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Preface

This book provides a problem-based learning (PBL) approach to mastering
spatial analysis through the combined use of fundamental theories and con-
cepts and the practical application of geospatial data tools, techniques, and
strategies in geographic studies. The overarching objectives are (1) to offer
readers a theoretical/methodological foundation in spatial analysis using
traditional, contemporary, and emerging computational approaches and
(2) to encourage readers to apply the critical knowledge and skills to appro-
priately analyze and interpret geographic data. To achieve these objectives,
we draw from traditional statistical methods, spatial statistics, visualization,
and computational methods and algorithms with the primary goal of sup-
porting the growing field of geographic information science and training the
next generation of geospatial analysts and data scientists. Spatial analytical
concepts are introduced together with a series of computer-based geographic
information science (GIS) exercises (worked examples) to enable readers to
better understand, analyze, and synthesize spatial patterns, distributions,
and relationships.

By offering problem-based exercises and case studies, the book provides
a comprehensive coverage of topics in exploratory and spatial descriptive
methods, hypothesis testing, spatial regression, hot spot analysis, geostatis-
tics, spatial modeling, and data science. The ability to understand data and
the methodological limitations associated with spatial analytical techniques
will have a strong bearing on how geographers draw conclusions from sta-
tistical tests and the degree of certainty, validity, and translatability of find-
ings drawn from their research. On completion of this book, our readers
should be able to (1) identify and characterize the types of nonspatial and
spatial data; (2) construct testable hypotheses that require inferential statis-
tical analysis; (3) preprocess spatial data, identify the relevant explanatory
variables, and choose the appropriate statistical tests based on the data
properties; (4) understand and interpret spatial data summaries and rel-
evant statistical measures; (5) demonstrate competence in exploring, visu-
alizing, summarizing, analyzing, and optimizing spatial data and clearly
presenting the results using maps, charts, reports, pictures, infographics,
analytical metadata, animations and three-dimensional visualization sci-
ences, and on-the-fly dashboards; and (6) be proficient in the use of the
primary analytical packages.
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Preface

In summary, this book provides learners and researchers with the
following key features:

Combines statistical concepts with computer-based GIS exercises

Builds on many hands-on examples using easily accessible data and
software and actual projects

Integrates both technical and practical aspects

Gives readers a conceptual foundation to successfully apply statis-
tics to geographical work

Offers classroom-tested materials and lessons
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1

Understanding the Context and
Relevance of Spatial Analysis

LEARNING OBJECTIVES

1. Define and describe spatial analysis.

2. Describe the trends and significant developments in spatial analysis.
3. Define, describe, and illustrate key spatial concepts.

4. Learn about the unique properties of spatial data and inherent challenges.

In conventional terms, geographers regard spatial analysis as a broad and
comprehensive undertaking that entails the use of well-established ana-
lytical/visualization tools and procedures to analyze and synthesize loca-
tionally referenced data. The approaches are rigorous and are drawn from
statistical, mathematical, and geographical principles to conduct a system-
atic examination of spatial patterns and processes, including the exploration
of interactions between space and time. Studying the locational and distribu-
tional arrangement of objects, people, events, and processes in space, and the
underlying factors that account for these arrangements are some of the ana-
lytical goals of a geospatial data scientist. The work requires a place-based
mindset with emphasis on uncovering spatial patterns and spatial linkages,
and examining spatial behaviors and complex interactions within and across
locations that result in these distributional patterns.

Engaging in spatial analysis typically requires the use of quantitative data
in a digital format, but increasingly data scientists are devising interesting
and creative ways to integrate qualitative and contextual data into the analy-
sis. Once a research project is defined with the articulation of a clear set of
goals, objectives, and research questions, the data scientist begins by system-
atically choosing the appropriate units of observation from which to collect
the data, the spatial scales at which they will be measured, and the variables
and means by which the data values will be assigned to those variables.

The field of spatial analysis is inspired by a strong logical positivist tradi-
tion that involves inductive and deductive reasoning, hypothesis testing, and



2 Spatial Analysis

model-building. It develops and advances geographical knowledge by inves-
tigating empirical events that occur in space, time, or both space and time. It
consists of one or more of the following activities: (1) the analysis of numeri-
cal spatial data, (2) the development of spatial theory, and (3) the construc-
tion and testing of mathematical models of spatial processes (Fotheringham
et al. 2000). Through spatial analysis, knowledge about spatial patterns and
processes can be obtained, a large-scale dataset can be separated into several
smaller components and meaningful information can be extracted, and a
set of hypotheses can be derived and tested, thus culminating in empirical
evidence. In addition, we can examine the role of randomness in generat-
ing observed spatial patterns of data, test hypotheses about such patterns,
account for spatial variability, measure spatial autocorrelation and the
underlying structure of the data, confirm the presence of outliers (if any),
provide information about the explanatory factors or determinants through
estimates of the model parameters, and provide a framework in which pre-
dictions can be made about the spatial impacts of various actions.

As an example, let us assume that you are working with a local food bank
agency, and efforts are underway to develop urban community gardens, a
new initiative deemed to be effective in combating food insecurity in urban
areas. A lingering concern in the community is soil quality with the strong
likelihood of environmental contaminants such as lead in the soil. To explore
this, a sampling design strategy is formulated to collect soil samples. Using
Global Positioning Systems, a total of 150 samples are taken from various parts
of the city. The samples are tested for lead contaminants along with other vari-
ables such as organic content, distance from major highways, soil moisture,
alkalinity, and so on. The data are integrated into a geographic information
system (GIS) with preexisting databases garnered through other devices such
as land use and land cover maps from satellite imagery, housing quality data,
roadways, and demographic data generated from the U.S. Census. As a geo-
spatial data scientist, how would you go about organizing and integrating the
soil quality data into the GIS? What are the key properties of the soil qual-
ity data? Are there any unique challenges associated with the spatial data?
Are the soil samples adequate and spatially representative of the study area?
What methods would be ideal for analyzing the dataset for presentation to
the food bank? These questions call for a comprehensive understanding of
the underlying spatial data structure, the data distribution, variable prop-
erties, and potential limitations that accompany a typical research project.
Spatial data structures consist of features such as points, lines, areal polygons,
surfaces, or other objects that may be associated with valuable geographical
information including potential records pertaining to other dimensions such
as time (Samet 1995). Each feature in the database is specifically associated
with locational information and the attribute value characterizing the nature
of the observation. As shown in Table 1.1, a number of methods have been
developed to handle point, line, areal, and surface data structures (Bailey and
Gatrell 1995). These data structures have a strong bearing on the methods of
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Understanding the Context and Relevance of Spatial Analysis 5

analysis. For example, a commonly used approach called point pattern analy-
sis is purposely designed to assess whether the geographic distribution of geo-
graphic points is random or not, and to describe the type of pattern so that it
can be used to infer about the underlying processes that are responsible for the
observed structure (Legendre 1993). Line pattern analysis is based on a topo-
logical approach to study a network of connections among points, and surface
pattern analysis is concerned with spatially continuous phenomena, where
one or several variables are attached to observation points, and each point is
considered to represent its surrounding portion of space (Legendre 1993).

From Data to Information, to Knowledge and Wisdom

Spatial analysis enables data scientists to utilize a specialized set of skills,
tools, methods, algorithms, and analytical strategies to better understand
the distributional patterns, events, and processes that are captured in spatial
and temporal data. Through spatial analysis, we can visually explore and
manipulate data, create subsets or stratify the data based on a set of mean-
ingful criteria, compare and contrast attributes that are measured across
various entities, and use the analytical findings to test hypotheses. Through
these endeavors, we derive new knowledge and gain substantial insights
that add to our spatial thinking and evidence-based line of reasoning. The
ongoing uses of geospatial technologies and methods produce cumulative
knowledge about events and processes, and ultimately the collective wisdom
to generate, support, or affirm an underlying theory. For example, we know
from empirical observations that cumulative exposures from particulate
matter and chemical sources place a heavy burden on the environment. If
this statement is true, the use of geospatial data technologies to study the life
trajectories of particulates and chemical sources may significantly advance
our knowledge and understanding of their potential impacts on human
health and the environment. Figure 1.1 shows a visual representation of data
transformation process. Throughout this book, we are going to learn how
spatial data can be transformed using different analytical strategies, meth-
ods, algorithms, or tools into valuable information, knowledge, and wisdom.

Spatial Analysis Using a GIS Timeline

The evolution of spatial analysis has been fueled by five major events: (1) the
1950s quantitative revolution in the United States, (2) trends in regional sci-
ence, (3) spatial statistics (including both geostatistics and stochastic mod-
eling), (4) computational techniques (geocomputation), and more recently
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A visual schematic to illustrate the transformation of data to information, and subsequently to
knowledge and wisdom.

(5) the emerging field of data science. Also noteworthy and of historical sig-
nificance is John Snow’s groundbreaking analysis of spatial patterns of the
1854 cholera outbreak around the Broad Street water pump in London. John
Snow’s work is a classic embodiment of this field, and the story of spatial
analysis cannot be complete without referencing his contributions.

When reviewing the trends and significant milestones over the course
of several decades, it is apparent that spatial analysis gained prominence
around the time GIS was created, mostly during the quantitative revolution
in the late 1950s and through the 1960s and 1970s. Early innovators consid-
ered the potential and impact of the quantitative revolution on GIS and spa-
tial analysis. The approaches in spatial analysis came under intense scrutiny
in the 1970s by behavioral and Marxist geographers and suffered a major set-
back. It was not until the 1990s that these approaches reemerged with strong
interest among geographers. Nelson (2012) in his review of Trends in Spatial
Statistics notes the four major developments since the quantitative revolution
as: (1) new data sources, (2) increased understanding and advancement in
spatial autocorrelation, (3) creation of local spatial methods, and (4) expan-
sion of spatial science beyond geography.
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One way of discerning the emerging trends and powerful influence of spa-
tial analysis in scientific research is through the number of articles published
between 1984 and 2012, showing the exponential growth in the uses and
applications of spatial analytical tools and technologies. This information
was compiled using a variety of sources. The Web of Knowledge that refer-
ences multiple databases had 12,710 search results based on the two key-
words (spatial analysis, GIS); Anselin’s 1993 article on Local Indicators of
Spatial Association (LISA) was the most cited with 1050 citations. Figure 1.2

Between 1995 and 2000
102 articles were published

An average of 17 articles
per year

Keywords: Spatial analysis, GIS
Source: Electronic publishing solutions multi-search engine
http://pinkerton.catchword.com, accessed on September 17, 2000

Returned 2,620,000 hits using

Google ) )
keywords (spatial analysis, GIS)

Scholar

Between 2001 and 2012
19,974 articles were published

Returned 12,710 articles using
keywords (spatial analysis, GIS)
Knowledge A period extending from

1984 to 2012

Web of

An average of 1665 articles
per year

Keywords: Spatial analysis, GIS, or spatial statistics
Source: Electronic publishing solutions multi-search engine
http://www.ingentaconnect.com, accessed on 01/16/2012

FIGURE 1.2
Trends in the uses and applications of methods in spatial analysis.
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presents the results of these searches. As demonstrated by these electronic
searches, there is substantial interest in spatial analysis using GIS. Going by
the mean number of published articles, there has been a significant increase
annually with 98 times more articles in 2012 than 1984. In addition, using the
key words GIS, spatial analysis (maximum hits), or spatial statistics, Google
Scholar returned 2,620,000 hits in 2012 on this topic alone. It is evident from
these articles that there is increased interest in GIS and spatial analysis in the
last two decades.

Summary of earlier published articles (1995-2000) related to spatial
analysis:

1995 (1 article)
Journal of Environmental Planning and Management (1 article)
1996 (18 articles)
Geographical Information Systems (Taylor and Francis) (12)
International Journal of Geographical Information Systems (3)
Journal of Multilingual and Multicultural Development (1)
Journal of Property Research (1)
Urban Studies (1)
1997 (25 articles)
International Journal of Geographical Information Science (16)
International Journal of Remote Sensing (7)
Journal of Environmental Planning and Management (1)
Urban Studies (1)
1998 (25 articles)
International Journal of Geographical Information Science (12)
International Journal of Remote Sensing (9)
Journal of Environmental Planning and Management (1)
Behavior and Information Technology (Taylor and Francis) (1)
International Journal of Water Resources Development (1)
Human Ecology (Plenum Publishing Corporation) (1)
1999 (17 articles)
International Journal of Geographical Information Science (10)
International Journal of Remote Sensing (2)
Journal of Sustainable Tourism (2)
Marine Geodesy (3)
Urban Studies (1)
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2000 (16 articles)
International Journal of Geographical Information Science (8)
International Journal of Remote Sensing (4)
Urban Studies (1)
Outlook on Agriculture (1)
Society and Natural Resources (2)
Process Safety and Environmental Protection (1)
Australian Geographer (1)

Spatial Analysis in the Post-1990s Period

Significant progress has been made toward the improvement of the spatial
analytical capabilities of GIS in the last 20 years. Many advanced spatial ana-
lytical routines, such as principal components analysis, spatial statistics and
geostatistics, and spatial regression have been incorporated into spatial sta-
tistical software applications largely through two ways: (1) tightly coupled
systems where spatial techniques are fully integrated in GIS software, for
example, ArcGIS, IDRISI, and Maplnfo; and (2) loosely coupled systems where
open source or off-the-shelf commercial software is loosely integrated with
statistical tools or models. Recent developments are predominately in the fol-
lowing areas: (1) spatial data mining and predictive analytics; (2) new methods
for analyzing very large-scale spatial datasets; (3) geocomputation, algorithm
design, and development; and (4) bioinformatics, gene sequencing, and visual
and spatial analytic methods. Recent changes are also reflected in the publi-
cation of several articles and availability of sophisticated computer software.

Other notable developments in spatial analysis include the integration of
commonly used concepts and methods developed during the quantitative
revolution such as network analysis functions, spatial modeling, and spatial
metrics; impact of computing on spatial analysis; software engineering and
development; methodological developments and advances in topology and
geometry; data visualization; and new computing frameworks such as the
cloud (Nelson 2012).

The implications of such rapid changes have resulted in some confusion
and a clear lack of understanding of spatial methods. This book intends
to address these concerns. We hope to offer our readers the fundamental
concepts and tools required to master the knowledge and practice in spatial
analysis. We also plan to expose our readers to the potential pitfalls that
accompany the use of spatial methods given the increasing availability of
easy-to-use and user-friendly spatial statistical analytical software.

Another area that we plan to cover in this book is the rapidly growing field
of data science and CyberGIS. In the current era of big data and data-driven
decision making, data science is a game changing paradigm and one that
could potentially open up new possibilities and exciting avenues for spatial
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data analysis. This field of data science has evolved largely as an amalgam of
data-intensive disciplines, notably mathematics, statistics, computer science,
operations research, geomatics, physics, business intelligence, and more.
Terms such as “data deluge,” “data tsunami,” and “tidal waves” are being
used to describe the large-scale databases that are now readily on hand to
capture these activities in real time and address complex societal and scien-
tific research questions. Further, given the critical role of individualization
in big data particularly when it comes to managing the location and pat-
tern of movements, behaviors, and interaction of individuals in space, GIS
and spatial analysis lie at the heart of these recent developments. Traditional
technologies and analytical approaches are still valid and reliable, but there
is growing consensus that these are no longer efficient or effective enough
to harness the massive and valuable storehouse of information. The sheer
volume and rapidity at which the data are being generated these days, the
urgent need to preprocess and integrate the different sources, types, and
formats of data, and the fast turnaround time required to analyze and pres-
ent the results now require the development of new computational tools and
techniques. These emerging trends also call for a new cadre of data scientists
with a broader set of skills and competencies including the ability to work
in a collaborative environment with scholars from different disciplines and
analytical domains.

The emerging field of data science is central, for example, to our understand-
ing of the impact of social media networks on human activities. The social
media landscape features local to global content that is normally published
and shared through a large network of users. Social media users utilize the
platform to connect, communicate, play, or engage in e-commerce. However,
knowledge gaps exist in fully understanding human activities over social
media landscapes. This is further compounded by the rapid growth being
experienced in information technology (IT) and the increasing number of
users since 2007. IT services are rapidly diffusing into urban communities
at an increased rate and many people rely on these services for information
seeking and networking purposes. Also, the scale and volume at which data
is being generated from IT data centers on a daily basis on social media is
both extensive and intensive. The IT data centers offer unique opportunities
for data scientists to study human activities and behavior in never before
imagined ways. If successfully exploited, the analysis of large-scale datasets
generated from CyberGIS systems/data centers will increase our knowledge
and understanding of human activities over social media networks.

Although scholarly debates continue over ways to characterize, store, and
process big data, geospatial data scientists are more interested in the geo-
spatial attributes of such information, and the analytical possibilities that
lay ahead. Several challenges have been identified including the best prac-
tices for accessing, storing, integrating big geospatial data, maintaining con-
sistency in geographic metadata, standards, and protocols for maintaining
privacy and security, data curation and quality control, data processing,
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visualization, and analysis of results. In Chapter 8, we will elaborate on these
issues and discuss the geospatial data science approaches that are being
developed to meet the grand challenges.

Geographic Data: Properties, Strengths,
and Analytical Challenges

Geographic (or spatial) datasets, whether “big,” large scale, or small scale,
consist of quantifiable/qualitative information drawn from objects, people,
events, and other observational units that have a spatial reference. This spa-
tial reference may be explicit, as in an address or a grid reference, or it may
be implicit, as in a pixel in the middle of a satellite image. In the context of a
GIS, we typically have spatial objects and fields. Spatial objects refer to geo-
graphic features that can be represented using a vector model and fields are
geographic features that can be represented using a raster model.

A major strength that comes with using spatial data is that the data repre-
sentation can take the form of many levels. At the conceptual level, we can
take a philosophical view that considers representation of the world through
spatial reasoning, spatiotemporal reasoning, and temporal reasoning. We
can also reason beyond the two-dimensional (2D) perspective by thinking
about representation in terms of three or more dimensions. At the logical
level, we have a GIS data model. This enables us to utilize a set of mathemati-
cal constructs to describe, formalize, and represent selected aspects of the
real world in a computer. Simply, these are the means through which we for-
malize the real world/geographic features into an abstract computer model.
As indicated above, the two commonly encountered models for representing
spatial data in a computer are the vector and raster models. These models
are formalized in a computer using mathematical models. Indeed, the for-
malization of continuous space (field-like geographic feature) is typically
encoded by approximations based on tessellations (Samet 1995; Egenhofer
et al. 1999), whereas noncontinuous space (object-like geographic feature)
is typically encoded with appropriate vector data structures. The GIS data
model will encode interactions and relationships through a set of constructs
between spatial and attribute information based on relations. These relations
could be topological (e.g.,, meet, intersect, near, contain), directional (e.g., left,
top, bottom, right or west, east, south, north) or metric spaces (e.g., distance
function). In general, the data models have certain fundamental character-
istics or functional relationships, which allow them to support vector and
raster data structures, geometric properties, algorithms, database structure,
and maps and coordinate systems. Fundamental topics and knowledge in
topology, geometry, algebra, and cognitive science guide the process of data rep-
resentation in a GIS (Figure 1.3).
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It must be noted that data structures are simply encodings that work
well in a computer setting. For the vector model, we have three basic types,
points, lines, or polygons, whereas in the raster model, we have an array
of pixels, grids/lattices organized in a matrix format of rows and columns.
At the computational level, we can implement the spatial data structure by
using features, feature classes, and raster datasets. In a spatial database, we
can represent both objects and fields; describe relationships between object
types and apply reference schemas; and specify data structures, algorithms,
and storage, retrieval, and search operations.

Key characteristics of spatial features are that they are irregular in shape,
and that there is a scale effect in all observed and measured spatial phe-
nomena. The types of representations, including their geometrical shapes
and properties, have a strong bearing on the conceptualization and formula-
tion of study hypotheses, and analysis of the spatial features. Specifically,
observed and measured spatial data have the following basic characteris-
tics: (1) variations in measured values, that is, large-scale variations change
slowly whereas small-scale variations change quickly/normally uneven; and
(2) similarity of measured observations at locations close together. The varia-
tions in a given spatial distribution exist at different scales and may depict a
low or high degree of spatial variations.

When starting out with the analysis of spatial data, there are key concepts
to take into consideration such as spatial scale, dependency, and proximity.
In addition, there are certain attributes that are unique to spatial data and
could single-handedly derail a study by influencing the accurate estimation
of the statistical parameters. These include the boundary problem (impact
of artificial or natural border lines on spatial distributions), the scale prob-
lem, the pattern problem (spatial autocorrelation), and the modifiable areal
unit problem (MAUP). When encountered in spatial analysis, these problems
may confound the underlying relationships within the spatial data struc-
tures and could result in systematic uncertainties in the derived estimates.
Following are descriptions of these concepts, the unique spatial data chal-
lenges they present, and their impact on research findings.

Concept of Scale

Spatial and temporal scales are central to better decision making and scien-
tific research because nature is so complex, with many processes occurring
at different scales. To capture these processes requires not only a scale that is
representative, but also an optimal scale through which different measure-
ments can be taken (Oyana et al. 2014). Scale can refer to any of the following:
cartographic/map scale (small, medium, large), magnitude of study (amount
of detail), geographic extent, accuracy (positional and attribute accuracy), and
measurement, process, and time scale. In this book, scale will be conceptual-
ized as the geographic extent and amount of detail in a study while account-
ing for spatial and temporal variability. It involves understanding all sorts of
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geographic divisions in your study area, and the accompanying parameters
both in terms of the socioeconomic and biophysical aspects. In ecological
settings, living organisms—human beings included—organize themselves
in patches or in some form of spatial structure. The interaction among liv-
ing organisms and the ecological processes depends on their immediate
environment. These processes may be nonrandom or random. Therefore, a
proper understanding of an appropriate scale for studying parameters in
such populations is significant if accurate results are to be obtained. Also, the
variation behind these processes could be due to numerous factors includ-
ing (1) time of the day—morning, afternoon, evening, or night; (2) climate—
winter, autumn, spring or summer, rainy or dry season, temperature;
(3) slope gradient—low, medium, or high; (4) feeding and reproductive habits;
(5) altitude—low, medium, or high; (6) directional influences—angle of the
sun/the intensity of the sun and wind; and (7) presence of food or water
bodies. Knowledge of these factors and related processes may help the data
scientist decide on the most appropriate scale for a given study:.

Concept of Spatial Dependency

The statistical conditions governing the parameter of a sample population under
investigation are normally based on two assumptions, namely, the degree of
independence of the parameter and whether the variance is identically distrib-
uted (Griffith and Amrhein 1997, Kleinbuam et al. 1998). Due to natural vari-
ability, these assumptions only hold for a population with a high degree of
certainty, and where the population is able to maintain the same variance. In
the real world, however, these assumptions may not hold. Natural processes are
normally dependent and occur in a random manner or they may occur simul-
taneously. For instance, as noted in an earlier example, living organisms in eco-
logical settings are organized in patches or some kind of spatial structure that
could result in spatial dependency (Legendre 1989; Legendre and Fortin 1989;
Oyana et al. 2014). This notion of spatial dependency is best captured in Tobler’s
tirst law of geography, which states that “everything is related to everything
else, but near things are more related than distant things.” Also noteworthy are
two key aspects of spatial dependency: (1) spatial variable dependency (spa-
tial autocorrelation and spatial correlation) and (2) spatial relations dependency
(spatial homogeneity and spatial heterogeneity). These underlying spatial
structures have major implications on how research problems are formulated,
data sampling, measurement, and how hypotheses are tested.

Concept of Spatial Proximity

The concept of spatial proximity is different from spatial dependency though in
most instances geographic features that are proximal to one another are more
likely to exhibit similarities and therefore spatial dependency. Notwithstanding
this, it is important to clarify the differences between the two concepts. In
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Measuring and analyzing spatial proximity

)%>: Runway @
NI/

ol

Main street (c)

FIGURE 1.4
A visual illustration of spatial proximity.

spatial data analysis, spatial proximity provides valuable knowledge and topo-
logical information regarding the relative location of points, lines, and areal
features in the database. It is a function of distance and the degree of connec-
tivity between objects, people, or places in the geospatial database. There are
several algorithms for computing spatial proximity with measures based on
linear distance, costs, time, and networks within the system. Spatial proximity
is an important concept that is woven into virtually every geographic analysis
that deals with spatial patterns, mobility, interaction, association, and diffu-
sion of people, objects, ideas, events, and processes. For example, in economic/
retail geography, the concept is used to study the agglomeration of firms, con-
duct site selection or trade area analysis, evaluate consumer behavior, delineate
activity spaces, and assess the diffusion of innovations or interchange of ideas
and knowledge. In medical geography, spatial proximity is used to study dis-
ease transmission patterns, model atmospheric dispersion of air pollutants, or
develop chemical plumes or footprints over which residents may be exposed
to environmental hazards. Examine the illustrations in Figure 1.4 and indicate
how you would apply the concept of spatial proximity.

TASK 1.1 SPATIAL PROXIMITY

We will now review three examples that show how we can measure
and analyze the concept of spatial proximity.

1. Suppose we are analyzing the effects of the takeoff or land-
ing of planes on a runway in a residential neighborhood. What
would be the impact on individuals living close to the runway?

(Continued)
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TASK 1.1 (Continued) SPATIAL PROXIMITY

A likely response to this problem would be that those resi-
dents living nearby will likely complain about ambient noise
exposure from aircraft taking off and landing. Specifically, the
noise distance—decay model may show that aircraft noise lev-
els decompose between 243 m and 250 m from the runways;
and the day or night sound levels will have a directional bias.

2. Suppose we are analyzing the effects of bird nesting in a habi-
tat near a river. What would be the impact on nests located near
the river?

A likely response to this problem would be that nests located
in a bird habitat that are in close proximity to the river may
have an increased source of nest-building materials, and access
to water and food resources.

3. Suppose we are analyzing the locational advantage of restau-
rants located near a main street. What would be the impact on
the restaurants located nearby?

A likely response to this problem would be that the impact of a
restaurant closer to a main street may be a change in the need
for parking spaces, increased human traffic, and increased
patronage and use of the restaurant. If the main street is a busy
roadway with human traffic, then it would likely result in more
business and higher profits.

Modifiable Areal Unit Problem

MAUP is a form of ecological fallacy associated with the aggregation of data
into areal units (Figure 1.5). It identifies problems associated with the parti-
tioning of spatial data (the “zoning problem”) or the size of the spatial units
on which the data are mapped (the “aggregation problem”). Both of these
spatial configurations can influence the statistical models, correlations, and
other statistical estimates generated from the data. Specifically, there are two
effects that could arise from MAUP, or the system of modifiable areal units.
First, MAUP could have a scale effect, which is the tendency for different sta-
tistical results to be obtained from the same set of data when the information
is grouped at different levels of spatial resolution (e.g.,, enumeration areas,
census tracts, cities, regions). Normally, the larger the unit of aggregation, the
larger, on average, the correlation between two variables. A second MAUP
effect, the aggregation effect, could result from different areal arrangements
of the same data to produce different statistical findings. Given these MAUP
effects, as geospatial data scientists, we cannot categorically state that the
results of our analytical studies are independent of the spatial units being
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Vgl

Effects of data aggregation on modifiable zonal units
and scale effects could lead to
inconsistencies in statistical results

\_//

FIGURE 1.5
A visual illustration of the modifiable areal unit problem that is a result of the effects of data
aggregation.

used; rather our results could be influenced by the configuration and size of
the spatial units. For example, in Figure 1.5, using the same variables in the
study of Chicago, the results data gathered from census block groups are
likely to be different from those produced at higher levels of aggregation
such as the census tract level, the community district level, or higher. As
such, the task of obtaining valid generalizations or comparable results from
multiple studies is extraordinarily difficult. Figure 1.6 presents commonly
used spatial units of analysis. One important piece to bear in mind when
using modifiable areal units is to study their effects.
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Spatial units of analysis—Hierarchical model

Socioeconomic units/administrative Environmental units

« Individual level-11th Watershed level-4th
« Household level-10th Subcatchment-3rd

e Sub-parish level (enumeration Catchment-2nd
areas, blocks, block groups, Basin—1st

ZIP codes, village, etc.)-9th
Parish level (Census tracts)—8th
Sub-county level-7th

County level-6th

State level (District)—5th
Sub-national level-4th
National level-3rd

Continent level-2nd

Global level-1st

Other spatial units: Pixel/grid size at different spatial
resolutions, Voronoi, etc.

FIGURE 1.6
Commonly used spatial units of analysis.

TASK 1.2 MEASURING AND ANALYZING THE
IMPACTS OF GEOGRAPHICAL SCALE

To further illustrate the MAUP concept, let us work through the ques-
tions below. Figure 1.7a depicts three options, or levels in which the
data derived for the same region can be aggregated.

a. Using Figure 1.7a, list which level is divided into the smallest
areal units.
From the illustration, Level 1 is divided into the smallest areal
units.

b. Using Figure 1.7a, list which level is divided into the largest
areal units.

From the illustration, Level 3 has the largest divisions.

c. Using the drawing tools in MS Word, redraw two different
zonal configurations using the Level 1 image as a base.

Level 1 can be redrawn and modified in many forms. Example
solutions are illustrated in Figure 1.7b.

d. Using Table 1.2, briefly describe the correlation results based
on the different spatial units.

(Continued)
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TASK 1.2 (Continued) MEASURING AND ANALYZING
THE IMPACTS OF GEOGRAPHICAL SCALE

The correlations between renters and owners are inconsistent
across different spatial units either due to a scale effect or zone
effect. We can observe that the value correlation is low at the
block group level (0.075) whereas it is high at the county level
(0.984). We can use this information to study the aggregation
effects.

Understanding the modifiable unit areal problem (MAUP)

T2
o=

.

FIGURE 1.7
(a) A visual illustration of aggregation of modifiable spatial units from Level 1 to
Level 3. (b) An example of a modified areal spatial unit, Task 1.2c solution.

(Continued)
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TASK 1.2 (Continued) MEASURING AND ANALYZING
THE IMPACTS OF GEOGRAPHICAL SCALE

e. Based on questions 1 through 4, define the modifiable unit
areal problem.

Recalling our earlier discussion, MAUP is a potential source
of error in spatial studies that use data aggregated into zones.
Delineated/aggregated zones are often done arbitrarily, which
will yield different correlation results; this is known as the zon-
ing effect. In addition, when data tabulated at multiple levels of
spatial resolution or multiple geographic scales in a nested hierar-
chy are analyzed, they may produce results that are inconsistent
across the various spatial scales. This is known as the scale effect.

TABLE 1.2

Statistical Relationships between Home Owners and Renters in the State of
Illinois Using the 2000 U.S. Census Data

N (# of
Partitioning Levels Spatial Units Observations) Renter vs. Owner?
Level 1 Block Groups 9843 0.075
Level 2 Census Tracts 2966 0.104
Level 3 County 102 0.984

Note: Analysis depicts the impact of geographic scale common in spatial units that are
created in an arbitrary manner.

ar is Pearson’s Correlation Coefficient.

Concept of Spatial Autocorrelation

The detection of spatial autocorrelation is very useful in spatial analysis,
identifying underlying data structures, the degree of spatial randomness, or
clustering in the data. For a given variable, spatial autocorrelation entails the
assessment of that variable in reference to the spatial location of the observa-
tional units. It measures the level, nature, and strength of interdependencies
among the data points (or observational units) within the variable both in terms
of space and the attribute under consideration. Point values over space or time
are described as autocorrelated variables if there is a systematic spatial /tempo-
ral variation in the variable when analyzing for a spatial/temporal pattern; this
phenomenon is said to be exhibiting spatial /temporal autocorrelation.

There are different levels of spatial autocorrelation (Figure 1.8). For exam-
ple, when a like value is adjacent to another, these values are described as
depicting a positive spatial autocorrelation; when dissimilar values are
adjacent to each other, they are described as depicting a negative spatial
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Positive spatial autocorrelation Spatially independent/neutral

Negative spatial autocorrelation

FIGURE 1.8
Different illustrations of the concept of spatial autocorrelation.

TASK 1.3 SPATIAL AUTOCORRELATION

Let us now apply our knowledge of spatial autocorrelation to the prob-
lem set below. We use Figure 1.9 to learn about this concept. This figure
depicts different patterns of spatial autocorrelation.
Based on the illustrations above, we can match each concept with its
corresponding letter:
a. Positively autocorrelated /clustered: It is “c,” where the areal unit
patterns are most tightly clustered and Moran’s I is close to or
equal to +1.

b. Negatively autocorrelated/dispersed: It is “a,” where the areal
unit patterns are the points mostly dispersed and Moran’s I is

close to or equal to 0. '
(Continued)
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TASK 1.3 (Continued) SPATIAL AUTOCORRELATION

c. Neither positively nor negatively/neutral/independent/ran-
dom: It is “b,” where the areal unit patterns are randomly dis-
tributed and Moran’s I is equal to 0.

d. Based on your own research interests, identify a variable that
is likely to be spatially autocorrelated. Will it be positively or
negatively autocorrelated? Explain.

In Medical Geography, one example of spatial autocorrelation can be
drawn from the distribution of a contagious disease such as the Ebola
virus that spreads through direct transmission of bodily fluids. A local-
ized outbreak that began in a small West African country (Guinea) in
December 2013 gradually spread to the neighboring countries of Sierra
Leone and Liberia. By the end of July 2014, nearly 1100 cases had been
reported resulting in 729 deaths, one of the deadliest outbreaks in the
history of the disease. A spatial analysis of the disease patterns would
reveal a strong positive spatial autocorrelation with the communities
close to the cross-border regions of these countries reporting higher
incidence and fatality rates than those that are further away.

Understanding spatial autocorrelation with Moran’s scatterplot

A 0

Moran’s [

Four quadrants
Low-high & 0 High-high
N L

2.567

LISA: Spatial lag
0
LISA: Spatial lag
ISA: Spatial lag
o
*
L]

0
P ¢ P AN

n .5 e . = 0

=) 0, =0 s, /g ‘ N N

o] . g Low—low™ 3 High-low

I
22581 0 39767 —L65AT 16781 -2.2581 o 2.9767
Observed tree heights (Z) Observed tree heights (Z) Observed tree heights (Z)

High-high, low—low = Spatial clusters
High—low, low—high = Spatial outliers

(@) (b) (©

FIGURE 1.9

A visual illustration of different patterns of spatial autocorrelation. From Task 1.3,
(a) Negatively autocorrelated, (b) Neither positively nor negatively autocorrelated, and
(c) Positively autocorrelated.
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autocorrelation; and when there is a realization of a genuinely independent
random process then this exhibition has no significant spatial autocorrela-
tion (neutral). The measures of spatial autocorrelation are primarily aimed at
testing whether a variable in one position is significantly dependent on that
same variable in other nearby positions.

Conclusion

The field of spatial analysis has been dramatically transformed over the
last two decades as new applications are added to the existing suite of tools
and technologies used to analyze geographic features. In this chapter, we
have explored the trends in the evolution of the field but also examined
the types and properties of spatial data, and the inherent challenges that
accompany their use. Following are a set of challenge exercises as well
as review and study questions that draw from key concepts and themes
introduced in the chapter. This is followed by a glossary of key terms used
in this chapter.

Challenge Assignments

TASK 1.4 WORKING WITH GEOGRAPHIC DATA
AT MULTIPLE RESOLUTIONS AND FORMATS

1. Suppose we are studying the impacts of land use and land cover
changes in the city of Chicago over the last hundred years.

2. Suppose we are conducting a study of residential and com-
mercial usage of broadband technologies in the city of Chicago
over the last 12 years.

a. List spatial datasets necessary to analyze studies (1) and
(2) in two separate tables. Include format, scale/resolution,
possible source of data, date of data collection, and sam-
pling framework used to collect the observations or type of
instrument/sensor used to record the data.

b. How would you standardize the spatial datasets to com-
plete the two studies?
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TASK 1.5 IDENTIFYING PROBLEMS THAT
ARE UNIQUE TO SPATIAL DATA

Earlier in the chapter, we presented a case scenario involv-
ing work with a local food bank agency to investigate the soil
properties in the community prior to implementing an urban
community garden initiative. Based on what you have learned in
this chapter:

1. How would you characterize the geographic features used to
collect the soil samples?

2. Describe the unique challenges that you are likely to encounter
when analyzing the soil data.

Review and Study Questions

1.

Differentiate between statistical and spatial analysis. Describe the
significant milestones in the development of spatial analysis.

. Since the quantitative revolution, what are the major activities and

innovations that have spurred the development of spatial analysis?

. Describe the properties of spatial data. What are the strengths asso-

ciated with the use of spatial data?

. Choose one of the following geographical concepts and explain its

role/impact on potential results derived from spatial analysis:
* Spatial scale

* Spatial proximity

® Spatial autocorrelation

* Modifiable areal unit problem

Glossary of Key Terms

Geographic vs. Spatial: The term geographic is typically used to refer to the

earth, its two-dimensional surface, and its three-dimensional atmo-
sphere, oceans, and subsurface whereas the term spatial refers to the
multidimensional frame that references data. For instance, medical
images are referenced to the human body, engineering drawings are
referenced to a mechanical object, and architectural drawings are
referenced to a building (Goodchild 1997).
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Geographic Information Science: The basic science that cultivates the use
of theoretical concepts and principles that inform and facilitate the
development of GIS technology.

Geographic Information Systems: Refer to the use of a computational
framework to present, store, manipulate, manage, visualize, ana-
lyze, and optimize spatial data. GIS technology can primarily be
identified using three well-known streams, which include location,
the use of computer-based technology, and application-driven/func-
tional aspects.

Geographic Visualization: Involves the use of computers to make sense
of spatial data by employing different graph encodings. It includes
three activities: exploration, analysis, and synthesis and presenta-
tion. It also entails the use of the cognitive domain to assess expres-
siveness and effectiveness of any data encoding and decoding
processes.

Logical Positivism: A way of thinking that evaluates the truth or falsity of
empirical knowledge/cause and effect statements; must be verifiable.

Paradigm: A set of assumptions, norms, thoughts, concepts, and values that
governs scientific work and process.

Spatial Analysis: Entails an examination of data that is associated with loca-
tion. It is a crucial analytical component of GIS. We can describe and
analyze the distribution of features or spatial patterns across the study
region. Through spatial analysis, we can understand the distribution
of certain characteristics associated with those spatial patterns.

Statistics: Helps with the collection and measurement of observations,
provides an analytical framework for explaining distributions,
providing estimates, and generating random numbers. When rep-
resentative observations are made they may provide supporting
evidence about these events.
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Making Scientific Observations and
Measurements in Spatial Analysis

LEARNING OBJECTIVES

1. Define successful strategies for spatial data collection.
2. Identify potential sources of spatial datasets.
3. Apply a sampling framework to collect spatial observations/events.

4. Successfully process and prepare spatial datasets for analysis.

The process of making scientific observations starts with an important real-
ization that naturally occurring phenomena and processes are very complex
and as data scientists, we must come up with simple and creative ways to
effectively measure and represent them. In spatial analysis, the strategies
for collecting and processing data are the keys to scientific success, and
many of these analytical strategies have been inspired by several schools of
thought. Chief among them are the logical positivists who recommend the
use of research designs that rely on direct observations with the help of our
senses, established protocols, artificial sensors, or instrumentation to vali-
date research hypotheses. While data generated from primary sources are
the most ideal in such designs, the increasing availability of secondary data
sources has made it possible for a variety of spatial analyses to be done using
computer programs and without necessarily conducting any taxing experi-
ments. The purpose of this chapter is to underscore the relevance of data col-
lection, how and why data are collected, potential gaps in the data collection,
and the accompanying processing needed to ensure quality and accuracy
in the observations. Studies that are carefully designed with the appropri-
ate mix of data and analytical strategies used for execution, analysis, and
interpretation will yield meaningful scientific conclusions and recommen-
dations. Studies drawn from reliable and scientifically valid measures are
often the ones that are easily verifiable and replicable, yielding a solid body
of evidence and new knowledge for use in policy formulation and scientific
decision making.

29
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Scales of Measurement

In both traditional statistics and spatial analysis, the choice of analytical meth-
ods used to address our research questions largely depends on the nature and
characteristics of the variables that are used to calibrate the naturally occurring
phenomena. Variables may be characterized by continuous or discrete data val-
ues, using quantitative or qualitative measures. The means by which we sys-
tematically observe and assign data values to these variables are referred to as
the scales of measurement. There are four commonly used scales of measure-
ments: nominal, ordinal, interval, and ratio. The first two (nominal and ordi-
nal) are qualitative scales and the last two (interval and ratio) are quantitative
scales of measurement. In a statistical context, measures that are recorded on a
qualitative scale are evaluated using nonparametric statistics whereas the mea-
sures recorded on a quantitative scale are evaluated using parametric statistics.

Nominal Scale

This is the simplest means of assigning data values to a variable. Most raw
datasets or ungrouped categories that are still in their original format fit this
description. A nominal scale describes the means by which ungrouped cat-
egories of data are evident without numerical reference. Descriptive or quali-
tative statements can be employed to identify such observations (Figure 2.1).
For example, people in Chicago may be classified in categories such as

FIFA World Cup 2014 Gender Direction
Group A  Group B Male North
Brazil Netherlands Female East
Mexico Chile South
Croatia Australia West

Cameroon Spain

Types of roads

Land use and land cover categories

Busiest ports

Street Water Shanghai, China
Highway Barren Singapore, Singapore
Lane Shrub land Hong Kong, China
Major Roads Vegetation Shenzhen, China
Freeway Wetlands Busan, South Korea
Avenues Developed Ningbo-Zhoushan, China
Interstate Forest Guangzhou Harbor, China
Super Highways Jebel Ali, Dubai, UAE
Interchange Rotterdam, Netherlands
Hamburg, Germany
Los Angeles
FIGURE 2.1

Examples of data recorded using the nominal scale.
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young, adult, or elderly; gender may be classified as male or female. Several
geographic objects are measured using this scale, for example, land use cate-
gories, types of zoning, vegetation types or biomes, and types of settlements.
Nominal scale variables may also have observed values that are classified as
dichotomous/binary using only two categories, for example, yes or no, either
one or zero, true or false.

Ordinal Scale

This is the second form of recording values for a qualitative variable that
involves the ordering of observations in rank order. Any organization of
observed values that is applied through some ordering or ranking normally
fits this description. This scale has both identity and magnitude properties,
and at times its use can result in strongly or weakly ordered observations
(Figure 2.2). Strong ordering refers to a situation in which the ranks are
assigned to observed values, whereas weak ordering occurs when individ-
ual observations are grouped into unique categories. For example, observed
values of household income can be grouped together as low, medium, or
high; or the weather can be described as being mild, moderate, or severe. In
weakly ordered observations, it is easy to differentiate between categories

Ordered/Ranked data

I

point | Cormbroduction| _rank __percent _point | SBJBBHUBHBRI rark _percent _point | NBSNBRGRGN ror« _percent
&

1
FIFA World Cu 2014 2 69920000 1 100.00% 64 12316500 1 100.00% 95 4748800 1 100.00%
4b 3 50 64128000 2 99.00% 10 11850000 2 99.00% 14 3146000 2 99.00%
4| = 62125000 3 98.00% s u7msw 3 ss00% B 2822400 3 ss.00%
Group A Group B 5| s 60027000 4 97.00% 3 11397500 4 97.00% 9% 2470000 4 97.00%
s 6 59202500 5 96.00% %2 10020500 5 %6.00% s7 2381400 5 96.00%
1. Brazil 1. Netherlands 7 10  as720000 6 osoo% 4o saei00 6 o &7 2308400 6 os00%
. X 8| s 49595000 7 sa00% s 7658700 7 sa00% o7 2257200 7 sa00%
2. Mexico 2. Chile s s 47564000 8 93.00% 37 7516600 8 s3.00% 3 2105600 s 93.00%
. . 10 1 45451500 9  92.00% 86 7374500 9  92.00% 67 2018400 9  92.00%
3. Croatia 3. Australia 1 s awsswo 10 swow 1 s do sioox 13 1600 10 sioox
4, Cameroon 4 Spain 12 37 44160000 11 90.00% 23 7160000 11 90.00% 73 1823100 11 90.00%
B . 13 19 43848000 12 89.10% 68 6683600 12 89.10% 58 1776600 12 89.10%
14 71 42596000 13 88.10% 26 6647000 13 88.10% 26 1757400 13 88.10%
15 54 42112000 14 87.10% 34 6360000 14 87.10% 33 1748700 14 87.10%
16 92 39474000 15  86.10% 54 5955000 15  86.10% 80 1675800 15  86.10%
17 46 36727500 16  85.10% 94 5952800 16  85.10% a1 1616600 16  85.10%
18 48 34760000 17 84.10% 83 5951700 17 84.10% 68 1581200 17 84.10%
19 94 34713900 18 83.10% 57 5940800 18 83.10% 1 1339200 18 83.10%
20 55 33539200 19  82.10% 96 5887600 19 82.10% 25 1299200 19  82.10%
2 33530800 2 sui0% a8 5508500 20 s110% 39 1296800 20 s110%
22 90 33160000 21 80.10% 56 5759200 21 80.10% 86 1192600 21 80.10%
2w 32939400 2 79.20% 2 5645400 2 79.20% s1 1157000 2 79.20%
Types of roads Land use and land cover categories Busiest ports
1. Super Highways 10. Water 1. Shanghai, China
2. Freeway 20. Barren 2. Singapore, Singapore
3. Interstate 30. Shrub land 3. Hong Kong, China
4. Highway 40. Vegetation 4. Shenzhen, China
5. Interchange 50. Wetlands 5. Busan, South Korea
6. Major Roads 60. Developed 6. Ningbo-Zhoushan, China
7. Street 70. Forest 7. Guangzhou Harbor, China
8. Avenues 8. Jebel Ali, Dubai, UAE
9. Lane 9. Rotterdam, Netherlands
10. Hamburg, Germany
11. Los Angeles

Examples of data recorded using the ordinal scale. All the groups have been assigned ranks
or ordered.
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but not within categories, whereas in strongly ordered observations it is easy
to differentiate between individual observations using assigned ranks.

Interval Scale

This is the third form of assigning data values to a variable using equal
intervals or defined intervals, for example, temperature or time. As a quan-
titative scale, it provides a more precise measurement of individual observa-
tions than the nominal or ordinal scales. It also has the properties of identity,
magnitude, and equal intervals. We can classify measurements of length and
height of buildings, the stem width and height of trees, height of the terrain,
road width and length, width and length of rivers, and age of individuals
using equal intervals (Figure 2.3). We can describe all of the measureable
attributes of a variable on this scale. An interval can be also established
between values measured for the buildings, trees, terrains, roads, and rivers.
This scale has a defined interval, for example, temperature or time. It is an
ordered, constant scale, but without a natural zero.

Ratio Scale

This is the fourth means by which one can record data values. The ratio
scale has all the qualities of nominal, ordinal, and interval scales plus the

Distribution of people at census-tract level ~ Year Average farm sales in millions ($)
45-115 1980
o 1981 15.59-46.68
1982 46.69-77.77
186-255 1983 77.78-108.85
256-325 1984 108.86-139.94
326-395 1985 139.95-171.03
396-465 1586 04202,
1987 171.04-202.12
466-535 1988 202.13-233.20
[ 536-605 %ggg I 233.21-264.29
I 606-675 1991 I 264.30-295.38
I 676-745 1992 I 295.39-326.46
B 745-815 %ggi B 326.47-357.55
I 816-885 1995 I 357.56—388.64

Heights (in meters) of buildings

in the city of Memphis Time

.
200 o b

130-140

FIGURE 2.3
Examples of data recorded using the interval scale.
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Ratio scale
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12633 40| 12310 43 27 21 0 31 49 94 6122 6364 722
12112 532 | 12660 51 2 58 6 33 107 95 6314 6623 737
13070 328 12941 46 29 33 1 33 97 138 6454 6726 722
13628 35.5| 13000 61 23 38 4 457 112 1162 6803 6892 934
14061 289 | 13982 35 14 46 0 57 107 176 6819 7422 M
1enac ‘E‘} 2 14024 221 21 20 n &n 178 177 7764 7007 o4n Y
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o« 4> 1 [E|S] 0outof 102 Selected)

FIGURE 2.4
Examples of data recorded using the ratio scale.

advantage of zero having a precise meaning when it is assigned to an obser-
vation. So the value of its origin or zero position indicates the absence of the
quantity being measured for a given object. This scale has identity, magni-
tude, equal intervals, and absolute zero properties. One can provide precise
measurements of length and height of a building, stem width and height of a
tree, height of the terrain, road width and length, width and length of a river,
weight of an object, and individual age. All of these measureable attributes
are attainable using this scale (Figure 2.4).

To further demonstrate the types of measurement scales and other data
considerations, let us review some of the best practices for spatial data col-
lection in Task 2.1 below. We will also learn how to construct deductive

TASK 2.1 BEST PRACTICES FOR SPATIAL DATA COLLECTION

* Determine whether your analysis requires the use of primary
data or secondary data sources. In a geographic information
system (GIS), most data are available in digital format.

* Understand the approaches to data collection.

¢ Identify appropriate methodologies and resources required for
data collection.

® Develop a solid data management plan (processing, manipula-
tion, sharing, access and storage, quality control measures).
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and inductive hypothetical arguments using the spatial dataset as an
example below. Having these practical skills will ensure greater success
in data collection and contribute further to our understanding of scales of
measurement.

Two Main Approaches for Data Collection That Involve Deductive
and Inductive Reasoning

Data collection approaches are guided by both deductive and inductive rea-
soning. Deductive reasoning entails evaluating the validity or soundness of
an argument that is logically derived from a set of generalized principles or
statements to arrive at a conclusion (i.e., general to specific). This is accom-
plished in spatial analysis when we use theory or theoretical foundation to
guide our research and derive a set of hypotheses. Deduction logic is applied
in the classical view of probability and in this type of reasoning, if the two
premises are valid and sound, then the conclusion is considered to be true.
An example of a deductive argument is noted as follows:

All wetlands have bird habitats
The city of Carbondale has a wetland
Therefore, the city of Carbondale has a bird habitat

Inductive reasoning entails making or evaluating generalized statements
based on specific statements (i.e., specific to general). In spatial analysis, we
can derive a set of general principles or a set of hypotheses from a sample of
specific observations, and use that information to develop a generalized set
of empirical conclusions. Inductive logic is applied in the relative frequency
interpretation view of probability. An example of an inductive argument is
noted as follows:

A bird habitat existence was confirmed in 90 percent of the wetlands in North
America

The city of Cairo has a wetland in the south

Therefore, the city of Cairo has a bird habitat

To demonstrate the two approaches, let us process an agricultural dataset
from the state of Illinois at the county level (Figure 2.5). Our goal is to apply
these concepts to formulate data-driven hypotheses. To do so, first, open your
Internet to access the database and paste the following link: http://www.
nass.usda.gov/Statistics_by_State/Illinois/index.asp. Review the metadata
for this dataset and then click on County Estimates to review Illinois County
Statistics by year.

Question: How many years of data are posted on this website? Knowing
this information helps us to better understand the temporal attributes of
the dataset. On review, we observe that numerous county-level agricultural
datasets have been posted on this website since 2005. We will explore the
2008 dataset, partly because this is when the U.S. economy experienced
significant recession, so it would be interesting to review its effects on the
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agricultural sector, specifically focusing on Illinois. This dataset is provided
in your textbook’s DVD under the Chapter 2 data folder (file name: Illinios_
cnty_agricultural _statistics.xIsx).

Question: In Table 2.1 below, fill in the missing information for the mea-
surement scales on which the factors/variables were recorded and field data
types for the attributes.

Now, open the Illinois_census_county.dbf either in MS Excel, ArcGIS, or
any statistical software. Use this attribute table to statistically evaluate any
of the four variables presented in Table 2.1. The goal is for you to under-
stand the quantitative data well enough to make deductive and inductive
logical statements using this information. Review and provide a list of scale
of measurements for any four selected variables of your choice. You should
also evaluate the minimum, maximum, mean, or median values of the
tield(s) of the four variables you have selected. It is acceptable to evaluate

2 NASS - lilinois Reports an< X P —— - 1

- C A  [) www.nass.usdagov/Statistics_by_State/lllinois/index.asp
Apps £ Home Stream [Stoc... [*) [} Commodity, stock,f.. [ EastAfrican Comm... [ FREE news updateo... [ Dy Trade Numbers:... [ Intuitive Trader @8 ArcGIS Resource

USDA. united states Department of Agricuiture
= National Agricultural Statistics Service

o OAE el BVT] |

I Publications | Data and Statistics : Census : Surveys i Help : Contact Us

You are here: Home / Statistics by State / Illinois

IliNOIS  oftice of usDA's NASS

| All NASS

| Want To...
o Advanced Search
et USDA's NASS Illinois Field Office is 5 s
o Search Tips Illinois,  operated in cooperation with the The Search for Ihinois Data and
Browse NASS e re Bureau of agricultural statistics, Tiinois i
by Subject Agriculture B0t N o Agriculture. = Contact the Ilinois Field
» Grops and Plants o © Subscribe to IL reports

5 Winois © Make sure I'm counted
Quick Stats (ag statistics by state and county) © Learn About the Illinois Field
» Economics and Prices The Quick Stats database application provides the most Office
up-to-date statistics for the U.S.,
» Environmental as well as all states and counties, including all revisions.
Press "more” to continue.
L TS More State Features
& “Census State Legislative
» Charts and Maps. More ® | pistrict Profiles
» Resoarch, Science
and Technology. © County Estimates

o Illincis Agricultural Overview
© Census of Agriculture for Illinois

» Education and Outreach

Statistics by State
lllinois More ()

| Select a Location v |
[ S News Ralsases ¥
Click here
For questions, comments and concerns, please email to respond online to
nace-ilmnace neda v ar eall (217) 4634705 FTAR

FIGURE 2.5
A screenshot of the website for downloading National Agricultural Statistics.

TABLE 2.1
Scale of Measurements and Database Data Types for Each Variable/Factor

Factor/Variable Scale of Measurements Data Type

WheatAcre Integer
SoyAcre

CornYield

GroupArea Nominal

RankCornProd
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TABLE 2.2

Basic Descriptive Data for Selected Agricultural Variables in Illinois from the 2010
U.S. Census Data (Illinois_census_county.dbf)

Variable Minimum Maximum Range
NO_FARMSO07 (Number of Farms) 73 1,622 1,549
AVG_SIZEQ7 (Average Size of a Farm) 45 885 840
CROP_ACRO7 (Acres of Crops) 6,388 647,350 640,962
AVG_SALE07 (Average Sales per Farm ‘000) 15.59 388.64 373.05

different statistical attributes of the field (e.g., percentile, and 95% confi-
dence limits). Be creative.

1. Using the Illinois_census_county.dbf file, sort each of the four variables
listed in Table 2.2 in ascending or descending order. The results of a
sorted information table would look like Table 2.2. Now, derive the
mean, standard deviation, and confidence intervals for these vari-
ables. We will cover this in detail in Chapter 3, but the mean shows
the spread and distribution of observations around their center
point whereas the standard deviation provides information about
the variations of observations in each variable. The confidence inter-
val captures the class width of the observations in each variable.

2. Make a statement regarding the agricultural data using the “deduc-
tive logic approach.”

Here is a sample hypothesis using the deductive logic approach: All counties
in Illinois have farms (since the minimum number of farms is 73). Jackson
County is located in the state of Illinois. We can therefore conclude that
there are farms in Jackson County.

3. Is the following statement an example of deductive logic? “All farms
have more than zero acres of crops. Tina’s Apples is an apple farm.
Therefore, crop acreage at Tina’s Apples is greater than zero.” This is
a deductive logic arqument because it uses a set of generalized statements
that all farms have more than zero acres of crops to arrive at the conclusion.

4. Make a statement regarding the agricultural data that is an example
of inductive logic.

Here is a sample hypothesis using the inductive logic approach: All counties
have between 73 and 1622 farms (a mean 753 farms). If we select 20 counties
randomly, we can expect half to have more than 753 farms.

5. Is the following statement an example of inductive logic? “10 percent of
Illinois counties have more than 376,178 acres of crops. Therefore, if we
randomly selected 10 counties from Illinois’s 102 counties, we would
expect nine of these counties to have less than 376,178 acres of crops.”
The statement is an example of inductive logic because it uses specific state-
ments to arrive at a general conclusion. The statement relies on the assumption
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that our sample is representative of the study population (farms per county),
and induces the result of the sample demonstrating the same patterns as the
population. Although the statement is an example of inductive reasoning, it is
likely that random sampling error may not support the stated conclusion.

Population and Sample

The problem set presented above raises an important question that often
comes up when designing an analytical project, namely the distinction
between a population and sample. In both deductive and inductive reason-
ing approaches, differentiating between these two is critical for drawing the
appropriate conclusions and inferences from the data. A population consists
of the entire collection of events, objects, or subjects that are being studied
whereas a sample consists of a representative portion or subset of those
events, objects, or subjects in a population of interest. Simply put, a sample
is a mirror image subset of a parent population. The central purpose of a
sample is to use it to make inferences about the population from which it was
drawn. A population of interest, denoted by the denominator in the standard
deviation as N, must be clearly and properly defined so that observations can
be obtained for the purpose of statistical analysis. On the other hand, when
computing the standard deviation for a sample, the denominator is given by
n —1 as the sample represents a subset of the larger population.

When collecting information for statistical purposes, we could use the
entire population or sample. Due to exorbitant costs and the feasibility of
conducting a large-scale study, at times, a sample is most appropriate. If a
sample is properly drawn from a population then it will contain the same
characteristics from it. However, for a sample to be valid, each event stands
the same chance of being selected and is independent of the selection of
another event in that population; thus, this strategy minimizes selection
bias. The descriptive measures that explain a population are called “param-
eters” whereas the ones that explain a sample are called “statistics.”

Sampling: This is the act of drawing a representative portion of a popula-
tion. It is primarily concerned with the selection of a subset of observational
units within a population with the intention of estimating its characteristics.
In geography, our primary goal is to sample across space or, in some studies,
we collect samples across space and time. Due to spatial and spatiotemporal
variations, an effective spatial sampling strategy requires that these factors
be taken into account. Given that sampling must meet the classical assump-
tions of randomness and independence in observations, we must take into
consideration the nature of geographic data on data collection when per-
forming analysis. It is, therefore, imperative to have a list of the elements and
characteristics of a population before a sample is drawn. A representative
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sample should capture the essence of these elements and its characteristics.
In having this knowledge of all elements and characteristics of a popula-
tion, we normally want to produce unbiased estimates, so we can use any of
the three types of random sampling methods: (1) simple random sampling,
(2) stratified sampling, and (3) sequential sampling.

A simple random sampling is most appropriate when each event within
a population has an equal chance of being selected and no subgroups are
evident. However, when dealing with subgroups and one identifies a strong
element of homogeneity within those groups, a stratified sampling approach
is recommended. This type of sampling entails splitting the population into
subgroups of interest and sampling each of the subgroups either sequen-
tially or randomly. Sequential sampling entails selecting observational units
in a population based on a specified interval. However, to minimize a selec-
tion bias in the sample, the first unit must be selected randomly before the
sequence is established.

Spatial Sampling

Spatial sampling refers to obtaining a representative sample of a study region
that reflects the spatial structure. When designing a scheme for spatial sam-
pling, several considerations must be made regarding the spatial dependency,
spatial pattern, temporal pattern, or spatiotemporal pattern of the data. In
addition to the three sampling designs mentioned earlier, we can draw sam-
ples using cluster sampling, transect sampling, or contour sampling. There are
four types of sampling units for spatial sampling: (1) point sampling, (2) area
sampling, (3) linear sampling (transect across the landscape), and (4) plotless
sampling (common in forest vegetation surveys). A detailed example of spatial
sampling that includes point, area, and linear sampling is given below. Two
specific examples of spatial sampling are offered: one for collecting physical
attributes of land cover and the other to support a health study.

Spatial Sampling Example 1: Suppose the central objective of our spatial
sampling design is to assess the variation of leaf area index (LAI) and photo-
synthetically active radiation (PAR) in the fragile mountain ecosystem of Mt.
Elgon located in eastern Uganda (Oyana et al. 2014; Oyana and Kayendeke
2015). To accomplish this objective, there is a justified need to collect repre-
sentative field measurements of LAl and PAR. We can design sampling pro-
tocols based on a systematic grid framework to collect LAI and PAR sample
data based on a high-resolution sensor LP-80 AccuPAR Ceptometer. This
instrument is a lightweight optical and portable PAR sensor and consists of
80 sensors, spaced 1 cm apart with a data storage capacity of 1 MB RAM (over
2000 measurements) and minimum spatial resolution of 1 cm. By measuring
light intensity above and below the vegetation canopy, it assesses PAR inter-
ception of canopy and calculates LAIL

The LAI sample data can be combined with Landsat Thematic Mapper™
images and any other high-resolution images to generate LAI maps. This
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sensor measures PAR and LAI from the crops in the field and structural
diversity of canopies in sample agricultural plots, which drives both the
within- and below-canopy microclimate, determines and controls canopy
water interception, radiation extinction, and water and carbon gas exchange,
and is therefore a key component of the biogeochemical cycles in mountain
ecosystems.

The study area is located within an area that can be divided into 1566 blocks
of area 1 km by 1 km in the Manafwa watershed (Figure 2.6). The study area
consists of 663 grids (the area sampling unit is based on a latitude/longitude
1000 m by 1000 m grid), so we can plan to have 28 sample agricultural plots, 11
in the lower catchment, and another 17 in the upper catchment. For the purpose
of standardizing the sampling approach, the southwest corner of each grid will
be taken to correspond to the intersection of the latitude/longitude lines. In
each grid, a sampling unit will be composed of four subsample plots, that is,
each sample plot/cluster will be composed of 36 microplots placed within a
sampling unit of 1 km?. Each sampling plot is expected to have one or more
crop classes/plant species due to the heterogeneous nature of cultivated crops
and vegetation. The plots are designed to cross the maximum possible varia-
tions within and between the classes and to monitor the crop and vegetation
dynamics. Each subplot measures 30 m by 30 m, and the subplots are located
250 m apart within the sampling tract. Within each subplot, nine 1 m transect

1 km
lechy
i
1 km Sample plot
Nafuimali I
ale Agric. Station
Legend
- Meters: Il ® Weather_Stations
0 4ms 820 16500 -Q?» — Manafwa_watershed
[ Manafwa_Watershed_outine g
Sampling_grid_tkm_by_tkm @
There were 176 grids within the lower Manafwa catchment; 30 ]
we expected 28 sample plots, 11 in the lower catchment
and another 17 in the upper catchment. We had two teams. €
One worked in the lower catchment and other worked 3
in the upper catchment. In each sample plot, we had 4 subplots « 4 Spr]OtS
and each subplot had nine 2 m microplots. So in every sample plot,
we had 36 microplots with LAl and PAl measurements. o
In total, we expected 1,008 microplots with in situ measurements. 120
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Nine 2 m transect lines/microplots. Five of them
along the main transect lines and four from the
opposite sides of the transect line in each subplot

FIGURE 2.6
A schematic overview of the sampling framework for in situ measurements.
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lines that are 7 m apart will be selected and used to measure LAI and PAR val-
ues. For all the subplots, we can sample a total of 1008 data points. This sample
design makes it possible to combine the LAI field data with remotely sensed
images at a range of spatial resolutions from 1 x 1 m to 1 x 1 km. Using this
sampling design, we can make in situ measurements of LAI and PAI values
at different spatial resolutions, two times (in the morning and afternoon) on
a daily basis over a 10-day period. In the study region, we can expect to find:

1. Differences in LAI and PAR (below and above canopy) estimates
between crops in the upper and lower catchments

2. Differences in LAI and PAR (below and above canopy) estimates
between efficiently managed agricultural fields and intensively cul-
tivated agricultural fields

3. Differences in PAR and LAI (below and above canopy) estimates in
agricultural fields close to stream flows, stable slopes, and forest stands

4. Differences in LAl and PAR (below and above canopy) estimates in
different biomes

5. Temporal differences in LAI and PAR (below and above canopy)
estimates.

The dataset can be linked to Landsat images and normalized difference
vegetation index (NDVI) vegetation profiles to assess the sensitivity of dif-
ferent crops over a period in the study area. The design can help advance
our understanding of the functionality of mountain ecosystems and biogeo-
chemical cycles.

Spatial Sampling Example 2: Another illustration of spatial sampling can
be drawn from a health disparities project. Suppose we want to determine
whether physical environmental factors play a significant role in influencing
health outcomes. We can employ GIS and advanced computational tools to
integrate, identify, and analyze spatial clusters of environmental stressors and
lifestyle risk factors that influence the prevalence and distribution of obesity
and type 2 diabetes over time. We can hypothesize that the prevalence of obe-
sity and diabetes is a spatiotemporal phenomenon, with clustering resulting
from the underlying spatial structure of the physical environment, together
with socioeconomic and demographic factors. Given that unsatisfactory
health outcomes have been reported in 10 states located in the southeastern
United States, a typical sampling strategy can be devised to investigate this
hypothesis. The sampling strategy could entail a benchmark model for two
states (Mississippi and Florida) at census-tract level that will be replicated in
eight other states in this region. Mississippi has been identified with exceed-
ingly higher burden of obesity and type 2 diabetes than Florida, so this can
be used to build our benchmark model. We will create a comprehensive case-
control study design with Mississippi and Florida serving as our cases and
controls, respectively, to accomplish our epidemiological study objectives.
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The study area for the above project includes the following states:
Alabama, Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi,
North Carolina, Virginia, and South Carolina (Figure 2.7). Together these
10 states have 1,316 counties and a total population of 71,221,706 (U.S. Census
Bureau). The race/ethnicity composition within these states shows a very
strong concentration of African-Americans and Hispanics (41% of the popu-
lation compared to 29% of the total U.S. population). The study area provides
a diverse population and unique neighborhood characteristics that will be

Study population in 10 states — 71,221,706
Total land area in 10 states =9 526,364 sq. miles
Five-year average obesity over 10 states—28.6%
Five-year average diabetes:
Highest—$10.9%(Mississippi)
Lowest =97.7%(Virginia)

Map only provides the prevalence
rates (%) for obesity

Virginia
254

Georgia

Benchmark
states

0 70 140 280 420 560

[ == liles

Population in benchmark states —p 21,489,965
Total land area for benchmark states — 114,184 sq. miles
Five-year average obesity —p 28.5%
Five-year average diabetes:
Mississippi =910.9%
Florida — 9,29

FIGURE 2.7
Study area map of case-control study design for obesity and type 2 diabetes.
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used to create baseline health information that will be used to explain dif-
ferences in adverse health outcomes. We can randomly sample 10% of the
households in Mississippi and Florida at census-tract level to be our target
population. Using the target population, a 45-minute questionnaire survey
instrument can be administered to support this epidemiological study. The
questionnaire will be systematically administered to collect self-reported
measures of health and physical activities from the sample population. The
sample population data can be supplemented with five sets of existing sec-
ondary datasets outlined below.

Data description of five sets of relevant data for the epidemiological study:

1. Neighborhood demographic data from the U.S. Census Bureau.

2. Boundary data and other relevant layers from the Florida Geographic
Data Library and Mississippi Geospatial Clearinghouse, respectively.

3. Individual-level data on health outcome and physical activity: The
data on self-reported anthropometric measures (height and weight),
and other health outcomes are from two national surveys: the
Behavioral Risk Factor Surveillance System (BRFFS) and National
Health and Nutrition Examination Survey (NHANES). Both surveys
have adequate information that can be used for the calculation of the
prevalence of obesity and type 2 diabetes. The BRFSS collects data
on health risk behavior, preventive health practice, and health-care
access for adults aged 18 years and older in the United States. The
census-tract level benchmark model can be built based on this data-
set. The NHANES provides health and nutritional status of adults
and children in United States. The physical examination data consist
of medical, dental, physiological measurements, and laboratory tests.
The body mass index (BMI) measure will be created and categorized
as “normal weight” if individuals’ BMI is between 18 and 24.9, “over-
weight” if their BMI is between 25 and 29.9, and “obese” if their BMI
is greater than 30. Individuals will be considered to have diabetes
if they responded “Yes” to the question, “Have you ever been told
by a doctor that you have diabetes?” We will assess physical activ-
ity using BRESS/NHANES questions, for example, type of physical
activity, distance in miles, how long. Individuals who reported that
they did not engage in any of these activities over the past month
will be considered inactive.

4. Built environment data: Food environment data from InfoUSA, Inc.
(Omaha, Nebraska) and Dun and Bradstreet, Inc. (Short Hills, New
Jersey).

5. Remote sensing data and existing products: Remotely sensed data in
the form of aerial photographs and satellite images can be compiled,
including (1) orthoimagery, which will provide an aerial view and
spatial perspective of neighborhoods and can be obtained from the
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National Agriculture Imagery Program with 1 m spatial resolution;
(2) elevation, 3 and 10 m resolution from the U.S. Geological Survey;
(3) The 1992 and 2001 National Land Cover Dataset and Light Detection
and Ranging (LiDAR) for land cover and elevation, which is useful for
3D/4D visualizations; and (4) combined high-resolution multispectral
data (IKONOS, QuickBird, LiDAR, hyperspectral images) to extract
sidewalk inventory data.

Having introduced the two examples of sampling strategies above, let
us now examine how to process a specific spatial dataset and learn how to
describe the statistical or spatial distributions in a sample or a population.

TASK 2.2 PROCESSING A SPATIAL DATASET

Attribute processing is a common task when preparing a spatial dataset
for analysis. Most spatial datasets are available in unstructured, semi-
structured, or structured formats. Thus, a lot of time is normally spent
in preprocessing the dataset. Once the dataset has been processed, one
has to review or check for accuracy. Due to the availability of modern
computing systems and citizen sensors, spatial datasets are constantly
being generated and archived in large data warehousing.

As an example of processing archived spatial datasets, let us analyze
the 2008 Illinois Agricultural Statistics obtained earlier from the Illinois
Department of Agriculture, U.S. Department of Agriculture (http://
www.nass.usda.gov/Statistics_by_State/Illinois/index.asp). The data-
set was tabulated at the county level and made available in a PDF for-
mat and posted on this website. Several processed datasets related to
this chapter are stored in Chapter2_Data_folder (lllinois_census_county,
Agricultural_Exported_GlSdataset, Illinois_cnty_agricultural _statistics,
and agricultural regions). Feel free to explore these datasets on your own.
The preprocessing of the dataset was undertaken as follows:

The data were downloaded; the tables were extracted from the PDF
document, and these were then converted to MS Excel. The columns
and rows were all cleaned up and formatted to a database format. The
key units for the agricultural data were acreage planted for all purposes,
acreage harvested for grain, yield per acre in bushels, and production in
bushels. Other relevant demographic and boundary data were obtained
from the U.S. Census Bureau. One file contains the spatial information
(Illinois_census_county) and another file has county-level attribute infor-
mation on Illinois agricultural statistics (I/linois_cnty_agricultural_statis-
tics). We will use this information to perform spatial analysis after doing
a bit of attribute data processing as outlined below.
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We will also learn how to draw different types of samples that have been
described in previous sections.

1. First, we should join the attribute table of Illinois_cnty_agricultural _
statistics to Illinois_census_county so that the information for agri-
cultural statistics is attached (use COUNTY_NAME and NAME as
common fields to join the tables). A visual illustration of common
fields and other attribute table concepts is provided in Figure 2.8.
Next, let us export the joined dataset (agricul _ILL_stats.shp) to make
it permanent. You may also export it as a database file (Agricultural_
Exported_GISdataset.dbf).

2. To find out the top/largest and bottom/smallest producers of corn,
soybeans, and wheat in Illinois, we will need to summarize the
agriculture statistics (i.e., average sales, acreage, yields, and pro-
duction) in ArcGIS using the nine reporting agricultural statistics
districts based on the Group or GroupArea field in the attribute
table. You will see that the top producers are the following: for
corn, it is Mclean County; for soybean, it is Mclean County; and for
wheat, it is Washington County. Hardin, DuPage, and Rock Island
counties produced the least corn, soybean, and wheat, respec-
tively, statewide. Corn production is highest in the northern half
of Illinois, with the exception of the greater Chicago area. Soybean
production seems to be higher in the west-central portion of the
state, with low production areas in the south and northwest. Wheat
production is highest in the southern half of the state. The reason
why Illinois is a corn and not a soybean state is due to favorable
growing conditions, the use of corn for the production of ethanol
gas, and a comparative advantage. If we review the summary table
of key agricultural statistics, we would be able to comment on the
distribution of agricultural production across the state of Illinois
(Table 2.3).

3. From the Excel spreadsheet, using Rank and Percentile we can
sort corn production, soybean production, and wheat produc-
tion in the state of Illinois (see screenshots in Figures 2.9 through
2.12). Using this approach, we can describe their distribution as
follows:

a. There are 21 records in the 80th percentile and above for corn,
soybean, and wheat production (Figure 2.9).

b. There are 30 records between the 50th and 80th percentile for
corn, soybean, and wheat production (Figure 2.10).
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Spatial Analysis

c. There are 30 records between the 20th and 50th percentile
for corn and soybean, and 19 records for wheat production

(Figure 2.11).

d. There are 21 records at or below the 20th percentile for corn
and soybean production, and 32 records for wheat production
(Figure 2.12). Note that there are more than 30 counties with a
zero value for wheat production. Your turn: List the counties
with zero values for wheat production.

TABLE 2.3
A Summary of Agricultural Statistics by Group Area
Average Corn  Soy Wheat Corn Soy Wheat
Group Area Sale Acreage Yield Yield Yield Production Production Production
Central 211.81  268,748.91 194 51 32 31,090,291 4,928,500 137,682
East 267.35 443,525.86 176 48 40 42985314 8,740,214 355,543
East Southeast 151.57  217,203.00 161 46 55 15,928,027 5,059,200 895,120
Northeast 18798 190,633.73 172 43 38 19,466,400 2,735,873 207,555
Northwest 217.65 27793617 183 47 46 31,217,692 3,342,658 178,825
Southeast 109.49 14143775 146 40 48 5,950,667 2,807,717 948,183
Southwest 9238  155,774.33 152 43 54 6,019,233 3,189,708 1,601,667
West 172.88  232,26822 189 49 21 24,961,278 4,316,656 298,444
West Southwest 167.01 253,813.15 170 47 53 22,472,862 4,260,969 760,431
A B C D E F G H 1 J K L

1 Paint GomProdustion Rank Percent Point Rank Percent Point Rank Percent

2 64 69920000 1 100.00% 64 12316500 1 100.00% 95 4743800 1 100.00%

3 50 64126000 2 99.00% 10 11850000 2 99.00% 14 3146000 2 99.00%

4 38 62126000 3 98.00% 63 11773500 3 98.00% 79 2822400 3 96.00%

5 63 60027000 4 97.00% 38 11387500 4 97.00% 96 2470000 4 97.00%

6 6 59202500 5 96.00% 92 10020500 5 96.00% 57 2381400 5 96.00%

7 10 49720000 5 95.00% 49 5326400 5 95.00% o7 2306400 6 95.00%

8 52 49595000 7 900% 9 7658700 7 9400% o7 2257200 7 %00%

9 83 47564000 8 93.00% 37 7516600 8 93.00% 3 2105600 8 93.00%

10 " 45451500 9 92 00% 86 7374500 9 92.00% 67 2013400 9 92 00%

11 98 44435500 10 91.00% " 7303400 10 91.00% 13 1976400 10 91.00%

12 37 44160000 " 90.00% 23 7160000 1 90.00% 73 1823100 " 90.00%

13 19 43848000 12 69.10% 68 6683600 12 89.10% 58 1776600 12 69.10%

14 m 42596000 13 88.10% 26 6647000 13 88.10% 26 1767400 13 86.10%

15 54 42112000 14 87.10% 34 6360000 14 87.10% 33 1748700 14 87.10%

1 a2 38474000 B a610% 5 5955000 15 8610% 80 1675800 15 8610%

Y, 46 36727500 % 8510% “ 5952600 16 8510% 4 1616600 % 8510%

18 48 70000 7 aei0% 8 5951700 17 8410% 6 1581200 7 ae0%

19 94 34713900 18 83.10% &7 5940800 18 8310% 1 1339200 18 83.10%

20 85 33539200 19 82.10% 98 5887600 19 8210% 25 1299200 19 82.10%

21 102 33536800 20 81.10% 48 5808800 20 81.10% 39 1196800 20 81.10%

22 90 33160000 pal 80.10% 56 5759200 21 80.10% 86 1192600 pal 80.10%

23 62 32933400 22 79.20% 62 5648400 22 79.20% 61 1157000 22 79.20%
FIGURE 2.9

Screenshot showing the 80th percentile and above for corn, soybean, and wheat production.
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E F G H 1 ) K L M N (o] P
1 Point ComProduction  Rank Percent  Point Rank Percent  Point Rank Percent
22 90 33160000 21 80.10% 56 5759200 21 8010% 86 1192600 21 8010%
23 62 32939400 22 7220% 62 5648400 22 T220% a1 1157000 22 T220%
24 86 32703300 23 78.20% 6 5635000 23 T820% 2% 1152900 23 T320%
25 56 32106500 24 T720% 2 5594700 24 TT20% 75 1079700 24 T71.20%
26 34 31559000 26 76.20% 102 5432400 26 76.20% &3 924600 25 76.20%
27 68 31240600 26 7520% 46 5428500 26 T520% 38 903000 26 T520%
28 23 30139200 27 7420% 40 5425200 2T T420% 56 894000 2T T420%
29 29 28911400 28 73.20% 74 5415000 28 7320% 40 886600 28 73.20%
30 69 28880000 29 7220% 15 5305000 29 T220% 34 882000 29 T220%
31 89 28315000 30 7120% 27 5296500 30 71.20% 99 869400 30 7120%
32 66 27878400 31 70.20% 87 5280800 I T0.20% 30 841800 3 T70.20%
33 8 27380000 32 69.30% 69 5231200 32 6930% 60 742400 32 6930%
34 74 26591200 33 6830% 55 5217300 33 6830% 24 689000 33 6830%
35 27 26232500 34 67.30% 97 5203800 34 6730% 17 628300 34 67.30%
36 60 24770200 36 66.30% 90 5179200 36 66.30% 63 591600 36 66.30%
37 75 23777000 36 6530% 13 5067600 36 B530% T 518700 36 6530%
38 32 23218000 37 64.30% 4 4995000 37 B430% 31 501500 37 6430%
39 72 22833600 38 63.30% 29 5926600 38 63.30% Il 483000 38 63.30%
40 21 22808400 39 6230% 79 4783500 39 6230% &4 464800 39 6230%
41 88 22451800 40 6130% 80 4780600 40 61.30% 101 448000 40 6130%
42 59 22300400 41 60.30% 58 4752000 41 60.30% 27 439200 41 60.30%
43 1 22212900 42 59.40% 25 4627600 42 5940% 82 416000 42 5940%
44 20 20083800 43 59.40% 12 4600000 43 5940% 12 394400 43 59.40%
45 15 20077000 44 57.40% 19 4540800 44 5T40% 42 384000 44 57.40%
46 9 18330000 45 56.40% 66 4540800 45 56.40% 65 379600 45 56.40%
a7 36 18208500 46 5540% 99 4429800 46 5540% 18 371700 46 5540%
48 70 17748000 47 54.40% 17 4312000 47 54.40% 11 338100 47 54.40%
43 H 17601200 48 83.40% 1 4169700 48 53.40% 19 336800 48 63.40%
50 45 17427600 49 5240% 20 4037600 49 5240% &9 330000 49 5240%
51 99 17399100 50  5140% 3 4005000 50 5140% 45 326800 50 5140%
52 65 17285400 81 50.40% 62 3960600 81 50.40% & 303400 61 60.40%
53 12 16480800 52 59.50% 73 3956000 52 5950% 85 292500 52 56950%
FIGURE 2.10
A screenshot showing between the 50th and 80th percentile for corn, soybean, and wheat
production.
E F G H 1 ) K L M N o P
1 |Point ComProduction  Rank Percent Point _Rank Percent _ Point _Rank Percent
52 65 17285400 51 50.40% 52 3960600 51 5040% 6 303400 51 5040%
53 12 16480800 52 49.50% 73 3966000 52 49.60% 8 292500 52 49.50%
54 63 16274000 53 48.50% 33 3912000 53 4850% 2 291400 53 4850%
55 47 16752000 54 47.50% 3 3807000 54 4750% 98 259200 54 ATE0%
56 101 15640800 55 46.50% 51 3751500 55 4650% 9 226800 55  4650%
57 26 16184000 56 4550% 4 3748000 56 4550% 4 222000 56 4550%
58 57 15174500 57 44 50% 98 3601800 57 4450% pal 199800 57 4450%
59 43 15126400 58 4350% 72 3572400 58  4350% 61 186000 58 4350%
60 25 14586300 59 42.50% 32 3539100 59 4250% 8 179400 53  4250%
61 40 14128000 60 41.50% 75 3526000 60  4150% 100 178400 60 4150%
62 95 13497000 61 40.50% 70 3432300 61 4050% 91 169600 61 4050%
63 4 13401700 62 39.60% n 3271500 62  3960% 55 162400 62 3960%
64 84 13229600 63 38.60% 88 3264800 63  3860% 59 149100 63 38.60%
65 14 12762900 64 37.60% 67 3220000 64 3760% 70 112000 64 37.60%
66 87 12167500 65 36.60% 59 3192600 65  36.60% 83 100800 65 36.60%
67 81 12151200 66 3560% 28 3188000 66 3560% 50 94500 66 3560%
68 17 12136000 67 34.60% 60 3180100 67 34.60% 88 81000 67 34.60%
63 42 11556700 68 33.60% 39 3147600 68  3360% 78 78000 68 3360%
70 96 11294200 69 32.60% 89 3087000 69 3260% 32 65000 69 32.60%
n 18 11050000 70 31.60% 18 3058000 70 3160% 81 64500 70 3160%
72 30 10475400 Ll 3060% 65 2865600 71 3060% 4 0 Il
73 97 10320000 72 29.70% 30 2857700 72 2970% 5 0 m
74 85 8881500 73 2870% 93 2692800 73 2870% 7 0 m
75 80 8580000 74 27.70% 36 2514300 4 2770% 10 0 ™
EI 3 8347600 75 26.70% 9 2430400 75 2670% 15 0 m
77 51 8184400 76 2570% 82 2392000 76 2570% 16 0 m
78 78 8131500 77 2470% 42 2373500 T 2470% 20 0 m
79 5 8116800 78 23.70% 47 2335900 78 23.70% 22 0 Il
80 58 8066000 79 2270% 84 2281600 79 2270% 23 0 m
81 ] 7919200 80 21.70% 8 2082500 80 21.70% 29 0 il
82 93 7276500 81 20.70% 81 2054400 81 2070% 35 0 l 0.00%
83 13 7049000 82 19.80% 45 1922800 82 19.80% 36 0 Il 0.00%
FIGURE 2.11

A screenshot showing between the

productio

n.

20th and 50th percentile for corn, soybean, and wheat
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E F G H 1 J K L M N o P

1 |Point GomnProduetion  Rank Percent  Point Rank Percent  Point Rank Percent

72 30 10475400 71 30.60% 65 2865600 71 30.60% 4 0 Ll

73 a7 10320000 72 2970% 30 2857700 72 2970% 3 0 7

7 85 8881500 73 28.70% 93 2692800 73 2870% 7 0 Ll

75 80 8580000 T4 2770% 36 2514300 74 2770% 10 0 7

76 3 8347600 75 26.70% 9 2430400 75 2670% 15 0 Ll

77 51 8184400 76 2570% 82 2392000 76 2570% 16 0 7

78 78 8131500 T 2470% 42 2373500 T2470% 20 0 Ll

79 5 8116800 78 2370% 47 2335900 78 2370% 22 0 7

80 58 8066000 79 2270% 84 2231600 79 2270% 23 0 Ll

81 79 7919200 80  2170% 8 2082500 80 2170% 29 0 71

82 93 7276500 81 20.70% 81 2054400 81 20.70% 35 0 i 0.00%
83 13 7049000 82  19.80% 45 1922300 82 19.80% 36 0 7 0.00%
84 67 6884700 83 16.80% 63 1821300 83 18.80% a7 0 Ll 0.00%
85 33 6816000 84  17.80% 85 1804300 84 17.80% 43 0 7 0.00%
86 73 6555400 85  16.80% 101 1747200 85 16.80% 44 0 Ll 0.00%
87 82 6053800 86  15.80% 24 1717300 86 15.80% 46 0 7 0.00%
88 28 4870600 87  14.80% 4 1587600 87 14.80% 47 0 Ll 0.00%
89 41 4755300 88 13.80% 43 1569500 88 13.80% 48 0 7 0.00%
90 24 4498200 89 12.80% 7 1457400 83  12.80% 49 0 Ll 0.00%
91 39 3877600 90 11.80% 61 1396000 90 11.80% 52 0 7 0.00%
El 61 3685200 91 10.80% 2 1192000 91 10.80% 54 0 Ll 0.00%
93 T 3236100 92 9.90% 3 1187700 92 9.90% 62 0 7 0.00%
94 7 2622400 93 8.90% 100 1068600 93 8.90% 64 0 Tl 0.00%
95 91 1955800 94 7.90% 78 1045000 94 7.90% 66 0 7 0.00%
96 100 1750000 9  6.90% 9 896800 9%  6.90% 69 0 Tl 0.00%
97 49 1228200 96 5.90% 76 624200 96 5.90% 72 0 7 0.00%
98 2 1152000 97 4.90% 44 620100 97 4.90% 76 0 Tl 0.00%
99 44 1086300 98 3.90% 7 576000 98 3.90% 90 0 7 0.00%
100 76 1026800 99 2.90% 50 268600 99 2.90% 92 0 Tl 0.00%
101 22 693800 100 1.90% 16 253600 100 1.90% 93 0 7 0.00%
102 16 560000 101 0.90% 35 72700 101 0.90% 94 0 Ll 0.00%
103 35 331000 102 0.00% 2 62700 102 0.00% 102 ] 7 0.00%

FIGURE 2.12
A screenshot showing less than the 20th percentile for corn, soybean, and wheat production.

TASK 2.3 DERIVING A SAMPLE FROM A SPATIAL DATASET

As noted earlier, the adoption of an effective sampling strategy can
help in achieving a cost-effective, representative population sample for
spatial analysis. Spatial sampling requires that one covers space or time
periods that accurately represent the population. When a sample is rep-
resentative, conclusions can be generalized to the population and also
unbiased estimators with confidence intervals with known precisions
can be derived. In this task, we will examine simple random, stratified,
systematic, and two-stage sampling designs. We will use these designs
to create or draw a representative sample.

To complete the sampling task we will need agricul ILL_stats.shp
located in Chapter 2 data folder. We will use the agricul _ILL_stats (.dbf)
attribute table to draw 34 samples from 102 counties based on different
sampling designs. We will compile and save each of the samples for
further analysis in Chapter 3.
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1. We can select 34 samples using a simple random sampling strategy
(use CO_FIPS as your field). Here is a list of 34 County FIPS gener-
ated using a simple random sampling strategy: 099, 081, 195, 061, 111,
031, 165, 029, 025, 153, 031, 137, 143, 093, 069, 173, 127, 149, 087, 109, 055,
091, 093, 143, 163, 053, 117, 119, 043, 079, 099, and 149.

. We can select 34 samples using systematic sampling with a random
strategy. This can be accomplished either in MS Excel or ArcGIS. We
need to carefully select the first sample to minimize any potential
selection bias. We have selected CO_FIPS #63 as our first one so we
can now select every third county after this.

a. If you wish to generate your own starting point you can ran-
domly generate 102 integers using MS Excel (formula: “= RAND
O*MAX-MIN)+MIN,” that is, “RAND ()*(102-1)+1,” hit ENTER
key to refresh and generate a new number) or simply use this
website: http://www.random.org/integers/. To be truly random
use every third count in the list of numbers generated at this
website as representative of CO_FIPS. Here is a list of 34 County
FIPS generated using systematic sampling with a random strat-
egy: 063, 113, 001, 147, 123, 187, 203, 037, 093, 129, 169, 041, 035, 083,
027, 189, 145, 165, 003, 103, 201, 199, 069, 183, 045, 139, 173, 023, 005,
163, 081, 181, 007, and 099.

. Using ArcToolBox, we can “create random points” using the out-
line of Illinois as a constraining polygon. Go to Data Management
Tools, select Feature Class, then Create Random Points, change Output
Location to your desired workspace, provide a name for the Output
Point Feature Class, select the Constraining Feature Class as agricul _ILL_
stats.shp, and set the Number of Points for each county as four. Such
a spatial sample would look like the results presented in Figure 2.13
(data file: randompoints2.shp). Assuming each of the points represent
farm locations in each of the counties, they can be used to collect
additional data for spatial analysis.

. There are nine spatial regions/subpopulations used for reporting
agricultural statistics districts. These will be used to stratify Illinois
and in each stratum a sample will be drawn randomly using a two-
stage sampling design process. First, we determine the number of
observations in each subpopulation/stratum (Table 2.4). Second, we
randomly draw 34 samples from each of the nine spatial regions
using sample size percentage (Table 2.4).
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FIGURE 2.13
Randomly created individual-level points (four per county). There are a total of 408 sampling
points that could be used to collect additional data for spatial analysis.

Based on the information presented in Table 2.4, we can draw a sample
that will meet the sampling requirements for the nine stratified regions
of agriculture in Illinois. Sampled results would look like the results in
Figure 2.14.
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TABLE 2.4
Pre-knowledge Information for Selecting a Representative Subpopulation
SD/
Average AVG_  Average Ave_ SD_ Ave_ Sample

Region Farm Size SIZE Sale CornPr*  CornPro®  SoyPro? Size? n
Southeast 355.25 211.27 109.49 5,950,667 3,520,053 2,807,717 6% 2
Southwest 288.9167 86.36 92.38 6,019,233 4,697,468 3,189,708 6% 2
East Southeast  332.6667 87.99 151.57 15,928,027 7,791,538 5,059,200 8% 3
Northeast 261.5455 143.45 187.98 19,466,400 19,254,662 2,735,873 9% 3
West Southwest  372.0769 83.94 167.01 22,472,862 13,957,201 4,260,969 12% 4
West 386.3333 47.16 172.88 24,961,278 9,927,454 4,316,656 12% 4
Central 411 87.13 211.81 31,090,291 14,890,301 4,928,500 13% 4
Northwest 334.3333 69.44 217.65 31,217,692 16,582,936 3,342,658 17% 6
East 474.2857 51.10 267.35  42,985314 14,736,666 8,740,214 17% 6

2 SD/AVG_SIZE/standard deviation average farm size, Ave_CornPr/average corn production, SD_
CornPro/standard deviation average corn production, Ave_SoyPro/average soybean production.
b Sample size (n) for each stratum must total 34 observations and it is derived in the last column.

A B c D E F G
1 Object D NAME STATE_NAME STATE_FIPS CNTY_FIPS  rand() Spatial regions
2 1520 Saline llinois 17 165 0.4461 Southeast
3 1361 Edwards lllinois 17 047 02629 Southeast
4 1378 Washington lllinois 17 189 05969 Southeast
5 1665 Alexander lllinois 17 003 08330 Southeast
6 1202 Effingham lllinois 17 049 0.5282 Eastsoutheast
7 1087 Coles lllinois 17 029 01504 Eastsoutheast
8 1160 Cumberla lllinois 17 035 0.3558 Eastsoutheast
9 3080 Coak lllinois 17 031 05022 Northeast
10 690 Grundy lllinois 17 063 0.9613 Northeast
11 3081 Kane lllinois 17 089 04188 Northeast
12 990 Cass lllinois 17 017 01553 Westsouthwest
13 1024 Sangamon lllinois 17 167 06557 Westsouthwest
14 1044 Morgan lllinois 17 137 0.5399 Westsouthwest
15 1048 Pike lllinois 17 149 0.0780 Westsouthwest
16 775 Warren lllinois 17 187 08233 West
17 973 Adams lllinois 17 001 0.1263 West
18 958 Schuyler lllinois 17 169 0.4498 West
19 993 Brawn lllinois 17 009 09562 West
20 763 Marshall lllinois 17 123 06751 Central
21 812 Woodford lllinois 17 203 02412 Central
22 (922 Mason lllinois 17 125 0.6238 Central
23 806 Pearia lllinois 17 143 09407 Central
24 721 Putnam lllinois 17 155 08678 Northwest
25 545 Jo Daviess lllinois 17 085 0.0766 Northwest
26 3062 Stephenson  lllinois 17 77 0.1494 Northwest
27 3078 Ogle lllinois 17 141 06848 Northwest
28 3098 Lee lllinois 17 103 04514 Northwest
29 3063 Winnebago  lllinois 17 201 09212 Northwest
30 788 Ford lllinois 17 053 0.8869 East
31 956 Piatt lllinois 17 147 01924 East
32 929 Champaig lllinois 17 019 0.5085 East
33 911 Vermilion lllinois 17 183 0.8846 East
34 786 Iroquois lllinois 17 075 0.1409 East
35723 Kankakee lllinois 17 091 0.7277 East

FIGURE 2.14
A screenshot of the sampled areas using a systematic sampling approach.
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Conclusion

In this chapter, we have explored the key fundamentals in spatial data design
including the measurement scales of variables, the distinction between pop-
ulation and sample, the types of sampling strategies, and steps toward pro-
cessing the spatial data once they have been secured through primary or
secondary sources. Having gained the practical skills in these areas through
the sample exercises given above it is now your turn to complete the chal-
lenge exercise given below.

Challenge Assignments

TASK 2.4 KEY STEPS IN SPATIAL STATISTICAL DESIGN

The keys to successful design and use of geographic data in a research
project are as follows:

e Knowledge of observations/phenomena/events.

* Review of data collection and sampling strategy.

® Review of scales of measurement.

e Knowledge of geographic scales and map projection.

¢ Knowledge of analytical frameworks to facilitate data analysis.
This includes the ability to explore, detect, and explain spatial
patterns plus a thorough grounding in the knowledge and rel-
evant skills of methods, tools, and systems.

Suppose we are asked to design a study to investigate the commuting
patterns of young working adults in the city of Chicago. Outline a point-
by-point research plan that covers the five points expressed in Task 2.4.

TASK 2.5 THE QUESTS FOR SPATIAL DATASETS

1. Search for two separate spatial datasets on the Internet that can
be used for spatial analysis in a specified application of particu-
lar interest to your work. The datasets must be spatially explicit
with at least six variables measured across the different mea-
surement scales. Once you have the appropriate spatial datas-
ets, make two deductive and inductive statements/arguments.

2. Due to different data reporting systems, inconsistencies in
records, and other sources of uncertainty, there are always gaps
in a dataset. Suggest two ways to address this common problem.
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Review and Study Questions

1.

Using examples of variables in your area of interest, describe the
four scales of measurement. What are the unique properties of each
scale?

. Distinguish between a population and sample. In a spatial statistical

data design, what are the benefits of compiling sample data (if any)
over entire population data?

. What is spatial sampling? Using examples from your research area

explain how you would go about conducting point, linear, or areal
sampling.

. What are the merits and demerits of simple random, stratified, or

sequential sampling?

. Distinguish between cluster sampling, transect sampling, and con-

tour sampling in spatial sampling strategy.

Glossary of Key Terms

Deductive Reasoning: The making of or the evaluation of the validity or
soundness of an argument that logically derives from a set of gener-

alized principles to arrive at a conclusion.

Hypothesis: This is simply the process of induction and deduction. A theory

is actually the basis for suggesting lots of testable hypotheses. It is
a prediction that expresses the expected outcome in any given situ-
ation; for example, there is a spatial association between surround-
ing pollution source(s) and persons with respiratory illness living
within a radius of 1000 m or persons with respiratory illnesses liv-
ing within a radius of 1000 m are geographically associated with
nearby pollution source(s). In experimental research, the hypothesis
is usually a prediction of how the manipulation of the independent
variable will influence the behavior of a dependent variable. There
are two types of hypotheses, the Null and Alternative, denoted as H,
and H, respectively.

Inductive Reasoning: The making of or the evaluation of generalized state-

ments based on specific statements.

Law: A verified statement with universal application or a generalized body

of observations.

Measurement Scale: The systematic means of defining variables by assign-

ing data values to the observations. The four scales (ratio, interval,
ordinal, and nominal) have unique properties that influence the
uses and applications of different statistical techniques.
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Model: A simplified/abstract representation of reality or an object or system.
It can be conceptual, statistical, or mathematical.

Theory: A coherent and replicable system of tested ideas or hypotheses or
evidence that explains a phenomenon.
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Using Statistical Measures to
Analyze Data Distributions

LEARNING OBJECTIVES

1. Understand basic statistical concepts and measures.
2. Generate and interpret descriptive statistics.

3. Generate and interpret descriptive spatial statistics.
4. Understand probability concepts and applications.

In Chapter 1, we mentioned that the field of spatial statistics draws from sta-
tistics, mathematics, and related disciplines. Several of the techniques in spa-
tial analysis are variants of traditional procedures used in these fields with
added dimensions and modifications to cope with the unique properties of
spatial data. The foundation for statistical measures and knowledge was laid
through the work of well-known statisticians (Varberg 1963; David 1998),
including Ronald Fisher (experimental design, analysis of variance, and likeli-
hood-based methods), Karl Pearson (Pearson’s chi-square test), Francis Galton
(correlation and regression), Gertrude Cox (experimental design), Frank Yates
(experimental design and Yates” algorithm), Kirstine Smith (optimal design
theory), John Tukey (exploratory data analysis and graphic presentation of
data), William Sealy Gosset (Student’s t-test), and George E. P. Box (experimen-
tal design, quality control, and time series analysis).

Knowledge of the means by which we organize spatial data using tradi-
tional statistical measures is therefore essential and useful for advanced anal-
ysis using geospatial techniques. Specifically, knowledge of key concepts and
theories in statistics such as descriptive measures, sampling, and probability
theories helps a geographer to (1) draw a representative sample, (2) assess the
state of a distribution in a group of observations, (3) compare groups or obser-
vations, (4) explain observations, (5) identify and test explanatory variables, (6)
predict estimates, and (7) analyze uncertainty. Statistical approaches may be
grouped into univariate or multivariate methods depending on the number of
variables used to address the research questions. Techniques that focus on one
variable at a time are univariate techniques, and those that examine the joint
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assessment of multiple variables are multivariate and often the more advanced
approaches. Statistical approaches can also be characterized as exploratory or
confirmatory in nature, descriptive or inferential, predictive, and prescriptive.
These terminologies are not confined to traditional statistics; they are com-
monly used to describe spatial statistical methods as well. This chapter will
provide an overview of statistical and spatial statistical methods that are com-
monly used in summarizing data. Understanding the statistical distribution
of a dataset helps a data scientist gain fundamental knowledge to move the
analysis forward. The chapter will illustrate basic statistical methods using a
number of datasets with nonspatial or spatial characteristics. The illustrations
are based on a few sets of observations and will be used to deepen our knowl-
edge and understanding of the basic statistical measures. Statistical summa-
ries, plots, maps, or worktables shown in this chapter can be generated using
MS Excel or any statistical software package, such as R, SPSS, SAS, and ArcGIS.

Descriptive Statistics

All statistical approaches noted above typically begin with a comprehensive
evaluation of the spectrum of data values obtained for each of the variables
included in a dataset. These assessments rely on the use of descriptive measures
that are presented in a numerical, tabular, or graphical format. Regardless of
the format used, descriptive measures are generated to provide a fundamental
understanding of the distribution of observations in a dataset. Using tabular
summaries (such as frequency tables), graphical summaries (such as bar charts,
line graphs, boxplots, stem and leaf, and normal QQ plots), and statistical sum-
maries (mean, median, standard deviation), these statistics help us organize
our data. They may also offer suggestive clues about the patterns and trends
present in the data, and possibly help generate new research hypotheses.

Descriptive statistics differ from inferential statistics in the sense that
the latter are used in the estimation of population parameters and testing
of hypotheses using information drawn from sample data. Descriptive sta-
tistics often provide preliminary information about the sample characteris-
tics, which could then be used for undertaking inferential statistics so that
a specific hypothesis can be confirmed or rejected. Both approaches support
efforts through which inferences about a population can be made that could
be helpful in quantifying statistical relationships and making generaliza-
tions and statistical predictions. Two of the most commonly used sets of
descriptive measures are the measures of center and the measures of dis-
persion. These measures are described below along with their geographic
counterparts in spatial analysis.
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Measures of Central Tendency

Mode refers to the value that occurs most frequently in a specific set of
ungrouped observations. For example, in Table 3.1, the mode is 43. If the
observations are grouped, then one has to select the class with the most fre-
quency as the modal class. The midpoint value for this class is referred to as
the crude mode.

Median refers to the middle value in a specific set of ranked observations,
or the centermost value in a ranked list of observations. If one has an odd
number of observations in the dataset, the middlemost value in the set of
ranked observations defines the median. However, if the number of obser-
vations is even, the median is defined by the midpoint of the two values. In
Table 3.1, the median value (7 in rank) is 37 and in this set of observations we
have an odd number of observations (11). The median can also be viewed as
the 50th percentile in a data distribution.

Mean, also known as the arithmetic mean or simply an average, refers to
the sum of a specific set of observations divided by the number of observa-
tions in the set. Simply put, it is the average value in a specific set of observa-
tions. It is great for interval- or ratio-scaled variables. Unlike the median, the
mean is sensitive to the presence of outliers in a distribution.

The mean is statistically defined as follows:

n

X,
X= —gf "orsimply Xi+ X, +X; +.+ X,
" n

where X is the mean of variable X, X; is the value of the observation i, ¥ is
a Greek summation symbol, and 7 is the number of observations in a given
set.

TABLE 3.1

Eleven Sampled Tree Heights Near a Residential
Area in a Chicago Neighborhood (in Meters)

16 43
18 43
21 45
32 60
34 72

37
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FIGURE 3.1
Frequency distribution of 11 sampled tree heights near a residential area in a Chicago neigh-
borhood (in meters).

Using data from Table 3.1, the mean for this set of observations can be
derived as follows:

16+18+21+32+34+37+43+43+45+60+72
11

X=

Therefore, X =38.27.

We can conclude that the average height for the tree heights derived for
11 samples near a residential area in a Chicago neighborhood is 38.27 m
(Figure 3.1).

We use n to derive the sample mean; however, for the population mean,
it is derived based on N. The two (population and sample mean) mainly differ
because the degrees of freedom for a sample is based on the number of inde-
pendent observations used to calculate a statistic, which is reduced by one
observation and denoted by n — 1.

Deriving a Weighted Mean Using the Frequency
Distributions in a Set of Observations

There are certain applications that call for the use of weighted means over
the traditional arithmetic means. The weights represent the magnitude or
frequency (f) of the reported events, incidents, or attributes under investiga-
tion. The example below illustrates the computation of a weighted mean for
tree heights in a residential area in a Chicago neighborhood. We will group
the data in Table 3.2 using the following steps:



Using Statistical Measures to Analyze Data Distributions 59

TABLE 3.2

Worktable for Deriving the Weighted Mean of Tree Heights Near a Residential
Area in a Chicago Neighborhood (in Meters)

Class Midpoint Class Frequency
Class Interval (i) (X)) ) X, f;
16-25.99 21 3 63
26-35.99 31 2 62
36-45.99 41 4 164
46-55.99 51 0 0
56-65.99 61 1 61
66-75.99 71 1 71
Total If, =11 IXf =421

. Identify the largest and smallest value.
. Derive the range.

. Determine the number of classes.

. Define the class interval.

. Determine the frequency for each class.

N Ul = W N -

. Compile this information in a table, as has been done in Table 3.2.

3X.f_421

X =
2f 11

=38.273

Measures of Dispersion

A measure of dispersion or variation is a descriptive statistic that quantifies
the variability or the spread of a set of observations. Sources of errors in sam-
pled estimates often consist of conceptual errors, sampling errors, measure-
ment errors, or equipment operational errors, and measures of dispersion
may help us quantify the extent to which sampled observations differ, or
vary from the true population values. A variety of statistical measures exist
to quantify variability, including range, mean deviation, standard deviation,
and variance. However, the most useful are standard deviation and vari-
ance, which enable statisticians to assess the degree of dispersion in a set of
observations.

Range is a measure of dispersion that shows the difference between the
highest (maximum) and lowest (minimum) value in a set of observations.
In ungrouped data, it captures the difference between the maximum and
minimum values. To obtain these values, one may wish to sort the data
in order—either in ascending or in descending order. For example, in
Table 3.2, the range for 11 sampled tree heights is (72 - 16) = 56. In grouped
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data, it captures the difference between the upper value in the highest
numbered midpoint and the lower value in the lowest numbered midpoint
of a class interval. For example, in Table 3.2, the upper value is 71 and the
lower value is 21, thus the range is (71 — 21) = 50. You notice that there is a
small difference of 6 in the range that is given by ungrouped and grouped
data, which can be misleading. It is also possible to generate additional (e.g.,
quartile range) information from this dataset, by dividing it further into
equal portions or percentiles. An interquartile range (IQR) can be derived
after dividing a ranked set of observations into four groups of equal size,
followed by obtaining the interval between the 25th percentile (the lower
quartile represented as Q1) and the 75th percentile (the upper quartile rep-
resented as (3). In the dataset given in Table 3.3, Q1 is 22.8 and Q3 is 44.7,
so IQR is (44.7 — 22.8) = 21.9.

Standard deviation is a summary statistic that measures the extent to which
the data values are scattered around the mean (or center) of the distribution.
Simply put, it quantifies the difference in the spread of a set of observations
below and above the mean. It enables the statistician to determine whether a
set of observations are tightly compact (a narrow standard deviation) or are
spread out (a wide standard deviation). A narrow standard deviation indi-
cates the observations are closely knit and there is a low variation from the
mean. A large standard deviation suggests that the observations are widely
distributed and there is a large variation from the mean. A large variation is
suggestive of a small sample size or the amount of uncertainty present in a
set of observations. The standard deviation, which is denoted with a Greek
letter “o” for a population and “s” for a sample, is the value of the square root
of the variance.

TABLE 3.3

Summary Statistics for 11 Sampled Tree Heights Near a Residential Area in a
Chicago Neighborhood (in Meters)

Mean 38.3,95% CI26.7-49.8, SE 5.19

Median 37.0, 98.8% CI 18.0-60.0

Standard Deviation 17.2,95% CI 12.0-30.2

Variance 296.4

Range 56

IOQR 21.9

Skewness 0.58

Kurtosis 0.06

Percentile Oth 16.0 (minimum)
25th 22.8 (1st quartile)
50th 37.0 (median)
75th 44.7 (3rd quartile)
100th 72.0 (maximum)

CI, confidence interval; IQR, interquartile range; SE, standard error.
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Variance is an important measure of dispersion or unevenness that indi-
cates how a set of observations varies from the mean. If there is a wide
variation from the mean, then the variance will be large and likewise if
it is small, then variation from the mean is narrow. It is a numerical value
from the average of squared differences from the mean. The variance of a
population is normally denoted by a Greek letter 62 whereas the variance of
a sample is given by s

In Table 3.4, the following equations have been used to derive mean devia-
tion, standard deviation, and variance:

— X, - X
Mean deviation D= 2‘ ! ‘
n
2(X, - X)
Sample variance §2= I -
n —

Population variance o2 = Z(Xi - u)

TABLE 3.4

Worktable for Deriving Mean Deviation, Sample Variance, and Standard
Deviation for 11 Sampled Tree Heights Near a Residential Area in a Chicago
Neighborhood (in Meters)

X

b-| 3

Height (m)  (x,-X)

(=]

16 —22.2727 22.2727 496.0744

18 —20.2727 20.2727 410.9835

21 -17.2727 17.2727 298.3471

32 —6.27273 6.27273 39.34711

34 —4.27273 4.27273 18.2562

37 -1.27273 1.27273 1.619835

43 4727273 4.727273 22.34711

43 4727273 4.727273 22.34711

45 6.727273 6.727273 45.2562

60 21.72727 21.72727 472.0744 Sample Standard
72 33.72727 33.72727 1,137.529 Variance Deviation
v=1813 X =143.27 X =2964.18 2,964.18/10  SQRT (296.42)

D=13.025 2=29642  6=17.22
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. _2(Xi- n)’
Standard deviation for a sample o= N
—=\2
£(x- %)
Standard deviation for a population 5=
n-1

Spatial Statistics: Measures for Describing
Basic Characteristics of Spatial Data

Focus will now shift to spatial descriptive statistics. Unlike traditional
descriptive statistics that deals with singletons, spatial statistics deals with
observations recorded in pairs. Spatial descriptive statistics are used to
measure the basic characteristics of spatial data. The foundation for spatial
statistics was laid through the earlier work of Mercer and Hall (1911), Besag
(1974), Besag et al. (1982), Cormack (1977), Fisher (1935), and Matheron (1963).
Chapter 1 focused on some of these aspects. This chapter will present statis-
tics that are applied to describe spatial data. Subsequent chapters will cover
more of these statistics and other advanced methods and strategies that are
used to describe spatial data.

Given the uniqueness in spatial data, especially the need to understand the
spatial structure, a number of spatial analytical statistics have been devel-
oped to deal with these data. Both theoretically and empirically, we know
that spatial patterns or processes of a phenomenon offer fundamental clues
about the nature of the spatial structure. Consequently, when studying spa-
tial phenomena, we observe and measure specific events at different loca-
tions within a study region using a georeferenced system. The events are
then uploaded into a geographic information system (GIS) for mapping and
analysis. Once they are in a computer system, we can begin to quantify and
understand any spatial distribution of phenomena. This is usually done by
incorporating X- and Y-coordinates and the associated attributes into the
spatial analysis framework. In a bid to understand the basic spatial charac-
teristics, we apply spatial descriptive statistics. There are two common types
of measures that can be undertaken: (1) one that measures centrality (spatial
measures of central tendency) and (2) one that measures dispersions (spatial
measures of dispersion) of events over space. These measures provide useful
summaries of a spatial distribution.

We will now illustrate spatial descriptive measures using an envi-
ronmental quality dataset downloaded from the Texas Commission on
Environmental Quality website (http://www.tceq.state.tx.us/). The Texas
Environmental Quality Database contains six types of emissions: carbon
monoxide (CO), nitrogen oxides (NO,), volatile organic compounds (VOCs),
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particulate matter with an aerodynamic diameter of less than or equal to
10 um (PM,), particulate matter with an aerodynamic diameter of less than
or equal to 2.5 pm (PM,;), sulfur dioxide (5O,), and lead (Pb). It can be
used to study the spatial distributions of emissions in Texas. Figure 3.2
shows spatial distributions of air monitoring sites. Figures 3.3 and 3.4 show

the spatial distributions of CO, NO,, PM,,, and SO, emissions in a three-
dimensional (3D) perspective.
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FIGURE 3.2
Spatial distribution of air monitoring sites in Texas.
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Average industrial carbon monoxide emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 21,538.45
Mean = 219.20, standard deviation = 1,390.02

Average industrial nitrogen oxides emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 10,169.31
Mean = 198.98, standard deviation = 708.15

FIGURE 3.3
Spatial distribution of carbon monoxide and nitrogen oxide emissions in Texas presented in a
3D perspective. (Data from Texas Commission on Environmental Quality.)

Spatial Measures of Central Tendency

Spatial Mean/Mean Center: The spatial mean provides the average value
of observed points for each of the X- and Y- coordinates. It shows the cen-
tral point of spatial distributions of events. All the values for X and Y are
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Average industrial particulate matter less than 10

in diameter (PM10) emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 1,432.12

Mean = 27.80, standard deviation = 102.56

Average industrial sulfur dioxide emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 40,030.82
Mean = 373.56, standard deviation = 2,652.68

FIGURE 3.4
Spatial distribution of particulate matter and sulfur dioxide emissions in Texas presented in a
3D perspective. (Data from Texas Commission on Environmental Quality.)

separately summed up and divided by the total number of events/observa-
tions as follows:
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n

Y
Y=l
n
where X; and Y; are the coordinates for feature 7, and  is equal to the number
of features.

These summary statistics provide the center of gravity of the spatial events
being evaluated and are sensitive to outlying observations. The air moni-
toring sites presented in Figure 3.2 have a spatial mean of X =772,059 and
Y =3,385,090. In Table 3.5, for example, the spatial mean for the selected

counties of Texas is X= 737,059 and Y = 3,401,082.

Weighted Spatial Mean/Mean Center: As noted earlier, there are circum-
stances in which one may prefer to use the weighted mean. For spatial data,
the weights represent the frequency or magnitude of the events observed at
a given location. The summary statistic is produced by weighting each of the
locational coordinates (X, Y) by the frequency values (or the variable that mea-
sures the magnitude of or characteristics observed in those locations). Unlike
the spatial mean that assumes uniformity, the weighted spatial mean is able to
capture the spatial variations and pulls toward the weighted points with the
highest quantity. To derive this measure, we use the following formula:

XW,
X = =l .

W,
i=1

Svw,
Y ==l

>w
i=1

where X; and Y; are the coordinates for feature i and W; is the weight at
feature i.

Table 3.6 presents the weighted spatial mean for CO emissions in selected
counties of Texas. In this example, we have weighted each of the coordi-
nates with CO emissions. We can also derive weighted spatial means for NO,
(789,033.44, 3,519,863.36), PM,, (791,093.56, 3,524,260.37), and SO, (800,846.69,
3,538,672.87).

Spatial Median/Median Center: The spatial median/median center pro-
vides an efficient way to estimate the location parameter of a statistical popu-
lation. It is most effective when a distribution is spherical, and since the most
preferred one is based on Euclidean space, the data must be projected to accu-
rately measure distances. Suppose we have a projected set of finite (observa-
tion) points in space. The spatial median measure will minimize the sum
of absolute distances toward the same points. It is less influenced by data
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outliers (so it can be applied to outlying observations) and serves as a popular
estimator of the location of sparse data. The spatial median for air monitoring
sites presented in Figure 3.2 is X = 834,275 m and Y = 3,323,400 m.

Spatial Measures of Dispersion

Spatial measures of dispersion measure the spatial variations or spread of
observation points/events. Common methods that can be used to summarize
the distribution of observation points include standard distance, weighted
standard distance, and the standard deviational ellipse. These methods are
extremely useful in situations where we seek to understand the centers of
spatial distributions and the extent of dispersion of spatial events.

Standard Distance: The standard distance measures the extent to which
observation points are dispersed around the spatial mean. It is a valuable
statistic for understanding how compact observation points are distributed
around their mean center. It is sensitive to outlying observation points. In
Figure 3.2, the standard distance of air monitoring sites in Texas is 202,298
m. It is evident that this measure is large, implying that air monitoring sites
are widely dispersed in the study region.

where x; and y; are the coordinates for feature i and # is equal to the number
of features.

Weighted Standard Distance: This measure is produced by weighting the
sum of the squared differences of x- and y-coordinates.

iwi(xi -X)2+ iwi(yi -Y)?

i=1

n
Z w;
i=1

SD, =

where x; and y; are the coordinates for feature i, w; is the weight at feature
i, and n is equal to the number of features. As with the weighted measures
introduced earlier, this statistic has several applications in spatial analytics.
Standard Deviational Ellipse: This is a valuable measure of the dispersion of
spatial events around the spatial mean. It gives the dispersion of observation
points along the major and minor axes. It is a useful measure for summarizing



70 Spatial Analysis

data with a distributional directional bias. The measure can also be used in
identifying distributional trends of geographical phenomena. This measure
is able to account for both distance and orientation/directionality.

To derive the standard deviational ellipse, we must calculate three mea-
sures: spatial mean, angle of rotation from the point of origin (i.e., from the
spatial mean), and standard deviations along the x- and y-coordinates. The
parameters are required for constructing a standard deviational ellipse for
each type of observation point. The angle of rotation equation requires the
mean center to be found so as to transform the coordinates in the region
toward it. By rotating the coordinates clockwise about their new origin by
a certain angle, we are able to determine the standard deviations along the
x- and y-coordinates from the spatial mean. This helps in identifying the
axes of the ellipse. It can be derived with or without the weight. However,
the weighting provides a more realistic directional distribution because it
adds the influence of weight field to the location. The size of the ellipse can
be characterized using one, two, or three standard deviations.

Angle of rotation is given by

n n n n n 2
(zx?—zy?}J{zxf—zy;2]+4(zx;y;]
i=1 i=1 i=1 =1

i-1
n

22 XY
i-1

tan® =

where X; and v; are the deviations of x- and y-coordinates from the spatial
mean.
Standard deviation along the x-axis is given by

n

Z(x;cose—y;sine)z
5. =4[z

X

n

Standard deviation along the y-axis is given by

n

Z(x;sine—y;cose)z
§ =4l

Y

n

The spatial deviational ellipse is shown by elliptical polygons in Figure 3.2.
The standard deviation along the x-axis is 230,351.67 m and for the y-axis it is
169,667.57 m and the angle of rotation is 148.95. One can conclude that the air
monitoring sites follow a northwest to southeast direction. There are more
sites in the southeast and the large standard deviations along the x- and y-
axes suggest a wide dispersion (Figure 3.2).
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Random Variables and Probability Distribution

Along with the descriptive measures presented in the previous section, it is
equally important for spatial data scientists to be conversant with the prob-
ability distributions, random variables, and the formulation and testing of
hypotheses. These concepts are introduced below.

Random Variable

This is a function/rule of the random process for assigning every outcome
in the sample space of a random experiment a numerical value. Given the
fact that random experimental results may yield nonnumerical values, the
assignment of unique numbers to the outcome is done through a random
process function. For example, suppose we hypothesized that “it will be
cold tomorrow” in our neighborhood; the other option will be “it will not
be cold.” So, we can use a random variable to assign two unique numerical
values to these two outcomes as follows:

_ ] 1,ifitis cold
0, if it is not cold

This is typically achieved using a probability function, which assigns
numerical values to a set of outcomes with an equally likely possibility for
each member of a sample space. The two types of random variables are dis-
crete and continuous. A random variable is typically associated with two
mathematical functions: (1) a probability distribution (discrete random
variable) takes on a finite value or any countable infinite set of values and
(2) a probability density function (continuous random variable) takes on any
infinite set of values that continuously varies within one or more intervals.

Probability and Theoretical Data Distributions:
Concepts and Applications

The use of the term probability implies the possibility or likelihood of an event
happening. In a statistical context, probability helps to advance our under-
standing of the science of uncertainty, chance, or likelihood. The probability
function is a numerical function for describing a probability distribution. The
numerical values of a probability normally range from 0 to 1, thus the value
indicates whether the event will occur with each member of the sample space
having an equal chance. A zero value indicates no chance that an event will
occur while a one value indicates a 100% chance that an event will occur.
When we conduct an experiment, we obtain an outcome after observing or
measuring a specific activity. It may simply mean “tossing a coin,” “rolling a
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die,” or “determining whether there will be a severe thunderstorm tomorrow.”
In general, such an experiment can be used to determine the probability of
a given event B, in equally likely possibilities in the sample space as follows:

No. of possibilities that meet the set criteria in the sample space

pB) =

No. of equallv likelv possibilities in the samvle space
Let us now focus on two of the examples noted above.

Experiment I: Undertaking a Tossing Coin Activity

In this experiment, there are only two possible outcomes when one tosses a
coin once; it will either be a head or a tail. We can determine the likelihood of
success of this experiment by calculating its probability. Let p represent the
probability function, H represent heads, and T represent tails:

p(H) =% or 50% chance
p(T) = Y2 or 50% chance

Suppose we tossed two coins or decided to toss this coin several times;
the number of outcomes would definitely change. This is because there are
many different ways to achieve the goal; there are also several combinations
from which to choose the outcome. It gets even more complicated when we
consider allowing repetition in this experiment. If we toss two coins at once,
there are four possible outcomes in the sample space: {H-HJ}, {H-T}, {T-H}, or
{T-T}. Therefore, the probability of obtaining p (H-H or T-T) is %, the probabil-
ity of obtaining p (H-T or T-H), or a match is %, and the probability of least
one head or one tail is %.

We can use n" to derive the combinations if repetitions and orders are
allowed, where 1 is the number of possibilities to choose from and r is the
number of times. However, if repetitions and orders are not allowed, then we
can use the following formula to derive all possible outcomes/combinations
of a sample:

Note that 7! is the factorial.

Experiment 1I: Undertaking the Rolling of a Die Activity

Rolling a die once has six possible outcomes (the numbers are 1, 2, 3, 4, 5, and
6). So, we can now work out the probability of the following:

p)=1/6
plor2)=2/6=1/3
p(lor2or3)=3/6=1/2

p(1 and 2) = 0/6 (this will yield what is termed as a mutually exclusive event)
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Taking this a little further we can roll a die twice. The two rolls will
yield 36 possible outcomes (6%). This is the sample space for deriving the
probability of a specific event in this experiment, and the batch of out-
comes can be grouped to form a distribution. There are several types of
theoretical distributions and one of the objectives of statistical analysis
is to explore how well empirical distributions (observed from naturally
occurring phenomena) match these theoretical distributions. The results
can help us establish confidence bands in inferential statistics, and could
also serve as the basis for selecting the appropriate techniques in more
advanced statistical analysis. Below are the most common theoretical
distributions.

Binomial Distribution

A binomial distribution depicts the sequence of a fixed number of events
(x=0,1, 2, 3, n) in a sample space that can be segregated into two outcomes,
where x represents the number of times each event occurs in the experiment,
and these events are independent of each other. The probability (p) of sam-
pling each of the two outcomes in an event is the same [p(X) = 0.5], and the
probability of sampling the occurrence or nonoccurrence of the event in a
single experiment is given by p and g, respectively. A binomial distribution
can be expressed mathematically as follows:

_ n!qun—X
P(X)= X1(n-X)!

p(X) gives the probability of occurrence or nonoccurrence in n binomial
experiments whereas X! represents the factorial. It involves the examination
of the probability of discrete events and is evident when there are two mutu-
ally exclusive outcomes, for example yes—no, success—failure, male—female,
head-tail, or absence—presence events. This is typical of geographic applica-
tions that can be expressed using a binary framework, including the absence
or presence of vegetation/animal species in a defined geographic location;
whether people residing in a neighborhood have a college-level education
or not; and whether the application of pesticides to an agricultural field
improves crop yield or not. Let us now consider several examples of binomial
distribution to help our understanding further. In MS Excel, the p(X) formula
would look like this: = (FACT (1) x (p)"x) X (9)"(n—x)))/(FACT (X) x (FACT
(n—X)))). One could use the binomial distribution function.

Experiment I: If a traveler from the city of St. Louis on the way to Chicago
randomly stops at five convenience stores, find the probability that the trav-
eler stops at exactly three stores. Each stop has six possible choices.
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3 5-3
s(1) (5
6) \6 120 0.00462963 x 0.694444

p(3)= 31(5-3)! 3x2x2 =052

Experiment 1I: In the last 3 years, the US. Transportation Security
Administration has found that 40% of the passengers passing through
Chicago’s O'Hare International Airport had banned liquids exceeding 100
mL. If 10 passengers are selected randomly, find the probability that at least
6 of them have banned liquids. To find this probability, we have to calculate
individual probabilities for 5, 6, 7, 8, 9, or 10 and then add them up to get the
answer.

_10(04)° (0.6)"" 3628800 x0.01024x0.0776

P =5 110-5) 120x120 =2007
(6)= 101(0.4)° (0.6)""  120x0.00462963x 0.694444 115
A (TS TR 720 24 -
(7)= 101(0.4)" (0.6)"7  120x0.00462963x 0.694444 0425
PO -7y~ 5,040 6 B
(8) 101(0.4)° (0.6)""  120x0.00462963 x 0.694444 0005
Y] CTOY T 40,320 2 -
(9)= 101(0.4)° (0.6)"”  120x0.00462963 x 0.694444 00003
PEI= 009 363,880 x 1 -

_10(04)” (0.6)"™ _120x0.00462963 % 0.694444

1 =.0001
p(10) 10!(10-10)! 3,628,800 x 1

Therefore, p (at least six of them have banned liquids) =.2007 + .1115 + .0425 +
.00005 + .00003 + .0001 = .3549.

Poisson Distribution

An ordered or ranked series of spatial outcomes that are truly the result of
random processes can be expressed using Poisson probabilities. Generally,
a Poisson distribution is used under the following circumstances: (1) when
there is a specified interval for an event (equally segregated spatial areas
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or temporal sequences) and it is possible to count how many events have
occurred; (2) when the events occur independently of each other both in
space and time; (3) when each of the two outcomes in an event is virtually
zero; (4) when there are low-occurrence events, rare events, isolated events,
or a low-density pattern, and (5) when the average rate is known for a speci-
tied number of occurrences for an event. In spatial analysis, we apply Poisson
probability distribution to study the degree of randomness in point spatial
patterns.

The Poisson probability distribution can be expressed mathematically as
follows:

e—lxX
p(X)= T

where e represents the exponential constant value (2.71828), A is the mean
frequency, X is the number of occurrences, and X! is the factorial. In MS
Excel, the p(X) formula would look like this: = ((Exp (-A) x (MX)/(FACT

TASK 3.1 USING THE POISSON DISTRIBUTION FUNCTION

To illustrate the use of the Poisson distribution function, let us consider
several examples of electrical storms in four major cities, a lightning
strike occurrence in Kampala, and lightning deaths in America.

(X)))). One could use the Poisson distribution function.

1. On average, electrical storms occur about 31 days per year in New
York. Suppose we observe 28 days a year. What will be the probabil-
ity that we observe electrical storms?

2.7182873131%8
X=28: p(28)= % — 0647

The probability will be 6.45%.

2. On averagg, electrical storms occur on about 21 days per year in both
Paris and Rome. Suppose we observe 14 days a year. What will be
the probability that we observe electrical storms?

-21»114
X=14: p(14)= %:ozsz
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The probability will be 2.82%.

3. On average, electrical storms occur on about 16 days per year in
London. Suppose we observe 14 days a year. What will be the prob-
ability that we observe electrical storms?

i 27182815161
X=14:p(14)= %: 093016.

The probability will be 9.3%.

4. On average, the residents of Kampala, Uganda, hear thunderstorms
240 days per year, one of the highest rates in the world. Suppose we
observe 200, 220, or 250 thunderstorm occurrences per year. What
will be their probabilities? We obtain .008 (0.08%), .0114 (1.1%), and
.0205 (2.05%), respectively.

5. On averagg, lightning kills about 100 Americans and inflicts another
500 injuries per year. Suppose we observe 84 and 95 death occur-
rences, and/or 486 and 490 injury occurrences. What will be prob-
abilities for these occurrences? The probabilities for the death
occurrences will be .0112 (1.1%) and .0360 (3.6%), respectively; like-
wise, for injuries the probabilities will be .0148 (1.5%) and .0163
(1.6%), respectively.

6. Another completed example is provided in Table 3.7.

TABLE 3.7

Worktable for Poisson Probabilities of Observed Road Fatalities per Every 100,000
Inhabitants per Year Occurrence for Selected Countries, WHO Global Status
Report 2009

Observed Observed
Number of Road Frequency in a Probability of
Country Fatalities per Year Year Occurrence
China 51 3 1347
Eritrea 484 27 .0003
Ghana 29.6 27 .0680
Ireland 4.06 3 1924
Kenya 34.4 27 .0324
Mauritius 1.1 18 .0154
Nigeria 32.3 27 .0483
South Africa 33.2 27 .0412
South Korea 12.7 18 .0352
Sweden 29 3 2237
Uganda 247 27 .0689

United States 12.3 18 .0295
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Normal Distribution

Many times we use binomial and Poisson distributions to describe dis-
crete random variables, but to adequately describe continuous probability
of variables we use the normal distribution. We can describe the prob-
ability of a normal distribution using the mean and standard deviation.
The distribution of a random variable can be visually represented using a
histogram plot. In a normal distribution, the values in a histogram should
form a normal curve. However, it should be known that the distribution
of a random variable displayed in a histogram can spread out in numer-
ous ways that depict the three measures of center, mean, median, and
mode. These numerous ways include spreading out toward the center, left,
and right. The distribution may also depict multiple modes in the random
variable; sometimes there is only one mode, or two different modes. When
the distribution of a random variable is toward the center without any
bias toward the left or right, it is typically described as normally distrib-
uted. Its distributional shape reflects a bell curve, implying that its mean
is equal to the median and mode, and it is symmetrical from the center.
Thus as indicated in Figure 3.5, in a bell-shaped curve 50% of the values
are less than the mean (left segment of the normal curve) and the other
50% of the values are greater than the mean (right segment of the normal
curve). In statistical analysis, if a normal distribution is evident in any
set of observations then it is possible to derive several useful conclusions
from it.

C‘ \wiwia)
< 0.6826 R
0.1359 0.1359
\ 0.3413 0.3413
0.00KL)% %/0.0014
-3 -2 -1 0 +1 +2 +3
I
One standard deviation at 68.27%

Two standard deviation at 95.45%

Three standard deviation at 99.73%

FIGURE 3.5
Different segments of the Z-value under the normal curve.
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Mathematically, a normal distribution of a random variable, x, can be
defined as follows:
_ ; —(x-p)?/262
p(x) 2nc ‘
where both n and e are constants, equal to 3.14159 and 2.71828, respectively,
u is the mean of x, and o is the standard deviation of x. In MS Excel, the
p(X) formula would look like this: = (1/(SQRT (3.14159 x 2)) X (EXP (—(((x—w)/
(6)2)/2))))). One could use the normal distribution function.

We can describe the distribution of data values (e.g., R variable) using the
standard deviation. We derive values that are within one standard devia-
tion (x —0 <R <X+06), two standard deviations (x —20 <R <X+206), and
three standard deviations (X—30 <R £X+30). Also to be successful in test-
ing hypotheses or comparing different observations, we can derive a set of
statistics called the Z-score. The Z-score is a standard normal transforma-
tion that offers a better metric for comparing such observations. The Z-score

is derived as: % using the mean and standard deviation of the random

variable. Once the Z-score is calculated, we can look for the probability p(Z <
z) in the standard normal distribution Z-score.

TASK 3.2 USING THE NORMAL DISTRIBUTION

1. Suppose that the tree height in samples from Chicago neighbor-
hoods has a mean of 38.3 m and a standard deviation of 17.2 m.
What is the probability that trees in a randomly selected tree
sample will be (a) less than 51 m, (b) more than 51 m, and (c)
between 26 and 66 m?

a. Normal distribution probability of less than 51 m
We can solve this problem in MS Excel using this normal
distribution probability formula = NORMDIST (x, mean,
standard deviation, TRUE).

This returns p(x < 51) = .771618, that is, 77.2%.
b. Normal distribution probability of more than 51 m
We simply subtract 1 from the probability reported above: p(x
> 51) = 1-p(z < .771618) = 1 - 771618 = .228382, that is, 22.8%.
c. Normal distribution probability between 26 and 66 m

We solve this by obtaining the probabilities for 26 and 66
m just as we did above, then subtract the larger probability
from the smaller probability to obtain the answers for 26 m,
which returns a probability of .239068, and 66 m, which
returns a probability of .946983.

p(26 < x < 66) = .946983—-.239068 = .707915, that is, 70.8%.

(Continued)
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TASK 3.2 (Continued) USING THE NORMAL DISTRIBUTION

2. Suppose that the blood lead levels among children from
New York City have a mean of 8.3 ng of lead per deciliter of
blood (ng/dL) and a standard deviation of 4.6 ng/dL. What
is the probability that blood lead levels among children in a
randomly selected blood testing sample will be (a) less than
10 pg/dL, (b) more than 10 pg/dL, and (c) between 5 and
20 ng/dL?

a. Normal distribution probability of less than 10 ug/dL

We can solve this problem in MS Excel using this normal
distribution probability formula = NORMDIST (x, mean,
standard deviation, TRUE).

This returns p(x < 10) = .644147, that is, 66.4%.
b. Normal distribution probability of more than 10 ug/dL

We simply subtract 1 from the probability reported above:
plx > 10) = 1-p (z < .644147) = 1 — .644147 = .355853, that is,
35.6%.

c. Normal distribution probability between 5 and 20 ug/dL

We solve this by obtaining the probabilities for 5 and 20 pg/
dL just as we did above, then subtract the larger probability
from the smaller probability to obtain the answers for 5 pg/
dL, which returns a probability of .236566, and 20 ng/dL,
which returns a probability of .994512.

p(6 < x < 20) = 994512 — 236566 = .757946, that is, 75.8%.

TASK 3.3 USING Z-SCORE TO ASSESS THE
RELATIVE POSITION IN DATA DISTRIBUTIONS

Z-scores can be used to describe how the distributions of observations
fit within the standard normal distribution or compare different normal
distributions with similar standard deviations. These scores can also
be used during a data screening process to detect univariate outliers.
These outliers are z-scores with values that are three standard devia-
tions below or above the mean in a data distribution. On detection of
outliers, one may wish to speculate on the underlying reasons for their
occurrence such as (1) they may simply be the result of errors in data

(Continued)
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TASK 3.3 (Continued) USING Z-SCORE TO ASSESS THE
RELATIVE POSITION IN DATA DISTRIBUTIONS

entry, or failure to specify missing value codes in the data; (2) the spe-
cific cases may have come from a different population but inadvertently
included as a member of the current sample; and (3) they could be legit-
imate cases with extreme values that far exceed the norm in the rest
of the sample data. The role of the data scientist is to rule out the first
two situations, and then proceed to further examine the distributional
patterns and causes of the cases that are rightfully classified as outli-
ers. To illustrate the applications, let us explore the normal probabil-
ity distribution for the Illinois corn and soybean production data using
Chapter3_Data_folder (data files: Illinois_cnty_agricultural _statistics or

Spatial Analysis

agricul_ILL_stats3). This data was introduced earlier in Chapter 2.

1. Derive and compare the Z-scores for corn and soybean production
(n = 102). (TIP: add a z-score field in the attribute table; convert the
raw score to z-score using this formula (X-mean)/standard devia-
tion). The results would look like what is presented in Table 3.8. The
normal distribution curve for corn and soybean production is pre-
sented in Figure 3.6.

2. Now map the z-scores for both using the standard deviation and

natural break classification methods. Set standard deviation at 1 Std.
Dev. interval size. The maps for standard deviation and natural clas-
sification methods would look like those in Figure 3.7.

Comment on the spatial patterns of the z-scores in relation to corn and soy-
bean production in Illinois. Do outliers exist for corn and soybean produc-
tion? If yes, describe the spatial distribution of these outliers. Speculate on
why these outliers exist. There are wide variations in crop acreage at county
level in Illinois as is evident in the standard deviation (134,796.97) and a

TABLE 3.8

Z-Scores for Corn and Soybean Production

CNTY_FIPS Z-Score (Corn) Z-Score (Soybean)
189 —-0.457798016 1.352524176
027 —-0.503243101 0.312944136
157 —0.803096471 0.230400614
191 —0.594164224 0.661305116

119 —0.353950951 0.682067837
069 —1.272850448 -1.608114855
043 —1.238009835 -1.612017622
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narrow standard deviation (78.60) in the average crop sale price, which indi-
cates small variation among all counties in Illinois. Soybean production also
has a wide variation (standard deviation = 2,562,284.67), whereas soybean
yield has a narrow one (standard deviation = 4.95). Corn production has the
largest variance and the largest range, whereas wheat production has the
smallest variance and the smallest range. However, corn production also has
the largest mean and wheat the smallest. Overall, the statistics show that corn
is the most common crop in Illinois and wheat the least common. Overall,
there is a greater range of spatial distribution in soy production compared to
corn. The highest corn producing area is more toward the north central area
of Illinois, whereas the highest producer of soybean is more toward the east
central. It seems that there is some overlap between high corn and soybean
producing counties but they do not follow exactly the same spatial pattern.
Corn production by county does not deviate much from the mean in the
negative direction as soy production does.

Normal curve for corn production
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FIGURE 3.6

Upper panel represents the standard normal curve for corn production, whereas the lower
panel represents the standard normal curve for soybean production in Illinois.
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FIGURE 3.7

Spatial distribution of corn and soybean production in Illinois.

(d

Conclusion

In this chapter, we have learned the important concepts that underlie tra-
ditional statistical analysis and the essential role they play in spatial sta-
tistics. The descriptive measures that summarize the center and spread
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of distributions were presented for all data types including those that are
specifically tailored for spatial data. These were followed by a presenta-
tion of the fundamentals in probability theory and the primary forms of
theoretical distributions that characterize both discrete and continuous
variables. Following are some challenge exercises to help underscore these
key concepts.

Challenge Assignments

TASK 3.4 GENERATE AND INTERPRET
TRADITIONAL DESCRIPTIVE STATISTICS

1. The data for completing this Challenge Assignment is located
in Chapter3_Data_folder. Navigate to the agricul_ILL_stats3.
shp file. Open the database file using MS Excel or if you have
ArcGIS, use it to open the shapefile. Explore this dataset and
generate some descriptive statistics for the following fields/
columns: NO_FARMS07, AVG_SIZE0O7, CROP_ACR07, and
AVG_SALEOQ7. Fill in the correct statistics for each of these
fields in Table 3.9.

2. In Table 3.10, compile these statistics for corn, soybean, and
wheat grain production for each of their four fields.

3. Use the results from the three sampling designs from Chapter 2,
Task 2.3 to generate three tables on additional descriptive sta-
tistics for corn, soybean, and wheat production. We know that
one important factor for choosing the appropriate sampling

TABLE 3.9

Descriptive Statistics for the Agricultural Variables

Standard
Minimum Maximum Sum Mean Deviation

NO_FARMS07
AVG_SIZE07
CROP_ACRO07
AVG_SALE07

(Continued)
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TASK 3.4 (Continued) GENERATE AND INTERPRET
TRADITIONAL DESCRIPTIVE STATISTICS

method is the standard error, that is, using the sample as a
method of estimating the population. Another factor is the
standard deviation, indicating how much variation exists from
the mean.

Based on these two factors, what is the most appropriate sam-
pling design? Explain.

4. Comment on the distribution of summary statistics in
Questions 1 and 2.

TABLE 3.10
Statistics for Corn, Soybean, and Wheat Grain
Standard
Minimum Maximum Sum Mean Deviation
Corn
Soybean
Wheat

TASK 3.5 GENERATE AND INTERPRET
DESCRIPTIVE SPATIAL STATISTICS

Noise-level data from Permanent Noise Monitor Locations were
obtained from the City of Chicago Department of Aviation website.
The stations are located in the surrounding communities of the air-
port. Noise-level data are reported in the Aircraft Noise Reports and
are normally averaged on a monthly basis. The Noise Report summa-
rizes measurements from each of the 34 permanent noise monitors.
Currently, the dataset covers a 7-year study period (2004-2010). We can
assess the environmental impacts of aircraft noise disturbance on the
surrounding neighborhoods using the data. Most studies suggest that
noise levels considered bearable for most human habitants range from
60 dB to 70 dB on average day/night sound levels decibel (dB mea-
sures the ratio of a physical quantity, in this context the signal-to-noise
ratios).

(Continued)
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TASK 3.5 (Continued) GENERATE AND INTERPRET
DESCRIPTIVE SPATIAL STATISTICS

1. Add the Noise Project and Study_Area_ Outline fea-
ture classes from Noise_ OHare_Geodatabase.mdb located in
Chapter3_Data_folder.

2. Generate the spatial mean (mean center), median center, stan-
dard distance, and directional distribution using the Noise_
Project point feature class. Comment on the spatial distribution
of the noise level events surrounding O’Hare International
Airport.

3. State a working hypothesis regarding the spatial distribution
of noise levels in the study region. Also, suggest a few factors
that might influence the spatial distribution of noise levels in
the study region.

Review and Study Questions
1. What are descriptive statistics? Use concrete examples to illustrate
their use in statistical analysis.

2. Using measures of center and spread, explain the distinction
between traditional descriptive statistics and their counterparts in
spatial statistics.

3. What are the benefits of exploring statistical and spatial
distributions?

4. Distinguish between descriptive and inferential statistics.
5. Distinguish between exploratory and confirmatory data analysis.

Glossary of Key Terms

Descriptive Statistics: A useful starting point in statistical analysis. These
consist of tabular, graphic, and statistical summaries that describe
the general attributes of the data in a given study.

Exploratory Data Analysis: An approach that enables a data scientist to
thoroughly screen the data to uncover the underlying structure,
identify outliers and anomalies, and test the key statistical assump-
tions prior to more advanced statistical analysis.
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Inferential Statistics: These consist of statistical techniques that use informa-
tion generated from sample data to draw conclusions about the gen-
eral population. Analysis can be based on direct or point estimates
of the population, or they could be based on indirect approaches that
include confidence bands or hypothesis testing.

Multivariate Statistics: The detailed and simultaneous assessment of two or
more variables in a database for a range of purposes including data
explanation, prediction, classification, and data reduction.

Univariate Statistics: The detailed assessment of all cases within a single
variable to describe the data distribution using measures of center,
spread, relative position, and shape/normality.

Z-Score: This standardized score is obtained by subtracting the sample mean
from the raw score and dividing the value by the sample standard
deviation. It has several applications in statistical analysis including
the detection of univariate outliers.
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4

Engaging in Exploratory Data Analysis,
Visualization, and Hypothesis Testing

LEARNING OBJECTIVES

1. Explore trends in the development and use of data visualization
methods.

2. Understand how to create and interpret graphical summaries.
3. Understand the uses and applications of hypothesis testing.

4. Learn how to compute and interpret tests of independent sample
means.

5. Learn how to compute and interpret chi-square tests.

Earlier in Chapters 2 and 3, we suggested that a good place to start with data
analysis is to compute the descriptive measures that summarize the data dis-
tribution. In that chapter, we devoted coverage to statistical summaries that
best describe the center, spread, shape, and relative position of the observations
while also presenting the optional measures that apply to spatial data. In a
similar fashion, we will now explore the use of graphical summaries and data
visualization methods as complementary tools in data exploration and analysis.
As the familiar adage goes, “a picture is worth more than a thousand words,”
so becoming adept in the growing field of data visualization will significantly
enrich our analytical skills. These tools will enable us to explore and visualize
data in ways that would help us discern new information that would otherwise
not be readily apparent when using conventional statistical tools. Data visu-
alization methods are integral to what we might call “value-added” statistics
in the sense that they enable us to go from large amounts of diverse forms of
data to analyze, synthesize, and graphically display meaningful information
with the expectations of possibly constructing and conveying new knowledge
for use in decision making. These methods are effective in exploring differ-
ences between phenomena, identifying expected as well as unexpected pat-
terns, detecting clusters, revealing new relationships, and more. Drawing from
several areas including spatial data mining, machine learning, geographic
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information systems (GIS), and cognitive science we have many approaches in
data visualization with applications in several domains. For example, we can use
visualization tools and methods to simulate various real-world environments
where users can test different scenarios; provide exploratory functions; prac-
tice/provide a real world environment/experience; represent two-dimensional
(2D) and three-dimensional (3D) environments; show spatial relationships;
model different scenarios, for example, urban environment; integrate real-time
applications (wearable computers) with virtual environments, enable real-time
applications, provide timely information/updates; support landscape viewing
and drafting; engage the human visual system; and support the formulation of
study hypotheses. The visualization community has also focused on develop-
ing visualization algorithms, tools, methods, and strategies, such as the social
network analysis method, which is currently used for visualizing online social
networks (Hoff et al. 2002; Heer and Boyd 2005; Perer and Shneiderman 2006;
Luo et al. 2011; Luo and MacEachren 2014).

Given the cognitive and inherently subjective nature of synthesizing and
interpreting the graphical displays, it is often best to validate the visual
findings through hypothesis testing. There are also times when the results
derived from hypothesis testing and statistical validation are best depicted
through visual plots, charts, graphs, and maps to communicate the findings
to the intended audience. As such, the processes of data exploration and visu-
alization are closely aligned with hypothesis testing methods, a linkage that
forms an integral part of spatial analysis and one that is clearly recognized
and valued by geographers. Our plan in this chapter therefore is twofold.
First, we will explore the emerging field of data visualization and the contrib-
utory role of cartography and GIS in the development of these tools. This dis-
cussion will be accompanied by examples of how standard plots are derived
and the interpretation of the derived images. The second half of the chapter
will be devoted to the key steps in hypothesis testing. For hypothesis testing,
our focus will be on Student’s t-test and chi-square (x?) statistics, which are
among the most commonly used significance tests. The examples presented
in the chapter will be foundational, with the primary goal of introducing
the reader to the core concepts and tools in data visualization. Thereafter, in
subsequent chapters of the book, we will share examples that entail the use of
more advanced visualization tools, and statistical validation methods.

Exploratory Data Analysis, Geovisualization,
and Data Visualization Methods

Data visualization, geovisualization, visual analytics, and exploratory
data analysis (EDA) are all part of a growing domain of data-rich analyti-
cal, graphical, and interactive methods that are now available for screen-
ing, exploring, and synthesizing information. In the era of big data, these
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approaches are increasingly capable of converting diverse, dynamic, and
complex forms of data into valuable information, and presenting this infor-
mation in a comprehensible format that is beneficial to end users. A survey
of the emerging literature on EDA, geovisualization, and data visualization
may lead one to believe that these are three disparate fields with different
end goals. However, a close scrutiny of the embedded tools and applications
reveals many similarities in the core goals and objectives. These include the
following: (1) data representation, (2) feature exploration and identification,
(3) pattern recognition, (4) human—computer interaction, (5) knowledge con-
struction and storage, and (6) effective communication and transmission of
knowledge. These commonalities are elaborated on in the ensuing sections.

Data Visualization

The term data visualization is a relatively new and encompassing term for
all visualization methods that are currently in use even as more techniques
are being developed. In an earlier article by Lengler and Eppler (2007), a
visualization method was appropriately defined as “a systematic, rule-based,
external, permanent and graphic representation that depicts information in
a way that is conducive to acquiring insights or communicating experiences”
(p. 1). This definition adequately captures the analytical goals noted in the
preceding section including the need for representation, knowledge acquisi-
tion, and effective communication. In the same article, the authors compiled
a comprehensive listing of more than 100 visualization methods with the
intention of pooling together the multiple streams of analytical procedures
that are being developed in several areas. Calling this listing of methods a
“periodic table of visualization methods,” the authors readily acknowledged
that data visualization draws from several disciplines including statistics,
human-computer interaction, cartography, graphic design, and architecture.

Geographic Visualization

Although the foundational role of cartography in data visualization was not
explicitly recognized in the Lengler and Eppler (2007) study, several other
studies have effectively outlined the valuable contributions of this field and
geography as a whole in the development of these methods. For example,
Nollenburg (2007) explored the driving forces in visualization noting that
geographic visualization has played an important role in human history well
before the advent of the computer. Likewise, a seminal article written earlier by
MacEachren and Kraak (2001) outlined the role of geovisualization techniques,
as well as the research prospects and challenges that lay ahead. Drawing from
their work on the International Cartographic Association’s (ICA) Commission
on Visualization and Virtual Environments, they defined geovisualization
as an integration of “approaches from visualization in scientific computing
(ViSC), cartography, image analysis, information visualization, exploratory
data analysis (EDA), and geographic information systems (GISystems) to
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provide theory, methods and tools for visual exploration, analysis, synthesis
and presentation of geospatial data” (p. 1). Four themes and related challenges
were cited in this article as relevant in the development of geovisualization
tools: (1) representation of geospatial data, (2) integration of visuals with compu-
tational methods, (3) interface design for geovisualization environments, and (4)
the cognitive/usability aspects (MacEachren and Kraak 2000).

Within the last decade, several studies have highlighted the foundational
role of GIS and cartography in visual analytics including the increasing role
of interactive spatial mapping (Jacquez et al. 2005), spatiotemporal analysis
(Andrienko et al. 2010), and visualization of spatial data (in R using ggmap
by Kahle and Wickham 2013). Several advocates have appealed for ongoing
research to expand the range of visual analytic GIS tools that are accessible
to both amateur and professional data scientists with a core set of features
and capabilities to handle large, complex spatial and temporal data (Guo
2007; Andrienko et al. 2010). Efforts are also underway to create multidisci-
plinary teams to address key challenges such as the following: (1) scalability
of geovisual tools to handle the data size, variety, dimensionality, and syn-
ergistic linkages; (2) promoting interoperability and consistency in seman-
tics, semiotics, and use interactions; (3) advancing visualization of complex
spatial and temporal dimensions; (4) seamlessly linking data exploration
with validation; and (5) providing ongoing support for knowledge capture
and manipulation (Andrienko et al. 2007). These studies also emphasize the
need for cognitive features that are required to ensure that the end users can
decipher the implicit knowledge embedded in these visuals, while using the
information to stimulate the generation of new ideas.

Two important visualization concepts that influence how graphical methods
are applied to accomplish visualization tasks are expressiveness and effective-
ness (Oyana et al. 2011). Expressiveness is defined as the graphical methods
used to convey meaning without leaving out any facts or unintentionally add-
ing or implying facts. Effectiveness measures how well the selected graphical
method conveys meaning relative to other methods. Also, according to the
popular MacEachren’s 3D cartographic-visualization conceptual model, three
major components guide the geovisualization process: private visual think-
ing, levels of interaction, and public human communication (MacEachren
and Kraak 1997). Private visual thinking normally refers to situations where
visualization scientists explore their own data. And when the results are
effectively communicated to the public using well-designed maps or charts
then we can describe this as a public visual communication. Both private and
public visual thinking processes have different levels of interaction. In private
visual thinking, for example, the level of interaction is normally high because
of the nature of data exploration and knowledge discovery process, while in
public visual communication the level of interaction is low.

In summary, the process of geovisualization entails aspects of human cogni-
tion, communication, and formalism linked by interactive visualization. Data
exploration tasks involve making sense of the unknown through visualization
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techniques. During the data exploration phase, there are high levels of inter-
action and engagement, and when the known is determined and effectively
communicated to a wide audience, we can determine whether the knowledge
or information was successfully conveyed. The geovisualization process activ-
ities involve effective encoding and decoding of data or information through
a scientific process that requires a solid understanding of human cognition.

Exploratory Approaches for Visualizing Spatial Datasets

Even as new and high-level visualization techniques are rolled out, it is impor-
tant to have a foundational knowledge of the traditional approaches that are
used to graphically summarize data. These belong to a suite of applications
that are classified as EDA. The philosophy in employing EDA methods is to
maximize insights into a dataset, search for fundamental clues about a data-
set, and uncover the hidden structure underlying a dataset. These techniques
provide the analytical means by which useful aspects of a dataset can be pre-
sented in an understandable format. Pioneering work in EDA was completed
by Tukey (1977), and since then, there have been significant contributions and
improvements in the exploration and presentation of a dataset. EDA methods
also provide the means through which we can learn about potential relation-
ships and/or differences among groups of observations in the data, and then
formulate a study hypothesis (Tukey 1977, Chambers et al. 1983; Tufte 1983).

In visualizing a spatial dataset, the statistician has to determine the appro-
priate mark (select visual variables or decide on the best combination of
visual elements that effectively depict the dataset) that will encode the data,
size and scale, and the dimensions to be explored. It should be noted that
simpler graphs offer a higher ability than complex graphs to effectively com-
municate information to a wide audience. Complex graphs pose a number of
challenging problems. For example, a large number of visual elements may
be used, which creates clutter. Also, they could simply compromise comput-
ing performance once the limits of the viewing platform are reached.

A variety of EDA techniques are available for exploring data ranging from
plotting raw data to presenting them in a format that maximizes the natural
pattern recognition that matches the viewer’s abilities. Commonly used graphs
include histograms, pie charts, bar charts, line graphs, boxplots, scatterplots,
and maps. Throughout the text, we will be showcasing examples of these differ-
ent visualization methods focusing on the more advanced approaches. For now
however, we will begin with some of the commonly used forms of visualiza-
tion in data analysis: histograms, boxplots, scatterplots, and matrices. We will
explore the use of parallel coordinate plots (PCPs) as a high multidimensional
visualization tool. We also use several other graphics to explore and present
a number of spatiotemporal datasets. This will help us to learn and further
deepen our knowledge on visualization concepts and methods.
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Histogram: One of the simplest means of generating a graphical summary
is by plotting the frequency distribution of a single variable (univariate)
that is measured on an interval scale. It reveals the center of the data (mean,
median, and mode), the spread of the data (dispersion or unevenness), the
shape and distribution (skewness) of the data, and evidence of potential out-
liers in the data. A probability or a goodness of fit test curve can also be
drawn on a histogram to verify the distributional model. Figure 4.1 depicts
the distributional patterns of obesity rates observed within the counties in
New York State and Mississippi. On the left panel is a histogram showing the
distribution for New York and the normal probability curve. There appears
to be a slight negative skew, a leptokurtic pattern with a few outliers to the
left of the distribution. The right panel is the histogram for the counties
in Mississippi. The distribution is mesokurtic with observations trending
toward a more normal distribution. Overall, on average, obesity rates are
almost 10% higher in Mississippi than New York.

Boxplot: Another visual approach that is useful for summarizing a set of
observations measured on an interval scale is the boxplot. The boxplot shows
the shape of the distribution, the center of the data, and its dispersion. It
is sometimes called a five-number graphic summary because the diagram
specifically captures five statistical measures: the minimum and maximum
values (range), lower and upper interquartiles, and the median. This plot can
be used to indicate whether the distribution is skewed or not, and the pres-
ence of outliers. Plotting the distribution for two or more groups allows for
a comparative assessment of the observed patterns. For example, Figure 4.2
shows the distribution of obesity rates (percent) across counties within the
two states of New York and Mississippi. There is slightly more variability in
New York and the results confirm the presence of several extremes scores
(denoted as circles) and outliers (stars) in New York. Specifically, two coun-
ties (New York and Westchester) are outliers with significantly lower lev-
els of obesity (below three standard deviations of the mean). Three other
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FIGURE 4.1
The distribution of obesity rates in New York State and Mississippi.
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Obesity rates within the two states of New York and Mississippi.

counties have lower levels (Tompkins, Queens, and Nassau) but they are
not considered to be outliers in the distribution. It may be worth comparing
these results to the preceding histograms to see which of the two plots is
most effective at communicating the findings. The observations can be con-
firmed by reviewing the descriptive measures shown in Table 4.1.
Scatterplot: This is a visual representation that shows the direction and
strength of a relationship between the two variables (the dependent Y against
independent X). Specifically, the scatterplot explores whether the values of Y
vary systematically with the corresponding values of X. The plot can be based
on raw scores obtained for the two variables or it can be based on residuals
obtained after fitting a regression model (as shown in Figure 4.1). The pat-
terns reveal statistical relationships or associations between two variables that
manifest themselves by any nonrandom structure in the plot. Y is plotted on
the Vertical Axis of the graph and represents the dependent/response variable
whereas X is plotted on the Horizontal Axis of the graph and represents the
independent/predictor variable. The plot can also serve as a useful diagnostic
tool for assessing causal associations between variables. If a strong association
exists in the data then it suggests an underlying cause-and-effect mechanism.
However, because this plot does not necessarily confirm the presence of a
cause-and-effect, it is still incumbent on the statistician to draw knowledge
from the underlying science to determine whether there is causality or not.
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To visually explore the relationships among several pairs of variables, the
best approach to use is a scatterplot matrix. In a single display, the scatter-
plot matrix can depict the relationships among all possible pairs of variables
selected for analysis. As with a typical correlation matrix, the scatterplot
matrix is symmetrical with the same number of rows and columns as there
are variables. The on-diagonal elements are blank and not reported because
a variable’s relationship with itself is one. Scanning across the lower half (or
upper half) of the matrix however, one is able to assess the direction (whether it
is positive or negative), and the potential strength of the observed relationship
among the variables. It is also possible to identify potential outliers (bivariate)
in the scatterplot matrix. Data points that are furthest away from other points
in the distribution could well be extreme cases or outliers and are therefore
worthy of further examination. Finally, the significance of the observed rela-
tionships can be validated using correlation or regression analysis.

TASK 4.1 INTERPRETING SCATTERPLOT MATRICES

Figure 4.3 depicts the scatterplot matrix derived by exploring healthy
behaviors and obesity rates within counties in New York and Mississippi.
Six variables are included in the analysis: percent obese, percent of resi-
dents with limited access to healthy foods, percent of residents that are
inactive, percent smokers, percent of residents that drink excessively,
and percent unemployed. Examine the plots depicted in this matrix
and explain the observed strength and direction between obesity and
the other variables. What relationship appears to be the strongest and
weakest?

Using the latter half of the matrix, obesity rates appear to be most
strongly associated with the percent of inactive residents in these coun-
ties. The relationship appears to be positive, meaning that counties that
have a higher proportion of inactive residents are likely to have higher
obesity rates. Similarly, there appears to be a strong positive association
between obesity rates and unemployment rates in the two states. The
relationships between smoking rates and the other variables appear
to be the weakest, and the direction of these relationships is unclear
in the plots. To validate these visual patterns observed in the matrix,
one would need to formulate statistical hypotheses and test these using
Pearson’s correlation test.

Parallel Coordinate Plots: Another means of visually exploring data
is by using a PCP. The PCP was made popular in data-mining research
and exploration by Inselberg (1985) and has since become a commonly
used application in several domains including remote sensing, haz-
ard assessment, climate change modeling, and spatial epidemiology

(Continued)
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TASK 4.1 (Continued) INTERPRETING SCATTERPLOT
MATRICES

(Inselberg and Dimsdale 1990; Edsall 2003; Huh and Park 2008; Inselberg
2009; and Ge et al. 2009). PCP is most effective when examining the
multidimensional attributes and relationships within large continuous
datasets though it can also be applied to categorical data. Among the
several touted benefits of using this visualization technique are its abil-
ity to represent complex spatial and spatiotemporal data (Edsall 2003),
its interactive nature and uniform treatment of multiple dimensions
(Siirtola and Raiha 2006), its conceptual simplicity and compact appear-
ance (Huh and Park 2008), and its ability to visualize uncertainty and
potential outliers in a large dataset (Ge et al. 2009).
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A scatterplot matrix depicting obesity rates and health risk behaviors in New York and
Mississippi.
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TASK 4.2 CONSTRUCTING AND INTERPRETING
RESULTS FROM PARALLEL COORDINATE PLOTS

Table 4.2 presents housing data drawn from the U.S. Census. The decadal
data spans from 1900 to 2010 for all states including Washington, DC.
When reviewing the boxplots for various years, one finds that there
are subtle differences observed between the various times with some
trending toward more normal distributions whereas others depict
relatively skewed distributions. Given the temporal sequencing of this
data, another useful and graphically compact way of depicting the
trends is by using the PCP.

There are 12 dimensions (variables) that need to be displayed with
each dimension representing a snapshot of home ownership patterns
observed during the decennial census. The PCP is most valuable when
the dimensions are continuous scaled variables (interval/ratio) as in
the case of the home ownership data. Also, having the same units of
measurement for all variables (such as percentages in the housing data)
makes it easier to display these dimensions though this is not a require-
ment to run the procedure.

To create the PCP, each dimension will be portrayed on a vertical
axis. For the housing data, as there are 12 dimensions (variables), there
will be 12 vertical axes that are parallel to one another (see Figure 4.4).
The spacing between these vertical lines has to be consistent though
many studies have devised ways to enhance this spacing to improve
the interpretability of the plot. Next, the data points (or coordinates)
on each axis should be plotted to represent the measurements taken
for each unit of analysis in the dataset. So for this dataset, one would
plot the home ownership pattern for each state as observed in 1900,
1910, 1920 through 2010. Finally, horizontal lines are used to connect
these data points across the vertical axis to produce the PCP. Figure 4.4
depicts the line segments for each state plotted across the 12 dimen-
sions (years). Each data item (or unit of analysis) has been graphed
across multiple dimensions by using a single line of connecting seg-
ments that is called a polyline. In Figure 4.4, each polyline has been
color coded to improve interpretability. Table 4.3 shows the statistical
distribution of housing data and Figure 4.5 shows a single dimension
PCP plot of housing data.

(Continued)



98

Spatial Analysis

TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING
RESULTS FROM PARALLEL COORDINATE PLOTS

The plot shows greater similarity in home ownership patterns
in the early years with more variability between the states in the lat-
ter years (Figure 4.5). It is safe to assume, therefore, that there is a
higher correlation in home ownership patterns during the initial years
of data compilation (1900s through 1940s), and the strength of this
association gets progressively weaker in the latter years (1980s through
2010).

There are ongoing efforts to enhance the PCP including the use
of approaches such as data brushing, strumming, color customiza-
tion and classification methods (Edsall 2003), changing the spacing
to detect clusters among variables, and using smoother curves rather
than straight line segments to connect the axes (Huh and Park 2008).
Other important features to consider using PCPs and other data visu-
alization tools include algorithms that enhance the human-computer
interaction. Interactive tools that give the user direct control and abil-
ity to query, store, update, analyze, and present the data are often the
most effective. Siirtola and Raiha (2006) rightfully contend that this
active interaction and manipulation is what facilitates discovery and
the construction of new knowledge. Drawing from the previous work
of Shneiderman (1996), these scholars present seven critical features to
have in PCPs and other data visualization tools:

1. Overview: The ability to gain an overview of a large dataset.
2. Zoom: The ability to zoom in on key areas of interest.

3. Delete/Filter/Mask: The ability to delete, filter, or mask unin-
teresting items from the collection of data points.

4. Data brushing/getting details on demand: Querying the data,
and highlighting an item or group of observations for further
scrutiny, or for comparisons with other observations in the
distribution.

5. Relate: The ability to view and understand relationships among
items or multiple dimensions in the data.

6. History: The ability to save the history of actions taken during
the analysis and to conduct progressive refinements by undo-
ing, replaying, and modifying those actions.

7. Extract: The ability to extract a subgroup of information for
more detailed analysis.
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TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING
RESULTS FROM PARALLEL COORDINATE PLOTS
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FIGURE 4.4
Parallel coordinate plot showing multidimensional distribution of housing data from
1900 to 2010.

TABLE 4.3
Statistical Distribution of Housing Ownership between 1900 and 2010
Observations Minimum Maximum Std.
Year (n) (%) (%) Mean (%) Deviation (%)
1900 49 0 80.00 49.90 14.52
1910 49 0 75.70 49.04 13.75
1920 49 0 65.30 47.66 11.93
1930 49 0 63.20 48.42 11.13
1940 49 0 61.10 45.35 10.16
1950 49 33.00 67.50 56.57 7.52
1960 49 41.10 74.40 63.45 6.37
1970 49 46.90 74.40 65.26 5.60
1980 49 48.60 73.60 66.80 5.29
1990 49 52.20 74.10 66.18 4.80
2000 49 53.00 75.20 68.12 4.62

2010 49 54.40 78.70 69.77 4.84
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TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING
RESULTS FROM PARALLEL COORDINATE PLOTS
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FIGURE 4.5
Parallel coordinate plot showing a single dimension of housing ownership data.

Visualizing Multidimensional Datasets: An Illustration Based
on the U.S. Educational Achievements Rates, 1970-2012

A series of visualization procedures including those described above
were applied to a U.S. education dataset compiled from the U.S. Census
Bureau (1970, 1980, 1990, and 2000) and American Community Surveys
covering 2006-2010, 2007-2011, and 2008-2012. The multidimensional
and multi-temporal datasets were processed using different techniques
and algorithms and the results summarized in Figures 4.6 through 4.10.
Figure 4.6 shows the regionalized distribution of educational levels (9th
grade and higher) using a regionalization algorithm. Table 4.4 shows a
statistical distribution of education levels. Figure 4.7 shows the regional-
ization of educational levels based on a ranking process of the percent of
individuals who have attained college education or higher between the
period covering 1970 and 2010. Figures 4.8 and 4.9 show representations of
educational achievement rates using single and multiple PCP dimensions
at the county level. Figure 4.10 shows a visual exploration of local relation-
ships between poverty and educational achievement variables using a local
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TABLE 4.4
Statistical Distribution of Educational Achievement Rates between 1970 and 2012
Observations Minimum Maximum Mean Std.
Year (n) (%) (%) (%) Deviation (%)
PctColl1970 3108 0.00 38.60 7.29 3.95
PctColl1980 3108 0.00 47.80 11.43 5.44
PctColl1990 3108 3.70 53.40 13.48 6.57
PctColl2000 3108 4.90 63.70 16.50 7.80
PctColl06_10 3108 0.00 70.96 18.99 8.67
PctColl07_10 3108 0.00 72.00 19.21 8.72
PctColl08_12 3108 0.00 72.79 19.43 8.76

PctColl70  PctColl80 PctColl90 PctColl00  PctColl6_1  PctColl7_1 PctColl8_1
Time (year)

FIGURE 4.8
Parallel coordinate plot showing multidimensional distribution of educational achievement
rates for 3108 counties.

entropy algorithm. The different charts and figures illustrate how one can
use the visualization process to gain fundamental insights on educational
achievement rates during the lengthy study period.

Finally, as noted in earlier sections of this chapter, the conclusions drawn
from all of these graphical displays (histograms, boxplots, scatterplots, PCPs,
or otherwise) must be validated using statistical significance tests. We will
discuss these statistical validation processes below.
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FIGURE 4.9
Parallel coordinate plot showing a single dimension of educational achievement rates.

FIGURE 4.10
A screenshot shows a visual exploration of local relationships between poverty and educa-
tional achievement variables using a local entropy algorithm.
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Hypothesis Testing, Confidence Intervals, and p-Values

Hypothesis testing is the process of carrying out statistical assessments of
a sample and using the results to make inferences about population param-
eters. The true values of population parameters are often unknown and may
be assessed either directly using point estimation techniques, or indirectly
through hypothesis testing. The latter is the most common approach in infer-
ential statistics and it embodies the classic tradition of deductive reasoning
or the “a priori” approach described earlier in Chapter 2. Hypothesis testing
begins by formulating a hypothetical statement or proposition about the true
value of the population parameter. The proposed statement could be based
on prior information about the population parameter generated from pre-
vious studies, observations from data exploration using visualization tools,
results from a pilot project, or purely based on theoretical grounds. The anal-
ysis then proceeds with the statistical evaluation of the sample data for use
in validating or denying the proposed statement. Three things are important
when performing hypothesis testing: (1) the formulation of a hypothesis set
consisting of both null and alternative hypotheses, (2) a decision regarding
the test criteria and the level of statistical significance, and (3) choosing the
appropriate statistical test to evaluate the formulated hypothesis.

The hypothesis set consists of two competing claims that are made about
the true value of the population parameter. The first claim, the null hypoth-
esis, designated as H, describes the hypothetical state of affairs. This null
is the statement under statistical investigation; as the name implies, it is a
negation and is often contrary to the research hypothesis or the opposite
of what a data scientist believes to be true. The alternative hypothesis is a
statement of the research hypothesis, or a conjecture of what a data scientist
hopes to establish as true based on the empirical observations drawn from
the sample. This alternative hypothesis is designated as H,, and following
the statistical analysis, it will be accepted as the true statement when the null
is rejected. Both hypotheses must be formulated in such a way that they are
mutually exclusive of each other, but collectively exhaustive of all of the pos-
sible values of the true estimate of the population parameter.

Hypothesis testing also requires a data scientist to predetermine the level
of statistical significance at which to evaluate the null hypothesis. To do so, it
is vital to have some knowledge of the probability distribution that measures
the likelihood of obtaining a certain value out of all possible outcomes. The
significance level (denoted as «) represents a fixed probability of wrongly
rejecting the null hypothesis when it is true. The most commonly selected
probabilities are 0.01 or 0.05, respectively signifying a 1% or 5% chance of
making the inferential (or Type I) error. The other kind of error (Type II)
occurs when we do not reject a null hypothesis that is false (denoted by 1-
beta). Another relevant piece of information required to evaluate the hypoth-
esis is deciding on the tails of the probability distribution, and whether one is
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TASK 4.3 HYPOTHESIS TESTING USING
STUDENT’S T-STATISTICS

The Student’s ¢-statistic can be used to test one sample mean, or test the
difference in means obtained from two samples. Examples of research
projects that require the test of two sample means include (1) the com-
parison of physical or cultural characteristics of two regions, or two
spatial units; (2) evaluating the effectiveness of a new drug among
the treatment (experimental study group) versus a control (placebo
group); (3) before and after studies such as examining the effectiveness
of a weight loss prevention program; (4) population health disparities
between minority and nonminority groups; and (5) health impacts of
anthropogenic versus natural hazards.

The test of two sample means may be based on independent samples
or paired samples. An independent samples t-test allows for the com-
parison of means drawn from two samples in which the selection of the
observations from the first sample has no bearing on the observations
selected in the second sample. The samples are completely indepen-
dent and unrelated to each other. For example, in Chicago, one could
choose to compare the prevalence of lead poisoning among minority
children and nonminority children. For a paired samples t-test, the two
samples may be related, say from sets of twins, married couples, or
having measurements taken repeatedly (but under different scenarios)
from the same observations to generate the data. For example, one
could decide to examine water quality in the Susquehanna River before
and after Hurricane Sandy. The same monitoring stations or sample
points will be used to generate the data at different times.

In the current task, let us explore the application of the independent
samples t-test. We will use the obesity data generated for two states:
New York and Mississippi. We will rely on the descriptive statistics
reported earlier in Table 4.1.

working with a one-tailed or two-tailed test. Invariably, this depends on the
overall objectives of the research and the formulation of the hypothesis sets.
If a data scientist has a sense of the specific direction in which the true value
of the parameter is likely to fall, a directed or pointed hypothesis set will
be formulated. Such a hypothesis set will call for a one-tailed significance
test that uses either the upper or lower tails of the probability distribution.
On the other hand, a nondirectional hypothesis set in which the population
estimate is likely to fall within the lower and upper tails of the probability
distribution will call for a two-tailed significance test.
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The third and perhaps the most critical decision to make in hypothesis
testing is choosing the appropriate test to analyze the data. Several factors
come into play here including the nature of the research question, the sample
size, the measurement scale of the variables, and whether or not the data con-
form to the key assumptions of the statistical test. There are several statisti-
cal techniques for testing all population parameters. Let us work through,
but most examples are drawn from tests of sample means, proportions, and
tests of associations. Examples include the use of Student’s t-tests and y? test
statistics. Let us work through a few examples to illustrate the application of
these concepts.

Step 1: Formulating the hypothesis set

H,: There are no statistical differences in mean obesity rates observed
between New York and Mississippi. The observed means of the two
states are not significantly different:

Hy Uy = Hyis

H,: There are statistically significant differences in mean obesity
rates observed between New York and Mississippi. The observed
means of the two states are significantly different:

H, iy # Ms

Step 2: Establishing the level of significance

The hypothesis set formulated above is nondirectional and there-
fore calls for a two-sided significance test that will enable us to work
with both tails of the probability distribution. We will conduct the
test based on a fixed probability of 0.05.
Step 3: Applying the appropriate test

The test of an independent samples ¢ is based on four assump-
tions.(1) The criterion variable should be measured on an interval/
ratio scale. In the example above, the criterion variable is percent
obesity, measured on the ratio scale. (2) Data values drawn from
the two groups are independent from each other. In the example
above, the data from New York are statistically independent from
Mississippi. (3) The samples (location 1 and 2) must be drawn from
normally distributed populations. This is the normality assump-
tion and can be validated during the data screening procedures.
(4) The two sampled populations must have similar/equal vari-
ances. This is the homogeneity of variance test and can also be
validated during data screening using the Levene’s test of equal
variance.
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Assuming that the samples are approximately normal with equal
variance, let us use the following equation to compute the t-test:

X=X
(n, =1)s? +(n, —1)s? l+ 1
n+n,—2 n, M,
where

X, is the sample mean for location 1 and ¥, is the sample mean for
location 2.

s is the sample variance for location 1 and 52 is the standard devia-
tion for location 2.

The degrees of freedom (df) for this is i, + n, — 2. For the example
above, the df is 142.

As this is a two-tailed significance test, the critical value would be
determined by dividing the alpha value («) of 0.05 by two. Therefore,
the critical t value obtained from a t distribution table at 0.025 with
142 degrees of freedom is 1.977. So we will reject the null hypothesis
if the observed t is less than the critical t of —1.977, or greater than the
critical t of +1.9766.

Computation

Using the information from Table 4.1 presented earlier, the t-statistic is com-
puted as follows:

_ 27.6-36.3
(62-1)322+(82-13.12( 1 1
62+82-2 62 82

Statistical Conclusion

As the observed t of —16.73 is less than the critical value of -1.977, the null
hypothesis must be rejected. Therefore, one can conclude that there is a sta-
tistically significant difference in obesity rates observed between the two
states. The average obesity rate of 27.6% is significantly different from the
average of 36.3% observed in Mississippi.

Step 1: Formulating the hypothesis set

H): There is no statistically significant relationship between the four
independent categories of corn and soybean production.

H,: There is a statistically significant relationship between the four
categories of corn and soybean production.
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TASK 4.4 HYPOTHESIS TESTING USING ¥* STATISTICS

Similar to Student’s t-test, the x> test is a versatile significance test that
is used to evaluate statistical hypotheses. Although the t-test focuses on
means generated for criterion variables that are continuous, the y? test
is best for analyzing categorical variables. One of the applications of
x? is contingency analysis. That is, when data from two or more vari-
ables are organized into categories, we might be interested in knowing
whether the distribution of the categories observed in one variable is
contingent on the other variable. The goal is to investigate whether the
distributions of categories are likely to occur together or whether they
are statistically independent.

To illustrate this, we will use the Illinois agricultural data generated
earlier in Chapter 2. We will divide two variables for corn (randomly
sampling 82 records, so n = 82) and soybean production (7 = 102) into
four categories of 80th percentile and above (tier 1), between 50th and
80th percentile (tier 2), between 20th and 50th percentile (tier 3), and
below 25th percentile (tier 4).

To derive the x test of independence, we will use the following equation:

: (0,-E,)
ey yn
i=1 j=1 i
where

O;; = the observed number of cases
E; = the expected number of cases
n, k = number of categories for respective variables

Now fill in the frequency for each tier in Table 4.5 and use it to calculate
your y? in Table 4.6.

For cell a, the expected value would be (a+b+c+d)(a+e)/N.
For cell b, the expected value would be (a+b+c+d)(b+f)/N.
For cell ¢, the expected value would be (a+b+c+d)(c+g)/N.
For cell d, the expected value would be (a+b+c+d)(d+h)/N.
For cell e, the expected value would be (e+f+g+h)(a+¢e)/N.
For cell £, the expected value would be (e+f+g+h)(b+f)/N.
For cell g, the expected value would be (e+f+g+h)(c+g)/N.
For cell h, the expected value would be (e+f+g+h)(d+h)/N.

Degrees of freedom = (number of columns-1)(number of rows-1), degrees
of freedom = 3, critical values at p < 0.05 = 7.81.
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TABLE 4.5

Use this Information to Derive the Frequency of Observed Data and Expected
Values

Tier 1 Tier 2 Tier 3 Tier 4 Rows Total
Corn Production A B C D a+b+c+d
Soybean E F G H e+f+g+h
Production
Columns Total a+e b+f c+g d+h N = a+b+c+d+e+f+g+h
TABLE 4.6
Fill in the Correct Values to Complete/Derive Chi-Square Using the Last Column
Observed (O) Expected (E) |O-E| (O-E)? (O-E)?/E
a
b
C
d
e
f
&
h

Chi-square = sum of last column.

If the observed x?is less than critical value, then we accept the null hypoth-
esis. If not, then we accept the alternative hypothesis. Look up your critical
values at p < 0.05.

Make a decision regarding the null or alternative hypothesis.

Conclusion

Earlier in Chapter 3, we made the distinction between descriptive and infer-
ential statistics and proceeded to explore the statistical measures that are
used to describe data points in a given distribution. In this chapter, our goal
was to examine the data visualization tools that typically accompany these
preliminary stages of data analysis and exploration. Along with discussing
the trends in the development of these techniques, we also learned how to
apply standard plots in summarizing data. This was followed by learning
how to formulate and test hypotheses as part of the process of statistical
validation. Following below are some challenge exercises to help underscore
these key concepts and procedures.
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Challenge Assignments

TASK 4.5 GENERATE, VISUALIZE, AND INTERPRET
SPATIAL DESCRIPTIVE AND CORRELATION STATISTICS

Sleep apnea can strike subjects at any age. We need to establish the
effects of age on the length of hospital stay (inpatient days) of patients
with sleep apnea. It is hypothesized that as obese individuals get older,
they develop complications including respiratory failure, diabetes mel-
litus, coronary heart disease, right-sided heart failure, asthma, cerebral
vascular accidents, and osteoarthritis, all of which may contribute to
increased hospital stays and possibly to increased complications in
the hospital. We, therefore, can measure the effects of age on inpatient
days of sleep apnea as well as attempt to understand its spatial patterns
for any study region. The obstructive sleep apnea (OSA) dataset was
obtained from Kaleida Health System, which is one of the largest health
systems in western New York.

1. Add the Erie_cen.shp, Niagara_cen.shp, and OSA.shp datasets
from Chapter4_Data_folder in a new data frame.

2. Generate and describe spatial measures of central tendency
and dispersion using the dataset (i.e., mean center, median cen-
ter, standard distance).

3. State a working hypothesis regarding the spatial distribu-
tion of sleeping disorders in Erie and Niagara counties,
New York. Also, suggest a few factors that might explain
the spatial distribution of sleeping disorders in the study
region.

4. Generate a histogram and boxplot for age and length of stay in
the hospital. Explain the results.

5. Create a scatterplot depicting the relationships between age (on
the x-axis) and length of stay (y-axis) in the hospital. Comment
on the observed relationship between age and length of stay in
the hospital.

6. State a specific hypothesis to describe age and length of hospi-
tal stay.
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TASK 4.6 EXPLORING AND VISUALIZING ATTRIBUTE
DATA USING DIFFERENT WEIGHTING SCHEMES

1. Visualizing data is an important step in understanding its spatial
patterns. A variety of tools are available to render data in ways
that can promote a better understanding of the spatial patterns.

2. Add the Erie_cen.shp, Niagara_cen.shp, and OSA.shp datasets
from Chapter4_Data_folder in a new data frame. Generate
and describe measures of central tendency and dispersion (i.e.,
mean center, median center, standard distance) using DAYS_
INPT (length of stay in hospitals) as a weighting scheme.

a. Use the Count Rendering under the “Rendering tool” to apply
graduated circle rendering to a numeric field (select all_averag
and select DAYS_INPT) in a feature class for a better visual
illustration of the spatial patterns. Submit maps showing this
rendering. Explain the visual patterns depicted in these maps.

b. Use Collect Events with Rendering under the Rendering tool
to convert OSA event data (OSA.shp) to weighted point.
Submit maps showing this rendering. Explain the visual
patterns depicted in these maps.

3. Briefly comment on the application of spatial weights to mea-
sures of central tendency and dispersion.

TASK 4.7 COMPUTING AND INTERPRETING
TESTS OF INDEPENDENT SAMPLE MEANS

1. Using the descriptive statistics reported in Table 4.1, choose
any three of the variables noted below and formulate a sta-
tistical hypothesis set to evaluate the differences between the
states of New York and Mississippi:

a. Percent smoker

b. Percent inactive

c. Percent involved in excessive drinking

d. Percent unemployed

e. Percent with limited access to health foods

What conclusions can you draw based on the independent samples
t-test? Which of these variables should best be analyzed using a one-
tailed test? Explain.
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TASK 4.8 VISUALIZING LAND USE CHANGES IN A
RAPIDLY CHANGE URBAN AREA IN MBALE, UGANDA

For this task, we will use Figure 4.11 to visualize urban land use change.

1. Name the land use categories in 1973, 2000, and 2005.

2. Describe the urban changes that occurred between 1973 and
2005.

3. What will this urban area look like in 2020?

4. Suggest two possible hypotheses that may inform the study of
urban land use change in this study region.

Between 1973 and 2005, there were more land transitions from agriculture to urban use.

This trend is expected to continue as shown for 2020.

Expected Mbale
‘Town boundary 2020

et

Cartographic work by Tonny Oyana
Advanced Geospatial Lab
SIUC, August 2013. All rights reserved.

FIGURE 4.11
A land use map showing urban changes in Mbale Town, Uganda.
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TASK 4.9 VISUALIZING CRIME TRAJECTORIES
USING A 3D SPACE-TIME DIMENSION

For this task, we will use Figure 4.12 to visualize crime trajectories for
the city of Spokane, Washington.

1.

Name the top seven places with consistently high crime rate
through the study period.

. Name the seven places with consistently low crime rate through

the study period.

. Name the place and year where we observed the highest crime

rate. Provide a possible explanation for this spike.

. Suggest two possible hypotheses that may inform the study of

crime trajectories in this study region.
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FIGURE 4.12
Three-dimensional representation of crime rate per 10,000 population between 2008
and 2012 for the city of Spokane, Washington.
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Review and Study Questions

1. What are the major objectives of data visualization tools? Using one
of the graphical approaches described in this chapter, explain how
these objectives are attained.

2. What are the similarities and differences between scatterplot matri-
ces and parallel coordinate plots?

3. It has been noted that a crucial feature in data visualization
approaches is interaction. Using one of the graphical tools discussed
in this chapter, explain the ways in which one can ensure human-
computer interaction to effectively analyze a given dataset.

4. Using your research area of interest, specify two research questions
that call for

a. Exploring differences between two groups of observations

b. Exploring relationships between two categorical variables

For question 4a, what is the null hypothesis (Hj) and the alternative
hypothesis (H,)?

For question 4b, what is the null hypothesis (H;) and the alternative
hypothesis (H,)?

5. What statistical test would be ideal for evaluating the hypothesis
set in 4a? Will this be a one-tailed or two-tailed significance test?
Similarly, what statistical test would be ideal for evaluating the
hypothesis set in question 4b? Will this be a one-tailed or two-tailed
significance test?

Glossary of Key Terms

Boxplots: A five number graphic summary consisting of the minimum,
maximum, median, and lower and upper quartile values. As an
EDA tool, it effectively summarizes a large dataset and depicts the
central tendency and variability of the distribution. Also helps to
uncover extreme scores and outliers in the distribution.

Chi-Square Test: A goodness of fit test that compared the observed to the
expected values in a data distribution. It can also be used as a contin-
gency analysis test to explore the association between two or more
categorical variables.

Data/Information Visualization: The process entails effective selection of
a set of marks in a graphic, exploration, synthesis, presentation, and
communication.
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Exploratory Data Analysis: An approach that enables a data scientist to
thoroughly screen the data to uncover the underlying structure,
identify outliers and anomalies, and test the key statistical assump-
tions prior to more advanced statistical analysis.

Hypothesis Testing: The systematic process of evaluating a claim or state-
ment about the true value of a population parameter using data
drawn from a sample.

Inferential Statistics: Statistical techniques that use sample data to draw
conclusions about the general population. Analysis can be based
on direct or point estimates of the population, or they can be
based on indirect approaches that include confidence bands and
hypothesis testing.

Parallel Coordinate Plots: A graphical tool for presenting and exploring
large datasets with multiple dimensions that are measured using
continuous and categorical data. Plots include parallel vertical axes
representing the individual dimensions, and polylines representing
the observations.

Scatterplots: A graphical device for depicting the strength and direction of
the associations between two or more variables.

Student’s ¢-Test: A commonly used significance test with several applica-
tions including the test of one sample mean, and the test of two
sample means.

References

Andrienko, G.,N. Andrienko, U. Demsar, D. Dransch, J. Dykes, and S. Fabrikant. 2010.
Space, time and visual analytics. International Journal of Geographical Information
Science 24(10): 1577-1600.

Andrienko, G.,N. Andrienko, P. Jankowski, D. Keim, M.-J. Kraak, A. MacEachren., and S.
Wrrobel. 2007 Geovisual analytics for spatial decision support: Setting the research
agenda. International Journal of Geographical Information Science 21(8): 839-857.

Chambers, J., W. Cleveland, B. Kleiner, and P. Tukey. 1983. Graphical Methods for Data
Analysis. Belmont, CA: Wadsworth.

Edsall, R.M. 2003. An enhanced geographic information system for exploration of
multivariate health statistics. The Professional Geographer 55(2):146—60.

Ge, Y, S. Li, V.C. Lakhan, and A. Lucieer. 2009. Exploring uncertainty in remotely
sensed data with parallel coordinate plots. International Journal of Applied Earth
Observation and Geoinformation 11: 413-422.

Guo, D. 2007. Visual analytics of spatial interaction patterns for pandemic decision
support. International Journal of Geographical Information Science 21(8): 859-877.

Heer, J. and D. Boyd. 2005. Vizster: Visualizing online social networks. IEEE
Symposium on Information Visualization, INFOVIS 23-25 October, 2005,
Minneapolis, MN.



Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing 119

Hoff, P.D., A.E. Raftery, and M.S. Handcock. 2002. Latent space approaches to social
network analysis. Journal of the American Statistical Association 97(460): 1090-1098.

Huh, M-H and D. Park. 2008. Enhancing parallel coordinate plots. The Journal of the
Korean Statistical Society 37:129-133.

Inselberg, A. 1985. The plane with parallel coordinates. Computational Geometry of the
Visual Computer 1: 69-97.

Inselberg, A. 2009. Parallel Coordinates: Visual Multidimensional Geometry and Its
Applications. New York, NY: Springer.

Inselberg, A. and B. Dimsdale. 1990. Parallel coordinates: A tool for visualizing mul-
tidimensional geometry. Proceedings of Visualization "90, pp. 361-378. IEEE
Computer Society, Los Alamitos, CA.

Jacquez, G.M., P. Goovaerts, and P.A. Rogerson. 2005. Space-time intelligence systems:
Technology, applications and methods. Journal of Geographical Systems 7(1): 1-5.

Kahle, D. and H. Wickham. 2013. ggmap: Spatial visualization with ggplot2. R Journal
5(1): 144-161.

Lengler, R. and M. Eppler. 2007. Towards a periodic table of visualization methods
for management. IASTED Proceedings of the Conference on Graphics and
Visualization in Engineering, 83-88. http:/ /www.visual-literacy.org/periodic_
table/periodic_table.pdf accessed on April 28, 2015

Luo, W. and A.M. MacEachren. 2014. Geo-social visual analytics. Journal of Spatial
Information Science 8: 27-66.

Luo, W.,, AM. MacEachren, P. Yinm, and F Hardisty. 2011. Spatial-social net-
work visualization for exploratory data analysis. SIGSPATIAL International
Workshop on Location-Based Social Networks (LBSN), Chicago, IL, ACM.
doi:10.1145/2063212.2063216.

MacEachren, A.M. and M.-]. Kraak. 1997. Exploratory cartographic visualization:
Advancing the agenda. Computers & Geosciences 23(4): 335-343.

MacEachren A.M. and M. Kraak. 2001. Research challenges in geovisualiza-
tion. Cartography and Geographic Information Science 28(1): 3-12. doi:10.1559
/152304001782173970.

Nollenburg, M. 2007. Geographic visualization. In Human-Centered Visualization
Environments, pp. 257-294. Berlin-Heidelberg, Germany: Springer.

Oyana, TJ., R.I. Rushomesa, and L.M. Bhatt. 2011. Using diffusion-based cartograms
for visual representation and exploratory analysis of plausible study hypoth-
eses: The small and big belly effect. Journal of Spatial Science 56(1): 103-120.

Perer, A. and B. Shneiderman. 2006. Balancing systematic and flexible exploration of
social networks. IEEE Transactions on Visualization and Computer Graphics 12(5):
600-700.

Shneiderman, B. 1996. The eyes have it: A task by data type taxonomy for information
visualizations. Proceedings of the 1996 IEEE Symposium on Visual Languages
(VL'96). IEEE Computer Society, 336.

Siirtola, H. and K.J. Raiha. 2006. Interacting with parallel coordinates. Interacting with
Computers 18: 1278-1309.

Tufte, E. 1983. The Visual Display of Quantitative Information. Cheshire, CT: Graphics
Press.

Tukey, J. 1977. Exploratory Data Analysis. Reading, MA: Addison-Wesley.






5

Understanding Spatial Statistical
Relationships

LEARNING OBJECTIVES

1. Generate and interpret correlation statistics.
2. Conduct exploratory spatial analysis among variables.
3. Define and run a spatial regression model.

4. Generate and analyze regression diagnostic measures.

As a data scientist, there is always a need to uncover and understand com-
plex relationships among variables. Although traditional statistical text-
books offer a variety of techniques for this purpose, special consideration is
required to account for variables that have a spatial dimension. Specifically,
statistical measures that are used to establish the strength, direction, and
significance of observed relationships between variables offer an objective
assessment of these associations, but they can become even better when the
element of spatiality is included. The measures that are typically used to
infer about statistical relationships are drawn from correlation and regres-
sion analyses. In this chapter, we explore these approaches, observe the
underlying assumptions behind each technique, and work through a few
examples to illustrate the applications.

I
Engaging in Correlation Analysis

Correlation analysis is used to evaluate whether two measured variables
are contemporaneous, covary, or coexist in space and/or time. The two
commonly used measures to quantify such relationships are the Pearson
Product Moment (for interval/ratio scaled variables) and Spearman’s Rank
Correlation (for ordinal scaled variables). Both statistics are expressed by
an r-value (correlation coefficient) that denotes the strength (0 to 1) of the
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relationship and the direction of the relationship (positive or negative). The
measures are also accompanied by a significance value, or p-value, for use in
testing the research hypothesis. There are several ways to compute Pearson’s
correlation coefficient, . One approach entails the use of an efficient statisti-
cal formula that bypasses the computation of standard deviations of the two
variables X and Y, or the deviations from their respective means:

ZXY—L‘XZY

520 5. (27

Alternately, if one wishes to derive the mean and standard deviations of the
variables, the ideal formula is as follows:

2 XY, - xy
GO‘

Tables 5.1 and 5.2 illustrate the computation of coefficients using the raw
score formula introduced in the previous section. The results show that ciga-
rette brands containing both tar and nicotine are likely to be positively related
to the carbon monoxide yields, with a far stronger relationship observed
among brands with higher nicotine levels than those with tar levels.

Having computed the correlation coefficients, let us now test whether the
observed relationships are statistically significant. To conduct this test, we
can use a Student’s t-distribution to determine whether the correlation coef-
ficient is significant in each of the samples.

n—-2
1—¢2
dom is (n — 2), and we will conduct a two-tailed test at « = 0.05. Using
the t-distribution table, the critical t-value for 28 degrees of freedom is 2.048.
For both samples, the population parameter under investigation in correla-
tion hypothesis is rho (designated as p).

For sample I, the null hypothesis is that there is no significant correlation
between tar and carbon monoxide, meaning that pr,.co is not statistically

different from zero.

Sample I = 0.5461354‘/L
1-0.54613542

Itis noted that £ .. eq = 34497882 and f.,;..; = 2.048; therefore, £ orved > teitic
- We reject the null hypothesis, implying that there is a statistically significant
correlation between tar and carbon monoxide. As noted earlier, the observed

The t-statistic, ¢ is given by , where the degree of free-

observed”
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TABLE 5.1
Worktable for Deriving Correlation Coefficients for Cigarette Brands, Sample I
Carbon
Monoxide
Brand Tar (X) ) X? Y? XY
Basic 27 15 729 225 405
Commander 27 15 729 225 405
Bristol 26 15 676 225 390
English Ovals 25 15 625 225 375
Old Gold 25 18 625 324 450
Lucky Strike 25 17 625 289 425
Class A Dlx 25 17 625 289 425
Gen/Private 25 17 625 289 425
Label
Tareyton Herbert 25 17 625 289 425
Camel Reg 24 16 576 256 384
Players Reg 24 14 576 196 336
Pall Mall 24 16 576 256 384
Chesterfield 24 18 576 324 432
King
Pyramid King 24 18 576 324 432
Alpine 16 14 256 196 224
Alpine King 16 15 256 225 240
Alpine Lights 9 11 81 121 99
American Filters 16 15 256 225 240
Austin 13 17 169 289 221
Benson & 16 15 256 225 240
Hedges
Best Choice 13 17 169 289 221
Bonus Value 13 17 169 289 221
Brandon 13 17 169 289 221
Brentwood 13 17 169 289 221
Bucks King 10 12 100 144 120
Cambridge 15 18 225 324 270
Camel 9 11 81 121 99
Canadian 13 15 169 225 195
Players
Capri Menthol 5 4 25 16 20
Cardinal King 21 17 441 289 357
¥ = 561 460 11,755 7292 8902

e 8902 —((561 x 460) / 30)
" (SQRT(11755— (561 2) / 30)))x (SQRT(7292 — ((460 A 2) / 30)))

300

r=—-——-=0.5461354
549.314361
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TABLE 5.2
Worktable for Deriving Correlation Coefficients for Cigarette Brands, Sample II
Carbon
Monoxide
Brand Tar (mg) (mg) X2 Y? XY
Carlton 2 2 4 4 4
Carolina Gold 16 15 256 225 240
Cavalier 9 12 81 144 108
Century 8 12 64 144 96
Charter 4 6 16 36 24
Chesterfield 19 13 361 169 247
Cimarron 21 17 441 289 357
Citation 9 12 81 144 108
City 11 13 121 169 143
Commander 23 13 529 169 299
Cost Cutter 9 12 81 144 108
Courier 14 16 196 256 224
Covington 10 14 100 196 140
Director’s 21 17 441 289 357
Choice

Doral 11 14 121 196 154
T = 187 188 2893 2574 2609

coefficient of r = .546 shows that there is a positive, relatively strong relation-
ship between tar content and carbon monoxide levels in the cigarette brands.
Applying the same approach for sample II, the null hypothesis is that there
is no significant correlation between nicotine and carbon monoxide. The
population parameter, py;coune.cos 1 NOt statistically different from zero.

Sample II = (7584992 /L
1-0.75849922

It is noted that t, peq = 41965890 and f..;.a = 2.160; therefore, . pcerveq >
titical and we reject the null hypothesis, implying that there is a significant
difference between nicotine and carbon monoxide. We can infer from the
sample data that the population parameter is statistically different from
zero. The observed correlation of .758 suggests a very strong, positive, and
significant relationship between the two variables.

As illustrated earlier, the application of correlation analysis is fairly
straightforward and yields information that can be used to validate the
strength, direction, and significance of relationships observed in a scatter-
plot. It is important to also point out that Pearson’s correlation analysis is a
parametric test. This implies that the validity of the test results rests on meet-
ing some key underlying assumptions such as linearity, and normality and
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TASK 5.1 COMPUTING PEARSON'’S

CORRELATION COEFFICIENT

125

Figure 5.1a and b depicts the scatterplots of tar and carbon monoxide
yields and nicotine and carbon monoxide yields in selected cigarette
brands. The data were drawn from the 1999 Federal Trade Commission
Report. Using these data, let us compute the relevant coefficients
and assess whether there are any significant statistical relationships
between the two variables (tar and nicotine) and carbon monoxide

yields in selected cigarette brands.

. Plot of carbon monoxide vs. tar
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The relationships between (a) carbon monoxide and tar and (b) carbon monoxide

and nicotine.
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measurement scale of variables. The two variables X and Y must be measured
on an interval or ratio scale. In instances where one or both variables are
ordinal or nominal in nature, other techniques such as Spearman’s correla-
tion, or chi-square ()?) tests of association, must be used accordingly. Another
assumption is that the observations must be randomly selected from a nor-
mally distributed population. Pearson’s correlation is a robust technique,
and the test of significance might be valid under modest departures from
normality; however, it is best to confirm the assumption of normality prior
to the analysis. A more notable requirement to watch for is the need to have
a linear relationship between the two variables. This can be discerned in the
scatterplots generated prior to computing the test statistic. If there are viola-
tions, it is best to consider other coefficients such as eta to test for the associa-
tion between the variables.

Overall, there are several variants of the Pearson’s correlation coefficient,
all of which are formulated to address the different scales of variable mea-
surement, varying properties of statistical data, and analytical objectives of
a given study. There are also spatial variants such as Moran’s [ statistic. This
is a weighted correlation coefficient that is uniquely designed to incorporate
the element of spatial dependency into the analysis. We will discuss more on
Moran’s I and related coefficients later.

Ordinary Least Squares and Geographically Weighted
Regression Methods

Whereas correlation analysis primarily focuses on the association between
two or more variables, regression analysis can be used to explain the causal
nature of the relationship, if any, and for predictive purposes. Regression
analysis generates coefficients that represent the slope and intercept of a
line that best fits the observed data points. Using standard analytical meth-
ods such as ordinary least squares (OLS), these two essential components
can be generated to formally express the nature, strength, and direction of
a statistical relationship (Demsar et al. 2008a,b; Burt et al. 2009). The rela-
tionship is confirmed if two things happen: (1) when there is a tendency for
the dependent (or response) variable, Y, to vary with an independent (or predic-
tor) variable, X, in a systematic fashion and (2) when there is a well-defined
scattering of data points around the curve that depicts some type of model
direction. The equation derived from a linear regression analysis can also
be used to predict the values of a variable or estimate unknown values of
one variable when given the values of the other. We normally predict vari-
able estimates after successfully fitting the regression model.

Among the prerequisites for developing a causal model for regression,
one of the most important considerations is the establishment of a func-
tional linear relationship. This can be achieved through correlation, which
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is a necessary but insufficient condition for causality. One must first exam-
ine whether the response variable Y is significantly and strongly correlated
with one or more predictor variables X,,. Establishing this relationship helps
in delineating the “line of best fit” through observed values that most accu-
rately model or predict the relationship between the response and predictor
variables. Two other things to take into consideration when formulating a
causal model are time precedence and non-spuriousness (Kenny 1979). For
time precedence, one must ensure that if the variables X, cause the response
variable Y, then X, must precede Y in time. Data scientists are advised to
take this into consideration especially during the data collection phase to
avoid a temporal mismatch between the response and predictor variables. A
third consideration for establishing a causal regression model is non-spuri-
ousness. This necessitates a close review of the hypothesized associations to
exclude potentially spurious variables, Z,. Thus, if one claims that X causes
Y, one must ensure that there is no spurious variable Z, that is related to both
X and Y such that if you control for Z; the relationship between X and Y dis-
appears. Techniques such as scatterplots, Pearson’s or Spearman’s rank cor-
relation, and partial correlation analysis are all useful strategies to test for
functional linear relationships and detect any hidden, intervening, or spu-
rious relationships prior to the formal specification of a regression model.

In modeling spatial relationships using regression, it is best to take a
two-tiered approach that involves the use of both OLS and geographically
weighted regression (GWR). The first-tier modeling helps in identifying
the most important predictors that may explain the spatial processes
in an area (Fotheringham et al. 1996; Nakaya et al. 2005, Demsar et al.
2008a,b; Harris et al. 2011a,b; Nakaya 2011). It provides a global model of
the response variable or process using OLS. This is followed by testing
whether the errors (residuals) in the global model are randomly distrib-
uted. To explore the pattern of spatial dependency, the most common
means is by computing Moran’s [ statistic, a measure of spatial autocor-
relation that determines whether or not the errors/residuals in the model
are independent. If they are not, this could be a problem of model mis-
specification. The second-tier modeling in regression provides local mod-
els of the response variable by fitting regression equations with variable
regression coefficients that account for spatial variability. After fitting the
model, the errors/residuals must also be evaluated for spatial autocorrela-
tion just as noted in the first-tier model using OLS.

The spatial regression models are normally used to model spatial cova-
riance structures. We use the OLS model to effectively identify the stron-
gest predictors in any given model while taking into consideration the
residuals. In general, we can write a simple regression/bivariate model as
follows:

Y=B+pX+e
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Suppose we have four independent variables, X;; then, a specific OLS
model for modeling the relationship is as follows:

Y =B+ B Xy + B Xy + B X5 + BuX, + g

where Y is the observed response variable, f is the intercept, §; variables cor-
respond to the regression coefficients associated with each of the predictor
variables X;, and the error term is represented as ;.

If the OLS model is properly specified and there is evidence of spatial auto-
correlation in the dependent variable, we can proceed with fitting a GWR
model. In this example, the GWR model for four independent variables is
given as follows:

Y = Bo(uy, ) + By, 0)Xq + Bo(uy, v)X5 + Ba(uy, 0)X5 + Balwy, V)X, + €,

where Y is the observed response variable and the regression coefficients,
B; are to be estimated at a location for which the spatial coordinates are pro-
vided by the variables u and v. The model enables the computation of the raw
and standardized regression coefficients (§ weights) and the standardized
residuals for use in differentiating local spatial variations.

The primary assumptions of a traditional regression model are as follows:

1. The dependent variable is a linear function of a specific set of inde-
pendent variables, plus the error term; this underscores the notion
of linearity, and the need for a correct specification of the model. The
equation for a bivariate model is Y =, + ;X + &.

2. The errors (or residuals) must have a zero mean and constant variance
(the expectation of homoscedasticity is implied here).

3. The errors (residuals) must be independent, which means that the value
of one error is not affected by the value of another error (the expectation
of non-autocorrelation, spatially and/or temporally, is implied here).

4. For each value of X, the errors have a normal distribution about the
regression line (this is called the expectation of normality).

5. No strong or perfect linear relationships must exist between the
independent variables (this expectation of non-multicollinearity
requires that the independent variables must not be highly corre-
lated with each other).

Although all of the assumptions are important for building regression
models, some are more robust than others to model violations. Also, these
assumptions are amendable when dealing with variables that have a spatial
dimension. In the following sections, we review the procedures for fitting
spatial regression models, and the diagnostic measures used to ensure that
the models are statistically valid.
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Procedures in Developing a Spatial Regression Model

Depending on how you decide to start your regression analysis, there are
seven major necessary steps to fit a model:

1. Using the data screening and visualization methods introduced
in Chapters 3 and 4, examine the response, Y, and predictor vari-
ables, X, and investigate the nature of the potential association using
scatterplots.

2. Check and determine whether the predictor variables are collinear,
and identify the measures that show evidence of multicollinearity.
Usually, a correlation analysis is a great starting point for demon-
strating this.

3. Formulate a regression model based on hypothesized relationships.

4. Run the model, and determine the direction and strength of the
hypothesized relationships by analyzing the test statistics.

5. Select the best regression model.

6. Test for lack of fit using a residual/scatterplot or histogram by order-
ing the residuals.

7. Review the fitness statistics by looking at the spread of the plot, eval-
uating observed values around the regression line, and examining
how accurate the independent variables are in predicting Y.

Let us apply these procedures in Task 5.2.

TASK 5.2 USING SPATIAL REGRESSION TO
ASSESS THE DETERMINANTS OF WELL-BEING
SIGNIFICANCE IN THE CITY OF CHICAGO

The main goal of this spatial regression analysis is to test for and
explore spatial variations in well-being significance. The indicators of
well-being significance are often complex and hard to define. In this
example, we will rely on several factors that have been used in the
past as proxy measures and determinants of well-being. Specifically,
Table 5.3 contains a list of 12 factors or conditions that burden indi-
viduals or communities and prevent them from achieving good
quality of life, overall well-being, and socioeconomic success. The
factors have been compiled from a variety of data sources, including
the American Community Survey, U.S. Census Bureau website, and
city of Chicago’s geographic information system (GIS) data reposi-
tory. In this study, hardship index (HI), a proxy measure of well-
being significance, will serve as the dependent/response variable.

(Continued)



130 Spatial Analysis

TASK 5.2 (Continued) USING SPATIAL REGRESSION
TO ASSESS THE DETERMINANTS OF WELL-BEING
SIGNIFICANCE IN THE CITY OF CHICAGO

The decision to go with a traditional or spatial regression model can be
made by first exploring the presence or absence of spatial autocorrela-
tion in the dependent variable. If it is determined that there is spatial
dependency in the variable, then sufficient reason exists to proceed with
a spatial regression model. Otherwise, if there is no spatial autocorrela-
tion, an OLS model should be considered rather than fitting the data
with a spatial regression model. In the current study, the test of spatial
autocorrelation was based on Moran’s I, a coefficient that measures the
intensity of spatial clustering among observations. The dependent vari-
able (HI) has a Moran’s I index of 0.547, an Z-score of 7.73, and a p-value
< 0.00000. From this test, we find that the HI is positively autocorre-
lated, with a moderately high spatial clustering pattern. This enables us
to proceed with the spatial regression model. The model will identify
influential predictors that best explain the different socioeconomic con-
ditions in the study region. Table 5.3 shows the factors that potentially
account for the spatial differences in well-being conditions. The list gives
12 predictor variables that may help explain the dependent variable.

TABLE 5.3

Potential Factors That May Explain the Spatial Differences in Socioeconomic
Conditions

Context Description

Variables

Well-being significance

Crowded housing

Poverty

Unemployment

Education

Economically inactive population

Average income
Race/ethnicity
Safety

Health care

Dependent/response
HI
Independent/Predictor/Explanatory

Percent of occupied housing units with more
than one person per room (HS)

Percent of households living below the
federal poverty level (POV)

Percent of persons aged 16 years or older in
the labor force that are unemployed (UEM)

Percent of persons aged 25 years or older
without a high school diploma (EDU)

Percent of the population under 18 or over
64 years of age (AEA)

Per capita income (INC), U.S. dollars

White (W), Black (B), Hispanic (H), Asian (A)

Proximity to police stations (PL), distance in
feet

Proximity to hospitals (HP), distance in feet
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Examining the Relationships between Regression Variables

The relationships between regression variables are examined using
Spearman’s rank correlation, variance inflator factor (VIF), and scatterplots
(Tukey 1977, Chambers et al. 1983; Tufte 1983). A Spearman’s rank corre-
lation matrix is shown in Table 5.4 for the correlation coefficients for all
paired variables. Sixteen paired variables, shown in bold typeface, have
been identified to exhibit some level of collinearity. Any pair of variables
with a correlation of 0.70 or higher has been placed in the collinearity
category for further scrutiny. In general, the correlation matrix suggests
that most of the predictors are either moderately or marginally correlated.
Percent of occupied housing (HS) and percent of persons aged 25 years
or older without a high school diploma (EDU) are the most strongly cor-
related. The least correlated are among pairwise correlations for Asian (A),
proximity to police station (PL), and proximity to hospitals (HP) with the
exception of PL and HP.

Examining the Strength of Association and Direction of
All Paired Variables Using a Scatterplot Matrix

The overall patterns among most of the variables suggest possible linear
relationships (increasing/decreasing trends in both x and y variables—some
are positively correlated, whereas others are negatively correlated); excep-
tions include the pairings that involve the Asian group or proximity to police
stations (Figure 5.2). These appear to show neither clear (weak correlation)
association nor direction.

Fitting the Ordinary Least Squares Regression Model

We need to fit the best OLS regression model to ensure that we have a prop-
erly specified model before moving ahead with the GWR model.

Primary Model
Y =B, +B,HS +B,POV +B,UEM + B,EDU + B, AEA + B,JINC +
B,W +B¢B +B,H +B,,A + B, PL +B,,HP + ¢

We need to determine if the primary model is statistically significant at
a = 0.05. We do this by investigating whether

Hy: Bo=P1=B,=B;... Bo=0

H,: at leastone p =0
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Scatterplot matrix for assessing well-being factors
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FIGURE 5.2
A scatterplot matrix and histogram showing all paired variables.

Given that the observed joint F-statistics is 258.03, and it is greater than the
critical value at (12, 64) degrees of freedom, we can reject the null hypothesis
and conclude that at least one regression coefficient is not equal to zero.

Examining Variance Inflation Factor Results

The VIF is another formal measure of detecting the presence of collinear-
ity. It is used to eliminate—by adding or deleting a predictor variable—
any potential redundancy among independent variables, X;. VIF indicates
how much the variance of the coefficient estimate is being inflated by
multicollinearity. Simply put, the existence of this problem in a regres-
sion model suggests a large amount of standard error in the coefficient
estimates. Most standard statistical textbooks suggest a VIF cutoff point
greater than five to indicate a concern for collinearity. This is because the
expected sum of squared errors in standardized regression coefficients
is nearly five times as large as it would be if the predictor variables were
uncorrelated. However, Neter et al. (1996) have suggested the examination
of VIF values that greatly exceed 10. In ESRI’'s ArcGIS, the cutoff is placed
at larger than 7.5 when examining an OLS model for the collinearity prob-
lem. This textbook recommends anything above the rule of thumb, that is,
VIF values that exceed 5 should be critically reviewed when deriving the
best model.
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Table 5.5 summarizes the VIF values for the three OLS models that were
generated using ESRI's ArcGIS. The primary model has eight variables with
VIF values that are larger than 5 (HS, UEM, EDU, INC, W, B, H, and A), the
reduced model has two variables with VIF values that exceed the threshold
(Black and Hispanic), and the best model shows a remarkable improvement
of VIF values with the highest VIF value only being observed in AEA (1.643).
This is far below the required threshold.

Reduced Model

After examining the well-being factors using a scatterplot and correlation
analysis, the reduced model is as follows:

Y = By + B, HS + B,AEA + B,;UEM + B,B + BsH + BA + B,PL + BHP + ¢

We need to determine if the primary model is statistically significant at
a = 0.05. We do this by investigating whether

Hy:Bo=PB1=B,=P5..- Bs=0
H,: at leastone f =0

Given that the observed joint F-statistics is 148.17, and it is greater than the
critical value at (8, 68) degrees of freedom, we can reject the null hypothesis
and conclude that at least one regression coefficient is not equal to zero.

All of the three regression models can explain more than 90% of the
total variation in the well-being significance that is attributable to all the

TABLE 5.5

VIF Values for the Three OLS Models

Factors Primary Model Reduced Model Best Model
HS 8.188543° 3.242602 1.063577
POV 4.261475

UEM 6.2380822 3.758031 1.577382
EDU 23.5310122

AEA 3.766619 2.419355 1.642695
INC 5.0552922

W >1000.02

B >1000.0° 7.4444372

H >1000.0° 5.985656°

A 283.243408° 1.720664

PL 1.662634 1.504726

HP 2.069709 1.858672

@ VIF values that exceed 5; a consecutive threshold is being applied to critically evaluate the
presence of collinearity.
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independent variables, X;, as defined by model fit to the data (Table 5.6).
Additionally, all three predictor variables identified in the best model have
positive coefficients, implying that as these variables increase the level of
hardship in the community areas also increases. However, due to the severe
concern of collinearity problems in the primary and reduced models, we
must resolve this concern by finding a meaningful model.

TABLE 5.6
A Summary of the OLS Results for the Three Models
Primary Model Reduced Model Best Model
Coefficient Estimate  Coefficient Estimate  Coefficient Estimate
Variables (t-value) (t-value) (t-value)
HI —-88.1853 -39.206192 -32.621131
(-1.0549) (-8.379899)2 (-6.612045)2
HS 1.0057 3.532561 4.374369
(2.518495)° (8.853233)° (16.390050)2
POV 0.623354
(6.802502)2
UEM 0.647681 1.782008 2.105701
(3.573078)2 (7.976269)2 (12.456289)2
EDU 1.024476
(5.112745)>
AEA 0.594223 0.837226 0.910480
(4.361404)2 (4.828465)° (5.456300)2
INC -0.000116
(-1.507690)
W 67.405221
(0.781687)
B 76.487877 21.010896
(0.889839) (3.846550)2
H 68.516060 27.896733
(0.786059) (3.816535)
A 73.666656 50.236394
(0.818366) (4.509104)2
PL 0.000018 0.000302
(0.140818) (1.560332)
HP 0.000016 -0.000293
(0.118153) (-1.449490)
AIC 468.93 533.37 550.25
r? 0.976 0.9394 0.9173
Observations 77 77 77
Moran’s [ -0.062 -0.0204 0.0254
(-0.677) (-0.2102) (1.1158)

Note: AIC is Akaike’s information criterion, a measure of model performance with the smallest
value preferred.
“ Statistically significant coefficient estimates.
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Best Model

The best model after reviewing fitness statistics, lack of fit test, and analyzing
other relevant collinearity diagnostics is as follows:

Y = B + B:HS + B,AEA + B,UEM + ¢

We need to determine if the primary model is statistically significant at
a = 0.05. We do this by investigating whether

Hy:Bo=P1=P,=P5=0
H,: at leastone p =0

Given that the observed joint F-statistics is 281.95, and it is greater than
the critical value at (3, 73) degrees of freedom, we can reject the null
hypothesis and conclude that at least one regression coefficient is not
equal to zero.

In selecting the best equation, we must also determine which of the inde-
pendent variables, X, is statistically significant at « = 0.05. We do this by
investigating whether

Hyp=1

H, : szlje tox; 1
G6°Res

The Jarque-Bera statistics that measures whether model predictors are
biased or not—a goodness-of-fit test that shows whether residuals are nor-
mally distributed at two degrees of freedom using a chi-square distribu-
tion—indicates the primary model was 1.701 (p-value < 0.427), the reduced
model was 2.219 (p-value < 0.329), and the best model was 3.1615 (p-value <
0.164). We concluded that all the residuals in the three OLS models are nor-
mally distributed and unbiased.

Examining Residual Changes in Ordinary Least Squares Regression Models

Analyzing the residuals offers fundamental clues about the quality of the
regression model (Figure 5.3). It is not only important to analyze these resid-
uals after successfully fitting a model but also essential to check whether the
residuals have a mean of zero and a standard deviation of 1.

The next step would be to identify and analyze observations that have
standardized residuals greater than 2 (depict model underprediction) or
negative standardized residuals less than -2 (depict model overprediction)
(Figure 5.4):
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Test for lack of fit
28 |

HS

“16- . .
1 23 4 5 6 7 8 9 1011 1213 14 15 16 17
Percent housing vs. residuals

UEM

AEA

Residual

Residual

FIGURE 5.3
Residual plots and histograms showing identified HS, AEA, and UEM predictors.

1. Residual analysis for the primary OLS model: Community areas with
standardized residuals greater than 2.0 are Fuller Park and Kenwood,
and an area with standardized residuals less than -2 is Lake View.
Fuller Park predominately consists of an over 90% black population,
has high unemployment, has a high percent of individuals who have
no high school diploma, has a high percent of individuals who are eco-
nomically inactive, and has a high crime rate. Kenwood is ethnically
diverse with over 70% black, 17% white, and 6% Asian people; it is a
relatively economically vibrant community, which has a mixture of the
elite, a rich population, and significant pockets of a poor population
with high poverty and crime rates. Additionally, the area has a mix-
ture of old and new housing developments. Lake View is a very rich
neighborhood with 80% white, 8% Hispanic, 6% Asian, and 4% black.

2. Residual analysis for the reduced OLS model: A community area
with standardized residuals greater than 2.0 is Englewood, and an
area with standardized residuals less than -2 is Calumet Heights.
Englewood is a poor neighborhood with high poverty rates, high
crime rates, and lack of medical care, and it has a population that is
over 97% black. Calumet Heights is a rich neighborhood; it is 90%
black and 4% Hispanic, has declining crime rates, and has a higher
number of persons who are economically active.
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3. Residual analysis for the best OLS model: A community area with
standardized residuals greater than 2.0 is Armour Square, and
an area with standardized residuals less than -2 is Gage Park.
Armour Square is a relatively poor neighborhood that is over 72%
Asian (location of Chinatown), 11% black, and 12% white. Gage
Park is also a poor neighborhood that is over 89% Hispanic, 5%
black, and 4% white; it has a high crime rate, a large number of per-
sons without a high school diploma, and an economically inactive
population.

In reviewing the geographic distribution of the globally verified predic-
tor variables, we observed that all the standardized residuals greater than
2 are located in community areas that have an HI larger than or equal to 80
and a per capita income of less than $17,000 with the exception of Kenwood,
which has an HI of 25 and a per capita income of about $38,000. Also, we
observed that all the standardized residuals less than 2 are located in com-
munity areas that have an HI less than or equal to 57 and a per capita
income of more than $28,000 with the exception of Gage Park, which has a
HI of 93 and per capita income of about $12,000. We can therefore conclude
that in the primary and reduced models, community areas with standard-
ized residuals larger than 2 exhibit significant hardships while those with
less than 2 are characterized by minor hardships. However, the best model
identifies two community areas that exhibit significant hardships. Given
the evidence of over- and underpredictions within residuals in a few of
the community areas, we can further conclude that the model is possibly
missing explanatory variables to explain well-being significance in these
areas.

The lower panel of Figure 5.4 shows test results for spatial autocorrelation.
From the maps, we see different spatial patterns of standardized residuals in
the study region. The red areas in the maps indicate that actual observed val-
ues are higher than the values the model predicted, whereas the blue areas
show where the actual observed values are lower than the model predicted.
All three models have no evidence of spatial autocorrelation in the regres-
sion residuals.

Fitting the Geographically Weighted Regression Model

Assuming spatial non-stationarity, a GWR model is conducted using three
globally verified predictor variables from the OLS model. It is relevant for
two primary reasons: (1) we detected that the dependent variable exhibited
a significant amount of spatial dependency, so there is a need to construct
local models to explain variations in well-being significance, and (2) we must
analyze the geographic distribution of local regression coefficients at differ-
ent local regression neighborhoods to understand the effects of predictor
variables on local areas.
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A GWR model for the three globally verified predictor variables is given
as follows:

Y = a(u;, ) + By, ©)HS + B,(u;, v)UEM + B5(u;, v)AEA +¢;

Examining Residual Change and the Effects of
Predictor Variables on Local Areas

The standardized residuals of the GWR model have a mixture of five
community areas exhibiting major (Gage Park, Englewood, and Armour
Square) and minor (Beverly and Calumet Heights) hardships (Figure 5.5).
The negative standardized residuals show community areas with major
hardship, whereas the positive values show the ones with minor hardship
with the exception of Gage Park. Beverly is a diverse, rich neighborhood,
which consists of 58% white, 34% black, and 5% Hispanic populations.
The other community areas are already described under the OLS regres-
sion model. What is notable in the GWR model is the identification of the
Beverly community area that was not previously identified by the OLS
regression model.

Residual analysis shows that community areas with standardized residu-
als greater than 2.0 are Beverly, Calumet Heights, and Gage Park, and the
ones with standardized residuals less than -2 are Armour Square and
Englewood. In Figure 5.5, the left panel shows the spatial distribution of stan-
dardized residuals in the GWR model. The middle panel shows test results
of spatial autocorrelation, and the right panel shows local adjusted R2. There
is no spatial autocorrelation in the regression residuals.

With respect to the effects of predictor variables, there is an evident
divide in variables that measure socioeconomic disparities between com-
munity areas located in the north and south. Negative regression relation-
ships are more evident in the south than in the north. In reviewing the
spatial patterns of the local coefficient estimates, we observed that negative
estimates from the intercept were concentrated among community areas
located in the central and downtown areas, whereas positive estimates
were located in the south and north (Figure 5.6). The spatial patterns of
the negative regression relationships observed among the local coefficient
estimates of housing and economically inactive population variables are
similar in spatial extent with the exception of unemployment. The spatial
patterns for the negative regression relationships observed among the local
coefficient estimates of housing and economically inactive population vari-
ables are predominately located in the south and north, whereas the ones
showing positive regression relationships are located in the central and
downtown areas. A critical examination of these spatial patterns suggests
local variations in housing, unemployment, and economically inactive
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population among community areas located in the downtown, central, and
lower southern regions. Overall, the GWR model is robust with an adjusted
R? and AIC of 0923 and 548.17, respectively.

Summary of Modeling Results

The fitted regression model explains the geographic variations of well-
being significance for 77 community areas in Chicago. A meaningful
model of well-being significance consists of three globally verified predic-
tor variables (percent of occupied housing units with more than one per-
son per room [HS], percent of persons aged 16 years or older in the labor
force who are unemployed [UEM], and percent of the population under
18 or over 64 years of age [AEA]). The models pointed to significant global
and local spatial variations in well-being significance. Three local models
explained local variations in well-being significance. However, significant
differences were evident in the globally verified model and the local mod-
els. For example, the analysis of local regression residuals identified the
Beverly community area that was not previously identified by the global
model.

¢ The adjusted R? for the primary model explained 97.6%, for the
reduced model 93.9%, and for the best model 91.7% of the well-being
significance. Although the AICs for the three models were small and
robust, there was a slight increase in them. The AIC values ranged
from 468 to 550.

® Residual plots were all normally distributed, suggesting that the
models were unbiased. A few patterns were evident in the regres-
sion residuals, suggesting missing exploratory variables. Additional
parameters should be considered to highlight the true influence of
predictor variables on well-being in varying socioeconomic commu-
nity areas.

* The GWR model explained about 92% of the local variations of well-
being significance. The examination of local coefficient estimates
indicated local variations in housing, unemployment, and economi-
cally inactive population among community areas located in the
downtown, central, and lower southern regions.

e Overall, there were suggestive spatial relationships among three
significant determinants of well-being significance, thus lending
support to the existence of profound socioeconomic disparities
between community areas located in the north and south. Negative
regression relationships were even more apparent in the south than
in the north.
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Conclusion

In this chapter, we introduced multivariate analysis based on a full-scale
exploration of the associations between a given set of response and predic-
tor variables. Key steps that began with the use of correlation analysis as
a precursor toward establishing causality were first presented. These were
followed by systematically pooling together the appropriate statistical tech-
niques and related diagnostics to analyze the data based on the key assump-
tions of regression and the underlying structure of the data. Completing the
problem sets here will help you hone in on these essential skills, including
knowledge of the analytical strategies that are used to overcome data chal-
lenges in regression.

Challenge Assignments

TASK 5.3 HOW TO GENERATE AND
INTERPRET CORRELATION STATISTICS

1. In this task, we will investigate the relationships between 12
agricultural variables (NO_FARMSO07, AVG_SIZE07, AVG_
SALE07, CornAcre, CornYield, CornProduction, SoyAcre, SoyYield,
SoyProduction, WheatAcre, WheatYield, and WheatProduction).
The data for completing this challenge are located in Chapter5_
Data_folder (data file: agricul _ILL_stats3.shp). You may use MS
Excel or any statistical software that you are familiar with to
conduct this correlation analysis. Generate a correlation matrix
for these variables (n = 102). Review the correlation results to
describe the relationships among these variables. Identify the
four strongest and four weakest relationships.

2. Test whether there is a significant difference in correlation
coefficients among the following variables: (1) corn acres and
corn production, (2) average size and average sale, and (3) num-
ber of farms and average size.

3. What insights can we get from analyzing the associations in
the agricultural variables?
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1.

6.

TASK 54 HOW TO BUILD AND SUCCESSFULLY
RUN OLS AND GWR MODELS

Use the following multivariate model to discover relationships
between these variables: average farm size, median age,
corn yield, soybean yield, and wheat yield (data file: Illinois_
agriculture_model.shp). AGWR model (GWR Software)is available
for download at https://geodacenter.asu.edu/gwr_software.

a. Dependent/response variable, Y: AVG_SIZE07

b. Independent/predictor variables, X,: MED_AGE, CornYield,
SoyYield, and WheatYield

c. Primary model of interest:

AVG_SIZE07 = By+ p,MED_AGE + P,CornYield + p,SoyYield +

B,WheatYield + ¢

. Generate and compile histograms for the five variables (tip: use

ArcMap/MS Excel).

. Generate and compile scatterplots for the five variables. Modify

the legend position, title, and axes. Submit the scatterplots in
your final report (tip: use ArcMap/MS Excel).

. Rewrite the multivariate model based on the strength and

association observed in the scatterplots.

. Run the OLS regression to find a properly specified model, and

examine the output feature class residuals using the test for
spatial autocorrelation.

Explain the OLS model and spatial autocorrelation results.

7. The GWR model, where X; is any one of the three indepen-

dent/predictor variables that are statistically significant in the

OLS model and (i, v) represents the coordinates of each loca-

tion, is AVG_SIZE07(u, v) = By, v) + B1(u, )X, + €(u, v).

a. If you have a properly specified OLS model and the test
for spatial autocorrelation on residual variables shows that
they are random, then run the GWR model.

b. Examine the output feature class residuals using the test
for spatial autocorrelation. (Tip: Given the fact that there
is significant evidence of global and local multicollinearity
among corn yield, soybean, and wheat yield variables, you

(Continued)

145
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TASK 5.4 (Continued) HOW TO BUILD AND
SUCCESSFULLY RUN OLS AND GWR MODELS

can only use one of the explanatory variables from OLS
models. This variable should be able to explain the varia-
tions in any of the three variables.)

8. Explain the GWR model and spatial autocorrelation results.

TASK 5.5 HOW TO GENERATE AND
ANALYZE DIAGNOSTIC STATISTICS

¢ Diagnostic statistics include the root mean square error (RMSE)
= SQRT(SSE/n — k), where SSE = ¥(Y,edicted = Yobserved)s 7 = the
number of observations, and k = the number of independent vari-
ables plus the intercept; adjusted coefficient of determination,
RZ and residual plots using histograms or scatterplots.

Frequency 110" Count :102 K :-1.18
3 Min :-92.755 | Kurtosis. :4.4174
Max :52.134 |1-st Quartile :-10.302
Mean  :-0.10878|Median :4.7096
Std. Dev.:31.34 3-rd Quartile : 19.503

—;.28 -7.83 -6.38 -493 -3.48 -2.03 -0.58 0.87 232 3.76 521
Data-10™

Tip: Click or drag over bars to select Add to Layout

Bars: 10 Statistics

> y

Transformation:  None v

7 Data Source
Layer: Attribute:

GeographicallyWeightedRegression14 - >

FIGURE 5.7
A screenshot showing a histogram of ordered residuals of a geographically weighted regres-
sion model.
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1. Generate diagnostic statistics and graphics (RMSE, R?, and residual
plots using histograms or scatterplots) for your best OLS and GWR
models (Figure 5.7).

a. Analyze the model residuals in the OLS and GWR models and
perform a lack of fitness test (tip: present a histogram or scatter-
plot displaying the residuals).

2. Does the final model meet the underlying statistical assumptions for
regression analysis?

Review and Study Questions

1. What are the similarities and differences between correlation
analysis and regression analysis?

2. Distinguish between a traditional OLS regression model and a
spatial regression model. When is it appropriate to use a spatial
regression model?

3. What are the key assumptions of Pearson’s correlation analysis?

4. Choose two assumptions of regression analysis, and explain how
you would go about validating these assumptions using the regres-
sion diagnostic measures.

5. What are the best measures for evaluating the fit of a spatial regres-
sion model?

Glossary of Key Terms

Akaike Information Criterion: This is a statistical measure used to com-
pare two or more competing regression models, and it enables one
to choose the model with the best fit for the data. It examines the
goodness-of-fit relative to the number of parameters that need to be
derived. Models with the lowest values are deemed to be the best.

Coefficient of Determination: This is also called the R? value. It is a mea-
sure of overall fit in regression analysis and reflects the proportion
of variance of the dependent variable that has been explained by the
regression model. It varies from 0 to 1 (it can also be expressed as a
percentage) and the larger the value, the greater the overall fit of the
regression model.
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Dependent Variable: When evaluating causal relationships, the dependent
variable is the response variable, the consequence of events or pro-
cesses that are characterized by the independent/predictor variables.
In a regression equation, the dependent variable is typically denoted
as Y, a function of the independent variable, X, and an error term.

Homoscedasticity: When performing traditional regression analysis, a core
assumption is that the error terms must have constant variance.
Violation of the assumption results in a heteroscedastic model that
could arise from the omission of an important predictor variable in
the analysis. Heteroscedasticity increases the chances of committing
a type I error; specifically, it leads to the underestimation of the stan-
dard error of the regression coefficients, inflating the t-values and
leading one to conclude that the variables are statistically significant
(rejecting Hy) when in reality they are not significant.

Independent Variable: When testing causal relationships, the independent
variable plays the antecedent or causal role. It is the predictor vari-
able in the relationship and is used to explain or predict the vari-
ability of the dependent variable, Y. In a regression equation, the
independent variable is denoted as X.

Jarque—Bera Statistics: This is also a goodness-of-fit test in GWR. When it is
statistically significant, it suggests that the model is biased and the
results are unreliable. A significant statistic could be caused by the
omission of an important predictor variable in the regression model.

Joint F-Statistics: A goodness-of-fit test that measures the overall fit and sig-
nificance of the regression model in GWR. It essentially captures the
proportion of explained variance relative to the unexplained vari-
ance in the dependent variable.

Moran'’s I Coefficient: A useful and popular test of spatial autocorrelation.
The measure consists of a value ranging between 0 and 1 signify-
ing the strength of autocorrelation, a positive or negative sign denot-
ing clustering or dispersal, and a related probability value for use in
assessing the overall significance. This test can be run after a tradi-
tional regression analysis (OLS) to ensure that the residuals are not
correlated. If they are, then a GWR is warranted.

Multicollinearity: This is a statistical violation in multiple regression analysis
that is caused by a high correlation between the predictor variables.
This violation results in unstable regression coefficients, insignificant
t-values, and overestimation of the overall fit of the model. A more
severe condition called singularity arises when there is a perfect cor-
relation between the predictor variables included in the analysis.
Singularity results in a positive definite scenario that prevents the
computation of the regression estimates.

Pearson’s Product Moment Correlation: A bivariate correlation measure
that is used to assess the linear association between interval/ratio
scaled variables. The measure consists of a value ranging between 0
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and 1 signifying the strength of the association, a positive or nega-
tive sign denoting the direction of the relationship, and a related
probability value for use in assessing the overall significance.

Residual: This is the error term and it is often denoted as E in a regression
equation. It captures the portion of the dependent variable that has
not been explained by the regression model.

Spearman’s Rank Correlation: An alternate correlation measure that is
used to assess the linear association between two ordinal scaled
variables, or interval/ratio scaled variables that exhibit significant
departures from normality. The measure also consists of a value
ranging between 0 and 1 signifying the strength of the association,
a positive or negative sign denoting the direction of the relation-
ship, and a related probability value for use in assessing the overall
significance.

Spuriousness: This is a serious challenge that could arise when evaluating
relationships between variables and could potentially lead to con-
founding results. A spurious variable is one that impacts both the
response and predictor variables such that when it is controlled for,
or removed from the analysis, the original relationship between the
predictor and response variables diminishes or disappears.

Time Precedence: An important requirement in the testing of causal rela-
tionships is the need to avoid a temporal mismatch between the
data compiled for the predictor variables and the response variables.
Specifically, data generated for the predictor variables must either
precede or be concurrent with the data compiled for the response
variables.

Variance Inflation Factor: A useful diagnostic measure for identifying col-
linear variables in the regression equation. The higher the VIF, the
more difficult it is to establish the unique contributions of that vari-
able in the regression analysis.
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Engaging in Point Pattern Analysis

LEARNING OBJECTIVES

1. Understand point patterns in a spatial distribution.

2. Explore attribute data using different weighting schemes.

3. Generate and interpret point pattern descriptors.

4. Detect and interpret clustering of spatial point patterns/events.
5. Explore and interpret space—time point patterns.

The motivation to work with spatial data is partly driven by the need to
gain a deep understanding of the spatial structure of a range of phenomena
such as crime incidents, injuries, diseases, retail, or bird nesting sites that are
represented by point features. Such features are amenable to point pattern
analysis in which emphasis is placed on the complete set of observations
as well as the location of each observation and its distance relative to oth-
ers in the distribution. Although the analysis of the point distributions does
provide us with fundamental clues about the underlying spatial processes
and relationships, the main focus is on the examination of any static evi-
dence of spacing. This evidence is normally depicted as a random or non-
random pattern. If the point pattern is identified as nonrandom, it can be
further described as more clustered than random or more dispersed than
random. Therefore, three basic pattern structures exist: random, clustered,
or dispersed. These patterns are illustrated in Figure 6.1. In the upper panel,
the spatial pattern is clustered and has a large variance. The middle panel
is a randomly dispersed pattern, has a moderate variance, and is similar to
a Poisson distribution. The lower panel is a dispersed/uniform pattern with
no or little variance. The data depicted in this figure are based on the simu-
lation of nesting sites of the African black coucals (Centropus grillii) in the
Ssezibwa wetlands, north of the town of Kayunga, Uganda. A polygon layer
of distribution and habitats for the African black coucals from the IUCN 2012
Red List of Threatened Species database was used to identify the potential
nesting sites. Ancillary information compiled from the 2012 aerial and satel-
lite images was used in identifying land cover with open, dense, marshy, or
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FIGURE 6.1

A schematic representation of three different spatial point patterns showing potential nest
locations of the African black coucals in the Ssezibwa wetlands, north of the town of Kayunga,

Uganda.
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swampy grassland. The area was delineated into a rectangular shape of 1507
by 1370 m so that all the nest sites were within the boundaries.

The purpose of this chapter is to explore the range of approaches that are
used to analyze the distributional patterns of point features such as the bird
nesting sites depicted above. Our focus will be on quadrat analysis, nearest
neighbor, Ripley’s K-function, and Kernel estimation. Two other methods,
Voronoi mapping and the Kulldorff Spatial Scan Statistic, will also be intro-
duced at the end of the chapter. Using data drawn from previous research
projects, we will run through a series of tasks to illustrate the applications of
these methods.

Rationale for Studying Point Patterns and Distributions

The statistical tests for studying point distributions rely on the comparison
between an observed spatial pattern and a random theoretical pattern (i.e.,
Poisson distribution). The tests are used to determine the probability of the
observed pattern, which may be equal to or more extreme than the critical
value at a given significance level. In theory, the distribution of observation
points throughout a given study region follows a homogenous Poisson pro-
cess. The assumption behind this relates to two core principles that define
complete spatial randomness (CSR): (1) each event has an equal probability
of occurring at any position in the study region, and (2) the position of any
event is independent of the position of any other. In framing a statistical test,
our goal therefore is to test the null hypothesis that the observed pattern is
random and is produced by the CSR process. However, there are challenges
in meeting this assumption due to the nature of geographical data. First, if
we were to explore the absolute locations of a spatial phenomenon, we are
bound to encounter a first-order effect (no equal probability). Second, if we
were to explore the interactions between locations we are bound to encounter
a second-order effect (no independence). In essence, point pattern descriptors
are designed to take these effects into consideration under the CSR process.

Exploring Patterns, Distributions, and Trends
Associated with Point Features

A variety of spatial techniques can be used to analyze spatial phenomena
that possess discrete spatial properties represented as points on a map. In
this chapter, we will feature five of these methods and related measures:
quadrat count, nearest neighbor, Ripley’s K-function, kernel estimation, and
spatial-time scan statistics. These measures are designed to determine the
density of events or interaction between the locations that develop over space
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and time. For example, we can use the nearest neighbor approach to compute
the relationships between pairs of the closest points assigned as neighboring
locations (Clark and Evans 1954) or we can use the K-function to determine
patterns across spatial ranges (Bailey and Gatrell 1995; Fotheringham and
Zhan 1996; Gatrell et al. 1996). When studying these point distributions, one
must be cognizant of the impact of scale (magnitude of study and extent)
on the identified patterns. As described in the introductory chapters of the
book, the MAUP problem is an inherent spatial data problem, and is defi-
nitely one to look out for in point pattern analysis.

Quadrat Count

The quadrat count method determines the point distribution by examining
its density over the study area. Analysis is based on subquadrats (or grid
cells) that are constructed over a given study area (A). Again, given the MAUP
problem, the size of each grid cell is critical and could influence the estima-
tion of measures derived from the analysis. Also, while the most commonly
used surfaces in quadrat analysis are square grids, it is important to note
that other surfaces can be used depending on the analytical objectives of the
study and the nature of the spatial phenomena under investigation. Once the
surface is established over the study area, the next step is the quantification
of the number of points per cell (subquadrat) and the frequency distribu-
tion of points in the entire quadrat. The end goal is to compare the observed
distribution of points to a theoretical random pattern to assess whether it is
clustered, dispersed, or random. If the results show that events in the popu-
lation have a randomly dispersed pattern, this confirms that there are a ran-
dom number of points in each subquadrat. If the results show that points in
the population exhibit a dispersed spatial pattern, this confirms that there
are a dispersed number of points in each subquadrat. If the results show that
points in the population exhibit a clustered spatial pattern, this confirms that
the points are concentrated in a few subquadrats and many are empty.
Below are the major steps in conducting a quadrat count analysis:

1. Divide a study area into a set of equal-area quadrats (grid cells).
Ideally, the formula for dividing the area is as follows:

S.A
n

where A is the study area, and 7 is the number of points.
2. State the appropriate null hypothesis for the statistical test.

3. Count the number of events falling in each of the subquadrats to
create the variable X, and compute the frequency distribution of X.

4. Calculate the observed and expected probability of the points for X.

5. Compute the variance and mean of the variable X.
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TABLE 6.1

Worktable for Chi-Square Test and Nest Dispersions with Their Observed
Probability and Expected (Poisson) Distribution Showing a Clustered Pattern

No. of

Nests per

Subquadrat No. of Observed

(x,) Subquadrats (f) fix; Probability P(x) x;-p (x;—- "2 x(x; - "2
0.0 68.0 0.0 0.6182 0.1211 -2.11 4.46 303.00
2.7 26.0 70.2 0.2364 0.4553 0.59 0.35 9.02
54 8.0 43.2 0.0727 0.0570 3.29 10.82 86.55
8.1 2.0 16.2 0.0182 0.0013 599  35.87 71.74
10.8 1.0 10.8 0.0091 0.0001 8.69 75.50 75.50
13.5 3.0 40.5 0.0273 0.0000 11.39 129.71 389.13
24.3 1.0 243 0.0091 0.0000 22.19 492.36 492.36
27.0 1.0 27.0 0.0091 0.0000 24.89 619.47 619.47

Y =110 Y =232.2 Y =2046.77

6. Calculate a chi-square test of the hypothesis and the variance mean
ratio (VMR).

7. Use the observed statistics and critical value to confirm or deny the
null hypothesis.

According to the frequency distribution results for a clustered pattern pre-
sented in Table 6.1, there are 68 subquadrats without any nests. Out of 110 sub-
quadrats, 94 have less than 3 nests. The highest concentration of nests is 27,
which is in one subquadrat; and anywhere from 8 to 25 nests are clumped in a
few of the other subquadrats. The average number of nests per subquadrat is
2.1109. The chi-square statistic is 969.61 and it is statistically significant at p < .05.

X. f
EX 12225440
Xf 110

]

)_<:

TASK 6.1 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF QUADRAT COUNT MEASURES

If we consider our data of potential nest sites in Figure 6.2, we can
assume that a set of locations of these nest sites is represented by S with
n events. Each event (nest) is represented by a pair of coordinates (X, Y)
in a study area of 2,064,590 m?. The entire study area was partitioned
into 110 square quadrats each measuring 137 by 137 m. The results for
the distribution pattern of nests throughout the landscape are pre-
sented in Tables 6.1 through 6.4.

(Continued)
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TASK 6.1 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF QUADRAT COUNT MEASURES
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FIGURE 6.2

The spatial distribution of three dispersion patterns. The left panels are rectangles with the
entire quadrat. Each small 137 by 137 m square represents one subquadrat. The right panels
are observed and expected quadrat events/nest sites of the African coucals.

(Continued)
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TASK 6.1 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF QUADRAT COUNT MEASURES

TABLE 6.2

Worktable for Chi-Square Test and Nest Dispersions with Their Observed
Probability and Expected (Poisson) Distribution Showing a Randomly Dispersed
Pattern

No. of Nests

per No. of

Subquadrat Subquadrats Observed

(x)) (f) fix; Probability P() x;—p (x;—p 2 x(x;— 2

0 52 0 0.4727 0.4066 —0.90 0.81 42.12

1 30 30 0.2727 0.3659  0.10 0.01 0.30

2 16 32 0.1455 0.1647 1.10 1.21 19.36

3 11 33 0.1000 0.0494 2.10 4.41 48.51

4 4 0.0091 0.0111  3.10 9.61 9.61
Y=10 Y¥=99 ¥ =119.90

TABLE 6.3

Worktable for Chi-Square Test and Nest Dispersions with Their Observed
Probability and Expected (Poisson) Distribution Showing a Dispersed Pattern

No. of Nests
per No. of
Subquadrat Subquadrats Observed
(x;) (f) fix; Probability Pkx) x,-p (x;—-p?2 x(x; - p~2
0 62 0 0.5636 0.5379 —0.62 0.38 23.83
1.2 37 444 0.3364 0.3031 0.58 0.34 12.45
2.1 10 21 0.0909 0.0986 1.48 2.19 21.90
2.8 1 2.8 0.0091 0.0705 2.18 4.75 4.75
Yy=110 Y=682 Y =62.94
TABLE 6.4
Worktable for Variance Mean Ratio (VMR) for Potential Nesting Sites
Standard

Mean Deviation Variance VMR
Clustered 2.11 431 18.61 8.81
Dispersed 0.62 0.75 0.57 0.92
Random 0.90 1.04 1.09 1.21

Chi-square statistic y? = 2046.77/2.1109 = 969.61

p-value = 4.8248E-138

The frequency distribution results for a randomly dispersed pattern are pre-
sented in Table 6.2. In this table, there are 52 subquadrats without any nests.
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Thirty of the subquadrats have at least one nest, while the rest of the sub-
quadrats have either two or three nests with the exception of one subquadrat
that has four nests. In general, the distribution pattern among the subquad-
rats is somewhat random with an average number of 0.9 nests per subquadrat
throughout the landscape. The chi-square test statistic is 133.22 and it is not
significant (p > .05).

X.f
2XF 99 g9
Yf 110

X=

Chi-square statistic 2 = 119.90/09 = 133.22

p-value = 0.057389389

According to the frequency distribution results for a dispersed pattern
presented in Table 6.1, there are 62 subquadrats without any nests. Most of
the subquadrats have one to three nests that are spatially dispersed through-
out the landscape. The average number of nests is 0.62 per subquadrat. The
chi-square test statistic is 101.51 and is statistically insignificant.

_ XX f
x=2Xh 82 o6
Xf 110

Chi-square statistic y2 = 62.94/0.62 = 101.51

p-value = 0.682243941

Chi-square tests were used to determine whether the distribution of nest-
ing sites occurs randomly throughout the landscape. These tests compared
observed distributions of nesting sites to Poisson distributions; and if we
were to find the patterns to be random, then we would conclude that these
were produced by CSR. The chi-square test was conducted at a 95% signifi-
cance level and 109 degrees of freedom, so that there was only a 5% chance of
committing a Type I error if we were to incorrectly reject the null hypothesis.

According to the chi-square result (see Figure 6.2 and Table 6.1), we reject
the null hypothesis that potential nesting sites occur randomly throughout
the landscape. Also, the VMR is 8.81, which is significantly greater than 1.
This confirms the pattern is clustered. We, therefore, conclude that potential
nesting sites were not an outcome of the CSR process.

Based on the statistical results generated from the other distributions and the
chi-square tests (see Tables 6.2 and 6.3), we do not reject the null hypotheses that
potential nesting sites occur randomly throughout the landscape. The VMR
was 092 and 1.21 for the dispersed and randomly distributed point patterns,
respectively. Both of them are below 1 or barely over 1, suggesting that the
point patterns exhibit more randomness than non-randomness. The chi-square
tests were statistically insignificant, implying that the observed distribution
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patterns were similar to Poisson distributions (Figure 6.2). This lends further
credence to the fact that the patterns are an outcome of the CSR process.

The interpretation of quadrat count results was based on the frequency dis-
tribution comparisons. For the VMR results, we expected a VMR that was close
to 0 to yield a dispersed distribution, around 1 to yield a random distribution,
and greater than 1 to yield a clustered distribution. Although the patterns for
the nesting sites reflected this, it should be noted that the dispersed pattern
had a VMR that was close to 1. This is not a completely uniform distribution.

Nearest Neighbor Approach

The nearest neighbor approach compares the distances between nearest
points and distances that would be expected on the basis of chance or simply
measures the distance between an individual point and its nearest neighbor
(Clark and Evans 1954). The approach computes the average distance between
nearest neighbors in a point distribution (observed distance) and compares
it to that of a theoretical pattern (expected distance). This approach assumes
that observation points represent a sample in a two- or more-dimensional
Euclidean space. Relationships between neighboring points are derived under
the Poisson distribution assumption, such that if points are randomly distrib-
uted then they can be used to detect the presence of nonrandomness for any
given pattern (Clark and Evans 1954; Bailey and Gatrell 1995; Fotheringham
and Zhan 1996; Gatrell et al. 1996). The Euclidean space between two or more
objects, or distance, captures neighboring relations, which enables different
orders of neighbors to be quantified when studying any given neighboring
points. Different ordered neighbor statistics, first-ordered, second-ordered,
and other higher-ordered neighbors can be derived.

In a study region, we have a set of events (N) in a population. Each of the
events has a nearest neighbor, which can be represented by r. The observed
distances (r;) defined as ry, r,, 75, 7, ... 1, represent the distance between each
item and its closest neighbor in an area (A). The values are expressed using
similar units of measurement. To compute the nearest neighbor, we divide
the sum of r; by N to get the mean observed distance (,) for all points and
compare it with the expected mean distance (r,). The formulas to complete
this analysis are given below.

The density of points, p, is given by number of points (N) per study area (A):

PZZ

Mean observed distance (r,) is given by

.
N

r,=
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The expected value of the nearest neighbor distance (r,) in a hypothetical

random pattern is
r,=0.5, /é +| 0.0514 + 0.041 X B
N JN )N

where B is the perimeter of the study area.
The nearest neighbor ratio, R, measures the degree to which the observed
distribution departs from the expectation in a random pattern:

R=l
re

The divergence from randomness along the R scale is interpreted as fol-
lows. When R is equal to 1, the distribution of events in the study region is
perfectly random. When R is equal to 0, the distribution of events is com-
pletely clustered, and if R is greater than 1, the distribution of events tends
toward uniformity. The R scale shows different dispersion patterns and
ranges from 0 to 2.149. Small or large divergences are indicative of the under-
lying processes that are producing a dispersion pattern.

A statistical test of significance is conducted by looking at the difference in
the observed and expected mean distance of the nearest neighbor, divided
by the standard error:

The resulting quantity is a standard normal variable (z) that can be used to
evaluate the null hypothesis of randomness.

To summarize, there are six major steps in conducting a nearest neighbor
analysis.

. Calculate the density of points in an area.

. Derive observed average distances.

. Determine the hypothetical random pattern.

. Compute the R statistic and perform a statistical test.

U = W N =

. Interpret the R statistic (when r, is less than r, then more clustered
patterns are associated with smaller R-values and when r, is greater
than r, then more dispersed patterns are associated with larger
R-values).

6. Calculate the z-scores and use the appropriate critical values to con-
firm or deny the null hypothesis.
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TASK 6.2 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF NEAREST NEIGHBOR MEASURES

We will use our data of potential nest sites in Figure 6.2. However,
the dispersed distribution has been simulated to give a near-perfect
uniform pattern. In this analysis, we can assume that a set of locations
of these nest sites is located in a study region. Each of the points
represented by a pair of coordinates (X, Y) has a closest neighbor that is
represented by  in a predefined study area of 2,064,590 m?2. The density
of points is 5.38e-5 per square meter.

The R-values in Table 6.5 provide an estimate of the degree of clustering for
three distributions, while the test of significance (p-value) assumes that the
statistical distributions of observed distances were approximately normal.

The observed mean distance, expected mean distance, and z-score for dis-
tributions are presented in the same table. The R-value for the clustered distri-
bution is less than 1; for the dispersed distribution, it is greater than 1; for the
randomly distributed pattern, it is close to 1. The z-score result for the clustered
distribution is =10.55 and this is far below —1.96, the critical value observed at a
0.05 significance level. For the dispersed distribution, the z-score is 15.08, and
this too is above the critical value of +1.96 at a significance level of 0.05. Based
on these z-scores, we are 95% confident that the two spatial patterns are not
randomly distributed. However, when examining the random distribution,
the z-score is 0.396, which is below +1.96, so we cannot reject the null hypoth-
esis of spatial randomness. Overall, based on these statistical results, we can
make the following observations regarding the spatial distribution of potential
nesting sites of African black coucals. The distribution listed in the first row of
Table 6.5 shows a significant degree of clustering, implying that potential nest-
ing sites are more clustered than random, and the pattern is not due to the CSR
process. In the second row, potential nesting sites are more dispersed than ran-
dom, thus the spatial distribution shows a significant level of regularity. In the
third row, nesting sites are randomly dispersed and are essentially produced
by the CSR process. The spatial distribution of three dispersion patterns and a
plot of the observed distance to the closest neighbor is presented in Figure 6.3.

TABLE 6.5

Worktable for Nearest Neighbor Analysis for Potential Nesting Sites Showing
Results for Three Basic Distributions

Observed Expected Nearest
Mean Mean Neighbor
Distance Distance Ratio (R) z-Score p-Value
Clustered 31.671 54.30851 0.58316 —10.549206 .00000
Dispersed 120 68.5 1.751825 15.08495 .00000

Random 95.231 92.749438 1.026753 0.396444 691778
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The spatial distribution of three dispersion patterns and a plot of the observed distance to the

closest neighbor.
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K-Function Approach

Unlike the nearest neighbor method, which relies on distances only to the
closest events, the K-function approach explores a spatial pattern across a
range of spatial scales (Bailey and Gatrell 1995; Fotheringham and Zhan 1996;
Gatrell et al. 1996). It is based on all inter-event distances between observa-
tion points, and provides another way to summarize and fit the models that
best describe spatial patterns in a given study region.

The K-function is given as

K(h)= %i > Lid,

n =1 j=Li#E Wi

where K(h) is the expected number of events inside the radius (%), A is area, n
is the number of observed events, and d;; is the distance between events i and
J- I,d;) is an indicator function, which is 1 if d; < h and 0 otherwise. The w;,
are weights associated with edge correction, which is most often taken as the
proportion of the circumference of a circle with radius / centered at a point
that is contained within the study area. K() is normally graphed against the
distances to reveal if any clustering occurs at certain distances. K(k) should
be transformed into a square root function to make it linear L(d) under a
Poisson distribution to a value of zero with clumped alternatives being posi-
tive and regular alternatives being negative. This is done by applying Besag’s
(1977) zero benchmark to normalize the K(h):

The normalization of K(h) to L(d) enables fast computation and simple
interpretation of the result. We can evaluate different K(f) models using
simulated confidence envelopes. For example, when L(d) is equal to zero, the
process is considered to be random.

Just like in the previous point pattern methods, the basis for conducting
a K-function is by comparing the expected and observed distributions. So
for any distance, if the observed L(d) is less or greater than the expected
L(d), the null hypothesis of CSR is rejected at a specified significance level.
With this in mind, the interpretation of the K-function is as follows: (1)
an observed L(d) greater than the upper limit of the simulations indicates
clustering in concentration, (2) an observed L(d) lesser than the lower
limit of the simulations indicates dispersion, and (3) an observed L(d) in
between the lower and upper limit of the simulations indicates a random
distribution.
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There are six major steps in conducting a K-function analysis:

1. Determine/compare the observed and expected K. The observed K
is obtained through the construction of a circle around each point
event (i), counting the number of other events (j) within the radius ()
of the circle, and repeating the same process for all other events (7).

2. Next, determine the average number of events within successive dis-
tance bands. Find the overall point density for the study area. The
observed K is the ratio of the numerator to the density of events. This
can then be compared to the expected K, which is a random pattern,
K(h) = nh?.

3. Transform K(h) estimates into a square root function to make it lin-
ear L(d).

4. Determine the confidence envelope by estimating min L(d) and
max L(d) values from several simulations at « = 0.05 under the null
hypothesis of random distribution.

5. Plot L(d) estimates on a graph to reveal if any clustering occurs at
certain distances.

6. Interpret the results.

TASK 6.3 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF K-FUNCTION MEASURES

In this example, we will use two datasets drawn from ecological and
medical domains to illustrate the application of the K-function methods.
For the ecological application, we will use the bird nesting dataset intro-
duced earlier in this chapter. The null hypothesis is that the distribution
of nesting sites is random (nonhomogenous) throughout the landscape
under a Poisson distribution and is statistically significant at o = 0.05.
A plot of the results generated for L(d) is shown in Figure 6.4. In the
upper panel, the observed distance is above the min L(d) and max L(d)
suggesting a clustered distribution. In the middle panel, the observed
distance is in between the min L(d) and max L(d), indicating the distri-
bution is random. Finally, in the lower panel, the observed distance is
below the min L(d) and max L(d), suggesting a dispersed distribution.
For the medical application, we will examine injury location data
drawn from the city of Syracuse, New York region. The data were origi-
nally obtained from the Department of Emergency Medicine, University
of Buffalo. It consisted of 911 reported calls for all patients transported
directly to the trauma center from the scene of injury, incident location,
and travel time to trauma center, covering a 6-year study period (1993—
1998). Eighty-one percent of 750 incident locations were successfully

(Continued)
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TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF K-FUNCTION MEASURES
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FIGURE 6.4

Plots of L(d) values for three dispersion patterns of an ecological study obtained from
the K-function analysis. The findings were generated on the basis of 99 simulations
under the null hypothesis of random distribution.

(Continued)
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TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF K-FUNCTION MEASURES

geo-coded to create an injury location database. We will use the data to
determine whether the distribution of injury locations (and the influ-
ence of prehospital travel time from the scene of injury to trauma center)
exhibits a random pattern under a Poisson distribution. A plot of the
results for L(d) is shown in Figure 6.5. In the upper panel, the observed
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FIGURE 6.5

A plot of L(d) values for injury locations of a medical study obtained from the K-function
analysis. The findings were generated on the basis of 99 simulations under the null
hypothesis of random distribution.

(Continued)
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TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF K-FUNCTION MEASURES

distance is above the min L(d) and max L(d), which is outside of
the confidence envelope. We can therefore conclude that the spa-
tial distribution of injury locations were more clustered than ran-
dom throughout the Syracuse region. However, upon weighting
with prehospital travel time, a distributional change was observed
as depicted in the lower panel. From a distance of 13,115 to 65,576
m, the observed distance is below the min L(d) and max L(d), which
is outside of the confidence envelope. This finding suggests that the
distribution of injury locations is more dispersed than random. For
remaining distances occurring after 65,576 m, the observed distance
is in between the min L(d) and max L(d), suggesting that the distribu-
tion is more random than dispersed and is due to the CSR process.
There is a significant change in L(d) values when prehospital travel
time is considered in the distribution analysis. The mixed distribu-
tion pattern reminds us of the need to proceed with caution when
doing dispersion studies. In this medical example, the results seem
to suggest that prehospital travel time is not associated with injury
locations.

Kernel Estimation Approach

This approach utilizes kernel functions to estimate the density surface
of events within a specified radius (bandwidth) around each event in a
study region. From a statistical perspective, it is basically a non-parametric
method that estimates the probability density function of a random vari-
able. We can apply this method to study the density of events in a study
region (R) by using a moving two- or more-dimensional function (the
kernel).

Each of the events lies in a specified location, which can be represented
ass. Let sy, s,, ...s, be the location of a set of n events in a study region, R. We
can derive the surface intensity of n events using this equation (Bailey and
Gatrell 1995):

o~ n

0= 3 ()

i

where 7 is the bandwidth (a smoothing parameter, i.e., radius of the cir-
cle), k() is the kernel, and s—s; is the distance between two events (point s
and s,).
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FIGURE 6.6
A schematic representation of the kernel estimation method applied to study region R.

For an event to be incorporated in a density surface estimate, a suitable ker-
nel function needs to be applied to spread its effect across space (Figure 6.6).
What follows is a smoothened density surface, which is produced after sum-
ming all the individual kernels across the study region. The influence of an
event at s; to all point events can be adjusted by scaling the kernel function.
This function provides an appropriate interpolation technique for general-
izing individual-level events in a given location to the entire study region.
The kernel density estimation results can be displayed by either using surface
maps or contour maps. It is also possible to construct a histogram of a kernel
density estimate.

The kernel function calculates the probability density of an event at a
specified distance using an observed reference point. However, the event
intensity of spatial point patterns is contingent upon kernel type and band-
width. There are different kernel types including normal, uniform, trian-
gular, quartic, and Gaussian. The kernel density estimation is useful for
characterizing spatial patterns of point events and is normally employed in
many spatial applications, including population density, housing density,
crime, ecology, and health. Let us work through Task 6.4 to illustrate this
application.
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TASK 6.4 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF THE KERNEL DENSITY MEASURES

In this example, we will apply the kernel estimation method on the injury
location dataset that was previously described for the K-function. The
maps from the kernel estimation method are presented in Figure 6.7,
Two continuous injury density surfaces with prehospital travel time
as a population field are given in Maps B (5,000 m bandwidth) and C
(10,000 m bandwidth). Although Maps B and C have similar spatial pat-
terns in terms of their density surface, the 10,000 m bandwidth provides

Injury locations
Map A
Point events
showing injury
locations
0 0.050.1 0.2Miles

| Density surface

102 High Map B
82 Spatial patterns

of injury
62 locations with
42 prehospital travel time

e 20 bandwidth = 5,000 m
- 0 Low

Map C

Spatial patterns

of injury

locations with
prehospital travel time
bandwidth = 10,000 m

FIGURE 6.7

Intensity patterns of injury location relative to prehospital travel time in Syracuse.
Kernel density interpolation of injury location estimates with prehospital travel time
as a population field.

(Continued)
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TASK 6.4 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF THE KERNEL DENSITY MEASURES

a more generalized density pattern and spatial extent than the 5000 m
bandwidth. This is because the 10,000 m bandwidth includes a larger
number of point events in its calculations.

In both Maps B and C, the intensity of injury locations was apparent in
the central portion of the study region. The highest density surface val-
ues were located within the center surrounding the trauma center, and
because of distance decay, the surface values gradually level off. There
is a diminishing of density surface values as one moves farther away
implying that there were more observed injury locations that fell in this
neighborhood than further away. The results offer confidence in the spa-
tial patterning of injury locations and the role of the trauma center.

Constructing a Voronoi Map from Point Features

Along with the methods described in section, “Exploring Patterns, Distribu-
tions, and Trends Associated with Point Features,” Voronoi maps are funda-
mental tools for uncovering the geometric structures that underlie spatial
data. They have been used in applications that draw from the location of
point features to delineate space into so-called “spheres of influence” such
as trade areas in the retail industry, hospital service areas, and more. The
Voronoi method offers an excellent example of how spatial analysis builds
upon the synergies between multiple analytical domains including mathe-
matics, computational geometry, and geographic information systems (GIS).
The technique offers a computational means to partition a plane (space)
using a set of individual points into convex polygons (Klein 1989).

Let us assume we have a set of points, n, with the following points {v;,
Uy, ..., 0,} in an Euclidean space. Each site v, is simply a point and has a
corresponding Voronoi cell, Ry, which consists of every point whose distance
is less than or equal distance to any other site. We can use a Voronoi dia-
gram to measure the proximity of a polygon area to a particular event or
investigate a source of concern.

TASK 6.5 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF A VORONOI MAP

In this example, we will create a Voronoi map for the bird nest-
ing locations of the African black coucals dataset that was used in
section, “On Exploring Patterns, Distributions, and Trends Associated
with Point Features.” Figure 6.8 presents Voronoi maps for three

(Continued)
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TASK 6.5 (Continued)

SAMPLE DATA, SYNTHESIS,

AND INTERPRETATION OF A VORONOI MAP
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Voronoi maps illustrating three point distributions for potential nesting sites in relation
to area and comparison histogram of area of proximity polygons are presented above.

(Continued)
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TASK 6.5 (Continued) SAMPLE DATA, SYNTHESIS,
AND INTERPRETATION OF A VORONOI MAP

nesting locations and comparison histograms of areas of proximity
polygons. In the upper panel, the area of proximity polygons is very
tight; most nests are in close proximity to each other, frequency dis-
tribution is heavily skewed, and there are five potential spatial clus-
ters of nesting sites encoded with yellow color. In the middle panel,
most of the individual nests fall in their own polygon (Voronoi cell)
and this pattern was repeated throughout the study region. The fre-
quency distribution of nesting sites is skewed with most observations
occurring within three sets of areas of proximity polygons. In the lower
panel, individual nesting sites are uniformly distributed and dispersed
throughout the study region. There is one nest site in each polygon
(Voronoi cell). We can draw conclusions about the type of spatial pat-
terns of potential nesting sites of African black coucals based on these
Voronoi maps. Overall, the upper panel shows a clustered spatial pat-
tern, the middle panel shows a random spatial pattern, and the lower
panel shows a dispersed spatial pattern.

Exploring Space-Time Patterns

While several of the applications introduced so far in this chapter are based
on point patterns that are rooted in space, it is important to point out that
there are several geographical problems that call for and entail the use of
space—time applications. The visualization and analysis of space—time pat-
terns was inspired by the groundbreaking work of Hégerstrand (1970).
Héagerstrand’s idea focused on how we can better understand human spa-
tial activity through the space—time path concept. He identified two types of
human activities that could be examined using this concept: fixed and flex-
ible activities. A fixed activity entails core aspects of an individual’s schedule
that occur at a defined location while a flexible activity represents any sec-
ondary activity an individual would schedule or engage in. Flexible activity
may occur around a fixed activity. It is important to note that individual
activities a person may engage in are typically constrained by spatial and
temporal factors. An individual’s travel activities have origin and destination
locations with a start and an end time.

Decades later, Miller (1991) illustrated how Higerstrand’s space-time
path concept could be extended into new areas. Harvey did not only model
individuals” accessibility to an environment using space-time prism con-
cepts but also advocated its widespread use in spatial modeling and anal-
ysis. Motivated by this prior work, GIS/spatial analysts now apply these
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perspectives to study different spatial phenomena, including incidents of
crimes and diseases, tweet movements on the Twitter network, and con-
sumer activities on social media and online shopping sites. The new knowl-
edge that is derived can be useful for synthesizing life trajectories and
the development of superior study hypotheses for more in-depth studies.
Specifically, the space-time perspectives can be used to construct 3D distri-
butional characteristics (space—time path, space-time prism, and potential
path area space—time) of any human activity or moving objects provided that
they are constrained by physical or virtual spaces.

Although many space-time methods are available (Groff 2007), one that
has been used frequently to analyze crime as well as disease incidents is the
Kulldorff’s space-time scan statistic. In an effort to find statistically signifi-
cant clusters, the Kulldorff’s space-time method employs an elliptic search
window to determine whether the point process is purely random or if any
potential clusters exist in the study area under the homogenous Poisson
distribution. Within each search window, the method assigns a likelihood
function to a potential cluster, which is then compared with a randomly
generated theoretical pattern. To compute the spatial scan statistic, a circu-
lar window is imposed on the map, and the center of the circle is allowed
to move flexibly over the area to include different neighborhood positions
within each search window (Kulldorff 2001). A likelihood value (Kulldorff
2001) is then calculated for each window using this formula:

S:

z

max{L(Z)} {@}

Given a total number of observed incidents, N, the definition of the spatial
scan statistic S is the maximum likelihood ratio over all possible circles Z.
L(Z) is a measure of how likely it is the observed data (in our example, it is
the rate of crime incidents) within the window are different from out of the
window. The maximum likelihood ratio test statistic (L,) is calculated under
the null hypothesis of no spatial heterogeneity in the spatial distribution of
observations.

A single p-value is generated for the test of null hypothesis through Monte
Carlo simulations, and the theoretical pattern reflects the number of random
replications on the basis of a number of simulations (at least 999 to ensure
excellent power). The theoretical patterns are compared with the observa-
tions, and if the observations are among the highest 5%, then the test is sig-
nificant at the 0.05 level (Kulldorff 1997; Kulldorff et al. 2006; Dai and Oyana
2008). Based on these statistics, we can reject the null hypothesis and specify
the estimated location of the most likely space—time cluster of the events.

Map A provides the place names of the neighborhood; Map B provides four
space—time clusters derived from a spatial space—time scan statistic; Map C
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TASK 6.6 SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF KULLDORFF’S SCAN STATISTIC

For this task, we will utilize crime data covering a 5-year study
period (2008-2012) for the city of Spokane, Washington. The data were
obtained from the city’s GIS website (http://www.spokanecity.org/ser-
vices/gis/). The crime dataset provides individual-level incident loca-
tion information for different types of crimes. In this case study, we
chose to examine the overall crime patterns and dynamics, and we also
focused on detecting the clusters for two crimes in particular: theft and
burglary crimes. We applied the space—time prospective scan statistic
to study crime incidents over a 5-year period. The crime incidents were
analyzed at two spatial levels: individual and group level.

In 2010, Spokane had an estimated population of 210,000 with most
people living in the north and south. Very few people lived in the cen-
tral and western portions of the city. The city has 27 neighborhoods
and covers an area of 156 km?. Figure 6.9 provides a 3D representation
of crime rate distribution by neighborhood during the study period.
In this figure, it appears that crime rates were highest in the Riverside,
West Central, Cliff/Cannon, and Bemiss neighborhoods. However, the
rates are misleading because these neighborhoods have a low popula-
tion (a small number problem), thus inflating the crime rates. One must
exercise caution in interpreting the crime rates and to the extent pos-
sible, conduct a more detailed spatial analysis such as one shown in
Figure 6.10. In this figure, the space—time clusters of crime incidents are
far more realistic than the observed trends in Figure 6.9.
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FIGURE 6.9
Three-dimensional representation of crime rate per 10,000 people between 2008 and 2012.
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TASK 6.6 (Continued) SAMPLE DATA, SYNTHESIS, AND
INTERPRETATION OF KULLDORFF’S SCAN STATISTIC

The space-time prospective analyses detected four sets of clusters
of crime incidents shown in Figure 6.10. The life trajectory of over-
all crime incidents in Spokane has a start date of January 1, 2011 to
December 31, 2012 (Figure 6.10: Map B). The biggest set was detected
in Bemiss, Hillyard, Chief Garry Park, and Minnehaha. The second set
was located in Brownes Addition, Peaceful Valley, and Riverside. The
third set was detected in West Hills, while the fourth set was a big
cluster that overlapped in six neighborhoods, including Latah Valley,
Comstock, Lincoln Height, Southgate, Rockwood, and Manito/Cannon
Hill. Burglary had a similar spatial pattern to overall crime incidents
(Figure 6.10: Map C). However, the spatial pattern for theft was slightly
different from burglary; three sets of theft clusters were detected in
Bemiss, Hillyard, Chief Garry Park, and Minnehaha; Brownes Addition;
and West Hills (Figure 6.10: Map D).

A total of five life trajectories were built from the space—time prospec-
tive analyses of crime incidents. The most important life trajectory was
the one that overlapped in four neighborhoods. Most of the detected clus-
ters in 20112012 were common in three analyses, suggesting a consistent
finding among the different types of crime incidents in city of Spokane.

provides four space—time clusters derived from the spatial space-time scan
statistic; and Map D provides three space-time clusters derived from the
spatial space-time scan statistic.

Conclusion

One of the most fundamental applications in spatial analysis is point pattern
analysis. In this chapter, we have explored a number of approaches for quan-
tifying the pattern of these distributions from the most basic using quadrat
analysis to more complex approaches that use circular/cylindrical windows to
characterize the events in space and time. For each of the techniques, we have
provided the analytical steps and examples to help you learn how to compute
and synthesize the results. Following are more examples and sample exercises.
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Challenge Assignments

TASK 6.7 GENERATE AND INTERPRET POINT
PATTERN DESCRIPTORS AND STATISTICS

1. We will explore point patterns using two distance-based con-
ventional methods (Average Nearest Neighbor and Multi-
Distance Spatial Cluster Analysis [Ripley’s K-Function]). The
data for completing this challenge assignment are located in
Chapter6_Data_folder.

2. Exploring noise-level events. Add Noise_Project and Study_
Area_Outline feature classes from Noise. OHare Geodatabase
.mdb from data folder.

a.

b.

What is the observed nearest neighbor mean distance
(NNObserved) for the noise-level events?

What is the expected nearest neighbor mean distance
(NNExpected) for the noise-level events?

What is the nearest neighbor ratio for the noise-level
events?

What are the z-score and p-value? Are these statistics
significant? What spatial patterns do the events depict?
Explain.

Compute the observed K-function and expected K-function
for the noise-level events. Select 10 as the number of dis-
tance bands, under Compute Confidence Envelope select
99_permutations, and use all_averag as the Weight Field for
the noise-level data. Remember to check the box to display
your results graphically. Include the K-function plot in your
final report. Are the statistics significant? What spatial pat-
terns do the events depict? Explain.

Define a specific study hypothesis regarding the spatial
patterns of noise-level events.

What fundamental insights can you extract from the explo-
ration of noise-level events?

(Continued)
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TASK 6.7 (Continued) GENERATE AND INTERPRET
POINT PATTERN DESCRIPTORS AND STATISTICS

3. Exploring OSA events. Add the Erie_cen.shp, Niagara_cen.shp,
and OSA.shp datasets from the Chapter6_Data_folder in a new
dataframe.

a. What is the observed nearest neighbor mean distance
(NNObserved) for the OSA events?

b. What is the expected nearest neighbor mean distance
(NNExpected) for the OSA events?

c. What is the nearest neighbor ratio for the OSA events?

d. What are the z-score and p-value? Are the statistics signifi-
cant? What spatial patterns do the events depict? Explain.

e. Compute the observed K-function and expected K-function
for the OSA events. Select 10 as the number of distance
bands, under Compute Confidence Envelope select 99_per-
mutations, and use DAYS_INPT as the Weight Field for the
OSA events data. Remember to tick the box to display your
results graphically. Include the K-function plot in your final
report. Are the statistics significant? What spatial patterns
do the events depict? Explain.

f. Define a specific study hypothesis regarding the spatial
patterns of OSA events.

g. What fundamental insights can you extract from the explo-
ration of OSA events?

4. Compare and contrast these two distance-based methods:
average nearest neighbor and Ripley’s K-function.

TASK 6.8 EXPLORE AND INTERPRET SPACE-
TIME POINT PATTERNS AND STATISTICS

1. There are two ways of conceptualizing and modeling the
complex patterns of spatiotemporal dynamics: (1) continu-
ous space and time models and (2) discrete space—time mod-
els. In this example, we will learn how to conduct a basic
time series analysis of noise-level data spanning a 7-year
(2004-2010) study period. The data have been split into four
categories/subsets using MS Excel: Tier 1 (80th percentile and

(Continued)
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TASK 6.8 (Continued) EXPLORE AND INTERPRET
SPACE-TIME POINT PATTERNS AND STATISTICS

above), Tier 2 (between 50th and 80th percentile), Tier 3 (20th
and 50th percentile), and Tier 4 (20th percentile and below).
The average for the four categories is presented in Table 6.6.

a. Plot the temporal trends using a line chart for the four
categories.

b. Describe the temporal trends among the four categories.

Test the following hypothesis using a one-way analysis of
variance (ANOVA).

i. The null hypothesis is that the decibel means over the
study period are equal: Hy: Tierl _Mean = Tier2_Mean =
Tier3_Mean = Tier4d_Mean.

ii. The alternate hypothesis is that the decibel means over

the study period are not equal: H,: Tierl_Mean <>
Tier2_Mean <> Tier3_Mean <> Tier4_Mean.

iii. Is the result statistically significant? What does this
mean? Explain.

. Use names of places within the attribute table together with a

general map of O’Hare International Airport (e.g., from Google
Maps) to identify specific neighborhoods and any other identi-
tiable characteristics from each of the four tiers. Perhaps after
doing Task 6.5 you will have additional information to effec-
tively respond to this question.

study region.

TABLE 6.6

A Summary Showing Averages of Four Categories of Day/Night Sound
Levels

. Describe the spatiotemporal patterns of noise levels in the
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Levels 2004

2005

2006

2007

2008

2009

2010

Tier 1
Tier 2
Tier 3
Tier 4

69.29755
62.34501
58.52424
56.67273

69.4
62.86818
57.9871
56.04306

70.70509
63.00463
59.01704
55.86667

69.26111
61.67189
58.80031
55.90972

69.25972
61.11852
58.37204
55.60417

66.72942
59.0463

57.11894
54.66959

67.61667
59.92407
56.12129
54.40238
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Review and Study Questions

1. What are the three common distributions encountered in point pattern
analysis? Using a variable with point features drawn from your area of
interest, speculate on the observed distributional pattern of this vari-
able. What technique would you use to confirm or deny your claim?

2. What is the theory of CSR? Describe the various ways in which this
can be violated in spatial analysis.

3. Point pattern measures are all based on the comparison of observed
and expected distributions. Choosing two of the approaches intro-
duced in this chapter, first explain how the expected distributions
are derived. Then explain the statistical measures that are used to
confirm or deny the null hypothesis of CSR.

4. Compare and contrast the measures derived from Kulldorff’s Scan
Statistics with two other measures introduced in this chapter.

Glossary of Key Terms

Clustered Pattern: When point features (events) are detected to be spatially
concentrated in a specific location of a study region.

Complete Spatial Randomness: This principle states that each event has an
equal probability of occurring at any position in the study region
and the position of any event is independent of the position of any
other.

Kernel Estimation: This method is used to estimate the density surface of
events within a specified radius (bandwidth) around each event in
a study region.

Nearest Neighbor Analysis: This method compares the distances between
nearest points (events) and distances that would be expected on the
basis of chance.

Point Pattern Analysis: This is a means through which we describe or
examine a complete set of observations as well as the location of
each observation and its distance relative to others in a distribution.

Quadrat Count Method: This method is used to determine the frequency of
point distribution by measuring the density of points (events) over
the study region.

Ripley’s K-Function: This method is used to describe spatial patterns across
a range of spatial scales.

Space-Time Scan Statistic: This statistic is used to describe the distribution
of spatial, temporal intervals or spatiotemporal patterns of events in
a study region.
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Spatial Scan Statistic: This statistic measures the maximum likelihood ratio
over all possible search radii.

Variance Mean Ratio: This is a normalized measure of the dispersion of a
probability distribution.

Voronoi Map: This is used to delineate or represent space and it helps to
computationally determine the “spheres of influence.” A Voronoi
map is derived using the complex geometric and topologic struc-
tures of the underlying spatial data.
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Engaging in Areal Pattern Analysis
Using Global and Local Statistics

LEARNING OBJECTIVES

1. Construct and use different spatial weights for areal pattern
descriptors.

2. Generate and interpret clustering of values of areal patterns at a global
level.

3. Generate and interpret clustering of values of areal patterns at a local
level.

4. Identify clustering of areal pattern values using different spatial
weights.

5. Explore, analyze, and interpret areal patterns based on advanced spa-
tial analysis.

This chapter is dedicated to the analysis of areal patterns using both global
and local spatial statistics. Unlike Chapter 6, which focused on point pat-
terns, in this chapter, we will explore spatial datasets that are reported
or received at aggregated spatial levels < specifically areal, polygon, or
group-level data. Such datasets are becoming increasingly common due
to the growing need for confidentiality and privacy of data records. Many
public and private agencies as well as data centers are now obliged to pres-
ent data at aggregated unit levels. Typically, the individual-level spatial
data information is aggregated at spatial scales such as census tracts, zip
codes, health service areas, community districts, counties, or higher levels.
To evaluate the areal patterns, it is incumbent on a data scientist to recog-
nize the unique attributes and challenges that are inherent in the use of
such data, and to choose the appropriate techniques for spatial analysis.
The methods presented in this chapter will be helpful in the exploration
and analysis of these spatial datasets. Each technique will be discussed
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alongside a case study to illustrate the computational steps, following
which the interpretation of the test results and the methodological limita-
tions, if any, will be presented.

Rationale for Studying Areal Patterns

As we embark on the analysis of group-level spatial datasets, a number
of questions come to mind. Specifically, what are some of the most robust
spatial methods for analyzing areal units? What role do measurement
scales play in the selection of these methods? What is the significance of
spatial weights and what are the implications of using these weights on
the analysis? And what are the benefits of using either global or local sta-
tistics to uncover the spatial areal patterns? Along with these questions,
it is important to note that changes in spatial patterns over time are often
the result of underlying spatial processes. Therefore, when exploring spa-
tial patterns, we need to focus not only on the spatial patterns but also on
the spatial processes. As we discovered in Chapter 6, the patterns can be
clustered, dispersed, or random. Our task will be to formulate a statistical
hypothesis of complete spatial randomness and then validate this based
on the empirical observations derived from the analysis. If the pattern is
nonrandom, we then proceed to uncover the processes that underlie the
observed pattern.

The Notion of Spatial Relationships

Spatial statistics does not simply mean the application of statistical
methods to data that just happens to be spatial, encompassing x- and
y-coordinates. Rather, it entails the integration of space and spatial
relationships (area, distance, length, etc.) directly into the analysis. In
Chapter 1, we discussed the notion of spatial dependency as a principal
characteristic of geographic data. Knowledge of this basic characteristic
lies at the core of a successful spatial analysis. The existence of spatial
dependency requires more attention to avoid biased estimates (Armhein
1995) of spatial effects. Handling geographic data involves a systematic
examination of spatial dependency and then figuring out how to incor-
porate the true spatial structure in the spatial analysis. If this is success-
fully accomplished, we are more likely to generate unbiased estimates and
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possibly identify influential factors that may explain spatial patterns and
processes underlying any phenomenon.

In spatial analysis, we model spatial relationships based on the princi-
ple of spatial neighbors, best captured by Tobler’s first law of geography:
“everything is related to everything else, but near things are more related
than distant things.” Spatial autocorrelation can be measured for both point
and areal spatial patterns. Strong spatial autocorrelation means that attri-
bute values of adjacent geographic objects are strongly related (whether
positively or negatively). Results of this type of analysis often lead to fur-
ther inquiry of how the spatial patterns change from the past to the present,
or estimates of how the spatial patterns will change from the present to the
future.

In addition, the study of spatial autocorrelation has significant implica-
tions for the use of statistical techniques in analyzing spatial data. For many
classical statistics, including various regression models, a fundamental
assumption is that observations are randomly selected or independent of
each other. Unfortunately, when spatial data are analyzed, this assumption
of independence is often violated because most spatial data have certain
degrees of spatial autocorrelation (Anselin and Griffith 1988), as stated in
Tobler’s law. This often prompts the use of alternative techniques such as
geographically weighted regression to accommodate these attributes of spa-
tial data.

As a data scientist, it is good practice to start out by examining the degree
of spatial autocorrelation in the aggregated spatial data following which one
can decide on the next steps. In practice, the two spatial neighbors that are
commonly used are contiguity-based neighbors (the adjacency of boundar-
ies) and distance-based neighbors (critical distance thresholds). We assume
that the influence of spatial neighbors between 7 spatial units can be quan-
tified using a spatial weight; this is reflected in the way we summarize the
spatial structure using a spatial weight matrix (mathematical terms). A spa-
tial weight matrix is a representation of the spatial structure of the dataset.
It is a quantification of the spatial relationships that exist among the features
within the dataset. The primary weights are conceptualized in terms of spa-
tial contiguity or adjacency (Rook’s or Queen’s) and the distance between
two events. If you are measuring clustering of events/values that depict
an inverse relationship, then the inverse distance is probably most appro-
priate. However, if you are assessing the geographic distribution of com-
muting patterns, for example, in a city, then travel time or travel cost is a
better choice. It is therefore incumbent upon anyone conducting a spatial
analysis to determine the best weighting scheme for computing a spatial
relationship because it is highly consequential for tests of spatial autocorre-
lation. Furthermore, some spatial units may have no spatial neighbors. If the
selection of weighting scheme is done correctly, then we are likely to capture
the effects of spatial autocorrelation.
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In some cases, contiguity-based and distance-based neighbors are com-
bined to create a spatial weighting scheme that is reflective of conceptualized
spatial relationships (Cliff and Ord 1969; Griffith 1996; Getis and Aldstadt
2004; Kelejian and Prucha 2010). Figures 7.1 and 7.2 present visual schematic
representations of spatial neighbors for computing the effects of spatial auto-
correlation. We normalize spatial weights to remove dependence on irrel-
evant scale factors using either row or scalar standardizations.
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Ilustrated spatial weights for three cases of contiguity using regular grid

We quantify the degree of spatial influence for the

three cases using a connectivity matrix.

A connectivity matrix C is given by m X m,

where i ={1,2, ..n} andj ={1,2, ... n}.

C;; = 1if the two spatial units i #; are considered connected, and C;; = 0 if they are not.

FIGURE 7.1

Visual schematic representations of spatial neighbors using a contiguity-based weighting
scheme. Contiguity cells defining Bishop’s case include (A, C, G, I), Rook’s case (B, D, F, H), and
Queen’s case (A, B,C, D, E, H, I).
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Choose the k-nearest points as neighbors

(a) k-nearest neighbor: Define how many neighbors to include, what distance to use

d d;;
Fixed distance Y Combines fixed distance and power distances
(b) Radial distance
dj dj
(c) Power distance (d) Exponential distance

Illustrations of spatial weights using distance-based neighbors

Distance-based neighbors derive centroid distances, d;, between each pair of spatial units i and j

i
FIGURE 7.2
Visual schematic representations of spatial neighbors for distance-based weighting scheme:

(a) k-nearest neighbor, (b) radial distance, (c) power distance, and (d) exponential distance.

Quantifying Spatial Autocorrelation Effects in Areal Patterns

A statistical test is applied to determine whether there is a match between
locational and attribute similarity. The effects of spatial autocorrelation are
commonly quantified using Moran’s I index (Moran 1948, 1950) and Geary’s C
ratio, both of which are statistical in nature. In this chapter, we will examine a
variety of existing methods. The methods use a measure known as the spatial
autocorrelation coefficient, which statistically tests how clustered/dispersed
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features lie in space with respect to their attribute values. The measure exam-
ines whether an observed attribute of a variable at one location is independent
of values of that variable at neighboring locations. If these values are similar
and statistically significant, then we can conclude that positive spatial autocor-
relation is evident in the spatial distribution. However, in a case when values
in the neighboring location exhibit different characteristics (are dissimilar),
then we can conclude that spatial autocorrelation is weak or nonexistent in the
spatial distribution. In Figure 7.3, the map in the upper panel shows clustered/
positive spatial autocorrelation, with adjacent or nearby polygons having
similar values; the map in the middle panel exhibits a random/independent
spatial autocorrelation; and the map in the lower panel shows a dispersed pat-
tern/negative spatial autocorrelation, with changes in shade often occurring
between adjacent polygons.

Join Count Statistics

This is a basic method that quantitatively determines the degree of cluster-
ing or dispersion among a set of spatially adjacent polygons (Cliff and Ord
1973; Goodchild 1986). It is used for binary nominal data such as 1/0, yes/
no, arable/nonarable lands, and urban/rural counties. The method measures
the spatial relationships between similar or dissimilar attributes in adjacent
areas. The binary variable is denoted by two colors, black (B) and white (W)
(Figure 74). If a given attribute of 1 occurs in an area, then the area will be
assigned B. If it does not and has an attribute of 0, then it will be assigned W.
If two neighboring areas share a common boundary, they are conceptual-
ized as joined.

There are three possible types of joins: black-black (BB), two B neighboring
areas; white-white (WW), two W neighboring areas; and black-white (BW),
B and W neighboring areas. Join counts tally the numbers of black-black,
white-white, and black-white joins in the study area. Observed join counts
are derived as follows:

o 1
BB (black-black) joins: BB = Ezizjwijxixj

N 1
BW (black-white) joins: BW = EZizjwif(xi -x;)

WW (white-white) joins: WW:%EZ,Z j w;(1-x,)(1-x;)

where x; is the observer value for variant X, x; = 1 when the ith area is B,
x; = 0 when the ith area is W, and w; is weight for each pair of objects i and j.

We use the observed patterns of join counts to compare whether it is
different from a random/expected pattern under the null hypothesis of no
spatial autocorrelation. Each of the null hypotheses for the three types of
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FIGURE 7.3
A schematic representation of three different spatial areal patterns showing tree height near a
residential neighborhood in Chicago.
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1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
>
1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0
Areal pattern A
1 0 1 0 1 1
0 0 1 0 0 0
0 0 0 0 0 0
>
1 0 1 0 1 1
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Areal pattern B
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0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
Areal pattern C

FIGURE 7.4

Three areal spatial patterns shown in (A) through (C). Spatial autocorrelation for the three
maps can be calculated using Join Count Statistics where each of the shaded cells (B) is assigned
a value of 1 while each of the non-shaded cells (W) is assigned a value of 0.
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joins determines whether the compared differences are statistically signifi-
cant at p-value < .05. This is done by calculating the Z-test for each join and
deciding whether the null hypothesis is true. The Z-test is calculated as

7 Observed — Expected

Y Expected

A z-score for each of the joins is calculated in the example below.

TASK 71 EXAMINING LAND USE
PATTERNS OF A FARMLAND

Let us look at a hypothetical case of an area of farmland (Figure 7.5).
Within the farm area we may assign white to areas or cells representing
nonarable and black to areas or cells for arable land. Spatial autocor-
relation for these maps can be calculated using Join Count Statistics
where each of the filled cells (B) is assigned a value of 1 while each of
the non-shaded cells is assigned a value of 0.

Interpreting Moran’s I

-1 0 +1

4 l
Perfect dispersion No correlation Perfect correlatior
FIGURE 7.5

A visual schematic representation of resultant values of Moran’s I.

Interpreting the Join Count Statistics and Methodological Flaws

Statistical results for the join counts are presented in Table 7.1 based on
Rook’s case, Bishop’s case, and Queen’s case. Areal Pattern A shows more
arable/arable land joins (Rook’s case observed = 30, Bishop’s case observed =
23, Queen’s case observed = 53) than would be expected under Rook’s case
(18.1), Bishop’s case (15.1), and Queen’s case (33.2), implying the presence of
positive spatial autocorrelation in land use patterns. A similar observation is
evident for the nonarable/nonarable land joins. There are far fewer arable/
nonarable land joins (Rook’s case observed = 8, Bishop’s case observed = 12,
Queen’s case observed = 20) than would be expected under Rook’s case
(30.5), Bishop’s case (25.4), and Queen’s case (55.9), implying the presence of
positive spatial autocorrelation in land use patterns.
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TABLE 7.1

Worktable for Deriving Join Count Statistics for Three Cases of Contiguity-Based
Spatial Neighbors

Areal Pattern A Areal Pattern B Areal Pattern C

Case Rook’s Bishop’s Queen’s Rook’s Bishop’s Queen’s Rook’s Bishop’s Queen’s

BB 30 23 53 26 25 51 0 25 25
BW 8 12 20 31 22 53 60 0 60
Ww 22 15 37 3 3 6 0 25 25

N 36 36 36 36 36 36 36 36 36

B 20 20 20 24 24 24 18 18 18

W 16 16 16 12 12 12 18 18 18
Total 60 50 110 60 50 110 60 50 110
Egs 18.1 15.1 33.2 26.3 219 48.2 14.6 12.1 26.7
Egw 30.5 254 55.9 27.4 229 50.3 30.9 25.7 56.6
Eyw 11.4 9.52 20.9 6.3 52 11.5 14.6 12.1 26.7
Zgs 5.47 3.09 515 -0.14 1.16 0.69 —-6.80 528 -0.47
Zgw —-6.02 -3.92 -7.49 1.05 -0.26 0.59 772 =747 0.71
Zyw 5.12 241 4.76 -1.85 -1.21 -2.05 -6.80 528 -0.47

Areal Pattern B shows no strong clustering evidence for arable/arable
land joins except in Bishop’s and Queen’s cases. Also, more arable/nonar-
able land joins exist in both Rook’s and Bishop’s cases except in Queen’s
case. Areal Pattern C shows negative spatial autocorrelation in all the cases
except Bishop’s. However, in all of the three cases of Areal Pattern B, there
are far fewer nonarable/nonarable land joins, suggesting there is no spatial
autocorrelation.

It must be emphasized that Join Count Statistics offer an easy way to rep-
resent spatial distribution. However, it can only be applied to nominal data
and does not provide a simple summary index that is similar to Geary’s C or
Moran’s I. Caution is therefore required when classifying continuous vari-
ables into binary variables because the aggregation of the data could lead
to loss of information and biased estimates (Goodchild 1986; Odland 1988).

Global Moran’s I Coefficient of Spatial Autocorrelation

Moran’s I measures the degree of spatial autocorrelation (Moran 1950) in
ordinal- and interval-measured data. It is one of the widely used indices that
evaluates the extent of spatial autocorrelation between a set of 1 cells = {x;}
located in neighboring areas, where x; is either the rank of the ith cell (ordi-
nal data) or the value of X in the ith cell (interval data). The computation of
Moran’s [ is achieved by dividing the spatial covariation by the total varia-
tion. The resultant values range from approximately —1 (perfect dispersion)
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to 1 (perfect correlation). The positive sign represents positive spatial auto-
correlation while the converse is true for the negative sign, and a zero result
represents no spatial autocorrelation (Figure 7.5).

Suppose, we have a study region, R, which is subdivided into 7 cells, where
each cell is identified with a spatial feature. Moran’s I is calculated as follows:

(71)

where w; =1 if cells i and j are neighbors, w; =0 otherwise; and c,=(X;, - X)
(X X) where X; and X are variables at a partlcular and another locat1on,
respectwely

3 (X, - X)?
g2 — il

n

The average of all the n cells is the mean (X), which is used to ) compute (s?)
based on the differences that each X value has from the mean (X).

n=4X,=3w,;=0110
X,=21001

X,=41001

X,=70110

¥, »
=T
=3-43-4=1
5,=2-42-4)=4
5=@-HE-4=
s,= (7 — 47 —4) =

XX Wi ==8
DI

X
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TASK 7.2 THE SPATIAL DISTRIBUTION OF LOW
BIRTH WEIGHT RATES IN A STUDY REGION A

Figure 7.6 depicts the rates of low birth weight per 1000 children in
hypothetical region A. The values in the upper left corner represent
the unique identifier for the enumeration spatial units and values in
the center represent the low birth weight rates. Using Moran’s I, we can
determine the type of areal pattern in this figure. Table 7.2 presents a
worktable and results for Moran’s I.

#1 #2

#3 #4

FIGURE 7.6
A regular grid/spatial unit of low birth weight example.

TABLE 7.2
Worktable for Deriving Global Moran’s I Coefficient for Low
Birth Weight Rates
i j w! (x; = x)(x; — %) LIw,c;
1 2 1 G-4)2-4) 2
1 3 1 G-4)@d-4) 0
1 4 0 G-4)7 -4 0
2 1 1 @ -4)(3-4) 2
2 3 0 Q- 4)4—-4) 0
2 4 1 @ —4)7 -4 -6
3 1 1 “—-9E-4) 0
3 2 0 “4-4)2 -4 0
3 4 1 (4 —4)7 - 4) 0
4 1 0 7 - 43 -4) 0
4 2 1 7 - 42 -4) -6
4 3 1 (7 - 4)4 - 4) 0
w; =8 =-8

2 Weighting scheme based on Rook’s case.
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Z(X,‘ - X)2
=4 --"-35
n 4
= _ —0.2857
8x3.5

Interpreting Moran’s I and Methodological Flaws

Having computed the Moran’s [ statistic, one can proceed to evaluate the sta-
tistical significance of the test statistic. As noted earlier, the null hypothesis
is one of spatial randomness meaning that the spatial autocorrelation of the
given variable is zero. The statistical significance of Moran’s I is based on the
normal frequency distribution (Z-score).

. I-E(I)

S error(/)

where I is the computed Moran’s I value, E(I) is the expected Moran’s I under
the null hypothesis of spatial randomness, and S is the standard error of the
Moran’s I value.

Thus, given a Moran’s I value of —0.286 with a Z-score of 0.1597, we fail to
reject the null hypothesis and conclude that the areal pattern for low birth
rates is statistically insignificant with a weak negative spatial autocorrelation.

It is important to keep in mind that the Moran’s I statistic only provides a
measure of spatial autocorrelation for spatial data measured at ordinal and
interval scales, and may be sensitive to extreme values in a positive or nega-
tive correlation. In some cases, Moran’s I may not be useful due to its sensi-
tivity to spatial patterning and spatial weight selection.

Global Geary’s C Coefficient of Spatial Autocorrelation

Geary’s C is an alternative measure of spatial autocorrelation. It determines
the degree of spatial association using the sum of squared differences
between pairs of data values as its measure of covariation (Goodchild 1986).
The computation of Geary’s C results in a value within the range of 0 to +2
(Figure 7.7). When we obtain a zero value, it is interpreted as a strong positive
spatial autocorrelation (perfect correlation), a value of 1 indicates a random
spatial pattern (no autocorrelation), and a value between 1 and 2 represents a
negative spatial autocorrelation (2 is a perfect dispersion).

Suppose we have a study region, R, that is subdivided into n cells, where
each cell is identified with a spatial feature. Geary’s C can be computed by

C= Ziz]‘wﬁcij
(2217 wijsz)
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Interpreting Geary’s ¢

2 1 0
A | 4
Perfect dispersion No correlation Perfect correlation
FIGURE 7.7

A visual schematic representation of resultant values of Geary’s C.

where w;=1 if cells 7 and j are neighbors, w; =0 otherwise; and

Cij = X; - Xj)2
> (X, - X)?
62 = 4=
n—1

TASK 7.3 COMPUTING GEARY’S C
FOR LOW BIRTH WEIGHTS

We will examine the low birth weight rates used earlier to compute
Moran’s I. Table 7.3 presents a worktable and results for Geary’s C.

N=4x=3w;=0110
x,=21001
x=41001
x=70110

in
n 4

$;=B-493 -4 =1
$5=QR-4H2-4)=4
;=@ -49H4-4=0
Sy =7 —-4)7-4=9
C=L=O.964
2x 8% 4.6667

(Continued)
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TASK 7.3 (Continued) COMPUTING GEARY’S
C FOR LOW BIRTH WEIGHTS

TABLE 7.3
Worktable for Deriving Geary’s Coefficient for Low Birth Rates

i j wy (; —x;)(x; —x;) YIwgc,;
1 2 1 3B-2)(3-2) 1
1 3 1 3 -4)3-4) 1
1 4 0 BG-7(3-7) 0
2 1 1 2-3)2-3) 1
2 3 0 2-4)2-4) 0
2 4 1 Q2-72-7) 25
3 1 1 (4—-3)4-3) 1
3 2 0 (4-2)4-2) 0
3 4 1 4-7)4—7)
4 1 0 (7 =3)7-3)
4 2 1 7 =27 -2 25
4 3 1 (7 - 4)(7 - 4) 9
Swij = 8 =72

2 Weighting scheme based on Rook’s case.

The average of all n cells is the mean (X), which is used to compute s2 based
on the differences that each X value has from the mean (X).

Interpreting Geary’s C and Methodological Flaws

Geary’s C also requires the formulation of a null hypothesis of spatial ran-
domness, which holds true when the spatial autocorrelation of a variable
is 1. The statistical significance of Geary’s C is also based on the normal fre-
quency distribution (Z-score). For the example above, Geary’s C is 0.964 with
an Z-score of 0.1597. Therefore, we do not reject the null hypothesis and con-
clude that the areal pattern for low birth rates shows a spatial autocorrelation
that is statistically random.

Both Moran’s I and Geary’s C only detect spatial patterns (clusters) of an
entire region and are unable to distinguish local patterns. Geary’s C is less
arranged, and therefore the extremes are less likely to correspond to the
positive or negative correlation. Although their calculations are quite simi-
lar, Moran’s [ is based on the cross product of deviations from the mean for
variables at a particular cell and another neighboring cell (location), while
Geary’s C is a cross product of actual values of a variable at a particular loca-
tion and another neighboring cell.
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Getis—Ord G Statistics

G(d) statistics is an alternative index among a family of conventional global
spatial autocorrelation measures. Unlike Moran’s I and Geary’s C, which are
unable to discriminate whether spatial patterns are due to high or low val-
ues, the G(d) method is able to discern between hot spots and cold spots over
the entire study region. This method can be used to identify spatial con-
centrations of particular phenomena, such as particulate matter, birth rates,
crime rates, or poverty rates.

Assume we have a study region, R, that is subdivided into n cells, where
each cell is identified with a spatial feature. We can measure the degree of
spatial association in study region R by computing the spatial concentration
of weighted point feature values within a radius of distance d (neighbor dis-
tance) where we expect a cluster to occur. Getis—Ord’s G statistics (Getis and
Ord 1992; Ord and Getis 1995) for study region R can be derived as follows:

zn:zn: wij(d)xixj

Gd)="L———— i

>3,

i=1 j=1

TASK 74 EXAMINING THE SPATIAL
DISTRIBUTION OF NITROGEN OXIDES

Let us look at a hypothetical case of the spatial distribution of nitrogen
oxides in a study region; the number in each cell in Figure 7.8 repre-
sents emissions in tons per year. We will derive G(d) statistics for this
case. Table 7.4 presents a worktable and results for G(d).

> ;@

()= 22 10,000

Z z": X, 36,100

i=1 j=1

=0.277

where w;; = 1if cell j is within distance d from cell i or w;; = 0 if it is outside.
G(d) statistics is interpreted relative to its expected value. If, for example,
high values are clustered together, then G(d) is relatively large. This means
G(d) is greater than the expected value (G(d) > expected value), suggesting
a potential hot spot. However, if low values are clustered together then
G(d) is relatively small. This means that G(d) is smaller than the expected
value (G(d) < expected value), suggesting a potential cold spot.

(Continued)
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FIGURE 7.8

TASK 7.4 (Continued) EXAMINING THE SPATIAL
DISTRIBUTION OF NITROGEN OXIDES

b

20 20 30
e

20 10 30
h

20 20 20

A regular grid/spatial unit of nitrogen oxide emissions in tons per year.

TABLE 7.4
Worktable for Deriving G(d) Statistics for Nitrogen Oxides

199

a b c d e f g h i
a 400 400 600 400 200 600 400 400 400
b 400 400 600 400 200 600 400 400 400
c 600 600 900 600 300 900 600 600 600
d 400 400 600 400 200 600 400 400 400
e 200 200 300 200 100 300 200 200 200
f 600 600 900 600 300 900 600 600 600
g 400 400 600 400 200 600 400 400 400
h 400 400 600 400 200 600 400 400 400
i 400 400 600 400 200 600 400 400 400
=3800 =3800 =5700 =3800 =1900 =5700 =3800 =3800 =380 zxixj =36,100
w! a b @ d e f g h i
a 0 1 0 1 0 0 0 0 0
b 1 0 1 0 1 0 0 0 0
c 0 1 0 0 0 1 0 0 0
d 1 0 0 0 1 0 1 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 1 0 1 0 0 0 1
g 0 0 0 1 0 0 0 1 0
h 0 0 0 0 1 0 1 0 1
i 0 0 0 0 0 1 0 1 0

(Continued)
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TASK 7.4 (Continued) EXAMINING THE SPATIAL
DISTRIBUTION OF NITROGEN OXIDES

TABLE 7.4 (Continued)
Worktable for Deriving G(d) Statistics for Nitrogen Oxides

0 400 0 400 0 0 0 0 0
400 0 600 0 200 0 0 0 0
0 600 0 0 0 900 0 0 0
400 0 0 0 200 0 400 0 0
0 200 0 200 0 300 0 200 0
0 0 900 0 300 0 0 0 600
0 0 0 400 0 0 0 400 0
0 0 0 0 200 0 400 0 400
0 0 0 0 0 600 0 400 0

non

=800 =1200 =1500 =1000 =900 =1800 =800 =1000 =1000 Y, w;(d)xx;

i=1 j=1

=10,000

2 The9 x 9 matrix grid is labeled by cell locations, when two cells are adjacent it is assigned
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neigh-
bors were excluded. Although the contiguity spatial weight has been used to illustrate
the calculations, centroid distances among the nine cells is more reflective of proximity
relationships.

Interpretation of Getis—Ord G and Methodological Flaws

When using the Getis—-Ord G statistics, the null hypothesis is that for the
phenomenon under investigation, there is no clustering of high or low values
neither in a given location nor in its neighborhood. The alternative hypothesis
is that for the phenomenon under study, the spatial distribution may exhibit
a significantly more clustered pattern than random pattern. In the case study
provided above (nitrogen oxides) since the G(d) is relatively small (0.277), we
reject the null hypothesis and conclude that the low values or below-average
values of nitrogen oxides may be clustered in the study region.

When using the G(d) statistics, there might be some difficulty in distin-
guishing between a random pattern and one in which there is little devia-
tion from the mean (Getis and Ord 1992). Further, although the G(d) statistics
has gained wide acceptance for determining spatial concentrations at local
scales, it can only be applied to analyze ratio-scale data having a natural zero.
The G(d) statistics evaluates the total concentration or lack thereof among all
pairs of (x; x;), where i and j are within d distance. If x values change in pro-
portion, G(d) remains the same. To attain a deeper understanding of spatial
patterns, it is recommended that the G(d) statistics be used in conjunction
with Moran’s I (Getis and Ord 1992).
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Local Moran’s /

The Local Moran’s I determines the degree of spatial association at the
location-specific level. It belongs to a family of Local Indicators for Spatial
Association (LISA) (Anselin 1995) that is used to identify clusters among
individual spatial units. LISA statistics measure the degree to which one
areal unit is autocorrelated relative to its neighbors (Figure 7.9). Following
the analysis, Moran’s scatterplot can be used to identify the leverage
points and spatial outliers. The plot has four quadrants: high-high, high—
low, low-high, and low-low. High-high denotes the presence of spatial
clustering of neighbors with high values surrounded by those with simi-
lar values, low-low denotes spatial clustering of neighbors with low val-
ues surrounded by those with similar values, and high-low or low-high
represents spatial outliers or neighbors with values that are statistically
insignificant.

In line with Anselin’s (1995) suggestions, there are two notable aspects
of these statistics: (1) the LISA for each observation gives an indication of
the extent of significant spatial clustering of similar values around that
observation and (2) the sum of LISAs for all observations is in proportion
to a global statistic of spatial association. There are several local versions
of global statistics such as Moran’s I, Geary’s C, and Getis—Ord’s G. These
measures serve four principal aims: (1) provide a finer-grained analysis at
the local level, (2) identify spatial patterns at the local level or hotspots,
(3) measure spatial autocorrelation at the local level, and (4) detect spatial
clusters or spatial outliers at the local level. Using working examples below,
we describe how each index is derived and how to interpret the statistical
results.

A Local Moran’s I for an observation i is defined as

L=z wz
]

=31

where w;; are the spatial weights matrix, the observations z;, z;are the devia-
tions from the mean, and Li is the summation of the spatial weights matrix
multiplied by z, z;. Deriving the mean deviations for each of the observa-
tions is similar to how we calculate a Z-score.
n:9,§:180/9:20,0:9.43,z].=xf -
Z-score c

derived in Table 7.5 under

I= Zili =[(0+0+0+0+(-4.5)+(-3.375)+1.125+ 0 +(-1.125)] = -7.875
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TABLE 7.5
Worktable for Deriving Local Moran’s I and Related LISA Statistics
wy= a b ¢ d e f g h i
a 010 1 0 0 0 0 0
b 1 01 0 1 0 0 0 0
c 010 0 0 1 0 0 0
d 100 0 1 0 1 0 0
e 010 1 0 1 0 1 0
f 001 0 1 0 0 0 1
g 000 1 0 0 0 1 0
h 000 0 1 0 1 0 1
i 000 0 0 1 0 1 0
Deriving the L; value for each observation
L= 2’2 w;z; a b c d e f g h i
ZScore 0 0 0 -1061 2121 -1.061 -1.061 0 1.061 Ywz I
j
a 0 0 0 0 -1.061 O 0 0 0 0 -1.061 0
b 0 000 0 2.121 0 0 0 0 2121 0
c 0 000 0 0 -1.061 0 0 0 -1.061 0
d -1.061 0 0 O 0 2.121 0 -1.061 0 O 1.061 0
e 2121 0 0 0 -1.061 0 -1.061 0 0 0 -2.121 -45
f -1.061 0 0 O 0 2.121 0 0 0 1.061 3182 -3.375
g -1.061 0 0 0 -1.061 O 0 0 0 0 -1.061 1.125
h 0 000 0 2.121 0 -1.061 0 1.061 2121 0
i 1.061 0 0 0 0 0 -1.061 0 0 0 -1.061 -1.125

2 The 9 x 9 matrix grid is labeled by cell locations; when two cells are adjacent it is assigned
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neigh-

bors were excluded.

b Extreme L; values indicate outliers; in this example, —4.5 is such a value.

The L; values and related statistics for each of the spatial units are given
in Table 7.5. Five of the spatial units (4, b, ¢, d, and h) have an L; value of
zero. Positive values of L; indicate spatial clustering of similar values (high
or low) while negative values indicate a spatial clustering of dissimilar
values (high-low or low-high) Three negative L; values fall within the
low-high quadrant of a Moran scatterplot implying that there are spatial
outliers. It is evident from this statistical data that there is no clear spa-
tial clustering of local values of smartphones, with the L, values suggesting
strong evidence of the presence of dissimilar values that require further

scrutiny.
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TASK 7.5 THE SPATIAL DISTRIBUTION OF
SMARTPHONES IN A SMALL TOWN

Let us illustrate the calculation of the Local Moran’s I by using a
hypothetical example of the number of smartphones per 1000 people
in a regular grid/spatial units (Figure 7.10). The number in each cell
represents the number of smartphones per 1000 people in each neigh-
borhood. Table 7.5 provides a worktable and results for the Local
Moran’s L.

a b c

20 20 20
d e f

10 40 10
g h i

10 20 30

FIGURE 7.10
A regular grid/spatial units of the number of smartphones per 1000 people in a
small town.

When compared to the global statistics of Moran’s I, Local Moran’s [ statis-
tics contribute to local spatial association and overcome the local instabili-
ties of spatial observations (Anselin 1995). The LISA method is especially
applicable for spatial data that are heterogeneous among areas as they
are able to compute subregions of the datasets at a local scale (Boots and
Okabe 2007).

Local G-Statistics

The Local G-statistics is designed to measure specific spatial association that
may not be obvious when using global statistics. It is based on Getis—Ord
General G,,G; (Getis and Ord 1992) and determines the effects of individual
locations (including detecting extremes) on the scale of global statistics (Ord
and Getis 1995; Anselin 1995).
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TASK 7.6 THE SPATIAL DISTRIBUTION OF FAST
FOOD RESTAURANTS IN A STUDY REGION

Let us illustrate the calculation of Local G-statistics by using a hypo-
thetical example of fast food restaurants (Figure 7.11). The numbers in
parentheses represent the identifying number of fast food restaurants.
The locations of fast food restaurants are given in x- and y-centroid
coordinates of an areal unit. We can use the set of fast food restaurants
to calculate possible clustering of high or low values in the vicinity of
point 5 at three critical threshold distances of 10, 20, and 30 miles from
point 5, respectively. Ord and Getis 1995’s Local G-Statistics method is
applied to find a solution.

Point 5 is not included:

Z,-xj_(1+2+3+1)

x(5)= =1.75
n-1 5-1
Z,xf _
52(5)= L~ [x(5)] = 0.6875,5 = 0.8292
n_
G,10)=— L7 9905
0.8292x[4><1_1}2
G.0)=— "2 _ 45p
0.8292><[4X2_4}2
G.B0)=— 07317 4905
0.8292><[4X3_9T

Point 5 is included:

Y (o~ B
xzz_fzﬁzl_g,5222”7:@:0.7,5:0.837
n 5 n—1 4
Gi0)=— =218 _ 455
0.837><[5X2_4T

(Continued)
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TASK 7.6 (Continued) THE SPATIAL DISTRIBUTION OF
FAST FOOD RESTAURANTS IN A STUDY REGION

Gi(20)=—2=3X18 4390
0.837x SX3‘9T
4
G:(30=— 27418 _ 4956
0.837x| 2X4~16 Xi_lﬂz

30 miles

10 miles

FIGURE 7.11
A visual schematic representation of location of fast food restaurants in a study region.

The Local G-statistics is a standard variant that is calculated by taking gen-
eral G-statistics minus its expectation E(G,) and dividing this by the square
root of its variance. G-statistics is given by

6 0)=— 2D
s@{[(n=1s,)-w?]/(n-2)}2

- — 2
w; = 2j¢iwif(d)’sli _2j¢iwif

ij,j(d)xj—wlff
1

s{[(ns;;) - w?]/(n-1)}2

Gi(d)= all j

W =W.+w,(w, #0),S;; = z],wl%(allj),
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where G/(d) is a proportion of the sum of all x; values that are within distance
(d) of i; x;is the variable of interest in a given study region; x and g2 denote the
sample mean and variance; w; = 0 is the spatial weight between neighbors i
and j; and 2 w; is the sum of squared weights.

Under the null hypothesis, we use Local G-statistics to determine whether
there is evidence of spatial clustering of high or low values around each spa-
tial unit of fast food restaurants. From the calculation, we observe that some
G; values are both negative and positive. Positive values of G; indicate a spa-
tial clustering of high values while negative values of G; indicate a spatial
clustering of low values. However, to interpret Local G-statistics we need
to derive the Z-score. This has been done in the empirical examples that are
presented in section “Using Scatterplots to Synthesize and Interpret LISA
Statistics section.” Although Local G-statistics are more a flexible form of
LISA statistics, they do not have a natural origin. The use of non-binary
weight matrices also makes them more appealing for understanding spatial
relationships.

Local Geary

Local Geary measures local patterns of spatial association. Local Geary for
each observation i is

C = Zwij(zi —z])2
j

where w; are the spatial weights matrix and the observations z; and z, are
in deviations from the mean. Local Geary, ¢, is the summation of the spa-
tial weights matrix, which is then multiplied by the squared differences in
Z-score (z;, z;) of each observation and its neighboring cell. Deriving the
mean deviations for each of the observations is similar to how we calculate
the Z-score.

For interpretative purposes, we will need to derive p-values to be able to
meaningfully interpret Local Geary statistics.

TASK 7.7 UNDERSTANDING THE SPATIAL DISTRIBUTION
OF CAR ACCIDENTS IN A SMALL TOWN

Let us illustrate the Local Geary statistics by using a hypothetical case
of incidents of car accidents in a small town (Figure 7.12). The number
in each cell represents the number of car accidents for each neighbor-
hood. We can calculate the Local Geary index for each of the neighbors.
Table 7.6 gives a worktable and results for Local Geary statistics.

(Continued)
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TASK 7.7 (Continued) UNDERSTANDING THE SPATIAL
DISTRIBUTION OF CAR ACCIDENTS IN A SMALL TOWN

a b c

20 30 10
d e f

10 20 20
g h i

40 10 20

FIGURE 7.12
A regular grid/spatial units of incidents of car accidents in a small town.

TABLE 7.6
Worktable for Deriving Local Geary and Related Statistics
wz = a b [ d e f g h i
a 0 1 0 1 0 0 0 0 0
b 1 0 1 0 1 0 0 0 0
@ 0 1 0 0 0 1 0 0 0
d 1 0 0 0 1 0 1 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 1 0 1 0 0 0 1
g 0 0 0 1 0 0 0 1 0
h 0 0 0 0 1 0 1 0 1
i 0 0 0 0 0 1 0 1 0

Deriving Mean Deviations Matrix for Neighboring Cells

X; Z-score Spatial AA® AB AC AD AE AF AG AH Al

Units

20 0 a BA BB BC BD BE BF BG BH BI
30 1.061 b CA CB CC CD CE CF CG CH CI
10 -1.061 C DA DB DC DD DE DF DG DH DI
10 -1.061 d EA EB EC ED EE EF EG EH EI
20 0 e FA FB FC FD FE FF FG FH FI
20 0 f GA GB GC GD GE GF GG GH GI
40 2.121 g HA HB HC HD HE HF HG HH HI
10 —1.061 h IA 1B IC 1D IE IF 1G IH I
20 0 i

n=9,06=9.428 x=20 )
(Continued)
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TASK 7.7 (Continued) UNDERSTANDING THE SPATIAL
DISTRIBUTION OF CAR ACCIDENTS IN A SMALL TOWN

TABLE 7.6 (Continued)
Worktable for Deriving Local Geary and Related Statistics

Deriving ci for Each Observations (Spatial Units), an Example is Provided in Local
footnote “b” below Geary ;

¢ zzw’_j(zi_zj) 0 1.125 0 1.125 0 0 0 0 0 2.25
1125 0 45 0 1.125 0 0 0 0 6.750
0 45 0 0 0 1.125 0 0 0 5.625
1125 0 0 0 1.125 0 10.125 0 0 12.375
0 1.125 0 1.125 0 0 0 1.125 0 3.375
0 0 1.125 0 0 0 0 0 0 1.125
0 0 0 10.125 0 0 0 10.125 0 20.25
0 0 0 0 1.125 0 10.125 0 1.125 12.375

0 0 0 0 0 0 0 1125 0 1.125

2 The 9 x 9 matrix grid is labeled by cell locations; when two cells are adjacent it is assigned
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neighbors
were excluded.

b Example AA = weight a,a*((a; z-score — a; z-score)2).

Using Scatterplots to Synthesize and Interpret LISA Statistics

In this final section of the chapter, let us review two empirical examples of
LISA statistics that are illustrated using Moran scatterplots (Figures 7.13 and
7.14) and LISA maps (Figures 7.14 and 7.15). The first empirical example con-
sists of the 2013 blood lead levels (BLL) prevalence data for children (aged 5
years or younger) residing within the city of Chicago. This information was
extracted from the Lead Poisoning Testing and Prevention Program data-
base of the Chicago Department of Public Health (Oyana and Margai 2007,
2010). The second empirical example consists of crime incident data aver-
aged over a 5-year period that was described earlier in Chapter 6 (Figures
6.8 and 6.9). The two sets of data were first conditionally randomized 9999
times with Queen’s spatial weights set at the nearest five neighbors for the
BLL data and the nearest two neighbors (first order) for crime incident data.

Figure 713 presents both the adjusted (plot A) and non-adjusted (plot B) prev-
alence rates for BLL. Figure 7.15 shows local spatial clustering of BLL prevalence
in the city of Chicago using Local Moran’s I and Local G-statistics. In Map A
(Local Moran’s I), there are three major sets of spatial clusters of BLL depicting
neighbors with high values surrounded by those with similar values. These
neighborhoods are located in the west side, south side, and far south. However,
there is a minor cluster located within the downtown area. Although Map B
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FIGURE 7.13

Plots of (a) filtered /adjusted and (b) unfiltered /non-adjusted blood lead level (BLL) prevalence
in the city of Chicago. The value for Moran’s I for adjusted rates is close to 1 and is linear
because we have accounted for uncertainties. This plot gives unbiased estimates than non-
adjusted rates.



211

Engaging in Areal Pattern Analysis Using Global and Local Statistics

"J01d 1917805 URIOIN (0) © pUe ‘So1IsTIe]S-0) [ed07] (q) ‘T S,UeIOoJA [ed0 ] (&) Sutsn ‘uoj3urysepy ‘@uexodg Jo A3 91} UT SJUSPIOUT SWILID JO SI9)SN[D [ed0] PAYTIUSP]

¥L'Z 2ANDI
uo_%uﬁNUw ueIOA D 10[d
80~ )
9'0®
MO[-YSIH ° w.%. MO[-MOT
SJUIPIOUT SWILID) -@
S 12 € T 1 N.o o -
° <
i hw%o g
=}
7'0® 2
By @90 B usy-mog
o
Q[0 ¢
. <
200" > anpea-d ® 0T g2
pue 070 = J SURIOIN (4 B
Pl
sonsTIeIs-o 18207 i dey (q) SO1ISIIR]S VST PUB [ SURIOIN [e007] ;7 delA (&)
wqumE_o:vH,ﬁﬁ_ , m , m._m ) @ mumquW—_Mﬂﬂ h_ g'e ﬁ_v
ems s stz 0 swe | ¢h T 0

Juedyrugisur
218 JeY) sanfeA YIm sI0quSiaN (|

JueoyruSisur

are ey sanfea yim s1oquSoN [ L -
SIN[RA TR[ILUIS YIIM 350U Aq . l

papunoxms sanfea ySiy yim sioqusoN L - papunons sanfea y3 M SI0qUBION -
SOISHEIS-5) [820] SO1SE)S VSI'T U [ SUBIOJ [€20]
(2102-800) porad 1eak-G e 1940 aetony I (2102-8007) Pot1ad 1eak-G e 19A0 aetany
MAPERURFEERE] a1doad 1 1od syuapmour awL) {idal a1doad g7 12d syusprour awtry)

oy e FUL




212

Spatial Analysis

Spatial clusters illustrated in map A

BLL prevalance rates per every
1,000 children in 2003
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Spatial clusters illustrated in map B
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FIGURE 7.15

Identified local clusters of blood lead level (BLL) prevalence in the city of Chicago using Local

Moran’s I and Local G-statistics.
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(Local G-statistics) is similar to Map A, the sets of contiguous locations in Map
A are much bigger in spatial extent than those in Map B. The hotspots of BLL
identified by both methods should invite further in-depth scrutiny.

Figure 714 and Table 7.7 depict the local clusters of crime incidents in the city
of Spokane, Washington, using Local Moran’s I, Local G-statistics, and a Moran
scatterplot. In reviewing both the figure (see map and Moran scatterplot) and
the table, one can see that there are two statistically significant L, and G, values
obtained from each test. Local Moran’s I detects the neighborhoods of Emerson/
Garfield and Riverside to have high values of crime incidents, whereas Local
G-statistics identifies Emerson/Garfield and Logan as having high rings. These
results suggest that the two neighborhoods have a local mean that is higher
than the regional mean. Emerson/Garfield is evident in both tests.

In the two sets of empirical examples presented above, the adjusted rates
are more stable and reliable than the unadjusted rates and therefore should be
used in both spatial analysis and spatial modeling. The LISA statistics show
that certain neighborhoods have a disproportionate BLL prevalence and
crime incidents in comparison with the surrounding neighborhoods.

Conclusion

At the heart of spatial analysis is the notion of spatial dependency and per-
haps one of the best ways to demonstrate the relevance of this concept is
through the analysis of areal data. We have done this in this chapter through
the use of several techniques that generate measures of spatial dependency
and autocorrelation at both the global and localized levels. As illustrated in
the examples, the global statistics are based on the entire dataset and seek to
produce a single measure that reflects the average value (of spatial autocor-
relation) for the entire study area. Although the global statistics provide a
valuable first step in confirming the presence or absence of autocorrelation,
the localized techniques are capable of pinpointing the location of spatial
outliers and notable hotspots that require further evaluation. The local statis-
tics focus on each observational unit rather than the entire study area. These
local measures are based on the assumption that different processes may
underlie the existence of the geographic patterns that are observed in each
area. The end result is a unique value or statistic that is produced for each
spatial unit and can be used to delineate neighborhood clusters and other
spatial anomalies. Using examples throughout the chapter, we have demon-
strated the practical applications of these techniques by working through the
computational steps. We have also discussed the methodological limitations
and the need for sound knowledge of analytical assumptions and criteria to
ensure a reliable and robust spatial analysis of the data. By following these
guidelines, we will be able to account for the underlying spatial structure in
our datasets thus enabling a better understanding of spatial relationships.
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Challenge Assignments

In this chapter, we learned how to use a variety of exploratory data analysis
techniques to search, characterize, and describe the spatial distribution of
group-level data. We also examined the notion of spatial associations and
the methods that are widely used to characterize these patterns at both the
global and local levels. In the challenge assignments below, let us explore
these methods further using three datasets utilized in previous exercises: (1)
the agricultural production data, (2) the obstructive sleep apnea (OSA) data-
set, and (3) the airport Noise_OHare database. The data for completing this
challenge assignment are located in Chapter7_Data_folder.

TASK 7.8 GENERATE AND INTERPRET
CLUSTERING OF VALUES OF AREAL PATTERNS

PART 1: GLOBAL LEVEL

1. Open ArcMap and add Agriculture_Production_Illinois_2008_
Pr.shp from your data folder.

2. Open the Getis—Ord General G tool under Spatial Statistics >
Analyzing Patterns.

3. Set the input feature class to Agriculture Production_
Illinois_2008_Pr and the input field to PcntCornPd. Confirm
that the conceptualization of distance is set to POLYGON_
CONTIGUITY_ (FIRST_ORDER). Check the box next to Generate
Reports. This will add graphical outputs to your results window
in the form of an HTML. Leave all other fields blank and click OK.

4. Repeat step “c” with input as PentSoyPrd and PentWhetPd.

5. Compile in a table the values for Observed General G, Expected
General G, Variance, Z-score, p-value, and Pattern Type.

6. Open the Spatial Autocorrelation (Moran’s I) tool under Spatial
Statistics > Analyzing Patterns.

7.Set the input feature class to Agriculture Production_
Illinois_2008_Pr and the input field to PcntCornPd. Confirm
that the conceptualization of distance is set to POLYGON_
CONTIGUITY_ (FIRST_ORDER). Check the box next to Generate
Reports. This will add graphical outputs to your results window
in the form of an HTML. Leave all other fields blank and click OK.

8. Repeat step “g” with input as PcntSoyPrd and PentWhetPd.

9. Compile in a table the values for Moran’s I (Index), Expected I
(Index), Variance, Z-score, p-value, and Pattern Type.
(Continued)
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TASK 7.8 (Continued) GENERATE AND INTERPRET
CLUSTERING OF VALUES OF AREAL PATTERNS

10. Compare and describe the results generated by Getis—Ord
General G and Moran’s I.

11. Describe/define the following statistics: Getis—Ord General G
and Moran’s I. What are the salient differences between Getis
and Moran’s [ statistics?

PART 2: LOCAL LEVEL

1. Open the Cluster and Outlier Analysis (Anselin Local
Moran’s I) tool under Spatial Statistics Tools > Mapping Clusters.

2. Settheinputfeatureclassto Agriculture_Production_Illinois_2008_
Pr and the input field to PcntCornPd. Confirm that the con-
ceptualization of distance is set to POLYGON_CONTIGUITY_
(FIRST_ORDER). Leave all other fields and click OK.

3. Repeat step “b” with input as PcntSoyPrd and PentWhetPd.

4. Make a map of the resulting LMi Index, LMiZscore values, and
COType. (For LMi and COType, use five categories and symbols
with graduated sizes with Natural Breaks Classification and color
ramps; for LMiZ-cores, use Standard Deviation Classification
and seven classes.) Describe the pattern of spatial clustering
including which areas exhibit clustering and which do not.

5. Open the Hot Spot Analysis (Getis—Ord Gi*) tool under Spatial
Statistics Tools > Mapping Clusters.

6. Set the input feature class to Agriculture_Production_Illinois
_2008_Pr and the input field to PentCornPd. Confirm that the
conceptualization of distance is set to POLYGON_CONTIGUITY_
(FIRST_ORDER). Leave all other fields and click OK.

7. Repeat step “f” with input as PentSoyPrd and PentWhetPd.

8. Make a map of the resulting GiZScore values (use Standard
Deviation Classification and seven classes with a Hot to Cold
Diverging color ramp). Describe the pattern of spatial clustering
including which areas exhibit clustering and which do not.

9. Complete the following short essay: In your own words, describe
the results, map, and why you think the distribution is as it is.

10. Compare and describe the results generated by Getis—Ord Gi*
and Anselin Local Moran’s I.

11. Describe/define the following statistics: Getis—Ord Gi* and
Anselin Local Moran’s I. What are the salient differences
between Getis—Ord Gi* and Anselin Local Moran’s I?
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TASK 7.9 IDENTIFY CLUSTERING OF VALUES OF AREAL
PATTERNS USING DIFFERENT SPATIAL WEIGHTS

1. Open ArcMap and add Obstructive_Sleep_Apnea_Pr.shp from
the Data folder.

2. To derive OSA prevalence: add a new Field in the attribute table
called OSA_Rates_1K (OSA_Pts/POP2000) x 1000 = the number
of OSA cases per 1000 people. This is called prevalence rates.

3. Under Spatial Statistics Tools, expand the Modeling Spatial
Relationships module > select Generate Spatial Weights Matrix.
Create a spatial weights matrix based on an Inverse Distance
OGSA spatial relationship. Use a unique identifier, OID_.

4. Run Moran’s I and Anselin Local Moran’s . Set the input fea-
ture class to Obstructive_Sleep_Apnea_Pr and the input field
to OSA_Rates. Confirm that the conceptualization of distance
is set to GET_SPATIAL_WEIGHTS FROM_FILE and load the
spatial weights matrix file in the Weight Matrix File (optional).

5. Make some maps and describe the results generated by Moran’s
I and Anselin Local Moran’s L.

TASK 710 EXPLORE, ANALYZE, AND INTERPRET PATTERNS
BASED ON ADVANCED SPATIAL ANALYSIS TECHNIQUES

1. The agricultural metrics for seven variables have been region-
alized using an advanced spatial analysis/spatial data mining
technique based on the Dynamically Constrained Clustering and
Partitioning Algorithm. Open ArcMap and add Regionalization_
Dcluster_partioning.shp — and  Agriculture_Production_Illinois_
2008_Pr.shp from the data folder. Explore regionalized agricultural
metrics.

2. Make two maps based on regionID and group name/area.
Compare and contrast the two groups.

3. Using the regionalized agricultural metrics, describe the spa-
tial distribution of corn (Sum_PcntCo), soybean (Sum_PcntSo),
and wheat (Sum_PcntWh).

4. Using the regionalized agricultural metrics, describe crop
acreage (Sum_CROP_A and Avg_Crop_A) per region in rela-
tion to the yield of corn (Sum_CornYi and Avg_cornYi). Make
a choropleth map with five classes showing yield relative to
(Sum_CROP_A).
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TASK 711 CHALLENGE ASSIGNMENT:
CONCEPTS AND APPLICATIONS

1. Describe the implications of spatial weights on spatial analysis.

2. Open a new ArcMap view and add the Noise_Project fea-
ture from the Noise_ OHare_Geodatabase.mdb data folder. Also
add the other spatial features (boundary outline/study area
and demographic features) associated with the Noise_Project
feature.

3. Under Spatial Statistics Tools, expand the Modeling Spatial
Relationships module > select Generate Spatial Weights Matrix.
Create another spatial weight based on the Inverse Distance
spatial relationship for noise-level data using a Unique
Identifier “RMT.”

4. Convert the Inverse Distance weight into a table. Then sum-
marize the minimum, maximum, sum, mean, and standard
deviation values for the spatial weights.

5. Compute the observed K-Function and expected K-Function
for the noise-level events. Select 10 as the number of distance
bands, and under Compute Confidence Envelope select 99_
permutations and use all_averag as the Weight Field for the
noise-level data. Remember to tick the box to display your
results graphically. Copy the graphical results to your lab
write-up. Include a title to differentiate this result from the
others.

“"_ s

6. Repeat step “e” with the Beginning Distance set to 2000 and
the Distance Increment set to 2500. Leave all other fields the
same. Copy the graphical results to your lab write-up. Include
a title to differentiate this result from the others.

“u_ 1

7. Repeat step “e” with the Beginning Distance set to 2000 and
the Distance Increment set to 3000. Leave all other fields the
same. Copy the graphical results to your lab write-up. Include
a title to differentiate this result from the others.

“"_

8. Repeat step “e” with the Beginning Distance set to 2000 and
the Distance Increment set to 3500. Leave all other fields the
same. Copy the graphical results to your lab write-up. Include
a title to differentiate this result from the others.

“u_ 1

9. Repeat step “e” with the Beginning Distance set to 2000 and
the Distance Increment set to 4000. Leave all other fields the
same. Copy the graphical results to your lab write-up. Include
a title to differentiate this result from the others.

(Continued)
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TASK 7.11 (Continued) CHALLENGE ASSIGNMENT:
CONCEPTS AND APPLICATIONS

“"_ 1

10. Repeat step “e” with the Beginning Distance set to 2000 and
the Distance Increment set to 4500. Leave all other fields the
same. Copy the graphical results to your lab write-up. Include
a title to differentiate this result from the others.

11. Complete the following short essay: In your own words, explain
how distance impacts the results of running this statistic.

12. Perform a spatial query using Select by Location, and select
Census_Tracts that intersect with the noise layer. Summarize
the noise levels (Level_) by race/ethnicity distribution (White,
Black, American Indian, Asian, and Others in percentage), gen-
der, and age from Top Tiers 1 and 4. Describe the spatial distri-
bution of these socioeconomic factors relative to noise levels.

Review and Study Questions

1. What are spatial weights? With the use of examples, explain how
these are calibrated and integrated into the analysis of areal data.

2. The choice of analytical method for evaluating spatial autocorrela-
tion in areal data is partly based on the measurement scale of the
variable. With the use of examples, briefly explain what techniques
are ideal for analyzing variables that are measured on each of the
four scales.

3. With the use of examples, distinguish between global and local sta-
tistics in the analysis of aggregated spatial data. What would be the
effect of MAUP on these two sets of statsitics?

4. What are the similarities and differences between each of the fol-
lowing pairs of statistics?

a. Join Count and Global Moran’s [

b. Global Moran’s I and Getis—Ord G

c. Global Moran’s I and Global Geary’s C
d. Local Moran’s I and Local Geary’s C

5. With the use of examples from the statistics noted above, explain the
role of Z-scores in the spatial analysis of areal data.

6. What are LISA measures? Using one example from your research
area, explain the benefits of these measures in exploratory analysis
and visualization of spatial data.
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Glossary of Key Terms

Getis—Ord G: This is a global measure that summarizes the pattern of spa-
tial autocorrelation in the area. It is most applicable to ratio-scaled
data and uses the distance between neighborhoods to assess the
overall concentration (or lack thereof) of data values in study areas.
The computed statistic, G, can be used to effectively delineate the
location of hotspots and cold spots in a study area. It is compared to
the expected value, and if G is larger then there is a strong likelihood
of hotspots with higher values clustering together in the region. On
the other hand if G is smaller than the expected value, then there is
a strong likelihood of cold spots with low values clustering together
in the distribution.

Global Geary’s C: This is also a measure of spatial autocorrelation that pro-
duces a global statistic based on the sums of squared differences
between pairs of actual data values in the distribution. The measure
varies from 0 to 2, with 0 representing a clustered distribution with
perfect positive autocorrelation, 1 representing complete spatial ran-
domness, and 2 indicating a perfect negative autocorrelation.

Global Moran’s I: This is the most common measure of spatial autocor-
relation that is derived from the sums of squared deviations from
the means. It is applicable to interval- and ratio-scaled variables
measured at either point locations or within areas. The statistic is
a weighted correlation coefficient that ranges from —1 (representing
a perfect negative correlation in which neighboring values are dis-
similar and dispersed) through zero (complete spatial randomness)
to +1 (perfect positive correlation that represents spatial patterns in
which similar values (high or low) are clustered in space).

Join Count Statistic: A measure that uses binary nominal data to assess the
degree of clustering or dispersion among a set of spatially adjacent
polygons.

LISA: Local Indicators of Spatial Autocorrelation: These belong to a suite
of measures that disaggregate global measures of spatial autocor-
relation into location-specific measures such as the Local Moran’s
I, Local G, and Local Geary’s C coefficients. Unlike the global mea-
sures, these local measures enable a data scientist to hone in on indi-
vidual spatial units and compare their data values relative to the
neighboring units to assess the degree of similarity or dissimilar-
ity. The end result can be a scatterplot or cluster map that can be
used to effectively show spatial anomalies in the distribution. The
aggregate value of LISA obtained by summarizing the measures
for the individual units can be used as a global indicator of spatial
autocorrelation.
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Spatial Contiguity: This is a principle of adjacency or proximity between
areal units that could lead to similarities in inherent proper-
ties within those units that are greater than units that are further
away.

Tobler’s Law of Geography: This is often called the first law of geography
where everything is similar to everything else; however, things that
are closer are more similar than those that are further away.
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Engaging in Geostatistical Analysis

LEARNING OBJECTIVES

1. Use exploratory tools to visualize and compute basic statistics.

2. Explore, describe, and characterize spatial structure using variograms.
3. Map, quantify, and incorporate spatial variability.

4. Perform and discover the best model for spatial prediction.

5. Account for secondary factors and make decisions on a spatial basis.

The fields of geostatistics and spatial analysis are closely intertwined due
to their joint emphasis on the use of traditional and novel approaches
to describe, analyze, and visualize the spatial variability of naturally
occurring phenomena. Both fields share analytical objectives that seek
to uncover broad spatial patterns and relationships, pinpoint localized
departures and anomalies in the data, and derive parameter estimates for
predictive purposes. Like spatial analysis, geostatistics combines practi-
cal and conceptual thoughts on the modeling of spatial variability with
mathematical and statistical principles. It can facilitate the analysis of
spatial variability of an entire population or a sample. “Geostatistics,”
which literally means statistics of the earth, is firmly rooted in traditional
regression theory with past applications mostly in the natural and earth
sciences. Pioneering work in the field began in the 1950s with inspira-
tion from the South African Danie Krige’s work in geological mining
(Krige 1951). This work later expanded in the 1960s under the French
Mathematician George Matheron’s leadership and efforts to showcase
the practical applications of the methods. Many disciplines, including
engineering, hydrology, soil studies, medical geography, epidemiology,
ecology, and environmental assessment now fully embrace geostatisti-
cal methodologies to solve spatial prediction and modeling problems
(Goovaerts 1997, 1999, 2009; Haining et al. 2010; Barro and Oyana 2012;
Birkin 2013; Noor et al. 2014). With the advent of GIS, spatial statistics
and geostatistics have become virtually inseparable as computerized

223
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analytical and visualization approaches are developed to handle and dis-
play the large volume and variety of datasets representing both natural
and anthropogenic phenomena in spatial modeling. These approaches
are now fairly well established and integrated into leading software
packages and are used in many scientific endeavors due to their analyti-
cal rigor and robustness. In a GIS context, the geostatistical approaches
can be used to successfully analyze and integrate the different types of
spatial data, measure spatial autocorrelation by incorporating the sta-
tistical distribution and spatial relationships between the sample data,
perform spatial prediction, and assess uncertainty. Several scholars have
also used these approaches (especially Poisson kriging and p-field simu-
lation) to account for small number/population problems (Goovaerts and
Jacquez 2004; Goovaerts 2005, 2006), to account for uncertainty (Oyana
2004), and to perform spatial prediction, as they are known to accurately
predict better local estimates (Goovaerts 1997, Guo et al. 2006).

Rationale for Using Geostatistics to
Study Complex Spatial Patterns

Modern geostatistics considers a variable of interest to be a random variable
whose values are generated using a probability distribution structure. This
branch of statistics was developed to overcome the challenges of applying
traditional deterministic statistical approaches to address the inherent uncer-
tainty of spatial data in a stochastic way (Cressie 1985; Robertson 1987; Isaaks
and Srivastava 1989; Myers 1994a,b; Cromer 1996; Goovaerts 1997; Armstrong
1998; Mitas and Mitasova 1999; Naoum and Tsanis 2004; Yaras and Chambers
2006; Oliver 2010). The theory underlying geostatistical estimation is the
regionalized variable theory, which is concerned with the variable distribu-
tions in space and their spatial support (such as the size and shape of the
geographical units, or the physical size and dimensions in which the observa-
tions were recorded). For stochastic approaches such as kriging, the analysis
is rooted in the fundamental assumption that both the actual and potential
measurements of the variable are outcomes of the random process with an
underlying element of uncertainty. Myers (1994b) describes several forms of
uncertainty that are associated with spatial data. For example, one of the most
common sources of uncertainty is linked to measurement errors that often
introduce white noise in the modeling process. Uncertainty may be linked
to the failure to operationally define and measure a latent or theoretical con-
struct in a study. As Fisher (1999) explains, it could be caused by vagueness in
the definition of objects, or ambiguity or nonspecificity in the measurement.
Another source of uncertainty in geostatistical analysis could arise from



Engaging in Geostatistical Analysis 225

the random function itself, which is unknown and has to be interpolated
based on values that are measured at a finite set of sampled points. As Myers
(1994b) rightly notes, this type of uncertainty can be effectively reduced or
controlled if the function is known to have certain properties such as conti-
nuity or differentiability. Yet another form of uncertainty can be introduced
during the model estimation or interpolation process particularly when the
sampled data points are irregularly spaced (which happens to be the case
in most research studies). A core analytical goal in geostatistics, therefore,
is to quantify the degree of element of uncertainty (using measures such as
the variance of errors) and then choose the appropriate weights that will sig-
nificantly minimize this uncertainty during the modeling process. Stochastic
techniques such as kriging also acknowledge the underlying spatial struc-
ture, and integrate the use of mathematical and statistical properties (or
variogram parameters) of the measured sampling points to derive unbiased
empirical estimates. In summary, there are two main reasons underlying the
use of modern geostatistics to study complex spatial patterns: (1) a solid spa-
tial statistical theory that is rooted in the need to minimize the variance of
errors and (2) a flexible spatial weighting system that yields the best fitted
variogram. Figure 8.1 outlines the chronological steps required to ensure a
successful geostatistical estimation process. These include the following:

1. Start with the exploration of the spatial data by visualizing and
describing the spatial patterns; use both traditional statistical
descriptors and charts to present the results.

2. Identify spatial or temporal patterns through the use of variogram
clouds.

3. Perform spatial modeling and prediction by selecting techniques
that are most appropriate for the data.

4. Perform uncertainty analysis.

5. Review the model and incorporate secondary variables if
necessary.

6. Perform simulation, risk assessment, and management by predict-
ing the most probable or possible spatial distribution of the phenom-
enon being studied.

In section, “Kriging Method and Its Theoretical Framework,” we will
focus on stochastic techniques, specifically those belonging to the krig-
ing family. We will examine the core concepts and principles that underlie
these approaches and, with the use of sample exercises, learn how to syn-
thesize and interpret the results. Toward the end of the chapter, we will also
examine another commonly used spatial algorithm called Inverse Distance
Weighting (IDW), and discuss its strengths and limitations. This IDW algo-
rithm will serve as an example of a deterministic interpolation method.
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Basic Interpolation Equations

As noted above, the field of geostatistics consists of deterministic and sto-
chastic methods to interpolate spatial data based on information generated
at known sampled points. The various forms of kriging, IDW, kernel esti-
mators, splines, trend surfaces, and radial basis functions are all examples
of these interpolation techniques. Myers (1994a) discusses these techniques
at length and elaborates on how the dual nature of kriging and the positive
definiteness property of the variogram connections can be shown between
splines, kriging, and radial basis functions. When comparing these tech-
niques, kriging is deemed the most logical choice in providing an unbiased
optimal interpolator with optimality defined by the minimum expected
error variance in the derived model. Kriging also offers many statistical
advantages over the other techniques including the ability to perform cross
validation of the model by using a fresh sample of observations. To illustrate
a simple form of interpolation, Myers (1994a) presupposes that values of a
function f(x) are known at points x;, x,, ... x,. In a one-dimensional case of
points, the value of f(x) for x,; < x < x; is of interest, and the continuity of f(x)
is sufficient to ensure that the linear interpolation is adequate when x; — x;_;
= a;1s small. Therefore

F(x)= {M}f(x,-_l){ﬂ}f(xf)

ai al

is very close to f(x). The estimation/interpolation error is f*(x) — f(x), and
it is possible for other errors to exist. However, as rightly noted by Myers,
this interpolation function has limited applications due to the lack of addi-
tional data locations required to further smooth out the data. Also, in higher
dimensional spaces with irregularly spaced data points, more complicated
functions are required. Following is a description of the underlying theory
and principles that guide the interpolation of more complex datasets in two-
or three-dimensional space.

Spatial Structure Functions for Regionalized Variables

In geostatistics, knowledge of the regionalized random-variable theory and
the fundamental concepts that guide the formulation of spatial structure
functions is required prior to performing any kind of interpolation. The
theory assumes that Z(x) is a regionalized random variable that is associated
with a true measurement, z(x), that characterizes the quantity of a variable
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at point x. The two most important functions that are used to describe this
regionalized variable are the spatial covariance and the variogram. For Z(x),
the spatial covariance describes how that variable is distributed across space,
focusing on the degree of similarity among pairs of data points. It also seeks
to capture the underlying spatial structure by modeling the degree to which
there is spatial autocorrelation with the belief that data values obtained at
locations that are closer together are more likely to be similar, whereas val-
ues at locations farther apart are more likely to be independent (Tobler’s law).
This spatial autocorrelation structure informs the formulation of the random
function. We can define the values of the random variable Z at two locations,
Z(x) and Z(x + h), where h represents the distance (spatial lag) between a
pair of sampling sites. There are also a set of assumptions that guide the
mathematical formulation of this covariance. One is the basic assumption
of stationarity (that certain attributes of the random process are the same
everywhere). This effectively enables the inference of the stationary cova-
riance. To derive the covariance and variogram functions, we also assume
that each observation is independent under the weaker intrinsic hypothesis
of geostatistics (Matheron 1963; Matheron 1965; Myers 1994a,b; Goovaerts
1997; Deutsch 2002; Oliver 2010). Using this principle, we can mathematically
define the spatial covariance as follows:

C(h) =E[Z(x+h).Z(x)]—p?

where 1 is the stationary mean, normally estimated from the total number
of data points (i.e., data points x, in the area in which z(x) is being estimated)
approximately separated by the vector h. At h = 0 the stationary covariance
C(0) equals the stationary variance 62 We can rewrite this equation into a
more standardized stationary correlation p(#) as follows:

p(h)=C(h)/c>

Given that we are interested in a two-point measure of spatial correlation
called the variogram, the equation (covariances) can be slightly modified by
the expected squared differences as

2y(h) = E{[Z(x + h) - Z(x)]*}

In reality, however (if the process Z(x) is second-order stationary, the vario-
gram and covariance are equivalent), we would prefer more simplified forms
of covariance and variogram as given below:

C(h)=op(h)=0>—y(h)

v(h) =02 {1-p(h)}
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From the variogram function above, we have the semivariance, y(/), which
is defined as one-half of the mean squared difference between paired data
points in the study area. To illustrate this further, suppose we have a sample
of observations Z(x), i = 1, 2, 3 ... n, where the mean is constant: we can
define the semivariogram as follows:

v(h) Z[Z(x +h)—Z(x,)? ]

" (h)

where 7 is the number of sample points, Z(x,) is the measured sample value
at location x;, Z(x,,;) is the sample value at location x;,,, regionalized vari-
able Z(x), and n(h) is the number of pairs of observations a distance / apart.
The semivariogram is therefore a measure of one-half the mean square error
produced by assigning the value of Z(x,,;) to the value Z(x).

In sum, variogram analysis in geostatistics entails the derivation of three
empirical measures as estimates of the true population parameters: the spa-
tial covariance C(h), the spatial correlation p(h), and the semivariance vy(h).
The covariance and correlation both reflect the degree of similarity within
the data while the semivariance reflects the degree of dissimilarity with
increasing distance among pairs of data points. Various plots can be pro-
duced using these three spatial structure functions. For example, a line plot
of the spatial correlation against the lag / is called a spatial correlogram.
Plotting the spatial covariance against the lag I produces the spatial covari-
ance function. And the most commonly reported visualization is the semi-
variogram, a line plot that depicts the semivariance y(h) against the lag &
(Figure 8.2). Although the technical term for this plot is a semivariogram
(one-half of the mean square error) the terms variogram and semivariogram
are used interchangeably in the literature to describe the plot, and we will do
likewise in this chapter.

The shape of the variogram describes the degree of spatial autocorrelation
that is present in the data. In Figure 8.2, you will find that as the lag distance
hincreases, the curve increases and then it levels off at some point. There are
three key properties illustrated in this diagram: sill, nugget, and range. The
sill refers to the semivariance value at which the curve levels off. As shown
in the figure, this is the point at which the y (/) value intersects with the range
and becomes a constant value as the lag distance & increases. The nugget is
a semivariance value y(h) that is significantly different from zero for lags
that are very close to zero. This is not a measurement error; rather it is best
characterized as white noise suggesting that even for data points that are
close to one another, the measured values may not necessarily be identical.
The range is the lag distance at which the variogram first reaches the sill
and remains close to that level for subsequent distances. The variogram can
also allow for anisotropy by incorporating both spatial dependence and how
these variations change in different directions.
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FIGURE 8.2
A schematic representation of a semivariogram model and related concepts.

Overall, the variogram is a popular way to compute and visualize spatial
autocorrelation and it is highly recommended as a first step in geostatistical
modeling. The relations captured in the equation and the visual depiction
provide the foundation for modeling spatial autocorrelation. The procedures
for synthesizing and interpreting the results may be summarized in three
key points: (1) the sill of the variogram corresponds to the point where there
is zero autocorrelation, (2) the autocorrelation between Z(x) and Z(x+h) is
positive when the variogram is less than the sill, and (3) the autocorrelation
between Z(x) and Z(x+h) is negative when the variogram exceeds the sill (not
depicted in the Figure 8.2). Once the variogram is developed, it is incumbent
on the researcher to choose the statistical model with weights that best rep-
resent the data and to share those values, including the variogram, in the
statistical results. The selected model will significantly impact the next stage
of the analysis that entails the prediction of the unknown values across the
study area.

Kriging Method and Its Theoretical Framework

As stated earlier, kriging belongs to a subset of geostatistical methods that
rely on the stochastic process in developing predictive surfaces. Named
after Danie Krige’s pioneering work, the approach is an optimal, unbiased,
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and generalized least-squares spatial interpolation method that minimizes
the estimation from a fitted variogram model. It offers a far better under-
standing of the spatial structure of the variable in a set of observations,
and then provides unbiased estimates for unmeasured locations using the
semivariogram model (Goovaerts 1997, Deutsch 2002; Oyana and Margai
2010; Asa et al. 2012). Several kriging methods exist in the geostatistical
literature and they are broadly classified into either linear or nonlinear
approaches. The former includes simple kriging (SK), ordinary kriging
(OK), universal kriging (UK), Bayesian kriging, and factorial kriging, while
the latter includes lognormal kriging, multi-Gaussian kriging, disjunc-
tive kriging, indicator kriging (IK), probability kriging, and rank kriging
(Asa et al. 2012).

Asa et al. (2012) outlined four basic assumptions of kriging estimators:
(1) the unknown sample data z(x), and the n sample values belong to the
regionalized variables, Z(x), and Z(x,), ..., Z(x,); no measurement or posi-
tional errors exist; (2) for any two points x, and x, in the area over which z(x)
is being estimated, the covariance Cov(Z(x,), Z(x,)) of the associated region-
alized variables Z(x,) and Z(x,) are known; (3) K, the non-negative matrix of
covariances between measured variables (data) at the sample point is posi-
tive definite; and (4) the trend in the area of interest is homogenous. As a
result, the mean of the regionalized variables will be the same for the data
points x,, in the area in which z(x) is being estimated. If a trend exists in the
area of interest, the stationarity of the local mean is relaxed and a nonsta-
tionary random function is employed to represent the mean (kriging with a
trend or UK). The random functions adopted Z(x), in the kriging equations,
will define the kriging method.

The basic equation of kriging estimators is given by Goovaerts (1997) as
follows:

n(x)

Z'(x)=m(x)= 3 w[Z(x;) - m(x,)]

where x and x; are location vectors for the estimation point and one of the
neighboring data points indexed by #; n(x) is the number of data points in a
local neighborhood used for estimation of Z'(x); m(x), m(x;) are expected mean
values of Z(x) and Z(x,), respectively; and w; is the kriging weight assigned
to Z(x,) for estimation location x. As noted earlier, the goal of kriging is to
minimize the variance of the estimator 62 (x) =Var{Z" x)— Z(x)} under the
circumstance E{ Z'(x)— Z(x)}zO by determining weights w;. The random
variable Z(x) consists of two components: the residual component (R(x)) and
the trend component (m(x)): Z(x) = R(x)+ m(x)-
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Following the basic assumptions, there are two crucial steps in fitting a
semivariogram model and kriging:

1. Measuring the degree of spatial autocorrelation among the mea-
sured data points, that is, description and modeling of spatial pat-
terns (described in the preceding section).

2. Interpolating values between measured points based on the degree
of spatial autocorrelation encountered, that is, prediction of local
estimates.

After this, we can also account for secondary factors using cokriging, a
method that integrates multiple variables associated with the primary vari-
able into the analysis. Following below are the conceptual descriptions and
some illustrated examples of SK, OK, UK, and IK.

Simple Kriging

Simple kriging, identified by the subscript SK, is an estimate that is derived
from the modification of the mean. The mean value m(x) of the stationary
random variable in an SK equation is assumed to be constant and known
throughout the study area. The global mean assumption is contingent upon
the SK estimator being unbiased and having a minimal variance of the error
of estimation. The SK estimator is derived using this equation:

Zig(x) = Sw0,2(x,) + 1 S0 (Ol

where Z(x) is the random variable at the location x, all x; values are equal to n
data locations, m(x) = E{Z(x)} is equal to location-dependent expected values
of random variable Z(x), Zg is the linear regression estimator, w;(x) is the
weight, and m(x) is the mean.

Ordinary Kriging

Ordinary kriging, identified by the subscript OK, is a very powerful and
widely used geostatistical method for modeling spatial data (Cressie 1985;
Isaaks and Srivastava 1989; Goovaerts 1997; Armstrong 1998; Deutsch 2002).
It assumes that the local means are not necessarily closely related to the pop-
ulation mean and will use only the samples in the local neighborhood for an
estimate. Simply stated, the local mean m(x) is unknown but it is assumed
to be constant within the search area. OK relies on the spatial correlation
structure of the data to determine the weighting values, and the correlation
between data points determines the estimated value at an unsampled point.
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It makes the assumption of normality among the data points. The method is
based on three basic ideas:

1. A search is only conducted within a local neighborhood and only
samples drawn from this neighborhood are used for estimation. As
a result of this process, OK is able to account for the local variation.

2. Weight assignment relies on spatial variability within each local
neighborhood.

3. Computation of the average weight is based on each local neighbor-
hood, which is then used to derive the local neighborhood estimate.

OK is derived using this equation:

Zo(x)= iw,—(x).Z(x,-)nL[l—iwi(x)]m(x)

where 77, is the linear regression estimator and the others are as defined in
the SK equation above.

In this equation, we assume the mean m(x;)=m(x) for each nearby data
value Z(x,), so that

n(x) n(x)

Z'(x)=m(x)+ Y w,(x)[ Z(x;)-m(x)] = Z‘wi(x).z(xi)ﬂ (1—gwi(x)]m(x)

i=1
n(x)
As Zwi (x) =1, an OK estimator can be calculated from
i=1

n(x) n(x)
Zo(x)= Y (0Z(x;) with P (x)=1
i=1

i=1

The estimator based on a set of variables Z = {Z,, Z,, ... ,Z,} can be rewrit-
ten as

~ n k
2(50) = L 207,(s)

i=1 j=1

Universal Kriging

UK is kriging with a trend and is similar to OK. However, UK deals with
situations where the local mean is variable over the study area. Although the



234 Spatial Analysis

TASK 8.1 CALCULATING THE ORDINARY
KRIGING ESTIMATOR

Let us illustrate the calculation of the OK estimator using Burrough
and McDonnell’s example dataset presented in Figure 8.3 (Burrough
et al. 1998).

The sample data in Figure 8.3 has five sampled sites with coordinates
(x,y) and values (z) and we will predict the value for the coordinate (5,5).
The OK model is based on a constant mean (m(x)) and no trend for the
data as follows:

Zox (x)=m(x)+e(x;)

where x; = (x,y) for each sampled location, Z(x;) represents the value of
each sampled location and random errors (x;) with spatial dependence.
We will predict the value for unknown point z(x, = o) at coordinates
(x =5,y =5). We will apply a spherical variogram model (the equation
is given below) to compute the spatial variation of the data sampled at
the five locations based on the following parameters: nugget (C,) = 2.5,
sill (C;) = 7.5, range a = 10.

3
2'5+(7'5_2'5)(%_ 2’500) 0<h<10

0h=1
7.5 otherwise

v(h)=0?=C(h)

3
C(h)=75-25+(7.5-2.5) Sh__h
20 2000

The OK predictor is formed as a weighted sum of the data as follows:

n(x) n(x)
Zox ()= 08X (1)2(x) With T 0K (x)=1
i=1

i=1

6= ixﬂ(xirxo)‘*‘ ¢

i=1

where y(xi,xo) is the semivariance between sampled point x, and
unsampled point x,. ¢ is a Lagrange multiplier required for the
minimalization.

(Continued)
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TASK 8.1 (Continued) CALCULATING THE
ORDINARY KRIGING ESTIMATOR

We have to solve the following equation:

St

where A is the matrix of semivariances between pairs of data points,
b is the vector of semivariances between the predicted point and each
sampled data point, w is the vector of weights, and ¢ is a Lagrangian. A
distance matrix for the data points is given by

i 1 2 3 4 5
1 0 5099 9899 5 3.162
2 5099 0 6325  3.606 4472
3 9.899 6325 0 5 7.211
4 5 3606 5 0 2236
5 3162 4472 7211 2236 0
10 t t ; t t t t ; f
9+ 02 1
8 <+ -+
w.
74 1
61 1
54 1
ot 1
34 1
2 - -L
L 1
1 2 3 4 5 6 7 8§ 9 10
FIGURE 8.3

An example of a dataset to illustrate the kriging estimator.
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TASK 8.1 (Continued)

ORDINARY KRIGING ESTIMATOR

Spatial Analysis

CALCULATING THE

The distance vector of covariances for the sampled data points x;and
unsampled point x,is given by:

Xo

Ul = W N = -

4.243
2.828
5.657
1.0
2.0

We can substitute these numbers to the variogram to obtain the cor-
responding semivariances:

A=i 1 2 8 4 5 6
1 2.5 7.739 9.999 7.656 5.939 1
2 7.739 2.5 8.667 6.381 7.196 1
3 9.999 8.667 2.5 7.656 9.206 1
4 7.656 6.381 7.656 2.5 4.936 1
5 5.939 7.196 9.206 4.936 243 1
6 1 1 1 1 1 0

The vector of semivariances between the predicted point and each
sampled data point is given by:

b= Xo
1 7.151
2 5.597
3 8.815
4 3.621
5 4.720
6 1
Obtain the inverse matrix:
Al 1 2 3 4 5 6
1 -0.172 0.05 0.022 -0.026 0.126 0273
2 0.05 -0.167 0.032 0.077 0.007 0.207
3 0.022 0032  -0.111 0.066  —0.01 0.357
4 -0.026 0.077 0066  —0.307 0.19 0.03
5 0.126 0007  -0.01 0.19 -0.313 0.134
6 0273 0.207 0.357 0.003 0.134 -6.873

(Continued)
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TASK 8.1 (Continued) CALCULATING THE
ORDINARY KRIGING ESTIMATOR

Obtain the weights w using the weighting function

Xo
.0175
2281
-.0891
.6437
1998
1182 — ¢

N U W N

Minimization of the error variance:
The predicted value at

z(x;=0)=0.0175 x 3 + 0.2281 x 4 — 0.0891 X
2 + 0.6437 x 4 + 0.1998 x 6 = 4.560

Estimation variance:

62 =0.0175%7.151+0.2281x 5.597 —0.0891 x 8.815 + 0.6437 x 3.621
+0.1998 x4.720+ ¢ = 3.890+0.1182 = 4.008

Since our standard error = 2.002, we derive the predicted interval at
a 95% confidence interval, which ranges from 0.636 to 8.484 (4.56 + 1.96
x 2.002).

local mean m(x) is unknown just like in OK, UK models this as a linear com-
bination of functions of coordinates. Simply stated, it accommodates a non-
stationary mean where the expected value of Z(x) is a linear or high-order
(deterministic) function of the (x, y) coordinates of the data points. Caution is
required when fitting complex models.

The random function, Z(x), is a combination of a trend component with a
deterministic variation, m(x), and a residual component, R(x). UK is derived
as follows:

Z(x) = m(x)+R(x) and m(x)zE{Z(x)}ziukkk(x)

where A;(x) is the known basic function and 1 represents the fixed, unknown
coefficients.
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Indicator Kriging

IK is a method used with categorical data or data converted from continu-
ous data to categorical data. IK is a least-squares estimator of the cumulative
distribution function at a threshold, z,. IK employs the samples in a neigh-
borhood to estimate the probability that data points in a given area exceed
a defined threshold. Transformed indicator values (0, 1) are coded 1 if they
exceed a defined threshold and those below the threshold are coded 0. The
semivariogram of indicator data is computed as follows:

y(h;zk) = 2n1(h) g‘j[i(%; Zk)_ i(xi +h; Zk)]z

i=1

The local probability at x by kriging of indicator values is given by this
equation:

[i(x;zk):l = E{I(x;zk’(n))}* = Prob*{Z(x) < zk|(n)}

where 1 is the conditional information available in the neighborhood of loca-
tion x. A declustering algorithm is used to decluster the sample data if the z
data values are clustered.

Key Points to Note about the Geostatistical Estimation Using Kriging

1. Modeling decisions are driven by insights acquired during the
exploratory phase of the geostatistical analysis using the histogram,
variogram cloud/h-scatterplot, or covariance cloud. The histogram
provides a useful tool for confirming normality, a key assumption in
geostatistical analysis.

2. The selection of the most appropriate kriging equation/semivario-
gram model that fits your data is typically based on the preceding
steps and results from the exploratory analysis/description of the
spatial patterns, and the prediction error analysis.

3. Each kriging equation is designed to meet certain requirements/
assumptions, but all the kriging equations honor the data characteris-
tics, preserve the mean, and preserve the spatial correlation structure.

4. Final decisions are based on the uncertainty analysis using the cross-
validation approach. You should select the best kriging option after
carefully reviewing the five types of prediction errors: (1) mean pre-
diction error, (2) standardized mean prediction error, (3) root mean
squared prediction error, (4) standardized root mean squared predic-
tion error (RMSE), and (5) average standard error. An optimal krig-
ing model is one in which both the mean prediction error and the
standardized mean prediction error are close to zero. For an optimal
model, the root mean squared prediction error (RMSE) should be as
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small as possible, of approximately the same magnitude as the aver-
age standard error. The standardized root mean squared prediction
error (RMSES) is dimensionless and must be close to 1 for an opti-
mal model. Use these prediction errors to construct an error decision
matrix and pick the semivariogram model with the least error.

TASK 8.2 KRIGING SOIL SAMPLE DATA, SYNTHESIS,
AND INTERPRETATION OF RESULTS

The sample data presented in this chapter are based on 115 sampling
sites for organic soil carbon and nitrogen in southern Africa. The soil
database was compiled by SAFARI 2000, but was originally sourced
from soil surveys by Zinke et al. (1986) and soil survey literature. There
are two objectives that we wish to achieve using this data.

1. Characterize soil organic carbon and soil nitrogen with the
intention to understand the interaction of these two soil prop-
erties and environmental factors.

2. Use the spatial dependence structure to predict soil organic
carbon and soil nitrogen estimates at unsampled locations.

5. The kriging technique is not applicable to datasets that have spikes,
abrupt changes, or datasets that do not have a spatial autocorrelation
structure. Data that lack adequate spatial coverage and are not fully rep-
resentative of the study region may also result in poorly fitted models.

We will apply a set of five geostatistical methods and tools to achieve these
two objectives.

Exploratory Data Analysis

Figures 8.4 and 8.5 show the spatial distribution of soil carbon and soil
nitrogen in the study region. Soil carbon has a mean of 12.5 kg/m? and stan-
dard deviation of 13.6 kg/m? (Figure 8.4c) while soil nitrogen has a mean of
907.8 g/m? and a standard deviation of 631.6 g/m? (Figure 8.5¢c). About 100
of the sampled locations have soil carbon values of less than 20 kg/m? and
67% of the entire sample has values that are less than the mean value.

The frequency distribution of soil carbon is positively skewed with a sharp
peak. Three of the sampled locations have a very high content of soil carbon
(54.8 kg/m?, 76.3 kg/m?, and 113 kg/m?). The frequency distribution of soil
nitrogen is moderately skewed with a sharp peak. About 50% of the sampled
locations of soil nitrogen have values that are less than the mean value. Most
of the values of sampled locations of soil nitrogen range from 180 g/m? to
2,362 g/m? and 15% of the sampled locations have zero values. There is one



) 'SOOUBLIBATWDS
] LreAl
2 [[ews pue seare SULIOqUSIBU 9} UT SanjeA Ie[ruwis jo urasnid reryeds ajedrput (p) ut jord oy jo 3red Tomo[ a3 UT UOGIED [10S JO SDURISIP PaIle] ‘Pnojd
.M wer3orreArwss (p) pue ‘ejep mer 1oy werdosny (0) ‘dewr rouorop (q) ‘suorjedor Surjdures (e) :s39se3RP UOGIED [I0S 3} JO UOIIRZI[ENSIA PUE UOTINALIISI(]
< '8 INOH
..m ®) ©)
= (u bs/By) uoqrey
Ny <0T- Y ‘@duejeI 08 09 o
v LY'T 91T S8'1 ST €C'1 £6°0 790 1€°0 0 o
. T ot
- [} ..l.- $O'T
’ . ' 0T
Ta e ] ; . 60T -
" . " m
0g &
e 'M
K . o
g N LTy
. ot LT €T SISoMM)] 05
v v s ST'F SSOUMS
' OJEUONEIAOPIPIEPUELS
., TT ueIN ”
@ ®©

0825-89'9¢ [
899£-96'0¢ [
96:02-60°1 )

wonnquustp [eneds

240




241

Engaging in Geostatistical Analysis

*SODURLIRATUIIS
[[ews pue seare SULIOqUSIOU 33 U sanfea Ie[ruis jo Suraysnyd [ereds ayedrput (p) ur jod ay3 jo 3red 1oMo[ 33 uT USS0I3IU [10S JO SIDURISIP PAITe] “Pod
werdorreArwas (p) pue ‘ejep mer 10y werdolsry (o) ‘dewr rouo1oA (q) ‘suorjeoo Surpdures (e) :s3asejep UsS0IITU [I0S 9} JO UOTJRZI[ENSIA PUE UOHNALIISI(]

S8 3NOH
(2] ©)
—OT TsuEIq (w bs/8) uagoniN
T 9rT ST HET €Ul €60 790 €0 0 0005 000% 000¢ 000C
R N AR 1 ek T g Bl 0
R LT 5
' ] SRS
w e e i e A% g8 it
. [ IR P ! H
v &
o ot
! , o %
. 2
a1
v = . £l
; y 76 S1503my] ON
1G'T SSOUMdS
9'T€9 UOTRIASD pIepuelg -
oL 4 8206 UEIN
@ ®©

sois ajdures

¢




242 Spatial Analysis

sampling location of soil nitrogen with more than 4000 g/m? that is located
in the south (Figure 8.5b). Sampled locations with the highest content of soil
nitrogen are generally located in the south, the medium values are generally
located in the central area, and the lowest values are generally located in the
east and northeast. Spatial patterns of soil carbon (Figure 8.4b) are a little
similar to soil nitrogen except that there is a clear pattern in the distribu-
tion of soil carbon, especially where there are high, medium, and low values
(Figure 8.5b).

The semivariogram cloud (Figures 8.4d and 8.5d) is a form of h-scatter-
plot that gives the semivariance estimates of paired distances (the distance
between sampling points) for soil carbon and soil nitrogen. The paired dis-
tances that are closer together suggest spatial dependence and vice versa. In
both sampled locations of soil carbon and soil nitrogen, the paired distances
in the lower part of the semivariogram clouds show closeness suggesting the
presence of a spatial dependence structure and a small semivariance among
values. However, there is evidence of outliers in the upper-left and bottom-
right corners of the two semivariogram clouds suggesting large semivari-
ance estimates or wide distances between some paired sampled points.

Spatial Prediction and Modeling

The fitted soil carbon semivariogram models are provided in Figures 8.6a
through 8.6d while the models for soil nitrogen are given in Figures 8.7a
through 8.7d. Table 8.1 summarizes the semivariogram models for the
parameters/coefficients of soil nutrients. Note that the UK model for soil
nitrogen has a very large nugget suggesting that sampled locations are ran-
domly distributed in the study region. The predicted areas from these mod-
els are presented in Figures 8.8 and 8.9. The spatial patterns of UK and IK
estimators are more reflective of the raw (soil carbon) data than those from
OK and SK estimators (Figure 8.8a through 8.8d).

In Figure 8.8a, the low values are located in the central area of the study
region. In the immediate surroundings, there are medium values, and the
high values are located in the lower-left corner of the study region. Spatial
patterns in Figure 8.8c and d are similar with slight differences evident in
their spatial extents. The indicator semivariogram model gives a probability
surface map for soil carbon where there is not an exceedance of an optimal
threshold of 10.15 kg/m? (Figure 8.8d).

The spatial patterns for the prediction surface of OK, UK, and IK estima-
tors are more reflective of the raw data of soil nitrogen than the SK estimator.
In Figure 8.9a and b, the low and medium values of soil nitrogen are mainly
located in the central area and toward the northeast. However, spatial pat-
terns in Figure 8.9d are more pronounced than those from other models.
The indicator semivariogram model shows a probability surface map for

soil nitrogen where there is not an exceedance of an optimal threshold of
1070.5 g/m? (Figure 8.9d).
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TABLE 8.1

245

Fitted Semivariogram Models for Soil Carbon and Soil Nitrogen

Kriging Estimator Soil Carbon Soil Nitrogen

OK y = 0.2478*C,+0.1475*Stable y = 0.1373*C,+0.0735*Stable
(19743, 1.371) (20707, 1.165)

SK y = 0.5529*C,+0.4296*Stable y = 0.8193*C,+0.1613*Stable
(57294) (88036, 2)

UK y = 0.1549*C,+0.2718*Stable y = 162640*C,+121850*Stable
(19743, 1.6186) (35021, 2)

1K y = 0.0234*C,+0.2347*Stable y = 0.1176*C,+0.1289*Stable
(19743, 2) (19743, 2)

Prediction surface of —4.07-14.32 []32.61-62.62 m107.26-190.69

Drediction surface of -
soil carbon (kg/sq. m) 14323261 I 62.62-107.26 rediction surface of gy 50911 36 19.98-3147

soil carbon (kg/sq. m) ) 11 36-19,98 M 31.47-45.32

- 45.32-71.70

Prediction surface o o1 ‘ .
¢ N 0-542 [ 6.36-11.78 B rediction surface of gy 0-0.15 [10.38-0.59 [ 0.80-1
soil carbon (kg/sq. m) [ 5.42-6,36 I 11.78-43,1 T 4311 -224.10 soil carbon (kg/sq. m) o 15 03s  EEE0.59-0.80

(© @

FIGURE 8.8

Prediction surface maps for soil carbon: (a) ordinary kriging (OK) estimator, (b) simple kriging
(SK) estimator, (c) universal kriging (UK) estimator, and (d) indicator kriging (IK) estimator.
The spatial patterns for UK and IK estimators are more reflective of the raw data of soil carbon
than those from the OK and SK estimators.
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Prediction surface of * py 540.14-818.68 [—11,039.87-1,261.06
soil nitrogen (g/sq. m) [lg18,68-1,039.57 NI 1,261.06-1,61333

. 1613.33-2.626.17 Prediction surface of ' g 804.32-938.81 [ 1,025.27-1,118.93 gy 1 139,001 41672

soil nitrogen (g/sq. m) [ 938.81-1,025.27 I 1,118.93-1,239.00

(b)

Prediction surface of N 0-0.15  [—]036-058

Prediction surface of " puy 566.16-843.85 [ 1,080.70-1317.56
soil nitrogen (g/sq. m) (5 0.15-0.36 [ 0.58-0.52 M 0.82-1

soil nitrogen (/sq. m) [F) 843.85-1,080.70 [ 1317.56-1,783.09 M 1.783.09-2,648.83

(0) (d)

FIGURE 8.9

Prediction surface maps for soil nitrogen: (a) ordinary kriging (OK) estimator, (b) simple krig-
ing (SK) estimator, (c) universal kriging (UK) estimator, and (d) indicator kriging (IK) estima-
tor. The spatial patterns for OK, UK, and IK estimators are more reflective of the raw data of
soil nitrogen than the SK estimator.

Uncertainty Analysis

Having reviewed the preliminary models, we now need to judge the most
appropriate semivariogram model for soil carbon and soil nitrogen. The
cross-validation plots are presented in Figures 8.10 and 8.11 for this purpose.
Decision matrices for the performance of the five sets of geostatistical meth-
ods are presented in Tables 8.2 and 8.3. A critical examination of the cross-
validation plots reveals the following observations. In Figure 8.10a through d,
if we use an error cutoff point of +2 in both directions, we can identify sam-
pling sites of soil carbon with under- or overprediction. In the OK model,
29% and 48% show under- and overprediction, respectively (SK [25%, 52%];
UK [29%, 39%)]; and IK [21%, 28%)]). An in-depth scrutiny of the standardized
errors (if we use a cutoff of +2 in both directions) in the validated sites shows
there is a major reduction in underprediction with OK (9.7%), SK (4.2%), and
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TABLE 8.2

Cross-Validation Statistics for Five Interpolation Methods for Soil Carbon

Decision

Statistics criteria OK SK UK IK? IDW
Mean Near zero 0.021 0.3233 0.289 —-0.0007 -0.197
Standardized

mean Near zero -0.114 —-0.0004 0.324 —-0.008
Root-mean

square error  Very

(RMSE) small 15.959 15.11 5.684 0.491 9.294
Standardized

root-mean-

square error

(RMSES) Near 1 1.303 1.422 8.613 1.027
Average

standard Very

error (ASE) small 13.512 12.41 0.676 0.481
Ranking?

(the best) 5 4 3 1 2

2Based on the ranking, IK presents the best model for soil carbon

TABLE 8.3
Cross-Validation Statistics for Five Interpolation Methods for Soil Nitrogen
Decision
Statistics Criteria OK SK UK IK» IDW
Mean Near zero -9.979 -12.526 -20.626 —-0.0063 -9.373
Standardized
mean Near zero -0.038 -0.011 -0.035 -0.0114
Root mean Very 503.25 520.73 513.40 0.494 512.70
square error small
(RMSE)
RMSES Near 1 0.808 0.938 1.024 0.984
Average
standard Very
error (ASE) small 597.87 523.48 502.56 0.504
Ranking?
(the best) 5 4 3 1 2

2Based on the ranking, IK presents the best model for soil nitrogen

IK (7%) with the exception of UK (32%). Overprediction also reduced in a
number of validated sites with OK having none, and SK and IK having 3%
and 4.2%, respectively, with the exception of UK (4.2%). Most of the sites have
a 50% probability of having less than the threshold of soil carbon 10.15 kg/m?.

In Figures 8.11a through d, the OK model shows 40% and 57% under- and
overprediction, respectively (SK [42%, 57%]; UK [40%, 49%]; and IK [33%,
40%]). An in-depth analysis of the standardized errors in the validated sites
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of soil nitrogen shows a major reduction in underprediction as well as over-
prediction: OK (5.6%, none); SK (5.6%, 1.4%); UK (5.6%, 1.4%); and IK (none,
none). Most of the sites have a 67% probability of having less than the thresh-
old of soil nitrogen 1070.5 g/m?2.

Based on these cross-validation statistics, the indicator semivariogram
models for soil carbon and soil nitrogen provide the best and most appropri-
ate fit for data. The two models have overcome the presence of extreme val-
ues (outliers) by coding each of the sampling location values into two groups
using targeted thresholds of soil carbon at 10.15 kg/m? and soil nitrogen at
1070.5 g/m?2. The probability maps and cross-validation plots represent spa-
tial variability of soil carbon and soil nitrogen in the study region. We are
able to discern sampling locations where the probability values were not
greater than the targeted thresholds.

Following the uncertainty analysis and verification of the measured and
predicted estimates, we can make the following conclusions about the spa-
tial prediction and modeling of soil carbon and soil nitrogen:

1. Itis evident that the indicator semivariogram models (IK) of soil car-
bon and soil nitrogen are superior to the other models.

2. The spatial distributions of prediction surfaces of soil carbon and soil
nitrogen are evidently similar; for example, high values are located in
the south. Most of the sampled carbon sites had less than 20 kg/m? while
most of the soil nitrogen values ranged from 180 g/m? to 2400 g/m?2.

3. Sampled data are lacking in the far north and other areas, which
is problematic for the predictive ability of the models at these loca-
tions. Not surprising, the highest prediction errors were observed
in these areas. Putting aside this limitation, overall, the indicator
semivariogram provided the best clues about the spatial variability
of soil carbon and soil nitrogen. Efforts to revise and improve the
models will require the establishment of more sampling sites for use
in collecting additional soil measurements in carbon and nitrogen.

Conditional Geostatistical Simulation

Geostatistical simulation provides us with a practical mechanism for draw-
ing multiple equally probable realizations from the random function model.
A single realization at each location is derived from a random variable func-
tion (Myer 1994a). Realizations are an embodiment of the spatial variability
in a sample because they honor data characteristics, preserve the spatial cor-
relation structure, and preserve the mean and marginal distributions (Myer
1994a). The simulation process, which is normally encoded in a computer
algorithm, represents “equally likely” values at each of the sample locations
based on preserving the core spatial structure (invariant properties) of the
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data values without smoothening it. A conditional geostatistical simulation
provides us with the capability to produce practical realizations that reflect
the spatial structure and relationships among a variety of informative fac-
tors. We can also express the simulated results in probabilistic terms, thus
enabling the quantification of uncertainty and providing important input for
risk analysis and management. Although several interpolations can be used
with conditional simulation, we have only used SK to illustrate the signifi-
cance of these algorithms in geostatistics.

Figure 8.12 presents mean and standard deviation of 10 realizations for car-
bon and soil nitrogen. The simulated results give us further insights about
the spatial structure and relationships of soil and areas where there is uncer-
tainty. In Figure 8.12a, the low to medium simulated mean values of soil
carbon are located in the central area and the surrounding areas. However,
in Figure 8.12b, there are several pockets of areas (8 clusters) with a varied
standard deviation. In Figure 8.12¢, the low to medium simulated mean val-
ues of soil nitrogen are also located in the central area and the immediate
surroundings. However, in Figure 8.12d, there are many scattered pockets
showing varied standard deviation throughout the study region.

L7517 ) 820119 g 1550 2810

. 079-967 [ 1856-3040
- 494-69.44 517-82¢ I 11.93-1552

[ 9.67-18.56 N 30.40-4494

_ @

Futs

. os01-s252 [ 10977-13921
[ 5252-10977 [ 139.21-187.17

- 157.17-305.99

W 6301-87897 [ 107559-132278
[ 878.97-1075.59 W 152278-15924¢ N 1592.44-207559

() (d)

FIGURE 8.12

Conditional geostimulation maps from 10 realizations: (a) soil carbon realizations based on
mean, (b) soil carbon realizations based on standard deviation, (c) soil nitrogen realizations
based on mean, and (d) soil nitrogen realizations based on standard deviation.
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Inverse Distance Weighting

IDW is a deterministic interpolation technique that estimates the values of
unsampled points according to the values at nearby locations weighted only
by distance. IDW is based on an assumption that the relationship between
nearby location and interpolation location is closer. We will illustrate the IDW
interpolation technique using the sample datasets presented in Figure 8.3.
We will predict the value for coordinate (5,5) through a linearly weighted
combination of the following equation:

n
Z w,z;
— iz T
2(x)=5
P
i=1
where z(x) is the value for unknown point x, w; is weight for sampled point

x; z; is the value for sampled point .

We know that the weighting function, w, = iz d, is the distance between sam-
pled points x, and unknown point x,. i
The distance between sampled points x; and unknown point x, is given by:

=

X

4.243
2.828
5.657
1.0
2.0

Ul o= W N =

Derive the weights using distance from previous step. For example,

1
——=0.056

Point 1: w, = YE

=

w;
0.056
0.125
0.031
1

0.25

Tl = W N =

iwi =1.462

i=1

Derive the z(x) value for the unknown point:

Zujizi =0.056x3+0.125x4+0.031x2+1x4+0.25% 6 =6.229

i=1
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w;z;
z(x)zén—=%:4.261
w; )

%

IDW provides an easy way to predict values of continuous variables at
locations where measurement is unavailable. However, it is not sensitive to
areas of peaks or pits and would lead to undesirable results.

TASK 8.3 APPLYING IDW TO SOIL SAMPLE DATA,
SYNTHESIS, AND INTERPRETATION OF RESULTS

The same soil used in fitting the previous kriging methods will be
applied to the IDW interpolation technique.

Figure 8.13 presents IDW prediction surfaces and the cross-validation plots
for soil carbon and soil nitrogen. In Figure 8.13a, most of the areas have low
to medium values of soil carbon with the exception of the south. Figure 8.13b
has a few pockets of areas with medium to high scattered values of soil

Prediction surface of g 1.12-10.84 (] 17.03-2.69 Prediction surface of Wsisr-ssoe  CJuomeo-1a0nct g0\,
soil carbon (kg/sq. m) [ 10841703 N 24.69_42.66 T >0~ 7024 sol nittogen (g, m) Esscs-rion o 2o W70

(@) (b)

—o— Measured 4000
== Predicted

—e— Measured
--¢-- Predicted

Underprediction

3

Soil carbon (kg/m?)

13 5 7 9 11131517 1921 232527 29 31 33 3537 3941 4345 47 4951 53 5557 59 61 63 65
Sampling location

(c)

1357 9 111315171921 23252729 31 33 3537 3941 434547 49 51 53 5557 59 61 63 65

Sampling location

(d)
FIGURE 8.13
Prediction surface maps and cross-validation plots using the inverse distance weighting inter-
polation technique: (a) surface for soil carbon, (b) surface for soil nitrogen, (c) measured versus
predicted soil carbon estimates, (d) measured versus predicted soil nitrogen estimates.
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nitrogen throughout the study region. The largest spatial extent with high
values is presently located in the south. The examination of cross-validation
plots reveals under- and overprediction to be 25% and 44%, respectively.
However, the errors for nitrogen are quite large.

Conclusion

In this chapter, we have learned about geostatistical analysis as a growing
tield of advanced statistical techniques that characterize spatial dependence
among naturally occurring phenomena and use the results to model spatial
continuity in a study area. The analytical approaches consist of both deter-
ministic and stochastic approaches such as IDW and kriging. Our focus in
this chapter was primarily on the stochastic approaches. These are governed
by the regionalized random variable theory that underlies the formulation
of spatial structure functions such as the covariance and variogram. We
explored the use of the variogram in capturing spatial autocorrelation and
the corresponding weights that are derived for spatial interpolation. Using
a series of tasks, the chapter also demonstrated the computation and inter-
pretation of estimators for different types of kriging methods and the mea-
sures that are used to derive optimal models. Working through the challenge
exercises below will help solidify the concepts that were introduced in this
chapter and will set you well on your way to becoming proficient in these
approaches.

Challenge Assignments

The overarching objective of this problem set is to analyze the impact of
ambient pollution/environmental exposure on the communities living in
two study regions. One of the study regions contains O’Hare International
Airport (i.e, noise exposure) and the other is located within areas surround-
ing air pollution monitoring sites in California (i.e., nitrogen dioxide and
ozone exposure). Datasets and materials to be used to complete the problem
set include (1) Average Day/Night Sound (DNL) measured in decibels (dB)
summarized from 34 Permanent Noise Monitor Locations near the airport,
covering a 7-year study period (2004-2010), O’'Hare Noise Compeatibility
Commission (ONCC); (2) wind data, National Renewable Energy Laboratory
(NREL), (3) elevation, U.S. Geological Survey (USGS), and (4) nitrogen diox-
ide and ozone, California Air Resources Board and the U.S. Environmental
Protection Agency.
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TASK 8.4 USING EXPLORATORY TOOLS TO
VISUALIZE AND COMPUTE BASIC STATISTICS

1. Add the datasets using the “Add Data” button on the Standard
toolbar.

2. Navigate to the data folder, hold down the Ctrl key, then click
and add the ca_ozone_pts (Ozone), ca_outline, and ca_NO2_pts
(nitrogen dioxide, NO,) datasets. They are measured in ppm,
parts per million (by volume).

3. Open the ca_No2_pts attribute table and explore the elevation and
NO2AAM fields using the Statistics tool. How many observa-
tions are there? In a table, summarize the minimum, maximum,
sum, mean, and standard deviation values for the elevation and
NO2AAM fields. How many elevation records have zero values?
Examine the distribution based on these statistical summaries.

4. Open the ca_ozone_pts attribute table and explore the elevation
and ozone fields using the Statistics tool. How many observa-
tions are there? In a table, summarize the minimum, maximum,
sum, mean, and standard deviation values for the elevation and
ozone fields. How many elevation records have zero values?
Examine the distribution based on these statistical summaries.

TASK 8.5 FINDING AND UNDERSTANDING
SPATIAL AND TEMPORAL PATTERNS

1. Ensure that the Geostatistical Analyst extension is enabled
before starting this task. Click on the Geostatistical Analyst
toolbar > Explore Data > Histogram. Click and explore the fol-
lowing attributes: elevation and NO2AAM from the ca_ NO2_
pts layer, and elevation and ozone from ca_ozone_pts. Are the
data normally distributed? Capture and present histogram
screenshots for NO, and ozone. Describe the shape and distri-
bution of the data as depicted in these histograms.

2. Select the ca_ NO2_pts and ca_ozone_pts layers and fill in the miss-
ing values in Table 84 (the values in the histogram have been res-
caled by a factor of 10) so you need to look up (brush) the selected
records in the attribute table and the map. Identify and examine the
locations of sample measurements of NO, and ozone in California
(include two screenshots highlighting the exploration/brushing of
the data). Identify the elevation outliers in both ambient sources.

(Continued)
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TASK 8.5 (Continued) FINDING AND UNDERSTANDING
SPATIAL AND TEMPORAL PATTERNS

3. For pollution monitoring purposes, the critical thresholds should
be greater than 0.09 and 0.025 ppm (EPA standard is 0.053 ppm)
for ozone and nitrogen dioxide, respectively. These ambient lev-
els have adverse health effects. Identify using the Histogram
tool and examine locations with the critical thresholds.

4. Identify any global trends in ambient exposure data. Click
on the Geostatistical Analyst toolbar > Explore Data > Trend
Analysis. Explore both NO2AAM and ozone to determine if
there are nonrandom components of the surface that can be
represented by a mathematical formula. Explore the location
angle at which NO2AAM and ozone express a mathematical
trend (this will be apparent when you rotate the trend surface
to an angle at which the green trend line represents a U-shaped
parabola). What type of mathematical trend does this parabola
represent (think back to high school algebra and what type
of equation creates a parabolic line....)? Record the angle at
which the green trend line becomes a U-shape. Do the same
for the x-axis trend line (blue line); record that location angle.
Sometimes, these types of trends do not occur, but they do here.
Later in this lab, when you run your geostatistical model, you
will need to know whether or not a particular type of trend
needs to be accounted for within your geostatistical model.
Accounting for this trend will help to stabilize your final model.

5. Explore spatial autocorrelation influence. Click on the
Geostatistical Analyst toolbar > Explore Data > Semivario-
gram/Covariance Cloud. Each of the points in the semivario-
gram represents a pair of points. The position of a “paired point”

TABLE 8.4
Distribution of Sampled Measurements of NO, and Ozone
NO, Ozone
Elevation (m) Observations (1) Elevation (m) Observations (1)
<189 <1
194-369 1-232
381-870 244-1052
1006-1440 1244-1905
ppm ppm
0.0012-0.02329 0.0465-0.1463
0.0251-0.04809 0.1506-0.1736

(Continued)
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TASK 8.5 (Continued) FINDING AND UNDERSTANDING

SPATIAL AND TEMPORAL PATTERNS

describes both the level of spatial autocorrelation between
the pair of points and the distance between the pair of points.
Increases in the y-axis illustrate decrease in spatial autocorre-
lation, and increases in the x-axis illustrate increased distance
between the paired points. For spatial modeling purposes, we
expect nearby points to display higher spatial autocorrelation;
large deviations from this modeling perspective represent inac-
curacy within the semivariogram. On the semivariogram, iden-
tify where the cloud flattens out by using the Select Features by
Rectangle tool. Also, identify values that have a higher semi-
variogram and determine whether these pairs of locations are
inaccurate. Put a few screenshots of your semivariogram analy-
sis in your lab, showing the flattened section of the semivario-
gram and the higher section of the semivariogram.

. Explore directional influences. Determine whether NO,

and ozone are isotropic (without directional influence) or
anisotropic (with directional influence). If they are anisotropic,
what’s the direction of better continuity for the ca_ozone_pts
and ca_NO2_pts datasets?
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TASK 8.6 MAPPING, QUANTIFYING, AND INCORPORATING

N U1 B~ W DN

SPATIAL AND TEMPORAL VARIABILITY IN A MODEL

. Use the Geostatistical wizard to create a prediction map of ca_

NO2 using OK and the default settings. Compile screenshots of
the semivariogram and parameters (from layer properties) for
submission.

. Click on the Geostatistical Analyst toolbar > Geostatistical Wizard.
. Click Kriging/Cokriging in the Methods list box.

. Click the Input data drop-down arrow and click ca_ozone_pts.
. Click the Attribute drop-down and click the OZONE attribute.
. Click Next. By default, the OK type and Prediction output type

will be selected.

7. From the exploratory analysis, we discovered a global trend

and during investigation the second-order polynomial seemed
reasonable. Click the order of trend removal drop-down arrow
and click Second. Click Next.

(Continued)
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TASK 8.6 (Continued) MAPPING, QUANTIFYING,
AND INCORPORATING SPATIAL AND
TEMPORAL VARIABILITY IN A MODEL

8. There is a directional influence in the ozone distribution with

10.

a northwest—southeast direction. It is possible this is due to
the buildup of ozone between the mountains and the coast.
Other contributing factors could be elevation, prevailing wind
direction, and high concentration of human population and
activities, including industries, greenhouses, automobiles, resi-
dential emissions, and so on. We call these secondary factors.
Under the Model #1 box, click on the drop-down list for aniso-
tropic and set this to True. Capture a screenshot of this model
and place it in your document. An illustrative diagram of a fit-
ted semivariogram model is given in Figure 8.14.

. Click Next. The next window allows the fitting and searching

of specific neighborhoods. Explore this.

Click Next. The next window allows the saving of cross-
validation tables for further analysis and it provides different
prediction errors that must be compiled. Export and save this
table. Click Finish and remember to capture a screenshot or
copy of the Model Report. Evaluate these results.
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FIGURE 8.14

An illustrated semivariogram fitted with an exponential model (three derived quanti-
ties: nugget, sills, and range are highlighted). The summary/average of the semivari-
ance of all points within a particular spatial lag is also given.
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7.

TASK 8.7 PERFORMING AND DISCOVERING THE
BEST MODEL FOR SPATIAL PREDICTION

. Now we will run an SK and IDW on ca_ozone_pts with ozone

as your attribute as we did in Task 8.6.

. Compile in a table the results of three models showing the

following prediction errors: Mean, RMS, Mean Standardized,
RMS Standardized, and Average Standard Error.

. Create three prediction maps of ca_ NO2_pts using the three

models (IDW, OK, and SK).

. Create two tables (from Table 8.5) and use this information to

select the best performing geostatistical methods.

. Complete the following short essay: In your own words,

describe the results, maps, model, and spatial patterns of ambi-
ent nitrogen dioxide and ozone levels in the state of California.

. Load the ambient noise-levels dataset in ArcMap. Explore

the ambient noise levels in areas surrounding O’Hare
International Airport. Repeat the steps outlined for Tasks 8.4
through 8.7.

Compile the ambient noise-level information in the same way
you did for nitrogen dioxide and ozone. Use this information
to complete the following short essay: In your own words,
describe the results, maps, model, and spatial patterns of ambi-
ent noise levels.
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TABLE 8.5
A Decision Matrix for the Performance of Three Sets of Geostatistical
Methods
Decision

Statistics Criteria IDW OK SK
Mean prediction error (Mean) Near zero
Standardized mean predictor error

(SM) Near zero N/A
Root mean square error (RMSE) Very small
Standardized root mean square

predictor error (RMSES) Near 1 N/A
Average Standard error (ASE) Very small N/A
Total
Ranking
IDW, inverse distance weighting; OK, ordinary kriging; SK, simple kriging.
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TASK 8.8 FITTING A NOISE DISTANCE
DECAY MODEL USING MS EXCEL

Let us begin this task with a practical example to illustrate the dis-
tance decay model. Consider exposure/disturbance caused by the
noise of the train in the city of Carbondale, Illinois. People who live
closer to the train station/railroad experience more disturbance than
those who live farther away. As we move away from the train sta-
tion, the disturbance intensity continuously decreases to reach such a
level that we do not experience the pollution effect. The effect of the
noise pollution can then be modeled as a function of distance. This is
known as distance decay, which is a mathematical representation of
the effect of distance on a variable of interest. The model expresses a
negative relationship between the variable of interest and the increase
of the distance using a power function or an exponential function.

1. Create a scatterplot of the ambient noise-level data (the Noise_
Project file). Analyze the structure of the data and give an inter-
pretation of the data trend (the distance (Dist_Feet) should be in
the x-axis and the average sound levels data (dB) of the 7-year
period in the y-axis).

2. What is the relationship between ambient noise levels and
distance? How do we model this relationship mathematically?

TASK 8.9 ACCOUNTING FOR SECONDARY FACTORS
AND MAKING DECISIONS ON A SPATIAL BASIS

In Task 8.7, you created a continuous map of nitrogen dioxide (NO,)
and other attributes, which represents a prediction of the concentration
levels of NO, at unsampled locations. Recall that in the kriging pro-
cess, you have used only one variable (concentrations of NO, at sample
locations). In reality, the dispersion of NO, concentration levels may
depend on other contributing factors (natural or anthropogenic). For
example, wind direction may have an effect on the dispersion of NO,,
in which case the dispersion is said to be anisotropic. If we had more
information about wind direction when NO, data were being collected,
we could predict the dispersion of NO, along that direction. Also,
there might be some situations where temperature or rainfall spatial

(Continued)
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TASK 8.9 (Continued) ACCOUNTING FOR SECONDARY
FACTORS AND MAKING DECISIONS ON A SPATIAL BASIS
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variability is influenced by topography. Many examples of spatial rela-
tionships exist between two or more natural or anthropogenic contin-
uous phenomena. Therefore, it is necessary to account for secondary
factors, when its use is justified, to predict other continuous variable
values at unsampled locations. In this task, you will create a prediction
map of the average day/night sound levels taking into account a sec-
ondary variable—the elevation data.

1.

6.

Use the Geostatistical wizard to create a prediction map of
Noise_Project using OK and the default settings. Compile
screenshots of the semivariogram and parameters (from layer
properties) for submission.

. Click on the Geostatistical Analyst toolbar > Launch the

Geostatistical Wizard.

. Click Kriging/Cokriging in the Methods list box.
. Click the Input data drop-down arrow for Dataset and click

Noise_Project > Click the Attribute drop-down and click the
Ildem attribute.

. Click the Input data drop-down arrow for Dataset and click

Noise_Project > Click the Attribute drop-down and click the
All_averag attribute.

For Dataset #1, Model Global Trend as a second one.

7. For Dataset #2, Model Global Trend as a third one.

8.

Under the Model #1 box, click on the drop-down list for aniso-
tropic and set this to True.

9. Run your model as you did before and generate the results.

10.

11.

Now, repeat the process and exclude the trend analysis. What
is the difference in two results?

Use this information to complete the following short essay: In
your own words, describe the results, maps, model, and spatial
patterns of ambient noise levels relative to elevation as a sec-
ondary factor. How can we improve these results?
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TASK 8.10 CHALLENGE ASSIGNMENT:
REPORT WRITING AND RELATING FINDINGS
TO EXISTING EMPIRICAL EVIDENCE

1. Write a short abstract for the spatial patterns of ambient ozone
and nitrogen dioxide in California. Your abstract should not be
more than 350 words. It should have the following components:
a background/problem statement, objectives and hypothesis,
data and methods, results, and conclusions and implications.

2. Write a short abstract for the spatial patterns of ambient noise
levels in Chicago’s O’Hare International Airport. Your abstract
should not be more than 350 words. It should have the follow-
ing components: a background/problem statement, objectives
and hypothesis, data and methods, results, and conclusions
and implications. You may also revisit previous analysis on the
dataset and use it in this abstract.

Review and Study Questions

1. One of the core goals of geostatistics is to quantify spatial uncer-
tainty. Provide examples of spatial uncertainty and describe how
this can be quantified and integrated into subsequent steps in the
spatial interpolation process.

2. Geostatistical methods are effective only when certain key assump-
tions and statistical properties are met. Describe at least two of these
properties and explain how you would go about checking and vali-
dating these assumptions during the spatial modeling process.

3. What are the benefits of deriving and plotting a variogram function
in geostatistics? Draw a sample variogram and explain the key prop-
erties to a lay person.

4. The accuracy and optimality of a geostatistical model can be assessed
through cross validation and a series of statistical measures derived
during the analysis. Explain these measures and how they can help
with the interpretation of your results.

5. Choose any three of the following methods and explain the similari-
ties and differences in their use to interpolate spatial data generated
in your research area:

a. IDW versus OK
b. OK versus UK
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c. OKversus cokriging
d. OKversus IK

Glossary of Key Terms

Anisotropic (Semi)variogram: This is when the spatial pattern is strongly
biased towards a specific direction. This phenomenon is also at
times referred to as directional variograms because the weighting
scheme depends on distance and direction.

Isotropic (Semi)variogram: This is when the spatial pattern is identical in
all directions. In this case, the fitting of the semivariogram model
will heavily depend on the (Euclidean) distance between locations.

Kriging: The process of fitting the best linear unbiased estimate of a value at
a point or of an average over a volume. Kriging provides a powerful
tool to model spatial autocorrelation in the data and a means to use
this resulting knowledge to predict precise, unbiased estimates of
data pairs within the sampling unit. It could be simply stated that
kriging facilitates the quantification of spatial variability.

Nugget Effect: The vertical height of the discontinuity at the origin. It is the
combination of (1) short-scale variations that occur at a scale smaller
than the closest sample spacing and (2) sampling error due to the
way the samples were collected, prepared, and analyzed.

Range: The distance at which the variogram reaches the sill.

Sill: The plateau that the variogram reaches; in the variogram context, it is
the average squared difference between paired data values and it is
approximately equal to twice the variance of the data.

Variogram: An h-scatterplot for characterizing the spatial continuity of the
variable.
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Data Science: Understanding Computing
Systems and Analytics for Big Data

LEARNING OBJECTIVES

. Define and describe data science concepts.

. Manage and process big geospatial data.

. Effectively use, explore, analyze, and synthesize big geospatial data.

. Develop actionable knowledge and information from big geospatial data.

U1 = W N -

. Effectively implement emerging methods, programming languages
and algorithms, and tools for big geospatial data.

Introduction to Data Science

Data science is both a new concept and a recent field that has evolved with
the concurrent growth of large-scale datasets and emerging technologies to
handle a volume and variety of information from multiple sources and for-
mats. The field draws heavily from several existing disciplines that we have
discussed in this book: mathematics, statistics, computer science, geographic
information systems (GIS), visualization, and more, including engineering,
physics, psychology, cognitive science, operations research, business, and
artificial intelligence. The primary aims entail the development and appli-
cation of scientific approaches for the systematic exploitation, organiza-
tion, management, analysis, and use of large amounts of data for decision
making. Data science utilizes traditional or novel tools, methods, and strat-
egies, which are tailored toward the discovery of complex patterns in high-
dimensional data through visualizations, simulations, and various types of
model building (Kelling et al. 2009). It is being fueled by the critical need to
design efficient, scalable, and reliable systems, tools, and programs that can
easily handle “big data.”
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Given the nascent stages of the field of data science, the notion of
what constitutes big data is still up for debate. The term big data has
been generally used to describe very large amounts of datasets that
are complex, heterogeneous, and hard to process using traditional sta-
tistical and computational tools (Jacobs 2009; Loukides 2010; Helbing
and Balietti 2011; Allen et al. 2012). Increasingly, many scholars use five
attributes to characterize big data, notably the “5Vs”: volume, variety,
velocity, veracity, and value. The large volume, variety, and increasing
speeds at which data are being generated are driving creativity and the
development of new analytic methods (Kelling et al. 2009; Schadt et al.
2010), ranging from statistical packages/tools to sophisticated data min-
ing algorithms. At the same time, there is the ongoing need, as with
traditional datasets, to ensure that these data are reliable and valid, fol-
lowing which meaningful techniques can be applied and the results used
to generate new knowledge and value-added information for decision
making.

The development of these new analytic methods and strategies
enables the processing, management, visualization, and presentation
of big datasets in usable and actionable knowledge formats. Intensive
search for patterns in extremely large datasets provides many exciting
opportunities for designing and testing hypotheses and the creation of
data products (Loukides 2010). Large datasets also provide facts and clear
evidence that have the potential to significantly advance science. Many
observers are truly optimistic and confident that the analysis of big data
will yield new objective knowledge that will advance our understanding
of phenomena.

Within the context of spatial analysis, recent improvements in sensor
technology, reduction in data storage costs, and improvement in data col-
lection methods have led to an explosion in the amount of geospatial data
collected and available to organizations (Loukides 2010; Longley 2012;
Pirenne and Guillemont 2012; Wang et al. 2013). The datasets exist in three
main formats: structured, semistructured, and unstructured. These are
usually stored in large-scale server farms at a data center, where they can
be mined or analyzed to support the decision-making process. The greatest
challenge of our time, however, is how to effectively make sense of these
big datasets or turn them into meaningful and informative products in a
timely manner. The holistic approach to big data analysis is what differen-
tiates data science from traditional statistics. Data science integrates meth-
ods from several disciplines to gain fundamental insights from the data.
Some of the core goals of data science are to simplify the data and make
them accessible to those who need them in a timely manner. To accomplish
this, organizations need to address three principal areas: data manage-
ment, analytics and strategies, and communication of the results/reporting
applications.
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Rationale for a Big Geospatial Data Framework

Data science is a data-driven discovery and prediction process with the princi-
pal aim of making sense of big data and using the results to increase our under-
standing. Data-driven discovery provides the basis of producing actionable
knowledge. The big data framework consists of three essential components: data
management, analytics and strategies, and reporting applications (Figure 9.1).

First, the data management component entails data processing of large
quantities of data in a database. Massive geospatial datasets are currently
generated through Internet activities; portable, wearable, and mobile devices;
citizen sensors; instrumentation; simulations; satellite and global positioning
system (GPS)-equipped vehicles; government agencies; and other research
and development institutions. For big geospatial data, it simply means the
managing of data through the use of spatial databases and computational
geometry. Managing data requires deep knowledge and skills in the design
and use of spatial databases, especially in structural query language (SQL)
manipulation using relational algebra/spatial query processing. Additional
areas include algorithms and in-database analytics.

Second, the analytics and strategies component provides the analytical/
statistical basis for the development of interactive tools and systems with a
core capability that will allow the exploration, visualization, summarization,

Archived data Citizen sensors Data streams Other sources

+Indexed key words of ™,
search terms (location, %,
categories, time, metadata)

« Setting thresholds/scores
(¢hrough rankings, priority)?

Big geospatial data M .+ Enhanced spatial querles

Data management

Spatial options (computational geometry)

Structure, Functionality, Schemes, and Metadata

Analytics and strategies
Reporting applications « Statistics §nd machine legrning
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FIGURE 9.1
A visual representation of components of data science.
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classification, identification, and extraction of existing patterns or trends in
large-scale datasets. Most of the spatial techniques and methods discussed
in earlier chapters do still apply and can be used; however, to be able to
harness the new sources, types, and large geospatial data, we must think
beyond them. For example, algorithms and models, new knowledge, facts,
and reasoning can be used to develop rules to support analytical reasoning
or can be used for making predictions about future events.

Third, the communication of results entails the production of reports with
interpretable summaries, synthesized outcomes, facts, rules, and knowledge.
Graphs, plots, and other visualizations introduced in Chapter 4 are especially
useful, because they not only provide a foundation for discovering the basic
characteristics of raw data but also help tell a story about the data.

Effective presentation of results as a data product or in a report to the target
audience is a crucial element of big data exploitation. The communication for-
mats can range from the use of text to audio or images. For the reports to
be effective, they should be kept simple and accessible to a wide audience.
Let us take a look at an example of a simple reporting system for estimating
travel time using big data. Although the estimation of dynamic travel time is
based on point-based or trip-based approaches, the well-known Google Maps
Estimated Time of Arrival (ETA) algorithm uses a variety of massive data
sources for traffic data to make its travel time predictions. These predictions
differ from one area to another, because they depend on the data available
in a particular area. Figure 9.2 presents a list of spatial datasets that Google’s
ETA algorithm uses and the travel time prediction process. The ETA algo-
rithm is constantly sharpened through the comparison of current estimates
with actual historical travel time in various traffic conditions. Google then
comes up with the best prediction they can make from these massive data-
sets, which is presented to the users in a very simple but accessible format.

How the Google Maps Estimated Time of Arrival (ETA) algorithm determines travel time for a trip

Spatial data sets Travel time
dicti
» Road network predictions
o Official speed limits and . A .
recommended speeds Reporting application
o Probable speeds for differ- * Google Maps
ent road types e Summary report
» Historical average speed » List
» Congestion » Dashboards
e Observed travel times from » Others

previous users —| ETA algorithm

»  GPS-equipped vehicles
o Real-time traffic

FIGURE 9.2
Google’s Estimated Time of Arrival algorithm and a list of big geospatial data sets for travel time.
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Data Management

The ever-increasing amounts of geospatial data are problematic to many
organizations; without the right tools, they are not able to get value out
of these data. Recent advances in data capture and computation methods
have transformed the way organizations handle and process data. The rate
at which geospatial data is generated exceeds the ability to organize and
analyze them to extract patterns critical for understanding the constantly
changing world. For example, Google generates about 25 PB of data per day,
with a significant portion of it being geospatial data. Although the computa-
tional and analytical methods are not moving as fast as the rate of increase
in geospatial data, there has been a lot of progress in this area. To analyze
these data efficiently, the management and retrieval processes must be orga-
nized and centralized into accessible storage. Recent innovations have led to
an increase of new data management solutions, for example, Globus Online
(GO), the Rsync algorithm, YouSendlt, DropBox, BitTorrent, content distri-
bution networks, and the PhEDEx data service (Allen et al. 2012). Figure 9.3
illustrates the elements of data management, from the first stage of combin-
ing data from multiple sources through its presentation. The centralization of
data management and retrieval is referred to as data warehousing, whereas
the actual analysis of the data is referred to as data mining. In this chapter,
the details of these terms will be discussed.

Data sources Extract, transform
(from 50 individual states) ~ &load (ETL)  Data warehouse Reporting application  Web portal, mobile devices, and end users

CRM, ERP, Flat files,
Operational system
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FIGURE 9.3
Elements of data management workflow showing different platforms, software infrastructure,
tools, and methods.
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Data Warehousing

Kimball and Ross (2013) describe data warehouses as a complete ecosystem
for extracting, cleaning, integrating, and delivering data to decision makers,
and it therefore includes the extract-transform-load (ETL) and business intel-
ligence (BI) or analysis functions.

Data Sources, Processing Tools, and the Extract-Transform-Load Process

The first component is the extraction of data from each of the individual
sources (these can include historical data in the form of flat files or opera-
tional databases) into a temporary staging area where data integration takes
place. Data extraction methods can be divided into two categories:

e Logical extraction: This could be a full extraction of the complete
dataset from the source or an incremental extraction (change data
capture) of the data changes in a specified time period.

® Physical extraction: This can be done online, directly from the source
system, or offline from a system staged explicitly outside the original
source system.

Data transformations are usually the most complex and time-consuming
part of the ETL process. They range from simple data conversions to
extremely complex data scrubbing techniques. Data can be transformed in
two ways:

* Multistage transformation: Data are transformed and validated in
multiple stages outside the database before being inserted into the
warehouse tables.

* Pipelined data transformation: The database capabilities are utilized
and data are transformed while being loaded into the database.

Using data quality tools, one can ensure that the correct data and format
are loaded into the warehouse. This process can be done manually using
code created by programmers or automated by the use of ETL tools available
in the market. Some of the popular tools include Oracle Warehouse Builder,
Data Integrator and Services by SAP, and IBM Information Server. The result
of this process is metadata and standardized data, which are then loaded
into a data warehouse. Metadata is “data about the data,” which may include
mapping rules, ETL rules, description of source data, and pre-calculated
field rules. Some of the benefits of this ETL process include

¢ One source of truth: All the data are stored in the same format,
ensuring their consistency and accuracy.
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® Reduction of interface programs used to access the consolidated
data, resulting in reduction of resources.

e Strategic planning and organization-wide decision making are
greatly improved.

* More timely data: Having data in one location speeds up the access
and processing time, and reduces problems related to timing
discrepancies.

Data integration is the process of combining data from multiple sources
into one common representation, with the goal of providing the users with
one version of truth. This is a very important process of data warehousing
since the quality of the data fed into the system determines the accuracy and
reliability of the resulting business decisions.

Data Integration and Storage

In a data warehouse, data are subject oriented, integrated, nonvolatile, time
variant, and process oriented. Spatial data warehouses host data for analysis,
separating them from transaction workload and thus enabling organizations
to consolidate data from multiple sources. The primary purpose of a spatial
data warehouse is to organize these data according to the organization’s busi-
ness model to support management decision making. Many decisions consider
a broader view of the business and require foresight beyond the details of day-
to-day operations. Spatial data warehouses are built to view businesses over
time and spot trends, which is why they require large amounts of data from
multiple sources. The analysis capability of a data warehouse enables users
to view data across multiple dimensions. The use of a single repository for
an organization’s data promotes interdepartmental coordination and greatly
improves data quality. The spatial data warehouse may contain metadata,
summary data, and raw data of a traditional transactional system. Summaries
are very valuable because they precompute long operations in advance, which
improve query performance. In cases where organizations need to separate
their data by business function, data marts can be included for this purpose.

Spatial data warehouses read trillions of bytes of data and therefore require
specialized databases that can support this processing. Most data ware-
houses are bimodal and have a batch of windows (usually in the evenings)
when new data are loaded, indexed, and summarized. To accommodate these
shifts in processing, the server must be able to support parallel, large-table-
full-table scans for data aggregation and have on-demand central processing
unit (CPU) and random-access memory (RAM) resources, and the database
management system must be able to dynamically reconfigure its resources.
Overall, data warehouses provide many advantages to the end user includ-
ing, but not limited to, improved data access and analysis, increased data
consistency, and reduction in costs for accessing historical data.



274 Spatial Analysis

Data Mining Algorithms for Big Geospatial Data

Data mining, also referred to as knowledge discovery, is the process of
analyzing centralized integrated data to find correlations or patterns to aid
decision making. Centralization of these data is needed to maximize user
access and analysis. Data mining is supported by analytical software tools
for analyzing data. Some of the open-source tools available include KNIME
(http://www.knime.org/); GeoDa (https://geodacenter.asu.edu/projects/
opengeoda); and CLAVIN, a package for document geotagging and geopars-
ing that uses context-based geographic entity resolution (http://clavin.beri-
cotechnologies.com/). Wang et al. (2013) have documented recent CyberGIS
spatial analysis and visualization software toolkits including GISolve,
GeoDa/PySAL, OpenTopography, PGIST, pd-GRASS, and R (Figure 9.4).

Computational resources for handling big geospatial data

Heterogenous
computing: Specialized
computing system that
uses more than one kind
of processor, for example
central processing units
and graphics processing
units.

FIGURE 9.4

Main types of A list of currently available software kits
computing platforms
Cluster computing: Spatial analytical GeoDal/ Open- pd-
Computers are linked Tools and methods GISolve PySAL Topography PGIST GRASS R
through a fast local area Agent-based
network and function as modeling X X
asingle unit. Choice modeling
Cloud computing: Domain-specific
Computers are linked mode]in'g ) X X X
together through the Geostétlstlcal
Internet to provide a modeling ) X X
shared pool of computing Local f:lustermg
resources for accessing detection X X X
and storing data and Spatial interpolation X X X
programs. Spatial econometrics X X

Visualization and
Grid computing: A map operations X X X X X
loosely coupled network Spatial middleware X
of computers from mul- Generic
tiple locations that work cyberinfrastructure
together on common capabilities X X X X
computing tasks. Online problem-

solving X X X X

Compiled from Schadt et al. (2010) and Wang et al. (2013)

Computing resources for conducting complex spatial analytical work. (From Schadt, E.E. etal.,
Nature, 11, 647-657, 2010; Wang, S. et al., International Journal of Geographical Information Science,
27(11), 2122-2145, 2013.)
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Data mining consists of two major elements:

1. Data analysis using Bl application software
2. Presentation and visualization

Tools, Algorithms, and Methods for Data
Mining and Actionable Knowledge

Geospatial data analysis includes manipulation and transformation
of data into useful information to support decision making and reveal
patterns and anomalies that are not immediately obvious. It focuses on
measuring properties and relationships, taking into account the spatial
localization of the study attributes, as discussed in earlier chapters. The
idea is to incorporate space or location into the analysis. The opportunity
to mine big geospatial data, for example, from major social media net-
works (Facebook, Instagram, LinkedIn, Twitter, Pinterest, and Google+),
has provided substantial advantages in three areas: it (1) reduced gaps of
knowledge and understanding of human activities, (2) enabled a greater
understanding of human activities because we are able to predict situa-
tions, and (3) fueled knowledge discovery and improvement in decision
making.

The core tools, algorithms, and methods for data mining have two major
components: (1) software to store the data over thousands of machines
in a data center and (2) software to retrieve and perform computation
with data spanned over thousands of machines in a data center (Helbing
and Balietti 2011). Some of the tools available to perform these data min-
ing tasks are MapReduce and Hadoop. There are four main categories of
large-scale computing platforms (Figure 9.5) for processing, managing,
and analyzing big geospatial data; they include cluster computing, cloud
computing, grid computing, and heterogeneous computing (Schadt et al.
2011).

To succeed in the use of these computational resources for mining large-
scale geospatial data, it is important to keep the following checklist in
mind:

. Know the nature, magnitude, and complexity of geospatial data.
. Determine memory requirements.

. Determine network bandwidth requirements.

= W N =

. Know about data management services (data movement tools,
access, storage, security, performance, and scalability).

5. Understand processing, analysis, or simulation methods and tools.

6. Know about reporting applications.
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FIGURE 9.5
Dashboard screenshots showing actionable knowledge derived by leveraging a visual analyt-
ics of an integrated business intelligence and locational intelligence platform.

Business Intelligence, Spatial Online Analytical Processing, and Analytics

Computer applications have advanced greatly and do a very good job in pro-
cessing data, but they still cannot effectively tell stories about the data. This
is where they fall short in communicating with the consumers. Data should
be organized in a manner that engages the way human brains actually work;
then, we can process a larger amount of data (Ideas Economy: Information
Forum 2013).

Bl is the application of knowledge and experience to data to produce valu-
able business information. BI applications enable users to get an insight
of the knowledge in the data. The combination of geospatial data analysis
and BI applications is known as location intelligence (LI). The ability to
visualize geospatial data and understand relationships between specific
locations helps organizations make more strategic business decisions. LI
is more than just mapping; it includes advanced analysis related to spatial
relationships. GIS is at the heart of LI, and it is clear that business data need
to be location enabled. Spatial analysis allows you to ask “where and why?”
questions, and when combined with Spatial Online Analytical Processing
(SOLAP) in your BI systems the location component can be the dimension
in the analysis that leads to more focused decision making. Figures 9.4
and 9.6 illustrate the application of SOLAP where users are able to drill
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FIGURE 9.6

Visual analytics from Tableau showing water use by state.

into the details within the Tableau mapping application. Figure 9.7 shows
a sample script for running and loading all data definition language (DDL)
tables and procedures into an Oracle or Tableau acceptable format (a step-
by-step instruction manual is presented in the Chapter9_Data-folder). The
visual power of maps reveals trends, patterns, and insights that are not as
easily detected in other data presentation formats such as tabular views,
or bar and pie charts. Because of customer demand, BI application vendors
have incorporated location-based intelligence technology in their core BI
platforms, for example,

1. Pitney Bowles Enterprise Location Intelligence includes Geocoding
Modules, Routing Modules, Location Intelligence, and Spectrum
Spatial Modules.

2. Tableau Mapping Software.
3. SAS Business Analytics partnered with Environmental Systems
Research Institute Inc. (ESRI).

4. SAP embedded Google’s mapping APIs within BusinessObjects Bl/
EIM 4.1.

5. Maplnfo’s LI component is integrated as a plug-in tool with ESRI GIS
by APOS Systems Inc.
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A sample SQL script for running and loading all DDL tables and procedures
into Oracle or Tableau acceptable format

DROP TABLE ENROLLMENT;
--CREATE TABLE TO INCLUDE THE PIVOTED DATASET

CREATE TABLE ENROLLMENT (
ColumnName VARCHAR2(300),
ALABAMA NUMBER,
ALASKA NUMBER,
ARIZONA NUMBER,
ARKANSAS NUMBER,
CALIFORNIA NUMBER,
COLORADO NUMBER,
CONNECTICUT NUMBER,
DELAWARE NUMBER,
DISTRICTOFCOLUMBIA NUMBER,
FLORIDA NUMBER,
GEORGIA NUMBER,

HAWAII NUMBER,

IDAHO NUMBER,

ILLINOIS NUMBER,
INDIANA NUMBER,

IOWA NUMBER,

KANSAS NUMBER,
KENTUCKY NUMBER,
LOUISTANA NUMBER,
MAINE NUMBER,
MARYLAND NUMBER,
MASSACHUSETTS NUMBER,
MICHIGAN NUMBER,
MINNESOTA NUMBER,
MISSISSIPPI NUMBER,
MISSOURI NUMBER,
MONTANA NUMBER,
NEBRASKA NUMBER,
NEVADA NUMBER,
NEWHAMPSHIRE NUMBER,
NEW]JERSEY NUMBER,
NEWMEXICO NUMBER,
NEWYORK NUMBER,
NORTHCAROLINA NUMBER,

FIGURE 9.7
A sample script for running and loading all data definition language tables and procedures
into Oracle or Tableau acceptable format.

(Continued)
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NORTHDAKOTA NUMBER,
OHIO NUMBER,
OKLAHOMA NUMBER,
OREGON NUMBER,
PENNSYLVANIA NUMBER,
RHODEISLAND NUMBER,
SOUTHCAROLINA NUMBER,
SOUTHDAKOTA NUMBER,
TENNESSEE NUMBER,
TEXAS NUMBER,

UTAH NUMBER,
VERMONT NUMBER,
VIRGINIA NUMBER,
WASHINGTON NUMBER,
WESTVIRGINIA NUMBER,
WISCONSIN NUMBER,
WYOMING NUMBER)

4

--IMPORT THE PIVOTED SPREADSHEET

--CREATE TABLE FOR THE FINAL DETAILS
CREATE TABLE ENROLLMENT FINAL

(State VARCHAR2(100),

Enrollment NUMBER,

Grade NUMBER,

Gender VARCHAR?2( 10),

Race VARCHAR2(200),

Year NUMBER);

--CREATE TABLE FOR THE STATES

CREATE TABLE ERSTATES (STATE VARCHAR2(100));

--IMPORT THE STATES FROM THE DISTINCT STATES INCLUDED IN
THE DATA TABLE
--RUN THE PROCEDURE BELOW AFTER CREATING THE OBJECTS AND
IMPORTING THE DATA.
CREATE OR REPLACE PROCEDURE ENROLL_LOAD IS
CURSOR CCNAMES IS

select state ste, REPLACE(state,” ;") st

from ERSTATES;
V_cnames c_cnames%ROWTYPE;
v_cname VARCHAR2(80);
vV_cnamer VARCHAR2(80);

FIGURE 9.7 (Continued)
A sample script for running and loading all data definition language tables and procedures

into Oracle or Tableau acceptable format.
(Continued)
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v_SQL String  VARCHAR2(3000);

BEGIN
-- Truncate table
DELETE FROM ENROLLMENTFINAL;

-- Insert data for each state

FOR v_cnames IN ¢_cnames LOOP
v_cname := v_cnames.st;
v_cnamer := v_cnames.ste;
v_SQL String :=
‘INSERT INTO ENROLLMENTFINAL (‘||
*STATE/||
“ENROLLMENT,| |
“GRADE/||
“GENDER/||
"RACE; ||
“YEARY ||
“SELECT “ ||””||v_cnamer]||”” ||’ “||--"ALASKA’ ST,
‘ER/|| LTRIM(RTRIM(v_cnames.st))| || |
* TO_NUMBER(substr(columnname, 7,1)),’| |
“ substr(columnname, instr(columnname,”-"1,2)+2,6 ),’| |
* substr(columnname,20, instr(substr(columnname,20),”-"1,1)-2 )| |
’ substr(columnname, instr(columnname,”]”1,1)+2,4 )| |
* FROM ENROLLMENT ER’||
*WHERE ER/|| LTRIM(RTRIM(v_cnames.st)) ||" =‘||v_cnames.ST ||

IF v_cname = v_cnames.st THEN

EXECUTE IMMEDIATE v_SQLString;
--ELSE EXECUTE IMMEDIATE v_SQLString?2;
END IF;
COMMIT;
END LOOP; --FOR v_cnames IN ¢_cnames LOOP
COMMIT;

/*--UDPATE THE GRADE
UPDATE ENROLLMENTFINAL
SET GRADE =6

WHERE GRADE IS NULL;*/

--REMOVE THE EXTRA SIGN ON THE GENDER
UPDATE ENROLLMENTFINAL

SET GENDER = REPLACE(GENDER,[}”)

WHERE GENDER LIKE “%[%;

END;
FIGURE 9.7 (Continued)

A sample script for running and loading all data definition language tables and procedures
into Oracle or Tableau acceptable format.
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Analytics and Strategies for Big Geospatial Data

Although there are a number of spatial analytical methods, tools, and strate-
gies for handling big geospatial data, scientists within academia and industry
are investigating the most efficient ways of doing so. New strategies require a
complete rethinking of the existing computational framework. The challenge
is even greater, for example, in spatial science, where we deal with spatial data
that are of a multidimensional nature with sophisticated data structures. To
successfully analyze such datasets, we have to systematically search, assem-
ble, process, and manage large-scale spatial databases. In spite of technologi-
cal transfer challenges, the spatial science community has been proactive in
finding new solutions for distinct data centers with different standards, dash-
boards, and new web tools. For example, recent innovations in Web Tools 2.0
enable users to work together on the same collaborations providing them with
the right privilege to annotate, comment, and generally enrich the data repos-
itory by adding tags and metadata (Pirenne et al. 2012). The community is
deepening their computing knowledge and gradually adopting new compu-
tational environments, such as cloud computing and heterogeneous computa-
tional environments, which are relatively recent inventions that address many
of the limitations of data transfer, access control, data management, standard-
ization of data formats, and advanced model building (Schadt et al. 2010; Wang
et al. 2013). Compared to general-purpose processors (GPPs), heterogeneous
systems can deliver a 10-fold increase or greater in peak arithmetic through-
put for a few hundred U.S. dollars. It also optimizes peak performance. Cloud
computing can make large-scale computational clusters available on a pay as
you need basis. It is low cost and flexible (Schadt et al. 2010; Wang et al. 2013).

Current research work is aimed at tailoring advanced transformation meth-
ods toward large-scale computations, data processing, and analysis using
available computational resources. For example, Oyana (2011) has focused
on a number of useful algorithms for the representation and transforma-
tion of large-scale geospatial data. This work has entailed the investigation
of cognitive and visual interpretation capabilities that enable the explora-
tion of invariant topographic and geometric properties of a spatial dataset.
Also relevant has been the development of several algorithms that focus
on the mathematically improved learning self-organized map (MIL-SOM);
Improved Genetic Algorithm; and Fast, Efficient, and Scalable k-means (FES
k-means) Algorithm (Oyana et al. 2004, 2006; Oyana 2006; Dai and Oyana
2006; Oyana and Scott 2008; Oyana et al. 2012; Zhu et al. 2012).

The increased urgency and demand for new methods, algorithms, and
analytical strategies is further fueled by the availability of big geospatial
data and powerful computing platforms. Several algorithms for big geo-
spatial datasets with linear or nonlinear features already exist in literature.
Examples of such algorithms that deal with the interpretation of massive
data include multidimensional scaling (MDS), self-organizing maps (SOMs),
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k-means, genetic algorithms, graph representations, locally linear embed-
ding (LLE), Isomap, and others. However, some problems relating to their
ability to transform data remain. These include whether they (1) can suc-
cessfully perform a strong recovery of original topological structures, (2)
have fast convergence, (3) can take advantage of the most appropriate metric
space, (4) can quickly and systematically search through a massive dataset,
and (5) can maintain topological stability and preserve geometric properties.
Although numerous solutions for these problems have been proposed, such
as the techniques based on wavelets and manifold diffusion (Coifman and
Lafon 2006), for better geometric preserving properties, little information
is available for modeling dynamic features or transforming spatiotemporal
datasets. This is further compounded by the increased size, nature, and com-
plexity of spatial databases or data streams that require clustering methods
to detect variously oriented clusters more reliably, accurately, and efficiently.

Although current algorithms are able to discover compact representations
and expose hidden patterns and complex relationships within multivariate
datasets, there is still significant demand for more powerful methods and
analytical strategies that can easily transform data from high dimensionality
to low dimensionality without destroying the original topological structures.
The framework for designing such efficient algorithms should consist of three
core phases: algorithm design, structure, and functionality; code development
and implementation; and performance evaluations. The algorithm design
workflow for transforming and modeling dynamic features of large-scale
spatiotemporal datasets should entail the following aspects: (1) formulation of
mathematical algorithms that effectively transform complex dynamic systems
and enable visual exploration of large-scale spatiotemporal datasets; (2) for-
mulation of analytical reasoning and efficient rules with a capability to trans-
form, visualize, and analyze disparate spatial datasets within the subfields of
GIS, remote sensing, health care, and medical image processing; (3) scaling
methods and tools for existing and future computing platforms; (4) wide dis-
semination of new methods and tools to increase the exploitation of large-
scale spatiotemporal datasets; and (5) continued research efforts and support
to improve or develop better analytical methods, tools, and strategies.

Spatiotemporal Data Analytics

Let us now review some of the existing spatiotemporal data analytics and
knowledge gaps. Dynamic aspects of spatial data are critical to our under-
standing of spatial structures and processes. Available dynamic models (e.g.,
time series and time series combined with variogram-based models) are not
versatile enough to deal with complex patterns of large-scale spatiotempo-
ral dynamics, yet the current demand for such models has increased. This
increased interest is due to the existence of powerful computational plat-
forms and availability of digital repositories of diseases, demographics, and
remotely sensed images. Most recent work is inspired by previous work in
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complex patterns of spatiotemporal dynamics in ecology (Durrent and Levin
1994; Hastings and Harrison 1994; Bascompte and Sole 1995; Stroud et al.
2001) and transportation geography (Kwan 2000a,b; Wang and Cheng 2001;
Peuquet 2002; Yu 2006, 2007, Yu and Shaw 2008). From these reports, there
are two central ways of conceptualizing and modeling the complex patterns
of spatiotemporal dynamics: (1) continuous space and time models and (2)
discrete space—time models. Bascompte and Sole (1995) noted the use of reac-
tion—diffusion mathematical models/partial differential equations in the
representation of continuous space and time models. Coupled map lattices
are used to represent discrete space-time models. Cellular automata (CA) is
the most popular discrete dynamic system to date; but serious shortcomings
exist in this system in terms of type of grid and its state, neighborhood defi-
nition, distance function (metrics), and quality/complexity of rules. Drawing
from these basic concepts and principles, we can write sophisticated rules to
represent and model the complexity of spatiotemporal dynamics. Activity
pattern algorithms to quantify or simulate activity levels over space and time
can be derived using CA and agent-based modeling.

Classification Algorithms for Detecting Clusters in Big Geospatial Data

A common problem in exploring very large-scale spatiotemporal datasets
is how to extract relevant, interesting patterns and, more importantly, how
to derive a lower dimensional representation of the original data without
significant loss of information. Most clustering algorithms are based on the
“frequentist framework” in which the data are used repeatedly to converge
on acceptable clusters. A number of new-generation clustering algorithms
use the Bayesian approach in which the prior probability distribution (e.g.,
the probability that a data object belongs to a given cluster) is systematically
improved by evaluating the posterior probability (i.e., probability that a
data object belongs to a given cluster provided another data object is known
to belong to that cluster) (Ben-Hur et al. 2001). Wu et al. (2008) published a
report about the top 10 data mining algorithms that were identified by the
IEEE International Conference on Data Mining. They were C4.5, k-means,
SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
Current clustering algorithms are based on geometric concepts and the
notion of a distance metric between two data objects. The distance metric
may not have physical meaning for some data entries. For example, a dis-
tance metric describing the difference between a neighborhood with and
without bike paths does not make physical sense. For very large datasets, the
computation of distance metrics is very intensive or prohibitive. This is more
so with clustering, since the latter involves iterative evaluation of distance
functions. Moreover, geometric clustering bases cluster membership on how
close a data object is to a reference data object; “how close” depends on a
distance parameter, epsilon. The clustering results are often very sensitive to
the error term, epsilon. To address the issue of data size (i.e.,, number of data



284 Spatial Analysis

objects), data dimension (i.e., number of entries in a data object), and epsilon,
we need to incorporate topological aspects of the data. We will cluster using
data entries for which a distance metric makes physical sense. This will lead
to dimensionality reduction. Data entries for which the distance metric does
not make sense will be treated using topological concepts.

Table 91 presents a set of plausible topological rules that could be built
into the database. Let us illustrate this thinking with the following scenario.
Suppose we have used five variables (namely, age, gender, height, weight,
and location information at both the census tract level and county level) to do
the clustering using the two states of Florida and Mississippi. Suppose also
that one of the clusters is made up of two neighborhoods, namely, neigh-
borhood A from Florida and neighborhood B from Mississippi. Plausible
questions are: (1) Is this a viable cluster? (2) What characteristics do the two
noncontiguous neighborhoods share? To address these questions, we can look
at a topological rule that says “if a neighborhood is well lit and has pedestrian
pathways, then it is likely that the residents will exercise after dinner.” If the
two neighborhoods share this characteristic, then our level of confidence in the
cluster will improve. We can capture this increased confidence by estimating
the posterior probability of the cluster being viable—using Bayesian analysis.
We can initially assign a low prior probability, indicating that we are very cau-
tious. If the answer is no, then we will look at other topological rules. We can

TABLE 9.1

Topological and Geometric Rules for GIS Database—Derived Behaviors/Methods

Topological Rules with No Low-Level Noise

Geometric Rules with Low-Level Noise

Neighborhood is either BMI healthy or not

High-socioeconomic status (SES) neighborhoods
are surrounded by high-SES neighborhoods

BMI-healthy neighborhoods are surrounded by
BMI-healthy neighborhoods

High density of walking spaces within a
neighborhood correlates with BMI-healthy

High density of recreational facilities within a
neighborhood correlates with BMI-healthy

High density of walking spaces in a
neighborhood is adjacent to another high
density of walking spaces in a neighborhood

High density of recreational facilities in a
neighborhood is adjacent to another high
density of walking spaces in a neighborhood

A well-lit neighborhood (light information can
be derived from remotely sensed data)
promotes physical activities at dusk

A well-lit neighborhood is adjacent to another
well-lit neighborhood

A low-altitude neighborhood correlates with
low energy consumption

Alow-altitude neighborhood is adjacent
to another low-altitude neighborhood

A short-commuting/travel time correlates
with low risk

A short-commuting/travel time
neighborhood is adjacent to another
short-commuting neighborhood

A grid-like land use mix with short block
lengths correlates with low risk

A grid-like land use mix with short block
lengths is adjacent to another grid-like
land use mix with short block lengths

Grid-like street patterns with short block
lengths correlate with low risk

A grid-like street pattern with short block
lengths is adjacent to other grid-like street
patterns with short block lengths

Neighborhood with bike paths correlates
with low risk

A bike path neighborhood is adjacent to
another bike path neighborhood

Note: BMI, body mass index.
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consecutively apply each of our topological rules to the cluster in question. At
the end, we can have a posterior probability for a viable cluster. We formalize
this approach using the following algorithm.

Embedding Solutions/Algorithm with Topological Considerations

Step 1: Obtain a number of clusters.
Step 2: Assign a low prior probability to each cluster’s viability.

Step 3: For each cluster, use topological rules sequentially to calculate
the posterior probability that the cluster is viable.

Step 4: Analyze clusters with low probabilities. For each nonviable clus-
ter, reassign members to viable clusters.

Step 5: Place unassigned cluster members into a temporary cluster—
designate as “unassigned.”

Repeat steps 3-5 until the number of viable clusters is stable. If the cluster
unassigned is nonempty, investigate the most violated topological rules to
see if they can be softened.

The concept of the sense-making loop model (Card et al. 1999; Pirolli and
Card 2005) is essential in the creation of sound rules. Available empirical
knowledge about obesity and type 2 diabetes is instrumental in the develop-
ment of sound rules. The rules can be built in as behaviors/methods. Potential
critical rules that represent topological and geometric properties of obesity and
type 2 diabetes data are presented in Table 9.1. These rules are a result of recent
efforts to extract interesting spatial patterns of obesity and type 2 diabetes.

Graph and Text Analytics

A number of methods, tools, and strategies have been developed to facilitate
the visualization and analysis of massive social media content (Fink et al.
2009; Beltran et al. 2013; Ghosh and Guha 2013; Lee et al. 2013; Liu et al. 2013;
Yin et al. 2013). Content retrieval, sharing, and analysis are common Internet
activities; but the most exciting feature that has generated a lot of interest
among data scientists is their capacity to explore, mine, and acquire funda-
mental spatial and temporal insights or any practical insights.

Some of the known strategies that are used to search and understand unstruc-
tured text information include topic modeling (Ghosh and Guha 2013); spatial
and spatiotemporal modeling taking advantage of automated geolocation ser-
vices, geotargeting markers, place names, or any other explicit and implicit
markers (Fink et al. 2009; Lee et al. 2013); and identifying semantics, trending
themes, sentiments, events, or influences (Beltran et al. 2013; Liu et al. 2013; Yin
et al. 2013). Examples of commonly used text mining tools include ATLAS!i,
Textalyser.net, QDA Miner, SAS Text Miner, and SPSS Text Analysis for Surveys.
Figure 9.8 shows an example of tag clouds of Chapters 1,2, and 5 of this textbook
mined using TagCrown.
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Conclusion

As we prepare to wrap up the chapters in this book, it is only appropriate
that we explore the emerging trends and future directions for spatial analy-
sis and related disciplines. As shown in this chapter, one of the bright spots
with significant opportunities that lie ahead is the emerging field of data sci-
ence. The ability to effectively and efficiently process the volume and variety
of big geospatial data and to report the findings in clear and simplified terms
for the consumer is one of the most important skill sets that a geospatial data
scientist must have in the twenty-first century. Completing the chapters in
this book to gain knowledge of the traditional analytical approaches and the
underlying challenges associated with these spatial data goes a long way
toward gaining these professional skills.
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FIGURE 9.8

An example of tag clouds showing the contents of this textbook. Text mined using TagCrown
.com online.
(Continued)
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FIGURE 9.8 (Continued)
An example of tag clouds showing the contents of this textbook. Text mined using TagCrown
.com online.

Challenge Assignments

The primary objective of the exercises presented here is to provide hands-on
experience for those working with big geospatial data. To accomplish this
goal, we explore Google’s predictive analytics for text mining, data reduction
and classification algorithms, building footprints and street network data
presented in Bing and Google’s map services, and R-statistical tools.

TASK 9.1 EXPLORE GOOGLE TRENDS

Google Trends provides data analytics reports on what is trending
as people around the world perform searches. The analytical reports
display relative search volume across geographies, time trends, and
queries that people wish to know about. For this task, we are going to
explore Google Trends.

1. Open your Internet browser and paste this link: http://www.google.
com/trends/. We will explore some of the searches and their origins
in depth. List six top topics that are currently trending and where
they are coming from.

2. Select any two topics/themes of your choice. Describe briefly the
spatial and temporal patterns (from 2004 to date) of these topics. List
the top 10 countries associated with this search. Describe the spatial
and temporal changes over this period. Turn on the forecast button
and conduct a predictive analytics of these topics.
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3. Submit three representative maps and time series charts (capture
screenshots).

4. Open your Internet browser and paste this link: http://www.
google.org/flutrends/. We explore in depth the two sets of activity
data.

a. Using the flu trends map, briefly describe the spatial and tempo-
ral patterns of this epidemic around the world.

b. Using the dengue trends map, briefly describe the spatial and
temporal patterns of this epidemic around the world.

TASK 9.2 VISUALIZE SPATIAL DATA

In geography, the use of clustering algorithms, for example, SOMs,
principal component analysis (PCA), k-means, and MDS, to solve geo-
graphical problems is now widespread. Dimensionality reduction
techniques provide generalized methods for data simplification. The
ability to transform large, high-dimensional, and structured datasets
(untrained) into lower dimensional representations (trained) is impor-
tant for the generation of visual representations.

For this task, we will consider results from two key algorithms: MIL-SOM
and FES k-means.

1. MIL-SOM: The MIL-SOM algorithm consists of a regular, usually
two-dimensional (2D), grid of map units, or it can be defined as a
spatial organization of map units. The MIL-SOM learning proce-
dure closely follows a biological understanding of how neurons
in the human brain function as they process, organize, and store
incoming and outgoing information.

2. The FES k-means algorithm uses a hybrid approach that comprises
the k-d tree data structure, nearest neighbor query, the original
k-means algorithm, and a better adaptation rate. The primary func-
tion of the FES k-means algorithm is to partition data into k disjoint
subgroups, and then the quality of these clusters is measured via
different validation methods.

As part of this task, we are going to perform visual comparisons and anal-
yses between two datasets: a trained and an untrained synthetic dataset.
The datasets have already been classified for you using the newly improved
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versions of SOM (MIL-SOM) and k-means (FES k-means) algorithms. One
dataset is classified using the FES k-means algorithm without dimensional-
ity reduction and the second dataset has its dimensionality reduced based
on the MIL-SOM algorithm, and then it is classified using the FES k-means
algorithm.

The following datasets are provided in your Chapter9_Data_Folder\Data_
algorithm folder:

1. Original synthetic dataset: A large, high-dimensional structured
dataset is directly classified using the improved version of k-means
(FES k-means) named “untrained_FES_kmeans_data.”

2. Trained synthetic dataset: A dataset reduced from the original syn-
thetic dataset using improved versions of the k-means (FES k-means)
and SOM (MIL-SOM) algorithms is named “trained_ MILSOM_FES_
kmeans_data.” Using the two datasets, conduct the following tasks.
To complete these tasks, you may use MS Excel, ArcGIS, SPSS, or any
open-source statistical software:

a. Open/import the untrained_FES_kmeans_data and trained_
MILSOM_FES_kmeans_data dataset text files and convert them
in a format that you can use.

b. Rename variables as follows: VAR1: Y_axis; VAR2: X_axis; and
VAR3: Cluster_Class.

c. Create a three-dimensional (3D) scatterplot for each of the two
datasets.

d. Create box plots for each of the Cluster_Class variables for two
datasets.

Tips: Identify and describe the spatial distribution of the clusters in
the two datasets. Also, compare and contrast the untrained and trained
datasets. On completion, prepare a short report and description of the
results. Select the most appropriate visual artwork and captions for your
report.

Based on these results, answer the following questions:

Question no. 1: Compare plots of original and synthetic datasets.
Question no. 2: Analyze the clusters formed in both datasets.
Question no. 3: Discuss the differences and similarities of the clusters.

Question no. 4: Discuss the consistency of observed clusters (untrained
vs. trained data).
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TASK 9.3 EXPLORE BING AND GOOGLE MAPS SERVICES

1. For this task, you will use both the Bing and Google Maps ser-
vices to search for points of interest.

2. Find directions between two locations of your choice. Compile
this information in a short report. Suppose you wanted to
modify your directions to other points of interest. Which of the
tools would you use and why?

3. Find restaurants near Lakeshore Drive in Chicago, Illinois.
Select by top reviewers or type. On average, estimate how far
the restaurants are from the main access roads (use the scale
bar to estimate the distance). Describe the locations of the res-
taurants relative to the main access roads.

4. Find gas stations near Lakeshore Drive in Chicago.

5. Compare both map services in terms of ease of use, efficiency,
and quality of information.

TASK 9.4 CHALLENGE ASSIGNMENT: EXPLORE
AND PERFORM PREDICTIVE ANALYTICS ON
FLU AND DENGUE ACTIVITY DATA

1. Download flu and dengue activity data from https://
www.google.org/flutrends/ and https://www.google.org/
denguetrends/, respectively. The link for the datasets is located
below the displayed maps. These need preprocessing before
any exploration and analysis can be done. You may use MS
Excel, SPSS, ArcGIS, or any open-source R-statistical tools.

2. Explore the two activity datasets. Are there any insights?

3. Use any insights to develop some hypotheses for confirmation
or further investigations.

4. Create some maps and charts to show the distribution and
trends of two activity datasets.

5. Create a trend/predictive analytics model using the two activ-
ity datasets.

6. Prepare a short report covering the background, materials
and methods, results and discussion, and implications of your
findings.
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Review and Study Questions

1. The term big data has been described within the context of five “Vs.”
What are these five properties? In your opinion, do these fully cap-
ture the core elements of big data? Are there some missing elements
that you would wish to add to the core properties of big data?

2. What is data warehousing? With the use of examples, explain
the sources, processes involved, as well as benefits of data
warehousing.

3. Distinguish between BI and LI. Use concrete examples from your
research area to illustrate the application of one of these analytical
strategies.

4. Explain the role of data mining in the analysis of big geospatial
data. Choose a software toolkit such as GISolve, GeoDa/PySAL,
OpenTopography, PGIST, pd-GRASS, or R. Research the basic func-
tionalities and report your findings.

5. Data scientists are increasingly required to conduct large-scale
analyses of graphics and textual data embedded in social media
and other databases. Choose one of the following text mining tools.
Research their basic functionalities and report on your findings:

a. ATLAS.ti

b. Textalyser.net

c. QDA Miner
d. SAS Text Miner
e

SPSS Text Analysis for Surveys

Glossary of Key Terms

Big Data: Massive and varied amounts of information that are produced
at such speed, variety, and volume that traditional analytical
approaches are no longer adequate for processing and visualizing
them. These data call for new analytics.

Data Integration: The process of combining data from varied and some-
times incompatible sources into a unified format within a data
warehouse for use in analysis, visualization, reporting, and deci-
sion making.

Extract-Transform-Load: This is a standardized/computerized process of
extracting relevant data, transforming the data, and cleaning and
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integrating the data before uploading into a data warehouse. The
process ensures consistency and accuracy in the information that is
supplied to all users.

Metadata: This describes all of the primary features of a dataset. It is a valu-
able piece of information for technicians engaged in data warehous-
ing, as well as end users of the data. The metadata captures the data
lineage and sources, table and column names, entity/attribute defini-
tions, currency of the information and updating schedules, reports/
query tools that are available, report distribution information, and
help desk/contact information.

Self-Organizing Map: This is a pattern recognition process that relies on
unsupervised learning algorithms to produce visual representa-
tions of high-dimensional data. The analytical process typically
entails two phases, a training phase followed by a prediction phase.

Standardized Query Language: This is a structured query language that
is used for searching and manipulating data within a relational
database management system (RDBMS). The SQL environment con-
tains several features including a catalog, DDL, data manipulation
language, and data control language that includes commands that
guide the control of the data and administrative privileges.
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“Right from the first page, this book reads differently. It’s not only the writing
style that is so different from your run-of-the-mill, dry statistical textbook, but also
the combination of theoretical presentations with study questions and challenge
assignments, making the reading so much more enjoyable while forcing the reader
to pause and reflect on the content of each chapter. Another feature of this book is
its breadth, encompassing the analysis of point, areal, and geostatistical data before
ending with a short chapter devoted to the hot topic of big data, including data
management and data mining. The illustration of different concepts using data from
environmental and social sciences adds to the general appeal of the presentation.
Tonny and Florence must be commended for writing a textbook that should make
spatial analysis more accessible to geographers!”
—Pierre Goovaerts, BioMedware, Inc., PGeostat, LLC,
University of Florida, Gainesville, USA

“Spatial analysis is at the core of quantitative geography and geographic information
systems (GIS). Oyana and Margai effectively explain the foundation of spatial
analysis. ... The book provides a good balance between concepts and practicums of
spatial statistics with a comprehensive coverage of the most important approaches to
understand spatial data, analyze spatial relationships and spatial patterns, and predict
spatial processes. The book will be an excellent textbook for undergraduate courses
in quantitative geography or spatial analysis. Graduate students new to geospatial
sciences will also find the book useful for self-study.”

—NMay Yuan, University of Texas at Dallas, USA

An introductory text for the next generation of geospatial analysts and data scientists,
Spatial Analysis: Statistics, Visualization, and Computational Methods focuses
on the fundamentals of spatial analysis using traditional, contemporary, and
computational methods. Outlining both non-spatial and spatial statistical concepts,
the authors present practical applications of geospatial data tools, techniques, and
strategies in geographic studies. They offer a problem-based learning (PBL) approach
to spatial analysis—containing hands-on problem-sets that can be worked out in MS
Excel or ArcGIS—as well as detailed illustrations and numerous case studies.

60_00 Broken Sound Parkway, NW K E L| :] D 1'
CRC Press S B TSBN: 978-1-4987-07b3-3
Taylor &Francis Group | .\ v Ny 10017 90000

an informa business 2 Park Square, Milton Park ‘ ‘ “l‘ |‘

Www.crcpress.com

WWW.Crcpress.com Abingdon, Oxon OX14 4RN, UK ‘ ‘

97761498"707L33 ”







	Front Cover
	Contents
	Preface
	Acknowledgments
	Authors￼
	Chapter 1: Understanding the Context and Relevance of Spatial Analysis
	Chapter 2: Making Scientific Observations and Measurements in Spatial Analysis
	Chapter 3: Using Statistical Measures to Analyze Data Distributions
	Chapter 4: Engaging in Exploratory Data Analysis, Visualization, and Hypothesis Testing
	Chapter 5: Understanding Spatial Statistical Relationships
	Chapter 6: Engaging in Point Pattern Analysis
	Chapter 7: Engaging in Areal Pattern Analysis Using Global and Local Statistics
	Chapter 8: Engaging in Geostatistical Analysis
	Chapter 9: Data Science: Understanding Computing Systems and Analytics for Big Data
	Back Cover

