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Preface

This book provides a timely reference text for academics, undergraduate and
graduate students, and practitioners alike in the area of process monitoring
and safety, as well as product quality assurance using multivariate statistics.
The rapid evolution of this research area over the past 20 years is mainly driven
by significant advances in computer horsepower and the ever growing demand
from industry to effectively and efficiently monitor production processes. As
an example, Nimmo (1995) outlined that the US-based petrochemical industry
could save an estimated $10 bn annually if abnormal conditions could be
detected, diagnosed and appropriately dealt with. Moreover, the demand from
the oil and gas industry, other chemical engineering and general manufacturing
industries is also a result of ever tighter government legislation on emissions
and increased safety standards of their products.

The wide range of applications of multivariate statistics for process moni-
toring, safety and product quality is of considerable interest to the readership
in chemical, mechanical, manufacturing, electrical and electronic, industrial and
other related engineering and science disciplines. This research text serves as
a reference for introductory and advanced courses on process safety, process
monitoring and product quality assurance, total quality management of complex
technical systems and is a supplementary text for courses on applied statistics and
process systems engineering. As a textbook and reference, this book pays par-
ticular attention to a balanced presentation between the required theory and the
industrial exploitation of statistical-based process monitoring, safety and quality
assurance.

To cater for the different audiences with their partially conflicting demands,
the scope of the book is twofold. The main thrust lies on outlining the relevant
and important fundamental concept of multivariate statistical process control
or, in short, MSPC and to demonstrate the working of this technology using
recorded data from complex process systems. This addresses the needs for the
more how-does-it-work and what-does-it-do oriented readership of this book,
which includes undergraduate students, industrial practitioners and industrially
oriented researchers. The second pillar is the theoretical analysis of the underlying
MSPC component technology, which is important for the more research-oriented
audience including graduate students and academicians.

The twofold coverage of the material results from the research background
of both authors, which is centered on academic research in process monitoring,
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safety, product quality assurance and general process systems engineering, and
their participation in numerous industrial R&D projects, including consultancy
concerning the application of MSPC and the development of commercial software
packages. As this book carefully outlines and discusses, the main advantage of
the MSPC technology is its simplicity and reliance on recorded data and some
a priori knowledge regarding the operation of the process system. On the other
hand, this simplicity comes at the expense of stringent assumptions, including
that the process is stationary and time-invariant, and that the process variables
follow a Gaussian distribution.

With this in mind and based on academic and industrial R&D experience,
the authors are convinced that MSPC technology has the potential to play an
important role in commercial applications of process monitoring, safety and
product quality assurance. This view is also supported by the arrival of software
that entered the value-added market for commercially available packages, which
includes AspenMultivariate™, Wonderware, SIMCA-P (to name but a few), con-
sultancy companies, such as Perceptive Engineering Ltd., Eigenvector Research
Inc. and statistical data analysis software, e.g. STATISTICA, SAS®.

The first thrust of MSPC work for monitoring complex process systems
emerged in the late 1980 and the early 1990s and lays out a statistically sound
concept under these basic assumptions. It is important to note, however, that if
a process ‘unfortunately forgets’ to meet the above assumptions, the correspond-
ing monitoring charts may produce false alarms or the sensitivity in detecting
minor upsets is compromised. From the end of the 1990s until now, research
work that has enhanced the core MSPC methodology has removed some of these
stringent assumptions. This, in turn, allows the enhanced MSPC technology to
be applicable in a more practically relevant environment.

Besides the required theoretical foundation of the MSPC methodology, this
book also includes a detailed discussion of these advances, including (i) the
monitoring of time-variant process systems, where the mean and variance of the
recorded variables, and the relationship between and among these sets, change
over time, (ii) the development and application of more practically relevant data
structures for the underlying MSPC monitoring models and (iii) the development
of a different construction of monitoring statistics and charts which significantly
improves their sensitivity in detecting incipient fault conditions.

This book ideally supplements the good number of research texts available
on multivariate statistics, statistical process control, process safety and product
quality assurance. In particular, the research text brings together the theory of
MSPC with industrial applications to demonstrate its usefulness. In particular,
the mix of theory and practice in this area is rare; (exceptions include Mason
and Young (2001)). Moreover, good and solid reference that address the theory
as well as the application of component technology are rarely written for the
industrial practitioner whose experience is pivotal in any process monitoring,
safety and product quality assurance application.
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To comprehend the content of this book, the readership is expected to possess
basic knowledge of calculus including differentiation, integration and matrix com-
putation. For the application study, a basic understanding of principles in physics
and chemistry is helpful in following the analysis of the application studies and
particularly the diagnosis of the recorded fault conditions. To enhance the under-
standing of the presented material and to improve the learning experience, each
chapter presenting theoretical material, except the last two, includes a tutorial
session which contains questions and homework-style projects. The questions
assist with the familiarization of the covered material and the projects help the
reader to understand the underlying principles through experimenting and dis-
covering the facts and findings presented in this book either through self-study
reports or team-based project reports. The calculations can be carried out using
standard computational software, for example Matlab®.
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Introduction

Performance assessment and quality control of complex industrial process
systems are of ever increasing importance in the chemical and general
manufacturing industries as well as the building and construction industry
(Gosselin and Ruel 2007; Marcon et al. 2005; Miletic et al. 2004; Nimmo 1995).
Besides other reasons, the main drivers of this trend are: the ever more stringent
legislation based on process safety, emissions and environmental pollution
(ecological awareness); an increase in global competition; and the desire of
companies to present a green image of their production processes and products.

Associated tasks entail the on-line monitoring of production facilities, indi-
vidual processing units and systems (products) in civil, mechanical, automotive,
electrical and electronic engineering. Examples of such systems include the auto-
motive and the aerospace industries for monitoring operating conditions and
emissions of internal combustion and jet engines; buildings for monitoring the
energy consumption and heat loss; and bridges for monitoring stress, strain and
temperature levels and hence assess elastic deformation.

To address the need for rigorous process monitoring, the level of instrumenta-
tion of processing units and general engineering systems, along with the accuracy
of the sensor readings, have consequently increased over the past few decades.
The information that is routinely collected and stored, for example in distributed
control systems for chemical production facilities and the engine management
system for internal combustion engines, is then benchmarked against conditions
that are characterized as normal and/or optimal.

The data records therefore typically include a significant number of process
variables that are frequently sampled. This, in turn, creates huge amounts of
process data, which must be analyzed online or archived for subsequent analysis.
Examples are reported for:

• the chemical industry (Al-Ghazzawi and Lennox 2008; MacGregor et al.
1991; Piovoso and Kosanovich 1992; Simoglou et al. 2000; Wang et al.
2003);

• the general manufacturing industry (Kenney et al. 2002; Lane et al. 2003;
Martin et al. 2002; Monostori and Prohaszka 1993; Qin et al. 2006);

• internal combustion engines (Gérard et al. 2007; Howlett et al. 1999; Kwon
et al. 1987; McDowell et al. 2008; Wang et al. 2008);
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• aircraft systems (Abbott and Person 1991; Boller 2000; Jaw 2005; Jaw and
Mattingly 2008; Tumer and Bajwa 1999); and

• civil engineering systems (Akbari et al. 2005; Doebling et al. 1996; Ko
and Ni 2005; Pfafferott et al. 2004; Westergren et al. 1999).

For the chemical and manufacturing industries, the size of the data records
and the ever increasing complexity of such systems have caused efficient process
monitoring by plant operators to become a difficult task. This complexity stems
from increasing levels of process optimization and intensification, which gives
rise to operating conditions that are at the limits of operational constraints and
which yield complex dynamic behavior (Schmidt-Traub and Górak 2006). A
consequence of these trends is a reduced safety margin if the process shows
some degree of abnormality, for example caused by a fault (Schuler 2006).

Examples for monitoring technical systems include internal combustion
engines and gearbox systems. Process monitoring of internal combustion engines
relates to tackling increasing levels of pollution caused by the emissions of an
ever growing number of registered vehicles and has resulted in the introduction
of the first on-board-diagnostic (OBD) system in the United States in 1988, and
in Europe (EURO1) in 1992. The requirement for more advanced monitoring sys-
tems culminated in the introduction of OBDII (1994), EURO2 (1997) and EURO3
(2000) legislation. This trend has the aim of continuously decreasing emissions
and is supported through further regulations, which relate to the introduction of
OBDIII (considered since 2000), EURO4 (2006) and EURO5 (2009) systems.

Current and future regulations demand strict monitoring of engine perfor-
mance at certain intervals under steady-state operating conditions. This task
entails the diagnosis of any fault condition that could potentially cause the
emissions to violate legislated values at the earliest opportunity. With respect
to this development, a prediction by Powers and Nicastri (1999) indicated that
the integration of model-based control systems and design techniques have
the potential to produce safer, more comfortable and manoeuvrable vehicles.
According to Kiencke and Nielsen (2000), there are a total of three main
objectives that automotive control systems have to adhere to: (i) maintaining
efficiency and low fuel consumption, (ii) producing low emissions to protect
the environment and (iii) ensuring safety. Additional benefits of condition
monitoring are improved reliability and economic operation (Isermann and Ballé
1997) through early fault detection.

For gearbox systems, the early detection of incipient fault conditions is of fun-
damental importance for their operation. Gearboxes can be found in aerospace,
civil and general mechanical systems. The consequences of not being able to
detect such faults at early stages can, for example, include reduced productivity
in manufacturing processes, reduced efficiency of engines, equipment damage
or even failure. Early detection of such faults can therefore provide significant
improvements in the reduction of operational and maintenance costs, system
down-time, and lead to increased levels of safety, which is of ever growing impor-
tance. An incipiently developing fault in a mechanical system usually affects
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certain parameters, such as vibration, noise and temperature. The analysis of these
external variables therefore allows the monitoring of internal components, such
as gears, which are usually inaccessible without the dismantling of the system. It
is consequently essential to extract relevant information from the recorded signals
with the aim of detecting any irregularities that could be caused by such faults.

The research community has utilized a number of different approaches to
monitor complex technical systems. These include model-based approaches (Ding
2008; Frank et al. 2000; Isermann 2006; Simani et al. 2002; Venkatasubrama-
nian et al. 2003) that address a wide spectrum of application areas, signal-based
approaches (Bardou and Sidahmed 1994; Chen et al. 1995; Hu et al. 2003; Kim
and Parlos 2003) which are mainly applied to mechanical systems, rule-based
techniques (Iserman 1993; Kramer and Palowitch 1987; Shin and Lee 1995;
Upadhyaya et al. 2003) and more recently knowledge-based techniques (Lehane
et al. 1998; Ming et al. 1998; Qing and Zhihan 2004; Shing and Chee 2004)
that blend heuristic knowledge into monitoring application. Such techniques have
shown their potential whenever cost-benefit economics have justified the required
effort in developing applications.

Given the characteristics of modern production and other technical systems,
however, such complex technical processes may present a large number of
recorded variables that are affected by a few common trends, which may render
these techniques difficult to implement in practice. Moreover, such processes
often operate under steady-state operation conditions that may or may not be
predefined. To some extent, this also applies to automotive systems as routine
technical inspections, for example once per year, usually include emission tests
that are carried out at a reference steady state operation condition of the engine.

Underlying trends are, for example, resulting from known or unknown distur-
bances, interactions of the control system with the technical system, and minor
operator interventions. This produces the often observed high degree of corre-
lated among the recorded process variables that mainly describe common trends
or common cause variation. The sampled data has therefore embedded within
it information for revealing the current state of process operation. The difficult
issue here is to extract this information from the data and to present it in a way
that can be easily interpreted.

Based on the early work on quality control and monitoring (Hotelling 1947;
Jackson 1959, 1980; Jackson and Morris 1956, 1957; Jackson and Mudholkar
1979), several research articles around the 1990s proposed a multivariate exten-
sion to statistical process control Kresta et al. (1989, 1991) MacGregor et al.
(1991) Wise et al. (1989b, 1991) to generate a statistical fingerprint of a tech-
nical system based on recorded reference data. Methods that are related to this
extension are collectively referred to as multivariate statistical process control
or MSPC. The application of MSPC predominantly focussed on the chemical
industry (Kosanovich and Piovoso 1991; Morud 1996; Nomikos and MacGregor
1994; Piovoso and Kosanovich 1992; Piovoso et al. 1991) but was later extended
to general manufacturing areas (Bissessur et al. 1999; 2000; Lane et al. 2003;
Martin et al. 2002; Wikström et al. 1998).
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Including this earlier work, the last two decades have seen the development
and application of MSPC gaining substantial interest in academe and industry
alike. The recipe for the considerable interest in MSPC lies in its simplicity and
adaptability for developing monitoring applications, particularly for larger num-
bers of recorded variables. In fact, MSPC relies on relatively few assumptions and
only requires routinely collected operating data from the process to be monitored.
The first of four parts of this book outlines and describes these assumptions, and
is divided into a motivation for MSPC, a description of the main MSPC model-
ing methods and the underlying data structures, and the construction of charts to
carry out on-line monitoring.

For monitoring processes in the chemical industry, the research community
has proposed two different MSPC approaches. The first one relates to processes
that produce a specific product on a continuous basis, i.e. they convert a constant
stream of inputs into a constant stream of outputs and are referred to as a con-
tinuous processes . Typical examples of continuous processes can be found in the
petrochemical industry. The second approach has been designed to monitor pro-
cesses that convert a discontinuous feed into the required product over a longer
period of time. More precisely, and different from a continuous process, this type
of process receives a feed that remains in the reactor over a significantly longer
period of time before the actual production process is completed. Examples of
the second type of process can be found in the pharmaceutical industry and such
processes are referred to as batch processes . This book focuses on continuous
processes to provide a wide coverage of processes in different industries. Refer-
ences that discuss the monitoring of batch processes include Chen and Liu (2004),
Lennox et al. (2001), Nomikos and MacGregor (1994, 1995), van Sprang et al.
(2002) to name only a few.

The second part of this book then presents two application studies of a chem-
ical reaction process and a distillation process. Both applications demonstrate
the ease of utilizing MSPC for process monitoring and detecting as well as
diagnosing abnormal process behavior. The detection is essentially a boolean
decision whether current process behavior still matches the statistical fingerprint
describing behavior that is deemed normal and/or optimal. If it matches, the
process is in-statistical-control and if it does not the process is out-of-statistical-
control . The diagnosis of abnormal events entails the identification and analysis
of potential root causes that have led to the anomalous behavior. In other words,
it assesses why the current plant behavior deviates from that manifested in the
statistical fingerprint, constructed from a historic data record, that characterizes
normal process behavior. The second part of this book also demonstrates that
the groundwork on MSPC in the early to mid 1990s may rely on oversimplified
assumptions that may not represent true process behavior.

The aim of the third part is then to show advances in MSPC which the
research literature has proposed over the past decade in order to overcome some
of the pitfalls of this earlier work. These advances include:

• improved data structures for MSPC monitoring models;
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• the removal of the assumption that the stochastic process variables have a
constant mean and variance, and the variable interrelationships are constant
over time; and

• a fresh look at constructing MSPC monitoring charts, resulting in the intro-
duction of a new paradigm which significantly improves the sensitivity of
the monitoring scheme in detecting incipient fault conditions.

In order to demonstrate the practical usefulness of these improvements, the
application studies of the chemical reactor and the distillation processes in the
second part of this book are revisited. In addition, the benefits of the adaptive
MSPC scheme is also shown using recorded data from a furnace process and the
enhanced monitoring scheme is applied to recorded data from gearbox systems.

Finally, the fourth part of this book presents a detailed treatment of the
core MSPC modeling methods, including their objective functions, and their
statistical and geometric properties. The analysis also includes the discussion of
computational issues in order to obtain data models efficiently.



PART I

FUNDAMENTALS OF
MULTIVARIATE
STATISTICAL PROCESS
CONTROL



1

Motivation for multivariate
statistical process control

This first chapter outlines the basic principles of multivariate statistical process
control. For the reader unfamiliar with statistical-based process monitoring, a
brief revision of statistical process control (SPC) and its application to industrial
process monitoring are provided in Section 1.1.

The required extension to MSPC to address data correlation is then motivated
in Section 1.2. This section also highlights the need to extract relevant information
from a large dimensional data space, that is the space in which the variation
of recorded variables is described. The extracted information is described in a
reduced dimensional data space that is a subspace of the original data space.

To help readers unfamiliar with MSPC technology, Section 1.3 offers a tuto-
rial session, which includes a number of questions, small calculations/examples
and projects to help familiarization with the subject and to enhance the learning
outcomes. The answers to these questions can be found in this chapter. Project 2
to 4 require some self study and result in a detailed understanding on how to
interpret SPC monitoring charts for detecting incipient fault conditions.

1.1 Summary of statistical process control

Statistical process control has been introduced into general manufacturing indus-
try for monitoring process performance and product quality, and to observe the
general process variation, exhibited in a few key process variables. Although
this indicates that SPC is a process monitoring tool, the reference to control (in
control engineering often referred to as describing and analyzing the feedback or
feed-forward controller/process interaction), is associated with product or, more

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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precisely, process improvement. In other words, the control objective here is to
reduce process variation and to increase process reliability and product quality.
One could argue that the controller function is performed by process operators
or, if a more fundamental interaction with the process is required, a task force of
experienced plant personnel together with plant managers. The next two subsec-
tions give a brief historical review of its development and outline the principles
of SPC charts. The discussion of SPC in this section only represents a brief sum-
mary for the reader unfamiliar with this subject. A more in-depth and detailed
treatment of SPC is available in references Burr (2005); Montgomery (2005);
Oakland (2008); Smith (2003); Thompson and Koronacki (2002).

1.1.1 Roots and evolution of statistical process control

The principles of SPC as a system monitoring tool were laid out by Dr. Walter A.
Shewhart during the later stages of his employment at the Inspection Engineering
Department of the Western Electric Company between 1918 and 1924 and from
1925 until his retirement in 1956 at the Bell Telephone Laboratories. Shewhart
summarized his early work on statistical control of industrial production processes
in his book (Shewhart, 1931). He then extended this work which eventually led
to the applications of SPC to the measurement processes of science and stressed
the importance of operational definitions of basic quantities in science, industry
and commerce (Shewhart, 1939). In particular, the latter book has had a profound
impact upon statistical methods for research in behavioral, biological and physical
sciences, as well as general engineering.

The second pillar of SPC can be attributed to Dr. Vilfredo Pareto, who first
worked as a civil engineer after graduation in 1870. Pareto became a lecturer at
the University of Florence, Italy from 1886, and from 1893 at the University of
Lausanne, Switzerland. He postulated that many system failures are a result of
relatively few causes. It is interesting to note that these pioneering contributions
culminated in two different streams of SPC, where Shewhart’s work can be seen
as observing a system , whilst Pareto’s work serves as a root cause analysis if
the observed system behaves abnormally. Attributing the control aspect (root
cause analysis) of SPC to the ‘Pareto Maxim’ implies that system improvement
requires skilled personnel that are able to find and correct the causes of ‘Pareto
glitches’, those being abnormal events that can be detected through the use of
SPC charts (observing the system).

The work by Shewhart drew the attention of the physicists Dr. W. Edwards
Deming and Dr. Raymond T. Birge. In support of the principles advocated by
Shewart’s early work, they published a landmark article on measurement errors in
science in 1934 (Deming and Birge 1934). Predominantly Deming is credited, and
to a lesser extend Shewhart, for introducing SPC as a tool to improved productiv-
ity in wartime production during World War II in the United States, although the
often proclaimed success of the increased productivity during that time is con-
tested, for example Thompson and Koronacki (2002, p5). Whilst the influence of
SPC faded substantially after World War II in the United States, Deming became
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an ‘ambassador’ of Shewhart’s SPC principles in Japan from the mid 1950s.
Appointed by the United States Department of the Army, Deming taught engi-
neers, managers including top management, and scholars in SPC and concepts of
quality. The quality and reliability of Japanese products, such as cars and elec-
tronic devices, are predominantly attributed to the rigorous transfer of these SPC
principles and the introduction of Taguchi methods, pioneered by Dr. Genichi
Taguchi (Taguchi 1986), at all production levels including management.

SPC has been embedded as a cornerstone in a wider quality context,
that emerged in the 1980s under the buzzword total quality management or
TQM. This philosophy involves the entire organization, beginning from the
supply chain management to the product life cycle. The key concept of ‘total
quality’ was developed by the founding fathers of today’s quality management,
Dr. Armand V. Feigenbaum (Feigenbaum 1951), Mr. Philip B. Crosby (Crosby
1979), Dr. Kaoru Ishikawa (Ishikawa 1985) and Dr. Joseph M. Juran (Juran and
Godfrey 2000). The application of SPC nowadays includes concepts such as Six
Sigma, which involves DMAIC (Define, Measure, Analyze, Improve and Con-
trol), QFD (Quality Function Deployment) and FMEA (Failure Modes and Effect
Analysis) (Brussee, 2004). A comprehensive timeline for the development and
application of quality methods is presented in Section 1.2 in Montgomery (2005).

1.1.2 Principles of statistical process control

The key measurements discretely taken from manufacturing processes do not
generally describe constant values that are equal to the required and predefined
set points. In fact, if the process operates at a steady state condition, then these set
points remain constant over time. The recorded variables associated with product
quality are of a stochastic nature and describe a random variation around their
set point values in an ideal case.

1.1.2.1 Mean and variance of a random variable

The notion of an ideal case implies that the expectation of a set of discrete samples
for a particular key variable converges to the desired set point. The expectation,
or ‘average’, of a key variable, further referred to as a process variable z, is
described as follows

E {z} = z̄ (1.1)

where E {·} is the expectation operator. The ‘average’ is the mean value, or
mean , of z, ̂̄z, which is given by

lim
K→∞

̂̄z = lim
K→∞

z(1) + z(2) + · · · + z(K)

K
= lim

K→∞
1
K

K∑
k=1

z(k) → z̄. (1.2)

In the above equation, the index k represents time and denotes the order when
the specific sample (quality measurement) was taken. Equation (1.2) shows that



6 FUNDAMENTALS OF MULTIVARIATE SPĈ̄z → z̄ as K → ∞. For large values of K , however, we can assume that ̂̄z ≈ z̄

and small K values may lead to significant differences between ̂̄z and z̄. The
latter situation, that is, small sample sizes, may present difficulties if no set point
is given for a specific process variable and the average therefore needs to be
estimated. A detailed discussion of this is given in Section 6.4.

So far, the mean of a process variable is assumed to be equal to a predefined
set point z̄ and the recorded samples describe a stochastic variation around this set
point. The following data model can therefore be assumed to describe the samples

z = z0 + z̄. (1.3)

The stochastic variation is described by the stochastic variable z0 and can be
captured by an upper bound and a lower bound or the control limits which can
be estimated from a reference set of the process variable. Besides a constant
mean, the second main assumption for SPC charts is a constant variance of the
process variable

E
{
(z − z̄)2} = E

{
z2} − z̄2 = lim

K→∞
1

K−1

K∑
k=1

(
z(k) −̂̄z)2 = σ 2 (1.4)

where σ is defined as the standard deviation and σ 2 as the variance of the
stochastic process variable. This parameter is a measure for the spread or
the variability that a recorded process variable exhibits. It is important to note
that the control limits depend on the variance of the recorded process variable.

For a sample size K the estimate ̂̄z may accordingly depart from z̄ and
Equation (1.4) is, therefore, an estimate of the variance σ 2, σ̂ 2. It is also
important to note that the denominator K − 1 is required in (1.4) instead of K

since one degree of freedom has been used for determining the estimate of the
mean value, ̂̄z.

1.1.2.2 Probability density function of a random variable

Besides a constant mean and variance of the process variable, the third main
assumption for SPC charts is that the recorded variable follows a Gaussian dis-
tribution. The distribution function of a random variable is discussed later and
depends on the probability density function or PDF. Equation (1.5) shows the
PDF of the Gaussian distribution

f (z) = 1√
2σ 2π

e
− (z−z̄)2

2σ2 . (1.5)

Figure 1.1 shows the Gaussian density function for z̄ = 0 and various values
of σ . In this figure the abscissa refers to values of z and the ordinate represents
the ‘likelihood of occurrence’ of a specific value of z. It follows from Figure 1.1
that the smaller σ the narrower the Gaussian density function becomes and vice
versa. In other words, the variation of the variable depends on the parameter σ .
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Figure 1.1 Gaussian density function for z̄ = 0 and σ = 0.25, σ = 1.0 and
σ = 2.0.

It should also be noted that the value of ±σ represents the point of inflection
on the curve f (z) and the maximum of this function is at z = z̄, i.e. this value has
the highest chance of occurring. Traditionally, a stochastic variable that follows
a Gaussian distribution is abbreviated by z ∼ N {

z̄, σ 2
}
.

By closer inspection of (1.4) and Figure 1.1, it follows that the variation
(spread) of the variables covers the entire range of real numbers, from minus to
plus infinity, since likelihood values for very small or large values are nonzero.
However, the likelihood of large absolute values is very small indeed, which
implies that most values for the recorded variable are centered in a narrow band
around z̄. This is graphically illustrated in Figure 1.2, which depicts a total of 20
samples and the probability density function f (z) describing the likelihood of

z

f (z)
z̄ k

5 10 15 20

Figure 1.2 Random Gaussian distributed samples of mean z̄ and variance σ .
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occurrence for each sample. This figure shows that large departures from z̄ can
occur, e.g. samples 1, 3 and 10, but that most of samples center closely around z̄.

1.1.2.3 Cumulative distribution function of a random variable

We could therefore conclude that the probability of z values that are far
away from z̄ is small. In other words, we can simplify the task of monitoring
the process variable by defining an upper and a lower boundary that includes
the vast majority of possible cases and excludes those cases that have relatively
small likelihood of occurrence. Knowing that the integral over the entire range
of the probability density function is equal to 1.0, the probability is therefore
a measure for defining these upper and lower boundaries. For the symmetric
Gaussian probability density function, the probability within the range bounded
by z̄ − zα/2 and z̄ + zα/2 is defined as

F
(
z̄ − zα/2, z̄ + zα/2

) =
z̄+zα/2∫

z̄−zα/2

f (z) dz = 1 − α. (1.6)

Here, z̄ − zα/2 and z̄ + zα/2 defines the size of this range that is centered at z̄, 0 ≤
F (·) ≤ 1.0, F (·) is the cumulative distribution function and α is the significance,
that is the percentage, α · 100%, of samples that could fall outside the range
between the upper and lower boundary but still belong to the probability density
function f (·). Given that the Gaussian PDF is symmetric, the chance that a sam-
ple has an ‘extreme’ value falling in the left or the right tail end is α/2. The general
definition of the Gaussian cumulative distribution function F (a, b) is as follows

F (a, b) = Pr {a ≤ z ≤ b} = 1√
2πσ 2

b∫
a

e
− (z−z̄)2

2σ2 dz, (1.7)

where Pr {·} is defined as the probability that z assumes values that are within
the interval [a, b].

1.1.2.4 Shewhart charts and categorization of process behavior

Assuming that z̄ = 0 and σ = 1.0, the probability of 1 − α = 0.95 and
1 − α = 0.99 yield ranges between zα/2 = ±1.96 and zα/2 = ±2.58. This implies
that 5% and 1% of recorded values can be outside this ‘normal’ range by
chance alone, respectively. Figure 1.3 gives an example of this for z̄ = 10.0,
σ = 1.0 and α = 0.01. This implies that the upper boundary or upper control
limit , UCL, and the lower boundary or lower control limit , LCL, are equal to
10 + 2.58 = 12.58 and 10 − 2.58 = 7.42, respectively. Figure 1.3 includes a
total of 100 samples taken from a Gaussian distribution and highlights that one
sample, sample number 90, is outside the ‘normal’ region. Out of 100 recorded
samples, this is 1% and in line with the way the control limits , that is, the
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Figure 1.3 Schematic diagram showing statistical process control chart.

upper and lower control limits, have been determined. Loosely speaking, 1% of
samples might violate the control limits by chance alone.

From the point of an interpretation of the SPC chart in Figure 1.3, which is
defined as a Shewhart chart , samples that fall between the UCL and the LCL cate-
gorize in-statistical-control behavior of the recorded process variable and samples
that are outside this region are indicative of an out-of-statistical-control situation.
As discussed above, however, it is possible that α · 100% of samples fall outside
the control limits by chance alone. This is further elaborated in Subsection 1.1.3.

1.1.2.5 Trends in mean and variance of random variables

Statistically, for quality related considerations a process is out-of-statistical-
control if at least one of the following six conditions is met:

1. one point is outside the control limits;

2. two out of three consecutive points are two standard deviations
above/below the set point;

3. four out of five consecutive points are one standard deviation above/below
one standard deviation;

4. seven points in a row are all above/below the set point;

5. ten out of eleven points in a row are all above/below the set point; and

6. seven points in a row are all increasing/decreasing.

The process that is said to be an in-statistical-control process if none of the
above hypotheses are accepted. Such a process is often referred to as a stable
process or a process that does not present a trend . Conversely, if at least one
of the above conditions is met the process has a trend that manifest itself in
changes of the mean and/or variance of the recorded random variable. This, in
turn, requires a detailed and careful inspection in order to identify the root cause
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of this trend. In essence, the assumption of a stable process is that a recorded
quality variable follows a Gaussian distribution that has a constant mean and
variance over time.

1.1.2.6 Control limits vs. specification limits

Up until now, the discussion has focussed on the process itself. This discussion
has led to the definition of the control limits for process variables that follow
a Gaussian distribution function and have a constant mean value, or set point,
and variances have been obtained. More precisely, rejecting all of the above six
hypotheses implies that the process is in-statistical control or stable and does
not describe any trend. For SPC, it is of fundamental importance that the control
limits of the key process variable(s) are inside the specification limits for the
product. The specification limits are production tolerances that are defined by
the customer and must be met. If the upper and lower control limits are within
the range defined by the upper and lower specification limits , or USL and LSL,
a stable process produces items that are, by default, within the specification
limits. Figure 1.4 shows the relationship between the specification limits, the
control limits and the set point of a process variable z for which 20 consecutively
recorded samples are available.

1.1.2.7 Types of processes

Using the definition of the specification and control limits, a process can be
categorized into a total of four distinct types:

1. an ideal process;

2. a promising process;

3. a treacherous process; and

4. a turbulent process.

2 4 6 8 10 12 14 16 18 20
5.8

5.9

6

6.1

6.2
Shewhart Chart

k

z
UCL

LCL

USL

LSL

Figure 1.4 Upper and lower specification limit as well as upper and lower con-
trol limits and set point value for key variable z.
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The process shown in Figure 1.4 is an ideal process , where the product is almost
always within the specification limits. An ideal process is therefore a stable
process , since the mean and variance of the key product variable z is time
invariant. A promising process is a stable process but the control limits are
outside the region defined by the specification limits. The promising process has
the potential to produce a significant amount of off-spec product.

The treacherous process is an unstable process, as the mean and/or variance
of z varies over time. For this process, the absolute difference of the control limits
is assumed to be smaller than the absolute difference of the specification limits.
Similar to a promising process, a treacherous process has the potential to produce
significant off-spec product although this is based on a change in mean/variance
of z. Finally, a turbulent process is an unstable process for which the absolute
difference of the control limits is larger than the absolute difference of the speci-
fication limits. The turbulent process therefore often produces off-spec products.

1.1.2.8 Determination of control limits

It is common practice for SPC applications to determine the control limits zα

as a product of σ , for example the range for the UCL and LCL are ±σ , ±2σ

etc. Typical are three sigma and six sigma regions. It is interesting to note that
the control limits that represent three sigma capture 99.73% of cases, which
appears to describe almost all possible cases. It is important to note, how-
ever, that if a product is composed of say 50 items each of which has been
produced within a UCL and LCL that correspond to ±3σ , then the probabil-
ity that any of the products does not conform to the required specification is
1 − (1 − α)50 = 1 − 0.997350 = 1 − 0.8736 = 0.1664, which is 16.64% and not
0.27%. It is common practice in such circumstances to determine UCL and LCL
with respect to ±6σ , that is α = 1 − 0.999999998, for which the same calcula-
tion yields that the probability that one product does not conform to the required
specification reduces to 0.01 parts per million.

1.1.2.9 Common cause vs. special cause variation

Another concept that is of importance is the analysis as to what is causing
the variation of the process variable z. Whilst this can be regarded as a process
specific entity, two distinct sources have been proposed to describe this variation,
the common cause variation and the special cause variation. The properties of
common cause variation are that it arises all the time and is relatively small
in magnitude. As an example for common cause variation, consider two screws
that are produced in the same shift and selected randomly. These screws are
not identical although the differences in thread thickness, screw length etc. are
relatively small. The differences in these key variables must not be a result of an
assignable cause. Moreover, the variation in thread length and total screw length
must be process specific and cannot be removed. An attempt to reduce common
cause variation is often regarded as tampering and may, in fact, lead to an increase
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in the variance of the recorded process variable(s). A special cause variation on
the other hand, has an assignable cause, e.g. the introduction of disturbances, a
process fault, a grade change or a transition between two operating regions. This
variation is usually rare but may be relatively large in magnitude.

1.1.2.10 Advances in designing statistical process control charts

Finally, improvements for Shewhart type charts have been proposed in the
research literature for detecting incipient shifts in z̄ (that is ̂̄z departs from z̄

over time), and for dealing with cases where the samples distribution function
slightly departs from a Gaussian distribution. This has led to the introduction of
cumulative sum or CUSUM charts (Hawkins 1993; Hawkins and Olwell 1998)
and exponentially weighted moving average or EWMA charts (Hunter 1986;
Lucas and Saccucci 1990).

Next, Subsection 1.1.3 summarizes the statistically important concept
of hypothesis testing. This test is fundamental in evaluating the current state of
the process, that is, to determine whether the process is in-statistical-control or
out-of-statistical-control. Moreover, the next subsection also introduces errors
associated with this test.

1.1.3 Hypothesis testing, Type I and II errors

To motivate the underlying meaning of a hypothesis test in an SPC context,
Figure 1.5 describes the two scenarios introduced in the preceding discussion.
The upper graph in this figure exemplifies an in-statistical-control situation, since:

• the recorded samples, z (k), are drawn from the distribution described by
f0 (z); and

• the confidence region, describing the range limited by the upper and lower
control limits of this process, has been calculated by Equation 1.6 using
f0 (z)

Hence, the recorded samples fall inside the confidence region with a significance
of α. The following statement provides a formal description of this situation.

H0 : The process is in-statistical-control.

In mathematical statistics, such a statement is defined as a hypothesis and referred
to as H0. As Figure 1.5 highlights, a hypothesis is a statement concerning the
probability distribution of a random variable and therefore its population param-
eters, for example the mean and variance of the Gaussian distribution function.
Consequently, the hypothesis H0 that the process is in-statistical-control can be
tested by determining whether newly recorded samples fall within the confidence
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Figure 1.5 Graphical illustration of Type I and II errors in an SPC context.

region. If this is the case then the hypothesis that the process is in-statistical-
control is accepted.

For any hypothesis testing problem, the hypothesis H0 is defined as the null
hypothesis and is accompanied by the alternative hypothesis H1. In relation to
the terminology introduced in the previous subsection, the statement governing
the alternative hypothesis is as follows:

H1 : The process is out-of-statistical-control.

The lower plot in Figure 1.5 gives an example of an out-of-statistical-control
situation by a shift in the mean of z from z̄ to z̄ + �z. In general, if the null
hypothesis is rejected the alternative hypothesis is accepted. This implies that
if the newly recorded samples fall outside the confidence region the alternative
hypothesis is accepted and the process is out-of-statistical-control. It should be
noted that detecting an out-of-statistical-control situation, which is indicative of
abnormal process behavior, is important but does not address the subsequent
question as to what has caused this behavior. In fact, the diagnosis of anomalous
process behavior can be considerably more challenging than detecting this event
(Jackson 2003).

It is also important to note that testing the null hypothesis relies on proba-
bilistic information, as it is related to the significance level α. If we assume a
significance of 0.01, 99% of samples are expected to fall within the confidence
region on average. In other words, this test is prone to mistakes and a sample
that has an extreme value is likely to be outside the confidence region although
it still follows f0 (z). According to the discussion above, however, this sample
must be considered to be associated with the alternative hypothesis H1. This error
is referred to as a Type I error.
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Definition 1.1.1 A Type I error arises if H0 is rejected while, in fact, it must be
accepted. The probability of Type I error is defined as

F0

(
rejecting H0|H0 is true

) = α =
LCL∫

−∞
f0 (z) dz +

−∞∫
UCL

f0 (z) dz,

where f0 (·) is the PDF of z.

Figure 1.5 also illustrates a second error that is associated with the hypothesis
testing. Defining the PDF corresponding to the shift in mean of z from z̄ to z̄ + �z

by f1 (·), it is possible that a recorded sample belongs to f1 (·) but its value is
with the control limits. This scenario is defined as a Type II error.

Definition 1.1.2 A Type II error arises if H0 is accepted, while, in fact, it must
be rejected. In the context of the scenario described in the lower plot in Figure 1.5,
the probability of a Type II error is defined as follows

F1

(
failing to reject H0|H1 is true

) = β =
UCL∫

−∞
f1 (z) dz.

The Type I error is equal to the significance level α for determining the upper
and lower control limits. However, the probability of a Type II error β is not a
constant and, according to the lower plot in Figure 1.5, depends on the size of �z.
It should be noted that the statement ‘failing to reject H0’ does not necessarily
mean that there is a high probability that H0 is true but simply implies that a
Type II error can be significant if the magnitude of the fault condition is small or
incipient. Subsection 8.7.3 presents a detailed examination of detecting incipient
fault conditions.

From SPC charts, it is desirable to minimize both Type I and II errors. How-
ever, Figure 1.5 highlights that decreasing α produces an increase in β and vice
versa. One could argue that selecting α could depend on what abnormal con-
ditions are expected. For SPC, however, the Type I error is usually considered
to be more serious, since rejecting H0 although it is in fact true implies that a
false alarm has been raised. If the online monitoring scheme produces numerous
such false alarms, the confidence of process operators in the SPC/MSPC tech-
nology would be negatively affected. This argument suggests smaller α values.
In support of this, the discussion on determining control limits in the previous
subsection also advocates smaller α values.

The preceding discussion in this section has focussed on charting individual
key variables. The next section addressed the problem of correlation among key
process variables and motivates the need for a multivariate extension of the
SPC framework.
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1.2 Why multivariate statistical process control

The previous section has shown how a recorded process variable that follows a
Gaussian distribution can be charted and how to determine whether the process
is an ideal process . The use of Shewhart charts, however, relies on analyzing
individual key variables of the process in order to analyze the current prod-
uct quality and to assess the current state of the process operation. Despite the
widespread success of the SPC methodology, it is important to note that correla-
tion between process variables can substantially increase the number of Type II
errors. If the null hypothesis is accepted, although it must be rejected, yields
that the process is assumed to be in-statistical-control although it is, in fact,
out-of-statistical-control. The consequence is that a large Type II error may render
abnormal process behavior difficult to detect.

Before describing the effect of correlation between a set of process variables,
it is imperative to define variable correlation. In here, it is strictly related to the
correlation coefficients between a set of variables. For the ith and the j th process
variable, which have the variances of E

{
z2

0i

} = σ 2
i and E

{
z2

0j

}
= σ 2

j and the

covariance E
{
z0iz0j

} = σ 2
ij , the correlation coefficient rij is defined as

rij = E
{
z0iz0j

}√
E

{
z2

0i

}
E

{
z2

0j

} = σ 2
ij

σiσj

− 1 ≤ rij ≤ 1. (1.8)

The above equation also shows the following and well known relationship
between the variable variances, their covariance and the correlation coefficient

E
{
z0iz0j

} = rij

√
E

{
z2

0i

}
E

{
z2

0j

}
. (1.9)

Equation (1.9) outlines that a large covariance between two variables arises if
(i) the correlation coefficient is large and (ii) their variances are large. Moreover,
if the variances of both variables are 1, the correlation coefficient reduces to the
covariance.

To discuss the correlation issue, the next three subsections present
examples that involve two Gaussian distributed variables, z1 = z01

+ z̄1 and
z2 = z02

+ z̄2 that have a mean of z̄1 and z̄2 and a variance of σ 2
1 and σ 2

2 ,
respectively. Furthermore, the upper and lower control limits for these variables
are given by UCL1 and LCL1 for z1 and UCL2 and LCL2 for z2. The presented
examples describe the following three different cases:

1. no correlation between z01
and z02

;

2. perfect correlation between z01
and z02

; and

3. a high degree of correlation between z01
and z02

.

Cases 1 and 2 imply that the correlation coefficient between z01
and z02

, is
zero and one, respectively. The third case describes a large absolute correlation
coefficient.
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1.2.1 Statistically uncorrelated variables

Figure 1.6 gives an example of two process variables that have a correlation
coefficient of zero. Both process variables can, of course, be plotted with
a time base in individual Shewhart charts. In Figure 1.6 the horizontal and
vertical plot represents the Shewhart charts for process variables z1 and z2,
respectively. Individually, each of the process variables show that the process
is in-statistical-control.

Projecting the samples of the individual charts into the central box between
both charts yields a scatter diagram. The scatter points marked by ‘+’ are the
intercept of the projections associated with the same sample index, e.g. z1 (k)

and z2 (k) represent the kth point in the scatter diagram. The confidence region
for the scatter diagram can be obtained from the joint PDF. Defining f1 (·) and
f2 (·) as the PDF of z1 and z2, respectively, and given that r12 = 0 the joint PDF
f (·) is equal to1

f
(
z1, z2

) = f1

(
z1

)
f2

(
z2

) = 1√
2πσ 2

1

1√
2πσ 2

2

e
− (z1−z̄1)2

2σ2
1 e

− (z2−z̄2)2

2σ2
2

f
(
z1, z2

) = 1

2πσ1σ2
e
− (z1−z̄1)2

2σ2
1

− (z2−z̄2)2

2σ2
2 . (1.10)

The joint PDF in (1.10) can also be written in matrix-vector form

f
(
z1, z2

) = 1

2π
∣∣Sz0z0

∣∣1/2
e
− 1

2

(
z1 − z̄1 z2 − z̄2

)
S−1

z0z0

(
z1 − z̄1
z2 − z̄2

)
(1.11)
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2

z2

k

k

Figure 1.6 Schematic diagram showing two statistically uncorrelated variables.

1 It follows from a correlation coefficient of zero that the covariance is also zero. This, in turn,
implies that two Gaussian distributed variables are statistically independent.
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where

Sz0z0
=

[
σ 2

1 0
0 σ 2

2

]
(1.12)

is the covariance matrix of z01
and z02

and |·| is the determinant of a matrix.
In a similar fashion to the covariance matrix, the correlation between a

set of nz variables can be described by the correlation matrix. Using (1.8) for
i = j , the diagonal elements of this matrix are equal to one. Moreover, the
non-diagonal elements possess values between −1 ≤ rij ≤ 1. The concept of
correlation is also important to assess time-based trends within the process
variables. However, the application of MSPC assumes that the process variables
do not possess such trends.

Based on (1.11), a confidence region can be obtained as follows. Intercept a
plane located close and parallel to the z1 − z2 plane with f

(
z1, z2

)
. The integral

over the interception area hugging the joint PDF is equal to 1 − α. The contour
describing this interception is defined as the control ellipse and represents the
confidence region. It should be noted that if the variance of both variables are
identical, the control ellipse reduces to a circle, which is the case described in
Figure 1.6.2 Subsection 1.2.3 shows how to construct a control ellipse.

One could naively draw a ‘rectangular’ confidence region that is bounded
by the upper and lower control limits of the individual Shewhart charts. Since
the individual samples are all inside the upper and lower control limits for both
charts, the scatter points must fall within this ‘rectangle’. By directly comparing
the ‘rectangle’ with the control ellipse in Figure 1.6, it can be seen both areas
are comparable in size and that the scatter points fall within both.

The four corner areas of the rectangle that do not overlap with the circular
region are small. Statistically, however, the circular region is the correct one,
as it is based on the joined PDF. The comparison between the ‘rectangle’
and the circle, however, shows that the difference between them is negligible.
Thus, the individual and joint analysis of both process variables yield an
in-statistical-control situation.

1.2.2 Perfectly correlated variables

In this second case, the two variables z01
and z02

have a correlation coefficient
of −1. According to (1.8), this implies that the covariance σ 2

12 is equal to

E
{
z01

z02

} = r12

√
E

{
z2

01

}
E

{
z2

02

}
⇒ σ 2

12 = −σ1σ2. (1.13)

For identical variances, σ 2
1 = σ 2

2 = σ 2, it follows that

σ 2
12 = −σ 2. (1.14)

2 Two uncorrelated Gaussian distributed variables that have the same variance describe indepen-
dently and identically distributed or i.i.d . sequences.



18 FUNDAMENTALS OF MULTIVARIATE SPC
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Figure 1.7 Schematic diagram showing two perfectly correlated variables.

In other words, z01
= −z02

. For unequal variances, both signals are equal up
to the scaling factor z01

= az02
⇒ a = −σ1/σ2. Figure 1.7 shows the Shewhart

charts for z1 and z2 which are plotted horizontally and vertically, respectively.
Given that both variables have the same variance, both of them produce identical
absolute values for each sample. This, however, implies that the projections of
each sample fall onto a line that has an angle of 135◦ and 45◦ to the abscissas
of the Shewhart chart for variable z1 and z2, respectively.

The 2D circular confidence region if z01
and z02

are statistically uncorrelated
therefore reduces to a 1D line if they are perfectly correlated. Moreover, the joint
PDF f

(
z1, z2

)
in this case is equal to

f
(
z1, z2

) = 1

2π

1∣∣σ 2
[

1 −1
−1 1

]∣∣1/2
e

− 1
2σ 2

(
z01

z02

)[
1 −1

−1 1

]−1(
z01
z02

)

(1.15)

if the variables have equal variance. Equation (1.15), however, presents two
problems:

• the determinant of Sz0z0
= σ 2

[
1 −1

−1 1

]
is equal to zero; and

• the inverse of Sz0z0
therefore does not exist.

This results from the fact that the rank of Sz0z0
is equal to one.

To determine the joint PDF, Figure 1.8 ‘summarizes’ the scatter diagram
of Figure 1.7 by assuming that the control limits for z1 and z2 are z̄ ± 3σ and
z̄1 = z̄2 = z̄ for simplicity. The catheti of the right triangle depicted in Figure 1.8
are the ordinates of both Shewhart charts and the hypotenuse is the semimajor
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Figure 1.8 Geometric interpretation of the scatter diagram in Figure 1.7.

of the ‘control ellipse’. The length of both catheti is 6σ and the length of the
hypotenuse is 6

√
(2)σ , accordingly.

As the projections of the recorded samples fall onto the hypotenuse, the
control limits for the projected points are the endpoints of the hypotenuse.
Defining the two identical variables z1 and z2 by z the projected samples of
z follow a Gaussian distribution and are scaled by 21/2. Next, defining the
projected samples of z onto the hypotenuse as t , the ‘joint’ PDF of z1 = z2 = z

reduces to the PDF of t

f
(
z1, z2

) = f (t) = 1√
2π2σ 2

e
− 1

4
(t−z̄)2

σ2 . (1.16)

One could argue that only one variable needs to be monitored. An inspection
of Figure 1.7, however, yields that the joint analysis is a sensitive mechanism
for detecting abnormal process behavior. If the process is in-statistical-control,
the sample projections fall onto the hypotenuse. If not, the process is
out-of-statistical-control, even if each sample is within the control limits of the
individual Shewhart charts. Although a perfect correlation is a theoretical assump-
tion, this extreme case highlights one important reason for conducting SPC on the
basis of a multivariate rather than a univariate analysis of the individual variables.

1.2.3 Highly correlated variables

The last two subsections presented two extreme cases for the correlation between
two variables. The third case examined here relates to a high degree of cor-
relation between z1 and z2, which is an often observed phenomenon between
the recorded process variables, particulary for large-scale systems. For example,
temperature and pressure readings, flow rate measurements and concentrations or
other product quality measures frequently possess similar patterns. Using a cor-
relation coefficient of −0.95 and unity variance for z1 and z2 yields the following
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covariance matrix

Sz0z0
=

[
1.00 −0.95

−0.95 1.00

]
. (1.17)

Figure 1.9 shows, as before, the two Shewhart charts and the scatter diagram,
which represents the projected samples of each variable. Given that z1 and z2
are assumed to be normally distributed, the joint PDF is given by

f
(
z1, z2

) = 1

2π
∣∣Sz0z0

∣∣1/2
e
− 1

2

(
z1 − z̄1 z2 − z̄2

)
S−1
z0z0

(
z1 − z̄1
z2 − z̄2

)
. (1.18)

The control ellipse can be obtained by intercepting a plane that is parallel to
the z1 − z2 plane to the surface of the joint PDF, such that the integral evaluated
within the interception area is equal to 1 − α. Different to two uncorrelated vari-
ables of equal variance, this procedure yields an ellipse. Comparing Figures 1.6
and 1.9 highlights that both axes of the circle are parallel to the abscissas of both
Shewhart charts for uncorrelated variables, whilst the semimajor of the control
ellipse for highly correlated variables has an angle to both abscissas.

1.2.3.1 Size and orientation of control ellipse
for correlation matrix Cz0z0

The following study presents a lucid examination of the relationship between the
angle of the semimajor and the abscissa, and the correlation coefficient between
z1 and z2. This study assumes that the variance of both Gaussian variables is 1
and that they have a mean of 0. Defining the correlation coefficient between z1
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Figure 1.9 Schematic diagram showing two highly correlated variables.
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and z2 by r12, produces the following covariance/correlation matrix

Sz0z0
= Cz0z0

=
[

1 r12
r12 1

]
. (1.19)

It follows from (1.9) that the correlation coefficient is equal to the covari-
ance, since σ 2

1 = σ 2
2 = 1. As discussed in Jackson (2003), the orientation of the

semimajor and semiminor of the control ellipse are given by the eigenvectors
associated with the largest and the smallest eigenvalue of the Sz0z0

, respectively,

Cz0z0
= [

p1 p2

] [
λ1 0
0 λ2

] [
pT

1
pT

2

]
. (1.20)

In the above equation, p1 and p2 are the eigenvectors associated with the
eigenvalues λ1 and λ2, respectively, and λ1 > λ2.

Eigenvalues of Cz0z0
. For a correlation coefficient ranging from −1 to 1,

Figure 1.10 shows how the eigenvalues λ1 and λ2 depend on the absolute value of
the correlation coefficient r12, i.e. λ1

(
r12

) = 1 + |r12| and λ2

(
r12

) = 1 − |r12|.
This analysis also includes the two extreme cases discussed in both previous
subsections. For r12 = 0, both eigenvalues are equal to 1. On the other hand, if
r12 = −1, the larger eigenvalue is equal to 2 and the other one is 0. The eigen-
values represent the variance of the sample projections on the semimajor (larger
eigenvalue) and the semiminor (smaller eigenvalue).

For r12 = 0 the variances of the projected samples onto both axis of the
ellipse are identical, which explains why the control ellipse reduces to a circle if
σ 2

1 = σ 2
2 . For r12 = 1, however, there is no semiminor since all of the projected

samples fall onto the hypotenuse of Figure 1.8. Consequently, λ2 is equal to zero
(no variance) and the scaling factor between the projections of z, t , and z =
z1 = z2 is equal to

√
2 since E

{
(t − z̄)2} = E

{(√
2z − z̄

)2
}

= 2. The intro-

duced variable t describes the distance of the projected point measured from the
center of the hypotenuse that is represented by the interception of both abscissas.
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Figure 1.10 Eigenvalues of Sz0z0
, λ1 and λ2, vs. correlation coefficient r12.
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Orientation of semimajor of control ellipse. The second issue is the
orientation of the semimajor relative to the abscissas of both Shewhart charts,
which is determined by the direction of pT

1 = (
p11 p21

)
. The angle of

the semimajor and semiminor is given by arctan(p21/p11) × 180/π and
arctan(p22/p12) × 180/π relative to the z2 axis. This yields the following angles
for the ellipse axes:

135◦ if − 1 ≤ r12 < 0, 0 if r12 = 0 and 45◦ if 0 < r12 ≤ 1 (semimajor)
(1.21)

and

45◦ if − 1 ≤ r12 < 0, 0 if r12 = 0 and 135◦ if 0 < r12 ≤ 1 (semiminor),
(1.22)

respectively.

1.2.3.2 Size and orientation of control ellipse for covariance matrix Sz0z0

In a general case, E
{(

z1 − z̄1

)2
}

= σ 2
1 
= E

{(
z2 − z̄2

)2
}

= σ 2
2 , the covariance

matrix of z1 and z2, is

Sz0z0
= E

{(
z1 − z̄1
z2 − z̄2

) (
z1 − z̄1 z2 − z̄2

)}
Sz0z0

=
[

σ 2
1 r12σ1σ2

r12σ1σ2 σ 2
2

]
= σ 2

2

[
σ 2

1/σ 2
2

r12
σ1/σ2

r12
σ1/σ2 1

]
. (1.23)

Fixing r12 to, say 0.8, and taking into account that the eigenvectors do not
change if this matrix is multiplied by a scalar factor allows examining the effect
of σ 2

1/σ 2
2

upon the orientation of the eigenvectors. More generally, varying this
parameter within the interval σ 2

1/σ 2
2

∈ [
0 ∞ )

and the correlation coefficient
r12 ∈ [

0 1
]

as well as defining σ 2
2 = 1 allows examination of:

• the angle between p1 and the abscissa; and

• the values of both eigenvalues of Sz0z0
.

Eigenvalues of Sz0z0
. The left plot in Figure 1.11 shows the resultant paramet-

ric curves for both eigenvalues vs. σ1/σ2. It is interesting to note that small ratios
yield eigenvalues that are close to one for λ1 and zero λ2. This is no surprise given
that the variance of z2 was selected to be one, whilst that of z1 is close to zero.
In other words, the variance of z2 predominantly contributes to the joint PDF.

Given that the length of the semimajor and semiminor is proportional to the
eigenvalues λ1 and λ2, respectively, the ellipse becomes narrower as the ratio
σ1/σ2 decreases. In the extreme case of σ1/σ2 → 0 the control ellipse reduces to
a line. On the other hand, larger ratios produce larger values for λ1 and values
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Figure 1.11 Eigenvalues of Sz0z0
(left plot) and angle of eigenvector associated

with larger eigenvalue (right plot) vs. σ1/σ2 and the parameter r12.

below 1 for λ2. If no correlation between z1 and z2 exists, that is r12 → 0, the
eigenvalue λ2 converges to one for large σ1/σ2 ratios. However, the left plot in
Figure 1.11 highlights that λ2 reduces in value and eventually converges to zero
if there is a perfect correlation between both variables. For σ 2

1 = σ 2
2 , this plot

also includes both extreme cases discussed in the previous two subsections. For
σ1/σ2 → 1, letting r12 → 0 then both eigenvalues are equal to one and r12 = 1,
λ1 = 2 and λ2 = 0.

Orientation of semimajor of control ellipse. The right plot in Figure 1.11
shows how the angle between the semimajor and the abscissa of the Shewhart
chart for z1 changes with σ1/σ2 and r12. For cases σ1 � σ2 this angle asymptot-
ically converges to 90◦. Together with the fact that the eigenvalues in this case
are λ1 = 1 and λ2 = 0 the control ellipse reduces to a line that is parallel to
the abscissa of the Shewhart chart for z1 and orthogonal to that of the Shewhart
chart for z2.

Larger ratios of σ1/σ2 produce angles that asymptotically converge to 0◦. Given
that λ1 converges to infinity and λ2 between zero and one, depending upon the
correlation coefficient, the resultant control ellipse is narrow with an infinitely
long semimajor that is orthogonal to the abscissa of the Shewhart chart for z1.
If r12 → 1, the ellipse reduces to a line.

The case of r12 → 0 is interesting, as it represents the asymptotes of the
parametric curves. If 0 ≤ σ1/σ2 < 1 the semimajor has an angle of 90◦, whilst for
values in the range of 1 < σ1/σ2 < ∞, the angle becomes zero. For σ 2

1 = σ 2
2 , the

control ellipse becomes a circle and a semimajor therefore does not exist.

1.2.3.3 Construction of control ellipse

What has not been discussed thus far is how to construct the control ellipse. The
analysis above, however, pointed out that the orientation of this ellipse depends
on the eigenvectors. The direction of the semimajor and semiminor is defined
by the direction of the eigenvectors associated with the larger and the smaller
eigenvalues, respectively. The exact length of the semimajor, a, and semiminor, b,
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Figure 1.12 Control ellipse for z ∼ N {
z̄, Sz0z0

}
, where Sz0z0

= Cz0z0
is the

covariance/correlation matrix in (1.17), with a significance of 0.01.

depends on the eigenvalues of the covariance matrix

a =
√

T 2
α · λ1 b =

√
T 2

α · λ2 (1.24)

where T 2
α is defined by

T 2
α = χ2

α (2) (1.25)

and χ2
α (2) is the critical value of a χ2 distribution with two degrees of freedom

and a significance α, for example selected to be 0.05 and 0.01.
Applying (1.24) and (1.25) to the covariance matrix in (1.17) for α = 0.01

yields T 2
0.01 = 9.2103, implying that a = √

9.2103 × 1.95 = 4.2379 and
b = √

9.2103 × 0.05 = 0.6786. As z1 and z2 have an equal variance of 1, the
angle between the semimajor and the abscissa of the Shewhart chart for z2
is 45◦ as discussed in Equation (1.22). Figure 1.12 shows this control ellipse
along with a total of 100 samples of z1 and z2. Jackson (1980) introduced an
alternative construction

1

1 − r2
12

((
z1 − z̄1

)2

σ 2
1

+
(
z2 − z̄2

)2

σ 2
2

− 2r12

(
z1 − z̄1

)(
z2 − z̄2

)
σ1σ2

)
= T 2

α . (1.26)

Based on the preceding discussion, the next subsection addresses the
question laid out at the beginning of this section: why multivariate statistical
process control?

1.2.4 Type I and II errors and dimension reduction

For the extreme case analyzed in Subsection 1.2.2, it follows that the projections
of two perfectly correlated variables fall onto a 1D line and any departure from
this line confirms that r12 is no longer equal to 1 for the ‘violating’ samples.
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Figure 1.13 Graphical illustration of Type I and II errors for correlated variable
sets.

Moreover, inspecting Figure 1.9, describing high correlation between two vari-
ables with respect to the sample represented by the asterisk yields that this sample
shows an in-statistical-control situation, since it is within the control limits of
both variables. However, if this sample is analyzed with respect to the multivari-
ate control ellipse it lies considerably outside the normal operating region and
hence, describes an out-of-statistical-control situation.

The joint analysis therefore suggests that this sample is indicative of an
out-of-statistical-control situation. Comparing this to the case where the two
variables are uncorrelated, Figure 1.6 outlines that such a situation can only
theoretically arise and is restricted to the small corners of the naive ‘rectangular
control region’. Following the introduction of hypothesis testing in Subsection
1.1.3, accepting the null hypothesis although it must be rejected constitutes a
Type II error. Figure 1.13 shows graphically that the Type II error can be very
substantial.

The slightly darker shaded area in this figure is proportional to the Type II
error. More precisely, this area represents the difference between the circular and
the elliptical confidence regions describing the uncorrelated case and the highly
correlated case, respectively. It is interesting to note that correlation can also give
rise to Type I errors if larger absolute values for z1 − z2 arise. The brightly shaded
areas in Figure 1.13 give a graphical account of the Type I error, which implies
that the alternative hypothesis H1, i.e. the process is out-of-statistical-control, is
accepted although the null hypothesis must be accepted.

Besides the impact of correlation upon the hypothesis testing, particularly the
associated Type II errors, Figure 1.9 highlights another important aspect. Project-
ing the samples of z1 and z2 onto the semimajor of the control ellipse describes
most of the variance that is encapsulated within both variables. In contrast, the
remaining variance that cannot be described by projecting the samples onto the
semimajor is often very small in comparison and depends on r12. More precisely,
the ratio of the larger over the smaller eigenvalue of Sz0z0

is a measure to compute
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how much the projection of the recorded samples onto the semimajor contribute
to the variance within both variables.

A ratio equal to 1 describes the uncorrelated case discussed in Subsection
1.2.1. This ratio increases with r12 and asymptotically describes the case of
r12 = 1 which Subsection 1.2.2 discusses. In this case, the variable t = √

2z,
z1 = z2 = z describes both exactly. Finally, Subsection 1.2.3 discuss large ratios
of λ1/λ2 representing large r12 values. In this case, the scatter diagram for z1 and z2
produces a control ellipse that becomes narrower as r12 increases and vice versa.

In analogy to the perfectly correlated case, a variable t can be introduced
that represents the orthogonal projection of the scatter point onto the semimajor.
In other words, t describes the distance of this projected point from the origin,
which is the interception of the abscissas of both Shewhart charts. The variable t

consequently captures most of the variance of z1 and z2. The next chapter intro-
duces data models that are based on approximating the recorded process variables
by defining a set of such t-variables. The number of these t-variables is smaller
than the number of recorded process variables.

1.3 Tutorial session

Question 1: What is the main motivation for using the multivariate extension
of statistical process control? Discuss the principles of statistical process control
and the disadvantage of analyzing a set of recorded process variables separately
to monitoring process performance and product quality.

Question 2: Explain how a Type I and a Type II error affect the monitoring
of a process variable and the detection of an abnormal operating condition.

Question 3: With respect to Figure 1.13, use the area of overlap between
the control ellipse and the naive rectangular confidence region, approximate the
Type I and II error for using the naive rectangular confidence region for various
correlation coefficients, 0 ≤ r12 ≤ 1.

Question 4: Using a numerical integration, for example the quad2d and
dblquad commands in Matlab, determine the correct Type I and II error in Ques-
tion 2.

Question 5: Following Questions 2 and 3, determine and plot an empiri-
cal relationship between the Type II error and correlation coefficient for two
variables.

Project 1: Simulate 1000 samples from a Gaussian distributed random vari-
able such that the first 500 samples have a mean of zero, the last 500 samples
have a mean of 0.25 and the variance of each sample is 1. Determine a Shewhart
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chart based on the assumption that the process mean is zero and comment on the
detectability of the shift in mean from 0 to 0.25. Next, vary the shift in mean
and comment on the detectability of the mean.

Project 2: Construct a CUSUM chart and repeat the experiments in Project 1
for various window lengths. Comment upon the detectability and the average
run length of the CUSUM chart depending on the window length. Empirically
estimate the PDF of the CUSUM samples and comment on the relationship
between the distribution function and the window length with respect to the
central limit theorem. Is a CUSUM chart designed to detect small changes in
the variable variance? Tip: carry out a Monte Carlo simulation and examine the
asymptotic definition of a CUSUM sample.

Project 3: Develop EWMA charts and repeat the experiments in Project 1 for
various weighting parameters. Comment upon the detectability and the average
run length depending on the weighting parameter. Is an EWMA chart designed
to detect small changes in the variable variance? Tip: examine the asymptotic
PDF of the EWMA samples for a change in variance.

Project 4: Based on the analysis in Projects 2 and 3, study the literature
and propose ways on how to detect small changes in the variable variance. Is
it possible to construct hypothetical cases where a shift in mean and a simul-
taneous reduction in variance remains undetected? Suggest ways to detect such
hypothetical changes.



2

Multivariate data modeling
methods

The last chapter has introduced the principles of SPC and motivated the required
multivariate extension to prevent excessive Type II errors if the recorded process
variables are highly correlated. The aim of this chapter is to present different
methods that generate a set of t-variables that are defined as score variables .
Under the assumption that the process variables follow a multivariate Gaussian
distribution, these score variables are statistically independent to circumvent
increased levels of Type II errors. According to Figures 1.7 and 1.8, the gen-
eration of these score variables relies on projecting the recorded samples onto
predefined directions in order to extract as much information from the recorded
process variables as possible.

The data reduction techniques, introduced in the literature, are firmly based
on the principle of establishing sets of latent variables that capture significant
and important variation that is encapsulated within the recorded data. The score
variables form part of these latent variable sets. For process monitoring, the
variation that the latent variable sets extract from the recorded process variables
is of fundamental importance for assessing product quality, process safety and,
more generally, whether the process is in-statistical-control. These aspects are
of ever growing importance to avert risks to the environment and to minimize
pollution.

Data analysis and reduction techniques can be divided into single-block and
dual-block techniques. The most notable single-block techniques include:

• Principal Component Analysis (Pearson 1901);

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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• Linear or Fisher’s Discriminant Analysis (Duda and Hart 1973); and

• Independent Component Analysis (Hyvärinen et al. 2001).

Dual-block techniques, on the other hand, divide the recorded data sets into one
block of predictor or cause variables and one block of response or effect variables
and include:

• Canonical Correlation Analysis (Hotelling 1935; Hotelling 1936);

• Reduced Rank Regression (Anderson 1951);

• Partial Least Squares (Wold 1966a,b); and

• Maximum Redundancy (van den Wollenberg 1977),

among others. These listed single- and dual-block techniques are collectively
referred as latent variable techniques.

From this list of techniques, the focus in the research literature has been
placed on variance/covariance-based techniques as most appropriate for process
monitoring applications. This has been argued on the basis of capturing the
process variation, that is, encapsulated in the variance among and the covari-
ance between the recorded process variables. These techniques are Principal
Component Analysis (PCA) and Partial Least Squares (PLS), which are dis-
cussed and applied in this chapter and described and analyzed in Part IV of
this book.

It should be noted that the research community has also developed latent vari-
able techniques for multiple variable blocks, referred to as multi-block methods
(MacGregor et al. 1994; Wangen and Kowalski 1989). These methods, however,
can be reduced to single-block PCA or dual-block PLS models, for example
discussed in Qin et al. (2001), Wang et al. (2003), Westerhuis et al. (1998). The
methods used in this book are therefore limited to PCA and PLS.

As the focus for presenting MSPC technology in this chapter is based on its
exploitation as a statistically based process monitoring tool, details of PCA and
PLS are given using an introduction of the underlying data model, a geometric
analysis and by presenting simple simulation examples in Sections 2.1 and 2.2,
respectively. This allows a repetition of the results in order to gain familiarization
with both techniques. A detailed statistical analysis of both techniques are given
in Chapters 9 and 10.

Section 2.3 presents an extension of the PLS algorithm after analyzing that
PCA and PLS fail to produce a latent variable data representation for a more
general data structure. The validity of the general data structure is demonstrated
by an application study of a distillation process in Part II of this book, which
also includes an application study involving the applications of PCA. Section 2.4
then introduces methods for determining the number of the latent variable sets
for each method. To enhance the learning outcomes, this chapter concludes with
a tutorial session including short questions and calculations as well as homework
type projects in Section 2.5.



30 FUNDAMENTALS OF MULTIVARIATE SPC

2.1 Principal component analysis

This section introduces PCA using a geometrical analysis. Chapter 9 provides
a more comprehensive treatment of PCA, including its properties, and further
information may also be taken from the research literature, for example references
Anderson (2003); Jolliffe (1986); Mardia et al. (1979); Wold et al. (1987). For
a set of highly correlated process variables, PCA allows reducing the number
of variables to be monitored by defining a significantly reduced set of latent
variables, referred to as principal components, that describe the important process
variation that is encapsulated within the recorded process variables.

2.1.1 Assumptions for underlying data structure

According to Figure 1.9, the important process variation can be described by
projecting the two variables onto the semimajor of the control ellipse. This is
further illustrated in Figure 2.1, which shows that the two correlated variables
can be approximated with a high degree of accuracy by their projection onto
the semimajor of the control ellipse. It can be seen further that the variance of
the error of approximating both process variables using their projection onto the
semimajor is relatively small compared to the variance of both process variables.

This analysis therefore suggests utilizing the following data structure for the
two process variables(

z1
z2

)
=

(
z01
z02

)
+

(
z̄1
z̄2

)
+

(
g1
g2

)
=
(

ξ1
ξ2

)
s+

(
z̄1
z̄2

)
+
(

g1
g2

)
(2.1)

where
(

z01
z02

) + (
z̄1 z̄2

)
are the approximated values of the original

process variables z1 and z2. In analogy to Figure 2.1, the vector ξT = (
ξ1 ξ2

)
describes the orientation of the semimajor of the control ellipse.

With this in mind, approximating the samples of z1 and z2 relies on projecting
the scatter points onto the semimajor. If the length of ξ is 1, the approximation is
equal to ξs1, which the proof of Lemma 2.1.1 highlights. With respect to (2.1),
the variable s is defined as the source signal, whilst g1 and g2 are error variables.

On the basis of the two-variable example above, the following general data
model can be assumed for nz ≥ 2 recorded process variables

z = �s + z̄ + g = zs + z̄ + g = zt + g = z0 + z̄. (2.2)

Here, z ∈ R
nz is a vector of measured variables, � ∈ R

nz×n is a parameter matrix
of rank n < nz, s ∈ R

n is a vector of source variables representing the common
cause variation of the process, zs ∈ R

nz describes the stochastic variation of the

1 The variable s describes the distance between the projection of the sample zT
0 = (

z1 z2

)
onto

the semimajor from the origin of the control ellipse which, according to Figure 1.9, is given by the
interception the abscissas of both Shewhart charts.
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Figure 2.1 Schematic diagram of reconstructing two process variables by their
projection onto the semimajor.

process driven by common cause variation which is centered around the mean
vector z̄ ∈ R

nz , g ∈ R
nz is an error vector, zt ∈ R

nz is the approximation of z
using common cause variation �s + z̄, and z0 ∈ R

nz represents the stochastic
variation of the recorded variables �s + g.

It should be noted that the subscript t symbolically implies that �s + z̄ is the
true representation of the variable interrelationships, whilst the error vector g
represents measurement uncertainty and the impact of unmeasured and naturally
occurring stochastic disturbances. With respect to SPC, unmeasured deterministic
disturbances or stochastic disturbances of a large magnitude describe special
cause variation that lead to a change of the mean vector z̄ and/or changes in the
covariance matrix Sz0z0

.
The space spanned by the linearly independent column vectors in � is defined

as the model subspace, which is an n-dimensional subspace of the original nz-
dimensional data space. The data model in (2.2) gives rise to the construction
of a second subspace that is orthogonal to the model subspace and referred to
as the residual subspace. The residual subspace is complementary to the model
subspace and of dimension nz − n.

With respect to Figure 2.1, the semimajor and semiminor are the model
subspace and the residual subspace, respectively. It is important to note these
spaces only describe the stochastic component of the data vector z, which is
z0 = zs + g = z − z̄. Otherwise, both subspaces do not include the element 0
unless z̄ = 0 and are, by definition, not subspaces.

Assumptions imposed on the data model in (2.2), describing highly correlated
process variables, include:

• that each vector z, z0, s, and g, stores random variables that follow Gaussian
distributions; and

• that each of these vectors do not possess any time-based correlation.
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The second assumption implies that the vectors s and g have the following
properties:

• E
{
s (k) sT (l)

} = δklSss ;

• E
{
ggT

} = σ 2
g I;

• E
{
g (k) gT (l)

} = δklSgg; and

• E
{
s (k) gT (l)

} = 0.

Here, k and l are sample instances, δkl is the Kroneker delta, that is 0 for all
k �= l and 1 if k = l, and Sss ∈ R

n×n and Sgg ∈ R
nz×nz are covariance matrices

for s and g, respectively. Table 2.1 shows the mean and covariance matrices for
each vector in (2.2). The condition that E

{
s (k) gT (l)

} = 0 implies that s and g
are statistically independent.

It should be noted that the assumption of E
{
ggT

} = σ 2
g I is imposed for

convenience. Under this condition, the eigendecomposition of Sz0z0
provides a

consistent estimation of the model subspace spanned by the column vectors of
� if the number of recorded samples goes to infinity. This, however, is a side
issue as the main aim of this subsection is to introduce the working of PCA as a
MSPC tool. Section 6.1 shows how to consistently estimate the model subspace
if this assumption is relaxed, that is Sgg is no longer a diagonal matrix storing
equal diagonal elements.

Prior to the analysis of how PCA reduces the number of variables, let us
reconsider the perfect correlation situation discussed in Subsection 1.2.2. This
situation arises if the error vector g in (2.2) is set to zero. In this case, it is possible
to determine the source variable set, s, directly from the process variables z if the
column vectors of � are orthonormal, i.e. mutually orthogonal and of unit length.

Lemma 2.1.1 If the column vectors of � are mutually orthonormal, the
source variables, s, are equal to the orthogonal projection of the stochastic

Table 2.1 Mean vector and covariance matrices of
stochastic vectors in Equation (2.2).

Vector Mean vector Covariance matrix

s 0 Sss

zs 0 Szszs
= �Sss�

T

zt = zs + z̄ z̄ Szt zt
= Szszs

g 0 Sgg = σ 2
g I

z0 = zs + g 0 Sz0z0
= Szszs

+ Sgg

z z̄ Szz = Szszs
+ Sgg
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component of the measured vector, z0 = z − z̄, onto � = [
ξ 1 ξ 2 . . . ξn

]
,

that is s1 = zT
0 ξ 1, s2 = zT

0 ξ 2, . . . , sn = zT
0 ξn in the error free case, i.e. g = 0.

Proof. If the column vectors of � are orthonormal, the matrix product �T �

is equal to the identity matrix. Consequently, if z0 = �s, the source signals can
be extracted by �T z0 = �T �s = s.

On the other hand, if the column vectors of � are mutually orthonormal
but the error vector is no longer assumed to be zero, the source signals can be
approximated by �T z0, which follows from

z0 = �s + g ⇒ �T z0 = s + �T g ≈ s = ŝ. (2.3)

The variance of ξT
i s, however, must be assumed to be larger than that of gi , i.e.

E
{(

ξT
i s

)2
}

� σ 2
g for all 1 ≤ i ≤ nz, to guarantee an accurate estimation of s.

2.1.2 Geometric analysis of data structure

The geometric analysis in Figure 2.2 confirms the result in (2.3), since

cos
(
ϕ

(z0,ξ i )

)
= zT

0 ξ i∥∥z0

∥∥ ∥∥ξ i

∥∥ , (2.4)

where ϕ
(z0,ξ i )

is the angle between z0 and ξ i . Given that
∥∥ξ i

∥∥ = 1, reformulating
(2.3) yields

cos
(
ϕ

(z0,ξ i )

) ∥∥z0

∥∥ = zT
0 ξ i = ŝi . (2.5)

The projection of a sample onto the column vectors of � is given by

ẑ =
n∑

i=1

ξ î si + z̄ =
n∑

i=1

ξ iξ
T
i z0 + z̄ = ẑ0 + z̄. (2.6)
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Figure 2.2 Orthogonal projection of z0 onto orthonormal column vector of �.
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The estimation of s, however, does not reduce to the simple projection shown
in (2.4) and (2.5) if the column vectors of � are not mutually orthonormal. To
address this, PCA determines nz orthonormal loading vectors such that n of them
span the same column space as �, which are stored as column vectors in the
matrix P ∈ R

nz×n. The remaining nz − n loading vectors are stored in the matrix
Pd ∈ R

nz×(nz−n). These two matrices have the following orthogonality properties

PT P = I PT Pd = 0

PT
d Pd = I PT

d P = 0 (2.7)

PT
d � = 0 PT � = X ∈ R

n×n.

The loading vectors are eigenvectors of Sz0z0
and the above orthogonality

properties give rise to the calculation of the following orthogonal projections

t = PT z0 = X s + PT g

td = PT
d z0 = PT

d g (2.8)

t ≈ X s = t̂.

The ith element stored in t represents the coordinate describing the orthogonal
projection of z0 onto the ith column vector in P. Note that the column space of
P is identical to the column space of �. Moreover, the column vectors of P and
Pd are base vectors spanning the model subspace and the residual subspace,
respectively.

Given that the column vectors stored in Pd are orthogonal to those in P, they
are also orthogonal to those in �. Consequently, PT

d � = 0. In this regard, the
j th element of td is equal to the coordinate describing the orthogonal projection
of z0 onto the j th column vector in Pd . In other words, the elements in t are the
coordinates describing the orthogonal projection of z0 onto the model subspace
and the elements in td are the coordinates describing the orthogonal projection
of z0 onto the residual subspace. This follows from the geometric analysis in
Figure 2.2.

On the basis of the preceding discussion, Figure 2.3 shows an extension of
the simple 2-variable example to a 3-variable one, where two common cause
‘source’ variables describe the variation of 3 process variables. This implies that
the dimensions of the model and residual subspaces are 2 and 1, respectively.

2.1.3 A simulation example

Using the geometric analysis in Figure 2.3, this example shows how to obtain
an estimate of the model subspace � = [

ξ 1 ξ 2

]
and the residual subspace,

defined by the cross product of ξ 1 and ξ 2. The data model for this example is⎛⎝ z01
z02
z03

⎞⎠ =
⎡⎣ 0.2 −0.5

0.8 0.4
−0.3 −0.7

⎤⎦(
s1
s2

)
+

⎛⎝ g1
g2
g3

⎞⎠ , (2.9)
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Figure 2.3 Schematic diagram of showing the PCA model subspace and its com-
plementary residual subspace for 3 process variables.

which has a mean vector of zero. The elements in s follow a Gaussian distribution

s ∼ N {
0, Sss

}
Sss =

[
1 −0.3

−0.3 1

]
. (2.10)

The error vector g contains random variables that follow a Gaussian distribution
too

g ∼ N {
0, Sgg

}
Sgg = 0.05I. (2.11)

From this process, a total of K = 100 samples, z0 (1), . . . , z0 (k), . . . , z0 (100)

are simulated. Figure 2.4 shows time-based plots for each of the 3 process vari-
ables. PCA analyzes the stochastic variation encapsulated within this reference
set, which leads to the determination of the model subspace, spanned by the
column vectors of �, and the complementary residuals subspace. Chapter 9
highlights that this involves the data covariance matrix, which must be estimated
from the recorded data

Ŝz0z0
= 1

K

K∑
k=1

z0 (k) zT
0 (k) =

⎡⎢⎣ 0.3794 0.0563 0.2858

0.0563 0.6628 −0.2931

0.2858 −0.2931 0.4781

⎤⎥⎦ . (2.12)

For a nonzero mean vector, it must be estimated from the available samples
first

̂̄z = 1
K

K∑
k=1

z (k) , (2.13)
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Figure 2.4 Time-based plot of simulated process variables.

which yields the following estimation of the data covariance matrix

Ŝz0z0
= 1

K−1

K∑
k=1

(
z (k) −̂̄z) (z (k) −̂̄z)T . (2.14)

The estimation of the data covariance matrix from the recorded reference data is
followed by determining its eigendecomposition

Ŝz0z0
= P̂�̂P̂T (2.15)

which produces the following estimates for the eigenvector and eigenvalue
matrices

P̂ =
⎡⎣ −0.2763 −0.7201 −0.6365

0.7035 −0.6028 0.3766
−0.6548 −0.3437 0.6731

⎤⎦ (2.16)

and

�̂ =

⎡⎢⎣ 0.9135 0 0

0 0.5629 0

0 0 0.0439

⎤⎥⎦ , (2.17)

respectively.
Given that �, Sss and Sgg are known, the covariance matrix for the recorded

variables can be determined as shown in Table 2.1

E
{
z0zT

0

} = �Sss�
T + Sgg =

⎡⎢⎣ 0.4000 0.0560 0.2870

0.0560 0.6580 −0.3160

0.2870 −0.3160 0.5040

⎤⎥⎦ . (2.18)

Subsection 6.1 points out that Ŝz0z0
asymptotically converges to Sz0z0

. To examine
how accurate the PCA model has been estimated from K = 100 samples, the
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eigendecomposition of Ŝz0z0
can be compared with that of Sz0z0

P =
⎡⎣ −0.2836 −0.7338 −0.6173

0.6833 −0.6063 0.4068
−0.6728 −0.3064 0.6734

⎤⎦

� =
⎡⎣ 0.9459 0 0

0 0.5661 0
0 0 0.0500

⎤⎦ . (2.19)

The departures of the estimated eigenvalues are:

• | 0.9135−0.9459
0.9459 | · 100% = 3.43%;

• | 0.5829−0.5661
0.5661 | · 100% = 0.57%; and

• | 0.0439−0.0500
0.0500 | · 100% = 12.2%.

To determine the accuracy of the estimated model subspace, we can compare
the normal vector of the actual model subspace with the estimated one. The one
for the model subspace is proportional to the cross product, denoted here by the
symbol ×, of the two column vectors of �

n = ξ 1 × ξ 2∥∥ξ 1 × ξ 2

∥∥ =
⎛⎝ −0.6173

0.4068
0.6734

⎞⎠ . (2.20)

As the simulated process has two normally distributed source signals, the two
principal components associated with the two largest eigenvalues must, accord-
ingly, be associated with the model subspace, whilst the third one represents
the complementary residual subspace, spanned by the third eigenvector. This is
based on the fact that the eigenvectors are mutually orthonormal, as shown in
Chapter 9. The last column of the matrix P̂ stores the third eigenvector and the
scalar product of this vector with n yields the minimum angle between the true
and estimated residual subspace

cos
(
ϕ(n,̂p3)

) = nT p̂3 = 0.9994 arccos (0.9994) · 180◦

π
= 2.0543◦. (2.21)

Equation (2.21) shows that the estimated model subspace is rotated by just
over 2◦ relative to the actual one. In contrast, the one determined from Sz0z0

, as
expected, is equal to n.

Figure 2.2 shows that storing the 100 samples consecutively as row vectors
in the matrix ZT

0 = [
z0 (1) · · · z0 (k) · · · z0 (K)

]
allows determining

the orthogonal projection of these samples onto the estimated model subspace
as follows [

t̂1 t̂2

] = Z0

[
p̂1 p̂2

]
(2.22)
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where t̂1 and t̂2 store the coordinates that determine the location of samples
when projected orthogonally onto p̂1 and p̂2, respectively.

It should be noted that even if the column vectors of � are orthonormal they
may be different to the eigenvectors of Sz0z0

. This is because PCA determines the
principal directions such that the orthogonal projection of z0 produces a maxi-
mum variance for each of them. More precisely, E

{
t2
1

} ≥ E
{
t2
2

} ≥ · · · ≥ E
{
t2
n

}
,

which is equal to E
{
pT

1 Sz0z0
p1

} ≥ E
{
pT

2 Sz0z0
p2

} ≥ · · · ≥ E
{
pT

n Sz0z0
pn

}
,

and follows from the analysis of PCA in Chapter 9. These expectations,
however, are equal to the eigenvalues of Sz0z0

, which, accordingly, represent
the variances of the projections, i.e. the t-scores or principal components such
that λ1 ≥ λ2 ≥ · · · ≥ λn.

Another aspect that this book discusses is the use of scatter diagrams
for the loading vectors. Figure 1.9 shows a scatter diagram for two highly
correlated variables. Moreover, Subsection 3.1.1 introduces scatter diagrams
and the construction of the control ellipse, or ellipsoid if the dimension exceeds
2, for the score variables or principal components. Scatter diagrams for the
loading vectors, on the other hand, plot the elements of the pairs or triples of
loading vectors, for example the ith and the j th loading vector. This allows
identifying groups of variables that have a similar covariance structure. An
example and a detailed discussion of this is available in Kaspar and Ray (1992).
The application studies in Chapters 4 and 5 also present a brief analysis of the
variable interrelationships for recorded data sets from a chemical reaction and
a distillation process, respectively.

2.2 Partial least squares

As in the previous section, the presentation of PLS relies on a geometric analysis.
Chapter 10 provides a more detailed analysis of the PLS algorithm, including
its properties and further information is available from the research literature,
for example (de Jong 1993; de Jong et al. 2001; Geladi and Kowalski 1986;
Höskuldsson 1988; Lohmoeller 1989; ter Braak and de Jong 1998). In contrast
to PCA, PLS relies on the analysis of two variable sets that represent the process
input and output variable sets shown in Figure 2.5. Alteratively, these variable
sets are also referred to as the predictor and response, the cause and effect ,
the independent and dependent or the regressor and regressand variables sets
in the literature. For simplicity, this book adopts the notation input and output
variable sets to denote x ∈ R

nx as the input and y ∈ R
ny as the output variable

sets. These sets span separate data spaces denoted as the input and output spaces,
which Figure 2.5 graphically illustrates.

Between these variables sets, there is the following linear parametric
relationship

y0 = BT x0 + f = ys + f (2.23)

where x0 and y0 are zero mean random vectors that follow a Gaussian distribution.
Similar to (2.2), the recorded variables are defined by x = x0 + x̄ and y = y0 + ȳ
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with x̄ and ȳ being mean vectors. The matrix B ∈ R
nx×ny is a parameter matrix

describing the linear relationships between x0 and the uncorrupted output vari-
ables ys = BT x0, and f is an error vector, representing measurement uncertainty
for the output variables or the impact of unmeasured disturbances for example.

The error vector f is also assumed to follow a zero mean Gaussian distribution
and is statistically independent of the input vector x0, implying that E

{
x0f

T
} = 0.

Moreover, the covariance matrices for x0, ys and f are Sx0x0
, BT Sx0x0

B and Sff,
respectively. To denote the parametric matrix B by its transpose relates to the
identification of this matrix from recorded samples of x and y which are stored
as row vectors in data matrices. This is discussed further in Chapter 10.

2.2.1 Assumptions for underlying data structure

With respect to the preceding discussion, the recorded variables are highly cor-
related. Separating them into the mean centered input and output variable sets
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implies that the individual sets are also highly correlated. According to (2.23),
there is also considerable correlation between the input and output variables:

• as the uncorrupted output variables are a linear combination of the input
variables; and

• the assumption that E
{(

bT
i x0

)2
}

� E
{
f2
i

}
for all 1 ≤ i ≤ nx , where bi is

the ith column vector of B.

To illustrate the correlation issue in more detail, consider the distillation process
in Figure 2.6. The output variables of this process are mainly tray tempera-
ture, pressure and differential pressure measurements inside the columns, and
concentrations (if measured). These variables follow common cause variation,
for example introduced by variations of the fresh feed and its composition as
well as the temperatures and flow rate of the input streams into the reboilers
and overhead condensers. Other sources that introduce variation are, among oth-
ers, unmeasured disturbances, changes in ambient temperature and pressure, and
operator interventions. Through controller feedback, the variations of the output
variables will propagate back to the input variables, which could include flow
rates, temperatures of the heating/cooling streams entering and leaving the reboil-
ers and overhead condensers. The degree of correlation within both variable sets
suggests the following data structure for the input and output variables

x0 =
n∑

i=1

pi si + en+1 =Ps + en+1 y0 =
n∑

i=1

qi si + fn+1 =Qs + fn+1. (2.24)

Here, P = [
p1 · · · pn

] ∈ R
nx×n and Q = [

q1 · · · qn

] ∈ R
ny×n are

parameter matrices, en+1 ∈ R
nx and fn+1 ∈ R

ny are the residual vectors of the
input and output sets, respectively, which describe a negligible contribution for
predicting the output set. The vector s stores the source signals describing com-
mon cause variation of the input and output sets. Recall that f is the error vector
associated with the output variables and fn+1 → f under the assumptions (i) that
the covariance matrix of the input variables has full rank nx , (ii) that n = nx and
(iii) that the number of samples for identifying the PLS model in (2.24) K → ∞.

The source and error signals are assumed to be statistically independent of
each other and follow a zero mean Gaussian distribution

E

{(
s
f

)}
= 0

E

{(
s (k)

f (k)

) (
sT (l) fT (l)

)} = δkl

[
Sss 0
0 Sff

]
(2.25)

s (k) ∼ N {
0, Sss

}
f (k) ∼ N {

0, Sff

}
.

Moreover, the residual vectors e and f are also assumed to follow zero mean
Gaussian distributions with covariance matrices See and Sff , respectively.
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The residual vectors, however, are generally not statistically independent, i.e.
E

{
efT

} �= 0. Subsection 2.3.2 discusses the independence of the error vectors
in more detail. Asymptotically, if n = nx and K → ∞, however, Sff → Sff

and See → 0.
By comparing the causal data model for PLS with that of the non-causal PCA

one in (2.2), it should be noted that there are similarities. The parameter matrix �

for the PCA data model becomes P and Q to describe the influence of the source
variables upon the input and output variables, respectively. Moreover, the error
variable g for the PCA data structure becomes e and f for the input and output
variable sets, respectively. For PCA, however, if the number of source signals is
assumed to be n = nz, the variable set z0 can be described by Pt. This follows
from the fact that the covariance matrix of z0 is equal to its eigendecomposition
for n = nz, as shown in (2.15) for Ŝz0z0

. With regards to PLS, however, this
property is only maintained for the input variable set x0, as e → 0 for n → nx .
In contrast, as n → nx the error vector f → f �= 0.

Using the terminology for training artificial neural networks in an MSPC
context, assuming that the variable sets z0 and x0 are identical PCA is an
unsupervised learning algorithm for determining latent variable sets. In contrast,
PLS is a supervised learning algorithm, which incorporates the parametric
relationship relationship ys = BT x0 into the extraction of sets of latent variables.
Although this comparison appears hypothetical, this is a practically relevant
case. An example is if the output variable set y0 consists of concentration
measurements that represent quality variables which are not recorded with the
same frequency as the variable set x0. In this case, only the z0 = x0 is available
for on-line process monitoring.

2.2.2 Deflation procedure for estimating data models

PLS computes sequences of linear combinations of the input and output variables
to determine sets of latent variables that describe common cause variation. The
first set of latent variables includes

t1 = xT
0 w1 u1 = yT

0 q1, (2.26)

where w1 and q1 are weight vectors of unit length that determine a set of linear
combinations of x0 and y0, respectively, and yield the score variables t1 and u1.
Geometrically, the linear combinations result in the orthogonal projections of the
data vectors x0 and y0 onto the directions defined by w1 and q1, respectively.
This follows from the fact that xT

0 w1 and yT
0 q1 are scalar products∥∥x0

∥∥ ∥∥w1

∥∥ cos
(
ϕ(x0,w1)

) = xT
0 w1 ⇒ t1 = ∥∥x0

∥∥ cos
(
ϕ(x0,w1)

)
(2.27)

and ∥∥y0

∥∥ ∥∥q1

∥∥ cos
(
ϕ(y0,q1)

) = yT
0 q1 ⇒ u1 = ∥∥y0

∥∥ cos
(
ϕ(y0,q1)

)
(2.28)
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where ϕ(x0,w1) and ϕ(y0,q1) are the angles between the vector pairs x0 and w1, and
y0 and q1, respectively. Consequently, the score variables t1 and u1 describe the
minimum distance between the origin of the coordinate system and the orthogonal
projection of x0 and y0 onto w1 and q1, respectively. The weight vectors are
determined to maximize the covariance between t1 and u1.

Chapter 10 gives a detailed account of the PLS objective functions for
computing the weight vectors. After determining the score variables, the t-score
variable is utilized to predict the input and output variables. For this, PLS
computes a set of loading vectors , leading to the following prediction of both
variable sets

x̂0 = t1p1 ŷ0 = t1q́1. (2.29)

Here, p1 and q́1 are the loading vectors for the input and output variables,
respectively. As before, the notation ·̂ represents the prediction or estimation
of a variable. Chapter 10, again, shows the objective function for determining
the loading vectors. The aim of this introductory section on PLS is to outline
its working and how to apply it.

It should be noted, however, that the weight and the loading vector of the
output variables, q1 and q́1, are equal up to a scalar factor. The two weight vec-
tors, w1 and q1, the two loading vectors, p1 and q́1, and the two score variables,
t1 and u1 are referred to as the first set of latent variables (LVs). For computing
further sets, the PLS algorithm carries out a deflation procedure, which subtracts
the contribution of previously computed LVs from the input and output variables.
After computing the first set of LVs, the deflation procedure yields

e2 = x0 − t1p1 f2 = y0 − t1q́1 (2.30)

where e2 and f2 are residual vectors that represent variation of the input and
output variable sets which can be exploited by the second set of LVs, comprising
of the weight vectors w2 and q2, the loading vectors p2 and q́2 and the score
variables t2 and u2. Applying the deflation procedure again yields

e3 = e2 − t2p2 f3 = f2 − t2q́2. (2.31)

Defining the original data vectors x0 and y0 as e1 and f1, the general formu-
lation of the PLS deflation procedure becomes

ei+1 = ei − tipi fi+1 = fi − ti q́i (2.32)

and the ith pair of LVs include the weight vectors wi and qi , the loading vectors
pi and q́i and the score variables ti and ui .

Compared to the data structure in (2.24), the objective of the PLS modeling
procedure is to:

• estimate the column space of parameter matrices P and Q; and

• extract the variation of the source variable set s.
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From the n sets of LVs, the p- and q́-loading vectors, stored in separate matrices

P = [
p1 p2 · · · pn

]
Q́ = [

q́1 q́2 · · · q́n

]
, (2.33)

are an estimate for the column space of P and Q. The t-score variables

t = (
t1 t3 · · · tn

)T
(2.34)

represent the variation of the source variables.

2.2.3 A simulation example

To demonstrate the working of PLS, an application study of data from a simulated
process is now presented. According to (2.23), the process includes three input
and two output variables and the following parameter matrix

B =
[

0.3412 0.5341 0.7271
0.3093 0.8385 0.5681

]
. (2.35)

The input variable set follows a zero mean Gaussian distribution with a
covariance

Sx0x0
=

⎡⎣ 1 0.8 0.9
0.8 1 0.5
0.9 0.5 1

⎤⎦ . (2.36)

The error variable set, f follows a zero mean Gaussian distribution describing i.i.d.
sequences f ∼ N {0, 0.05I}. Figure 2.7 shows a total of 100 samples, that were
simulated from this process, and produced the following covariance matrices

Ŝy0y0
=

[
2.1318 2.2293
2.2293 2.5130

]
Ŝx0y0

=
⎡⎣ 1.4292 1.5304

1.1756 1.4205
1.3118 1.2877

⎤⎦ . (2.37)

Equations 2.38 and 2.39 show how to compute the cross-covariance matrix

Ŝx0y0
= 1

K

K∑
k=1

x (k) yT (k) (2.38)

or

Ŝx0y0
= 1

K−1

K∑
k=1

(
x (k) −̂̄x) (y (k) −̂̄y)T . (2.39)

If x̄ and ȳ are equal to zero, the estimation of the covariance and cross-covariance
matrices requires the use of (2.13) and (2.38). If this is not the case for at least
one of the two variable sets, use (2.14) and (2.38) to estimate them.
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Figure 2.7 Simulated samples of input and output variables.

Knowing that f is statistically independent of x0, (2.23) shows that these
covariance matrices Sx0y0

and Sy0y0
are equal to

E
{
x0yT

0

} = E
{
x0xT

0 B + x0f
T
} = E

{
x0xT

0

}B = Sx0x0
B (2.40)

and

E
{
y0yT

0

} = E
{BT x0xT

0 B + BT x0f
T + fxT

0 B + ffT
}

E
{
y0yT

0

} = BT E
{
x0xT

0

}B + E
{
ffT

} = BT Sx0x0
B + Sff, (2.41)

respectively. Inserting Sx0x0
, Sff and B, defined in (2.35) and (2.36), into (2.40)

and (2.41) yields

Sy0y0
=

[
2.0583 2.1625
2.1625 2.3308

]
Sx0y0

=

⎡⎢⎣ 1.4237 1.4926

1.1715 1.3709

1.3022 1.2666

⎤⎥⎦ . (2.42)

Comparing the true matrices with their estimates shows a close agreement.
Using the estimated matrices Ŝx0x0

and Ŝx0y0
, a PLS model is determined next.

The preceding discussion has outlined that a PLS model relies on the calculation
of weight vectors of length 1. The projection of the input and output variables
onto these weight vectors then produces the score variables. To complete the
computation of one set of latent variables, the final step is to determine the
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loading vectors and the application of the deflation procedure to the input and
output variables.

Figure 2.8 illustrates the working of the iterative PLS approach to the input
and output data shown in Figure 2.7. The left and right column of plots present
the results for the individual sets of latent variables, respectively. The top, middle
and bottom rows of plots summarize the results of the first, the second and the
third sets of latent variables, respectively. The first set of latent variables are
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Figure 2.8 Graphical illustration of the sample projections in the input and
output spaces for determining the first, second and third set of latent variables.



46 FUNDAMENTALS OF MULTIVARIATE SPC

computed from the original input and output variable sets and the first two plots
at the top show the samples and the computed direction of the weight vectors.

The control ellipses in the right plots are for the two output variables. The
depicted samples in the middle and lower rows of plots represent the samples after
the first and second deflation procedure has been carried out. It is interesting to
note that after applying the first deflation procedure to the output variables, there
is little variation left in this variable set, noticeable by the small control ellipse
constructed on the basis of the covariance matrix of Sff = diag

{
0.05 0.05

}
.

The deflation procedure also reduces the remaining variation of the input variables
when comparing the top left with the middle left plot.

The third and final set of LVs is determined from the input and output variable
sets after deflating the first and second sets of LVs. Comparing the plots in the
bottom row with those in the middle of Figure 2.8 suggests that there is hardly
any reduction in the remaining variance of the output variables but a further
reduction in variation of the input variables. The analysis in Chapter 10 shows
that after deflating the third set of latent variables from the input and output
variables, the residuals of the input variable set is zero and the residuals of the
output variables are identical to those of applying a regression model obtained
from the ordinary least squares (OLS). Asymptotically, the residuals f converge
to f as K → ∞.

Equation 2.43 lists the estimates for the w- and q-weight, the p- and q́-loading
matrices and the maximum covariance values for the t- and u-score variables

Ŵ =
⎡⎣0.6272 −0.1005 −0.7723

0.5515 0.7576 0.3492
0.5500 −0.6450 0.5306

⎤⎦
Q̂ =

[
0.6788 −0.3722 0.8072
0.7343 0.9282 0.5903

]

P̂ =
⎡⎣0.6310 −0.0889 −0.7723

0.5361 0.7523 0.3492
0.5611 −0.6530 0.5306

⎤⎦
̂́Q =

[
0.9147 −0.1101 0.4601
0.9894 0.2747 0.3365

]
ĴT = (

3.3385 0.1496 0.0091
)
.

(2.43)

Using the true covariance matrices, it is possible to compare the accuracy
of the estimated ones. It follows from the analysis in Chapter 10 that each LV
in one set can be computed either from the w- or the q-weight vector. It is
therefore sufficient to determine the departure of the estimated w-weight vectors.
The estimation error of the other LVs can be computed from the estimation error
of the covariance matrices and the w-weight vector. For example, the estimation
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error for the q-weight vector is

q = ST
x0y0

w

‖ST
x0y0

w‖ q̂ = ŜT
x0y0

ŵ

‖̂ST
x0y0

ŵ‖

�q = ST
x0y0

w

‖ST
x0y0

w‖ − ŜT
x0y0

ŵ

‖̂ST
x0y0

ŵ‖ = ST
x0y0

w

‖ST
x0y0

w‖2
−

[
ST

x0y0
− �ST

x0y0

]
(w − �w)

‖̂ST
x0y0

ŵ‖

�q ≈ �ST
x0y0

w + ST
x0y0

�w

‖ST
x0y0

w‖ . (2.44)

It is assumed here that Sx0y0
= Ŝx0y0

+ �Sx0y0
, ‖ST

x0y0
w‖2 ≈ ‖̂ST

x0y0
ŵ‖2 and

‖�Sx0y0
�w‖2 � ‖Sx0y0

w‖2. The true w-weight matrix is equal to

W =
⎡⎣0.6279 −0.1061 −0.7710

0.5482 0.7635 0.3414
0.5525 −0.6371 0.5375

⎤⎦ . (2.45)

Since the w-weight vectors are of unit length, the angles between the
estimated and true ones can directly be obtained using the scalar product
ϕ(wk,ŵk)

= wT
k ŵk · 180

π
and are 0.2374◦, 0.6501◦ and 0.6057◦ for the first, second

and third vectors, respectively. The covariances of the first, the second and the
third pair of score variables, obtained from the true covariance matrices, are
3.2829, 0.1296 and 0.0075 respectively, and close to the estimated ones stored
in the vector Ĵ in (2.43). The estimation error for the w-weight vectors are
around 0.25◦ for the first and around 0.65◦ for the second and third ones and is
therefore small. The estimation accuracy, however, increases with the number
of recorded samples. After inspecting the estimation accuracy, a very important
practical aspect, namely how to interpret the results obtained, is given next.

So far, the analysis of the resultant PLS regression model has been made
from Figure 2.8 by eye, for example, noticing that the number of samples out-
side the control ellipse describing the error vector f. A sound statistically-based
conclusions, however, requires a more detailed investigation. For example, such
an analysis helps in determining how many sets of latent variables need to be
retained in the PLS model and how many sets can be discarded. One possibility
to assess this is the analysis of the residual variance, given in Table 2.2.

Table 2.2 Variance reduction of PLS model to x0 and y0.

LV Set Input Variables x0 (sei
) Output Variables y0 (sfi

)

1 17.3808% 3.1522%
2 0.5325% 2.1992%
3 0.0000% 2.0875%

The percentage values describe the cumulative variance remaining.
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Equation (2.46) introduces a measure for the residual variance of both variable
sets, sei

and sfi
, after deflating the previously computed i − 1 LVs

sei
= trace

{
E

{
eie

T
i

}}
trace

{
E

{
x0xT

0

}} · 100% sfi
= trace

{
E

{
fif

T
i

}}
trace

{
E

{
y0yT

0

}} · 100% (2.46)

where trace{·} is the sum of the diagonal elements of a squared matrix,

E
{
eie

T
i

} = E
{
x0xT

0

} −
i−1∑
j=1

pjE
{
t2
j

}
pT

j = Sx0x0
− PE

{
ttT

}
PT (2.47)

and

E
{
fif

T
i

} = E
{
y0yT

0

} −
i−1∑
j=1

q́jE
{
t2
j

}
q́T

j = Sy0y0
− Q́E

{
ttT

}
Q́T . (2.48)

The assumption that the process variables are normally distributed implies that
the t-score variables t = (

t1 t2 · · · tk
)

are statistically independent, which
the analysis in Chapter 10 yields. Hence, E

{
ttT

}
reduces to a diagonal matrix.

Summarizing the results in Table 2.2, the first set of LVs contribute to a
relative reduction in variance of 82.6192% for the input and 96.8478% for the
output variable set. For the second set of LVs, a further relative reduction of
16.8483% can be noticed for the input variable set, whilst the reduction for
the output variables only amounts to 0.9530%. Finally, the third set of LVs only
contribute marginally to the input and output variables by 0.5225% and 0.1117%,
which is negligible.

The analysis in Table 2.2 therefore confirms the visual inspection of
Figure 2.8. Given that PLS aims to determine a covariance representation of x0
and y0 using a reduced set of linear combinations of these sets, a parsimonious
selection is to retain the first set of LVs and discard the second and third sets as
insignificant contributors.

The final analysis of the PLS model relates to the accuracy of the estimated
parameter matrix, B. Table 2.2 shows that x0 is completely exhausted after deflat-
ing 3 sets of LVs. Furthermore, the theoretical value for sf3

can be obtained

sf3
= 0.05 + 0.05

2.0583 + 2.3308
· 100% = 2.2784%. (2.49)

As stated in the preceding discussion, the estimated regression matrix, including
all three sets of LVs, is equivalent to that obtained using the OLS approach.
Equation (2.50) shows this matrix from the simulated 100 samples

B̂ = Ŵ
[̂
PT Ŵ

]−1 ̂́QT =
⎡⎣0.2281 0.3365

0.5864 0.8785
0.8133 0.5457

⎤⎦ . (2.50)
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Comparing the estimated parameter matrix with the true one, shown in (2.35),
it should be noted that particularly the first column of B̂ departs from B, whilst
the second column provides a considerably closer estimate. Larger mismatches
between the estimated and true parameter matrix can arise if:

• there is substantial correlation among the input variables (Wold et al. 1984);
and

• the number of observations is ‘small’ compared to the number of variables
(Ljung 1999; Söderström and Stoica 1994).

By inspecting the Sx0x0
in (2.36), non-diagonal elements of 0.9 and 0.8 show

indeed a high degree of correlation between the input variables. Subsection
6.2.1 presents a further and more detailed discussion of the issue of parameter
identification. The issue related to the accuracy of the PLS model is also a
subject in the Tutorial Session of this chapter and further reading material
covering the aspect of model accuracy is given in Höskuldsson (1988, 1996).

2.3 Maximum redundancy partial least squares

This section examines the legitimate question of why do we need both, the
single-block PCA and the dual-block PLS methods for process monitoring. A
more precise formulation of this question is: what can the separation of the
recorded variable set to produce a dual-block approach offer that a single-block
technique cannot? To address this issue, the first subsection extends the data
models describing common cause variation in (2.2) and (2.24). Subsection 2.3.2
then shows that PCA and PLS cannot identify this generic data structure cor-
rectly. Finally, Subsection 2.3.3 introduces a different formulation of the PLS
objective function that enables the identification of this generic data structure,
and Subsection 2.3.4 presents a simulation example to demonstrate the working
of this revised PLS algorithm.

2.3.1 Assumptions for underlying data structure

The preceding discussion in this chapter has outlined that PCA is a single-block
technique that analyzes a set of variables. According to (2.2), this variable set is a
linear combination of a smaller set of source signals that represent common cause
variation. For each process variable, a statistically independent error variable is
then superimposed to the contribution from the source signals.

On the other hand, PLS is a dual-block technique for which the recorded
variables are divided into an input and an output set. Figure 2.6 shows that this
division may not be straightforward. Whilst the fresh feed (stream F1) is easily
identified as an input and top draw 1 (stream F7) and top draw 2 (stream F14)
are outputs, how can the remaining streams (flow rates), temperature variables,
pressure measurements, differential pressures or concentrations (if measured on-
line) be divided?
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An approach that the literature has proposed is selecting the variables
describing the product quality as the outputs and utilizing the remaining ones
as ‘inputs’. This arrangement separates the variables between a set of cause
variables that describe, or predict, the variation of the output or effect variables .
A question that one can justifiably ask is why do we need PLS if PCA is able
to analyze a single-block arrangement of these variables, which is conceptually
simpler? In addition to that, the division into input and output variables may
not be straightforward either.

The need for a dual-block technique becomes clear by revisiting Figure 2.6.
The concentrations (the quality variables y0), are influenced by changes affecting
the energy balance within the distillation towers. Such changes manifest them-
selves in the recorded temperatures and pressures for example. On the other hand,
there are also variables that relate to the operation of reboilers 1 and 2, overhead
condensers 1 and 2, both reflux vessels, the heat exchanger and the pump that do
not affect the quality variables. The variation in these variables, however, may
be important to monitor the operation of the individual units and consequently
cannot be ignored.

A model to describe the above scenario is an extension of (2.24)

y0 =
n∑

i=1

qi si + f = Qs + f x0 =
n∑

i=1

pi si +
m∑

j=1

p′
j s

′
j = Ps + P′s′

y = y0 + ȳ x = x0 + x̄ (2.51)

where s represents common cause variation in both variable sets and s′ describes
variation among the input or cause variables that is uncorrelated to the output
variables and hence, uninformative for predicting them. The next subsection
examines whether PCA and PLS can identify the data structure in (2.51).

2.3.2 Source signal estimation

The model estimation w.r.t. (2.51) is separately discussed for PCA/PLS.

2.3.2.1 Model identification using PCA

The advantage of a dual block method over a single block approach, when applied
to the above data structure, is best demonstrated by reformulating (2.51)

z0 =
(

y0
x0

)
=

[
Q
P

]
s +

[
0

P′
]

s ′ +
(

f
0

)
. (2.52)

Now, applying PCA to the data structure in (2.52) yields the following estimate
for the source signals and residuals

PT z0 = PT

[
Q
P

]
s + PT

([
0

P′
]

s ′ +
(

f
0

))
= t (2.53)
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and

PT
d z0 = PT

d

([
0

P′
]

s ′ +
(

f
0

))
= td, (2.54)

respectively. Here, P and Pd store the first n and the remaining nz − n eigenvec-
tors of the data covariance matrix Sz0z0

, respectively, where

Sz0z0
=

[
QSssQ

T QSssP
T

PSssQ
T PSssP

T

]
︸ ︷︷ ︸

common cause variation

+
[

Sff 0

0 P′Ss′s′P′T
]

︸ ︷︷ ︸
remaining variation

. (2.55)

Note that above covariance matrix is divided into a part that represents common
cause variation and a second part that describes the common cause variation that
only affects input variables and the error term for the output variables. Assuming
that the model subspace, spanned by the eigenvectors stored in P is consistently
estimated,2 the elements in td are linear combinations of P′s′ + f. Consequently,
it may not be possible to extract and independently monitor P′s′ using PCA.

Moreover, the covariance matrix P′Ss′s′P′T is not known a priori and may
have significantly larger entries compared to the error covariance matrix Sff. It is

also possible that P′Ss′s′P′T is the dominant contribution of the joint variable set
z0. Both aspects render the estimation of the column space �T = [

QT PT
]

using PCA a difficult task, given that the error covariance matrix is not of the
form Sgg = σ 2

g I. More precisely, Subsection 6.1.1 discusses how to estimate the
error covariance matrix and the model subspace simultaneously using maximum
likelihood PCA.

Based on this simultaneous estimate, the source signals contribution P′s′
must be considered as additional error variables that:

• may have a considerably larger variance and covariance values compared
to those of Sff; and

• the rank of the covariance matrix P′Ss′s′P′T is nx − n and not nx .

The assumption for estimating the error covariance matrix, however, is that it is
a full rank matrix. Hence, PCA is (i) unable to separate the source signals of the
input variables into those commonly shared by the input and output variables, and
the remaining ones that are only encapsulated in the input variables and (ii) unable
to identify the data structure using a maximum likelihood implementation.

2.3.2.2 Model Identification Using PLS

Different from PCA, PLS extracts t-score variables from the input variables. It
is therefore tempting to pre-conclude that PLS extracts common cause variation

2 The assumptions for this are discussed in Subsection 6.1.1.
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by determining the n t-score variables that discard the non-predictive variation
in P′s′. The fact that the cross-covariance matrix Sx0y0

= PSssQ
T does not

represent the signal contributions P′s′ and f reinforces this assumption.
A more detailed analysis, however, yields that this is not the case.

Equation 2.56 reexamines the construction of the weight vectors assuming that
q is predetermined

w = arg max
w

E
{
wT x0yT

0 q
} − 1

2λ
(
wT w − 1

)
. (2.56)

The score variables are linear combination of x0 and y0, which implies that

t = sT PT w + s′T P′T w u = sT QT q + fT q. (2.57)

Equation 2.57 dictates the condition for separating s and s′ is P′T w = 0. Apply-
ing (1.8) to reformulate the covariance of the pair of score variables yields

E {tu} = rtu

√
E

{(
sT PT w

)2 +
(

s′T P′T w
)2

}
E

{(
sT QT q

)2 + (
fT q

)2
}

(2.58)

where rtu is the correlation coefficient between the score variables. If P′T w = 0,
it follows from (2.58) that

E {tu} = rtu

√
E

{(
sT PT w

)2
}

E
{(

sT QT q
)2 + (

fT q
)2
}

(2.59)

and hence, the t-score variable does not include the non-predictive contribution
P′s′. This, however, generally cannot be assumed. It therefore follows that PCA
and PLS cannot estimate a model that discriminates between:

• the common cause variation of the input and output variables;

• the non-predictive variation encapsulated in the input variables only; and

• the error variables corrupting the outputs.

The next subsection develops an alternative PLS formulation that extracts the
common cause variation and discriminates between the three different types of
variation.

2.3.3 Geometric analysis of data structure

The detailed examination of (2.56) to (2.58) yields that PLS effectively does
not produce score variables that are related to model accuracy. This follows
from the fact that the covariance criterion can be expressed by the product
of the correlation coefficient times the square root of the variance products
of the score variable. A larger variance for any of the score variables at the
expense of a smaller correlation coefficient may, consequently, still produce a
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larger covariance. Model accuracy in the score space, however, is related to the
correlation coefficient. The larger the correlation coefficient between two vari-
ables the more they have in common and hence, the more accurately one of these
variables can predict the other.

Preventing PLS from incorporating P′s′ into the calculation of the t-score
variables requires, therefore, a fresh look at its objective function. As outlined
above, the key lies in determining weight vectors based on an objective function
that relates to model accuracy rather than covariance. Starting with the following
data structure

y0 = BT x0 + f

E

{(
x0
f

)}
= 0 (2.60)

E

{(
x0
f

) (
xT

0 fT
)} =

[
Sx0x0

0

0 diag
{

σ 2
f1

· · · σ 2
fny

} ]

for which the best linear unbiased estimator is the OLS solution (Henderson
1975)

BT = Sy0x0
S−1

x0x0
. (2.61)

Using (2.60) and (2.61) gives rise to reformulate Sy0y0
as follows

Sy0y0
= E

{
y0yT

0

} = Sy0x0
S−1

x0x0
Sx0y0

+ Sff, (2.62)

where Sff = diag
{

σ 2
f1

· · · σ 2
fny

}
. It follows from (2.60) that the only

contribution to Sy0y0
that can be predicted by the linear model is Sŷ0ŷ0

= Sy0x0

S−1
x0x0

Sx0y0
, since Sy0y0

= Sŷ0ŷ0
+ Sff. In a similar fashion to PCA, it is possible

to determine a direction vector to maximize the following objective function

q = arg max
q

E
{
qT ŷ0̂yT

0 q
} − λ

(
qT q − 1

)
, (2.63)

where ŷ0 = BT x0. The optimal solution for (2.63) is

Sy0x0
S−1

x0x0
Sx0y0

q − λq = 0. (2.64)

The eigenvalue λ is the variance of the orthogonal projection of ŷ0 onto q. The
solution to (2.64) is the eigenvector associated with the largest eigenvalue of
Sy0x0

S−1
x0x0

Sx0y0
. The eigenvector associated with the second largest eigenvalue

captures the second largest contribution and so on.
Whilst this allows to extract weight vectors for y0, how to determine weight

vectors for x0 to predict the u-score variable qT ŷ0 as accurately as possible? By
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revisiting (2.57) and (2.58) it follows that the correlation coefficient rtu must
yield a maximum to achieve this

qT ŷ0√
E

{(
qT ŷ0

)2
} = rtu

wT x0√
E

{(
wT x0

)2
} (2.65)

where u = qT ŷ0 and t = wT x0. By incorporating the constraint wT Sx0x0

w − 1 = 0, setting the variance of wT x0 to be 1, t ∼ N {0, 1} and (2.65)
becomes

w = arg max
w

E

{
qT

√
λ

ŷ0xT
0 w

}
− 1

2μ
(
wT Sx0x0

w − 1
)
. (2.66)

The fact that λ = E
{(

qT y0

)2
}

follows from

• qT Sy0x0
S−1

x0x0
Sx0y0

q = λ,

• Sŷ0ŷ0
= Sy0x0

S−1
x0x0

Sx0y0
, and

• qT ŷ0 ∼ N {0, λ},
so that qT y0/

√
λ ∼ N {0, 1}. The objective function in (2.66) therefore maximizes

the correlation coefficient, rtu =
(

qT ŷ0

)(
wT x0

)
/
√

λ = (u/
√

λ) t , and has the follow-
ing solution

Sx0y0
q − μ

√
λSx0x0

w = 0 w = S−1
x0x0

Sx0y0
q

μ
√

λ
, (2.67)

where the Lagrangian multiplier, μ, satisfies the constraint wT Sx0x0
w = 1. Next,

(2.63) and (2.66) can be combined to produce the objective function

J = wT Sx0y0
q − 1

2λ
(
wT Sx0x0

w − 1
) − 1

2λ
(
qT q − 1

)
, (2.68)

which has the following solution for w and q

∂J

∂w
= Sx0y0

q − λSx0x0
w = 0

∂J

∂q
= Sy0x0

w − λq = 0 (2.69)

and hence

S−1
x0x0

Sx0y0
Sy0x0

w − λ2w = 0 Sy0x0
S−1

x0x0
Sx0y0

q − λ2q = 0. (2.70)

That both Lagrangian multiples have the same value follows from

wT ∂J

∂w
= λ qT ∂J

∂q
= λ. (2.71)

This solution relates to a nonsymmetric index of redundancy, introduced
by Stewart and Love (1968) to describe the amount of predicted variance, and
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was first developed by van den Wollenberg (1977). Moreover, ten Berge (1985)
showed that van den Wollenberg’s maximum redundancy analysis represents a
special case of Fortier’s simultaneous linear prediction (Fortier 1966). The objec-
tive of the work in Fortier (1966) is to determine a linear combination of a set of
predictors (inputs) that has a maximum predictability for all predictants (outputs)
simultaneously.

The next step is to apply the standard PLS deflation procedure to determine
subsequent sets of LVs. According to the data model in (2.51), only the contribu-
tion Ps in x0 is predictive for y0. By default, the solution of the objective function
in (2.68) must discard the contribution P′s′. The next question is how many sets
of latent variables can be determined by solving (2.68) and carrying out the PLS
deflation procedure? The answer to this lies in the cross covariance matrix Sx0y0

as it only describes the common cause variation, that is, Sx0y0
= PSssQT .

The loading vectors pi and q́i can now be computed by

pk = S(i)
ee wi q́i = S(i)

f ewi . (2.72)

Utilizing (2.72), the deflation of the covariance matrix is

S(i+1)
ee = S(i)

ee − E
{
pi t

2
i pT

i

} = S(i)
ee − pip

T
i (2.73)

and similarly for the cross-covariance matrix

S(i+1)
ef = S(i)

ef − pi q́
T
i . (2.74)

If the cross-covariance matrix is exhausted, there is no further common cause
variation in the input variable set. One criterion for testing this, or a stopping
rule according to the next section, would be to determine the Frobenius norm of
the cross-covariance matrix after applying the ith deflation procedure∥∥∥S(i+1)

ef

∥∥∥2 =
nx∑

j1=1

ny∑
j2=1

(
s
(i+1)
ef(j1j2)

)2 ≥ 0. (2.75)

If (2.75) is larger than zero, obtain the (i + 1)th pair of weight vectors, wi+1 and
qi+1, by solving (2.70). On the other hand, if (2.75) is zero, the common cause
variation has been extracted from the input variables.

It is important to note that (2.70) presents an upper limit for determining the
maximum number of weight vector pairs. Assuming that ny ≤ nx , the rank of
the matrix products S−1

x0x0
Sx0y0

Sy0x0
and Sy0x0

S−1
x0x0

Sx0y0
is ny . This follows from

the fact that the rank of Sx0y0
is equal to ny . If n ≤ min

(
ny, nx

)
, alternative

stopping rules are discussed in Subsection 2.4.2. After extracting the common
cause variation from x0, the objective function in (2.68) can be replaced by(

wi

qi

)
= arg max

w,q
wT S(i)

ef q

− 1
2λ

(
wT w − 1

) − 1
2λ

(
qT q − 1

)
,

(2.76)
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which is the PLS one. Table 2.3 shows the steps of this maximum redundancy PLS
or MRPLS algorithm. This algorithm is an extension of the NIPALS algorithm for
PLS, for example discussed in Geladi and Kowalski (1986), and incorporates the
constraint objective function in (2.68). This implies that the actual data matrices
X0 and Y0, storing a total of K samples of x0 and y0 in a consecutive order as
row vectors, are utilized instead of Sx0x0

and Sx0y0
.

Table 2.3 Algorithm for maximum redundancy PLS.

Step Description Equation

1 Initiate iteration n = 1, i = 1, F(1) = Y0

2 Set up 0ûi 0ûi = F(i) (:, 1)

3 Determine auxiliary vector ŵi = XT
0 0ûi/

∥∥∥XT
0 0ûi

∥∥∥
if i = n

4 Calculate w-weight vector ŵi =
[
XT

0 X0

]−1
ŵi/

√
ŵT

i

[
XT

0 X0

]−1
ŵi

else ŵi = ŵi

if i = n

5 Determine r-weight vector r̂i = ŵi

else r̂i = ŵi − ∑i−1
j=1 p̂T

j ŵîrj

6 Compute t-score vector t̂i = X0̂ri

7 Determine q-weight vector q̂i = F(i)T t̂i/
∥∥∥F(i)T t̂i

∥∥∥
8 Calculate u-score vector 1ûi = F(i)q̂i

if
∥∥

1ûi −0 ûi

∥∥> ε

9 Check for convergence set 0ûi = 1ûi and go to Step 3
else set ûi = 1ûi and go to Step 10

if i = n : p̂i = XT
0 t̂i

10 Determine p-loading vector else :

p̂i = XT
0 t̂i /̂tT

i
t̂i

if i = n : ̂́qi = F(i)T t̂i
11 Determine q́-loading vector else :̂́qi = F(i)T t̂i /̂tT

i
t̂i

12 Deflate output data matrix F(i+1) = F(i) − t̂î́qT

i

Check whether there is if so i = i + 1, n = n + 1
13 still significant variation and go to Step 3

remaining in XT
0 F(i+1) if not i = i + 1, go to Step 14

14 Check whether i = nx if so then terminate else go to Step 2
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The preceding discussion in this subsection has assumed the availability
of Sx0x0

and Sx0y0
, which has been for the convenience and simplicity of the

presentation. Removing this assumption, the MRPLS algorithm relies on the data
matrices X0 and Y0. The covariance and cross-covariance matrices can then be
estimated, implying that the weight, score and loading vectors are estimates too.

That the MRPLS algorithm in Table 2.3 produces the optimal solution of
the objective function in (2.68) follows from the iterative procedure described in
Steps 3 to 8 in Table 2.3. With respect to Equation (2.70), the optimal solutions for
ŵk and q̂k are the dominant eigenvectors3 of the positive semi-definite matrices[̂

S(i)
ee

]†
Ŝ(i)

ef Ŝ(i)
f e and Ŝ(i)

f e

[̂
S(i)

ee

]†
Ŝ(i)

ef , (2.77)

respectively. Substituting Step 5 into Step 6 yields

q̂i ∝ F(i)T X0ŵi . (2.78)

Now, substituting consecutively Step 4 and Step 3 into (2.78) gives rise to

0q̂i ∝ F(i)T X0

[
XT

0 X0

]−1
XT

0

(
0ûi

)
. (2.79)

Finally, substituting Step 8 into (2.79)

λ̂2
i

(
1q̂i

) = F(i)T X0

[
XT

0 X0

]−1
XT

0 F(i)
(

0q̂i

)
(2.80)

confirms that the iteration procedure in Table 2.3 yields the dominant
eigenvector of

F(i)T X0

[
XT

0 X0

]−1
XT

0 F(i) = (K − 1) Ŝ(i)
f e

[̂
S(i)

ee

]†
Ŝ(i)

ef (2.81)

as the q-weight vector. The equality in (2.81) is discussed in Chapter 10, Lemma
10.5.3 and Theorem 10.5.7. In fact, the iteration procedure of the MRPLS
algorithm represents the iterative Power method for determining the dominant
eigenvector of a symmetric positive semi-definite matrix (Golub and van Loan
1996). The dominant eigenvalue of F(i)T X0

[
XT

0 X0

]−1 XT
0 F(i) is K − 1 times

the dominant eigenvalue of Ŝ(i)
f e

[̂
S(i)

ee

]†
Ŝ(i)

ef . Now, substituting Step 3 into Step 4
gives rise to

0ŵi ∝ [
XT

0 X0

]−1
XT

0

(
0ûi

)
. (2.82)

Next, consecutively substituting Steps 8, 7, 6 and then 5 into Equation (2.82)
yields

λ̂2
i

(
1ŵi

) = [
XT

0 X0

]−1
XT

0 F(i)F(i)T X0

(
0ŵi

)
. (2.83)

3 A dominant eigenvector is the eigenvector associated with the largest eigenvalue of a symmetric
positive semi-definite matrix under the assumption that this eigenvalue is not a multiple eigenvalue
of that matrix.
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Hence, the iteration procedure of the MRPLS algorithm in Table 2.3 computes
the optimal solution of the MRPLS objective function.

It should also be noted that, different from the PLS algorithm, the MRPLS
algorithm produces an auxiliary vector wi . This vector is, in fact, the w-weight
vector for PLS. Furthermore, the w-weight vector for MRPLS is the product of
wi and the inverse of Sx0x0

or XT
0 X0 when using the data matrices.

The algorithm presented in Table 2.3 relies on the fact that only the output data
matrix needs to be deflated. Hence, the length constraint for the w-weight vector
wT

i E(i)T E(i)wi − 1 is equivalent to wT
i XT

0 X0wi − 1. It is important to note that
deflating the output data matrix for the PLS algorithm requires the introduction
of r-weight vectors, which is proven in Chapter 10, together with the geomet-
ric property that the w-weight vectors are mutually orthogonal to the p-loading
vectors. Hence, MRPLS does not require the introduction of r-weight vectors.

Another important aspect that needs to be considered here relates to the
deflated cross-covariance matrix. Equation (2.75) outlines that the Frobenius
norm of S(i)

ef is larger than or equal to zero. For a finite data set, the squared

elements of S(n)
ef may not be zero if the cross-covariance matrix is estimated.

Hence, the PLS algorithm is able to obtain further latent variables to exhaust
the input variable set. It is important to note, however, that the elements of S(n)

ef

asymptotically converge to zero

lim
K→∞

Ŝx0y0
−

n∑
i=1

p̂i
̂́qT

i → 0. (2.84)

This presents the following problem for a subsequent application of PLS(
ŵi

q̂i

)
= arg max

w,q
wT

[
lim

K→∞
Ŝx0y0

−
n∑

i=1

p̂i
̂́qT

i

]
q

− 1
2λ

(
wT w − 1

) − 1
2λ

(
qT q − 1

)(
ŵi

q̂i

)
= arg max

w,q
wT 0q − 1

2λ
(
wT w − 1

) − 1
2λ

(
qT q − 1

) (2.85)

which yields an infinite number of solutions for ŵi and q̂i . In this case, it is
possible to apply PCA to the deflated input data matrix in order to generate a
set of nx − n t-score variables that are statistically independent of the t-score
variables obtained from the MRPLS algorithm.

2.3.4 A simulation example

This example demonstrates the shortcomings of PLS and highlights that MRPLS
can separately extract the common cause variation that affects the input and
output variables and the remaining variation of the input variables that is not
predictive to the output variables. The simulation example relies on the data
model introduced in (2.51), where the parameter matrices P, P′ and Q were
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populated by random values obtained from a Gaussian distribution of zero mean
and variance 1.

The number of input and output variables is 10 and 6, respectively. Moreover,
these variable sets are influenced by a total of 4 source variables describing com-
mon cause variation. The remaining variation of the input variables is simulated
by a total of 6 stochastic variables. The dimensions of the parameter matrices
are, consequently, P ∈ R

10×4, P′ ∈ R
10×6 and Q ∈ R

6×4. Equations (2.86) to
(2.88) show the elements determined for each parameter matrix.

Q =

⎡⎢⎢⎢⎢⎢⎣
0.174 0.742 −0.149 0.024

−0.486 0.243 −0.313 0.449
0.405 −0.470 −0.002 −0.212
0.230 −0.997 0.562 0.381
0.268 0.685 0.424 0.242
0.810 −0.005 0.208 0.431

⎤⎥⎥⎥⎥⎥⎦ (2.86)

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.899 −0.871 −0.559 0.765
0.083 0.122 −0.638 −0.011
0.041 −0.719 −0.857 −0.774

−0.138 0.473 0.451 −0.484
0.668 0.596 −0.719 0.036
0.363 0.801 0.507 −0.580
0.538 −0.644 0.719 −0.220

−0.868 0.000 −0.880 −0.478
0.458 0.170 −0.256 0.277
0.600 0.662 0.324 −0.721

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.87)

P′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.565 −0.370 −0.279 −0.618 0.219 −0.890
0.447 −0.819 −0.427 −0.297 −0.844 −0.935

−0.910 0.116 0.593 −0.768 0.807 −0.391
−0.106 −0.556 0.986 0.753 −0.535 −0.536

0.132 −0.217 0.715 −0.921 0.693 0.715
−0.234 0.547 0.775 0.448 −0.289 −0.650

0.005 0.035 0.929 0.224 −0.230 −0.442
0.854 0.341 0.500 0.388 −0.814 −0.844
0.987 0.843 −0.613 −0.963 0.807 −0.537
0.976 −0.587 −0.504 0.861 −0.588 0.648

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.88)

The common cause variation s ∈ R
4 as well as the uninformative variation in

the input variables for predicting the outputs, s′ ∈ R
6, were Gaussian distributed

i.i.d. sets of zero mean and unity covariance matrices, that is, s ∼ N {0, I} and
s′ ∼ N {0, I}. Both source signals were statistically independent of each other,
that is, Sss′ = 0. Finally, the error variables, f ∈ R

6, were statistically indepen-
dent of the source signals, that is, Sf,s,s′ = 0, and followed a zero mean Gaussian
distribution. The variance of the error variables was also randomly selected
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between 0.01 and 0.06: σ 2
1 = 0.0276, σ 2

2 = 0.0472, σ 2
3 = 0.0275, σ 2

4 = 0.0340,
σ 2

5 = 0.0343 and σ 2
6 = 0.0274.

To contrast MRPLS with PLS, a total of 5000 samples were simulated and
analyzed using both techniques. The estimated covariance matrices for the source
signals which are encapsulated in the input and output variable sets, s, the second
set of source signals that is not predictive for the output variables, s′, and the
error signals f, are listed in (2.89) to (2.91).

Ŝss =

⎡⎢⎢⎣
0.989 0.009 0.008 −0.010
0.009 1.008 0.005 0.014
0.008 0.005 1.004 0.010

−0.010 0.014 0.010 1.027

⎤⎥⎥⎦ (2.89)

Ŝs′s′ =

⎡⎢⎢⎢⎢⎢⎣
1.014 −0.011 −0.005 −0.010 −0.007 −0.017

−0.011 1.036 0.004 0.006 0.010 −0.025
−0.005 0.004 0.987 0.010 0.008 0.018
−0.010 0.006 0.010 1.039 −0.004 0.006
−0.007 0.010 0.008 −0.004 1.005 −0.011
−0.017 −0.025 0.018 0.006 −0.011 0.993

⎤⎥⎥⎥⎥⎥⎦ (2.90)

Ŝff =

⎡⎢⎢⎢⎢⎢⎣
0.028 0.001 −0.001 0.001 0.001 0.000
0.001 0.048 0.000 0.001 −0.000 0.000

−0.001 0.000 0.028 0.001 −0.001 −0.000
0.001 0.001 0.001 0.035 0.001 0.001
0.001 −0.000 −0.001 0.001 0.035 −0.001
0.000 0.000 −0.000 0.001 −0.001 0.028

⎤⎥⎥⎥⎥⎥⎦ . (2.91)

Comparing the estimates of Sss , Ss′s′ and Sff signals with the true covari-
ance matrices shows a close agreement. This was expected given that 5000 is
a relatively large number of simulated samples. Next, (2.92) to (2.94) show the
estimates of Sx0x0

, Sx0y0
and Sy0y0

.

Ŝx0x0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.319 1.709 0.684 −1.169 · · · −2.154
1.709 3.156 −0.449 0.442 · · · 0.756
0.684 −0.449 4.507 −0.559 · · · −2.805

−1.169 0.442 −0.559 3.057 · · · 1.097
−0.678 −0.473 1.470 −0.804 · · · −0.305
−2.128 −0.423 −0.124 2.103 · · · 0.503
−0.583 −0.394 0.401 1.462 · · · −0.130

1.457 1.724 −0.006 1.303 · · · 0.226
1.519 0.364 0.326 −2.307 · · · −0.840

−2.154 0.756 −2.805 1.097 · · · 4.483

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.92)
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Ŝx0y0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.701 0.753 −0.118 0.669 −0.875 −0.512
0.190 0.191 −0.021 −0.436 −0.167 −0.083

−0.427 −0.296 0.527 −0.054 −1.050 −0.507
0.223 −0.185 −0.158 −0.398 0.330 −0.230
0.679 0.065 −0.032 −0.858 0.301 0.403
0.569 −0.410 −0.104 −0.651 0.723 0.152

−0.505 −0.752 0.568 1.092 −0.054 0.479
−0.032 0.477 −0.225 −0.853 −0.734 −1.088

0.282 0.035 0.020 −0.128 0.253 0.448
0.512 −0.551 0.095 −0.608 0.550 0.240

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.93)

Ŝy0y0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.634 0.162 −0.291 −0.777 0.502 0.121
0.162 0.650 −0.405 −0.357 0.018 −0.253

−0.291 −0.405 0.455 0.476 −0.276 0.218
−0.777 −0.357 0.476 1.541 −0.291 0.461

0.502 0.018 −0.276 −0.291 0.828 0.418
0.121 −0.253 0.218 0.461 0.418 0.906

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.94)

Equations (2.96) to (2.98) show the actual matrices. With respect to the
data model in (2.51), using P, P′ and Q, given in (2.86) to (2.88), Sss = I,
Ss′s′ = I and Sff, the covariance matrices Sx0x0

and Sy0y0
allows computing the

true covariance and cross-covariance matrices

Sx0x0
= PSssP

T + P′Ss′s′P′T

Sx0y0
= PSssQ

T (2.95)

Sy0y0
= QSssQ

T + Sff.

A direct comparison between the estimated matrices in (2.89) to (2.91) and the
actual ones in (2.96) to (2.98) yields an accurate and very close estimation of the
elements of Sy0y0

and Sx0y0
. However, slightly larger departures can be noticed

for the estimation of the elements in Sx0x0
. This can be explained by the fact that

the asymptotic dimension of Sx0y0
is 4 and the source signals have a much more

profound impact upon Sy0y0
than f. With this in mind, the last two eigenvalues of

Sy0y0
are expected to be significantly smaller than the first four, which describe

the impact of the source variables. In contrast, there are a total of 10 source
signals, including 4 that the input and output variables share in common and an
additional 6 source signals that are not describing the variation of the output vari-
ables. Hence, the estimation accuracy of the 10-dimensional covariance matrix
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of the input variables is less than the smaller dimensional covariance matrix
of the input and the cross-covariance matrix of the input and output variables.

Sx0x0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.220 1.674 0.752 −1.146 · · · −2.178
1.674 3.158 −0.372 0.480 · · · 0.698
0.752 −0.372 4.439 −0.542 · · · −2.816

−1.146 0.480 −0.542 3.115 · · · 1.069
−0.650 −0.461 1.453 −0.787 · · · −0.305
−2.063 −0.355 −0.134 2.164 · · · 0.526
−0.558 −0.373 0.405 1.476 · · · −0.153

1.457 1.745 0.022 1.346 · · · 0.186
1.464 0.339 0.339 −2.280 · · · −0.771

−2.178 0.698 −2.816 1.069 · · · 4.482

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.96)

Sx0y0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.701 0.745 −0.116 0.639 −0.889 −0.510
0.200 0.185 −0.020 −0.465 −0.167 −0.071

−0.417 −0.273 0.521 −0.049 −1.032 −0.474
0.248 −0.177 −0.176 −0.435 0.361 −0.229
0.667 0.061 −0.016 −0.831 0.291 0.404
0.568 −0.401 −0.107 −0.652 0.721 0.146

−0.497 −0.742 0.565 1.086 −0.046 0.493
−0.031 0.483 −0.248 −0.876 −0.721 −1.092

0.250 0.023 0.047 −0.102 0.197 0.436
0.530 −0.556 0.084 −0.615 0.578 0.240

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.97)

Sy0y0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.632 0.153 −0.283 −0.775 0.498 0.117
0.153 0.642 −0.405 −0.359 0.012 −0.267

−0.283 −0.405 0.457 0.480 −0.266 0.238
−0.775 −0.359 0.480 1.542 −0.291 0.472

0.498 0.012 −0.266 −0.291 0.814 0.406
0.117 −0.267 0.238 0.472 0.406 0.912

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.98)

To verify the problem for PLS in identifying a model that relies on the
underlying data structure in (2.51), the following matrix product shows that the
w-weight vectors, obtained by PLS, are not orthogonal to the column vectors of
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P′. According to (2.58), however, this is a condition for separating s from s′.

ŴT P′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.358 −0.031 −0.128 −0.608 0.292 −0.852
0.564 −0.048 −0.058 −0.432 −0.241 −0.670
0.803 0.192 −0.980 −1.394 0.728 −0.367
1.097 −0.258 0.135 −0.042 −0.572 −0.843
0.639 −0.417 0.199 1.333 −1.540 −1.008
1.053 −0.197 −1.522 0.491 −0.320 1.041

−0.160 −0.900 0.516 −0.100 −0.327 0.704
0.390 1.093 0.822 −0.056 0.388 0.024
0.314 −0.568 0.374 −0.128 0.493 0.196
0.005 −0.002 0.000 0.009 0.012 −0.003

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.99)

Carrying out the same analysis by replacing the w-weight matrix computed
by PLS with that determined by MRPLS, only marginal elements remain
with values below 10−4. This can be confirmed by analyzing the estimated
cross-covariance matrix between s′ and t, that is, the 4 t-score variables extracted
by MRPLS

Ŝts′ =

⎡⎢⎢⎣
−0.001 0.010 0.007 −0.006 −0.004 0.009

0.002 0.024 −0.001 −0.025 −0.008 0.006
−0.006 −0.004 −0.005 −0.019 −0.011 −0.016

0.015 −0.005 −0.003 0.008 0.010 −0.008

⎤⎥⎥⎦ .

(2.100)

In contrast, the estimated cross-covariance matrix between t and s is equal to

Ŝts =

⎡⎢⎢⎣
0.989 0.009 0.008 −0.010
0.009 1.008 0.005 0.014
0.008 0.005 1.004 0.010

−0.010 0.014 0.010 1.027

⎤⎥⎥⎦ . (2.101)

That Ŝts is close to an identity matrix is a coincidence and relates to the fact
that the covariance matrices of the original source signals and the extracted
t-score variables are equal to the identity matrix. In general, the extracted t-score
variable set is asymptotically equal to s up to a similarity transformation, that

is, t = S−1/2
ss s.

Finally, Figure 2.9 compares the impact of the extracted LVs by PLS and
MRPLS upon the deflation of the covariance and cross-covariance matrices. The
presented analysis relies on the squared Frobenius norm of the deflated matrices
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Figure 2.9 Deflation of Sx0x0
, Sy0y0

and Sx0y0
using extracted latent variable

sets (left plot → MRPLS model; right plot → PLS model).

over the squared Frobenius norm of the original matrices
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∥∥∥̂S(i)
ff
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and

∥∥∥̂S(i)
ef

∥∥∥2

∥∥̂Sx0y0

∥∥2 =

∥∥∥∥∥̂Sx0y0
−

i−1∑
j=1

p̂jE
{̂
t2
j

}
q̂T

j

∥∥∥∥∥
2

∥∥̂Sx0y0

∥∥2 . (2.104)

Comparing both plots in Figure 2.9 yields that MRPLS rapidly deflates Ŝy0y0
.

The retention of only one set of LVs produces a value below 0.3 for (2.101) and
retaining a second LV set reduces this value to 0.05. In contrast, PLS deflates
Sx0x0

more rapidly than MRPLS. The retention of only three sets of LVs yields
values of 0.33 and 0.72 for PLS and MRPLS, respectively. Increasing this number
to six retained LV sets produces values of 0.04 and 0.28 for PLS and MRPLS,
respectively. Comparing the impact of the deflation with regards to (2.104) yields
a favorable performance of the MRPLS algorithm. For each number of retained
LV sets, MRPLS yields a smaller value that is close to zero for i = 4. In sharp
contrast, even for seven or eight sets of retained LVs, PLS does not completely
deflate Ŝ(i)

ef .
On the basis of the analysis above, particularly the result presented in (2.99),

however, this is expected and confirms that PLS is generally not capable of
extracting common cause variation that is encapsulated in the input and output
variables in an efficient manner unless the weight vectors are constrained to be
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orthogonal to the column space of P′. As this matrix is generally not known a
priori , such a constraint cannot be incorporated into the PLS routine.

2.4 Estimating the number of source signals

This section discusses the important issue of how to estimate the number of sets
of latent components describing common cause variation and, accordingly, the
number of source signals. This number, n, is of fundamental importance for the
following reasons. If too few latent components are retained, variation that is
to be attributed to the source signals is partially encapsulated in the residuals
of the PCA/PLS models. On the other hand, the retention of too many latent
components produces a model subspace that may capture a significant portion of
the error vector(s). In the latter case, the monitoring statistics, summarized in the
next chapter, describe common cause variation that is corrupted by a stronger
influence of the error vector g (PCA) or variation of the input variables that is
not significantly predictive for the output variables, that is, en+1 or s′ for small
data sets (PLS/MRPLS).

An estimation of n that is too small or too large will affect the sensitivity in
detecting and diagnosing special cause variation that negatively influences prod-
uct quality and/or the general state of the process operation. Hence, abnormal
events may consequently not be detected nor correctly diagnosed. The question,
therefore, is when to stop retaining more sets of LVs in PCA/PLS monitoring
models. This question has been addressed in the literature by developing stopping
rules . The stopping rules for PCA, proposed in the research literature, are summa-
rized in Subsection 2.4.1, followed by those of PLS in Subsection 2.4.2. For the
subsequent discussion of stopping rules, n denotes the inclusion of n sets of LVs
that are currently being evaluated and as before, n is the selected number of sets.

2.4.1 Stopping rules for PCA models

The literature has introduced and discussed numerous approaches for determining
how many principal components should be included, or, in relation to (2.2), how
many source signals the process has. Jackson (2003) and Valle et al. (1999)
provide surveys and comparisons of various stopping rules for PCA models. The
aim of this subsection is to bring together the most important stopping rules,
which can be divided into (i) information theoretic criterion, (ii) eigenvalue-
based criterion and (iii) cross-validation-based criterion. An additional criterion
that is difficult to attribute to one of these three categories is (iv) the Velicer’s
partial correlation procedure. These four different approaches are now separately
discussed below.

2.4.1.1 Information-based criteria

These include the Akaike’s Information Criterion (AIC) (Akaike 1974) and the
Minimum Description Length (MDL) (Rissanen 1978; Schwarz 1978). Both
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criteria rely on the utilization of (2.2) under the assumption that z̄ = 0 and
E

{
ggT

} = σ 2
g I. The covariance structure of the stochastic signal component

is therefore

Sz0z0
= �Sss�

T + σ 2
g I (2.105)

with �Sss�
T being of rank n and the discarded eigenvalues of Sz0z0

, λn+1, λn+2,
. . . , λnz

are equal to σ 2
g . The eigendecomposition of the Sz0z0

allows a consistent
estimation of Szszs

= �Sss�
T and Sgg = σ 2

g I

Sz0z0
=

nz∑
i=1

λipip
T
i =

n∑
i=1

(
λi − σ 2

g

)
pip

T
i + σ 2

g

nz∑
i=1

pip
T
i . (2.106)

Given that the eigenvectors are mutually orthonormal, the above equation reduces
to

Sz0z0
=

n∑
i=1

(
λi − σ 2

g

)
pip

T
i︸ ︷︷ ︸

=�Sss�
T

+σ 2
g I. (2.107)

The next step involves the utilization of the following parameter vector

P = (
λ1 λ2 · · · λn σ 2

g pT
1 pT

2 · · · pT
n

)T
(2.108)

which allows the construction of the following maximum likelihood function4

J (z(1), · · · , z(K) |P )=
K∏

k=1

1

(2π)
nz/2

∣∣Sz0z0

∣∣1/2 exp
(− 1

2 z0(k)S−1
z0z0

z0(k)
)
.

(2.109)

Wax and Kailath (1985) rewrote the above equation to be a log-likelihood
function

J ∗ (z0(1), · · · , z0(K) |P ) = K log
(∣∣Sz0z0

∣∣) + trace
(
Sz0z0

Ŝz0z0

)
(2.110)

where Ŝz0z0
is the estimate of Sz0z0

. The maximum likelihood estimate for P
maximizes (2.110). Anderson (1963) showed that these estimates are

λ̂i = li i = 1, · · · , n

σ̂ 2
g = 1

nz − n

nz∑
i=n+1

li (2.111)

p̂i = li i = 1, · · · , n.

4 Information about parameter estimation using maximum likelihood is given in Subsection 6.1.3.
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Here, li and li are the eigenvalue and the eigenvector of Ŝz0z0
. Wax and Kailath

(1985) highlighted that substituting these estimates into (2.110) yields

J ∗ (z(1), · · · , z(K) |P ) = log

⎛⎜⎜⎜⎝
nz∏

i=n+1
λ̂

1/(nZ−n)
i

1
nz−n

nz∑
i=n+1

λ̂i

⎞⎟⎟⎟⎠
(nz−n)K

. (2.112)

The AIC and MDL objective functions include the above term but rely on dif-
ferent terms to penalize model complexity. The objective functions for AIC and
MDL are

AIC(n) = −2 log

⎛⎜⎜⎜⎝
nz∏

i=n+1
λ̂

1/(nZ−n)
i

1
nz−n

nz∑
i=n+1

λ̂i

⎞⎟⎟⎟⎠
(nz−n)K

+ 2n
(
2nz − n

)
(2.113)

and

MDL(n) = − log

⎛⎜⎜⎜⎝
nz∏

i=n+1
λ̂

1/(nz−n)

i

1
nz−n

nz∑
i=n+1

λ̂i

⎞⎟⎟⎟⎠
(nz−n)K

+ 1
2n

(
2nz − n

)
log (K) , (2.114)

respectively. Here, n is the number of principal components 1 ≤ n ≤ nz − 1.
The selected number of principal components, n = n, is the minimum of the
AIC(n) or MDL(n) objective functions, depending which one is used. Wax and
Kailath (1985) pointed out that the MDL objective function provides a consistent
estimation of n, whilst the AIC one is inconsistent and tends, asymptotically, to
overestimate n.

2.4.1.2 Eigenvalue-based criteria

Eigenvalue-based stopping rules include the cumulative percentage variance, the
SCREE test, the residual percentage variance, the eigenvector-one-rule and other
methods that derive from those.

Cumulative percentage variance or CPV test. This is the simplest and per-
haps most intuitive eigenvalue-based test and determines the ratio of the sum of
the first n estimated eigenvalues over the sum of all estimated eigenvalues

CPV(n) =

⎛⎜⎜⎜⎝
n∑

i=1
λ̂i

nz∑
i=1

λ̂i

⎞⎟⎟⎟⎠ 100%. (2.115)
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The CPV criterion relies on the fact that the sum of the squared variables of z0
is equal to the sum of squared values of the score variables. This follows from

z0 =

⎛⎜⎜⎜⎝
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z02
...

z0nz
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. . .
...
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t̂1
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⎞⎟⎟⎟⎠ , (2.116)

and yields the relationship between the j th process and the nz score variables

z0j
=

nz∑
i=1

p̂j î ti . (2.117)

The squared value of z0j
then becomes

z2
0j
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nz∑
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j î t

2
i + 2
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nz∑
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p̂j ĥth

) (
p̂j î ti

)
, (2.118)

producing the following sum over the complete variable set, z01
, · · · , z0nz

,

nz∑
m=1

z2
0m

=
nz∑

m=1

⎛⎝ nz∑
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p̂2
mît

2
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p̂mî ti

)⎞⎠ . (2.119)

As the score variables do not include the index m, rewriting the above sum yields

nz∑
m=1

z2
0m

=
nz∑
i=1

t̂2
i

nz∑
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p̂2
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‖̂pi |2=1
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. (2.120)

Hence, (2.118) reduces to

nz∑
j=1

z2
0j

=
nz∑

j=1

t̂2
j . (2.121)

Finally, taking the expectation of (2.121) yields

E

⎧⎨⎩
nz∑

j=1

z2
0j

⎫⎬⎭ =
nz∑

j=1

E
{
z2

0j

}
=

nz∑
j=1

E
{̂
t2
j

} =
nz∑

j=1

λ̂j . (2.122)

Equation (2.122) implies that the sum of the variances of the recorded process
variables is equal to the sum of the eigenvalues of the data covariance matrix.
Moreover, the variance of the ith score variable is equal to the ith eigenvalue
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of the data covariance matrix. This is analyzed and discussed in more detail in
Chapter 9.

The denominator of the CPV criterion is therefore the sum of the variances
of the process variables and the numerator is the variance contribution of the
retained components to this sum. Hence, the larger n the closer the CPV criterion
becomes to 100%. A threshold, for example 95% or 99%, can be selected and
n is the number for which Equation (2.115) exceeds this threshold. Despite the
simplicity of the CPV criterion, the selection of the threshold is often viewed
as arbitrary and subjective, for example (Valle et al. 1999). Smaller threshold
suggests including fewer components and a less accurate recovery of z0 and
a larger threshold increases n. The threshold is therefore a tradeoff between
parsimony and accuracy in recovering z0.

SCREE test. This test plots the eigenvalues of the Ŝz0z0
against their num-

ber in descending order, which is referred to as a SCREE plot. Cattell (1966)
highlighted that SCREE plots often show that the first few eigenvalues decrease
sharply in value whilst most of the remaining ones align along a line that slowly
decreases and further suggested to retain the first few sharply decreasing eigen-
values and the first one of the second set of slowly decreasing eigenvalues. If
more than one such elbow emerges, Jackson (2003) pointed out that the first of
these breaks determines the number of retained principal components. Conditions
under which a larger number of principal components should be retained if the
SCREE plot produces multiple elbows are discussed in Box et al. (1973); Cattell
and Vogelmann (1977).

Residual percentage variance or RPV test. Similar to the CPV test, the RPV
test determines n from the last few eigenvalues (Cattell 1966; Rozett and Petersen
1975)

RPV(n) =

⎛⎜⎜⎜⎝
nz∑

i=n+1
λ̂j

nz∑
i=1

λ̂i

⎞⎟⎟⎟⎠ 100%. (2.123)

Average-eigenvalue test. Kaiser (1960) proposed an extension of the SCREE
test that relies on the property that the trace of the covariance/correlation matrix
is equal to the sum of the eigenvalues, which follows from the relationship in
(2.117) to (2.122). Using (2.122), the average eigenvalue, λ̄, can be directly
calculated from the trace of the data covariance/correlation matrix

λ̄ = 1
nz

nz∑
i=1

σ̂ 2
i . (2.124)

This rule suggests that eigenvalues that are larger or equal to λ̄ should be asso-
ciates with the source signals and those below λ̄ corresponding to the error
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vector. If Ĉz0z0
is used instead of Ŝz0z0

the average eigenvalue is 1, as all of
the diagonal elements are 1. With the use of Ĉz0z0

this rule is referred to as the
eigenvalue-one-rule.

Alternative methods. Jolliffe (1972, 1973) conducted a critical review of the
average-eigenvalue rule and concluded that the threshold for selecting the number
of retained components may be too high. Based on a number of simulation
examples, a recommendation in these references was to discard components that
correspond to eigenvalues up 70% of the average eigenvalue.

To automate the SCREE test, Horn (1965) proposed the utilization of a
second data set that includes the same number of samples and variables. This
second data set, however, should include statistically uncorrelated Gaussian
variables, so that the covariance matrix reduces to a diagonal matrix. The
eigenvalues of both covariance matrices are then plotted in a single SCREE plot
where the interception determines the cutoff point for separating retained from
discarded components.

The use of the correlation matrix, that is, the identify matrix, reduces this
method to the eigenvalue-one-rule. Farmer (1971) proposed a similar approach
to that in (Horn 1965) using logarithmic SCREE plots. Procedures that rely on
the incorporation of a second artificially generated data set are also referred
to as parallel analysis . Other techniques that utilize the eigenvalues include
the indicator function, the embedded error function (Malinowski 1977) and the
broken stick model (Jolliffe 1986).

2.4.1.3 Cross-validation-based criteria

Cross-validation relies on the residuals gn+1 = [
I − ∑n

i=1 p̂i p̂
T
i

]
z0 and was first

proposed by Mosteller and Wallace (1963) and further discussed in Allen (1974)
and Stone (1974) among others. The main principle behind cross-validation is:

1. remove some of the samples from the reference data set;

2. construct a PCA model from the remaining samples;

3. apply this PCA model to the removed samples; and

4. remove a different set of samples from the reference set and continue with
Step 2 until a preselected number of disjunct sets have been removed.

Figure 2.10 illustrates the structured cross-validation approach, which segments
the reference data set equally into groups. The first group is used to test the PCA
model constructed from the remaining groups, then the second group is used etc.

Stone (1974) argued on theoretical grounds that the number of groups should
be equal to the number of observations, which leads to an excessive computation.
Geisser (1974) showed that using fewer groups is sufficient. This view is also
echoed in Wold (1978). The research literature has proposed a number of per-
formance indices, including the R and W statistics. A different cross-validation
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Figure 2.10 Schematic representation of a structured cross-validation approach.

approach that omits variables rather than observations was proposed in Qin and
Dunia (2000).

Cross-validation based on the R statistic. For the ith group, Wold (1978)
suggested using the ratio of the PRESS statistic (PREdiction Sum of Squares)
over the RSS statistic (Residual Sum of Squares)

Ri (n) = PRESSi (n)

RSSi (n − 1)
, (2.125)

where

PRESSi (n) = 1

K̃inz

K̃i∑
k=1

gT
n+1 (k) gn+1 (k)

RSSi (n − 1) =
K̃i∑
k=1

gT
n (k) gn (k)

(2.126)

and

gn+1 (k) =
[

I −
n∑

i=1

p̂i p̂
T
i

]
z0 (k)

gn (k) =
[

I −
n−1∑
i=1

p̂i p̂
T
i

]
z0 (k)

(2.127)
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with K̃i being the number of samples in the ith group. The sum over the g

groups is

R(n) =
g∑

i=1

Ri(n) =
g∑

i=1

PRESSi (n)

RSSi (n − 1)
. (2.128)

If R(n) is below one then increase n to n + 1, since the inclusion of the nth
component increases the prediction accuracy relative to the (n − 1)th one. In
contrast, if R(n) exceeds one than this new component does not reduce the
prediction accuracy. This stopping rule is often referred to as the R ratio or R

statistic and the number of source signals is equal to the first n R ratios below
one, that is, R(1), . . . , R(n) < 1.

Cross-validation based on the W statistic. Eastment and Krzanowski (1982)
proposed an alternative criterion, defined as the W statistic, that involves the
PRESS statistics for PCA models that include n − 1 and n retained components

W(n) = (PRESS (n − 1) − PRESS (n))Dr

PRESS (n) Dn

(2.129)

where Dr and Dn are the number of degrees of freedom that remain after deter-
mining the nth component and for constructing the nth component, respectively,

Dr = nz (K − 1) −
n∑

j=1

K + nz − 2j Dn = K + nz − 2n. (2.130)

Components that have a W(n) value larger than 1 should be included in the
PCA model. Eastment and Krzanowski (1982) suggested that the optimum
number of source signals is the last one for which W(n)> 1. A discussion of
these cross-validatory stopping rules in Wold et al. (1987), page 49, highlighted
that they work well and the use of a proper algorithm does not render them
too computationally expensive and concluded that cross-validation is slightly
conservative yielding too few rather than too many components. The discussion,
however, deemed this as an advantage as it circumvents an over-interpretation
of the encapsulated information.

Variance of the reconstruction error (VRE). A different approach to those
by Wold (1978) and Eastment and Krzanowski (1982) is discussed in Qin
and Dunia (2000). Instead of leaving portions of the reference data out, this
technique omits the samples of one variable and reconstructs it by the remaining
nz − 1 ones. Evaluating the accuracy of this reconstruction by PCA models for
different numbers of source signals, each variable is removed and reconstructed
by the remaining ones. This produces a total of nz contributions to the VRE
performance index.
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Using the eigendecomposition Sz0z0
= P�PT and defining C(n) = ∑n

j=1

pj pT
j , the projection of z0 onto the model subspace ẑ0 = C(n)z0 is for the ith

element

ẑ0i
=

nz∑
j=1

c
(n)
ij z0j

(2.131)

where c
(n)
ij is the element of C(n) stored in the ith row and the j th column.

Replacing the variable z0i
by ẑ0i

the above equation becomes

(
1 − c

(n)
ii

)
ẑ0i

≈
nz∑

j=1�=i

c
(n)
ij z0j

. (2.132)

The reconstruction of z0j
, z̃0in

, is therefore

z̃0i
=

nz∑
j=1�=i

c
(n)
ij

1 − c
(n)
ii

z0j
. (2.133)

A more detailed treatment of variable reconstruction is given in Section 3.2.
Equation (2.133) outlines that the number of retained components can vary from
1 to nz − 1. For n = nz, C = I and the denominator becomes zero. The use of
(2.133) gives rise to the following reconstruction error

z0i
− z̃0in

= 1

1 − c
(n)
ii

⎛⎝−
i−1∑
j=1

c
(n)
ij z0j

+
(

1 − c
(n)
ii

)
z0i

−
nz∑

j=i+1

c
(n)
ij z0j

⎞⎠ . (2.134)

Next, abbreviating z0i
− z̃0i

= g̃i and rewriting (2.134) yields

g̃
(n)
i = −

(
c
(n)
i1 · · · c

(n)
i,i−1 c

(n)
ii − 1 c

(n)
i,i+1 c

(n)
i,nz

)
1 − c

(n)
ii

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z01
...

z0i−1

z0i

z0i+1
...

z0nz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.135)

Noting that −
(

c
(n)
i1 · · · c

(n)
i,i−1 c

(n)
ii − 1 c

(n)
i,i+1 c

(n)
i,nz

)T

is equal to the ith

row or column of the symmetric matrix I − C(n), this vector is also equal to

−
(

c
(n)
i1 · · · c

(n)
i,i−1 c

(n)
ii − 1 c

(n)
i,i+1 c

(n)
i,nz

)
= υT

i

[
I − C(n)

]
(2.136)
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where υ i is the ith Euclidean vector whose ith element is 1, whilst any other
element is 0. Equation (2.135) can therefore be expressed as follows

g̃
(n)
i = υT

i

[
I − C(n)

]
z0

1 − c
(n)
ii

. (2.137)

Expressing 1 − c
(n)
ii as a function of I − C(n) and υ i

1 − c
(n)
ii = −

(
c
(n)
i1 · · · c

(n)
i,i−1 c

(n)
ii − 1 c

(n)
i,i+1 · · · c

(n)
i,nz

)
︸ ︷︷ ︸

=υT
i

[
I−C(n)

]
υ i

1 − c
(n)
ii =υT

i

[
I − C(n)

]
υ i ,

(2.138)

the variance of the reconstruction error for the ith variable becomes

E

{(
g̃

(n)
i

)2
}

= υT
i

[
I − C(n)

]
E

{
z0zT

0

} [
I − C(n)

]
υ i

υT
i

[
I − C(n)

]
υ i

. (2.139)

Since E
{
z0zT

0

} = Sz0z0
, the above equation reduces to

E

{(
g̃

(n)
i

)2
}

= υT
i

[
I − C(n)

]
Sz0z0

[
I − C(n)

]
υ i

υT
i

[
I − C(n)

]
υ i

. (2.140)

Finally, defining Sz0z0
= [

I − C(n)
]

Sz0z0

[
I − C(n)

]
, the VRE criteria is given by

VRE (n) =
nz∑
i=1

υT
i Sz0z0

υ i(
υT

i

[
I − C(n)

]
υ i

) (
υT

i Sz0z0
υ i

) (2.141)

where υT
i Sz0z0

υ i is the variance of the ith process variable. Valle et al. (1999)
pointed out that the scaling of the reconstruction error is necessary, as variables
that have a larger variance produce, by default, larger reconstruction errors and
may have a dominant influence upon the calculation of the VRE performance
index. The value of n that yields a minimum for the VRE performance index
is then n.

A detailed discussion in Qin and Dunia (2000) showed that (2.141) yields a
minimum, which is related to the fact that, according to (2.2), the data space is
separated into a model subspace and a complementary residual subspace. More-
over, Valle et al. (1999) (i) proved that the VRE approach gives a consistent
estimation of the number of source signals under the assumptions that the error
vector g(i) contains Gaussian i.i.d. sequences and (ii) postulated that it also gives
a consistent estimation of the number of source signals if the error vector contains
Gaussian sequences that have slightly different variances.



MULTIVARIATE DATA MODELING METHODS 75

Valle et al. (1999) argued that the VRE method is to be preferred over
cross-validatory methods for consistently estimating the number of source sig-
nals and in terms of computational costs. By directly comparing various stopping
rules, including VRE, AIC, MDL, CPV, RPV and cross-validation based on the
R-statistics, Valle et al. (1999) showed that the VRE method performed favorably.
Despite the conceptual ease and computational efficiency of the VRE stopping
rule, however, Subsection 6.1.1 shows that the above postulate, differences in
the error variances, may not yield a consistent estimate for n, which is also
demonstrated in Feital et al. (2010).

2.4.1.4 Velicer’s Partial Correlation Criterion (VPC)

Velicer (1976) proposed this technique, which carries out a scaled deflation of
the covariance matrix each time n is increased by 1. Starting with the deflation
of the covariance matrix

M(n+1) = Sz0z0
−

n∑
i=1

λipip
T
i , (2.142)

the scaling process for M(n+1) involves the diagonal matrix D

M̃(n+1) = D−1/2M(n+1)D−1/2 (2.143)

where

D =

⎡⎢⎢⎢⎣
m

(n+1)
11 0 · · · 0
0 m

(n+1)
22 · · · 0

...
...

. . .
...

0 0 · · · m
(n+1)
nznz

⎤⎥⎥⎥⎦ (2.144)

and m
(n+1)
11 , m

(n+1)
22 , · · · , m

(n+1)
nznz are the diagonal elements of M(n+1). The VPC

criterion relies on the sum of the non-diagonal elements of M̃(n+1)

VPC(n) = 2

nz

(
nz − 1

) nz∑
i=1

nz∑
j=1�=i

(
m̃

(n+1)
ij

)2
. (2.145)

In fact, M(n+1) is a correlation matrix. Hence, m̃
(n+1)
ij are correlation coeffi-

cients for i �= j and the VPC performance index is larger than zero within the
range of n = 1 and n = nz − 1. The estimation of n is given by the minimum
of VPC(n). The underlying assumption for the VPC method is that the VPC
curve decreases in value for an additional source variable if the average remain-
ing covariance reduces faster than the remaining variance of the variable set.
In contrast, an increase indicates that an additional source signal explains more
variance than covariance.
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2.4.2 Stopping rules for PLS models

The literature has proposed a number of different stopping rules, which include:

• analysis of variance approaches;

• cross validation criteria based on the accuracy of the PLS model in pre-
dicting the output variables;

• bootstrapping criteria; and

• the H-principle.

These different methods are now discussed separately.

2.4.2.1 Analysis of variance criteria

An analysis of variance can be carried out for the u-score or output variables
(Jackson 2003). More practical and intuitive, however, is the use of the residuals
of y0. In a similar fashion to the SCREE test for PCA, the Frobenius norm of
the residual matrix

F(n+1) = Y0 −
n∑

i=1

t̂î́qT

i (2.146)

can be plotted vs. n. The norm ‖F(n+1)‖2 often shows an initial sharp decrease
when retaining the first few sets of LVs and then slowly decays as additional sets
are included. Like a SCREE plot, n can be estimated from the intercept between
a tangent that represents the first (few) sharp decrease(s) and a parallel line to the
abscissa of value, ‖F(nz+1)‖2. Section 2.2 presents an example of using ‖F(n+1)‖2

to determine the number of source signals (Table 2.2). This example, however,
divides ‖F(n+1)‖2 by ‖Y0‖2 and uses a percentage figure.

2.4.2.2 Cross-validation criterion

Lindberg et al. (1983) proposed a cross-validatory stopping rule that relies on the
principle outlined in Figure 2.10. Segmenting the reference data into g groups,
each group is once omitted for the identification of a PLS model. The prediction
of the output variables is then assessed on the basis of the group that is left out.
The performance index for the gth group is the PRESS statistic

PRESSg(n) = 1

nxK̃g

K̃g∑
k=1

fTn+1(k)fn+1(k) (2.147)

for which

fn+1(k) = y0(k) −
n∑

i=1

t̂i (k)̂q́i . (2.148)
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Including each of the G groups, the PRESS statistic finally becomes

PRESS(n) =
G∑

g=1

PRESSg(n). (2.149)

If minimum of the resulting curve for PRESS(n) exists, then this is the selected
number of source signals. If this curve. however, decreases monotonically without
showing a clear minimum n can be selected by the intercepting the tangent that
describes the first (few) steep decrease(s) and the parallel line to the abscissa.
Published work on cross-validation include Qin (1998) and Rännar et al. (1995).
The latter work, however, discusses cases where there are considerably more
variables than samples.

2.4.2.3 Bootstrapping criterion

As the analysis of variance relies on the user to select n and cross-validation
may be computationally expensive, bootstrapping can be proposed as an alter-
native. Bootstrapping, in this context, relates to recent work on entropy-based
independence tests (Dionisio and Mendes 2006; Wu et al. 2009), which tests the
hypothesis that two variables are independent. Scaling the nth pair of score vari-
ables to unit variance, that is, t̃n = tn/σtn

and ũn = un/σun
, the corresponding

hypothesis is as follows

H0 : t̃n and ũn are independent, such that f
(̃
tn, ũn

) = f
(̃
tn
)
f
(̃
un

)
H1 : t̃n and ũn are dependent, such that f

(̃
tn, ũn

) �= f
(̃
tn
)
f
(̃
un

)
.

(2.150)

The above hypothesis can alternatively be expressed as

H0 : wT
n S(n)

ef qn = 0

H1 : wT
n S(n)

ef qn > 0.
(2.151)

Here, S(n+1)
ef = S(n)

ef − pnσ
2
tn

qT
n , S(1)

ef = Sx0y0
, pn and qn are the nth p-weight and

q-loading vectors, respectively, and σ 2
tn

is the covariance of tn and un. Chapter 10
provides a description of PLS including the relationship used in (2.151).

To test the null hypothesis, Granger et al. (2004) proposed the following
procedure. Defining two independent Gaussian distributed white noise sequences
of zero mean and variance 1, θ and φ, the critical value for testing the null
hypothesis can be obtained from a smoothed bootstrap procedure (Efron and
Tibshirani 1993) for the upper α-percentile using K̃ � K samples of θ and φ,
with K being the number of elements of t̃n and ũn.

1. Select randomly b bootstrapped sets containing K samples of θ and φ

with replacement, defined here as

Di =
[

θi(1) θi(2) · · · θi(K)

φi(1) φi(2) · · · φi(K)

]T

∈ R
K×2, 1 ≤ i ≤ b.
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2. Compute the product for each pair of bootstrapped samples
(
θi(k)φi(k)

)
,

that is, the product of the row elements in Di , and store the products in
vectors dT

i = (
θi(1)φi(1) θi(2)φi(2) · · · θi(K)φi(K)

)
.

3. Work out the absolute estimates of the expectation of each set stored in the
b vectors di , i.e. d̄i = 1/K

∑K
k=1

∣∣θi (k) φi (k)
∣∣ and arrange these absolute

estimates in the vector dT = (
d̄1 d̄2 · · · d̄b

)
in ascending order.

4. Determine the critical value, dα , as the upper α percentile of d.

The null hypothesis, H0, is accepted if

t̃nũn = wT
n S(n)

ef qn√(
wT

n S(n)
ee wn

) (
qT

n S(n)
ff qn

) ≤ dα, (2.152)

and rejected if t̃nũn > dα . In (2.152), S(n+1)
ee = S(n)

ee − pnσ
2
tn

pT
n , S(n+1)

ff = S(n)
ff

− q́nσ
2
tn

q́T
n , where σ 2

tn
is the variance of the nth t-score variable. Moreover,

S(1)
ee = Sv0v0

and S(1)
ff = Sy0y0

. The computation of S(n)
ee and S(n)

ff follows from
the deflation procedure that is discussed and analyzed in Chapter 10.

It should be noted that rejection of H0 results in accepting H1, which implies
that the nth pair of latent variables need to be included in the PLS model and
requires the calculation of the (n + 1)th pair of latent variables after carrying
out the deflation procedure. On the other hand, accepting the null hypothesis sets
n = n.

Table 2.4 lists estimated confidence limits for significance levels of:

• α = 5%, 1%, 0.5%, 0.1%, 0.05% and 0.01%

and different sample sizes:

• K = 100, 200, 500, 1000, 2000, 5000 and 10000.

The entries in Table 2.4 are averaged values over a total of 10 runs for each com-
bination of sample size and significance level. For a reference set containing 5000

Table 2.4 Confidence limits for various sample sizes,
K and significance levels α.

K/α 5% 1% 0.5% 0.1% 0.05%

100 0.1781 0.2515 0.2613 0.2653 0.2531
200 0.1341 0.1691 0.1855 0.1797 0.1890
500 0.0800 0.1181 0.1403 0.1546 0.1536
1000 0.0596 0.0841 0.0883 0.0984 0.0951
2000 0.0401 0.0513 0.0593 0.0686 0.0707
5000 0.0229 0.0385 0.0433 0.0452 0.0512
10000 0.0222 0.0260 0.0309 0.0318 0.0343



MULTIVARIATE DATA MODELING METHODS 79

samples, for example, the confidence limit for the smoothed bootstrap approach
was selected to be α = 0.5%, i.e. 0.0433.

2.4.2.4 H-Principle

Finally, Höskuldsson (1994) showed an alternative approach for deriving the PCA
and PLS objective functions, which is inspired by the Heisenberg uncertainty
inequality and referred to as the H-principle. This objective function is a product
of a goodness of fit and a precision criterion. More precisely, Höskuldsson (1994,
1995, 2008) showed that the PCA and PLS objective functions can be derived
from the H-principle including an estimation of n. A more detailed discussion
regarding the H-principle, however, is beyond the scope of this book.

2.5 Tutorial Session

Question 1: Compare the maximum number of sets of LVs that can
be obtained by applying the PLS, the maximum redundancy and the CCA
(Chapter 10) objective function if the covariance and cross-covariance matrices
are known and of arbitrary dimension. Why can PLS exhaust the input variable
set irrespective of the number of input and output variables, whilst maximum
redundancy and CCA cannot?

Question 2: Following from Question 1, why does MSPC rely on the use of
variance and covariance-based methods, i.e. PCA and PLS, for providing a data
model for the recorded variable set(s)?

Question 3: Assuming that z0 = x0, why can PCA and PLS be seen as
unsupervised and supervised learning algorithms, respectively?

Question 4: Why is it beneficial to rely on statistically independent score
variables, which PCA and PLS extract from the data and input variable set,
respectively, instead of the original variable sets?

Question 5: Explain the difference between the PLS and MRPLS objective
function. What do the extracted score variables explain in both cases?

Project 1: With respect to the simulation example in Subsection 2.1.3, use a
Monte-Carlo simulation and vary the number of reference samples, and analyze
this impact on the accuracy of estimating the data covariance matrix and its
eigendecomposition.

Project 2: Carry out a Monte-Carlo simulation to estimate the elements
of the regression matrix (simulation example in Subsection 2.2.3) by varying
the number of reference samples and the number of retained sets of LVs and
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comment upon your findings. Contrast your results with the simulation example
in Subsection 6.2.2.

Project 3: Develop a deflation-based method for CCA to extract the common
cause variation encapsulated in the input and output variables with respect to the
data structure in (2.51). Use the simulation example in Subsection 2.3.4 and
compare the performance of the developed CCA method with that of MRPLS
with particular focus on the predictability of the output variables.

Project 4: Generate a data model with respect to (2.2) that includes a total
of nz = 20 process variables, a varying number of source signals 1 ≤ n < 19, a
varying error variance σ 2

g , a varying number of reference samples K and apply
each of the stopping rules in Section 2.4.1 to estimate n. Comment and explain
the results. Which method is most successful in correctly estimating n?



3

Process monitoring charts

The aim of this chapter is:

• to design monitoring charts on the basis of the extracted LV sets and the
residuals;

• to show how to utilize these charts for evaluating the performance of the
process and for assessing product quality on-line; and

• to outline how to diagnose behavior that is identified as abnormal by these
monitoring charts.

For monitoring a complex process on-line, the set of score and residual vari-
ables give rise to the construction of a statistical fingerprint of the process.
This fingerprint serves as a benchmark for assessing whether the process is in-
statistical control or out-of-statistical-control. Based on Chapters 1 and 2, the
construction of this fingerprint relies on the following assumptions for identifying
PCA/PLS data models:

• the error vectors associated with the PCA/PLS data models follow a
zero mean Gaussian distribution that is described by full rank covariance
matrices;

• the score variables, describing common cause variation of the process,
follow a zero mean Gaussian distribution that is described by a full rank
covariance matrix;

• for any recorded process variable, the variance contribution of the source
signals (common cause variation) is significantly larger than the variance
contribution of the corresponding error signal;

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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• the number of source variables is smaller than the number of recorded
process (PCA) or input variables (PLS);

• recorded variable sets have constant mean and covariance matrices over
time;

• the process is a representation of the data models in either (2.2), (2.24) or
(2.51);

• none of the process variables possess any autocorrelation; and

• the cross-correlation function of any pair of process variables is zero for
two different instances of time, as described in Subsection 2.1.1.

Part III of this book presents extensions of conventional MSPC which allow
relaxing the above assumptions, particularly the assumption of Gaussian dis-
tributed source signals and time-invariant (steady state) process behavior.

The statistical fingerprint includes scatter diagrams, which Section 1.2 briefly
touched upon, and non-negative squared statistics involving the t-score variables
and the residuals of the PCA and PLS models. For the construction of moni-
toring models, this chapter assumes the availability of the data covariance and
cross-covariance matrices. In this regard, the weight, loading and score vari-
ables do not need to be estimated from a reference data set. This simplifies the
presentation of the equations derived, as the hat notation is not required.

Section 3.1 introduces the tools for constructing the statistical fingerprint
for on-line process monitoring and detecting abnormal process conditions that
are indicative of a fault condition. Fault conditions could range from simple
sensor or actuator faults to complex process faults. Section 3.2 then summarizes
tools for diagnosing abnormal conditions to assist experienced plant personnel in
narrowing down potential root causes. Such causes could include, among many
other possible scenarios, open bypass lines, a deteriorating performance of a heat
exchanger, a tray or a pump, a pressure drop in a feed stream, a change in the
input composition of input feeds, abnormal variation in the temperature of input
or feed streams, deterioration of a catalyst, partial of complete blockage of pipes
and valve stiction.

The diagnosis offered in Section 3.2 identifies to what extent a recorded vari-
able is affected by an abnormal event. This section also shows how to extract
time-based signatures for process variables if the effect of a fault condition dete-
riorates the performance of the process over time. Section 3.3 finally presents
(i) a geometric analysis of the PCA and PLS projections to demonstrate that fault
diagnosis based on the projection of a single sample along predefined directions
may lead to erroneous and incorrect diagnosis results in the presence of complex
fault conditions and (ii) discusses how to overcome this issue. A tutorial session
concerning the material covered in this chapter is given in Section 3.4.
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3.1 Fault detection

Following from the discussion in Chapter 2, PCA and PLS extract latent
information in form of latent score variables and residuals from the recorded
variables. According to the data models for PCA in (2.2) and (2.6) and PLS in
(2.23), (2.24) and (2.51), the t-score variables describe common cause variation
that is introduced by the source vector s. Given that the number of t-score
variables is typically significantly smaller than the number of recorded variables,
MSPC allows process monitoring on the basis of a reduced set of score variables
rather than relying on charting a larger number of recorded process variables.

With respect to the assumptions made for the data structures for PCA and
PLS in Chapter 2, the variation described by the t-score variables recovers the
variation of the source variables. Hence, the variation encapsulated in the t-score
variables recovers significant information from recorded variables, whilst the
elements in the error vector have an insignificant variance contribution to the
process variable set. Another fundamental advantage of the t-score variables is
that they are statistically independent, which follows from the analysis of PCA
and PLS in Chapters 9 and 10, respectively.

The t-score variables can be plotted in scatter diagrams for which the confi-
dence regions are the control ellipses discussed in Subsection 1.2.3. For a time-
based analysis, MSPC relies on nonnegative quadratics that includes Hotelling’s
T 2 statistics and residual-based squared prediction error statistics, referred to
here as Q statistics. Scatter diagrams are not time-based but allow the moni-
toring of pairs or triples of combinations of t-score variables. In contrast, the
time-based Hotelling’s T 2 statistics present an overall measure of the variation
within the process.

The next two subsections provide a detailed discussion of scatter diagrams
and the Hotelling’s T 2 statistic. It is important to note that MRPLS may generate
two Hotelling’s T 2 statistics, one for the common cause variation in the predictor
and response variable sets and one for variation that is only manifested in the
input variables and is not predictive for the output variables. This is discussed
in more detail in the next paragraph and Subsection 3.1.2.

The mismatch between the recorded variables and what the t-score variables,
or source variables, can recover from the original variables are model residuals.
Depending on the variance of the discarded t-score variables (PLS) or the
variance of the t′-scores (MRPLS), these score variables may be used to
construct a Hotelling’s T 2 or a residual Q statistic. Whilst Hotelling’s T 2

statistics present a measure that relates to the source signals, or significant
variation to recover the input variables, the residual Q statistic is a measure that
relates to the model residuals.

Loosely speaking, a Q statistic is a measure of how well the reduced
dimensional data representation in (2.2), (2.24) or (2.51) describe the recorded
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data. Figure 1.7 presents an illustration of perfect correlation, where the sample
projections fall onto the line describing the relationship between both variables.
In this extreme case, the residual vector is of course zero, as the values of
both variables can be recovered without an error from the projection of the
associated sample.

If, however, the projection of a sequence of samples do not fall onto this line
an error for the recovery of the original variables has occurred, which is indicative
of abnormal process behavior. For a high degree of correlation, Figure 1.9 shows
that the recovered values of each sample using the projection of the samples
onto the semimajor of the control ellipse are close to the recorded values. The
perception of ‘close’ can be statistically described by the residual variables, its
variances and the control limit of the residual based monitoring statistic.

3.1.1 Scatter diagrams

Figures 1.6, 1.7 and 1.9 show that the shape of the scatter diagrams relate to
the correlation between two variables. Different from the 2D scatter diagrams,
extensions to 3D scatter diagrams are possible, although it is difficult to graph-
ically display a 3D control sphere. For PCA and PLS, the t-score variables,
tPCA = PT z0 for PCA and tPLS = RT x0 for PLS are uncorrelated and have the
following covariance matrices

E
{
tPCAtT

PCA

} =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤⎥⎥⎥⎦ = � (3.1)

and

E
{
tPLStT

PLS

} =

⎡⎢⎢⎢⎣
σ 2

t1
0 · · · 0

0 σ 2
t2

· · · 0
...

...
. . .

...

0 0 · · · σ 2
tn

⎤⎥⎥⎥⎦ = St t . (3.2)

The construction of the weight matrix R is shown in Chapter 10. Under the
assumption that the exact data covariance matrix is known a priori , the control
ellipse for i �= j has the following mathematical description

t2
i

a2
i

+ t2
j

a2
j

= T 2
α (3.3)

where T 2
α = χ2

α (2) is the critical value of a χ2 distribution with two degrees of
freedom and a significance of α. The length of both axes depends on the variance
of the ith and j th t-score variable, denoted by ai = √

λi and aj = √
λj for PCA,
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and ai = σ 2
ti

and aj = σ 2
tj

for PLS. These variances correspond to the diagonal
elements of the matrices in (3.1) and (3.2), noting that 1 ≤ i, j ≤ n.

It is straightforward to generate a control ellipse for any combination of
score variables for n> 2. This, however, raises the following question: how can
such scatter plots be adequately depicted? A naive solution would be to extend
the 2D concept into an nD concept, where the 2D control ellipse becomes an
nD-ellipsoid

n∑
i=1

t2
i

a2
i

= T 2
α (3.4)

where T 2
α = χ2

α (n) is the critical value of a χ2 distribution with n degrees of
freedom. While it is still possible to depict a control ellipsoid that encompasses
the orthogonal projections of the data points onto the n = 3-dimensional model
subspace, however, this is not the case for n> 3. A pragmatic solution could be
to display pairs of score variables, an example of which is given in Chapter 5.

It is important to note that (3.3) and (3.4) only hold true if the exact
covariance matrix of the recorded process variables is known (Tracey et al.
1992). If the covariance matrix must be estimated from the reference data, as
shown in Sections 2.1 and 2.2, the approximation by a χ2-distribution may
be inaccurate if few reference samples, K , are available. In this practically
important case, (3.4) follows an F-distribution under the assumption that the
covariance matrix of the score variables has been estimated independently from
the score variables. For a detailed discussion of this, refer to Theorem 5.2.2. in
Anderson (2003). The critical value T 2

α in this case is given by (MacGregor and
Kourti 1995; Tracey et al. 1992)

T 2
α = n

(
K2 − 1

)
K (K − n)

Fα (n, K − n) (3.5)

where Fα (n, K − n) is the critical value of an F-distribution for n and K − n

degrees of freedom, and a significance of α. It should be noted that the value

of
n
(
K2−1

)
K(K−n)

Fα (n, K − n) converges to χ2
α (n) as K → ∞ (Tracey et al. 1992)

and if the variable mean is known a priori , T 2
α becomes (Jackson 1980)

T 2
α = n (K − 1)

K − n
Fα (n, K − n) . (3.6)

3.1.2 Non-negative quadratic monitoring statistics

Non-negative quadratic statistics could be interpreted as a kinetic energy measure
that condenses the variation of a set of n score variables or the model residuals
into single values. The reference to non-negative quadratics was proposed by
Box (1954) and implies that it relies on the sum of squared values of a given set
of stochastic variables. For PCA, the t-score variables and the residual variables



86 FUNDAMENTALS OF MULTIVARIATE SPC

can be used for such statistics. In the case of PLS, however, a total of three
univariate statistics can be established, one that relates to the t-score variables
and two further that correspond to the residuals of the output and the remaining
variation of the input variables.

The next two paragraphs present the definition of non-negative quadratics for
the t-score variables and detail the construction of the residual-based ones for
PCA and PLS. For the reminder of this book, the loading matrix for PCA and
PLS are denoted as P and only contain the first n column vectors, that is, the
ones referring to common-cause variation. For PCA and PLS, this matrix has
nz and n, and nx and n columns and rows, respectively. The discarded loading
vectors are stored in a second matrix, defined as Pd . Moreover, the computed
score vector, t = PT z0 for PCA and t = RT x0 for PLS is of dimension n.

3.1.2.1 PCA monitoring models

The PCA data model includes the estimation of:

• the model subspace;

• the residual subspace;

• the error covariance matrix;

• the variance of the orthogonal projection of the samples onto the loading
vectors; and

• the control ellipse/ellipsoid.

The model and residual subspaces are spanned by the column vectors of P
and Pd , respectively. Sections 6.1 and 9.1 provide a detailed analysis of PCA,
where these geometric aspects are analyzed in more detail.

According to (2.2), the number of source signals determines the dimension
of the model subspace. The projection of the samples onto the model subspace
therefore yields the source variables that are corrupted by the error variables,
which the relationship in (2.8) shows. Moreover, the mismatch between the data
vector z0 and the orthogonal projection of z0 onto the model subspace, g, does
not include any information of the source signals, which follows from

g = z0 − ẑ0 = z0 − Pt = z0 − PPT z0 = [
I − PPT

]
z0

g = PdPT
d (�s + g) = Pdtd = PdPT

d g. (3.7)

The above relationship relies on the fact that PT
d � = 0, which (2.7) outlines,

and the eigenvectors of the data covariance matrix are mutually orthonormal. The
score vector t, approximating the variation of the source vector s, and the residual
vector g give rise to the construction of two non-negative squared monitoring
statistics, the Hotelling’s T 2 and Q statistics that are introduced below.
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Hotelling’s T 2 statistic. The univariate statistic for the t-score variables,
t = PT z0 is defined as follows

T 2 = tT �−1t = zT
0 P�−1PT z0. (3.8)

The matrix � includes the largest n eigenvalues of Sz0z0
as diagonal elements.

For a significance α, the control limit for the above statistic, T 2
α is equal to χ2 (n)

if the covariance matrix of the recorded process variables is known. If this is
not the case the control limit can be obtained as shown in (3.5) or (3.6). The
above non-negative quadratic is also referred to as a Hotelling’s T 2 statistic. The
null hypothesis for testing whether the process is in-statistical-control, H0, is as
follows

H0 : T 2 ≤ T 2
α (3.9)

and the hypothesis H0 is rejected if

H0 : T 2 > T 2
α . (3.10)

The alternative hypothesis H1, the process is out-of-statistical-control, is accepted
if H0 is rejected.

Assuming that the fault condition, representing the alternative hypothesis H1,
describes a bias of the mth sensors, denoted by zf = z0 + �z where the mth
element of �z is nonzero and the remaining entries are zeros, the score variables
become tf = t + �t. This yields the following impact upon the Hotelling’s T 2

statistic, denoted here by T 2
f where the subscript f refer to the fault condition

T 2
f = (t + �t)T �−1 (t + �t) = tT �−1t + 2tT �−1�t + �tT �−1�t. (3.11)

The above equation uses tf = PT
(
z0 + �z

) = t + �t. The alternative hypoth-
esis, H1, is therefore accepted if

H1 : T 2
f > T 2

α (3.12)

and rejected if T 2
f ≤ T 2

α . A more detailed analysis of the individual terms in
(3.11) T 2

1 = tT �−1t, T 2
2 = 2tT �−1�t and T 2

3 = �tT �−1�t yields that

• T 2
1 ≤ T 2

α ;

• E
{
T 2

2

} = 0;

• E
{(

T 2
2

)2
}

= 4�tT �−1E
{
ttT

}
�−1�t = 4�tT �−1�t;

• T 2
2 ∼ N

{
0, 4�tT �−1�t

}
; and

• T 2
3 > 0.
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If the term T 2
2 is hypothetically set to zero, T 2

f = T 2
1 + T 2

3 . The larger the
fault magnitude, �zm the more the original T 2 statistic is shifted, which follows
from

T 2
3 = �z2

m

(
pm1 pm2 · · · pmn

)
⎡⎢⎢⎢⎣

1/λ1 0 · · · 0
0 1/λ2 · · · 0
...

...
. . .

...

0 0 · · · 1/λn

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

pm1
pm2
...

pmn

⎞⎟⎟⎟⎠ , (3.13)

which is equal to

T 2
3 = �z2

m

n∑
i=1

p2
mi

λi

. (3.14)

The impact of the term T 2
2 upon T 2

f is interesting since it represents a Gaussian
distributed contribution. This, in turn, implies that the PDF describing T 2

f is not
only a shift of T 2 by T 2

3 but it has also a different shape.
Figure 3.1 presents the PDFs that describe the T 2 and T 2

f and illustrate the
impact of Type I and II errors for the hypothesis testing. It follows from Sub-
sections 1.1.3 and 1.2.4 that a Type I error is a rejecting of the null hypothesis
although it is true and a Type II error is the acceptance of the null hypothe-
sis although it is false. Figure 3.1 shows that the significance level for the Type
II, β, depends on the exact PDF for a fault condition, which, even the simple

H0: H1:

f (T2)

f (Tf
2)

T2

Tf
2

Type I error = 1% = α.100%

Type II error = 3.6% = β.100% 

Figure 3.1 Illustration of Type I and II errors for testing null hypothesis.
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sensor fault, is difficult to determine. The preceding discussion, however, high-
lights that the larger the magnitude of the fault condition the more the PDF will
be shifted and hence, the smaller β becomes. In other words, incipient fault con-
ditions are more difficult to detect than faults that have a profound impact upon
the process.

Q statistic. The second non-negative quadratic statistic relates to the PCA
model residuals g = z0 − Pt = [

I − PPT
]

z0 and is given by

Q = gT g = zT
0

[
I − PPT

]
z0. (3.15)

The control limit for the Q statistic is difficult to obtain although the above
sum appears to be the sum of squared values. More precisely, Subsection 3.3.1
highlights that the PCA residuals are linearly dependent and are therefore not
statistically independent. Approximate distributions for such quadratic forms
were derived in Box (1954) and Jackson and Mudholkar (1979). Appendix B
in Nomikos and MacGregor (1995) yielded that both approximations are close.
Using the method by Jackson and Mudholkar (1979) the control limit for the Q

statistic is as follows

Qα = θ1

⎛⎜⎝cα

√
2θ2h

2
0

θ1
+ θ2h0

(
h0 − 1

)
θ2

1

+ 1

⎞⎟⎠
1
h0

, (3.16)

where θ1 = ∑nz

i=n+1 λi , θ2 = ∑nz

i=n+1 λ2
i , θ3 = ∑nz

i=n+1 λ3
i , h0 = 1 − 2θ1θ3

3θ2
and the

variable cα is the normal deviate evaluated for the significance α. Defining the
matrix product PPT = C, (3.15) can be rewritten as follows

Q =
nz∑
i=1

(
1 − cii

)
z2

0i
−

nz∑
i=1

z0i

⎛⎝ nz∑
j=1�=i

cjiz0j

⎞⎠ (3.17)

where cji = ∑n
k=1 pkjpki is the element of C stored in the j th row and the ith

column. Given that C is symmetric, i.e. cji = cij , (3.17) becomes

Q =
nz∑
i=1

(
1 − cii

)
z2

0i
− 2

nz−1∑
i=1

z0i

nz∑
j=i+1

cij z0j
. (3.18)

A modified version of the Q statistic in (3.15) was proposed in (Hawkins
1974) and entails a scaling of each discarded score vector by its variance

T 2
d = tT

d �−1
d td = zT

0 Pd�
−1
d PT

d z0 (3.19)
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and follows a χ2 distribution with the control limit T 2
dα

= χ2
α

(
nz − n

)
. If the data

covariance matrix needs to be estimated, the control limit T 2
dα

is given by

T 2
dα

=
(
nz − n

) (
K2 − 1

)
K

(
K − nz + n

) Fα

(
nz − n, K − nz + n

)
. (3.20)

The diagonal matrix �d contains the discarded eigenvalues of Sz0z0
and

td = Pdz0. For process monitoring applications, however, a potential drawback
of the residual T 2

d statistic is that some of the discarded eigenvalues, λn+1 · · · λnz
,

may be very close or equal to zero. This issue, however, does not affect the
construction of the Q statistic in (3.15).

Using the Q statistic for process monitoring, testing whether the process is
in-statistical-control relies on the null hypothesis H0, which is accepted if

H0 : Q ≤ Qα (3.21)

and rejected if Q> Qα . On the other hand, the alternative hypothesis H1, describ-
ing the out-of-statistical-control situation, is accepted if the null hypothesis H0
is rejected

H1 : Q> Qα. (3.22)

Assuming that the fault condition is a bias of the mth sensor that has the form
of a step, (3.15) becomes

Qf =
nz∑
i=1

z2
0i

(
1 − cii

) +
nz∑
i=1

z0i

⎛⎝ nz∑
j=1�=i

z0j
cij

⎞⎠ +

�z2
m

(
1 − cmm

) + �zm

nz∑
i=1�=m

z0i
cmi.

(3.23)

Similar to the Hotelling’s T 2 statistic, the step-type fault yields a Q statistic Qf

that includes the offset term �z2
m

(
1 − cmm

)
, where �zi is the magnitude of the

bias, and the Gaussian distributed term �zm

∑nz

k=1�=i zkcik . Figure 3.1 and (3.23)
highlight that a larger bias leads to a more significant shift of the PDF for Qf

relative to the PDF for Q and therefore a smaller Type II error β. In contrast, a
smaller and incipient sensor bias leads to a large Type II error and is therefore
more difficult to detect.

3.1.2.2 PLS monitoring models

PLS and MRPLS models give rise to the generation of three univariate statistics.
The ones for PLS models are presented first, followed by those for MRPLS
models.
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Monitoring statistics for PLS models. Similar to PCA, the retained t-score
variables allow constructing a Hotelling’s T 2 statistic, which according to (2.24)
describes common cause variation

T 2 = tT S−1
tt t = xT

0 RS−1
tt RT x0. (3.24)

Here, t = RT x0 and Stt is given in (3.2). Equations (3.5) or (3.6) show how to
calculate the control limit for this statistic if Stt is not known a priori . If Sx0x0

and Sx0y0
are available the control limit is T 2

α = χ2
α (n). The Q statistic for the

residual of the output variables is given by

Qf = fT f. (3.25)

Here, f = y0 − QRT x0 = ys + f − QRT x0.
The residuals of the input variables can either be used to construct a

Hotelling’s T 2 or a Q statistic, depending upon their variances. This follows
from the discussion concerning the residual statistic proposed by Hawkins
(1974). Very small residual variances can yield numerical problems in
determining the inverse of the residual covariance matrix. If this is the case, it
is advisable to construct a residual Q statistic

Qe = eT e, (3.26)

where e = [
I − PRT

]
x0. In a similar fashion to PCA, the elements of the resid-

ual vector e are linear combinations of the input variables computed from the
discarded r-weight vector stored in Rd

td = RT
d x0 e = Pdtd = PdRT

d x0. (3.27)

Using the relationship in (3.27), equation (3.26) can be rewritten as follows

Qe = tT
d PT

d Pdtd . (3.28)

For determining the control limits of the Qe and Qf statistics, it is possible to
approximate the distribution functions of both non-negative quadratics by central
χ2 distributions1. Theorem 3.1 in Box (1954) describes this approximation, which
allows the determination of control limits for a significance α

Qeα
= geχ

2
α

(
he

)
Qfα

= gf χ2
α

(
hf

)
(3.29)

where the g and h parameters are obtained such that the approximated distribu-
tions have the same first two moments as those of Qe and Qf in (3.25) and (3.28).

1 For a central χ2 distribution, the mean of each contributing element is assumed to be zero
unlike a noncentral where this assumption is relaxed.
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In other words, the mean and variance of Q = gχ2
α (h) E

{
gχ2

α (h)
} = gh2 and

E
{(

gχ2
α (h)

)2
}

= g2E
{(

χ2
α (h)

)2
}

= 2g2h, so that ge and gf are

ge =
E

{(
Qe − E

{
Qe

})2
}

2E
{
Qe

} gf =
E

{(
Qf − E

{
Qf

})2
}

2E
{
Qf

} (3.30)

and he and hf are

he = 2

(
E

{
Qe

})2

E
{(

Qe − E
{
Qe

})2
} hf = 2

(
E

{
Qf

})2

E
{(

Qf − E
{
Qf

})2
} . (3.31)

For larger variances of the discarded t-score variables, although they do not
contribute significantly to the prediction of the output variables, it is advisable
to construct a second Hotelling’s T 2 statistic instead of the Qe statistic

T 2
d =

nx−n∑
i=1

t2
di

σ 2
tdi

= xT
0 RdS−1

td td
RT

d x0 (3.32)

where S−1
td td

= diag
{

1/σ 2
td1

1/σ 2
td2

· · · 1/σ 2
tdn

}
. The Hotelling’s T 2

d statistic fol-

lows a central χ2 statistic with nx − n degrees of freedom if the covariance and
cross-covariance matrices are known a priori or a scaled F distribution if not.
As before, the estimate, Ŝtd td

, has to be obtained from an different reference
set that has not been used to estimate the weight and loading matrices (Tracey
et al. 1992).

The advantage of the statistics in (3.24) and (3.32) is that each score variable
is scaled to unity variance and has the same contribution to the Hotelling’s T 2

statistics. Hence, those score variables with smaller variances, usually the last
few ones, are not overshadowed by those with significantly larger variances,
typically the first few ones. This is of concern if a fault condition has a more
profound effect upon score variables with a smaller variance. In this case, the
residuals Qe statistic may yield a larger Type II error compared to the Hotelling’s
T 2

d statistic. Conversely, if the variances of the last few score variables are very
close to zero numerical problems and an increase in the Type I error, particularly
for small reference sets, may arise. In this case, it is not advisable to rely on the
Hotelling’s T 2

d statistic.

Monitoring statistics for MRPLS models. With respect to (2.51), a
Hotelling’s T 2 statistic to monitor common cause variation relies on the t-score

2 The mean and variance of χ2 (h), E
{
χ2 (h)

}
and E

{(
χ2 (h) − h

)2
}

, are h and 2h, respectively.
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variables that are linear combinations of the source variables corrupted by error
variables

T 2 = tT t = xT
0 RRT x0. (3.33)

The covariance matrix of the score variables is E
{
ttT

} = RT Sx0x0
R = I and

represents, in fact, the length constraint of the MRPLS objective function in
(2.66). The Hotelling’s T 2 statistic defined in (3.33) follows a χ2 distribution
with n degrees of freedom and its control limit is χ2

α (n).
The data model in (2.51) highlights that the residuals of the input variables

that are not correlated with the output variables may still be significant and can
also be seen as common cause variation but only for the input variable set. The
vector of source variables s′ describes this variation and allows the construction
of a second Hotelling’s T 2 statistic, denoted here as the Hotelling’s T ′2 statistic

T ′2 = t′T S−1
t′t′t

′ = xT
0 R′S−1

t′t′R
′T x0. (3.34)

Here, R′ is the r-loading matrix containing the nx − n r-loading vectors for
determining t′. The t′-score variables are equal to the s′ source variables up to a
similarity transformation and, similar to the t-score variables, St′t′ = R′T Sx0x0

R′
is a diagonal matrix. If the score covariance matrices need to be estimated Tracey
et al. (1992) outlined that this has to be done from a different reference set that
was not used to estimate the weight and loading matrices. If this is guaranteed,
the Hotelling’s T 2 statistic follows a scaled F-distribution with n and K − n

and the Hotelling’s T ′2 statistics follows a scaled F distribution with nx − n and
K − n degrees of freedom.

If the variance of the last few t′-score variables is very close to zero, it is
advisable to utilize a Q statistic rather than the Hotelling’s T ′2 statistic. Assuming
that each of the t′-score variables have a small variance, a Q statistic can be
obtained that includes each score variable

Qe = t′T t′ = x0R′R′T x0. (3.35)

If there are larger differences between the variances of the t′-score variables, it
is advisable to utilize the Qe statistic or to divide the t′-score variables into two
sets, one that includes those with larger variances and the remaining ones with a
small variance. This would enable the construction of two non-negative quadratic
statistics. Finally, the residuals of the output variables form the Qf statistic in
(3.25) along with its control limit in (3.29) to (3.31).

3.2 Fault isolation and identification

After detecting abnormal process behavior, the next step is to determine what
has caused this event and what is its root cause. Other issues are how signifi-
cantly does this event affect product quality and what impact does it have on the
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general process operation? Another important question is can the process con-
tinue to run while the abnormal condition is removed or its impact minimized,
or is it necessary to shut down the process immediately to remove the fault
condition? The diagnosis of abnormal behavior, however, is difficult (Jackson
2003) and often requires substantial process knowledge and, particularly, about
the interaction between individual operating units. It is therefore an issue that
needs to be addressed by experienced process operators.

To assist plant personnel in identifying potential causes of abnormal behavior,
MSPC offers charts that describe to what extent a particular process variable is
affected by such an event. It can also offer time-based trends that estimate the
effect of a fault condition upon a particular process variable. These trends are
particularly useful if the impact of a fault condition becomes more significant over
time. For a sensor or actuator bias or precision degradation, such charts provide
useful information that can easily be interpreted by a plant operator. For more
complex process faults, such as the performance deterioration of units, or the
presence of unmeasured disturbances, these charts offer diagnostic information
allowing experienced plant operators to narrow down potential root causes for a
more detailed examination.

It is important to note, however, that such charts examine changes in the
correlation between the recorded process variables but do not present direct
causal information (MacGregor and Kourti 1995; MacGregor 1997; Yoon and
MacGregor 2001). Section 3.3 analyzes associated problems of the charts dis-
cussed in this section. Before developing and discussing such diagnosis charts,
we first need to introduce the terminology for diagnosing fault conditions in tech-
nical systems. Given that there are a number of competing definitions concerning
fault diagnosis, this book uses the definitions introduced by Isermann and Ballé
(1997), which are:

Fault isolation: Determination of the kind, location and time of detection of
a fault. Follows fault detection.

Fault identification: Determination of the size and time-variant behavior of
a fault. Follows fault isolation.

Fault diagnosis: Determination of the kind, size, location and time of detec-
tion of a fault. Follows fault detection. Includes fault isolation and identification.

The literature introduced different fault diagnosis charts and methods,
including:

• contribution charts;

• charting the results of residual-based tests; and

• variable reconstruction.

Contribution charts, for example discussed by Koutri and MacGregor (1996)
and Miller et al. (1988), indicate to what extent a certain variable is affected
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by a fault condition. Residual-based tests (Wise and Gallagher 1996; Wise et al.
1989a) examine changes in the residual variables of a sufficiently large data
set describing an abnormal event, and variable reconstruction removes the fault
condition from a set of variables (Dunia and Qin 1998; Lieftucht et al. 2009).

3.2.1 Contribution charts

Contribution charts reveal which of the recorded variable(s) has(have) changed
the correlation structure among them. More precisely, these charts reveal how
each of the recorded variables affects the computation of particular t-score vari-
ables. This, in turn, allows computing the effect of a particular process variable
upon the Hotelling’s T 2 and Q statistics if at least one of them detects an out-
of-statistical-control situation. The introduction of contribution charts is designed
here for PCA. The tutorial session at the end of this chapter offers a project for
developing contribution charts for PLS and to contrast them with the PCA ones.

3.2.1.1 Variable contribution to the Hotelling’s T 2 statistic

The contribution of the recorded variable set z0 upon the ith t-score variable
that forms part of the Hotelling’s T 2 statistic is given by Kourti and MacGregor
(1996):

1. Determine which score variable is significantly affected by out-of-
statistical-control situation by testing the alternative hypothesis of the
normalized score variables

ti√
λi

i ∈ [1, 2, . . . n] , (3.36)

which is as follows

H1 : n
t2
i

λi

> T 2
α . (3.37)

This yields n∗ ≤ n score variables that are affected and earmarked for
further inspection. Moreover, the index set 1, 2, . . . , n can be divided into
a subset of indices that contains the affected score variables, N∗ that
contains n∗ elements, and a subset N that stores the remaining n − n∗
elements. The union of both subsets, N ∪ N∗, is the index set 1, 2, . . . , n

and the intercept of both subsets contains no element, N ∩ N∗ = ∅.

2. Next, compute the contribution of each process variable z0j
,

j ∈ [
1, 2, . . . , nz

]
, for each of the violating score variables, ti , where

i ∈ N∗

�z
(i)
0k

= ti

λi

pjiz0j
. (3.38)

3. Should the contribution of �z
(i)
0j

be negative, set it equal to zero.
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4. The contribution of the j th process variable on the Hotelling’s T 2 statistic
is

�z0j
=

∑
i∈N∗

�z
(i)
0j

(3.39)

5. The final step is to plot the values of �z0j
for each of the nz variables

in the form of a 2D bar chart for a specific sample or a 3D bar chart
describing a time-based trend of �z0j

values.

For this procedure, pji is the entry of the loading matrix P stored in the j th
row and the ith column.

The above procedure invites the following two questions. Why is the critical
value for the hypothesis test in (3.37) T 2

α/n and why do we remove negative
values for �z

(i)
0k

? The answer to the first question lies in the construction of the
Hotelling’s T 2 statistic, which follows asymptotically a χ2 distribution (Tracey
et al. 1992). Assuming that n∗ < n, the Hotelling’s T 2 statistic can be divided
into a part that is affected and a part that is unaffected by a fault condition

T 2 =
∑
i∈N∗

t2
i

λi︸ ︷︷ ︸
affected by the
fault condition

+
∑
j∈N

t2
j

λj︸ ︷︷ ︸
not affected by

the fault condition

. (3.40)

The definition of the χ2 PDF, however, describes the sum of statistically
independent Gaussian distributed variables of zero mean and unity variance. In
this regard, each element of this sum has the same contribution to the overall
statistic. Consequently, the critical contribution of a particular element is the
ratio of the control limit over the number of sum elements. On the other hand,
testing the alternative hypothesis that a single t-score variable, which follows a
Gaussian distribution of zero mean and unity variance and its squared values
asymptotically follows a χ2 distribution with 1 degree of freedom, against the
control limit of just this one variable can yield a significant Type II error, which
Figure 3.2 shows.

The answer to the second question lies in revisiting the term in (3.40)

∑
i∈N∗

t2
i

λi

=
∑
i∈N∗

ti

λi

⎛⎝ nz∑
j=1

pjiz0j

⎞⎠ . (3.41)

From the above equation, it follows that the contribution of the j th process
variable upon the Hotelling’s T 2 statistic detecting an abnormal condition is
equal to

�z0j
= z0j

∑
i∈N∗

tipji

λi

. (3.42)
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Figure 3.2 Type II error for incorrectly applying hypothesis test in Equation
(3.37).

Now, including terms in the above sum that have a different sign to z0k
reduces

the overall value of �z0j
. Consequently, to identify the main contributors to the

absolute value of �z0j
requires the removal of negative sum elements tipjiz0j /λi .

3.2.1.2 Variable contribution to the Q statistic

Given that the Q statistic relies on the sum of the residuals for each variable, the
variable contribution of the j th variable is simply (Yoon and MacGregor 2001):

�z0j
= gj . (3.43)

Alternative forms are discussed in Kourti (2005), �z0j
= g2

j , or Chiang et al.

(2001), �z0j
= g2

j

E
{
g2
j

} . Since the variance for these residuals may vary, it is

difficult to compare them without scaling. Furthermore, using squared values does
not offer the possibility of evaluating whether whether a temperature reading is
larger or smaller then expected, for example. This suggests that (3.43) should be

�z0j
= gj√

E
{
g2

j

} . (3.44)

3.2.1.3 Degree of reliability of contribution charts

Although successful diagnoses using contribution charts have been reported
(Martin et al. 2002; Pranatyasto and Qin 2001; Vedam and Venkatasubramanien
1999; Yoon and MacGregor 2001), subsection 3.3.1 shows that the PCA
residuals of the process variables are linearly dependent. The same analysis
can also be applied to show that the recorded process variables have a linearly
dependent contribution to the Hotelling’s T 2 statistic. Moreover, Yoon and
MacGregor (2001) discussed that contribution charts generally stem from an
underlying correlation model of the recorded process variables which may not
possess a causal relationship.
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However, contribution charts can identify which group(s) of variables are
mostly affected by a fault condition. Lieftucht et al. (2006a) highlighted that the
number of degrees of freedom in the residual subspace is an important factor for
assessing the reliability of Q contribution charts. The ratio n/nz is therefore an
important index to determine the reliability of these charts. The smaller this ratio
the larger is the dimension of the residual subspace and the less the degree of
linear dependency among the variable contribution to the Q statistic.

Chapters 4 and 5 demonstrate how contribution charts can assist the diagnosis
of fault conditions ranging from simple sensor or actuator faults to more complex
process faults. It is important to note, however, that the magnitude of the fault
condition can generally not be estimated through the use of contribution charts.
Subsection 3.2.3 introduces the projection- and regression-based variable recon-
struction that allows determining the kind and size of complex fault scenarios.
The next subsection describes residual-based tests to diagnose abnormal process
conditions.

3.2.2 Residual-based tests

Wise et al. (1989a) and Wise and Gallagher (1996) introduced residual-based
tests that relate to the residuals of a PCA model. Residual-based tests for PLS
models can be developed as a project in the tutorial session at the end of the
chapter. Preliminaries for calculating the error variance are followed here by
outlining the hypothesis tests for identifying which variable is affected by an
abnormal operating condition.

3.2.2.1 Preliminaries

The residual variance for recovering the j th process variable, gj = z0j
− cT

j z0,
is

E
{
g2

j

} =
nz∑

i=n+1

p2
ij σ

2
g , (3.45)

where cT
j is the j th row vector stored in C = PPT . Equation (3.45) follows from

the fact that g = Pdtd , that the t-score variables are statistically independent and
that each error variable has the variance σ 2

g . If σ 2
g is unknown, it can be estimated

from Ŝz0z0
,

σ̂ 2
gj

= 1
nz−n

(
nz∑
i=1

λ̂i −
n∑

i=1

λ̂i

)(
1 −

n∑
i=1

p̂2
ij

)
. (3.46)

That
∑nz

i=n+1 p̂2
ij = 1 − ∑n

i=1 p̂2
ij follows from I − C = PdPT

d and the fact that
the p-loading vectors are mutually orthonormal. Equation (2.122) points out that
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i=1 λ̂i is equal to the sum of the diagonal elements of Ŝz0z0
, which yields

σ̂ 2
gj

= 1
nz−n

(
nz∑
i=1

σ̂ 2
i −

n∑
i=1

λ̂i

)(
1 −

n∑
i=1

p̂2
ij

)
. (3.47)

Equation (3.47) only requires the first n eigenvalues and eigenvectors of Ŝz0z0
.

Assuming that the availability of a data set of Kf samples describing an
abnormal operating condition and a second data set of normal process behavior
containing K samples, it is possible to calculate the following ratio which follows
an F-distribution

σ̂ 2
gj ,f

σ̂ 2
gj

∼ F
(
Kf − n − 1, K − n − 1

)
(3.48)

where both variances can be computed from their respective data sets. This allows
testing the null hypothesis that the j th variable is not affected by a fault condition

H0 :
σ̂ 2

gj ,f

σ̂ 2
gj

≤ Fα

(
Kf − n − 1, K − n − 1

)
(3.49)

or the alternative hypothesis that this variable is affected

H1 :
σ̂ 2

gj ,f

σ̂ 2
gj

> Fα

(
Kf − n − 1, K − n − 1

)
. (3.50)

Testing the null hypothesis can only be performed if the last nz − n eigenvalues
are identical, that is, the variance of the error variables are identical. If this is
not the case, however, the simplification leading to (3.47) cannot be applied
and the variance of each residual must be estimated using computed residuals.
A procedure for determining which variable is affected by a fault condition is
given next.

3.2.2.2 Variable contribution to detected fault condition

The mean for each of the residuals is zero

E {g} = E {z − Pt} = E {z − Cz} = [I − C] E {z} = 0, (3.51)

which can be taken advantage of in testing whether a statistically significant
departure in mean occurred. This is a standard test that is based on the following
statistic

−̂̄gfj

σ̂ 2
gfj

√
1

Kf −n
+ 1

K−n

, (3.52)
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where ̂̄gfj
is the mean estimated from the Kf samples describing a fault

condition. This statistic follows a t-distribution with the following upper and
lower control limit

UCL = Tα/2

(
Kf + K − 2n − 2

)
LCL = −UCL (3.53)

for a significance α. The null hypothesis, H0, is therefore

H0 : LCL ≤ −
̂̄gfj

σ̂ 2
gfj

√
1

Kf −n
+ 1

K−n

≤ UCL. (3.54)

The alternative hypothesis, H1 is accepted if

H1 :

∣∣∣∣∣∣∣−
̂̄gfj

σ̂ 2
gfj

√
1

Kf −n
+ 1

K−n

∣∣∣∣∣∣∣> Tα/2

(
Kf + K − 2n − 2

)
. (3.55)

By inspecting the above hypothesis tests in (3.49) and (3.55) for changes in the
error variance and the mean of the error variables for recovering the recorded
process variables, it is apparent that they require a set of recorded data that
describes the fault condition. This, however, hampers the practical usefulness of
these residual-based tests given that a root cause analysis should be conducted
upon detection of a fault condition. Such immediate analysis can be offered by
contribution charts and variable reconstruction charts that are discussed next.

3.2.3 Variable reconstruction

Variable reconstruction exploits the correlation among the recorded process vari-
ables and hence, variable interrelationships. This approach is closely related to
the handling of missing data in multivariate data analysis (Arteaga and Ferrer
2002; Nelson et al. 1996; Nelson et al. 2006) and relies on recovering the vari-
able set z0 and x0 based on the n source variables of the PCA and PLS data
structures, respectively

z0 = ẑ0 + g = Cz0 + g x0 = x̂0 + e = PRT x0 + e. (3.56)

According to (2.2) and (2.24), ẑ0 and x̂0 mainly describe the impact of the
common-cause variation, �s and Ps, upon z0 and x0, respectively.

3.2.3.1 Principle of variable reconstruction

For PCA, the derivation below shows how to reconstruct a subset of variables in
z0. A self-study project in the tutorial section aims to develop a reconstruction
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scheme for PLS. Under the assumption that n < nz, it follows from (3.56) that

ẑ0 =
[

n∑
i=1

pip
T
i

]
z0 =

n∑
i=1

pi ti = [
p1 p2 · · · pn

]
⎛⎜⎜⎜⎝

t1
t2
...

tn

⎞⎟⎟⎟⎠ , (3.57)

which can be rewritten to become(̂
z01
ẑ02

)
=

[
P1
P2

]
t (3.58)

where ẑ01
∈ R

n, ẑ02
∈ R

nz−n, P1 ∈ R
n×n and P2 ∈ R

n×nz−n. The linear depen-
dency between the elements of ẑ0 follow from

t = P−1
1 ẑ01

⇒ ẑ02
= P2P−1

1 ẑ01
⇒ ẑ0 =

[
I

P2P−1
1

]
ẑ01

. (3.59)

The above partition of the loading matrix into the first n rows and the remaining
nz − n rows is arbitrary. By rearranging the row vectors of P along with the
elements of ẑ0 any nz − n elements in ẑ0 are linearly dependent on the remaining
n elements. Subsection 3.3.1 discusses this in more detail.

Nelson et al. (1996) described three different techniques to handle missing
data. The analysis in Arteaga and Ferrer (2002) showed that two of them are
projection-based while the third one uses regression. Variable reconstruction orig-
inates from the projection-based approach for missing data, which is outlined
next. The regression-based reconstruction is then presented, which isolates deter-
ministic fault signatures from the t-score variables and removes such signatures
from the recorded data.

3.2.3.2 Projection-based variable reconstruction

The principle of projection-based variable reconstruction is best explained here
by a simple example. This involves two highly correlated process variables,
z1 and z2. For a high degree of correlation, Figure 2.1 outlines that a single
component can recover the value of both variables without a significant loss of
accuracy. The presentation of the simple introductory example is followed by a
regression-based formulation of projecting samples optimally along predefined
directions. This is then developed further to directly describe the effect of the
sample projection upon the Q statistic. Next, the concept of reconstructing single
variables is extended to include general directions that describe a fault subspace.
Finally, the impact of reconstructing a particular variable upon the Hotelling’s
T 2 and Q statistics is analyzed and a regression-based reconstruction approach
is introduced for isolating deterministic fault conditions.
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An introductory example. Assuming that the sensor measuring variable z1
produces a bias that takes the form of a step (sensor bias), the projection of the
data vector zT

0f
= (

z10
+ �z1 z20

)
onto the semimajor of the control ellipse

yields

tf = (
p11 p21

) ( z10
+ �z1
z20

)
. (3.60)

with �z1 being the magnitude of the sensor bias. Using the score variable tf to
recover the sensor readings gives rise to(

ẑ10
ẑ20

)
f

=
(

p11
p21

)
tf =

[
p2

11 p11p21
p21p11 p2

21

](
z10

+ �z1
z20

)
. (3.61)

The recovered values are therefore

ẑ10f
= p2

11

(
z10

+ �z1

) + p11p21z20

ẑ20f
= p21p11

(
z10

+ �z1

) + p2
21z20

. (3.62)

This shows that the recovery of the value of both variables is affected by the
sensor bias of z1. The residuals of both variables are also affected by this fault(

g1
g2

)
f

=
[

1 − p2
11 p11p21

p21p11 1 − p2
21

](
z10

+ �z1
z20

)
(3.63)

since(
g1
g2

)
f

=
(

g1
g2

)
+

(
�g1
�g2

)
=

(
g1
g2

)
+

(
1 − p2

11
p21p11

)
�z1. (3.64)

Subsection 3.3.1 examines dependencies in variable contributions to fault con-
ditions, a general problem for constructing contribution charts (Lieftucht et al.
2006a; Lieftucht et al. 2006b).

The application of projection-based variable reconstruction, however, can
overcome this problem if the fault direction is known a priori (Dunia et al.
1996; Dunia and Qin 1998) or can be estimated (Yue and Qin 2001) using a sin-
gular value decomposition. The principle is to remove the faulty sensor reading
for z1 by an estimate, producing the following iterative algorithm(

ẑ10
ẑ20

)
j+1

=
[

p2
11 p21p11

p21p11 p2
21

](
ẑ10j

z20

)
. (3.65)

The iteration converges for j → ∞ and yields the following estimate for ẑ10

ẑ10
= p2

11̂z10
+ p11p21z20

= p11p21

1 − p2
11

z20
. (3.66)



PROCESS MONITORING CHARTS 103

p1

z0  z
∧′′2

1 2

1

z1

z2

Figure 3.3 Illustrative example of projection-based variable reconstruction.

On the other hand, if a sensor bias is affecting z2 the estimate ẑ20
is then

ẑ20
= p21p11

1 − p2
21

z10
. (3.67)

Figure 3.3 presents an example where the model subspace is spanned by pT
1 =(

1/
√

2 1/
√

2
)

and a data vector zT
0f

= (
0 2

)
describes a sensor bias to

the first variables, z10
. The series of arrows show the convergence of this iterative

algorithm. Applying this scheme for z0j
= z0, Table 3.1 shows how ẑ10j

, ẑ20j
,

tj = p1

(
ẑ10j

z20

)T

and the convergence criterion ε = z10j+i
− z10j

changes
for the first few iteration steps. According to Figure 3.3 and Table 3.1, the
‘corrected’ or reconstructed data vector is ẑT

0 = (
2 2

)
.

Table 3.1 Results of reconstructing z10 using the iterative
projection-based method.

Iteration ẑ10j
ẑ20

tj ε

1 1.0000 2.0000 2.1213 1.0000
2 1.5000 2.0000 2.4749 0.5000
3 1.7500 2.0000 2.6517 0.2500
4 1.8750 2.0000 2.7400 0.1250
5 1.9375 2.0000 2.7842 0.0625
...

...
...

...
...

∞ 2.0000 2.0000 2.8284 0.0000
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Regression-based formulation of projection-based variable reconstruction.
In a similar fashion to the residual-based tests in Subsection 3.2.2, it is possible to
formulate the projection-based variable reconstruction scheme as a least squares
problem under the assumptions that:

• the fault condition affects at most n sensors;

• the fault signature manifest itself as a step-type fault for the affected vari-
ables; and

• a recorded data set contains a sufficiently large set of samples representing
the fault condition.

A sensor bias that affects the mth variable can be modeled as follows

z0f
= z0 + υm�zm, (3.68)

where υm ∈ R
nz is an Euclidian vector for which the mth element is 1 and the

remaining ones are 0, and �zm is the magnitude of the sensor bias. The difference
between the measured data vector z0f

and υm�z0m
is the Gaussian distributed

vector z0 ∼ N
{
0, Sz0z0

}
, whilst the z0f

is Gaussian distributed with the same
covariance matrix, that is, z0f

∼ N
{
υm�zm, Sz0z0

}
, which follows from the

data model in 2.2 and Table 2.1. This implies that the fault magnitude, �zm, can
be estimated if the fault direction υm is known by the following least squares
formulation

�̂zm = arg min
ζ

∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎝
zm0

(1)

zm0
(2)
...

zm0
(K̃)

⎞⎟⎟⎟⎠
f

−

⎛⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎠ ζ

∥∥∥∥∥∥∥∥∥
2

. (3.69)

The solution of (3.69) is the estimate of the mean value for z0m

�̂zm =

K̃∑
k=1

zm0f
(k)

K̃
(3.70)

which converges to the true fault magnitude as K̃ → ∞.

Impact of fault condition upon Q statistic. Dunia and Qin (1998) showed
that projecting samples along υ i has the following impact on the Q statistic

�̂zm = arg min
ζ

K̃∑
k=1

∥∥gf (k) − [I − C] υmζ
∥∥2

, (3.71)
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Knowing that gf = [I − C]
(
z0 + �z

) = g + �g, (3.71) becomes

�̂zm = arg min
ζ

=
K̃∑

k=1

Q0 (k) + 2
(
�zT − υT

mζ
)

g

+ (
�zT − υT

mζ
)

[I − C]
(
�z − υmζ

)
,

(3.72)

where Q0(k) = zT
0 (k) [I − C] z0(k). It follows from (3.72) that if

�z ∝ υm. (3.73)

�zm asymptotically converges to the true fault magnitude allowing a complete
isolation between the step-type fault and normal stochastic process variation,
hence

1

K̃

K̃∑
k=1

Q0 (k) ≤ Qα. (3.74)

The optimal solution of the objective function in (3.71) is given by

�̂zm =
⎛⎝ K̃∑

k=1

gT
f (k)

⎞⎠ [I − C] υm

K̃
(
1 − υT

mCυm

) . (3.75)

The estimates for �zm in (3.70) and (3.75) are identical. To see this, the
sensor bias upon has the following impact on the residuals

gf = [I − C]
(
z0 + υm�zm

)
, (3.76)

which we can substitute into the expectation of (3.75)

E

{(
zT

0 + υT
m�zm

)
[I − C] υm

υT
m [I − C] υm

}
= E

{
zT

0

}︸ ︷︷ ︸
=0

[I − C] υm

υT
m

[
I − C

]
υm

+

�zm

υT
m

[
I − C

]
υm

υT
m

[
I − C

]
υm

E

{(
zT

0 + υT
m�zm

)
[I − C] υm

υT
m [I − C] υm

}
=�zm.

(3.77)

Geometrically, the fault condition moves the samples along the direction υm and
this shift can be identified and removed from the recorded data.

Extension to multivariate fault directions. A straightforward extension is
the assumption that m ≤ n sensor faults arise at the same time. The limitation
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m ≤ n follows from the fact that the rank of P is n and is further elaborated in
Subsection 3.3.2. The extension of reconstructing up to n variables would enable
the description of more complex fault scenarios. This extension, however, is still
restricted by the fact that the fault subspace, denoted here by ϒ, is spanned by
Euclidian vectors

ϒ = [
υI(1) υI(2) · · · υI(m)

] ∈ R
nz×m (3.78)

where I is an index set storing the variables to be reconstructed, for example
I1 = 2, I2 = 6, · · ·, Im = 24. The case of ϒ storing non-Euclidian vectors is
elaborated below. Using the fault subspace ϒ projection-based variable recon-
struction identifies the fault magnitude for each Euclidian base vector from the
Q statistic

�̂zI = arg min
ζ

K̃∑
k=1

Qf (k) − 2zT
0f

(k) ϒ̃ζ + ζ T ϒ̃
T
ϒ̃ζ . (3.79)

Here, ϒ̃ = [I − C] ϒ. The solution for the least squares objective function is

�̂zI = ϒ̃
† 1

K̃

K̃∑
k=1

z0f
(k) (3.80)

with ϒ̃
† =

[
ϒ̃

T
ϒ̃
]−1

ϒ̃
T

being the generalized inverse of ϒ̃. If ϒ is the correct
fault subspace, the above sum estimates the fault magnitude �z0f

consistently

�zI = lim
K̃→∞

ϒ̃
† 1

K̃

K̃∑
k=1

(
z0 (k) + ϒ�zI

)
, (3.81)

since

ϒ̃
†
E

{
z0

}︸ ︷︷ ︸
0

+ [
ϒT [I − C] ϒ

]−1
ϒT [I − C] ϒ︸ ︷︷ ︸

I

�zI = �zI (3.82)

This, in turn, implies that the correct fault subspace allows identifying the
correct fault magnitude and removing the fault information from the Q statistic

lim
K̃→∞

Q̂0 (k) =
(

z0f
(k) − ϒ�̂zI

)T

[I − C]
(

z0f
(k) − ϒ�̂zI

)
−→ Q0 (k) .

(3.83)

So far, we assumed that the fault subspace is spanned by Euclidian vectors that
represent individual variables. This restriction can be removed by defining a set
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Figure 3.4 Graphical illustration of multivariate projection-based variable
reconstruction along a predefined fault axis.

of up to m ≤ n linearly independent vectors υ1, υ2, . . ., υm of unit length, which
yields the following model for describing fault conditions

z0f
= z0 + ϒ�zI. (3.84)

The fault magnitude in the direction of vector υ i is �zIi
. The υ i vectors can be

obtained by applying a singular value decomposition on the data set containing
K̃ samples describing the fault condition (Yue and Qin 2001). Figure 3.4 gives
a graphical interpretation of this regression problem. Equation (3.79) presents
the associated objective function for estimating �zI. Different from the pro-
jection along Euclidian directions, if the fault subspace is constructed from
non-Euclidian vectors, the projection-based variable reconstruction constitutes
an oblique projection.

Projection-based variable reconstruction for a single sample. As for
residual-based tests, the above projection-based approach requires a sufficient
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number of samples describing the fault condition, which hampers its practical
usefulness. If an abnormal event is detected, the identification of potential root
causes is vital in order to support process operators in carrying out appropriate
responses. Despite the limitations of contribution charts, discussed in (Lieftucht
et al. 2006a; Yoon and MacGregor 2001) and Subsection 3.3.1, they should be
used as a first instrument.

Equations (3.60) to (3.66) show that a sensor bias can be removed if it is
known which one is faulty. Dunia and Qin (1998), and Lieftucht et al. (2006b)
pointed out that projection-based reconstruction and contribution charts can be
applied together to estimate the impact of a fault condition upon individual pro-
cess variables. A measure for assessing this impact is how much the reconstructed
variable reduces the value of both non-negative quadratic statistics. For the Q

statistic, this follows from (3.72) for K̃ = 1 and m = 1, and (3.79) for 1 < m ≤ n.
As highlighted in Lieftucht et al. (2006a), however, the projection-based

reconstruction impacts the geometry of the PCA model and therefore the non-
negative quadratic statistics. Subsection 3.3.2 describes the effect of reconstruct-
ing a variable set upon the geometry of the PCA model. In summary, the
procedure to incorporate the effect of projecting a set of m process variables
is as follows.

1. Reconstruct the data covariance matrix by applying the following equation

S̃�
z0z0

=
[

S̃�
z0z01

S̃�
z0z02

S̃�T

z0z02
S̃�

z0z03

]
=

[
�

I

]
S�

z0z03

[
�T I

]
(3.85)

where:

• � = [
I − C�

1

]−1
C�

2;

• C� =
[

C�
1 C�

2

C�T

2 C�
3

]
;

• z�T

0 = (
z�T

01
z�T

02

)
is a data vector that stores the variables to be recon-

structed as the first m elements, z�
01

∈ R
m, and the variables that are not

reconstructed as the remaining nz − m elements, z�
02

∈ R
nz−m;

• the matrices denoted by the superscript � refer to the variables stored in
the rearranged vector z�

0;

• the symbol ˜ refers to the reconstructed portions of the data covariance
matrix describing the impact of reconstructing the set of m process
variables;

• S�
z0z03

is the partition of the data covariance matrix S�
z0z0

that relates to
the variable set that is not reconstructed; and

• the indices 1, 2 and 3 are associated with the covariance matrix of the
reconstructed variables, the cross covariance matrix that includes the
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reconstructed and the remaining variables and the covariance matrix of
the unreconstructed variables, respectively.

2. Calculate the eigendecomposition of S̃�
z0z0

, that is, calculate �̃
�

and P̃�.

3. Compute the T 2 statistic from the retained score variables t̃
� = P̃�T

z̃�
0 with

z̃�
0 = [

�T I
]T

z�
02

, i.e. T̃ 2 = t̃
�T

�̃
�−1

t̃
�
.

4. Determine the Q statistic, Q = (
z�

0 − P̃�̃t
)T (

z�
0 − P̃�̃t

)
, and recompute the

control limit by reapplying (3.16) using the discarded eigenvalues of S̃�
z0z0

.

Ignoring the effect the reconstruction process imposes upon the underlying PCA
model is demonstrated in Chapter 4.

Limitations of projection-based variable reconstruction. Despite the sim-
plicity and robustness of the projection-based variable reconstruction approach,
it is prone to the following problems (Lieftucht et al. 2009).

Problem 3.2.1 The maximum number of variables to be reconstructed equals
the number of retained principal components Dunia and Qin (1998). This lim-
itation renders the technique difficult to apply for diagnosing complex process
faults, which typically affect a larger number of variables.

Problem 3.2.2 The reconstruction process reduces the dimensions of the
residual subspace and if nz − n − m ≤ 0 the Q statistic does not exist (Lieftucht
et al. 2006b). This is a typical scenario for cases where the ratio n/nz is close to 1.

Problem 3.2.3 The fault condition is assumed to be described by the linear
subspace ϒ. Therefore, a fault path that represents a curve or trajectory is not
fully reconstructible.

These problems are demonstrated in Lieftucht et al. (2009) through the anal-
ysis of experimental data from a reactive distillation column. A regression-based
variable reconstruction is introduced next to address these problems.

3.2.3.3 Regression-based variable reconstruction

This approach estimates and separates the fault signature from the recorded
variables (Lieftucht et al. 2006a; Lieftucht et al. 2009). Different from
projection-based reconstruction, the regression-based approach relies on the
following assumptions:

• The fault signature in the score space, f (k), is deterministic, that is, the
signature for a particular process variable is a function of the sample index
k; and
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• The fault is superimposed onto the process variables, that is, it is added to
the complete set of score variables

tf (k) =
[

PT

PT
d

] (
z0(k) + �z(k)

)
tf (k) = t(k) + f(k) (3.86)

where the subscript f refers to the corrupted vectors,

• t(k) =
[

PT

PT
d

]
z0(k); and

• f (k) =
[

PT

PT
d

]
�z(k).

In contrast to the regression-based technique for missing data, different
assumptions are applied to the score variables leading to a method for variable
reconstruction according to Figure 3.5. Based on the above assumptions, the
fault signature can be described by a parametric curve that can be identified
using various techniques, such as polynomials, principal curves and artificial
neural networks (Walczak and Massart 1996). For simplicity, radial basis
function networks (RBFNs) are utilized here.

According to Figure 3.5, f̂ (k) is subtracted from tf (k). The benefit of
using the score variables follows from Theorem 9.3.2. The score variables are
statistically independent but the original process variables are highly correlated.
Equations (3.61) and (3.63) describe the negative impact of variable correlation
upon the PCA model, which not only identify a faulty sensor but may also
suggest that other variables are affected by a sensor bias. Separating the fault
signature from the corrupted samples on the basis of the score variables,
however, circumvents the correlation issue.

The first block in Figure 3.5 produces the complete set of nz score variables
f(k) from the corrupted samples of the process variables z0(k) + �z(k). The score
variable set is then used to estimate the fault signature f̂ (k) as above which is
subtracted from the score variables to estimate t̂(k). Since a fault signature may
affect each of the score variables, all score variables need to be included to
estimate the fault signature.

The output from a radial basis function network is defined by

f̂1(k) = ∑R
i=1 l1i

(
t1f

(k), ci, �
)

a1i

...

f̂nz
(k) = ∑R

i=1 lnzi

(
tnzf

(k), ci, �
)

anzi

. (3.87)

RBFN A
tf (k)

+
−

z0(k) + Δz (k) f(k) t̂(k)l (k)
PT ⏐PT

d

Figure 3.5 Structure of the regression based variable reconstruction technique.
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Here, R is the number of network nodes, lj i = exp(−(
tjf (k)−ci

�
)2), 1 ≤ j ≤ nz,

1 ≤ i ≤ R is a Gaussian basis function for which ci and � are the center and
the width, respectively, and a11, . . . , anzR

are the network weights. By applying
(3.87), the separation of the fault signature becomes

tf (k) = Al(k) + t̂(k) = f̂ (k) + t̂(k), (3.88)

where, l(k) is a vector storing the values for each network node for the kth sam-
ple, A is a parameter matrix storing the network weights and t̂(k) is the isolated
stochastic part of the computed score variables tf (k). For simplicity, the center
of Gaussian basis functions is defined by a grid, that is, the distance between
two neighboring basis functions is equivalent for each pair and their widths are
assumed to be predefined. The training of the network therefore reduces to a
least squares problem.

Chapter 4 shows that the regression-based reconstruction has the potential
to provide a clear picture of the impact of a fault condition. Lieftucht et al.
(2009) present another example that involves recorded data from an experimental
reactive distillation unit at the University of Dortmund, Germany, where this
technique could offer a good isolation of the fault signatures for a failure in the
reflux preheater and multiple faults in cooling water and acid feed supplies.

3.3 Geometry of variable projections

For the projection-based reconstruction of a single sample, this section analyzes
the geometry of variable projections, which involves orthogonal projections from
the original variable space onto smaller dimensional reconstruction subspaces
that capture significant variation in the original variable set. Subsection 3.3.1
examines the impact of such projections upon the contribution charts of the Q

statistic for PCA and PLS and shows that the variable contributions are linearly
dependent. This is particularly true if the number of retained components is close
to the size of the original variable set. Subsection 3.3.2 then studies the impact
of variable reconstruction upon the geometry of the PCA model.

3.3.1 Linear dependency of projection residuals

Given the PCA residual vector g ∈ R
nz and the centered data vector z0 ∈ R

nz ,
it is straightforward to show that the residual vector is orthogonal to the model
subspace

g = [I − C] z0 PT g = PT [I − C] z0 = [
PT − PT

]
z0 = 0. (3.89)

Here, P ∈ R
nz×n, n < nz, is the loading matrix, storing the eigenvectors of the

data covariance matrix as column vectors, which span the model plane. The
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above relationship holds true, since the eigenvectors of a symmetric matrix are
mutually orthonormal. Equation (3.89), however, can be further elaborated

⎡⎢⎢⎢⎣
p11 p21 · · · pn1 pn+1,1 pn+2,1 · · · pnz1
p12 p22 · · · pn2 pn+1,2 pn+2,2 · · · pnz2
...

...
...

...
...

...

p1n p2n · · · pnn pn+1,n pn+2,n · · · pnzn

⎤⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1
g2
...

gn

gn+1
gn+2

...

gnz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
0
0
...

0

⎞⎟⎟⎟⎠ (3.90)

and partitioning it as follows

gT
1 =

⎛⎜⎜⎜⎝
g1
g2
...

gn

⎞⎟⎟⎟⎠ ∈ R
n gT

2 =

⎛⎜⎜⎜⎝
gn+1
gn+2

...

gnz

⎞⎟⎟⎟⎠ ∈ R
nz−n

�1 =

⎡⎢⎢⎢⎣
p11 p21 · · · pn1
p12 p22 · · · pn2
...

...
. . .

...

p1n p2n · · · pnn

⎤⎥⎥⎥⎦ ∈ R
n×n

�2 =

⎡⎢⎢⎢⎣
pn+1,1 pn+2,1 · · · pnz,1
pn+1,2 pn+2,2 · · · pnz,2

...
...

. . .
...

p1n p2n · · · pnzn

⎤⎥⎥⎥⎦ ∈ R
n×nz−n

(3.91)

which gives rise to [
�1 �2

] (g1
g2

)
= �1g1 + �2g2 = 0. (3.92)

�1 is a square matrix and can be inverted, which yields

g1 = −�−1
1 �2g2. (3.93)

The above relationship is not dependent upon the number of source signals n. In
any case there will be a linear combination of the variable contribution of the Q
statistic.

3.3.2 Geometric analysis of variable reconstruction

The geometrical properties of the multidimensional reconstruction technique for
a single sample are now analyzed. Some preliminary results for one-dimensional
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sensor faults were given in Lieftucht et al. (2004) and a more detailed analysis is
given in Lieftucht et al. (2006a). For simplicity, the data vector z0 is rearranged
such that the reconstructed variables are stored as the first m ≤ n elements.
The rearranged vector and the corresponding covariance and loading matrix are
denoted by z�

0, S�
z0z0

and P�, respectively. Furthermore, the reconstructed vector
and the reconstructed data covariance and loading matrices are referred to as z̃�

0,
S̃�

z0z0
and P̃�, respectively.

3.3.2.1 Optimality of projection-based variable reconstruction

The following holds true for the reconstructed data vector and the model
subspace.

Theorem 3.3.1 After reconstructing m ≤ n variables, the reconstructed data
vector lies in an nz − m dimensional subspace, such that the orthogonal distance
between the reconstructed vector and the model subspace is minimized.

Proof. The residual vector, g̃� is equal to

g̃� = [
I − C�

]
z̃�

0, (3.94)

where,

C� = P�P�T

and z̃�
0 =

(
�z�

02
z�

02
.

)
. (3.95)

Here � is a projection matrix, which is defined below

� =

⎡⎢⎢⎢⎢⎢⎢⎣
ωT

1
...

ωT
i
...

ωT
m

⎤⎥⎥⎥⎥⎥⎥⎦ ωi ∈ R
nz−m. (3.96)

The squared distance between the reconstructed point and the model subspace is

g̃�T

g̃� =
(

z�T

02
�T z�T

02

) [
I − C�

1 −C�
2

−C�T

2 I − C�
3

](
�z�

02
z�

02

)
. (3.97)

Here C�
1 ∈ R

m×m, C�
2 ∈ R

m×nz−m and C�
3 ∈ R

nz−m×nz−m. Defining the objective
function

� = arg min
�

z�T

02
�T

[
I − C�

1

]
�z�

02
− 2z�T

02
C�T

2 �z�
02

+ z�T

02

[
I − C�

3

]
z�

02

� = arg min
�

z�T

02

[
�T

[
I − C�

1

]
� − 2�T C�

2 + [
I − C�

3

]]
z�

02

(3.98)
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yields the following minimum

� = [
I − C�

1

]−1
C�

2 . (3.99)

The resulting expression for � is equivalent to the projection matrix obtained
from reconstructing the variable set z�

01
using projection-based variable recon-

struction. This follows from an extended version of (3.65) for j → ∞(̃
z�

01
z̃�

02

)
=

[
C�

1 C�
2

C�T

2 C�
3

] (̃
z�

01
z�

02

)
. (3.100)

which can be simplified to

z̃�
01

= C�
1̃z�

01
+ C�

2z�
02

= [
I − C�

1

]−1
C�

2z�
02

. (3.101)

3.3.2.2 Reconstruction subspace

The data vector z0 ∈ R
nz but the reconstruction of z�

01
to form z̃�

0 results in a
projection of z�

0 onto a (nz − m)-dimensional subspace, which Theorem 3.3.2
formulates. Any sample z�

0 is projected onto this reconstruction subspace along
the m directions defined in ϒ. As Theorem 3.3.1 points out, the distance of the
reconstructed sample and the model subspace is minimal.

Theorem 3.3.2 The reconstruction of z�
0 is equivalent to the projection of

z�
0 onto a (nz − m)-dimensional subspace 
. This subspace is spanned by the

column vectors of the matrix 



 =
[
�

I

]
, (3.102)

which includes the model and the residual subspace.

Proof. After reconstructing z�
0, the subspace in which the projected samples

lie is given by the following nz − m base vectors. These can be extracted from z̃�
0

z̃�
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωT
1 z�

02

...

ωT
mz�

02

z�
02,1

...

z�
02,nz−m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.103)
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and are consequently given by:


 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11
...

ωm1
1
0
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω12
...

ωm2
0
1
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· · ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1,nz−m
...

ωm,nz−m

0
0
0
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.104)

Note that the base vectors defined in (3.104) are not of unit length.

3.3.2.3 Maximum dimension of fault subspace

Theorem 3.3.3 discusses the maximum dimension of the fault subspace.

Theorem 3.3.3 The maximum dimension of the fault subspace ϒ is n irre-
spective of whether the columns made up of Euclidian or non-Euclidian vectors.

Proof. ϒ contains Euclidian vectors. Following from (3.101), rewriting the
squared matrix

[
I − C�

1

]−1
using the matrix inversion lemma yields[

I − C�
1

]−1 = I −
[[

C�
1

]−1 + I
]−1

(3.105)

and produces the following equivalent projection matrices[
I − C�

1

]−1
C�

2 = C�
2 −

[[
C�

1

]−1 + I
]−1

C�
2. (3.106)

Both sides, however, can only be equivalent if the inverse of C�
1 exists. Given

that the rank of C� is equal to n and assuming that any combination of n column
vectors in C� span a subspace of dimension n, the maximum partition in the
upper left corner of C� can be an n by n matrix. This result can also be obtained
by reexamining the iteration procedure in (3.65)

z̃�
01j+1

= C�
1̃z�

01j
+ C�

2z�
02

. (3.107)

If the iteration is initiated by selecting z̃�
010

= 0 and the iterative formulation in
(3.107) is used to work backwards from z̃�

01j
to z̃�

010
, it becomes

z̃�
01j+1

=
[

j∑
i=0

C�i

1

]
C�

2z�
02

. (3.108)
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Asymptotically, however,

lim
j→∞

j∑
i=1

C�i

1 → [
I − C�

1

]−1
C�

1 ∈ R
m×m m ≤ n . (3.109)

The above relationships yield some interesting facts. First, the block matrix C�
1

is symmetric and positive definite if m ≤ n. The symmetry follows from the
symmetry of C� and the positive definiteness results from the partitioning of

P� =
[

P�
1

P�
2

]
and hence, C�

1 = P�
1P�T

1 . (3.110)

That P�
1P�T

1 has positive eigenvalues follows from a singular value decompo-
sition of P�

1, which is shown in Section 9.1. Secondly, the eigenvalues of C�
1

must be between 0 and 1. More precisely, eigenvalues > 0 follow from the pos-
itive definiteness of C�

1 and eigenvalues > 1 would not yield convergence for∑j

i=1 C�i

1 .

Proof. ϒ contains non-Euclidian vectors. If the model of the fault condition
is z0f

= z0 + ϒ�zI an objective function, similar to (3.79), can be defined as
follows

�̂zI = arg min
�zI

K̃∑
k=1

zT
0f

(k)Cz0f
(k) − zT

0f
(k)Cϒ�zI + �zT

I ϒT Cϒ�zI (3.111)

which yields the following estimate of the fault magnitude

�̂zI = [
ϒT Cϒ

]−1 [
ϒT C

]⎛⎝ 1

K̃

K̃∑
k=1

z0f
(k)

⎞⎠
ϒT Cϒ ∈ R

m×m m ≤ n .

(3.112)

Only m ≤ n guarantees that ϒT Cϒ is invertible. If this is not the case, the
projection-based reconstruction process does not yield a unique analytical
solution.

3.3.2.4 Influence on the data covariance matrix

For simplicity, the analysis in the remaining part of this subsection assumes that
ϒ stores Euclidian column vectors. It is, however, straightforward to describe the
impact of the projection-based reconstruction upon the data covariance matrix
if ϒ includes non-Euclidian column vectors, which is a project in the tuto-
rial session. Variable reconstruction leads to changes of the data covariance
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matrix which therefore must be reconstructed. Partitioning the rearranged data
covariance matrix S�

z0z0

S�
z0z0

=
[

S�
z0z01

S�
z0z02

S�T

z0z02
S�

z0z03

]
, (3.113)

where S�
z0z01

∈ R
m×m and S�

z0z02
∈ R

m×nz−m and S�
z0z03

∈ R
nz−m×nz−m, the recon-

struction of z�
01

affects the first two matrices, S�
z0z01

and S�
z0z02

S̃�
z0z01

= E
{̃

z�
01̃

z�T

01

}
= �E

{
z�

02
z�T

02

}
�T = �S�

z0z03
�T (3.114)

and

S̃�
z0z02

= E
{̃

z�
01

z�T

02

}
= �E

{
z�

02
z�T

02

}
= �S�

z0z03
(3.115)

where � = [
I − C�

1

]−1
C�

2, and S̃�
z0z01

and S̃�
z0z02

are the covariance and cross-

covariance matrices involving z̃�
01

. Replacing S�
z0z01

by S̃�
z0z01

and S�
z0z02

by S̃�
z0z02

S̃�
z0z0

=
[

S̃�
z0z01

S̃�
z0z02

S̃�T

z0z02
S�

z0z03

]
(3.116)

yields the following corollary.

Corollary 3.3.4 The rank of S̃�
z0z0

is (nz − m), as the block matrices S̃�
z0z01

and S̃�
z0z02

are linearly dependent on S�
z0z03

.

The effect of variable reconstruction upon the model and residual subspaces,
which are spanned by eigenvectors of S̃�

z0z0
, is analyzed in the following subsec-

tions.

3.3.2.5 Influence on the model plane

Pearson (1901) showed that the squared length of the residual vector between
K mean-centered and scaled data points of dimension nz and a given model
subspace of dimension n is minimized if the model subspace is spanned by the
first-n dominant eigenvectors of the data covariance matrix. Theorems 3.3.1 and
3.3.2 highlight that projecting samples onto the subspace 
 leads to a minimum
distance between the projected points and the model subspace. This gives rise to
the following theorem.

Theorem 3.3.5 The reconstruction of the m variables does not influence the
orientation of the model subspace.

The above theorem follows from the work of Pearson (1901), given that the recon-
structed samples have a minimum distance from the original model subspace.
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Corollary 3.3.6 That there is no affect upon the orientation of the model
subspace does not imply that the n dominant eigenvectors of S̃�

z0z0
and S�

z0z0
are

identical.

The above corollary is a result of the changes that the reconstruction procedure
imposes on S�

z0z0
, which may affect the eigenvectors and the eigenvalues.

Corollary 3.3.7 The dominant eigenvectors and eigenvalues of S̃�
z0z0

may
differ from those of S�

z0z0
, which implies that the directions for which the score

variables have a maximum variance and the variance of each score variable may
change.

The influence of the projection onto the residual subspace is discussed next.

3.3.2.6 Influence on the residual subspace

Following from the preceding discussion, the reconstruction results in a shift of a
sample in the direction of the fault subspace, such that the squared length of the
residual vector is minimal (Theorem 3.3.1). Since the reconstruction procedure is,
in fact, a projection of z0 onto 
, which is of dimension nz − m (Theorem 3.3.2),
it follows that the dimension of the residual subspace is nz − n − m, because the
dimension of the model subspace remains unchanged.

Since the model subspace is assumed to describe the linear relationships
between the recorded and source variables, which follows from Equation (2.2),
the nz − n − m discarded eigenvalues represent the cumulative variance of the
residual vector. Moreover, given that S̃�

z0z0
has a rank of nz − m, m eigenvalues

are equal to zero.

Corollary 3.3.8 If Sgg = σ 2
g I, the cumulative variance of g�, E

{
g�T

g�
}

, is

equal to (nz − n)σ 2
g . In contrast, the cumulative variance of g̃� is (nz − n − m)σ 2

g

and hence, E
{

g�T
g�
}

> E
{̃

g�T
g̃�
}

.

Corollary 3.3.9 Variable reconstruction has a minor effect on the data
covariance matrix if the ratio n/nz is small. Conversely, if n/nz is close to 1, the
squared length of g̃� can be significantly affected by the reconstruction process.

An example to illustrate the effect of the above corollaries is given in
Chapter 4. It is important to note that even if the projection-based variable
reconstruction has only minor effect on the data covariance matrix, this influence
will lead to changes of the monitoring statistics and their confidence limits,
which is examined next.

3.3.2.7 Influence on the monitoring statistics

The impact of variable reconstruction manifests itself in the construction of S̃�
z0z0

,
which yields a different eigendecomposition. Since the Hotelling’s T 2 and the Q
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statistic are based on this eigendecomposition, it is necessary to account for such
changes when applying projection-based variable reconstruction. For reconstruct-
ing a total of m ≤ n variables, this requires the following steps to be carried out:

1. Reconstruct the covariance matrix by applying (3.114) to (3.116).

2. Compute the eigenvalues and eigenvectors of S̃�
z0z0

, that is, �̃
�

and P̃�.

3. Calculate the Hotelling’s T 2 statistic using the dominant n eigenvectors

and eigenvalues of S̃�
z0z0

, that is, t̃ = P̃�T
z̃�

0 and T̃ 2 = t̃
T

˜�
�−1

t̃, where z̃�
0

that is, defined in (3.95).

4. Compute the Q statistic, Q̃ = (̃
z�

0 − P̃�̃t
)T (̃

z�
0 − P̃�̃t

)
, and recalculate the

confidence limits for the Q statistic by applying (3.16) using the discarded
eigenvalues of S̃�

z0z0
.

This procedure allows establishing reliable monitoring statistics for using
projection-based variable reconstruction. If the above procedure is not followed,
the variance of the score variables, the loading vectors and the variance of the
residuals are incorrect, which yields erroneous results (Lieftucht et al. 2006a).

3.4 Tutorial session

Question 1: What is the advantage of assuming a Gaussian distribution of
the process variables for constructing monitoring charts?

Question 2: With respect to the data structure in (2.2), develop fault con-
ditions that do not affect (i) the Hotelling’s T 2 statistic and (ii) the residual Q

statistic. Provide general fault conditions which neither statistic is sensitive to.

Question 3: Considering that the Hotelling’s T 2 and Q statistics are estab-
lished on the basis of the eigendecomposition of the data covariance matrix, is it
possible to construct a fault condition that neither affects the Hotelling’s T 2 nor
the Q statistic?

Question 4: Provide a proof of (3.27).

Question 5: Provide proofs for (3.72) and (3.75).

Question 6: For projections along predefined Euclidean axes for single sam-
ples, why does variable reconstruction affect the underlying geometry of the
model and residual subspaces?

Question 7: Following from Question 6, why is the projection-based
approach for multiple samples not affected by variable reconstruction to the
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same extent as the single-sample approach? Analyze the asymptotic properties
of variable reconstruction.

Question 8: Excluding the single-sample projection-based approach, what is
the disadvantage of projection- and regression-based variable reconstruction over
contribution charts?

Project 1: With respect to Subsection 3.2.2, develop a set of residual-based
tests for PLS.

Project 2: For PCA, knowing that t = PT z0, ẑ0 = Pt = Cz0 and
g = [

I − C
]

z0, design an example that describes a sensor fault for the first
variable but for which the contribution chart for the Q statistic identifies the
second variable as the dominant contributor to this fault. Can the same problem
also arise with the use of the residual-based tests in Subsection 3.2.2? Check
your design by a simulation example.

Project 3: With respect to Subsection 3.2.3, develop a variable reconstruction
scheme for the input variable set of a PLS model. How can a fault condition for
the output variable set be diagnosed?

Project 4: Simulate an example involving 3 process variables that is super-
imposed by a fault condition described by z0f

= z0 + υ�zυ , υ ∈ R
3, ‖υ‖ = 1,

�zυ ∈ R and develop a reconstruction scheme to estimate the fault direction υ

and the fault magnitude �zυ .

Project 5: Using a simulation example that involves 3 process variables,
analyze why projection-based variable reconstruction is not capable of estimating
the fault signature is not of the form z0f

= z0 + υ�zυ , i.e. z0f
= z0 + �z(k),

with �z(k) being a deterministic sequence. Contrast the performance of the
regression-based variable reconstruction scheme with that of the projection-based
scheme? How can a fault condition be diagnosed if it is of the form �z(k) but
stochastic in nature?
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4

Application to a chemical
reaction process

This chapter summarizes an application of MSPC, described in Chapters 1 to 3,
to recorded data from a chemical reaction process, producing solvent chemicals.
Data from this process have been studied in the literature using PCA and PLS,
for example (Chen and Kruger 2006; Kruger et al. 2001; Kruger and Dimitriadis
2008; Lieftucht et al. 2006a). Sections 4.1 and 4.2 provide a process description
and show how to determine a PCA monitoring model, respectively. Finally,
Section 4.3 demonstrates how to detect and diagnose a fluidization problem in
one of the tubes.

4.1 Process description

This process produces two solvent chemicals, denoted as F and G, and consists
of several unit operations. The core elements of this plant are five parallel
fluidized bed reactors, each producing F and G by complex exothermic reactions.
These reactors are fed with five different reactants. Figure 4.1 shows one of the
parallel reactors.

Streams A, B and C represent fresh reactant feed supplying pure components
A, B and C, while feedstream D is from an upstream unit. Stream E is plant
recycle. Streams D and E are vaporized before entering the reactor. After leaving
the reactors, the separation of components F and G is achieved by downstream
distillation units.

Each reactor consists of a large shell and a number of vertically oriented tubes
in which the chemical reaction is carried out, supported by fluidized catalyst.
There is a thermocouple at the bottom of each tube to measure the temperature

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 4.1 Schematic diagram of chemical reaction process.

of the fluidized bed. To remove the heat of the exothermic reaction, oil circulates
around the tubes.

The ratio of components F and G is obtained from a lab analysis at
eight hour intervals. Based on this analysis, operators adjust the F:G ratio by
manipulating reactor feedrates. To keep the catalyst fluidized at all times, the
fluidization velocity is maintained constant by adjusting reactor pressure relative
to the total flow rate.

The chemical reaction is affected by unmeasured disturbances and changes
in the fluidization of the catalyst. The most often observed disturbances relate to
pressure upsets in the steam supply to the vaporizer and the coolant, which is
provided by a separate unit. Fluidization problems appear if the catalyst density is
considerably greater at the bottom of the tube, which additionally enhances chem-
ical reaction in the tube resulting in a significant increase in the tube temperature.

During a period of several weeks, normal operating data as well as data
describing abnormal process behavior were recorded for a single reactor. The
reference data set had to be selected with care, to ensure that it did not capture
disturbances as described above or fluidization problems of one or more tubes.
Conversely, if the size of the reference data set was too small then common cause
variation describing the reaction system may not be adequately represented.

4.2 Identification of a monitoring model

Since any disturbance leads to alterations in the reacting conditions and hence the
tube temperatures, the analysis here is based on the recorded 35 tube tempera-
tures. Thus, the data structure in (2.2) allows modeling of the recorded variables.
Figure 4.2 shows time-based plots of the temperature readings for the reference
data, recorded at 1 minute intervals.

A closer inspection of the 35 variables in Figure 4.2 suggests significant
correlation between the tube temperatures, since most of them follow a similar
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Figure 4.2 Recorded sequence of reference data for chemical reaction process.
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pattern. The identification of a PCA model requires the estimation of the mean
vector and the data covariance matrix using (2.13) and (2.14). The mean vector
contains values between 330 and 340◦C.

Dividing each of the mean-centered signals by its associated standard devi-
ation allows the construction of the correlation matrix. The observation that the
tube temperatures are highly correlated can be verified by analyzing the non-
diagonal elements of the correlation matrix, Cz0z0

. Displaying the upper left
block of this matrix of the first five tube temperatures

Cz0z0
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.8258 0.8910 0.8184 0.8515 · · ·
0.8258 1.0000 0.8412 0.7370 0.8700 · · ·
0.8910 0.8412 1.0000 0.8417 0.8791 · · ·
0.8184 0.7370 0.8417 1.0000 0.8052 · · ·
0.8515 0.8700 0.8791 0.8052 1.0000 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.1)

confirms this, as most of the correlation coefficients are larger than 0.8 indicating
significant correlation among the variables. Jackson (2003) outlined that it often
makes negligible difference which matrix to use for constructing a PCA model
in practice. The analysis of the reference data in Figure 4.3 confirm this later on
by inspecting the distribution of the eigenvalues for both matrices.

Equation (4.2) shows the upper left block of the covariance matrix

Sz0z0
=

⎡
⎢⎢⎢⎢⎢⎢⎣

9.2469 7.5636 6.5811 7.1108 7.6650 · · ·
7.5636 8.7431 7.3084 6.9863 7.0903 · · ·
6.5811 7.3084 8.6240 6.3555 6.1245 · · ·
7.1108 6.9863 6.3555 7.2242 7.0179 · · ·
7.6650 7.0903 6.1245 7.0179 9.4869 · · ·

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.2)

Figure 4.3 plots the distribution of the eigenvalue for the covariance and the
correlation matrix and shows that they are almost identical up to a scaling factor.

The construction of the covariance matrix is followed by determining the
number of source signals. Section 2.4 outlined that the VRE method provides a
consistent estimation of n under the assumption that Sgg = σ 2

g I and is a com-
putationally efficient method. Figure 4.4 shows the results when the covariance
and correlation matrices are used. For both matrices, the minimum of the VRE
criteria is for four source signals.

Figure 4.5 shows the time-based plots of these four score variables. With
regards to (2.8), these score variables represent linear combinations of the score
variables that are corrupted by the error vector. On the other hand, the score
variables are the coordinates for the orthogonal projection of the samples onto
the model plane according to Figure 2.2 and (2.5).

A comparison of the signals in Figure 4.5 with those of Figure 4.2 suggests
that the 4 source signals can capture the main variation within the reference
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Figure 4.3 Eigenvalues distribution of data covariance (upper plot) and data
correlation matrix (lower plot).

data. This can be verified more clearly by comparing the signals of the original
tube temperatures with their projections onto the PCA model subspace, which
Figure 4.6 illustrates for the first five temperature readings. The thick lines
represent the recovered signals and the thin lines correspond to the five
recorded signals.

The analysis conducted thus far suggests that the identified data structure
models the reference data accurately. By inspecting Figures 4.2 and 4.5, however,
the original process variables, and therefore the score variables, do not follow
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Figure 4.4 Selection of the number of retained PCs using the VRE technique.

a Gaussian distribution. Figure 4.7 confirms this by comparing the estimated
distribution function with that of a Gaussian distribution. The comparison shows
very significant departures, particularly for the first two score variables.

Theorem 9.3.4 outlines that the score variables are asymptotically Gaussian
distributed, which follows from the central limit theorem (CLT). This, however,
requires a significant number of variables. Chapter 8 discusses how to address
non-Gaussian source signals and in Section 6.1.8 shows that the assumption Sgg =
σ 2

g I is not met. More precisely, it must be assumed that each error variable has a
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Figure 4.5 Time-based plot of the score variables for reference data.
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Figure 4.6 Time-based plot of the first five tube temperature readings and their
projections onto the PCA model subspace.

slightly different variance and that the number of source signals is significantly
larger than four.

For the reminder of this section, the statistical inference is based on the
assumption that the score variables follow a multivariate Gaussian distribution to
demonstrate the working of MSPC for detecting and diagnosing process faults.
Chapter 3 highlights that process monitoring relates to the use of scatter diagrams
as well as the Hotelling’s T 2 and Q monitoring statistics.
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Figure 4.7 Comparison between normal distribution (dashed line) and estimated
distribution for principal components (solid line).

In relation to Figure 4.7, however, it is imperative to investigate the effect
of the non-Gaussian distributed score variables upon both nonnegative quadratic
statistics. Figure 4.8 highlights, as expected, significant departures for the T 2

statistic, which is assumed to follow and F-distribution with 4 and 2334 degrees
of freedom. However, the F-distribution with 31 and 2334 degrees of freedom is
a good approximation of the Q statistic when constructed using Equation (3.19).

Figure 4.9 plots the resulting Hotelling’s T 2 and Q statistics for the reference
data. The effect of the 4 non-Gaussian source signals upon the Hotelling’s T 2

statistic can clearly be noticed, as there are no violations of the control limit,
which was determined for a significance of 1%. In contrast, the Q statistic violates
the control limit a total of 18 times out of 2338, which implies that the number
of Type I errors is roughly 1%. This result does not surprise given that the
approximation of this statistic is very close to an F-distribution, which the lower
plot in Figure 4.8 shows.

With regards to the Hotelling’s T 2 statistic, the upper plot in Figure 4.8 gives
a clear indication as to why there are no violations. The critical values of the
empirical distribution function for α = 0.05 and α = 0.99 are 7.5666 and 8.9825,
respectively. However, computing the control limit using (3.5) for a significance
of α = 0.01 yields 13.3412. This outlines that the Hotelling’s T 2 statistic is
prone to significant levels of Type II errors and may not be sensitive in detecting
incipient fault conditions. The next subsection shows how to use the monitoring
model to detect abnormal tube behavior and to identify which of the tube(s)
behave anomalously.
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Figure 4.9 Time based plot of Hotelling’s T 2 and Q statistics for reference data.

It should be noted that the usefulness of applying a multivariate analysis of
the recorded data is not restricted to the generation of the Hotelling’s T 2 and
Q statistics. Section 2.1 outlined that the elements of different loading vectors
can be plotted against each other. As discussed in Kaspar and Ray (1992), such
loading plots can identify groups of variables that have a similar covariance
structure and hence show similar time-based patterns of common cause variation
that are driven by the source signals. Figure 4.10 shows the loading plot of the
first three eigenvectors of Cz0z0

.
The figure shows that most of the temperature variables fall within a small

section, implying that they have very similar patterns on the basis of the first three
components. A second and considerably smaller cluster of variables emerges that
include the temperature sensors y4, y8, y23 and y24. The analysis also shows that
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Figure 4.10 Loading plots of first three eigenvectors of estimated correlation
matrix.
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thermocouple #11 (y11) is isolated from the other two clusters. A comparison
between the variables that make up the second cluster and thermocouple #11
yields that the signal for y11 shows more distinct operating conditions. In contrast
y4, y8, y23 and y24 show substantially more variation and only a few distinct
steady state operating regions.

As the thermocouples measure the temperature at the bottom of each tube,
the two distinct clusters in Figure 4.10 may be a result of different conditions
affecting the chemical reaction within the tubes. This could, for example, be
caused by differences in the fluidization of the catalyst or the concentration
distribution of the five feeds among the tubes. The distinct behavior of tube
#11 would suggest the need to conduct to conduct a further and more detailed
analysis. It is interesting to note that this tube showed an abnormal behavior at a
later stage and developed a severe fluidization problem. The analysis in Kruger
et al. (2001) showed that the tube had to be shut down eventually.

Equation (2.2) is, in fact, a correlation model that assumes that the source
signals describe common cause variation as the main contributor to the data
covariance matrix. In contrast, the error variables have a minor contribution to
this matrix. As the correlation-based model is non-causal, it cannot be concluded
that the distinct characteristic of tube #11 relative to the other temperature
readings is a precursor or an indication of a fluidization problem. However,
the picture presented in Figure 4.10 suggests inspecting the performance of this
tube in more detail.

4.3 Diagnosis of a fault condition

After generating a PCA-based monitoring model this section shows how to utilize
this model for detecting and diagnosing an abnormal event resulting from a
fluidization problem in one of the tubes. There are some manipulations a plant
operator can carry out to improve the fluidization and hence bring the tube
temperature back to a normal operating level. However, incipient fluidization
problems often go undetected by plant operators, as illustrated by this example.

The recorded data showed a total of three cases of abnormal behavior in
one of the tubes. Whilst the first two of these events went unnoticed by plant
operators, the third one was more severe in nature and required the tube to be
shut down (Kruger et al. 2001). The first occurrence is shown in Figure 4.11
by plotting temperature readings #9 to #13 confirming that tube temperature 11
performed abnormally about 100 samples into the data set, which lasts for about
1800 samples (30 hours).

Constructing non-negative quadratic statistics from this data produces the
plots displayed in Figure 4.12. The Hotelling’s T 2 and Q statistics detected this
abnormal event about 1 hour and 30 minutes (90 samples) into the data set by
a significant number of violations of the Q statistic. The violations covered a
period of around 3 hours and 20 minutes (380 samples). The event then decayed
in magnitude although significant violations of the Q statistic remained for about
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Figure 4.11 Time-based plots of tube temperatures 9 to 13.
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Figure 4.12 Univariate monitoring statistics representing abnormal tube
behavior.

30 hours after which the number of violations were around 1% indicating in-
statistical-control behavior.

For diagnosing this event, contribution charts are considered first. These
include the score variable contribution to the T 2 statistic as well as the process
variable contribution to the T 2 and Q statistics. Figure 4.13 shows these score
and variable contributions between the 85th and 92nd samples, which yield that
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Figure 4.13 Contribution charts for samples 85 to 92.
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Figure 4.14 Contribution charts for samples 350 to 357.
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score variables #2 and #4 were predominantly contributing to the T 2 statistic.
The middle plot shows that the 11th tube temperature was predominantly
contributing to the T 2 statistic from the 90th sample, which is the first instance
where this abnormal event was detected. Furthermore, the variable contribution
to the Q statistic does not provide a clear picture although tube temperature 11
was one of the contributing variables among the temperature readings #1, #6,
#7, #21 and #34.

Figure 4.14 presents a second set of contribution charts between the 350th
and 357th samples, which covers a period of larger T 2 and Q values. As before,
score variables #2 and #4 showed a dominant contribution to this event. The
middle and lower plots in Figure 4.14 outlined a dominant variable contribution
of tube temperature #11 to the T 2 and Q statistic, respectively, whilst the lower
plot also identified tube temperatures #1, #9, #21, #31, #33 and #34 as affected
by this event.

The above pre-analysis based on contribution charts correctly suggested
that tube temperature #11 is the most dominantly affected process variable.
Reconstructing this tube temperature using the remaining 34 tube temperatures
allows studying the impact of temperature #11 upon the T 2 and Q statistics.
Subsection 3.2.3 describes how to reconstruct a set of variables using the
remaining ones and how to recompute the monitoring statistics to account for
the effects of this reconstruction. The reconstruction of tube temperature #11
required the following projection

̂̃z011
= 1

1 − c11,11

35∑
i=1�=11

c11,iz0i
(4.3)

where c11,i are the elements stored in the 11th row of C = PPT . To assess the
impact of the reconstruction process, Figure 4.14 shows the difference of the
eigenvalues for the reconstructed and the original covariance matrix, which are
computed as follows

�λ̂i = λ̂i − ̂̃λ1

λ̂i

100%, (4.4)

where λ̂i and ̂̃λi represent the eigenvalues of Ŝz0z0
and ̂̃Sz0z0

, respectively, and �λ̂i

is the percentage deviation. It follows from Figure 4.15 that the reconstruction of
one tube temperature using the remaining ones produced percentage departures of
around 5% or less for most eigenvalues. However, eigenvalues #2, #3, #4 and #6
showed departures of up to 45%, which outlines that it is essential to take these
changes into account when recalculating the Hotelling’s T 2 and Q statistics. A
detailed discussion of this is given in Subsections 3.2.3 and 3.3.2. Applying the
eigenvalues of ̂̃Sz0z0

to determine the ‘adapted’ confidence limits yields that:

• the variances of the score variables changed to 266.4958, 15.1414, 8.0340
and 3.1524 from 269.2496, 20.4535, 14.9976 and 4.6112, respectively; and

• the control limit for the Q statistics changes to 55.0356 from 58.3550.
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Figure 4.15 Percentage changes in the eigenvalues of the data covariance
matrix for reconstructing tube temperature #11.

The resulting statistics after reconstructing tube temperature #11 are shown
in Figure 4.16. Comparing them with those displayed in Figures 4.12 yields
that reconstructing temperature reading #11 reduces the number of violations for
the Q statistic significantly and removed the violations of the T 2 statistic. The
remaining violations of the Q statistic are still indicative of an out-of-statistical-
control situation. It can be concluded, however, that tube temperature #11 is
significantly affected by this event.
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Figure 4.16 Univariate monitoring statistics after reconstruction of tube tem-
perature #11.
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To control the fluidization of the catalyst, an empirically determined
fluidization velocity is monitored and regulated by adjusting the pressure
within the reactor. However, the increase in one tube temperature has not been
significant enough to show a noticeable effect upon most of the other tube
temperatures by this feedback control mechanism, which Figure 4.11 shows.
Nevertheless, the controller interaction and hence the changes in pressure within
the reactor influenced the reaction conditions, which may contribute to the
remaining violations of the Q statistic.
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Figure 4.17 Estimated fault signature and remaining stochastic signal contribu-
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0

5

10

15

T
2  S

ta
tis

tic

Reconstructed T2 and Q statistics

200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

Time (min)

Q
 S

ta
tis

tic

Figure 4.18 Univariate monitoring statistics after removing the fault signature
from the recorded tube temperatures.
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The analysis has so far only indicated that tube temperature #11 is the most
dominant contributor to this out-of-statistical-control situation. An estimate of
the fault signature and magnitude for each of the tube temperatures, however,
could not be offered. Subsection 3.2.3 highlighted that regression-based variable
reconstruction can provide such an estimate. Using a total of R = 20 network
nodes and a radius of � = 0.1, Figure 4.17 presents the separation of the
recorded temperature readings into the fault signature and the stochastic signal
components for the first 2000 samples. Given that the abnormal tube behavior
did not affect the last 1000 samples, only the first 2000 samples were included
in this reconstruction process.

The plots in Figure 4.17 show hardly any contribution from temperature
variables #9, #10, #12 and #13 but a substantial fault signature associated with
variable #11 that amounts to about 20◦C in magnitude. Moreover, apart from
very rapid alterations, noticeable by the spikes occurring in the middle left plot
in Figure 4.17, the estimated fault signature accurately describes the abnormal
tube temperature signal when compared with the original signal in Figure 4.11.
Constructing the Hotelling’s T 2 and Q statistics after the fault signatures
have been removed from the recorded temperature readings produced the plots
in Figure 4.18. In comparison with Figure 4.16, no statistically significant
violations remained.



5

Application to a distillation
process

This chapter presents a second application study, which involves recorded data
from an industrial distillation process, which is a debutanizer unit. Recorded data
from this process were analyzed for process monitoring purposes using PCA and
PLS (Kruger and Dimitriadis 2008; Kruger et al. 2008a; Meronk 2001; Wang
et al. 2003).

Section 5.1 provides a description of this process. Section 5.2 then describes
the data pre-processing and the identification of an MRPLS-based monitoring
model. Finally, Section 5.3 analyzes a recorded data set that describes a severe
drop in the fresh feed flow to the unit and shows how to detect and diagnose
this event.

5.1 Process description

This process, schematically shown in Figure 5.1, is designed to purify Butane
from a fresh feed comprising of a mixture of hydrocarbons, mainly Butane (C4),
Pentane (C5) and impurities of Propane (C3). The separation is achieved by 33
trays in the distillation column. The feed to the unit is provided by an upstream
depropanizer unit, which enters the column between trays 13 and 14. At trays 2
and 31 temperature sensors are installed to measure the top and bottom temper-
atures of the column.

The lighter vaporized components C3 and C4 are liquefied as overhead prod-
uct with large fan condensers. This overhead stream is captured in a reflux drum
vessel and the remaining amount of C3 and C5 in the C4 product stream is

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 5.1 Schematic diagram of debutanizer unit.

measured through on-line analyzers. The product stream is divided into a prod-
uct stream stored in butane tanks, and a reflux stream that returns to the column
just above tray 1.

A second stream, taken from the bottom of the column, is divided between
a feed entering the re-boiler and the bottom product. The temperature of the
vaporized stream leaving the re-boiler and the C4 concentration in the bottom
draw are measured. The bottom product is pumped to a mixing point, where it is
blended into crude oil. Table 5.1 lists the recorded variables included in this study.

The reflux flow rate and the liquid level in the butane and reboiler tanks are
omitted here, as they are either constant over the recording periods or controlled
to a set-point and hence not affected by common cause variation. The remaining
variable set includes the concentrations of C3 in C4, C5 in C4 (top draw) and C5
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Table 5.1 Recorded process variables included in the MRPLS model.

Type Number Tag Description Unit

Input variable 1 x1 Tray 14 temperature ◦C
2 x2 Column overhead pressure bar
3 x3 Tray 2 temperature ◦C
4 x4 Fresh feed temperature ◦C
5 x5 Reboiler steam flow t/h

1

6 x6 Tray 31 temperature ◦C
7 x7 Fresh feed flow ◦C
8 x8 Reboiler temperature ◦C

Output variable 9 y1 Bottom draw t/h
1

10 y2 Percentage C3 in C4 %
11 y3 Percentage C5 in C4 %
12 y4 Top draw t/h

1

13 y5 Percentage C4 in C5 %
1tonnes per hour.

in C4 (bottom draw), flow rates of fresh feed, top and bottom draw, temperatures
of the fresh feed, trays 2, 14 and 31, and the pressure at the top of the column.

This distillation unit operates in a closed-loop configuration. The composition
control structure corresponds to the configuration discussed in Skogestad (2007):

• the top- and bottom draw flow rates control the holdup in the reflux drum
and the reboiler vessel;

• the coolant flow into the condenser (not measured) controls the column
pressure;

• the reflux flow rate, adjusted by a plant operator, controls the concentration
of the distillate; and

• the temperature on tray 31 controls the concentration of the bottom product.

This configuration is known to achieve good performance for composition con-
trol but is also sensitive to upsets in the feed flow. Section 5.3 presents the
detection and diagnosis of such an upset using the MSPC framework outlined in
Chapters 1 to 3.

The variables related to product quality and the output of this process are
the concentration measurements and the flow rates for top- and bottom draw.
The remaining eight variables affect these output variable set and are therefore
considered as the input variables. The next two sections describe the identification
of a MRPLS model and the detection and diagnosis of a severe drop in the flow
rate of the fresh feed. Figures 5.2 and 5.3 plot the reference data for the eight
input and five output variables respectively, recorded at a sampling interval of
30 seconds over a period of around 165 hours.
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Figure 5.2 Plots of reference data for input variables set.

5.2 Identification of a monitoring model

The first step to establish a MRPLS model from the data shown in Figures 5.2
and 5.3 is to estimate the covariance and cross-covariance matrices Ŝx0x0

, Ŝy0y0

and Ŝy0x0
. Including a total of 20,157 samples (around 165 hours), (5.2) to (5.4)
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Figure 5.3 Plots of reference data for output variables set.

show these estimates. Prior to the estimation of these matrices, the mean value
of each process variable was estimated and subtracted. In addition to that, the
variance of each process variable was estimated and the process variables were
scaled to unity variance. Equation (5.1) summarizes the pretreatment of the data

x0i
(k) = xi (k) − ̂̄xi

σ̂xi

y0i
(k) = yi (k) − ̂̄yi

σ̂yi

. (5.1)

Equations (1.2), (1.3), (2.14) and (2.39) show how to estimate the variable mean
and variance, as well as Ŝx0x0

, Ŝy0y0
and Ŝy0x0

.

Ŝx0x0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 0.505 0.636 0.264 −0.205 · · · 0.522
0.505 1.000 0.949 0.122 −0.053 · · · 0.619
0.638 0.949 1.000 0.210 −0.126 · · · 0.627
0.264 0.122 0.216 1.000 0.217 · · · 0.075

−0.205 −0.053 −0.126 0.217 1.000 · · · −0.215
0.584 0.746 0.793 0.229 0.116 · · · 0.671
0.535 0.091 0.162 0.389 0.471 · · · 0.077
0.522 0.619 0.627 0.075 −0.215 · · · 1.000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.2)

Inspection of the entries in these matrices yields that:

• the only significant correlation within the output variable set is between
the bottom and the top draw flow rates, and between the C4 in C5 and
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the C3 in C4 concentrations, producing a correlation coefficient of around
0.75 and 0.55, respectively;

• there is a very significant correlation of 0.95 between the column overhead
pressure and the tray 2 temperature variables;

• there are significant correlation coefficients of 0.5 to 0.7 between all tem-
perature variables; and

• further significant correlation within the input variable set are between the
overhead pressure and the reboiler temperature and between the temper-
ature reading of tray 14 and the fresh feed flow, again with correlation
coefficients of 0.5 to 0.7.

The input variable set, therefore, shows considerable correlation among the pres-
sure, the temperature variables and the flow rate of the fresh feed. This is expected
and follows from a steady state approximation of the first law of thermodynamics.

Ŝy0y0
=

⎡⎢⎢⎢⎣
1.000 0.270 0.126 0.743 −0.082
0.270 1.000 0.176 0.257 0.548
0.126 0.176 1.000 0.130 0.168
0.743 0.257 0.130 1.000 0.010

−0.082 0.548 0.168 0.010 1.000

⎤⎥⎥⎥⎦ (5.3)

Sx0y0
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.463 0.574 0.330 0.552 0.568
0.110 0.593 −0.012 0.036 0.590
0.169 0.681 0.110 0.108 0.631
0.405 0.267 0.179 0.336 −0.388
0.450 0.033 −0.228 0.360 −0.314
0.194 0.773 0.106 0.155 0.656
0.846 0.302 0.133 0.835 −0.034
0.017 0.632 −0.001 0.116 0.475

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.4)

Using the estimated variance and cross-covariance matrices, the next step is
the identification of a MRPLS model. Given that there are a total of eight input
and five output variables, MRPLS can obtain a maximum of five sets of latent
variables, whilst PLS/PCA can extract three further latent component sets for the
input variable set. According to the data structure in (2.51), the identification of a
MRPLS model entails (i) the estimation of the source signals describing common
cause variation of the input and output variable sets and (ii) the estimation of a
second set of latent variables that describes the remaining variation of the input
variable set.

Figure 5.4 shows the results of applying the leave-one-out cross validation
stopping rule, discussed in Subsection (2.4.2). A minimum of the PRESS statistic
is for n = 4 sets of latent variables, suggesting that there are four source signals
describing common cause variation of the input and output variable sets.

Table 5.2 shows the cumulative contribution of the LV sets to Ŝx0x0
, Ŝy0y0

and
Ŝy0x0

. These contributions were computed using (2.102) to (2.104), which implies
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Figure 5.4 Cross-validation results for determining n.

Table 5.2 Performance of MRPLS model on reference data.

Number t-score variable cont{Sx0y0
} cont{Sx0x0

} cont{Sy0y0
}

1 t1 0.4118 0.5052 0.4623
2 t2 0.0516 0.1572 0.1820
3 t3 0.0197 0.0889 0.1507
4 t4 0.0023 0.0545 0.1176
5 t ′1 0.0001 0.0329 0.1176
6 t ′2 0.0000 0.0124 0.1176
7 t ′3 0.0000 0.0002 0.1176
8 t ′4 0.0000 0.0000 0.1176

that values of 1 are for the original covariance and cross-covariance matrices and
values close to zero represent almost deflated matrices.

The first four rows in Table 5.2 describe LV contributions obtained from
the MRPLS objective function in (2.68) and the deflation procedure in (2.74).
The LV contribution representing rows five to eight relate to the PLS objective
function in (2.76) and the deflation procedure in (10.18).

In terms of prediction accuracy, the rightmost column in Table 5.2 outlines
that the first four LV sets rapidly reduce the squared sum of the elements in S(i+1)

ff ,
which is evident by the reduction to a value of around 0.1 for the covariance
matrix Ŝ(5)

ff . A similar trend can be noticed for the cumulative sum of the elements

in S(i+1)
ee and S(i+1)

ef . Different from the simulation example in Section 2.3.4, the
common cause variation within input variable set is largely shared with the output
variables. More precisely, the squared sum of the elements in Ŝ(5)

ff over those in

Ŝx0x0
is 0.055. For the cross-covariance matrix Ŝ(5)

ef , a negligible ratio of 0.002
remains, as expected.

The application of PLS to the deflated covariance and cross-covariance
matrices then allows deflating the covariance matrix Ŝx0x0

by determining
four further LV sets for the input variables. The variances of first four t-score
variables are equal to 1, which follows from (2.65) and (2.66). The variances
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Table 5.3 Prediction accuracy of MRPLS model on referenced data.

n MSE{f1n
} MSE{f2n

} MSE{f3n
} MSE{f4n

} MSE{f5n
}

1 0.4008 0.6778 0.9537 0.3844 0.9036
2 0.2642 0.4600 0.9442 0.2692 0.1666
3 0.2642 0.3475 0.8711 0.2597 0.1311
4 0.2580 0.3222 0.7519 0.2561 0.0975

of the last four t-score variables t̂ ′1, t̂ ′2, t̂ ′3 and t̂ ′4 are 0.6261, 0.2891, 0.4821 and
0.0598, respectively.

Next, Table 5.3 lists the mean squared error (MSE) for predicting each of
the output variable by including between 1 to 4 LV sets

MSE
{
fin

} = 1
K

K∑
k=1

(
yi (k) −

n∑
j=1

q̂j î tj (k)

)2

. (5.5)

Apart from y3, that is, C5 in C4 concentration, the MRPLS model is capable
of providing a sufficiently accurate prediction model. The prediction accuracy
is compared by plotting the measured and predicted signals for each output
variables below.

Obtaining a fifth set of latent variables using the MRPLS objective function,
would have resulted in a further but insignificant reduction of the MSE
values for each output variables: MSE{f15

} = 0.2439, MSE{f25
} = 0.3220,

MSE{f35
} = 0.7515, MSE{f45

} = 0.2426 and MSE{f55
} = 0.0974. This con-

firms the selection of four source signals that describe common cause variation
shared by the input and output variable set.

The issue of high correlation among the input variable set is further elaborated
in Subsection 6.2.1, which outlines that the slight increase in prediction accuracy
by increasing n from four to five may be at the expense of a considerable variance
of the parameter estimation and, therefore, a poor predictive performance of the
output variables for samples that are not included in the reference set.

Equations (5.6) and (5.7) show estimates of the r-weight and q-loading matri-
ces, respectively.

R̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.41 0.02 −0.93 0.30 −0.24 −0.25 −0.47 −0.21
−0.27 0.17 −0.16 1.37 0.30 0.28 −0.53 0.22

0.28 −0.30 0.54 −1.06 0.31 0.38 −0.41 −0.43
−0.04 0.42 0.37 −0.75 0.22 −0.32 −0.41 0.46

0.16 0.38 0.39 0.62 0.42 −0.55 0.17 −0.33
0.15 −0.84 −0.04 −0.41 0.15 −0.41 −0.07 0.41
0.56 0.23 0.01 0.05 0.06 0.38 0.25 0.49
0.03 0.13 0.81 0.09 −0.71 −0.10 −0.26 0.04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6)
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Q̂ =

⎡⎢⎢⎢⎣
0.7741 0.3696 0.0038 0.0787
0.5676 −0.4667 0.3354 −0.1590
0.2150 −0.0976 −0.2705 −0.3452
0.7846 0.3394 −0.0976 0.0595
0.3105 −0.8585 −0.1886 0.1831

⎤⎥⎥⎥⎦ . (5.7)

To graphically interpret the relationship:

• between the computed t-score variables and the original input variables;
and

• between the prediction of the output variables using the t-score variables

the elements of the r-weight and q-loading vectors can be plotted in individual
loading plots, which Figure 5.5 shows. For the elements of the first three r-weight
vectors (upper plot), most of the input variables contribute to a similar extent to
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the first three t-score variables, with the exception of the temperatures on trays
31 and 2.

The main cluster suggests that the tray 14 temperature, the overhead pressure,
the reboiler steam flow and the reboiler temperature have a very similar contribu-
tion to the computation of the t-score variables and hence, the prediction of the
output variables. The first r-weight vector shows a distinctive contribution from
the fresh feed flow and the upper plot in Figure 5.5 indicates a distinctive contri-
bution from tray 2 and 31 temperatures to the computation of the t-score variables.

The t-score variables are obtained to predict the output variables as accu-
rately as possible, which follows from (2.62) to (2.66). This implies a distinctive
contribution from input variables tray 2, tray 31 and fresh feed temperature.
This analysis makes sense, physically, as an alteration in the tray 31 temperature
affects the concentration of the impurities in the top draw, changes in the tray
2 temperature impact the level of impurities (C4 in C5) of the bottom draw and
alterations in the feed temperature can affect the impurity levels in the top and/or
the bottom draw.

Now, inspecting the bottom plot in Figure 5.5 yields that the first three
q-loading vectors produce distinctive patterns for:

• the flow rates of the top and the bottom draw;

• the C5 in C4 and C4 in C5 concentrations of the top and bottom draw; and

• an isolated pattern for the C3 in C4 concentration of the top draw.

Although prediction of the C5 in C4 concentration using the linear MRPLS
regression model is less accurate compared to the remaining four output variables,
it is interesting to note that the elements in the q-loading vectors suggest a similar
contribution for each of the t-score variables in terms of predicting the C5 in C4
and the C4 in C5 concentration. The distinct pattern for the top and bottom draw
flow rates is also not surprising, given that slight variations in the feed rate (x7)
are mostly responsible for alterations in both output variables. This is analyzed
in more detail below.

On the other hand, any variation in the C3 in C4 concentration is mostly
related to the composition of the fresh feed. If the unmeasured concentration of
C3 in this feed is highly correlated to the feed rate or temperature then those
variables predict the C3 in C4 concentration. This outlines that the MSPC mod-
els are correlation-based representations of the data that do not directly relate to
first-principle models representing causality, for example governed by conserva-
tion laws such as simple heat and material balance equations or more complex
thermodynamic relationships. A detailed discussion of this may be found in Yoon
and MacGregor (2000, 2001).

Assessing which input variable has a significant affect upon a specific output
variable relies on analyzing the elements of the estimated regression matrix,
which Table 5.4 presents. An inspection of these parameters yields that the fresh
feed temperature has a major contribution to the C4 in C5 concentration but has
hardly any effect on the remaining output variables. The negative sign of this
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Table 5.4 Coefficients of regression model for n = 4.

bij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 0.3432 −0.1400 0.2327 0.4352 0.3363
j = 2 −0.0353 −0.5032 −0.5067 −0.0540 0.0487
j = 3 0.0246 0.6499 0.3090 0.0025 0.0542
j = 4 0.0689 0.0247 0.1094 0.0326 −0.5815
j = 5 0.3140 −0.0546 −0.3199 0.2531 −0.2373
j = 6 −0.2272 0.5290 0.2679 −0.1882 0.7000
j = 7 0.5219 0.2088 0.0769 0.5185 −0.0144
j = 8 0.0825 0.2166 −0.2549 −0.0046 −0.2344

A row represents the coefficients for the prediction of the output variables using the
j th input variable and the coefficients in a column are associated with the prediction
of the ith output variable using the input variables.

parameter implies that the temperature increase results in a reduction of the C5
in C4 concentration.

The flow rates of the top and bottom draw are mainly affected, in order of
significance, by the fresh feed flow, the tray 14 temperature, the reboiler steam
flow and the tray 31 temperature. Following from the preceding discussion, the
tray 31 temperature has a distinctive effect on calculating the t-score variables,
whilst the remaining three variables have a similar contribution. Knowing that
the fresh feed flow and temperature are input variables that physically affect the
temperatures, pressures and flow rates within the column, the analysis here yields
that the most significant influence upon both output streams are the feed level
and the tray 31 temperature.

For predicting the C3 in C4 concentration the column overhead pressure and
the tray 2 and 31 temperatures are the most dominant contributors. However,
C3 is more volatile than C4 and C5 and significant changes in the C3 in C4
concentration must originate from variations of the C3 concentration in the fresh
feed. Moreover, Table 5.3 yields correlation between the concentrations of C3 in
C4 and C4 in C5, and between the C3 in C4 concentration and the flow rates of
both output streams.

Given this correlation structure and the fact that each of these three variables
can be accurately predicted by the MRPLS regression model, it is not surprising
that the C3 in C4 concentration can be accurately predicted too. This, again,
highlights the fact that the MSPC model exploits the correlation between the
input and output variables as well as the correlation within the input and output
variable sets.

The remaining two variables to be discussed are the C5 in C4 and the C4
in C5 concentrations. With the exception of the fresh feed temperature and flow
rate, each of the remaining variables contributed to the prediction of the C5 in
C4 concentration. For the C4 in C5 concentration, the overhead pressure, the
tray 2 temperature and the flow rate of the fresh feed did not show a significant
contribution. The most dominant contribution for predicting the C5 in C4 and the
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C4 in C5 concentration is column overhead pressure and the tray 31 temperature,
respectively.

A relationship between the overhead pressure and the C5 in C4 concentration
is based on the estimated correlation structure. On the other hand, the positive
parameter between the tray 31 temperature and the C4 in C5 concentration implies
that an increase in this temperature coincides with an increase in the C4 in C5
temperature. The reason behind this observation, again, relates to the correlation
structure that is encapsulated within the recorded variable set.

The analysis of the identified MRPLS model concludes with an inspection
of the extracted source signals. Figure 5.6 shows the estimated sequences of the
t-score variables that describe common cause variation of the input and output
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variable sets (Plot a) and sequences that describe the remaining variation within
the input variable set only (Plot b). Following the MRPLS objective function,
the t′-scores are not informative for predicting output variables.

Staying with the t-score variables Figure 5.7 shows the contribution of the
estimated t-score variables (left plots) and the t′-score variables (right plots) to
the input variables. As expected, with the exception of variables x2, x5 and x8,
the variance contribution of the t-score variables is significantly larger than that
of the t′-score variables to the input variable set.

Evaluating the remaining variance of the input variables after subtracting the
contribution of the four t-score variables, which Figure 5.8 shows, confirms this.
An approximate estimation of the residual variances is given by1

σ̂ f5
≈ diag

{
1

20,156

20,157∑
k=1

(
x0 (k) − P̂̂t (k)

) (
x0 (k) − P̂̂t (k)

)T
}

(5.8)

and stored in σ̂ f5
. As before, P̂ ∈ R

8×4 is the loading matrix and t̂ (k) ∈ R
4 is

the t-score vector for the kth sample. As the variance of each of the original input
variables is 1, the smaller the displayed value of a particular variable in Figure 5.8
the more variance of this input variable is used for predicting the output variables.

The smallest value is for the flow rate of the fresh feed, followed by those of
the tray 31 temperature, the tray 14 temperature and the temperature of the fresh
feed. The other variables are less significantly contributing to the prediction
of output variables. After assessing how the t-score and the t′-score variables
contribute to the individual input variables, Figure 5.9 shows the prediction of the
output variables (left column) and the residual variables for the reference data set.

Apart from y3, describing the C5 in C4 concentration, the main common cause
variation within the unit can be accurately described by the MRPLS model. Par-
ticularly the residuals of the output variables y1, y4 and y5 show little correlation
to the recorded output variables.

Figure 5.10 presents a direct comparison of the measured signals for variables
y3 to y5 with their prediction using the MRPLS model. This comparison confirms
the accurate prediction of y4 and y5 and highlights the prediction of the C5 in
C4 concentration can describe long-term trends but not the short-term variation,
which is the main factor for the high MSE value, listed in Table 5.3.

5.3 Diagnosis of a fault condition

The process is known for severe and abrupt drops in feed flow which can signif-
icantly affect product quality, for example the C5 in C4 concentration in the top
draw. The propagation of this disturbance results from an interaction of process
control structure, controller tuning and operator support. The characteristics of

1 To ensure an unbiased estimation, the denominator may not be assumed to be K − 1 given that
the loading matrix and the scores are estimates too. With the large number of samples available,
however, the estimate given in this equation is sufficiently accurate.
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this fault are described first, prior to an analysis of its detection and diagnosis.
This fault is also analyzed in Kruger et al. (2007), Lieftucht et al. (2006a), Wang
et al. (2003).

The feed flow, provided by a depropanizer unit, usually shows some variations
that, according to Figure 5.2, range between 22 to 27t/h. This flow, however, can
abruptly decrease by up to 30%. An example of such a severe drop is studied
here, highlighting that the identified monitoring model can discriminate between
the severity of feed variations and whether they potentially affect product quality.

Figure 5.11 plots the recorded input variables for such an event, where a
minor but prolonged drop in feed level is followed by a severe reduction that has
significantly impacted product quality. The first minor drop in feed flow occurred
around 23 hours into the data set with a reduction from 25 to 24t/h and lasted for
about 3 hours. The second and severe reduction in feed level occurred around
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26 hours into the data set and reduced the flow rate to around 17t/h and lasted
for about 2 hours.

It should be noted that the level controllers in the bottom vessel, distillate
drum and the column pressure can compensate the material balance within the
column to fluctuations in the fresh feed level. The temperature controller, how-
ever, may be unable to adequately respond to these events by regulating the
energy balance within the column if severe and prolonged reductions in feed
arise. Figures 5.11 and 5.12 demonstrate this. The response of the column to
the first prolonged drop is a slight increase the tray 14 temperature and a minor
reduction in the reboiler steam flow.

The second drop that followed had a significantly greater impact on the oper-
ation of the column. More precisely, each of the column temperatures, that is,
v1, v3 and v6, increases sharply and almost instantly. Consequently, the C5 in
C4 concentration (y3) rose above its desired level about 1.5h after the feed level
dropped substantially around 26h into the data set. The effect of this drop in feed
level was also felt in the operation of the reboiler, as the reboiler temperature v8
and the reboiler steam flow decreased. Another result of this event is a reduction
of the flow rate of both output streams, y1 and y4. Figure 5.12 shows that the
maximum drop of 7t/h is split into a reduction of 3 and 4t/h in the flow rate of
top and bottom draw, respectively.

Figure 5.2 shows that the feed level can vary slowly and moderately, which
will introduce common cause variation within the unit. The issue here is to
determine when a severe drop in feed arises that has a profound impact upon
product quality. This is of crucial importance, as any increase in the C5 in C4
concentration arises with a significant delay of around 90 minutes. In other words,
monitoring the output variable y3 or the input variable v7 alone is insufficient for
the monitoring task at hand. This is because variations in the feed level naturally
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occur and may not necessarily lead to an undesired effect on product quality. The
monitoring of this process thus requires a multivariate analysis in order to alert
process personnel when a severe feed drop occurs. Meronk (2001) discussed a
number of potential remedies to prevent the undesired increase of the C5 in C4
concentration.

As outlined in Subsection 3.1.2, the multivariate analysis relies on scatter
diagrams and non-negative quadratic statistics. Figure 5.13 shows the Hotelling’s
T 2 and T ′2, and the Qf statistics. As expected, the first 22 hours into the data
set did not yield an out-of-statistical-control situation. The drop in fresh feed was
first noticed by the Hotelling’s T ′2 statistic after about 23.5h, with the remaining
two statistics showing no response up until 26h into the data set.

Figure 5.14 shows a zoom of each monitoring statistic in Figure 5.13 between
20 to 26h. The linear combinations of the input variables that are predictive for
the output variables are not affected by the initial and minor drop in fresh feed.
The Qf statistic also confirms this, since it represents the mismatch between the
measured and predicted output variables and did not suggest an out-of-statistical-
control situation during the first minor drop in feed. However, the correlation
between the input variables that is not informative for predicting the output
variables, that is, the remaining variation that contributes to the input variables
only, is affected by the prolonged drop in the feed level. Particularly the increase
in the tray 14 temperature and the decrease in the reboiler steam flow, according
to Figure 5.11, is uncharacteristic for normal process behavior and resulted in
the out-of-statistical-control situation.

The diagnosis of this event is twofold. The first examination concentrates on
the impact of the first minor reduction in the flow rate of the fresh feed. Given
that only the Hotelling’s T ′2 statistic was sensitive to this event, Figure 5.15
presents time-based plots of the four t′-scores variables between 20 to 25.5 hours
into the data set. The plots in this figure are a graphical representation of (3.37).
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In plot (a) of Figure 5.15, a value of zero implies acceptance of the null
hypothesis, that is, t2

i /σ 2
ti

≤ T 2
α/4. Conversely, values larger than zero yield rejection

of the null hypothesis. Plot (b) in Figure 5.15 shows the computed variable
contribution by applying (3.38) and (3.39) for variables t ′2 and t ′3, and highlights
that v7 (fresh feed flow) is most dominantly contributing.

The second and severe drop developed over a period of 1 hour and resulted
in an eventual reduction to just over 17t/h. According to Figure 5.14, the Qf

statistic was sensitive around 25.5h into the data set, that is, before the fresh
feed flow reached its bottom level. Around the same time, the Hotelling’s T ′2
statistic also increased sharply in value and with a slight delay, the Hotelling’s
T 2 statistic violated its control limit.

The preceding discussion outlined that the first drop did not have an effect on
the C5 in C4 concentration, that is, the product quality. However, the prolonged
drop in feed level from 25 to 24t/h is (relative to the variations in feed of the large
reference data set) unusual and affected the second and third t′-score variables.
This suggests that monitoring these two variables along with the most dominant
contributor for product quality, the first t-score variable, is an effective way of
detecting minor but prolonged drops in feed.

Figure 5.16 shows the progression of the first drop using scatter diagrams in
six stages. The first 23 hours and 20 minutes (2800 samples) are plotted in the
upper left plot and indicate, as expected, that the scatter points cluster around
the center of coordinate system. Each of the following plots, from the top right
to the bottom right plot, adds 25 or 50 minutes of data and covers the additional
range from 23 hours and 20 minutes to 25 hours and 50 minutes. Therefore, the
bottom right plot describes the first stage of the second and sharp reduction in
feed level.
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Figure 5.15 t ′ scores and variable contributions to feed drop for 20 to 26 hours.

First, the scatter points move away from the initial cluster, which represents
an in-statistical-control behavior, in the direction of the t ′2- and t ′3-score variable
and establishes a second cluster, which represents the first drop in feed. When
the second and more severe drop in feed emerges, the scatter points move away
from this second cluster and appear to establish a third cluster. It is interesting
to note that this third cluster is shifted from the original one along the axis of
the t1-score variable.

Plot (a) in Figure 5.17 shows, graphically, the hypothesis test of (3.37)
for each of the t-score variables, covering the second drop in feed. This time,
as Figure 5.14 confirms, each monitoring statistic showed an out-of-statistical-
control situation. Score variables t2 and t3 were initially most sensitive to the
significant reduction in feed and after about 26 hours into the data set. Applying
the procedure for determining the variable contributions in (3.38) and (3.39), on
the basis of these score variables produced the plot (b) in Figure 5.17.

The main contributing variables to this event were the flow rate of the fresh
feed v7 and with a delay the tray 14 temperature v1. Applying the same procedure
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drop.

for the first t-score variable between 25h and 30min and 25h and 50min (not
shown here) yields the tray 14 temperature as the main contributor. This results
from the sharply decreasing value of this variable during this period, which
Figure 5.11 confirms.

Recall that the MRPLS monitoring model is a steady state representation of
this unit that is based on modeling the correlation structure between the input
and output variables but also among the input and output variable sets. The
observed decrease in the tray 14 temperature is a result of the energy balance
within the column that may not be described by the static correlation-based
model. On the basis of an identified dynamic model of this process, Schubert
et al. (2011) argued that the increase in the impurity level of the top draw (C5 in
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Figure 5.17 t scores and variable contributions to feed drop for 25 to 26 hours.

C4 concentration) originates from an upset in the energy balance. On the other
hand, Buckley et al. (1985) pointed out that the flow rate of the fresh feed is
the most likely disturbance upsetting the energy balance within the distillation
column. Other but minor sources that may exhibit an undesired impact upon the
energy balance is the fresh feed temperature and enthalpy.

In this regard, the application of the MRPLS monitoring model, however,
correctly detected the reduction in feed level as the root cause triggering the
undesired increase in the C5 in C4 concentration. Furthermore, the monitoring
model was also capable of discriminating:

• between a minor reduction in feed level that was still abnormal relative to
the reference data set but did not affect product quality; and

• a severe drop in this level that had a profound and undesired impact on
product quality.
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More precisely, the preceding analysis suggested that the t ′-score variables and
thus the Hotelling T ′2 statistic reject the null hypothesis, that is, the process is
in-statistical-control, if abnormal changes in the feed level arise. On the other
hand, if such changes are significant, the t-score variables and with them the
Hotelling’s T 2 and the Qf statistics reject the null hypothesis. This confirms the
benefits of utilizing the model structure in (2.51). From the point of the process
operator, the Hotelling’s T 2 and the Qf statistics are therefore informative, as
they can provide an early warning that a feed drop has arisen that has the potential
to affect produce quality. The immediate implementation of the recommendations
in Meronk (2001) can prevent the negative impact of this change in feed level
upon produce quality. For a minor alteration in feed level, however, is important
to assess its duration as the prolonged presence may also have the potential to
upset the energy balance.



PART III

ADVANCES IN
MULTIVARIATE
STATISTICAL PROCESS
CONTROL



6

Further modeling issues

Chapters 1 to 3 introduced the basic MSPC approach that is applied to the
chemical reaction and the distillation processes in Chapters 4 and 5, respectively.
This chapter extends the coverage of MSPC modeling methods by discussing the
following and practically important aspects:

1. how to estimate PCA models if the error covariance matrix Sgg �= σ 2
g I;

2. how to estimate PLS/MRPLS models if the input variable sets are also
corrupted by an error vector;

3. how to estimate MSPC models if the reference data contain outliers; and

4. how to estimate MSPC models if only small reference sets are available.

Section 6.1 introduces a maximum likelihood formulation for simultaneously
estimating an unknown diagonal error covariance matrix and the model subspace,
and covers cases where Sgg is known but not of the form σ 2

g I.
Section 6.2 discusses the accuracy of estimating PLS models and compares

them with OLS models with respect to the relevant case that the input vari-
ables are highly correlated. The section then extends the data structure in (2.23),
(2.24) and (2.51) by including an error term for the input variable set, which
yields an error-in-variable (Söderström 2007) or total least squares (van Huffel
and Vandewalle 1991) data structure. The section finally introduces a maximum
likelihood formulation for PLS and MRPLS models to identify error-in-variable
estimates of the LV sets.

Outliers, which are, at first glance, samples associated with a very large
error or are simply different from the majority of samples, can profoundly affect
the accuracy of statistical estimates (Rousseeuw and Hubert 2011). Section 6.3
summarizes methods for a robust estimation of PCA and PLS models by reducing

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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the impact of outliers upon the estimation procedure and trimming approaches
that exclude outliers.

Section 6.4 describes how a small reference set, that is, a set that only contains
few reference samples, can adversely affect the accuracy of the estimation of
MSPC models. The section stresses the importance of statistical independence
for determining the Hotelling’s T 2 statistics and also discusses a cross-validatory
approach for the residual-based Q statistics.

Finally, Section 6.5 provides a tutorial session including short questions and
small projects to help familiarization with the material of this chapter. This
enhances the learning outcomes, which describes important and practically rele-
vant extensions of the conventional MSPC methodology, summarized in Chapters
1 to 3.

6.1 Accuracy of estimating PCA models

This section discusses how to consistently estimate PCA models if Sgg �= σ 2
g I,

which includes the estimation of the model subspace and Sgg. The section first
revises the underlying assumptions for consistently estimating a PCA model by
applying the eigendecomposition of Sz0z0

in Subsection 6.1.1. Next, Subsection
6.1.2 presents two illustrative examples to demonstrate that a general structure of
the error covariance matrix, that is, Sgg �= σ 2

g I yields an inconsistent estimation
of the model subspace.

Under the assumption that the error covariance matrix is known a priori , Sub-
section 6.1.3 develops a maximum likelihood formulation to consistently estimate
the orientation of the model and residual subspaces. If Sgg is unknown, Subsection
6.1.4 introduces an approach for a simultaneous estimation of the model subspace
and Sgg using a Cholesky decomposition. Subsection 6.1.5 then presents a simu-
lation example to show a simultaneous estimation of the model subspace and Sgg

for a known number of source signals n. Assuming n is unknown, Subsection
6.1.6 then develops a stopping rule to estimate the number of source signals.

Subsection 6.1.7 revisits the maximum likelihood estimates of the model
and residual subspaces and introduces a re-adjustment to ensure that the loading
vectors, spanning both subspaces, point in the direction of maximum variance
for the sample projections. Finally, Subsection 6.1.8 puts the material presented
in this section together and revisits the application study of the chemical reaction
process in Chapter 4. The revised analysis shows that the recorded variable
set contains a larger number of source signals than the four signals previously
suggested in Chapter 4.

6.1.1 Revisiting the eigendecomposition of Sz0z0

Equation (2.2) and Table 2.1 show that the data structure for recorded data is

z = �s + z̄ + g = zs + z̄ + g = z0 + z̄. (6.1)
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Removing the mean from the recorded variable, the stochastic component is
assumed to follow a zero mean multivariate Gaussian distribution with the covari-
ance matrix

E
{
z0zT

0

} = Sz0z0
= �Sss�

T + σ 2
g I. (6.2)

Asymptotically, assuming that E
{
zsg

T
} = 0 the eigendecomposition of Sz0z0

lim
K→∞

Ŝz0z0
= lim

K→∞
1

K−1

K∑
k=1

(
z (k) −̂̄z) (z (k) −̂̄z)T → Sz0z0

(6.3)

yields

Sz0z0
= [P Pd

] [� 0

0 �d

][
PT

PT
d

]
=

n∑
i=1

λipip
T
i + σ 2

g

nz∑
i=n+1

pip
T
i . (6.4)

Given that Szszs
= Sz0z0

− σ 2
g I and limK→∞ Ŝz0z0

→ Sz0z0
the eigendecomposi-

tion of Ŝz0z0
provides an asymptotic estimate of limK→∞ σ̂ 2

g → σ 2
g and allows

extracting Szszs

Sz0z0
=

n∑
i=1

(
λi − σ 2

g

)
pip

T
i︸ ︷︷ ︸

=Szs zs

+ σ 2
g

nz∑
i=1

pip
T
i︸ ︷︷ ︸

=σ 2
g I

. (6.5)

Since the matrix P = [p1 p2 · · · pnz

]
has orthonormal columns, which fol-

lows from Theorem 9.3.3, the term σ 2
g

∑nz

i=1 pip
T
i reduces to σ 2

g I and hence

Sz0z0
=

⎡⎢⎢⎢⎢⎢⎣
σ 2

z1s
+ σ 2

g σ 2
z1s z2s

· · · σ 2
z1s znzs

σ 2
z2s z1s

σ 2
z2s

+ σ 2
g · · · σ 2

z2s znzs

...
...

. . .
...

σ 2
znzs

z1s
σ 2

znzs
z2s

· · · σ 2
znzs

+ σ 2
g

⎤⎥⎥⎥⎥⎥⎦ . (6.6)

Under the above assumptions, the eigendecomposition of Sz0z0
can be sepa-

rated into Szszs
and Sgg = σ 2

g I, where

Szszs
= [p1 p2 · · · pn

] [
� − σ 2

g I
]
⎡⎢⎢⎢⎢⎣

pT
1

pT
2

...

pT
n

⎤⎥⎥⎥⎥⎦ (6.7)



170 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

and

� − σ 2
g I =

⎡⎢⎢⎢⎣
λ1 − σ 2

g 0 · · · 0
0 λ2 − σ 2

g · · · 0
...

...
. . .

...

0 0 · · · λn − σ 2
g

⎤⎥⎥⎥⎦ . (6.8)

Following the geometric analysis is Section 2.1, (2.2) to (2.5) and Figure 2.2, the
model subspace, originally spanned by the column vectors of �, can be spanned
by the n retained loading vectors p1, p2, · · · , pn, since

P
[
� − σ 2

g I
]

PT = �Sss�
T . (6.9)

Determining the eigendecomposition of Sss and substituting Sss = TLTT into
(6.9) gives rise to

P
[
� − σ 2

g I
]

PT = �TLTT �T . (6.10)

Next, re-scaling the eigenvalues of Sss such that L = L−1/2
[
� − σ 2

g I
]L−1/2

yields

P
[
� − σ 2

g I
]

PT = �TL−1/2
[
� − σ 2

g I
]L−1/2TT �T . (6.11)

Hence, � − σ 2
g I = L1/2LL1/2, where L is a diagonal scaling matrix. The above

relationship therefore shows that P = �TL−1/2 and hence, � = PL1/2TT .
Now, multiplying this identity by PT

d from the left gives rise to

PT
d � = PT

d PL1/2TT = 0, (6.12)

which follows from the fact that the PCA loading vectors are mutually
orthonormal. That the discarded eigenvectors, spanning the residual subspace,
are orthogonal to the column vectors of � implies that the n eigenvectors
stored as column vectors in P span the same model subspace. Consequently, the
orientation of the model subspace can be estimated consistently by determining
the dominant eigenvectors of Sz0z0

lim
K→∞

Sz0z0
= P
[
� − σ 2

g I
]

PT + σ 2
g I. (6.13)

In other words, the dominant n loading vectors present an orthonormal base
that spans the model subspace under the PCA objective function of maximizing
the variance of the score variables ti = pT

i z0. It can therefore be concluded that
the loading vectors present an asymptotic approximation of the model subspace,
spanned by the column vectors in �. However, this asymptotic property holds
true only under the assumption that Sgg is a diagonal matrix with identical entries,
which is shown next.
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6.1.2 Two illustrative examples

The first example is based on the simulated process in Section 2.1, where three
process variables are determined from two source signals that follow a multi-
variate Gaussian distribution, s ∼ N {0, Sss

}
. Equations (2.9) to (2.11) show the

exact formulation of this simulation example. The error covariance matrix of
(2.11) is therefore of the type σ 2

g I so that the eigendecomposition of Sz0z0
allows

a consistent estimation of the model subspace, spanned by the two column vectors
of �, ξT

1 = ( 0.2 0.8 −0.3
)

and ξT
2 = ( −0.5 0.4 −0.7

)
.

Constructing an error covariance matrix that is of a diagonal type but contains
different diagonal elements, however, does not yield a consistent estimate of the
model subspace according to the discussion in previous subsection. Let Sgg be

Sgg =
⎡⎣0.075 0 0

0 0.01 0
0 0 0.15

⎤⎦ , (6.14)

which produces the following covariance matrix of z0

Sz0z0
= �Sss�

T + Sgg =
⎡⎣0.4250 0.0560 0.2870

0.0560 0.6180 −0.3160
0.2870 −0.3160 0.6040

⎤⎦ . (6.15)

The eigendecomposition of this covariance matrix is

P =
⎡⎣−0.3213 −0.7085 −0.6283

0.5922 −0.6681 0.4506
−0.7390 −0.2273 0.6342

⎤⎦
� =
⎡⎣0.9820 0 0

0 0.5699 0
0 0 0.0951

⎤⎦ .

(6.16)

To examine the accuracy of estimating the model subspace, the direction of the
residual subspace, which is nT = ( −0.6173 0.4068 0.6734

)
according to

(2.20), can be compared with the third column vector in P

cos
(
ϕ(n,p3)

) = nT p3 = 0.9982 arccos (0.9982) 180
π

= 3.4249◦ (6.17)

As a result, the determined residual subspace departs by a minimum angle of
3.4249◦ from the correct one. Defining ϕ(n,p3) as a parameter the above analysis
demonstrates that this parameter is not equal to 1. Hence, n can only be estimated
with a bias (Ljung 1999). Asymptotically, ϕ(n,p3) = 1 if Sgg = σ 2

g I and else < 1.
A second example considers a Monte Carlo experiment where the variances

for each of the three error variables are determined randomly within the range of[
0.04 0.06

]
. For a total of 100 experiments, Figure 6.1 shows the uniformly

distributed values for each error variance. Applying the same calculation for
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Figure 6.1 Variance for each of the three residual variables vs. number of
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Figure 6.2 Angle between original and estimated eigenvector for residual
subspace.

determining the minimum angle between p3 and n for each set of error variances
yields the results shown in Figure 6.2. Angles close to zero, for example in
experiments 23 and 51, relate to a set of error variances that are close to each
other. On the other hand, larger angles, for example experiments 31, 53, 70, 72
and 90 are produced by significant differences between the error variances.

6.1.3 Maximum likelihood PCA for known Sgg

Wentzell et al. (1997) introduced a maximum likelihood estimation (Aldrich
1997) for PCA under the assumption that Sgg is known. The maximum likelihood
formulation, which is discussed in the next subsection, relies on the following
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formulation

J
(
g, Sgg

) = 1

(2π)
nz/2
∣∣Sgg

∣∣1/2 exp
(
− 1

2

(
z0 − zs

)T S−1
gg

(
z0 − zs

))
(6.18)

where J
(
g, Sgg

)
> 01 is the likelihood of occurrence of the error vector

g = z0 − ẑ0, if the error vector follows g ∼ N {0, Sgg

}
. According to (2.2),

g = z0 − �s, �s = zs . With k and l being sample indices, it is further assumed
that E

{
g (k) gT (l)

} = δklSgg. If a total of K samples of z0 are available, z0 (1),
. . . , z0 (k), . . . , z0 (K), the maximum likelihood objective function is given by

J =
K∏

k=1

Jk

(
z0 (k) − zs (k) , Sgg

)
, (6.19)

where Jk

(
z0 (k) − zs (k) , Sgg

)
is defined by (6.18) when replacing z0 and zs with

z0(k) and zs(k), respectively. The above function is a product of likelihood values
that is larger than zero. As the logarithm function is monotonously increasing,
taking the natural logarithm of J allows redefining (6.19)

J ∗ =
K∑

k=1

ln
(
Jk

(
z0 (k) − zs (k) , Sgg

) )
. (6.20)

where J ∗ = ln (J ). Substituting (6.18) into (6.20) yields

J ∗ = − Knz ln (2π) − K
2 ln
(∣∣Sgg

∣∣)
− 1

2

K∑
k=1

(
z0 (k) − zs (k)

)T S−1
gg

(
z0 (k) − zs (k)

)
.

(6.21)

Multiplying both sides by −2 and omitting the constant terms 2Knz ln (2π) and
K ln
(∣∣Sgg

∣∣) gives rise to

J̃ ∗ =
K∑

k=1

(
z0 (k) − zs (k)

)T S−1
gg

(
z0 (k) − zs (k)

)
(6.22)

where J̃ ∗ = (−2) J ∗ − 2Knz ln (2π) − K ln
(∣∣Sgg

∣∣). A solution to the maximum
likelihood objective function that is based on the reference set including K sam-
ples, ẐT

0 = [̂z0 (1) ẑ0 (2) · · · ẑ0 (K)
]
, is the one that minimizes J̃ ∗, which,

in turn, maximizes J ∗ and hence J . Incorporating the data model z0 = �s + g,
Fuller (1987) introduced an optimum solution for estimating the parameter
matrix �̃

z0 =
[
�1
�2

]
s + g =

[
I

�2�
−1
1

]
�1s + g = �̃z1s

+ g (6.23)

1 It is assumed that the absolute elements of g are bounded and hence J (·) > 0.
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that minimizes J̃ ∗. Here:2

• �1 ∈ R
n×n, �2 ∈ R

(nz−n)×n and �̃
T = [I �−T

1 �T
2

]
;

• zT
s = (zT

1s
zT

2s

)
;

• z1s
= (z1s

z2s
· · · zns

)T = �1s; and

• z2s
= (zn+1s

zn+2s
· · · znzs

)T = �2s.

An iterative and efficient maximum likelihood PCA formulation based on a sin-
gular value decomposition for determining Ẑ0 to minimize (6.22) was proposed
by Wentzell et al. (1997). Reexamining (6.23) for g ∼ N {0, Sgg

}
suggests that

the best linear unbiased estimate for z1s
, ẑ1s

, is given by the generalized least
squares solution of z0 = �̃z1s

+ g (Björck 1996)

ẑ1s
=
[
�̃

T
S−1

gg �̃
]−1

�̃
T

S−1
gg z0 ẑs = �̃

[
�̃

T
S−1

gg �̃
]−1

�̃
T

S−1
gg z0. (6.24)

In a PCA context, a singular value decomposition (SVD) of

Z0 = [Û Û
] [Ŝ 0

0 Ŝ

][ V̂T

V̂
T

]
= ÛŜV̂T + ÛŜ V̂

T
, (6.25)

where:

• Û ∈ R
K×n, Û ∈ R

K×(nz−n) and Ŝ ∈ R
n×n; and

• Ŝ ∈ R
(nz−n)×(nz−n), V̂ ∈ R

nz×n and V̂ ∈ R
nz×(nz−n),

yields in its transposed form

ẐT
s =
[

ẐT
1s

ẐT
2s

]
=
[V̂1

V̂2

]
ŜÛT =

[
I

V̂2V̂−1
1

]
︸ ︷︷ ︸

=V̂V̂−1
1

V̂1ŜÛT︸ ︷︷ ︸
=ẐT

1s

= ̂̃�ẐT
1s

, (6.26)

where ̂̃� = V̂V̂−1
1 . Applying (6.24) to the above SVD produces

ẐT
1s

= V̂V̂−1
1

[[
V̂V̂−1

1

]T
S−1

gg V̂V̂−1
1

]−1 [
V̂V̂−1

1

]T
S−1

gg ZT
0 (6.27)

which can be simplified to

ẐT
1s

= V̂
[
V̂T

S−1
gg V̂
]−1 V̂S−1

gg ZT
0 . (6.28)

2 It is assumed here that �1 has full rank n.
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Equations (6.26) to (6.28) exploit the row space of Z0. Under the assumption
that the error covariance matrix is of diagonal type, that is, no correlation among
the error terms, the row space of Z0 can be rewritten with respect to (6.22)

J̃ ∗ =
K∑

k=1

(
z0(k) − zs(k)

)T S−1
gg

(
z0(k) − zs(k)

) = K∑
k=1

nz∑
j=1

(
z0j

(k) − zsj
(k)
)2

σ 2
gj

.

(6.29)

Analyzing the column space of Z0 = [ ζ 01
ζ 02

· · · ζ 0nz

]
, Equation (6.22)

can alternatively be rewritten as

J̃ ∗ =
nz∑

j=1

(
ζ 0(j) − ζ̂ s(j)

)T
�−1

ggj

(
ζ 0(j) − ζ̂ s(j)

)
. (6.30)

The definition of the error covariance matrices in the above equations is

• Sgg =

⎡⎢⎢⎢⎣
σ 2

g1
0 · · · 0

0 σ 2
g2

· · · 0
...

...
. . .

...

0 0 · · · σ 2
gnz

⎤⎥⎥⎥⎦ ∈ R
nz×nz

• �ggj
=

⎡⎢⎢⎢⎣
σ 2

gj
0 · · · 0

0 σ 2
gj

· · · 0
...

...
. . .

...

0 0 · · · σ 2
gj

⎤⎥⎥⎥⎦ ∈ R
K×K

Equation (6.22) and the singular value decomposition of Z0 allow constructing
a generalized least squares model for the column vectors of Z0

Ẑs =
[Ẑs1

Ẑs2

]
=
[

I

Û2Û−1
1

]
︸ ︷︷ ︸

=ÛÛ−1
1

Û1ŜV̂T︸ ︷︷ ︸
=Ẑ s1

. (6.31)

Applying the same steps as those taken in (6.27) and (6.28) gives rise to

ζ̂ si
= Û
[
ÛT

�−1
ggi

Û
]−1 ÛT

�−1
ggi

ζ 0i
. (6.32)

It should be noted that the error covariance matrix for the row space of Z0, Sgg,
is the same for each row, which follows from the assumption made earlier that
E
{
g(i)gT (j)

} = δij Sgg. However, the error covariance matrix for the column
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space or Z0 has different diagonal elements for each column. More precisely,
�ggj

= σ 2
gj

I which implies that (6.32) is equal to

ζ̂ sj
= Û
[
ÛT Û

]−1 ÛT
ζ 0j

(6.33)

and hence

Ẑs = Û
[
ÛT Û

]−1 ÛT
Z0. (6.34)

Using (6.28) and (6.34), the following iterative procedure computes a maxi-
mum likelihood PCA, or MLPCA, model:

1. Carry out the SVD of Z0 to compute Û , Ŝ and V̂ (Equation (6.25)).

2. Utilize (6.34) to calculate Ẑs =
[̂
ζ s1

ζ̂ s2
· · · ζ̂ snz

]
.

3. Apply (6.30) to determine J̃ ∗
1 using the estimate of Ẑs from Step 2.

4. Take Ẑs from Step 2 and carry out a SVD for recomputing Û , Ŝ and V̂ .

5. Employ (6.28) to determine ẐT
s = [̂zs(1) ẑs(2) · · · ẑs(K)

]
using Sgg

and V̂ from Step 4.

6. Apply (6.22) to determine J̃ ∗
2 using Ẑs from Step 5.

7. Take Ẑs from Step 5 and carry out a SVD for recomputing Û , Ŝ and V̂ .

8. Check for convergence,3 if ε =
(
J̃ ∗

1 − J̃ ∗
2

)/
J̃ ∗

2
< 10−12 terminate else go

to Step 2.

The performance of the iterative MLPCA approach is now tested for the three-
variable example described in (2.9) and (2.11) and the error covariance matrix
is defined in (6.14). Recall that the use of this error covariance matrix led to
a biased estimation of the residual subspace, which departed from the true one
by a minimum angle of almost 3.5◦. The above MLPCA approach applied to a
reference set of K = 1000 samples converged after nine times for a very tight
threshold of 10−14. Figure 6.3 shows that after the first three iteration steps, the
minimum angle between the true and estimated model subspaces is close to zero.

In contrast to the discussion above, it should be noted that the work in
Wentzell et al. (1997) also discusses cases where the error covariance matrix
is symmetric and changes over time. In this regard, the algorithms in Tables 1
and 2 on page 348 and 350, respectively, in Wentzell et al. (1997) are of interest.
The discussion in this book, however, assumes that the error covariance matrix
remains constant over time.

3 The value of 10−12 is a possible suggestion; practically, smaller thresholds can be selected
without a significant loss of accuracy.
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Figure 6.3 Convergence of the MLPCA algorithm for simulation example.

6.1.4 Maximum likelihood PCA for unknown Sgg

Different from the method proposed by Wentzell et al. (1997), Narasimhan and
Shah (2008) introduced a more efficient method for determining an estimate of
the model subspace. If the error covariance matrix is known a priori and of
full rank, a Cholesky decomposition of Sgg = LLT can be obtained, which gives
rise to

Sz0z0
= Szszs

+ LLT (6.35)

with L being a lower triangular matrix. Rewriting (6.35) as follows

L−1Sz0z0
L−T = L−1Szszs

L−T + I (6.36)

yields a transformed error covariance matrix S̃gg = L−1SggL−T = I that is of
the type σ 2

g I with σ 2
g = 1. Hence, an eigendecomposition of L−1Sz0z0

L−T will
provide a consistent estimation of the model subspace, which follows from (6.4)
to (6.8). The dominant eigenvalues of S̃zsza

are equal to the dominant eigenvalues
of S̃z0z0

= L−1Sz0z0
L−T minus one, which the following relationship shows

S̃z0z0
= [̃P P̃d

] [�̃ 0
0 �̃d

] [
P̃T

P̃T
d

]
. (6.37)

By default, the diagonal elements of the matrices �̃ and �̃d are as follows

λ̃1 λ̃2 · · · λ̃n︸ ︷︷ ︸
> 1

λ̃n+1 λ̃n+2 · · · λ̃nz︸ ︷︷ ︸
=1

. (6.38)
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Assuming that E
{
sgT
} = 0, it follows that

S̃z0z0
= P̃
[
�̃ − I

]
P̃T + [̃P P̃d

] [I 0
0 I

] [
P̃T

P̃T
d

]
(6.39)

and hence

S̃z0z0
= [̃p1 p̃2 · · · p̃n

]
⎡⎢⎢⎢⎣

λ̃1 − 1 0 · · · 0
0 λ̃2 − 1 · · · 0
...

...
. . .

...

0 0 · · · λ̃n − 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p̃1
p̃2
...

p̃n

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎦ .

(6.40)

The determined eigenvectors of S̃z0z0
are consequently a consistent estimation

of base vectors spanning the model subspace. Despite the strong theoretical
foundation, conceptual simplicity and computational efficiency of applying an
eigendecomposition to (6.36), it does not produce an estimate of the model sub-
space in a PCA sense, which Subsection 6.1.7 highlights.

This approach, however, has been proposed by Narasimhan and Shah (2008)
for developing an iterative approach that allows estimating S̃gg under the con-
straint in (6.46), which is discussed below. Revising (6.1) and evaluating the
stochastic components

z0 = zs + g = �s + g, (6.41)

where g ∼ N {0, Sgg

}
, gives rise to

�⊥z0 = �⊥�s + �⊥g. (6.42)

Here �⊥ is a matrix that has orthogonal rows to the columns in � and hence
�⊥� = 0. Consequently, (6.42) reduces to

�⊥z0 = �⊥g = g̃. (6.43)

The transformed error vector g̃ has therefore the distribution function

g̃ ∼ N
{

0, �⊥Sgg�
⊥T
}

(6.44)

since E
{̃
gg̃T
} = E

{
�⊥ggT �⊥T

}
= �⊥E

{
ggT
}
�⊥T = �⊥Sgg�

⊥T
. Using

the maximum likelihood function in (6.21) to determine S̃g̃g = �⊥Sgg�
⊥T

leads
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to the following objective function to be minimized

Ŝgg = arg min
Sgg

K ln
∣∣∣�⊥Sgg�

⊥T
∣∣∣+ K∑

k=1

g̃T (k)
[
�⊥Sgg�

⊥T
]−1

g̃(k). (6.45)

It should be noted that the first term in (6.21), Knz ln (2π) is a constant and can
therefore be omitted. In contrast to the method in Wentzell et al. (1997), where
the second term K ln

∣∣∣�⊥Sgg�
⊥T
∣∣∣ could be ignored, the log likelihood function

for the approach by Narasimhan and Shah (2008) requires the inclusion of this
term as Sgg is an unknown symmetric and positive definite matrix.

Examining the maximum likelihood function of (6.45) or, more precisely,
the error covariance matrix S̃g̃g more closely, the rank of this matrix is nz − n

and not nz. This follows from the fact that � ∈ R
nz×n. Consequently, the size

of the model subspace is n and the number of linearly independent row vectors
in �⊥ that are orthogonal to the column vectors in � is nz − n. With this in
mind, �⊥ ∈ R

nz×(nz−n) and �⊥Sgg�
⊥T ∈ R

(nz−n)×(nz−n). This translates into a
constraint for determining the number of elements in the covariance matrix as
the maximum number of independent parameters is (nz−n)(nz−n+1)/2.

Moreover, the symmetry of S̃g̃g implies that only the upper or lower trian-
gular elements must be estimated together with the diagonal ones. It is therefore
imperative to constrain the number of estimated elements in Sgg. A practically
reasonable assumption is that the errors are not correlated so that Sgg reduces to
a diagonal matrix. Thus, a complete set of diagonal elements can be obtained
if (nz − n)(nz − n + 1) ≥ 2nz. The number of source signals must therefore not
exceed

n ≤ nz + 1

2
−
√

2nz + 1

4
. (6.46)

Figure 6.4 illustrates that values for n must be below the graph
n = nz + 1/2 −√2nz + 1/4 for a determination of a complete set of
diagonal elements for Sgg.

Narasimhan and Shah (2008) introduced an iterative algorithm for simul-
taneously estimating the model subspace and Sgg from an estimate of Sz0z0

.
This algorithm takes advantage of the fact that the model subspace and the
residual space is spanned by the eigenvectors of S̃z0z0

. The relationship below
proposes a slightly different version of this algorithm, which commences by
defining the initial error covariance matrix that stores 0.0001 times the diagonal
elements of Ŝz0z0

, then applies a Cholesky decomposition of Ŝggi
= LiL

T
i and

subsequently (6.36).
Following an eigendecomposition of ̂̃Sz0z0i

= L−1
i Ŝz0z0

L−T
i

L−1
i Ŝz0z0

L−T
i = [̃Pi P̃di

] [�̃ 0
0 �̃d

] [
P̃T

i

P̃T
di

]
(6.47)
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Figure 6.4 Graphical illustration of constraint in Equation (6.46).

an estimate of �⊥
i is given by �̂

⊥
i = P̃T

di
L−1

i , which follows from the fact that
column vectors of � span the same column space as the eigenvectors in P̃i after
convergence. Given that S̃z0z0

= L−1Sz0z0
L−1 after convergence, it follows that

S̃z0z0
= L−1Sz0z0

L−T = L−1 Szszs︸︷︷︸
LP̃�P̃T LT

L−T + I. (6.48)

Hence, �̂ = LP̃ and �̂
⊥ = P̃T

d L−1, since �̂
⊥
�̂ = P̃T

d L−1LP̃ = P̃T
d P̃ = 0. The

next step is the evaluation of the objective function in (6.45) for g̃ (j) = �̂
⊥
i z0 (j)

prior to an update of Ŝggi
, Ŝggi+1

= Ŝggi
+ �Ŝggi

, using a gradient projection
method (Byrd et al. 1995), a genetic algorithm (Sharma and Irwin 2003) or a
particle swarm optimization (Coello et al. 2004).

Recomputing the Cholesky decomposition of S̃ggi+1
then starts the (i + 1)th

iteration step. The iteration converges if the difference of two consecutive val-
ues of J̃ ∗ is smaller than a predefined threshold. Different to the algorithm in
Narasimhan and Shah (2008), the proposed objective function here is of the
following form

Ŝggi
= arg min

Sggi

a1

⎛⎝K ln

∣∣∣∣�̂⊥
i Sggi

�̂
⊥T

i

∣∣∣∣+ K∑
j=1

g̃T (j)

[
�̂

⊥
i Sggi

�̂
⊥T

i

]−1

g̃(j)

⎞⎠
+ a2

∥∥∥∥�̂⊥
i Sggi

�̂
⊥T

i − I

∥∥∥∥2

+ a3

∥∥∥∥�̂⊥
i

[̂
Sz0z0

− Sggi

]
�̂

⊥T

i

∥∥∥∥2

(6.49)

where ‖·‖2 is the squared Frobenius norm of a matrix. The rationale behind
this objective function is to ensure that the solution found satisfies the following
constraints

�̂
⊥
i Ŝggi

�̂
⊥T

i − I = 0 �̂
⊥
i

[̂
Sz0z0

− Ŝggi

]
�̂

⊥T

i = 0. (6.50)
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Note that Subsection 6.1.7 elaborates upon the geometric relationships, such as

�̂
⊥
i = ̂̃PT

di
L−1

i in more detail. Since �̂
⊥
i is orthogonal to the estimate of the model

subspace, the following must hold true after the above iteration converged

̂̃Sz0z0
= ̂̃P̂̃�̂̃PT + ̂̃Pd

̂̃PT

d̂̃PT

d L−1︸ ︷︷ ︸
=�̂

⊥

Ŝz0z0
L−T ̂̃Pd︸ ︷︷ ︸
=�̃

⊥T

= ̂̃PT

d
̂̃P︸︷︷︸

=0

̂̃
�
̂̃PT ̂̃Pd︸ ︷︷ ︸

=0

+I (6.51)

�̂
⊥

Ŝz0z0
�̂

⊥ − I = 0

and
L−1Ŝz0z0

L−T = L−1Ŝzszs
L−T + L−1ŜggL−T

L−1Ŝzszs
L−T = L−1

[̂
Sz0z0

− Ŝgg

]
L−T

̂̃P̂̃�̂̃PT = L−1
[̂
Sz0z0

− Ŝgg

]
L−T (6.52)̂̃PT

d
̂̃P︸︷︷︸

=0

̂̃
�
̂̃PT ̂̃Pd︸ ︷︷ ︸

=0

= ̂̃PT

d L−1︸ ︷︷ ︸
=�̂

⊥

[̂
Sz0z0

− Ŝgg

]
L−T ̂̃Pd︸ ︷︷ ︸
=�̂

⊥T

�̂
⊥ [̂

Sz0z0
− Ŝgg

]
�̂

⊥T = 0

which is the second and third term in the objective function of (6.49). The
coefficients a1, a2 and a3 influence the solution and may need to be adjusted if the
solution violates at least one of the above constraints or the value of the first term
appears to be too high. Enforcing that the solution meets the constraints requires
larger values for a2 and a3, which the simulation example below highlights. The
steps of the above algorithm are now summarized below.

1. Set Ŝgg0
for i = 0 to store 0.0001 times the diagonal elements in Ŝz0z0

.

2. Carry out a Cholesky decomposition of Ŝgg0
= L0LT

0 .

3. Compute an eigendecomposition of

̂̃Sz0z0
= L−1

0 Ŝz0z0
L−T

0 = [̃P0 P̃d0

] [�̃0 0
0 �̃d0

] [
P̃T

0
P̃T

d0

]
.

4. Calculate initial estimate of residual subspace �̂
⊥
0 = P̃T

d0
L−1

0 .

5. Evaluate initial value of objective function J̃ ∗
0 .

6. Update error covariance matrix Ŝggi+1
= Ŝggi

+ �Ŝggi
.

7. Carry out Cholesky decomposition of Ŝggi+1
= Li+1LT

i+1.
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8. Determine the eigendecomposition of ̂̃Sz0z0
= P̃i+1�̃i+1P̃T

i+1
+ P̃di+1

�̃di+1
P̃T

di+1
.

9. Get (i + 1)th estimate for residual subspace P̃T
di+1

L−1
i+1.

10. Evaluate (i + 1)th objective function using (6.49), J̃ ∗
i+1.

11. Check for convergence4, if
∣∣J̃ ∗

i+1 − J̃ ∗
i

∣∣ < 10−12 terminate else go to
Step 6.

To demonstrate the performance of the above algorithm, the next subsection
presents an example. Section 6.2 describes a similar maximum likelihood algo-
rithm for PLS models that relies on the inclusion of an additional error term for
the input variables.

6.1.5 A simulation example

The three-variable example used previously in this chapter cannot be used here
since three variables and two source signals leave only one parameter of Sgg to
be estimated. The process studied here contains 14 variables that are described
by the data model

z0 = �s + g s ∼ N {0, I} g ∼ N {0, Sgg

}
(6.53)

where z0 ∈ R
14, s ∈ R

4, � ∈ R
14×4

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00
0.50 0.00 0.25 0.25
0.00 0.25 0.50 0.25
0.25 0.25 0.25 0.25

−0.25 −0.50 0.00 0.25
0.00 0.50 −0.05 0.00
0.25 −0.25 0.25 −0.25
0.75 0.00 0.25 0.00
0.00 0.25 0.00 0.75

−0.50 −0.50 0.00 0.00
0.00 0.25 0.00 0.75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.54)

4 The value of 10−12 is a possible suggestion; practically, smaller thresholds can be selected
without a substantial loss of accuracy.
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and, g ∈ R
14

diag
{
Sgg

} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.15
0.10
0.25
0.05
0.20
0.50
0.35
0.40
0.30
0.45
0.10
0.25
0.15
0.05

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.55)

Recording 1000 samples from this process, setting the parameters for J̃ ∗ to be

1. (Case 1) : a1 = 1, a2 = 50, a3 = 10;

2. (Case 2) : a1 = 1, a2 = 50, a3 = 0;

3. (Case 3) : a1 = 1, a2 = 0, a3 = 0; and

4. (Case 4) : a1 = 0, a2 = 50, a3 = 0,

and the boundaries for the 14 diagonal elements to be
[
0.01 1

]
, produced the

results summarized in Tables 6.1 to 6.4 for Cases 1 to 4, respectively. Each table
contains the resultant minimum of the objective function in (6.49), and the values
for each of the three terms, J̃1, J̃2 and J̃3 for the inclusion of one to nine source
signals. Note that n = 9 is the largest number that satisfies (6.46).

Table 6.1 Results for a1 = 1, a2 = 50, a3 = 10.

n J̃ ∗
1 J̃ ∗

2 J̃ ∗
3 J̃ ∗

1 9.728837 9.903143 9.194113 596.827139
2 10.623477 6.669295 4.730763 391.395848
3 11.730156 2.641624 1.282012 156.631463
4 9.905117 0.679832 0.163441 45.531136
5 8.776626 0.473485 0.116165 33.612547
6 7.802560 0.354886 0.073548 26.282350
7 6.812775 0.284251 0.051213 21.537448
8 5.857080 0.193634 0.032697 15.865753
9 4.952640 0.061742 0.017830 8.218051
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Table 6.2 Results for a1 = 1, a2 = 50, a3 = 0.

n J̃ ∗
1 J̃ ∗

2 J̃ ∗
3 J̃ ∗

1 11.813837 10.088751 8.802784 516.251410
2 11.252778 6.167079 5.142943 319.606724
3 11.658961 2.642207 1.291209 143.769308
4 9.901660 0.679877 0.163663 43.895523
5 8.777040 0.473469 0.116278 32.450474
6 7.804200 0.354804 0.073785 25.544384
7 6.800655 0.275357 0.058046 20.568490
8 5.954737 0.144070 0.030562 13.158227
9 4.921906 0.080916 0.012328 8.967687

Table 6.3 Results for a1 = 1, a2 = 0, a3 = 0.

n J̃ ∗
1 J̃ ∗

2 J̃ ∗
3 J̃ ∗

1 8.454279 10.423839 10.423839 8.454279
2 6.036969 9.004625 9.004625 6.036969
3 3.941432 7.908937 7.908937 3.941432
4 2.515947 7.484690 6.959272 2.515947
5 2.032702 6.966966 6.071480 2.032702
6 1.626393 6.373496 5.211879 1.626393
7 1.244929 5.754994 4.385551 1.244929
8 0.891558 5.108477 3.568636 0.891558
9 0.659721 4.340301 2.800460 0.659721

Table 6.4 Results for a1 = 0, a2 = 50, a3 = 0.

n J̃ ∗
1 J̃ ∗

2 J̃ ∗
3 J̃ ∗

1 9.190492 9.859769 9.763201 492.988434
2 11.293882 6.166689 5.129166 308.334444
3 11.736554 2.641426 1.283513 132.071309
4 9.927134 0.679582 0.163400 33.979092
5 8.783186 0.473409 0.116265 23.670455
6 7.813840 0.354734 0.073990 17.736676
7 7.029985 0.167131 0.043608 8.356558
8 5.931184 0.138934 0.026496 6.946680
9 4.988845 0.102498 0.016111 5.124890

The results were obtained using the constraint nonlinear minimization
function ‘fmincon’ of the MatlabTM optimization toolbox, version 7.11.0.584
(R2010b). The results for Cases 1 and 2 do not differ substantially. This follows
from the supplementary character of the constraints, which (6.51) and (6.52)
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Table 6.5 Resultant estimates for Sgg.

Variable True Case 1 Case 2 Case 3 Case 4

g1 0.15 0.1801 0.1797 1.0000 0.1796
g2 0.10 0.0832 0.0831 1.0000 0.0834
g3 0.25 0.2290 0.2302 1.0000 0.2292
g4 0.05 0.0473 0.0473 1.0000 0.0471
g5 0.20 0.1915 0.1918 1.0000 0.1906
g6 0.50 0.5390 0.5388 1.0000 0.5363
g7 0.35 0.3828 0.3829 1.0000 0.3816
g8 0.40 0.4265 0.4267 1.0000 0.4246
g9 0.30 0.3041 0.3041 1.0000 0.3034
g10 0.45 0.4372 0.4377 1.0000 0.4371
g11 0.10 0.0899 0.0900 1.0000 0.0900
g12 0.25 0.2283 0.2285 1.0000 0.2277
g13 0.15 0.1562 0.1564 1.0000 0.1553
g14 0.05 0.0527 0.0527 1.0000 0.0530

Case 1: a1 = 1, a2 = 50, a3 = 10;
Case 2: a1 = 1, a2 = 50, a3 = 0;
Case 3: a1 = 1, a2 = 0, a3 = 0; and
Case 4: a1 = 0, a2 = 50, a3 = 0.

show ̂̃Sz0z0
= ̂̃Szszs

+ I
L−1Ŝz0z0

L−T = L−1Ŝz0z0
L−T − L−1ŜggL−T + I

L−1Ŝz0z0
L−T − I = L−1

[̂
Sz0z0

− Ŝgg

]
L−T .

(6.56)

Selecting a large a2 value for the second term in (6.49) addresses the case of
small discarded eigenvalues for Ŝz0z0

− Sgg and suggests that the third term may
be removed. Its presence, however, balances between the second and third terms
and circumvents a suboptimal solution for larger process variable sets that yields
discarded eigenvalues which are close to 1 but may not satisfy the 3rd constraint.

That Case 3 showed a poor performance is not surprising given that the

only contributor to the first term is
∑K

k=1 g̃T (k)[�̂
⊥

Ŝgg�̂
⊥T

]−1g̃(k). To produce
small values in this case, the diagonal elements of Ŝ−1

gg need to be small, which,
in turn, suggests that larger error variance values are required. A comparison of
the estimated error variances in Table 6.5 confirms this and stresses that the case
of minimizing the log likelihood function only is insufficient for estimating the
error covariance matrix.

Another interesting observation is that Case 4 (Table 6.4) produced a small
value for the objective function after four components were retained. In fact,
Table 6.5 highlights that the selection of the parameters for Case 4 produced a
comparable accuracy in estimating the diagonal elements Sgg. This would suggest
omitting the contribution of the log likelihood function to the objective function
and concentrating on terms two and three only. Inspecting Table 6.5 supports
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this conclusion, as most of the error variances are as accurately estimated as
in Cases 1 and 2. However, the application for larger variable sets may yield
suboptimal solutions, which the inclusion of the first term, the objective function
in Equation (6.49), may circumvent.

It is not only important to estimate Sgg accurately but also to estimate the
model subspace consistently, which has not been looked at thus far. The simpli-
fied analysis in (6.17) for nz = 3 and n = 2 cannot, of course, be utilized in a
general context. Moreover, the column space of � can only be estimated up to
a similarity transformation, which does not allow a comparison of the column
vectors either.

The residual subspace is orthogonal to �, which allows testing whether the
estimated residuals subspace, spanned by the column vectors of �̂

⊥ = ̂̃PdL−1,
is perpendicular to the column space in �. If so, �̂

⊥
� asymptotically converges

to 0. Using �̂
⊥

, obtained for a1 = 1, a2 = 50 and a3 = 10 this product is

�̂
⊥
� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.043 −0.003 0.026 −0.014
−0.010 −0.020 0.001 −0.004
−0.005 0.048 0.018 0.013

0.029 −0.032 −0.079 −0.023
0.028 0.007 0.013 −0.016
0.098 −0.023 −0.004 0.034
0.024 0.018 −0.024 0.020
0.041 −0.016 −0.003 0.008
0.057 0.018 −0.037 0.041
0.031 −0.011 0.048 −0.068

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.57)

The small values in the above matrix indicate an accurate estimation of the model
and residual subspace by the MLPCA algorithm. A comparison of the accuracy of
estimating the model subspace by the MLPCA model with that of the PCA model
yields, surprisingly, very similar results. More precisely, the matrix product P̂T

d �,
where P̂d stores the last 10 eigenvectors of Sz0z0

, is equal to

P̂T
d � =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.032 0.058 0.077 0.012
−0.034 0.029 −0.034 0.065

0.011 0.031 0.004 −0.044
0.033 −0.029 −0.014 −0.005

−0.018 0.081 −0.005 0.008
0.006 −0.008 −0.005 0.051

−0.022 0.035 0.013 0.037
−0.003 −0.036 −0.006 −0.009

0.001 −0.011 −0.034 0.014
0.014 −0.011 −0.012 0.012

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.58)

Increasing the error variance and the differences between the individual elements
as well as the number of reference samples, however, will increase the difference
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Figure 6.5 Plot of eigenvalues of Ŝz0z0
.

between both estimates. A detailed study regarding this issue is proposed in the
tutorial session of this chapter (Project 1). It is also important to note that PCA
is unable to provide estimates of the error covariance matrix. To demonstrate this
Figure 6.5 shows the distribution of eigenvalues of Ŝz0z0

.
The next section introduces a stopping rule for MLPCA models. It is interest-

ing to note that applying this rule for determining n yields a value of 1601.293
for (6.59), whilst the threshold is 85.965. This would clearly reject the hypothesis
that the discarded 10 eigenvalues are equal. In fact, the application of this rule
would not identify any acceptable value for n.

6.1.6 A stopping rule for maximum likelihood PCA models

Most stopping rules summarized in Subsection 2.4.1 estimate n based on the
assumption that Sgg = σ 2

g I or analyze the variance of the recorded samples pro-
jected onto the residuals subspace. The discussion in this section, however, has
outlined that the model subspace is only estimated consistently for Sgg = σ 2

g I,
which requires a different stopping rule for estimating n.

Feital et al. (2010) introduced a stopping rule if Sgg �= σ 2
g I. This rule relies on

a hypothesis for testing the equality of the discarded eigenvalues. Equations (6.36)
and (6.38) outline that these eigenvalues are 1 after applying the Cholesky decom-
position to Sz0z0

. To test whether the nz − n discarded eigenvalues are equal,
Section 11.7.3 in Anderson (2003) presents the following statistic, which has a
limiting χ2 distribution with 1

2

(
nz − n + 2

) (
nz − n + 1

)
degrees of freedom

κ2 (n) = (K − 1)

((
nz − n

)
ln

(
1

nz−n

nz∑
k=n+1

̂̃λk

)
− ln

(
nz∏

k=n+1

̂̃λk

))
. (6.59)

It should be noted that the estimated eigenvalues ̂̃λk are those of the scaled
covariance matrix S̃z0z0

= L−1Sz0z0
L−T . According to the test statistic in (6.59),
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the null hypothesis is that the nz − n eigenvalues are equal. The alternative
hypothesis is that the discarded nz − n eigenvalues are not identical and n> n.

The critical value of the χ2 distribution for a significance α depends on
the number of degrees of freedom for the χ2 distribution. The statistic κ2 must
be compared against the critical value for χ2

α (dof ), where dof represents the
number of degrees of freedom. The null hypothesis H0 is therefore accepted if

H0 : κ2 (n) ≤ χ2
α

( 1
2

(
nz − n + 2

) (
nz − n + 1

))
(6.60)

and rejected if

H1 : κ2 (n) > χ2
α

( 1
2

(
nz − n + 2

) (
nz − n + 1

))
. (6.61)

While H0 describes the equality of the discarded nz − n eigenvalues, H1 repre-
sents the case of a statistically significant difference between these eigenvalues.

The formulation of the stopping rule is therefore as follows. Start with n = 1
and obtain an MLPCA model. Then, compute the κ2 value for (6.59) along with
the critical value of a χ2 distribution for 1

2

(
nz + 1

)
nz degrees of freedom and a

significance of α. Accepting H0 yields n = 1 and this model includes the estimate
of the model subspace LP̃ and its orthogonal complement P̃dL−1. For rejecting
H0, iteratively increment n, n = n + 1, compute a MLPCA model and test H0
until κ2 (n) ≤ χ2

α

( 1
2

(
nz − n + 2

) (
nz − n + 1

))
.

To simplify the iterative sequence of hypothesis tests, κ2 can be divided by
χ2

α

κ̃2 (n) = κ2 (n)

χ2
α

( 1
2

(
nz − n + 2

) (
nz − n + 1

)) (6.62)

which gives rise to the following formulation of the stopping rule

H0 : κ̃2 (n) ≤ 1 (6.63)

and

H1 : κ̃2 (n) > 1. (6.64)

The introduction of the stopping rule is now followed by an application
study to the simulated process described in (6.53) to (6.55). This requires the
application of (6.59), (6.62) and (6.63) to the MLPCA model for a varying
number of estimated source signals, starting from 1. Table 6.6 shows the results
of this series of hypothesis tests for 1 ≤ n ≤ 9 for a significance of α = 0.05.

The results in Table 6.6 confirm that κ̃2(n) > χ2
α

( 1
2

(
nz − n + 2

) (
nz − n + 1

))
for n ≤ 3. For n = 4, the null hypothesis is accepted and hence, the ten dis-
carded eigenvalues are equivalent. Increasing n further up to n = 9 also yields
equivalent eigenvalues, which is not surprising either. For the sequence of nine
hypothesis tests in Table 6.6, it is important to note that the first acceptance of
H0 is the estimate for n.
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Table 6.6 Results for estimating n.

n κ2 dof χ2
α κ̃2

1 7888.909466 105 129.917955 60.722242
2 4076.291059 91 114.267868 35.673117
3 783.559750 78 99.616927 7.865729
4 50.016546 66 85.964907 0.581825
5 28.513181 55 73.311493 0.388932
6 20.478358 45 61.656233 0.332138
7 4.223217 36 50.998460 0.082811
8 2.713276 28 41.337138 0.065638
9 1.471231 21 32.670573 0.045032

dof = dof(nz, n) = 1
2

(
nz − n + 2

) (
nz − n + 1

)
is the number of degrees of

freedom of the κ2 statistic.

6.1.7 Properties of model and residual subspace estimates

After introducing how to estimate the column space of � and its complementary
residual subspace �⊥, the next question is what are the geometric properties
of these estimates. The preceding discussion has shown that the estimates for
column space of �, the generalized inverse5 and its orthogonal complement are

Estimate of column space of � : L̂̂̃P
Estimate of generalized inverse �† : ̂̃PT

L̂−1 (6.65)

Estimate of orthogonal complement �⊥ : ̂̃PT

d L̂−1,

where L̂L̂T = Ŝgg , ̂̃P and ̂̃Pd store the n and the remaining nz − n eigenvec-
tors of L̂−1Ŝz0z0

L̂−1 associated with eigenvalues larger than 1 and equal to 1,
respectively.

The missing proofs of the relationships in (6.65) are provided next, which
commences by reformulating the relationship between the known covariance
matrices of the recorded data vector, the uncorrupted data vector and the error
vector

Sz0z0
= Szszs

+ Sgg

Sz0z0
= Szszs

+ LLT (6.66)

L−1Sz0z0
L−T = L−1Szszs

L−T + I.

For simplicity, it is assumed that each of the covariance matrices are available.
Carrying out the eigendecomposition of S̃z0z0

= L−1Sz0z0
L−T and comparing it

5 The generalized inverse of a matrix is often referred to as the Moore-Penrose pseudo inverse.



190 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

to the right hand side of (6.66) gives rise to

P̃�̃P̃T + P̃d P̃T
d = L−1Szszs

L−T + I

P̃
[
�̃ − I

]
P̃T + I = L−1Szszs

L−T + I (6.67)

P̃
[
�̃ − I

]
P̃T = L−1�Sss�

T L−T .

Pre- and post-multiplying (6.67) by L and LT yields

LP̃
[
�̃ − I

]
P̃T LT = �Sss�

T . (6.68)

It follows from (6.9) to (6.11) that the column space of � is given by LP̃. With
regards to (6.65), P̃T

d L−1 is the orthogonal complement of �, since

�⊥� = P̃dL−1� = P̃T
d L−1LP̃ = P̃T

d P̃ = 0. (6.69)

Finally, that P̃T L−1 is the generalized inverse of LP̃ follows from

�†� = P̃T L−1LP̃ = P̃T P̃ = I. (6.70)

Geometrically, the estimate � and its orthogonal complement �⊥ are esti-
mates of the model and residual subspaces, respectively. The generalized inverse
�† and the orthogonal complement �⊥ allow the estimation of linear com-
binations of the source signals and linear combinations of the error variables,
respectively, since

z0 = �s + g = LP̃̃t + g. (6.71)

With regards to (6.71), there is a direct relationship between the source signals
and the components determined by the PCA model in the noise-free case

t̃ = P̃T L−1�s ⇒ s = [̃PT L−1�
]−1

t̃. (6.72)

For the case g �= 0, it follows that

t̃ = P̃T L−1 (�s + g)

s = [̃PT L−1�
]−1

t̃ − [̃PT L−1�
]−1

P̃T L−1g (6.73)

s ≈ [̃PT L−1�
]−1

t̃.

Despite the fact that the source signals could be recovered for g = 0 and
approximated for g �= 0 and E

{
g2

i

}� E{(ξT
i s)2}, the following two problems

remain.

Problem 6.1.1 If Sgg �= σ 2
g I, the application of the scaling mechanism, based

on the Cholesky decomposition of Sgg = LLT , does not guarantee that
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• the loading vectors point in directions that produce a maximum variance
for each score variable; and

• the loading vectors may not have unit length.

In addition to the above points, Feital et al. (2010) highlighted that the score
variables may not be statistically independent either, that is, the score vectors may
not be orthogonal as is the case for PCA. This is best demonstrated by comparing
the score variables computed by applying the generalized inverse P̃T L−1

t̃ = P̃T L−1z0 ⇒ E
{̃
t̃tT
} = P̃T S̃z0z0

P̃ = �̃ (6.74)

with those determined by an eigendecomposition of Sz0z0
− Sgg

PT
[
Sz0z0

− Sgg

]
P = �s . (6.75)

Removing the impact of the error covariance matrix from (6.74) allows a direct
comparison with (6.75)

P̃T
[̃
Sz0z0

− I
]

P̃ = �̃ − I = �̃s (6.76)

which yields:

• that it generally cannot be assumed that the eigenvectors of S̃z0z0
− I are

equal to those of Sz0z0
− Sgg; and

• that it can also generally not be assumed that the eigenvalues of S̃z0z0
− I

are equal to those of Sz0z0
− Sgg

The subscript s in (6.75) and (6.76) refers to the source signals. Finally, the
matrix product P̃T L−1L−T P̃ is only a diagonal matrix if Sgg is diagonal and
hence, L is of diagonal type. Sgg, however, is assumed to be diagonal in (6.46).
In any case, the row vectors in P̃T L−1 do not have unit length, as the elements
in L−2 = S−1

gg are not generally 1. Moreover, if Sgg is not a diagonal matrix,
P̃T L−1 does not, generally, have orthogonal column vectors.

Feital et al. (2010) and Ge et al. (2011) discussed two different methods for
determining loading vectors of unit length that produce score variables that have a
maximum variance, and are statistically independent irrespective of whether Sgg is
a diagonal matrix or not. The first method has been proposed in Hyvarinen (1999);
Yang and Guo (2008) and is to determine the eigendecomposition of Sz0z0

− Sgg,
which yields the loading vectors stored in P. It is important to note, however,
that the eigenvalues of Sz0z0

− Sgg are not those of the computed score variables.
This issue has been addressed in Feital et al. (2010) by introducing a con-

straint NIPALS algorithm. Table 6.7 summarizes an algorithm similar to that
proposed in Feital et al. (2010). This algorithm utilizes the estimated model sub-
space, spanned by the column vectors of ̂̃P under the assumption that Sgg is of
diagonal type.
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Table 6.7 Constraint NIPALS algorithm.

Step Description Equation

1 Initiate iteration i = 1, Z(1) = Z0

2 Set up projection matrix C = ̂̃P̂̃PT

3 Define initial score vector 0ti = Z(i) (:, 1)

4 Determine loading vector pi = CZ(i)T
(

0ti
)

5 Scale loading vector p̂i = pi/‖pi‖
6 Calculate score vector 1ti = Z(i)p̂i

7 Compute eigenvalue λi = ∥∥1ti
∥∥2

If
∥∥

1ti −0 ti
∥∥> ε, set

8 Check for convergence 0ti =1 ti and go to Step 4 else
set t̂i =1 ti and go to Step 9

9 Scale eigenvalue λ̂i = λi/K−1

10 Deflate data matrix Z(i+1) = Z(i) − t̂i p̂
T
i

If i < n set i = i + 1
11 Check for dimension and go to Step 3 else

terminate iteration procedure

In order to outline the working of this algorithm, setting C = I in Step 2
reduces the algorithm in Table 6.7 to the conventional NIPALS algorithm (Geladi
and Kowalski 1986). The conventional algorithm, however, produces an eigen-
decomposition of Ŝz0z0

and the associated score vectors for Z0.

Setting C = ̂̃P̂̃PT

, however, forces the eigenvectors to lie within the esti-
mated model subspace. To see this, the following matrix projects any vector of
dimension nz to lie within the column space of ̂̃P (Golub and van Loan 1996)

̂̃P [̂̃PT ̂̃P]−1 ̂̃PT = ̂̃P̂̃PT = C. (6.77)

Lemma 2.1.1 and particularly (2.5) in Section 2.1 confirm that (6.77) projects any
vector orthogonally onto the model plane. Figure 2.2 gives a schematic illustration
of this orthogonal projection. Step 4 in Table 6.7, therefore, guarantees that the
eigenvectors of Sz0z0

lie in the column space of ̂̃P.
Step 5 ensures that the loading vectors are of unit length, whilst Step 6

records the squared length of the t-score vector, which is K − 1 times its variance
since the samples stored in the data matrix have been mean centered. Upon
convergence, Step 9 determines the variance of the ith score vector and Step 10
deflates the data matrix. It is shown in Section 9.1 that the deflation procedure
gives rise to orthonormal p-loading vectors and orthogonal t-score vectors, and
that the power method converges to the most dominant eigenvector (Golub and
van Loan 1996).
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The working of this constraint NIPALS algorithm is now demonstrated using
data from the simulation example in Subsection 6.1.5. Subsection 6.1.8 revisits
the application study of the chemical reaction process in Chapter 4 by identi-
fying an MLPCA model including an estimate of the number of source signals
and a rearrangement of the loading vectors by applying the constraint NIPALS
algorithm.

6.1.7.1 Application to data from the simulated process
in subsection 6.1.5

By using a total of K = 1000 simulated samples from this process and including
n = 4 source signals, the application of MLPCA yields the following loading
matrix

̂̃P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0056 0.5038 0.4102 −0.3142
0.0347 0.4384 −0.7203 0.0187
0.0100 0.0733 0.0632 0.8188
0.7843 −0.1140 0.1414 −0.0463
0.0942 0.2199 0.2158 0.1288
0.0674 0.0675 −0.0369 0.3649
0.0678 0.1434 −0.0036 0.1697
0.0518 −0.1995 0.1274 0.0148
0.0035 0.1135 −0.2085 −0.0219

−0.0709 0.0559 0.1272 0.1304
−0.0039 0.4772 0.3603 0.1248

0.2495 0.0408 −0.0616 0.0034
−0.0122 −0.4136 0.0963 0.1262

0.5435 0.0771 −0.1486 −0.0235

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.78)

Applying the constraint NIPALS algorithm, however, yields a different loading
matrix

P̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2594 0.4274 0.2556 0.4158
0.2822 0.1105 −0.6545 −0.1012
0.2189 0.1087 0.2546 −0.7437
0.3691 −0.4708 0.1859 0.1741
0.2813 0.1212 0.2505 0.0652
0.2805 −0.0391 0.0360 −0.3932
0.2865 0.0554 0.0143 −0.0969

−0.1316 −0.2815 0.3003 0.0097
0.1161 0.0507 −0.3330 −0.0323

−0.0409 0.2439 0.2033 −0.1067
0.2603 0.3597 0.2433 0.1013
0.3640 −0.3247 −0.0127 0.1001

−0.2739 −0.2675 0.2011 −0.1460
0.3484 −0.3235 −0.0222 0.1057

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.79)
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Finally, taking the loading matrix obtained from the constraint NIPALS algorithm
and comparing the estimated covariance matrix of the score variables

Ŝtt =

⎡⎢⎢⎣
3.0002 −0.0000 −0.0000 −0.0000

−0.0000 2.5670 0.0000 −0.0000
−0.0000 0.0000 1.9740 0.0000
−0.0000 −0.0000 0.0000 1.5160

⎤⎥⎥⎦ (6.80)

with those obtained from the loading matrix determined from the original data
covariance matrix, i.e. Ŝz0z0

= P̂�̂P̂T + P̂d�̂d P̂T
d and t̂ = P̂T z0

Ŝtt =

⎡⎢⎢⎣
3.0043 −0.0000 −0.0000 −0.0000

−0.0000 2.5738 0.0000 −0.0000
−0.0000 0.0000 1.9804 −0.0000
−0.0000 −0.0000 −0.0000 1.5213

⎤⎥⎥⎦ (6.81)

yields that the diagonal elements that are very close to the theoretical maximum
for conventional PCA. The incorporation of the constraint (Step 4 of the constraint
NIPALS algorithm in Table 6.7) clearly impacts the maximum value but achieves:

• an estimated model subspace is that obtained from the MLPCA algorithm;
and

• loading vectors that produce score variables which have a maximum
variance.

6.1.8 Application to a chemical reaction process – revisited

To present a more challenging and practically relevant application study, this
subsection revisits the application study of the chemical reaction process. Recall
that the application of PCA relied on the following assumptions outlined in
Section 2.1

• z = �s + g + z̄, where:

• s ∼ N {0, Sss

}
;

• g ∼ N {0, Sgg

}
;

• with i and j being two sample indices

E

{(
s(k)

g(k)

) (
sT (l) gT (l)

)} = δkl

[
Sss 0
0 Sgg

]
Sgg = σ 2

g I; and

• the covariance matrices Sss and Sgg have full rank n and nz, respectively.

Determining the number of source signals. Under these assumptions, the
application of the VRE technique suggested that the data model has four source
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signals (Figure 4.4). Inspecting the eigenvalue plot in Figure 4.3, however, does
not support the assumption that the remaining 31 eigenvalues have the same
value even without applying (6.59) and carrying out the hypothesis test for H0
in (6.59) and (6.63).

According to (6.46), the maximum number of source signals for a complete
estimation of the diagonal elements of Sgg is 27. Different to the suggested
number of four source signals using the VRE criterion, the application of the
hypothesis test in Subsection 6.1.6 yields a total of 20 source signals.

Table 6.8 lists the results for estimating the MLPCA model, including the
optimal value of the objective function in (6.49), J̃ ∗, the three contributing terms,
J̃ ∗

1 , J̃ ∗
2 and J̃3, the κ2 values of (6.59), its number of degrees of freedom (dof)

and its critical value χ2
α for n = 1, . . . , 27.

For (6.49), the diagonal elements of the error covariance matrix were con-
strained to be within

[
0.01 0.5

]
, which related to the pretreatment of the data.

Table 6.8 Estimation results for MLPCA model (chemical reaction process).

n J̃1 J̃2 J̃3 J̃ κ2 dof χ2
α κ̃2

1 27.915 23.945 6.732 2489.7 33794 630 689.50 49.012
2 31.865 17.062 3.449 1772.5 19217 595 652.86 29.435
3 32.037 11.627 1.486 1209.6 8185.8 561 617.21 13.263
4 31.091 9.489 1.071 990.70 5652.1 528 582.56 9.702
5 29.534 7.540 0.815 791.73 3598.3 496 548.92 6.555
6 28.265 6.174 0.629 651.92 2387.3 465 516.27 4.624
7 27.098 5.249 0.522 557.22 1790.9 435 484.63 3.695
8 25.821 4.666 0.460 496.99 1429.0 406 453.98 3.148
9 25.172 4.224 0.404 451.64 1223.4 378 424.33 2.883

10 24.275 3.822 0.352 409.97 1037.8 351 395.69 2.623
11 23.258 3.456 0.312 371.97 900.52 325 368.04 2.447
12 22.079 3.078 0.277 332.69 741.21 300 341.40 2.171
13 21.153 2.735 0.243 297.06 637.50 276 315.75 2.019
14 20.531 2.402 0.212 262.85 555.73 253 291.10 1.909
15 19.284 2.116 0.181 232.71 445.25 231 267.45 1.665
16 18.545 1.827 0.156 202.76 368.32 210 244.81 1.505
17 17.507 1.571 0.131 175.94 299.79 190 223.16 1.343
18 16.721 1.393 0.116 157.23 252.85 171 202.51 1.249
19 15.502 1.171 0.092 133.57 192.61 153 182.86 1.053
20 14.714 0.937 0.072 109.12 140.75 136 164.22 0.857
21 13.652 0.862 0.066 100.54 125.30 120 146.57 0.855
22 12.707 0.661 0.052 79.301 85.430 105 129.92 0.658
23 11.735 0.530 0.040 65.176 57.806 91 114.27 0.506
24 10.886 0.378 0.029 49.007 32.955 78 99.617 0.331
25 9.823 0.327 0.026 42.773 33.511 66 85.965 0.390
26 8.930 0.217 0.017 30.824 17.062 55 73.311 0.233
27 7.980 0.080 0.006 16.017 2.965 45 61.656 0.048

Parameters for objective function in Equation (6.49): a0 = 1, a1 = 100, a3 = 10.
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Each temperature variable was mean centered and scaled to unity variance.
Consequently, a measurement uncertainty of each thermocouples exceeding 50%
of its variance was not expected and the selection of a too small lower bound-
ary might have resulted in numerical problems in computing the inverse of the
lower triangular matrix of the Cholesky decomposition, according to (6.36). The
parameters for J̃1, J̃2 and J̃3 were a1 = 1, a2 = 100 and a3 = 10, respectively.

Table 6.9 lists the elements of Ŝgg for n = 20. It should be noted that most
error variances are between 0.05 and 0.13 with the exception of thermocouple 22
and 24. When comparing the results with PCA, the estimated model subspace for
MLPCA is significantly larger. However, the application of MLPCA has shown
here that estimating the model subspace simply by computing the eigendecompo-
sition of Sz0z0

has relied on an incorrect data structure. According to the results
in Table 6.8, retaining just four PCs could not produce equal eigenvalues even
under the assumption of unequal diagonal elements of Sgg.

Chapter 4 discussed the distribution function of the source signals and showed
that the first four score variables are, in fact, non-Gaussian. Whilst it was still
possible to construct the Hotelling’s T 2 and Q statistics that were able to detect an
abnormal behavior, the issue of non-Gaussian source signals is again discussed in
Chapter 8. Next, the adjustment of the base vectors spanning the model subspace
is considered.

Readjustment of the base vector spanning the model subspace. Table 6.10
lists the eigenvectors obtained by the constraint NIPALS algorithm. Table 6.11
shows the differences in the eigenvalues of Ŝz0z0

and those obtained by the con-
straint NIPALS algorithm. Figure 6.6 presents a clearer picture for describing the
impact of the constraint NIPALS algorithm. The first four eigenvalues and eigen-
vectors show a negligible difference but the remaining ones depart significantly
by up to 90◦ for the eigenvectors and up to 10% for the eigenvalues.

Summary of the application of MLPCA. Relying on the assumption that
Sgg = σ 2

g I suggested a relatively low number of source signals. Removing the
assumption, however, presented a different picture and yielded a significantly
larger number of source signals. A direct inspection of Figure 4.3 confirmed that
the discarded components do not have an equal variance and the equivalence
of the eigenvalues for the MLPCA has been tested in a statistically sound man-
ner. The incorporation of the identified model subspace into the determination
of the eigendecomposition of Ŝz0z0

yielded a negligible difference for the first
four eigenvalues and eigenvectors but significant differences for the remaining
16 eigenpairs. This application study, therefore, shows the need for revisiting
and testing the validity of the assumptions imposed on the data models. Next,
we examine the performance of the revised monitoring statistics in detecting
the abnormal behavior of Tube 11 compared to the monitoring model utilized
in Chapter 4.
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Table 6.9 Estimated diagonal
elements of Sgg.

Variable (diagonal Error
element of Ŝgg) variance

g2
1 0.0542

g2
2 0.1073

g2
3 0.0858

g2
4 0.0774

g2
5 0.0675

g2
6 0.0690

g2
7 0.0941

g2
8 0.0685

g2
9 0.0743

g2
10 0.0467

g2
11 0.1038

g2
12 0.0798

g2
13 0.0611

g2
14 0.0748

g2
15 0.0531

g2
16 0.1163

g2
17 0.0475

g2
18 0.0688

g2
19 0.0688

g2
20 0.0792

g2
21 0.0553

g2
22 0.0311

g2
23 0.1263

g2
24 0.2179

g2
25 0.0794

g2
26 0.0764

g2
27 0.0688

g2
28 0.0648

g2
29 0.0802

g2
30 0.0816

g2
31 0.0672

g2
32 0.0777

g2
33 0.0643

g2
34 0.0714

g2
35 0.0835
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Table 6.10 Eigenvectors associated with first seven dominant eigenvalues.

pij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 1 0.1702 0.1553 0.2058 0.1895 0.0222 0.2005 0.1886
i = 2 0.1727 −0.0156 −0.0927 0.1797 −0.1123 0.1482 0.2831
i = 3 0.1751 0.0843 0.0718 0.0605 −0.2154 −0.0718 0.0896
i = 4 0.1572 0.3301 0.0252 −0.2317 −0.2953 −0.1760 −0.0208
i = 5 0.1773 0.0158 −0.0001 −0.1754 −0.2077 0.1446 0.1575
i = 6 0.1647 −0.1562 −0.2558 −0.2788 −0.1934 0.1082 −0.1509
i = 7 0.1756 0.0030 −0.0652 −0.0388 −0.0837 −0.2560 −0.0589
i = 8 0.1534 0.3681 −0.1251 −0.0523 0.1696 −0.2490 0.1557
i = 9 0.1733 −0.1904 −0.0434 0.1436 −0.0531 −0.1325 0.0484
i = 10 0.1774 0.1335 −0.0463 0.0377 −0.0231 0.2629 0.1216
i = 11 0.1181 0.0896 0.6003 −0.4352 0.2118 0.1884 0.1074
i = 12 0.1723 0.0576 0.2118 0.1905 0.1391 −0.1298 −0.0918
i = 13 0.1732 0.1149 0.1266 −0.2004 −0.0590 −0.0771 −0.1354
i = 14 0.1711 −0.0563 0.1625 0.0149 0.1574 −0.2397 −0.2727
i = 15 0.1791 −0.0608 0.0327 0.0717 0.0860 −0.0952 0.0693
i = 16 0.1702 0.0288 −0.1549 0.0488 −0.2022 0.1204 −0.2727
i = 17 0.1651 −0.2928 0.1657 −0.0236 −0.0754 0.0623 0.0727
i = 18 0.1722 0.0001 −0.2041 0.0381 0.1687 0.0859 0.3436
i = 19 0.1750 −0.0980 −0.0218 −0.1741 −0.2880 0.1954 0.0097
i = 20 0.1744 −0.1659 0.0419 0.0388 0.2008 −0.0721 −0.0430
i = 21 0.1733 −0.1410 0.0287 0.1802 0.1174 −0.3004 −0.1751
i = 22 0.1726 0.2010 0.0303 0.0155 −0.0175 −0.2110 −0.0486
i = 23 0.1532 0.2597 0.2438 0.2137 −0.2477 0.1148 −0.3089
i = 24 0.1472 0.2257 −0.2163 0.0111 0.4567 0.4498 −0.4446
i = 25 0.1770 −0.0554 −0.0996 0.0112 0.0395 −0.0226 0.0237
i = 26 0.1686 0.1257 −0.2211 −0.1773 0.2349 −0.1066 0.1424
i = 27 0.1607 −0.3476 0.0303 0.0236 0.0620 −0.0680 −0.0761
i = 28 0.1752 −0.1564 0.0643 0.0429 0.0733 0.1053 −0.0180
i = 29 0.1770 −0.1036 0.0720 −0.0805 −0.0977 −0.1432 0.0124
i = 30 0.1782 0.0326 −0.1117 −0.0917 −0.0257 −0.0103 −0.1105
i = 31 0.1706 0.0383 0.0711 0.4773 −0.1093 0.1696 0.0911
i = 32 0.1744 0.0233 −0.1877 −0.1674 0.1580 −0.0712 0.1956
i = 33 0.1686 −0.2307 0.1605 −0.0271 0.1832 0.1150 0.1322
i = 34 0.1734 0.1413 −0.1548 0.1652 0.0014 −0.0454 0.0842
i = 35 0.1650 −0.2458 −0.1743 −0.1453 −0.0701 0.1162 −0.1727

The estimated number of source signals is n = 20.

Detecting the abnormal behavior in tube 11. Figure 6.7 shows the Hotelling’s
T 2 and Q statistics for both data sets. Comparing Figure 4.10 with the upper
plots in Figure 6.7, outlines that the inclusion of a larger number set of source
signals does not yield the same ‘distinct’ regions, for example between 800 to
1100 minutes and between 1400 and 1600 minutes into the data set.
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Table 6.11 Variances of score variables.

Component Eigenvalue Eigenvalue after
of Ŝz0z0

adjustment

1 28.2959 28.2959
2 1.5940 1.5937
3 1.2371 1.2368
4 0.4101 0.4098
5 0.3169 0.3090
6 0.2981 0.2945
7 0.2187 0.2127
8 0.1929 0.1918
9 0.1539 0.1487

10 0.1388 0.1368
11 0.1297 0.1258
12 0.1251 0.1199
13 0.1199 0.1150
14 0.1148 0.1120
15 0.1067 0.1033
16 0.1015 0.0999
17 0.0980 0.0967
18 0.0939 0.0849
19 0.0919 0.0847
20 0.0884 0.0828
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Figure 6.6 Percentage change in angle of eigenvectors and eigenvalues.

To qualify this observation, Figure 6.8 compares the F-distribution function
with the empirical one, which shows a considerably closer agreement when con-
trasted with the PCA-based comparison in Figure 4.8. The upper plot in Figure 4.8
shows significant departures between the theoretical and the estimated distribution
functions for the Hotelling’s T 2 statistic. In contrast, the same plot in Figure 6.8
shows a close agreement for the MLPCA-based statistic. The residual-based Q

statistics for the PCA and MLPCA models are accurately approximated by an
F-distribution, when constructed with respect to (3.20), that is, Q = T 2

d .
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Figure 6.7 MLPCA-based monitoring statistics.

The reason that the MLPCA-based Hotelling’s T 2 statistic is more accurately
approximated by an F-distribution with 2338 and 20 degrees of freedom than
the PCA-based one by an F-distribution with 2338 and 4 degrees of freedom
is as follows. Whilst the first four components are strongly non-Gaussian, the
remaining ones show significantly smaller departures from a Gaussian distribu-
tion. Figure 6.9 confirms this by comparing the estimated distribution function
with the Gaussian one for score variables 5, 10, 15 and 20. Moreover, the con-
struction of the Hotelling’s T 2 statistic in (3.9) implies that each of the first four
non-Gaussian score variables has the same contribution compared to the remain-
ing 16 score variables. The strong impact of the first four highly non-Gaussian
score variables to the distribution function of the Hotelling’s T 2 statistic therefore
becomes reduced for n = 20.

Analyzing the sensitivity of the MLPCA monitoring model in detecting the
abnormal tube behavior requires comparing Figure 4.10 with the lower plots
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The Hotelling’s T 2 statistic
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Figure 6.8 F-distribution (dotted line) and estimated distribution functions.

in Figure 6.7. This comparison yields a stronger response of both MLPCA-
based non-negative squared monitoring statistics. In other words, the violation of
the control limits, particularly by the MLPCA-Q statistic, is more pronounced.
The inspection of Figure 4.17 highlights that the estimated fault signature for
temperature variable #11 is not confined to the first third of the data set but
instead spans over approximately two thirds of the recorded set. More precisely,
the violation of the control limit by the MLPCA-based Q statistic corresponds
more closely to the extracted fault signature.

In summary, the revised application study of the chemical reaction process
outlined the advantage of MLPCA over PCA, namely a more accurate model
estimation with respect to the data structure in (2.2). In contrast, the PCA model
violated the assumption of Sgg = σ 2

g I. From the point of detecting the abnormal
tube behavior, this translated into an increased sensitivity of both non-negative
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Figure 6.9 Comparison between Gaussian distribution (dashed line) and esti-
mated distribution function for score variables 5 (upper left plot), 10 (upper right
plot), 15 (lower left plot) and 20 (lower right plot).

quadratic monitoring statistics by comparing Figures 4.12 and 6.7. Despite the
increased accuracy in estimating a data model for this process, the problem
that the first four score variables do not follow a Gaussian distribution remains.
Chapter 8 introduces a different construction of monitoring statistics that asymp-
totically follow a Gaussian distribution irrespective of the distribution function
of the individual process variables and, therefore, addresses this remaining issue.

6.2 Accuracy of estimating PLS models

This section discusses the accuracy of estimating the weight and loading vectors
as well as the regression matrix of PLS models. In this regard, the issue of high
degrees of correlation among and between the input and output variable sets
is revisited. Section 6.2.1 first summarizes the concept of bias and variance in
estimating a set of unknown parameters. Using a simulation example, Subsection
6.2.2 then demonstrates that high correlation can yield a considerable variance
of the parameter estimation when using OLS and outlines that PLS circumvents
this large variance by including a reduced set of LVs in the regression model
(Wold et al. 1984).

This, again, underlines the benefits of using MSPC methods in this context,
which decompose the variation encapsulated in the highly correlated variable
sets into source signals and error terms. For the identification of suitable
models for model predictive control application, this is also an important
issue. A number of research articles outline that PLS can outperform OLS and
other multivariate regression techniques such as PCR and CCR (Dayal and
MacGregor 1997b; Duchesne and MacGregor 2001) unless specific penalty
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terms are included in regularized least square (Dayal and MacGregor 1996)
which, however, require prior knowledge of how to penalize changes in the
lagged parameters of the input variables.

Finally, Subsection 6.2.3 shows how to obtain a consistent estimation of the
LV sets and the parametric regression matrix if the data structure is assumed to
be y0 = BT xs + f, whilst x0 = xs + e = Qs + e where e is an error vector for
the input variables.

6.2.1 Bias and variance of parameter estimation

According to (2.24) and (2.51), the number of source signals n must be smaller
or equal to nx . It is important to note, however, that if n < nx a unique ordinary
least squares solution for estimating B, B̂ = Ŝ−1

x0x0
Ŝx0y0

, does not exist. More
precisely, if n < nx the covariance matrix for the input variables is asymptotically
ill conditioned and the linear equation Sx0x0

B = Sx0y0
yields an infinite number of

solutions. On the other hand, if the condition number of the estimated covariance
matrix Ŝx0x0

is very large, the estimation variance of the elements in B can
become very large too. This is now analyzed in more detail.

The OLS estimation is the best linear unbiased estimator if the error covari-
ance matrix is of diagonal type Sff = diag

{
σ 2

f1
σ 2

f2
· · · σ 2

fny

}

B̂ = Ŝ−1
x0x0

Ŝx0y0
=
[

K∑
k=1

x0 (k) x0 (k)

]−1 [ K∑
k=1

x0 (k) y0 (k)

]

B̂ =
[

K∑
k=1

x0 (k) xT
0 (k)

]−1 [ K∑
k=1

x0 (k) xT
0 (k) B +

K∑
k=1

x0 (k) fT (k)

]

E
{B̂} = B +

[
K∑

k=1

x0 (k) xT
0 (k)

]−1

E

{
K∑

k=1

x0 (k) fT (k)

}
(6.82)

E
{B̂} = B +

[
K∑

k=1

x0 (k) xT
0 (k)

]−1 [ K∑
k=1

x0 (k) E
{
fT (k)

}]
E
{B̂}− B = 0.

It is important to note the data structures in (2.24) and (2.51) do not include
any stochastic error terms for the input variables. Although the input and, there-
fore, the uncorrupted output variables are also assumed to follow multivariate
Gaussian distributions, the K observations are assumed to be known. Hence, the
only unknown stochastic element in the above relationship is f(k), which has an
expectation of zero. Hence the OLS solution is unbiased.

The next step is to examine the covariance matrix of the parame-
ter estimation for each column vector of B. For the ith column of B,
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the corresponding covariance matrix can be constructed from b̂i −bi =
[
∑K

k=1 x0(k)xT
0 k)]−1[

∑K
k=1 x0(k)fi (k)], which follows from (6.82)

E
{(̂

bi − bi

) (̂
bi − bi

)T } =
[

K∑
k=1

x0 (k) xT
0 (k)

]−1

E

{[
K∑

k=1

(k) x0 (k) fi (k)

]
[

K∑
k=1

fi (k) xT
0 (k)

]}[
K∑

k=1

x0 (k) xT
0 (k)

]−1

(6.83)

which can be simplified to

E
{(̂

bi − bi

) (̂
bi − bi

)T } =
[

K∑
k=1

x0 (k) xT
0 (k)

]−1

[
K∑

k=1

E

{
x0 (k) fi (k)

K∑
k=1

fi (k) xT
0 (k)

}]
[

K∑
k=1

x0 (k) xT
0 (k)

]−1

. (6.84)

It follows from the Isserlis theorem (Isserlis 1918), that

E
{
x0(k)fi (k)fi (l)x

T
0 (l)
} = E

{
x0(k)fi (k)

}
E
{
fi (l)x

T
0 (l)
}︸ ︷︷ ︸

=0

+ E
{
x0(k)fk(l)

}
E
{
fi (k)xT

0 (l)
}︸ ︷︷ ︸

=0

(6.85)

+ x0(k)xT
0 (l) E

{
fi (k)fi (l)

}︸ ︷︷ ︸
=0 for all k �=l

.

Incorporating the fact that:

• E
{
x0(k)fi (k)fi (l)x

T
0 (l)
} = 0 for all k �= l; and

• E
{
x0(k)fi (k)fi (l)x

T
0 (l)
} = x0(k)xT

0 (l)σ 2
fi

if k = l

allows simplifying (6.84) to become (Ljung 1999)

E
{(̂

bi − bi

) (̂
bi − bi

)T } = σ 2
fi

[
K∑

k=1

x0 (k) xT
0 (k)

]−1
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K∑

k=1

x0 (k) xT
0 (k)

][
K∑

k=1

x0 (k) xT
0 (k)

]−1

E
{(̂

bi − bi

) (̂
bi − bi

)T } = σ 2
f

K−1 Ŝ−1
x0x0

. (6.86)

That E
{
fi (k)fi (l)

} = δklσ
2
fi

follows from the assumption that the error variables
are independently distributed and do not possess any serial- or autocorrelation.
Furthermore, the error variables are statistically independent of the input
variables. At first glance, it is important to note that a large sample size results
in a small variance for the parameter estimation.

It is also important to note, however, that the condition number of the esti-
mated covariance matrix Ŝx0x0

has a significant impact upon the variance of
the parameter estimation. To see this, using the eigendecomposition of Ŝx0x0

=
USUT , its inverse becomes Ŝ−1

x0x0
= US−1UT . If there is at least one eigenvalue

that is close to zero, some of elements of the inverse matrix become very large,
since s−1

nx
unx

uT
nx

contains some large values which depend on the elements in
nx th eigenvector unx

.
With regards to the data structure in (2.24), PLS can provide an estimate of

the parameter matrix that predicts the output variables y0 based on the t-score
variables and hence circumvents the problem of a large estimation variance for
determining the regression matrix B using OLS. This is now demonstrated using
a simulation example.

6.2.2 Comparing accuracy of PLS and OLS
regression models

The example includes one output variable and ten highly correlated input
variables

x0 = Ps + P′s′, (6.87)

where P ∈ R
10×4, P′ ∈ R

10×6, s ∈ R
4 and s′ ∈ R

6. Furthermore, s and s′ are
statistically independent, i.i.d. and follow a multivariate Gaussian distribution
with diagonal covariance matrices. The diagonal elements of Sss and Ss′s′ are 1
and 0.075, respectively. The output variable is a linear combination of the ten
input variables and corrupted by an error variable

y0 = bT x0 + f. (6.88)

The elements of the parameter matrices P and P′ as well as the parameter vector
b, shown in (6.89a) to (6.89c), were randomly selected to be within

[−1 1
]

from a uniform distribution. The variance of the error term was σf = 0.2. It
should be noted that the data structure in this example is different from that in
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(2.51), as both types of source signals influence the output variables.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.047 −0.125 −0.593 −0.061
0.824 −0.440 0.089 −0.173

−0.970 0.971 0.750 0.006
−0.687 0.218 −0.758 −0.749
−0.057 −0.493 0.713 −0.735

0.086 −0.735 0.800 0.741
−0.881 0.090 −0.564 0.206

0.316 0.656 −0.846 −0.469
0.779 0.674 −0.052 0.730

−0.781 0.667 0.670 −0.884

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.89a)

P′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.042 0.365 0.400 −0.432 0.375 0.129
0.222 −0.080 −0.435 −0.415 −0.151 0.378

−0.161 −0.260 −0.164 −0.432 −0.458 0.162
−0.099 0.098 −0.496 −0.090 −0.358 0.375

0.027 −0.021 0.328 −0.377 −0.423 −0.033
0.394 0.399 0.007 −0.057 0.241 −0.359
0.278 0.435 −0.134 0.399 −0.044 −0.432

−0.431 0.318 −0.273 −0.146 0.168 0.214
−0.221 0.209 0.035 −0.380 0.199 −0.192
−0.121 0.243 −0.211 0.069 0.071 0.171

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.89b)

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.427
0.952

−0.053
0.586
0.355
0.779

−0.182
0.991
0.322
0.808

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.89c)

With respect to (6.87) to (6.89c), the covariance matrix of x0 is

Sx0x0
= PPT + σ 2

s′P′P′T (6.90)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.420 −0.029 −0.529 0.485 −0.304 · · · −0.387
−0.029 0.953 −1.133 −0.568 0.365 · · · −0.719
−0.529 −1.133 2.486 0.330 0.130 · · · 1.899
0.485 −0.568 0.330 1.695 −0.057 · · · 0.848

−0.304 0.365 0.130 −0.057 1.327 · · · 0.833
...

...
...

...
...

. . .
...

−0.387 −0.719 1.899 0.848 0.833 · · · 2.296

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Equation (6.86) shows that the variance of the parameter estimation for the
OLS solution is proportional to σ 2

f /K−1 but also depends on the estimated covari-
ance matrix. With respect to the true covariance matrix in (6.90), it is possible
to approximate the covariance matrix for the parameter estimation using OLS

E
{(̂

b − b
) (̂

b − b
)T } ≈ σ 2

f

K−1 S−1
x0x0

. (6.91)

As discussed in the previous subsection, the examination of the impact of S−1
x0x0

relies on its eigendecomposition

E
{(̂

b − b
) (̂

b − b
)T } ≈ σ 2

f

K−1

[
10∑
i=1

uiu
T
i

si

]
. (6.92)

Given that the eigenvalues of Sx0x0
are

� = diag

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.058308
4.393462
2.644292
1.944088
0.082358
0.062873
0.054620
0.020089
0.003175
0.000021

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.93)

the condition number of Sx0x0
is 2.9066 × 105, which highlights that this matrix

is indeed badly conditioned. On the basis of (6.92), Figure 6.10 shows the approx-
imated variances for estimating the ten parameters, that is, the diagonal elements
of E{(̂b − b)(̂b − b)T }. The largest curves in Figure 6.10 are those for param-
eters b8, b4, b9, b3 (from largest to smallest). The remaining curves represent
smaller but still significant variances for b1, b2, b5, b6, b7 and b10. Even for a
sample size of K = 1000, variances of the parameter estimation in the region of
five can arise. The impact of such a large variance for the parameter estimation
is now demonstrated using a Monte Carlo experiment.

The experiment includes a sample size of K = 200 and a total number of 1000
repetitions. The comparison here is based on the parameter estimation using OLS
and the estimation of latent variable sets using PLS. For each of these sets, the
application of OLS and PLS produced estimates of the regression parameters and
estimates of sets of LVs, respectively. Analyzing the 1000 estimated parameter
sets for OLS and PLS then allow determining histograms of individual values
for each parameter set, for example the OLS regression coefficients.

Figure 6.11 shows histograms for each of the ten regression parameters
obtained using OLS. In each plot, the abscissa relates to the value of the esti-
mated parameter and the ordinate shows the relative frequency of a particular
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Figure 6.10 Variance of parameter estimation (OLS model) for various sample
sizes.
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Figure 6.11 Histograms for parameter estimation of regression coefficients
(OLS).

parameter value. According to Figure 6.10, for K = 200, the largest estimation
variance is in the region of 16 for the eighth parameter.

It follows from the central limit theorem that the parameter estimation fol-
lows approximately a Gaussian distribution with the mean value being the true
parameter vector (unbiased estimation) and the covariance matrix given in (6.86).
With this in mind, the estimated variance of 16 for the eighth parameter implies
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Figure 6.12 Histograms for parameter estimation of q́-loading coefficients
(PLS).

that around 68% of estimated parameters for b8 are within the range 0.991 ± 4
and around 95% of estimated parameters fall in the range of 0.991 ± 8, which
Figure 6.10 confirms.

The Monte Carlo simulation also shows larger variances for the parameter
estimation for b3, b4 and b9. The ranges for estimating the remaining parameters,
however, are still significant. For example, the smallest range is for estimating
parameter b1, which is bounded roughly by

[−0.9 0
]
. The above analysis there-

fore illustrates that the values of the parameter estimation can vary substantially
and strongly depend on the recorded samples. Höskuldsson (1988) pointed out
that PLS is to be preferred over OLS as it produces a more stable estimation
of the regression parameters in the presence of highly correlated input variables.
This is examined next.

In contrast to OLS, PLS regression relates to an estimated parametric
model between the extracted t-score and the output variables, y0 = q̂T t̂ + f .
Figure 6.12, plotting the histograms for estimating the parameters of the
first two q-loading values, does not show large variances for the parameter
estimation. More precisely, the computed variance for the 1000 estimates
of q́1 and q́2 are 0.0049 and 0.0038, respectively. Based on the original
covariance matrix, constructed from the covariance matrix in (6.90) and
sx0y0

= PPT b + σ 2
s′P′P′T b, the mean values for q́1 and q́2 are 0.8580 and

0.2761, respectively. The estimation variance for q́1 and q́2, therefore, compares
favorably to the large estimation variances for b̂, produced by applying OLS.
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The small estimation variance for the first and second q́-loading value, how-
ever, does not take into consideration the computation of the t-score variables.
According to Lemma 10.4.7, the t-score variables can be obtained by the scalar
product of the r-loading and the input variables, i.e. ti = rT

i x0. For the first two
r-loading vectors, Figure 6.13, again, suggests a small variance for each of the
elements in r1 and r2, Table 6.12 lists the estimated mean and variance for each
element of the two vectors. The largest variance is 0.0140 for element r52.

Equation (10.60) shows that the PLS estimate for the parameter matrix B is
B̂ = R̂Q̂T . Retaining the first two latent variable pairs, Figure 6.14 shows the
histograms of the elements of the PLS regression vectors. In contrast to the his-
tograms of the loading and weight vectors in Figures 6.12 and 6.13, respectively,
the histograms in Figure 6.14 can be directly compared to those in Figure 6.11.
As expected, the variance of the parameter estimation for models obtained using
PLS is significantly smaller compared to those computed by OLS. This is a result
of the relatively small variance of the parameter estimation for the latent loading
and weight vectors.

A more qualitative analysis is offered in Table 6.13. It is interesting to note
that the estimation using OLS is more accurate for parameter b6, which follows
from the fact that the confidence region of this parameter, obtained from the
estimates in Table 6.13 for a significance of 0.05, is ̂̄bols6

± 1.96σ̂bols6
= 0.7714 ±

0.53246 for OLS, which compares to −0.2774 ± 0.0297 for the PLS models.
In the worst case, the estimated parameter for OLS becomes 0.2390 for OLS,
whilst the closest estimate for PLS is −0.2477. For almost all other parameters,
the confidence regions for the estimated parameters using OLS include those
of the PLS estimates. This is known as the bias/variance tradeoff, where an
estimation bias by the regression tool is accepted in favor of a significantly
reduced estimation variance.

The application of PLS in this Monte Carlo study yielded, therefore, a better
estimation of the parameters apart from b6 with the retention of just two sets
of latent variables compared to the application of OLS. Given that the PLS
regression model is identical to the OLS regression model if all of the nx LV
sets are included, increasing n, consequently, reduces the estimation bias. On the
other hand, the increase in n significantly increases the variance of the parameter
estimation.

Whilst the retention of only two latent variable sets yielded a biased param-
eter estimation that resulted in a substantial reduction in the variance of the
estimation and hence, a more accurate parameter estimation, the final question
is how accurate is the prediction of this model. Using the variance of the error
term over the variance of the output variable as a measure of accuracy

E
{
f2
}

E
{
y2

0

} =
σ 2

f

bT
[
PPT + P′Ss′s′P′T ]b + σ 2

f

= 0.0744. (6.94)

6 Assumed here to be 0.7714, whilst the true b6 is 0.779 according to (6.89c).
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Figure 6.13 Histograms for parameter estimation of r-weight coefficients (PLS).

Figure 6.15 indicates that including just one set of latent variables, the esti-
mated mean value of the statistic in (6.94) for the PLS regression models is
0.2528 and 0.1289 if n = 2. For the retention of further latent variable sets,
the estimated mean for this statistic becomes 0.1205, 0.1127, 0.0742, 0.0736,
0.0733, 0.0732, 0.0731, 0.0730. As analyzed above, however, an increase in
n will reduce the accuracy of the parameter estimation, whilst increasing the
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Table 6.12 Mean and variance for estimating r1 and r2.

Element rij r̄ij = E
{
rij

}
σ 2

rij
= E
{(

rij − r̄ij

)2}
r11 −0.1261 0.0004
r21 0.2859 0.0010
r31 0.0782 0.0022
r41 0.1196 0.0015
r51 0.4576 0.0007
r61 −0.3060 0.0014
r71 −0.4498 0.0011
r81 0.2664 0.0014
r91 −0.0913 0.0015
r101 0.5341 0.0010
r12 −0.1001 0.0022
r22 0.5645 0.0023
r32 −0.3861 0.0043
r42 −0.2651 0.0058
r52 0.2000 0.0140
r62 −0.0472 0.0094
r72 −0.6329 0.0060
r82 0.2816 0.0090
r92 0.3470 0.0060
r102 −0.0600 0.0059

Table 6.13 Comparing accuracy of OLS and PLS regression models.

Parameter bi
̂̄bplsi

̂̄bolsi
σ̂ 2

bplsi
σ̂ 2

bolsi

̂̄bolsi
−̂̄bplsi

b1 −0.1367 −0.4255 0.000144 0.0145 −0.2888
b2 0.4046 0.9467 0.000154 0.5678 0.5421
b3 −0.0404 −0.0704 0.000398 1.8401 −0.0300
b4 0.0298 0.6135 0.000200 5.4602 0.5837
b5 0.4540 0.3540 0.000184 0.0166 −0.1000
b6 −0.2774 0.7714 0.000229 0.0738 1.0488
b7 −0.5659 −0.1898 0.000192 0.7608 0.3761
b8 0.3070 0.9552 0.000299 6.1609 0.6482
b9 0.0148 0.3501 0.000538 4.3249 0.3353
b10 0.4453 0.8208 0.000224 0.7859 0.3755

predictive performance of the resulting regression model for the reference data.
A further study of this example is encouraged in the tutorial session of this
chapter (Project 3).

6.2.3 Impact of error-in-variables structure upon PLS models

After outlining the benefits of utilizing PLS as a technique for determining
regression parameters in the presence of highly correlated input variables, we
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Figure 6.14 Histograms for parameter estimation of regression coefficients
(PLS).
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now focus on the accuracy of estimating the latent variable sets if the input
variables are also corrupted by an error vector. Recall that the data structures
in (2.24) and (2.51) only include the error term f for the output variables. Such
extended data structures are often referred to as error-in-variable or EIV structures
(Söderström 2007).

Error-in-variable data structure for PLS models. Equations (6.95) and (6.96)
introduce the extended EIV data structures for PLS and MRPLS models, respec-
tively, that include the error vector e for the input variables

y = y0 + ȳ y0 = ys + f ys = Qs

x = x0 + x̄ x0 = xs + e xs = Ps (6.95)

y = y0 + ȳ y0 = ys + f ys = Qs

x = x0 + x̄ x0 = xs + e xs = Ps + P′s′. (6.96)

The following assumptions are imposed on s ∈ R
n, s′ ∈ R

m, f ∈ R
ny and

e ∈ R
nx

s ∼ N {0, Sss

}
s ∼ N {0, Ss′s′

}
f ∼ N {0, Sff

}
e ∼ N {0, See

}
. (6.97)

Defining k and l as sampling indices, the joint covariance matrix is assumed
to be

E

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

s(k)

s′(k)

f(k)

e(k)

⎞⎟⎟⎠(sT (l) s′T (l) fT (l) eT (l)
)⎫⎪⎪⎬⎪⎪⎭=δkl

⎡⎢⎢⎣
Sss 0 0 0
0 Ss′s′ 0 0
0 0 Sff 0
0 0 0 See

⎤⎥⎥⎦ . (6.98)

The data structure in (6.95) does not include s′. In this case, the covariance
matrix of the joint variable sets only includes the stochastic vectors s, f and
e. Moreover, the following linear parametric relationship exists between the ys

and xs

ys = BT xs B = S−1
xsxs

Sxsys
. (6.99)

The next few pages examine the impact of e upon the computation of the LVs,
commencing with the influence upon the covariance and cross-covariance matri-
ces. Subsections 6.2.4 and 6.2.5 then discuss how to remove this undesired
impact.

Impact upon Sx0x0
and Sx0y0

. The examination of the impact of e upon the
accuracy of the weight and loading vectors requires studying the impact of e upon
the covariance matrix Sx0x0

and the cross-covariance matrix Sx0y0
first. According
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to the data structures in (6.95) and (6.96), the covariance and cross-covariance
matrices are given by

Sx0x0
= PSssPT + P′T Ss′s′P′T + See Sx0y0

= PSssQT . (6.100)

With PLS being an iterative algorithm, the analysis commences with the first
set of weight and loading vectors. It is important to note that a linear parametric
relationship between xs and ys can be established irrespective of whether xs = Ps
or xs = Ps + P′s′, provided that Sxsxs

has full rank, which (6.99) shows.

Impact on first set of weight vectors. This set of weight vectors is the solution
to the following objective function(

w1
q1

)
= arg max

w,q
wT Sx0y0

q − 1
2λ
(
wT w − 1

)− 1
2λ
(
qT q − 1

)
, (6.101)

which confirms that the inclusion of e does not affect the first set of weight
vectors.

Impact on first set of loading vectors. Equation (6.102) shows the calculation
of the first pair of loading vectors(

p1
q́1

)
= arg min

p,q́

(
pT q́T

) [Sx0x0
Sy0x0

]
w1 − 1

2

(
pT p + q́T q́

)
wT

1 Sx0x0
w1, (6.102)

which directly follows from (10.12) in Subsection 10.2. Compared to the analysis
for the weight vector, however, a different picture emerges when analyzing the
objective function in (6.102), since

p1 =
[
Sxsxs

+ See

]
w1

wT
1

[
Sxsxs

+ See

]
w1

q́1 = Sy0x0
w1

wT
1

[
Sxsxs

+ See

]
w1

, (6.103)

where Sxsxs
is the covariance matrix of the source signals, that is, without the

inclusion of e. Without the presence of this term, the first pair of loading vectors
are equal to

p∗
1 = Sxsxs

w1

wT
1 Sxsxs

w1
q́∗

1 = Sy0x0
w1

wT
1 Sxsxs

w1
. (6.104)

Here, the superscript ∗ refers to the loading vectors determined from Sxsxs
. The

difference between the two pairs of loading vectors is therefore

�p1 = γe

1 + γe

(
p∗

1 − Seew1

wT
1 Seew1

)
(6.105)
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and

�q́1 = q́∗
1 − q́1 = γe(

1 + γe

)
wT

1 Seew1
q∗

1 (6.106)

where γe = wT
1 Seew1

wT
1 Sxsxs w1

> 0, since both covariance matrices are symmetric and pos-

itive definite. Equations (6.103) to (6.106) highlight that:

1. the direction and length of the p-loading vectors is affected;

2. the scalar product of wT
1 �p1 = 0;

3. the direction of the q́-loading vector remains unchanged; and

4. the length of the q́-loading vector reduces

by the presence of e. The reduction in length of the q́-loading vector follows from
the fact that See is a symmetric and positive definite matrix of rank nx . Moreover,
the scalar product wT

i pi = 1, which follows from Lemma 10.4.10 irrespective of
whether the input variables are corrupted by the noise term or not. Consequently,
the scalar product wT

1 �p1 = 0. In other words, wT
1

(
p∗

1 − p1

) = 0.

Impact upon deflation of Sx0y0
. Using (6.103) and Theorem 10.4.6 shows that

the deflation of the cross-covariance matrix can be expressed as follows

S(2)
ef =

[
I − Sx0x0

w1wT
1

wT
1 Sx0x0

w1

]
Sx0y0

. (6.107)

Given that the deflation of Sx0y0
using the uncorrupted input variables is equal

to

S(2)∗
ef =

[
I − Sxsxs

w1wT
1

wT
1 Sxsxs

w1

]
Sx0y0

, (6.108)

the difference between S(2)∗
ef and S(2)

ef becomes

�S(2)
ef =

[
See − γeSxsxs

1 + γe

]
w1q∗T

1 . (6.109)

Impact on subsequent pairs of weight and loading vectors. After deflating
the cross-covariance matrix, w2, q2, p2 and q́2 can be computed. Different from
w1 and q1, the computation of w2 and q2 is affected by e, as they are the dominant
left and right singular vectors of S(2)

ef (Kaspar and Ray 1993), which follows from
(6.109). In summary, each of the subsequent sets of LVs differs in the presence
of the additional error term.
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Impact upon regression model. Theorem 10.4.15 highlights that the identified
parameter matrix is equal to the OLS estimate if all nx LV sets are included. The
asymptotic OLS estimate is given by

B = S−1
x0x0

Sx0y0
(6.110)

and for uncorrupted input variables

B∗ = S−1
xsxs

Sx0y0
. (6.111)

The estimation bias is therefore

�B = B∗ − B
�B =

[
S−1

xsxs
− [Sxsxs

+ See

]−1
]

Sx0y0
(6.112)

�B = S−1
xsxs

[
S−1

xsxs
+ S−1

ee

]−1 B∗.

The above relationship relies on the application of the matrix-inversion lemma,
i.e.
[
Sxsxs

+ See

]−1 = S−1
xsxs

− S−1
xsxs

[
S−1

xsxs
− S−1

ee

]−1 S−1
xsxs

.
The analysis in (6.102) to (6.109) also applies for the MRPLS. However, the

MRPLS cost function for determining the weight vectors is equal to(
w1
q1

)
= arg max

w,q
wT Sx0y0

q − 1
2λ
(
wT
[
Sxsxs

+ See

]
w − 1

)− 1
2λ
(
qT q − 1

)
.

(6.113)

Consequently, the additional term wT
1 Seew1 will affect the resultant first set of

weight vectors. Equations (6.114) and (6.115) show this in more detail[
Sxsxs

+ See

]−1 Sx0y0
Sy0x0

w1 = λ2w1 (6.114)

and

Sy0x0

[
Sxsxs

+ See

]−1 Sx0y0
q1 = λ2q1. (6.115)

It is possible to substitute the computation of the weight vectors into (6.102) to
(6.109) to examine the impact of e upon the loading vectors and the deflation
procedure, which is the subject of a project in the tutorial session of this chapter
(Question 4). Different from PLS, however, the loading vectors are computed as
follows

pi = [Sxsxs
+ See

]
wi q́i = S(i)

f ewi (6.116)

and the deflation procedure reduces to

S(i+1)
ef = [I − [Sxsxs

+ See

]
wiw

T
i

]
S(i)

ef . (6.117)
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6.2.4 Error-in-variable estimate for known See

Assuming that the error covariance matrices are known, this would allow deter-
mining the covariance matrix of the uncorrupted input variables

Sx0x0
− See = Sxsxs

. (6.118)

Applying the PLS and MRPLS algorithms with respect to the error correction
of Sx0x0

using (6.118) and Sx0y0
produces now an unbiased and, therefore, a

consistent estimation of the weight and loading vectors. For process monitoring,
it is important to note that the t-score variables can be obtained in the same way
as discussed in Subsections 3.1.1 and 3.1.2. The construction of scatter diagrams,
the Hotelling’s T 2 and the two Q statistics for fault detection also follow from
the discussion in Subsection 3.1.1. Moreover, the presence of an error term does
not affect the application of the fault diagnosis methods discussed in Subsection
3.2. The geometric effect of the inclusion of the error vector e follows from
the analogy of the data structures for MLPCA and EIV PLS, which is briefly
discussed next.

Analogy between PLS error-in-variable and MLPCA data structures. Com-
pared to the PCA model subspace, the EIV PLS algorithm also allows the
definition of a model subspace when combining the input and output variables as
one data set, i.e. zT

0 = ( xT
0 yT

0

)
. This model subspace is consistently estimated

after carrying out the error correction of the covariance matrix Sx0x0(
x0
y0

)
=
[P

Q́

]
t +
(

e
f

)
+
(

e
f

)
. (6.119)

To distinguish between the p-loading matrices produced by PCA and PLS, the
loading matrix determined by PLS is denoted by P for the remainder of this
section.

It should be noted that the residuals vectors e and f become zero for n = nx .
Hence, the orientation of this model subspace is asymptotically identical to that
obtained by the loading matrix obtained by the MLPCA, discussed in Subsections
6.1.3 and 6.1.4. The generalized inverse of �T = [PT Q́T

]
is given by

�† = [RT 0
] = [PT P + Q́T Q́

]−1 [PT Q́T
]
. (6.120)

An orthogonal complement for � can be constructed as follows

�⊥ = [WT QT
] [

I −
[ P

Q́

] [
RT 0

]]
. (6.121)
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Figure 6.16 Relationship between the minimum number for ny and the ratio
nx/ny .

6.2.5 Error-in-variable estimate for unknown See

The previous subsection highlighted the analogy between the MLPCA and the
EIV PLS data structures. For unknown error covariance matrices, it is conse-
quently possible to develop a maximum likelihood PLS (MLPLS) algorithm
on the basis of the MLPCA algorithm, discussed in Subsection 6.1.4, pro-
vided that the constraint of (6.46) is not violated. This constraint implies that
n2

y + ny ≥ 2
(
ny + nx

)
. This gives rise to the following relationship between the

minimum number of required output variables and the ratio nx/ny

ny ≥ 1 + 2
nx

ny

(6.122)

which Figure 6.16 graphically analyzes. Different from MLPCA, PLS is a regres-
sion technique, which allows simplifying the objective function in (6.49) by
decomposing the covariance matrix of the output variables, Sy0y0

Sy0y0
= B [Sx0x0

− See

]BT + Sff = Sy0x0
B + Sff. (6.123)

This simplification follows from (6.95) and (6.99). This, in turn, implies that the
following constraint can be formulated

Sy0y0
− Sff − Sy0x0

B = 0. (6.124)

On the other hand, the relationship of the extended covariance matrix of the
variable sets y0 and x0 may be described as follows[

Sx0x0
Sx0y0

Sy0x0
Sy0y0

]
−
[

See 0
0 Sff

]
=
[

Sxsxs
Sxsxs

B
BT Sxsxs

BT Sxsxs
B
]

. (6.125)

The rank of the above matrix is equal to nx , which results from the fact that[
Sxsxs

Sxsxs
B

BT Sxsxs
BT Sxsxs

B
]

=
[

I
BT

]
Sxsxs

[
I B] = Szszs

, (6.126)
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where zT
s = ( xT

s yT
s

)
. Consequently, the eigendecomposition of Szszs

yields
a total of nx nonzero eigenvalues and the associated nx eigenvectors that span
the same column space as �T = [ PT Q́T

]
. Equation (6.121) defines the

orthogonal complement of the estimated model subspace. A correct estimate of
See and Sff satisfies the constraint in (6.124) and yields ny zero eigenvalues for
Szszs

.

Szszs
=
[

Sxsxs
Sxsxs

B
BT Sxsxs

BT Sxsxs
B
]

= [P Pd

] [� 0
0 0

] [
PT

PT
d

]
. (6.127)

The column space of P defines the model subspace, whilst the column space of
Pd defines the complementary residual subspace. The orthogonal complement to
the model subspace � is consequently given by

�⊥ = PT
d . (6.128)

In analogy to MLPCA and for conveniently presenting the determination of the
residuals, the application of this orthogonal complement yields the following
linear combinations of the error vector gT = ( eT fT

)
�⊥z0 = �⊥g = g, (6.129)

which has the following error covariance matrix

E
{
ggT
} = �⊥

[
See 0
0 Sff

]
�⊥T

. (6.130)

Given that the two error vectors are statistically independent, that is, E
{
efT
} = 0,

(6.129) and (6.130) can be reformulated as follows

�⊥ = PT
d = [�⊥

x0
�⊥

y0

]
. (6.131)

where �⊥
x0

∈ R
ny×nx and �⊥

y0
∈ R

ny×ny . Applying the block matrices �⊥
x0

and
�⊥

y0
, the scaled residuals for the input and output variables are then

�⊥
x0

x0 = �⊥
x0

e = e �⊥
y0

y0 = �⊥
y0

f = f. (6.132)

It follows from the assumption of statistical independence between the error
vectors that the covariance matrices of e and f are

See = �⊥
x0

See�
⊥T

x0
Sff = �⊥

y0
Sff�

⊥T

y0
. (6.133)
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The utilization of (6.131) and (6.133) now allows determining the value of
the maximum likelihood objective function of (6.45)[

See

Sff

]
= arg min

See,Sff

K ln
∣∣∣�⊥

x0
See�

⊥T

xo
+ �⊥

y0
Sff�

⊥T

yo

∣∣∣+
K∑

k=1

eT (k)�⊥
x0

See�
⊥T

x0
e(k) +

K∑
k=1

fT (k)�⊥
y0

Sff�
⊥T

y0
f(k).

(6.134)

Including the constraint in (6.124) and a second constraint based on the last ny

eigenvalues of Szszs
, the objective function for estimating See and Sff becomes[̂

See

Ŝff

]
= arg min

See,Sff

a1K ln

∣∣∣∣�̂⊥
x0

See�̂
⊥T

vo
+ �̂

⊥
y0

Sff�̂
⊥T

yo

∣∣∣∣+
K∑

k=1

eT (k)�̂
⊥
x0

See�̂
⊥T

x0
e(k) +

K∑
k=1

fT (k)�̂
⊥
y0

Sff�̂
⊥T

y0
f(k) + (6.135)

a2

∥∥̂Sy0y0
− Sff − Ŝy0x0

B̂∥∥+

a3

nx+ny∑
i=nx+1

λ̂i .

Note that the above MLPLS objective function relies on estimates of Sx0x0
, Sy0y0

and Sx0y0
and is similar to that of (6.49). The steps of the iterative MLPLS

algorithms that rely on the developed equations above are now listed below.

1. Set diagonal elements of initial error covariance matrices, Ŝee0
and Ŝff0

to
be 0.0001 times the diagonal elements of Ŝx0x0

and Ŝy0y0
, respectively.

2. Compute the initial EIV estimate of B, B̂0 = [̂Sx0x0
− Ŝee0

]−1
Ŝx0y0

.

3. Carry out eigendecomposition of extended covariance matrix in (6.125)[̂
Sx0x0

Ŝx0y0

Ŝy0x0
Ŝy0y0

]
−
[̂

See0
0

0 Ŝff0

]
= [̂P0 P̂d0

] [�̂0 0
0 �̂d0

] [
P̂T

0
P̂T

d0

]
.

4. Extract orthogonal complements of (6.131),
[
�̂

⊥
x0

]
0

and
[
�̂

⊥
y0

]
0
.
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5. Use estimates for Ŝee0
, Ŝff0

,
[
�̂

⊥
x0

]
0
,
[
�̂

⊥
y0

]
0

and �̂d0
to work out initial

value of the objective function in Equation (6.135), J0.

6. Update the error covariance matrices, Ŝeei+1
= Ŝeei

+ �Seei
and

Ŝffi+1
= Ŝffi

+ �Sffi
.

7. Compute EIV estimate of B, B̂i+1 =
[̂
Sx0x0

− Ŝeei+1

]−1
Ŝx0y0

.

8. carry out eigendecomposition of extended covariance matrix in (6.125)[̂
Sx0x0

Ŝx0y0

Ŝy0x0
Ŝy0y0

]
−
[

Ŝeei+1
0

0 Ŝffi+1

]
=
[
P̂i+1 P̂di+1

]
[
�̂i+1 0

0 �̂di+1

] [
P̂T

i+1
P̂T

di+1

]
.

9. extract orthogonal complements of (6.131),
[
�̂

⊥
v0

]
i+1

and
[
�̂

⊥
y0

]
i+1

.

10. use estimates for Ŝeei+1
, Ŝffi+1

,
[
�̂

⊥
x0

]
i+1

,
[
�̂

⊥
y0

]
i+1

and �̂di+1
to work out

(i + 1)th value of the objective function in (6.135), Ji+1.

11. check for convergence7, if
∣∣Ji+1 − Ji

∣∣ < 10−12 terminate, else go to
Step 6.

It is interesting to compare the MLPLS with the MLPCA algorithm, discussed
in Subsection 6.1.4. The main differences between both algorithms are:

• the MLPLS algorithm does not require the computation of a Cholesky
decomposition of the diagonal matrix Ŝggi

, which is of dimension nx + ny ;

• the MLPLS algorithm relies on the inverse of the symmetric positive def-
inite matrix Ŝx0x0

− Ŝeei
of dimension nx ;

• the MLPCA algorithm requires the inverse of a diagonal matrix Li of
dimension nx + ny ;

• the MLPCA and MLPLS algorithms require a subsequent application of the
constrained NIPALS or PLS algorithms, respectively, in order to compute
the sets of latent variables;

• the MLPLS algorithm produces an EIV estimate of the regression matrix
B̂ together with estimates of the error covariance matrices Ŝee and Ŝff; and

• the MLPCA algorithm produces an estimate of the PCA model subspace
and an estimate of the error covariance matrix Ŝgg .

7 The value of 10−12 is a possible suggestion; practically, smaller thresholds can be selected
without a substantial loss of accuracy.
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6.2.6 Application to a distillation process – revisited

This subsection applies the MLPLS algorithm to determine an EIV model for the
reference data of the distillation process. The MRPLS model, estimated in Section
5.2, relied on the data structure in (2.51) that did not include an error term for
the input variables. Selecting the parameters for the MLPLS objective function
in (6.135), a1, a2 and a3, to be 0.05, 50 and 100, respectively, (6.136a) shows
the estimate error variances of the input variables and (6.136b) gives estimates
of the error variance of the five output variables.

diag
{̂
See

} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0514
0.0375
0.0328
0.0716
0.0547
0.0643
0.0833
0.0487

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.136a)

diag
{̂
Sff

} =

⎛⎜⎜⎜⎝
0.1221
0.2027
0.7147
0.1149
0.0496

⎞⎟⎟⎟⎠ . (6.136b)

Comparing the error variance for y0 obtained by the PLS/MRPLS model in
Table 5.3 with the EIV estimate in (6.136b), the inclusion of e for x0 gives rise
to a more accurate prediction of the output variables. Moreover, the estimated
error variances of the input variables as well as output variables y1, y4 and y5 are
around 0.05 to 0.1 with the exception of x2 and x3 (column overhead pressure
and tray 2 temperature), which have slightly smaller error variances. In contrast
the error variance of the y2 and y3 concentration is significant, particularly the
C5 in C4 one.

Removing the impact of the error terms from the covariance matrices now
allows estimating the LV sets. Equations (6.137) and (6.138) show the estimated
r-weight and q-loading matrices. In a similar fashion to the MRPLS estimates
for the r-weight matrix in (5.6), the EIV estimate outlines that the temperature of
the fresh feed and the reboiler temperature do not significantly contribute to the
computation of the four t-score variables. Moreover, the dominant contributions
for computing each of the individual score variables are:

• the fresh feed level for the first t-score variable;

• temperature readings of tray 31 and 2 for the second t-score variable;

• tray 14 temperature and the fresh feed level for the third t-score variable;
and
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• the reboiler steam flow, the tray 31 and the fresh feed level for the fourth
t-score variable.

In (6.137), these and other more minor contributing variables to each of the
t-score variables are marked in bold.

R̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3314 −0.7117 2.5391 −1.3881
−0.2922 −0.8224 −1.1530 0.2366

0.3071 0.9939 1.2286 −1.0681
−0.1198 −0.5201 −0.6048 0.7035
−0.4176 −0.7674 1.3090 −2.1575

0.5900 1.2467 −1.4786 1.8131
1.3535 0.4461 −1.9038 1.6360

−0.0858 −0.2066 −0.2777 −0.7939

1.5328 0.4058 2.3383 −1.0347
0.4846 1.2736 −1.3067 1.9369

−0.5008 −0.1896 1.3403 −2.3023
0.3488 0.3577 0.1126 0.1422
0.8293 0.1229 2.1785 −1.3282

−1.5507 −0.7475 −1.3582 1.1693
−1.4056 −0.4250 −2.5927 1.3318

1.1138 −0.4765 0.3223 −0.4025

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.137)

From the parameters of the q-loading matrix, the individual t-score variables
contribute to the prediction of the output variables as follows:

• t-score variable 1 has the most significant contribution to the flow rates of
both output streams and to a lesser extend the C3 in C4 concentration in
the top draw;

• the most dominant contribution of the second and third t-score variable is
to the prediction of the C4 in C5 and the C3 in C4 concentrations; and

• t-score variable 4 is a dominant contributor of the C5 in C4 concentration.

Q̂ =

⎡⎢⎢⎢⎣
0.8358 −0.3595 −0.0296 −0.0486
0.5521 0.5714 −0.3807 0.0795
0.2456 0.1172 0.1942 0.4168
0.8121 −0.3820 0.1279 −0.0692
0.3088 0.8626 0.2701 −0.1602

⎤⎥⎥⎥⎦ . (6.138)

The next questions relate to the selection of the number of source signals
that the input and output variables commonly share and what the contribution
of each set of latent variables explains to the covariance and cross-covariance
matrices. An answer to both of these questions lies in evaluating (2.102) to
(2.104). Figure 6.17 plots the ratios produced by these equations for k = 1 . . . 8
for the maximum likelihood and the standard MRPLS algorithms. It is important
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using extracted latent variable

sets (left plot → MRPLS model; right plot → maximum likelihood MRPLS model).

to note that the maximum likelihood MRPLS algorithm relies on covariance
matrices for which the variance of each error term is subtracted from the estimated
covariance matrices.

This is different for the original MRPLS algorithm, which relies on the esti-
mated covariance and cross-covariance matrices. It is also important to note that
the deflation of the covariance matrices is not required for the computationally
efficient MRPLS algorithm in Table 10.3. However, in order to compute the con-
tribution of each set of latent variables from these matrices, a deflation procedure
after the model building phase was carried out.

Addressing the first question, both plots in Figure 6.17 confirm that subtract-
ing the contribution of the first four t-score variables maximally exhausted the
squared sum of the elements of the cross-covariance matrix. For the maximum
likelihood MRPLS model, the squared sum of the elements of this matrix are very
close to zero, implying that there is no common cause variation left between both
variable sets that requires the inclusion of a fifth source variable. The selection
of n = 4 is therefore confirmed.

Different to its maximum likelihood counterpart, there is a remaining value of
about 0.15 for the covariance matrix Ŝ(5)

ff .8 This is not surprising, given that the
error variables are assumed to be uncorrelated to the input variables. The decrease
in the squared sum of the covariance matrix Ŝ(k)

ee is similar for both models. That
these values are slightly smaller for the maximum likelihood MRPLS algorithm
is, again, a result of excluding the estimated variance of the error terms.

Finally, the regression model obtained by the maximum likelihood MRPLS
algorithm for n = 4 can be compared to that computed by the MRPLS one in
Table 5.4. Significant differences between both regression matrices are that the
maximum likelihood MRPLS regression model confirms:

• that column pressure x2, tray 2 temperature x3 and fresh feed temperature
x4 have the most significant impact on the C4 in C5 concentration y5;

• that the reboiler stream flow x5 is mostly affecting the impurities y2 and
y3;

8 After deflating the four sets of latent variables computed by the MRPLS algorithm.
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Table 6.14 Coefficients of regression model for n = 4.

bij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 −0.1877 −1.6272 −0.2610 0.5726 0.1672
j = 2 −0.1849 −0.1091 −0.3110 0.1565 −1.1893
j = 3 0.3211 0.0839 0.0128 −0.2812 1.5184
j = 4 0.0107 −0.0623 0.0813 0.0317 −0.7710
j = 5 −0.0180 −1.3362 −0.8382 0.2808 −0.0935
j = 6 0.0386 1.7358 0.7621 −0.3473 0.5738
j = 7 1.0484 1.8321 0.7037 0.4777 0.0422
j = 8 −0.0858 −0.0892 −0.4392 0.1557 −0.1737

A row represents the coefficients for the prediction of the output variables using the j th input
variable and the coefficients in a column are associated with the prediction of the ith output variable
using the input variables.

• that the flow rate of the fresh feed x7 impacts not only the flow rate of the
output stream but also C3 in C4 and the C5 in C4 concentrations; and

• that the reboiler temperature mainly affects the C5 in C4 concentration y3.

Both regression matrices, however, suggest that the tray 31 temperature x6 has
an affect on the concentrations of the top and bottom draw.

The information that can be extracted from the EIV estimate of the regression
matrix describes the underlying causal relationships between the input and output
variables correctly. It is important to recall that the static MRPLS model does
not represent a causal dynamic mechanistic model that describes the physical
and chemical relationships between the process variables. However, the steady
state relationships that can be extracted from the regression matrix in Table 6.14
describe a correct relationship between the input and output variables.

6.3 Robust model estimation

Besides process monitoring, all branches of data chemometrics and analytical
chemistry, for example, in industrial and academic research deal with large
amounts of data, which can be subjected to errors, including bias, for example
resulting from the poor calibration of measurement devices, and sporadic outliers,
that can arise for any number of reasons. The first type is usually related to small
persistent residual parts (offset) during the measurements being taken, whilst the
second one is associated with large residuals and most of the time affect only
single observations.

Detecting a bias is straightforward by carefully inspecting the recorded data
and applying a priori knowledge and experience. The same cannot be said for
outliers, as they infrequently arise, may easily be overlooked in large data sets and
can have a profound and undesired impact upon the accuracy of the estimated
parameters, for example the estimation of the data covariance matrix or the
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Figure 6.18 Illustration of the three different types of outliers in a data space.

control limits for univariate monitoring statistics. In general, outliers can be
divided into three categories (Møller et al. 2005):

1. orthogonal outliers that have a large residual part but a small variance
part;

2. ‘bad’ leverage points (large variance and residual parts); and

3. ‘good’ leverage points (large variance but small residual part).

Figure 6.18 gives a graphical account of each type of outlier for three process
variables that can be described, according to (2.2), by two source signals and a
superimposed error vector. Whilst the normal or ‘sound’ samples locate in the
vicinity of the model subspace, the outliers have large departures either from
the model subspace (large residuals g1 and g2 for the first and second outliers)
and/or the cluster of normal samples. A robust estimation of parameters entails
the removal or reduction of the impact of outliers upon the estimation and the aim
of this section is to summarize research work, including recent trends, reported
in the literature.

It should be noted that outliers in recorded reference data are identifiable
using the covariance matrix Sz0z0

and the error covariance matrix Sgg if known a
priori . As Figure 6.18 illustrates that outliers 1 and 2 possess a large residual part
by definition, whilst outliers 2 and 3 are associated with a large variance part. In
case the covariance matrices are available it is sufficient to evaluate a statistical
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test over the reference samples to determine whether a particular sample is an
outlier or not. However, these matrices, particularly the error covariance matrix,
are usually unknown and need to be estimated from the reference set. Over the
past few decades, a plethora of methods have been proposed to produce robust
estimates for parameters, such as variable mean and covariance matrix.

The discussion of robust methods can be roughly classified into two cate-
gories:

• accept all the data points and try to find a robust estimator which reduces
the impact of outliers; and

• maintain the traditional estimators and try to eliminate the outliers (trim-
ming) before the estimation by using some cluster property.

The literature regards the first approach as robust regression or robust parameter
estimation , whilst the second one can be categorized as the trimming approach .
The next two subsections summarize associated methods for both of these
approaches. The aim of this subsection is to give a brief overview of existing
methods. A more detailed and specific treatment of this topic is available in
references Daszykowski (2007); Liang and Kvalheim (1996) and Møller et al.
(2005) for example.

6.3.1 Robust parameter estimation

Robust regression methods can be further divided into (i) robust estimates of
the moments, (ii) projection pursuit, (iii) M estimators and (iv) least median of
squares.

6.3.1.1 Robust estimation of the moments

The definition of processes the produce variables that follow a Gaussian dis-
tribution require the estimation of the data location (mean vector) and spread
(covariance matrix). The mean vector can be viewed as a least squares estimator

min
z̄

K∑
k=1

∥∥z(k) − z̄
∥∥2

(6.139)

which includes squared summation elements and is, accordingly, sensitive to the
presence of outliers. A robust alternative is the use of the median of the samples

min
z̄

K∑
k=1

∥∥z(k) − z̄
∥∥ (6.140)
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or the Stahel-Donoho location estimator (Donoho 1982; Stahel 1981)

̂̄z =

K∑
i=1

dkz(k)

K∑
k=1

dk

(6.141)

where dk = d (r (z(k), Z)) is a weighting function, such as the iteratively re-
weighted least squares function (Phillips and Eyring 1983), and r (z(k), Z) is
defined as follows

r (z(k), Z) = sup∥∥δ∥∥=1

{∣∣δT z(k) − μ̃
(
δT Z
) ∣∣

σ̃
(
δT Z
) }

. (6.142)

Here, μ̃(δT Z) and σ̃ (δT Z) are the median and the median absolute deviation of
the projections of the samples stored in Z onto δ, respectively, and | · | is the
absolute value. For PLS, Kruger et al. (2008a,b,c) proposed an iterative algorithm
on the basis of (6.142) to discriminate outliers from sound observation.

The variance, or the second order moments of a variable, is also calculated
as the sum of squares, and therefore affected by outliers. The literature proposed
a number of methods for providing a robust estimation of variance, where the
median absolute deviation (MAD) and the more efficient Sn and Qn estimators
are among the most popular ones (Hampel 1974; Rousseeuw and Croux 1993)

MAD σ̂ = b · medj

(|z(j) − medk (z(k)) |)
Sn σ̂ = c · medj

(
medk (|z(j) − z(k)|) ) (6.143)

Qn σ̂ = d · med
(
z(j) − z(k); j < k|)

with b = 1.4826, c = 1.1926, d = 2.219 and med abbreviates median. A detailed
discussion of these estimators is given in Rousseeuw and Croux (1993). With the
availability of robust estimates for mean and variance, a robust pretreatment such
as of the recorded data, such as mean centering and scaling, can be carried out.
A direct estimation of the covariance matrix can be determined as the Stahel-
Donoho scale estimator

Ŝz0z0
=

K∑
k=1

dk

(
z(k) −̂̄z) (z(k) −̂̄z)T

K∑
k=1

dk

. (6.144)

The mean vector can be obtained using (6.141).
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6.3.1.2 Projection pursuit

The projection pursuit approach substitutes a traditional objective function by a
robust one (Daszykowski 2007). In the case of PCA, Section 2.1 pointed out that
the associated objective function involves the maximization of the variance of
the ith score variable, ti . Equation (6.143) summarizes robust estimates for the
variable variance and the projection pursuit can be seen as a simple regression-
based approach to obtain a robust objective function, for example

PI
(
ti
) = σ̂ (ti). (6.145)

Here, PI stands for projection index and represents the robust objective functions.
As examples, various objective functions for the data mean σ̂ are summarized
in (6.143).

6.3.1.3 M-estimator

This is a maximum likelihood estimator for minimizing the residuals, for example
the residuals associated with the j th process variable of a PCA model gj (k)

min
θ

K∑
k=1

ρ
(
gj (k), θ

)
. (6.146)

for which a variety of estimators have been proposed, including

ρLθ
(gj (k), θ) = |gj (k)|θ

θ

ρFAIR(gj (k), θ) = θ2
[ |gj (k)|

θ
− log

(
1 + |gj (k)|

θ

)]
ρHUBER(gj (k), θ) =

{ 1
2g2

j (k), if |gj (k)| ≤ θ

θ(|gj (k)| − θ
2 ), if |gj (k)| > θ

(6.147)

ρCAUCHY(gj (k), θ) = θ2

2
log

(
1 +
(

gj (k)

θ

)2
)

ρWELSCH(gj (k), θ) = θ2

2

{
1 − exp

[
−
(

gj (k)

θ

)2
]}

.

The parameter θ serves as a tuning parameter.

6.3.1.4 Least median of squares – LMS

This is one of the most popular methods and was developed by Rousseeuw (1984)
for robustly estimating variance. This technique replaces the sum of the squared
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residuals with the robust median

min med
(
g2

i (k)
)
. (6.148)

In other words, the estimator is the smallest value for the median of the squared
residuals computed over the complete reference data set. In contrast to the
M-estimator, the LMS estimator does not present a weighted least squares prob-
lem and the determination of a solution can be computationally demanding.

6.3.2 Trimming approaches

Trimming approaches exclude some extreme samples that are considered outliers
for determining a robust estimate. Associated methods that the research litera-
ture has proposed include the trimmed least squares, multivariate trimming, the
minimum volume estimator and the minimum covariance determinant estimator.

6.3.2.1 Least trimmed squares – LTS

This is the simplest approach and relates to the classification of samples based on
their residue magnitude (Rousseeuw 1984). Those samples producing the largest
residuals are considered outliers and, accordingly, excluded from the computation
of the estimate. The LTS method gives rise to the solution of the following
minimization problem

min
θ

K−∑
k=1

ρ
(
g̃j (k), θ

)
(6.149)

where g̃j (k) is referred to as an ordered residual that is ranked according to the
magnitude of the residual (crescent magnitude). Those with the largest magnitude
are removed so that K− ≤ K samples remain. With regards to Figure 6.18, it
should be noted that the LTS method only tackles samples that produce orthogonal
or bad leverage outliers.

6.3.2.2 Multivariate trimming – MVT

Instead of the use of residuals, the MVT technique relies on the distance between
the data points to produce a robust estimate (Gnanadesikan and Kettenring 1972;
Maronna 1976). Assuming the data follow a Gaussian distribution function, the
MVT method iteratively discards extreme values which, in turn, generates a PDF
that shows significant departures from the theoretical one.

6.3.2.3 Minimum volume estimator – MVE

This approach is similar to the MVT technique in that it assumes that the data can
be described by a predefined shape. More precisely, the MVE method determines
a multivariate ellipsoid that hugs at least 50% of the samples. Points that fall
outside this ellipsoid are not considered for estimating a model.
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6.3.2.4 Minimum covariance determinant estimator – MCD

The MCD method is similar in approach to the MVE and MVT techniques
in that it relates to the assumed cluster property of uncorrupted observations
(Gnanadesikan and Kettenring 1972; Maronna 1976). Utilizing a cross-validation
procedure, this technique is able to give a robust estimation of the data location
and dispersion. In a univariate case, the MCD approach reduces to a LTS esti-
mator where each data point receives a weight of one if it belongs to the robust
confidence interval and zero otherwise. Rocke and Woodruff (1996); Rousseeuw
and Driessen (1999) pointed out that MCD is theoretically superior to MVT, and
Davies (1992) showed that MCD possesses better statistical properties compared
to MVE.

6.4 Small sample sets

Reference data that include relatively few samples compared to the number of
process variables present challenges in determining confidence limits/regions for
statistical inference. Numerous textbooks on statistics outline that the confidence
limits, determining the acceptance region for estimating parameters or hypothesis
tests, widens with a reduction in the size of the reference set. This, in turn, can
have a profound and undesirable effect upon the number of Type I and II errors.

As an example, the confidence interval for estimating the variable mean for
a particular process variable z is given by

̂̄z − az̄ ≤ z̄ ≤ ̂̄z + az̄. (6.150)

The true mean value, z̄ lies under the assumption that E{(z − z̄)2} = σ 2 is known
within this confidence interval, limited by the parameter az̄, which is given by

az̄ = cσ√
K

. (6.151)

Here, c defines the confidence interval for a zero mean Gaussian distribution
of unit variance, φ(·), and is given by 1 − α = ∫ c

−c
φ(u)du. For example, sig-

nificances of 0.05 and 0.01 require c to be 1.960 and 2.576, respectively. The
relationship in (6.151), however, shows a direct dependence between the length
of the confidence interval for estimating z̄ and the number of samples, K , since
σ and c are constant. Qualitatively, if K is large az̄ will be small and vice versa.

The same problem emerges when determining the upper and lower control
limits for Shewhart charts, and the control limits for the Hotelling’s T 2 and Q

statistics. This section revisits the issue of constructing non-negative quadratic
forms and associated control limits using small reference sets. A non-negative
quadratic form, such as the Hotelling’s T 2 statistic, has the following definition

T 2 = (z −̂̄z)T Ŝ−1
z0z0

(
z −̂̄z) . (6.152)
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Here,

• z ∼ N {z̄, Sz0z0

}
and ̂̄z = 1

K

∑K
k=1 z(k) are a data vector and the estimated

sample mean, respectively; and

• Ŝz0z0
= 1

K−1

∑K
k=1

(
z(k) −̂̄z) (z(k) −̂̄z)T is the estimate of Sz0z0

for a total
of K independent samples.

The estimation of the data covariance matrix Ŝz0z0
follows a Wishart distribution

(Tracey et al. 1992). Under the assumption that the estimation of Sz0z0
is

independent of each z(k), k = {1, 2, . . . , K}, the T 2 statistic follows an
F-distribution

T 2 ∼ nz(K
2 − 1)

K(K − nz)
F(nz, K − nz). (6.153)

Here, the estimates of z̄ and Sz0z0
have the distributions

• ̂̄z ∼ N {z̄, 1
K

Sz0z0

}
; and

• (K − 1)̂Sz0z0
∼ W(K − 1, Sz0z0

),

where W(.) is a Wishart distribution. The often observed high degree of corre-
lation in the recorded variable set, described in Section 1.2 and Chapter 2, is
addressed by defining a reduced set of LVs

t̂ = P̂T z0 t̂ ∈ R
n, P̂ ∈ R

nz×n (6.154)

Chapter 3 showed that n < nz yields two non-negative quadratic forms for PCA,
and n < nx gives rise to three non-negative quadratic forms for PLS. Concen-
trating on PCA, the Hotelling’s T 2 and Q statistics are defined as

T 2 = (z −̂̄z)T P̂�̂
−1

P̂T
(
z −̂̄z) = t̂

T
�̂

−1
t̂ (6.155)

and

Q = (z −̂̄z)T [I − P̂P̂
T
] (

z −̂̄z) , (6.156)

respectively. As before, P̂ and �̂ store estimated dominant n eigenvectors and
eigenvalues of Ŝz0z0

, respectively.

Remark 6.4.1 Assuming that the estimate of � follows a Wishart distribution
and that the samples used to determine this estimate are independent from those
used to estimate P, the Hotelling’s T 2 statistic follows a scaled F-distribution with
n and K − n degrees of freedom, that is K(K − n)T 2 ∼ n(K2 − 1)F (n, K − n).

The above remark relates to the estimation of �

�̂ = 1
K−1

K∑
k=1

t̂(k)̂t
T
(k) = 1

K−1

K∑
k=1

P̂T z0(k)zT
0 (k)̂P = P̂T Ŝz0z0

P̂, (6.157)
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Figure 6.19 Type I error [%] for α = 0.05.

which follows a Wishart distribution if and only if t(k) follow a multivari-
ate Gaussian distribution and P̂ is estimated from a different sample set. If
this assumption is not met, the Hotelling’s T 2 statistic does not follow an
F-distribution. Approximations of the Q statistic have been proposed in Nomikos
and MacGregor (1995).

The following Monte Carlo experiment illustrates the problem of determining
the control limits for non-negative quadratic forms if K is small. This example
is similar to that in Ramaker et al. (2004) and includes fifteen process variables,
three source variables and an error vector

z0(k) = ξ 1s1(k) + ξ 2s2(k) + ξ 3s3(k) + g(k) (6.158)

where ξ 1, ξ 2, and ξ 3 ∈ R
15 are arbitrary unit length vectors and s1(k), s2(k)

and s3(k) ∈ R are statistically independent Gaussian sequences of zero mean and
variances 5, 3 and 1, respectively. The error vector g(k) ∼ N {0, 0.05I}.

From this process, a number of reference sets was simulated, which form
the the basis for determining the Hotelling’s T 2 and Q statistics. To determine
the Type I error for a significance of α, one additional set of 250 test samples
that was not used as a reference set were simulated. The reference sets included
K = 20, 50, 100, 500 and 1000 samples and were simulated a total of 100 times
(Monte Carlo experiment). The control limits were obtained for each experiment
with a significance of α = 0.05. Figure 6.19 shows the results of these Monte
Carlo experiments for a variety of retained components, ranging from 1 to 14.

Given that each point in Figure 6.19 represents the average Type I error, it is
interesting to note that the smallest departure of the T 2 statistic arises for n = 3.
Any other n produced a more significant departure. As expected, the smaller the
size of the reference set, the more pronounced the departure from the theoretical
5%. Whilst this example yielded an up to 4% difference in Type I error for the
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Figure 6.20 Type I error [%] (LOO CV) for α = 0.05.

T 2 statistic and K = 20, a more considerable impact is noticeable for the Q

statistic.
To overcome this issue, Ramaker et al. (2004) proposed the use of leave-

one-out cross validation (LOO CV)9 to determine the score variables and the
mismatch between the original variable, z0, and its projection onto the model
subspace g = z0 − P̂̂t = [I − P̂P̂T

]
z0. More precisely, the kth data sample is

removed from the reference set and the remaining K − 1 samples are used to
estimate P−k . This is followed by a determination of the retained scores and the
residual vector for the kth sample, that is t̂(k) = P̂T

−kz0(k) and g(k) = z0(k) −
P̂−k̂t(k).

The application of LOO CV therefore produces a total of K t-scores and
residual vectors which are then used to determine the covariance matrix Ŝt t and
the control limit for the Q statistic. Comparing Figures 6.19 and 6.20 allows
a direct comparison between the original approach and LOO CV, respectively.
Although the latter technique yielded a significant reduction in the Type I error of
the Q statistic, it did not show any improvement for the Hotelling’s T 2 statistic.
To the contrary, the LOO CV approach produced a very significant increase in
the Type I errors.

Although the work in Ramaker et al. (2004) highlighted that non-negative
squared forms are difficult to establish using small reference sets, it did not
identify a theoretical rationale that explains the unwanted increase in number of
Type I error (Q statistic) and Type II error (Hotelling’s T 2 statistic). Analyzing
Remark 6.4.1, however, reveals that the Hotelling’s T 2 statistic can only follow
an F-distribution when the estimate of St t relies on data that were not used for the
estimation of P. For conventional PCA, however, P̂ and Ŝt t store the eigenvectors
and the eigenvalues of Ŝzz and hence, statistical independence is not guaranteed.

9 The principle of which is discussed in Subsection 2.4.1.
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Moreover, the use of LOO CV produces a total of K different model sub-
spaces and residual subspaces. This, in turn, implies that there is no guarantee
that the estimate of St t follows a Wishart distribution. Despite the fact that this
approach produced a substantial reduction in Type I error for the Q statistic,
the sequence of K residual vectors corresponds, therefore, to a total of K dif-
ferent residual subspaces. A more minor issue is the computational demand to
implement the LOO CV approach.

Next, we discuss an alternative approach that overcomes the problems of the
LOO CV technique. To improve this method, a more rigorous separation of the
data is required to guarantee statistical independence for distribution functions of:

• P̂ and z0 (to estimate St t and T 2
α ); and

• g and (to estimate Qα).

The proposed division produces two independent reference sets

ZT
1 = [z(1) z(2) · · · z(K1)

]
(6.159)

and

ZT
2 = [z(K1 + 1) z(K1 + 2) · · · z(K)

]
(6.160)

of equal length. Next, an estimate of P, P̂1, based on

Ŝ(1)
z0z0

= 1
K1−1

K1∑
k=1

(
z(k) −̂̄z1

) (
z(k) −̂̄z1

)T
(6.161)

is obtained, followed by computing

Ŝ(2)
tt = 1

K−K1−1

K∑
k=K1+1

P̂T
1

(
z(k) −̂̄z1

) (
z(k) −̂̄z1

)T P̂1. (6.162)

The proposed division of the reference data set guarantees that the distribution
functions for P̂1 and Z2 are statistically independent. This, in turn, implies that

̂̄z1 ∼ N (0, 1
K−K2

Sz0z0
) (6.163)

and (
K − K1 − 1

)
Ŝ(2)

tt ∼ W (K − K1 − 1, P̂T
1 Sz0z0

P̂1

)
. (6.164)

Moreover, using this data separation, the score variables now have the following
distribution for new observations that are not included in Z1 and Z2

t = P̂T
1

(
z −̂̄z1

) ∼ N
(

0,
K−K1+1
K−K1

P̂T
1 Sz0z0

P̂1

)
(6.165)
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Figure 6.21 Number of Type I error [%] (two-stage PCA) for a significance of
0.05.

and consequently, the T 2 statistic follows an F-distribution, that is

T 2 = tT Ŝ−1
t t2

t ∼
n
((

K − K1

)2 − 1
)

(
K − K1

) (
K − K1 − n

)F (n, K − K1 − n
)
. (6.166)

Utilizing the same approach to determine the Q̂α statistic, that is, computing
the residual vectors from the reference set Z2 and the estimate of P from Z1,
Figure 6.21 shows, as expected, that the 50% percentile of the Monte Carlo
experiments for α = 0.05. Note that an equal separation of the reference data
set resulted in the determination of only 10 PCs if 20 samples were available.
This, on the other hand, implied that a total of nine discarded PCs could be
analyzed. For small sample sets, including less than 100 samples, an increase
in the Type I error for the Q statistic arose. This can be attributed to the fact
that the distribution function of the Q statistic, used to determine Q̂α , is an
approximation, which requires a larger data set to be accurate.

The main focus of this section, however, is on the T 2 statistic, which the
data division showed to outperform the approach by Ramaker et al. (2004). More
precisely, the 50% percentile is very close to α = 0.05 for any combination of
the number of retained PCs and size of the reference sets.

6.5 Tutorial session

Question 1. Explain why PCA produces a biased estimation of the orientation
of the model and residual subspaces when the error covariance matrix for a set
of process variables, z0, is not of the form Sgg = σgI. What is the impact of a
biased estimation in terms of extracting the source and error variables?
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Question 2. For the application of maximum likelihood PCA, What is the
reason for constraining the maximum number of estimated parameters according
to (6.46)? In case the number of error variances is larger than this maximum
number, discuss ways to estimate the error covariance matrix.

Question 3. Discuss the advantage of using PLS over standard ordinary least
squares in determining a parametric regression model if the input variable set is
highly correlated. What happens if there is a linear dependency among the input
variable set?

Question 4. Explain why OLS, PLS and MRPLS produce a biased estimation
of the parameter regression matrix between the input and output variables if both
variable sets are corrupted by an error term. Explain the impact of this estimation
bias upon the extraction of source signals according to the PLS and MRPLS data
structures in (2.24) and (2.51)?

Question 5. What are outliers and how can they be categorized? What is the
effect of outliers on the determination of PCA and PLS models?

Project 1. Based on a Monte Carlo simulation, use the example described in
(6.53) to (6.55) and alter the magnitude of the individual diagonal elements of
Sgg as well as their differences in value and compare the accuracy of the model
subspace between the MLPCA and the PCA estimates. How does increasing or
reducing the number of samples affect the accuracy?

Project 2. Contrast the stopping rule introduced in Subsection 6.1.6 with
those discussed in Subsection 2.4.1 using the simulation example in (6.53) to
(6.55). For this comparison, change the magnitude of the individual diagonal
elements of Sgg as well as their differences in value. How does increasing or
reducing the number of samples affect the estimate of n?

Project 3. Repeat the Monte Carlo experiment for the data structure
described in (6.87) to (6.89c). Comment on the experimental results in terms
of the accuracy of the OLS estimation for a varying sample size K = 100,
200, 500, 1000 and 2000. Compare the results with the PLS estimation of the
regression matrix for each K by varying the number of retained LV sets n = 1,
2, . . . , 10 and comment on the results obtained. Is there an optimal trade off
between the accuracy of the parameter estimation, model prediction error and
the number of retained sets of LVs for each K?

Project 4. For PCA, study the impact of outliers model using a Monte Carlo
simulation on the basis of the example described in (6.53) to (6.54) by defining
Sgg = σgI, with σ 2

g = 0.05. Inject 1%, 2%, 5%, 10%, 20% and 50% of outliers
into a simulated reference set of K = 200, 500, 1000, 2000 and 5000 samples



FURTHER MODELING ISSUES 239

and comment upon the accuracy of the estimated model and residual subspaces.
Next, use the Stahel-Donoho scale estimator to determine a robust estimation
of the data covariance matrix and examine how the accuracy of estimating the
model and residual subspaces improves when using the robust estimate?

Project 5. Repeat the Monte Carlo simulation described in (6.158) by altering
the error variance σ 2

g , the variances of the source signals σ 2
s1

, σ 2
s2

and σ 2
s3

and the
number of retained LV sets.



7

Monitoring multivariate
time-varying processes

As outlined in the first three chapters, MSPC relies on linear parametric PCA
or PLS models that are time invariant. Such models, however, may become
unrepresentative in describing the variable interrelationships some time after they
were identified. Gallagher et al. (1997) pointed out that most industrial processes
are time-varying and that the monitoring of such processes, therefore, requires the
adaptation of PCA and PLS models to accommodate this behavior. In addition
to the parametric models, the monitoring statistics, including their control limits,
may also have to vary with time, as discussed in Wang et al. (2003). Another
and very important requirement is that the adapted MSPC monitoring model must
still be able to detect abnormal process behavior.

Focussing on PCA, this chapter discusses three techniques that allow an
adaptation of the PCA model, Recursive PCA (RPCA), Moving Window PCA
(MWPCA), and a combination of both. Embedding an adaptive PLS model for
constructing the associated monitoring statistics, however, is a straightforward
extension and is discussed in Section 7.7. The research literature discussed adap-
tive PLS algorithms, for example in Dayal and MacGregor (1997c); Helland et al.
(1991); Qin (1998); Wang et al. (2003). For the non-causal data representation
in (2.2) and the causal ones in (2.24) and (2.51), two properties are of particular
interest:

• the speed of adaptation, describing how fast the monitoring model changes
with new events; and

• the speed of computation, that is the time the algorithm takes to complete
one iteration for model adaptation.

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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The sensitivity issue, that is how sensitive the adaptive MSPC method is in
detecting incipient changes, requires the use of a multiple step ahead application
of the currently updating model. In other words, the updated model is not applied
when the next sample is available but when the next K > 1 sample becomes
available. This includes the application of the adaptive PCA model as well as
the computation of the monitoring statistics and the control limits.

This chapter presents a discussion of the relevant literature on monitoring
time-varying processes, followed in Sections 7.2 and 7.3 by a discussion on
how to adapt PCA models, which also include the adaptation of the univariate
monitoring statistics and their associated control limits. To show the working
of an adaptive MSPC model, Sections 7.3, 7.5 and 7.6 summarize application
studies to a simulation example, data from a simulated industrial process and
recorded data from a furnace process, respectively. Finally, Section 7.8 presents
a tutorial session including small projects and questions to help familiarization
with this material.

7.1 Problem analysis

The literature has proposed two approaches for updating identified models. The
first one is related to a moving window that slides along the data and the other
is a recursive formulation. The principle behind the moving window approach is
well-known. The window progresses along the data as new observations become
available and a new process model is generated by including the newest sample
and excluding the oldest one. On the other hand, recursive techniques update
the model for an ever-increasing data set that includes new samples without
discarding the old ones.

For process monitoring, recursive methods offer efficient computation by
updating the process model using the previous model rather than completely
building it from the original data (Dayal and MacGregor 1997c; Helland
et al. 1991; Li et al. 2000; Qin 1998). Although conceptually simple and
successfully employed for process monitoring (Li et al. 2000), Recursive
Principal Component Aanalysis (RPCA) may be difficult to implement in
practice for the following two reasons:

• the data set on which the model is updated is ever-growing, leading to a
reduction in the speed of adaptation as the data size increases. This issue
is discussed in Wang et al. (2005); and

• RPCA includes older data that become increasingly unrepresentative of the
time-varying process. If a forgetting factor is introduced to down-weight
older samples, the selection of this factor can be difficult without a priori
knowledge of likely fault conditions.

In comparison, the Moving Window Principal Component Analysis
(MWPCA) formulation can overcome some of the above problems by including
a sufficient number of data points in the time-window, from which to build the
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adaptive process model. More precisely, MWPCA allows older samples to be
discarded in favor of newer ones that are more representative of the current
process operation. Furthermore, the use of a constant size of window results in a
constant speed of model adaptation. This, however, may cause a problem when
the window has to cover a large number of samples in order to include sufficient
process variation for modeling and monitoring purposes since the computational
speed of MWPCA then drops significantly. If a smaller window size is attempted
to improve computational efficiency, data within the window may then not
adequately reveal the underlying relationships between the process variables.
An additional danger of a short window is that the resulting model may adapt
to process changes so quickly that abnormal behavior may remain undetected.

To improve computational efficiency without compromising the window
size, a fast moving window PCA scheme has been proposed by Wang et al.
(2005). This scheme relies on the adaptation of the RPCA procedure and
yields an MWPCA algorithm for updating (inclusion of a new sample) and
downdating (removal of the oldest sample). Blending recursive and moving
window techniques has proved beneficial in computing the computation of the
discrete Fourier transform and in least-squares approximations (Aravena 1990;
Fuchs and Donner 1997).

Qin (1998) discussed the integration of a moving window approach into
recursive PLS, whereby the process data are grouped into sub-blocks. Individual
PLS models are then built for each data block. When the window moves along
the blocks, a PLS model for the selected window is calculated using the sub-PLS
models rather than the original sub-block data. The fast MWPCA is intuitively
adapted, as the window slides along the original data sample by sample. The
general computational benefits of the new algorithm are analyzed in terms of
the number of floating point operations required to demonstrate a significantly
increased computational efficiency.

Another important aspect worth considering when monitoring a time-varying
process is how to adapt the control limits as the process moves on. In a similar
fashion to the work in Wang et al (2005, 2003), this chapter uses a K-step-ahead
horizon in the adaptive PCA monitoring procedure. This implies that the adapted
PCA model, including the adapted control limit, is applied after K > 1 samples are
recorded. The advantage of using an older process model for process monitoring
is demonstrated by application to simulated data for fault detection. In order to
simplify the equations in Sections 7.2 and 7.3 the notation ·̂ to denote estimates,
for example those of the correlation matrix or the eigenvalues, is omitted.

7.2 Recursive principal component analysis

This section introduces the working of a recursive PCA algorithm, which requires:

• the adaptation of the data covariance or correlation matrix;

• a recalculation of the eigendecomposition; and

• an adjustment of the control limits.
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The introduction of the RPCA formulation also provides, in parts, an introduction
into MWPCA, as the latter algorithm incorporates some of the steps of RPCA
derived below. The next section then develops the MWPCA approach along
with an adaptation of the control limits and a discussion into suitable methods
for updating the eigendecomposition.

The application study in Chapter 4 showed that using the covariance or cor-
relation matrix makes negligible difference if the process variables have a similar
variance. Similar observations have also been reported in Jackson (2003). If this
is not the case, a scaling is required as the PCA model may otherwise be domi-
nated by a few variables that have a larger variance. This is discussed extensively
in the literature. For example, Section 3.3 in reference Jackson (2003) outlines
that the entries in the correlation matrix does not have units1 whereas the covari-
ance matrix may have different units. The same reference, page 65, makes the
following remark.

Remark 7.2.1 The use of the correlation matrix is so widespread in some
fields of application that many practitioners never use the covariance matrix at
all and may not be aware that this is a viable option in some instances.

Given that it is preferred to use the correlation matrix, its adaptation is
achieved efficiently by adaptively calculating the current correlation matrix from
the previous one and the new observation, as discussed in Li et al. (2000). For
the original data matrix Z ∈ R

K×nz , which includes nz process variables col-
lected until time instant K , the mean and standard deviation are given by z̄
and � = diag{σ1 · · · σnz

}. The original data matrix Z is then scaled to produce
Z̃0 = [Z − 1z̄T

]
�−1, such that each variable now has zero mean and unit vari-

ance. According to (2.2) and Table 2.1, z0 = z − z̄ and the notation˜ results
from the scaling to unit variance. The correlation matrix, Cz0z0

obtained from the
scaled reference data set is accordingly

C1 = 1
K−1 Z̃T

0 Z̃0. (7.1)

Note that the change in subscript from z0z0 to 1 is to distinguish between the
old correlation matrix from the adapted one, C2, when the new sample z(K + 1)

becomes available. The mean value of the augmented data matrix is given by⎡⎢⎢⎢⎢⎢⎢⎣

zT (1)

zT (2)
...

zT (K)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = Z

zT (K + 1)

⎤⎥⎥⎥⎥⎥⎥⎦ (7.2)

1 To be more precise, the unit of the elements of the correlation matrix is 1.
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and can be updated as follows

z̄2 = K
K+1 z̄1 + 1

K+1 z(K + 1). (7.3)

Again, the subscripts 1 and 2 for the mean vector and the standard deviations
are to discriminate between the old and adapted ones. The adapted standard
deviation of the ith process variable is

σ 2
i2

= K−1
K

σ 2
i1

+ �z̄2
i2

+ 1
K

(
zi(K + 1) − z̄i2

)2
(7.4)

with �z̄2 = z̄2 − z̄1. Given that �2 = diag{σ12
· · · σnZ2

}, the centering and scaling
of the new sample, z(K + 1), is

z̃0(K + 1) = �−1
2

(
z(K + 1) − z̄2

)
. (7.5)

Utilizing �z̄2, �2, �1, z̃0(K + 1) and the old correlation matrix C1, the
updated correlation matrix C2 is given by

C2 =K−1
K

�−1
2 �1C1�1�

−1
2 +�−1

2 �z̄2�z̄T
2 �−1

2 + 1
K

z̃0(K+1)̃zT
0 (K+1). (7.6)

The eigendecomposition of C2 then provides the required new PCA model.

7.3 Moving window principal component analysis

On the basis of the adaptation procedure for RPCA, it is now shown how to
derive an efficient adaptation of C1 involving an updating stage, as for RPCA,
and a downdating stage for removing the contribution of the oldest sample. This
adaptation requires a three step procedure outlined in the next subsection. Then,
Subsection 7.3.2 shows that the up- and downdating of C1 is numerically effi-
cient for large window sizes. Subsection 7.3.3 then introduces a K-step-ahead
application of the adapted MWPCA model to improve the sensitivity of the on-
line monitoring scheme. The adaptation of the control limits and the monitoring
charts is discussed in Subsections 7.3.4 and 7.3.5, respectively. Finally, Subsec-
tion 7.3.6 provides a discussion concerning the required minimum size for the
moving window.

7.3.1 Adapting the data correlation matrix

RPCA updates C1 by incorporating the new sample (updating). A conventional
moving window approach operates by first discarding the oldest sample (down-
dating) from the model and then adding the new sample (updating). Figure 7.1
shows details of this two-step procedure for a window size K, with k being
a sample index. MWPCA is based on this up- and downdating, but incorpo-
rates the adaptation developed for RPCA (Li et al. 2000). The three matrices in
Figure 7.1 represent the data in the previous window (Matrix I), the result of
removing the oldest sample z(k) (Matrix II), and the current window of selected
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Figure 7.1 Two-step adaptation to construct new data window.

data (Matrix III) produced by adding the new sample z(k + K) to Matrix II. Next,
the adaptations of the mean vectors, the standard deviations and the correlation
matrices for Matrix II and III are determined.

Step 1: Matrix I to Matrix II

The downdating of the effect of removing the oldest sample from Matrix I can
be computed in a similar way to that shown in (7.3).

z̄∗ = 1
K−1

(Kz̄k − z (k)
)
. (7.7)

Equation (7.8) describes how to downdate the impact of z(k) upon the variable
mean

�z̄∗ = z̄k − z̄∗. (7.8)

Using (7.7) and (7.8) the variance of the ith process variable becomes

σ ∗2

i = K−1
K−2σ 2

ik
− K−1

K−2�z̄∗2

i − 1
K−2

(
zi(k) − z̄ik

)2
(7.9)

and (7.10) stores the standard deviations of the nz process variables

�∗ = diag
{
σ ∗

1 · · · σ ∗
nz

}
. (7.10)

Finally, the impact of recursively downdating z(k) from Ck follows from the
above equations. For simplicity, the matrix C̃ is now introduced to compute C∗

C̃ = K−2
K−1�−1

k �∗C∗�∗�−1
k (7.11)

which can be further divided into

C̃ = Ck − �−1
k �z̄∗�z̄∗T

�−1
k − 1

K−1 z̃0(k)̃zT
0 (k) (7.12)

where

z̃0(k) = �−1
k

(
z(k) − z̄k

)
. (7.13)
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The downdating for the correlation matrix after elimination of the oldest sample,
Matrix II, can now be expressed in (7.14).

C∗ = K−1
K−2�∗−1

�kC̃�k�
∗−1

. (7.14)

Step 2: Matrix II to Matrix III

This step involves the updating of the PCA model by incorporating the new
sample. Based on (7.3) and (7.7) the updated mean vector is

z̄k+1 = 1
K
(
(K − 1) z̄∗ + z(k + K)

)
. (7.15)

The change in the mean vectors are computed from (7.15) and (7.16)

�z̄k+1 = z̄k+1 − z̄∗, (7.16)

and the standard deviation of the ith variable follows from (7.17).

σ 2
ik+1

= K−2
K−1σ ∗2

i + �z̄2
ik+1

− 1
K−1

(
zi(k + K) − z̄ik+1

)2
(7.17)

and (7.18)

�k+1 = diag
{
σ1k+1

· · · σnZk+1

}
. (7.18)

Finally, the scaling of the newest sample, z(k + K), and the updating of the
correlation matrix are described in (7.19)

z̃0(k + K) = �−1
k+1

(
z(k + K) − z̄k+1

)
(7.19)

and (7.20)

Ck+1 = K−2
K−1�−1

k+1�
∗C∗�∗�−1

k+1 + �−1
k+1�z̄k+1�z̄T

k+1�
−1
k+1 +

1
K−1 z̃0(k + K)̃zT

0 (k + K), (7.20)

respectively. Combining Steps 1 and 2 allows deriving Matrix III from Matrix I,
the adapted mean, standard deviation and correlation matrix, which is shown next.

Step 3: Combination of Step 1 and Step 2

Including downdating, (7.7), and updating, (7.15), adapting the mean vector
directly yields

z̄k+1 = z̄k + 1
K (z(k + K) − z(k)) . (7.21)

The adapted standard deviations follow from combining (7.9) and (7.17)

σ 2
ik+1

= σ 2
ik

+ �z̄2
ik+1

− �z̄∗2

i +
(
zi(k + K) − z̄ik+1

)2 − (zi(k) − z̄ik

)2
K − 1

(7.22)
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Table 7.1 Procedure to update correlation matrix for the MWPCA approach.

Step Equation Description

1 z̄∗ = 1
K−1

(Kz̄k − z(k)
)

Mean of Matrix II
2 �z̄∗ = z̄k − z̄∗ Difference between means

3 z̃0(k) = �−1
k

(
z(k) − z̄k

)
Scale the discarded sample

4 C̃ = Ck − �−1
k �z̄∗�z̄∗T

�−1
k

− 1
K−1 z̃0(k)̃zT

0 (k)

Bridge over Matrix I and III

5 z̄k+1 = 1
K ((K − 1) z̄∗ + z(k + K)) Mean of Matrix III

6 �z̄k+1 = z̄k+1 − z̄∗ Difference between means

7 σ 2
ik+1

= σ 2
ik

+ �z̄2
ik+1

− �z̄∗2

i

+
(
zi (k+K)−z̄ik+1

)2−
(
zi (k)−z̄ik

)2

K−1

Standard deviation of
Matrix III

8 �k+1 = diag
{
σ1k+1

· · · σnZk+1

}
Store standard deviations in

Matrix III
9 z̃0(k + K) =

�−1
k+1

(
z(k + K) − z̄k+1

) Scale the new sample

10 Ck+1 = K−2
K−1�−1

k+1�kC̃�k�
−1
k+1

+ �−1
k+1�z̄k+1�z̄T

k+1�
−1
k+1

+ 1
K−1 z0(k + K)z0(k + K)T

Correlation matrix of
Matrix III

where �z̄ik+1
= 1

K
(
zi (k + K) − zi (k)

)
and �z̄∗

i = 1
K−1

(
zi (k) − z̄ik

)
. Substitut-

ing (7.12) and (7.14) into (7.20) produces the adapted correlation matrix of
Matrix III

Ck+1 = �−1
k+1�kC̃�k�

−1
k+1 + �−1

k+1�z̄k+1�z̄T
k+1�

−1
k+1

+ 1
K−1 z̃0(k + K)zT

0 (k + K).
(7.23)

The combination of Steps 1 and 2 constitutes the fast moving window technique,
which is summarized in Table 7.1 for convenience.

The MWPCA technique gains part of its computational efficiency by incor-
porating the efficient update and downdate procedures. This is examined in more
detail in the Subsection 7.3.3. Subsection 7.3.2 discusses computational issues
regarding the adaptation of the eigendecomposition.

7.3.2 Adapting the eigendecomposition

Methods for updating the eigendecomposition of symmetric positive definite
matrices have been extensively studied over the past decades. The following
list includes the most commonly proposed methods for recursively adapting such
matrices:
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• rank one modification (Bunch et al. 1978; Golub 1973);

• inverse iteration (Golub and van Loan 1996; van Huffel and Vandewalle
1991);

• Lanczos tridiagonalization (Cullum and Willoughby 2002; Golub and van
Loan 1996; Paige 1980; Parlett 1980);

• first order perturbation (Champagne 1994; Stewart and Sun 1990; Willink
2008);

• projection-based adaptation (Hall et al. 1998, 2000, 2002); and

• data projection method (Doukopoulos and Moustakides 2008).

Alternative work relies on gradient descent methods (Chatterjee et al. 2000)
which are, however, not as efficient.

The computational efficiency of the listed algorithms can be evaluated by
their number of floating point (flops) operations consumed, which is listed in
Table 7.2. Evaluating the number of flops in terms of the order O (·), that is,
O
(
n3

z

)
is of order n3

z , highlights that the data projection method and the first order
perturbation are the most economic methods. Given that nz > nk , where nk is the
estimated number of source signals for the kth data window, Table 7.2 suggests
that the data projection method is more economic than the first order perturbation
method. It should be noted, however, that the data projection method:

• adapts the eigenvectors but not the eigenvalues; and

• assumes that the number of source signals, nk is constant.

If the eigenvectors are known, the eigenvalues can easily be computed as

λik+1
= pT

ik+1
Ck+1pik+1

. (7.24)

If the number of source signals is assumed constant, the additional calculation
of the eigenvalues renders the first order perturbation method computationally
more economic, since the computation of each adapted eigenvalue is O

(
1/2n

2
z

)
.

In practice, the number of source signals may vary, for example resulting from

Table 7.2 Efficiency of adaptation methods.

Adaptation Method Computational Cost

rank one modification O
(
2n3

z

)
inverse iteration O

(
n3

z

)
Lanczos tridiagonalization O

(
2.5n2

znk

)
first order perturbation O

(
n2

z

)
projection-based O

(
n3

z

)
data projection method O

(
nzn

2
k

)
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throughput or grade changes which result in transients during which this number
of the assumed data model z0 = �s + g can change. Examples of this are avail-
able in Li et al. (2000) and Sections 7.6 and 7.7 below. The assumption for
the first order perturbation method is that the adapted correlation matrix can be
written in the following form

Ck+1 = Ck + μ
[̃
z0(k + 1)̃zT

0 (k + 1) − Ck

]
(7.25)

where μ ∈ R is a small positive value. By selecting μ = 1/K + 1 the above
equation represents an approximation of the correlation matrix, since

Ck+1 ≈ K
K+1Ck + 1

K+1 z̃0(k + 1)̃zT
0 (k + 1)

≈ Ck + 1
K+1 z̃0(k + 1)̃zT

0 (k + 1) − 1
K+1Ck (7.26)

≈ Ck + μ
[̃
z0(k + 1)̃zT

0 (k + 1) − Ck

]
.

On the basis of the above discussion, it follows that:

• an updated and downdated version of the data correlation matrix is available
and hence, the adaptation does not need to be part of the adaptation of the
eigendecomposition;

• the faster first order perturbation and data projection methods are designed
for recursive but not moving window formulations;

• the dominant nk+1 eigenvectors as well as the eigenvalues need to be
adapted;

• the number of retained PCs may change; and

• the algorithm should not be of O
(
n3

z

)
.

Fast methods for adapting the model and residual subspaces rely on orthog-
onal projections, such as Gram-Schmidt orthogonalization (Champagne 1994;
Doukopoulos and Moustakides 2008). Based on an iterative calculation of a QR
decomposition in Golub and van Loan (1996, page 353) the following orthonor-
malization algorithm can be utilized to determine the adapted eigenvectors:

1. select an old basis as initial basis for new model plane, Pk+10
= Pk;

2. find an orthonormal basis, Pk+1i+1
, for the plane spanned by Ck+1Pk+1i

using the modified Gram-Schmidt procedure, for example;

3. check for convergence, i.e. if

∣∣∣∣∥∥∥[PT
k+1i+1

Pk+1i

]∥∥∥2

2
− nk

∣∣∣∣ < ε then termi-

nate else go to Step 2 by setting Pk+1i
= Pk+1i−1

.

This algorithm converges exponentially and proportional to
(
λnk+1

/
λnk+1+1

)nz

(Doukopoulos and Moustakides 2008). Moreover, the computational efficiency
is of O

(
2nzn

2
k

)
as discussed in Golub and van Loan (1996, page 232).
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The underlying assumption of this iterative algorithm is that the number of
source signals, n, is time invariant. In practice, however, this number may vary
as stated above. Knowing that the computational cost is O

(
2nzn

2
k

)
, it is apparent

that any increase in the number of source signals increases the computational
burden quadratically. Applying the following pragmatic approach can account
for a varying n:

1. Select the initial (and complete) set of eigenvectors and eigenvalues from
the first window, for example by applying a divide and conquer algorithm
(Mastronardi et al. 2005).

2. Set counter j = 0.

3. Determine the number of source signals as discussed in Subsection 2.4.1,
for example by applying the VRE or VPC techniques, and store the first
n1 + 1 eigenvectors in an augmented matrix P�

1 = [ P1 pn1+1

]
.

4. Adapt mean, variance, and correlation matrix, z̄k+1, σ 2
ik+1

(i = 1, · · · , nz)

and Ck+1, respectively, as outlined in Section 7.2 (RPCA) or Subsec-
tion 7.3.1 (MWPCA).

5. Utilize the iterative calculation to determine an adapted set for the first
nk + 1 + j eigenvectors, P�

k .

6. Determine nk+1 on the basis of the adapted correlation and eigenvector
matrix, Ck+1 and P�

k .

7. Check if nk+1 is within the range 1, · · · , nk + 1 + j . If this is the case:

(a) select nk+1 as this minimum;

(b) adjust the size of P�
k if nk+1 �= nk , which yields P�

k+1;

(c) set counter j = 0; and

(d) go to Step 8.

If this is not the case:

(a) set j = j + 1;

(b) augment the matrix P�
k = [ P�

k pn1+1+j

]
; and

(c) return to Step 5.

8. Compute the adapted eigenvalues λink+1
, i = 1, · · · , nk+1 using (7.24).

9. When the next sample becomes available, set k = k + 1 and go to Step 4.

The adaptation of the eigendecomposition is therefore:

• of O
(

2nz

(
nk + 1

)2)
if nk+1 ≤ nk; and

• increases to O
(

2nz

(
nk+1 + 1

)2)
if nk+1 > nk .
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The adaptation of the eigenvalues in Step 8 is of O
(

1/2nz

(
nz + 1

)
nk+1

)
. Over-

all, the number of floating point operations therefore is O
(
n2

z

)
. Next, we examine

the computational cost for the proposed moving window adaptation procedure.

7.3.3 Computational analysis of the adaptation procedure

After evaluating the computational complexity for the adaptation of the eigen-
decomposition, this section now compares the adaptation using the up- and
downdating approach with a recalculation of the correlation matrix using all
samples in the new window. The aim of this comparison is to determine the
computational efficiency of this adaptation and involves the numbers of floating
point operations (flops) consumed for both methods. For determining the number
of flops, we assume that:

• the addition and multiplication of two values requires one flop; and

• that factors such as 1
K or 1

K−1 have been determined prior to the adaptation
procedure.

Moreover, the number of flops for products of two vectors and matrix products
that involve one diagonal matrix, e.g. (7.22), are of O

(
n2

z

)
flops and scaling

operations of vectors using diagonal matrices, such as (7.19), are of O
(
nz

)
.

Table 7.3 presents general algebraic expressions for the number of flops
required for updating the correlation matrix in both algorithms. It should be
noted that the recalculation of the MWPCA model is of O

(Kn2
z

)
. In contrast,

fast MWPCA is only of O
(
n2

z

)
. The two algorithms can be compared by plotting

the ratio of flops consumed by a recalculation over those required by the up- and
downdating method. Figure 7.2 shows the results of this comparison for a variety
of configurations, that is, varying window length, K, and number of variables, nz.

Figure 7.2 shows that the computational speed advantage of the fast MWPCA
can exceed 100. The larger the window size, the more significant the advantage.
However, with an increasing number of variables, the computational advantage
is reduced. Using the expressions in Table (7.3), a hypothetical case can be con-
structed to determine when the up- and downdating procedure is more economic.
For a given number of process variables, a window length that is larger than K∗

K∗ ≥ 12
nz + 2

nz + 5
(7.27)

Table 7.3 Number of flops consumed for adapting correlation
matrix.

MWPCA technique Expression

Recomputing correlation matrix Kn2
z + 5Knz + n2

z + 3nz

Using up- and downdating approach 13n2
z + 27nz
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Figure 7.2 Ratio of flops for recalculation of PCA model over up- and down-
dating approach for various K and nz numbers.

results in a computationally faster execution of the introduced up- and downdating
approach. A closer inspection of (7.27) reveals that equality requires the window
length K to be smaller than nz if nz ≥ 10. In order to reveal the underlying
correlation structure within the process variables, however, it is imperative to
guarantee that K � nz. Practically, the proposed up- and downdating method
offers a fast adaptation of the correlation matrix that is of O

(
n2

z

)
. Together with

the adaptation of the eigendecomposition, one adaptation step is therefore of
O
(
n2

z

)
. The required adaptation of the control limits is discussed next.

7.3.4 Adaptation of control limits

Equations (3.5) and (3.16) describe how to compute the control limits for both
non-negative quadratic statistics. Given that the following parameters can vary:

• the number of retained components, nk+1; and

• the discarded eigenvalues, λn+1k+1
, λn+2k+1

, · · · , λnzk+1
,

both control limits may need to be recomputed, as nk+1 may be different to nk and
the eigenvalues may change too. The number of source signals can be computed
by the VRE or VPC criterion for example. The adaptation of the eigendecompo-
sition, however, includes the retained components of the correlation matrix only.
Adapted values for the discarded eigenvalues are therefore not available.

The adaptation of Qα can, alternatively, be carried out by applying (3.29)
to (3.31), as proposed by Wang et al. (2003). This has also been discussed in
Nomikos and MacGregor (1995) for monitoring applications to batch processes.
Equation (3.29) outlines that the parameters required to approximate the control
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limit, Qα = gχ2
α (h) include the first two statistical moments of the Q statistic

g = E
{
Q2
}

2E {Q} h = 2
(E {Q})2

E
{
Q2
} . (7.28)

A moving window adaptation of these are given by:

Q̄k+1 = Q̄k + 1
K�Q−

k+1 (7.29)

to estimate the mean and

σ 2
Qk+1

= σ 2
Qk

+ 1
K(K−1)

(
�Q−

k+1

)2 + 1
K−1

(
�Q−

k+1

(
�Q+

k+1 − 2
))

(7.30)

for the variance. Here

• �Q−
k+1 = Q(k + 1) − Q (k − K + 1); and

• �Q+
k+1 = Q(k + 1) + Q (k − K + 1).

After computing Q̄k+1 and σ 2
Qk+1

, the parameters gk+1 and hk+1 can be calculated

gk+1 =
σ 2

Qk+1

2Q̄k+1
hk+1 = 2

Q̄2
k+1

σ 2
Qk+1

. (7.31)

After developing and evaluating the moving window adaptation, the next
subsection shows how to delay the application of the adapted PCA model.

7.3.5 Process monitoring using an application delay

The literature on adaptive modeling advocates the application of adapted mod-
els for the next available sample before a readaptation is carried out. This has
also been applied in earlier work on adaptive MSPC (Lee and Vanrolleghem
2003; Li et al. 2000; Wang et al. 2003). The adaptation of each variable mean
and variance as well as the correlation matrix, however, may allow incipient
faults to be adapted. This may render such faults undetectable particulary for
small window sizes and gradually developing fault conditions. Increasing the
window size would seem to be a straightforward solution to this problem. Larger
window sizes, however, result in a slower adaptation speed and changes in the
variable interrelationships that the model should adapt may consequently not be
adequately adapted. Therefore, the adaptation using a too large window has the
potential to produce an increased Type I error.

To prevent the adaptation procedure from adapting incipiently developing
faults Wang et al. (2005) proposed the incorporation of a delay for applying
the adapted PCA model. More precisely, the previously adapted PCA model
is not applied to analyze the next recorded sample. Rather, it is used to eval-
uate the sample to be recorded K ≥ 1 time steps later. Figure 7.3 exemplifies
this for an incipient fault described by a ramp. When the (k + 1)th sample
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Figure 7.3 Influence of delayed application for detecting a ramp-type fault.

becomes available, the model which is adapted by including the (k + 1 − K)th
and discarding the (k + 1 − K − K)th samples is used to monitor the process,
rather than the one including the kth and discarding the (k − K)th samples. As
Figure 7.3 illustrates, the older model is more sensitive to this ramp-type fault
since the recent model is likely to have been corrupted by the samples describing
the impact of the ramp fault.

Incorporating the K-step-ahead application of the monitoring model results
in the following construction of the Hotelling’s T 2 statistic

T 2(k + 1) = z̃T
0 (k + 1)Pk−K�−1

k−KPT
k−K̃zT

0 (k + 1). (7.32)

Both �k−K and Pk−K are obtained from the (k − K)th model, while z̃0(k + 1) is
the (k + 1)th sample scaled using the mean and variance for that model, that is,
z̃0(k + 1) = �−1

k−K

(
z(k + 1) − z̄k−K

)
. The Q statistic for this sample is

Q(k + 1) = z̃T
0 (k + 1)

[
I − Pk−KPT

k−K

]
z̃0(k + 1). (7.33)

It should be noted that a one-step-ahead prediction corresponds to K = 1.
Another advantage of the application delay is the removal of samples that
lead to Type I errors for both univariate statistics. Such violating samples
are earmarked and excluded from the adaptation process. This can further
prevent samples describing incipient faults to corrupt the monitoring model.
The increase in sensitivity for detecting incipient fault conditions for K > 1 is
demonstrated in the next three sections.

7.3.6 Minimum window length

This issue relates to the minimum number of samples required to provide a
sufficiently accurate estimate of the data covariance matrix from the data within
the sliding window. Following from the discussion in Section 6.4, if the window
size is small, the variances for estimating the mean and variance/covariance
is significant.

The number of samples required to estimate the variance of a single vari-
able has been extensively discussed in the 1950s and early 1960s (Graybill
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1958; Graybill and Connell 1964; Graybill and Morrison 1960; Greenwood and
Sandomire 1950; Leone et al. 1950; Tate and Klett 1959; Thompson and Endriss
1961). Based on this early work, Gupta and Gupta (1987) derived an algorithmic
expression to determine the required sample size for multivariate data sets.

For a Gaussian distributed variable set, if the variable set is independently
distributed, that is, the covariance matrix is a diagonal matrix, the minimum
number of samples is approximately Kmin = 1 + 2(zα∗/ε)2, where α∗ =
1
2 [1 − (1 − α)

1/nz ], α is the significance, ε is the relative error and zα∗ defines
the confidence interval of a zero mean Gaussian distribution of unity variance.
As an example, to obtain the variance of nz = 20 independently distributed (i.d.)
variables for ε = 0.1 and α = 0.05 requires a total of Kmin = 1821 samples.
Table 2 in Gupta and Gupta (1987) provides a list of required samples for
various configurations of nz, ε and α.

In most practical cases, it cannot be assumed that the covariance matrix
is diagonal, and hence the theoretical analyses in the previous paragraph
are only of academic value. However, utilizing the algorithm developed
in Russell et al. (1985), Gupta and Gupta (1987) showed that writing the
elements of the covariance matrix and its estimate in vector form, that is,
vec{Sz0z0

} = (σ 2
1 σ 2

21 · · · σ 2
nz

)T
and vec{̂Sz0z0

} = (σ̂ 2
1 σ̂ 2

21 · · · σ̂ 2
nz

)T
with σ 2

21 = r12σ1σ2 and σ̂ 2
12 its estimate, allows defining the random vector

Z = √K − 1(vec{̂Sz0z0
} − vec{Sz0z0

}) ∈ R
nz×(nz+1)/2, since a covariance matrix

is symmetric.
The vector Z ∼ N {

0, SZZ

}
, where the elements of SZZ are cov{Zij ,Zkl} =

σihσjl + σilσjk (Muirhead 1982). For a given ε and α and the definition of Z∗ =
ε
√K − 1 ( |σ11| |σ12| · · · |σnznz

| )T , the probability 1 − α can be obtained
through integration of

F(−Z
∗ < Z < Z

∗) =
∫

−Z∗<Z<Z∗

|SZZ|−1/2

(2π)
nz×(nz+1)/4

exp(− 1
2ZT S−1

ZZZ)dZ.

As the limits of the integration depend on the number of samples, the integral
can be evaluated using the algorithm proposed by Russell et al. (1985).

It is important to note, however, that the resultant size of the reference sample
depends on SZZ, which is usually unknown. Despite this, the analysis of the
integral allows the following conclusions to be drawn: (i) an increase in the
number of recorded variables yields a larger size of Z as well and (ii) highly
correlated variables may require a reduced reference set.

These conclusions follow from the discussion in Gupta and Gupta (1987).
Particularly the last point, that a increasing degree of correlation among the
process variables may lead qualitatively to a reduction in the number of samples
required, is of interest. The preceding discussion therefore highlights that window
size does not only depend on the size of the variable set. Given that the variables
of industrial processes are expected to possess a high degree of correlation implies
that window size may not necessarily increase sharply for large variable sets.
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Another, more pragmatic, approach is discussed in Chiang et al. (2001),
which relies on the estimation of the critical value for the Hotelling’s T 2 statistic.
As discussed in Subsection 3.1.2, assuming the data covariance matrix is known,
the Hotelling’s T 2 statistic follows a χ2 distribution and the critical value is
given by χ2

α

(
nz

)
. On the other hand, if the data covariance matrix needs to be

estimated, the Hotelling’s T 2 statistic follows an F-distribution, for which the
critical value can be obtained as shown in (3.5). Tracey et al. (1992) outlined
that the critical value of an F-distribution asymptotically converges to that of a
χ2 distribution, that is:

lim
K→∞

nz

(K2 − 1
)

K (K − nz

)Fα

(
nz,K − nz

)→ χ2
α

(
nz

)
. (7.34)

Defining the relative difference between both critical values

ε =
nz

(
K2−1

)
K(K−nz)

Fα

(
nz,K − nz

)− χ2
α

(
nz

)
χ2

α

(
nz

) (7.35)

which gives rise to

Kmin =
2
√

1 + n2
z − γ

(
nz,Kmin

)− nz

2
(
1 − γ

(
nz,Kmin

)) (7.36)

and can be solved by iteration. Here, γ
(
nz, Kmin

) = (1+ε)χ2
α(nz)/Fα(nz,Kmin−nz).

Table 2.2 in Chiang et al. (2001) lists solutions for various values of nz with
ε and α being 0.1 and 0.05, respectively. The minimum number of required
samples in this table suggests that it should be roughly 10 times the number of
recorded variables. Chiang et al. (2001) highlighted that this pragmatic approach
does not take the correlation among the process variables into account and may
yield a minimum number that is, in fact, too small. More precisely, Section 11.6
in Anderson (2003) describes that confidence limits for eigenvalues and eigen-
vectors depend on K.

As control limits for the Q statistic, however, depend on the discarded eigen-
values, which follows from (3.16), inaccurately estimated discarded eigenvalues
may have a significant and undesired impact upon the computation of Qα . This
implies that the number suggested in (7.36) may be sufficient to determine an
appropriate minimum number for constructing the control limit for the Hotelling’s
T 2 statistic. However, a significantly larger number may be required in order to
prevent erroneous results for computing the control limit of the Q statistic.

The suggested value can therefore be used as a guideline knowing that it
is advisable to opt for a larger Kmin. As the above discussion and the analysis
in Section 6.4 highlight, the number of samples required to construct accurate
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estimates of the data covariance/correlation matrix is still an open issue for the
research community.

7.4 A simulation example

This section studies the delayed application of an adaptive MSPC monitoring
model using a simulated process. The example process is designed to represent
slowly changing behavior in the form of a ramp. Such situations are common in
industrial practice and include leakages, pipe blockages, catalyst degradations, or
performance deteriorations in individual process units. If an adaptive MSPC mon-
itoring approach is applied in this scenario, such gradual and incipient changes
may be accommodated by model adaptation and hence remain unnoticed.

The aim of this section is therefore to study whether the proposed adap-
tation can detect such incipient faults. A description of the simulated process
is given first, followed by an application of a standard PCA-based monitoring
model in Subsection 7.4.2. Finally, Subsection 7.4.3 then shows the application
of MWPCA and studies the impact of an application delay.

7.4.1 Data generation

The process has four process variables and is based on the following data
structure ⎛⎜⎜⎝

z1
z2
z3
z4

⎞⎟⎟⎠ = �s + g =

⎡⎢⎢⎢⎣
1 0

0 1

1.7 0.8

−0.6 0.02

⎤⎥⎥⎥⎦
(

s1

s2

)
+

⎛⎜⎜⎜⎝
g1

g2

g3

g4

⎞⎟⎟⎟⎠ . (7.37)

Each of the above variables follow a Gaussian distribution, with

E {s} = 0 E
{
ssT
} =

[
1 −0.3

−0.3 1

]
(7.38)

for the source variables and

E {g} = 0 E
{
ggT

} = 0.1I (7.39)

for the error variables. Moreover, the source and error variables are independent,
that is, E

{
sgT
} = 0. From this process, a total of 6000 samples were generated.

To simulate an incipient fault condition, a ramp with a slope of 0.0015 between
two samples was superimposed on the first source variable from sample
3501 onwards

s1f
(k) =

{
s1(k) k < 3500

s1(k) + (k − 3500) 0.0015 k ≥ 3500
. (7.40)
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Figure 7.4 Simulated data for process described by Equations (7.37) to (7.40).

The relationships between the variables, i.e. � and Sgg, remain unchanged. Thus,
the orientation of the model subspace or the residual subspace did not change
over time. The simulated process could therefore be regarded as changing to a
different, and undesired operating region. Figure 7.4 shows plots of the four
process variables for the entire data set. Utilizing this data set for monitor-
ing the simulated process allows us to demonstrate that a varying application
delay can:

• accommodate the injected ramp by considering this change as normal; or

• consider this ramp as a process fault that must be detected.

This is discussed in Subsection 7.4.3, following an application of PCA.

7.4.2 Application of PCA

Concentrating on Sz0z0
, the scaling does not affect the error covariance matrix

Sgg = σ 2
g I with σ 2

g = 0.1. Hence the two discarded eigenvalues are 0.1. More-
over, none of the elements in � = [ξ 1 ξ 2

]
changed. This implies that the

orientation of the model subspace is not affected by the fault condition. Sec-
ondly, (3.7) outlines that the Q statistic is not affected either, since the error
vector remains unchanged. Hence, neither the orientation of the residual subspace
nor the variance of the discarded principal components changed.
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In fact, the first n score variables predominantly describe the variation of the
source signals, which follows (2.8). With this in mind, the Q statistic describing
the fault condition, Qf , becomes

Qf (k) = (� (s(k) + �s(k)) + g(k))T
[
I − PPT

]
(� (s(k) + �s(k)) + g(k)) .

(7.41)

and hence

Qf (k) = (s(k) + �s(k))T �T Pd︸ ︷︷ ︸
=0

PT
d � (s(k) + �s(k)) + gT (k)PdPT

d g(k).

(7.42)

which implies that Qf (k) = Q(k) ≤ Qα . The above relationship utilized the
fact that:

• the source and error variables are uncorrelated;

• the model subspace, spanned by the column space of �, is orthogonal to
the residual subspace spanned by the column vectors of Pd ; and

• the abnormal condition is described here by

�s(k) =
(

�s1(k)

�s2(k)

)
=
⎧⎨⎩
(

(k − 3500) 0.0015

0

)
k ≥ 3500

0 k < 3500
.

The same analysis for the Hotelling’s T 2 statistic yields

T 2
f (k) = T 2(k) + T 2

1 (k) + T 2
2 (k)

T 2
f (k) = T 2(k) + �s2

1(k)

((
ξT

1 p1

)2
λ1

+
(
ξT

1 p2

)2
λ2

)
(7.43)

+ �s1(k)

(
2

(
ξT

1 p1

λ1
pT

1 + ξT
1 p2

λ2
pT

2

)
z0(k)

)
.

The above equation shows that the ramp-type fault has two effects upon the
T 2 statistic. The term T 2

1 (k) = �s2
1(k)

(
λ−1

1

(
ξT

1 p1

)2 + λ−1
2

(
ξT

1 p2

)2)
describes a

parabola of the form A (k − 3500)2

0.00152

((
ξT

1 p1

)2
λ1

+
(
ξT

1 p2

)2
λ2

)
︸ ︷︷ ︸

A

(k − 3500)2 k ≥ 3500. (7.44)
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The second term is a Gaussian distributed contribution with a quadratically
increasing variance, E

{
T 2

2

} = B (k − 3500)2

E
{
T 2

2

} = E

⎧⎨⎩
(

2

(
ξT

1 p1

λ1
p1z0 + ξT

1 p2

λ2
pT

2 z0

))2
⎫⎬⎭�s2

1(k)

E
{
T 2

2

} = E

⎧⎨⎩
(

2

(
ξT

1 p1

λ1
t1 + ξT

1 p2

λ2
t2

))2
⎫⎬⎭�s2

1(k) (7.45)

E
{
T 2

2

} = 0.0032

((
ξT

1 p1

)2
λ1

+
(
ξT

1 p2

)2
λ2

)
︸ ︷︷ ︸

B

(k − 3500)2 .

To determine the parameters A and B, we need the first two eigenvector-
eigenvalue pairs of the covariance matrix corresponding to the example process
described in (7.37) to (7.40)

Sz0z0
= �Sss�

T + σ 2
g I =

⎡⎢⎢⎣
1.1000 −0.3000 1.4600 −0.6060

−0.3000 1.1000 0.2900 0.2000
1.4600 0.2900 2.8140 −0.8702

−0.6060 0.2000 −0.8702 0.4676

⎤⎥⎥⎦
(7.46)

which has the following dominant eigenpairs

p1 =

⎛⎜⎜⎝
−0.4808
−0.0133
−0.8280

0.2882

⎞⎟⎟⎠ λ1 = 3.9693 (7.47a)

p2 =

⎛⎜⎜⎝
0.2951

−0.9079
−0.2247
−0.1952

⎞⎟⎟⎠ λ2 = 1.3123. (7.47b)

With ξT
1 = (1.0 0.0 1.7 −0.6

)
, the parameters A and B are equal to

A = 2.4101 × 10−6 B = 9.6406 × 10−6. (7.48)

When the ramp-type fault is injected for a total of 2500 samples, that is,
from sample 3501 to the end of the simulated set, the parabola has a height
of 2.4101 × 10−6 × 25002 = 15.0634 and the standard deviation of T 2

2 is√
9.6406 × 10−6 × 25002 = 7.7623. It is interesting to note that the parameters

A and B are equal up to a scaling factor of 4. In other words the height of the
quadratic term T 2

1 is one fourth of the variance of T 2
2 .
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Figure 7.5 Plots of the Hotelling’s T2 and Q statistics for the data set in
Figure 7.4.

Figure 7.5 plots both monitoring statistics for the 6000 simulated samples.
Whilst the first 3000 samples served as a reference data set to identify a PCA
model including the construction of the monitoring statistics and their control
limits, this monitoring model was applied to entire data set. For the first 3500
samples, both statistics described normal process behavior. After the injection of
the fault, significant violations of the T 2 statistic arose from around the 4200th
sample onwards, whilst the Q statistic remained insensitive to the fault.

This suggests a delay in detecting this event of about 700 samples. In SPC,
such a delay is often referred as the average run length, that is, the difference
in which a process commences to run at a normal operating condition and that
at which the monitoring scheme indicates a change from acceptable to rejectable
quality level. According to (7.43) to (7.45), the ramp will augment the T 2 statistic
by superimposing a quadratic bias term and normally distributed sequence which
increases in variance as the fault becomes more severe. This can be confirmed by
inspecting the upper plot in Figure 7.5. The next subsection studies the influence
of a K-step-ahead application of an adapted model.

7.4.3 Utilizing MWPCA based on an application delay

To illustrate the effect of applying the adapted MSPC monitoring model with
a delay of K samples is now studied. Commencing with the traditional K = 1
approach, Figure 7.6 shows both monitoring statistics for a window length of
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Figure 7.6 Monitoring a ramp change using K = 1000 and K = 1.

K = 1000. By closer inspection, the number of Type I errors does not exceed
1% and hence, the injected ramp-type fault cannot be detected. Moreover, the
lower two plots give a clear picture when the null hypothesis, that the process
is in-statistical-control, is accepted (value of zero) or when this hypothesis is
rejected (value of one).

Besides the Type I error being close to 1%, the hypothesis plots for the T 2 and
Q statistics do not indicate a higher density of rejections of the null hypothesis
between samples 3500 and 6000. If we assume that such behavior is a normal
occurrence, for example the performance deterioration of an operating unit, and
the adaptive monitoring model should accommodate this behavior, selecting the
values for K and K is appropriate.

The middle plot in Figure 7.6 shows how the estimated number of source
signals vary over time. This number was estimated using the VRE technique,
described in Subsection 2.4.1. Since the injected fault does not affect the geometry
of the PCA model subspace nor the residual subspace, the number of source
signals does not change. Hence, the adaptation procedure constantly determines,
as expected, that two latent component sets are sufficient.

However, if we do not consider this behavior normal then the selection of
both parameters will render this fault consequently undetectable. The preceding
analysis showed that an increase in K will reduce the impact of new samples
upon the covariance/correlation matrix. With reference to (7.11), (7.12), (7.14),
(7.20) and (7.23) this follows from the fact that K−2

K−1 and 1
K−1 asymptotically

converge to 1 and 0 as K → ∞, respectively.
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Figure 7.7 Monitoring a ramp change using K = 2000 and K = 100.

On the other hand, Figure 7.4 shows that a delayed application of the adapted
MSPC model may increase the impact of a fault upon the process performance
K samples earlier. Selecting K and K to be 2000 and 100, Figure 7.7 shows
that the ramp-type fault can now be detected. Comparing the lower two plots in
Figure 7.7 with those of Figure 7.6 yields a statistically significant number of
violations of the Hotelling’s T 2 statistic between samples 3500 and 6000.

The empirical significance level is now 1.4% which indicates an out-of-
statistical-control performance. In contrast, the number of violations of the Q

statistic for the same data section is close to 1% and hence this statistic suggests
we should accept the hypothesis that the process is in-statistical-control. Altering
the window length K and the application delay K allows studying the influence
of both parameters upon the sensitivity in detecting the ramp-type fault.

Table 7.4 presents the result of such an analysis where the empirical signif-
icance is determined for the number of violations for the data range 3001 to
6000 and divided by the total number of 3000 samples. By browsing through
the columns of this table, it is interesting to note that the empirical significance
for the Q statistic in any configuration is very close to the 1%. Following the
analysis in (7.42), this is expected since the fault does not affect the Q statistic.

For a better visualization of the results in Table 7.4, Figure 7.8 shows the
constant number of Type I errors for the Q statistic in any configuration. With
regards to the T 2 statistic, a different picture emerges. As expected, the larger
the window length the less new samples affect the adaptation of the monitoring
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Table 7.4 Results of K-step-ahead application for various window lengths K.

K = 1000 K = 2000 K = 3000
K αT 2 αQ αT 2 αQ αT 2 αQ

1 0.0083 0.0097 0.0093 0.0100 0.0100 0.0097
2 0.0087 0.0093 0.0093 0.0100 0.0100 0.0097
3 0.0090 0.0097 0.0093 0.0100 0.0103 0.0097
4 0.0097 0.0093 0.0093 0.0100 0.0103 0.0097
6 0.0093 0.0097 0.0093 0.0100 0.0100 0.0097
8 0.0093 0.0097 0.0093 0.0097 0.0100 0.0097
10 0.0093 0.0097 0.0093 0.0097 0.0103 0.0097
15 0.0100 0.0097 0.0083 0.0097 0.0103 0.0093
20 0.0103 0.0097 0.0090 0.0097 0.0103 0.0097
25 0.0100 0.0093 0.0090 0.0097 0.0107 0.0097
30 0.0107 0.0090 0.0100 0.0100 0.0110 0.0100
35 0.0107 0.0093 0.0100 0.0100 0.0113 0.0100
40 0.0110 0.0093 0.0103 0.0100 0.0113 0.0100
45 0.0113 0.0087 0.0103 0.0100 0.0117 0.0100
50 0.0113 0.0090 0.0103 0.0100 0.0117 0.0100
60 0.0113 0.0090 0.0107 0.0097 0.0120 0.0097
70 0.0117 0.0100 0.0113 0.0097 0.0130 0.0097
80 0.0123 0.0093 0.0117 0.0097 0.0130 0.0097
90 0.0123 0.0093 0.0123 0.0097 0.0130 0.0097
100 0.0127 0.0087 0.0123 0.0097 0.0130 0.0097
120 0.0130 0.0093 0.0127 0.0097 0.0143 0.0093
140 0.0140 0.0097 0.0130 0.0097 0.0147 0.0100
160 0.0150 0.0100 0.0140 0.0097 0.0153 0.0100
180 0.0157 0.0097 0.0147 0.0097 0.0173 0.0100
200 0.0163 0.0100 0.0160 0.0097 0.0183 0.0097
220 0.0170 0.0093 0.0170 0.0097 0.0200 0.0100
240 0.0183 0.0100 0.0177 0.0100 0.0213 0.0097
260 0.0190 0.0097 0.0203 0.0097 0.0227 0.0100
280 0.0207 0.0103 0.0217 0.0093 0.0243 0.0100
300 0.0210 0.0103 0.0237 0.0097 0.0260 0.0100
350 0.0213 0.0107 0.0267 0.0100 0.0307 0.0093
400 0.0230 0.0100 0.0297 0.0103 0.0340 0.0097
450 0.0267 0.0103 0.0320 0.0110 0.0413 0.0103
500 0.0313 0.0110 0.0373 0.0110 0.0450 0.0103
600 0.0383 0.0113 0.0480 0.0107 0.0573 0.0107
700 0.0463 0.0113 0.0617 0.0103 0.0737 0.0107
800 0.0583 0.0110 0.0720 0.0110 0.0920 0.0117
900 0.0710 0.0110 0.0920 0.0110 0.1123 0.0117
1000 0.0867 0.0107 0.1113 0.0107 0.1297 0.0120
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Figure 7.8 Plots of estimated significance for T 2 and Q statistics for various
application horizons K and window lengths K.

model. In Figure 7.4, the dash-dot line represents a window length of K = 3000,
which confirms this.

The figure also shows that increased empirical significance levels for
K = 3000 emerged for an application horizon of K ≈ 20. For K = 1000 and
K = 2000, the sensitivity in detecting this fault condition decreases. A clear and
increasing empirical significance level can be noticed for K ≈ 30. The increases
for the latter two configurations are also not as pronounced as for the window
length of K = 3000.

7.5 Application to a Fluid Catalytic Cracking Unit

This section applies the adaptive monitoring scheme to a realistic simulation of
a Fluid Catalytic Cracking Unit (FCCU) that is described in McFarlane et al.
(1993). This application is intended to include incipient time-varying behav-
ior that represents a normal operational change and a second more pronounced
process fault. Both conditions take the shape of a ramp, where the adaptive moni-
toring approach must incorporate the first change in order to prevent false alarms.
In contrast, the adaptive monitoring approach must be able to detect the second
change. A detailed description of this process is given next, prior to a discus-
sion of how the data was generated and how the adaptive monitoring model was
established in Subsection 7.5.2. Then, Subsection 7.5.3 presents a pre-analysis
of the simulated data set. This is followed by describing the monitoring results
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Figure 7.9 Schematic diagram of a fluid catalytic cracking unit.

using PCA and MWPCA with an application delay of one instance in Subsections
7.5.4 and 7.5.5, respectively.

7.5.1 Process description

An FCCU is an important economic unit in oil refining operations. It typically
receives several heavy feedstocks from other refinery operations and cracks these
streams to produce lighter, more valuable components that are eventually blended
into gasoline and other products. Figure 7.9 presents a schematic diagram of this
particular Model IV FCCU, which is similar to that in McFarlane et al. (1993).

The principal feed to the FCCU is gas oil, but heavier diesel and wash oil
streams also contribute to the total feed stream. This fresh feed is preheated in
a furnace and then passed to the riser, where it is mixed with hot, regenerated
catalyst from the regenerator. In addition to the feed stream, slurry from the main
fractionator bottoms is also recycled to the riser. The hot catalyst from the regen-
erator provides the heat necessary for the endothermic cracking reactions. These
produce gaseous products which are passed to the main fractionator for sepa-
ration. Wet gas off the top of the main fractionator is elevated to the pressure
of the light ends plant by the wet gas compressor. Further separation of light
components occurs in this light ends separation section that are not included in
this simulation model.

As a result of the cracking process inside the reactor, a carbonaceous material,
known as coke, is deposited on the surface of the catalyst. Since the deposited
coke depletes the catalyst property, spent catalyst is recycled to the regenerator
where it is mixed with air in a fluidized bed for regeneration of its catalytic
properties. The regeneration occurs when oxygen reacts with the deposited coke
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to produce carbon monoxide and carbon dioxide. The air is provided by a high-
capacity combustion air blower and a smaller lift air blower. In addition to
contributing to the combustion process, air from the lift air blower assists with
the catalyst circulation between the reactor and the regenerator. Complete details
of the mechanistic simulation model for this particular model IV FCCU can be
found in McFarlane et al. (1993) including a complete list of recorded variables.

The input variables of the FCCU simulator are listed in McFarlane et al.
(1993, page 288, Table 3). Table 7.5 summarizes the construction of the input
sequences to generate the data that were used in this study. In addition to a
number of regulatory controllers, the riser temperature in the reactor was con-
trolled to a setpoint of 985◦F using a PI controller. This controller determines the

Table 7.5 Input sequences applied to FCCU simulator.

Manipulated Description Unit Mean Standard
variable1 value deviation

u1 Wash oil flow setpoint lb/s 13.8 0.005
u2 Diesel oil flow

setpoint

lb/s 0.0 0.0

u3 Fresh feed flow lb/s Controller Controller
setpoint output output

u4 Slurry recycle setpoint lb/s 5.25 0.0025
u5 Furnace fuel flow

setpoint

scf
/
s 34.0 0.0

u6 Combustion air blower
suction valve

1.0 0.0

u7 Spill air valve 0.0 0.0
u8 Reactor/regenerator

differential pressure
setpoint

psi −3.37715 0.0

u9 Lift air flowrate
setpoint

lb/s 75.46545 0.0

u10 Reactor pressure
setpoint

psia 33.01966 0.0

Disturbance Description Unit Mean Standard
variable1 value deviation

d1 Ambient air
temperature

◦F 75.0 0.0

d2 Effective coking factor 1.0 0.0252

d3 Preheater outlet
temperature

◦F 460.9 0.2

1The location of u1, . . . , u10 and d1, d2, d3 is shown in Figure 7.9
2Drawn from a uniform distribution within range

[
0 0.025

]
and subtracted from 1.0.
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setpoint value for the total fresh feed. For the kth sample, the controller output
is determined by the setpoint error eRiser (k), which is the difference between the
setpoint value of 985◦F and the actual measurement of the riser temperature, the
integral over the setpoint error, here approximated using a numerical integration
based on the trapezoidal rule, and an offset of 126.0 lb/s

Fresh feed
flow setpoint

(k) =
[

126.0 + KP eRiser (k) + KITS

k∑
l=0

eRiser (l)

]
lb/s (7.49)

Applying a variety of standard tuning rules, suitable values for the controller
parameter KP and KI were found to be −0.105 and −0.01, respectively, and TS

is the sampling time of 1 minute.

7.5.2 Data generation

The FCCU simulator provides readings for a total of 36 variables, listed on page
289 in McFarlane et al. (1993) (Table 4). From these, 23 variables, listed in
Table 7.6, were included in the subsequent analysis and form the data vector z.

Table 7.6 Process variables included in the analysis of the FCCU.

Variable1 Description Unit

y1 = z1 Flow of wash oil to reactor riser lb/s

y2 = z2 Flow of fresh feed to reactor riser lb/s

y3 = z3 Flow of slurry to reactor riser lb/s

y4 = z4 Temperature of fresh feed entering furnace ◦F
y5 = z5 Temperature of fresh feed entering reactor riser ◦F
y6 = z6 Furnace firebox temperature ◦F
y7 = z7 Temperature of reactor riser ◦F
y8 = z8 Wet gas compressor suction pressure psia
y9 = z9 Wet gas compressor inlet suction flow ICFM
y10 = z10 Wet gas flow to the vapor recovery unit mol/s

y11 = z11 Temperature of regenerator bed ◦F
y12 = z12 Regenerator pressure psia
y13 = z13 Concentration of oxygen in regenerator stack gas mole%
y14 = z14 Level of catalyst in standpipe ft
y15 = z15 Combustion air blower inlet suction flow ICFM
y16 = z16 Combustion air blower throughput lb/s

y17 = z17 Combustion air flow to the regenerator lb/s

y18 = z18 Combustion air blower discharge pressure psia
y19 = z19 Lift air blower inlet suction flow ICFM
y20 = z20 Actual speed of the lift air blower RPM
y21 = z21 Lift air blower throughput lb/s

y22 = z22 Wet gas compressor suction valve position
y23 = z23 Stack gas valve position
1The location of the recorded variables y1, . . . , y23 is shown in Figure 7.10
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The excluded 13 variables were constant and hence did not offer any information
for monitoring the unit. The FCCU system was simulated for a sampling fre-
quency of once per minute. The controller interaction to maintain the riser
temperature at 985◦F also occurred at a sampling interval of 1 minute. In order
to simulate measurement noise, each of the recorded variables was superimposed
by independently distributed noise sequences that followed a Gaussian distribu-
tion. These sequences had a mean of zero and a variance of 5% to that of the
uncorrupted variable.

In this configuration, 15 000 samples were recorded. The two abnormal
conditions were a deteriorating performance of the furnace and a fault in the
combustion air blower. The next two subsections summarize the effects of these
conditions by analyzing the mechanistic model in McFarlane et al. (1993).

7.5.2.1 Injecting a performance deterioration of the furnace

This is a naturally occurring phenomena that is practically addressed through a
routine maintenance of the unit. The effect of a performance deterioration can be
felt in the enthalpy balance within the furnace. The main variables affected are
the furnace firebox temperature and the fresh feed temperature to the riser. This
behavior describes a performance deterioration in heat exchangers and translated
into a decrease in the furnace overall heat transfer coefficient UAf . According
to McFarlane et al. (1993, page 294), the change in UAf affects the temperature
within the firebox, T3, through the following enthalpy balance

dT3

dt
= 1

τfb

(
F5�Hfu − UAf Tlm − Qloss

)
, (7.50)

where:

• τfb = 200s is the furnace firebox time constant;

• F5 is the fuel gas flow to the furnace in scf
s

;

• �Hfu = 1000B.t.u.
scf is heat of combusting the furnace fuel;

• Tlm = (T3−T1)(T3−T2)

ln
(

T3−T1
T3−T2

) is the log mean temperature difference;

• T1 = 460.9◦F is the fresh feed temperature entering the furnace;

• T2 is the fresh feed temperature entering the reactor in ◦F ;

• T3 is the furnace firebox temperature in ◦F ; and

• Qloss is the heat loss from the furnace in B.t.u.
s

.

The analysis in McFarlane et al. (1993) also yields that T2 is affected by alter-
ations of the parameter UAf

dT2

dt
= 1

τf o

(
T2ss

− T2

)
, (7.51)
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where:

• τf o = 60s is the furnace time constant;

• T2ss
= T1 + UAf Tlm

F3
; and

• F3 is the flow of fresh feed to the reactor.

This naturally occurring deterioration was injected after the first 5000 samples
were recorded. The change in the parameter UAf was as follows

UAf (k) =
{

25B.t.u.
s

k < 5000
25B.t.u.

s
− 10−5 (k − 5000) B.t.u.

s
k ≥ 5000

. (7.52)

It is important to note that the deteriorating performance of units is dealt with by
routine inspections and scheduled maintenance programs. For process monitor-
ing, this implies that the on-line monitoring scheme must adapt to performance
deterioration like this one unless this deterioration directly affects the product
quality or has an adverse effect upon other operation units. On the other hand, the
monitoring scheme must be sensitive in detecting fault conditions, for example
in individual units, and correctly reveal their progression through the process
so that experienced plant operators are able to identify the root causes of such
events and respond appropriately. The generated data set included the injection
of a fault located in the combustion air blower that is discussed next.

7.5.2.2 Injecting a loss in the combustion air blower

This fault was a gradual loss in the air blower capacity for any number of
reasons. The discussion in McFarlane et al. (1993) outlines that this fault affects
the combustion air blower throughput as follows

F6 = F̃6p1Fsurca

Tatm − 459.6◦F
. (7.53)

Here

• F6 is the combustion air blower throughput in lb
s

;

• p1 is the combustion air blower suction pressure in psia;

• Fsurca = 45, 100ICFM is the combustion air blower inlet suction flow; and

• Tatm is the atmospheric temperature of 75◦F .

The fault condition was injected after 10 000 samples were simulate by altering
the coefficient F̃6 as follows:

F̃6(k) =
{

0.04511
◦F
f t

k < 10 000

0.04511
◦F
f t

− 5 × 10−8(k − 10 000)
◦F
f t

k ≥ 10 000
. (7.54)
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Note that the constant F̃6 includes conversions from f t3

min
to f t3

s
(ICFM) and

from lb

in2 to lb

f t2 (psia). A change in F6 affects an alteration of the combustion
air blower suction pressure, p1

dp1

dt
= κ1

(
FV6

− F6

)
(7.55)

and the combustion air blower discharge pressure, p2

dp2

dt
= κ2

(
F6 − FV7

− F7

)
(7.56)

where κ1 and κ2 are constants (McFarlane et al. 1993) if the atmospheric tem-
perature is assumed to be constant and FV6

, FV7
and F7 are the flows through the

combustion air blower suction valve and combustion air blower vent valve, and
the combustion air flow to the regenerator in lb

s
, respectively, and are given by

FV6
= κ3

√
patm − p1 FV7

= κ4

√
p2 − patm F7 = κ5

√
p2 − prgb. (7.57)

Here, prbg = p6 + κ6Wreg is the pressure at the bottom of the regenerator, κ3
to κ6 are constants, patm is the atmospheric pressure (assumed constant), p6 is
the regenerator pressure and Wreg is the inventory of catalyst in the regenerator.
It is important to note that (7.55) to (7.57) are interconnected. For example, p1
is dependent upon FV6

and vice versa. In fact, most of the variables related to
the combustion air blower are affected by this fault, including the combustion
air blower suction flowrate Fsucca

Fsucca =
⎛⎝45, 000 +

√
1.581 × 109 − 1.249 × 106

(
14.7p2

p1

)2
⎞⎠ ICFM.

(7.58)

Within the regenerator, a change in the combustion air flow to the regenerator
affects the operation of the smaller lift air blower, including the lift air blower
speed, sa

sa = (samin
+ 1100Vlift

)
RPM Vlift = Vlift

(
F7, F9, F10

)
(7.59)

where Vlift is the lift air blower steam valve, which regulates the total air flow
to the regenerator, FT = F7 + F9 + F10. This, in turn, implies that this minor
fault in the combustion air blower does not affect the reacting conditions in the
regenerator. Other variables of the lift air blower that are affected by a change
in the lift air blower speed include the lift air blower suction flowrate, Fsucla

Fsucla =
(

Fbase

sa

sb

)
ICFM (7.60)
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where sb is the base speed of the lift air blower and Fbase is the air lift compressor
inlet suction flow at base conditions and lift air blower throughput, F8

F8 =
(

0.04511
◦F
f t

)
patmFsucla

Tatm − 459.6◦F
. (7.61)

7.5.3 Pre-analysis of simulated data

The analysis of this unit involved a total of 23 variables, shown in Table 7.6.
Figure 7.10 shows the recorded data set including the performance deterioration
of the furnace and the fault in the combustion air blower. In this figure, the
variables are plotted in the order they are listed in Table 7.6: the upper left plot
depicts the first six variables, the upper right plot shows variables 7 to 12, the
lower left plot presents variables 13 to 18 and the lower right plot charts the
remaining variables.

Following the analysis of the fault conditions in Subsection 7.5.2, the perfor-
mance deterioration of the furnace affected the temperature of fresh feed entering
reactor riser, variable 5, and the furnace firebox temperature, variable 6. Inspect-
ing the middle section of the plots in Figure 7.10, data points 5001 to 10 000,
these are indeed the only two variables that showed an effect on the performance
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Figure 7.10 Simulated data sequences for FCCU process.
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deterioration. However, the fresh feed temperature to the riser was hardly affected
although a minor negative trend can be noticed in Figure 7.10. Concentrating on
the right section of the simulated data, data points 10 001 to 15 000, affected by
the fault in the combustion air blower are variables 14 to 21.

With regards to the underlying mechanistic model of the FCCU in the previous
subsection, the recorded variables confirmed that the effect of this fault was
mainly felt in both air blowers but did not have a noticeable impact in the
regenerator and hence the reactor riser. The impact upon the catalyst level in
the standpipe, variable 16 can be attributed to the increase in spill air, and lift
air had a minor effect on the catalyst circulation between the reactor and the
regenerator. That a loss in combustion air blower capacity resulted in a reduction
in combustion air blower output, including the throughput, F6, the air flow to the
regenerator, F7, and the discharge pressure, p2, makes sense physically.

The increase in the combustion air blower inlet suction flow, however, is more
difficult to explain. A close inspection of (7.53), (7.55), (7.56) and (7.58) yields
that the alterations in the parameter F̃6 led to a constantly changing operating
point. More precisely, (7.58) suggests that the suction flowrate could only increase
if p2 decreased and p1 increased or remained constant. In fact, the pressure p1
remained constant and was, as discussed above, therefore not included in this
analysis. Consequently, Fsucca increased slightly, as p2 reduced in value.

According to the model-based analysis in this and the previous subsections,
the information encapsulated in the recorded variables revealed a correct signature
of the combustion air blower fault as well as the naturally occurring performance
deterioration of the furnace. The next two subsections present the application of
PCA and the discussed MWPCA approach to detect and diagnose both events.

7.5.4 Application of PCA

The first step is the identification of a PCA model and involves the estimation of
Sz0z0

and the number of source signals. The first 5000 samples of the 23 recorded
variables described normal process operation and were divided into two sets of
2500 samples. The first 2500 samples were used to obtain the eigendecomposition
of the Ŝz0z0

. Figure 7.11 summarizes the results of applying the VRE criterion,
detailed in Section 2.4.1, and highlights that the minimum is for three source
signals. This implies that recorded variables possess a high degree of correlation.

The second half of the reference set was used to estimate the covariance
matrix of the score variables, �̂. It should be noted that an independent estimation
of the PCA model and the score covariance matrix is required, which follows
from the discussion in Tracey et al. (1992). Figure 7.12 shows the performance
of the Hotelling’s T 2 and Q statistics for the entire data set of 15 000 samples. As
expected, the first 5000 samples (83 h and 20 min) show the process in statistical
control. However, from around 100 h into the data set, excessive violations of the
confidence limits arose for both statistics indicating an out-of-statistical-control
situation.
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Figure 7.12 Application of PCA to data set shown in Figure 7.10.

As stated above, however, the data portion representing the middle section
of the data (Fault 1), describes a performance deterioration of the furnace which
naturally occurs over time. Consequently, it is desirable if the on-line monitor-
ing approach is capable of masking this behavior. Inspecting the performance
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of the PCA model for the third portion of the data outlines that it can detect
both conditions, the performance deterioration in the furnace and the loss in
combustion air blower capacity. The application of PCA, therefore, showed an
on-line monitoring approach requires to be adaptive in order to accommodate the
performance deterioration. The adaptive algorithm, however, must still be able
to detect the loss in combustion air blower capacity. Subsection 7.5.4 applies the
MWPCA approach to the generated data.

7.5.5 Application of MWPCA

The time-invariant PCA model could detect the presence of both simulated events,
which is undesired. The MWPCA method has been designed to adapt the model if
the relationship between the recorded process variables is time-variant. The aim
of this subsection is to examine whether the performance deterioration of the
furnace can be adapted and whether the loss of combustion air blower capacity
can be detected.

7.5.5.1 Determining an adaptive MWPCA model

The first step for establishing an adaptive MWPCA model is the selection of
window size. For this, 2000 samples were selected to ensure that the data set
within the window is large enough to reveal the underlying relationships between
the recorded variables. This selection, however, is difficult and presents a tradeoff
between the speed of adaptation and the requirement to extract the variable
interrelationships of the 23 variables listed in Table 7.6. Table 2.2 in Chiang
et al. (2001) suggests that a minimum number of samples is 284 for a total
of 25 variables. The discussion in Subsection 7.3.6, however, showed that this
number may be too small in the presence of a high degree and estimation of the
control limit for the Q statistic. Following the discussion in Subsection 7.3.6, the
significantly larger selection for the window size over the suggested one using
(7.35) and (7.36) is therefore required.

Figure 7.13 shows the results of applying a MWPCA model for an application
delay of K = 1. Contrasting Figures 7.13 and 7.12 reveals that utilizing MWPCA
removes the excessive number of violations that the PCA model showed in
response to Fault 1. The last two plots of Figure 7.13 show the number of
violations of the Hotelling’s T 2 and Q statistics. These plots confirm that the
number of violations in the first and second portion of the data show an average
number of violation of 1% for the Q and around 0.65% of violations for the
Hotelling’s T 2 statistic. It can therefore be concluded that MWPCA was able
to accommodate the slow performance deterioration in the furnace. However,
comparing the last portion of the data, the application of MWPCA could not
detect Fault 2, the gradual loss in combustion air blower capacity. This was
different with the use of PCA, as Figure 7.12 confirms. It is therefore imperative
to rely on the K-step ahead application of the currently adapted monitoring model,
which is examined next.
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Figure 5.7.

7.5.5.2 Utilizing MWPCA based on an application delay

In order to determine the application delay, Subsection 7.4.3 discussed that this
parameter K can be determined empirically. By selecting K = 1, 2, . . . the empir-
ical significance for the Hotelling’s T 2 and Q statistics can determined for each
integer value and listed. Determining from which selected K the empirical signif-
icance exceeds the selected significance α then provides a threshold. Figure 7.14
summarizes the results of applying a MWPCA model for the selected window
size of K = 2000 and a varying number for K ranging from 1 to 100.

The empirical significance was determined for the first 10 000 samples, which
included the first and the middle portion of the data describing the performance
deterioration of the furnace. Figure 7.14 highlights that Q statistic produces
empirical significance levels between 0.009 and 0.01 for K-values below 60.
For the Hotelling’s T 2 statistic, K-values above ten yield empirical significance
values exceeding α = 0.01. Consequently, the application delay was selected to
be K = 10.

Figure 7.15 shows the performance of the delayed application of the adaptive
MWPCA monitoring model. A direct comparison between Figures 7.13 and 7.15
shows that the application delay has no noticeable difference with regards to
the number of violations for the first two portions of the data. A difference,
though, is the number of source signals. For the first two portions of the data, the
VRE criterion determines this number for K = 1 to be between two and three.
In contrast, a constant number of three PCs is suggested for the MWPCA model
based on K = 10. Different from the utilization of an application delay, each
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sample was utilized to adapt the MWPCA model including those that produced
violations of both univariate monitoring statistics. When adapting the MWPCA
model in conjunction with the application delay, samples that produced violations
for either statistic were not included.

Analyzing the performance of the delayed application of the MWPCA
monitoring model to the third section of the data (describing the performance
deterioration of the furnace and the loss in combustion air blower capacity)
shows that the fault condition can now be detected by the Q statistic. After the
first 500 samples violating the Q statistic, K was reduced from 10 to 1 and
samples that generate violations were again included in the adaptation. This was
just after 170 hours into the data set and showed that the MWPCA model could
again adapt to both conditions.

After 190 hours, the number of source signals increased to four and the Q

statistic did not show significant violations. This implies that both conditions
were no longer detectable and is in line with the results of applying MWPCA
for a K value of one in Figure 7.13. This confirms that setting K = 10 and
excluding samples that produced violations of either statistic made it possible to
adapt the naturally occurring performance deterioration. Moreover, the MWPCA
monitoring model detected the superimposed process fault describing the loss in
combustion air blower capacity.

7.6 Application to a furnace process

This section summarizes the application of PCA and MWPCA based on an
application delay to recorded data from a furnace process. The process is briefly
described, prior to a summary of the application of PCA to recorded reference
data. The section concludes with the application of MWPCA to the reference
set and a second data set describing a sensor bias in one of the temperature
measurements.

7.6.1 Process description

This process represents an intermediate heating furnace which is part of a
Powerforming process (Powerforming is a process developed by ExxonMobile:
W. S. Kmak, A kinetic simulation model of the Powerforming process, 68th
National AIChE Meeting, Houston TX, 1971). It receives light naphtha and
produces a high-octane liquid in a number of fixed-bed reactors, which are
supported by a catalyst, at elevated temperatures and high hydrogen pressures.

In general, furnaces are important in chemical processes, as they elevate the
temperature of raw materials or intermediate products to the high temperature
levels required to enhance the performance of downstream units, for example
reaction sections. As exemplified in this section, the harsh environments inside
a furnace may be challenging for obtaining accurate sensor readings. For con-
trol engineering application, however, accurate sensor readings are important,
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Table 7.7 Recorded process variables.

Variable Description Unit

z1 Tube skin temperature 1 ◦C
z2 Tube skin temperature 2 ◦C
z3 Tube skin temperature 3 ◦C
z4 Tube skin temperature 4 ◦C
z5 Tube skin temperature 5 ◦C
z6 Tube skin temperature 6 ◦C
z7 Tube skin temperature 7 ◦C
z8 Tube skin temperature 8 ◦C
z9 Tube skin temperature 9 ◦C
z10 Naphtha outlet temperature ◦C

particularly for robust control and advanced process control, for example model
predictive control.

This particular furnace operates at different fuel gas pressure levels. The
fuel gas flow is uncontrolled and depends on the current operating point. The
temperature of the upstream naphtha-feed of the first reactor varies when entering
the main furnace, where it is elevated to the specification of the second reactor.
Further information concerning the catalytic reforming processes may be found
in Pujadó and Moser (2006). A case study similar to that analyzed here is given
in Fortuna et al. (2005).

Table 7.7 lists the recorded temperature variables of the furnace, which were
sampled at a sampling rate of 30 seconds. A data set was recorded over a period
of two weeks that included normal operating data that served as reference data
here and the occurrences of sensor biases in a number of temperature sensors.

Figure 7.16 shows a section of the recorded data describing around 51 hours
(6200 samples) of normal operation. The mean value of the temperature variables
changes significantly over time and confirms the need for an adaptive monitoring
approach. Moreover, the data show some irregular patterns that are encircled.

7.6.2 Description of sensor bias

Thermocouples for measuring skin temperatures are prone to measurement biases
which usually recover after some hours. Should the temperature readings form
part of a feedback control structure, it is necessary to detect such sensor faults
as early as possible and to take appropriate action. During the recording period,
several such events arose. Figure 7.17 shows one occurrence of a sensor bias in
the thermocouple measuring Skin Temperature 5. It is important to note that the
actual bias is just around 25◦C. Comparing this with the range of temperature
values in Figure 7.16, such a small bias can easily be overlooked by plant person-
nel. The next two subsections show the application of PCA and MWPCA to the
normal operating data and the application of MWPCA to the data set describing
the sensor bias.
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Figure 7.16 Reference data of furnace process.

7.6.3 Application of PCA

To demonstrate that a fixed PCA model may run into difficulties if the mean
and/or variance of the process variables changes significantly, this subsection
applies a PCA monitoring model that is determined from the first half of the
data and applied to the entire data set. The identification of a PCA model
commenced by subtracting the mean of each variable and dividing it by the
standard deviation, estimated from the samples in the first half of the data, and
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Figure 7.17 Data of furnace process describing sensor bias.

the estimation of the data correlation matrix. The eigendecomposition of the
estimated covariance matrix then provided the required information to establish
a PCA monitoring model.

The upper plot in Figure 7.18 shows the eigenvalues of the estimated data
correlation matrix in descending order. The results of applying the VRE criterion
is shown in the lower plot of Figure 7.18 and suggests three source signals. The
control limits for the Hotelling’s T 2 and Q statistics had to be determined. For
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Figure 7.18 Eigenvalues of Ĉz0z0
(upper plot) and selection of n (lower plot).

α = 0.01, the control limits of the Hotelling’s T 2 and Q statistics were 11.3684
and 0.2252, respectively.

Figure 7.19 shows the performance of the PCA monitoring model over the
entire data set. The Q statistic does not yield a significant number of violations.
In contrast, the Hotelling’s T 2 statistic presents a different picture. Whilst the
first half shows few violations, there are massive violations in the second half of
the data set. This is indicative of excessive common cause variation.

By comparing Figures 7.16 and 7.19, the last third of the data incorporates
more variation in all of the temperature readings compared to the remaining data
set, particulary the middle portion between 12 to 35 hours into the data set.
Although the behavior of the furnace is not abnormal in the second half of the
data, the fixed PCA model shows significant violations. This example, therefore,
demonstrates that an adaptive model is needed in order adapt to the changes in
variable mean, which is discussed in the next subsection.

7.6.4 Utilizing MWPCA based on an application delay

In order to establish a MWPCA model, the window size and the application delay
need to be determined. Given that the number of variables is significantly smaller
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Figure 7.19 Application of PCA to data set shown in Figure 7.16.

compared to the FCCU application study in Section 7.5, the window size may be
made smaller. For a total of ten recorded process variables, Table 2.2 in Chiang
et al. (2001) suggests that the minimum number of samples to populate the
data covariance/correlation matrix is 118. Following the discussion in Subsection
7.3.6, this number does not take the high degrees of correlation into account.

Inspecting Figure 7.16 highlights that the ten temperature readings follow a
very similar pattern and are, consequently, highly correlated, which the upper plot
in Figure 7.18 confirms. More precisely, the last 7 eigenvalues are close to zero.
Regarding the analysis in Subsection 7.3.6, given that these eigenvalues determine
the control limit of the Q statistic, any significant estimation error would have a
profound impact for determining Qα , as the estimation error depends reciprocally
on the window size. To ensure that the window size is significantly larger then
the suggestion of 118, K was selected to be 900.

The next step involved choosing a value of the application delay K. As illus-
trated in Subsections 7.4.3 and 7.5.5, this delay can be determined empirically.
The empirical significance for various values of K was obtained for the refer-
ence data. Table 7.8 summarizes the results and outlines that significant increases
of the empirical significance arise for K values over 20 for the Hotelling’s T 2

statistic and for K values over 30 for the Q statistic. This suggests a selection of
K = 20.

After selecting K = 900 and K = 20, Figure 7.20 confirms that MWPCA
model adapts this behavior. Moreover, the MWPCA monitoring model is still
able to detect the erratic, abrupt and unsteady glitches, encircled in Figure 7.16.
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Table 7.8 Empirical significance.

Application α̂T 2 α̂Q

horizon

1 0.008107 0.003506
2 0.008764 0.004163
3 0.008326 0.004382
4 0.008326 0.004601
5 0.008326 0.004601
6 0.008545 0.004820
7 0.008545 0.004820
8 0.009202 0.005039
9 0.008764 0.006135
10 0.008983 0.006354
15 0.009422 0.006573
20 0.010955 0.007011
25 0.011394 0.008545
30 0.012489 0.011174
35 0.014461 0.014899
40 0.017528 0.017090
45 0.018843 0.017748
50 0.020377 0.019500
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Figure 7.20 Applying MWPCA to data shown in Figure 7.16, K = 900 and
K = 20.
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Figure 7.21 Applying MWPCA to data shown in Figure 7.17, K = 900 and
K = 20.

Samples corresponding to these short violations are removed from adapting the
MWPCA model to ensure that no corruption of the monitoring model arises.
Overall, the number of violations does not exceed the significance of 0.01, which
implies that the reference data described the process in-statistical-control. It is
also interesting to note that the number of source signals varies between one and
four. Changes in this number, however, occur infrequently and three PCs are
retained most of the time.

Finally, Figure 7.21 shows that the MWPCA model can detect the sensor bias
in Skin Temperature 5. The Q statistic is sensitive to this event just after 7 hours
and 37 minutes into the data set. The first 7 hours and 30 minutes of data cover
the initial moving window Hence, the abscissa in Figures 7.20 and 7.21 does not
start from zero. The Hotelling’s T 2 statistic provided constant violations of its
control limit starting from 7 hours and 40 minutes into the data. After detecting
the sensor bias, the adaptation of the MWPCA model was suppressed.

According to Figure 7.17, the sensor bias arose just after 7 hours and 35
minutes and remained up until 9 hours and 20 minutes into the data set. By com-
parison, the sensor fault could be detected almost instantly. The bottom two plots
in Figure 7.21 highlight that the Hotelling’s T 2 statistic violates the control limit
from 9 hours and 25 minutes and thereafter with noticeable and sporadic viola-
tions just before 10 hours and after 10 hours and 30 minutes and after 11 hours
and 40 minutes. In contrast, the Q statistic remains violating its control limit.

That the Hotelling’s T 2 statistic does not show significant violations after
9 hours and 25 minutes implies that the three source signals showed a state
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of in-statistical control. However, the underlying geometry of the PCA model
has changed compared to the now time-invariant model that was last updated
before detecting the sensor bias. If a plant operator examines the situation at that
point and determines that the sensor readings are correct, the adaptation of the
MWPCA model can continue.

The analysis of both data sets, therefore, confirmed that the application
MWPCA can adapt to changes in the variable mean and data correlation matrix
and subsequently the PCA monitoring model. The adaptive monitoring model
is also able to detect the sensor bias. To verify which of the sensors is faulty,
contribution charts or variable reconstruction can be used as discussed in Sub-
section 3.2.1.

7.7 Adaptive partial least squares

In a similar fashion to PCA, the adaptation of a PLS model can be carried out
on the basis of a recursive or a moving window formulation. The first step
involves the adaptation of the estimated mean vectors for the input and output
variables. This can be accomplished by applying (7.3) for the recursive and
(7.21) for the moving window formulation by replacing the process with the
input and output variables.

The next step is the adaptation of the covariance and cross-covariance matri-
ces. For the reasons outlined in Jackson (2003) and Remark 7.2.1 above, it
is advisable to scale the process variables to unity variance. The covariance
and cross-covariance matrix consequently become the correlation and cross-
correlation matrix. This entails the division of the input and output variable sets
by the estimated standard deviation, which must be adapted too. Equations (7.4)
and (7.22) show the recursive and moving window adaptation of the standard
deviation, respectively.

This section first outlines how to adapt the correlation and cross-correlation
matrices recursively and by applying a moving window formulation in Subsec-
tions 7.7.1 and 7.7.2, respectively. Subsection 7.7.3 then discusses how to adapt
the number of source signals n and finally, Subsection 7.7.4 summarizes the
adaptation of the PLS model. It should be noted that the adaptation of the con-
trol limits follows from the discussion in Subsection 7.3.4 and is therefore not
covered in this section.

It is also advisable to consider the use of an application delay (Subsec-
tion 7.3.5) to improve the sensitivity in detecting incipient fault conditions. This
follows from the benefits outlined by the simulation examples in Sections 7.4
and 7.5. Finally, another important aspect is the minimum size of the initial ref-
erence set (RPLS) or the size of the moving window (MWPLS). As outlined
in Subsection 7.3.6, this is still an issue that has not been exhaustively studied
and still requires further attention by the research community. As before, the ·̂
notation to denote estimates of the weight vectors is omitted in this section to
simplify the presentation of the equations.
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7.7.1 Recursive adaptation of Sx0x0
and Sx0y0

The adaptation of the correlation matrix of the input variables Cx0x0
is identical

to adaptation of Cz0z0
for recursive PCA in Section 7.2. Including the (k + 1)th

sample of the input variables, (7.62) shows the recursive update of C(k)
x0x0

to
become C(k+1)

x0x0
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x̃0(k + 1)̃xT

0 (k + 1).

Here, �
(k+1)
x , �x̄k+1 and x̃0(k + 1) are obtained in the same way as shown in

(7.4) and (7.5) for the data vector z0(k + 1).
The recursive adaptation of the cross-correlation matrix Cx0y0

requires the
adaptation of the mean and variance of both variable sets and is given by

C(k+1)
x0y0

= k−1
k

[
�(k+1)

x

]−1
�(k)

x C(k)
x0y0

�(k)
y

[
�(k+1)

x

]−1

+ [�(k+1)
x

]−1
�x̄k+1�ȳk+1
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+ 1
k
x̃0(k + 1)̃yT

0 (k + 1).

Table 7.9 summarizes the steps for determining the auxiliary variables involved
in (7.62) and (7.63) and the complete recursive adaptation of both matrices.

7.7.2 Moving window adaptation of Sx0x0
and Sx0y0

As shown in Section 7.3, the recursive adaptation of for C(k)
x0x0

and C(k)
x0y0

can be
developed further to yield a moving window adaptation. This is based on the
three-step procedure, which is outlined in Figure 7.1. By reformulating (7.7) to
(7.23), Table 7.10 summarizes the steps involved in the moving window adapta-
tion of C(k)

x0x0
and C(k)

x0y0
.

7.7.3 Adapting the number of source signals

Subsection 2.4.2 provides a list of stopping rules to determine the number of
source signals. From these, techniques that rely on reference sets, such as cross
validation or bootstrapping methods may not suitable, given that the relationship
among and between the input and output variables are assumed to be time varying.

An alternative is to evaluate the accuracy of predicting the output variables.
Equation (2.147) shows how to describe the accuracy in terms of the PRESS
statistic for the initial model. With a new sample becoming available, the accuracy
for predicting the output variables of this sample can be determined and compared
with the prediction accuracy of the initial model.
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Table 7.9 Recursive adaptation of covariance and cross-covariance matrices.

No. Variables Description

1
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For a moving window formulation, the selection of n is then as follows
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Table 7.10 Moving window adaptation of Cx0x0
and Cx0y0

.

Step Equations Description

1
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(continued overleaf)
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Table 7.10 (continued)

Step Equations Description
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where PRESSnk+1
is the resultant PRESS statistic of the (k + K)th sample for

the retention of n sets of LVs, ̂́Qk+1 ∈ R
ny×n and R̂k+1 ∈ R

nx×n are updated
matrices, k + 1 referring to the new sample, storing the first nk+1 q́-loading and
r-weight vectors, respectively, and PRESSn1

describes the accuracy of the initial
PLS model, retaining the initial selection of n1 sets of LVs. The next subsection
describes the complete adaptation procedure for a PLS model.

7.7.4 Adaptation of the PLS model

As for adaptive PCA models, the number of source signals may vary over
time, resulting from throughput, grade changes or operator interventions that
may yield short-term transients behavior between different operating conditions
for example. On the other hand, the difference between the initial and adapted
weight vectors, that is, w(k+1)

i − w(k)
i , is expected to be small. This implies that

the iterative PLS routine converges after the first few iteration steps for each set
of LVs unless significant change in the process behavior has arisen.

To maintain this efficiency for a varying number of source signals, it is
possible to employ the approach introduced in Subsection 7.3.2. This entails the
storage and adaptation of a number of sets of weight vectors that is larger than
nk . If nk+1 > nk , this this approach ensures that more sets of LVs are available
to test whether PRESSnk+1

≤ PRESSn1
. The number of pairs of weight vectors

that are temporarily stored are nk + 1 + j , where j is an integer that is also
adaptively computed. The following list of steps summarizes the adaptive PLS
algorithm, based on the steps discussed above:

1. Obtain an initial PLS model.

2. Set counter j = 0.

3. Determine initial number of source signals as as discussed in Subsection
2.4.2 and store initial q́-weight vectors in the matrix Q∗

1 = [Q1 qn1+1

]
.
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4. Adapt mean, scaling matrices as well as correlation and cross-correlation
matrices using a recursive (Table 7.9) or moving window (Table 7.10)
formulation.

5. Update the 1 ≤ i ≤ nk + 1 + j q- and w-weight vectors:

(a) initiate iteration i = 1, M(1)
x0y0 = Cx0y0

;

(b) set 0q(k+1)
i = q(k)

i ;

(c) compute w(k+1)
i = M(i)

x0y0 0q(k+1)
i ;

(d) scale w-weight vector w(k+1)
i = w(k+1)

i /
∥∥∥w(k+1)

i

∥∥∥;
(e) calculate 1q(k+1)

i = M(i)
y0x0w(k+1)

i ;

(f) scale q-weight vector 1q(k+1)
i = 1q(k+1)

i /
∥∥∥1q(k+1)

i

∥∥∥;
(g) if

∥∥∥1q(k+1)
i − 0q(k+1)

i

∥∥∥> ε set 0q(k+1)
i = 1q(k+1)

i and go to Step (c) else
go to Step (h);

(h) determine r-weight vector:

• r(k+1)
i = w(k+1)

i if i = 1; and

• r(k+1)
i = w(k+1)

i −∑i−1
m=1 p(k+1)T

m w(k+1)
i r(k+1)

m if 1 < i ≤ nk + 1 + j ;

(i) calculate p- and q́-loading vectors:

• p(k+1)
i = C(k+1)

x0x0
r(k+1)
i /r(k+1)T

i
C(k+1)

x0x0
r(k+1)
i

;

• q́(k+1)
i = M(i)

y0x0 r(k+1)
i /r(k+1)T

i
C(k+1)

x0x0
r(k+1)
i

;

(j) deflate cross-covariance matrix

• M(i+1)
x0y0 = M(i)

x0y0 − p(k+1)
i

(
r(k+1)T

i C(k+1)
x0x0

r(k+1)
i

)
q́(k+1)T

i ;

(k) set i = i + 1 and return to Step (b) unless i = nk + 1 + j .

6. Determine nk+1 such that PRESSnk+1
≤ PRESSn1

. If nk+1 ≤ nk + 1 + j :

(a) Select nk+1 as the smallest integer for which PRESSnk+1
≤ PRESSn1

;

(b) Define Q∗
k+1 = [Qk+1 qnk+1

]
;

(c) Set j = 0;

(d) Go to Step 7.

If PRESSnk+1
> PRESSn1

for nk+1 = nk + 1 + j :

(a) Set j = j + 1;

(b) Augment the matrix Q∗
k = [Q∗

k qn1+j+1

]
;

(c) Return to Step 5(b) after setting i = nk + 1 + j .



292 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

7. When the next sample becomes available, set k = k + 1 and return to
Step 4.

7.8 Tutorial Session

Question 1: Explain how window size affects the accuracy of the adapted
model and how does it affect the detectability of faults? Summarize and comment
upon the recommendations in the existing work on determining the window
length.

Question 2: What are the advantages and disadvantages of using a recursive
and a moving window adaptation of PCA and PLS models?

Question 3: What is the reason behind the introduction of an application
delay?

Question 4: What are the steps for adapting a PCA- and PLS-based moni-
toring model?

Project: Using a Monte Carlo simulation on the basis of the example in
(7.37) to (7.40), determine the effect of a varying window length K, a varying
application horizon K and a varying slope for the ramp describing time-varying
process behavior upon the empirical significance level. If the ramp is considered
as a fault condition, how does the window length and the application horizon
affect the average run length?



8

Monitoring changes
in covariance structure

Over the past decades, many successful MSPC application studies have been
reported in the literature, for example Al-Ghazzawi and Lennox (2008); Aparisi
(1998); Duchesne et al. (2002); Knutson (1988), Kourti and MacGregor (1995,
1996), Kruger et al. (2001), MacGregor et al. (1991), Marcon et al. (2005),
Piovoso and Kosanovich (1992), Raich and Çinar (1996), Sohn et al. (2005),
Tates et al. (1999), Veltkamp (1993), Wilson (2001). This chapter shows that the
conventional MSPC framework, however, may be insensitive to certain fault con-
ditions that affect the underlying geometric relationships of the LV sets. Section
8.1 demonstrates that even substantial alterations in the geometry of the sam-
ple projections may not yield acceptance of the alternative hypothesis that the
process is out-of-statistical-control.

As the construction of the model and residuals subspaces as well as the con-
trol ellipses/ellipsoid for PCA/PLS models originate from data covariance and
cross-covariance matrices, this problem is referred to as a change in covariance
structure. Any change in these matrices consequently affects the orientation of
these subspaces. Thus, in order to detect such alterations, it is imperative to mon-
itor changes in the underlying data covariance structure, which Section 8.2 high-
lights. This section also presents preliminaries of the statistical local approach
that allows constructing non-negative squared statistics that directly relate to the
orientation of the model and residual subspaces and the control ellipses/ellipsoid.

This problem has been addressed by Ge et al. (2010, 2011), Kruger and
Dimitriadis (2008); Kruger et al. (2007), and Kumar et al. (2002) by introducing
a different paradigm to the MSPC-based framework. Blending the determination
of the LV sets into the statistical local approach gives rise to the construction

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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of statistics, which Section 8.3 introduces for PCA. These statistics are referred
to as primary residuals that follow an unknown but non-Gaussian distribution.

It follows from the central limit theorem that a sum of random variables fol-
low asymptotically a Gaussian distribution. This is taken advantage of in defining
improved residuals that are based on the primary residuals . Section 8.4 revisits
the simulation examples in Section 8.1 and shows that the deficiency of conven-
tional MSPC can be overcome by deriving monitoring charts from the improved
residuals.

Sections 8.5 introduces a fault diagnosis scheme to extract fault signatures
for determining potential root causes of abnormal events. Section 8.6 applies the
introduced monitoring approach to experimental data from a gearbox system. As
in Section 8.4, the application study of the gearbox system highlights that the
improved residuals are more sensitive in detecting abnormal process behavior
when compared to conventional score variables.

Section 8.7 then discusses some theoretical aspects that stem from blending
the statistical local approach into the conventional MSPC framework. This
includes a direct comparison between the monitoring functions derived in
Sections 8.3 and the score variables obtained by the PCA models and provides
a detailed analysis the Hotelling’s T 2 and Q statistics derived from the
improved residuals. The chapter concludes in Section 8.8 with a tutorial session
concerning the material covered, including questions as well as homework and
project assignments.

8.1 Problem analysis

This section presents examples demonstrating that conventional MSPC-based
process monitoring maybe insensitive to changes in the covariance structure of the
process variables. A statistic, developed here, describes under which conditions
traditional fault detection charts are insensitive to such changes. All stochastic
variables in this section are assumed to be of zero mean, which, according to
(2.2), implies that z = z0. For simplicity, this section uses the data vector z
instead of z0.

8.1.1 First intuitive example

This example involves two process variables constructed from two i.d. source
variables of zero mean, s1 and s2, which have a variance of σ 2

1 = 10 and σ 2
2 = 2.

The following transformation describes the construction of the process variables

(
z
(0)
1

z
(0)
2

)
=
[√

3/2 −1/2
1/2

√
3/2

]
︸ ︷︷ ︸

T(0)

(
s1
s2

)
. (8.1)
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Here, T(0) is a transformation matrix and the index (0) refers to the reference
covariance structure. Equation (8.1) is an anticlockwise rotation of the original
axes by 30◦. Thus, z

(0)
1 and z

(0)
2 are coordinates of the rotated base, while s1 and

s2 are coordinates of the original base. The covariance matrix of z(0)T =( z
(0)
1 z

(0)
2

)
is

E
{

z(0)z(0)T
}
=
[√

3/2 −1/2
1/2

√
3/2

] [
10 0
0 2

] [√
3/2 1/2

−1/2
√

3/2

]
=
[

8 2
√

3
2
√

3 4

]
. (8.2)

From (8.1), a total of 100 samples for z
(0)
1 and z

(0)
2 are generated. The plots in

column (a) of Figure 8.1 show the corresponding scatter diagram (upper plot)
and the Hotelling’s T 2 statistic. The anticlockwise rotation can be noticed from
the orientation of the ellipse. Moreover, the rotation does not affect the length
of the semimajor and semiminor. For α = 0.01, T 2

α = 9.21034, and the values

of semimajor and semiminor are
√

T 2
α σ 2

1 = √
92.1034 = 9.5971 and

√
T 2

α σ 2
2 =√

18.4207 = 4.2919, respectively. A detailed discussion on how to construct
control ellipses is given in Subsection 1.2.3. Specifically designed changes in the
covariance structure of z

(0)
1 and z

(0)
2 are carried out next in order to demonstrate

that conventional MSPC may not be able to detect them.
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Figure 8.1 Detectable and undetectable changes in covariance structure.
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8.1.1.1 First change in covariance structure

The following transformation changes the covariance structure between z
(0)
1

and z
(0)
2(

z
(1)
1

z
(1)
2

)
=
[√

2/2 −√
2/2

√
2/2

√
2/2

]
︸ ︷︷ ︸

T(1)

(
z
(0)
1

z
(0)
2

)
=
[(√

3−1
)
/2

√
2 −

(√
3+1

)
/2

√
2(√

3+1
)
/2

√
2

(√
3−1

)
/2

√
2

]
︸ ︷︷ ︸

T(1)T(0)

(
s1

s2

)
(8.3)

where T(1) describes an anticlockwise rotation by 45◦ and the index (1) refers to
the first change. Consequently, T(1)T(0) first represents an anticlockwise rotation
by 30◦ to produce z(0) and a subsequent rotation by 45◦ to determine z(1). The
variables z(1) are the coordinates to a base that is rotated by 75◦ relative to the
original cartesian base. The covariance matrix for z(1), E

{
z(1)z(1)T

}
, is

E
{

z(1)z(1)T
}

=
[(√

3−1
)
/2

√
2 −

(√
3+1

)
/2

√
2(√

3+1
)
/2

√
2

(√
3−1

)
/2

√
2

][
10 0

0 2

]

×

⎡⎢⎣
(√

3−1
)
/2

√
2

(√
3+1

)
/2

√
2

−
(√

3+1
)
/2

√
2

(√
3−1

)
/2

√
2

⎤⎥⎦
E
{

z(1)z(1)T
}

=
[

6 − 2
√

3 2

2 6 + 2
√

3

]
.

(8.4)

Using (8.3), a total of 100 samples are generated for z(1). From this set,
the column plots associated with (b) in Figure 8.1 show the scatter diagram
(upper plot) and the Hotelling’s T 2 statistic (lower plot). For the scatter dia-
gram, the dashed and solid lines represent the control ellipse for the variable
sets z(1) and z(0), respectively. Furthermore, the Hotelling’s T 2 statistic for each
sample is computed with respect to E

{
z(0)z(0)T

}
. Since eight points fall out-

side the confidence regions for the scatter diagram and the control limit of the
Hotelling’s T 2 statistic, the charts correctly indicate an out-of-statistical-control
situation. Consequently, this change in covariance structure between z

(0)
1 and z

(0)
2

is identifiable.

8.1.1.2 Second change in covariance structure

The same experiment is now repeated, but this time the variance of the i.d.
sequences s1 and s2 is σ1 = 3 and σ2 = 1/2, respectively. Applying (8.3) to
first produce z

(0)
1 and z

(0)
2 and subsequently z

(2)
1 and z

(2)
2 gives rise to the
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covariance matrix

E
{

z(2)z(2)T
}

=
[(√

3−1
)
/2

√
2 −

(√
3+1

)
/2

√
2(√

3+1
)
/2

√
2

(√
3−1

)
/2

√
2

][
3 0
0 1/2

]

×
[ (√

3−1
)
/2

√
2

(√
3+1

)
/2

√
2

−
(√

3+1
)
/2

√
2

(√
3−1

)
/2

√
2

]

E
{

z(2)z(2)T
}

=
[(

7−2 1
2

√
3
)
/4 5/8

5/8

(
7+2 1

2

√
3
)
/4

]
.

(8.5)

With the reduced variance for s1 and s2, 100 samples are generated using (8.3).
The plots in column (c) of Figure 8.1 show the scatter diagram of z

(2)
1 and z

(2)
2

and the Hotelling’s T 2 statistic based on E
{
z(0)z(0)T

}
. The dashed control ellipse

corresponds to z
(2)
1 and z

(2)
2 and the solid one refers to z

(0)
1 and z

(0)
2 . Despite

significant alterations to the covariance structure of z
(0)
1 and z

(0)
2 these changes

are undetected since the dashed control ellipse is inside the solid one. Therefore,
the alteration renders the scatter diagrams and the Hotelling’s T 2 statistic blind.

In essence, if changes to the covariance structure arise that lead to small
alterations in the geometry of statistical confidence regions and limits, such events
may not be detectable. Next, a more detailed statistical analysis is presented to
formulate conditions which render conventional multivariate analysis insensitive.

8.1.2 Generic statistical analysis

The intuitive analysis in the previous subsection suggested that changes in the
covariance structure manifest themselves in alterations of the eigenvalues and
eigenvectors of the covariance matrix. This follows from (8.2), (8.4) and (8.5).
However, this analysis was restricted to rotations of the control ellipse and is
therefore limited in a multivariate context. More precisely, since MSPC tech-
niques decompose the data space(s) into model and residual subspaces, a more
generic condition must to be developed to investigate whether the above insen-
sitivity can generally arise.

Concentrating on the non-negative quadratic Hotelling’s T 2 and Q statistics,
violations of their control limits are indicative of such changes. This postulates
the following condition for changes in the covariance structure to be undetectable.

Condition 8.1.1 A change in the covariance structure of the process vari-
ables is undetectable if and only if the Type I error with respect to the control limits
or region of the original covariance structure does not exceed the significance α.

This represents a condition that can be satisfied by examining the control limits
of the non-negative quadratic statistics. Subsection 3.1.2 showed that the control
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limit of the Hotelling’s T 2 statistic is, asymptotically, the critical value of a χ2

distribution for the significance α. On the other hand, the control limit of the
Q statistic can be approximated by a χ2 distribution (Box 1954; Jackson and
Mudholkar 1979; MacGregor and Kourti 1995; Satterthwaite 1941). With this in
mind, it follows that

F

⎛⎝ m1∑
i=m0

t2
i

σ 2
ti

⎞⎠ ≈ ηχ2 (θ) (8.6)

where η and θ are a weight factor and the number of degrees of freedom of a
χ2 distribution, respectively. It should be noted that the approximation in (8.6)
is also applicable to the Hotelling’s T 2 statistic.

In the case of PCA,

• σ 2
ti

is the ith largest eigenvalue of Szz, and m0 and m1 are 1 and n, respec-
tively, for the Hotelling’s T 2 statistic; and

• σ 2
ti

= 1, and m0 and m1 are n + 1 and nz, respectively, for the Q statistic.

For PLS,

• σ 2
ti

is
∑nx

j=1 r2
jiσj + 2

∑nx−1
j=1

∑nx

l=j+1 rjirliσ
2
j l , and m0 and m1 are 1 and n,

respectively, for the Hotelling’s T 2 statistic; and

• σ 2
ti

= 1, and m0 and m1 are n + 1 and nx , respectively, for the Qe statistic.

Although the relationship below is also applicable to the Qf statistic for PLS,
this analysis is not considered here.

Estimating the sample mean and variance of the sequence
∑m1

i=m0

(
t
(0)2

i
(1)/σi

)
,∑m1

i=m0

(
t
(0)2

i
(2)/σi

)
, · · · ,

∑m1
i=m0

(
t
(0)2

i
(K0)/σi

)
, (3.30) and (3.31) show that

η0 = σ̂ 2
0

2μ̂0
θ0 = 2μ̂2

0

σ̂ 2
0

, (8.7)

if K0 is sufficiently large. Here, the sub- and superscript (0) refer, as before,
to the reference condition, and μ̂0 and σ̂ 2

0 are the estimated mean and variance,

respectively. For a second sequence,
∑m1

i=m0

(
t
(1)2

i /σi

)
, which contains a total

of K1 samples
∑m1

i=m0

(
t
(1)2

i
(1)/σi

)
,
∑m1

i=m0

(
t
(1)2

i
(2)/σi

)
, · · · ,

∑m1
i=m0

(
t
(1)2

i
(K1)/σi

)
,

describing a change in the variable covariance structure, the parameters μ̂1 and
σ̂ 2

1 can be obtained. Here, the sub- and superscript (1) refer to the second oper-
ating condition. Using the estimates μ̂0, μ̂1, σ̂ 2

0 and σ̂ 2
1 allows formulating the

following condition for detecting the second and abnormal operating condition.

Condition 8.1.2 If the control limit for
∑m1

i=m0

(
t
(1)2

i /σi

)
, obtained for

a significance α, is approximated by η1χ
2
α

(
θ1

)
, where η1 and θ1 are values
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for η and θ estimated from
∑m1

i=m0

(
t
(1)2

i
(1)/σi

)
,
∑m1

i=m0

(
t
(1)2

k
(2)/σi

)
, · · · ,∑m1

i=m0

(
t
(1)2

k
(K1)/σi

)
for a sufficiently large K1, is smaller or equal to the control

limit for
∑m1

i=m0

(
t
(0)2

k /σi

)
, approximated by η0χ

2
α

(
θ0

)
, this change is undetectable.

Under the application of above condition, score-based process monitoring
using conventional MSPC may be insensitive to changes in the variable
covariance structure, which the next subsection illustrates using a three-variable
example.

8.1.3 Second intuitive example

The three variables are defined by a linear combination of the two zero mean i.d.
source signals s

(0)
1 and s

(0)
2 , which have a variance of σ 2

1 = 151/2 and σ 2
2 = 71/2.

As before, the superscript (0) refers to the original covariance structure. According
to (2.2), the zero mean error vector g, augmented to the common cause variation
�s(0), has an error covariance matrix Sgg = 1/2I. Furthermore, (8.8) defines the
score and loading vectors for the data vector z = �s + g.⎛⎜⎝z

(0)
1

z
(0)
2

z
(0)
3

⎞⎟⎠ =
⎡⎣1/

√
6 1/

√
2 1/

√
3

1/
√

6 −1/
√

2 1/
√

3
2/

√
6 0 −1/

√
3

⎤⎦
︸ ︷︷ ︸

T(0)

⎛⎜⎝t
(0)
1

t
(0)
2

t
(0)
3

⎞⎟⎠ . (8.8)

The matrix T(0) stores the eigenvectors of S(0)
zz and t(0)T = ( t

(0)
1 t

(0)
2 t

(0)
3

)
is a

vector storing the score variables. Under the assumption that E
{
sgT
} = 0, the

covariance matrix of z(0), S(0)
zz , is equal to

S(0)
zz =

⎡⎣1/
√

6 1/
√

2 1/
√

3
1/

√
6 −1/

√
2 1/

√
3

2/
√

6 0 −1/
√

3

⎤⎦⎡⎣16 0 0
0 8 0
0 0 1/2

⎤⎦⎡⎣1/
√

6 1/
√

6 2/
√

6
1/

√
2 −1/

√
2 0

1/
√

3 1/
√

3 −1/
√

3

⎤⎦
S(0)

zz =
⎡⎣ 41/6 −7/6 31/6

−7/6 41/6 31/6
31/6 31/6 65/6

⎤⎦ (8.9)

which follows from (6.5). Moreover, the column space of � is equal to the first
two column vectors of T(0). For simplicity, is assumed here that � contains these
column vectors, implying that the orthogonal complement, �⊥, is the transpose
of the third column vector and the generalized inverse, �†, is the transpose of �.

The contribution of the first, second and third principal components to the
sum of the variances of the three process variables are 32/49 · 100% = 65.31%,
16/49 · 100% = 32.65% and 1/49 · 100% = 2.04% , which follows from (2.116)
to (2.122). Equation (6.73) highlights that the first two score variables mainly
describe the two source variables, which contribute 97.94% to this sum of vari-
ances, whilst the contribution of the third score variable is 2.04% and, according
to (3.7), relates to g.



300 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

The eigenvectors pT
1 = (1/√

6 1/
√

6 2/
√

6
)

and pT
2 = (1/√

2 −1/
√

2 0
)

span the model subspace and pT
3 = (1/√

3 1/
√

3 −1/
√

3
)

spans the residual
subspace. As the data space corresponding to z1, z2 and z3 is a Cartesian space,
the minimum angles of the axes z1, z2 and z3 to the third eigenvector are 54.74◦,
54.74◦ and 125.26◦, respectively. The critical value of a χ2 distribution for two
degrees of freedom and α = 0.01 is χ2

α = 9.21034. The lengths of the semimajor
and semiminor of the control ellipse (first two score variables) are, therefore,√

χ2
α · λ1 = √

147.3654 = 12.1394 and
√

χ2
α · λ2 = √

73.6827 = 8.5839, respec-
tively, λ1 = 16 and λ2 = 8.

To introduce alterations to this data covariance structure and to examine
whether these alterations are detectable, a total of four changes are considered.
Each of these changes relates to an anticlockwise rotation of the original variable
set by 30◦. Equation (8.10) shows the corresponding rotation matrix T(1)

T(1) =
⎡⎣√

3/2 −1/2 0
1/2

√
3/2 0

0 0 1

⎤⎦ . (8.10)

The first change is a simple rotation of the first two variables

z(1) = T(1)T(0)t(1), (8.11)

where t(1) = t(0). The remaining three changes also alter the variance of the score
variables, listed in Table 8.1, which produces the data vectors z(2), z(3) and z(4)

z(2) = T(1)T(0)t(2) z(3) = T(1)T(0)t(3) z(4) = T(1)T(0)t(4). (8.12)

There are now the following five variable sets:

1. the reference set z(0) yielding the loading vectors stored in T(0) and score
variances of 16, 8 and 1/2;

2. the variable set z(1) representing the loading vectors T(1)T(0) and score
variance of 16, 8 and 1/2;

3. the variable set z(2) producing the same loading vectors as z(1) but yields
score variance of 4, 2 and 0.15;

Table 8.1 Variance of score variables t
(m)
1 , t

(m)
2 and t

(m)
3 .

Condition/

Variable λ1 = E
{
t
(m)2

1

}
λ2 = E

{
t
(m)2

2

}
λ3 = E

{
t
(m)2

3

}
m = 0 16 8 0.5
m = 1 16 8 0.5
m = 2 4 2 0.15
m = 3 4 2 0.125
m = 4 4 2 0.1
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4. variable set z(3) which produces the same loading vectors as z(2) but the
variance of the third score variable is 0.125; and

5. finally variable set z(4) which again yields the same loading vectors as z(2)

but the variance of the third score variable is 0.1.

To demonstrate how different these five variable sets are requires the inspection
of the corresponding covariance matrices for z(0), z(1), z(2), z(3) and z(4)

S(0)
zz = 1/6

⎡⎣41 −7 31
−7 41 31
31 31 65

⎤⎦

S(1)
zz = 1/12

⎡⎢⎢⎢⎣
82 + 7

√
3 −7 31

(√
3 − 1

)
−7 82 − 7

√
3 31

(√
3 + 1

)
31
(√

3 − 1
)

31
(√

3 + 1
)

130

⎤⎥⎥⎥⎦

S(2)
zz = 1/120

⎡⎢⎢⎢⎣
206 + 17

√
3 −17 77

(√
3 − 1

)
−17 206 − 17

√
3 77

(√
3 + 1

)
77
(√

3 − 1
)

77
(√

3 + 1
)

326

⎤⎥⎥⎥⎦ (8.13)

S(3)
zz = 1/64

⎡⎢⎢⎢⎣
82 + 7

√
3 −7 31

(√
3 − 1

)
−7 82 − 7

√
3 31

(√
3 + 1

)
31
(√

3 − 1
)

31
(√

3 + 1
)

130

⎤⎥⎥⎥⎦

S(4)
zz = 1/60

⎡⎢⎢⎢⎣
102 + 9

√
3 −9 39

(√
3 − 1

)
−9 102 − 9

√
3 39

(√
3 + 1

)
39
(√

3 − 1
)

39
(√

3 + 1
)

162

⎤⎥⎥⎥⎦ .

The next step is to perform a total of 1000 Monte Carlo simulations for each
of the five variable sets, z(0), · · · , z(4). According to Condition 8.1.2, the changes
in the covariance structure cannot be detected if the control limits associated
with the variable sets representing z(1), z(2), z(3) and z(4) are smaller or equal
to the control limit corresponding to z(0). It is important to note, however, that
the non-negative quadratic statistics must be constructed from the PCA model
related to the variable set z(0). The calculation of the score variables for each of
the five variable sets is

t̃
(0) = T(0)T z(0) = T(0)T T(0)t(0) = t(0)

t̃
(1) = T(0)T z(1) = T(0)T T(1)T(0)t(1) �= t(1)

t̃
(2) = T(0)T z(2) = T(0)T T(1)T(0)t(2) �= t(2) (8.14)
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t̃
(3) = T(0)T z(3) = T(0)T T(1)T(0)t(3) �= t(3)

t̃
(4) = T(0)T z(4) = T(0)T T(1)T(0)t(4) �= t(4).

Based on (8.14), the five Hotelling’s T 2 statistics are now constructed from the
first two elements of the score vectors t̃

(0)
, · · · , t̃

(4)
and the score covariance

matrix � = diag
{
16 8

}
. The Q statistics are simply the squared values of

the third elements of t(0), · · · , t(4). Each of the 1000 Monte-Carlo simulation
experiments include a total of K = 100 samples. This gives rise to a total of
1000 estimates for the control limits of the Hotelling’s T 2 and Q statistics for
z(0), . . . , z(4). To assess the sensitivity in detecting each of the four changes, the
2.5 and the 97.5 percentiles as well as the median can be utilized.

Figure 8.2 (a) shows the range limited by the 2.5 and 97.5 percentiles of
the control limit for each of the five Hotelling’s T 2 statistics T̂

(0)2

α , · · · , T̂
(4)2

α .
Plot (b) in this figure shows the ranges for the control limits of Q̂

(0)
α , · · · , Q̂

(4)
α .

The circle inside each of the ranges represents the median. Examining the range
for the Hotelling’s T 2 statistic in relation to Condition 8.1.2, it is clear that the
Hotelling’s T 2 statistic is insensitive to any of the changes introduced to the
original covariance structure.

(a)

1 2 3 4 5 6 7 8 9 10 11
 

these changes
are undetectable

4th change

3rd change

2nd change

1st change

Original
structure

Ranges of Ta
2 for different covariance structures

∧

Ta
2

∧

(b)

4th change

3rd change

2nd change

1st change

Original
structure

2 4 6 8 10 12 14 16

1st change is detectable

2nd , 3rd and 4th change
is undetectable

Ranges of Qa for different covariance structures
∧

Qa

∧

Figure 8.2 Analysis of detectability for different covariance structures.
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Figure 8.3 Detectable and undetectable changes in covariance structure.

A different picture emerges when making the same comparison for the Q

statistic. While the range for Q
(0)
α covers values between 2.2 and 4 (roughly),

the values for Q
(1)
α range between around 9.5 and 15.5.1 According to Condition

8.1.2, this implies that this first alteration is detectable by the Q statistic. In
contrast, the remaining three changes may not be detectable as the ranges for
Q̂

(2)
α , Q̂

(3)
α and Q̂

(4)
α have a significant overlap with the range for Q̂

(0)
α . More

precisely, the 2.5 and 97.5 percentiles for Q̂
(0)
α are larger than those for Q̂

(2)
α ,

Q̂
(3)
α and Q̂

(4)
α . Consequently, the second to fourth alterations are not detectable

by the Hotelling’s T 2 and may not be detectable by the Q statistic either.
To graphically illustrate the above findings, a total of 100 samples are gener-

ated for variable sets z(0), z(1) and z(2). Referring to these sets as data set 1 , data
set 2 and data set 3 , corresponding to z(0), z(1) and z(2), respectively, Figure 8.3
shows the results of analyzing them using a PCA model established from data set
1. In this figure, the column in rows (a), (b) and (c) represent the analysis of data
set 1, data set 2 and data set 3, respectively. The upper plots show the control
ellipse and the scatter plots of data sets 1 to 3. The plots in the middle and lower
row of Figure 8.3 present the Hotelling’s T 2 and the Q statistics, respectively.

The plots associated with index (a) indicate that the projection of each of the
100 samples of data set 1 onto the model subspace fall inside the control ellipse.
This, in turn, implies that none of the samples results in a violation of the control
limit of the Hotelling’s T 2 statistic. Also the residual Q statistic has not violated
its control limit, Q0.01 = 3.2929, for any of the 100 samples of data set 1. Hence,
the hypothesis that the process is in-statistical-control must be accepted.

A different result emerges when inspecting the plots associated with data
set 2, representing an anticlockwise rotation of z1 − z2 axis by 30◦. Although

1 This relatively large range outlines, again, the problem of selecting an appropriate size for the
reference data set, discussed in Section 6.4 and Subsection 7.3.6.
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projecting the samples onto the model subspace shows no projections outside
the control ellipse, the Q statistic highlights that the squared distance of a total
of 16 samples from the model subspace is larger than 3.2929. This change is
therefore detectable.

Finally, the plots corresponding to data set 3 point out that the projected sam-
ples onto the model subspace fall inside the control ellipse and that the squared
distance of each sample from the model subspace is less than 3.2929. Conse-
quently, this change remains undetected, which is undesirable. The remainder of
this chapter describes the incorporation of the statistical local approach into the
MSPC framework to detect such changes.

With regards to the second, third and fourth alterations, one could justifiably
argue that if the third eigenvalue is not changed from 0.5 to 0.15, 0.125 and 0.1,
respectively, any of these changes are detectable by the Q statistic. This follows
from (6.4) and (6.5), which highlight that λ3 corresponds to the noise variance.
According to Figure 8.3, the rotation of the control ellipse changes its orientation
relative to the original model subspace. Thus, samples that are further away from
the center of the ellipse but still inside produce a larger distance to the original
model subspace.

If the axes of the rotated control ellipse are linear combinations of the eigen-
vectors spanning the model subspace, the rotated ellipse remains inside the model
subspace. Hence, such an alteration of the covariance structure has no effect on
the residual subspace and hence the Q statistic. Revisiting the geometric analy-
sis in Figure 8.1, a change in the orientation and dimension may yield a control
ellipse that lies within the original ellipse and is on the model subspace. Equations
(6.7) to (6.11) outline that such an alteration results from a change in the covari-
ance matrix of the source signals and may, consequently, remain undetected.

8.2 Preliminary discussion of related techniques

After outlining that the basic MSPC monitoring framework may not detect cer-
tain changes in the data covariance structure, a different paradigm is required
to address this issue. Revisiting the analysis in Figure 8.1, the exact shape and
orientation of a control ellipse is defined by the eigenvectors and eigenvalues
of Sz0z0

. In other words, if the orientation of the eigenvectors and the eigen-
values could be monitored on-line, any change in the covariance structure can
consequently not go unnoticed. It is therefore required to formulate monitoring
functions that directly relate to the eigen decomposition of Sz0z0

.
Basseville (1988) described a statistical theory, known as the statistical local

approach, that can be readily utilized to define vector-valued monitoring func-
tions, referred to as primary residual vectors φ, of the form

φ = φ
(
p, z0

)
(8.15)
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where p is a vector of model parameters and z0 ∼ N {
0, Sz0z0

}
. For simplicity,

the distribution function of φ (·) is assumed to be unknown at this point.
The parameter vectors includes the eigendecomposition of Sz0z0

for PCA and
Sx0x0

and Sx0y0
for PLS. The construction of the primary residuals for PCA is

discussed in Sections 8.3. For a statistical inference based on φ (·), however, the
following problem arises. How to construct a monitoring framework if F (φ (·))
cannot be assumed to be Gaussian or is unknown, as assumed thus far?

This question can be answered by assuming that z0 stores i.i.d. sequences,
that is, E

{
z0(k)zT

0 (l)
} = δklSz0z0

, where k and l are sample indices. As the
distribution function of φ (·) depends on the distribution function of z0, instances
of φ

(
p, z0

)
are also i.i.d. Under these conditions, the following sum of the

primary residual vectors

θ = 1√
K

K∑
k=1

φ
(
p, z0 (k)

)
(8.16)

follows, asymptotically, a Gaussian distribution function, which is a result of the
CLT. Subsection 8.7.1 provides a detailed discussion and a proof of the CLT. The
sum in (8.16) is defined as the improved residual vector and is, asymptotically,
Gaussian distribution. If E

{
φ
(
p, z0

)} = 0 and E
{
φ
(
p, z0

)
φT
(
p, z0

)} = Sφφ ,
θ ∼ N {

0, Sφφ

}
and can be utilized to construct scatter diagrams as well as a

Hotelling’s T 2 statistic as discussed in Subsection 3.1.2.
For PCA, it is sufficient to develop primary residuals related to the eigenvalues

and the eigenvectors of Sz0z0
, as they determine the orientation of the model and

the residual subspaces, and the size and orientation of the control ellipse. For PLS,
however, there are two interrelated data spaces. Project 2 in the tutorial session of
this chapter extends the development of improved and primary residuals for PLS.

For PCA, the next section discuss the construction of primary and improved
residuals describing changes in the geometry of the model and residual subspaces
and summarizes their basic statistical properties.

8.3 Definition of primary and improved residuals

Sections 2.1 and 9.3 outline that a PCA monitoring model is completely described
by the eigendecomposition of Sz0z0

. This includes the orientation of the model
and residual subspaces as well as the orientation and size of the n dimensional
control ellipsoid. Consequently, the primary residuals rely on the eigendecom-
position of Sz0z0

, and are derived in Subsection 8.3.1 using the definition of the
ith eigenvector Sz0z0

pi − λipi = 0. Subsection 8.3.2 shows that primary residu-
als can also be obtained from pT

i Sz0z0
pi − λi = 0. Subsections 8.3.3 and 8.3.4

contrast both types of primary residuals and determine their statistical properties.
Finally, Subsection 8.3.5 shows the construction of improved residuals.
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8.3.1 Primary residuals for eigenvectors

Starting with the definition of the objective function for obtaining the ith
eigenvector

pi � arg max
p

{
E
{
pT z0zT

0 p
}− λi

(
pT p − 1

)}
, (8.17)

the partial derivative of (8.17) allows determining the optimal solution

pi = arg
∂

∂p

{
E
{
pT z0zT

0 p
}− λi

(
pT p − 1

)} = 0 (8.18)

which is given by

pi = arg
{
E
{
2tiz0

}− 2λipi

} = 0. (8.19)

The above equation relies on the fact that zT
0 pi = ti . Now, defining

φi � 2tiz0 − 2λipi (8.20)

allows simplifying Equation (8.19) to become

pi � arg
{
E
{
φi

}} = 0 (8.21)

and consequently

E
{
φi

}∣∣
p=pi

= 0. (8.22)

It follows from (8.22) that in the vicinity of pi , defined by ω
(
pi

)
for which

pi �∈ ω
(
pi

)
, the following holds true

E
{
φi

}∣∣
p∈ω(pi )

�= 0. (8.23)

Equations (8.22) and (8.23) imply that each loading vector pi produces a cor-
responding statistic φi such that E

{
φi

} = 0, when p is the equal to the ith
eigenvector of Sz0z0

. In contrast, any deviation from zero indicates that pi is no
longer the eigenvector associated with the ith eigenvalue.

The next step is to define two parameter vectors that store the eigenvectors
spanning the model and residual subspaces. The vector for the model subspace,
p, is

p = (pT
1 pT

2 . . . pT
n

)T ∈ R
nzn (8.24)

and that of the residual subspace, pd , is defined as

pd = (pT
n+1 pT

n+2 . . . pT
nz

)T ∈ R
nz(nz−n). (8.25)
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This gives rise to the following two primary residual vectors for the model
subspace

φ = (φT
1 φT

2 · · · φT
n

)T ∈ R
nzn (8.26)

and the residual subspace

φd = (φT
n+1 φT

n+2 · · · φT
nz

)T ∈ R
nz(nz−n). (8.27)

The next subsection develops primary residual vectors for the eigenvalues of
Sz0z0

.

8.3.2 Primary residuals for eigenvalues

Pre-multiplying (8.20) by pT
i gives rise to

pT
i φi = 2tip

T
i z0 − 2λip

T
i pi = 2

(
t2
i − λi

)
� φ̃i . (8.28)

The expectation of φ̃i

(
λi, z0

)
directly follows from (8.22)

E
{
φ̃i

}∣∣
λ=λi

= 0 E
{
φ̃i

}∣∣
λ∈ω̃(λi )

�= 0. (8.29)

As before, ω̃
(
λi

)
defines the neighborhood of λi , where λi �∈ ω̃

(
λi

)
. This implies

that E
{
φ̃i

} = 0 holds true if and only if λ is the ith largest eigenvalue of Sz0z0
.

In a similar fashion to the p and pd , and φ and φd , p̃ and p̃d , and φ̃ and φ̃d , for
the retained and discarded eigenvalues can be defined as follows

p̃ = (λ1 λ2 . . . λn

)T ∈ R
n

p̃d = (λn+1 λn+2 . . . λnz

)T ∈ R
nz−n

φ̃ = (φ̃1 φ̃2 . . . φ̃n

)T ∈ R
n

φ̃d = (φ̃n+1 φ̃n+2 . . . φ̃nz

)T ∈ R
nz−n.

(8.30)

The next subsection provides a detailed examination of the primary residuals.

8.3.3 Comparing both types of primary residuals

The analysis concentrates first on the primary residual vectors φ and φd , which
have the dimension nzn and nz

(
nz − n

)
, respectively. These dimensions, there-

fore, depend on the ratio n/nz. If n is close to nz or if n is small compared to nz, the
size of φ or φd can be substantial. This subsection then compares the sensitivity
of φ and φd , with φ̃ and φ̃d for detecting changes in the covariance structure.
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8.3.3.1 Degrees of freedom for primary residuals φ and φd

A closer inspection of the primary residuals φ and φd reveals that its elements
may be linearly dependent. This is best demonstrated by a joint analysis⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1
...

φn

φn+1
...

φnz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2z0t1
...

2z0tn
2z0tn+1

...

2z0tnz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2λ1p1
...

2λnpn

2λn+1pn+1
...

2λnz
pnz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.31)

which can alternatively be written as

⎛⎜⎝φ1
...

φnz

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
2

(
nz∑
i=1

pi ti

)
t1 − 2λ1p1

...

2

(
nz∑
i=1

pi ti

)
tnz

− 2λnz
pnz

⎞⎟⎟⎟⎟⎟⎠ . (8.32)

In matrix-vector form, (8.32) becomes

⎛⎜⎜⎜⎜⎜⎝
φ1
φ2
φ3
...

φnz

⎞⎟⎟⎟⎟⎟⎠ = 2

⎡⎢⎢⎢⎢⎢⎣
p1 p2 p3 · · · pnz

0 0 · · · 0
0 p1 0 · · · 0 p2 p3 · · · 0
0 0 p1 · · · 0 0 p2 · · · 0
...

...
...

...
...

...
...

0 0 0 · · · p1 0 0 · · · pnz

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t2
1 − λ1
t1t2
t1t3
...

t1tnz

t2
2 − λ2
t2t3
...

t2
nz

− λ2
nz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.33)

Since � ∈ R
n2
z×nz(nz+1)/2 has full column rank, its rank is equal to nz(nz+1)/2.

More precisely, a total of nz(nz−1)/2 elements in the combined primary residual
vector are linearly dependent upon the remaining nz(nz+1)/2 ones.

For the primary residual vectors φ and φd , this has the following consequence:
if the number of the elements in:

• φ ∈ R
nzn and

• φd ∈ R
nz(nz−n)



MONITORING CHANGES IN COVARIANCE STRUCTURE 309

is larger than or equal to

φ : nzn ≥ nz

(
nz + 1

)
2

φd : nz

(
nz − n

) ≥ nz

(
nz + 1

)
2

there is a linear dependency between these primary residuals . This gives rise
to linear dependency among the elements in φ and φd under the following
conditions

φ : nzn ≤ nz

(
nz + 1

)/
2 → no linear dependency

φ : nzn > nz

(
nz + 1

)/
2 → linear dependency

φd : nz

(
nz − n

) ≤ nz

(
nz + 1

)/
2 → no linear dependency

φd : nz

(
nz − n

)
> nz

(
nz + 1

)/
2 → linear dependency

and leads to the following criteria for φ

2nnz ≤ n2
z + nz

2n ≤ nz + 1 (8.34)

n ≥
(
nz − 1

)/
2

and φd

2nz

(
nz − n

) ≤ n2
z + nz

2
(
nz − n

) ≤ nz + 1 (8.35)

n ≥
(
nz − 1

)/
2.

From the above relationships, it follows that

nz − 1 ≤ 2n ≤ nz + 1 (8.36)

which can only be satisfied if n = nz
/
2 if nz is even and nz−1/2 ≤ n ≤ nz+1/2 if

nz is odd. Figure 8.4 summarizes the above findings and shows graphically which
condition leads to a linear dependency of the primary residuals in φ and φd .

The importance of these findings relates to the construction of the primary
residual vectors, since the number of source signals is determined as part of the
identification of a principal component model. In other words, the original size of
φ and φd is nzn and nz

(
nz − n

)
, respectively, and known a priori . If the analysis

summarized in Figure 8.4 reveals that elements stored in the primary residual
vectors are linearly dependent, the redundancy can be removed by eliminating
redundant elements in φ or φd , such that this number is smaller or equal to
nz

(
nz + 1

)/
2 in both vectors.
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8.3.3.2 Sensitivity analysis for φ, φd , φ̃ and φ̃d

To investigate whether the primary residuals φi and φ̃i can both detect changes
in the eigenvalues and the eigenvectors of Sz0z0

, the examination focuses on:

• the primary residuals φ and φ̃ to evaluate their sensitivity in detecting
changes in the eigenvectors and eigenvalues associated with the orientation
of the model subspace and the orientation and size of the control ellipsoid;
and

• the primary residuals φd and φ̃d to examine their sensitivity in detecting
changes in the eigenvectors and eigenvalues related to the orientation of
the residual subspace and, according to (3.16), the approximation of the
distribution function of the sum of squared residuals.

The resultant analysis yields the following two lemmas, which are proved below.

Lemma 8.3.1 For a change in the orientation of the model subspace and/or
the orientation/size of the control ellipsoid, the primary residual vectors φ and φ̃

are sensitive in detecting this change, as their expectation differs from zero.

Lemma 8.3.2 For a change associated with the orientation of the residual
subspace and/or, the approximation of the distribution function of the sum of the
squared residuals, the primary residual vectors φd and φ̃d can both detect this
change by producing an expectation that is different from zero.

Proof. The proof commences by rewriting (8.17) as follows

pi = arg max
p

{
pT E

{
z0zT

0

}
p − λi

(
pT p − 1

)}
pi = arg max

p

{
pT Sz0z0

p − λi

(
pT p − 1

)} (8.37)
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and investigating the impact of a change in pi , that is, p∗
i = pi + �pi , ‖�pi‖ �

‖pi‖, and λi , i.e. λ∗
i = λi + �λi , |�λi | � λi .

Directional changes of the ith eigenvector. Assuming that λi remains
unchanged, (8.19) can be rewritten on the basis of (8.37)

2Sz0z0
pi − 2λipi = 0. (8.38)

Knowing that a change in the covariance structure between the recorded process
variables produces a different Sz0z0

, denoted here by S∗
z0z0

, (8.38) becomes

2S∗
z0z0

pi − 2λipi = εi �= 0. (8.39)

The expectation of the primary residual vector E
{
φi

} = εi and given by

E
{
φi

} = 2
[
S∗

z0z0
− λiI

]
pi

E
{
φi

} = 2

(
S∗

z0z0
pi − λiSz0z0

pi

λi

)
E
{
φi

} = 2
[
S∗

z0z0
− Sz0z0

]
pi = εi .

(8.40)

It follows that εi depends on the changes of the elements in Sz0z0
. Equation

(8.40) shows that the condition E
{
φi

} = 0 only arises if and only if pi is also
an eigenvector of S∗

z0z0
associated with λi . This situation, however, cannot arise

for all 1 ≤ i ≤ nz unless S∗
z0z0

= Sz0z0
. An important question is whether the

primary residual φ̃i also reflect a directional changes of pi . This can be examined
by subtracting 2S∗

z0z0
p∗

i − 2λip
∗
i = 0 from (8.39), where p∗

i is the eigenvector of
S∗

z0z0
associated with λi , which yields

2
(
S∗

z0z0
�pi − λi�pi

) = εi . (8.41)

Pre-multiplying the above equation by pT
i produces

2
(
pT

i S∗
z0z0

− λip
T
i

)︸ ︷︷ ︸
�=0T

�pi︸︷︷︸
�=0

= pT
i εi = εi �= 0. (8.42)

It is important to note that if the pre-multiplication is carried out by the transpose
of p∗

i �= pi , (8.42) becomes zero, since p∗T

i S∗
z0z0

− λip
∗T

i = 0T . Consequently,
any directional change of pi manifests itself in E

{
φ̃i

} = εi �= 0. This, in turn,
implies that both primary residual vectors, φi and φ̃i , are sufficient in detecting
any directional change in pi by a mean different from zero. It should also be
noted that if pT

i εi = 0 if both vectors are orthogonal to each other. A closer
inspection of (8.42), however, yields that only the trivial case of S∗

z0z0
= Sz0z0

can produce εi = 0.
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Changes in the ith eigenvalue. Now, λi changes under the assumption that pi

remains constant. For this change, (8.39) becomes

2S∗
z0z0

pi − 2λipi = εi . (8.43)

Subtracting S∗
z0z0

pi = λ∗
i pi , based on the correct eigenvalue λ∗

i , from Equation
(8.43) gives rise to

εi = 2
(
λi − λ∗

i

)
pi = 2 �λi︸︷︷︸

�=0

pi , (8.44)

and hence, E
{
φi

} = 2�λipi , which implies that φi is sensitive to the change in
λi . Finally, pre-multiplication of (8.44) by pT

i yields

2�λi = εi, (8.45)

where εi = pT
i εi . Thus, E

{
φ̃i

} = 2�λi . This analysis highlights that both pri-
mary residual vectors, φi and φ̃i , can detect the change in λi .

The above lemmas outline that any change in the covariance structure of z0
can be detected by φi and φi . Given that:

• the dimensions of the primary residuals φ̃ and φ̃d are significantly smaller
than those of φ and φd , respectively;

• the primary residuals for the eigenvectors and the eigenvalues, φi and φ̃i ,
can detect a change in the covariance structure of z0; and

• the elements in the primary residual vectors φ and φd cannot generally be
assumed to be linearly independent,

it is advisable to utilize the primary residual vectors φ̃ and φ̃d for process mon-
itoring. For simplicity, the parameter vectors are now denoted as follows λ = p̃
and λd = p̃d . Moreover, the tilde used to discriminate between φi and its scaled
sum pT

i φi = φ̃i is no longer required and can be omitted. The next subsection
analyzes the statistical properties of φ and φd .

8.3.4 Statistical properties of primary residuals

According to (8.29), the expectation of both primary residual vectors, φ and φd ,
is equal to zero. The remaining statistical properties of φi include its variance, the
covariance of φi and φj , the distribution function of φi and the central moments
of φi . This allows constructing the covariance matrices for φ and φd , Sφφ ∈ R

n×n

and Sφdφd
∈ R

(nz−n)×(nz−n), respectively.

Variance of φi . The variance of φi can be obtained as follows:

E
{
φ2

i

} = E
{(

2
(
t2
i − λi

))2}
(8.46)
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which can be simplified to

E
{
φ2

i

} = 4
(
E
{
t4
i

}− 2λiE
{
t2
i

}+ λ2
i

)
. (8.47)

Given that:

• ti = pT
i z0; and

• z0 ∼ N {
0, Sz0z0

}
it follows that ti ∼ N {

0, λi

}
. As ti is Gaussian distributed, central moments

of E
{
tmi
}

are 0 if m is odd and λ
m/2 (m − 1)!!. If m is even.2 For m = 2,

E
{
tmi
} = λi and for m = 4, E

{
tmi
} = 3λ2

i . Substituting this into (8.47) gives
rise to

E
{
φ2

i

} = 4
(
3λ4

i − 2λ2
i + λ2

i

) = 8λ2
i . (8.48)

Covariance of φi and φj . The covariance between two primary residuals is

E
{
φiφj

} = E
{
4
(
t2
i − λi

) (
t2
j − λj

)}
(8.49)

and can be simplified to

E
{
φiφj

} = 4
(
E
{
t2
i t2

j

}− λjE
{
t2
i

}− λiE
{
t2
j

}+ λiλj

)
. (8.50)

Now, substituting E
{
t2
i

} = λi , E
{
t2
j

}
= λj and E

{
t2
i t2

j

}
= λiλj , which follows

from the Isserlis theorem (Isserlis 1918) and the fact that ti and tj are statistically
independent and Gaussian distributed, (8.50) reduces to

E
{
φiφj

} = 4
(
2λiλj − 2λiλj

) = 0. (8.51)

Consequently, there is no covariance between φi and φj , implying that the covari-
ance matrices for φ and φd reduce to diagonal matrices.

Distribution function of φi . The random variable

φ̃i = φi + 2λi

2λi

(8.52)

yields the following distribution function

φ̃i =
(

ti√
λi

)2

∼ χ2 (1) (8.53)

2 !! is the double factorial and the product of the odd numbers only, e.g. 9!! = 1 · 3 · 5 · 7 ·
9 = 945.
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since ti/√
λi ∼ N{0, 1}. In other words, the distribution function of φi can be

obtained by substituting the transformation in (8.52) into the distribution function
of a χ2 distribution with one degree of freedom

F
(
φ̃i

) = 1√
2� (1/2)

φ̃i∫
0

ψ̃
−1/2
i e− ψ̃i/2dψ̃i (8.54)

which gives rise to

F
(
φi

) = 1

2
√

2λi� (1/2)

φi+2λi

2λi∫
−2λi

(
ψi+2λi

2λi

)−1/2
e
−ψi+2λi

4λi dψi. (8.55)

With respect to (8.55), the PDF f
(
φi

)
> 0 within the interval

(−2λi, ∞
)
, which

follows from the fact that t2
i ≥ 0. In (8.54) and (8.55), � (1/2) is the gamma func-

tion, defined by the improper integral � (1/2) = ∫∞
0 t−1/2 exp (−t) dt . Figure 8.5

shows the probability density function of the primary residuals for various values
of λi . The vertical lines in this figure represent the asymptotes at −2λi .

Central moments of φi . The determination of the central moments of φi relies
on evaluating the definition for central moments, which is given by

E
{
φm

i

} = E
{

2m
(
t2
i − λi

)m} =
∞∫

−2λi

φm
i f
(
φi

)
dφi. (8.56)

−10 −5 0 5
0

1

2

3

f
(f

i)

fi

i = 5
i = 3
i = 1
i = 0.1

Figure 8.5 Probability density function of φi for different values of λi .
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According to (8.56), the central moments can be obtained directly by evaluating
the expectation E

{(
t2
i − λi

)m}
, which gives rise to

2mE
{(

t2
i − λi

)m} = 2mE

⎧⎨⎩
m∑

j=0

(−1)j
(

m

j

)
t

2(m−j)

i λ
j

i

⎫⎬⎭ . (8.57)

Isolating the terms in (8.57) that are associated with t
2j

i and substituting the
central moments for E

{
t

2j

i

}
yields

2mE
{(

t2
i − λi

)m} = (2λi

)m⎛⎝ m∑
j=0

(−1)j
(

m

j

)
(2 (m − j) − 1)!!

⎞⎠ , (8.58)

where (
m

j

)
= m!

j ! (m − j)!
(8.59)

are binomial coefficients and m! = 1 · 2 · 3 · · · (m − 1) · m. Table 8.2 summarizes
the first seven central moments of φi .

8.3.5 Improved residuals for eigenvalues

Equation (8.16) shows that the improved residuals are time-based sums of the
primary residuals and asymptotically Gaussian distributed, given that the primary
residuals are i.i.d. sequences. Following from the geometric analysis of the data
structure z0 = �s + g and its assumptions, discussed in Subsection 2.1.1, the
model and residual subspaces are spanned by the n dominant and the remaining
nz − n eigenvectors of E

{
z0zT

0

} = Sz0z0
, respectively.

Table 8.2 First seven central moments of φi .

Order m Central moment E
(
φm

i

)
1 0
2 222λ2

i = 8λ2
i

3 238λ3
i = 64λ3

i

4 2460λ4
i = 960λ4

i

5 25544λ5
i = 17, 408λ5

i

6 266040λ6
i = 386, 560λ6

i

7 2779008λ7
i = 10, 113, 024λ7

i
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Using the definition of the primary residuals for the eigenvalues, the improved
residuals become

θi

(
z0,K

) = 1√
K

K∑
k=1

φi(z0(k)) = 1√
K

K∑
k=1

(
pT

i z0(k)zT
0 (k)pi − λi

)
. (8.60)

As the eigenvectors and eigenvalues are functions of z0 ∼ N {
0, Sz0z0

}
, the

dependencies on these parameters can be removed from (8.16) and hence, θi =
θi

(
z0,K

)
with K being the number of samples and φi = φi(z0(k)). The first and

second order moments of θi

(
z0, K

)
are as follows

E
{
θi

(
z0,K

)} = E

{
1√
K

K∑
k=1

(
pT

i z0(k)zT
0 (k)pi − λi

)}

E
{
θi

(
z0,K

)} = 1√
K

pT
i

K∑
k=1

E
{
z0(k)zT

0 (k)
}

pi −
√

Kλi

E
{
θi

(
z0,K

)} =
√

K
(
pT

i Sz0z0
pi − λi

) = 0

(8.61)

and

E
{
θ2
i

(
z0, K

)} = 1
K

E

{
K∑

k=1

φ2
i

(
z0(k)

)}

E
{
θ2
i

(
z0, K

)} = 1
K

K∑
k=1

E
{
φ2

i

(
z0(k)

)}−

2
K

K−1∑
l=1

K∑
k=l+1

E
{
φi

(
z0(l)

)
φi

(
z0(k)

)}
(8.62)

E
{
θ2
i

(
z0, K

)} = 2λ2
i − 2

K

K−1∑
l=1

K∑
k=l+1

E
{
t2
i (l)t2

i (k) − λit
2
i (l) − λ2

i t
2
i (k) + λ2

i

}

E
{
θ2
i

(
z0, K

)} = 2λ2
i − 2

K

K−1∑
l=1

K∑
k=l+1

(
λ2

i − λ2
i − λ2

i + λ2
i

) = 2λ2
i ,

respectively. Note that the factor 2 in (8.28) has been removed, as it is only
a scaling factor. The variance of φi is therefore 2λ2

i . That E
{
t2
i (l)t2

i (k)
} = λ2

i

follows from the Isserlis theorem (Isserlis 1918). The improved residuals can
now be utilized in defining non-negative quadratic statistics.

The separation of the data space into the model and residual subspaces yielded
two non-negative quadratic statistics. These describe the variation of the sample
projections onto the model subspace (Hotelling’s T 2 statistic) and onto the resid-
ual subspace (Q statistic). With this in mind, the primary residuals associated
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with the n largest eigenvalues and remaining nz − n identical eigenvalues can be
used to construct the Hotelling’s T 2 and residual Q statistics, respectively.

Intuitively, the definition of these statistics is given by

T 2
θ (K) =

n∑
i=1

θ2
i

(
z0, K

)
2λ2

i

T 2
θ (K) = (θ1(z0, K) · · · θn(z0,K)

)⎡⎢⎣1/2λ2
1

· · · 0
...

. . .
...

0 · · · 1/2λ2
n

⎤⎥⎦
⎛⎜⎝θ1(z0, K)

...

θn(z0, K)

⎞⎟⎠
T 2

θ (K) = 1
2θT (z0,K)�−2θ(z0,K)

Qθ(K) =
nz∑

i=n+1

θ2
i

(
z0, K

) = (θ1(z0, K) · · · θ1(z0, K)
)⎛⎜⎝θ1(z0, K)

...

θ1(z0, K)

⎞⎟⎠
Qθ(K) = θT

d (z0,K)θd(z0,K) (8.63)

and follows the definition of the conventional Hotelling’s T 2 and Q statistics in
(3.8) and (3.15), respectively.

As the number of recorded samples, K , grows so does the upper summation
index in (8.60). This, however, presents the following problem. A large K may
dilute the impact of a fault upon the sum in (8.60) if only the last few samples
describe the abnormal condition. As advocated in Chapter 7, however, this issue
can be addressed by considering samples that are inside a sliding window only.
Defining the window size by k0, the incorporation of a moving window yields
the following formulation of (8.60)

θi(z0, k) = 1√
k0

k∑
l=k−k0+1

φi

(
z0(l)

)
. (8.64)

The selection of k0 is a trade-off between accuracy and sensitivity. The
improved residuals converge asymptotically to a Gaussian distribution, which
demands larger values for k0. On the other hand, a large k0 value may dilute the
impact of a fault condition and yield a larger average run length, which is the time
it takes to detect a fault from its first occurrence. The selection of k0 is discussed
in the next section, which revisits the simulation examples in Section 8.1.

8.4 Revisiting the simulation examples of Section 8.1

This section revisits both examples in Section 8.1, which were used to demon-
strate that the conventional MSPC framework may not detect changes in the
underlying covariance structure.
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8.4.1 First simulation example

Figure 8.1 showed that the scatter diagram and the Hotelling’s T 2 statistic only
detected the first change but not the second one. Recall that both changes resulted
in a rotation of the control ellipse for z

(0)
1 and z

(0)
2 by 45◦. Whilst the variance of

both score variables remained unchanged, the variances for the second change
were significantly reduced such that the rotated control ellipse was inside the
original one.

Given that both changes yield a different eigendecomposition for the variable
pairs z

(1)
1 , z

(1)
2 and z

(2)
1 , z

(2)
2 , the primary residuals are expected to have a mean

different from zero. Before determining improved residuals, however, k0 needs to
be determined. If k0 is too small the improved residuals may not follow a Gaus-
sian distribution accurately, and a too large k0 may compromise the sensitivity in
detecting slowly developing faults (Kruger and Dimitriadis 2008; Kruger et al.
2007).

Although the transformation matrix T(0) and the variances of the i.d. score
variables σ 2

s1
and σ 2

s2
are known here, the covariance matrix Sz0z0

and its eigen-
decomposition would need to be estimated in practice. Table 8.3 summarizes the
results of estimating the covariance of both improved residual variables for a
variety of sample sizes and window lengths.

As per their definition, the improved residuals asymptotically follow a Gaus-
sian distribution of zero mean and variance 2λ2

i if the constant term in (8.28)
is not considered. The mean and variance for θ1 and θ2 are 2 × 102 = 200
and 2 × 22 = 8, respectively. The covariance E

{
θ1θ2

} = 0 is also estimated in
Table 8.3.

The entries in this table are averaged values for 1000 Monte Carlo simula-
tions. In other words, for each combination of K and k0 a total of 1000 data
sets are simulated and the mean, variance and covariance values for each set are
the averaged estimates. The averages of each combination indicate that the main
effect for an accurate estimation is K , the number of reference samples of θ1 and
θ2. Particularly window sizes above 50 require sample sizes of 2000 or above to
be accurate.

This is in line with expectation, following the discussion in Section 6.4. The
entries in Table 8.3 suggest that the number of reference samples for θ1 and θ2,
K , need to be at least 50 times larger then the window size k0. Another important
issue is to determine how large k0 needs to be to accurately follow a Gaussian
distribution. Figure 8.6 shows Gaussian distribution functions in comparison with
the estimated distribution functions of φ1 and φ2, and θ1 and θ2 for k0 = 10, 50
and 200.

As expected, the upper plot in this figure shows that the distribution function
of primary residuals depart substantially from a Gaussian distribution (straight
line). In fact, (8.55) and Figure 8.5 outline that they follow a central χ2 distri-
bution. The plots in the second, third and bottom row, however, confirm that the
sum of the primary residuals converge to a Gaussian distribution.
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Table 8.3 Estimated means and variances of improved residuals.

K
/
k0

Variable 10 20 50 100 200 500

100 ̂̄θ1 0.077 −0.268 0.152 −0.624 0.482 0.137̂̄θ2 −0.031 −0.005 −0.042 −0.049 0.003 0.029̂̄σ 2
θ1

180.96 161.56 117.68 64.57 33.70 12.98̂̄σ 2
θ12

0.200 −0.156 0.512 −0.077 −0.264 −0.022̂̄σ 2
θ2

7.245 6.554 4.652 2.672 1.354 0.525

200 ̂̄θ1 −0.001 −0.132 0.062 −0.128 −0.255 −0.652̂̄θ2 −0.011 0.010 −0.002 −0.076 −0.008 0.047̂̄σ 2
θ1

192.81 180.26 151.28 113.99 69.15 26.59̂̄σ 2
θ12

0.211 0.039 −0.370 0.015 0.066 0.114̂̄σ 2
θ2

7.538 7.334 6.133 4.874 2.592 1.070

500 ̂̄θ1 0.143 −0.145 −0.049 −0.137 −0.927 0.088̂̄θ2 0.008 −0.023 −0.038 0.007 0.039 0.082̂̄σ 2
θ1

200.88 191.93 179.00 157.26 129.33 69.32̂̄σ 2
θ12

0.139 0.059 −0.323 0.328 −0.640 −0.379̂̄σ 2
θ2

7.966 7.709 7.268 6.322 5.135 2.822

1000 ̂̄θ1 0.051 0.036 −0.071 0.040 0.114 0.315̂̄θ2 0.007 0.004 0.014 −0.028 −0.012 0.018̂̄σ 2
θ1

199.20 196.82 191.55 182.48 160.39 114.959̂̄σ 2
θ12

0.159 −0.060 −0.215 0.008 0.134 −0.372̂̄σ 2
θ2

7.899 7.866 7.657 7.114 6.511 4.758

2000 ̂̄θ1 0.011 0.003 −0.052 0.194 −0.128 0.017̂̄θ2 0.009 −0.003 0.010 −0.000 −0.020 0.019̂̄σ 2
θ1

198.96 198.26 196.34 191.06 178.17 148.24̂̄σ 2
θ12

−0.120 −0.033 0.007 −0.134 0.481 −0.250̂̄σ 2
θ2

7.984 7.887 7.870 7.622 7.158 6.209

5000 ̂̄θ1 −0.012 0.031 0.074 0.070 0.068 0.139̂̄θ2 −0.002 −0.012 −0.000 −0.004 −0.005 0.045̂̄σ 2
θ1

199.85 200.10 197.85 197.44 192.99 184.62̂̄σ 2
θ12

−0.041 −0.007 0.124 −0.034 −0.179 0.005̂̄σ 2
θ2

7.989 7.948 7.934 7.846 7.706 7.091
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Figure 8.6 Distribution functions of primary and improved residuals.
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Figure 8.7 First simulation example revisited.

Whilst the smaller window sizes of k0 = 10 and k0 = 50 still resulted
in significant departures from the Gaussian distribution, k0 = 200 produced
a close approximation of the Gaussian distribution. Together with the
analysis of Table 8.3, a window size of k0 = 200 would require a total of
K = 200 × 50 = 10 000 reference samples to ensure that the variance of θ1 and
θ2 are close to 2λ2

1 and 2λ2
2, respectively.

Using the same 1000 Monte Carlo simulations to obtain the average values in
Table 8.3 yields an average of 200.28 and 7.865 for E

{
θ2

1

}
and E

{
θ2

2

}
, respec-

tively, and −0.243 for E
{
θ1θ2

}
. After determining an appropriate value for k0,

the Hotelling’s T 2
θ statistics can now be be computed as shown in (8.60).

Figure 8.7 compares the conventional Hotelling’s T 2 statistic with the one
generated by the statistical local approach. For k0 = 200, both plots in this figure
show a total of 100 samples obtained from the original covariance structure (left
portion), the first change (middle portion) and the second change (right portion
of the plots).

As observed in Figure 8.1, the conventional Hotelling’s T 2 statistic could
only detect the first change but not the second one. In contrast, the non-negative
quadratic statistic based on the statistical local approach is capable of detecting
both changes. More precisely, the change in the direction of both eigenvectors
(first change) and both eigenvectors and eigenvalues (second change) yields an
expectation for both primary residual function that is different from 0.

8.4.2 Second simulation example

Figures 8.2 and 8.3 highlight that conventional MSPC can only detect one out
of the four changes of the original covariance structure. The remaining ones,
although major, may not be detectable. Each of these changes alter the orientation
of the model and residual subspaces as well as the orientation of the control
ellipse. This, in turn, also yields a different eigendecomposition in each of the four
cases compared to the eigendecomposition of the original covariance structure.
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The primary residuals are therefore expected to have mean values that differ
from zero. The first step is to determine an appropriate value for k0. Assuming that
the variances for each of the improved residuals, E

{
θ2

1

} = 2λ2
1 = 512, E

{
θ2

2

} =
2λ2

2 = 128 and E
{
θ2

3

} = 2λ2
3 = 0.5, need to be estimated, the same analysis as

in Table 8.3 yields that K should be 100 times larger than k0.
Figure 8.8 compares the estimated distribution function of the improved resid-

uals with a Gaussian distribution function (straight lines) for different values of
k0. The estimation of each distribution function was based on K = 100 × 200 =
20 000 samples. As the primary residuals are χ2 distributed the approximated
distribution function, consequently, showed no resemblance to a Gaussian one.
For k0 = 10 and k0 = 50, the estimated distribution function still showed sig-
nificant departures from a Gaussian distribution. Selection k0 = 200, however,
produced a distribution function that is close to a Gaussian one.

This is expected, as the improved residuals are asymptotically Gaussian dis-
tributed. In other words, the larger k0 the closer the distribution function is to a
Gaussian one. It is important to note, however, that if k0 is selected too large it
may dilute the impact of a fault condition and render it more difficult to detect.
With this in mind, the selection of k0 = 200 presents a compromise between
accuracy of the improved residuals and the average run length for detecting an
incipient fault condition.

Figure 8.9 contrasts the conventional non-negative quadratic statistics (upper
plots) with those based on the statistical local approach (lower plots) for a total
of 100 simulated samples. This comparison confirms that the Hotelling’s T 2 and
Q statistics can only detect the first change but are insensitive to the remaining
three alterations.

The non-negative quadratic statistics relating to the statistical local approach,
however, detect each change. It is interesting to note that the first change only
affected the Qθ statistic, whilst the impact of the remaining three changes mani-
fested themselves in the Hotelling’s T 2

θ statistic. This is not surprising, however,
given that the primary residuals are a centered measure of variance, which follows
from (8.28).

To explain this, the variance of the three score variables can be estimated
for each covariance structure. Determining the score variables as t(m) = PT z(m),
where P stores the eigenvectors of S(0)

zz , allows us to estimate these variances.
Using a Monte Carlo simulation including 1000 runs, Table 8.4 lists the average
values of the estimated variances. The Monte Carlo simulations for each of the
five covariance structures were based on a sample size of K = 1000.

The sensitivity of the Hotelling’s T 2
θ and Qθ statistics for each alternation

follows from the estimated averages in this table. The initial 30◦ rotation pro-
duces slightly similar variances for the first and second principal component.
The variance of the third principal component, however, is about three and a
half times larger after the rotation. Consequently, the Hotelling’s T 2

θ statistic is
only marginally affected by the rotation, whereas a very significant significant
impact arises for the Qθ statistic.
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Figure 8.8 Distribution functions of primary and improved residuals.
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Figure 8.9 Second simulation example revisited.

Table 8.4 Estimated variances of t
(m)
1 , t

(m)
2 and t

(m)
3 .

λ̂j /m m = 0 m = 1 m = 2 m = 3 m = 4

λ̂1 15.9934 15.2373 3.8177 3.8221 3.8191
λ̂2 7.9907 7.4069 1.8567 1.8558 1.8518
λ̂3 0.4998 1.8104 0.4734 0.4531 0.4326

In contrast, the average eigenvalue for the second, third and fourth alteration
produced averaged first and second eigenvalues that are around one quarter of
the original ones. The averaged third eigenvalue, however, is very similar to the
original one. This explains why these alterations are detectable by the Hotelling’s
T 2

θ statistic, while the Qθ statistic does not show any significant response.
Plotting the improved residuals for each covariance structure and K = 1000,

which Figure 8.10 shows, also confirms these findings. For a significance of
0.01, the control limits for each improved residual are ±2.58

√
2λi . The larger

variance of the third score variable yielded a positive primary residual for the first
alteration. Moreover, the smaller variances of the first and second score variables
produced negative primary residuals for the remaining changes.

8.5 Fault isolation and identification

For describing a fault condition, Kruger and Dimitriadis (2008) introduced a fault
diagnosis approach that extracts the fault signature from the primary residuals.
The fault signature can take the form of a simple step-type fault, such as a
sensor bias that produces a constant offset, or can have a general deterministic
function. For simplicity, the relationship of this diagnosis scheme concentrate
first on step-type faults in Subsection 8.5.1. Subsection 8.5.2 then expands this
concept to approximate a general deterministic fault signature.
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Figure 8.10 Plots of the three improved residuals for each of the five covariance
structures.

8.5.1 Diagnosis of step-type fault conditions

The augmented data structure to describe a step-type follows from (3.68)

z0f
= �s + g + �z0 = z0 + �z0 (8.65)

where �z0 ∈ R
nz represents an offset term that describes the fault condition. In

analogy to the projection-based variable reconstruction approach, the offset can
be expressed as follows

�z0 = υμ. (8.66)

Here, ν is the fault direction and μ is the fault magnitude. With respect to
the convention introduced by Isermann and Ballé (1997), the detection of a fault
condition and the estimation of υ refers to fault isolation . As μ describes the size
of the fault, the estimation of the fault magnitude represents the fault identification
step.

Equation (8.67) describes the impact of the offset term upon the primary
residual vector for the ith eigenvector

φif
= tf z0f

− λipi = z0f
zT

0f
pi − λipi (8.67)

for omitting the constant of 2 in (8.20). Substituting (8.65) into (8.67) yields

φif
= (z0 + �z0

) (
z0 + �z0

)T pi − λipi

φif
= z0zT

0 pi − λipi︸ ︷︷ ︸
=φi

+z0 �zT
0 pi︸ ︷︷ ︸

μi

+�z0 zT
0 pi︸︷︷︸
=ti

+�z0�zT
0 pi

φif
= φi + z0μi + �zT

0 ti + �z0μi.

(8.68)
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Given that E
{
φi

} = 0, E
{
z0

} = 0 and E
{
ti
} = 0, taking the expectation of

(8.86) gives rise to

E
{
φif

}
= �z0�zT

0 pi

E
{
φif

}
= [I ⊗ pi

]T (
�z0 ⊗ �z0

) (8.69)

Here ⊗ refers to the Kronecker product of two matrices. The results of the two
Kronecker products are as follows

[
I ⊗ pi

]T =

⎡⎢⎢⎢⎣
pT

i 0T · · · 0T

0T pT
i · · · 0T

...
...

. . .
...

0T 0T · · · pT
i

⎤⎥⎥⎥⎦ ∈ R
nz×n2

z (8.70a)

(
�z0 ⊗ �z0

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�z2
01

�z01
�z02
...

�z01
�z0nz

...

�z0nz
�z01

�z0nz
�z02
...

�z2
0nz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

n2
z . (8.70b)

With �z0i
�z0j

= �z0j
�z0i

, (8.69) has a total of nz(nz+1)/2 unknowns but only
nz linearly independent equations and is hence an underdetermined system. How-
ever, there are a total of nz equations for 1 ≤ i ≤ nz. Hence, (8.69) in augmented
form becomes ⎛⎜⎜⎜⎜⎜⎜⎝

E
{
φ1f

}
E
{
φ2f

}
...

E
{
φnzf

}

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

E{�f }∈R
n2
z

=

⎡⎢⎢⎢⎢⎣
[
I ⊗ p1

]T[
I ⊗ p2

]T
...[

I ⊗ pnz

]T

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

�∈R
n2
z×n2

z

(
�z0 ⊗ �z0

)︸ ︷︷ ︸
ζ∈R

n2
z

. (8.71)

It is interesting to note that the linear dependency in (8.69) and (8.71) follows
from the analysis in Subsection 8.3.3 and particularly (8.33). It is therefore pos-
sible to remove the redundant nz(nz−1)/2 column vectors of � and nz(nz−1)/2

elements of the vector ζ , which gives rise to

E
{
�f

} = �redζ red (8.72)
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where �red ∈ R
n2
z×

nz(nz+1)

2 and ζ red ∈ R

nz(nz+1)

2 . The expectation on the left hand
side of (8.72) can be estimated from the recorded data and the matrix �red is
made up of the elements of loading vectors and hence known. The elements of
the vector ζ red are consequently the only unknown and can be estimated by the
generalized inverse of �red, i.e. �

†
red

ζ̂ red = �̂
†
red
̂̄�f . (8.73)

For estimating ̂̄�f , however, it is possible to rely on the improved residuals,
since

̂̄�f = 1
k0

k∑
l=k−k0+1

�
(
z0(l) + �z0

) = 1√
k0

�
(
z0 + �z0, k

)
. (8.74)

Here, �T
(
z0 + �z0, k

) = (θT
1(z0 + �z0, k) · · · θT

nz
(z0 + �z0, k)

)
and �f (l)

= �
(
z0(l) + �z0

)
. In other words, the fault condition can be obtained directly

from the improved residuals.
From the estimation of ζ̂ red, only the terms �ẑ2

01
, �ẑ2

02
, . . . , �ẑ2

0nz
are of

interest, as these allow estimation of υ and μ. The estimate of the fault magnitude
is given by

μ̂ =
√√√√ nz∑

i=1

�ẑ2
0i

. (8.75)

For estimating the fault direction, however, only the absolute value for each
element of υ̂ is available. For determining the sign for each element, the data
model of the fault condition can be revisited, which yields

E
{

z0f
− �z0

}
= 0 (8.76)

and leads to the following test

̂̄z0if
∓
√

�ẑ2
0i

=
{

≈ 0 if the sign is correct

≈ 2�z0if
if the sign is incorrect

for all 1 ≤ i ≤ nz.

(8.77)

After determining all signs using (8.77), the estimation of the fault direction, υ̂,
is completed.

It should be noted that the above fault diagnosis scheme is beneficial, as
the traditional MSPC approach may be unable to detect changes in the data
covariance structure. Moreover, the primary residuals are readily available and
the matrix �̂

†
red is predetermined, thus allowing us to estimate the fault signa-

ture in a simple and straightforward manner. It should also be noted that ζ̂ red
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provides a visual aid to demonstrate how the fault signature affects different
variable combinations. For this, the individual elements in ζ̂ red can be plotted in
a bar chart. The next subsection discusses how to utilize this scheme for general
deterministic fault conditions.

8.5.2 Diagnosis of general deterministic fault conditions

The data structure for a general deterministic fault condition is the following
extension of (8.65)

z0f
(k) = �s(k) + g(k) + �z0(k), (8.78)

where �z0(k) is some deterministic function representing the impact of a fault
condition. Utilizing the fault diagnosis scheme derived in (8.67) to (8.73), the
fault signature can be estimated, or to be more precise, approximated by a fol-
lowing moving window implementation of (8.73)

̂̄�f (k) = 1
K

k∑
l=k−K+1

�
(
z0 (l) + �z0 (l)

)
. (8.79)

As in Chapter 7, K is the size of the moving window. The accuracy of approx-
imating the fault signature depends on the selection of K but also the nature
of the deterministic function. Significant gradients or perhaps abrupt changes
require smaller window sizes in order to produce accurate approximations. A
small sample set, however, has the tendency to produce a less accurate esti-
mation of a parameter, which follows from the discussion in Sections 6.4. To
guarantee an accurate estimation of the fault signature, it must be assumed that
the deterministic function is smooth and does not contain significant gradients or
high frequency oscillation. The fault diagnosis scheme can therefore be applied
in the presence of gradual drifts, for example unexpected performance deteriora-
tions as simulated for the FCCU application study in Section 7.5 or unmeasured
disturbances that have a gradual and undesired impact upon the process behavior.

One could argue that the average of the recorded process variables within
a moving window can also be displayed, which is conceptually simpler than
extracting the fault signature from the primary or improved residual vectors. The
use of the proposed approach, however, offers one significant advantage. The
extracted fault signature approximates the fault signature as a squared curve. In
other words, it suppresses values that are close to zero and magnifies values that
are larger than one. Hence, the proposed fault diagnosis scheme allows a better
discrimination between normal operating conditions and the presence of a fault
condition. This is exemplified by a simulation example in the next subsection.

8.5.3 A simulation example

This simulation example follows from the data model of the first intuitive example
in Subsection 8.1.1. The two variables have the data and covariance structure
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described in (8.1) and (8.2), respectively. To construct a suitable deterministic
fault condition, the three different covariance structures that were initially used
to demonstrate that changes in the covariance structure may not be detectable
using conventional MSPC have been revisited as follows. Each of the three
covariance structures are identical and equal to that of (8.2). The three variable
sets containing a total of 5000 samples each are generated as follows(

z
(0)
01

(k)

z
(0)
02

(k)

)
=
[√

3/2 −2/2

2/2
√

3/2

](
s
(0)
1 (k)

s
(0)
2 (k)

)
(8.80a)

(
z
(1)
01

(k)

z
(1)
02

(k)

)
=
[√

3/2 −2/2

2/2
√

3/2

](
s
(1)
1 (k)

s
(1)
2 (k)

)
(8.80b)

⎛⎝z
(2)
01f

(k)

z
(2)
02f

(k)

⎞⎠ =
[√

3/2 −2/2

2/2
√

3/2

](
s
(2)
1 (k)

s
(2)
2 (k)

)
+
(

5 sin (2πk/5000)

5 sin (4πk/5000)

)
(8.80c)

where 1 ≤ k ≤ 5000 is the sample index. It should also be noted that the samples

for
(
s
(0)
1 (k) s

(0)
2 (k)

)T

,
(
s
(1)
1 (k) s

(1)
2 (k)

)T

and
(
s
(2)
1 (k) s

(2)
2 (k)

)T

are statisti-
cally independent of each other. Moreover, each of the source variables has a
mean of zero. The properties of the source signals for each of the data sets are
therefore

E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
(0)
1 (k)

s
(0)
2 (k)

s
(1)
1 (k)

s
(1)
2 (k)

s
(2)
1 (k)

s
(2)
2 (k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.81)
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(8.82)
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= δkl

⎡⎢⎢⎢⎢⎢⎣
10 0 0 0 0 0
0 2 0 0 0 0
0 0 10 0 0 0
0 0 0 2 0 0
0 0 0 0 10 0
0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎦ .

Concatenating the three data sets then produced a combined data set of 15 000
samples. The fault diagnosis scheme introduced in Subsections 8.5.1 and 8.5.2,
was now applied to the combined data set for a window size of K = 150.
Figure 8.11 shows the approximated fault signature each of the data sets. As
expected, the estimated fault signature for �̂z2

01
, �̂z01

�̂z02
and �̂z2

02
show neg-

ligible departures from zero for the first two data sets. For the third data set,
an accurate approximation of the squared fault signature 25 sin2 (2πk/5000) and
25 sin2 (4πk/5000) as well as the cross-product term 25 sin (2πk/5000) sin (4πk/5000)

(dashed line) can be seen at first glance.
A closer inspection, however, shows a slight delay with which the original

fault signature is approximated, particularly for higher frequency fault signatures
in the middle and lower plots in Figure 8.11. According to (8.79), this follows
from the moving window approach, which produces an average value for the
window. Consequently, for sharply increasing or reducing slopes, like in the case
of the sinusoidal signal, the use of the moving window compromises the accuracy
of the approximation. The accuracy, however, can be improved by reducing in
the window size. This, in turn, has a detrimental effect on the smoothness of the
approximation.

The last paragraph in Subsection 8.5.2 raises the question concerning the
benefit of the proposed fault diagnosis scheme over a simple moving window
average of the process variables. To substantiate the advantage of extracting the
squared fault signature from the primary residuals instead of the moving window
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average of the process variables, Figure 8.12 shows the approximation of the
fault signature using a moving window average of the process variables. In order
to conduct a fair comparison, the window size for producing the resultant fault
signatures in Figure 8.12 was also set to be K = 150.

It is interesting to note that the variance of the estimated fault signature for
the first two data sets appears to be significantly larger relative to the variance
of the estimated fault signature when directly comparing Figures 8.11 and 8.12.
In fact, the amplitude of the sinusoidal signals is squared when using the pro-
posed approach compared to the moving window average of the recorded process
variables. Secondly, the accuracy of estimating the fault signature in both cases
is comparable.

Based on the results of this comparison, the benefit of the proposed fault
diagnosis scheme over a simple moving window average of the process vari-
ables becomes clear if the amplitude of the sinusoidal is reduced from five to
three for example. It can be expected in this case that the variance of the estimated
fault signature for the first 10 000 samples increases more substantial relative to
the reduced fault signature. This, however, may compromise a clear and distinc-
tive discrimination between the fault signature and normal operating condition,
particularly for smaller window sizes.

8.6 Application study of a gearbox system

This section extends the comparison between the non-negative quadratic statistics
constructed from the improved residuals with those based on the score variables
using an application study of a gearbox system. This system is mounted on an
experimental test rig to record normal operating conditions as well as a number
of fault conditions.
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The next subsection gives a detailed description of the gearbox system and
Subsection 8.6.2 explains how the fault condition was injected into the system.
Subsection 8.6.3 then summarizes the identification of a PCA-based monitor-
ing model and the construction of improved residuals. Subsection 8.6.4 finally
contrasts the performance of the non-negative quadratic statistics based on the
improved residuals with those relying on the score variables.

8.6.1 Process description

Given the widespread use of gearbox systems, the performance monitoring of
such systems is an important research area in a general engineering context,
for example in mechanical and power engineering applications. A gearbox is an
arrangement involving a train of gears that transmit power and regulate rotational
speed, for example, from an engine to the axle of a car.

Figure 8.13 presents a schematic diagram of the two-stage helical gearbox
system (upper plot) and a similar gearbox to that used to generate the recorded
vibration data (lower plot). Table 8.5 provides details of the gearbox, which was
operated under full-load conditions of 260Nm.

Figure 8.13 shows that a total of four accelerometers are mounted on this
gearbox system, which record the vibration signals simultaneously at a frequency
of 6.4 kHz. Each recorded data set includes a total of 32 768 samples. Two data
sets were recorded that describe a normal operating condition and a further six
data sets that represent a gradually increasing fault condition. Figure 8.14 shows
the first 5000 samples of each of the four vibration sensors, z1 to z4, for one of
the reference sets.

8.6.2 Fault description

For a gearbox system, a tooth breakage is a serious localized fault. Such a fault
was simulated here by removing a certain percentage of one tooth in the pinion
gear. This tooth removal enabled an experimental representation of a gradual
fault advancement under predefined conditions.

The simulated tooth breakage represents the chipping of small parts of one
tooth, which is one of the common fault conditions in gearbox systems. For this,
the total length of one tooth was gradually removed by increments of 10%. The
recorded fault conditions here included a 10% to 50% and a 100% removal of
the tooth, that is, a total of six additional data sets that describe the removal of
one tooth in various stages. These data sets are referred to here as 10% Fault ,
20% Fault to 100% Fault .

Consequences of being unable to detect such faults at early stages include
productivity decreases in manufacturing processes, reduced efficiency of engines,
equipment damage or even failure. An early detection can provide significant
improvements in the reduction of operational and maintenance costs, system
down-time, and lead to increased levels of safety, which is an ever-growing
concern.
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Figure 8.13 Schematic diagram of the gearbox system.

Table 8.5 Specification of gearbox system under study.

Detail Number of Speed of Mashing Contact Overlap
teeth stage frequency ratio ratio

1st stage 34/70 24.33 rev
s

827.73Hz 1.359 2.890
2nd stage 29/52 6.59 rev

s
342.73Hz 1.479 1.479
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Figure 8.14 First 5000 samples of reference data.

An incipient fault in a mechanical system usually affects certain parame-
ters, such as vibration, noise and temperature. Analyzing these external variables
allows the performance monitoring of gears, which are usually inaccessible with-
out dismantling the system. Extracting relevant information from the recorded
signals is hence essential for detecting any irregularity that could be caused by
tooth breakage or wear.

Baydar and Ball (2001), Baydar et al. (1999, 2001) and Ge et al. (2010)
analyzed recorded vibration data from this system using a variety of different
methods. Other research work on detecting abnormal operating conditions in
gearbox systems include Bartelmus and Zimroz (2009), Hu et al. (2007), Stander
et al. (2002), Staszewski and Tomlinson (1997), Tan and Mba (2005), Wang
(2008) and Wu et al. (2008).

Since there may be more than one vibration sensor, Baydar and Ball (2001);
Baydar et al. (1999, 2001) introduced the application of MSPC to successfully
detect tooth defects. In a comprehensive comparison, Baydar et al. (2001) demon-
strated that MSPC is equally as sensitive in detecting tooth defects as signal-based
approaches but easier to implement in practice. More recent application of MSPC
methods in monitoring mechanical systems are given by He et al. (2007, 2009)
and Malhi and Gao (2004).

8.6.3 Identification of a monitoring model

This section utilizes PCA to identify a data model according to (2.2). Using one
of the reference data sets describing a fault-free operating condition, where no
portion of the tooth has been removed, the first steps include the centering and
scaling of the data and the estimation of the data correlation matrix.

It follows from Figure 8.14 that the mean value for each vibration signal is
close to zero. Estimating the mean yielded values of ̂̄z1 = 0.0008, ̂̄z2 = 0.0005,



MONITORING CHANGES IN COVARIANCE STRUCTURE 335̂̄z3 = 0.0005 and ̂̄z4 = 0.0013. The estimated variances for each sensor are σ̂1 =
0.0008, σ̂2 = 0.0010, σ̂3 = 0.0002 and σ̂4 = 0.0006.

By inspecting the variances, it is apparent that σ̂2 is five times larger than σ̂3
and also significantly larger than σ̂1 and σ̂4. Chapter 4 highlighted that significant
differences in variance may lead to dominant contributions of process variables
with larger variances than the computed score variables.

Jackson (2003) advocated to use of the correlation matrix (i) to ensure that
the variables are dimensionless, that is, their dimension for example ◦C or bar

reduces to one and (ii) each process variable has unity variance, which cir-
cumvents dominant contributions of variables with large variances. Using the
estimated mean and variance, the estimated correlation matrix of the four sensor
readings is given by

Ĉz0z0
=

⎡⎢⎢⎣
1.0000 0.3570 −0.0759 0.0719
0.3570 1.0000 −0.0791 0.3383

−0.0759 −0.0791 1.0000 −0.0071
0.0719 0.3383 −0.0071 1.0000

⎤⎥⎥⎦ . (8.83)

The elements of Ĉz0z0
suggest that there is some correlation among sensor

readings z1 and z2, between variables z2 and z4 but variable z3 shows hardly any
correlation with the other sensor readings. Different from the previous application
studies in this book, the process variables cannot be seen as highly correlated.
Equations (8.84a) and (8.84b) shows the eigendecomposition of Ĉz0z0

P̂ =

⎡⎢⎢⎣
−0.5279 0.2409 −0.6480 0.4934
−0.6723 −0.0827 −0.0422 −0.7344

0.1769 −0.8527 −0.4900 −0.0378
−0.4879 −0.4560 0.5816 0.4645

⎤⎥⎥⎦ (8.84a)

�̂ =

⎡⎢⎢⎣
1.5466 0 0 0

0 1.0099 0 0
0 0 0.9013 0
0 0 0 0.5421

⎤⎥⎥⎦ . (8.84b)

At first glance, the first two eigenvalues are above one whilst the fourth one is
significantly below one and also significantly smaller than the third one. Utilizing
the stopping rules for PCA models in Subsection 2.3.1, those that assume a high
degree of correlation and a significant contribution of the source signals to the
process variables are not applicable here. This, for example, eliminates the VPC
and VRE techniques.

An alternative is based on (2.122), which states that the sum of the eigenvalues
is equal to the sum of the variances of each process variable. In percentage, the
inclusion of n = 1, 2, 3 and 4 latent components yields a variance contribution
of 38.66%, 63.91%, 86.45% and 100%, respectively. This suggests the retention
of three latent components in the PCA model, as 86% of the variance of the



336 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

−4 −2 0 2 4

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99

0.997
0.999

Pr
ob

ab
ili

ty

−4 −2 0 2

Probability plot for Gaussian distribution

−4 −2 0 2 −4 −2 0 2 4

z04
z03

z02
z01

Figure 8.15 Distribution function of sensor readings.

scaled sensor readings can be recovered, and yields the following data model

z = diag
{
σ1 σ2 σ3 σ4

}
(�s + g) + z̄. (8.85)

Here, s ∼ N {
0, Sss

} ∈ R
3, ĝ ∼ N {0, 0.5421I} ∈ R

4. Estimates of the model
and residual subspaces are the first three eigenvectors and the last eigenvec-
tor of P̂, respectively. Up to a similarity transformation, �̂ = [ p̂1 p̂2 p̂3

]
, �̂

† =[
p̂1 p̂2 p̂3

]T
and �̂

⊥ = p̂T
4 . Moreover, � and Sss are assumed to be unknown.

Figure 8.15 compares the estimated distribution function (solid line) with that
of a Gaussian distribution of the same mean and variance (dashed-dot line). This
comparison shows a good agreement that confirms the validity of the underlying
assumptions for the data model in (8.85).

After establishing a PCA model from one of the reference sets, the next step
is to determine the window size k0. To guarantee statistical independence, the
performance of a variety of different sizes was tested using the second refer-
ence set. This entails the computation of the score variables, based on the PCA
model established from the first reference set, the calculation of the four primary
and improved residuals and the estimation of the distribution function for each
improved residual.

Figure 8.16 contrasts the four estimated distribution functions for the pri-
mary residuals and the improved residuals for k0 = 10, k0 = 100 and k0 = 400
with Gaussian ones of the same mean and variance. As expected, very substan-
tial departures from a Gaussian distribution arise for the primary residuals and
the improved residuals for k0 = 10. A closer but still inaccurate approximation
emerges for k0 = 100.

Increasing k0 to 400 gives rise to a substantially more accurate approximation
of a Gaussian distribution. As increasing this number further showed insignificant
differences and reducing the number decreased the accuracy, the selection of
k0 = 400 presents a suitable trade-off between accuracy and sensitivity.
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Figure 8.16 Distribution function of primary and improved residuals.
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8.6.4 Detecting a fault condition

The PCA monitoring model is now applied to each of the recorded data. These
include the two reference sets and the six data sets describing the fault condi-
tion. The PCA monitoring model determined in the previous subsection allows
establishing a total of four non-negative quadratic monitoring statistics:

1. the conventional Hotelling’s T 2 described in (3.8);

2. the residual Q statistic defined in (3.15);

3. the Hotelling’s T 2
θ statistic based on the first three improved residual vari-

ables and defined in (8.63); and

4. the residual Qθ statistic that is constructed from the remaining improved
residual variable and also defined in (8.63).

Given that the correlation matrix and the mean vector of the vibration signals
are estimates, the control limits for the Hotelling’s T 2 statistics are obtained by
applying (3.5). Applying (3.16) and (3.29) produced the control limits for the Q

and Qθ statistics, respectively. The significance for each control limit is 0.05.
Figure 8.17 shows the performance of the monitoring statistics for each of the

eight conditions. As expected, the first two reference conditions did not yield a
statistically significant number of violations of the control limit. For the remaining
data sets, referring to the removal of 10%, 20%, 30%, 40%, 50% and 100% for
one of the tooth in the pinion gear, a different picture emerged. Each of these
conditions led to a significant number of violations for each statistic.

Table 8.6 lists the calculated percentage number of violations of each statistic.
This analysis confirms that percentages for the two reference conditions are 5%
or below, indicating an in-statistical-control behavior of the gearbox system.

40

20

15
10
5

250
200
150
100
50

150
100
50

2.5 5 5 5 5

k - 1.000

T
2

T
q2

Q
q

Q

5 5 5 52.5 2.5 2.5 2.5 2.5 2.5 2.5

Base set 1 Base set 2 10% Fault 20% Fault 30% Fault 40% Fault 50% Fault 100% Fault

Figure 8.17 Non-negative quadratic statistics for conventional PCA (upper two
plots) and the statistical local approach (lower two plots).
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Table 8.6 Violations of control limits by monitoring statistic in [%].

Statistic Percentage violations

Base 1 Base 2 10% 20% 30% 40% 50% 100%

T2 2.05 2.05 6.05 3.45 3.48 8.06 5.39 7.57
Q 4.96 5.00 8.18 10.98 9.39 13.70 11.70 13.68
T 2

θ 2.89 2.88 100 99.52 99.65 100 100 100
Qθ 3.67 2.18 99.57 100 100 100 100 100

For each of the fault conditions, however, the percentage number of violations
exceeds 5% which hence concludes the performance of the gearbox is out-of-
statistical-control.

Despite the fact that each monitoring statistic correctly rejected the null
hypothesis for each of the fault conditions, it is important to note that
the Hotelling’s T 2

θ and Qθ statistic showed a significantly stronger response
to the recorded data involving the manipulated pinion gear. This is in line with
the observations in Section 8.5 and confirm the sensitivity of the improved
residuals in detecting small alterations in the orientation of the model and
residual subspaces and the control ellipsoid.

Identifying PCA models on the basis of each of the eight data sets allows
to examine the sensitivity issue in more detail. This relies on benchmarking
the second reference set and the six data sets describing the fault condition in
various stages against the first reference set. More precisely, the departures of
the eigenvectors and the differences for each of the four eigenvalues enables
assessing the changes in the orientation of the model and residual subspaces and
the orientation of the control ellipsoid. These changes can be described as follows

�ϕim = arccos
(̂
pT

i0
p̂im

) 180
π

�λim = λ̂im
− λ̂i0

λ̂i0

100%. (8.86)

Here, the indices i = 1, . . . , 4 and m = 1, . . . , 7 represent the latent compo-
nent and the data set, respectively, where m = 1 symbolizes the second reference
data set and m = 2, · · · , 7 corresponds to the data sets 10% Fault, 20% Fault,
30% Fault, 40% Fault, 50% Fault and 100% Fault, respectively. Figure 8.18 sum-
marizes the results of applying (8.86). Whilst the eigenvectors and eigenvalues
for the correlation matrices of both reference sets are very close to each other,
very significant differences can be noticed for data sets 10% Fault to 100% Fault.

It is interesting to note that the first alteration of the tooth, although only
10% of the length of this tooth was removed, rotated the first eigenvector by
around 45◦. Apart from the impact of a complete removal of the tooth upon the
orientation of the fourth eigenvector, this is the strongest single response.

Similar to the application studies in Subsections 2.1.3 and 6.1.2, the
orientation of the model subspace can be assessed by the last eigenvector, which
spans the residual subspace. The lower right plot shows a trend that the greater
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Figure 8.18 Departures of eigenvectors (circles) and eigenvectors (dots) for
each set.

the percentage of the tooth is removed, the larger the rotation of the fourth
eigenvector and hence the residual subspace. Given that the model and residual
subspaces are complementary subspaces, any rotation of the residual subspace
will affect the model subspace too.

With this in mind, it can be concluded that the more severe the fault condition
the more significant the impact upon the orientation of the model and residual
subspaces. A similar trend, however, cannot be observed for the variance of the
fourth eigenvalue. Whilst an initial increase can be noticed, this increase levels
off at around 20% if larger portions of the tooth are removed.

Apart from the first eigenpair, the second and third pairs show, approximately,
a proportionate response to the severity of the fault condition. The more of the
tooth is removed, the larger the variance of the third score variable becomes.
The removal of 20% and 30% produce a reduction in the variance of the second
score variable, relative to the 10% removal. An increasing trend, however, can
also be noticed for the variance of the second score variables with the removal
of larger portions.

Based on the experimental data obtained, it can be concluded that the presence
of a tooth defect increases the variance of the score variables and with it the
variance of the vibration signals, which follows from (2.122). It is interesting to
note that the relatively small 10% removal of the tooth has a significantly more
pronounced effect on the orientation of the control ellipsoid than the removal
of 20% and 30%. It is also interesting to note that the removal of 40% has a
similar effect upon the monitoring statistics compared to a complete removal of
the tooth.

In contrast, removing 50% of the tooth has a less significant effect on the
monitoring model than removing only 40%. As stated above, the only direct
relationship between the severity of the fault condition and the impact on the
geometry of the monitoring model is the orientation of the residual subspace.
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Table 8.7 Changes in variance of score variables.

Score Percentage change for mth condition

�σ̂ 2
1m 0.002 54.55 9.29 12.46 47.00 22.64 42.44

�σ̂ 2
2m 0.005 23.24 11.80 8.65 36.35 23.98 27.88

�σ̂ 2
3m 0.001 21.16 20.21 22.31 47.55 34.83 47.94

�σ̂ 2
4m 0.001 26.04 50.24 36.17 72.68 54.96 71.94

Finally, Table 8.7 summarizes the percentage changes of the variance of
the score variables resulting from the fault condition. The score variances are
computed with respect to the PCA model established from the first reference set,
producing the following percentage changes

�σ̂ 2
im = σ̂ 2

im − σ̂ 2
i0

σ̂ 2
i0

100%. (8.87)

The entries in Table 8.7 confirm the analysis of the individual conditions in
Figure 8.18. The most significant impact upon the variance of the first score
variable is the 10% removal of the tooth. For the remaining score variables, the
most significant effects are the 40% and 100% removal of the tooth. Moreover,
the 10% removal has a considerably stronger impact upon the first three score
variances than the 20% and 30% removals. The results in Table 8.7 therefore
reflect the observations in the upper two plots in Figure 8.17.

8.7 Analysis of primary and improved residuals

As Subsection 8.3.4 gives a detailed analysis of the statistical properties of the
primary residuals, this section presents more theoretical aspects of the primary
and improved residuals. The section investigates the first and second moments
of the primary residuals of the eigenvectors φi , after presenting a detailed proof
of the CLT for a sum of random variables that are i.i.d. This is followed by an
examination of the covariance matrices for φi and φi to fault conditions. Finally,
Subsection 8.7.3 outlines and proves that the non-negative quadratic statistics
obtained from the improved residuals are more sensitive than those computed
from the score variables.

8.7.1 Central limit theorem

According to (8.16), the statistical local approach relies on a vector-valued func-
tion of improved residuals which are, theoretically, an infinite sum of primary
residuals. This subsection shows that

θ = 1√
K

K∑
k=1

φ
(
p, z0 (k)

)
(8.88)
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converges in distribution to N {
0, Sφφ

}
when K → ∞. To simplify the analysis

here, we examine the j th element of φ, φj . The definition of the primary residuals
in the preceding sections outlined that they have a mean of zero, so we can safely
assume here that E

{
φj

} = 0. Moreover, for the variance of φj , E
{
φ2

j

}
, we write

σ 2
φj

. In summary, the first and second moments of φj are

E
{
φj

} = 0 E
{
φ2

j

} = σ 2
φj

= 2λ2
j . (8.89)

With this in mind, the j th element in (8.88) can be reformulated as follows

θj

σφj

= 1√
K

K∑
k=1

φj

(
p, z0 (k)

)
σφj

= 1

σφj

√
K

K∑
k=1

φj (k) . (8.90)

Given that the samples, z0 (k), are drawn independently from the distribution
function N {

0, Sz0z0

}
, the instances of the primary residuals φj (k) are also

drawn independently from the distribution function F
(
φj

)
in (8.55). Moreover,

as pointed out before, each instance is drawn from the same distribution func-
tion F

(
φj

)
and each of these instances are i.i.d. With respect to the preceding

discussion, we can now formulate a simplified version of the Lindeberg-Lévy
theorem, defining the CLT for the infinite i.i.d. sequence of φj .

Theorem 8.7.1 The scaled sum of φj (1), φj (2), . . . , φj (K), which have
the same distribution function F

(
φj

)
, is asymptotically Gaussian distributed, that

is, θj /σφj
∼ N {0, 1}, given that E

{
φj (k)

} = 0 and E
{
φ2

j (k)
} = σφj

.

Proof. The proof of Theorem 8.7.1 commences by defining the characteristic
function of the improved residuals

γj (c) = E
{
e
ic

θj

σφj

}
=

∞∫
−∞

e
ic

θj

σφj dF
(
θj

)
, (8.91)

where i = √−1 and c ∈ R. It is important to note that the characteristic function
provides an equal basis for defining and describing the statistical properties of a
random variables compared to the cumulative distribution function. For example,
if two cumulative distribution functions are identical, so are their characteristic
functions. This is taken advantage of here in order to prove that the infinite sum
in (8.90) asymptotically follows a Gaussian distribution.

The first step is to substitute the definition of θj into (8.91). With respect to
the definition of the characteristic function, this gives rise to

γj (c) = E
{
e
ic

∑K
k=1 φj (k)

σφj

√
K
}

=
K∏

k=1

E
{
e
ic

φj (k)

σφj

√
K
}

=
K∏

k=1

γjk
(c) . (8.92)
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The fact that the random variables φj (1), φj (2), . . . , φj (K) are i.i.d. implies
that their distribution and characteristic functions are identical. The product in
(8.92) can therefore be simplified to

γj (c) = (γ ∗
j (c)

)K
. (8.93)

Here, γj∗(c) = K
√

γj (c), that is, the characteristic function of φj is the Kth root
of the characteristic function of θj . The next step is to develop a Taylor series
of γj∗ for c = 0

γj∗ = γj∗(0) + γ ′
j∗(0)c + 1

2γ ′′
j∗(0)c2 + R(τ)c3 (8.94)

where the last term, R(τ)c3 = 1
6γ ′′′

j∗(τ )c3, τ ∈ R, is the Lagrangian remainder.
The relationships can be obtained from the definition of the characteristic function

γj∗ =
∫ ∞

−∞
e
ic

φj

σφj

√
K dF

(
φj

)
⇒ dm

dcm
γj∗

∣∣∣∣
c=0

= im
∫ ∞

−∞

(
φj

σφj

√
K

)m

dF
(
φj

)
(8.95)

dm

dcm
γj∗

∣∣∣∣
c=0

= imE

{(
φj

σφj

√
K

)m}
.

According to Equation (8.89), the relationships up to order three are therefore:

• m = 0 : γj∗(0) = ∫∞
−∞ dF

(
φj

) = 1 ;

• m = 1 : γ ′
j∗(0) = iE

{
φj

σφj

√
K

}
= 0 ;

• m = 2 : γ ′′
j∗(0) = (−1)E

{(
φj

σφj

√
K

)2
}

= − 1
K

•

γ ′′′
j∗(τ ) = −i

∫∞
−∞

(
φj

σφj

√
K

)3

e
iτ

φj

σφj

√
K

dF
(
φj

) ; and

m = 3 : γ ′′′
j∗(τ ) = δ(τ )E

{(
φj

σφj

√
K

)3
}

γ ′′′
j∗(τ ) = δ(τ )

�3
φj∗

σ 3
φj

K
3/2

.
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Here, δ(τ ) ∈ C is a small correction term and �3
φj∗ is the third moment of

φj . Substituting these relationships in (8.94) yields

γ ∗
j = 1 − 1

2
1
K

c2 + 1
6δ(τ )

�3
φ∗

j

σ 3
φj

K
3/2︸ ︷︷ ︸

R(τ)

c3. (8.96)

Substituting (8.96) into (8.93) gives rise to

γj (c) =
(

1 + 1
K

(
−c2

2

)
+ R(τ)c3

)K

. (8.97)

Note that the characteristic function of the standard Gaussian distribution function
is e− c2

/2 and that limK→∞ (1 + ν/K)K → eν . Therefore, the expression in (8.97)
asymptotically converges to

lim
K→∞

γj (c) → e− c2
/2 . (8.98)

This follows from limK→∞ R(τ) =
(

δ(τ )�3
φ∗
j
/6σ 3

φj∗

)
limK→∞ 1/K

3/2 → 0.

8.7.2 Further statistical properties of primary residuals

After proving the CLT, we now focus on discussing further properties of the
primary residuals. Subsection 8.3.4 shows the first two moments for the pri-
mary residuals t2

i − λi . This subsection determines the covariance and cross-
covariance matrices for the primary residuals tiz0 − λipi . It also discusses how
the covariance matrices of t2

i − λi and tiz0 − λipi are affected by a change in
the eigenvalues and eigenvectors.

8.7.2.1 Covariance matrices of primary residuals in equation (8.20)

The determination of the covariance and cross-covariance matrices for the pri-
mary residual vectors φi , and φi and φj , i �= j , requires the substitution of φi =
tiz0 − λipi and φj = tj z0 − λj pj into E

{
φiφ

T
i

}
and E

{
φiφ

T
j

}
, respectively.

Covariance matrix. Starting with the covariance matrix E
{
φiφ

T
i

}
E
{
φiφ

T
i

} = E
{
t2
i z0zT

0 − λitiz0pT
i − λitipiz

T
0

}+ λ2
i pip

T
i , (8.99)

the expectation on the right hand side of (8.99) can be analyzed separately by
substituting z0 = t1p1 + t2p2 + · · · + tnz

pnz
, which yields

E
{
t2
i z0zT

0

} = E

⎧⎨⎩t2
i

⎛⎝ nz∑
j=1

tj pj

⎞⎠( nz∑
m=1

tmpm

)T
⎫⎬⎭ (8.100a)
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E
{
λitiz0pT

i

} = λiE

⎧⎨⎩ti

⎛⎝ nz∑
j=1

tj pj

⎞⎠pT
i

⎫⎬⎭ = λ2
i pip

T
i (8.100b)

E
{
λitipiz

T
0

} = λiE

⎧⎨⎩tipi

⎛⎝ nz∑
j=1

tj pj

⎞⎠⎫⎬⎭ = λ2
i pip

T
i . (8.100c)

The above simplifications follow from E
{
ti tj
} = 0 for all i �= j . The fact that

there are n2
z terms in (8.100a) gives rise to the following separation.

• For i �= j �= m, there are a total of n2
z − nz terms in this case, which pro-

duces

E
{
t2
i tj tmpj pT

m

} = 0,

which follows from the Isserlis theorem (Isserlis 1918).

• There are nz − 1 cases of i �= j = m, which yield the general expression

E
{
t2
i t2

j

}
pj pT

j = λiλj pj pT
j .

• The remaining term, i = j = m, is equal to

E
{
t4
i

}
pip

T
i = 3λ2

i pip
T
i .

Putting this all together, (8.100a) reduces to

E
{
t2
i z0zT

0

} = λi

nz∑
j=1�=i

λj pj pT
j + 3λ2

i pip
T
i . (8.101)

Substituting (8.100a) to (8.101) into (8.99) finally yields

E
{
φiφ

T
i

} = λi

nz∑
j=1

λj pj pT
j + λ2

i pip
T
i . (8.102)

Cross-covariance matrix. The matrix E
{
φiφ

T
j

}
, i �= j and i, j = 1, 2, . . . , nz,

is similar to that in (8.99) and is given by

E
{
φiφ

T
j

} = E
{
ti tj z0zT

0 − λj tiz0pT
j − λitj piz

T
0

}+ λiλj pip
T
j . (8.103)

Using the simplifications applied to (8.99), (8.103) reduces to

E
{
ti tj z0zT

0

} = E

⎧⎨⎩ti tj

(
nz∑

m=1

tmpm

)(
nz∑

m=1

tmpm

)T
⎫⎬⎭ (8.104a)
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E
{
λj tiz0pT

j

} = λjE

{
ti

(
nz∑

m=1

tmpT
m

)}
pT

j = λiλj pip
T
j (8.104b)

E
{
λitj piz

T
0

} = λipiE

⎧⎨⎩tj

(
nz∑

m=1

tmpm

)T
⎫⎬⎭ = λiλj pip

T
j . (8.104c)

Given that E
{
ti tj tmtm

} = 0 for all m �= i, m �= j and m �= j, m �= i, (8.104a)
reduces to

E
{
ti tj z0zT

0

} =
nz∑

m=1

nz∑
m=1

[
E
{
ti tj tmtm

}
pmpT

m

] = λiλj pip
T
j + λjλipj pT

i (8.105)

Putting it all together, (8.103) finally yields

E
{
φiφ

T
j

} = λiλj pj pT
i (8.106)

8.7.2.2 Covariance matrix E
{
φiφ

T
i

}
for a change in λi

Under the assumption that the eigenvectors remain constant, changing the covari-
ance of the ith score variable to be λi + �λi results in the following alteration
of φi

φ∗
i = tiz

∗
0 − λipi =

nz∑
m=1

ti t
∗
mpm − λipi . (8.107)

The expectation of φ∗
i is

E
{
φ∗

i

} = E

{
nz∑

m=1

ti t
∗
mpm − λipi

}
= (λi + �λi − λi

)
pi = �λipi , (8.108)

which implies that the covariance matrix matrix becomes

E
{(

φ∗
i − �λipk

) (
φ∗

i − �λipk

)T } = E
{
φiφ

T
i

}
. (8.109)

Thus, a change in the eigenvalues yield the same covariance matrix for φi and φ∗
i .

8.7.2.3 Covariance matrix E
{
φiφ

T
i

}
for change in pi

An alteration of the eigenvector, p∗
i = pi + �pi , does not have the same isolated

impact upon φi , as is the case for a change in the eigenvalue. This is because a
rotation of ith eigenvector affects more then just this eigenvector, since the eigen-
vectors are mutually orthonormal. If we restrict this examination by assuming
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that only the ith eigenvector is altered and the remaining nz − 1 eigenvectors
and the score covariance matrix remain unchanged, φi becomes

φ∗
i = tiz

∗
0 − λipi =

nz∑
j=1

ti tj p∗
j − λipi . (8.110)

Note that p∗
j = pj for all j �= i. The expectation of φ∗

i is

E
{
φ∗

i

} =
nz∑

j=1

E
{
ti tj
}

p∗
j − λipi = λi

(
pi + �pi − pi

) = λi�pi , (8.111)

which gives rise to the following covariance matrix

E
{(

φ∗
i − λi�pi

) (
φ∗

i − λi�pi

)T }
= E

{(
ti

(
nz∑

m=1

tmp∗
m

)
− λi

(
pi + �pi

))
(

ti

(
nz∑

m=1

tmp∗
m

)
− λi

(
pi + �pi

))T }

= E

{
t2
i

(
nz∑

m=1

tmp∗
m

)(
nz∑

m=1

tmp∗
m

)
− λi

(
nz∑

m=1

ti tmp∗
m

)
p∗T

i

− λip
∗
i

(
nz∑

m=1

ti tmp∗
m

)T

+ λ2
i p∗

i p∗T

i

}

= λi

nz∑
j=1

λj p∗
j p∗T

j + λ2
i p∗

i p∗T

i = λi

nz∑
j=1�=i

λj pj pT
j + 2λ2

i p∗
i p∗T

i .

(8.112)

The difference between the covariance matrices of φi and φ∗
i is therefore

E
{(

φ∗
i − λi�pi

) (
φ∗

i − λi�pi

)T }− E
{
φiφ

T
i

}
= 2λ2

i

(
pi�pT

i + �pip
T
i + �pi�pT

i

)
.

(8.113)

8.7.2.4 Covariance of φ̃i for a change in λi

φ̃∗
i = t∗

2

i − λi (8.114)
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and has the following expectation

E
{
φ̃∗

i

} =
nz∑

m=1

nz∑
m=1

(
pT

i pm

)
E
{
t∗mt∗m

} (
pT

mpi

)− λi = �λi, (8.115)

which gives rise to the following covariance

E
{(

φ̃∗
i − �λi

)2} = E

{(
t∗

2

i − (λi + �λi

))2
}

E
{(

φ̃∗
i − �λi

)2} = E
{
t∗

4

i − 2t∗
2

i

(
λi + �λi

)}+ (λi + �λi

)2
E
{(

φ̃∗
i − �λi

)2} = 2λ2
i + 4λi�λi + 2�λ2

i ,

(8.116)

which follows from (8.48). The difference between E
{(

φ̃∗
i − �λi

)2}
and E

{
φ̃2

i

}
is therefore

E
{(

φ̃∗
i − �λi

)2}− E
{
φ̃2

i

} = 2�λi

(
2λi + �λi

)
. (8.117)

8.7.2.5 Covariance of φ̃i for a change in pi

Changing pi to pi + �pi implies that it is no longer orthogonal to all of the
remaining nz − 1 eigenvectors. Assuming that

∥∥pi + �pi

∥∥ = 1 and defining the
nz loading vectors by p∗

j , p∗
j = pj for all j �= i, the expectation of φ̃i becomes

E
{
φ̃∗

i

} = E
{
t∗

2

i − λi

}
= E

{
pT

i z∗
0z∗T

0 pi − λi

}
. (8.118)

Next, substituting z∗
0 =∑nz

k=1 p∗
ktk into (8.118) gives rise to

E
{
φ̃∗

i

} = E

⎧⎨⎩pT
i

(
nz∑

m=1

p∗
mtm

)(
nz∑

m=1

p∗
mtm

)T

pi − λi

⎫⎬⎭
E
{
φ̃∗

i

} = pT
i

[
nz∑

m=1

nz∑
m=1

p∗
mE
{
tmtm

}
p∗T

m

]
pi − λi

E
{
φ̃∗

i

} =
nz∑

m=1

(
pT

i p∗
m

)2
λk − λi = λi

((
pT

i p∗
i

)2 − 1
)

< 0.

(8.119)

That E
{
φ̃∗

i

}
< 0 is interesting and follows from the assumption that the length of∥∥p1

∥∥ = ∥∥pi + �pi

∥∥ = 1, that is, pT
i

(
pi + �pi

) = cos
(
ϕ(p1,pi+�pi )

)
. Using the
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mean value λi

((
pT

i p∗
i

)2 − 1
)

, the covariance of φ̃∗
i is equal to

E

{(
t∗

T

i − λi − λi

((
pT

i p∗
i

)2 − 1
))2
}

= E

⎧⎨⎩
(

pT
i

[
nz∑

m=1

nz∑
m=1

p∗
mtmtmp∗T

m

]
piλi

(
pT

i p∗
i

)2)2
⎫⎬⎭

= E

{((
pT

i p∗
i

)2
t2
i − λi

(
pT

i p∗
i

)2)2
}

= 2λ2
i

(
pT

i p∗
i

)4
.

(8.120)

It follows that E
{(

φ̃∗
i − λi

((
pT

i p∗
i

)2 − 1
))}

< E
{
φ̃2

i

}
, since

(
pT

i p∗
i

)4
< 1.

8.7.3 Sensitivity of statistics based on improved residuals

The previous sections showed that the primary residuals φi = t2
i − λi are suffi-

cient for detecting changes in the underlying geometry of the data model in (2.2).
Furthermore, the mean and variance of these residuals is 0 and 2λ2

i , respectively,
and there is no covariance between the ith and j th primary residuals, that is,
E
{
φiφj

} = 0.
Furthermore, the primary residuals are i.i.d. implying that the improved resid-

uals are asymptotically Gaussian distributed and have the same mean, variance
and covariance as the primary residuals. The covariance matrix for the vector
containing the improved residuals of the first n eigenpairs of Sz0z0

is equal to
E
{
θθT

} = 1
2�2, where � is the diagonal matrix storing the n dominant eigen-

values of Sz0z0
.

The sensitivity in detecting various fault conditions is now examined for a
simple sensor or actuator bias. The scope of Project 3 in the tutorial section
covers more complex process faults that alter the eigenvectors and eigenvalues
by contrasting the sensitivity of the non-negative quadratic statistics constructed
from the improved residuals with those based on the score variables.

8.7.3.1 Sensitivity for detecting sensor or actuator bias

The data model describing a sensor fault is as follows

z∗ = �s + (g + �g) + (z̄ + �z) = z + �g + �z0. (8.121)

According to Table 2.1, the effect of a sensor or actuator fault can be described by
an offset term or a bias and a stochastic term or a precision degradation. Besides
bias and precision degradation, both terms can also describe a complete failure
or a drift if the offset term is assumed to be time varying and deterministic. For
a sensor bias, described by a constant bias term �z0, the ith improved residual
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becomes

θ∗
i

(
k0

) = 1√
k0

k0∑
k=1

((
pT

i z0(k) + pT
i �z0

)2 − λi

)
. (8.122)

Expectation of θ∗
i

(
k0

)
. The expectation follows from

E
{
θ∗
i

} = E

{
1√
k0

k0∑
k=1

(
t2
i (k) + 2tip

T
i �z0 + (pT

i �z0

)2)− λi

}

E
{
θ∗
i

} = 1√
k0

k0∑
k=1

(
λi + (pT

i �z0

)2 − λi

)
= √k0

(
pT

i �z0

)2
.

(8.123)

Variance of θ∗
i

(
k0

)
. Defining the mean-centered θ∗

i by

θ∗
i −√k0

(
pT

i �z0

)2 = 1√
k0

(
k0∑

k=1

t2
i (k) + 2ti(k)pT

i �z0 + k0λi

)
= θ̃∗

i (8.124)

simplifies the determination of the variance of θ∗
i

(
k0

)

E
{
θ̃∗2

i

}
= 1

k0
E

⎧⎨⎩
(

k0∑
k=1

(
t2
i (k) + 2ti(k)pT

i �z0

)+ k0λi

)2
⎫⎬⎭

E
{
θ̃∗2

i

}
= 1

k0
E

⎧⎨⎩
(

k0∑
k=1

t2
i (k)

)2

+ 4
(
pT

i �z0

)2 ( k0∑
k=1

ti(k)

)2

+ k2
0λ

2
i + 4pT

i �z0

(
k0∑

k=1

t2
i (k)

)(
k0∑
l=1

ti(l)

)

+ 2k0λi

(
k0∑

k=1

t2
i (k)

)
+ 4k0λip

T
i �z0

(
k0∑

k=1

ti(k)

)}

E
{
θ̃∗2

i

}
= 1

k0
E

{
k0∑

k=1
t4
i (k) + 2

k0−1∑
k=1

k0∑
l=k+1

t2
i (k)t2

i (l) (8.125)

+ 4
(
pT

i �z0

)2⎛⎝ k0∑
k=1

t2
i (k) + 2

k0−1∑
k=1

k0∑
l=k+1

ti(k)ti(l)

⎞⎠
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+ k2
0λ

2
i + 4pT

i �z0

(
k0∑

k=1

k0∑
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. The next step is to examine the impact of

�z0 upon the non-negative quadratic monitoring statistics.
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which requires examining E
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from which it follows that
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Equation (8.126) can now be evaluated, which yields
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This compares favorably to the sensitivity of the conventional Hotelling’s T 2

statistic
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(8.130)

The difference between (8.128) and (8.129) is then a measure for sensitivity of
the Hotelling’s T 2 statistic constructed from the improved residuals and the score
variables

E
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T 2

θ∗ − T 2} =
n∑

i=1

(
1 + 1/2k0

(
pT

i �z0

)2) (pT
i �z0

)2
λi

> 0. (8.131)

For the Hotelling’s T 2 statistics, (8.131) outlines that, irrespective of the
window length k0, the non-negative quadratic statistics constructed from the
improved residuals is more sensitive to a set of sensor or actuator biases. More-
over, this equation also highlights that the larger the value of k0 the more
significant this increase in sensitivity becomes.



MONITORING CHANGES IN COVARIANCE STRUCTURE 353

Constructing the residual Q statistics on the basis of (3.19) yields the same
conclusion. Under the assumption that Sgg = σ 2

g I, the nz − n required eigenvalues
for constructing the T 2

θ∗
d

and T 2
d∗ , λn+1 = · · · = λnz

= σ 2
g . Since λ1 ≥ λ2 ≥ · · · ≥

λn > σ 2
g , (8.131) also confirms that the increase in sensitivity is more pronounced

for the Q statistic.
The application studies in Sections 8.4 and 8.6 confirm the above findings.

More precisely, Figures 8.7, 8.9 and 8.17 illustrate that the non-negative quadratic
statistics based on the score variables show sporadic violations of their control
limits which, however, exceeded the significance level. In contrast, the statistics
constructed from the improved residuals showed a considerably stronger response
and produced, in almost each case, a constant violation of their control limits.

8.8 Tutorial session

Question 1: Describe under which conditions conventional scatter diagrams,
the Hotelling’s T 2 statistic and the Q statistic are insensitive to fault conditions.
What is the effect of such changes upon Type II errors?

Question 2: Referring to Question 1, analyze how these changes can be
detected.

Question 3: Explain why the primary residuals are difficult to use for con-
structing monitoring charts. How can the associated problems be overcome?

Question 4: What is the problem of using primary residuals that are based on
the eigenvectors of the data covariance matrix? Are the primary residuals related
to the eigenvalues of the data covariance matrix also affected by this problem?
Are both types of primary residuals sensitive to geometric changes in the model
and residual subspaces as well as changes in the variances of the source and
error variables?

Question 5: Describe the properties of the primary and improved residuals
based on the eigenvalues of the covariance matrix.

Question 6: Discuss the assumptions under which the central limit theorem
holds true. What are the conditions under which the central limit theorem does
not hold true?

Project 1: Use a Monte Carlo simulation based on the second intuitive
example, described in (8.8), augment the stochastic vector z0 by a time-varying
mean vector z̄ = z̄(k) and comment on the Type I and II errors. For PCA, discuss
how to develop an adaptive monitoring approach to construct primary residuals.
How can such an adaptive approach be utilized to determine improved residuals?



354 ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL

Project 2: Develop primary and improved residuals on the basis of the PLS
objective functions for determining the weight and loading vectors. Can a fault
that (i) only affects the input variables, or (ii) only affects the output variables,
or (iii) affects the input and the output variables, be detected? Discuss the results
and propose a reliable monitoring scheme for detecting geometric changes in the
weight and loading vectors and the variance of the score variables.

Project 3: Assume that a fault condition affects the ith eigenvector and/or
eigenvalue of the covariance matrix Sz0z0

. Similar to the analysis in Subsection
8.7.3, develop and contrast the relationships describing the impact of such a
change upon the Hotelling’s T 2 and T 2

θ statistics.
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DESCRIPTION OF
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9

Principal component analysis

This chapter introduces the PCA algorithm, including a discussion showing that
the computed score and loading vectors maximize their contribution to the column
and row space of a data matrix. A summary of PCA and the introduction of a
preliminary PCA algorithm then follows in Section 9.2. A detailed summary
of the properties of PCA is given in Section 9.3. Without attempting to give a
complete review of the available research literature, further material concerning
PCA may be found in Dunteman (1989); Jackson (2003); Jolliffe (1986); Wold
(1978); Chapter 8 in Mardia et al. (1979) and Chapter 11 in Anderson (2003).

9.1 The core algorithm

PCA extracts sets of latent variables from a given data matrix Z0 ∈ R
K×nz ,

containing K mean-centered and appropriately scaled samples of a variable set
z ∈ R

nz

z = z0 + z̄ z̃0 = Sz0 = S (z − z̄) . (9.1)

The scaling matrix S is a diagonal matrix and often contains the reciprocal
values of the estimated standard deviation of the recorded variables

σ̂j =
√√√√ 1

K − 1

K∑
k=1

(
zj (k) −̂̄zj

)2
. (9.2)

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Based on ZT
0 = [̃z0(1) · · · z̃0(k) · · · z̃0(K)

]
, PCA determines a series of

rank-one matrices

Z0 =
n∑

j=1

t̂j p̂T
j + G (9.3)

constructed from the estimated score and loading vectors, t̂j ∈ R
K and p̂j ∈ R

nz ,
respectively. After extracting a total of n such rank one matrices, the resid-
ual matrix is G ∈ R

K×nz = Z0 −∑n
j=1 t̂j p̂T

j . According to the non-causal data
structure in (2.2), for which a detailed discussion is available in Section 6.1, an
estimate of the column space of the parameter matrix � is given by the load-
ing matrix, i.e. P̂ = [̂p1 p̂2 · · · p̂n

]
. As outlined in Section 6.1 the residual

matrix is equal to the matrix product of Z0 and an orthogonal complement of P̂,
which spans the residual subspace. The construction of the model subspace, that
is, the estimation of the column vectors of P̂, and the residual subspace using
PCA is now discussed. For simplicity, the subscript j is omitted for outlining
the PCA algorithm.

Capturing the maximum amount of information from the data matrix Z0, each
rank one matrix relies on a constraint objective function. Pre-multiplying Z0 by
τ T ∈ R

K allows extracting information from its column space

π = ZT
0 τ τ T τ = 1. (9.4)

Post-multiplying Z0 by p ∈ R
nz allows extracting information from its row space

t = Z0p pT p = 1. (9.5)

The two equations above give rise to the following objective functions

Jp = pT ZT
0 Z0p = pT Mppp (9.6a)

Jτ = τ T Z0ZT
0 τ = τ T Mτττ , (9.6b)

which are subject to the constraints

Cp = pT p − 1 = 0 (9.7a)

Cτ = τ T τ − 1 = 0. (9.7b)

In the above equations, Mpp ∈ R
nz×nz and Mττ ∈ R

K×K are, up to a scalar
factor, covariance matrices of the column space and the row space of Z0, respec-
tively. Both matrices are symmetric and, assuming that z can be constructed
from the data structure in (2.2), Mpp and Mττ being positive definite and pos-
itive semi-definite, respectively, if K � nz. Moreover, ‖t‖2 = pT ZT

0 Z0p is a
scaled variance measure and ‖π‖2 = τ T Z0ZT

0 τ is a sum of squares measure
for the column and row space of Z0, respectively.
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The solutions to the constraint objective functions in (9.6) are given by

∂Jp

∂p
− μp

∂Cp

∂p
= 0 (9.8a)

∂Jτ

∂τ
− μτ

∂Cτ

∂τ
= 0, (9.8b)

where μp and μτ are Lagrangian multipliers. Substituting the definition of Jp,
Jτ , Cp and Cτ in (9.6) and carrying out the above relationships gives rise to

p̂ = arg max
p

pT Mppp − μp

(
pT p − 1

)⇒ 2Mppp̂ − 2μpp̂ = 0 (9.9a)

τ̂ = arg max
τ

τ T Mτττ − μτ

(
τ T τ − 1

)⇒ 2Mττ τ̂ − 2μτ τ̂ = 0. (9.9b)

Equation (9.9) implies that

μp = p̂T
∂Jp

∂p

∣∣∣∣
p=p̂

= Jp (9.10a)

μτ = τ̂
∂Jτ

∂τ

∣∣∣∣
τ=τ̂

= Jτ (9.10b)

and hence, [
Mpp − μpI

]
p̂ = 0 (9.11a)[

Mττ − μτ I
]
τ̂ = 0. (9.11b)

Lemma 9.1.1 The Lagrangian multipliers μp and μτ are larger than zero,
identical and are equal to the estimated variance of the j th largest principal
component, 1 ≤ j ≤ n, if K � nz.

Proof. That μp and μτ are larger than zero follows from the objective func-
tions in (9.6)

Jp = μp = t̂T t̂ ≥ 0 (9.12a)

Jτ = μτ = π̂T π̂ ≥ 0. (9.12b)

Given that ‖̂p‖ = ‖τ̂‖ = 1 and Z0 �= 0, it follows that t̂T t̂ = p̂T Mppp̂ > 0 and
π̂T π̂ = τ̂ T Mττ τ̂ > 0. To proof that Jp = Jτ and hence, μp = μτ , consider a
singular value decomposition1 of Z0 = USVT , where the matrices U and V

1 Note that the column vectors of U and V are orthonormal and are the eigenvectors of Mpp and
Mττ , respectively (Golub and van Loan 1996).
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contain the left and right singular vectors, respectively, and S is a diagonal
matrix storing the singular values in descending order, which yields

Mpp = VS2VT = VLVT (9.13a)

Mττ = US2UT = ULUT , (9.13b)

where L = S2. Since the matrix expressions VLVT and ULUT represent the
eigendecomposition of Mpp and Mττ , respectively, it follows that the eigenvalues
of Mpp and Mττ are identical and equal to the diagonal elements of �. Using

• the fact that μp = p̂T Mppp̂ and μτ = τ̂ T Mττ τ̂ , which results from (9.9)
to (9.11);

• the fact that p̂ and τ̂ are the dominant eigenvectors2 of Mpp and Mττ ,
respectively; and

• a reintroduction of the subscript j ,

it follows that

μpj
=p̂T

j VLVT p̂j

μpj
=p̂T

j

[̂
p1 · · · p̂j · · · p̂n

]
⎡⎢⎢⎢⎢⎢⎢⎣

μ1 · · · 0 · · · 0
...

. . .
...

0 · · · μj · · · 0
...

. . .
...

0 · · · 0 · · · μn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

p̂T
1
...

p̂T
j

...

p̂T
n

⎤⎥⎥⎥⎥⎥⎥⎦ p̂j

μτj
=τ̂ T

j ULUT τ̂ j

μτj
=τ̂ T

j

[̂
τ 1 · · · τ̂ j · · · τ̂ n

]
⎡⎢⎢⎢⎢⎢⎢⎣

μ1 · · · 0 · · · 0
...

. . .
...

0 · · · μj · · · 0
...

. . .
...

0 · · · 0 · · · μn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

τ̂ T
1
...

τ̂ T
j

...

τ̂ T
n

⎤⎥⎥⎥⎥⎥⎥⎦ τ̂ j

μpj
=μτj

= μj ,

(9.14)

since the eigenvectors are mutually orthonormal.

Finally, to prove that μj is equal to the contribution of the j th component
matrix to the data matrix Z0 relies on post- and pre-multiplying the relationships
in (9.9) by τ̂ T

j and p̂T
j , which yields

τ̂ j p̂T
j Mpp = μj τ̂ j p̂T

j Mττ τ̂ j p̂T
j = μj τ̂ j p̂T

j . (9.15)

2 A dominant eigenvector is the eigenvector that corresponds to the largest eigenvalue of a given
squared matrix.
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Equation (9.15) can be further simplified by defining Z0p̂j/√μj = τ̂ j , ZT
0 τ̂ j/√μj =

p̂j , p̂j = π̂ j/√μj and τ̂ j = t̂j/√μj , since

τ̂ j τ̂
T
j Z0 = Z0p̂j p̂T

j = τ̂ j

√
μj p̂T

j = t̂j p̂T
j = τ̂ j π̂

T
j . (9.16)

The contribution of the j th rank-one component matrix to the data matrix Z0 is
equal to the squared Frobenius norm of τ̂ j

√
μ

j
p̂T

j

∥∥∥τ̂ j

√
μj p̂T

j

∥∥∥2 = μj

nz∑
i=1

K∑
k=1

τ̂ 2
kj p̂

2
ij = μj

nz∑
i=1

p̂2
ij︸ ︷︷ ︸

=1

K∑
k=1

τ̂ 2
kj︸ ︷︷ ︸

=1

= μj . (9.17)

Theorem 9.1.2 If the covariance matrix

Sz0z0
= lim

K→∞
1

K−1 Mpp = lim
K→∞

1
K−1

K∑
k=1

(
z(k) −̂̄z) (z(k) −̂̄z)T , (9.18)

where ̂̄z = lim
K→∞

1
K

K∑
k=1

z(k) (9.19)

is used in the above analysis, the variance of the j th t-score variable is equal to
the Lagrangian multiplier λj , that is, the j th largest largest eigenvalue of Sz0z0

.

Proof. The variance of the score variable tj , E
{
t2
j

}
is given by

E
{
t2
j

} = E
{
pT

j z0zT
0 pj

} = pT
j Sz0z0

pj = λj . (9.20)

On the basis of the objective functions in (9.6) and the constraints in (9.7), the
first rank-one component matrix, t̂1p̂T

1 , has the most significant contribution to Z0.
This follows from p̂1, which, according to (9.9a) and (9.9b), is the most dominant
eigenvector of Mpp and the fact that t̂1 = Z0p̂1, which follows from (9.16). It
should also be noted that μj = (K − 1)λj when the estimate of Sz0z0

is or used.
After subtracting or deflating the rank-one matrix t̂1p̂T

1 from Z0, that is
Z(2) = Z(1) − t̂1p̂T

1 with Z(1) = Z0, the rank-one matrix t̂2p̂T
2 has the most sig-

nificant contribution to Z(2). Moreover, t̂j = Z(j)p̂j and p̂j is the most dominant

eigenvector of M(j)
pp = Z(j)T Z(j),

M(j+1)
pp = M(j)

pp − p̂j μ̂j p̂T
j . (9.21)

Utilizing the deflation procedure, the first n eigenvalues and eigenvectors of
Ŝz0z0

= 1/(K − 1)M(j)
pp can be obtained using the Power method (Geladi and
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Kowalski 1986; Golub and van Loan 1996). Alternatively, a PCA model can
also be determined by a singular value or eigendecomposition of Ŝz0z0

, which is
computationally more economic (Wold 1978). Based on the covariance matrix, it
should also be noted that the objective function for determining the ith loading
vector can be formulated as follows

pi = arg max
p

pT Sz0z0
p − λi

(
pT p − 1

)
. (9.22)

9.2 Summary of the PCA algorithm

The above analysis showed that PCA determines linear combinations of the vari-
able set z0 such that the variance for each linear combination is maximized. The
variance contribution from each set of linear combinations is then subtracted
from z0 before determining the next set. This gives rise to a total of nz combina-
tions that are referred to as score variables . Combining the parameters for each
of the linear combinations into a vector yields loading vectors that are of unit
length. If the covariance matrix of the data vector z0, i.e. Sz0z0

is available, and
the data vector follows the data structure z0 = �s + g, where s ∼ N {

0, Sss

}
,

g ∼ N {
0, σ 2

g I
}
, s ∈ R

n, g ∈ R
nz and E

{(
ξT

j s
)}

> σ 2
g for all 1 ≤ j ≤ nz, the

following holds true:

Table 9.1 Iterative PCA algorithm.

Step Description Equation

1 Initiate iteration j = 1

2 Obtain initial matrix M̃(1)
pp = Sz0z0

3 Set-up initial loading vector 0pj = M̃(j)
pp (:,1)/

∥∥∥M̃(j)
pp (:,1)

∥∥∥
4 Calculate matrix-vector product p̃j = M̃(j)

pp

(
0pj

)
5 Compute eigenvalue λj = p̃T

j p̃j

6 Scale eigenvector 1pj = pj /
√

λj

If
∥∥

1pj −0 pj

∥∥> ε, set

7 Check for convergence 0pj = 1pj and go to Step 4 else

set pj = 1pj and go to Step 8

8 Deflate matrix M̃(j+1)
pp = M̃(j)

pp − λj pkpT
j

If j < nz set j = j + 1

9 Check for dimension and go to Step 3 else

terminate iteration procedure
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• the largest n eigenvalues of Sz0z0
are larger than σ 2

g and represent the
variance of the dominant score variables, that is, the retained score
variables;

• the remaining nz − n eigenvalues are equal to σ 2
g and describe the variance

of the residuals, that is, the discarded score variables; and

• the first n eigenvectors allow one to extract linear combinations that
describe the source signals superimposed by some error vector.

The above properties are relevant and important for process monitoring and
are covered in more detail in Subsections 1.2.3, 1.2.4, 3.1.1, 3.1.2 and 6.1.1.
In essence, the eigendecomposition of Sz0z0

contains all relevant information to
establish a process monitoring model. Table 9.1 summarizes the steps for itera-
tively computing the eigendecomposition of Ŝz0z0

using the deflation procedure
in (9.21). It should be noted, however, that the eigenvalues and eigenvectors of
Sz0z0

can also be obtained simultaneously without a deflation procedure, which
is computationally and numerically favorable over the iterative computation. The
algorithm in Table 9.1 is based on the covariance matrix Sz0z0

= limK→∞ =
1/(K−1)Mpp = M̃(1)

pp .

9.3 Properties of a PCA model

The PCA algorithm has the following properties:

1. Each rank-one component matrix produces a maximum variance contribu-
tion to the data matrix Z0 in successive order, that is, t̂1p̂T

1 produces the
largest, t̂2p̂T

2 the second largest and so on.

2. The t-score vectors are mutually orthogonal.

3. The p-loading vectors are mutually orthonormal.

4. Under the assumption that the source variables are statistically indepen-
dent, the t-score variables follow asymptotically a Gaussian distribution.

5. It is irrelevant whether the score vector t̂j is computed as the matrix vector
product of the original data matrix, Z0, or the deflated data matrix, Z(j),
and the loading vector p̂j .

6. If that the rank of Z0 is n̄z ≤ nz, Z0 is completely exhausted after n̄z

deflation procedures have been carried out.

7. The data covariance matrix Sz0z0
can be reconstructed by a sum of n̄z

scaled loading vectors pj .
These properties are now mathematically formulated and proven. Apart from
Properties 4 and 7, the proofs rely on the data matrix Z0 and estimates of the
score and loading vectors. Properties 4 and 7 are based on a known, that is, not
estimated, data structure z0 = �s + g and covariance matrix Sz0z0

, respectively.
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Property 9.3.1 – Contribution of Score Vectors to Z0. The contribution of
each score vector to the recorded data matrix is expressed by the rank-one com-
ponent matrices t̂j p̂T

j . Theorem 9.3.1 formulates the contribution of each of these
component matrices to recorded data matrix.

Theorem 9.3.1 In subsequent order, the contribution of each rank-one com-
ponent matrix, t̂j p̂T

j , is maximized using the PCA algorithm.

Proof. Knowing that the process variables are mean-centered, the sum of
variances of each process variable,

∑nz

i=1 σ̂ 2
i , is equal to the squared Frobenius

norm of Z0 up to a scaling factor. Moreover, the eigendecomposition of Ŝz0z0
describes, in fact, a rotation of the nz dimensional Euclidian base vectors to be
the eigenvectors of Ŝz0z0

. Under the assumption that Ŝz0z0
has full rank nz, this

implies that (9.3) can be rewritten as follows

Z0 =
n∑

i=1

t̂i p̂
T
i +

nz∑
j=n+1

t̂j p̂T
j =

n∑
i=1

t̂i p̂
T
i + G. (9.23)

The next step involves working out the Frobenius norm of (9.23), which gives
rise to

∥∥Z0

∥∥2 =
∥∥∥∥∥

nz∑
i=1

t̂i p̂
T
i

∥∥∥∥∥
2

. (9.24)

Simplifying (9.24) by determining the sum of the squared elements of Z0 yields

∥∥Z0

∥∥2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nz∑
i=1

t̂i (1)p̂i1

nz∑
i=1

t̂i (1)p̂i2 · · ·
nz∑
i=1

t̂i (1)p̂inz

nz∑
i=1

t̂i (2)p̂i1

nz∑
i=1

t̂i (2)p̂i2 · · ·
nz∑
i=1

t̂i (2)p̂inz

...
...

. . .
...

nz∑
i=1

t̂i (K)p̂i1

nz∑
i=1

t̂i (K)p̂i2 · · ·
nz∑
i=1

t̂i (K)p̂inz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

∥∥Z0

∥∥2 =
K∑

k=1

nz∑
j=1

(
nz∑
i=1

t̂j (k)p̂ij

)2

∥∥Z0

∥∥2 =
K∑

k=1

nz∑
j=1

⎛⎝ nz∑
i=1

t̂2
j (k)p̂2

ij + 2
nz−1∑
i=1

nz∑
m=i+1

t̂i (k)̂tm(k)p̂ij p̂mj

⎞⎠
∥∥Z0

∥∥2 =
K∑

k=1

nz∑
j=1

t̂2
j (k)

nz∑
i=1

p̂2
ij︸ ︷︷ ︸

‖pk‖2=1

+2
K∑

k=1

nz−1∑
i=1

nz∑
m=k+1

t̂i (k)̂tm(k)

nz∑
j=1

p̂ij p̂mj︸ ︷︷ ︸
p̂T

i
p̂m=0 for all m�=j
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∥∥Z0

∥∥2 =
nz∑
i=1

t̂Ti t̂i =
nz∑
i=1

μi τ̂ T
i τ̂ i︸ ︷︷ ︸
=1

(9.25)

and hence

∥∥Z0

∥∥2 =
n∑

i=1

μi + ‖G‖2 . (9.26)

The Lagrangian multiplier μj , however, represents the maximum of the
objective functions Jpj

and Jτj
. Hence, the variance contribution of t̃j p̂T

j to
Z0 is the j th largest possible. That

∑nz

j=1 p̂ij p̂mj = 0 for all i �= j follows
from the fact that the eigenvectors of Mpp are mutually orthonormal and
hence, P̂T P̂ = P̂P̂T = I. Moreover, Theorem 9.1.2 outlines that the j th largest
eigenvalue of the data covariance matrix Ŝz0z0

is equal to the variance of the
j th score variable t̂j = p̂T

j z0.

Property 9.3.2 – Orthogonality of the t-Score Vectors. Next, examining the
deflation procedure allows showing that the t-score vectors are mutually orthogo-
nal. It should be noted, however, that the orthogonality properties of these vectors
also follow from the t-score vectors are dominant eigenvectors of the symmetric
and positive semi-definite matrix Mττ , respectively. Theorem 9.3.2 formulates
the orthogonality of the t-score vectors.

Theorem 9.3.2 The deflation procedure produces orthogonal t-score vectors,
that is, τ̂ T

i τ̂ j = δij , τ̂ i = t̂i/√λi ,
∥∥τ̂ i

∥∥2 = 1.

Proof. The expression τ̂ T
i τ̂ j can alternatively be written as 1/

√
λiλj p̂T

i Z(i)T t̂j ,
which follows from (9.16). Without restriction of generality, assuming that i > j

the deflation procedure to reconstruct Z(i) gives rise to3

Z(i) = Z(i−1) − t̂i−1p̂T
i−1 = Z(i−1)

[
I − p̂i−1p̂T

i−1

]
...

Z(i) = Z(j+1)
[
I − p̂j+1p̂T

j+1

] · · · [I − p̂i−1p̂T
i−1

]
Z(i) =

[
I − t̂ĵ tTj

t̂Tj t̂j

]
Z(j)

[
I − p̂j+1p̂T

j+1

] · · · [I − p̂i−1p̂T
i−1

]
.

(9.27)

Substituting (9.27) into 1/
√

λiλj p̂T
i Z(i)T t̂j produces

1√
λiλj

p̂T
i

[
I − p̂i−1p̂T

i−1

] · · · [I − p̂j+1p̂T
j+1

]
Z(j)T

[
I − t̂j t̂T

j

t̂Tj t̂j

]
t̂j (9.28)

3 Note that the relationship below takes advantage of the fact that p̂T
i = t̂Ti Zi /̂tTi t̂i , which follows

from (9.15) and (9.16)
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and hence

1√
λiλj

p̂i

[
I − p̂i−1p̂T

i−1

]· · ·[I − p̂j+1p̂T
j+1

]
Z(j)T

(̂
tj − t̂j t̂j

T t̂j
t̂Tj t̂j

)
=

1√
λiλj

p̂T
i

[
I − p̂i−1p̂T

i−1

]· · ·[I − p̂j+1p̂T
j+1

]
Z(j)T

(̂
tj − t̂j

) = 0.

(9.29)

Consequently,

τ̂ T
i τ̂ j = δij and t̂Ti t̂j = λiδij .

Property 9.3.3 – Orthogonality of the p-Loading Vectors. The deflation pro-
cedure also allows showing mutual orthogonality of the p-loading vectors, which
is discussed in Theorem 9.3.3. It is important to note that the orthogonality of
the p-loading vectors also follows from the fact that they are eigenvectors of the
symmetric and positive definite matrix Mpp.

Theorem 9.3.3 The deflation procedure produces orthonormal p-loading
vectors, i.e. p̂T

i p̂j = δij .

Proof. The proof commences by rewriting p̂T
i p̂j = t̂T

i
Z(i)

/λi p̂j . Reformulating
the deflation procedure for Z(i)

Z(i) =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
Z(i−1)

...

Z(i) =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂j+1̂tTj+1

t̂Tj+1̂tj+1

]
Z(j+1)

Z(i) =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂j+1̂tTj+1

t̂Tj+1̂tj+1

]
Z(j)

[
I − p̂j p̂T

j

]
(9.30)

and substituting this matrix expression into t̂Ti Z(i)
/λi p̂j yields

p̂T
i p̂j = t̂Ti

λi

[
I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂j+1̂tTj+1

t̂Tj+1̂tj+1

]
Z(j)

[
I − p̂j p̂T

j

]
p̂j

p̂T
i p̂j = t̂Ti

λi

[
I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂j+1̂tTj+1

t̂Tj+1̂tj+1

]
Z(j)

(̂
pj − p̂j

)=0.

(9.31)

Thus,

p̂T
i p̂j = δij .
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Property 9.3.4 – Asymptotic Distribution of t-Score Variables. It is expected
that for a large numbers of source variables the score variables are approximately
Gaussian distributed. A more precise statement to this effect is given by the
Liapounoff theorem. A proof of this theorem, in the context of the PCA score
variables, relies on the data structure z0 = �s + g for the error covariance matrix
Sgg = σ 2

g I4. This data structure guarantees that the covariance matrix Sz0z0
has

full rank nz. Moreover, Sz0z0
has the following eigendecomposition P�PT , where

the loading vectors p1, . . ., pnz
are stored as column vectors in P and the diagonal

matrix � stores the variances of the score variables λ1, . . ., λn and a total of
nz − n times the variance of the error variables σ 2

g .

Theorem 9.3.4 For the data structure z0 = �s + g, Sgg = σ 2
g I, � =[

ξ 1 · · · ξn

]
and the assumption that the source variables s are independently

but not identically distributed with unknown distribution functions, the score
variables are approximately Gaussian distributed if n is sufficiently large and
none of the individual source variables have a significant influence on the
determination of the score variables, which can be expressed by the following
condition (Liapounoff 1900, 1901)

lim
n→∞

�tm

σtm

−→ 0 m = 1, 2, . . . , n (9.32)

where

�3
tm

=
n∑

j=1

�3
tmj

σ 2
tm

=
n∑

j=1

σ 2
tmj

= λm

�3
tmj

= E
{∣∣(pT

mξ j

)
sj + 1

n
pT

mg
∣∣3}

σ 2
tmj

= E
{((

pT
mξ j

)
sj + 1

n
pT

mg
)2} = (pT

mξ j

)2
σ 2

sj
+ 1

n
σ 2

g ,

(9.33)

and σ 2
sj

is the variance of the j th source variable.

Proof. In the context of the t-score variables for PCA, obtained as follows

tm = pT
mz0 =

n∑
j=1

(
pT

mξ j

)
sj + pT

mg =
n∑

j=1

pT
m

(
ξ j sj + 1

n
g
)
, (9.34)

the Liapounoff theorem outlines that if n is sufficiently large and none of the sum
elements pT

m

(
ξ i si + 1

n
g
)

is significantly larger than the remaining ones, the score
variables are asymptotically Gaussian distributed as n → ∞. A proof for the case
where the distribution function of the n sum elements pT

m

(
ξ j sj + 1

n
g
)

are i.i.d.
is given in Subsection 8.7.1 under a simplified version of the Lindeberg-Lévy

4 The assumption of Sgg = σ 2
g I is imposed for convenience and does not represent a restriction

of generality as the following steps are also applicable for Sgg �= σ 2
g I.
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theorem. The presented proof of Theorem 9.3.4 assumes that these elements are
only i.d. and meet the condition outlined in (9.31) and (9.33).

It should be noted, however, that the CLT holds true for more general condi-
tions than that postulated by Liapounoff (1900, 1901). A detailed discussion of
more general conditions for the CLT may be found in Billingsley (1995); Bradley
(2007); Cramér (1946); Durrett (1996); Feller (1936, 1937); Fisher (2011) and
Gut (2005) for example. More precisely, the assumption of statistically indepen-
dent source signals can be replaced by mixing conditions (Bradley 2007). An
exhaustive treatment of mixing conditions, however, is beyond the scope of this
book and the utilization of the Liapounoff theorem, imposing statistical indepen-
dence upon the source signals, serves as an extension to the i.i.d. assumptions
associated with the Lindeberg-Lévy theorem. Interested readers can resort to the
cited literature above for a more general treatment of the CLT.

Assuming that the random variables pT
m

(
ξ j sj + 1

n
g
)

have the distribution
functions F1

(
s1

)
, F2

(
s2

)
, . . ., Fn

(
sn

)
, the proof of Theorem 9.3.4 relies on the

characteristic function of τm = tm/√
λm, which is defined as

γ (c) = E
{
eiτmc

} =
∞∫

−∞
eiτmcdF

(
τm

)
(9.35)

where i = √−1 and the scaled score variables τm has zero mean, unity vari-
ance and the distribution function F (s). As n → ∞ the term g

n
→ 0 and can,

consequently, be omitted. Next, substituting (9.34) into the definition of the char-
acteristic function of τm yields

γ (c) =
∞∫

−∞
e
i

(
1√
λm

n∑
j=1

pT
m(ξj sj )

)
c

dF(s). (9.36)

The remaining elements of the sum,
∑n

j=1 pT
mξ j sj , are i.d. according to the

assumptions made in Theorem 9.3.4. Hence, (9.36) can be rewritten as follows

γ (c) =
n∏

j=1

∞∫
−∞

e
i
(

1√
λm

pT
mξj sj

)
c
dFj (sj ). (9.37)

If

lim
n→∞

n∏
j=1

γj (c) → e−c2
/2 for all c ∈ R (9.38)

the term
∑n

j=1 pT
m

(
ξ j sj

)
is Gaussian distributed, as e− c2

/2 is the characteristic
function of a zero mean Gaussian distribution of unity variance. Approximat-
ing the expression for the product terms γj (c) by a Taylor series expansion,
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developed around c = 0, shows that
∏n

j=1 γj (c) → e− c2
/2 as n → ∞

γj (c) = γj (0) + γ ′
j (0)c + 1

2γ ′′
j (0)c2 + R(τ)c3. (9.39)

Here, 0 ≤ τ ≤ c and R(τ) = 1/6γ
′′′
j (τ ) is the remainder in Lagrangian form. The

relationships dmγj (c)/dcm, are given by

dmγj (c)

dcm

∣∣∣∣
c=0

= im
∞∫

−∞

(
pT

mξ j sj√
λm

)m

dFj (sj )

dmγj (c)

dcm

∣∣∣∣
c=0

= imE

{(
pT

mξ j sj√
λm

)m} (9.40)

and yields:

• m = 0 : γj (0) = i0
∫∞
−∞ dFj (sj ) = 1 ;

• m = 1 : γ ′
j (0) = iE

{
pT

mξj sj√
λm

}
= 0 ; and

• m = 2 : γ ′′
j (0) = i2E

{(
pT

mξj sj√
λm

)2
}

= −
σ 2
tmj

σ 2
tm

and for the Lagrangian remainder

γ ′′′
j (τ ) = i3

∫ ∞

−∞

(
pT

mξj sj√
λm

)3

e
i

pT
mξj sj√

λm
τ
dF(sj ) = ϑE

⎧⎨⎩
∣∣∣∣∣pT

mξj sj√
λm

∣∣∣∣∣
3
⎫⎬⎭ = ϑ

�3
tmj

σ 3
tm

Here, |ϑ | < 1 is a complex constant. Thus, the Taylor series in (9.39) reduces to

γj (c) = 1 − 1
2

σ 2
tmj

σ 2
tm

c2 + R(τ)c3, (9.41)

where R(τ) = 1
6ϑ �3

tmj/σ 3
tm

. Recall that (9.41) expresses the j th terms of∏n
j=1 γj (c). Rewriting this equation in logarithmic form allows transforming

the product into a sum, since

log

⎛⎝ n∏
j=1

γj (c)

⎞⎠ =
n∑

j=1

log γj (c) , (9.42)

which simplifies the remainder of this proof. Equation (9.43) gives the logarithmic
form of (9.41)

log
(
γj (c)

) = log

⎛⎝1 −
σ 2

tmj

2σ 2
tm

c2 + R(τ)c3

⎞⎠ = log (1 + z) . (9.43)
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Here, z = −σ 2
tmj/2σ 2

tm
c2 + R(τ)c3. For a sufficiently large number of source

signals n, it follows from (9.32) and (9.33) that

�tmj

σtm

≤ �tm

σtm

< 1. (9.44)

Equation (9.45) presents a different way to formulate z

z = ϑ̃
�2

tmj

2σ 2
tm

c2 + 1
6 ϑ̃

�3
tmj

σ 3
tm

c3 = ϑ̃
�2

tmj

σ 2
tm

(
c2

2
+ |c|3

6

)
. (9.45)

Here, ϑ̃ is a small correction term. Equations (9.32), (9.44) and (9.45) highlight
that

lim
n→∞ z → 0 for all c ∈ R, (9.46)

as limn→∞ �2
tmj /σ 2

tm
→ 0. This implies that if the number of source signals n is

large enough, |z| < 0.5, which, in turn, allows utilizing the Taylor expansion for
log (1 + z) to produce

log (1 + z) =
∞∑

m=1

(−1)m+1 zm

m!
= z + ϑ� z2

2

∞∑
m=0

1

2m
= z + ϑ̃z2 (9.47)

where ϑ� ∈ C is, as before, a small correction term. Hence,

log
(
γj (c)

) = − 1
2

σ 2
tmj

σtm

c2 + 1
6ϑ

�3
tmj

σ 3
tm

c3

︸ ︷︷ ︸
z

+ϑ∗
�4

tmj

σ 4
tm

(
c2

2
+ |c|3

6

)2

︸ ︷︷ ︸
z2

= − 1
2

σ 2
tmj

σ 2
tm

c2 + ϑ∗
�3

tmj

σ 3
tm

⎛⎝ |c|3
6

+
(

c2

2
+ |c|3

6

)2
⎞⎠

︸ ︷︷ ︸
δ(c)

= − 1
2

σ 2
tmj

σ 2
tm

c2 + ϑ∗
�3

tmj

σ 3
tm

δ (c)

(9.48)

with ϑ∗ being, again, a small correction term. For ϑ̀ being another small cor-
rection term, the final step is summing the individual terms, γj (c), according to
(9.42), which yields

log γ (c) =
n∑

i=1

log γj (c) = − 1
2

n∑
j=1

σ 2
tmj

σ 2
tm

c2 + ϑ̀

n∑
j=1

�3
tmj

σ 3
tm

δ (c) . (9.49)
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According to (9.32) and (9.33), (9.49) becomes

lim
n→∞ log γ (c) = lim

n→∞ − 1
2c2 + 1

6 ϑ̀
�3

tm

σ 3
tm︸︷︷︸

=0

δ (c) = − 1
2c2 (9.50)

and hence

lim
n→∞ γ (c) → e

− 1
2 c2

with

γ (c) = E
{
eiτmc

} =
∞∫

−∞
e
i
(∑n

j=1 pT
mξ j sj/

√
λm

)
c
dF(sj ).

(9.51)

Consequently, the mth t-score variable asymptotically follows a Gaussian distri-
bution under the assumption that the source signals are statistically independent.
As stated above, however, the conditions for which the CLT holds true are less
restrictive than those formulated in the Liapounoff and the simplified Lindeberg-
Lévy theorems used in this book. The interested reader can refer to the references
given in this proof for a more comprehensive treatment of conditions under which
the CLT holds true.

Property 9.3.5 – Computation of the t-Score Vectors. After proving the
asymptotic properties of the t-score variables with respect to the number of
source variables, the impact of the deflation procedure upon the computation of
the t-score vectors is analyzed next.

Theorem 9.3.5 It is irrelevant whether the j th t-score vector t̂j are obtained
from the original or the deflated data matrix, that is, t̂j = Z(j)p̂j = Z0p̂j .

Proof. Starting with Z(j)pj and revisiting the deflation of Z(j)

Z(j) = Z0

j−1∏
i=1

[
I − p̂i p̂

T
i

]
(9.52)

which yields

t̂j =Z(j)p̂j = Z0

j−2∏
i=1

[
I − p̂i p̂

T
i

] [
I − p̂j−1p̂T

j−1

]
p̂j

t̂j =Z0

j−2∏
i=1

[
I − p̂i p̂

T
i

]⎛⎜⎝p̂j − p̂j−1 p̂T
j−1p̂j︸ ︷︷ ︸
=0

⎞⎟⎠
(9.53)
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...

t̂j =Z0p̂j − Z0p̂1 p̂T
1 p̂j︸ ︷︷ ︸
=0

t̂j = Z0p̂j = Z(j)p̂j

That the p-loading vectors are mutually orthonormal is subject of Theorem 9.3.3.

Property 9.3.6 – Exhausting the Data Matrix Z0. The deflation procedure
allows exhausting the data matrix if enough latent components are extracted.

Theorem 9.3.6 For K � nz, if the column rank of the data matrix, Z0,
is n̄z ≤ nz applying a total of n̄z deflation steps completely exhausts Z0, i.e.
Z(n̄z) = 0.

Proof. It is straightforward to prove the case n̄z = nz, which is shown first.
The general case n̄z < nz is then analyzed by a geometric reconstruction of Z0
using the rank-one component matrices shown in (9.3). If n̄z = nz the following
holds true

Z(nz) = Z0 −
nz∑

j=1

t̂j p̂T
j

Z(nz) = Z0 −
nz∑

j=1

Z0p̂j p̂T
j

Z(nz) = Z0 − Z0P̂P̂T = Z0 − Z0 = 0

(9.54)

which follows from the fact that (i) the estimated p-loading vectors are orthonor-
mal and (ii) that Z(j)p̂j = Z0p̂j .

In the general case where n̄z < nz, the observations stored as row vectors in
Z0 lie in a subspace of dimension n̄z. This follows from the fact that any nz − n̄z

column vectors of Z0 are linear combinations of the remaining n̄z columns. We
can therefore remove nz − n̄z columns from Z0, which yields a reduced dimen-
sional data matrix Z0red

. According to (9.54), Z0red
is exhausted after n̄z deflation

steps have been carried out. Given that the columns that were removed from Z0
are linear combinations of those that remained in Z0red

, deflating the reduced
data matrix Z0red

automatically deflates the column vectors not included in Z0red
.

Property 9.3.7 – Exhausting the Covariance Matrix Sz0z0
. The final property

is concerned with the reconstruction of the given covariance matrix Sz0z0
using

the loading vectors p1, . . ., pn̄z
, where n̄z ≤ nz is the rank of Sz0z0

. Whilst this
is a property that simply follows from the eigendecomposition of a symmetric
positive semi-definite matrix, its analysis is useful in providing an insight into
the deflation procedure of the PLS algorithm, discussed in Section 10.1.
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Lemma 9.3.7 The covariance matrix Sz0z0
can be reconstructed by a sum

of n̄z ≤ nz scaled loading vectors pj , where the scaling factor is given by the
standard deviation of the score variables.

Proof. A reformulation of (9.6) leads to

Jpj
= E

{
t2
j

} = E
{
pT

j z0zT
0 pj

} = pT
j Sz0z0

pj − λj

(
pT

j pj − 1
)

(9.55)

and hence

pj = arg max
p

pT Sz0z0
p − λj

(
pT p − 1

)
. (9.56)

Given that the rank of Sz0z0
= n̄z, there are a total of n̄z eigenvalues λj that

are larger than zero. Equation (9.56) can be expanded to allow a simultaneous
determination of the n̄z eigenvectors

P = arg max
P∈Rnz×n̄z

PT Sz0z0
P −

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn̄z

⎤⎥⎥⎥⎦[PT P − I
]

(9.57)

which follows from the fact that the eigenvectors are mutually orthonormal
(Theorem 9.3.3) and that Z(j)p̂j = Z0p̂j (Theorem 9.3.6). The optimum of the
individual objective functions, combined in (9.57), is given by

P = arg
∂

∂P

⎛⎜⎜⎜⎝PT Sz0z0
P −

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn̄z

⎤⎥⎥⎥⎦[PT P − I
]
⎞⎟⎟⎟⎠ , (9.58)

which gives rise to

P = 2 arg

⎛⎜⎜⎜⎝Sz0z0
P − P

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn̄z

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 0. (9.59)

Substituting the fact that P = P, pre-multiplication of the above equation by PT

yields

PT Sz0z0
P =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn̄z

⎤⎥⎥⎥⎦ (9.60)
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which represents the diagonalization of Sz0z0
. On the other hand, the relationship

above also implies that

Sz0z0
= P

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn̄z

⎤⎥⎥⎥⎦PT (9.61)

and hence

Sz0z0
=

n̄z∑
j=1

pjλj pT
j . (9.62)

It should be noted that (9.61) holds true since PPT projects any vector onto
the subspace describing the relationship between any nz − n̄z variables that are
linearly dependent upon the remaining n̄z ones. This subspace is spanned by the
n̄z eigenvectors stored in P.



10

Partial least squares

This chapter provides a detailed analysis of PLS and its maximum redundancy
formulation. The data models including the underlying assumptions for obtaining
a PLS and a MRPLS model are outlined in Sections 2.2 and 2.3, respectively.

Section 10.1 presents preliminaries of projecting the recorded samples of the
input variables, x0 ∈ R

nx onto an n-dimensional subspace, n ≤ nx , and show
how a sequence of rank-one matrices extract variation from the sets of input and
output variables x0 and y0 ∈ R

ny , respectively. Section 10.2 then develops a PLS
algorithm and Section 10.3 summarizes the basic steps of this algorithm.

Section 10.4 then analyzes the statistical and geometric properties of PLS
and finally, Section 10.5 discusses the properties of MRPLS. Further material
covering the development and analysis of PLS may be found in de Jong (1993);
Geladi and Kowalski (1986); Höskuldsson (1988, 1996); ter Braak and de Jong
(1998); Wold et al. (1984) and Young (1994).

10.1 Preliminaries

In a similar fashion to PCA, PLS extracts information from the input and output
data matrices, X0 ∈ R

K×nx and Y0 ∈ R
K×ny by defining a series of rank-one

matrices

X0 =
n∑

j=1

t̂j p̂T
j + E(n+1) (10.1a)

Y0 =
n∑

j=1

t̂ĵ́qT

j + F(n+1). (10.1b)

Statistical Monitoring of Complex Multivariate Processes: With Applications in Industrial Process Control,
First Edition. Uwe Kruger and Lei Xie.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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The data matrices store mean-centered observations of the input and output
variable sets, that is x0 = x − x̄ and y0 = y − ȳ with x̄ and ȳ being mean vec-
tors. In the above equation, t̂j p̂T

j ∈ R
K×nx and t̂ĵ́qT

j ∈ R
K×ny are the rank-one

matrices for the input and output matrices, respectively, the n vectors t̂j ∈ R
K

are t-score vectors which are estimated from the input matrix, p̂j ∈ R
nx and̂́qj ∈ R

ny are estimated loading vectors for the input and output matrices, respec-
tively, and E(n+1) ∈ R

K×nx and F(n+1) ∈ R
K×ny are residual matrices of the input

and output matrices, respectively. It should be noted that the residual matrices
have a negligible or no contribution to the prediction of the output data matrix.

To establish (10.1), the PLS algorithm determines a sequence of parallel pro-
jections, one sequence for the observations stored in the input matrix and a second
sequence for the observations stored in the output matrix. Reformulating (10.1)

E(j+1) = X0 −
j−1∑
i=1

tip
T
i (10.2a)

F(j+1) = Y0 −
j∑

i=1

tj q́T
j (10.2b)

and defining

E(1) = X0 (10.3a)

F(1) = Y0 (10.3b)

allows determining the sequence of projections for the input and output variables

tj = E(j)wj

∥∥wj

∥∥2 = 1 (10.4a)

uj = F(j)qj

∥∥qj

∥∥2 = 1. (10.4b)

Here, uj ∈ R
K is the u-score vector of the output matrix, and wj ∈ R

nx and
qj ∈ R

ny are the weight vectors for the input and output variable sets, respec-
tively. Finally, according to (10.4), the score variables, tk and uk , are given by

tj = wT
j e(j) uj = qT

j f(j)

e(j) = x0 −
j−1∑
i=1

tipi f(j) = y0 −
j−1∑
i=1

ti q́i (10.5)

e(1) = x0 f(1) = y0.

The set of weight and loading vectors, wj , qj , pj and q́j , as well as the set of
score variables, tj and uj , make up the j th latent variable set.
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10.2 The core algorithm

PLS determines the score variables tj and uj such that they maximize an objective
function describing their covariance, which is subject to the constraint that the
projection vectors wj and qj are of unit length(

wj

qj

)
= arg max

w,q
E
{
tj uj

}− 1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)
(

wj

qj

)
= arg max

w,q
E
{(

wT e(j)
) (

qT f(j)
)}−

1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)
(

wj

qj

)
= arg max

w,q
wT S(j)

ef q − 1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)
,

(10.6)

where E
{
e(j)f(j)T

} = S(j)

ef . The optimal solution for the objective function in
(10.6) is given by(

wj

qj

)
= arg

∂

∂w

(
wT S(j)

ef q− 1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)) = 0

and(
wj

qj

)
= arg

∂

∂q

(
wT S(j)

ef q− 1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)) = 0

(10.7)

which have to be solved simultaneously. This yields

S(j)

ef qj − λ
(1)
j wj = 0

S(j)

f e wj − λ
(2)
j qj = 0.

(10.8)

Note that S(j)T

ef = S(j)

f e . Equation (10.8) also confirms that the two Lagrangian
multipliers are identical, since

arg wT
j

∂

∂w

(
wT S(j)

ef q − 1
2λ

(1)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)) = 0

wT
j

(
S(j)

ef qj − λ
(1)
j wj

)
= 0 ⇒ λ

(1)
j = wT

j S(j)

ef qj

and

arg qT
j

∂

∂q

(
wT S(j)

ef q − 1
2λ

(2)
j

(
wT w − 1

)− 1
2λ

(2)
j

(
qT q − 1

)) = 0

qT
j

(
S(j)

f e wj − λ
(2)
j qj

)
= 0 ⇒ λ

(2)
j = qT

j S(j)

f e wj = λ
(1)
j .

(10.9)
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Hence, λ
(1)
j = λ

(2)
j = λj . Combining the two expressions in (10.8) gives rise to[

S(j)

ef S(j)

f e − λ2
j I
]

wj = 0 (10.10a)[
S(j)

f e S(j)

ef − λ2
j I
]

qj = 0. (10.10b)

The weight vectors wj and qj are therefore the dominant eigenvectors of the

matrix expressions S(j)

ef S(j)

f e and S(j)

f e S(j)

ef , respectively. The score vectors for E(j)

and F(j) can now be computed using (10.4).
After determining the weight and score vectors, the next step involves the

calculation of a regression coefficient between the score variables tj and uj . It
is important to note, however, that the determination of this regression coeffi-
cient can be omitted, as this step can be incorporated into the calculation of the
q́-loading vector, which is proven in Section 10.4. For a better understanding of
the geometry of the PLS algorithm, however, the introduction of the PLS algo-
rithm here includes this step. Equation (10.11) shows the least squares solution
for determining the regression parameter

bj = wT
j S(j)

ef qj

wT
j S(j)

ee wj

(10.11)

where S(j)
ee = E

{
e(j)e(j)T

}
. The final step to complete the determination of the j th

set of latent variables requires formulation of objective functions for computing
the loading vectors

pj = arg min
p

∥∥∥E {(e(j) − tj p
) (

e(j) − tj p
)T }∥∥∥2

and

q́j = arg min
q́

∥∥∥E {(f(j) − ujbj q́
) (

f(j) − ujbj q́
)T }∥∥∥2

.

(10.12)

The solutions to (10.12) are

pj = arg
∂

∂p

∥∥∥E {e(j)e(j)T
}

− 2E
{

e(j)e(j)T wj pT
}

+ E
{

pwT
j e(j)e(j)T wj pT

}∥∥∥2 = 0

and

q́j = arg
∂

∂q́

∥∥∥E {f(j)f(j)T
}

− 2E
{

f(j)e(j)T wj bj q́T
}

+ E
{

q́bj wT
j e(j)e(j)T wj bj q́T

}∥∥∥2 = 0.

(10.13)
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Working out the relationships yields

− 2S(j)
ee wj + 2

(
wT

j S(j)
ee wj

)
pj = 0 ⇒ pj = S(j)

ee wj

wT
j S(j)

ee wj

and (10.14)

− 2bj S(j)

f e wj + 2b2
j

(
wT

j S(j)
ee wj

)
q́j = 0 ⇒ q́j = S(j)

f e wj

bj wT
j S(j)

ee wj

.

Before computing the (j + 1)th set of LVs, (10.5) highlights that the contri-
bution of the j th set of latent variables must be subtracted from e(j) and f(j)

e(j+1) = e(j) − tj pj (10.15a)

f(j+1) = f(j) − tj bj q́j . (10.15b)

It should be noted that substituting (10.14) into (10.15) gives rise to

f(j+1) = f(j) − tj bj qj = f(j) − tj

(
bj

bj

)
S(j)

f e wj

wT
j S(j)

ee wj

(10.16)

which, however, requires the q́-loading vector to be determined as follows

q́j = S(j)

f e wj

wT
j S(j)

ee wj

. (10.17)

It should also be noted that the deflation procedure can be applied directly to
the covariance matrix S(j)

ee and the cross-covariance matrix S(j)

ef

S(j+1)
ee = S(j)

ee − pj σ
2
tj

pT
j = S(j)

ee − pj wT
j S(j)

ee wj pT
j

S(j+1)
ee = S(j)

ee − S(j)
ee wj pT

j = S(j)
ee

[
I − wj pT

j

]
and

S(j+1)

f e = S(j)

f e − q́j σ
2
tj

pT
j = S(j)

f e − q́j wT
j S(j)

ee wj pT
j

S(j+1)

f e = S(j)

f e − S(j)

f e wj pT
j = S(j)

f e

[
I − wj pT

j

]
.

(10.18)

The above relationship relies on (10.14), (10.15) and (10.17).
The steps of the PLS algorithm can be carried out using the NIPALS algo-

rithm (Geladi and Kowalski 1986), the SIMPLS algorithm (de Jong 1993) or the
computationally more efficient Kernel algorithms (Dayal and MacGregor 1997a;
Lindgren et al. 1993; Rännar et al. 1994). Each of these algorithms are iterative in
nature, that is, one pair of latent variables are obtained and the contribution of the
t-score vector is deflated from the input and output matrices in one iteration step.
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10.3 Summary of the PLS algorithm

The preceding analysis showed that PLS extracts covariance information from
the input and output variables, x0 and y0, by defining a sequence of score vari-
ables which are extracted from the input variable set (10.5). The contribution
of each score variable is maximized by the determination of loading vectors,
such that the original variable sets are defined by x0 =∑n

j=1 tj pj + e(n+1) and
y0 =∑n

j=1 tj q́j + f(n+1) (10.15).
The calculation of the n score variables, t1, t2, . . ., tn relies on an objective

function that maximizes a covariance criterion between ti and a score variable
that is extracted from the output variable set ui , E

{
tiui

}
(10.6). In other words,

Table 10.1 PLS algorithm developed from the steps in Section 10.2.

Step Description Equation

1 Initiate iteration j = 1

2 Obtain covariance matrix Sx0x0
= S(1)

ee

3 Determine cross-covariance matrix Sy0x0
= S(1)

f e

4 Set-up initial q-weight vector 0qj = S(j)
f e (:,1)/

∥∥∥S(j)
f e (:,1)

∥∥∥
5 Calculate w-weight vector wj = S(j)

ef 0qj

6 Scale w-weight vector to unit length wj /‖wj‖
7 Compute q-weight vector 1qj = S(j)

f e wj

8 Scale q-weight vector to unit length 1qj /‖1qj‖
If
∥∥

1qj − 0qj

∥∥> ε, set
9 Check for convergence 0qj = 1qj and go to Step 5;

else go to Step 10

10 Determine p-loading vector pj = S(j)
ee wj

wj S(j)
ee wj

11 Calculate q́-loading vector q́j = S(j)
f e

wj

wj S(j)
ee wj

12 Deflate cross-covariance matrix S(j+1)

f e = S(j)

f e

[
I − wj q́T

j

]
Check whether there is significant If so, go to Step 14

13 variation left in the cross- if not, terminate modeling
covariance matrix procedure

14 Deflate covariance matrix S(j+1)
ee = S(j)

ee

[
I − wj pT

j

]
If j < nx , set j = j + 1

15 Check for dimension and go to Step 4
if not, terminate modeling
procedure

This algorithm is similar to the Kernel PLS algorithm by Lindgren et al. (1993).
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there are a total of n score variables computed from the input variable set and
n score variables calculated from the output variable set. These score variables
are obtained in pairs, ti and ui and are given by a projection of the input and
output variable set onto the weight vectors wi and qi (10.5). The solution for the
pairs of weight vectors gives rise to the determination of dominant eigenvectors
of symmetric and positive semi-definite matrices.

Unlike the PCA algorithm, the sets of latent variables can only be deter-
mined sequentially using the power method (Geladi and Kowalski 1986). This
is an iterative method for determining the dominant eigenvector of a symmetric
positive semi-definite matrix (Golub and van Loan 1996). Using the basic steps,
developed in the previous subsection, Table 10.1 presents a PLS algorithm for
determining the weight and loading vectors from the covariance matrix Sx0x0

and
the cross-covariance matrix Sy0x0

. The next subsection presents a detailed statisti-
cal and geometric analysis of the PLS algorithm and introduces a computationally
more efficient algorithm to that described in Table 10.1.

10.4 Properties of PLS

The PLS algorithm, developed and summarized in the last two subsections, has
the statistical and geometrical properties listed below. For a detailed discussion of
these properties, it is important to note that the preceding discussion has assumed
the availability of the covariance matrix Sx0x0

and the cross-covariance matrix
Sx0y0

. This has been for the convenience and simplicity of the presentation. Unless
stated otherwise, the analysis that follows, however, removes this assumption
and relies on the available data matrices X0 and Y0, whilst acknowledging that
the covariance and cross-covariance matrices can be estimated from these data
matrices. Hence, the weight, score and loading vectors become estimates.

1. The weight vectors, wj and qj are the dominant left and right singular vec-
tors and the maximum of the objective function λj is the largest singular

value of a singular value decomposition of S(j)

ef .

2. The t-score vectors are mutually orthogonal.

3. The matrix vector products t̂Tj E(j) and t̂Tj X0 are equivalent.

4. The matrix-vector product t̂Ti E(j) = 0 for all i < j .

5. The ith t-score and the j th u-score vectors are orthogonal for all i < j .

6. It is sufficient to either deflate the input or the output data matrix.

7. The w-weight vectors are mutually orthonormal.

8. The ith w-weight vector and the j th p-loading vector are orthogonal for
all j > i and equal to 1 if i = j .

9. The value of the regression coefficient bj is equal to the length of the
q́-loading vector.
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10. The j th q-weight and q́-loading vector point in the same direction.

11. The t-score variables are asymptotically Gaussian distributed.

12. The PLS q-weight and p-loading vectors and the value of the objective
function λj allow reconstructing Sy0x0

.

13. If the covariance matrix Sx0x0
has full rank nx and the maximum num-

ber of latent variable sets have been computed, the PLS regression matrix
between the input and output variables, BPLS , is equivalent to that calcu-
lated by the ordinary least squares solution, BOLS = [XT

0 X0

]−1 XT
0 Y0.

14. In contrast to ordinary least squares, PLS does not require a matrix inver-
sion to compute the regression matrix BPLS .

15. Comparing with the algorithm, discussed in the previous subsection, the
computation of a PLS model can be considerably simplified leading to a
computationally efficient algorithm.

The above properties are now formulated mathematically and proven.

Property 10.4.1 – Singular value decomposition of S(k)
ef . If the cross-

covariance matrix Sx0y0
= S(1)

ef is available, there exists the following
relationship between the j th pair of weight vectors and the maximum of the
objective function for determining these vectors.

Theorem 10.4.1 The weight vectors wj and qj and the value of the
objective function in (10.6), λj , are the left and right singular vector and the

largest singular value of the singular value decomposition of S(j)

ef , respectively
(Kaspar and Ray 1993).

Proof. Equation (10.10) shows that the weight vectors wj and qj are the dom-

inant eigenvectors of S(j)

ef S(j)

f e and S(j)

f e S(j)

ef , respectively. Moreover, the largest
eigenvalue of both matrices is λ2

j . On the other hand, a singular value decompo-
sition of a matrix A of arbitrary dimension is equal to A = USVT , where the
column vectors of U , that is, the left singular vectors, are the eigenvectors of
AAT , the column vectors of V , that is, the right singular vectors, are the eigen-
vectors of AT A, and the elements of the diagonal matrix S are the square root
of the eigenvalues of AT A or AAT (Golub and van Loan 1996). Note that the
eigenvectors of AT A or AAT are scaled to unit length. Now, replacing A with
S(j)

ef , it follows that the first column vector of U is wj , the first column vector
of U is qj and square root of the eigenvalue of AT A or AAT is λj , is the
first diagonal element of S, that is, the largest singular value of A. This largest
singular value, however, is equal to the maximum of the objective function in
(10.6), which concludes this proof.

Property 10.4.2 – Orthogonality of the t-score vectors. The pair of t-score
vectors t̂i and t̂j has the following geometric property.
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Theorem 10.4.2 The t-score vectors t̂i and t̂j , i �= j , are mutually
orthogonal, that is t̂Ti t̂j = 0.

Proof. First, revisiting the determination of the kth pair of loading vectors
yields

p̂j = Ŝ(j)
ee ŵj

ŵT
j Ŝ(j)

ee ŵj

= K − 1

K − 1

E(j)T E(j)ŵj

ŵT
j E(j)T E(j)ŵj

= E(j)T t̂j
t̂Tj t̂j

and

̂́qj = Ŝ(j)

f e ŵj

ŵT
j Ŝ(j)

ee ŵj

= K − 1

K − 1

F(j)T E(j)ŵj

ŵT
j E(j)T E(j)ŵj

= F(j)T t̂j
t̂Tj t̂j

.

(10.19)

With respect to (10.15), utilizing (10.19) gives rise to the following deflation
procedure for E(j) and F(j)

E(j+1) = E(j) − t̂j p̂T
j = E(j) − t̂j

t̂Tj E(j)

t̂Tj t̂j
=
[

I − t̂ĵ tTj
t̂Tj t̂j

]
E(j)

and

F(j+1) = F(j) − t̂ĵ́qT

j = F(j) − t̂j
t̂Tj F(j)

t̂Tj t̂j
=
[

I − t̂ĵ tTj
t̂Tj t̂j

]
F(j).

(10.20)

The deflation procedure can, alternatively, also be carried out as

E(j+1) = E(j) − E(j)ŵj p̂T
j = E(j)

[
I − ŵj p̂T

j

]
and

F(j+1) = F(j) − E(j)ŵj
̂́qT

j .

(10.21)

Next, applying the above expressions for deflating E(j) to simplify the expression

t̂Ti t̂j = t̂Ti E(j)ŵj (10.22)

by assuming that i < j , yields

E(j) =
[

I − t̂ît
T
i

t̂Ti t̂i

]
E(i)
[
I − ŵi+1p̂T

i+1

] · · · [I − ŵj−1p̂T
j−1

]
. (10.23)

Now, substituting (10.23) into (10.22) gives rise to

t̂Ti t̂j = t̂Ti

[
I − t̂ît

T
i

t̂Ti t̂i

]
E(i)
[
I − p̂i+1ŵT

i+1

] · · · [I − p̂j+1ŵT
j+1

]
ŵj

t̂Ti t̂j =
(̂

tTi − t̂Ti t̂ît
T
i

t̂Ti t̂i

)
E(i)
[
I − p̂i+1ŵT

i+1

] · · · [I − p̂j+1ŵT
j+1

]
ŵj (10.24)

t̂Ti t̂j = (̂tTi − t̂Ti
)
E(i)
[
I − p̂i+1ŵT

i+1

] · · · [I − p̂j+1ŵT
j+1

]
ŵj = 0 .
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It is interesting to note that the orthogonality property of the t-score vectors
implies that the estimated covariance matrix of the score variables is a diagonal
matrix

Ŝtt = 1
K−1 diag

{
t̂T1 t̂1 t̂T2 t̂2 · · · t̂Tn t̂n

}
, (10.25)

The orthogonality property of the t-score vectors also results in interesting
geometric properties in conjunction with the deflated matrix E(j), which is
discussed next.

Property 10.4.3 – Matrix-vector products t̂T
j E(j) and t̂T

j X0. The mutual
orthogonality of the t-score vectors gives rise to the following relationship for
the matrix vector products t̂Tj E(j) and t̂Tj X0.

Lemma 10.4.3 The products t̂Tj E(j) and t̂Tj E(1) = t̂Tj X0 are equivalent

Proof. Using the deflation procedure to compute E(j) yields

t̂Tj E(j) = t̂Tj

[
I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

][
I − t̂j−2̂tTj−2

t̂Tj−2̂tj−2

]
· · ·
[

I − t̂1̂tT1
t̂T1 t̂1

]
X0

t̂Tj E(j) =
(̂

tTj −

=0︷ ︸︸ ︷
tTj tj−1 tTj−1

tTj−1tj−1

)[
I − t̂j−2̂tTj−2

t̂Tj−2̂tj−2

]
· · ·
[

I − t̂1̂tT1
t̂T1 t̂1

]
X0

t̂Tj E(j) =
(̂

tTj −

=0︷ ︸︸ ︷
t̂Tj t̂j−2 t̂Tj−2

t̂Tj−2̂tj−2

)[
I − t̂j−3̂tTj−3

t̂Tj−3̂tj−3

]
· · ·
[

I − t̂1̂tT1
t̂T1 t̂1

]
X0

... (10.26)

t̂Tj E(j) =
(̂

tTj −

=0︷︸︸︷
t̂Tj t̂1 t̂T1

t̂T1 t̂1

)
X0

t̂Tj E(j) = t̂Tj X0 .

Property 10.4.4 – Matrix-vector product t̂T
i E(j). The mutual orthogonality of

the t-score variable leads to the following property for the matrix-vector product
t̂Ti E(j) if i < j .
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Lemma 10.4.4 The matrix vector product t̂Ti E(j) = 0 for all i < j and
p̂T

i

(̂
tTi t̂i
)

for all i ≥ j .

Proof. For i < j , the application of the deflation procedure for E(j) gives
rise to

E(j) =
[

I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

]
· · ·
[

I − t̂ît
T
i

t̂Ti t̂i

]
E(i). (10.27)

Substituting the above equation into the matrix-vector product t̂Ti E(j) yields

t̂Ti E(j) = t̂Ti

[
I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

]
· · ·
[

I − t̂ît
T
i

t̂Ti t̂i

]
E(i)

t̂Ti E(j) =
(̂

tTi −

=0︷ ︸︸ ︷
t̂Ti t̂j−1 t̂Tj−1

t̂Tj−1̂tj−1

)[
I − t̂j−2̂tTj−2

t̂Tj−2̂tj−2

]
· · ·
[

I − t̂ît
T
i

t̂Ti t̂i

]
E(i)

...

t̂Ti E(j) =
(̂

tTi − t̂Ti t̂ît
T
i

t̂Ti t̂i

)
E(i) = (̂tTi − t̂Ti

)
X0 = 0 .

(10.28)

For i ≥ j , Lemma 10.4.3 highlights that t̂Ti E(j) = t̂Ti X0. Equation (10.19) shows
that t̂Ti X0 = t̂Ti E(i) forms part of the calculation of the p-loading vector

p̂T
i = t̂Ti E(i)

t̂Ti t̂i
= t̂Ti X0

t̂Ti t̂i
⇒ p̂T

i

(̂
tTi t̂i
) = t̂Ti X0 . (10.29)

Property 10.4.5 – Orthogonality of the t- and u-score vectors. The mutual
orthogonality of any pair of t-score vectors also implies the following geometric
property for the t- and u-score vectors.

Lemma 10.4.5 The ith t-score vector is orthogonal to the j th u-score vector,
that is, t̂Ti ûj = 0 for all i < j .

Proof. With ûj = F(j)q̂i , the scalar product t̂Ti ûj becomes

t̂Ti ûj = t̂Ti F(j)q̂i . (10.30)
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For j > i, tracing the deflated output matrix F(j) from j back to i gives rise to

t̂Ti ûj = t̂Ti

[
I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

]
F(j−1)q̂j

t̂Ti ûj = t̂Ti

[
I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

]
· · ·
[

I − t̂ît
T
i

t̂Ti t̂i

]
F(i)q̂j

t̂Ti ûj =
(̂

tTi −

=0︷ ︸︸ ︷
t̂Ti t̂j+1 t̂Tj+1

t̂Tj+1̂tj+1

)[
I − t̂j−2̂tTj−2

t̂Tj−2̂tj−2

]
· · ·
[

I − t̂ît
T
i

t̂Ti t̂i

]
F(i)q̂j

...

t̂Ti ûj =
(̂

tTi − t̂Ti t̂ît
T
i

t̂Ti t̂i

)
F(i)q̂j = (̂tTi − t̂Ti

)
F(i)q̂j = 0 .

(10.31)

Property 10.4.6 – Deflation of the data matrices. The analysis focuses now
on the deflation procedure, which yields that only one of the output variable sets
needs to be deflated and not both simultaneously. Therefore, the following holds
true for the deflation of the data matrices.

Theorem 10.4.6 The deflation procedure requires the deflation of the output
data matrix or the input data matrix only.

Proof. First, we examine the deflation of the output data matrix. This analysis
also yields the necessary condition to show that it is sufficient to deflate the input
data matrix only, which culminates in Corollary 10.4.8. Examining the deflation
procedure of the PLS algorithm in Table 10.1 highlights that the deflation proce-
dure is applied to the covariance and cross-covariance matrices. These matrices
can be replaced by the matrix products E(j)T E(j) and E(j)T F(j), respectively. The
deflation of these matrix products leads to

E(j+1)T E(j+1) = E(j)T

[
I − t̂ĵ tTj

t̂Tj t̂j

][
I − t̂ĵ tTj

t̂Tj t̂j

]
E(j)

E(j+1)T E(j+1) = E(j)T

[
I − t̂ĵ tTj

t̂Tj t̂j
− t̂ĵ tTj

t̂Tj t̂j
+ t̂ĵ tTj

t̂Tj t̂j

]
E(j) (10.32)

E(j+1)T E(j+1) = E(j)T

[
I − t̂ĵ tTj

t̂Tj t̂j

]
E(j) = E(j+1)T E(j)T = E(j)T E(j+1).
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If j = 1, it follows from (10.32) that E(2)T E(2) = E(1)T E(2) = XT
0 E(2). To prove

the general case, the deflation procedure allows computing E(j) from the output
data matrix X0 using the score vectors t̂1, . . . , t̂j−1.

E(j+1)T E(j+1) = E(j)T

[
I − t̂ĵ tTj

t̂Tj t̂j

]
E(j)

E(j+1)T E(j+1) = E(j−1)T

[
I − t̂j−1̂tTj−1

t̂Tj−1̂tj−1

][
I − t̂ĵ tTj

t̂Tj t̂j

]
E(j)

... (10.33)

E(j+1)T E(j+1) = XT
0

j∏
i=1

[
I − t̂ît

T
i

t̂Ti t̂i

]
E(j)

E(j+1)T E(j+1) = XT
0

[
I −

j∑
i=1

t̂ît
T
i

t̂Ti t̂i

]
E(j)

E(j+1)T E(j+1) = XT
0

[
I − t̂ĵ tTj

t̂Tj t̂j

]
E(j) = XT

0 E(j+1) = E(j+1)T X0 .

The above relationship relies on the fact that the t-score vectors are mutually
orthogonal, as described in Theorem 10.4.2, and that t̂Ti E(j) = 0 for all i < j ,
outlined in Lemma 10.4.4. Applying the same steps yields

E(j+1)T F(j+1) = XT
0 F(j+1) = E(j+1)T Y0 . (10.34)

The conclusion of this proof requires showing that the calculation of the t-score
vectors can be carried out directly from the input data matrix, since

p̂j = XT
0 t̂j

t̂Tj t̂j
̂́qj = F(j)T t̂j

t̂Tj t̂j

q̂j ∝ F̂(j)T X0wj ŵj ∝ X0F(j)q̂j (10.35)

t̂j �= X0ŵj ,

which is formulated below.

Lemma 10.4.7 The definition of the r-weight vectors

r̂1 = ŵ1 r̂j = ŵj −
j−1∑
i=1

p̂T
i ŵj r̂i (10.36)
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enables calculation of the t-score vectors directly from the input data matrix, that
is, t̂j = X0̂rj , 1 ≤ j ≤ n.

Proof. Revisiting the calculation of the kth t-score vector yields

t̂j = E(j)ŵj = [E(j−1) − t̂j−1p̂T
j−1

]
ŵj

t̂j = [E(j−2) − t̂j−2p̂T
j−2 − t̂j−1p̂T

j−1

]
ŵj

t̂j = [X0 − t̂1p̂T
1 − t̂2p̂T

2 − · · · − t̂j−2p̂T
j−2 − t̂j−1p̂T

j−1

]
ŵj (10.37)

t̂j = [X0 − X0̂r1p̂T
1 − X0̂r2p̂T

2 − · · · − X0̂rj−2p̂T
j−2 − X0̂rj−1p̂T

j−1

]
ŵj

t̂j = X0

[
I − r̂1p̂T

1 − r̂2p̂T
2 − · · · − r̂j−2p̂T

j−2 − r̂j−1p̂T
j−1

]
ŵj

which gives rise to the following iterative calculation of the r-weight vectors

r̂1 = ŵ1 r̂j = ŵj −
j−1∑
i=1

r̂i p̂
T
i ŵj = ŵj −

j−1∑
i=1

p̂T
i ŵj r̂i . (10.38)

Equation (10.35) highlights that only the output matrix Y0 ��� F(k) needs to
be deflated, given that the r-weight vectors allow the computation of the t-score
vectors directly, which concludes the proof of Theorem 10.4.6. Moreover, it is
also important to note the following.

Corollary 10.4.8 It is also sufficient to deflate X0 instead of Y0.

Corollary 10.4.8 follows from the fact that E(j)T F(j) = X0F(j) = E(j)T Y0,
discussed in (10.34). Whilst this does not require the introduction of the r-weight
vectors in Lemma 10.4.7, it requires the deflation of two matrix products, that
is, XT

0 E(j) ��� XT
0 E(j+1) and XT

0 F(j) ��� XT
0 F(j+1), for computing the pairs of

weight and loading vectors. It is, however, computationally more expensive to
deflate both matrix products. The following rank-one modification presents a
numerically expedient way to deflate the matrix product E(j)T F(j)

E(j+1)T F(j+1) = E(j)T

[
I − t̂ĵ tTj

t̂Tj t̂j

]
F(j)

E(j+1)T F(j+1) = E(j)T F(j) − E(j)T t̂j︸ ︷︷ ︸
=p̂j

(̂
tT
j

t̂j
) t̂Tj

F(j)

t̂Tj t̂j︸ ︷︷ ︸
=̂́qT

j

E(j+1)T F(j+1) = E(j)T F(j) − p̂j

(̂
tTj t̂j
)̂́qT

j .

(10.39)

It should be noted that the scalar product t̂Tj t̂j is required for the calculation

of the loading vectors and hence available for the deflation of E(j)T F(j). The
relationship of (10.39) relies on (10.19), (10.29) and (10.32).
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Property 10.4.7 – Orthogonality of the w-weight vectors. We now focus on
orthogonality properties of the w-weight vectors and start with the geometry
property of any pair, ŵi and ŵj , which has the following property.

Theorem 10.4.9 The w-weight vectors ŵi and ŵj , i �= j , are mutually
orthonormal, that is ŵT

i ŵj = 0.

Proof. Assuming that i > j , the scalar product ŵT
i ŵj can be rewritten as

ŵT
i E(i)T Y0YT

0 E(i)T ŵj∥∥E(i)T Y0YT
0 E(i)T ŵi

∥∥ , (10.40)

which follows from (10.10). Next, analyzing the term E(i)ŵj reveals that it is
equal to zero

E(i)ŵj =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂ĵ tTj
t̂Tj t̂j

]
E(j)ŵj

E(i)ŵj =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂ĵ tTj
t̂Tj t̂j

]
t̂j

E(i)ŵj =
[

I − t̂i−1̂tTi−1

t̂Ti−1̂ti−1

]
· · ·
[

I − t̂j+1̂tTj+1

t̂Tj+1̂tj+1

] (̂
tj − t̂j

) = 0

(10.41)

which implies that

ŵT
i ŵj = 0 .

Property 10.4.8 – Orthogonality of the w-weight and p-loading vectors. The
following holds true for the scalar product p̂T

i ŵj .

Lemma 10.4.10 The ith p-loading and the j th w-weight vector are orthog-
onal if i > j and equal to 1 for i = j .

Proof. According to (10.19), the scalar product p̂T
i ŵj is given by

p̂T
i ŵj = t̂Ti E(i)ŵj

t̂Ti t̂i
. (10.42)

For i > j , tracing the deflation procedure for E(i) from i back to j yields

t̂Ti E(i)ŵj

t̂Ti t̂i
=

t̂Ti

[
I − ti−1tT

i−1

tT
i−1ti−1

]
E(i−1)ŵj

t̂Ti t̂i
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t̂Ti E(i)ŵj

t̂Ti t̂i
=

t̂Ti

[
I − ti−1tT

i−1

tT
i−1ti−1

]
· · ·
[

I − tj tT
j

tT
j

tj

] =̂tj︷ ︸︸ ︷
E(j)ŵj

t̂Ti t̂i
(10.43)

t̂Ti E(i)ŵj

t̂Ti t̂i
=

t̂Ti

[
I − t̂i−1̂tT

i−1

t̂T
i−1̂ti−1

]
· · ·
[

I − t̂j+1̂tT
j+1

t̂T
j+1̂tj+1

]
t̂Ti t̂i

(̂
tj − t̂j

) = 0 .

That p̂T
i ŵj = 1 for i = j follows from the computation of the p-loading vector

p̂T
i ŵj = t̂Ti

=̂tj︷ ︸︸ ︷
E(i)ŵj

t̂Ti t̂i
= t̂Tj t̂j

t̂Tj t̂j
= 1 . (10.44)

Property 10.4.9 – Calculation of the regression coefficient b̂j. There is the
following relationship between the estimated regression coefficient of the j th
pair of score variables, tj and uj , and the length of the j th q́-loading vector

Theorem 10.4.11 The estimated regression coefficient b̂j is equal to the
norm of the q́-loading vector q́T

j = t̂j F(j)/̂tTj t̂j , that is b̂j = ∥∥q́j

∥∥.
Proof. Determining the length of q́j yields

∥∥q́j

∥∥ =
√√√√√ t̂Tj F(j)F(j)T t̂j(̂

tTj t̂j
)2 =

√
ŵT

j E(j)T F(j)F(j)T E(j)ŵj

t̂Tj t̂j
. (10.45)

However, since ŵj is the dominant eigenvector of E(j)T F(j)F(j)T E(j), the expres-

sion ŵT
j E(j)T F(j)F(j)T E(j)ŵj is equal to the largest eigenvalue. According to

(10.6) and (10.10) this eigenvalue is equal to the square of the Lagrangian mul-
tiplier of the objective function for computing the j th pair of weight vectors.
Moreover, the eigenvalue of E(j)T F(j)F(j)T E(j) is (K − 1)2 times the eigenvalue
of Ŝ(j)

ef Ŝ(j)

f e , λ̂2
j , and hence, equal to

(
(K − 1) λ̂j

)2
. On the other hand, t̂Tj ûk is the

estimate for K − 1 times the covariance between the t- and u-score variables.
Consequently, (10.45) becomes

∥∥q́j

∥∥ =
√

λ̂2
j

t̂Tj t̂j
=

√(̂
tTj ûj

)2

t̂Tj t̂j
= t̂Tj ûj

t̂Tj t̂j
(10.46)

which is, according to (10.11), equal to the estimate b̂k .
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Property 10.4.10 – Relationship between the q-weight and q́-loading
vectors. The following relationship between the j th pair of q-weight and
q́-loading vectors exists.

Theorem 10.4.12 The q-weight vector q̂j and the q́-loading vector ̂́qj have
the same direction and the scaling factor between these vectors is the regression
coefficient b̂j .

Proof. According to (10.8), the q-weight vector can be written as

q̂j = F(j)T E(j)ŵj∥∥F(j)T E(j)ŵj

∥∥ = F(j)T t̂j∥∥F(j)T t̂j
∥∥ (10.47)

whilst the q́-loading vector is given by

̂́qj = F(j)T t̂j
t̂Tj t̂j

=
q̂j

∥∥∥F(j)T t̂j
∥∥∥

t̂Tj t̂j
. (10.48)

Since ∥∥∥F(j)T t̂j
∥∥∥ =
√̂

tTj F(j)F(j)T t̂j =
√

ŵT
j E(j)T F(j)F(j)T E(j)ŵj (10.49)

is, according to Theorem 10.4.11, equal to t̂Tk ûk . Equation (10.48) therefore
becomes

̂́qj = q̂j

t̂Tj ûj

t̂Tj t̂j
= q̂j b̂j . (10.50)

This, however, implies that ̂́qj ∝ q̂j , where the scaling factor between both vec-
tors is the regression coefficient b̂j .

Property 10.4.11 – Asymptotic distribution of t-score variables. Equations
(2.23) and (2.24) describe the data structure for PLS models, which gives rise to
the following asymptotic distribution of the t-score variables.

Theorem 10.4.13 Under the assumption that the source variables have zero
mean and are statistically independent, the t-score variables asymptotically follow
a Gaussian distribution under the Liapounoff theorem, detailed in (9.31), since

�3
tj

=
n∑

i=1

�3
tji

σ 2
tj

=
n∑

i=1

σ 2
tji

�3
tji

= E
{∣∣(rT

j pi

)
si + 1

n
rT
j e
∣∣3} (10.51)

σ 2
tji

= E
{((

rT
j pi

)
si + 1

n
rT
j e
)2} = (rT

j pi

)2
σ 2

si
+ 1

n

nx∑
i=1

r2
jiσ

2
ei
.
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Proof. The calculation of the t-score variables

tj = rT
j x0 =

nx∑
i=1

rjix0i
=

n∑
i=1

rT
j

(
pi si + 1

n
e
)

(10.52)

becomes asymptotically

lim
n→∞ tj = lim

n→∞

n∑
i=1

rT
j pi si . (10.53)

Replacing rj , bi and e by pj , ξ i and g, respectively, (10.52) shows the same
formulation as that for computing the t-score variables using PCA. Consequently,
the proof of Theorem 9.3.4 is also applicable to the proof of Theorem 10.4.13.

Property 10.4.12 – Reconstruction of the Cross-covariance matrix Sx0y0
.

The focus now shifts on the reconstruction of the cross-covariance matrix Sx0y0
using the sets of LVs computed by the PLS algorithm.

Theorem 10.4.14 If the covariance matrix Sx0x0
has full rank nx , the nx sets

of LVs allow a complete reconstruction of the cross-covariance matrix Sx0y0
using

the nx p-loading vectors, the nx value of the objective functions function and the
nx q-weight vectors.

Proof. The reconstruction of the covariance matrix Sx0y0
follows from

Sx0y0
= lim

K→∞
1

K−1 XT
0 Y0

Sx0y0
= lim

K→∞
1

K−1 XT
0

[
TQ́T + F

] = lim
K→∞

1
K−1 XT

0 TQ́T

Sx0y0
= lim

K→∞
1

K−1

⎡⎣ nx∑
j=1

pj tTj

⎤⎦⎡⎣ nx∑
j=1

tj q́T
j

⎤⎦
Sx0y0

= lim
K→∞

1
K−1

⎡⎣ nx∑
j=1

pj tTj

⎤⎦⎡⎣ nx∑
j=1

tj bj qT
j

⎤⎦
Sx0y0

= lim
K→∞

1
K−1

nx∑
j=1

pj tTj tj bj qT
j

Sx0y0
= lim

K→∞
= 1

K−1

nx∑
j=1

pj tTj uj qj =
nx∑

j=1

pj

(
wT

j S(j)

ef qj

)
qT

j

Sx0y0
=

nx∑
j=1

pj λj qT
j .

(10.54)
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The above holds true, since:

• lim
K→∞

1
K−1 XT

0 F = P lim
K→∞

1
K−1 TT F

lim
K→∞

1
K−1 XT

0 F = P lim
K→∞

1
K−1 TT

[
Y0 − TQ́T

]
lim

K→∞
1

K−1 XT
0 F = P lim

K→∞
1

K−1 TT
[
I − T

[
TT T
]−1 TT

]
Y0

lim
K→∞

1
K−1 XT

0 F = P
[
Sty0

− SttS
−1
tt Sty0

]
lim

K→∞
1

K−1 XT
0 F = 0;

• the t-score vectors are mutually orthogonal, which Theorem 10.4.2 outlines;

• q́k = bkqk , which Theorem 10.4.11 confirms;

• lim
K→∞

1
K−1 tTk uk = bk lim

K→∞
1

K−1 tTk tk, which follows from (10.11); and

• λj = wT
j S(j)

ef qj , which follows from (10.9).

Property 10.4.13 – Accuracy of PLS regression model. The following rela-
tionship between the PLS regression model and the regression model obtained
by the ordinary least squares solution exists.

Theorem 10.4.15 Under the assumption that the rank of the covariance
matrix Sx0x0

is nx the PLS regression model is identical to that obtained by an
ordinary least squares solution, that is B = BOLS = S−1

x0x0
Sx0y0

.

Proof. Starting by revisiting the data structure in (2.23)

y0 = BT x0 + f E
{
x0f

T
} = 0 B = S−1

x0x0
Sx0y0

. (10.55)

Using PLS, the prediction of output vector y0 becomes

y0 = Q́t + f = Sy0tS
−1
tt t + f. (10.56)

Next, analyzing the relationship between Stt and Sx0x0
as well as between Sy0t

and Sy0x0
concludes this proof, since

Stt = E
{
ttT
} = E

{
RT x0xT

0 R
} = RT Sx0x0

R
(10.57)

Sy0t = E
{
y0t

T
} = E

{
y0xT

0 R
} = Sy0x0

R

which gives rise to

y0 = Sy0x0
R

=S−1
tt︷ ︸︸ ︷

R−1S−1
x0x0

R−T

=t︷ ︸︸ ︷
RT x0 +f. (10.58)

With RR−1 = R−T RT reducing to the identity matrix, (10.58) becomes

y0 = Q́t + f = Sy0x0
S−1

x0x0
x0 + f = BT x0 + f . (10.59)
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Property 10.4.14 – Computing the estimate of B. Using the nx sets of LVs,
computed from the PLS algorithm, the following holds true for estimating the
parameter matrix B, y0 = BT x0 + f.

Lemma 10.4.16 If the covariance matrix Sx0x0
has full rank nx , the nx sets

of LVs allow one computation of an estimate of the parameter matrix B without
requiring the inversion of any squared matrix.

Proof. The prediction of the output vector y0 using the nx sets of LVs is

y0 = Q́t + f = Q́RT x0 + f = BT x0 + f . (10.60)

The column vectors of the matrices Q́ and R, however, can be computed
iteratively

S(j)

ef S(j)

f e wj = λ2
j wj

rj = wj −
j−1∑
i=1

pT
i wj ri q́j = S(j)

f e rj

rT
j Sx0x0

rj

pj = Sx0x0
rj

rT
j Sx0x0

rj

S(j+1)

ef = S(j)

ef − q́j

(
rT
j Sx0x0

rj

)
pj = S(j)

ef

[
I − wj pT

j

]
.

(10.61)

The expression for determining the q-loading vector follows from (10.35) and
(10.37). Hence, unlike the OLS solution, PLS does not require any matrix inver-
sion to iteratively estimate B. Subsection 6.2.2 presents an excellent example to
demonstrate the benefit of the iterative PLS procedure over OLS.

Property 10.4.15 – Computationally efficient PLS algorithm. The preced-
ing analysis into the properties of PLS algorithm has shown that the deflation
procedure only requires the deflation of the input or the output data matrix and
that introducing the r-weight vectors allows the t-score vectors to be be directly
computed from the input data matrix. This gives rise to the development of a
computationally efficient PLS algorithm. Table 10.2 shows the steps of the revised
PLS algorithm. To cover any possible combination in terms of the number of
input and output variables nx and ny , the revised algorithm includes the case
of ny = 1 and obtains the w-weight or the q-loading vector using the iterative
power method, depending on whether nx < ny or nx ≥ ny , respectively. More
precisely, the dimension of the symmetric and positive semi-definite matrix prod-
ucts XT

0 F(j)F(j)T X0 and F(j)T X0XT
0 F(j) are nx × nx and ny × ny , respectively.

Given that there is the following linear relationship between the weight vectors

S(j)

ef qj = λj wj S(j)

f e wj = λj qj (10.62)
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Table 10.2 Computationally efficient PLS algorithm.

Step Description Equation

1 Initiate iteration j = 1, S(1)
ef = Sx0y0

Mw = S(j)

ef S(j)

f e

2 Set up matrix product if nx < ny else

Mq = S(j)

f e S(j)

ef

3 Check dimension of y0 if ny = 1, wj = S(j)
ef /
∥∥∥S(j)

ef

∥∥∥ and go
to Step 9, if not go to Step 4
0wj = Mw(:,1)/‖Mw(:,1)‖

4 Initiate power method if nx < ny else
0qj = Mq (:,1)/‖Mq (:,1)‖
1wj = Mw

(
0wj

)
5 Compute matrix-vector product if nx < ny else

1qj = Mq

(
0qk

)
1wj = 1wj /‖1wj‖

6 Scale weight vector if nx < ny else
1qj = 1qj /‖1qj‖
if
∥∥

1wj − 0wj

∥∥> ε

or
∥∥

1qj − 0qj

∥∥> ε

7 Check for convergence 0wj = 1wj or 0qj = 1qj and
go to Step 5 else set wj = 0wj

or qj = 0qj and go to Step 8

qj = S(j)
f e

wj /
∥∥∥S(j)

f e
wj

∥∥∥
8 Calculate 2nd weight vector if nx < ny else

wj = S(j)
ef

qj /
∥∥∥S(j)

ef
qj

∥∥∥
9 Compute r-weight vector rj = wj −∑j−1

i=1 pT
i wj ri

10 Determine scalar τ 2
j = rT

j Sx0x0
rj

11 Calculate p-loading vector pj = Sx0x0 rj /τ2
j

12 Obtain q́-loading vector q́j = S(j)
f e

rj /τ2
j

13 Deflate cross-covariance matrix S(j+1)

ef = S(j)

ef − pj τ
2
j q́T

j

14 Check whether there is significant If so, go to Step 15
variation left in S(j+1)

ef if not go to Step 16

15 Check for dimension If j < nx , set j = j + 1 and go to
Step 2, if not go to Step 16

16 Compute regression matrix B = RQ́T



396 DESCRIPTION OF MODELING METHODS

only one of the dominant eigenvectors needs to be computed. It is therefore
expedient to apply the power method to the smaller matrix product if nx �= ny .
If ny = 1, the covariance matrix Sx0y0

reduces to a vector of dimension nx . In

this case, the w-weight vector is proportional to S(j)

ef . It should be noted that
the algorithm in Table 10.2 assumes the availability of the covariance and cross-
covariance matrices Sx0x0

and Sx0y0
. As they are not available in most practical

cases, they need to be estimated from the recorded samples stored in X0 and Y0
and the computed weight and loading vectors become, accordingly, estimates.
It should also be noted that the PLS algorithm in Table 10.2 is similar to that
reported in Dayal and MacGregor (1997a).

10.5 Properties of maximum redundancy PLS

Section 2.3 introduces MRPLS as a required extension to PLS to model the
data structure in (2.51). This section offers a detailed examination of MRPLS
in term of its geometric properties and develops a numerically more efficient
algorithm. Readers who are predominantly interested in the application of the
methods discussed in this book can note the computationally efficient MRPLS
algorithm in Table 10.3 or the batch algorithm for simultaneously computing the
n q-loading and w-weight vectors in Table 10.4.

The analysis of the properties of the MRPLS algorithm concentrates on the
geometric properties of score, loading and weight vectors first. The results enable
a further analysis regarding the deflation procedure and contribute to the numer-
ically and computationally efficient algorithm that is summarized in Table 10.3.

It should be noted that the proposed MRPLS algorithm in Table 2.3 incor-
porates the fact that only one of the matrices needs to be deflated and that
the length-constraint for the w-weight vectors wT

i E(i)T E(i)wi − 1 is equal to
wT

i XT
0 X0wi − 1. This is also proven in this section as part of the analysis of the

deflation procedure.
The properties of the MRPLS algorithm are as follows.

1. The t-score vectors are mutually orthonormal.

2. The t- and u-score vectors are mutually orthogonal.

3. The products E(j)T E(j) and E(j)T F(j) are equal to XT
0 E(j) and XT

0 F(j),
respectively.

4. The w-weight, the auxiliary w-weight and p-loading vectors are mutually
orthogonal.

5. The q-weight vectors are mutually orthonormal and point in the same
direction as the q́-loading vectors.

6. The constraint of the MRPLS objective function wT
j E(j)T E(j)wj − 1 = 0

is equal to wT
j XT

0 X0wj − 1 = 0.
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7. The MRPLS objective function wT
j E(j)T F(j)qj is equal to wT

j XT
0 F(j)qj .

8. The w-weight and auxiliary w-weight vector are the left and right eigen-
vectors of [XT

0 X0]−1XT
0 F(j)YT

0 X0.

9. The q-weight vectors are right eigenvectors of the YT
0 X0[X0XT

0 ]−1XT
0 F(j).

10. The w- and q-weight vectors can be simultaneously and independently
computed as the left eigenvectors of the matrix products [XT

0 X0]−1XT
0 Y0

YT
0 X0 and YT

0 X0[X0XT
0 ]−1XT

0 Y0, respectively.

Property 10.5.1 – Orthogonality of the t-score vectors. The first property
relates to the geometry of the t-score vectors, which Theorem 10.5.1 describes.

Theorem 10.5.1 The t-score vectors are mutually orthonormal, that is,
t̂Ti t̂j = δij .

Proof. The proof for Theorem 10.5.1 requires a detailed analysis of the defla-
tion procedure and starts by reformulating t̂Ti t̂j

t̂Ti t̂j = ŵT
i E(i)T E(j)ŵj . (10.63)

Now, incorporating the deflation procedure for the data matrix E(j) = E(j−1) −
t̂j−1p̂j−1 = [I − t̂j−1̂tTj−1

]
E(j−1) = E(j−1)

[
I − ŵj−1p̂T

j−1

]
yields

t̂Ti E(j−1)
[
I − ŵj−1p̂T

j−1

]
ŵj (10.64)

under the assumption that i < j . Applying the deflation procedure a total of
j − i − 1 times yields

t̂Ti
[
I − t̂ît

T
i

]
E(i)

⎡⎣ j−1∏
m=i+1

[
I − ŵmp̂T

m

]⎤⎦ ŵj = 0 . (10.65)

The vector-matrix product to the left, however, reduces to t̂Ti − t̂Ti , which implies
that t̂Ti t̂j = 0 if i �= j and 1 if i = j .

Property 10.5.2 – Orthogonality of the t- and u-score vectors. The t- and
u-score vectors have the following geometric property.

Theorem 10.5.2 The t- and u-score vectors are mutually orthogonal, that is,
t̂Ti ûj = δij λ̂i

Proof. The proof of ûT
i t̂Tj = δij λ̂i commences with

ûT
i t̂j = q̂T

i F(i)T E(j)ŵj . (10.66)
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Table 10.3 Computationally efficient MRPLS algorithm.

Step Description Equation

1 Initiate iteration n = 1, j = 1

Mx0x0
= XT

0 X0,

2 Set up matrix products M(1)
x0y0 = XT

0 Y0 and

M−1
x0x0

3 Set up initial q-weight vector 0q̂T
j = M(j)

x0y0 (1,:)/
∥∥∥M(j)

x0y0 (1,:)
∥∥∥

4 Compute auxiliary weight vector ŵj = M(j)
x0y0

(
0q̂j

)
if j = n

5 Calculate w-weight vector ŵj = M−1
x0x0

ŵj /
√

ŵT
j

Mx0x0 ŵk

else : ŵj = ŵj

6 Determine q-weight vector 1q̂j = M(j)T

x0y0 ŵj /
∥∥∥∥M(j)T

x0y0 ŵj

∥∥∥∥
if
∥∥

1q̂j − 0q̂j

∥∥> ε

7 Check for convergence set 0q̂j = 1q̂j and go to Step 4
else set q̂j = 1q̂j and go to Step 8
if j = n : r̂j = ŵj

8 Compute r-weight vector else :

r̂j = ŵj −∑j−1
i=1 p̂T

i ŵj r̂i

if j = n : p̂j = Mx0x0
ŵj

9 Determine p-loading vector else compute τj = r̂T
j Mx0x0̂

rj and
p̂j = Mx0x0 ŵj /τj

if j = n q́j = M(j)T

x0y0ŵj

10 Determine q́-loading vector else

q́j = M(j)T

x0y0 ŵj /τj

if j = n M(j+1)
x0y0 = M(j)

x0y0 − p̂j
̂́qT

j

11 Deflate cross-product matrix else

M(j+1)
x0y0 = M(j)

x0y0 − p̂j τj
̂́qT

j

Check whether there is if so j = j + 1, n = n + 1

12 still significant variation and go to Step 4

remaining in M(j+1)
x0y0 if not j = j + 1, go to Step 13

13 Check whether j = nx if so then terminate else go to Step 3
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Table 10.4 Simultaneous MRPLS algorithm for LV sets.

Step Description Equation

1 Form matrix products Mx0x0
= XT

0 X0 and Mx0y0
= XT

0 Y0

2 Compute SVD of Mx0x0
Mx0x0

= UvSvUT
v

3 Form matrix product M−1/2
x0x0 = UvS−1/2

v UT
v

4 Form matrix product S = M−1/2
x0x0 Mx0y0

5 Calculate SVD of S S = U diag {λ} V
6 Determine w-weight matrix Ŵ = M−1/2

x0x0 U
7 Compute q-weight matrix Q̂ = V
8 Calculate w-loading matrix P̂ = Mx0x0

Ŵ

9 Obtain q́-loading matrix ̂́Q = MT
x0y0

Ŵ

Assuming that i < j and applying the deflation procedure for E(j) a total of
j − i − 1 times gives rise to

q̂T
i F(i)E(i)

⎡⎣j−1∏
m=i

[
I − ŵmp̂T

m

]⎤⎦ ŵj . (10.67)

Equation (2.70) yields that q̂T
i F(i)T E(i) = λ̂iŵ

T
i E(i)T E(i), which yields

λ̂iŵ
T
i E(i)T E(i)

⎡⎣j−1∏
m=i

[
I − ŵmp̂T

m

]⎤⎦ ŵj (10.68)

and hence

ûT
i t̂j = λ̂iŵ

T
i E(i)T E(j)ŵj = λ̂ît

T
i t̂j = 0. (10.69)

The above conclusion, however, is only valid for i < j . For the case of i > j ,
(10.66) can be rewritten as follows

ûT
i t̂j = q̂T

i F(i)T t̂j = q̂T
i F(j)T

⎡⎣ i−1∏
m=j

[
I − t̂m̂tTm

]⎤⎦ t̂j . (10.70)

Given that the t-score vectors are mutually orthonormal, the matrix-vector product
on the right hand side of (10.70) reduces to

ûT
i t̂j = q̂T

i F(j)T
(̂
tj − t̂j

) = 0 . (10.71)

Finally, for i = j , (10.69) yields ûT
j t̂j = λ̂i . Hence, ûT

j t̂j = λ̂iδij .
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Property 10.5.3 – Matrix products E(j)T
E(j) and E(j)T

F(j). The analysis of the
geometric properties of the t- and u-score variables is now followed by examining
the effect that mutually orthonormal t-score variables have upon the deflation
procedure. Lemma 10.5.3 describes this in detail.

Lemma 10.5.3 The mutually orthonormal t-score vectors simplify
the deflation step to guarantee that only one of the cross product matri-
ces needs to be deflated, that is, E(j)T E(j) = XT

0 E(j) = E(j)T X0 and
E(j)T F(j) = XT

0 F(j) = E(j)T Y0.

Proof. Starting with the deflation of the input data matrix, which is given by

E(j)T = E(j−1)T
[
I − t̂j−1̂tTj−1

]
E(j)T = E(j−2)T

[
I − t̂j−2̂tTj−2

] [
I − t̂j−1̂tTj−1

]
(10.72)

E(k)T = XT
0

j−1∏
i=1

[
I − t̂ît

T
i

] = XT
0

[
I − T̂j−1T̂T

j−1

]
where T̂j−1 = [ t̂1 · · · t̂j−1

]
. Similarly, the deflation of F(j) is given by

F(j)T = F(j−1)T
[
I − t̂j−1̂tTj−1

]
F(j)T = F(j−2)T

[
I − t̂j−2̂tTj−2

] [
I − t̂j−1̂tTj−1

]
F(j)T = YT

0

j−1∏
i=1

[
I − t̂ît

T
i

] = YT
0

[
I − T̂j−1T̂T

j−1

]
.

(10.73)

Next, incorporating the above deflation procedures gives rise to

E(j)T E(j) = XT
0

[
I − T̂j−1T̂T

j−1

] [
I − T̂j−1T̂T

j−1

]
X0

E(j)T E(j) = XT
0

[
I − T̂j−1T̂T

j−1 − T̂j−1T̂T
j−1 + T̂j−1T̂T

j−1

]
X0

E(j)T E(j) = XT
0

[
I − T̂j−1T̂T

j−1

]
X0 = XT

0 E(j) = E(j)T X0 (10.74)

and

E(j)T F(j) = XT
0

[
I − T̂j−1T̂T

j−1

]
Y0 = XT

0 F(j) = E(j)T Y0 ,
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respectively. It follows from Lemma 10.5.3 that

ŵT
i E(i)T E(j)ŵj = ŵT

i XT
0 t̂j if j > i

and (10.75)

ŵT
i E(i)T E(j)ŵj = t̂Ti XT

0 ŵj if i > j.

According to Theorem 10.5.1, ŵT
i XT

0 t̂j = t̂Ti XT
0 ŵj = δij .

Property 10.5.4 – Orthogonality of the weight and vectors of the input
variables. Starting with the orthogonality properties of the weight and load-
ing vectors associated with the input variables, Theorem 10.5.4 highlights the
geometric relationships between the weight and loading vectors.

Theorem 10.5.4 The w-weight vectors are mutually orthonormal to the p-
loading vectors and mutually orthogonal to the auxiliary w-weight vector, that is,
ŵT

i p̂j = 0 and ŵT
i ŵj = 0 if i �= j , and the vectors p̂i and ŵi are equal up to a

scaling factor.

Proof. The first step is to show that p̂i ∝ ŵi , which follows from

ŵi ∝ [XT
0 E(i)

]†
ŵi ⇒ ŵi ∝ XT

0 E(i)ŵi = p̂i . (10.76)

It is therefore sufficient to prove ŵT
i p̂j = 0, as this includes the case ŵT

i ŵj = 0

for all i �= j . Given that p̂j = E(j)T E(j)ŵj , ŵT
i p̂j can be written as

ŵT
i XT

0 E(j)ŵj = ŵT
i XT

0 t̂j = δij . (10.77)

Theorem 10.5.1 confirms that (10.77) is δij .

Property 10.5.5 – Orthogonality of the q-weight and q́-loading vectors. With
regards to the weight and loading vectors of output variables, Theorem 10.5.5
summarizes the geometric relationships between and among them.

Theorem 10.5.5 The q-weight vectors are mutually orthonormal and the
q-weight and q́-loading vectors are mutually orthogonal, i.e. q̂T

i q̂j = qT
i q́j =

q́T
i q́j = 0 for all i �= j .

Proof. Substituting the relationship between the w- and q-weight vectors, that
is, λ̂j q̂j = F(j)T E(j)ŵj , into q̂T

i q̂j under the assumption that i < j , gives rise to

q̂T
i q̂j = q̂T

i F(j)T E(j)ŵj

λ̂j

=
ûT

i

j−1∏
m=i

[
I − t̂m̂tTm

]
t̂j

λ̂j

= 0 . (10.78)
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Given that ûT
i t̂j = 0 and t̂Ti t̂j = 0, for all i �= j , (10.78) reduces to q̂T

i q̂j = δij .
Next, that q̂T

i
̂́qj = 0 for all i �= j follows from

̂́qj = F(j)T E(j)ŵj λ̂j q̂j = F(j)T E(j)ŵj . (10.79)

Hence,
q̂T

i
̂́qj = q̂T

i q̂j λ̂j = 0 (10.80)

and consequently

̂́qT

i
̂́qj = λ̂i λ̂j q̂T

i q̂j = λ̂2
j δij , (10.81)

which completes the proof of Theorem 10.5.5.

Property 10.5.6 – Simplification of constraint wT
j E(j)T

E(j)wj − 1 = 0.
Theorem 10.5.4 can be taken advantage of to simplify the constraint for the
w-weight vector ŵT

j E(j)T E(j)ŵj − 1 = 0, which is discussed in Lemma 10.5.6.

Lemma 10.5.6 The constraint ŵT
j E(j)T E(j)ŵj = 1 is equal to

ŵT
j XT

0 X0ŵj = 1.

Proof. Lemma 10.5.3 highlights that E(j)T E(j) is equal to XT
0 E(k) = E(j)T X0.

Next, incorporating the fact that the w-weight and the p-loading vectors are
mutually orthonormal (Theorem 10.5.4) gives rise to

ŵT
j XT

0 E(j)ŵj = ŵT
j XT

0 X0

j−1∏
i=1

[
I − ŵi p̂

T
i

]
ŵj = ŵT

j XT
0 X0ŵj . (10.82)

Property 10.5.7 – Simplification of the MRPLS objective function. Theorem
10.5.4 and Lemmas 10.5.3 and 10.5.6 yield a simplification for solving the
MRPLS objective function, which is described in Theorem 10.5.7.

Theorem 10.5.7 The relationships of the MRPLS objective function,

(
ŵj

q̂j

)
= arg max

w,q
wT E(j)T F(j)q − 1

2λ
(
qT q − 1

)− 1
2λ
(

wT E(j)T E(j)w − 1
)

,

with respect to w and q,

E(j)T F(j)q̂j − λ̂j F(j)T F(j)ŵj = 0 and F(j)T E(j)ŵj − λ̂j q̂j = 0,
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are equal to

XT
0 F(j)q̂j − λ̂j XT

0 X0ŵj and YT
0 X0ŵj − λ̂j q̂j = 0,

respectively.

Proof. Directly applying Lemmas 10.5.3 and 10.5.6 to the solution of the
MRPLS objective function yields

XT
0 F(j)q̂j − λ̂j XT

0 X0ŵj and YT
0 E(j)ŵj − λ̂j q̂j = 0 . (10.83)

Next, incorporating the results described in Theorem 10.5.4 to the matrix-vector
product E(j)ŵj gives rise to

E(j)ŵj = X0

j−1∏
i=1

[
I − ŵi p̂

T
i

]
ŵj = X0ŵj . (10.84)

Consequently,

YT
0 E(j)ŵj − λ̂j q̂j = 0 becomes YT

0 X0ŵj − λ̂j q̂j = 0 .

Property 10.5.8 – Relationship between weight vectors for input variables.
Theorem 10.5.8 describes the relationship between the j th w-weight vector, ŵj ,
and the j th auxiliary weight vector ŵj .

Theorem 10.5.8 The j th w-weight and auxiliary weight vectors are the left
and right eigenvectors of the matrix product

[
XT

0 X0

]−1 XT
0 F(j)YT

0 X0, respectively.

Proof. That ŵj is the left eigenvector of
[
XT

0 X0

]−1 XT
0 F(j)YT

0 X0, associated
with the largest eigenvalue, can be confirmed by solving the relationships of the
MRPLS objective function

[
XT

0 X0

]−1
XT

0 F(j)q̂j = λ̂j ŵj q̂j = YT
0 X0ŵj

λ̂j

, (10.85)

which yields [
XT

0 X0

]−1
XT

0 F(j)YT
0 X0ŵj = λ̂2

j ŵj . (10.86)

According to the MRPLS algorithm in Table 2.3, the auxiliary weight vector,
wj , is initially determined as the matrix-vector product E(j)T ûj . By substituting
Steps 4 to 8 into Step 3 yields

ŵj ∝ E(j)T ûj
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ŵj ∝ XT
0 F(j)q̂j

ŵj ∝ XT
0 F(j)YT

0 X0ŵj (10.87)

ŵj ∝ XT
0 F(j)YT

0 X0

[
XT

0 X0

]−1
ŵj

λ̂2
jŵ

T
j = ŵT

j

[
XT

0 X0

]−1
XT

0 F(j)YT
0 X0 .

Therefore, ŵj is the dominant right eigenvector and ŵj is the dominant left

eigenvector of
[
XT

0 X0

]−1 XT
0 F(j)YT

0 X0.

Property 10.5.9 – Calculation of the kth q-weight vector. Before introducing
a computationally efficient MRPLS algorithm, Lemma 10.5.9 shows that q-weight
and q́-loading vectors are also eigenvectors of a specific matrix product.

Lemma 10.5.9 The j th q-weight and q́-loading vector, q̂j and ̂́qj , are the

dominant eigenvectors of the matrix product XT
0 Y0

[
XT

0 X0

]−1 XT
0 F(j).

Proof. Lemma 10.5.9 directly follows from the relationships of the MRPLS
objective function in (10.85)

wj =
[
XT

0 X0

]−1 XT
0 F(j)qj

λj

YT
0 X0wj = λj qj . (10.88)

Substituting the equation on the left hand side into that of the right hand side
yields

YT
0 X0

[
XT

0 X0

]−1
XT

0 F(j)qj = λ2
j qj . (10.89)

Property 10.5.10 – Computationally efficient MRPLS algorithm. After dis-
cussing the geometric orthogonality properties of the weight, score and loading
vectors as well as their impact upon the deflation procedure, a computationally
efficient MRPLS algorithm can now be introduced. Table 10.3 summarizes the
steps of the implementation of the revised MRPLS algorithm. Computational
savings are made by removing the calculation of the score vectors and reducing
the deflation procedure to the rank-one modification XT

0 F(j+1) = XT
0 F(j) − pj q́T

j .
Finally, this section concludes with the development of a batch algorithm for
simultaneously computing the n q- and w-weight vectors.

Simultaneous computation of weight vectors. Recall that the derivation of
the MRPLS algorithm in Subsection 2.3.3 consists of two steps. The first step
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involves the computation of the q-loading vectors by solving (2.63). The second
step subsequently determines the w-weight vector by solving (2.66). It has then
been shown that both steps can be combined. More precisely, the solution of the
combined objective function in (2.68) is equivalent to the individual solutions of
(2.63) and (2.66).

Coming back to the facts (i) that the q-weight vectors can be determined
independently from the w-weight vectors and (ii) that the j th q-weight vector is
the dominant eigenvector of the matrix YT

0 X0

[
XT

0 X0

]−1 XT
0 F(j) gives rise to the

following theorem.

Theorem 10.5.10 The kth q-weight vector is the eigenvector associated with
the kth largest eigenvalue of YT

0 X0

[
XT

0 X0

]−1 XT
0 Y0 ∈ R

ny×ny , which is a sym-
metric and positive semi-definite matrix of rank n ≤ ny .

Proof. The proof of Theorem 10.5.10 commences by showing that the matrix
product YT

0 X0

[
XT

0 X0

]−1 XT
0 Y0 is of rank n ≤ ny . With regards to the data

structure in (2.51), the covariance and cross-covariance matrices E
{
x0xT

0

}
and

E
{
x0yT

0

}
are equal to

Sx0y0
= PSssQ

T ∈ R
nx×ny (10.90)

and

Sx0x0
= PSssP

T + P′Ss′s′P′T ∈ R
nx×nx , (10.91)

respectively. The matrix products YT
0 X0

[
XT

0 X0

]−1 XT
0 Y0 and Ŝy0x0

Ŝ−1
x0x0

Ŝx0y0
are equal up to the scaling factor K − 1. As the rank of the true cross-covariance
matrix is n, given that P ∈ R

nx×n, Q ∈ R
ny×n and Sss ∈ R

n×n, the rank of
Ŝy0x0

Ŝ−1
x0x0

Ŝx0y0
is asymptotically n, under the assumption that Sss has full

rank rank n, that is, the source signals are not linearly dependent. The j th
q-weight vector is an eigenvector associated with the eigenvalue q̂T

j YT
0 X0[

XT
0 X0

]−1 XT
0 F(j)q̂j , which suggests a different deflation for YT

0 X0

[
XT

0 X0

]−1XT
0

F(j). Abbreviating this matrix expression by M(j)
q and defining M(1)

q =
YT

0 X0

[
XT

0 X0

]−1 XT
0 Y0, the first q-weight vector satisfies

λ̂1 = q̂T
1 M(1)

q q̂1. (10.92)

Given that M(1)
q is symmetric and positive definite, the deflation procedure for

determining the second q-weight vector that is orthogonal to the first one is as
follows

M(2)
q = M(1)

q − q̂1̂λ1q̂T
1 (10.93)
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which is the principle of the power method to determine subsequent eigenpairs
of symmetric and positive definite matrices. After determining the j th eigenpair,
the deflation procedure becomes

M(j+1)
q = M(j)

q − q̂j λ̂j q̂T
j = M(1)

q −
j∑

i=1

λ̂i q̂i q̂
T
i , (10.94)

accordingly. Given that the rank of M(1)
q is n, a total of n eigenpairs can be

determined by the iterative power method with deflation. On the other hand,
the n eigenvectors and eigenvalues can also be determined simultaneously in a
batch mode, for example discussed in Chapter 8 in Golub and van Loan (1996).
Once the n q-weight vectors are available, the w-weight vectors can be computed.
Before demonstrating that this can also be done in a batch mode, Lemma 10.5.11
shows how to compute the u-scores directly from the output data matrix.

Lemma 10.5.11 If the q-weight vectors are available, the u-score variables
can be directly computed from the output data matrix, that is, ûj = yT

0 q̂j .

Proof. In the preceding discussion, the u-score variables have been computed
from the deflated output data, that is, ûj = f(j)T q̂j . However, the fact that the
q-weight vectors are mutually orthonormal yields

ûj =
⎛⎝yT

0 −
j−1∑
i=1

t̂i
̂́qT

i

⎞⎠ q̂i =
⎛⎝yT

0 −
j−1∑
i=1

t̂i λ̂i q̂
T
i

⎞⎠ q̂i = yT
0 q̂j . (10.95)

The above relationship incorporates λ̂j q̂j = ̂́qj , which (10.79) highlights.

Next, incorporating ûj = Y0q̂j into the objective function for determining
the w-weight vector in (2.66) gives rise to

ŵj = arg max
w

ûT
j X0w − 1

2λj

(
wT XT

0 X0w − 1
)
. (10.96)

Taking advantage of the fact that ûT
i t̂j = 0 and t̂Ti t̂j = 0 for all i �= j , (10.96)

can be expanded upon

[
ŵ1 ŵ1 · · · ŵn

] = arg max
W

⎡⎢⎢⎢⎣
ûT

1
ûT

2
...

ûT
n

⎤⎥⎥⎥⎦X0

[
w1 w2 · · · wn

]−
1
2 diag

[
λ1 λ2 · · · λn

]×
(10.97)
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⎡⎢⎢⎢⎣
wT

1
wT

2
...

wn

⎤⎥⎥⎥⎦XT
0 X0

[
w1 w2 · · · wn

]
,

where Ŵ = [ŵ1 ŵ1 · · · ŵn

]
. Equation (10.97) can also be written as

ÛT X0Ŵ − 1
2 diag

[̂
λ1 λ̂2 · · · λ̂n

]
ŴT XT

0 X0Ŵ =

ÛT T̂ − 1
2 diag

[̂
λ1 λ̂2 · · · λ̂n

] =

diag
[̂
λ1 λ̂2 · · · λ̂n

]− 1
2 diag

[̂
λ1 λ̂2 · · · λ̂n

] =
1
2 diag

[̂
λ1 λ̂2 · · · λ̂n

]
,

(10.98)

which follows from Theorem 10.5.1 and yields in this batch formulation the same
solution as those obtained individually. More precisely, defining the maximum
of the combined objective by

∑n
i=1 λ̂i , it can only be a maximum if each of the

sum elements are a maximum, according to the Bellman principle of optimality
(Bellman 1957). As shown in (10.97), storing the n w-weight vectors to form
the matrix Ŵ, the solution of the objective function in (10.97) is given by

Ŵ = arg
∂

∂W
trace

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

û1
û2
...

ûn

⎤⎥⎥⎥⎦X0

[
w1 w2 · · · wn

]

− 1
2 diag

[
λ1 λ2 · · · λn

]

×

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wn

⎤⎥⎥⎥⎦XT
0 X0

[
w1 w2 · · · wn

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0.

(10.99)

Working out the partial relationships, (10.99) becomes

XT
0 Û − XT

0 X0diag
{̂
λ
}

Ŵ = 0, (10.100)

where Û = [̂u1 û2 · · · ûn

]
and diag

{̂
λ
} = diag

[̂
λ1 λ̂2 · · · λ̂n

]
.

To simultaneously calculate the n w-weight vectors in batch form, the solution
to the objective function in (10.97) is therefore

diag
{̂
λ
}

Ŵ = [XT
0 X0

]−1
XT

0 Y0Q̂. (10.101)
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Equations (10.86) and (10.89) outline that the n diagonal elements of the matrix
diag
{̂
λ
}

are equal to the square root of the eigenvalues of YT
0 X0

[
XT

0 X0

]−1XT
0 Y0

and
[
XT

0 X0

]−1 X0YT
0 YT

0 X0. The conclusion of this proof requires to show that

Q̂ = YT
0 X0Ŵdiag

{̂
λ
}−1

. (10.102)

To start with, Theorem 10.5.5 shows that Q̂T Q̂ = I, i.e. the column vectors or
Q̂ are mutually orthonormal. Next, (10.83) and (10.84) highlight that

λ̂j q̂j = YT
0 X0ŵj (10.103)

which confirms (10.102).
In summary, Theorem 10.5.10 outlined that the q-weight vectors can be simul-

taneously computed as eigenvectors of the matrix product YT
0 X0

[
XT

0 X0

]−1XT
0 Y0,

which is positive semi-definite, whose rank asymptotically converges to n ≤ ny .
On the other hand, it is also possible to simultaneously compute the w-weight
vectors as eigenvectors of the matrix product

[
XT

0 X0

]−1 XT
0 Y0YT

0 X0, which is a
positive semi-definite matrix with an asymptotic rank of n ≤ ny . Furthermore,
the computation of the w-weight vectors is independent of the determination
of the q-weight vectors. Equations (10.105) and (10.106) finally summarize the
eigendecomposition of these matrices[

XT
0 X0

]−1
XT

0 Y0YT
0 X0Ŵ = diag

{̂
λ
}2

Ŵ (10.104)

and

YT
0 X0

[
XT

0 X0

]−1
XT

0 Y0Q̂ = diag
{̂
λ
}2

Q̂. (10.105)

For canonical correlation analysis (CCA), a multivariate statistical method
developed by Harold Hotelling in the 1930s (Hotelling 1935, 1936) that deter-
mines weight vectors to produce score variables that have a maximum correlation,
a batch algorithm has been proposed to simultaneously determine Q and W.
This solution for simultaneously computing the n q- and w-weight vectors can
be taken advantage of by simultaneously computing the weight vectors of the
MRPLS algorithm. Prior to that, the next paragraph discusses the similarities
between the objective functions for CCA and maximum redundancy.

As outlined in Stewart and Love (1968), ten Berge (1985) and van den Wol-
lenberg (1977), the CCA objective function does not consider the predictability
of the output variables in the same way as maximum redundancy does. More
precisely, the CCA objective function is given by(

wj

qj

)
= arg max

w,q
E
{
wT x0yT

0 q
}−

1
2λjE

{(
wT x0xT

0 w
)}− 1

2λjE
{(

qT y0yT
0 q
)}

.

(10.106)
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Similar to the maximum redundancy formulation, the Lagrangian multipliers are
identical and the solution of the CCA objective function for the j th pair of weight
vectors, or canonical variates, is given by (Anderson 2003)[

XT
0 X0

]−1
XT

0 Y0

[
YT

0 Y0

]−1
YT

0 X0ŵj = λ̂2
j ŵj (10.107)

and [
YT

0 Y0

]−1
YT

0 X0

[
XT

0 X0

]−1
XT

0 Y0q̂k = λ̂2
kq̂k. (10.108)

It is interesting to note that the difference in the objective function between
the CCA and the maximum redundancy is the presence of the matrix product[
YT

0 Y0

]−1
, which results from the different constraint for the q-weight vector.

For the simultaneous computation of the n weight vectors, a batch algorithm
that relies on a series of singular value decompositions (SVDs) has been devel-
oped (Anderson 2003). Table 10.4 summarizes the steps of the resultant batch
algorithm for simultaneously determining the n q- and w-weight vectors.
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comathématique, 8(12):1–24.

Lieftucht, D., Kruger, U., and Irwin, G.W. (2004) Improved diagnosis of sensor faults
using multivariate statistics. In Proceedings of the American Control Conference, pages
4403–4407, Boston.

Lieftucht, D., Kruger, U., and Irwin, G.W. (2006a) Improved reliability in diag-
nosing faults using multivariate statistics. Computers & Chemical Engineering ,
30(5):901–912.

Lieftucht, D., Kruger, U., Irwin, G.W., and Treasure, R.J. (2006b) Fault reconstruction
in linear dynamic systems using multivariate statistics. IEE Proceedings, Part D – On
Control Theory and Applications , 153(4):437–446.

Lieftucht, D., Völker, M., Sonntag, C., et al. (2009) Improved fault diagnosis in multi-
variate systems using regression-based reconstruction. Control Engineering Practice,
17(4):478–493.

Lindberg, W., Persson, J.-A., and Wold, S. (1983) Partial least-squares method for spec-
trofluorimetric analysis of mixtures of humic acid and ligninsulfonate. Analytical
Chemistry , 55(4):643–648.

Lindgren, F., Geladi, P., and Wold, S. (1993) The kernal algorithm for PLS. Journal of
Chemometrics , 7(1):45–59.

Ljung, L. (1999) System Identification: Theory for the User . Prentice Hall, Upper Saddle
River, NJ, USA, 2nd edition.

Lohmoeller, J.B. (1989) Latent Variable Path Modelling with Partial Least Squares .
Physica-Verlag, Heidelberg, Germany.

Lucas, J.M. and Saccucci, M.S. (1990) Expnentially weighted moving average schemes:
Properties and enhancements. Technometrics , 32(1):1–12.

MacGregor, J.F. (1997) Using on-line process data to improve quality: challenges for
statisticians. International Statistical Review , 65(3):309–323.

MacGregor, J.F., Jaeckle, C., Kiparissides, C., and Koutoudi, M. (1994) Process moni-
toring andd iagnosis by multiblock plsmethods. AIChE Journal , 40(5):826–838.

MacGregor, J.F. and Kourti, T. (1995) Statistical process control of multivariate processes.
Control Engineering Practice, 3(3):403–414.

MacGregor, J.F., Marlin, T.E., Kresta, J.V., and Skagerberg, B. (1991) Multivariate statis-
tical methods in process analysis and control. In AIChE Symposium Proceedings of the
4 th International Conference on Chemical Process Control , pages 79–99, New York.
AIChE Publication, No. P-67.

Malhi, A. and Gao, R. (2004) PCA-based feature selection scheme for machine defect clas-
sification. IEEE Transaction on Instrumentation and Measurement , 53(6):1517–1525.

Malinowski, E.R. (1977) Theory of error in factor analysis. Analytical Chemistry ,
49(4):606–612.



420 REFERENCES

Marcon, M., Dixon, T.W., and Paul, A. (2005) Multivariate SPC applications in the
calcining business. In 134th Annual Meeting & Exhibition (TMS 2005), Moscone West
Convention Center, San Francisco, CA, USA 13–17 February.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979) Multivariate Analysis . Probability and
Mathematical Statistics. Academic Press, London.

Maronna, R.A. (1976) Robust M-estimator of multivariate location and scatter. The Annals
of Statistics , 4(1):51–67.

Martin, E.B., Morris, A.J., and Lane, S. (2002) Monitoring process manufacturing per-
formance. IEEE Control Systems Magazine, 22(5):26–39.

Mason, R.L. and Young, J.C. (2001) Multivariate Statistical Process Control with Indus-
trial Applications . ASA-SIAM series on statistical and applied probability. ASA-SIAM,
Philadelphia, PA, USA.

Mastronardi, N., van Camp, E., and van Barel, M. (2005) Divide and conquer algorithms
for computing the eigendecomposition of symmetric diagonal-plus-semiseparable
matrices. Numerical Algorithms , 39(4):379–398.

McDowell, N., McCullough, G., Wang, X., Kruger, U., and W., I.G. (2008) Fault
diagnostics for internal combustion engines – current and future techniques. In Pro-
ceedings of the 8th International Conference on Engines for Automobiles , Capri
(Naples), Italy.

McFarlane, R.C., Reineman, R.C., Bartee, J.F., and Georgakis, C. (1993) Dynamic simula-
tor of a model IV Fluid catalytic cracking unit. Computers and Chemical Engineering ,
17(3):275–300.

Meronk, M. (2001) The application of model based predictive control and multivariate
statistical process control in industry. Master’s thesis, The University of Manchester,
Manchester, UK.

Miletic, I., Quinn, S., Dudzic, M., Vaculik, V., and Champagne, M. (2004) An industrial
perspective on implementing on-line applications of multivariate statstics. Journal of
Process Control , 14(8):821–836.

Miller, P., Swanson, R.E., and Heckler, C.F. (1998) Contribution plots: A missing
link in multivariate quality control. Applied Mathematics and Computer Science,
8(4):775–792.

Ming, R., Haibin, Y., and Heming, Y. (1998) Integrated distribution intelligent sys-
tem architecture for incidents monitoring and diagnosis. Computers in Industry ,
37(2):143–151.

Møller, S.F., von Frese, J., and Bro, R. (2005) Robust methods for multivariate data
analysis. Journal of Chemometrics , 19(10):549–563.

Monostori, L. and Prohaszka, J. (1993) A step towards intelligent manufacturing: mod-
elling and monitoring of manufacturing processes through artificial neural networks.
CIRP Annals – Manufacturing Technology , 42(1):485–488.

Montgomery, D.C. (2005) Introduction to Statistical Quality Control . John Wiley & Sons,
Hoboken, NJ, USA 5th edition.

Morud, T. (1996) Multivariate statistical process control; example from the chemical
process industry. Journal of Chemometrics , 10:669–675.

Mosteller, F. and Wallace, D.L. (1963) Inference in an authorship problem. Journal of
the American Statistical Association , 58(302):275–309.



REFERENCES 421

Muirhead, R.J. (1982) Aspects of Multivariate Statistical Theory . John Wiley & Sons,
New York, NY, USA.

Narasimhan, S. and Shah, S.L. (2008) Model identification and error covariance estimation
from noisy data using PCA. Control Engineering Practice, 16(1):146–155.

Nelson, P.R.C., MacGregor, J.F., and Taylor, P.A. (2006) The impact of missing mea-
surements on PCA and PLS prediction and monitoring applications. Chemometrics &
Intelligent Laboratory Systems , 80(1):1–12.

Nelson, P.R.C., Taylor, P.A., and MacGregor, J.F. (1996) Missing data methods for PCA
and PLS: score calculations with incomplete observations. Chemometrics & Intelligent
Laboratory Systems , 35(1):45–65.

Nimmo, I. (1995) Adequate address abnormal situation operations. Chemical Engineering
Progress , 91(1):36–45.

Nomikos, P. and MacGregor, J.F. (1994) Monitoring of batch processes using multiway
principal component analysis. AIChE Journal , 40:1361–1375.

Nomikos, P. and MacGregor, J.F. (1995) Multivariate SPC charts for monitoring batch
processes. Technometrics , 37(1):41–59.

Oakland, J.S. (2008) Statistical Process Control . Butterworth-Heinemann, Oxford, UK,
6th edition.

Paige, C.C. (1980) Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem. Linear Algebra and its Applications , 34:235–258.

Parlett, B.N. (1980) The Symmetric Eigenvalue Problem . Prentice Hall, Englewood Cliffs,
NJ, USA.

Pearson, C. (1901) On lines and planes of closest fit to systems of points in space. Phil.
Mag., Series B ., 2(11):559–572.

Pfafferott, J., Herkela, S., and Wambsganß, M. (2004) Design, monitoring and evaluation
of a low energy office building with passive cooling by night ventilation. Energy and
Buildings , 36(5):455–465.

Phillips, G.R. and Eyring, M.E. (1983) Comparison of conventional and robust regression
analysis of chemical data. Analytical Chemistry , 55(7):1134–1138.

Piovoso, M.J. and Kosanovich, K.A. (1992) Process data chemometric. IEEE Transactions
on Instrumentation and Measurement , 41(2):262–268.

Piovoso, M.J., Kosanovich, K.A., and Pearson, P.K. (1991) Monitoring process perfor-
mance in real-time. In Proceedings of the American Control Conference, Chicago, IL,
USA.

Powers, W.F. and Nicastri, P.R. (1999) Automotive vehicle control challenges in the
twenty-first century. In Proceedings of the 14th IFAC World Congress , pages 11–29,
Beijing, P.R. China.

Pranatyasto, T.N. and Qin, S.J. (2001) Sensor validation and process fault diagnosis for
FCC units under MPC feedback. Control Engineering Practice, 9(8):877–888.
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non-negative quadratic monitoring
statistics see monitoring
statistics

null hypothesis, 13, 90

ordinary least squares (OLS), 46,
53, 203–4, 217, 393–4

compared to PLS, 205–12
parameter estimation, 207
regression parameters, 207–9,

208
outliers, 167–8, 226–7

trimming, 231–2

p-loading vectors
orthogonality to w-weight

vectors, 389–90
orthonormality, 366
see also loading vectors

parallel analysis, 70
parameter estimation, 47–9

least median of squares (LMS),
230–231

M-estimator, 230
ordinary least squares, 205–12
partial least squares, 202–26,

212–15, 219–22
distillation process example,

223–6
projection pursuit, 230
robust estimation of moments,

228–9
small sample sets, 232–7
trimming, 231–2

Pareto Maxim, 4
partial least squares (PLS), 38–49

adaptive, 286–90, 286–92
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model adaptation, 290–291
algorithm overview, 375–6, 380
compared to ordinary least

squares (OLS), 205–12
computational efficiency, 394–5
contrasted with maximum

redundancy PLS, 60–65
core algorithm, 377–9
data structure assumptions,

39–41, 49–50
deflation procedure, 41–3
distillation process example,

147–8
error-in-variable structure,

212–15
loading vectors, 42
maximum redundancy, 49–58
model identification, 51–2
model properties, 381–2

matrix-vector product
properties, 384–6

regression coefficient
calculation, 390

relationship between
q-weight and q-loading
vectors, 391

t- and u-score vector
orthogonality, 385–6

t-score vector calculation
from data matrix, 388

t-score vector orthogonality,
382–4

w-weight to p-loading
vector orthogonality,
389–90

monitoring statistics, 91–5
non-negative quadratic process

monitoring, 86–90
partial least squares,

90–93
parameter estimation, 202–26
parameter estimation bias and

variance, 203–5
regression model accuracy,

393–4

score variables, 41
simulation example, 43–9

input variable set, 43–4
latent variables, 45–6
PLS model determination,

44–5
weight and loading

matrices, 46–7
simulation examples, limitations,

58–65
stopping rules, 76–9

bootstrapping, 77–9, 287
variable sets, 38–9
weight vectors, 41
see also maximum likelihood

partial least squares
Powerforming, 278
prediction sum of squares

(PRESS), 71–2, 146–7,
288–90, 290–291

predictor variable sets, 38–9
primary residuals, 294

covariance, 313
covariance matrix, 344–5

change in score values,
347–8

eigenvectors non-orthogonal
to model, 348–9

degrees of freedom, 308–9
distribution function, 313–14,

320, 323
eigenvectors, 306
fault isolation, 324–8
gearbox example, 341–53
residual subspace, 294, 305–7
sensitivity, 310
simulation examples, 318–24
statistical properties, 312–15
variance, 313, 319

principal component analysis
(PCA), 30–38

algorithm summary, 362–3, 362
chemical process example,

125–33
computation
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principal component analysis
(PCA) (continued )

core algorithm, 357–62
scaling matrix, 357–8

covariance matrix, 36–7
data correlation matrix, 334–5
data structure assumptions,

30–33, 49–50, 86
eigendecomposition of

covariance matrix,
168–70

Fluid Catalytic Cracking
example, 273–5

geometric analysis of data
structure, 33–4

limitations regarding
time-varying processes,
280–282

loading vectors, 34
model identification, 50–51,

126
model properties, 363–74

asymptotic distribution of
t-score, 366–9

covariance matrix
exhaustion, 372–3

data matrix exhaustion, 372
orthogonality of t-score

vectors, 365
orthonormality of p-loading

vectors, 366–7
t-score vector computation,

371–2
non-negative quadratic process

monitoring, 86–90
residual subspace, primary

residuals, 306–8
residuals-based tests, 98–100
robust parameter estimation,

230–1
simulated examples, 258–61
simulation example, 34–8
stopping rules

cross-validation based,
70–75

eigenvalue-based, 67–9
information-based, 65–7

time-varying processes, 241–2,
258–61

see also moving window
principal component
analysis, maximum
likelihood principal
component analysis

probability density function, 6–8
improved residuals, 315
perfectly correlated variables,

18–19
uncorrelated variables, 16–17

process monitoring, 81–2
see also monitoring statistics

process types, 10–11
projection pursuit, 230
projection-based adaptation, 248
promising process, 11
propane, 141

Q statistic, 83–4, 89–90, 104–5,
130–133, 258–9

changes in covariance structure
undetectable by, 297,
302–4

contribution charts, 97, 134–7,
135–6

effect of variable reconstruction,
118–19

maximum likelihood PCA,
198–202

moving window PCA, 252–3,
256–7, 285

primary residuals, 316–17, 322,
353

small data sets, 234–5, 236–7
q-loading, 150, 391

see also loading vectors
q-weight, 46–7, 57, 391

maximum redundancy PLS, 404,
406–9

quadratic monitoring statistics see
monitoring statistics
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R statistic, 71–2
r-weight vectors, 387–8
ramp error detection, 258–65
random variables

cumulative distribution function,
8

mean and variance, 5–6, 9–10
probability density function, 6–8
Shewhart charts, 8–9, 12
trends, 9–10

rank one modification, 248
recursive principal component

analysis (RPCA), 241
regression coefficient, 390
residual percentage variance test,

69
residual subspace, 31

effect of variable reconstruction,
118

estimation, 186–7
estimate properties, 189–94
simulation examples, 34–8

fault detection based on, 98–100
maximum likelihood PCA,

186–7, 187–94
primary residuals, 294, 305–7

sensitivity, 310
statistical properties,

312–15
see also improved residuals;

primary residuals
residual sum of squares (RSS),

71–2
RSS, 70–1

sample generation, 329
scaling matrix, 357–8
scatter diagram, 16–17, 82

weaknesses, 296–7
scatter diagrams, 84–5

distillation example, 158,
159–60, 161

score variables, 41–2, 362
weaknesses, 296–8
see also t-score, u-score

score vectors, contribution to data
matrix, 364–5

SCREE test, 69, 70
sensor bias, 90, 102, 108, 279, 281,

285
sensitivity of improved residuals,

349–53
Shewhart charts, 8–9, 10, 12,

15–20, 22–3, 232
significance, 8
SIMPLS algorithm, 379
simulation examples

adaptive MSPC, 257–61
covariance structure changes,

294–304, 317–24,
328–31

Fluid Catalytic Cracking,
268–74

PCA application, 273–5
maximum likelihood PCA,

182–7
model and residual subspace

estimation, 34–8
partial least squares (PLS),

43–9, 58–65
weaknesses of conventional

MSPC, 319–24
singular value decomposition

(SVD), 174, 359–60, 382
source signal adaptation, 287–8
source signal determination, 194–5

time variant, 250
special cause variation, 11–12, 31
specification limits, 10–11, 10
squared prediction error see Q

statistic
Stahel-Donoho location estimator,

229
standard deviation, 6
statistical fingerprinting, 81–2
statistical local approach, 304–5,

318–20, 341–2
statistical process control (SPC)

basic principles, 5–12
history, 4–5
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statistical process control (SPC)
(continued )

motivations for use of
multivariate techniques,
15–24

overview, 3–4
step faults, 90, 102, 325–8
stochastic variables see random

variables
stopping rules

maximum likelihood PCA
(MLPCA), 187–8

partial least squares (PLS), 55
adaptive, 287
analysis of variance, 76
bootstrapping, 77–9, 287
cross-validation, 76–7

principal component analysis
(PCA)

cross-validation based,
70–75

eigenvalue-based, 67–9
information-based, 65–7

Student t-score see t-score

t-score, 42, 51–2, 83
asymptotic distribution of

variables, 367
distillation process example,

148–50, 152–3, 152,
160, 161, 162

error-in-variable data structure,
224

maximum regression PLS,
397–8

MRPLS models, 92–3
partial least squares models, 210

asymptotic distribution,
391–2

computation, 380
orthogonality, 381
orthogonality with u-score,

385–6
vector computation, 371–2

vector orthogonality, 365–6,
382–3, 397

see also score variables
t’-score, 83, 93

distillation process example, 152,
160

see also score variables
time-varying processes, 241–2

application delays, 253–4,
261–5, 275–8, 282–6

minimum window length,
256–7

partial least squares methods,
287–92

source signal determination,
250–251

tooth breakage, 332–3
total quality management (TQM),

5
treacherous process, 11
trends in mean value, 9–10

see also drift faults
trimming, 231–2
turbulent process, 11
Type I errors, 234, 263–4
Type II errors, 25–6, 25

u-score, 53–4, 376
maximum regression PLS,

406–9
orthogonality with t-score

vectors, 385–6, 397–8
see also score variables

variable correlation, 15–16
perfect correlation, 17–19
uncorrelated variables, 16–17
see also correlation coefficient;

correlation matrix
variable reconstruction

chemical process example,
126–7

influence on model plane,
117–18

influence on residual subspace,
118
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projection-based, 100–3
geometric analysis, 112–13
limitations, 109
linear dependency of

projection residuals,
111–12

maximum dimension of
fault subspace, 115–16

optimality, 113–14
reconstruction subspace,

114–15
regression formulation,

104–5
single sample, 107–9

regression-based, 109–11
variable reconstruction error, 126,

128, 281–2, 335

variance, 6
primary residuals, 313
trends, 9–10

variance of reconstruction error
(VRE), 73–5, 262,
273–4

Velicer Partial Correlation
Correction (VPC), 75,
250, 252, 335

vibration, 334

W statistic, 72
w-weight, 46–7, 58, 62, 291, 380,

397–8, 401, 405–8
weight vectors, 41–2, 52, 55–6,

215, 376, 381–2
Wishart distribution, 233



Statistics in Practice
Human and Biological Sciences

Berger – Selection Bias and Covariate Imbalances in Randomized
Clinical Trials
Berger and Wong – An Introduction to Optimal Designs for Social and
Biomedical Research
Brown and Prescott – Applied Mixed Models in Medicine, Second
Edition
Carstensen – Comparing Clinical Measurement Methods
Chevret (Ed) – Statistical Methods for Dose-Finding Experiments
Ellenberg, Fleming and DeMets – Data Monitoring Committees in
Clinical Trials: A Practical Perspective
Hauschke, Steinijans & Pigeot – Bioequivalence Studies in Drug
Development: Methods and Applications
Källén – Understanding Biostatistics
Lawson, Browne and Vidal Rodeiro – Disease Mapping with Win-
BUGS and MLwiN
Lesaffre, Feine, Leroux & Declerck – Statistical and Methodological
Aspects of Oral Health Research
Lui – Statistical Estimation of Epidemiological Risk
Marubini and Valsecchi – Analysing Survival Data from Clinical Trials
and Observation Studies
Millar – Maximum Likelihood Estimation and Inference: With
Examples in R, SAS and ADMB
Molenberghs and Kenward – Missing Data in Clinical Studies
O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley &
Rakow – Uncertain Judgements: Eliciting Expert’s Probabilities
Parmigiani – Modeling in Medical Decision Making: A Bayesian
Approach
Pintilie – Competing Risks: A Practical Perspective
Senn – Cross-over Trials in Clinical Research, Second Edition
Senn – Statistical Issues in Drug Development, Second Edition
Spiegelhalter, Abrams and Myles – Bayesian Approaches to Clinical
Trials and Health-Care Evaluation
Walters – Quality of Life Outcomes in Clinical Trials and Health-Care
Evaluation



Welton, Sutton, Cooper and Ades – Evidence Synthesis for Decision
Making in Healthcare
Whitehead – Design and Analysis of Sequential Clinical Trials,
Revised Second Edition
Whitehead – Meta-Analysis of Controlled Clinical Trials
Willan and Briggs – Statistical Analysis of Cost Effectiveness Data
Winkel and Zhang – Statistical Development of Quality in Medicine

Earth and Environmental Sciences

Buck, Cavanagh and Litton – Bayesian Approach to Interpreting
Archaeological Data
Chandler and Scott – Statistical Methods for Trend Detection and
Analysis in the Environmental Statistics
Glasbey and Horgan – Image Analysis in the Biological Sciences
Haas – Improving Natural Resource Management: Ecological and
Political Models
Helsel – Nondetects and Data Analysis: Statistics for Censored Envi-
ronmental Data
Illian, Penttinen, Stoyan, H and Stoyan D-Statistical Analysis and
Modelling of Spatial Point Patterns
McBride – Using Statistical Methods for Water Quality Management
Webster and Oliver – Geostatistics for Environmental Scientists,
Second Edition
Wymer (Ed) – Statistical Framework for Recreational Water Quality
Criteria and Monitoring

Industry, Commerce and Finance

Aitken – Statistics and the Evaluation of Evidence for Forensic Scien-
tists, Second Edition
Balding – Weight-of-evidence for Forensic DNA Profiles
Brandimarte – Numerical Methods in Finance and Economics: A
MATLAB-Based Introduction, Second Edition
Brandimarte and Zotteri – Introduction to Distribution Logistics
Chan – Simulation Techniques in Financial Risk Management
Coleman, Greenfield, Stewardson and Montgomery (Eds) – Statistical
Practice in Business and Industry
Frisen (Ed) – Financial Surveillance



Fung and Hu – Statistical DNA Forensics
Gusti Ngurah Agung – Time Series Data Analysis Using EViews
Kenett (Eds) – Operational Risk Management: A Practical Approach
to Intelligent Data Analysis
Kenett (Eds) – Modern Analysis of Customer Surveys: With Applica-
tions using R
Kruger and Xie – Statistical Monitoring of Complex Multivariate Pro-
cesses: With Applications in Industrial Process Control
Jank and Shmueli (Ed.) – Statistical Methods in e-Commerce Research
Lehtonen and Pahkinen – Practical Methods for Design and Analysis
of Complex Surveys, Second Edition
Ohser and Mücklich – Statistical Analysis of Microstructures in
Materials Science
Pourret, Naim & Marcot (Eds) – Bayesian Networks: A Practical
Guide to Applications
Taroni, Aitken, Garbolino and Biedermann – Bayesian Networks and
Probabilistic Inference in Forensic Science
Taroni, Bozza, Biedermann, Garbolino and Aitken – Data Analysis in
Forensic Science


