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Preface to the First Edition

There are several books on queueing theory available for students as well as
researchers. At the low end of mathematical sophistication, some provide use-
able formulas in a recipe fashion. At the high end there are research monographs
on specific topics and books with emphasis on theoretical analysis. In between
there are a few textbooks with one common feature. All of them require an ade-
quate background knowledge on probability and Markov processes that can be
acquired normally with a semester-length graduate course. Consequently, most
of those who deal with the modeling and analysis of queueing systems either do
not take a course on the subject because they have to spend an extra semester, or
take a course on queueing systems without the necessary background and learn
only how to use the results. This book is addressed to remedy this situation by
providing a one semester foundational introduction to the theory necessary for
modeling and analysis of systems while developing the essential Markov process
concepts and techniques with queueing processes as examples.

Some of the key features of the book also distinguish it from others. Its
introductory chapter includes a historical perspective on the growth of queueing
theory in the last 100 years. With emphasis on modeling and analysis it deals
with topics such as identification of models, collection of data, and tests for
stationarity and independence of observations. It provides a rigorous treatment
of basic models commonly used in applications with appropriate references for
advanced topics. It gives a comprehensive discussion of statistical inference
techniques useable in the modeling of queueing systems and an introduction
to decision problems in their management. The book also includes a chapter,
written by computer scientists, on the use of computational tools and simulation
in solving queueing theory problems.

The book can be used as a text for first year graduate students in the
applied science areas such as computer science, operations research, and indus-
trial and/or systems engineering, and allied fields such as manufacturing and
communication engineering. It can also serve as a text for upper level undergrad-
uate students in mathematics, statistics, and engineering who have a reasonable
background in calculus and basic probability theory. It is the product of the
author’s experience in teaching queueing theory for 40 years at various levels
with or without the necessary background in stochastic processes.
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viii PREFACE

The mathematical background assumed for the coverage of topics is a two
or three semester course in calculus, some exposure to transforms and matri-
ces, and an introductory course in probability and statistics, all at the
undergraduate level. No familiarity with measure theoretic terminology is
assumed. An appendix on mathematical results provides some of the essen-
tial theorems for reference.

The book does not advocate any specific software in the numerical analysis
of queueing problems. The one chapter on the modeling and analysis using
computational tools employs matrix laboratory (MATLAB) for the purpose
and we believe students can benefit more by using mathematical software such
as MATLAB and Mathematica rather than system specific software because of
their limited scope.

For this author writing this book has been a retirement project. He is
indebted to Southern Methodist University and the Institute for the Study
of Earth and Man for providing necessary resources and facilities even after
his retirement. He acknowledges his gratitude to Professors Krishna Kavi and
Robert Akl of the University of North Texas for contributing a chapter on
numerical analysis of queueing systems in which the author’s expertise does not
go very far. Special acknowledgment of indebtedness is also made of the review-
ers’ comments that have helped in improving the organization and contents
of the book. The author also wishes to thank Professor N. Balakrishnan for
recommending this book for inclusion in the Statistics for Industry and Tech-
nology Series of Birkhauser. Thanks are due to Professor Junfang Yu of the
Department of Engineering Management, Information and Systems of Southern
Methodist University for using the prepublication copy of the book in his class
and pointing out some of the typographical errors in it. Thanks are also due
to Ms. Sheila Crain of the Department of Statistical Science, for setting the
manuscript in LaTex with care and perseverance.

The author’s wife Girija, son Girish, and daughter Gouri, have supported
and encouraged him throughout his academic career. They deserve all the credit
for his success.

U. Narayan Bhat
Dallas, Texas
July 2007



Preface to the Second
Edition

After the publication of the first edition of this book, like most authors in the
academic world, the author felt that some improvements could have been made
in it. So with this revised edition, the author has taken the opportunity to make
changes, which hopefully, will increase the usefulness of the book. One major
change is the inclusion of additional topics with the help of contributing guest
authors to broaden the scope of methodology of analysis and the applicability
of queueing models.

This edition includes all topics covered in the first edition with one major
rearrangement. The short chapter on renewal models has been absorbed in two
other chapters, the theoretical portion in Chapter 3 covering basic concepts in
stochastic processes, and the modeling portion in Chapter 6 along with extended
Markov models.

Another change made in the narrative of topics covered in the first edition
is to warn the reader when an analysis or derivation requires a mathematical
background beyond what is stated in the preface to the first edition. Under
those circumstances it is suggested that, the reader may skip such analyses or
derivations without sacrificing the understanding of the subject.

Professor Srinivas R. Chakravarthy, a contributing guest author, has con-
tributed a chapter on the matrix-analytic method as an alternative method of
analysis of queueing systems. The matrix-analytic method was introduced by
Professor Marcel Neuts in the 1970s and he expanded its scope along with his
associates including the author of this chapter, in the 1980s. Since then its
reach in the analysis of queueing systems has grown far and wide. At this time
it would not be an exaggeration to say that the majority of new research being
done in the application of queueing theory uses this method.

In order to broaden the appeal of the book to applied scientists, a chapter
on queueing theory applications in the analysis of manufacturing systems and
another on applications in the computer and communication systems have been
included. The first is a new chapter authored by Professor Andrew Junfang Yu.
The second chapter, authored by Professor Krishna M. Kavi, is an expanded
version of a chapter which also included simulation in the first edition. In
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x PREFACE

this edition simulation of queueing systems gets a separate chapter by itself.
Among all the application areas of queueing theory at this time, computer and
communication systems, and manufacturing systems stand out because of their
breadth and usefulness. For this reason these two chapters have been included
as areas of application of queueing theory in this edition.

Most of the statements made in the preface to the first edition of the book
stand true for this edition as well. A few additional acknowledgments are also in
order. The author is grateful to the three contributing authors for adding their
expertise in three different areas. The author is indebted to Southern Methodist
University and the Institute for the Study of Earth and Man for their continuing
support for his retirement projects. Some of the changes in the earlier material
have come about in response to comments made by the reviewers of the first
edition. The author wishes to thank them. He also wishes to thank the editors
of Birkhauser/Springer, and the Statistics for Industry and Technology series
editor Professor N. Balakrishnan for initiating and supporting this revision.
Thanks are due to Ms. Sheila Crain for assisting in the preparation of the
manuscript with skill and patience.

The author is indebted to his wife Girija, for supporting him in this project.
Professor N. U. Prabhu of Cornell University introduced the author to queueing
theory in the early 1960s while they were at the University of Western Australia.
This book, therefore, is dedicated to Professor Prabhu in recognition of the role
he has played in the scholastic career of the author.

Instructors may request a guide to the solutions of exercises via the Springer
website at http://www.springer.com/gp/book/9780817684204

U. Narayan Bhat
Dallas, Texas
May 2015
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Chapter 1

Introduction

1.1 Basic System Elements

Queues (or waiting lines) help facilities or businesses provide service in an
orderly fashion. Forming a queue being a social phenomenon, it is beneficial
to the society if it can be managed so that both the unit that waits and the one
that serves get the most benefit. For instance, there was a time when in airline
terminals passengers formed separate queues in front of check-in counters. But
now we see invariably only one line feeding into several counters. This is the
result of the realization that a single line policy serves better for the passengers
as well as the airline management. Such a conclusion has come from analyzing
the mode by which a queue is formed and the service is provided. The analysis
is based on building a mathematical model representing the process of arrival of
passengers who join the queue, the rules by which they are allowed into service,
and the time it takes to serve the passengers. Queueing theory embodies the
full gamut of such models covering all perceivable systems which incorporate
characteristics of a queue.

We identify the unit demanding service, whether it is human or otherwise, as
customer. The unit providing service is known as the server. This terminology
of customers and servers is used in a generic sense regardless of the nature of
the physical context. Some examples are given below:

(a) In communication systems, voice or data traffic queue up for lines for trans-
mission. A simple example is the telephone exchange.

(b) In a manufacturing system with several work stations, units completing
work in one station wait for access to the next.

(c) Vehicles requiring service wait for their turn in a garage.

(d) Patients arrive at a doctor’s clinic for treatment.

c© Springer Science+Business Media New York 2015 1
U. N. Bhat, An Introduction to Queueing Theory, Statistics for Industry and

Technology, DOI 10.1007/978-0-8176-8421-1 1



2 CHAPTER 1. INTRODUCTION

Numerous examples of this type are of everyday occurrence. While analyzing
them we can identify some basic elements of the systems.

Input Process If the occurrence of arrivals and the offer of service are strictly
according to schedule, a queue can be avoided. But in practice this does not
happen. In most cases, the arrivals are the product of external factors. There-
fore, the best one can do is to describe the input process in terms of random
variables that represent either the number arriving during a time interval or the
time interval between successive arrivals. If customers arrive in groups, their
size can be a random variable as well.

Service Mechanism The uncertainties involved in the service mechanism are
the number of servers, the number of customers getting served at any time, and
the duration and mode of service. Networks of queues consist of more than
one server arranged in series and/or parallel. Random variables are used to
represent service times, and the number of servers, when appropriate. If service
is provided for customers in groups, their size can also be a random variable.

System Capacity The number of customers that can wait at a time in a queue-
ing system is a significant factor for consideration. If the waiting room is large,
one can assume that for all practical purposes, it is infinite. But our everyday
experience with the telephone systems tells us that the size of the buffer that
accommodates our call while waiting to get a free line is important as well.

Queue Discipline All other factors regarding the rules of conduct of the queue
can be pooled under this heading. One of these is the rule followed by the
server in accepting customers for service. In this context, the rules such as
“first-come, first-served” (FCFS), “last-come, first-served” (LCFS), and “ran-
dom selection for service” (RS) are self-explanatory. Others such as “round
robin” and “shortest processing time” may need some elaboration, which is
provided in later chapters. In many situations, customers in some classes get
priority for service over others. There are many other queue disciplines which
have been introduced for the efficient operation of computers and communica-
tion systems. Also, there are other factors of customer behavior such as balking,
reneging, and jockeying, that require consideration as well.

The identification of these elements provides a taxonomy for symbolically
representing queueing systems with a variety of system elements. The basic
representation widely used in queueing theory is due to D. G. Kendall (1953)
and made up of symbols representing three elements: input, service, and number
of servers. For instance, using M for Poisson or exponential, D for deterministic
(constant), Ek for the Erlang distribution with scale parameter k, and G for
general (also GI, for general independent) we write:
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M/G/1: Poisson arrivals, general service, single server
Ek/M/1: Erlangian arrival, exponential service, single server
M/D/s: Poisson arrival, constant service, s servers.

These symbolic representations are modified when other factors are involved.

1.2 Problems in a Queueing System

The ultimate objective of the analysis of queueing systems is to understand the
behavior of their underlying processes so that informed and intelligent decisions
can be made in their management. Three types of problems can be identified
in this process.

Behavioral Problems The study of behavioral problems of queueing systems is
intended to understand how they behave under various conditions. The bulk
of the results in queueing theory is based on research on behavioral problems.
Mathematical models for the probability relationships among the various ele-
ments of the underlying process are used in the analysis. To make the ideas
concrete let us define a few terms that are defined formally later. A collection
or a sequence of random variables that are indexed by a parameter such as
time is known as a stochastic process; e.g., an hourly record of the number of
accidents occurring in a city. In the context of a queueing system, the num-
ber of customers with time as the parameter is a stochastic process. Let Q(t)
be the number of customers in the system at time t. This number is the dif-
ference between the number of arrivals and departures during (0, t). Let A(t)
and D(t), respectively, be these numbers. A simple relationship would then
be Q(t) = A(t) − D(t). In order to manage the system efficiently, one has to
understand how the process Q(t) behaves over time. Since the process Q(t) is
dependent on A(t) and D(t), both of which are also stochastic processes, their
properties and dependence characteristics between the two should also be under-
stood. All these are idealized models to varied degrees of realism. As done in
many other branches of science, they are studied analytically with the hope that
the information obtained from such study will be useful in the decision-making
process.

In addition to the number of customers in the system, which we call the queue
length, the time a new arrival has to wait till its service begins (waiting time) and
the length of time the server is continuously busy (busy period) or continuously
idle (idle period) are major characteristics of interest. It should be noted that the
queue length and the waiting time are stochastic processes and the busy period
is a random variable. Distribution characteristics of the stochastic processes and
random variables are needed to understand their behavior. Since time is a factor,
the analysis has to make a distinction between the time-dependent, also known
as transient, and the limiting, also known as the long-term, behavior. Under
certain conditions a stochastic process may settle down to what is commonly
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called a steady state or a state of equilibrium, in which its distribution properties
are independent of time.

Statistical Problems Under statistical problems we include the analysis of empir-
ical data in order to identify the correct mathematical model, and validation
methods to determine whether the proposed model is appropriate. Chronologi-
cally, the statistical study precedes the behavioral study as could be seen from
the early papers by A. K. Erlang (as reported in Brockmeyer et al. (1960))
and others. For an insight into the selection of the correct mathematical model,
which could be used to derive its properties, a statistical study is fundamental.

In the course of modeling we make several assumptions regarding the basic
elements of the model. Naturally, there should be a mechanism by which these
assumptions could be verified. Starting with testing the goodness of fit for the
arrival and service distributions, one would need to estimate the parameters
of the model and/or test hypotheses concerning the parameters or behavior of
the system. Other important questions where statistical procedures play a part
are in the determination of the inherent dependencies among elements, and
dependence of the system on time.

Decision Problems Under this heading we include all problems that are inher-
ent in the operation of queueing systems. Some such problems are statistical
in nature. Others are related to the design, control, and the measurement of
effectiveness of the systems.

1.3 A Historical Perspective

The history of queueing theory goes back more than 100 years. Johannsen’s
“Waiting Times and Number of Calls” (an article published in 1907 and reprinted
in Post Office Electrical Engineers Journal, London, October, 1910) seems to be
the first paper on the subject. But the method used in this paper was not math-
ematically exact and therefore, from the point of view of exact treatment, the
paper that has historic importance is A. K. Erlang’s, “The Theory of Probabil-
ities and Telephone Conversations” (Nyt tidsskrift for Matematik, B, 20 (1909),
p. 33). In this paper he lays the foundation for the place of Poisson (and hence,
exponential) distribution in queueing theory. His papers written in the next 20
years contain some of the most important concepts and techniques; the notion
of statistical equilibrium and the method of writing down state balance equa-
tions are two such examples. Special mention should be made of his paper “On
the Rational Determination of the Number of Circuits” (see Brockmeyer et al.
(1960)), in which an optimization problem in queueing theory was tackled for
the first time.

It should be noted that in Erlang’s work, as well as the work done by others
in the twenties and thirties, the motivation has been the practical problem of
congestion. See for instance, Molina (1927) and Fry (1928). During the next two
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decades, several theoreticians became interested in these problems and devel-
oped general models which could be used in more complex situations. Some of
the authors with important contributions are Crommelin, Feller, Jensen, Khint-
chine, Kolmogorov, Palm, and Pollaczek. A detailed account of the investiga-
tions made by these authors may be found in books by Syski (1960) and Saaty
(1961). Kolmogorov’s and Feller’s study of purely discontinuous processes laid
the foundation for the theory of Markov processes as it developed in later years.

Noting the inadequacy of the equilibrium theory in many queue situations,
Pollaczek (1934) began investigations of the behavior of the system during a
finite time interval. Since then and throughout his career, he did consider-
able work in the analytical behavioral study of queueing systems; see Pollaczek
(1965). The trend toward the analytical study of the basic stochastic pro-
cesses of the system continued, and queueing theory proved to be a fertile field
for researchers who wanted to do fundamental research on stochastic processes
involving mathematical models.

A concept that plays a significant role in the analysis of stochastic systems
is statistical equilibrium. This is a state of the stochastic process which signifies
that its behavior is independent of time and the initial state. Suppose we define

Pij(s, t) = P [Q(t) = j|Q(s) = i] s < t

as the transition probability of the process {Q(t), t ≥ 0}, which is a statement
of the probability distribution of the state of the process at time t, conditional
on its state at time s, s < t. The statement that the process attains statistical
equilibrium implies that

lim
t→∞

Pij(s, t) = pj

which does not depend on time t and the initial state i.
Even though Erlang did not explicity state his results in these terms, he used

this basic concept in his results. To this day a large majority of queueing theory
results used in practice are those derived under the assumption of statistical
equilibrium. Nevertheless, to understand the underlying processes fully, a time-
dependent analysis is essential. But the processes involved are not simple and
for such an analysis sophisticated mathematical procedures become necessary.
Thus, the growth of queueing theory can be traced on two parallel tracks:

(i) Using existing mathematical techniques or developing new ones for the anal-
ysis of the underlying processes

(ii) Incorporating various system characteristics to make the model closely rep-
resent the real-world phenomenon

Queueing theory as an identifiable body of literature was essentially defined
by the foundational research of the 1950s and 1960s. For a complete bibliography
of research in this period, see Syski (1960), Saaty (1961, 1966), and Bhat (1969).
Here we mention only a few papers and books that, in the opinion of this author,
have made a profound impact in the direction of research in queueing theory.
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The queue M/M/1 (Poisson arrival, exponential service, single server) is
one of the earliest systems to be analyzed. Under statistical equilibrium, the
state balance equations are simple and the limiting distribution of the queue
size is obtained by recursive arguments. But for a time-dependent solution,
more advanced mathematical techniques become necessary. The first such solu-
tion was given by Bailey (1954) using generating functions for the differential
equations governing the underlying process, while Lederman and Reuter (1956)
used spectral theory in their solution. Laplace transforms were used later for
the same problem, and their use together with generating functions has been
one of the standard and popular procedures in the anlaysis of queueing systems
ever since.

A probabilistic approach to the analysis was initiated by Kendall (1951,
1953) when he demonstrated that imbedded Markov chains can be identified
in the queue length process in systems M/G/1 and GI/M/s. Lindley (1952)
derived integral equations for waiting time distributions defined at imbedded
Markov points in the general queue GI/G/1. These investigations led to the
use of renewal theory in queueing systems analysis in the 1960s. Identification of
the imbedded Markov chains also facilitated the use of combinatorial methods
by considering the queue length at Markov points as a random walk. See Prabhu
and Bhat (1963) and Takàcs (1967).

Mathematical modeling of a random phenomenon is a process of approxi-
mation. A probabilistic model brings it a little bit closer to reality; nevertheless
it cannot completely represent the real-world phenomenon because of involved
uncertainties. Therefore, it is a matter of convenience where one can draw the
line between the simplicity of the model and the closeness of the representation.
In the 1960s several authors initiated studies on the role of approximations in
the analysis of queueing systems. Because of the need for useable results in
applications, various types of approximations have appeared in the literature.
For an extensive bibliography, see Bhat et al. (1979). To mention a few, one
approach to approximation is the analysis under heavy traffic (when the traffic
intensity, the ratio of the rates of input to output, approaches 1) and investiga-
tions under this topic were initiated by Kingman (for an extensive bibliography,
see Kingman (1965)) with the objective of deriving a simpler expression for the
final result. The heavy traffic assumption also led to diffusion approximation
as well as weak convergence results by researchers such as Iglehart (see Iglehart
and Whitt (1970a, b)). Also see Whitt (2000) with an extensive bibliography.
Gaver’s analysis (1968) of the virtual waiting time of an M/G/1 queue is one
of the initial efforts using diffusion approximation for a queueing system. Fluid
approximation, as suggested by Newell (1968, 1971) considers the arrival and
departure processes in the system as a fluid flowing in and out of a reservoir,
and their properties are derived using applied mathematical techniques. For a
recent survey of some fluid models see Kulkarni (1997).

By the end of 1960s most of the basic queueing systems that could be con-
sidered as reasonable models of real-world phenomena had been analyzed and
the papers coming out dealt with only minor variations of the systems without
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contributing much to methodology. There were even statements made to the
effect that queueing theory was at the last stages of its life. But such predictions
were made without knowing what advances in computer technology would mean
to queueing theory. Advances inspired or assisted by computer technology have
come in two dimensions: methodology and applications. Given below are some
of the prominent topics explored in such advances. Since in applied probabil-
ity, methodology, and applications contribute to the growth of the subject in a
symbiotic manner they are listed below without being categorized.

(i) The Matrix-Analytic Method

Starting with the introduction of phase type probability distributions,
Marcel Neuts (1975) has developed an analysis technique that extends
and modifies the earlier transform method to multivariables and makes it
amenable for an algorithmic solution. See Neuts (1978, 1981), Sengupta
(1989), and Ramaswami (1990, 2001). The use of phase type distributions
in the representation of system elements and the matrix-analytic method
in their analysis has significantly expanded the scope of queueing systems
for which useable results can be derived. See, Chapter 8 for details.

(ii) Transform Inversion

The traditional method of analysis of queueing systems depends on invert-
ing generating functions and/or Laplace transforms to derive useable results.
The complexities of transform inversion has spurred more research on it
and beginning with Abate and Dubner (1968), Dubner and Abate (1968),
and Abate et al. (1968) many papers have been published on the subject.
For a comprehensive survey of the state of the art of the Fourier series
method of inversion see Abate and Whitt (1992).

In the inversion of Laplace transforms and probability generating func-
tions, finding roots of characteristic equations is a key step. The cele-
brated Rouché’s theorem only establishes the existence of the roots, not
their magnitude. Pioneering and painstaking work in adapting various
root finding algorithms for use in inverting transforms and generating
functions is due to Professor M. L. Chaudhry (1992). Starting from the
1970s, along with his associates, he has put together a significant amount
of research on various queueing systems of interest (see, Chaudhry and
Templeton (1983)). For instance Chaudhry et al. (1992) provides a good
illustration.

(iii) Queueing Networks

The first article on queueing networks is by J. Jackson (1957). Mathemat-
ical foundations for the analysis of queueing networks are due to Whittle
(1967, 1968) and Kingman (1969), who treated them in the terminology
of population processes. Complex queueing network problems have been
investigated extensively since the beginning of the 1970s.
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Two key concepts that advanced investigations into the properties of
queueing networks are: the Poisson nature of the departure process from
an M/M/s type queue (Burke 1956) and the local balance in state tran-
sitions (Whittle 1967, 1968). The M → M property, as the Poisson
property has been called in computer network lierature, is a necessary
condition for the limiting distribution to be in the product form. Going
beyond the simple Jackson network, Baskett et al. (1975) show that the
product from solutions are valid for networks more general than those
with simple M/M/s type nodes, such as, with state-dependent service;
heterogeneous service times; Coxian service time distributions; processor
sharing discipline; and last-come, first-served discipline.

Since the publication of Baskett et al., a large body of literature has grown
in the performance modeling of queueing networks. Courtois (1977),
Kelley (1979), Sauer and Chandy (1981), Lavenberg (1983), Disney and
Kiessler (1987), Malloy (1989), Perros (1994), Gelenbe and Pujolle (1999)
and Giambene (2005) are some of the significant books that have come
out on this subject.

(iv) Computer and Communication Systems

The need to analyze traffic processes in the rapidly growing computer
and communication industry is the primary reason for the resurgence of
queueing theory after the 1960s. Research on queueing networks (see
references cited earlier) and books such as Coffman and Denning (1973)
and Kleinrock (1975, 1976) laid the foundation for a vigorous growth in
the application of queueing theory in computer and communication system
operation.

In tracking this growth, we may cite the following survey type articles from
the journal Queueing Systems: Denning and Buzen (1978) on the oper-
ational analysis of queueing network models; Coffman and Hoffri (1986),
describing important computer devices and the queueing models used in
analyzing their performance; Yashkov (1987) on analytical time-sharing
models, complementary to McKinney (1969) on the same topic; three
special issues of the journal edited by Mitra and Mitrani (1991), Doshi
and Yao (1995), and Konstantopolous (1998); and a paper by Mitra et al.
(1991) on communication systems. Research on queueing applications can
also be found in various computer journals. Several books have appeared
and continue to appear on the subject as well. Some of the more recent
developments are discussed in Chapter 13.

(v) Manufactruring Systems

The machine interference problem analyzed by Palm (1947) and Benson
and Cox (1951, 1952) was the first problem in manufacturing systems
in which queueing theory methodology was used. The classical Jackson
network (1957) originated out of the manufacturing setting since a job-
shop is a network of machines. (Also, see Jackson (1963)). Simulation
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studies reported in Conway et al. (1967) provide excellent examples of
the incorporation of queueing models with job-shop scheduling. Since the
1970s, with the advent of new processes in manufacturing incorporating
computers at various stages, the application of queueing theory results as
well as the development of new techniques have occurred at a phenomenal
rate. Three articles in Buzacott and Shanthikumar (1992) and the book
Buzacott and Shanthikumar (1993) bring together most of the important
developments in the application of queueing theory in manufacturing sys-
tems up to that time.

As described by Buzacott and Shanthikumar (1993) the “product-to-order”
and “product-to-stock” models make direct use of queueing theory results.
With demand as a customer and the manufacturing process as a server,
the first model is a direct application of queueing models, while the second
incorporates production–inventory system concepts, with the production
system substituting for multiple or infinite number of servers. Other appli-
cations include job flow lines as tandem queues, and job-shops and flexible
manufacturing systems as queueing networks. Some of the more recent
applications are discussed in Chapter 12. For recent articles on the appli-
cations of queueing theory in manufacturing system modeling readers may
also refer to various journals such asManagement Science, European Jour-
nal of Operational Research, IIE Transactions, Computers and Industrial
Engineering, and journals on production and manufacturing research.

(vi) Specialized Models

Specialized queueing models of the 1950s and 1960s have found broader
applicability in the context of computer and communication systems.
We mention below three such models that have attracted considerable
attention.

Polling Models These models represent systems in which one or more
servers provide service to several queues in a cyclical manner (Koenigs-
berg (1958)). Based on variations on the system structure and queue
discipline a large number of models emerge. For research on polling mod-
els see a special issue of Queueing Systems edited by Boxma and Takagi
(1992), as well as Takagi (1997) and Hirayama et al. (2004), all of which
provide excellent bibliography on the subject.

Vacation Models Queueing systems with service breaks are not uncom-
mon. Machine breakdowns, service disruption due to maintenance oper-
ations, cyclic server queues, and scheduled job streams are some of the
examples. A key feature of the results is the ability to decompose them into
results corresponding to systems without vacations and results depending
on the distributions related to the vacation sequence. For bibliographies
on this topic, see Doshi (1986) and Alfa (2003).
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Retrial Queues In finite capacity systems, customers, denied entry to the
system, trying to enter again, is quite common. Since they have already
tried to get service once, they belong to a different population of customers
than the original one. Problems related to this phenomenon have been
extensively explored in the literature. The following papers and more
recent ones appearing in journals provide bibliographies for further study:
Yang and Templeton (1987), Falin (1990), and Kulkarni and Liang (1997).

(vii) Statistical Inference

In any theory of stochastic modeling statistical problems naturally arise
in the applications of the models. Identification of the appropraite model,
estimation of parameters from empirical data, and drawing inferences
regarding future operations involve statistical procedures. These were rec-
ognized even in earlier investigations in the studies by Erlang; see Brock-
meyer et al. (1960), Molina (1927), and Fry (1928).

Since elements contributing to the underlying processes in queueing sys-
tems can be modeled as random variables and their distributions, it is
reasonable to assume that inference problems in queueing are not any dif-
ferent from such problems in statistics in general. However, often in real-
world systems, sampling plans appropriate for data collection to estimate
parameters of the constituent elements, may not be possible to implement.
Consequently, modifications of the standard statistical procedures become
necessary.

The first theoretical treatment of the estimation problem was given by
Clarke (1957) who derived maximum likelihood estimates of arrival and
service rates in an M/M/1 queueing system. Billingsley’s (1961) treat-
ment of inference in Markov processes in general and Wolff’s (1965) deriva-
tion of likelihood ratio tests and maximum likelihood estimates for queues
that can be modeled as birth and death processes are other significant
advances that have occurred in this area. Also see Cox (1965) for a com-
prehensive survey of statistical problems as related to queues. Cox also
provides a broad guideline for inference investigations in non-Markovian
queues.

The first paper on estimating parameters in a non-Markovian system is
by Goyal and Harris (1972), who used the transition probabilities of the
imbedded Markov chain to set up the likelihood function. Since then,
significant progress has occurred in adapting statistical procedures to var-
ious systems. Some of the examples are: Basawa and Prabhu (1981, 1988)
and Acharya (1999) considered the problem of estimation of parameters
in the queue GI/G/ 1; Rao et al. (1984) used a sequential probability
ratio technique for the control of parameters in M/Ek/1 and Ek/M/1;
Armero (1994) and Armero and Conesa (2000) used Bayesian techniques
for inference in Markovian queues; Thiruvaiyaru et al. (1991) and Thiru-
vaiyaru and Basawa (1994) extended the maximum likelihood estimation
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to include Jackson networks; Pitts (1994) considered the queue as a func-
tional that maps the service and inter-arrival time distribution functions
on to the stationary waiting time distribution function to determine its
confidence bound. For a comprehensive survey of inference problems in
queues see Bhat et al. (1997). More recent investigations are by Bhat
and Basawa (2002) who use queue length as well as waiting time data in
estimating parameters in queueing systems. A recent paper (Basawa et
al. 2008) uses waiting time or system sojourn time, adjusted for idle times
when necessary, to estimate parameters of inter-arrival and service times
in GI/G/ 1 queues.

(viii) Design and Control

The study of real systems is motivated by the objectives of improving
their design, control and effectiveness. Until the 1960s when operations
researchers trained in mathematical optimization techniques got interested
in queueing problems, operational problems were being handled using pri-
marily behavioral results. It should be noted that Erlang’s interest in
the subject was for building better telephone systems for the company for
which he was working. His paper “On the rational determination of the
number of circuits” (Brockmeyer et al. (1960)) deals with the determina-
tion of the optimum number of channels so as to reduce the probability of
loss in the system.

Until computers made them obsolete, graphs and tables, prepared using
analytical results of measures of effectiveness, assisted the designers of
communication systems such as telephones. Other examples are the papers
by Bailey (1952) which looked into the appointment system in hospitals,
and Edie (1956) that analyzed the traffic delays at tollbooths. From
the perspective of applications of queueing results to realistic problems
Morse’s (1958) book has been held in high regard. This is because he pre-
sented the theoretical results available at that time in a manner appeal-
ing to the applied researchers and gave procedures for improving system
design.

Hillier’s (1963) paper on economic models for industrial waiting line prob-
lems is, perhaps, the first paper to introduce standard optimization tech-
niques to queueing problems. While Hillier considered an M/M/ 1 queue,
Heyman (1968) derived an optimal policy for turning the server on and
off in an M/G/ 1 queue, depending on the state of the system.

Since then, operations researchers trained in mathematical optimization
techniques have explored their use in much greater complexity to a large
number of queueing systems. For an excellent overview, a valuable refer-
ence is a special issue of the journal Queueing Systems edited by Stidham
(1995), which includes several review-type articles on special topics. Also
see Bäuerle (2002) who considers an optimal control problem in a queueing
network.
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(ix) Other Topics

Even though there were a few papers on discrete time queues before the
1970s, since then, these systems have taken a larger significance because
of the discreteness of time, however short the interval maybe, in computer
and communication systems. It is not hard to imagine that a large portion
of the results for discrete time queues are in fact derived in the same way
as for continuous time queues with obvious modifications in methodology.

There have also been theoretical advances in stochastic processes with the
introduction of modified processes such as Markov modulated processes,
marked point processes and batch Markovian processes. These processes
are used to represent various patterns such as burstiness and heterogeneity
in traffic.

In the preceding paragraphs, we have outlined the growth of queueing
theory identifying major developments and directions. For details of any
of the facets, readers are referred to the articles and books cited above.
Also see Prabhu (1987) who gives a bibliography of books and survey
papers in various categories and subtopics, Adan et al. (2001) who give
a broad treatment of queues with multiple waiting lines, and Dshalalow
(1997) who considers systems with state-dependent parameters. The last
two articles also provide extensive bibliographies. It is hoped that with
the help of these references and modern Internet tools, applied researchers
will be able to build on the systems covered in this text so as to establish
an appropriate model to represent the system of their interest.

1.4 Modeling Exercises

These exercises are given as an introduction to modeling a random phenomenon
as a queueing system. In addition to answering the questions posed in the
exercises, the reader is required only to identify (i) model elements, (ii) system
structure, and (iii) the assumptions one has to make in setting up the model.

1. A city bus company wants to establish a schedule for its bus fleet. In
order to do this in a scientific manner, the company entrusts this job to
an operations research specialist with sufficient data processing support.
Describe the queueing systems involved in this process and the types of data
that need to be collected in order to come up with the schedule. Identify
the measures of performance for the bus system and the factors that affect
these measures when the system is in operation.

2. A newly established business would like to decide on the number of tele-
phone lines it has to install in a cost-effective manner. Identify the elements
of the underlying process of the telephone answering system and indicate
the specific data that need to be collected to establish the parameters of
the system. Also identify the performance measures of interest.
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3. In a manufacturing system, a product undergoes several stages (e.g., an
automobile assembly line) and within each stage there may be several sub-
stages, including testing of components. How can such a system be modeled
as a queueing system (including queueing systems for stages and substages)
in order to improve the performance of the manufacturing process?

4. An airline offers three types of check-in service for the passengers: (1) First
class and business class check-in, (2) regular check-in, and (3) self check-
in. Describe the structure of the queueing system that can represent the
check-in system and identify the data elements that need to be known to
measure its performance. Also indicate the complexities that may result in
improving the system by incorporating flexibilities in the system operation.

5. Several terminals used for data entry to a computer share a communication
line. Terminals use the line on a first-come, first-served basis and wait in a
queue when the line is busy.

Describe the elements of this queueing system and identify the assumptions
that need to be made to analyze system characteristics. (Allen (1990)).

6. In store-and-forward communication networks messages for transmission
are stored in buffers of fixed size. Each message may use one or more buffers.
The message is transmitted through several identical channels. Knowing the
characteristics of the arrival process, transmission rate, and the message
length, we are interested in the storage requirements of a network node.

Describe the general characteristics of the approach in order to estimate
the long run storage requirements for this type of a system.

7. In a warehouse, items are stacked in such a way that the most recently
stacked item gets removed first. In order to use a queueing model to deter-
mine the amount of time the item is stored in the warehouse, describe the
elements of such a system and say how we may characterize the time interval
of interest.

8. In order to reduce the waiting time of short jobs, a round-robin (RR) service
discipline is used. Under an RR queue discipline, each job gets a fixed
amount of service, known as a quantum, when it is admitted to the central
processing unit (CPU). If the service requirement of the job is more than
the quantum, it is sent back to the end of the queue of waiting jobs. This
process continues until the CPU can provide the required number of quanta
of service to the job.

Describe how the total service time of the job can be characterized in order
to determine the mean amount of time the job spends in the system. (This
is known as the mean response time.) (See Coffman and Kleinrock (1968)
and Coffman and Denning (1973)).
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9. A uniprogramming computer system consists of a CPU and a disk drive.
After one pass at the CPU a job may need the services of the disk I/O with a
certain probability, say p, and the job is complete with the probability 1−p.
There are three independent phases to disk service time: (1) seek time; (2)
latency time; and (3) transfer time, each with a specified distribution. After
disk service the job goes back to CPU for completing the execution. (Note
that a uniprogramming system cannot start another job until the service
on the one in the system is complete.)

We are interested in determining the average response time (waiting time
+ service time). What type of a model is appropriate for this problem? If a
queueing model is appropriate, describe the elements of the system (Trivedi
(2002)).

10. In a drum storage unit a shortest-latency-time-first (SLTF) file drum is used
to read or write records on files while the drum is rotating. Once a decision
is made to process a particular record, the time spent waiting for the record
to come under the read/write heads which are fixed is called the latency.
The records are not constrained to be of any particular strength. Also, no
restrictions are placed on the starting position of the records. Assume that
the circumference of the drum is the unit of length and the drum rotates
at a constant angular velocity, with period τ (Fuller (1980)).

Suppose a queueing model is to be used to analyze the performance of the
drum-storage unit described above. Describe the elements of such a system
and the characteristics to be considered for its performance evaluation.



Chapter 2

System Element Models

2.1 Probability Distributions as Models

In building a suitable model for a queueing system, we start with its elements.
Of the elements mentioned in Chapter 1, number of servers, system capacity,
and discipline are normally deterministic (unless, the number of available servers
becomes a random variable, which is also possible in some cases). But there
are uncertainties related to arrivals and service which result in the underlying
processes being stochastic.

The similarity of the arrival and service processes can be brought out by
identifying similar components, such as inter-arrival times and service times;
arrival epochs and departure epochs.

Of these pairs departure epochs are almost always from a nonempty system,
whereas arrival epochs are mostly independent of the state of the system (excep-
tions are possible). Therefore, first we discuss the possibilities of using certain
probability distributions to represent the process of inter-arrival times and ser-
vice times. In the case of Poisson process discussed below, it is also convenient
to consider the distribution of the number of events occurring in a given length
of time.

To start with, we should note that depending on the properties of the basic
process and convenience, we may use either continuous or discrete distributions.
In many situations continuous distributions may be easier to handle analyti-
cally (algebra of discrete distributions could be cumbersome.); nevertheless, it
is worthwhile to note that continuous and discrete models are mutual analogs
and most of the properties carry through in both cases.

Keeping a common notation we use Z1, Z2, . . . as nonnegative random vari-
ables representing either inter-arrival times or service times of consecutive cus-
tomers. Further, let

F (x) = P (Zn ≤ x), n = 1, 2, . . .

c© Springer Science+Business Media New York 2015 15
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We also assume that {Zn}∞n=1 are independent and identically distributed ran-
dom variables. Let

E[Zn] = b, n = 1, 2, . . .

and define the Laplace–Stieltjes transform of F (x) as

ψ(θ) =

∫ ∞

0

e−θxdF (x) Re(θ) ≥ 0.

Clearly, we get
−ψ′(0) = b.

It should be noted that when b is the mean inter-occurrence time, 1/b is the
rate of occurrence of the event.

In considering the suitability of a probability model for a random phe-
nomenon, moment properties of the model distribution become useful. Many
times the first two moments appear as the parameters of the model. Further-
more, the first few moments describe the shape of the density curve, thus, mak-
ing them suitable measures in selecting the model (e.g., coefficient of variation
(CV) = s.d./mean; coefficient of skewness = (third moment)/(s.d.)3; coefficient
of kurtosis = (fourth moment)/(s.d.)4).

The commonly used distribution models for arrivals and service are: deter-
ministic (when arrivals are at specified time epochs, or inter-arrival times or
service times are of constant length); exponential (as distribution models for
inter-arrival times or service times); Poisson (as the distribution of the number
of arrivals during a specified length of time); Erlang (as distribution models
for inter-arrival times or service times); and variants of these distributions. We
introduce deterministic, exponential, Poisson, and Erlang distributions in the
following discussion and the remainder in Appendix A.

Deterministic Distribution (D)

Let

F (x) = 0 x < b

= 1 x ≥ b (2.1.1)

We get E(Zn) = b and ψ(θ) = e−θb. Also, V (Zn) = 0.
This seemingly simple distribution is suitable when arrivals take place at

equal intervals of time (interval length b) or service takes exactly b units of
time. In practice, however, it may be hard to achieve this exactness. Early
or late arrivals, early or late service completions will be closer to reality. In
such cases, the assumption of a deterministic distribution should be considered
a reasonable approximation of the real system.

If we are interested in an exact model for the early or late occurrence of
events, we may consider the displacement from the deterministic epoch as a
random variable with some distribution like the uniform or the normal. Under
these conditions, it is possible to have the kth scheduled event occurring later
than the occurrence of the (k + 1)th scheduled event.
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Exponential Distribution, Poisson Process (M)

Let
F (x) = 1− e−λx, x ≥ 0, λ > 0. (2.1.2)

Then we get,

f(x) =
d

dx
F (x) = λe−λx

E[Zn] =
1

λ

and

ψ(θ) =
λ

θ + λ
.

Also, V (Zn) =
1
λ2 and CV (Zn) = 1.

Let X(t) be the number of events occurring in time t such that the inter-
occurrence times have the distribution given by F (x). Symbolically, for the
stochastic process X(t) we can write

X(t) = max{n|Z1 + Z2 + . . .+ Zn ≤ t}.
Let

Pn(t) = P (X(t) = n|X(0) = 0)

= P (Z1 + Z2 + . . .+ Zn ≤ t)

−P (Z1 + Z2 + . . .+ Zn+1 ≤ t),

where Fn(t) = P (Z1 + Z2 + . . .+ Zn ≤ t) is obtained as the n-fold convolution
of F (t) with itself. Using the Laplace transform of F (t) we find∫ ∞

0

e−θtdFn(t) =

(
λ

θ + λ

)n

.

On inversion this gives

Fn(t) =

∫ t

0

e−λy λ
nyn−1

(n− 1)!
dy

= 1−
n−1∑
r=0

e−λt (λt)
r

r!
. (2.1.3)

Thus, we get

Pn(t) = Fn(t)− Fn+1(t)

= [1−
n−1∑
r=0

e−λt (λt)
r

r!

−[1−
n∑

r=0

e−λt (λt)
r

r!
]

= e−λt (λt)
n

n!
, (2.1.4)
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which is a Poisson distribution with mean λt. Hence, X(t) is known as a Poisson
process.

Define the probability generating function of X(t) as

Π(z, t) =

∞∑
n=0

znPn(t) |z| ≤ 1.

For the Poisson process we get

Π(z, t) = e−λ(1−z)t.

Also, E[X(t)] = λt and V [X(t)] = λt.
The Poisson process is a special case of the Markov process which is intro-

duced in the next chapter. It is widely used in stochastic modeling because of its
properties with reference to the occurrence of events and the properties of the
exponential distribution representing the corresponding inter-occurrence times
of events. Two of them are given below: (a) the first describes the memoryless
property of the exponential distribution and (b) the second generates the Erlang
distribution.

(a) When P (Zn ≤ x) = 1− e−λx (λ > 0)

P (Zn ≤ t+ x|Zn > t) =
P (t < Zn < t+ x)

P (Zn > t)

=
[1− e−λ(t+x)]− [1− e−λt]

e−λt

= 1− e−λx. (2.1.5)

The implication of this property is that if an interval, such as service time, can
be represented by an exponential distribution and the interval is ongoing at time
t, the remaining time in the interval has the same distribution as the original
one, regardless of the start of the interval. This property is commonly known
as the memoryless property of the exponential distribution.

(b) The discussion leading to equation (2.1.3) implies that the time required
for the occurrence of a given number of Poisson events has a distribution given
by that expression, i.e., if Yn is the waiting time until the nth occurrence and
{Z1, Z2, . . .} are the inter-occurrence times

Yn = Z1 + Z2 + . . .+ Zn

Fn(t) = P (Yn ≤ t)

=

∫ t

0

e−λy λ
nyn−1

(n− 1)!
dy

and

fn(y) = e−λy λ
nyn−1

(n− 1)!
dy (y > 0). (2.1.6)
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The distribution given by (2.1.6) is a gamma distribution with parameters n
and λ. In queueing theory it is commonly called the Erlang distribution with
scale parameter n. It is symbolically denoted by En. Equation (2.1.3) also
establishes a useful identity

∫ ∞

y

e−λx (λx)
n−1

(n− 1)!
λdx =

n−1∑
r=0

e−λy (λy)
r

r!
. (2.1.7)

For modeling purposes, Poisson process is considered an appropriate model
for events occurring “at random.” The reasons for such a characterization rests
on its properties described in Appendix A; specifically, independence of events
occurring in nonoverlapping intervals of time, the constant rate of occurrence
independent of time, the independent and identically distributed nature of the
inter-occurrence times, and its relationship with the uniform distribution as
expressed in (A.1.4) of Appendix A. The significance of the Erlang distribu-
tion stems from the phase interpretation that can be provided for generating a
suitable arrival or service process.

Consider a Poisson arrival process and suppose a queueing system admits
every kth customer into the system instead of all arrivals. Now the inter-arrival
time between effective arrivals to the queueing system is the sum of k exponential
random variables with mean 1/λ, hence, it has the distribution given by (2.1.6).
Similarly, consider a service process in which a customer goes through k phases
of service, each phase being exponentially distributed with mean 1/λ. The total
service time has the distribution (Ek), given by (2.1.6) with n replaced by k.

To facilitate comparison with the Poisson and deterministic processes con-
sider the Erlang distribution F (x) with mean 1/λ. This can be accomplished
by starting with an exponential distribution with parameter kλ. Then we get

F (x) =

∫ x

0

e−kλy (kλ)
kyk−1

(k − 1)!
dy

f(x) = e−kλx (kλ)
kxk−1

(k − 1)!
. (2.1.8)

For k = 1, we have the exponential distribution, which generates a Poisson
process. To determine the form of f(x) as k → ∞, we use its transform ψ(θ).
We have

ψ(θ) =

(
kλ

kλ+ θ

)k

=
1

(1 + θ/kλ)k
→ e−θ/λ as k → ∞.

The resulting transform is the transform of a constant 1/λ, and hence generates
the deterministic distribution given in (2.1.1). Depending on the values of k,
even a moderately large value of k (e.g., k = 10 or 15) may be sufficient for the
Erlang to exhibit the property of a deterministic distribution.
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2.2 Identification of Models

In the formulation of a queueing model, one starts with the identification of
its elements and their properties. The system structure is easily determined.
What remains is the determination of the form and properties of the input and
service processes. Four major steps are essential in this analysis (i) collection
of data, (ii) tests for stationarity in time, (iii) tests for independence, and (iv)
distribution selection and/or estimation.

2.2.1 Collection of Data

To estimate parameters of system elements, one has to establish a sampling plan
identifying the data elements to be collected with reference to specific parame-
ters. For instance, the number of arrivals in a time period gives the arrival rate
or the mean inter-arrival time, which are reciprocals of each other. Sometimes
there is a tendency to use empirical performance measures to estimate param-
eters intrinsic to the model. For instance, in an M/M/ 1 queue, noting that
the traffic intensity (which is the ratio of arrival to service rate) provides the
utilization factor for the system, we may use the empirical utilization factor as
its estimate. Some of the pitfalls of this approach are indicated by Cox (1965)
who notes that if ρ is the traffic intensity, the efficiency of this approach is given
by 1 − ρ. Also, see the discussion by Burke following Cox’s article on the bias
resulting from estimating the load factor in an M/M/ s loss system as (average
number of customers in systems)/(1-probability of loss).

The length and the mode of observation are problems of interest in a sam-
pling plan. If the arrival process is Poisson, Birnbaum (1954) has shown that
observing the system until a specific number of events have occurred gives a
better sample than observing for a specific amount of time. But when nothing
is known regarding the processes, no such statements can be made and the effi-
ciency of different schemes should be considered in individual cases. Another
aspect of the sampling plan is the mode of observations; for discussions of what
are known as the snap reading method and systematic sampling, the reader is
referred to Cox (1965), and page 86 of Cox (1962), respectively.

2.2.2 Tests for Stationarity

Cox and Lewis (1966) give a comprehensive treatment of tests for stationarity
in stochastic processes. In addition to the treatment of data on the occurrence
of events as a time series and the determination of second-order properties of
the counting processes, they consider statistical problems related to renewal
processes and provide tests of significance in some general, as well as some
specific cases. Lewis (1972) updates this study and considers topics such as
trend analysis of nonhomogeneous Poisson processes.

In many queueing systems (such as airport and telephone traffic), the non-
stationarity of the arrival process leads to a periodic behavior. Furthermore,
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even though the process is nonstationary when the entire period is considered,
it might be possible to consider it as a piecewise stationary process in which sta-
tionary periods can be identified (e.g., a rush hour). Under such circumstances,
a procedure that can be used to test the stationarity of the process, as well
as to identify stationary periods, is the Mann–Whitney–Wilcoxon test (see, for
example, Conover (1971), or Randles and Wolfe (1979), or a test appropriately
modified to handle ties in ranks as in Putter (1959)). The data for the test can
be obtained by considering two adjacent time intervals (0, t1] and (t1, t2] and
observing the number of arrivals during such intervals for several time periods.
Let X1, X2, . . . , Xn be the number of arrivals during the first interval for n peri-
ods, and let Y1, Y2, . . . , Ym be the number of arrivals during the second interval
for m periods (usually m = n). If F and G represent the distributions of the
X ′s and Y ′s, respectively, then the hypothesis to be tested is F = G against
the alternative F �= G, for which the Mann–Whitney–Wilcoxon statistic can
be used. Using this test, successive stationary periods can be delineated and
the system can be studied in detail within such periods (see Moore (1975), who
gives an algorithm for the procedure).

To analyze cyclic trends of the type discussed above, we may also use the
periodogram method described by Lewis (1972) for the specific case of a non-
homogeneous Poisson process. Another test in the framework of the nonhomo-
geneous Poisson process is proposed by Joseph et al. (1990). They consider the
output of an M/G/∞-queue where G is assumed to be known.

2.2.3 Tests for Independence

While formulating queueing models, for simplification and convenience, sev-
eral assumptions of independence are made about its elements. Thus, most of
the models assume that inter-arrival times and service times are independent
sequences of independent and identically distributed random variables. If there
are reasons to make such assumptions, statistical tests can be used for verifica-
tion. Some of the tests that can be used to verify independence of a sequence
of observations are tests for serial independence in point processes, described
in Lewis (1972), and various tests for trend analysis and renewal processes,
given by Cox and Lewis (1966). To verify the assumption of independence
between inter-arrival and service times, nonparametric tests seem appropriate.
Spearman’s rho and Kendall’s tau (Randles and Wolfe (1979), Hollander et al.
(2013)) are used to test the correlation between two sequences of random vari-
ables, whereas Cramer-von Mises type statistics (see Koziol and Nemec (1979)
and references cited therein) are used to test for bivariate independence directly
from the definition of independence applied to random variables.

2.3 Distribution Selection

The next step in the model identification process is the determination of the
best model for arrival and service processes. The distribution selection prob-
lem is based on the nature of data and availability of model distributions. For
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this problem, readers are referred to books on applied statistics and data anal-
ysis (e.g., Venables and Ripley (2002)). It is advisable to start with simple
distributions such as the Poisson and exponential, since analysis under such
assumptions is considerably simpler. After all, a mathematical model is essen-
tially an approximation of a real process. The simpler the model is, the easier
it is to analyze and to extract information from it. Thus, the selection of a
distribution should be made with due consideration to the tradeoff between the
advantages of the sophistication of the model and our ability to derive useful
information from it.

Distributions such as Erlang and hyperexponential, are closely related to
the exponential and with an appropriate selection of parameter values, they
represent a wide variety of distributions. As noted in Appendix A, Erlang with
coefficient of variation ≤ 1 and hyper-exponential with coefficient of variation
≥ 1, form a family of distributions with a broad range of distribution character-
istics while retaining the convenience of analysis based on Markovian properties.

Once the distribution model is chosen, the next step is the determination of
parameter values that bind the model to the real system. Normally either the
maximum likelihood method or the method of moments is used for parameter
estimation; the former is preferred because of its desirable statistical proper-
ties whereas the latter is used for its ease of implementation. A discussion
of parameter estimation and hypothesis testing in queueing theory is given in
Chapter 10.

2.4 Review Exercises

1. Determine the mean, variance, and coefficient of variation (CV) for the
following distributions introduced in this chapter and Appendix A.

(i) Deterministic, (2.1.1)

(ii) Exponential, (2.1.2)

(iii) Hyperexponential, (A.3.1)

(iv) Erlang, (2.1.6), (A.4.1)

(v) Mixed Erlang, (A.5.1), (A.5.2)

(vi) Geometric, (A.8.1)

(vii) Binomial, (A.8.3)

(viii) Negative binomial, (A.8.4)

2. Determine the Laplace transform or the probability-generating function, as
the case may be, for the distributions listed under Ex. 1.

3. Determine the probability-generating function for

(i) The Poisson process, (A.2.1)

(ii) The Compound Poisson process, (A.2.2)
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4. Redo Exercise 1 using the Laplace transform or probability-generating func-
tion, as the case may be.

5. Determine for a specific value of t, the mean, variance, and coefficient of
variation for

(i) Poisson process

(ii) Compound Poisson process

6. Establish the identity (2.1.7)

7. Establish the result (A.1.3)

8. Establish the result (A.2.4)

9. Determine the maximum likelihood estimates of the mean value parameters
in distributions listed under Ex. #1.



Chapter 3

Basic Concepts in
Stochastic Processes

3.1 Stochastic Process

In this chapter, we introduce basic concepts used in modeling queueing systems.
Analysis techniques are developed later in conjunction with the discussion of
specific systems.

Uncertainties in model characteristics lead us to random variables as the
basic building blocks for the queueing model. However, a random variable
quantitatively represents an event in a random phenomenon. In queueing sys-
tems, and all systems that operate over time (or space or any other parameter),
the model must be able to represent the system over time. That means we need
a sequence or a family of random variables to represent such a phenomenon
over time. Let T be the range of time of interest. Time can be continuous or
discrete. We denote the time tεT when it is continuous, and nεT when it is
discrete. Then the family of random variables {X(t), tεT} or the sequence of
random variables {Xn, nεT} is known as a stochastic process. (A sample value
of a random variable can be looked upon as a snapshot, whereas, a sample path
of a stochastic process can be considered a video.) The space in which X(t) or
Xn assumes values is known as the state space and T is known as the param-
eter space. Another way of saying is that a stochastic process is a family or a
sequence of random variables indexed by a parameter.

The underlying processes of queueing systems are the product of arrivals and
service. They may be continuous or discrete. Even when we define continuous
state processes such as waiting times, arrival and departure points are imbedded
in them. The next two sections describe commonly occurring processes used in
the analysis of queueing systems. Since general stationary and nonstationary
stochastic processes are not used in the analysis of queueing models, we do not
provide any information on them in our discussion.

c© Springer Science+Business Media New York 2015 25
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Technology, DOI 10.1007/978-0-8176-8421-1 3



26 CHAPTER 3. BASIC CONCEPTS IN STOCHASTIC PROCESSES

3.2 Point, Regenerative, and Renewal Processes

Point Process

Consider randomly located discrete set of points in the parameter space T .
These points may represent events such as arrivals in a queueing system or
accidents on a stretch of road. Let N(t), tεT be the number of points in (0, t].
Then the counting process N(t) is known as a point process (see Lewis (1972)).
There are processes in which the points may be of different types. For instance,
the arrival of two types of customers. Then the process is identified as a marked
point process.

Regenerative Process

Consider a stochastic process {X(t), t ε T} and a discrete set of points t1 <
t2 < . . . < tn ε T . Suppose the distribution properties of the process from ti
onwards is the same for all i = 1, 2, . . . , n. Then we can consider the process
regenerating itself at these points.

Renewal Process

Consider a discrete set of points (t0, t1, t2, . . .) at which a specified event occurs
and let ti − ti−1 = Zi (i = 1, 2, . . .), be independent and identically distributed
(i.i.d) random variables. The process of the sequence of random variables
(Z1, Z2, . . .) is known as a renewal process. Let N(t) be the process representing
the number of events occurring in (0, t]. It is known as the renewal counting
process. The periods Zi (i = 1, 2, . . .) are renewal periods. Since the renewal
periods are i.i.d., it is clearly seen that the renewal process is also a regenerative
process.

3.3 Markov Process

Some of the simple models widely used in queueing theory are based on Markov
processes. Suppose, a stochastic process {X(t), tεT} is such, that

P [X(t) ≤ x|X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn]

= P [X(t) ≤ x|X(tn) = xn] (t1 < t2 . . . < tn < t)

= F (xn, x; tn, t). (3.3.1)

Then {X(t)} is a Markov process. When T and the state space are discrete the
parallel definition is given as

P (Xn = j|Xn1
= i1, Xn2

= i2, . . . , Xnk
= ik) = P (Xn = j|Xnk

= ik)

= P
(nk,n)
ik,j

. (3.3.2)
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Now the process {Xn, n = 1, 2, . . .} is called the Markov chain.
The dependence structure exhibited here is a one-step dependence, in which

the state of the process is dependent only on the last parameter point at which
full information of the process is available. As can be seen in the following chap-
ters, the property of Markov dependence simplifies the analysis while retaining
essential characteristics of the systems.

Since the time parameter in a Markov process has a specific range, we use
transition distributions or probabilities of the process in its analysis. These are
conditional statements, conditioned on the process value at the initial point t.
An unconditional distribution or the probability (in the discrete case) can be
obtained by the usual method of removing the condition.

For the transition probabilities of Markov processes, we use the following
notations depending on the nature of state and parameter spaces.

(i) Discrete state, discrete parameter (Markov chain):

Pm,n
ij = P (Xn = j|Xm = i), m < n, (3.3.3)

(ii) Discrete state, continuous parameter (also called continuous time Markov
chain (CTMC)):

Pij(s, t) = P [X(t) = j|X(s) = i], s < t, (3.3.4)

(iii) Continuous state, discrete parameter:

F (xm, x;m,n) = P (Xn ≤ x|Xm = xm), m < n, (3.3.5)

(iv) Continuous state, continuous parameter:

F (xn, x; tn, t) = P [X(t) ≤ x|X(tn) = xn], tn < t. (3.3.6)

The fundamental property of the Markov process is given by the Chapman–
Kolmogorov relation. Corresponding to the above four cases, it can be given as
follows:

(i)

P
(m,n)
ij =

∑
kεS

P
(m,r)
ik P

(r,n)
kj m < r < n. (3.3.7)

(ii)

Pij(s, t) =
∑
kεS

Pik(s, u)Pkj(u, t) s < u < t. (3.3.8)

(iii)

F (xm, x;m,n) =

∫
yεS

dyF (xm, y;m, r)F (y, x; r, n) m < r < n. (3.3.9)
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(iv)

F (xs, x; s, t) =

∫
yεS

dyF (xs, y; s, u)F (y, x;u, t) s < u < t. (3.3.10)

These equations can be easily established by considering the transitions of the
process in two time periods (m, r) and (r, n) when the time parameter is discrete
and (s, u) and (u, t) when the time parameter is continuous, and using the
basic definition of the Markov process. For instance, when both the state and
parameter spaces are discrete, the probability of the transition from the initial

state i to a state k (kεS) in time period (m, r) is P
(m,r)
ik and from state k to state

j in time period (r, n) is P
(r,n)
kj . Equation (3.3.7) now follows by multiplying

these two probabilities and summing over all values of kεS. Similar arguments
establish (3.3.8)–(3.3.10).

The stochastic processes underlying queueing systems considered in this
book primarily belong to two classes: discrete state and parameter spaces (case
(i) above) and discrete state space and continuous parameter space (case (ii)
above). We provide the conceptual framework for the method by which equa-
tions (3.3.7) and (3.3.8) can be used in their analysis here and in Appendix B.

Case (i): Discrete State and Parameter Space

Let {Xn, n = 0, 1, 2 . . .} be a time homogeneous Markov chain. By time homo-

geneous we mean that the transition probabilities P
(m,n)
ij and P

(m+k,n+k)
ij for

k > 0 are the same. Without loss of generality we use m = 0 and write

P
(n)
ij = P (Xn = j|X0 = i). (3.3.11)

For convenience write P
(1)
ij = Pij as the one-step transition probability. In

matrix notation, we have

P(n) =

⎡
⎢⎢⎢⎢⎣

P
(n)
00 P

(n)
01 P

(n)
02 . . .

P
(n)
10 P

(n)
11 P

(n)
12 . . .

P
(n)
20 P

(n)
21 P

(n)
22) . . .

...
...

...

⎤
⎥⎥⎥⎥⎦ . (3.3.12)

When n = 1, the matrix P ≡ P(1) is known as the transition probability
matrix.

Note that 0 ≤ P
(n)
ij ≤ 1 and the row sums of P(n) (i.e.,

∑
jεS P

(n)
ij ) are equal

to 1 for all values of n. With these notational simplifications, (3.3.7) can be
written as

P
(n)
ij =

∑
kεS

P
(r)
ik P

(n−r)
kj 0 < r < n,

or
P(n) = P(r)P(n−r).
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By iterating on the value of r = 1, 2, . . . , n, it follows that

P(n) = Pn, (3.3.13)

showing that the n-step transition probabilities are given by the elements of the
nth power of the one-step transition probability matrix.

Case (ii): Discrete State Space and Continuous Parameter
Space

As in Case (i) consider time-homogeneous Markov process in which transition
probabilities Pij(s, t) and Pij(s+ u, t+ u) for u > 0 are the same. Without loss
of generality, use s = 0 and write

Pij(t) = P [X(t) = j|X(0) = i]. (3.3.14)

In matrix notation the probabilities of transition among states i, jεS can be
given as elements of the matrix

P(t) = ||Pij(t)||.

Because of the continuous nature of the time parameter, we cannot get a result
similar to (3.3.13) in this case. Also instead of the product representation, here
we use differential equations from which Pij(t) can be determined. To start
with note the following properties that are either obvious or assumed.

(i) Pij(t) ≥ 0

(ii)
∑

jεS Pij(t) = 1

(iii) Pij(s+ t) =
∑

kεS Pik(s)Pkj(t)

(iv) Pij(t) is continuous

(v) limt→0 Pij(t) = 1 if i = j, and = 0, otherwise

Note that properties (i) and (ii) are obvious from the transition structure
and (iii) is a restatement of Chapman–Kolmogorov relation. The properties (iv)
and (v) are necessary (hence assumed) for deriving the differential equations.

Using Taylor series expansion, and Δt as an infinitesimal increment in t, we
may write

Pij(t, t+Δt) = Pij(t) + ΔtP ′
ij(t) +

Δt2

2
P ′′
ij(t) + . . . .

Setting t = 0

Pij(Δt) = Pij(0) + ΔtP ′
ij(0) +

Δt2

2
P ′′
ij(0) + . . . .
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Rewriting these equations and taking limits as Δt → 0, we get

lim
Δt→0

Pij(Δt)

Δt
= P ′

ij(0) = λij i �= j (3.3.15)

lim
Δt→0

Pii(Δt)− 1

Δt
= P ′

ii(0) = −λii, (3.3.16)

where λij are such that ∑
j �=i

λij = λii. (3.3.17)

Noting that λij are infinitesimal transition rates, it is easy to see, that (3.3.17)
is the direct consequence of the property

∑
jεS Pij(t) = 1. These transition

rates are also known as generators, displayed in a matrix as

A =

⎡
⎢⎢⎢⎣

−λ00 λ01 λ02 . . .
λ10 −λ11 λ12 . . .
λ20 λ21 −λ22 . . .
...

...
...

⎤
⎥⎥⎥⎦ . (3.3.18)

In continuous time Markov processes with discrete states the generator matrix
A plays the same role in its analysis as that of the transition probability matrix
P (matrix (3.3.12) with n = 1) in the analysis of a Markov chain.

The Poisson process discussed in Chapter 2 and Appendix A is a Markov
process with a simple transition structure. Let {X(t), tεT} be a Poisson process
with parameter λ, such that

Pn(t) = P [X(t) = n] = e−λt (λt)
n

n!
n = 0, 1, 2 . . . . (3.3.19)

(See (B.2.2), Appendix B.)
Using arguments similar to those used in deriving (3.3.15)–(3.3.17), we can

show that the infinitesimal transition rates λij = λ for j = i, i + 1 and = 0,
otherwise.

When the Poisson process and the associated exponential distribution are
used to model queueing systems, their underlying processes such as the number
of customers in the system are Markov, and hence require analysis techniques
appropriate for Markov processes.

The differential equations used in the analysis of Markov processes are based
on Chapman–Kolmogorov relations as applied to infinitesimal transitions to the
process in the time interval (t, t+Δt). These are given as

P ′
ij(t) = −λjjPjj(t) +

∑
k �=j

λkjPik(t). (3.3.20)

This equation is known as the Forward Kolmogorov equation and its derivation
is provided in Appendix B.
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In matrix notation, we can write the equations as

P ′(t) = P (t)A. (3.3.21)

Thus, the analysis of the behavior of a queueing system which can be modeled as
a Markov process involves two key steps: the determination of the appropriate
values of λij and the solution of the resulting equation (3.3.20). The first part
of this procedure is accomplished from the nature of transitions in the Markov
process and the resulting differential equations are solved using standard math-
ematical/computational techniques. In many applications a finite time solution
may not be needed. Then a limiting solution, when t → ∞, is obtained to deter-
mine the limiting behavior of the system. These procedures will be introduced
as and when they are needed.

3.4 Renewal Process

Consider a discrete set of points (t0, t1, t2, . . .) at which a specific event occurs.
Let ti − ti−1 = Zi (i = 1, 2, . . .) be i.i.d. random variables with distribution

P (Zi ≤ x) = F (x). (3.4.1)

The process consisting of the sequence of random variables (Z1, Z2, . . .) is known
as a renewal process. Let N(t) be the number of events occurring in (0, t]. It
is known as a renewal counting process. The periods Zi are known as renewal
periods. At t = 0, if the renewal process is already in progress, t0 may not be an
epoch of occurrence of the renewal event. To accommodate such situations, we
may define the random variable Z1 = t1 − t0 with a distribution different from
F (x), say F1(x). Such a renewal process is known as a delayed renewal process.
For our discussion we restrict ourselves to the ordinary renewal process, in which
F1(x) = F (x); this means we assume that t0 = 0 is an epoch of occurrence of
the renewal event.

In the context of queueing systems, under normal conditions, the arrival
process can be considered a renewal process; i.e., the inter-arrival times form a
sequence of i.i.d. random variables. The service process can be a renewal process
only if there are enough customers in the system to keep the server continuously
busy and the queue discipline requires the server to provide a complete service
to a customer once that customer’s service starts. In a G/G/ 1 queue regardless
of the distribution forms for G’s and with a queue discipline in which the server
is never idle as long as there are customers in the system, the time points at
which consecutive busy periods start are renewal epochs. The renewal period
in this case is made up of the combination of a busy period and an idle period,
commonly known as a busy cycle. Thus, when we use renewal process models
to analyze a queueing system, we start with a busy cycle and its distribution.
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Let Sn = Z1+Z2+...+Zn. Using F (x), the distribution of Sn can be obtained
as the n-fold convolution of F (x) with itself, which we denote as Fn(x). Define

φ(θ) =

∫ ∞

0

e−θxdF (x) Re(θ) > 0 (3.4.2)

as the Laplace–Stieltjes transform of F (x). We then have

∫ ∞

0

e−θxdFn(x) = [φ(θ)]
n
. (3.4.3)

The distribution of the renewal counting process N(t) for a specific value of t
can be derived as follows. Let

Pn(t) = P [N(t) = n] . (3.4.4)

Consider two events

{N(t) ≥ n} and {Sn ≤ t}.

These are equivalent events. By equating their probabilities, we get

P [N(t) ≥ n] = P [Sn ≤ t]

= Fn(t).

Thus, we get

Pn(t) = Fn(t)− Fn+1(t). (3.4.5)

The mean value function E[N(t)] is called the renewal function, denoted by
U(t), and its derivative, when it exists, is called the renewal density, denoted
by u(t). From (3.4.5) it is easy to show

U(t) = E[N(t)] =

∞∑
n=1

nPn(t)

=

∞∑
n=1

Fn(t), (3.4.6)

and

u(t) =
∞∑

n=1

fn(t),

where we have written f(t) to denote the density function corresponding to
the distribution function F (t). The term “renewal density” can be intuitively
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justified as follows:

u(t) = lim
Δt→0

P (renewal event occurs in (t, t+Δt])

Δt

=

∞∑
r=1

lim
Δt→0

P (rth renewal occurs in (t, t+Δ])

Δt

=
∞∑
r=1

lim
Δt→0

fr(t)Δt+ o(Δt)

Δt

=
∞∑
r=1

fr(t) = U ′(t), (3.4.7)

where we have assumed that F (x) is absolutely continuous and denoted F ′
r(t) =

fr(t). Let

U∗(θ) =

∫ ∞

0

e−θtU(t)dt Re(θ) > 0

u∗(θ) =

∫ ∞

0

e−θtu(t)dt Re(θ) > 0.

Using the relationship between the transforms of the distribution and the density
functions, we have

u∗(θ) = θU∗(θ). (3.4.8)

Referring back to (3.4.2) and (3.4.3), and using (3.4.8) we get

U∗(θ) =
1

θ

∞∑
n=1

[φ(θ)]n (3.4.9)

u∗(θ) =

∞∑
n=1

[φ(θ)]n. (3.4.10)

From (3.4.9) and (3.4.10), we get

U∗(θ) =
φ(θ)

θ[1− φ(θ)]
(3.4.11)

u∗(θ) =
φ(θ)

1− φ(θ)
. (3.4.12)

Rearranging terms in (3.4.11), we get

U∗(θ) =
φ(θ)

θ
+ U∗(θ)φ(θ),

which on inversion gives

U(t) = F (t) +

∫ t

0

U(t− τ)dF (τ). (3.4.13)
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Similarly from (3.4.12) we can get

u(t) = f(t) +

∫ t

0

u(t− τ)f(τ)dτ. (3.4.14)

The integral equation (3.4.13) is known as the renewal equation, which in its
general form can be given as

Z(t) = h(t) +

∫ t

0

Z(t− τ)dF (τ), (3.4.15)

where h(t) is directly Riemann integrable and F (t) is a distribution function.
This equation can be solved to give

Z(t) = h(t) +

∫ t

0

h(t− τ)dU(τ). (3.4.16)

The significance of (3.4.16) in modeling queueing systems can be described
as follows.

In a stochastic process made up of renewal periods, the distribution of the
state of the process at time t can be determined by convolving the renewal
density of the process at time τ when the last renewal occurs before t (i.e.,
dU(τ)) with the transition probability distribution between t − τ and t (i.e.,
h(t − τ)). Note that the first term (i.e., h(t)) takes care of the possibility
that no renewal has occurred during (0, t]. As described earlier, busy cycles are
renewal periods for a queueing process. When t → ∞, much simpler expressions
follow, thanks to important limiting results.

1.

U(t+Δ)− U(t) → Δ

R
as t → ∞ (3.4.17)

u(t) → 1

R
as t → ∞, (3.4.18)

where R is the mean of the renewal period.

2. Let h(t) be a nonnegative Riemann integrable function of t > 0, such that

∫ ∞

0

h(t)dt < ∞.

Then ∫ t

0

h(t− τ)dU(τ) → 1

R

∫ ∞

0

h(t)dt as t → ∞. (3.4.19)

This result is known as the key renewal theorem.
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For further details of the properties of renewal processes the readers are referred
to Bhat and Miller (2002). Proofs for the solution of the renewal equation and
the limiting behavior of the process (key renewal theorem) can be found in
advanced textbooks in stochastic processes such as Karlin and Taylor (1975).

The results (3.4.18) and (3.4.19) can be easily understood if we note that
U(t) is the expected number of renewals in (0, t]. The implication of (3.4.18) is
that, when t → ∞, i.e., when the process is in operation for a long time, the
expected number of renewals in a period of length Δ is obtained by dividing Δ
by the expected length of a renewal period. Since

lim
Δ→0

U(t+Δ)− U(t)

Δ
= u(t)

the result (3.4.18) follows directly from (3.4.17) and gives the rate of occurrence
of the renewal. The result (3.4.19) also follows directly by taking limits (t → ∞)
in (3.4.16). Since h(t) is Riemann integrable it tends to 0 as t → ∞ and the
contribution of dU(t) in the integral in (3.4.16) is 1/R, which is the rate of
occurrence of the renewal. Thus, we get

lim
t→∞

Z(t) =
1

R

∫ ∞

0

h(t)dt. (3.4.20)

When we observe a renewal process at an arbitrary time point t, it is unlikely
that t will be a renewal epoch. Then, the time period since the last renewal
epoch until t is known as the backward recurrence time (or current life in the
terminology of reliability theory), and the time period until the next renewal
epoch from t is known as the forward recurrence time (or excess life or residual
life). Let S(t) and R(t) denote these random variables and st(x) and rt(x) be
their probability density functions, respectively. Using renewal arguments, we
can write

st(x) = u(t− x)[1− F (x)] 0 < x < t (3.4.21)

and

rt(x) = f1(t+ x) +

∫ t

τ=0

u(τ)f(t− τ + x)dτ, (3.4.22)

where f1(x) is the density function of the initial renewal period. As t → ∞
(3.4.21) and (3.4.22) yield

lim
t→∞

st(x) =
1− F (x)

R
(3.4.23)

lim
t→∞

rt(x) =
1− F (x)

R
. (3.4.24)

Taking expected values, we get

∫ ∞

0

x

[
1− F (x)

R

]
dx =

E[Z2]

2R
, (3.4.25)
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where we have written Z as the random variable denoting the length of the
renewal period.

When the renewal period has an exponential distribution with mean 1/λ,
E(Z2) = 2/λ2. As t → ∞, this leads to the result, E[current life] = E[excess
life] = 1/λ.



Chapter 4

Simple Markovian
Queueing Systems

Poisson arrivals and exponential service make queueing models Markovian that
are easy to analyze and get useable results. Historically, these are also the
models used in the early stages of queueing theory to help decision-making in
telephone industry. The underlying Markov process representing the number
of customers in such systems is known as a birth and death process, which is
widely used in population models. The birth–death terminology is used to
represent increase and decrease in the population size. The corresponding events
in queueing systems are arrivals and departures. In this chapter we present some
of the important models belonging to this class.

4.1 A General Birth and Death Queueing Model

Keeping the birth (arrival)–death (departure) terminology, when population size
is n, let λn and μn be the infinitesimal transition rates (generators) of birth and
death respectively. When the population is the number of customers, λn and μn

indicate that the arrival and service rates depend on the number in the system.
Generalizing the properties of the Poisson process (see Appendix B.2), we can
make the following probability statements for a transition during (t, t+Δt].

Birth (n ≥ 0):

P (one birth) = λnΔt+ o(Δt)

P (no birth) = 1− λnΔt+ o(Δt)

P (more than one birth) = o(Δt).
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Death (n > 0):

P (one death) = μnΔt+ o(Δt)

P (no death) = 1− μnΔt+ o(Δt)

P (more than one death) = o(Δt)

where o(Δt) is such that o(Δt)
Δt → 0 as Δt → 0. Note that in these statements

o(Δt) terms do not specify actual values. In each of the two cases o(Δt) terms
sum to 0 so that the total probability of the three events is equal to 1.

Let Q(t) be the number of customers in the system at time t. Define

Pin(t) = P [Q(t) = n|Q(0) = i].

Incorporating the probabilities for transitions during (t, t+Δt], as stated above,
we get

Pn,n+1(Δt) = λnΔt+ o(Δt) n = 0, 1, 2, . . .

Pn,n−1(Δt) = μnΔt+ o(Δt) n = 1, 2, 3 . . .

Pnn(Δt) = 1− λnΔt− μnΔt+ o(Δt) n = 1, 2, 3 . . .

Pnj(Δt) = o(Δt), j �= n− 1, n, n+ 1. (4.1.1)

In deriving terms on the right-hand side of these equations, we have made use
of simplifications of the type

[λnΔt+ o(Δt)][1− μnΔt+ o(Δt)] = λnΔt+ o(Δt)

[1− λnΔt+ o(Δt)][1− μnΔt+ o(Δt)] = 1− λnΔt− μnΔt+ o(Δt).

The infinitesimal transition rates of (4.1.1) lead to the following generator matrix
for the birth and death process model of the queueing system.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0

μ1 −(λ1 + μ1) λ1

μ2 −(λ2 + μ2) λ2

·
·

·

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.1.2)

The generator matrix A of (4.1.2) results in the following forward Kol-
mogorov equations for Pin(t) (See (3.3.20) and (B.1.2)). (For ease of notation,
from here onwards, we write Pin(t) ≡ Pn(t) and insert the initial state i only
when needed.)

P ′
0(t) = −λ0P0(t) + μ1P1(t)

P ′
n(t) = −(λn + μn)Pn(t) + λn−1Pn−1(t)

+μn+1Pn+1(t) n = 1, 2, . . . (4.1.3)
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As a point of digression, note that (4.1.3) can also be derived directly using
(4.1.1) without going through the generator matrix as illustrated below.

Considering the transitions of the process Q(t) during (t, t+Δt], we have

P0(t+Δt) = P0(t)[1− λ0Δt+ o(Δt)] + P1(t)[μ1Δt+ o(Δt)]

Pn(t+Δt) = Pn(t)[1− λnΔt− μnΔt+ o(Δt)]

+Pn−1(t)[λn−1Δt+ o(Δt)]

+Pn+1(t)[μn+1Δt+ o(Δt)]

+o(Δt) n = 1, 2, . . . . (4.1.4)

Subtracting Pn(t) (n = 0, 1, 2 . . .) from both sides of the appropriate equation
in (4.1.4) and dividing by Δt, we get

P0(t+Δt)− P0(t)

Δt
= −λ0P0(t) + μ1P1(t) +

o(Δt)

Δt
Pn(t+Δt)− Pn(t)

Δt
= −(λn + μn)Pn(t)

+λn−1Pn−1(t) + μn+1Pn+1(t)

+
o(Δt)

Δt
.

Now (4.1.3) follows by letting Δt → 0.

To determine Pn(t) [≡ Pin(t)], (4.1.3) should be solved along with the initial
conditions Pi(0) = 1, Pn(0) = 0 for n �= i. (See Stewart (1994) for the numerical
solution of special cases of (4.1.3).) Unfortunately, even in simple cases such as
λn = λ and μn = μ, n = 0, 1, 2, 3 . . ., that is when the arrivals are Poisson and
service times are exponential (M/M/1 queue), deriving Pn(t) explicitly is an
arduous process. Furthermore, in most of the applications the need for knowing
the time dependent behavior is not all that critical. The most widely used result,
therefore, is the limiting result, determined from (4.1.3) by letting t → ∞.

A general result on Markov processes is given below.

Theorem 4.1.1 1) If the Markov process is irreducible (all states communi-
cate), then the limiting distribution limt→∞Pn(t) = pn exists and is independent
of the initial conditions of the process. The limits {pn, nεS} are such that they
either vanish identically (i.e., pn = 0 for all nεS) or are all positive and form
a probability distribution (i.e., pn > 0 for all nεS,

∑
nεS pn = 1).

(2) The limiting distribution {pn, nεS} of an irreducible recurrent Markov
process is given by the unique solution of the equation pA = 0 and

∑
jεS pj = 1,

where p = (p0, p1, p2, . . .).

The results presented in the theorem essentially confirm what one can think
of as a state of equilibrium in a stochastic process and how that affects the
Kolmogorov equations (3.3.20) in a Markov process. In a state of equilibrium,
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also known as steady state, the behavior of the process is independent of the
time parameter and the initial state; i.e.,

lim
t→∞

Pin(t) = pn n = 0, 1, 2 . . .

and therefore
P ′
n(t) → 0 as t → ∞.

Using these results in (4.1.3), we get

0 = −λ0p0 + μ1p1

0 = −(λn + μn)pn + λn−1pn−1 + μn+1pn+1 n = 1, 2, . . . . (4.1.5)

These equations can be easily solved through recursion. Rearranging the first
equation in (4.1.5), we have

p1 =
λ0

μ1
p0. (4.1.6)

For n = 1, the second equation gives

(λ1 + μ1)p1 = λ0p0 + μ2p2.

Using (4.1.6), this equation reduces to

μ2p2 = λ1p1

p2 =
λ1λ0

μ2μ1
p0.

Continuing this recursion for n = 2, 3, . . . we get

μnpn = λn−1pn−1 (4.1.7)

and therefore,

pn =
λ0λ1 . . . λn−1

μ1μ2 . . . μn
p0. (4.1.8)

Theorem 4.1.1 also gives the normalizing condition
∑

nεS pn = 1, which when
applied to (4.1.8), gives

p0 =

[
1 +

∞∑
n=1

λ0λ1 . . . λn−1

μ1μ2 . . . μn

]−1

. (4.1.9)

The limiting distribution of the state of the birth and death queueing model
is {pn, n = 0, 1, 2, . . .} as given by (4.1.8) and (4.1.9). It should be noted that
{pn, n = 0, 1, 2, . . .} are nonzero only when

1 +

∞∑
n=1

λ0λ1 . . . λn−1

μ1μ2 . . . μn
< ∞. (4.1.10)
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0
λ 0

1μ1

λ 1

2μ 2

λ 2

3 . . .μ3

Figure 4.1 Transition diagram

In order to derive (4.1.5) deriving (4.1.3) first is not necessary. As noted in
Theorem 4.1.1, with p = (p0, p1, p2, . . .) and the generator matrix A, (4.1.5)
can be obtained directly from

pA = 0 (4.1.11)

and ∞∑
n=1

pn = 1.

For the birth and death queueing model the generator matrix A is given by
(4.1.2).

Another way of looking at (4.1.5) is to consider them as representing a
condition of balance among the states. Rearranging (4.1.5)

λ0p0 = μ1p1

(λn + μn)pn = λn−1pn−1 + μn+1pn+1. (4.1.12)

The transitions among the states can be pictorially represented as in Figure 4.1.
Noting that the λ’s and μ’s represent infinitesimal transition rates in and out of
the states, the equations in (4.1.12) can be interpreted as (long term probability
of being in state n) × (transition rates out of state n) =

∑
i=n−1,n+1 (long term

probability of being in state i) × (transition rate from state i to state n).
Such state balance equations can be easily written down using the transition

diagram shown in Figure 4.1.
Given above are three ways of writing down the state balance equations:

(1) Taking the appropriate limits as t → ∞ in the forward Kolmogorov equa-
tions

(2) Using the equation pA = 0

(3) With the help of the transition diagram

In applications the readers may use any method with which they are com-
fortable. But when using the last method, care should be taken to ensure that
all transitions have been accounted for. In our discussion of special models,
we normally use the second method based on the generator matrix unless the
transition diagram throws more light on the behavior of the system.

There are two other theorems which establish some important properties of
the limiting distribution of a Markov process with an irreducible state space.
The first of them addresses the concept of stationarity.
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Theorem 4.1.2 The limiting distribution of a positive recurrent irreducible
Markov process is also stationary.

A process is said to be stationary if the state distribution is independent of
time, i.e, if

Pn(0) = pn n = 0, 1, 2, . . .

then
Pn(t) = pn for all t.

Since we deal with transition distributions conditional on the initial state in
stochastic processes, the stationarity means that if we use the stationary distri-
bution as the initial state distribution, from then on all time-dependent distri-
butions will be the same as the one we started with.

The second theorem enables us to interpret the limiting probability pn, n =
0, 1, 2, . . . as the fraction of time the process occupies state n in the long run.

Theorem 4.1.3 Having started from state i, let Nij(t) be the time spent by the
Markov process in state j during (0, t]. Then

lim
t→∞

[∣∣∣∣Nij(t)

t
− pj

∣∣∣∣ > ε

]
= 0.

The general birth and death queueing model encompasses a wide array of
special cases. Some of the widely used models are discussed in the following
sections.

4.2 The Queue M/M/1

The M/M/1 queue is the simplest of the queueing models used in practice. The
arrivals are assumed to occur in a Poisson process with rate λ. This means that
the number of customers N(t) arriving during a time interval (0, t] has a Poisson
distribution

P [N(t) = j] = e−λt (λt)

j!
j = 0, 1, 2 . . . .

It also means that the inter-arrival times have an exponential distribution with
probability density

a(x) = λe−λx x > 0.

We assume that the service times have an exponential distribution with proba-
bility density

b(x) = μe−μx x > 0.

With these assumptions we have

E[interarrival time] =
1

λ
=

1

arrival rate

E[serivce time] =
1

μ
=

1

service rate
.
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The ratio of arrival rate to service rate plays a significant role in measuring the
performance of queueing systems. Let

ρ = Traffic intensity =
Arrival rate

Service rate
.

In an M/M/1 queue, ρ = λ/μ.
Clearly M/M/1 is a special case of the general birth and death model with

λn = λ and μn = μ for n = 0, 1, 2, . . . . The generator matrix is given by (state
space: 0,1,2,...)

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ λ
μ −(λ+ μ) λ

μ −(λ+ μ) λ
·

·
·

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.2.1)

The corresponding forward Kolmogorov equations for Pn(t) (n = 0, 1, 2, . . .) are

P ′
0(t) = −λP0(t) + μP1(t)

P ′
n(t) = −(λ+ μ)Pn(t) + λPn−1(t)

+μPn+1(t) n = 1, 2, . . . (4.2.2)

with Pn(0) = 1 when n = i and = 0 otherwise. For a complete solution of these
difference–differential equations, the use of generating functions (to transform
the difference equation) and Laplace transforms (to transform the differential
equation) is needed. Since the resulting solution is the Laplace transform of a
generating function, Pn(t) can be obtained using inversion formulas. Because of
the complexity of the procedure and the final result, we do not provide it in this
text. Interested readers may refer to Gross et al. (2008, pp. 98–101), where the
results have been derived in detail. Computational methods may also be used
to solve the differential equations (4.2.2) (see Stewart 1994).

Limiting Distribution

For the limiting probabilities limt→∞Pn(t) = pn, we have the state balance
equations (see (4.1.12))

λp0 = μp1

(λ+ μ)pn = λpn−1 + μpn+1 n = 1, 2, 3 . . . . (4.2.3)

Solving these equations along with
∑∞

0 pn = 1 (or specializing (4.1.8) and
(4.1.9)), we get

pn = (1− ρ)ρn n = 0, 1, 2, . . . . (4.2.4)

where ρ = λ/μ < 1.
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The probability that the server is busy is a performance measure for the
system. Clearly, this utilization factor = 1 − p0 = ρ = traffic intensity in this
case. Recall that we have defined Q(t) as the number of customers in the system.
Write Q(∞) = Q and let Qq be the number in the queue, excluding the one
in service. Now we may define two mean values, L = E(Q) and Lq = E(Qq).
From distribution (4.2.4) we get

L =

∞∑
n=1

n(1− ρ)ρn =
ρ

1− ρ

which can also be written as

=
λ

μ− λ
. (4.2.5)

For Lq, we get

Lq =
∞∑

n=1

(n− 1)pn

=

∞∑
n=1

npn −
∞∑

n=1

pn

= L− ρ =
ρ2

1− ρ

=
λ2

μ(μ− λ)
. (4.2.6)

The utilization factor ρ is the probability that the server is busy when the
system is in equilibrium and therefore, it gives the expected number in service.
With this interpretation, we can provide the obvious explanation for (4.2.6) as
E (number in system) = E (number waiting) + E (number in service).

From (4.2.4) we obtain the variance of the number of customers in the system
as

V (Q) =
ρ

(1− ρ)2

=
λμ

(μ− λ)2
. (4.2.7)

Customer Waiting Time

From a customer viewpoint, the time spent in the queue and in the system are
two characteristics of importance. When the system is in equilibrium, let Tq

and T be the amount of time a customer spends in queue and in the system,
respectively. We assume that the system operates according to a “first-come,
first-served” (FCFS) queue discipline. We note here that as long as the server
remains busy when there are customers in the system, and once a service starts
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it is given to its completion, the number in the system is not dependent on the
order in which the customers are served. However, for waiting time the order
of service is a critical factor.

With an FCFS queue discipline, the waiting time for service (Tq) of an
arriving customer is the amount of time required to serve the customers already
in the system. The total time in system (T ) is Tq + service time. When there are
n customers in the system, since service times are exponential with parameter
μ, the total service time of n customers is Erlang with probability density

fn(x) = e−μx μ
nxn−1

(n− 1)!
(4.2.8)

Let Fq(t) = P (Tq ≤ t), the distribution function of the waiting time Tq. Clearly

Fq(0) = P (Tq = 0) = P (Q = 0) = 1− ρ. (4.2.9)

Note that, because of the memoryless property of the exponential distribution,
the remaining service time of the customer in service is also exponential with
the same parameter μ. Writing dFq(t) = P (t < Tq ≤ t+ dt), for t > 0, we have

dFq(t) =
∞∑

n=1

pne
−μt μ

ntn−1

(n− 1)!
dt

= (1− ρ)
∞∑

n=1

ρne−μt μ
ntn−1

(n− 1)!
dt

which on simplification gives

= λ(1− ρ)e−μ(1−ρ)tdt. (4.2.10)

Because of the discontinuity at 0 in the distribution of Tq, we get

Fq(t) = P (Tq = 0) +

∫ t

0

dFq(t)

= 1− ρe−μ(1−ρ)t (4.2.11)

where we have combined results from (4.2.9) and (4.2.10).

Let E(Tq) = Wq and E(T ) = W . From (4.2.11) we can easily derive

Wq = E(Tq) =
ρ

μ(1− ρ)
=

λ

μ(μ− λ)
(4.2.12)

and

V (Tq) =
ρ(2− ρ)

μ2(1− ρ)2
. (4.2.13)
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Recalling that the total time in the system T , is the sum of Tq and service time,
we get

W = E[T ] =
λ

μ(μ− λ)
+

1

μ

=
1

μ− λ
. (4.2.14)

Comparing the result (4.2.14) with (4.2.5), we note the relationship

L = λW. (4.2.15)

A similar comparison between results (4.2.6) and (4.2.12) establishes

Lq = λWq. (4.2.16)

The result (4.2.15) is known as Little’s law in queueing literature. A large
number of articles have been published on this result and it has been shown that
it is a general property of queueing systems subject to only some restrictions on
the system structure. It is discussed further in the context of queue G/G/1 in
Chapter 9.

Busy Period

Busy period is defined as the period of time during which the server is contin-
uously busy. When it ends, an idle period follows. Together they form a busy
cycle. Since the idle period ends with an arrival, it is simply the remaining
inter-arrival time after the last customer in the busy period leaves after service.
With an exponential inter-arrival time, because of the memoryless property, the
idle period also has the same exponential distribution.

There are several methods by which the distribution of the busy period in
M/M/1 can be derived. None of them is simple. Here we give the outline of
the method using forward Kolmogorov equations. Looking at the underlying
Markov process, busy period is the duration of time, the process starting from
state 1, stays continuously away from state 0. (Since the busy period starts
with an arrival, it is the amount of time the process takes to get back to state
0.) Considering the transitions of the Markov process, transitions within a busy
period can be brought about by converting state 0 into an absorbing state and
all other states into an irreducible transient class. Then the generator matrix
(4.2.7) takes the modified form

A =

⎡
⎢⎢⎢⎣

0 0
μ −(λ+ μ) λ

μ −(λ+ μ) λ
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ . (4.2.17)
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The corresponding forward Kolmogorov equations for Pn(t) (n = 0, 1, 2, . . .) are

P ′
0(t) = μP1(t)

P ′
1(t) = −(λ+ μ)P1(t) + μP2(t)

P ′
n(t) = −(λ+ μ)Pn(t) + λPn−1(t) + μPn+1(t)

n = 2, 3, . . . . (4.2.18)

With the initial condition P1(0) = 1, Pn(0) = 0 for n �= 1. Solving these
difference–differential equations require the use of probability generating func-
tions and Laplace transforms.

Let π0(θ) be the Laplace transform of the busy period defined as

π0(θ) =

∫ ∞

0

e−θtP ′
0(t)dt R(θ) > 0.

After appropriate transform operations on (4.2.18) we get

π0(θ) =
1

2λ

[
θ + λ+ μ−

√
(θ + λ+ μ)2 − 4λμ

]
. (4.2.19)

This can be inverted to give the explicit form

P ′
0(t) = e−(λ+μ)t

√
μ/λ

t
I1(2

√
λμt) (4.2.20)

where Ij(x) is the modified Bessel function defined as

Ij(x) =
∞∑

n=0

(x/2)2n+j

n!(n+ j)!
.

Using combinatorial arguments, an alternative form for (4.2.20) can be given as

P ′
0(t) = e−(λ+μ)t

∞∑
n=1

λn−1μnt2n−2

n!(n− 1)!
(4.2.21)

(See Prabhu 1960)
Suppose f(x) is the probability density of a random variable X and, φ(θ)

its Laplace transform. (See Appendix C.2)

φ(θ) =

∫ ∞

0

e−θxf(x)dx R(θ) > 0.

Two easily established properties of φ(θ) are:

E(X) = −φ′(0) (4.2.22)

E(X2) = φ′′(0). (4.2.23)
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Let B represent the length of the busy period. Using (4.2.22) and (4.2.23) on
the transform of B given by (4.2.19), we get

E[B] =
1

μ− λ
(4.2.24)

V [B] =
1 + ρ

μ2(1− ρ)3
. (4.2.25)

There may be occasions when a busy period starts out with an initial number
of i customers in the system. Because of the Markovian property of the arrival
process, we can show that the transition of the underlying Markov process from
i to 0 can be considered to have made up of i intervals with the same distribution
representing the transitions from i → i − 1, i − 1 → i − 2, . . . , 1 → 0. These i
independent busy periods start with 1 customer in the system. Then if Bi is
the random variable representing a busy period initiated by i customers, we get

E[Bi] =
i

μ− λ
(4.2.26)

V [Bi] =
i(1 + ρ)

μ2(1− ρ)3
. (4.2.27)

The explicit expression of the distribution of Bi can be given as

P ′
0(t) = e−λ+μ)t i

√
μ/λ

t
Ii(2
√

λμt). (4.2.28)

It is easy to visualize the effect of the increase in traffic intensity ρ in the
range (0,1) on the length of the busy period. As ρ increases the length of the
busy period should increase. This can be shown with the help of the Laplace
transform (4.2.19). Consider

lim
θ→0

π0(θ) = lim
θ→0

(θ + λ+ μ)− [(θ + λ+ μ)2 − 4λμ]1/2

2λ

=
1

2λ

[
λ+ μ−

√
(λ− μ)2

]

=

{
1
2λ [λ+ μ− (μ− λ] if μ ≥ λ
1
2λ [λ+ μ− (λ− μ)] if μ < λ

=

{
1 if μ > λ
μ
λ if μ < λ.

(4.2.29)

But limθ→0 π0(θ) =
∫∞
0

P ′
0(t)dt where P ′

0(t) is the probability density of the
busy period distribution. The conclusion we can draw from (4.2.29) is, therefore,
that the busy period has a proper distribution when ρ ≤ 1 and an improper
distribution when ρ > 1. In the latter case, the probability that it will not
terminate is given by 1− ρ−1.
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4.2.1 Departure Process

The departure process is the product of processes of arrival and service. When
the server is continuously busy it coincides with the service process. But when
idle times intervene there is a pause in service (during idle times) there is a
pause in the departures as well. Nevertheless, in equilibrium we can derive the
properties of the process without reference to arrivals and service.

Let t1, t2, . . . be the epochs of departure from the system, and define Tn =
tn+1 − tn. When the queue is in equilibrium, i.e., when traffic intensity ρ < 1,
denote this random variable by T . Let Q(x) be the number of customers in the
system x amount of time after departure and define

Fn(x) = P [Q(x) = n, T > x]. (4.2.30)

We should note here, as we shall see in Chapter 5, in the M/M/1 queue, the
limiting distribution of the process Q(t) derived in (4.2.4) remains the same
when t in Q(t) is an arbitrary time point, an arrival point, or a departure point
(see Wolff (1982)). Therefore, regardless the value of x, we have

P [Q(x) = n] = (1− ρ)ρn n = 0, 1, 2 . . . (x ≥ 0).

From (4.2.30), we can determine F (x) as

F (x) = P (T > x) =

∞∑
0

Fn(x) (4.2.31)

For a specified n, because of the Markovian property of the underlying process,
the random variable T is dependent only on n, not on the preceding inter-
departure intervals. To establish the relationship between Q(x) and T and to
derive the distribution of T , we start by considering the transition in the interval
(x, x+Δx]. In (4.2.31), F (x) is the probability that T , the time interval between
epochs of the last departure and the next departure, is greater than x. This
means we have to consider the possibility of only arrivals during (x, x + Δx).
We have

F0(x+Δx) = F0(x) [1− λΔx] + o(Δx)

Fn(x+Δx) = Fn(x) [1− λΔx− μΔx]

+Fn−1(x)λΔx+ o(Δx) n = 1, 2, . . . . (4.2.32)

Rearranging terms in (4.2.32), dividing by Δx, and letting Δx → 0, we get

F ′
0(x) = −λF0(x)

F ′
n(x) = −(λ+ μ)Fn(x) + λFn−1(x) n = 1, 2, . . . . (4.2.33)

From (4.2.30), we also have

Fn(0) = P [Q(0) = n] = pn. (4.2.34)
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The first equation in (4.2.33) can be solved by noting

d

dx
lnF0(x) =

F ′
0(x)

F0(x)
= −λ.

Hence
lnF0(x) = −λx+ C.

Now using the initial condition (4.2.23) to determine C, we get

F0(x) = p0e
−λx. (4.2.35)

The general solution to equations (4.2.33) can be obtained by induction. For,
let

Fn−1(x) = pn−1e
−λx n = 1, 2, . . . .

Substituting this in the second equation of (4.2.33), we get

F ′
n(x) + (λ+ μ)Fn(x) = λpn−1e

−λx.

The general form is now confirmed by multiplying both sides by e(λ+μ)x, inte-
grating and using the initial condition from (4.2.23). We get

Fn(x) = pne
−λx n = 1, 2, 3, . . . . (4.2.36)

Thus, we get

F (x) =

∞∑
n=0

pne
−λx

= e−λx (4.2.37)

which is the same as the distribution of the inter-arrival times. Since {pn} is
also the distribution of the number of customers in the system at departure
points, equation (4.3.36) also confirms the independence of the distribution of
T from the queue length distribution at departure points. Note that here we are
talking about the independence of distribution of two random variables and not
any relationship between their specific values. For a more exhaustive treatment
of this problem see Burke (1956) who has considered this problem for the multi-
server M/M/s queue.

The important result coming out of this analysis states that the departure
process of the M/M/1 queue in equilibrium is the same Poisson as the arrival
process. Consequently, the expected number of customers served during a length
of time t when the system is in equilibrium is given by λt.

Example 4.2.1 An airport has a single runway. Airplanes have been found to
arrive at the rate of 15 per hour. It is estimated that each landing takes 3 min-
utes. Assuming a Poisson process for arrivals and an exponential distribution
for landing times, use an M/M/1 model to determine the following performance
measures.
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a. Runway utilization.
Arrival rate = 15/h (λ)

Service rate = (60/3)/h = 20/h (μ)

Utilization = ρ = λ
μ = 3

4 .

Answer.

b. Expected number of airplanes waiting to land:

Lq =
ρ2

1− ρ
=

(.75)2

.25
= 2.25

Answer.

c. Expected waiting time:

E(Wq) =
λ

μ(μ− λ)
=

15

20(20− 15)
=

3

20
h = 9 min Answer.

d. Probability that the waiting will be more than 5 min? 10 min? No
waiting?

P (no waiting) = P (Tq = 0) = 1− ρ = .25 Answer.

P (Tq > t) = ρe−μ(1−ρ)t

P (Tq > 5 min) =
3

4
e−20(1− 3

4 )5/60

=
3

4
e−

25
60 = 0.4944 Answer.

P (Tq > 10 mins) =
3

4
e−

50
60 = 0.3259 Answer.

e. Expected number of landings in a 20-minute period = 15
60 × 20 = 5.

Answer.

4.3 The Queue M/M/s

The multi-server queue M/M/s is the model used most in analyzing service
stations with more than one server such as banks, checkout counters in stores,
check in counters in airports and the like. The arrival of customers is assumed
to follow a Poisson process, service times are assumed to have an exponential
distribution and the number of servers providing service independently of each
other is assumed to be s. We also assume that the arriving customers form a
single queue and the one at the head of the waiting line gets into service as soon
as a server is free. No server stays idle as long as there are customers to serve.
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Let λ be the arrival rate and μ the service rate. (This means that the inter-
arrival times and service times have exponential distributions with densities
λe−λx (x > 0) and μe−μx (x > 0) respectively). Note that the service rate μ is
the same for all servers. In order to use the birth and death model introduced
earlier, we have to establish values for λn and μn, when there are n customers
in the system. Clearly, the arrival rate does not change with the number of
customers in the system (i.e., λ is the constant arrival rate). What about μn

and how does it change?
Suppose n (n = 1, 2, . . . , s) servers are busy at time t. Then, during (t, t+Δt],

the event that a busy server will complete service has the probability μΔt +
o(Δt). Since there are n busy servers at t, the probability that any r of the n
busy servers will complete service during (t, t + Δt], can be determined using
the binomial probability distribution as

=

(
n

1

)
[μΔt+ o(Δt)] [1− μΔt+ o(Δt)]

n−1

=

{
nμΔt r = 1
o(Δt) r = 2, 3, ..., n.

(4.3.1)

Note that o(Δt)
Δt → 0 as Δt → 0.

In a similar manner, the probability that a number r(> 1) of the busy servers
will complete service during (t, t+Δt] can be given as

=

(
n

r

)
[μΔt+ o(Δt)]

r
[1− μΔt+ o(Δt)]

n−r

= o(Δt).

Therefore, when there are n busy servers at time t, the only event in (t, t+Δt]
contributing to the reduction in that number that has a nonnegligible probabil-
ity, is the completion of one service, and it has the probability given in (4.3.1).
Hence, the service rate at that time is nμ. Then in the framework of the birth
and death queueing model, we have

λn = λ n = 0, 1, 2, . . .

μn = nμ n = 1, 2, . . . , s− 1

= sμ n = s, s+ 1, . . . . (4.3.2)

The generator matrix A for the process can be given as

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ λ
1 μ −(λ+ μ) λ
... · ·
s sμ −(λ+ sμ) λ
s+ 1 sμ −(λ+ sμ) λ
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.3.3)
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Let Q(t) be the number of customers in the system at time t and Pn(t) =
P [Q(t) = n|Q(0) = i]. Forward Kolmogorov equations for Pn(t) can be written
down specializing (4.1.3). Since solving such equations is very cumbersome
we do not plan to attempt it here. For solution through transform methods
interested readers may refer to Saaty (1961). For numerical solutions of the
forward Kolmogorov equations see Stewart (1994). For the limiting probabilities
pn = limt→∞ Pn(t), we have (writing out pA = 0)

λp0 = μp1

(λ+ nμ)pn = λpn−1 + (n+ 1)μpn+1 0 < n < s

(λ+ sμ)pn = λpn−1 + sμpn+1 s ≤ n < ∞. (4.3.4)

A recursive procedure on the lines of that used in the case of M/M/1 provides
the following solution

nμpn = λpn−1 n = 1, 2, . . . , s

sμpn = λpn−1 n = s+ 1, s+ 2, . . . .

(Also see (4.1.7)). Therefore,

pn =
1

n!

(
λ

μ

)n

p0 0 ≤ n < s

ps+n =

(
λ

sμ

)n

ps n = 0, 1, 2, . . .

pn =

(
λ

sμ

)n−s

ps n = s, s+ 1, . . . . (4.3.5)

Writing λ
sμ = ρ and simplifying, we get

pn =
1

n!
(sρ)np0 0 ≤ n < s

=
1

s!
(sρ)sρn−sp0 s ≤ n < ∞. (4.3.6)

Using the condition
∑∞

0 pn = 1, (4.3.6) gives

p0 =

[
s−1∑
r=0

(sρ)r

r!
+

(sρ)s

s!(1− ρ)

]−1

pn =
(sρ)n

n!
p0 0 ≤ n < s

=
ssρn

s!
p0 s ≤ n < ∞ (4.3.7)

provided λ
sμ = ρ < 1. Since sμ is the maximum service rate, we may consider ρ

as defined above as the traffic intensity for the system. Writing the last equation
in (4.3.5) as

pn = ρn−sps n ≥ s (4.3.8)
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we may say that when the number of customers in the system is ≥ s, the system
behaves like an M/M/1 with service rate sμ. For convenience we may also write
α = λ

μ , so that α/s = ρ. An alternative form of (4.3.7) using α, can be given as

p0 =

[
s−1∑
r=0

αr

r!
+

αs

s!
(1− α/s)−1

]−1

pn =
αn

n!
p0 0 ≤ n < s

=
αs

s!
(
α

s
)n−sp0 s ≤ n < ∞. (4.3.9)

It should be noted that customers will have to wait for service only if the number
in the system is ≥ s. The probability of this event is given by

∑∞
n=s pn and

hence

P (customer delay) = C(s, α)

=
αs

s!

(
1− α

s

)−1
[
s−1∑
r=0

αr

s!
+

αs

s!

(
1− α

s

)−1
]−1

.

(4.3.10)

The formula for C(s, α) is known in the literature as Erlang’s Delay Formula or
Erlang’s Second Formula and it is also denoted as E2,s(α). (This result was first
published by Erlang in 1917.) Before the advent of computers, the telephone
industry used C(s, α) charts plotted for different combinations of s and α in the
determination of the optimum number of lines.

Writing L and Lq as the mean number of customers in the system and
the number in the queue respectively, we may derive them as follows. Using
expressions from (4.3.7), we get (writing sρ = α when convenient)

∞∑
n=1

npn = p0

[
s∑

n=1

n
αn

n!
+

∞∑
n=s+1

nρn−sα
s

s!

]

= p0

[
α

s−1∑
n=1

αn−1

(n− 1)!
+

αs

s!

∞∑
n−s=1

nρn−s

]

= p0

[
α

s−1∑
r=0

αr

r!
+

αs

s!

∞∑
r=1

(r + s)ρr

]

= p0

[
α

s−1∑
r=0

αr

r!
+

αs

s!

(
ρ

(1− ρ)2
+

sρ

(1− ρ)

)]

=
ραsp0

s!(1− ρ)2
+ αp0

[
s−1∑
r=0

αr

r!
+

αs

s!(1− ρ)

]
.
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Note that the terms inside [ ] above is = p−1
0 (See (4.3.7)) Thus we get

L = α+
ραsp0

s!(1− ρ)2
(4.3.11)

which can also be written as

L = α+
ρps

(1− ρ)2
. (4.3.12)

To derive Lq, we write

Lq =

∞∑
n=s+1

(n− s)
αs

s!
ρn−sp0

=
αs

s!
p0

∞∑
n−s=1

(n− s)ρn−s

=
αs

s!
p0

∞∑
r=1

rρr

=
ραsp0

s!(1− ρ)2
(4.3.13)

which can also be written as

Lq =
ρps

(1− ρ)2
. (4.3.14)

The expression for the variance of the number in the system gets cumbersome,
so we do not present it here.

Comparing expressions for L and Lq, we can surmise that sρ(= α) repre-
sents the expected number of busy servers. This can also be determined as the
contribution of the utilization factor corresponding to s servers. For, we may
write

Individual Server Utilization =

s−1∑
n=1

n

s
pn +

∞∑
n=s

pn. (4.3.15)

Using expressions for pn from (4.3.7) in (4.3.15) and simplifying, we find the
individual server utilization factor to be ρ, i.e., in the long run the probability
(or the fraction of time) a server will be busy is ρ.

Waiting Time

For the discussion on waiting times of customers, we assume that they are served
with an FCFS queue discipline. When the number of customers in the system is
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≥ s, the inter-departure times are exponential with rate parameter sμ. Let Tq

be the waiting time of the customer as t → ∞ and Fq(t) = P [Tq ≤ t]. Clearly

Fq(0) = P [Tq = 0] = P (Q < s)

=

s−1∑
n=0

pn

= p0

s−1∑
n=0

αn

n!
.

From the first equation in (4.3.9), we have

s−1∑
n=0

αn

n!
=

1

p0
− αs

s!
(1− ρ)−1

giving

Fq(0) = 1− αsp0
s!(1− ρ)

. (4.3.16)

Also following the arguments leading to (4.2.10) for the queue M/M/1, in the
multi-server case we have, (using (4.3.8) in the simplification)

dFq(t) =

∞∑
n=s

pne
−sμt (sμt)

(n−s)!

(n− s)!
sμdt

= pse
−sμt

∞∑
n=s

ρn−s (sμt)
n−s

(n− s)!
sμdt

= sμpse
−sμ(1−ρ)tdt (4.3.17)

which can also be written as

=
sμαs

s!
p0e

−sμ(1−ρ)tdt. (4.3.18)

Noting that Fq(0) does not contribute any term for the expected value of Tq,
from (4.3.17), we have

Wq =

∫ ∞

0

tdFq(t) =

∫ ∞

0

sμpste
−sμ(1−ρ)tdt

=
ps

sμ(1− ρ)2
. (4.3.19)

Using p0 instead of ps, we may also write

Wq =
αsp0

s!sμ(1− ρ)2
. (4.3.20)



4.3. THE QUEUE M/M/s 57

Comparing (4.3.14) with (4.3.19) or (4.3.13) with (4.3.20), we can again verify
Little’s formula Lq = λWq.

The distribution function Fq(t) of the waiting time can now be obtained
from (4.3.16) and (4.3.18).

Fq(t) = Fq(0) +

∫ t

0

sμαs

s!
p0e

−sμ(1−ρ)xdx

= 1− αsp0
s!(1− ρ)

+
αsp0

s!(1− ρ)

∫ t

0

sμ(1− ρ)e−sμ(1−ρ)xdx

= 1− αsp0
s!(1− ρ)

e−sμ(1−ρ)t. (4.3.21)

Busy Period

The meaning of the busy period in a multi-server queue requires further elab-
oration. If the busy period is the time when arriving customers have to wait
for service, in a multi-server queue it is the time when all servers are busy. In
M/M/s this period has the same characteristics as a busy period in an M/M/1
queue, with the same arrival rate λ but with a service rate sμ. But if it has
to include periods during which at least one of the servers is busy, we need
new results, which are beyond the scope of this discussion. The theoretical con-
struct for the equations remains the same as (4.2.18), but because of the varying
service rates the equations get much harder to simplify.

Departure Process

As mentioned during the discussion of the departure process of the queue
M/M/1, the procedure outlined there applies to M/M/s as well. In fact, the
differential equations (4.2.33) can be extended to include varying service rates
and the inductive procedure adopted in their solution applies in this case as
well. Using the same notations as before, we get

Fn(x) = pne
−λx, n = 0, 1, 2, . . .

and

F (x) =

∞∑
n=0

pne
−λx

= e−λx (4.3.22)

(See Burke (1956) for details. Also Reich (1965)).

Example 4.3.1 In the airport problem of Example 4.2.1, how would the per-
formance measures change if there are two runways while assuming the same
arrival and service rates?
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a. Runway utilization.

Arrival rate = 15/h (λ)
Service rate = 20/h (μ)
No. of servers = 2 (s)
Utilization of each runway = ρ = λ

sμ = 3
8 Answer.

b. Expected number of airplanes waiting to land:

Lq =
ραsp0

s!(1− ρ)2

Note: α = sρ = 3
4

p0 =

[
1∑

r=0

αr

r!
+

αs

s!(1− ρ)

]−1

=

[
1 +

3

4
+

(3/4)2

2
(1− 3

8
)−1

]−1

= 0.4545

Lq =

[
(
3

8
)(
3

4
)2(0.4545)

]/
2(

5

8
)2

= 0.1227 Answer.

c. Expected waiting time

Wq =
αsp0

s!sμ(1− ρ)2

=

[
(
3

4
)2(0.4545)

]/
2× 2× 20(1− 3

8
)2

= 0.00818 h = 0.49 min Answer.

d . Probability that the waiting will be more than 5 minutes? 10 minutes?
no waiting?

P (no waiting) = Fq(0) = 1− αsp0
s!(1− ρ)

= 1−
( 34 )

2(0.4545)

2(1− 3/8)

= 0.7955 Answer.

P (Tq > t) =
αsp0

s!(1− ρ)
e−sμ(1−ρ)t

P (Tq > 5 min) =
(3/4)2(0.4545)

2(5/8)
e−2( 1

3 )(
5
8 )5

= 0.1245 Answer.

P (Tq > 10 min) = 0.0155 Answer.
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e. Expected number of landings in a 20-minute period = 15
60×20 = 5. Answer.

(The departure process is Poisson with parameter λ).

Example 4.3.2 A bank has established two counters, one for commercial bank-
ing and the second for personal banking. Arrival and service rates at the com-
mercial counter are 6 and 12 per hours, respectively. The corresponding numbers
at the personal banking counter are 12 and 24, respectively. Assume that arrivals
occur in Poisson processes and service times have exponential distributions.

(i) Assuming that the two counters operate independently of each other
determine the expected number of waiting customers and their mean waiting
time at each counter.

Commercial Personal
λ 6/h 12/h
μ 12/h 24/h
ρ = λ

μ 0.5 0.5

Lq = ρ2

1−ρ 0.5 0.5 Answer.

Wq = ρ
μ(1−ρ) 5 min 2.5 min Answer.

(ii) What is the effect of operating the two queues as a two-server queue
with arrival rate 18/h and service rate 18/h? What conclusion can you draw
from this operation?

Two-server queue
λ 18/h
μ 18/h
Number of servers (s) 2
ρ = λ

sμ 0.5

α = λ
μ 1

p0 = [
∑1

0
αr

r! + α2

2(1−ρ) ]
−1 0.33

Lq = ρα2p0

2(1−ρ)2 0.33 Answer.

Wq = α2p0

(2) 2μ(1−ρ)2 1.33 min Answer.

Conclusion: The two-server queue operation is more efficient than the two
single-server operations.

Incidentally, the efficiency of multi-server over single-server systems is the
reason that multi-server service systems, whenever possible, use single waiting
lines feeding multiple counters for service, e.g., airline checkin counters, checkout
counters in stores effectively operate this way because of jockeying among the
waiting lines (see Smith and Whitt (1981)).
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4.4 The Finite Queue M/M/s/K

When the waiting room in a queueing system has a capacity limit we get a finite
queue. In most situations, a finite queue occurs more naturally than a queue
with waiting room of infinite size. However, as the capacity limit gets larger, the
behavior of the system approximates that of an infinite capacity system and in
such cases we are justified in ignoring the size limit. A communication system
with a finite buffer and several service channels is a good example of a finite
queue.

Consider an s-server queueing system with Poisson arrivals, exponential ser-
vice and a capacity limit of K for the number in the system. Clearly K ≥ s.
Assume that λ and μ are the arrival and service rates respectively. These
assumptions result in the following infinitesimal transition rates in the general-
ized birth and death queueing model.

λn = λ n = 0, 1, 2, . . . ,K − 1

μn = nμ n = 1, 2, . . . , s− 1

= sμ n = s, s+ 1, . . . ,K. (4.4.1)

Note that we assume the arrivals to be denied entry to the system (or the arrival
process stops) once the number in the system reaches K. The generator matrix
A is essentially the same as (4.3.3), in the first K rows,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ λ
1 μ −(λ+ μ) λ
...

. . .
...

. . .

K − 1 sμ −(μ+ sμ) λ
K sμ −sμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.4.2)
For the limiting probabilities {pn} n = 0, 1, 2, . . . ,K, the state balance equations
can be written down in a manner similar to (4.3.4). The solution corresponding
to (4.3.6) can be given as

pn =
1

n!
(
λ

μ
)np0 0 ≤ n ≤ s

=
1

s!
(
λ

μ
)s(

λ

sμ
)n−sp0 s ≤ n ≤ K.

Writing λ
sμ = ρ and λ

μ = α, p0 can be obtained using the condition
∑K

n=0 pn = 1.

p0 =

[
s−1∑
r=0

αr

r!
+

αs

s!

K∑
n=s

ρn−s

]−1

.
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Since the second sum on the right-hand side of the expression for p0 is a finite
sum, we need not impose the condition ρ < 1 for a solution with p0 > 0. Thus
we have

p0 =

[
s−1∑
r=0

αr

r!
+

αs

s!

1− ρK−s+1

1− ρ

]
ρ �= 1

=

[
s−1∑
r=0

αr

r!
+

αs

s!
(K − s+ 1)

]−1

ρ = 1

pn =
αn

n!
p0 0 ≤ n < s

=
αs

s!
ρn−sp0 s ≤ n ≤ K. (4.4.3)

Because of the unwieldy nature of the expressions for the mean number in the
system (L) and in the queue (Lq) we do not present them here. The procedure
for deriving them starts with the limiting distribution given by (4.4.3).

In discussing the characteristics of the waiting time of customers in a finite
queue, we need to allow for the possibility of an arriving customer not joining the
system. When the system is in equilibrium, the probability that the arriving
customer will not join the system is pK . Hence, when there are n (n < K)
customers in the system, the joint probability that there are n customers and
an arrival will join the system is given by pn/(1−pK). Thus, using the notations
used earlier for the distribution for the waiting time, we have

Fq(t) = Fq(0) + P (0 < Wq ≤ t)

where

Fq(0) =
s−1∑
n=0

pn/(1− pK).

Also,

dFq(t) =
K−1∑
n=s

pn
1− pK

e−sμt (sμt)
n−s

(n− s)!
sμdt (4.4.4)

Fq(t) = Fq(0) +
1

1− pK

K−1∑
n=s

pn

∫ t

0

e−sμt (sμt)
n−s

(n− s)!
sμdt

= Fq(0) +
1

1− pK

K−1∑
n=s

pn

(
1−
∫ ∞

t

e−sμt (sμt)
n−s

(n− s)!
sμdt

)
.

In simplifying this expression, we note that

Fq(0) +
1

1− pK

K−1∑
n=s

pn = 1
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and ∫ ∞

t

e−sμt (sμt)
n−s

(n− s)!
sμdt =

n−s∑
r=0

e−sμt (sμt)
r

r!

(see (2.1.3)). Then we get

Fq(t) = 1− 1

1− pK

K−1∑
n=s

pn

n−s∑
r=0

e−sμt (sμt)
r

r!
. (4.4.5)

Taking expectations, we get

Wq =

∫ ∞

0

tdFq(t) =
K−1∑
n=s

pn
1− pK

∫ ∞

0

e−sμt (sμt)
n−s

(n− s)!
sμtdt

=
1

sμ(1− pK)

K−1∑
n=s

(n− s+ 1)pn. (4.4.6)

The expected time in the system can be obtained as

W = Wq +
1

μ
. (4.4.7)

The expected number of customers in the queue and in the system are obtained
by noting that the effective arrival rate is λ(1− pK).

L = λ(1− pK)W (4.4.8)

Lq = λ(1− pK)Wq (4.4.9)

Two special cases of this system have been used widely in applications:
(i) M/M/1/K
(ii) M/M/s/s

The Finite Queue M/M/1/K

For single-server systems with limited waiting room, M/M/1/K is a better
model than the infinite waiting room queue M/M/1. A direct specialization
of results (4.4.3)–(4.4.7) yields the following results. Note that s = 1 and
α = ρ = λ

μ .

p0 =
1− ρ

1− ρK+1
ρ �= 1

=
1

K + 1
ρ = 1 (4.4.10)

pn =
(1− ρ)ρn

1− ρK+1
ρ �= 1

=
1

K + 1
ρ = 1. (4.4.11)
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Also

1− pK =
1− ρK

1− ρK+1
ρ �= 1

=
K

K + 1
ρ = 1

Fq(t) = 1− 1− ρ

1− ρK

K−1∑
n=1

ρn
n−1∑
r=0

e−μt (μt)
r

r!
ρ �= 1

= 1− 1

K

K−1∑
n=1

n−1∑
r=0

e−μt (μt)
r

r!
ρ = 1 (4.4.12)

Wq =
1

μ

[
ρ

1− ρ
− KρK

1− ρK

]
ρ �= 1

=
1

2μ
(K − 1) ρ = 1 (4.4.13)

W =
1

μ

[
1

1− ρ
− KρK

1− ρK

]
ρ �= 1

=
K + 1

2μ
ρ = 1 (4.4.14)

Lq =
ρ

1− ρ
− ρ(1 +KρK)

1− ρK+1
ρ �= 1

=
K(K − 1)

2(K + 1)
ρ = 1 (4.4.15)

L =
ρ(1− ρK)

(1− ρ)(1− ρK+1)
− KρK+1

1− ρK+1
ρ �= 1

=
K

2
ρ = 1. (4.4.16)

The readers should note that in the simplifications leading to some of the results
given above we have used the formula

K−1∑
n=1

nρn−1 =
d

dρ

(
1− ρK

1− ρ

)
.

Example 4.4.1 A small mail order business has one telephone line and a facility
for call waiting for two additional customers. Orders arrive at the rate of 1 per
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minute and each order requires 2 minutes and 30 seconds to take down the
particulars. Model this system as an M/M/1/3 queue and answer the following
questions.

(a) What is the expected number of calls waiting in the queue? What is the
mean wait in queue?

Assuming that the arrivals are in a Poisson process with rate 1 per minute
(λ) and the service times are exponential with mean 2.5 minute (1/μ). We
have ρ = 2.5. Also K = 3. Using the first result from (4.4.15) we get

Lq =
2.5

1− 2.5
− (2.5)[1 + 3(2.5)3]

1− (2.5)4

= 1.4778 Answer.

Since λ = 1, the mean waiting time in queue

Wq = 3.7271 min. Answer.

(b) What is the probability that the call has to wait for more than 1.5 minute
before getting served?

We use the formula for 1 − Fq(t) from (4.4.12) with t = 1.5, 1/μ = 2.5
and ρ = 2.5. We get,

P(Wait in queue > 1.5 min)

=
1− 2.5

1− (2.5)3

3−1∑
n=1

(2.5)n
n−1∑
r=0

e−
1.5
2.5

(1.5/2.5)r

r!

= 0.7036 Answer.

(c) Because of the excessive waiting time of customers, the business decides
to use two telephone lines instead of one, keeping the same total capacity
for the number in the system, namely 3. What improvements result in the
performance measures considered under (a) and (b)?

With two lines, now s = 2 and we have an M/M/2/3 system. Accordingly
in (4.4.3), we have α = 2.5, ρ = 1.25, s = 2 and K = 3. We get

p0 = 0.0950, p1 = 0.2374

p2 = 0.2969, p3 = 0.3711

Using these results in (4.4.6), (4.4.9), and (4.4.5), we get

Wq = 0.5902 min Answer.

Lq = λ(1− p3)Wq = 0.3712 Answer.

P(wait in queue > 1.5 min):

1− Fq(1.5) = 0.1422. Answer.
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(d) What is the impact of increasing the capacity to four customers in the
system? Now we have an M/M/2/4 queue. Using the formulas as in (c)
we get,

p0 = 0.0649, p1 = 0.1622

p2 = 0.2028, p3 = 0.2535

p4 = 0.3169

Wq = 1.2989 min. Answer.

Lq = 0.8873 Answer.

P (Wait in queue > 1.5 min):

1− Fq(1.5) = 0.3353 Answer.

It is instructive to note that the performance has not improved from the
viewpoint of the customer, because the system now accepts more cus-
tomers than before. But from the management perspective, fewer cus-
tomers are being denied access to the system (p4 = 0.3169 vs. p3 =
0.3711).

The Loss System M/M/ s/s

The queue M/M/s/s in which customers arriving when all servers are busy, are
not allowed entry to the system is one of the earliest systems considered by
A. K. Erlang (1917). Before the introduction of call waiting buffers, telephone
systems operated strictly as loss systems.

Let customer arrivals be Poisson with parameter λ and service times be
exponential with mean 1/μ. There are s servers and all customers arriving
when all servers are busy are lost to the system. Thus, the state space for the
number of customers in the system is {0, 1, 2, . . . , s}. The generator matrix for
the birth and death model is a modified version of (4.3.3):

A =

⎡
⎢⎢⎢⎢⎢⎣

0 −λ λ
1 μ −(λ+ μ) λ
...

...
s− 1 (s− 1)μ −[λ+ (s− 1)μ] λ
s sμ −sμ

⎤
⎥⎥⎥⎥⎥⎦
.

(4.4.17)
Accordingly, the limiting probabilities are obtained using the state balance equa-
tions,

λp0 = μp1

(λ+ nμ)pn = λpn−1 + (n+ 1)μpn+1 1 ≤ n < s

sμps = λps−1. (4.4.18)
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Writing λ
μ = α, (4.4.18) can be solved recursively to give

p0 =
[
1 + α+ α2/2! + . . .+ αs/s!

]−1

pn =
αn

n!
p0 n = 0, 1, . . . , s. (4.4.19)

This gives

ps =

αs

/
s!

1 + α+ α2

2! + . . .+ αs

s!

(4.4.20)

which is the probability that a customer is blocked from entering the system.
(Telephone calls are lost.) Also λps gives the expected number of customers
who will be blocked from entering the system in unit time. Equation (4.4.20)
is commonly known as Erlang’s Loss Formula or Erlang’s First Formula and
denoted as E1,s(α) or B(s, α). This formula has been extensively used in design-
ing telephone systems by traffic engineers.

For ready reference ps values are plotted for different values of s, against
varying values of the offered load α. In the teletraffic literature, it is common to
measure the offered load (the ratio of arrival rate to the service rate) in Erlangs
for convenience. It should be noted that in the telephone industry parlance the
carried load is given by α(1−ps), since a proportion ps of the arriving customers
are lost to the system.

The right-hand side expression in the formula (4.4.20) has been shown to
be a convex function of s in [0,∞) for α > 0. (See Smith and Whitt (1981)
and Jagers and van Doorn (1986)). Another characteristic of this formula is its
validity even when service times have a general distribution.

4.5 The Infinite Server Queue M/M/∞
Even though calling a system with an infinite number of servers, consequently
with no waiting line, an infinite server queue, is a misnomer, the systemM/M/∞
is being identified as such because of its structure. The customers arrive in a
Poisson process and the service times have an exponential distribution. Let λ
and μ be the arrival and service rates. We assume that the system is able to
provide service as soon as the customer arrives. A simple example is a large
grocery store or a supermarket where customers serve themselves while picking
up merchandise. The checkout counters will then have to be modeled as an
M/M/s system. Another example is a large parking lot.

When there are n customers in the system the service rate is nμ (n =
1, 2, . . .). For the birth and death parameters of the queueing model, we have

λn = λ n = 0, 1, 2, . . .

μn = nμ n = 1, 2, 3 . . . . (4.5.1)
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The generator matrix is obtained by extending the first part of the matrix (4.3.3)
of the multi-server queue M/M/s, for n = s+ 1, s+ 2, . . .. We get

A =

⎡
⎢⎢⎢⎣

0 −λ λ
1 μ −(λ+ μ) λ
2 2μ −(λ+ 2μ) λ . . .
...

...
...

⎤
⎥⎥⎥⎦. (4.5.2)

The state balance equations for the limiting probabilities {pn, n = 0, 1, 2 . . .}
take the form

λp0 = μp1

(λ+ nμ)pn = λpn−1 + (n+ 1)μpn+1 n = 1, 2, . . . . (4.5.3)

These equations along with
∑∞

0 pn = 1 give the solution

p0 = e−λ/μ

pn = e−λ/μ(
λ

μ
)n n = 0, 1, 2, . . . (4.5.4)

which is Poisson with parameter λ/μ.
Because of the structure of the birth and death parameters (4.5.1), the sys-

tem can also be considered a queueing system with arrivals in a Poisson process
and exponential service times with a linearly dependent arrival rate nμ when
there are nμ customers in the system. It should be noted that the depar-
ture process properties established in Section 4.2 apply to this system as well
and therefore, the departure process of customers in equilibrium, has the same
Poisson distribution, as the arrival process. This property justifies the use of
an M/M/s model for the checkout counters in the supermarket example cited
above.

4.6 Finite Source Queues

The source of customers is an important element of a queueing system. In
the models discussed so far, we have assumed that the source is infinite. This
assumption is essential in characterizing the arrivals to the system as being Pois-
son. If the source of customers is finite, a prespecified number in the population,
even though we cannot assume a Poisson process for arrivals, we can generate
a Markovian arrival process with the following arrival scheme.

Suppose there are M customers in the population. Each customer goes
through two alternating phases, not needing service and being in need of service.
An example is a population of machines that require service when they become
inoperative. Another example is a subscriber group in an information exchange.
Assume that the phase during which the customer does not require service is
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exponentially distributed with mean 1/λ. This implies that if at time t, a
customer is in this phase, during (t, t +Δt], the event that it will need service
has the probability λt + o(Δt). Thus, if there are k customers in that phase
requiring no service at time t, the probability that one of them will call for
service is kλ+o(Δt) (see discussion preceeding (4.3.1)). When the service times
are exponential, we are able to use a birth and death queueing model for such
a system.

For convenience, let us define the state of the process as the number of
customers requiring service. It takes values in S : {0, 1, 2, . . . ,M}. Note that if
n is the number requiring service, the leftover population size that can generate
customers for service is M − n. Also assume that there are s (s ≤ M) servers.
These assumptions lead to the birth and death parameters as:

λn = (M − n)λ n = 0, 1, . . . ,M

= 0 n > M

μn = nμ n = 1, 2, . . . , s− 1

= sμ n = s, s+ 1, . . . ,M

= 0 n > M. (4.6.1)

There are two classical examples with these characteristics treated in the
queueing literature. The machine interference problem has M machines and s
repairmen. Naturally, inoperative machines wait for their turn when all repair-
men are busy. The second problem is similar to the M/M/s/s loss system in
which, customers arriving when all servers are busy are lost and the lost cus-
tomers have to reinitiate the request for service.

The Machine Interference Problem

Let Q(t) be the number of inoperative machines at time t out of a total number
M . Assume that the call for service and the completion of service have the
characteristics leading to the birth and death parameters as described in (4.6.1).
Define

Pn(t) = P [Q(t) = n|Q(0) = i]

and pn = limt→∞ Pn(t).
The generator matrix has a structure similar to that of (4.4.2) with obvious

modifications to the birth rate. We give below the state balance equations.

Mλp0 = μp1

[(M − n)λ+ nμ] pn = (M − n+ 1)λpn−1 + (n+ 1)μpn+1 1 ≤ n < s

[(M − n)λ+ sμ] pn = (M − n+ 1)λpn−1 + sμpn+1 s ≤ n < M

sμpM = λpM−1. (4.6.2)

Solving these equations recursively,

p1 = M

(
λ

μ

)
p0

[(M − 1)λ+ μ]p1 = Mλp0 + 2μp2
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giving

p2 =
M(M − 1)

2
(
λ

μ
)2p0

. . .

pn =

(
M

n

)
(
λ

μ

n

)p0 0 ≤ n ≤ s

[(M − s)λ+ sμ] ps = (M − s+ 1)λps−1 + sμps+1

ps+1 =
(M − s)λ

sμ
ps

=

(
M

s+ 1

)
(s+ 1)!

s!s
(
λ

μ
)s+1p0

. . .

pn =

(
M

n

)
n!

s!sn−s
(
λ

μ
)np0 s ≤ n ≤ M. (4.6.3)

The limiting probabilities {pn, n = 0, 1, . . . ,M} are now determined in the usual

manner using the condition
∑M

0 pn = 1. In particular, when s = 1, writing
λ
μ = α, we get

pn =
M !

(M − n)!
αnp0

and

p0 =

[
1 +

M !

(M − 1)!
α+ . . .+M !αM

]−1

. (4.6.4)

In the context of machines and repairmen, two measures of effectiveness can be
defined as (using L to stand for the mean number of inoperative machines):

Machine availability = 1− L

M

Operative utilization =

s−1∑
n=0

npn
s

+
M∑
n=s

pn.

Illustrative values of operative utilization for different values of α, M , and s
can be easily determined from (4.6.3) as shown in the table below (Table 4.1).
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Table 4.1 Illustrative values of operative utilization

α M s Operative utilization
0.45 4 1 0.881

8 2 0.934
16 4 0.994

0.05 15 1 0.656
30 2 0.682
60 4 0.705

An obvious conclusion we can draw from the numbers in the table is that
it is better to use repairmen in a pool, rather than assigning a certain number
of machines to each of them as long as characteristics of service are the same
among repairmen.

The number of machines actually waiting for service could also be of interest.
Because of the permutations occurring in the expressions, unfortunately, we
are unable to give closed form expressions for the mean number of inoperative
machines in the system directly from the equation. To determine the number
actually waiting, Lq, we may use the relation obtained for the M/M/s queue
in (4.3.11) and (4.3.13). However, the arrival rate in this case is dependent on
the remaining number of operative machines in the population. Let λ′ be the
effective arrival rate. Then we have

λ′ =

M−1∑
n=0

(M − n)λpn

= λ(M − L). (4.6.5)

We get

Lq = L− λ′

μ
= L− α(M − L). (4.6.6)

The expressions for waiting time for service can be obtained using Little’s law
with λ′ as the arrival rate instead of λ.

The Finite Source Loss System

Consider an information exchange with M subscribers. The exchange has s
servers and there is no facility for call waiting when all servers are busy. Assume
that the call arrivals are initiated in the same manner as in the machine inter-
ference problem with parameter λ, and the service times are exponential with
rate μ. The state of the system is the number of calls being serviced and state
space is therefore S : 0, 1, 2, . . . , s. The state balance equations for the limiting
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probabilities pn, n = 0, 1, 2, . . . , s can be written down as

Mλp0 = μp1

[(M − n)λ+ nμ] pn = (M − n+ 1)λpn−1 + (n+ 1)μpn+1 1 ≤ n < s

sμps = (M − s+ 1)λps−1. (4.6.7)

Solving these equations recursively we get

pn =

(
M

n

)
αnp0 0 ≤ n ≤ s

p0 = [1 +

(
M

1

)
α+

(
M

2

)
α2 + . . .+

(
M

s

)
αs]−1 (4.6.8)

and therefore

pn =

(
M
n

)
αn

∑s
k=0

(
M
r

)
αr

n = 0, 1, 2, . . . , s. (4.6.9)

To determine the probability that one of the M sources will find the system
busy while initiating a call, we have to consider the probability that all servers
are busy serving calls from the remaining M − 1 sources. Let this probability
be bs. Then we have

bs =

(
M−1

s

)
αs

∑s
k=0

(
M−1

k

)
αk

. (4.6.10)

This result is often called the Engset formula in the literature. Clearly, this is
the proportion of calls lost to the system. The distribution (4.6.9) is known as
the Engset distribution.

In the discussion of M/M/s/s system, we mentioned that the distribution
(4.4.19) was valid even when the service time is general. In a similar manner, it
has been shown that the distribution (4.6.9) holds even when the arrival process
has a more general structure.

4.7 Other Models

In this section, we present additional models that may be considered as special-
izations of the general birth and death queueing model.

4.7.1 The M/M/1/1 System

Even though this system can be considered a specialization of the finite queue
M/M/1/K of Section 4.4, the M/M/1/1 system is significant in its own right
because it corresponds to the two-state Markov process useful in a large number
of applications.

Let customers arrive in a Poisson process with parameter λ and get served by
a single server. The service time distribution is exponential with mean 1/μ. The
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system can accommodate only one customer who is being served, and customers
arriving when the server is busy leave the system without service. Let Q(t)
be the number of customers in the system at time t and limt→∞Q(t) = Q.
The random variable Q can assume two values (0,1) and let P (Q = n) = pn
(n = 0, 1). Clearly, {Q(t), tεT} is a Markov process with the generator matrix

A =

[ 0 1

0 −λ λ
1 μ −μ

]
. (4.7.1)

For the transition probability Pij(t) = P [Q(t) = j|Q(0) = i] (i, j = 0, 1) we get
the forward Kolmogorov equations

P ′
i0(t) = −λPi0(t) + μPi1(t)

P ′
i1(t) = −μPi1(t) + λPi0(t). (4.7.2)

If we note that Pi0(t) + Pi1(t) = 1, the two equations in (4.7.2) give a single
linear first order differential equation

P ′
i0(t) = μ− (λ+ μ)Pi0(t). (4.7.3)

Using the initial condition

Pi0(0) =

{
1 if i = 0
0 if i = 1

,

(4.7.3) can be solved through standard techniques to give

P00(t) =
μ

λ+ μ
+

λ

λ+ μ
e−(λ+μ)t

P10(t) =
μ

λ+ μ
− μ

λ+ μ
e−(λ+μ)t. (4.7.4)

Also, we have

P01(t) = 1− P00(t) =
λ

λ+ μ
− λ

λ+ μ
e−(λ+μ)t

P11(t) = 1− P10(t) =
λ

λ+ μ
+

μ

λ+ μ
e−(λ+μ)t.

The limiting probabilities pn, n = 0, 1, can be determined either by letting
t → ∞ in (4.7.4) or by solving the state balance equation

λp0 = μp1 (4.7.5)

along with the normalizing condition p0 + p1 = 1. We get

p0 =
μ

λ+ μ
; p1 =

λ

λ+ μ
. (4.7.6)
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These probabilities can be expressed in terms of the mean busy and idle periods.
Dividing the numerator and denominator of the expressions for p0 and p1 by
λμ, we get

p0 =
1/λ

1/μ+ 1/λ
; p1 =

1/μ

1/μ+ 1/λ
. (4.7.7)

Note that 1/λ is the mean idle period and 1/μ is the mean busy period. Gen-
eralizing this concept to a process that occupies two alternate states 0 and 1,
represented by two independent random variables X and Y , it can be shown,
with the help of renewal theory, that in the long run the probabilities that the
process can be found in the states 0 and 1, are given by

p0 =
E(X)

E(X) + E(Y )
; p1 =

E(Y )

E(X) + E(Y )
. (4.7.8)

The breadth of applicability of this model can be easily seen if we look at
the process alternating between two states: busy or idle in the context of a
service system, working or under repair in the context of a machine in operation,
“locked” or “ready to register signals” in a Type I counter, etc.

Suppose there are N such multiple processes undergoing transitions between
alternate states independent of each other with the transition structure as
described above. The probability distribution of the number of processes in
states (0,1) is then given by the binomial distribution:

P (N = k) =

(
N

k

)
pk0p

N−k
1 k = 0, 1, 2, . . . , N. (4.7.9)

4.7.2 Markovian Queues with Balking

Balking is a phenomenon in which an arriving customer decides not to join the
queue. The reason for balking could be external or internal to the queue; in the
latter case, normally, it depends on the number in the systems.

As a general model, consider a single server queueing system with Poisson
arrivals and exponential service, the rates of arrival and service being λn and μn

respectively, when there are n customers in the system. In order to incorporate
balking in the arrival process, we consider serveral special forms for the arrival
rate λn. The limiting probability pn, n = 0, 1, 2, . . . for the number of customers
in the system is given by (4.1.8) and (4.1.9) of the general birth and death model

(i)

λn = λα n = 0, 1, 2, . . . ; 0 ≤ α ≤ 1

μn = μ n = 1, 2, . . . . (4.7.10)

This case assumes that only a certain portion α of the arriving customers decide
to join the queue. Substituting in (4.1.8) and (4.1.9), we get

pn = (1− ρ)ρn n = 0, 1, 2 . . . (4.7.11)
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where ρ = λα
μ .

(ii)

λn =
λ

n+ 1
n = 0, 1, 2, . . .

μn = μ n = 1, 2, 3, . . . . (4.7.12)

The arrival rate here is inversely proportional to the number of customers in
the system (Haight 1957). Substituting in (4.1.9) and (4.1.8), we get

p0 =

[
1 +

λ

μ
+

1

2

(
λ

μ

)2

+
1

3!

(
λ

μ

)3

+ . . .

]−1

= e−ρ

pn =
1

n!

(
λ

μ

)n

p0

= e−ρ ρ
n

n!
n = 0, 1, 2, . . . (4.7.13)

where ρ = λ
μ .

(iii)

λn =
N − n

N(n+ 1)
n = 0, 1, 2, . . . , N

= 0 n > N

μn = μ n = 1, 2, . . . , N (4.7.14)

In this case the blocking phenomenon also includes the factor that the customers
do not join the queue when its size reaches N (Haight 1957). Substituting in
(4.1.8), we get

pn =
N(N − 1) . . . (N − n+ 1)

n!

(
1

Nμ

)n

=

(
N

n

)(
1

Nμ

)n

.

Using (4.1.9)

p0 =

[
N∑

n=0

(
N

n

)(
1

Nμ

)n
]−1

=

(
1 +

1

Nμ

)−N
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Thus we get

pn =

(
N

n

)(
1

Nμ

)n(
1 +

1

Nμ

)−N

=

(
N

n

)(
1

1 +Nμ

)n(
Nμ

1 +Nμ

)N−n

n = 0, 1, 2, ..., N. (4.7.15)

(iv)

λn = λe−nα/μ n = 0, 1, 2, . . . ; α > 0

μn = μ n = 1, 2, 3, . . . . (4.7.16)

The arrival rate here, incorporates a fraction that reflects an estimate of waiting
time t and an impatience factor α in the customer’s decision to join the queue
(Morse 1958, p. 24). Substituting in (4.1.9) and (4.1.8), we get

p0 =

[ ∞∑
n=0

ρnΠn−1
i=1 e

−iα/μ

]−1

=

[ ∞∑
n=0

ρne
−n(n−1)α

2μ

]−1

pn =
[
ρne

−n(n−1)α
2μ

]
p0 n = 1, 2, . . . (4.7.17)

where p = λ
μ .

4.7.3 Markovian Queues with Reneging

After joining the queue, if a customer abandons its desire to get served and
leaves the system, the customer is said to have reneged. One way to incorporate
this factor in modeling is to assume a distribution, normally an exponential
distribution in between successive customer reneging. Let β be the rate, inde-
pendent of the number in the system, at which reneging occurs. Then assuming
a constant arrival rate λ and service rate μ, we can give the birth and death
parameters for the model as

λn = λ n = 0, 1, 2, . . .

μn = μ+ β n = 1, 2, 3 . . . . (4.7.18)

Writing μ + β = γ and ρ = λ
γ , for the limiting probabilities, we have (with

ρ < 1)

pn = (1− ρ)ρn n = 0, 1, 2, . . . . (4.7.19)
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4.7.4 Phase Type Machine Repair

The M/M/1/1 system discussed in Section 4.7.1 can be generalized to consider
a machine repair requiring k phases. Suppose, a machine requires service after
it has been in operation for a length of time exponentially distributed with
mean 1/λ. Let the repair require k phases of service, where the ith phase
(i = 1, 2, . . . , k) is exponentially distributed with mean 1/μi. The operating
and repair states of the machine are 0 (operating), and i (representing phase i,
i = 1, 2, . . . , k). Because of the exponential distributions involved in the process,
the machine can be considered to undergo transitions in a Markov process with
the following generator matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . k

0 −λ λ
1 −μ1 μ1

2 −μ2 μ2
...

. . .

k μk −μk

⎤
⎥⎥⎥⎥⎥⎦
. (4.7.20)

Let pn = (p0, p1, p2, . . . , pk) be the limiting probabilities for the state of the
machine. For state balance equations, we have

λp0 = μkpk

μ1p1 = λp0
...

μkpk = μk−1pk−1. (4.7.21)

Solving recursively, we get

p1 =
λ

μ1
p0

p2 =
λ

μ2
p0

· · · pk =
λ

μk
p0

Using the normalizing condition
∑k

0 pn = 1, we get

p0 =

[
1 + λ

k∑
1

1

μi

]−1

pn =

(
λ

μn

)[
1 + λ

k∑
1

1

μi

]−1

(4.7.22)

n = 1, 2, . . . , k.
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We may note that the overall repair time has a generalized Erlang distribution
of (A.14) with the transform

ψ(θ) =

k∑
i=1

(
μi

θ + μi

)
. (4.7.23)

4.8 Remarks

In this chapter, we have discussed only a few queueing systems for which gener-
alized birth and death process models are suitable. We shall discuss a few more
extended models in Chapters 6 and 7. There are many more examples in the
queueing literature where such models have been effectively used. For instance,
Syski (1960) has provided a large number of models for queueing systems appli-
cable to telephone industry. Further perusal of the telecommunication systems
literature would reveal models developed since 1960.

There are other application areas, such as computer and manufacturing sys-
tems, where investigators use birth and death process models as a first line of
attack in solving problems. The major advantages of these models are their
Markovian structure often leading to useable explicit results, and the ability
to use numerical investigations without complex computational problems when
explicit results are not forthcoming. After all, queueing models are approximate
representation of real systems, and starting with a Markovian model provides a
good starting point for the understanding of their approximate behavior.

4.9 Exercises

1. Compare the system idle time probability (p0) in the three systems (1)
M/M/s/s, (2) M/M/s, and (3) M/M/∞ and show that

p
(1)
0 > p

(2)
0 andp

(3)
0 > p

(2)
0 . (4.9.1)

2. An airline employs two counters, one exclusively for first class and business
class passengers and the other for coach class passengers. The service times
at both counters have been found to be exponential with mean 3 minute.
The coach class passengers arrive at the rate of 18 per hour and upper
class passengers arrive at the rate of 15 per hour. Is there any advantage
in keeping the exclusivity of service in the counters? Answer this question
using server utilization, mean number of customers in the system, and the
mean waiting time, all in steady state.

3. A customer service counter has s telephone lines. Service requests arrive
in a Poisson process with rate λ and the length of service is exponentially
distributed with mean 1/μ. What is the probability that a request will
encounter a busy system? What is the probability that a service request
will arrive when the service center is busy?
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4. Customer arrivals at a 7-Eleven is Poisson at the rate of 20 per hour.
They can be assumed to spend an average of 12 minutes picking up mer-
chandise, with the length of time having an exponential distribution. Two
checkout counters provide service with a service rate of 15 per hour at each
counter. We may also assume that the service times have an exponential
distribution. Determine the limiting results for the following.

(1) The distribution of the number of customers picking up merchan-
dise and its mean.

(2) The mean length of time the customers wait at the counter for
service.

(3) The mean total amount of time the customers spend in the store.

5. In a taxi stand there is space for only five taxicabs. Taxis arrive in a
Poisson process with rate 12 per hour. If there is no waiting room, arriving
taxis leave without passengers. Customers arrive at the taxi stand in a
Poisson process once every 6 minutes on the average.

(1) Determine the limiting distribution of the number of customers
waiting for taxis.

(2) What is the probability that there are taxis waiting for customers?

(3) Determine the mean waiting time for a customer.

6. An automobile service station has one station for oil and filter change. On
an average the oil and filter change takes 7 minutes, the amount of time
having an exponential distribution. Cars arrive in a Poisson process at
the rate of 6 per hour. What is the probability that an arriving car has
to wait more than 10 minutes to get served?

What is the effect to the waiting time of adding another station with
identical service characteristics? Determine the probability that the wait-
ing time will be more than 5 minutes with two stations for oil and filter
change.

7. Customer arrivals to a service counter is in a Poisson process at the rate
of 10 per hour. The service time distribution can be assumed to be expo-
nential. Determine the minimum rate of service that would result in the
customer waiting time being greater than 5 minutes. with a probability
0.10 or less.

8. In a manufacturing process production machines breakdown at the rate
of 3 per hour. We may assume that the process of breakdowns is Poisson.
The repair times of machines can be assumed to have an exponential
distribution. The repairs can be run at two rates: 4 per hour at a cost
of $20/h and 5 per hour at a cost of $30/h. Considering the loss of
productivity of the machines while they are either waiting for service or
being in service, what rate of repair would make it beneficial to provide
service at the faster rate? You may assume an 8-hour workday in your
calculations.
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9. Customer arrivals to a store are in a Poisson process with a rate of 50
per hour. On an average, each customer spends 15 minutes in the store
and we may assume the times the customer spends in the store to have an
exponential distribution. Currently the store provides parking space for
15 cars. What is the probability that no parking space will be available,
if a customer were to arrive at some time? How many more spaces will
be needed to make sure that the arriving customer will find parking space
99% of the time?

10. Suppose the arrival and the service rates in Ex.#9 are changed to: arrivals,
100 per hour and mean service time 30 minutes. How many parking spaces
should be provided to make sure that the arriving customers will find
parking space 99% of the time?

11. A single switchboard is used to direct calls coming to a doctor’s office.
The calls arrive in Poisson process at a rate of 15 per hour. Call holding
times can be assumed to be exponential with a mean of 2 minute. What is
the probability that the calls will not have to wait for more than 2 minutes
before getting to the receptionist? Assume unlimited room for all waiting.

Suppose it is decided to establish an upper limit K for the number of calls
waiting, such that the waiting time will be less than 2 minute with a 90%
probability. Determine K by successively increasing its value.

12. In the M/M/s/s (loss system) show that in the long run

L = ρ[1− PB ] (4.9.2)

where L = long run expected number of customers in the system;

ρ =
arrival rate

service rate
PB = Prob. that an arriving customer is blocked from entering

the system.

13. In a drug store customers arrive at the counter (with one server per
counter) in a Poisson process at the rate of 48 per hour. The service
time can be assumed to be exponential with an average of 1 minute and
the service is provided at a counter attended by a server. The number of
counters is varied depending on the number of customers waiting or being
served as follows:

0–4 customers 1 counter

5–9 customers 2 counters

10–14 customers 3 counters

15 or more 4 counters
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Assume that this policy is used to increase or decrease the number of
servers.

Determine the following:

a. Probability of system idleness.

b. How often would the store need more than one counter?

c. What is the average number of customers either waiting for ser-
vice or being served?

d. What is the average waiting time in the queue?

14. The atmopsheric quality at time t—denoted A(t)—is measured by the
number of pollutant units residing in the airshed at that time. These
units are emitted from pollutant sources one unit at a time with rate
α. The emission process can be assumed to be poisson. Each unit thus
emitted gets diffused in an average time of length β. Also assume that the
diffusion times are exponential random variables which are independent
and identically distributed. Obtain the mean and variance of A(t) as
t → ∞.

15. (1) Writing β = 1
α = μ

λ in (4.6.4), using s in place of M , show that p0 of
(4.6.4) can be expressed as

p0 = (βs/s!) /

(
s∑

n=0

βn

n!

)

which is the probability of blocking in an M/M/s/s system (see
(4.4.20)).

(2) Let λ∗ be the effective arrival rate of machines for repair. Noting that
λ∗ can be expressed also as

λ∗ =
M

(1/λ) +Wq + (1/μ))

show that the mean waiting time of a machine repair (waiting +
service) is given by

W =
M

λ∗ − 1

λ
.

16. Ten terminals used for data entry in a hospital share a communication
line. Terminals use the line on a FCFS basis and wait in a queue when
the line is busy. It has been observed that the data entry job takes, on
an average 100 seconds and once the terminal is free, it is ready for the
job in 5 seconds, on the average. Determine the throughput rate (effective
arrival rate λ∗ of Exercise 15) and the mean response time W . (Total time
for job completion = waiting + service).
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17. A computer system has s servers. Since each server can be accessed sep-
arately, each of the s servers can be considered a separate subsystem as
well. The arrival of jobs to each server is Poisson with rate λ and the ser-
vice time is exponential with mean 1/μ. The main system operator would
like to find out whether pooling resources would be advantageous in terms
of response time (the amount of time the job spends in the system). With
this objective consider the following three setups when s = 3.

(1) Three separate systems

(2) Arrivals are pooled into a single queue and processed separately
as a multi-server queue.

(3) The arrivals are pooled as in (2). In addition the servers are
connected, such that together they process jobs as a single server
with rate 3μ.

Let Wi be the mean response time with the ith setup (i = 1, 2, 3). Show
that

W1 > W2 > W3.

18. In a cyclic queue model of a single CPU and an I/O processor, the number
of jobs in the system remains a constant N . After receiving service at the
CPU, the job leaves the system with probability α and joins the I/O queue
with probability 1 − α. Soon after a job leaves the system a new job is
admitted to the CPU queue. The service times at the CPU and the I/O
are exponential with mean 1

μ1
and 1

μ2
respectively. Determine the limiting

distribution of the number of jobs waiting and being served at the CPU
queue. Also determine the mean time in system for a job (Coffman and
Denning 1973).

19. In a communication system, messages are transmitted throughM identical
channels. Messages are segmented for storage in fixed size buffers (bins).
An individual message may require several buffers, but no buffer contains
data from more than one message. When messages release the buffers
from which they are transmitted, the buffers are ready for reuse.

Assume that messages arrive in a Poisson process with rate λ. The mes-
sages are of length L that is exponentially distributed with mean 1/μL.
The transmission rate for the messages is R, so that the transmission time
is exponential with mean 1

RμL
.

The messages are stored in buffers. The data field size per buffer is b. Let
N be the random variable representing the number of buffers used by a
message.

(a) Obtain the distribution of N .

(b) Obtain the limiting probability that no message is present in the
system.
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(c) Determine the distribution of the number of occupied buffers
under statistical equilibrium and its mean and variance in terms
of the limiting probability of no messages present in the system.

(Pederson and Shah 1972).

20. The following model describes a simplified representation of a multipro-
gramming system. Let the drum storage unit with a shortest-latency-
time-first (SLTF) file drum described in Ex.10 of Chapter 1 be connected
to a central processor unit with a fixed number of m tasks circulating in
a closed system, alternately requesting service at the processor and the
drum. Let μn be the service rate at the file drum unit as described in
Ex.10 of Chapter 1, and λ be the service rate at the central processor.
Let pn, n = 0, 1, 2, . . . ,m, be the limiting distribution of the queue length
(including the one in service) at the file drum unit.

Determine {pn} and the expected processor utilization for various values
of m (which is known as the degree of multiprogramming) (Fuller 1980).

21. A simplified model of the drum storage unit described in Ex.20, assumes
a Poisson arrival of requests for files with rate λ. Let the service rate μn

be determined by the formula

1

μn
=

τ

n+ 1
+

1

μ

where τ is the period of rotation and n is the number of requests in the
system. Determine the mean waiting time of a request (Fuller (1980)).

22. In a time-shared computer system M terminals share a central processor.
Let μ be the processing rate at the CPU, with the processing time having
an exponential distribution. If a terminal is free at time t, the probability
that it will initiate a job in the infinitesimal interval (t, t + Δt] is λΔt +
o(Δt) and it will continue to be free at t + Δt has the probability 1 −
[λΔt+ o(Δt)].

(a) Let {pn} be the probability distribution of the number of busy
terminals as t → ∞. Determine pn, n = 0, 1, 2, . . . ,M .

(b) Show that in the long run, the arrival rate at the CPU is given
by

Mλ

1 + λW

where W is the mean response time ( = mean waiting time of a
job arriving at the terminal.)

(c) Equating the arrival rate with the departure rate from the pro-
cessor show that the mean response time can be obtained as

M

μ(1− p0)
− 1

λ
.
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(Fuller 1980).

23. Consider a two server Markovian queueM/Mi/2, in which customer arrivals
are in a Poisson process with parameter λ and the service times of the two
servers are distributed exponentially with rates μ1 > μ2. An arriving cus-
tomer finding both servers free, always chooses the faster server. But if
there is only one server free when an arrival occurs, it enters service with
the free server regardless of the service rate. If both servers are busy, the
arriving customer waits in line for service in the order of arrival.

Determine the limiting distribution of the number of customers in the
system.

Compare numerically the mean number of customers in the heterogeneous
system M/Mi/2 with the corresponding homogeneous system M/M/2,
when the service rate in the latter system is (μ1 + μ2)/2.

(Singh 1970).

24. Extend Ex.23, above to an M/Mi/3 heterogeneous queue and determine
the limiting distribution of the number of customers in it. Also carry out
a numerical comparison of the mean number of customers in the systems
between M/Mi/3 and M/M/3, when the service rate in the latter system
is the average of the three heterogeneous rates.

(Singh 1971).



Chapter 5

Imbedded Markov Chain
Models

In the last chapter, we used Markov process models for queueing systems with
Poisson arrivals and exponential service times. To model a system as a Markov
process, we should be able to give complete distribution characteristics of the
process beyond time t, using what we know about the process at t and changes
that may occur after t, without referring back to the events before t. When
arrivals are Poisson and service times are exponential, because of the memoryless
property of the exponential distribution we are able to use the Markov process
as a model. If the arrival rate is λ and service rate is μ, at any time point t, time
to next arrival has the exponential distribution with rate λ, and if a service is in
progress, the remaining service time has the exponential distribution with rate
μ. If one or both of the arrival and service distributions are non-exponential, the
memoryless property does not hold and a Markov model of the type discussed in
the last chapter does not work. In this chapter, we discuss a method by which
a Markov model can be constructed, not for all t, but for specific time points
on the time axis.

5.1 Imbedded Markov Chains

In an M/G/1 queueing system, customers arrive in a Poisson process and get
served by a single server. We assume that service times of customers are inde-
pendent and identically distributed (i.i.d) with an unspecified (general) distri-
bution. Let Q(t) be the number of customers in the system at time t. For the
complete description of the state of the system at time t, we need the value of
Q(t) as well as information on the remaining service time of the customer in
service, if there is one being served at that time. Let R(t) be the remaining
service time of such a customer. Now the vector [Q(t), R(t)] is a vector Markov
process since both of its components, viz., the number in the system and the

c© Springer Science+Business Media New York 2015 85
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remaining service time, are now completely specified. The earliest investigation
to analyze this vector process by itself was by Cox (1955), who used information
on R(t) as a supplementary variable in constructing the forward Kolmogorov
equations given in Chapter 3. Since it employs analysis techniques beyond the
scope set for this text, we shall not cover it here.

In two papers in the 1950s D. G. Kendall (1951, 1953) developed a procedure
to convert the queue length processes inM/G/1 and G/M/s into Markov chains.
(In the queue G/M/s, the service time has the memoryless property. Therefore,
in the vector process [Q(t), R(t)], R(t) now represents the time until a new
arrival.) The strategy is to consider departure epochs in the queue M/G/1
and arrival epochs in the queue G/M/s. Let t0 = 0, t1, t2, . . . be the points
of departure of customers in the M/G/1 queue and define Q(tn + 0) = Qn.
Thus, Qn is defined as the value of Q(t) soon after departure. At the points
{tn, n = 0, 1, 2, . . .}, R(t) is equal to zero; hence, Qn can be studied without
reference to the random variable R(t). Because of the Markov property of the
Poisson distribution the process {Qn, n = 0, 1, 2, . . .} is a Markov chain with
discrete parameter and state spaces. Due to the imbedded nature of the process
it is known as an imbedded Markov chain. In the queue G/M/s, arrival points
generate the imbedded Markov chain. We discuss these two systems in the next
two sections.

Imbedded Markov chains can also be used to analyze waiting times in the
queue G/G/1. A limited exploration of that technique will be given in Chapter
9. The matrix-analytic method described in Chapter 8 is entirely based on
imbedded Markov chains as well.

5.2 The Queue M/G/1

Let customers arrive in a Poisson process with parameter λ and get served by a
single server. Let the service times of these customers be i.i.d. random variables
{Sn, n = 1, 2, 3, . . .} with P (Sn ≤ x) = B(x), x ≥ 0; E(Sn) = b; V (Sn) = σ2

s .
We assume that Sn is the service time of the nth customer. Let Q(t) be the
number of customers in the system at time t and identify t0 = 0, t1, t2, . . . as
the departure epochs of customers. As described above, at these points the
remaining service times of customers are zero. Let Qn = Q(tn + 0) be the
number of customers in the system soon after the nth departure. We can show
that {Qn, n = 0, 1, 2, . . .} is a Markov chain as follows.

Let Xn be the number of customers arriving during Sn. With the Poisson
assumption for the arrival process, we have

kj = P (Xn = j) =

∫ ∞

0

P (Xn = j|Sn)P (t < Sn ≤ t+ dt)

=

∫ ∞

0

e−λt (λt)
j

j!
dB(t) j = 0, 1, 2, . . . . (5.2.1)

In writing dB(t) in (5.2.1), we use the Stieltjes notation in order to accom-
modate discrete, continuous, and mixed distributions. (See Appendix C.)
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Consider the relationship between Qn and Qn+1. We have

Qn+1 =

{
Qn +Xn+1 − 1 if Qn > 0
Xn+1 if Qn = 0

. (5.2.2)

The first expression for Qn+1 is obvious. The second expression (i.e., Xn+1 if
Qn = 0) results from the fact that Tn+1 is the departure point of the customer
who arrives after tn. It is in fact = 1− 1 +Xn+1.

As can be seen from (5.2.2), Qn+1 can be expressed in terms of Qn and a
random variable Xn+1, which does not depend on any event before tn. Since
Xn+1 is i.i.d., it does not depend on Qn either. The one-step dependence of
a Markov chain holds. Hence, {Qn, n = 0, 1, 2, . . .} is a Markov chain. Its
parameter space is made up of departure points, and the state space S is the
number of customers in the system; S = {0, 1, 2, . . .}. Because of the imbedded
nature of the parameter space, it is known as an imbedded Markov chain.

Let
P

(n)
ij = P (Qn = j|Q0 = i), i, jεS (5.2.3)

and write P
(1)
ij ≡ Pij .

From the relationship (5.2.2) and the definition of kj in (5.2.1), we can write

Pij = P (Qn+1 = j|Qn = i)

=

{
P (i+Xn+1 − 1 = j) if i > 0
P (Xn+1 = j) if i = 0

=

{
kj−i+1 if i > 0
kj if i = 0

. (5.2.4)

The transition probability matrix P for the Markov chain is

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . .

0 k0 k1 k2 . . .
1 k0 k1 k2 . . .
2 k0 k1 . . .
3 k0 . . .
. . . · · ·

⎤
⎥⎥⎥⎥⎥⎦
. (5.2.5)

For the Markov chain to be irreducible the state space should have a single
equivalence class. (See Appendix B.3 for the definition of the term irreducible
and the procedure of classification of states.) For this to happen in this context
the following two conditions must hold: k0 > 0 and k0+k1 < 1. It is easy to see
that if k0 = 0, with one or more customer arrivals for each departure, there is no
possibility for the system to attain stability and the number in the system will
only increase with time. If k0+k1 = 1, the only two states {0, 1} are possible in
the system eventually. (If the system starts with i > 1 customers, once it gets
0 or 1 it will remain in {0, 1}).
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Further classification of states depends on E(Xn), the expected number of
customers arriving during a service time.

Define the Laplace–Stieltjes transform of the service time distribution

ψ(θ) =

∫ ∞

0

e−θtdB(t) Re(θ) > 0 (5.2.6)

and the probability generating function (PGF) of the number of customers arriv-
ing during a service time

K(z) =

∞∑
j=0

kjz
j |z| ≤ 1. (5.2.7)

The following results follow from well-known properties of Laplace–Stieltjes
transforms and PGFs:

E(Sn) = b = −ψ′(0)

E(S2
n) = ψ′′(0)

E(Xn) = K ′(1)

E(X2
n) = K ′′(1) +K ′(1). (5.2.8)

From (5.2.1), we get

K(z) =

∫ ∞

0

e−λt
∞∑
j=0

(λtz)j

j!
dB(t)

=

∫ ∞

0

e−(λ−λz)tdB(t)

= ψ(λ− λz).

Hence

K ′(z) = −λψ′(λ− λz)

K ′(1) = −λψ′(0)

= λb. (5.2.9)

Note that λb =(arrival rate) × (mean service time). This quantity is called
the traffic intensity of the queueing system denoted by ρ. The value of ρ deter-
mines whether the system is in equilibrium (attains steady state) when the time
parameter n (of tn) → ∞. It can be shown that when ρ < 1, the Markov chain
is positive recurrent (i.e., the process returns to any state with probability one
and the mean time for the eventual return < ∞); when ρ = 1, the chain is null
recurrent (i.e., the process returns to any state with probability one, but the
mean time for the eventual return = ∞); and when ρ > 1, the chain is transient
(i.e., the process may not return to the finite states at all. Then the probability
that the process will be found in one of the finite states is zero.) These deriva-
tions are beyond the scope of this text. Nevertheless, these properties are easy
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to comprehend if we understand the real significance of the value of the traffic
intensity.

Recalling the result derived in (3.3.13), the n-step transition probabilities

P
(n)
ij (i, j = 0, 1, 2, . . .) of the Markov chain {Qn} are obtained as elements of

the nth power of the (one-step) transition probability matrix P. In considering
Pn in real systems the following three observations will be useful.

1. The result (3.3.13) holds regardless of the structure of the matrix.

2. As n in Pn increases, the nonzero elements cluster within submatrices
representing recurrent equivalence classes.

3. In an aperiodic irreducible positive recurrent Markov chain, as n in Pn

increases the elements in each column tend toward an intermediate value.

The probability P
(n)
ij for j = 0, 1, 2 . . . and finite n gives the time-dependent

behavior of the queue length process {Qn}. There are analytical techniques
for deriving these probabilities. However, they are beyond the scope of this
text. For example see Takács (1962), who uses PGFs to simplify recursive

relations generated by the Chapman–Kolmogorov relations for P
(n)
ij . Prabhu

and Bhat (1963) look at the transitions of Qn as some first passage problems
and use combinatorial methods in solving them (also see Prabhu (1965a)). In
practice, however, with the increasing computer power for matrix operations,
simple multiplications of P to get its nth power seem to be the best course of
action. When the state space is not finite, the observations given above can be
used to limit it without losing significant amount of information.

Limiting Distribution

The third observation given above, stems from the property of aperiodic positive
recurrent irreducible Markov chains which results in limn→∞ Pn becoming a
matrix with identical rows. Computationally, this property can be validated by
getting successive powers of Pn; as n increases the elements in the columns of
the matrix tend to a constant intermediate value. This behavior of the Markov
chain is codified in the following theorem and the corollary, given without proof.

Theorem 5.2.1 (1) Let i be a state belonging to an aperiodic recurrent equiv-

alence class. Let P
(n)
ii be the probability of the n-step transition i → i, and μi

be its mean recurrence time. Then limn→∞ P
(n)
ii exists and is given by

lim
n→∞

P
(n)
ii =

1

μi
= πi, say.

(2) Let j be another state belonging to the same equivalence class and P
(n)
ji be

the probability of the n-step transition j → i. Then

lim
n→∞

P
(n)
ji = lim

n→∞
P

(n)
ii = πi.



90 CHAPTER 5. IMBEDDED MARKOV CHAIN MODELS

Corollary 5.2.1 If i is positive recurrent, πi > 0 and if i is null recurrent,
πi = 0.

See Karlin and Taylor (1975) for a proof of this theorem.
Note that the term recurrence time in the theorem signifies the number of

steps the Markov chain takes to return to the starting state for the first time.
See Appendix B for other definitions.

Theorem 5.2.1 applies to Markov chains whether their state space is finite
or countably infinite.

For a state space S : {0, 1, 2, . . .} let (π0, π1, π2, . . .) be the limiting probabil-

ity vector where πi = limn→∞ P
(n)
ji , i, jεS. Let Π be the matrix with identical

rows π = (π0, π1, π2, . . .). Now, using Chapman–Kolmogorov relations we may
write

P(n) = Pn−1P

(see discussion leading up to (3.3.13)).

Applying Theorem 5.2.1 to P(n) and P(n−1), it is easy to write

Π = ΠP

or

π = πP. (5.2.10)

Furthermore, multiplying both sides of (5.2.10) repeatedly by P, we can also
establish that

πP = π = πP2

πP = π = πPn. (5.2.11)

The last equation shows that if we use the limiting distribution as the initial dis-
tribution of the state of an irreducible, aperiodic, and positive recurrent Markov
chain, the state distribution after n transitions (n = 1, 2, 3 . . .) is also given by
the same limiting distribution. Such a property is known as the stationarity of
the distribution. The following theorem summarizes these results and provides
a procedure by which the limiting distribution can be determined.

Theorem 5.2.2 (1) In an irreducible, aperiodic, and positive recurrent Markov
chain, the limiting probabilities πi(i = 0, 1, 2, . . .) satisfy the equations

πj =

∞∑
i=0

πiPij j = 0, 1, 2, . . .

∞∑
j=0

πj = 1. (5.2.12)

The limiting distribution is stationary.
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(2) Any solution of the equations

∞∑
i=0

xiPij = xj j = 0, 1, 2, . . . (5.2.13)

is a scalar multiple of {πi, i = 0, 1, 2, . . .} provided
∑

|xi| < ∞.

Thus, the limiting distribution of the Markov chain can be obtained by
solving the set of simultaneous equations (5.2.12) and normalizing the solution
using the second equation

∑∞
0 πj = 1. Note that because the row sums of the

Markov chain are equal to 1, (5.2.12) by itself yields a solution only up to a
multiplicative constant. The normalizing condition is, therefore, essential in the
determination of the limiting distribution.

With this background on the general theory of Markov chains, we are now in
a position to determine the limiting distribution of the imbedded Markov chain
of the M/G/1 queue.

Let π = (π0, π1, π2, . . .) be the limiting distribution of the imbedded chain.
Using the transition probability matrix (5.2.5) in the equation πP = π (which
is (5.2.12)), we have

k0π0 + k0π1 = π0

k1π0 + k1π1 + k0π2 = π1

k2π0 + k2π1 + k1π2 + k0π3 = π2

. . . (5.2.14)

A convenient way of solving these equations computationally is to define

ν0 ≡ 1 and νi = πi

/
π0

and rewrite (5.2.14) in terms of νi (i = 1, 2, . . .) as

ν1 =
1− k0
k0

ν2 =
1− k1
k0

ν1 −
k1
k0

...

νj =
1− k1
k0

νj−1 −
k2
k0

νj−2 − . . .
kj−1

k0
ν1 −

kj−1

k0
... (5.2.15)

These equations can be solved recursively to determine νi (i = 1, 2, . . .). The
limiting probabilities (π0, π1, π2, . . .) are known to be monotonic and concave,
and therefore, for larger values of n they become extremely small. Clearly



92 CHAPTER 5. IMBEDDED MARKOV CHAIN MODELS

νi = πi/π0 will also have the same properties and for computational purposes
it is easy to establish a cutoff value for the size of the state space.

In order to recover πi’s from νi’s, we note that

∞∑
i=0

νi = 1 +

∞∑
i=1

πi

π0
=

∑∞
i=0 πi

π0
=

1

π0
.

Here we have incoporated the normalizing condition
∑∞

0 πi = 1. Thus, we
get

π0 =

(
1 +

∞∑
i=1

νi

)−1

and
πi =

νi
1 +
∑∞

i=1 νi
. (5.2.16)

Analytically, the limiting distribution (π0, π1, π2, . . .) can be determined by solv-
ing equations (5.2.14) using generating functions. Unfortunately, deriving the
explicit expressions for the probabilities require inverting the resulting PGF.
However, we can obtain the mean and variance of the distribution using stan-
dard techniques. We give below the procedure for the determination of the
mean and variance of limn→∞Qn using the PGF of its distribution. If one is
interested only in the results they are given in (5.2.27)–(5.2.29). Define

Π(z) =
∞∑
j=0

πjz
j |z| ≤ 1

and

K(z) =

∞∑
j=0

kjz
j |z| ≤ 1.

Multiplying equations (5.2.14) with appropriate powers of z and summing, we
get

Π(z) = π0K(z) + π1K(z) + π2zK(z) + . . .

= π0K(z) +
K(z)

z
(π1z + π2z

2 + . . .)

= π0K(z) +
K(z)

z
[Π(z)− π0].

Rearranging terms,

Π(z)[1− K(z)

z
] = π0K(z)[1− 1

z
]

Π(z) =
π0K(z)(z − 1)

z −K(z)
. (5.2.17)
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The unknown quantity π0 on the right-hand side expression for Π(z) in (5.2.17)
can be determined using the normalizing condition

∑∞
j=0 πj = 0. We must have

Π(1) =
∞∑
j=0

πj = 1.

Letting z → 1 in (5.2.17), we get (applying l’Hôpital’s rule)

1 =
limz→1 π0[K(z)− (z − 1)K ′(z)]

limz→1[1−K ′(z)]
.

Recalling that K(1) = 1 and K ′(1) = ρ, (from (5.2.9)) we have

1 =
π0

1− ρ

π0 = 1− ρ. (5.2.18)

Thus, we get

Π(z) =
(1− ρ)(z − 1)K(z)

z −K(z)
. (5.2.19)

Explicit expressions for probabilities {πj , j = 0, 1, 2, . . .} can be obtained by
expanding Π(z) in special cases. An alternative form of Π(z) works out to be
easier for this expansion. We may write

Π(z) =
(1− ρ)K(z)

(z −K(z))/(z − 1)

=
(1− ρ)K(z)

1− [1−K(z)]/(1− z)
. (5.2.20)

Note that
∑∞

j=0 z
j(kj+1 + kj+2 + . . .) can be simplified to write as

1−K(z)

1− z
= C(z), say.

(Also see algebraic simplifications leading to (5.2.17)).
For |z| ≤ 1

|C(z)| =
∣∣∣∣1−K(z)

1− z

∣∣∣∣ < 1 if ρ < 1. (5.2.21)

Now using a geometric series expansion, we may write

Π(z) = (1− ρ)K(z)

∞∑
j=0

[C(z)]j . (5.2.22)

The explicit expression for πj is obtained by expanding the right-hand side of
(5.2.22) as a power series in z and picking the coefficient of zj in it.
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In a queueing system, the queue length process Q(t) may be considered with
three different time points: (1) when t is just before an arrival epoch, (2) when
t is soon after a departure epoch, and (3) when t is an arbitrary point in time.
In general, the distribution of Q(t) with reference to these three time points
may not be the same. However, when the arrival process is Poisson, it can be
shown that the limiting distributions of Q(t) in all three cases are the same.
The property of the Poisson process that makes this happen is its relationship
with the uniform distribution mentioned in Appendix B. See Wolff (1982) who
coined the acronym PASTA (Poisson Arrivals See Time Averages). For proofs
of this property also see Cooper (1981) and Gross et al. (2008).

The PGF Π(z) derived in (5.2.19), therefore, also gives the limiting distri-
bution limt→∞ Q(t). There are several papers in the literature deriving the
transition distribution of Q(t) for finite t. Among them are Prabhu and Bhat
(1963b) and Bhat (1968) who obtain the transition distribution using recursive
methods and renewal theory arguments. The explicit expression for the limiting
distribution of Q(t) (and the limiting distribution of Qn in the imbedded chain
case) derived in these papers is given by

π0 = 1− ρ

πj = (1− ρ)

∫ ∞

0

e−λt
∞∑

n=0

[
(λt)n+j−1

(n+ j − 1)!
− (λt)n+j

(n+ j)!

]
dBn(t) (5.2.23)

for ρ < 1, where Bn(t) is the n-fold convolution of B(t) with itself (Prabhu and
Bhat 1963a, b; Bhat 1968).

The mean and variance of limn→∞ Qn can be determined from the PGF
(5.2.19) through standard techniques. Writing Q∗ = limn→∞ Qn, we have

L = E(Q∗) = Π′(1)

V (Q∗) = Π′′(1) + Π′(1)− [Π′(1)]2. (5.2.24)

Differentiating Π(z) w.r.t. z, we get

Π′(z) =
1− ρ

[z −K(z)]2
{[z −K(z)][(K(z) + (z − 1)K ′(z)]

− (z − 1)[1−K ′(z)]K(z)} .

Using l’Hôpital’s rule twice while taking limits z → 1, we get

Π′(1) =
2K ′(1)[1−K ′(1)] +K ′′(1)

2[1−K ′(1)]
. (5.2.25)

But note from (5.2.9), K ′(1) = ρ and

K ′′(1) = λ2ψ′′(0)

= λ2E(S2) (5.2.26)
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where we have used a generic notation for the service time. Substituting from
(5.2.26) in (5.2.25), we get, after simplifications,

L = E(Q∗) = ρ+
λ2E(S2)

2(1− ρ)
(5.2.27)

which is often referred to as Pollaczek–Khintchine formula.
Noting that ρ is the expected number in service (which is the same as the

probability the server is busy in a single server queue), Lq, the mean number in
the queue is obtained as

Lq =
λ2E(S2)

2(1− ρ)
. (5.2.28)

Extending the differentiation to get Π′′(z), and taking limits as z → 1 with the
multiple use of l’Hôpital’s rule to get Π′′(1) we obtain

V (Q∗) = ρ(1− ρ) +
λ2E(S2)

2(1− ρ)

[
3− 2ρ+

λ2E(S2)

2(1− ρ)

]

+
λ3E(S3)

3(1− ρ)
. (5.2.29)

Recall that σ2
S is the variance of the service time distribution. Hence

σ2
S = E(S2) − [E(S)]2. Using this expression in (5.2.27) and noting that

λE(S) = ρ, we get an alternative form for E(Q∗).

E(Q∗) = ρ+
ρ2

2(1− ρ)
+

λ2σ2
S

2(1− ρ)
(5.2.30)

which clearly shows that the mean queue length increases with the variance of
the service time distribution. For instance, when σ2

S = 0, i.e., when the service
time is a constant (in the queue M/D/1)

E(Q∗) = ρ+
ρ2

2(1− ρ)
=

ρ

1− ρ
(1− ρ

2
). (5.2.31)

On the other hand, when the service time distribution is Erlang with mean 1
μ

and scale parameter k (i.e., by writing λ = μ in (2.1.8)), we get σ2
S = 1

kμ2 and

E(Q∗) = ρ+
ρ2

2(1− ρ)
+

ρ2

2k(1− ρ)

= ρ+
ρ2(1 + k)

2k(1− ρ)
. (5.2.32)

When k = 1, we get E(Q∗) in M/M/1 as

E(Q∗) =
ρ

1− ρ
.
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Waiting Time

The concept of waiting time has been used earlier in the context of the M/M/1
queue. Since we had the distribution of the queue length explicitly, we were
then able to determine the distribution of the waiting time. But in the M/G/1
case the explicit expression for the limiting distribution of the queue length, viz.,
equation (5.2.23), is not easy to handle, even for computations. Consequently,
we approach this problem indirectly using the PGF Π(z) of the queue length.

Assume that the queue discipline is first-come, first-served (FCFS). Let T
be the total time spent by the customer in the system in waiting and service
which we may call system time or time in system, and Tq the actual waiting
time, both as t → ∞. Let E(T ) = W and E(Tq) = Wq. The determination of
W and Wq requires the use of PGFs and Laplace–Steiltjes transforms (LSTs)
which may be skipped in first reading, moving directly to the results (5.2.42)
and (5.2.43).

Let F (·) be the distribution function of T with a Laplace–Stieltjes transform

Φ(θ) =

∫ ∞

0

e−θtdF (t) Re(θ) > 0.

Consider a customer departing from the system. It has spent a total time of
T , in waiting and service. Suppose the departing customer leaves n customers
behind; clearly, these customers have arrived during its time in system T . Then
we have

P (Q∗ = n) =

∫ ∞

0

e−λt (λt)
n

n!
dF (t) n ≥ 0. (5.2.33)

Using generating functions,

Π(z) =
∞∑

n=0

P (Q∗ = n)zn =
∞∑

n=0

zn
∫ ∞

0

e−λt (λt)
n

n!
dF (t)

=

∫ ∞

0

e−λt
∞∑

n=0

(λtz)n

n!
dF (t)

=

∫ ∞

0

e−(λ−λz)tdF (t)

= Φ(λ− λz). (5.2.34)

Comparing (5.2.19) with (5.2.34), we have

(1− ρ)(z − 1)K(z)

z −K(z)
= Φ(λ− λz). (5.2.35)

Recall that
K(z) = ψ(λ− λz).

Substituting in (5.2.35),

Φ(λ− λz) =
(1− ρ)(z − 1)ψ(λ− λz)

z − ψ(λ− λz)
.
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Writing λ− λz = θ, we get z = 1− θ
λ ; hence

Φ(θ) =
(1− ρ) θλψ(θ)

ψ(θ)− (λ− θ)/λ

=
(1− ρ)θψ(θ)

θ − λ[1− ψ(θ)]
. (5.2.36)

Since the system time T is the sum of the actual waiting time Tq and service
time S, defining the Laplace–Stieltjes transform of the distribution of Tq as
Φq(θ), we have

Φ(θ) = Φq(θ)ψ(θ). (5.2.37)

Comparing (5.2.36) and (5.2.37), we write

Φq(θ) =
(1− ρ)θ

θ − λ[1− ψ(θ)]
(5.2.38)

which can be expressed as

Φq(θ) =
1− ρ

1− λ
θ [1− ψ(θ)]

= (1− ρ)

∞∑
n=0

[
λ

θ
[1− ψ(θ)]

]n
. (5.2.39)

In using the geometric series for (5.2.39), we can show that |λθ [1 − ψ(θ)]| < 1
for ρ < 1.

In Chapter 3, we have introduced a renewal process as a sequence of indepen-
dent and identically distributed random variables. Suppose tn+1−tn = Zn is the
nth member of such a sequence. Let t be a time point such that tn < t ≤ tn+1.
Then tn+1 − t = R(t) is the forward recurrence time the density function of
which was introduced in the functional form as in equation (3.4.22). If B(·) is
the distribution function of Zn (Note that in Chapter 3 we have used F (·) for
this distribution and R for its mean.) (3.4.24) can be rewritten as

lim
t→∞

rt(x) =
1

E[Zn]
[1−B(x)]. (5.2.40)

Using this concept, we can invert (5.2.39) to give the distribution function
of Tq as

Fq(t) = (1− ρ)
∞∑

n=0

ρnR(n)(t) (5.2.41)

where R(n)(t) is the n-fold convolution of the distribution of the remaining
service time R(t) with itself.
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As stated in Chapter 4, Little’s law (L = λW ) applies broadly to queueing
systems with only some restrictions on structure and discipline. (See Section 9.2
for details.) Hence, using the law on (5.2.27) and (5.2.28), we get

W = E(S) +
λE(S2)

2(1− ρ)
(5.2.42)

Wq =
λE(S2)

2(1− ρ)
. (5.2.43)

These means can also be determined from the transforms Φ(θ) and Φq(θ). For,
we have

W = E(T ) = Φ′(0)

σ2
T = V (T ) = Φ′′(0)− [Φ′(0)]

2

and similar expressions for Wq and σ2
Tq
. The following result, derived in this

manner, might be useful in some applications.

σ2
Tq

= V (Tq) =
λE(S3)

3(1− ρ)
+

λ2[E(S2)]2

4(1− ρ)2
. (5.2.44)

The Busy Period

In the context of an imbedded Markov chain, the length of the busy period is
measured in terms of the number of transitions of the chain without visiting
the state 0. Let Bi be the number of transitions of the Markov chain before it
enters state 0 for the first time, having initially started from state i.

A key property of Bi is that it can be thought of as the sum of i random
variables each with the distribution of B1. This is equivalent to saying that the
transition i → 0 can be considered to be occurring in i segments, i → i − 1,
i−1 → i−2, . . . , 1 → 0. This is justified by the fact that the downward transition
can occur only one step at a time. Since all these transitions are structurally
similar to each other we can consider Bi as the sum of i random variables each
with the distribution of B1. To derive E(Bi) we first use an indirect method
involving the PGF of B1. The reader may go directly to the result (5.2.50) in
first reading.

Let

g
(n)
i = P [Bi = n] n = 1, 2, . . . . (5.2.45)

As a consequence of the property stated above g
(n)
i is the i-fold convolution

of g
(n)
1 with itself. Thus, for the PGF of g

(n)
i

Gi(z) =
∞∑
n=i

g
(n)
i zn = [G1(z)]

i
. (5.2.46)
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Noting that the busy period cannot end before the ith transition of the Markov
chain, we have

g
(i)
i = k

(i)
0

g
(n)
i =

n−1∑
r=1

k(i)r g(n−i)
r (5.2.47)

where k
(i)
r is the i-fold convolution of the probability kr that r customers arrive

during a service period (see (5.2.1)).
For i = 1

g
(1)
1 = k0

and

g
(n)
1 =

n−1∑
r=1

krg
(n−1)
r n ≥ 2.

Multiplying by appropriate powers of z to both sides of these equations, we get

g
(1)
1 z = k0z

∞∑
n=2

g
(n)
1 zn =

∞∑
n=2

zn
n−1∑
r=1

g(n−1)
r .

Hence

G1(z) = zk0 + z

∞∑
r=1

kr

∞∑
n=r+1

zn−1g(n−1)
r

= z

[
k0 +

∞∑
r=1

kr[G1(z)]
r

]

= zK[G1(z)]. (5.2.48)

From the definition of K(z) earlier, we have

K(z) = ψ(λ− λz)

where ψ(θ) is the Laplace–Stieltjes transform of the service time distribution.
Thus, the PGF G1(z) ≡ G(z) is such that it satisfies the functional equation

ω = zψ(λ− λω). (5.2.49)

It is possible to show that G(z) is the least positive root (≤ 1) of the functional
equation (5.2.49) when ρ < 1 and determine explicit expressions for specific
distributions. (For other ways of deriving the busy period distribution in explicit
forms see Prabhu and Bhat (1963a).)
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We can easily obtain the mean length of the busy period by implicit differ-
entiation of (5.2.49). We have

G(z) = zψ(λ− λG(z)).

On differentiation,

G′(z) = ψ[λ− λG(z)] + zψ′[λ− λG(z)][−λG′(z)].

As z → 1,

G′(1) = ψ(0) + ψ′(0)[−λG′(1)].

Rearranging terms

G′(1)[1 + λψ′(0)] = 1

G′(1) =
1

1 + λψ′(0)
.

Referring back to the definitions given earlier

E[B1] = G′(1) =
1

1− ρ
.

Following the arguments leading to (5.2.46), for the busy period Bi initiated
by i customers, we get

E(Bi) =
i

1− ρ
. (5.2.50)

Since we are counting the number of transitions, to get the exact mean
length of a busy period we multiply it by the mean length of time taken for
each transition, viz., the service period. Hence

Mean length of the busy period =
E(S)

(1− ρ)
. (5.2.51)

Noting that a busy cycle is made up of a busy period and an idle period and
that the mean length of the idle period in M/G/1 with arrival rate λ is 1/λ, we
get

Mean length of the busy cycle =
E(S)

1− ρ
+

1

λ
=

1

λ(1− ρ)
. (5.2.52)

The Queue M/G/1/K

Consider theM/G/1 queue described earlier, with the restriction that the capac-
ity for the number of customers in the system is K. Since the state space for
the imbedded Markov chain is the number in the system soon after departure,
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K will not be included in the state space. S = {0, 1, 2, . . . ,K − 1}. Thus,
corresponding to (5.2.2) we have the relation

Qn+1 =

{
min (Qn +Xn+1 − 1,K − 1) if Qn > 0
min (Xn+1,K − 1) if Qn = 0

. (5.2.53)

Using the probability distribution {kj , j = 0, 1, 2, . . .} defined in (5.2.1), we get
the transition probability matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . K − 1

0 k0 k1 k2 . . . 1−
∑k−2

0 kj
1 k0 k1 k2 . . . 1−

∑k−2
0 kj

2 k0 k1 . . . 1−
∑k−3

0 kj
...

...
K − 1 1− k0

⎤
⎥⎥⎥⎥⎥⎦
. (5.2.54)

Let π = (π0, π1, . . . , πk−1) be the limiting distribution for the state of the
Markov chain. These probabilities are determined by solving the equations

πj =
∑
i

πiPij j = 0, 1, 2, . . . ,K − 1

K−1∑
0

πj = 1. (5.2.55)

The first K − 1 equations are identical to those for M/G/1 with no capacity
restriction. Therefore, we can use the computational method outlined in (5.2.15)
for the solution of (5.2.55). We may note here that one of the k simultaneous
equations in (5.2.55) is redundant because of the Markov chain structure of the

coefficients. In its place, we use the normalizing condition
∑K−1

0 πj = 1 for the
solution. We may also note from the computational solution technique that the
finite case solution is obtained by using the same νi’s as in the infinite case for
i = 0, 1, 2, . . . ,K − 1 and determining

π0 =

[
K−1∑
0

νi

]−1

πi = π0νi. (5.2.56)

The discussion of the waiting time distribution is a bit complicated inM/G/1/K,
since for the Markov chain the state space is only {0, 1, 2, . . . ,K − 1} while our
arrival may find K customers in the system (before a departure). Thus, from
the viewpoint of an arrival, we need the limiting distribution at an arbitrary
point in time. For further details, the readers are referred to more advanced
texts on the subject.

The busy period analysis given earlier for the queue M/G/1 cannot be easily
modified for the finite capacity case. Computationally, the best approach seems
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to be to consider the busy period as a first passage problem in the irreducible
Markov chain from state 1 to state 0. This can be done by converting state
0 into an absorbing state and using the concept of the fundamental matrix
in the determination of the expected number of transitions required for the
first passage transition. For details, the readers are referred to Bhat and Miller
(2002), Chapter 2. A further discussion of this method is also given in Section 7.2
of Chapter 7.

Example 5.2.1 Consider a computer network node in which requests for data
arrive in a Poisson process at the rate of 0.5 per unit time. Assume that the
data retrieval (service) takes a constant amount of one unit of time.

We can model this system as an M/D/1 queue and use the techniques devel-
oped in this section for its analysis. We have

kj = e−0.5 (0.5)
j

j!
j = 0, 1, 2, . . .

which on evaluation gives

k0 = 0.607; k1 = 0.303; k2 = 0.076; k3 = 0.012; k4 = 0.002.

The Laplace–Stieltjes transform of the service time distribution is

ψ(θ) = e−(0.5)θ

and the PGF of kj , j = 0, 1, 2 . . . is

K(z) = e−0.5(1−z).

These give, the PGF Π(z) of the limiting distribution as

Π(z) =
(1− 0.5)(z − 1)e−0.5(1−z)

z − e−0.5(1−z)
.

Now Π(z) can be inverted to determine the distribution explicitly. However,
computationally it is easier to use the method described in (5.2.56). We have

ν1 =
1− k0
k0

= 0.647; ν2 =
1− k1
k0

ν1 −
k1
k0

= 0.244; ν3 = 0.074;

ν4 = 0.022; ν5 = 0.006; ν6 = 0.002; ν7 = 0.001;
7∑

i=0

νi = 1.996;

π0 = (
7∑
0

νi)
−1 = 0.501;

πi = νiπ0 i = 1, 2, . . . , 7.
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Thus, we get

π0 = 0.501; π1 = 0.324; π2 = 0.122; π3 = 0.037;

π4 = 0.011; π5 = 0.003; π6 = 0.001; π7 = 0.000.

The mean number of customers in the system as t → ∞ can be determined
either from the formula (5.2.31) or from the distribution π determined above.
We get

L = E(Q) = 0.75.

Using Little’s law, L = λW , the mean system time can be obtained as

W = 0.75/0.5 = 1.5 time units.

Also for the mean length of a busy period B, we have

E(B1) =
1

1− 0.5
= 2 time units. Answer

Example 5.2.2 In an automobile garage with a single mechanic, from the
records kept by the owner, the distribution of the number of vehicles arriving
during the service time of a vehicle is obtained as follows:

P (no new arrivals) = 0.5

P (one new arrival) = 0.3

P (two new arrivals) = 0.2.

If we assume that the arrival of vehicles for service follow a Poisson distribution,
we can model this system as an M/G/1 queue, even when we do not have a
distribution form for the service times. With this assumption, we get

k0 = 0.5; k1 = 0.3; k2 = 0.2

with E (# of arrivals during one service period) = 0.7 = traffic intensity ρ. The
computational method for the determination of the limiting distribution is the
most appropriate, since no distribution form is available for the service time.
Using equations (5.2.15), we get

ν0 = 1; ν1 = 1; ν2 = 0.8; ν3 = 0.32;
ν4 = 0.128; ν5 = 0.051; ν6 = 0.021 ν7 = 0.008;
ν8 = 0.003; ν9 = 0.001; ν10 = 0.001.

Hence
∑10

i=0 νi = 3.333. Since π0 =
(∑10

i=0 νi

)−1

and πi = νiπ0, we get

π0 = 0.300; π1 = 0.300; π2 = 0.240; π3 = 0.096;
π4 = 0.038; π5 = 0.015; π6 = 0.006; π7 = 0.002;
π8 = 0.001; π9 = 0.000.
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The mean of this distribution is obtained as

L = E(Q∗) = 1.353.

Using Little’s law, for the mean system time we get

W = 1.353/0.7 = 1.933 service time units.

Note that we use the mean service time as the unit of time for the purpose of
determining the mean waiting time. Answer

Example 5.2.3 The following example (Coffman and Kleinrock (1968)) illus-
trates the procedure for the determination of the response time which is the
mean total time spent in a queueing system by a customer in receiving service
with a round robin (RR) service discipline. In RR service discipline, service is
provided for a fixed amount of time, called quantum (Q), with every visit to
the server, and if the service time of a job is longer than Q, the customer is sent
back to the end of the queue to wait for its turn again. Clearly, such a discipline
favors customers with short service times.

The readers should note that the derivations in this example are rather
advanced in nature.

Consider a single server queueing system with arrivals in a Poisson process
with parameter λ. Let the service times have a geometric distribution

gi = (1− σ)σi−1 i = 1, 2, . . . 0 < σ < 1 (5.2.57)

where gi is the probability that the service time consists of i quanta, each of
length Q.

We are interested in the determination of the conditional mean response
time (Wk) of a customer requiring k quanta of service. The response time is
made up of three components: the service time of the customer in service at the
time of the arrival, total service time of the customers waiting in queue at the
time of the arrival, and the service time of the arriving customer. The mean
number of customers waiting or in service at the time of the arrival is given by
(5.2.27) as

L = ρ+
λ2E(S2)

2(1− ρ)
(5.2.58)

where ρ = λE(S) is the traffic intensity with S denoting service time and E(S2),
the second moment of the service time distribution. From the distribution
(5.2.57), we have

E(S) =

( ∞∑
i=1

igi)

)
Q

=
Q

1− σ
. (5.2.59)
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E(S2) = Q2
∞∑
i=1

i2gi

= Q2
∞∑
i=1

[i(i− 1) + i]gi

= (1− σ)Q2
∞∑
i=1

[i(i− 1) + i]σi−1

= (1− σ)Q2[2σ(1− σ)−3 + (1− σ)−2]

=
1 + σ

(1− σ)2
Q2. (5.2.60)

Substituting from (5.2.59) and (5.2.60) in (5.2.58), we get

L = ρ+
ρ2(1 + σ)

2(1− ρ)
(5.2.61)

where ρ = λQ/(1− σ).
Let Wk(j) be the conditional expectation of the time spent in the system by

an arriving customer requiring k quanta of service when there are j customers
in the system. Then for the conditional mean response time, we have

Wk =
∞∑
j=0

pjWk(j) (5.2.62)

where {pj , j = 0, 1, 2 . . .} is the limiting distribution of the number of customers
in the system at an arrival epoch. Note that, because of the PASTA property
discussed earlier, the distribution {pj}∞j=0 is identical to the limiting distribution
{πj}∞j=0 of customers in the system soon after a departure epoch and its mean
value is given by (5.2.61).

Because of the RR nature of service, we have to breakdown Wk(j) in terms
of the number of times the customer passes through service, which is k. Let
Ui(j), i = 1, 2, . . . , k be the random variable denoting the time required for the
ith pass, assuming that the customer arrives when there are j customers in the
system. For the sake of simplicity we shall suppress the argument j until, its
inclusion is necessary.

Suppose Ui = x, i ≥ 2. Then Ui+1 is made up three components: (i) The
amount of time required to serve those who are ahead of the customer at the ith

pass. This is σ
[
( x
Q ) − 1

]
Q, where σ is the probability of a customer returning

for another quantum of service, and x/Q is the number of quanta of service
ahead of the customer at the ith pass, (ii) the amount of time needed to provide
one quantum of service for those who arrive during Ui, and (iii) the customer’s
quantum of service. Thus, we get

E[Ui+1

∣∣∣∣Ui = x] = σ(
x

Q
− 1)Q+ λxQ+Q (5.2.63)
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giving

E[Ui+1] = (λQ+ σ)E(Ui) +Q(1− σ) i = 2, 3, . . . , k. (5.2.64)

By successive iteration, from (5.2.64) we get

E[Ui] = αi−2E(U2) +Q(1− σ)
1− αi−2

1− α
i = 2, 3, . . . , k (5.2.65)

where we have written λQ+ σ = α. Also, in the first pass for U1(j), we have

U1(j) = (time to complete the service in progress)

+(total time to serve j − 1 customers)

+(one quantum of service for the arriving customer)

= ρ(
Q

2
) + (j − ρ)Q+Q

= (1− ρ

2
)Q+ jQ. (5.2.66)

The term ρ(Q2 ) leading to (5.2.66) represents the mean of a uniform distribution
in (0, Q) with ρ as the probability of finding a customer in service. Using similar
arguments

E(U2(j)) = λQE(U1) + σ(jQ) +Q. (5.2.67)

Now

Wk(j) =

k∑
i=1

E(Ui(j)). (5.2.68)

Substituting from (5.2.65) and (5.2.67), we get

Wk(j) = E(U1)

+
k∑

i=2

[
αi−2(λQE(U1) +Q(σj + 1)) +Q(1− σ)

1− αi−2

1− α

]

= E(U1) + [λQE(U1) +Q(σj + 1)]
1− αk−1

1− α

+
Q(1− σ)

1− α
[(k − 1)− 1− αk−1

1− α
]

= E(U1) +
(k − 1)Q

1− ρ
+Q[λE(U1) + σj − ρ

1− ρ
]
1− αk−1

1− α
.(5.2.69)

In deriving (5.2.69), we have used the following simplifications:

α = λQ+ σ; ρ =
λQ

1− σ
; 1− ρ =

1− σ − λQ

1− σ
.
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Taking expectations as in (5.2.62), for the conditional mean response time we
get

Wk = W1 +
(k − 1)Q

1− ρ
+Q[λW1 + σL− ρ

1− ρ
]
1− αk−1

1− α
k ≥ 1 (5.2.70)

with W1 = (1− ρ/2)Q+ LQ, and L given by (5.2.61).

When the service time distribution is exponential, μe−μx(x > 0), we get
σ = e−λQ and

gi = (1− e−λQ)e−(i−1)λQ i = 1, 2, . . . . (5.2.71)

For the ramifications of making Q very small, and other variations readers may
refer to Coffman and Denning (1973).

Example 5.2.4 The storage in a warehouse is such that the most recent item
stored gets to be taken out first. This is the example of a last-come, first-served
(LCFS) service discipline if the process of replenishment of the item and its
disposal is looked upon as a queueing process. Let the replenishment process
be Poisson with parameter λ and let B(·) be the distribution function of the
inter-arrival times of demands.

We want to determine the average time an item stays in the warehouse before
it is disposed of.

Considering the inter-demand times as the service times of the queueing
system, we have here an M/G/1 queue with LCFS service discipline.

Since, the customer arriving last gets served first in an LCFS queueing sys-
tem, the amount of time the customer spends while waiting is the sum of the
remainder of the service that is in progress and the length of the busy period
initiated by the number of customers who arrive during that period.

When the service time distribution has a general form B(·), as t → ∞
the remainder of the service time at the time of the customer arrival can be
considered to be the forward recurrence time of a renewal process, the density
function of which was briefly introduced in (5.2.40). We have

r(x) = lim
t→∞

rt(x) =
1

E(S)
[1−B(x)] (5.2.72)
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where we have used S to denote the service time random variable. The mean
of this distribution can be obtained as follows:∫ ∞

0

xr(x)dx =
1

E(S)

∫ ∞

0

x[1−B(x)]dx

=
1

E(S)

∫ ∞

x=0

x

[∫ ∞

y=x

dB(y)

]
dx

=
1

E(S)

∫ ∞

y=0

[∫ y

x=0

xdx

]
dB(y)

=
1

E(S)

∫ ∞

y=0

y2

2
dB(y)

=
E(S2)

2E(S)
. (5.2.73)

With the Poisson arrival rate λ, the expected number of customers arriving
during the remainder of the service time can be given as

λE(S2)

2E(S)
. (5.2.74)

As described earlier, the customer’s mean waiting time Wq is the sum of the
mean length of the remainder of the service time and the mean length of the
busy period initiated by the number of customers who arrive during that period.
Using (5.2.51), we get

Wq =
λE(S2)

2E(S)
× 1

1− ρ
· E(S)

=
λE(S2)

2(1− ρ)
. (5.2.75)

The average time the item stays in the warehouse is the time spent in the system
W = Wq + E(S). We have

W = E(S) +
λE(S2)

2(1− ρ)
. (5.2.76)

Comparing these results with (5.2.42) and (5.2.43), we note that in this example
we have shown that the mean waiting time (and also the mean queue length)
of the customer in the system is the same whether the queue discipline is FCFS
or LCFS.

5.3 The Queue G/M/1

Let customers arrive at time points t0 = 0, t1, t2, . . . and get served by a single
server. Let Zn = tn+1 − tn, n = 1, 2, 3, . . ., be independent and identically dis-
tributed random variables with distribution function A(·) with mean a. Also let
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the service time distribution be exponential with mean 1/μ. It should be noted
that this system has been traditionally represented by the symbol GI/M/1
(GI—General Independent). We use the symbolic representation G/M/1 for
symmetry with the system M/G/1. Also I in GI does not really add any
additional information.

Let Q(t) be the number of customers in the system at time t and define
Q(tn − 0) = Qn, n = 1, 2, . . .. Thus, Qn is the number in the system just before
the nth arrival. DefineXn as the number of potential service completions during
the inter-arrival period Zn. (Note that we use the word “potential” to indicate
that there may not be Xn actual service completions, if the number of customers
in the system soon after tn is less than that number.) Let {bj , j = 0, 1, 2, . . .}
be the distribution of Xn. We have

bj = P (Xn = j) =

∫ ∞

0

e−μt (μt)
j

j!
dA(t). (5.3.1)

Now consider the relationship between Qn and Qn+1. We have

Qn+1 =

{
Qn + 1−Xn+1 if Qn + 1−Xn+1 > 0
0 if Qn + 1−Xn+1 ≤ 0

. (5.3.2)

We should note that sinceXn+1 is defined as the potential number of departures,
Qn+1−Xn+1 can be< 0. ClearlyQn+1 does not depend on any random variable
with an earlier index parameter than n; hence {Qn, n = 0, 1, 2, . . .} is a Markov
chain imbedded in the queue length process. From (5.3.2) we get the transition
probability

Pij = P (Qn+1 = j|Qn = i)

=

{
P (Xn+1 = i− j + 1) if j > 0
P (Xn+1 ≥ i+ 1) if j = 0

giving

Pij = bi−j+1 j > 0

Pi0 =

∞∑
r=i+1

br. (5.3.3)

The transition probability matrix takes the form

P =

⎡
⎢⎢⎢⎣

0 1 2 3 . . .

0
∑∞

1 br b0
1
∑∞

2 br b1 b0
2
∑∞

3 br b2 b1 b0 . . .
...

...
...

...

⎤
⎥⎥⎥⎦. (5.3.4)
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For the Markov chain to be irreducible b0 > 0 and b0 + b1 < 1. (These two
conditions can be justified in much the same way as for the queue M/G/1.) We
can easily determine that the Markov chain is aperiodic. Let

φ(θ) =

∫ ∞

0

e−θtdA(t) Re(θ) > 0

be the Laplace–Stieltjes transform of A(·). Using φ(θ), the PGF of {bj} is
obtained as

β(z) =

∞∑
j=0

bjz
j |z| ≤ 1

=

∫ ∞

0

e−(μ−μz)tdA(t)

= φ(μ− μz).

Using definitions similar to those given in (5.2.8), we get (using generic symbols
X and Z for Xn and Zn)

E(Z) = β′(1) = −μφ′(0) = aμ. (5.3.5)

We define the traffic intensity ρ = (arrival rate)/(service rate). From (5.3.5) we
get

ρ =
1

aμ
. (5.3.6)

It can be shown that the Markov chain is positive recurrent when ρ < 1, null
recurrent when ρ = 1, and transient when ρ > 1. (See discussion under M/G/1
for the implications of these properties. Also a proof is provided later in (5.3.31)
and the remarks following that equation.)

The n-step transition probabilities P
(n)
ij (i, j = 0, 1, 2, . . .) of the Markov

chain {Qn} are obtained as elements of the nth power of P. The observations
made under M/G/1 regarding the behavior of Pn hold in the G/M/1 case as

well. For analytical expressions for P
(n)
ij the readers may refer to the same refer-

ences, Takács (1962), Prabhu and Bhat (1963a), and Prabhu (1965a). In prac-
tice however, if the state space can be restricted to a manageable size depending
on the computer power, successive multiplication of P to get its power Pn is
likely to turn out to be the best course of action.

Limiting Distribution

Let π = (π0, π1, π2, . . .) be the limiting probabilities defined as πj = limn→∞ P
(n)
ij .

Based on Theorem 5.2.1, this limiting distribution exists when the Markov chain
is irreducible, aperiodic, and positive recurrent, i.e., when ρ < 1. Theorem 5.2.2
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provides the method to determine the limiting distribution. Thus, from (5.2.12)
we have the equations

πj =

∞∑
i=0

πiPij j = 0, 1, 2 . . .

∞∑
0

πj = 1.

Using Pij ’s from (5.3.4), we get

π0 =

∞∑
i=0

πi(

∞∑
r=i+1

br)

π1 = π0b0 + π1b1 + π2b2 + . . .

π2 = π1b0 + π2b1 + π3b2 + . . .

...

πj =

∞∑
r=0

πj+r−1br (j ≥ 1). (5.3.7)

The best computational method for the determination of the limiting dis-
tribution seems to be the direct matrix multiplication to get Pn for increasing
values of n until the rows can be considered to be reasonably identical. The com-
putational technique suggested for M/G/1 (see (5.2.15)) does not work because
of the lower triangular structure of P. As we will see later in the discussion of
the finite queue G/M/1/K, unless we start with a large enough K, restricting
the state space to a finite value alters the last row of the matrix on which the
technique has to be anchored.

Given below is an analytical method using finite differences, which may be
skipped in first reading. The solution is given in (5.3.13).

This procedure is mathematically simple as well as elegant. (For background
in techniques for solving finite difference equations, see standard texts on the
subject, e.g., Hildebrand (1968) and Boole (1970).)

Define the finite difference operator D as

Dπi = πi+1. (5.3.8)

Using (5.3.8), equation (5.3.7) can be written as

πj−1(D − b0 −Db1 −D2b2 −D3b3 − . . .) = 0. (5.3.9)
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Appealing to finite difference methods, a nontrivial solution to the equation
(5.3.9) is obtained by solving its characteristic equation

D − b0 −Db1 −D2b2 − . . . = 0

D =
∞∑
j=0

bjD
j

D = β(D). (5.3.10)

Hence, the solution to (5.3.10) should satisfy the functional equation

z = β(z). (5.3.11)

In (5.3.10) and (5.3.11), we have used the fact that β(z) is the PGF of {bj , j =
0, 1, 2, . . .}.

To obtain roots of (5.3.11), consider two equations y = z and y = β(z). The
intersections of these two equations give the required roots.

We also have the following properties.

• β(0) = b0 > 0; β(1) =
∑∞

0 bj = 1; β′(1) = ρ−1

• β′′(z) = 2b2 + 6b3z + . . . > 0 for z > 0.

Hence, β′(z) is monotone increasing and therefore β(z) is convex.
Of the two equations, y = z is a straight line passing through 0, and since

β(0) = b0 > 0, β(1) = 1, and β(z) is convex, equation y = z and y = β(z)
intersect at most twice, once at z = 1. Let ζs be the second root. Whether
ζs lies to the left or to the right of 1 is dependent on the value of the traffic
intensity ρ.

Case 1: ρ < 1.

When ρ < 1, β′(1) > 1; then y = β(z) intersects y = z approaching from below
at z = 1. But b0 > 0. Hence ζs < 1.

Case 2: ρ > 1.

When ρ > 1, β′(1) < 1. Then y = β(z) intersects y = z approaching from above
at z = 1. Hence ζs > 1.

Case 3: ρ = 1.

In this case β′(1) = 1 and y = z is a tangent to y = β(z) at z = 1. This means
ζs and 1 coincide.

Let ζ be the least positive root. We have ζ < 1 if ρ < 1 and ζ = 1 is ρ ≥ 1.
This root is used in the solution of the finite difference equation (5.3.9). (Note
that our solution is in terms of probabilities which are ≤ 1, so the root we use
must be ≤ 1 as well.)
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Going back to the difference equation (5.3.9), we can say that

πj = cζj (j > 0) (5.3.12)

is a solution. Since ζ < 1,
∑∞

0 πj = 1, we get

∑
j

πj = c

∞∑
j=0

ζj =
c

1− ζ
= 1

giving
c = 1− ζ.

Substituting this back into (5.3.12), we get

πj = (1− ζ)ζj j = 0, 1, 2, . . . (5.3.13)

as the limiting distribution of the state of the system in the queue G/M/1.
Referring back to the definition of β(z), we note that ζ is the root of the

equation
z = φ(μ− μz). (5.3.14)

In most cases the root ζ of (5.3.14) has to be determined using numerical tech-
niques. For efficient root-finding algorithms the readers may refer to Chaudhry
(1992) and references cited therein.

With the geometric structure for the limiting distribution (5.3.13), the mean
and variance of the number in the system, say QA, are easily obtained. We have
(the superscript A denotes arrival point restriction)

LA = E(QA) =
ζ

1− ζ
; LA

q =
ζ2

1− ζ

V (QA) =
ζ

(1− ζ)2
. (5.3.15)

It is important to note that the imbedded Markov chain analysis gives the
properties of the number in the system at arrival epochs. (For convenience we
have used the number before the arrivals). As pointed out under the discussion
on the M/G/1 queue the limiting distributions of the number of customers in
the system at arrival epochs, departure epochs, and at arbitrary points in time
are the same only when the arrivals occur as a Poisson process. Otherwise we
have to make appropriate adjustments to the distribution derived above. In
this context, the results derived in Prabhu (1965) and Bhat (1968) are worth
mentioning. Writing pj = limt→∞ P [Q(t) = j], where Q(t) is the number at an
arbitrary time t, these authors arrive at the following expression for the limiting
distribution {pj , j = 0, 1, 2 . . .}, when ρ < 1.

p0 = 1− ρ

pj = ρ(1− ζ)ζj−1 j ≥ 1. (5.3.16)
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From (5.3.16) these results follow on mean queue length:

L =
ρ

1− ζ
; Lq =

ρζ

1− ζ
. (5.3.17)

As an example, consider the queue M/M/1. Let A(t) = 1− e−λt (t ≥ 0). Then
we have

φ(θ) =
λ

λ+ θ

φ(μ− μz) =
λ

λ+ μ− μz
.

Now the functional equation (5.3.11) takes the form

z =
λ

λ+ μ− μz

−μz2 + (λ+ μ)z − λ = 0. (5.3.18)

This quadratic equation has two roots 1 and λ
μ = ρ. Substituting ρ in place of

ζ in (5.3.16)–(5.3.18) we have the limiting distribution and mean values for the
queue M/M/1, which match with the results derived in Chapter 4.

Waiting Time

To determine the distribution of the waiting time of a customer we need the dis-
tribution of the number of customers in the system at the time of its arrival. The
limiting distribution derived in (5.3.13) is in fact an arrival point distribution
in G/M/1. Furthermore, its structure is the same as the geometric distribution
we had for M/M/1, with ζ taking the place of ρ of the M/M/1 result. The
service times of customers in the system are exponential with rate μ, also as in
M/M/1. Hence, the waiting time results for G/M/1 have the same forms as
those for M/M/1 with ζ replacing ρ. Without going into the details of their
derivation, we can write,

Fq(t) = P (Tq ≤ t) = 1− ζe−μ(1−ζ)t

Wq = E[Tq] =
ζ

μ(1− ζ)

V [Tq] =
ζ(2− ζ)

μ2(1− ζ)2
. (5.3.19)

The time T spent by the customer in the system is obtained by adding service
time to Tq. We get

W = E(T ) = E(Tq) +
1

μ
=

1

μ(1− ζ)

V (T ) = V [Tq + S] =
1

μ2(1− ζ)2
. (5.3.20)
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Busy Cycle

A busy cycle of a G/M/1 queue, when modeled as an imbedded Markov chain
is the number of transitions the process takes to go from state 0 to state 0 for
the first time. This interval is also known as the recurrence time of state 0. The
busy cycle includes the busy period when the server is continuously busy, and
the idle period, when there is no customer in the system. Let R denote the
number of transitions in a busy cycle. (Note that we are using a generic symbol
R, with the assumption that all such busy cycles have the same distribution.)
Unfortunately, the derivation of the distribution and its mean is not very simple.
We give below the procedure for advanced readers. The mean values of R and
the length of the busy cycle are given in (5.3.31) and (5.3.32).

Let h
(n)
j be the probability that the number of customers, just before the nth

arrival in a busy cycle is j. Working backward from n, considering the arrival
time of the first of those j customers we can write, for j ≥ 1,

h
(j)
j = b

(j)
0

h
(n)
j =

∑
r

h(n−j)
r b(j)r n ≥ j (5.3.21)

where b
(j)
r is the j-fold convolution of br with itself. Looking back to relations

(5.2.47), we see that (5.3.21) is structurally similar to (5.2.47) with h
(n)
j replacing

g
(n)
i and b

(i)
r replacing k

(i)
r . Define

Hj(z) =

∞∑
n=j

h
(n)
j zn |z| ≤ 1. (5.3.22)

Using arguments similar to those used in determining G(z), we can show that

Hj(z) = [η(z)]j , j ≥ 1 (5.3.23)

where η(z) is the unique root in the unit circle of the equation

ω = zβ(ω). (5.3.24)

The distribution of R is given by h
(n)
0 . Considering the transitions during the

nth transition interval, we have

h
(n)
0 =

n−1∑
r=1

h(n−1)
r

( ∞∑
k=r+1

bk

)

h
(1)
0 =

∞∑
1

bk. (5.3.25)
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Taking generating functions

H0(z) =
∞∑

n=1

h
(n)
0 zn

=

( ∞∑
1

bk

)
z +

∞∑
n=2

n−1∑
r=1

h(n−1)
r zn

( ∞∑
k=r+1

bk

)
. (5.3.26)

The right-hand side of (5.3.26) can be simplified as follows. For ease of notation
write

∑∞
r+1 bk = βr. The right-hand side of (5.3.26) simplifies to

β0z + z

∞∑
n=2

zn−1
n−1∑
r=1

βrh
(n−1)
r

= z

[
β0 +

∞∑
r=1

βr

∞∑
n=r+1

h(n−1)
r zn−1

]

= z

[ ∞∑
r=0

βr[η(z)]
r

]

where we have used (5.3.22) and (5.3.23). But

∞∑
r=0

βrz
r =

1− β(z)

1− z

since

∞∑
r=0

zr
∞∑

j=r+1

bj =

∞∑
j=1

bj

j−1∑
r=0

zr

=
∞∑
j=1

bj

⎛
⎝ ∞∑

r=0

−
∞∑
r=j

⎞
⎠ zr

=

∞∑
j=1

bj

⎡
⎣ 1

1− z
− zj

∞∑
r=j

zr−j

⎤
⎦

=
1− β(z)

1− z
.

Thus, we get

H0(z) =
z − zβ[η(z)]

1− η(z)
.

But η(z) is such that

η(z) = zβ[η(z)].



5.3. THE QUEUE G/M/1 117

Hence

H0(z) =
z − η(z)

1− η(z)
. (5.3.27)

Letting z → 1 in H0(z), we can show that R is a proper random variable (i.e.,
P (R < ∞)) when ρ ≤ 1. The expected length of the busy cycle (recurrence
time of state 0) is obtained as lim

z→1
H ′

0(z). We have

H ′
0(z) =

[1− η(z)][1− η′(z)] + [z − η(z)]η′(z)

[1− η(z)]2

=
1− η′(z)

1− η(z)
+

[z − η(z)]η′(z)

[1− η(z)]2
. (5.3.28)

To simplify (5.3.28) further, we need values for η(1) and η′(1). Referring back
to the functional equation (5.3.24), we find that for z = 1 it is the solution of
the functional equation (5.3.11) which we have found to be the least positive
root ζ (< 1 or = 1). Hence

η(1) = ζ if ρ < 1 and = 1, if ρ ≥ 1. (5.3.29)

Consider η(z) = zβ[η(z)]. We get

η′(z) = zβ′ [η(z)] η′(z) + β [η(z)]

η′(z) [1− zβ′ [η(z)]] = β[η(z)].

Letting z → 1, and using (5.3.29)

η′(1) [1− β′(ζ)] = β(ζ)

η′(1) =
β(ζ)

1− β′(ζ)
. (5.3.30)

Substituting from (5.3.29) and (5.3.30) in (5.3.28)

lim
z→1

H ′
0(z) =

[
1− β(ζ)

1− β′(ζ)

]
1

1− ζ
+

[
(1− ζ)

β(ζ)

1− β′(ζ)

]
× 1

(1− ζ)2

=
1

1− ζ
< ∞ if ρ < 1. (5.3.31)

Similarly, we can also show that H ′
lim z→1(z) = ∞ when ρ = 1.

We may note that these results establish the classification properties of pos-
itive recurrence, null recurrence, and transience of the imbedded Markov chain.

The mean length of the busy cycle is obtained as the product (expected
number of transitions) × (mean inter-arrival time).

E[busy cycle] =
E(Z)

1− ζ
. (5.3.32)

Since, the busy period terminates during the last transition of the Markov chain
and the transition interval (inter-arrival time) has a general distribution, the
determination of the mean busy period is too complicated to be covered at this
stage.
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The Queue G/M/s

The imbedded Markov chain analysis of the queueG/M/1 can be easily extended
to the multi-server queue G/M/s. Since the Markov chain is defined at arrival
points, the structure of the process is similar to that of G/M/1, except for
the transition probabilities. Retaining the same notations, for the relationship
between Qn and Qn+1, we get

Qn+1 =

{
Qn + 1−Xn+1 if Qn + 1−Xn+1 > 0
0 if Qn + 1−Xn+1 ≤ 0,

where Xn+1 is the total number of potential customers who can be served by s
servers during an inter-arrival time with distribution A(·).

To determine transition probabilities Pij (i, j = 0, 1, 2 . . .) we have to con-
sider three cases for the initial value i and the final value j: i + 1 ≥ j ≥ s;
i + 1 ≤ s and j ≤ s; and i + 1 > s but j < s. Note that when Qn = i, the
transition starts with i + 1, and j is always ≤ i + 1. Since the service times
are exponential with density μe−μx (x > 0), the probability that a server will
complete service during (0, t] is 1−e−μt and the probability that the service will
continue beyond t is e−μt. Incorporating these concepts along with the assump-
tions that the servers work independently of each other, we get the following
expressions for Pij .

Case 1: i+ 1 ≥ j ≥ s

Pij =

∫ ∞

0

e−sμt (sμt)
i+1−j

(i+ 1− j)!
dA(t). (5.3.33)

This represents i+1−j service completions during an inter-arrival period, when
all s servers are busy. See discussion under M/M/s to justify the service rate
sμ when all servers are busy.

Case 2:

i+ 1 ≤ s and j ≤ s

Pij =

(
i+ 1

i+ 1− j

)∫ ∞

0

(1− e−μt)i+1−je−jμtdA(t). (5.3.34)

This expression takes into account the event in which i + 1 − j out of i + 1
customers complete service during (0, t] while j customers are still being served.
Because of the independence of servers among one another, each service can be
considered a Bernoulli trial and the outcome has a binomial distribution with
success probability 1− e−μt.
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Case 3:

i+ 1 > s but j < s

Pij =

∫ ∞

t=0

∫ t

τ=0

e−sμτ (sμτ)
i−s

(i− s)!
sμ

(
s

s− j

)
[1− e−μ(t−τ)]s−je−jμ(t−τ)dτdA(t).

(5.3.35)

Initially, i+ 1− s customers complete service with rate sμ, and then s− j out
of the remaining s complete their service independently of each other.

The transition probability matrix of the imbedded chain has a structure sim-
ilar to the one displayed in (5.3.4). Because of the structure of Pij values under
cases 2 and 3, the finite difference solution given earlier for the limiting distri-
bution need major modifications. Interested readers are referred to advanced
texts on the subject, e.g., Gross et al.(2008). Taking into consideration the
complexities of these procedures, the computational method developed below
for G/M/1/K could turn out to be advantageous in this case, if it is possible
to work with a finite limit for the number of customers in the system.

5.3.1 The Queue G/M/1/K

Consider the G/M/1 queue described earlier with the restrictions that the sys-
tem can accommodate only K customers at a time. Since the imbedded chain
is defined just before an arrival epoch, the number of customers in the system
soon after the arrival epoch is K, whether it is K or K − 1 before that time
point. If it is K before, the arriving customer does not get admitted to the
system. Thus, in place of (5.3.2) we have the relation

Qn+1 =

{
min (Qn + 1−Xn+1,K) if Qn + 1−Xn+1 > 0
0 if Qn + 1−Xn+1 ≤ 0.

(5.3.36)

Using probabilities bj , j = 0, 1, 2 . . . defined in (5.3.1) the transition probability
matrix P can be displayed as follows:

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . K − 1 K

0
∑∞

1 br b0 0
1

∑∞
2 br b1 b0

...
...

...
K − 1

∑∞
K br bK−1 bK−2 . . . b1 b0

K
∑∞

K br bK−1 bK−2 . . . b1 b0

⎤
⎥⎥⎥⎥⎥⎦

(5.3.37)
Note that the last two rows of the matrix P are identical because the Markov
chain effectively starts off with K customers from either of the states K − 1
and K.
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Let π = (π0, πi, . . . , πK) be the limiting distribution of the imbedded chain.

Writing out the equation πj =
∑K

i=0 πiPij , we have

π0 =

K−1∑
i=0

πi

( ∞∑
r=i+1

br

)
+

( ∞∑
r=k

br

)
πk

π1 = π0b0 + π1b1 + . . .+ πK−1bK−1 + πKbK−1

π2 = π1b0 + π2b1 + . . .+ πK−1bK−2 + πKbK−2

...

πK−1 = πK−2b0 + πK−1b1 + πKb1

πK = πK−1b0 + πKb0. (5.3.38)

If the value of K is not too large, solving these simultaneous equations in
πj , j = 0, 1, 2, . . . ,K, along with the normalizing condition

∑K
0 πj = 1 directly

could be computationally practical. Or for that matter getting Pn for increasing
values of n until the row elements are close to being identical will also give the
limiting distribution under these circumstances. An alternative procedure is to
develop a computational recursion as done in the case of the M/G/1 queue (see
(5.2.15)).

To do so we start with the last equation of (5.3.38) and define

νi =
πi

πi−1
, i = 1, 2, . . . ,K.

We have

πi = νiπi−1

= νiνi−1πi−2

= νiνi−1 . . . ν1π0. (5.3.39)

From the last equation in (5.3.38), we get

νK = b0 + νKb0

νK =
b0

1− b0
.

From the next to the last equation in (5.3.38), we get

νK−1 = b0 + νK−1b1 + νKνK−1b1

νK−1 =
b0

1− b1 − νKb1

and so on.
Since

∑K
0 πj = 1, from (5.3.39) we get

(1 + ν1 + ν1ν2 + . . .+ ν1ν2 . . . νK)π0 = 1
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and hence

π0 =
1

1 +
∑K

i=1 Π
i
r=1νr

. (5.3.40)

Substituting these back in (5.3.39), we get πj , j = 0, 1, 2, . . . K.
Note that in developing the recursion we have defined νi’s as ratio of con-

secutive πi’s, unlike in the case of (5.2.15). We do so for the reason that πj ’s
decrease in value as j increases and dividing by a very small πj is likely to result
in large computational errors. Looking at the structure of the limiting distribu-
tion of G/M/1, the ratio of consecutive terms of π, are likely to be close to the
constant ζ.

Example 5.3.1 In a service center job arrivals occur in a deterministic process,
one job per one unit of time. Service is provided by a single server with an
exponential service time distribution with rate 1.5 jobs per unit time.

In order to determine the limiting distribution, using a D/M/1 model, we
note that

φ(θ) =

∫ ∞

0

e−θtdA(t)

= e−θ.

With an exponential service time distribution we have μ = 1.5. Hence

β(z) = φ(μ− μz)

= e−1.5(1−z).

The limiting distribution is expressed in terms of ζ which is the unique root in
the unit circle, of the functional equation

z = e−1.5(1−z).

We can easily solve this equation by successive substitution starting wtih
z = 0.4. We get

z β(z)
0.400 0.407
0.407 0.411
0.411 0.413
0.413 0.415
0.415 0.416
0.416 0.416

We use ζ = 0.416 in the limiting distribution π = (π0, π1, π2, . . .) given by
(5.3.13). We get

π0 = 0.584; π1 = 0.243; π2 = 0.101; π3 = 0.042;
π4 = 0.017; π5 = 0.007; π6 = 0.003; π7 = 0.001.

Answer
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Example 5.3.2 Consider the service center Example 5.3.1 above with a capacity
restriction of K customers in the system.

In this case, we use the computational recursion developed in (5.3.39) for
two values of K = 4 and 7.

The distribution of the potential number of customers served during an
inter-arrival period is Poisson with mean 1.5. We have

b0 = 0.223; b1 = 0.335; b2 = 0.251; b3 = 0.125
b4 = 0.047; b5 = 0.015; b6 = 0.003; b7 = 0.001 .

K = 4
Using νi = πi/πi−1 in (5.3.38) with K = 4, we get

ν4 = b0 [1− b0]
−1

ν3 = b0 [1− b1 − ν4b1]
−1

ν2 = b0 [1− b1 − ν3b2 − ν4ν3b2]
−1

ν1 = b1 [1− b1 − ν2b2 − ν3ν2b3 − ν4ν3ν2b3]
−1

.

Substituting appropriate values of bj = 0, 1, 2, 3, we get

ν1 = 0.413; ν2 = 0.398; ν3 = 0.392; ν4 = 0.287.

But we have

π4 = ν4ν3ν2ν1π0

π3 = ν3ν2ν1π0

π2 = ν2ν1π0

π1 = ν1π0.

Using
∑4

0 πj = 1, we get

π0 = [1 + ν1 + ν1ν2 + ν1ν2ν3 + ν1ν2ν3ν4]
−1

= 0.602.

Thus, we have the limiting distribution

π0 = 0.602; π1 = 0.249; π2 = 0.099; π3 = 0.039; π4 = 0.001.

K = 7
Looking at the structure of νi’s, it is clear that ν4, . . . , ν1 determined above, in
fact, yield ν7, . . . , ν4, when K = 7. Extending the equations to determine the
remaining ν’s, viz., ν3, ν2, and ν1, we get the following set of values:

ν7 =0.287; ν6 =0.392; ν5 =0.398; ν4 =0.413;

ν3 =0.415; ν2 =0.416; ν1 =0.417.



5.4. EXERCISES 123

Converting these back to π’s, we get
π0 = 0.585; π1 = 0.244; π2 = 0.101 ;
π3 = 0.042; π4 = 0.017; π5 = 0.007 ;
π6 = 0.003; π7 = 0.001. Answer

A comparison of these values with those obtained under Example 5.3.1 shows
that when K = 7 the effect of the capacity limit is negligible for the long run
distribution of the process.

5.4 Exercises

1. Specialize the mean waiting time results (5.2.42) and (5.2.43) when the
service time distribution is (a) deterministic (constant service time) and
(b) Erlang Ek.

2. Obtain the transition probability matrices P of the Markov chains repre-
senting the number of customers in the system at epochs at which service
completion occurs in (a) Example 5.2.1 and (b) Example 5.2.2.

Determine the limiting distributions of the queueing systems in (a) and
(b) by obtaining Pn for large enough n.

3. Obtain the transition probability matrix P of the Markov chain represent-
ing the number of customers at arrival epochs in the problem described
in Example 5.3.1. Determine the limiting distribution of the queueing
system by obtaining Pn for large enough n.

4. A mail order business receives orders for various items of merchandize in a
Poisson process at the rate of 15 per hour. The amount of time required to
fill an order has a mean of 3.5 minutes and variance 2.5 minutes2. Deter-
mine the expected number of orders waiting to be filled. Also, determine
the mean length of the period from the time the order is received until it
is filled.

How much of an improvement in service can be accomplished if (a) the
length of service time is shortened to 3 minutes, without changing the
variance? (b) if the variance of service time is reduced to 2 minutes2,
without altering the mean?

5. (a) Cars arrive at a single station carwash at the rate of 15 per hour.
The automatic carwash is set to take up exactly 3 minutes. Assuming the
arrivals are in a Poisson process determine (1) the expected number of
cars waiting for wash at any time, and (2) the expected waiting time of
each automobile.

(b) The owner of the carwash wants to reduce the waiting time by short-
ening the amount of time taken for each wash. However, a quick survey
of his customers reveals that a third of his customers would like to have
a longer wash. To satisfy their need he sets up two wash times, 5 and
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2.5 minutes for the two groups. Both these groups will pass through the
same station. With this change has he improved the situation or worsened
it? Determine the expected number of cars waiting and the mean waiting
time in the long run.

6. In a doctor’s office, appointments to see a doctor are made at 15 minute
intervals. But the amount of time the doctor spends with her patients
are mostly less than 15 minute, but some of them may take much longer.
It has been found that these times can be represented by an exponential
distribution with mean 12 minutes. Assuming steady state, determine
the expected number of patients in the waiting room at any time. Also,
determine the mean amount of time a patient waits at the doctor’s office
per visit. Suppose the office personnel and the doctor decide to take breaks
when there are no customers in the system. During a 7 hour work day
how often will they be able to take such breaks?

7. At a taxi-stop on a busy street, the inter-arrival times of taxis dropping off
passengers (and then being ready for the pick up) have a mean 5 minutes
with a standard deviation 1 minute. The taxis are not allowed to wait for
customers at the stop. Customers arrive at the stop in a Poisson process
once every 6 minutes on the average.

(a) Determine the expected number of customers waiting, when a taxi
leaves the stop.

(b) What is the probability that there would be no waiting customer, when
a taxi leaves the stop?

(c) Determine the mean waiting time of a customer.

8. In Example 5.2.3, let the time be discretized into segments, each of Q
units of time in length. Assume that the arrivals occur at the end of each
such interval with probability λQ. The service times have a geometric
distribution as described in (5.2.57) and the queue discipline is RR as
described in the example. Following the same arguments as in the example
derive the conditional mean response time Wk corresponding to the result
(5.2.70).

9. In the computer system model of Exercise 9 of Chapter 1, the following
numerical value and distributional assumptions are made. Determine the
average response time for the system.

(a) Arrivals are in a Poisson process with rate 1 per second.

(b) CPU time of the job (for the first time or after I/0 use) is exponential
with mean 0.1 second.

(c) The three phases of disk service have the following characteristics.

Seek time: Exponentially distributed with mean 0.03 seconds.

Latency time: Uniformly distributed with mean 0.01 second.
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Transfer time: Constant = 0.01 second.

(d) P (a job will need disk service) = 0.8.

10. The memory disk in a computer is organized into tracks and sectors with a
read–write head per track. Requests for the use of the memory disk arrive
in a Poisson process with rate λ. Let the disk rotation time be R units
and the number of sectors per track be K. Determine the mean response
time of a request under the following two alternatives.

(a) The requests follow a single queue and are handled on a FCFS basis.
Assume that the duration of service can take any of theK equally probable
values, iR

K , (i = 1, 2, . . . ,K).

(b) Each sector has its own queue and the requests select the K sectors
with equal probability. Once a request has been handled, the next in queue
must wait for the sector to come around again during the next rotation
(Krakowiak (1988)).

11. In the RR discipline model of Example 5.2.3, if we let the quantum Q → 0,
the resulting discipline is a Processor Sharing (PS) service discipline. This
is because when Q → 0, it is as if, service is provided simultaneously to
all customers in the system.

Letting Q → 0 in Example 5.2.3, show that the mean response time in a
processor sharing system with Poisson arrivals and any arbitrary service
time distribution, is given by

W =
1

μ(1− ρ)

where 1/μ is the mean service time and ρ = λ
μ is the traffic intensity.

(Hint: When Q → 0, α and σ → 1 and L → ρ/(1− ρ). Set S
Q = k where

S is the service time requested by the customer.)



Chapter 6

Extended Markov and
Renewal Models

The queueing systems discussed in the last two chapters were devoid of any
features such as group arrivals, group service, priority service, etc., that would
make modeling difficult. In this chapter we introduce them in a limited sense,
so that Markov process modeling is still possible by extending the models as
well as procedures for analyzing them. However, the readers should be warned
that the extension of the procedure comes at the cost of employing a higher
level of mathematics in the use of probability generating functions (PGFs).

6.1 The Bulk Queue M (X)/M/1

The queueing systems discussed in the previous chapters assume that the cus-
tomers arrive one at a time. There are many situations where customers arrive
in groups, e.g., customer arrivals in restaurants, voice or data traffic segmented
as packets in a communication system. Queueing systems in which customer
arrivals and/or service occur in groups are known as bulk queues in the literature.

Let customers arrive in groups of size X, where, in general, X is a random
variable assuming integer values greater than zero. Let the groups arrive in a
Poisson process with rate λ and the customer service be provided one at a time
with an exponential service time distribution with rate μ. For simplicity, we use
the symbolic notation M (X)/M/1, to signify this system.

Let dr = P (X = r), r = 1, 2, . . . be the distribution of the size of the
arriving group of customers. We assume that the group size is independent
of other characteristics of the system. Thus whenever an arrival occurs, the
number of customers in the system increases by the size of the group.

Let Q(t) be the number of customers in the system at time t, and let Q
represent Q(t) as t → ∞. Because Q(t) increases by the arriving group size at
arrival points, {Q(t)} is a modified birth and death process in which increases in

c© Springer Science+Business Media New York 2015 127
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the state space can occur by more than 1. Let pn = P (Q = n), n = 0, 1, 2, . . ..
Making appropriate modifications to the state balance equations for M/M/1
given in (4.2.3), we have

λp0 = μp1

(λ+ μ)pn = λ
n∑
r

drpn−r + μpn+1 n = 1, 2, . . . . (6.1.1)

It should be noted that the first term in the right-hand side of the second
equation in (6.1.1) exists only if n− r ≥ 0.

Unfortunately, (6.1.1) cannot be solved using recursive methods, as done in
the M/M/1 case. Instead, we use PGFs to simplify the equations. Let

P (z) =

∞∑
n=0

pnz
n; δ(z) =

∞∑
r=1

drz
r |z| ≤ 1.

Multiplying equations in (6.1.1) with appropriate powers of z, we have

λp0 = μp1

(λ+ μ)

∞∑
n=1

pnz
n = λ

∞∑
n=1

zn
n∑

r=1

drpn−r + μ

∞∑
n=1

pn+1z
n. (6.1.2)

Interchanging summations on the right-hand side of (6.1.2) and simplifying, we
get

(λ+ μ)P (z)− μp0 = λ
∞∑
r=1

drz
r

∞∑
n=r

zn−rpn−r

+μ

∞∑
n=0

znpn+1

= λδ(z)P (z) +
μ

z

∞∑
m=1

zmpm

= λδ(z)P (z) +
μ

z
[P (z)− p0].

Rearranging terms and simplifying

P (z) =
μp0(1− z)

μ(1− z)− λz[1− δ(z)]
. (6.1.3)

To determine p0, we use the normalizing condition
∑

n pn = 1 and note
limz→1 P (z) = 1. Taking limits on the right-hand side of (6.1.3) using l’Hôpital’s
rule, we get

lim
z→1

P (z) =
limz→1 μp0(1− z)

limz→1[μ(1− z)− λz(1− δ(z))]
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giving

1 =
μp0

μ+ λ(1− δ′(1))

p0 = 1− λδ′(1)

μ
. (6.1.4)

Note that

δ′(1) = lim
z→1

∞∑
r=1

rdrz
r−1

= E(X) = d, say.

which is the average group size. We also note that λd
μ = ρ is the traffic intensity.

This leads us to the result
p0 = 1− ρ (6.1.5)

and

P (z) =
μ(1− z)(1− ρ)

μ(1− z)− λz(1− δ(z))
. (6.1.6)

Unfortunately, even with simple forms of the distribution {dr}, inverting the
PGF (6.1.6) is not simple. See discussion following the PGF (5.2.19) of the
limiting distribution of the imbedded chain in the queue M/G/1. Nevertheless,
(6.1.6) can be used easily for the determination of the mean value of Q as
t → ∞, by noting that E(Q) = limz→1 P

′(z). Because of the term (1 − z) in
the numerator and (1 − δ(z)) in the denominator of (6.1.6), we use l’Hôpital’s
rule in taking limits in P ′(z). After simplifications we get

E(Q) = lim
z→1

P ′(z) =
2ρ+ λ

μδ
′′(1)

2(1− ρ)
(6.1.7)

But δ′′(1) = E(X2) − E(X). With d as the mean group size, (6.1.7) simplifies
to

L = E(Q) =
ρ+ λ

μE(X2)

2(1− ρ)
. (6.1.8)

The variance of Q can be determined by letting z → 1 in P ′′(z) and noting that
V (Q) = P ′′(1) + P ′(1) − [P ′(1)]2. The algebra in the determination of V (Q)
involves the use of l’Hôpital’s rule multiple times.

When the group sizes are a constant K, the mean number of customers in
the system, given by (6.1.8), simplifies to

L = E(Q) =
ρ+ λ

μK
2

2(1− ρ)

=

(
K + 1

2

)
ρ

1− ρ
, (6.1.9)

since ρ = λK
μ .
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6.2 The Bulk Queue M/M (X)/1

In the queueing model M/M (X)/1, we assume that the customers arrive one at
a time, but get served in groups of size X. For simplicity we also assume that
X is a constant K. When the service is in groups there are two other factors of
queue discipline that can complicate the analysis: (1) whether the server waits
for customer arrivals when there are fewer than K customers in the queue at the
time of a service completion and (2) if the server starts service with less than K
customers in the group, whether the new arrivals are allowed to join the ongoing
service or are required to wait for the next batch. To keep the algebra simple,
we make the assumption that the server starts service only when the batch is
full. For an analysis of the system under queue discipline in which service starts
even with a single customer and the arriving customers are allowed to join the
batch in service to fill the vacancies, see Gross et al. (2008).

Thus, the customers arrive one at a time in a Poisson process with parameter
λ and get served in groups of size K if there are K or more customers in the
queue at the completion of a service. If there are less than K customers waiting
at the completion of a service, the server waits until the service batch of K is
full. The service time distribution is exponential with parameter μ. With these
assumptions, for the limiting distribution {pn, n = 0, 1, 2, . . .} of the number of
customers in the system as t → ∞, the state balance equations can be presented
as follows:

λp0 = μpK

λpn = λpn−1 + μpn+K n = 1, 2, . . . ,K − 1

(λ+ μ)pn = λpn−1 + μpn+K n = K,K + 1, . . . . (6.2.1)

The method we use to solve these equations makes use of PGFs. Multiply both
sides of (6.2.1) by appropriate powers of z and add. We get

λp0 + λ
K−1∑
n=1

pnz
n + (λ+ μ)

∞∑
n=K

pnz
n

= μpK + λ
K−1∑
n=1

pn−1z
n + μ

K−1∑
n=1

pn+Kzn

+λ

∞∑
n=K

pn−1z
n + μ

∞∑
n=K

pn+Kzn.
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Noting that
∑∞

n=0 pnz
n = P (z) and making appropriate simplifications, we can

write

(λ+ μ)P (z)− μ

K−1∑
n=0

pnz
n

= λz
∞∑

n=1

pn−1z
n−1 +

μ

zK

∞∑
n=0

pn+Kzn+K

= λzP (z) +
μ

zK

[
P (z)−

K−1∑
m=0

pmzm

]
.

Rearranging terms and multiplying by zK , we get

[
(λ+ μ)zK − λzK+1 − μ

]
P (z) = μ(zK − 1)

K−1∑
n=0

pnz
n

P (z) =
(1− zK)

∑K−1
n=0 pnz

n

(λ/μ)zK+1 − (λμ + 1)zK + 1
. (6.2.2)

For the complete determination of the PGF P (z), we need to determine∑K−1
n=0 pnz

n in the numerator. For this we have to make use of Rouché’s theo-
rem from the theory of complex variables. Being a PGF, P (z) must converge
inside the unit circle. The denominator of (6.2.2) has K + 1 zeros. Thus, for
P (z) to be a proper PGF, the numerator of (6.2.2) must vanish at these K + 1
zeros. It is easily seen that z = 1 is a zero of the numerator as well as the
denominator. Appealing to Rouché’s theorem (we leave out the details of using
the theorem here because its theory is beyond the scope of this text; interested
readers may refer to more advanced books on queueing theory), we can show
that exactly K − 1 zeros of the denominator are within the unit circle, leaving
one zero lying outside. Let z0 (> 1) be the root of the equation

(
λ

μ

)
zK+1 −

(
λ

μ
+ 1

)
zK + 1 = 0. (6.2.3)

Clearly if we divide the denominator of (6.2.2) by (z − 1)(z − z0), we are left
with a polynomial with K − 1 roots within the unit circle. The portion of the
numerator with zeros within the unit circle is

∑K−1
n=0 pnz

n; therefore, this func-
tion and the leftover of the denominator can differ by at most a multiplicative
constant. We get

K−1∑
n=0

pnz
n = C

(λ/μ) zK+1 −
(

λ
μ + 1

)
zK + 1

(z − 1)(z − z0)
. (6.2.4)
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Substituting this result in (6.2.2), we have

P (z) =
C(1− zK)

(z − 1)(z − z0)

=
C

z0 − z

K−1∑
n=0

zn. (6.2.5)

Since P (1) = 1, setting z = 1 in (6.2.5), we get

C =
z0 − 1

K

and

P (z) =
(z0 − 1)

∑K−1
n=0 zn

K(z0 − z)
. (6.2.6)

The right-hand side of (6.2.6) can be expanded as a power series in z to deter-
mine pn, n = 0, 1, 2, . . . explicitly as follows:

P (z) =
z0 − 1

Kz0

(
K−1∑
s=0

zs

)( ∞∑
r=0

(
z

z0

)r
)

(6.2.7)

pn =
z0 − 1

Kz0

n∑
r=0

(
1

z0

)r

n < K

=
z0 − 1

Kzn−K+2
0

K−1∑
r=0

(
1

z0

)r

n ≥ K. (6.2.8)

Noting that
n∑

r=0

(
1

z0

)r

=
1− ( 1

z0
)n+1

1− ( 1
z0
)

(6.2.8) can be presented as

pn =
zn+1
0 − 1

Kzn+1
0

n < K

=
zK−1
0

Kzn+1
0

n ≥ K. (6.2.9)

As mentioned above, finding the root z0 lying outside the unit circle of the
equation (6.2.3) is essential in the determination of the limiting distribution.
This is a common problem in the analysis of systems of this type and there
are root-finding algorithms available specifically applicable in such cases. For
elaboration on the appropriate root finding algorithms, the readers may refer to
Chaudhry and Templeton (1983) and journal articles by M. L. Chaudhry and
his associates (see for instance Chaudhry et al. (1992)).
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6.3 Imbedded Markov Chain Analysis of Bulk
Queues M (Z)/G/1 and G/M (Z)/1

In the queue M (Z)/G/1, let customers arrive in groups of size Z, an integer
valued r.v. (> 0), with the distribution

P (Z = r) = dr r = 1, 2, . . . . (6.3.1)

Except for this factor, all other characteristics of the system are the same as
the M/G/1 queue analyzed in Section 5.2. Consequently, the system M (Z)/G/1
can be analyzed on the same lines as described in Section 5.2 with the necessary
modification for the distribution {kj} of the number of customers arriving during
a service interval. It can be given as (see 5.2.1)

kj =

∫ ∞

0

e−λt

j∑
r=0

(λt)r

r!
d
(r)
j dB(t) j = 0, 1, 2, . . . , (6.3.2)

where d
(r)
j denotes the r-fold convolution of dj with itself (meaning, that it is

the probability of r groups bringing in j customers).

Since service is provided for one customer at a time, (5.2.2) holds as it is; so
does the transition probability matrix. The only change that needs to be made
is in the determination of K(z) of (5.2.7). We get

K(z) =

∫ ∞

0

e−λt
∞∑
j=0

zj
j∑

r=0

(λt)r

r!
d
(r)
j dB(t). (6.3.3)

Interchanging the summations in (6.3.3)

K(z) =

∫ ∞

0

e−λt
∞∑
r=0

(λt)r

r!

∞∑
j=r

d
(r)
j zjdB(t). (6.3.4)

Let

D(z) =
∞∑
k=1

dkz
k |z| ≤ 1.

A well-known property of PGF is that the PGF of the sum of independent
random variables is the product of PGFs of the random variables. Using this

property to d
(r)
j , which is the probability distribution of the sum of r random

variables representing group sizes, we get

∞∑
j=r

d
(r)
j zj = [D(z)]r. (6.3.5)



134 CHAPTER 6. EXTENDED MARKOV AND RENEWAL MODELS

Using this result in (6.3.4), we get

K(z) =

∫ ∞

0

e−λt
∞∑
r=0

λt)r

r!
[D(z)]rdB(t)

=

∫ ∞

0

e−λteλtD(z)dB(t)

= ψ(λ− λD(z)). (6.3.6)

Accordingly

K ′(z) = −λD′(z)ψ′(λ− λD(z))

K ′(1) = −λD′(1)ψ′(0).

Note that D′(1) =
∑

k kdk = E(X) = d, say. Also, −λψ′(0) = b, mean service
time. Thus, we have

K ′(1) = λdb = ρ (6.3.7)

showing that the traffic intensity now has the value ρ = λdb.
Another term that needs modification if K ′′(1), that occurs in (5.2.25) and

therefore in E(Q∗). We have

K ′′(z) = [−λD′(z)]
2
ψ′′(λ− λD(z))

+ψ′(λ− λD(z))[−λD′′(z)]

K ′′(1) = λ2d2ψ′′(0)− λD′′(1)ψ′(0)

= λ2d2E(S2) + bD′′(1). (6.3.8)

But

D′′(z) =
∑
k

k(k − 1)dkz
k−2

D′′(1) = E(Z2)− E(Z)

giving

K ′′(1) = λ2d2E(S2) + bE(Z2)− d

and

L = E(Q∗) = ρ+
λ2d2E(S2) + bE(Z2)− d

2(1− ρ)
. (6.3.9)

An expression for V (Q∗) can be obtained in a similar manner.
Modifications to be made in the analysis of G/M/1 to obtain results for the

queue G/M (Z)/1 are similar. The PGF β(z) of the number of potential service
completions in one inter-arrival period has the form

β(z) = φ(μ− μD(z)) (6.3.10)
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and the traffic intensity ρ is given by

ρ =
1

adμ
. (6.3.11)

The limiting distribution of the number of customers in the system just before
a customer arrival is the same as (5.3.13) where, ζ is now the least positive root
of the equation z = β(z), where β(z) has the form given in (6.3.10).

6.4 The Queues M/Ek/1 and Ek/M/1

In Section 2.1, we defined the Erlang distribution, Ek, as the distribution of the
sum of k independent and identically distributed (i.i.d.) exponential random
variables. From Chapter 8, we note that Erlang Ek is the simplest phase-type
distribution and it represents the distribution of the time taken by a Markov
process to traverse k phases of exponential service. We may use this represen-
tation to provide a Markov model for the number of customers in the system in
queues M/Ek/1 and Ek/M/1.

Let us first consider the queue M/Ek/1. Suppose arrivals occur in a Poisson
process with rate λ. Let service be provided by a single server with service time
distribution

f(x) = e−kμx (kμx)
k−1kμ

(k − 1)!
x > 0 (6.4.1)

which has the mean = 1/μ. Using the observations made in Section 2.1 and
Appendix A, we may note that when the service time has the Erlang distri-
bution (6.4.1), it can be considered as made up of k phases, each with an
exponential distribution with density kμe−kμx (x > 0), which has a mean 1/kμ.
Thus, if we associate a number representing the number of phases of service
yet to be used (we use the unexpended number for convenience) for the cus-
tomer being served along with the number of customers in the system, we have
a representation of the state of the process that can be considered Markovian.
Using {(number of customers in the system, number of phases of service yet
to be used)} as the bivariate process, the state space can be represented as
{(0, 0); (1, 0), (1, 1), . . . , (1, k); (2, 0), (2, 1), . . . , (2, k); ...}. Defining the limiting
distribution of this process {pn1,n2

, n1 = 0, 1, 2, . . . ;n2 = 0, 1, . . . , k} appro-
priately, we may write down the state balance equations and solve them using
PGFs. (See Prabhu (1997) for details.)

An alternative method is to count the number of exponential phases waiting
to be served or in service. When there are n customers in the system and the
number of phases of service yet to be used for the customer in service is r, the
total count for the number of phases is (n − 1)k + r. In order to be able to
use this approach, each arriving customer should be thought of as bringing k
phases of service to the system. Accordingly consider an Mk/M/1 queue, in
which customers arrive in a Poisson process in groups of size k. The rate of
arrival for groups is λ. Each customer demands service that has an exponential
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distribution with mean 1/kμ. The total number of phases waiting for or in
service in this system is the same as the total number of phases waiting for
or in service in an M/Ek/1 system. The limiting distribution of the state
of the system is given in Section 6.1. Since these results are in terms of the
corresponding number phases, all we need now is a procedure to convert the
phases into the corresponding number of customers.

As described above, when there are n customers and r service phases yet
to be used in the system, the total phase count is (n− 1)k + r. Reversing this
procedure, when there are a total number of n phases in the system, the number
of customers in the system can be obtained as

[
n
k

]
+ 1, where [ ] signifies the

largest integer contained in n
k , when n is not a multiple of k and n

k when n is a
multiple of k.

Let {pn, n = 0, 1, 2, . . .} be the limiting distribution of the number of cus-

tomers in an M/Ek/1 system and let {p(b)n , n = 0, 1, 2, . . .} be the limiting
distribution of the corresponding group arrival queue Mk/M/1 for the phases.
We then have

pn =

nk∑
j=(n−1)k+1

p
(b)
j n ≥ 1

p0 = p
(b)
0 . (6.4.2)

Another alternative analysis of M/Ek/1 is via the imbedded Markov chain
approach of Section 5.2. The Laplace transform (5.2.6) of the service time
distribution takes the form

ψ(θ) =

(
kμ

kμ+ θ

)k

(6.4.3)

and the PGF (5.2.7) of the number of customers arriving during a service period
is now given by

K(z) =

(
kμ

kμ+ λ− λz

)k

. (6.4.4)

The resulting PGF of the limiting distribution {πj , j = 0, 1, 2, . . .} has the form

Π(z) =
(1− ρ)(z − 1)(kμ)k

z(kμ+ λ− λz)k − (kμ)k
. (6.4.5)

Since the arrival process is Poisson, the limiting distribution {πj} of the imbed-
ded Markov chain {Qn} and the limiting distribution {pn} of its continuous
time analog {Q(t)}, are the same in the queue M/Ek/1. Hence, as a practical
matter, any of the alternative procedures suggested above should lead to the
same result.

Similar alternative procedures for analysis can be suggested for the queue
Ek/M/1.
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(i) The use of a bivariate Markov process

When the inter-arrival times are distributed as Erlang Ek, each of them
may be considered to have made up of k exponentially distributed phases.
Now keeping track of the number of elapsed phases in an inter-arrival time
helps in defining the Markov process with the number of customers in the
system as the first variable and the number of elapsed exponential inter-
arrival phases as the second variable. State balance equations may be
written down for the bivariate process and solved using PGF. For details,
see Prabhu (1997).

(ii) Using the M/Mk/1 model

In addition to a real customer arriving at the end of the kth exponential
phase of an Erlangian inter-arrival time, we may assume that k−1 virtual
customers arrive at the end of the preceding k−1 phases. Since these vir-
tual customers are associated with a real customer, all k customers (one
real and k − 1 virtual) will have to be served as a group. The modified
system now has a single server, customer arrivals in a Poisson process in
such a way that every kth customer is real which is preceded by k − 1
virtual customers, and all these k customers are served in a group. Then
the number of “customers” (which include real and virtual customers) can
be modeled as an M/Mk/1 queue. The limiting distribution of the num-
ber of customers in the model as given in Section 6.2 gives the limiting
distribution of the number of “customers” in the Ek/M/1 queue. Let
{pn, n = 0, 1, 2 . . .} be the limiting distribution of the number of cus-

tomers in the queue Ek/M/1 and {p(b)n , n = 0, 1, 2, . . .} be the limiting
distribution of the number of customers in the M/Mk/1 queue. Then
{pn, n = 0, 1, 2, . . .} can be determined using the relation

pn =
nk+k−1∑
j=nk

p
(b)
j n = 1, 2, . . .

p0 =
k−1∑
j=0

p
(b)
j . (6.4.6)

(iii) Using the imbedded Markov chain of Ek/M/1 as a special case of G/M/1
described in Section 5.3

Let the inter-arrival time distribution be given as

f(x) = e−kλx (kλx)
k−1kλ

(k − 1)!
x > 0. (6.4.7)

The Laplace transform of (6.4.7) takes the form

φ(θ) =

(
kλ

kλ+ θ

)k

(6.4.8)
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and the PGF β(z) of the number of potential services during an inter-
arrival period can be given as

β(z) =

(
kλ

kλ+ μ− μz

)k

. (6.4.9)

The limiting distribution of the number of customers in the system just
before an arrival is obtained as

πj = (1− ζ)ζj j = 0, 1, 2 . . . , (6.4.10)

where ζ is the least positive root of the equation

z = β(z). (6.4.11)

6.5 The Bulk Queues M/GK/1 and GK/M/1

In the last three sections, we have assumed that both inter-arrival times and
service times of customers are exponential or Erlangian, thus making it easy to
use Markov processes (although in an extended sense) in the analysis. Here we
briefly describe a practical approach based on imbedded Markov chains that can
be used when one of the element distributions does not have the nice properties
of the exponential distribution even when arrival or service occurs in groups.
For readers interested in the continuous time analog of the results that can be
derived using imbedded Markov chains, the best comprehensive reference seems
to be Chaudhry and Templeton (1983).

Let us first consider the queue M/GK/1 with the following description. Cus-
tomers arrive one at a time in a Poisson process with rate λ. There is a single
server providing service to groups of exactly K customers at a time. The service
times have a general distribution B(·). If there are less than K customers wait-
ing in the queue at the completion of a service, server waits until the number
K is reached to start the service. It should be noted that we have made this
policy assumption for convenience. Modifications to this policy, such as start-
ing service with at least a specified number of customers less than K, require
making appropriate changes to the expressions.

Let {Qn, n = 0, 1, 2, . . .} be the number of customers in the system soon
after the nth group departure. Let Xn be the number of customers arriving
during the nth service. Following the arguments used in Section 5.2, for the
distribution {kj , j = 0, 1, 2, . . .} of Xn we have

kj = P (Xn = j) =

∫ ∞

0

e−λt (λt)
j

j!
dB(t) j = 0, 1, 2, . . . . (6.5.1)

We also have the random variable relationship between Qn and Qn+1

Qn+1 =

{
Qn +Xn+1 −K if Qn > K
Xn+1 if Qn ≤ K.

(6.5.2)
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(The justification for this relationship is exactly the same as given following
(5.2.2) except that now we need K customers to start the service instead of 1.)

For Pij = P (Qn+1 = j|Qn = i), (6.5.2) gives

Pij =

{
P (i+Xn+1 −K = j) if i > K
P (Xn+1 = j) if i ≤ K

=

{
kj−1+K if i > K
kj if i ≤ K.

(6.5.3)

Displaying these probabilities in a matrix form, we get the transition probability
matrix P of the imbedded Markov chain

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . .

0 k0 k1 . . .
1 k0 k1 . . .
2 k0 k1 . . .
...

...
...

K k0 k1 . . .
K + 1 k0 . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.5.4)

Comparing (6.5.4) with (5.2.5), we note that (6.5.4) has K + 1 identical rows,
instead of 2 as in (5.2.5). If we are interested in a mathematical expression for
the limiting distribution of the Markov chain, we proceed the same way as in
Section 5.2. In order to completely specify the PGF of the distribution, it would
be necessary to specify the zeros of its denominator using Rouché’s theorem.
However as a practical approach, in this age of computers, we may obtain Pn

by matrix multiplication as suggested in Section 5.2. Note that the elements
kj ’s of the matrix are known (can be determined numerically) and the limiting
distribution is given by limn→∞ Pn. Also recall that the limiting matrix has
identical rows.

The imbedded Markov chain analysis of the queue length process in queue
GK/M/1 follows the method outlined in Section 5.3 by considering the number
of customers in the system just before arrival points. Let A(·) be the distribution
function of the inter-arrival times and f(x) = μe−μx (x > 0) be the service
time distribution. We assume that customers arrive in groups of constant size
K. (If we assume variable group sizes, we have to incorporate the group size
distribution in our analysis.) For reasons explained following equation (5.3.2),
we define Xn+1 as the number of potential departures during the (n + 1)th
inter-arrival period. Let {Qn, n = 0, 1, 2, . . .} be the number of customers in the
system just before the nth group arrival. Analogous to (5.3.2) we have

Qn+1 =

{
Qn +K −Xn+1 if Qn +K −Xn+1 > 0
0 if Qn +K −Xn+1 ≤ 0.

(6.5.5)
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Let P (Xn = j) = bj , j = 0, 1, 2, . . . as given in (5.3.1). Following the steps used
in Section 5.3, for the transition probability Pij = P (Qn+1 = j|Qn = i), from
(6.5.5) we get

Pij =

{
P (i+K −Xn+1 = j) if j > 0
P (i+K −Xn+1 ≤ 0) if j = 0

(6.5.6)

=

{
bi+K−j j > 0∑∞

i+K br j = 0.
(6.5.7)

The transition probability matrix has the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 . . .

0
∑∞

K br bK−1 bK−2 . . .

1
∑∞

K+1 br bK bK−1 . . .
...

K
∑∞

2K br b2K−1 b2K−2 . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.5.8)

For the limiting distribution π = (π0, π1, π2, . . .) we may use the standard proce-
dure of solving equation πP = π and

∑∞
0 πj = 1 on the same lines as illustrated

in Section 5.3. But as a practical matter, since the elements of P can be deter-
mined numerically from (5.3.1), obtaining a close approximation to limn→∞ Pn

by matrix multiplication is likely to be simpler.
For the determination of analytical and numerical solutions in bulk queueing

systems that lead to algorithmic procedures, the matrix-analytic solution tech-
niques developed by M. F. Neuts and his associates and as detailed in Chapter 8
are highly recommended. A thorough knowledge of matrix analysis is essential
in understanding them. See also Chaudhry and Templeton (1983) and subse-
quent articles by Professor Chaudhry and his associates as an alternative set of
references on bulk queueing systems.

6.6 The Queues Ek/G/1 and G/Ek/1

The queueing systems Ek/G/1 and G/Ek/1 can also be analyzed as bulk queue-
ing systems M/Gk/1 and Gk/M/1, respectively on the same lines as described
in Section 6.4. Since the results of the bulk queueing analysis are in terms of
the number of phases in the system, appropriate conversion has to be made to
give results in terms of the number of customers in the system.

A better alternative is the use of Neuts’ matrix-analytic solution technique
on the bivariate Markov chain. In the queue Ek/G/1, the state space of the
imbedded Markov chain is given by two variables {number of customers in the
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system; number of elapsed exponential phases since the last arrival}. In the
queue G/Ek/1, the state space is characterized by two variables {number of
customers in the system, number of exponential service phases yet to be used
for customer in service}. For more details, see Chapter 8 and references provided
in it.

6.7 The Queue M/D/s

When jobs are mechanized in manufacturing systems constant service times are
common. Also jobshops employ multiple machines in parallel to maintain job
flow. Under these circumstances a Poisson arrival, constant service time, and
multiple server queueing system is a natural model. Let customers arrive in a
Poisson process with rate λ, the service time be a constant b, and let the number
of servers be s. Even though this does not look like a Markovian system, an
imbedded Markov chain can be identified in the queue length process of this
system.

Let (0, b, 2b, 3b, . . .) be the epochs of observation on the time axis. Define
Q(t) as the number of customers in the system at time t and Qn = Q(nb). Let
{Xn, n = 1, 2, . . .} be the number of customers arriving during [(n − 1)b, nb].
We have

kj = P (Xn = j) = e−λb (λb)
j

j!
j = 0, 1, 2 . . . . (6.7.1)

Considering the number of arrivals and service completions during [nb, (n+1)b],
we may write

Qn+1 =

{
Qn +Xn+1 − s Qn > s
Xn+1 Qn ≤ s.

(6.7.2)

This relationship can be justified by noting that if there are > s customers
in the system at time nb, s of them will be in service and will depart before
(n+1)b. If the number of customers in the system at time nb is ≤ s, all of them
will depart before (n+1)b, and Xn+1, the number of customers arriving during
[nb, (n+ 1)b] will be left in the system at (n+ 1)b.

The relationship (6.7.2) is exactly the same as (6.4.2) obtained for the bulk
queue M/GK/1 (with s replacing K). Thus {Qn, n = 0, 1, . . .} is a Markov
chain imbedded in the queue length process. Its transition probability matrix is
given by (6.5.4) with K replaced by s, and its analysis follows on similar lines.

6.8 The Queue M/M/1 with Priority Disciplines

Queue disciplines which assign priority service to some customers is common
in service systems. The priority can be based on factors such as customer
class, the type of service, and even the length of service. With the advent
of computers, a wide variety of priority disciplines have been introduced for
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improving system performance. The round robin, shortest processing time, and
earliest due date first disciplines are some of the examples. Since the analysis
of most of the variants involve underlying processes much more complex than
those we consider in this text, we shall not delve into them here. However, we
introduce the simple two-class priority model under the M/M/ 1 setting and
discuss the fundamental issues to be confronted in its analysis.

To begin with, when we consider priority queues the following factors need
attention:

1. There are more than one class of customers based on their needs or impor-
tance to the system.

2. The customers in one class have a higher priority for service than others.
When there are more than two classes, we can arrange them in a hierarchy
of priorities with regard to service.

3. The priority accorded to a class of customers can be preemptive or non-
preemptive. If a customer has preemptive priority over another customer,
the priority customer will preempt the non-priority customer for service.
If the priority is non-preemptive, the priority customer will enter service
on the completion of the ongoing service at the time of its arrival. (Such
a priority discipline is also known as head of the line priority discpline.)

4. When preemption of service is allowed, the service to the preempted cus-
tomer can be resumed after the priority customers are served, from the
point the service was preempted or starting from the beginning all over
again. These two alternatives are known as preemptive resume and pre-
emptive repeat disciplines, respectively. For the purpose of analysis, pre-
emptive repeat discipline can be further divided into different and identi-
cal, depending on the service time selected while resuming service. Under
preemptive repeat different discipline, the sample realization of service is
different from the one originally chosen, while under preemptive repeat
identical discipline, the same sample realization is used.

5. As long as the priority assignment is not based on the length of service
and there is no preemption, the total number of customers in the priority
system has the same distribution as the number of customers in the system
without priorities. Thus in this case, the priority discipline affects only
the waiting time of the class of customers entering the system.

Consider an M/M/ 1 queue with two priority classes. Let class 1 customers have
higher priority for service over class 2 customers. Also, let the Poisson arrival
and exponential service rates of the customers of the two classes be as follows:

Class 1—arrival rate λ1; service rate μ1

Class 2—arrival rate λ2; service rate μ2.
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Let us first assume a non-preemptive priority system with service provided
by a single server. Because of the Poisson arrival and exponential service time
assumption, we may use a generalized birth and death process model for this
system. The state space of the underlying Markov process has to be represented
with three components: (number of class 1 customers; number of class 2 cus-
tomers; class of customer in service). Let {pmnr, m, n = 0, 1, 2, . . . ; r = 1, 2} be
the limiting distribution of the state space for the process. When m = n = 0,
for convenience we denote the probability by p0. In general, the elements of the
state space are

{0, 101, 012,m01, 0n2,mn1,mn2;m,n ≥ 1}.

The following state balance equations, written down using the principles descri-
bed in Section 4.1, determine the limiting distribution of the state of the process
(λ = λ1 + λ2)

λp0 = μ1p101 + μ2p012

(λ+ μ1)p101 = λ1p0 + μ1p201 + μ2p112

(λ+ μ2)p012 = λ2p0 + μ1p111 + μ2p022

(λ+ μ1)pm01 = λ1pm−1,01 + μ1pm+1,01 + μ2pm12 m ≥ 1

(λ+ μ2)p0n2 = λ2p0,n−1,2 + μ1p1n1 + μ2p0,n+1,2 n ≥ 1

(λ+ μ2)pm12 = λ1pm−1,12 m ≥ 1

(λ+ μ1)p1n1 = λ2p1,n−1,1 + μ1p2n1 + μ2p1,n+1,2 n ≥ 1

(λ+ μ1)pmn1 = λ1pm−1,n1 + λ2pm,n−1,1

+μ1pm+1,n1 + μ2pm,n+1,2 m ≥ 2, n ≥ 1

(λ+ μ2)pmn2 = λ1pm−1,n2 + λ2pm,n−1,2 m ≥ 1, n ≥ 2

(6.8.1)

and
∑

pmnr = 1.
For a complete analytical solution of these equations the best approach is

to use PGFs. See Morse (1958), Miller (1981), and Gross et al. (2008) for
details. However, when the number of customers allowed in the system is small,
these equations can be solved numerically. Before embarking on a numerical
solution, one should note that the number of equations (accordingly the number
of unknowns) can get very large even with low capacity limits. If K (K > 2)
is the number allowed in the system, the number of equations turns out to be
K2 +K + 1. Thus if K = 10, one should be ready to deal with 111 equations.
Example 6.8.1 is illustrative of the procedure when K = 2.

Without going through the analysis, we state the following conclusions which
are useful in understanding the effect of priority assignment on customers as well
as the system.

1. When the service rates of the two classes of customers are different, the
mean number of low-priority customers waiting is larger and the mean
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number of high-priority customers waiting is smaller than the correspond-
ing means with a two-class system with no priorities.

2. For the queueing system, the priority scheme is useful only if the service
rate of the higher priority customers is larger than the service rate of the
lower priority customers.

3. If the reduction in the number of customers waiting in the system is a
design criterion, extending the conclusion in 2 above, we can infer that
the priority scheme known as the shortest processing time discipline is
optimal. In this queue discipline the customer with the shortest service
time gets the highest priority.

4. Because of the non-preemptive nature of the priority discipline, the mean
waiting time of the high-priority customer will be larger than its mean
waiting time under a preemptive priority. This difference is equal to the
mean service time of the low-priority customer conditioned on the arrival
of the high-priority customer when there are no high-priority customers
in the system. This can be obtained as

1

μ2
· λ1

λ

( ∞∑
n=1

p0n2

)
=

λ1λ2

λμ2
2

. (6.8.2)

5. The derivation of the mean waiting time of the low-priority customer is
much more complex. Suppose when a low-priority customer arrives there
are m high-priority (class 1) and n low-priority (class 2) customers in the
system. Then the components of its waiting time are the following:

(a) The remaining service time of the customer in service

(b) Total length of the busy periods of class 1 customers who arrive
during the remaining service time in (a)

(c) Total length of the m class 1 busy periods

(d) Total length of the busy periods initiated by class 1 customers who
arrive during the service times of n class 2 customers

For details see Cobham (1954). The key point to note here is that for every class
1 customer in the system the class 2 customer will be delayed by an amount
of time equivalent to the length of the busy period initiated by that class 1
customer.

Let us now consider the effect of preemption on the service of the low-priority
customer due to the arrival of a high-priority customer. Consider the M/M/ 1
system with two priority classes as described above with incorporation of pre-
emption in the priority queue discipline. Suppose when a lower priority (class
2) customer is in service, on the arrival of a high-priority customer (class 1),
its service is terminated and the new arrival is taken into service right away.
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Since the service time of the low-priority customer is exponential, the distribu-
tion of the remaining service time of the low-priority customer has the same
distribution as the original one.

Due to the preemptive nature of priority, when there is a high-priority cus-
tomer in the system, it will be in service. Hence the state space can be identified
with only two components: (number of class 1 customers in the system; number
of class 2 customers in the system). Let {pmn,m, n > 0} and p0 be the limit-
ing probabilities for the number of customers in the system. For state balance
equations we have (λ = λ1 + λ2)

λp0 = μ1p10 + μ2p01

(λ+ μ1)pm0 = λ1pm−1,0 + μ1pm+1,0 m ≥ 1

(λ+ μ2)p0n = λ2p0,n−1 + μ1p1n + μ2p0,n+1 n ≥ 1

(λ+ μ1)pmn = λ1pm−1,n + λ2pm,n−1 + μ1pm+1,n m,n > 0 (6.8.3)

and
∑

pmn = 1.

Again for the complete analytical solution of these equations, the use of
PGFs is essential. As in the case of non-preemptive priority, if we think of
numerical solutions of these equations when the capacity limit of the system

is K, number of equations to be solved will be 2K + K(K−1)
2 + 1. Thus if

K = 10, the number of equations in this case is 66 as compared to 111 for the
non-preemptive case.

When there are only two priority classes and the priority is preemptive, as
far as the higher priority customer is concerned, the system performs just like a
regular M/M/ 1 system. But the effect on the low-priority customer is two fold:
On the waiting time as well as the service time. Here we define waiting time as
the amount of time between the customer’s arrival epoch and the time point it
is taken into service for the first time. (Note that because of preemption, the
customer’s service could be interrupted repeatedly.)

Let us first consider the time between the moment a low-priority customer
enters service for the first time and the time point at which it departs after com-
pletion of service. When it is interrupted because of the arrival of a high-priority
customer, it can get back into service only after the service of the high-priority
customer and the corresponding busy period initiated by that service. This
happens with every high-priority arrival. Hence, the amount of time between
the moment low-priority customer enters service for the first time and the time
it departs from the system is made up of its service time and r busy periods
of high-priority customers, where r is the number of high-priority customers
arriving during the low-priority customer’s service time. This time period is
known as completion time in the literature (Jaiswal (1968)). Other terms used
to identify this time period are server sojourn time and residence time.

Suppose there are m high-priority customers and n low-priority customers
at the time of the arrival of the low-priority customer. Then the waiting time of
this customer is made up m high-priority busy periods and n completion times.
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In the foregoing discussion, for the sake of simplicity, we have used only two
priority classes. If there are more classes of customers, normally there would
be a hierarchy of priorities, say, 1, 2, . . .. Then for any class i, i = 1, 2, . . . , r,
its performance would be affected by the performance of classes 1, 2 . . . , i − 2,
through the performance of class i− 1. For instance class i− 1 completion time
is the high-priority service time as seen by the class i customer. We shall not go
into a discussion of such systems because of its complexity. Interested readers
may refer to Jaiswal (1968) and journal articles that have appeared since then.

The example given below illustrates the complexities involved in solving a
problem with the simplest priority discipline.

Example 6.8.1 A service center is set up primarily to provide one type of
service, which we identify as class 1. However, in order to ensure that the
service personnel stay busy as much as possible, it accepts another type of
service, called class 2, on a low-priority basis. At any time only two customers
are allowed to be present in the system. Let λ1 and λ2 be the Poisson arrival
rates of these two classes of customers and μ1 and μ2 be their service rates on
the assumption that the service times are exponential.

Let us determine the limiting distribution of the number of customers in the
system under non-preemptive and preemptive priority disciplines.

Non-preemptive Priority This discipline assumes that once a non-priority cus-
tomer starts service, it is carried out to conclusion even if a priority customer
arrives in the mean time. The states representing the number of customers in the
system and the class of customer in service are: (0, 101, 012, 201, 022, 111, 112).
The state balance equations are given below (λ = λ1 + λ2).

λp0 = μ1p101 + μ2p012 (6.8.4)

(λ+ μ1)p101 = λ1p0 + μ1p201 + μ2p112 (6.8.5)

(λ+ μ2)p012 = λ2p0 + μ1p111 + μ2p022 (6.8.6)

μ1p201 = λ1p101 (6.8.7)

μ2p022 = λ2p012 (6.8.8)

μ1p111 = λ2p101 (6.8.9)

μ2p112 = λ1p012 (6.8.10)∑
pmnr = 1.

Substituting from (6.8.7) and (6.8.10) in (6.8.5),

(λ+ μ1)p101 = λ1p0 + λ1p101 + λ1p012

(λ2 + μ1)p101 − λ1p012 = λ1p0. (6.8.11)

But from (6.8.4),

μ1p101 + μ2p012 = λp0.
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Solving for p101 and p012,

p101 =
λ1(λ+ μ2)

λ1μ1 + λ2μ2 + μ1μ2
p0

= Ap0, say (6.8.12)

p012 =
1

μ2

[
λ− λ1μ1(λ+ μ2)

λ1μ1 + λ2μ2 + μ1μ2

]
p0

= Bp0, say. (6.8.13)

Substituting these values in (6.8.7)–(6.8.10), we get

p201 =
λ1

μ1
Ap0 p111 =

λ2

μ1
Ap0

p022 =
λ2

μ2
Bp0 p112 =

λ1

μ2
Bp0. (6.8.14)

Now p0 is obtained from the normalizing condition
∑

pmnr = 1.

p0 =

[
1 + (1 +

λ

μ1
)A+ (1 +

λ

μ2
)B

]−1

. (6.8.15)

Summarizing, we get

P (0) = P (service counter idle) = p0 =

[
1 + (1 +

λ

μ1
)A+ (1 +

λ

μ2
)B

]−1

P (1) = P (class 1 in service) = p101 + p201 + p111

=

(
1 +

λ

μ1

)
Ap0

P (2) = P (class 2 in service) = p012 + p022 + p112

=

(
1 +

λ

μ2

)
Bp0. (6.8.16)

For the sake of comparing the two disciplines, let λ1 = 3/h, λ2 = 2/h, and
the mean service times be 30 minutes each (μ1 = μ2 = 2/h). Then we get the
following results.

A =
3

2
; B = 1

p0 =
4

39
;

p101 =
6

39
; p201 =

9

39
; p111 =

6

39
;

p012 =
4

39
; p022 =

4

39
; p112 =

6

39
;

P (0) = 0.103; P (1) = 0.538; P (2) = 0.359.

Answer
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Preemptive Priority Due to the preemptive nature of the discipline, we further
assume that when there are two class 2 customers in the system and one of
them in service, an arriving class 1 customer will displace the one in service.
This means one class 2 customer will be removed from the center. The states
representing the number of customers in the system are: (0, 10, 20, 01, 02, 11).
The state balance equations are given below (λ = λ1 + λ2).

λp0 = μ1p10 + μ2p01

(λ+ μ1)p10 = λ1p0 + μ1p20

μ1p20 = λ1(p10 + p11)

(λ+ μ2)p01 = λ2p0 + μ1p11 + μ2p02

(λ1 + μ2)p02 = λ2p01

(λ1 + μ1)p11 = λ2p10 + λ1(p01 + p02)∑
pmn = 1

This is an example in which the help of a computer in solving the simultaneous
equations is likely to work out better. Below we give the standard elimination
technique for the solution. For convenience write

λ = a; μ1 = b; μ2 = c; λ+ μ1 = d; λ1 = e;

λ+ μ2 = g; λ2 = h; λ1 + μ2 = j; λ1 + μ1 = k.

The second to the last equation allows us to write

p02 =
h

j
p01. (6.8.17)

Eliminating p02 from the set of equations, we get

bp10 + cp01 = ap0 (6.8.18)

dp10 − bp20 = ep0 (6.8.19)

ep10 − bp20 + ep11 = 0 (6.8.20)

−mp01 − bp11 = hp0 (6.8.21)

hp10 + np01 − kp11 = 0 (6.8.22)

where we have written c(hj )− g = m and e(1 + h
j ) = n.

Eliminating p11 from (6.8.20) and (6.8.21),

bep10 − b2p20 − emp01 = hep0. (6.8.23)

Eliminating p01 from (6.8.18) and (6.8.23),

(bem+ bce)p10 − b2cp20 = (aem+ che)p0. (6.8.24)

Eliminating p20 from (6.8.19) and (6.8.24),

b(em+ ce− cd)p10 = e(am+ ch− bc)p0
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giving

p10 =
e(am+ ch− bc)

b(em+ ce− cd)
p0 = Ap0, say. (6.8.25)

Using this result in (6.8.19), we get

p20 =
1

b
(dA− e)p0 = Bp0, say. (6.8.26)

Substituting the values of p10 and p20 in (6.8.23),

p01 =
1

em
[beA− b2B − eh]p0

= Cp0, say. (6.8.27)

Substituting this result in (6.8.21),

p11 =
−1

b
[mC + h]p0

= Dp0, say. (6.8.28)

Finally, going back to (6.8.17),

p02 =
h

j
Cp0 = Ep0, say. (6.8.29)

Using the results from (6.8.25)–(6.8.29) in the normalizing condition
∑

pij = 1,
we get

p0 = (1 +A+B + C +D + E)−1. (6.8.30)

With the numerical values used in the non-preemptive case we get the following
results:

A = 1.748; B = 4.618; C = 0.752; D = 5.2; E = 0.301.

p0 = 0.073; p10 = 0.128; p20 = 0.339

p01 = 0.055; p02 = 0.022; p11 = 0.382

Hence
P (0) = 0.073, P (1) = 0.849, P (2) = 0.077. Answer
In the foregoing discussion, we described how we can determine the limiting

distribution of the number of customers in the various priority classes in the
system. As illustrated above, even when the number of classes is relatively
small, the problem becomes exceedingly difficult to solve. However, if we are
interested only in the mean values of the queue lengths and waiting times in
steady state, a method given by Cobham (1954) can be used to determine them
with relative ease. We illustrate the procedure below when the service times are
exponential for each of the priority classes, even though it is valid for arbitrary
service time distributions. The changes to be made to the expressions in the
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latter case will be indicated at the end of the discussion. Unless faced with a
priority queueing system of this type in an application, beginning readers may
skip the following analysis because of its intricate details.

Consider a non-preemptive priority queueing system with k priority classes.
Customers of class i arrive in a Poisson process with rate λi (i = 1, 2, . . . , k);
their service time distribution is exponential with mean 1/μi. Service is provided

by one server. We wish to determine the mean waiting time W
(i)
q of a customer

belonging to the ith priority class.
Let ρi =

λi

μi
and σi =

∑i
j=1 ρj .

Clearly, the limiting distributions of the queue lengths and waiting times
exist only if σk =

∑k
j=1 ρj = ρ < 1.

Let T
(i)
q be the waiting time of an arriving customer of class i. (This is the

time the customer waits in line before entering service.) Suppose there are nr

(r = 1, 2, . . . , i) customers ahead of the arriving customer. The time it has to
wait has three components.

(1) The remaining service time of the customer in service at the time of arrival,
say S0.

(2) The total service time of the customers who are ahead of it. Let Sr be the
total service time of nr customers of rth priority class (r = 1, 2, . . . , i).

(3) While waiting for service, the arriving customer must also wait for the
completion of service of arriving customers belonging to a higher priority
class. Let n′

r (r = 1, 2, . . . , i−1) be the number of higher priority customers

arriving during T
(i)
q . The S′

r be the total service time of these arrivals.

Combining these three components, we have

T (i)
q = S0 +

i∑
r=1

Sr +
i−1∑
r=1

S′
r (6.8.31)

taking expectations

W (i)
q = E(S0) +

i∑
r=1

E(Sr) +
i−1∑
r=1

E(S′
r). (6.8.32)

Since all service times are exponential, the remaining service time of the
customer in service is also exponential with the same rate, appropriate for its
priority class. Because the class of the customer is not known, we may use
ρr/ρ as the probability that it belongs to class r. Furthermore, we must also
account for the probability of the system being busy at the time of arrival. This
probability is = ρ. Combining these terms, we get

E(S0) =

k∑
r=1

1

μr

(
ρr
ρ

)
ρ =

k∑
r=1

ρr
μr

. (6.8.33)
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Let Sr be the service time of customers in the rth priority class. When there
are nr customers of rth priority class ahead of the arriving customer, the total
expected service time of customers in that class is given by

E(Sr) = E(nr)E(Sr)

= E(nr) ·
1

μr
. (6.8.34)

Here we have used the property that the number of customers and the ser-
vice times are independent of each other, and the service time distribution is
exponential with mean 1/μr. Now using Little’s formula (Lq = λWq), we get

E(Sr) =
λrW

(r)
q

μr
= ρrW

(r)
q . (6.8.35)

We may use similar arguments, for the total service time of the higher priority

customers arriving during T
(i)
q . However, we should note that the number of

customers to be included here are new arrivals during T
(i)
q and therefore the

expected number of such new customers of class r is λrW
(i)
q . Thus we have

E(S′
r) =

λrW
(i)
q

μr

= ρrW
(i)
q . (6.8.36)

Combining the three expressions from (6.8.33), (6.8.35), and (6.8.36), we get

W (i)
q = E(S0) +

i∑
r=1

ρrW
(r)
q +

i−1∑
r=1

ρrW
(i)
q (6.8.37)

[1− ρi − σi−1]W
(i)
q = E(S0) +

i−1∑
r=1

ρrW
(r)
q

W (i)
q =

1

1− σi

[
i−1∑
r=1

ρrW
(r)
q + E(S0)

]
. (6.8.38)

From (6.8.37), noting that ρ0 = 0, we get

W (1)
q =

E(S0)

1− σ1

W (2)
q =

1

1− σ2
[σ1W

(1)
q + E(S0)]

=
E(S0)

(1− σ2)(1− σ1)
.
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For induction, assume that

W (i)
q =

E(S0)

(1− σi−1)(1− σi)
. (6.8.39)

From (6.8.37) we get

(1− σi−1)W
(i)
q =

i∑
r=1

ρrW
(r)
q + E(S0)

W (i)
q =

∑i
r=1 ρrW

(r)
q + E(S0)

1− σi−1
. (6.8.40)

Equating the right hand sides of (6.8.39) and (6.8.40), we get

i∑
r=1

ρrW
(r)
q =

σiE(S0)

1− σi
. (6.8.41)

Now using the assumed form of W
(i)
q from (6.8.39) in (6.8.38) and using (6.8.41),

W (i+1)
q =

1

(1− σi+1)

[
i∑

r=1

ρrW
(r)
q + E(S0)

]

=
1

(1− σi+1)

[
σiE(S0)

1− σi
+ E(S0)

]

=
E(S0)

(1− σi)(1− σi+1)
(6.8.42)

which shows by induction, that the general form of W
(i)
q is given by

W (i)
q =

E(S0)

(1− σi−1)(1− σi)
. (6.8.43)

Substituting from (6.8.33)

W (i)
q =

∑k
r=1 (ρr/μr)

(1− σi−1)(1− σi)
. (6.8.44)

When the service times have arbitrary distributions (i.e., the system is M/G/1
with k priority classes) independent of other characteristics of the system, the

result for W
(i)
q remains the same as (6.8.43), except E(S0) is determined as

follows.
Using S

(j)
r to denote the service time of a customer in the rth priority class,

the expected value of the remaining service time of a customer in the priority
class r is given by (5.2.73)

R =
E[(S

(j)
r )2]

2E(S
(j)
r )
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and
ρr = λrE(S(j)

r ).

Now from the arguments used in deriving (6.8.33), we get

E(S0) =

k∑
r=1

E[(S
(j)
r )2]

2E(S
(j)
r )

· λrE(S
(j)
r )

ρ
· ρ

=
k∑

r=1

1

2
λrE[(S(j)

r )2] (6.8.45)

giving

W (i)
q =

∑k
r=1 λrE[(S

(j)
r )2]

2(1− σi−1)(1− σi)
. (6.8.46)

When the mean waiting times are known, the mean time in the system is
obtained by adding the mean service time. The corresponding mean queue
lengths are obtained by using Little’s formula.

Analogous results for the queue with shortest processing time discipline can
be easily derived from (6.8.46), first by discretizing the service times to a geo-
metric distribution with a quantum Q as the time unit and then making Q → 0
to get the continuous time analog. Details of the procedure can be found in
Coffman and Denning (1973).

6.9 Renewal Process Models

In the preceding pages, we have used only Markov models for analyzing queueing
systems. As indicated in several places, Markov models are not general enough
to provide the complete analysis of the systems discussed. For instance, the
queue length process {Q(t), t ∈ T} is Markovian only at departure points in the
queue M/G/1, and at arrival points in the queue G/M/1. Although we have
described the imbedded Markov chain technique to analyze such systems, it
does not give us the complete answer. We can use the Markov process analysis
technique only by defining supplementary variables to represent the remaining
service time at time t in M/G/1, and the time since the last arrival in G/M/1.
However, explicit results are difficult to obtain. Readers may consult advanced
texts on queueing theory for information on these techniques. In this section,
we provide an alternative approach based on renewal processes to overcome this
difficulty. (See Section 3.4 for definitions and properties of the renewal process.)

Assuming the independence of arrival processes, normally the inter-arrival
times are i.i.d., and they form a renewal process. But since the departure cannot
take place when there are no customers in the system, the departure process is
not renewal even when the service times are i.i.d. random variables. (Here we
ignore the possibility that may occur in some applications, in which the arrival
and service processes operate independently of each other.) They form a renewal
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process only during the period when servers are continuous busy, i.e., during a
busy period. Since a busy period is followed by an idle period, when the queue
discipline dictates that the server does not stay idle when there are customers in
the system, the starting points of busy periods form a set of renewal points for
the queue length process, with the sequence of busy period—idle period pairs
forming the renewal periods. The bare essentials of how such a framework can
be used to analyze queues M/G/1 and G/M/1 is given below with necessary
references for advanced reading.

For the number of customers in the system Q(t) let

Pij(t) = P [Q(t) = j|Q(0) = i]

be its transition probability distribution for the period (0, t]. Let 0Pij(t) be the
probability that the transition of Q(·) from i to j, occurs in (0, t] avoiding state
zero, during that period. Probabilistically this can be defined as

0Pij(t) = P [Q(t) = j,Q(τ) �= 0, 0 < τ < t|Q(0) = i] . (6.9.1)

We should note that 0Pij(t) is the probability of transition of the process
{Q(t) tεT} within a busy period. Further noting that the busy cycle is the
renewal period for the queue length process, we can write

Pij(t) =
0Pij(t) +

∫ t

0

0P0j(t− τ)dU(τ). (6.9.2)

The two terms on the right-hand side of this equation give the probabilities
of two mutually exclusive and collectively exhaustive events in the transition:
(1) the process does not visit state 0 and (2) the process visits state 0 at τ
(0 < τ < t) for the last time, and between τ and t the transition is zero-
avoiding. The equation now is in the form of (3.4.15) and therefore using the
key renewal theorem (3.4.19), we get

lim
t→∞

Pij(t) =
1

R

∫ ∞

0

0P0j(t)dt (6.9.3)

where R = E [busy cycle].
In the case of the queue M/G/1, R has been obtained in (5.2.52) as

R =
1

λ(1− ρ)
. (6.9.4)

In the case of queue G/M/1 from (5.3.32), we have

R =
1

λ(1− ζ)
(6.9.5)

where 1/λ is the mean inter-arrival time. Note that ζ is the least positive root
of the functional equation (5.3.14).
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The determination of the transition probabilities 0P0j(t) is complicated in
both of these systems and we do not present it here. Interested readers may
refer to Bhat (1968) for the results as well as a complete analysis of the queue
length processes in the two-queueing systems. (Also see Takács (1962)).

A semi-Markov process or a Markov renewal process is defined by incorpo-
rating the concepts of the renewal process into the structure of discrete time
Markov chains. Using a semi-Markovian model, we can extend the imbedded
Markov chain analysis in systems such as M/G/1 and G/M/1 to derive per-
formance characteristics in continuous time. Again, these analyses are beyond
the scope of this text. Interested readers may refer to Takács (1962), who does
not explicitly use a semi-Markov model in his investigations, and Neuts (1966,
1967).

6.10 Exercises

Note: Exercises in this chapter may require the use of computational tools.

1. In a service system, groups of customers arrive and get served individu-
ally by a single server. The customer groups arrive in a Poisson process
with rate 5 per hour and the group size has a distribution with mean 2.5
and variance 2. The service times are exponential with mean 4 minutes.
Determine the expected number of customers in the system in the long
run.

2. In an emergency medical clinic, patients arrive for treatment at the rate of
5 per hour and their inter-arrival times can be assumed to have an Erlang
Ek distribution with k = 3. Assume that each patient requires the services
of the doctor for an amount of time that has an exponential distribution
with mean 10 minutes. Determine the average time a patient has to spend
in the clinic.

3. An automobile service station has one station for general checkups such as
oil and filter change, tire rotation, checking fluid levels, etc. On the average
the checkup takes 15 minutes, the amount of time having an Erlang Ek

distribution with k = 4. Cars arrive in a Poisson process at the rate of 3
per hour. Determine the average number of cars in the system in the long
run.

4. In an assembly line, by the time a product reaches the assembly station,
it would have passed through three earlier stations, at each of which it
would have spent an amount of time exponentially distributed with mean
3 minutes. The assembly time is exponential with mean 5 minutes. Deter-
mine the expected number of products waiting at the assembly station,
assuming that an unlimited number of products are available at the first
station and they pass through the first three stations without delay.
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5. In Exercise 4, assume that the assembly time at the specific station is
exactly 5 minutes. Using an Ek/D/1 model, determine the transition
probability matrix of the imbedded Markov chain of the number of “prod-
ucts” waiting to be assembled at the specific station. Note that “products”
represent the total number of phases making up the inter-arrival time.

Using an appropriate finite capacity for the waiting room for products,
determine the limiting distribution of the number of phases as well as the
expected number of products waiting to be assembled.

6. In Exercise 6 of Chapter 5, suppose the amount of time the doctor spends
with a patient has the Erlang distribution with mean 10 minutes and k
= 3. Using a D/Ek/1 model and the phase interpretation of the patient’s
time with the doctor, determine the transition probability matrix of the
imbedded Markov chain of the number of outstanding phases of service
waiting to be performed at the time of a patient’s arrival. Obtain the
limiting distribution of this process and the expected number of patients
waiting using an appropriate capacity limit.

7. In an airport, check-in counters for an airline are supplemented with four
additional self-service counters for ticketed passengers. The passengers
arrive at the self-service counters in a Poisson process at the rate of 80
per hour and take exactly 2 minutes to get their boarding passes. Using
an M/D/s model obtain the transition probability matrix of the imbed-
ded Markov chain of the process representing the number of customers
in the self-service system and determine its limiting distribution. Use an
appropriate capacity limit to make the computations feasible.

8. Extend the numerical portion of Example 6.8.1 to allow four customers
to be present in the system, and determine the limiting distribution and
the three probabilities P (service counter idle), P (class 1 in service), and
P (class 2 in service). Compare the results in the non-preemptive and
preemptive priority cases.

9. A computer technician has maintenance contracts with three customers.
The three customers C1, C2, and C3 have different preemptive priority
assignment for service. Under this scheme, C1 has preemptive priority
over C2 and C3, and C2 has preemptive priority over C3. The customers
C1, C2, and C3 call for service with rates λ1, λ2, and λ3, and get service
with rates μ1, μ2, and μ3, respectively, in such a way that each such process
can be modeled as a two state Markov process described in Section 4.7.1.

Obtain the state space for the underlying process and determine its limit-
ing distribution. Also determine the long run probabilities P (technician
is idle), P (C1 is being served), P (C2 is being served), P (C2 is waiting for
service), P (C3 is being served), and P (C3 is waiting for service).

10. Four classes of customers arrive at a counter for service and get served
based on a preemptive priority discipline, with class 1 having the highest
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priority and class 4, the lowest. The arrivals of the four classes of customers
are in Poisson processes with rates 3, 6, 6, and 9 per hour, respectively.
Service times of all customers have exponential distributions with mean
2 minutes. Determine the mean waiting time for customers in each class.



Chapter 7

Queueing Networks

7.1 Introduction

The queueing systems considered in the preceding chapters had customers dema-
nding service from a single facility. But there are many real-world systems in
which customers get served in more than one station arranged in a network
structure, which is a collection of nodes connected by a set of paths. In a
queueing network, a group of servers operating from the same facility are iden-
tified as a node. As described in Chapter 1, under the historical perspective,
a large portion of the advances occurring in queueing theory after the 1960s
is connected to networks of queues one way or the other. Computer, commu-
nication, and manufacturing systems where queueing theory has found major
application areas abound with such networks.

In a queueing network, customers demand service from more than one server.
All customers may not require service from the same set of servers. Also, often
they may have to go back to the same server more than once. Figure 7.1 is
a simple illustration of a network in which the sequencing of the service is
shown by directional arrows between the nodes. Figure 7.1 also shows that
customers arrive at Nodes 1 and 4 and depart from Nodes 3 and 5. A queueing
network with this feature is known as an open network. All nodes of the network
represent queues and let Qi(t) be the number of customers at node i at time
t. The total number of customers in the network is

∑
i Qi(t). When no new

customers are allowed to enter the network and no customers in the network
exits from it, i.e., when

∑
i Qi(t) = Q, a constant, we have a closed network. A

service center supporting a fixed number of machines is an example of a closed
network. When the arrival rate into and the departure rate out of the network
are the same (or approximately the same) it can be modeled as a closed network
without sacrificing too much accuracy. (With a finite set of equations a closed
network sometimes is easier to analyze, depending on its structure.)

c© Springer Science+Business Media New York 2015 159
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Figure 7.1 Open network

As we point out later, queueing networks in their generality, present formidable
problems in their analysis. What we intend to cover here are Markovian net-
works in which the queueing systems at nodes are Markovian and the nodes
themselves have a Markovian structure. We start with analyzing the node net-
works. A Markovian node network is often called the routing chain.

7.2 The Markovian Node Network

Consider a network of nodes {1, 2, . . . , k}. After getting served at node i, sup-
pose a customer moves to node j with probability Pij (i, j = 1, 2, . . . , k). Cus-
tomer opting for a repeat service at node i is represented by probability Pii. In
the context of an open queueing network, to account for the outside world from
which the customers arrive and to which they go after departing from any state
in the network, we have to define an extra state 0, with transition probabilities
P00 = 0; P0j ≥ 0, j = 1, 2, . . . , k, and Pi0 ≥ 0, i = 1, 2, . . . , k. The transition
probability matrix P, also known as the routing matrix can be represented as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 . . . k

0 0 P01 P02 . . . P0k

1 P10 P11 P12 . . . P1k

2 P20 P21 P22 . . . P2k
...

...
...

k − 1 Pk−1,0 Pk−1,1 Pk−1,2 . . . Pk−1,k

k Pk0 Pk1 Pk2 . . . Pk,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7.2.1)

For the closed network, the node 0 is unnecessary.
A surprising amount of information, exclusive of the queue phenomenon,

can be derived from the transition probability matrix P of the node network.
It should be noted that the Markov chain is irreducible (all states communicate
with each other), and in general it is also aperiodic unless a special structure is
imposed on it.

(i) Relative throughput: The rate of customers passing through each node is
known as the throughput of that node. Under stable conditions rates of
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customer arrivals at each node must attain input–output parity. Let λi

be the arrival rate at node i, and let λ = (λ0, λ1, . . . , λk). Under steady
state, therefore, we have λP = λ, which is the same basic equation we
solve for obtaining the limiting distribution of the Markov chain. In the
absence of the normalizing condition

∑k
0 πi = 1 as in the case of the

limiting distribution, the solution of the equation λP = λ, gives us only
the relative throughput in the network. When the arrival rate from outside
the network is known, one can obtain the actual throughputs. In a closed
network, however, the actual values depend on the traffic circulating in
the system.

(ii) Throughput time exclusive of waiting: Consider a customer passing through
the nodes of the network with a given transition structure. Let 1/μj be the
mean time the customer spends at node j and νij be the expected number
of visits the customer makes to node j having started initially from node

i. Then the mean throughput time exclusive of waiting =
∑k

j=1 νij

(
1
μj

)
.

The expected number of visits νij , j = 1, 2, . . . , k can be determined as
elements of the fundamental matrix of the finite Markov chain P, after
converting state 0 to be an absorbing state.

The transition probability matrix (7.2.1) has the following structure when
state 0 is made absorbing.

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . k

0 1 0 0 . . . 0
1 P10 P11 P12 . . . P1k

2 P20 P21 P22 . . . P2k
...

...
...

k Pk0 Pk1 Pk2 . . . Pk,k

⎤
⎥⎥⎥⎥⎥⎦

(7.2.2)

=

[
1 0
R Q

]
. (7.2.3)

Matrix (7.2.2) is partitioned and denoted as shown in (7.2.3). Based on the
theory of finite Markov chains (see Bhat and Miller (2002)), the elements
of the matrix (I −Q)−1 which is known as the fundamental matrix, give
the expected numbers of visits of the Markov chain to the various states
before it ultimately visits the absorbing state 0. Let

(I−Q)−1 =

⎡
⎢⎢⎢⎣

ν11 ν12 . . . ν1k
ν21 ν22 . . . ν2k
...

...
...

νk1 νk2 . . . νkk

⎤
⎥⎥⎥⎦. (7.2.4)

Suppose, the Markov chain is initially in state i. The expected numbers
of visits of the process to states 1, 2, . . . , k before it gets absorbed in 0
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are νi1, νi2, . . . , νik, respectively. The expected total number of visits is,
therefore, given by

∑k
j=1 νij .

In the node network, let the initial state be i with probability αi. With the
assumption that the process spends an average of 1/μj time units in state
j, the total throughput time of a customer exclusive of waiting is given
by
∑k

i=1 αi

∑k
j=1 νij(

1
μj
) time units. For an elaboration of this procedure,

including expressions for the variance of the throughput time, the readers
may refer to Bhat and Miller (2002).

In the formulation given above, we have used 1/μj as the mean service time
of a customer in node j per visit. It can also be the average total amount
of time a customer spends in that node including waiting and service, as
long as the queueing systems in the various nodes are independent of each
other.

(iii) Reliability of the network. The fundamental matrix approach can also be
used to determine the reliability of the node network. This is done by
introducing a failure node, say k + 1, which is also absorbing. The new
transition probability matrix will have the structure as in (7.2.5):

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 k + 1 1 2 . . . k

0 1
k + 1 1
1 P10 P1,k+1 P11 P12 . . . P1k

2 P20 P2,k+1 P21 P22 . . . P2k

...
...

...
...

...
...

k Pk0 Pk,k+1 Pk1 Pk2 . . . Pkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.2.5)

=

[
I 0
R Q

]
. (7.2.6)

Assume that the process starts in state 1. Let fij be the probability that
starting from state i (i = 1, 2, . . . , k), the Markov chain ultimately gets
absorbed in j (j = 0, k + 1). Define

F =

[
f10 f20 . . . fk0

f1,k+1 f2,k+1 . . . fk,k+1

]
. (7.2.7)

Again appealing to the theory of finite Markov chains, we have

F = (I−Q)−1R, (7.2.8)
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where R is the submatrix as defined in (7.2.5) and (7.2.6). Thus for a
customer starting from state i,

P (customer will pass through the network

without system failure) =

k∑
j=1

νijPj,0

P (system failure) =
k∑

i=1

k∑
j=1

νijPj,k+1.

Assuming that a customer starts from state i with probability αi, the
reliability R of the system is obtained as R = 1 − P (system failure)

=
∑k

i=1 αi

∑k
j=1 νijPj0.

For a finite time reliability analysis of a Markovian network the readers
are referred to Bhat and Kavi (1987).

7.3 Queues in Series

The simplest open queueing network structure is when service facilities are
located in series and customers pass through them sequentially. Such systems
are also known as tandem queues. Examples of queues in series abound in most
of the application areas. Work done in assembly lines, traffic signals in a road
network, and sequential computations to be carried out in a computer system
are some obvious instances. Assume that at each node, the system operates as
a Markovian queue (M/M/s) with one or more servers. Customers from outside
the network always start at the first facility. There is no blocking between suc-
cessive service stations; this means the waiting room feeding customers to each
of these stations has infinite capacity.

To illustrate the behavior of a series of queues, consider two (M/M/1) queues
in series. Assume that there is a waiting room of infinite size in front of each
server. Let customers arrive at the first queue in a Poisson process with rate
λ, and assume that the service times are exponential with means 1/μ1 and
1/μ2, respectively. Let Q1(t) and Q2(t) be the number of customers at time t
in the two queues. As a consequence of the assumptions made on the arrival
process and service time distributions, {Q1(t), Q2(t)} is a vector Markov process,
with states (n1, n2), n1, n2 = 0, 1, 2 . . .. Also, the arrival process to the second
queue, as t → ∞, is also Poisson with rate λ. The transition probabilities of
the process {Q1(t), Q2(t)} for finite t can be derived theoretically starting with
forward Kolmogorov equations and using transforms. However, the solutions
will turn out to be much more complex than the transition probabilities for a
single (M/M/1) queue, and furthermore, the transition probabilities of the two
systems in series will not be independent of each other. The situation is much
different when t → ∞. Let Q1 and Q2 be the limiting queue lengths in the two
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queues. Define

pn1,n2
= P (Q1 = n1, Q2 = n2), n1, n2 = 0, 1, 2, . . . (7.3.1)

which exists when ρ1 = λ
μ1

< 1 and ρ2 = λ
μ2

< 1. The transition diagram with

reference to (n1, n2) and its neighboring states can be shown as in Figure 7.2.

n1, n2 − 1 n1 − 1, n2

λ
������

����
����

���

n1, n2 + 1
μ2 �� n1, n2

μ2

����������������

μ1

��

λ �� n1 + 1, n2

n1 − 1, n2 + 1 n1 + 1, n2 − 1

μ1

����������������

Figure 7.2 Transition diagram

Writing down the corresponding state balance equations, we get

λp00 = μ2p01

(λ+ μ2)p0n2
= μ1p1,n2−1 + μ2p0,n2+1

(λ+ μ1)pn1,0 = μ2pn1,1 + λpn1−1,0

(λ+ μ1 + μ2)pn1n2
= μ1pn1+1,n2−1 + μ2pn1,n2+1

+λpn1−1,n2
n1, n2 > 0. (7.3.2)

Because of the bivariate structure of states, the recursive solution technique
employed in solving such equations in the univariate case does not work in this
case. Instead, we appeal to the uniqueness property of the solution to (7.3.2)
and start with a trial solution

pn1,n2
= ρn1

1 ρn2
2 p00 (7.3.3)

(see R. R. P. Jackson (1954)). It is easy to see that (7.3.3) satisfies the
equations (7.3.2). Now using the normalizing condition

∞∑
n1=0

∞∑
n2=0

pn1n2
= 1,

we get
p00 = (1− ρ1)(1− ρ2).

Hence
pn1n2

= (1− ρ1)(1− ρ2)ρ
n1
1 ρn2

2 . (7.3.4)
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Extending this approach to a series of k queues, each an (M/M/1) system,
with μi as the parameter of the exponential service time distribution of the ith
system, and ρi =

λ
μi

< 1, i = 1, 2, . . . , k, we get

pn1n2...nk
= Πk

i=1(1− ρi)ρ
ni
i (7.3.5)

(See R. R. P. Jackson (1956)).
Observing the solution (7.3.5), it is clear that we would have obtained the

same solution if we had considered the k systems operating independently of
each other. But in fact they operate in series and in finite time their behaviors
depend on each other. This is the consequence of the departure process result
we established in Section 4.2.1 where we found that the departure process of an
(M/M/s) type queue was also Poisson with the same rate as the arrival process,
as t → ∞. In the queueing network literature, this property has been sometimes
denoted as the M → M property. The significance of this property is that it
is a necessary condition for the limiting distribution to be in the product form
as shown in (7.3.5). In the case of the series of queues, we may conclude that
even though in finite time the individual queues are not independent, in the
long term they behave as if they are independent.

Another concept closely related to the M → M property is local balance.
While discussing the general birth and death queueing model, we established the
balance relation (4.1.7) for transitions between two neighboring states. In the
broader context of networks of queues, that property is known as local balance
and because of the bivariate nature of states, there may be more than one way
of identifying neighboring states. The necessary underlying assumption is the
Markovian property of the arrival and service processes. (See Chandy (1972)
and Muntz (1973).)

In the two-queue series described in this section, consider the state balance
equation (7.3.2). They can be broken up into the following local balance equa-
tions

λpn1n2
= μ2pn1,n2+1 n1 = 0, 1, 2, . . . ; n2 = 0, 1, 2, ...

μ1pn1n2
= λpn1−1,n2

n1 = 1, 2, . . . ; n2 = 0, 1, 2, . . .

μ2pn1,n2
= μ1pn1+1,n2−1 n1 = 0, 1, 2 . . . ; n2 = 1, 2, . . . (7.3.6)

The validity of such local balance equations is established by back-substitution
in the global state balance equations (7.3.2). For the rationale behind the local
balance equations the readers are referred to Bhat (1984), Chapters 7 and 12.

The structure of local balance equations leads directly to a product form
solution for the limiting distribution of the bivariate process. We illustrate this
property using equations (7.3.6). From the second equation in (7.3.6), we get
(writing λ

μ1
= ρ1, and

λ
μ2

= ρ2)

pn1n2
=

λ

μ1
pn1−1,n2

.
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Using this equation recursively, we obtain

pn1n2
= ρn1

1 p0n2
. (7.3.7)

From the first equation in (7.3.6), we get

pn1,n2+1 =
λ

μ2
pn1n2

giving
pn1n2

= ρ2pn1,n2−1.

This yields
pn1n2

= ρn2
2 pn10. (7.3.8)

Inserting the value of p0n2
from (7.3.8) in (7.3.7), we get

pn1n2
= ρn1

1 ρn2
2 p00. (7.3.9)

The result (7.3.4) now follows on the application of the normalizing condition

∞∑
n1=0

∞∑
n2=0

pn1n2
= 1.

As seen in these derivations identifying local balance equations is not as simple
as it seems to be. The preceding derivation has been provided to illustrate the
close connection among the three properties: (1) the M → M , (2) local balance,
and (3) the product form solution. A general approach to the analysis of these
systems is provided in the Section 7.5.

7.4 Queues with Blocking

The analysis gets complicated if blocking is introduced when customers move
from one station to the next. This occurs when there is a waiting room of finite
size in between two stations and the customer completing service from the first
has to wait until the completion of the ongoing service at the second station
when the waiting room between them is full. Thus, any specification of the state
space must include information on the numbers of customers in all the stations
adding an extra measure of complication. We illustrate these factors below with
an example.

Example 7.4.1 A machine repair has two stages, and there are two repairmen
working sequentially one for each stage. The system is set up in such a way
that there can be a maximum number of three machines waiting for repair
or being repaired at any time, two with the first mechanic and one with the
second mechanic. In case the first mechanic completes his work while the second
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mechanic is still working on the second stage on the previous machine, the first
mechanic stops working until the second mechanic is ready to work on it. Repair
requests arriving when there are two jobs with the first mechanic (one waiting
and one being worked on or one waiting and one blocked from entering into
the second stage) are not allowed into the system. Repair requests arrive in a
Poisson process with rate λ and repair times at the two stages have exponential
distributions with rates μ1 and μ2, respectively.

Let the numbers of machines in the two stages represent a bivariate Markov
process (the process is Markovian because of the Poisson and exponential assump-
tions). The state space of the process can be identified as:

stage 1 0 0 1 1 1b 2 2 2b
stage 2 0 1 0 1 1 0 1 1

.

Note that because of blocking, we had to increase the state space to include
two points (1b, 1) and (2b, 1) representing blocked machines at stage 1. We
present the corresponding transition diagram for the bivariate Markov process
in Figure 7.3.
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Figure 7.3 Transition diagram

Let pij = P (Q1 = i;Q2 = j). Using the state balance principle of the equality
of the input and the output with reference to each state, we have the following
eight state balance equations.

λp00 = μ2p01

(λ+ μ2)p01 = μ1p10 + μ2p1b,1

(λ+ μ1)p10 = λp00 + μ2p11

(λ+ μ1 + μ2)p11 = λp01 + μ2p2b,1 + μ1p20

(λ+ μ2)p1b,1 = μ1p11

μ1p20 = λp10 + μ2p21

(μ1 + μ2)p21 = λp11

μ2p2b,1 = λp1b,1 + μ1p21.
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Solving these equations with appropriate substitutions, we get

p01 =
λ

μ2
p00; p10 = Ap00; p11 = Bp00

p1b,1 = Cp00; p21 = Dp00; p20 = Ep00

p2b,1 = Fp00,

where

A =
λ(λ+ μ2)

2 + λμ1μ2

μ1μ2(2λ+ μ1 + μ2)

B = [(λ+ μ1)A− λ]
1

μ2

C =
μ1

λ+ μ2
B

D =
λ

μ1 + μ2
B

E =
λ

μ1
A+

μ2

μ1
D

F =
μ1

μ2
D +

λ

μ2
C.

Using the normalizing condition that requires these probabilities sum to 1,
we get

p00 = [1 +
λ

μ2
+A+B + C +D + E + F ]−1.

Answer

The solution to Example 7.4.1 illustrates the magnitude of the problem in
dealing with blocking in queues in series. For instance, even a minor change
in the blocking rule such as allowing the first mechanic to repair the waiting
machine while the machine that has received the first stage repair is made
to wait for the second stage repair, instead of the one used in the example
above—will change the transition diagram significantly, thus requiring the need
for rewriting the equations and reworking the solution. This modification is
left as an exercise to the reader. As a reference for dealing with the blocking
phenomenon in queueing networks, we may cite Perros (1994).

7.5 Open Jackson Networks

Suppose in the Markovian node network of Section 7.2, each node represents
an (M/M/s) queue, with si servers at node i, (i = 1, 2, . . ., k) and there is no
blocking for transitions among the nodes. This means each of the queues is
an (M/M/s) system with a waiting room of infinite size. Also, assume that
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customers arrive at node i from outside the network in a Poisson process with
rate λi and service times at node i are exponential with mean 1/μi. Let αij be
the probability that a customer completing service at node i, requests service
from node j, j �= i, and αi0 be the probability that it will leave the network
after service at node i. Let Q1, Q2, . . ., Qk be the number of customers in the k
nodes respectively as t → ∞, and define

pn1n2...nk
= P (Q1 = n1, Q2 = n2, . . . , Qk = nk). (7.5.1)

This is an example of what is commonly known as an open Jackson network
after J. R. Jackson (1957) who analyzed it for the first time. For the limiting
distribution pn1n2...nk

of (7.5.1) Jackson has shown that

pn1n2...nk
= p1(n1)p2(n2) . . . pk(nk), (7.5.2)

where

pi(r) =

{
pi(0)

(γi/μi)
r

r! r = 0, 1, 2, . . . , si
pi(0)

(γi/μi)
r

si!s
r−si
i

r = si, si + 1, . . .
(7.5.3)

and
γi = λi +

∑
j �=i

αjiγj i = 1, 2, . . . , k. (7.5.4)

Given λi and αij (i, j = 1, 2, . . . , k), the quantity γi can be determined from
(7.5.4). It should be noted that γi is the effective arrival rate at node i after
taking into account the traffic from outside the network and the k − 1 other
nodes within the network. Thus, if ρi = γi/μi is the effective traffic intensity at
each node, clearly ρi < 1 for i = 1, 2, . . . , k for the limiting distribution to exist.
Now pi(0) for i = 1, 2, . . . , k can be determined using the normalizing condition

∑
n1

∑
n2

..
∑
nk

pn1n2...nk
= 1.

The structure of the distribution pi(r) in (7.5.3) is similar to the limiting dis-
tribution of the queue (M/M/s)i with arrival rate γi and service rate μi. Does
this mean that the arrival process at the ith node is Poisson? In reality it is not
true even when t → ∞. This is because of the feedback feature of transitions
between nodes. In a series of queues with only feed-forward transitions, we
could apply Burke’s (1956) result on the departure process (see, Section 4.2.1)
and conclude that as t → ∞, the feed-forward transition generates a Poisson
process. On the other hand if the transition includes the feedback feature, the
resulting arrival process is not Poisson. In fact Burke (1976) has shown that in
an (M/M/1) queue with feedback, the effective inter-arrival time distribution
is a mixture of exponentials (i.e., hyper-exponential). Thus, from the limiting
distribution pn1n2...nk

of (7.5.3), which is the product of limiting distributions
of (M/M/s)i queueing systems, the only conclusion we can draw is that in the
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limit, the Jackson network behaves as if it is a cluster of (M/M/s)i queues,
without being so in actuality. For a discussion of these features of queueing
networks readers are referred to Disney and Kiessler (1987).

Markovian network models used in queueing are also known as Markov pop-
ulation processes. A systematic procedure for the analysis of such processes
with particular reference to their limiting distributions has been given by King-
man (1969). Kingman’s results verify the results derived by Jackson, who also
generalizes his earlier result to incorporate production systems composed of spe-
cial purpose service centers in Jackson (1963), and Whittle (1967, 1968) who
has derived limiting distributions for migration processes. See Bhat (1984) for
details.

The derivation of the limiting distribution (7.5.3) is complex and cumber-
some, even when there are only two nodes in the system as can be seen from
the following outline. Assume that k = 2, and s1 = s2 = 1. Using properties of
state transitions, we can write down the state balance equations as follows:

(λ1 + λ2)p00 = μ1α10p10 + μ2α20p01

(λ1 + λ2 + μ1)p10 = λ1p00 + μ2α21p01 + μ1α10p20

(λ1 + λ2 + μ2)p01 = λ2p00 + μ1α12p10 + μ2α20p02

(λ1 + λ2 + μ1 + μ2)p11 = λ1p01 + λ2p10

+μ1α10p21 + μ2α20p12

+μ1α12p20 + μ2α21p02
...

(λ1 + λ2 + μ1 + μ2)pn1n2
= λ1pn1−1,n2

+ λ2pn1,n2−1

+μ1α10pn1+1,n2
+ μ2α20pn1,n2+1

+μ1α12pn1+1,n2−1 + μ2α21pn1−1,n2+1,

n1, n2 > 0. (7.5.5)

Calculating the effective arrival rates to each of the two nodes, we get

γ1 = λ1 + α21γ2

γ2 = λ2 + α12γ1. (7.5.6)

Solving for γ1 and γ2 in (7.5.6)

γ1 =
λ1 + λ2α21

1− α12α21

γ2 =
λ2 + λ1α12

1− α12α21
. (7.5.7)

Write ρi =
γi

μi
, i = 1, 2. Suppose a trial solution is

pn1n2
= Cρn1

1 ρn2
2 . (7.5.8)
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Verifying that (7.5.8) is, in fact, the correct solution to the state balance
equations (7.5.5) with a normalizing condition

∑
n1

∑
n1

pn1n2
= 1, is not a

simple task. For details of such a procedure in the general case, with k nodes
and multiple servers in each node, the readers are referred to Gross et al. (2008).

7.6 Closed Jackson Networks

Suppose λi = 0 and αi0 = 0 in the assumptions made while defining the open
Jackson network. Let Q =

∑k
i=1 Qi be the total number of customers in the

network. Now we have a closed Jackson network, which can be used to model
a network of queues with a fixed number of customers.

Following the same reasoning as in open networks with k nodes, and the ith
node supporting si servers (i = 1, 2, ..., k), the limiting distribution pn1n2...nk

=
P (Q1 = n1, Q2 = n2, . . . , Qk = nk) can be obtained in the product form as

pn1n2...nk
= CΠk

i=1

ρni
i

ai(ni)
(7.6.1)

where

ai(ni) =

{
ni! ni < si
si!s

ni−si
i ni ≥ si

(7.6.2)

and ρi =
γi

μi
with γi satisfying the relation

γi =

k∑
j=1

γjαji.

This relation can be written as

μiρi =

k∑
j=1

μjρjαji. (7.6.3)

The constant term C in (7.6.1) is determined using the normalizing condition∑
n1n2...nk

pn1n2
. . . nk = 1. We note here that the term “product form” is used

only to the portion of the result involving n1, n2, . . . , nk. In this case constant
C does not factor out corresponding to the nodes as it did in the open network.
In solving (7.6.3) to determine ρi, i = 1, 2, . . . , k, we should note that since the
total traffic is known, only k− 1 equations are independent. Hence, we start by
setting one of the ρi’s as equal to 1.

The determination of C ≡ C(Q) is not a simple problem. We have

C−1(Q) ≡ [C(Q)]−1 =
∑

n1+n2+...+nk=Q

Πk
i=1

ρni
i

ai(ni)
, (7.6.4)
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where the sum extends over all possible ways of choosing n1, n2, . . . , nk such that∑k
1 ni = Q. The number of ways this can be done is given by the combinatorial

term
(
Q+k−1

Q

)
. (The equivalent combinatorial problem is that of distributing Q

balls in k cells, which in turn is equivalent to randomly assigning positions to
k − 1 bars among Q + k − 1 positions arranged in a row.) One of the earliest
algorithms to compute G(Q) = C−1(Q) systematically has been given by Buzen
(1973). He defines

fi(ni) =
ρni
i

ai(ni)
(7.6.5)

so that

G(Q) =
∑

Σnr=Q

Πk
i=1fi(ni).

Consider

gm(n) =
∑

n1+n2+...nk=n

m∑
i=1

fi(ni) (7.6.6)

and gk(Q) = G(Q) (m = k and n = Q). We may write

gm(n) =

n∑
r=0

⎡
⎣ ∑
n1+n2+...+nm−1+r=n

Πm
i=1fi(ni)

⎤
⎦

=

n∑
r=0

fm(r)

⎡
⎣ ∑
n1+n2+...+nm−1=n−r

Πm−1
i=1 fi(ni)

⎤
⎦

=
n∑

r=0

fm(r)gm−1(n− r) n = 0, 1, 2, . . . , Q. (7.6.7)

Also g1(n) = f1(n) and gm(0) = 1. Equation (7.6.7) gives a recursive struc-
ture for the determination of G(Q). The algorithm used in calculating G(Q)
is known as the convolution algorithm and it will be illustrated numerically in
Chapter 13, Section 13.3.

There are several computational algorithms in the literature, some of which
are improvements over Buzen’s algorithm, for the calculation of G(Q) and the
marginal distributions pi(n). (See, for instance, Gelenbe and Pujolle (1998).)
For a discussion of their relative advantages, the readers may refer to books on
the performance modeling of computer networks, such as Sauer and Chandy
(1981). For an illustration of the use of recursive solutions see Gross et al.
(2008).
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7.7 Cyclic Queues

Consider the special case of the closed queueing network in which

αij =

⎧⎨
⎩

1 j = i+ 1, 1 ≤ i ≤ k − 1
1 i = k, j = 1
0 otherwise .

(7.7.1)

This is a cyclic queue (Koenigsberg 1958) where service is provided cyclically
by one or more servers. Cyclic queue models are forerunners of polling models
that have been mentioned in Chapter 1. For simplicity we assume that there is
only one server at each station. Using the same notations as in the last section,
corresponding to (7.6.3) we have the following equations

μ1ρ1 = μkρk

μ2ρ2 = μ1ρ1
...

μkρk = μk−1ρk−1. (7.7.2)

From these we get

ρ2 =
μ1

μ2
ρ1

ρ3 =
μ1

μ3
ρ1

...

ρk =
μ1

μk
ρ1. (7.7.3)

Without loss of generality we set ρ1 = 1. For the limiting distribution, we get

pn1,n2...,nk
=

1

G(Q)

μQ−n1

1

μn2
2 μn3

3 . . . μnk

k

. (7.7.4)

The factor G(Q) in (7.7.4) is determined using Buzen’s algorithm as described
in the last section.

Example 7.7.1 Suppose there are only two stations in a closed cyclic network.
Service times at the two stations have exponential distributions with rates μ1

and μ2. Following the arguments used in deriving (7.7.2)–(7.7.4), we have

ρ2 =
μ1

μ2
ρ1.

Setting ρ1 = 1 we get ρ2 = μ1

μ2
.

pn1,Q−n1
=

1

G(Q)

(
μ1

μ2

)Q−n1

.
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Using the normalizing condition
∑

n1
pn1,Q−n1

= 1,

1

G(Q)

Q∑
n1=0

(
μ1

μ2

)Q−n1

= 1

G(Q) =
1−
(

μ1

μ2

)Q+1

1− μ1

μ2

.

The limiting distribution is now obtained as

pn1,Q−n1
=

1− (μ1/μ2)

1− (μ1/μ2)Q+1

(
μ1

μ2

)Q−n1

.

Answer

7.8 Remarks

We have described in the preceding sections some of the fundamental models
for queueing networks. In practice, however, networks of the real world are
normally much more complex. Since the 1970s, with increased attention to
models necessary to analyze traffic in computer and communication systems,
researchers have developed other indirect or approximate techniques of analy-
sis. The mean value analysis (see Section 13.3) is one such example. In the
category of approximations is the method of isolation and aggregation in which
systems are analyzed through loosely dependent subsystems. For these and
other approximate methods readers are referred to books such as Gelenbe and
Pujolle (1999).

The paper by Baskett et al. (1975) on the open, closed, and mixed queueing
networks with different classes of customers was one of the earliest attempts to
go beyond the Jackson network. Their extensions include the use of distributions
other than the exponential (e.g., Coxian), and service disciplines other than the
FCFS (processor sharing, no queueing, and LCFS). Since the publication of
this article, the literature on the performance modeling of queueing networks
has greatly increased. What we have provided here is an introduction to the
topic. Interested readers and researchers may consult books such as Courtois
(1977), Kelley (1979), Sauer and Chandy (1981), Lavenberg (1983), Molloy
(1989), Perros (1994), and Gelenbe and Pujolle (1998) and articles in various
journals dealing with computer and communication networks.

7.9 Exercises

Note: Exercises in this chapter may need the use of computational tools.
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1. Solve Example 7.4.1 with the change in the service discipline such that
the first mechanic starts working on a waiting machine, if there is one, on
the completion of service to a machine even when it is blocked by the on
going service at the second stage.

2. Solve Example 7.4.1 when the total number of machines allowed in the
system is four, with two with each mechanic.

Solve the problem under service disciplines in the following two cases when
a machine is blocked from starting service at the second stage.

(a) The first mechanic stops work as in Example 7.4.1

(b) The first mechanic starts work on a waiting machine, if there is one,
as in Exercise 1 above.

3. In a two node open queueing network with blocking, let the number of
waiting spaces in front of the second server be m. Let m + 1 represent
the blocked state. If n1 and n2 are the numbers of customers in the two
nodes, respectively (including those in service), we have n1 = 0, 1, 2, . . .
and n2 = 0, 1, 2, . . . ,m,m + 1. Let λ be the Poisson arrival rate and μ1

and μ2 be the service rates at the two nodes with exponential service time
distributions.

Examine the impact of two special cases:

(a) μ1 → ∞, when the customer at the first node receives an infinitesimal
amount of service

(b) The first node is saturated, meaning that there is always at least one
customer waiting for service.

(See Perros (1994)).

4. In Exercise 3(b) above, what is the percentage of time the first server is
providing service? Specialize the result for μ1 = μ2.

5. In a computer center jobs are submitted from N terminals in Poisson pro-
cesses, each with rate λ. Each job requests service from a processor fol-
lowed by one of the two I/O devices. The I/O devices are chosen with prob-
ability β1 and β2, respectively. The job then exits the system with proba-
bility β3 or proceeds for consultation of a file on another server with proba-
bility β4. (Note that β1+β2 = 1 and β3+β4 = 1.) After consulting the file,
the job joins the first queue for another round. Assume that the services
provided at the various locations are all distributed exponentially with the
following rates: CPU - μ1; I/O(1) −μ2; I/O (2) −μ3 and, file server −μ4.
Determine the limiting distribution of jobs at each station and the mean
response time for a job in the entire system given the following values.

N = 40 λ = 0.01/sec; β1 = 0.6; β3 = 0.4
1
μ1

= 0.8 sec; 1
μ2

= 0.3 sec; 1
μ3

= 0.6 sec; 1
μ4

= 1 sec.

(Krakowiak (1988)).
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6. Consider the following motor vehicle registration process with four sta-
tions.

(a) Reception. Customers arrive in a Poisson process with rate 12 per
hour. The receptionist takes an amount of time that is exponen-
tially distributed with 20 seconds to direct each customer to either
one of two processing clerks with probabilities 0.3 (Clerk 1) and 0.7
(Clerk 2).

(b) Clerk 1 handles out-of-state and new licenses and takes on the average
10 minutes, the amount of time having an exponential distribution.

(c) Clerk 2 handles standard in-state renewal applications and takes on
the average 5 minutes. An exponential distribution assumption is
appropriate for this time as well.

(d) 20% of applications processed by Clerk 1 go to Clerk 2 and 10% of
applications processed by Clerk 2 go to Clerk 1 for further process-
ing. When the processing is completed by the two clerks (80% by
Clerk 1 and 90% by Clerk 2), the customers move to the cashier for
paying the fees.

(e) The amount of time spent by the cashier with a customer is expo-
nential with mean 1 minutes.

Model this system as an open network and obtain the limiting distribu-
tion of the number of customers at each station. Also determine (i) the
average total amount of time a customer spends in the system and (ii) the
average total amount of time a customer with an in-state license spends
in the system. (Molloy (1989)).

7. An information network has N centers C1, C2, . . . , CN and a message
arrival center C0. If a message cannot be satisfied completely in cen-
ter Ci, it is sent to one of the remaining centers Cj . Consider a strictly
hierarchical message transfer network in which the message referral occurs
in a path CN → CN−1 → ... → C2 → C1. In addition to the originating
center C0, include a center CR that deals with all rejected messages. Let
Pij (i, j = 1, 2, . . . , N) be the probabilities of the referral path and include
Pi0 and PiR (i = 1, 2, . . . , N) as probabilities of satisfaction and rejection
at center Ci (i = 1, 2, . . . , N). Let cij be the cost associated with the refer-
ral path i → j and let γij and ηij be its mean and variance. Assume that
ni messages originate at center C0 during a given length of time and let K
be the total cost associated with these messages. Determine the mean and
variance of K. (Bhat et al. (1975); also see Bhat (1984), Section 13.5.)



Chapter 8

Matrix-Analytic Queueing
Models
Contributing Author: Professor Srinivas R. Chakravarthy1

8.1 Introduction

Successive inter-arrival times in the queueing systems considered in the previous
chapters form a renewal process. However, in many practical situations, espe-
cially in production and manufacturing systems, the inter-arrival times between
jobs may not form a renewal process. In this chapter, we present versatile
Markovian point processes (VMPP) introduced by Neuts (1974) that enable us
to model arrival processes that may not be renewal.

A brief introduction to phase type distributions (PH) is given in Section
8.2. In stochastic modeling, PH-distributions lend themselves naturally to algo-
rithmic implementation. They have closure properties and a related matrix
formalism that make them convenient for use in practice (see Chapter 2 of
Neuts (1981)). In order to facilitate computational (or algorithmic) analysis
of stochastic models Neuts developed the PH-distributions, introduced matrix-
geometric solutions, VMPP, and matrix-analytic methods (MAMs). The VMPP
was initially referred to as N-process by Ramaswami (1980). Lucantoni et al.
(1990) introduced the terms Markovian arrival process (MAP) and batch MAP
(BMAP) to describe the VMPP with much simpler notation. The BMAP not
only generalizes the phase type renewal process but also provides a way to model
correlated arrivals.

This chapter is dedicated to the memory of Professor Marcel Neuts, pioneer of MAM and
algorithmic probability, who died on March 9, 2014.

1Department of Industrial and Manufacturing Engineering, Kettering University, Flint MI
48504
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The basic structures in MAMs can be classified into one of three types: (a)
The M/G/1 type wherein any one-step transition from a level, say i, can occur
to level i−1 on the left or to any level i or higher. That is, the structure is skip-
free to the left; (b) the G/M/1 type wherein any one-step transition from a level,
say i, can occur to any level up to level i+ 1. That is, the structure is skip-free
to the right; (c) the quasi-birth-and-death (QBD) type wherein any one-step
transition from a level, say i, can occur only to levels i − 1, i, i + 1. Thus, this
structure can be thought of as the intersection of the first two types. In all of
these types, the transition structure is assumed to possess spatial homogeneity.
That is, except for the boundary levels (which in most cases could be simply
level 0), the probabilities governing the transitions from level i to level j depend
only on the difference i− j and not on the values of i and j.

Using the fact that for the classical M/G/1 queue the busy period plays an
important role (see Takacs (1962)). Neuts (1989) generalized the busy period
analysis for the M/G/1 type queues using matrix formalisms. The key concept
that plays a role in theM/G/1 type queues is the first passage time, also referred
to as the “fundamental period”. The matrix, G, of the conditional probabilities
of the first passage time is obtained as the minimal nonnegative solution to a
nonlinear matrix equation. In the classical G/M/1 queue, it is known that the
steady-state distribution of the number of customers in the system has a geo-
metric solution (5.3.13). Neuts (1978) generalized this result to the G/M/1 type
queues where the key role in these types of queues is played by the rate matrix,
R, which has a probabilistic interpretation. Again, this matrix is obtained as
the minimal nonnegative solution to a nonlinear matrix equation (Neuts 1981)
(see (5.3.14) in the G/M/1 case).

In the rest of this chapter, the readers should note that we have used some
notations that are not the same as in previous chapters; for example the gener-
ator matrix is identified as Q while in earlier chapters it is identified as A. Also
what we have called earlier as continuous time Markov process we call it here
as continuous-time Markov chain (CTMC).

8.2 Phase Type Distributions

PH-distributions are natural generalizations of exponential distributions (see
A.6) and have found applications in areas such as reliability, inventory, and war-
ranty models in addition to queueing. Furthermore, these distributions require
simple matrix formalisms not only in the analysis but also in algorithmic imple-
mentation.

For use in sequel, let e(r), ej(r), and Ir denote, respectively, the (column)
vector of dimension r consisting of 1’s, column vector of dimension r with 1 in
the jth position and 0 elsewhere, and an identity matrix of dimension r. When
there is no need to emphasize the dimension of these vectors we will suppress
the suffix. Thus, e will denote a column vector of 1’s of appropriate dimension.
The notation ⊗ and ⊕, respectively, will stand for the Kronecker product and
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Kronecker sum of two matrices. Thus, if A is a matrix of order m× n and if B
is a matrix of order p × q, then A ⊗ B will denote a matrix of order mp × nq
whose (i, j)th block matrix is given by aijB; the Kronecker sum of two square
matrices, say, G of order g and H of order h, denoted by G ⊕ H is given by
G⊗ I+ I⊗H, a square matrix of dimension gh. For more details on Kronecker
products and sums, we refer the reader to Steeb and Hardy (2011).

Suppose that {Yt} is CTMC on {1, 2, ...,m,m + 1} with m transient states
1, 2, ...,m and an absorbing state m + 1. For details on CTMC we refer the
reader to Appendix B. The generator of the MC is of the form

Q̃ =

[
S S0

0 0

]
, (8.2.1)

where S is anm×mmatrix, S0 is a column vector of orderm such that Se+S0 =
0. Assume that the matrix S + S0β is irreducible. Let (β1, . . . , βm, βm+1) =
(β, βm+1) be a probability vector giving the initial probabilities. That is,
P (Y0 = i) = βi, 1 ≤ i ≤ m + 1. Suppose we start the CTMC in one of the
m transient states. We are interested in finding the time until absorption into
the absorbing state.

Let X denote the time until absorption into state m + 1. Then X is a
continuous random variable on [0,∞) and its probability density and cumulative
probability distribution functions are given by (we assume that βm+1 = 0 which
is the case in most applications.)

f(t) = βeStS0, t ≥ 0, F (t) = P (X ≤ t) = 1− βeSte, t ≥ 0. (8.2.2)

In this case, we say that X follows a PH-distribution with representation
(β,S) of order m and denote this by X ≡ PH (β,S) of order m. The mean
and variance of X are given by

μX = β(−S)−1e and σ2
X = 2βS−2e− μ2

X . (8.2.3)

In equation (8.2.2) and also in the sequel we will be using the exponen-
tial matrix frequently. Exponential matrix is defined as eA =

∑∞
n=0 A

n/n! =
I+A+A2/2! + · · · .

Some well-known distributions are special cases of PH-distributions. These
are given below. (Also see Appendix A.)
Exponential: By taking m = 1,β = 1,S = (−λ), we get the exponential
distribution with parameter λ.
Erlang: Erlang of order m with parameter λ is a PH-distribution with repre-
sentation (β,S) of order m given by

β = (1, 0, ..., 0), S =

⎡
⎢⎢⎢⎢⎣

−λ λ 0 . . . 0
0 −λ λ . . . 0
0 0 −λ . . . 0
...

...
... . . .

...
0 0 0 . . . −λ

⎤
⎥⎥⎥⎥⎦.
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Generalized Erlang: Generalized Erlang of orderm with parameters λ1, ..., λm

is a PH-distribution with representation (β,S) of orderm given by β = (1, 0, ..., 0)
and

S =

⎡
⎢⎢⎢⎢⎢⎣

−λ1 λ1 0 . . . 0
0 −λ2 λ2 . . . 0
0 0 −λ3 . . . 0
...

...
... . . .

...
0 0 0 . . . −λm

⎤
⎥⎥⎥⎥⎥⎦
.

Hyperexponential: A hyperexponential is a mixture of m exponentials with
parameters λ1, ..., λm. The mixing probabilities are p1, ..., pm. This is a PH-
distribution with representation (β,S) of order m given by β = (p1, ..., pm)
and

S =

⎡
⎢⎢⎢⎣

−λ1 0 0 . . . 0
0 −λ2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . −λm

⎤
⎥⎥⎥⎦.

Example 8.2.1 Suppose that the time (in minutes) between two phone calls
arriving is modeled as a continuous time PH-distribution with

β = (0.4, 0.3, 0.3), S =

⎡
⎣−5 2 2

0 −6 6
1 2 −4

⎤
⎦.

Find the mean and the variance of the time between two phone calls.

First note that (−S)−1 =

⎡
⎢⎣

1
3

1
3

2
3

1
6

1
2

5
6

1
6

1
3

5
6

⎤
⎥⎦, (−S)−1e =

⎡
⎢⎣

4
3
3
2
4
3

⎤
⎥⎦,

and hence using expressions for the mean and the variance as given in (8.2.3), we
can verify that the mean is 1.383333 minutes and the variance is 1.903056 minu-
tes2.

Answer

Note that the PH-renewal process is related to the irreducible Markov chain
obtained by instantaneously restarting the absorbing Markov chain (whose gen-
erator is as given in (8.2.1)) with the same initial probability vector β every time
an absorption occurs. Thus, the PH-renewal process is related to the irreducible
Markov chain with generator

Q∗ = S + S0β. (8.2.4)
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The stationary probability vector, π∗ of Q∗ satisfying π∗Q∗ = 0, π∗e = 1, is
given by

π∗ =
1

μX
β(−S)−1, (8.2.5)

where μX is the mean of X and is given in (8.2.3).

The renewal function, U(t) = E[N(t)], and its density for the PH-renewal
process are given by (see Chakravarthy (2010))

H(t) =
1

μx

{
t+

σ2
X + μ2

X

μx
+ β[eπ∗ − eQ

∗t]S−1e

}
, h(t) = H ′(t) = βeQ

∗tS0.

(8.2.6)

8.3 Markovian Arrival Process

In practice, we come across many situations where the arrival processes are
not necessarily renewal processes. For example, consider a queueing network
consisting of 2 nodes. The output of node 1 will form the input to node 2. If
we consider non-Poisson arrivals, say, to the first node, the output process will
not necessarily be a renewal process. Also, in production line problems where
arrivals from different sources form input to an assembly system, the arrival
process may not necessarily be a renewal process. So, how do we model these
point processes? As mentioned earlier, the answer is to use MAP.

Consider an irreducible CTMC with m transient states. At the end of a
sojourn in state i that is exponentially distributed with parameter λi, there are
two possibilities. The first possibility corresponds to an “event” (or an arrival)
in which the CTMC visits any of the m transient states including the state
from which this event occurred with probability pij . The second possibility
corresponds to no arrival and the CTMC visits any of the m−1 transient states
(all m except i) with probability qij . Thus, the CTMC can go from state i to
state i only through an arrival.

Define matrices D0 = (d
(0)
i,j ) and D1 = (d

(1)
i,j ) such that d

(0)
i,i = −λi, 1 ≤

i ≤ m, d
(0)
i,j = λiqi,j , j �= i, 1 ≤ i, j ≤ m, and d

(1)
i,j = λip

(1)
i,j , 1 ≤ i, j ≤ m,

with
∑

j p
(1)
i,j +

∑
j �=i qi,j = 1, for 1 ≤ i ≤ m. By assuming that D0 to be a

nonsingular matrix, the successive times between “event” (or arrivals) will be
finite with probability one and that the process will not terminate. A pictorial
description of this process is given in Figure 8.1 below.

Thus, a MAP is described by the parameter matrices (D0,D1) of order m
such that the transitions corresponding to no arrivals are governed by D0 and
the transitions corresponding to arrivals of batch size k are governed by D1.
The underlying CTMC has the generator given by Q = D0 +D1.

The point process described by the MAP is a special class of semi-Markov
process with transition probability matrix given by
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(1)
Pi,j

Figure 8.1 Description of MAP

∫ t

0

eD0xD1dx = [I − eD0t](−D0)
−1D1. (8.3.1)

Let π be the steady state probability vector of the generator Q governing the
underlying CTMC satisfying the equation

πQ = 0,πe = 1. (8.3.2)

Let α be the initial probability vector of the underlying CTMC with gener-
ator Q. We can choose α in a variety of ways to model different scenarios. For
example, if we want the time origin to coincide with an arbitrary arrival point
we can take α = cπD1, where c is the normalizing constant to make the vector
α a probability vector. Other scenarios include the time origin to be the end
of an interval during which there are at least k arrivals, the point at which the
system is in specific state such as the end of a busy period or the beginning of
a busy period begins. A useful case for model comparisons is the one where we
get the stationary version of the MAP by using α = π. The fundamental rate
(the rate of arrivals per unit of time), λ, is given by

λ = πD1e. (8.3.3)

Often in model comparisons it is convenient to select the time scale of the MAP
so that λ has a certain value. This is accomplished by multiplying the parameter
matrices D0 and D1 by the appropriate common constant.

MAP is a special case of batch MAP (BMAP), where we have a sequence,
{Dk}, of parameter matrices of order m such that the transitions corresponding
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to no arrivals are governed by D0 and the transitions corresponding to arrivals
of batch size k are governed by Dk. While D0 has the same form as that for

MAP, Dk = (d
(k)
i,j ) such that d

(k)
i,j = λip

(k)
i,j , 1 ≤ i, j ≤ m. The underlying

CTMC has the generator given by Q =
∑

k Dk. By assuming that D0 to be a
nonsingular matrix, the successive times between “events” (or arrivals) will be
finite with probability one and that the process will not terminate. A pictorial
description of a BMAP process is given in Figure 8.2 below.

(k)Pi,j

Figure 8.2 Description of BMAP

For details on MAP and BMAP, and their usefulness in stochastic modeling,
we refer the reader to Lucantoni (1991), Neuts (1974, 1989), and for a review
and recent work on MAP and BMAP we refer the reader to Chakravarthy (2001,
2010) and Artalejo et al. (2010).

8.4 Analysis of Queueing Models Using MAM

In order to illustrate the use of matrix-analytic methods in the analysis of queue-
ing systems we consider some basic models such as M/PH/1, PH/M/1, and
MAP/PH/1. Through these models, the reader will be exposed to the key
steps involved in constructing, analyzing, and interpreting the results. First we
present the model MAP/PH/1, and then consider M/PH/1, PH/M/1, and
M/M/1 as special cases and exploit the special structure of these models. A
good background in matrix theory (Steeb and Hardy 2011) will help the reader
in following these analyses.
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Assume that arrivals occur according to a Markovian arrival process with
representation (D0,D1) of order m. Let π be the steady state probability vector
of the generator Q = D0+D1 governing the underlying CTMC and let λ denote
the arrival rate (see equations (8.3.2) and (8.3.3)). Assume the service times to
be of phase type with irreducible representation given by (β,S) of order n. Let
the service rate be denoted by μ and recall that μ = [β(−S)−1e]−1.

Let X1(t), X2(t), and X3(t) denote, respectively, the number of customers in
the system, the phase of the service (if the server is busy), and the phase of the
arrival process at time t. The three-dimensional process {(X1(t), X2(t), X3(t)) :
t ≥ 0} is CTMC on the state space Ω given by

Ω = {(0, k) : 1 ≤ k ≤ m} ∪ {(i, j, k) : i ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ m}. (8.4.1)

Defining the set, 0, to be the set of states {(0, k) : 1 ≤ k ≤ m} and i to be the
set of states {(i, j, k) : i ≥ 1, 1 ≤ j ≤ n, 1 ≤ k ≤ m}, for i ≥ 1, the generator of
the CTMC with state space Ω is given by

Q =

⎡
⎢⎢⎢⎢⎢⎣

0 D0 β ⊗D 0 0 0 . . .
1 S0 ⊗ I S ⊕D0 I ⊗D1 0 0 . . .
2 0 S0β ⊗ I S ⊕D0 I ⊗D1 0 . . .
3 0 0 S0β ⊗ I S ⊕D0 I ⊗D1 . . .
...

...
... . . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦
,

(8.4.2)
where S0 is a column vector of dimension m such that Se + S0 = 0. That is,
S0 is obtained as the negative of the row sums of the matrix S.

The entries in (8.4.2) are derived as follows. Starting from an empty system
with the arrival process in phase l, (i.e., starting in state (0, l)) the CTMC under
study can go to state (1, j, k), 1 ≤ j ≤ n, 1 ≤ k ≤ m, through an arrival which

triggers the service to start in phase j and this event occurs at a rate d
(1)
lk βj .

Note that when the system is in level 0, the arrival process can possibly change
its phase without producing an arrival and the transitions are governed by the
entries of D0. When the system is in state (1, j, l), 1 ≤ j ≤ n, 1 ≤ l ≤ m,
the system can either go to state (2, j, k), 1 ≤ j ≤ n, 1 ≤ k ≤ m, through
an arrival (note that the service phase cannot change as we are talking about

transitions in an infinitesimal time here) and this event occurs at a rate d
(1)
lk ; or

the system can either go to state (0, l), 1 ≤ l ≤ m, through a service completion
(note that the arrival phase cannot change as we are talking about transitions
in an infinitesimal time here) which occurs at a rate S0

j , 1 ≤ j ≤ n; or the
system can remain in level 1 through no arrival and no service completion but
possible change in the arrival or service (but not both) phase and the rates
are governed by the entries of the matrix S ⊕ D0. For states away from the
boundary, a service completion will result in initiating the customer at the head
of the queue service immediately. Hence, we see that when the system is in state
(i, r, l), it can go to (i − 1, j, 1), i ≥ 2, 1 ≤ r, j ≤ n, 1 ≤ l ≤ m, with rate S0

rβj ;
or it can go to state (i + 1, r, k), i ≥ 2, 1 ≤ r ≤ n, 1 ≤ l, k ≤ m, through an
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arrival and this event occurs with rate d
(1)
lk ; or it can remain in level i through

no arrival and no service completion but possible change in the arrival or service
phase (but not both) and the rates are governed by the entries of the matrix
S⊕D0.

Suppose that x partitioned as x = (x0,x1,x2...) denotes the steady-state
probability vector of the generator Q. The vector x satisfies:

xQ = 0, xe = 1. (8.4.3)

First note that the kth component of the vector x0 that is of dimension m gives
the steady-state probability that the system is empty at an arbitrary time with
the arrival process in phase k; the vectors xi, i ≥ 1, are of dimension m n such
that the jth block vector of dimension m gives the steady-state probability that
at an arbitrary time there are i customers in the system and the current service
phase is in j and the arrival process is in one of m phases.

Under the stability condition, λ < μ, the steady-state equations in (8.4.3)
are solved as follows. Expanding the equations in (8.4.3), we get

x0D0 + x1(S
0 ⊗ I) = 0, (8.4.4)

x0(β ⊗D1) + x1(S ⊕D0) + x2(S
0β ⊗ I) = 0 (8.4.5)

xi−1(I ⊗D1) + xi(S ⊕D0) + xi+1(S
0β ⊗ I) = 0, i ≥ 2, (8.4.6)

with the normalizing equation

∞∑
i=0

xie = 1. (8.4.7)

Since the generator Q in (8.4.2) has quasi-birth and death (QBD) structure, it
follows from Neuts (1981) that the solution to the equations in (8.4.4)–(8.4.6)
can be obtained as

x0D0 + x1(S
0 ⊗ I) = 0, (8.4.8)

x0(β ⊗D1) + x1(S ⊕D0) + x2(S
0β ⊗ I) = 0, (8.4.9)

xi = x1R
i−1, i ≥ 2, (8.4.10)

where R satisfies the matrix-quadratic equation

R2(S0β ⊗ I) +R(S ⊕D0) + (I ⊗D1) = 0. (8.4.11)

The special structure of the coefficient matrices appearing in (8.4.8), (8.4.9),
and (8.4.11) can be exploited, especially when m and n are large, and employ
(block) Gauss–Seidel iterative procedure (see Stewart (1994)) in solving these
equations. In the case when either m or n is of reasonable size, one can use the
more efficient logarithmic reduction algorithm (Latouche and Ramaswami 1999)
or the cyclic reduction algorithm (see Bini and Meini (1995)) for computing R
directly. Very briefly, we outline the logarithmic reduction algorithm which is
used here to discuss some numerical examples.
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Logarithmic Reduction Algorithm Latouche and Ramaswami (1999) The key
steps involved in computing the R matrix which is the solution to the matrix-
quadratic equation of the form R2A2 +RA1 +A0 = 0 are as follows:

Step 0: Let H ← (−A1)
−1A0; L ← (−A1)

−1A2; G = L and T = H.
Step 1: Let U = HL+LH and M = H2; and

H ← (I −U)−1M

M ← L2

L ← (I −U)−1M

G ← G+ TL

T ← TH

Continue Step 1 until ||e −Ge||∞ < ε, where ε is a very small prespecified
value. Usually, ε is taken to be 10−7 or so.

Step 2: The matrix R is obtained as R = −A0(A1 +A0G)−1.
Note: (1) In the process of obtaining the matrix R one also gets the matrix

G, the matrix of the conditional probabilities of the first passage time. Recall
that G is obtained as the minimal nonnegative solution to a nonlinear matrix
equation: A0G

2 +A1G+A2 = 0.
(2) It can easily be verified that G = −(A1 +RA2)

−1A2.
Once R matrix is obtained (either by using logarithmic reduction or by any

other method), the equations (8.4.8) and (8.4.9) along with the normalizing
equation (8.4.7) can be obtained by solving the following equations. This is due
to the fact that x0 = x1(S

0β ⊗ (−D−1
0 )).

x1[(S
0β ⊗ (−D−1

0 D1)) + (S ⊕D0) +R(S0β ⊗ I)] = 0, (8.4.12)

subject to
x1[(S

0 ⊗ (−D−1
0 e)) + (I −R)−1e] = 1. (8.4.13)

As mentioned earlier, the equations where the coefficient matrices have any
special structure should be exploited.

In any computational scheme one should have a set of internal accuracy
checks so as to make sure the computations are properly and accurately com-
puted. In the current model, one can use the following intuitively obvious
results.

x0 +

∞∑
i=1

xi(e⊗ I) = π, (8.4.14)

∞∑
i=1

xi(I ⊗ e) = λβ(−S)−1, (8.4.15)

where π is the steady-state probability vector of the arrival process as defined
in (8.3.2). The results are intuitive. For example, the left-hand side of (8.4.14)
gives the steady-state probability vector of the arrival process and it should be
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equal to π. The right-hand side quantities of (8.4.14) and (8.4.15) are in terms
of the data and hence these two intuitively obvious results will serve as accuracy
check in the computation of the steady-state probability vector, x.

Even though the results in (8.4.14) and (8.4.15) are intuitive, one can check
these algebraically. To see this, post-multiplying equations (8.4.5) and (8.4.6)
by (e⊗ I) and adding the resulting equations along with (8.4.4), we get[

x0 +
∞∑
i=1

xi(e⊗ I)

]
(D0 +D1) = 0,

from which the equation (8.4.14) follows by the uniqueness of π.
Similarly, post-multiplying equation (8.4.4) by e and the equations (8.4.5)

and (8.4.6) by (I ⊗ e) and adding the resulting equations, we get

∞∑
i=1

xi(I ⊗ e)(S + S0β) = 0,

from which using the uniqueness of the steady-state probability vector of S +
S0β, we get

∞∑
i=1

xi(I ⊗ e) = cβ(−S)−1,

where c is the normalizing constant and is given by λ.
To show that the normalizing constant c is given by λ, we post-multiply

equation (8.4.4) by e and the equations (8.4.5) and (8.4.6) by (e ⊗ e). Now,
adding the resulting equations we get

x0D1e+
∞∑
i=1

xi(e⊗D1e) =
∞∑
i=1

xi(S
0 ⊗ e),

from which the stated result follows. Again, intuitively it is obvious that∑∞
i=1 xi(S

0 ⊗ e) = λ since in steady-state the rate at which customers leave
should be equal to the rate at which they enter.

Observe that equation (8.4.14) implies that the probability that the system
is idle is, as expected, given by 1− λ/μ.

Once the steady-state probability vector is obtained, a number of system
performance measures can be computed for comparing various scenarios and
models useful in practical applications.

Writing L and Lq as the mean number of customers in the system and the
number in the queue, respectively, we may derive them as follows:

L =

∞∑
i=1

ixie

= x1

∞∑
i=1

iRi−1e

= x1(I −R)−2e. (8.4.16)
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Lq =

∞∑
i=1

(i− 1)xie

= x1

∞∑
i=1

(i− 1)Ri−1e

= x1R(I −R)−2e. (8.4.17)

Noting that x1R(I−R)−2e = x1(I−R)−2e−x1(I−R)−1e and the fact that
x1(I −R)−1e = λ/μ, we see that L = Lq +

λ
μ , as expected.

Steady-State Probability at Arrival Epoch Now, we look at the steady-state
probability vector at arrival epochs. Since we have non-Poisson arrivals, we
know that PASTA property does not hold good. We need this probability to
discuss stationary waiting time distribution of an arriving customer.

Suppose that y partitioned as y = (y0,y1,y2, · · · ) denotes the steady-state
probability vector at arrival epoch. That is, the vector of y0 dimension m
gives the steady-state probability that an arriving customer will find the server
idle; the vector of yi dimension mn gives the steady-state probability that an
arriving customer will find i customers in the system with the server busy serving
a customer. It is easy to verify that

y0 =
1

λ
x0D1, (8.4.18)

yi =
1

λ
xi(I ⊗D1), i ≥ 1.

Stationary Waiting Time Distribution of an Arriving Customer Suppose that
Yq denotes the random variable that an arriving customer has to wait in the
queue before entering into service. Let wq(s) denote the Laplace–Stieltjes trans-
form (LST) of Yq and let f(s) denote the LST of the service time distribution.
First, note that f(s) = β(sI −S)−1S0. Using the law of total probability, it is
easy to verify that

wq(s) =
1

λ
x0D1e+

1

λ

∞∑
i=1

xi(1⊗D1e)(sI − S)−1S0[f(s)]i−1(8.4.19)

=
1

λ
x0D1e+

1

λ
x1[I − f(s)R]−1[(sI − S)−1S0 ⊗D1e].

The mean, Wq, waiting time in the queue is obtained as

Wq = −w′
q(s)]s=0 (8.4.20)

=
1

λμ
x1(I −R)−2R(e⊗D1e) +

1

λ
x1(I −R)−1(−S−1e⊗D1e).

Using the facts that
R(S0 ⊗ e) = e⊗D1e, (8.4.21)
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and

1

μ
R2(S0 ⊗ e) = R[e⊗ e+ (−S−1)e⊗D1e]− [(−S−1)e⊗D1e], (8.4.22)

Little’s Law, Lq = λWq, can be easily verified.
Given below are some special cases of MAP/PH/1 queue.

M/PH/1 Queue Assume that the arrivals occur according to a Poisson process
of rate λ and the service times are assumed to be of phase type with irreducible
representation given by (β,S) of order m. Let the service rate be denoted by
μ and recall that μ = [β(−S)−1e]−1. Note that by setting the parameters of
MAP representation as:

m = 1, D0 = −λ, D1 = λ,

the arrival process reduces to a Poisson process with rate λ.
Let X1(t) and X2(t) denote, respectively, the number of customers in the

system and the phase of the service (if the server is busy) at time t. Verify that
the two-dimensional process {X1(t), X2(t)) : t ≥ 0} is CTMC on the state space
Ω given by

Ω = {0} ∪ {(i, j) : i ≥ 1, 1 ≤ j ≤ m}. (8.4.23)

Defining the set, i, to be the set of states {(i, j) : i ≥ 1, 1 ≤ j ≤ m}, for i ≥ 1,
the generator of the CTMC with state space Ω is given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ λβ 0 0 0 . . .

1 S0 S − λI λI 0 0 . . .

2 0 S0β S − λI λI 0 . . .

3 0 0 S0β S − λI λI . . .

...
...

... . . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.4.24)

The steady-state vector x = (x0,x1,x2, ) for the generator given in (8.4.24) can
be explicitly solved for the current model as follows:

x0 = 1− ρ, (8.4.25)

xi = (1− ρ)βRj , for i ≥ 1, (8.4.26)

and the matrix R is explicitly obtained as

R = λ(λI − λeβ − S)−1. (8.4.27)

Note that the inverse appearing in the R matrix given in (8.4.27) exists since
(S − λI + λeβ) is a stable matrix.

The waiting distribution of the time spent in the queue of an arriving cus-
tomer is of phase type with representation given by (λβ(−S)−1,S+λS0β(−S)−1).

The matrix G is of the form, G = eβ.
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PH/M/1 Queue Assume that the inter-arrival times follow a PH-distribution
with representation given by (α,T ) of order m and the service times are expo-
nential with rate μ. Note that by setting the parameters of MAP representation
as:

D0 = T , D1 = T 0α,

the arrival process reduces to a phase type process with representation (α, T )
of order m.

Let X1(t) and X2(t) denote, respectively, the number of customers in the
system and the phase of the arrival process at time t. Verify that the two-
dimensional process {(X1(t), X2(t)) : t ≥ 0 is CTMC on the state space Ω given
by

Ω = {0} ∪ {(i, j) : i ≥ 1, 1 ≤ j ≤ m}. (8.4.28)

Defining the set, i, to be the set of states {(i, j) : i ≥ 1, 1 ≤ j ≤ m}, for
i ≥ 1, the generator of the CTMC with state space Ω is given by

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 T T 0α 0 0 0 . . .

1 μI T − μI T 0α 0 0 . . .

2 0 μI T − μI T 0α 0 . . .

3 0 0 μI T − μI T 0α . . .

...
...

... . . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.4.29)

The steady-state vector x = (x0,x1,x2, ) for the generator given in (8.4.29) can
be solved for the current model as follows:

xi = x0R
i, for i ≥ 1, (8.4.30)

where x0 is solved using the following equations

x0(T + μR) = 0 and x0(I −R)−1e = 1, (8.4.31)

and the matrix R satisfies the matrix quadratic equation

μR2 +R(T − μI) + T 0α = 0. (8.4.32)

The matrix G is of explicitly obtained as:

G = μ[μI −T −μT 0α(−T )−1]−1 +
1− ρ−1

α(μI − T )−1T 0 (μI −T )−1T 0g, (8.4.33)

where g satisfies gG = g and ge = 1. Further, g is the left eigenvector of
μ[μI−T 0α(−T )−1]−1corresponding to the positive eigenvalue, say, η, given by

η = 1 +
ρ−1 − 1

α(μI − T )−1T 0 g(μI − T )−1T 0.
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M/M/1 Queue Assume that the inter-arrival times are exponential with param-
eter λ and service times are exponential with rate μ. Taking m = 1, D0 = −λ,
D1 = −λ, n = 1, β = 1, S = −μ in the MAP/PH/1 queue or n = 1, β = 1,
S = −μ in the M/PH/1 queue, it can be verified that R = ρ and hence

x0 = 1− ρ,

xi = (1− ρ)ρi, i ≥ 1,

and the waiting time in the queue is of phase type with representation (ρ,−(μ−
λ)) of dimension 1. This agrees, as it should, with the results from Section 4.2
dealing with M/M/1 queue. Note that here G is a scalar and its value is 1.

8.5 Numerical Examples

In this section, we look at different single server queueing models and discuss the
qualitative aspects of these models numerically. Toward the end, we consider a
number of special cases.
Example 8.5.1 Customers arrive at processing center according to a MAP
with (D0,D1) of order m. We consider different arrival processes by varying
the values of the entries of these representation matrices. The service times
are independent and identically distributed with a common PH-distribution
with representation (β,S) of order n. We look at different service times by
varying the values of the representation parameters. Use MAP/PH/1 queueing
model to discuss how the performance measure, the mean queue length, behaves
under different special cases. For arrival process consider the following five
MAP representations:
ERL (Erlang of order 2):

D0 =

[
−2 2
0 −2

]
,D1 =

[
0 0
2 0

]
.

EXP (Exponential):
D0 = [−1], D1 = [1].

HEX (Hyperexponential):

D0 =

[
−1.90 0

0 −0.19

]
,D1 =

[
1.710 0.190
1.171 0.019

]

MNC (MAP with negative correlation):

D0=

⎡
⎣−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

⎤
⎦,D1=

⎡
⎣ 0 0 0

0.01002 0 0.99220
223.4925 0 2.2575

⎤
⎦.
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MPC (MAP with negative correlation):

D0=

⎡
⎣−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

⎤
⎦,D1=

⎡
⎣ 0 0 0
0.99220 0 0.01002
2, 2575 0 223.4925

⎤
⎦.

Note that all these five MAP processes have the arrival rate of 1. How-
ever, these are qualitatively different in that they have different variance and
correlation structure. The first three arrival processes, namely ERL, EXP, and
HEX, correspond to renewal processes and so the correlation is 0. The arrival
processes labeled MNC has correlated arrivals with correlation between two suc-
cessive inter-arrival times given by −0.4889, and the arrivals corresponding to
the process labeled MAP has positive correlation with a value 0.4889. The ratio
of the standard deviations of the inter-arrival times of these five arrival processes
with respect to ERL are, respectively, 1, 1.4142, 3.1745, 1.9934, and 1.9934.

For service times, we consider the following three PH-distributions:
ERS (Erlang of order 2):

β = (1, 0), S =

[
−2 2
0 −2

]
.

EXS (Exponential):

β = (1), S = [−1].

HES (Hyperexponential):

β = (0.8, 0.2), S =

[
−2.8 0
0 −0.28

]
.

Note that these three PH-distributions will be normalized so as to have
a specific service rate. For example, these all have a rate 1. If we want to
have the service rate to be 1.2, the matrix S will be normalized for these three
distributions, respectively, as follows:

S =

[
−2.4 2.4
0 −2.4

]
, S = [−1.2], S =

[
−3.36 0

0 −0.336

]
.

Further, these are qualitatively different in that they have different variance
structure. The ratio of the standard deviations of the service times of these
three PH-distributions with respect to ERS are, respectively, 1, 1.4142, and
2.9347.

In the following table we list the performance measure, the mean queue
length, for various combinations of arrival and service times. To have a specific
value for the traffic intensity we will adjust the service rate.
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Table 8.1 Mean queue length of MAP/PH/1 model
ρ ERL EXP HEX MNC MPC

ERS 0.002 0.008 0.015 0.050 5.264
0.10 EXS 0.003 0.011 0.021 0.052 5.266

HES 0.016 0.030 0.052 0.063 5.281
ERS 0.195 0.375 1.075 0.532 49.305

0.50 EXS 0.309 0.500 1.294 0.641 49.419
HES 1.117 1.327 2.429 1.427 50.222
ERS 1.492 2.400 8.642 2.618 198.544

0.80 EXS 2.275 3.200 9.575 3.393 199.326
HES 7.542 8.490 15.288 8.629 204.583
ERS 3.923 6.075 22.331 6.322 447.530

0.90 EXS 5.930 8.100 24.487 8.319 449.535
HES 19.295 21.490 38.294 21.652 462.889
ERS 8.888 13.538 49.956 13.819 945.599

0.95 EXS 13.381 18.050 54.596 18.302 950.091
HES 43.195 47.888 84.845 48.082 979.892
ERS 48.861 73.508 271.455 74.018 4930.391

0.99 EXS 73.343 98.010 296.083 98.491 4954.871
HES 235.335 260.027 458.505 260.447 5116.850

A quick look at Table 8.1 reveals the following observations.

• As the traffic intensity increases, the mean queue length increases for all
combinations of arrival and service times.

• As the variation in service times increases, the mean queue length appears
to increase. The rate of increase depends not only on the traffic intensity
but also on the type of arrival process. For example, the rate of increase
(as a function of the variability in the service times) is much higher for
all arrival processes except MPC one, as the traffic intensity is increased.
However, for the MPC arrival process the rate (as a function of the vari-
ability in the service times) is not that significant.

• Looking at the arrival processes (ERL, EXP, and HEX) whose inter-arrival
times form a renewal process, the mean queue length appears to increase
as the variation in the inter-arrival times increases. This appears to be the
case for all cases. However, with regards to MNC and MPC arrivals, which
are such that the successive inter-arrival times are, respectively, negatively
and positively correlated, we see the mean queue length appears to behave
very differently. It should be pointed out that these two arrival processes
have same variance also.

• In summary, not only the variance of inter-arrival as well as service times
play a key role but also the correlation of the inter-arrival times.
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Table 8.2 R and G matrices for ERL/ERS/1 model
Model R G

ρ = 0.10

⎡
⎢⎢⎢⎣

0 0 0 0

0.093 0.009 0.084 0.016

0 0 0 0

0.001 0 0.092 0.008

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0.844 0.156 0 0

0.131 0.869 0 0

0.916 0.084 0 0

0.071 0.929 0 0

⎤
⎥⎥⎥⎦

ρ = 0.50

⎡
⎢⎢⎢⎣

0 0 0 0

0.421 0.188 0.281 0.219

0 0 0 0

0.039 0.031 0.360 0.140

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0.562 0.438 0 0

0.246 0.754 0 0

0.719 0.281 0 0

0.158 0.842 0 0

⎤
⎥⎥⎥⎦

ρ = 0.95

⎡
⎢⎢⎢⎣

0 0 0 0

0.787 0.682 0.404 0.546

0 0 0 0

0.155 0.210 0.567 0.383

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0.425 0.575 0 0

0.244 0.756 0 0

0.596 0.404 0 0

0.171 0.829 0 0

⎤
⎥⎥⎥⎦

ρ = 0.99

⎡
⎢⎢⎢⎣

0 0 0 0

0.820 0.742 0.412 0.578

0 0 0 0

0.168 0.236 0.582 0.408

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0.416 0.584 0 0

0.243 0.757 0 0

0.588 0.412 0 0

0.172 0.828 0 0

⎤
⎥⎥⎥⎦

Table 8.2 displays R and G matrices for one particular case (others will be left
for the reader as exercises). Before we discuss the entries of Table 8.2, recall that
the (j, k)th entry of R matrix gives the mean time spent in state (i+1, k) before
the first return to level i, given that the process starts in state (i, j) expressed
in the time unit measured in terms of the mean time spent in state (i, j). The
(j, k)th entry of G matrix gives the conditional probability of returning to level
i for the first time by visiting the state (i, k) given that the process started in
state (i+ 1, j).

Now looking at the entries of Table 8.2, we observe the following:

• The only way the system can move to level i+1 starting from level i is for
the arrival process to be in phase 2 (due to arrival process being an Erlang
of order 2) and the next transition to occur is not a service completion.
Thus, starting from level i with the arrival process being in phase 1, the
event “first return to level i” by moving to level i + 1 can never occur
and that leads to seeing the first and third rows of R to have zero entries.
Note, however, that the process can return to level i for the first time by
not visiting level i+1 and hence the mean time spent in state (i+1, k) is
zero.

• As the traffic intensity increases, the nonzero entries of R appear to
increase as is to be expected. The intuitive reasoning is as follows. An
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increase in the arrival rate results in the process needing to take more time
to return to level i for the first time by visiting the states to the right of
the level i more often than in cases where the arrival rate is small.

• Since a return to level i for the first time after spending time in state
(i+ 1, k) can occur only through a service completion and since the next
customers service always has to start in service phase 1 (due to Erlang
services), it is clear that the third and fourth columns of G should have
zero entries.

Comparing R matrices for two selected cases the qualitative nature of the
arrival process can be observed. In one case the successive inter-arrival times
are negatively correlated and in the other they are positively correlated. The
matrices for these two cases under different traffic conditions are displayed in
Table 8.3. Similarly, we display the G matrix under similar circumstances in
Table 8.4.

Looking at the entries of Table 8.3 and Table 8.4, we observe the following:

• As the traffic intensity increases, the nonzero entries of R appear to
increase in all cases (subject to round-off errors due to three decimal
places) as is to be expected.

• Observe first that for the MNC arrival process an arrival occurring from
phase 3 will result in the CTMC (governing the arrival process) starting
in phase 1 with a higher probability than starting in phase 3; for the
MPC arrival process it is the other way; that is, an arrival from phase
3 will result in starting the CTMC in phase 3 with a higher probability.

Table 8.3 Comparing R matrix for MNC/M/1 and MPC/M/1 models
Model MNC/M/1 MPC/M/1

ρ = 0.10

⎡
⎢⎣

0 0 0

0.081 0.015 0.004

20.641 1.924 0.010

⎤
⎥⎦

⎡
⎢⎣

0 0 0

0.091 0.009 0

10.879 10.707 0.990

⎤
⎥⎦

ρ = 0.50

⎡
⎢⎣

0 0 0

0.279 0.217 0.0004

80.976 31.888 0.011

⎤
⎥⎦

⎡
⎢⎣

0 0 0

0.365 0.136 0

47.897 63.988 0.990

⎤
⎥⎦

ρ = 0.95

⎡
⎢⎣

0 0 0

0.404 0.544 0.004

127.516 86.934 0.012

⎤
⎥⎦

⎡
⎢⎣

0 0 0

0.594 0.358 0

82.842 130.631 0.990

⎤
⎥⎦

ρ = 0.99

⎡
⎢⎣

0 0 0

0.413 0.575 0.0004

130.989 92.491 0.012

⎤
⎥⎦

⎡
⎢⎣

0 0 0

0.612 0.380 0

85.724 136.779 0.990

⎤
⎥⎦
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Table 8.4 Comparing G matrix for MNC/M/1 and MPC/M/1 models
Model MNC/M/1 MPC/M/1

ρ = 0.10

⎡
⎢⎣
0.915 0.085 0

0.072 0.928 0

0.808 0.150 0.042

⎤
⎥⎦

⎡
⎢⎣
0.916 0.084 0

0.077 0.923 0

0.478 0.478 0.044

⎤
⎥⎦

ρ = 0.50

⎡
⎢⎣
0.719 0.281 0

0.158 0.842 0

0.556 0.435 0.009

⎤
⎥⎦

⎡
⎢⎣
0.731 0.269 0

0.196 0.804 0

0.421 0.570 0.009

⎤
⎥⎦

ρ = 0.95

⎡
⎢⎣
0.596 0.404 0

0.172 0.828 0

0.422 0.573 0.005

⎤
⎥⎦

⎡
⎢⎣
0.625 0.375 0

0.233 0.767 0

0.384 0.611 0.005

⎤
⎥⎦

ρ = 0.99

⎡
⎢⎣
0.588 0.412 0

0.172 0.828 0

0.414 0.581 0.004

⎤
⎥⎦

⎡
⎢⎣
0.619 0.381 0

0.235 0.765 0

0.381 0.614 0.004

⎤
⎥⎦

Thus, in the case of MNC arrivals, the system is very likely to spend more
time in phase 1 of the arrival process and less in phase 3 of the arrival
process. A similar intuitive interpretation can be given for the MPC case
but observing that when the arrival process is in phase 3 it gets out of that
phase at a faster rate also through an arrival and so has more excursions
to the right of the level i+ 1 before returning to level i.

• Interpretations for the entries of G matrix are left to the reader as an
exercise.

8.6 Simulation of MAP

Simulating a MAP with representation (D0,D1) of order m is carried out as
follows. For the sake of simplicity in describing the simulation process, we will
write these parameter matrices as follows:

D0=

⎡
⎢⎢⎢⎣

−λ1 λ1q12 . . . λ1q1m
λ2q21 −λ2 . . . λ2q2m

...
... . . .

...
λmqm1 λmqm2 . . . −λm

⎤
⎥⎥⎥⎦ ,D1=

⎡
⎢⎢⎢⎣

λ1p11 λ1p12 . . . λ1p1m
λ2p21 λ2p22 . . . λ2p2m

...
... . . .

...
λmpm1 λmpm2 . . . λmpmm

⎤
⎥⎥⎥⎦

(8.6.1)
Step 0: Choose an initial probability vector, a = (a1, ..., am) for the under-

lying CTMC with generator Q = D0 + D1. If one is interested to simulate a
stationary version, then solve for the steady state probability of Q.
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Step 1: Choose a random sample from the set {1, 2, ...,m} with probabilities
given by the components of a, generate the starting state. Let this state be
denoted by i. The MAP will be in this state for an exponential amount of time
with parameter λi. Choose a random sample from this exponential distribution.
This sample determines the sojourn time of the MAP in this state during this
visit.

Step 2: Choose a random sample from the discrete probability function on
the set {1∗, 2∗, ..., (i− 1)∗, (i+ 1)∗, ...,m∗, 1, 2, ...,m} with probabilities
{qi1, qi2, ..., qi,i−1, qi,i+1, ..., qim, pi1, pi2, ..., pim). Let the state chosen be j.

Step 3: If j belongs to the set {1∗, 2∗, ..., (i − 1)∗, (i + 1)∗, ...,m∗}, then
the MAP made a transition without an arrival and the MAP spends in state
j(j �= i) for an exponential amount of time with parameter λj . Otherwise, there
is an arrival to the system and the MAP will be in phase j, 1 ≤ j ≤ m, for an
exponential amount of time with parameter λj .

Step 4: If the desired number of samples from the MAP is taken or the
simulation run time is expired, stop. Otherwise go to step 2 by replacing state
i with state visited in step 3.

8.7 Exercises

1. Prove that the mean and variance of a random variable that follows a
phase type distribution with representation (β,S) of order m are as given
in (8.2.3).

2. Using the expressions for the mean and variance of a phase type distri-
bution as given in (8.2.3) and the representation for Erlang of order m
as given in Section 8.2, verify the simple expressions for the mean and
variance for Erlang. [Hint: See Appendix A.4 for the simple expressions.]

3. Suppose that the random variable, X, denotes the inter-arrival time (i.e.,
times between two successive arrivals) in MAP process with representation
(D0,D1) of order 3 is as given below.

D0 =

⎡
⎣−2 2 0

0 −2 0
0 0 −450.5

⎤
⎦, D1 =

⎡
⎣ 0 0 0

1.98 0 0.02
4.505 0 445.995

⎤
⎦.

Show that the correlation coefficient between two successive inter-arrival
times is 0.4889.

4. For the MAP/PH/1 queueing model use the expressions for Lq and Wq

as given in (8.4.17) and (8.4.20), respectively, to prove the Littles law for
this model.
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5. Show that for the M/PH/1 queueing model with an arrival rate λ and the
service times with irreducible representation (λ,S) of order m, the rate
matrix R is given by λ(λI − λeβ − S)−1.

6. Suppose that the customers arrive according to a Poisson process with
a rate of 10 per hour to a single server system. If the service times are
Erlang of order 3 such that the rate of service is 12 per hour, show that
R matrix for this model is given by

R =

⎡
⎣ 0.454 0.355 0.278
0.176 0.355 0.278
0.099 0.077 0.278

⎤
⎦.

7. ForMAP/PH/1 model prove the expression given in (8.4.20) using (8.4.19).

8. Prove the expression in equation (8.2.5) for the steady-state vector of the
generator of the PH-renewal process.

9. Suppose that the inter-arrival times of customers arriving at a single server
station follow an Erlang distribution of order 3. The service times are
exponential with a mean of 2 minutes. If the traffic intensity is 0.95, show
that R and G matrices are given by

R=

⎡
⎣ 0 0 0

0 0 0
0.975 0.950 0.926

⎤
⎦ and G=

⎡
⎣ 0.342 0.333 0.325
0.111 0.450 0.439
0.150 0.257 0.593

⎤
⎦.

10. Suppose that the inter-arrival times of customers arriving at a single server
station follow an Erlang distribution of order 2. The service times are also
Erlang of order 2. If the arrival rate is 4 per minute and the mean service
time is 0.2 minute. For this queueing model, show that R and G matrices
are given by

R =

⎡
⎢⎢⎣

0 0 0 0
0.664 0.481 0.369 0.431
0 0 0 0

0.109 0.127 0.505 0.295

⎤
⎥⎥⎦ and

G =

⎡
⎢⎢⎣
0.461 0.539 0 0
0.248 0.752 0 0
0.631 0.3569 0 0
0.170 0.830 0 0

⎤
⎥⎥⎦.

Also, explain the zeros appearing in the rows of R and in the columns
of G.
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11. Messages arrive from different sources and the pooled input is modeled
using MAP with representation (D0,D1) of order 3 is as given below.

D0 =

⎡
⎣−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

⎤
⎦,

D1=

⎡
⎣ 0 0 0
0.99220 0 0.01002
2.2575 0 223.4925

⎤
⎦.

The service times are of phase type with representation (β,S) of order 2
given by

β = (0.7, 0.3), S =

[
−3.648 1.824
1.824 −2.432

]
.

For this queueing model, MAP/PH/1, answer the following questions.
(a) Show that the traffic intensity is 5/6. (b) The correlation coefficient

of any two successive inter-arrival times is 0.4889. (c) The standard deviation
of the service times is 0.8788 unit. (c) The mean queue length is 249.5861
(d) Compare this queueing model to M/M/1 and write a short note on your
findings.

12. Referring to Table 8.4 give interpretations to the entries of G matrix for
the various scenarios.



Chapter 9

The General Queue G/G/1
and Approximations

The use of Markov models in queueing theory is very common because they are
appropriate for basic systems and lend themselves for easy applications. But
often the real-world systems are so complex and so general that simple Markov
and renewal process models do not represent them well. The presentation of
matrix-analytic models of Chapter 8 is an introductory attempt to go beyond
the basic models discussed earlier. The computer and communication systems
which have had a major role in advancing technology in the past three decades
require queueing models that go well beyond those we have seen so far in the
last eight chapters. Their full discussion is beyond the scope of this text. Here
we provide an introduction to the analysis of the waiting time process in the
general queue and a few approximation techniques that have proved useful in
handling emerging complex applications. Readers who are not prepared for
the complexities of the derivations may use this chapter for the fundamental
concepts and the results it presents.

9.1 Bounds for Mean Waiting Time

Consider the general queue G/G/ 1 (also known as GI/G/ 1 in the literature)
with the following description. Customers arrive at time points tn (n = 0, 1, 2, . . .)
and let the inter-arrival times Tn = tn+1 − tn be independent and identically
distributed (i.i.d.) random variables with distribution function A(·). Let the
service time of the nth customer be Sn and let {Sn, n = 1, 2, . . .} be i.i.d.
random variables with distribution function B(·). We represent the means and
variances of these random variables as follows:

E(Tn) =
1

λ
E(Sn) =

1

μ

V (Tn) = σ2
A V (Sn) = σ2

B (9.1.1)
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Note that for the means of inter-arrival times and service times, we have used the
same notations of 1

λ and 1
μ as in M/M/ 1 queues but with broader interpretation

so as to make comparisons simple. We also define traffic intensity ρ = λ
μ as

before.
Let Wn (n = 1, 2, . . .) be the waiting time of the nth customer and W (t),

the waiting time of the customer if it were to arrive at time t. Since there may
or may not be a customer arrival at t, the process W (t) is known as the virtual
waiting time process. However, {Wn} (n = 1, 2, . . .) are the actual waiting times
of the arrivals at (t1, t2, . . .), and the process Wn is a subset of the W (t) process.
These are graphically illustrated in Figure 9.1.

t1 t2 t3 t4 t5T3 T4

X4

S1

S2

S3

S4

S5
W2

W3 W4

W(t)

Figure 9.1 Waiting time processes

As shown in the figure, we may write the following relations:

W1 = 0

W2 = W1 + S1 − T1

W3 = W2 + S2 − T2

W4 = W3 + S3 − T3

W5 = 0 = W4 + S4 − T4 +X4 (9.1.2)

In writing these relations, we have used the fact that in between arrivals the
W (t) process decreases at a unit rate because of the service provided to the
customer. This will be clear if we interpret Wn as the service load in the system
just before the arrival at tn, and by providing service, the load Wn + Sn gets
depleted at a unit rate until the arrival at tn+1, when its value is equal to
Wn + Sn − Tn. When this amount becomes negative (by an amount Xn), to
show Wn+1 = 0, we write Wn + Sn − Tn +Xn. Hence, generalizing (9.1.2) we
have

Wn+1 =

{
Wn + Sn − Tn if Wn + Sn − Tn > 0
0 if Wn + Sn − Tn ≤ 0

(9.1.3)
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or

Wn+1 = Wn + Sn − Tn +Xn (9.1.4)

where Xn can be defined as

Xn = -min(0,Wn + Sn − Tn). (9.1.5)

We observe that Xn is the length of the idle time after the departure of the nth
arrival. Note that Xn is nonzero only when Wn+1 is zero and vice versa.

Using the random variable relation (9.1.3), we may write

P (Wn+1 ≤ t) = P (Wn+1 = 0) + P (0 < Wn+1 ≤ t)

= P (Wn + Sn − Tn ≤ 0) + P (0 < Wn + Sn − Tn ≤ t)

= P (Wn + Sn − Tn ≤ t). (9.1.6)

Define Fn(t) = P (Wn ≤ t), Sn − Tn = Un, and Un(t) = P (Un ≤ t). With these
notations (9.1.6) can be written as

Fn+1(t) =

∫ t

−∞
Fn(t− x)dUn(x) 0 ≤ t < ∞. (9.1.7)

For the existence of the steady state, we need the traffic intensity ρ < 1. This is
the same as E(Un) = E(Sn) − E(Tn) < 0. Under this condition, dropping the
subscripts notationally in (9.1.7), we get

F (t) =

∫ t

−∞
F (t− x)dU(x) (9.1.8)

where

U(x) =

∫ ∞

x

B(y)dA(y − x). (9.1.9)

Equation (9.1.8) was first established by Lindley (1952). It is one of the fun-
damental equations in queueing theory. Unfortunately, its solution requires the
use of the Wiener–Hopf method which has been well illustrated in Kleinrock
(1975). Also see Gross et al. (2008) for a summary of the solution technique
and an illustration.

Instead of the distribution of Wn we now look at its mean. As n → ∞,
we may write E(Wn+1) = E(Wn). Dropping subscripts, taking expectations of
both sides of (9.1.4), we get

E(S)− E(T ) = E(U) = −E(X). (9.1.10)

Since X is the length of the idle period and the idle period, say I, ends with an
arrival which finds the system empty, we may write

E(X) = E(I)P (an arrival finds the system empty). (9.1.11)
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Let us denote the probability on the right-hand side of (9.1.11) as a0. Then we
have

E(I) =
E(X)

a0
=

−E(U)

a0

=
1− ρ

λa0
. (9.1.12)

Going back to (9.1.4) and rewriting, we have

Wn+1 −Xn = Wn + Un. (9.1.13)

Squaring both sides and taking expectations

E(W 2
n+1) + E(X2

n)− 2E(XnWn+1)

= E(W 2
n) + E(U2

n) + 2E(WnUn).

Observe that E[W 2
n+1] = E[W 2

n ] as n → ∞, Wn and Un are independent of each
other, and XnWn+1 = 0. Thus as n → ∞, we have

E(X2) = E[U2] + 2E[W ]E[U ]

E[W ] =
E[X2]− E[U2]

2E(U)
. (9.1.14)

Defining E(X2) in a manner similar to (9.1.11) we may write E(X2) = a0E(I2).
From (9.1.11) we also get

E(U) =
1

μ
− 1

λ

[E(U)]
2

=
1

λ2
(1− ρ)2

V (U) = σ2
A + σ2

B

E(U2) = V (U) + [E(U)]2

= σ2
A + σ2

B +
1

λ2
(1− ρ)2 (9.1.15)

Rewriting (9.1.14) as

E(W ) =
E(X2)

2E(U)
− E(U2)

2E(U)

and using (9.1.12) and (9.1.15), we get

E(W ) =
a0E(I2)

2[−a0E(I)]
−

σ2
A + σ2

B + 1
λ2 (1− ρ)2

2( 1μ − 1
λ )

=
λ2(σ2

A + σ2
B) + (1− ρ)2

2λ(1− ρ)
− E(I2)

2E(I)
. (9.1.16)
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This result leads us to the important upper bound for E(W ) in the general
queue G/G/ 1.

The expression (9.1.16) for E(W ), includes E(I2) and E(I) which cannot be
determined without a complete analysis of the system. Nevertheless, to obtain
a lower bound for E(I2)/2E(I) (in order to get an upper bound for E(W )) we
proceed as follows.

Setting a0 = 1 in E(I) = −E(S−T )
a0

of (9.1.12), we get

E(I) >
1

λ
− 1

μ
. (9.1.17)

Also
E(I2) = V (I) + [E(I)]2.

Since V (I) is a positive quantity

E(I2) ≥ [E(I)]
2
. (9.1.18)

Using these two results in (9.1.16), we get

E(W ) ≤ λ2(σ2
A + σ2

B)

2λ(1− ρ)
+

1

2λ
(1− ρ)− [E(I)]2

2E(I)

=
λ2(σ2

A + σ2
B)

2λ(1− ρ)
+

1− ρ

2λ
− E(I)

2

giving

E(W ) ≤ λ(σ2
A + σ2

B)

2(1− ρ)
. (9.1.19)

These results are due to Kingman (1962a, b) and Marshall (1968). They have
also provided lower bounds. Unfortunately, the lower bounds given by these
authors are not easy to obtain. A simpler lower bound has been given by
Marchal (1978) as

E(W ) ≥ ρ2 + λ2σ2
B − 2ρ

2λ(1− ρ)
. (9.1.20)

In the case of multiserver queues G/G/ s getting the bounds for E(W ) gets more
complicated. The only result we mention here is by Kingman (1962a, b) which
has the form

E(W ) ≤
λ(σ2

A + σ2
B) + (s− 1) ρμ

2s(1− ρ)
, (9.1.21)

where ρ = λ
sμ is the traffic intensity. Also see Suzuki and Yoshida (1970).

The relationship (9.1.3) between Wn and Wn+1 establishes the Markov prop-
erty of the process {Wn, n = 0, 1, 2, . . .}. It is a discrete time, continuous state
Markov process and all techniques applicable to Markov processes can be used
for its analysis. See Prabhu (1998) for results providing the time dependent as
well as limiting distributions of the process.
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9.2 Little’s Law L = λW

One of the most important and useful relationships in queueing theory is what
is commonly known as Little’s Law, named after J. D. C. Little (1961) who gave
its first formal proof. It relates the long-term mean number of customers in the
system to the mean amount of time customers spend in the system provided
the number of customers entering the system is equivalent to the number of
customers departing from it. Using common notations we write it as

L = λW. (9.2.1)

If we are looking at the number of customers waiting, we may write it as

Lq = λWq. (9.2.2)

A formal proof of this result is beyond the scope of this text. Nevertheless, we
may understand the plausibility of the results using intuitive arguments. Since
we are considering steady state, i.e., when the traffic intensity is < 1, the number
of customers waiting at the end of a service are those who arrive during the
time the customer leaving after service has entered the system. That duration
includes the waiting time and the service time. Using averages, notationally,
the number in the system is L and the waiting time plus service time is W . The
arrival rate is λ. Thus, ignoring all assumptions regarding the random variables
and their distributions, we have the result L = λW . A similar statement can
be made to justify the result Lq = λWq. The reasoning in this argument is
illustrated in the following example.

Example 9.2.1 Consider a queueing system in which customers arrive with rate
λ. In Chapter 7, we have described how a queueing process can be considered
a renewal process with busy cycle as the renewal period. The start of a busy
cycle is a renewal epoch and renewal periods are probabilistic replicas of each
other. Consequently, the properties that can be established in one such period
should hold throughout the process.

Now suppose a busy cycle is of 10σ units of time with the description given in
Table 9.1. The customers in the busy cycle are identified as (C1, C2, C3, C4, C5)
and the number in the system is counted just before an arrival or departure.
The 10σ point is the start of the next busy cycle.

Let L(BC), W (BC), and λ(BC) be, respectively, the average number in the
system, average time in system for a customer, and the average rate of arrival
in the busy cycle considered here. We get

L(BC) =
16

10
.

The amounts of time the four customers have spent in the system are (in σ units
of time)

C1 : 4; C2 : 4; C3 : 5; and C4 : 3
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Table 9.1 Arrival and departures in the busy cycle

Time(σ) Arrival Departure Number in system
0 C1 0
1 C2 1
2 2
3 C3 2
4 C1 3
5 C2 2
6 C4 1
7 2
8 C3 2
9 C4 1
10 C5 0

for a total of 16σ units of time. Thus, we get

W (BC) =
16σ

4
= 4σ units.

The arrival rate is obtained as

λ(BC) =
4

10
per σ unit

verifying the relationship

L(BC) = λ(BC)Ẇ (BC).

A similar relationship can be verified for Lq(BC), Wq(BC), and λ(BC) as well.
Thus, in general, we have the relationships

L = λW ; Lq = λWq

(Also see Jewell (1967)).

9.3 Approximations

Architectural models are exact; mathematical models can be exact; but prob-
ability models of random phenomena are always approximations. Since we use
probability models for queueing systems, their usefulness can be gauged only by
noting how closely the model approximates the real random phenomenon.

Three different stages may be identified in the modeling and analysis of a
queueing system. At the first stage, a suitable mathematical model for the
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system is developed. The second stage concerns the identification of and inves-
tigation into the basic process underlying the model. At the third stage, results
useful for understanding the system are obtained in forms convenient for numer-
ical and computational evaluations. Corresponding to these three stages we may
identify three types of approximations: approximating the systems, the process,
and the result.

Approximating the system is mainly a simplification of the system under
study without undermining the basic structure, while making the analysis man-
ageable. The four main elements of a queueing system are the arrival process, the
service process, the queue discipline, and the system structure. These elements
are described by their properties and attributes. Also, due to the complexity
of some systems, such as networks of queues, we need to add a set of relations
among these elements. Hence, a system approximation may be characterized
either by simplifying the elements or relaxing the relational assumptions or both.

Often simplification of system elements is essential in order to be able to
apply the results obtained from theory. It may not be possible to derive results
for a model with the closest approximation to the element model (such as the
distribution of the inter-arrival time or service time). Then the best useable
model is employed to derive the best approximate result. The predominant
use of the exponential distribution and the Markov model in practice is due to
this approximating process. Other examples of approximating through simpler
distribution models are the use of Erlangian and hyper exponential distribu-
tions, and the emergence of phase-type distributions and the matrix-analytic
method. Structural simplifications include approximating dependent subsys-
tems with independent subsystems, replacing weakly dependent subsystems in
queueing networks with single nodes, dividing a nonstationary process into seg-
ments which are fairly stationary, and using bounding systems whose properties
are easy to derive.

System approximations are generally heuristic in nature. Their quality
depends very much on the practical insight of the analyst and a thorough under-
standing of the system behavior. Therefore, validation of the model is always
necessary in probability modeling. It is also essential to confirm the applica-
bility of the technique and the reliability of the results. An analyst has to
evaluate constantly the trade-off between the ease of application of a particular
technique and the accuracy of the ensuing result. Thus, the validation proce-
dure must, in some way, involve a comparison between the approximate and
the expected results. Generally, validation of approximation can be achieved
through statistical tests, error analysis, experimentation, and simulation.

We have already seen one example of the process of approximating the result
in Section 9.1. There, being unable to get a closed form expression for the mean
waiting time of an arriving customer in a G/G/ 1 queue, we obtained an upper
bound that can be used in its place in applications. There are other examples
of approximating the result, either analytically or numerically in the queueing
theory literature. We consider them beyond the scope of this text. For some
early references, the readers may go to Bhat et al. (1979), which provides a
comprehensive discussion of approximations in queueing theory.
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In approximating the underlying process we use a process which is simpler
for analysis while retaining as much of the original properties as possible. An
example that has found wide application is the heavy traffic approximation in
the general queue G/G/ 1. The relationship (9.1.3) between Wn+1 and Wn can
be stated as

Wn+1 = max(0,Wn + Sn − Tn)

= max(0,Wn + Un) (9.3.1)

where Un = Sn − Tn, n = 0, 1, 2, . . ..
For n = 0, 1, 2, . . ., we have

W1 = max(0,W0 + U0)

W2 = max(0,W1 + U1)

W3 = max(0,W2 + U2)

Thus, we have W2 > 0 only if U1 > 0 (note that we have assumed that the first
customer enters an empty queue; otherwise, it would be W1 + U1 > 0); W3 > 0
only if W2+U2 > 0 and so on. When the traffic is heavy we may assume that the
arrival rate and the service rate are nearly equal to each other. Let 1

λ − 1
μ = α

and σ2
A + σ2

B = σ2 giving E(U) = E(Un) = −α and V (U) = V (Un) = σ2.
Under heavy traffic we may write (using ∼= to indicate approximate equiva-

lence)

W2
∼= U1

W3
∼= U1 + U2

...

Wn+1
∼=

n∑
r=1

Ur = U (r), say. (9.3.2)

U (n), n = 1, 2, . . . are known as partial sums of {Un}, and we have

E[U (n)] = −nα

V (Un) = nσ2. (9.3.3)

Since {Un, n = 1, 2, . . .} are i.i.d. random variables, for n large, using central
limit theorem we may write

U (n) + nα√
nσ

∼ N(0, 1) (9.3.4)

indicating that the left-hand side of (9.3.4) has a normal distribution with zero
mean and unit variance.

When α/σ is small, Kingman (1962a, b, 1965) has shown that as n → ∞
the waiting time Wn has approximately an exponential distribution with mean
σ2/2α. (The details are beyond the scope of this text.) Now

σ2

2α
=

1

2

(
V (U)

−E(U)

)

=
1

2

[
V (T ) + V (S)

E(T )− E(S)

]
. (9.3.5)
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Referring back to (9.1.19), we may note that this is exactly the upper bound
for E(W ) derived in Section 9.1. We should emphasize that (9.3.5) is a heavy
traffic approximation for the mean of the limiting waiting time in the queue
G/G/ 1 and it is useful only for larger values of traffic intensity.

In the case of the multiserver queue G/G/ s, Kingman suggests two possi-
ble approximations for its mean waiting time. The first approximate result is
obtained by extending the approximation to the mean waiting time under heavy
traffic in the queue G/M/ s:

E(W ) ∼= V (T ) + V (S/s)

2[E(T )− E(S/s)]
. (9.3.6)

This result can also be obtained by considering the performance of G/G/ s
queue in heavy traffic as being approximately the same as that of a G/G/ 1
queue whose service rate is s times the former (See Gross et al. (2008)).

The second approximation suggested by Kingman (1962a, b) is obtained
by considering the performance of the G/G/ s queue in heavy traffic as being
similar to that of a set of s parallel G/G/ 1 queues that are fed by an arrival
process with mean inter-arrival time sE(T ) = s

λ .

E(W ) ∼= sV (T ) + V (S)

2[sE(T )− E(S)]

=
V (T ) + sV (Ss )

2[E(T )− 1
sE(S)]

(9.3.7)

Clearly (9.3.7) is larger than (9.3.6) by (s− 1)V (Ss ) and therefore these results
must be used with caution. Since these are not upper bounds but approxi-
mate values obtained by considering an underlying process for which results are
available, both results may be considered as legitimate candidates for use.

9.4 Diffusion Approximation

Using a diffusion process to represent the underlying process in a queueing
system is another example of the process approximation introduced in the last
section. A diffusion process is a continuous state and parameter Markov process
with the following properties:

(a) The process changes its state continually, but only small changes occur in
small intervals of time.

(b) The mean and variance of the displacement during a small interval of time
are finite.

These two properties can be formally stated using the transition distribution
function F (x, t; y, s) = P (X(s) ≤ y|X(t) = x). The property (a) can be stated
as:

lim
Δt→0

1

Δt

∫
|y−x|>δ

dyF (x, t; y, t+Δt) = 0. (9.4.1)
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The following two equations mathematically describe property (b).

lim
Δt→0

1

Δt

∫
|y−x|≤δ

(y − x)dyF (x, t; y, t+Δt) = a(x, t) (9.4.2)

lim
Δt→0

1

Δt

∫
|y−x|≤δ

(y − x)2dyF (x, t; y, t+Δt) = b(x, t) > 0. (9.4.3)

Applying these properties in the derivation of forward Kolmogorov equation for
the Markov process, we can get the diffusion equation, called the Fokker–Planck
equation, as

∂f(x, t)

∂t
= a(x, t)

∂f(x, t)

∂x
+

b(x, t)

2

∂2f(x, t)

∂x2
. (9.4.4)

(See Prabhu (1965) or other books on stochastic processes.) The transition
density function f(x, t) is determined by solving the differential equation (9.4.4)
with appropriate boundary conditions.

Suppose in a queueing process X(t), the mean and variance are defined as
follows:

α(t)Δt ∼= E[X(t+Δt)−X(t)|X(t)]

σ2(t)Δt ∼= V [X(t+Δt)−X(t)|X(t)]. (9.4.5)

These values are inserted in (9.4.4) to particularize the diffusion equation.
Gaver (1968) uses this approximation to determine the time-dependent dis-

tribution and the mean waiting time in the queue M/G/ 1. Let W (t) be the
waiting time process as shown in Figure 9.1. For a small interval of time Δt,
the changes occurring in W (t) are as follows:

W (t+Δt)−W (t) = −Δt with probability 1− λΔt+ o(Δt)

W (t+Δt)−W (t) = S −Δt with probability λΔt+ o(Δt). (9.4.6)

In the statements of (9.4.6) we have used the following assumptions:

(a) Since the arrivals are Poisson with rate λ, the Δt interval includes an
arrival point with probability λΔt+o(Δt) and does not include the arrival
point with probability 1−λΔt+o(Δt). (We may recall here the definition

of o(Δt) given in Section 4.1: o(Δt)
Δt → 0 as Δt → 0 and o(Δt) can be

positive or negative.)

(b) The value of W (t) decreases at a unit rate with time.

(c) When an arrival occurs, W (t) increases by an amount equivalent to the
service time of the customer. We have used a generic symbol S to denote
the service time.
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Using (9.4.6) the mean and variance of W (t) can be obtained as

α(t)Δt = αΔt ∼= E[W (t+Δt)−W (t)|W (t)]

= E[(S −Δt)(λΔt+ o(Δt)

+(−Δt)(1− λΔt+ o(Δt)]

= λE(S)Δt−Δt+ o(Δt)

giving, when Δt → 0,

α = λE(S)− 1. (9.4.7)

σ2(t)Δt ∼= (Δt)2[1− λΔt+ o(Δt)] + E[(S −Δt)2][λΔo(Δt))]

− [λE(S)Δt−Δt+ o(Δt)]2

= λE(S2)Δt− [λE(S)− 1]2(Δt)2 + o(Δt)

giving, when Δt → 0,
σ2 = λE(S2). (9.4.8)

Substituting these values in the diffusion equation (9.4.4), we get

∂f(x, t)

∂t
= −α

∂f(x, t)

∂x
+

σ2

2

∂2f(x, t)

∂x2
(9.4.9)

with conditions

f(x, t|x0) ≥ 0∫ ∞

0

f(x, t|x0)dx =
λ

μ

lim
t→0

f(x, t|x0) = 0 x �= x0

f(x, t|x0) = 0 for x ≤ 0 and t ≥ 0. (9.4.10)

Solving the diffusion equation, in addition to the Laplace transform of the wait-
ing time distribution, Gaver finds an explicit expression for the mean waiting
time, as

E[W (t)|W (0) = x0] = αt+ x0 +
σ2

2α
e−( 2α

σ2 )x0 (9.4.11)

for large t.
The discontinuities and jumps in queueing processes make a diffusion approx-

imation less than ideal for direct applications, as illustrated above. However,
diffusion approximation has played a major role in obtaining weak convergence
of functional limits in dealing with complex or unstable systems.

A special case of the general diffusion process defined by (9.4.4) is the Brow-
nian motion process (also known as the Wiener process) {X(t), t ≥ 0} which has
a normal distribution for specific values of t > 0 and has stationary independent
increments, and for which E[X(t)] = 0 for t > 0, V [X(t) −X(S)] = σ2|t − s|.
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There has been a large amount of literature on functional limit theorems on
various queueing processes when they are hard to analyze because of their com-
plexity or lack of stability. The Brownian motion process plays a significant
role in such limits. For instance, one of the earliest investigations is by Igle-
hart and Whitt (1970) who obtained weak convergence results of functionals
of queue length, waiting time, and other related processes in a G/G/ s queue
(the first paper) and sequences of G/G/ s queues (the second paper) when the
traffic intensity is larger than 1. For a survey of investigations into such topics,
including extensions to queueing networks readers are referrred to Glynn (1990).

9.5 Fluid Approximation

We introduce fluid approximation with an example from road traffic by ignoring
the randomness in the arrival and service processes. Starting with an engineer-
ing approach, the approximation procedure developed by Newell (1971, 1992)
has the advantage of being able to handle time-dependent queueing processes,
especially when they are oversaturated (i.e., when the arrival rate exceeds the
service rate). Lately, a combination of the fluid approximation along with the
use of diffusion processes has proved useful in investigations into communication
traffic.

Let A(t) and D(t) represent the number of arrivals and number of departures
respectively in (0, t). These are assumed to be continuous variables, not random;
let us assume the arrival and service rates to be λ(t) and μ(t), defined as

dA(t)

dt
= λ(t);

dD(t)

dt
= μ(t). (9.5.1)

The rate λ(t) is likely to be time dependent and the rate μ(t) is likely to be a
constant or piecewise constant.

Consider λ(t) = λ and μ(t) = μ, both constants. Define Q(t) = A(t)−D(t).
When λ < μ and Q(0) >> 1, Q(t) will gradually decrease until it hits zero. On
the other hand if λ > μ, Q(t) will grow progressively larger and larger and will
go to infinity as t → ∞.

Modeling the rush hour traffic when λ(t) is likely to be time dependent,
Newell assumes the form

λ(t) = λ(t1)− β(t− t1)
2 (9.5.2)

where t1 is the point at which it achieves the maximum. Also let t0, t2, and t3
be such that the λ(t0) = μ; λ(t2) = μ and Q(t3) = 0. This means during this
rush hour Q(t) = 0 at t0 and t3. With these assumptions,

Newell obtains

Total delay =
9[λ(t1)− μ]2

4β
. (9.5.3)

For details the readers are referred to Newell (1971).
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In the monograph (1971, 1982) G. F. Newell extends the fluid approximation
technique for use in applications such as transportation problems. The results
are based on purely deterministic assumptions on system elements. Also, the
results are very much dependent on the state of the system at specific time
points. One way of addressing these problems is to use stochastic differential
equations for representing the transitions in the underlying process. Then both
the arrival and service processes can be made random and we can consider
the limiting properties of the process as well. Examples of such models are
provided in the review paper by Kulkarni (1997) for a buffer content process in
communication traffic.

9.6 Remarks

An in-depth discussion of the topics covered in this chapter is beyond the scope
of a book at an introductory level. In fact, a large amount of cutting edge
ongoing research solving increasingly complex problems related to computer and
communication traffic covers the area of approximations. Readers interested in
gaining better knowledge of topics pertaining to general queues, approximations,
limit theorems, etc., are recommended to look up more recent issues of research
journals and books on such topics.



Chapter 10

Statistical Inference for
Queueing Models

10.1 Introduction

Statistical analysis of data is essential to initiate probability modeling. Sta-
tistical inference completes the process by linking the model with the random
phenomenon. Thus, for using the queueing models developed in earlier chapters,
we need to estimate model parameters and make sure that we have the right
model. In the next few sections, we discuss methods of parameter estimation
appropriate for various data collection procedures.

We have not discussed any data collection and analysis procedures in this
text simply because there are several books on them in the literature on statis-
tics. Statistical inference procedures are also well established and on the face of
it, a chapter on statistical inference of queueing systems may seem superfluous.
However, in queueing systems standard data collection procedures may not be
possible and those are the cases we plan to consider in this chapter.

When estimating parameters of a probability model, which define the input
process or the service time distribution, there are two issues to be settled first:
the sampling plan and the method of estimation. The sampling plan specifies the
data collection procedure: how long to observe the system (for a specific length
of time or until a specified number of events occur); what type of observations
are to be made (the length inter-arrival times, the number of arrivals, length of
service times, number of departures, etc.); and how these data elements are to
be collected. The job of estimating a parameter can follow standard statistical
procedures if we can collect all the necessary information from the system.
For instance, if data are available on the arrival times of customers such that
information on a specified number of inter-arrival times can be obtained, then
the parameters of the distribution of the inter-arrival times can be estimated
using standard statistical procedures. On the other hand, if the information
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available provides only the number of arriving customers and the number of
departing customers during a period of specified length, standard statistical
procedures do not work. This sampling plan can be used only if an appropriate
statistical procedure is available.

Random samples of observations are used in estimating parameters of distri-
butions. In a similar fashion, for estimating parameters of a stochastic process
we use sample paths, which are samples of realizations of the stochastic process.

A stochastic process is ergodic when its time average converges to its ensem-
ble average as time → ∞. A Markov process in which state space is irreducible,
positive recurrent, and aperiodic belongs to the class of ergodic processes. When
a stochastic process is ergodic, estimates obtained using one long sample path
have been found to be equally accurate as estimates obtained from a large num-
ber of shorter sample paths.

There are two estimation procedures widely used in queueing applications:
the method of moments and that of maximum likelihood (m.l.). The method
of moments, as the name indicates, provides estimates by equating sample
moments with the moments of the distribution. The number of equations to be
used depends on the number of parameters to be estimated. Inspite of its sim-
plicity the major drawback of this procedure is the lack of desirable properties
of the estimators that make them reliable. Also, the estimators are not unique.
For instance, one could use either the raw moments or the central moments. To
guard against the unreliability of the estimates, it would, therefore, be neces-
sary to obtain the properties of the estimators themselves (such as asymptotic
normality, minimum variance, etc.).

To avoid the problems associated with the method of moments, the preferred
procedure of estimation is the method of m.l. In this method, a likelihood func-
tion is constructed using observations from a random sample. When they are
from a discrete distribution, the likelihood function is the probability of obtain-
ing that particular sample and is constructed as the product of probability mass
at the sample points. When the observations are from a continuous distribu-
tion, likewise, the likelihood function is the product of probability densities
evaluated at the sample points. The parameter estimates are now those values
that maximize the likelihood function. For details of the procedure the readers
are referred to introductory textbooks on statistical theory. The properties that
make m.l. estimation preferable are:

(1) Consistency (the variance of the estimator → 0 as sample size n → ∞)

(2) Asymptotic normality (the estimator has a normal distribution when the
sample size is large)

(3) Invariance (the m.l. estimator of a function of the parameter is the corre-
sponding function of the m.l. estimator)

However, the m.l. estimation is not perfect either. The estimate obtained
by this procedure can be biased.
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As indicated earlier, if random samples of inter-arrival times and service
times are available, the parameters of their parent distributions can be estimated
separately using the m.l. method. However, obtaining such random samples
from the sample path of a queueing process presents problems. For instance, if
the sample path is observed for a specific length of time, the sample sizes of both
inter-arrival and service times are random and the stopping time is unlikely to
be an arrival or a departure time. These factors need to be taken into account
in the estimation procedure. For such reasons special sampling plans have been
developed for inference on stochastic processes. These are discussed in the next
two sections for queueing systems which allow birth and death process models
and imbedded Markov chain models.

10.2 Birth and Death Process Models

The estimation of parameters using the m.l. method is similar for all queueing
systems which can be modeled as birth and death processes. Therefore, for the
sake of simplicity we use m.l. estimation in the simple queue M/M/ 1 as given
by Clarke (1957) for illustration.

Let λ and μ be the arrival and service rates, respectively. Suppose the system
is observed for a length of time T after it has achieved steady state. Let n0 be
the number of customers in the system at the start of observations. The four
components of the sampling plan are: the initial number of customers in the
system (n0), the number of arrivals (n), the number of departures (m), and the
length of time during (0, T ] the system has been busy (Tb). With these elements
in the final result, the m.l. estimation procedure is developed as follows.

If we observe the sample path of the number of customers in the system we
see the following features:

1. Changes of state occur due to arrivals or departures. Using results from
Section 4.2, during a busy period, the amount of time the process resides
in a specific state (sojourn time in a state) has an exponential distribution
with mean 1/(λ+ μ).

2. When a change of state occurs during a busy period using property (d)
leading to the result (A.1.2) of Appendix A of the exponential distribution,
we conclude that

P (an upward jump; i.e., an arrival) =
λ

λ+ μ

P (a downward jump; i.e., a departure) =
μ

λ+ μ

Thus, the jump event has a Bernoulli distribution with probabilities given
above.
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3. If at any time the system is empty the amount of time until the next arrival
has an exponential distribution with mean 1/λ. Then the probability that
the process takes an upward jump = 1.

4. If the stopping time T for observations during a busy period is of length x�

from the last change of state, then the probability element to be associated
with that event is e−(λ+μ)x� .

5. If the stopping time T is during the idle period, and if x� is the corre-
sponding time from the last change of state, then the probability element
to be associated with that event is e−λx� .

6. Due to the Markovian nature of the process, the intervals of time repre-
senting the inter-event times as identified in items 1 and 3–5 above are
independent of each other and also of the events identified in 2, and the
nature of jumps are independent of all other events. Thus, the sample
path is made up of independent realizations of various random variables,
which can be used for the purposes of constructing a likelihood function
for the m.l. estimation.

For the purpose of deriving the m.l. estimator, we define

nae = number of arrivals to an empty system

nab = number of arrivals to a busy system

m = number of departures from the system

xi = intervals of time spent in state i when the system is busy

i = 0, 1, 2, . . . , (nab +m)

xj = intervals of time the system has been empty

j = 0, 1, 2, . . . , nae

x� = the very last interval terminating in T

n = nab + nae

Tb =
∑

xi + x�

T − Tb =
∑

xj + x�

The likelihood function can now be constructed with the following components:

(a) The probability distribution of the initial queue size n0

(b) The probability distribution of nab arrivals and m departures out of a total
of nab +m Bernoulli events

(c) Likelihood elements corresponding to xi, (i = 0, 1, 2, . . . , (nab + m)), xj

j = 0, 1, 2, . . . , nae), and x�
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(d) A combinatorial term reflecting the restrictions on the sequence of arrivals
and departures, so that departures can occur only when there are cus-
tomers in the system; since this term does not involve the parameters λ
and μ, we denote it as a constant C

Then we have the likelihood function as

f(λ, μ) = C

(
1− λ

μ

)(
λ

μ

)n0
(
nab +m

nab

)(
λ

λ+ μ

)nab
(

μ

λ+ μ

)m

× Πnab+m
i=1 (λ+ μ)e−(λ+μ)xi

× Πnae
j=1λe

−λxje−(λ+μ)x� , (10.2.1)

if the last interval is part of a busy period. Otherwise, the last term e−(λ+μ)x�

will be replaced by e−λx� . Simplifying the terms in (10.2.1), we get

f(λ, μ) = C ′
(
1− λ

μ

)(
λ

μ

)n0

λnμme−λT e−μTb (10.2.2)

where C ′ includes C and the combinatorial term of (10.2.1). If the initial number
in the system is ignored we have the likelihood function as

f(λ, μ) = C ′λnμme−λT e−μTb . (10.2.3)

Taking logarithms, differentiating with respect to λ and μ, equating to zero,
and solving the resulting equations, we get (estimators of λ and μ are denoted

as λ̂ and μ̂, respectively)

λ̂crude =
n

T
; μ̂crude =

m

Tb
. (10.2.4)

If the information provided by the initial queue length is included in the likeli-
hood function we have to use (10.2.2) in the maximization process. (The more
information we use in estimating a parameter, the better will be the accuracy
of the estimate.) Taking logarithms, differentiating with respect to λ and μ,
equating the resulting expressions to zero, and simplifying, we find that the
estimated λ̂ and μ̂ of λ and μ must satisfy the following equations:

λ̂ = (μ̂− λ̂)(n+ n0 − λ̂T )

λ̂ = (λ̂− μ̂)(m− n0 − μ̂Tb). (10.2.5)

Nonlinearity of these equations compels us to use indirect methods of solution.
Writing λ̂ = μ̂ρ̂ in the two equations of (10.2.5), we get

ρ̂ = (1− ρ̂)(n+ n0 − μ̂ρ̂T )

ρ̂ = (ρ̂− 1)(m− n0 − μ̂Tb). (10.2.6)

These equations give

μ̂ =
n+m

ρ̂T + Tb

λ̂ =
(n+m)ρ̂

ρ̂T + Tb
. (10.2.7)
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The problem is solved if we can get ρ̂ from (10.2.6). Eliminating μ̂ from these
two equations (rearranging and dividing one equation by the other), we get

ρ̂− (n+ n0)(1− ρ̂)

ρ̂− (m− n0)(ρ̂− 1)
= − ρ̂T

Tb
(10.2.8)

which gives a quadratic equation in ρ̂,

f(ρ̂) = T (m−n0−1)ρ̂2−[(m−n0)T+(n+n0+1)Tb]ρ̂+(n+n0)Tb = 0. (10.2.9)

This has exactly one admissible root ρ̂1 (say) since f(0) = (n + n0)Tb > 0 and

f(1) = −T − Tb < 0. Clearly ρ̂1 is therefore the required estimate. Now λ̂ and
μ̂ are obtained by substituting this value back in (10.2.7).

A simple approximation to ρ̂1, can be obtained by replacing m− n0 − 1 by
m − n0 and n + n0 + 1 by n + n0 in (10.2.9). The corresponding quadratic
equation,

f∗(ρ̂) = T (m− n0)ρ̂
2 − [(m− n0)T + (m+ n0)Tb]ρ̂+ (n+ n0)Tb = 0 (10.2.10)

yields the two roots

ρ̂∗1, ρ̂∗2 =
(n+ n0)Tb

(m− n0)T
, 1. (10.2.11)

Substituting ρ̂∗1 from (10.2.11) in (10.2.7), we get

λ̂approx ∼= n+ n0

T
, μ̂approx ∼= m− n0

Tb
. (10.2.12)

By comparing ρ̂1 obtained from (10.2.9) with ρ̂∗1 as obtained above, we can also
show that

ρ̂1 < ρ̂∗1

and

0 < ρ̂∗1 − ρ̂1 <
2ρ̂∗1

(1− ρ̂∗1)(m− n0)
. (10.2.13)

We may therefore conclude that ρ̂∗1 is a good approximation of ρ̂1 when it is
bounded away from 1 (i.e., <<1) and m− n0 is large.

Example 10.2.1 Observations of a theater ticket counter for 30 minutes (T )
yielded the following results:

• Number of customers at the start of observation (n0) = 2

• Number of arrivals during (0, T ) (n) = 75

• Number of departures during (0, T ) (m) = 70

• Amount of time the system was busy (Tb) = 25 mins
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Assume that at the time of observation the system was in steady state.

Without using the initial value, from (10.2.4), we get (λ̂ and μ̂ are the
estimates for the arrival and service rates, respectively)

λ̂crude =
75

30
= 2.5,

μ̂crude =
70

25
= 2.8.

Evaluating the admissible root in (0,1) of (10.2.9), we get

ρ̂exact = 0.827

from which substituting back in (10.2.7), we get

λ̂exact = 2.407, μ̂exact = 2.911.

When the initial value n0 = 2 and the approximation are used in the estimation
process, from (10.2.12) the approximate estimates are obtained as

λ̂approx = 2.567, μapprox = 2.720.

Table 10.1 summarizes these results.

Table 10.1 Summary of results

ρ̂ λ̂ μ̂
Exact 0.827 2.407 2.911
Approximate 0.944 2.567 2.720
Crude 0.893 2.500 2.800

Answer.

The m.l. method used in the foregoing discussion can be easily expanded for
use in other birth and death process models of queueing systems. For instance,
in the generalized model with arrival parameters λn (n = 0, 1, 2, . . .) and service

parameter μn (n = 1, 2, 3, . . .), ignoring the information on the initial state (λ̂n

and μ̂n are the corresponding estimates), we get

λ̂n =
No. of arrivals when the process is in state n

Total time the process is in state n
,

μ̂n =
No. of departures when the process is in state n

Total time the process is in state n
. (10.2.14)

(See Wolff (1965).)
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10.3 Imbedded Markov Chain Models for M/G/1
and G/M/1

In the birth and death process models, because of the Markovian structure of
the queue length process (number of customers in the system), we are able
to construct a likelihood function using information on macroelements such
as number of arrivals, number of departures, etc. The queue length process
in M/G/ 1 and G/M/ 1 is Markovian only at certain time epochs (departure
points in M/G/ 1 and arrival points in G/M/ 1). Consequently, we have to use
the information provided by a realization of the resulting Markov chain. Such
a realization is known as its sample path.

Let θ represent the parameters of the inter-arrival and service time distribu-
tions in an M/G/ 1 queue. Recalling definitions and notations from Section 5.2,
for the one step transition probability Pij of the imbedded Markov chain, we
have

Pij =

{
kj−i+1 if i > 0
kj if i = 0

, (10.3.1)

where

kj =

∫ ∞

0

e−λt (λt
j)

j!
dB(t) j = 0, 1, 2, . . . . (10.3.2)

Note that θ includes arrival rate λ and the parameters of the distribution B(·).
Suppose the sampling plan is to observe the queueing system until N depar-

tures have occurred and note down the number of customers in the system at
the start of observations, which we assume to be a departure point, and at the
subsequent departure points, soon after departure. These are the values of Qn

in the sample path and let nij be the number of transitions of observed values of
Qn from state i to state j (i, j = 0, 1, 2, . . .). Let (r0, r1, . . . , rN ) be the observed
values of Qn (n = 0, 1, 2, . . . , N). Using the observed values of the sample path,
the likelihood function may be written down as (ignoring the distribution of r0)

f(θ) = ΠN
n=1P (Qn = rn|Qn−1 = rn−1) .

Taking logarithms

ln f(θ) =

N∑
n=1

lnP (Qn = rn|Qn−1 = rn−1) . (10.3.3)

Expressing the transition probabilities in terms of kj ’s defined in (10.3.2) and
using the transition counts nij , (10.3.3) simplifies to

ln f(θ) =
∞∑
j=0

(n0j + n1j) ln kj

+

∞∑
i=2

∞∑
j=i−1

nijkj−i+1. (10.3.4)
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The m.l. estimates of θ (λ and parameters of B(·)) can be determined by
specializing (10.3.4) in particular cases. In most cases, the maximization of
ln f(θ) will have to be carried out using numerical methods. For illustrations
of this approach see Goyal and Harris (1972).

A similar approach can be used in the case of the G/M/ 1 queue. But
the expressions are more complicated because the transition probability Pi0 =∑∞

r=i+1 br, as shown in (5.3.3), involves a sum of integrals (See Bhat (2003)).

Harishchandra and Rao (1988) have suggested another way of using the
queue length information from the sample path in the queue M/G/ 1. Equa-
tion (5.2.2) of Section 5.2 can be rearranged as

Xn+1 =

{
Qn+1 −Qn + 1 if Qn > 0
Qn+1 if Qn = 0

, (10.3.5)

where {Xn, n = 1, 2, . . .} are independent and identically distributed (i.i.d.)
random variables representing the number of arrivals during service times with
the distribution given by (10.3.2). Thus from successive observations of Qn,
n = 0, 1, . . . , N , we get a corresponding sample of {Xn} that are i.i.d’s, suitable
for use as a random sample. Now the product of corresponding density elements
gives the likelihood function. However, as discussed in Bhat (2003), this like-
lihood function may not have enough information to estimate all parameters.
For instance, in the queue M/Ek/1, only the traffic intensity ρ can be estimated
by this method. To estimate the arrival and service rates separately, we need
additional information, such as the amount of time the server has been busy,
say τ , during the period N customers have been served. Then the service rate
μ can be independently estimated as μ̂ = N

τ , from which the estimate of λ is

obtained from the relationship λ
μ = ρ.

A similar approach to the queue G/M/ 1 does not work because, equa-
tion (5.3.2), when rearranged, yields the relation

Xn+1 = Qn + 1−Qn+1 when Qn+1 > 0

≥ Qn + 1 when Qn+1 = 0, (10.3.6)

which does not provide a complete sample on {Xn} since when Qn+1 = 0, Xn+1

is available only as larger than Qn.

10.4 The Queue G/G/1

As mentioned earlier, a sampling plan that collects data for a specified length
of time or until a specified number of events have occurred (these are known as
stopping rules) presents problems because of the randomness of the sample size.
Nevertheless, it is possible to get at least approximate estimates of parameters of
the distributions using the m.l. method with most of the asymptotic properties
of m.l. estimates intact (Basawa and Prabhu (1981)). The idea of using only
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sequences of inter-arrival and service times in estimation is originally due to
Cox (1965).

Let a(u;θ) and b(v;φ) be the inter-arrival time and service time densities
respectively, with θ and φ representing the respective parameters. Let the
corresponding distribution functions be denoted as A(·) and B(·), respectively.
Let the system be observed until n departures have occurred, and let NA be the
number of arrivals during that period. Note that NA is a random variable. We
assume that the initial customer arrival is at t = 0. Let u = (u1, u2, . . . , uNA)
and v = (v1, v2, . . . , vn) be the sample data. Also, let xn be the time difference
between the stopping time (nth departure point) and the last arrival epoch. The
likelihood function f(θ, φ) can be written as

f(θ,φ) =
[
ΠNA

i=1a(ui;θ)
] [

Πn
j=1b(vj ;φ)

]
[1−A(xn;θ)]. (10.4.1)

Since the factor [1 − A(xn;θ)] causes difficulty in obtaining simple estimates,
consider the alternative approximate likelihood function, sometimes called con-
ditional likelihood function, obtained by dropping the last term in (10.4.1)

fc(θ,φ) =
[
ΠNA

i=1a(ui;θ)
] [

Πn
j=1b(vj ;φ)

]
. (10.4.2)

The m.l. estimators are obtained from (10.4.2) by solving the following two
equations

NA∑
i=1

∂

∂θ
ln a(ui;θ) = 0,

n∑
j=1

∂

∂φ
ln b(vj ;φ) = 0. (10.4.3)

For large samples, estimators of θ and φ can be obtained from (10.4.3), at least
numerically, if not in closed form.

Basawa and Prabhu (1981) show that the estimators determined using the
conditional likelihood function (10.4.2) have the requisite properties of the true
m.l. estimators. Also, if θ̂ and φ̂ are estimators based on the full likelihood
(10.4.1) and θ̂C and φ̂C are estimators based on (10.4.2), they have also shown
that θ̂ and θ̂C have the same limiting distribution whenever

1√
n

∂

∂θ
ln[1−A(xn;θ)] → 0 in probability. (10.4.4)

Referring back to the second term in (10.4.1) and (10.4.2), and noting that the
corresponding equation to solve for the estimators is the same as (10.4.3) in
both cases, we can conclude φ̂ = φ̂c.

In a subsequent paper, Basawa and Prabhu (1988) extend the results using
four different stopping rules: (1) Observe until a fixed time T , (2) observe until
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n arrivals have occurred, (3) observe until n departures have occurred, and (4)
observe until n transitions have occurred. Conditions have been established for
the approximate m.l. estimators to be asymptotically equivalent to the m.l.
estimators one gets by using the likelihood functions corresponding to the four
stopping rules in the sampling plan.

10.5 Other Methods of Estimation

In other methods of estimation, the method of moments plays a major role. One
such method using data on inter-departure intervals to estimate parameters of
the service time distribution in the queue M/G/ 1 is given by Cox (1965). Let
λ and μ be the arrival and service rates in such a system, with B(·) as the
distribution function of the service time. Let C(·) be the distribution function
of the inter-departure interval. Note that in steady state 1− λ

μ is the probability

that the system is empty and λ
μ (= ρ) is the probability it is busy. Also, when

it is busy the inter-departure interval is the service time itself.
With this information, it is not difficult to write

C(t) =
λ

μ
B(t) + (1− λ

μ
)

∫ t

0

B(t− x)λe−λxdx. (10.5.1)

When the service time is exponential, we do not get any additional information
on μ from (10.5.1) since, the departure process in M/M/ 1 has the same dis-
tribution as the inter-arrival time as t → ∞ (see Section 4.2.1). On the other
hand, if the service time is a constant = 1

μ , we have

C(t) = 0 t <
1

μ

=
λ

μ
t =

1

μ

=
λ

μ
+

(
1− λ

μ

)(
1− e−λ(t−1/μ)

)
t >

1

μ
, (10.5.2)

Due to the nonzero probability associated with t = 1/μ, we may use the mini-
mum observed inter-departure time as the estimate of 1/μ. (Even without the
help of (10.5.2), this is the best conclusion because the length of service time is
the minimum of inter-departure times).

When the service time distribution is different from the exponential or the
deterministic, the parameters of the distribution can be estimated by equating
the appropriate cumulants of the inter-departure time distribution with those of
the cumulants from observed data. (See Cox (1965) for details and a discussion
on the problems arising out of dependent observations.)

When data are available on the time in the system for customers, a similar
approach can be used by noting down their arrival and departure epochs. The
time in system (waiting + service time) has the Laplace–Stieljes transform given
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by (5.2.36). Its moments can be determined by differentiation and setting θ = 0
in the resulting expressions. Now the parameters of the service time distribution
B(·) are determined by solving equations resulting from equating these moments
with those from the data (see Cox (1965)).

While estimating parameters inM/G/ 1 queueing systems, we need to assume
a parametric form for the service time distribution to specify parameters. What
if we are not certain about the prametric form itself? In Chapter 2 and Appendix
A, we saw that the Erlangian family of distributions for different values of k have
coefficient of variation (CV = standard deviation/mean) less than 1 and the dis-
tributions belonging to the hyperexponential family have CV greater than 1. If
one looks at these two families of distributions as belonging to a large family with
CV varying in the range [0,∞), we can say that the exponential distribution
with CV equal to 1, divides them in two groups. Also because of their relation-
ship with the exponential distribution they are easy for analysis as models for
inter-arrival or service time distributions. Furthermore, the Erlangian family
with different values of k and the hyperexponential family with different mixing
parameters, together cover a wide variety of distribution forms that can be used
in modeling in most of the applications. Thus, estimating the value of CV from
the data can lead into the selection of the right distribution model for service
time in an M/G/ 1 queue.

To estimate the coefficient of variation of the service time in an M/G/ 1
queue, we start with equation (10.3.5) where {Xn, n = 1, 2, . . .} are i.i.d. random
variables representing the number of arrivals occurring during service periods.
The random variable Xn has the distribution {kj} given by (10.3.2). Let μ1

and μ2 be the first and second moments of this distribution. The PGF of kj
can be obtained as (see derivations leading to (5.2.9))

K(z) = ψ(λ− λz), (10.5.3)

where ψ(θ) is the Laplace–Stieltjes transform of the service time distribution
B(·). Clearly we have

K ′(1) = μ1 = −λψ′(0),

K ′′(1) = μ2 − μ1 = λ2ψ′′(0). (10.5.4)

Let μs
1 and μs

2 be the first two moments of the service time distribution, with
σ2 as its variance. The CV of the service time distribution is now given by
C = σ/μs

1.
From (10.5.3) we get μs

1 = −ψ′(0) and μs
2 = ψ′′(0). Thus

K ′′(1) = λ2
[
σ2 + (μs

1)
2
]
= λ2[σ2 + (K ′(1))

2
] (10.5.5)

which leads to
σ2 = λ−2

[
K ′′(1)− (K ′(1))2

]
.

But μs
1 = λ−1K ′(1). Hence, we get

C2 =
K ′′(1)− [K ′(1)]2

[K ′(1)]2
. (10.5.6)
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Substituting from (10.5.4), we have

C2 =
μ2

μ2
1

− 1

μ1
− 1. (10.5.7)

Let m1 and m2 be the first two sample moments of Xn as observed from the
system. For the estimator of C, Ĉ, we get

Ĉ =

√
m2

m2
1

− 1

m1
− 1. (10.5.8)

Asymptotic properties of this estimator (consistency and normality) have been
established by Miller and Bhat (2002). A simulation study used to determine
the working rules for distribution selection provide the following guidelines:
When Ĉ << 1 use Erlang; Ĉ >> 1 use hyperexponential; and when Ĉ ∼= 1
use exponential. The last conclusion is based on the fact that when k is close
to 1, using the exponential distribuion in the model is likely to be more cost
effective in further analysis than either Erlang (if Ĉ is slightly less than 1) or
hyperexponential (if Ĉ is slightly greater than 1) distribution.

If the decision is to adopt an Erlangian distribution, its parameters, μ and
k can be determined using the m.l. method. In the case of the scale parameter
k, however, the integer m.l. method should be used. For details see Miller
and Bhat (1997) and Miller (1999). If the hyperexponential distribution H2

is chosen, the m.l. method becomes unwieldy. For such circumstances, Miller
(1996) has developed an estimation procedure for the mixing parameter p, using
moments of the distribution.

In queueing theory very often estimates of performance measures are the
major objectives; e.g., system utilization and probability of blocking in a com-
munication system. Since the theory has grown along with applications, over
the years researchers in industrial laboratories have developed various methods
of estimating such measures. Also, there are other investigations that provide
additional methods of estimation of parameters. For a comprehensive survey of
these procedures and results, the readers are referred to Bhat et al. (1997).

10.6 Tests of Hypotheses

Hypothesis testing is an integral part of inference in statistical theory. It involves
analytical procedures to determine whether hypotheses made regarding the char-
acteristics of the random phenomena are true. In queueing theory, since the
objective is to set up a suitable probability model as an aid to decision-making,
the use of hypothesis testing is limited. Therefore, we restrict ourselves to pro-
viding only references and the type of problems considered in them.

Most of the circumstances where hypothesis testing can be used in queueing
theory are when there is some prior information on parameter values of the
process or when the goodness of fit of a distribution form for the inter-arrival
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time or the service time has to be ascertained. In all these cases, if we can get
enough information from the sample path of the process, standard techniques
from statistical theory can be used. But there are circumstances where complete
information is not available. For instance, Clarke’s (1957) estimation of param-
eters in Section 10.2 for the queue M/M/ 1 used only the number of arrivals and
departures, amount of time the system was busy, and the total time. Using a
similar sampling plan Wolff (1965) develops likelihood ratio tests for parame-
ter values. Thiagarajan and Harris (1979) have developed a procedure to test
whether the service time distribution is exponential in an M/G/ 1 queue based
only on information on waiting times. Using information derived from (10.3.5)
for the number of customers arriving during a service period in an M /Ek/1
queue, Harischandra and Rao (1988) have developed a likelihood ratio test for
the traffic intensity ρ.

Another form of test that can be used in queueing theory is the sequential
probability ratio test which is described in the next section.

10.7 Control of Traffic Intensity in M/G/1 and
G/M/1

Confidence intervals are useful in determining whether a parameter can be
assumed to lie within some specified limits. As pointed out by Cox (1965),
using the notation from Section 10.2, confidence intervals for λ, μ, and ρ in
an M/M/ 1 queue can be obtained by observing that 2λ̂T can be treated as a
chi-square variate with 2n degrees of freedom and 2μ̂Tb as a chi-square variate
with 2m degrees of freedom. It is well known that the ratio of two chi-square
variates has an F distribution. The confidence intervals now follow using the
known values of this distribution (Also see Lilliefors (1966)).

When operating a queueing system, monitoring and controlling the parame-
ter values are essential to ensure that the system performance is consistent with
design standards, and in order to respond to exigencies of the environment.
The parameter control problem, in effect, involves the problem of testing the
hypotheses H0 : θ = θ0, where θ is the vector of parameters, with θ0 as the
set of desired values, against a suitable alternative say, H1 : θ = θ1. If the
hypothesis is not rejected at a chosen level of significance, we conclude that
the system parameters have not changed, while the rejection of the hypothesis
is indicative of change in parameter values. Once the change is detected, an
appropraite control action can be taken.

When the difference between parameter values under the null and alternative
hypothesis is large, a sequential test has the advantage of using a considerably
smaller sample size. With this objective, Rao et al. (1984) have developed a
procedure for testing the hypothesis H0 : ρ = ρ0 versus H1 : ρ = ρ1 using
Wald’s sequential probability ratio test (SPRT) for the systems M/G/ 1 and
G/M/ s in which the queue length process {Qn, n = 0, 1, 2, . . .}, respresenting
the number of customers in the system at departure epochs (in M/G/ 1) or
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arrival epochs (in G/M/ s), has an imbedded Markov chain. Let the transition
probabilities of the chain be Pij(ρ) when ρ is the traffic intensity, and let nij be
the number of transitions i → j of {Qn} up to and including the nth transition.
Then, the likelihood ratio for the SPRT is (n =

∑∑
nij)

Ln = Πi,jP
nij

ij (ρ1)/Πi,jP
nij

ij (ρ0). (10.7.1)

Let A = (1 − β)/α and B = β(1 − α), where α and β are the probabilities of
Type I and Type II errors, respectively. The SPRT procedure is: Accept H1 if
Ln ≥ A, accept H0 if Ln ≤ B, and observe the next queue length Qn+1 and
compute Ln+1 and repeat the procedure if B < Ln < A. The mechanics of
applying the test are easier if logarithms are used. In the case of the systems
M/M/ 1, M/Ek/1, Ek/M/ s, M/M/ s/s, and the machine interference problem,
the logarithm of (10.7.1) takes the form lnLn = an +

∑
i,j nijcij , where a and

cij are constants depending upon ρ0, ρ1, and the transition probabilities of the
imbedded Markov chain.

For details of the procedure see Rao et al. (1984). The paper also provides
the operating characteristic function and the average sample number for the
SPRT. Even though the procedure uses a finite Markov chain, its validity for
denumerable infinite chains has been established in Rao and Bhat (1991).

An alternative procedure in parameter control inM/G/ 1 and G/M/ 1 queues
is to use the limiting distribution of the number of customers in the system as
outlined in Bhat (1987). Let t0, t1, . . . be the departure epochs in an M/G/ 1 (or
arrival epochs in a G/M/ 1) queue, and let Qn be the number of customers at
these points (appropriately defined). The control technique has two phases. The
first phase (a warning phase) indicates the time at which the sample function
gets out of the region covered by the upper and lower control limits cu and
c�; the second phase (the testing phase) is intended to see whether the process
returns to the control region within a specific amount of time, and involves two
limits say, du and d�.

The procedure here is similar to the control chart technique of industrial
quality control, but with the addition of a second set of limits. The second
phase has been introduced in order to avoid errors in decision-making, which
may result because of fluctuations in the sample path of the process.

The first set of limits is determined using the limiting distribution of {Qn, n =
0, 1, 2, . . .}. Let Q∗ = limn→∞ Qn and let αu and α� be two specified probabili-
ties. Then cu and c� are integers such that

cu = min{k|P (Q∗ ≥ k) ≤ αu},
c� = max{k|P (Q∗ ≤ k) ≤ α�}. (10.7.2)

A simple procedure suggested in Bhat (1987) for the determination of the second
set of limits du and d�, makes use of those service periods in which no customer
arrivals occur in the queue M/G/ 1 and inter-arrival periods in which no service
completion occurs in the queue G/M/ 1. Clearly these are Bernoulli events with
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probability of success k0 in the queue M/G/ 1 and b0 in the queue G/M/ 1. The
second phase limits du and d� are then defined with associated probabilities βu

and β� as follows.
In the queue M/G/ 1 when {Qn} hits or goes beyond the upper limit cu, we

do not conclude that the traffic intensity > ρ0 unless the process stays at or
beyond cu for a minimum number of du transitions. Hence, given a probability
βu, du is the smallest number n such that the probability of the number of
arrivals being at least 1 in n consecutive transitions ≤ βu. This can be stated
as

du = min{n|(1− k0)
n ≤ βu}. (10.7.3)

When {Qn} reaches c�, we do not conclude that the traffic intensity < ρ0 unless
it stays at or below c�, for a minimum number of d� transitions. Hence, given
a probability β�, d� is the smallest number n such that the probability that the
number of arrivals is zero for n consecutive transitions ≤ β�. This can be stated
as

d� = min{n|kn0 ≤ β�}. (10.7.4)

In the case of the G/M/ 1 queue, similar expressions can be obtained by noting
that b0 is the probability of no service completion during an inter-arrival period.
This will be accomplished by replacing 1− k0 with b0 in (10.7.3) and (10.7.4).

Since 1− k0 is the probability of one or more arrivals in M/G/ 1, the second
phase limits derived as described above are very conservative and provide enough
protection from the wrong conclusion that the traffic intensity has changed.

Thus, once the limits (cu, c�; du, d�) are determined as given in (10.7.2)–
(10.7.4), the procedure to monitor and control traffic intensity in M/G/ 1 and
G/M/ 1 can be described as follows:

1. Starting with an initial queue length i and traffic intensity ρ0, leave the
system alone as long as Qn lies between cu and c�, or when it goes out
of these limits if it returns within bounds before du and d� transitions,
respectively.

2. If the queue length does not return within bounds between du or d� con-
secutive transitions, as the case may be, conclude that the traffic intensity
has changed from ρ0 and reset the system to bring the traffic intensity
back to the level ρ0.

3. Repeat 1 and 2 using the last state of the system as the initial state.

10.8 Remarks

Statistical inference for queueing models is often ignored in textbooks on queue-
ing theory. One exception in a limited form is Gross et al. (2008) starting from
its first edition in 1974. Generally, it seems, queueing models are applied with-
out going beyond the method of moments for estimation of model parameters.
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However, the author of this text believes that an adequate use of statistical
inference is necessary for a rigorous application of any probability model. For
this reason, we have incorporated several inference topics beyond what is given
in Gross et al. For a comprehensive discussion of these and other topics in infer-
ence on queueing systems, the readers may consult Bhat et al. (1997), which
also includes an extensive bibliography.



Chapter 11

Decision Problems in
Queueing Theory

11.1 Introduction

In Chapter 1 we identified three types of problems occurring in queueing theory.
These related to the behavioral, statistical, and operational decision-making
aspects of queueing systems. In Chapters 4–9 we described probability models
used in understanding system behavior and in Chapter 10 we discussed how sta-
tistical techniques can be employed to choose the right models. In this chapter,
we address some of the simpler decision problems that arise in the operation of
queueing systems.

If we recall the origins of queueing theory recounted in Chapter 1, A. K.
Erlang used the Poisson model for call arrivals with the objective of improving
the operation of the system. His 1924 paper, “On the Rational Determination
of the Number of Circuits” (see Brockmeyer et al. (1960)) specifically addressed
a decision problem.

The use of behavioral results derived from probability models in decision-
making has played a major role in queueing theory. Since the 1950s, with
the development of optimization techniques for decision-making, operations
researchers have introduced design and control procedures into the field. How-
ever, the amount of work on these topics makes up only a small fraction of the
volume of research on the subject.

In his introduction to a special issue of the journal Queueing Systems on
design and control, Stidham (1995) provides two reasons for the paucity of
research on these topics in queueing theory: the well-developed nature of models
and the availability of explicit performance measures in them. We may add a
third reason as well: the complexity of models required in representing the
advanced systems in areas such as computers and communications.
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In the next three sections, we introduce the three modes of decision-making:
(1) using performance measures, (2) design problems, and (3) control prob-
lems. We use the categorization of decision problems as design and control, as
provided by Crabill et al. (1977). According to them, the use of static opti-
mization to determine the best system for optimizing some long-run average
criterion, such as cost or profit, characterizes a design problem. In a control
problem, the optimization is dynamic and the system operating characteristics
are allowed to change over time. In all three cases our discussion will be minimal
because using performance measures in decision-making is a natural process in
probability modeling, and real-world applications of the queueing theory do not
make extensive use of design and control procedures.

11.2 Performance Measures for Decision-Making

The first half of the twentieth century was the formative period for the queueing
theory. Model development occurred for improving the operations of queueing
systems starting with the work of A. K. Erlang. Since the early applications were
in telephone industry, graphs and charts were developed for using information on
performance measures such as, probability of blocking and mean waiting times,
in decision-making. Examples of such charts can be found in Cooper (1981),
Hillier and Lieberman (1986), or in issues of Bell Systems Technical Journal
of earlier times. With the advent of computers, such preprepared charts and
graphs have become unnecessary.

As indicated earlier, with the availability of performance measures from mod-
els developed specifically for the systems in question, most of the decisions are
based on such measures. System performance is measured against specified
objectives and changes are made in the parameters of the system elements in
order to achieve them. See Edie (1954) for an example of this procedure in the
context of traffic delays in toll booths.

An additional aid to decision-making developed in the past 30 years or so is
the use of computer simulations. They can be used to validate models as well as
to determine the best characteristics of the system in specific scenarios. Since
there is enough published material on this subject we do not go into it in detail
in this text. An introduction to the simulation of queueing systems and some
examples are provided in Chapter 14. Also see books on the subject by Law
and Kelton (1991) or Schriber (1991).

11.3 Design Problems in Decision-Making

In a design problem, cost functions are used to establish optimum values of
the parameters or optimum structural configurations to achieve a desired per-
formance in the system. The cost functions could be based on monetary costs
or performance measures. These problems are also known as economic models.
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The optimization is static (i.e., varying values of the parameters are not con-
sidered), and it is achieved using established procedures. Unfortunately, when
queueing system models become complex, the expressions for performance mea-
sures may not be tractable for optimization procedures. In such cases, trial and
error or numerical procedures may be needed.

Three investigations published in the 1950s and 1960s illustrate the economic
model approach. Brigham (1955) determined the optimum number of clerks to
be placed behind tool crib counters in an aircraft factory. After determining
that the arrivals follow a Poisson process and the service times are exponentially
distributed, Brigham uses Erlang’s formula for the probability of blocking to
get an expression for the waiting time of arriving customers. The cost function
includes the cost per clerk and the cost per customer per unit time. The best
value for the number s of clerks is obtained with the help of graphs of the ratio
of the two costs for each value of s. To complete the determination of cost
savings, Brigham uses what he calls the “obverse” queue, in which the cost of
idleness of the clerks is obtained.

Morse (1958) tackles the problem of determining the optimum value of the
number admitted to an M/M/ 1/N queueing system by balancing the service
cost with the cost of losing customers. He uses a cost of Eμ dollars per unit time
to provide service, when the mean cost per unit serviced is E, rate of service is
μ, and a gross profit of G dollars per single service operation. With λ as the
Poisson arrival rate, the net profit per unit time is obtained as

P =
λG(1− ρN )

1− ρN+1
− Eμ. (11.3.1)

Differentiating this expression with respect to μ and setting the result equal to
zero, Morse obtains the following equation for the maximum value of μ:

ρN+1

[
N − (N + 1)ρ+ ρN+1

(1− ρN+1)2

]
=

E

G
(11.3.2)

Plotting this equation for E/G against ρ we get graphs that can be used to
determine the number N of customers to be admitted to the system for varying
cost structure and service rates.

In the infinite waiting room case M/M/ 1, Morse is able to obtain the opti-
mum service rate μ with the standard approach to optimization. He uses the
cost function

Dμ+ CW = Dμ+
C

μ− λ
, (11.3.3)

where C is the cost of wait per unit time, D is the cost of service per unit time,
andW is the mean waiting time. Optimizing this cost function by differentiating
with respect to μ and equating to zero, he gets

μ = λ+
√
C/D. (11.3.4)
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In the multiple server case, however, for the determination of the optimum num-
ber of servers, the optimization is carried out with a trial-and-error method. For
details the readers are referred to Morse (1958).

Hillier’s (1963) study of economic models for waiting lines is much more
general than the previous two models. He considers three multiserver models,
with models 2 and 3 having two variants each. The arrivals in all models are
Poisson and the queue discipline is FCFS. All models assume that the cost of
waiting is proportional to the time in system, and the cost of service is a linear
function of the number of servers. Let λ and μ be the arrival rate and the service
rate per server, respectively, and let s be the number of servers. Three basic
models determine optimum values for λ, μ, and s as noted below with various
cost structures.

Model 1: Find s; Model 2: Find λ and s; Model 3: Find μ and s. Under
model 2, travel time is also considered. Because of the multiserver structure,
when the service time is other than exponential, individual queues in front of
servers become necessary.

The usual method of solution is trial and error, except in cases where the
service times are exponential, when explicit expressions that are mathematically
tractable for optimization are available. For details the readers are referred to
Hillier (1963). These problems have been discussed in a more general framework
in Hillier and Lieberman (1986).

The following example illustrates the use of cost considerations in a static
decision model.

Example 11.3.1 Customer arrivals at a department store can be assumed to
be Poisson at the rate of λ per unit time. After picking up their merchandise,
the customers queue up in front of checkout counters. The time spent in doing
so can be assumed to have an exponential distribution. The checkout time for
each customer has a distribution with mean b1 and second moment b2. Suppose
we have to determine the optimum number of checkout counters under the fol-
lowing cost structure: (i) C1 per unit time due to a waiting customer and (ii)
C2 per unit time for maintaining service at a counter.

Because of the exponential distribution of the time spent in picking up mer-
chandise, the arrival process at the checkout counters can be assumed to be
Poisson as well. (See Section 4.2.1). When there are s counters, assuming that
the customers choose the counters at random, the arrival rate at each counter
can now be assumed to be Poisson with rate λ/s. Using the expression for the
waiting time in queue for a customer in an M/G/ 1 system from (5.2.43) we
have

Wq =

(
λ

s

)
b2
/
2

(
1− λb1

s

)

=
λb2

2(s− λb1).
(11.3.5)



11.4. CONTROL PROBLEMS IN DECISION-MAKING 237

Let C be the total cost per unit time. We have

E(C) =
λb2C1

2s− 2λb1
+ sC2. (11.3.6)

Minimizing this cost function with respect to s in the usual manner, we find
that

s = λb1 +

√
λb2
2

(
C1

C2

)
(11.3.7)

minimizes E(C) as given by (11.3.6). Since the optimal value s must be an
integer, it is determined by evaluating E(C) at [s], the integer part of s, and at
[s] + 1, and choosing the one that gives the smallest E[C].

Answer

For a numerical example, use λ = 2 per minute, the checkout time as expo-
nential with mean (b1) = 3 minutes. Then b2 = 9.

Further let C1 = 0.5, C2 = 2.5. Substituting in (11.3.7) we get

s = 7.34

with E(C)|s=7 = 22 and E(C)|s=8 = 22.25.
Hence, the optimum value of s = 7.

Answer

11.4 Control Problems in Decision-Making

Under control problems we include decision problems that require optimization
in a dynamic setting. One of the earliest investigations is by Moder and Phillips
(1962) in which the authors consider a multiserver queue with a single waiting
line and waiting room of infinite size. The number of servers varies between a
minimum of s and a maximum of S. Between s and S a server is added whenever
the queue length reaches N and a server is removed from service every time the
queue length drops below N . Performance measures of the model provide the
effectiveness of such a policy in the operation of the system.

The optimality of increasing the service rate with the increasing number of
customers in the system has been formally established by Crabill (1972).

In a queueing systemM/M/ 1, let λ be the arrival rate and μi (i = 1, 2, . . . ,K)
be K possible service rates. Then Crabill uses two cost rates:

C(i) = the customer cost rate incurred when there are i customers in the system

ri = cost rate incurred when the service rate μi is being used.

The general policy stated by Crabill is as follows: If C(i) is nondecreasing
and → ∞ as i → ∞; 0 < μ1 < μ2 < ... < μk; 0 ≤ r1 < r2 < . . . < rk; λ < μk,
and

∞∑
i=0

C(i)

(
λ

μk

)i

< ∞
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then the optimal stationary policy is given by the specification of K+1 numbers
0 = d1 ≤ d2 ≤ d3 ≤ . . . ≤ dk ≤ dk+1 = ∞ and the use of service rate μj when
the number of customers in the system is ≥ dj but < dj+1. If dj = dj+1, then
service rate μj is not used in the optimal policy. Crabill (1972) provides a proof
of this policy for K = 2.

Another type of control problem that has been investigated in the queueing
literature considers whether, given a cost structure, it is optimal to start serving
when there is at least one customer in the system. For an M/G/ 1 queue, with
the cost structure that includes a server start-up cost, a server shutdown cost, a
cost per unit time when the server is turned on, and a holding cost per unit time
spent in the system for each customer, Heyman (1968) has obtained a stationary
optimal policy of turning the server on when a specified number of customers
are present and turning it off when the system is empty. Balachandran (1973)
derives a similar policy based on the workload in the system. Because of the
esoteric nature of these investigations, we shall not explore them any further.

A substantial number of papers have been written on various optimal design
and control problems. Readers interested in them are referred to the survey
papers by Sobel (1974), Stidham and Prabhu (1974), Crabill at al. (1977), and
the special issue of the journal Queueing Systems edited by Stidham (1995).
These articles provide extensive bibliographies, though overlapping somewhat
at times.

As mentioned in the introduction, because of the nature of queueing theory,
design and control policies used in applications are relatively few. As the systems
become complex, the representative models are also complex and the resulting
performance measures become intractable for deriving useable policies. For
these reasons, we have given only a few examples of such investigations. The
survey articles cited above can be used to build an appropriate bibliography on
topics of readers’ interest.



Chapter 12

Queueing Theory
Applications in
Manufacturing Systems
Contributing Author: Professor Andrew Junfang Yu1

12.1 Introduction

The manufacturing process involves various operational steps in converting raw
materials (used in a generic sense) into finished products. In order to make
the process efficient and cost effective, analytical tools such as queueing theory
have been used extensively with the advancement of technology. They play an
important role in the performance analysis, design, and planning and control
of manufacturing processes (see Govil and Fu (1999)). The objective of this
chapter is not to review all important contributions that queueing theory has
made to manufacturing. Here we provide a few glimpses of such contributions
and give three illustrative examples.

There have been several surveys of applications of queueing theory in manu-
facturing systems. Buzacott and Yao (1986), Bitran and Dasu (1992), Kouvelis
et al. (1992), Rao et al. (1998), and Kumar and Kumar (2001) are some of
them. The variety of problems in manufacturing where queueing theory has
been applied, identified in the comprehensive survey of Rao et al. (1998), are
the following: transfer line and flow line production systems, job shop, advanced
manufacturing systems that include flexible manufacturing systems (FMSs) and

1Department of Industrial and Systems Engineering, The University of Tennessee,
Knoxville, TN 37996, USA.
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Just-in-Time (JIT) operations, capacity planning and control, production sup-
port functions, and other manufacturing situations such as automated guided-
vehicle systems (AGVs) and computer controlled storage facilities. Of these
flow line and transflow line systems, job shops, and FMS can be easily identified
as obvious application areas for queueing theory. As noted by the authors even
other applications are no less significant.

The Jackson networks, including open and closed queueing networks (OQN
and CQN, see Chapter 7) were analyzed initially to solve problems related to
job-shop scheduling. Those analyses were further expanded into the analyses of
FMS. Thus, queueing networks have become fundamental to the modeling and
analysis of manufacturing systems. Before going to specific cases, we provide a
brief overview of some research available in the literature in general terms.

Production processes on multistage assembly lines in which workpieces from
two or more input stations are merged to form a new one for further processing
is the subject of study in Manitz (2008). The ultimate objective is the deter-
mination of the throughput and other performance measures of such assembly
lines while considering finite buffer capacities and generally distributed process-
ing times. One of the illustrative examples (see Section 3) used later gives some
details of the procedure used in the article.

Significant amount of research work in queueing theory application can be
found in the literature related to production planning and control. Many of
those cases are beyond a single manufacturer and are involved with multiple
organizations that form, what we call supply chain, which is covered later in
this section. Boucherie et al. (2003) introduce a new class of queueing networks
called arrival first networks. The new model is developed for the production
systems operating under a Kanban protocol. Karrer et al. (2012) propose a
framework for developing production control strategy. The framework is used
to address some important questions in production control such as, how to
limit work in process and position order penetration point, and to cope with
demand uncertainty. It is formulated as a queueing network model and solved
numerically using simulation. Gayon et al. (2009) study a production planning
problem for a single item make-to-stock production system with backorders.
The problem is to determine optimal stock and capacity allocation policies for
the cases where production may be interrupted and restarted. An M/Er/1
queueing model is used and a heuristic policy is developed and assessed based
on the results of the model analysis.

FMS was very popular in 1980s and 1990s with the rising of technologies
such as robots, CNC machines, material handling systems, sensors, and com-
puters. This is also the time when the bulk of the research on queueing theory
application in FMS can be found. Buzacott and Yao (1986) outline state-of-the-
art studies in FMS using analytical queueing network models. Their focus is
to identify the major features of the models that are related to the operational
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characteristics of FMS (see Section 2). Kouvelis et al. (1992) survey layout prob-
lems in an FMS environment, which deals with the allocation of workstations
to equal number or more candidate locations in order to meet the throughput
requirement of the system. One of their emphases is the queueing and dynamic
aspects of the layout decisions. A key part of any FMS is the common conveyor
subsystem that interconnects all the workstations. Coffman et al. (1988) find a
new queueing problem in their study of FMS conveyor system, which has input–
output dependencies resulting from the fact that the conveyor transports items
both to and from a workstation. Dallery and Stecke (1990) consider single-class,
multi-server closed queueing networks for the design and planning problems of
flexible manufacturing. Their results are useful for characterizing optimal allo-
cations of servers and workload using the optimal configuration of subnetworks
that maximize the overall network or FMS throughput. Lin et al. (1994) also
study the closed queueing network for FMS. However, their focus is to model a
maintenance float network problem, which integrates with a cost optimization
model to determine the best number of standby units and repair stations.

Semiconductor manufacturing systems is another leading industrial sector
where queueing theory has been extensively applied. The readers may refer
to surveys by Kumar and Kumar (2001) and Shanthikumar et al. (2007) for
details.

The globalization of world economy has transformed the traditional man-
ufacturing system into a distributed manufacturing and supply chain system.
Most of the companies no longer manufacture their products completely in a
single location and totally by themselves. Outsourcing and offshoring have been
popular for a couple of decades already as companies have been looking for ways
to reduce their cost and innovate their products in order to gain financial and
technological edge in their competitive markets. In a distributed manufactur-
ing environment supported by supply chains, lead time and uncertainty in and
between operations typically are of concern more than in a stand-alone envi-
ronment. This trend is evidenced by the high volume of research in the area
of supply chain, including the application of queueing theory. The majority of
articles that can be found in the literature related to the application of queue-
ing theory in supply chain can be categorized as follows: supply chain design,
supply chain planning and control, inventory control in supply chain, supply
chain performance, product and process design for supply chain, logistics and
transportation, and maintenance and spare parts management.

Kerbache and Smith (2004) develop a methodology based on analytical
queueing network coupled with nonlinear optimization to design supply chain
topologies and evaluate various performance measures. Their approach has
proved useful for analyzing congestion problems and evaluating the performance
of supply chains. Most of the applications of queueing theory are found in the
area of supply chain planning and control, including inventory control. Bhaskar
and Lallement (2010) look at a supply chain as a two-input, three-stage queue-
ing network. Orders to the supply chain are modeled as two stochastic variables,
one for the order arrival time and the other for the order quantity. The objec-
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tive of the study is to obtain the minimum response time for the delivery of the
orders along the three stages of the network. Thus, the optimum capacity of the
queueing network can be obtained as the average number of order quantity that
can be delivered within this minimum response time. Vericourt et al. (2002)
study a capacitated supply chain that produces a single product demanded by
several classes of customers with different backorder costs. The supply system
is modeled as a multi-customer make-to-stock queue with stock allocation as a
key decision problem. The problem is solved for optimal allocation policy using
dynamic programming and heuristic algorithm. Bai et al. (2004) consider an
inventory-queue, which is an inventory system controlled by a processing station
with queueing. The most important issue for inventory-queues is the behavior of
their departure processes that are triggered either by a new job arrival when the
output buffer is not empty or when a service completion occurs. Their objective
is to obtain the probability distribution and squared coefficient of variation of
inter-departure times. Liu et al. (2004) develop a multistage inventory-queue
model with an approach of a job-queue decomposition that evaluates the per-
formance of serial manufacturing and supply systems with inventory control at
each stage. The objective of their research is to find an efficient procedure to
minimize the overall inventory in the system while meeting the required service
level. Arda and Hennet (2006) analyze an enterprise network for an end-product
manufacturer that makes production and supply plan to minimize its total hold-
ing and stock-out costs. The manufacturer has more than one supplier for each
of its main components. Both the customer order arrival time and supplier
delivery time are random. Arda and Hennet model the supply system as a
queueing network with the inventory position level and the supply allocation as
decision variables.

In addition to design, planning, and inventory control, the applications of
queueing theory can also be found in performance evaluation and improvement,
logistics and transportation, and other areas of supply chain. Viswanadham and
Raghavan (2000) have investigated a dynamic modeling technique for analyzing
supply chain network using generalized stochastic petri nets (GSPNs). They
have used the framework of integrated GSPN-queueing network modeling, with
the GSPN at the higher level and a generalized queueing network at the lower
level, to solve the decoupling point location problem in supply chain. Their
objective is to minimize the total relevant cost: inventory carrying cost and the
delay costs. Wu and Dong (2008) develop a new methodology for performance
analysis of multiproduct supply chain by combining multi-class queueing net-
works and inventory models. They employ a job-queue decomposition strategy
to analyze the major performance measures and propose an approach for aggre-
gating input streams and separating output streams to link all the sites or nodes
in the supply chain together. Woensel et al. (2008) consider a vehicle routing
problem with dynamic travel times due to traffic congestion. Their approach
uses queueing theory to capture travel times. This approach is compared with
other approaches and its benefits are evaluated and quantified. Lieckens and
Vandaele (2012) consider a single product reverse logistics network design prob-
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lem with multiple layers and multiple routings. They build a new advanced
strategic planning model with integrated queueing relationships. The model
takes into account stochastic delays due to various processes like collection,
production, and transportation, as well as disturbances due to various sources
of variability like uncertain supply, uncertain process times, unknown quality,
breakdowns, etc. One of many other areas of application of queueing theory
in supply chain is maintenance and spare parts management. Sleptchenko et
al. (2005) examine the impact of repair priorities in spare part network. They
model repair shops by multi-class, multi-server priority queues. Their objective
is to reduce the inventory investment, which is necessary to attain target system
availability, and to increase the utilization of repair shop.

Next, we select three articles from the literature as illustrative examples
of applications of queueing theory in the analysis of manufacturing systems.
In these examples we emphasize the modeling part of the article, rather than
complete results with the assumption that interested readers can go to the
articles to understand the complete analysis.

The readers should note that the notations used in the illustrative examples
are mostly those of the authors of the articles and may not be the same as those
used in earlier chapters.

12.2 Modeling a Flexible Manufacturing System
Using Jackson Networks
(Buzacott and Yao 1986)

Queueing theory has long been applied in the modeling of FMS which is
an integrated system that consists of several workstations. An FMS differs
from the traditional manufacturing system in its flexibility. FMS has a set of
versatile machines that can perform a variety of different types of operations
with negligible setup times. Thus, the system can process a variety of jobs
simultaneously. An integrated FMS is often controlled by computers, so jobs
can have flexible routings, resulting in different paths of successive machine
visits to complete their operations. In order to fully exploit the flexibility of an
FMS to enhance its productivity, it is necessary to develop some models that
can be used to predict its performance, and provide the guidelines for its design
and control. Buzacott and Yao (1986) have discussed some of queueing network
models that are applied to FMS.

An FMS is basically a flexible job shop in which machines or workstations
are interconnected with automated conveyers controlled by computers. Jobs can
enter and leave the system at any workstation, and their arrival and operation
times at workstations are usually random. Based on these characteristics, it
is natural to model the FMS as a Jackson queueing network. We assume that
there are M workstations in the FMS modeled as an open queueing network.

Let Ji denote the total number of jobs at workstation i, which includes
both the jobs in the queue and the jobs in service. Let J = (J1, J2, , JM ) and
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|J| =
∑M

i=1 Ji , where J is a job vector for the jobs in all workstations and |J| is
the total number of jobs in the system. Assume that jobs arrive at the system in
a Poisson process and their service times follow exponential distributions. The
job arrival rate is a function of total number of jobs in the system, λ(|J|). The
service rate at each workstation is a function of its queue length, μi(Ji), i =
1, . . . ,M . A new job could arrive at any workstation with certain probability.
Let α0j be such a probability for workstation j. Once a job enters the system,
it will route through a number of workstations to complete its operations. The
routing of jobs follows a Markov chain. Let [αij ],(i, j = 1, . . . ,M) be the routing
matrix, where αij is the routing or transition probability from workstation i to
workstation j. Let αi0 be the probability that a job leaves the system through
workstation i. It is obvious that αi0 +

∑M
j=1 αij = 1.

The main differences between the open Jackson network discussed in Chapter
7 and the FMS model used here are the number of servers at each network node,
in this case the workstation, the initial arrival rate at the system, and the service
rates at different nodes or workstations. In the general open Jackson network
discussion, we assumed multiple servers, constant new customer arrival rate, and
constant service rate at each node. However, in the FMS model being discussed,
we assume that there is only one server at each workstation; new job arrival
rate is the same for all workstations, but not constant; and service rates are
different for different workstations and not constant. The actual jobs arriving
at a workstation include the new jobs from outside the system and routed jobs
from other workstations. So the effective job arrival rate at a workstation is not
the same as the new job arrival rate. Let γj denote the effective job arrival rate
at workstation j. The effective job arrival rates can be obtained by solving the
following traffic equations.

γj = α0j +
M∑
i=1

γiαij , j = 1, ...,M. (12.2.1)

Let n = (n1, . . . , nM ) and |n| =
∑M

i=1 ni, where n is a vector with non-
negative integers as elements. The equilibrium probability distribution of the
number of jobs in the FMS, the most important property of the underlying
Jackson network, can be expressed as follows:

P [J = n] = G−1Π
|n|−1
j=0 λ(j)ΠM

i=1fi(ni), (12.2.2)

where
fi(ni) = γni

i Πni
j=1μ

−1
i (j), i = 1, ...,M, (12.2.3)

and G is a normalizing constant (< α),

G =

∞∑
k=0

Πk−1
j=0λ(j)

∑
|n|=k

ΠM
i=1fi(ni). (12.2.4)

Certain data are required to apply the above FMS model. First is the
job routing matrix [αij ], (i, j = 1, . . . ,M), where the probability αij can be
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interpreted as the proportion of jobs leaving workstation i for next operation at
workstation j. The second is the mean service times at the workstations and
mean inter-arrival times of new jobs to the system. Certain control mechanisms
may be exercised to optimize the system performance through the dispatching
of arriving jobs to artificially adjust the job arrival rate.

There are several special cases of the FMS model described above. The first
is the fixed arrival rate for new jobs. The second is the closed queueing network.
The third is the restricted open queueing network. We only discuss the first two
cases here and refer the readers to Buzacott and Yao (1986) for the third case.

Constant Arrival Rate

Let λ(·) = λ be the constant arrival rate of new jobs from outside. The distri-
bution function in (12.2.2) can be simplified as:

P [J = n] = P [Q = n] = ΠM
i=1P [Qi = ni], (12.2.5)

where Q = (Q1, . . . , QM ) is a random vector for the equilibrium number of jobs
at different workstations in the system.

Closed Queueing Network

For a certain positive integer number N , let λ(j) = 0 if j ≥ N and λ(j) = ∞
otherwise. So we have, Πk

j=0λ(j) = 0 for all k ≥ N . This special case implies
that there are a fixed number of jobs, N , in the FMS. As soon as one job
completes its operations and leaves the system, a new job will be dispatched
into the system. With the infinite arrival rates appearing in both numerator
and denominator in (12.2.2), taking limits, we have

P [J = n] = G−1(N)ΠM
i=1fi(ni), (12.2.6)

where
G(N) =

∑
|n|=N

ΠM
i=1fi(ni), (12.2.7)

and fi(ni) remains the same as in (12.2.3).

With α0j = 0, ai0 = 0, and
∑M

j=1 αij = 1 for all i, j = 1, . . . ,M , the traffic
equations in (12.2.1) will need another equation to have a unique solution. The

equation
∑M

i=1 γi = 1 will serve the purpose. In this case, γi can be interpreted
as the job visit frequency to workstation i. The probability distribution in
equation (12.2.6) can also be expressed as,

P [J = n] =
ΠM

i=1P [Qi = ni]

P [|Q| = |n|] = P [Q = n||Q| = |n|]. (12.2.8)

From the above equation or (12.2.6), the marginal job length distribution can
be expressed as follows:

P [Ji = ni] =
fi(ni)Gi(N − ni)

G(N)
, (ni ≤ N) (12.2.9)
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where Gi(N − ni) can be considered as the normalizing constant for a closed
queueing network with M − 1 workstations, excluding station i in the original
M station network, with the reduced network having N − ni jobs.

From (12.2.3), it can be derived that μi(ni)fi(ni) = γifi(ni − 1). By the
definition of Gi(N − ni) and (12.2.7), the following can also be derived:

N∑
ni=1

fi(ni − 1)Gi(N − ni) = G(N − 1). (12.2.10)

Let THi be the throughput of workstation i. The throughput can be expressed
as follows:

THi =
N∑

ni=1

μi(ni)P [Ji = ni] =
γiG(N − 1)

G(N)
, (i = 1, ...,M). (12.2.11)

Let TH be the FMS’s throughput. With the assumption that
∑M

i=1 γi = 1,

TH =
∑M

i=1 THi .
Buzacott and Yao (1986) outline the state of the art in the use of queueing

theory in FMS at that time. What is given here is just an introduction and the
article includes other topics such as reversible networks in FMS, approximate
queueing networks, and performance models. Even though the article is nearly
30-years-old, for beginning readers in the area of queueing theory applications
in FMS, it is highly recommended.

12.3 Assembly Lines with Finite Buffers
(Manitz 2008)

Queueing phenomenon can be observed on multistage assembly lines where
work-in-process (WIP) parts are merged at certain assembly stations from mul-
tiple sourcing stations. Material flows are asynchronous, processing times are
random, and there are buffers in-between stations. Manitz (2008) develops a
queueing model for analyzing such assembly lines by decomposing them into a
series of two-station subsystems. The two are then analyzed by using G/G/1/N
stopped-arrival queueing models.

Assume that an assembly line has M stations. There is a finite buffer
between any two successive stations. Let Bim denote the buffer between sta-
tions i and m for WIP parts of station i waiting for processing at station m.
Let Cim be the capacity of buffer Bim.

When multiple parts from multiple predecessor stations are merged at an
assembly station, the operation at the station can only be started after all the
parts are available. This synchronization constraint extends the holding time
of a part at the server. It is assumed that parts can be loaded onto the server
of the assembly station independently. This implies that the waiting part will
not consume the input buffer. An assembly station is considered as blocked if
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it cannot transfer a processed part into the following buffer because it is fully
occupied. The blocked part is added to the queue in the buffer which effectively
increases its capacity by one. An assembly station is defined as starving if it is
completely empty.

We assume that the processing times can be represented by random variables.
Let TS

m be the processing time for a part at station m, which is distributed with
a general distribution with the following mean:

E{TS
m} =

1

μm
(m = 1, 2, . . . ,M), (12.3.1)

where μm is the processing rate at station m. Its coefficient of variation is
defined as,

CV {TS
m} = ζm (m = 1, 2, . . . ,M). (12.3.2)

LetX be the effective production or output rate of the finished product, which is
defined as the mean number of finished product out of the last assembly station,
say M , per unit time. The effective production rate, which is also called the
throughput of the assembly line, can be expressed as the follows:

X = μmP{station M is busy}. (12.3.3)

The main question of the problem is how to determine the probability that the
last assembly station is busy. The busy period of the station excludes the repair,
starving, waiting for synchronization, or other idle times. Manitz presents an
algorithm to estimate the blocking and starving probabilities, and then the
effective production rate of the assembly line.

The assembly line with M stations can be virtually decomposed into M − 1
subsystems, each of such subsystems consisting of two adjacent stations con-
nected by a buffer. Let (i,m) denote a subsystem with stations i and m, con-
nected by the buffer Bim. The upstream station of the subsystem is denoted by
Mu(i,m) and the downstream station by Md(i,m). Consider a given station m
which has a succeeding station sm. Let Sm be the set of station m’s successor
stations and Pm be the set of station m’s predecessor stations. Set Sm contains
at most one station while set Pm contains at least one station. Thus, the multi-
predecessor subsystem can be decomposed into several two-station subsystems.
Let pmj denote the jth predecessor station of the assembly line station m, where
j = 1, . . . , |Pm|.

A decomposed two-station subsystem (i,m) can be modeled as a G/G/1/N
queueing system. When its buffer Bim is full, the processed part at its preceding
station i has to wait at the station. Also it stops processing any other part at
that station. This stoppage switches off the arrival process to the subsystem.
The maximum possible number of parts in the subsystem is the buffer capacity
plus the two additional parts, one blocked in the upstream station i and one in
the downstream stationm, either being processed or waiting for synchronization.

The upstream station Mu(i,m) in the decomposed subsystem (i,m) repre-
sents the segment of the assembly line upstream of the buffer Bim. The virtual
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arrival rate of the arrival process into the buffer Bim is denoted as μu(i,m),
which is the effective arrival rate when the arrival process is switched on. This
effective arrival rate is not the same as the processing rate μi of station i as the
former includes the factors of starving and synchronization at the station. The
coefficient of variation for the inter-arrival time to the subsystem is denoted as
ζu(i,m). For an assembly station like station m, it may appear as a downstream
station in multiple subsystems in parallel. The downstream station Md(i,m)
represents the segment of the assembly line downstream of the buffer Bim includ-
ing these parallel subsystems. Let μd(i,m) denote the effective service rate of
the subsystem, the rate at which the processed parts leave the subsystem (i,m)
when it is not starved. Similar to the effective arrival rate, μd(i,m) differs from
the processing rate μm of station m as the former includes the effects of block-
ing and waiting for synchronization. The coefficient of variation for the time
experienced by parts at the downstream station is denoted as ζd(i,m).

Consider a subsystem (m, sm), in which station m is an upstream station
that generates the arrival process to the subsystem. If the arrival process is not
blocked, the effective time between two consecutive service completions can be
expressed as T IS

mj + T IW
mj + TS

m, where T IS
mj is the starving time of station m for

parts from the jth preceding station pmj ; T
IW
mj is the waiting time of a part

from station pmj at station m for synchronization; TS
m is the processing time at

station m. We may identify these three components as phases, all of which may
not be necessary for every part. The expected virtual inter-arrival time in the
queueing system (m, sm) and its squared coefficient of variation can be written
as

1

μu(m, sm)
= E[T IS

mj + T IW
mj + TS

m]

(m ∈ {{1, . . . ,M}|Sm �= 0} ; j = 1, . . . , |Pm|), (12.3.4)

ζ2u(m, sm) = μ2
u(m, sm)V ar[T IS

mj + T IW
mj + TS

m]

(m ∈ {{1, . . . ,M}|Sm �= 0} ; j = 1, ..., |Pm|).(12.3.5)

We assume that the phase lengths for each component of the completion time
are independent and identically distributed (i.i.d) for all parts and all three time
components are independent of each other for a particular part. We now need
to determine the expected values and variances of the phase lengths. For the
processing time TS

m, the expected value and variance can be computed from the
given data:

E[TS
m] =

1

μm
(m ∈ {1, ...,M}), (12.3.6)

V ar[TS
m] =

ζ2m
μ2
m

(m ∈ 1, ...,M). (12.3.7)
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The starving time T IS
mj is the time that station m is starved for parts from

station pmj until the next service completion at the station. This time period
is basically the remaining inter-arrival time in the subsystem (pmj ,m). As
an approximation, assuming that the probability distribution of the remaining
inter-arrival time is the same as the full inter-arrival time, a memoryless char-
acteristic of exponential distribution, the expected value and variance of T IS

mj

can be derived as,

E[T IS
mj ] = p∗s(pmj ,m)

1

μu(pmj ,m)

(m ∈ {{1, ...,M}|Pm �= 0} ; j = 1, ..., |Pm|), (12.3.8)

V ar[T IS
mj ] = p∗S(pmj ,m)(

ζ2u(pmj ,m) + 1

μ2
u(pmj ,m)

− p∗s(pmj ,m)
1

μ2
u(pmj ,m)

)

(m ∈ {{1, ...,M}|Pm �= 0} ; j = 1, ..., |Pm|), (12.3.9)

where p∗s(pmj ,m) is the probability that station m is starved for parts from pmj

at its service completion.
The waiting time of a part from station pmj at station m for synchronization,

T IW
mj , is the longest remaining starving time among the parallel subsystems,

(i,m), i ∈ Pm/{pmj}. In addition to the assumption of the memorylessness of
the starving time, Manitz also assumes that the moment of a maximum of some
random variables can be approximated by the maximum of their moments. (See
article for the derivation of E[T IW

mj ] and V ar[T IW
mj ].)

The virtual service time of the subsystem (pmj ,m) is the time that a part
from station pmj experiences at stationm, which should include the waiting time
T IW
mj for synchronization, the original processing time TS

m, and the blocking time

TB
m . Accordingly, the expected value of the virtual service time and its squared

coefficient of variation can be defined as,

1

μd(pmj ,m)
= E[T IW

mj + TS
m + TB

m ]

(m ∈ {{1, ...,M}||Pm| ≥ 2,Sm �= 0}; j = 1, ..., |Pm|), (12.3.10)

ζ2d(pmj ,m) = μ2
d(pmj ,m)V ar[T IW

mj + TS
m + TB

m ]

(m ∈ {{1, ...,M}||Pm| ≥ 2,Sm �= 0}; j = 1, ..., |Pm|). (12.3.11)

The only unknown component in the above equations is the blocking time TB
m at

station m, which is the remaining time of a part at station sm, which, in turn, is
the remaining virtual service time in the corresponding queueing system. The
expected value and variance of the blocking time at station m can be shown as,

E[TB
m ] = p∗B(m, sm)

1

μd(m, sm)

(m ∈ {{1, ...,M}|Sm �= 0}), (12.3.12)
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V ar[TB
m ] = p∗B(m, sm)

(
ζ2d(m, sm) + 1

μ2
d(m, sm)

− p∗B(m, sm)
1

μ2
d(m, sm)

)

(m ∈ {{1, ...,M}|Sm �= 0}), (12.3.13)

where p∗B(m, sm) is the probability that station m is blocked at the time of a
service completion. The expected value and squared coefficient of variation of
the virtual service time as defined in (12.3.10) and (12.3.11) can be derived from
(12.3.12) and (12.3.13), as described in the article.

Some of the performance measures of the assembly line can now be calculated
with the parameter values of the virtual queueing systems derived above. One
of the key performance measures is the production rate of the assembly line,
which is the effective output rate of the last station. This is equivalent to the
virtual service rate of the last subsystem in the assembly line when it is not
starved. Assume that the downstream station in the last subsystem is station
M and the upstream station is pM1. The production rate X can be expressed
as,

X = μd(pM1,M)(1− pS(pM1,M)), (12.3.14)

where pS(pM1,M) is the probability that the subsystem (pM1,M) is empty.
This probability can be expressed as,

ps(pM1,M)=P0(μu(pM1,M), ζu(pM1,M), μd(pM1,M), ζd(pM1,M), CpM1,M+2),
(12.3.15)

where P0(λ, cA, μ, cS , N) is the long-term probability that a queueing system,
with arrival rate λ, service rate μ, coefficient of variations of inter-arrival times
and service times cA and cS respectively, and capacity N , is empty. For proba-
bility calculations, Manitz uses the results given by Buzacott and Shanthikumar
(1993). He also provides expressions for other performance measures such as,
effective output rates and blocking probabilities of other subsystems.

With the derived virtual parameters for the arrival and service processes of
the M − 1 subsystems, the author develops an algorithm that iteratively cal-
culates the upstream parameters in a forward pass from station 1 to M , and
downstream parameters in a backward pass. The algorithm also includes the
procedures to calculate the blocking and starving probabilities for each subsys-
tem. Finally, the production rate of the assembly line and other performance
metrics can be calculated using the iteratively computed virtual parameters of
the subsystems and the associated blocking and starving probabilities. Manitz
has also conducted several numerical tests for his algorithm which can be found
in his original article.

12.4 A Supply Chain with Multiple Suppliers
(Toktas-Palut and Ulengin 2011)

Supply chains consist of suppliers, manufacturers, warehouses, and distribu-
tion centers. In Toktas-Palut and Ulengin (2011) the authors consider a supply
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chain with two stages: multiple independent suppliers and a manufacturer with
limited production capacities. The following assumptions are made:

• The number of suppliers is n(≥ 2).

• The suppliers operate on a make-to-stock basis and apply base stock policy
to manage their inventories.

• Si is the base stock level of supplier i.

• No inventory is held by the manufacturer (make-to-order strategy).

• The customer demands arrive in a Poisson process with rate λ in single
units.

• The service times of supplier i are i.i.d. with exponential distributions
with mean 1/μi.

• The manufacturer’s service time is also exponentially distributed with
mean 1/μM .

• The traffic intensity of supplier i (i = 1, 2, ..., n) and the manufacturer are
ρi and ρM , respectively. It is assumed ρi < 1 and ρM < 1.

When the manufacturer receives a demand, it triggers each supplier. If the
supplier’s stock is not empty, the demand is met immediately. If the stock is
empty, the component is released to the manufacturer only when its production
is complete. It should be understood that when the supplier’s stock is empty,
there are outstanding back orders. The manufacturer can start production only
after receiving components from all suppliers. The customer demand is met
when the manufacturer completes its production. All orders are processed on
an first-come, first-served (FCFS) basis at all facilities. It is also assumed that
the transfer times between facilities are negligible.

The modeling of this seemingly simple system has to be done in two stages.
The first stage is when the production is at the supplier. The second stage is
the production at the manufacturer, which can start only when all components
have arrived from the suppliers. The key is the determination of the inter-arrival
time distribution at the manufacturer stage. When that is known the system
at that level can be modeled as a G/M/1 queue.

When there is only one supplier Buzacott et al. (1992) have derived the
probability density function (p.d.f.) f(·)(t) of the inter-departure times of the
supplier (that are the inter-arrival times of the manfacturer) as

fA(t) = λe−λt(1− ρS1+1
1 ) + μ1e

−μ1tρS1−1
1 − (λ+ μ1)e

−(λ+μ1)t(1− ρ21)ρ
S1−1
1 ,
(12.4.1)

where A stands for inter-arrival times. When the number of suppliers gets larger,
the authors devise a strategy to derive an approximate distribution in place of
(12.4.1).
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Since the manufacturer cannot start production until all components have
arrived, the supplier with the minimum base stock level is likely to affect
the inter-arrival times for the manufacturer the most. With this assumption
and using (12.4.1) an approximate p.d.f. in the multiple supplier case can be
obtained as

fA(t) � λe−λt(1− ρ
Sj+1
j ) + μje

−μjtρ
Sj−1
j − (λ+ μj)e

−(λ+μj)t(1− ρ2j )ρ
Sj−1
j ,
(12.4.2)

where supplier j is the one with the minimum base stock level among all sup-
pliers. This distribution gives an approximate squared coefficient of variation
as

C2
A � 1− 2ρ

Sj+1
j

1− ρj
1 + ρj

. (12.4.3)

After simulation studies involving two, three, and four suppliers, customer
demand rate at one, traffic intensities of the suppliers and the manufacturer
at 0.50, 0.67, and 0.80, and with the base stock levels of the suppliers as 3, 5,
and 7, the authors conclude the approximate inter-arrival time distribution of
the product for the manufacturer given in (12.4.2) as quite appropriate, giving
an error of only 2.47% (as compared to 71.6% for an approximate exponential
distribution).

We give here three performance measures of the system derived by the
authors using the results derived above: E(Bi), expected outstanding back-
orders for supplier i; E(Ii), expected inventory level for supplier i; and E(NM ),
expected number of jobs in the manufacturer subsystem. Since at the sup-
plier level, the subsystem acts like an M/M/1 queue, following Buzacott and
Shanthikumar (1993), the first two measures can be given as

E[Bi] =
ρSi+1
i

1− ρi
, i = 1, ..., n (12.4.4)

and

E[Ii] = Si −
ρi(1− ρSi

i )

1− ρi
, i = 1, ..., n. (12.4.5)

At the manufacturer’s subsystem, one can use a G/M/1 queueing model with
(12.4.2) as the inter-arrival time distribution, and an exponential distribution
with rate μM for service times. Again without closed form expressions for
E(NM ) when the inter-arrival times have a general distribution of the type
(12.4.2), the authors resort to approximate results based on coefficients of vari-
ation of the two distributions available in the literature. After comparing dif-
ferent formulas with the help of simulation models used earlier, the authors use
Marchal’s (1976) approximation formula for the average number of jobs in the
manufacturer’s subsystem. This is given as

E[NM ] � ρM + (
ρ2M (1 + C2

S)

1 + ρ2MC2
S

)(
C2

A + ρ2MC2
S

2(1− ρM )
) (12.4.6)
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where C2
A and C2

S are the squared coefficients of variation of the inter-arrival
time distribution and the service time distribution, respectively. Substituting
from (12.4.3) for C2

A and noting C2
S = 1, we get

E[NM ] � ρM + (
2ρ2M

1 + ρ2M
)(
(1 + ρj)(1 + ρ2M )− 2ρ

Sj+1
j (1− ρj)

2(1 + ρj)(1− ρM )
) (12.4.7)

where supplier j is the one with the minimum base stock level.
With this analysis the authors derive results for two other quantities: Expected

value of NqM , the number of jobs in the manufacturer’s queue and expected
value of BM , the outstanding backorders at the manufacturer.

The authors also explore two decision problems related to costs in this sys-
tem: (1) A centralized model in which optimization is based on the overall
supply chain and (2) A decentralized model in which, the suppliers individu-
ally and the manufacturer separately optimize based only on their own entity.
Interested readers may refer to the paper for details.



Chapter 13

Queueing Theory
Applications in the Analysis
of Computer and
Communication Systems
Contributing Author: Professor Krishna M. Kavi1

Computer and communication systems are very complex and are rapidly
evolving. Understanding the behavior of these systems is essential to provide
reasonable answers to the questions of cost and performance of the systems.
In many cases the utilization of computers owned by most businesses is low,
thus wasting their investments. This is the reason for the popularity of Cloud
computing. In simple terms, Cloud computing allows organizations to “rent”
computing and storage from a Cloud provider such as Amazon, Google, HP,
or Microsoft, and pay only for the resources and services they actually use.
Businesses and even individuals can store their data on the Cloud disk storage
and access them from anywhere. Organizations can also develop services (or
programs) and deploy their IT services on the computers of Cloud providers.
These services can be made available to customers of these businesses from
anywhere in the world. Examples of such services include travel services such
as Expedia or auction sites like eBay. In addition to the benefit of paying only
for the amount of computing used, Cloud computing offers another advantage.
Businesses can request any model or operating system. This makes it easy to run
legacy software that was designed for a specific computer system or operating
system when those systems are no longer available.
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Cloud providers such as Amazon must maximize their profits while providing
their customers promised levels of performance (known as service level agree-
ments) and plan for future capacity needs. A Cloud provider may be required
to pay penalties if an agreed upon level of performance is not met. Businesses
that use Cloud computing need to understand their workloads to manage their
IT budgets and shop for Cloud service providers that offer the best value. Mod-
eling Cloud computing systems is more complex than can be described in this
book.

Consider eBays auction business that relies on Cloud computing. eBay rents
IT services from a Cloud provider such as Google or Amazon. Typically such
business operations rely on three types of systems. Customers are connected to
eBay through the Internet using web browsers like Explorer or Safari. There is a
second system that performs computations to process user bids, charging users
for purchases of merchandise, answering queries about merchandise, etc. A third
system maintains a database of the inventory, current bids for individual items,
and user accounts. To model the eBay system as a queueing network, we need to
model three interacting queues with complex communication paths among the
three systems, including matching of job requests as they flow through them.
Each system is itself a queueing network with multiple distributed central pro-
cessing units (CPUs), storage devices, terminals, and communication networks.
The system may be simplified and modeled as a closed network. Yet the num-
ber of requests generated by the customers in the closed network in terms of
bids or database accesses, can vary significantly. We introduce simple models
of computer and communication systems as queueing networks so that they can
be analyzed using techniques presented in previous chapters. We also introduce
operational analysis and mean value analysis techniques, which are amenable to
numerical solutions. Interested readers may explore the available literature to
find more details on how Cloud computing systems can be analyzed.

13.1 Modeling Computer Systems

To simplify, we normally model an application by representing its workload
in terms of processing, disk, and network requirements. Applications are cus-
tomers in a queueing network requiring various services. Consider a typical
single processor system shown in Figure 13.1.

We assume that jobs enter at the CPU and depart from the CPU. A job
may request service from a disk (or other I/O devices), for example, requesting
data from a file. This model does not allow us to describe realistic features of
applications, including simultaneous requests to multiple services or an appli-
cation creating new jobs during its execution (using fork commands). However,
this simple model permits us to derive performance measures including response
times (the amount of time a job spends in the system) and utilization rates of
each service.
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Figure 13.1 A simple computer system as an open queueing network

We can model systems shown in Figure 13.1 using open queueing networks
described in Chapter 7. For example, the relative throughput of CPU and I/O
devices can be derived as follows. Let λi be the arrival rate at node i (we
use i = 0 for the CPU), and let λ = (λ0, λ1, ..., λk). In a steady state we
have λP = λ, where P is the routing matrix describing the probability that
a customer at station i will go to station j. The individual throughputs (i.e.,
λi) can be obtained by solving λP = λ. We can use the normalizing equation
λ0 + λ1 + ... + λk = 1 and compute the relative throughputs of each server.
One can also view relative throughputs in terms of the relative number of visits
made by a job to each device. We formulate solutions based on visits later in
this chapter.

It should be made clear that queues with feedback do not preserve the Pois-
son arrival process. In Figure 13.1, jobs depart I/O devices and rejoin the CPU
queue. The combined arrival process at the CPU (including external arrivals
and jobs returning from I/O devices) is not Poisson. Systems with feedback
flows, when modeled as open queueing networks, can be solved assuming local
balance (see Section 7.3 of Chapter 7).

We can also use closed queueing networks to model a computer center. Con-
sider Figure 13.2, which includes a CPU, memory, and I/O devices. It should
be noted that the memory subsystem is nonseparable and cannot be analyzed
independently. One can use delay stations to model a memory queue and to
include delays incurred in making available an adequate amount of memory to
the application. Memory constraints can also be modeled implicitly in closed
networks by restricting the number of jobs in the system, assuming all jobs
require the same amount of memory. In other words, the number of jobs in
the system is determined by the amount of memory needed by the jobs and the
total amount of memory available. More accurate representations of memory
constraints require the use of simulation techniques. Terminals normally repre-
sent “think time” where the job is delayed by a user before reentering the CPU
queue.
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Memory 
Queue

CPU

Terminals I/O devices

Figure 13.2 A simple computer system as a closed queueing network

We can use operational laws (Section 13.3) to analyze such a system. Sup-
pose we want to compute the overall response time of the system. In a closed
network, we assume that the number of jobs in the system is constant: when a
job leaves the system, a new job takes its place in the system. Let us consider a
system with a single I/O device (or a disk drive). Let us also assume that there
are 20 terminals (N = 20), the think time is 10 s, and a job typically makes 16
visits to the I/O device. Finally, assume that the utilization of the I/O device
is 0.4 and the average service time of the disk is 0.025 s.

We can apply Little’s law (Section 9.2 of Chapter 9) to the I/O subsystem
to obtain its throughput (or the number of disk requests completed per second):

Xdisk = (Udisk/Sdisk) = 0.4/0.025 = 16

Since each job makes 16 visits to the I/O subsystem, the number of jobs in the
system is:

Xsystem = (Ndisk/Vdisk) = 16/16 = 1.0

The time (including think time) a job spends in the system is given by
N/Xsystem = 20/1.0 = 20 seconds. The response time, excluding think time, is
20− 10 = 10 seconds.

Implied in the above formulation is the concept of the forced flow law. In
a closed system, we assume that the flows (or throughputs) in all parts of a
system must be proportional to each other.
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Multiple Classes of Jobs

In our introduction, we have assumed that jobs exhibit similar behavior and thus
can be described with a single set of resource requirements. In reality, computer
systems serve different types of jobs with widely varying service requirements.
Consider the eBay auction application outlined above. Customers of eBay may
either be just browsing the current items available for auction or very intensively
involved in the bidding process; and they present entirely different demands on
processing, communicating with and accessesing databases. Each job class can
be described with its own workload (arrival rates, visit ratios, throughput of
each device—or in case of closed networks—think time and number of jobs in
the system). We can then analyze the workloads to obtain per class response
times or per class utilization of devices. The overall system performance can
then be obtained using weighted averages from per class analyses. It should be
noted that such performance values are only average values and do not provide
distributional information. Simulations can be used to control workloads of
different job classes and obtain per class and system wide performance values.

Also see Example 13.3.2 that shows the differences between using single class
and multiple class models.

13.2 Modeling Communication Systems

Communication networks can be modeled as a network of servers. A message
originates at a source and travels to several intermediate nodes before reach-
ing its destination. To compute the time it takes for a message to reach its
destination, we can use an open queueing network with N service centers (rep-
resenting the source, destination, and N − 2 intermediate nodes through which
the message is routed.)

Source Intermediate nodes Destination

Figure 13.3 An open network for communication systems

Such a model (see Figure 13.3) is too simplistic to be useful. Most systems
rely on flow control to regulate the number of messages from source to destina-
tion to avoid congestion, as well as buffer allocation and management issues. We
can use closed queueing networks to model flow control as shown in Figure 13.4.
This representation assumes a total of 2K − 1 messages (or jobs) in the system
with N nodes including source, destination, and intermediate nodes as before.
The pacing station waits until it receives K messages and then places the K
messages in the generation station queue. The pacing station can be viewed
as implementing the flow control whereby there are at most K messages being
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serviced by the N nodes, limiting the maximum number of messages inflight.
The generation station is associated with a service rate to represent the arrival
rate of messages into the communication system. The pacing station makes
such a system nonseparable. Global balance techniques can be used to obtain
response times for our system. The system can also be simplified by replac-
ing the N nodes of the communication system with a single flow equivalent
aggregate node. To construct a flow equivalent aggregate, we assume that the

Source Intermediate nodes  Destination 

Pacing station Generation station  

Figure 13.4 A closed network for communication systems

average rate at which customers leave the aggregate system (i.e., the through-
put of the aggregate system) depends only on the customer population within
the aggregate and not where these customers are waiting. This is based on the
assumption that a local balance exists in the aggregate system. The aggregate
system will then exhibit load-dependent service rates and we must compute the
rates for all possible populations from 1 to 2K − 1.

Once we replace the N -node communication system with a single aggregate
node, the overall system will be simple enough for global balance techniques.

13.3 Modeling and Analysis using
Computational Tools

In this section, we present techniques that can be used to numerically analyze
queueing systems. While it is possible to use numerical analysis techniques for
solving differential and integral functions to compute values associated with the
various mathematical equations presented in previous chapters, here we take
a different approach to analyze queueing systems. Although the techniques
presented here are based on the same underlying principles used earlier, the
solutions are based on simplifying assumptions and in some cases yield only
mean values. These approaches provide practical solutions to systems that
are intractable or when the behaviors cannot be easily modeled using simple
probability distributions. We provide algorithms and techniques for analyzing
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simple systems. Several computational tools are available to permit modeling
and analysis of more complex systems.

Operational Laws for Performance Analysis

Operational laws describe relationships among various performance measures.
Our discussion follows an excellent survey article on the topic by Denning and
Buzen (1978). For ease of understanding and to avoid confusion, when new
notation is introduced, we use the same notation as given in that article.

Consider a computer system modeled abstractly, where we can observe the
system in terms of jobs entering and completed jobs leaving. Assume that over
an observation period T, A jobs enter the system and D jobs depart from the
system. We can then define the arrival rate γ = A/T and throughputX = D/T .
Suppose it is also observed that the computing system has been busy for B
time units, then we can define the utilization of the system as U = B/T . The
average service requirement per job is obtained as S = 1/μ = B/D. From
these relationships we can show that U = X ∗ S. In a stable system, when the
observation period T is very long, all arriving jobs will leave the system and
γ = X.

Little’s law (Section 9.2 of Chapter 9) is a more general operational law.
Let N be the average number of jobs in the system, which can be obtained by
observing the number of jobs in the system at regular intervals, say every second,
and calculating the average of these observations. Little’s law can then be used
to relate the average number of jobs in the system to the average response time
(or the average time a job is resident in the system) R, as N = γ ∗ R. As
previously shown, Little’s law can be applied to a computer system with a CPU
and I/O disks.

Consider a computer system with a CPU and k I/O devices. We assume
the number of jobs in the system is fixed (i.e., a closed network where a new
job enters a system as soon as a job departs from the system.) The system
is observed for a period of time T . Let Bi be the time that device i is busy
providing service. Let Cij be the number of times a job requests service at

device j immediately after completing service at device i, and Ci =
∑k

j=0 Cij .

Using these quantities, we can estimate the following measures with respect
to each device that we have seen in earlier sections.

Utilization Ui = ρi =
Bi

T

Effective output rate γi =
Ci

T

Routing probability αij =
Cij

C

Note that we are assuming input and output flow balance in these expres-
sions. Since the CPU is where the job is initiated and completed (as shown
in Figure 13.1), using subscript 0 to indicate its status, we have the job-flow
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balance equations

γ0 =
k∑

i=1

γiαi0. (13.3.1)

We use the term response time that is common in computer science literature for
the total time a job spends in the system (i.e., waiting+service). The response
time Ri at device i can be estimated as (the total amount of time accumulated
at a device)/(the number of services completed at the device). If Qi represents
the number at device i waiting for or being serviced in the long run, using Littles
law (L = γR), for each device we get

E(Qi) = γiE(Ri). (13.3.2)

Since in Markovian networks job flows are balanced, γi can be identified as the
device throughput. These quantities also give us visit ratios, which are the mean
number of service requests per job for a device relative to the mean number
of jobs coming to the systems. The visit ratio Vi for device i can be defined
as Vi =

γi

γ0
, and estimated as Ci

C0
, remembering that device 0 is the CPU. The

relation
γi = Viγ0 (13.3.3)

is known as the forced flow law, which states that the flow in any one part of
the system determines the flows everywhere in the system. Substituting from
(13.3.3) in (13.3.1), we obtain the visit ratio equations

V0 = 1 (13.3.4)

Vi = γ0j +
k∑

i=1

Viγij , j = 1, 2, ..., k.

The system response time R is obtained by pooling the response times of all
devices. From Littles law, writing E(Q) =

∑k
i=1 E(Qi), we have

E(R) =
E(Q)

γ0
.

Using (13.3.2) and (13.3.3), we get

E(R) =

i∑
i=1

ViE(Ri) (13.3.5)

which is known as the general response time law. This result is valid even when
the network is not Markovian.

In a closed network (see Figure 13.4) with M jobs and a think time of Z
(the time spent at the terminal by a user before submitting a job), the total
time includes the response time and think time. When the job flow is balanced,
we have

M = [E(Z) + E(R)]γ0
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giving

E(R) =
M

γ0
− E(Z) (13.3.6)

This relationship is known as the interactive response time law.
Denning and Buzen (1978) include several illustrative examples of these

relationships. The reader should also see Jain (1991) for further elaboration of
these laws.

Mean Value Analysis

Another important analysis procedure used in applications is the mean value
analysis (MVA). It applies to closed queueing networks and provides their per-
formance in mean values. MVA can be used only if a queueing network has a
product form solution. We limit ourselves to simple service centers with a fixed
limit on the queue size and a single class of customers (or jobs).

Ordinarily to determine response times in networks, one has to get the mean
queue lengths and the corresponding throughputs (effective arrival rates) and
use Little’s law. In their article simplifying this procedure for applications,
Reiser and Lavenberg (1980) show that in closed queueing networks the mean
queue sizes, the mean waiting times, and throughputs can be computed recur-
sively without computing the product terms and normalizing constants. The
key result in this computation is the seemingly simple result relating the mean
waiting time of a closed system with N customers with the mean waiting time
of a system with N−1 customers, thus providing a recursion. Let Rj(N) be the
response time at station j when there are N customers in the closed network,
and let Qj(N) be the number of customers in that station t → ∞. The recursion
established by Reiser and Lavenberg is the relationship

E[Rj(N)] = E(Sj){1 + E[Qj(N − 1)]}.2

The derivation of this relationship is omitted because of its complexity. Instead,
the usefulness of MVA is illustrated with the following numerical example. Read-
ers are cautioned to note that in the numerical illustration notations are sim-
plified by dropping the expected value operator E.

To set the framework for illustrating MVA, consider the following network
shown in Figure 13.5, representing a computer system with a single CPU and
several I/O devices (or file servers). Each of these devices represents a service
station. A task (or a computer program) starts at the CPU, visits a file server,
returns to CPU for more service, and repeats this process of visiting a file server
and CPU, until the task is completed. Thus a job makes Vj visits to service
station Sj . If jobs are not lost, the arrival rate at each service station is the
same as the departure rate, and the arrival rate into the computer system is
the same as the departure rate from the system. For such systems Vj can be

2E[Sj ] is the expected service time at j.
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CPU (S1)

Server SM

Server S3

Server S2

Figure 13.5 A simple computing system

computed as Vj =
γj

γ0
, where γ0 is the arrival rate of jobs entering the system

(and also leaving the system assuming job flow balance) and γj is the arrival
rate of jobs at jth service center. The number of visits to CPU is given by
1 +
∑j=M

j=2 Vj .
These formulations are based on operational laws (Denning and Buzen 1978)

introduced in the previous section and that can be verified by direct observa-
tions.

In a closed network, the number of jobs in the system is fixed. This can be
a model for a system where a new job arrives soon after a completed job leaves
the system. Such models are used to represent time-sharing computer systems
where the number of terminals connected to the system represents the total
number of jobs in it. One can insert a delay before a job reenters the system to
represent think time of a user sitting at a terminal.

It has been shown in Reiser and Lavenberg (1980) that the mean response
time for service at the jth service station in a closed network with N jobs is
given by

Rj(N) = (1/μj) ∗ [1 +Qj(N − 1)], (13.3.7)

where μj is the service rate and Qj(N) is the mean number of jobs at the jth
service station. This relationship is intuitive. The Nth job arriving at the jth
service center will see a queue with a mean number of jobs (including the one
being serviced) given by Qj(N −1), and must wait for these jobs to be serviced.
It should be noted that this formulation assumes that the service distribution
is exponential. The response time shown in the equation above can be solved
iteratively, by starting with Qj(0) = 0.

To compute the mean response time R(N) of the system with N jobs and
M service centers, we use operational laws that specify that

R(N) =

M∑
j=1

Rj(N)Vj (13.3.8)
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Here Vj is the number of visits that a job makes to the jth service center.
Using Littles law, we can obtain the mean throughput rate and mean number

of jobs at service station j. In case of a delay representing think time, the system
throughput is given by X(N) = N

(R+Z) where Z is the mean think time of a
user.

The queue lengths of each service station can be calculated as

Qj(N) = X(N) ∗Rj ∗ Vj (13.3.9)

Example 13.3.1 Consider a computer system with a CPU (C) and three file
servers (labeled F1, F2, F3) that can perform file reads and writes. Let us
assume that each job visits F1 10 times, F2 20 times and F3 30 times. After
each visit to a file server, the job comes back to CPU (thus the number of visits
each program makes to CPU is 1+10+20+30 = 61). We are also given the
following data. The mean service times per visit to the various service stations
are given as: CPU = 1; F1= 2; F2= 3; F3 = 4.
Initialization: N = 0

QC = QF1 = QF2 = QF3 = 0

Iteration 1: N = 1

RC(1) = (1/μC)[1 +QC(0)] = 1 ∗ [1 + 0] = 1
RF1(1) = (1/μF1(0)][1 +QF1(0)] = 2 ∗ [1 + 0] = 2
RF2(1) = (1/μF2)[1 +QF2(0)] = 3 ∗ [1 + 0] = 3
RF3(1) = (1/μF3)[1 +QF3(0)] = 4 ∗ [1 + 0] = 4

System Response time

R(1) = RC(1) ∗ VC +RF1(1) ∗ VF1 +RF2(1) ∗ VF2 +RF3(1) ∗ VF3

= 1 ∗ 61 + 2 ∗ 10 + 3 ∗ 20 + 4 ∗ 30 = 261

Queue lengths at each service station are computed as follows

Qj(N) = [N/R(N)] ∗Rj(N) ∗ Vj

QC(1) = [1/R(1)] ∗RC(1) ∗ VC = (1/261) ∗ 1 ∗ 61 = 0.234
QF1(1) = [1/R(1)] ∗RF1(1) ∗ VF1 = (1.261) ∗ 2 ∗ 10 = 0.077
QF2(1) = [1/R(1)] ∗RF2(1) ∗ VF2 = (1/261) ∗ 3 ∗ 20 = 0.230
F3(1) = [1/R(1)] ∗RF3(1) ∗ VF3 = (1/261) ∗ 4 ∗ 30 = 0.460

Iteration 2. N = 2

RC(2) = (1/μC)[1 +QC(1)] = 1 ∗ [1 + 0.234] = 1.234
RF1(2) = (1/μF1)[1 +QF1(1)] = 2 ∗ [1 + 0.077] = 2.154
RF2(2) = (1/μF2)[1 +QF2(1)] = 3 ∗ [1 + 0.230] = 3.69
RF3(2) = (1/μF3)[1 +QF3(1)] = 4 ∗ [1 + 0.460] = 5.84

System Response time

R(2) = RC(2) ∗ V C +RF1(2) ∗ VF1 +RF2(2) ∗ VF2 +RF3(2) ∗ VF3

= 1.234 ∗ 61 + 2.154 ∗ 10 + 3.69 ∗ 20 + 5.84 ∗ 30 = 345.814

Queue lengths

QC(2) = [2/R(2)] ∗RC(2) ∗ VC = (2/345.814) ∗ 1.234 ∗ 61 = 0.435
QF1(2) = [2/R(2)] ∗RF1(2) ∗ VF1 = (2/345.814) ∗ 2.154 ∗ 10 = 0.125
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QF2(2) = [2/R(2)] ∗RF2(2) ∗ VF2 = (2/345.814) ∗ 3.69 ∗ 20 = 0.427
QF3(2) = [2/R(2)] ∗RF3(2) ∗ VF3 = (2/345.814) ∗ 5.84 ∗ 30 = 1.013

We can continue the iterative process to find response times and queue
lengths for higher numbers of jobs (N) in the system. Table 13.1 below shows
some values.

Table 13.1 Mean response times and queue lengths

N R QC QF1 QF2 QF3

1 261.00 0.234 0.077 0.230 0.460
2 345.814 0.435 0.125 0.427 1.013
3 437.215 0.601 0.154 0.587 1.657
4 534.875 0.730 0.173 0.712 2.358
5 637.915 0.827 0.184 0.805 3.184
6 745.494 0.897 0.191 0.872 4.041
7 856.711 0.946 0.195 0.918 4.942
8 970.700 0.978 0.197 0.4948 5.877
9 1086.709 0.999 0.198 0.968 6.834
10 1204.129 1.013 0.199 0.981 7.807
20 1322.500 1.857 0.363 1.797 15.983
30 2407.349 2.172 0.340 2.092 25.397
40 3573.418 2.166 0.300 2.076 35.458
50 4778.653 2.021 0.272 1.931 45.776
100 5998.709 3.072 0.424 2.932 93.572

Example 13.3.2 In order to appreciate the difference between single class and
multiple class models, consider a system with two classes of jobs (A and B) and
two service stations, a CPU and a Disk. We are given the following information
based on observations. The average service time required by A class jobs at
CPU and Disk are 1.0 and 0.09 seconds, and for B class jobs they are 0.1 and
0.9 seconds. If we model the system as a single job class, we observe that the
average service times for jobs are 0.6 and 0.4 seconds (these numbers are based
on different number of A and B class jobs, and the number of visit to the Disk
server). Using MVA analysis we observe that the response time for the single
class model is 1.53 seconds while the response time for A and B classes are 2
and 1.85 seconds. This is due to the fact that class A jobs are CPU intensive
while class B jobs are disk intensive.

The following pseudo algorithm using C programming notation can be used
for MVA.
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for (j=1; i<=M; j++) //Initialization
Q[j] = 0.0;

for (k=1; k<=N; k++) // Main loop
{

for (j=1; j<=M; j++) //Compute new response times
R[j] = (1.0 / mu[j]) * (Q[j] + 1.0);

R = 0.0;
for (j=1; j<=M; j++) //Compute system response time

R = R + R[j];
for (j=1; j<=M; j++) //Update queue lengths

Q[j] = (k/R)*R[j];
}

When dealing with networks containing delay centers, where a job arriving
at a center is serviced immediately without having to wait, the only change that
needs to be made to MVA is the response time computation. For delay centers
we use Rj(N) = 1/μj .

In order to use MVA for multiple classes of customers, we iterate the MVA
for each class of customers. In other words, we find the average queue lengths
iteratively for each customer class.

Approximation Solutions To MVA

As can be seen from Examples 13.3.1 and 13.3.2, MVA is a recursive algo-
rithm and it can be computationally expensive for systems with very large
number of jobs. There have been many extensions and approximate solutions
proposed with MVA so that it can be used with other types of queues to obtain
upper bounds on response times, or to improve the computational efficiency of
the analyses. It is beyond the scope of this book to discuss these extensions.
Here we describe one approximate algorithm. We follow the convention used
in Jain (1991). The algorithm is due to Schweitzer (1979), which is based on
the assumption that the queue length at each station (or device) is proportional
to the number of jobs in the system. In other words, as the number of jobs
increases, so does the queue length at every device. This implies that

Qi(N − 1)

(N − 1)
=

Qi(N)

N
for every device i.

We can write the MVA equations as follows

Ri(N) =

{
(1/μi)[1 +

N−1
N Qi(N)]

(1/μi)
(13.3.10)

(the bottom expression is for delay centers while the top expression is for fixed
capacity service centers).

X(N) =
N

Z +
∑

ViRi(N)

Qi(N) = X(N)ViRi(N) (13.3.11)
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where X(N) is the system throughput and Z is the think time in a closed
network

The algorithm starts with some value for Qi(N) and computes new Qi(N)
values using above expressions, until the values converge.

Convolution

The MVA presented so far provides an easy way to obtain average (mean)
response times and queue lengths; but MVA is not useful for obtaining more
detailed analysis, such as the distribution of queue lengths or response times.
In this section we introduce how some of these analyses can be made using
convolution techniques.

Chapter 7 included an analysis of both closed and open networks of queues.
These analyses can be used to solve for the distribution of jobs in a system,
pn1,n2,...,nM

3 where there are nj jobs at service station j (including the job
being serviced) and [n1, n2, ..., nM ] denotes the state of the system. Note that
the system state represents an element of the set defined here

→
N
= {[n1, n2, ..., nM ]|

j=M∑
j=1

nj = N |}.

In this chapter we restrict ourselves to closed networks of queues and provide a
technique that can be implemented as a computer program.

For systems where the service time per job is independent of the queue
lengths (load-independent service), we can use the following result (Gordon and
Newel 1967)

pn1,n2,...,nM
=

(dn1
1 , dn2

2 ...dnM

M )

G(N)
(13.3.12)

where dj is the total service demand per job at the jth device andN =
∑j=m

j=1 nj .
The total demand for service by a job at a service station is the combined
service requirements for all visits a job makes to the service station. G(N) is
a normalizing constant such that the probabilities that the system is in any
one of the possible states add to 1. This is very complex since we need to find
probabilities for all possible states of the system where the number of states is
given by

(
N+M−1
M−1

)
with N as the number of jobs in the system and M as the

number of service stations.
Buzen’s (1973) iterative solution method for G(N), described in Section 7.6

of Chapter 7, is based on the following observation.
∑
→
N

ΠM
j=1(dj)

nj =
∑

→
N
|nM=0

ΠM
j=1(dj)

nj +
∑

→
N
|nM>0

ΠM
j=1(dj)

nj (13.3.13)

3To be consistent with Buzen (1973), we use subscript 1 for CPU, unlike subscript zero
used previously.
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where the summation is over the set of all possible states [n1, n2, ...nM ], such

that
∑M

j=1 nj = N . The first term on the right-hand side is the case when
there are zero customers at service station M , which can be viewed as a system
with one less service station. The second term indicates that there is at least
one customer at service station M , and places one service demand on that
server. Thus the second term can be rewritten as dM

∑
→

N−1

ΠM
j=1(dj)

nj where

the summation is over the set of all possible vectors [n1, n2, ...nM ], such that∑M
j=1 nj = N − 1. Note that since there is at least one customer at service

station M , we factored dM out. The summation now deals with a system with
one less customer. Thus we have∑

→
N

ΠM
j=1(dj)

nj =
∑

→
N
|nM=0

ΠM
j=1(dj)

nj + dm
∑
→

N−1

ΠM
j=1(dj)

nj . (13.3.14)

If we use g(n,m) for
∑

→
N

ΠM
j=1(dj)

nj then the normalizing constant G(N) is

given by g(N,M).
But as we have seen

g(n,m) = g(n,m− 1) + dm ∗ g(n− 1,m). (13.3.15)

The initial conditions are:

g(j, 0) = 0 for j = 1, 2, ..., n

g(0, k) = 1 for k = 1, 2, ....m

(13.3.15) provides the basis of the iterative convolution algorithm for comput-
ing the normalizing constant G(N). This can be used to compute the state
probabilities as shown in (13.3.12).

Example 13.3.3 Let us use the same example (Example 13.3.1) as the one
used for computing MVA. Here we have four service stations (CPU and three
file servers). Using the service times and the number of visits at each service
station, we can obtain the service demands as shown here.

d1 = dcpu = 1 ∗ 61 = 61
d2 = dF1 = 2 ∗ 10 = 20
d3 = dF2 = 3 ∗ 20 = 60
d4 = fF3 = 4 ∗ 30 = 120

Table 13.2 shows g(n,m) values for n = 0, 1..., 10 and m = 1, 2, 3, 4.
Thus G(N) when N = 10 is 3.01 ∗ 1021.
Using this value for the normalizing constant, we can find the probability dis-

tribution given by (13.3.12). For example, the probability that all ten customers
are waiting at the CPU is given by

p10,0,0,0 =
(6110)

3.00989 ∗ 1021 = 2.027 ∗ 10−10.
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Table 13.2 Interative convolution algorithm for G(N)
n g(n,1) g(n,2) g(n,3) g(n,4)
0 1 1 1 1
1 61 81 141 261
2 372 5341 13801 45121
3 226981 333801 1161861 6576381
4 13845841 20521861 90233521 879399241
5 844596301 1255033521 6669044781 1.12197E+11
6 51520374361 76621044781 4.76764E+11 1.39404E+13
7 3.14274E+12 4.67516E+12 3.3281E+13 1.70613E+15
8 1.91707E+14 2.85211E+14 2.28207E+15 2.07018E+17
9 1.16941E+16 1.73984E+16 1.54323E+17 2.49964E+19
10 7.13343E+17 1.0613E+18 1.03207E+19 3.00989E+21

As can be seen from this example, using total service demands for service sta-
tions may lead to a G(N) that is too large (or too small in some systems) to
provide accurate results in a computer (although one can use higher precision
arithmetic such as double precision floating point arithmetic). In such cases,

the service demands can be scaled up or down by writing yj = (
dj

k ) and using
the scaled value yj in the convolution algorithm.

Computing Other Performance Measures

Once G(N) is known for a closed queueing network, we can obtain other per-
formance measures including queue lengths, utilizations, and response times of
individual service stations. It should be noted that the convolution algorithm
not only computes G(N) but also computes several intermediate values includ-
ing G(N − i).

Queue Length The probability that there are k or more jobs at service sta-
tion j is given by

P (nj ≥ k) =
∑

→
N
|nj≥j

dn1
1 dn2

2 , ..., dnM

M

G(N)
= dkj

G(N − k)

G(N)
. (13.3.16)

Note that if we use a scaled value yi = (
dj

k ) while computing G(N), we will use
yj in the above equation as well.

In the previous example,

P (n1 ≥ 5) = d51
G(10− 5)

G(10)
= 0.00023.

This gives the probability that there are five or more jobs at the CPU.



13.4. REMARKS 271

Using this method, we can find the entire distribution for the number of jobs
at each service station. Consider first computing P (nj ≥ 0), then computing
P (nj ≥ 1). We can find the probability of P (nj = 0) = P (nj ≥ 1)−P (nj ≥ 0).
Likewise, we can compute P (nj = k) for all k. From these probabilities we can
compute the expected values for queue lengths.

Utilization The utilization of service station j is the probability that there
is at least one customer at that service station. In other words

Uj = P (nj ≥ 1) = dj
G(N − 1)

G(N)
.

In the previous example, the utilizations of the various service stations are

UCPU = 0.508, UF1 = 0.167, UF2 = 0.50, UF3 = 1.00

As can be seen, file server F3 is a bottleneck since it reached 100% utilization.
Note that for the purpose of simplifying the examples, we picked service times
and visits that are whole numbers. These numbers should not be viewed as
representative of a real computing system.

Throughput The throughput of service station j is given by Xj =
Uj

(1/μj)
.

Since closed queueing networks are based on forced flows, the system throughput

is given by
Xj

Vj
=

Uj

dj
. For the given example the system throughput is 0.0083

jobs per unit time.
In this chapter we have considered only simple queueing systems. MVA

and convolution algorithms for more complex queueing networks are available
in the literature. Interested readers should consult more advanced sources for
such techniques.

13.4 Remarks

Most of the material described in this chapter is based on traditional model-
ing and analytical techniques that were developed more than two decades ago.
Several of the classical books about computer and communication systems per-
formance modeling and evaluation are no longer available in print. However the
books by Jain (1991) and Kant (1992) are by no means old. Jain (1991) provides
comprehensive coverage of performance modeling, benchmarking, simulation,
and capacity planning of computer systems. A new book by Le Boudec (2011)
is more theoretical in its coverage and includes topics such as data collection,
modeling, fitting, and testing. The book Obaidat and Boudriga (2011) provides
the basic queueing models and simulation techniques that can be used for both
computer systems and communication networks. There are other books that
cover related material on computer and communication systems performance
modeling and evaluation and they include Dattatreya (2008) and Bolch (2006).
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Modern computer and communication systems are very complex and can-
not easily be modeled as networks of queues, either because the arrival and
service distributions are non-Markovian, where the service distributions may
involve multiple classes and priority queues, or the flow of jobs in the network
of queues may require matching of multiple service paths. Thus most of the
current research utilizes simulation techniques for analyzing the performance
of computer and communication systems. The next chapter introduces simula-
tion techniques and informs how to use some of the publicly available software
packages for simulations as well as for modeling systems as queueing networks.

Modeling workloads for Cloud computing environments and modeling appli-
cations in cloud-based computer systems is an active research area. Interested
readers should consult recent publications from various IEEE and ACM confer-
ences (that cover Cloud computing and big data analyses) and related journals.

13.5 Exercises

1. Model the following computing system with a CPU and two disk drives as
an open queueing network. The arrival rate is 1 transaction per second,
and a job makes 20 visits to disk A and 5 visits to disk B (thus it makes
a total 26 visits to the CPU). The service times are 1 second for CPU,
and 30 and 25 milliseconds for disks A and B, respectively. Determine the
average number of transactions in the system and the average response
time.

2. Model the system in Exercise 1 as a closed network and using MVA com-
pute response times and throughput for N=1. . . 10.

3. Using Schweitzer approximation approach, compute the response times
and throughput for N=100. Verify the accuracy of the result using exact
MVA analysis.

4. Using Buzen’s convolution algorithm, find the distribution for queue lengths
at CPU for system described in Exercise 2.



Chapter 14

Simulating Queueing
Systems
Contributing Author: Professor Krishna M. Kavi1

When systems modeled as stochastic processes or queueing systems become
complex and dynamic, analytical or numerical solutions outlined in the previous
chapter may become intractable. In such cases, a computer program that mimics
the behavior of the system (or at least the behaviors of interest) may be used.
The computer program (or simulation) is run with several random values and
the modeled behaviors are recorded for analysis.

Key to good simulations is the quality of the random number generators
used in them. Computer generated random numbers are actually pseudoran-
dom numbers since they all start with a seed that is not random. With the
same initial seed, the generators produce the same sequence of random num-
bers. The numbers in the sequence represent outcomes of a uniform random
variable. Repeating the same sequence of random numbers is sometimes useful
in reproducing results of a simulation. However, simulations may have to be
repeated with different seeds to produce a sample of the population of outcomes.
To produce accurate analyses of the system, statistical analysis of these results
is required. A good random number generator should have a long period before
the random numbers recycle. The correlation between successive numbers in a
sequence should also be small. The linear congruential (LC) method is a widely
used technique for generating random numbers. In this method, the next ran-
dom number rn is generated using the current random number rn−1 using the
following equation:

rn = (a ∗ rn−1 + c)modulo m,

where a and c are nonnegative constants. To produce m different numbers the
following conditions must hold:

1Department of Computer Science and Engineering, University of North Texas, Denton,
TX 76203, USA

c© Springer Science+Business Media New York 2015 273
U. N. Bhat, An Introduction to Queueing Theory, Statistics for Industry and

Technology, DOI 10.1007/978-0-8176-8421-1 14
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• The constants m and c are relatively prime.

• All prime factors of m divide a− 1.

To increase the range of numbers generated and to reduce the correlation among
successive numbers, several variations to the LC method have been proposed.
These include multiplicative LC (where c = 0) and adaptive LC (where rn =
(rn−1 + rn−k) modulo m). Due to the growing interest in computer security
using cryptography, that requires the generation of random keys, there have
been several new techniques for generating long sequences of random numbers.

For most simulations, we recommend using a random number generator that
has been tested for its quality (for example, those provided by MATLAB).

Using a random number generator that represents a uniform probability
distribution with a range [0,1], other probability distributions can be generated.
For example, the following function generates outcomes of a Poisson distribution
with an arrival rate of lambda, and a fixed time interval of T .

int poisson (float lambda, T)

{
float r, temp;

int n;

n =0;

temp= -1/ (lambda * ln(random_number(seed)));

while ( temp < T)

{ n = n+1;

temp = temp -1/ (lambda * ln (random_number(seed)));

}
return n;

}

The accuracy of a simulation also depends on a clear understanding of the
modeled system including interactions among the various subsystems as well as
the quality of the developed software. Since complex behaviors lead to com-
plex models and complex programs, they are difficult to validate for correct
behaviors. A good simulation should permit variance in data (or simulation
parameters) to study the modeled systems under different conditions.

Since simulations of stochastic systems use random numbers, they are known
as Monte Carlo simulations. Typically, computer simulators only simulate spe-
cific events at discrete times and hence they are also known as discrete event
simulators. An event can be viewed as a point in time when the modeled system
changes its state. Examples of events include: the arrival of a new customer
(or job), the start of a service, or the end of a service. Program defined state
variables are used to track the state of the system. Examples of state vari-
ables include the number of jobs waiting at each server (or in each queue when
multiple job classes are modeled). Other variables are used to define system
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parameters including arrival rates, service rates, and maximum sizes of queues.
The program will simulate the events by changing the values of system variables
and changing the time (or simulated clock) to the time of the event.

The following outlines a generic structure of typical simulators.

Initialize; //Initialize termination conditions

//Initialize system state variables, clocks

//Schedule an initial event

while (termination is false)

{ set_clock; //move clock to next event time

simulate_next_event; //execute procedures to simulate the event

//remove the simulated event

update_statistics;

}

Analyse_results; //produce statistical reports

To develop a simulator for a queueing system (e.g., M/M/ 1), we can select one
of the two possible variations. We can create all job arrival events at the very
beginning of the simulation. We use a random number generator to generate
the time of arrival for each job (by adding inter-arrival time to the time when
the last job arrived). Alternatively, we can generate one job at a time. In
this case, we randomly generate a new event which can either be an arrival or
service. We recommend the first choice because it will be easier to control the
simulation, and this approach also permits reproduction of the population such
that different queue disciplines (such as priority scheduling, earliest-deadline-
first (EDF), shortest-job-first (SJF)) can be applied to the same population.

It is also necessary to decide on a termination test based either on a total
number of jobs processed by the simulation or a maximum time period over
which the system is simulated. In the first case, all jobs entering the system will
be processed, while in the second case, not all entering jobs may be processed
by the time the simulation is terminated.

It is necessary to decide on the information to be associated with each job. In
a simpleM/M/ 1 system using first-in, first-out (FIFO) discipline (also identified
as first-come, first-served (FCFS) in earlier chapters), it is only necessary to keep
the time of arrival, the time when a service is initiated, and service time with
each job. From this information it is possible to calculate waiting times and
response times for each job, as well as average waiting times and response times
for the system. For real-time systems, it is necessary to maintain deadlines by
which a job must be completed. Deadline can be based on service times or
created randomly.

Changes in processing the lists of waiting jobs can simulate variations to
FIFO queue disciplines. To implement EDF scheduling, it is necessary to sort
the waiting list of jobs by their deadlines. To implement SJF scheduling, the list
is sorted by the service times of waiting jobs. Priority queues can be simulated
by maintaining separate lists for each priority.
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To simulate M/M/ 1, the simulation time is set to the arrival time of the
next job in the waiting list. If the server is idle, the job is scheduled by setting
the service initiation time. If the server is busy, the simulation time is set to the
service completion time of the currently serviced job (which is equal to service
initiation time plus service time). At this time, the next waiting job is scheduled
for service. This process is repeated until the termination condition is met.

M/M/n (identified as M/M/ s in earlier chapters) queues can be simulated
as follows. The simulation clock is set to the earliest time when any server
completes an assigned job (and becomes idle). A new job (unless the waiting
queue is not empty) is assigned to the server.

Programming languages and software libraries are available to simplify the
design of simulation programs. They provide ready-made random number gen-
erators, functions to generate various probability distributions, data structures
to queue events, manage time, record outcomes, and produce common statistical
analyses. One of the earliest languages is SIMULA, dating back to the 1960s.
Newer versions of SIMULA based on C++ and JAVA have been developed at
various universities, often as freeware. Another example is service provisioning
markup language (SMPL), developed by MacDougall at MIT, which contains
a set of C language functions that can be used to simulate queueing systems.
Other commercial languages and tools are available for purchase. In this chap-
ter, we will focus on developing simulation systems using MATLAB.

Even when using available software libraries, it is still necessary to develop
programs representing a modeled systems behavior. The behaviors of each mod-
eled component, the connections among the components (how a job moves from
one component to another), and how a waiting queue of jobs are processed
must be coded into your simulation. In the next section, we provide a basic
introduction to MATLAB and how it can be used to model queueing systems.

14.1 Using MATLAB

MATLAB2 is a high-level technical computing language and interactive environ-
ment for algorithm development, data visualization, data analysis, and numeric
computation. Using MATLAB, we can solve technical computing problems
faster than with traditional programming languages, such as C, C++, and For-
tran. MATLAB is available for Windows, Linux, Solaris, and Mac. There is
also a student edition that is educationally priced that runs on Windows, Mac,
and Linux.

MATLAB’s functionality can be extended by adding different toolboxes for
optimization, statistics, data analysis, control system design, signal processing,
image processing, data acquisition, financial modeling, application deployment,
and computational biology.

The statistics toolbox, for instance, provides tools for data organization, sta-
tistical plotting and data visualization, analysis of variance, linear and nonlinear

2http://www.mathworks.com/products/matlab/
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modeling, hypothesis testing, and probability distributions which may be very
useful when simulating queues.

The MATLAB program below3 will perform a discrete event simulation of
an M/M/ 1 queue with arrival rate λ = 0.5 and service rate μ = 1. The vari-
able nextarrival gives the time when the next customer will arrive. Simi-
larly, nextdeparture gives the time when the customer currently being served
will depart (this is set to infinity if the queue is currently empty). The key
statement is if nextarrival < nextdeparture, which determines whether the
next event to occur will be an arrival or a departure. For an arrival, we move
the now variable forward to the time of the arrival, increase the length of the
queue currentlength by 1, announce the arrival with a disp statement, and
schedule the next arrival (after this one) by resetting nextarrival. Recall that
(−1/lambda)*log(rand) generates an exponential (λ) inter-arrival time. If the
newly arrived customer is the only one present (i.e., if currentlength==1),
the customer can go straight into service, so we also decide how long the service
will take by generating a random service time (−1/mu)*log(rand) with the
exponential (μ) distribution, and setting nextdeparture accordingly.

To handle a departure, we decrease the current queue length by 1 and
announce the departure with another disp statement. This either leaves the
queue empty, in which case nextdeparture must be set to infinity, or brings
another customer into service, in which case nextdeparture must be set by
generating a service time for that customer.

The complete processing is enclosed in a while loop which keeps the sim-
ulation going until targettime, which is the time when the simulation must end.

M/M/1 queue simulation

lambda= 0.5;

mu= 1.0;

targettime= 50;

nextarrival= (-1/lambda)*log(rand);

now= 0;

nextdeparture= inf; % infinity

currentlength= 0;

while now < targettime,

if nextarrival < nextdeparture,

now= nextarrival;

currentlength= currentlength + 1;

disp(sprintf(’Arrival at : %f (current length %d)’, now,

currentlength));

nextarrival= now + (-1/lambda)*log(rand);

3http://www.stat.uackland.ac.nz/s̃tat320/
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if currentlength == 1,

nextdeparture= now + (-1/mu)*log(rand);

end

else

now= nextdeparture;

currentlength= currentlength - 1;

disp(sprintf(’Departure at : %f (current length %d)’, now,

currentlength));

if currentlength > 0,

nextdeparture= now + (-1/mu)*log(rand);

else

nextdeparture= inf;

end

end

end

When the program is run, the output is something like:
Arrival at : 0.102314 (current length 1)
Departure at : 0.601800 (current length 0)
Arrival at : 3.031791 (current length 1)
Departure at : 3.146866 (current length 0)
Arrival at : 4.474956 (current length 1)
Arrival at : 5.018319 (current length 2)
Departure at : 5.259194 (current length 1)

Each time the program goes through the main loop, the program generates
one line of output, corresponding to an arrival or departure.

The following is another example of a simple M/M/ 1 queue simulation that
graphs the average number of clients in the system, the average delay, and the
utilization.
Implementation of a simple M/M/1

queue_lim=200000; % system limit

arrival_mean_time(1:65)=0.01;

service_mean_time=0.01;

sim_packets=750; %number of clients to be simulated

util(1:65) = 0;

avg_num_in_queue(1:65) = 0;

avg_delay(1:65) = 0;

P(1:65) = 1;

for j=1:64 %loop for increasing the mean arrrival time

arrival_mean_time(j+1)=arrival_mean_time(j) + 0.001;
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num_events=2;

% initialization

sim_time = 0.0;

server_status=0;

queue_size=0;

time_last_event=0.0;

num_pack_insys=0;

total_delays=0.0;

time_in_queue=0.0;

time_in_server=0.0;

delay = 0.0;

time_next_event(1) = sim_time + exprnd(arrival_mean_time(j+1));

time_next_event(2) = exp(30);

disp([’Launching Simulation...’,num2str(j)]);

while(num_pack\insys < sim_packets)

min_time_next_event = exp(29);

type_of_event=0;

for i=1:num_events

if(time_next_event(i)<min_time_next_event)

min_time_next_event = time_next_event(i);

type_of_event = i;

end;

end

if(type_of_event == 0)

disp([’no event in time ’,num2str(sim_time)]);

end

sim_time = min_time_next_event;

time_since_last_event = sim_time - time_last_event;

time_last_event = sim_time;
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time_in_queue = time_in_queue + queue_size

* time_since_last_event ;

time_in_server = time_in_server + server_status

* time_since_last_event;

if (type_of_event==1)

%disp([’packet arrived’]);

% -------------------------arrival-------------------------

time_next_event(1) = sim_time + exprnd(arrival_mean_time(j+1));

% epomenos xronos afiksis

if(server_status == 1)

num_pack_insys = num_pack_insys + 1;

queue_size = queue_size + 1 ;

if(queue_size > queue_lim)

disp([’queue size = ’, num2str(queue_size)]);

disp([’System Crash at ’,num2str(sim_time)]);

pause

end

arr_time(queue_size) = sim_time;

else

server_status = 1;

time_next_event(2) = sim_time + exprnd(service_mean_time);

end

elseif (type_of_event==2)

% ---------------service and departure---------------

if(queue_size == 0)

server_status = 0;

time_next_event(2) = exp(30);

else
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queue_size = queue_size - 1;

delay = sim_time - arr_time(1);

total_delays = total_delays + delay;

time_next_event(2) = sim_time + exprnd(service_mean_time);

for i = 1:queue_size

arr_time(i)=arr_time(i+1);

end

end

end

end

%results output

util(j+1) = time_in_server/sim_time;

avg_num_in_queue(j+1) = time_in_queue/sim_time;

avg_delay(j+1) = total_delays/num_pack_insys;

P(j+1) = service_mean_time./arrival_mean_time(j+1);

end

%----------------------graphs--------------------------------

figure(’name’,’mean number of clients in system

diagram(simulated)’);

plot(P,avg_num_in_queue,’r’);

Xlabel(’P’);

Ylabel(’mean number of clients’);

axis([0 0.92 0 15]);

figure(’name’,’mean delay in system diagram (simulated)’);

plot(P,avg_delay,’m’);

Xlabel(’P’);

Ylabel(’mean delay (hrs)’);

axis([0 0.92 0 0.15]);

figure(’name’, ’UTILIZATION DIAGRAM’);

plot(P,util,’b’);

Xlabel(’P’);

Ylabel(’Utilization’);



282 CHAPTER 14. SIMULATING QUEUEING SYSTEMS

axis([0 0.92 0 1]);

Routines4 to simulate M/G/ 1 and M/G/∞.

function [jumptimes, systsize, systtime] = simmg1(tmax, lambda)

% SIMMG1 simulate a M/G/1 queueing system. Poisson arrivals

% of intensity lambda, uniform service times.

%

% [jumptimes, systsize, systtime] = simmd1(tmax, lambda)

%

% Inputs: tmax - simulation interval

% lambda - arrival intensity

%

% Outputs: jumptimes - time points of arrivals or departures

% systsize - system size in M/G/1 queue

% systtime - system times

% set default parameter values if ommited

if (nargin==0)

tmax=1500; % simulation interval

lambda=0.99; % arrival intensity

end

arrtime=-log(rand)/lambda; % Poisson arrivals

i=1;

while (min(arrtime(i,:))<=tmax)

arrtime = [arrtime; arrtime(i, :)-log(rand)/lambda];

i=i+1;

end

n=length(arrtime); % arrival times t_1,...,t_n

servtime=2.*rand(1,n); % service times s_1,...,s_k

cumservtime=cumsum(servtime);

arrsubtr=arrtime-[0 cumservtime(:,1:n-1)]’; % t_k-(k-1)

arrmatrix=arrsubtr*ones(1,n);

deptime=cumservtime+max(triu(arrmatrix)); % departure times

% u_k=k+max(t_1,..,t_k-k+1)

% Output is system size process N and system waiting

% times W.

B=[ones(n,1) arrtime ; -ones(n,1) deptime’];

Bsort=sortrows(B,2); % sort jumps in order

4R. Gaigalas and I. Kaj; http://www.mathworks.com/mathlabcentral/fileexchange/
loadFile.do?objectId=2494

http://www.mathworks.com/mathlabcentral/fileexchange/loadFile.do?objectId=2494
http://www.mathworks.com/mathlabcentral/fileexchange/loadFile.do?objectId=2494
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jumps=Bsort(:,1);

jumptimes=[0;Bsort(:,2)];

systsize=[0;cumsum(jumps)]; % size of M/G/1 queue

systtime=deptime-arrtime’; % system times

figure(1)

stairs(jumptimes,systsize);

xmax=max(systsize)+5;

axis([0 tmax 0 xmax]);

grid

figure(2)

hist(systtime,20);

function [jumptimes, systsize] = simmginfty(tmax, lambda)

% SIMMGINFTY simulate a M/G/infinity queueing system. Arrivals are

% a homogeneous Poisson process of intensity lambda. Service times

% Pareto distributed (can be modified).

%

% [jumptimes, systsize] = simmginfty(tmax, lambda)

%

% Inputs: tmax - simulation interval

% lambda - arrival intensity

%

% Outputs: jumptimes - times of state changes in the system

% systsize - number of customers in system

%

% set default parameter values if ommited

if (nargin==0)

tmax=1500;

lambda=1;

end

% generate Poisson arrivals

% the number of points is Poisson-distributed

npoints = poissrnd(lambda*tmax);

% conditioned that number of points is N,

% the points are uniformly distributed

if (npoints>0)

arrt = sort(rand(npoints, 1)*tmax);

else

arrt = [];
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end

% uncomment if not available POISSONRND

% generate Poisson arrivals

% arrt=-log(rand)/lambda;

% i=1;

% while (min(arrt(i,:))<=tmax)

% arrt = [arrt; arrt(i, :)-log(rand)/lambda];

% i=i+1;

% end

% npoints=length(arrt); % arrival times t_1,...,t_n

% servt=50.*rand(n,1); % uniform service times s_1,...,s_k

alpha = 1.5; % Pareto service times

servt = rand^(-1/(alpha-1))-1; % stationary renewal process

servt = [servt; rand(npoints-1,1).^(-1/alpha)-1];

servt = 10.*servt; % arbitrary choice of mean

dept = arrt+servt; % departure times

% Output is system size process N.

B = [ones(npoints, 1) arrt; -ones(npoints, 1) dept];

Bsort = sortrows(B, 2); % sort jumps in order

jumps = Bsort(:, 1);

jumptimes = [0; Bsort(:, 2)];

systsize = [0; cumsum(jumps)]; % M/G/infinity system size

% process

stairs(jumptimes, systsize);

xmax = max(systsize)+5;

axis([0 tmax 0 xmax]);

grid

%

14.2 Other Tools for Simulating and Analyzing
Queueing Systems

There are many tools that permit modeling of systems such as queueing net-
works. They come with different user interfaces from simple web calculators
and application programming interfaces (APIs) to sophisticated software pack-
ages with graphical user interfaces (GUIs). A semiofficial list of available soft-
ware tools is maintained at http://web2.uwindsor.ca/math/hlynka/qsoft.html.
While the list is long, many of the tools only provide very simple analysis capa-
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bilities. This section will introduce a few of the more user-friendly tools and
show simple examples to illustrate how to use them. MATLAB is widely used for
a variety of numerical analyses including analysis of queueing networks. How-
ever, MATLAB is a commercial product and must be purchased. On the other
hand, open source software tools allow them to be easily adapted to model com-
puter and communication systems. Some examples of open source tools include
Java modeling tools (JMT) and qnetworks (The Octave Queueing Toolbox).
We provide examples to show how these tools can be used to analyze systems
modeled as simple queueing networks.

The JMT suite comes with a simple user interface and permits a choice of
six different tools:

(1) JMVA : exact and approximate solution

(2) JSIMgraph : graphical simulation

(3) JSIMwiz : textual simulation

(4) JMCH : Markov chain

(5) JABA : asymptotic bound analysis

(6) JWAT : workload analyzer tool

In each of the tool suites, modelers can provide necessary data in designated
columns to create the queueing model, and proceed to solve it with what-if
analysis options. The performance indices are displayed graphically. The output
can also be saved in Extensible Markup Language (XML) format for analysis
by other tools.

Gnu Octave is an open source version of MATLAB with equivalent capabil-
ities. The qnetworks package provides the queueing network capabilities when
using the computation environment. Classes of queueing problems are catego-
rized with designated prefix names and handled with API functions. With the
script capabilities in Octave, what-if analysis can be flexibly conducted during
modeling. The modeling script and the solution results can be saved with plain
text and can be easily manipulated to accommodate modeling processes.

Both JMT and qnetworks can be used to model either open or closed net-
works, and they allow mean value analysis (MVA) and convolution techniques
as well as several approximate algorithms discussed in previous chapters. These
tools can be used to obtain many of the performance indices discussed in this
book, including queue lengths, response times, and throughput.

To illustrate how to use these tools, consider a simple computer system with
a single central processing unit (CPU) and three file I/O servers or disks (FS1,
FS2, FS3). Each job visits the three file servers 10, 20, and 30 times respectively
and the service times of CPU and the file servers are 1, 2, 3, and 4 seconds. We
model this system as a closed network.



286 CHAPTER 14. SIMULATING QUEUEING SYSTEMS

In JMT, using JSIMgraph, the example can be described as a queueing
network shown in Figure 14.1. We show the results of analysis by varying the
number of customers between 1 and 10.

Figure 14.1 Closed network model

The following figures show the results for response times, utilizations, and
throughputs of the four devices (Figures 14.2, 14.3, 14.4, 14.5).

Figure 14.2 Results of analysis
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Figure 14.3 Results of analysis

Figure 14.4 Results of analysis



288 CHAPTER 14. SIMULATING QUEUEING SYSTEMS

Figure 14.5 Results of analysis

The same example can be modeled in qnetwork in Octave with the script
file:

pkg load queueing;

S=[1 2 3 4];

V=[1 10 20 30];

for N=1:10

N=8;

[U R Q X]=qncsmva(N,S,V);

X_s=X(1)/V(1);

R_s=dot(R,V);

printf("N=%d\n",N)

printf("\t\tUtil Qlen RespT Tput \n");

printf("\t\t-------- -------- -------- --------\n");

for k=1:length(S)

printf("Station%d\t%8.4f %8.4f %8.4f %8.4f\n",

k,U(k),R(k),Q(k),X(k));

endfor

printf("\nSystem rt: %8.4f th: %8.4f\n", R_s, X_s);

endfor

The result can be output as plain text: (Station 1 – 4 represents: CPU, FS1,
FS2, and FS3 respectively): N=1
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Util Qlen RespT Tput
Station1 0.0050 1.0000 0.0050 0.0050
Station2 0.0995 2.0000 0.0995 0.0498
Station3 0.2985 3.0000 0.2985 0.0995
Station4 0.5970 4.0000 0.5970 0.1493

System rt: 201.0000 th: 0.0050

N=2

Util Qlen RespT Tput
Station1 0.0068 1.0050 0.0069 0.0068
Station2 0.1367 2.1990 0.1503 0.0684
Station3 0.4102 3.8955 0.5326 0.1367
Station4 0.8204 6.3881 1.3102 0.2051

System rt: 292.5473 th: 0.0068

N=3

Util Qlen RespT Tput
Station1 0.0076 1.0069 0.0077 0.0076
Station2 0.1526 2.3007 0.1755 0.0763
Station3 0.4578 4.5979 0.7016 0.1526
Station4 0.9156 9.2406 2.1151 0.2289

System rt: 393.1908 th: 0.0076

N=4

Util Qlen RespT Tput
Station1 0.0080 1.0077 0.0081 0.0080
Station2 0.1599 2.3511 0.1879 0.0799
Station3 0.4796 5.1049 0.8161 0.1599
Station4 0.9592 12.4606 2.9879 0.2398

System rt: 500.4342 th: 0.0080

N=5

Util Qlen RespT Tput
Station1 0.0082 1.0081 0.0082 0.0082
Station2 0.1633 2.3758 0.1940 0.0817
Station3 0.4900 5.4482 0.8898 0.1633
Station4 0.9799 15.9518 3.9079 0.2450

System rt: 612.2848 th: 0.0082

N=6

Util Qlen RespT Tput
Station1 0.0083 1.0082 0.0083 0.0083
Station2 0.1650 2.3880 0.1970 0.0825
Station3 0.4950 5.6695 0.9355 0.1650
Station4 0.9901 19.6317 4.8591 0.2475
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System rt: 727.2298 th: 0.0083
N=7

Util Qlen RespT Tput
Station1 0.0083 1.0083 0.0084 0.0083
Station2 0.1658 2.3940 0.1985 0.0829
Station3 0.4975 5.8065 0.9630 0.1658
Station4 0.9951 23.4366 5.8302 0.2488

System rt: 844.1768 th: 0.0083
N=8

Util Qlen RespT Tput
Station1 0.0083 1.0084 0.0084 0.0083
Station2 0.1663 2.3970 0.1993 0.0831
Station3 0.4988 5.8889 0.9791 0.1663
Station4 0.9975 27.3206 6.8133 0.2494

System rt: 962.3752 th: 0.0083
N=9

Util Qlen RespT Tput
Station1 0.0083 1.0084 0.0084 0.0083
Station2 0.1665 2.3985 0.1996 0.0832
Station3 0.4994 5.9372 0.9883 0.1665
Station4 0.9988 31.2532 7.8037 0.2497

System rt: 1081.3328 th: 0.0083
N=10

Util Qlen RespT Tput
Station1 0.0083 1.0084 0.0084 0.0083
Station2 0.1666 2.3993 0.1998 0.0833
Station3 0.4997 5.9649 0.9935 0.1666
Station4 0.9994 35.2147 8.7982 0.2498

System rt: 1200.7395 th: 0.0083

14.3 Remarks

Interested readers should consult MATLAB manuals for details on how to model
and simulate computer and communication systems. There are many software
tools that can be used to analyze systems modeled as queueing networks.

Most of the textbooks listed in the previous chapter also contain information
on how discrete event simulations can be created.



14.4. EXERCISES 291

14.4 Exercises

1. Write a simulation program to simulate a traffic intersection with a north-
south street crossing an east-west street. You should also permit left
turn at the intersections. All cars waiting for a green light will proceed
immediately when the light turns green. For safety reason, once a light
turns green it will remain green for t1 seconds. Unless cars are waiting on
cross street, once a signal turns green it will stay green. Assume that cars
arrive at the intersection as a Poisson process with the mean arrival rate
of λ. If there are no cars in the left-turn lane, no turn signal appears.

Generate a random number indicating how many cars arrive at the inter-
section from each direction and if a car is requesting left-turn signal or
not.

Simulate the intersection using different values for t1 and λ. Calculate the
average waiting time at the intersection, that is, the interval from when a
car arrives at the intersection and until when the light turns green allowing
the car to exit the intersection. Note that this time can be zero.

Using the statistical data, can you derive an empirical relationship between
t1, λ and the average waiting times?

2. Repeat the simulation in Exercise 1 using different arrival rates for each
direction of travel.

3. Consider a multithreaded computer system that uses the following model
to execute programs. Each thread consists of three phases: preload, exe-
cute, and post-store. A memory processor (MP) executes preload and
post-store phases, providing access to memory resident data. An execute
processor (EP) provides service during execute phase. New threads are
enabled as some threads complete their execution and supply data to wait-
ing threads (modeled as Synch service). Consider the following queueing
network as a model of the system.

The service time of MP is based on the average number of load and store
instructions, while the service time of EP is based on the average number
of non-memory instructions. The service time at Synch depends on the
average number of inputs needed by a thread (and provided by other
threads).

Explore the response time of such a system for different number of threads
(jobs in the system), by varying the service times at each server. You
should examine any available benchmarks to estimate the various service
times. Assume that each thread visits EP and Synch once, and visits
MP twice. For example, you can try with these service times: MP=3;
EP=10, Sync=6 (the time unit is one instruction cycle, and using a
1 GHz processor, the time unit is a nanosecond). Using N=10, 20, 50
threads, perform MVA for this exercise.
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MP

Synch 

EP

Figure 14.6 Queueing network model

4. Using convolution algorithm, find the expected queue lengths at each pro-
cessing element of the computer system described in Exercise 3.

5. In real-time systems, it is necessary to assure that jobs (or tasks) com-
plete before a specified deadline, otherwise the task is considered to have
failed. A well-known algorithm used for such systems is called the EDF.
As the name implies, tasks are scheduled based on their deadlines. In
this exercise, you are asked to simulate an EDF-based system. You need
to generate tasks using an arrival process, task service times, and dead-
lines. Note that the deadlines should be greater than task arrival time
plus its service time. Once a job is created, the waiting list of jobs will
be sorted based on the task deadlines. A task is scheduled only if it can
meet its deadline. A performance measure of EDF is the percentage of
jobs that meet their deadlines, known as the success ratio of EDF. It has
been shown that when the system is heavily loaded (the sum of execution
times of all waiting jobs exceeds the total system or simulation time) the
success ratio of EDF drops dramatically. Explore the relationship between
system utilization and the tightness of deadlines on the success ratios. It
has been shown that if the utilization is low, EDF achieves high success
ratios; but when the utilization is high (or the system is heavily loaded),
the success ratio drops. Verify this claim using your simulations.

6. Another variation of EDF used in real-time systems is known as the least-
laxity first (LLF) algorithm. Defining laxity as the deadline of a task
minus its execution time, the job with smallest laxity is scheduled first.
Repeat the experiment of Exercise 5 with LLF and compare its success
ratio with that of EDF.

7. A commonly scheduling method to increase throughput of a system is
known as the SJF. As the name implies, tasks are scheduled based on
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their execution times; schedule jobs with smaller execution times. As in
the previous exercise, create jobs using an arrival time and service time.
Compute average response times using SJF and FIFO. SJF unfairly delays
large jobs (jobs with large service times). Check how this unfairness affects
the average response time of SJF when compared to a FIFO scheduling
method.



APPENDIX A
Poisson Process Properties
and Related Distributions

The Poisson process and exponential distribution occupy an important place
in the modeling and analysis of queueing systems. This Appendix provides
properties additional to these given in Section 2.1 of Chapter 2 and related
distributions that are often used in applications. Distributions other than those
mentioned here but that are some times used in applications can be found in
standard texts in statistics.

A.1 Properties of the Poisson Process

(a) In reliability theory it is common to identify the failure rate of a component
as an instantaneous failure rate, called the hazard rate, say h(t). With f(t) as
the probability density of the life distribution of a component, h(t) is defined as

h(t) =
f(t)

1− F (t)
. (A.1.1)

It should be noted that probabilistically f(t)dt is approximately the probability
that the component fails during (t, t + dt] and 1 − F (t) is the probability that
it is at least of age t. Thus h(t)dt represents the approximate probability that
the component fails during (t, t + dt], given that it is of age t. Hence it is also
called the instantaneous failure rate, or simply the failure rate.

When f(x) is exponential with parameter λ and given as f(x) = λe−λx

(x > 0), then h(t) = λ, a constant.

(b) Let Z1, Z2, . . . be the random variables representing the interoccurrence
times of a Poisson process. Apart from the fact that {Zn, n = 1, 2, . . .} have
exponential distributions, it can also be shown that they are independent and
identically distributed.
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(c) The memoryless property of the exponential distribution and properties (a)
and (b) above imply that the Poisson process has the following characteristics.

• Events occurring in nonoverlapping intervals of time are independent of
each other.

• There is a constant λ such that the probabilities of occurrence of events
in a small interval of length Δt can be given as follows:

P{Number of events of occurring in

(t, t+Δt] = 0} = 1− λΔt+ o(Δt)

P{Number of events occurring in

(t, t+Δt] = 1} = λΔt+ o(Δt)

P{Number of events occurring in

(t, t+Δt] > 1} = o(Δt)

where o(Δt) is such that o(Δt)/Δt → 0 as Δt → 0.

With these properties, λ is the mean number of events occurring per unit time.

(d) Consider two independent exponential random variables X1 and X2 with
parameters λ1 and λ2, respectively. Then, we have

P (X1 < X2) =

∫ ∞

x=0

P (X1 < X2|X2 = x)f2(x)dx.

We get

P (X1 < X2) =

∫ ∞

x=0

P (X1 < x)f2(x)dx

=

∫ ∞

x=0

(1− e−λ1x)λ2e
−λ2xdx

=
λ1

λ1 + λ2
(A.1.2)

(Note that f1(x) and f2(x) are the density functions of the random variables
X1 and X2, respectively.)

Thus, if two types of Poisson events occur independently of each other, the
probability that the first type of event occurs before the second is given by
(A.1.2).
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(e) The additive property of the Poisson distribution carries through to the
Poisson process as well. Let X1(t) and X2(t) be two Poisson processes with
parameters λ1 and λ2, respectively. Let X(t) = X1(t) +X2(t). For t ≥ 0, let

P [X1(t) = n1] = e−λ1t
(λ1t)

n1

n1!

P [X2(t) = n2] = e−λ2t
(λ2t)

n2

n2!
.

Using these results and writing n1 + n2 = n we can show that X(t) is also
Poisson for t ≥ 0:

P [X(t) = n] =
n∑

n2=0

P [X1(t) = n− n2]P [X2(t) = n2]

= e−(λ1+λ2)t
[(λ1 + λ2)t]

n

n!
. (A.1.3)

Clearly, this property can be extended to any number of Poisson processes.

(f) Another useful property of the Poisson process is its relationship to the
uniform distribution. Let n Poisson events occur at epochs t1 < t2 < t3 <
. . . < tn in the interval [0, T ]. Then the random variables t1, t2, . . . , tn have
the same distribution as the n order statistics corresponding to the independent
random variables U1, U2, . . . , Un, uniformly distributed in the interval [0, T ]. If
ft1,t2,...,tn(x1, . . . , xn) is the joint probability density function of t1, t2, . . . , tn,
this property shows that

ft1,t2,...,tn(x1, x2, . . . , xn) =
n!

Tn
0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ T. (A.1.4)

A.2 Variants of the Poisson Process

The Poisson process assumes that the events occur one at a time. But in real
systems the occurrence of arrivals and service in groups is not uncommon. To
accommodate such situations we may assume that each Poisson event spawns
a group of subevents. If arrival is the event, customers in the group are the
subevents. Using this terminology for convenience, let arrivals occur in a Pois-
son process with rate of occurrence λ, and assume that the nth arrival epoch
brings in Gn customers, where {Gn, n = 1, 2, ...} are independent and identically
distributed (i.i.d.) random variables. Let

Pr(Gn = r) = gr.

Then the probability distribution of X(t), the number of customers arriving
during (0, t], is given by

Pn(t) =

n∑
r=0

e−λt (λt)
r

r!
g(r)n (A.2.1)
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where g
(r)
n is the r-fold convolution of gn with itself, with g

(0)
n = 1 if n = 0 and

0 otherwise. Let γ(z) be the PGF of {Gn}∞n=1; then we get

Π(z, t) =

∞∑
n=0

znPn(t) = e−λ(1−γ(z))t

and
E[X(t)] = λγ′(1)t

where γ′(1) is the mean size of the arriving group.
When the arriving groups consist of continuous units that can be represented

by continuous random variables with distribution function H(x), let X(t) be the
number of such arrivals and Y (t) be the resultant input (e.g., number of claims
X(t) and the total amount of claims Y (t) in insurance risk theory). Then, we
get

Pr[X(t) = n, Y (t) ≤ x] = e−λt (λt)
n

n!
Hn(x) (A.2.2)

and
∞∑

n=0

zn
∫ ∞

0

e−θtdxPr[X(t) = n, Y (t) ≤ x] = e−λ(1−zη(θ))t

where we have used η(θ) to represent the Laplace–Stieltjes transform of H(x),
and Hn(x) for the n-fold convolution of H(x) with itself. Clearly we get

E[Y (t)] = [−η′(0)]λt

where −η′(0) is the mean input per arrival.
The processes given in (A.2.1) and (A.2.2) are known as compound Poisson

processes (also known as stuttering Poisson processes). These turn out to be
good approximating models for a wide variety of arrival processes (See Haight
(1967) and Johnson and Kotz (1969)).

Another class of Poisson related processes can be generated by assuming
that the Poisson parameter λ itself is a random variable (Λ). Let L(x) be its
distribution function. Then X(t), the number of arrivals occuring in (0, t] can
be given as

Pn(t) = P [X(t) = n] =

∫ ∞

0

e−λt (λt)
n

n!
dL(λ). (A.2.3)

When the range of Λ is other than (0,∞), suitable range is to be used for
integration. From (A.2.3), we get

E[X(t)] = tE[Λ].

For instance, when Λ has the Erlang distribution (see (A.4.1))

dL(λ) = e−μλ μkλk−1

(k − 1)!
dλ (0 ≤ λ < ∞).
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We get

Pn(t) =

(
n+ k − 1

k − 1

)(
μ

t+ μ

)k(
t

t+ μ

)n

, n = 0, 1, 2 . . . (A.2.4)

which is in a negative binomial form. The underlying process is called a Polya
process.

The Polya process belongs to the class of mixed Poisson distributions which
can be used to represent variations in the arrival or service intensity. Other
useful mixing patterns would be to assume L(x) as normal in the positive range
or a discrete distribution of the type,

P (Λ = λ) = pλ λ = λ1, λ2, . . .

A.3 Hyperexponential Distribution (HE)

Let random variables {Z1, Z2, . . .} be distributed as

F (x) = 1−
K∑
i=1

pie
−λix 0 ≤ x < ∞

λi > 0 for all i for which pi > 0;

1 ≥ pi ≥ 0,
K∑
1

pi = 1. (A.3.1)

We get

E(Zn) =

K∑
1

(pi/λi)

and its Laplace transform

ψ(θ) =

K∑
1

pi(
λi

θ + λi
). (A.3.2)

Also

E[Z2
n] =

K∑
i=1

2pi/λ
2
i and CV (Zn) =

[
2
∑K

i=1 pi/λ
2
i

(
∑

pi/λi)2
− 1

]1/2
.

This distribution is generated if events fall into identifiable classes (1, 2, ..., k)
and an event belonging to class i arrives with probability pi with an interoccur-
rence time that is exponential with mean 1/λi. Depending on the values of pi, λi

and the possible values of i, a wide variety of distributions can be generated.
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In order to retain the same mean 1/λ the following form of the HE distribu-
tion can be used.

F (x) = 1−
K∑
i=1

pie
−Kpiλx (x ≥ 0) (A.3.3)

λ > 0, 1 ≥ pi ≥ 0,
K∑
1

pi = 1.

Then

E[Zn] = 1/λ

E[Z2
n] =

2

(Kλ)2

K∑
i=1

(1/pi)

CV [Zn] =

[(
K∑
i=1

1/pi

)
2

K2
− 1

]1/2
.

The value of K commonly used in applications is 2.

A.4 Erlang Distribution (Ek)

This distribution has been introduced in Chapter 2 (see (2.1.6).
Let random variables {Z1, Z2, . . .} be distributed as

F (x) =

∫ x

0

e−λy λ
kyk−1

(k − 1)!
dy 0 ≤ x ≤ ∞, λ > 0

= 1−
k−1∑
r=0

e−λx (λx)
r

r!
. (A.4.1)

We get

E[Zn] = k/λ

ψ(θ) =

(
λ

θ + λ

)k

and

E[Z2
n] = (1 + 1/k)

k2

λ2
and CV [Zn] =

1√
k
.

The distribution F (x) is a two parameter distribution, and is commonly known
as the Erlang distribution (A. K. Erlang demonstrated its use in the analysis of
telephone system congestion), or the gamma distribution, or the Pearson type
III distribution with integral values for the parameter k. (It is also a particular
case of the χ2 distribution.)
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A.5 Mixed Erlang Distributions

The HE distribution of Section A.3 above is obtained by using a finite mixture
of exponential distributions. In a similar manner, in order to provide versatility,
we can get mixed Erlang distributions.

(a) Constant λ; varying k (k1, k2, ..., kN ). Let

F (x) =

∫ x

0

N∑
i=1

pie
−kiλy

(kiλ)
kiyki−1

(ki − 1)!
dy 0 ≤ x < ∞, λ > 0. (A.5.1)

We get

E[Zn] =
1

λ

ψ(θ) =
N∑
i=1

pi

(
kiλ

θ + kiλ

)ki

(A.5.2)

and

E[Z2
n] =

1

λ2

N∑
i=1

pi(1 + 1/ki)

CV (Zn) =

[
N∑
i=1

(pi/ki)

]1/2
.

This adds another dimension of generality to the Erlang distribution. It has
been shown by several authors that this distribution approximates very well
nearly all distributions of practical interest. A finite limit for the values of N
has also been found satisfactory. (See Luchak (1956).)

(b) Both λ and k varying.

F (x) =

∫ x

0

N∑
i=1

pie
−kiλiy

(kiλi)
kiyki−1

(ki − 1)!
dy. (A.5.3)

This general form admits both the hyperexponential and Erlang distribution as
special cases.

HE : ki = 1 for i = 1, 2, . . . , N

Mixed Erlang : λi = λ for i = 1, 2, . . . , N.

Assuming the coefficient of variation as a measure providing an adequate rep-
resentation of the model, Erlang (with CV ≤ 1) and HE (with CV ≥ 1) distri-
butions offer a wide spectrum of choice for purposes of model selection. In the
Erlang model, the CV is decreased by increasing the value of the parameter k
and in the HE model with N = 2, CV is increased by moving p1 and p2 away
from 1/2.
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A.6 Coxian Distributions; Phase Type Distri-
bution (PH)

Generalizing the Laplace transform of the Erlang distribution (A.4.1), Cox
(1955) has proposed a class of distributions whose Laplace transforms are ratio-
nal functions. A member of this class is the generalized Erlang which has the
Laplace transform

ψ(θ) = ΠN
i=1(

λi

θ + λi
). (A.6.1)

The corresponding distribution can be thought of as the distribution of time
a process takes to pass through N phases (X1, X2, . . . , XN ) with Xi having
an exponential distribution with mean 1/λi. It is obtained as the convolu-
tion of N exponentials with parameters λ1, λ2, . . . , λN . Another large subset of
Coxian distributions is the phase-type distribution introduced by Neuts (1975,
1981), which can be considered to be a natural probabilistic generalization of
the Erlang. The underlying process generating the distribution undergoes tran-
sitions on a Markov chain with an absorbing state. Further discussion of this
distribution is given in the Chapter 8.

Using Coxian distributions in their generality in queueing models leads to
highly complicated analytical expressions and requires the use of complex vari-
ables in their analysis. For instance, see Cohen (1969). In striking a balance,
between generality and practical use, Neuts’ phase-type distributions have found
wide use because of their versatility in modeling leading to algorithmic solutions.
(See Chapter 8.)

A.7 A General Distribution

Let F (x) be a continuous distribution function, with probability density function
f(x). We have

f(x) = − d

dx
[1− F (x)]. (A.7.1)

Using the hazard function concept introduced in (A.1.1), we have

h(x) =
1

1− F (x)

{
− d

dx
[1− F (x)]

}

= − d

dx
ln[1− F (x)]. (A.7.2)

Integrating we find

∫ x

0

h(y)dy = − ln[1− F (x)]

F (x) = 1− e−
∫ x
0

h(y)dy
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and

f(x) = h(x)e−
∫ x
0

h(y)dy (A.7.3)

which is in a generalized exponential form and is very convenient for use in the
study of queueing systems with arbitrary inter-arrival time and/or service time
distributions.

A.8 Some Discrete Distributions

Let 0, σ, 2σ, 3σ, . . . be discrete equidistant points along the time axis. We assume
that events occur only at these time points. (Even when events occur at other
points, we may think of a counter that registers the events only at these time
points.) If the value of σ is small enough, the discrete time axis is a convenient
base to represent most systems of practical interest. Furthermore in systems
such as computer systems, time is discrete, and a discrete queueing system is
the most natural outcome.

As before, let Z1, Z2, . . . be nonnegative (integer valued) random variables,
representing the inter-occurrence times of events. Define

pk = P (Zn = k) n = 1, 2, . . . k = 0, 1, 2, . . .

and

φ(z) =
∑
k

pkz
k |z| ≤ 1

as the PGF of {pk}.
Three discrete distributions which are analogs of exponential, Poisson, and

Erlang distributions are given below.

(i) The geometric distribution. Let events occur one at a time independent
of each other, and the probability that an event occurs at a time point be
α and does not occur be (1−α). Let pk be the probability that the event
occurs at time point k for the first time. Then

pk = α(1− α)k−1 k = 1, 2, . . . (A.8.1)

We get,

E[Z] =
1

α
and V [Z] =

1− α

α2

and

φ(z) =
αz

1− (1− α)z
. (A.8.2)

The distribution in (A.8.1) is called the geometric distribution and it gives
the discrete version of the exponential.
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(ii) The binomial distribution. Consider the distribution of X(nσ), the num-
ber of events occurring in the interval (0, nσ). Let pk(n) = P [X(nσ) = k].
Then, using the properties of the binomial distribution,

pk(n) =

(
n

k

)
αk(1− α)n−k k = 0, 1, 2, . . . , n. (A.8.3)

We get
E[X(nσ)] = nα and V [X(nσ)] = nα(1− α)

and

φn(z) =

n∑
k=0

pk(n)z
k = (1− α+ αz)n. (A.8.4)

Clearly, (A.8.3) is the discrete analog of the Poisson distribution. (Recall
the method of derivation of the Poisson distribution as a limit of the
binomial in statistics texts.)

(iii) The negative binomial distribution. Let pk(n) be the probability that the
event occurs for the kth time at time point n. This means that the event
occurs k−1 times during [0, (n−1)σ]; this event has a binomial probability
given in (A.8.3). Since the event has to occur at the nth time point, we
have

p
(n)
k =

(
n− 1

k − 1

)
αk−1(1− α)n−kα

=

(
n− 1

k − 1

)
αk(1− α)n−k n = k, k + 1, . . . (A.8.5)

We get

E[Z] =
k

α
and V [Z] =

k(1− α)

α2

and

φ(z) =

[
αz

1− (1− α)z

]k
. (A.8.6)

As in the Erlang, this distribution is generated by counting every kth event as
an effective event for the queueing system.



APPENDIX B
Markov Process

This appendix builds on the basic concepts introduced in Section 3.3 of the
main text and provides additional background material that may be needed for
further work on modeling and analysis of queueing systems. The notations used
in the material given below are consistent with those used in Chapter 3.

B.1 Kolmogorov Equations

Let {X(t), tεT} be a time homogeneous Markov process and (see (3.3.14))

Pij(t) = P [X(t) = j|X(0) = i]. (B.1.1)

There are two types of differential equations for the determination of Pij(t)
in Markov processes. These are forward Kolmogorov equations and backward
Kolmogorow equations. Forward Kolmogorov equations are the ones commonly
used in applications because of their convenient structure, even though back-
ward equations are considered to be more fundamental due to the nature of
limiting properties used in their derivation. In order to derive these equations
we proceed as follows. In a time-homogeneous Markov process, (3.3.8) of Chap-
ter 3 representing the Chapman–Kolmogorov relation, can be written down as

Pij(t+ s) =
∑
kεS

Pik(t)Pkj(s).

Set s = Δt; then

Pij(t+Δt) =
∑
kεS

Pik(t)Pkj(Δt).

Subtracting Pij(t) from both sides of the equation and dividing by Δt,

Pij(t+Δt)− Pij(t)

Δt
=

∑
k �=j

Pik(t)Pkj(Δt)

Δt

+ Pij(t)
Pjj(Δt)− 1

Δt
.
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Let Δt → 0; we get

P ′
ij(t) = −λjjPij(t) +

∑
k �=j

λkjPik(t). (B.1.2)

In deriving (B.1.2) we have used the definition of λij given in (3.3.15) and
(3.3.16). Equation (B.1.2) for i, jεS is known as forward Kolmogorov equation.

In matrix notation we can write them as

P ′(t) = P (t)A (B.1.3)

where A is given by (3.3.18).
The transition probability Pij(t) can be determined by solving these differ-

ential equations along with the boundary condition P (0) = I.
Backward Kolmorov equations can be obtained in a similar manner, by start-

ing with the relation

Pij(Δt+ t) =
∑
kεS

Pik(Δt)Pkj(t).

The corresponding matrix equation can be given as

P ′(t) = AP (t).

Formally, the solution for both sets of equations can be given as

P (t) = eAt = I +

∞∑
n=1

An t
n

n!
. (B.1.4)

B.2 The Poisson Process

Here we show how forward Kolmogorov equations can be used to determine the
transition probability distribution of the Poisson process. In Chapter 2, we have
introduced events whose inter-occurrence times are exponential. In Section A.1
of Appendix A, we have also listed the following properties:

1. Events occurring in nonoverlapping intervals of time are independent of
each other.

2. There is a constant λ such that the probabilities of occurrence of events
in a small interval of length Δt are given as follows:

(a) P{ Number of events occurring in (t, t+Δt] = 0} = 1−λΔt+ o(Δt)

(b) P{Number of events occurring in (t, t+Δt] = 1} = λΔt+ o(Δt)

(c) P{Number of events occurring in (t, t+Δt] > 1} = o(Δt)
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where o(Δt) is such that o(Δt)/Δt → 0 as Δt → 0.
Using the notations and equations developed for Markov processes, in this

context we have
P ′
ij(0) = λ; P ′

ii(0) = −λ

resulting in the generator matrix

A =

⎡
⎢⎢⎢⎣

−λ λ 0 0 0 . . .
0 −λ λ 0 0 . . .
0 0 −λ λ 0 . . .
...

...
...

...
...

⎤
⎥⎥⎥⎦ . (B.2.1)

The Poisson process is a counting process whose initial value is 0, i.e.,
X(0) = 0. Writing P0n(t) = Pn(t) for convenience and noting that P(t) =
(P0(t), P1(t), . . .) and P ′(t) = (P ′

0(t), P
′
1(t), . . .) the individual equations in

(B.1.2) can be written out as

P ′
0(t) = −λP0(t)

P ′
n(t) = −λPn(t) + λPn−1(t) n > 0

with P0(0) = 1 and Pn(0) = 0 for n > 0. Solving these differential equations we
get

Pn(t) = e−λt (λt)
n

n!
n = 0, 1, 2, . . . (B.2.2)

which is the result we stated in (3.3.19). As we have seen in Chapters 4 and
6, solutions to equations in (B.1.2) are not always easily determined. In the
case of the Poisson process, because of the bi-diagonal structure of A and the
constant element λ, the differential equations could be solved using standard
methods. When such simplifications are not available, in simpler cases we may
use Laplace transforms and PGFs in their solutions. When A is finite and
diagnoalizable the eigenvalue method can be used to determine the solution in
the form (B.1.4). Also, there are computational methods to obtain solutions
from the differential equations directly. (See Bailey (1964), Stewart (1994) and
Bhat and Miller (2002).)

In the modeling of queueing systems, it helps to understand what the ele-
ments of matrix A of (3.3.18) stand for. As indicated earlier, by definition (see
(3.3.15) and (3.3.16)), λij , j �= i, is the instantaneous rate for the transition
i → j. From (3.3.17) we also know that

∑
j �=i λij = λii. That means λii is also

the sum of all the instantaneous transition rates out of state i.
This allows us to interpret 1/λii as the mean length of time the process stays

in state i during a visit. The length of time the process stays in a state during
a visit is known as the sojourn time in that state. This sojourn time of the
Markov process in state i has been shown to have an exponential distribution
with mean 1/λii.

For a proof of this result and for a discussion of special forms of Markov
processes used in stochastic modeling, the readers are referred to Bhat and
Miller (2002) and advanced books cited in them.
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B.3 Classification of States

In order to describe a stochastic process we need to specify the state space
and the parameter space. The parameter space is easily categorized as being
discrete or continuous. The state space, however, in addition to being discrete
or continuous, may include states or groups of states with special properties.

The states of a discrete state stochastic process fall into groups depending on
how they interact with each other. The basic property defining this interaction
is communication. If state i can be reached from state j, i is said to be accessible
from j. If i and j are accessible to each other, they are said to communicate. It
is not hard to visualize all communicating states forming a single group, known
as an equivalence class. If a Markov process has all its states belonging to a
single equivalence class, it is said to be irreducible.

For instance, consider the number of customers, Qn, in a queueing system, at
discrete time points tn, n = 0, 1, 2, . . .. Assume that tn are such that {Qn, n =
0, 1, 2 . . .} can be modeled as a Markov chain. When no restrictions are imposed
on the transitions of {Qn} it is easy to note that all states of the Markov
chain communicate with each other and hence form a single equivalence class.
Alternatively, we may think of a finite queueing system which ceases to operate
when Qn hits the value, say M . As an example, consider M machines that
are in operation in a service facility. The facility ceases its operation when all
machines become inoperative. Let the number of failed machines be the state of
the process. Now the state M of the Markov chain is accessible from all other
states [0, 1, 2, . . . ,M − 1]; but other states are not accessible from M . Then we
have two equivalence classes: [M ], and [0, 1, 2, . . . ,M − 1]. Since the process
stops in M , it is known as an absorbing state.

Suppose now, the system is modified such that the facility is not shut down
when all M machines are inoperative. One or more of them are repaired to
bring the facility back into operation. Now all states [0, 1, 2, . . . ,M ] belong to
the same class. Comparing the states in the two systems, the first with an
absorbing state and the second with all communicating states, we can make the
following observation. The Markov chain starting from any one of the states in
the class [0, 1, . . . ,M−1] in the first system will not remain in any of these states
when n → ∞, because at some stage it is bound to get absorbed in M . On
the other hand, the Markov chain of the second system will remain in the class
[0, 1, ...,M ] even when n → ∞. This behavior of the Markov chain allows us to
classify the states, and the equivalence classes themselves, into being recurrent
or transient.

(1) Starting from state i, if the Markov chain is certain to return to i, the state
is said to be recurrent. Since all states in the equivalence class communi-
cate with each other, the class itself is recurrent. A further classification
is made based on the length of recurrence time, which is the mean time
the process takes to return to the same state for the first time. If the
recurrence time is finite, the state (and the class to which it belongs) is
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known as positive recurrent. If it is infinite, the state and the class are
known as null recurrent. Note that an absorbing state is recurrent.

(2) Starting from state i, if the Markov chain’s return to that state is not
certain, it is said to be transient. Since all states in the equivalence class
communicate with each other, then the class itself is transient.

The classification of states of a stochastic process such as queue length (number
of customers in the system) plays a major role in understanding its behavior.
We give below some of the properties that can be deduced from the nature of
the states of the process.

1. If there are transient states in the state space of the process, in the long
run (n → ∞), the process will not be found in those states. Thus, if there
are transient as well as recurrent states in the state space, the process will
always end up in the recurrent states.

2. A process starting out in a recurrent state i will always remain in the
recurrent equivalence class to which state i belongs.

3. Because of Properties 1 and 2 above, only processes with irreducible
Markov process models need to be considered to understand the long run
behavior of the system. As we have seen in earlier chapters, we can estab-
lish conditions under which limiting distributions exist for such processes.

4. When the state space includes both transient and recurrent states, one of
the characteristics of interest is the transition from the transient states to
a state in the recurrent class. For instance the distribution properties of
the busy period in a queueing system can be determined by considering 0
as an absorbing state for the queue length process, while all other states
are transient.

For an elaboration on the classification of states and their usefulness in
stochastic modeling, readers are referred to Bhat and Miller (2002).



APPENDIX C
Results from Mathematics

In this appendix5, we present useful results from several areas of mathematics
that have been used in the book. For further reading on these topics, references
are given at the end of each section.

C.1 Reimann–Stieltjes Integral

Let f(x) and φ(x) be real-valued functions on [a, b], and suppose that f(x) is
bounded on [a, b] and φ(x) is monotonically increasing there. By a partition P
of [a, b], we mean a finite sequence of points x0, x1, . . . , xn such that

a = x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn = b.

For any partition P of the closed interval [a, b], we define

N1 = least upper bound f(x) where x ε [xi−1, xi]

ni = greatest lower bound f(x) where x ε [xi−1, xi]

Δφi = φ(xi)− φ(xi−1)

U(P , f, φ) =
n∑

i=1

NiΔφi

L(P , f, φ) =

n∑
i=1

niΔφi.

5Reprinted with permission from John Wiley & Sons, publishers, from Bhat and Miller
(2002).
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Then
∫ b−

a

f(x)dφ(x) = greatest lower bound U(P , f, φ)

∫ b

a−
f(x)dφ(x) = least upper bound L(P , f, φ)

where greatest lower bound and least upper bound are taken over all partitions
of [a, b].

We say that f(x) is Reimann–Stieltjes integrable with respect to φ(x) over
[a, b] if and only if ∫ b

a−
f(x)dφ(x) =

∫ b−

a

f(x)dφ(x).

When f(x) is Riemann–Stieltjes integrable with respect to φ(x) over [a, b], we
write its integral as ∫ b

a

f(x)dφ(x).

It should be pointed out that one may define the Riemann–Stieltjes integral
with respect to a function φ(x), where φ(x) is of bounded variation on [a, b]. A
function φ(x) is of bounded variation on [a, b] iff

V (φ; a, b) = least upper bound

n∑
i=1

|Δφi| < +∞

where the least upper bound is taken over all partitions of [a, b] (Rudin 1964).

C.2 Laplace Transforms

The proofs of the properties have been omitted, and all operations are assumed
to be well defined.

Definition 1. Let f(t) be a real-valued function in [0,∞). We define the Laplace
transform of f(t) as

L{f(t)} = φ(s) =

∫ ∞

0

e−stf(t)dt, Re(s) > 0.

If f(t) is piecewise continuous on every interval [0, N ] and of exponential
order α (i.e., there exist constants M1,M2, and α such that for all t > M2, we
have |f(t)| < M1e

αt). Then it can be shown that L{f(t)} = φ(x) exists. In
Section 1, we defined what is meant by the Riemann–Stieltjes integral; in turn,
we may also define the Laplace–Stieltjes transform of F (t).

Definition 2. Let F (t) be a real-valued function; then we define the Laplace–
Stieltjes transform of F (t) as∫ ∞

0

e−stdF (t), Re(s) > 0.
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We note that if F (t) is absolutely continuous and its Laplace–Stieltjes transform
exists, then F (t) is a differentiable monotonically increasing function and

dF (t) = F ′(t)dt.

The Laplace–Stieltjes transform of F (t) then equals the Laplace transform for
this case.

The following properties apply only to Laplace transforms, although analo-
gous properties hold for Laplace–Stieltjes transforms. Let L{f(t)} = φ(s), and
assume that all operations are well defined.

Property C.2.1.

(1) If L{fi(t)} = φi(s) and f(t) =
∑∞

i=1 ξifi(t), where ξi is a constant (i =
1, 2, . . .), then φ(s) =

∑∞
i=1 ξiφi(s). (2) If g(t) = eξtf(t), then L{g(t)} =

φ(s− ξ). (3) If

g(t) =

{
f(t− ξ) for t > ξ
0 for t ≤ ξ

then L{g(t)} = e−ξsφ(s). (4) If ξ �= 0 and g(t) = f(ξt), then

L{f(ξt)} =
1

ξ
φ

(
s

ξ

)
.

(5) If g(t) = dn[f(t)]/dtn = f (n)(t), then

L{g(t)} = snφ(s)− sn−1f(0)− sn−2f (1)(0)− . . . − sfn−2(0)− f (n−1)(0).

Here the continuity at 0 of f (n)t is assumed for each n. (6) If g(t) = tnf(t),
then L{g(t)} = (−1)nφ(n)(s). (7) When the indicated limit exists, we have

lim
s→∞

φ(s) = 0

lim
t→0

f(t) = lim
s→∞

sφ(s)

lim
t→∞

f(t) = lim
s→0

sφ(s).

(8) Let f(t) be the probability density function of a continuous random variable
T ; then E(T ) = −φ(1)(0). (9) Let

f(t) = f1(t) ∗ f2(t) =
∫ t

τ=0

f1(τ)f2(t− τ)dτ

and L{fi(t)} = φi(s)(i = 1, 2); then φ(s) = φ1(s) · φ2(s). (10) If f(t) is such
that ∫ x

0

f(t)dt = 0
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for all x > 0, then f(t) is called a null function and φ(s) = 0.

Perhaps a word about the uniqueness of the Laplace transform of f(t) is
in order. Suppose f2(t) is a null function and f(t) = f1(t) + f2(t); then by
properties (1) and (10), we have

φ(s) = φ1(s) + φ2(s) = φ1(s) = L{f1(t)}.

One can see that several different functions may have the same Laplace trans-
forms, but if we do not consider null functions, the Laplace transform of a
function is unique.

Finally, we give two theorems that are useful in limiting operations dealing
with transforms.

Theorem 1 (An Abelian Theorem) If for some nonnegative number ξ(≥ 0)
we have

lim
t→∞

F (t)

tξ
=

C

Γ(ξ + 1)

and

ψ(s) =

∫ ∞

0

e−stdF (t)

exists for Re(s) > 0, then
lim

s→0+
sξψ(s) = C.

Theorem 2 (A Tauberian Theorem) If F (t) is nondecreasing and

ψ(s) =

∫ ∞

0

e−stdF (t)

exists for Re(s) > 0, and if for some constant ξ(≥ 0)

lim
s→0

sξψ(s) = C

then

lim
t→∞

F (t)

tξ
=

C

Γ(ξ + 1)

(Widder 1946).

C.3 Generating Functions

Analogous to the transform of a function is the transform of a sequence of
real numbers {an}∞n=0. This is commonly called a Z-transform or generating
function of {an}∞n=0.
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Definition 1. Let {an}∞n=0 be a sequence of real numbers. If

A(z) =
∞∑

n=0

anz
n

exists, then A(z) is called the generating function of the sequence {an}∞n=0.

Since the series A(z) converges to a unique number, the generating function
of a sequence of real numbers is unique. The similarity between generating
functions and Laplace transforms is obvious and is further exemplified by the
properties of generating functions. We again assume that all operations are
well defined. Let the generating functions of {an}∞n=0 and {bn}∞n=0 be A(z) and
B(z), respectively.

Property C.3.1.

(1) If cn = ξ1an + ξ2bn for each n, where ξ1 and ξ2 are constants, then C(z) =∑∞
n=0 cnz

n = ξ1A(z) + ξ2B(z). (2) If bn = an+k, then B(z) = z−kA(z) −∑k−1
r=0 brz

r−k. (3) If an = nk and bn = nk−1 for k ≥ 1, then A(z) = zB(1)(z) =
zdB(z)/dz. (4) If cn =

∑n
r=0 arbn−r, then C(z) =

∑∞
n=0 cnz

n = A(z) · B(z).
(5) Let X be a nonnegative, discrete random variable, and let P (X = n) = pn
and P (X > n) = qn; if P (z) =

∑∞
n=0 pnz

n and Q(z) =
∑∞

n=0 qnz
n, then (a)

Q(z) = [1 − P (z)]/(1− z), (b) E(X) = P (1)(1) = Q(1), (c) V (X) = P (2)(1) +
P (1) − [P (1)(1)]2 = 2Q(1)(1) +Q(1)− [Q(1)]2. Note that when pn = P (X = n),
we may write P (z) = E[zX ].

Finally, we give three theorems that are useful in analyzing stochastic sys-
tems.

Theorem 1 (Abel’s Theorem) If limn→∞ an = a, then

lim
z→1−

[
(1− z)

∞∑
n=0

anz
n

]
= a.

Theorem 2 (Tauber’s Theorem): If limz→1−(1− z)
∑∞

n=0 anz
n = a and

limn→∞n(an − a(n−1) = 0, then

lim
n→∞

an = a.

Theorem 3 Let {an}∞n=0 be a nonnegative sequence of real numbers whose

generating function is

A(z) =

∞∑
n=0

anzn, |z| < 1.
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The following hold (for a and c real constants):

∞∑
n=0

an = a iff lim
z→1−

A(z) = a

lim
m→∞

(
1

m

m∑
n=0

an

)
= c iff lim

z→1−
[(1− z)A(z)] = c

(Beightler et al. 1961; Feller 1968; Hardy 1949; Whittaker and Watson 1992).
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