0.r r 0.r 0.r

+ +
= + + +

0
1

.
.

r '
r '
r '
r '

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

r
r
r

1

2

3

4

1

2



















=


















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4r



















 χ (S ) 04 =

σd operation

r ' r 0.r 0.r 0.r
r ' 0.r 0.r r 0.r
r ' 0.r 1.r

1 1 2 3 4

2 1 2 3 4

3 1

= + + +
= + + +
= +

1
1

.
.

22 3 4

4 1 2 3 4

0.r r
r ' 0.r r 0.r 1.r

+ +
= + + +

0
0

.
.
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r '
r '
r '
r '

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

r
r
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1

2
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











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


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




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

33

4r



















 χ σ ( ) 2d =

Finally, the following set of character for the representations is generated:

T E 8 C 3 C 6 S 6 
4 1 0 0 2

d 3 2 4 d

tetra

σ
Γ

An easier way to achieve this is also available. The character is equal to 
the number of vectors that are unshifted by the operation.

Using character table of Td group, this representation can be reduced in 
the following way with help of reduction formula.

ΓTetra = A1 + T2

Thus, there are four MOs that will be equivalent to the set of four σ orbitals. 
One orbital of A1 symmetry and three orbitals of T2 representation. The charac-
ter table shows that AOs of the M fall into these categories:

Irreducible representation	 Orbitals
A1	 s
T2	 px, py, pz or dxy, dxz, dyz

The central atom M uses appropriate set of p orbitals for σ-bonding of 
SiF4, AlCl4

−, ZnCl4
2−, etc.

We now know, which particular AOs of the central atom will be used to 
form the MOs of A1 and T2 symmetry?

Now SALCs are to constructed by employing the projection operation 
technique.

For A1, SALC must have the same symmetry as the s orbital on atom M. 
s orbital is spherical and it has positive signs. Four ligand orbitals combine 
with s orbital. Thus, normalized A1 SALC has to be:
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s = σ1 + σ2 + σ3 + σ4

For T2 SALCs must match the symmetries of the p-orbitals on the 
atom M. The combination must be as follows to match the p orbital.

pz = σ1 – σ2 – σ3 + σ4

px = σ1 – σ2 + σ3 – σ4

py = σ1 + σ2 – σ3 – σ4

Now one can form MO’s by bringing the central atom orbital and the 
SALCs together to give positive or negative overlap; thus, forming a bond-
ing or an antibonding MO (Both have same symmetry, but quite different 
energy). The bonding combination, ψb, is slightly lower in energy and the 
antibonding, ψa, is high by same amount of energy.

MO energy level diagram for ML4 like tetrahedral complex showing 
both; the A1 and T2 type interactions

9.9.2  OCTAHEDRAL COMPLEXES (ML6)

In octahedral complex, ML6, we need a set of six σ-bonding orbitals, which 
will give rise to following representation:
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O E 8 C 6 C 6 C 3 C i 6 S 8 S 3 3 
6 0 0 2 2 0 0 0 4 2

h 3 2 4 2 4 6 h dσ σ
Γσ

An easier way to determine these representations is there without writing 
complete matrix, i.e., The character is equal to number of vectors that are 
unshifted by the operation.

Operation Unshifted vector χ

Identity operation All vectors 6
Rotation operation, which are not on axes X–, Y–, and Z– 
(i.e., bond axis)

No vector 0

Rotation along X–, Y–, and Z– (bond axis) Two vectors 2
σh operation Four vectors 4

Thereafter, this reducible representation is reduced by reduction formula 
to know the contribution of irreducible representations as:

Γσ = A1g + Eg + T1u

Irreducible representation	 Orbitals
A1g	 s
Eg	 dz

2, dx
2
–y

2

T1u	 px, py, pz

Central atom M also has T2g symmetry, which belongs to dxy, dyz, and 
dxz. But for σ-bonding, it requires SALCs of A1g, Eg and T1u. Therefore, 
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T2g remain non-bonding for σ system. It is therefore possible to make the 
full set of MOs, because all the necessary orbitals are available on the 
central atom.

Now constructing SALCs by projection operation technique assuming 
that the σ bonds are oriented towards the central atom with its positive lobe. 
For A1g, SALC must match the totally symmetry atomic s orbital and it has 
positive sign. Six ligand orbitals (LO’s) are combined. Thus, the normalized 
A1g SALC has to be:

   

1
6

  ( )1 2 3 4 5 6σ σ σ σ σ σ+ + + + +

For T1u, SALCs, each one must match to one of the p orbital of central 
atom.

	 p 1
2

 ( )x 1 3= −σ σ   p 1
2

 (Ã Ã )y 2 4= −   p 1
2

 (Ã Ã )z 5 6= −
	

For Eg, SALCs, we required combination that match dz
2 and dx

2
–y

2.
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dz
2 = + − − − −

1
12

  (2 )5 6 1 2 3 4σ σ σ σ σ σ2

  dx
2
–y

2 = 1
2

(σ1 – σ2 + σ3 – σ4)

The MO energy can be obtained by combining AO of metal atom with 
ligand group orbitals (LGO) of ligand atoms having same symmetry.

MO diagram for octahedral AB6 complex, in which only σ bonds are there.
Asterisk (*) denotes an antibonding orbital.
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9.10  MOLECULAR ORBITALS FOR π-BONDING IN MLn 
COMPLEXES

For many ABn molecule, π-bonding as well as σ-bonding is important, spe-
cially, compounds with π-acceptor ligands such as metal carbonyls and 
oxometallates.

Example of this type are MnO4
−, Ni(CO)4, Cr(CO)6, etc.

9.10.1  TETRAHEDRAL COMPLEXES (ML4)

In tetrahedral complex, each ligand L contains two p orbitals, apart from 
a p σ orbital, which are capable of forming π bonds. Vector px and py are 
perpendicular to each other on each atom L and to M-L σ bond.

With this vector set as a basis, one obtains following results:

T E 8 C 3 C 6 S 6 
8 1 0 0 0

d 3 2 4 dσ
Γπ −

A set of vector representations; π-type p orbitals on the four L atoms of 
ML4 complex (ML4 type).

The reducible representation can now be reduced in terms of irreducible 
representation as:

Γπ = E + T1 + T2

SALCs of E, T1, and T2 symmetries can be obtained from eight π orbitals 
from 4 L (ligands) atoms. But, π MOs form only, when appropriate symme-
try AOs are present on atom M.



342	 Chemical Applications of Symmetry and Group Theory

Td character table shows that the following AOs are available:

Irreducible representation	 Orbitals
E	 d , d

z x -y2 2 2

T1	 None
T2	 px, py, pz or dxy, dyz, dxz

This results in two consequences:

•	 There is no orbital on atom M having T1 symmetry.
•	 Atom M with orbitals having T2 symmetry are better suited for 

σ-bonding. Here, two sets of T2 type AOs are present; thus, it is pos-
sible to have σ and π MOs of T2 symmetry.

Thus, MO energy level diagram representing σ- and π-bonding is:

Approximate MO diagram for Td (ML4) complex

9.10.2  OCTAHEDRAL COMPLEXES (ML6)

Each atom L has two p orbitals, which are mutually perpendicular and also 
perpendicular to M – L σ bond; thus, forming complete 12 sets of M – L π 
bond. The following results are obtained:
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O E 8 C 6 C 6 C 3 C i 6 S 8S 3 6 
12 0 0 0 4 0 0 0 0 0

h 3 2 4 2 4 6 h dσ σ
Γπ −

Reducible representation Γπ can be reduced to irreducible representations as:

Γπ = T1g + T2g + T1u + T2u

Coordinate system for an octahedral AB6 complex

There are no M atom orbitals with T2u, and T1g symmetry. On the con-
trary, M atom orbitals with T1u symmetry are better suited for σ overlap. 
Thus, we are left with only T2g for M – L π bonding.

On inspection of character table of Oh group, the following AOs are 
available in it.

Irreducible representation	 Orbitals
T2g	 dxy, dxz, dyz
T1u, T2u, T1g	 None

ψT2g
=  

1
2

(p p p p )

1
2

(p p p p )

1
2

(p p p p )

y
1

x
5

x
3

y
6

x
1

y
5

y
4

x
6

x
1

y
2

y
3

x
4

+ + +

+ + +

+ + +
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
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
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





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




Matching
d
d
d

xz

yz

xy

Thus, there remains SALCs, T1u, T2u, and T2g symmetry that are non-
bonding in character.
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MO diagram for an octahedral ML6 complex

9.11  METHOD OF DESCENDING SYMMETRY

The complete correlation diagram can be constructed but in this process, 
some problems are faced. A straightforward and general approach, called the 
method of descending symmetry, was developed that helps us to construct 
correlation diagram or any configuration.

In case of d2, if ML6 molecule of Oh symmetry is taken and as one 
descends (lower) the symmetry, the new point group as subgroup (D4h, C4v, 
C2v, C3v) of old one form. Here, we consider Oh symmetry, by descent of 
symmetry from D4h (trans pair of ligand in an Oh ML6 complex/molecule 
move out to a greater distance than the other four.
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Direct product of eg (eg × eg) give A1g, A2g and Eg states as a result of elec-
tron interaction in Oh symmetry.

eg × eg = eg
2 = A1g + A2g + Eg (Oh)

O E C i S
e 2 0 2 0
e 2 0 2 0

4 0 4 0

h 2 4

g

g

PΓ

The direct product of degenerate representation is a reducible representa-
tion. No irreducible representation has order greater than 3, and therefore, 
the product ΓP must be reducible representation. Now ΓP decomposes as A1g, 
A2g, and Eg.

Therefore, on descending symmetry Oh to D4h, eg orbital split into a1g and b1g.

A1g + B1g + A1g + B1g (D4h)

Above state on lower symmetry show below correlation.

O  D
A  A
A  B

E
A
B

h 4h

1g 1g

2g 1g

g
1g

1g





Again above decomposition can be proved in some way as previously 
deduced. On lowering symmetry cannot change spin degeneracies.

O D
A A
A B

Eg
A
B

h 4h
1

1g
1

1g
3

2g
3

1g

1
1

1g
1

1g






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eg
2 configuration with two electron can be placed in a1g and b1g level in 

number of ways.
The one electron in eg orbital (Oh symmetry) goes over the level a1g and 

b1g, where as symmetry is lowered to D4h.

	 Oh  D4h	

O E C C i S
E 2 0 0 2 0

h 2 3 4

g

D E  C C i S
A 1    1    1    1    1
B 1

4h 2 3 4

1g

1g − − − −1 1 1 1
2 0 0 2 0

These tables show correlation of symmetry operation of Oh with sum of 
character of symmetry operation of A1g and B1g. Both are equal.

The number of ways in which we can place 2 electrons in a1g and b1g.

Case I: Both electrons are in a1g

D E  C C
a 1 1 1
a 1
A

4h 2 4

1g

1g

1g

1 1
1 1 1

In D4h, direct product of a1g, a1g, formed by multiplying the character of 
the two representations is the irreducible representation of A1g.

If all the combined irreducible are non-degenerate, then the product will 
also be non-degenerate representation, i.e., the product of non-degenerate 
representation is non-degenerated.

Both electrons are in same levels. Therefore, A1g must be singlet.
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Case II: One electron in a1g while the other electron is in b1g

D E  C C
a 1 1    1
b 1
B

4h 2 4

1g

1g

1g

1 1
1 1 1

−
−

Direct product of a1g and b1g formed by multiplying the character of the 
two representations is the irreducible representation of B1g.

In a1g. b1g configuration, two electrons have different orbital state, 
hence B1g state resulting from a1g.b1g configuration can be singlet 1B1g or 
triplet 3B1g.

Case III: Both the electrons are in b1g, case similar to the case a1g. As per 
exclusion principle, now, b1g

2 multiplicity must be singlet as both electrons 
are in same orbital.

Let us now proceed to the state arising from t2g
2 configuration.

O E   C   C
t 3 1 1
t 3 1 1

9 1    1

h 2 4

2g

2g

P

−
−

Γ

Since product representation is greater than 3, ΓP is reducible representa-
tion and it decomposes as:

ΓP = A1g + Eg + T1g + T2g

This decomposition is that sum of the character for the irreducible 
representation is equal to the character of the reducible representation ΓP.

Lowering of Oh results into subgroup C2h and C2v. Let us now proceed 
with C2h representation. In case of C2h, states Eg, T1g, T2g of Oh splits into dif-
ferent sum of one-dimensional representations.
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O                  C
A                 A

Eg
A
B

T
A

h 2h

1g 1g

g

g

1g

g





BB
B

T
A
A
B

g

g

2g

g 

g

g

















( )
( )
1
2

Two electron in t2g
2  goes into ag (1), ag (2) and bg in C2h in six different 

ways.
These are as follows:
Both the electrons are in first ag.

ag
2 (1) = Ag

One electron in first ag and another electron in second ag.

ag
1  (1) × ag

1 (2) = Ag

One electron in first ag and second electron in bg.

ag
1  (1) × bg

1 = Bg

Both the electrons are in second ag.

ag
2 (2) = Ag

One electron in second ag and second electron in bg.

ag
1  (2) × bg

1 = Bg

Both the electrons are in bg.

bg
2 = Ag
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	 ag
1  (1) × ag

1  (1) = Ag      (Singlet)	

	 ag
1  (1) × ag

1  (2) = Ag      (Triplet)	

	 ag
1  (1) × bg

1  (1) = Bg      (Triplet)	

	 ag
1  (2) × ag

1  (2) = Ag      (Singlet)	

	 ag
1  (2) × bg

1  = Bg      (Triplet)	

	 bg
1  × bg

1  = Ag      (Singlet)	

If both the electrons are in one level, they can exist only in paired form 
and therefore, a singlet state is obtained. It is true for ag (1) × ag (1), ag (2) × 
ag (2) and bg × bg. On the other hand, it will give a triplet state, if the electrons 
are pressed in separate levels, i.e., ag (1) × ag (2), ag (1) × bg, and ag (2) × bg.

9.12  CAGE AND CLUSTER COMPOUNDS

Cluster compounds are ensemble of bound atoms, which form a polygonal 
or polyhedral array to which ligands are attached by direct or substantial 
bonding. In most of the cases, nothing is present in center, although in some 
cases, a small central atom such as H, Be, B, C, N, or Si is present.

9.12.1  POLYHEDRAL BORANES (B6H6
2−)

In boranes, each boron atom has four valence shell orbitals, s, px, py, and pz. 
In this case, same coordination system is selected as was used in an octahe-
dral ML6 case.

Irreducible representations are obtained in the same manner as for work-
ing out SALCs for σ- and π-bonding in the case of octahedral ML6.

Radial Tangential

s orbitals pz orbitals px, py orbitals
A1g + Eg + T1u A1g + Eg + T1u T1g + T2g + T1u + T2u

Radials are the orbitals that point directly in or out of the cluster while 
tangential are the one’s mainly on the surface.
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The set of B-H bonds is formed either with set of s orbital, the set of pz 
orbital or some mix of two; thus, leaving only one set of radial orbital that is 
pointing in towards the center of the octahedron.

SALCs formed from these orbitals give following MOs:

A1g	 Bonding MO
Eg and T1u	 Distinctly antibonding

MOs formed by the 12 tangential (px and py) orbitals for T2g type. The 
shape is already known from the π-bonding in an octahedral AB6 MO and 
other orbitals are obtained by projection operation. These overlaps give fol-
lowing MOs.

	 	

Schematic representation of MOs of B6H6
2−

It may be concluded that the B6 cluster itself has the following bonding 
MOs, A1g, T2g and T1u. These can hold 14 electrons (2, 6, 6, respectively) in 
bonding orbital. As each boron atom has 3 valence shell electrons, one of 
which is being used in B-H bond formation. Therefore, the 6 boron atoms 
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can provide 12 electrons to form bonding MOs in B6 cluster. Complete fill-
ing of bonding MOs requires 2 more electrons; thus, accounting for the sta-
bility of B6H6 unit as dianion.

Thus, BnHn cluster with n = 5–12, are closed polyhedral, i.e., closo boron 
clusters.

Closo borons have completely closed polyhedral, where all the vertices 
are occupied by B atoms. There are n + 1 bonding electron pairs within 
the cluster. Nido and arachno-boranes can be derived from closo borane by 
the removal of one and two vertex of polyhedral, respectively. Nido- and 
arachno- boranes have n + 2 and n + 3 bonding electron pair, respectively.

In term of bonding, removal of one vertex results simply in the elimi-
nation of one of the AOs, that lead to slight change in bonding and anti-
bonding orbitals, i.e., the bonding orbitals become slightly less bonding 
and antibonding orbitals become less antibonding and infact, some of them 
disappear.

9.12.2  TOTAL ELECTRON COUNT

Total electron in cage and cluster is equal to sum of number of valence 
electrons in the molecule or ions. The main group elements have only four 
valence orbitals, one is out of them and other three are p′s out of these four. 
Three orbitals from each atom combine to form the n + 1 bonding orbit-
als, which contain 2 n + 2 electrons, when they are filled. Therefore, one 
remaining orbital on each atom will have either a bond pair or lone pair 
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(i.e., 2 electrons). Hence, 2 n electrons will be required to fill these n orbit-
als. Thus, the total electron count for closo cluster containing n vertices is 
4 n + 2, for capped cluster 4 n, for nido cluster 4 n + 4, and for arachno 
cluster 4 n + 6.

A transition element has 5 d orbitals and therefore, 10 additional electrons 
are required per atom to fill the valence shell of each metal atom. A closo 
cluster contains 14 n + 2 valence electrons, capped cluster have 14 n, a nido 
cluster 14 n + 4, and an arachno cluster 14 n + 6.

The combination of main group atoms and transition atoms in any poly-
hedral lead to the combined formula An–m Mm where n is atoms that contain 
m transition metal atoms and n – m main group atoms. Summarized form of 
electron count rule is:

Capped Closo Nido Arachno

An 4 n 4 n + 2 4 n + 4 4 n + 6
Mn 14 n 14 n + 2 14 n + 4 14 n + 6
An–m Mm 4 n + 10 m 4 n + 2 + 10 m 14 n + 4 + 10 m 14 n + 6 + 10 m

where A = main group element; and M = transition metal.

[Rh7 (CO)16]
3−

	 7 Rh × 9 e−/Rh = 63 e−	

	 16 CO × 2 e−/CO = 32 e−	

	 Charge = 3 e−	

	 Total electron count = 98 e−	

Here n = 7; and therefore 14 n = 98 e− is justified and it predicts a capped 
octahedron.

Rh6 (CO)16

	 6 Rh × 9 e−/Rh = 54 e−	

	 16 CO × 2 e−/CO = 32 e−	

	 Total electron count = 86 e−	

Here n = 6; and therefore 14 n + 2 = 86 e− is justified and it predicts a closo 
octahedron.
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Os5 C (CO)15

	 5 Os × 8 e−/Os = 40 e−	

	 15 CO × 2 e−/CO = 30 e−	

	 1 C × 4 e−/C = 2 e−	

	 Total electron count = 74 e−	

Here n = 5; and therefore 14 n + 4 = 74 e− is justified and it predicts a nido 
octahedron.

[Os4 N (CO)12]
−

	 4 Os × 8 e−/Os = 32 e−	

	 12 CO × 2 e−/CO = 24 e−	

	 1 N × 5 e−/N = 5 e−	

	 Charge = 1 e−	

	 Total electron count = 62 e−	

Here n = 4; and therefore 14 n + 6 = 62 e− is justified and it predicts a arachno 
octahedron.

Fe3 (CO)9 (S)2

	 3 Fe × 8 e−/Fe = 24 e−	

	 9 CO × 2 e−/CO = 18 e−	

	 2 S × 6 e−/S = 12 e−	

	 Total electron count = 54 e−	

Here n = 5; and therefore 4 n + 4 + 30 = 54 e− is justified. It predicts a nido 
octahedron.

9.13  METAL SANDWICH COMPOUNDS

Metal sandwich (metallocene) compounds are made up of haptic covalent 
bonding between metal and arene ligands. These compounds are denoted by 
(CnHn)2 M, where CnHn is an arene ligand and M is metal.
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In this case, all the C-C bonds are of the same length and the rings are 
parallel. All compounds, in which at least one carbocyclic ring, CnHn, such 
as C4H4, C5H5, etc., is bound to a metal atom in such a way that the M atom 
lies along n-fold symmetry axis of the ring and is thus equivalently bonded to 
all the carbon atoms in the ring. However, there are also compounds, where 
rings are tilted with respect to one another, although it is believed that the 
metal-ring bonding is still symmetrical about axis of symmetry. Examples 
are Cp2ReH, Cp2TiCl2, Cp2 TaH2, etc.

Using ferrocene, Cp2Fe, as an example, one can demonstrate basic idea 
in the MO treatment of molecule.

9.13.1  FERROCENE

In formation of ferrocene, π MOs has to be considered. The set of ten pπ 
orbitals over two C5H5 ring combine to form ligand group orbitals (LGOs). 
The number and the symmetries of the ligand group orbitals can be worked 
out by performing the operation of D5d point group on the 10 pπ orbitals. 
This gives following reducible representation of D5d as:

D E 2 C 2 C 5 C i 2 S 2 S 5 
10 0 0 0 0 0 0 2

5d 5 5
2

2 10 10
3

dσ
Γπ

This reducible representation can be reduced to following irreducible 
representation.

Γπ = A1g + A2u + E1g + E1u + E2g + E2u

Normalised combination of A, E1, and E2 orbitals of individual rings are 
as follows:

ψ ψ ψ(A ) 1 21g

  1
2

(A) (A)= +[ ]

ψ ψ ψ(A ) 1 22u

  1
2

(A) (A)= −[ ]
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Skeleton showing the pπ orbitals on the two rings used to construct MOs 
for (C5H5)2 M molecule.

The 10 pπ orbitals combine to form two non-degenerate and four pairs of 
doubly degenerate group orbitals. They combine with the orbital Fe atom of 
with same symmetry and form bonding and antibonding orbitals.

Irreducible representation Orbitals

A1g 4 s, 3 dz
2

A2u 4 pz

E1g 3 dxz, 3 dyz

E1u 4 px, 4 py

E2g 3 dxy, 3 dx
2
–y

2

E2u None

In all, it is not necessary to solve a 19 × 19 secular determinant for 
19 orbitals because of their symmetric properties and considering the dege-
nerecies. In place of it, some small determinants of lower dimensions are to 
be solved. These are:

A1g Molecule orbitals = 1 (3 × 3)
A2u Molecule orbitals = 1 (2 × 2)
E1g Molecule orbitals = 2 (2 × 2)
E1u Molecule orbitals = 2 (2 × 2)
E2g Molecule orbitals = 2 (2 × 2)

E2u molecular orbital on ring has no E2u MOs on metal to interact with. 
Therefore, E2u MOs on the rings are in themselves E2u MOs for the complete 
molecule.

LGO, A1g match in energy with 4 s and 3 dz
2 to form 3 A1g MOs. A2u 

doesn’t match in energy with pz and hence, bonding MO A2u is same as 
LGO A2u

* and A2u MOs is same as pz orbital. LGOs E1g combined with 
3 dxz, 3 dyz and E1u combined with 4 px, and 4 py orbitals form two pairs 
of bonding and antibonding MOs. LGOs E2g combines with 3 dxy, and 
3 dx

2
–y

2 orbitals forming two bonding and antibonding MOs, respectively. 
There is no central AO corresponding to E2u and hence, it remained 
non-bonding.
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Energy level diagram for ferrocene

Group theory deals with not only symmetry and geometry of molecules, but 
it also explains many interesting facts like hybridization of molecules, molec-
ular vibrations, spectroscopy, M.O. theory for carbocyclic systems, bonding in 
complexes and organometallics, etc. It provides a strong mathematical back-
ground to deal with chemical problems related to all these aspects.

KEYWORDS

•• Cage

•• Cluster

•• Descending symmetry

•• Laporte rule
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•• Orgel diagram

•• Sandwich

•• Splitting

•• Tanabe–Sugano diagram
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B 1 1    1 1 1    1 1    1 1    1    12u

− − − −
− − − − − −−

− − − −
− −

1
E 2    1 1 2 0    0 2 1    1    2    0    0 (x, y)
E 2 1 1    2

1u

2u 00    0 2    1    1 2    0    0− −

D E 2C   2C 2C C 4C ' 4C " i 2S 2S 2S 4 4

A 1    1    1  
8h 8

3
4 2 2 2 8

3
4 h d v

1g

8 8
σ σ σ

   1 1 1 1    1    1    1 1 1 1 1 x y ,z
A 1    1    1    1 1 1 1    1   

2 2 2

2g

+
− −   1    1 1 1 1 1 R

B
B

z

1g

2g

− −
− − − − − −
− − − − −

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 −−

− − − −
− −

1 1

2 2 2 0 2 0 0 2 2 2 0 2 0
2 0 0 2 1 0 0 2 0 0 2 2 0

E 0 (R ,R ) (xz, yz)
E 0

1g x y

2g ((x y , xy)

E 0
A 1
A

2 2

3g

1u

2

−

− − − −
− − − − − − −

2 2 2 0 2 0 0 2 2 2 0 2 0
1 1 1 1 1 1 1 1 1 1 1 1 1

uu

1u

2u

1 z
B 1
B

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1

− − − − − − −
− − − − − − −
− − −− − − − −

− − − −
− −

1 1 1 1 1 1 1 1

2 2 2 0 2 0 0 2 2 2 0 2 0
2 0 0 2 2 0 0 2 0 0 2

1

E 0 (x, y)
E

1u

2u −−

− − − −

2 0

2 2 2 0 2 0 0 2 2 2 0 2 0

0

E 03u



7. The Dnd Groups

D E   2S   C 2C 2
A 1     1    1    1    1 x y ,z
A 1     1   

2d 4 2 2 d

1
2 2 2

2

' σ
+

  1 1 1 R
B 1 1    1    1 1 x y
B 1 1    1 1    1 z xy
E 2    0 2   0

z

1
2 2

2

− −
− − −
− −

−     0 (x, y) (R ,R ) (xz, yz)x y

D E  2C  3C    i  2S 3
A 1    1    1    1    1    1 x y ,z
A

3d 3 2 6 d

1g
2 2 2

2g

σ
+

11    1 1    1    1 1 R
E 2 1    0   2 1    0 (R ,R ) (x y ,xy); (

z

g x y
2 2

− −
− − − xxz, yz) 

A 1    1    1 1 1 1
A 1    1 1 1 1    1 z
E 2 1    0 2   

1u

2u

u

− − −
− − −

− −   1    0 (x, y)

D E    2C  2C    2S    C  4C 4

A 1      1    1      1   1   
4d 8 4

3
2 2 d

1

8
' σ

  1  1 x y ,z
A 1      1    1      1   1 1 1 R
B 1 1    1 1   1  1

2 2 2

2 z

1

+
− −

− − −11
B 1 1    1 1   1 1    1 z

E 2 2 2 0 0 (x, y)
E 2 2     0    2 0 (x

2

1

2

− − −

− −
−

0 2
0 0 22 2

3 x y

y , xy)

E 2 2 2 (R ,R ) (xz, yz)

−

− −0 2 0 0

D E    2C      2C 5C i       2S     2S 5
A 1       1   

5d 5 5
2

2 10
3

10 d

1g

σ
       1    1    1       1       1    1 x y ,z

A 1       1      

2 2 2

2g

+
    1 1    1       1       1 1 R

E 2 2 cos 72 2 cos 144    0   
z

1g
o o

− −
  2 2 cos 72    2 cos 144    0 (R ,R ) (xz, yz)

E 2 2 cos 144 2

o o
x y

2g
o   cos 72    0    2 2 cos 144    2 cos 72    0 (x y ,xy)

A 1  

o o o 2 2

1u

−
      1         1    1 1 1 1 1

A 1       1         1 1 1 1 1   2u

− − − −
− − − −   1 z

E 2 2 cos 72 2 cos 144    0 2 2 cos 72 2 cos 144    01u
o o o o− − − ((x, y)

E 2 2 cos 144 2 cos 72    0 2 2 cos 144 2 cos 72   2u
o o o o− − −   0
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D E 2S   2C 2S  2C 2S C 6C ' 6

A 1    1     1 1 1 1 1 1 1 x  y
6d 12 6 4 3

5
2 2 d

1
2 2

12
σ

+ ,, z
A 1    1     1 1 1 1 1 1 1 R
B 1 1     1 1 1  1 1 1 1
B 1 1     1

2

2 z

1

2

− −
− − − −
− −11 1  1 1 1 1 z

E 2 3 1 0 1 3 2 0 0 (x, y)
E 2    1 1 2 1 1 2 0 0 (x  y , x

1

2
2 2

− −

− − −
− − − − yy)

E 2 0 2 0 2 0 2 0 0
E 2 1 1 2 1 1 2 0 0

E 2 3    1 0 1 3 2 0 0 (R ,R ) (xz

3

4

5 x y

− −
− − − −

− − − ,, yz)

8. The Sn Groups

S  E  S  C  S
A   1    1    1    1 R x y ,z
B   1 1    1 1 z x y

4 4 2 4
3

z
2 2 2

2 2

+
− − − ,, xy 

E
   i

i
1
1

i
i

(x, y); (R ,R ) (xz, yz)x y

1
1

−
   



 −

−
−





S E C  C    i   S   S   exp (2 i / 3)

A   1   1   1    1    1   
6 3

2 5
6

g

3 6
ε π=

  1 R x y ,z

E
  
  *

  *
  

   1
   1

   
   *

   
*

z
2 2 2

g

+





1
1

ε
ε

ε
ε

ε
ε

ε
ε 


−

− − −





(R ,R ) (x y ,xy); (xz, yz)

A   1   1   1 1 1 1 z

E
  
 

x y
2 2

u

u

1
1

ε
  *

  *
  

1
1 *

*
(x, y)

ε
ε
ε

ε
ε

−ε
−ε

−
−

−
−





S E  S  C  C  C  S  C   S exp(2 i / 8)
A   1    1    1    1

8 8 4 8
3

2 8
5

4
3

8
7

 ε π=
    1    1    1    1 R x y ,z

B   1 1    1 1    1 1 1 1 z

E
1
1

  

z
2 2 2

1

+
− − − −





  
   *

   i
i

* 1
1 *

i
i

   
*

(x, y); (R ,R )

E
1
1

x y

2

ε
ε

ε
ε

ε
ε

ε
ε−

−
−

−
−

−
−

− 





 −

−
−

−
−

−
−

− 



−
   i

i
1
1

i
   i

1
1

   i
i

1
1

i   
   i

(x y ,xy)

E
1
1

2 2

3




−
−

− −
− −

−
−





ε
ε

ε
ε

ε
ε

ε
ε

* i
i

  
  *

1
1 

   *
   

   i
i *

(xz, yz)



9. The Cubic Groups

T E 4C 4C  3C e exp(2 i / 3)
A   1   1   1    1 x y z

E
1
1

  
 

3 3
2

2
2 2 2

 =
+ +





π

ε
  *

  *
  

   
1
1

(2z x y ,x y )

T   3   0   0 1 (R ,R ,R )

2 2 2 2 2

x y z

ε
ε
ε





− − −

− ;;(x, y,z) (xy,xz, yz)

T E 4C 4C 3C    i 4S 4S 3 exp(2 i / 3)
A   1   1   1    1    

h 3 3
2

2 6 6
5

h

g

 σ ε π=
11    1    1    1 x y z

A   1   1   1    1 1 1 1 1

E
1
1

  
  

2 2 2

u

g

+ +
− − − −





ε
ε **

  *
  

   1
   1

   1
   1

   
   *

   *
   

   
1
1

(2z x2 2ε
ε

ε
ε

ε
ε





− −− −





−
−

−
−

−
−

−
−

y , x y )

E
1
1

  
  *

  *
  

   1
   1

1
1 *

* 1
1

2 2 2

u

ε
ε

ε
ε

ε
ε

ε
ε





− −T   3   0   0 1 1    0    0 1 (R ,R ,R ) (xy,xz, yz)
T   3   0   

g x y z

u 00 1 1    0    0    1 (x, y,z)− −

T E   8C   3C 6S 6
A 1     1    1    1    1 x y z
A 1     1    

d 3 2 4 d

1
2 2 2

2

σ
+ +

11 1 1
E 2 1    2    0 (2z x y x y
T 3 1 1 1 (R ,R , R ) 
T

2 2 2 2 2

1 x y z

− −
− − − −

− −
0

0
, )

22 3 0 1 1    1 (x, y, z) (xy, xz, yz)− −

yz) xz,(xy,z)y,(x,10113T
);R,R,(R10113T

)yx,yx(2z01202E
11111A

zyx11111A
6C8C)(3C6CEO

2

zyx1

22222
2

222
1

23
2
424

−−
−−

−−−−
−−

++
= C
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O E 8 C   6 C 6 C 3C ( C )    i   6 S  8 S 3 6 
A 1    1  

h 3 2 4 2 4
2

4 6 h d

1g

= σ σ
   1    1        1    1     1    1    1    1 x y z

A 1    1 1 1  

2 2 2

2g

+ +
− −        1    1 1    1    1 1

E 2 1    0    0        2    2     0 1   g

− −
− −   2    0 (2z x y ,x y )

T 3    0 1    1 1    3     1    0 1 1 (

2 2 2 2 2

1g

− − −
− − − − RR ,R , R )

T 3    0    1 1 1    3 1    0 1    1 (xz, yz, xy)
A 1

x y z

2g

1u

− − − −
    1    1    1        1 1 1 1 1 1

A 1    1 1 1        1 1     12u

− − − − −
− − − −− −

− − −
−

1 1    1
E 2 1    0    0        2 2     0    1 2    0
T 3    0 1  

u

1u    1 1 3 1    0    1    1 (x, y, z)
T 3    0    1 1 1 3     1    02u

− − −
− − −     1 1−

10. The Groups Cv and Dh for Linear Molecules

   C E   2C
A 1      1    1 z x y ,z
A 1      1 1

v v

1
2 2 2

2

∞ ∞
Φ ∞σ

Σ
Σ







≡ +
≡ −

+

− RR
E 2 2 cos    0 (x, y); (R ,R ) (xz, yz)
E 2 2 cos 2    0

z

1 x y

2

≡
≡

Π Φ
∆ Φ



 ((x y ,xy)
E 2 2 cos 3    0

2 2

3

−
≡ Φ Φ 

    

D E 2C    i  2S C
A 1 1    1    1   1 1 x y ,z
A

h v 2

1g g
2 2 2

2

∞
Φ

∞
Φ∞σ ∞

∑
∞

+≡ +
 

 

gg g z

1g g

1 1 1    1   1 1 R
E 2 2 cos    0    2 2 cos 0 (R

≡ − −
≡ −

−∑
Π Φ Φ

 

  xx y

2g g
2 2

,R ) (xz, yz)
E 2 2 cos 2    0    2 2 cos 2 0 (x y , xy)≡ −∆ Φ Φ 

        

 

 

A 1 1    1 1 1 1 z
A 1 1 1 1 1 1
E 2 2 

1u u

2u u

1u u

≡ − − −
≡ − − −
≡

+

−

Σ
Σ
Π ccos    0 2  2 cos 0 (x, y)

E 2 2 cos 2    0 2 2 cos 22u u

Φ Φ
∆ Φ

 



−
≡ − − ΦΦ 

        

0



11. The Icosahedral Group

I E 12C 12C 20C  15C
A 1   1   1   1   1 x y z

T 3 1
2

(1 5) 1
2

(1 5

5 5
2

3 2
2 2 2

1

+ +

+ − ))   0 1 (R ,R ,R ); (x, y, z)

T 3 1
2

(1 5) 1
2

(1 5)   0 1

G 4 1 1   1  

x y z

2

−

− + −

− −   0
H 5   0   0 1   1 (2z x y , x y , xy, xz, yz)2 2 2 2 2− − − −

I E 12C 12C 20C  15C i  12S  12S 20S 15
A 1   1   1   1   1 1

h 5 5
2

3 2 10 10
3

6

g

σ
   1   1   1   1 x y z

T 3 1
2

(1 5) 1
2

(1 5)   0 1 3 1
2

(1 5) 1
2

(1 5

2 2 2

1g

+ +

+ − − − + ))   0 1 (R ,R ,R )

T 3 1
2

(1 5) 1
2

(1 5)   0 1 3 1
2

(1 5) 1
2

(1 5)   0

x y z

2g

−

− + − + − −−

− − − −

− −

1

G 4 1 1   1   0 4 1 1   1   0
H 5   0   0 1   1  5   0   0 1   1

   
(

g

g 22z x y ,
x y , xy, xz, yz)

A 1   1   1   1   1 1 1 1 1 1

T 3 1
2

(

2 2 2

2 2

u

1u

− −

−
− − − − −

11 5) 1
2

(1 5)   0 1 3 1
2

(1 5) 1
2

(1 5)   0   1 (x, y, z)

T 3 1
2

(1 5)2u

+ − − − − − +

−
11
2

(1 5)   0 1 3 1
2

(1 5) 1
2

(1 5)   0   1

G 4 1 1   1   0 4   1   1u

+ − − + − −

− − − −11   0
H 5   0   0 1   1 5   0   0   1 1u − − −
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INDEX

A
Abelian group, 55, 73
Activation energy, 34
Actual energy, 205
Adjacent C-atoms, 195, 200
Allene molecule, 16, 24
Alternate method, 63
Angle of rotation, 13–15, 154
Antibonding orbitals, 351, 356
Arachno octahedron, 353
Associative, 71, 77, 78, 98

law, 72, 73, 78, 117, 118
multiplication, 72, 73

Asymmetric stretching, 246, 249, 250, 
262, 267

Atomic orbitals, 151, 170, 173–175, 179, 
185, 189, 193, 299, 310, 314, 316

Axis of,
rotation, 13–15, 27, 28, 30, 290
symmetry, 12–17, 22, 28, 33–42, 44, 
51, 54, 58, 61, 75, 110, 120, 317, 354

B
Balancing act, 2
Benzene, 9, 10, 15, 22, 27, 32, 58, 66, 

216, 217, 221, 223, 224
Biphenyls, 38
Block out method, 196, 212, 220, 236
Blocking method, 203
Bond order, 144, 189, 198, 208, 209, 

214–216, 223, 224, 231, 233, 240, 241
Boric acid, 42, 56
Boron atom, 14, 42, 155, 349, 350
Breathing mode type, 248
Butadiene, 199, 200, 204, 205, 207–209

C
Cage, 357

cluster compounds, 349–353

polyhedral boranes, 349–351
total electron count, 351–353

Capped octahedron, 352
Carbocyclic system, 224
Carbon atom, , 209, 214–216, 223, 224, 

233, 240
Carbon atoms, 9, 16–18, 22, 35, 39, 61, 

159, 161, 190, 192, 194, 197, 198, 199, 
208, 210, 214–217, 223–225, 233, 234, 
239–241, 354

Cartesian
components, 115
coordinate method, 256, 257, 268, 
271, 273, 275, 278

A2B2 molecules, 278
AB3 pyramidal molecules, 268
AB4 molecules, 272
AB6 molecules, 275

coordinate system, 5, 26, 100
coordinates, 5, 26, 103, 146–150, 152, 
155, 158, 161, 164, 168, 251, 252, 
257, 262
plane, 112

Cationic system, 229
Center of symmetry, 27, 28, 32, 35–38, 

49, 50, 52, 56, 58, 60, 61, 114, 145, 
177, 178, 254, 255, 277, 295, 301, 308, 
309, 311, 312

Centre of symmetry, 26, 113
Change in point group, 63
Character, 104, 131, 144, 146, 150, 152, 

154, 163, 167, 290
Character of matrix, 104, 119

water molecule, 119
Character table, 97, 137, 140, 143, 144, 

150, 152, 155–158, 168–170, 188, 252, 
256, 261, 265–268, 273–279, 282, 294, 
297, 314, 336, 342, 343
construction, 137
presentation, 143
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Charge density, 189, 198, 208, 214, 222, 
224, 231, 239, 240, 241

Chemical applications, 2
Class, 90–98, 137, 139, 145, 148, 149, 

152, 169, 175, 262–264, 301
Clockwise direction, 112
Closo octahedron, 352
Closure rule, 72, 76, 78, 98, 349, 357

Abelian group, 73
cyclic group, 73

Columbic integral, 201
Combination (sum) band, 281, 282, 

284–286
Conjugate system, 197
Construction of energy level diagrams, 

326
Coordinate geometry, 5
Correction field, 286
Correlation diagram, 330, 331, 344
Crystal field

stabilization energy, 304
theory, 299, 302

Crystalline
environment, 286
sample, 286

Crystallography, 2, 48
Cubic, 49, 69, 300

symmetry, 49, 299, 300
point group, 55

Cyclobutadiene, 210, 216
Cyclohexane, 39
Cyclooctatetraene, 40
Cyclopentadienyl group, 233
Cyclopropane, 10
Cyclopropenyl

anion, 231–233
carbonuim ion, 228
cation, 231, 233
group, 224
radical, 230, 231, 233
system, 225

D
Debye D, 253
Degrees of internal freedom, 272, 278
Delocalization energy, 144, 189, 213, 

229, 237, 238, 241
Descending symmetry, 306, 344, 345, 357

Determination of classes, 93
Diagonal matrix, 101, 102, 125, 126
Diatomic molecule ethylene, 190
Difference band, 281, 283
Different point groups, 93, 134
Dihedral, 22, 49, 51, 69
Dihedral groups, 56
Dipole moment, 38, 39, 249–251, 253, 

267, 268, 309, 312
Direct product method, 329
Dissymmetric molecules, 58
Dodecahedron, 52
Doubly degenerate, 210, 220, 233, 269, 

305, 306, 314, 331, 356

E
Eigen value, 190
Electrical field, 253, 299
Electron density, 189, 197, 198, 207, 208, 

214, 222, 229, 230, 239, 241
Electron-electron repulsion, 326
Electronic spectra of complexes, 307

Laporte orbital selection rule, 307
relaxation in selection rules, 309
spin selection rule, 308

Electronic transition, 310, 315, 322
Elongation, 302
Energy level diagrams, 327
Equatorial plane, 302, 304
Equivalent

atoms, 9
configuration, 8, 13–15, 20, 26, 28
symmetry elements/atoms, 8

Ethylene, 57, 190, 192, 193, 197–199, 
205, 221

Ethylenic linkage, 213, 238

F
fac- and mer-[RhCl3(pyridine)3], 43
Face valence, 241
Factor group, 286
Fermi resonance, 280, 284–286, 288
Ferrocene, 38, 354, 357
Fluorine atom, 10, 14, 168, 170
Free valence, 189, 198, 199, 209, 

214–216, 223, 224, 233, 240, 241
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Fundamental band, 280, 281, 283, 284, 
285

Fundamental importance theorems, 133

G
Great orthogonality theorem, 133, 134, 

150
Group element, 100
Group multiplication table, 80
Group theoretical analysis, 257
Group theoretical methods, 256

Cartesian coordinate method, 256, 257
operation C2, 259
operation E, 258
operaton xz (σv), 259
operaton yz (σv), 260

internal coordinate method, 256
Group theory, 1, 2, 5, 71, 77, 85, 101, 

109, 126, 152, 172, 176, 193, 299, 301
rules, 71, 72

associative law of multiplication, 
73
closure rule, 72
identity rule, 72
inverse rule, 73

Group with improper axis of symmetry, 
58

Group with low symmetry, 53
Groups with N-fold rotational axis, 54
Groups with very high symmetry, 49

icosahedral/dodecahedral, 52
octahedral, 50
tetrahedral, 49

H
Hamiltonian, 190, 284
Hamiltonian operator, 190
Hermann-Mauguin nomenclature, 48
Hexagonal AB molecule, 19
Homogeneous linear equations, 192
Homonuclear diatomic molecule, 250
Huckel approximation, 190, 192, 195, 

200, 212, 226, 236
Hund’s rules, 310, 331

Hybrid orbitals, 106, 151, 152, 155, 159, 
162, 165, 168, 170–172, 177, 179, 180, 
182–184, 185

Hybridization, 2, 106, 109, 144, 151, 152, 
155, 159, 161, 165, 168, 172, 188, 357

Hydrogenic function, 185

I
Icosahedral/dodecahedral group, 52
Identity, 11–13, 44, 71, 75, 77, 80, 88, 98, 

109, 110, 333, 338
element, 13, 15, 48, 72, 74, 77, 80, 81, 
88, 90, 110, 123
operation, 11, 12, 14, 61, 110, 136, 
141, 147, 258
rule or law of commutation, 116

law of association, 117
law of combination, 116
law of inverse, 118

Improper axis, 11, 44
Improper axis of symmetry, 31
Improper rotation, 28, 29, 104, 114, 115
Indistinguishable configuration, 15, 32, 

41
Infra-red, 267, 268, 282, 283, 288
Infrared radiation, 251
In-plane mode, 247

rocking mode (asymmetric), 247
scissoring mode (symmetric), 247

Interelectronic repulsion, 313, 316, 
325–327

Internal coordinate method, 256, 264, 
267, 269, 271, 273, 276, 278
A2B2 molecules, 278
AB3 pyramidal molecules, 268
AB4 molecules, 272
AB6 molecules, 275

Inverse, 71, 77, 80, 98, 106, 109, 320
rule, 72, 74, 77
transformation matrix, 108

Inversion, 11, 26, 45, 92, 113
Inversion center, 26, 27, 34, 38, 39, 41, 

43, 51, 59, 61, 149
Irreducible, 126, 131, 137, 199, 317, 336, 

338, 342, 343, 349, 356
Irreducible representation, 125–127, 129, 

133–139, 141, 143–146, 148, 149, 152, 
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169, 172–175, 178, 179, 185, 188, 194, 
199, 200, 217, 252, 254, 256, 261, 262, 
267, 268, 282, 284, 286, 294, 296, 297, 
301, 305, 314, 315, 328, 329, 338, 341, 
345–347, 354

K
Kinetic properties, 302
Kronecker delta function, 134, 135

L
Laporte

forbidden, 308, 312, 317
rule, 307, 308, 357

Ligands, 299, 302–306, 310, 312, 321, 
322, 324, 333, 341, 349, 353
atoms, 340
group orbitals, 340, 354
ions, 299
orbitals, 309, 336, 339

Linear, 15, 23, 56, 58, 177, 188, 190, 298
combination, 155, 159, 161, 165, 177, 
190, 298
combination of atomic orbitals 
(LCAO), 152, 189
molecule AB2 (sp hybrid orbitals), 177

M
Magnetic

properties, 302
quantum number, 310, 315, 318–320

Mathematical
biology, 2
function, 7, 299
music theory, 2
operator, 7

Matrices types, 101
diagonal, 102
null or zero, 104
scalar, 103
square, 101
symmetric, 102
transpose, 102
unit, 101, 105

identity matrix, 105
vector, 103

column, 013

row, 103
Matrix, 100, 101, 103, 123, 126, 131
Medical image analysis, 2
Metal carbonyls, 341
Metal sandwich (metallocene) com-

pounds, 353
haptic covalent bonding, 353

Methane, 10, 49, 50, 151, 152
Microstates, 317, 318, 321
Molecular orbitals, 190, 193, 308

theory, 2, 189, 241
π-bonding, 341
σ-bonding, 333

Molecular plane, 8, 9, 19, 21, 23, 25, 32, 
42, 168, 173, 174, 224, 248, 257, 279

Molecular point groups, 47, 48
classification, 48

Molecular symmetry, 6, 10
Molecular systems biology, 2
Molecular vibration, 2, 245, 357

bending vibrations, 246
in-plane mode, 247
out-of-plane mode, 247

bond stretching, 245
Mulliken symbols, 144, 145, 147, 149, 

150
Multiplication table, 81–83, 85, 87, 89, 

98, 115
Mutual exclusion rule, 254, 277, 288

N
Nido octahedron, 353
Nodal characteristics, 213, 221, 238
Non-adjacent C-atoms, 195, 201
Normal mode analysis, 256, 280, 282
Normal modes of vibration, 244, 256, 

257, 271
rotational motion, 245
translational motion, 244
vibrational motion, 245

Normal sized overlap integral, 201
Normalization, 181, 211, 226, 234, 235
Number of unshifted atom, 256, 262, 263, 

268

O
Octahedral, 26, 49, 50, 69, 188, 309
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AB molecule, 19
complexes, 303, 304, 309, 311, 321, 
337, 342
field, 302–305, 308–311, 314, 
316–319, 322, 325, 326
molecule, 27, 50, 66, 165, 174

Octahedron, 10, 51, 299, 300, 350
One dimensional irreducible representa-

tion, 142, 144
One electron model, 327
Optical spectroscopy, 308
Orgel and Tanabe–Sugano diagrams, 325
Orgel diagram, 320, 322, 324–326, 358

octahedral complexes, 314
tetrahedral complexes, 311

Orgel energy, 322, 323
Orthogonality

relationship, 142
theorem, 134, 137, 145, 149

Orthonormal set, 177
Out-of-plane mode, 247, 248, 279

twisting mode (asymmetric), 248
wagging mode (symmetric), 248

Overtone, 284, 288
Overtones and binary/ternary combina-

tion bands, 278
combination bands, 281
difference bands, 281
overtone bands, 280

Oxometallates, 341

P
Pascal’s triangle, 4
Pentagonal AB molecule, 18
Phosphorous atom, 162
Planar (Tropylium) ion, 20
Planar AB3 molecule, 17, 18, 25
Planar molecule AB, 25, 63, 64
Planar molecule ion, 168
Planar triangular molecule, 8
Plane, 11, 12, 21, 22, 26, 45, 247

symmetry (mirror plane), 12, 21, 22, 
27, 32, 35, 36, 38, 41, 50, 57, 58, 61, 
62, 112

dihedral, 22
horizontal, 22
vertical, 22

Point group, 49, 60, 69, 127, 152, 254, 
275

Polarizability tensor, 250–252, 254
Principal axis, 6, 15–17, 19, 22–25, 34, 

38, 40, 42–44, 56–58, 61, 62, 171, 257, 
317

Projection operation technique, 336, 339
Pyramidal AB3 molecule, 17, 24
Pyramidal geometry, 55

Q
Quadratic Cartesian functions, 268
Quantum mechanics, 249, 298, 303, 305
Quintic equation, 2

R
Racah parameter, 323, 325
Raman spectrum, 144, 245, 249, 251–

255, 257, 262, 267, 268, 272, 274, 275, 
277, 280, 282–288

Reactive, 198, 199, 209, 216, 224, 241
Reducible and irreducible representations, 

124, 126, 131, 137
irreducible representation, 126
reducible representation, 124
relationship between reducible and 
irreducible representations, 127

Reducible representations, 127, 134, 152, 
157, 175, 329

Reduction formula, 152, 154, 158, 160, 
164, 167, 169, 172, 173, 199, 210, 217, 
225, 234, 265, 267, 269, 271, 273–276, 
328, 336, 338

Reflection, 11, 45
planes, 9, 39, 50

molecular planes, 9
vertical planes, 9

Representation of group by matrix, 109, 
131
axis of symmetry (proper rotation), 
112
center of symmetry (inversion), 113
identity operation
identity rule or law of commutation, 
116
improper rotation, 114
law of combination, 116
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plane of symmetry (reflection), 112
Resonance energy, 205
Right hand rule, 5, 6
Robotics, 2
Rotation, 5, 8, 10–17, 20, 21, 27–29, 

31–34, 37, 39, 41, 45, 50, 55–59, 61, 
78, 104, 111, 112, 114, 144, 146, 178, 
193, 245, 249, 259, 275, 290–292, 300, 
317, 338
axis, 11, 55, 56, 58, 59, 317
three-fold, 292
two-fold, 292

Ru (1, 10-phenanthroline)2 Cl2, 43
Rubik’s cube, 2

S
Sandwich, 358
Schoenflies notation, 144, 145, 147, 149
Schur’s lemmas, 133
Scissoring/rocking vibrations, 247
Secular determinant, 189, 190, 192, 193, 

195, 196, 200, 203, 205, 211, 212, 219, 
220, 226, 227, 236, 241, 356

Selection rule, 249, 255, 262, 287, 308
transition rule, 249
IR and RAMAN spectra, 249

Sets of functions, 329
Several point group, 297
Similarity transformation, 91–95, 97, 98, 

106, 124–127, 137
Singlet state, 325, 349
Site symmetry approximation, 286
Site symmetry lowering, 286, 287
Solid state effects, 286
Spectral state, 313–318, 320, 321, 325, 

326, 331
Spectroscopic activity, 282
Spectroscopy, 2, 48, 357
Spin forbidden, 308, 309, 317, 322
Spiran, 35, 36
Spiropentane, 39
Splitting, 287, 297, 303, 305, 307, 358

d orbitals, 298
degeneracies, 287
pattern, 306, 307, 311, 313, 315, 318, 
320, 325

Square matrix, 101, 104, 110, 253
Square planar, 188

geometry, 90, 210, 306
molecule, 64, 173

Stretching modes/coordinates types, 245
asymmetric stretching vibration, 245
symmetric stretching vibration, 245

Subgroups, 88–91, 98, 287
non-trivial subgroup, 88
trivial subgroup, 88

Sulfur atoms, 41
Superimposable mirror image, 35–37
Symmetric

buildings, 4, 5
Taj Mahal, 5

matrix, 101, 102, 108
representation, 252, 262

Symmetry
architecture, 4
dipole moments, 38
dipole moments, 38
elements, 6–11, 13, 33, 40, 43, 45, 48, 
49, 52–62, 67, 71, 75, 83, 85, 88, 90, 
93, 95, 124, 263
English alphabets, 33
environment, 295–297
nature, 2
operation, 7–11, 14, 20, 21, 29, 30, 32, 
45, 48, 50, 52, 55, 59, 71–77, 82, 83, 
86, 94, 100, 104, 109, 114, 115, 122, 
127, 136, 137, 148, 149, 152, 154, 
169, 171, 174, 177, 185, 256, 261, 
262, 265, 270, 290, 346
optical activity, 34
planes, 8, 9, 21, 23, 25, 26, 38

Symmetry-adapted linear combination 
(SALC), 193

T
Tanabe–Sugano diagram, 323, 324, 326, 

358
Tetrahedral, 23, 49, 69, 188

AB molecule, 18, 25
complexes, 302, 311, 312, 333, 341
field, 301, 302, 311, 313
molecule, 31, 49, 64, 159, 171

Tetrahedron, 49, 300
Tetraphenylmethane, 42
Thermodynamic properties, 302
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Trans-dichloroethylene, 28, 56
Transformation

matrices, 109, 143, 270
matrix, 107, 108, 114, 120, 125, 127
properties, 152, 170, 299

Transition
energy, 312
moment integral, 250–252

Trigonal bipyramidal molecule, 65, 162, 
188

Trigonal planar, 188
molecule, 153

AB-sp2 orbitals, 180
Triphenylphosphine, 44
Two fold symmetry axis, 8
Two-electron transition, 319

U
Unit matrix, 101, 105, 110, 114
Unshifted atom, 256, 262
Unshifted functions, 301
UV/vis spectroscopy, 308

V
Valence bond theory, 189
Variation method, 155, 159, 161, 165
Vector matrix, 101, 103
Vectors, 38, 100, 109, 119, 122, 134, 136, 

146, 149, 152, 153, 156, 159, 162–175, 

256–259, 261, 264, 265, 269, 270, 273, 
275–279, 301, 333–338

Vertical planes, 9, 23, 24, 25, 41, 43, 55, 
56, 62

Vibrational modes modeling of virus, 2
Vibrational spectroscopy, 249
Vibrational transition, 245, 249
Vibronic coupling, 309
V-shaped molecule, 23

W
Wave function, 155, 159, 161, 165, 185, 

190, 193, 194, 206, 207, 210, 214, 217, 
225, 234, 238, 251, 252, 290, 299, 301, 
326

Wave functions, 109, 182, 185, 193, 194, 
195, 197, 200, 207, 211, 221, 229, 236, 
250, 301, 309

X
X-ray diffraction method, 287
Xy plane, 29, 30, 32, 112, 298, 305, 306

Z
Z-axis, 5, 6, 29–32, 115, 146, 148, 182, 

257, 259, 268, 298, 305, 306
Zero overlap integral, 201
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