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“Right from the first page, this book reads differently. It’s not only the writing 
style that is so different from your run-of-the-mill, dry statistical textbook, but also 
the combination of theoretical presentations with study questions and challenge 
assignments, making the reading so much more enjoyable while forcing the reader 
to pause and reflect on the content of each chapter. Another feature of this book is 
its breadth, encompassing the analysis of point, areal, and geostatistical data before 
ending with a short chapter devoted to the hot topic of big data, including data 
management and data mining. The illustration of different concepts using data from 
environmental and social sciences adds to the general appeal of the presentation. 
Tonny and Florence must be commended for writing a textbook that should make 
spatial analysis more accessible to geographers!”

—Pierre Goovaerts, BioMedware, Inc., PGeostat, LLC, 
University of Florida, Gainesville, USA

“Spatial analysis is at the core of quantitative geography and geographic information 
systems (GIS). Oyana and Margai effectively explain the foundation of spatial 
analysis. … The book provides a good balance between concepts and practicums of 
spatial statistics with a comprehensive coverage of the most important approaches to 
understand spatial data, analyze spatial relationships and spatial patterns, and predict 
spatial processes. The book will be an excellent textbook for undergraduate courses 
in quantitative geography or spatial analysis. Graduate students new to geospatial 
sciences will also find the book useful for self-study.”

—May Yuan, University of Texas at Dallas, USA

An introductory text for the next generation of geospatial analysts and data scientists, 
Spatial Analysis: Statistics, Visualization, and Computational Methods focuses 
on the fundamentals of spatial analysis using traditional, contemporary, and 
computational methods. Outlining both non-spatial and spatial statistical concepts, 
the authors present practical applications of geospatial data tools, techniques, and 
strategies in geographic studies. They offer a problem-based learning (PBL) approach 
to spatial analysis—containing hands-on problem-sets that can be worked out in MS 
Excel or ArcGIS—as well as detailed illustrations and numerous case studies. 
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Spatial knowledge is boundless, so start your epic journey 

now. Learn about geospatial data methods and tools and equip 

yourself with practical skills in spatial analysis.

Tonny J. Oyana
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Preface

This book provides a problem-based learning (PBL) approach to mastering 
 spatial analysis through the combined use of fundamental theories and con-
cepts and the practical application of geospatial data tools, techniques, and 
strategies in geographic studies. The overarching objectives are (1) to offer 
readers a theoretical/methodological foundation in spatial analysis using 
traditional, contemporary, and emerging computational approaches and 
(2) to encourage readers to apply the critical knowledge and skills to appro-
priately analyze and interpret geographic data. To achieve these objectives, 
we draw from traditional statistical methods, spatial statistics, visualization, 
and computational methods and algorithms with the primary goal of sup-
porting the growing field of geographic information science and training the 
next generation of geospatial analysts and data scientists. Spatial analytical 
concepts are introduced together with a series of computer-based geographic 
information  science (GIS) exercises (worked examples) to enable readers to 
better understand, analyze, and synthesize spatial patterns, distributions, 
and relationships.

By offering problem-based exercises and case studies, the book provides 
a comprehensive coverage of topics in exploratory and spatial descriptive 
methods, hypothesis testing, spatial regression, hot spot analysis, geostatis-
tics, spatial modeling, and data science. The ability to understand data and 
the methodological limitations associated with spatial analytical techniques 
will have a strong bearing on how geographers draw conclusions from sta-
tistical tests and the degree of certainty, validity, and translatability of find-
ings drawn from their research. On completion of this book, our readers 
should be able to (1) identify and characterize the types of nonspatial and 
spatial data; (2) construct testable hypotheses that require inferential statis-
tical  analysis; (3) preprocess spatial data, identify the relevant  explanatory 
variables, and choose the appropriate statistical tests based on the data 
 properties; (4) understand and interpret spatial data summaries and rel-
evant statistical measures; (5) demonstrate competence in exploring, visu-
alizing, summarizing, analyzing, and optimizing spatial data and clearly 
 presenting the results using maps, charts, reports, pictures, infographics, 
 analytical metadata, animations and three-dimensional visualization sci-
ences, and on-the-fly dashboards; and (6) be proficient in the use of the 
 primary analytical packages.



xiv Preface

In summary, this book provides learners and researchers with the 
 following key features:

• Combines statistical concepts with computer-based GIS exercises
• Builds on many hands-on examples using easily accessible data and 

software and actual projects
• Integrates both technical and practical aspects
• Gives readers a conceptual foundation to successfully apply statis-

tics to geographical work
• Offers classroom-tested materials and lessons
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1
Understanding the Context and 
Relevance of Spatial Analysis

LEARNING OBJECTIVES

 1. Define and describe spatial analysis.
 2. Describe the trends and significant developments in spatial analysis.
 3. Define, describe, and illustrate key spatial concepts.
 4. Learn about the unique properties of spatial data and inherent challenges.

In conventional terms, geographers regard spatial analysis as a broad and 
comprehensive undertaking that entails the use of well-established ana-
lytical/visualization tools and procedures to analyze and synthesize loca-
tionally referenced data. The approaches are rigorous and are drawn from 
statistical, mathematical, and geographical principles to conduct a system-
atic examination of spatial patterns and processes, including the exploration 
of interactions between space and time. Studying the locational and distribu-
tional arrangement of objects, people, events, and processes in space, and the 
underlying factors that account for these arrangements are some of the ana-
lytical goals of a geospatial data scientist. The work requires a place-based 
mindset with emphasis on uncovering spatial patterns and spatial linkages, 
and examining spatial behaviors and complex interactions within and across 
locations that result in these distributional patterns.

Engaging in spatial analysis typically requires the use of quantitative data 
in a digital format, but increasingly data scientists are devising interesting 
and creative ways to integrate qualitative and contextual data into the analy-
sis. Once a research project is defined with the articulation of a clear set of 
goals, objectives, and research questions, the data scientist begins by system-
atically choosing the appropriate units of observation from which to collect 
the data, the spatial scales at which they will be measured, and the variables 
and means by which the data values will be assigned to those variables.

The field of spatial analysis is inspired by a strong logical positivist tradi-
tion that involves inductive and deductive reasoning, hypothesis testing, and 



2 Spatial Analysis

model-building. It develops and advances geographical knowledge by inves-
tigating empirical events that occur in space, time, or both space and time. It 
consists of one or more of the following activities: (1) the analysis of numeri-
cal spatial data, (2) the development of spatial theory, and (3) the construc-
tion and testing of mathematical models of spatial processes (Fotheringham 
et al. 2000). Through spatial analysis, knowledge about spatial patterns and 
processes can be obtained, a large-scale dataset can be separated into several 
smaller components and meaningful information can be extracted, and a 
set of hypotheses can be derived and tested, thus culminating in empirical 
evidence. In addition, we can examine the role of randomness in generat-
ing observed spatial patterns of data, test hypotheses about such patterns, 
account for spatial variability, measure spatial autocorrelation and the 
underlying structure of the data, confirm the presence of outliers (if any), 
provide information about the explanatory factors or determinants through 
estimates of the model parameters, and provide a framework in which pre-
dictions can be made about the spatial impacts of various actions.

As an example, let us assume that you are working with a local food bank 
agency, and efforts are underway to develop urban community gardens, a 
new initiative deemed to be effective in combating food insecurity in urban 
areas. A lingering concern in the community is soil quality with the strong 
likelihood of environmental contaminants such as lead in the soil. To explore 
this, a sampling design strategy is formulated to collect soil samples. Using 
Global Positioning Systems, a total of 150 samples are taken from various parts 
of the city. The samples are tested for lead contaminants along with other vari-
ables such as organic content, distance from major highways, soil moisture, 
alkalinity, and so on. The data are integrated into a geographic information 
system (GIS) with preexisting databases garnered through other devices such 
as land use and land cover maps from satellite imagery, housing quality data, 
roadways, and demographic data generated from the U.S. Census. As a geo-
spatial data scientist, how would you go about organizing and integrating the 
soil quality data into the GIS? What are the key properties of the soil qual-
ity data? Are there any unique challenges associated with the spatial data? 
Are the soil samples adequate and spatially representative of the study area? 
What methods would be ideal for analyzing the dataset for presentation to 
the food bank? These questions call for a comprehensive understanding of 
the underlying spatial data structure, the data distribution, variable prop-
erties, and potential limitations that accompany a typical research project. 
Spatial data structures consist of features such as points, lines, areal polygons, 
surfaces, or other objects that may be associated with valuable geographical 
information including potential records pertaining to other dimensions such 
as time (Samet 1995). Each feature in the database is specifically associated 
with locational information and the attribute value characterizing the nature 
of the observation. As shown in Table 1.1, a number of methods have been 
developed to handle point, line, areal, and surface data structures (Bailey and 
Gatrell 1995). These data structures have a strong bearing on the methods of 
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analysis. For example, a commonly used approach called point pattern analy-
sis is purposely designed to assess whether the geographic distribution of geo-
graphic points is random or not, and to describe the type of pattern so that it 
can be used to infer about the underlying processes that are responsible for the 
observed structure (Legendre 1993). Line pattern analysis is based on a topo-
logical approach to study a network of connections among points, and surface 
pattern analysis is concerned with spatially continuous phenomena, where 
one or several variables are attached to observation points, and each point is 
considered to represent its surrounding portion of space (Legendre 1993).

From Data to Information, to Knowledge and Wisdom

Spatial analysis enables data scientists to utilize a specialized set of skills, 
tools, methods, algorithms, and analytical strategies to better understand 
the distributional patterns, events, and processes that are captured in spatial 
and temporal data. Through spatial analysis, we can visually explore and 
manipulate data, create subsets or stratify the data based on a set of mean-
ingful criteria, compare and contrast attributes that are measured across 
various entities, and use the analytical findings to test hypotheses. Through 
these endeavors, we derive new knowledge and gain substantial insights 
that add to our spatial thinking and evidence-based line of reasoning. The 
ongoing uses of geospatial technologies and methods produce cumulative 
knowledge about events and processes, and ultimately the collective wisdom 
to generate, support, or affirm an underlying theory. For example, we know 
from empirical observations that cumulative exposures from particulate 
matter and chemical sources place a heavy burden on the environment. If 
this statement is true, the use of geospatial data technologies to study the life 
trajectories of particulates and chemical sources may significantly advance 
our knowledge and understanding of their potential impacts on human 
health and the environment. Figure 1.1 shows a visual representation of data 
transformation process. Throughout this book, we are going to learn how 
spatial data can be transformed using different analytical strategies, meth-
ods, algorithms, or tools into valuable information, knowledge, and wisdom.

Spatial Analysis Using a GIS Timeline

The evolution of spatial analysis has been fueled by five major events: (1) the 
1950s quantitative revolution in the United States, (2) trends in regional sci-
ence, (3) spatial statistics (including both geostatistics and stochastic mod-
eling), (4) computational techniques (geocomputation), and more recently 
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(5) the emerging field of data science. Also noteworthy and of historical sig-
nificance is John Snow’s groundbreaking analysis of spatial patterns of the 
1854 cholera outbreak around the Broad Street water pump in London. John 
Snow’s work is a classic embodiment of this field, and the story of spatial 
analysis cannot be complete without referencing his contributions.

When reviewing the trends and significant milestones over the course 
of several decades, it is apparent that spatial analysis gained prominence 
around the time GIS was created, mostly during the quantitative revolution 
in the late 1950s and through the 1960s and 1970s. Early innovators consid-
ered the potential and impact of the quantitative revolution on GIS and spa-
tial analysis. The approaches in spatial analysis came under intense scrutiny 
in the 1970s by behavioral and Marxist geographers and suffered a major set-
back. It was not until the 1990s that these approaches reemerged with strong 
interest among geographers. Nelson (2012) in his review of Trends in Spatial 
Statistics notes the four major developments since the quantitative revolution 
as: (1) new data sources, (2) increased understanding and advancement in 
spatial autocorrelation, (3) creation of local spatial methods, and (4) expan-
sion of spatial science beyond geography.

From data to information
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FIGURE 1.1
A visual schematic to illustrate the transformation of data to information, and subsequently to 
knowledge and wisdom.
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One way of discerning the emerging trends and powerful influence of spa-
tial analysis in scientific research is through the number of articles published 
between 1984 and 2012, showing the exponential growth in the uses and 
applications of spatial analytical tools and technologies. This information 
was compiled using a variety of sources. The Web of Knowledge that refer-
ences multiple databases had 12,710 search results based on the two key-
words (spatial analysis, GIS); Anselin’s 1993 article on Local Indicators of 
Spatial Association (LISA) was the most cited with 1050 citations. Figure 1.2 

Keywords: Spatial analysis, GIS, or spatial statistics
Source: Electronic publishing solutions multi-search engine
http://www.ingentaconnect.com, accessed on 01/16/2012

Keywords: Spatial analysis, GIS
Source: Electronic publishing solutions multi-search engine
http://pinkerton.catchword.com, accessed on September 17, 2000

1995

Google
Scholar

Web of
Knowledge

Returned 12,710 articles using
keywords (spatial analysis, GIS)
A period extending from
1984 to 2012

Returned 2,620,000 hits using
keywords (spatial analysis, GIS)

2000

2001

2012
An average of 1665 articles
per year

An average of 17 articles
per year

Between 2001 and 2012
19,974 articles were published

Between 1995 and 2000
102 articles were published

FIGURE 1.2
Trends in the uses and applications of methods in spatial analysis.
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presents the results of these searches. As demonstrated by these electronic 
searches, there is substantial interest in spatial analysis using GIS. Going by 
the mean number of published articles, there has been a significant increase 
annually with 98 times more articles in 2012 than 1984. In addition, using the 
key words GIS, spatial analysis (maximum hits), or spatial statistics, Google 
Scholar returned 2,620,000 hits in 2012 on this topic alone. It is evident from 
these articles that there is increased interest in GIS and spatial analysis in the 
last two decades.

Summary of earlier published articles (1995–2000) related to spatial 
analysis:

1995 (1 article)

Journal of Environmental Planning and Management (1 article)

1996 (18 articles)

Geographical Information Systems (Taylor and Francis) (12)

International Journal of Geographical Information Systems (3)

Journal of Multilingual and Multicultural Development (1)

Journal of Property Research (1)

Urban Studies (1)

1997 (25 articles)

International Journal of Geographical Information Science (16)

International Journal of Remote Sensing (7)

Journal of Environmental Planning and Management (1)

Urban Studies (1)

1998 (25 articles)

International Journal of Geographical Information Science (12)

International Journal of Remote Sensing (9)

Journal of Environmental Planning and Management (1)

Behavior and Information Technology (Taylor and Francis) (1)

International Journal of Water Resources Development (1)

Human Ecology (Plenum Publishing Corporation) (1)

1999 (17 articles)

International Journal of Geographical Information Science (10)

International Journal of Remote Sensing (2)

Journal of Sustainable Tourism (2)

Marine Geodesy (3)

Urban Studies (1)
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2000 (16 articles)
International Journal of Geographical Information Science (8)
International Journal of Remote Sensing (4)
Urban Studies (1)
Outlook on Agriculture (1)
Society and Natural Resources (2)
Process Safety and Environmental Protection (1)
Australian Geographer (1)

Spatial Analysis in the Post-1990s Period

Significant progress has been made toward the improvement of the spatial 
analytical capabilities of GIS in the last 20 years. Many advanced spatial ana-
lytical routines, such as principal components analysis, spatial statistics and 
geostatistics, and spatial regression have been incorporated into spatial sta-
tistical software applications largely through two ways: (1) tightly coupled 
systems where spatial techniques are fully integrated in GIS software, for 
example, ArcGIS, IDRISI, and MapInfo; and (2) loosely coupled systems where 
open source or off-the-shelf commercial software is loosely integrated with 
statistical tools or models. Recent developments are predominately in the fol-
lowing areas: (1) spatial data mining and predictive analytics; (2) new methods 
for analyzing very large-scale spatial datasets; (3) geocomputation, algorithm 
design, and development; and (4) bioinformatics, gene sequencing, and visual 
and spatial analytic methods. Recent changes are also reflected in the publi-
cation of several articles and availability of sophisticated computer software.

Other notable developments in spatial analysis include the integration of 
commonly used concepts and methods developed during the quantitative 
revolution such as network analysis functions, spatial modeling, and spatial 
metrics; impact of computing on spatial analysis; software engineering and 
development; methodological developments and advances in topology and 
geometry; data visualization; and new computing frameworks such as the 
cloud (Nelson 2012).

The implications of such rapid changes have resulted in some confusion 
and a clear lack of understanding of spatial methods. This book intends 
to address these concerns. We hope to offer our readers the fundamental 
concepts and tools required to master the knowledge and practice in spatial 
analysis. We also plan to expose our readers to the potential pitfalls that 
accompany the use of spatial methods given the increasing availability of 
easy-to-use and user-friendly spatial statistical analytical software.

Another area that we plan to cover in this book is the rapidly growing field 
of data science and CyberGIS. In the current era of big data and data-driven 
decision making, data science is a game changing paradigm and one that 
could potentially open up new possibilities and exciting avenues for spatial 
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data analysis. This field of data science has evolved largely as an amalgam of 
data-intensive disciplines, notably mathematics, statistics, computer science, 
operations research, geomatics, physics, business intelligence, and more. 
Terms such as “data deluge,” “data tsunami,” and “tidal waves” are being 
used to describe the large-scale databases that are now readily on hand to 
capture these activities in real time and address complex societal and scien-
tific research questions. Further, given the critical role of individualization 
in big data particularly when it comes to managing the location and pat-
tern of movements, behaviors, and interaction of individuals in space, GIS 
and spatial analysis lie at the heart of these recent developments. Traditional 
technologies and analytical approaches are still valid and reliable, but there 
is growing consensus that these are no longer efficient or effective enough 
to harness the massive and valuable storehouse of information. The sheer 
volume and rapidity at which the data are being generated these days, the 
urgent need to preprocess and integrate the different sources, types, and 
formats of data, and the fast turnaround time required to analyze and pres-
ent the results now require the development of new computational tools and 
techniques. These emerging trends also call for a new cadre of data scientists 
with a broader set of skills and competencies including the ability to work 
in a collaborative environment with scholars from different disciplines and 
analytical domains.

The emerging field of data science is central, for example, to our understand-
ing of the impact of social media networks on human activities. The social 
media landscape features local to global content that is normally published 
and shared through a large network of users. Social media users utilize the 
platform to connect, communicate, play, or engage in e-commerce. However, 
knowledge gaps exist in fully understanding human activities over social 
media landscapes. This is further compounded by the rapid growth being 
experienced in information technology (IT) and the increasing number of 
users since 2007. IT services are rapidly diffusing into urban communities 
at an increased rate and many people rely on these services for information 
seeking and networking purposes. Also, the scale and volume at which data 
is being generated from IT data centers on a daily basis on social media is 
both extensive and intensive. The IT data centers offer unique opportunities 
for data scientists to study human activities and behavior in never before 
imagined ways. If successfully exploited, the analysis of large-scale datasets 
generated from CyberGIS systems/data centers will increase our knowledge 
and understanding of human activities over social media networks.

Although scholarly debates continue over ways to characterize, store, and 
process big data, geospatial data scientists are more interested in the geo-
spatial attributes of such information, and the analytical possibilities that 
lay ahead. Several challenges have been identified including the best prac-
tices for accessing, storing, integrating big geospatial data, maintaining con-
sistency in geographic metadata, standards, and protocols for maintaining 
privacy and security, data curation and quality control, data processing, 
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visualization, and analysis of results. In Chapter 8, we will elaborate on these 
issues and discuss the geospatial data science approaches that are being 
developed to meet the grand challenges.

Geographic Data: Properties, Strengths, 
and Analytical Challenges

Geographic (or spatial) datasets, whether “big,” large scale, or small scale, 
consist of quantifiable/qualitative information drawn from objects, people, 
events, and other observational units that have a spatial reference. This spa-
tial reference may be explicit, as in an address or a grid reference, or it may 
be implicit, as in a pixel in the middle of a satellite image. In the context of a 
GIS, we typically have spatial objects and fields. Spatial objects refer to geo-
graphic features that can be represented using a vector model and fields are 
geographic features that can be represented using a raster model.

A major strength that comes with using spatial data is that the data repre-
sentation can take the form of many levels. At the conceptual level, we can 
take a philosophical view that considers representation of the world through 
spatial reasoning, spatiotemporal reasoning, and temporal reasoning. We 
can also reason beyond the two-dimensional (2D) perspective by thinking 
about representation in terms of three or more dimensions. At the logical 
level, we have a GIS data model. This enables us to utilize a set of mathemati-
cal constructs to describe, formalize, and represent selected aspects of the 
real world in a computer. Simply, these are the means through which we for-
malize the real world/geographic features into an abstract computer model. 
As indicated above, the two commonly encountered models for representing 
spatial data in a computer are the vector and raster models. These models 
are formalized in a computer using mathematical models. Indeed, the for-
malization of continuous space (field-like geographic feature) is typically 
encoded by approximations based on tessellations (Samet 1995; Egenhofer 
et al. 1999), whereas noncontinuous space (object-like geographic feature) 
is typically encoded with appropriate vector data structures. The GIS data 
model will encode interactions and relationships through a set of constructs 
between spatial and attribute information based on relations. These relations 
could be topological (e.g., meet, intersect, near, contain), directional (e.g., left, 
top, bottom, right or west, east, south, north) or metric spaces (e.g., distance 
function). In general, the data models have certain fundamental character-
istics or functional relationships, which allow them to support vector and 
raster data structures, geometric properties, algorithms, database structure, 
and maps and coordinate systems. Fundamental topics and knowledge in 
topology, geometry, algebra, and cognitive science guide the process of data rep-
resentation in a GIS (Figure 1.3).
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It must be noted that data structures are simply encodings that work 
well in a computer setting. For the vector model, we have three basic types, 
points, lines, or polygons, whereas in the raster model, we have an array 
of pixels, grids/lattices organized in a matrix format of rows and columns. 
At the computational level, we can implement the spatial data structure by 
using features, feature classes, and raster datasets. In a spatial database, we 
can represent both objects and fields; describe relationships between object 
types and apply reference schemas; and specify data structures, algorithms, 
and storage, retrieval, and search operations.

Key characteristics of spatial features are that they are irregular in shape, 
and that there is a scale effect in all observed and measured spatial phe-
nomena. The types of representations, including their geometrical shapes 
and properties, have a strong bearing on the conceptualization and formula-
tion of study hypotheses, and analysis of the spatial features. Specifically, 
observed and measured spatial data have the following basic characteris-
tics: (1) variations in measured values, that is, large-scale variations change 
slowly whereas small-scale variations change quickly/normally uneven; and 
(2) similarity of measured observations at locations close together. The varia-
tions in a given spatial distribution exist at different scales and may depict a 
low or high degree of spatial variations.

When starting out with the analysis of spatial data, there are key concepts 
to take into consideration such as spatial scale, dependency, and proximity. 
In addition, there are certain attributes that are unique to spatial data and 
could single-handedly derail a study by influencing the accurate estimation 
of the statistical parameters. These include the boundary problem (impact 
of artificial or natural border lines on spatial distributions), the scale prob-
lem, the pattern problem (spatial autocorrelation), and the modifiable areal 
unit problem (MAUP). When encountered in spatial analysis, these problems 
may confound the underlying relationships within the spatial data struc-
tures and could result in systematic uncertainties in the derived estimates. 
Following are descriptions of these concepts, the unique spatial data chal-
lenges they present, and their impact on research findings.

Concept of Scale

Spatial and temporal scales are central to better decision making and scien-
tific research because nature is so complex, with many processes occurring 
at different scales. To capture these processes requires not only a scale that is 
representative, but also an optimal scale through which different measure-
ments can be taken (Oyana et al. 2014). Scale can refer to any of the following: 
cartographic/map scale (small, medium, large), magnitude of study (amount 
of detail), geographic extent, accuracy (positional and attribute accuracy), and 
measurement, process, and time scale. In this book, scale will be conceptual-
ized as the geographic extent and amount of detail in a study while account-
ing for spatial and temporal variability. It involves understanding all sorts of 
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geographic divisions in your study area, and the accompanying parameters 
both in terms of the socioeconomic and biophysical aspects. In ecological 
 settings, living organisms—human beings included—organize themselves 
in patches or in some form of spatial structure. The interaction among liv-
ing organisms and the ecological processes depends on their immediate 
environment. These processes may be nonrandom or random. Therefore, a 
proper understanding of an appropriate scale for studying parameters in 
such populations is significant if accurate results are to be obtained. Also, the 
variation behind these processes could be due to numerous factors includ-
ing (1) time of the day—morning, afternoon, evening, or night; (2) climate— 
winter, autumn, spring or summer, rainy or dry season, temperature; 
(3) slope  gradient—low, medium, or high; (4) feeding and reproductive  habits; 
(5)   altitude—low, medium, or high; (6) directional influences—angle of the 
sun/the intensity of the sun and wind; and (7) presence of food or water 
 bodies. Knowledge of these factors and related processes may help the data 
scientist decide on the most appropriate scale for a given study.

Concept of Spatial Dependency

The statistical conditions governing the parameter of a sample population under 
investigation are normally based on two assumptions, namely, the degree of 
independence of the parameter and whether the variance is identically distrib-
uted (Griffith and Amrhein 1997; Kleinbuam et al. 1998). Due to natural vari-
ability, these assumptions only hold for a population with a high degree of 
certainty, and where the population is able to maintain the same variance. In 
the real world, however, these assumptions may not hold. Natural processes are 
normally dependent and occur in a random manner or they may occur simul-
taneously. For instance, as noted in an earlier example, living organisms in eco-
logical settings are organized in patches or some kind of spatial structure that 
could result in spatial dependency (Legendre 1989; Legendre and Fortin 1989; 
Oyana et al. 2014). This notion of spatial dependency is best captured in Tobler’s 
first law of geography, which states that “everything is related to everything 
else, but near things are more related than distant things.” Also noteworthy are 
two key aspects of spatial dependency: (1) spatial variable dependency (spa-
tial autocorrelation and spatial correlation) and (2) spatial relations dependency 
(spatial homogeneity and spatial heterogeneity). These underlying spatial 
structures have major implications on how research problems are formulated, 
data sampling, measurement, and how hypotheses are tested.

Concept of Spatial Proximity

The concept of spatial proximity is different from spatial dependency though in 
most instances geographic features that are proximal to one another are more 
likely to exhibit similarities and therefore spatial dependency. Notwithstanding 
this, it is important to clarify the differences between the two concepts. In 
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spatial data analysis, spatial proximity provides valuable knowledge and topo-
logical information regarding the relative location of points, lines, and areal 
features in the database. It is a function of distance and the degree of connec-
tivity between objects, people, or places in the geospatial database. There are 
several algorithms for computing spatial proximity with measures based on 
linear distance, costs, time, and networks within the system. Spatial proximity 
is an important concept that is woven into virtually every geographic analysis 
that deals with spatial patterns, mobility, interaction, association, and diffu-
sion of people, objects, ideas, events, and processes. For example, in economic/
retail geography, the concept is used to study the agglomeration of firms, con-
duct site selection or trade area analysis, evaluate consumer behavior, delineate 
activity spaces, and assess the diffusion of innovations or interchange of ideas 
and knowledge. In medical geography, spatial proximity is used to study dis-
ease transmission patterns, model atmospheric dispersion of air pollutants, or 
develop chemical plumes or footprints over which residents may be exposed 
to environmental hazards. Examine the illustrations in Figure 1.4 and indicate 
how you would apply the concept of spatial proximity.

TASK 1.1 SPATIAL PROXIMITY

We will now review three examples that show how we can measure 
and analyze the concept of spatial proximity.

 1. Suppose we are analyzing the effects of the takeoff or land-
ing of planes on a runway in a residential neighborhood. What 
would be the impact on individuals living close to the runway?

(Continued)

Runway

Measuring and analyzing spatial proximity

River

Main street

(a)

(b)

(c)

FIGURE 1.4
A visual illustration of spatial proximity.
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Modifiable Areal Unit Problem

MAUP is a form of ecological fallacy associated with the aggregation of data 
into areal units (Figure 1.5). It identifies problems associated with the parti-
tioning of spatial data (the “zoning problem”) or the size of the spatial units 
on which the data are mapped (the “aggregation problem”). Both of these 
spatial configurations can influence the statistical models, correlations, and 
other statistical estimates generated from the data. Specifically, there are two 
effects that could arise from MAUP, or the system of modifiable areal units. 
First, MAUP could have a scale effect, which is the tendency for different sta-
tistical results to be obtained from the same set of data when the information 
is grouped at different levels of spatial resolution (e.g., enumeration areas, 
census tracts, cities, regions). Normally, the larger the unit of aggregation, the 
larger, on average, the correlation between two variables. A second MAUP 
effect, the aggregation effect, could result from different areal arrangements 
of the same data to produce different statistical findings. Given these MAUP 
effects, as geospatial data scientists, we cannot categorically state that the 
results of our analytical studies are independent of the spatial units being 

TASK 1.1 (Continued) SPATIAL PROXIMITY

  A likely response to this problem would be that those resi-
dents living nearby will likely complain about ambient noise 
exposure from aircraft taking off and landing. Specifically, the 
noise  distance–decay model may show that aircraft noise lev-
els decompose between 243 m and 250 m from the runways; 
and the day or night sound levels will have a directional bias.

 2. Suppose we are analyzing the effects of bird nesting in a habi-
tat near a river. What would be the impact on nests located near 
the river?

  A likely response to this problem would be that nests located 
in a bird habitat that are in close proximity to the river may 
have an increased source of nest-building materials, and access 
to water and food resources.

 3. Suppose we are analyzing the locational advantage of restau-
rants located near a main street. What would be the impact on 
the restaurants located nearby?

  A likely response to this problem would be that the impact of a 
restaurant closer to a main street may be a change in the need 
for parking spaces, increased human traffic, and increased 
patronage and use of the restaurant. If the main street is a busy 
roadway with human traffic, then it would likely result in more 
business and higher profits.
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used; rather our results could be influenced by the configuration and size of 
the spatial units. For example, in Figure 1.5, using the same variables in the 
study of Chicago, the results data gathered from census block groups are 
likely to be different from those produced at higher levels of aggregation 
such as the census tract level, the community district level, or higher. As 
such, the task of obtaining valid generalizations or comparable results from 
multiple studies is extraordinarily difficult. Figure 1.6 presents commonly 
used spatial units of analysis. One important piece to bear in mind when 
using modifiable areal units is to study their effects.

E�ects of data aggregation on modi�able zonal units
and scale e�ects could lead to
inconsistencies in statistical results

FIGURE 1.5
A visual illustration of the modifiable areal unit problem that is a result of the effects of data 
aggregation.
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TASK 1.2 MEASURING AND ANALYZING THE 
IMPACTS OF GEOGRAPHICAL SCALE

To further illustrate the MAUP concept, let us work through the ques-
tions below. Figure 1.7a depicts three options, or levels in which the 
data derived for the same region can be aggregated.

 a. Using Figure 1.7a, list which level is divided into the smallest 
areal units.

  From the illustration, Level 1 is divided into the smallest areal 
units.

 b. Using Figure 1.7a, list which level is divided into the largest 
areal units.

  From the illustration, Level 3 has the largest divisions.
 c. Using the drawing tools in MS Word, redraw two different 

zonal configurations using the Level 1 image as a base.
  Level 1 can be redrawn and modified in many forms. Example 

solutions are illustrated in Figure 1.7b.
 d. Using Table 1.2, briefly describe the correlation results based 

on the different spatial units.

(Continued)

Other spatial units: Pixel/grid size at different spatial
resolutions, Voronoi, etc.

Environmental units

Spatial units of analysis–Hierarchical model

Socioeconomic units/administrative

Household level–10th
Watershed level–4th
Subcatchment–3rd
Catchment–2nd
Basin–1st

Individual level–11th

Sub-parish level (enumeration
areas, blocks, block groups,
ZIP codes, village, etc.)–9th
Parish level (Census tracts)–8th
Sub-county level–7th
County level–6th
State level (District)–5th
Sub-national level–4th
National level–3rd
Continent level–2nd
Global level–1st

FIGURE 1.6
Commonly used spatial units of analysis.
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TASK 1.2 (Continued) MEASURING AND ANALYZING 
THE IMPACTS OF GEOGRAPHICAL SCALE

  The correlations between renters and owners are inconsistent 
across different spatial units either due to a scale effect or zone 
effect. We can observe that the value correlation is low at the 
block group level (0.075) whereas it is high at the county level 
(0.984). We can use this information to study the aggregation 
effects. 

(Continued)

Level 2Level 1

Understanding the modifiable unit areal problem (MAUP)

Level 3
(a)

Level 2Level 1 Level 3

Modified
areal units

Level 1

(b)

Modified to

Modified to

Modified
areal units

Level 1

(b)

Modified to

Modified to

FIGURE 1.7
(a) A visual illustration of aggregation of modifiable spatial units from Level 1 to 
Level 3. (b) An example of a modified areal spatial unit, Task 1.2c solution.
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Concept of Spatial Autocorrelation

The detection of spatial autocorrelation is very useful in spatial analysis, 
identifying underlying data structures, the degree of spatial randomness, or 
clustering in the data. For a given variable, spatial autocorrelation entails the 
assessment of that variable in reference to the spatial location of the observa-
tional units. It measures the level, nature, and strength of interdependencies 
among the data points (or observational units) within the variable both in terms 
of space and the attribute under consideration. Point values over space or time 
are described as autocorrelated variables if there is a systematic spatial/tempo-
ral variation in the variable when analyzing for a spatial/temporal pattern; this 
phenomenon is said to be exhibiting spatial/temporal autocorrelation.

There are different levels of spatial autocorrelation (Figure 1.8). For exam-
ple, when a like value is adjacent to another, these values are described as 
depicting a positive spatial autocorrelation; when dissimilar values are 
adjacent to each other, they are described as depicting a negative spatial 

TASK 1.2 (Continued) MEASURING AND ANALYZING 
THE IMPACTS OF GEOGRAPHICAL SCALE

 e. Based on questions 1 through 4, define the modifiable unit 
areal problem.

  Recalling our earlier discussion, MAUP is a potential source 
of error in spatial studies that use data aggregated into zones. 
Delineated/aggregated zones are often done arbitrarily, which 
will yield different correlation results; this is known as the zon-
ing effect. In addition, when data tabulated at multiple levels of 
spatial resolution or multiple geographic scales in a nested hierar-
chy are analyzed, they may produce results that are inconsistent 
across the various spatial scales. This is known as the scale effect.

TABLE 1.2

Statistical Relationships between Home Owners and Renters in the State of 
Illinois Using the 2000 U.S. Census Data

Partitioning Levels Spatial Units
N (# of 

Observations) Renter vs. Ownera

Level 1 Block Groups 9843 0.075
Level 2 Census Tracts 2966 0.104
Level 3 County  102 0.984

Note:  Analysis depicts the impact of geographic scale common in spatial units that are 
created in an arbitrary manner.

ar is Pearson’s Correlation Coefficient.
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TASK 1.3 SPATIAL AUTOCORRELATION

Let us now apply our knowledge of spatial autocorrelation to the prob-
lem set below. We use Figure 1.9 to learn about this concept. This figure 
depicts different patterns of spatial autocorrelation. 

Based on the illustrations above, we can match each concept with its 
corresponding letter:

 a. Positively autocorrelated/clustered: It is “c,” where the areal unit 
patterns are most tightly clustered and Moran’s I is close to or 
equal to +1.

 b. Negatively autocorrelated/dispersed: It is “a,” where the areal 
unit patterns are the points mostly dispersed and Moran’s I is 
close to or equal to 0.

(Continued)

Negative spatial autocorrelation

Spatially independent/neutralPositive spatial autocorrelation

FIGURE 1.8
Different illustrations of the concept of spatial autocorrelation.
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TASK 1.3 (Continued) SPATIAL AUTOCORRELATION

 c. Neither positively nor negatively/neutral/independent/ran-
dom: It is “b,” where the areal unit patterns are randomly dis-
tributed and Moran’s I is equal to 0.

 d. Based on your own research interests, identify a variable that 
is likely to be spatially autocorrelated. Will it be positively or 
negatively autocorrelated? Explain.

In Medical Geography, one example of spatial autocorrelation can be 
drawn from the distribution of a contagious disease such as the Ebola 
virus that spreads through direct transmission of bodily fluids. A local-
ized outbreak that began in a small West African country (Guinea) in 
December 2013 gradually spread to the neighboring countries of Sierra 
Leone and Liberia. By the end of July 2014, nearly 1100 cases had been 
reported resulting in 729 deaths, one of the deadliest outbreaks in the 
history of the disease. A spatial analysis of the disease patterns would 
reveal a strong positive spatial autocorrelation with the communities 
close to the cross-border regions of these countries reporting higher 
incidence and fatality rates than those that are further away.

0

Understanding spatial autocorrelation with Moran’s scatterplot

Moran’s I

+1–1 +11

Low–high High–high

High–low

Four quadrants

Low–low

High–high, low–low = Spatial clusters
High–low, low–high = Spatial outliers
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FIGURE 1.9 
A visual illustration of different patterns of spatial autocorrelation. From Task 1.3, 
(a) Negatively autocorrelated, (b) Neither positively nor negatively autocorrelated, and 
(c) Positively autocorrelated.



23Understanding the Context and Relevance of Spatial Analysis

autocorrelation; and when there is a realization of a genuinely independent 
random process then this exhibition has no significant spatial autocorrela-
tion (neutral). The measures of spatial autocorrelation are primarily aimed at 
testing whether a variable in one position is significantly dependent on that 
same variable in other nearby positions.

Conclusion

The field of spatial analysis has been dramatically transformed over the 
last two decades as new applications are added to the existing suite of tools 
and technologies used to analyze geographic features. In this chapter, we 
have explored the trends in the evolution of the field but also examined 
the types and properties of spatial data, and the inherent challenges that 
accompany their use. Following are a set of challenge exercises as well 
as review and study questions that draw from key concepts and themes 
introduced in the chapter. This is followed by a glossary of key terms used 
in this chapter.

Challenge Assignments

TASK 1.4 WORKING WITH GEOGRAPHIC DATA 
AT MULTIPLE RESOLUTIONS AND FORMATS

 1. Suppose we are studying the impacts of land use and land cover 
changes in the city of Chicago over the last hundred years.

 2. Suppose we are conducting a study of residential and com-
mercial usage of broadband technologies in the city of Chicago 
over the last 12 years.
a. List spatial datasets necessary to analyze studies (1) and 

(2) in two separate tables. Include format, scale/resolution, 
possible source of data, date of data collection, and sam-
pling framework used to collect the observations or type of 
instrument/sensor used to record the data.

b. How would you standardize the spatial datasets to com-
plete the two studies?
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Review and Study Questions

 1. Differentiate between statistical and spatial analysis. Describe the 
significant milestones in the development of spatial analysis.

 2. Since the quantitative revolution, what are the major activities and 
innovations that have spurred the development of spatial analysis?

 3. Describe the properties of spatial data. What are the strengths asso-
ciated with the use of spatial data?

 4. Choose one of the following geographical concepts and explain its 
role/impact on potential results derived from spatial analysis:
• Spatial scale
• Spatial proximity
• Spatial autocorrelation
• Modifiable areal unit problem

Glossary of Key Terms

Geographic vs. Spatial: The term geographic is typically used to refer to the 
earth, its two-dimensional surface, and its three-dimensional atmo-
sphere, oceans, and subsurface whereas the term spatial refers to the 
multidimensional frame that references data. For instance, medical 
images are referenced to the human body, engineering drawings are 
referenced to a mechanical object, and architectural drawings are 
referenced to a building (Goodchild 1997).

TASK 1.5 IDENTIFYING PROBLEMS THAT 
ARE UNIQUE TO SPATIAL DATA

Earlier in the chapter, we presented a case scenario involv-
ing work with a local food bank agency to investigate the soil 
 properties in the community prior to implementing an urban  
community garden initiative. Based on what you have learned in 
this chapter:

 1. How would you characterize the geographic features used to 
collect the soil samples?

 2. Describe the unique challenges that you are likely to encounter 
when analyzing the soil data.
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Geographic Information Science: The basic science that cultivates the use 
of theoretical concepts and principles that inform and facilitate the 
development of GIS technology.

Geographic Information Systems: Refer to the use of a computational 
framework to present, store, manipulate, manage, visualize, ana-
lyze, and optimize spatial data. GIS technology can primarily be 
identified using three well-known streams, which include location, 
the use of computer-based technology, and application-driven/func-
tional aspects.

Geographic Visualization: Involves the use of computers to make sense 
of spatial data by employing different graph encodings. It includes 
three activities: exploration, analysis, and synthesis and presenta-
tion. It also entails the use of the cognitive domain to assess expres-
siveness and effectiveness of any data encoding and decoding 
processes.

Logical Positivism: A way of thinking that evaluates the truth or falsity of 
empirical knowledge/cause and effect statements; must be verifiable.

Paradigm: A set of assumptions, norms, thoughts, concepts, and values that 
governs scientific work and process.

Spatial Analysis: Entails an examination of data that is associated with loca-
tion. It is a crucial analytical component of GIS. We can describe and 
analyze the distribution of features or spatial patterns across the study 
region. Through spatial analysis, we can understand the distribution 
of certain characteristics associated with those spatial patterns.

Statistics: Helps with the collection and measurement of observations, 
provides an analytical framework for explaining distributions, 
providing estimates, and generating random numbers. When rep-
resentative observations are made they may provide supporting 
 evidence about these events.
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2
Making Scientific Observations and 
Measurements in Spatial Analysis

LEARNING OBJECTIVES

 1. Define successful strategies for spatial data collection.
 2. Identify potential sources of spatial datasets.
 3. Apply a sampling framework to collect spatial observations/events.
 4. Successfully process and prepare spatial datasets for analysis.

The process of making scientific observations starts with an important real-
ization that naturally occurring phenomena and processes are very complex 
and as data scientists, we must come up with simple and creative ways to 
effectively measure and represent them. In spatial analysis, the strategies 
for collecting and processing data are the keys to scientific success, and 
many of these analytical strategies have been inspired by several schools of 
thought. Chief among them are the logical positivists who recommend the 
use of research designs that rely on direct observations with the help of our 
senses, established protocols, artificial sensors, or instrumentation to vali-
date research hypotheses. While data generated from primary sources are 
the most ideal in such designs, the increasing availability of secondary data 
sources has made it possible for a variety of spatial analyses to be done using 
computer programs and without necessarily conducting any taxing experi-
ments. The purpose of this chapter is to underscore the relevance of data col-
lection, how and why data are collected, potential gaps in the data collection, 
and the accompanying processing needed to ensure quality and accuracy 
in the observations. Studies that are carefully designed with the appropri-
ate mix of data and analytical strategies used for execution, analysis, and 
interpretation will yield meaningful scientific conclusions and recommen-
dations. Studies drawn from reliable and scientifically valid measures are 
often the ones that are easily verifiable and replicable, yielding a solid body 
of evidence and new knowledge for use in policy formulation and scientific 
decision making.
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Scales of Measurement

In both traditional statistics and spatial analysis, the choice of analytical meth-
ods used to address our research questions largely depends on the nature and 
characteristics of the variables that are used to calibrate the naturally occurring 
phenomena. Variables may be characterized by continuous or discrete data val-
ues, using quantitative or qualitative measures. The means by which we sys-
tematically observe and assign data values to these variables are referred to as 
the scales of measurement. There are four commonly used scales of measure-
ments: nominal, ordinal, interval, and ratio. The first two (nominal and ordi-
nal) are qualitative scales and the last two (interval and ratio) are quantitative 
scales of measurement. In a statistical context, measures that are recorded on a 
qualitative scale are evaluated using nonparametric statistics whereas the mea-
sures recorded on a quantitative scale are evaluated using parametric statistics.

Nominal Scale

This is the simplest means of assigning data values to a variable. Most raw 
datasets or ungrouped categories that are still in their original format fit this 
description. A nominal scale describes the means by which ungrouped cat-
egories of data are evident without numerical reference. Descriptive or quali-
tative statements can be employed to identify such observations (Figure 2.1). 
For example, people in Chicago may be classified in categories such as 

FIFA World Cup 2014 Gender Direction
Group A Group B Male North
Brazil Netherlands Female East
Mexico Chile South
Croatia Australia West
Cameroon Spain

Types of roads Land use and land cover categories Busiest ports
Street Water Shanghai, China
Highway Barren Singapore, Singapore
Lane Shrub land Hong Kong, China
Major Roads Vegetation Shenzhen, China
Freeway Wetlands Busan, South Korea
Avenues Developed Ningbo-Zhoushan, China
Interstate Forest Guangzhou Harbor, China
Super Highways Jebel Ali, Dubai, UAE
Interchange Rotterdam, Netherlands

Hamburg, Germany
Los Angeles

FIGURE 2.1 
Examples of data recorded using the nominal scale.
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young, adult, or elderly; gender may be classified as male or female. Several 
geographic objects are measured using this scale, for example, land use cate-
gories, types of zoning, vegetation types or biomes, and types of settlements. 
Nominal scale variables may also have observed values that are classified as 
dichotomous/binary using only two categories, for example, yes or no, either 
one or zero, true or false.

Ordinal Scale

This is the second form of recording values for a qualitative variable that 
involves the ordering of observations in rank order. Any organization of 
observed values that is applied through some ordering or ranking normally 
fits this description. This scale has both identity and magnitude properties, 
and at times its use can result in strongly or weakly ordered observations 
(Figure 2.2). Strong ordering refers to a situation in which the ranks are 
assigned to observed values, whereas weak ordering occurs when individ-
ual observations are grouped into unique categories. For example, observed 
values of household income can be grouped together as low, medium, or 
high; or the weather can be described as being mild, moderate, or severe. In 
weakly ordered observations, it is easy to differentiate between categories 

FIFA World Cup 2014

Group A

Types of roads Land use and land cover categories Busiest ports

1. Brazil
2. Mexico
3. Croatia
4. Cameroon

1. Super Highways
2. Freeway
3. Interstate
4. Highway
5. Interchange
6. Major Roads
7. Street
8. Avenues
9. Lane

10. Water
20. Barren
30. Shrub land
40. Vegetation
50. Wetlands
60. Developed
70. Forest

1. Shanghai, China
2. Singapore, Singapore
3. Hong Kong, China
4. Shenzhen, China
5. Busan, South Korea
6. Ningbo-Zhoushan, China
7. Guangzhou Harbor, China
8. Jebel Ali, Dubai, UAE
9. Rotterdam, Netherlands
10. Hamburg, Germany
11. Los Angeles

1. Netherlands
2. Chile
3. Australia
4. Spain

Group B

Ordered/Ranked data

FIGURE 2.2 
Examples of data recorded using the ordinal scale. All the groups have been assigned ranks 
or ordered.
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but not within categories, whereas in strongly ordered observations it is easy 
to differentiate between individual observations using assigned ranks.

Interval Scale

This is the third form of assigning data values to a variable using equal 
intervals or defined intervals, for example, temperature or time. As a quan-
titative scale, it provides a more precise measurement of individual observa-
tions than the nominal or ordinal scales. It also has the properties of identity, 
magnitude, and equal intervals. We can classify measurements of length and 
height of buildings, the stem width and height of trees, height of the terrain, 
road width and length, width and length of rivers, and age of individuals 
using equal intervals (Figure 2.3). We can describe all of the measureable 
attributes of a variable on this scale. An interval can be also established 
between values measured for the buildings, trees, terrains, roads, and rivers. 
This scale has a defined interval, for example, temperature or time. It is an 
ordered, constant scale, but without a natural zero.

Ratio Scale

This is the fourth means by which one can record data values. The ratio 
scale has all the qualities of nominal, ordinal, and interval scales plus the 

45–115
116–185
186–255
256–325
326–395
396–465
466–535
536–605
606–675
676–745
745–815
816–885 1995

Heights (in meters) of buildings
in the city of Memphis Time

20–30
31–41
42–52
53–63
64–74
75–85
86–96
97–107
108–118
119–129
130–140

1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980 15.59–46.68

46.69–77.77
77.78–108.85
108.86–139.94
139.95–171.03
171.04–202.12
202.13–233.20
233.21–264.29
264.30–295.38
295.39–326.46
326.47–357.55
357.56–388.64

YearDistribution of people at census-tract level Average farm sales in millions ($)

FIGURE 2.3 
Examples of data recorded using the interval scale.
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advantage of zero having a precise meaning when it is assigned to an obser-
vation. So the value of its origin or zero position indicates the absence of the 
quantity being measured for a given object. This scale has identity, magni-
tude, equal intervals, and absolute zero properties. One can provide precise 
measurements of length and height of a building, stem width and height of a 
tree, height of the terrain, road width and length, width and length of a river, 
weight of an object, and individual age. All of these measureable attributes 
are attainable using this scale (Figure 2.4).

To further demonstrate the types of measurement scales and other data 
considerations, let us review some of the best practices for spatial data col-
lection in Task 2.1 below. We will also learn how to construct deductive 

TASK 2.1 BEST PRACTICES FOR SPATIAL DATA COLLECTION

• Determine whether your analysis requires the use of primary 
data or secondary data sources. In a geographic information 
system (GIS), most data are available in digital format.

• Understand the approaches to data collection.
• Identify appropriate methodologies and resources required for 

data collection.
• Develop a solid data management plan (processing, manipula-

tion, sharing, access and storage, quality control measures).

FIGURE 2.4 
Examples of data recorded using the ratio scale.
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and inductive hypothetical arguments using the spatial dataset as an 
example below. Having these practical skills will ensure greater success 
in data collection and contribute further to our understanding of scales of 
measurement.

Two Main Approaches for Data Collection That Involve Deductive 
and Inductive Reasoning

Data collection approaches are guided by both deductive and inductive rea-
soning. Deductive reasoning entails evaluating the validity or soundness of 
an argument that is logically derived from a set of generalized principles or 
statements to arrive at a conclusion (i.e., general to specific). This is accom-
plished in spatial analysis when we use theory or theoretical foundation to 
guide our research and derive a set of hypotheses. Deduction logic is applied 
in the classical view of probability and in this type of reasoning, if the two 
premises are valid and sound, then the conclusion is considered to be true. 
An example of a deductive argument is noted as follows:

All wetlands have bird habitats
The city of Carbondale has a wetland
Therefore, the city of Carbondale has a bird habitat

Inductive reasoning entails making or evaluating generalized statements 
based on specific statements (i.e., specific to general). In spatial analysis, we 
can derive a set of general principles or a set of hypotheses from a sample of 
specific observations, and use that information to develop a generalized set 
of empirical conclusions. Inductive logic is applied in the relative frequency 
interpretation view of probability. An example of an inductive argument is 
noted as follows:

A bird habitat existence was confirmed in 90 percent of the wetlands in North 
America

The city of Cairo has a wetland in the south
Therefore, the city of Cairo has a bird habitat

To demonstrate the two approaches, let us process an agricultural dataset 
from the state of Illinois at the county level (Figure 2.5). Our goal is to apply 
these concepts to formulate data-driven hypotheses. To do so, first, open your 
Internet to access the database and paste the following link: http://www.
nass.usda.gov/Statistics_by_State/Illinois/index.asp. Review the metadata 
for this dataset and then click on County Estimates to review Illinois County 
Statistics by year.

Question: How many years of data are posted on this website? Knowing 
this information helps us to better understand the temporal attributes of 
the dataset. On review, we observe that numerous county-level agricultural 
datasets have been posted on this website since 2005. We will explore the 
2008 dataset, partly because this is when the U.S. economy experienced 
significant recession, so it would be interesting to review its effects on the 
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agricultural sector, specifically focusing on Illinois. This dataset is provided 
in your textbook’s DVD under the Chapter 2 data folder (file name: Illinios_
cnty_agricultural_statistics.xlsx).

Question: In Table 2.1 below, fill in the missing information for the mea-
surement scales on which the factors/variables were recorded and field data 
types for the attributes.

Now, open the Illinois_census_county.dbf either in MS Excel, ArcGIS, or 
any statistical software. Use this attribute table to statistically evaluate any 
of the four variables presented in Table 2.1. The goal is for you to under-
stand the quantitative data well enough to make deductive and inductive 
logical statements using this information. Review and provide a list of scale 
of measurements for any four selected variables of your choice. You should 
also evaluate the minimum, maximum, mean, or median values of the 
field(s) of the four variables you have selected. It is acceptable to evaluate 

FIGURE 2.5 
A screenshot of the website for downloading National Agricultural Statistics.

TABLE 2.1 

Scale of Measurements and Database Data Types for Each Variable/Factor

Factor/Variable Scale of Measurements Data Type

WheatAcre Integer
SoyAcre
CornYield
GroupArea Nominal
RankCornProd
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different statistical attributes of the field (e.g., percentile, and 95% confi-
dence limits). Be creative.

 1. Using the Illinois_census_county.dbf file, sort each of the four variables 
listed in Table 2.2 in ascending or descending order. The results of a 
sorted information table would look like Table 2.2. Now, derive the 
mean, standard deviation, and confidence intervals for these vari-
ables. We will cover this in detail in Chapter 3, but the mean shows 
the spread and distribution of observations around their center 
point whereas the standard deviation provides information about 
the variations of observations in each variable. The confidence inter-
val captures the class width of the observations in each variable.

 2. Make a statement regarding the agricultural data using the “deduc-
tive logic approach.”

  Here is a sample hypothesis using the deductive logic approach: All counties 
in Illinois have farms (since the minimum number of farms is 73). Jackson 
County is located in the state of Illinois. We can therefore conclude that 
there are farms in Jackson County.

 3. Is the following statement an example of deductive logic? “All farms 
have more than zero acres of crops. Tina’s Apples is an apple farm. 
Therefore, crop acreage at Tina’s Apples is greater than zero.” This is 
a deductive logic argument because it uses a set of generalized statements 
that all farms have more than zero acres of crops to arrive at the conclusion.

 4. Make a statement regarding the agricultural data that is an example 
of inductive logic.

  Here is a sample hypothesis using the inductive logic approach: All counties 
have between 73 and 1622 farms (a mean 753 farms). If we select 20 counties 
randomly, we can expect half to have more than 753 farms.

 5. Is the following statement an example of inductive logic? “10 percent of 
Illinois counties have more than 376,178 acres of crops. Therefore, if we 
randomly selected 10 counties from Illinois’s 102 counties, we would 
expect nine of these counties to have less than 376,178 acres of crops.” 
The statement is an example of inductive logic because it uses specific state-
ments to arrive at a general conclusion. The statement relies on the assumption 

TABLE 2.2 

Basic Descriptive Data for Selected Agricultural Variables in Illinois from the 2010 
U.S. Census Data (Illinois_census_county.dbf)

Variable Minimum Maximum Range

NO_FARMS07 (Number of Farms) 73 1,622 1,549
AVG_SIZE07 (Average Size of a Farm) 45 885 840
CROP_ACR07 (Acres of Crops) 6,388 647,350 640,962
AVG_SALE07 (Average Sales per Farm ‘000) 15.59 388.64 373.05
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that our sample is representative of the study population (farms per county), 
and induces the result of the sample demonstrating the same patterns as the 
population. Although the statement is an example of inductive reasoning, it is 
likely that random sampling error may not support the stated conclusion.

Population and Sample

The problem set presented above raises an important question that often 
comes up when designing an analytical project, namely the distinction 
between a population and sample. In both deductive and inductive reason-
ing approaches, differentiating between these two is critical for drawing the 
appropriate conclusions and inferences from the data. A population consists 
of the entire collection of events, objects, or subjects that are being studied 
whereas a sample consists of a representative portion or subset of those 
events, objects, or subjects in a population of interest. Simply put, a sample 
is a mirror image subset of a parent population. The central purpose of a 
sample is to use it to make inferences about the population from which it was 
drawn. A population of interest, denoted by the denominator in the standard 
deviation as N, must be clearly and properly defined so that observations can 
be obtained for the purpose of statistical analysis. On the other hand, when 
computing the standard deviation for a sample, the denominator is given by 
n – 1 as the sample represents a subset of the larger population.

When collecting information for statistical purposes, we could use the 
entire population or sample. Due to exorbitant costs and the feasibility of 
conducting a large-scale study, at times, a sample is most appropriate. If a 
sample is properly drawn from a population then it will contain the same 
characteristics from it. However, for a sample to be valid, each event stands 
the same chance of being selected and is independent of the selection of 
another event in that population; thus, this strategy minimizes selection 
bias. The descriptive measures that explain a population are called “param-
eters” whereas the ones that explain a sample are called “statistics.”

Sampling: This is the act of drawing a representative portion of a popula-
tion. It is primarily concerned with the selection of a subset of observational 
units within a population with the intention of estimating its characteristics. 
In geography, our primary goal is to sample across space or, in some studies, 
we collect samples across space and time. Due to spatial and spatiotemporal 
variations, an effective spatial sampling strategy requires that these factors 
be taken into account. Given that sampling must meet the classical assump-
tions of randomness and independence in observations, we must take into 
consideration the nature of geographic data on data collection when per-
forming analysis. It is, therefore, imperative to have a list of the elements and 
characteristics of a population before a sample is drawn. A representative 
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sample should capture the essence of these elements and its characteristics. 
In having this knowledge of all elements and characteristics of a popula-
tion, we normally want to produce unbiased estimates, so we can use any of 
the three types of random sampling methods: (1) simple random sampling, 
(2) stratified sampling, and (3) sequential sampling.

A simple random sampling is most appropriate when each event within 
a population has an equal chance of being selected and no subgroups are 
evident. However, when dealing with subgroups and one identifies a strong 
element of homogeneity within those groups, a stratified sampling approach 
is recommended. This type of sampling entails splitting the population into 
subgroups of interest and sampling each of the subgroups either sequen-
tially or randomly. Sequential sampling entails selecting observational units 
in a population based on a specified interval. However, to minimize a selec-
tion bias in the sample, the first unit must be selected randomly before the 
sequence is established.

Spatial Sampling

Spatial sampling refers to obtaining a representative sample of a study region 
that reflects the spatial structure. When designing a scheme for spatial sam-
pling, several considerations must be made regarding the spatial dependency, 
spatial pattern, temporal pattern, or spatiotemporal pattern of the data. In 
addition to the three sampling designs mentioned earlier, we can draw sam-
ples using cluster sampling, transect sampling, or contour sampling. There are 
four types of sampling units for spatial sampling: (1) point sampling, (2) area 
sampling, (3) linear sampling (transect across the landscape), and (4) plotless 
sampling (common in forest vegetation surveys). A detailed example of spatial 
sampling that includes point, area, and linear sampling is given below. Two 
specific examples of spatial sampling are offered: one for collecting physical 
attributes of land cover and the other to support a health study.

Spatial Sampling Example 1: Suppose the central objective of our spatial 
sampling design is to assess the variation of leaf area index (LAI) and photo-
synthetically active radiation (PAR) in the fragile mountain ecosystem of Mt. 
Elgon located in eastern Uganda (Oyana et al. 2014; Oyana and Kayendeke 
2015). To accomplish this objective, there is a justified need to collect repre-
sentative field measurements of LAI and PAR. We can design sampling pro-
tocols based on a systematic grid framework to collect LAI and PAR sample 
data based on a high-resolution sensor LP-80 AccuPAR Ceptometer. This 
instrument is a lightweight optical and portable PAR sensor and consists of 
80 sensors, spaced 1 cm apart with a data storage capacity of 1 MB RAM (over 
2000 measurements) and minimum spatial resolution of 1 cm. By measuring 
light intensity above and below the vegetation canopy, it assesses PAR inter-
ception of canopy and calculates LAI.

The LAI sample data can be combined with Landsat Thematic Mapper™ 
images and any other high-resolution images to generate LAI maps. This 
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sensor measures PAR and LAI from the crops in the field and structural 
diversity of canopies in sample agricultural plots, which drives both the 
within- and below-canopy microclimate, determines and controls canopy 
water interception, radiation extinction, and water and carbon gas exchange, 
and is therefore a key component of the biogeochemical cycles in mountain 
ecosystems.

The study area is located within an area that can be divided into 1566 blocks 
of area 1 km by 1 km in the Manafwa watershed (Figure 2.6). The study area 
consists of 663 grids (the area sampling unit is based on a latitude/longitude 
1000 m by 1000 m grid), so we can plan to have 28 sample agricultural plots, 11 
in the lower catchment, and another 17 in the upper catchment. For the purpose 
of standardizing the sampling approach, the southwest corner of each grid will 
be taken to correspond to the intersection of the latitude/longitude lines. In 
each grid, a sampling unit will be composed of four subsample plots, that is, 
each sample plot/cluster will be composed of 36 microplots placed within a 
sampling unit of 1 km2. Each sampling plot is expected to have one or more 
crop classes/plant species due to the heterogeneous nature of cultivated crops 
and vegetation. The plots are designed to cross the maximum possible varia-
tions within and between the classes and to monitor the crop and vegetation 
dynamics. Each subplot measures 30 m by 30 m, and the subplots are located 
250 m apart within the sampling tract. Within each subplot, nine 1 m transect 

FIGURE 2.6 
A schematic overview of the sampling framework for in situ measurements.
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lines that are 7 m apart will be selected and used to measure LAI and PAR val-
ues. For all the subplots, we can sample a total of 1008 data points. This sample 
design makes it possible to combine the LAI field data with remotely sensed 
images at a range of spatial resolutions from 1 × 1 m to 1 × 1 km. Using this 
sampling design, we can make in situ measurements of LAI and PAI values 
at different spatial resolutions, two times (in the morning and afternoon) on 
a daily basis over a 10-day period. In the study region, we can expect to find:

 1. Differences in LAI and PAR (below and above canopy) estimates 
between crops in the upper and lower catchments

 2. Differences in LAI and PAR (below and above canopy) estimates 
between efficiently managed agricultural fields and intensively cul-
tivated agricultural fields

 3. Differences in PAR and LAI (below and above canopy) estimates in 
agricultural fields close to stream flows, stable slopes, and forest stands

 4. Differences in LAI and PAR (below and above canopy) estimates in 
different biomes

 5. Temporal differences in LAI and PAR (below and above canopy) 
estimates.

The dataset can be linked to Landsat images and normalized difference 
vegetation index (NDVI) vegetation profiles to assess the sensitivity of dif-
ferent crops over a period in the study area. The design can help advance 
our understanding of the functionality of mountain ecosystems and biogeo-
chemical cycles.

Spatial Sampling Example 2: Another illustration of spatial sampling can 
be drawn from a health disparities project. Suppose we want to determine 
whether physical environmental factors play a significant role in influencing 
health outcomes. We can employ GIS and advanced computational tools to 
integrate, identify, and analyze spatial clusters of environmental stressors and 
lifestyle risk factors that influence the prevalence and distribution of obesity 
and type 2 diabetes over time. We can hypothesize that the prevalence of obe-
sity and diabetes is a spatiotemporal phenomenon, with clustering resulting 
from the underlying spatial structure of the physical environment, together 
with socioeconomic and demographic factors. Given that unsatisfactory 
health outcomes have been reported in 10 states located in the southeastern 
United States, a typical sampling strategy can be devised to investigate this 
hypothesis. The sampling strategy could entail a benchmark model for two 
states (Mississippi and Florida) at census-tract level that will be replicated in 
eight other states in this region. Mississippi has been identified with exceed-
ingly higher burden of obesity and type 2 diabetes than Florida, so this can 
be used to build our benchmark model. We will create a comprehensive case-
control study design with Mississippi and Florida serving as our cases and 
controls, respectively, to accomplish our epidemiological study objectives.
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The study area for the above project includes the following states: 
Alabama, Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi, 
North Carolina, Virginia, and South Carolina (Figure 2.7). Together these 
10 states have 1,316 counties and a total population of 71,221,706 (U.S. Census 
Bureau). The race/ethnicity composition within these states shows a very 
strong concentration of African-Americans and Hispanics (41% of the popu-
lation compared to 29% of the total U.S. population). The study area provides 
a diverse population and unique neighborhood characteristics that will be 
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Population in benchmark states
Total land area for benchmark states

Total land area in 10 states
Study population in 10 states 71,221,706

526,364 sq. miles
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FIGURE 2.7 
Study area map of case-control study design for obesity and type 2 diabetes.
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used to create baseline health information that will be used to explain dif-
ferences in adverse health outcomes. We can randomly sample 10% of the 
households in Mississippi and Florida at census-tract level to be our target 
population. Using the target population, a 45-minute questionnaire survey 
instrument can be administered to support this epidemiological study. The 
questionnaire will be systematically administered to collect self-reported 
measures of health and physical activities from the sample population. The 
sample population data can be supplemented with five sets of existing sec-
ondary datasets outlined below.

Data description of five sets of relevant data for the epidemiological study:

 1. Neighborhood demographic data from the U.S. Census Bureau.
 2. Boundary data and other relevant layers from the Florida Geographic 

Data Library and Mississippi Geospatial Clearinghouse, respectively.
 3. Individual-level data on health outcome and physical activity: The 

data on self-reported anthropometric measures (height and weight), 
and other health outcomes are from two national surveys: the 
Behavioral Risk Factor Surveillance System (BRFFS) and National 
Health and Nutrition Examination Survey (NHANES). Both surveys 
have adequate information that can be used for the calculation of the 
prevalence of obesity and type 2 diabetes. The BRFSS collects data 
on health risk behavior, preventive health practice, and health-care 
access for adults aged 18 years and older in the United States. The 
census-tract level benchmark model can be built based on this data-
set. The NHANES provides health and nutritional status of adults 
and children in United States. The physical examination data consist 
of medical, dental, physiological measurements, and laboratory tests. 
The body mass index (BMI) measure will be created and categorized 
as “normal weight” if individuals’ BMI is between 18 and 24.9, “over-
weight” if their BMI is between 25 and 29.9, and “obese” if their BMI 
is greater than 30. Individuals will be considered to have diabetes 
if they responded “Yes” to the question, “Have you ever been told 
by a doctor that you have diabetes?” We will assess physical activ-
ity using BRFSS/NHANES questions, for example, type of physical 
activity, distance in miles, how long. Individuals who reported that 
they did not engage in any of these activities over the past month 
will be considered inactive.

 4. Built environment data: Food environment data from InfoUSA, Inc. 
(Omaha, Nebraska) and Dun and Bradstreet, Inc. (Short Hills, New 
Jersey).

 5. Remote sensing data and existing products: Remotely sensed data in 
the form of aerial photographs and satellite images can be compiled, 
including (1) orthoimagery, which will provide an aerial view and 
spatial perspective of neighborhoods and can be obtained from the 
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National Agriculture Imagery Program with 1 m spatial resolution; 
(2) elevation, 3 and 10 m resolution from the U.S. Geological Survey; 
(3) The 1992 and 2001 National Land Cover Dataset and Light Detection 
and Ranging (LiDAR) for land cover and elevation, which is useful for 
3D/4D visualizations; and (4) combined high-resolution multispectral 
data (IKONOS, QuickBird, LiDAR, hyperspectral images) to extract 
sidewalk inventory data.

Having introduced the two examples of sampling strategies above, let 
us now examine how to process a specific spatial dataset and learn how to 
describe the statistical or spatial distributions in a sample or a population. 

TASK 2.2 PROCESSING A SPATIAL DATASET

Attribute processing is a common task when preparing a spatial dataset 
for analysis. Most spatial datasets are available in unstructured, semi-
structured, or structured formats. Thus, a lot of time is normally spent 
in preprocessing the dataset. Once the dataset has been processed, one 
has to review or check for accuracy. Due to the availability of modern 
computing systems and citizen sensors, spatial datasets are constantly 
being generated and archived in large data warehousing.

As an example of processing archived spatial datasets, let us analyze 
the 2008 Illinois Agricultural Statistics obtained earlier from the Illinois 
Department of Agriculture, U.S. Department of Agriculture (http://
www.nass.usda.gov/Statistics_by_State/Illinois/index.asp). The data-
set was tabulated at the county level and made available in a PDF for-
mat and posted on this website. Several processed datasets related to 
this chapter are stored in Chapter2_Data_folder (Illinois_ census_county, 
Agricultural_Exported_GISdataset, Illinois_cnty_agricultural_statistics, 
and agricultural regions). Feel free to explore these datasets on your own. 
The preprocessing of the dataset was undertaken as follows:

The data were downloaded; the tables were extracted from the PDF 
document, and these were then converted to MS Excel. The columns 
and rows were all cleaned up and formatted to a database format. The 
key units for the agricultural data were acreage planted for all purposes, 
acreage harvested for grain, yield per acre in bushels, and production in 
bushels. Other relevant demographic and boundary data were obtained 
from the U.S. Census Bureau. One file contains the spatial information 
(Illinois_census_county) and another file has county-level attribute infor-
mation on Illinois agricultural statistics (Illinois_cnty_ agricultural_statis-
tics). We will use this information to perform spatial analysis after doing 
a bit of attribute data processing as outlined below.
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We will also learn how to draw different types of samples that have been 
described in previous sections.

 1. First, we should join the attribute table of Illinois_cnty_agricultural_
statistics to Illinois_census_county so that the information for agri-
cultural statistics is attached (use COUNTY_NAME and NAME as 
common fields to join the tables). A visual illustration of common 
fields and other attribute table concepts is provided in Figure 2.8. 
Next, let us export the joined dataset (agricul_ILL_stats.shp) to make 
it permanent. You may also export it as a database file (Agricultural_
Exported_GISdataset.dbf ).

 2. To find out the top/largest and bottom/smallest producers of corn, 
soybeans, and wheat in Illinois, we will need to summarize the 
agriculture statistics (i.e., average sales, acreage, yields, and pro-
duction) in ArcGIS using the nine reporting agricultural statistics 
districts based on the Group or GroupArea field in the attribute 
table. You will see that the top producers are the following: for 
corn, it is Mclean County; for soybean, it is Mclean County; and for 
wheat, it is Washington County. Hardin, DuPage, and Rock Island 
counties produced the least corn, soybean, and wheat, respec-
tively, statewide. Corn production is highest in the northern half 
of Illinois, with the exception of the greater Chicago area. Soybean 
production seems to be higher in the west-central portion of the 
state, with low production areas in the south and northwest. Wheat 
production is highest in the southern half of the state. The reason 
why Illinois is a corn and not a soybean state is due to favorable 
growing conditions, the use of corn for the production of ethanol 
gas, and a comparative advantage. If we review the summary table 
of key agricultural statistics, we would be able to comment on the 
distribution of agricultural production across the state of Illinois 
(Table 2.3).

 3. From the Excel spreadsheet, using Rank and Percentile we can 
sort corn production, soybean production, and wheat produc-
tion in the state of Illinois (see screenshots in Figures 2.9 through 
2.12). Using this approach, we can describe their distribution as 
follows:

 a. There are 21 records in the 80th percentile and above for corn, 
soybean, and wheat production (Figure 2.9).

 b. There are 30 records between the 50th and 80th percentile for 
corn, soybean, and wheat production (Figure 2.10).
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 c. There are 30 records between the 20th and 50th percentile 
for corn and soybean, and 19 records for wheat production 
(Figure 2.11).

 d. There are 21 records at or below the 20th percentile for corn 
and soybean production, and 32 records for wheat production 
(Figure 2.12). Note that there are more than 30 counties with a 
zero value for wheat production. Your turn: List the counties 
with zero values for wheat production.

FIGURE 2.9 
Screenshot showing the 80th percentile and above for corn, soybean, and wheat production.

TABLE 2.3 
A Summary of Agricultural Statistics by Group Area

Group Area
Average 

Sale Acreage
Corn 
Yield

Soy 
Yield

Wheat 
Yield

Corn 
Production

Soy 
Production

Wheat 
Production

Central 211.81 268,748.91 194 51 32 31,090,291 4,928,500 137,682

East 267.35 443,525.86 176 48 40 42,985,314 8,740,214 355,543

East Southeast 151.57 217,203.00 161 46 55 15,928,027 5,059,200 895,120

Northeast 187.98 190,633.73 172 43 38 19,466,400 2,735,873 207,555

Northwest 217.65 277,936.17 183 47 46 31,217,692 3,342,658 178,825

Southeast 109.49 141,437.75 146 40 48 5,950,667 2,807,717 948,183

Southwest 92.38 155,774.33 152 43 54 6,019,233 3,189,708 1,601,667

West 172.88 232,268.22 189 49 21 24,961,278 4,316,656 298,444

West Southwest 167.01 253,813.15 170 47 53 22,472,862 4,260,969 760,431
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FIGURE 2.10 
A screenshot showing between the 50th and 80th percentile for corn, soybean, and wheat 
production.

FIGURE 2.11 
A screenshot showing between the 20th and 50th percentile for corn, soybean, and wheat 
production.
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TASK 2.3 DERIVING A SAMPLE FROM A SPATIAL DATASET

As noted earlier, the adoption of an effective sampling strategy can 
help in achieving a cost-effective, representative population sample for 
spatial analysis. Spatial sampling requires that one covers space or time 
periods that accurately represent the population. When a sample is rep-
resentative, conclusions can be generalized to the population and also 
unbiased estimators with confidence intervals with known precisions 
can be derived. In this task, we will examine simple random, stratified, 
systematic, and two-stage sampling designs. We will use these designs 
to create or draw a representative sample.

To complete the sampling task we will need agricul_ILL_stats.shp 
located in Chapter 2 data folder. We will use the agricul_ILL_stats (.dbf) 
attribute table to draw 34 samples from 102 counties based on different 
sampling designs. We will compile and save each of the samples for 
further analysis in Chapter 3.

FIGURE 2.12 
A screenshot showing less than the 20th percentile for corn, soybean, and wheat production.
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 1. We can select 34 samples using a simple random sampling strategy 
(use CO_FIPS as your field). Here is a list of 34 County FIPS gener-
ated using a simple random sampling strategy: 099, 081, 195, 061, 111, 
031, 165, 029, 025, 153, 031, 137, 143, 093, 069, 173, 127, 149, 087, 109, 055, 
091, 093, 143, 163, 053, 117, 119, 043, 079, 099, and 149.

 2. We can select 34 samples using systematic sampling with a random 
strategy. This can be accomplished either in MS Excel or ArcGIS. We 
need to carefully select the first sample to minimize any potential 
selection bias. We have selected CO_FIPS #63 as our first one so we 
can now select every third county after this.

 a.  If you wish to generate your own starting point you can ran-
domly generate 102 integers using MS Excel (formula: “= RAND 
()*(MAX-MIN)+MIN,” that is, “RAND ()*(102-1)+1,” hit ENTER 
key to refresh and generate a new number) or simply use this 
website: http://www.random.org/integers/. To be truly random 
use every third count in the list of numbers generated at this 
website as representative of CO_FIPS. Here is a list of 34 County 
FIPS generated using systematic sampling with a random strat-
egy: 063, 113, 001, 147, 123, 187, 203, 037, 093, 129, 169, 041, 035, 083, 
027, 189, 145, 165, 003, 103, 201, 199, 069, 183, 045, 139, 173, 023, 005, 
163, 081, 181, 007, and 099.

 3. Using ArcToolBox, we can “create random points” using the out-
line of Illinois as a constraining polygon. Go to Data Management 
Tools, select Feature Class, then Create Random Points, change Output 
Location to your desired workspace, provide a name for the Output 
Point Feature Class, select the Constraining Feature Class as agricul_ILL_
stats.shp, and set the Number of Points for each county as four. Such 
a spatial sample would look like the results presented in Figure 2.13 
(data file: randompoints2.shp). Assuming each of the points represent 
farm locations in each of the counties, they can be used to  collect 
additional data for spatial analysis.

 4. There are nine spatial regions/subpopulations used for reporting 
agricultural statistics districts. These will be used to stratify Illinois 
and in each stratum a sample will be drawn randomly using a two-
stage sampling design process. First, we determine the number of 
observations in each subpopulation/stratum (Table 2.4). Second, we 
randomly draw 34 samples from each of the nine spatial regions 
using sample size percentage (Table 2.4).
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Based on the information presented in Table 2.4, we can draw a sample 
that will meet the sampling requirements for the nine stratified regions 
of agriculture in Illinois. Sampled results would look like the results in 
Figure 2.14.

FIGURE 2.13 
Randomly created individual-level points (four per county). There are a total of 408 sampling 
points that could be used to collect additional data for spatial analysis.
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TABLE 2.4 

Pre-knowledge Information for Selecting a Representative Subpopulation

Region
Average 

Farm Size

SD/
AVG_
SIZE

Average 
Sale

Ave_
CornPra

SD_
CornPro a

Ave_
SoyPro a

Sample 
Size b n

Southeast 355.25 211.27 109.49 5,950,667 3,520,053 2,807,717 6% 2

Southwest 288.9167 86.36 92.38 6,019,233 4,697,468 3,189,708 6% 2

East Southeast 332.6667 87.99 151.57 15,928,027 7,791,538 5,059,200 8% 3

Northeast 261.5455 143.45 187.98 19,466,400 19,254,662 2,735,873 9% 3

West Southwest 372.0769 83.94 167.01 22,472,862 13,957,201 4,260,969 12% 4

West 386.3333 47.16 172.88 24,961,278 9,927,454 4,316,656 12% 4

Central 411 87.13 211.81 31,090,291 14,890,301 4,928,500 13% 4

Northwest 334.3333 69.44 217.65 31,217,692 16,582,936 3,342,658 17% 6

East 474.2857 51.10 267.35 42,985,314 14,736,666 8,740,214 17% 6

a SD/AVG_SIZE/standard deviation average farm size, Ave_CornPr/average corn production, SD_
CornPro/standard deviation average corn production, Ave_SoyPro/average soybean production.

b Sample size (n) for each stratum must total 34 observations and it is derived in the last column.

FIGURE 2.14 
A screenshot of the sampled areas using a systematic sampling approach.
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Conclusion

In this chapter, we have explored the key fundamentals in spatial data design 
including the measurement scales of variables, the distinction between pop-
ulation and sample, the types of sampling strategies, and steps toward pro-
cessing the spatial data once they have been secured through primary or 
secondary sources. Having gained the practical skills in these areas through 
the sample exercises given above it is now your turn to complete the chal-
lenge exercise given below.

Challenge Assignments

TASK 2.4 KEY STEPS IN SPATIAL STATISTICAL DESIGN

The keys to successful design and use of geographic data in a research 
project are as follows:

• Knowledge of observations/phenomena/events.
• Review of data collection and sampling strategy.
• Review of scales of measurement.
• Knowledge of geographic scales and map projection.
• Knowledge of analytical frameworks to facilitate data analysis. 

This includes the ability to explore, detect, and explain spatial 
patterns plus a thorough grounding in the knowledge and rel-
evant skills of methods, tools, and systems.

Suppose we are asked to design a study to investigate the commuting 
patterns of young working adults in the city of Chicago. Outline a point- 
by-point research plan that covers the five points expressed in Task 2.4.

TASK 2.5 THE QUESTS FOR SPATIAL DATASETS

 1. Search for two separate spatial datasets on the Internet that can 
be used for spatial analysis in a specified application of particu-
lar interest to your work. The datasets must be spatially explicit 
with at least six variables measured across the different mea-
surement scales. Once you have the appropriate spatial datas-
ets, make two deductive and inductive statements/arguments.

 2. Due to different data reporting systems, inconsistencies in 
records, and other sources of uncertainty, there are always gaps 
in a dataset. Suggest two ways to address this common problem.
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Review and Study Questions

 1. Using examples of variables in your area of interest, describe the 
four scales of measurement. What are the unique properties of each 
scale?

 2. Distinguish between a population and sample. In a spatial statistical 
data design, what are the benefits of compiling sample data (if any) 
over entire population data?

 3. What is spatial sampling? Using examples from your research area 
explain how you would go about conducting point, linear, or areal 
sampling.

 4. What are the merits and demerits of simple random, stratified, or 
sequential sampling?

 5. Distinguish between cluster sampling, transect sampling, and con-
tour sampling in spatial sampling strategy.

Glossary of Key Terms

Deductive Reasoning: The making of or the evaluation of the validity or 
soundness of an argument that logically derives from a set of gener-
alized principles to arrive at a conclusion.

Hypothesis: This is simply the process of induction and deduction. A theory 
is actually the basis for suggesting lots of testable hypotheses. It is 
a prediction that expresses the expected outcome in any given situ-
ation; for example, there is a spatial association between surround-
ing pollution source(s) and persons with respiratory illness living 
within a radius of 1000 m or persons with respiratory illnesses liv-
ing within a radius of 1000 m are geographically associated with 
nearby pollution source(s). In experimental research, the hypothesis 
is usually a prediction of how the manipulation of the independent 
variable will influence the behavior of a dependent variable. There 
are two types of hypotheses, the Null and Alternative, denoted as H0 
and H1, respectively.

Inductive Reasoning: The making of or the evaluation of generalized state-
ments based on specific statements.

Law: A verified statement with universal application or a generalized body 
of observations.

Measurement Scale: The systematic means of defining variables by assign-
ing data values to the observations. The four scales (ratio, interval, 
ordinal, and nominal) have unique properties that influence the 
uses and applications of different statistical techniques.
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Model: A simplified/abstract representation of reality or an object or system. 
It can be conceptual, statistical, or mathematical.

Theory: A coherent and replicable system of tested ideas or hypotheses or 
evidence that explains a phenomenon.
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3
Using Statistical Measures to 
Analyze Data Distributions

LEARNING OBJECTIVES

 1. Understand basic statistical concepts and measures.
 2. Generate and interpret descriptive statistics.
 3. Generate and interpret descriptive spatial statistics.
 4. Understand probability concepts and applications.

In Chapter 1, we mentioned that the field of spatial statistics draws from sta-
tistics, mathematics, and related disciplines. Several of the techniques in spa-
tial analysis are variants of traditional procedures used in these fields with 
added dimensions and modifications to cope with the unique properties of 
spatial data. The foundation for statistical measures and knowledge was laid 
through the work of well-known statisticians (Varberg 1963; David 1998), 
including Ronald Fisher (experimental design, analysis of variance, and likeli-
hood-based methods), Karl Pearson (Pearson’s chi-square test), Francis Galton 
(correlation and regression), Gertrude Cox (experimental design), Frank Yates 
(experimental design and Yates’ algorithm), Kirstine Smith (optimal design 
theory), John Tukey (exploratory data analysis and graphic presentation of 
data), William Sealy Gosset (Student’s t-test), and George E. P. Box (experimen-
tal design, quality control, and time series analysis).

Knowledge of the means by which we organize spatial data using tradi-
tional statistical measures is therefore essential and useful for advanced anal-
ysis using geospatial techniques. Specifically, knowledge of key concepts and 
theories in statistics such as descriptive measures, sampling, and probability 
theories helps a geographer to (1) draw a representative sample, (2) assess the 
state of a distribution in a group of observations, (3) compare groups or obser-
vations, (4) explain observations, (5) identify and test explanatory variables, (6) 
predict estimates, and (7) analyze uncertainty. Statistical approaches may be 
grouped into univariate or multivariate methods depending on the number of 
variables used to address the research questions. Techniques that focus on one 
variable at a time are univariate techniques, and those that examine the joint 
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assessment of multiple variables are multivariate and often the more advanced 
approaches. Statistical approaches can also be characterized as exploratory or 
confirmatory in nature, descriptive or inferential, predictive, and prescriptive. 
These terminologies are not confined to traditional statistics; they are com-
monly used to describe spatial statistical methods as well. This chapter will 
provide an overview of statistical and spatial statistical methods that are com-
monly used in summarizing data. Understanding the statistical distribution 
of a dataset helps a data scientist gain fundamental knowledge to move the 
analysis forward. The chapter will illustrate basic statistical methods using a 
number of datasets with nonspatial or spatial characteristics. The illustrations 
are based on a few sets of observations and will be used to deepen our knowl-
edge and understanding of the basic statistical measures. Statistical summa-
ries, plots, maps, or worktables shown in this chapter can be generated using 
MS Excel or any statistical software package, such as R, SPSS, SAS, and ArcGIS.

Descriptive Statistics

All statistical approaches noted above typically begin with a comprehensive 
evaluation of the spectrum of data values obtained for each of the variables 
included in a dataset. These assessments rely on the use of descriptive measures 
that are presented in a numerical, tabular, or graphical format. Regardless of 
the format used, descriptive measures are generated to provide a fundamental 
understanding of the distribution of observations in a dataset. Using tabular 
summaries (such as frequency tables), graphical summaries (such as bar charts, 
line graphs, boxplots, stem and leaf, and normal QQ plots), and statistical sum-
maries (mean, median, standard deviation), these statistics help us organize 
our data. They may also offer suggestive clues about the patterns and trends 
present in the data, and possibly help generate new research hypotheses.

Descriptive statistics differ from inferential statistics in the sense that 
the latter are used in the estimation of population parameters and testing 
of hypotheses using information drawn from sample data. Descriptive sta-
tistics often provide preliminary information about the sample characteris-
tics, which could then be used for undertaking inferential statistics so that 
a specific hypothesis can be confirmed or rejected. Both approaches support 
efforts through which inferences about a population can be made that could 
be helpful in quantifying statistical relationships and making generaliza-
tions and statistical predictions. Two of the most commonly used sets of 
descriptive measures are the measures of center and the measures of dis-
persion. These measures are described below along with their geographic 
counterparts in spatial analysis.
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TABLE 3.1 

Eleven Sampled Tree Heights Near a Residential 
Area in a Chicago Neighborhood (in Meters)

16 43
18 43
21 45
32 60
34 72
37

Measures of Central Tendency

Mode refers to the value that occurs most frequently in a specific set of 
ungrouped observations. For example, in Table 3.1, the mode is 43. If the 
observations are grouped, then one has to select the class with the most fre-
quency as the modal class. The midpoint value for this class is referred to as 
the crude mode.

Median refers to the middle value in a specific set of ranked observations, 
or the centermost value in a ranked list of observations. If one has an odd 
number of observations in the dataset, the middlemost value in the set of 
ranked observations defines the median. However, if the number of obser-
vations is even, the median is defined by the midpoint of the two values. In 
Table 3.1, the median value (7 in rank) is 37 and in this set of observations we 
have an odd number of observations (11). The median can also be viewed as 
the 50th percentile in a data distribution.

Mean, also known as the arithmetic mean or simply an average, refers to 
the sum of a specific set of observations divided by the number of observa-
tions in the set. Simply put, it is the average value in a specific set of observa-
tions. It is great for interval- or ratio-scaled variables. Unlike the median, the 
mean is sensitive to the presence of outliers in a distribution.

The mean is statistically defined as follows:

 X = 
Xi

i=1

n

∑
n

 or simply X1 + X2 +X3  +..+ Xm
n

where X  is the mean of variable X, Xi is the value of the observation i, Σ is 
a Greek summation symbol, and n is the number of observations in a given 
set.
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FIGURE 3.1 
Frequency distribution of 11 sampled tree heights near a residential area in a Chicago neigh-
borhood (in meters).

Using data from Table 3.1, the mean for this set of observations can be 
derived as follows:

 
X = 16+18+ 21+ 32+ 34 + 37 + 43+ 43+ 45+ 60+ 72

11

Therefore, X = 38.27 .
We can conclude that the average height for the tree heights derived for 

11 samples near a residential area in a Chicago neighborhood is 38.27 m 
(Figure 3.1).

We use n to derive the sample mean; however, for the population mean, 
it is derived based on N. The two (population and sample mean) mainly differ 
because the degrees of freedom for a sample is based on the number of inde-
pendent observations used to calculate a statistic, which is reduced by one 
observation and denoted by n – 1.

Deriving a Weighted Mean Using the Frequency 
Distributions in a Set of Observations

There are certain applications that call for the use of weighted means over 
the traditional arithmetic means. The weights represent the magnitude or 
frequency ( fj) of the reported events, incidents, or attributes under investiga-
tion. The example below illustrates the computation of a weighted mean for 
tree heights in a residential area in a Chicago neighborhood. We will group 
the data in Table 3.2 using the following steps:
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TABLE 3.2 

Worktable for Deriving the Weighted Mean of Tree Heights Near a Residential 
Area in a Chicago Neighborhood (in Meters)

Class Interval (i)
Class Midpoint 

(Xi)
Class Frequency 

(fj) Xi fj

16–25.99 21 3 63
26–35.99 31 2 62
36–45.99 41 4 164
46–55.99 51 0 0
56–65.99 61 1 61
66–75.99 71 1 71
Total Σ fj = 11 Σ Xi fj = 421

 1. Identify the largest and smallest value.
 2. Derive the range.
 3. Determine the number of classes.
 4. Define the class interval.
 5. Determine the frequency for each class.
 6. Compile this information in a table, as has been done in Table 3.2.

 
X =

∑Xi   f j
∑ f j

= 421
11

= 38.273 

Measures of Dispersion

A measure of dispersion or variation is a descriptive statistic that quantifies 
the variability or the spread of a set of observations. Sources of errors in sam-
pled estimates often consist of conceptual errors, sampling errors, measure-
ment errors, or equipment operational errors, and measures of dispersion 
may help us quantify the extent to which sampled observations differ, or 
vary from the true population values. A variety of statistical measures exist 
to quantify variability, including range, mean deviation, standard deviation, 
and variance. However, the most useful are standard deviation and vari-
ance, which enable statisticians to assess the degree of dispersion in a set of 
observations.

Range is a measure of dispersion that shows the difference between the 
highest (maximum) and lowest (minimum) value in a set of observations. 
In ungrouped data, it captures the difference between the maximum and 
minimum values. To obtain these values, one may wish to sort the data 
in order—either in ascending or in descending order. For example, in 
Table 3.2, the range for 11 sampled tree heights is (72 – 16) = 56. In grouped 
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data, it captures the difference between the upper value in the highest 
numbered midpoint and the lower value in the lowest numbered midpoint 
of a class interval. For example, in Table 3.2, the upper value is 71 and the 
lower value is 21, thus the range is (71 – 21) = 50. You notice that there is a 
small difference of 6 in the range that is given by ungrouped and grouped 
data, which can be misleading. It is also possible to generate additional (e.g., 
quartile range) information from this dataset, by dividing it further into 
equal portions or percentiles. An interquartile range (IQR) can be derived 
after dividing a ranked set of observations into four groups of equal size, 
followed by obtaining the interval between the 25th percentile (the lower 
quartile represented as Q1) and the 75th percentile (the upper quartile rep-
resented as Q3). In the dataset given in Table 3.3, Q1 is 22.8 and Q3 is 44.7, 
so IQR is (44.7 – 22.8) = 21.9.

Standard deviation is a summary statistic that measures the extent to which 
the data values are scattered around the mean (or center) of the distribution. 
Simply put, it quantifies the difference in the spread of a set of observations 
below and above the mean. It enables the statistician to determine whether a 
set of observations are tightly compact (a narrow standard deviation) or are 
spread out (a wide standard deviation). A narrow standard deviation indi-
cates the observations are closely knit and there is a low variation from the 
mean. A large standard deviation suggests that the observations are widely 
distributed and there is a large variation from the mean. A large variation is 
suggestive of a small sample size or the amount of uncertainty present in a 
set of observations. The standard deviation, which is denoted with a Greek 
letter “σ” for a population and “s” for a sample, is the value of the square root 
of the variance.

TABLE 3.3 

Summary Statistics for 11 Sampled Tree Heights Near a Residential Area in a 
Chicago Neighborhood (in Meters)
Mean 38.3, 95% CI 26.7–49.8, SE 5.19
Median 37.0, 98.8% CI 18.0–60.0
Standard Deviation 17.2, 95% CI 12.0–30.2
Variance 296.4
Range 56
IQR 21.9
Skewness 0.58
Kurtosis 0.06
Percentile 0th 16.0 (minimum)

25th 22.8 (1st quartile)
50th 37.0 (median)
75th 44.7 (3rd quartile)
100th 72.0 (maximum)

CI, confidence interval; IQR, interquartile range; SE, standard error.



61Using Statistical Measures to Analyze Data Distributions

Variance is an important measure of dispersion or unevenness that indi-
cates how a set of observations varies from the mean. If there is a wide 
variation from the mean, then the variance will be large and likewise if 
it is small, then variation from the mean is narrow. It is a numerical value 
from the average of squared differences from the mean. The variance of a 
population is normally denoted by a Greek letter σ 2 whereas the variance of 
a sample is given by s2.

In Table 3.4, the following equations have been used to derive mean devia-
tion, standard deviation, and variance:

 Mean deviation  D = 
∑ Xi −X

n

 Sample variance  s2 =
∑ Xi − X( )2
n−1

 Population variance  
σ2 =

∑ Xi − µ( )2
N

TABLE 3.4 

Worktable for Deriving Mean Deviation, Sample Variance, and Standard 
Deviation for 11 Sampled Tree Heights Near a Residential Area in a Chicago 
Neighborhood (in Meters)

Height (m) (xi – x)  
D =

xi − x

n∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 xi − x( )2  

16 –22.2727 22.2727 496.0744
18 –20.2727 20.2727 410.9835
21 –17.2727 17.2727 298.3471
32 –6.27273 6.27273 39.34711
34 –4.27273 4.27273 18.2562
37 –1.27273 1.27273 1.619835
43 4.727273 4.727273 22.34711
43 4.727273 4.727273 22.34711
45 6.727273 6.727273 45.2562
60 21.72727 21.72727 472.0744 Sample Standard
72 33.72727 33.72727 1,137.529 Variance Deviation

x = 38.3  Σ = 143.27 Σ = 2,964.18 2,964.18/10 SQRT (296.42)

D = 13.025  s2= 296.42 σ = 17.22
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Standard deviation for a sample σ =
∑ Xi − µ( )2

N

Standard deviation for a population s =
∑ Xi − X( )2
n−1

Spatial Statistics: Measures for Describing 
Basic Characteristics of Spatial Data

Focus will now shift to spatial descriptive statistics. Unlike traditional 
descriptive statistics that deals with singletons, spatial statistics deals with 
observations recorded in pairs. Spatial descriptive statistics are used to 
measure the basic characteristics of spatial data. The foundation for spatial 
statistics was laid through the earlier work of Mercer and Hall (1911), Besag 
(1974), Besag et al. (1982), Cormack (1977), Fisher (1935), and Matheron (1963). 
Chapter 1 focused on some of these aspects. This chapter will present statis-
tics that are applied to describe spatial data. Subsequent chapters will cover 
more of these statistics and other advanced methods and strategies that are 
used to describe spatial data.

Given the uniqueness in spatial data, especially the need to understand the 
spatial structure, a number of spatial analytical statistics have been devel-
oped to deal with these data. Both theoretically and empirically, we know 
that spatial patterns or processes of a phenomenon offer fundamental clues 
about the nature of the spatial structure. Consequently, when studying spa-
tial phenomena, we observe and measure specific events at different loca-
tions within a study region using a georeferenced system. The events are 
then uploaded into a geographic information system (GIS) for mapping and 
analysis. Once they are in a computer system, we can begin to quantify and 
understand any spatial distribution of phenomena. This is usually done by 
incorporating X- and Y-coordinates and the associated attributes into the 
spatial analysis framework. In a bid to understand the basic spatial charac-
teristics, we apply spatial descriptive statistics. There are two common types 
of measures that can be undertaken: (1) one that measures centrality (spatial 
measures of central tendency) and (2) one that measures dispersions (spatial 
measures of dispersion) of events over space. These measures provide useful 
summaries of a spatial distribution.

We will now illustrate spatial descriptive measures using an envi-
ronmental quality dataset downloaded from the Texas Commission on 
Environmental Quality website (http://www.tceq.state.tx.us/). The Texas 
Environmental Quality Database contains six types of emissions: carbon 
monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOCs), 
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particulate matter with an aerodynamic diameter of less than or equal to 
10 μm (PM10), particulate matter with an aerodynamic diameter of less than 
or equal to 2.5 μm (PM2.5), sulfur dioxide (SO2), and lead (Pb). It can be 
used to study the spatial distributions of emissions in Texas. Figure 3.2 
shows spatial distributions of air monitoring sites. Figures 3.3 and 3.4 show 
the spatial distributions of CO, NOx, PM10, and SO2 emissions in a three-
dimensional (3D) perspective.

Sites
Standard deviation ellipse

Standard distance

Texas Commission on Environmental Quality
December 16, 2012.
Map projection: NAD83 UTM 14

0 65 130 260 Kilometers

160 Miles80400
Spatial mean

Spatial median

S

N

W E

Spatial distribution of air
monitoring sites, Texas

FIGURE 3.2 
Spatial distribution of air monitoring sites in Texas.
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Spatial Measures of Central Tendency

Spatial Mean/Mean Center: The spatial mean provides the average value 
of observed points for each of the X- and Y- coordinates. It shows the cen-
tral point of spatial distributions of events. All the values for X and Y are 

Average industrial nitrogen oxides emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 10,169.31
Mean = 198.98, standard deviation = 708.15

Average industrial carbon monoxide emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 21,538.45
Mean = 219.20, standard deviation = 1,390.02

FIGURE 3.3 
Spatial distribution of carbon monoxide and nitrogen oxide emissions in Texas presented in a 
3D perspective. (Data from Texas Commission on Environmental Quality.)
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separately summed up and divided by the total number of events/observa-
tions as follows:

 
X = 

Xi
i=1

n

∑
n

Average industrial sulfur dioxide emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 40,030.82
Mean = 373.56, standard deviation = 2,652.68

Average industrial particulate matter less than 10
in diameter (PM10) emissions in tons per year (TPY)
Lowest = 0, highest (Titus County) = 1,432.12
Mean = 27.80, standard deviation = 102.56

FIGURE 3.4 
Spatial distribution of particulate matter and sulfur dioxide emissions in Texas presented in a 
3D perspective. (Data from Texas Commission on Environmental Quality.)
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Y =

Yi
i=1

n

∑
n

where Xi and Yi are the coordinates for feature i, and n is equal to the number 
of features.

These summary statistics provide the center of gravity of the spatial events 
being evaluated and are sensitive to outlying observations. The air moni-
toring sites presented in Figure 3.2 have a spatial mean of X = 772,059 and 
Y = 3,385,090. In Table 3.5, for example, the spatial mean for the selected 
counties of Texas is X =  737,059  and Y = 3,401,082.

Weighted Spatial Mean/Mean Center: As noted earlier, there are circum-
stances in which one may prefer to use the weighted mean. For spatial data, 
the weights represent the frequency or magnitude of the events observed at 
a given location. The summary statistic is produced by weighting each of the 
locational coordinates (X, Y) by the frequency values (or the variable that mea-
sures the magnitude of or characteristics observed in those locations). Unlike 
the spatial mean that assumes uniformity, the weighted spatial mean is able to 
capture the spatial variations and pulls toward the weighted points with the 
highest quantity. To derive this measure, we use the following formula:

 X = 
Xi

i=1

n

∑ Wi

Wi
i=1

n

∑
.

 

Y =
YiWi

i=1

n

∑

Wi
i=1

n

∑

where Xi and Yi are the coordinates for feature i and Wi is the weight at 
 feature i.

Table 3.6 presents the weighted spatial mean for CO emissions in selected 
counties of Texas. In this example, we have weighted each of the coordi-
nates with CO emissions. We can also derive weighted spatial means for NOx 
(789,033.44, 3,519,863.36), PM10 (791,093.56, 3,524,260.37), and SO2 (800,846.69, 
3,538,672.87).

Spatial Median/Median Center: The spatial median/median center pro-
vides an efficient way to estimate the location parameter of a statistical popu-
lation. It is most effective when a distribution is spherical, and since the most 
preferred one is based on Euclidean space, the data must be projected to accu-
rately measure distances. Suppose we have a projected set of finite (observa-
tion) points in space. The spatial median measure will minimize the sum 
of absolute distances toward the same points. It is less influenced by data 
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outliers (so it can be applied to outlying observations) and serves as a popular 
estimator of the location of sparse data. The spatial median for air monitoring 
sites presented in Figure 3.2 is X = 834,275 m and Y = 3,323,400 m.

Spatial Measures of Dispersion

Spatial measures of dispersion measure the spatial variations or spread of 
observation points/events. Common methods that can be used to summarize 
the distribution of observation points include standard distance, weighted 
standard distance, and the standard deviational ellipse. These methods are 
extremely useful in situations where we seek to understand the centers of 
spatial distributions and the extent of dispersion of spatial events.

Standard Distance: The standard distance measures the extent to which 
observation points are dispersed around the spatial mean. It is a valuable 
statistic for understanding how compact observation points are distributed 
around their mean center. It is sensitive to outlying observation points. In 
Figure 3.2, the standard distance of air monitoring sites in Texas is 202,298 
m. It is evident that this measure is large, implying that air monitoring sites 
are widely dispersed in the study region.

 
SD =    

xi −X( )2
i=1

n
∑ + y−Y( )

i=1

n
∑

2

n
         

where xi and yi are the coordinates for feature i and n is equal to the number 
of features.

Weighted Standard Distance: This measure is produced by weighting the 
sum of the squared differences of x- and y-coordinates.

 

SDw =    
wi(xi   –X)2 +  wi(yi   –Y)2

i=1

n

∑
i=1

n

∑

wi
i=1

n

∑
    

where xi and yi are the coordinates for feature i, wi is the weight at feature 
i, and n is equal to the number of features. As with the weighted measures 
introduced earlier, this statistic has several applications in spatial analytics.

Standard Deviational Ellipse: This is a valuable measure of the dispersion of 
spatial events around the spatial mean. It gives the dispersion of observation 
points along the major and minor axes. It is a useful measure for summarizing 
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data with a distributional directional bias. The measure can also be used in 
identifying distributional trends of geographical phenomena. This measure 
is able to account for both distance and orientation/directionality.

To derive the standard deviational ellipse, we must calculate three mea-
sures: spatial mean, angle of rotation from the point of origin (i.e., from the 
spatial mean), and standard deviations along the x- and y-coordinates. The 
parameters are required for constructing a standard deviational ellipse for 
each type of observation point. The angle of rotation equation requires the 
mean center to be found so as to transform the coordinates in the region 
toward it. By rotating the coordinates clockwise about their new origin by 
a certain angle, we are able to determine the standard deviations along the 
x- and y-coordinates from the spatial mean. This helps in identifying the 
axes of the ellipse. It can be derived with or without the weight. However, 
the weighting provides a more realistic directional distribution because it 
adds the influence of weight field to the location. The size of the ellipse can 
be characterized using one, two, or three standard deviations.

Angle of rotation is given by

 

tanθ =
xi
′2

i=1

n

∑ − yi
′2

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
+ xi

′2

i=1

n

∑ − yi
′2

i=1

n

∑⎛
⎝⎜

⎞
⎠⎟
+ 4 xi′yi′

i=1

n

∑⎛⎝⎜
⎞
⎠⎟

2

2 xi′yi′
i=1

n

∑

where xi′  and yi′  are the deviations of x- and y-coordinates from the spatial 
mean.

Standard deviation along the x-axis is given by

 
δx =

xi′ cosθ− yi′ sinθ( )2
i=1

n

∑
n

Standard deviation along the y-axis is given by

 
δy =

xi′ sinθ− yi′ cosθ( )2
i=1

n

∑
n

The spatial deviational ellipse is shown by elliptical polygons in Figure 3.2. 
The standard deviation along the x-axis is 230,351.67 m and for the y-axis it is 
169,667.57 m and the angle of rotation is 148.95. One can conclude that the air 
monitoring sites follow a northwest to southeast direction. There are more 
sites in the southeast and the large standard deviations along the x- and y- 
axes suggest a wide dispersion (Figure 3.2).
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Random Variables and Probability Distribution

Along with the descriptive measures presented in the previous section, it is 
equally important for spatial data scientists to be conversant with the prob-
ability distributions, random variables, and the formulation and testing of 
hypotheses. These concepts are introduced below.

Random Variable

This is a function/rule of the random process for assigning every outcome 
in the sample space of a random experiment a numerical value. Given the 
fact that random experimental results may yield nonnumerical values, the 
assignment of unique numbers to the outcome is done through a random 
process function. For example, suppose we hypothesized that “it will be 
cold tomorrow” in our neighborhood; the other option will be “it will not 
be cold.” So, we can use a random variable to assign two unique numerical 
values to these two outcomes as follows:

 
X = 1, if it is cold       

0, if it is not cold
⎧
⎨
⎪

⎩⎪

This is typically achieved using a probability function, which assigns 
numerical values to a set of outcomes with an equally likely possibility for 
each member of a sample space. The two types of random variables are dis-
crete and continuous. A random variable is typically associated with two 
mathematical functions: (1) a probability distribution (discrete random 
 variable) takes on a finite value or any countable infinite set of values and 
(2) a probability density function (continuous random variable) takes on any 
infinite set of values that continuously varies within one or more intervals.

Probability and Theoretical Data Distributions: 
Concepts and Applications

The use of the term probability implies the possibility or likelihood of an event 
happening. In a statistical context, probability helps to advance our under-
standing of the science of uncertainty, chance, or likelihood. The probability 
function is a numerical function for describing a probability distribution. The 
numerical values of a probability normally range from 0 to 1, thus the value 
indicates whether the event will occur with each member of the sample space 
having an equal chance. A zero value indicates no chance that an event will 
occur while a one value indicates a 100% chance that an event will occur. 
When we conduct an experiment, we obtain an outcome after observing or 
measuring a specific activity. It may simply mean “tossing a coin,” “rolling a 
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die,” or “determining whether there will be a severe thunderstorm tomorrow.” 
In general, such an experiment can be used to determine the probability of 
a given event B, in equally likely possibilities in the sample space as follows:

 
p(B) = No. of possibilities that meet the set criteria in the sample space

No. of equally likely possibilities in the sample space

Let us now focus on two of the examples noted above.

Experiment I: Undertaking a Tossing Coin Activity
In this experiment, there are only two possible outcomes when one tosses a 
coin once; it will either be a head or a tail. We can determine the likelihood of 
success of this experiment by calculating its probability. Let p represent the 
probability function, H represent heads, and T represent tails:

p(H) = ½ or 50% chance
p(T) = ½ or 50% chance

Suppose we tossed two coins or decided to toss this coin several times; 
the number of outcomes would definitely change. This is because there are 
many different ways to achieve the goal; there are also several combinations 
from which to choose the outcome. It gets even more complicated when we 
consider allowing repetition in this experiment. If we toss two coins at once, 
there are four possible outcomes in the sample space: {H-H}, {H-T}, {T-H}, or 
{T-T}. Therefore, the probability of obtaining p (H-H or T-T) is ¼, the probabil-
ity of obtaining p (H-T or T-H), or a match is ½, and the probability of least 
one head or one tail is ¾.

We can use nr to derive the combinations if repetitions and orders are 
allowed, where n is the number of possibilities to choose from and r is the 
number of times. However, if repetitions and orders are not allowed, then we 
can use the following formula to derive all possible outcomes/combinations 
of a sample:

 C
r

n
= n

r
⎛
⎝⎜

⎞
⎠⎟
= n!
n− r( )! r !( )

.

Note that r! is the factorial.

Experiment II: Undertaking the Rolling of a Die Activity

Rolling a die once has six possible outcomes (the numbers are 1, 2, 3, 4, 5, and 
6). So, we can now work out the probability of the following:

p(1) = 1/6
p(1 or 2) = 2/6 = 1/3

p(1 or 2 or 3) = 3/6 = 1/2

p(1 and 2) =  0/6 (this will yield what is termed as a mutually exclusive event)
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Taking this a little further we can roll a die twice. The two rolls will 
yield 36 possible outcomes (62). This is the sample space for deriving the 
probability of a specific event in this experiment, and the batch of out-
comes can be grouped to form a distribution. There are several types of 
theoretical distributions and one of the objectives of statistical analysis 
is to explore how well empirical distributions (observed from naturally 
occurring phenomena) match these theoretical distributions. The results 
can help us establish confidence bands in inferential statistics, and could 
also serve as the basis for selecting the appropriate techniques in more 
advanced statistical analysis. Below are the most common theoretical 
distributions.

Binomial Distribution

A binomial distribution depicts the sequence of a fixed number of events 
(x = 0, 1, 2, 3, n) in a sample space that can be segregated into two outcomes, 
where x represents the number of times each event occurs in the experiment, 
and these events are independent of each other. The probability (p) of sam-
pling each of the two outcomes in an event is the same [p(X) = 0.5], and the 
probability of sampling the occurrence or nonoccurrence of the event in a 
single experiment is given by p and q, respectively. A binomial distribution 
can be expressed mathematically as follows:

 
p X( ) = n!pxqn−x  

X! n−X( )!

p(X) gives the probability of occurrence or nonoccurrence in n binomial 
experiments whereas X! represents the factorial. It involves the examination 
of the probability of discrete events and is evident when there are two mutu-
ally exclusive outcomes, for example yes–no, success– failure, male–female, 
head–tail, or absence–presence events. This is typical of geographic applica-
tions that can be expressed using a binary framework, including the absence 
or presence of vegetation/animal species in a defined geographic location; 
whether people residing in a neighborhood have a  college-level education 
or not; and whether the application of  pesticides to an agricultural field 
improves crop yield or not. Let us now consider several examples of  binomial 
distribution to help our understanding further. In MS Excel, the p(X) formula 
would look like this: = ((FACT (n) × ((p)^x) × ((q)^(n–x)))/(FACT (X) × (FACT 
(n–X)))). One could use the binomial distribution function.

Experiment I: If a traveler from the city of St. Louis on the way to Chicago 
randomly stops at five convenience stores, find the probability that the trav-
eler stops at exactly three stores. Each stop has six possible choices.
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p 3( ) =

5! 1
6

⎛
⎝⎜

⎞
⎠⎟
3

  5
6

⎛
⎝⎜

⎞
⎠⎟
5−3

  

3! 5− 3( )! =120× 0.00462963× 0.694444
3× 2× 2

= .032

Experiment II: In the last 3 years, the U.S. Transportation Security 
Administration has found that 40% of the passengers passing through 
Chicago’s O’Hare International Airport had banned liquids exceeding 100 
mL. If 10 passengers are selected randomly, find the probability that at least 
6 of them have banned liquids. To find this probability, we have to calculate 
individual probabilities for 5, 6, 7, 8, 9, or 10 and then add them up to get the 
answer.

 
p 5( ) = 10! 0.4( )5   0.6( )10−5   

5! 10− 5( )!  = 3628800 ×0.01024 × 0.0776
120×120

= .2007

 
p 6( ) = 10! 0.4( )6   0.6( )10−6   

6! 10− 6( )!  =120× 0.00462963× 0.694444
720× 24

= .1115

 
p 7( ) = 10! 0.4( )7   0.6( )10−7   

7! 10− 7( )!  =120× 0.00462963× 0.694444
5,040× 6

= .0425

 
p 8( ) = 10! 0.4( )8   0.6( )10−8   

8! 10− 8( )! =120× 0.00462963× 0.694444
40,320× 2

= .0005

 
p 9( ) = 10! 0.4( )9   0.6( )10−9   

10! 10− 9( )! =120× 0.00462963× 0.694444
363,880×1

= .00003

 
p 10( ) = 10! 0.4( )10   0.6( )10−10   

10! 10−10( )!  =120× 0.00462963× 0.694444
3,628,800×1

= .0001

Therefore, p (at least six of them have banned liquids) = .2007 + .1115 + .0425 + 
.00005 + .00003 + .0001 = .3549.

Poisson Distribution

An ordered or ranked series of spatial outcomes that are truly the result of 
random processes can be expressed using Poisson probabilities. Generally, 
a Poisson distribution is used under the following circumstances: (1) when 
there is a specified interval for an event (equally segregated spatial areas 
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TASK 3.1 USING THE POISSON DISTRIBUTION FUNCTION

To illustrate the use of the Poisson distribution function, let us consider 
several examples of electrical storms in four major cities, a lightning 
strike occurrence in Kampala, and lightning deaths in America.

or temporal sequences) and it is possible to count how many events have 
occurred; (2) when the events occur independently of each other both in 
space and time; (3) when each of the two outcomes in an event is virtually 
zero; (4) when there are low-occurrence events, rare events, isolated events, 
or a low-density pattern, and (5) when the average rate is known for a speci-
fied number of occurrences for an event. In spatial analysis, we apply Poisson 
probability distribution to study the degree of randomness in point spatial 
patterns.

The Poisson probability distribution can be expressed mathematically as 
follows:

 p X( ) =  e
−λλX   
X!

where e represents the exponential constant value (2.71828), λ is the mean 
 frequency, X is the number of occurrences, and X! is the factorial. In MS 
Excel, the p(X) formula would look like this: = (((Exp (–λ) × (λ X̂)/(FACT 

(X))))). One could use the Poisson distribution function.

 1. On average, electrical storms occur about 31 days per year in New 
York. Suppose we observe 28 days a year. What will be the probabil-
ity that we observe electrical storms?

 
X = 28 : p 28( ) = 2.71828

−313128   
28!

= .0647

The probability will be 6.45%.
 2. On average, electrical storms occur on about 21 days per year in both 

Paris and Rome. Suppose we observe 14 days a year. What will be 
the probability that we observe electrical storms?

 
X = 14 : p 14( ) = 2.71828

−212114   
14!

= .0282
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The probability will be 2.82%.
 3. On average, electrical storms occur on about 16 days per year in 

London. Suppose we observe 14 days a year. What will be the prob-
ability that we observe electrical storms?

 X = 14 :  %p 14( ) = 2.71828
−161614   
14!

= .093016.

The probability will be 9.3%.
 4. On average, the residents of Kampala, Uganda, hear thunderstorms 

240 days per year, one of the highest rates in the world. Suppose we 
observe 200, 220, or 250 thunderstorm occurrences per year. What 
will be their probabilities? We obtain .008 (0.08%), .0114 (1.1%), and 
.0205 (2.05%), respectively.

 5. On average, lightning kills about 100 Americans and inflicts another 
500 injuries per year. Suppose we observe 84 and 95 death occur-
rences, and/or 486 and 490 injury occurrences. What will be prob-
abilities for these occurrences? The probabilities for the death 
occurrences will be .0112 (1.1%) and .0360 (3.6%), respectively; like-
wise, for injuries the probabilities will be .0148 (1.5%) and .0163 
(1.6%), respectively.

 6. Another completed example is provided in Table 3.7.

TABLE 3.7 

Worktable for Poisson Probabilities of Observed Road Fatalities per Every 100,000 
Inhabitants per Year Occurrence for Selected Countries, WHO Global Status 
Report 2009

Country
Number of Road 

Fatalities per Year

Observed 
Frequency in a 

Year

Observed 
Probability of 

Occurrence 

China  5.1  3 .1347
Eritrea 48.4 27 .0003
Ghana 29.6 27 .0680
Ireland 4.06  3 .1924
Kenya 34.4 27 .0324
Mauritius 11.1 18 .0154
Nigeria 32.3 27 .0483
South Africa 33.2 27 .0412
South Korea 12.7 18 .0352
Sweden  2.9  3 .2237
Uganda 24.7 27 .0689
United States 12.3 18 .0295



77Using Statistical Measures to Analyze Data Distributions

Normal Distribution

Many times we use binomial and Poisson distributions to describe dis-
crete random variables, but to adequately describe continuous probability 
of variables we use the normal distribution. We can describe the prob-
ability of a normal distribution using the mean and standard deviation. 
The distribution of a random variable can be visually represented using a 
histogram plot. In a normal distribution, the values in a histogram should 
form a normal curve. However, it should be known that the distribution 
of a random variable displayed in a histogram can spread out in numer-
ous ways that depict the three measures of center, mean, median, and 
mode. These numerous ways include spreading out toward the center, left, 
and right. The distribution may also depict multiple modes in the random 
variable; sometimes there is only one mode, or two different modes. When 
the distribution of a random variable is toward the center without any 
bias toward the left or right, it is typically described as normally distrib-
uted. Its distributional shape reflects a bell curve, implying that its mean 
is equal to the median and mode, and it is symmetrical from the center. 
Thus as indicated in Figure 3.5, in a bell-shaped curve 50% of the values 
are less than the mean (left segment of the normal curve) and the other 
50% of the values are greater than the mean (right  segment of the normal 
curve). In statistical analysis, if a normal distribution is evident in any 
set of observations then it is possible to derive several useful conclusions 
from it.

0

One standard deviation at 68.27%

Two standard deviation at 95.45%

�ree standard deviation at 99.73%

(z)

0.0014 0.00140.0228 0.0228

0.1359 0.1359

0.3413 0.3413

0.6826
0.4772

+1–1–2–3 +2 +3

FIGURE 3.5 
Different segments of the Z-value under the normal curve.
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Mathematically, a normal distribution of a random variable, x, can be 
defined as follows:

 p x( ) =  1
2πσ

 e−(x−µ)2/2σ2

where both π and e are constants, equal to 3.14159 and 2.71828, respectively, 
μ is the mean of x, and σ is the standard deviation of x. In MS Excel, the 
p(X) formula would look like this: = (1/(SQRT (3.14159 × 2)) × ((EXP (–(((x−μ)/
(σ)^2)/2))))). One could use the normal distribution function.

We can describe the distribution of data values (e.g., R variable) using the 
standard deviation. We derive values that are within one standard devia-
tion (x −σ  ≤ R ≤ x +σ), two standard deviations (x − 2σ  ≤ R ≤ x + 2σ) , and 
three standard deviations (x − 3σ  ≤ R ≤ x + 3σ) . Also to be successful in test-
ing hypotheses or comparing different observations, we can derive a set of 
statistics called the Z-score. The Z-score is a standard normal transforma-
tion that offers a better metric for comparing such observations. The Z-score 

is derived as: xi − x
σ

 using the mean and standard deviation of the random 

variable. Once the Z-score is calculated, we can look for the probability p(Z < 
z) in the standard normal distribution Z-score.

TASK 3.2 USING THE NORMAL DISTRIBUTION

 1. Suppose that the tree height in samples from Chicago neighbor-
hoods has a mean of 38.3 m and a standard deviation of 17.2 m. 
What is the probability that trees in a randomly selected tree 
sample will be (a) less than 51 m, (b) more than 51 m, and (c) 
between 26 and 66 m?

 a. Normal distribution probability of less than 51 m
  We can solve this problem in MS Excel using this normal 

distribution probability formula = NORMDIST (x, mean, 
standard deviation, TRUE).

  This returns p(x < 51) = .771618, that is, 77.2%.
 b. Normal distribution probability of more than 51 m
  We simply subtract 1 from the probability reported above: p(x 

> 51) = 1–p(z < .771618) = 1 – .771618 = .228382, that is, 22.8%.
 c. Normal distribution probability between 26 and 66 m
  We solve this by obtaining the probabilities for 26 and 66 

m just as we did above, then subtract the larger probability 
from the smaller probability to obtain the answers for 26 m, 
which returns a probability of .239068, and 66 m, which 
returns a probability of .946983.

  p(26 < x < 66) = .946983–.239068 = .707915, that is, 70.8%.
(Continued)
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TASK 3.3 USING Z-SCORE TO ASSESS THE 
RELATIVE POSITION IN DATA DISTRIBUTIONS

Z-scores can be used to describe how the distributions of observations 
fit within the standard normal distribution or compare different normal 
distributions with similar standard deviations. These scores can also 
be used during a data screening process to detect univariate outliers. 
These outliers are z-scores with values that are three standard devia-
tions below or above the mean in a data distribution. On detection of 
outliers, one may wish to speculate on the underlying reasons for their 
occurrence such as (1) they may simply be the result of errors in data 

TASK 3.2 (Continued) USING THE NORMAL DISTRIBUTION

 2. Suppose that the blood lead levels among children from 
New York City have a mean of 8.3 μg of lead per deciliter of 
blood (μg/dL) and a standard deviation of 4.6 μg/dL. What 
is the probability that blood lead levels among children in a 
 randomly selected blood testing sample will be (a) less than 
10 μg/dL, (b) more than 10 μg/dL, and (c) between 5 and 
20 μg/dL?

 a. Normal distribution probability of less than 10 μg/dL
  We can solve this problem in MS Excel using this normal 

distribution probability formula = NORMDIST (x, mean, 
standard deviation, TRUE).

  This returns p(x < 10) = .644147, that is, 66.4%.
 b. Normal distribution probability of more than 10 μg/dL
  We simply subtract 1 from the probability reported above: 

p(x > 10) = 1–p (z < .644147) = 1 – .644147 = .355853, that is, 
35.6%.

 c. Normal distribution probability between 5 and 20 μg/dL
  We solve this by obtaining the probabilities for 5 and 20 μg/

dL just as we did above, then subtract the larger probability 
from the smaller probability to obtain the answers for 5 μg/
dL, which returns a  probability of .236566, and 20 μg/dL, 
which returns a probability of .994512.

 p(5 < x < 20) = .994512 – .236566 = .757946, that is, 75.8%.

(Continued)
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 1.  Derive and compare the Z-scores for corn and soybean production 
(n = 102). (TIP: add a z-score field in the attribute table; convert the 
raw score to z-score using this formula (X-mean)/standard devia-
tion). The results would look like what is presented in Table 3.8. The 
normal distribution curve for corn and soybean production is pre-
sented in Figure 3.6.

 2. Now map the z-scores for both using the standard deviation and 
natural break classification methods. Set standard deviation at 1 Std. 
Dev. interval size. The maps for standard deviation and natural clas-
sification methods would look like those in Figure 3.7.

Comment on the spatial patterns of the z-scores in relation to corn and soy-
bean production in Illinois. Do outliers exist for corn and soybean produc-
tion? If yes, describe the spatial distribution of these outliers. Speculate on 
why these outliers exist. There are wide variations in crop acreage at county 
level in Illinois as is evident in the standard deviation (134,796.97) and a 

TASK 3.3 (Continued) USING Z-SCORE TO ASSESS THE 
RELATIVE POSITION IN DATA DISTRIBUTIONS

entry, or failure to specify missing value codes in the data; (2) the spe-
cific cases may have come from a different population but inadvertently 
included as a member of the current sample; and (3) they could be legit-
imate cases with extreme values that far exceed the norm in the rest 
of the sample data. The role of the data scientist is to rule out the first 
two situations, and then proceed to further examine the distributional 
patterns and causes of the cases that are rightfully classified as outli-
ers. To illustrate the applications, let us explore the normal probabil-
ity distribution for the Illinois corn and soybean production data using 
Chapter3_Data_folder (data files: Illinois_cnty_agricultural_statistics or 
agricul_ILL_stats3). This data was introduced earlier in Chapter 2.

TABLE 3.8 

Z-Scores for Corn and Soybean Production

CNTY_FIPS Z-Score (Corn) Z-Score (Soybean)

189 −0.457798016  1.352524176
027 −0.503243101  0.312944136
157 −0.803096471  0.230400614
191 −0.594164224  0.661305116
119 −0.353950951  0.682067837
— — —
069 −1.272850448 −1.608114855
043 −1.238009835 −1.612017622



81Using Statistical Measures to Analyze Data Distributions

narrow standard deviation (78.60) in the average crop sale price, which indi-
cates small variation among all counties in Illinois. Soybean production also 
has a wide variation (standard deviation = 2,562,284.67), whereas soybean 
yield has a narrow one (standard deviation = 4.95). Corn production has the 
largest variance and the largest range, whereas wheat production has the 
smallest variance and the smallest range. However, corn production also has 
the largest mean and wheat the smallest. Overall, the statistics show that corn 
is the most common crop in Illinois and wheat the least common. Overall, 
there is a greater range of spatial distribution in soy production compared to 
corn. The highest corn producing area is more toward the north central area 
of Illinois, whereas the highest producer of soybean is more toward the east 
central. It seems that there is some overlap between high corn and soybean 
producing counties but they do not follow exactly the same spatial pattern. 
Corn production by county does not deviate much from the mean in the 
negative direction as soy production does.
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FIGURE 3.6 
Upper panel represents the standard normal curve for corn production, whereas the lower 
panel represents the standard normal curve for soybean production in Illinois.
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Conclusion

In this chapter, we have learned the important concepts that underlie tra-
ditional statistical analysis and the essential role they play in spatial sta-
tistics. The descriptive measures that summarize the center and spread 

(a) (b)

(d)(c)
Standard deviation classi�cation

z-Score distribution
for soybean

z-Score distribution
for soybean

z-Score distribution
for corn

z-Score distribution
for corn

Less than –1.5 standard deviation

From –1.5 to –0.50 standard deviation

From –1.61 to –0.82

From –0.82 to –0.06

From –0.06 to 0.63

From 0.63 to 1.35

From 1.35 to 3.17

From –1.27 to –0.92

From –0.92 to –0.42

From –0.42 to 0.24

From 0.24 to 1.15

From 1.15 to 3.04

From –0.50 to 0.50 standard deviation

From 0.50 to 1.5 standard deviation

More than 1.5 standard deviation

Less than –0.05 standard deviation

From –0.50 to 0.50 standard deviation

From 0.50 to 1.5 standard deviation

From 1.5 to 2.5 standard deviation

More than 2.5 standard deviation

Standard deviation classi�cation

Natural break classi�cation

Natural break classi�cation

FIGURE 3.7 
Spatial distribution of corn and soybean production in Illinois.
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of distributions were presented for all data types including those that are 
specifically tailored for spatial data. These were followed by a presenta-
tion of the fundamentals in probability theory and the primary forms of 
theoretical distributions that characterize both discrete and continuous 
variables. Following are some challenge exercises to help underscore these 
key concepts.

Challenge Assignments

TASK 3.4 GENERATE AND INTERPRET 
TRADITIONAL DESCRIPTIVE STATISTICS

 1. The data for completing this Challenge Assignment is located 
in Chapter3_Data_folder. Navigate to the agricul_ILL_stats3. 
shp file. Open the database file using MS Excel or if you have 
ArcGIS, use it to open the shapefile. Explore this dataset and 
generate some descriptive statistics for the following fields/

  columns: NO_FARMS07, AVG_SIZE07, CROP_ACR07, and 
AVG_SALE07. Fill in the correct statistics for each of these 
fields in Table 3.9.

 2. In Table 3.10, compile these statistics for corn, soybean, and 
wheat grain production for each of their four fields.

 3. Use the results from the three sampling designs from Chapter 2,  
Task 2.3 to generate three tables on additional descriptive sta-
tistics for corn, soybean, and wheat production. We know that 
one important factor for choosing the appropriate sampling

TABLE 3.9 

Descriptive Statistics for the Agricultural Variables

Minimum Maximum Sum Mean
Standard 
Deviation

NO_FARMS07
AVG_SIZE07
CROP_ACR07
AVG_SALE07

(Continued)
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TASK 3.5 GENERATE AND INTERPRET 
DESCRIPTIVE SPATIAL STATISTICS

Noise-level data from Permanent Noise Monitor Locations were 
obtained from the City of Chicago Department of Aviation website. 
The stations are located in the surrounding communities of the air-
port. Noise-level data are reported in the Aircraft Noise Reports and 
are normally averaged on a monthly basis. The Noise Report summa-
rizes measurements from each of the 34 permanent noise monitors. 
Currently, the dataset covers a 7-year study period (2004–2010). We can 
assess the environmental impacts of aircraft noise disturbance on the 
surrounding neighborhoods using the data. Most studies suggest that 
noise levels considered bearable for most human habitants range from 
60 dB to 70 dB on average day/night sound levels decibel (dB mea-
sures the ratio of a physical quantity, in this context the signal-to-noise 
ratios).

TASK 3.4 (Continued) GENERATE AND INTERPRET 
TRADITIONAL DESCRIPTIVE STATISTICS

  method is the standard error, that is, using the sample as a 
method of estimating the population. Another factor is the 
standard deviation, indicating how much variation exists from 
the mean.

  Based on these two factors, what is the most appropriate sam-
pling design? Explain.

 4. Comment on the distribution of summary statistics in 
Questions 1 and 2.

TABLE 3.10 

Statistics for Corn, Soybean, and Wheat Grain

Minimum Maximum Sum Mean
Standard 
Deviation

Corn
Soybean
Wheat

(Continued)
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Review and Study Questions

 1. What are descriptive statistics? Use concrete examples to illustrate 
their use in statistical analysis.

 2. Using measures of center and spread, explain the distinction 
between traditional descriptive statistics and their counterparts in 
spatial statistics.

 3. What are the benefits of exploring statistical and spatial 
distributions?

 4. Distinguish between descriptive and inferential statistics.
 5. Distinguish between exploratory and confirmatory data analysis.

Glossary of Key Terms

Descriptive Statistics: A useful starting point in statistical analysis. These 
consist of tabular, graphic, and statistical summaries that describe 
the general attributes of the data in a given study.

Exploratory Data Analysis: An approach that enables a data scientist to 
thoroughly screen the data to uncover the underlying structure, 
identify outliers and anomalies, and test the key statistical assump-
tions prior to more advanced statistical analysis.

TASK 3.5 (Continued) GENERATE AND INTERPRET 
DESCRIPTIVE SPATIAL STATISTICS

 1. Add the Noise_Project and Study_Area_Outline fea-
ture classes from Noise_OHare_Geodatabase.mdb located in 
Chapter3_Data_folder.

 2. Generate the spatial mean (mean center), median center, stan-
dard distance, and directional distribution using the Noise_
Project point feature class. Comment on the spatial distribution 
of the noise level events surrounding O’Hare International 
Airport.

 3. State a working hypothesis regarding the spatial distribution 
of noise levels in the study region. Also, suggest a few factors 
that might influence the spatial distribution of noise levels in 
the study region.
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Inferential Statistics: These consist of statistical techniques that use informa-
tion generated from sample data to draw conclusions about the gen-
eral population. Analysis can be based on direct or point estimates 
of the population, or they could be based on indirect approaches that 
include confidence bands or hypothesis testing.

Multivariate Statistics: The detailed and simultaneous assessment of two or 
more variables in a database for a range of purposes including data 
explanation, prediction, classification, and data reduction.

Univariate Statistics: The detailed assessment of all cases within a single 
variable to describe the data distribution using measures of center, 
spread, relative position, and shape/normality.

Z-Score: This standardized score is obtained by subtracting the sample mean 
from the raw score and dividing the value by the sample standard 
deviation. It has several applications in statistical analysis including 
the detection of univariate outliers.
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4
Engaging in Exploratory Data Analysis, 
Visualization, and Hypothesis Testing

LEARNING OBJECTIVES

 1. Explore trends in the development and use of data visualization 
methods.

 2. Understand how to create and interpret graphical summaries.
 3. Understand the uses and applications of hypothesis testing.
 4. Learn how to compute and interpret tests of independent sample 

means.
 5. Learn how to compute and interpret chi-square tests.

Earlier in Chapters 2 and 3, we suggested that a good place to start with data 
analysis is to compute the descriptive measures that summarize the data dis-
tribution. In that chapter, we devoted coverage to statistical summaries that 
best describe the center, spread, shape, and relative position of the observations 
while also presenting the optional measures that apply to spatial data. In a 
similar fashion, we will now explore the use of graphical summaries and data 
visualization methods as complementary tools in data exploration and analysis. 
As the familiar adage goes, “a picture is worth more than a thousand words,” 
so becoming adept in the growing field of data visualization will significantly 
enrich our analytical skills. These tools will enable us to explore and visualize 
data in ways that would help us discern new information that would otherwise 
not be readily apparent when using conventional statistical tools. Data visu-
alization methods are integral to what we might call “value-added” statistics 
in the sense that they enable us to go from large amounts of diverse forms of 
data to analyze, synthesize, and graphically display meaningful information 
with the expectations of possibly constructing and conveying new knowledge 
for use in decision making. These methods are effective in exploring differ-
ences between phenomena, identifying expected as well as unexpected pat-
terns, detecting clusters, revealing new relationships, and more. Drawing from 
several areas including spatial data mining, machine learning, geographic 
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information systems (GIS), and cognitive science we have many approaches in 
data visualization with applications in several domains. For example, we can use 
visualization tools and methods to simulate various real-world environments 
where users can test different scenarios; provide exploratory functions; prac-
tice/provide a real world environment/experience; represent two- dimensional 
(2D) and three-dimensional (3D) environments; show spatial relationships; 
model different scenarios, for example, urban environment; integrate real-time 
applications (wearable computers) with virtual environments, enable real-time 
applications, provide timely information/updates; support landscape viewing 
and drafting; engage the human visual system; and support the formulation of 
study hypotheses. The visualization community has also focused on develop-
ing visualization algorithms, tools, methods, and strategies, such as the social 
network analysis method, which is currently used for visualizing online social 
networks (Hoff et al. 2002; Heer and Boyd 2005; Perer and Shneiderman 2006; 
Luo et al. 2011; Luo and MacEachren 2014).

Given the cognitive and inherently subjective nature of synthesizing and 
interpreting the graphical displays, it is often best to validate the visual 
findings through hypothesis testing. There are also times when the results 
derived from hypothesis testing and statistical validation are best depicted 
through visual plots, charts, graphs, and maps to communicate the findings 
to the intended audience. As such, the processes of data exploration and visu-
alization are closely aligned with hypothesis testing methods, a linkage that 
forms an integral part of spatial analysis and one that is clearly recognized 
and valued by geographers. Our plan in this chapter therefore is twofold. 
First, we will explore the emerging field of data visualization and the contrib-
utory role of cartography and GIS in the development of these tools. This dis-
cussion will be accompanied by examples of how standard plots are derived 
and the interpretation of the derived images. The second half of the chapter 
will be devoted to the key steps in hypothesis testing. For hypothesis testing, 
our focus will be on Student’s t-test and chi-square (χ  2) statistics, which are 
among the most commonly used significance tests. The examples presented 
in the chapter will be foundational, with the primary goal of introducing 
the reader to the core concepts and tools in data visualization. Thereafter, in 
subsequent chapters of the book, we will share examples that entail the use of 
more advanced visualization tools, and statistical validation methods.

Exploratory Data Analysis, Geovisualization, 
and Data Visualization Methods

Data visualization, geovisualization, visual analytics, and exploratory 
data analysis (EDA) are all part of a growing domain of data-rich analyti-
cal, graphical, and interactive methods that are now available for screen-
ing, exploring, and synthesizing information. In the era of big data, these 
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approaches are increasingly capable of converting diverse, dynamic, and 
complex forms of data into valuable information, and presenting this infor-
mation in a comprehensible format that is beneficial to end users. A survey 
of the emerging literature on EDA, geovisualization, and data visualization 
may lead one to believe that these are three disparate fields with different 
end goals. However, a close scrutiny of the embedded tools and applications 
reveals many similarities in the core goals and objectives. These include the 
following: (1) data representation, (2) feature exploration and identification, 
(3) pattern recognition, (4) human–computer interaction, (5) knowledge con-
struction and storage, and (6) effective communication and transmission of 
knowledge. These commonalities are elaborated on in the ensuing sections.

Data Visualization

The term data visualization is a relatively new and encompassing term for 
all visualization methods that are currently in use even as more techniques 
are being developed. In an earlier article by Lengler and Eppler (2007), a 
visualization method was appropriately defined as “a systematic, rule-based, 
external, permanent and graphic representation that depicts information in 
a way that is conducive to acquiring insights or communicating experiences” 
(p. 1). This definition adequately captures the analytical goals noted in the 
preceding section including the need for representation, knowledge acquisi-
tion, and effective communication. In the same article, the authors compiled 
a comprehensive listing of more than 100 visualization methods with the 
intention of pooling together the multiple streams of analytical procedures 
that are being developed in several areas. Calling this listing of methods a 
“periodic table of visualization methods,” the authors readily acknowledged 
that data visualization draws from several disciplines including statistics, 
human–computer interaction, cartography, graphic design, and architecture.

Geographic Visualization

Although the foundational role of cartography in data visualization was not 
explicitly recognized in the Lengler and Eppler (2007) study, several other 
studies have effectively outlined the valuable contributions of this field and 
geography as a whole in the development of these methods. For example, 
Nollenburg (2007) explored the driving forces in visualization noting that 
geographic visualization has played an important role in human history well 
before the advent of the computer. Likewise, a seminal article written earlier by 
MacEachren and Kraak (2001) outlined the role of geovisualization techniques, 
as well as the research prospects and challenges that lay ahead. Drawing from 
their work on the International Cartographic Association’s (ICA) Commission 
on Visualization and Virtual Environments, they defined geovisualization 
as an integration of “approaches from visualization in scientific computing 
(ViSC), cartography, image analysis, information visualization, exploratory 
data analysis (EDA), and geographic information systems (GISystems) to 
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provide theory, methods and tools for visual exploration, analysis, synthesis 
and presentation of geospatial data” (p. 1). Four themes and related challenges 
were cited in this article as relevant in the development of geovisualization 
tools: (1) representation of geospatial data, (2) integration of visuals with compu-
tational methods, (3) interface design for geovisualization environments, and (4) 
the cognitive/usability aspects (MacEachren and Kraak 2000).

Within the last decade, several studies have highlighted the foundational 
role of GIS and cartography in visual analytics including the increasing role 
of interactive spatial mapping (Jacquez et al. 2005), spatiotemporal analysis 
(Andrienko et al. 2010), and visualization of spatial data (in R using ggmap 
by Kahle and Wickham 2013). Several advocates have appealed for ongoing 
research to expand the range of visual analytic GIS tools that are accessible 
to both amateur and professional data scientists with a core set of features 
and capabilities to handle large, complex spatial and temporal data (Guo 
2007; Andrienko et al. 2010). Efforts are also underway to create multidisci-
plinary teams to address key challenges such as the following: (1) scalability 
of geovisual tools to handle the data size, variety, dimensionality, and syn-
ergistic linkages; (2) promoting interoperability and consistency in seman-
tics, semiotics, and use interactions; (3) advancing visualization of complex 
spatial and temporal dimensions; (4) seamlessly linking data exploration 
with validation; and (5) providing ongoing support for knowledge capture 
and manipulation (Andrienko et al. 2007). These studies also emphasize the 
need for cognitive features that are required to ensure that the end users can 
decipher the implicit knowledge embedded in these visuals, while using the 
information to stimulate the generation of new ideas.

Two important visualization concepts that influence how graphical methods 
are applied to accomplish visualization tasks are expressiveness and effective-
ness (Oyana et al. 2011). Expressiveness is defined as the graphical methods 
used to convey meaning without leaving out any facts or unintentionally add-
ing or implying facts. Effectiveness measures how well the selected graphical 
method conveys meaning relative to other methods. Also, according to the 
popular MacEachren’s 3D cartographic-visualization conceptual model, three 
major components guide the geovisualization process: private visual think-
ing, levels of interaction, and public human communication (MacEachren 
and Kraak 1997). Private visual thinking normally refers to situations where 
visualization scientists explore their own data. And when the results are 
effectively communicated to the public using well-designed maps or charts 
then we can describe this as a public visual communication. Both private and 
public visual thinking processes have different levels of interaction. In private 
visual thinking, for example, the level of interaction is normally high because 
of the nature of data exploration and knowledge discovery process, while in 
public visual communication the level of interaction is low.

In summary, the process of geovisualization entails aspects of human cogni-
tion, communication, and formalism linked by interactive visualization. Data 
exploration tasks involve making sense of the unknown through visualization 
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techniques. During the data exploration phase, there are high levels of inter-
action and engagement, and when the known is determined and effectively 
communicated to a wide audience, we can determine whether the knowledge 
or information was successfully conveyed. The geovisualization process activ-
ities involve effective encoding and decoding of data or information through 
a scientific process that requires a solid understanding of human cognition.

Exploratory Approaches for Visualizing Spatial Datasets

Even as new and high-level visualization techniques are rolled out, it is impor-
tant to have a foundational knowledge of the traditional approaches that are 
used to graphically summarize data. These belong to a suite of applications 
that are classified as EDA. The philosophy in employing EDA methods is to 
maximize insights into a dataset, search for fundamental clues about a data-
set, and uncover the hidden structure underlying a dataset. These techniques 
provide the analytical means by which useful aspects of a dataset can be pre-
sented in an understandable format. Pioneering work in EDA was completed 
by Tukey (1977), and since then, there have been significant contributions and 
improvements in the exploration and presentation of a dataset. EDA methods 
also provide the means through which we can learn about potential relation-
ships and/or differences among groups of observations in the data, and then 
formulate a study hypothesis (Tukey 1977; Chambers et al. 1983; Tufte 1983).

In visualizing a spatial dataset, the statistician has to determine the appro-
priate mark (select visual variables or decide on the best combination of 
visual elements that effectively depict the dataset) that will encode the data, 
size and scale, and the dimensions to be explored. It should be noted that 
simpler graphs offer a higher ability than complex graphs to effectively com-
municate information to a wide audience. Complex graphs pose a number of 
challenging problems. For example, a large number of visual elements may 
be used, which creates clutter. Also, they could simply compromise comput-
ing performance once the limits of the viewing platform are reached.

A variety of EDA techniques are available for exploring data ranging from 
plotting raw data to presenting them in a format that maximizes the natural 
pattern recognition that matches the viewer’s abilities. Commonly used graphs 
include histograms, pie charts, bar charts, line graphs, boxplots, scatterplots, 
and maps. Throughout the text, we will be showcasing examples of these differ-
ent visualization methods focusing on the more advanced approaches. For now 
however, we will begin with some of the commonly used forms of visualiza-
tion in data analysis: histograms, boxplots, scatterplots, and matrices. We will 
explore the use of parallel coordinate plots (PCPs) as a high multidimensional 
visualization tool. We also use several other graphics to explore and present 
a number of spatiotemporal datasets. This will help us to learn and further 
deepen our knowledge on visualization concepts and methods.
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Histogram: One of the simplest means of generating a graphical summary 
is by plotting the frequency distribution of a single variable (univariate) 
that is measured on an interval scale. It reveals the center of the data (mean, 
median, and mode), the spread of the data (dispersion or unevenness), the 
shape and distribution (skewness) of the data, and evidence of potential out-
liers in the data. A probability or a goodness of fit test curve can also be 
drawn on a histogram to verify the distributional model. Figure 4.1 depicts 
the distributional patterns of obesity rates observed within the counties in 
New York State and Mississippi. On the left panel is a histogram showing the 
distribution for New York and the normal probability curve. There appears 
to be a slight negative skew, a leptokurtic pattern with a few outliers to the 
left of the distribution. The right panel is the histogram for the counties 
in Mississippi. The distribution is mesokurtic with observations trending 
toward a more normal distribution. Overall, on average, obesity rates are 
almost 10% higher in Mississippi than New York.

Boxplot: Another visual approach that is useful for summarizing a set of 
observations measured on an interval scale is the boxplot. The boxplot shows 
the shape of the distribution, the center of the data, and its dispersion. It 
is sometimes called a five-number graphic summary because the diagram 
specifically captures five statistical measures: the minimum and maximum 
values (range), lower and upper interquartiles, and the median. This plot can 
be used to indicate whether the distribution is skewed or not, and the pres-
ence of outliers. Plotting the distribution for two or more groups allows for 
a comparative assessment of the observed patterns. For example, Figure 4.2 
shows the distribution of obesity rates (percent) across counties within the 
two states of New York and Mississippi. There is slightly more variability in 
New York and the results confirm the presence of several extremes scores 
(denoted as circles) and outliers (stars) in New York. Specifically, two coun-
ties (New York and Westchester) are outliers with significantly lower lev-
els of obesity (below three standard deviations of the mean). Three other 
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counties have lower levels (Tompkins, Queens, and Nassau) but they are 
not considered to be outliers in the distribution. It may be worth comparing 
these results to the preceding histograms to see which of the two plots is 
most effective at communicating the findings. The observations can be con-
firmed by reviewing the descriptive measures shown in Table 4.1.

Scatterplot: This is a visual representation that shows the direction and 
strength of a relationship between the two variables (the dependent Y against 
independent X). Specifically, the scatterplot explores whether the values of Y 
vary systematically with the corresponding values of X. The plot can be based 
on raw scores obtained for the two variables or it can be based on residuals 
obtained after fitting a regression model (as shown in Figure 4.1). The pat-
terns reveal statistical relationships or associations between two variables that 
manifest themselves by any nonrandom structure in the plot. Y is plotted on 
the Vertical Axis of the graph and represents the dependent/response variable 
whereas X is plotted on the Horizontal Axis of the graph and represents the 
independent/predictor variable. The plot can also serve as a useful diagnostic 
tool for assessing causal associations between variables. If a strong association 
exists in the data then it suggests an underlying cause-and-effect mechanism. 
However, because this plot does not necessarily confirm the presence of a 
cause-and-effect, it is still incumbent on the statistician to draw knowledge 
from the underlying science to determine whether there is causality or not.
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To visually explore the relationships among several pairs of variables, the 
best approach to use is a scatterplot matrix. In a single display, the scatter-
plot matrix can depict the relationships among all possible pairs of variables 
selected for analysis. As with a typical correlation matrix, the scatterplot 
matrix is symmetrical with the same number of rows and columns as there 
are variables. The on-diagonal elements are blank and not reported because 
a variable’s relationship with itself is one. Scanning across the lower half (or 
upper half) of the matrix however, one is able to assess the direction (whether it 
is positive or negative), and the potential strength of the observed relationship 
among the variables. It is also possible to identify potential outliers (bivariate) 
in the scatterplot matrix. Data points that are furthest away from other points 
in the distribution could well be extreme cases or outliers and are therefore 
worthy of further examination. Finally, the significance of the observed rela-
tionships can be validated using correlation or regression analysis.

TASK 4.1 INTERPRETING SCATTERPLOT MATRICES

Figure 4.3 depicts the scatterplot matrix derived by exploring healthy 
behaviors and obesity rates within counties in New York and Mississippi. 
Six variables are included in the analysis: percent obese, percent of resi-
dents with limited access to healthy foods, percent of residents that are 
inactive, percent smokers, percent of residents that drink excessively, 
and percent unemployed. Examine the plots depicted in this matrix 
and explain the observed strength and direction between obesity and 
the other variables. What relationship appears to be the strongest and 
weakest?

Using the latter half of the matrix, obesity rates appear to be most 
strongly associated with the percent of inactive residents in these coun-
ties. The relationship appears to be positive, meaning that counties that 
have a higher proportion of inactive residents are likely to have higher 
obesity rates. Similarly, there appears to be a strong positive association 
between obesity rates and unemployment rates in the two states. The 
relationships between smoking rates and the other variables appear 
to be the weakest, and the direction of these relationships is unclear 
in the plots. To validate these visual patterns observed in the matrix, 
one would need to formulate statistical hypotheses and test these using 
Pearson’s correlation test.

Parallel Coordinate Plots: Another means of visually exploring data 
is by using a PCP. The PCP was made popular in data-mining research 
and exploration by Inselberg (1985) and has since become a commonly  
used application in several domains including remote sensing, haz-
ard assessment, climate change modeling, and spatial epidemiology

(Continued)
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TASK 4.1 (Continued) INTERPRETING SCATTERPLOT 
MATRICES

(Inselberg and Dimsdale 1990; Edsall 2003; Huh and Park 2008; Inselberg 
2009; and Ge et al. 2009). PCP is most effective when examining the 
multidimensional attributes and relationships within large continuous 
datasets though it can also be applied to categorical data. Among the 
several touted benefits of using this visualization technique are its abil-
ity to represent complex spatial and spatiotemporal data (Edsall 2003), 
its interactive nature and uniform treatment of multiple dimensions 
(Siirtola and Raiha 2006), its conceptual simplicity and compact appear-
ance (Huh and Park 2008), and its ability to visualize uncertainty and 
potential outliers in a large dataset (Ge et al. 2009).
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A scatterplot matrix depicting obesity rates and health risk behaviors in New York and 
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TASK 4.2 CONSTRUCTING AND INTERPRETING 
RESULTS FROM PARALLEL COORDINATE PLOTS

Table 4.2 presents housing data drawn from the U.S. Census. The decadal 
data spans from 1900 to 2010 for all states including Washington, DC. 
When reviewing the boxplots for various years, one finds that there 
are subtle differences observed between the various times with some 
trending toward more normal distributions whereas others depict 
relatively skewed distributions. Given the temporal sequencing of this 
data, another useful and graphically compact way of depicting the 
trends is by using the PCP.

There are 12 dimensions (variables) that need to be displayed with 
each dimension representing a snapshot of home ownership patterns 
observed during the decennial census. The PCP is most valuable when 
the dimensions are continuous scaled variables (interval/ratio) as in 
the case of the home ownership data. Also, having the same units of 
measurement for all variables (such as percentages in the housing data) 
makes it easier to display these dimensions though this is not a require-
ment to run the procedure.

To create the PCP, each dimension will be portrayed on a vertical 
axis. For the housing data, as there are 12 dimensions (variables), there 
will be 12 vertical axes that are parallel to one another (see Figure 4.4). 
The spacing between these vertical lines has to be consistent though 
many studies have devised ways to enhance this spacing to improve 
the interpretability of the plot. Next, the data points (or coordinates) 
on each axis should be plotted to represent the measurements taken 
for each unit of analysis in the dataset. So for this dataset, one would 
plot the home ownership pattern for each state as observed in 1900, 
1910, 1920 through 2010. Finally, horizontal lines are used to connect 
these data points across the vertical axis to produce the PCP. Figure 4.4 
depicts the line segments for each state plotted across the 12 dimen-
sions (years). Each data item (or unit of analysis) has been graphed 
across multiple dimensions by using a single line of connecting seg-
ments that is called a polyline. In Figure 4.4, each polyline has been 
color coded to improve interpretability. Table 4.3 shows the statistical 
distribution of housing data and Figure 4.5 shows a single dimension 
PCP plot of housing data.

(Continued)
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TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING 
RESULTS FROM PARALLEL COORDINATE PLOTS

The plot shows greater similarity in home ownership patterns 
in the early years with more variability between the states in the lat-
ter years (Figure 4.5). It is safe to assume, therefore, that there is a 
higher correlation in home ownership patterns during the initial years 
of  data compilation (1900s through 1940s), and the strength of this 
association gets progressively weaker in the latter years (1980s through 
2010).

There are ongoing efforts to enhance the PCP including the use 
of approaches such as data brushing, strumming, color customiza-
tion and classification methods (Edsall 2003), changing the spacing 
to detect clusters among variables, and using smoother curves rather 
than straight line segments to connect the axes (Huh and Park 2008). 
Other important features to consider using PCPs and other data visu-
alization tools include algorithms that enhance the human–computer 
interaction. Interactive tools that give the user direct control and abil-
ity to query, store, update, analyze, and present the data are often the 
most effective. Siirtola and Raiha (2006) rightfully contend that this 
active interaction and manipulation is what facilitates discovery and 
the construction of new knowledge. Drawing from the previous work 
of Shneiderman (1996), these scholars present seven critical features to 
have in PCPs and other data visualization tools:

 1. Overview: The ability to gain an overview of a large dataset.
 2. Zoom: The ability to zoom in on key areas of interest.
 3. Delete/Filter/Mask: The ability to delete, filter, or mask unin-

teresting items from the collection of data points.
 4. Data brushing/getting details on demand: Querying the data, 

and highlighting an item or group of observations for further 
scrutiny, or for comparisons with other observations in the 
distribution.

 5. Relate: The ability to view and understand relationships among 
items or multiple dimensions in the data.

 6. History: The ability to save the history of actions taken during 
the analysis and to conduct progressive refinements by undo-
ing, replaying, and modifying those actions.

 7. Extract: The ability to extract a subgroup of information for 
more detailed analysis.
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TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING 
RESULTS FROM PARALLEL COORDINATE PLOTS

TABLE 4.3

Statistical Distribution of Housing Ownership between 1900 and 2010

Year
Observations 

(n)
Minimum 

(%)
Maximum 

(%) Mean (%)
Std. 

Deviation (%)

1900 49 0 80.00 49.90 14.52
1910 49 0 75.70 49.04 13.75
1920 49 0 65.30 47.66 11.93
1930 49 0 63.20 48.42 11.13
1940 49 0 61.10 45.35 10.16
1950 49 33.00 67.50 56.57  7.52
1960 49 41.10 74.40 63.45  6.37
1970 49 46.90 74.40 65.26  5.60
1980 49 48.60 73.60 66.80  5.29
1990 49 52.20 74.10 66.18  4.80
2000 49 53.00 75.20 68.12  4.62
2010 49 54.40 78.70 69.77  4.84

0
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Time (year)
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FIGURE 4.4
Parallel coordinate plot showing multidimensional distribution of housing data from 
1900 to 2010.
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Visualizing Multidimensional Datasets: An Illustration Based 
on the U.S. Educational Achievements Rates, 1970–2012

A series of visualization procedures including those described above 
were applied to a U.S. education dataset compiled from the U.S. Census 
Bureau (1970, 1980, 1990, and 2000) and American Community Surveys 
covering 2006–2010, 2007–2011, and 2008–2012. The multidimensional 
and  multi-temporal datasets were processed using different techniques 
and algorithms and the results summarized in Figures 4.6 through 4.10. 
Figure  4.6 shows the regionalized distribution of educational levels (9th 
grade and higher) using a regionalization algorithm. Table 4.4 shows a 
statistical distribution of education levels. Figure 4.7 shows the regional-
ization of educational levels based on a ranking process of the percent of 
individuals who have attained college education or higher between the 
period covering 1970 and 2010. Figures 4.8 and 4.9 show representations of 
educational achievement rates using single and multiple PCP dimensions 
at the county level. Figure 4.10 shows a visual exploration of local relation-
ships between poverty and educational achievement variables using a local 

TASK 4.2 (Continued) CONSTRUCTING AND INTERPRETING 
RESULTS FROM PARALLEL COORDINATE PLOTS
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FIGURE 4.5
Parallel coordinate plot showing a single dimension of housing ownership data.
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entropy algorithm. The different charts and figures illustrate how one can 
use the visualization process to gain fundamental insights on educational 
achievement rates during the lengthy study period.

Finally, as noted in earlier sections of this chapter, the conclusions drawn 
from all of these graphical displays (histograms, boxplots, scatterplots, PCPs, 
or otherwise) must be validated using statistical significance tests. We will 
discuss these statistical validation processes below.

TABLE 4.4

Statistical Distribution of Educational Achievement Rates between 1970 and 2012

Year
Observations 

(n)
Minimum 

(%)
Maximum 

(%)
Mean 

(%)
Std. 

Deviation (%)

PctColl1970 3108 0.00 38.60  7.29 3.95
PctColl1980 3108 0.00 47.80 11.43 5.44
PctColl1990 3108 3.70 53.40 13.48 6.57
PctColl2000 3108 4.90 63.70 16.50 7.80
PctColl06_10 3108 0.00 70.96 18.99 8.67
PctColl07_10 3108 0.00 72.00 19.21 8.72
PctColl08_12 3108 0.00 72.79 19.43 8.76
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FIGURE 4.8
Parallel coordinate plot showing multidimensional distribution of educational achievement 
rates for 3108 counties.
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FIGURE 4.10
A screenshot shows a visual exploration of local relationships between poverty and educa-
tional achievement variables using a local entropy algorithm.

FIGURE 4.9
Parallel coordinate plot showing a single dimension of educational achievement rates.
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Hypothesis Testing, Confidence Intervals, and p-Values

Hypothesis testing is the process of carrying out statistical assessments of 
a sample and using the results to make inferences about population param-
eters. The true values of population parameters are often unknown and may 
be assessed either directly using point estimation techniques, or indirectly 
through hypothesis testing. The latter is the most common approach in infer-
ential statistics and it embodies the classic tradition of deductive reasoning 
or the “a priori” approach described earlier in Chapter 2. Hypothesis testing 
begins by formulating a hypothetical statement or proposition about the true 
value of the population parameter. The proposed statement could be based 
on prior information about the population parameter generated from pre-
vious studies, observations from data exploration using visualization tools, 
results from a pilot project, or purely based on theoretical grounds. The anal-
ysis then proceeds with the statistical evaluation of the sample data for use 
in validating or denying the proposed statement. Three things are important 
when performing hypothesis testing: (1) the formulation of a hypothesis set 
consisting of both null and alternative hypotheses, (2) a decision regarding 
the test criteria and the level of statistical significance, and (3) choosing the 
appropriate statistical test to evaluate the formulated hypothesis.

The hypothesis set consists of two competing claims that are made about 
the true value of the population parameter. The first claim, the null hypoth-
esis, designated as H0, describes the hypothetical state of affairs. This null 
is the statement under statistical investigation; as the name implies, it is a 
negation and is often contrary to the research hypothesis or the opposite 
of what a data scientist believes to be true. The alternative hypothesis is a 
statement of the research hypothesis, or a conjecture of what a data scientist 
hopes to establish as true based on the empirical observations drawn from 
the sample. This alternative hypothesis is designated as HA, and following 
the statistical analysis, it will be accepted as the true statement when the null 
is rejected. Both hypotheses must be formulated in such a way that they are 
mutually exclusive of each other, but collectively exhaustive of all of the pos-
sible values of the true estimate of the population parameter.

Hypothesis testing also requires a data scientist to predetermine the level 
of statistical significance at which to evaluate the null hypothesis. To do so, it 
is vital to have some knowledge of the probability distribution that measures 
the likelihood of obtaining a certain value out of all possible outcomes. The 
significance level (denoted as α) represents a fixed probability of wrongly 
rejecting the null hypothesis when it is true. The most commonly selected 
probabilities are 0.01 or 0.05, respectively signifying a 1% or 5% chance of 
making the inferential (or Type I) error. The other kind of error (Type II) 
occurs when we do not reject a null hypothesis that is false (denoted by 1−
beta). Another relevant piece of information required to evaluate the hypoth-
esis is deciding on the tails of the probability distribution, and whether one is 
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working with a one-tailed or two-tailed test. Invariably, this depends on the 
overall objectives of the research and the formulation of the hypothesis sets. 
If a data scientist has a sense of the specific direction in which the true value 
of the parameter is likely to fall, a directed or pointed hypothesis set will 
be formulated. Such a hypothesis set will call for a one-tailed significance 
test that uses either the upper or lower tails of the probability distribution. 
On the other hand, a nondirectional hypothesis set in which the population 
estimate is likely to fall within the lower and upper tails of the probability 
distribution will call for a two-tailed significance test.

TASK 4.3 HYPOTHESIS TESTING USING 
STUDENT’S T-STATISTICS

The Student’s t-statistic can be used to test one sample mean, or test the 
difference in means obtained from two samples. Examples of research 
projects that require the test of two sample means include (1) the com-
parison of physical or cultural characteristics of two regions, or two 
spatial units; (2) evaluating the effectiveness of a new drug among 
the treatment (experimental study group) versus a control (placebo 
group); (3) before and after studies such as examining the effectiveness 
of a weight loss prevention program; (4) population health disparities 
between minority and nonminority groups; and (5) health impacts of 
anthropogenic versus natural hazards.

The test of two sample means may be based on independent samples 
or paired samples. An independent samples t-test allows for the com-
parison of means drawn from two samples in which the selection of the 
observations from the first sample has no bearing on the observations 
selected in the second sample. The samples are completely indepen-
dent and unrelated to each other. For example, in Chicago, one could 
choose to compare the prevalence of lead poisoning among minority 
children and nonminority children. For a paired samples t-test, the two 
samples may be related, say from sets of twins, married couples, or 
having  measurements taken repeatedly (but under different scenarios) 
from the same observations to generate the data. For example, one 
could decide to examine water quality in the Susquehanna River before 
and after Hurricane Sandy. The same monitoring stations or sample 
points will be used to generate the data at different times.

In the current task, let us explore the application of the independent 
samples t-test. We will use the obesity data generated for two states: 
New York and Mississippi. We will rely on the descriptive statistics 
reported earlier in Table 4.1.
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The third and perhaps the most critical decision to make in hypothesis 
testing is choosing the appropriate test to analyze the data. Several factors 
come into play here including the nature of the research question, the sample 
size, the measurement scale of the variables, and whether or not the data con-
form to the key assumptions of the statistical test. There are several statisti-
cal techniques for testing all population parameters. Let us work through, 
but most examples are drawn from tests of sample means, proportions, and 
tests of associations. Examples include the use of Student’s t-tests and χ  2 test 
statistics. Let us work through a few examples to illustrate the application of 
these concepts.

Step 1: Formulating the hypothesis set
 H0: There are no statistical differences in mean obesity rates observed 

between New York and Mississippi. The observed means of the two 
states are not significantly different:

 H0 :µNY = µMS

 HA: There are statistically significant differences in mean obesity 
rates observed between New York and Mississippi. The observed 
means of the two states are significantly different:

 HA :µNY ≠ µMS

Step 2: Establishing the level of significance
 The hypothesis set formulated above is nondirectional and there-

fore calls for a two-sided significance test that will enable us to work 
with both tails of the probability distribution. We will conduct the 
test based on a fixed probability of 0.05.

Step 3: Applying the appropriate test
 The test of an independent samples t is based on four assump-

tions.(1) The criterion variable should be measured on an interval/
ratio scale. In the example above, the criterion variable is percent 
obesity, measured on the ratio scale. (2) Data values drawn from 
the two groups are independent from each other. In the example 
above, the data from New York are statistically independent from 
Mississippi. (3) The samples (location 1 and 2) must be drawn from 
normally distributed populations. This is the normality assump-
tion and can be validated during the data screening procedures. 
(4) The two sampled populations must have similar/equal vari-
ances. This is the homogeneity of variance test and can also be 
validated during data screening using the Levene’s test of equal 
variance.
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 Assuming that the samples are approximately normal with equal 
variance, let us use the following equation to compute the t-test:

 

t = x1 − x2
(n1 −1)s12 + (n2 −1)s22

n1 + n2 − 2
1
n1

+ 1
n2

⎛
⎝⎜

⎞
⎠⎟

 where
  x1  is the sample mean for location 1 and x2 is the sample mean for 

location 2.
  s12  is the sample variance for location 1 and s22  is the standard devia-

tion for location 2.
 The degrees of freedom (df) for this is n1 + n2 − 2. For the example 

above, the df is 142.
 As this is a two-tailed significance test, the critical value would be 

determined by dividing the alpha value (α) of 0.05 by two. Therefore, 
the critical t value obtained from a t distribution table at 0.025 with 
142 degrees of freedom is 1.977. So we will reject the null hypothesis 
if the observed t is less than the critical t of –1.977, or greater than the 
critical t of +1.9766.

Computation

Using the information from Table 4.1 presented earlier, the t-statistic is com-
puted as follows:

 

t = 27.6− 36.3
(62−1)3.22 + (82−1)3.12

62+ 82− 2
1
62

+ 1
82

⎛
⎝⎜

⎞
⎠⎟

Statistical Conclusion

As the observed t of –16.73 is less than the critical value of –1.977, the null 
hypothesis must be rejected. Therefore, one can conclude that there is a sta-
tistically significant difference in obesity rates observed between the two 
states. The average obesity rate of 27.6% is significantly different from the 
average of 36.3% observed in Mississippi.

Step 1: Formulating the hypothesis set

 H0: There is no statistically significant relationship between the four 
independent categories of corn and soybean production.

 HA: There is a statistically significant relationship between the four 
categories of corn and soybean production.
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TASK 4.4 HYPOTHESIS TESTING USING χ 2 STATISTICS

Similar to Student’s t-test, the χ 2 test is a versatile significance test that 
is used to evaluate statistical hypotheses. Although the t-test focuses on 
means generated for criterion variables that are continuous, the χ 2 test 
is best for analyzing categorical variables. One of the applications of 
χ 2 is contingency analysis. That is, when data from two or more vari-
ables are organized into categories, we might be interested in knowing 
whether the distribution of the categories observed in one variable is 
contingent on the other variable. The goal is to investigate whether the 
distributions of categories are likely to occur together or whether they 
are statistically independent.

To illustrate this, we will use the Illinois agricultural data generated 
earlier in Chapter 2. We will divide two variables for corn (randomly 
sampling 82 records, so n = 82) and soybean production (n = 102) into 
four categories of 80th percentile and above (tier 1), between 50th and 
80th percentile (tier 2), between 20th and 50th percentile (tier 3), and 
below 25th percentile (tier 4).

To derive the χ  2 test of independence, we will use the following equation:

 
χ2 =

Oij −Eij( )2
Eijj=1

k

∑
i=1

n

∑

where
Oij = the observed number of cases
Eij = the expected number of cases
n, k = number of categories for respective variables

Now fill in the frequency for each tier in Table 4.5 and use it to calculate 
your χ 2 in Table 4.6.

 For cell a, the expected value would be (a+b+c+d)(a+e)/N.

 For cell b, the expected value would be (a+b+c+d)(b+f)/N.

 For cell c, the expected value would be (a+b+c+d)(c+g)/N.

 For cell d, the expected value would be (a+b+c+d)(d+h)/N.

 For cell e, the expected value would be (e+f+g+h)(a+e)/N.

 For cell f, the expected value would be (e+f+g+h)(b+f)/N.

 For cell g, the expected value would be (e+f+g+h)(c+g)/N.

 For cell h, the expected value would be (e+f+g+h)(d+h)/N.

Degrees of freedom = (number of columns–1)(number of rows–1), degrees 
of freedom = 3, critical values at p < 0.05 = 7.81.
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If the observed χ 2 is less than critical value, then we accept the null hypoth-
esis. If not, then we accept the alternative hypothesis. Look up your critical 
values at p < 0.05.

Make a decision regarding the null or alternative hypothesis.

Conclusion

Earlier in Chapter 3, we made the distinction between descriptive and infer-
ential statistics and proceeded to explore the statistical measures that are 
used to describe data points in a given distribution. In this chapter, our goal 
was to examine the data visualization tools that typically accompany these 
preliminary stages of data analysis and exploration. Along with discussing 
the trends in the development of these techniques, we also learned how to 
apply standard plots in summarizing data. This was followed by learning 
how to formulate and test hypotheses as part of the process of statistical 
validation. Following below are some challenge exercises to help underscore 
these key concepts and procedures.

TABLE 4.5

Use this Information to Derive the Frequency of Observed Data and Expected 
Values

Tier 1 Tier 2 Tier 3 Tier 4 Rows Total

Corn Production A B C D a+b+c+d
Soybean 
Production

E F G H e+f+g+h

Columns Total a+e b+f c+g d+h N = a+b+c+d+e+f+g+h

TABLE 4.6

Fill in the Correct Values to Complete/Derive Chi-Square Using the Last Column
Observed (O) Expected (E) |O–E| (O–E)2 (O–E)2/E

a
b
c
d
e
f
g
h

Chi-square = sum of last column.
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Challenge Assignments

TASK 4.5 GENERATE, VISUALIZE, AND INTERPRET 
SPATIAL DESCRIPTIVE AND CORRELATION STATISTICS

Sleep apnea can strike subjects at any age. We need to establish the 
effects of age on the length of hospital stay (inpatient days) of patients 
with sleep apnea. It is hypothesized that as obese individuals get older, 
they develop complications including respiratory failure, diabetes mel-
litus, coronary heart disease, right-sided heart failure, asthma, cerebral 
vascular accidents, and osteoarthritis, all of which may contribute to 
increased hospital stays and possibly to increased complications in 
the hospital. We, therefore, can measure the effects of age on inpatient 
days of sleep apnea as well as attempt to understand its spatial patterns 
for any study region. The obstructive sleep apnea (OSA) dataset was 
obtained from Kaleida Health System, which is one of the largest health 
systems in western New York.

 1. Add the Erie_cen.shp, Niagara_cen.shp, and OSA.shp datasets 
from Chapter4_Data_folder in a new data frame.

 2. Generate and describe spatial measures of central tendency 
and dispersion using the dataset (i.e., mean center, median cen-
ter, standard distance).

 3. State a working hypothesis regarding the spatial distribu-
tion  of sleeping disorders in Erie and Niagara counties, 
New  York.  Also, suggest a few factors that might explain 
the  spatial distribution of sleeping disorders in the study 
region.

 4. Generate a histogram and boxplot for age and length of stay in 
the hospital. Explain the results.

 5. Create a scatterplot depicting the relationships between age (on 
the x-axis) and length of stay (y-axis) in the hospital. Comment 
on the observed relationship between age and length of stay in 
the hospital.

 6. State a specific hypothesis to describe age and length of hospi-
tal stay.
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TASK 4.6 EXPLORING AND VISUALIZING ATTRIBUTE 
DATA USING DIFFERENT WEIGHTING SCHEMES

 1. Visualizing data is an important step in understanding its spatial 
patterns. A variety of tools are available to render data in ways 
that can promote a better understanding of the spatial patterns.

 2. Add the Erie_cen.shp, Niagara_cen.shp, and OSA.shp datasets 
from Chapter4_Data_folder in a new data frame. Generate 
and describe measures of central tendency and dispersion (i.e., 
mean center, median center, standard distance) using DAYS_
INPT (length of stay in hospitals) as a weighting scheme.

 a. Use the Count Rendering under the “Rendering tool” to apply 
graduated circle rendering to a numeric field (select all_averag 
and select DAYS_INPT) in a feature class for a better visual 
illustration of the spatial patterns. Submit maps showing this 
rendering. Explain the visual patterns depicted in these maps.

 b. Use Collect Events with Rendering under the Rendering tool 
to convert OSA event data (OSA.shp) to weighted point. 
Submit maps showing this rendering. Explain the visual 
patterns depicted in these maps.

 3. Briefly comment on the application of spatial weights to mea-
sures of central tendency and dispersion.

TASK 4.7 COMPUTING AND INTERPRETING 
TESTS OF INDEPENDENT SAMPLE MEANS

 1. Using the descriptive statistics reported in Table 4.1, choose 
any three of the variables noted below and formulate a sta-
tistical hypothesis set to evaluate the differences between the 
states of New York and Mississippi:

 a. Percent smoker
 b. Percent inactive
 c. Percent involved in excessive drinking
 d. Percent unemployed
 e. Percent with limited access to health foods

What conclusions can you draw based on the independent samples 
t-test? Which of these variables should best be analyzed using a one-
tailed test? Explain.
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TASK 4.8 VISUALIZING LAND USE CHANGES IN A 
RAPIDLY CHANGE URBAN AREA IN MBALE, UGANDA

For this task, we will use Figure 4.11 to visualize urban land use change.

 1. Name the land use categories in 1973, 2000, and 2005.
 2. Describe the urban changes that occurred between 1973 and 

2005.
 3. What will this urban area look like in 2020?
 4. Suggest two possible hypotheses that may inform the study of 

urban land use change in this study region.

Cartographic work by Tonny Oyana
Advanced Geospatial Lab
SIUC, August 2013. All rights reserved.
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Between 1973 and 2005, there were more land transitions from agriculture to urban use.
�is trend is expected to continue as shown for 2020.
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FIGURE 4.11
A land use map showing urban changes in Mbale Town, Uganda.
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TASK 4.9 VISUALIZING CRIME TRAJECTORIES 
USING A 3D SPACE–TIME DIMENSION

For this task, we will use Figure 4.12 to visualize crime trajectories for 
the city of Spokane, Washington.

 1. Name the top seven places with consistently high crime rate 
through the study period.

 2. Name the seven places with consistently low crime rate through 
the study period.

 3. Name the place and year where we observed the highest crime 
rate. Provide a possible explanation for this spike.

 4. Suggest two possible hypotheses that may inform the study of 
crime trajectories in this study region.
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FIGURE 4.12
Three-dimensional representation of crime rate per 10,000 population between 2008 
and 2012 for the city of Spokane, Washington.
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Review and Study Questions

 1. What are the major objectives of data visualization tools? Using one 
of the graphical approaches described in this chapter, explain how 
these objectives are attained.

 2. What are the similarities and differences between scatterplot matri-
ces and parallel coordinate plots?

 3. It has been noted that a crucial feature in data visualization 
approaches is interaction. Using one of the graphical tools discussed 
in this chapter, explain the ways in which one can ensure human–
computer interaction to effectively analyze a given dataset.

 4. Using your research area of interest, specify two research questions 
that call for

 a. Exploring differences between two groups of observations
 b. Exploring relationships between two categorical variables

  For question 4a, what is the null hypothesis (H0) and the alternative 
hypothesis (HA)?
For question 4b, what is the null hypothesis (H0) and the alternative 
hypothesis (HA)?

 5. What statistical test would be ideal for evaluating the hypothesis 
set in 4a? Will this be a one-tailed or two-tailed significance test? 
Similarly, what statistical test would be ideal for evaluating the 
hypothesis set in question 4b? Will this be a one-tailed or two-tailed 
significance test?

Glossary of Key Terms

Boxplots: A five number graphic summary consisting of the minimum, 
maximum, median, and lower and upper quartile values. As an 
EDA tool, it effectively summarizes a large dataset and depicts the 
central tendency and variability of the distribution. Also helps to 
uncover extreme scores and outliers in the distribution.

Chi-Square Test: A goodness of fit test that compared the observed to the 
expected values in a data distribution. It can also be used as a contin-
gency analysis test to explore the association between two or more 
categorical variables.

Data/Information Visualization: The process entails effective selection of 
a set of marks in a graphic, exploration, synthesis, presentation, and 
communication.
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Exploratory Data Analysis: An approach that enables a data scientist to 
 thoroughly screen the data to uncover the underlying structure, 
identify outliers and anomalies, and test the key statistical assump-
tions prior to more advanced statistical analysis.

Hypothesis Testing: The systematic process of evaluating a claim or state-
ment about the true value of a population parameter using data 
drawn from a sample.

Inferential Statistics: Statistical techniques that use sample data to draw 
conclusions about the general population. Analysis can be based 
on direct or point estimates of the population, or they can be 
based  on  indirect approaches that include confidence bands and 
hypothesis testing.

Parallel Coordinate Plots: A graphical tool for presenting and exploring 
large datasets with multiple dimensions that are measured using 
continuous and categorical data. Plots include parallel vertical axes 
representing the individual dimensions, and polylines representing 
the observations.

Scatterplots: A graphical device for depicting the strength and direction of 
the associations between two or more variables.

Student’s t-Test: A commonly used significance test with several applica-
tions including the test of one sample mean, and the test of two 
sample means.
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5
Understanding Spatial Statistical 
Relationships

LEARNING OBJECTIVES

 1. Generate and interpret correlation statistics.
 2. Conduct exploratory spatial analysis among variables.
 3. Define and run a spatial regression model.
 4. Generate and analyze regression diagnostic measures.

As a data scientist, there is always a need to uncover and understand com-
plex relationships among variables. Although traditional statistical text-
books offer a variety of techniques for this purpose, special consideration is 
required to account for variables that have a spatial dimension. Specifically, 
statistical measures that are used to establish the strength, direction, and 
significance of observed relationships between variables offer an objective 
assessment of these associations, but they can become even better when the 
element of spatiality is included. The measures that are typically used to 
infer about statistical relationships are drawn from correlation and regres-
sion analyses. In this chapter, we explore these approaches, observe the 
underlying assumptions behind each technique, and work through a few 
examples to illustrate the applications.

Engaging in Correlation Analysis

Correlation analysis is used to evaluate whether two measured variables 
are contemporaneous, covary, or coexist in space and/or time. The two 
commonly used measures to quantify such relationships are the Pearson 
Product Moment (for interval/ratio scaled variables) and Spearman’s Rank 
Correlation (for ordinal scaled variables). Both statistics are expressed by 
an r-value (correlation coefficient) that denotes the strength (0 to 1) of the 
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relationship and the direction of the relationship (positive or negative). The 
measures are also accompanied by a significance value, or p-value, for use in 
testing the research hypothesis. There are several ways to compute Pearson’s 
correlation coefficient, r. One approach entails the use of an efficient statisti-
cal formula that bypasses the computation of standard deviations of the two 
variables X and Y, or the deviations from their respective means:

 

r =
XY –

X Y∑∑
N∑

X2∑ –
X∑( )
N
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⎝
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Alternately, if one wishes to derive the mean and standard deviations of the 
variables, the ideal formula is as follows:

 
r = i=1

n XiYi − xy∑
σxσ y

Tables 5.1 and 5.2 illustrate the computation of coefficients using the raw 
score formula introduced in the previous section. The results show that ciga-
rette brands containing both tar and nicotine are likely to be positively related 
to the carbon monoxide yields, with a far stronger relationship observed 
among brands with higher nicotine levels than those with tar levels.

Having computed the correlation coefficients, let us now test whether the 
observed relationships are statistically significant. To conduct this test, we 
can use a Student’s t-distribution to determine whether the correlation coef-
ficient is significant in each of the samples.

The t-statistic, tobserved, is given by n− 2
1− r2

, where the degree of free-

dom is (n − 2), and we will conduct a two-tailed test at α  = 0.05. Using 
the t-distribution table, the critical t-value for 28 degrees of freedom is 2.048. 
For both samples, the population parameter under investigation in correla-
tion hypothesis is rho (designated as ρ ).

For sample I, the null hypothesis is that there is no significant correlation 
between tar and carbon monoxide, meaning that ρ Tar.CO is not statistically 
different from zero.

Sample I = 0.5461354 30 − 2
1− 0.54613542

It is noted that tobserved = 3.4497882 and tcritical = 2.048; therefore, tobserved > tcriti-

cal. We reject the null hypothesis, implying that there is a statistically significant 
correlation between tar and carbon monoxide. As noted earlier, the observed 
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TABLE 5.1 

Worktable for Deriving Correlation Coefficients for Cigarette Brands, Sample I

Brand Tar (X)

Carbon 
Monoxide 

(Y) X2 Y 2 XY

Basic  27  15 729 225 405
Commander  27  15 729 225 405
Bristol  26  15 676 225 390
English Ovals  25  15 625 225 375
Old Gold  25  18 625 324 450
Lucky Strike  25  17 625 289 425
Class A Dlx  25  17 625 289 425
Gen/Private 
Label

 25  17 625 289 425

Tareyton Herbert  25  17 625 289 425
Camel Reg  24  16 576 256 384
Players Reg  24  14 576 196 336
Pall Mall  24  16 576 256 384
Chesterfield 
King

 24  18 576 324 432

Pyramid King  24  18 576 324 432
Alpine  16  14 256 196 224
Alpine King  16  15 256 225 240
Alpine Lights   9  11 81 121 99
American Filters  16  15 256 225 240
Austin  13  17 169 289 221
Benson & 
Hedges

 16  15 256 225 240

Best Choice  13  17 169 289 221
Bonus Value  13  17 169 289 221
Brandon  13  17 169 289 221
Brentwood  13  17 169 289 221
Bucks King  10  12 100 144 120
Cambridge  15  18 225 324 270
Camel   9  11 81 121 99
Canadian 
Players

 13  15 169 225 195

Capri Menthol   5   4 25 16 20
Cardinal King  21  17 441 289 357
Σ  = 561 460 11,755 7292 8902

r = 8902 −((561× 460)/30)
(SQRT(11755− ((561^2)/30)))× (SQRT(7292− ((460^2)/30)))

 

r= 300
549.314361

= 0.5461354
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coefficient of r = .546 shows that there is a positive, relatively strong relation-
ship between tar content and carbon monoxide levels in the cigarette brands.

Applying the same approach for sample II, the null hypothesis is that there 
is no significant correlation between nicotine and carbon monoxide. The 
population parameter, ρ Nicotine.CO, is not statistically different from zero.

Sample II = 0.7584992 15− 2
1− 0.75849922

It is noted that tobserved = 4.1965890 and tcritical = 2.160; therefore, tobserved > 
tcritical and we reject the null hypothesis, implying that there is a significant 
difference between nicotine and carbon monoxide. We can infer from the 
sample data that the population parameter is statistically different from 
zero. The observed correlation of .758 suggests a very strong, positive, and 
significant relationship between the two variables.

As illustrated earlier, the application of correlation analysis is fairly 
straightforward and yields information that can be used to validate the 
strength, direction, and significance of relationships observed in a scatter-
plot. It is important to also point out that Pearson’s correlation analysis is a 
parametric test. This implies that the validity of the test results rests on meet-
ing some key underlying assumptions such as linearity, and normality and 

TABLE 5.2 

Worktable for Deriving Correlation Coefficients for Cigarette Brands, Sample II

Brand Tar (mg)

Carbon 
Monoxide 

(mg) X2 Y 2 XY

Carlton 2 2 4 4 4
Carolina Gold 16 15 256 225 240
Cavalier 9 12 81 144 108
Century 8 12 64 144 96
Charter 4 6 16 36 24
Chesterfield 19 13 361 169 247
Cimarron 21 17 441 289 357
Citation 9 12 81 144 108
City 11 13 121 169 143
Commander 23 13 529 169 299
Cost Cutter 9 12 81 144 108
Courier 14 16 196 256 224
Covington 10 14 100 196 140
Director’s 
Choice

21 17 441 289 357

Doral 11 14 121 196 154
Σ  = 187 188 2893 2574 2609
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TASK 5.1 COMPUTING PEARSON’S 
CORRELATION COEFFICIENT

Figure 5.1a and b depicts the scatterplots of tar and carbon monoxide 
yields and nicotine and carbon monoxide yields in selected cigarette 
brands. The data were drawn from the 1999 Federal Trade Commission 
Report. Using these data, let us compute the relevant coefficients 
and assess whether there are any significant statistical relationships 
between the two variables (tar and nicotine) and carbon monoxide 
yields in selected cigarette brands.
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measurement scale of variables. The two variables X and Y must be measured 
on an interval or ratio scale. In instances where one or both variables are 
ordinal or nominal in nature, other techniques such as Spearman’s correla-
tion, or chi-square (χ 2) tests of association, must be used accordingly. Another 
assumption is that the observations must be randomly selected from a nor-
mally distributed population. Pearson’s correlation is a robust technique, 
and the test of significance might be valid under modest departures from 
normality; however, it is best to confirm the assumption of normality prior 
to the analysis. A more notable requirement to watch for is the need to have 
a linear relationship between the two variables. This can be discerned in the 
scatterplots generated prior to computing the test statistic. If there are viola-
tions, it is best to consider other coefficients such as eta to test for the associa-
tion between the variables.

Overall, there are several variants of the Pearson’s correlation coefficient, 
all of which are formulated to address the different scales of variable mea-
surement, varying properties of statistical data, and analytical objectives of 
a given study. There are also spatial variants such as Moran’s I statistic. This 
is a weighted correlation coefficient that is uniquely designed to incorporate 
the element of spatial dependency into the analysis. We will discuss more on 
Moran’s I and related coefficients later.

Ordinary Least Squares and Geographically Weighted 
Regression Methods

Whereas correlation analysis primarily focuses on the association between 
two or more variables, regression analysis can be used to explain the causal 
nature of the relationship, if any, and for predictive purposes. Regression 
analysis generates coefficients that represent the slope and intercept of a 
line that best fits the observed data points. Using standard analytical meth-
ods such as ordinary least squares (OLS), these two essential components 
can be generated to formally express the nature, strength, and direction of 
a statistical relationship (Demšar et al. 2008a,b; Burt et al. 2009). The rela-
tionship is confirmed if two things happen: (1) when there is a tendency for 
the dependent (or response) variable, Y, to vary with an independent (or predic-
tor) variable, X, in a systematic fashion and (2) when there is a well-defined 
scattering of data points around the curve that depicts some type of model 
direction. The equation derived from a linear regression analysis can also 
be used to predict the values of a variable or estimate unknown values of 
one variable when given the values of the other. We normally predict vari-
able estimates after successfully fitting the regression model.

Among the prerequisites for developing a causal model for regression, 
one of the most important considerations is the establishment of a func-
tional linear relationship. This can be achieved through correlation, which 
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is a necessary but insufficient condition for causality. One must first exam-
ine whether the response variable Y is significantly and strongly correlated 
with one or more predictor variables Xn. Establishing this relationship helps 
in delineating the “line of best fit” through observed values that most accu-
rately model or predict the relationship between the response and predictor 
variables. Two other things to take into consideration when formulating a 
causal model are time precedence and non-spuriousness (Kenny 1979). For 
time precedence, one must ensure that if the variables Xn cause the response 
variable Y, then Xn must precede Y in time. Data scientists are advised to 
take this into consideration especially during the data collection phase to 
avoid a temporal mismatch between the response and predictor variables. A 
third consideration for establishing a causal regression model is non-spuri-
ousness. This necessitates a close review of the hypothesized associations to 
exclude potentially spurious variables, Zn. Thus, if one claims that X causes 
Y, one must ensure that there is no spurious variable Zi that is related to both 
X and Y such that if you control for Zi the relationship between X and Y dis-
appears. Techniques such as scatterplots, Pearson’s or Spearman’s rank cor-
relation, and partial correlation analysis are all useful strategies to test for 
functional linear relationships and detect any hidden, intervening, or spu-
rious relationships prior to the formal specification of a regression model.

In modeling spatial relationships using regression, it is best to take a 
two-tiered approach that involves the use of both OLS and geographically 
weighted regression (GWR). The first-tier modeling helps in identifying 
the most important predictors that may explain the spatial processes 
in an area (Fotheringham et al. 1996; Nakaya et al. 2005; Demšar et al. 
2008a,b; Harris et al. 2011a,b; Nakaya 2011). It provides a global model of 
the response variable or process using OLS. This is followed by testing 
whether the errors (residuals) in the global model are randomly distrib-
uted. To explore the pattern of spatial dependency, the most common 
means is by computing Moran’s I statistic, a measure of spatial autocor-
relation that determines whether or not the errors/residuals in the model 
are independent. If they are not, this could be a problem of model mis-
specification. The second-tier modeling in regression provides local mod-
els of the response variable by fitting regression equations with variable 
regression coefficients that account for spatial variability. After fitting the 
model, the errors/residuals must also be evaluated for spatial autocorrela-
tion just as noted in the first-tier model using OLS.

The spatial regression models are normally used to model spatial cova-
riance structures. We use the OLS model to effectively identify the stron-
gest predictors in any given model while taking into consideration the 
residuals. In general, we can write a simple regression/bivariate model as 
follows:

Y = β 0 + β 1X + ε 
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Suppose we have four independent variables, Xi ; then, a specific OLS 
model for modeling the relationship is as follows:

Y = β 0 + β 1X1 + β 2X2 + β 3X3 + β 4X4 + ε i

where Y is the observed response variable, β 0 is the intercept, β i variables cor-
respond to the regression coefficients associated with each of the predictor 
variables Xi, and the error term is represented as ε i.

If the OLS model is properly specified and there is evidence of spatial auto-
correlation in the dependent variable, we can proceed with fitting a GWR 
model. In this example, the GWR model for four independent variables is 
given as follows:

Y = β 0(ui, vi) + β 1(ui, vi)X1 + β 2(ui, vi)X2 + β 3(ui, vi)X3 + β 4(ui, vi)X4 + ε i

where Y is the observed response variable and the regression coefficients, 
β i, are to be estimated at a location for which the spatial coordinates are pro-
vided by the variables u and ν . The model enables the computation of the raw 
and standardized regression coefficients (β  weights) and the standardized 
residuals for use in differentiating local spatial variations.

The primary assumptions of a traditional regression model are as follows:

 1. The dependent variable is a linear function of a specific set of inde-
pendent variables, plus the error term; this underscores the notion 
of linearity, and the need for a correct specification of the model. The 
equation for a bivariate model is Y = β 0 + β 1X + ε .

 2. The errors (or residuals) must have a zero mean and constant variance 
(the expectation of homoscedasticity is implied here).

 3. The errors (residuals) must be independent, which means that the value 
of one error is not affected by the value of another error (the expectation 
of non-autocorrelation, spatially and/or temporally, is implied here).

 4. For each value of X, the errors have a normal distribution about the 
regression line (this is called the expectation of normality).

 5. No strong or perfect linear relationships must exist between the 
independent variables (this expectation of non-multicollinearity 
requires that the independent variables must not be highly corre-
lated with each other).

Although all of the assumptions are important for building regression 
models, some are more robust than others to model violations. Also, these 
assumptions are amendable when dealing with variables that have a spatial 
dimension. In the following sections, we review the procedures for fitting 
spatial regression models, and the diagnostic measures used to ensure that 
the models are statistically valid.
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Procedures in Developing a Spatial Regression Model

Depending on how you decide to start your regression analysis, there are 
seven major necessary steps to fit a model:

 1. Using the data screening and visualization methods introduced 
in Chapters 3 and 4, examine the response, Y, and predictor vari-
ables, X, and investigate the nature of the potential association using 
scatterplots.

 2. Check and determine whether the predictor variables are collinear, 
and identify the measures that show evidence of multicollinearity. 
Usually, a correlation analysis is a great starting point for demon-
strating this.

 3. Formulate a regression model based on hypothesized relationships.
 4. Run the model, and determine the direction and strength of the 

hypothesized relationships by analyzing the test statistics.
 5. Select the best regression model.
 6. Test for lack of fit using a residual/scatterplot or histogram by order-

ing the residuals.
 7. Review the fitness statistics by looking at the spread of the plot, eval-

uating observed values around the regression line, and examining 
how accurate the independent variables are in predicting Y.

Let us apply these procedures in Task 5.2.

(Continued)

TASK 5.2 USING SPATIAL REGRESSION TO 
ASSESS THE DETERMINANTS OF WELL-BEING 

SIGNIFICANCE IN THE CITY OF CHICAGO

The main goal of this spatial regression analysis is to test for and 
explore spatial variations in well-being significance. The indicators of 
well-being significance are often complex and hard to define. In this 
example, we will rely on several factors that have been used in the 
past as proxy measures and determinants of well-being. Specifically, 
Table  5.3 contains a list of 12 factors or conditions that burden indi-
viduals or communities and prevent them from achieving good 
quality of life, overall well-being, and socioeconomic success. The 
factors have been compiled from a variety of data sources, including 
the American Community Survey, U.S. Census Bureau website, and 
city of Chicago’s geographic information system (GIS) data reposi-
tory. In this study, hardship index (HI), a proxy measure of well-
being significance, will serve as the dependent/response variable.

(Continued)
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TASK 5.2 (Continued) USING SPATIAL REGRESSION 
TO ASSESS THE DETERMINANTS OF WELL-BEING 

SIGNIFICANCE IN THE CITY OF CHICAGO

The decision to go with a traditional or spatial regression model can be 
made by first exploring the presence or absence of spatial autocorrela-
tion in the dependent variable. If it is determined that there is spatial 
dependency in the variable, then sufficient reason exists to proceed with 
a spatial regression model. Otherwise, if there is no spatial autocorrela-
tion, an OLS model should be considered rather than fitting the data 
with a spatial regression model. In the current study, the test of spatial 
autocorrelation was based on Moran’s I, a coefficient that measures the 
intensity of spatial clustering among observations. The dependent vari-
able (HI) has a Moran’s I index of 0.547, an Z-score of 7.73, and a p-value 
< 0.00000. From this test, we find that the HI is positively autocorre-
lated, with a moderately high spatial clustering pattern. This enables us 
to proceed with the spatial regression model. The model will identify 
influential predictors that best explain the different socioeconomic con-
ditions in the study region. Table 5.3 shows the factors that potentially 
account for the spatial differences in well-being conditions. The list gives 
12 predictor variables that may help explain the dependent variable.

TABLE 5.3 

Potential Factors That May Explain the Spatial Differences in Socioeconomic 
Conditions

Context Description Variables

Well-being significance Dependent/response
HI
Independent/Predictor/Explanatory

Crowded housing Percent of occupied housing units with more 
than one person per room (HS)

Poverty Percent of households living below the 
federal poverty level (POV)

Unemployment Percent of persons aged 16 years or older in 
the labor force that are unemployed (UEM)

Education Percent of persons aged 25 years or older 
without a high school diploma (EDU)

Economically inactive population Percent of the population under 18 or over 
64 years of age (AEA)

Average income Per capita income (INC), U.S. dollars
Race/ethnicity White (W), Black (B), Hispanic (H), Asian (A)
Safety Proximity to police stations (PL), distance in 

feet
Health care Proximity to hospitals (HP), distance in feet
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Examining the Relationships between Regression Variables

The relationships between regression variables are examined using 
Spearman’s rank correlation, variance inflator factor (VIF), and scatterplots 
(Tukey 1977; Chambers et al. 1983; Tufte 1983). A Spearman’s rank corre-
lation matrix is shown in Table 5.4 for the correlation coefficients for all 
paired variables. Sixteen paired variables, shown in bold typeface, have 
been identified to exhibit some level of collinearity. Any pair of variables 
with a correlation of 0.70 or higher has been placed in the collinearity 
category for further scrutiny. In general, the correlation matrix suggests 
that most of the predictors are either moderately or marginally correlated. 
Percent of occupied housing (HS) and percent of persons aged 25 years 
or older without a high school diploma (EDU) are the most strongly cor-
related. The least correlated are among pairwise correlations for Asian (A), 
proximity to police station (PL), and proximity to hospitals (HP) with the 
exception of PL and HP.

Examining the Strength of Association and Direction of 
All Paired Variables Using a Scatterplot Matrix

The overall patterns among most of the variables suggest possible linear 
relationships (increasing/decreasing trends in both x and y variables—some 
are positively correlated, whereas others are negatively correlated); excep-
tions include the pairings that involve the Asian group or proximity to police 
stations (Figure 5.2). These appear to show neither clear (weak correlation) 
association nor direction.

Fitting the Ordinary Least Squares Regression Model

We need to fit the best OLS regression model to ensure that we have a prop-
erly specified model before moving ahead with the GWR model.

Primary Model

 

YHI = β0 +β1HS +β2POV +β3UEM +β4EDU +β5AEA +β6INC +
  β7W +β8B +β9H +β10A +β11PL +β12HP + ε

We need to determine if the primary model is statistically significant at 
α  = 0.05. We do this by investigating whether

 H0: β 0 = β 1 = β 2 = β 3 … β 12 = 0

 HA: at least one β  ≠ 0
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Given that the observed joint F-statistics is 258.03, and it is greater than the 
critical value at (12, 64) degrees of freedom, we can reject the null hypothesis 
and conclude that at least one regression coefficient is not equal to zero.

Examining Variance Inflation Factor Results

The VIF is another formal measure of detecting the presence of collinear-
ity. It is used to eliminate—by adding or deleting a predictor variable—
any potential redundancy among independent variables, Xi. VIF indicates 
how much the variance of the coefficient estimate is being inflated by 
multicollinearity. Simply put, the existence of this problem in a regres-
sion model suggests a large amount of standard error in the coefficient 
estimates. Most standard statistical textbooks suggest a VIF cutoff point 
greater than five to indicate a concern for collinearity. This is because the 
expected sum of squared errors in standardized regression coefficients 
is nearly five times as large as it would be if the predictor variables were 
uncorrelated. However, Neter et al. (1996) have suggested the examination 
of VIF values that greatly exceed 10. In ESRI’s ArcGIS, the cutoff is placed 
at larger than 7.5 when examining an OLS model for the collinearity prob-
lem. This textbook recommends anything above the rule of thumb, that is, 
VIF values that exceed 5 should be critically reviewed when deriving the 
best model.
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A scatterplot matrix and histogram showing all paired variables.
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Table 5.5 summarizes the VIF values for the three OLS models that were 
generated using ESRI’s ArcGIS. The primary model has eight variables with 
VIF values that are larger than 5 (HS, UEM, EDU, INC, W, B, H, and A), the 
reduced model has two variables with VIF values that exceed the threshold 
(Black and Hispanic), and the best model shows a remarkable improvement 
of VIF values with the highest VIF value only being observed in AEA (1.643). 
This is far below the required threshold.

Reduced Model

After examining the well-being factors using a scatterplot and correlation 
analysis, the reduced model is as follows:

 YHI = β 0 + β 1HS + β 2AEA + β 3UEM + β 4B + β 5H + β 6A + β 7PL + β 8HP + ε 

We need to determine if the primary model is statistically significant at 
α  = 0.05. We do this by investigating whether

 H0: β 0 = β 1 = β 2 = β 3 … β 8 = 0

 HA: at least one β  ≠ 0

Given that the observed joint F-statistics is 148.17, and it is greater than the 
critical value at (8, 68) degrees of freedom, we can reject the null hypothesis 
and conclude that at least one regression coefficient is not equal to zero.

All of the three regression models can explain more than 90% of the 
total variation in the well-being significance that is attributable to all the 

TABLE 5.5 

VIF Values for the Three OLS Models

Factors Primary Model Reduced Model Best Model

HS 8.188543a 3.242602 1.063577
POV 4.261475
UEM 6.238082a 3.758031 1.577382
EDU 23.531012a

AEA 3.766619 2.419355 1.642695
INC 5.055292a

W >1000.0a

B >1000.0a 7.444437a

H >1000.0a 5.985656a

A 283.243408a 1.720664
PL 1.662634 1.504726
HP 2.069709 1.858672
a VIF values that exceed 5; a consecutive threshold is being applied to critically evaluate the 
presence of collinearity.
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independent variables, Xi, as defined by model fit to the data (Table 5.6). 
Additionally, all three predictor variables identified in the best model have 
positive coefficients, implying that as these variables increase the level of 
hardship in the community areas also increases. However, due to the severe 
concern of collinearity problems in the primary and reduced models, we 
must resolve this concern by finding a meaningful model.

TABLE 5.6 

A Summary of the OLS Results for the Three Models

Variables

Primary Model
Coefficient Estimate

(t-value)

Reduced Model
Coefficient Estimate

(t-value)

Best Model
Coefficient Estimate

(t-value)

HI –88.1853
(–1.0549)

–39.206192
(–8.379899)a

–32.621131
(–6.612045)a

HS 1.0057
(2.518495)a

3.532561
(8.853233)a

4.374369
(16.390050)a

POV 0.623354
(6.802502)a

UEM 0.647681
(3.573078)a

1.782008
(7.976269)a

2.105701
(12.456289)a

EDU 1.024476
(5.112745)a

AEA 0.594223
(4.361404)a

0.837226
(4.828465)a

0.910480
(5.456300)a

INC –0.000116
(–1.507690)

W 67.405221
(0.781687)

B 76.487877
(0.889839)

21.010896
(3.846550)a

H 68.516060
(0.786059)

27.896733
(3.816535)

A 73.666656
(0.818366)

50.236394
(4.509104)a

PL 0.000018
(0.140818)

0.000302
(1.560332)

HP 0.000016
(0.118153)

–0.000293
(–1.449490)

AIC 468.93 533.37 550.25
r2 0.976 0.9394 0.9173
Observations 77 77 77
Moran’s I –0.062

(–0.677)
–0.0204

(–0.2102)
0.0254

(1.1158)

Note:  AIC is Akaike’s information criterion, a measure of model performance with the smallest 
value preferred.

a Statistically significant coefficient estimates.
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Best Model

The best model after reviewing fitness statistics, lack of fit test, and analyzing 
other relevant collinearity diagnostics is as follows:

 YHI = β 0 + β 1HS + β 2AEA + β 3UEM + ε 

We need to determine if the primary model is statistically significant at 
α  = 0.05. We do this by investigating whether

 H0: β 0 = β 1 = β 2 = β 3 = 0

 HA: at least one β  ≠ 0

Given that the observed joint F-statistics is 281.95, and it is greater than 
the critical value at (3, 73) degrees of freedom, we can reject the null 
hypothesis and conclude that at least one regression coefficient is not 
equal to zero.

In selecting the best equation, we must also determine which of the inde-
pendent variables, Xi, is statistically significant at α  = 0.05. We do this by 
investigating whether

 H0: = 1

 
HA : σ

2due to xi
σ2Res

> 1

The Jarque–Bera statistics that measures whether model predictors are 
biased or not—a goodness-of-fit test that shows whether residuals are nor-
mally distributed at two degrees of freedom using a chi-square distribu-
tion—indicates the primary model was 1.701 (p-value < 0.427), the reduced 
model was 2.219 (p-value < 0.329), and the best model was 3.1615 (p-value < 
0.164). We concluded that all the residuals in the three OLS models are nor-
mally distributed and unbiased.

Examining Residual Changes in Ordinary Least Squares Regression Models

Analyzing the residuals offers fundamental clues about the quality of the 
regression model (Figure 5.3). It is not only important to analyze these resid-
uals after successfully fitting a model but also essential to check whether the 
residuals have a mean of zero and a standard deviation of 1.

The next step would be to identify and analyze observations that have 
standardized residuals greater than 2 (depict model underprediction) or 
negative standardized residuals less than –2 (depict model overprediction) 
(Figure 5.4):
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 1. Residual analysis for the primary OLS model: Community areas with 
standardized residuals greater than 2.0 are Fuller Park and Kenwood, 
and an area with standardized residuals less than –2 is Lake View. 
Fuller Park predominately consists of an over 90% black population, 
has high unemployment, has a high percent of individuals who have 
no high school diploma, has a high percent of individuals who are eco-
nomically inactive, and has a high crime rate. Kenwood is ethnically 
diverse with over 70% black, 17% white, and 6% Asian people; it is a 
relatively economically vibrant community, which has a mixture of the 
elite, a rich population, and significant pockets of a poor population 
with high poverty and crime rates. Additionally, the area has a mix-
ture of old and new housing developments. Lake View is a very rich 
neighborhood with 80% white, 8% Hispanic, 6% Asian, and 4% black.

 2. Residual analysis for the reduced OLS model: A community area 
with standardized residuals greater than 2.0 is Englewood, and an 
area with standardized residuals less than –2 is Calumet Heights. 
Englewood is a poor neighborhood with high poverty rates, high 
crime rates, and lack of medical care, and it has a population that is 
over 97% black. Calumet Heights is a rich neighborhood; it is 90% 
black and 4% Hispanic, has declining crime rates, and has a higher 
number of persons who are economically active.
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Residual plots and histograms showing identified HS, AEA, and UEM predictors.
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 3. Residual analysis for the best OLS model: A community area with 
standardized residuals greater than 2.0 is Armour Square, and 
an area with standardized residuals less than –2 is Gage Park. 
Armour Square is a relatively poor neighborhood that is over 72% 
Asian (location of Chinatown), 11% black, and 12% white. Gage 
Park is also a poor neighborhood that is over 89% Hispanic, 5% 
black, and 4% white; it has a high crime rate, a large number of per-
sons without a high school diploma, and an economically inactive 
population.

In reviewing the geographic distribution of the globally verified predic-
tor variables, we observed that all the standardized residuals greater than 
2 are located in community areas that have an HI larger than or equal to 80 
and a per capita income of less than $17,000 with the exception of Kenwood, 
which has an HI of 25 and a per capita income of about $38,000. Also, we 
observed that all the standardized residuals less than 2 are located in com-
munity areas that have an HI less than or equal to 57 and a per capita 
income of more than $28,000 with the exception of Gage Park, which has a 
HI of 93 and per capita income of about $12,000. We can therefore conclude 
that in the primary and reduced models, community areas with standard-
ized residuals larger than 2 exhibit significant hardships while those with 
less than 2 are characterized by minor hardships. However, the best model 
identifies two community areas that exhibit significant hardships. Given 
the evidence of over- and underpredictions within residuals in a few of 
the community areas, we can further conclude that the model is possibly 
missing explanatory variables to explain well-being significance in these 
areas.

The lower panel of Figure 5.4 shows test results for spatial autocorrelation. 
From the maps, we see different spatial patterns of standardized residuals in 
the study region. The red areas in the maps indicate that actual observed val-
ues are higher than the values the model predicted, whereas the blue areas 
show where the actual observed values are lower than the model predicted. 
All three models have no evidence of spatial autocorrelation in the regres-
sion residuals.

Fitting the Geographically Weighted Regression Model

Assuming spatial non-stationarity, a GWR model is conducted using three 
globally verified predictor variables from the OLS model. It is relevant for 
two primary reasons: (1) we detected that the dependent variable exhibited 
a significant amount of spatial dependency, so there is a need to construct 
local models to explain variations in well-being significance, and (2) we must 
analyze the geographic distribution of local regression coefficients at differ-
ent local regression neighborhoods to understand the effects of predictor 
variables on local areas.
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A GWR model for the three globally verified predictor variables is given 
as follows:

 YHI = α (ui, vi) + β 1(ui, vi)HS + β 2(ui, vi)UEM + β 3(ui, vi)AEA + ε i

Examining Residual Change and the Effects of 
Predictor Variables on Local Areas

The standardized residuals of the GWR model have a mixture of five 
community areas exhibiting major (Gage Park, Englewood, and Armour 
Square) and minor (Beverly and Calumet Heights) hardships (Figure 5.5). 
The negative standardized residuals show community areas with major 
hardship, whereas the positive values show the ones with minor hardship 
with the exception of Gage Park. Beverly is a diverse, rich neighborhood, 
which consists of 58% white, 34% black, and 5% Hispanic populations. 
The other community areas are already described under the OLS regres-
sion model. What is notable in the GWR model is the identification of the 
Beverly community area that was not previously identified by the OLS 
regression model.

Residual analysis shows that community areas with standardized residu-
als greater than 2.0 are Beverly, Calumet Heights, and Gage Park, and the 
ones with standardized residuals less than –2 are Armour Square and 
Englewood. In Figure 5.5, the left panel shows the spatial distribution of stan-
dardized residuals in the GWR model. The middle panel shows test results 
of spatial autocorrelation, and the right panel shows local adjusted R2. There 
is no spatial autocorrelation in the regression residuals.

With respect to the effects of predictor variables, there is an evident 
divide in variables that measure socioeconomic disparities between com-
munity areas located in the north and south. Negative regression relation-
ships are more evident in the south than in the north. In reviewing the 
spatial patterns of the local coefficient estimates, we observed that negative 
estimates from the intercept were concentrated among community areas 
located in the central and downtown areas, whereas positive estimates 
were located in the south and north (Figure 5.6). The spatial patterns of 
the negative regression relationships observed among the local coefficient 
estimates of housing and economically inactive population variables are 
similar in spatial extent with the exception of unemployment. The spatial 
patterns for the negative regression relationships observed among the local 
coefficient estimates of housing and economically inactive population vari-
ables are predominately located in the south and north, whereas the ones 
showing positive regression relationships are located in the central and 
downtown areas. A critical examination of these spatial patterns suggests 
local variations in housing, unemployment, and economically inactive 
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population among community areas located in the downtown, central, and 
lower southern regions. Overall, the GWR model is robust with an adjusted 
R2 and AIC of 0.923 and 548.17, respectively.

Summary of Modeling Results

The fitted regression model explains the geographic variations of well-
being significance for 77 community areas in Chicago. A meaningful 
model of well-being significance consists of three globally verified predic-
tor variables (percent of occupied housing units with more than one per-
son per room [HS], percent of persons aged 16 years or older in the labor 
force who are unemployed [UEM], and percent of the population under 
18 or over 64 years of age [AEA]). The models pointed to significant global 
and local spatial variations in well-being significance. Three local models 
explained local variations in well-being significance. However, significant 
differences were evident in the globally verified model and the local mod-
els. For example, the analysis of local regression residuals identified the 
Beverly community area that was not previously identified by the global 
model.

• The adjusted R2 for the primary model explained 97.6%, for the 
reduced model 93.9%, and for the best model 91.7% of the well-being 
significance. Although the AICs for the three models were small and 
robust, there was a slight increase in them. The AIC values ranged 
from 468 to 550.

• Residual plots were all normally distributed, suggesting that the 
models were unbiased. A few patterns were evident in the regres-
sion residuals, suggesting missing exploratory variables. Additional 
parameters should be considered to highlight the true influence of 
predictor variables on well-being in varying socioeconomic commu-
nity areas.

• The GWR model explained about 92% of the local variations of well-
being significance. The examination of local coefficient estimates 
indicated local variations in housing, unemployment, and economi-
cally inactive population among community areas located in the 
downtown, central, and lower southern regions.

• Overall, there were suggestive spatial relationships among three 
significant determinants of well-being significance, thus lending 
support to the existence of profound socioeconomic disparities 
between community areas located in the north and south. Negative 
regression relationships were even more apparent in the south than 
in the north.
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Conclusion

In this chapter, we introduced multivariate analysis based on a full-scale 
exploration of the associations between a given set of response and predic-
tor variables. Key steps that began with the use of correlation analysis as 
a precursor toward establishing causality were first presented. These were 
followed by systematically pooling together the appropriate statistical tech-
niques and related diagnostics to analyze the data based on the key assump-
tions of regression and the underlying structure of the data. Completing the 
problem sets here will help you hone in on these essential skills, including 
knowledge of the analytical strategies that are used to overcome data chal-
lenges in regression.

Challenge Assignments

TASK 5.3 HOW TO GENERATE AND 
INTERPRET CORRELATION STATISTICS

 1. In this task, we will investigate the relationships between 12 
agricultural variables (NO_FARMS07, AVG_SIZE07, AVG_
SALE07, CornAcre, CornYield, CornProduction, SoyAcre, SoyYield, 
SoyProduction, WheatAcre, WheatYield, and WheatProduction). 
The data for completing this challenge are located in Chapter5_
Data_folder (data file: agricul_ILL_stats3.shp). You may use MS 
Excel or any statistical software that you are familiar with to 
conduct this correlation analysis. Generate a correlation matrix 
for these variables (n = 102). Review the correlation results to 
describe the relationships among these variables. Identify the 
four strongest and four weakest relationships.

 2. Test whether there is a significant difference in correlation 
coefficients among the following variables: (1) corn acres and 
corn production, (2) average size and average sale, and (3) num-
ber of farms and average size.

 3. What insights can we get from analyzing the associations in 
the agricultural variables?
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(Continued)

TASK 5.4 HOW TO BUILD AND SUCCESSFULLY 
RUN OLS AND GWR MODELS

 1. Use the following multivariate model to discover  relationships 
between these variables: average farm size, median age, 
corn yield, soybean yield, and wheat yield (data file: Illinois_ 
agriculture_model.shp). A GWR model (GWR Software) is  available 
for download at https://geodacenter.asu.edu/gwr_software.

 a. Dependent/response variable, Y: AVG_SIZE07

 b. Independent/predictor variables, Xn: MED_AGE, CornYield, 
SoyYield, and WheatYield

 c. Primary model of interest:

AVG_SIZE07 = β 0+ β 1MED_AGE + β 2CornYield + β 3SoyYield + 
β 4WheatYield + ε 

 2. Generate and compile histograms for the five variables (tip: use 
ArcMap/MS Excel).

 3. Generate and compile scatterplots for the five variables. Modify 
the legend position, title, and axes. Submit the scatterplots in 
your final report (tip: use ArcMap/MS Excel).

 4. Rewrite the multivariate model based on the strength and 
association observed in the scatterplots.

 5. Run the OLS regression to find a properly specified model, and 
examine the output feature class residuals using the test for 
spatial autocorrelation.

 6. Explain the OLS model and spatial autocorrelation results.
 7. The GWR model, where X1 is any one of the three indepen-

dent/predictor variables that are statistically significant in the 
OLS model and (u, v) represents the coordinates of each loca-
tion, is AVG_SIZE07(u, v) = β 0(u, v) + β 1(u, v)X1 + ε (u, v).

 a. If you have a properly specified OLS model and the test 
for spatial autocorrelation on residual variables shows that 
they are random, then run the GWR model.

 b. Examine the output feature class residuals using the test 
for spatial autocorrelation. (Tip: Given the fact that there 
is significant evidence of global and local multicollinearity 
among corn yield, soybean, and wheat yield variables, you

(Continued)
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TASK 5.5 HOW TO GENERATE AND 
ANALYZE DIAGNOSTIC STATISTICS

• Diagnostic statistics include the root mean square error (RMSE) 
= SQRT(SSE/n – k), where SSE = ∑(Ypredicted – Yobserved)2, n = the 
number of observations, and k = the number of independent vari-
ables plus the intercept; adjusted coefficient of determination, 
R2; and residual plots using histograms or scatterplots.

TASK 5.4 (Continued) HOW TO BUILD AND 
SUCCESSFULLY RUN OLS AND GWR MODELS

  can only use one of the explanatory variables from OLS 
models. This variable should be able to explain the varia-
tions in any of the three variables.)

 8. Explain the GWR model and spatial autocorrelation results.

FIGURE 5.7 
A screenshot showing a histogram of ordered residuals of a geographically weighted regres-
sion model.
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 1. Generate diagnostic statistics and graphics (RMSE, R2, and residual 
plots using histograms or scatterplots) for your best OLS and GWR 
models (Figure 5.7).

 a. Analyze the model residuals in the OLS and GWR models and 
perform a lack of fitness test (tip: present a histogram or scatter-
plot displaying the residuals).

 2. Does the final model meet the underlying statistical assumptions for 
regression analysis?

Review and Study Questions

 1. What are the similarities and differences between correlation 
analysis and regression analysis?

 2. Distinguish between a traditional OLS regression model and a 
spatial regression model. When is it appropriate to use a spatial 
regression model?

 3. What are the key assumptions of Pearson’s correlation analysis?
 4. Choose two assumptions of regression analysis, and explain how 

you would go about validating these assumptions using the regres-
sion diagnostic measures.

 5. What are the best measures for evaluating the fit of a spatial regres-
sion model?

Glossary of Key Terms

Akaike Information Criterion: This is a statistical measure used to com-
pare two or more competing regression models, and it enables one 
to choose the model with the best fit for the data. It examines the 
goodness-of-fit relative to the number of parameters that need to be 
derived. Models with the lowest values are deemed to be the best.

Coefficient of Determination: This is also called the R2 value. It is a mea-
sure of overall fit in regression analysis and reflects the proportion 
of variance of the dependent variable that has been explained by the 
regression model. It varies from 0 to 1 (it can also be expressed as a 
percentage) and the larger the value, the greater the overall fit of the 
regression model.
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Dependent Variable: When evaluating causal relationships, the dependent 
variable is the response variable, the consequence of events or pro-
cesses that are characterized by the independent/predictor variables. 
In a regression equation, the dependent variable is typically denoted 
as Y, a function of the independent variable, X, and an error term.

Homoscedasticity: When performing traditional regression analysis, a core 
assumption is that the error terms must have constant variance. 
Violation of the assumption results in a heteroscedastic model that 
could arise from the omission of an important predictor variable in 
the analysis. Heteroscedasticity increases the chances of committing 
a type I error; specifically, it leads to the underestimation of the stan-
dard error of the regression coefficients, inflating the t-values and 
leading one to conclude that the variables are statistically significant 
(rejecting H0) when in reality they are not significant.

Independent Variable: When testing causal relationships, the independent 
variable plays the antecedent or causal role. It is the predictor vari-
able in the relationship and is used to explain or predict the vari-
ability of the dependent variable, Y. In a regression equation, the 
independent variable is denoted as X.

Jarque–Bera Statistics: This is also a goodness-of-fit test in GWR. When it is 
statistically significant, it suggests that the model is biased and the 
results are unreliable. A significant statistic could be caused by the 
omission of an important predictor variable in the regression model.

Joint F-Statistics: A goodness-of-fit test that measures the overall fit and sig-
nificance of the regression model in GWR. It essentially captures the 
proportion of explained variance relative to the unexplained vari-
ance in the dependent variable.

Moran’s I Coefficient: A useful and popular test of spatial autocorrelation. 
The measure consists of a value ranging between 0 and 1 signify-
ing the strength of autocorrelation, a positive or negative sign denot-
ing clustering or dispersal, and a related probability value for use in 
assessing the overall significance. This test can be run after a tradi-
tional regression analysis (OLS) to ensure that the residuals are not 
correlated. If they are, then a GWR is warranted.

Multicollinearity: This is a statistical violation in multiple regression analysis 
that is caused by a high correlation between the predictor variables. 
This violation results in unstable regression coefficients, insignificant 
t-values, and overestimation of the overall fit of the model. A more 
severe condition called singularity arises when there is a perfect cor-
relation between the predictor variables included in the analysis. 
Singularity results in a positive definite scenario that prevents the 
computation of the regression estimates.

Pearson’s Product Moment Correlation: A bivariate correlation measure 
that is used to assess the linear association between interval/ratio 
scaled variables. The measure consists of a value ranging between 0 
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and 1 signifying the strength of the association, a positive or nega-
tive sign denoting the direction of the relationship, and a related 
probability value for use in assessing the overall significance.

Residual: This is the error term and it is often denoted as E in a regression 
equation. It captures the portion of the dependent variable that has 
not been explained by the regression model.

Spearman’s Rank Correlation: An alternate correlation measure that is 
used to assess the linear association between two ordinal scaled 
variables, or interval/ratio scaled variables that exhibit significant 
departures from normality. The measure also consists of a value 
ranging between 0 and 1 signifying the strength of the association, 
a positive or negative sign denoting the direction of the relation-
ship, and a related probability value for use in assessing the overall 
significance.

Spuriousness: This is a serious challenge that could arise when evaluating 
relationships between variables and could potentially lead to con-
founding results. A spurious variable is one that impacts both the 
response and predictor variables such that when it is controlled for, 
or removed from the analysis, the original relationship between the 
predictor and response variables diminishes or disappears.

Time Precedence: An important requirement in the testing of causal rela-
tionships is the need to avoid a temporal mismatch between the 
data compiled for the predictor variables and the response variables. 
Specifically, data generated for the predictor variables must either 
precede or be concurrent with the data compiled for the response 
variables.

Variance Inflation Factor: A useful diagnostic measure for identifying col-
linear variables in the regression equation. The higher the VIF, the 
more difficult it is to establish the unique contributions of that vari-
able in the regression analysis.
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6
Engaging in Point Pattern Analysis

LEARNING OBJECTIVES

 1. Understand point patterns in a spatial distribution.
 2. Explore attribute data using different weighting schemes.
 3. Generate and interpret point pattern descriptors.
 4. Detect and interpret clustering of spatial point patterns/events.
 5. Explore and interpret space–time point patterns.

The motivation to work with spatial data is partly driven by the need to 
gain a deep understanding of the spatial structure of a range of phenomena 
such as crime incidents, injuries, diseases, retail, or bird nesting sites that are 
represented by point features. Such features are amenable to point pattern 
analysis in which emphasis is placed on the complete set of observations 
as well as the location of each observation and its distance relative to oth-
ers in the distribution. Although the analysis of the point distributions does 
provide us with fundamental clues about the underlying spatial processes 
and relationships, the main focus is on the examination of any static evi-
dence of spacing. This evidence is normally depicted as a random or non-
random pattern. If the point pattern is identified as nonrandom, it can be 
further described as more clustered than random or more dispersed than 
random. Therefore, three basic pattern structures exist: random, clustered, 
or dispersed. These patterns are illustrated in Figure 6.1. In the upper panel, 
the spatial pattern is clustered and has a large variance. The middle panel 
is a randomly dispersed pattern, has a moderate variance, and is similar to 
a Poisson distribution. The lower panel is a dispersed/uniform pattern with 
no or little variance. The data depicted in this figure are based on the simu-
lation of nesting sites of the African black coucals (Centropus grillii) in the 
Ssezibwa wetlands, north of the town of Kayunga, Uganda. A polygon layer 
of distribution and habitats for the African black coucals from the IUCN 2012 
Red List of Threatened Species database was used to identify the potential 
nesting sites. Ancillary information compiled from the 2012 aerial and satel-
lite images was used in identifying land cover with open, dense, marshy, or 
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FIGURE 6.1
A schematic representation of three different spatial point patterns showing potential nest 
locations of the African black coucals in the Ssezibwa wetlands, north of the town of Kayunga, 
Uganda.
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swampy grassland. The area was delineated into a rectangular shape of 1507 
by 1370 m so that all the nest sites were within the boundaries.

The purpose of this chapter is to explore the range of approaches that are 
used to analyze the distributional patterns of point features such as the bird 
nesting sites depicted above. Our focus will be on quadrat analysis, nearest 
neighbor, Ripley’s K-function, and Kernel estimation. Two other methods, 
Voronoi mapping and the Kulldorff Spatial Scan Statistic, will also be intro-
duced at the end of the chapter. Using data drawn from previous research 
projects, we will run through a series of tasks to illustrate the applications of 
these methods.

Rationale for Studying Point Patterns and Distributions

The statistical tests for studying point distributions rely on the comparison 
between an observed spatial pattern and a random theoretical pattern (i.e., 
Poisson distribution). The tests are used to determine the probability of the 
observed pattern, which may be equal to or more extreme than the critical 
value at a given significance level. In theory, the distribution of observation 
points throughout a given study region follows a homogenous Poisson pro-
cess. The assumption behind this relates to two core principles that define 
complete spatial randomness (CSR): (1) each event has an equal probability 
of occurring at any position in the study region, and (2) the position of any 
event is independent of the position of any other. In framing a statistical test, 
our goal therefore is to test the null hypothesis that the observed pattern is 
random and is produced by the CSR process. However, there are challenges 
in meeting this assumption due to the nature of geographical data. First, if 
we were to explore the absolute locations of a spatial phenomenon, we are 
bound to encounter a first-order effect (no equal probability). Second, if we 
were to explore the interactions between locations we are bound to encounter 
a second-order effect (no independence). In essence, point pattern descriptors 
are designed to take these effects into consideration under the CSR process.

Exploring Patterns, Distributions, and Trends 
Associated with Point Features

A variety of spatial techniques can be used to analyze spatial phenomena 
that possess discrete spatial properties represented as points on a map. In 
this chapter, we will feature five of these methods and related measures: 
quadrat count, nearest neighbor, Ripley’s K-function, kernel estimation, and 
spatial–time scan statistics. These measures are designed to determine the 
density of events or interaction between the locations that develop over space 
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and time. For example, we can use the nearest neighbor approach to compute 
the relationships between pairs of the closest points assigned as neighboring 
locations (Clark and Evans 1954) or we can use the K-function to determine 
patterns across spatial ranges (Bailey and Gatrell 1995; Fotheringham and 
Zhan 1996; Gatrell et al. 1996). When studying these point distributions, one 
must be cognizant of the impact of scale (magnitude of study and extent) 
on the identified patterns. As described in the introductory chapters of the 
book, the MAUP problem is an inherent spatial data problem, and is defi-
nitely one to look out for in point pattern analysis.

Quadrat Count

The quadrat count method determines the point distribution by examining 
its density over the study area. Analysis is based on subquadrats (or grid 
cells) that are constructed over a given study area (A). Again, given the MAUP 
problem, the size of each grid cell is critical and could influence the estima-
tion of measures derived from the analysis. Also, while the most commonly 
used surfaces in quadrat analysis are square grids, it is important to note 
that other surfaces can be used depending on the analytical objectives of the 
study and the nature of the spatial phenomena under investigation. Once the 
surface is established over the study area, the next step is the quantification 
of the number of points per cell (subquadrat) and the frequency distribu-
tion of points in the entire quadrat. The end goal is to compare the observed 
distribution of points to a theoretical random pattern to assess whether it is 
clustered, dispersed, or random. If the results show that events in the popu-
lation have a randomly dispersed pattern, this confirms that there are a ran-
dom number of points in each subquadrat. If the results show that points in 
the population exhibit a dispersed spatial pattern, this confirms that there 
are a dispersed number of points in each subquadrat. If the results show that 
points in the population exhibit a clustered spatial pattern, this confirms that 
the points are concentrated in a few subquadrats and many are empty.

Below are the major steps in conducting a quadrat count analysis:

 1. Divide a study area into a set of equal-area quadrats (grid cells). 
Ideally, the formula for dividing the area is as follows:

 
2 .A

n
  where A is the study area, and n is the number of points.
 2. State the appropriate null hypothesis for the statistical test.
 3. Count the number of events falling in each of the subquadrats to 

 create the variable X, and compute the frequency distribution of X.
 4. Calculate the observed and expected probability of the points for X.
 5. Compute the variance and mean of the variable X.
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 6. Calculate a chi-square test of the hypothesis and the variance mean 
ratio (VMR).

 7. Use the observed statistics and critical value to confirm or deny the 
null hypothesis.

According to the frequency distribution results for a clustered pattern pre-
sented in Table 6.1, there are 68 subquadrats without any nests. Out of 110 sub-
quadrats, 94 have less than 3 nests. The highest concentration of nests is 27, 
which is in one subquadrat; and anywhere from 8 to 25 nests are clumped in a 
few of the other subquadrats. The average number of nests per subquadrat is 
2.1109. The chi-square statistic is 969.61 and it is statistically significant at p < .05.

 
X =

∑X j   f j
∑ f j

= 232.2
110

= 2.1109 

TASK 6.1 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF QUADRAT COUNT MEASURES

If we consider our data of potential nest sites in Figure 6.2, we can 
assume that a set of locations of these nest sites is represented by S with 
n events. Each event (nest) is represented by a pair of coordinates (X, Y) 
in a study area of 2,064,590 m2. The entire study area was partitioned 
into 110 square quadrats each measuring 137 by 137 m. The results for 
the distribution pattern of nests throughout the landscape are pre-
sented in Tables 6.1 through 6.4.

(Continued)

TABLE 6.1

Worktable for Chi-Square Test and Nest Dispersions with Their Observed 
Probability and Expected (Poisson) Distribution Showing a Clustered Pattern

No. of 
Nests per 
Subquadrat 
(xi)

No. of 
Subquadrats (fi) fixi

Observed 
Probability P(x) xi − μ (xi − μ)^2 x(xi − μ)^2

0.0 68.0  0.0 0.6182 0.1211 −2.11 4.46 303.00
2.7 26.0 70.2 0.2364 0.4553 0.59 0.35 9.02
5.4 8.0 43.2 0.0727 0.0570 3.29 10.82 86.55
8.1 2.0 16.2 0.0182 0.0013 5.99 35.87 71.74
10.8 1.0 10.8 0.0091 0.0001 8.69 75.50 75.50
13.5 3.0 40.5 0.0273 0.0000 11.39 129.71 389.13
24.3 1.0 24.3 0.0091 0.0000 22.19 492.36 492.36
27.0 1.0 27.0 0.0091 0.0000 24.89 619.47 619.47

∑ = 110 ∑ = 232.2 ∑ = 2046.77
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TASK 6.1 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF QUADRAT COUNT MEASURES
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FIGURE 6.2 
The spatial distribution of three dispersion patterns. The left panels are rectangles with the 
entire quadrat. Each small 137 by 137 m square represents one subquadrat. The right panels 
are observed and expected quadrat events/nest sites of the African coucals.

(Continued)
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Chi-square statistic χ2 = 2046.77/2.1109 = 969.61
p-value = 4.8248E-138
The frequency distribution results for a randomly dispersed pattern are pre-

sented in Table 6.2. In this table, there are 52 subquadrats without any nests. 

TASK 6.1 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF QUADRAT COUNT MEASURES

TABLE 6.2 

Worktable for Chi-Square Test and Nest Dispersions with Their Observed 
Probability and Expected (Poisson) Distribution Showing a Randomly Dispersed 
Pattern

No. of Nests 
per 
Subquadrat 
(xi)

No. of 
Subquadrats 

(fi) fixi

Observed 
Probability P(x) xi − μ (xi − μ)^2 x(xi − μ)^2

0 52  0 0.4727 0.4066 −0.90 0.81 42.12
1 30 30 0.2727 0.3659 0.10 0.01 0.30
2 16 32 0.1455 0.1647 1.10 1.21 19.36
3 11 33 0.1000 0.0494 2.10 4.41 48.51
4  1  4 0.0091 0.0111 3.10 9.61 9.61

∑ = 110 ∑ = 99 ∑ = 119.90

TABLE 6.3 

Worktable for Chi-Square Test and Nest Dispersions with Their Observed 
Probability and Expected (Poisson) Distribution Showing a Dispersed Pattern

No. of Nests 
per 
Subquadrat 
(xi)

No. of 
Subquadrats 

(fi) fixi

Observed 
Probability P(x) xi − μ (xi − μ)^2 x(xi − μ)^2

0 62 0 0.5636 0.5379 −0.62 0.38 23.83
1.2 37 44.4 0.3364 0.3031 0.58 0.34 12.45
2.1 10 21 0.0909 0.0986 1.48 2.19 21.90
2.8  1 2.8 0.0091 0.0705 2.18 4.75  4.75

∑ = 110 ∑ = 68.2 ∑ = 62.94

TABLE 6.4 

Worktable for Variance Mean Ratio (VMR) for Potential Nesting Sites

Mean
Standard 
Deviation Variance VMR

Clustered 2.11 4.31 18.61 8.81
Dispersed 0.62 0.75  0.57 0.92
Random 0.90 1.04  1.09 1.21
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Thirty of the subquadrats have at least one nest, while the rest of the sub-
quadrats have either two or three nests with the exception of one  subquadrat 
that has four nests. In general, the distribution pattern among the subquad-
rats is  somewhat random with an average number of 0.9 nests per subquadrat 
throughout the landscape. The chi-square test statistic is 133.22 and it is not 
significant (p > .05).

 
X =

∑ Xj f j
∑ f j

= 99
110

= 0.90 

Chi-square statistic χ 2 = 119.90/0.9 = 133.22
p-value = 0.057389389
According to the frequency distribution results for a dispersed pattern 

presented in Table 6.1, there are 62 subquadrats without any nests. Most of 
the subquadrats have one to three nests that are spatially dispersed through-
out the landscape. The average number of nests is 0.62 per subquadrat. The 
chi-square test statistic is 101.51 and is statistically insignificant.

 
X =

∑ X j f j
∑ f j

= 68.2
110

= 0.62 

Chi-square statistic χ 2 = 62.94/0.62 = 101.51
p-value = 0.682243941
Chi-square tests were used to determine whether the distribution of nest-

ing sites occurs randomly throughout the landscape. These tests compared 
observed distributions of nesting sites to Poisson distributions; and if we 
were to find the patterns to be random, then we would conclude that these 
were produced by CSR. The chi-square test was conducted at a 95% signifi-
cance level and 109 degrees of freedom, so that there was only a 5% chance of 
committing a Type I error if we were to incorrectly reject the null hypothesis.

According to the chi-square result (see Figure 6.2 and Table 6.1), we reject 
the null hypothesis that potential nesting sites occur randomly throughout 
the landscape. Also, the VMR is 8.81, which is significantly greater than 1. 
This confirms the pattern is clustered. We, therefore, conclude that potential 
nesting sites were not an outcome of the CSR process.

Based on the statistical results generated from the other distributions and the 
chi-square tests (see Tables 6.2 and 6.3), we do not reject the null hypotheses that 
potential nesting sites occur randomly throughout the landscape. The VMR 
was 0.92 and 1.21 for the dispersed and randomly distributed point patterns, 
respectively. Both of them are below 1 or barely over 1, suggesting that the 
point patterns exhibit more randomness than non-randomness. The chi-square 
tests were statistically insignificant, implying that the observed distribution 
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patterns were similar to Poisson distributions (Figure 6.2). This lends further 
credence to the fact that the patterns are an outcome of the CSR process.

The interpretation of quadrat count results was based on the frequency dis-
tribution comparisons. For the VMR results, we expected a VMR that was close 
to 0 to yield a dispersed distribution, around 1 to yield a random distribution, 
and greater than 1 to yield a clustered distribution. Although the patterns for 
the nesting sites reflected this, it should be noted that the dispersed pattern 
had a VMR that was close to 1. This is not a completely uniform distribution.

Nearest Neighbor Approach

The nearest neighbor approach compares the distances between nearest 
points and distances that would be expected on the basis of chance or simply 
measures the distance between an individual point and its nearest neighbor 
(Clark and Evans 1954). The approach computes the average distance between 
nearest neighbors in a point distribution (observed distance) and compares 
it to that of a theoretical pattern (expected distance). This approach assumes 
that observation points represent a sample in a two- or more-dimensional 
Euclidean space. Relationships between neighboring points are derived under 
the Poisson distribution assumption, such that if points are randomly distrib-
uted then they can be used to detect the presence of nonrandomness for any 
given pattern (Clark and Evans 1954; Bailey and Gatrell 1995; Fotheringham 
and Zhan 1996; Gatrell et al. 1996). The Euclidean space between two or more 
objects, or distance, captures neighboring relations, which enables different 
orders of neighbors to be quantified when studying any given neighboring 
points. Different ordered neighbor statistics, first-ordered, second-ordered, 
and other higher-ordered neighbors can be derived.

In a study region, we have a set of events (N) in a population. Each of the 
events has a nearest neighbor, which can be represented by r. The observed 
distances (ri) defined as r1, r2, r3, r4 … rn represent the distance between each 
item and its closest neighbor in an area (A). The values are expressed using 
similar units of measurement. To compute the nearest neighbor, we divide 
the sum of ri by N to get the mean observed distance (ro) for all points and 
compare it with the expected mean distance (re). The formulas to complete 
this analysis are given below.

The density of points, p, is given by number of points (N) per study area (A):

 
p = N

A

Mean observed distance (ro) is given by

 
ro =  i=1

N∑ ri
N
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The expected value of the nearest neighbor distance (re) in a hypothetical 
random pattern is

 
re = 0.5

A
N

+ 0.0514 + 0.041
N

⎛
⎝⎜

⎞
⎠⎟
× B
N

where B is the perimeter of the study area.
The nearest neighbor ratio, R, measures the degree to which the observed 

distribution departs from the expectation in a random pattern:

 
R =  ro

re

The divergence from randomness along the R scale is interpreted as fol-
lows. When R is equal to 1, the distribution of events in the study region is 
perfectly random. When R is equal to 0, the distribution of events is com-
pletely clustered, and if R is greater than 1, the distribution of events tends 
toward uniformity. The R scale shows different dispersion patterns and 
ranges from 0 to 2.149. Small or large divergences are indicative of the under-
lying processes that are producing a dispersion pattern.

A statistical test of significance is conducted by looking at the difference in 
the observed and expected mean distance of the nearest neighbor, divided 
by the standard error:

 
z = ro − re

σr
= ro − re
0.261 np

The resulting quantity is a standard normal variable (z) that can be used to 
evaluate the null hypothesis of randomness.

To summarize, there are six major steps in conducting a nearest neighbor 
analysis.

 1. Calculate the density of points in an area.
 2. Derive observed average distances.
 3. Determine the hypothetical random pattern.
 4. Compute the R statistic and perform a statistical test.
 5. Interpret the R statistic (when ro is less than re then more clustered 

patterns are associated with smaller R-values and when ro is greater 
than re then more dispersed patterns are associated with larger 
R-values).

 6. Calculate the z-scores and use the appropriate critical values to con-
firm or deny the null hypothesis.
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The R-values in Table 6.5 provide an estimate of the degree of clustering for 
three distributions, while the test of significance (p-value) assumes that the 
statistical distributions of observed distances were approximately normal.

The observed mean distance, expected mean distance, and z-score for dis-
tributions are presented in the same table. The R-value for the clustered distri-
bution is less than 1; for the dispersed distribution, it is greater than 1; for the 
randomly distributed pattern, it is close to 1. The z-score result for the clustered 
distribution is –10.55 and this is far below –1.96, the critical value observed at a 
0.05 significance level. For the dispersed distribution, the z-score is 15.08, and 
this too is above the critical value of +1.96 at a significance level of 0.05. Based 
on these z-scores, we are 95% confident that the two spatial patterns are not 
randomly distributed. However, when examining the random distribution, 
the z-score is 0.396, which is below +1.96, so we cannot reject the null hypoth-
esis of spatial randomness. Overall, based on these statistical results, we can 
make the following observations regarding the spatial distribution of potential 
nesting sites of African black coucals. The distribution listed in the first row of 
Table 6.5 shows a significant degree of clustering, implying that potential nest-
ing sites are more clustered than random, and the pattern is not due to the CSR 
process. In the second row, potential nesting sites are more dispersed than ran-
dom, thus the spatial distribution shows a significant level of regularity. In the 
third row, nesting sites are randomly dispersed and are essentially produced 
by the CSR process. The spatial distribution of three dispersion patterns and a 
plot of the observed distance to the closest neighbor is presented in Figure 6.3.

TASK 6.2 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF NEAREST NEIGHBOR MEASURES

We will use our data of potential nest sites in Figure 6.2. However, 
the   dispersed distribution has been simulated to give a near-perfect 
 uniform pattern. In this analysis, we can assume that a set of  locations 
of  these  nest sites is located in a study region. Each of the points 
 represented by a pair of coordinates (X, Y) has a closest neighbor that is 
represented by r in a predefined study area of 2,064,590 m2. The density 
of points is 5.38e-5 per square meter.

TABLE 6.5 

Worktable for Nearest Neighbor Analysis for Potential Nesting Sites Showing 
Results for Three Basic Distributions

Observed 
Mean 

Distance

Expected 
Mean 

Distance

Nearest 
Neighbor 
Ratio (R) z-Score p-Value

Clustered 31.671 54.30851 0.58316 −10.549206 .00000
Dispersed 120 68.5 1.751825 15.08495 .00000
Random 95.231 92.749438 1.026753 0.396444 .691778
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FIGURE 6.3 
The spatial distribution of three dispersion patterns and a plot of the observed distance to the 
closest neighbor.
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K-Function Approach

Unlike the nearest neighbor method, which relies on distances only to the 
closest events, the K-function approach explores a spatial pattern across a 
range of spatial scales (Bailey and Gatrell 1995; Fotheringham and Zhan 1996; 
Gatrell et al. 1996). It is based on all inter-event distances between observa-
tion points, and provides another way to summarize and fit the models that 
best describe spatial patterns in a given study region.

The K-function is given as

 
K(h) = A

2n
hI ( ijd )

ijwj=1,i≠ j

N

∑
i=1

N

∑

where K(h) is the expected number of events inside the radius (h), A is area, n 
is the number of observed events, and dij is the distance between events i and 
j. Ih(dij) is an indicator function, which is 1 if dij ≤ h and 0 otherwise. The wij 
are weights associated with edge correction, which is most often taken as the 
proportion of the circumference of a circle with radius h centered at a point 
that is contained within the study area. K(h) is normally graphed against the 
distances to reveal if any clustering occurs at certain distances. K(h) should 
be transformed into a square root function to make it linear L(d) under a 
Poisson distribution to a value of zero with clumped alternatives being posi-
tive and regular alternatives being negative. This is done by applying Besag’s 
(1977) zero benchmark to normalize the K(h):

 
L d( ) =  K h( )

π
− h

The normalization of K(h) to L(d) enables fast computation and simple 
interpretation of the result. We can evaluate different K(h) models using 
simulated confidence envelopes. For example, when L(d) is equal to zero, the 
process is considered to be random.

Just like in the previous point pattern methods, the basis for conducting 
a K-function is by comparing the expected and observed distributions. So 
for any distance, if the observed L(d) is less or greater than the expected 
L(d), the null hypothesis of CSR is rejected at a specified significance level. 
With this in mind, the interpretation of the K-function is as follows: (1) 
an observed L(d) greater than the upper limit of the simulations indicates 
clustering in concentration, (2) an observed L(d) lesser than the lower 
limit of the simulations indicates dispersion, and (3) an observed L(d) in 
between the lower and upper limit of the simulations indicates a random 
distribution.
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There are six major steps in conducting a K-function analysis:
 1. Determine/compare the observed and expected K. The observed K 

is obtained through the construction of a circle around each point 
event (i), counting the number of other events (j) within the radius (h) 
of the circle, and repeating the same process for all other events (i).

 2. Next, determine the average number of events within successive dis-
tance bands. Find the overall point density for the study area. The 
observed K is the ratio of the numerator to the density of events. This 
can then be compared to the expected K, which is a random pattern, 
K(h) = πh2.

 3. Transform K(h) estimates into a square root function to make it lin-
ear L(d).

 4. Determine the confidence envelope by estimating min L(d) and 
max L(d) values from several simulations at α = 0.05 under the null 
hypothesis of random distribution.

 5. Plot L(d) estimates on a graph to reveal if any clustering occurs at 
certain distances.

 6. Interpret the results.

TASK 6.3 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF K-FUNCTION MEASURES

In this example, we will use two datasets drawn from ecological and 
medical domains to illustrate the application of the K-function methods. 
For the ecological application, we will use the bird nesting dataset intro-
duced earlier in this chapter. The null hypothesis is that the distribution 
of nesting sites is random (nonhomogenous) throughout the landscape 
under a Poisson distribution and is statistically significant at α = 0.05. 
A plot of the results generated for L(d) is shown in Figure 6.4. In the 
upper panel, the observed distance is above the min L(d) and max L(d) 
suggesting a clustered distribution. In the middle panel, the observed 
distance is in between the min L(d) and max L(d), indicating the distri-
bution is random. Finally, in the lower panel, the observed distance is 
below the min L(d) and max L(d), suggesting a dispersed distribution.

For the medical application, we will examine injury location data 
drawn from the city of Syracuse, New York region. The data were origi-
nally obtained from the Department of Emergency Medicine, University 
of Buffalo. It consisted of 911 reported calls for all patients transported 
directly to the trauma center from the scene of injury, incident location, 
and travel time to trauma center, covering a 6-year study period (1993–
1998). Eighty-one percent of 750 incident locations were successfully 

(Continued)
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TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF K-FUNCTION MEASURES   
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FIGURE 6.4 
Plots of L(d) values for three dispersion patterns of an ecological study obtained from 
the K-function analysis. The findings were generated on the basis of 99 simulations 
under the null hypothesis of random distribution.

(Continued)
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TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF K-FUNCTION MEASURES

geo-coded to create an injury location database. We will use the data to 
determine whether the distribution of injury locations (and the influ-
ence of prehospital travel time from the scene of injury to trauma center) 
exhibits a random pattern under a Poisson distribution. A plot of the 
results for L(d) is shown in Figure 6.5. In the upper panel, the observed
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FIGURE 6.5 
A plot of L(d) values for injury locations of a medical study obtained from the K-function 
analysis. The findings were generated on the basis of 99 simulations under the null 
hypothesis of random distribution.

(Continued)
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 Kernel Estimation Approach

This approach utilizes kernel functions to estimate the density surface 
of events within a specified radius (bandwidth) around each event in a 
study region. From a statistical perspective, it is basically a non-parametric 
method that estimates the probability density function of a random vari-
able. We can apply this method to study the density of events in a study 
region (R) by using a moving two- or more-dimensional function (the 
kernel).

Each of the events lies in a specified location, which can be represented 
as s. Let s1, s2, …sn be the location of a set of n events in a study region, R. We 
can derive the surface intensity of n events using this equation (Bailey and 
Gatrell 1995):

 
∑( )λ =

τ

−

τ
�
��

�
��τ

=

�
s k s s  1

i

n
i

1
2

where τ is the bandwidth (a smoothing parameter, i.e., radius of the cir-
cle), k(∙) is the kernel, and s−si is the distance between two events (point s 
and si).

TASK 6.3 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF K-FUNCTION MEASURES

distance is above the min L(d) and max L(d), which is outside of 
the confidence envelope. We can therefore conclude that the spa-
tial  distribution of injury locations were more clustered than ran-
dom throughout the Syracuse region. However, upon weighting 
with prehospital travel time, a distributional change was observed 
as depicted in the lower panel. From a distance of 13,115 to 65,576 
m, the observed distance is below the min L(d) and max L(d), which 
is outside of the confidence envelope. This finding suggests that the 
distribution of injury locations is more dispersed than random. For 
remaining distances occurring after 65,576 m, the observed distance 
is in between the min L(d) and max L(d), suggesting that the distribu-
tion is more random than dispersed and is due to the CSR process. 
There is a significant change in L(d) values when prehospital travel 
time is considered in the distribution analysis. The mixed distribu-
tion pattern reminds us of the need to proceed with caution when 
doing dispersion studies. In this medical example, the results seem 
to suggest that prehospital travel time is not associated with injury 
locations.
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For an event to be incorporated in a density surface estimate, a suitable ker-
nel function needs to be applied to spread its effect across space (Figure 6.6). 
What follows is a smoothened density surface, which is produced after sum-
ming all the individual kernels across the study region. The influence of an 
event at si to all point events can be adjusted by scaling the kernel function. 
This function provides an appropriate interpolation technique for general-
izing individual-level events in a given location to the entire study region. 
The kernel density estimation results can be displayed by either using surface 
maps or contour maps. It is also possible to construct a histogram of a kernel 
density estimate.

The kernel function calculates the probability density of an event at a 
specified distance using an observed reference point. However, the event 
intensity of spatial point patterns is contingent upon kernel type and band-
width. There are different kernel types including normal, uniform, trian-
gular, quartic, and Gaussian. The kernel density estimation is useful for 
characterizing spatial patterns of point events and is normally employed in 
many spatial applications, including population density, housing density, 
crime, ecology, and health. Let us work through Task 6.4 to illustrate this 
application.
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FIGURE 6.6 
A schematic representation of the kernel estimation method applied to study region R.
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TASK 6.4 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF THE KERNEL DENSITY MEASURES

In this example, we will apply the kernel estimation method on the injury 
location dataset that was previously described for the K-function. The 
maps from the kernel estimation method are presented in Figure 6.7. 
Two continuous injury density surfaces with prehospital travel time 
as a population field are given in Maps B (5,000 m bandwidth) and C 
(10,000 m bandwidth). Although Maps B and C have similar spatial pat-
terns in terms of their density surface, the 10,000 m bandwidth provides 
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FIGURE 6.7 
Intensity patterns of injury location relative to prehospital travel time in Syracuse. 
Kernel density interpolation of injury location estimates with prehospital travel time 
as a population field.
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Constructing a Voronoi Map from Point Features

Along with the methods described in section, “Exploring Patterns, Distribu-
tions, and Trends Associated with Point Features,” Voronoi maps are funda-
mental tools for uncovering the geometric structures that underlie spatial 
data. They have been used in applications that draw from the location of 
point features to delineate space into so-called “spheres of influence” such 
as trade areas in the retail industry, hospital service areas, and more. The 
Voronoi method offers an excellent example of how spatial analysis builds 
upon the synergies between multiple analytical domains including mathe-
matics, computational geometry, and geographic information systems (GIS). 
The technique offers a computational means to partition a plane (space) 
using a set of individual points into convex polygons (Klein 1989).

Let us assume we have a set of points, n, with the following points {v1, 
v2, …, vn} in an Euclidean space. Each site vk is simply a point and has a 
 corresponding Voronoi cell, RK, which consists of every point whose distance 
is less than or equal distance to any other site. We can use a Voronoi dia-
gram to  measure  the proximity of a polygon area to a particular event or 
investigate a source of concern.

TASK 6.5 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF A VORONOI MAP

In this example, we will create a Voronoi map for the bird nest-
ing locations of the African black coucals dataset that was used in 
 section, “On Exploring Patterns, Distributions, and Trends Associated 
with  Point Features.” Figure 6.8 presents Voronoi maps for three 

(Continued)

TASK 6.4 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF THE KERNEL DENSITY MEASURES

a more generalized density pattern and spatial extent than the 5,000 m 
bandwidth. This is because the 10,000 m bandwidth includes a larger 
number of point events in its calculations.

In both Maps B and C, the intensity of injury locations was apparent in 
the central portion of the study region. The highest density surface val-
ues were located within the center surrounding the trauma center, and 
because of distance decay, the surface values gradually level off. There 
is a diminishing of density surface values as one moves farther away 
implying that there were more observed injury locations that fell in this 
neighborhood than further away. The results offer confidence in the spa-
tial patterning of injury locations and the role of the trauma center.
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TASK 6.5 (Continued) SAMPLE DATA, SYNTHESIS, 
AND INTERPRETATION OF A VORONOI MAP

(Continued)
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FIGURE 6.8 
Voronoi maps illustrating three point distributions for potential nesting sites in relation 
to area and comparison histogram of area of proximity polygons are presented above.
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Exploring Space–Time Patterns

While several of the applications introduced so far in this chapter are based 
on point patterns that are rooted in space, it is important to point out that 
there are several geographical problems that call for and entail the use of 
space–time applications. The visualization and analysis of space–time pat-
terns was inspired by the groundbreaking work of Hägerstrand (1970). 
Hägerstrand’s idea focused on how we can better understand human spa-
tial activity through the space–time path concept. He identified two types of 
human activities that could be examined using this concept: fixed and flex-
ible activities. A fixed activity entails core aspects of an individual’s schedule 
that occur at a defined location while a flexible activity represents any sec-
ondary activity an individual would schedule or engage in. Flexible activity 
may occur around a fixed activity. It is important to note that individual 
activities a person may engage in are typically constrained by spatial and 
temporal factors. An individual’s travel activities have origin and destination 
locations with a start and an end time.

Decades later, Miller (1991) illustrated how Hägerstrand’s space–time 
path concept could be extended into new areas. Harvey did not only model 
individuals’ accessibility to an environment using space–time prism con-
cepts but also advocated its widespread use in spatial modeling and anal-
ysis. Motivated by this prior work, GIS/spatial analysts now apply these 

TASK 6.5 (Continued) SAMPLE DATA, SYNTHESIS, 
AND INTERPRETATION OF A VORONOI MAP

nesting locations and comparison histograms of areas of proximity 
polygons. In the upper panel, the area of proximity polygons is very 
tight; most nests are in close proximity to each other, frequency dis-
tribution is heavily skewed, and there are five potential spatial clus-
ters of nesting sites encoded with yellow color. In the middle panel, 
most of the individual nests fall in their own polygon (Voronoi cell) 
and this pattern was repeated throughout the study region. The fre-
quency distribution of nesting sites is skewed with most observations 
occurring within three sets of areas of proximity polygons. In the lower 
panel, individual nesting sites are uniformly distributed and dispersed 
throughout the study region. There is one nest site in each polygon 
(Voronoi cell). We can draw conclusions about the type of spatial pat-
terns of potential nesting sites of African black coucals based on these 
Voronoi maps. Overall, the upper panel shows a clustered spatial pat-
tern, the middle panel shows a random spatial pattern, and the lower 
panel shows a dispersed spatial pattern.
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perspectives to study different spatial phenomena, including incidents of 
crimes and diseases, tweet movements on the Twitter network, and con-
sumer activities on social media and online shopping sites. The new knowl-
edge that is derived can be useful for synthesizing life trajectories and 
the development of superior study hypotheses for more in-depth studies. 
Specifically, the space–time perspectives can be used to construct 3D distri-
butional characteristics (space–time path, space–time prism, and potential 
path area space–time) of any human activity or moving objects provided that 
they are constrained by physical or virtual spaces.

Although many space–time methods are available (Groff 2007), one that 
has been used frequently to analyze crime as well as disease incidents is the 
Kulldorff’s space–time scan statistic. In an effort to find statistically signifi-
cant clusters, the Kulldorff’s space–time method employs an elliptic search 
window to determine whether the point process is purely random or if any 
potential clusters exist in the study area under the homogenous Poisson 
distribution. Within each search window, the method assigns a likelihood 
function to a potential cluster, which is then compared with a randomly 
generated theoretical pattern. To compute the spatial scan statistic, a circu-
lar window is imposed on the map, and the center of the circle is allowed 
to move flexibly over the area to include different neighborhood positions 
within each search window (Kulldorff 2001). A likelihood value (Kulldorff 
2001) is then calculated for each window using this formula:

 S = 
max
z

L Z( ){ }
L0

=max
z

L Z( )
L0

⎧
⎨
⎩

⎫
⎬
⎭

Given a total number of observed incidents, N, the definition of the spatial 
scan statistic S is the maximum likelihood ratio over all possible circles Z. 
L(Z) is a measure of how likely it is the observed data (in our example, it is 
the rate of crime incidents) within the window are different from out of the 
window. The maximum likelihood ratio test statistic (L0) is calculated under 
the null hypothesis of no spatial heterogeneity in the spatial distribution of 
observations.

A single p-value is generated for the test of null hypothesis through Monte 
Carlo simulations, and the theoretical pattern reflects the number of random 
replications on the basis of a number of simulations (at least 999 to ensure 
excellent power). The theoretical patterns are compared with the observa-
tions, and if the observations are among the highest 5%, then the test is sig-
nificant at the 0.05 level (Kulldorff 1997; Kulldorff et al. 2006; Dai and Oyana 
2008). Based on these statistics, we can reject the null hypothesis and specify 
the estimated location of the most likely space–time cluster of the events.

Map A provides the place names of the neighborhood; Map B provides four 
space–time clusters derived from a spatial space–time scan statistic; Map C 
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TASK 6.6 SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF KULLDORFF’S SCAN STATISTIC

For this task, we will utilize crime data covering a 5-year study 
period (2008–2012) for the city of Spokane, Washington. The data were 
obtained from the city’s GIS website (http://www.spokanecity.org/ser-
vices/gis/). The crime dataset provides individual-level incident loca-
tion information for different types of crimes. In this case study, we 
chose to examine the overall crime patterns and dynamics, and we also 
focused on detecting the clusters for two crimes in particular: theft and 
burglary crimes. We applied the space–time prospective scan statistic 
to study crime incidents over a 5-year period. The crime incidents were 
analyzed at two spatial levels: individual and group level.

In 2010, Spokane had an estimated population of 210,000 with most 
people living in the north and south. Very few people lived in the cen-
tral and western portions of the city. The city has 27 neighborhoods 
and covers an area of 156 km2. Figure 6.9 provides a 3D representation 
of crime rate distribution by neighborhood during the study period. 
In this figure, it appears that crime rates were highest in the Riverside,   
West Central, Cliff/Cannon, and Bemiss neighborhoods. However, the 
rates are misleading because these neighborhoods have a low popula-
tion (a small number problem), thus inflating the crime rates. One must 
exercise caution in interpreting the crime rates and to the extent pos-
sible, conduct a more detailed spatial analysis such as one shown in 
Figure 6.10. In this figure, the space–time clusters of crime incidents are 
far more realistic than the observed trends in Figure 6.9.

(Continued)
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provides four space–time clusters derived from the spatial space–time scan 
statistic; and Map D provides three space–time clusters derived from the 
spatial space–time scan statistic.

Conclusion

One of the most fundamental applications in spatial analysis is point pattern 
analysis. In this chapter, we have explored a number of approaches for quan-
tifying the pattern of these distributions from the most basic using quadrat 
analysis to more complex approaches that use circular/cylindrical windows to 
characterize the events in space and time. For each of the techniques, we have 
provided the analytical steps and examples to help you learn how to compute 
and synthesize the results. Following are more examples and sample exercises.

TASK 6.6 (Continued) SAMPLE DATA, SYNTHESIS, AND 
INTERPRETATION OF KULLDORFF’S SCAN STATISTIC

The space–time prospective analyses detected four sets of clusters 
of crime incidents shown in Figure 6.10. The life trajectory of over-
all crime incidents in Spokane has a start date of January 1, 2011 to 
December 31, 2012 (Figure 6.10: Map B). The biggest set was detected 
in Bemiss, Hillyard, Chief Garry Park, and Minnehaha. The second set 
was located in Brownes Addition, Peaceful Valley, and Riverside. The 
third set was detected in West Hills, while the fourth set was a big 
cluster that  overlapped in six neighborhoods, including Latah Valley, 
Comstock, Lincoln Height, Southgate, Rockwood, and Manito/Cannon 
Hill. Burglary had a similar spatial pattern to overall crime incidents 
(Figure 6.10: Map C). However, the spatial pattern for theft was slightly 
different from burglary; three sets of theft clusters were detected in 
Bemiss, Hillyard, Chief Garry Park, and Minnehaha; Brownes Addition; 
and West Hills (Figure 6.10: Map D).

A total of five life trajectories were built from the space–time prospec-
tive analyses of crime incidents. The most important life trajectory was 
the one that overlapped in four neighborhoods. Most of the detected clus-
ters in 2011–2012 were common in three analyses, suggesting a consistent 
finding among the different types of crime incidents in city of Spokane.
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Challenge Assignments

TASK 6.7 GENERATE AND INTERPRET POINT 
PATTERN DESCRIPTORS AND STATISTICS

 1. We will explore point patterns using two distance-based con-
ventional methods (Average Nearest Neighbor and Multi-
Distance Spatial Cluster Analysis [Ripley’s K-Function]). The 
data for completing this challenge assignment are located in 
Chapter6_Data_folder.

 2. Exploring noise-level events. Add Noise_Project and Study_
Area_Outline feature classes from Noise_OHare_Geodatabase 
.mdb from data folder.

 a. What is the observed nearest neighbor mean distance 
(NNObserved) for the noise-level events?

 b. What is the expected nearest neighbor mean distance 
(NNExpected) for the noise-level events?

 c. What is the nearest neighbor ratio for the noise-level 
events?

 d. What are the z-score and p-value? Are these statistics 
significant? What spatial patterns do the events depict? 
Explain.

 e. Compute the observed K-function and expected K-function 
for the noise-level events. Select 10 as the number of dis-
tance bands, under Compute Confidence Envelope select 
99_permutations, and use all_averag as the Weight Field for 
the noise-level data. Remember to check the box to display 
your results graphically. Include the K-function plot in your 
final report. Are the statistics significant? What spatial pat-
terns do the events depict? Explain.

 f. Define a specific study hypothesis regarding the spatial 
patterns of noise-level events.

 g. What fundamental insights can you extract from the explo-
ration of noise-level events?

(Continued)
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TASK 6.8 EXPLORE AND INTERPRET SPACE–
TIME POINT PATTERNS AND STATISTICS

 1. There are two ways of conceptualizing and modeling the 
complex patterns of spatiotemporal dynamics: (1) continu-
ous space and time models and (2) discrete space–time mod-
els. In this example, we will learn how to conduct a basic 
time series analysis of noise-level data spanning a 7-year 
(2004–2010) study period. The data have been split into four 
categories/subsets using MS Excel: Tier 1 (80th percentile and 

TASK 6.7 (Continued) GENERATE AND INTERPRET 
POINT PATTERN DESCRIPTORS AND STATISTICS

 3. Exploring OSA events. Add the Erie_cen.shp, Niagara_cen.shp, 
and OSA.shp datasets from the Chapter6_Data_folder in a new 
dataframe.

 a. What is the observed nearest neighbor mean distance 
(NNObserved) for the OSA events?

 b. What is the expected nearest neighbor mean distance 
(NNExpected) for the OSA events?

 c. What is the nearest neighbor ratio for the OSA events?
 d. What are the z-score and p-value? Are the statistics signifi-

cant? What spatial patterns do the events depict? Explain.
 e. Compute the observed K-function and expected K-function 

for the OSA events. Select 10 as the number of distance 
bands, under Compute Confidence Envelope select 99_per-
mutations, and use DAYS_INPT as the Weight Field for the 
OSA events data. Remember to tick the box to display your 
results graphically. Include the K-function plot in your final 
report. Are the statistics significant? What spatial patterns 
do the events depict? Explain.

 f. Define a specific study hypothesis regarding the spatial 
patterns of OSA events.

 g. What fundamental insights can you extract from the explo-
ration of OSA events?

 4. Compare and contrast these two distance-based methods: 
average nearest neighbor and Ripley’s K-function.

(Continued)
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TASK 6.8 (Continued) EXPLORE AND INTERPRET 
SPACE–TIME POINT PATTERNS AND STATISTICS

  above), Tier 2 (between 50th and 80th percentile), Tier 3 (20th 
and 50th percentile), and Tier 4 (20th percentile and below). 
The average for the four categories is presented in Table 6.6.

 a. Plot the temporal trends using a line chart for the four 
categories.

 b. Describe the temporal trends among the four categories.
 c. Test the following hypothesis using a one-way analysis of 

variance (ANOVA).
 i. The null hypothesis is that the decibel means over the 

study period are equal: H0: Tier1_Mean = Tier2_Mean = 
Tier3_Mean = Tier4_Mean.

 ii. The alternate hypothesis is that the decibel means over 
the study period are not equal: HA: Tier1_Mean <> 
Tier2_Mean <> Tier3_Mean <> Tier4_Mean.

 iii. Is the result statistically significant? What does this 
mean? Explain.

 2. Use names of places within the attribute table together with a 
general map of O’Hare International Airport (e.g., from Google 
Maps) to identify specific neighborhoods and any other identi-
fiable characteristics from each of the four tiers. Perhaps after 
doing Task 6.5 you will have additional information to effec-
tively respond to this question.

 3. Describe the spatiotemporal patterns of noise levels in the 
study region.

TABLE 6.6 

A Summary Showing Averages of Four Categories of Day/Night Sound 
Levels

Levels 2004 2005 2006 2007 2008 2009 2010

Tier 1 69.29755 69.4 70.70509 69.26111 69.25972 66.72942 67.61667

Tier 2 62.34501 62.86818 63.00463 61.67189 61.11852 59.0463 59.92407

Tier 3 58.52424 57.9871 59.01704 58.80031 58.37204 57.11894 56.12129

Tier 4 56.67273 56.04306 55.86667 55.90972 55.60417 54.66959 54.40238
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Review and Study Questions

 1. What are the three common distributions encountered in point pattern 
analysis? Using a variable with point features drawn from your area of 
interest, speculate on the observed distributional pattern of this vari-
able. What technique would you use to confirm or deny your claim?

 2. What is the theory of CSR? Describe the various ways in which this 
can be violated in spatial analysis.

 3. Point pattern measures are all based on the comparison of observed 
and expected distributions. Choosing two of the approaches intro-
duced in this chapter, first explain how the expected distributions 
are derived. Then explain the statistical measures that are used to 
confirm or deny the null hypothesis of CSR.

 4. Compare and contrast the measures derived from Kulldorff’s Scan 
Statistics with two other measures introduced in this chapter.

Glossary of Key Terms

Clustered Pattern: When point features (events) are detected to be spatially 
concentrated in a specific location of a study region.

Complete Spatial Randomness: This principle states that each event has an 
equal probability of occurring at any position in the study region 
and the position of any event is independent of the position of any 
other.

Kernel Estimation: This method is used to estimate the density surface of 
events within a specified radius (bandwidth) around each event in 
a study region.

Nearest Neighbor Analysis: This method compares the distances between 
nearest points (events) and distances that would be expected on the 
basis of chance.

Point Pattern Analysis: This is a means through which we describe or 
examine a complete set of observations as well as the location of 
each observation and its distance relative to others in a distribution.

Quadrat Count Method: This method is used to determine the frequency of 
point distribution by measuring the density of points (events) over 
the study region.

Ripley’s K-Function: This method is used to describe spatial patterns across 
a range of spatial scales.

Space–Time Scan Statistic: This statistic is used to describe the distribution 
of spatial, temporal intervals or spatiotemporal patterns of events in 
a study region.
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Spatial Scan Statistic: This statistic measures the maximum likelihood ratio 
over all possible search radii.

Variance Mean Ratio: This is a normalized measure of the dispersion of a 
probability distribution.

Voronoi Map: This is used to delineate or represent space and it helps to 
computationally determine the “spheres of influence.” A Voronoi 
map is derived using the complex geometric and topologic struc-
tures of the underlying spatial data.
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7
Engaging in Areal Pattern Analysis 
Using Global and Local Statistics

LEARNING OBJECTIVES

 1. Construct and use different spatial weights for areal pattern 
descriptors.

 2. Generate and interpret clustering of values of areal patterns at a global 
level.

 3. Generate and interpret clustering of values of areal patterns at a local 
level.

 4. Identify clustering of areal pattern values using different spatial 
weights.

 5. Explore, analyze, and interpret areal patterns based on advanced spa-
tial analysis.

This chapter is dedicated to the analysis of areal patterns using both global 
and local spatial statistics. Unlike Chapter 6, which focused on point pat-
terns, in this chapter, we will explore spatial datasets that are reported 
or received at aggregated spatial levels < specifically areal, polygon, or 
group-level data. Such datasets are becoming increasingly common due 
to the growing need for confidentiality and privacy of data records. Many 
public and private agencies as well as data centers are now obliged to pres-
ent data at aggregated unit levels. Typically, the individual-level spatial 
data information is aggregated at spatial scales such as census tracts, zip 
codes, health service areas, community districts, counties, or higher levels. 
To evaluate the areal patterns, it is incumbent on a data scientist to recog-
nize the unique attributes and challenges that are inherent in the use of 
such data, and to choose the appropriate techniques for spatial analysis. 
The methods presented in this chapter will be helpful in the exploration 
and analysis of these spatial datasets. Each technique will be discussed 



184 Spatial Analysis

alongside a case study to illustrate the computational steps, following 
which the interpretation of the test results and the methodological limita-
tions, if any, will be presented.

Rationale for Studying Areal Patterns

As we embark on the analysis of group-level spatial datasets, a number 
of questions come to mind. Specifically, what are some of the most robust 
spatial methods for analyzing areal units? What role do measurement 
scales play in the selection of these methods? What is the significance of 
spatial weights and what are the implications of using these weights on 
the analysis? And what are the benefits of using either global or local sta-
tistics to uncover the spatial areal patterns? Along with these questions, 
it is important to note that changes in spatial patterns over time are often 
the result of underlying spatial processes. Therefore, when exploring spa-
tial patterns, we need to focus not only on the spatial patterns but also on 
the spatial processes. As we discovered in Chapter 6, the patterns can be 
clustered, dispersed, or random. Our task will be to formulate a statistical 
hypothesis of complete spatial randomness and then validate this based 
on the empirical observations derived from the analysis. If the pattern is 
nonrandom, we then proceed to uncover the processes that underlie the 
observed pattern.

The Notion of Spatial Relationships

Spatial statistics does not simply mean the application of statistical 
methods to data that just happens to be spatial, encompassing x- and 
 y-coordinates. Rather, it entails the integration of space and spatial 
relationships (area, distance, length, etc.) directly into the analysis. In 
Chapter 1, we  discussed the notion of spatial dependency as a principal 
characteristic of geographic data. Knowledge of this basic characteristic 
lies at the core of a  successful spatial analysis. The existence of spatial 
dependency requires more  attention to avoid biased estimates (Armhein 
1995) of spatial effects. Handling  geographic data involves a systematic 
examination of spatial dependency and then figuring out how to incor-
porate the true spatial structure in the spatial analysis. If this is success-
fully accomplished, we are more likely to  generate unbiased estimates and 
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possibly identify influential factors that may explain spatial patterns and 
processes underlying any phenomenon.

In spatial analysis, we model spatial relationships based on the princi-
ple of spatial neighbors, best captured by Tobler’s first law of geography: 
“everything is related to everything else, but near things are more related 
than distant things.” Spatial autocorrelation can be measured for both point 
and areal spatial patterns. Strong spatial autocorrelation means that attri-
bute values of adjacent geographic objects are strongly related (whether 
positively or negatively). Results of this type of analysis often lead to fur-
ther inquiry of how the spatial patterns change from the past to the present, 
or estimates of how the spatial patterns will change from the present to the 
future.

In addition, the study of spatial autocorrelation has significant implica-
tions for the use of statistical techniques in analyzing spatial data. For many 
classical statistics, including various regression models, a fundamental 
assumption is that observations are randomly selected or independent of 
each other. Unfortunately, when spatial data are analyzed, this assumption 
of independence is often violated because most spatial data have certain 
degrees of spatial autocorrelation (Anselin and Griffith 1988), as stated in 
Tobler’s law. This often prompts the use of alternative techniques such as 
geographically weighted regression to accommodate these attributes of spa-
tial data.

As a data scientist, it is good practice to start out by examining the degree 
of spatial autocorrelation in the aggregated spatial data following which one 
can decide on the next steps. In practice, the two spatial neighbors that are 
commonly used are contiguity-based neighbors (the adjacency of boundar-
ies) and distance-based neighbors (critical distance thresholds). We assume 
that the influence of spatial neighbors between n spatial units can be quan-
tified using a spatial weight; this is reflected in the way we summarize the 
spatial structure using a spatial weight matrix (mathematical terms). A spa-
tial weight matrix is a representation of the spatial structure of the dataset. 
It is a quantification of the spatial relationships that exist among the features 
within the dataset. The primary weights are conceptualized in terms of spa-
tial contiguity or adjacency (Rook’s or Queen’s) and the distance between 
two events. If you are measuring clustering of events/values that depict 
an inverse relationship, then the inverse distance is probably most appro-
priate. However, if you are assessing the geographic distribution of com-
muting  patterns, for example, in a city, then travel time or travel cost is a 
better choice. It is therefore incumbent upon anyone conducting a spatial 
analysis to determine the best weighting scheme for computing a spatial 
relationship because it is highly consequential for tests of spatial autocorre-
lation. Furthermore, some spatial units may have no spatial neighbors. If the 
 selection of weighting scheme is done correctly, then we are likely to capture 
the effects of spatial autocorrelation.
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In some cases, contiguity-based and distance-based neighbors are com-
bined to create a spatial weighting scheme that is reflective of conceptualized 
spatial relationships (Cliff and Ord 1969; Griffith 1996; Getis and Aldstadt 
2004; Kelejian and Prucha 2010). Figures 7.1 and 7.2 present visual schematic 
representations of spatial neighbors for computing the effects of spatial auto-
correlation. We normalize spatial weights to remove  dependence on irrel-
evant scale factors using either row or scalar standardizations.

We quantify the degree of spatial influence for the
three cases using a connectivity matrix.

Illustrated spatial weights for three cases of contiguity using regular grid
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A connectivity matrix C is given by m × m,
where i = {1,2, ...n} and j = {1,2, ... n}.
Cij = 1 if the two spatial units i ǂ j are considered connected, and Cij = 0 if they are not.

Wij =
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FIGURE 7.1
Visual schematic representations of spatial neighbors using a contiguity-based weighting 
scheme. Contiguity cells defining Bishop’s case include (A, C, G, I), Rook’s case (B, D, F, H), and 
Queen’s case (A, B, C, D, F, H, I).
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Quantifying Spatial Autocorrelation Effects in Areal Patterns

A statistical test is applied to determine whether there is a match between 
locational and attribute similarity. The effects of spatial autocorrelation are 
commonly quantified using Moran’s I index (Moran 1948, 1950) and Geary’s C 
ratio, both of which are statistical in nature. In this chapter, we will examine a 
variety of existing methods. The methods use a measure known as the spatial 
autocorrelation coefficient, which statistically tests how clustered/dispersed 

d
Fixed distance

(b) Radial distance

(a) k-nearest neighbor: Define how many neighbors to include, what distance to use

Polygon M has 5 neighbors
Choose the k-nearest points as neighbors

k = 3 k = 4

k = 1

M

k = 2

(c) Power distance

Illustrations of spatial weights using distance-based neighbors
Distance-based neighbors derive centroid distances, dij, between each pair of spatial units i and j

(d) Exponential distance

Combines fixed distance and power distances
dij

dij dij

FIGURE 7.2
Visual schematic representations of spatial neighbors for distance-based weighting scheme: 
(a) k-nearest neighbor, (b) radial distance, (c) power distance, and (d) exponential distance.
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features lie in space with respect to their attribute values. The measure exam-
ines whether an observed attribute of a variable at one location is independent 
of values of that variable at neighboring locations. If these values are similar 
and statistically significant, then we can conclude that positive spatial autocor-
relation is evident in the spatial distribution. However, in a case when values 
in the neighboring location exhibit different characteristics (are dissimilar), 
then we can conclude that spatial autocorrelation is weak or nonexistent in the 
spatial distribution. In Figure 7.3, the map in the upper panel shows clustered/
positive spatial autocorrelation, with adjacent or nearby polygons having 
similar values; the map in the middle panel exhibits a random/independent 
spatial autocorrelation; and the map in the lower panel shows a dispersed pat-
tern/negative spatial autocorrelation, with changes in shade often occurring 
between adjacent polygons.

Join Count Statistics

This is a basic method that quantitatively determines the degree of cluster-
ing or dispersion among a set of spatially adjacent polygons (Cliff and Ord 
1973; Goodchild 1986). It is used for binary nominal data such as 1/0, yes/
no, arable/nonarable lands, and urban/rural counties. The method measures 
the spatial relationships between similar or dissimilar attributes in adjacent 
areas. The binary variable is denoted by two colors, black (B) and white (W) 
(Figure 7.4). If a given attribute of 1 occurs in an area, then the area will be 
assigned B. If it does not and has an attribute of 0, then it will be assigned W. 
If two neighboring areas share a common boundary, they are conceptual-
ized as joined.

There are three possible types of joins: black–black (BB), two B neighboring 
areas; white–white (WW), two W neighboring areas; and black–white (BW), 
B and W neighboring areas. Join counts tally the numbers of black–black, 
white–white, and black–white joins in the study area. Observed join counts 
are derived as follows:

 BB (black–black) joins: BB= 1
2

wijxixjj∑i∑  

 BW (black–white) joins: BW = 1
2

wij(xi − xjj∑i∑ )2

 WW (white–white) joins: WW=1
2

wij(1− xi )(1− xjj∑i∑ )

where xi is the observer value for variant Xi, xi = 1 when the ith area is B, 
xi = 0 when the ith area is W, and wij is weight for each pair of objects i and j.

We use the observed patterns of join counts to compare whether it is 
 different from a random/expected pattern under the null hypothesis of no 
spatial autocorrelation. Each of the null hypotheses for the three types of 
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FIGURE 7.3
A schematic representation of three different spatial areal patterns showing tree height near a 
residential neighborhood in Chicago.
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Areal pattern B
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FIGURE 7.4
Three areal spatial patterns shown in (A) through (C). Spatial autocorrelation for the three 
maps can be calculated using Join Count Statistics where each of the shaded cells (B) is assigned 
a value of 1 while each of the non-shaded cells (W) is assigned a value of 0. 
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joins determines whether the compared differences are statistically signifi-
cant at p-value < .05. This is done by calculating the Z-test for each join and 
deciding whether the null hypothesis is true. The Z-test is calculated as

 
Z = Observed− Expected

σExpected

A z-score for each of the joins is calculated in the example below.

Interpreting the Join Count Statistics and Methodological Flaws

Statistical results for the join counts are presented in Table 7.1 based on 
Rook’s case, Bishop’s case, and Queen’s case. Areal Pattern A shows more 
arable/arable land joins (Rook’s case observed = 30, Bishop’s case observed = 
23, Queen’s case observed = 53) than would be expected under Rook’s case 
(18.1), Bishop’s case (15.1), and Queen’s case (33.2), implying the presence of 
positive spatial autocorrelation in land use patterns. A similar observation is 
evident for the nonarable/nonarable land joins. There are far fewer  arable/
nonarable land joins (Rook’s case observed = 8, Bishop’s case observed = 12, 
Queen’s case observed = 20) than would be expected under Rook’s case 
(30.5), Bishop’s case (25.4), and Queen’s case (55.9), implying the presence of 
positive spatial autocorrelation in land use patterns.

TASK 7.1 EXAMINING LAND USE 
PATTERNS OF A FARMLAND

Let us look at a hypothetical case of an area of farmland (Figure 7.5). 
Within the farm area we may assign white to areas or cells representing 
nonarable and black to areas or cells for arable land. Spatial autocor-
relation for these maps can be calculated using Join Count Statistics 
where each of the filled cells (B) is assigned a value of 1 while each of 
the non-shaded cells is assigned a value of 0.

Perfect dispersion

Interpreting Moran’s I

Perfect correlation

+1–1 0

No correlation

FIGURE 7.5
A visual schematic representation of resultant values of Moran’s I.
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Areal Pattern B shows no strong clustering evidence for arable/arable 
land joins except in Bishop’s and Queen’s cases. Also, more arable/nonar-
able land joins exist in both Rook’s and Bishop’s cases except in Queen’s 
case. Areal Pattern C shows negative spatial autocorrelation in all the cases 
except Bishop’s. However, in all of the three cases of Areal Pattern B, there 
are far fewer nonarable/nonarable land joins, suggesting there is no spatial 
autocorrelation.

It must be emphasized that Join Count Statistics offer an easy way to rep-
resent spatial distribution. However, it can only be applied to nominal data 
and does not provide a simple summary index that is similar to Geary’s C or 
Moran’s I. Caution is therefore required when classifying continuous vari-
ables into binary variables because the aggregation of the data could lead 
to loss of information and biased estimates (Goodchild 1986; Odland 1988).

Global Moran’s I Coefficient of Spatial Autocorrelation

Moran’s I measures the degree of spatial autocorrelation (Moran 1950) in 
ordinal- and interval-measured data. It is one of the widely used indices that 
evaluates the extent of spatial autocorrelation between a set of n cells = {xi} 
located in neighboring areas, where xi is either the rank of the ith cell (ordi-
nal data) or the value of X in the ith cell (interval data). The computation of 
Moran’s I is achieved by dividing the spatial covariation by the total varia-
tion. The resultant values range from approximately −1 (perfect dispersion) 

TABLE 7.1  

Worktable for Deriving Join Count Statistics for Three Cases of Contiguity-Based 
Spatial Neighbors

Areal Pattern A Areal Pattern B Areal Pattern C

Case Rook’s Bishop’s Queen’s Rook’s Bishop’s Queen’s Rook’s Bishop’s Queen’s

BB 30 23 53 26 25 51 0 25 25
BW 8 12 20 31 22 53 60 0 60
WW 22 15 37 3 3 6 0 25 25
N 36 36 36 36 36 36 36 36 36
B 20 20 20 24 24 24 18 18 18
W 16 16 16 12 12 12 18 18 18
Total 60 50 110 60 50 110 60 50 110
EBB 18.1 15.1 33.2 26.3 21.9 48.2 14.6 12.1 26.7
EBW 30.5 25.4 55.9 27.4 22.9 50.3 30.9 25.7 56.6
EWW 11.4 9.52 20.9 6.3 5.2 11.5 14.6 12.1 26.7
ZBB 5.47 3.09 5.15 −0.14 1.16 0.69 −6.80 5.28 −0.47
ZBW −6.02 −3.92 −7.49 1.05 −0.26 0.59 7.72 −7.47 0.71
ZWW 5.12 2.41 4.76 −1.85 −1.21 −2.05 −6.80 5.28 −0.47
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to 1 (perfect correlation). The positive sign represents positive spatial auto-
correlation while the converse is true for the negative sign, and a zero result 
represents no spatial autocorrelation (Figure 7.5).

Suppose, we have a study region, R, which is subdivided into n cells, where 
each cell is identified with a spatial feature. Moran’s I is calculated as follows: 

 I =
wijcijj∑i∑

s2 wijj∑i∑  (7.1)

where wij = 1 if cells i and j are neighbors, wij = 0 otherwise; and cij = (Xi −X)
(Xj −X), where Xi and Xj are variables at a particular and another location, 
respectively.

 s2 =
(Xi −X)2

i=1

n

∑
n

The average of all the n cells is the mean (X), which is used to compute (s2) 
based on the differences that each X value has from the mean (X).

 n = 4 X1 = 3 wij = 0 1 1 0

 X2 = 2 1 0 0 1

 X3 = 4 1 0 0 1

 X4 = 7 0 1 1 0

 
X =

Xi
i=1

n

∑
n

= 16
4

= 4

s1 = (3 − 4)(3 − 4) = 1

s2 = (2 − 4)(2 − 4) = 4

s3 = (4 − 4)(4 − 4) = 0

s4 = (7 − 4)*(7 − 4) = 9

 
wijcijj∑ =

i∑ − 8

 wijj∑ =
i∑ 8
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TASK 7.2 THE SPATIAL DISTRIBUTION OF LOW 
BIRTH WEIGHT RATES IN A STUDY REGION A

Figure 7.6 depicts the rates of low birth weight per 1000 children in 
hypothetical region A. The values in the upper left corner represent 
the unique identifier for the enumeration spatial units and values in 
the center represent the low birth weight rates. Using Moran’s I, we can 
determine the type of areal pattern in this figure. Table 7.2 presents a 
worktable and results for Moran’s I.

TABLE 7.2  

Worktable for Deriving Global Moran’s I Coefficient for Low 
Birth Weight Rates

i j wij
a (xi − x)(xj − x) ∑∑wijcij

1 2 1 (3 − 4)(2 − 4) 2
1 3 1 (3 − 4)(4 − 4) 0
1 4 0 (3 − 4)(7 − 4) 0
2 1 1 (2 − 4)(3 − 4) 2
2 3 0 (2 − 4)(4 − 4) 0
2 4 1 (2 − 4)(7 − 4) −6
3 1 1 (4 − 4)(3 − 4) 0
3 2 0 (4 − 4)(2 − 4) 0
3 4 1 (4 − 4)(7 − 4) 0
4 1 0 (7 − 4)(3 − 4) 0
4 2 1 (7 − 4)(2 − 4) −6
4 3 1 (7 − 4)(4 − 4) 0

∑wij = 8 = −8

a Weighting scheme based on Rook’s case.

#1 #2

3 2

#3 #4

4 7

FIGURE 7.6
A regular grid/spatial unit of low birth weight example.
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s2 =

(Xi −X)2
i=1

n

∑
n

= 14
4

= 3.5

 
I = −8
8× 3.5

= −0.2857

Interpreting Moran’s I and Methodological Flaws

Having computed the Moran’s I statistic, one can proceed to evaluate the sta-
tistical significance of the test statistic. As noted earlier, the null hypothesis 
is one of spatial randomness meaning that the spatial autocorrelation of the 
given variable is zero. The statistical significance of Moran’s I is based on the 
normal frequency distribution (Z-score).

 
z = I −E(I)

Serror(I )
where I is the computed Moran’s I value, E(I) is the expected Moran’s I under 
the null hypothesis of spatial randomness, and S is the standard error of the 
Moran’s I value.

Thus, given a Moran’s I value of −0.286 with a Z-score of 0.1597, we fail to 
reject the null hypothesis and conclude that the areal pattern for low birth 
rates is statistically insignificant with a weak negative spatial autocorrelation.

It is important to keep in mind that the Moran’s I statistic only provides a 
measure of spatial autocorrelation for spatial data measured at ordinal and 
interval scales, and may be sensitive to extreme values in a positive or nega-
tive correlation. In some cases, Moran’s I may not be useful due to its sensi-
tivity to spatial patterning and spatial weight selection.

Global Geary’s C Coefficient of Spatial Autocorrelation

Geary’s C is an alternative measure of spatial autocorrelation. It determines 
the degree of spatial association using the sum of squared differences 
between pairs of data values as its measure of covariation (Goodchild 1986). 
The computation of Geary’s C results in a value within the range of 0 to +2 
(Figure 7.7). When we obtain a zero value, it is interpreted as a strong positive 
spatial autocorrelation (perfect correlation), a value of 1 indicates a random 
spatial pattern (no autocorrelation), and a value between 1 and 2 represents a 
negative spatial autocorrelation (2 is a perfect dispersion).

Suppose we have a study region, R, that is subdivided into n cells, where 
each cell is identified with a spatial feature. Geary’s C can be computed by

 
C =

wijcijj∑i∑
2 wijs2ij∑( )
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where wij = 1 if cells i and j are neighbors, wij = 0 otherwise; and

cij = (Xi − Xj)2

 s2 =
(Xi −X)2

i=1

n

∑
n−1

TASK 7.3 COMPUTING GEARY’S C 
FOR LOW BIRTH WEIGHTS

We will examine the low birth weight rates used earlier to compute 
Moran’s I. Table 7.3 presents a worktable and results for Geary’s C.

N = 4 x1 = 3 wij = 0 1 1 0
x2 = 2 1 0 0 1
x3 = 4 1 0 0 1
x4 = 7 0 1 1 0

x =
xi

i=1

n

∑
n

= 16
4

= 4

s1 = (3 − 4)(3 − 4) =1
s2 = (2 − 4)(2 − 4) = 4
s3 = (4 − 4)(4 − 4) = 0
s4 = (7 − 4)(7 − 4) = 9

C = 72
2× 8× 4.6667

= 0.964

(Continued)

1 02

Perfect dispersion

Interpreting Geary’s c

Perfect correlationNo correlation

FIGURE 7.7
A visual schematic representation of resultant values of Geary’s C.
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The average of all n cells is the mean (X), which is used to compute s2 based 
on the differences that each X value has from the mean (X).

Interpreting Geary’s C and Methodological Flaws

Geary’s C also requires the formulation of a null hypothesis of spatial ran-
domness, which holds true when the spatial autocorrelation of a variable 
is 1. The statistical significance of Geary’s C is also based on the normal fre-
quency distribution (Z-score). For the example above, Geary’s C is 0.964 with 
an Z-score of 0.1597. Therefore, we do not reject the null hypothesis and con-
clude that the areal pattern for low birth rates shows a spatial autocorrelation 
that is statistically random.

Both Moran’s I and Geary’s C only detect spatial patterns (clusters) of an 
entire region and are unable to distinguish local patterns. Geary’s C is less 
arranged, and therefore the extremes are less likely to correspond to the 
positive or negative correlation. Although their calculations are quite simi-
lar, Moran’s I is based on the cross product of deviations from the mean for 
variables at a particular cell and another neighboring cell (location), while 
Geary’s C is a cross product of actual values of a variable at a particular loca-
tion and another neighboring cell.

TASK 7.3 (Continued) COMPUTING GEARY’S 
C FOR LOW BIRTH WEIGHTS

TABLE 7.3  

Worktable for Deriving Geary’s Coefficient for Low Birth Rates

i j wij
a (xi − xj )(xi − xj ) ∑∑wijcij

1 2 1 (3 − 2)(3 − 2) 1

1 3 1 (3 − 4)(3 − 4) 1

1 4 0 (3 − 7)(3 − 7) 0

2 1 1 (2 − 3)(2 − 3) 1

2 3 0 (2 − 4)(2 − 4) 0

2 4 1 (2 − 7)(2 − 7) 25

3 1 1 (4 − 3)(4 − 3) 1

3 2 0 (4 − 2)(4 − 2) 0

3 4 1 (4 − 7)(4 − 7) 9

4 1 0 (7 − 3)(7 − 3) 0

4 2 1 (7 − 2)(7 − 2) 25

4 3 1 (7 − 4)(7 − 4) 9

∑wij = 8 = 72

a Weighting scheme based on Rook’s case.
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Getis–Ord G Statistics

G(d) statistics is an alternative index among a family of conventional global 
spatial autocorrelation measures. Unlike Moran’s I and Geary’s C, which are 
unable to discriminate whether spatial patterns are due to high or low val-
ues, the G(d) method is able to discern between hot spots and cold spots over 
the entire study region. This method can be used to identify spatial con-
centrations of particular phenomena, such as particulate matter, birth rates, 
crime rates, or poverty rates.

Assume we have a study region, R, that is subdivided into n cells, where 
each cell is identified with a spatial feature. We can measure the degree of 
spatial association in study region R by computing the spatial concentration 
of weighted point feature values within a radius of distance d (neighbor dis-
tance) where we expect a cluster to occur. Getis–Ord’s G statistics (Getis and 
Ord 1992; Ord and Getis 1995) for study region R can be derived as follows:

 

G(d) =
wij(d)xix j

j=1

n

∑
i=1

n

∑

xix j
j=1

n

∑
i=1

n

∑
⋅ j ≠ i

TASK 7.4 EXAMINING THE SPATIAL 
DISTRIBUTION OF NITROGEN OXIDES

Let us look at a hypothetical case of the spatial distribution of nitrogen 
oxides in a study region; the number in each cell in Figure 7.8 repre-
sents emissions in tons per year. We will derive G(d) statistics for this 
case. Table 7.4 presents a worktable and results for G(d).

 

G(d) =
wij(d)xix j

j=1

n

∑
i=1

n

∑

xix j
j=1

n

∑
i=1

n

∑
= 10,000
36,100

= 0.277

where wij = 1 if cell j is within distance d from cell i or wij = 0 if it is outside. 
G(d) statistics is interpreted relative to its expected value. If, for example, 
high values are clustered together, then G(d) is relatively large. This means 
G(d) is greater than the expected value (G(d) > expected value), suggesting 
a potential hot spot. However, if low values are clustered together then 
G(d) is relatively small. This means that G(d) is smaller than the expected 
value (G(d) < expected value), suggesting a potential cold spot.

(Continued)
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TASK 7.4 (Continued) EXAMINING THE SPATIAL 
DISTRIBUTION OF NITROGEN OXIDES

(Continued)

a b c

20 20 30

d e f

20 10 30

g h i

20 20 20

FIGURE 7.8
A regular grid/spatial unit of nitrogen oxide emissions in tons per year.

TABLE 7.4  

Worktable for Deriving G(d) Statistics for Nitrogen Oxides

a b c d e f g h i

a 400 400 600 400 200 600 400 400 400
b 400 400 600 400 200 600 400 400 400
c 600 600 900 600 300 900 600 600 600
d 400 400 600 400 200 600 400 400 400
e 200 200 300 200 100 300 200 200 200
f 600 600 900 600 300 900 600 600 600
g 400 400 600 400 200 600 400 400 400
h 400 400 600 400 200 600 400 400 400
i 400 400 600 400 200 600 400 400 400

= 3800 = 3800 = 5700 = 3800 = 1900 = 5700 = 3800 = 3800 = 380 xixj = 36,100∑  

wij
a a b c d e f g h i

a 0 1 0 1 0 0 0 0 0
b 1 0 1 0 1 0 0 0 0
c 0 1 0 0 0 1 0 0 0
d 1 0 0 0 1 0 1 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 1 0 1 0 0 0 1
g 0 0 0 1 0 0 0 1 0
h 0 0 0 0 1 0 1 0 1
i 0 0 0 0 0 1 0 1 0
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Interpretation of Getis–Ord G and Methodological Flaws

When using the Getis–Ord G statistics, the null hypothesis is that for the 
phenomenon under investigation, there is no clustering of high or low values 
neither in a given location nor in its neighborhood. The alternative hypothesis 
is that for the phenomenon under study, the spatial distribution may exhibit 
a significantly more clustered pattern than random pattern. In the case study 
provided above (nitrogen oxides) since the G(d) is relatively small (0.277), we 
reject the null hypothesis and conclude that the low values or below-average 
values of nitrogen oxides may be clustered in the study region.

When using the G(d) statistics, there might be some difficulty in distin-
guishing between a random pattern and one in which there is little devia-
tion from the mean (Getis and Ord 1992). Further, although the G(d) statistics 
has gained wide acceptance for determining spatial concentrations at local 
scales, it can only be applied to analyze ratio-scale data having a natural zero. 
The G(d) statistics evaluates the total concentration or lack thereof among all 
pairs of (xi, xj), where i and j are within d distance. If x values change in pro-
portion, G(d) remains the same. To attain a deeper understanding of spatial 
patterns, it is recommended that the G(d) statistics be used in conjunction 
with Moran’s I (Getis and Ord 1992).

TASK 7.4 (Continued) EXAMINING THE SPATIAL 
DISTRIBUTION OF NITROGEN OXIDES

TABLE 7.4 (Continued)  

Worktable for Deriving G(d) Statistics for Nitrogen Oxides

0 400 0 400 0 0 0 0 0

400 0 600 0 200 0 0 0 0
0 600 0 0 0 900 0 0 0
400 0 0 0 200 0 400 0 0
0 200 0 200 0 300 0 200 0
0 0 900 0 300 0 0 0 600
0 0 0 400 0 0 0 400 0
0 0 0 0 200 0 400 0 400
0 0 0 0 0 600 0 400 0

= 800 = 1200 = 1500 = 1000 = 900 = 1800 = 800 = 1000 = 1000 wij(d)xixj
j=1

n

∑
i=1

n

∑
= 10,000 

a The 9 × 9 matrix grid is labeled by cell locations, when two cells are adjacent it is assigned 
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neigh-
bors were excluded. Although the contiguity spatial weight has been used to illustrate 
the  calculations, centroid distances among the nine cells is more reflective of proximity 
relationships.
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Local Moran’s I

The Local Moran’s I determines the degree of spatial association at the 
location-specific level. It belongs to a family of Local Indicators for Spatial 
Association (LISA) (Anselin 1995) that is used to identify clusters among 
individual spatial units. LISA statistics measure the degree to which one 
areal unit is autocorrelated relative to its neighbors (Figure 7.9). Following 
the analysis, Moran’s scatterplot can be used to identify the leverage 
points and spatial outliers. The plot has four quadrants: high–high, high–
low, low–high, and low–low. High–high denotes the presence of spatial 
clustering of neighbors with high values surrounded by those with simi-
lar values, low–low denotes spatial clustering of neighbors with low val-
ues surrounded by those with similar values, and high–low or low–high 
represents spatial outliers or neighbors with values that are statistically 
insignificant.

In line with Anselin’s (1995) suggestions, there are two notable aspects 
of these statistics: (1) the LISA for each observation gives an indication of 
the extent of significant spatial clustering of similar values around that 
observation and (2) the sum of LISAs for all observations is in proportion 
to a global statistic of spatial association. There are several local versions 
of global statistics such as Moran’s I, Geary’s C, and Getis–Ord’s G. These 
measures serve four principal aims: (1) provide a finer-grained analysis at 
the local level, (2) identify spatial patterns at the local level or hotspots, 
(3) measure spatial autocorrelation at the local level, and (4) detect spatial 
clusters or spatial outliers at the local level. Using working examples below, 
we describe how each index is derived and how to interpret the statistical 
results.

A Local Moran’s I for an observation i is defined as

 
Li = zi wijzj

j
∑

 
I = Iii∑

where wij are the spatial weights matrix, the observations zi , zj are the devia-
tions from the mean, and Li is the summation of the spatial weights matrix 
multiplied by zj, zi . Deriving the mean deviations for each of the observa-
tions is similar to how we calculate a Z-score.

n = 9, x = 180/9 = 20, σ = 9.43, z j =
xj − x
σ

 derived in Table 7.5 under 
Z-score

 I = Ii = [(0+ 0+ 0+ 0+ (−4.5)+ (−3.375)+1.125+ 0+ (−1.125)] = −7.875
i∑
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The Li values and related statistics for each of the spatial units are given 
in Table 7.5. Five of the spatial units (a, b, c, d, and h) have an Li value of 
zero. Positive values of Li indicate spatial clustering of similar values (high 
or low) while negative values indicate a spatial clustering of dissimilar 
 values  (high–low or low–high) Three negative Li values fall within the 
low–high quadrant of a Moran scatterplot implying that there are spatial 
outliers. It is evident from this statistical data that there is no clear spa-
tial clustering of local values of smartphones, with the Li values suggesting 
strong evidence of the presence of dissimilar values that require further 
scrutiny.

TABLE 7.5 

Worktable for Deriving Local Moran’s I and Related LISA Statistics

w ij
a = a b c d e f g h i

a 0 1 0 1 0 0 0 0 0
b 1 0 1 0 1 0 0 0 0
c 0 1 0 0 0 1 0 0 0
d 1 0 0 0 1 0 1 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 1 0 1 0 0 0 1
g 0 0 0 1 0 0 0 1 0
h 0 0 0 0 1 0 1 0 1
i 0 0 0 0 0 1 0 1 0

Deriving the Li value for each observation

Li = zi wijzj
j
∑  

a b c d e f g h i

Z-Score 0 0 0 −1.061 2.121 −1.061 −1.061 0 1.061 wijzj
j
∑

 
Lib

a 0 0 0 0 −1.061 0 0 0 0 0 −1.061 0
b 0 0 0 0 0 2.121 0 0 0 0 2.121 0
c 0 0 0 0 0 0 −1.061 0 0 0 −1.061 0
d −1.061 0 0 0 0 2.121 0 −1.061 0 0 1.061 0
e 2.121 0 0 0 −1.061 0 −1.061 0 0 0 −2.121 −4.5
f −1.061 0 0 0 0 2.121 0 0 0 1.061 3.182 −3.375
g −1.061 0 0 0 −1.061 0 0 0 0 0 −1.061 1.125
h 0 0 0 0 0 2.121 0 −1.061 0 1.061 2.121 0
i 1.061 0 0 0 0 0 −1.061 0 0 0 −1.061 −1.125

a The 9 × 9 matrix grid is labeled by cell locations; when two cells are adjacent it is assigned 
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neigh-
bors were excluded.

b Extreme Li values indicate outliers; in this example, −4.5 is such a value.
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When compared to the global statistics of Moran’s I, Local Moran’s I statis-
tics contribute to local spatial association and overcome the local instabili-
ties of spatial observations (Anselin 1995). The LISA method is especially 
applicable for spatial data that are heterogeneous among areas as they 
are able to compute subregions of the datasets at a local scale (Boots and 
Okabe 2007).

Local G-Statistics

The Local G-statistics is designed to measure specific spatial association that 
may not be obvious when using global statistics. It is based on Getis–Ord 
General Gi ,Gi* (Getis and Ord 1992) and determines the effects of individual 
locations (including detecting extremes) on the scale of global statistics (Ord 
and Getis 1995; Anselin 1995).

TASK 7.5 THE SPATIAL DISTRIBUTION OF 
SMARTPHONES IN A SMALL TOWN

Let us illustrate the calculation of the Local Moran’s I by using a 
hypothetical example of the number of smartphones per 1000 people 
in a regular grid/spatial units (Figure 7.10). The number in each cell 
represents the number of smartphones per 1000 people in each neigh-
borhood. Table  7.5 provides a worktable and results for the Local 
Moran’s I.

a b c

20 20 20

d e f

10 40 10

g h i

10 20 30

FIGURE 7.10
A regular grid/spatial units of the number of smartphones per 1000 people in a 
small town.
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TASK 7.6 THE SPATIAL DISTRIBUTION OF FAST 
FOOD RESTAURANTS IN A STUDY REGION

Let us illustrate the calculation of Local G-statistics by using a hypo-
thetical example of fast food restaurants (Figure 7.11). The numbers in 
parentheses represent the identifying number of fast food restaurants. 
The locations of fast food restaurants are given in x- and y-centroid 
coordinates of an areal unit. We can use the set of fast food restaurants 
to calculate possible clustering of high or low values in the vicinity of 
point 5 at three critical threshold distances of 10, 20, and 30 miles from 
point 5, respectively. Ord and Getis 1995’s Local G-Statistics method is 
applied to find a solution.

Point 5 is not included:

x(5) =
xjj∑

n−1
= (1+ 2+ 3+1)

5−1
= 1.75

s2(5) =
xj2j∑

n−1
− [x(5)]2 = 0.6875,s = 0.8292

 

Gs(10) =
1−1×1.75

0.8292× 4 ×1−1
3

⎡
⎣⎢

⎤
⎦⎥

1
2

= −0.905

 

Gs(20) =
3− 2×1.75

0.8292× 4 × 2− 4
3

⎡
⎣⎢

⎤
⎦⎥

1
2

= −0.522

 
Gs(30) =

6− 3×1.75

0.8292× 4 × 3− 9
3

⎡
⎣⎢

⎤
⎦⎥

1
2

= 0.905

Point 5 is included:

 
x =

xij∑
n

= 9
5
= 1− 8, s2 =

(xi − x)2j∑
n−1

= 2.8
4

= 0.7,s = 0.837

 

Gs*(10) =
3− 2×1.8

0.837 × 5× 2− 4
4

⎡
⎣⎢

⎤
⎦⎥

1
2

= −0.585

(Continued)
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The Local G-statistics is a standard variant that is calculated by taking gen-
eral G-statistics minus its expectation E(Gi) and dividing this by the square 
root of its variance. G-statistics is given by

 Gi(d) =
wij(d)xj −wix(i)j∑

s(i) [(n−1)s1i )−wi2] (n− 2){ }
1
2

j ≠ i

 
wi = wij(d),S1i =j≠i∑ wij2j≠i∑

 

Gi*(d) =
wij(d)xj −wi*xj∑

s [(ns1i* )−wi*2] (n−1){ }
1
2

 all  j

 Wi
* =Wi +wii(wii ≠ 0),S1i* = wij2(all jj∑ ),

TASK 7.6 (Continued) THE SPATIAL DISTRIBUTION OF 
FAST FOOD RESTAURANTS IN A STUDY REGION

 

Gs*(20) =
5− 3×1.8

0.837 × 5× 3− 9
4

⎡
⎣⎢

⎤
⎦⎥

1
2

= −0.390

 

Gs*(30) =
8− 4 ×1.8

0.837 × 5× 4 −16
4

⎡
⎣⎢

⎤
⎦⎥

1
2

= −0.956

1

10 miles

30 miles

20 mil
es

1
2

2

3

(1)

(2)

(5)
(4)

(3)

FIGURE 7.11
A visual schematic representation of location of fast food restaurants in a study region.



207Engaging in Areal Pattern Analysis Using Global and Local Statistics

where Gi(d) is a proportion of the sum of all xj values that are within distance 
(d) of i; xj is the variable of interest in a given study region; x and s2 denote the 
sample mean and variance; wij = 0 is the spatial weight between neighbors i 
and j; and wij2j∑  is the sum of squared weights.

Under the null hypothesis, we use Local G-statistics to determine whether 
there is evidence of spatial clustering of high or low values around each spa-
tial unit of fast food restaurants. From the calculation, we observe that some 
Gi values are both negative and positive. Positive values of Gi indicate a spa-
tial clustering of high values while negative values of Gi indicate a spatial 
clustering of low values. However, to interpret Local G-statistics we need 
to derive the Z-score. This has been done in the empirical examples that are 
presented in section “Using Scatterplots to Synthesize and Interpret LISA 
Statistics section.” Although Local G-statistics are more a flexible form of 
LISA statistics, they do not have a natural origin. The use of non-binary 
weight matrices also makes them more appealing for understanding spatial 
relationships.

Local Geary

Local Geary measures local patterns of spatial association. Local Geary for 
each observation i is

 
Ci = wij(zi − zj )2

j
∑

where wij are the spatial weights matrix and the observations zi  and zj are 
in deviations from the mean. Local Geary, ci, is the summation of the spa-
tial weights matrix, which is then multiplied by the squared differences in 
Z-score (zi , zj) of each observation and its neighboring cell. Deriving the 
mean deviations for each of the observations is similar to how we calculate 
the Z-score.

For interpretative purposes, we will need to derive p-values to be able to 
meaningfully interpret Local Geary statistics.

TASK 7.7 UNDERSTANDING THE SPATIAL DISTRIBUTION 
OF CAR ACCIDENTS IN A SMALL TOWN

Let us illustrate the Local Geary statistics by using a hypothetical case 
of incidents of car accidents in a small town (Figure 7.12). The number 
in each cell represents the number of car accidents for each neighbor-
hood. We can calculate the Local Geary index for each of the neighbors. 
Table 7.6 gives a worktable and results for Local Geary statistics.

(Continued)
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TASK 7.7 (Continued) UNDERSTANDING THE SPATIAL 
DISTRIBUTION OF CAR ACCIDENTS IN A SMALL TOWN

TABLE 7.6  

Worktable for Deriving Local Geary and Related Statistics

wij
a = a b c d e f g h i

a 0 1 0 1 0 0 0 0 0
b 1 0 1 0 1 0 0 0 0
c 0 1 0 0 0 1 0 0 0
d 1 0 0 0 1 0 1 0 0
e 0 1 0 1 0 1 0 1 0
f 0 0 1 0 1 0 0 0 1
g 0 0 0 1 0 0 0 1 0
h 0 0 0 0 1 0 1 0 1

i 0 0 0 0 0 1 0 1 0

Deriving Mean Deviations Matrix for Neighboring Cells

Xj Z-score Spatial 
Units

AAb AB AC AD AE AF AG AH AI

20 0 a BA BB BC BD BE BF BG BH BI
30 1.061 b CA CB CC CD CE CF CG CH CI
10 −1.061 c DA DB DC DD DE DF DG DH DI
10 −1.061 d EA EB EC ED EE EF EG EH EI
20 0 e FA FB FC FD FE FF FG FH FI
20 0 f GA GB GC GD GE GF GG GH GI
40 2.121 g HA HB HC HD HE HF HG HH HI
10 −1.061 h IA IB IC ID IE IF IG IH II
20 0 i

n = 9, σ = 9.428, x = 20  

FIGURE 7.12
A regular grid/spatial units of incidents of car accidents in a small town.

(Continued)
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Using Scatterplots to Synthesize and Interpret LISA Statistics

In this final section of the chapter, let us review two empirical examples of 
LISA statistics that are illustrated using Moran scatterplots (Figures 7.13 and 
7.14) and LISA maps (Figures 7.14 and 7.15). The first empirical example con-
sists of the 2013 blood lead levels (BLL) prevalence data for children (aged 5 
years or younger) residing within the city of Chicago. This information was 
extracted from the Lead Poisoning Testing and Prevention Program data-
base of the Chicago Department of Public Health (Oyana and Margai 2007, 
2010). The second empirical example consists of crime incident data aver-
aged over a 5-year period that was described earlier in Chapter 6 (Figures 
6.8 and 6.9). The two sets of data were first conditionally randomized 9999 
times with Queen’s spatial weights set at the nearest five neighbors for the 
BLL data and the nearest two neighbors (first order) for crime incident data.

Figure 7.13 presents both the adjusted (plot A) and non-adjusted (plot B) prev-
alence rates for BLL. Figure 7.15 shows local spatial clustering of BLL prevalence 
in the city of Chicago using Local Moran’s I and Local G-statistics. In Map A 
(Local Moran’s I), there are three major sets of spatial clusters of BLL depicting 
neighbors with high values surrounded by those with similar values. These 
neighborhoods are located in the west side, south side, and far south. However, 
there is a minor cluster located within the downtown area. Although Map B 

TASK 7.7 (Continued) UNDERSTANDING THE SPATIAL 
DISTRIBUTION OF CAR ACCIDENTS IN A SMALL TOWN

TABLE 7.6 (Continued)  

Worktable for Deriving Local Geary and Related Statistics

Deriving ci for Each Observations (Spatial Units), an Example is Provided in 
footnote “b” below

Local 
Geary ci

ci = wij(zi − zj )
j
∑

 
0 1.125 0 1.125 0 0 0 0 0   2.25

1.125 0 4.5 0 1.125 0 0 0 0  6.750
0 4.5 0 0 0 1.125 0 0 0  5.625
1.125 0 0 0 1.125 0 10.125 0 0 12.375
0 1.125 0  1.125 0 0 0 1.125 0  3.375
0 0 1.125 0 0 0 0 0 0  1.125
0 0 0 10.125 0 0 0 10.125 0  20.25
0 0 0 0 1.125 0 10.125 0 1.125 12.375
0 0 0 0 0 0 0 1.125 0  1.125

a The 9 × 9 matrix grid is labeled by cell locations; when two cells are adjacent it is assigned 
a value of 1, and when they are not, a value of 0 is assigned. However, diagonal neighbors 
were excluded.

b Example AA = weight aiaj*((ai z-score – aj z-score)^2).
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Moran’s I = 0.856
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Moran’s scatterplot (a)
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FIGURE 7.13
Plots of (a) filtered/adjusted and (b) unfiltered/non-adjusted blood lead level (BLL) prevalence 
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(Local G-statistics) is similar to Map A, the sets of contiguous locations in Map 
A are much bigger in spatial extent than those in Map B. The hotspots of BLL 
identified by both methods should invite further in-depth scrutiny.

Figure 7.14 and Table 7.7 depict the local clusters of crime incidents in the city 
of Spokane, Washington, using Local Moran’s I, Local G-statistics, and a Moran 
scatterplot. In reviewing both the figure (see map and Moran scatterplot) and 
the table, one can see that there are two statistically significant Li and Gi values 
obtained from each test. Local Moran’s I detects the neighborhoods of Emerson/
Garfield and Riverside to have high values of crime incidents, whereas Local 
G-statistics identifies Emerson/Garfield and Logan as having high rings. These 
results suggest that the two neighborhoods have a local mean that is higher 
than the regional mean. Emerson/Garfield is evident in both tests.

In the two sets of empirical examples presented above, the adjusted rates 
are more stable and reliable than the unadjusted rates and therefore should be 
used in both spatial analysis and spatial modeling. The LISA statistics show 
that certain neighborhoods have a disproportionate BLL prevalence and 
crime incidents in comparison with the surrounding neighborhoods.

Conclusion

At the heart of spatial analysis is the notion of spatial dependency and per-
haps one of the best ways to demonstrate the relevance of this concept is 
through the analysis of areal data. We have done this in this chapter through 
the use of several techniques that generate measures of spatial dependency 
and autocorrelation at both the global and localized levels. As illustrated in 
the examples, the global statistics are based on the entire dataset and seek to 
produce a single measure that reflects the average value (of spatial autocor-
relation) for the entire study area. Although the global statistics provide a 
valuable first step in confirming the presence or absence of autocorrelation, 
the localized techniques are capable of pinpointing the location of spatial 
outliers and notable hotspots that require further evaluation. The local statis-
tics focus on each observational unit rather than the entire study area. These 
local measures are based on the assumption that different processes may 
underlie the existence of the geographic patterns that are observed in each 
area. The end result is a unique value or statistic that is produced for each 
spatial unit and can be used to delineate neighborhood clusters and other 
spatial anomalies. Using examples throughout the chapter, we have demon-
strated the practical applications of these techniques by working through the 
computational steps. We have also discussed the methodological limitations 
and the need for sound knowledge of analytical assumptions and criteria to 
ensure a reliable and robust spatial analysis of the data. By following these 
guidelines, we will be able to account for the underlying spatial structure in 
our datasets thus enabling a better understanding of spatial relationships.
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Challenge Assignments

In this chapter, we learned how to use a variety of exploratory data analysis 
techniques to search, characterize, and describe the spatial distribution of 
group-level data. We also examined the notion of spatial associations and 
the methods that are widely used to characterize these patterns at both the 
global and local levels. In the challenge assignments below, let us explore 
these methods further using three datasets utilized in previous exercises: (1) 
the agricultural production data, (2) the obstructive sleep apnea (OSA) data-
set, and (3) the airport Noise_OHare database. The data for completing this 
challenge assignment are located in Chapter7_Data_folder.

TASK 7.8 GENERATE AND INTERPRET 
CLUSTERING OF VALUES OF AREAL PATTERNS

PART 1: GLOBAL LEVEL

 1. Open ArcMap and add Agriculture_Production_Illinois_2008_
Pr.shp from your data folder.

 2. Open the Getis–Ord General G tool under Spatial Statistics > 
Analyzing Patterns.

 3. Set the input feature class to Agriculture_Production_
Illinois_2008_Pr and the input field to PcntCornPd. Confirm 
that the conceptualization of distance is set to POLYGON_
CONTIGUITY_ (FIRST_ORDER). Check the box next to Generate 
Reports. This will add graphical outputs to your results window 
in the form of an HTML. Leave all other fields blank and click OK.

 4. Repeat step “c” with input as PcntSoyPrd and PcntWhetPd.
 5. Compile in a table the values for Observed General G, Expected 

General G, Variance, Z-score, p-value, and Pattern Type.
 6. Open the Spatial Autocorrelation (Moran’s I) tool under Spatial 

Statistics > Analyzing Patterns.
 7. Set the input feature class to Agriculture_Production_

Illinois_2008_Pr and the input field to PcntCornPd. Confirm 
that the conceptualization of distance is set to POLYGON_
CONTIGUITY_ (FIRST_ORDER). Check the box next to Generate 
Reports. This will add graphical outputs to your results window 
in the form of an HTML. Leave all other fields blank and click OK.

 8. Repeat step “g” with input as PcntSoyPrd and PcntWhetPd.
 9. Compile in a table the values for Moran’s I (Index), Expected I 

(Index), Variance, Z-score, p-value, and Pattern Type.
(Continued)
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TASK 7.8 (Continued) GENERATE AND INTERPRET 
CLUSTERING OF VALUES OF AREAL PATTERNS

 10. Compare and describe the results generated by Getis–Ord 
General G and Moran’s I.

 11. Describe/define the following statistics: Getis–Ord General G 
and Moran’s I. What are the salient differences between Getis 
and Moran’s I statistics?

PART 2: LOCAL LEVEL

 1. Open the Cluster and Outlier Analysis (Anselin Local 
Moran’s I) tool under Spatial Statistics Tools > Mapping Clusters.

 2. Set the input feature class to Agriculture_Production_Illinois_2008_
Pr and the input field to PcntCornPd. Confirm that the con-
ceptualization of distance is set to POLYGON_CONTIGUITY_ 
(FIRST_ORDER). Leave all other fields and click OK.

 3. Repeat step “b” with input as PcntSoyPrd and PcntWhetPd.
 4. Make a map of the resulting LMi Index, LMiZscore values, and 

COType. (For LMi and COType, use five categories and symbols 
with graduated sizes with Natural Breaks Classification and color 
ramps; for LMiZ-cores, use Standard Deviation Classification 
and seven classes.) Describe the pattern of spatial clustering 
including which areas exhibit clustering and which do not.

 5. Open the Hot Spot Analysis (Getis–Ord Gi*) tool under Spatial 
Statistics Tools > Mapping Clusters.

 6. Set the input feature class to Agriculture_Production_Illinois 
  _2008_Pr and the input field to PcntCornPd. Confirm that the 

 conceptualization of distance is set to POLYGON_CONTIGUITY_ 
(FIRST_ORDER). Leave all other fields and click OK.

 7. Repeat step “f” with input as PcntSoyPrd and PcntWhetPd.
 8. Make a map of the resulting GiZScore values (use Standard 

Deviation Classification and seven classes with a Hot to Cold 
Diverging color ramp). Describe the pattern of spatial  clustering 
including which areas exhibit clustering and which do not.

 9. Complete the following short essay: In your own words, describe 
the results, map, and why you think the distribution is as it is.

 10. Compare and describe the results generated by Getis–Ord Gi* 
and Anselin Local Moran’s I.

 11. Describe/define the following statistics: Getis–Ord Gi* and 
Anselin Local Moran’s I. What are the salient differences 
between Getis–Ord Gi* and Anselin Local Moran’s I?
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TASK 7.10 EXPLORE, ANALYZE, AND INTERPRET PATTERNS 
BASED ON ADVANCED SPATIAL ANALYSIS TECHNIQUES

 1. The agricultural metrics for seven variables have been region-
alized using an advanced spatial analysis/spatial data mining 
technique based on the Dynamically Constrained Clustering and 
Partitioning Algorithm. Open ArcMap and add Regionalization_
Dcluster_partioning.shp and Agriculture_Production_Illinois_ 
2008_Pr.shp from the data folder. Explore regionalized agricultural 
metrics.

 2. Make two maps based on regionID and group name/area. 
Compare and contrast the two groups.

 3. Using the regionalized agricultural metrics, describe the spa-
tial distribution of corn (Sum_PcntCo), soybean (Sum_PcntSo), 
and wheat (Sum_PcntWh).

 4. Using the regionalized agricultural metrics, describe crop 
acreage (Sum_CROP_A and Avg_Crop_A) per region in rela-
tion to the yield of corn (Sum_CornYi and Avg_cornYi). Make 
a choropleth map with five classes showing yield relative to 
(Sum_CROP_A).

TASK 7.9 IDENTIFY CLUSTERING OF VALUES OF AREAL 
PATTERNS USING DIFFERENT SPATIAL WEIGHTS

 1. Open ArcMap and add Obstructive_Sleep_Apnea_Pr.shp from 
the Data folder.

 2. To derive OSA prevalence: add a new Field in the attribute table 
called OSA_Rates_1K (OSA_Pts/POP2000) × 1000 = the number 
of OSA cases per 1000 people. This is called prevalence rates.

 3. Under Spatial Statistics Tools, expand the Modeling Spatial 
Relationships module > select Generate Spatial Weights Matrix. 
Create a spatial weights matrix based on an Inverse Distance 
OSA spatial relationship. Use a unique identifier, OID_.

 4. Run Moran’s I and Anselin Local Moran’s I. Set the input fea-
ture class to Obstructive_Sleep_Apnea_Pr and the input field 
to OSA_Rates. Confirm that the conceptualization of distance 
is set to GET_SPATIAL_WEIGHTS_FROM_FILE and load the 
spatial weights matrix file in the Weight Matrix File (optional).

 5. Make some maps and describe the results generated by Moran’s 
I and Anselin Local Moran’s I.
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TASK 7.11 CHALLENGE ASSIGNMENT: 
CONCEPTS AND APPLICATIONS

 1. Describe the implications of spatial weights on spatial analysis.
 2. Open a new ArcMap view and add the Noise_Project fea-

ture from the Noise_OHare_Geodatabase.mdb data folder. Also 
add the other spatial features (boundary outline/study area 
and  demographic features) associated with the Noise_Project 
feature.

 3. Under Spatial Statistics Tools, expand the Modeling Spatial 
Relationships module > select Generate Spatial Weights Matrix. 
Create another spatial weight based on the Inverse Distance 
spatial relationship for noise-level data using a Unique 
Identifier “RMT.”

 4. Convert the Inverse Distance weight into a table. Then sum-
marize the minimum, maximum, sum, mean, and standard 
deviation values for the spatial weights.

 5. Compute the observed K-Function and expected K-Function 
for the noise-level events. Select 10 as the number of distance 
bands, and under Compute Confidence Envelope select 99_
permutations and use all_averag as the Weight Field for the 
noise-level data. Remember to tick the box to display your 
results graphically. Copy the graphical results to your lab 
write-up. Include a title to differentiate this result from the 
others.

 6. Repeat step “e” with the Beginning Distance set to 2000 and 
the Distance Increment set to 2500. Leave all other fields the 
same. Copy the graphical results to your lab write-up. Include 
a title to differentiate this result from the others.

 7. Repeat step “e” with the Beginning Distance set to 2000 and 
the Distance Increment set to 3000. Leave all other fields the 
same. Copy the graphical results to your lab write-up. Include 
a title to differentiate this result from the others.

 8. Repeat step “e” with the Beginning Distance set to 2000 and 
the Distance Increment set to 3500. Leave all other fields the 
same. Copy the graphical results to your lab write-up. Include 
a title to differentiate this result from the others.

 9. Repeat step “e” with the Beginning Distance set to 2000 and 
the Distance Increment set to 4000. Leave all other fields the 
same. Copy the graphical results to your lab write-up. Include 
a title to differentiate this result from the others.

(Continued)
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Review and Study Questions

 1. What are spatial weights? With the use of examples, explain how 
these are calibrated and integrated into the analysis of areal data.

 2. The choice of analytical method for evaluating spatial autocorrela-
tion in areal data is partly based on the measurement scale of the 
variable. With the use of examples, briefly explain what techniques 
are ideal for analyzing variables that are measured on each of the 
four scales.

 3. With the use of examples, distinguish between global and local sta-
tistics in the analysis of aggregated spatial data. What would be the 
effect of MAUP on these two sets of statsitics?

 4. What are the similarities and differences between each of the fol-
lowing pairs of statistics?

 a. Join Count and Global Moran’s I
 b. Global Moran’s I and Getis–Ord G
 c. Global Moran’s I and Global Geary’s C
 d. Local Moran’s I and Local Geary’s C
 5. With the use of examples from the statistics noted above, explain the 

role of Z-scores in the spatial analysis of areal data.
 6. What are LISA measures? Using one example from your research 

area, explain the benefits of these measures in exploratory analysis 
and visualization of spatial data.

TASK 7.11 (Continued) CHALLENGE ASSIGNMENT: 
CONCEPTS AND APPLICATIONS

 10. Repeat step “e” with the Beginning Distance set to 2000 and 
the Distance Increment set to 4500. Leave all other fields the 
same. Copy the graphical results to your lab write-up. Include 
a title to differentiate this result from the others.

 11. Complete the following short essay: In your own words, explain 
how distance impacts the results of running this statistic.

 12. Perform a spatial query using Select by Location, and select 
Census_Tracts that intersect with the noise layer. Summarize 
the noise levels (Level_) by race/ethnicity distribution (White, 
Black, American Indian, Asian, and Others in percentage), gen-
der, and age from Top Tiers 1 and 4. Describe the spatial distri-
bution of these socioeconomic factors relative to noise levels.
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Glossary of Key Terms

Getis–Ord G: This is a global measure that summarizes the pattern of spa-
tial autocorrelation in the area. It is most applicable to ratio-scaled 
data and uses the distance between neighborhoods to assess the 
overall concentration (or lack thereof) of data values in study areas. 
The computed statistic, G, can be used to effectively delineate the 
location of hotspots and cold spots in a study area. It is compared to 
the expected value, and if G is larger then there is a strong likelihood 
of hotspots with higher values clustering together in the region. On 
the other hand if G is smaller than the expected value, then there is 
a strong likelihood of cold spots with low values clustering together 
in the distribution.

Global Geary’s C: This is also a measure of spatial autocorrelation that pro-
duces a global statistic based on the sums of squared differences 
between pairs of actual data values in the distribution. The measure 
varies from 0 to 2, with 0 representing a clustered distribution with 
perfect positive autocorrelation, 1 representing complete spatial ran-
domness, and 2 indicating a perfect negative autocorrelation.

Global Moran’s I: This is the most common measure of spatial autocor-
relation that is derived from the sums of squared deviations from 
the means. It is applicable to interval- and ratio-scaled variables 
measured at either point locations or within areas. The statistic is 
a weighted correlation coefficient that ranges from −1 (representing 
a perfect negative correlation in which neighboring values are dis-
similar and dispersed) through zero (complete spatial randomness) 
to +1 (perfect positive correlation that represents spatial patterns in 
which similar values (high or low) are clustered in space).

Join Count Statistic: A measure that uses binary nominal data to assess the 
degree of clustering or dispersion among a set of spatially adjacent 
polygons.

LISA: Local Indicators of Spatial Autocorrelation: These belong to a suite 
of measures that disaggregate global measures of spatial autocor-
relation into location-specific measures such as the Local Moran’s 
I, Local G, and Local Geary’s C coefficients. Unlike the global mea-
sures, these local measures enable a data scientist to hone in on indi-
vidual spatial units and compare their data values relative to the 
neighboring units to assess the degree of similarity or dissimilar-
ity. The end result can be a scatterplot or cluster map that can be 
used to effectively show spatial anomalies in the distribution. The 
aggregate value of LISA obtained by summarizing the measures 
for the individual units can be used as a global indicator of spatial 
autocorrelation.
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Spatial Contiguity: This is a principle of adjacency or proximity between 
areal units that could lead to similarities in inherent proper-
ties within those units that are greater than units that are further 
away.

Tobler’s Law of Geography: This is often called the first law of geography 
where everything is similar to everything else; however, things that 
are closer are more similar than those that are further away.
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8
Engaging in Geostatistical Analysis

LEARNING OBJECTIVES

 1. Use exploratory tools to visualize and compute basic statistics.
 2. Explore, describe, and characterize spatial structure using variograms.
 3. Map, quantify, and incorporate spatial variability.
 4. Perform and discover the best model for spatial prediction.
 5. Account for secondary factors and make decisions on a spatial basis.

The fields of geostatistics and spatial analysis are closely intertwined due 
to their joint emphasis on the use of traditional and novel approaches 
to describe, analyze, and visualize the spatial variability of naturally 
occurring phenomena. Both fields share analytical objectives that seek 
to uncover broad spatial patterns and relationships, pinpoint localized 
departures and anomalies in the data, and derive parameter estimates for 
predictive purposes. Like spatial analysis, geostatistics combines practi-
cal and conceptual thoughts on the modeling of spatial variability with 
mathematical and statistical principles. It can facilitate the analysis of 
spatial variability of an entire population or a sample. “Geostatistics,” 
which literally means statistics of the earth, is firmly rooted in traditional 
regression theory with past applications mostly in the natural and earth 
sciences. Pioneering work in the field began in the 1950s with inspira-
tion from the South African Danie Krige’s work in geological mining 
(Krige 1951). This work later expanded in the 1960s under the French 
Mathematician George Matheron’s leadership and efforts to showcase 
the practical applications of the methods. Many disciplines, including 
engineering, hydrology, soil studies, medical geography, epidemiology, 
ecology, and environmental assessment now fully embrace geostatisti-
cal methodologies to solve spatial prediction and modeling problems 
(Goovaerts 1997, 1999, 2009; Haining et al. 2010; Barro and Oyana 2012; 
Birkin 2013; Noor et al. 2014). With the advent of GIS, spatial statistics 
and geostatistics have become virtually inseparable as computerized 
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analytical and visualization approaches are developed to handle and dis-
play the large volume and variety of datasets representing both natural 
and anthropogenic phenomena in spatial modeling. These approaches 
are now fairly well established and integrated into leading software 
packages and are used in many scientific endeavors due to their analyti-
cal rigor and robustness. In a GIS context, the geostatistical approaches 
can be used to successfully analyze and integrate the different types of 
spatial data, measure spatial autocorrelation by incorporating the sta-
tistical distribution and spatial relationships between the sample data, 
perform spatial prediction, and assess uncertainty. Several scholars have 
also used these approaches (especially Poisson kriging and p-field simu-
lation) to account for small number/population problems (Goovaerts and 
Jacquez 2004; Goovaerts 2005, 2006), to account for uncertainty (Oyana 
2004), and to perform spatial prediction, as they are known to accurately 
predict better local estimates (Goovaerts 1997; Guo et al. 2006).

Rationale for Using Geostatistics to 
Study Complex Spatial Patterns

Modern geostatistics considers a variable of interest to be a random variable 
whose values are generated using a probability distribution structure. This 
branch of statistics was developed to overcome the challenges of applying 
traditional deterministic statistical approaches to address the inherent uncer-
tainty of spatial data in a stochastic way (Cressie 1985; Robertson 1987; Isaaks 
and Srivastava 1989; Myers 1994a,b; Cromer 1996; Goovaerts 1997; Armstrong 
1998; Mitas and Mitasova 1999; Naoum and Tsanis 2004; Yaras and Chambers 
2006; Oliver 2010). The theory underlying geostatistical estimation is the 
regionalized variable theory, which is concerned with the variable distribu-
tions in space and their spatial support (such as the size and shape of the 
geographical units, or the physical size and dimensions in which the observa-
tions were recorded). For stochastic approaches such as kriging, the analysis 
is rooted in the fundamental assumption that both the actual and potential 
measurements of the variable are outcomes of the random process with an 
underlying element of uncertainty. Myers (1994b) describes several forms of 
uncertainty that are associated with spatial data. For example, one of the most 
common sources of uncertainty is linked to measurement errors that often 
introduce white noise in the modeling process. Uncertainty may be linked 
to the failure to operationally define and measure a latent or theoretical con-
struct in a study. As Fisher (1999) explains, it could be caused by vagueness in 
the definition of objects, or ambiguity or nonspecificity in the measurement. 
Another source of uncertainty in geostatistical analysis could arise from 
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the random function itself, which is unknown and has to be interpolated 
based on values that are measured at a finite set of sampled points. As Myers 
(1994b) rightly notes, this type of uncertainty can be effectively reduced or 
controlled if the function is known to have certain properties such as conti-
nuity or differentiability. Yet another form of uncertainty can be introduced 
during the model estimation or interpolation process particularly when the 
sampled data points are irregularly spaced (which happens to be the case 
in most research studies). A core analytical goal in geostatistics, therefore, 
is to quantify the degree of element of uncertainty (using measures such as 
the variance of errors) and then choose the appropriate weights that will sig-
nificantly minimize this uncertainty during the modeling process. Stochastic 
techniques such as kriging also acknowledge the underlying spatial struc-
ture, and integrate the use of mathematical and statistical properties (or 
variogram parameters) of the measured sampling points to derive unbiased 
empirical estimates. In summary, there are two main reasons underlying the 
use of modern geostatistics to study complex spatial patterns: (1) a solid spa-
tial statistical theory that is rooted in the need to minimize the variance of 
errors and (2) a flexible spatial weighting system that yields the best fitted 
variogram. Figure 8.1 outlines the chronological steps required to ensure a 
successful geostatistical estimation process. These include the following:

 1. Start with the exploration of the spatial data by visualizing and 
describing the spatial patterns; use both traditional statistical 
descriptors and charts to present the results.

 2. Identify spatial or temporal patterns through the use of variogram 
clouds.

 3. Perform spatial modeling and prediction by selecting techniques 
that are most appropriate for the data.

 4. Perform uncertainty analysis.
 5. Review the model and incorporate secondary variables if 

necessary.
 6. Perform simulation, risk assessment, and management by predict-

ing the most probable or possible spatial distribution of the phenom-
enon being studied.

In section, “Kriging Method and Its Theoretical Framework,” we will 
focus on stochastic techniques, specifically those belonging to the krig-
ing family. We will examine the core concepts and principles that underlie 
these approaches and, with the use of sample exercises, learn how to syn-
thesize and interpret the results. Toward the end of the chapter, we will also 
examine another commonly used spatial algorithm called Inverse Distance 
Weighting (IDW), and discuss its strengths and limitations. This IDW algo-
rithm will serve as an example of a deterministic interpolation method.
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Basic Interpolation Equations

As noted above, the field of geostatistics consists of deterministic and sto-
chastic methods to interpolate spatial data based on information generated 
at known sampled points. The various forms of kriging, IDW, kernel esti-
mators, splines, trend surfaces, and radial basis functions are all examples 
of these interpolation techniques. Myers (1994a) discusses these techniques 
at length and elaborates on how the dual nature of kriging and the positive 
definiteness property of the variogram connections can be shown between 
splines, kriging, and radial basis functions. When comparing these tech-
niques, kriging is deemed the most logical choice in providing an unbiased 
optimal interpolator with optimality defined by the minimum expected 
error variance in the derived model. Kriging also offers many statistical 
advantages over the other techniques including the ability to perform cross 
validation of the model by using a fresh sample of observations. To illustrate 
a simple form of interpolation, Myers (1994a) presupposes that values of a 
function f(x) are known at points x1, x2, … xn. In a one-dimensional case of 
points, the value of f(x) for xi−1 < x < xi is of interest, and the continuity of f(x) 
is sufficient to ensure that the linear interpolation is adequate when xi − xi−1 
= ai is small. Therefore

 f * x( ) = x − xi−1( )
ai

⎡

⎣
⎢

⎤

⎦
⎥ f xi−1( )+ xi − x( )

ai
⎡

⎣
⎢

⎤

⎦
⎥ f (xi )

is very close to f(x). The estimation/interpolation error is f*(x) − f(x), and 
it is possible for other errors to exist. However, as rightly noted by Myers, 
this interpolation function has limited applications due to the lack of addi-
tional data locations required to further smooth out the data. Also, in higher 
dimensional spaces with irregularly spaced data points, more complicated 
functions are required. Following is a description of the underlying theory 
and principles that guide the interpolation of more complex datasets in two- 
or three-dimensional space.

Spatial Structure Functions for Regionalized Variables

In geostatistics, knowledge of the regionalized random-variable theory and 
the fundamental concepts that guide the formulation of spatial structure 
functions is required prior to performing any kind of interpolation. The 
theory assumes that Z(x) is a regionalized random variable that is associated 
with a true measurement, z(x), that characterizes the quantity of a variable 
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at point x. The two most important functions that are used to describe this 
regionalized variable are the spatial covariance and the variogram. For Z(x), 
the spatial covariance describes how that variable is distributed across space, 
focusing on the degree of similarity among pairs of data points. It also seeks 
to capture the underlying spatial structure by modeling the degree to which 
there is spatial autocorrelation with the belief that data values obtained at 
locations that are closer together are more likely to be similar, whereas val-
ues at locations farther apart are more likely to be independent (Tobler’s law). 
This spatial autocorrelation structure informs the formulation of the random 
function. We can define the values of the random variable Z at two locations, 
Z(x) and Z(x + h), where h represents the distance (spatial lag) between a 
pair of sampling sites. There are also a set of assumptions that guide the 
mathematical formulation of this covariance. One is the basic assumption 
of stationarity (that certain attributes of the random process are the same 
everywhere). This effectively enables the inference of the stationary cova-
riance. To derive the covariance and variogram functions, we also assume 
that each observation is independent under the weaker intrinsic hypothesis 
of geostatistics (Matheron 1963; Matheron 1965; Myers 1994a,b; Goovaerts 
1997; Deutsch 2002; Oliver 2010). Using this principle, we can mathematically 
define the spatial covariance as follows:

 C(h) = E[Z(x + h).Z(x)]−µ2

where μ is the stationary mean, normally estimated from the total number 
of data points (i.e., data points xn in the area in which z(x) is being estimated) 
approximately separated by the vector h. At h = 0 the stationary covariance 
C(0) equals the stationary variance σ 2. We can rewrite this equation into a 
more standardized stationary correlation ρ (h) as follows:

 ρ(h) = C(h) σ2

Given that we are interested in a two-point measure of spatial correlation 
called the variogram, the equation (covariances) can be slightly modified by 
the expected squared differences as

 2γ(h) = E [Z(x + h)−Z(x)]2{ }

In reality, however (if the process Z(x) is second-order stationary, the vario-
gram and covariance are equivalent), we would prefer more simplified forms 
of covariance and variogram as given below:

 C(h) = σ2ρ(h) = σ2 − γ(h)

 γ(h) = σ2 1−ρ(h){ }
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From the variogram function above, we have the semivariance, γ (h), which 
is defined as one-half of the mean squared difference between paired data 
points in the study area. To illustrate this further, suppose we have a sample 
of observations Z(xi), i = 1, 2, 3 … n, where the mean is constant: we can 
define the semivariogram as follows:

 γ(h) = 1
2n(h)

z(xi + h)−Z(xi )2⎡⎣ ⎤⎦
i=1

n(h)

∑

where n is the number of sample points, Z(xi) is the measured sample value 
at location xi, Z(xi+h) is the sample value at location xi+h, regionalized vari-
able Z(x), and n(h) is the number of pairs of observations a distance h apart. 
The semivariogram is therefore a measure of one-half the mean square error 
produced by assigning the value of Z(xi+h) to the value Z(x).

In sum, variogram analysis in geostatistics entails the derivation of three 
empirical measures as estimates of the true population parameters: the spa-
tial covariance C(h), the spatial correlation ρ (h), and the semivariance γ (h). 
The covariance and correlation both reflect the degree of similarity within 
the data while the semivariance reflects the degree of dissimilarity with 
increasing distance among pairs of data points. Various plots can be pro-
duced using these three spatial structure functions. For example, a line plot 
of the spatial correlation against the lag h is called a spatial correlogram. 
Plotting the spatial covariance against the lag h produces the spatial covari-
ance function. And the most commonly reported visualization is the semi-
variogram, a line plot that depicts the semivariance γ (h) against the lag h 
(Figure 8.2). Although the technical term for this plot is a semivariogram 
(one-half of the mean square error) the terms variogram and semivariogram 
are used interchangeably in the literature to describe the plot, and we will do 
likewise in this chapter.

The shape of the variogram describes the degree of spatial autocorrelation 
that is present in the data. In Figure 8.2, you will find that as the lag distance 
h increases, the curve increases and then it levels off at some point. There are 
three key properties illustrated in this diagram: sill, nugget, and range. The 
sill refers to the semivariance value at which the curve levels off. As shown 
in the figure, this is the point at which the γ (h) value intersects with the range 
and becomes a constant value as the lag distance h increases. The nugget is 
a semivariance value γ (h) that is significantly different from zero for lags 
that are very close to zero. This is not a measurement error; rather it is best 
characterized as white noise suggesting that even for data points that are 
close to one another, the measured values may not necessarily be  identical. 
The range is the lag distance at which the variogram first reaches the sill 
and remains close to that level for subsequent distances. The variogram can 
also allow for anisotropy by incorporating both spatial dependence and how 
these variations change in different directions.
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Overall, the variogram is a popular way to compute and visualize spatial 
autocorrelation and it is highly recommended as a first step in geostatistical 
modeling. The relations captured in the equation and the visual depiction 
provide the foundation for modeling spatial autocorrelation. The procedures 
for synthesizing and interpreting the results may be summarized in three 
key points: (1) the sill of the variogram corresponds to the point where there 
is zero autocorrelation, (2) the autocorrelation between Z(x) and Z(x+h) is 
positive when the variogram is less than the sill, and (3) the autocorrelation 
between Z(x) and Z(x+h) is negative when the variogram exceeds the sill (not 
depicted in the Figure 8.2). Once the variogram is developed, it is incumbent 
on the researcher to choose the statistical model with weights that best rep-
resent the data and to share those values, including the variogram, in the 
statistical results. The selected model will significantly impact the next stage 
of the analysis that entails the prediction of the unknown values across the 
study area.

Kriging Method and Its Theoretical Framework

As stated earlier, kriging belongs to a subset of geostatistical methods that 
rely on the stochastic process in developing predictive surfaces. Named 
after Danie Krige’s pioneering work, the approach is an optimal, unbiased, 
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and generalized least-squares spatial interpolation method that minimizes 
the estimation from a fitted variogram model. It offers a far better under-
standing of the spatial structure of the variable in a set of observations, 
and then provides unbiased estimates for unmeasured locations using the 
semivariogram model (Goovaerts 1997; Deutsch 2002; Oyana and Margai 
2010; Asa et al. 2012). Several kriging methods exist in the geostatistical 
literature and they are broadly classified into either linear or nonlinear 
approaches. The former includes simple kriging (SK), ordinary kriging 
(OK), universal kriging (UK), Bayesian kriging, and factorial kriging, while 
the latter includes lognormal kriging, multi-Gaussian kriging, disjunc-
tive kriging, indicator kriging (IK), probability kriging, and rank kriging 
(Asa et al. 2012).

Asa et al. (2012) outlined four basic assumptions of kriging estimators: 
(1)  the unknown sample data z(x), and the n sample values belong to the 
regionalized variables, Z(x), and Z(x1), …, Z(xn); no measurement or posi-
tional errors exist; (2) for any two points x1 and x2 in the area over which z(x) 
is being estimated, the covariance Cov(Z(x1), Z(x2)) of the associated region-
alized variables Z(x1) and Z(x2) are known; (3) K, the non-negative matrix of 
covariances between measured variables (data) at the sample point is posi-
tive definite; and (4) the trend in the area of interest is homogenous. As a 
result, the mean of the regionalized variables will be the same for the data 
points xn in the area in which z(x) is being estimated. If a trend exists in the 
area of interest, the stationarity of the local mean is relaxed and a nonsta-
tionary random function is employed to represent the mean (kriging with a 
trend or UK). The random functions adopted Z(x), in the kriging equations, 
will define the kriging method.

The basic equation of kriging estimators is given by Goovaerts (1997) as 
follows:

 Z*(x)−m(x) = wi Z(xi )−m(xi )[ ]
i=1

n(x)

∑

where x and xi are location vectors for the estimation point and one of the 
neighboring data points indexed by i; n(x) is the number of data points in a 
local neighborhood used for estimation of Z*(x); m(x), m(xi) are expected mean 
values of Z(x) and Z(xi), respectively; and wi is the kriging weight assigned 
to Z(xi) for estimation location x. As noted earlier, the goal of kriging is to 
minimize the variance of the estimator σE2 x( ) =Var{Z* x( )−Z(x)} under the 
circumstance E Z*(x)−Z(x){ } = 0 by determining weights wi . The random 
variable Z(x) consists of two components: the residual component (R(x)) and 
the trend component (m(x)): Z x( ) = R x( )+m(x).
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Following the basic assumptions, there are two crucial steps in fitting a 
semivariogram model and kriging:

 1. Measuring the degree of spatial autocorrelation among the mea-
sured data points, that is, description and modeling of spatial pat-
terns (described in the preceding section).

 2. Interpolating values between measured points based on the degree 
of spatial autocorrelation encountered, that is, prediction of local 
estimates.

After this, we can also account for secondary factors using cokriging, a 
method that integrates multiple variables associated with the primary vari-
able into the analysis. Following below are the conceptual descriptions and 
some illustrated examples of SK, OK, UK, and IK.

Simple Kriging

Simple kriging, identified by the subscript SK, is an estimate that is derived 
from the modification of the mean. The mean value m(x) of the stationary 
random variable in an SK equation is assumed to be constant and known 
throughout the study area. The global mean assumption is contingent upon 
the SK estimator being unbiased and having a minimal variance of the error 
of estimation. The SK estimator is derived using this equation:

 ZSK* x( ) =
i=1

n

∑wi.Z xi( )+ [1−
i=1

n

∑wi(x)]m

where Z(x) is the random variable at the location x, all xi values are equal to n 
data locations, m(x) = E{Z(x)} is equal to location-dependent expected values 
of random variable Z(x), ZSK*  is the linear regression estimator, wi(x) is the 
weight, and m(x) is the mean.

Ordinary Kriging

Ordinary kriging, identified by the subscript OK, is a very powerful and 
widely used geostatistical method for modeling spatial data (Cressie 1985; 
Isaaks and Srivastava 1989; Goovaerts 1997; Armstrong 1998; Deutsch 2002). 
It assumes that the local means are not necessarily closely related to the pop-
ulation mean and will use only the samples in the local neighborhood for an 
estimate. Simply stated, the local mean m(x) is unknown but it is assumed 
to be constant within the search area. OK relies on the spatial correlation 
structure of the data to determine the weighting values, and the correlation 
between data points determines the estimated value at an unsampled point. 
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It makes the assumption of normality among the data points. The method is 
based on three basic ideas:

 1. A search is only conducted within a local neighborhood and only 
samples drawn from this neighborhood are used for estimation. As 
a result of this process, OK is able to account for the local variation.

 2. Weight assignment relies on spatial variability within each local 
neighborhood.

 3. Computation of the average weight is based on each local neighbor-
hood, which is then used to derive the local neighborhood estimate.

OK is derived using this equation:

 ZOK* x( ) =
i=1

n

∑wi(x).Z xi( )+ [1−
i=1

n

∑wi(x)]m(x)

where ZOK*  is the linear regression estimator and the others are as defined in 
the SK equation above.

In this equation, we assume the mean m xi( ) = m x( ) for each nearby data 
value Z(xi), so that

 Z* x( ) = m x( )+
i=1

n x( )
∑wi x( ) Z xi( )−m x( )⎡⎣ ⎤⎦  = 

i=1

n(x)

∑wi x( ).Z xi( )+ [ (1−
i=1

n x( )
∑wi(x)]m(x)

As 
i=1

n x( )
∑wi x( ) = 1 , an OK estimator can be calculated from

 ZOK* x( ) =
i=1

n(x)

∑wiOK(x)Z xi( ) with 
i=1

n(x)

∑wiOK x( ) = 1

The estimator based on a set of variables Z = {Z1, Z2, … ,Zk} can be rewrit-
ten as

 z0µ s0( ) =
i=1

n

∑
j=1

k

∑wijzj(si )

Universal Kriging

UK is kriging with a trend and is similar to OK. However, UK deals with 
situations where the local mean is variable over the study area. Although the 
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TASK 8.1 CALCULATING THE ORDINARY 
KRIGING ESTIMATOR

Let us illustrate the calculation of the OK estimator using Burrough 
and McDonnell’s example dataset presented in Figure 8.3 (Burrough 
et al. 1998).

The sample data in Figure 8.3 has five sampled sites with coordinates 
(x,y) and values (z) and we will predict the value for the coordinate (5,5). 
The OK model is based on a constant mean (m(x)) and no trend for the 
data as follows:

 ZOK* (x) = m(x)+ ε(xi )

where xi = (x,y) for each sampled location, Z(xi) represents the value of 
each sampled location and random errors ε (xi) with spatial dependence. 
We will predict the value for unknown point z(xi = o) at coordinates 
(x = 5, y = 5). We will apply a spherical variogram model (the equation 
is given below) to compute the spatial variation of the data sampled at 
the five locations based on the following parameters: nugget (C0) = 2.5, 
sill (C1) = 7.5, range a = 10.

 
2.5+ 7.5− 2.5( ) 3h20 −

h3
2000

⎞
⎠⎟

⎛
⎝⎜

 0 ≤ h ≤ 10 

0 h = 1 
7.5 otherwise 

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 γ h( ) = σ2 −C h( )

 C h( ) = 7.5− 2.5+ (7.5− 2.5) 3h20 −
h3
2000

⎞
⎠⎟

⎛
⎝⎜

The OK predictor is formed as a weighted sum of the data as follows:

 ZOK* x( ) =
i=1

n x( )
∑wiOK x( )Z xi( )  with 

i=1

n x( )
∑wiOK x( ) = 1

 σ̂e2 =
i=1

n

∑λ iγ xi ,x0( )+ φ

where γ xi ,x0( ) is the semivariance between sampled point xi and 
unsampled point x0. ϕ  is a Lagrange multiplier required for the 
minimalization.

(Continued)
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(Continued)

TASK 8.1 (Continued) CALCULATING THE 
ORDINARY KRIGING ESTIMATOR

We have to solve the following equation:

 A−1 ⋅b = w
φ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where A is the matrix of semivariances between pairs of data points, 
b is the vector of semivariances between the predicted point and each 
sampled data point, w is the vector of weights, and ϕ  is a Lagrangian. A 
distance matrix for the data points is given by

i 1 2 3 4 5

1 0 5.099 9.899 5 3.162
2 5.099 0 6.325 3.606 4.472
3 9.899 6.325 0 5 7.211
4 5 3.606 5 0 2.236
5 3.162 4.472 7.211 2.236 0

3

31

6

6 7 8 9 10

4

4 5

4

Unknown

2

2

3

1

6

7

8

9

10

4

5

2

w3

w2

w1 w5

w4

FIGURE 8.3
An example of a dataset to illustrate the kriging estimator.



236 Spatial Analysis

TASK 8.1 (Continued) CALCULATING THE 
ORDINARY KRIGING ESTIMATOR

The distance vector of covariances for the sampled data points xi and 
unsampled point x0 is given by:

We can substitute these numbers to the variogram to obtain the cor-
responding semivariances:

The vector of semivariances between the predicted point and each 
sampled data point is given by:

Obtain the inverse matrix:

(Continued)

A–1 = i  1 2 3 4 5 6

1 −0.172 0.05 0.022 −0.026 0.126 0.273
2 0.05 −0.167 0.032 0.077 0.007 0.207
3 0.022 0.032 −0.111 0.066 −0.01 0.357
4 −0.026 0.077 0.066 −0.307 0.19 0.03
5 0.126 0.007 −0.01 0.19 −0.313 0.134
6 0.273 0.207 0.357 0.003 0.134 −6.873

b = i x0

1 7.151
2 5.597
3 8.815
4 3.621
5 4.720
6 1

i x0

1 4.243
2 2.828
3 5.657
4 1.0
5 2.0

A = i 1 2 3 4 5 6

1 2.5 7.739 9.999 7.656 5.939 1
2 7.739 2.5 8.667 6.381 7.196 1
3 9.999 8.667 2.5 7.656 9.206 1
4 7.656 6.381 7.656 2.5 4.936 1
5 5.939 7.196 9.206 4.936 2.5 1
6 1 1 1 1 1 0
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local mean m(x) is unknown just like in OK, UK models this as a linear com-
bination of functions of coordinates. Simply stated, it accommodates a non-
stationary mean where the expected value of Z(x) is a linear or high-order 
(deterministic) function of the (x, y) coordinates of the data points. Caution is 
required when fitting complex models.

The random function, Z(x), is a combination of a trend component with a 
deterministic variation, m(x), and a residual component, R(x). UK is derived 
as follows:

Z x( ) = m x( )+R x( )  and m x( ) = E Z x( ){ } =
k=0

n

∑µkλk x( )
where λ k(x) is the known basic function and μk represents the fixed, unknown 
coefficients.

TASK 8.1 (Continued) CALCULATING THE 
ORDINARY KRIGING ESTIMATOR

Obtain the weights w using the weighting function

Minimization of the error variance:
The predicted value at 

z(xi = o) = 0.0175 ×  3 +  0.2281 ×  4 −  0.0891 ×  
                  2 +  0.6437 ×  4 +  0.1998 ×  6 =  4.560

Estimation variance:

σe2 = 0.0175× 7.151+ 0.2281× 5.597 − 0.0891× 8.815+ 0.6437 × 3.621
        + 0.1998× 4.720+ φ = 3.890+ 0.1182 = 4.008

Since our standard error = 2.002, we derive the predicted interval at 
a 95% confidence interval, which ranges from 0.636 to 8.484 (4.56 ± 1.96 
× 2.002).

wi x0

1 .0175
2 .2281
3 –.0891
4 .6437
5 .1998
6 .1182 — ϕ
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Indicator Kriging

IK is a method used with categorical data or data converted from continu-
ous data to categorical data. IK is a least-squares estimator of the cumulative 
distribution function at a threshold, zk. IK employs the samples in a neigh-
borhood to estimate the probability that data points in a given area exceed 
a defined threshold. Transformed indicator values (0, 1) are coded 1 if they 
exceed a defined threshold and those below the threshold are coded 0. The 
semivariogram of indicator data is computed as follows:

 γ h; zk( ) =  1
2n h( ) i=1

n h( )
∑ i xi ; zk( )− i xi + h; zk( )⎡⎣ ⎤⎦

2  

The local probability at x by kriging of indicator values is given by this 
equation:

 i x; zk( )⎡⎣ ⎤⎦ = E{I(x; zk n( ))}* = Prob*{Z x( ) ≤ zk n( )}  

where n is the conditional information available in the neighborhood of loca-
tion x. A declustering algorithm is used to decluster the sample data if the z 
data values are clustered.

Key Points to Note about the Geostatistical Estimation Using Kriging

 1. Modeling decisions are driven by insights acquired during the 
exploratory phase of the geostatistical analysis using the histogram, 
variogram cloud/h-scatterplot, or covariance cloud. The histogram 
provides a useful tool for confirming normality, a key assumption in 
geostatistical analysis.

 2. The selection of the most appropriate kriging equation/semivario-
gram model that fits your data is typically based on the preceding 
steps and results from the exploratory analysis/description of the 
spatial patterns, and the prediction error analysis.

 3. Each kriging equation is designed to meet certain requirements/
assumptions, but all the kriging equations honor the data characteris-
tics, preserve the mean, and preserve the spatial correlation structure.

 4. Final decisions are based on the uncertainty analysis using the cross-
validation approach. You should select the best kriging option after 
carefully reviewing the five types of prediction errors: (1) mean pre-
diction error, (2) standardized mean prediction error, (3) root mean 
squared prediction error, (4) standardized root mean squared predic-
tion error (RMSE), and (5) average standard error. An optimal krig-
ing model is one in which both the mean prediction error and the 
standardized mean prediction error are close to zero. For an optimal 
model, the root mean squared prediction error (RMSE) should be as 
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small as possible, of approximately the same magnitude as the aver-
age standard error. The standardized root mean squared prediction 
error (RMSES) is dimensionless and must be close to 1 for an opti-
mal model. Use these prediction errors to construct an error decision 
matrix and pick the semivariogram model with the least error.

 5. The kriging technique is not applicable to datasets that have spikes, 
abrupt changes, or datasets that do not have a spatial autocorrelation 
structure. Data that lack adequate spatial coverage and are not fully rep-
resentative of the study region may also result in poorly fitted models.

We will apply a set of five geostatistical methods and tools to achieve these 
two objectives.

Exploratory Data Analysis

Figures 8.4 and 8.5 show the spatial distribution of soil carbon and soil 
nitrogen in the study region. Soil carbon has a mean of 12.5 kg/m2 and stan-
dard deviation of 13.6 kg/m2 (Figure 8.4c) while soil nitrogen has a mean of 
907.8 g/m2 and a standard deviation of 631.6 g/m2 (Figure 8.5c). About 100 
of the sampled locations have soil carbon values of less than 20 kg/m2 and 
67% of the entire sample has values that are less than the mean value.

The frequency distribution of soil carbon is positively skewed with a sharp 
peak. Three of the sampled locations have a very high content of soil carbon 
(54.8 kg/m2, 76.3 kg/m2, and 113 kg/m2). The frequency distribution of soil 
nitrogen is moderately skewed with a sharp peak. About 50% of the sampled 
locations of soil nitrogen have values that are less than the mean value. Most 
of the values of sampled locations of soil nitrogen range from 180 g/m2 to 
2,362 g/m2 and 15% of the sampled locations have zero values. There is one 

TASK 8.2 KRIGING SOIL SAMPLE DATA, SYNTHESIS, 
AND INTERPRETATION OF RESULTS

The sample data presented in this chapter are based on 115 sampling 
sites for organic soil carbon and nitrogen in southern Africa. The soil 
database was compiled by SAFARI 2000, but was originally sourced 
from soil surveys by Zinke et al. (1986) and soil survey literature. There 
are two objectives that we wish to achieve using this data.

 1. Characterize soil organic carbon and soil nitrogen with the 
intention to understand the interaction of these two soil prop-
erties and environmental factors.

 2. Use the spatial dependence structure to predict soil organic 
carbon and soil nitrogen estimates at unsampled locations.
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sampling location of soil nitrogen with more than 4000 g/m2 that is located 
in the south (Figure 8.5b). Sampled locations with the highest content of soil 
nitrogen are generally located in the south, the medium values are generally 
located in the central area, and the lowest values are generally located in the 
east and northeast. Spatial patterns of soil carbon (Figure 8.4b) are a little 
similar to soil nitrogen except that there is a clear pattern in the distribu-
tion of soil carbon, especially where there are high, medium, and low values 
(Figure 8.5b).

The semivariogram cloud (Figures 8.4d and 8.5d) is a form of h-scatter-
plot that gives the semivariance estimates of paired distances (the distance 
between sampling points) for soil carbon and soil nitrogen. The paired dis-
tances that are closer together suggest spatial dependence and vice versa. In 
both sampled locations of soil carbon and soil nitrogen, the paired distances 
in the lower part of the semivariogram clouds show closeness suggesting the 
presence of a spatial dependence structure and a small semivariance among 
values. However, there is evidence of outliers in the upper-left and bottom-
right corners of the two semivariogram clouds suggesting large semivari-
ance estimates or wide distances between some paired sampled points.

Spatial Prediction and Modeling

The fitted soil carbon semivariogram models are provided in Figures 8.6a 
through 8.6d while the models for soil nitrogen are given in Figures 8.7a 
through 8.7d. Table 8.1 summarizes the semivariogram models for the 
parameters/coefficients of soil nutrients. Note that the UK model for soil 
nitrogen has a very large nugget suggesting that sampled locations are ran-
domly distributed in the study region. The predicted areas from these mod-
els are presented in Figures 8.8 and 8.9. The spatial patterns of UK and IK 
estimators are more reflective of the raw (soil carbon) data than those from 
OK and SK estimators (Figure 8.8a through 8.8d).

In Figure 8.8a, the low values are located in the central area of the study 
region. In the immediate surroundings, there are medium values, and the 
high values are located in the lower-left corner of the study region. Spatial 
patterns in Figure 8.8c and d are similar with slight differences evident in 
their spatial extents. The indicator semivariogram model gives a probability 
surface map for soil carbon where there is not an exceedance of an optimal 
threshold of 10.15 kg/m2 (Figure 8.8d).

The spatial patterns for the prediction surface of OK, UK, and IK estima-
tors are more reflective of the raw data of soil nitrogen than the SK estimator. 
In Figure 8.9a and b, the low and medium values of soil nitrogen are mainly 
located in the central area and toward the northeast. However, spatial pat-
terns in Figure 8.9d are more pronounced than those from other models. 
The indicator semivariogram model shows a probability surface map for 
soil nitrogen where there is not an exceedance of an optimal threshold of 
1070.5 g/m2 (Figure 8.9d).
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TABLE 8.1 

Fitted Semivariogram Models for Soil Carbon and Soil Nitrogen

Kriging Estimator Soil Carbon Soil Nitrogen

OK γ  = 0.2478*Co+0.1475*Stable 
(19743, 1.371)

γ  = 0.1373*Co+0.0735*Stable 
(20707, 1.165)

SK γ  = 0.5529*Co+0.4296*Stable 
(57294)

γ  = 0.8193*Co+0.1613*Stable 
(88036, 2)

UK γ  = 0.1549*Co+0.2718*Stable 
(19743, 1.6186)

γ  = 162640*Co+121850*Stable 
(35021, 2)

IK γ  = 0.0234*Co+0.2347*Stable 
(19743, 2)

γ  = 0.1176*Co+0.1289*Stable 
(19743, 2)

(a) (b)

(c) (d)

Prediction surface of
soil carbon (kg/sq. m)

Prediction surface of
soil carbon (kg/sq. m)

Prediction surface of
soil carbon (kg/sq. m)

Prediction surface of
soil carbon (kg/sq. m)

4.07–14.32
14.32–32.61

0–5.42
5.42–6.36

6.36–11.78
11.78–43.11 43.11–224.10

62.62–107.26
32.61–62.62 107.26–190.69 5.09–11.36

11.36–19.98

0–0.15
0.15–0.38

0.38–0.59
0.59–0.80

0.80–1

19.98–31.47
31.47–45.32 45.32–71.70

FIGURE 8.8 
Prediction surface maps for soil carbon: (a) ordinary kriging (OK) estimator, (b) simple kriging 
(SK) estimator, (c) universal kriging (UK) estimator, and (d) indicator kriging (IK) estimator. 
The spatial patterns for UK and IK estimators are more reflective of the raw data of soil carbon 
than those from the OK and SK estimators.
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Uncertainty Analysis

Having reviewed the preliminary models, we now need to judge the most 
appropriate semivariogram model for soil carbon and soil nitrogen. The 
cross-validation plots are presented in Figures 8.10 and 8.11 for this purpose. 
Decision matrices for the performance of the five sets of geostatistical meth-
ods are presented in Tables 8.2 and 8.3. A critical examination of the cross-
validation plots reveals the following observations. In Figure 8.10a through d, 
if we use an error cutoff point of ±2 in both directions, we can identify sam-
pling sites of soil carbon with under- or overprediction. In the OK model, 
29% and 48% show under- and overprediction, respectively (SK [25%, 52%]; 
UK [29%, 39%]; and IK [21%, 28%]). An in-depth scrutiny of the standardized 
errors (if we use a cutoff of ±2 in both directions) in the validated sites shows 
there is a major reduction in underprediction with OK (9.7%), SK (4.2%), and 

(a) (b)

(c) (d)

Prediction surface of
soil nitrogen (g/sq. m)

Prediction surface of
soil nitrogen (g/sq. m)

Prediction surface of
soil nitrogen (g/sq. m)

Prediction surface of
soil nitrogen (g/sq. m)

540.14–818.68
818.68–1,039.87

566.16–843.85
843.85–1,080.70

1,080.70–1,317.56
1,317.56–1,783.09 1,783.09–2,648.83 0–0.15

804.32–938.81
938.81–1,025.27

1,025.27–1,118.93
1,118.93–1,239.00 1,239.00–1,416.72

0.15–0.36
0.36–0.58
0.58–0.82 0.82–1

1,039.87–1,261.06
1,261.06–1,613.33 1,613.33–2.626.17

FIGURE 8.9 
Prediction surface maps for soil nitrogen: (a) ordinary kriging (OK) estimator, (b) simple krig-
ing (SK) estimator, (c) universal kriging (UK) estimator, and (d) indicator kriging (IK) estima-
tor. The spatial patterns for OK, UK, and IK estimators are more reflective of the raw data of 
soil nitrogen than the SK estimator.
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IK (7%) with the exception of UK (32%). Overprediction also reduced in a 
number of validated sites with OK having none, and SK and IK having 3% 
and 4.2%, respectively, with the exception of UK (4.2%). Most of the sites have 
a 50% probability of having less than the threshold of soil carbon 10.15 kg/m2.

In Figures 8.11a through d, the OK model shows 40% and 57% under- and 
overprediction, respectively (SK [42%, 57%]; UK [40%, 49%]; and IK [33%, 
40%]). An in-depth analysis of the standardized errors in the validated sites 

TABLE 8.2 

Cross-Validation Statistics for Five Interpolation Methods for Soil Carbon

Statistics
Decision 
criteria OK SK UK IKa IDW

Mean Near zero 0.021 0.3233 0.289 −0.0007 −0.197
Standardized 
mean Near zero −0.114 −0.0004 0.324 −0.008

Root-mean 
square error 
(RMSE)

Very 
small 15.959 15.11 5.684 0.491 9.294

Standardized 
root-mean-
square error 
(RMSES) Near 1 1.303 1.422 8.613 1.027

Average 
standard 
error (ASE)

Very 
small 13.512 12.41 0.676 0.481

Rankinga 
(the best) 5 4 3 1 2

a Based on the ranking, IK presents the best model for soil carbon

TABLE 8.3 

Cross-Validation Statistics for Five Interpolation Methods for Soil Nitrogen

Statistics
Decision 
Criteria OK SK UK IKa IDW

Mean Near zero −9.979 −12.526 −20.626 −0.0063 −9.373
Standardized 
mean Near zero −0.038 −0.011 −0.035 −0.0114

Root mean 
square error 
(RMSE)

Very 
small

503.25 520.73 513.40 0.494 512.70

RMSES Near 1 0.808 0.938 1.024 0.984
Average 
standard 
error (ASE)

Very 
small 597.87 523.48 502.56 0.504

Rankinga 
(the best) 5 4 3 1 2

a Based on the ranking, IK presents the best model for soil nitrogen
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of soil nitrogen shows a major reduction in underprediction as well as over-
prediction: OK (5.6%, none); SK (5.6%, 1.4%); UK (5.6%, 1.4%); and IK (none, 
none). Most of the sites have a 67% probability of having less than the thresh-
old of soil nitrogen 1070.5 g/m2.

Based on these cross-validation statistics, the indicator semivariogram 
models for soil carbon and soil nitrogen provide the best and most appropri-
ate fit for data. The two models have overcome the presence of extreme val-
ues (outliers) by coding each of the sampling location values into two groups 
using targeted thresholds of soil carbon at 10.15 kg/m2 and soil nitrogen at 
1070.5 g/m2. The probability maps and cross-validation plots represent spa-
tial variability of soil carbon and soil nitrogen in the study region. We are 
able to discern sampling locations where the probability values were not 
greater than the targeted thresholds.

Following the uncertainty analysis and verification of the measured and 
predicted estimates, we can make the following conclusions about the spa-
tial prediction and modeling of soil carbon and soil nitrogen:

 1. It is evident that the indicator semivariogram models (IK) of soil car-
bon and soil nitrogen are superior to the other models.

 2. The spatial distributions of prediction surfaces of soil carbon and soil 
nitrogen are evidently similar; for example, high values are located in 
the south. Most of the sampled carbon sites had less than 20 kg/m2 while 
most of the soil nitrogen values ranged from 180 g/ m2 to 2400 g/m2.

 3. Sampled data are lacking in the far north and other areas, which 
is problematic for the predictive ability of the models at these loca-
tions. Not surprising, the highest prediction errors were observed 
in these areas. Putting aside this limitation, overall, the indicator 
semivariogram provided the best clues about the spatial variability 
of soil carbon and soil nitrogen. Efforts to revise and improve the 
models will require the establishment of more sampling sites for use 
in collecting additional soil measurements in carbon and nitrogen.

Conditional Geostatistical Simulation

Geostatistical simulation provides us with a practical mechanism for draw-
ing multiple equally probable realizations from the random function model. 
A single realization at each location is derived from a random variable func-
tion (Myer 1994a). Realizations are an embodiment of the spatial variability 
in a sample because they honor data characteristics, preserve the spatial cor-
relation structure, and preserve the mean and marginal distributions (Myer 
1994a). The simulation process, which is normally encoded in a computer 
algorithm, represents “equally likely” values at each of the sample locations 
based on preserving the core spatial structure (invariant properties) of the 
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data values without smoothening it. A conditional geostatistical simulation 
provides us with the capability to produce practical realizations that reflect 
the spatial structure and relationships among a variety of informative fac-
tors. We can also express the simulated results in probabilistic terms, thus 
enabling the quantification of uncertainty and providing important input for 
risk analysis and management. Although several interpolations can be used 
with conditional simulation, we have only used SK to illustrate the signifi-
cance of these algorithms in geostatistics.

Figure 8.12 presents mean and standard deviation of 10 realizations for car-
bon and soil nitrogen. The simulated results give us further insights about 
the spatial structure and relationships of soil and areas where there is uncer-
tainty. In Figure 8.12a, the low to medium simulated mean values of soil 
carbon are located in the central area and the surrounding areas. However, 
in Figure 8.12b, there are several pockets of areas (8 clusters) with a varied 
standard deviation. In Figure 8.12c, the low to medium simulated mean val-
ues of soil nitrogen are also located in the central area and the immediate 
surroundings. However, in Figure 8.12d, there are many scattered pockets 
showing varied standard deviation throughout the study region.

(a) (b)

(c) (d)

Conditional simulation results
soil nitrogen (kg/sq. m), ten
realizations (mean)

Conditional simulation results
soil nitrogen (g/sq. m), ten
realizations (mean)

Conditional simulation results soil nitrogen
(kg/sq. m), ten realizations (standard deviation)

Conditional simulation results
soil nitrogen (g/sq. m), ten
realizations (standard deviation)

0.79–9.67
9.67–18.56

18.56–30.40
30.40–44.94

44.94–69.44
1.27–5.17
5.17–8.24

8.24–11.93
11.93–15.52

15.52–28.19

28.01–82.52
643.01–878.97

878.97–1,075.59
1,075.59–1,322.78

1,322.78–1,592.44 1,592.44–2,075.59 82.52–109.77
109.77–139.21

139.21–187.17
187.17–305.99

FIGURE 8.12 
Conditional geostimulation maps from 10 realizations: (a) soil carbon realizations based on 
mean, (b) soil carbon realizations based on standard deviation, (c) soil nitrogen realizations 
based on mean, and (d) soil nitrogen realizations based on standard deviation.
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Inverse Distance Weighting

IDW is a deterministic interpolation technique that estimates the values of 
unsampled points according to the values at nearby locations weighted only 
by distance. IDW is based on an assumption that the relationship between 
nearby location and interpolation location is closer. We will illustrate the IDW 
interpolation technique using the sample datasets presented in Figure 8.3. 
We will predict the value for coordinate (5,5) through a linearly weighted 
combination of the following equation:

 z x( ) = i=1

n∑ wizi

i=1

n∑ wi

where z x( ) is the value for unknown point xo, wi  is weight for sampled point 
xi, zi  is the value for sampled point xi .
We know that the weighting function, wi =

1
di2

 di is the distance between sam-
pled points xi and unknown point xo.

The distance between sampled points xi and unknown point xo is given by:

Derive the weights using distance from previous step. For example, 

Point 1: w1 =
1

4.2432
= 0.056

 
i=1

n

∑wi = 1.462

Derive the z(x) value for the unknown point:

 
i=1

n

∑wizi = 0.056× 3+ 0.125× 4 + 0.031× 2+1× 4 + 0.25× 6 = 6.229

xi xo

1 4.243
2 2.828
3 5.657
4 1.0
5 2.0

xi wi

1 0.056
2 0.125
3 0.031
4 1
5 0.25
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 z x( ) =
wizi

i=1

n

∑

wi
i=1

n

∑
= 6.229
1.462

= 4.261

IDW provides an easy way to predict values of continuous variables at 
locations where measurement is unavailable. However, it is not sensitive to 
areas of peaks or pits and would lead to undesirable results.

Figure 8.13 presents IDW prediction surfaces and the cross-validation plots 
for soil carbon and soil nitrogen. In Figure 8.13a, most of the areas have low 
to medium values of soil carbon with the exception of the south. Figure 8.13b 
has a few pockets of areas with medium to high scattered values of soil 

TASK 8.3 APPLYING IDW TO SOIL SAMPLE DATA, 
SYNTHESIS, AND INTERPRETATION OF RESULTS

The same soil used in fitting the previous kriging methods will be 
applied to the IDW interpolation technique.
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FIGURE 8.13 
Prediction surface maps and cross-validation plots using the inverse distance weighting inter-
polation technique: (a) surface for soil carbon, (b) surface for soil nitrogen, (c) measured versus 
predicted soil carbon estimates, (d) measured versus predicted soil nitrogen estimates.
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nitrogen throughout the study region. The largest spatial extent with high 
values is presently located in the south. The examination of cross-validation 
plots reveals under- and overprediction to be 25% and 44%, respectively. 
However, the errors for nitrogen are quite large.

Conclusion

In this chapter, we have learned about geostatistical analysis as a growing 
field of advanced statistical techniques that characterize spatial dependence 
among naturally occurring phenomena and use the results to model spatial 
continuity in a study area. The analytical approaches consist of both deter-
ministic and stochastic approaches such as IDW and kriging. Our focus in 
this chapter was primarily on the stochastic approaches. These are governed 
by the regionalized random variable theory that underlies the formulation 
of spatial structure functions such as the covariance and variogram. We 
explored the use of the variogram in capturing spatial autocorrelation and 
the corresponding weights that are derived for spatial interpolation. Using 
a series of tasks, the chapter also demonstrated the computation and inter-
pretation of estimators for different types of kriging methods and the mea-
sures that are used to derive optimal models. Working through the challenge 
exercises below will help solidify the concepts that were introduced in this 
chapter and will set you well on your way to becoming proficient in these 
approaches.

Challenge Assignments

The overarching objective of this problem set is to analyze the impact of 
ambient pollution/environmental exposure on the communities living in 
two study regions. One of the study regions contains O’Hare International 
Airport (i.e., noise exposure) and the other is located within areas surround-
ing air pollution monitoring sites in California (i.e., nitrogen dioxide and 
ozone exposure). Datasets and materials to be used to complete the problem 
set include (1) Average Day/Night Sound (DNL) measured in decibels (dB) 
summarized from 34 Permanent Noise Monitor Locations near the airport, 
covering a 7-year study period (2004–2010), O’Hare Noise Compatibility 
Commission (ONCC); (2) wind data, National Renewable Energy Laboratory 
(NREL), (3) elevation, U.S. Geological Survey (USGS), and (4) nitrogen diox-
ide and ozone, California Air Resources Board and the U.S. Environmental 
Protection Agency.
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TASK 8.4 USING EXPLORATORY TOOLS TO 
VISUALIZE AND COMPUTE BASIC STATISTICS

 1. Add the datasets using the “Add Data” button on the Standard 
toolbar.

 2. Navigate to the data folder, hold down the Ctrl key, then click 
and add the ca_ozone_pts (Ozone), ca_outline, and ca_NO2_pts 
(nitrogen dioxide, NO2) datasets. They are measured in ppm, 
parts per million (by volume).

 3. Open the ca_No2_pts attribute table and explore the elevation and 
NO2AAM fields using the Statistics tool. How many observa-
tions are there? In a table, summarize the minimum, maximum, 
sum, mean, and standard deviation values for the elevation and 
NO2AAM fields. How many elevation records have zero values? 
Examine the distribution based on these statistical summaries.

 4. Open the ca_ozone_pts attribute table and explore the elevation 
and ozone fields using the Statistics tool. How many observa-
tions are there? In a table, summarize the minimum, maximum, 
sum, mean, and standard deviation values for the elevation and 
ozone fields. How many elevation records have zero values? 
Examine the distribution based on these statistical summaries.

TASK 8.5 FINDING AND UNDERSTANDING 
SPATIAL AND TEMPORAL PATTERNS

 1. Ensure that the Geostatistical Analyst extension is enabled 
before starting this task. Click on the Geostatistical Analyst 
toolbar > Explore Data > Histogram. Click and explore the fol-
lowing attributes: elevation and NO2AAM from the ca_NO2_
pts layer, and elevation and ozone from ca_ozone_pts. Are the 
data normally distributed? Capture and present histogram 
screenshots for NO2 and ozone. Describe the shape and distri-
bution of the data as depicted in these histograms.

 2. Select the ca_NO2_pts and ca_ozone_pts layers and fill in the miss-
ing values in Table 8.4 (the values in the histogram have been res-
caled by a factor of 10) so you need to look up (brush) the selected 
records in the attribute table and the map. Identify and examine the 
locations of sample measurements of NO2 and ozone in California 
(include two screenshots highlighting the exploration/brushing of 
the data). Identify the elevation outliers in both ambient sources.

(Continued)
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TASK 8.5 (Continued) FINDING AND UNDERSTANDING 
SPATIAL AND TEMPORAL PATTERNS

 3. For pollution monitoring purposes, the critical thresholds should 
be greater than 0.09 and 0.025 ppm (EPA standard is 0.053 ppm) 
for ozone and nitrogen dioxide, respectively. These ambient lev-
els have adverse health effects. Identify using the Histogram 
tool and examine locations with the critical thresholds.

 4. Identify any global trends in ambient exposure data. Click 
on the Geostatistical Analyst toolbar > Explore Data > Trend 
Analysis. Explore both NO2AAM and ozone to determine if 
there are nonrandom components of the surface that can be 
represented by a mathematical formula. Explore the location 
angle at which NO2AAM and ozone express a mathematical 
trend (this will be apparent when you rotate the trend surface 
to an angle at which the green trend line represents a U-shaped 
parabola). What type of mathematical trend does this parabola 
represent (think back to high school algebra and what type 
of equation creates a parabolic line….)? Record the angle at 
which the green trend line becomes a U-shape. Do the same 
for the x-axis trend line (blue line); record that location angle. 
Sometimes, these types of trends do not occur, but they do here. 
Later in this lab, when you run your geostatistical model, you 
will need to know whether or not a particular type of trend 
needs to be accounted for within your geostatistical model. 
Accounting for this trend will help to stabilize your final model.

 5. Explore spatial autocorrelation influence. Click on the 
Geostatistical Analyst toolbar > Explore Data > Semivario-
gram/Covariance Cloud. Each of the points in the semivario-
gram represents a pair of points. The position of a “paired point” 

(Continued)

TABLE 8.4 

Distribution of Sampled Measurements of NO2 and Ozone

NO2 Ozone

Elevation (m) Observations (n) Elevation (m) Observations (n)

<189 <1
194–369 1–232
381–870 244–1052
1006–1440 1244–1905
ppm ppm
0.0012–0.02329 0.0465–0.1463
0.0251–0.04809 0.1506–0.1736
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TASK 8.6 MAPPING, QUANTIFYING, AND INCORPORATING 
SPATIAL AND TEMPORAL VARIABILITY IN A MODEL

 1. Use the Geostatistical wizard to create a prediction map of ca_
NO2 using OK and the default settings. Compile screenshots of 
the semivariogram and parameters (from layer properties) for 
submission.

 2. Click on the Geostatistical Analyst toolbar > Geostatistical Wizard.
 3. Click Kriging/Cokriging in the Methods list box.
 4. Click the Input data drop-down arrow and click ca_ozone_pts.

 5. Click the Attribute drop-down and click the OZONE attribute.
 6. Click Next. By default, the OK type and Prediction output type 

will be selected.
 7. From the exploratory analysis, we discovered a global trend 

and during investigation the second-order polynomial seemed 
reasonable. Click the order of trend removal drop-down arrow 
and click Second. Click Next.

(Continued)

TASK 8.5 (Continued) FINDING AND UNDERSTANDING 
SPATIAL AND TEMPORAL PATTERNS

  describes both the level of spatial autocorrelation between 
the pair of points and the distance between the pair of points. 
Increases in the y-axis illustrate decrease in spatial autocorre-
lation, and increases in the x-axis illustrate increased distance 
between the paired points. For spatial modeling purposes, we 
expect nearby points to display higher spatial autocorrelation; 
large deviations from this modeling perspective represent inac-
curacy within the semivariogram. On the semivariogram, iden-
tify where the cloud flattens out by using the Select Features by 
Rectangle tool. Also, identify values that have a higher semi-
variogram and determine whether these pairs of locations are 
inaccurate. Put a few screenshots of your semivariogram analy-
sis in your lab, showing the flattened section of the semivario-
gram and the higher section of the semivariogram.

 6. Explore directional influences. Determine whether NO2 
and ozone are isotropic (without directional influence) or 
 anisotropic (with directional influence). If they are anisotropic, 
what’s the  direction of better continuity for the ca_ozone_pts 
and ca_NO2_pts datasets?
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TASK 8.6 (Continued) MAPPING, QUANTIFYING, 
AND INCORPORATING SPATIAL AND 
TEMPORAL VARIABILITY IN A MODEL

 8. There is a directional influence in the ozone distribution with 
a northwest–southeast direction. It is possible this is due to 
the buildup of ozone between the mountains and the coast. 
Other contributing factors could be elevation, prevailing wind 
direction, and high concentration of human population and 
activities, including industries, greenhouses, automobiles, resi-
dential emissions, and so on. We call these secondary factors. 
Under the Model #1 box, click on the drop-down list for aniso-
tropic and set this to True. Capture a screenshot of this model 
and place it in your document. An illustrative diagram of a fit-
ted semivariogram model is given in Figure 8.14.

 9. Click Next. The next window allows the fitting and searching 
of specific neighborhoods. Explore this.

 10. Click Next. The next window allows the saving of cross- 
validation tables for further analysis and it provides different 
prediction errors that must be compiled. Export and save this 
table. Click Finish and remember to capture a screenshot or 
copy of the Model Report. Evaluate these results.
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FIGURE 8.14 
An illustrated semivariogram fitted with an exponential model (three derived quanti-
ties: nugget, sills, and range are highlighted). The summary/average of the semivari-
ance of all points within a particular spatial lag is also given.
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TASK 8.7 PERFORMING AND DISCOVERING THE 
BEST MODEL FOR SPATIAL PREDICTION

 1. Now we will run an SK and IDW on ca_ozone_pts with ozone 
as your attribute as we did in Task 8.6.

 2. Compile in a table the results of three models showing the 
following prediction errors: Mean, RMS, Mean Standardized, 
RMS Standardized, and Average Standard Error.

 3. Create three prediction maps of ca_NO2_pts using the three 
models (IDW, OK, and SK).

 4. Create two tables (from Table 8.5) and use this information to 
select the best performing geostatistical methods.

 5. Complete the following short essay: In your own words, 
describe the results, maps, model, and spatial patterns of ambi-
ent nitrogen dioxide and ozone levels in the state of California.

 6. Load the ambient noise-levels dataset in ArcMap. Explore 
the ambient noise levels in areas surrounding O’Hare 
International Airport. Repeat the steps outlined for Tasks 8.4 
through 8.7.

 7. Compile the ambient noise-level information in the same way 
you did for nitrogen dioxide and ozone. Use this information 
to complete the following short essay: In your own words, 
describe the results, maps, model, and spatial patterns of ambi-
ent noise levels.

TABLE 8.5 

A Decision Matrix for the Performance of Three Sets of Geostatistical 
Methods

Statistics
Decision 
Criteria IDW OK SK

Mean prediction error (Mean) Near zero
Standardized mean predictor error 
(SM) Near zero N/A

Root mean square error (RMSE) Very small
Standardized root mean square 
predictor error (RMSES) Near 1 N/A

Average Standard error (ASE) Very small N/A
Total
Ranking

IDW, inverse distance weighting; OK, ordinary kriging; SK, simple kriging.
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TASK 8.9 ACCOUNTING FOR SECONDARY FACTORS 
AND MAKING DECISIONS ON A SPATIAL BASIS

In Task 8.7, you created a continuous map of nitrogen dioxide (NO2) 
and other attributes, which represents a prediction of the concentration 
levels of NO2 at unsampled locations. Recall that in the kriging pro-
cess, you have used only one variable (concentrations of NO2 at sample 
locations). In reality, the dispersion of NO2 concentration levels may 
depend on other contributing factors (natural or anthropogenic). For 
example, wind direction may have an effect on the dispersion of NO2, 
in which case the dispersion is said to be anisotropic. If we had more 
information about wind direction when NO2 data were being collected, 
we could predict the dispersion of NO2 along that direction. Also, 
there might be some situations where temperature or rainfall spatial 

(Continued)

TASK 8.8 FITTING A NOISE DISTANCE 
DECAY MODEL USING MS EXCEL

Let us begin this task with a practical example to illustrate the dis-
tance decay model. Consider exposure/disturbance caused by the 
noise of the train in the city of Carbondale, Illinois. People who live 
closer to the train station/railroad experience more disturbance than 
those who live farther away. As we move away from the train sta-
tion, the disturbance intensity continuously decreases to reach such a 
level that we do not experience the pollution effect. The effect of the 
noise pollution can then be modeled as a function of distance. This is 
known as distance decay, which is a mathematical representation of 
the effect of distance on a variable of interest. The model expresses a 
negative relationship between the variable of interest and the increase 
of the distance using a power function or an exponential function.

 1. Create a scatterplot of the ambient noise-level data (the Noise_
Project file). Analyze the structure of the data and give an inter-
pretation of the data trend (the distance (Dist_Feet) should be in 
the x-axis and the average sound levels data (dB) of the 7-year 
period in the y-axis).

 2. What is the relationship between ambient noise levels and 
 distance? How do we model this relationship mathematically?
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TASK 8.9 (Continued) ACCOUNTING FOR SECONDARY 
FACTORS AND MAKING DECISIONS ON A SPATIAL BASIS

variability is influenced by topography. Many examples of spatial rela-
tionships exist between two or more natural or anthropogenic contin-
uous phenomena. Therefore, it is necessary to account for secondary 
factors, when its use is justified, to predict other continuous variable 
values at unsampled locations. In this task, you will create a prediction 
map of the average day/night sound levels taking into account a sec-
ondary variable—the elevation data.

 1. Use the Geostatistical wizard to create a prediction map of 
Noise_Project using OK and the default settings. Compile 
screenshots of the semivariogram and parameters (from layer 
properties) for submission.

 2. Click on the Geostatistical Analyst toolbar > Launch the 
Geostatistical Wizard.

 3. Click Kriging/Cokriging in the Methods list box.
 4. Click the Input data drop-down arrow for Dataset and click 

Noise_Project > Click the Attribute drop-down and click the 
Ildem attribute.

 5. Click the Input data drop-down arrow for Dataset and click 
Noise_Project > Click the Attribute drop-down and click the 
All_averag attribute.

 6. For Dataset #1, Model Global Trend as a second one.
 7. For Dataset #2, Model Global Trend as a third one.
 8. Under the Model #1 box, click on the drop-down list for aniso-

tropic and set this to True.
 9. Run your model as you did before and generate the results.
 10. Now, repeat the process and exclude the trend analysis. What 

is the difference in two results?
 11. Use this information to complete the following short essay: In 

your own words, describe the results, maps, model, and spatial 
patterns of ambient noise levels relative to elevation as a sec-
ondary factor. How can we improve these results?
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Review and Study Questions

 1. One of the core goals of geostatistics is to quantify spatial uncer-
tainty. Provide examples of spatial uncertainty and describe how 
this can be quantified and integrated into subsequent steps in the 
spatial interpolation process.

 2. Geostatistical methods are effective only when certain key assump-
tions and statistical properties are met. Describe at least two of these 
properties and explain how you would go about checking and vali-
dating these assumptions during the spatial modeling process.

 3. What are the benefits of deriving and plotting a variogram function 
in geostatistics? Draw a sample variogram and explain the key prop-
erties to a lay person.

 4. The accuracy and optimality of a geostatistical model can be assessed 
through cross validation and a series of statistical measures derived 
during the analysis. Explain these measures and how they can help 
with the interpretation of your results.

 5. Choose any three of the following methods and explain the similari-
ties and differences in their use to interpolate spatial data generated 
in your research area:

 a. IDW versus OK
 b. OK versus UK

TASK 8.10 CHALLENGE ASSIGNMENT: 
REPORT WRITING AND RELATING FINDINGS 

TO EXISTING EMPIRICAL EVIDENCE

 1. Write a short abstract for the spatial patterns of ambient ozone 
and nitrogen dioxide in California. Your abstract should not be 
more than 350 words. It should have the following components: 
a background/problem statement, objectives and hypothesis, 
data and methods, results, and conclusions and implications.

 2. Write a short abstract for the spatial patterns of ambient noise 
levels in Chicago’s O’Hare International Airport. Your abstract 
should not be more than 350 words. It should have the follow-
ing components: a background/problem statement, objectives 
and hypothesis, data and methods, results, and conclusions 
and implications. You may also revisit previous analysis on the 
dataset and use it in this abstract.



263Engaging in Geostatistical Analysis

 c. OK versus cokriging
 d. OK versus IK

Glossary of Key Terms

Anisotropic (Semi)variogram: This is when the spatial pattern is strongly 
biased towards a specific direction. This phenomenon is also at 
times referred to as directional variograms because the weighting 
scheme depends on distance and direction.

Isotropic (Semi)variogram: This is when the spatial pattern is identical in 
all directions. In this case, the fitting of the semivariogram model 
will heavily depend on the (Euclidean) distance between locations.

Kriging: The process of fitting the best linear unbiased estimate of a value at 
a point or of an average over a volume. Kriging provides a powerful 
tool to model spatial autocorrelation in the data and a means to use 
this resulting knowledge to predict precise, unbiased estimates of 
data pairs within the sampling unit. It could be simply stated that 
kriging facilitates the quantification of spatial variability.

Nugget Effect: The vertical height of the discontinuity at the origin. It is the 
combination of (1) short-scale variations that occur at a scale smaller 
than the closest sample spacing and (2) sampling error due to the 
way the samples were collected, prepared, and analyzed.

Range: The distance at which the variogram reaches the sill.
Sill: The plateau that the variogram reaches; in the variogram context, it is 

the average squared difference between paired data values and it is 
approximately equal to twice the variance of the data.

Variogram: An h-scatterplot for characterizing the spatial continuity of the 
variable.
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9
Data Science: Understanding Computing 
Systems and Analytics for Big Data

LEARNING OBJECTIVES

 1. Define and describe data science concepts.
 2. Manage and process big geospatial data.
 3. Effectively use, explore, analyze, and synthesize big geospatial data.
 4. Develop actionable knowledge and information from big geospatial data.
 5. Effectively implement emerging methods, programming languages 

and algorithms, and tools for big geospatial data.

Introduction to Data Science

Data science is both a new concept and a recent field that has evolved with 
the concurrent growth of large-scale datasets and emerging technologies to 
handle a volume and variety of information from multiple sources and for-
mats. The field draws heavily from several existing disciplines that we have 
discussed in this book: mathematics, statistics, computer science, geographic 
information systems (GIS), visualization, and more, including engineering, 
physics, psychology, cognitive science, operations research, business, and 
artificial intelligence. The primary aims entail the development and appli-
cation of scientific approaches for the systematic exploitation, organiza-
tion, management, analysis, and use of large amounts of data for decision 
making. Data science utilizes traditional or novel tools, methods, and strat-
egies, which are tailored toward the discovery of complex patterns in high- 
dimensional data through visualizations, simulations, and various types of 
model building (Kelling et al. 2009). It is being fueled by the critical need to 
design efficient, scalable, and reliable systems, tools, and programs that can 
easily handle “big data.”
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Given the nascent stages of the field of data science, the notion of 
what constitutes big data is still up for debate. The term big data has 
been  generally used to describe very large amounts of datasets that 
are  complex, heterogeneous, and hard to process using traditional sta-
tistical and computational tools (Jacobs 2009; Loukides 2010; Helbing 
and Balietti 2011; Allen et al. 2012). Increasingly, many scholars use five 
attributes to characterize big data, notably the “5Vs”: volume, variety, 
velocity, veracity, and value. The large volume, variety, and increasing 
speeds at which data are being generated are driving creativity and the 
 development of new analytic methods (Kelling et al. 2009; Schadt et al. 
2010), ranging from statistical packages/tools to sophisticated data min-
ing algorithms. At the same time, there is the ongoing need, as with 
traditional datasets, to ensure that these data are reliable and valid, fol-
lowing which meaningful techniques can be applied and the results used 
to generate new knowledge and value-added information for decision 
making.

The development of these new analytic methods and strategies 
enables the processing, management, visualization, and presentation 
of big  datasets in usable and actionable knowledge formats. Intensive 
search for patterns in extremely large datasets provides many exciting 
 opportunities for designing and testing hypotheses and the creation of 
data products (Loukides 2010). Large datasets also provide facts and clear 
evidence that have the potential to significantly advance science. Many 
observers are truly optimistic and confident that the analysis of big data 
will yield new  objective knowledge that will advance our understanding 
of phenomena.

Within the context of spatial analysis, recent improvements in sensor 
technology, reduction in data storage costs, and improvement in data col-
lection methods have led to an explosion in the amount of geospatial data 
collected and available to organizations (Loukides 2010; Longley 2012; 
Pirenne and Guillemont 2012; Wang et al. 2013). The datasets exist in three 
main formats: structured, semistructured, and unstructured. These are 
usually stored in large-scale server farms at a data center, where they can 
be mined or analyzed to support the decision-making process. The greatest 
challenge of our time, however, is how to effectively make sense of these 
big datasets or turn them into meaningful and informative products in a 
timely manner. The holistic approach to big data analysis is what differen-
tiates data science from traditional statistics. Data science integrates meth-
ods from several disciplines to gain fundamental insights from the data. 
Some of the core goals of data science are to simplify the data and make 
them accessible to those who need them in a timely manner. To accomplish 
this, organizations need to address three principal areas: data manage-
ment, analytics and strategies, and communication of the results/reporting 
applications.
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Rationale for a Big Geospatial Data Framework

Data science is a data-driven discovery and prediction process with the princi-
pal aim of making sense of big data and using the results to increase our under-
standing. Data-driven discovery provides the basis of producing actionable 
knowledge. The big data framework consists of three essential components: data 
management, analytics and strategies, and reporting applications (Figure 9.1).

First, the data management component entails data processing of large 
quantities of data in a database. Massive geospatial datasets are currently 
generated through Internet activities; portable, wearable, and mobile devices; 
citizen sensors; instrumentation; simulations; satellite and global positioning 
system (GPS)-equipped vehicles; government agencies; and other research 
and development institutions. For big geospatial data, it simply means the 
managing of data through the use of spatial databases and computational 
geometry. Managing data requires deep knowledge and skills in the design 
and use of spatial databases, especially in structural query language (SQL) 
manipulation using relational algebra/spatial query processing. Additional 
areas include algorithms and in-database analytics.

Second, the analytics and strategies component provides the analytical/
statistical basis for the development of interactive tools and systems with a 
core capability that will allow the exploration, visualization, summarization, 

Data management
Spatial options (computational geometry)

Structure, Functionality, Schemes, and Metadata

Reporting applications
Analytics and strategies
• Statistics and machine learning
• Unsupervised and supervised
   learning
• Graph analytics

• Graphs
• Charts
• Maps
• Summary reports
• Dashboards

• Test analytics
• Sound analytics
• Filtering
• Others• Others

Big geospatial data

Archived data

•  Improving SQL
•  Design of effective 
    algorithms

• Indexed key words of
   search terms (location,
   categories, time, metadata)
• Setting thresholds/scores
   (through rankings, priority)
• Enhanced spatial queries

Citizen sensors Data streams Other sources

FIGURE 9.1
A visual representation of components of data science.
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classification, identification, and extraction of existing patterns or trends in 
large-scale datasets. Most of the spatial techniques and methods discussed 
in earlier chapters do still apply and can be used; however, to be able to 
harness the new sources, types, and large geospatial data, we must think 
beyond them. For example, algorithms and models, new knowledge, facts, 
and reasoning can be used to develop rules to support analytical reasoning 
or can be used for making predictions about future events.

Third, the communication of results entails the production of reports with 
interpretable summaries, synthesized outcomes, facts, rules, and knowledge. 
Graphs, plots, and other visualizations introduced in Chapter 4 are especially 
useful, because they not only provide a foundation for discovering the basic 
characteristics of raw data but also help tell a story about the data.

Effective presentation of results as a data product or in a report to the  target 
audience is a crucial element of big data exploitation. The communication for-
mats can range from the use of text to audio or images. For the reports to 
be effective, they should be kept simple and accessible to a wide audience. 
Let us take a look at an example of a simple reporting system for estimating 
travel time using big data. Although the estimation of dynamic travel time is 
based on point-based or trip-based approaches, the well-known Google Maps 
Estimated Time of Arrival (ETA) algorithm uses a variety of massive data 
sources for traffic data to make its travel time predictions. These predictions 
differ from one area to another, because they depend on the data available 
in a particular area. Figure 9.2 presents a list of spatial datasets that Google’s 
ETA algorithm uses and the travel time prediction process. The ETA algo-
rithm is constantly sharpened through the comparison of current estimates 
with actual historical travel time in various traffic conditions. Google then 
comes up with the best prediction they can make from these massive data-
sets, which is presented to the users in a very simple but accessible format.

Spatial data sets

∙ Road network
∙  Official speed limits and 

recommended speeds
∙  Probable speeds for differ-

ent road types
∙ Historical average speed
∙ Congestion
∙  Observed travel times from 

previous users
∙ GPS-equipped vehicles
∙ Real-time traffic

ETA algorithm

Travel time 
predictions

Reporting application
∙ Google Maps
∙ Summary report
∙ List
∙ Dashboards
∙ Others

How the Google Maps Estimated Time of Arrival (ETA) algorithm determines travel time for a trip

FIGURE 9.2
Google’s Estimated Time of Arrival algorithm and a list of big geospatial data sets for travel time.
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Data Management

The ever-increasing amounts of geospatial data are problematic to many 
organizations; without the right tools, they are not able to get value out 
of these data. Recent advances in data capture and computation methods 
have transformed the way organizations handle and process data. The rate 
at which geospatial data is generated exceeds the ability to organize and 
analyze them to extract patterns critical for understanding the constantly 
changing world. For example, Google generates about 25 PB of data per day, 
with a significant portion of it being geospatial data. Although the computa-
tional and analytical methods are not moving as fast as the rate of increase 
in geospatial data, there has been a lot of progress in this area. To analyze 
these data efficiently, the management and retrieval processes must be orga-
nized and centralized into accessible storage. Recent innovations have led to 
an increase of new data management solutions, for example, Globus Online 
(GO), the Rsync algorithm, YouSendIt, DropBox, BitTorrent, content distri-
bution networks, and the PhEDEx data service (Allen et al. 2012). Figure 9.3 
illustrates the elements of data management, from the first stage of combin-
ing data from multiple sources through its presentation. The centralization of 
data management and retrieval is referred to as data warehousing, whereas 
the actual analysis of the data is referred to as data mining. In this chapter, 
the details of these terms will be discussed.

Enterprise database Aggregated database

ETL procedures/tool

Arkanas

Arizona

Alaska

Alabama

U.S Virgin
islands

Incorporates OLAP
and spatial data
abstracts types

Slice and Dice cubes
OLAP intelligence

Summary
geospatial

data

Raw
geospatial

data

Metadata

Dashboard

Enhanced user analytics

Graphs, Charts, Web agent

Data sources
(from 50 individual states)

Extract, transform
& load (ETL) Data warehouse Reporting application Web portal, mobile devices, and end users

CRM, ERP, Flat files,
Operational system

FIGURE 9.3
Elements of data management workflow showing different platforms, software infrastructure, 
tools, and methods.
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Data Warehousing

Kimball and Ross (2013) describe data warehouses as a complete ecosystem 
for extracting, cleaning, integrating, and delivering data to decision makers, 
and it therefore includes the extract-transform-load (ETL) and business intel-
ligence (BI) or analysis functions.

Data Sources, Processing Tools, and the Extract-Transform-Load Process

The first component is the extraction of data from each of the individual 
sources (these can include historical data in the form of flat files or opera-
tional databases) into a temporary staging area where data integration takes 
place. Data extraction methods can be divided into two categories:

• Logical extraction: This could be a full extraction of the complete 
dataset from the source or an incremental extraction (change data 
capture) of the data changes in a specified time period.

• Physical extraction: This can be done online, directly from the source 
system, or offline from a system staged explicitly outside the original 
source system.

Data transformations are usually the most complex and time- consuming 
part of the ETL process. They range from simple data conversions to 
extremely complex data scrubbing techniques. Data can be transformed in 
two ways:

• Multistage transformation: Data are transformed and validated in 
multiple stages outside the database before being inserted into the 
warehouse tables.

• Pipelined data transformation: The database capabilities are utilized 
and data are transformed while being loaded into the database.

Using data quality tools, one can ensure that the correct data and format 
are loaded into the warehouse. This process can be done manually using 
code created by programmers or automated by the use of ETL tools available 
in the market. Some of the popular tools include Oracle Warehouse Builder, 
Data Integrator and Services by SAP, and IBM Information Server. The result 
of this process is metadata and standardized data, which are then loaded 
into a data warehouse. Metadata is “data about the data,” which may include 
mapping rules, ETL rules, description of source data, and pre-calculated 
field rules. Some of the benefits of this ETL process include

• One source of truth: All the data are stored in the same format, 
ensuring their consistency and accuracy.
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• Reduction of interface programs used to access the consolidated 
data, resulting in reduction of resources.

• Strategic planning and organization-wide decision making are 
greatly improved.

• More timely data: Having data in one location speeds up the access 
and processing time, and reduces problems related to timing 
discrepancies.

Data integration is the process of combining data from multiple sources 
into one common representation, with the goal of providing the users with 
one version of truth. This is a very important process of data warehousing 
since the quality of the data fed into the system determines the accuracy and 
reliability of the resulting business decisions.

Data Integration and Storage

In a data warehouse, data are subject oriented, integrated, nonvolatile, time 
variant, and process oriented. Spatial data warehouses host data for analysis, 
separating them from transaction workload and thus enabling organizations 
to consolidate data from multiple sources. The primary purpose of a spatial 
data warehouse is to organize these data according to the organization’s busi-
ness model to support management decision making. Many decisions consider 
a broader view of the business and require foresight beyond the details of day-
to-day operations. Spatial data warehouses are built to view businesses over 
time and spot trends, which is why they require large amounts of data from 
multiple sources. The analysis capability of a data warehouse enables users 
to view data across multiple dimensions. The use of a single repository for 
an organization’s data promotes interdepartmental coordination and greatly 
improves data quality. The spatial data warehouse may contain metadata, 
summary data, and raw data of a traditional transactional system. Summaries 
are very valuable because they precompute long operations in advance, which 
improve query performance. In cases where organizations need to separate 
their data by business function, data marts can be included for this purpose.

Spatial data warehouses read trillions of bytes of data and therefore require 
specialized databases that can support this processing. Most data ware-
houses are bimodal and have a batch of windows (usually in the evenings) 
when new data are loaded, indexed, and summarized. To accommodate these 
shifts in processing, the server must be able to support parallel, large-table-
full-table scans for data aggregation and have on-demand central processing 
unit (CPU) and random-access memory (RAM) resources, and the database 
management system must be able to dynamically reconfigure its resources. 
Overall, data warehouses provide many advantages to the end user includ-
ing, but not limited to, improved data access and analysis, increased data 
consistency, and reduction in costs for accessing historical data.
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Data Mining Algorithms for Big Geospatial Data

Data mining, also referred to as knowledge discovery, is the process of 
analyzing centralized integrated data to find correlations or patterns to aid 
decision making. Centralization of these data is needed to maximize user 
access and analysis. Data mining is supported by analytical software tools 
for analyzing data. Some of the open-source tools available include KNIME 
(http://www.knime.org/); GeoDa (https://geodacenter.asu.edu/projects/
opengeoda); and CLAVIN, a package for document geotagging and geopars-
ing that uses context-based geographic entity resolution (http://clavin.beri-
cotechnologies.com/). Wang et al. (2013) have documented recent CyberGIS 
spatial analysis and visualization software toolkits including GISolve, 
GeoDa/PySAL, OpenTopography, PGIST, pd-GRASS, and R (Figure 9.4).

Main types of 
 computing platforms 
Cluster computing: 
Computers are linked 
through a fast local area 
network and function as 
a single unit. 

Cloud computing: 
Computers are linked 
together through the 
Internet to provide a 
shared pool of computing 
resources for accessing 
and storing data and 
programs. 

Grid computing: A 
loosely coupled network 
of computers from mul-
tiple locations that work 
together on common 
computing tasks. 

Heterogenous 
 computing: Specialized 
computing system that 
uses more than one kind 
of processor, for example 
central processing units 
and graphics processing 
units. 

A list of currently available software kits

Spatial analytical  GeoDal/   Open-  pd-
Tools and methods GISolve   PySAL        Topography   PGIST  GRASS  R

Agent-based 
modeling  X X
Choice modeling X
Domain-specific 
modeling  X X  X
Geostatistical 
modeling  X  X
Local clustering 
detection  X  X X
Spatial interpolation      X           X         X
Spatial econometrics   X        X
Visualization and 
map operations X     X     X X             X      X
Spatial middleware X    
Generic 
cyberinfrastructure
capabilities X X X      X
Online problem-
solving  X X X       X

Computational resources for handling big geospatial data

Compiled from Schadt et al. (2010) and Wang et al. (2013)

FIGURE 9.4
Computing resources for conducting complex spatial analytical work. (From Schadt, E.E. et al., 
Nature, 11, 647–657, 2010; Wang, S. et al., International Journal of Geographical Information Science, 
27(11), 2122–2145, 2013.)
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Data mining consists of two major elements:

 1. Data analysis using BI application software
 2. Presentation and visualization

Tools, Algorithms, and Methods for Data 
Mining and Actionable Knowledge

Geospatial data analysis includes manipulation and transformation 
of data into useful information to support decision making and reveal 
patterns and anomalies that are not immediately obvious. It focuses on 
measuring properties and relationships, taking into account the spatial 
localization of the study attributes, as discussed in earlier chapters. The 
idea is to incorporate space or location into the analysis. The opportunity 
to mine big geospatial data, for example, from major social media net-
works (Facebook, Instagram, LinkedIn, Twitter, Pinterest, and Google+), 
has provided substantial advantages in three areas: it (1) reduced gaps of 
knowledge and understanding of human activities, (2) enabled a greater 
understanding of human activities because we are able to predict situa-
tions, and (3) fueled knowledge discovery and improvement in decision 
making.

The core tools, algorithms, and methods for data mining have two major 
components: (1) software to store the data over thousands of machines 
in a data center and (2) software to retrieve and perform computation 
with data spanned over thousands of machines in a data center (Helbing 
and Balietti 2011). Some of the tools available to perform these data min-
ing tasks are MapReduce and Hadoop. There are four main categories of 
large-scale computing platforms (Figure 9.5) for processing, managing, 
and analyzing big geospatial data; they include cluster computing, cloud 
computing, grid computing, and heterogeneous computing (Schadt et al. 
2011).

To succeed in the use of these computational resources for mining large-
scale geospatial data, it is important to keep the following checklist in 
mind:

 1. Know the nature, magnitude, and complexity of geospatial data.
 2. Determine memory requirements.
 3. Determine network bandwidth requirements.
 4. Know about data management services (data movement tools, 

access, storage, security, performance, and scalability).
 5. Understand processing, analysis, or simulation methods and tools.
 6. Know about reporting applications.
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Business Intelligence, Spatial Online Analytical Processing, and Analytics

Computer applications have advanced greatly and do a very good job in pro-
cessing data, but they still cannot effectively tell stories about the data. This 
is where they fall short in communicating with the consumers. Data should 
be organized in a manner that engages the way human brains actually work; 
then, we can process a larger amount of data (Ideas Economy: Information 
Forum 2013).

BI is the application of knowledge and experience to data to produce valu-
able business information. BI applications enable users to get an insight 
of the knowledge in the data. The combination of geospatial data analysis 
and BI applications is known as location intelligence (LI). The ability to 
visualize geospatial data and understand relationships between specific 
locations helps organizations make more strategic business decisions. LI 
is more than just mapping; it includes advanced analysis related to spatial 
relationships. GIS is at the heart of LI, and it is clear that business data need 
to be location enabled. Spatial analysis allows you to ask “where and why?” 
questions, and when combined with Spatial Online Analytical Processing 
(SOLAP) in your BI systems the location component can be the dimension 
in the analysis that leads to more focused decision making. Figures 9.4 
and  9.6 illustrate the application of SOLAP where users are able to drill 

First level, customer sales by state and customer
segment

Second level of detail when user drills into the
central region

�rid level of detail when user drills into a state
(Illinois)

One can add more data layers to help analyze the
data relative to other aspects like household size.

FIGURE 9.5
Dashboard screenshots showing actionable knowledge derived by leveraging a visual analyt-
ics of an integrated business intelligence and locational intelligence platform.
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into the details within the Tableau mapping application. Figure 9.7 shows 
a sample script for running and loading all data definition language (DDL) 
tables and procedures into an Oracle or Tableau acceptable format (a step-
by-step instruction manual is presented in the Chapter9_Data-folder). The 
visual power of maps reveals trends, patterns, and insights that are not as 
easily detected in other data presentation formats such as tabular views, 
or bar and pie charts. Because of customer demand, BI application vendors 
have incorporated location-based intelligence technology in their core BI 
platforms, for example,

 1. Pitney Bowles Enterprise Location Intelligence includes Geocoding 
Modules, Routing Modules, Location Intelligence, and Spectrum 
Spatial Modules.

 2. Tableau Mapping Software.

 3. SAS Business Analytics partnered with Environmental Systems 
Research Institute Inc. (ESRI).

 4. SAP embedded Google’s mapping APIs within BusinessObjects BI/
EIM 4.1.

 5. MapInfo’s LI component is integrated as a plug-in tool with ESRI GIS 
by APOS Systems Inc.
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FIGURE 9.6
Visual analytics from Tableau showing water use by state.
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FIGURE 9.7
A sample script for running and loading all data definition language tables and procedures 
into Oracle or Tableau acceptable format.

(Continued)

A sample SQL script for running and loading all DDL tables and procedures 
into Oracle or Tableau acceptable format

DROP TABLE ENROLLMENT;
--CREATE TABLE TO INCLUDE THE PIVOTED DATASET

CREATE TABLE ENROLLMENT (
ColumnName VARCHAR2(300),
ALABAMA NUMBER,
ALASKA NUMBER,
ARIZONA NUMBER,
ARKANSAS NUMBER,
CALIFORNIA NUMBER,
COLORADO NUMBER,
CONNECTICUT NUMBER,
DELAWARE NUMBER,
DISTRICTOFCOLUMBIA NUMBER,
FLORIDA NUMBER,
GEORGIA NUMBER,
HAWAII NUMBER,
IDAHO NUMBER,
ILLINOIS NUMBER,
INDIANA NUMBER,
IOWA NUMBER,
KANSAS NUMBER,
KENTUCKY NUMBER,
LOUISIANA NUMBER,
MAINE NUMBER,
MARYLAND NUMBER,
MASSACHUSETTS NUMBER,
MICHIGAN NUMBER,
MINNESOTA NUMBER,
MISSISSIPPI NUMBER,
MISSOURI NUMBER,
MONTANA NUMBER,
NEBRASKA NUMBER,
NEVADA NUMBER,
NEWHAMPSHIRE NUMBER,
NEWJERSEY NUMBER,
NEWMEXICO NUMBER,
NEWYORK NUMBER,
NORTHCAROLINA NUMBER,
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(Continued)

FIGURE 9.7 (Continued)
A sample script for running and loading all data definition language tables and procedures 
into Oracle or Tableau acceptable format.

NORTHDAKOTA NUMBER,
OHIO NUMBER,
OKLAHOMA NUMBER,
OREGON NUMBER,
PENNSYLVANIA NUMBER,
RHODEISLAND NUMBER,
SOUTHCAROLINA NUMBER,
SOUTHDAKOTA NUMBER,
TENNESSEE NUMBER,
TEXAS NUMBER,
UTAH NUMBER,
VERMONT NUMBER,
VIRGINIA NUMBER,
WASHINGTON NUMBER,
WESTVIRGINIA NUMBER,
WISCONSIN NUMBER,
WYOMING NUMBER)
;
--IMPORT THE PIVOTED SPREADSHEET
--CREATE TABLE FOR THE FINAL DETAILS
CREATE TABLE ENROLLMENT FINAL
(State VARCHAR2(100),
Enrollment NUMBER,
Grade NUMBER,
Gender VARCHAR2( 10),
Race VARCHAR2(200),
Year NUMBER);
--CREATE TABLE FOR THE STATES
CREATE TABLE ERSTATES (STATE VARCHAR2(100));

--IMPORT THE STATES FROM THE DISTINCT STATES INCLUDED IN 
THE DATA TABLE
--RUN THE PROCEDURE BELOW AFTER CREATING THE OBJECTS AND 
IMPORTING THE DATA.
CREATE OR REPLACE PROCEDURE ENROLL_LOAD IS
CURSOR CCNAMES IS

select state ste, REPLACE(state,’ ‘,”) st
from ERSTATES;

v_cnames c_cnames%ROWTYPE;
v_cname VARCHAR2(80);
v_cnamer VARCHAR2(80);
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FIGURE 9.7 (Continued)
A sample script for running and loading all data definition language tables and procedures 
into Oracle or Tableau acceptable format.

v_SQL String VARCHAR2(3000);

BEGIN
-- Truncate table
DELETE FROM ENROLLMENTFINAL;
-- Insert data for each state
FOR v_cnames IN c_cnames LOOP

v_cname := v_cnames.st;
v_cnamer := v_cnames.ste;

v_SQL String :=
‘INSERT INTO ENROLLMENTFINAL (‘||

‘ STATE,’||
‘ ENROLLMENT,’||
‘ GRADE,’||
‘ GENDER,’||
‘ RACE; ||
‘ YEAR)’ ||

‘ SELECT ‘ ||””||v_cnamer||”” ||’, ‘||--’ALASKA’ ST,
‘ER.’|| LTRIM(RTRIM(v_cnames.st))||’,’||
‘ TO_NUMBER(substr(columnname, 7,1)),’||
‘ substr(columnname, instr(columnname,”-”,l,2)+2,6 ),’||
‘ substr(columnname,20, instr(substr(columnname,20),”-”,l,l)-2 ),’||
‘ substr(columnname, instr(columnname,”]”,l,l)+2,4 )’||
‘ FROM ENROLLMENT ER’||
‘ WHERE ER.’|| LTRIM(RTRIM(v_cnames.st)) ||’ = ‘||v_cnames.ST ||”;

IF v_cname = v_cnames.st THEN
EXECUTE IMMEDIATE v_SQLString;
--ELSE EXECUTE IMMEDIATE v_SQLString2;

END IF;
COMMIT;

END LOOP; --FOR v_cnames IN c_cnames LOOP
COMMIT;

/*--UDPATE THE GRADE
UPDATE ENROLLMENTFINAL
SET GRADE = 6
WHERE GRADE IS NULL;*/
--REMOVE THE EXTRA SIGN ON THE GENDER
UPDATE ENROLLMENTFINAL
SET GENDER = REPLACE(GENDER,’[‘,”)
WHERE GENDER LIKE ‘%[%’;
END;
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Analytics and Strategies for Big Geospatial Data

Although there are a number of spatial analytical methods, tools, and strate-
gies for handling big geospatial data, scientists within academia and industry 
are investigating the most efficient ways of doing so. New strategies require a 
complete rethinking of the existing computational framework. The challenge 
is even greater, for example, in spatial science, where we deal with spatial data 
that are of a multidimensional nature with sophisticated data structures. To 
successfully analyze such datasets, we have to systematically search, assem-
ble, process, and manage large-scale spatial databases. In spite of technologi-
cal transfer challenges, the spatial science community has been proactive in 
finding new solutions for distinct data centers with different standards, dash-
boards, and new web tools. For example, recent innovations in Web Tools 2.0 
enable users to work together on the same collaborations providing them with 
the right privilege to annotate, comment, and generally enrich the data repos-
itory by adding tags and metadata (Pirenne et al. 2012). The community is 
deepening their computing knowledge and gradually adopting new compu-
tational environments, such as cloud computing and heterogeneous computa-
tional environments, which are relatively recent inventions that address many 
of the limitations of data transfer, access control, data management, standard-
ization of data formats, and advanced model building (Schadt et al. 2010; Wang 
et al. 2013). Compared to general-purpose processors (GPPs), heterogeneous 
systems can deliver a 10-fold increase or greater in peak arithmetic through-
put for a few hundred U.S. dollars. It also optimizes peak performance. Cloud 
computing can make large-scale computational clusters available on a pay as 
you need basis. It is low cost and flexible (Schadt et al. 2010; Wang et al. 2013).

Current research work is aimed at tailoring advanced transformation meth-
ods toward large-scale computations, data processing, and analysis using 
available computational resources. For example, Oyana (2011) has focused 
on a number of useful algorithms for the representation and transforma-
tion of large-scale geospatial data. This work has entailed the investigation 
of cognitive and visual interpretation capabilities that enable the explora-
tion of invariant topographic and geometric properties of a spatial dataset. 
Also relevant has been the development of several algorithms that focus 
on the mathematically improved learning self-organized map (MIL-SOM); 
Improved Genetic Algorithm; and Fast, Efficient, and Scalable k-means (FES 
k-means) Algorithm (Oyana et al. 2004, 2006; Oyana 2006; Dai and Oyana 
2006; Oyana and Scott 2008; Oyana et al. 2012; Zhu et al. 2012).

The increased urgency and demand for new methods, algorithms, and 
analytical strategies is further fueled by the availability of big geospatial 
data and powerful computing platforms. Several algorithms for big geo-
spatial datasets with linear or nonlinear features already exist in literature. 
Examples of such algorithms that deal with the interpretation of massive 
data include multidimensional scaling (MDS), self-organizing maps (SOMs), 
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k-means, genetic algorithms, graph representations, locally linear embed-
ding (LLE), Isomap, and others. However, some problems relating to their 
ability to transform data remain. These include whether they (1) can suc-
cessfully perform a strong recovery of original topological structures, (2) 
have fast convergence, (3) can take advantage of the most appropriate metric 
space, (4) can quickly and systematically search through a massive dataset, 
and (5) can maintain topological stability and preserve geometric properties. 
Although numerous solutions for these problems have been proposed, such 
as the techniques based on wavelets and manifold diffusion (Coifman and 
Lafon 2006), for better geometric preserving properties, little information 
is available for modeling dynamic features or transforming spatiotemporal 
datasets. This is further compounded by the increased size, nature, and com-
plexity of spatial databases or data streams that require clustering methods 
to detect variously oriented clusters more reliably, accurately, and efficiently.

Although current algorithms are able to discover compact representations 
and expose hidden patterns and complex relationships within multivariate 
datasets, there is still significant demand for more powerful methods and 
analytical strategies that can easily transform data from high dimensionality 
to low dimensionality without destroying the original topological structures. 
The framework for designing such efficient algorithms should consist of three 
core phases: algorithm design, structure, and functionality; code development 
and implementation; and performance evaluations. The algorithm design 
workflow for transforming and modeling dynamic features of large-scale 
spatiotemporal datasets should entail the following aspects: (1) formulation of 
mathematical algorithms that effectively transform complex dynamic systems 
and enable visual exploration of large-scale spatiotemporal datasets; (2) for-
mulation of analytical reasoning and efficient rules with a capability to trans-
form, visualize, and analyze disparate spatial datasets within the subfields of 
GIS, remote sensing, health care, and medical image processing; (3) scaling 
methods and tools for existing and future computing platforms; (4) wide dis-
semination of new methods and tools to increase the exploitation of large-
scale spatiotemporal datasets; and (5) continued research efforts and support 
to improve or develop better analytical methods, tools, and strategies.

Spatiotemporal Data Analytics

Let us now review some of the existing spatiotemporal data analytics and 
knowledge gaps. Dynamic aspects of spatial data are critical to our under-
standing of spatial structures and processes. Available dynamic models (e.g., 
time series and time series combined with variogram-based models) are not 
versatile enough to deal with complex patterns of large-scale spatiotempo-
ral dynamics, yet the current demand for such models has increased. This 
increased interest is due to the existence of powerful computational plat-
forms and availability of digital repositories of diseases, demographics, and 
remotely sensed images. Most recent work is inspired by previous work in 



283Data Science

complex patterns of spatiotemporal dynamics in ecology (Durrent and Levin 
1994; Hastings and Harrison 1994; Bascompte and Sole 1995; Stroud et al. 
2001) and transportation geography (Kwan 2000a,b; Wang and Cheng 2001; 
Peuquet 2002; Yu 2006, 2007; Yu and Shaw 2008). From these reports, there 
are two central ways of conceptualizing and modeling the complex patterns 
of spatiotemporal dynamics: (1) continuous space and time models and (2) 
discrete space–time models. Bascompte and Sole (1995) noted the use of reac-
tion–diffusion mathematical models/partial differential equations in the 
representation of continuous space and time models. Coupled map lattices 
are used to represent discrete space–time models. Cellular automata (CA) is 
the most popular discrete dynamic system to date; but serious shortcomings 
exist in this system in terms of type of grid and its state, neighborhood defi-
nition, distance function (metrics), and quality/complexity of rules. Drawing 
from these basic concepts and principles, we can write sophisticated rules to 
represent and model the complexity of spatiotemporal dynamics. Activity 
pattern algorithms to quantify or simulate activity levels over space and time 
can be derived using CA and agent-based modeling.

Classification Algorithms for Detecting Clusters in Big Geospatial Data

A common problem in exploring very large-scale spatiotemporal datasets 
is how to extract relevant, interesting patterns and, more importantly, how 
to derive a lower dimensional representation of the original data without 
significant loss of information. Most clustering algorithms are based on the 
“frequentist framework” in which the data are used repeatedly to converge 
on acceptable clusters. A number of new-generation clustering algorithms 
use the Bayesian approach in which the prior probability distribution (e.g., 
the probability that a data object belongs to a given cluster) is systematically 
improved by evaluating the posterior probability (i.e., probability that a 
data object belongs to a given cluster provided another data object is known 
to belong to that cluster) (Ben-Hur et al. 2001). Wu et al. (2008) published a 
report about the top 10 data mining algorithms that were identified by the 
IEEE International Conference on Data Mining. They were C4.5, k-means, 
SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naïve Bayes, and CART.

Current clustering algorithms are based on geometric concepts and the 
notion of a distance metric between two data objects. The distance metric 
may not have physical meaning for some data entries. For example, a dis-
tance metric describing the difference between a neighborhood with and 
without bike paths does not make physical sense. For very large datasets, the 
computation of distance metrics is very intensive or prohibitive. This is more 
so with clustering, since the latter involves iterative evaluation of distance 
functions. Moreover, geometric clustering bases cluster membership on how 
close a data object is to a reference data object; “how close” depends on a 
distance parameter, epsilon. The clustering results are often very sensitive to 
the error term, epsilon. To address the issue of data size (i.e., number of data 
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objects), data dimension (i.e., number of entries in a data object), and epsilon, 
we need to incorporate topological aspects of the data. We will cluster using 
data entries for which a distance metric makes physical sense. This will lead 
to dimensionality reduction. Data entries for which the distance metric does 
not make sense will be treated using topological concepts.

Table 9.1 presents a set of plausible topological rules that could be built 
into the database. Let us illustrate this thinking with the following scenario. 
Suppose we have used five variables (namely, age, gender, height, weight, 
and location information at both the census tract level and county level) to do 
the  clustering using the two states of Florida and Mississippi. Suppose also 
that one of the  clusters is made up of two neighborhoods, namely, neigh-
borhood A from Florida and neighborhood B from Mississippi. Plausible 
questions are: (1) Is this a viable cluster? (2) What characteristics do the two 
 noncontiguous  neighborhoods share? To address these questions, we can look 
at a  topological rule that says “if a neighborhood is well lit and has pedestrian 
pathways, then it is likely that the residents will exercise after dinner.” If the 
two  neighborhoods share this characteristic, then our level of confidence in the 
cluster will improve. We can capture this increased confidence by estimating 
the  posterior  probability of the cluster being viable—using Bayesian analysis. 
We can  initially assign a low prior probability, indicating that we are very cau-
tious. If the answer is no, then we will look at other topological rules. We can 

TABLE 9.1

Topological and Geometric Rules for GIS Database–Derived Behaviors/Methods
Topological Rules with No Low-Level Noise Geometric Rules with Low-Level Noise

Neighborhood is either BMI healthy or not
High-socioeconomic status (SES) neighborhoods 
are surrounded by high-SES neighborhoods

BMI-healthy neighborhoods are surrounded by 
BMI-healthy neighborhoods

High density of walking spaces within a 
neighborhood correlates with BMI-healthy

High density of recreational facilities within a 
neighborhood correlates with BMI-healthy

High density of walking spaces in a 
neighborhood is adjacent to another high 
density of walking spaces in a neighborhood

High density of recreational facilities in a 
neighborhood is adjacent to another high 
density of walking spaces in a neighborhood

A well-lit neighborhood (light information can 
be derived from remotely sensed data) 
promotes physical activities at dusk

A well-lit neighborhood is adjacent to another 
well-lit neighborhood

A low-altitude neighborhood correlates with 
low energy consumption

A low-altitude neighborhood is adjacent 
to another low-altitude neighborhood

A short-commuting/travel time correlates 
with low risk

A short-commuting/travel time 
neighborhood is adjacent to another 
short-commuting neighborhood

A grid-like land use mix with short block 
lengths correlates with low risk

A grid-like land use mix with short block 
lengths is adjacent to another grid-like 
land use mix with short block lengths

Grid-like street patterns with short block 
lengths correlate with low risk

A grid-like street pattern with short block 
lengths is adjacent to other grid-like street 
patterns with short block lengths

Neighborhood with bike paths correlates 
with low risk

A bike path neighborhood is adjacent to 
another bike path neighborhood

Note: BMI, body mass index.
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consecutively apply each of our topological rules to the cluster in question. At 
the end, we can have a posterior probability for a viable cluster. We formalize 
this approach using the following algorithm.

Embedding Solutions/Algorithm with Topological Considerations

Step 1: Obtain a number of clusters.
Step 2: Assign a low prior probability to each cluster’s viability.
Step 3: For each cluster, use topological rules sequentially to calculate 

the posterior probability that the cluster is viable.
Step 4: Analyze clusters with low probabilities. For each nonviable clus-

ter, reassign members to viable clusters.
Step 5: Place unassigned cluster members into a temporary cluster—

designate as “unassigned.”

Repeat steps 3–5 until the number of viable clusters is stable. If the cluster 
unassigned is nonempty, investigate the most violated topological rules to 
see if they can be softened.

The concept of the sense-making loop model (Card et al. 1999; Pirolli and 
Card 2005) is essential in the creation of sound rules. Available empirical 
knowledge about obesity and type 2 diabetes is instrumental in the develop-
ment of sound rules. The rules can be built in as behaviors/methods. Potential 
critical rules that represent topological and geometric properties of obesity and 
type 2 diabetes data are presented in Table 9.1. These rules are a result of recent 
efforts to extract interesting spatial patterns of obesity and type 2 diabetes.

Graph and Text Analytics

A number of methods, tools, and strategies have been developed to facilitate 
the visualization and analysis of massive social media content (Fink et al. 
2009; Beltran et al. 2013; Ghosh and Guha 2013; Lee et al. 2013; Liu et al. 2013; 
Yin et al. 2013). Content retrieval, sharing, and analysis are common Internet 
activities; but the most exciting feature that has generated a lot of interest 
among data scientists is their capacity to explore, mine, and acquire funda-
mental spatial and temporal insights or any practical insights.

Some of the known strategies that are used to search and understand unstruc-
tured text information include topic modeling (Ghosh and Guha 2013); spatial 
and spatiotemporal modeling taking advantage of automated geolocation ser-
vices, geotargeting markers, place names, or any other explicit and implicit 
markers (Fink et al. 2009; Lee et al. 2013); and identifying semantics, trending 
themes, sentiments, events, or influences (Beltran et al. 2013; Liu et al. 2013; Yin 
et al. 2013). Examples of commonly used text mining tools include ATLAS.ti, 
Textalyser.net, QDA Miner, SAS Text Miner, and SPSS Text Analysis for Surveys. 
Figure 9.8 shows an example of tag clouds of Chapters 1, 2, and 5 of this textbook 
mined using TagCrown.
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Conclusion

As we prepare to wrap up the chapters in this book, it is only appropriate 
that we explore the emerging trends and future directions for spatial analy-
sis and related disciplines. As shown in this chapter, one of the bright spots 
with significant opportunities that lie ahead is the emerging field of data sci-
ence. The ability to effectively and efficiently process the volume and variety 
of big geospatial data and to report the findings in clear and simplified terms 
for the consumer is one of the most important skill sets that a geospatial data 
scientist must have in the twenty-first century. Completing the chapters in 
this book to gain knowledge of the traditional analytical approaches and the 
underlying challenges associated with these spatial data goes a long way 
toward gaining these professional skills.

(Continued)

FIGURE 9.8
An example of tag clouds showing the contents of this textbook. Text mined using TagCrown 
.com online.

aggregation areal autocorrelation computer concept conceptual correlation data
degree dependency described different ecological effect encoded features figure form

formalize geographic gis independent key level living measured model modifiable nature

normally objects observed obtained parameters population positive problem processes raster

reasoning reference relations relationships represent representation results scale
simply space spatial statistical Structure study temporal units values

variable variations vector world

A Tag Cloud for Chapter 1

agricultural     analysis     area     based     canopy     categories     characteristics     collect     consists     crops

data    design     differences   draw   due   either   elements     equal     estimates     event     field     form grid

height     images     important     individual     interval     km     lai     length     measurements
objective       observations       ordered       ordinal       par       plots       population
properties       ranks       recording       refers       representative       resolution       sampling
scale     scientific     selected     sensor      spatial      statistics      study      subgroups      types       used

values vegetation width zero

A Tag Cloud for Chapter 2

activity     area     clustered     crime     csr     data     density     determine      different

dispersed     distance     distribution     estimation
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Challenge Assignments

The primary objective of the exercises presented here is to provide hands-on 
experience for those working with big geospatial data. To accomplish this 
goal, we explore Google’s predictive analytics for text mining, data reduction 
and classification algorithms, building footprints and street network data 
presented in Bing and Google’s map services, and R-statistical tools.

 1. Open your Internet browser and paste this link: http://www.google.
com/trends/. We will explore some of the searches and their origins 
in depth. List six top topics that are currently trending and where 
they are coming from.

 2. Select any two topics/themes of your choice. Describe briefly the 
spatial and temporal patterns (from 2004 to date) of these topics. List 
the top 10 countries associated with this search. Describe the spatial 
and temporal changes over this period. Turn on the forecast button 
and conduct a predictive analytics of these topics.

TASK 9.1 EXPLORE GOOGLE TRENDS

Google Trends provides data analytics reports on what is trending 
as people around the world perform searches. The analytical reports 
display relative search volume across geographies, time trends, and 
queries that people wish to know about. For this task, we are going to 
explore Google Trends.

FIGURE 9.8 (Continued)
An example of tag clouds showing the contents of this textbook. Text mined using TagCrown 
.com online.

events     example     expected     figure     function     hypothesis     incidents     individual     
injury

interpretation     kernel     locations     map     method     nearest     neighbor neighborhoods

nesting     null     number     observed     occur     panel     pattern     point

poisson     potential     process     provides     quadrat     random     randomly region     results     significant

sites     space-time     spatial     statistic     study     subquadrat     test     throughout

travel used values voronoi

A Tag Cloud for Chapter 5
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 3. Submit three representative maps and time series charts (capture 
screenshots).

 4. Open your Internet browser and paste this link: http://www.
google.org/flutrends/. We explore in depth the two sets of activity 
data.

 a. Using the flu trends map, briefly describe the spatial and tempo-
ral patterns of this epidemic around the world.

 b. Using the dengue trends map, briefly describe the spatial and 
temporal patterns of this epidemic around the world.

For this task, we will consider results from two key algorithms: MIL-SOM 
and FES k-means.

 1. MIL-SOM: The MIL-SOM algorithm consists of a regular, usually 
two- dimensional (2D), grid of map units, or it can be defined as a 
spatial organization of map units. The MIL-SOM learning proce-
dure closely follows a biological understanding of how neurons 
in the human brain function as they process, organize, and store 
incoming and outgoing information.

 2. The FES k-means algorithm uses a hybrid approach that comprises 
the k-d tree data structure, nearest neighbor query, the original 
k-means algorithm, and a better adaptation rate. The primary func-
tion of the FES k-means algorithm is to partition data into k disjoint 
subgroups, and then the quality of these clusters is measured via 
different validation methods.

As part of this task, we are going to perform visual comparisons and anal-
yses between two datasets: a trained and an untrained synthetic dataset. 
The datasets have already been classified for you using the newly improved 

TASK 9.2 VISUALIZE SPATIAL DATA

In geography, the use of clustering algorithms, for example, SOMs, 
principal component analysis (PCA), k-means, and MDS, to solve geo-
graphical problems is now widespread. Dimensionality reduction 
techniques provide generalized methods for data simplification. The 
ability to transform large, high-dimensional, and structured datasets 
(untrained) into lower dimensional representations (trained) is impor-
tant for the generation of visual representations.
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versions of SOM (MIL-SOM) and k-means (FES k-means) algorithms. One 
dataset is classified using the FES k-means algorithm without dimensional-
ity reduction and the second dataset has its dimensionality reduced based 
on the MIL-SOM algorithm, and then it is classified using the FES k-means 
algorithm.

The following datasets are provided in your Chapter9_Data_Folder\Data_
algorithm folder:

 1. Original synthetic dataset: A large, high-dimensional structured 
dataset is directly classified using the improved version of k-means 
(FES k-means) named “untrained_FES_kmeans_data.”

 2. Trained synthetic dataset: A dataset reduced from the original syn-
thetic dataset using improved versions of the k-means (FES k-means) 
and SOM (MIL-SOM) algorithms is named “trained_MILSOM_FES_
kmeans_data.” Using the two datasets, conduct the following tasks. 
To complete these tasks, you may use MS Excel, ArcGIS, SPSS, or any 
open-source statistical software:

 a. Open/import the untrained_FES_kmeans_data and trained_
MILSOM_FES_kmeans_data dataset text files and convert them 
in a format that you can use.

 b. Rename variables as follows: VAR1: Y_axis; VAR2: X_axis; and 
VAR3: Cluster_Class.

 c. Create a three-dimensional (3D) scatterplot for each of the two 
datasets.

 d. Create box plots for each of the Cluster_Class variables for two 
datasets.

Tips: Identify and describe the spatial distribution of the clusters in 
the two datasets. Also, compare and contrast the untrained and trained 
datasets. On completion, prepare a short report and description of the 
results. Select the most appropriate visual artwork and captions for your 
report.

Based on these results, answer the following questions:

Question no. 1: Compare plots of original and synthetic datasets.
Question no. 2: Analyze the clusters formed in both datasets.
Question no. 3: Discuss the differences and similarities of the clusters.
Question no. 4: Discuss the consistency of observed clusters (untrained 

vs. trained data).
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TASK 9.4 CHALLENGE ASSIGNMENT: EXPLORE 
AND PERFORM PREDICTIVE ANALYTICS ON 

FLU AND DENGUE ACTIVITY DATA

 1. Download flu and dengue activity data from https://
www.google.org/flutrends/ and https://www.google.org/ 
denguetrends/, respectively. The link for the datasets is located 
below the displayed maps. These need preprocessing before 
any exploration and analysis can be done. You may use MS 
Excel, SPSS, ArcGIS, or any open-source R-statistical tools.

 2. Explore the two activity datasets. Are there any insights?
 3. Use any insights to develop some hypotheses for confirmation 

or further investigations.
 4. Create some maps and charts to show the distribution and 

trends of two activity datasets.
 5. Create a trend/predictive analytics model using the two activ-

ity datasets.
 6. Prepare a short report covering the background, materials 

and methods, results and discussion, and implications of your 
findings.

TASK 9.3 EXPLORE BING AND GOOGLE MAPS SERVICES

 1. For this task, you will use both the Bing and Google Maps ser-
vices to search for points of interest.

 2. Find directions between two locations of your choice. Compile 
this information in a short report. Suppose you wanted to 
modify your directions to other points of interest. Which of the 
tools would you use and why?

 3. Find restaurants near Lakeshore Drive in Chicago, Illinois. 
Select by top reviewers or type. On average, estimate how far 
the restaurants are from the main access roads (use the scale 
bar to estimate the distance). Describe the locations of the res-
taurants relative to the main access roads.

 4. Find gas stations near Lakeshore Drive in Chicago.
 5. Compare both map services in terms of ease of use, efficiency, 

and quality of information.
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Review and Study Questions

 1. The term big data has been described within the context of five “Vs.” 
What are these five properties? In your opinion, do these fully cap-
ture the core elements of big data? Are there some missing elements 
that you would wish to add to the core properties of big data?

 2. What is data warehousing? With the use of examples, explain 
the sources, processes involved, as well as benefits of data 
warehousing.

 3. Distinguish between BI and LI. Use concrete examples from your 
research area to illustrate the application of one of these analytical 
strategies.

 4. Explain the role of data mining in the analysis of big geospatial 
data. Choose a software toolkit such as GISolve, GeoDa/PySAL, 
OpenTopography, PGIST, pd-GRASS, or R. Research the basic func-
tionalities and report your findings.

 5. Data scientists are increasingly required to conduct large-scale 
analyses of graphics and textual data embedded in social media 
and other databases. Choose one of the following text mining tools. 
Research their basic functionalities and report on your findings:

 a. ATLAS.ti
 b. Textalyser.net
 c. QDA Miner
 d. SAS Text Miner
 e. SPSS Text Analysis for Surveys

Glossary of Key Terms

Big Data: Massive and varied amounts of information that are produced 
at such speed, variety, and volume that traditional analytical 
approaches are no longer adequate for processing and visualizing 
them. These data call for new analytics.

Data Integration: The process of combining data from varied and some-
times incompatible sources into a unified format within a data 
warehouse for use in analysis, visualization, reporting, and deci-
sion making.

Extract-Transform-Load: This is a standardized/computerized process of 
extracting relevant data, transforming the data, and cleaning and 
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integrating the data before uploading into a data warehouse. The 
process ensures consistency and accuracy in the information that is 
supplied to all users.

Metadata: This describes all of the primary features of a dataset. It is a valu-
able piece of information for technicians engaged in data warehous-
ing, as well as end users of the data. The metadata captures the data 
lineage and sources, table and column names, entity/attribute defini-
tions, currency of the information and updating schedules, reports/
query tools that are available, report distribution information, and 
help desk/contact information.

Self-Organizing Map: This is a pattern recognition process that relies on 
unsupervised learning algorithms to produce visual representa-
tions of high-dimensional data. The analytical process typically 
entails two phases, a training phase followed by a prediction phase.

Standardized Query Language: This is a structured query language that 
is used for searching and manipulating data within a relational 
database management system (RDBMS). The SQL environment con-
tains several features including a catalog, DDL, data manipulation 
language, and data control language that includes commands that 
guide the control of the data and administrative privileges.
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assignments, making the reading so much more enjoyable while forcing the reader 
to pause and reflect on the content of each chapter. Another feature of this book is 
its breadth, encompassing the analysis of point, areal, and geostatistical data before 
ending with a short chapter devoted to the hot topic of big data, including data 
management and data mining. The illustration of different concepts using data from 
environmental and social sciences adds to the general appeal of the presentation. 
Tonny and Florence must be commended for writing a textbook that should make 
spatial analysis more accessible to geographers!”

—Pierre Goovaerts, BioMedware, Inc., PGeostat, LLC, 
University of Florida, Gainesville, USA

“Spatial analysis is at the core of quantitative geography and geographic information 
systems (GIS). Oyana and Margai effectively explain the foundation of spatial 
analysis. … The book provides a good balance between concepts and practicums of 
spatial statistics with a comprehensive coverage of the most important approaches to 
understand spatial data, analyze spatial relationships and spatial patterns, and predict 
spatial processes. The book will be an excellent textbook for undergraduate courses 
in quantitative geography or spatial analysis. Graduate students new to geospatial 
sciences will also find the book useful for self-study.”

—May Yuan, University of Texas at Dallas, USA

An introductory text for the next generation of geospatial analysts and data scientists, 
Spatial Analysis: Statistics, Visualization, and Computational Methods focuses 
on the fundamentals of spatial analysis using traditional, contemporary, and 
computational methods. Outlining both non-spatial and spatial statistical concepts, 
the authors present practical applications of geospatial data tools, techniques, and 
strategies in geographic studies. They offer a problem-based learning (PBL) approach 
to spatial analysis—containing hands-on problem-sets that can be worked out in MS 
Excel or ArcGIS—as well as detailed illustrations and numerous case studies. 
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