
                Statistics Applied to Clinical Studies



                    



Ton J. Cleophas • Aeilko H. Zwinderman

Statistics Applied 
to Clinical Studies

Fifth Edition

With the help from

Toine F. Cleophas, Eugene P. Cleophas, 
and Henny I. Cleophas-Allers



Ton J. Cleophas
Past-President American 
College of Angiology
Co-Chair Module Statistics 
Applied to Clinical Trials
European Interuniversity College 
of Pharmaceutical Medicine, Lyon
France

Department of Medicine
Albert Schweitzer Hospital, Dordrecht
Netherlands

Aeilko H. Zwinderman
President-Elect International 
Society of Biostatistics
Co-Chair Module Statistics 
Applied to Clinical Trials
European Interuniversity College 
of Pharmaceutical Medicine, Lyon
France

Department of Biostatistics 
and Epidemiology, Academic Medical 
Center, Amsterdam
Netherlands

ISBN 978-94-007-2862-2 e-ISBN 978-94-007-2863-9
DOI 10.1007/978-94-007-2863-9
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2012931360

© Springer Science+Business Media B.V. 2012
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any 
means, electronic, mechanical, photocopying, microfi lming, recording or otherwise, without written  
permission from the Publisher, with the exception of any material supplied specifi cally for the purpose 
of being entered and executed on a computer system, for exclusive use by the purchaser of the work. 

Printed on acid-free paper 

Springer is part of Springer Science+Business Media (www.springer.com)



v

 In clinical medicine appropriate statistics has become indispensable to evaluate 
treatment effects. Randomized controlled trials are currently the only trials that 
truly provide evidence-based medicine. Evidence based medicine has become 
crucial to optimal treatment of patients. We can defi ne randomized controlled trials 
by using Christopher J. Bulpitt’s defi nition “a carefully and ethically designed 
experiment which includes the provision of adequate and appropriate controls by a 
process of randomization, so that precisely framed questions can be answered”. The 
answers given by randomized controlled trials constitute at present the way how 
patients should be clinically managed. In the setup of such randomized trial one of 
the most important issues is the statistical basis. The randomized trial will never 
work when the statistical grounds and analyses have not been clearly defi ned before-
hand. All endpoints should be clearly defi ned in order to perform appropriate power 
calculations. Based on these power calculations the exact number of available 
patients can be calculated in order to have a suffi cient quantity of individuals to have 
the predefi ned questions answered. Therefore, every clinical physician should 
be capable to understand the statistical basis of well performed clinical trials. It is 
therefore a great pleasure that Drs. T. J. Cleophas, A. H. Zwinderman, and T. F. Cleophas 
have published a book on statistical analysis of clinical trials. The book entitled 
“Statistics Applied to Clinical Trials” is clearly written and makes complex issues 
in statistical analysis transparent. Apart from providing the classical issues in statistical 
analysis, the authors also address novel issues such as interim analyses, sequential 
analyses, and meta-analyses. The book is composed of 18 chapters, which are nicely 
structured. The authors have deepened our insight in the applications of statistical 
analysis of clinical trials. We would like to congratulate the editors on this achievement 
and hope that many readers will enjoy reading this intriguing book. 

Professor of Cardiology, President Netherlands  E.E. van der Wall, M.D., Ph.D. 
 Association of Cardiology, Leiden, Netherlands   

     Foreword   



                    



vii

 The European Interuniversity Diploma of Pharmaceutical Medicine is a postacademic 
course of 2–3 years sponsored by the Socrates program of the European Community. 
The offi ce of this interuniversity project is in Lyon and the lectures are given there. The 
European Community has provided a building and will remunerate lecturers. 
The institute which provides the teaching is called the European College of 
Pharmaceutical Medicine, and is affi liated with 15 universities throughout Europe, 
whose representatives constitute the academic committee. This committee supervises 
educational objectives. Start lectures February 2000. 

 There are about 20 modules for the fi rst 2 years of training, most of which are 
concerned with typically pharmacological and clinical pharmacological matters 
including pharmacokinetics, pharmacodynamics, phase III clinical trials, reporting, 
communication, ethics and, any other aspects of drug development. Subsequent 
training consists of practice training within clinical research organisations, universities, 
regulatory bodies etc., and fi nally of a dissertation. The diploma, and degree are 
delivered by the Claude Bernard University in Lyon as well as the other participating 
universities. 

 The module “Statistics applied to clinical trials” will be taught in the form of a 
3–6 day yearly course given in Lyon and starting February 2000. Lecturers have to 
submit a document of the course (this material will be made available to students). 
Three or four lecturers are requested to prepare detailed written material for students 
as well as to prepare examination of the students. The module is thus an important 
part of a postgraduate course for physicians and pharmacists for the purpose of 
obtaining the European diploma of pharmaceutical medicine. The diploma should 
make for leading positions in pharmaceutical industry, academic drug research, as 
well as regulatory bodies within the EC. This module is mainly involved in the 
statistics of randomized clinical trials. 

 The Chaps. 1–9, 11, 17, and 18 of this book are based on the module “Medical 
statistics applied to clinical trials” and contain material that should be mastered by 
the students before their exams. The remaining chapters are capita selecta intended 
for excellent students and are not included in the exams. 

   Preface to First Edition   



viii Preface to First Edition

 The authors believe that this book is innovative in the statistical literature because, 
unlike most introductory books in medical statistics, it provides an explanatory 
rather than mathematical approach to statistics, and, in addition, emphasizes non-
classical but increasingly frequently used methods for the statistical analyses of 
clinical trials, e.g., equivalence testing, sequential analyses, multiple linear regression 
analyses for confounding, interaction, and synergism. The authors are not aware 
of any other work published so far that is comparable with the current work, and, 
therefore, believe that it does fi ll a need. 

 August 1999 
 Dordrecht, Leiden
Delft   



ix

 In this second edition the authors have removed textual errors from the fi rst edition. 
Also seven new chapters (Chaps. 8, 10, 13, 15–18) have been added. The principles 
of regression analysis and its resemblance to analysis of variance was missing in the 
fi rst edition, and have been described in Chap. 8. Chapter 10 assesses curvilinear 
regression. Chapter 13 describes the statistical analyses of crossover data with 
binary response. The latest developments including statistical analyses of genetic 
data and quality-of-life data have been described in Chaps. 15 and 16. Emphasis is 
given in Chaps. 17 and 18 to the limitations of statistics to assess non-normal data, 
and to the similarities between commonly-used statistical tests. Finally, additional 
tables including the Mann-Whitney and Wilcoxon rank sum tables have been added 
in the Appendix. 

 December 2001 
 Dordrecht, Amsterdam
Delft   

   Preface to Second Edition   



                    



xi

 The previous two editions of this book, rather than having been comprehensive, 
concentrated on the most relevant aspects of statistical analysis. Although well-
received by students, clinicians, and researchers, these editions did not answer all of 
their questions. This called for a third, more comprehensive, rewrite. In this third 
edition the 18 chapters from the previous edition have been revised, updated, and 
provided with a conclusions section summarizing the main points. The formulas 
have been re-edited using the Formula-Editor from Windows XP 2004 for enhanced 
clarity. Thirteen new chapters (Chaps. 8–10, 14, 15, 17, 21, 25–29, 31) have been 
added. The Chaps. 8–10 give methods to assess the problems of multiple testing and 
data testing closer to expectation than compatible with random. The Chaps. 14 and 
15 review regression models using an exponential rather than linear relationship 
including logistic, Cox, and Markow models. Chapter 17 reviews important interaction 
effects in clinical trials and provides methods for their analysis. In Chap. 21 study 
designs appropriate for medicines from one class are discussed. The Chaps. 25–29 
review respectively (1) methods to evaluate the presence of randomness in the data, 
(2) methods to assess variabilities in the data, (3) methods to test reproducibility in 
the data, (4) methods to assess accuracy of diagnostic tests, and (5) methods to 
assess random rather than fi xed treatment effects. Finally, Chap. 31 reviews methods 
to minimize the dilemma between sponsored research and scientifi c independence. 
This updated and extended edition has been written to serve as a more complete 
guide and reference-text to students, physicians, and investigators, and, at the 
same time, preserves the common sense approach to statistical problem-solving of 
the previous editions. 

 August 2005 
 Dordrecht, Amsterdam
Delft   

   Preface to the Third Edition   



                    



xiii

 In the past few years many important novel methods have been applied in published 
clinical research. This has made the book again rather incomplete after its previous 
edition. The current edition consists of 16 new chapters, and updates of the 31 chapters 
from the previous edition. Important methods like Laplace transformations, log 
likelihood ratio statistics, Monte Carlo methods, and trend testing have been included. 
Also novel methods like superiority testing, pseudo-R2 statistics, optimism corrected 
c-statistic, I-statistics, and diagnostic meta-analyses have been addressed. 

 The authors have given special efforts for all chapters to have their own introduc-
tion, discussion, and references section. They can, therefore, be studied separately 
and without need to read the previous chapters fi rst. 

 September 2008 
 Dordrecht, Amsterdam, Gorinchem, and Delft   

   Preface to Fourth Edition   



                    



xv

 Thanks to the omnipresent computer, current statistics can include data fi les of 
many thousands of values, and can perform any exploratory analysis in less than 
seconds. This development, however fascinating, generally does not lead to simple 
results. We should not forget that clinical studies are, mostly, for confi rming prior 
hypotheses based on sound arguments, and the simplest tests provide the best power 
and are adequate for such purposes. In the past few years the authors of this 5th edition, 
as teachers and research supervisors in academic and top-clinical facilities, have 
been able to closely observe the latest developments in the fi eld of clinical data 
analysis, and they have been able to assess their performance. In this 5th edition the 
47 chapters of the previous edition have been maintained and upgraded according to 
the current state of the art, and 20 novel chapters have been added after strict selection 
of the most valuable and promising novel methods. The novel methods are explained 
using practical examples and step-by-step analyses readily accessible not only to 
statisticians but also to non-mathematicians. 

 In order to keep up with the forefront of statistical analysis it was unavoidable to also 
include more complex data modeling and computationally intensive statistical methods. 
These methods include, e.g., multistage regression, neural networks, fuzzy modeling, 
mixed linear and non linear models, item response modeling, non linear regression 
methods, propensity score matching, Bhattacharya modeling and various regression 
models with multiple outcome variables. However, the authors have given every effort 
to review these methods in an explanatory rather than mathematical manner. 

 We should add that the authors are well-qualifi ed in their fi eld. Professor Zwinderman 
is president-elect of the International Society of Biostatistics, and Professor Cleophas 
is past-president of the American College of Angiology. From their expertise they 
should be able to make adequate selections of modern methods for clinical data ana-
lysis for the benefi t of physicians, students, and investigators. The authors have been 
working and publishing together for over 10 years, and their research of statistical 
methodology can be characterized as a continued effort to demonstrate that statistics is 
not mathematics but rather a discipline at the interface of biology and mathematics. 

 September 2011 
 Dordrecht, Amsterdam, Lyon              

   Preface    to Fifth Edition   
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    1   General    Considerations 

 Over the past decades the randomized clinical trial has entered an era of continuous 
improvement and has gradually become accepted as the most effective way of deter-
mining the relative effi cacy and toxicity of new drug therapies. This book is mainly 
involved in the methods of prospective randomized clinical trials of new drugs. 
Other methods for assessment including open-evaluation-studies, cohort- and case-
control studies, although sometimes used, e.g., for pilot studies and for the evalua-
tion of long term drug-effects, are, however, not excluded in this course. Traditionally, 
clinical drug trials are divided into IV phases (from phase I for initial testing to 
phase IV after release for general use), but scientifi c rules governing different phases 
are very much the same, and can thus be discussed simultaneously.

    A.    Clearly Defi ned Hypotheses
     Hypotheses must be tested prospectively with hard data, and against placebo or 

known forms of therapies that are in place and considered to be effective. 
Uncontrolled studies won’t succeed to give a defi nitive answer if they are ever so 
clever. Uncontrolled studies while of value in the absence of scientifi c controlled 
studies, their conclusions represent merely suggestions and hypotheses. The sci-
entifi c method requires to look at some controls to characterize the defi ned 
population.      

   B.    Valid Designs
     Any research but certainly industrially sponsored drug research where sponsors 

benefi t from favorable results, benefi ts from valid designs. A valid study means 
a study unlikely to be biased, or unlikely to include systematic errors. The most 
dangerous errors in clinical trials are systematic errors otherwise called biases. 
Validity is the most important thing for doers of clinical trials to check. Trials 
should be made independent, objective, balanced, blinded, controlled, with 
objective measurements, with adequate sample sizes to test the expected treat-
ment effects, with random assignment of patients.      

    Chapter 1   
 Hypotheses, Data, Stratifi cation                  
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   C.    Explicit Description of Methods
     Explicit description of the methods should include description of the recruitment 

procedures, method of randomization of the patients, prior statements about the 
methods of assessments of generating and analysis of the data and the statistical 
methods used, accurate ethics including written informed consent.      

   D.    Uniform Data Analysis
     Uniform and appropriate data analysis generally starts with plots or tables of 

actual data. Statistics then comes in to test primary hypotheses primarily. Data 
that do not answer prior hypotheses may be tested for robustness or sensitivity, 
otherwise called precision of point estimates e.g., dependent upon numbers of 
outliers. The results of studies with many outliers and thus little precision should 
be interpreted with caution. It is common practice for studies to test multiple 
measurements for the purpose of answering one single question. In clinical trials 
the benefi t to health is estimated by variables, which can be defi ned as measur-
able factors or characteristics used to estimate morbidity/mortality/time to events 
etc. Variables are named exposure, indicator, or independent variables, if they 
predict morbidity/mortality, and outcome or dependent variables, if they esti-
mate morbidity/mortality. Sometimes both mortality and morbidity variables are 
used in a single trial, and there is nothing wrong with that practice. We should 
not make any formal correction for multiple comparisons of this kind of data. 
Instead, we should informally integrate all the data before reaching conclusions, 
and look for the trends without judging one or two low P-values among other-
wise high P-values as proof.        

 However, subgroup analyses involving post-hoc comparisons by dividing the 
data into groups with different ages, prior conditions, gender etc can easily generate 
hundreds of P-values. If investigators test many different hypotheses, they are apt to 
fi nd signifi cant differences at least 5% of the time. To make sense of these kinds of 
results, we need to consider the Bonferroni inequality, which will be emphasized in 
the Chaps.   7     and   8    . It states that, if k statistical tests are performed with the cut-off 
level for a test statistic, for example t or F, at the     a    level, the likelihood for observ-
ing a value of the test statistic exceeding the cut-off level is no greater than k times 
    a   . For example, if we wish to do three comparisons with t-tests while keeping the 
probability of making a mistake less than 5%, we have to use instead of     a    = 5% in 
this case     a    = 5/3% = 1.6%. With many more tests, analyses soon lose any sensitiv-
ity and do hardly prove anything anymore. Nonetheless, a limited number of post-
hoc analyses, particularly if a plausible theory is underlying, can be useful in 
generating hypotheses for future studies.  

    2   Two Main Hypotheses in Drug Trials: Effi cacy and Safety 

 Drug trials are mainly for addressing the effi cacy as well as the safety of the treat-
ments to be tested in them. For analyzing effi cacy data formal statistical techniques 
are normally used. Basically, the null hypothesis of no treatment effect is tested, 
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and is rejected when difference from zero is signifi cant. For such purpose a great 
variety of statistical significance tests has been developed, all of whom report 
P values, and compute confi dence intervals to estimate the magnitude of the treat-
ment effect. The appropriate test depends upon the type of data and will be dis-
cussed in the next chapter. Of safety data, such as adverse events, data are mostly 
collected with the hope of demonstrating that the test treatment is not different 
from control. This concept is based upon a different hypothesis from that proposed 
for effi cacy data, where the very objective is generally to show that there actually 
is a difference between test and control. Because the objective of collecting safety 
data is thus different, the approach to analysis must be likewise different. In 
 particular, it may be less appropriate to use statistical signifi cance tests to analyze 
the latter data. A signifi cance test is a tool that can help to establish whether a dif-
ference between treatments is likely to be real. It cannot be used to demonstrate 
that two treatments are similar in their effects. In addition, safety data, more fre-
quently than effi cacy data, consist of proportions and percentages rather than con-
tinuous data as will be discussed in the next section. Usually, the best approach to 
analysis of these kinds of data is to present suitable summary statistics, together 
with confi dence intervals. In the case of adverse event data, the rate of occurrence 
of each distinct adverse event on each treatment group should be reported, together 
with confi dence intervals for the difference between the rates of occurrence on the 
different treatments. An alternative would be to present risk ratios or relative risks 
of occurrence, with confi dence intervals for the relative risk. Chapter   3     mainly 
addresses the analyses of these kinds of data. 

 Other aspects of assessing similarity rather than difference between treatments 
will be discussed separately in Chap.   6     where the theory, equations, and assess-
ments are given for demonstrating statistical equivalence.  

    3   Different Types of Data: Continuous Data 

 The fi rst step, before any analysis or plotting of data can be performed, is to decide 
what kind of data we have. Usually data are continuous, e.g., blood pressures, heart 
rates etc. But, regularly, proportions or percentages are used for the assessment of 
part of the data. The next few lines will address how we can summarize and charac-
terize these two different approaches to the data. 

 Samples of  continuous data  are characterized by:

     
,x

Σ
= =

x
Mean

n    

where     Σ    is the summation, x are the individual data, n is the total number of data.

     
2( )x x= −∑Variance    

     

2( )

1

x x

n

−
=

−
∑

Mean variance
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 Mean variance is often briefl y named variance. And, so, don’t forget the term 
variance is commonly used to name mean variance. The famous term standard 
 deviation is often abbreviated as, simply, s, and is equal to the square root of this 
mean variance.

     ( ) ( )= √Standard deviation SD mean variance
    

 Continuous data can be plotted in the form of a histogram (Fig.  1.1  upper graph). 
On the x-axis, frequently called z-axis in statistics, it has individual data. On the 
y-axis it has “how often”. For example, the mean value is observed most frequently, 
while the bars on either side gradually grow shorter. This graph adequately repre-
sents the data. It is, however, not adequate for statistical analyses. Figure  1.1  lower 
graph pictures a Gaussian curve, otherwise called normal (distribution) curve. On 
the x-axis we have, again, the individual data, expressed either in absolute data or in 
SDs distant from the mean. On the y-axis the bars have been replaced with a con-
tinuous line. It is now impossible to determine from the graph how many patients 
had a particular outcome. Instead, important inferences can be made. For example, 
the total area under the curve (AUC) represents 100% of the data, AUC left from 
mean represents 50% of the data, left from −1 SDs it has 15.87% of the data, left 
from -2SDs it has 2.5% of the data. This graph is better for statistical purposes but 
not yet good enough.  

 Figure  1.2  gives two Gaussian curves, a narrow and a wide one. Both are based 
on the same data, but with different meaning. The wide one summarizes the data of 
our trial. The narrow one summarizes the mean of many trials similar to our trial. 
We will not try to make you understand why this is so. Still, it is easy to conceive 
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  Fig. 1.1    Histogram and Gaussian curve representation of data       
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that the distribution of all means of many similar trials is narrower and has fewer 
outliers than the distribution of the actual data from our trial, and that it will center 
around the mean of our trial, because our trial is assumed to be representative for 
the entire population. You may fi nd it hard to believe, but the narrow curve with 
standard errors of the mean (SEMs) or simply SEs on the x-axis can be effectively 
used for testing important statistical hypotheses, like (1) no difference between 
new and standard treatment, (2) a real difference, (3) the new treatment is better 
than the standard treatment, (4) the two treatments are equivalent. Thus, mean ± 2 
SDs (or more precisely 1.96 SDs) represents 95% of the AUC of the wide distribu-
tion, otherwise called the 95% confi dence interval of the data, which means that 
95% of the data of the sample are within. The SEM-curve (narrow one) is narrower 
than the SD-curve (wide one) because SEM = SD/    n    with n = sample size. 
Mean ± 2 SEMs (or more precisely 1.96 SEMs) represents 95% of the means of 
many trials similar to our trial. 

     / n=SEM SD     

 As the size of SEM in the graph is about 1/3 times SD, the size of each sample is 
here about n = 10. The area under the narrow curve represents 100% of the sample 
means we would obtain, while the area under the curve of the wide graph represents 
100% of all of the data of the samples. 

 Why is this SEM approach so important in statistics. Statistics makes use of 
mean values and their standard error to test the null hypotheses of fi nding no differ-
ence from zero in your sample. When we reject a null hypothesis at P < 0.05, it liter-
ally means that there is <5% chance that the mean value of our sample crosses the 
area of the null hypothesis where we say there is no difference. It does not mean that 
many individual data may not go beyond that boundary. Actually, it is just a matter 
of agreement. But it works well. 

95 % of all means

95 % of all data

-2 SEMs mean +2 SDs
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  Fig. 1.2    Two examples of 
normal distributions       
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  So remember: 

    Mean ± 2 SDs covers an area under the curve including 95% of the data of 
the given sample.   
   Mean ± 2 SEMs covers an area under curve including 95% of the means of 
many samples, and is sometimes called the 95% confi dence interval (CI).     

 In statistical analysis we often compare different samples by taking their sums or 
differences. Again, this text is not intended to explain the procedures entirely. One 
more thing to accept unexplainedly is the following. The distributions of the sums 
as well as those of the difference of samples are again normal distributions and can 
be characterized by:

     
2 2

1 2 1 2Sum: mean mean (SD  SD )+ ± +
   

     
2 2

1 2 1 2Difference: mean mean (SD  SD )− ± +
   

     
2 2

sum 1 1 2 2SEM (SD / n  SD / n )= +
   

     differenceSEM  = “     

  Note:   If the standard deviations are very different in size, then a more adequate 
calculation of the pooled SEM is given in the next chapter.  

 Sometimes we have paired data where two experiments are performed in one 
subject or in two members of one family. The variances with paired data are usually 
smaller than with unpaired because of the positive correlation between two observa-
tions in one subject (those who respond well the fi rst time are more likely to do so 
the second). This phenomenon translates in a slightly modifi ed calculation of 
 variance parameters.

     
2 2

paired sum 1 2 1 2SD (SD  SD 2 r SD ·SD )= + +
   

     
2 2

paired differrence 1 2 1 2SD (SD  SD 2 r SD ·SD )= + −
   

Where r = correlation coeffi cient, a term that will be explained soon. 
 Likewise:

     
2 2

paired sum 1 1 2 2 1 2 1 2SEM SD / n  SD / n (2 r SD ·SD )(1 / 2n 1 / 2n )= + + +
   

     
2 2

paired differrence 1 1 2 2 1 2 1 2SEM SD / n  SD / n (2 r SD ·SD )(1 / 2n 1 / 2n )= + − +
    

 Note that SEM does not directly quantify variability in a population. A small 
SEM can be mainly due to a large sample size rather than tight data. 

 With small samples the distribution of the means does not exactly follow a 
Gaussian distribution. But rather a t-distribution, 95% confi dence intervals cannot 
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be characterized as the area under the curve between mean ± 2 SEMs but instead the 
area under curve is substantially wider and is characterized as mean ± t.SEMs where 
t is close to 2 with large samples but 2.5–3 with samples as small as 5–10. The 
appropriate t for any sample size is given in the t-table (Appendix). 

 Figure  1.3  shows that the t-distribution is wider than the Gaussian distribution 
with small samples. Mean ± t.SEMs presents the 95% confi dence intervals of the 
means that many similar samples would produce.  

 Statistics is frequently used to compare more than two samples of data. To esti-
mate whether differences between samples are true or just chance we fi rst assess 
variances in the data between groups and within groups.  

 Group  n patients  Mean  SD 

 Group 1  n  mean 
1
   SD 

1
  

 Group 2  n  mean 
2
   SD 

2
  

 Group 3  n  mean 
3
   SD 

3
  

 This procedure may seem somewhat awkward in the beginning but in the next 
two chapters we will observe that variances, which are no less than estimates of 
noise in the data, are effectively used to test the probabilities of true differences 
between, e.g., different pharmaceutical compounds. The above data are summarized 
underneath. 

 Between-group variance:
   Sum of squares 

between
  = SS 

between
  = n (mean 

1
  − overall mean) 2  + n (mean 

2
  − overall 

mean) 2  + n (mean 
3
  – overall mean) 2     

 Within-group variance:
   Sum of squares 

within
  = SS 

within
  = (n-1) SD  

1
  2   + (n−1) SD  

2
  2   + (n−1) SD  

3
  2      

 The ratio of the sum of squares between-group/sum of squares within group 
(after proper adjustment for the sample sizes or degrees of freedom, a term which 
will be explained later on) is called the big F and determines whether variances 
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  Fig. 1.3    Family of 
t-distributions: with n = 5 the 
distribution is wide, with 
n = 10 and n = 1,000 this is 
increasingly less so       
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between the sample means is larger than expected from the variability within the 
samples. If so, we reject the null hypothesis of no difference between the samples. 
With two samples the square root of big F, which actually is the test statistic of 
analysis of variance (ANOVA), is equal to the t of the famous t-test, which will 
further be explained in Chap.   2    . These ten or so lines already brought us very 
close to what is currently considered the heart of statistics, namely ANOVA 
( analysis of variance).  

    4   Different Types of Data: Proportions, Percentages 
and Contingency Tables 

 Instead of continuous data, data may also be of a discrete character where two or 
more alternatives are possible, and, generally, the frequencies of occurrence of each 
of these possibilities are calculated. The simplest and commonest type of such data 
are the binary data (yes/no etc). Such data are frequently assessed as proportions or 
percentages, and follow a so-called binomial distribution. If 0.1 < proportion (p) < 0.9 
the binomial distribution becomes very close to the normal distribution. If p < 0.1, 
the data will follow a skewed distribution, otherwise called Poisson distribution. 
Proportional data can be conveniently laid-out as contingency tables. The simplest 
contingency table looks like this:  

 Numbers of subjects 
with side effect 

 Numbers of subjects 
without side effect 

 Test treatment (group 
1
 )  a  b 

 Control treatment (group 
2
 )  c  d 

 The proportion of subjects who had a side effect in group 
1
  (or the risk ( R ) or 

probability of having an effect):

    p = a/(a + b) , in group 
2
   p = c/(c + d) ,  

  The ratios  a/(a + b)  and  c/(c + d)  are called  risk ratios (RRs)     

  Note that the terms proportion, risk and probability are frequently used in 
statistical procedures but that they basically mean the same.  

 Another approach is the  odds  approach where  a/b  and  c/d  are odds and their 
ratio is the  odds ratio (OR) . 

 In clinical trials we use ORs as surrogate RRs, because here a/(a + b) is simply 
nonsense. For example:  

 Treatment-group  Control-group  Entire-population 

 Sleepiness  32  a   4  b   4,000 
 No sleepiness  24  c  52  d  52,000 
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 We assume that the control group is just a sample from the entire population but 
that the ratio b/d is that of the entire population. So, suppose 4 = 4,000 and 

52 = 52,000, then we can approximate     ( )
( )

a / a b a / b
RR

c / c d c / d

±
= =

+
   of the entire 

population. 

 With observational cohort studies things are different. The entire population is 
used as control group. Therefore, RRs are better adequate. ORs and RRs are largely 
similar as long as they are close to 1.000. More information on ORs is given in the 
Chaps.   3    ,   17    ,   18    , and   19    . 

 Proportions can also be expressed as percentages:
    p.100% = a/(a + b). (100%)  etc    

 Just as with continuous data we can calculate SDs and SEMs and 95%  confi dence 
intervals of rates (or numbers, or scores) and of proportions or percentages.

    SD  of number n =  Ön   
  SD of difference between two numbers n 

1
  and n 

2
  =     1 2 1 2(n n ) / (n n )− +     

  SD proportion =     p(1 p)−     

  SEM proportion =     p(1 p) / n−       

 We assume that the distribution of proportions of many samples follows a normal 
distribution (in this case called the  z -distribution) with 95% confi dence intervals 
between:

     p 2 p (1 p) / n± −    

a formula looking very similar to the 95% CI intervals formula for continuous data

     
2mean 2 SD / n±     

 Differences and sums of the SDs and SEMs of proportions can be calculated 
similarly to those of continuous data:

     

1 1 2 2
of differences

1 2

p (1 p ) p (1 p )
SEM

n n

− −
= +

   

with 95% CI intervals: p 
1
 −p 

2
  ± 2. SEMs 

 More often than with continuous data, proportions of different samples are 
assessed for their ratios rather than difference or sum. Calculating the 95% CI inter-
vals of it is not simple. The problem is that the ratios of many samples do not follow 
a normal distribution, and are extremely skewed. It can never be less than 0 but can 
get very high. However, the logarithm of the relative risk is approximately sym-
metrical. Katz’s method takes advantage of this symmetry:

     

b/a d/c
95% CI of log RR  log RR 2

a b c d
= ± +

+ +     

http://10.1007/978-94-007-2863-9_3
http://10.1007/978-94-007-2863-9_3
http://10.1007/978-94-007-2863-9_3
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 This equation calculates the CIs of the logarithm of the RR. Take the 
 antilogarithm (shift and 10 x  buttons of the pocket calculator) to determine the 
95% CIs of the RR. 

 Figure  1.4  shows the distribution of RRs and the distribution of the logarithms of 
the RRs, and illustrates that the transformation from skewed data into their loga-
rithms is a useful method to obtain an approximately symmetrical distribution, that 
can be analyzed according to the usual approach of SDs, SEMs and CIs.   

    5   Different Types of Data: Correlation Coeffi cient 

 The SD and SEM of paired data includes a term called r as described above. For the 
calculation of r, otherwise called R, we have to take into account that paired com-
parisons, e.g., those of two drugs tested in one subject generally have a different 
variance from those of comparison of two drugs in two different subjects. This is so, 
because between subjects variability of symptoms is eliminated and because the 
chance of a subject responding benefi cially the fi rst time is more likely to respond 
benefi cially the second time as well. We say there is generally a positive correlation 
between the responses of one subject to two treatments. 

 Figure  1.5  gives an example of this phenomenon. X-variables, e.g., blood pres-
sures after the administration of compound 1 or placebo, y-variables blood pressures 
after the administration of compound 2 or test-treatment.  

 The SDs and SEMs of the paired sums or differences of the x- and y-variables 
are relevant to estimate variances in the data and are just as those of continuous 
data needed before any statistical test can be performed. They can be calculated 
according to:

     
2 2

paired sum 1 2 1 2SD (SD  SD 2 r SD ·SD )= + +
   

Probability distribution  Fig. 1.4    Ratios of 
proportions unlike continuous 
data usually do not follow a 
normal but a skewed 
distribution (values vary from 
0 to ¥). Transformation into 
the logarithms provides 
approximately symmetric 
distributions ( thin curve )       
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2 2

paired differrence 1 2 1 2SD (SD  SD 2 r SD ·SD )= + −
   

where r = correlation coeffi cient, a term that will be explained soon. 
 Likewise:

     
2 2

paired sum 1 2 1 2SEM (SD  SD 2 r SD ·SD ) /n= + +
   

     
2 2

paired differrence 1 2 1 2SEM (SD  SD 2 r SD ·SD ) /n= + −
   

where n = n 
1
  = n 

2
  

 and that   :

     
2 2

(X X)(Y Y)
r

(X X) (Y Y)

− −
=

− −

∑
∑ ∑    

r is between −1 and +1, and with unpaired data r = 0 and the SD and SEM  formulas 
reduce accordingly (as described above). The fi gure also shows a line, called the 
regression line, which presents the best-fi t summary of the data, and is the calcu-
lated method that minimizes the squares of the distances from the line. 

 The 95% CIs of a regression line can be calculated and is drawn as area between 
the dotted lines in Fig.  1.6 . It is remarkable that the borders of the straight regression 
line are curved although we do not allow for a non linear relationship between the 
x-axis and y-axis variables. More details on regression analysis will be given in 
Chaps.   2     and   3    .  

 In the above few lines we described continuous normally distributed or t-distrib-
uted data, and rates and their proportions or percentages. We did not yet address 
data ordered as ranks. This is a special method to transform skewed data into an 
approximately normal distribution, and is in that sense comparable with logarithmic 
transformation of relative risks (RRs). In Chap.   3     the tests involving this method 
will be explained.  

  Fig. 1.5    A positive 
correlation between the 
response of one subject to 
two treatments       
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    6   Stratifi cation Issues 

 When published, a randomized parallel-group drug trial essentially includes a table 
listing all of the factors, otherwise called baseline characteristics, known possibly to 
infl uence outcome. E.g., in case of heart disease these will probably include apart 
from age and gender, the prevalence in each group of diabetes, hypertension, choles-
terol levels, smoking history. If such factors are similar in the two groups, then we 
can go on to attribute any difference in outcome to the effect of test-treatment over 
reference-treatment. If not, we have a problem. Attempts are made to retrieve the 
situation by multiple variables analysis allocating part of the differences in outcome 
to the differences in the groups, but there is always an air of uncertainty about the 
validity of the overall conclusions in such a trial. This issue is discussed and methods 
are explained in Chap.   8    . Here we discuss ways to avoid this problem. Ways to do so, 
are stratifi cation of the analysis and minimization of imbalance between treatment 
groups, which are both techniques not well-known. Stratifi cation of the analysis 
means that relatively homogeneous subgroups are analyzed separately. The limita-
tion of this approach is that it can not account for more than two, maybe three, vari-
ables, and that, thus, major covariates may be missed. Minimization can manage 
more factors. The investigators fi rst classify patients according to the factors they 
would like to see equally presented in the two groups, then randomly assign treat-
ment so that predetermined approximately fi xed proportions of patients from each 
stratum receive each treatment. With this method the group assignment does not rely 
solely on chance but is designed to reduce any difference in the distribution of unsus-
pected contributing determinants of outcome so that any treatment difference can 
now be attributed to the treatment comparison itself. A good example of this method 
can be found in a study by Kallis et al.  (  1994  ) . The authors stratifi ed in a study of 
aspirin versus placebo before coronary artery surgery the groups according to age, 
gender, left ventricular function, and number of coronary arteries affected. Any other 
prognostic factors other than treatment can be chosen. If the treatments are given in 
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  Fig. 1.6    Example of a linear regression line of two paired variables (x- and y-values), the regres-
sion line provides the best fi t line. The dotted curves are 95% CIs that are curved, although we do 
not allow for a non linear relationship between x and y variables       
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a double-blind fashion, minimization infl uences the  composition of the two groups 
but does not infl uence the chance of one group entering in a particular treatment arm 
rather than the other. 

 There is an additional argument in favor of stratifi cation/minimization that counts 
even if the risk of signifi cant asymmetries in the treatment groups is small. Some 
prognostic factors have a particularly large effect on the outcome of a trial. Even 
small and statistically insignifi cant imbalances in the treatment groups may then 
bias the results. E.g., in a study of two treatment modalities for pneumonia (Graham 
and Bradley  1978  )  including 54 patients, 10 patients took prior antibiotic in the 
treatment group and 5 did in the control group. Even though the difference between 
5/27 and 10/27 is not statistically signifi cant, the validity of this trial was being chal-
lenged, and the results were eventually not accepted.  

    7   Randomized Versus Historical Controls 

 A randomized clinical trial is frequently used in drug research. However, there is 
considerable opposition to the use of this design. One major concern is the ethical 
problem of allowing a random event to determine a patient’s treatment. Freirich 
 (  1983  )  argued that a comparative trial, which shows major differences between two 
treatments, is a bad trial because half of the patients have received an inferior treat-
ment. On the other hand, in a prospective trial randomly assigning treatments avoids 
many potential biases. Of more concern is the trial in which a new treatment is com-
pared to an old treatment when there is information about the effi cacy of the old 
treatment through historical data. In this situation the use of historical data for com-
parison with data from the new treatment will shorten the length of the study because 
all patients can be assigned to the new treatment. The current availability of multi-
variable statistical procedures which can adjust the comparison of two treatments 
for differing presence of other prognostic factors in the two treatment arms, has 
made the use of historical controls more appealing. This has made randomization 
less necessary as a mechanism for ensuring comparability of the treatment arms. 
The weak point in this approach is the absolute faith one has to place in the multi-
variable model. In addition, some confounding variables e.g., time effects, simply 
can not be adjusted, and remain unknown. Despite the ethical argument in favor of 
historical controls we must therefore emphasize the potentially misleading aspects 
of trials using historical controls.  

    8   Factorial Designs 

 The majority of drug trials are designed to answer a single question. However, in 
practice many diseases require a combination of more than one treatment modali-
ties. E.g., beta-blockers are effective for stable angina pectoris but beta-blockers 
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plus calcium channel blockers or beta-blockers plus calcium channel blockers plus 
nitrates are better (Table  1.1 ). Not addressing more than one treatment modality in 
a trial is an unnecessary restriction on the design of the trial because the assessment 
of two or more modalities in on a trial pose no major mathematical problems.  

 We will not describe the analytical details of such a design but researchers should 
not be reluctant to consider designs of such types. This is particularly so, when the 
recruitment of large samples causes diffi culties.  

    9   Conclusions 

 What you should know after reading this chapter:

    1.    Scientifi c rules governing controlled clinical trials include prior hypotheses, 
valid designs, strict description of the methods, uniform data analysis.  

    2.    Effi cacy data and safety data often involve respectively continuous and propor-
tional data.  

    3.    How to calculate standard deviations and standard errors of the data.  
    4.    You should have a notion of negative/positive correlation in paired comparisons, 

and of the meaning of the so-called correlation coeffi cient.  
    5.    Mean ± standard deviation summarizes the data, mean ± standard error summa-

rizes the means of many trials similar to our trial.  
    6.    You should know the meaning of historical controls and factorial designs.          
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   Table 1.1    The factorial design for angina pectoris patients treated with calcium 
channel blockers with or without beta-blockers   

 Calcium channel blocker  No calcium channel blocker 

 Beta-blocker  Regimen I  Regimen II 
 No beta-blocker  Regimen III  Regimen I 
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    Chapter 2   
 The Analysis of Effi cacy Data                  

    1   Overview    

 Typical effi cacy endpoints have their associated statistical techniques. For example, 
values of continuous measurements (e.g., blood pressures) require the following 
statistical techniques:

    (a)    if measurements are normally distributed: t-tests and associated confi dence 
intervals to compare two mean values; analysis of variance (ANOVA) to com-
pare three or more,  

    (b)    if measurements have a non-normal distribution: Wilcoxon or Mann-Whitney 
tests with confi dence intervals for medians.     

 Comparing proportions of responders or proportions of survivors or patients 
with no events involves binomial rather than normal distributions and requires a 
completely different approach. It requires a chi-square test, or a more complex 
technique otherwise closely related to the simple chi-square test, e.g., Mantel 
Haenszl summary chi-square test, logrank test, Cox proportional hazard test etc. 
Although in clinical trials, particularly phase III–IV trials, proportions of respond-
ers and proportion of survivors is increasingly an effi cacy endpoint, in many other 
trials proportions are used mainly for the purpose of assessing safety endpoints, 
while continuous measurements are used for assessing the main endpoints, mostly 
effi cacy endpoints. We will, therefore, focus on statistically testing continuous 
measurements in this chapter and will deal with different aspects of statistically 
testing proportions in the next chapter. 
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 Statistical tests all have in common that they try to estimate the probability that 
a difference in the data is true rather than due to chance. Usually statistical tests 
make use of a so-called  test statistic :  

 Chi-square  For the chi-square test 

 t  For the t-test 
 Q  For nonparametric comparisons 
 Q 1   For nonparametric comparisons 
 q  For Newman-Keuls test 
 q 1   For Dunnett test 
 F  For analysis of variance 
 Rs  For Spearman rank correlation test. 

 These test statistics can adopt different sizes. In the Appendix of this book we 
present tables for t-, chi-square- and F-, Mann-Whitney-, and Wilcoxon-rank-
sum-tests, but additional tables are published in most textbooks of statistics (see 
References). Such tables show us the larger the size of the test statistic, the 
more likely it is that the null-hypothesis of no difference from zero or no differ-
ence between two samples is untrue, and that there is thus a true difference or true 
effect in the data. Most tests also have in common that they are better sensitive or 
powerful to demonstrate such a true difference as the samples tested are large. So, 
the test statistic in most tables is adjusted for sample sizes. We say that the sample 
size determines the degrees of freedom, a term closely related to the sample size.  

    2   The Principle of Testing Statistical Signifi cance 

 The human brain excels in making hypotheses but hypotheses may be untrue. When 
you were a child you thought that only girls could become a doctor because your fam-
ily doctor was a female. Later on, this hypothesis proved to be untrue. Hypotheses must 
be assessed with hard data. Statistical analyses of hard data starts with assumptions:

    1.    our study is representative for the entire population (if we repeat the trial, differ-
ence will be negligible).  

    2.    All similar trials will have the same standard deviation (SD) or standard error of 
the mean (SEM).     

 Because biological processes are  full  of variations, statistics will give no certain-
ties only chances. What chances? Chances that hypotheses are true/untrue. What 
hypotheses?: e.g.:

    1.    our mean effect is not different from a 0 effect,  
    2.    it is really different from a 0 effect,  
    3.    it is worse than a 0 effect.     

 Statistics is about estimating such chances/testing such hypotheses. Please note 
that trials often calculate differences between a test treatment and a control treatment 
and, subsequently, test whether this difference is larger than 0. A  simple way to 
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reduce a study of two groups of data and, thus, two means to a single mean and single 
distribution of data, is to take the difference between the two and compare it with 0. 

 In the past chapter we explained that the data of a trial can be described in the 
form of a normal distribution graph with SEMs on the x-axis, and that this method 
is adequate to test various statistical hypotheses. We will now focus on a very impor-
tant hypothesis, the null-hypothesis. What it literally means is: no difference from a 
0 effect: the mean value of our sample is not different from the value 0. We will try 
and make a graph of this null-hypothesis. 

 What does it look like in graph? H1 in Fig.  2.1  is a graph based on the data of our 
trial with SEMs distant from mean on the x-axis (z-axis). H0 is the same graph with 
a mean value of 0 (mean ± SEM = 0 ± 1). Now, we will make a giant leap from our 
data to the entire population, and we can do so, because our data are representative 
for the entire population. H1 is also the summary of the means of many trials similar 
to ours (if we repeat, differences will be small, and summary will look alike). H0 is 
also the summary of the means of many trials similar to ours but with an overall 
effect of 0. Now our mean effect is not 0 but 2.9. Yet it could be an outlier of many 
studies with an overall effect of 0. So, we should think from now on of H0 as the 
distribution of the means of many trials with overall effect of 0. If H0 is true, then 
the mean of our study is part of H0. We can not prove anything, but we can calculate 
the chance/probability of this possibility.  

 A mean value of 2.9 is far distant from 0. Suppose it belongs to H0. Only 5% of 
the H0 trials have their means >2.1 SEMs distant from 0, because the area under the 
curve (AUC) >2.1 distant from 0 is only 5% of total AUC. Thus, the chance that our 
mean belongs to H0 is <5%. This is a small chance, and we reject this chance and 
conclude there is <5% chance to fi nd this result. We, thus, reject the H0 of no 
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  Fig. 2.1    Null-hypothesis ( H  
 0 
 ) and alternative hypothesis  H  

 1 
  of an example of experimental data 

with sample size (n) = 20 and mean = 2.9 SEMs, and a t-distributed frequency distribution       
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 difference from 0 at P < 0.05. The AUC right from 2.101 (and left from −2.101 as will 
be soon explained) is called alpha = area of rejection of H0. Our result of 2.9 is far 
from 2.101. The probability of fi nding such a result may be a lot smaller than 5%. 
Table  2.1  shows the t-table that can tell us exactly how small this chance truly is.  

 The four right-hand columns are trial results expressed in SEM-units distant 
from 0  (= also t-values ). The upper row gives the AUC-values right from trial 
results. The left-hand column presents adjustment for numbers of patients (degrees 
of freedom (dfs), in our example two samples of 10 gives (20 − 2) = 18 dfs). 

 AUC right from 2.9 means → right from 2.878 means → this AUC < 0.01. And so 
we conclude that our probability not < 0.05 but even < 0.01. Note: the t-distribution 
is just an adjustment of the normal distribution, but a bit wider for small samples. 
With large samples it is identical to the normal distribution. For proportional data 
always the normal distribution is applied. 

  Note:   Unlike the t-table in the Appendix, the above t-table gives two-tailed = two-
sided AUC-values. This means that the left and right end of the frequency distribution 
are tested simultaneously. A result >2.101 here means both >2.101 and < −2.101. If 
a result of + 2.101 was tested one sided, the p-value would be 0.025 instead of 0.05 
(see t-table “Appendix”).   

    3   The t-Value = Standardized Mean Result of Study 

 The t-table expresses the mean result of a study in SEM-units. Why does it make 
sense to express mean results in SEM-units? Consider a cholesterol reducing com-
pound, which reduces plasma cholesterol by 1.7 mmol/l ± 0.4 mmol/l (mean ± SEM). 
Is this reduction statistically signifi cant? Unfortunately, there are no statistical tables 
for plasma cholesterol values. Neither are there tables for blood pressures, body 
weights, hemoglobin levels etc. The trick is to standardize your result.

     

Mean SEM
Mean SEM t  value

SEM SEM
± = ± = − ±

    

 This gives us our test result in SEM-units with an SEM of 1. Suddenly, it becomes 
possible to analyze every study by using one and the same table, the famous t-table. 
How do we know that our data follow a normal or t frequency distribution? We have 
goodness of fi t tests (Chap.   42    ). 

 How was the t-table made? It was made in an era without pocket calculators, and 
it was hard work. Try and calculate in three digits the square root of the number 5. 
The result is between 2 and 3. The fi nal digits are found by a technique called “tight-
ening the data”. The result is larger than 2.1, smaller than 2.9. Also larger than 2.2, 
smaller than 2.8, etc. It will take more than a few minutes to fi nd out the closest 
estimate of     5    in three digits. This example highlights the hard work done by the 
U.S. Government’s Work Project Administration by hundreds of women during the 
economic depression in the 1930s.  
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   Table 2.1    t-table    Two-tailed P-value (df = degree of freedom) 

 df   0.1    0.05    0.01    0.002  

  1   6.314  12.706  63.657  318.31 
  2   2.920  4.303  9.925  22.326 
  3   2.353  3.182  5.841  10.213 
  4   2.132  2.776  4.604  7.173 
  5   2.015  2.571  4.032  5.893 
  6   1.943  2.447  3.707  5.208 
  7   1.895  2.365  3.499  4.785 
  8   1.860  2.306  3.355  4.501 
  9   1.833  2.262  3.250  4.297 
  10   1.812  2.228  3.169  4.144 
  11   1.796  2.201  3.106  4.025 
  12   1.782  2.179  3.055  3.930 
  13   1.771  2.160  3.012  3.852 
  14   1.761  2.145  2.977  3.787 
  15   1.753  2.131  2.947  3.733 
  16   1.746  2.120  2.921  3.686 
  17   1.740  2.110  2.898  3.646 
  18   1.734  2.101  2.878  3.610 
  19   1.729  2.093  2.861  3.579 
  20   1.725  2.086  2.845  3.552 
  21   1.721  2.080  2.831  3.527 
  22   1.717  2.074  2.819  3.505 
  23   1.714  2.069  2.807  3.485 
  24   1.711  2.064  2.797  3.467 
  25   1.708  2.060  2.787  3.450 
  26   1.706  2.056  2.779  3.435 
  27   1.701  2.052  2.771  3.421 
  28   1.701  2.048  2.763  3.408 
  29   1.699  2.045  2.756  3.396 
  30   1.697  2.042  2.750  3.385 
  40   1.684  2.021  2.704  3.307 
  60   1.671  2.000  2.660  3.232 
  120   1.658  1.950  2.617  3.160 
 ¥  1.645  1.960  2.576  3.090 

    4   Unpaired t-Test 

 So far, we assessed a single mean versus 0, now we will assess two means versus 
each other. For example, a parallel-group study of two groups tests the effect of two 
beta-blockers on cardiac output.  

 Mean ± SD  SEM 2  = SD 2 /n 

 Group 1 (n =10)  5.9 ± 2.4 L/min  5.76/10 
 Group 2 (n =10)  4.5 ± 1.7 L/min  2.89/10 
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   Calculate: mean 
1
  − mean 

2
  = mean difference =1.4  

  Then calculate pooled     2 2
1 2SEM SEM  SEM 0.930= + =       

   Note :   for SEM of difference: take the square root of the sums of squares of separate 
SEMs and so reduce analysis of two means and two SEMS to one mean and one 
SEM. The signifi cance of difference between two unpaired samples of continuous 
data is assessed by the formula:

     
2 2

1 2 1 2mean  mean SEM SEM mean difference pooled SEM− ± + = ±
     

 This formula presents again a t-distribution with a new mean and a new SEM, 
i.e., the mean difference and the pooled SEM. The wider this new mean is distant 
from zero and the smaller its SEM is, the more likely we are able to demonstrate a 
true effect or true difference from no effect. The size of the test statistic is calculated 
as follows.

     

mean difference 
The size of t 1.4 / 0.930 1.505

pooled SEM
= = =

    

 With n = 20, and two groups we have 20 − 2 = 18 degrees of freedom. The t-table 
shows that a t-value of 1.505 provides a chance of >5% that the null hypothesis of 
no effect can be rejected. The null-hypothesis cannot be rejected. 

   Note :   If the standard deviations are very different in size, e.g., if one is twice the 
other, then a more adequate calculation of the pooled standard error is as follows.

     

2 2
1 1 2 2

1 2 1 2

(n 1)SD (n 1)SD 1 1
Pooled SEM ( )

n n 2 n n

− + −
= × +

+ −
     

 The lower graph of Fig.  2.2  is the probability distribution of this t-distribution. 
H0 (the upper graph) is an identical distribution with mean = 0 instead of 
mean = mean 

1
 -mean 

2
  and with SEM identical to the SEM of H1, and is taken as the 

null- hypothesis in this particular approach. With n = 20 (18 dfs) we can accept that 
95% of all t-distributions with no signifi cant treatment difference from zero must 
have their means between −2.101 and +2.101 SEMs distant from zero. The chance 
of fi nding a mean value of 2.101 SEMs or more distant from 0 is 5% or less (we say 
 a  = 0.05, where     a   is the chance of erroneously rejecting the null hypothesis of no 
effect). This means that we can reject the null-hypothesis of no difference at a prob-
ability (P) = 0.05. We have 5% chance of coming to this result, if there were no 
 difference between the two samples. We, therefore, conclude that there is a true dif-
ference between the effects on cardiac output of the two compounds.  

 Also the F- and chi-square test reject, similarly to the t-test, reject the null- 
hypothesis of no treatment effect if the value of the test statistic is larger than 
would occur in 95% of the cases if the treatment had no effect. At this point we 
should emphasize that when the test statistic is not big enough to reject the null- 
hypothesis of no treatment effect, investigators often report no statistically 



215 Null-Hypothesis Testing of Three or More Unpaired Samples 

 signifi cant  difference and discuss their results in terms of documented proof that 
the treatment had no effect. All they really did, was, fail to demonstrate that it did 
have an effect. The distinction between positively demonstrating that a treatment 
had no effect and failing to demonstrate that it does have an effect, is subtle but 
very important, especially with respect to the small numbers of subjects usually 
enrolled in a trial. A study of treatments that involves only a few subjects and then 
fails to reject the null-hypothesis of no treatment effect, may arrive at that conclu-
sion because the statistical procedure lacked power to detect the effect because of 
a too small sample size, even though the treatment did have an effect. We will 
address this problem in more detail in Chap.   6    .  

    5   Null-Hypothesis Testing of Three or More 
Unpaired Samples 

 If more than two samples are compared, things soon get really complicated, and the 
unpaired t-test can no longer be applied. Usually, statistical software, e.g., SAS 
or SPSS Statistical Software, will be used to produce F- or P-values, but the 
Table  2.2  gives a brief summary of the principles of multiple groups analysis of 
variance (ANOVA) applied for this purpose. With ANOVA the outcome variable 
(Hb,  hemoglobin-level in the example) is often called the dependent variable, while 
the groups-variable is called the independent factor (SPSS  : Compare means; one-
way ANOVA). If additional groups-variables are in the data (gender, age classes, 
comorbidities), then SPSS requires using the General Linear Model (univariate).   

−3 −2 −1 0 1 2 3

H1

H0

4 5 SEMs

  Fig. 2.2    Two t- distributions with n = 20: lower curve  H1  or actual SEM-distribution of the data, 
upper curve  H0  or null hypothesis of the study       
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   Table    2.2    Multiple groups ANOVA   

  

Unpaired ANOVA 3 groups
Total variation

Between group variation within group variation    

 In ANOVA: 
 Variations are expressed as sums of squares (SS) and can be added up to obtain total variation. 
Assess whether between-group variation is large compared to within-group variation 

 Group  n patients  Mean  SD 

 1  –  –  – 
 2  –  –  – 
 3  –  –  – 

 
    ( )Grand mean mean 1 2 3 / 3= + +

   
 
    

( ) ( )2 2

between groups 1 2SS n  mean grand mean n  mean grand mean .= − + − +…
   

 
    

( ) ( )2 2
within groups 1 2SS n 1 SD n 1 SD ..= − + − +……

   

      between within

SS between groups /dfs 
F  MS  / MS

SS within groups / dfs
= =

   

 F-table gives P-value 

 Effect of three compounds on Hb 

 Group  n patients  Mean  SD 

 1  16   8.7125  0.8445 
 2  16  10.6300  1.2841 
 3  16  12.3000  0.9419 

 
    ( )Grand mean mean 1 2 3 / 3 10.4926= + + =

   
 
    

( ) ( )2 2

between groupsSS 16 8.7125 10.4926 16 10.6300 10.4926 .= − + − +…
   

 
    

2 2
within groupsSS 15 0.8445 15 1.2841= × + × +……

   
 F = 49.9 and so P < 0.001 

  Note: In case two groups: ANOVA= unpaired T-test (F = T 2 ). dfs means degrees of freedom, and 
equals 3n − 3 for SS 

within
 , and (3 − 1) = 2 for SS 

between
   

    6   Three Methods to Test Statistically a Paired Sample 

 Table  2.3  gives an example of a placebo-controlled clinical trial to test effi cacy of a 
sleeping drug.  

    6.1   First Method 

 First method is simply calculating the SD of the mean difference d by looking at 
the column of differences (d-values) and using the standard formula for variance 
between data
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2

paired differences

( )
SD 1.79

1

d d

n

−
= =

−
∑

    

 Next we fi nd SEM of the mean difference by taking     SD / n    =  0.56 
 Mean difference ± SEM = 1.78 ± 0.56 
 Similarly to the above unpaired t-test we now can test the null hypothesis of no 

difference by calculating

     

Mean difference
t 1.78 / 0.56 3.18 with a sample of 10 (degrees of freedom 10 1)

SEM
= = = = −

    

 The t-table shows that P < 0.02. We have <2% chance to fi nd this result if there were 
no difference, and accept that this is suffi cient to assume that there is a true difference.  

    6.2   Second Method 

 Instead of taking the column of differences we can take the other two columns 
and use the formula as described in Chap.   1     for calculating the SD of the paired 
differences = SD 

paired differrence
 

     
2 2
1 2 1 2(SD SD  - 2r·SD ·SD )= +

   

     
2 2

1(0.76 1.26  - 2r·0.76 ·1.26)= +
    

 As r can be calculated to be + 0.26, we can now conclude that 
 SD 

paired differrence
  = 1.79 

 The remainder of the calculations is as above.  

   Table 2.3    Example of a placebo-controlled clinical trial to test effi cacy of a 
sleeping drug   

 Hours of sleep 

 Patient  Drug  Placebo  Difference  Mean  SS 

 1  6.1  5.2  0.9  5.7  0.41 
 2  7.0  7.9  -0.9  7.5 
 3  8.2  3.9  4.3 
 4  7.6  4.7  2.9 
 5  6.5  5.3  1.2 
 6  7.8  5.4  3.0 
 7  6.9  4.2  2.7 
 8  6.7  6.1  0.6 
 9  7.4  3.8  3.6 
 10  5.8  6.3  -0.5 
 Mean  7.06  5.28  1.78 
 SD  0.76  1.26  1.77 
 Grand mean  6.17 
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    6.3   Third Method 

 The third method is the F test using analysis of variance (ANOVA). We have to 
calculate SS (sum of squares) e.g., for subject 1:

   SS 
within subject 1

  = (6.1−5.7)  2  + (5.2−5.7)  2  = 0.41 (Table  2.3 )  
  grand mean (7.06 + 5.28)/2 = 6.17 (Table  2.3 )  
  SS 

within subject
  = SS 

within subject 1
  + SS 

within subject 2
  + SS 

within subject 3
  + …..  

  SS 
treatment

  = (7.06−6.17)  2  + (5.28−6.17)  2  (Table  2.3 )  
  SS 

residual
  = SS 

within subject
  − SS 

treatment
     

 The ANOVA table (Table  2.4 ) shows the procedure. Note m is number of treat-
ments, n is number of patients. The ANOVA is valid not only for two repeated 
measures but also for multiple repeated measures. For two repeated measures it is 
actually equal to the paired t-test (= fi rst method). The results of the analysis of the 
two tests are similar, with F being equal to t 2 .  

 Similarly, for unpaired samples, with two samples the one way ANOVA already 
briefl y mentioned in Chap.   1     is equal to the unpaired t-test, but one-way ANOVA 
can also be used for multiple unpaired samples. 

 The above data can also be presented in the form of a linear regression graph. 
 Paired data can also be laid out in the form of linear regression (Fig   .  2.3 )

     ( ) ( )y a bx effect drug a b effect placebo= + = +
   

   Table 2.4    ANOVA table of these data   

 Source of variation 
 Sum of 
squares (SS) 

 Degrees of 
freedom (dfs) 

 Mean square 
(MS = SS/dfs) 

 
    

MS treatment
F

MS residual
=    

 Between subjects   2 (m)  F = 10.11, p < 0.02 
 Within subjects  10 (n × (m − 1)) 
 Treatments   1 (m − 1) 
 Residual   9 (n − 1) 
 Total  22 

  Fig. 2.3    Paired data laid out 
in the form of linear 
regression       
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which can be assessed in the form of ANOVA   : 

     

2 2
2

22

regression sum of squares ( (x x) (y y)) SP x·y values
F r

total sum of squares SS x values ·SS y values(x x) (y y)

− − −
= = = =

− −− −

∑
∑ ∑    

   SS regression = SP 2  x·y -values / SS x -values  
  SS total = SS y  
  SS regression/SS total = r 2   
  SP indicates sum of products.    

 The ANOVA table (Table  2.5 ) gives an alternative interpretation of the correla-
tion coeffi cient; the square of the correlation coeffi cient, r, equals the regression 
sum of squares divided by the total sum of squares (0.26 2  = 0.0676 = 1.017/15.044) 
and, thus, is the proportion of the total variation that has been explained by the 
regression. We can say that the variances in the drug data are only for 6.76% 
determined by the variances in the placebo data, and that they are for 93.24% 
independent of the placebo data. With strong positive correlations, e.g., close to 
+1 the formula for SD and thus SEM reduces to a very small size (because 
[SD  

1
  2   + SD  

2
  2   − 2 r SD 

1
 . SD 

2
 ] will be close to zero), and the paired t-test produces 

huge sizes of t and thus huge sensitivity of testing. The above approach cannot be 
used for estimating signifi cance of differences between two paired samples. And 
the method in the presented form is not very relevant. It starts, however, to be 
relevant, if we are interested in the dependency of a particular outcome variable 
upon several factors. For example, the effect of a drug is better than placebo but 
this effect still gets better with increased age. This concept can be represented by 
a multiple regression equation

     +1 1 2 2y = a + b x b x    

which in this example is 

     ( ) ( )1 2drug response a b placebo response b age= + ⋅ + ⋅
    

 Although it is no longer easy to visualize the regression, the principles involved 
are the same as with linear regression. In the Chaps.   14     and   15     this subject will be 
dealt with more explicitly.   

   Table 2.5    ANOVA table for the linear regression between paired samples   

 Source of 
variation 

 Sum of 
squares (SS) 

 Degrees of 
freedom (dfs) 

 Mean square 
(MS = SS/dfs) 

 
    

regression
F

MS residual
=

   

 Regression between 
samples 

  1.017  1  1.017  0.61, P > 0.05 

 Residual  14.027  8  1.753 
 Total  15.044  9  1.672 
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    7   Null-Hypothesis Testing of Three or More 
Paired Samples 

 If more than two paired samples are compared, things soon get really complicated, 
and the paired  t -test can no longer be applied. Usually, statistical software (SAS, 
SPSS)   will be used to produce F- and P-values, but the Table  2.6  gives a brief sum-
mary of the principles of ANOVA for multiple paired observations, used for this 
purpose. A more in-depth treatment of repeated measures methods will be given in 
the Chaps.   54     and   55    .   

   Table 2.6    Repeated measurements ANOVA   

  Paired ANOVA 3 treatments in single group
Total variation

Between subject variation Within-subject variation

Between treatment variation Residual variation

    

 Variations expressed as sums of squares (SS) and can be added up 
 Assess whether between treatment variation is large compared to residual variation 

 Subject  Treatment 1  Treatment 2  Treatment 3  SD 2  

 1  –  –  –  – 
 2  –  –  –  – 
 3  –  –  –  – 
 4  –  –  –  – 
 Treatment mean  –  –  – 

Grand mean = (treatment mean 1 + 2 + 3)/ 3 = …..  

 
    

2 2 2
within subject 1 2 3SS SD SD SD= + + +…

   
 
    ( ) ( )2 2

treatmentSS treatment mean 1 grand mean treatment mean 2 grand mean ..= − + − +…
   

 
    residual within subject treatmentSS SS SS= −

   
 

     

treatment

 residual

SS  /dfs 
F 

SS  / dfs
=

   

 F table gives P-value. 

 Effect of three treatments on vascular resistance (blood pressure/cardiac output) 

 Person  Treatment 1  Treatment 2  Treatment 3  SD 2  

 1  22.2   5.4  10.6  147.95 
 2  17.0   6.3   6.2   77.05 
 3  14.1   8.5   9.3   18.35 
 4  17.0  10.7  12.3   21.4 
 Treatment mean  17.58   7.73   9.60 

 Grand mean = 11.63 (continued)
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    within subjSS 147.95 77.05 .= + +…

   
 
    ( ) ( )2 2

treatmentSS 17.58 11.63 7.73 11.63 .= − + − +…
   

 
    residual within subject treatmentSS SS SS= −

   
 
    

= <F 18.2 and so P 0.025
   

  Note: in case of two treatments: repeated measurements-ANOVA produces the same result as the 
paired t-test (F = t 2 ), dfs = degrees of freedom equals (3 − 1) = 2 for SS 

treatment
 , and (4 − 1) = 3 for 

SS 
residual

   

Table 2.6 (continued)

    8   Null-Hypothesis Testing with Complex Data 

 ANOVA is briefl y addressed in the above Sects.  6  and  7 . It is a powerful method 
for the analysis of complex data, and will be addressed again in many of the 
following chapters of this book. ANOVA compares mean values of multiple 
cells, and can be classifi ed in several manners: (1) one-way or two-way 
(Table  2.7 , left example gives one-way ANOVA with three cells, right example 
two-way ANOVA with six cells), (2) unpaired or paired data, if the cells contain 
either non-repeated or repeated data (otherwise called repeated measures 
ANOVA), (3) data with or without replication, if the cells contain either multi-
ple data or a single datum, (4) balanced or unbalanced, if the cells contains 
equal or differing numbers of data.  

 Sometimes samples consist of data that are partly repeated and partly non-
repeated. For example, ten patients measured ten times produces a sample of n = 100. 
It is not appropriate to include this sample in an ANOVA-model as either entirely 
repeated or non-repeated. It may be practical, then, to use the means per patient as 
a summary measure without accounting its standard deviation, and perform simple 
tests using the summary measures per patient only. Generally, the simpler the statis-
tical test the more statistical power.  

   Table 2.7    ANOVA compares multiple cells with means, and can be classifi ed in several ways   

 (1) One-way  Two-way 

   Mean blood pressure  Mean results of treatments 1–3 

   Group 1  ……(SD…)  1  2  3 
   Group 2  ……  Males  …  …  … 
   Group 3  ……  Females  …  …  … 

 (2) Unpaired data  Unpaired data/paired data 
 (3) With replication  With replication/without replication 
 (4) Balanced/unbalanced  Balanced/unbalanced 
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    9   Paired Data with a Negative Correlation 

 Not only crossover but also parallel-group studies often include an element of 
 self-controlling. For example, observations before, during, and after treatment are 
frequently used as the main control on experimental variation. Such repeated 
measures will generally have a positive correlation: those who respond well  during 
the fi rst observation are more likely to do so in the second. This is, however, not 
necessarily so. When drugs of completely different classes are compared, patients 
may fall apart into different populations: those who respond better to one and 
those who respond better to the other drug. For example, patients with angina 
pectoris, hypertension, arrhythmias, chronic obstructive pulmonary disease, unre-
sponsive to one class of drugs, may respond very well to a different class of drugs. 
This situation gives rise to a negative correlation in a paired comparison. Other 
examples of negative correlations between paired observations include the 
 following. A negative correlation between subsequent observations in one subject may 
occur, because fast-responders are more likely to stop responding earlier. A negative 
correlation may exist in the patient characteristics of a trial, e.g., between age and 
vital lung capacity, and in outcome variables of a trial, e.g., between severity of 
heart attack and ejection fraction. Negative correlations in a paired comparison 
reduce the sensitivity not only of studies testing differences but also of studies 
testing equivalences (Chap.   4    ). 

    9.1   Studies Testing Signifi cance of Differences 

 Figure  2.4  gives a hypothesized example of three studies: the left graph shows a 
parallel-group study of ten patients, the middle and right graph show self-controlled 
studies of fi ve patients each tested twice. T-statistics is employed according to the 
formula 

     
= d

t
SE     

 Where     d    is the mean difference between the two sets of data (6 − 3 = 3) and the 
standard error (SE) of this difference is calculated for the left graph data accord-
ing to

     

+ =
2 2
1 2

1 2

SD SD
0.99

n n
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 SD 
1
 and SD 

2
  are standard deviations and n  

1
  and n  

2
  are numbers of observations 

in each of the groups. We assume that n  
1
  = n  

2
  = n.

     = =t 3 / 0.99 3.0     

 With ten observations we can reject the null-hypothesis at p = 0.04. 
 With a positively paired comparison (middle graph) we have even more sensitivity. 
SE is calculated slightly different   

     

2(d d) / (n 1)
SE 0

n

− −
= =

∑
   

where d is the observed change in each individual and     d    is its mean.

     = = = ∞t / SE 3 / 0d    

with n = 5 we can reject the null-hypothesis at p < 0.001. 
 The right graph gives the negative correlation situation. SE calculated similarly 

to the middle graph data is 1.58, which means that

     = =t 3 /1.58 1.89     

 The null-hypothesis of no difference cannot be rejected. Differences are not sig-
nifi cant (n.s.). 

 When more than two treatments are given to one sample of patients t-statistics is 
not appropriate and should be replaced by analysis of variance. 

 Figure  2.5  gives a hypothesized example of two studies where fi ve patients are 
tested three times. In the left graph the correlation between treatment responses is 
positive, whereas in the right graph the correlation between treatment no.3 and no.2 
is strong negative rather than positive. For the left graph data repeated measures 
ANOVA is performed.  

0
1
2
3
4
5
6
7
8
9

0 1 2 3 40 1 2 3 4treatment

p<0,001
(t-statistic)

p<0,001
(t-statistic)

p<0,001
(repeated measures ANOVA)

p<0,001p<0,001
(Bonferroni adjustment

 for ANOVA)

p<0,001
(t-statistic)

n.s.
(t-statistic)

n.s.

p<0,001 n.s.
(Bonferroni adjustment

 for ANOVA)

  Fig. 2.5    Hypothesized example of two studies where fi ve patients are tested three times. Due to 
negative correlation between treatment 2 and 3 in the right study, the statistical signifi cance test is 
negative unlike the left graph study, despite the identical mean results       
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 The sum of squares (SS) of the different treatments is calculated according to  

 Patient  Treatment 1  Treatment 2  Treatment 3  Mean  SD 2  

 1  6  5  8  6.3  4.67 
 2  5  4  7  5.3  4.67 
 3  4  3  6  4.3  4.67 
 4  3  2  5  3.3  4.67 
 5  2  1  4  2.3  4.67 
 Treatment mean  4  3  6 

   Grand mean 4.3  
  SS  

within subjects
  = 4.67 + 4.67 + … = 23.3  

  SS  
treatments

  = 5 [(4−4.3)  2  + (3−4.3)  2  + (6−4.3)  2 ] = 23.35  
  SS  

residual
  = SS  

within subjects
  − SS  

treatments
  = 0    

 This analysis permits concluding that at least one of the treatments produces a 
change. To isolate which one, we need to use a multiple-comparisons procedure, 
e.g., the modifi ed Bonferroni t-test for ANOVA where 

 “    2 2SE d / (n 1)d= Σ ( − ) −   ” is replaced with “MS  
residual

 ” (Table  2.8 ). So, to 
compare, e.g., treatment no. 2 with treatment no. 3 

     

−= = ∞ <
residual

6 3
t p 0.001

(MS )/n
    

 Of the right graph from Fig.  2.5  a similar analysis is performed.  

 Patients  Treatment 1  Treatment 2  Treatment 3  Mean  SD 2  

 1  6  5  4  5.0   1.0 
 2  5  4  5  4.7   0.67 
 3  4  3  6  4.3   4.67 
 4  3  2  7  4.0  14.0 
 5  2  1  8  3.7  28.49 
 Treatment mean  4  3  6 

   Grand mean 4.3  
  SS  

within subjects
  = 1.0 + 0.67 + 4.67 + …. = 48.83  

  SS  
treatments

  = 5 [(4−4.3)  2  + (3−4.3)  2  + (6−4.3)  2 ] = 23.35  
  SS  

residual
  = SS  

within subjects
 −SS  

treatments
  = 48.83−23.35 = 24.48    

   Table 2.8    ANOVA table 
of the data   

 Source of variation  SS  dfs  MS 

 Within subjects  23.35  10 
 Treatments  23.35   2  11.68 
 Residual  0   8   0 

 
                 

treatments

residual

MS
F p 0.001

MS
= = ∞ <
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 This analysis does not permit concluding that one of the treatments produces a 
change (Table  2.9 ). The Bonferroni adjustment of treatments no. 2 and no. 3 of 
course, does not either (p = 0.24 and p = 0.34).  

 In conclusion, with negative correlations between treatment responses statistical 
methods including paired t-statistics, repeated measures ANOVA, and Bonferroni 
adjustments for ANOVA lack sensitivity to demonstrate signifi cant treatment effects. 
The question why this is so, is not diffi cult to recognize. With t-statistics and a nega-
tive correlation between-patient-variation is almost doubled by taking paired differ-
ences. With ANOVA things are similar. 

 SS  
within subjects

  are twice the size of the positive correlation situation while 
SS  

treatments
  are not different. It follows that the positive correlation situation provides 

a lot more sensitivity to test than the negative correlation situation.  

    9.2   Studies Testing Equivalence 

 In an equivalence trial the conventional signifi cance test has little relevance: failure 
to detect a difference does not imply equivalence, and a difference, which is detected 
may not have any clinical relevance and, thus, may not correspond to clinically 
relevant equivalence. In such trials the range of equivalence is usually predefi ned as 
an interval from −D to + D distant from a difference of 0. D is often set equal to a 
difference of undisputed clinical importance, and hence may be above the minimum 
of clinical interest by a factor two or three. The bioequivalence study design essen-
tially tests both equivalence and superiority/inferiority. Let us assume that in an 
equivalence trial of vasodilators for Raynaud’s phenomenon ten patients are treated 
with vasodilator 1 for one week and for a separate period of one week with vasodila-
tor 2. The data below show the numbers of Raynaud attacks per week (Table  2.10 ).  

 Although samples have identical means and SEMs (25 ± 3.16 x-axis, 30 ± 3.16 
y-axis) their correlation coeffi cients range from −1 to +1. The null hypothesis of no 
equivalence is rejected when the 95% CIs are entirely within the prespecifi ed range 
of equivalence, in our case defi ned as between −10 and +10. 

 In the left trial 95% CIs are between −9.5 and +19.5, and thus the null hypothesis 
of no equivalence cannot be rejected. In the middle trial 95% CI are between −1.3 
and 11.3, while in the right trial 95% CI are between −3.3 and 6.7. This means that 
the last trial has a positive outcome: equivalence is demonstrated, the null  hypothesis 
of no equivalence can be rejected. The negative correlation trial and the zero 

   Table 2.9    ANOVA table of 
the data   

 Source of variation  SS  DF  MS 

 Within subjects  48.83  10 
 Treatments  23.35   2  11.7 
 Residual  24.48   8   3.1 

 
                  

treatments

residual

MS
F 3.77 p 0.20

MS
= = =
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 correlation trial despite a small mean difference between the two treatments, are not 
sensitive to reject the null-hypothesis, and this is obviously so because of the wide 
confi dence intervals associated with negative and zero correlations.   

    10   Rank Testing 

  Non-parametric  tests are an alternative for ANOVA or t-tests when the data do not 
have a normal distribution. In that case the former tests are more sensitive than the 
latter. They are quick and easy, and are based on ranking of data in their order of 
magnitude. With heavily skewed data this means that we make the distribution of 
the ranks look a little bit like a normal distribution. We have paired and unpaired 
non-parametric tests and with the paired test the same problem of loss of sensitivity 
with negative correlations is encountered as the one we observed with the paired 
normality tests as discussed in the preceding paragraph. Non-parametric tests are 

   Table 2.10    Correlation levels and their infl uence on sensitivity of statistical tests   

  r  = −1   r  = 0   r  = +1 

 Vasodilator  Vasodilator  vasodilator 

 One  Two 
 Paired 
differences  One  Two 

 Paired 
differences  One  Two 

 Paired 
differences 

 45  10  35  45  40  5  10  10  0 
 40  15  25  40  35  5  20  15  5 
 40  15  25  40  35  5  25  15  10 
 35  20  15  35  30  5  25  20  5 
 30  25  5  30  25  5  30  25  5 
 30  25  5  30  10  20  30  25  5 
 25  30  −5  25  15  10  35  30  5 
 25  35  −10  25  15  10  40  35  5 
 20  35  −15  20  20  0  40  35  5 
 10  40  −30  10  25  −15  40  40  5 

 Means 
 30  25  5  30  25  5  30  25  5 

 SEMs 
 3.16  3.16  6.46  3.16  3.16  2.78  3.16  3.16  0.76 

 t-values 
 0.8  1.8  6.3 
 95% CIs 
 ±14.5  ±6.3  ± 1.7 

  SEM = standard error of the mean; 
 t means level of t according to t-test for paired differences; 
 CI means confi dence interval calculated according to critical t value of t-distribution for 10−1 
pairs = 9 degrees of freedom (critical t = 2.26, 95% CI = 2.26 x SEM); 
  r  = correlation coeffi cient (the Greek letter is often used instead of r if we mean total population 
instead of our sample)  
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also used to test normal distributions, and provide hardly different results from 
their parametric counterparts when distributions are approximately normal. Most 
 frequently used tests: 

 For paired comparisons:

     =test testWilcoxon signed rank paired Wilcoxon     

 For unpaired comparisons:

     − =test testMann Whitney Wilcoxon rank sum     

    10.1   Paired Test: Wilcoxon Signed Rank Test 

 The Wilcoxon signed rank test uses the signs and the relative magnitudes of the data 
instead of the actual data (Table  2.11 ). For example, the above table shows the num-
ber of hours sleep in ten patients tested twice: with sleeping pill and with placebo. 
We have three steps: 

    1.    exclude the differences that are zero, put the remaining differences in ascending 
order of magnitude and ignore their sign and give them a rank number 1, 2, 3 etc 
(if differences are equal, average their rank numbers: 3 and 4 become 3.5 and 
3.5);  

    2.    add up the positive differences as well as the negative differences;
   + ranknumbers = 3.5 + 10 + 7 + 5 + 8 + 6 + 2 + 9 = 50.5  
  − ranknumbers = 3.5 + 1 = 4.5     

    3.    The null hypothesis is that there is no difference between + and − ranknumbers. We 
assess the smaller of the two ranknumbers. The test is signifi cant if the value is 
smaller than could be expected by chance. We consult the Wilcoxon signed rank 

   Table 2.11    Paired comparison using Wilcoxon signed rank test: placebo-controlled clinical trial 
to test effi cacy of sleeping drug   

 Hours of sleep  Rank 

 Patient  Drug  Placebo  Difference  (Ignoring sign) 

 1  6.1  5.2  0.9  3.5 a  
 2  7.0  7.9  -0.9  3.5 
 3  8.2  3.9  4.3  10 
 4  7.6  4.7  2.9  7 
 5  6.5  5.3  1.2  5 
 6  8.4  5.4  3.0  8 
 7  6.9  4.2  2.7  6 
 8  6.7  6.1  0.6  2 
 9  7.4  3.8  3.6  9 
 10  5.8  6.3  -0.5  1 

   a number 3 and 4 in the rank are duplicate outcome values, otherwise called ties, so we use 3.5 for 
both of them  
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table showing us the upper values for 5%, and 1% signifi cance, for the  number of 
differences constituting our rank. In this example we have ten ranks: 5% and 1% 
points are respectively 8 and 3 (Wilcoxon table). The result is signifi cant at P < 0.05, 
indicating that the sleeping drug is more effective than the placebo.      

    10.2   Unpaired Test: Mann-Whitney Test 

 Table  2.12  shows two-samples of patients are treated with two different NSAID 
agents. Outcome variable is plasma globulin concentration (g/l). Sample one is 
printed in standard and sample two is printed in fat print.  

 We have two steps (Table  2.12 ):

    1.    The data from both samples are ranked together in ascending order of magni-
tude. Equal values are averaged.  

    2.    Add up the rank numbers of each of the two samples. In sample-one we have 
81.5, in sample-two we have 128.5. We now can consult the Table for 
 Mann-Whitney tests and fi nd with n = 10 and n = 10 (differences in sample sizes 
are no problem) that the smaller of the two sums of ranks should be smaller than 
71 in order to conclude P < 0.05 (Mann-Whitney table). We can therefore not 
reject the null hypothesis of no difference, and have to conclude that the two 
samples are not signifi cantly different from each other.       

   Table 2.12    Two-samples of 
patients are treated with two 
different NSAIDs   

 Globulin concentration (g/l)  Rank number 

 26  1 
  27    2  
  28    3  
 29  4 
 30  5 
 31  6 
 32  7 
 33  8 
  34    9  
 35  10 
 36  11 
 38  12.5 
  38    12.5  
  39    14.5  
  39    14.5  
  40    16  
 41  17 
  42    18  
  45    19.5  
  45    19.5  

  Outcome variable is plasma globulin concentration 
(g/l). Sample one is printed in standard and sample 
two is printed in fat print  
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    11   Rank Testing for Three or More Samples 

    11.1   The Friedman Test for Paired Observations 

 The Friedman test is used for comparing three or more repeated measures that are 
not normally distributed, and is an extension of the Wilcoxon signed rank test. An 
example is given in Table  2.13 . The data are ranked for each patient in ascending 
order of hours of sleep. If the hours are equal, then an average ranknumber is given. 
Then, for each treatment the squared ranksum is calculated: for dose 1 it equals 
(2 + 1.5 + 2 + 2 + 2 + 3 + 2 + 2 + 2 + 1.5) 2  = 400, for dose 2 it is 676, for placebo it is 
196. The following equation is used:

     ( ) ( ) ( )2 2 2
dose1 dose2 placebo

12
chi - square  ranksum ranksum ranksum 3n k 1

nk k 1
= + + − +

+
   

where n = the number of patients and k = the number of treatments.  
 The chi-square value is calculated to be 7.2. The chi-square statistic will be 

addressed in Chap.   3    . Briefl y, it works very similar to the t-statistics. Chi-square 
values larger than the ones given in the chi-square table in the Appendix indicate 
that the null-hypothesis of no difference in the data can be rejected. In this example 
the calculated chi-square value is larger than the rejection chi-square for (3−1) 
degrees of freedom at p = 0.05, and, therefore, we conclude that there is a signifi cant 
difference between the three treatments at p < 0.05. Post-hoc subgroups analyses 
(using Wilcoxon’s tests) are required to fi nd out exactly where the difference is situ-
ated, between group 1 and 2, between group 1 and 3, or between group 2 and 3 or 
between two or more groups. The subject of post-hoc testing will be further 
discussed in the Chaps.   8     and   19    .  

   Table 2.13    Paired comparison to test effi cacy of two dosages of a sleeping drug versus placebo on 
hours of sleep   

 Hours of sleep 

 Patient 

 Dose 1  Dose 2  Placebo  Dose 1  Dose 2  Placebo 

 (hours)  (ranks) 

 1  6.1  6.8  5.2  2  3  1 
 2  7.0  7.0  7.9  1.5  1.5  3 
 3  8.2  9.0  3.9  2  3  1 
 4  7.6  7.8  4.7  2  3  1 
 5  6.5  6.6  5.3  2  3  1 
 6  8.4  8.0  5.4  3  2  1 
 7  6.9  7.3  4.2  2  3  1 
 8  6.7  7.0  6.1  2  3  1 
 9  7.4  7.5  3.8  2  3  1 
 10  5.8  5.8  6.3  1.5  1.5  3 
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    11.2   The Kruskall-Wallis Test for Unpaired Observations 

 The Kruskall-Wallis test compares multiple groups that are unpaired and not 
 normally distributed, and is an extension of the Mann-Whitney test. Three groups of 
patients with rheumatoid arthritis are treated with a placebo or one of two different 
NSAIDS (Table  2.14 ). The fall in plasma globulin (g/l) is used to estimate the effect 
of treatments. First, we give a ranknumber to every patient dependent on his/her 
magnitude of fall. If two or three patients have the dame fall, they are given an 
 average ranknumber. Then, we calculate the sum of the ranks for the three groups. 

   Table 2.14    Three-samples 
of patients are treated with 
placebo or two different 
NSAIDs   

 Globulin concentration (g/l)  Rank number 

  −17    1  
  −16    2  
  −5    3  
  −3    4  
  −2    5  
  16    6  
  18    7  
 26  8 
  27    9  
  28    10.5  
  28    10.5  
 29  12 
 30  14 
  30    14  
  30    14  
 31  16 
 32  17 
 33  18 
  34    19  
 35  20 
 36  21 
 38  22.5 
  38    22.5  
  39    24.5  
  39    24.5  
  40    26  
 41  27 
  42    28  
  45    29.5  
  45    29.5  

  The outcome variable is the fall in plasma globulin 
concentration (g/l). Group 1 patients are printed 
in italics, group 2 in normal standard and group 3 
in fat standard print  
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For group 1 this amounts to 1 + 2 + 3 + 4 + 5 + 6 + 7 + 10.5 + 14 + 14 = 66.5, for group 
2–175.5, group 3–488.5. Then we use the equation:

     
( ) ( )

2 2 2
group1 group2 group3ranksum ranksum ranksum12

chi - square 3 30 1
30 30 1 10 10 10

⎛ ⎞
= + + − −⎜ ⎟− ⎝ ⎠    

where the number 30 equals all values, 10 the patient number per group.  
 The chi-square equals 7744.3. The chi-square statistic will be further addressed 

in Chap.   3    . It works very similar to the t-statistics. Briefl y, chi-square values larger 
than the ones given in the chi-square table in the Appendix indicate that the null-
hypothesis of no difference in the data can be rejected. In this example the calcu-
lated chi-square value is much larger than the rejection chi-square for (3−1) degrees 
of freedom and, therefore, we conclude that there is a signifi cant difference between 
the three treatments at p < 0.001. Post-hoc subgroups analyses (using Man-Whitney 
tests) are required to fi nd out exactly where the difference is situated, between group 
1 and 2, between group 1 and 3, or between group 2 and 3 or between two or more 
groups. The subject post-hoc testing will be further discussed in Chap.   8    .   

    12   Conclusions 

 For the analysis of effi cacy data we test null-hypotheses. The t-test is appropriate for 
two parallel-groups or two paired samples. Analysis of variance (ANOVA) is appro-
priate for analyzing more than two groups/treatments. For data that do not follow a 
normal frequency distribution non-parametric tests are available: for paired data the 
Wilcoxon signed rank or Friedman tests, for unpaired data the Mann-Whitney test 
or Kruskall-Wallis tests are adequate. 

   Note :   In the references (1–20) an overview of relevant textbooks on the above 
subjects is given.       
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    1   Introduction   , Summary Display 

 As discussed in Chap.   1     the primary object of clinical trials of new drugs is generally 
to demonstrate effi cacy rather than safety. However, a trial in human beings not at 
the same time adequately addressing safety is unethical, and the assessment of 
safety variables is an important element of the trial. 

 An effective approach to the analysis of adverse effects is to present summaries 
of prevalences. We give an example (Table  3.1 ). Calculations of the 95% confi dence 
intervals (CIs) of a proportion are demonstrated in Chap.   1    . If 0.1 < proportion 
(p) < 0.9, then the binomial distribution is very close to the normal distribution, but 
if p < 0.1, the data follow a skewed, otherwise called Poisson distribution. 95% CIs
are, then, more adequately calculated according to ± 1.96     /p n   

 rather than ± 1.96     −(1 ) /p p n   
(confer page 9   ). Alternatively, tables (e.g., Wissenschaftliche Tabelle, Documenta 
Geigy, Basel, 1995) and numerous statistical software packages can readily provide 
you with the CIs.  

 Table  3.1  gives an example. The numbers in the table relate to the numbers of 
patients showing a particular side effect. Some questions were not answered by all 
patients. Particularly, sleepiness occurred differently in the two groups: 33% in the 
left, 60% in the right group. This difference may be true or due to chance. In order 
to estimate the size of probability that this difference occurred merely by chance we 
can perform a statistical test which in case of proportions such as here has to be a 
chi-square or given the small data a Fisher exact test. We should add at this point 
that although mortality/morbidity may be an adverse event in many trials, there are 
also trials that use them as primary variables. This is particularly so with mortality 
trials in oncology and cardiology research. For the analysis of these kinds of trials 
the underneath methods of assessments are also adequate.  

    Chapter 3   
 The Analysis of Safety Data                  



42 3 The Analysis of Safety Data of Drug Trials 

    2   Four Methods to Analyze Two Unpaired Proportions 

 Many methods exists to analyze two unpaired proportions, like odds ratios analysis 
(this chapter) and logistic regression (Chap.   14    ), but here we will start by presenting 
the four most common methods for that purpose. Using the sleepiness data from 
above we construct a 2 × 2 contingency table:  

 Sleepiness  No sleepiness 

 Left treatment (left group)  5 (a)  10 (b) 
 Right treatment 

(right group) 
 9 (c)  6 (d) 

    2.1   Method 1 

 We can test signifi cance of difference similarly to the method used for testing con-
tinuous data (Chap.   2    ). In order to do so we fi rst have to fi nd the standard deviation 
(SD) of a proportion. The SD of a proportion is given by the formula     −(1 )p p   . 
Unlike the SD for continuous data (see formula Chap.   1    ), it is strictly independent 
of the sample size. It is not easy to prove why this formula is correct. However, it 
may be close to the truth considering an example (Fig.  3.1 ). Many samples of 
15 patients are assessed for sleepiness. The proportion of sleepy people in the popula-
tion is 10 out of every 15. Thus, in a representative sample from this population ten 
sleepy patients will be the number most frequently encountered. It also is the mean 
proportion, and left and right from this mean proportion proportions grow gradually 
smaller, according to a binomial distribution (which becomes normal distribution 

   Table 3.1    The prevalence of side-effects after 8 week treatment   

 Side effect 

 Alpha blocker  Beta blocker 

 n = 16  n = 15 

 Yes  No  95% CIs (%)  Yes  No  95% CIs (%) 

 Nasal congestion  10  6  35–85  10  5  38–88 
 Alcohol intolerance  2  12   2–43  2  13  4–71 
 Urine incontinence  5  11  11–59  5  10  12–62 
 Disturbed ejaculation  4  2  22–96  2  2  7–93 
 Disturbed potence  4  2  22–96  2  2  7–93 
 Dry mouth  8  8  25–75  11  4  45–92 
 Tiredness  9  7  30–80  11  4  45–92 
 Palpitations  5  11  11–59  2  13  2–40 
 Dizziness at rest  4  12   7–52  5  10  12–62 
 Dizziness with exercise  8  8  25–75  12  3  52–96 
 Orthostatic dizziness  8  8  25–75  10  5  38–88 
 Sleepiness  5  10  12–62  9  6  32–84 
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with large samples). Figure  3.1  shows that the chance of eight or fewer sleepy 
patients is 15% (area under the curve, AUC, left from 8.3 = 15%). The chance of six 
or less sleepy patients is 2.5% (AUC left from 6.6 = 2.5%). The chance of fi ve or less 
sleepy patients = 1%. This is a so-called binomial frequency distribution with mean 
10 and a standard deviation of p (1 − p) = 10/15 (1 − 5/15) = 1.7. -1SD means AUC of 
approximately 15%, -2SDs means AUC of approximately 2.5%. And, so, according 
to the curve below SD = p (1 − p) is close to the truth.  

  Note:  For null-hypothesis-testing standard error (SE) rather than SD is required, and 
SE = SD/√n.  

 For testing we use the normal test (= z-test for binomial or binary data) which 
looks very much like the T-test for continuous data. T = d/SE, z = d/SE, where d = mean 
difference between two groups or difference of proportions and SE is the pooled SE 
of this difference. What we test is, whether this ratio is larger than approximately 2 
(1.96 for proportions, a little bit more, e.g., 2.1 or so, for continuous data). 

 Example of  continuous  data (testing two means).  

 Mean ± SD  SEM 2  = SD 2 /n 

 Group 1 (n = 10)  5.9 ± 2.4 l/min  5.76/10 
 Group 2 (n = 10)  4.5 ± 1.7 l/min  2.89/10 

 Calculate: mean 
1
  − mean 

2
  = 1.4. 

 Then calculate pooled     = + =2 2
1 2SEM (SEM SEM ) 0.930.    

  Note:  For SEM of difference: take square root of sums of squares of separate SEMs 
and, so, reduce the analysis of two means to one of a single mean.   

    
−

= = =1 2mean  mean
T 1.4 / 0.930 1.505

Pooled SEM 
  , with degrees of freedom (dfs)

18,  * p > 0.05. 
 Example of  proportional  data (testing two proportions).  

5 10 15 X

  Fig. 3.1    Frequency distribution of numbers of sleepy people observed in multiple samples of 
15 patients from the same population       

     * We have two groups of n = 10 which means 2 × 10 − 2 = 18 dfs.  

 



44 3 The Analysis of Safety Data of Drug Trials 

 2 × 2 table  Sleepiness  No sleepiness 

 Left treatment (left group)  5  10 
 Right treatment 

(right group) 
 9   6 

     
= difference between proportions of sleepers per group (d)

z
pooled standard error difference    

                           

−= =
+2 2

1 2

d (9 /15 5 /15)
z

pooled SE (SE SE )
   

     

−
= =1 1

1 1 1
1

p (1 p )
SE  ( or SEM )  where p  5/15 etc........,

n    

   z = 1.45, not statistically signifi cant from zero, because for a p < 0.05 a  
  z-value of at least 1.96 is required.    

  Note:   The z-test uses the bottom row of the t-table (see Appendix), because, unlike 
continuous data that follow a t-distribution, proportional data follow a normal 
distribution. The z-test is improved by inclusion of a continuity correction. For that 
purpose the term – (1/2n 

1
  + 1/2n 

2
 ) is added to the denominator where n 

1
  and n 

2
  are 

the sample sizes. The reason is that a continuous distribution is used to approximate 
a proportional distribution which is discrete, in this case binomial.   

    2.2   Method 2 

 According to some a more easy way to analyze proportional data is the chi-square 
test. The chi-square test assumes that the data follow a chi-square frequency distri-
bution which can be considered the square of a normal distribution (see also Chap. 
  41    ). First some philosophical considerations. 

 Repeated observations have both (1) a central tendency, and (2) a tendency to 
depart from an expected overall value, often the mean. In order to make predictions 
an index is needed to estimate the departures from the mean. Why not simply 
add up departures? However, this doesn’t work, because, with normal frequency 
distributions, the add-up sum is equal to 0. A pragmatic solution chosen is taking 
the add-up sum of (departures) 2  = the variance of a data sample. Means/proportions 
follow normal frequency distributions, variances follow  (normal-distribution)   2  . 
The normal distribution is a biological rule used for making predictions from 
random samples. 

 With a normal frequency distribution in your data (Fig.  3.2  upper graph) you can 
test whether the mean of your study is signifi cantly different from 0.  
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 If the mean result of your study > approximately 2 SEMs distant from 0, then we 
have <5% chance of no difference from 0, and we are entitled to reject the 0-hypothesis 
of no difference. 

 With (normal frequency distributions) 2  (Fig.  3.2  lower graph) we can test whether 
the variance of our study is signifi cantly different from 0. If the variance of our 
study is >1.96 2  distant from 0, then we have <5% chance of no difference from 0, 
and we are entitled to reject the 0-hypothesis of no difference. 

 The chi-square test, otherwise called  c  2  test can be used for the analysis of two 
unpaired proportions (2 × 2 table), but fi rst we give a simpler example, a 1 × 2 table  

 Sleepy  Not-sleepy  Sleepy  Not-sleepy 

 Observed (O)  Expected from population (E) 

 a (n = 5)  b (n = 10)   a  (n = 10)   b  (n = 5) 

 We wish to assess whether the observed proportion is signifi cantly different from 
the established population data from this population, called the expected proportion   ?

  Fig. 3.2    Normal and 
chi-square frequency 
distributions       
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O E

a 5 10 5

5
b 10 5  

0 doesn t work

− =
− α = − = −

+− β = − =
′

    

 The above method to assess a possible difference between the observed and 
expected data does not work. Instead, we take square values.

     

2

2

(a ) 25 divide by  to standardize 2.5

5
(b ) 25 divide by to standardize

7.5

− α = α =
+− β = β =

   

    c  2  Value = the add-up variance in data = 7.5    

  a  is the standard error (SE) of (a −  a ) 2  and is used to standardize the data, simi-
larly to the standardization of mean results using the t-statistic (replacing the mean 
results with t-values, see Chap.   2    ). 

 This 1 × 2 table has 1 degree of freedom. The chi-square table (see Appendix) 
shows four columns of chi-square values (standardized variances of various studies), 
an upper row of areas under the curve (AUCs), and a left end column with the degrees 
of freedom. For fi nding the appropriate area under the curve (= p-value) of a 1 × 2 
table we need the second row, because it has 1 degree of freedom. A chi-square value 
of 7.5 means an AUC = p-value of <0.01. The O-hypothesis can be rejected. Our 
observed proportion is signifi cantly different from the expected proportion. 

 Slightly more complex is the chi-square test for the underneath table of observed 
numbers of patients in a random sample:  

 Sleepiness(n)  No sleepiness(n) 

 Left treatment (left group)  5 (a)  10 (b) 
 Right treatment (right group)  9 (c)   6 (d) 

 n = numbers of patients in each cell 

 Commonly, no information is given about the numbers of patients to be expected, 
and, so, we have to use the best estimate based of the data given. The following 
procedure is applied:

    

( )22

2

2

2

cell a : (O E) / E 5 14 / 30 15 /14 / 30 15 ..

cell b : (O E) / E

cell c : (O E) / E

cell d : (O E) / E
chi - square 2.106

− = − × × =

−
−
− +

=     

 (O = observed number; E = expected number = (proportion sleepers /total number)  
x number

group
). 
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 We can reject the 0-hypothesis if the squared distances from expectation 
> (1.96) 2  = 3.841 distant from 0, which is our critical chi-square value required to 
reject the 0-hypothesis. A chi-square value of only 2.106 means that the 0-hypothesis 
can not be rejected. 

  Note:   A chi-square distribution = a squared normal distribution. When using the 
chi-square table, both the 1 × 2 and the 2 × 2 contingency tables have only 1 degree 
of freedom.   

    2.3   Method 3 

 Instead of the above calculations to fi nd the chi-square value for a 2 × 2 contingency 
table, a simpler pocket calculator method producing exactly the same results is 
described underneath  

 Sleepiness  No sleepiness  Total 

 Left treatment (left group)  5 (a)  10 (b)  a + b 
 Right treatment (right group)  9(c)   6 (d)  c + d 

 a + c  b + d 

 Calculating the chi-square ( c   2 ) – value is calculated according to:

     

2(ad bc) (a b c d)

(a b)(c d)(b d)(a c)

− + + +
+ + + +

    

 In our case the size of the chi-square is again 2.106 at 1 degree of freedom which 
means that the 0-hypothesis of no difference not be rejected. There is no signifi cant 
difference between the two groups.  

    2.4   Method 4 

 Fisher-exact test is used as contrast test for the chi-square or normal test, and also 
for small samples, e.g., samples of n < 100. It, essentially, makes use of faculties 
expressed as the sign  “!” : e.g., 5 !  indicates 5 × 4 × 3 × 2 × 1.  

 Sleepiness  No sleepiness 

 Left treatment (left group)  5 (a)  10 (b) 
 Right treatment (right group)  9 (c)  6 (d) 
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( )(a b)!(c d)!(a c)!(b d)!

P 0.2 much larger than 0.05
(a b c d)! a!b!c!d!

+ + + += =
+ + +     

 Again   , we can not reject the null-hypothesis of no difference between the two 
groups. This test is laborious but a computer can calculate wide faculties in 
seconds.   

    3   Chi-square to Analyze More Than Two 
Unpaired Proportions 

 As will be explained in Chap.   41    , with chi-square statistics we enter the real world 
of statistics, because it is used for multiple tables, and it is also the basis of analysis 
of variance. Large tables of proportional data are more frequently used in business 
statistics than they are in biomedical research. After all, clinical investigators are, 
generally, more interested in the comparison between two treatment modalities than 
they are in multiple comparisons. Yet, e.g., in phase 1 trials multiple compounds are 
often tested simultaneously. The analysis of large tables is similar to that of the 
above method-2. For example   :  

 Sleepiness  No sleepiness 

    Group I  5 (a)  10 (b) 
    Group II  9 (c)  6 (d) 
    Group III  …(e)  …(f) 
    Group IV  … 
    Group V 

 

    

2

2

2

2

cell a: (O E) / E

b: (O E) / E

c: (O E) / E

d: (O E) / E

e: ..

f: .. _______________

chi - square value ..

− =
−
−
−

+
=

  

    =For cell a O 5    

      

(5 9 ...)
(5 10) etc

(5 10 9 6 ...)
E x

+ +
= +

+ + + +     

 Large tables have many degrees of freedom (dfs). For 2 × 2 cells, we have 
(2 − 1) × (2 − 1) = 1df, 5% p-value at chi-square = 3.841. For 3 × 2 cells, we have 
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(3 − 1) × (2 − 1) = 2dfs, 5% p-value at chi-square = 5.991. For 5 × 2 cells, we have 
(5 − 1) (2 − 1) = 4 dfs, 5% p-value at chi-square = 9.488. Each degree of freedom has 
its own frequency distribution curve (Fig.  3.3    ): 

     

2

2

2

2

2

dfs 2 p 0.05 at 5.99

dfs 4 p 0.05 at 9.49

dfs 6 p 0.05 at 12.59

dfs 8 p 0.05 at 15.51

dfs 10 p 0.05 at 18.31.

=> = χ
= χ
= χ
= χ
= χ     

 As an example we give a  c  2  test for 3 × 2 table  

 Hypertension  Yes  No 

 Group 1  a  n = 60  d  n = 40 
 Group 2  b  n =100  e  n = 120 
 Group 3  c  n = 80  f  n = 60 

  Fig. 3.3    Each degree of freedom has its own frequency distribution curve       
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 Give the best estimate of the expected numbers in the cell according to the 
method described for the 2 × 2 contingency table above. Per cell: divide hyperten-
sives in study by observations in study, multiply by observations in group. It gives 
you the best estimate. For cell a this is  a  = [(a + b + c)/(a + b + c + d + e + f)] × (a + d). 
Do the same for each cell and add-up      :

     

[ ](a b c) / (a b c d e f) (a d) 52.17

114.78

73.04

[(d e f)) / (a b c d e f)] (a d) 47.83

57.39

66.96

α = + + + + + + + × + =
β … =
γ … =
δ = + + + + + + + × + =
ε … =
ξ … =    

     

2

2

a ) / 1.175

(b 1.903

(c 0.663

(d 1.282

(e 68.305

(f 0.723

value 72.769

− α α =
− =
− =
− =
− =
− = +

χ =     

 The p-value for (3 − 1) × (2 − 1) = 3 degrees of freedom is <0.001 according to the 
chi-square table (see Appendix). 

 Another example is given, a 2 × 3 table:  

 Hypertension  Hypertens-yes  Hypertens-no  Don’t know 

 Group 1  (a) n = 60  (c) n = 40  (e) n = 60 
 Group 2  (b) n = 50  (d) n = 60  (f) n = 50 

 Give best estimate population. Per cell: divide hypertensives in population by all 
patients, multiply by hypertensives in group. For cell a this is:

     [ ](a b) / (a b c d e f) (a c e)α = + + + + + + × + +
    

 Calculate every cell   , add-up results   .

     

[(a b) / (a b c d e f)] (a c e) 55.000

55.000

[(c d) / (a b c d e f)] (a c e) 51.613

51.613

55

55

α = + + + + + + × + + =
β… =
γ = + + + + + + × + + =
δ = … =
ε… =
ξ… =    
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( )2

2

2

O E / E

(a ) / 0.45

(b 0.45

(c 0.847

(d 1.363

(e 0.45

(f 0.45
______

4.01

− =

− α α =
− =
− =
− =
− =
− = +

χ =     

 For (2 − 1) × (3 − 1) = 2 degrees of freedom our p-value is <0.001 according to the 
chi-square table (see Appendix).  

    4   McNemar’s Test for Paired Proportions 

 Paired proportions have to be assessed when e.g. different diagnostic tests are per-
formed in one subject. For example, 315 subjects are tested for hypertension using 
both an automated device (test-1) and a sphygmomanometer (test-2), (Table  3.2 ).  

 184 subjects scored positive with both tests and 63 scored negative with both 
tests. These 247 subjects therefore give us no information about which of the tests 
is more likely to score positive. The information we require is entirely contained in 
the 68 subjects for whom the tests did not agree (the discordant pairs). Table  3.2  
shows how the chi-square value is calculated. Here we have again 1 degree of free-
dom, and so, a chi-square value of 23.5 indicates that the two devised produce sig-
nifi cantly different results at p < 0.001. 

 To analyze samples of more than two pairs of data, e.g., 3, 4 pairs, etc., McNemar’s 
test can not be applied. For that purpose Cochran’s test or logistic regression analysis 
is adequate (next section).  

   Table 3.2    Finding discordant 
pairs   

 Test 1 

 +  −  Total 

 Test 2  +  184  54  238 
 –  14  63  77 

 Total  198  117  315 

     2(54 14)
Chi - square McNemar 23.5

54 14

−
= =

+
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    5   Multiple Paired Binary Data (Cochran’s Q Test) 

 The scientifi c question of the underneath data is: is there a signifi cant difference 
between the numbers of responders who have been treated differently three times    
(Table  3.3 ).  

 The above table shows three paired observations in one patient. The paired prop-
erty of these observations has to be taken into account because of the, generally, 
positive correlation between paired observations. Cochran’s Q test is appropriate for 
that purpose. 

 The following commands have to be given in SPSS (www.spss.com). 

  Command:   Analyze – nonparametric tests – k related samples – mark: Cochran’s 
Q – test variables: treatment 1, treatment 2, treatment 3 – ok    

  Test statistics  

 N  139 
 Cochran’s Q  10,133 a  
 df  2 
 Asymp. Sig.  ,006 

   a 0 is treated as a success   

 The test is highly signifi cant with a p-value of 0.006. This means that there is a 
signifi cant difference between the treatment responses. However, we do not know 
where: between treatments 1 and 2, 2 and 3, or between 1 and 3. For that purpose 
three separate McNemar’s tests have to be carried out.  

  Test statistics  a  

 Treat 1 and Treat 2 

 N  139 
 Chi-square b   4,379 
 Asymp. Sig.  ,036 

  Test statistics  a  

 Treat 1 and Treat 3 

 N  139 
 Chi-square b   8,681 
 Asymp. Sig.  ,003 

  Test statistics  a  

 Treat 2 and Treat 3 

 N  139 
 Chi-square b   ,681 
 Asymp. Sig.  ,409 

   a McNemar test 
  b Continuity corrected    
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 The above three separate McNemar’s tests show that there is no difference between 
the treatments 2 and 3, but there are signifi cant differences between 1 and 2, and 1 and 3. 
If we adjust the data for multiple testing, for example, by using p = 0.01 instead of p = 0.05 
for rejecting the null-hypothesis, then the difference between 1 and 2 loses its signifi -
cance, but the difference between treatment 1 and 3 remains statistically signifi cant.  

   Table 3.3    Responders    (1) and non-responders (0) after treatment differently three times (variables 
1, 2, and 3)   

 Variables 

 1  2  3  1  2  3  1  2  3  1  2  3 

 0  0  0  0  1  0  0  1  0  1  0  0 
 0  0  1  0  0  1  0  0  0  1  0  0 
 0  0  0  0  1  1  0  0  0  1  0  1 
 0  0  1  0  1  0  0  1  1  1  0  1 
 0  0  1  0  0  0  0  0  1  1  1  0 
 0  0  1  0  1  0  0  1  1  1  1  1 
 0  0  1  0  0  1  0  0  1  1  1  0 
 0  0  0  0  1  1  0  0  0  1  1  1 
 0  1  0  0  0  1  0  0  0  1  0  0 
 0  1  1  0  1  0  0  1  0  1  0  1 
 0  1  1  0  1  0  0  1  0  1  0  0 
 0  0  1  0  0  0  0  1  1  1  0  1 
 0  1  1  0  0  1  0  0  0  1  1  1 
 0  0  1  0  0  1  0  0  1  1  0  1 
 0  1  0  0  1  0  0  0  0  1  1  0 
 0  0  0  0  1  1  0  1  1  1  0  1 
 0  1  0  0  1  0  0  0  0  1  1  0 
 0  0  1  0  0  1  0  1  1  1  1  1 
 0  0  1  0  0  0  0  0  0  1  0  0 
 0  0  1  0  1  1  0  0  1  1  0  1 
 0  0  1  0  1  0  0  1  0  1  1  0 
 0  1  0  0  0  0  0  0  0  1  1  1 
 0  0  0  0  1  1  0  1  0  1  0  0 
 0  1  0  0  0  1  0  0  1  1  0  0 
 0  0  0  0  1  0  0  1  1  1  1  0 
 0  0  1  0  0  0  1  0  1  1  1  0 
 0  0  1  0  0  0  1  0  1  1  0  1 
 0  0  1  0  0  1  1  1  0  1  0  0 
 0  1  1  0  1  1  1  1  0  1  1  1 
 0  1  1  0  1  1  1  1  1  1  1  0 
 0  1  0  0  0  0  1  0  1  1  0  1 
 0  1  0  0  0  0  1  1  0  1  0  0 
 0  0  1  0  1  1  1  0  0  1  1  1 
 0  0  1  0  1  1  1  1  1  1  1  1 
 0  0  0  0  1  1  1  1  1  1  0  0 

 1  0  0 

  Var 1 = responder to treatment 1 (yes or no, 1 or 0) (Var = variable) 
 Var 2 = responder to treatment 2 
 Var 3 = responder to treatment 3  



54 3 The Analysis of Safety Data of Drug Trials 

    6   Survival    Analysis 

    6.1   Survival Analysis 

 A survival curve plots percentage survival as a function of time. Figure  3.4  is an 
example. Fifteen patients are followed for 36 months. At time zero everybody is 
alive. At the end 40% (6/15) patients are still alive. Percentage decreased whenever 
a patient died. A problem with survival analysis generally is that of lost data: some 
patients may be still alive at the end of the study but were lost for follow-up for 
several reasons. We at least know that they lived at the time they were lost, and so 
they contribute useful information. The data from subjects leaving the study are 
called  censored  data and should be included in the analysis.  

 With the  Kaplan-Meier  method, survival is recalculated every time a patient 
dies (approaches to survival different from the Kaplan-Meier approach are (1) the 
actuarial method, where the x-axis is divided into regular intervals and (2) life-table 
analysis using tables instead of graphs). To calculate the fraction of patients who 
survive a particular day, simply divide the numbers still alive after the day by the 
number alive before the day. Also exclude those who are lost (= censored) on 
the very day and remove from both the numerator and denominator. To calculate the 
fraction of patients who survive from day 0 until a particular day, multiply the frac-
tion who survive day-1, times the fraction of those who survive day-2, etc. This 
product of many survival fractions is called the  product-limit . In order to calculate 
the 95% CIs, we can use the formula: 

  95% CI of the product of survival fractions (p) at time      
(1 p)

k  p 2·p
k

−
= ±    

 The interpretation: we have measured survival in one sample, and the 95%CI 
shows we can be 95% sure that the true population survival is within the boundaries 
(see fi gure upper and lower boundaries). Instead of days, as time variable, weeks, 
months etc may be used.  
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  Fig. 3.4    Example of a survival curve plotting survival as a function of time       
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    6.2   Testing Signifi cance of Difference 
Between Two Kaplan-Meier Curves 

 Survival is essentially expressed in the form of either proportions or odds, and 
statistical testing whether one treatment modality scores better than the other in 
terms of providing better survival can be effectively done by using tests similar to 
the above  chi-square tests  or chi-square-like tests in order to test whether any pro-
portion of responders is different from another proportion, e.g., the proportion of 
responders in a control group. RRs or ORs are calculated for that purpose (review 
Chap.   1    ). For example, in the example in the i-th 2-month period we have left the 
following numbers: a 

i
  and b 

i
  in curve 1, c 

i
  and d 

i
  in curve 2,  

 Contingency table  Numbers of deaths  Numbers alive 

 Curve 1  a  
i
   b  

i
  

 Curve 2  c  
i
   d  

i
  

 i = 1, 2, 3,… 

     
= =i i i i

i i i i

a / b a d
Odds ratio

c / d b c     

 Signifi cance of difference between the curves (Fig.  3.5 ) is calculated according 
to the added products “ad” divided by “bc”. This can be readily carried out by the  

  Mantel-Haenszl summary chi-square test: 

     

2
i i i i i i i i i2

M - H 3
i i i i i i i i i i i i

( a [(a b )(a c ) / (a b c d )])

[(a b )(c d )(a c )(b d ) / (a b c d ) ]

− + + + + +
=

+ + + + + + +
∑ ∑

∑
χ

   

where we thus have multiple 2 × 2 contingency tables e.g. one for every last day of 
a subsequent month of the study. With 18 months follow-up the procedure would 
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  Fig. 3.5    Two Kaplan-Meier survival curves       
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yield eighteen 2 × 2-contingency-tables. This Mantel Haenszl summary chi square 
test is, when used for comparing survival curves, more routinely called  log rank 
test  (this name is rather confusing because there is no logarithm involved). 

  Note:   An alternative more sophisticated approach to compare survival curves is the 
 Cox’s proportional hazards model , a method analogous to  multiple regression 
analysis  for multiple means of continuous data and to  logistic regression  for 
proportions (Chap.   17    ).    

    7   Odds Ratio Method for Analyzing 
Two Unpaired Proportions 

 Odds ratios increasingly replace chi/square tests for analyzing 2 × 2 contingency 
tables.  

 Illness  No illness 

 Group 1  a  b 
 Group 2  c  d 

     

( )The odds ratio OR a / b /  c / d

odds of illness group1 / odds illness group 2

chance illness........ / ..........

=
=
=     

 We want to test whether the OR is signifi cantly different from an OR of 1.0. 
 For that purpose we have to use the logarithmic transformation, and so we will 

start by recapitulating the principles of logarithmetic    calculations. 
 Log = log to the base 10; Ln = natural log = log to the base e (e = 2.71…)

   log 10 =  10 log 10 = 1  
  log 100 =  10 log 100 = 2  
  log 1 =  10 log 1 =  10 log 10 0  = 0  
  antilog 1 = 10  
  antilog 2 = 100  
  antilog 0 = 1   

   ln e =  e log e = 1  
  ln e 2  =  e log e 2  = 2  
  ln 1 =  e log 1 =  e log e 0  = 0  
  antiln 1 = e  
  antiln 2 = e 2   
  antiln 0 = 1    

 The frequency distributions of samples of continuous numbers or proportions are 
normal. Those of many odds ratios are not. The underneath example is an argument that 
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odds ratios may follow an exponential pattern, while the normal distribution has been 
approximated by mathematicians by means of the underneath exponential formula

     
= = = = = =a/b 1 /10 a/b 1 /10 a/b 1 /10

10 1 1
c/d 1 /100 c/d 1 /10 c/d 1 /10    

     

21

2
1

y ( )e
2

x
−

=
π    

   x individual data, y how often, e = 2.718.    

 It was astonishing but not unexpected that mathematicians discovered that 
frequency distributions of log OR followed a normal distribution, and that results 
were even better if ln instead of log was used.  

 Event  No event 

 Group 1  a  b 
 Group 2  c  d 

 If OR     = =a / b
1

c / d
  , this means that no difference exists between group 1 and 2. 

 If OR = 1, then lnOR = 0. With a  normal distribution  if the result >2 standard 
errors (SEs) distant from 0, then the result is signifi cantly different from 0 at p < 0.05. 
This would also mean that, if ln OR >2 SEs distant from 0, then this result would be 
signifi cantly different from 0 at p < 0.05. There are three possible situations   :  

 Study 1        lnOR > 2 SEs dist 0  p < 0.05 
 Study 2  lnOR < 2 SEs dist 0  ns 
 Study 3  lnOR > 2 SEs dist 0  p < 0.05 

 ln OR = 0 
 (OR = 1.0) 

 Using this method we can test the OR. However, we need to know how to fi nd

the SE of our OR. SE of lnOR is given by the formula     + + +1 1 1 1
( )
a b c d

  . 

 This relatively simple formula is not a big surprise, considering that the SE of a

number g = √g, and the SE of 1/g =     
1

g
  . We can now assess our data by the OR

method as follows:  

 Hypertension yes  Hypertension no 

 Group 1  a  n = 5  b  n = 10 
 Group 2  c  n = 10  d  n = 5 

    
= =a / b

OR 0.25
c / d    
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     = −lnOR 1.3863    

     
= + + + =1 1 1 1

SEM lnOR ( ) 0.7746
a b c d    

     

ln OR 2 SEMs 1.3863 1.5182

between 2.905 and 0.132,

± = − ±
= −     

 Now turn the ln numbers into real numbers by the antiln button of your pocket 
calculator.

     between 0.055 en 1.14.=     

 The result “crosses” 1.0, and, so, it is not signifi cantly different from 1.0. 
 A second example answers the question: is the difference between the under-

neath group 1 and 2 signifi cant?  

 Orthostatic hypotension 

 Yes  No 

 Group 1   77  62 
 Group 2  103  46 

     
= = =103 / 46 2.239

OR 1.803
77 / 62 1.242    

     =lnOR 0.589    

     

⎛ ⎞= + + + =⎜ ⎟⎝ ⎠
1 1 1 1

SEM lnOR 0.245
103 46 77 62    

     

( )lnOR 2 SEMs 0.589 2 0.245

0.589 0.482

between 0.107 and 1.071.

± = ±
= ±
=     

 Turn the ln numbers into real numbers by use of antiln button of your pocket 
calculator.

   = between 1.11 and 2.92, and, so, signifi cantly different from 1.0.    

 What p-value do we have: t = lnOR/SEM = 0.589/0.245 = 2.4082. The bottom row 
of the t-table is used for proportional data (z-test), and give us a p-value < 0.02. 

  Note:   A major problem with odds ratios is the ceiling problem. If the control group 
n = 0, then it is convenient to replace 0 with 0.5 in order to prevent this problem.   
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    8   Odds Ratios for One Group, Two Treatments 

 So far we assessed two groups, one treatment. Now we will assess one group, two 
treatments and use for that purpose the  McNemar’s OR .  

 Normotension with drug 1 

 Yes  No 

 Normotension with drug 2  Yes  (a) 65  (b) 28 
 No  (c) 12  (d) 34 

 Here the OR = b/c, and the SE is not     + + +1 1 1 1
( )
a b c d

  ,but rather     +1 1
( )
b c

  .

     = =OR 28 /12 2.33    

     = =lnOR ln2.33 0.847    

     

⎛ ⎞= + =⎜ ⎟⎝ ⎠
1 1

SE 0.345
b c    

     

lnOR 2 SE 0.847 0.690

between 0.157 and 1.537,

± = ±
=     

 Turn the ln numbers into real numbers by the anti-ln button of your pocket 
calculator.

     

between 1.16 and 4.65

sig diff from 1.0.

=
=     

 Calculation p-value: t = lnOR/SEM = 0.847: 0.345 = 2.455. The bottom row of the 
t-table produces a p-value of < 0.02, and the two drugs produce, thus, signifi cantly 
different results at p < 0.02.  

    9   Conclusions 

     1.    For the analysis of effi cacy data we test null-hypotheses, safety data consist of 
proportions, and require for statistical assessment different methods.  

    2.    2 × 2 tables are convenient to test differences between 2 proportions.  
    3.    Use chi-square or t-test for normal distributions (z-test) for that purpose.  
    4.    For paired proportions the McNemar’s test is appropriate.  
    5.    Kaplan Meier survival curves are also proportional data: include lost patients.  
    6.    Two Kaplan-Meier Curves can be compared using the Mantel-Haenszl = Log 

rank test  
    7.    Odds ratios with logarithmic transformation provide an alternative method for 

analyzing 2 × 2 tables.     
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 In the past two chapters we discussed different statistical methods to test 
statistically experimental data from clinical trials. We did not emphasize correlation 
and regression analysis. The point is that correlation and regression analysis test 
correlations, rather than causal relationships. Two samples may be strongly corre-
lated e.g., two different diagnostic tests for assessment of the same phenomenon. 
This does, however, not mean that one diagnostic test causes the other. In testing the 
data from clinical trials we are mainly interested in causal relationships. When such 
assessments were statistically analyzed through correlation analyses mainly, we 
would probably be less convinced of a causal relationship than we are while using 
prospective hypothesis testing. So, this is the main reason we so far did not address 
correlation testing extensively. With epidemiological observational research things 
are essentially different: data are obtained from the observation of populations or 
the retrospective observation of patients selected because of a particular condition 
or illness. Conclusions are limited to the establishment of relationships, causal or 
not. We, currently, believe that relationships in medical research between a factor 
and an outcome can only be proven to be causal when between the factor is intro-
duced and subsequently gives rise to the outcome. We are more convinced when 
such is tested in the form of a controlled clinical trial. A problem with multiple 
regression and logistic regression analysis as method for analyzing of multiple sam-
ples in clinical trials is closely related to this point. There is always an air of uncer-
tainty about such regression data. Many trials use null-hypothesis testing of two 
variables, and use multiple regression data only to support and enhance the impact 
of the report, and to make readership more willing to read the report, rather than to 
prove the endpoints. It is very unsettling to realize that clinicians and clinical inves-
tigators often make bold statements about causalities from multivariable analyses. 
We believe that this point deserves full emphasis, and will, therefore, address it 
again in the Chaps.   14    ,   15    ,   16    ,   17    ,   18    , and   19    .      
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     1   Introduction    

 For Gandhi non-violence was a primary invariance principle, while for his political 
successor Nehru justice was so. Invariance principles signify that while everything 
changes in life, some laws of life do not. Consequently, these laws of life do not 
include a measure of error. For example, Einstein’s invariance principle is expressed 
in the famous equation E = mc 2 . Most statistical tests, including t- (and z-) tests, 
F-tests, chi-square tests, odds ratio tests, do not meet the invariance principle, 
because they apply  estimated  likelihoods like averages and proportions that have 
their standard errors as a measure of uncertainty. However, a few statistical tests use 
likelihoods without standard error. These tests, called exact tests, should, by their 
very nature, provide the best precision and sensitivity of testing. They include, 
among others, the Fisher exact test and the log likelihood ratio test. Particularly, the 
log likelihood ratio test, avoiding some of the numerical problems of the other exact 
likelihood tests, is straightforward, and is available through most major software 
programs  ( BUGS y WinBUGS  2011 ; S plus  2011 ; Stata  2011 ; StatsDirect  2011 ; 
StatXact  2011 ; True Epistat  2011 ; SAS  2011 ; SPSS  2011  ) , although infrequently 
used so far. This chapter reviews the advantages and problems of the log likelihood 
ratio test, and gives real and hypothesized data examples supporting its better 
sensitivity. We do hope that the chapter will stimulate researchers to more often 
apply this test.  

    2   Numerical Problems with Calculating Exact Likelihoods 

 Proportions of patients with events are an important endpoint in cardiovascular 
research. They are traditionally analyzed in the form of a contingency table of 
four cells, otherwise called 2 × 2 contingency table, using chi-square tests or odds 
ratio tests.  

    Chapter 4   
 Log Likelihood Ratio Tests 
for Safety Data Analysis                 
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 Number patients 
with events 

 Number patients 
without 

 Group 1  a  b 
 Group 2  c  d 

 The problem with the traditional tests is that sensitivity is limited. As an alternative, 
the log likelihood ratio test, based on exact rather than estimated likelihoods, can be 
used. The general problem with exact likelihoods is, that they can be very complicated 
and may run into numerical problems that even modern computers can not handle. Let 
us assume that on average the proportion of patients with an event in a target population 
equals p. The likelihood of getting exactly y events in a sample of n individuals in this 
population can be calculated according to the underneath binomial equation:

    ( ) ( )y (n y)n!
Likelihood p p 1 p

y! n y!
−= −

−    

    ( )( )( )= = − − − ………n! n faculty n n 1 n 2 n 3
    

 For example, a group of citizens was taking a pharmaceutical company to court 
for misrepresenting the danger of fatal rhabdomyolysis due to a statin treatment:  

 Patients with 
rhabdomyolysis  Patients without 

 Company  1 (a)  309,999 (b) 
 Citizens  4 (c)  300,289 (d) 

 p 
co

  = proportion given by the pharmaceutical company = a / (a + b) = 1/310,000 
 p 

ci
  = proportion given by the citizens = c / (c + d) = 4/300,293

     ( ) ( ) ( )( )1 310000 1

co

310000!
likelihood p · 1 / 310000 · 1 1 / 310000

1! 310000 1 !
−= −

−     

 Likelihood p 
ci
  can be calculated similarly. 

 The numerical problem of calculating likelihoods in the above way can be largely 
circumvented by taking the (log) ratios of two equations as will be demonstrated 
underneath. Log means natural logarithm, otherwise called naperian logarithm, oth-
erwise called logarithm to the base e.  

    3   The Normal Approximation and the Analysis 
of Clinical Events 

 If we take many samples from a target population, the mean results of those samples 
usually follow a normal frequency distribution, meaning that the value in the middle 
will be observed most frequently and the more distant from the middle the less 
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frequently a value will be observed. For example, we will have only 5% chance to 
fi nd a result more than 2 standard errors (SEs) (or more precisely 1.96 SEs) distant 
from the middle. The same is true with proportional data like events. Many statistical 
tests make use of the normal distribution to make predictions. Figure  4.1  shows, 
e.g., how the normal distribution theorem is used to reject the null-hypothesis of no 
difference from zero.  

 Assume on average that 10 of 15 patients in a population will have some kind of 
cardiovascular event within a certain period of time. Then, 10/15 will be the propor-
tion most frequently encountered when randomly sampling from this population. 
The chance of fi nding <10 or >10 gets gradually smaller. Figure  4.2  gives on the 
x-axis (often called z-axis in statistics) the results from many samples, the y-axis 
shows “how often”. The chance of 8 or less is only 15%, of 7 or less only 2.5%, and 
of 5 or less only 1%. With many samples the graph follows a normal frequency 
distribution with 95% of the sample results between ±2 SEs distant from the mean 
value, a proportion of 10/15. Most of the approaches to test the signifi cance of dif-
ference between the events in a treatment and control group make use of this normal 
approximation. This includes the z-test, the chi-square test, and the odds ratio test. 
Also, the log likelihood ratio test does so.   

−3 −2 −1 0 1 2 3

H1

H0

Frequency distribution

4 5 SEs

  Fig. 4.1    H1 = graph based on the data of a sample with standard errors distant from zero ( SEs ) as 
unit on the x-axis, often called z-axis in statistics. H0 = same graph with a mean value of 0. We 
make a giant leap from the sample to the entire population, and we can do so because the sample 
is assumed to be representative for the entire population. H1 = also the summary of the means of 
many samples similar to our sample. H0 = also the summary of the means of many samples similar 
to our sample, but with an overall effect of 0. Our mean not 0 but 2.9. Still it could be an outlier of 
many samples with an overall effect of 0. If H0 is true, then our sample is an outlier. We can’t 
prove, but calculate the chance/probability of this possibility. A mean result of 2.9 SEs is far distant 
from 0: suppose it belongs to H0. Only 5% of H0 trials >2.0 SEs distant 0. The chance that it 
belongs to H0 is thus <5%. We conclude that we have <5% chance to fi nd this result, and, therefore, 
reject this small chance       
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    4   Log Likelihood Ratio Tests and the Quadratic 
Approximation 

 Assume, like in the above example, that 10/15 has the maximum likelihood, while 
all other proportions have less than that. The likelihood ratio is defi ned as the mea-
sured proportion/maximum likelihood. The likelihood ratio for 10/15 thus equals 1. 
Instead of frequency distribution of many samples, Fig.  4.2  can also be interpreted 
as a likelihood ratio curve of many samples. If p = 10/15 is given place 0 on the 
z-axis, with standard error-units on the z-axis and the top of the curve = 1, then the 
underneath normal distribution equation and the corresponding curve (Fig.  4.3 ) are 
adequate. 

     
−=

21/2 zLikelihood ratio e     

 If we transform the likelihood ratio values of the y-axis from Fig.  4.3  to log like-
lihood ratio values, leaving the z-axis unchanged, then the next equations and their 
corresponding curve (Fig.  4.4 ) are adequate. 

     = − 2log likelihood ratio 1 / 2 z    

     − = 22 log likelihood ratio z     

 With normal distributions, if z >2 or <−2, we conclude a signifi cant difference 
from zero in the data at p < 0.05. Here if −2 log likelihood ratio >2 or <−2, then the 
difference between the proportions of events in a two-group comparison is signifi -
cant at p < 0.05. 

 We now calculate the exact likelihoods for either of the two proportions using the 
underneath binomial equation.

     ( ) ( )(n y)yn!
Likelihood p p 1 p

y! n y!
−= −

−    

5 10

Frequency distribution

15

  Fig. 4.2    Assume that, on average, 10 of 15 patients in a population will have some kind of 
cardiovascular event within a certain period of time. Then, 10/15 will be the proportion most fre-
quently encountered when taking many random samples of 15 patients from this population. The 
chance of fi nding <10 or >10 gets gradually smaller. On the x-axis the numbers of events from 
many samples is given, the y-axis shows “how often”. The chance of 8 or less is only 15%, of 7 or 
less only 2.5%, and of 5 or less only 1%. With many samples the graph follows a normal frequency 
distribution with 95% of the sample results between ±2standard errors distant from the mean 
value       
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     ( ) ( ) ( )n!
log likelihood p log y. log p n y log 1 p

y! n y!
= + + − −

−     

 If the data produce two proportions, we can deduce from the above formula the 
exact (log) likelihood ratio of the two, where log is the natural logarithm. We take 
the previously used example.  

 Patients with 
rhabdomyolysis 

 Patients 
without 

 Company  1 (a)  309,999 (b) 
 Citizens  4 (c)  300,289 (d) 

 p 
co

  = proportion given by the pharmaceutical company = a/(a + b) = 1/310000 
 p 

ci
  = proportion given by the citizens = c/(c + d) = 4/300293   

     
( ) ( ) ( )

co

ci

co ci

co ci co ci

likelihood p
log likelihood ratio log

likelihood p

log likelihood p log likelihood p

y log p / p n y log 1 p / 1 p

=

= −

+ − − −=
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  Fig. 4.3    Assume like in Fig.  4.2  that 10/15 has the maximum likelihood, while all other propor-
tions have less likelihood. The likelihood ratio is defi ned as the measured proportion/maximum 
likelihood. The likelihood ratio for 10/15 thus equals 1. If p = 10/15 is given place 0 on the z-axis 
with standard errors as unit, and the top of the curve = 1, then Fig.  4.2  can also be interpreted as a 
likelihood ratio curve       
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  Fig. 4.4    If we transform the 
likelihood ratio values of the 
y-axis from Fig.  4.3  to log 
likelihood ratio values, 
leaving the z-axis unchanged, 
then the above curve is 
observed       
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 As −2 log likelihood ratio equals z 2 , we can now test the signifi cance of difference 
between the two proportions   .

     

1 / 310000 1 1 / 310000
Log likelihood ratio 4 log 300289 log

4 / 300293 1 4 / 300293
2.641  199

−
= +

−
= −     

 We should note that both the odds ratio test and chi-square test produced a non-
signifi cant result here (p > 0.05).  

    5   More Examples 

   Example 1  

 Two group of 15 patients at risk for arrhythmias were assessed for the development 
of torsade de points after calcium channel blockers treatment  

 Patients with 
torsade de points  Patients without 

 Calcium channel blocker 1  5  10 
 Calcium channel blocker 2  9   6 

 The proportion of patients with event from calcium channel blocker 1 is 5/15, 
from blocker 2 it is 9/15.

     

5 /15 1 5 /15
Log likelihood ratio 9 log 6 log

9 /15 1 9 /1
 

5
2.25

−
= +

−
= −     

 −2 log likelihood ratio = 4.50 (p < 0.05, because z > 2   ). 

 Both odds ratio test and chi-square test were again non-signifi cant (p > 0.05).  

   Example 2  

 Two groups of patients with stage IV New York Heart Association heart failure 
were assessed for hospitalizations after two beta-blockers.  

 Patients with 
hospitalization  Patients without 

 Beta blocker 1   77  62 
 Beta blocker 2  103  46 

 The proportion of patients with event from beta blocker 1 is 77/139, from beta 
blocker 2 it is 103/149.

     

77 /139 1 77 /139
Log likelihood ratio 103 log 46 log

103 /149 1 103 /149
5.882

−
= +

−
= −     
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 −2 log likelihood ratio = 11.766 (p < 0.002, because z > 3.090). 

 Both the odds ratio test and chi-square test were also signifi cant. However, at 
lower levels of signifi cance, both p-values 0.01 < p < 0.05.   

    6   Discussion 

 The chi-square test for events uses the observed cells in a contingency table to 
approximate the expected cells, a rather imprecise method. The odds ratio test uses 
the log transformation of a skewed frequency distribution as a rather imprecise 
approximation of the normal distribution. Sensitivity of these tests is, obviously, 
limited, and tests with potentially better sensitivity like exact tests are welcome. 

 At fi rst sight, we might doubt about the precision of the log likelihood ratio test 
for events, because it is based on no less than three approximations: (1) the binomial 
formula as an estimate for likelihood, (2) the binomial distribution as an estimate for 
the normal distribution, (3) the quadratic approximation as an estimate for the nor-
mal distribution. However, the approximations (1) and (3) provide exact rather than 
estimated likelihoods, and it turns out from the above examples that de log likeli-
hood ratio test is, indeed, more sensitive than the standard tests. In addition, the log 
transformation of the exponential binomial data is convenient, because exponents 
become simple multiplifi cation    factors. Also, the quadratic approximation is conve-
nient, because an exponential equation is turned into a simpler quadratic equation 
(parabola). 

 Likelihood ratio statistics has a relatively short history. It was begun indepen-
dently by Barnard  (  1947  )  and Fisher  (  1956  )  in the past World War II era. In this 
paper the log likelihood ratio test was used for the analysis of events only. The test 
can be generalized to other types of data including continuous data and the data in 
regression models, whereby the advantage of better sensitivity remains equally true. 
The test is, therefore, increasingly important in modern statistics. 

 We conclude that the log likelihood ratio test is more sensitive than traditional 
statistical tests including the t-(and z)-test, chi-square test and odds ratio test. Other 
advantages are the following: exponents can be conveniently handled by the log 
transformation and an exponential equation is turned into a simpler quadratic equa-
tion. A potential disadvantage of numerical problems is avoided by taking ratios of 
likelihoods instead of separate likelihoods in the fi nal analysis.  

    7   Conclusions 

 Traditional statistical tests for the analysis of clinical events have limited sensitiv-
ity, particularly with smaller samples. Exact tests, although infrequently used so 
far, should have better sensitivity, because they do not include standard errors as a 
measure of uncertainty. The log likelihood ratio test is one of them. The objective 
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of the current chapter was to assess the above question using real and hypothesized 
data examples. In three studies of clinical events the log likelihood ratio test was 
consistently more sensitive than traditional tests, including the chi-square and the 
odds ratio test, producing p-values respectively between <0.05 and <0.002 and 
between not-signifi cant and <0.05. This was true both with larger and smaller sam-
ples. Other advantages of the log likelihood ratio were: exponents can be conve-
niently handled by the log transformation and an exponential equation is turned 
into a simpler quadratic equation. A potential disadvantage of numerical problems 
is avoided by taking in the fi nal analysis the ratios of likelihoods instead of sepa-
rate likelihoods. Log likelihood ratio tests are consistently more sensitive than tra-
ditional statistical tests. We hope that this chapter will stimulate clinical researchers 
to more often apply them.      
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     1   Introduction    

 A study unable to fi nd a difference is not the same as an equivalent study. For 
example, a study of three subjects does not fi nd a signifi cant difference simply 
because the sample size is too small. Equivalence testing is particularly important 
for studying the treatment of diseases for which a placebo control would unethical. 
In the situation a new treatment must be compared with standard treatment. The 
latter comparison is at risk of fi nding little differences. 

 Figure  5.1  gives an example of a study where the mean result is little different 
from 0   . Is the result equivalent then? H1 represent the distribution of our data and 
H0 is the null-hypothesis (this approach is more fully explained in Chap.   2    ). What 
we observe is that the mean of our trial is only 0.9 standard errors of the mean 
(SEMs) distant from 0, which is far too little to reject the null-hypothesis. Our result 
is not signifi cantly different from 0. Whether our result is equivalent to 0, depends 
on our prior defi ned criterium of equivalence. In the fi gure D sets the defi ned inter-
val of equivalence. If 95% CIs of our trial is completely within this interval, we 
conclude that equivalence is demonstrated. This mean that with D 

1
  boundaries we 

have no equivalence, with D 
2
  boundaries we do have equivalence. The striped area 

under curve (= the socalled 95% CIs) is the interval approximately between −2 
SEMs and +2 SEMs (i   .e., 1.96) SEMs with normal distributions, a little bit more 
than 2 SEMs with t-distributions. It is often hard to prior defi ne the D boundaries, 
but they should be based not on mathematical but rather on clinical arguments, i.e., 
the boundaries where differences are undisputedly clinically irrelevant.  

 Figure  5.2  gives another example. The mean result of our trial is larger now: mean 
value is 2.9 SEMs distant from 0, and, so, we conclude that the difference from 0 
is > approximately 2 SEMs and, that we can reject the null-hypothesis of no differ-
ence. Does this mean that our study is not equivalent? This again depends on our prior 
defi ned criterium of equivalence. With D 

1
  the trial is not completely within the bound-

aries and equivalence is thus not demonstrated. With D 
2
  the striped area of the trial is 

completely within the boundaries and we conclude that equivalence has been demon-
strated. Note that with D 

1
  we have both signifi cant difference and equivalence.   

    Chapter 5   
 Equivalence Testing                 
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    2   Overview of Possibilities with Equivalence Testing 

 Table  5.1  shows that any confi dence interval (95% CIs intervals between the 
brackets in each of the examples) that does not overlap zero is statistically different 
from zero. Only intervals between the prespecifi ed range of equivalence −D to +D 

H0

H1

2.1010

−D2 +D2

−D1 +D1

−3 −2 −1 0 1 2 3 4 5 SEMs

  Fig. 5.1    Null-hypothesis testing and equivalence testing of a sample of t-distributed data       

−D2 +D2

−D1 +D1

−3 −2 −1 0 1 2

2.101

H0

H1

3 4 5 SEMs

  Fig. 5.2    Null-hypothesis testing and equivalence testing of a sample of t-distributed data       
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present equivalence. Thus, situations 3, 4 and 5 demonstrate equivalence, while 1 
and 2, just like 6 and 7 do not. Situations 3 and 5 present equivalence and at the 
same time signifi cant difference. Situation 8 presents nor signifi cant difference, nor 
equivalence.  

 Testing equivalence of two treatments is different from testing their difference. 
We will in this chapter use the term comparative studies to name the latter kind of 
studies. In a comparative study we use statistical signifi cance tests to determine 
whether the null hypothesis of no treatment difference can be rejected, frequently 
together with 95% CIs to better visualize the size of the difference. In an equiva-
lence study this signifi cance test has little relevance: failure to detect a difference 
does not imply equivalence; the study may have been too small with corresponding 
wide standard errors to allow for such a conclusion. Also, not only difference but 
also equivalence are terms that should be interpreted within the context of clinical 
relevance. For that purpose we have to predefi ne a range of equivalence as an inter-
val from −D to +D. We can then simply check whether our 95% CIs as centered on 
the observed difference lies entirely between −D and +D. If it does equivalence is 
demonstrated if not, there is room for uncertainty. The above table shows the dis-
crepancies between signifi cance and equivalence testing. The procedure of check-
ing whether the 95% CIs are within a range of equivalence does look somewhat 
similar to a signifi cance testing procedure, but one in which the role of the usual null 
and alternative hypothesis are reversed. In equivalence testing the relevant null 
hypothesis is that a difference of at least D exists, and the analysis is targeted at 
rejecting this “null-hypothesis”. The choice of D is diffi cult, is often chosen on 
clinical arguments: the new agent should be suffi ciently similar to the standard 
agent to be clinically indistinguishable.  

   Table 5.1    Any confi dence interval (95% CIs intervals between the brackets in each of 
the examples) that does not overlap zero is statistically different from zero. Only inter-
vals between the prespecifi ed range of equivalence −D to +D present equivalence       
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    3   Calculations 

 95% CIs intervals are calculated according to the standard formulas 
 Continuous data paired or unpaired and normal distributions (with t-distribution 

 2 , which is actually 1.96, should be replaced by the appropriate t-value dependent 
upon sample size).

     − ±1 2Mean  mean SEMs where2    

     
= +2 2

unpaired differences 1 1 2 2SEM SD / n SD / n
   

     

+ −
= = =

2 2
1 2 1 2

paired differences 1 2

(SD SD 2r·SD ·SD )
SEM if n n n

n     

 Binary data

     

− −
= +1 1 2 2

of differences
1 2

p (1 p ) p (1 p )
SEM

n n
   

     − ±1 2With 95% CIs : p p 2. SEM     

 More details about the calculation of SEMS of samples are given in Chap.   1    . 
 The calculation of required samples size of the trial based on expected treatment 

effects in order to test our hypothesis reliably, will be explained in the next chapter 
together with sample size calculations for comparative studies. 

 It is helpful to present the results of an equivalence study in the form of a graph 
(Table  5.1 ). The result may be:

    1.    The confi dence interval for the difference between the two treatments lies entirely 
between the equivalence range so that we conclude that equivalence is 
demonstrated.  

    2.    The confi dence interval covers at least several points outside the equivalence 
range so that we conclude that a clinically important difference remains a 
possibility, and equivalence cannot be safely concluded.  

    3.    The confi dence interval is entirely outside the equivalence range.      

    4   Equivalence Testing, a New Gold Standard? 

 The classic gold standard in drug research is the randomized placebo controlled 
clinical trial. This design is favored for confi rmatory trials as part of the phase III 
development of new medicines. Because of the large numbers and classes of medicines 
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already available, however, new medicines are increasingly being developed for 
indications for which a placebo control group would be unethical. In such situations 
an obvious solution is to use as comparator an existing drug already licensed and 
regularly used for the indications in question. When an active comparator is used, 
the expectation may sometimes be that the new treatment will be better than the 
standard, the objective of the study may be to demonstrate this. This situation would 
be similar to a placebo control and requires no special methodology. More probably, 
however, the new treatment is expected to simply largely match the effi cacy of the 
standard treatment but to have some advantages in terms of safety, adverse effects, 
costs, pharmacokinetic properties. Under these circumstances the objective of the 
trial is to show equivalent effi cacy.  

    5   Validity of Equivalence Trials 

 A comparative trial is valid when it is blinded, randomized, explicit, accurate statis-
tically and ethically. The same is true for equivalence trial. However, a problem 
arises with the intention to treat analysis. Intention to treat patients are analyzed 
according to their randomized treatment irrespective of whether they actually 
received the treatment. The argument is that it mirrors what will happen when a 
treatment is used in practice. In a comparative parallel group study the inclusion of 
protocol violators in the analysis tend to make the results of the two treatments more 
similar. In an equivalence study this effect may bias the study towards a positive 
result, being the demonstration of equivalence. A possibility is to carry out both 
intention-to-treat-analysis and completed-protocol-analysis. If no difference is 
demonstrated, we conclude that the study’s data are robust (otherwise called sensi-
tive, otherwise called precise), and that the protocol-analysis did not introduce 
major sloppiness into the data. Sometimes, effi cacy and safety endpoints are ana-
lyzed differently: the former according to the protocol analysis simply because 
important endpoint variables are missing in the population that leaves the study 
early, and intention to treat analysis for the latter, because safety variables frequently 
include items such as side effects, drop-offs, morbidity and mortality during trial. 
Either endpoint can of course be assessed in an equivalence assessment trial, but we 
must consider that an intention to treat analysis may bias the equivalence principle 
towards overestimation of the chance of equivalence. 
  Note:    Statistical power of equivalence testing is explained in the next chapter.    

    6   Special Point: Level of Correlation in Paired 
Equivalence Studies 

 Figure  5.3  shows the results of three crossover trials with two drugs in patients with 
Raynaud’s phenomenon. In the left trial a negative correlation exists between the 
treatments, in the middle trial the correlation level is zero, while in the right trial a 
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strong postive correlation is observed. It is calculated that the mean difference 
between the treatments in each trial equals 5 Raynaud attacks/week but that the 
standard errors of the differences are different, left trial 6.46, middle trial 2.78, right 
trial 0.76 Raynaud attacks/week. Figure  5.4  shows that with a D-boundary of ±10 
Raynaud attacks/week only the positive correlation study is able to demonstrate 
equivalence. Fortunately, most crossover studies have a positive correlation between 
the treatments, and, so, the crossover design is generally quite sensitive to assess 
equivalence.    

    7   Conclusions 

     1.    The use of placebos is unethical if an effective active comparator is available.  
    2.    With an active comparator the new treatment may simply match the standard 

treatment.  

  Fig. 5.3    Example of three crossover studies of two treatments in patients with Raynaud’s phe-
nomenon. The Pearson’s correlation coeffi cient  r  varies from −1 to 1       

r = +1
r = 0

r = -1

  Fig. 5.4    The mean difference between the two treatments of each of the treatment comparison of 
Fig.  5.3  is 5 Raynaud attacks/week. However, standard errors, and, thus, 95% confi dence intervals 
are largely different. With a D-boundary of ±10 Raynaud attacks/week only the positive correlation 
study ( r  = +1) can demonstrate equivalence       
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    3.    Predefi ned areas of equivalence have to be based on clinical arguments.  
    4.    Equivalence testing is indispensable in drug development (for comparison versus 

an active comparator).  
    5.    Equivalence trials have to be larger than comparative trials. You will understand 

this after reviewing the next chapter.         
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    1   What    Is Statistical Power    

 Figure  6.1  shows two graphs of t-distributions. The lower graph (H1) could be a 
probability distribution of a sample of data or of a sample of paired differences 
between two observations. N = 20 and so 95% of the observations is within 
2.901 ± 2.101 standard errors of the mean (SEMs) on the x-axis (usually called 
z-axis in statistics). The upper graph is identical, but centers around 0 instead of 
2.901. It is called the null-hypothesis H0, and represents the data of our sample if 
the mean results were not different from zero. However, our mean result is 2.901 
SEMs distant from zero. If we had many samples obtained by similar trials under 
the same null-hypothesis, the chance of fi nding a mean value of more than 2.101 is 
<5%, because the area under the curve (AUC) of H0 right from 2.101 <5% of total 
AUC. We, therefore, reject the assumption that our results indicate a difference just 
by chance and decide that we have demonstrated a true difference. What is the 
power of this test. The power has as prior assumption that there is a difference from 
zero in our data. What is the chance of demonstrating a difference if there is one. If 
our experiment would be performed many times, the distribution of obtained mean 
values of those many experiments would center around 2.901, and about 70% of the 
AUC of H1 would be larger than 2.101. When smaller than 2.101, our statistical 
analysis would not be able to reject the null-hypothesis of no difference, when 
larger, it would rightly be able to reject the null-hypothesis of no difference. So, in 
fact 100% – 70% = 30% of the many trials would erroneously be unable to reject the 
null-hypothesis of no difference, even when a true difference is in the data. We say 
the power of this experiment = 1 − 0.3 = 0.7 (70%), otherwise called the chance of 
fi nding a difference when there is one (area under curve (1 −  b ) × 100%).  b  is also 
called the chance of making a type II error = chance of fi nding no difference when 
there is one. Another chance is the chance of fi nding a difference where there is 
none, otherwise called the type I error (area under the curve (2x  a /2) × 100%). This 
type of error is usually set to be 0.05 (5%).   

    Chapter 6   
 Statistical Power and Sample Size                  
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    2   Emphasis on Statistical Power Rather 
Than Null-Hypothesis Testing 

 Generally, statistical tests reach their conclusions by seeing how compatible the 
observations were with the null-hypothesis of no treatment effect or treatment dif-
ference between test-treatment and reference-treatment. In any test we reject the 
null-hypothesis of no treatment effect if the value of the test statistic (F, t, q, or chi-
square) was bigger than 95% of the values that would occur if the treatment had no 
effect. When this is so, it is common for medical investigators to report a statisti-
cally signifi cant effect at P (probability) <0.05 which means that the chance of 
fi nding no difference if there is one, is less than 5%. On the other hand, when the 
test statistic is not big enough to reject this null-hypothesis of no treatment effect, 
the investigators often report no statistically signifi cant difference and discuss their 
results in terms of documented proof that the treatment had no effect. All they 
really did, was fail to demonstrate that it did have an effect. The distinction between 
positively demonstrating that a treatment had no effect and failing to demonstrate 
that it does have an effect, is subtle but very important, especially with respect to 
the small numbers of subjects usually enrolled in a trial. A study of treatments that 
involves only a few subjects and then fails to reject the null hypothesis of no 
treatment effect, may arrive at this result because the statistical procedure lacked 
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  Fig. 6.1    H1 is the given distribution of our data with mean value of 2.901 (= t = mean/SEM). 
 b  = area under curve ( AUC ) of H1  left  from the  dotted vertical line  = ±0.3 (±30% of the total AUC). 
1 −  b  = ±0.7 = ± 70% of total AUC of H1. Statistical power = ± 0.7 = chance of fi nding a difference 
when there is one       
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power to detect the effect because of a too small sample size, even though the 
treatment did have an effect. 

 Figure  6.2  gives an example of a t-distribution with n = 20 (H1) and its null- 
hypothesis of no effect (H0). 95% of all similar trials with no signifi cant treatment 
difference from zero must have their means between −2.101 and +2.101 SEMs from 
zero. The chance of fi nding a mean value of 2.101 SEMs or more is 5% or less 
( a  = 0.05 or  a . 100% = 5%, where  a  is the chance of fi nding a difference when there 
is none = erroneously rejecting the null-hypothesis of no effect, also called type I 
error). The fi gure shows that in this particular situation the chance of  b  is 0.5 or  b  
times 100% = 50% ( b  is the chance of fi nding no difference where there is one = the 
chance of erroneously accepting the null-hypothesis of no treatment difference, also 
called type II error).  

 Statistical power, defi ned as 1 −  b , can be best described as the chance of fi nding 
a difference where there is one = the chance of rightly rejecting the null-hypothesis 
of no effect. The fi gure shows that this chance of detecting a true-positive effect, i.e., 
reporting a statistically signifi cant difference when the treatment really produces an 
effect is only 50%, and likewise that the chance of no statistically signifi cant differ-
ence is no less than 50% either ( b  = 0.5). It means that if we reject the null- hypothesis 
of no effect at P = 0.05, we still have a chance of 50% that a real effect in our data is 
not detected. As a real effect in the data rather than no effect is the main underlying 
hypothesis of comparative drug trials, a 50% chance to detect it, is hardly acceptable 
for reliable testing. A more adequate cut-off level of rejecting would be, e.g., a 
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  Fig. 6.2    Example of t-distribution with n = 20 and its null- hypothesis of no effect.  Lower curve  
H1 or actual SEM distribution of the data,  upper curve H0  or null-hypothesis of the study       
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90–95% power level, with corresponding  a  level of 0.005–0.001. Many  physicians 
and even some investigators never confront these problems because they never 
heard of power. An additional advantage of power analysis is the possibility to use 
power computations on hypothesized results a priori in order to decide in advance 
on sample size for a study.  

    3   Power Computations 

 Calculating power can be best left over to a computer, because other approaches 
are rather imprecise. For example, with normal distributions or t-distribu-
tions power =1 −  b  can be readily visualized from a graph as estimated percent-
age of the (1 −  b ) × 100% area under the curve. However, errors as large as 
10–20% are unavoidable with this approach. We may alternatively use tables for 
t- and z-distributions, but as tables give discrete values this procedure is rather 
inaccurate either. 

 A computer will make use of the following equations. 

    3.1   For t-Distributions of Continuous Data  

    
1 1

power powerPower 1 1 probability z (t t )  = probability z (t t )⎡ ⎤ ⎡ ⎤= − β = − ≤ − > −⎣ ⎦ ⎣ ⎦   

where z 
power

  represents a position on the x-axis of the z-distribution (or in this par-
ticular situation more correctly t-distribution), and t 1  represents the level of t that for 
the given degrees of freedom ( »  sample size) yields an  a  of 0.05. Finally, t in the 
equation is the actual t as calculated from the data. 

 Let’s assume we have a parallel-group data comparison with test statistic of 
t = 3.99 and n = 20 (P < 0.001). What is the power of this test? Z 

power
  = (t 1  − t) = 3.99 − 

2.101 = 1.89. This is so, because t 1  = the t that with 18 degrees of freedom (dfs) 
(n = 20, 20 − 2) yields an  a  of 0.05. To convert z 

power
  into power we look up in the 

t-table with dfs = 18 the closest level of probability and fi nd approximately 0.9 for 
1.729. The power of this test thus is approximately 90%.  

    3.2   For Proportions  

     
( ) 1

power 1 2z 2.  arcsine arcsine 
2

n
p p z= − −
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where z 
power

  is a position on the x-axis of the z-distribution and z 1  is 2 if  a  = 0.05 
(actually 1.96). It is surprising that arcsine (= 1/sine) expressed in radians shows up 
but it turns out that power is a function of the square roots of the proportions, which 
has a 1/sine like function. 

 A computer turns z 
power

  into power. Actually, power graphs as presented in many 
current texts on statistics can give acceptable estimates for proportions as well.  

    3.3   For Equivalence Testing of Samples with t-Distributions 
and Continuous Data  

     [ ]1Power 1 1 probability (D/SEM z )z −α= − β = − < −
   

where z is again a position on the x-axis of the z- or t-distribution, D is half the 
interval of equivalence (see previous chapter), and z 

1 −  a 
  is 2 (actually 1.96) if  a  is 

set at 5%.   

    4   Examples of Power Computation Using the t-Table 

    4.1   First Example 

 Although a table gives discrete values, and is somewhat inaccurate to precisely 
 calculate the power size, it is useful to master the method, because it is helpful to 
understand what statistical power really is. The example of Fig.  6.3  is given. Our 
trial mean is 2.878 SEMs distant from 0 (= the t-value of our trial). We will try to 
fi nd beta by subtracting t − t 1  where is the t-value that yields an area under the curve 
(AUC) of 5% = 2.101. t − t 1  = 2.878 − 2.101 = 0.668. Now we can use the t-table to 
fi nd 1-beta = power.  

 The t-table (Table  6.1 ) gives eight columns of t-values and one column (left one) 
of degrees of freedom. The upper rows give an overview of AUCs corresponding to 
various t-values and degrees of freedom. In our case we have two groups of ten 
subjects and thus (20 − 2) = 18 degrees of freedom (dfs). The AUC right from 
2.101 = 0.05 (tested 2-sided = tested for both > +2.101 and < −2.101 distant from 0). 
Now for the power analysis. The t-value of our trial = 2.878. The t 1  – value = approx-
imately 2.101; t − t 1  = approximately 0.777. The AUC right from 0.777 is right from 
0.688 corresponding with an area under the curve (AUC) <0.25 (25%). Beta, always 
tested one-sided, is, thus, < 25%; 1 – beta = power = > 75%.   
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  Fig. 6.3    Example of power computation using the t-table       

(continued)

   Table 6.1    t   -Table:  n  = degrees of freedom for t-variable, Q = proportion of cases cut off on the 
upper tail of the t-distribution   

  Q  =  0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

 2Q =  0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  1   0.325  1.000  3.078  6.314  12.706  31.821  63.657  318.31 
  2   .289  0.816  1.886  2.920  4.303  6.965  9.925  22.326 
  3   .277  .765  1.638  2.353  3.182  4.547  5.841  10.213 
  4   .171  .741  1.533  2.132  2.776  3.747  4.604  7.173 

  5   0.267  0.727  1.476  2.015  2.571  3.365  4.032  5.893 
  6   .265  .718  1.440  1.943  2.447  3.143  3.707  5.208 
  7   .263  .711  1.415  1.895  2.365  2.998  3.499  4.785 
  8   .262  .706  1.397  1.860  2.306  2.896  3.355  4.501 
  9   .261  .703  1.383  1.833  2.262  2.821  3.250  4.297 

  10   0.261  0.700  1.372  1.812  2.228  2.764  3.169  4.144 
  11   .269  .697  1.363  1.796  2.201  2.718  3.106  4.025 
  12   .269  .695  1.356  1.782  2.179  2.681  3.055  3.930 
  13   .259  .694  1.350  1.771  2.160  2.650  3.012  3.852 
  14   .258  .692  1.345  1.761  2.145  2.624  2.977  3.787 

  15   0.258  0.691  1.341  1.753  2.131  2.602  2.947  3.733 
  16   .258  .690  1.337  1.746  2.120  2.583  2.921  3.686 
  17   .257  .689  1.333  1.740  2.110  2.567  2.898  3.646 
  18   .257  688  1.330  1.734  2.101  2.552  2.878  3.610 
  19   .257  .688  1.328  1.729  2.093  2.539  2.861  3.579 
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    4.2   Second Example 

 The mean result from the example in Fig.  6.4  is 2.1 SEMs distant from zero, which 
is equal to the t-value in the underneath t-table. We fi nd beta by subtracting t − t 1  
where t 1  is the t yielding AUC of 5% = 2.101. t − t 1  = 0.0. Now we use t-table to fi nd 
1 − beta. The t- value = 2.1, t 1  = 2.1, t − t 1  = 0.0, close to 0.257.  

 The AUC is, thus, close to 0.4 and will be approximately 0.50. Beta 
(1-sided) = approximately 50%, 1 − beta = power = 1 − 0.50 = approximately 0.50 = approx-
imately 50%, power is 50%. This little power is not acceptable for accurate testing 
(Table  6.2 ).   

    4.3   Third Example 

 Things may get worse. The mean result of the study from Fig.  6.5  is 0.9 SEMs dis-
tant from zero. The t-value = 0.9. We fi nd beta by subtracting t − t 1  where t 1  is the t 
yielding an AUC of 0.05 = 2.101; t − t 1  = −1.20.  

 Our t–value is, thus, 0.9, t 1  is 2.1, t − t 1  = −1.2, 1.2 is between 0.68 and 1.33, and 
close to 1.33, and corresponds with an AUC a bit more than 10%: 15% or so, −1.2 
corresponds with an AUC 100% − 15% = 85%, beta = 85%, 1 − beta = 15% = 
STATISTICAL POWER. Notice that this procedure is getting rather imprecise with 
extreme values    (Table  6.3 ).    

  Q  =  0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

 2Q =  0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  20   0.257  0.687  1.325  1.725  2.086  2.528  2.845  3.552 
  21   .257  .686  1.323  1.721  2.080  2.518  2.831  3.527 
  22   .256  .686  1.321  1.717  2.074  2.508  2.819  3.505 
  23   .256  .685  1.319  1.714  2.069  2.600  2.807  3.485 
  24   .256  .685  1.318  1.711  2.064  2.492  2.797  3.467 

  25   0.256  0.684  1,316  1.708  2.060  2.485  2.787  3.450 
  26   .256  .654  1,315  1.706  2.056  2.479  2.779  3.435 
  27   .256  .684  1,314  1.701  2.052  2.473  2.771  3.421 
  28   .256  .683  1,313  1.701  2.048  2.467  2.763  3.408 
  29   .256  .683  1.311  1.699  2.045  2.462  2.756  3.396 

  30   0.256  0.683  1.310  1.697  2.042  2.457  2.750  3.385 
  40   .255  .681  1.303  1.684  2.021  2.423  2.704  3.307 
  60   .254  .679  1.296  1.671  2.000  2.390  2.660  3.232 
  120   .254  .677  1.289  1.658  1.950  2.358  2.617  3.160 
  ¥   .253  .674  1.282  1.645  1.960  2.326  2.576  3.090 

Table 6.1 (continued)
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  Fig. 6.4    Example of power computation using the t-table       

   Table 6.2    t-Table:  n  = degrees of freedom for t-variable, Q = proportion of cases cut off on the 
upper tail of the t-distribution   

  Q   = 0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

  Q   = 0.5    2Q = 0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  1   0.325  1.000  3.078  6.314  12.706  11.821  63.657  318.31 
  2   .289  0.816  1.886  2.920  4.303  6.965  9.925  22.326 
  3   .277  .765  1.638  2.353  3.182  4.547  5.841  10.213 
  4   .171  .741  1.533  2.132  2.776  3.747  4.604  7.173 

  5   0.267  0.727  1.476  2.015  2.571  3.365  4.032  5.893 
  6   .265  .718  1.440  1.943  2.447  3.143  3.707  5.208 
  7   .263  .711  1.415  1.895  2.365  2.998  3.499  4.785 
  8   .262  .706  1.397  1.860  2.306  2.896  3.355  4.501 
  9   .261  .703  1.383  1.833  2.262  2.821  3.250  4.297 

  10   0.261  0. 700  1.372  1.812  2.228  2.764  3.169  4.144 
  11   .269  .697  1.363  1.796  2.201  2.718  3.106  4.025 
  12   .269  .695  1.356  1.782  2.179  2.681  3.055  3.930 
  13   .259  .694  1.350  1.771  2.160  2.650  3.012  3.852 
  14   .258  .692  1.345  1.761  2.145  2.624  2.977  3.787 

  15   0.258  0.691  1.341  1.753  2.131  2.602  2.947  3.733 
  16   .258  .690  1.337  1.746  2.120  2.583  2.921  3.686 
  17    0.0   .257  .689  1.333  1.740  2.110  2.567  2.898  3.646 

  18   .257  688  1.330  1.734  2.101  2.552  2.878  3.610 
  19   .257  .688  1.328  1.729  2.093  2.539  2.861  3.579 

(continued)
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Table 6.2 (continued)
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  Fig. 6.5    Example of power computation using the t-table       

  Q   = 0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

  Q   = 0.5    2Q = 0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  20   0.257  0.687  1.325  1.725  2.086  2.528  2.845  3.552 
  21   .257  .686  1.323  1.721  2.080  2.518  2.831  3.527 
  22   .256  .686  1.321  1.717  2.074  2.508  2.819  3.505 
  23   .256  .685  1.319  1.714  2.069  2.600  2.807  3.485 
  24   .256  .685  1.318  1.711  2.064  2.492  2.797  3.467 

  25   0.256  0.684  1,316  1.708  2.060  2.485  2.787  3.450 
  26   .256  .654  1,315  1.706  2.056  2.479  2.779  3.435 
  27   .256  .684  1,314  1.701  2.052  2.473  2.771  3.421 
  28   .256  .683  1,313  1.701  2.048  2.467  2.763  3.408 
  29   .256  .683  1.311  1.699  2.045  2.462  2.756  3.396 
  30   0.256  0.683  1.310  1.697  2.042  2.457  2.750  3.385 

  40   .255  .681  1.303  1.684  2.021  2.423  2.704  3.307 
  60   .254  .679  1.296  1.671  2.000  2.390  2.660  3.232 
  120   .254  .677  1.289  1.658  1.950  2.358  2.617  3.160 
  ¥   .253  .674  1.282  1.645  1.960  2.326  2.576  3.090 
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    5   Calculation of Required Sample Size, Rationale 

 An essential part of planning a clinical trial is to decide how many people need to 
be studied in order to answer the study objectives. Just pulling the sample sizes out 
of a hat gives rise to:

    1.    Ethical problems, because if too many patients are given a potentially inferior 
treatment, this is not ethical to do.  

   Table 6.3    t-Table:  n  = degrees of freedom for t-variable, Q = proportion of cases cut off on the 
upper tail of the t-distribution   

  v    Q   = 0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

  2Q = 0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  1   0.325  1.000  3.078  6.314  12.706  31.821  63.657  318.31 
  2   .289  0.816  1.886  2.920  4.303  6.965  9.925  22.326 
  3   .277  .765  1.638  2.353  3.182  4.547  5.841  10.213 
  4   .171  .741  1.533  2.132  2.776  3.747  4.604  7.173 

  5   0.267  0.727  1.476  2.015  2.571  3.365  4.032  5.893 
  6   .265  .718  1.440  1.943  2.447  3.143  3.707  5.208 
  7   .263  .711  1.415  1.895  2.365  2.998  3.499  4.785 
  8   .262  .706  1.397  1.860  2.306  2.896  3.355  4.501 
  9   .261  .703  1.383  1.833  2.262  2.821  3.250  4.297 

  10   0.261  0.700  1.372  1.812  2.228  2.764  3.169  4.144 
  11   .269  .697  1.363  1.796  2.201  2.718  3.106  4.025 
  12   .269  .695  1.356  1.782  2.179  2.681  3.055  3.930 
  13   .259  .694  1.350  1.771  2.160  2.650  3.012  3.852 
  14   .258  .692  1.345  1.761  2.145  2.624  2.977  3.787 

  15   0.258  0.691  1.341  1.753  2.131  2.602  2.947  3.733 
  16   .258  .690  1.337  1.746  2.120  2.583  2.921  3.686 
  17   .257  .689  1.333  1.740  2.110  2.567  2.898  3.646 
  18   .257  688  l.330  1.734  2.101  2.552  2.878  3.610 
  19   .257  .688  1.328  1.729  2.093  2.539  2.861  3.579 

  20   0.257  0.687  1.325  1.725  2.086  2.528  2.845  3.552 
  21   .257  .686  1.323  1.721  2.080  2.518  2.831  3.527 
  22   .256  .686  1.321  1.717  2.074  2.508  2.819  3.505 
  23   .256  .685  1.319  1.714  2.069  2.600  2.807  3.485 
  24   .256  .685  1.318  1.711  2.064  2.492  2.797  3.467 

  25   0.256  0.684  1,316  1.708  2.060  2.485  2.787  3.450 
  26   .256  .654  1,315  1.706  2.056  2.479  2.779  3.435 
  27   .256  .684  1,314  1.701  2.052  2.473  2.771  3.421 
  28   .256  .683  1,313  1.701  2.048  2.467  2.763  3.408 
  29   .256  .683  1.311  1.699  2.045  2.462  2.756  3.396 
  30   0.256  0.683  1.310  1.697  2.042  2.457  2.750  3.385 

  40   .255  .681  1.303  1.684  2.021  2.423  2.704  3.307 
  60   .254  .679  1.296  1.671  2.000  2.390  2.660  3.232 
  120   .254  .677  1.289  1.658  1.950  2.358  2.617  3.160 
  ¥  .253  .674  1.282  1.645  1.960  2.326  2.576  3.090 
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    2.    Scientifi c problems, because negative studies require the repetition of the 
research.  

    3.    Financial problems, because extra costs are involved in too small and too large 
studies.     

 If we have no prior arguments to predict the outcome of a trial, we at least will 
have an idea of the kind of result that would be clinically relevant. This is also a 
very good basis to place prior sample size requirement on. For example, a smaller 
study, for example, will be needed to detect a fourfold increase than a twofold 
one. So the sample size also depends on the size of result we want to demonstrate 
reliably.  

    6   Calculations of Required Sample Size, Methods 

 An essential part of planning a clinical trial is to decide: how many people need to 
be studied in order to answer the study objectives. 

    6.1   A Simple Method 

 Mean should be at least 1.96 or approximately 2 SEMs distant from 0 to obtain 
statistical signifi cance   .

    

Assume: mean 2 SEM
Then mean / SEM 2
Then mean / SD / n 2
Then n 2.SD / mean
Then . ( / )

=
=

√ =
√ =

= 2n 4 SD mean    

   For example, with mean = 10 and SD = 20 we will need a sample size of at least n = 4 
(20/10) 2  = 4 × 4 =  16 .     P-value is then 0.05 but power is only 50%.     

    6.2   A More Accurate Method Is the Power Index Method 

 The statistical power (1) of a trial assessing a new treatment versus control is deter-
mined by three major variables:

    (2)    D (mean difference or mean result),  
    (3)    Variance in the data estimated as SD or SEM,  
    (4)    Sample size.     

 It follows that we can calculate (4) if we know the other three variables. 
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 The relationship between (4) and the three other variables can be expressed in 
fancy formulas with  (z  

  a     + z  
  b    )  

 2    = power index  as an important element in all of them. 
Here is the formula for continuous variables   

     
( / ) ( )= +2 2n SD mean z za b     

 If the power index for null-hypothesis is  (z  
  a     + z  

  b    )  
 2  , what is the size of this 

 (z  
  a     + z  

  b    )  
 2   ?  

 What does for example Z 
(alpha)

  exactly mean?  Z  
 (alpha)    means “a place” on the 

Z-line. What place?  If  alpha  is defi ned 5%, or rather 2 × 2 1/2%, then right from 
this place on the Z-line AUC = 5%, or rather 2 × 2 1/2%. So this place must be 1.96 
SEMs distant from 0, or a bit more with t-distribution.  So Z  

 alpha 
   = 1.96 = approxi-

mately 2.0  (Fig.  6.6 ).  
 What does Z 

(beta)
  exactly mean? If  beta  is defi ned 20%, what is the place on 

Z-line of Z 
(beta)

 ? Right from this place the AUC = 20% of the total AUC. This means 
that this place must be approximately 0.6 SEMs distant from 0.  So Z   

 beta 
   = approxi-

mately 0.8  (Fig.  6.7 ).  
 Now we can calculate the power index (z 

 a 
  + z 

 b 
 ) 2 .

   Z 
(alpha)

  = approximately 2.0  
  Z 

(beta)
  = approximately 0.8  

  power index = (z 
 a 
  + z 

 b 
 ) 2  = 2.8 2  = 7.8    

21/2 % = a/2
21/2 % = a/2

SEMs
53 410−1−2−3 Za = 1.96

  Fig. 6.6    Calculating power indexes       

β = 20%

Zβ=0.8
-3 -2 -1 0 1 3 4 5

SEMs
2

  Fig. 6.7    Calculating power indexes       
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 As the formula for continuous variables is n = (SD/mean) 2  (z 
 a 
  + z 

 b 
 ) 2  ,  we can now 

conclude that with  a  = 5% and power = 1 −  b  = 80% the required sample size is n = 7.8 
(SD/mean) 2  . For example, with SD = 20 and mean = 10, we will need a sample size 
of n = 7.8 (20/10) 2  =  32.  

  So, accounting a power of 80% requires 32, rather than the 16 patients, required 
according to the simple method.   

    6.3   Power Calculation for Parallel-Group Studies 

 For parallel-group studies including two groups larger sample sizes are required. 
Each group produces its own mean and standard deviation (SD). 

 The pooled SD =Ö(SD
group1

2 + SD
group2

2) 

 The equation for sample size is given by:

     
2 2n 2 (z z ) (pooled SD / mean difference)α β= +

    

 If the mean difference = 10, and the pooled SD =√(202 + 202) = 28.3, then the 
required sample size is given by

     = × × = × × =2n 2 7.8 (28.3 /10) 2 7.8 8.01 126     

 Thus, 63 subjects per group are required for the purpose of 80% power with 
alpha = 0.05.  

    6.4   Required Sample Size Equation 
for Studies with Proportions 

 If we have arguments to expect events in 10% of the subjects included, then 
p = proportion = 0.1. The SD of this proportion = √[p(1 − p)]. 

 The equations for continuous data and proportions are very similar.

     

= ×
= ×

2

2

Continuous data : n powerindex (SD / mean)

Proportions : n powerindex (SD / proportion)     

 So, if p = 0.10, then the required sample size is given by

     [ ]2
n 7.8 (0.1 0.9) / 0.1= × ×

    

 For parallel-group studies with two proportions we again have to pool the SDs.

     
= √ 2 2

group1 group2pooled SDs (SD  + SD )
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 For example  

 Number of subjects with an event 

 Yes  No 

 Group 1  a  b  
    

( ) ( )⎡ ⎤= + = √ −⎣ ⎦1 1 1 2proportion p a / a b SD p 1 p
   

 Group 2  c  d  
    

( )2 2proportion p c / c ....d SD .......= + =
   

 
    

( )2 2
1 2pooled SD SD  SD= √ +

   

 It is hard to recognize the equation from the equation of continuous data, but it is 
actually very similar:

     

2 1 1 2 2
2

1 2

p (1 p ) p (1 p )
n 2(z z ) ·

(p p )a b

− + −
= +

−    

(where p 
1
  and p 

2
  are the proportions to be compared). 

 As an example a standard and new treatment are compared. 
 The standard treatment produces a proportion of responders of p 

1
  = 0.1, the new 

treatment of p 
2
  = 0.2. The required sample size is calculated according to

     

− + −× × =
− 2

0.1(1 0.1) 0.2(1 0.2)
n = 2 7.8 390

(0.1 0.2)     

 The required sample per group is, thus, 195. 
 Note that a requested power of 90% means a power index of 10.5. In this study 

526 subjects would have to be included.  

    6.5   Required Sample Size Formula for Equivalence Testing  

     ( ) /( ) /−= + 2 2
1 1 2 1–1/ 2N 2 between subject variance z z Da b    

(where D is minimal difference we wish to detect).

   What size is the  power index of equivalence test (z  
 1 − 1/2 a     + z  

 1 − 1/2 b    )  
 2   ?   

  If the power index of equivalence testing = (z 
1 − 1/2 a 

  + z 
1 − 1/2 b 

 ) 2   
  What is the size of this power index?    

 If alpha is defi ned 5%, then ½ alpha = 2 ½%. What is the place on the Z-line of 
 Z   

 (1 − 1/2 a )    ? Left from this place the AUC = 1 − ½ alpha = 100 − 2 ½% = 97 ½% of 
total AUC.  So this place is, just like Z 

alpha
 , 1.96 SEMs distant from 0, or bit more 

with t-distribution. So,  Z  
 (1 − ½ alpha)    = 1.96 or approximately 2.0  (Fig.  6.8 ).  

 Now, if beta is defi ned 20%, then ½ beta = 10% What is the place on the Z-line 
of Z  

(1 − 1/2 beta)
  ?  Left from the place the AUC = 100% − 10% = 90% of total AUC.  
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This means that this place must be approximately 1.2 SEMs distant from 0, or a bit 
more, and, thus,  Z   

 (1 − ½ beta)    = approximately 1.2  (Fig.  6.9 ).  
 Now we can calculate this power index. Z 

(1 − ½  a )
  = approximately 2.0. Z 

(1 − ½  b )
  = app 

1.2. The power index for equivalence testing = (2.0 + 1.2) 2  = approximately 10.9. 

   

Note :

       

power index null hypothesis testing 7.8
power index equivalence testing 10.9

=
=

    
 Obviously, for equivalence testing larger sample sizes are required ! 
 Equivalence trials often include too few patients. The conclusion of equivalence 

becomes meaningless if, due to this, the design lacks power. Testing equivalence 
usually requires a sample larger than that of comparative null hypothesis testing 
studies. Required numbers of patients to be included should be estimated at the 
design stage of such studies.   

    7   Testing Inferiority of a New Treatment (Type III Error) 

 An inferior treatment may sometimes mistakenly be believed to be superior. “Negative” 
studies, defi ned as studies that do not confi rm their prior hypotheses, may be “nega-
tive” because an inferior treatment is mistakenly believed to be superior. However, 
from a statistical point of view this possibility is unlikely, because the possibility of a 

Z(1-β/2) = 1.2

-3 -2 -1 0 1 3 4 5
SEMs

  Fig. 6.9    Calculating power indexes       

SEMs
53 410−1−2−3

Z(1-a /2) = 1.96

  Fig. 6.8    Calculating power indexes       
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type III error can not be rejected. Suppose in a study the mean results is+1 SEM 
distant from the mean of the null hypothesis of no treatment effect (Fig.  6.10 ).  

 This means that we are unable to reject this null hypothesis, because a null 
hypothesis is rejected when the mean result of a study is more than about 2 SEMs 
distant from zero (P < 0.05), and the study is thus “negative”. For testing the chance 
that our treatment is signifi cantly inferior, a new null-hypothesis at approximately 
– 2SEMs distant from zero is required (Fig.  6.10 ). This null-hypothesis is about 3 
SEMs distant from our mean result, which means that this chance is <0.001. So, it 
seems that even statistically “negative” trials give strong evidence that the favored 
treatment is, indeed, not inferior. This issue can be illustrated by an example. The 
treatment of hypertension is believed to follow a J-shape curve, where overtreat-
ment produces increased rather than reduced mortality/morbidity. A different theory 
would tell you that the more intensive the therapy the better the result. This latter 
theory was recently tested in the HOT trial (HOT investigators  1998  ) , but could not 
be confi rmed: high dosage antihypertensive therapy was not signifi cantly better than 
medium-dosage therapy. Probably it was not worse either, however, unfortunately, 
this was not tested in the report. The study would defi nitely have been powerful to 

2.101

-2.101

H0

H1

-3 -2 -1 0 1 2 3 4 5
SEMs

H'0

PROBABILITY
DISTRIBUTION

  Fig. 6.10    Study with n = 20 and mean results + 1 SEM distant from the mean of the null-hypothesis 
of no treatment effect (H 

0
 ). For testing the chance that our treatment is signifi cantly inferior, a new 

null hypothesis at approximately – 2SEMs left from zero is required       
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test this question, and, moreover, it would have solved a major so far unsolved 
discussion. 

 An additional advantage of testing type III errors is, that it helps preventing well-
designed studies from going down in history as just “negative” studies that did not 
prove anything and are more likely not to be published, leading to unnecessary and 
costly repetition of research. If such “negative” studies are capable of rejecting the 
chance of a type III error, they may be reconsidered as a study that is not completely 
negative and may be rightly given better priority for being published.

The issue of non-inferiority has developed tremendously in the past years, and 
this subject will be re-addressed in a broader perspective in Chapter 63.  

    8   Conclusions 

     1.    If underlying hypothesis is that one treatment is really different from control, 
power analysis is a more reliable to evaluate the data than null hypothesis testing; 
Power level of at least 80% is recommended. Power = chance of fi nding a difference 
where there actually is one.  

    2.    Despite speculative character of prior estimates, it is inappropriate not to calculate 
required sample size based on expected results.  

    3.    Type III error demonstrates in negative trial whether the new treatment is worse 
than control.  

    4.    Important formulas:

     ( )= − < − =1Power 1 prob z (t t ) where prob probability
   

     α β+ 2Power index needed for calculating sample size (z z )  is generally 7.8.
   

     α β= +2 2Required sample size 2.(SD / mean) (z z )
     

    5.     Required knowledge after studying this chapter: to calculate power from simple 
example of (continuous) trial data using t-table, to calculate required sample size 
for continuous data trial with alpha = 0.05 and beta = 0.20 using power index.          

   Reference 

    HOT investigators (1998) The HOT trial. Lancet 87:133–142    
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     1   Introduction    

 Clinical trials tend to have a long duration, because mostly patients are enrolled one 
by one, and their responses to treatment are observed sequentially. For the organiz-
ers this part of the trial is an exciting phase because after all the hard work involved 
in planning and getting the trial started, fi nally concrete data will become available. 
Immediately, there is the possibility to look at the data in order to check that the trial 
protocol is pursued appropriately by the investigators and to look at any diffi culties, 
e.g., those with patient and/or doctor compliance, and to see whether there is any 
need for protocol alterations (Pocock  1988a  ) . “Looking at the data” for such pur-
poses should, however, be done carefully. In this chapter we will discuss questions 
such as:

    1.    why should we monitor a trial;  
    2.    who should monitor a trial;  
    3.    what should be monitored;  
    4.    why should we be careful.      

    2   Monitoring 

 Careful conduct of a clinical trial according to the protocol has a major impact on 
the credibility of the results (Department of Health and Human Services, Food and 
Drug Administration  1998  ) ; to ensure patient/doctor compliance with the protocol, 
careful monitoring of the trial is a prerequisite. In large-scale pharmaceutical phase 
III trials, mainly two types of monitoring are being used: one is concerned with 
quality assessment of trial, and the other with the assumptions that were made in the 

    Chapter 7   
 Interim Analyses                 



96 7 Interim Analyses

protocol concerning treatment differences, power, and adverse effects. The quality 
of the trial is greatly enhanced when checks are performed to ensure that:

    1.    the protocol requirements are appropriately met by investigators and patients;  
    2.    inclusion and exclusion criteria are appropriately met;  
    3.    the rate of inclusion of patients in the trial is in accordance with the trial plan;  
    4.    the data are being accrued properly, and;  
    5.    design assumptions are met.     

 This type of monitoring does not require access to the data in the trial, nor is 
unblinding necessary, and therefore has no impact on the Type I error of fi nding a 
difference where there is none (Department of Health and Human Services, Food 
and Drug Administration  1998  )  (see also Sects.   6.1     and   6.2     of the current book). 
Usually, this type of monitoring is carried out by a specialized monitoring team 
under the responsibility of the steering committee of the trial. The period for this 
type of monitoring starts with the selection of the trial centers and ends with the 
collection and cleaning of the last patient’s data. 

 Inclusion and exclusion criteria should be kept constant, as specifi ed in the pro-
tocol, throughout the period of patient recruitment. In very long-term trials accumu-
lating medical knowledge either from outside the trial, or from interim analyses, 
may warrant a change in inclusion or exclusion criteria. Also, very low recruitment 
rates due to over-restrictive criteria, may sometimes favor some change in the criteria. 
These should be made without breaking the blinding of the trial and should always 
be described in a protocol amendment to be submitted to the ethic committee for 
their approval. This amendment should also cover any statistical consequences such 
as sample size, and alterations to the planned statistical analysis. 

 The rate of subject accrual should be monitored carefully, especially with long-
term trials. If it falls below the expected level, the reasons why so should be identi-
fi ed, and action taken not to jeopardize the power of the trial. Naturally, the quality 
of the data should be assessed carefully. Attempts should be made to recover missing 
data and to check the consistency of the data.  

    3   Interim Analysis 

 The other type of monitoring requires the comparison of treatment results, and it, 
therefore, generally requires at least partly unblinded access to treatment group 
assignment. This type of monitoring is actually called interim analysis. It refers to 
any analysis intended to compare treatment arms with respect to effi cacy or safety 
at any time prior to formal completion of the trial. 

 The primary goals for monitoring trial data through interim analysis include

    1.    ethical concerns to avoid any patient receiving a treatment the very moment it is 
recognized to be inferior;  

    2.    (cost-)effi ciency concerns of avoiding undue prolongation of a trial once the 
treatment differences are reasonably clear-cut, and;  

http://6.1
http://6.2
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    3.    checking whether prior assumptions concerning sample size, treatment effi cacy 
and adverse effects are still valid.     

 As the sample-size of the trial is generally based on preliminary and/or uncertain 
information, an interim check on the unblinded data may also be useful to reveal 
whether or not overall response variances, event rates or survival experience are as 
anticipated. A revised sample size may then be required using suitable modifi ed 
assumptions. As a matter of course, such modifi cation should be documented in a 
protocol amendment and in the clinical study report. Steps taken to preserve blind-
ness during the rest of the trial and consequences for the risk of type I errors and the 
width of the confi dence intervals should be accounted for. 

 Particularly, severe toxic reactions, as well as other adverse effects, are important 
and need careful observation and reporting to the steering committee, so that prompt 
action can be taken. Investigators need to be warned to look out for such events and 
dose modifi cations may be necessary. 

 Every process of examining and analyzing data as accumulated in a clinical trial, 
either formally or informally, can introduce bias and/or increase of type I errors. 
Therefore, all interim analyses, formal or informal, preplanned or ad hoc, by any 
study participant, steering committee member, or data monitoring group should be 
described in full in the clinical study report, even if their results were disclosed to 
the investigators while on trial (Drug Administration  1996  ) . 

 For the purpose of reducing the risk of biases there are a number of important 
points in the organisation of the analysis and the interpretation of its results to keep 
in mind.

    I  – In most trials there are many outcome variables, but in interim analyses it is 
best to limit the number to only the major variables in order to avoid the multiple 
comparison problem (referred to in Sect.   1.1    ). Pocock  (  1988a  )  recommends to use 
only one main treatment comparison for which a formal ‘stopping rule’ may be 
defi ned, and to use the other treatment comparisons only as an informal check on 
the consistency of any apparent difference in the main comparison.  

   II  – It is important to perform the interim analysis on correct and up-to-date data. 
The data monitoring and data checks should be performed on all of the data gener-
ated at the time of the interim analysis in order to avoid any selection bias in the 
patients.  

   III  – The interim analysis should be performed only when there is a suffi cient 
number of patients. Any comparison is academic when the sample size is so small 
that even huge treatment differences will not be signifi cant.  

   IV  – The interim analysis should not be too elaborate, because there is a limited 
goal, namely to check whether differences in the main treatment comparison are not 
huge to the extent that further continuation of the trial would seem unethical.  

   V  – The interim analysis should be planned only when a decision to stop the 
trial is a serious possibility. With very long-term treatment periods in a trial when 
the period between patient entry and observance of patient outcome is very long, 
the patient accrual may be completed before any interim analysis can be per-
formed and the interim analysis results will have no impact on the trial anymore.  

http://1.1
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   VI  – The decision to stop the trial must be made according to a predefi ned stop-
ping rule. The rule should be formulated in terms of magnitude and statistical sig-
nifi cance of treatment differences and must be considered in the light of adverse 
effects, current knowledge, and practical aspects such as ease of administration, 
acceptability and cost. We must decide in advance what evidence of a treatment dif-
ference is suffi ciently strong to merit stopping the trial. Statistical signifi cance is a 
commonly used criterion, but the usual P-level is not appropriate. The problem with 
statistical signifi cance testing of interim data is that the risk of a type I error may be 
considerably increased because we perform more than one analysis. Hence, for a 
sequence of interim analyses we must set a more stringent signifi cance level than 
the usual P<0.05. We may use a Bonferroni adjustment (see also Chap.   1     introduc-
tion), i.e., use as signifi cance level the value 0.05 divided by the number of planned 
interim analyses, but this leads in most cases to a somewhat overconservative sig-
nifi cance level. Therefore, in most trials a so-called group-sequential design is 
employed. This subject will be discussed in the next section. A practical guideline 
is to use Pocock’s criteria (Pocock  1988b  ) :  if one anticipates no more than 10 
interim analyses and there is one main response variable, one can adopt p < 0.01 
as the criterion for stopping the trial.  An example of this approach is the follow-
ing: “stop the trial if the treatment difference is 20% or larger and this difference is 
statistically signifi cant with a p-value less than 0.01, and the proportion patients 
with adverse effects is less than 10%.” The outcome of the interim analysis may also 
be such that the treatments differ far less than expected. In such case the trial might 
be stopped for lack of effi cacy. Again, it is essential that a formal stopping rule is 
formulated in advance specifying the boundary for the treatment difference for the 
given confi dence intervals (CIs). In this case statistical signifi cance is not helpful as 
an additional criterion, but it is helpful to calculate the confi dence interval of the 
observed treatment difference and to see whether the expected treatment difference, 
specifi ed in the protocol, is far outside that interval.  

   VII  – It is necessary to keep the results of the interim analysis as confi dential as 
possible. Investigators may change their outlook and future participation to the trial, 
and might even change their attitudes towards treatment of patients in the trial if he/
she is aware of any interim results. This may cause a serious bias to the overall trial 
results. The U.S. Food and Drug Administration (FDA) therefore recommends not 
only that the execution of the interim analysis be highly confi dential (Department of 
Health and Human Services, Food and Drug Administration  1998  ) , but also that the 
investigators not be informed about its results unless a decision to stop the trial has 
been made. An external independent group of investigators should ideally perform 
the interim analysis, for the benefi t of the objectivity of the research (although com-
plete independence may be an illusion, it is still better to have some other persons 
with their own ethical and scientifi c principles look at your data than do it yourself). 
The steering committee should be informed about the decisions to continue or dis-
continue or the implementation of protocol amendments only.  

   VIII  – There is little advantage to be gained from carrying out a large number of 
interim analyses: the consequences of executing many interim analyses are that the 
sample sizes are small (at least in the fi rst analyses), and that a smaller signifi cance 



995 Continuous Sequential Statistical Techniques

level must be used. Pocock  (  1988c  )  recommends never to plan more than fi ve 
interim analyses, but at the same time to plan at least one interim analysis, in order 
to warrant scientifi c and ethical validity of the trial.     

    4   Group-Sequential Design of Interim Analysis 

 Group sequential design is the most widely used method to defi ne the stopping rule 
precisely and it was introduced by Pocock  (  1977  ) . The FDA (Department of Health 
and Human Services, Food and Drug Administration  1998  )  advocates the use of this 
design, though it is not the only acceptable type of design, and the FDA does so 
particularly for the purpose of safety assessment, one of its major concerns. 

 In a group-sequential trial we need to decide about the number (N) of interim 
analyses and the number (n) of patients per treatment that should be evaluated in 
between successive analyses: i.e. if the trial consists of two treatment arms 2n patients 
must be evaluated in each interim analysis. Pocock  (  1977  )  (and extensively explained 
in Pocock (Food and Drug Administration  1996  ) ) provides tables for the exact nomi-
nal signifi cance levels depending on the number of interim analyses N and the over-
all signifi cance level,. For instance if a trial is evaluated using a normal distributed 
response variable with known variance and one wishes the overall signifi cance level 
to be,= 0.05 and one plans N = 2 analyses, then the nominal signifi cance level must be 
set at 0.0294. If N = 3 or 4 or 5, the nominal signifi cance levels must be set at 0.0221, 
0.0182, and 0.0158, respectively. For other types of response variables, Pocock 
 (  1977  )  provides similar tables. Pocock  (  1977  )  also provides tables of the optimal 
sample size numbers of patients to be included in successive interim analyses. 

 Several extensions of the practical rules of Pocock were developed, for instance 
rules for letting the nominal signifi cance level vary between interim analyses. In 
practice a far more stringent p-value is suggested for earlier interim analyses and a 
less stringent one for later analyses. Pocock  (  1988a  )  claimed that such a variation 
might be sensible for studies with a low power, but that almost no effi ciency is 
gained in studies with powers of 90% or higher. Other extensions concern one-sided 
testing (Demets and Ware  1980  )  and skewed designs where a less stringent rule 
might be adopted for stopping if the new treatment is worse than the standard and a 
more stringent rule if the new treatment appears to be better than the standard.  

    5   Continuous Sequential Statistical Techniques 

 Historically, the statistical theory for stopping rules in clinical trials has been largely 
concerned with sequential designs for continuous monitoring of treatment differ-
ences. The basic principle is that after every additional patient on each treatment has 
been evaluated, some formal statistical rule is applied to the whole data so far to 
determine whether the trial should stop. The theory of sequential techniques is 
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already quite old (developed in the early 1940s and even earlier than that (Wald 
 1947  ) ), and many excellent textbooks have been published (Armitage  1975  ) ; here 
we adopt the arguments of Whitehead  (  1983  ) . 

 The central idea is to calculate after each additional patient (or after I additional 
patients) (a function of) the treatment difference, called Z, and the total amount of 
information, called V, sampled thus far. These two statistics are plotted graphically 
against each other each time a new patient is evaluated. The stopping rule of the trial 
entails evaluating whether a boundary is crossed. In Fig.  7.1  a typical example of a 
sequential trial with a so-called triangular test is illustrated.  

 The undulating line illustrates a possible realisation of a clinical trial: after each 
time a new patient could be evaluated, Z and V are calculated and the line is extended 
a little further. The line-sections AC and BC are the stopping boundaries, and the 
triangular region ABC is the continuation region. If the sample path crosses AC, the 
null hypothesis is rejected at the 5% signifi cance level, and if BC is crossed then H 

0
  

is accepted. The triangular test is one of many possible sequential trial designs; but 
the triangular test has some very attractive characteristics. If the treatment differ-
ence is large, it will lead to a steeply increasing sample path, and consequently to a 
small trial because the AC boundary is reached quickly. If there is no difference 
between treatment, the sample path will move horizontally and will cross the BC 
boundary quickly which also leads to a small trial. If the treatment difference is 
negative, the BC boundary will be crossed even quicker. 

O

Treatment difference (z)

Total amount of information(v)

  Fig. 7.1    Typical example of a sequential trial with a so-called triangular test. The  undulating line  
illustrates a possible realisation of a clinical trial: after each time a new patient could be evaluated, 
Z and V are calculated and the line is extended a little further. The line-sections AC and BC are the 
stopping boundaries, and the triangular region ABC is the continuation region. If the sample path 
crosses AC, the null hypothesis is rejected at the 5% signifi cance level, and if BC is crossed then 
H 

0
  is accepted. When Z is replaced by t or chi-square statistic, and V by degrees of freedom, the 

graph represents very much the same as the t- or chi-square tables (Appendix) respectively do       
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 The trick is to devise sensible boundaries. Whitehead  (  1983  )  gives an elaborate 
discussion on how to do this (as well as how to calculate Z and V). Whitehead 
 (  1983  )  also discussed many different sequential plans for many different types of 
clinical trials and data-types. Whitehead and his associates have also developed a 
user-friendly computer program to design and analyze sequential clinical trials 
(Whitehead  1998  ) .  

    6   Conclusions 

 Interim analyses in clinical trials can be of great importance in maintaining quality 
standards of the entire investigation and such analyses may be of crucial importance 
if clinical trials are to be ethically acceptable. Drawbacks of interim analyses are the 
increased risk of the type I error and the potential introduction of several kinds of 
biases, such as loss of validity factors, including blinding and randomization. It is 
rarely sensible to perform more than fi ve interim analyses and usual one interim 
analysis before the fi nal assessment suffi ces. It is crucial to specify in advance in the 
study protocol, how many analyses are to be performed and on how many patients, 
and which decisions are to be made on the basis of the interim results. It is best to 
let an external independent group, often called Independent Data Monitoring 
Committee (IDMC), execute the job and to keep its results as confi dent as is ethi-
cally possible. To do so, will be diffi cult but rewarding, and contribute to the credi-
bility and scientifi c value of the trial results.      
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     1   Introduction    

 Statistical hypothesis testing is much like gambling. If, with gambling once, your 
chance of a prize is 5%, then, with gambling 20 times, this chance will be close to 
40%. The same is true with statistical testing of clinical trials. If, with one statisti-
cal test, your chance of a signifi cant result is 5%, then after 20 tests, it will increase 
to 40%. This result is, however, not based on a true treatment effect, but, rather, on 
the play of chance. In current clinical trials, instead of a single effi cacy-variable of 
one treatment, multiple effi cacy-variables of more than one treatment are increas-
ingly assessed. For example, in 16 randomized controlled trials with positive 
results, published in the British Medical Journal (BMJ) in 2004 (Table  8.1 ), the 
numbers of primary effi cacy-variables varied from 4 to 13. This phenomenon 
introduces the statistical problem of multiple comparisons and multiple testing, 
which increases the risk of false positive results, otherwise called type I errors. 
There is no consensus within the statistical community on how to cope with this 
problem. Also, the issue has not been studied thoroughly for every type of variable. 
Clinical trials rarely adjust their data for multiple comparisons. For example, none 
of the underneath BMJ papers did. The current chapter briefl y summarizes the 
main methods for control in order to further emphasize the importance of this 
issue, and it gives examples.   

    2   Bonferroni Test 

 If more than two samples are compared in a clinical trial, multiple groups analysis 
of variance (ANOVA) is often applied for the analysis. For example, three groups of 
patients were treated with different hemoglobin improving compounds with the 
following results:  

    Chapter 8   
 Controlling the Risk of False 
Positive Clinical Trials                    
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   Table 8.1    Positive    randomized controlled trials published in the BMJ in 2004   

 Numbers of primary 
effi cacy variables 

 Smallest 
p-values 

 Positive study 
after Bonferroni 
adjustment 

 Adjustment 
 1. Schroter et al. 328: 742–3  5  0.001  Yes 
 2. Laurant et al. 328: 927–30  12  0.006  No 
 3. Yudkin et al. 328: 989–90  10  0.001  Yes 
 4. Craig et al. 328: 1067–70  6  0.030  No 
 5. Kalra et al. 328: 1099–101  7  0.001  Yes 
 6. Hilten et al. 328: 1281–1  5  0.05  No 
 7. James et al. 328: 1237–9  10  0.003  Yes 
 8. Logan et al. 328: 1372–4  6  0.01  No 
 9. Cairns S Smith et al. 328: 1459–63  13  0.002  Yes 
 10. Powell et al. 329: 89–91  10  0.001  Yes 
 11. Henderson et al. 329: 136–9  6  0.03  No 
 12. Collins et al. 329: 193–6  4  0.03  No 
 13. Svendsen et al. 329: 253–8  7  0.02  No 
 14. McKendry M 329: 258–61  9  0.001  Yes 
 15. Van Staaij et al. 329: 651–4  8  0.01  No 
 16. Norman et al. 329: 1259–62  10  0.02  Yes 

 Sample size 

 Mean hemoglobin  Standard deviation 

 mmol/l  mmol/l 

 Group 1  16  8.725  0.8445 
 Group 2  10  10.6300  1.2841 
 Group 3  15  12.3000  0.9419 

 The F test produces a p-value <0.01, indicating that a highly signifi cant difference 
is observed between the three groups. This leads to the not-too-informative infor-
mation that not all group means were equal. A question encountered is, which group 
did and which one did not differ from the others. This question involves the problem 
of multiple comparisons. As there are three different treatments, three different 
pairs of treatments can be compared: groups 1 versus 2, groups 1 versus 3, and 
groups 2 versus 3. The easiest approach is to calculate the Student’s t-test for each 
comparison. It produces a highly signifi cant difference at p < 0.01 between treat-
ment 1 versus 3 with no signifi cant differences between the other comparisons. This 
highly signifi cant result is, however, unadjusted for multiple comparisons. If the 
chance of a falsely positive result is, e.g.  a  with one comparison, it should be 2 a  
with two, and close to 3 a  with three comparisons. Bonferroni recommends to reject 
the null-hypothesis at a lower level of signifi cance according to the formula

     ( )α= × −rejection p - value 2/k k 1
   

   k = number of comparisons,  a  = agreed chance of falsely positive result (mostly 
0.05).    
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 In case of three comparisons the rejection p-value will be     × =
−

2
0.05 0.0166

3(3 1)
  . 

 A p-value of 0.0166 is still larger than 0.01, and, so, the difference observed 
remains signifi cant, but using a cut-off p-value of 0.0166, instead of 0.05, the differ-
ence is not highly signifi cant anymore.  

    3   Least Signifi cant Difference (LSD) Test 

 As an alternative to the Bonferroni test a refi ned t-test, the least signifi cant differ-
ence (LSD) test, can be applied. This refi ned t-statistic has n-k degrees of freedom, 
where n is the number of observations in the entire sample and k is the number of 
treatment groups. In the denominator of this refi ned t-test the pooled-within-group 
variance from the F-test mentioned in the previous section, is used (see also page 
114, Eq. 1   ). For the application of the LSD procedure, it is essential to perform it 
sequentially to a signifi cant F-test of the ANOVA procedure. So, if one chooses to 
perform the LSD procedure, one fi rst calculates the ANOVA procedure and stops if 
it is not signifi cant, and calculates the LSD test only if the F-test is statistically sig-
nifi cant. Otherwise, the test is similar to the Bonferroni-test, and yields with the 
above example a p-value smaller than 0.05. Like with Bonferroni, the difference is 
still signifi cant, but not highly signifi cant anymore.  

    4   Other Tests for Adjusting the p-Values 

 None of the 16 BMJ trials discussed in the introduction were adjusted for multiple test-
ing. When we performed a Bonferroni adjustment of them, only eight trials continued 
to be positive, while the remainder turned into negative studies. This does not necessarily 
indicate that all of these studies were truly negative. Several of them had more than fi ve 
effi cacy-variables, and, in this situation, the Bonferroni test is somewhat conservative, 
meaning that power is lost, and the risk of falsely negative results is raised. This is 
particularly so, if variables are highly correlated. A somewhat less conservative varia-
tion of the Bonferroni correction was suggested by Hochberg: if there are k primary 
values multiply the highest p-value with 1, the second-largest p-value with 2, the third 
largest with 3…, and the smallest p-value with k (Hochberg  1988  ) .  

 Calculated p-values  Reject null-hypothesis at 

 (1) Largest p-value  
    
α = × =1 0.05 1 0.05

   

 (2) Second largest p-value  
    
α = × =2 0.05 2 0.10

   

 (3) Third largest p-value  
    
α = × =3 0.05 3 0.15

   

 (k) kth largest p-value 
 
    α = × = …k 0.05 k .    



106 8 Clinical Trials    are Often False Positive

    The mathematical arguments of this procedure goes beyond this paper. What 
happens is, that the lowest and highest p-values will be less different from one 

another. There are other less conservative methods, like Tukey’s honestly signifi -
cant difference (HSD) test, Dunnett’s test, Student-Newman-Keuls test, and the 
Hotelling Q-square test. Most of them have in common that they produce their 

own test-statistics. Tables of signifi cance levels are available in statistical software 
packages including SAS and SPSS.  

    5   Composite Endpoint Procedures 

 A different solution for the multiple testing problem is to construct a composite 
endpoint of all of the effi cacy-variables, and, subsequently, to perform a statistical 
analysis on the composite only. For example, it is reasonable to believe that statin 
treatment has a benefi cial effect on total cholesterol (Tc), high density cholesterol 
(HDL), low density cholesterol (LDL), and triglycerides (Tg). We can perform a 
composite analysis of the four variables according to

     ( )= + + +cComposite variable T HDL LDL Tg / 4
   

     

( )−
= c c

c
c

T mean(T )
T etc

SDT    

   A simple t-test produces  
  Placebo: mean result composite variable = −0.23 (SD 0.59)  
  Statin: mean result composite variable = 0.15 (SD 0.56)  
  p = 0.006    

 This p-value is lower than that obtained by a Bonferroni or LSD procedure. This 
is probably so, because of the added power provided by the positive correlation 
between the repeated observations in one subject. If no strong correlation between 
the variables is to be expected, the composite endpoint procedure provides power 
similar to that of the Bonferroni or LSD procedure. 

 Largely similar to the composite endpoint procedure are the index methods. If 
the effi cacy-variables are highly correlated, because they more or less measure the 
same patient characteristic, then they be best replaced with their add-up sum. In this 
way the number of primary variables is reduced, and an additional advantage is that 
the standardized add-up sum of the separate variables is more reliable than the sepa-
rate variables. For example, the Disease Activity Score (DAS) for the assessment of 
patients with rheumatoid arthritis, including the Ritchie joint pain score, the number 
of swollen joints, and the erythrocyte sedimentation rate, is an example of this 
approach (Fuchs  1993  ) .  
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    6   No Adjustments at all, and Pragmatic Solutions 

 A more philosophical approach to the problem of multiple comparisons is to infor-
mally integrate the data, look for trends without judging one or two low p-values 
among otherwise high p-values as proof of a signifi cant difference in the data. 
However, both the medical community and the investigators may be unhappy with 
this solution, because they want the hard data to provide unequivocal answers to 
their questions, rather than uncertainties. An alternative and more pragmatic solu-
tion could be the standard use of lower levels of signifi cance to reject the null-
hypothesis. For the statistical analysis of interim analyses, that suffer from the same 
risk of increased type I errors due to multiple testing, Pocock’s recommendation to 
routinely use p < 0.01 instead of p < 0.05 has been widely adopted (Pocock  1988  ) . A 
similar rule could, of course, be applied to any multiple testing situation. The advan-
tage would be that it does not damage the data, because the data remain undamaged. 
Moreover, any adjustments may produce new type I errors, particularly, if they are 
post-hoc, and not previously described in the study protocol.  

    7   Conclusions 

 Approaches to reducing the problem of multiple testing include (1) the Bonferroni, 
test, (2) the LSD method, (3) other less conservative, more rarely used methods like 
Tukey’s honestly signifi cant (HSD) method, Dunnett’s test, Student-Newman-Keuls 
test, Hochberg’s adjustment, and the Hotelling Q-square test. Alternative approaches 
to the problems of multiple testing include (4) the construct of composite endpoints, 
(5) no adjustment at all, but a more philosophical approach to the interpretation of 
the p-values, and (6) the replacement of the traditional 5% rejection level with a 1% 
rejection level or less. 

 Evidence-based medicine is increasingly under pressure, because clinical trials do 
not adequately apply to their target populations (Furberg  2002 ; Julius  2003 ; Cleophas 
and Cleophas  2003  ) . Many causes are mentioned. As long as the issue of multiple 
testing is rarely assessed in the analysis of randomized controlled trials, it can not be 
excluded as one of the mechanisms responsible. We recommend that the increased 
risk of false positive results should be taken into account in any future randomized 
clinical trial which assesses more than one effi cacy-variable and/or treatment modality. 
The current chapter provides six possible methods for assessment.      
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               1   Introduction    

 Clinical trials often assess the effi cacy of more than one new treatment and often 
use mquestions about subgroups differences or about what variables do or do not 
contribute to the effi cacy results, remain. Assessment of such questions introduces 
the statistical problem of multiple comparison and multiple testing, which increases 
the risk of false positive statistical results, and thus increases the type-I error risk. 
In the previous chapter six commonly-used methods for controlling the risk of this 
problem have been addressed. This chapter gives a more mathematical approach of 
the problem, and gives examples in which different methods are compared with one 
another.  

    2   Multiple Comparisons 

 When in a trial three of more treatments are compared to each other, the typical 
fi rst statistical analysis is to test the null hypothesis (H 

0
 ) of no difference between 

treatments versus the alternative hypothesis (H 
a
 ) that at least one treatment deviates 

from the others. Suppose that in the trial k different treatments are compared, then 
the null hypothesis is formulated as     0 1 2H : ... kJ J J= = =   , where     iJ    is the expected 
treatment-effect of treatment i. When the effi cacy variable is quantitative (and 
normally distributed), then  J     is the mean value. When the effi cacy variable is binary 
(e.g. healthy or ill), then  J  is the proportion of positive (say healthy) patients. 
When the effi cacy variable is of ordinal character, or is a survival time,  J  can have 
different quantifi cations. For the remainder of this paragraph we assume that the 
effi cacy is quantitative and normally distributed, because for this situation the 
multiple comparison procedure has been studied thoroughestly   . 

 Consider the randomized clinical trial comparing fi ve different treatments for 
ejaculation praecox (Waldinger et al.  1998  ) : one group of patients received a placebo 
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treatment (group 1), and the four other groups received different serotonin reuptake 
inhibitors (SSRI). The primary variable for evaluating the effi cacy was the logarith-
mically transformed intravaginal ejaculation latency time (IELT) measured after 
6 weeks of treatment. The null hypothesis in this trial was that there was no difference 
between the fi ve groups of patients with respect to the mean of the logarithmically 
transformed IELT:     0 1 2 3 4H :J J J J J= = = =   . The summarized data of this trial 
are listed in Table  9.1 .  

 The fi rst statistical analysis was done by calculating the analysis of variance 
(ANOVA) table. The F-test for the testing the null hypothesis had value 4.13 with 4 
and 39 degrees of freedom and p-value 0.0070. The within group sums of squares 
was 55.16 with 39 degrees of freedom, thus the mean squared error was S = 1.41. 
Since the p-value was far below the nominal level of     a    = 0.05, the null hypothesis 
could be rejected. This led to the not-too-informative conclusion that not all popu-
lation averages were equal. A question immediately encountered is which one of 
the different population did and which one did not differ from each other. This 
question concerns the problem of multiple comparisons or post-hoc comparison of 
treatment groups. 

 The only way of fi nding out which one of the populations means differ from each 
other is to compare every treatment group with all of the other groups or with a 
specifi ed subset receiving other treatments. When there are fi ve different treatments, 
5 × 4/2 = 10 different pairs of treatments can be compared. In general, when there are 
k treatments, k (k − 1)/2 different comparisons can be made. 

 The easiest approach to this question is to calculate the Student’s t-test for 
each comparison of the groups i and j. This procedure may be refi ned by using in 
the denominator of the t-test the pooled-within-group variance S  

w
  2  , as already 

calculated in the above F-test according to:

     2

.i j

ij

w
i j

x x
t

1 1
S

n n

−
=

⎛ ⎞
+⎜ ⎟⎝ ⎠

   (9.1)   

 This t-statistic has n-k degrees of freedom, where n is the total number of observa-
tions in the entire sample and k is the number of treatment groups. This procedure 

   Table 9.1    Randomized clinical trial comparing fi ve different treatments for ejaculation praecox 
(Waldinger et al.  1998  ) : one group of patients received a placebo treatment (group 1), and the four 
other groups received different serotonin reuptake inhibitors ( SSRI )   

  Treatment   Sample size (n)  Mean (x)  Standard deviation (S) 

 Placebo  9  3.34  1.14 
 SSRI A  6  3.96  1.09 
 SSRI B  7  4.96  1.18 
 SSRI C  12  5.30  1.51 
 SSRI D  10  4.70  0.78 

  The primary variable for evaluating the effi cacy was the logarithmically transformed intravaginal 
ejaculation latency time ( IELT ) measured after 6 weeks of treatment  
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is called the “least signifi cant difference” procedure (LSD procedure). For the 
application of the LSD procedure, it is essential to perform it sequentially to a 
signifi cant F-test of the ANOVA procedure. So if one chooses to perform the LSD 
procedure, one fi rst calculates the ANOVA procedure and stops if the F-test is 
non-signifi cant, and calculates the LSD tests only when the F-test is statistically 
signifi cant. 

 When the different treatment groups are compared without performing ANOVA 
fi rst, or when you do so without the F-test being signifi cant, then the problem of 
multiple comparisons is, particularly, enhanced. This means that when you make 
enough comparisons, the chance of fi nding a signifi cant difference will be substantially 
larger than the nominal level of     a    = 0.05: thus the risk of a type-I error will be (far) 
too large. There may be situations where we want to further the analysis all the same. 

 There are several ways, then, of dealing with the problem of an increased risk of 
type-I-error. The easiest method is to use the Bonferroni-correction, sometimes 
known as the modifi ed LSD procedure. The general principle is that the signifi cance 
level for the experiment,     Ea   is less than or equal to the signifi cance level for each 
comparison,  a  

C
 , times the number of comparisons that are made (remember  a  is the 

chance of a type-I-error or the chance of fi nding a difference where there is none):

     
( 1)

2E C

k k
a a

−
≤    (9.2)   

 If     Ea     £ 0.05, then this level of     a   is maintained if,     ca    is taken to be, divided by 
the number of comparisons:

     
2

.
( 1)C k k

=
−

α α    (9.3)   

 When k is not too large, this method performs well. However, if k is large (k > 5), 
then the Bonferroni correction is overconservative, meaning that the nominal 
signifi cance level soon will be much lower than     a    = 0.05 and loss of power occurs 
accordingly. 

 There are several alternative methods (Multiple comparisons boek  2008  ) , but 
here we will discuss briefl y three of them: Tukey’s honestly signifi cant difference 
(HSD) method, the Student-Newman-Keuls method, and the method of Dunnett. 
Tukey’s HSD method calculates the test-statistic from the above Eq.  9.1 , but 
determines the signifi cance level slightly differently, by considering the distribution 

of the largest standardized difference     −i jx x   /se (    −i jx x   ). This distribution is 

somewhat more complex than that of the t-distribution or of the LSD procedure. 
A table of signifi cance levels is available in all major statistical books as well as 
statistical software packages such as SAS  (  2011  )  and SPSS  (  2011  ) . The HSD 
procedure controls the maximum experiment wise error rate, and performs well in 
simulation studies, especially when sample sizes are unequal. 

 The Student-Newman-Keuls (SNK) procedure is a so-called multiple-stage or 
multiple range test. The procedure fi rst tests the homogeneity of all k means at the 
nominal level     αk   . When the homogeneity is rejected, then each subset of (k−1) 
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means is tested for homogeneity at the nominal level     1ka −   , and so on. It does so by 
calculating the studentized statistic in the above Eq.  9.1  for all pairs. The distribution 
of this statistic is again rather complex, and it depends on the degrees of freedom 
n-k (from ANOVA), on the number of comparisons that are made, and on     ka   . 
The table of signifi cance levels is likewise available in most statistical packages. 
The conclusions of the SNK procedure critically depend on the order of the pair 
wise comparisons being made. The proper procedure is to compare fi rst the largest 
mean with the smallest, then the largest with the second-smallest, and so on. An 
important rule is that if no signifi cant difference exists between two means, it should 
be concluded that no difference exists between any means enclosed by the two, 
without further need of testing. 

 There are many multiple range tests (Multiple comparisons boek  2008  ) , mainly 
differing in their use of the signifi cance level     ka   , and     1ka −   . The Student-Newman-
Keuls procedure uses     0.05ka a= =   , and therefore does not control the maximum 
experimentwise error rate. 

 Finally, there is a special multiple comparison procedure for comparing all active 
treatments to a control or placebo group. This is the Dunnett’s procedure. For all 
treatments the studentized statistic of above Eq.  9.1  compared to the placebo group 
is calculated. In case of Dunnett’s procedure, this statistic again has a complex 
distribution (many-one t-statistic) which depends on the number of active treatment 
groups, the degrees of freedom and a correlation term which depends on the sample 
sizes in each treatment group. Tables are likewise available in statistical packages. 
If sample sizes are not equal, it is important to use the harmonic mean of the sample 
sizes when calculating the signifi cance of the Dunnett’s test. 

 Most of the statistical packages compute common multiple range tests, and 
provide associated confi dence intervals for the difference in means. In our trial 
comparing four SSRIs and placebo in patients with ejaculation praecox, we were 
interested in all of the possible comparisons between the fi ve treatment groups. Since 
the ANOVA F-test was statistically signifi cant, we applied the LSD procedure to fi nd 
out which treatment differed signifi cantly from each other. We found the following 
results. HSD procedure, the Bonferroni correction, and Dunnett’s procedure of the 
same data were applied for control (Table  9.2 ).  

 The mean difference indicates the differences of the means of the groups as 
shown in Table  9.1 . The standard error as calculated from the studentized statistic in 
the Eq.  9.1 , and is required in order to construct confi dence intervals. The critical 
values for the construction of such confi dence intervals are supplied by appropriate 
tables for the HSD, and Dunnett’s procedure, but are also calculated by most statisti-
cal software programs. In our case it is obvious that the LSD procedure provides the 
smallest p-values, and signifi cant differences between SSRIs B, C and D and placebo 
results, as well as between A and C results. When using the Bonferroni test or the 
HSD procedure, only SSRI C is signifi cantly different from placebo. Dunnett’s test 
agrees with the LSD procedure with respect to the differences of the SSRIs com-
pared to placebo, but has no information on the differences between the SSRIs. 

 There is no general consensus on what post-hoc test to use or when to use it; as 
the statistical community has not yet reached agreement on this issue. The US Food 
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and Drug Agency suggests in its clinical trial handbook for in house usage to 
describe in the study protocol the arguments for using a specifi c method, but refrains 
from making any preference. We have a light preference for calculating an overall 
test fi rst such as is done with ANOVA, and subsequently proceed with the LSD test. 

 Unfortunately, so far multiple comparisons methods have not been developed 
much for discrete, ordinal and censored data. When dealing with such data, it is best 
to perform fi rst an overall test by chi-square, Kruskal-wallis or logrank methods, 
and afterwards perform pairwise comparisons with a Bonferroni correction. 

 Whatever method for multiple comparisons, its use or the lack of its use should 
be discussed in the statistical analysis, and preferably be specifi ed in the analysis 
plan of the study protocol.  

    3   Multiple Variables 

 Most clinical trials use several, and sometimes many, endpoints to evaluate the 
treatment effi cacy. The use of signifi cance tests separately for each endpoint com-
parison increases the risk of a type-I error of fi nding a difference where there is 
none. The statistical analysis should refl ect awareness of this very problem, and in 
the study protocol the use or non-use of statistical adjustments or their lack must be 
explained. There are several ways of handling this problem of multiple testing.

          I .  The most obvious way is to simply reduce the number of endpoint parameters 
otherwise called primary outcome variable. Preferably, we should include one 
primary parameter, usually being the variable that provides the most relevant 
and convincing evidence of the primary objective of the trial. The trial success 

   Table 9.2    In the trial from Table  9.1  the investigators were interested in all of the possible 
comparisons between the fi ve treatment groups   

 Difference  P value 

 Private     Mean (SE)  LSD  HSD  Bonferroni  Dunnett 

 Placebo vs  A  −0.62 (0.63)  0.33  0.86  0.99  0.73 
 B  −1.62 (0.60)  0.01  0.07  0.10  0.035 
 C  −1.96 (0.52)  0.001  0.005  0.006  0.002 
 D  −1.36 (0.55)  0.017  0.12  0.17  0.058 

 A vs  B  −1.00 (0.66)  0.14  0.56  0.99 
 C  −1.34 (0.60)  0.03  0.18  0.30 
 D  −0.74 (0.61)  0.24  0.75  0.99 

 B vs  C  −0.34 (0.57)  0.56  0.98  0.99 
 D   0.26 (0.59)  0.66  0.99  0.99 

 C vs  D   0.60 (0.51)  0.25  0.76  0.99 

  Since the ANOVA F-test was statistically signifi cant, we applied the LSD procedure to fi nd out which 
treatment differed signifi cantly from each other. We found the following results. HSD procedure, 
the Bonferroni correction, and Dunnett’s procedure of the same data were applied for control 
 SE = standard error  
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is formulated in terms of results demonstrated by this very variable, and prior 
sample size determination is also based on this variable. Other endpoint 
variables are placed on a lower level of importance and are defi ned secondary 
variables. The secondary variable results may be used to support the evidence 
provided by the primary variable.  

  It may sometimes be desirable to use two or more primary variables, each of 
which suffi ciently important for display in the primary analysis. The statistical 
analysis of such an approach should be carefully spelled in the protocol. 
In particular, it should be stated in advance what result of any of these variables 
is least required for the purpose of meeting the trial objectives. Of course, if 
the purpose of the trial is to demonstrate a signifi cant effect in two or more 
variables, then there is no need for adjustment of the type-I error risk, but the 
consequence is that the trial fails in its objectives if one of these variables do 
not produce a signifi cant result. Obviously, such a rule enhances the chance of 
erroneously negative trials, in a way similar to the risk of negative trials due to 
small sample sizes.  

      II .  A different more philosophical approach to the problem of multiple outcome 
variables is to look for trends without judging one or two low P-values among 
otherwise high P-values as proof. This requires discipline and is particu-
larly effi cient when multiple measurements are performed for the purpose 
of answering one single question, e.g., the benefi t to health of a new drug 
estimated in terms of effect on mortality in addition to a number of morbidity 
variables. There is nothing wrong with this practice. We should not make any 
formal correction for multiple comparisons of this kind (see also Chap.   1    , 
Sect.  1 ). Instead, we should informally integrate all the data before reaching a 
conclusion.  

   III .  An alternative way of dealing with the multiple comparison problem when there 
are many primary variables, is to apply a Bonferroni correction. This means that 
 the p-value of every variable is multiplied by the number of endpoints k.  This 
ensures that if treatments were truly equivalent, the trial as a whole will have less 
than a 5% chance of getting any p-value less than 0.05; thus the overall type-I 
error rate will be less than 5%.  

   IV .  The Bonferroni correction, however, is not entirely correct when multiple 
comparisons are dependent of each other (multiple comparisons in one subject 
cannot be considered independent of each other, compare Chap.   2    , Sect.  3 , 
for additional discussion of this issue). Also the Bonferroni correction is an 
overcorrection in case of larger numbers of endpoints, particularly when 
different endpoints are (highly) correlated. A somewhat more adequate varia-
tion of the Bonferroni correction, was suggested by Hochberg  (  1988  ) .  When 
there are k primary values, the idea is to multiply the largest p-value with 1, 
the second-largest p-value with 2, the third largest p-value with 3, …, and the 
smallest p-value with k.  We do not attempt to explain the mathematical argu-
ments of this procedure, but conclude that lowest and highest –values will be 
less different from each other. In practice, Hochberg’s procedure is frequently 
hardly less conservative than is the Bonferroni correction.  
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        V .  A further alternative for analyzing two or more primary variables is to design a 
summary measure or composite variable. With such an approach endpoint and 
primary variables must, of course, be assessed in advance, and the algorithm to 
calculate the composite must also be specifi ed a priori. Since in this case primary 
variables are reduced to one composite, there is no need to make adjustments 
to salvage the type-I error rate. For the purpose of appropriate composite 
variables there are a few sensible rules to bear in mind:

   Highly correlated variables, measuring more or less the same patient  –
characteristic can best be replaced by their average. In this way the number of 
primary variables is reduced, and an additional advantage is that the mean 
is more reliable than both single measurements.  
  When the variables have different scales (e.g. blood pressure is measured in  –
mm Hg units, and cholesterol in mmol/L units), the composite variables are 
best calculated as standardized variables. This means that the overall mean 
is subtracted from each measurement and that the resulting difference is 
divided by the overall standard deviation. In this way all variables will have 
zero mean and unit standard deviation in the total sample.    

 Well-known examples of composite variables are rating scales routinely used for 
the assessment of health-related quality of life, as well as disease-activity-scales 
(e.g., the disease activity scale of Fuchs for patients with rheumatoid arthritis, 
DAS (Fuchs  1993  ) ). The DAS is a composite based on the Ritchie joint pain 
score, the number of swollen joints, and, in addition, the erythrocyte sedi-
mentation rate:

     

0.53938 0.06465( )

0.330 ln( ) 0.224.

DAS ritchie index number of swollen joints

erythocyte sedimentation rate

= +
+ +     

 For the statistical analysis of a composite variable, standard methods may be 
used without adjustments. Lauter  (  1996  )  showed that the statistical test for the 
composite has 5% type-I error rate. He also showed that such a statistical 
test is especially sensitive when each endpoint variable has more or less the 
same individual p-value, but that it has little sensitivity when one endpoint 
variable is much more signifi cant than others. 

 We applied these methods to a clinical trial of patients with atherosclero-
sis comparing 2-year placebo versus pravastatin medication (Jukema et al. 
 1995  ) . The effi cacy of this medication was evaluated by assessing the change 
of total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. 
The mean changes and standard deviations (mmol/L) are given in Table  9.3 , 
while also the uncorrected p-values, and the corrected p-values according to 
Bonferroni and Hochberg are reported.  

 It is obvious that none of the changes are statistically signifi cant using a 
standard t-test, but it is also clear that all four effi cacy variables have a 
treatment difference that points in the same direction, namely of a positive 
pravastatin effect. When correcting for multiple testing, the p-values are 
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nowhere near statistical signifi cance. A composite variable of the form z = (total 
cholesterol + HDL + LDL + triglycerides)/4, where the four lipid measurements 
are standardized, however, did show statistically signifi cant results: the mean 
of Z in the placebo group was −0.23 (SD 0.59), and the mean of Z in the 
pravastatin group was 0.15 (SD 0.56), different p < 0.01, and so, it is appropriate 
to conclude that pravastatin signifi cantly reduced the composite variable.  

   VI .  Finally, there are several multivariate methods to perform an overall statistical 
test for which the type-I error risk equals 5%. Equivalently to the situation 
comparing many different treatment groups, one might argue that the overall 
test controls the type-I error, and that subsequently to the overall test, one can 
perform t-tests and the like without adjustment to explore which variables 
show signifi cant differences. For comparing two treatment groups on several 
(normally distributed) variables, one may use Hotelling’s T-square, which is the 
multivariate generalization of the Student’s t-test. Other methods to compare 
different groups of patients on several variables are discriminant analysis, variants 
of principal components analysis and multinominal logistic regression. 
The discussion of these methods falls outside the scope of this chapter, but will 
be addressed in more detail in the Chaps.   21     and   25    . It suffi ces to remark that 
Hotelling’s T-square and the other multivariate methods are readily available 
through most statistical packages.     

    4   Conclusions 

 Multiple group comparison and multiple variable testing is a very common problem 
when analyzing clinical trials. There is no consensus within the statistical commu-
nity on how to cope with these problems. It is therefore essential that awareness of 
the existence of these problems is refl ected in the study protocol and the statistical 
analysis.      

   Table 9.3    Clinical trial of patients with atherosclerosis comparing 2-year placebo versus pravastatin 
medication (Jukema et al.  1995  )    

 Change of:  Placebo (n = 31)  Pravastatin (n = 48)  P a   P b   P c  

 Total cholesterol decrease  −0.07 (0.72)  0.25 (0.73)  0.06  0.24  0.11 
 HDL cholesterol increase  −0.02 (0.18)  0.04 (0.12)  0.07  0.28  0.11 
 LDL cholesterol decrease   0.34 (0.60)  0.59 (0.65)  0.09  0.36  0.11 
 Triglycerides increase   0.03 (0.65)  0.28 (0.68)  0.11  0.44  0.11 

  The effi cacy of this medication was evaluated by assessing the change of total cholesterol, HDL 
cholesterol, LDL cholesterol, and triglycerides. The mean changes and standard deviations 
(mmol/L) are given, while also the uncorrected p-values, and the corrected p-values according to 
Bonferroni and Hochberg are reported 
  a p-value of Student’s t-test 
  b Bonferroni corrected p-value 
  c p-value corrected using Hochberg’s methods  
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     1   Introduction    

 In randomized controlled trials, prior to statistical analysis, the data are checked for 
outliers and erroneous data. Data-cleaning is defi ned as deleting-the-errors/ 
maintaining-the-outliers. Statistical tests are, traditionally, not very good at distin-
guishing between errors and outliers. However, they should be able to point out 
main endpoint results that are closer to expectation than compatible with random 
sampling. For example, a difference from control of 0.000 is hardly compatible with 
random sampling. As it comes to well-balanced random sampling of representative 
experimental data, nature will be helpful to provide researchers with results close to 
perfection. 

 However, because biological processes are full of variations, nature will never 
allow for 100% perfection. Statistical distributions can account for this lack of per-
fection in experimental data sampling, and provide exact probability levels of fi nd-
ing results close to expectation.  

    2   Renewed Attention to the Interpretation of the Probability 
Levels, Otherwise Called the p-Values 

 The p-values tell us the chance of making a type I error of fi nding a difference where 
there is none. Generally, a cut-off p-value of 0.05 is used to reject the null-hypothesis 
(H 

0
 ) of no difference. In the 1970s exact p-values were laborious to calculate, and 

they were, generally, approximated from statistical tables, in the form of p < 0.01 or 
0.05 < p < 0.10 etc. In the past decades with the advent of computers the job became 
easy  ( SAS  2011 ; SPSS  2011 ; S plus  2011 ; Stata  2011  ) . Exact p-values such as 0.84 
or 0.007 can now be calculated fast and accurately. This development lead to a 
renewed attention to the interpretation of p-values. In business statistics (Levin and 
Rubin  1998 ; Utts  1999  ) , the 5% cut-off p-value has been largely  abandoned and 
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replaced with exact p-values used for making decisions on the risk business men are 
willing to take, mostly in terms of costs involved. In medicine, the cut-off p-values 
have not been completely abandoned, but broader attention is given to the interpre-
tation of the exact p-values, and rightly so, because they can tell us a number of 
relevant things in addition to the chance of making type I errors. In the current chap-
ter standard and renewed interpretations of p-values are reviewed as far as relevant 
to the interpretation of clinical trials and evidence-based medicine.  

    3   Standard Interpretation of p-Values 

 Statistics gives no certainties, only chances. What chances? Chances that hypotheses 
are true/untrue (we accept 95% truths). What hypotheses? For example, no differ-
ence from a 0 effect, a real difference from a 0 effect, worse than a 0 effect. Statistics 
is about estimating such chances/testing such hypotheses. Trials often calculate 
differences between test treatment and control (for example, standard treatment, 
placebo, baseline), and, subsequently, test whether the difference-between-the-two is 
different from 0. 

 Important hypotheses are Hypothesis 0 (H 
0
 , i.e., no difference from a 0 effect), 

and Hypothesis 1 (H 
1
 , the alternative hypothesis, i.e., a real difference from a 0 

effect). What do these two hypotheses look like in graph? Figure  10.1  gives an 
example. 

   H  –
1
  = graph based on the data of our trial (mean ± standard error (SEM) = 2.1 ± 1).  

  H  –
0
  = same graph with mean 0 (mean ± SEM = 0 ± 1).  

PROBABILITY
DISTRIBUTION

2.101

-3 -2 -1 0 1 2 3 4 5

SEMs

H0

H1

  Fig. 10.1    Null-hypothesis and alternative hypothesis of a parallel group study of two groups 
n = 10 (18 degrees of freedom)       
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  Now we make a giant leap from our data to the population from which the  –
sample was taken (we can do so, because our data are supposed to be representa-
tive of the population).  
  H  –

1
  =  also summary of means of many trials similar to ours    (if we repeated trial, 

difference would be small, and distribution of means of many such trials 
would look like H 

1
 ).  

  H  –
0
  =  summary of means of many trials similar to ours, but with overall effect 0 

(our mean not 0 but 2.1). Still, it could be an outlier of many studies with 
an overall effect of 0.  

  So, we should think of H  –
0
  and H 

1
  as summaries of means of many trials.  

  If hypothesis 0 is true, then mean of our study is part of H  –
0
 .  

  If hypothesis 1 is true, then mean of our study is part of H  –
1
 .  

  We can’t prove anything, but we can calculate the chance of either of these  –
possibilities.  
  A mean result of 2.1 is far distant from 0: –

   Suppose it belongs to H 
0
 .  

  Only 5% of the H 
0
  trials >2.1 SEM distant from 0.  

  The chance that it belongs to H0 is <5%.  
  We reject this possibility if probability is <5%.   

   Suppose it belongs to H 
1
 .  

  50% of the H 
1
  trials >2.1 SEM distant from 0. These 50% cannot reject null 

hypothesis, only the remainder, here also 50%, can do so.   

   Conclude here if H 
0
  is true, we have <5% chance to fi nd it, if H1 is true, we have 

50% chance to fi nd it.  
  Or in statistical terms: we reject null hypothesis of no effect at p < 0.05 and with 
a statistical power of 50%.       

 Obviously, a p-value of <0.05 does not indicate a true effect, and allows for very 
limited conclusions (Cleophas et al.  2004a,   b  ) :

    1.    <5% chance to fi nd this result if H 
0
  is true (H 

0
  is probably untrue, and so, this 

statement does not mean too much anyway);  
    2.    only 50% chance to fi nd this result if H 

1
  is true.

   The conclusions illustrate the uncertainties involved in H 
0
  – testing. With lower 

p-values, better certainty is provided, e.g., with p < 0.01 we have around 80% 
chance to fi nd this result if H 

1
  were true, with p < 0.001 even 90%. However, 

even then, the chance of a type II error of fi nding no difference where there is 
one is still 10%. Also, we must realize that the above conclusions are appropriate 
only if      

   3.    the data follow a normal distribution, and  
    4.    they follow exactly the same distribution as that of the population from which the 

sample was taken.      
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    4   Common Misunderstandings of the p-Values 

 The most common misunderstanding while interpreting the p-values is the concept 
that the p-value is actually the chance that the H 

0
  is true, and, consequently, that 

p > 0.05 means H 
0
  is true. Often, this result, expressed as “not signifi cantly different 

from zero”, is then reported as documented proof that the treatment had no effect. 
The distinction between demonstrating that a treatment had no effect and failing to 
demonstrate that it did have an effect, is subtle but very important, because the lat-
ter may be due to inadequate study methods or lack of power rather than lack of 
effect. Moreover, in order to assess whether the H 

0
  is true, null-hypothesis testing 

can never give the answer, because this is not the issue. The only issue here is: H 
0
  is 

rejected or not, no matter if it is true or untrue. To answer the question whether no-
difference-in-the-data is true, we need to follow a different approach: similarity 
 testing. With similarity (otherwise called equivalence)-testing the typical answer 
is: similarity is or is not demonstrated, which can be taken synonymous for no-
difference-in-the-data being true or not (see also Chap.   5    ).  

    5   Renewed Interpretations of p-Values, Little Difference 
Between p = 0.06 and p = 0.04 

 H 
0
  is currently less dogmatically rejected, because we believe that such practice 

mistakenly attempts to express certainty of statistical evidence in the data. If the H 
0
  

is rejected, it is also no longer concluded that there is no difference in the data. 
Instead, we increasingly believe that there is actually little difference between 
p = 0.06 and p = 0.04. Like with business statistics clinicians now have the option to 
use p-values for an additional purpose, i.e., for making decisions about the risks 
they are willing to take. 

 Also an advantage of the exact p-value approach is the possibility of more refi ned 
conclusions from the research: instead of concluding signifi cantly yes/no, we are 
able to consider levels of probabilities from very likely to be true, to very likely to 
be untrue (Michelson and Schofi eld  1996  ) . The p-value which ranges from 0.0 to 
1.0 summarizes the evidence in the data about H 

0
 . A large p-value such as 0.55 or 

0.78 indicates that the observed data would not be unusual if H 
0
  were true. A small 

p-value such as 0.001 denotes that these data would be very doubtful if H 
0
  were true. 

This provides strong support against H 
0
 . In such instances results are said to be 

signifi cant at the 0.001 level, indicating that getting a result of this size might occur 
only 1 out of 1,000 times. 

 Exact p-values are also increasingly used for comparing different levels of sig-
nifi cance. The drawback of this approach is that sampled frequency distributions are 
approximations, and that it can be mathematically shown that exactly calculated 
p-values are rather inaccurate (Petrie and Sabin  2000  ) . However, this drawback is 
outweighed by the advantages of knowing the p-values especially when it gets to 
extremes (Matthews and Farewel  1996  ) .  
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    6   The Real Meaning of Very Large p-Values Like p > 0.95 

 Let us assume that in a Mendelian experiment the expected ratio of yellow-peas/
green-peas = 1/1. A highly representative random sample of n = 100 might consist of 
50 yellow and 50 green peas. However, the larger the sample the smaller the chance 
to fi nd exactly fi fty/fi fty. The chance of exactly 5,000 yellow/5,000 green peas or 
even the chance of a result very close to this result is, due to large variability in 
biological processes, almost certainly zero. 

 Statistical distributions like the chi-square distribution can account for this lack 
of perfection in experimental data sampling, and provide exact probability levels of 
fi nding results close to “expected”. Chi-squares curves are skewed curves with a 
lengthy right-end (Fig.  10.2 ).  

 We reject the null-hypothesis of no difference between “expected and observed”, 
if the area under curve (AUC) on the right side of the calculated chi-square value 
is <5% of the total AUC. Chi-square curves do, however, also have a short left-end 
which ends with a chi-square value of zero. If the chi-square value calculated from 
our data is close to zero, the left AUC will get smaller and smaller, and as it 
becomes <5% of the total AUC, we are equally justifi ed not to accept the null 
hypothesis as we are with large chi-square values. For example, in a sample of 
10,000 peas, you might fi nd 4,997 yellow and 5,003 green peas. Are these data 
representative for a population of 1/1 yellow/green peas? In this example a chi-
square value of <3.9 10 −3  indicates that the left AUC is <5% and, so, we have a prob-
ability <5% to fi nd it (Table  10.1 ) (Riffenburgh  1999  ) .  
 Chi-square value is calculated according to:

   (Observed yellow − Expected yellow) 2  = (4,997 − 5,000) 2 : 5,000 to standardize 
= 1.8·10 −3   
  (Observed green − Expected green) 2  = (5,003 − 5,000) 2 : 5,000 to standardize 
= 1.8·10 −3   
  chi-square (1 degree of freedom) = 3.6·10 −3     

Chi-square curve 1 df

AUC = 5%

AUC = 5%

3.841
0.0039

0

  Fig. 10.2    Probability of 
fi nding  c  2  value >3.841 
is < 0.05, so is probability of 
fi nding a  c  2  value < 0.0039 
( AUC  area under the curve,  df  
degree of freedom)       
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 This result is smaller than 3.9·10 −3  and, thus, it is so close to what was expected 
that we can only conclude that we have <5% probability to fi nd it. We have to scru-
tinize these results, and must consider and examine the possibility of inadequate 
data improvement. The above example is actually based on some true historic facts 
(Mendel indeed improved his data) (Cleophas and Cleophas  2001  ) .  

    7   p-Values Larger than 0.95, Examples (Table  10.2 ) 

    We searched for main endpoint p-values close to 0.95 in randomized controlled tri-
als published in recent issues of the Lancet and the New England Journal of 
Medicine, and found four studies. Table  10.2  gives a summary. All of these studies 
aimed at demonstrating similarities rather than differences. Indeed, as can be 
observed, proportions of patients with events in the treatment and control groups 
were very similar. For example, the percentages in treatment and control groups of 
patients with sepsis were 1.3% and 1.3% (study 1, Table  10.2 ), and of patients with 
cardiovascular events 79.2% and 79.8% (study 5, Table  10.2 ). The investigators of 
the studies calculated p-values from p > 0.94 to p > 0.995, which, according to the 
chi-square table (Table  10.1 ), would provide left-end p-values between  £ 0.06 
and  £ 0.005. This would mean, that, for whatever reason, these data were probably 
not completely random. Unwarranted exclusion of, otherwise, appropriate outliers 
is one of the possible explanations.  

    8   The Real Meaning of Very Small p-Values Like p < 0.0001 

 Statistics gives no certainties, only chances. A generally accepted concept is “the 
smaller the p-value the better reliable the results”. This is not entirely true with cur-
rent randomized controlled trials. First, randomized controlled trials are designed to 

   Table 10.1    Left end  c  2  table: seven columns of  c  2  values, upper two rows areas under the curve 
( AUCs ) of left and right end of  c  2  curves, left column: adjustments for degrees of freedom ( dfs )   

 AUC left end  0.0005  0.001  0.005  0.01  0.025  0.05  0.10 
 AUC right end  0.9995  0.999  0.995  0.99  0.975  0.95  0.90 

 Degrees of freedom 
 1  0.0000004  0.0000016  0.000039  0.00016  0.00091  0.0039  0.016 
 2  0.00099  0.0020  0.010  0.020  0.051  0.10  0.21 
 3  0.015  0.024  0.072  0.12  0.22  0.35  0.58 
 4  0.065  0.091  0.21  0.30  0.48  0.71  1.06 
 5  0.6  0.21  0.41  0.55  0.83  1.154  1.61 
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test small differences. A randomized controlled trial with major differences between 
old and new treatment is unethical because half of the patients have been given an 
inferior treatment. 

 Second, they are designed to confi rm prior evidence. For that purpose, their sam-
ple size is carefully calculated. Not only too small but also too large a sample size 
is considered unethical and unscientifi c, because negative studies have to be repeated 
and a potentially inferior treatment should not be given to too many patients. Often 
in the study protocol a statistical power of 80% is agreed, corresponding with a 
p-value of approximately 0.01. 

 The ultimate p-value may then be a bit larger or smaller. However a p-value 
of >0.05 will be rarely observed, because current clinical trials are confi rmational 
and, therefore, rarely negative. Also a p-value much smaller than 0.01 will be rarely 
observed, because it would indicate that either the power assessment was inadequate 
(the study is overpowered) or the data have been artifi cially improved. With 
p = 0.0001 we have a peculiar situation. In this situation the actual data can not only 
reject the null-hypothesis, but also the hypothesis of signifi cantly better Thus, a 
p-value <0.0001, if the power was set at 80%, does not completely confi rm its prior 
expectations and must be scrutinized for data improvement. (This issue is explained 
more in detail in the next chapter).  

    9   p-Values Smaller than 0.0001, Examples (Table  10.3 ) 

    Table  10.3  gives an overview of fi ve published studies with main endpoint 
p-values <0.0001. All of these studies were published in the fi rst six issues of the 
1992 volume of the New England Journal of Medicine. It is remarkable that so 
many overpowered studies were published within six subsequent months of a 

   Table 10.3    Study data with p-values as low as < 0.0001, published in the fi rst six issues of the 
1992 volume of the N Engl J Med. In the past 4 years p-values smaller than p < 0.001 were never 
published in this journal   

 Result 
 Sample size 
requirement  Alpha-level  p-values 

 Parisi et al.  (  1992  )   +0.5 vs +2.1%  Yes  0.05  <0.0001 
 Parisi et al.  (  1992  )   −2.8 vs +1.8%  Yes  0.05  <0.0001 
 Seppälä et al.  (  1992  )   11 vs 19%  No  0.05  <0.0001 
 Rafal et al.  (  1992  )   r = −0.53  No  0.05  <0.0001 
 Barrett et al.  (  1992  )   213 vs 69  No  0.05  <0.0001 

  (1) Duration exercise in patients after medical therapy vs percutaneous coronary angioplasty, 
(2) Maximal double product (systolic blood pressure times heart rate) during exercise in patients 
after medical treatment vs percutaneous coronary angioplasty, (3) Erythromycin resistance throat 
swabs vs pus samples, (4) Correlation between reduction of epidermal pigmentation during 
 treatment and baseline amount of pigmentation, and (5) Adverse reactions of high vs non-high 
osmolality agents during cardiac catheterization 
  Alpha  type I error,  vs  versus  
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single volume, while the same journal published not any study with p-values below 
0.001 in the past 4 years’ full volumes. We do not know why, but this may be due to 
the journal’s policy not to accept studies with very low p-values anymore. In con-
trast, many other journals including the Lancet, Circulation, BMJ, abound with 
extremely low p-values. It is obvious that these journals still believe in the concept 
“the lower the p-value, the better reliable the research”. The concept may still be 
true for observational studies. However, in confi rmational randomized controlled 
trials, p-values as low as 0.0001 do not adequately confi rm prior hypotheses any-
more, and have to be checked for adequacy of data management.  

    10   Discussion 

 In 1948 the fi rst randomized controlled trial was published by the BMJ (Medical 
Research Council  1948  ) . Until then, observations had been mainly uncontrolled. 
Initially, trials were frequently negative due to little sensitivity as a consequence of 
too small samples, and inappropriate hypotheses based on biased prior data. 
Nowadays, clinical trials are rarely negative, and they are mainly confi rmational 
rather than explorative. This has consequences for the p-values that can be expected 
from such trials. Very low p-values like p < 0.0001 will be rarely encountered in 
such trials, because it would mean that the study was overpowered and should have 
had a smaller sample size. Also very large p-values like p > 0.95 will be rare, because 
they would indicate similarities closer than compatible with a normal distribution of 
random data samples. 

 We should emphasize that the above-mentioned interpretation of very low/high 
p-values is only true within the context of randomized controlled trials. For exam-
ple, unrandomized observational data can easily produce very low and very high 
p-values, and there is nothing wrong with that. Also the above interpretation is 
untrue in clinical trials that test multiple endpoints rather than a single main end-
point or a single composite endpoint. Clinical trials testing multiple rather than 
single endpoints, often do so for the purpose of answering a single question, e.g., 
the benefi t of health of a new drug may be estimated by mortality in addition to 
various morbidity variables. If investigators test many times, they are apt to fi nd 
differences, e.g., 5% of the time, but this may not be due to signifi cant effects but 
rather to chance. In this situation, one should informally integrate all of the data 
before reaching conclusions, and look for the trends in the data without judging 
one or two low p-values, among otherwise high p-values, as proof (see also the 
Chaps.   7     and   8    ). 

 In the present chapter, for the assessment of high p-values, the chi-square test is 
used, while for the assessment of low p-values the t-test is used. Both tests are, 
however, closely related to one another, and like other statistical tests, including the 
F-test, regression analysis, and other tests based on normal distributions. The con-
clusions drawn from our assessments are, therefore, equally true for alternative 
 statistical tests and data. 
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 We should add that the nominal p-values have to be interpreted with caution in 
case of multiple testing, as already discussed in the previous two chapters. A not yet 
mentioned but straightforward way to correct this is to calculate an E-value, i.e. the 
product of the p-value and the number of tests.  

    11   Recommendations 

 p-values <0.0001 will be rarely encountered in randomized controlled clinical trials, 
because it would mean that the study is overpowered and should have had a smaller 
sample size. Also p-values >0.95 will be rare, because they would indicate similari-
ties closer than compatible with a normal distribution of random samples. It would 
seem appropriate, therefore, to require investigators to explain such results, and to 
consider rejecting the research involved. So far, in randomized controlled trials the 
null-hypothesis is generally rejected at p < 0.05. Maybe, we should consider reject-
ing the entire study if the main endpoint p-values are >0.95 or <0.0001. 

 The concept of the p-value is notoriously poorly understood. Some physicians 
even comfortably think that the p-value is a measure of effect (Motulsky  1995  ) . 
When asked whether a drug treatment worked, their typical answer would be: “Well, 
p is less than 0.05, so I guess it did”. The more knowledgeable among us know 
that p stands for chance (probability = p), and that there must be risks of errors. The 
current paper reviews the standard as well as renewed interpretations of the p-values, 
and was written for physicians accepting statistical reasoning as a required condi-
tion for an adequate assessment of the benefi ts and limitations of evidence-based 
medicine. 

 Additional points must be considered when interpreting the p-values. In the fi rst 
place, the interpretation of low p-values is different in studies that test multiple 
endpoints rather than a single main endpoint or a single composite endpoint. Studies 
testing multiple rather than single endpoints, often do so for the purpose of answer-
ing a single question, e.g., the benefi t of health of a new drug may be estimated by 
mortality in addition to various morbidity variables. If investigators test many 
times, they are apt to fi nd differences, e.g., 5% of the time, but this may not be due 
to signifi cant effects but rather to chance. In this situation, one should informally 
integrate all of the data before reaching conclusions, and look for the trends in the 
data without judging one or two low p-values, among otherwise high p-values, as 
proof. 

 Special attention in this respect deserves the issue of multiple low-powered stud-
ies. One might consider this situation to be similar to the above one, and conclude 
that such studies be similarly integrated. Actually, this is one of the concepts of the 
method of meta-analysis. Second, the point of one sided testing versus two-sided 
testing must be considered. Studies testing both ends of a normal frequency distri-
bution have twice the chance of fi nding a signifi cant difference compared to those 
testing only one end. If our research assesses whether there is any difference in the 
data, no matter in what direction, either the positive or the negative one, then we 
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have a two-sided design and the p-values must doubled. It is then, consequently, 
harder to obtain a low p-value. 

 Recommendations regarding the interpretation of main-endpoint-study p-values 
either two-sided or not, include the following.

    1.    p < 0.05 gives a conditional probability: H0 can be rejected on the limitations/
assumptions that (1) we have up to 5% chance of a type I error of fi nding a dif-
ference where there is none, (2) we have 50% chance of a type II error of fi nding 
no difference where there is one, (3) the data are normally distributed, (4) they 
follow exactly the same distribution as that of the population from which the 
sample was taken.  

    2.    A common misunderstanding is the concept that the p-value is actually the 
chance that H 

0
  is true, and, consequently that a p > 0.05 indicates a signifi cant 

similarity in the data. p > 0.05 may, indeed, indicate similarity. However, also a 
study-sample too small or study design inadequate to detect the difference must 
be considered.  

    3.    An advantage of the exact p-values is the possibility of more refi ned conclusions 
from the research: instead of concluding signifi cantly yes/no, we are able to con-
sider levels of probabilities from very likely to be true, to very likely to be 
untrue.  

    4.    p > 0.95 suggests that the observed data are closer to expectation than compatible 
with a Gaussian frequency distribution, and such results must, therefore, be 
scrutinized.  

    5.    A p < 0.0001, if power was set at 80%, does not completely confi rm the prior 
expectations of the power assessment. Therefore, such results must be 
scrutinized.      

    12   Conclusions 

 The p-values tell us the chance of making a type I error of fi nding a difference where 
there is none. In the 1970s exact p-values were laborious to calculate, and they were, 
generally, approximated from statistical tables, in the form of p < 0.01 or 
0.05 < p < 0.10 etc. In the past decades with the advent of computers it became easy 
to calculate exact p-values such as 0.84 or 0.007. The cut-off p-values have not been 
completely abandoned, but broader attention is given to the interpretation of the 
exact p-values. The objective of this chapter was to review standard and renewed 
interpretations of p-values:

    1.    Standard interpretation of cut-off p-values like p < 0.05. 
 The null-hypothesis of no difference can be rejected on the limitations/assumptions 

that (1) we have up to 5% chance of a type I error of fi nding a difference where there 
is none, (2) we have 50% chance of a type II error of fi nding no difference where 
there is one, (3) the data are normally distributed, (4) they follow exactly the same 
distribution as that of the population from which the sample was taken.  
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    2    A common misunderstanding of the p-value. 
 It is actually the chance that the null-hypothesis is true, and, consequently that a 

p > 0.05 indicates a signifi cant similarity in the data. p > 0.05 may, indeed, indicate 
similarity. However, a study-sample too small or study design inadequate to detect 
the difference must be considered.  
    3.    Renewed interpretations of the p-values. 

 Exact p-values enable to more refi ned conclusions from the research than cut-off 
levels: instead of concluding signifi cantly yes/no, we are able to consider levels of 
probabilities from very likely to be true, to very likely to be untrue. Very large 
p-values are not compatible with a normal Gaussian frequency distribution, very 
small p-values do not completely confi rm prior expectations. They must be scruti-
nized, and may have been inadequately improved.          
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      1   Introduction    

 Research data may be close to expectation. However, a difference from control of 
0.000 is hardly compatible with random sampling. As it comes to well-balanced 
random sampling of representative experimental data, nature will be helpful to provide 
researchers with results close to perfection. However, because biological processes 
are full of variations, nature will never allow for 100% perfection. Statistical distri-
butions can account for this lack of perfection in experimental data sampling, and 
provide exact probability levels of fi nding results close to expectation. 

 As an example, in a Mendelian experiment the expected ratio of yellow-peas/
green-peas is 1/1. A highly representative random sample of n = 100 might consist 
of 50 yellow and 50 green peas. However, the larger the sample the smaller the 
chance of fi nding exactly fi fty/fi fty. The chance of exactly 5,000 yellow/5,000 green 
peas or even the chance of a result very close to this result is, due to large variability 
in biological processes, almost certainly zero. In a sample of 10,000 peas, you might 
fi nd 4,997 yellow and 5,003 green peas. What is the chance of fi nding a result this 
close to expectation? A simple chi-square test produces here a p > 0.95 of fi nding a 
result less close, which means a chance of <(1−0.95), i.e., <0.05 of fi nding a result 
this close or closer. Using the traditional 5% decision level, this would mean, that 
we have a strong argument that these data are not completely random. The example 
is actually based on some true historic facts, Mendel improved his data (Cleophas 
and Cleophas  2001  ) . 

 Mendel’s data were unblinded and unrandomized. Currently interventional data 
are obtained through randomized controlled trials. The phenomenon of data closer 
to expectation than compatible with random sampling is not considered anymore. 
But it is unknown whether it has actually disappeared. In the previous chapter the 
subject of extreme p-values as a result of research data closer to expectation 
than compatible with random sampling has been briefl y addressed. The current 
chapter provides additional methods and examples in order to further emphasize the 
importance of this issue.  

    Chapter 11   
 Research Data Closer to Expectation 
than Compatible with Random Sampling       
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    2   Methods and Results 

 In order to assess this issue we defi ned data closer than random according to:

    1.     An observed p-value of >95%.  
 This literally means that we have >95% chance of fi nding a result less close 

expectation, and, consequently, <5% chance of fi nding a result this close or 
closer.  
    2.     An observed p-value of <0.0001.  

 Often in the study protocol a statistical power of 80% is agreed, corresponding 
with a p-value of approximately 0.01. The ultimate p-value may then be a bit larger 
or smaller. However a p-value of >0.05 will be rarely observed, because current 
clinical trials are conformational and, therefore, rarely negative. Also a p-value 
much smaller than 0.01 will be rarely observed, because it would indicate that the 
study is overpowered. If the p-values can be assumed to follow a normal distribution 
around p = 0.01, then we will have less than 5% chance of observing a p-value 
of <0.0001.  
    3     An observed standard deviation (SD) <50% the SD expected from prior popu-

lation data.  
 From population data we can be pretty sure about SDs to be expected. For example, 

the SDs of blood pressures are close to 10% of their means, meaning that for a 
mean systolic blood pressures of 150 mmHg the expected SD is close to 15 mmHg, 
for a mean diastolic blood pressure of 100 mmHg the expected SD is close to 
10 mmHg. If such SDs can be assumed to follow a normal distribution, we will 
have <5% chance of fi nding SDs <7.5 and <5 mmHg respectively.  
    4.     An observed standard deviation (SD) >150% the SD expected from prior popu-

lation data.  
 With SDs close to 10% of their means, we, likewise, will have <5% chance of 

fi nding SDs >150% the size of the SDs expected from population data.     

 We, then, searched randomized controlled trials of the 1999–2002 volumes of 
four journals accordingly. However, we decided to early terminate our search after 
observing respectively 7, 14, 8 and 2 primary endpoint results closer than random in 
a single random issue from the journals (Table  11.1 ). We have to conclude that the 
phenomenon of research data closer to expectation than compatible with random 
sampling has not at all disappeared. We assume that, like with the above Mendelian 
example, inappropriate data cleaning is a major factor responsible. We recommend 
that the statistical community develop guidelines for assessing appropriateness 
of data cleaning, and that journal editors require submitters of research papers to 
explain their results if they provide extremely high or low p-values or unexpectedly 
small or large SDs. Maybe, they should even consider, like the New England Journal 
of Medicine, not to publish p-values smaller than 0.001 anymore.  

 Evidence-based medicine is under pressure due to the confl icting results of 
recent trials producing different answers to similar questions (Julius  2003 ; Cleophas 
and Cleophas  2003  ) . Many causes are mentioned. As long as the possibility of 
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inappropriate data cleaning has not been addressed, this very possibility cannot 
be excluded as potential cause of the obvious lack of homogeneity in current 
research.  

    3   Discussion 

 In randomized controlled trials, prior to statistical analysis, the data are checked 
for outliers and erroneous data. Statistical tests are, traditionally, not very good at 
distinguishing between errors and outliers, but they should be able to point out 
main endpoint results closer to expectation than compatible with random sampling. 
In the current chapter we propose some criteria to assess main endpoint results for 
such purpose. One of the criteria proposed is a <5% probability to observe p-values 
of <0.0001 in studies planned at a power of 80% (Cleophas  2004  ) . Kieser    and 
Cleophas  (  2005  )  takes issue with this proposed criterion, and states that, based on 
the two-sample normally distributed model of Hung et al.  (  1997  ) , this probability 
should be much larger than 5%. We used a different, and, in our view, more adequate 
model for assessment, based on the t-distribution and a usual two-sided type I error 
of 5%, rather than a one-sided type I error of 1%. We here take the opportunity to 
explain our assessment a little bit further and, particularly, to explain the arguments 
underlying it. 

 In statistics, a generally accepted concept is “the smaller the p-value, the better 
reliable the results”. This is not entirely true with current randomized controlled 
trials. First, randomized controlled trials are designed to test small differences. 
A randomized controlled trial with major differences between old and new treatment 
is unethical because half of the patients have been given an inferior treatment. Second, 
they are designed to confi rm prior evidence. For that purpose, their sample size is 
carefully calculated. Not only too small, but also too large a sample size is considered 
unethical and unscientifi c, because negative studies have to be repeated and a poten-
tially inferior treatment should not be given to too many patients. Often in the study 

   Table 11.1    Numbers of primary endpoint results closer to expectation than compatible with 
random sampling observed in a single issue from four journals   

 p > 0.95  p < 0.0001 
 SD < 50% of 
expected SD 

 >150% of 
expected SD 

 Cardiovascular Research 1999; 43: issue 1  1 (1) a   5 (1)  3 (2)  1 (1) 
 Current Therapeutic Research 2000; 

61: issue 1 
 0 (0)  3 (1)  3 (1)  0 (0) 

 International Journal of Clinical 
Pharmacology and Therapeutics 2001; 
39: issue 12 

 3 (2)  1 (1)  0 (0)  0 (0) 

 Journal of Hypertension 2002; 20: issue 10  3 (2)  5 (1)  2 (1)  1 (1) 

 Total  7 (5)  14 (4)  8 (4)  2 (2) 

   a Between brackets numbers of studies  
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protocol a statistical power of 80% is agreed, corresponding with a p-value of 
approximately 0.01 (Fig.  11.1 ). The ultimate p-value may then be a little bit larger 
or smaller. However, a p-value >0.05 will be rarely observed, because most of the 
current clinical trials are conformational, and, therefore, rarely negative. Also, a 
p-value much smaller than 0.01 will be rarely observed, because it would indicate 
that either the power assessment was inadequate (the study is overpowered) or 
data management was not completely adequate. With p = 0.0001 we have a pecu-
liar situation. In this situation the actual data can not only reject the null-hypothesis 
(H 

0
 , Fig.  11.2 ) at p = 0.0001, but also the hypothesis of signifi cantly better (H 

1
 , Fig.  11.2 ) 

at p = 0.05. This would mean that not only H 
0
  but also H 

1
  is untrue.   

 Table  11.2  gives an overview of fi ve published studies with main endpoint p-values 
<0.0001. All of these studies were published in the fi rst six issues of the 1992 
volume of the New England Journal of Medicine. It is remarkable that so many 
overpowered studies were published within six subsequent months of a single 
volume, while the same journal published not any study with p-values below 0.001 
in the past 4 years’ full volumes. We do not know why, but this may be due to the 
journal’s policy not to accept studies with very low p-values anymore. In contrast, 
many other journals including the Lancet, Circulation, BMJ (British Medical 
Journal), abound with extremely low p-values. We should add that, while preparing 
this chapter, we noticed that, in the past 2 months, also JAMA (Journal of American 
Medical Association) did not publish p-values below 0.001 anymore. It is obvious, 

H0

H1

SEMs−3 −2 −1 0 1 2 3

t = 2.66

4 5

1−β 80%

β 20%

α = 0.05 p = app.0.01

  Fig. 11.1    Null-hypothesis (H0) and alternative hypothesis (H1) of an example of experimental 
data with sample size n = 60 and mean = 2.66, and a t-distributed frequency distribution. 
The null-hypothesis is rejected with a p-value of approximately 0.01 and a statistical power (=1 −  b ) 
of 80% ( a  = type I error = 5%;  b  = type II error = 20%;  app . approximately;  SEM  standard error 
of the mean)       
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however, that most of the other journals still believe in the concept “the lower the 
p-value, the better reliable the research”. The concept may still be true for observa-
tional studies. However, in conformational randomized controlled trials, p-values as 
low as 0.0001 do not adequately confi rm prior hypotheses anymore, and have to be 
checked for adequacy of data management.   

H0

H1

SEMs

SEMs

DATA

−3 −2 −1 0 1 2 3 4 5

  Fig. 11.2    Null-hypothesis (H0), hypothesis of signifi cantly better (H1), and actual data distribution 
( DATA ) of an example of experimental data with n = 120 and mean = 3.90 SEMs and a t-distributed 
frequency distribution. The actual data can not only reject H0 (t = 3.90, p = 0.0001), but also H1 
(t = 1.95, p = 0.05). This would mean that not only H0 but also H1 is untrue ( SEM  standard error of 
the mean)       

   Table 11.2    Study data with p-values as low as <0.0001, published in the fi rst six issues of the 
1992 volume of the New England Journal of Medicine. In the past 4 years p-values smaller than 
p < 0.001 were never published in this journal   

 Result  Sample size requirement  Alpha-level  p-values 

 1. Parisi et al.  (  1992  )   +0.5 vs +2.1%  Yes  0.05  <0.0001 
 2. Parisi et al.  (  1992  )   −2.8 vs +1.8%  Yes  0.05  <0.0001 
 3. Seppälä et al.  (  1992  )   11 vs 19%  No  0.05  <0.0001 
 4. Rafal et al.  (  1992  )   r = −0.53  No  0.05  <0.0001 
 5. Barrett et al.  (  1992  )   213 vs 69  No  0.05  <0.0001 

  (1) Duration exercise in patients after medical therapy vs percutaneous coronary angioplasty, 
(2) Maximal double product (systolic blood pressure times heart rate) during exercise in patients 
after medical treatment vs percutaneous coronary angioplasty, (3) Erythromycin resistance throat 
swabs vs pus samples, (4) Correlation between reduction of epidermal pigmentation during 
 treatment and baseline amount of pigmentation, and (5) Adverse reactions of high vs non-high 
osmolality agents during cardiac catheterization 
  Alpha  type I error,  vs  versus  
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    4   Conclusions 

 The following results may be closer to expectation than compatible with random.

    1.    An observed p-value of >0.95.  
    2.    An observed p-value of <0.0001.  
    3.    An observed standard deviation (SD) <50% the SD expected from prior population 

data.  
    4.    An observed standard deviation (SD) >150% the SD expected from prior popula-

tion data.     

 Additional assessments to identify data at risk of unrandomness will be reviewed 
in the Chaps.   42     and   43    .      
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      1   Introduction 

 A p-value <0.05 is    generally used as a cut-off level to indicate a significant 
difference from what we expect. A p-value of >0.05, then, indicates no signifi cant 
difference. The larger the p-value the smaller the chance of a difference. A p-value 
of 1.00 means 0% chance of a difference, while a p-value of 0.95 means a chance 
of difference close to 0. A p-value of >0.95 literally means that we have >95% 
chance of fi nding a result less close to expectation, which means a chance 
of <(1 − 0.95), i.e., <0.05 of fi nding a result this close or closer. Using the tradi-
tional 5% decision level, this would mean, that we have a strong argument that 
such data are not completely random. The example from the previous chapter is 
used once more. In a Mendelian experiment the expected ratio of yellow-peas/-
green peas is 1/1. A highly representative random sample of n = 100 might consist 
of 50 yellow and 50 green peas. However, the larger the sample the smaller the 
chance of fi nding exactly fi fty/fi fty. The chance of exactly 5,000 yellow/5,000 
green peas or even the chance of a result very close to this result is, due to large 
variability in biological processes, almost certainly zero. In a sample of 10,000 
peas, you might fi nd 4,997 yellow and 5,003 green peas. What is the chance of 
fi nding a result this close to expectation? A chi-square test produces here a p > 0.95 
of fi nding a result less close, and consequently, <0.05 of fi nding a result this close 
or closer. Using the 5% decision level, this would mean, that we have a strong 
argument that these data are not completely random. The example is actually 
based on some true historic facts, Mendel improved his data (Cleophas and 
Cleophas  2001  ) . 

 Some readers might be confused by the assertion that a p-value >0.95 implies 
that the data are closer to expectation than compatible with random sampling. 
A large p-value, indeed, generally, means that the data behave very similar to that 
which one would expect under the null hypothesis. Yet, a p-value >0.95 will be 
rarely observed, because not only data but also  mean outcomes of data-samples  
follow (normal or chi-square) frequency distributions. Figure  12.1  displays a 
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chi-square-distributed null hypothesis curve (10 degrees of freedom). On the 
x-axis we have the so-called chi-square values which can be interpreted as estimates 
of variabilities of studies that have 10 degrees of freedom. On the y-axis we have 
p-values (= areas under the curve). The curve presents the collection of all of the 
variabilities one can expect. The area under the curve for chi-square values larger 
than 18.31 or smaller than 3.94 is <5%. This means we have <5% chance to fi nd a 
variability thát large or thát small, and so, we are entitled to reject the null hypoth-
esis in either case. The left end of the chi-square curve, although routinely used for 
testing appropriateness of data distributions, is little used for the above purpose 
so far.  

 In a recent search of randomized trials published in four journals we found 
main-endpoint results with p-values >95% in every single issue of the journals 
(Cleophas  2004  ) . We assumed that inappropriate data cleaning was a major factor 
responsible. In clinical research the appropriateness of data cleaning is rarely 
assessed. The current paper was written to facilitate the assessment of this issue. 
We present tables of unusually large p-values to assess data closer to expectation 
than compatible with random sampling. We also give examples showing how to 
calculate such p-values from published data yourself, and examples to simulate 
real practice. The chapter tries to address a phenomenon, rather than accuse 
research groups. Therefore, only simulated examples are given.  

  Fig. 12.1    Null hypothesis of chi-square distributed samples with 10 degrees of freedom. The area 
under the curve for chi-square values larger than 18.31 or smaller than 3.94 is <5%. This means we 
have <5% chance to fi nd a variability thát large or thát small, and so, we are entitled to reject the 
null hypothesis in either case       
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    2   Statistical Tables of Unusually High p-Values 

 Statistical tests estimate the probability that a difference in the data is true rather 
than due to chance, otherwise called random. For that purpose they make use of 
test-statistics:  

 Test-statistic  Test 

 t-value  For the t-test 
 Chi-square  For the chi-square test 
 F-value  For the F-test 

 The t-statistic (t-value) is used for the assessment of the means of continuous data, 
odds ratios and regression coeffi cients. The chi-square statistic (chi-square-value) 
is used for the analysis of proportional data, and survival data. The f-statistic 
(f-value) is used for comparing continuous data from more than two groups or more 
than two observations in one person, and for additional purposes such as testing 
correlation coeffi cients. The Tables 12.1, 12.2, and 12.3 give overviews of the 
unusual sizes these test-statistics and their corresponding p-values can adopt if data 
are closer to expectation than compatible with random sampling.  

    3   How to Calculate the p-Values Yourself 

    3.1   t-Test 

 In a parallel-group study two cholesterol reducing drugs are assessed. 
 Group1 (n = 50), mean result 3.42 mmol/l, standard error of the mean (SEM) 

0.06 mmol/l. 
 Group2 (n = 50), mean result 3.38 mmol/l, SEM 0.06 mmol/l. 
 Difference between results 0.04 mmol/l, pooled SEM = √SEM  

1
  2   + SEM  

2
  2   = 0.848. 

 T-value = 0.04/0.848 = 0.0472 for (50 + 50) − 2 = 98 degrees of freedom. T-value is 
<0.0619, and according to the t-table (Table  12.1 ) the p-value is thus >0.95. These 
data are closer to expectation than compatible with random.   

    3.2   Chi-square Test 

 The underneath example is given in the form of a 2 × 2 contingency table which fol-
lows a chi-square distribution with 1 degree of freedom.  

 Pea phenotype  P  p 

 R  PR 27 (a)  pR 271(b) 
 r  Pr 9 (c)  pr 92 (d) 
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 The appropriate chi-square value according to:

     

( ) ( )
( )( )( )( )

− + + +
=

+ + + +

2
ad bc a b c d

0.00205
a b c d b d a c

    

 The chi-square table (Table  12.2 ) gives in four columns various chi-square 
values corresponding to the p-values given in the upper row. The left hand column 
adjusts for degrees of freedom. The above result of 0.00205 is on the left side of the 
critical chi-square value of 0.0039, and, so, we can reject the possibility that our 
data are so close to each other by chance even if there were no difference in the data. 
We may worry that these data are not randomly sampled.   

    3.3   F-Test 

 The effect of three compounds improving Hemoglobin levels is assessed in three 
parallel groups.  

   Table 12.1    t-values with unusually high p-values   

 p-value (two sided) 

 0.999  0.99  0.95  0.90 
 Degrees freedom 
 1  0.0015  0.154  0.0770  0.1580 
 2  0.0014  0.141  0.0707  0.1419 
 3  0.0014  0.136  0.0681  0.1366 
 4  0.0013  0.0133  0.0667  0.1338 
 5  0.0013  0.0132  0.0659  0.1322 
 6  0.0013  0.0132  0.0654  0.1311 
 7  0.0013  0.0130  0.0650  0.1303 
 8  0.0013  0.0129  0.0647  0.1297 
 9  0.0013  0.0129  0.0647  0.1293 
 10  0.0013  0.0129  0.0643  0.1289 
 15  0.0013  0.0127  0.0638  0.1278 
 20  0.0013  0.0127  0.0635  0.1273 
 30  0.0013  0.0126  0.0632  0.1267 
 40  0.0013  0.0126  0.0631  0.1265 
 50  0.0013  0.0126  0.0630  0.1263 
 60  0.0013  0.0126  0.0630  0.1262 
 70  0.0013  0.0126  0.0629  0.1261 
 80  0.0013  0.0126  0.0629  0.1261 
 100  0.0013  0.0126  0.0629  0.1261 
 ∞  0.0013  0.0126  0.0629  0.1261 
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 Group  n patients  Mean (mmol/l)  SD (mmol/l) 

 1  16  10.6300  1.2840 
 2  16  10.6200  1.2800 
 3  16  10.6250  1.2820 

       ( )= + + =Grand mean mean 1 2 3 / 3 10.6250
       

    

( ) ( )2 2

between groups

2

SS 16 10.6300 10.6250 16 10.6200 10.6250 16(10.6250

10.6250)

0.000625 for 3 groups meaning 3 1 2 degrees freedom

= − + − +
−

= − =        

    between groupsMS 0.000625 / 2 0.0003125= =
       

      

2 2 2
within groupsSS 15 1.2840 15 1.2800 15 1.2820

24.730 14.746 23.009 62.485 for 15 9 14

38 degrees of freedom

= × + × + ×

= + + = + +
=        

     within groupsMS 62.485 / 38 1.644= =
       

   Table 12.2    Chi-square values with unusually high p-values   

 p-value(two sided) 

 0.999  0.99  0.95  0.90 
 Degrees freedom 
 1  0.0000016  0.0016  0.0039  0.016 
 2  0.0020  0.020  0.10  0.21 
 3  0.024  0.12  0.35  0.58 
 4  0.091  0.30  0.71  1.06 
 5  0.21  0.55  1.15  1.61 
 6  0.38  0.87  1.64  2.20 
 7  0.60  1.24  2.17  2.83 
 8  0.86  1.65  2.73  3.49 
 9  1.15  2.09  3.33  4.17 
 10  1.48  2.56  3.94  4.87 
 15  3.48  5.23  7.26  8.55 
 20  5.92  8.26  10.85  12.44 
 25  8.66  11.52  14.61  16.47 
 30  11.58  14.95  18.49  20.60 
 35  14.68  18.51  22.46  24.80 
 40  17.93  22.16  26.51  29.05 
 50  24.68  29.71  34.76  37.69 
 60  31.73  37.49  43.19  46.46 
 70  39.02  45.44  45.74  55.33 
 80  46.49  53.54  60.39  64.28 
 100  61.92  70.07  77.93  82.36 
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   Table 12.3    F-values with unusually high p-values   

 Degrees of freedom of the numerator 
 1  2  3  4  5  6  7  8  9  10  15  20  30  50  100  1000 

 Degrees of freedom denominator 
 1  0.0062  0.054  0.099  0.13  0.15  0.17  0.18  0.19  0.20  0.20  0.22  0.23  0.23  0.25  0.25  0.26 
 2  0.0050  0.053  0.10  0.14  0.17  0.19  0.21  0.22  0.23  0.24  0.27  0.29  0.30  0.31  0.32  0.33 
 3  0.0046  0.052  0.11  0.15  0.18  0.21  0.23  0.25  0.26  0.27  0.30  0.32  0.34  0.36  0.37  0.38 
 4  0.0045  0.052  0.11  0.16  0.19  0.22  0.24  0.26  0.28  0.29  0.33  0.35  0.37  0.39  0.41  0.42 
 5  0.0043  0.052  0.11  0.16  0.20  0.23  0.25  0.27  0.29  0.30  0.34  0.37  0.40  0.42  0.43  0.45 
 6  0.0043  0.052  0.11  0.16  0.20  0.23  0.26  0.28  0.30  0.31  0.36  0.38  0.41  0.44  0.46  0.47 
 7  0.0042  0.052  0.11  0.16  0.20  0.24  0.26  0.29  0.30  0.32  0.37  0.40  0.43  0.45  0.48  0.50 
 8  0.0042  0.052  0.11  0.17  0.21  0.24  0.27  0.29  0.31  0.33  0.39  0.41  0.44  0.47  0.49  0.51 
 9  0.0041  0.052  0.11  0.17  0.21  0.24  0.27  0.29  0.31  0.33  0.39  0.42  0.45  0.48  0.51  0.53 
 10  0.0041  0.052  0.11  0.17  0.21  0.24  0.27  0.30  0.32  0.34  0.39  0.43  0.46  0.49  0.52  0.54 
 15  0.0041  0.052  0.11  0.17  0.22  0.25  0.28  0.31  0.33  0.35  0.42  0.45  0.50  0.53  0.56  0.60 
 20  0.0040  0.052  0.11  0.17  0.22  0.26  0.29  0.32  0.34  0.36  0.43  0.47  0.52  0.56  0.60  0.63 
 30  0.0040  0.051  0.12  0.17  0.22  0.26  0.30  0.32  0.35  0.37  0.44  0.49  0.54  0.59  0.64  0.68 
 50  0.0040  0.051  0.12  0.17  0.23  0.27  0.30  0.33  0.36  0.38  0.46  0.51  0.57  0.63  0.67  0.74 
 100  0.0040  0.051  0.12  0.18  0.23  0.27  0.31  0.34  0.36  0.39  0.47  0.52  0.59  0.66  0.72  0.79 

    
= = =between groups within groupsF MS / MS 0.0003125 /1.644 0.00019

       

 According to the F-table (Table  12.3 ) for 2 and 38 degrees of freedom an F-value 
>0.051 means that p > 95%. The differences between the parallel groups are closer 
to zero than compatible with random sampling. We have a strong argument to 
believe that they are not completely random.    

    4   Additional Examples Simulating Real Practice, 
Multiple Comparisons 

 The issue of p-values >0.95 being not random is, of course, less true for studies test-
ing multiple measurements. If you test many times, you are apt to fi nd extreme 
p-values, either high or low, once in a while purely by chance. If the chance of fi nd-
ing an extreme p-value with a single test is equal to 0.05, then, according to the 
Bonferroni inequality, this chance increases to 1 − 0.95 k  with k tests. However, the 
chance of fi nding multiple extreme p-values in this situation remains very small. 
E.g., the chance of fi nding k extreme p-values with k tests is equal to 0.05 k . If k = 5, 
then this chance = <0.000000. We should add that multiple comparisons/tests will 
not be independent in most cases. Therefore, the chance of fi nding extreme p-values 
will not be as dramatically small as implied by the above formula, but even with 
dependencies, this chance will soon get much smaller than the traditional 0.05, and 
unrandomness of data has to be accounted. 
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 Table  12.4  gives examples of multiple comparisons/tests as commonly included 
in the reports of clinical drug trials/research. It show a remarkable similarity of 
(1) patient characteristics between two treatment groups, and (2) pharmacokinetic 
data between a brand name drug and its generic copy, (3) the virtual absence of 
time or carryover effect in a crossover study, and (4) virtually no difference in side 
effects between treatment and a placebo. All of these examples include multiple 
comparisons/tests in a single population, and these comparisons/tests can, there-
fore, not be expected to be independent of one another. The chance that these 
tables are unrandom is, therefore, not as small as implied by the above formula, 
but it is, certainly, smaller than 5% for each of the examples given.   

   Table 12.4    Examples of multiple comparisons/tests as commonly included in the reports of 
clinical drug trials/research   

  Example 1  Patient characteristics of a randomized controlled trial ( sds  = standard deviations) 

  Treatment 1 
(n = 5,000)  

  Treatment 2 
(n = 5,000)    p-value  

 Females n (%)  979 (19.58)  974 (19.48)  >0.95 
 Age <60 years n (%)  1,882 (37.64)  1,877 (37.54)  >0.95 
 White n (%)  4,889 (97.78)  4,887 (97.74)  >0.99 
 Smokers n (%)  1,716 (34.32)  1,712 (34.32)  >0.95 
 Mean alcohol consumption (units, sds)  8.1(11.3)  8.0 (11.4)  >0.95 
 Mean systolic blood pressure (mmHg, sds)  164.2 (17.8)  164.2 (17.8)   1.00 
 Mean diastolic blood pressure (mmHg, sds)  95.0 (10.3)  95.0 (10.3)   1.00 
 Mean body mass index (kg/m 2 , sds)  28.6 (4.7)  28.7 (4.6)   1.00 
 Mean total cholesterol (mmol/l, sds)  5.5 (0.8)  5.5 (0.8)   1.00 
 Mean triglycerides (mmol/l,sds)  1.74 (0.91)  1.73 (0.90)  > 0.99 
 Mean glucose (mmol/l, sds)  6.2 (2.1)  6.2 (2.1)   1.00 

  Example 2  Pharmacokinetic parameters 

  Brand-name drug (n = 8)    Generic copy (n = 7)    p-value  

 Mean clearance (ml/h, sds)  158 (15)  158 (15)   1.00 
 Mean bio-availability (%, sds)  75 (7)  74 (7)  >0.95 
 Mean volume of distribution (ml)  9,300 (910)  9,296 (915)  >0.99 
 Mean elimination half life (h, sds)  41 (4)  40 (4)  >0.95 
 Mean area under curve ( m g, h/ml)  547 (54)  543 (53)  >0.95 

  Example 3  Crossover study tested for treatment, carryover and time effects 

  Period 1    Period 2  
 Mean temperature (°C, sd) 

 Group1  Treatment 1  Treatment 2 
 Result 20.23 (4.12)  a   Result 24.12 (4.21)  b  

 Group2  Treatment 2  Treatment 1 
 Result 24.11 (4.20)  c   Result 20.22 (4.12)  d  

 Treatment effect  a  +  d  vs  b  +  c  p < 0.001 
 Carryover effect  a  +  c  vs  b  +  d  p > 0.95 
 Time effect  a  +  b  vs  c  +  d  p > 0.95 
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    5   Discussion 

 Main-endpoint results producing large p-values may not be entirely random. This 
issue has received little attention from the scientifi c community so far. Also statis-
tical tables covering them are not in the statistical literature. Fortunately, current 
statistical software generally provides exact p-values. But, then, investigators, 
however excited to report how nicely their results match their prior expectations, 
are often reluctant to report the exact p-values, and confi ne themselves to the notion 
NS (not signifi cant). The statistical tables as published in the current paper can be 
adequately used to test, a posteriori, such data. Whenever, p-values are >0.95, we 
have a strong argument that the data are not entirely random, and that they be inter-
preted with caution. 

 The current chapter is only a preliminary effort to assess randomness of clinical 
trial data. Other methods could include the more extensive use of population data 
for comparison, data transformations and non-parametric tests. We recommend that 
the scientifi c community develop guidelines for standard assessment of this issue. 
This is important to the body of evidence-based medicine, currently under pressure 
due to the confl icting results of recent trials producing different answers to similar 
questions (Julius  2003 ; Cleophas and Cleophas  2003  ) . Many causes are mentioned. 
As long as the possibility of inappropriate data cleaning has not been addressed, 
this very possibility can not be excluded as potential cause of the obvious lack of 
homogeneity in current research.  

    6   Conclusions 

 A p-value of >0.95 literally means that we have >95% chance of fi nding a result less 
close to expectation, and, consequently, <5% chance of fi nding a result this close or 
closer. Using the traditional 5% decision level, this would mean, that we have a 
strong argument that such data are not completely random. The objective of this 
chapter was to facilitate the assessment of this issue. T-, chi-square-, and f-tables of 

  Example 4  Side effects of a parallel-group clinical trial 

  Active treatment (n = 500)    Placebo (n = 500)    p-value  

 Nasal congestion (yes)  240  241  >0.99 
 Urine incontinence  44  45  >0.95 
 Impotence  50  52  >0.95 
 Depression  32  31  >0.95 
 Fatigue  99  98  >0.95 
 Palpitations  50  50  1.00 
 Dizziness  121  123  >0.95 
 Sleepiness  76  80  >0.95 
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unusually large p-values are given to calculate a posteriori p-values of study results 
closely matching their prior expectations. Simulated examples are given. Clinical 
trial data producing large p-values may not be completely random. The current 
chapter is a preliminary effort to assess randomness of clinical trial data.      
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          1   Introduction    

 Biological processes are full of variations, and so is clinical research. Statistics can 
give no certainties, only chances and, consequently, their results are often reported 
with a measure of dispersion, otherwise called uncertainty. Mostly, standard errors are 
calculated as a measure for dispersion in the data. For example, in a hypertension 
study a mean systolic blood pressure after active treatment of 125 mmHg compared 
to 135 mmHg after placebo treatment may indicate that either the treatment was 
clinically effi cacious or that the difference observed is due to random variation. 
To answer this the standard errors of the mean results, 5 mmHg each, and a pooled 
standard error are calculated, √(5 2  + 5 2 ) = 7.07 mmHg. According to the Student’s t-test 
this result is statistically insignifi cant: the t-value = (135 – 125)/7.07 = 1.4, and should 
have been larger than approximately 2. With such a result it is, usually, concluded that 
the treatment effect is not different from a placebo effect, and that the calculated 
mean difference is due to random variation, rather than a true treatment effect. 

 It is sometimes hard to assess complex estimators of clinical effi cacy for standard 
errors. Consequently, they are reported, then, as mean results without further statistical 
test or p-value. For example, numbers needed to treat in clinical trials, reproducibility 
of quantitative diagnostic tests, sensitivity and specifi city, Markov estimators, and 
risk profi les from multiple logistic models are routinely reported without measure of 
uncertainty. The predictions for general practice made from such estimators are not 
entirely in agreement with evidence-based medicine. As recommended by the 
STARD (Standards for the Reporting of Diagnostic Accuracy Studies) steering group 
(Bossuyt et al.  2003  ) , ample efforts should be given to include a measure of 
uncertainty in any research result in order for predictions to be more accurate. 

 Another dispersion issue is the use of traditional standard errors in situations where 
the data are over-dispersed. Over-dispersion depicts the phenomenon that the spread 
in the data is wider than compatible with Gaussian modeling. This phenomenon is, 
particularly, common with logistic models, but can also occur with continuous real 
data samples (Tan  2003  ) . Traditional statistical tests overestimate the precision of 
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over-dispersed data, meaning that the calculated p-values are too small, and the 
conclusion of a signifi cant effect is erroneously being made. To date statistical software 
programs do not routinely include tests for over-dispersion, and, so, investigators 
have to take care and make their own assessments prior to the analysis. 

 In the current paper we will review both the fl aw of data without measure of 
dispersion and that of data with over-dispersion. As real data examples assessing 
these fl aws are virtually missing in the medical literature, we will give hypothe-
sized examples. Simple Gaussian distribution based methods for assessment are 
used, and most of them can be readily found in major statistical packages like SAS 
(  www.sas.com    ), and special software programs for the calculation of confi dence 
intervals like Confi dence Interval Analysis (Gardner  1989  ) .  

    2   Data Without Measure of Dispersion 

    2.1   Numbers Needed to Treat in Clinical Trials 

 In order to decide whether the results of a study are important for future patient care 
the numbers needed to treat (NNTs) are often calculated. As an example, in a clinical 
trial of beta-blocker versus placebo for the prevention of post-infarct arrhythmias 
the rate of post-infarct arrhythmias is signifi cantly lower with the beta-blocker than 
with placebo, with 51/748 (proportion =0.07) in the beta-blocker group and 126/764 
(proportion = 0.17) in the placebo group (relative risk 2.4, 95% confi dence interval 
1.8–3.3). With this result, it is interesting to extrapolate these results to future 
populations. The number needed to treat in order to prevent one arrhythmic patient 
is often used for that purpose, and is calculated according to:

     ( ) ( )= − = =number needed to treat NNT 1 / 0.168 0.068 1 / 0.1 10
    

 We will need to treat ten patients with a beta-blocker in order to prevent one 
arrhythmic patient. This conclusion, however appealing to readerships of articles, is 
not justifi ed, because it is based on the assumption that the proportions are 100% 
certain, but the proportions do have boundaries of uncertainty, the 95% (or 99%) con-
fi dence interval, which indicates that the number could considerably differ from 10. 

 Using the equation “proportion ±2 √ [p (1 − p)/n]” , the 95% confi dence intervals 
are calculated as follows:

   0.068 is between 0.051 and 0.085  
  0.168 is between 0.126 and 0.210    

 If we include this uncertainty in the calculation of the NNTs, then we can be 
95% sure that the numbers required to prevent one arrhythmic patient range between 
1/(0.210 − 0.051) = 6.3 and 1/(0.126 − 0.085) = 24.4. If we consider to treat future 
populations, it is more adequate to think of NNTs between 6 and 25 instead of a 
NNT of 10 patients. We should add that the NNT can also be derived from the risk 

http://www.sas.com
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difference. The risk difference and its 95% confi dence interval can be calculated 
in SAS (  www.sas.com    ), Confi dence Interval Analysis (Gardner  1989  ) , and other 
software programs.  

    2.2   Reproducibility of Quantitative Diagnostic Tests 

 Reproducibility, otherwise called reliability, of diagnostic tests or questionnaires is 
an essential prerequisite for implementation. A routine but incorrect method for that 
purpose is the following. We calculate the mean value of the fi rst set of tests, then 
from the second set of tests. If the difference is small, then we conclude, that the 
two tests are well-reproducible. As an example, in a diagnostic study of patients with 
Raynaud’s phenomenon the reliability of venous occlusion plethysmography is 
assessed by duplicate testing of six patients (Table  13.1 ). The mean difference 
between the duplicate tests is as small as 0. Yet, the test is poorly reproducible, with 
a range of differences between two tests of no less than −11 to +10 ml/min.  

 The mean difference between two sets of tests is, obviously, not good enough for 
demonstrating a high level of reproducibility between tests. More adequate for that 
purpose are methods that assess the spread of differences between repeated measure-
ments like, for example, the duplicate standard deviation (Table  13.2 ). For adequate 

 Plethysmographic peripheral arterial fl ows (ml/min) 

 Patient no.  Test 1  Test 2  Difference 

 1  1  11  −10 
 2  10  0  10 
 3  2  11  −9 
 4  12  2  10 
 5  11  1  10 
 6  1  12  −11 

 Mean difference  0 

 Table 13.1    In a diagnostic 
study of patients with 
Raynaud’s phenomenon the 
reliability of venous occlusion 
plethysmography is assessed 
by duplicate testing of six 
patients  

   Table 13.2    More adequate for assessing reproducibility between tests are methods that assess the 
spread of differences between repeated measurements like for example the duplicate standard 
deviation   

 Plethysmographic peripheral arterial fl ows (ml/min) 

 Patients no.  Test 1  Test 2  Difference (d)  (Difference) 2  

 1  1  11  −10  100 
 2  10  0  10  100 
 3  2  11  −9  81 
 4  12  2  10  100 
 5  11  1  10  100 
 6  1  12  −11  121 
 Averages  6.17  6.17  0  100.3 

 
    

21
2Duplicate standard deviation [ (1 / 2 100.3) 7. 8d / n]= 0= √ × =Σ√

   

http://www.sas.com
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reproducibility the magnitude of the duplicate standard deviation should equal 
10–20% of the test-averages. Also adequate is the repeatability coefficient that 
is calculated by the standard deviation of the individual differences between 
the tests 1 and 2: a result equal to10–20% of the test averages is considered to be 
adequate.   

    2.3   Sensitivity and Specifi city 

 In clinical research gold standard tests for making a diagnosis are often laborious 
and sometimes impossible. Instead, simple and non-invasive tests are used.  

 Disease present (numbers of patients) 

 Yes  No 

 Test Positive  a  b 
 Negative  c  d 

 In the above 2 × 2 contingency table a = the number of truly positive patients in 
such a simple non-invasive test, b = the number false positive, c = the number false 
negative, and d = the number truly negative. 

 Validity of these kinds of tests is often assessed with sensitivity and specifi city. 
Sensitivity = a/(a + c) = proportion in a sample of true positive patients, where the 
true positives are the patients with a positive test and the presence of disease; 
specifi city = d/(d + b) = proportion in a sample of patients with a true negative test, 
where the true negatives are the patients with a negative test and without the presence 
of disease. A problem is, that most diagnostic tests have limited sensitivities and 
specifi cities. Levels around 0.5 (50%) means that no more information is given than 
fl ipping a coin. Levels substantially higher than 50% are, commonly, accepted as 
documented proof, that the diagnostic test is valid. However, sensitivity/specifi city 
are estimates from experimental samples, and scientifi c rigor recommends that with 
experimental sampling amounts of uncertainty be included. Uncertainty is virtually 
never assessed in sensitivity/specifi city evaluations of cardiovascular diagnostic tests. 
This is a pity, because calculated levels of uncertainty could be used for statistically 
testing whether the sensitivity/specifi city are signifi cantly larger than 0.5 or whether 
their 95% confi dence intervals are between previously set validation boundaries. 
If not, then it is appropriate to reject the diagnostic test, because it is imprecise to 
predict the disease. As an example, a dimer test is used as a diagnostic test for the 
diagnosis of lung embolias.  

 Lung embolia (numbers of patients) 

 Yes  No 

 Dimer test Positive  2   18 
 Negative  1  182 
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 The sensitivity and specifi city in the above example is calculated to be 0.6666 and 
0.911 respectively. These results could be interpreted as acceptable, because they 
are much larger than 0.5. However, in order to conclude, that they are signifi cantly 
larger than 0.5, their 95% confi dence intervals should not cross the 50% boundary. 

 Sensitivity/specifi city are proportions, and it is fairly straightforward to calculate 
standard errors from them (Levin et al.  2008  ) . The equations are underneath:

     
( )⎡ ⎤= √ +⎣ ⎦

3
standard error sensitivity ac / a c

   

     
( )⎡ ⎤= √ +⎣ ⎦

3
standard error specificity db / d b

    

 The 95% confi dence intervals of sensitivity and specifi city can be calculated from:

     = ± ×95% confidence interval Sensitivity its 1.96 standard error    

     = ± ×95% confidence interval Specificity its 1.96 standard error    

     = ± × = −sensitivity 0.666 1.96 3.672 between 5.4 and 7.8.    

     = ± × =specificity 0.911 1.96 0.286 between 0.35 and 1.47.     

 These intervals are very wide, and do not fall within the boundary 0.5–1.0 
(50–100%). Validity of the above test is, thus, not demonstrated.  

    2.4   Markov Predictors 

 Regression models are only valid within observed range x-values. The Markov 
model goes one step further. It predicts beyond that range, and, in addition, it does 
so without accounting uncertainty. As an example, in an observational study, the 
presence of heart failure defi ned as a B natriuretic peptide test above 100 pg/ml is 
assessed in a group of 500 patients. At time 0 year 0/500 patients met the criterion. 
At the time point 1 year, however, 50/500    (= 10%) did. An exponential-pattern is 
assumed. It is concluded that, if after 1 year 90% had no heart failure, then   

     

after 2 years 90% 90% 81% will have no heart failure

after 3 years 90% 90% 90% 73% will have no heart failure

after 6.7 years 50% will have no heart failure

× =
× × =

=     

 Markov models are very popular for making predictions from health statistics or 
observational population-based studies like the Framingham studies. It is obvious 
that such models would better predict, if uncertainty were included. However, few 
studies have been published so far. 
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 Markov models use multiplication of proportions and standard errors of them 
can be calculated using a logarithmic transformation (Cleophas and Zwinderman 
 2009a  ) . The natural logarithm of a proportion is given by ln [a/(a + b)]. We recom-
mend that the standard error be approached from the equation (ln = natural 
logarithm):

     
( ) ( )⎡ ⎤+ = − +⎣ ⎦standard error ln a / a b 1 / a 1 / a b

    

 From the previously described example the 95% confi dence of the proportion of 
patients who will have no failure after 6.7 years could be calculated according to 
(6.7 in superscript means here “to the power 6.7”):

     
( ) ( )⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦

6.7
ln a / a b 6.7 ln a / a b

    

 The standard error of ln [a/(a + b)] 6.7  = 6.7 standard error [a/(a + b)] = 6.7 [1/a−1/
(a + b)]. 

 The logarithmic transformed 95% confi dence interval

 =     ( ) ( )⎡ ⎤ ⎡ ⎤+ ± × − +⎣ ⎦ ⎣ ⎦6.7 ln a / a b 1.96 6.7 1 / a 1 / a b .     

 The true 95% confi dence interval is found by taking the antilogarithm. 
 Along this line uncertainty can be included in Markov modelling, and more precise 

predictions can be made from this clinical estimator (Cleophas and Zwinderman 
 2009a  ) .  

    2.5   Risk Profi les from Multiple Logistic Models 

 Logistic models are often applied for determining individual and population risk 
profi les. As an example we will use an observational study of myocardial infarction 
in females treated with estrogenes. Additional risk factors are included (Table  13.3 ). 
The odds of myocardial infarct in patients with estrogene is 13.5 times that of 
patients without. As four of the risk factors are signifi cant, we remove factor 5 and 

   Table 13.3    Multiple logistic regression of an observational study of myocardial infarction in 
females treated with estrogenes. The dependent variable is the myocardial infarction (yes/no), 
estrogene use (yes/no), and the other underneath predictors are included in the model   

 Risk factors heart infarct  Regression coeffi cient (b)  Standard error  p-value  Odds ratio (or) 

 1. Estrogenes  2.60  0.25  <0.0001  13.5 
 2. Cholesterol  0.81  0.21  0.0001  2.2 
 3. Obesity  0.50  0.25  0.04  1.6 
 4. Hypertension  0.42  0.21  0.05  1.5 
 5. Nicotine  0.53  0.53  ns 
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assume that all of the remaining 4 factors independently predict an increased risk, 
and that, together, they predict the following risk   : 

     

( )
1 2 3 4

the odds ratio OR of myocardial infarct with factors 1 4

OR OR OR OR 75.9

− =
× × × =

    

 For an individual or a group of persons carrying all four risk factors the odds of 
obtaining myocardial infarct is 76 times that of the individual/group devoid of the 
risk factors. But is this true? Should we not include a boundary of uncertainty here. 
The standard error of each of the risk factors is given in the Table  13.3 , and needs to 
be incorporated in the fi nal result for the purpose of accuracy and precision. 

 Logistic models for determining risk profi les use multiplications of odds ratios. 
If only signifi cant predictors are included, we may assume that they are independent 
of one another and a fairly straightforward method is available for calculating the 
pooled 95% confi dence interval of the multiplication products. The above example 
is used once more. 

 The pooled standard error of the natural logarithms of the odds ratio of cancer 
with the factors 1–4 (ln OR 

factors 1–4
 ) is given by (ln means natural logarithm):

   standard error of ln OR 
factors 1–4

   
  = √ (standard error  

1
  2   + standard error  

2
  2   + standard error  

3
  2   + standard error  

4
  2  )    

 The logarithmic transformed 95% confi dence interval is found by taking:
   ln OR  

factors 1–4
  ± 1.96 × pooled standard error of ln OR 

factors 1–4
     

 In this manner uncertainty can be implied in the risk profi le, and better precision 
for predictions from data can be given.   

    3   Data with Over-Dispersion 

 Over-dispersion depicts the phenomenon that the spread in the data is wider than 
compatible with Gaussian modelling. This phenomenon is, particularly, common 
with logistic models, but can also occur with continuous real data samples (Tan  2003  ) . 
Over-dispersion can be detected by goodness of fi t tests, for example the Pearson’s 
chi-square goodness of fi t test or the Kolmogorov-Smirnov test (Cleophas and 
Zwinderman  2009b  ) . To date statistical software programs do not routinely include 
tests for over-dispersion, and, so, investigators have to make their own assessments 
prior to the analysis. 

 Table  13.4  shows a hypothesized example of a 2 × 2 multi-centre factorial clinical 
trial of the effect of a beta-blocker and a calcium channel blocker on hypertension. 
The analysis requires the binary logistic model (ln = natural logarithm): 

   ln odds of responding = a + b 
1
  x 

1
  + b 

2
  x 

2
  + b 

3
  x 

1
  x 

2
   

  x 
1
  = beta-blocker  

  x 
2
  = calcium channel blocker    
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 There is a strong difference in the total numbers of observations per centre: 
between 4 and 81. This could lead to over-dispersion. The Pearson goodness of fi t 
test can be used to assess the presence of it. The calculation is given in Table  13.5 . 
If we add up the other three treatment combination results to 10.0, we will end up with 
a chi-square value of 10.0 +  …  = 32. This chi-square value should be approximately 
equal to its degrees of freedom for the logistic model to hold. We have, however, 21 
(cells) – 4 (treatment combinations) = 17 degrees of freedom. This would mean that 
the data are over-dispersed. A solution recommended by Hojsgaard and Halekoh 
is used (Hojsgaard and Halekoh  2005  ) . The magnitude of the dispersion can be 
estimated by the ratio: 

     = =chi - square number / degrees of freedom 32 /17 1.9     

 The square root of this ratio (here √1.9), sometimes called the variance infl ating 
factor can, subsequently, be used to adjust the standard errors in the study. ln odds 
of responding = a + b 

1
  x 

1
  + b 

2
  x 

2
  + b 

3
  x 

1
  x 

2
  (ln = natural logarithm). The calculation is 

given in Table  13.6 .  
 The probability of responding to a dummy beta-blocker and calcium channel 

blocker equals 0.36. This is unchanged after adjustment for dispersion. However, the 

   Table 13.4    A hypothesized example of a 2 × 2 multi-centre factorial clinical trial of the effect of a 
beta-blocker and a calcium channel blocker on hypertension   

 Calcium channel blocker  Dummy calcium channel blocker 

 Dummy b-b  Beta-blocker  Dummy b-b  Beta blocker 

 Center  Resp  Total  Resp  Total  Resp  Total  Resp  Total 

 1  10  39   5   6  8  16   3  12 
 2  23  62  53  74  10  30  22  41 
 3  23  81  55  72  8  28  15  30 
 3  26  51  32  51  23  45  32  51 
 4  17  39  46  79  0   4   3   7 
 5  10  13 

 Mean proportion per treatment combination 
  0.364   0.681   0.249   0.532 

   b-b  beta-blocker,  resp  number of responders (a mean blood pressure under 107 mmHg),  total  total 
number of patients with specifi c treatment combination per centre  

   Table 13.5    The Pearson goodness of fi t test of the data of Table  13.4    

 
    

( )2
observed numbers responders expected numbers responders

chi - square
expected numbers responders

−
= ∑    

 The calculation per treatment combination per centre is as follows 

 1.  (10−39 × 0.364)/39 × (10/39 − (1 − 10/39))  = 2.2 
 2.  = 0.0 
 3.  = 2.2 
 4.  = 4.5 
 5.  = 1.1 +  

 = 10.0 
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95% confi dence of this probability changes from 0.31–0.42 to 0.28–0.45. In conclusion, 
with over-dispersion the parameter estimates are not affected, but their standard 
errors are likely to be underestimated, and should be adjusted for that fl aw.  

    4   Discussion 

 This chapter is far from complete, many more examples can be given. Data without 
measure of dispersion also include pharmacokinetic/-dynamic parameters in simulated 
and real-data drug trials, diagnostic odds ratios in diagnostic meta-analyses (Moses 
et al.  1993  ) , node impurities with binary partitioning (Lesterhuis and Cleophas  2009  ) , 
propensity scores for data matching (Wasson et al.  1985  ) . Also data with over-dis-
persion are very common with current multicenter and international clinical trials, 
though rarely assessed for that purpose (Tan  2003  ) . 

 Conclusions from data without measure of dispersion should be interpreted with 
caution, because statistically insignifi cant differences may be interpreted as real 
differences while they are just a result of random fl uctuations. Random fl uctuations 
should never be the basis for new treatments. The STARD (Standards for Reporting 
Diagnostic Accuracy) working party recently advised “to include in the estimates of 
diagnostic accuracy adequate measures of uncertainty, e.g., 95%-confi dence intervals” 
(Bossuyt et al.  2003  ) , and rightly so, because the problem is not sporadically 
encountered, but can be almost routinely observed in research reports. For example, 
even in a journal like the Journal of the International Federation of Clinical chemistry 
and Laboratory Medicine out of 17 original papers addressing novel chemistry 
methods 16 communicated the above-mentioned fl awed reproducibility assessments 
while the correct methods were used in only one (Imbert-Bismut et al.  2004  ) . 

 What solutions can be given. First, calculating standard errors or confi dence 
intervals is often possible. If not, alternative confi dence intervals may be a possibility, 
for example, those based on Monte Carlo methods like bootstrap confi dence intervals. 
Second, sometimes, the choice is deliberately made not to use the data fully, but to skip 
the standard errors, and to use the summary measures only. NNTs can be considered as 
such summary measures. The problem with this approach is that without accounting 
the uncertainty of the summary measure the overall results may produce infl ated 
results, because the dispersion in the data is artifi cially minimized by removing this 
uncertainty. This limitation should be recognized in research reports. 

 Conclusions from data with over-dispersion should equally be interpreted with 
caution, because the calculated confi dence intervals and p-values are too small 
and the conclusion of a signifi cant effect may erroneously be made. Particularly, 
if a strong difference in numbers of responders or magnitudes of responses is 
in the data, the presence of over-dispersion should be assessed. Goodness of 
fit tests are available for that purpose. The advantage of the Pearson chi-square 
goodness of fi t test, is, that, in addition to detecting over-dispersion, it enables to 
adjust for it. The adjusted mean of the data remains unchanged, while the measures 
of dispersion in the data, including variances and co-variances, log – likelihoods, 
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Wald – intervals etc are, simply, multiplied by the square root of the ratio of the 
chi-square value and its degrees of freedom (variance infl ating factor = chi-square/
degrees of freedom). 

 In conclusion, we recommend that analytical methods in clinical research should 
always try and include a measure of dispersion in the data. Often standard errors or 
95% confi dence intervals can be used for the purpose. With large differences in the 
data, the presence of over-dispersion should be assessed and adjusted.

We should add that also the delta method (explained in the appendix of Chapter 47) 
is very helpful to provide measures of dispersion.  

    5   Conclusions 

 Biological processes are full of variations, and so is clinical research. Estimators 
of clinical effi cacy are, therefore, usually reported with a measure of uncertainty, 
otherwise called dispersion. 

 The objective of this chapter was to review both the fl aws of data reports without 
measure of dispersion, and those with over-dispersion. 

 Examples of estimators commonly reported without measure of dispersion 
include:

    1.    numbers needed to treat,  
    2.    reproducibility of quantitative diagnostic tests,  
    3.    sensitivity/specifi city,  
    4.    Markov predictors,  
    5.    Risk profi les predicted from multiple logistic models.     

 Data with large differences between response magnitudes can be assessed for 
over-dispersion by goodness of fi t tests. The chi-square goodness of fi t test enables 
to adjust the over-dispersion. 

 For most clinical estimators the calculation of standard errors or confi dence 
intervals is possible. Sometimes, the choice is deliberately made not to use the data 
fully, but to skip the standard errors, and to use the summary measures only. The 
problem with this approach is that the overall results may produce infl ated results. 
We recommend that analytical methods in clinical research should always try and 
include a measure of dispersion in the data. With large differences in the data, the 
presence of over-dispersion should be assessed and adjusted.      

 SE  p  SE 
adust

   p 

 a  −0.41  0.18  0.025  0.25  0.119 
 b 

1
    0.54  0.25  0.031  0.34  0.132 

 b 
2
   −0.15  0.22  0.513  0.30  0.638 

 b 
3
    0.78  0.31  0.011  0.42  0.080 

 
    

adjustSE SE adjusted for over - dispersion 1.9 SE.= = √ ×
   

 Table 13.6    The calculation 
of a standard error adjusted 
for over-dispersion  
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     1   Introduction    

 In the past chapters we discussed different statistical methods to test statistically 
experimental data from clinical trials. We did not emphasize correlation and regres-
sion analysis. The point is that correlation and regression analysis test correlations, 
rather than causal relationships. Two samples may be strongly correlated e.g., two 
different diagnostic tests for assessment of the same phenomenon. This does, how-
ever, not mean that one diagnostic test causes the other. In testing the data from 
clinical trials we are mainly interested in causal relationships. When such assess-
ments were statistically analyzed through correlation analyses mainly, we would 
probably be less convinced of a causal relationship than we are while using prospec-
tive hypothesis testing. So, this is the main reason we so far did not address correla-
tion testing extensively. With epidemiological observational research things are 
essentially different: data are obtained from the observation of populations or the 
retrospective observation of patients selected because of a particular condition or 
illness. Conclusions are limited to the establishment of relationships, causal or not. 
We currently believe that relationships in medical research between a factor and an 
outcome can only be proven to be causal if the factor is introduced, and, subse-
quently, gives rise to the outcome. We are more convinced when such is tested in the 
form of a controlled clinical trial. A problem with multiple regression and logistic 
regression analysis as method for analyzing multiple samples in clinical trials is 
closely related to this point. There is always an air of uncertainty about such regres-
sion data. Interventional trials usually use hypothesis-testing and 95% confi dence 
intervals (CIs) of the data to describe and analyze data. They use multiple regression 
for secondary analyses, thus enhancing the substance of the research, and making 
the readership more willing to read the report, rather than proving the primary end-
points. Regression analysis may not be so important to randomized clinical trials, it 
is important to one particular study design, the crossover study, where every patient 
is given in random order test-treatment and standard treatment (or placebo). 
Figure  14.1  gives three hypothesized examples of crossover trials. It can be observed 

    Chapter 14   
 Linear Regression, Basic Approach                 
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from the plots that in the left and right graph there seems to be a linear relationship 
between treatment one and two. The strength of relationship is expressed as 
r (= correlation coeffi cient) which varies between −1 and +1. The strongest associa-
tion is given by either −1 or +1 (all data exactly on the line), the weakest association 
0 (all    data are parallel either to x-axis or to y-axis, or half one direction, half the 
other). A positive correlation in a crossover study is observed if two drugs from one 
class are compared. The patients responding well to the fi rst drug are more likely to 
respond well to the second. In contrast, in crossover studies comparing drugs from 
different classes a negative correlation may be observed: patients not responding 
well to one class are more likely to respond well to the other.   

    2   More on Paired Observations 

 Table  14.1  gives the real data of a crossover study comparing a new laxative versus 
a standard laxative, bisacodyl. Days with stool are used as primary endpoint. The 
table shows that the new drug is more effi cacious than bisacodyl, but the fi gure 
(Fig.  14.2 ) shows something else: there is a positive correlation between the two 
treatments: those responding well to bisacodyl are more likely to respond well to the 
novel laxative.   

 A regression line can be calculated from the data according to the equation

     = +y a bx     

 The line drawn from this linear function provides the best fi t for the data given, 
where y = socalled dependent, and x = independent variable, b = regression coeffi cient   .

        = +a and b from the equation y a bx can be calculated.        

  Fig. 14.1    Example of three crossover studies of two treatments in patients with Raynaud’s 
phenomenon. The (Pearson’s) correlation coeffi cient     ρ   varies between −1 and +1       
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2

(x x)(y y)
b regression coefficient

(x x)

− −
= =

−

∑
∑        

     a intercept y bx= = −       

       = =r  correlation coefficient  another important determinant and looks a lot like b.       

   Table 14.1    Example of a 
crossover trial comparing 
effi cacy of a new laxative 
versus bisacodyl   

 Patient no. 

 New treatment 
(y-variables) 
(days with stool) 

 Bisacodyl 
(x-variables) 
(days of stool) 

 1  24  8 
 2  30  13 
 3  25  15 
 4  35  10 
 5  39  9 
 6  30  10 
 7  27  8 
 8  14  5 
 9  39  13 
 10  42  15 
 11  41  11 
 12  38  11 
 13  39  12 
 14  37  10 
 15  47  18 
 16  30  13 
 17  36  12 
 18  12  4 
 19  26  10 
 20  20  8 
 21  43  16 
 22  31  15 
 23  40  14 
 24  31  7 
 25  36  12 
 26  21  6 
 27  44  19 
 28  11  5 
 29  27  8 
 30  24  9 
 31  40  15 
 32  32  7 
 33  10  6 
 34  37  14 
 35  19  7 
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2 2

(x x)(y y)
r

(x x) (y y)

− −
=

− −

∑
∑ ∑      

  r = measure    for the strength of association between y and x-data. The stronger the 
association, the better y predicts x.     

    3   Using Statistical Software for Simple Linear Regression 

 Regression analysis without software is laborious. We may use a computer pro-
gram, e.g.,  SPSS Statistical Software , to do the job for us. We command our soft-
ware:  Statistics; Regression; Linear . Excel fi les can be entered simply cutting and 
pasting. 

 The software calculates the values b and a and r so as to minimize the sum of the 
squared vertical distances of the points from the line (least squares fi t).  SPSS for 
windows  provides us with three tables (Table  14.2 ):  (1) Model Summary, (2) 
ANOVA, (3) coeffi cients.  

    1.     Model Summary  gives information on correlation coeffi cient (r) and its square 
(r 2 ) the coeffi cient of determination. A coeffi cient of determination of 0.63 indi-
cates that 63% of the variation in the y variable is explained by variation in the x 
variable. The better the effect of bisacodyl the better the novel laxative is going 
to work. Adjusted r square is important for small samples only while std error of 
the estimate tells us something about the residue (variance not explained by the 
regression) and is equal to the square root of the Residual Mean Square. 
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  Fig. 14.2    Scatterplot of data from Table  14.1  with regression line       
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 At this point it is important to consider the following. Before doing any regression 
analysis we have to make the assumptions that our y – data are normally distributed 
and that variances in y-variable do not show a lot of difference, otherwise called 
heteroscedasticity (heteroscedasticity literally means “different standard deviations 
(SDs)”). 

  White’s Test  is a simple method to check for this. Chi-square table is used for 
that purpose.

   if n r 2  <  c  2 ·(n) we don’t have to worry about heteroscedasticity.  
  n = sample size  
  r = correlation coeffi cient  
   c  2 (n) = the value for n degrees of freedom.  

  In our example 35·(0.630) = 22.05 while  c  2 ·(35) = 56.70 (no heteroscedasticity)     
    2.     ANOVA (analysis of variance)  shows how the paired data can be assessed in the 

form of analysis of variance. Variations are expressed as sums of squares. The 
total variation in the regression is divided into sum of squares (SS) regression, or 
variances explained by the regression, and SS residual, variances unexplained by 
the regression   .

     

( )2
2

2

2 2

(x x)(y y) SP x·y
r

SSx·SSy(x x) (y y)

− −
= =

− −

∑
∑ ∑    

   where SP = sum of products x·y   
   SS regression = SP 2  xy/SSx = 2128.393  
  SS total = SS y  
  SS regression/SS total = 2128.393/SS total = 0.63 (= r square (Model Summary))    

   Table 14.2    Three tables provided by SPSS for regression analysis      

 Model summary 

 Model  R  R square  Adjusted R square  Std. error of the estimate 

 1  .794 a   .630  .618  6.1590 

 ANOVA b  

 Model  Sum of squares  df  Mean square  F  Sig. 

 1  Regression  2,128.393   1  2,128.393  56.110  .000 a  
 Residual  1,251.779  33  37.933 
 Total  3,380.171  34 

 Coeffi cients b  

 Unstandardized coeffi cients  Standardized coeffi cients 

 Model  B  Std. error  Beta  t  Sig. 

 1  (Constant)  8.647  3.132  2.761  .009 
 VAR00002  2.065   .276  .794  7.491  .000 

   a Predictors: (Constant), VAR00002 
  b Dependent Variable: VAR00001  
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 As explained above this means that 63% of the variation in the y-variable is 
explained by the variation in the x-variable. This interpretation may be hard to 
understand, but it is helpful to imagine:
   r 2  = 0 indicating no correlation at all,  
  r 2  = 1.00 indicating 100% correlation, each y-datum is exactly on the line,  
  r 2  = 0.50 indicating 50% certainty about a corresponding y – value if we know the 
x-value.    

 The strength of association of x- and y-values is dependent not only on the mag-
nitude of the r 2  – value, but, in addition, on the sample size. For example, if we have 
a sample of n = 3 exactly on the line, then no accurate predictions can be made. 
However, if n = 100, then we are more convinced of the accuracy of the line as a 
predictor of y-values from given x-values. Therefore, in addition to calculating the 
magnitude of the r 2  – value, we have to include the sample size in our statistical 
work-up. For that purpose ANOVA is used. It tests whether r 2  is signifi cantly larger 
than 0.00. The table shows that, indeed p < 0.000, and that the we, thus have a 
signifi cant highly signifi cant association between the x- and y-variables. 

 SPSS uses R (upper case), other software uses r (lower case) for expressing the 
correlation coeffi cient.  
    3.     Coeffi cients  shows the regression equation. The intercept is named “(constant)” 

and is given in the column under B and equals 8.647. The b-value in the linear 
regression equation is 2.065.
   The regression equation is thus as follows.    

     = +Y 8.647 2.065. x        

     = +new laxative 8.647 2.065. bisacodyl        

 In addition to unstandardized coeffi cients, standardized coeffi cients are given. 
For that purpose SSy is defi ned to be 1. Then, r = b. Instead of testing that r is signifi -
cantly larger than 0.00, we can now test that b is signifi cantly larger than 0.000, and 
use for that purpose the t-test. The meaning of the two tests is very similar, and so 
is their result. The t-value of 7.491 =     √ =F 56.110   . This t-value is, obviously, 
equal to the square root of the F-value from the ANOVA-test.      

    4   Multiple Linear Regression 

 Linear regression would have never been so popular if only the inclusion of a sin-
gle x-variable had been possible. We will now assess models with more than a 
single x-variable. 

 Obviously, there is a signifi cant positive correlation between the x- and y-values in 
Fig.  14.3  (the above laxative-study). Maybe, there is also a positive correlation between 
the new laxative and patient age. If so, then the new laxative might be better, e.g., 

    1.    the better the bisacodyl,  
    2.    the older the patient.     
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 In this case we have, thus, 3 observations in 1 person

    1.    effi cacy datum new laxative  
    2.    effi cacy datum bisacodyl  
    3.    age.     

 In order to test possible correlations, we can defi ne variables as follows

   y variable presents new laxative data  
  x 

1
  variable bisacodyl data  

  x 
2
  variable age data.    

 Linear regression uses formula y = a + bx, where the y-variable = new laxative 
data, the x-variable = bisacodyl data. For example, if we fi ll out

     = => =x - value 0 then formula turns into y a    

     = => = +x - value 1 then formula turns into y  a  b    

     = => = +x - value 2 then formula turns into y  a 2b     

 For each x-value the formula produces the best predictable y-value, all y-values 
constitute a line, the regression line (Fig.  14.4 ) which can be interpreted as the  best 
fi t  line for data (the line with shortest distances from the y-values).  

 For multiple regression with three variables the regression formula y = a + b 
1
  

x 
1
  + b 

2
  x 

2
  is being used. In order to visualize the model used, we can apply a three-

axes-model with y-axis, x 
1
 -axis and x 

2
 -axis (Fig.  14.5 ). If we fi ll out 

     = = +1 2 2x 0,  then the formula turns into y a b x    

     = = + +1 1 2 2x 1, then the formula turns into y  a b b x    
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  Fig. 14.3    Scatterplot of data from Table  14.1  with regression line       
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     = = + +1 1 2 2x 2, then the formula turns into y  a 2b b x    

     = = + +1 1 2 2.x 3, then the formula turns into y  a 3b b x     

 Each x 
1
  –value has its own regression line, all of the regression-lines constitute a 

regression plane which is interpreted as the best fi t plane for the data (the plane with 
the shortest distances to the y-values).  

    5   Multiple Linear Regression, Example 

 We may be interested to know if age is an independent contributor to the effect of 
the new laxative. For that purpose a simple regression equation has to be extended 
as follows

     = + +1 1 2 2y a b x b x    

y-axis

x-axis

  Fig. 14.4    Linear regression 
model gives best predictable 
y-value for the x-value given       

x2 axis

y axis

x1- axis

0
1

3

2

  Fig. 14.5    Three axes model 
to illustrate multiple linear 
regression model with two 
x-variables       
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b 
i
  are called partial regression coeffi cients. Just like simple linear regression, multiple 

linear regression can give us the best fi t for the data given. The calculations of a, b 
1
  

and b 
2
  are given underneath.

     Σ = + Σ + Σ1 1 2 2y na b x b x    

     Σ = Σ + Σ + Σ2 2
1 1 1 1 2 1x y a x b x b x x    

     Σ = Σ + Σ + Σ 2
2 2 1 1 2 2 2x y a x b x x b x    

r between x 
1
 , x 

2
  en y calculate from the equation

     = √ +1 1 2 2R (b r x b r x )     

 The calculations are hard without a computer. Also, it is hard to display the cor-
relations in a fi gure. Table  14.3  gives the data from Table  14.1  extended by the vari-
able age.  

 The Table  14.3  shows too many data to allow any conclusions. We use for assess-
ment of these data the same SPSS program called linear regression and command 
again:  Statistics; Regression; Linear . The software  SPSS for windows  provides us 
with the following three subtables:  (1) Model Summary, (2) ANOVA, (3) coeffi -
cients  (Table  14.4 ). 

    1.     Model Summary  shows r, here called the multiple r, The corresponding “mul-
tiple r square”, otherwise called coeffi cient of determination, of 0.719 indicates 
that 71.9% of the variation in the y variable is explained by variation in the 
two x variables. Interestingly, the multiple r square is a bit larger than the simple 
r square (0.719 and 0.618). Information is thus given about the perfection of the 
model. After the fi rst step 61.8% of variation is explained by the regression 
model, after the second no less than 71.9% is explained by it. The addition of age 
to the model produces 71.9% − 63% = 8.9% extra explanation of the variance in 
the y variable, the effect of the new laxative. The interpretation of the r 2  – value 
is similar to that in simple linear regression. If r 2  = 0, then no correlation exists, 
the x-values determines the y-values no way. If r 2  = 1, then the correlation is 
100%, we are absolutely sure about the y-value if we know the x-values. If 
r 2  = 0.5, the 50% correlation exists. In our case r 2  = 0.719 = 72%. The x-values 
determine the y-values by 72% certainty. We have 28% uncertainty = noise = 
(SE of r 2  = 1 − r 2 ). 
 Before going further we have to consider the hazard of collinearity, which is the 

situation where two x variables are highly correlated. One naive though common 
way in which collinearity is introduced into the data, is through inclusion of x vari-
ables that are actually the same measures under different names. This is, obviously, 
not so with bisacodyl effect and age. Nonetheless, we measure the presence of col-
linearity by calculating the simple correlation coeffi cient between the x variables 
before doing anything more. In our case r between x 

1
  variables and x 

2
  variables is 

0.425, and so we don’t have to worry about (multi)collinearity (r > 0.90).  
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    2.     ANOVA  is used to test whether r is signifi cantly larger than 0.00. Again SS 
regression (by regression explained variance) is divided by SS residual (unex-
plained variance), the total variance being SS regression + SS residual. The divi-
sion sum “304.570/SS total” yields 0.719 = r square, Called R square by SPSS. If 
r 2  is signifi cantly different from the 0, then a regression plane like the one from 
Fig.  14.5  is no accident. If r 2  is signifi cantly larger than 0 like here, then the data 
are closer to the regression plane than could happen by accident.  

   Table 14.3    Example of a crossover trial comparing effi cacy of a new laxative versus bisacodyl   

 New treatment  Bisacodyl  Age 

 Patient no. 
 y – variables 
(days with stool) 

 x 
1
  – variables 

(days with stool) 
 x 

2
  – variables 

(years) 

 1  24  8  23 
 2  30  13  32 
 3  25  15  25 
 4  35  10  36 
 5  39  9  37 
 6  30  10  31 
 7  27  8  28 
 8  14  5  26 
 9  39  13  20 
 10  42  15  35 
 11  41  11  42 
 12  38  11  40 
 13  39  12  32 
 14  37  10  33 
 15  47  18  45 
 16  30  13  30 
 17  36  12  29 
 18  12  4  28 
 19  26  10  24 
 20  20  8  18 
 21  43  16  37 
 22  31  15  27 
 23  40  14  39 
 24  31  7  34 
 25  36  12  48 
 26  21  6  37 
 27  44  19  44 
 28  11  5  23 
 29  27  8  29 
 30  24  9  38 
 31  40  15  41 
 32  32  7  39 
 33  10  6  27 
 34  37  14  48 
 35  19  7  33 
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    3.     Coeffi cients  again shows the real regression equation. The intercept a is given by 
the (constant). The b values are the unstandardized regression coeffi cients of the 
x 

1
  and x 

2
  variables.

   The regression equation is thus as follows    

     = − + +1 2y 1.547 1.701.x 0.426.x        

     = − + +new laxative 1.547 1.701. bisacodyl 0.426·age        

 In addition to unstandardized coeffi cients, standardized coeffi cients are given. 
For that purpose SS y is taken to be 1. Then r = b. Instead of testing the null hypoth-
esis that r = 0 we can now test that various b 

i
  = 0, and use for that purpose t-test. As 

both bisacodyl and age are signifi cantly correlated with the y variable (the effi cacy 
of the new laxative), both x variables are independent predictors of the effi cacy of 
the new laxative.      

    6   Purposes of Linear Regression Analysis 

 In summary, multiple regression-analysis with three variables and the equation for-
mula y = a + b 

1
  x 

1
  + b 

2
  x 

2
 , can be illustrated by a regression plane, the best fi t plane for 

the scattered data (Fig.  14.6 ). A p-value <0.0001 means that the data are a lot closer 
to the regression plane than could happen by accident. If more than three variables 
are in the model, then the model becomes multidimensional, and a graph is 
 impossible, but the principle remains the same.  

   Table 14.4    Three tables provided by SPSS for regression analysis   

 Model summary 

 Model  R  R square  Adjusted R square  Std. error of the estimate 

 1  .848 a   .719  .701  5.4498 

 ANOVA b  

 Model  Sum of squares  df  Mean square  F  Sig. 

 1  Regression  2429.764   2  1214.882  40.905  .000 a  
 Residual  950.407  32  29.700 
 Total  3380.171  34 

 Coeffi cients b  

 Model 

 Unstandardized coeffi cients 
 Standardized 
coeffi cients 

 t  Sig.  B  Std. error  Beta 

 1  (Constant)  −1.547  4.233  −.366  .717 
 VAR00002   1.701   .269  .653  6.312  .000 
 VAR00003   .426   .134  .330  3.185  .003 

   a Predictors: (Constant), VAR00003, VAR00002 
  b Dependent Variable: VAR00001  
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 Multiple linear regression analysis is used for different purposes (see also the 
next chapter). The above example of two x-variables is an example where multi-
ple linear regression is used in a controlled clinical crossover trial in order to 
provide more  precision  in the data. With a single x-variable the R 2  -value = 63%, 
with two x-variables the R 2  -value = 72%. Obviously, the level of certainty for 
making prediction about the y-variable increases by 72%−63% = 9%, if a second 
x-variable is added to the data. Chapter   18     will give additional examples of this 
purpose. Another common purpose for its use is  exploratory  purposes. We search 
for signifi cant predictors = independent determinants of the y-variable, and 
include multiple x-variables in the model. Subsequently, we asses which of the 
x-variables included are the statistically signifi cant predictors of the y-variable 
according to the model

     = + + +………1 1 2 2 10 10y a b x b x .b x     

 The b-values are the partial correlation coeffi cients, and are used to test the 
strength of the correlation. If b 

1
  t/m b 

10
  are signifi cantly </> 0, then the correspond-

ing x-variable is a signifi cant predictor of the y-variable. The different x-variables 
can be added to the model one by one (stepwise, step-up), or all together. If added 
all together, we remove the insignifi cant ones starting with the one with the largest 
p-value (stepwise, step down). In practice the step-up and step-down method will 
produce rather similar results. If none of the x-variables produces a signifi cant 
b-value, but the overall R 2  –value is signifi cantly different from 0, we have to con-
clude that none of the x-variables is an independent determinant of the y-variable, 
yet the y-value is signifi cantly dependent on all of the x-variables. 

 Two more purposes of linear regression are the assessment of  confounding  and 
 interaction . These purposes will be discussed as an introduction in the next chapter, 
and more fully in the Chaps.   19     and   20    .  
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  Fig. 14.6    Regression plane        
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    7   Another Real Data Example of Multiple Linear Regression 
(Exploratory Purpose) 

 We want to study “Independent determinants of quality of life of patients with 
angina pectoris”. Note this is an observational rather than interventional study. We 
give the example because these kinds of data are often obtained as secondary data 
from interventional studies.

   y-variable = index of quality of life of patients with stable angina pectoris  
  x   -variables = 1. Age  
   2. Gender  
   3. Rhythm disturbances  
   4. Peripheral vascular disease  
   5. Concomitant calcium channel blockers  
   6. Concomitant beta blockers  
   7. NYHA-classifi cation  
   8. Smoking  
   9. body mass index  
   10. hypercholesterolemia  
   11. hypertension  
   12. diabetes mellitus    
 Index of quality of life = a + b 

1
  (age) + b 

2
  (gender) + …… b 

12
  (diabetes) 

 Correlation between independent variables may be correlated but not too closely: 
e.g. body mass index, body weight, body length should not be included all three. We 
used single linear regression for assessing this correlation, otherwise called multi-
collinearity (Table  14.5 ).  

   Table 14.5    Correlation matrix in order to test multicollinearity in the regression analysis, p-values 
are given   

 Age  Gender  Rhythm  vasc dis  ccb  bb  NYHA  Smoking  bmi  chol  hypt 

 Gender  0.19  1.00 
 Rhythm  0.12  ns  1.00 
 vasc dis  0.14  ns  ns  1.00 
 ccb  0.24  ns  0.07  ns  1.00 
 bb  0.33  ns  ns  ns  0.07  1.00 
 NYHA  0.22  ns  ns  0.07  0.07  ns  1.00 
 Smoking  −0.12  ns  0.09  0.07  0.08  ns  0.50  1.00 
 bmi  0.13  ns  ns  ns  ns  0.10  −0.07  0.62  1.00 
 chol  0.15  ns  ns  0.12  0.09  ns  0.08  0.09  ns  1.00 
 hypt  0.09  ns  0.08  ns  0.10  0.09  0.09  0.09  0.07  0.41  1.00 
 Diabetes  0.12  ns  0.09  0.10  ns  0.08  ns  0.11  0.12  0.10  0.11 

   vasc dis  peripheral vascular disease,  ccb  calcium channel blocker therapy,  bb  beta-blocker therapy, 
 bmi  body mass index,  hypt  hypertension,  ns  not statistically signifi cantly correlated (Pearson’s 
correlation p-value > 0.05)  
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 Table  14.6  shows the b-values that are not signifi cantly different from 0. They are 
removed from the model. This procedure is called the step-down method (the step-
up method includes the variables one by one, while removing those with an insig-
nifi cant b-value). Table  14.7  summarizes the signifi cant b-values. Conclusions: The 
higher the NYHA class the lower quality of life (Figs.  14.7  and  14.8 ). Smokers, 
obese subjects, and patients with concomitant hypertension have lower quality of 
life. Patients with hypercholesterolemia or diabetes mellitus have better quality of 
life. The latter two categories may have early endothelial dysfunction and may have 
signifi cant angina pectoris with fairly intact coronary arteries. An alternative inter-
pretation is that they have better quality of life because they better enjoy life despite 
a not so healthy lifestyle. This uncertainty about the cause of relationship estab-
lished illustrates uncertainties produced by regression analyses. Regression analyses 
often establish relationships that are not causal, but rather induced by some unknown 
common factor.      

    8   It May Be Hard to Defi ne What Is Determined by What, 
Multiple and Multivariate Regression 

 It may be sometimes hard in a linear regression to defi ne what is determined by 
what, or, in other words, what are the dependent (y-values) and the independent 
variables (x-values). Generally, it is helpful to consider as independent determinants 
“causal – factors” determining the result, while the result is the dependent variable, 

   Table 14.6    B-values used to test correlation, step down method   

 x-variable 
 Regression 
coeffi cient (B) 

 Standard 
error  Test (T) 

 Signifi cance 
level (p-value) 

 Age  −0.03  0.04  0.8  0.39 
 Gender   0.01  0.05  0.5  0.72 
 Rhythm disturbances  −0.04  0.04  1.0  0.28 
 Peripheral vascular disease  −0.00  0.01  0.1  0.97 
 Calcium channel blockers   0.00  0.01  0.1  0.99 
 Beta blockers   0.03  0.04  0.7  0.43 

   Table 14.7    B-values to test correlation, step down method   

 x-variable 
 Regression 
coeffi cient (B) 

 Standard 
error  Test stat (t) 

 Signifi cance 
level (p-value) 

 NYHA-classifi cation  −0.08  0.03  2.3  0.02 
 Smoking  −0.06  0.04  1.6  0.08 
 Body mass index  −0.07  0.03  2.1  0.04 
 Hypercholesterolemia   0.07  0.03  2.2  0.03 
 Hypertension  −0.08  0.03  2.3  0.02 
 Diabetes mellitus   0.06  0.03  2.0  0.05 

   NYHA  New York Heart Association  
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otherwise called outcome variable. Independent variables are currently often called 
exposure variables or indicator variables. In regression analyses of clinical trials the 
treatments modalities, in addition to patients’ characteristics, are often independent 
variables. As examples we give two patient series with multiple variables:

    1.    Type operation  
    2.    Type surgeon  
    3.    Complications yes/no  
    4.    Gender patients  
    5.    Age patients  
    6.    Required time for recovery,    

   (2) may determine (1),(3), and (6), but not (4) and (5),  
  (4) and (5) maybe (1),  
  (1) does not determine (4) and (5).    

 In another patient series the variables are:

    1.    Two types of anesthesia  
    2.    Pain scores  
    3.    Complications yes/no  
    4.    Gender patients  
    5.    Age patients  

x-axis

y-axis  Fig. 14.7    A negative b-value 
indicates: if x >, then y <       

y-axis

x-axis

  Fig. 14.8    A positive b-value 
indicates: if x > then y >       
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    6.    Comorbidity preoperatively  
    7.    Quality of life after surgery    

   (1) determines (2) and maybe (3) and (7), but not (4), (5), and (6),  
  (4), (5), and (6) may determine (1) and maybe also (2), (3), and (7).    
 Regression can be nonsense and still produce signifi cant results, e.g., if you let (1) 
determine (4), (5), and (6). 

 Mostly, a single y-variable and multiple x-variables are included in a regression 
analysis, and this is what we call a multiple regression analysis. In the reports the 
term multivariate analysis is often erroneously used for these models. The term 
multivariate analysis refers to models that include more than a single y-variable and 
the analysis is then called multivariate analysis of variance (MANOVA). A correct 
alternative term for multiple regression analysis is, thus, univariate analyses with 
multiple x-variables (independent variables). This subject will be elaborated on in 
Chap.   25    .  

    9   Limitations of Linear Regression 

 The limitations of multiple regressions are reviewed in the above text, but a 
summary is given:

    1.    The risk of multicollinearity.  
    2.    The requirement of homoscedasticity.  
    3.    The spread around the y-values is in the form of equal Gaussian curves, if not 

then Rank correlation according to Spearman should be performed.  
    4.    A linear correlation between x and y exists.  
    5.    The risk of confounding.  
    6.    The risk of interaction.      

    10   Conclusions 

 If the above information is too much, don’t be disappointed: multiple linear regres-
sion analysis and its extensions like logistic regression and Cox’s proportional haz-
ard model are not as important for clinical trials as it is for observational research:

    1.    Regression analysis assesses associations not causalities.  
    2.    Clinical trials assess causal relationships.  
    3.    We believe in causality if factor is introduced and gives rise to a particular 

outcome.  
    4.    Always air of uncertainty with regression analysis     

 Multiple linear regression is interesting, but, in the context of clinical trials 
mostly just exploratory.      
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               1   Introduction    

 When the size of the study permits, important demographic or baseline value-defi ned 
subgroups of patients can be studied for unusually large or small effi cacy responses; 
e.g. comparison of effects by age, sex; by severity or prognostic groups. Naturally, 
such analyses are not intended to “salvage” an otherwise negative study, but may be 
helpful in refi ning patient or dose selection for subsequent studies (Department of 
Health and Human Services, Food and Drug Administration  1998  ) . 

 Most studies have insuffi cient size to assess effi cacy meaningfully in subgroups 
of patients. Instead a regression model for the primary or secondary effi cacy-variables 
can be used to evaluate whether specifi c variables are confounders for the treatment 
effect, and whether the treatment effect interacts with specifi c covariates. The par-
ticular (statistical) regression model chosen, depends on the nature of the effi cacy 
variables, and the covariates to be considered should be meaningful according 
to the current state of knowledge. In particular, when studying interactions, the 
results of the regression analysis are more valid when complemented by additional 
exploratory analyses within relevant subgroups of patients or within strata defi ned 
by the covariates. 

 In this chapter we will discuss the multiple linear regression model which is 
appropriate, for continuous effi cacy variables, such as blood pressures or lipid 
levels (as discussed in Chap.   2    ). Regression models for dichotomous effi cacy 
variables (logistic regression (Hosmer and Lemeshow  1989  ) ), and for survival 
data (Cox regression (Cox  1999  ) ) will not be assessed here. However, the principles 
underlying all of these models are to some extent equivalent. This chapter is just 
a brief introduction. Various subjects will be explained more explicitly in the 
Chaps.   18    ,   28    , and   30    ,  
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    2   Example 

 As an example of the use of a regression model we consider trials such as those 
conducted to evaluate the effi cacy of statins (HMG-CoA reductase inhibitors) to 
lower lipid levels in patients with atherosclerosis (Jukema et al.  1995  ) . In unselected 
populations statins were extremely effective in lowering LDL cholesterol (LDL), but 
the question whether the effi cacy depended on baseline LDL level was unanswered. 
Of course this could be answered by comparing effi cacy in selected subgroups of 
patients with baseline  low ,  intermediate , and  high  LDL levels, but a regression 
model could be used as well, and sometimes provides better sensitivity. 

 Consider a randomized clinical trial such as Regress (Jukema et al.  1995  ) . In this 
trial 884 patients with documented coronary atherosclerosis and total cholesterol 
between 4 and 8 mmol/L were randomized to either 2-year pravastatin or placebo 
treatment. Effi cacy of treatment was assessed by the fall in LDL cholesterol after 
2 year treatment. In the n 

1
  = 438 patients who received pravastatin mean LDL 

cholesterol fell by     1x    = 1.2324 mmol/L (standard deviation, S 
1
  = 0.68). In the 

n 
0
  = 422 available patients who received placebo, the mean LDL cholesterol fell by 

    
0x    = −0.0376 mmol/L (S 

0
  = 0.589). Consequently, the effi cacy of pravastatin was 

1.2324 − 0.0376 = 1.2700 mmol/L LDL-decrease in 2 years with standard error (SE) 
0.043 mmol/L, and the 95% confi dence interval (ci) of the effi cacy quantifi cation 
ran from 1.185 to 1.355. 

 In a random patient with coronary atherosclerosis and total cholesterol in between 
4 and 8 mmol/L, pravastatin produces a better reduction in LDL cholesterol than 
does placebo by 1.27 mmol/L. However, a patient with 8 mmol/L total cholesterol 
level may better benefi t than a patient with 4 mmol/L at baseline may do. Multiple 
linear regression can be applied to assess this question.  

    3   Model 

 We fi rst introduce some notation: the dependent variable Y 
i
  is the amount of LDL 

decrease observed in patient i (i = 1, … , 884), and the independent variable or cova-
riate X 

1i
  is an indicator variable, indicating whether patient i received pravastatin 

(X 
1i
  = 1) or not (X 

1i
  = 0). We defi ne the linear regression model    (Fig.  15.1 ):

     0 1 ,i 1i iY X eb b= + +    (15.1)  

where     0b    is the intercept, and     1b    the slope of the regression line and e 
i
  is a residual 

variation term, which is assumed to be normally distributed with variance     2
es   .  

 When X 
1i
  is either zero or one, the usual estimates b 

0
 , b 

1
 , and S    2e    of     0b   ,     1b   , 

and d    2e    are:

     = = − = − =0 0 1 1 0b 0.0376, b 1.2700, andx x x    
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which are exactly the same statistics as used in the t-test procedure one would 
normally employ in this situation. The quantifi cation of the effi cacy is thus given by 
b 

1
  and it has the same value and the same standard error and confi dence interval as 

above. In Fig.  15.1  the linear regression line is illustrated. 

   Note :   b and s are the best estimates, otherwise called best fi ts, of     b   and     s   .   

 By using this regression model the following assumptions are made.

    1.    The relation between Y and X is linear. When X can attain only two values, this 
assumption is naturally valid, but, otherwise, this is not necessarily so.  

    2.    The distribution of the residual term e 
i
  is normal with mean zero and vari-

ance     2
es   .  

    3.    The variance of the distribution of e,     2
es   , is the same for X 

1
  = 0 and for X 

1
  = 1: 

homoscedasticity.  
    4.    The residual term e 

i
  is independent of X 

1i
 .     

 The object of regression modeling in clinical trials is to evaluate whether the 
effi cacy quantifi cation b 

1
  (I.) can be made more precise by taking covariates into 

consideration, (II.) is confounded by covariates, and (III.) interacts with covariates 
(synergism). 

 Increased precision (I.) is attained, and confounding (II.) can be studied by 
extending the regression model with a second independent variable X 

2
    :

     ,i 0 1 1i 2 2i iY X X eb b b= + + +    (15.2)   
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  Fig. 15.1    The linear regression line is illustrated       
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 This multiple regression model has the same underlying assumptions as the above 
linear regression model ( 15.1 ) except for the assumption that e 

i
  is independent not 

only of X 
1
  but also of X 

2
 . There is no need to assume that X 

1
  and X 

2
  are strictly 

independent, but the association must not be too strong (multicollinearity).  

    4   (I.) Increased    Precision of Effi cacy 

 When X 
2
  is independent of X 

1
  and is associated with Y (thus b 

2
   ¹  0), the estimate b 

1
  of 

the model in Eq.  15.2  will be the same as the estimate b 
1
  of the model in Eq.  15.1 , but 

its precision will be increased, as indicated by a smaller standard error (Fig.  15.2    ).  
 This is a common case in randomized clinical trials. The randomization will 

ensure that no imbalances exist between the two treatment groups with respect to 
covariates such as X 

2
 , and consequently X 

2
  will be independent of the treatment 

variable X 
1
 . There are often many candidates for inclusion as covariates in the 

multiple regression model, but the choice should be made a priori and specifi ed in 
the protocol. When the dependent variable is a change score, as in our example, the 
baseline level is the fi rst candidate to consider because it is almost surely associated 
with the change score Y. Figure  15.2  shows the relationship between result of treat-
ment and baseline values as demonstrated by scatterplots and linear regression lines 
for each treatment separately. The multiple linear regression model in Eq.  15.2  
is appropriate for testing the contribution of baseline variability to the overall 
variability in the data. 

 Since X 
2
  is independent of X 

1
 , inclusion of X 

2
  in the model must lead to a decreased 

variance     2Se   : some differences between patients with respect to the LDL decrease, 
are attributed to baseline LDL levels. Thus there will be less residual variation. Since 
the standard error of b 

1
  is a monotonic positive function of     2Se    , a decrease of     2Se    

leads to a smaller standard error of b 
1
 . Thus by including baseline LDL levels in the 
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  Fig. 15.2    Scatterplots and linear regression lines of baseline LDL cholesterol and LDL cholesterol 
decrease after treatment, separately for placebo and for pravastatin treatments       
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regression model, the effi cacy of pravastatin lowering is estimated more precisely. 
This rule, however, only applies to large data-sets. With every additional covariate 
in the model an extra regression weight must be estimated, and since     2Se    is an inverse 
function of the number of covariates in the model, too many covariates in the model 
will lead to decreased precision. 

 In our example the mean baseline LDL levels (X 
2
 ) were 4.32 (SD 0.78) and 4.29 

(SD 0.78) in the placebo and pravastatin treatment groups (X 
1
 ) (p = 0.60); hence X 

1
  

and X 
2
  were independent. The baseline LDL levels were, however, associated with 

the LDL-changes (Y): b 
2
  = 0.41 (SE 0.024), p < 0.0001. Consequently, the estimated 

effi cacy was (almost) the same as before, but it had a somewhat smaller standard 
error, and is, thus, more precise:

   with baseline LDL cholesterol levels:     ( )=1b 1.27 SE 0.037     

  without baseline LDL cholesterol levels:     ( )=1b 1.27 SE 0.043       

 Additional examples of regression modelling for improved precision are given in 
Chap.   15    . 

   Note :   In contrast to the linear regression models the effi cacy estimates of non-linear 
regression models (e.g. logistic (Hosmer and Lemeshow  1989  )  and Cox regression 
(Cox  1999  ) ) do  not  remain the same in this case. When using logistic or Cox 
regression it is, therefore, imperative to report the log odds ratio or log hazard ratio 
of treatments compared, together with the covariates in the model.   

    5   (II.) Confounding 

 In randomized clinical trials confounding plays a minor role in the data. The random-
ization will ensure that no covariate of the effi cacy variable will also be associated 
with the randomized treatment. If, however, the randomization fails for a particular 
variable, which is already known to be an important covariate of the effi cacy variable, 
such a variable is a confounder and adjustment of the efficacy estimate should 
be attempted. This is done by using the same (linear) regression model as given in 
Eq.  15.2 . The adjusted effi cacy estimate may become smaller or larger than the 
unadjusted estimate, depending on the direction of the associations of the confounder 
with the randomized treatment and the effi cacy variable. Let b 

1
  and     *

1b    denote the 
unadjusted and the adjusted effi cacy estimate, and let r 

xz
  and r 

yz
  be the correlations 

of the confounder (z) with the randomized treatment (x) and the effi cacy variable 
(y), then the following will hold:

     

*
xz yz 1 1

*
xz yz 1 1

*
xz yz 1 1

*
xz yz 1 1

if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,

> > <

> < >

< < <

< > >
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 Notice the possibility that the unadjusted effi cacy estimate b 
1
  is zero whereas the 

adjusted estimate     *
1b    is unequal to zero: an effi cacy-difference between treatments 

may be masked by confounding. 
 In clinical trials it is sensible to check the balance between treatment groups of 

all known covariates of the effi cacy variable. In most trials there are many more 
covariates and one should be careful to consider as a confounder a covariate which 
was not reported in the literature before.  

    6   (III.) Interaction and Synergism 

 A special kind of covariate is the interaction of the randomized treatment with some 
other covariate. This interaction is, by defi nition, associated with the randomized 
treatment, and possibly with the effi cacy variable if the effi cacy differs between 
treatments. In contrast to the discussion above, the focus of the statistical analysis is 
not on the change of b 

1
  by including an interaction in the model, but the regression 

weight of the interaction variable itself. When this regression weight is unequal 
to zero, this points to the existence of patient-subgroups for which the effi cacy of 
treatment differs signifi cantly. 

 An example is again provided by the Regress trial (Jukema et al.  1995  ) . The primary 
effect variable was the decrease of the average diameter of the coronary arteries 
after 2 years of treatment. The average decrease was 0.057 mm (standard deviation 
(SD) 0.194) in the pravastatin group, and it was 0.117 mm (SD 0.212) in the placebo 
group (t-test: signifi cance of difference at p < 0.001); thus the effi cacy estimate b 

1
  was 

0.060 (standard error SE = 0.016). Calcium channel blockers (CCB) were given to 
60% of the placebo patients, and 59% of the pravastatin patients (chi-square: p = 0.84): 
thus CCB treatment was not a confounder variable. Also, CCB medication was not 
associated with diameter decrease (p = 0.62). In the patients who did not receive 
concomitant CCB medication, the diameter decreases were 0.097 (SD 0.20) and 
0.088 (SD 0.19) in patients receiving placebo and pravastatin, respectively (p = 0.71). 
In patients who did receive CCB medication, the diameter decreases were 0.130 
(SD 0.22) and 0.035 (SD 0.19), respectively (p < 0.001). Thus, pravastatin-effi cacy 
was, on average, 0.097 − 0.088 = 0.009 mm in patients without CCB medication, 
and 0.130 − 0.035 = 0.095 in patients with CCB medication. 

 This difference was statistically signifi cant (interaction test: p = 0.011). We used 
the following linear regression model for this test. Let X 

1i
  = 1 denote that patient i 

received pravastatin (X 
1i
  = 0, if not), let X 

2i
  = 1 denote that patient i received CCB 

medication (X 
2i
  = 0, if not), and let    X 

3i
  = X 

1i
  × X 

2i
 :

     2 3 .i 0 1 1i 2i 3i iY X X X eb b b b= + + + +     

 The estimates were: b 
3
  = 0.085 (SE 0.033), b 

2
  = −0.033 (SE 0.023), and b 

1
  = 0.009 

(SE 0.026). Notice that b 
1
  changed dramatically by including the interaction term X 

3
  

in the linear model; this is a general feature of regression models with interaction 
terms: the corresponding main-effects (b 

1
  and b 

2
 ) cannot be interpreted independently 
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of the interaction term. Another consequence is that the effi cacy estimate no longer 
exists, but several estimates do exist: in our case there are different effi cacy-estimates 
for patients with (b 

1
  + b 

3
  = 0.009 + 0.085 = 0.094) and without CCB medication 

(b 
1
  = 0.009). In the practice of clinical trials interactions are usually investigated in 

an exploratory fashion. When interaction is demonstrated in this way, its existence 
should be confi rmed in a novel prospective clinical trial. Additional examples of 
regression modeling for interaction effects are given in Chap.   18    .  

    7   Estimation, and Hypothesis Testing 

 Standard statistical computer programs like SPSS and SAS (and many others) contain 
modules that perform regression analysis for linear and many non-linear models such 
as logistic and Cox regression. The standard method to estimate the linear regression 
weights (and the residual standard deviation     es   ) is to minimize the squared distances 
between the data and the estimated regression line: the least squares method. 
For non-linear models, the maximum likelihood method is employed, but these are 
equivalent methods. The output of these estimation methods are the estimated 
regression weights (and the residual standard deviation     es   ) and their standard 
errors. It is important that the correlations between the covariates in the model are 
not too large (i.e. multicollinearity), but if these are too large, this will become clear 
by absurd regression weights, and very large standard errors. If this occurs, one or 
more covariates must be removed from the model. 

 Under the null hypothesis that     b   equals zero, the ratio of the estimated regression 
weight b and its standard error is distributed as a student’s t statistic in the linear 
model, and this can be used to derive the p-value or the 95% confi dence interval in 
the usual way. For non-linear models, the squared ratio of b and its standard error is 
called the Wald statistic which is chi-squared distributed. Alternatives for the Wald 
statistic are the score and likelihood ratio statistics (Rao  1973  ) , but these give the 
same results except in highly unusual circumstances; if they differ, the score and 
likelihood statistics are better than the Wald statistic. 

 The power of these statistical tests is a sensitive function of the number of patients 
in the trial. Naturally, there is less opportunity for modeling in a small trial than in 
a large trial. There is no general rule about which sample sizes are required for 
sensible regression modeling, but one rule-of-thumb is that at least ten times as many 
patients are required as the number of covariates in the model.  

    8   Goodness-of-Fit 

 For the linear model the central assumptions are (1) the assumed linearity of the 
relation between Y and X, and (2) the normal distribution of the residual term e 
independent of all covariates and with homogeneous variance. The fi rst step in 
checking these assumptions is by looking at the data. The linearity of the relation 
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between Y and X, for instance, can be inspected by looking at the scatter-plot 
between Y and X. A nonlinear relation between Y and X will show itself as systematic 
deviation from a straight line. When the relation is non linear, either Y or X or both 
may be transformed appropriately; most often used are the logarithmic transformation 
X* = ln(X) and the power transformation X* = X p  (e.g. the squared root transforma-
tion where p = 0.5). At this stage subjective judgments necessarily enter the statistical 
analysis, because the decision about the appropriate transformation is not well 
founded on statistical arguments. A few tools that may help, are the following.

    1.    The optimal power-transformation (X p ) may be estimated using the Box-Cox 
algorithm (Cox  1999  ) . This may yield, however, diffi cult and unpractical power-
transforms.  

    2.    A ‘better’ model produces better correlations. When one compares two different 
models, the better of the two leads to a smaller residual variance (    2Se

  ) or higher 
multiple correlation coeffi cient (R):     2Se    = [(n − 1)/(n − k)](1 − R 2 ).    2Sy   , where k is 
the number of covariates in the model, n = sample size, S  

y
  2   = variance dependent 

variable.  
    3.    Choosing an appropriate transformation may be enhanced by modelling the rela-

tion between Y and X as a polynomial function of X: Y = b 
0
  + b 

1
 X + b 

2
 X 2  + b 

3
 X 3  +   . 

When the relation is strictly linear then b 
2
  = b 

3
  = … = 0, and this can be tested 

statistically in the usual way. Obviously, the order of the polynomial function is 
unknown, but one rarely needs to investigate fourth or higher orders.  

    4.    Finally, there exists the possibility to model the association between Y and X 
nonparametrically using various modern smoothing techniques (see Chap.   24    ).     

 The assumed normal distribution of the residual term can be checked by inspecting 
the histogram of e. The estimation method and the hypothesis testing are quite 
robust against skewed distributions of the residual term, but it is sensible to check for 
extreme skewness and the occurrence of important outlying data-points. Visual 
inspection is usually suffi cient but one may check the distribution statistically with 
the Kolmogorov-Smirnov test (see also Chap.   42    ). 

 More important is the assumption of homogeneity of the residual variance     2Se   : 
this entails that the variation of e is more or less the same for all values of X. One 
may check this visually by inspecting the scatterplot of e (or Y) versus X. If hetero-
geneity is present, again an appropriate transformation of Y may help. If the ratio of 
    S / ye   is equal for various levels of X, the logarithmic transformation Y* = ln(Y) 
may help, and if     2 2S / ye    is equal for various levels of X, the square-root transfor-
mation is appropriate: Y* = (Y) 0.5 . The independence of the residual term e of all 
covariates X in the model can be tested with the Durbin-Watson test. 

 In the logistic regression model the most important underlying assumption is the 
assumed logistic form of the function linking the covariates to the binary effi cacy 
variable. If not all relevant covariates are in the model, it can be shown that 
the link-function is not logistic. One way to statistically test this, is by using the 
Hosmer-Lemeshow test (Hosmer and Lemeshow  1989  ) . But if the logistic regression 
model does not fi t, this is of little consequence, because this usually points to missing 
covariates, and these are often not available. In Cox regression, the cardinal underlying 
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assumption is the assumed proportionality of the hazard rates. There are several 
statistical tests for testing this assumption; if proportionality does not hold, acce-
lerated failure time models can be used, or the time axis may be partitioned into 
several periods, otherwise called splines, in which proportionality does hold. Several 
of these non linear regression models will be reviewed more explicitly in the Chaps. 
  16    ,   17    ,   19    , and   24    .  

    9   Selection Procedures 

 In clinical trials usually many variables are sampled, and often many of these are 
candidates for inclusion in the regression model. A major problem is the selection 
of a subset of variables to include in the regression model. By far preferable is to 
select a (small) set of candidate variables on clinical and theoretical grounds, but if 
that is not possible a few rules are helpful in the selection process.

    1.    If the number of covariates is not too large, it is best not to use any selection at 
all, but simply include all candidates in the regression model. Often it is necessary 
to shrink the regression weights, using, for instance, a penalty function.  

    2.    If the number of covariates is very large, backward selection methods are pre-
ferable to forward selection models. This is usually done according to the p-value 
or the size of the test-statistic-value.  

    3.    Since the overriding interest of the regression modelling is the estimation of the 
effi cacy of the randomized treatments, the safest course is to be liberal about 
including covariates in the model: use a p-value of 0.10 or even 0.20 to include 
covariates in the model.      

    10   Main Conclusions 

 The regular statistical analysis of the data of clinical trials should be extended 
by (exploratory) analysis if the existence of subgroups of patients for which the 
effi cacy estimate differs, is suspected. An effi cient way of doing this is by the use of 
regression analysis. If such subgroups are identifi ed, the exploratory nature of the 
regression analysis should be emphasized and the subgroup issue should be further 
assessed in subsequent independent and prospective data-sets.      
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         1   Introduction 

 Polynomial analysis is    an extension of simple linear regression, where a model is 
used to allow for the existence of a systematic dependence of the dependent y vari-
able (blood pressure) on the independent x variable (time) different from a linear 
dependence. Polynomial extension from the basic model can be    done as follows:

    y  =  a  bx (first order) linear relationship+    

    
2y  a  bx  cx (second order) parabolic relationship= + +    

    
2 3y  a  bx  cx  dx (third order) hyperbolic relationship= + + +    

    
2 3 4y  a  bx  cx  dx  ex (fourth order) sinusoidal relationship= + + + +    

where a is the intercept and b, c, d, and e are the partial regression coeffi cients. 
Statistical software can be used to calculate for the data the regression line that pro-
vides the best fi t for the data. In addition, regression lines of higher than four orders 
can be calculated. Fourier analysis is a more traditional way of analyzing these 
types of data, and is given by the function

     = + + + + + +1 n 1 nf(x) p q cos (x) .. q cos n (x) r sin (x) .. r sin n (x)    

     =1 n 1 nwith p,q ...q ,and r ...r constants for the best fit of the given data.     

 As an example, ambulatory blood pressure monitoring (ABPM) using light weight 
automated portable equipment is given. ABPM has greatly contributed to our under-
standing of the circadian patterns of blood pressures in individual patients (Owens 
et al.  1998  )  as well as to the study of effects of antihypertensive drugs in groups of 
patients (Zanchetti  1997  ) . However, a problem is that ABPM data using mean values 
of arbitrarily separated daytime hours are poorly reproducible (Omboni et al.  1998 ; 
Bleniaszewski et al.  1997  ) , undermining the validity of this diagnostic tool. Previous 
studies have demonstrated that both in normo- (Van de Luit et al.  1998a  )  and in 
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hypertensive groups (Van de Luit et al.  1998b  )  time is a more powerful source of 
variation in 24 h ABPM data than were other sources of variation (between P<0.01 
and <0.001 versus between not signifi cant and <0.01). This refl ects the importance 
of the circadian rhythm in the interpretation of ABPM data, and the need for an 
assessment that accounts for this very rhythm more adequately than does the means 
of separated daytime hours. We also demonstrated that polynomial curves can be 
produced of ABPM data from both normo- (Van de Luit et al.  1998a  )  and hyperten-
sive (Van de Luit et al.  1998b  )  groups, and that these polynomial curves are within 
the 95% confi dence intervals of the sample means. However, intra-individual repro-
ducibility of this approach has not been assessed, and is a prerequisite for further 
implementing this approach. 

 In this chapter we describe polynomial analysis of ABPM data, and test the 
hypothesis that it is better reproducible and that this is so, not only with means of 
populations, but also with individual data. For the estimate of reproducibility dupli-
cate standard deviations as well as intra-class correlations are calculated of ABPM 
data from untreated mildly hypertensive patients who underwent ABPM for 24 h 
twice, 1 week interval.  

    2   Methods, Statistical Model 

 Ten patients, six    females and four males, who had given their informed consent, 
participated in the study. Each patient had been examined at our outpatient clinic. 
Age varied from 33 to 52 years of age (mean 42 years), body mass index from 20 to 
31 kg/m (mean 29 kg/m). Patients were either housewife or actively employed 
throughout the study and had no other diseases. Previously treated patients had a 
washout period of at least 8 weeks before they were included in the study. All 
patients were included if untreated diastolic blood pressure was repeatedly between 
90 and 100 mmHg and systolic blood pressure less than 170 mmHg. 

 In all of the patients ABPM consisted of measurements every 60 min for 24 h 
with a validated (O’Brien et al.  1995  )  light weight automated portable equipment 
(Space Lab Medical Inc, Redmond WA, model 90207). In the meantime patients 
performed their usual daily activities. 

 We defi ne the dependent variable, the blood pressure recording at hour t, and, 
subsequently, model it as a function of hour t, hour t squared, hour t to the power 3, 
hour t to the power 4, and so on. The a- and b-values are constants for the best fi t of 
the given data, and are also called the regression weights.

     

2 3
1 2 3

4
4

Blood pressure at hour t = a + b (hour t) b (hour t) b (hour t)

b  (hour t) .

+ +

+ +…     
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 If we use Fourier analysis instead the equation is

     

1 n

1 n

Blood pressure at hour t p q cos(hour t) .. q cos n (hour t)

r sin (hour t) .. r sin n (hour t)

= + + +
+ + +    

     − −1 n 1 nwith p,q and r being constants for the best fit of the given data.     

 Reproducibility of ABPM was studied in the ten patients by performing 24 h 
ABPM in each of them twice, intervals at least 1 week. Reproducibility of the dupli-
cate data, as obtained, were assessed both by quantifying reproducibility of means 
of the population, and of the individual data. 

    2.1   Reproducibility of Means of the Population 

 For this purpose we used duplicate standards deviation (Duplicate SD) and intra-
class correlation ( r  

I
 ) (Hays  1988  ) . 

 Duplicate SD was calculated according to Duplicate     
−

= ∑ 2
1 2(x x )

SD
2n

  ,

where x 
1
  and x 

2
  are individual data during 1st and 2nd tests, and n = 240 (ten times 

24 duplicate observations). 
 Intra-class correlation ( r  

I
 ) is another approach for the estimate of replicability of 

repeated measures in one subject, and is calculated according    to

     

2 2
1 2 1

1 2
1

x x / x

x

s s
r

s
−

=
   

where     1x   and     
2x   are the means of the 240 values during test 1 and test 2 respectively, 

and     2
2 1x / xs   is the variance of     2x   given     1x   , and

     

2
2 1 22 2

1

1

x (x x )
x .

4x
s s

−
= −

    

 A slightly different method to calculate intraclass correlations is described in 
Chap.   26    . 

  Note:   Greek symbols like  s  instead of s and  r  instead of r are often used in statistics. 
They are used to indicate population parameters instead of sample parameters.   

    2.2   Reproducibility of Individual Data 

 For this purpose we similarly used duplicate standards deviation (SD) and intra-
class correlation ( r ). 
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 Duplicate SD was calculated according     
−

= ∑ 2
1 2(x x )

SD
2n

  \where x 
1
  and x 

2
  

are individual data during 1st and 2nd tests, and n = 24 (24 duplicate observations 
per patient).

Intra-class correlation ( r  
I
 ) was calculated according    to

     

2 2
1 2 1

1 2
1

x x / x

x

s s
r

s
−

=
   

where     1x   and     2x   are the means of the 24 values during test 1 and test 2 respectively, 
and  s  2      2 1x / x    

?
  is the variance of     2x   given     1x   , and

     

2
2 1 22 2

1

1

x (x x )
x

4x
s s

−
= −

    

 Calculations were performed using SPSS statistical software, polynomial curves 
were drawn using Harvard Graphics 3 (SPSS  2002 ; Harvard Graphics-3  2001  ) . 
Under the assumption of standard deviations of 25% and intraclass correlations 
of +0.7, at least 240 duplicate observations had to be included to obtain a regression 
analysis with a statistical power of 80% and a 5% signifi cance level. And so, it 
seemed appropriate to include hourly data of at least ten patients tested twice for 
24 h. Paired means, Duplicate SDs and intraclass correlations were statistically 
tested by t-tests, F tests, or McNemar’s chi-square tests, whenever appropriate.   

    3   Results 

    3.1   Reproducibility of Means of Population 

 Figure  16.1  shows mean values of ABPM of ten untreated patients and their SDs, 
recorded twice, one week in-between. Obviously, there is an enormous variance in 
the data both between-subject and within-subject as demonstrated respectively by 
the large SDs and the considerable differences between means. Figures  16.2  and 
 16.3  give polynomes of corresponding data from Fig.  16.1 , refl ecting a clear circa-
dian rhythm in systolic blood pressures. Figure  16.4  shows that the two polynomes 
are, obviously, very much similar. Within-subject tests for reproducibility are given 
in Table  16.1 . Duplicate SDs of means versus zero and versus grand mean were 15.9 
and 7.2, while of polynomes they were only 1.86 (differences in Duplicate SDs 
signifi cant at a P < 0.001 level). Intra-class correlations ( r  

I
 s) of means versus zero 

and versus grand mean were 0.46 and 0.75, while of polynomes they were 0.986 
(differences in levels of correlation signifi cant at a P < 0.001). Obviously, polynomes 
of ABPM data of means of populations produce signifi cantly better reproducibility 
than do the actual data.      
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 Polynomes are, obviously, very much similar. Within-subject tests for reproduc-
ibility are given in Table  16.1 . Duplicate SDs of means versus zero and versus grand 
mean were 15.9 and 7.2, while of polynomes they were only 1.86 (differences in 
Duplicate SDs signifi cant at a P < 0.001 level). Intra-class correlations ( r s) of means 

  Fig. 16.1    Mean values of 
ABPM data of ten untreated 
patients with mild 
hypertension and their SDs, 
recorded twice, 1 week 
in-between       

  Fig. 16.2    Polynome of 
corresponding ABPM 
recording ( fi rst one ) from 
Fig.  16.1 , refl ecting a clear 
circadian rhythm of systolic 
blood pressures       

  Fig. 16.3    Polynome of 
corresponding ABPM 
recording ( second one ) from 
Fig.  16.1 , again refl ecting a 
clear circadian rhythm of 
systolic blood pressures       
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   Table 16.1    Twenty-four hour ambulatory blood pressure measurements in a group of ten patients 
with untreated mild hypertension tested twice: reproducibility of means of population ( vs  versus)   

 Mean values 
variations vs zero 

 Mean values variations 
vs grand mean  Polynomes 

 Means (mmHg) (test 1/test 2)  153.1/155.4  153.1/155.4  – 
 SD ( s ) (mmHg) (test 1/test 2)  21.9/21.1  15.7/13.8  – 
 95% CIs a  (mmHg) (test 1/test 2)  139.4–166.8/142.2–168.6  143.3–163.9/146.8–164.0  – 
 Differences between means 

(SD,  s ) (mmHg) 
 −2.4 (22.4)  −2.3 (10.5)  – 

 P values differences between 
results tests 1 and 2 

 0.61  0.51  0.44 

 Duplicate SDs b  (mmHg)  15.9  7.2  1.86 
 Relative Duplicate SDs c  (%)  66  31  7 
 Intra-class correlations d  ( r  

I
 s)  0.46  0.75  0.986 

 95% CIs  0.35–0.55  0.26–0.93  0.972–
0.999 

 Proportion total variance 
responsible for between-
patient variance (%) 

 46  75  99 

 95% CIs (%)  35–55  26–93  97–100 

   a CIs = confi dence intervals 

  b Duplicate SDs calculated according to Duplicate     
−

= ∑ 2
1 2(x x )

SD
2n

  , where x 
1
  and x 

2
  are

individual data during 1st and 2nd test, and n = 240 (ten times 24 duplicate observations   ) 
  c Calculated as 100% × [Duplicate SD/(overall mean − 130 mmHg)] 

  d Intra-class correlations ( r  
I
  s) calculated according to       

2 2
1 2 1

1 2
1

x x / x

x

−
=

s s
r

s
   

 where     1x   and     2x   are the means of the 240 values during test 1 and test 2 respectively, and    
2

2 1x / xs   

is the variance of     2x   given     1x   , and      
2

2 22 1 2
1

1

x (x x )
x

x 4

−
= −s s     

  Fig. 16.4    The two 
polynomes from Figs.  16.2  
and  16.3  are, obviously, very 
much similar       
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versus zero and versus grand mean were 0.46 and 0.75, while of polynomes they 
were 0.986 (differences in levels of correlation signifi cant at a P < 0.001). Obviously, 
polynomes of ABPM data of means of populations produce signifi cantly better 
reproducibility, than do the actual data.  

    3.2   Reproducibility of Individual Data 

 Figure  16.5  gives an example of the individual data of patient no. 1 during the fi rst 
and second test and also shows his corresponding polynomes of test 1 and test 2. 
Although, again, there is enormous variability in the data, the polynomes have rather 
similar patterns. Table  16.2  gives an overview of assessments of reproducibility for 
each patient separately. Duplicate SDs of raw data were generally more than twice 
the size of those of the polynome s , while intraclass correlations of the actual data 
were accordingly generally almost half the size of those of the polynomes with 

   Table 16.2    Twenty-four hour ambulatory blood pressure measurements in ten patients with 
untreated mild hypertension tested twice: reproducibility of individual data   

 Patient 

 Mean (mmHg)  SD (mmHg)  Duplicate SDs  (mmHg) a   Intraclass  Correlations b  

 Test 1/test 2  Test 1/test 2  Raw data  Polynomes  Raw data  Polynomes 

 1  160/157  14/18  17.7  2.1  0.07  0.58 
 2  158/161  17/27  17.6  9.0  0.27  0.53 
 3  160/169  20/29  19.7  2.6  −0.23  0.03 
 4  159/171  23/21  19.1  7.2  0.11  0.29 
 5  163/163  19/23  19.7  9.9  0.10  0.20 
 6  161/156  15/20  21.4  6.4  0.03  0.10 
 7  170/162  21/18  10.1  8.2  0.57  0.70 
 8  156/154  28/18  6.3  6.7  0.26  0.24 
 9  161/161  26/25  18.2  13.5  0.60  0.81 
 10  155/166  21/19  11.9  6.6  0.53  0.96 

 Pooled data 
 153.1/155.4  21.9/21.1  16.2(5.0) c   7.2(3.3)  0.26(0.26)  0.42(0.34) 

  ___ P < 0.001 ___    ___ P = 0.009 ___  

   a Duplicate SDs calculated according to     −
= ∑ 2

1 2(x x )
SD

2n
  , where x 

1
  and x 

2
  are individual

data during 1st and 2nd test, and n = 24 (24 duplicate observations per patient) 

  b Intra-class correlations ( r s) calculated according to         
2 2

1 2 1
1 2

1

x x / x

x

−
=

s s
r

s
   

 where     1x   and     2x   are the means of the 24 values during test 1 and test 2 respectively, and     2
2 1x / xs   

is the variance of     2x   given     1x   , and      
2

2 22 1 2
1

1

x (x x )
x

x 4

−
= −s s    

  c SDs between the brackets  
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median values of 0.26 and 0.38 and ranges between −0.23 and 0.60 and between 
0.03 and 0.96 respectively. Pooled differences were highly signifi cant both for the 
Duplicate SDs, and for the intraclass correlations (P < 0.001 and P = 0.009 respec-
tively, Table  16.2 ).     

    4   Discussion 

 In this chapter we demonstrate that ABPM systolic blood pressures in untreated 
mildly hypertensive patients can be readily assessed by polynomial analysis and 
that this approach unlike the actual data analysis is highly reproducible. Similar 
results were obtained when instead of systolic blood pressures diastolic or mean 
pressures were analyzed. It may be argued from a mathematical-statistical point of 
view that the better reproducibility is a direct consequence of the procedure where 
variability is reduced by taking means of a population rather than individual values. 
However, when we compared polynomial and actual data for each subject sepa-
rately, although the overall level of reproducibility fell, the former approach still 

  Fig. 16.5    Individual data from patient 1 (Table  16.2 ) during fi rst ABPM ( fat line ) and second 
ABPM recording ( thin line ). The corresponding polynomes of the two recordings ( continuous  and 
 dotted  curves respectively) are somewhat more different from each other than are the differences 
between the group data polynomes (Fig.  16.4 ). Yet, they offer much better similarity than do the 
actual data       
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performed better than did the latter. This indicates that the better reproducibility 
may at least in part be connected with mechanisms other than the mathematical 
necessity of reducing variability by taking the polynomial modeling of the actual 
data. Particularly, polynomes may be better reproducible, because they are a better 
estimate of the circadian rhythm of blood pressure than the actual data, which are of 
course infl uenced by a variety of exogenous factors including daily activities, meals 
and breaks, psychological effects. A polynome would be a more accurate estimate 
of the true endogenous circadian rhythm, where the mathematical procedure takes 
care that exogenous factors are largely removed. This would explain the high repro-
ducibility not only of polynomial analyses of population data but also of individual 
patient data. 

 Polynomial analysis has been validated in chronobiology, as a reproducible 
method for the study of circadian rhythms in normotensive subjects, and is, actually, 
routinely used for that purpose in the Department of Chronobiology of our aca-
demic hospital (Scheidel et al.  1990 ; Lemmer et al.  1991  ) . So far, however, it has 
received little attention in the clinical assessment of patients with hypertension. The 
current chapter suggests, that the method would be a reliable instrument for that 
purpose. 

 Polynomial analysis, could, e.g., be used to identify circadian patterns of blood 
pressure in individual patients. Figure  16.6  gives an example of fi ve such patterns 
readily demonstrable by polynomes. These polynomes were drawn from ABPM 
data from our own outpatient clinic database. Figure  16.7  gives another example of 
how polynomes can be helpful in clinical assessments. The polynomes present the 
mean results of a recent study by our group, comparing the short term effects of dif-
ferent blood pressure reducing agents in mildly hypertensive patients (n = 10) (Van 
de Luit et al.  1998b  ) . All of the polynomes were within 95% CIs of the mean data 
of our samples. Differences between the data in this study, as assessed by two-way 
analysis of variance, established that on enalapril, and amlodipine, unlike beta-
blockers carvedilol and celiprolol, time effect was a major source of variability. The 
polynomes visualized that this was so, because beta-blockers did not reduce night-
time blood pressures. So, polynomial analysis was helpful in interpreting the results 
of this study.   

 Polynomial analysis of ABPM data, unlike actual data analysis, is highly repro-
ducible in patients with mild hypertension, and this is so not only with population 
means but also with individual data. It is, therefore, a valid approach for the clinical 
assessment of hypertensive patients, and may, thus, be helpful for a variety of pur-
poses, e.g., for identifying circadian patterns of blood pressure in individual patients, 
and for the study of antihypertensive drugs in groups of patients. The goodness of 
fi t of polynomial models estimated by levels of correlation between observed and 
modelled data, is very good, and sometimes even better than the real sine-like func-
tion derived from the Fourier analysis. Particularly, the regression lines of the 4th 
and 7th order generally provide the best fi t for typical sinusoidal patterns. In the 
above example the 7th order polynome provided a slightly better fi t than did the 4th 
order polynome.  
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    5   Conclusions 

 Polynomial analysis is an extension of simple linear regression, where a power 
model is used to allow for the existence of a systematic, though not linear, dependence 
of the independent y variable on the dependent x variable, often a time variable. 
Particularly, fourth and seventh order polynomes are adequate to assess sinusoidal 
relationships, like circadian rhythms of hemodynamic and hormonal estimators.      
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      1   Introduction 

 Data modeling can    be applied for improving precision of clinical studies. Multiple 
regression modeling is often used for that    purpose. Relevant papers on this topic 
have recently been published (Breithaupt-Grogler et al.  1997 ; Debord et al.  1998 ; 
Kato et al.  1994 ; Mahmood and Mahayni  1999 ; Sabot et al.  1995 ; Ulrich et al.  2003 ; 
Vrecer et al.  2003  ) . Although multiple regression modeling, generally, does not 
infl uence the magnitude of the treatment effect versus control, it may reduce overall 
variances in the treatment comparison and thus increase sensitivity or power of 
statistical testing. It tries to fi t experimental data in a mathematical model, and, 
subsequently, tests how far distant the data are from the model. A statistically sig-
nifi cant correlation indicates that the data are closer to the model than will happen 
with random sampling. The very model-principle is at the same time its largest 
limitation: biological processes are full of variations and will not allow for a per-
fect fi t. In addition, the decision about the appropriate model is not well founded 
on statistical arguments. The current chapter assesses uncertainties and risks of 
misinterpretations commonly encountered with regression analyses and rarely 
communicated in research papers. Simple regression models and real data examples 
are used for assessment.  

    2   Linear Regression 

 Multiple linear regression for increasing precision of clinical trials assumes that a 
covariate like a baseline characteristic of the patients is an independent determinant 
of the treatment effi cacy, and that the best fi t for the treatment and control data is 
given by two separate regression lines with identical regression coeffi cients. The 
assumption may be too strong, and introduce important bias in the interpretation of 
the data, even if the variable seems to fi t the model. 

    Chapter 17   
 Logistic and Cox Regression, Markov Models, 
Laplace Transformations       



200 17 Logistic and Cox Regression

 As an example is again taken the Regression Growth Evaluation Statin Study 
(REGRESS) (Jukema et al.  1995  ) , a randomized parallel-group trial comparing 
placebo and pravastatin treatment in 434 and 438 patients, respectively. Primary 
endpoint was change in coronary artery diameter, secondary endpoint change in 
LDL (low density lipoprotein) cholesterol, as measured before and after 2 years of 
treatment. The average decreases of LDL cholesterol are

     
( )( )statin : 1.23 standard deviation SD 0.68 mmol / l

   

     ( )placebo : 0.04 SD 0.59 mmol / l−
    

 Obviously, LDL decrease varies considerably in both treatment groups but, on 
average, treatment effi cacy can be quantifi ed as 1.23 − (−0.04) = 1.27 mmol/l. Since 
the patients in the two parallel groups are independent of each other, the standard 
error (SE) of this estimate equals

     

0.682 0.592
0.043 mmol / l.

438 434
+ =

    

 The same results can be obtained by drawing the best fi t for the data in the form 
of a regression line according to the equation:

     y  a  bx,= +    

where

   y =  the dependent variable representing the LDL cholesterol decrease of the 
patients,  

  x =  the independent variable representing treatment modality, 1 if a patient receives 
statin, and 0 if placebo.    

 The term a is the intercept of the regression line with the y-axis and b is the 
regression coeffi cient (= direction coeffi cient of the regression line) which must be 
estimated. 

 Figure  17.1  gives the linear regression line in graph. It yields an estimate of b of 
1.27 with SE 0.043; hence, completely equal to the above analysis.  

 We wish to adjust these data for baseline LDL cholesterol. First, we draw a 
scatter plot of the individual baseline LDL cholesterol values and LDL choles-
terol decreases (Fig.  17.2a ). Both on placebo and on active treatment a positive 
linear correlationship is suggested between LDL cholesterol decrease and 
baseline LDL cholesterol: the larger the baseline LDL cholesterol the better the 
LDL cholesterol-decrease. Figure  17.2b  shows that the overall linear correla-
tion between these two variables is, indeed, significant at p < 0.001. Baseline 
LDL cholesterol is thus an independent determinant of LDL cholesterol 
decrease.  
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 To test whether this signifi cant independence remains after adding the variable 
treatment modality to the regression, we use the following (multiple) linear 
 regression model:

     = + +1 1 2 2y  a b x b x    

where

   y  =   the dependent variable representing the LDL cholesterol decrease of the 
patients,  

  x 
1
  =  the independent variable representing treatment modality, 1 if a patient receives 

statin, and 0 if placebo,  
  x 

2
  = a second independent variable, baseline LDL cholesterol.    

 An Excel data fi le, entered into SPSS Statistical Software, produces the follow-
ing results:

     

2

1

b 0.41 (SE 0.024,  p 0.0001),

b 1.27 (SE 0.037,  p 0.0

 

0 )  01 .

= = <
= = <     

 Figure  17.2c  shows how the model works. It assesses whether the data are sig-
nifi cantly closer to two regression lines with identical regression coeffi cients 
(= direction coeffi cients) than compatible with random sampling. 

 With placebo (x 
1
  = 0) the best fi t for the data is given by the formula

     = + 2 2y  a b x ,     
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  Fig. 17.1    The linear 
regression line is illustrated 
(b = regression coeffi cient, 
SE = standard error)       
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 With pravastatin (x 
1
  = 1) the best fi t for the data is given by the formula

     = + +1 2 2y  a b b x .     

 The estimated treatment effect, b1, is 1.27, the same as in the simple linear 
regression from Fig.  17.1 , but its SE is lowered from 0.043 to 0.037. This means 
that, indeed, increased precision has been obtained by the multiple regression mod-
eling. The difference between the two regression lines represents the treatment effi -
cacy of pravastatin versus placebo: for each point on the x-axis (baseline LDL 
cholesterol) the average LDL cholesterol decrease is 1.27 mmol/l larger in the statin 
(grey) group than in the placebo (black) group. The positive linear correlation 
between LDL cholesterol decrease and baseline LDL cholesterol (the larger the 
baseline LDL cholesterol the better the LDL cholesterol decrease) in either of the 
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  Fig. 17.2    ( a ) Both on placebo and on active treatment there seems to be a positive correlation between 
LDL cholesterol decrease and baseline LDL cholesterol: the larger the baseline LDL cholesterol 
the better the LDL cholesterol decrease. ( b ) Overall correlation is signifi cant at p < 0.001, baseline 
LDL cholesterol is thus an independent determinant of LDL cholesterol decrease. ( c ) The multiple 
linear regression model assesses whether the data are signifi cantly closer to two regression lines 
with identical regression coeffi cients (= direction coeffi cients) than compatible with random sam-
pling. ( d ) The separately calculated regression lines are not parallel    (regression coeffi cients 0.71 
(SE 0.049, p < 0.0001) and 0.35 (0.036, p < 0.0001, difference in slope 0.36 (SE 0.06, p < 0.0001)); 
(b = regression coeffi cient, SE = standard error)       
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groups could be explained by a regression-to-the-mean-like-phenomenon: the 
patients scoring low the fi rst time are more likely to score higher the second time 
vice versa. However, why should the best fi t regression lines of the pravastatin data 
and of the placebo data produce exactly the same regression coeffi cients. In order to 
assess this question regression lines for either of the groups can be calculated sepa-
rately. Figure  17.2d  shows the results. In contrast with the multiple linear regression 
lines, the separately calculated regression lines are not parallel. Their regression 
coeffi cients are 0.71 (SE = 0.049, p < 0.0001) and 0.35 (SE = 0.036, p < 0.0001). The 
difference in slope is signifi cant with a difference in regression of 0.36 (SE = 0.06, 
p < 0.0001). Obviously, there is no homogeneity of regression for the groups. 

 If the parallel regression lines from Fig.  17.2c  are interpreted as a homogeneous 
regression-to-the-mean-like-phenomenon in either of the two treatment groups, 
then the appropriate implication will be that pravastatin’s effi cacy is independent of 
baseline LDL cholesterol. However, the true regression lines from Fig.  17.2d  
indicate that there is a signifi cant difference in slope. This difference in slope can 
only be interpreted as a dependency of pravastatin’s effi cacy on baseline LDL cho-
lesterol: the higher the baseline-cholesterol the better the effi cacy of treatment. In 
clinical terms, based on the multiple regression analysis all patients no matter their 
baseline LDL cholesterol would qualify for pravastatin treatment equally well, 
while based on the true regression lines patients would qualify better the higher 
their baseline LDL cholesterol.  

    3   Logistic Regression 

    3.1   Logistic Regression Analysis for Predicting 
the Probability of an Event 

 The odds of an infarction is given by the equation

     

number of patients with infarct
odds infarct in a group

number of patients without
=

    

 The odds of an infarction in a group is correlated with age, the older the patient 
the larger the odds 

 According to Fig.  17.3  the odds of infarction is correlated with age, but we may 
ask how?  

 According to Fig.  17.4  the relationship is not linear, but after transformation of 
the odds values on the y-axis into log odds values the relationship is suddenly 
linear.  

 We will, therefore, transform the linear equation

     = +y a bx    
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  Fig. 17.3    In a group of multiple ages the numbers of patients at risk of infarction is given by the 
 dotted line        

  Fig. 17.4    Relationships between the odds of infarction and age       

into a log linear equation (ln = natural logarithm)

     = + × =ln odds a b (x age)     

 Our group consists of 1,000 subjects of different ages that have been observed for 
10 years for myocardial infarctions. Using SPSS statistical software, we command 
binary logistic regression

   dependent variable infarction yes/no (0/1)  
  independent variable age    
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 The program produces a regression equation:

     
= = +pts with infarctions

ln odds ln a bx
pts without    

   a = −9.2  
  b = 0.1 (SE = 0.04; p < 0.05)    

 The age is, thus, a signifi cant determinant of odds infarction (which can be used 
as surrogate for risk of infarction). 

 Then, we can use the equation to predict the odds of infarction from a 
patient’s age:

     

Ln odds55 years 9.2 0.1·55 4.82265

odds 0.008 8 /10  00

= − + = −
= =    

     

Ln odds75 years 9.2 0.1·75 1.3635

odds 0.256 256 /1000

= − + = −
= =     

 Odds of infarction can, of course, more reliably be predicted from multiple 
x-variables. As an example, 10,000 pts are followed for 10 years, while infarctions 
and baseline-characteristics are registered during that period.  

 Dependent variable  Infarction yes/no 
 Independent variables  Gender 
 Predictors  Age 

 Bmi (body mass index) 
 Systolic blood pressure 
 Cholesterol 
 Heart rate 
 Diabetes 
 Antihypertensives 
 Previous heart infarct 
 Smoker 

 The data are entered in SPSS, and it produces b-values (predictors of infarctions)  

 b-value  p-value 

 1. Gender  0.6583  <0.05 
 2. Age  0.1044  “ 
 3. Bmi  −0.0405  “ 
 4. Systolic blood pressure  0.0070  “ 
 5. Cholesterol  0.0008  “ 
 6. Heart rate  0.0053  “ 
 7. Diabetes  1.2509  <0.10 
 8. Antihypertensives  0.3175  <0.050 
 9. Previous heart infarct  0.8659  <0.10 
 10. Smoker  0.0234  <0.05 

 a-value  −9.1935  “ 
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 It is decided to exclude predictors that have a p-value > 0.10. 
 The regression equation is used

     1 1 2 2 3 3"ln odds infarct  a b x b x b x ."= + + + +…    

to calculate the best predictable y-value from every single combination of x-values. 
 For instance, for a subject

   Male (x  –
1
 )  

  55 years of age (x  –
2
 )  

  cholesterol 6.4 mmol/l (x  –
3
 )  

  systolic blood pressure 165 mmHg (x  –
4
 )  

  antihypertensives (x  –
5
 )  

  dm (x  –
6
 )  

  15 cigarettes/day (x  –
7
 )  

  heart rate 85 beats/min (x  –
8
 )  

  Bmi 28.7 (x  –
9
 )  

  smoker (x  –
10

 )   

the calculated odds of having an infarction in the next 10 years is the following:  

 b-values  x-values 

 Gender  0.6583  1 (0 or 1)  = 0.6583 
 Age  0.1044  55  = 5.742 
 BMI  −0.0405  28.7  = .. 
 Blood pressure  0.0070  165  = 
 Cholesterol  0.0008  6.4  = 
 Heart rate  0.0053  85  = 
 Diabetes  1.2509  1  = 
 Antihypertensives  0.3175  1  = 
 Previous heart infarct  0.8659  0  = 
 Smoker  0.0234  15  = 
 a-value  = −9.1935 + 

 Ln odds infarct  = −0.5522 
 Odds infarct  = 0.58 = 58/100 

 The odds is often interpreted as risk. However, the true risk is a bit smaller than 
the odds, and can be found by the equation

     = +risk event 1 / (1 1 / odds)     

 If odds of infarction = 0.58, then the true risk of infarction = 0. 37. 
 The above methodology is currently an important way to determine, with limited 

health care sources, what individuals will be:

    1.    operated.  
    2.    given expensive medications.  
    3.    given the assignment to be treated or not.  
    4.    given the “do not resuscitate sticker”.  
    5.    etc.     



2073 Logistic Regression

 We need a large data base to obtain accurate b-values. This logistic model for 
turning the information from predicting variables into probability of events in 
individual subjects is being widely used in medicine, and was, for example, the 
basis for the TIMI (Thrombolysis In Myocardial Infarction) prognostication risk 
score. However, not only in medicine, also in strategic management research, 
psychological tests like computer adapted tests, and many more fi elds it is increas-
ingly observed (Table  17.1 ). With linear regression it is common to provide a mea-
sure of how well the model fi ts the data, and the squared correlation coeffi cient r 2  is 
mostly applied for that purpose. Unfortunately, no direct equivalent to r 2  exists for 
logistic, otherwise called loglinear, models. However, pseudo-R2 or R2-like mea-
sures for estimating the strength of association between predictor and event have 
been developed.   

    3.2   Logistic Regression for Effi cacy Data Analysis 

 Logistic regression is often used for comparing proportions of responders to differ-
ent treatments. As an example, we have two parallel groups treated with different 
treatment modalities.  

 Responders  Non-responders 

 New treatment (group 1)  17 (A)   4 (B) 
 Control treatment (group 2)  19 (C)  28 (D) 

 The odds of responding is given by A/B and C/D, and the odds ratio by     
A/B

C/D
  . 

 It has been well-established that no linear relationship exists between treatment 
modalities and odds of responding, but that there is a close-to-linear relationship 
between treatment modalities and the logarithm of the odds. The natural logarithm 
(ln) even better fi ts such assessments. And so, for the purpose of the logistic regres-
sion we assume that the usual linear regression formula

     = +y  a bx    

is transformed into

     = +ln odds  a bx,    

   Table 17.1    Examples of predictive models where multiple logistic regression has been applied   

 Dependent variable (odds of event)  Independent variables (predictors) 

 1. TIMI risk score (Antman et al.  2000  )  
  Odds of infarction  Age, comorbidity, comedication, riskfactors 

 2. Car producer (Strategic Management Research) (Hoetner  2007  )  
  Odds of successful car  Cost, size, horse power, ancillary properties 

 3. Item response modeling (Rasch models for computer adapted tests) (Rudner  1998  )  
  Odds of correct answer to three questions of 

different diffi culty 
 Correct answer to three previous questions 



208 17 Logistic and Cox Regression

where

   ln odds = the dependent variable,  
  x = the independent variable representing treatment modality, 1 if a patient receives 
new treatment, and 0 if control treatment.    

 The term a is the intercept of the regression line, and b is the regression coeffi -
cient (direction coeffi cient of the regression line).

     = +Instead of ln odds  a bx    

the equation can also be described as

     

a bx

a b
new treatment

a 
control treatment 

a b a b

odds  e

odds  e  because x 1

odds e because x 0

odds ratio 

 

e / e e

+

+

+

=
= =

= =
= =     

 The new treatment    is signifi cantly different from the control treatment if the odds 
ratio of the two treatments is signifi cantly different from 1. If b = 0, then the odds 
ratio = e 0  = 1, which means no difference between new and control treatment. If b is 
signifi cantly > 0, then the odds ratio is signifi cantly > 1, which means a signifi cant 
difference between new and control treatment. 

 SPSS Statistical Software produces the best fi t b and a for the data:

     

a 1.95 (SE 0.53)

b 1.83 (SE 0.63,  p 0.004).

= − =
= = =     

 The estimated b is signifi cantly different from 0 at p = 0.004, and so we conclude 
that new and control treatment are signifi cantly different from one another. A similar 
result could have been obtained by the usual chi-square test. However, the logistic 
model can adjust the results for relevant subgroups variables like age, gender, and 
concomitant illnesses. In our case, the data are divided into two age groups  

 >50 years  <50 years 

 Responders  Non-responders   Responders  Non-responders 

 Group 1  4   2  13   2 
 Group 2  9  16  10  12 

 The underlying assumptions are that the chance of response may differ between 
the subgroups, but that the odds ratio does not. SPSS Statistical Software calculates 
the best fi t b- and a-values for data:

     

50 years

50 years

a 2.37 (SE 0.65)

a 1.54 (SE 0.59)

b 1.83 (SE 0.67,  p 0.007

 

)

>

<

= − =

= − =

= = =     



2094 Cox Regression

 The estimated b is signifi cantly different from 0 also after age-adjustment. 
Figure  17.5  shows how the model works. Like with the linear regression model it 
assesses whether the data are closer to two regression lines with identical regression 
coeffi cients than compatible with random. However, why should the best fi t regression 
lines of the different age groups produce exactly the same regression coeffi cients? 
Regression lines for either group can be calculated separately to answer this question. 
In contrast to the logistic regression lines the separately calculated regression lines 
are not parallel. Their regression coeffi cients are 1.27 (SE = 0.39, p < 0.001) and 
2.25 (SE = 0.48 p < 0.001). The difference in slope is signifi cant, with a difference in 
regression of 0.98 (SE = 0.60, p < 0.05). Obviously, there is no parallelism between 
the groups. Younger patients not only respond better, but also benefi t more from the 
new than from the control treatment. This latter mechanism of action is clinically 
very relevant but remains unobserved in the logistic regression analysis.    

    4   Cox Regression 

 Cox regression is based on the assumption that per time unit approximately the 
same percentage of subjects at risk will have an event, either deadly or not. This 
exponential model is suitable for mosquitoes whose risk of death is determined by 
a single factor, i.e., the numbers of collisions, but less so for human beings whose 
deaths are, essentially, multicausal. Yet, it is widely applied for the comparison of 
two Kaplan-Meier curves in human beings. Figure  17.6  shows that after 1 day 50% 
is alive, while after the second day 25% is, etc.  

 The formula for the proportion of survivors is given by:

     
−= =t tproportion survivors 1 / 2 2     

  Fig. 17.5    Left graph shows a linear correlation between ln odds of responding and treatment 
modalities (b = 1.83, SE = 0.63, p = 0.004). The logistic model ( middle graph ) assesses whether the 
data are closer to two regression lines with identical direction coeffi cients than compatible with 
random sampling. The separately calculated regression lines ( right graph ) are not parallel (regres-
sion coeffi cients 2.25 (SE = 0.38, p < 0.001) and 1.27 (SE = 0.48, p < 0.001), difference in slope 0.98 
(SE = 0.60, p < 0.05); (b = regression coeffi cient, a = intercept, SE = standard error)       
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 In true biology “e (= 2.71828)” instead of “2” better fi ts the observed data, while 
k is dependent on the species:

     
−= ktproportion survivors e     

 The Cox regression formula for the comparison of exponential survival curves is 
given by:

   proportion survivors = e −kt −bx ,  
  x = binary variable (only 0 or 1; 0 means treatment-1, and 1 means treatment-2),  
  b = regression coeffi cient,  
  proportion survivors treatment-1 = e −kt  because x = 0,  
  proportion survivors treatment-2 = e −kt −b  because x = 1,  
  relative risk of surviving = e −kt −b /e −kt  = e −b ,  
  relative risk of death = hazard ratio = e b .    

 Figure  17.7  shows two Kaplan-Meier curves. Although an exponential pattern is 
hard to prove from the curves (or from their logarithmic transformations), the Cox 
model seems reasonable, and SPSS software is used to calculate the best b for the 
given data.  

 If b is signifi cantly larger than 0, the hazard ratio will be signifi cantly larger than 
1, and there will, thus, be a signifi cant difference between treatment-1 and treat-
ment-2. The following results are obtained:

   b = 1.1 with a standard error of 0.41  
  hazard ratio = 3.0  
  p = 0.01 (t-test)    

 The Cox regression provides a p-value of 0.01, and, so, it is less sensitive than the 
traditional summary chi-square test (p-value of 0.002). However, the Cox model has 
the advantage that it enables to adjust the data for relevant prognostic factors like 
disease stage and presence of b-symptoms. The model is extended accordingly:

     
+ += 1 1 2 2 3 3b b bhazard ratio e x x x

   

  Fig. 17.6    Hypothesized 
example of the exponential 
surviving pattern of 
mosquitoes       
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   x 
1
  = 0 (treatment-1); x 

1
  = 1 (treatment-2)  

  x 
2
  = 0 (disease stage I-III); x 

2
  = 1 (disease stage IV)  

  x 
3
  = 0 (A symptoms); x 

3
  = 1 (B symptoms)    

 The test for multicollinearity is negative (Pearson correlation coeffi cient between 
disease stage and B symptoms <0.85), and, so, the model is deemed appropriate. 
SPSS produces the following result:

     

1

2

3

b 1.10 with a standard error of 0.41

b 1.38 with a standard error of 0.55

b 1.74 with a standard error of 0.69

unadjusted hazard ratio 3.0

adjusted hazard ratio 68.0

=
=
=

=
=     

 Treatment-2 after adjustment for advanced disease and b-symptoms raises a 68 
higher mortality than treatment-1 without adjustments. This Cox regression analysis, 
despite prior examination of the appropriateness of the model, is hardly adequate 
for at least three reasons. First, the method is less sensitive than the usual chi-square 
summary test, probably because the regression does not fi t the data well enough. 
Second, Cox regression tests the null-hypothesis that treatment-2 is not signifi cantly 
different from the treatment-1, and it assumes for that purpose that the hazard ratio 
is constant over time. Figure  17.5  gives the modeled treatment-curves (dotted 

  Fig. 17.7    Two Kaplan-Meier curves estimating effect on survival of treatment 1 and 2 in two 
parallel groups of patients with malignancies (33 and 31 patients respectively). The  dotted curves  
present the modeled curves produced by the Cox regression model       
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curves), in addition to the true treatment-curves. It can be observed in the modeled 
curve that few patients died in the fi rst 8 months, while, in reality, 34% of the patients 
in group 2 died, probably, due to the toxicity of the treatment-2. Also it can be 
observed in the modeled curves that patients continued to die after 2 1/2 years, 
while, in reality, they stopped dying in group 2, because they actually went into a 
complete remission. Obviously, this Cox regression analysis gives rise to some 
serious misinterpretations of the data. Third, a fi nal problem with the above Cox 
analysis is raised by the adjustment-procedure. An adjusted hazard ratio as large as 
68 is clinically unrealistic. Probably, the true adjusted hazard ratio is less than 10. 
From a clinical point of view, the x 

2
  and x 

3
  variables must be strongly dependent on 

one another as they are actually different measures for estimating the same. And so, 
despite the negative test for multicollinearity, they should not have been included in 
the model. 

  Note:   Cox regression can be used for other exponential time relationships like 
pharmacokinetic data. Limitations similar to ones described above apply to such 
analyses.   

    5   Markov Models 

 Regression models are only valid within the range of the x-values. Markov model-
ing goes one step further, and aims at predicting outside the range of x-values. Like 
with Cox regression it assumes an exponential-pattern in the data which may be a 
strong assumption. 

 As an example, in patients with diabetes mellitus type II, sulfonureas are highly 
effi cacious, but they will, eventually, induce beta-cell failure. Beta-cell failure is 
sometimes defi ned as a fasting plasma glucose >7.0 mmol/l. The question is, does 
the severity of diabetes and/or the potency of the sulfonurea-compound infl uence 
the induction of beta-cell failure? 

 This was studied in 500 patients with diabetes type II:

     

at time 0 year 0 / 500 patients had beta - cell failure

at time 1 year 50 / 500 patients ( 10%) had beta - cell fail

 

ure.=     

 As after 1 year 90% had no beta-cell failure, it is appropriate according to the 
Markow model to extrapolate   :

     

after 2 years 90% 90% 81% no beta - cell failure

after 3 years 90% 90% 90% 73% no beta - cell failure

after 6.7 years 50% nobeta - cell failure.

× =
× × =

=     

 A second question was, does the severity of diabetes mellitus type II infl uence 
induction of beta-cell failure. A cut-off level for severity often applied is a fasting 
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plasma glucose >10 mmol/l. According to the Markov modeling approach the ques-
tion can be answered as follows:

   250 patients had fasting plasma glucose <10 mmol/l at diagnosis (Group-1)  
  250 patients had fasting plasma glucose >10 mmol/l at diagnosis (Group-2)    

 If after 1 year sulfonureas (su) treatment 10/250 of the patients from Group-1 
had b-cell failure, and 40/250 of the patients from Group-2, which is signifi cantly 
different by p < 0.01, then we can again extrapolate:

   In Group-1 it takes 12 years before 50% of the patients develop beta-cell failure.  
  In Group-2 it takes 2 years before 4% of the patients develop beta-cell failure.    

 The next question is, does potency of su-compound infl uence induction of b-cell 
failure?

   250 patients started on amaryl (potent sulfonurea) at diagnosis (Group-A)  
  250 patients started on artosin (non-potent sulfonurea) at diagnosis (Group-B)    

 If after 1 year 25/250 of Group-A had beta-cell failure, and 25/250 of the group-
B, it is appropriate according to the Markov model to conclude that a non-potent 
does not prevent beta-cell failure. Note Markov modeling is highly speculative, 
because nature does not routinely follow mathematical models.  

    6   Regression-Analysis with Laplace Transformations 

 There is an increasing trend towards the use of non linear mixed effect models 
(commonly called population pharmacokinetics and pharmacodynamics) for 
describing the pharmacokinetics and pharmacodynamics of drugs in humans. The 
term mixed effect models refers to the random effect statistical regression model 
applied. These models allow for sparse sampling and at the same time can account 
for multiple effect associated variables and even account for errors in sampling 
(Boeckman et al.  1992 ; Davidian and Giltinan  1995 ; Lindstrom and Bates  1990  ) . 
These new modelling approaches are increasingly becoming a very important part 
of the drug approval process. They routinely make use of multi-exponential models, 
according to equations like for example the one underneath   :

     
− − −= + + …at bt ctf (t) D / V ( e e e .)    

    

D dose drug
V volume of distribution
a elimination constant compartment 1
b elimination constant compartment 2
c elimination constant compartment 3
t time

=
=

=
=
=
=     
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 As logarithmic transformations only allow for mono-exponential equations, 
generally Laplace transformations, based on second differentiations, are used:

     
− −= = +at btf (t) C(t) C (0)(e e )    

    = =C(t) concentration at time t,C(0) concentration at time 0.    

is transformed into

     = + +F (s) C (0) / (s a)(s b)    

   s  =  unit Laplace-functions  =  unit amount-of-drug/time (time thus disappears from 
the equation).    

 The fi nal data are then transformed back to their initial equations. 
 The advantage of the exponential modeling in pharmacokinetics is, that it is 

very easy to calculate the keystone pharmacokinetic parameters according to which 
compounds are currently registered: plasma-half-life, volume of distribution, 
plasma-clearance rate etc. 

 Exponential pharmacokinetic models assume fi rst order kinetics, and it may be 
true that many drugs at the therapeutically given concentrations would follow fi rst 
order kinetics. However, zero order patterns are followed for example by ethyl-
alcohol, acetyl-salicylic-acid, and by any drug at higher dosages, while second order 
elimination-patterns are followed for example by drugs that are hydrolyzed or 
conjugated before excretion (Keusch  2003  ) . The simplest equations and    curves for 
zero, fi rst, and second order kinetics are given (Fig.  17.8 ). 

     

( )
( )

( )
kt

1. Zero order C t C(0)  kt linear pattern

2. First order C t C(0)·e exponential pattern

3. Second order 1 / C t 1 / C(0) kt hyperbolic p

 

attern

−

= −

=

= −
   

   k = elimination constant    

 As shown in the example of Fig.  17.9 , there may be a wide spread in the data of 
a pharmacokinetic study. The 95% confi dence intervals calculated with the NON-
MEM software (Boeckman et al.  1992  ) , which uses the Laplace transformations, 
assumes a fi rst order pharmacokinetic. In fact both a zero and a second order pattern 
provided a better fi t in this example. However, a problem with either of them is, that 
it is impossible to derive plasma-half-life and other pharmacokinetic parameters 
from them. As can be observed only in Eq   . 2 plasma-half-life is not dependent on 
C(0). With Eqs. 1 and 3 we have many plasma-half-lifes, with Eq. 2 we have only 
one. This is a very elegant property of fi rst order kinetics, but it should not mean that 
the best fi t data models are sacrifi ced for the purpose of unreliable pharmacokinetic 
parameters. A second problem with the Laplace models is that they assume 
independence of confounders. In pharmacology confounders like gender, age, body 
mass, renal function, notoriously interact with the treatment modalities.   
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  Fig. 17.8    Examples of 
hypothesized time-
concentration curve following 
zero-, fi rst-, and second order 
pharmacokinetics       
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  Fig. 17.9    Example of an 
exponentially modeled 
time-concentration 
relationship with wide 95% 
confi dence intervals       
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    7   Discussion 

 In randomized controlled trials regression analysis of possibly confounding 
variables is, traditionally, not emphasized, because the randomization ensures that 
such variables are equally distributed among the treatment groups. Also, regression 
analysis tests correlations rather than causal relationships. In testing the data from 
clinical trials we are mainly interested in causal relationships. When such assess-
ments were statistically analyzed through correlation analyses, we would probably 
be less convinced of a causal relationship than we are while using prospective 
hypothesis testing. In the past few years, however, regression analyses have increas-
ingly entered the stage of primary data analysis. For example, of 28 randomized 
controlled trials published in the Lancet in the 2003 Volume 362, 20 (71%) used 
regression models for primary data analysis, including linear regression twice, 
logistic regression 5 times, and Cox regression 12 times. 

 Obviously, regression analyses are increasingly used for the primary data analysis 
of clinical trials. The current paper assesses problems of this new development. 
More uncertainties are added to the data in the form of subjective judgments and 
uncertainty about the appropriate transformation of the data. Regression analyses 
may also give rise to serious misinterpretations of the data:

    1.    The assumption that baseline characteristics are independent of treatment effi ca-
cies may be wrong.  

    2.    Sensitivity of testing is jeopardized if the models do not fi t the data well 
enough.  

    3.    Relevant clinical phenomena like unexpected toxicity effects and complete 
remissions can go unobserved.  

    4.    The inclusion of multiple variables in regression models raises the risk of clini-
cally unrealistic results.     

 Markov modeling is an exponential regression model like Cox regression that 
aims at predicting outside the range of observed observations. It is, therefore even 
more at risk of unrealistic results. As an example, many suggestions from the famous 
Framingham studies are based on Markov modeling. Current trials and observations 
confi rm that some of these are true, some are not. Regression modeling, although a 
very good tool for exploratory research, is not adequately reliable for randomized 
clinical trials. This is, of course, different with exploratory research like observa-
tional studies. For example, a cohort of postmenopausal women is assessed for 
exploratory purposes. The main question is: what are the determinants of endome-
trial cancer in this category of females. Logistic regression is excellent for the pur-
pose of this exploratory research. The following logistic model is used:

   y-variable = ln odds endometrial cancer  
  x 

1
  = estrogene consumption short term  

  x 
2
  = estrogene consumption long term  

  x 
3
  = low fertility index  
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  x 
4
  = obesity  

  x 
5
  = hypertension  

  x 
6
  = early menopause   

ln odds endometrial cancer = a + b 
1
  estrogene data + b 

2
 … + b 

6
  early menopause data 

 The odds ratios for different x-variables are defi ned, e.g., for:

   x 
1
  = chance cancer in consumers of estrogene/non-consumers  

  x 
3
  = chance cancer in patients with low fertility/their counterparts  

  x 
4
  = chance cancer in obese patients/their counterparts etc.     

 Risk factors  Regression coeffi cient(b)  Standard error  p-value  Odds ratio (e b ) 

 1. Estrogenes short  1.37  0.24  <0.0001  3.9 
 2. Estrogenes long  2.60  0.25  <0.0001  13.5 
 3. Low fertility  0.81  0.21  0.0001  2.2 
 4. Obesity  0.50  0.25  0.04  1.6 
 5. Hypertension  0.42  0.21  0.05  1.5 
 6. Early menopause  0.53  0.53  ns  1.7 

 The data are entered in the software program, which provides us with the best fi t 
b-values. The model not only shows a greatly increased risk of cancer in several 
categories, but also allows us to consider that the chance of cancer if patients con-
sume estrogens, suffer from low fertility, obesity, and hypertension might have an 
increased risk as large as = e b2 + b3 + b4 + b5  = 75.9 = 76 fold. This huge chance is, of 
course, clinically unrealistic! We must take into account that some of these variables 
must be heavily correlated with one another, and the results are, therefore, largely 
infl ated. In conclusion, regression modeling is an adequate tool for exploratory 
research, the conclusions of which must be interpreted with caution, although they 
often provide scientifi cally highly interesting questions. Such questions are, then, a 
sound basis for confi rmation by prospective randomized research. Regression mod-
elling is not adequately reliable for the analysis of the primary data of randomized 
controlled trials. Of course, regression analysis is also fully in place for the explor-
atory post-hoc analyses of randomized controlled trials (Chaps.   17    ,   18    , and   19    ).  

    8   Conclusions 

 Data modeling can be applied for improving precision of clinical studies. Multiple 
regression modeling is increasingly used for that purpose. The objective of this 
chapter was to assess uncertainties and risks of misinterpretations commonly 
encountered with regression analyses and rarely communicated in research papers. 

 Regression analyses add uncertainties to the data in the form of subjective judg-
ments and uncertainty about the appropriate transformation of the data. Additional 
fl aws include: (1) the assumption that baseline characteristics are independent of 
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treatment effi cacies; (2) the loss of sensitivity of testing if the models do not fi t the 
data well enough; (3) the risk that clinical phenomena like toxicity effects and com-
plete remissions go unobserved; (4) the risk of clinically unrealistic results if mul-
tiple variables are included. Regression analyses, although a very good tool for 
exploratory research, are not adequately reliable for randomized controlled trials.      
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      1   Introduction    

 Small precision of clinical trials is defi ned as a large spread in the data. Repeated 
observations have a central tendency, but also a tendency to depart from the 
central tendency. If the latter is large compared to the former, the data 
are imprecise. This means that p-values are large, and reliable predictions can-
not be made. Often a Gaussian pattern is in the data. The central tendency can, then, 
be adequately described using mean values as point estimates. However, if the data 
can be fi tted to a different pattern like a linear or a curvilinear pattern, the central 
tendency can also be described using the best fi t lines or curves of the data instead 
of mean values. This method is called data modeling, and may under the right 
circumstances reduce the spread in the data and improve the precision of the 
trial. Extensive research on the impact of data modeling on the analysis of 
pharmacodynamic/pharmacokinetic data has been presented over the past 10 years. 
The underlying mechanism for improved precision was explained by the late 
Lewis Sheiner: “Modeling turns noise into signals” (Sheiner and Steimer  1984 ; 
Fuseau and Sheiner  1984  ) . In fact, instead of treating variability as an “error noise”, 
modeling uses the variability in the data as a signal explaining outcome. If regression 
models are used for such purpose, an additional advantage is the relative ease 
with which covariates can be included in the analysis. So far, data modeling has 
not been emphasized in the analysis of prospective randomized clinical trials, and 
special statistical techniques need to be applied including the transformation of 
parallel-group data into regression data. In the current chapter we demonstrate two 
regression models that can be used for such purpose. Both real and hypothesized 
examples are given.  

    Chapter 18   
 Regression Modeling for Improved Precision       

T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 
DOI 10.1007/978-94-007-2863-9_15, © Springer Science+Business Media B.V. 2012
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    2   Regression Modeling for Improved Precision 
of Clinical Trials, the Underlying Mechanism 

 The better the model fi ts the data, the better precision is obtained. Regression 
modeling is, essentially, an attempt to fi t experimental data to specifi c patterns, and, 
subsequently, to test how far distant the data are from the best fi t pattern. A statisti-
cally signifi cant correlation indicates that the data are closer to the best fi t pattern 
than could happen by random sampling. As an example, the simple linear regression 
analysis of a parallel-group study of the effects on LDL-cholesterol on pravastatin 
versus placebo in 884 patients, also used in the Chaps.   14     and   15    , is given (Cleophas 
 2003  ) . The overall spread in the data is estimated by a standard error of 0.11 mmol/l 
around the regression line (Fig.  18.1  upper graph). A smaller standard error 
(0.024 mmol/l), and, thus, less spread in the data is provided by a multiple regression 
model, using two regression lines instead of one (Fig.  18.1 , lower graph). Obviously, 
this multiple regression pattern provided an overall shorter distance to the data 
than did the simple linear regression pattern. Or, in other words, it better fi tted 
the data than did the simple linear regression. In the next few sections we give 
additional examples.   

    3   Regression Model for Parallel-Group Trials 
with Continuous Effi cacy Data 

 Table  18.1  shows the data of a parallel-group trial comparing effi cacy of a new 
laxative versus control laxative. The mean difference in response between new 
treatment and control = 9.824 stools per 4 weeks (Se = 2.965). The t-test produces a 
t-value of 9.824/2.965 = 3.313, and the t-table gives a p-value of <0.01.  

 A linear regression according to

        = +y  a  bx      

  with y = response and x = treatment modalities (0 = new treatment, 1 = control),  
  a = intercept, and b = regression coeffi cient,   

produces a similar result

   b = 9.824  
  se 

b
  = 2.965  

  t = 3.313  
  p-value <0.01.    

 Improved precision of this data analysis is a possibility if we extend the regression 
model by including a second x-variable = baseline stool frequency according to

        = + +1 1 2 2y  a b x b x      
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  with x 
1
  = treatment modalities (0 = new treatment, 1 = control),  

  x 
2
  = baseline stool frequencies, and b-values are partial regression coeffi cients.    

 This produces the following results

   b
1
 = 6.852  

  se
b1

 = 1.792  
  t = 3.823  
  p-value < 0.001.    

 After adjustment for the baseline stool frequencies an improved precision to test 
the effi cacy of treatment is obtained as demonstrated by a larger t-value and a 
smaller p-value.  
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  Fig. 18.1    Linear regression analysis of parallel-group study of effect on LDL-cholesterol of 
pravastatin versus placebo in 872 patients. The overall spread in the data is estimated by a standard 
error of 0.11 mmol/l around the regression line ( upper graph ). The multiple regression model using 
two regression lines, instead of one, leads to a standard error of only 0.024 mmol/l ( lower graph )       
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   Table 18.1    A parallel-group trial comparing a new laxative versus control   

 Patient no. 
 Treatment modality 
(new = 0, control = 1) 

 Response = stool frequency 
after treatment (4 week stools) 

 Baseline stool frequency 
(4 week stools) 

 1  0  24  8 
 2  0  30  13 
 3  0  25  15 
 4  1  35  10 
 5  1  39  9 
 6  0  30  10 
 7  0  27  8 
 8  0  14  5 
 9  1  39  13 
 10  1  42  15 
 11  1  41  11 
 12  1  38  11 
 13  1  39  12 
 14  1  37  10 
 15  1  47  18 
 16  0  30  13 
 17  1  36  12 
 18  0  12  4 
 19  0  26  10 
 20  1  20  8 
 21  0  43  16 
 22  0  31  15 
 23  1  40  14 
 24  0  31  7 
 25  1  36  12 
 26  0  21  6 
 27  0  44  19 
 28  1  11  5 
 29  0  27  8 
 30  0  24  9 
 31  1  40  15 
 32  1  32  7 
 33  0  10  6 
 34  1  37  14 
 35  0  19  7 

    4   Regression Model for Parallel-Group Trials 
with Proportions or Odds as Effi cacy Data 

 Consider the underneath two by two contingency table.  

 Numbers responders  Numbers non-responders 

 Treatment 1  30 a  45 b 
 Treatment 2  45 c  30 d 
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 The odds-ratio-of-responding equals     = =a/b 30 / 45
0.444

c/d 45 / 30
  . The natural loga- 

rithmic (ln) transformation of this odds ratio equal −0.8110. The stand ard error of this 

logarithmic transformation is given by     + + + = + + + =1 1 1 1 1 1 1 1
0.333

a b c d 30 45 30 45
  . 

 A t-test of these data produces a t-value of 0.8110/0.333 = 2.435. According to 
the t-table this odds-ratio is signifi cantly different from an odds ratio of 1.0 with a 
p-value of 0.015. 

 Logistic regression according to the model

   ln odds-of-responding = a + bx  
  with x = treatment modality (0 or 1),  
  a = intercept, and b = regression coeffi cient,   

produces the same result:

   b = 0.8110  
  Se

b
 = 0.333  

  t-value = 2.435  
  p-value = 0.015    

 The patients can be divided into two age classes:  

 Over 50 years  Under 50 years 

 Responders  Non-responders  Responders  Non-responders 

 Treatment 1  16  22   9  28 
 Treatment 2  34   4  16  21 

 Improved precision of the statistical analysis is a possibility if we control for age 
groups using the underneath multiple logistic regression model

   ln odds-of-responding = a + b
1
 x

1
 + b

2
 x

2
  

  with x
1
 = treatment modalities (0 = treatment 1, 1 = treatment 2)  

  x
2
 = age classes (1 = < 50 years, 2 = > 50 years)  

  b-values are regression coeffi cients.    

 The following results are obtained:

   b
1
 = 1.044  

  Se 
b1

 = 0.387  
  t-value = 2.697  
  p-value = 0.007    

 After adjustment for age class improved precision to test the effi cacy of treatment 
is obtained as demonstrated by a larger t-value and smaller p-value.  
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    5   Discussion 

 Multiple regression analysis of confounding variables, although routinely used in 
retrospective observational studies, is not emphasized in prospective randomized 
clinical trials (RCTs). The randomization process ensures that such potential con-
founders are equally distributed among the treatment groups. If not, the result of the 
study is fl awed, and regression analysis is sometimes used in a post hoc attempt to 
salvage the data, but there is always an air of uncertainty about such data. Multiple 
regression can, however, be used in prospective RCTs for a different purpose. Certain 
patient characteristics in RCTs may cause substantial spread in the data even if they 
are equally distributed, and, thus, independent of the treatment groups. Including 
such data in the effi cacy analysis may reduce the overall spread in the data, and 
reduce the level of uncertainty in the data analysis. Regression models are also 
adequate for such purpose, although rarely applied so far. 

 Regression modeling is a very sophisticated statistical technique which needs 
to be applied carefully and under the right circumstances. Therefore, when using 
regression analysis for the purpose of improving precision of RCTs a number of 
potential problems have to be accounted. They have been recently published by us 
(Cleophas  2005  ) , are reviewed in the previous chapter.

    1.    The sensitivity of testing is jeopardized if the linear or exponential models do not 
fi t the data well enough. This can be checked for example by scatter-plots and 
histograms.  

    2.    Relevant clinical phenomena like unexpected toxicity effects and complete 
remissions can go unobserved by the use of a regression model to assess the data.  

    3.    The inclusion of multiple variables in regression models raises the risk of clinically 
unrealistic results.     

 Nonetheless, if certain patient characteristics are largely independent of the 
treatment modality, they can be included in the data analysis, in order to reduce 
the overall spread in the data. We should emphasize that it has to be decided prior to 
the trial and stated explicitly in the trial protocol whether a regression model will be 
applied, because post hoc decisions regarding regression modeling like any other 
post hoc change in the protocol raises the risk of statistical bias due to multiple testing. 
Naturally, there is less opportunity for modeling in a small trial than in a large trial. 
There is no general rule about which sample sizes are required for sensible regression 
modeling, but one rule-of-thumb is that at least ten times as many patients are required 
as the number of variables in the model. This would mean that a data set of at least 
30 is required if we wish to include a single covariate in the model for the purpose of 
improving precision. With every additional covariate in the model an extra regression 
weight must be estimated, which may lead to a decreased rather than improved 
precision. Regression analysis can be adequately used for improving precision of 
effi cacy analysis. Application of these models is very easy since many computer 
programs are available. For a successful application the fi t of the regression models 
should, however, always be checked, and the covariate selection should be sparse.  
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    6   Conclusions 

 Small precision of clinical trials is defi ned as a large spread in the data. Certain patient 
characteristics of randomized controlled trials may cause substantial spread in the 
data even if they are equally distributed among the treatment groups. The objective of 
this chapter was to assess whether improved precision of the analysis can be obtained 
by transforming the parallel-group data into regression data, and, subsequently, 
including patient characteristics in the analysis. 

 In a 35 patient parallel-group trial with continuous effi cacy data, after adjustment 
of the effi cacy scores for baseline scores, the test-statistic rose from t = 3.313 to 
t = 3.823, while the p-value fell from < 0.01 to < 0.001. In a 150 patient parallel-
group trial with odds as effi cacy variable, after adjustment of the effi cacy variable 
for age class, the test statistic rose from t = 2.435 to t = 2.697, while the p-value fell 
from 0.015 to 0.007. 

 We conclude that regression analysis can be adequately applied for improving 
precision of effi cacy data of parallel-group trials. We caution that, although applica-
tion of these models is very easy with computer programs widely available, the fi t 
of the regression models should always be carefully checked, and the covariate 
selection should be sparse.      

   References 

    Cleophas TJ (2003) The sense and non-sense of regression modeling for increasing precision of 
clinical trials. Clin Pharmacol Ther 74:295–297  

    Cleophas TJ (2005) Problems in regression modeling of randomized clinical trials. Int J Clin 
Pharmacol Ther 43:5–12  

    Fuseau E, Sheiner LB (1984) Simultaneous modeling of pharmacokinetics and pharmacodynamics 
with a nonparametric pharmacodynamic model. Clin Pharmacol Ther 35:733–741  

    Sheiner LB, Steimer JL (1984) Pharmacokinetic/pharmacodynamic modeling and drug 
development. Clin Pharmacol Ther 35:733–741      



227T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 
DOI 10.1007/978-94-007-2863-9_19, © Springer Science+Business Media B.V. 2012

    1   Multiple    Variables Methods 

 Multiple variables methods are used to adjust asymmetries in the patient 
 characteristics in a trial (see page 171 for a discussion of the difference between 
multivariate and multiple variables methods). It can also be used for a subsequent 
purpose. In many trials simple primary hypotheses in terms of effi cacy and safety 
expectations, are tested through their respective outcome variables as described in 
the protocol. However, sometimes it is decided already at the design stage that post 
hoc analyses will be performed for the purpose of testing secondary hypotheses. For 
example, suppose we fi rst want to know whether a novel beta-blocker is better than 
a standard beta-blocker, and second, if so, whether this better effect is due to a vaso-
dilatory property of the novel compound. The fi rst hypothesis is assessed in the 
primary analysis. For the second hypothesis, we can simply adjust the two treatment 
groups for difference in vasodilation by multiple regression analysis and see whether 
differences in treatment effects otherwise are affected by this procedure. However, 
with small data power is lost by such procedure. More power is provided by the fol-
lowing approach. We could assign all of the patients to two new groups: patients 
who actually have improvement in the primary outcome variable and those who 
have not, irrespective of the type of beta-blocker. We, then, can perform a regression 
analysis of the two new groups trying to fi nd independent determinants of this 
improvement. If the dependent determinant is binary, which is generally so, our 
choice of test is logistic regression analysis. Testing the second hypothesis is, of 
course, of lower validity than testing the fi rst one, because it is post-hoc and makes 
use of a regression analysis which does not differentiate between causal relation-
ships and relationships due to an unknown common factor.  

    Chapter 19   
 Post-hoc Analyses in Clinical Trials, 
A Case for Logistic Regression Analysis                  
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    2   Examples 

 In a double-blind randomized study of the new beta-blocker celiprolol for patients 
with angina pectoris the main outcome variable was anginal attack rate. Additional 
outcome variables include systolic and diastolic blood pressure, heart rate, rate 
pressure product, peripheral vascular resistance. Although this study measures sev-
eral outcomes, the various outcomes to some degree measure the same thing, and 
this may be particularly so with blood pressure, heart rate and pressure rate product 
since they are assumed to represent oxygen demand to the heart, which is jeopar-
dized during anginal attacks. The new beta-blocker has been demonstrated preclini-
cally not only to reduce rate pressure product like any other beta-blocker but also to 
reduce peripheral vascular resistance. The novel beta-blocker indeed performed sig-
nifi cantly better than the latter (persistent angina pectoris at the completion of the 
trial 17 versus 33%, P < 0.01, 1 −  b  = ±80%), and this was accompanied by a signifi -
cantly better reduction of systolic blood pressure and reduction of peripheral resis-
tance. A problem with multiple variables analysis is its relatively small power with 
usual sample sizes. For the purpose of better power patients may be divided into 
new groups according to their main outcome. In order to determine the most impor-
tant determinants of the better clinical benefi t, the patients were, therefore, divided 
into two new groups: they were assigned to “no-angina-pectoris” at the completion 
of the trial or “persistent-angina-pectoris” (Table  19.1 ). The univariable analysis of 
these two new groups showed that most of the additional outcome variables 
including treatment assignment were signifi cantly different between the two groups. 

   Table 19.1    Angina pectoris and odds ratios of persistent angina pectoris in the celiprolol (novel 
compound) and propranolol (reference compound) group adjusted for independent variables   

 No angina pectoris 
(n = 23) 

 P 

 Persistent angina 
pectoris (n = 30) 

 Mean ± SD  Mean ± SD 

 Systolic blood pressure(mmHg)  134 ± 17  <0.001  155 ± 19 
 Diastolic blood pressure (mmHg)  77 ± 13  <0.02  84 ± 9 
 Heart rate (beat/min)  65 ± 9  <0.09  69 ± 9 
 Rate pressure product (mmHg·beats/

min·10 −3 ) 
 8.6 ± 11  <0.001  10.7 ± 14 

 Fore arm blood fl ow (ml/100 ml 
tissue·min) 

 8.8 ± 10.8  <0.02  4.1 ± 2.2 

 Treatment assignment (celiprolol/
propanolol) 

 18/5  <0.001  8/22 

 Odds ratio of 
persistent angina  95% CIs  P-value 

 Unadjusted  0.38  0.25–0.52  <0.002 
 Adjusted for rate pressure product  0.13  0.05–0.22  <0.0005 
 Adjusted for systolic pressure plus heart 

rate 
 0.12  0.04–0.20  <0.0005 

  Data from Cleophas et al.  (  1996  )  
 Odds ratio = odds of persistent angina pectoris in the celiprolol group/odds of persistent angina 
pectoris in the propranolol group. Means ± SDs are given 
  CI  confi dence interval,  SD  standard deviation  
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These variables were entered in the logistic regression analysis: the variables double 
product, systolic blood pressure and heart rate were independent of treatment assign-
ment, while fore arm blood fl ow (= 1/peripheral vascular resistance) was not. After 
adjustment for fore arm blood fl ow the difference in treatment assignment was lost. 
This suggests that celiprolol exerted its benefi cial effect to a large extent through its 
peripheral vasodilatory property.  

 As a second example is given a double-blind randomized parallel-group study 
comparing chronotropic (mibefradil ands diltiazem) and non-chronotropic calcium 
channel blockers (amlodipine) in patients with angina pectoris. Although all of the 
calcium channel blockers improved exercise tolerance as estimated by % increased 
time to onset ischemia during bicycle ergometry, mibefradil and diltiazem performed 
better than amlodipine (20.8 and 12.4 s versus 9.9 s, P < 0.01 and <0.001). In order to 
determine the most important determinants of this better clinical benefi t, patients were 
divided into two new groups: they were assigned to non-responders if their change in 
ischemic onset time was zero or less, and to responders if it was larger than zero 
(Table  19.2 ). Univariable analysis of these two groups showed that many variables 
including treatment assignment tended to be different between the two groups.  

   Table 19.2    Mean data ( SDs ) after assignment of patients according to whether (responders) or not 
(non-responders) their ischemia-onset-time increased after treatment with calcium channel block-
ers, and odds ratios of mibefradil or diltiazem versus amlodipine for responding, unadjusted and 
after adjustment for difference of heart rate   

 Responders (n = 239)  Non-responders (n = 61) 

 P-value  Mean (SD)  Mean (SD) 

 At rest 
 Systolic blood pressure (mmHg)  −5 (19)  −1 (23)  0.27 
 Diastolic blood pressure (mmHg)  −5 (10)  −3 (10)  0.13 
 Heart rate (beats/min)  −5 (11.0)  1.1 (9.6)  <0.001 
 Rate pressure product (mmHg·beats/

min·10 −3 ) 
 −1.0 (1.9)  0.1 (2.1)  <0.001 

 At maximal workload 
 Systolic blood pressure (mmHg)   −1 (21)  −2 (27)  0.68 
 Diastolic blood pressure (mmHg)   −4 (11)  −4 (11)  0.97 
 Heart rate (beats/min)  −12 (17)  −6 (15)  0.010 
 Rate pressure product (mmHg·beats/

min·10 −3 ) 
  −2.3 (4.5)  −1.2 (4.5)  0.090 

 Treatment assignment (n, %) 
 Amlodipine  76 (32%)  27 (44%) 
 Diltiazem  75 (31%)  26 (43%) 
 Mibefradil  88 (37%)  8 (13%) 

 Unadjusted odds ratio (95% CIs) odds ratio 
adjusted for change in heart rate (95% CIs) 

 Odds ratio adjusted for change 
in heart rate (95% CIs) 

 Amlodipine  1 (−)  1(−) 
 Diltiazem  1.02 (0.55–1.92)  0.86 (0.45–1.66) 
 Mibefradil  3.91 (1.68–9.11)  2.26 (0.86–5.97) 

  Van der Vring et al.  (  1999  )  
 Odds ratio = odds of responding on mibefradil or diltiazem or amlodipine/odds of responding on 
amlodipine 
  CI  confi dence interval,  SD  standard deviation.  
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 These variables were entered into the logistic regression analysis: the difference 
in treatment assignment between the two groups was lost after adjustment for heart 
rates. This suggests that the benefi cial effect of calcium channel blockers in this 
category of patients is largely dependent upon their effect on heart rate. 

 It is important to recognize that in the fi rst study there is a positive correlation 
between peripheral fl ow and clinical benefi t (when peripheral fl ow increases benefi t 
gets better), whereas in the second study there is a negative correlation between 
heart rate and clinical benefi t (when heart increases benefi t gets worse). Multiple 
variables analysis only measures dependencies but makes no differences between a 
positive and negative correlation. So, we must not forget to look at the trend in the 
data before interpretations can be made.  

    3   Logistic Regression Equation 

 Logistic regression is similar to linear regression the main equation of which is 
explained in Chap.   11    :

     = + + +…1 1 2 2 n ny  a b x b x b x     

 Linear regression software fi nds for you an equation that best predicts the out-
come y from one or more x variables. Continuous data are measured. Y is assumed 
to be the expected value of a normal distribution. With y being a binary (yes/no) 
variable, the proportion of, e.g., “yes” data (p in the underneath example) lies 
between 0 and 1, and this is too small a range of values for the expression of a sum-
mary of multiple variables like a + b 

1
 x 

1
  + b 

2
 x 

2
  + … b 

n
 x 

n
  .  The range of y-responses can 

be broadened to 0 to ∞ if we take p/(1 − p) as y-variable , and even to −∞ to + ∞ if we 
take ln p/(1 − p). The simplest logistic regression model using only a single x-vari-
able can be presented in a contingency table of proportional data:  
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 Odds ratio = e b  
 p/(1 − p) = the odds of fi nding yes-data. The regression coeffi cient value (b-value) 

in the logistic regression equation can be best understood as the natural logarithm of 
the odds ratio of fi nding p 

1
 /(1 − p 

1
 ) given p 

0/
 (1 − p 

0
 ). Although with multiple- variables 

logistic regression becomes a formidable technique, it is straightforward to under-
stand, and logistic regression increasingly fi nds its way into the secondary analysis 
of trial data.  

    4   Conclusions 

 Sometimes it is decided already at the design stage of a clinical trial to perform post-
hoc analyses in order to test secondary hypotheses. For the purpose of power we 
may make two new groups: those who have improvement and those who have not, 
irrespective of the type of treatment. We, then, can perform a regression analysis of 
the two new groups trying to fi nd independent determinants of improvement. If one 
or more determinants for adjustment are binary, which is generally so, our choice of 
test is logistic regression analysis. This procedure does of course provide no proof. 
However, it may give strong support for the presence of particular underlying mech-
anisms in the data. Also, it gives you odds ratios presenting the relative presence of 
a benefi cial outcome in a treatment group as compared to that in a control group.      
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     1   Introduction    

 The basic idea of multistage regression goes back to the early thirtieth when Sewal 
Wright, professor of economics at the University of Chicago, described direct and 
indirect predictors (Wright  1928  ) . If you want to predict the price of vegetables, 
then the weather-reports seemed to be a better predictor than problematic informa-
tion about the crops (Wright  1928  ) . Indirect predictors are defi ned as instrumental 
variables that come from a detailed knowledge of the underlying mechanisms deter-
mining both the predictor and the outcome (Angrist and Krueger  2001  ) . They are 
widely applied in economics, but in the past years a few studies on health statistics 
have been published: cigarette tax, counselling, proximity of health facility better 
predicted health outcomes than did direct causal factors (Evans and Ringel  1999 ; 
Permutt and Hebel  1989 ; McClellan et al.  1994  ) . 

 In clinical pharmacology multistage regression is rarely used: searching Pubmed, 
we found four molecular biology studies (O’Reilly et al.  2009 ; Morris  2010 ; 
Gibbons et al.  1986 ; Steiner et al.  1985  ) , and two toxicological studies (Qiu  2007 ; 
Eyler et al.  2009  ) , and only three drug effi cacy studies (Meltzer et al.  2000 ; Tollefson 
and Sanger  1997 ; Barone et al.  2010  ) . This is remarkable, given the multistage pat-
terns of many medical conditions. We have to add that modern analytical models 
like linear, logistic, and Cox regression, although they allow for multiple predictors, 
only assess single step relationships to the outcome variable. With multistage regres-
sion the predictors are supposed to produce not only direct effects on the outcome 
variable, but also indirect effects through concomitant predictors. This chapter uses 
a simple evaluation study of a new treatment to assess whether multistage regres-
sion better predicts the effi cacy of a new treatment than does the standard methodol-
ogy. We hope that this chapter will stimulate researchers analyzing effi cacy data of 
new treatments to more often apply multistage regression.  

    Chapter 20   
 Multistage Regression                 



234 20 Multistage Regression

    2   An Example, Usual Linear Regression Modeling 

 Patients’ non-compliance is a factor notoriously affecting the estimation of drug 
effi cacy. An example is given of a simple evaluation study that assesses the effect of 
non-compliance on the effi cacy of a novel laxative, with numbers of stools in a 
month as effi cacy estimator, (the y-variable) and “pills not used” as non-compliance 
variable and predictor (the x-variable). The data are in Table  20.1 . We use linear 
regression for data analysis. The magnitude of the regression coeffi cient (b-value) 
and of the correlation coeffi cient (r-value) are used for estimating the strength of 
association between the predictor and outcome variable. Signifi cant b- and r-values 
indicate that the association is better than a zero-association is, and, thus, that the 
data are closer to the regression line than could happen by the play of chance. With 
simple linear regression the “pills not used” was a signifi cant predictor of “treat-
ment effi cacy” with a p-value of 0.005, a b-value of 0.70, and an r-square value of 
0.18. This means that non-compliance predicted treatment effi cacy only by 18%, 
and that 82% was unexplained. Two x-variables generally give more precision than 
a single one to determine the y-variable (outcome variable). Therefore, a second 
x-variable was included in the model, the numbers of counselling events per patient, 
and a multiple linear regression was performed. Indeed, the overall r-square value 
rose from 0.18 to 0.66: non-compliance and counselling together predicted the out-
come by 66% (p = 0.0001). However, non-compliance was not very signifi cant any-
more (b = 0.29, p = 0.09) with a decrease of the b-value by 58.6%.   

    3   Path Analysis 

 We might be able to do better, if we take into account, that non-compliant patients 
not only use fewer drugs, but also tend to attend fewer counselling events. This may 
contribute, indirectly, to their non-compliant behavior. In order to account for this 
possible indirect effect of counselling path analysis can be adequately used. The 
requirements for a path analysis include

    (1).    a signifi cant effect of the predictors variables on the outcome variable in the 
multiple linear regression, and  

    (2).    a signifi cant correlation between the predictor variables.     

 Using the p < 0.10 as level for signifi cance, both requirement (1) and (2) were 
met, with p-values of 0.0001, 0.09, and 0.024 (Fig.  20.1 ).  

 Essentially, path analysis assumes two effects, (1) the effect of non-compliance 
on effi cacy and (2) the effect of non-compliance through counselling on effi cacy. 
These two effects can be, simply, added up, and can be used to cover the joint effect 
of non-compliance on the effi cacy. 

 With path analysis usual regression coeffi cients cannot be used, because they 
have the same unit as the outcome variable, i.e., stools per months in our example. 
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Counselling has a unit different from that of effi cacy, namely frequency of counsel-
ling events. If we want to add up the effects of both variables, their units will have 
to be the same. Standardizing the data is the solution. For that purpose both the 
values and their variance are divided by their own variance.

   Table 20.1    Example of a study of the effects of counselling and non-compliance on the effi cacy 
of a novel laxative drug   

 Pt 

 Instrumental 
variable 

 Problematic 
predictor  Outcome 

 Improved values of 
problematic predictor 

 Quality of 
life score 

 Frequency 
counselling 

 Pills not 
used 

 Effi cacy estimator of new 
laxative (stools/month)  Pills not used 

 1.  8  25  24  27.68  69 
 2.  13  30  30  30.98  110 
 3.  15  25  25  32.30  78 
 4.  14  31  35  29.00  103 
 5.  9  36  39  28.34  103 
 6.  10  33  30  29.00  102 
 7.  8  22  27  27.68  76 
 8.  5  18  14  25.70  75 
 9.  13  14  39  30.98  99 
 10.  15  30  42  32.30  107 
 11.  11  36  41  29.66  112 
 12.  11  30  38  29.66  99 
 13.  12  27  39  30.32  86 
 14.  10  38  37  29.00  107 
 15.  15  40  47  32.30  108 
 16.  13  31  30  30.98  95 
 17.  12  25  36  30.32  88 
 18.  4  24  12  25.04  67 
 19.  10  27  26  29.00  112 
 20.  8  20  20  27.68  87 
 21.  16  35  43  32.96  115 
 22.  15  29  31  32.30  93 
 23.  14  32  40  31.64  92 
 24.  7  30  31  27.02  78 
 25.  12  40  36  30.32  112 
 26.  6  31  21  26.36  69 
 27.  19  41  44  34.94  66 
 28.  5  26  11  25.70  75 
 29.  8  24  27  27.68  85 
 30.  9  30  24  28.34  87 
 31.  15  20  40  32.30  89 
 32.  7  31  32  27.02  89 
 33.  6  29  10  26.36  65 
 34.  14  43  37  31.64  121 
 35.  7  30  19  27.02  74 
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     Values (variance of values)   

     

Values variance of values

variance variance
⎛ ⎞
⎜ ⎟⎝ ⎠     

 The “values/variance” terms are called the standardized values. They have a 
variance of 1, which is very convenient for the calculations. In the analysis all 
regressions are performed on standardized values, giving rise to standardized 
regression coeffi cients, which can be simply added up, since they now have the 
same unit, while variances (equalling 1) no longer have to be taken into account. 
The standardized regression coeffi cients are calculated by many software programs. 
SPSS statistical software (Barone et al.  2010  )  routinely reports the standardized 
regression coeffi cients together with the usual regression coeffi cients. With sim-
ple linear regression the standardized regression coeffi cient is equal to the r-value. 
A path diagram must be constructed with arrows for indicating supposed causal 
effect paths. Figure  20.1  summarizes the supposed effects for our example: (a) non-
compliance causes an effect on efficacy, and (b) non-compliance causes an 
additional effect on effi cacy though counselling. The standardized regression coef-
fi cients are added to the arrows (Fig.  20.1 ). Then, they are added up according to:

     0.18 0.38 0.72 0.18 0.27 0.45.+ × = + =     

 This result is expressed as the path statistic, and equals the sum of the standard-
ized regression coeffi cients. Its magnitude is sometimes interpreted similarly to the 
overall r-square value of a multiple regression, but this is not entirely correct. Unlike 
r-square values, standardized regression coeffi cients and their sums can be some-
what larger than 1.0. Also negative indirect factors are sometimes produced, reduc-
ing the magnitude of the add-up sums. Yet, the interpretation is much the same. The 
larger the result of your path statistic, the better the independent variable predicts 
the dependent one. And, so, the two-path statistic of 0.45 is a lot better than the 
single-path statistic of 0.18 with an increase of 60.0% (Fig.  20.1 ).  

0.38 (p = 0.024)

Non-complianceCounselling

0.72 (p = 0.0001) 0.18 (p = 0.09)

Efficacy estimator

  Fig. 20.1    Path diagram of study assessing the direct and indirect effects of non-compliance on 
effi cacy of a new laxative       
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    4   Multistage Least Squares Method 

 Instead of path analysis multistage least square is another possibility for the 
analysis of the above study. Also this method requires both a signifi cant correla-
tion between the predictors and the outcome in the multiple regression, and a 
signifi cant correlation between the predictors. The simplest version, called 2 
stage least squares (2SLS), is available in the regression module of SPSS  (  2011     ) , 
and is adequate for most data fi les. The analysis can also be performed applying 
the usual linear regression commands without the 2SLS commands. Its theoreti-
cal basis is slightly different from that of path analysis. Path analysis assumes 
causal pathways. The 2SLS method assumes that in a linear regression the inde-
pendent variable (x-variable), here traditionally called the exogenous variable, 
is problematic. Problematic means that it is somewhat uncertain. Basically, the 
method of linear regression does not allow for uncertainty of the x-variable: the 
x-values are measured with 100% certainty. However, in practice there are many 
situations where this assumption is not warranted. For example, non-compliant 
patients are not very helpful to make the assessment for non-compliance 100% 
certain. If an additional variable can be argued to provide additional informa-
tion about a problematic variable, it may be worthwhile to include it in the 
analysis. The variable counselling in the above example may, indeed, cause 
improvement of patients’ compliance and, thus, also, indirectly improve the 
outcome variable. In the 2SLS model counselling is, thus, used as an instrumen-
tal variable, for the purpose of reducing the uncertainty of the problematic vari-
able non-compliance. 

 The analysis consists of two stages.

    1st stage  
 A simple linear regression is performed with non-compliance as outcome and coun-
selling as independent variable. For convenience the independent variable is here 
called the z-variable. 
 The result shows a significant correlation with a p-value of 0.024 and the fol-
lowing equation   :

     

x values intercept regression coefficient *  z values

22.4 0.66*  z values

(* sign of multiplication).

− = + −
= + −

=     

 With the help of the above equation, modifi ed (and improved) x-values are calcu-
lated, e.g. for patient no 1

     

x 22.4 0.66*8

2 6  7. 8

= +
=     

 In Table  20.1  the improved x-values are given in column 4.  
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   2nd stage  

 A simple linear regression is performed with effi cacy as outcome and the improved 
x-values as predictor. The result shows a very signifi cant correlation with a p-value 
of 0.0001 and the following equation (* = sign of multiplication):

     

y value intercept regression coefficient *  improved x values

117.7 6.99*  improved x values

− = + −
= − + −     

 The r-square value = 0.54. This would mean that knowing the improved x-values we 
can predict with 54% certainty the effi cacy of the novel laxative. Using the problem-
atic x-variable the result produced a signifi cant effect with p = 0.011. However, the 
r-square value was a lot smaller, 0.18 compared to the 0.54, with an increase of 
66.7%.     

    5   Bivariate Analysis Using Path Analysis 

 Not only frequency of stools, but also quality of life may be considered an important 
outcome variable of drug effi cacy. The addition of such an outcome variable may 
enable to make even better use from our predicting variables. For that purpose a 
multivariate regression with two rather than one outcome variable would be an 
interesting option. However, this option is not available in SPSS (Barone et al.  2010  )  
and many other software programs. A pleasant thing about path analysis is that it 
can, indeed, be used as an alternative approach to multivariate regression, with a 
result similar to that of the more complex mathematical approach. As an example, 
we extend the data from the above study with quality of life scores of the patients. 
We assume that counselling and non-compliance not only affect the effi cacy of the 
drug but also the patients’ quality of life. First, we have to check that the relation-
ship of either of the two predictors with the outcome quality of life is signifi cant in 
the usual regression model: they were so with p-values of 0.03 and 0.02. Then, a 
path diagram with standardized regression coeffi cients is constructed (Fig.  20.2 ). 
The standardized regression coeffi cients of the residual effects are obtained by 
taking the square root of (1 – r 2 ). The standardized regression coeffi cient of one 
residual effect versus another can be assumed to equal 1.00.  

 We now fi nd the overall correlation between the two outcome variables as follows:  

 1. Direct effect of counselling 
  0.72 × 0.31 =  0.22 
 2. Direct effect of non-compliance 
  0.32 × 0.18 =  0.06 
 3. Indirect effect of counselling and non-compliance 
  0.72 × 0.38 × 0.32 + 0.18 × 0.38 × 0.31 =  0.11 
 4. Residual effects 
  1.00 × 0.58 × 0.83 =  0.48 + 

 Total  0.85 
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 A path statistic of 0.85 is considerably larger than that of the single outcome 
model: 0.85 versus 0.45 (47.1% larger). Obviously, two outcome variables make 
better use of the predictors in our data than does a single one. An advantage of this 
nonmathematical approach to multivariate regression is that it nicely summarizes all 
relationships in the model, and it does so in a quantitative way (Fig.  20.2 ).  

    6   Discussion 

 The present chapter uses data of an effi cacy study of a new treatment to explain path 
analysis and multistage least squares. Both are multistep statistical methods that are 
adequate for simultaneous assessment of direct and indirect effects. They are very 
successful in economics, but rarely used in clinical research. The current chapter 
shows that they can be readily applied to effi cacy studies, and enable to make better 
predictions from your data than does usual linear regression. 

 This possible benefi t may be extended to studies of more general health issues. 
A problem with such studies is that they frequently have to make use of 
rather uncertain predictor variables, for example levels of arteriosclerosis, and 
 infl ammation may predict cardiovascular death and severity of infections respec-
tively, but such levels are diffi cult to measure. Table  20.2  gives some more exam-
ples. The performance of multistep statistics with these examples has not been 
tested, but the results of the simple effi cacy study in this paper supports benefi ts 
similar to those of economical studies as widely published (Wright  1928 ; Angrist 
and Krueger  2001  ) .  

 A pleasant thing about path analysis is that it can be used for a nonmathemati-
cal approach of multivariate regression. We should emphasize that the term mul-
tivariate regression is often erroneously applied, when multiple independent and 

0.180.31

0.830.58

0.72 0.32

1.00

0.38Counselling Non-compliance

Efficacy laxative Quality of life score

Residual efficacy Residual quality of life

  Fig. 20.2    Decomposition of 
correlation between effi cacy 
laxative and quality of life 
score, all of the correlations 
in the above example were 
statistically signifi cant at 
p < 0.10       
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just a single dependent variable are in the data. Strictly, multivariate regression 
regards models with more than a single dependent variable (y-variable). The main 
aim is to quantify reasons for the correlation between two or more dependent 
variables. In our hands the multivariate model of our data with two instead of one 
outcome variables made even better use of the predictors than did the single out-
come model. 

 Some limitations of multistep regression have to be mentioned. First, instru-
mental variables may be weak predictors. In order to exclude weak predictors 
multistage regression should always be preceded by the usual multiple regression: 
only relatively strong predictor variables signifi cantly predicting the outcome vari-
ables can be included. Second, also signifi cant correlations between the predictor 
variables are required. At the same time, however, they must not be too strong. An 
r-value > 0.85 indicates the presence of collinearity, which is an important validity 
criterion of multiple regression. 

 We conclude that

    1.    multistep regression methods, as used in the present paper produced much better 
predictions about the drug effi cacy than did standard linear regression;  

    2.    the inclusion of additional outcome variables enables to make still better use of 
the predicting variables;  

    3.    multistage regression must always be preceded by usual linear regression in 
order to exclude weak predictors.      

    7   Conclusions 

 Multistage regression is rarely used in therapeutic research despite the multistage 
pattern of many medical conditions. 

 Using an example of an effi cacy study of a new laxative, path analysis and the 
two stage least square method were compared with standard linear regression. 

 Standard linear regression showed a signifi cant effect of the predictor “non-
compliance” on drug effi cacy at p = 0.005. However, after adjustment for the 
covariate “counselling”, the magnitude of the regression coeffi cient fell from 0.70 
to 0.29, and the p – value rose to 0.10. 

   Table 20.2    Example of possible instrumental variables for studies with problematic predictors   

 Instrumental variable  Problematic predictor  Outcome 

 Assignment to small school classes  School class size  Achievement score 
 Alcohol tax  Use of alcoholic beverages  Liver disease 
 Regulatory measures  Use of hard drugs  Death 
 Hours of TV  Home work  Achievement score 
 C-reactive protein  Level of infl ammation  Severity of infection 
 Cholesterol levels  Level arteriosclerosis  Cardiovascular death 
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 Path analysis was valid, given the signifi cant correlation between the two predic-
tors (p = 0.024), and produced an increase of the regression coeffi cient between 
“non-compliance” and “drug effi cacy” by 60.0%. The two stage least squares method, 
using “counselling” as instrumental variable, produced, similarly, an increase of the 
overall correlation by 66.7%. 

 A bivariate path analysis with “quality of life” as second outcome variable 
increased the magnitude of the path statistic further by 47.1%, and, thus, enabled to 
make still better use of the predicting variables. 

 We conclude that

    1.    multistage regression methods, as used in the present paper produced much 
better predictions about the drug effi cacy than did standard linear regression;  

    2.    the inclusion of additional outcome variables enables to make still better use of 
the predicting variables;  

    3.    multistage regression must always be preceded by usual linear regression in 
order to exclude weak predictors.     

 We recommend that researchers analyzing effi cacy data of new treatments more 
often apply multistage regression.      
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               1   Introduction 

 A major objective of clinical research is to improve the effectiveness of individual 
therapies by studying treatment effects and health effects in subgroups of patients, 
for example age-groups, races, genders etc. Sometimes, the use of continuous or 
binary variables are possible for the purpose. However, races, numbers of co-
medications, co-morbidities and many more variables in clinical research have 
stepping functions with a limited number of values, e.g.,  four  races,  zero to eight  
co-medications etc. If such stepping functions are analyzed using continuous vari-
ables in a linear or logistic regression model, we assume that the outcome variable 
will rise linearly, but this needs not necessarily be so. This assumption raises the risk 
of underestimating the effects. In the given situation, it may be more safe to recode 
the stepping variables into the form of categorical variables. 

 Until the late 1990s the proper handling of categories received little attention 
from the scientifi c community. In 1996 Nichols polled statistical software users, and 
found out that the proper use of categorical variables was of major concern to them 
(Nichols  1996  ) . In the past few years adequate methods for coding categorical vari-
ables have been published (Williams  2006 ; Long and Freese  2006 ; Anonymous 
 2010a,   b ; Skrondal and Rabe-Hesketh  2005  ) . Unfortunately, statistical software 
programs, to date, do not routinely allow for recoding stepping variables into cate-
gorical ones. For example, with linear regression analysis in SPSS  ( SPSS statistical 
software  2011  )  categorical variables have to be created. In contrast, logistic regres-
sion in SPSS provides a special dialog box for the purpose. 

 In the current chapter we will demonstrate from examples how recoding works. 
The examples show that the stepping functions, if used as continuous variables, do 
not produce signifi cant effects, whereas they produce very signifi cant effects after 
recoding. We hope this explanatory chapter will be helpful to researchers assessing 
categories.  

    Chapter 21   
 Categorical Data       
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    2   Races as a Categorical Variable 

 In the fi rst example the effects of race on physical strength are studied. Physical 
strength scores are assessed in four groups of each 15 subjects with different races 
(hispanics, blacks, asians and whites). The data are in Table  21.1 . The effects of 
gender and age on physical strength are pretty predictable, but those of races are 
rather uncertain (White  1972  ) . Yet, we decided to analyze the effect of race 
together with the factors gender and age in a multiple linear regression model with 
physical strength as outcome variable. The races hispanics, blacks, asians, and 
whites were given the numbers of respectively 1–4. The result of the analysis is 
shown in Table  21.2 .   

   Table 21.1    The effects    on physical strength (scores 0–100) are assessed 
in 60 subjects of different races (hispanics (1), blacks (2), asians (3), and 
whites (4)), ages (years), and genders (0 = female, 1 = male)   

 Patient number  Physical strength  Race  Age  Gender 

 1  70,00  1,00  35,00  1,00 
 2  77,00  1,00  55,00  0,00 
 3  66,00  1,00  70,00  1,00 
 4  59,00  1,00  55,00  0,00 
 5  71,00  1,00  45,00  1,00 
 6  72,00  1,00  47,00  1,00 
 7  45,00  1,00  75,00  0,00 
 8  85,00  1,00  83,00  1,00 
 9  70,00  1,00  35,00  1,00 
 10  77,00  1,00  49,00  1,00 
 11  63,00  1,00  74,00  0,00 
 12  72,00  1,00  49,00  1,00 
 13  78,00  1,00  54,00  1,00 
 14  62,00  1,00  46,00  0,00 
 15  69,00  1,00  34,00  1,00 
 16  90,00  2,00  25,00  1,00 
 17  98,00  2,00  46,00  1,00 
 18  82,00  2,00  35,00  1,00 
 19  83,00  2,00  50,00  1,00 
 20  90,00  2,00  52,00  1,00 
 21  86,00  2,00  46,00  1,00 
 22  59,00  2,00  53,00  0,00 
 23  99,00  2,00  44,00  1,00 
 24  87,00  2,00  30,00  0,00 
 25  78,00  2,00  80,00  1,00 
 26  96,00  2,00  56,00  1,00 
 27  97,00  2,00  55,00  0,00 
 28  89,00  2,00  35,00  1,00 
 29  90,00  2,00  58,00  1,00 

(continued)
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 Patient number  Physical strength  Race  Age  Gender 

 30  91,00  2,00  57,00  0,00 
 31  60,00  3,00  65,00  1,00 
 32  61,00  3,00  45,00  1,00 
 33  66,00  3,00  51,00  0,00 
 34  54,00  3,00  55,00  0,00 
 35  53,00  3,00  82,00  0,00 
 36  57,00  3,00  64,00  0,00 
 37  63,00  3,00  40,00  0,00 
 38  70,00  3,00  36,00  1,00 
 39  59,00  3,00  64,00  0,00 
 40  62,00  3,00  55,00  0,00 
 41  65,00  3,00  50,00  1,00 
 42  67,00  3,00  53,00  0,00 
 43  53,00  3,00  73,00  0,00 
 44  69,00  3,00  34,00  1,00 
 45  51,00  3,00  55,00  0,00 
 46  54,00  4,00  59,00  0,00 
 47  68,00  4,00  64,00  1,00 
 48  69,00  4,00  45,00  0,00 
 49  70,00  4,00  36,00  1,00 
 50  90,00  4,00  43,00  0,00 
 51  90,00  4,00  23,00  1,00 
 52  89,00  4,00  44,00  1,00 
 53  82,00  4,00  83,00  0,00 
 54  85,00  4,00  40,00  1,00 
 55  87,00  4,00  42,00  1,00 
 56  86,00  4,00  32,00  0,00 
 57  83,00  4,00  43,00  1,00 
 58  80,00  4,00  35,00  1,00 
 59  81,00  4,00  34,00  0,00 
 60  82,00  4,00  33,00  1,00 

Table 21.1 (continued)

   Table 21.2    Linear regression analysis with physical strength score as dependent and race, age, 
and gender as independent variable (p-values <0.10 are defi ned statistically signifi cant)   

 Coeffi cients a  

 Model 

 Unstandardized 
coeffi cients 

 Standardized 
coeffi cients 

 B  Std. error  Beta  t  Sig. 

 1  (Constant)  79,528  8,657  9,186  ,000 
 Race  ,511  1,454  ,042  ,351  ,727 
 Age  −,242  ,117  −,260  −2,071  ,043 
 Gender  9,575  3,417  ,349  2,802  ,007 

   a Dependent Variable: strengthscore  
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 Obviously, race is not a signifi cant predictor of physical strength, suggesting that 
physical strength scores are not signifi cantly different between different races. 
However, this linear regression model looked at the linear effect of race, which was, 
actually, not what we intended to do. We intended to look at any differences between 
the races, and the linear model was a wrong model for that purpose. For assessing 
any differences between the races it is more adequate to analyze the races as catego-
ries. In order to assess the effects of races on strength scores, we manually recode the 
variable in such a way that all information about the four races is given in the model. 
For that purpose four new variables are created. Table  21.3  shows how it works.  

 For the analysis we use, otherwise, the same multiple linear regression model as 
that of Table  21.1 , and, in addition, three of the four new variables as additional 
independent variables. Table  21.4  gives the result of the analysis. Race is now a very 
signifi cant predictor of physical strength. The result shown in Table  21.4  can be 
interpreted as follows.  

 The underneath regression equation is used:

     = + + + + +1 1 2 2 3 3 4 4 5 5y a b x b x b x b x b x    

   a   = intercept     
  b 

1
  = regression coeffi cient for blacks (0 = no,1 = yes),  

  b 
2
  = regression coeffi cient for asians  

  b 
3
  = regression coeffi cient for whites  

  b 
4
  = regression coeffi cient for age  

  b 
5
  = regression coeffi cient for gender    

   Table 21.3    The race variable from Table  21.1  is recoded into four binary variables, one for each 
race (1 = presence of race, 0 = absence of race)   

 Patient 
number 

 Physical 
strength  Race  Age  Gender 

 Race 1  Race 2  Race 3  Race 4 

 Hispanics  Blacks  Asians  Whites 

 1  70,00  1,00  35,00  1,00  1,00  0,00  0,00  0,00 
 2  77,00  1,00  55,00  0,00  1,00  0,00  0,00  0,00 
 3  66,00  1,00  70,00  1,00  1,00  0,00  0,00  0,00 
 4  59,00  1,00  55,00  0,00  1,00  0,00  0,00  0,00 
 5  71,00  1,00  45,00  1,00  1,00  0,00  0,00  0,00 
 6  72,00  1,00  47,00  1,00  1,00  0,00  0,00  0,00 
 7  45,00  1,00  75,00  0,00  1,00  0,00  0,00  0,00 
 8  85,00  1,00  83,00  1,00  1,00  0,00  0,00  0,00 
 9  70,00  1,00  35,00  1,00  1,00  0,00  0,00  0,00 
 10  77,00  1,00  49,00  1,00  1,00  0,00  0,00  0,00 
 11  63,00  1,00  74,00  0,00  1,00  0,00  0,00  0,00 
 12  72,00  1,00  49,00  1,00  1,00  0,00  0,00  0,00 
 13  78,00  1,00  54,00  1,00  1,00  0,00  0,00  0,00 
 14  62,00  1,00  46,00  0,00  1,00  0,00  0,00  0,00 
 15  69,00  1,00  34,00  1,00  1,00  0,00  0,00  0,00 

(continued)
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 Patient 
number 

 Physical 
strength  Race  Age  Gender 

 Race 1  Race 2  Race 3  Race 4 

 Hispanics  Blacks  Asians  Whites 

 16  90,00  2,00  25,00  1,00  0,00  1,00  0,00  0,00 
 17  98,00  2,00  46,00  1,00  0,00  1,00  0,00  0,00 
 18  82,00  2,00  35,00  1,00  0,00  1,00  0,00  0,00 
 19  83,00  2,00  50,00  1,00  0,00  1,00  0,00  0,00 
 20  90,00  2,00  52,00  1,00  0,00  1,00  0,00  0,00 
 21  86,00  2,00  46,00  1,00  0,00  1,00  0,00  0,00 
 22  59,00  2,00  53,00  0,00  0,00  1,00  0,00  0,00 
 23  99,00  2,00  44,00  1,00  0,00  1,00  0,00  0,00 
 24  87,00  2,00  30,00  0,00  0,00  1,00  0,00  0,00 
 25  78,00  2,00  80,00  1,00  0,00  1,00  0,00  0,00 
 26  96,00  2,00  56,00  1,00  0,00  1,00  0,00  0,00 
 27  97,00  2,00  55,00  0,00  0,00  1,00  0,00  0,00 
 28  89,00  2,00  35,00  1,00  0,00  1,00  0,00  0,00 
 29  90,00  2,00  58,00  1,00  0,00  1,00  0,00  0,00 
 30  91,00  2,00  57,00  0,00  0,00  1,00  0,00  0,00 
 31  60,00  3,00  65,00  1,00  0,00  0,00  1,00  0,00 
 32  61,00  3,00  45,00  1,00  0,00  0,00  1,00  0,00 
 33  66,00  3,00  51,00  0,00  0,00  0,00  1,00  0,00 
 34  54,00  3,00  55,00  0,00  0,00  0,00  1,00  0,00 
 35  53,00  3,00  82,00  0,00  0,00  0,00  1,00  0,00 
 36  57,00  3,00  64,00  0,00  0,00  0,00  1,00  0,00 
 37  63,00  3,00  40,00  0,00  0,00  0,00  1,00  0,00 
 38  70,00  3,00  36,00  1,00  0,00  0,00  1,00  0,00 
 39  59,00  3,00  64,00  0,00  0,00  0,00  1,00  0,00 
 40  62,00  3,00  55,00  0,00  0,00  0,00  1,00  0,00 
 41  65,00  3,00  50,00  1,00  0,00  0,00  1,00  0,00 
 42  67,00  3,00  53,00  0,00  0,00  0,00  1,00  0,00 
 43  53,00  3,00  73,00  0,00  0,00  0,00  1,00  0,00 
 44  69,00  3,00  34,00  1,00  0,00  0,00  1,00  0,00 
 45  51,00  3,00  55,00  0,00  0,00  0,00  1,00  0,00 
 46  54,00  4,00  59,00  0,00  0,00  0,00  0,00  1,00 
 47  68,00  4,00  64,00  1,00  0,00  0,00  0,00  1,00 
 48  69,00  4,00  45,00  0,00  0,00  0,00  0,00  1,00 
 49  70,00  4,00  36,00  1,00  0,00  0,00  0,00  1,00 
 50  90,00  4,00  43,00  0,00  0,00  0,00  0,00  1,00 
 51  90,00  4,00  23,00  1,00  0,00  0,00  0,00  1,00 
 52  89,00  4,00  44,00  1,00  0,00  0,00  0,00  1,00 
 53  82,00  4,00  83,00  0,00  0,00  0,00  0,00  1,00 
 54  85,00  4,00  40,00  1,00  0,00  0,00  0,00  1,00 
 55  87,00  4,00  42,00  1,00  0,00  0,00  0,00  1,00 
 56  86,00  4,00  32,00  0,00  0,00  0,00  0,00  1,00 
 57  83,00  4,00  43,00  1,00  0,00  0,00  0,00  1,00 
 58  80,00  4,00  35,00  1,00  0,00  0,00  0,00  1,00 
 59  81,00  4,00  34,00  0,00  0,00  0,00  0,00  1,00 
 60  82,00  4,00  33,00  1,00  0,00  0,00  0,00  1,00 

Table 21.3 (continued)
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 If an individual is hispanic (race 1), then x 
1
 , x 

2
 , and x 

3
  will turn into 0, and the 

regression equation becomes y = a + b 
4
  x 

4
  + b 

5
  x 

5.
 

     

1 4 4 5 5.

2 4 4 5 5.

3 4 4 5 5.

If black,  y a b b x b x

If asian,  y a b b x b x

If white,  y a b b x b x

= + + +
= + + +
= + + +     

 So, e.g., the best predicted physical strength score of a white male of 25 years of 
age would equal

   y = 72.65 + 9.66 − 0.14 * 25 + 5.89*1 = 84.7 (on a linear scale from 0 to 100), (* = sign 
of multiplication).    

 Compared to the presence of the hispanic race, the black and white races are 
signifi cant positive predictors of physical strength (p = 0.0001 and 0.004 respec-
tively), the asian race is a signifi cant negative predictor (p = 0.050). All of these 
results are adjusted for age and gender.  

    3   Numbers of Co-medications as a Categorical Variable 

 Numbers of co-medications may be positively correlated with admissions to hospi-
tal due to adverse drug effects. In the second example we use the data from a recently 
published cohort study from our group (Atiqi et al.  2010  )  about adverse-drug-effect-
admissions to assess this question. 

 In a logistic regression with numbers of co-medications (zero to eight) as inde-
pendent and adverse-drug-effect-admission as dependent variable the correlation 
was, indeed, very signifi cant at p = 0.0001. However, after adjustment for age, gen-
der, and presence of co-morbidity this signifi cant correlation was lost, suggesting 
the presence of confounding rather than a true effect. The results of the analysis are 
in Table  21.5 . This negative fi nding did not at all agree with our prior expectations.  

   Table 21.4    Linear regression analysis with physical strength score as dependent and the presence 
of race 2 (blacks), race 3 (asians), and race 4 (whites), age, and gender as independent variables 
(p-values <0.10 are defi ned statistically signifi cant)   

 Coeffi cients a  

 Model 

 Unstandardized 
coeffi cients 

 Standardized 
coeffi cients 

 t  Sig.  B  Std. error  Beta 

 1  (Constant)  72,650  5,528  13,143  ,000 
 Race 2  17,424  3,074  ,559  5,668  ,000 
 Race 3  −6,286  3,141  −,202  −2,001  ,050 
 Race 4  9,661  3,166  ,310  3,051  ,004 
 Age  −,140  ,081  −,150  −1,716  ,092 
 Gender  5,893  2,403  ,215  2,452  ,017 

   a Dependent Variables: strengthscore  
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 The problem is, that, if scores “zero to eight” are used as a linear covariate in a 
logistic model, then we assume that the risk of adverse-drug effect-admissions rises 
linearly, but this needs not to be so. If the relationship is a stepping function, like with 
categories, and, if we assume a linear relationship, then we are at risk of severely under-
estimating effects. In order to escape this risk, it is more appropriate to transform a 
quantitative estimator used as continuous variable into a categorical one. Using logistic 
regression in SPSS is convenient for the purpose, we need not manually transform the 
quantitative estimator. For the analysis we apply the usual commands: analyze – 
 regression – binary logistic – enter dependent variable – enter independent variables. 
Then, open dialog box labelled categorical variables, select co-medication and transfer 
it into the box categorical variables, then click continue. Co-medication is now trans-
formed into a categorical variable. Click OK. The Table  21.6  gives the results. The 
number of co-medications has become a very signifi cant predictor of the risk of 

   Table 21.5    Multiple binary logistic regression analysis of 2,000 admissions to hospital with the 
odds of iatrogenic admission as dependent variable and age (variable 1), gender (variable 2), 
 presence of co-morbidity (variable 9, yes = 0, no = 1), and number of co-medications (variable 10, 
zero to eight co-medications) as independent variables (p-values < 0.10 are defi ned statistically 
signifi cant)   

 Variables in the equation 

 B  S.E.  Wald  df  Sig.  Exp (B) 

 Step 1 a   VAR00001  −,023  ,004  32,062  1  ,000  ,977 
 VAR00002  ,089  ,116  ,580  1  ,446  1,093 
 VAR00010  ,004  ,072  ,003  1  ,953  1,004 
 VAR00009  ,095  ,073  1,672  1  ,196  1,099 
 Constant  43,752  8,077  29,345  1  ,000  1,003E19 

   a Variable(s) entered on step 1: VAR00001, VAR00002, VAR00010, VAR00009  

   Table 21.6    The same data as those from Table  21.5 . Co-medication has been recoded from a 
continuous into a categorical variable with nine categories (zero to eight co-medications), 
(p-values <0.10 are defi ned statistically signifi cant)   

 Variables in the equation 

 B  S.E.  Wald  df  Sig.  Exp (B) 

 Step 1 a   VAR00001  −,024  ,004  32,859  1  ,000  ,976 
 VAR00002  ,080  ,117  ,470  1  ,493  1,084 
 VAR00010  22,241  8  ,004 
 VAR00010(1)  18,900  40199,059  ,000  1  1,000  1,615E8 
 VAR00010(2)  19,490  40199,059  ,000  1  1,000  2,914E8 
 VAR00010(3)  18,923  40199,059  ,000  1  1,000  1,653E8 
 VAR00010(4)  19,342  40199,059  ,000  1  1,000  2,514E8 
 VAR00010(5)  18,820  40199,059  ,000  1  1,000  1,491E8 
 VAR00010(6)  19,122  40199,059  ,000  1  1,000  2,017E8 
 VAR00010(7)  17,932  40199,059  ,000  1  1,000  6,133E7 
 VAR00010(8)  −1,109  56845,749  ,000  1  1,000  ,330 
 VAR00009  ,109  ,076  2,047  1  ,152  1,115 
 Constant  25,804  40199,060  ,000  1  ,999  1,609E11 

   a Variable(s) entered on step 1:VAR00001, VAR00002, VAR00010, VAR00009.  
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 admissions due to adverse drug effects with a p-value of 0.004. Obviously, the numbers 
of co-medications is an independent predictor of adverse-drug-effect- admissions, 
although not strictly in a linear way. This predictor remains statistically signifi cant even 
after adjustment for age, gender, and presence co-morbidity (Table  21.6 ).   

    4   Discussion 

 Categories are widely applied in clinical research. For example, in hypertension, 
cholesterol, and other consensuses for cardiovascular risk management treatment 
recommendations are given category-wise. Clinical trials are classifi ed in categories, 
otherwise called phases. The NYHA (New York Heart Association) classifi cations of 
heart failure and angina pectoris into four categories are applied worldwide. In spite 
of this, categorical variables are rarely analyzed in a proper way. Mostly they are 
analyzed in the form of continuous variables. However, this approach does not always 
fi t the data patterns well causing imprecise and negative results, as demonstrated in 
the examples of this chapter. We recommend to use the process of recoding such 
variables into multiple dummy variables as also demonstrated in this chapter. 

 However, there are other possibilities. For example with a single independent 
categorical variable ANOVA (analysis of variance) according to general linear mod-
els (Anonymous  2010b  )  or generalized linear models (Skrondal and Rabe-Hesketh 
 2005  )  can be used with the categorical variable as independent variable. The benefi t 
of this approach is that manually creating dummy variables is not needed, and the 
result is statistically similar. Instead of dummy coding other codings are possible, 
and may better fi t your data. With dummy coding one of the group becomes the 
reference group and all of the other groups are compared to that group. As an alter-
native we can create a variable comparing category 1 with 2 and another variable 
comparing category 2 with 3. We, thus, create coeffi cients that compare successive 
categories with one another. Other possibilities include: comparing categories with 
the mean of the previous or the mean of the subsequent categories, or coding catego-
ries with deviations from the mean (Williams  2006 ; Long and Freese  2006 ; 
Anonymous  2010a,   b ; Skrondal and Rabe-Hesketh  2005  ) . Also, multiple categori-
cal variables can be entered into regression models, and the interaction and con-
founding of such variables can be assessed. (Anonymous  2010b ; Skrondal and 
Rabe-Hesketh  2005  ).  

 Finally one or two caveats are in place. Manually constructing the best fi t cod-
ings for your categorical variables can be tedious and error prone. Also the more 
complex the models the more loss of statistical power. If you want to prove much 
with small data, you are at risk of proving nothing at all. 

 Categorical variables are rarely analyzed in a proper way. Mostly they are ana-
lyzed in the form of continuous variables. However, this approach does not always 
fi t the data patterns well causing imprecise and negative results, as demonstrated in 
the examples of this chapter. We recommend to use the process of recoding such 
variables into multiple dummy variables. 
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    4.1   Multinomial Logistic Regression 

 We should add that this chapter only addressed the analysis of categorical exposure 
variables, otherwise called predictor variables. However, in research it is not 
uncommon that outcome variables are categorical, e.g., the choice of food, treat-
ment modality, type of doctor etc. If such outcome variables are binary then binary 
logistic regression is appropriate. If, however, we have three or more alternatives, 
then multinomial logistic regression must be used. This is available in SPSS  ( SPSS 
Statistical Software  2011  )  and other software programs. It works, essentially, simi-
larly to the above recoding procedure, and can in this way be considered a multi-
variate technique, because the dependent variable is recoded from a single 
categorical variable into multiple dummy variables. More on multivariate tech-
niques will be reviewed in Chap.   25    . Multinomial logistic regression should not be 
confounded with ordered logistic regression which is used in case the outcome 
variable consists of categories that can be ordered in a meaningful way, e.g.,  anginal 
class or quality of life class. Also ordered logistic regression is readily available in 
most software programs.   

    5   Conclusions 

 A major objective of clinical research is to study outcome effects in subgroups. 
Such effects generally have stepping functions that are not strictly linear. Analyzing 
stepping functions in linear models, thus, raises the risk of underestimating the 
effects. In the past few years recoding subgroup properties from continuous vari-
ables into categorical ones has been recommended as a solution for the problem. 

 The objective of this chapter was to demonstrate from examples how recoding 
works. To show that stepping functions, if used as continuous variables, do not pro-
duce signifi cant effects, whereas they produce very signifi cant effects after recoding. 

 In the fi rst example the effects on physical strength were assessed in 60 sub-
jects of different races. A linear regression in SPSS with race as independent and 
physical strength score as dependent variable showed that race was not a signifi -
cant predictor of physical strength. Using the process of recoding the variable 
race into categorical dummy variables showed that compared to the presence of 
a hispanic race, the black and white races were signifi cant positive predictors 
(p = 0.0001 and 0.004 respectively), the asian race is a signifi cant negative pre-
dictor (p = 0.050). 

 In the second example the effects of numbers of co-medications on admissions 
to hospital due to adverse drug effects were assessed. A logistic regression in SPSS 
with numbers of co-medications as independent variable showed that co- medications 
was not a signifi cant predictor of iatrogenic admission. Using again the process of 
recoding for categorical dummy variables showed that co-medication was a very 
signifi cant predictor of iatrogenic admission with p = 0.004. 
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 Categorical variables are currently rarely analyzed in a proper way. Mostly they 
are analyzed in the form of continuous variables. This approach does not always fi t 
the data patterns causing negative results, as demonstrated in the examples of this 
paper. We recommend that such variables be recoded into categorical dummy 
variables.      
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     1   In   troduction 

 The imputation of missing data using mean values or values of the “closest  neighbor 
observed”, has been routinely carried out on demographic data fi les since 1960 
 ( Anonymous  2011     ) . The appointment of congressional seats and other political 
 decisions have been partly based on it (Anonymous  2011  ) , and president Obama is 
having the White House use it again in its 2010 census  ( Anonymous   ) . Also in clini-
cal research missing data are common, but compared to demographics, clinical 
research  produces generally smaller fi les, making a few missing data more of a 
problem than it is with demographic fi les. As an example, a 35 patient data fi le of 
3 variables consists of 3 × 35 = 105 values if the data are complete. With only 5 
values missing (1 value missing per patient) 5 patients will not have complete data, 
and are rather useless for the analysis. This is not 5% but 15% of this small study 
population of 35 patients. An analysis of the remaining 85% patients is likely not 
to be powerful to demonstrate the effects we wished to assess. This illustrates the 
necessity of data imputation. Apart from the above two methods for data imputa-
tion regression-substitution has been employed in clinical research. In principle, 
the blanks are replaced with the best predicted values from a multiple linear 
 regression-equation obtained from the data available. 

 Imputed values are, of course, not real data, but constructed values that should 
increase the sensitivity of testing the data by increasing their fi t to some analytical 
model chosen. Sensitivity is often expressed as the magnitude of the test statistic 
“mean value/SE (its standard error)”. If a few values are imputed in a sample, then 
the SE will generally decrease, while the mean value might increase or decrease 
depending on the fi t of the constructed values. Regression-substitution may be a bit 
more sensitive than the other two methods, because the relationship with all of the 
other values from the fi le is more closely taken into account. Yet, simple linear 
regressions often did not provide a better sensitivity of testing in the past (Haitovsky 
 1968  ) . Nowadays, with the advent of the computer  multiple  instead of  simple  linear 
regression enables to include multiple independent  variables rather than a single one, 

    Chapter 22   
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and this may improve its sensitivity. Also, we can think of measures like prior 
 limitation of the acceptable number of missing data, and prior requirements  regarding 
the strength of association, in order to improve the quality of the method. 

 The current chapter was written to compare different methods for handling miss-
ing data with a type of regression-substitution that uses multiple linear regression 
and quality measures. We hope that the measures proposed in this chapter will be 
helpful to researchers assessing data fi les with missing data.  

    2   Current Methods for Missing Data Imputation 

 Three methods of data imputation commonly used are compared. The fi rst one, a 
very old procedure, is to substitute the missing data of a variable with the mean 
value from that same variable. The problem with this approach is that no new infor-
mation is given (the overall mean will remain unchanged after the imputations), but 
the standard error is reduced, and, thus, precision is overstated. The second method 
is often called the closest neighbour datum substitution. This method is, otherwise, 
called hot deck imputation, a term dating back to the storage of data on punched 
cards. The closest neighbour observation is found by subtracting the data of the 
patients with the missing data from those without the missing data one by one. The 
add-up sums of the smallest differences will unmask the closest neighbour. The prob-
lem with this approach is that both the patient and his/her closest neighbour may be 
outliers, and not provide the best fi t for the data. As a third method, regression-
substitution is possible. The incomplete data are used to calculate the best fi t equa-
tion. For example, the best fi t equation may look like:

     y 14 1.8 x= +     

 If in a particular case the x-value is missing, then we can use the y-value to fi nd 
the best fi t x value. With y = 42, x should equal 16. Then we can imputate the value 
16 at the place of the missing datum. This method has the advantage, compared to 
the mean method, that the imputed datum is in some way connected with informa-
tion from all of the other data. However, this conclusion is only true if the regression 
coeffi cient, the b-value, is statistically signifi cant.  

    3   A Proposed Novel Approach to Regression-Substitution 

 The history of regression analysis for imputating missing data started long before 
the era of the computer. Fisher and Yates in 1933    and Chakrabarti in 1962 used 
simple linear regressions for calculating auxiliary values to be used in an analysis in 
place of missing observations (Feingold  1982  ) . However, the method’s popularity 
grew with the advent of the computer facilitating multiple regression analyses. From 
the very start it was recognized that the sums of squares obtained were biased, and 
it was recommended to add artifi cially some error to the imputed data (Kshirsagar 
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and Deo  1989  ) , and current software like the SPSS add-on module for missing data 
is still doing this. However, this procedure is rather arbitrary, and a better approach 
may be to use some requirements for making the quality of the regression- substitution 
such that addition of artifi cial error is not needed. We propose the following require-
ments/recommendations.

    (a)    At least two independent variables are required for regression-substitution. This 
is, because in the past studies with a single independent variable did not  produce 
a lot of sensitivity (Haitovsky  1968  ) .  

    (b)    With more than one missing datum in a single subject delete the subject entirely. 
This is because a linear regression equation can only be adequately used to fi nd 
a single missing datum.  

    (c)    The number of missing data in a data fi le must not be larger than 5%. This is 
because it can be statistically tested that any percentage <5% is not statistically 
different from a percentage of 0%. A percentage large than 5% can, correspond-
ingly, be considered not to be due to chance but to some systematic mechanism, 
such as disease progression or cumulative drug toxicity. Finding the mechanism 
is, then, generally of greater importance to the interpretation of the data than 
imputating the missing data.  

    (d)    If the percentage is larger than 5%, and no particular mechanism is found, e.g., 
8%., then 3% could be deleted, and the remaining sample could be treated using 
regression-imputation.  

    (e)    Variables with a statistically insignifi cant regression coeffi cient (b-value) should 
not be included in the analysis, because in this situation no relationship between 
the variable and the rest of the data is obvious, and, thus, no prediction about the 
value of the missing datum can be made from the rest of the data. With regres-
sion modeling p-values larger than 0.05 are often defi ned signifi cant. We rec-
ommend that the p-values should be smaller than 0.15 at most, and that with a 
p-value > 0.15 the variable must be removed from the regression model.  

    (f)    Provided that all of the above criteria are met, correction of the standard error of 
the imputed data fi le may no longer be needed.      

    4   Example 

 Thirty-fi ve patients with constitutional constipation are treated in a crossover study 
with a standard laxative bisacodyl and a new compound using the numbers of stool 
within 1 month time as the main outcome variable. We wish to determine whether the 
effi cacy of the standard laxative is a signifi cant predictor of the effi cacy of the new 
compound, and, also, whether age is a signifi cant concomitant predictor. SPSS 17.0 
 ( IBM  SPSS  2011  )  was used for the linear regression analysis. Table  22.1  shows the 
data fi le, and Table  22.6  gives the results of a multiple linear regression analysis: both 
the standard laxative and the age are signifi cant predictors with p-values of 0.0001 
and 0.048. Table  22.2  gives the data fi le after randomly  removing fi ve values. This 
reduces the sensitivity of testing. The t-value of bisacodyl (B 

1
 ) fell from 6.3 to 5.9 

(p-value 0.0001–0.0001), of age (B 
2
 ) from 2.0 to 1.7 (p-value from 0.048 to 0.101).       
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 The Tables  22.3 ,  22.4 , and  22.5  show the effects of (1) mean imputation, (2) hot 
deck imputation, and (3) regression-substitution for handling the missing data. The 
magnitude of the r-square values is a measure for the strength of association between 
all variables, and is, obviously, larger with regression-substitution than with mean 
imputation and hot deck imputation, 0.73 vs 0.65 and 0.66. The  magnitude of the 
F-value is a somewhat better estimate of sensitivity than the r-square value, because it 
is adjusted for sample size. It acts similar, 44.1 vs 29.4 and 31.0. This F-value is (much) 
larger with the regression substitution. The t-values are estimators of the strength of 
association of the separate x-variables with the y-variable, and their magnitudes are, 

   Table 22.1    Complete data 
fi le of 35 patients, the fi rst 
and second variable indicate 
respectively numbers of stool 
on a new and on a standard 
laxative (bisacodyl), the third 
variable indicates the 
patients’ ages   

 New lax  Bisacodyl  Age 

 24,00  8,00  25,00 
 30,00  13,00  30,00 
 25,00  15,00  25,00 
 35,00  10,00  31,00 
 39,00  9,00  36,00 
 30,00  10,00  33,00 
 27,00  8,00  22,00 
 14,00  5,00  18,00 
 39,00  13,00  14,00 
 42,00  15,00  30,00 
 41,00  11,00  36,00 
 38,00  11,00  30,00 
 39,00  12,00  27,00 
 37,00  10,00  38,00 
 47,00  18,00  40,00 
 30,00  13,00  31,00 
 36,00  12,00  25,00 
 12,00  4,00  24,00 
 26,00  10,00  27,00 
 20,00  8,00  20,00 
 43,00  16,00  35,00 
 31,00  15,00  29,00 
 40,00  14,00  32,00 
 31,00  7,00  30,00 
 36,00  12,00  40,00 
 21,00  6,00  31,00 
 44,00  19,00  41,00 
 11,00  5,00  26,00 
 27,00  8,00  24,00 
 24,00  9,00  30,00 
 40,00  15,00  20,00 
 32,00  7,00  31,00 
 10,00  6,00  23,00 
 37,00  14,00  43,00 
 19,00  7,00  30,00 

   lax  laxative  
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similarly, much larger for the regression- substitution than for the other two methods 
of imputating missing data, 7.6 vs 5.6 and 5.7, and 3.0 vs 1.7 and 1.8. 

 Just like mean imputation and hot deck imputation, regression-substitution 
 considerably changed both the B and the SE values of the data’s regression  equation. 
In the given example it can be observed, however, that the t-values of regression-
substitution equation were larger than those of the full data’s equation, 7.6 and 3.0 
vs 6.3 and 2.0. In other words, with regression-substitution, unlike with mean impu-
tation and hot deck imputation, the sensitivity of testing is larger than that of the full 
data, with overstatement of sensitivity. Artifi cially changing the error as  implemented 

   Table 22.2    The data fi le 
from Table  22.1  with  22.5  
data randomly removed   

 New lax  Bisacodyl  Age 

 24,00  8,00  25,00 
 30,00  13,00  30,00 
 25,00  15,00  25,00 
 35,00  10,00  31,00 
 39,00  9,00 
 30,00  10,00  33,00 
 27,00  8,00  22,00 
 14,00  5,00  18,00 
 39,00  13,00  14,00 
 42,00  30,00 
 41,00  11,00  36,00 
 38,00  11,00  30,00 
 39,00  12,00  27,00 
 37,00  10,00  38,00 
 47,00  18,00  40,00 

 13,00  31,00 
 36,00  12,00  25,00 
 12,00  4,00  24,00 
 26,00  10,00  27,00 
 20,00  8,00  20,00 
 43,00  16,00  35,00 
 31,00  15,00  29,00 
 40,00  14,00  32,00 
 31,00  30,00 
 36,00  12,00  40,00 
 21,00  6,00  31,00 
 44,00  19,00  41,00 
 11,00  5,00  26,00 
 27,00  8,00  24,00 
 24,00  9,00  30,00 
 40,00  15,00 
 32,00  7,00  31,00 
 10,00  6,00  23,00 
 37,00  14,00  43,00 
 19,00  7,00  30,00 

   lax  laxative  
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by the add-on module Missing Value Analysis of SPSS  ( IBM SPSS  2011  )  may be 
needed in this situation (see Appendix).  

    5   Discussion 

 The current chapter suggests that for limited and incidentally occurring missing 
data, multiple regression-substitution, that uses regression equations with statisti-
cally signifi cant predictors, may be the best sensitive method of data imputation. 

   Table 22.3    Mean values of 
the variable are imputated in 
the missing data from 
Table  22.2    

 New lax  Bisacodyl  Age 

 24,00  8,00  25,00 
 30,00  13,00  30,00 
 25,00  15,00  25,00 
 35,00  10,00  31,00 
 39,00  9,00   29,00  
 30,00  10,00  33,00 
 27,00  8,00  22,00 
 14,00  5,00  18,00 
 39,00  13,00  14,00 
 42,00   11,00   30,00 
 41,00  11,00  36,00 
 38,00  11,00  30,00 
 39,00  12,00  27,00 
 37,00  10,00  38,00 
 47,00  18,00  40,00 
  30,00   13,00  31,00 
 36,00  12,00  25,00 
 12,00  4,00  24,00 
 26,00  10,00  27,00 
 20,00  8,00  20,00 
 43,00  16,00  35,00 
 31,00  15,00  29,00 
 40,00  14,00  32,00 
 31,00   11,00   30,00 
 36,00  12,00  40,00 
 21,00  6,00  31,00 
 44,00  19,00  41,00 
 11,00  5,00  26,00 
 27,00  8,00  24,00 
 24,00  9,00  30,00 
 40,00  15,00   29,00  
 32,00  7,00  31,00 
 10,00  6,00  23,00 
 37,00  14,00  43,00 
 19,00  7,00  30,00 

  The imputed data are in italics 
  lax  laxative  
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   Table 22.4    The closest 
neighbor data were imputed 
in the missing data from 
Table  22.2    

 New lax  Bisacodyl  Age 

 24,00  8,00  25,00 
 30,00  13,00  30,00 
 25,00  15,00  25,00 
 35,00  10,00  31,00 
 39,00  9,00   30,00  
 30,00  10,00  33,00 
 27,00  8,00  22,00 
 14,00  5,00  18,00 
 39,00  13,00  14,00 
 42,00   14,00   30,00 
 41,00  11,00  36,00 
 38,00  11,00  30,00 
 39,00  12,00  27,00 
 37,00  10,00  38,00 
 47,00  18,00  40,00 
  30,00   13,00  31,00 
 36,00  12,00  25,00 
 12,00  4,00  24,00 
 26,00  10,00  27,00 
 20,00  8,00  20,00 
 43,00  16,00  35,00 
 31,00  15,00  29,00 
 40,00  14,00  32,00 
 31,00   15,00   30,00 
 36,00  12,00  40,00 
 21,00  6,00  31,00 
 44,00  19,00  41,00 
 11,00  5,00  26,00 
 27,00  8,00  24,00 
 24,00  9,00  30,00 
 40,00  15,00   32,00  
 32,00  7,00  31,00 
 10,00  6,00  23,00 
 37,00  14,00  43,00 
 19,00  7,00  30,00 

   lax  laxative  

 The International Conference of Harmonisation Guidance on General 
Considerations for Clinical Trials recognized a special case of missing data being 
the loss of patients due to progression of disease, death, or cumulative drug toxicity. 
The so-called LOCF (Chi et al.  2003  )  method (last observation carried forward) was 
recommended in this situation. An intention to treat analysis can, then, be performed 
on all of the data with the argument that the last observation may be the best possi-
ble prediction of what the observation would have been, had the patient been fol-
lowed. This solution may be appropriate for its purpose, but not for incidentally 
occurring missing data during a trial due, e.g., to equipment dysfunction or the 
patients’ inclination not to report at some moment. 
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   Table 22.5    The best 
predicted values from a 
multiple linear regression 
equation (y = 0.98 + 1.89 
x 

1
  + 0.31  x  

2
 ,variable 1 

dependent) are imputed in the 
missing data from Table  22.2    

 New lax  Bisacodyl  Age 

 24,00  8,00  25,00 
 30,00  13,00  30,00 
 25,00  15,00  25,00 
 35,00  10,00  31,00 
 39,00  9,00   69,00  
 30,00  10,00  33,00 
 27,00  8,00  22,00 
 14,00  5,00  18,00 
 39,00  13,00  14,00 
 42,00   17,00   30,00 
 41,00  11,00  36,00 
 38,00  11,00  30,00 
 39,00  12,00  27,00 
 37,00  10,00  38,00 
 47,00  18,00  40,00 
  35,00   13,00  31,00 
 36,00  12,00  25,00 
 12,00  4,00  24,00 
 26,00  10,00  27,00 
 20,00  8,00  20,00 
 43,00  16,00  35,00 
 31,00  15,00  29,00 
 40,00  14,00  32,00 
 31,00   11,00   30,00 
 36,00  12,00  40,00 
 21,00  6,00  31,00 
 44,00  19,00  41,00 
 11,00  5,00  26,00 
 27,00  8,00  24,00 
 24,00  9,00  30,00 
 40,00  15,00   35,00  
 32,00  7,00  31,00 
 10,00  6,00  23,00 
 37,00  14,00  43,00 
 19,00  7,00  30,00 

  The imputed data are in italics 
  lax  laxative  

 Logistic and Cox regression cannot be applied for regression-imputation, because 
the dependent variable, here, is not a real response value, but, rather, respectively 
the odds and hazard of responding. However, most data fi les consist of at least one 
continuous variable that can be used instead as dependent variable for regression-
substitution. 

 With larger percentages of missing data than approximately 5%, either entire 
deletion of the patients with missing data is required or treating them as a separate 
subgroup. Multiple groups ANOVAs (analysis of variance) can, subsequently, be 
used to assess whether there is a signifi cant difference between the missing and 
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non-missing patients. No signifi cance difference supports the robustness of the data, 
and supports that the result with or without missing data will be rather similar. 

 Instead of the three methods discussed in this paper, two more modern methods 
for data imputation are possible. The fi rst one is the maximum likelihood approach 
using log likelihood ratio tests, that are based, just like linear regression, on normal 
distributions, and are a bit more sensitive than conventional t- or ANOVA tests as 
applied in linear regression. SPSS statistical software has it in its add-on module 
Missing Value Analysis  ( IBM SPSS  2011  ) . SPSS adds here a bit of random error to 
each substitution, a rather arbitrary procedure. The second one is multiple imputations. 
For that purpose Little and Rubin applied multiple hot deck imputations instead of 
a single one, and used the pooled result of them for fi nal data analysis (Little and 
Rubin  1987  ) . This method may provide better sensitivity than single hot deck impu-
tation. Monte Carlo Markov simulation models are used for data generation 
(see Chap.   57     for the description of the principles as applied) (Scheuren  2005  ) . The 
multiple imputation models are rather complex, and, again, bits of random error are 
added. These procedures may be defensible. But they are, at the same time, kind of 
black box models, hard to check. The appendix gives an example. 

 We conclude that regression-substitution is a very sensitive method to imputate 
missing data provided the following measures are taken into account:

    (a)    At least two independent variables in the equation.  
    (b)    With more than 1 missing datum in a single subject delete the subject entirely.  
    (c)    The number of missing data in a data fi le must not be larger than 5%.  
    (d)    If the percentage is larger than 5%, and no particular mechanism is found, then 

5% could be randomly chosen to be treated using regression-imputation, while 
the remainder should be deleted.  

    (e)    Variables with a statistically insignifi cant regression coeffi cient should not be 
included in the analysis. We recommend that the p-values should be smaller 
than 0.15 at most, and that, with a p-value > 0.15, the variable must be removed 
from the regression model.  

    (f)    Adjustment of the standard errors of the imputed data is not needed.      

   Table 22.6    Data-analysis of the data fi les from the Tables  22.1 ,  22.2 ,  22.3 ,  22.4 , and  22.5    

 R square  F  Sig  B 
1
   SE 

1
   t  Sig  B 

2
   SE 

2
   t  Sig 

 Table  22.1  (full data) 
 0.67  32.9  0.0001  1.82  0.29  6.3  0.0001  0.34  0.16  2.0  0.048 

 Table  22.2  (5% missing data) 
 0.71  32.4  0.0001  1.89  0.32  5.9  0.0001  0.31  0.19  1.7  0.101 

 Table  22.3  (means imputated) 
 0.65  29.4  0.0001  1.82  0.33  5.6  0.0001  0.33  0.19  1.7  0.094 

 Table  22.4  (hot deck imputation) 
 0.66  31.0  0.0001  1.77  0.31  5.7  0.0001  0.34  0.18  1.8  0.074 

 Table  22.5  (regression-equation imputation) 
 0.73  44.1  0.0001  1.89  0.25  7.6  0.0001  0.31  0.10  3.0  0.005 

   F  F-value,  Sig  signifi cance level,  B  regression coeffi cient,  SE  standard error  
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    6   Conclusions 

 In clinical research missing data are common. Imputed data are not real data, but 
constructed values that should increase the sensitivity of testing. Regression-
substitution for the purpose of data imputation did not always provide a better sen-
sitivity than did other methods. This chapter compares different methods of missing 
data imputation with that of regression-substitution taking into account particular 
quality measures. A real data example with a 105 value fi le was used. After ran-
domly removing fi ve values from the fi le, mean imputation and hot deck imputation 
were compared with regression-substitution, taking account of the following 
requirements:

    (a)    at least two independent variables in the equation,  
    (b)    no more than 1 missing datum per patient,  
    (c)    no more than 5% missing data,  
    (d)    with more than 5% missing data after randomly choosing 5% for regression-

substitution deletion of the remainder,  
    (e)    only statistically signifi cant variables in the regression model,  
    (f)    no addition of random errors to the imputed data.     

 The test statistics after regression-substitution were much better than those after 
the other two methods with F-values of 44.1 vs 29.4 and 31.0, and t-values of 7.6 vs 
5.6 and 5.7, and 3.0 vs 1.7 and 1.8. 

 We conclude that regression-substitution is a very sensitive method for impu-
tating missing data under the provision that particular quality measures are taken 
into account.       

      Appendix 

 In order to perform the multiple imputation method the SPSS add-on module 
“Missing Values” is suitable. For explanation the example of the constipation study 
is used once more. First, the pattern of the missing data must be checked using the 
command “analyze pattern”. If the missing data are equally distributed and no 
“islands” of missing data exist, the model will be appropriate. 

 The following commands are needed:

  Transform…random number generators… 
 Analyze…multiple imputations…impute missing data… (the imputed data fi le must be 

given a new name e.g. “study name imputed”).   

 Five or more times a fi le is produced by the software program in which the miss-
ing values are replaced with simulated versions using the Monte Carlo method 
(Table  22.7 , see also Chap.   57    ). In our example the variables are continuous and, 
thus, need no transformation. If you run a usual linear regression of the summary of 
your “imputed” data fi les, then the software will automatically produce pooled 
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regression coeffi cients instead of the usual regression coeffi cients. In our example 
the multiple imputation method produced a much larger p-value for the predictor 
age than the regression imputation did, and the result was, thus, less overstated than 
it was with regression imputation. Actually, the result was rather similar to that of 
mean and hot deck imputation, and statistical signifi cance at p < 0.05 was not 
obtained (Table  22.8 ). Why then do it anyway. The argument is that, with the mul-
tiple imputation method, the imputed values are not used as constructed real values, 
but rather as a device for representing missing data uncertainty. This approach is a 
safe and probably, scientifi cally, better alternative to the standard methods. In the 
given example, unlike regression imputation, it did not seem to overstate the sensi-
tivity of testing (Table  22.8 , p-values regression imputation versus multiple imputa-
tion 0.005 versus 0.097).     
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   Table 22.8    The regression coeffi cients and their p-values obtained using different methods of data 
imputation   

 B 
1
  Bisacodyl  SE 

1
   t  Sig  B 

2
  Age  SE 

2
   t  Sig 

 Full data  1.82  0.29  6.3  0.0001  0.34  0.16  2.0  0.048 
 5% Missing data  1.89  0.32  5.9  0.0001  0.31  0.19  1.7  0.101 
 Means imputation  1.82  0.33  5.6  0.0001  0.33  0.19  1.7  0.094 
 Hot deck imputation  1.77  0.31  5.7  0.0001  0.34  0.18  1.8  0.074 
 Regression imputation  1.89  0.25  7.6  0.0001  0.31  0.10  3.0  0.005 
 Multiple imputations  1.84  0.31  5.9  0.0001  0.32  0.19  1.7  0.097 
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     1   Introduction    

 In 1837 the French mathematician Simeon Poisson published a mathematical model 
for the analysis of events (Poisson  1837  ) . It was based on regression with the depen-
dent variable “events per time unit” logarithmically transformed to “log events per 
time unit”. The model appeared to better fi t the crime events data from Paris at that 
time, than did a usual linear model. 

 In clinical studies the outcome is often, similar to the count of crimes in Paris in 
1837, a count within a length of observation time, for example, the numbers of epi-
sodes of paroxysmal atrial fi brillation in a subject within 1 month of observation, or 
the numbers of cardiac events of a study population within 10 years of observation. 
The causal factors of such outcomes are usually analyzed using linear and logistic 
regression. Poisson regression is applied if patients are followed for different peri-
ods of time. Currently, most cardiovascular studies include a single overall time of 
observation. It has been observed that Poisson regression can also produce valid 
results with such studies (  www.spss.com    ). The current chapter uses examples to 
compare the performance of the traditional linear and logistic regression with that 
of Poisson regression for the analysis of such studies. We use SPSS Statistical 
Software (Campbell  2006  )  for data-analysis.  

    2   Example 1 

 Psychological and social scores may contribute to the occurrence of paroxysmal 
atrial fi brillation (PAF). In a one-month parallel-group study 316 patients were 
treated with either verapamil or metroprolol (Table  23.1 ). In addition to the treat-
ment modality, the psychological and social scores were included as predictors of 
the outcome variable, the number of episodes of PAF. The data were fi rst analyzed 
using linear regression. We command:  

    Chapter 23   
 Poisson Regression                    

http://www.spss.com
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2712 Example 1

 Analyze – regression – linear – dependent = numbers of episodes of PAF – 
independent = psychological score and social score and treatment modality – OK. 

 Table  23.2  shows the main results of the linear regression. Treatment modality is 
a signifi cant predictor of numbers of episodes of PAF at p = 0.006, and psychological 
score is an independent covariate with a p-value of 0.027. Social score has no effect. 
The data are subsequently analyzed using Poisson regression. We command:  

 Generalized linear models – mark: custom – Distribution: Poisson – Link func-
tion: log – Response: dependent variable: numbers of episodes of PAF – Predictors: 
main effect: treatment modality and psychological score and social score – Model: 
main effects: treatment modality and psychological score and social score – 
Estimation: mark: model-based estimation – OK. 

 Table  23.3  shows the main results of the Poisson regression. The treatment 
modality is again a signifi cant predictor of the numbers of episodes of PAF but at a 
lower level of signifi cance (p = 0.0001 versus 0.006). Also the independent covariate 
psychological score performs better than with linear regression (p = 0.0001 versus 
0.027). Finally, social score while insignifi cant with linear regression has a ten-
dency to signifi cance here (p = 0.053 versus 0.487).  

 Obviously, the Poisson regression produces much better levels of signifi cance 
than does the traditional linear regression in the given example.  

   Table 23.2    Results of multiple linear regression of the data from Table  23.1    

 Coeffi cients a  

 Model 

 Unstandardized 
coeffi cients 

 Standardized 
coeffi cients 

 t  Sig.  B  Std. error  Beta 

 1  (Constant)  11.564  1.411  8.194  .000 
 Social score  −.022  .032  −.053  −.697  .487 
 Psychological score  −.071  .032  −.171  −.2.224  .027 
 Treat  −2.291  .832  −.154  −.2.753  .006 

   a Dependent variable: paf  

   Table 23.3    Results of Poisson regression of the data from Table  23.1    

 Parameter estimates 

 Parameter  B  Std. error 

 95% Wald 
confi dence interval  Hypothesis test 

 Lower  Upper  Wald chi-square  df  Sig. 

 (Intercept)  2.688  .0727  2.545  2.830  1368.563  1  .000 
 Social  −.004  .0018  −.007  4.656E-5  3.742  1  .053 
 Psychological  −.012  .0018  −.016  −.009  43.865  1  .000 
 Treat  −.401  .0484  −.496  −.306  68.582  1  .000 
 (Scale)  1 a  

  Dependent variable: paf 
 Model: (Intercept), social, psychological, treat 
  a Fixed at the displayed value  
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    3   Example 2 

 During two treatment regimens the numbers of patients with torsade de pointes 
were assessed. Table  23.4  gives the entire data fi le. The data are summarized in the 
underneath 2 × 2 contingency table.   

 Number of patient with torsade de pointes 

 Yes  No 
 Treatment regimen 1  17  15 
 Treatment regimen 2   5  15 

 Binary logistic regression was fi rst applied to assess the effect of the treatment 
regimens on the numbers of patients with torsade de pointes. We command: 

 Analyze – regression – binary logistic – Dependent: torsade – Covariates: 
treatment – OK. 

   Table 23.4    Data fi le of study 
of two regimens for the 
treatment of torsades de 
pointe   

 Variable 1  Variable 2  Variable 1  Variable 2 

 0  1  0  0 
 0  1  0  0 
 0  1  0  0 
 0  1  0  0 
 0  1  0  0 
 0  1  0  0 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  1  1  1 
 0  0  1  1 
 0  0  1  1 
 0  0  1  1 
 0  0  1  1 
 0  0  1  1 
 0  0  1  1 
 0  0  1  0 
 0  0  1  0 
 0  0  1  0 
 0  0  1  0 
 0  0  1  0 

  Variable 1 = treatment modality 
 Variable 2 = presence of torsade de pointes (1 = yes, 
0 = no)  
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 Table  23.5  gives the main result of the logistic regression. The treatment modality 
(VAR00001) does not seem to be a signifi cant predictor of number of patients with 
torsade de pointes (p = 0.051). Subsequently, a Poisson regression is performed. We 
command:  

 Generalized linear models – mark: custom – Distribution: Poisson – Identity: log – 
response: dependent variable: torsade – predictors: main effect: VAR00001 – 
Estimation: mark: robust estimation – OK. 

 Table  23.6  gives the main result of the Poisson regression. Unlike with logistic 
regression, here a signifi cant effect is observed at p = 0.039. According to the Poisson 
model the treatment modality is a signifi cant predictor of torsade de pointes. One 
treatment regimen is better than the other.   

    4   Discussion 

 The general principle of regression analysis is, that it calculates the best fi t line or 
curve (with the shortest distance to the data), and then tests how far distant from 
curve the data are. A signifi cant correlation between y- and x-data indicates that the 
y-data are closer to the model than will happen with random sampling. For testing 
simple t-tests or analysis of variance are usually applied. The “model-principle”, 
however essential to regression modeling, is at the same time its largest limitation: 
it is, generally, no use forcing nature into a model. Data are massaged by regression 
modeling, and never fi t perfectly. Moreover, the regression models are, generally, 

   Table 23.5    Results of logistic regression of the data from Table  23.4    

 Variables in the equation 

 B  S.E.  Wald  df  Sig.  Exp (B) 

 Step 1 a   VAR00001  1.224  .626  3.819  1  .051  3.400 
 Constant  −.125  .354   .125  1  .724   .882 

   a Variable(s) entered on step 1: VAR00001  

   Table 23.6    Results    of Poisson regression of the data from Table  23.4    

 Parameter estimates 

 Parameter  B  Std. error 

 95% Wald 
confi dence interval  Hypothesis test 

 Lower  Upper  Wald chi-square  df  Sig. 

 (Intercept)  −.758  .1882  −1.127  −.389  16.210  1  .000 
 VAR00001  .470  .2282  .023  .917   4.241  1  .039 
 (Scale)  1 a  

  Dependent variable: torsade 
 Model: (Intercept), VAR00001 
  a  Fixed at the displayed value  
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more appropriate for the description of events in simple creatures, like, e.g., mosquito 
collisions than that of multicausal events in humans. Nonetheless, regression mod-
els have been helpful for making sensible predictions about future events and other 
clinical effects. 

 Underneath are the mathematical equations of the regression models as used in 
the current chapter.

   Linear regression  
  Events = a + b 

1
  x 

1
  + b 

2
  x 

2
  + b 

3
  x 

3
    

   Logistic regression  
  Log odds events = a + b 

1
  x 

1
  + b 

2
  x 

2
  + b 

3
  x 

3
    

   Poisson regression  
  Log events = a + b 

1
  x 

1
  + b 

2
  x 

2
  + b 

3
  x 

3
     

 Poisson regression uses an exponential rather than linear relationship between 
the predictors, the x-values, and the outcome variable. In the examples given Poisson 
regression provided better p-values than did the other two. Based on these results 
one may infer that Poisson regression is more appropriate for the analysis of cardio-
vascular count data than linear/logistic regression. Unfortunately, it is little used so 
far. We recommend that in future clinical data-analyses linear/logistic models be 
more often replaced with Poisson regression. This is, particularly, important, if the 
former models do not produce statistically signifi cant results.  

    5   Conclusions 

 In clinical studies the outcome is often the number of events within a length of 
observation time. This chapter was written to compare the performance of the tradi-
tional linear and logistic regression with that of Poisson regression for the analysis 
of such studies. Examples of cardiovascular event studies are used. SPSS Statistical 
Software is used for analysis. 

 In a 316 patient parallel-group study of predictors for paroxysmal atrial fi brilla-
tion Poisson regression provided better p-values than did linear regression: p-values 
of 0.0001 versus 0.006, 0.0001 versus 0.027, and 0.055 versus 0.487 for treatment 
modality, psychological score, and social score respectively. In a 52 patient study of 
two treatment regimens for patients with torsade de pointes the Poisson regression, 
unlike the logistic regression, provided a signifi cant result: p-values 0.039 versus 
0.051. 

 In the examples given Poisson regression provides better p-values than did linear 
or logistic regression. We recommend that in future clinical event studies linear/
logistic models be more often replaced with Poisson regression. This is, particu-
larly, important, if the former models do not produce statistically signifi cant 
results.      
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     1   Introduction    

 The    general principle of regression analysis is that the best fi t line/ exponential-
curve/curvilinear-curve etc is calculated, i.e., the one with the shortest distances to 
the data, and it is, subsequently, tested how far the data are from the curve. A signifi -
cant correlation between the y (outcome data) and the x (exposure data) means that 
the data are closer to the model than will happen purely by chance. The level of 
signifi cance is usually tested, simply, with t-tests or analysis of variance. The initial 
regression model is almost always a linear model. 

 The model-principle of regression analysis is the basis but at the same time its 
largest limitation, because it is often hard forcing nature into a mathematical model. 
In the past, non linear relationships like the smooth shapes of airplanes, boats, and 
motor cars were constructed from scale models using stretched thin wooden strips, 
producing smooth curves, assuming a minimum of strain in the materials used. With 
the advent of the computer it became possible to replace it with statistical modeling 
for the purpose: already in 1964 it was introduced by Boeing (Ferguson  1964  )  and 
General Motors (Birkhof and De Boor  1965  ) . Mechanical spline methods were 
replaced with their mathematical counterparts. More complex regression models 
were required, and they were often laborious so that even modern computers had 
diffi culty to process them. Software packages currently make use of a technique 
called iterations: fi ve or more regression curves are estimated (“guesstimated”) and 
the one with the best fi t is chosen. With large data samples the calculation time may, 
nonetheless be hours or days, and modern software will automatically proceed to 
use Monte Carlo calculations (Chap.   57    ) in order to reduce the calculation times. 
Nowadays, many non linear data patterns can be developed mathematically, and this 
chapter reviews some of them. 

 A fi rst step with any data analysis is to assess the data pattern is a scatter plot 
(Fig.  24.1 ). Sometimes a better fi t of the data is obtained by drawing y versus x 
instead of the reverse or residuals of y versus x with or without adjustments for other 
x-values are helpful for fi nding a recognizable data pattern. Statistically we test for 

    Chapter 24   
 More on Non Linear Relationships, Splines                 
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linearity by adding a non linear term of x to the model, particularly x squared or 
square root x. If the squared correlation coeffi cient r (Birkhof and De Boor  1965  )  
gets smaller by this action, then the pattern is, obviously, not linear.  

 In this chapter several mathematical models for modeling non linear data are 
reviewed. The mathematical equations of all of these models are summarized in the 
appendix. They are helpful to make you understand the assumed nature of the rela-
tionships between the dependent and independent variables of the models used, but 
can be disregarded for those not fond on maths.  

    2   Logit or Probit Transformation 

 If linear regression (in SPSS  (  2011     )  covered by the general linear model) produces 
a non-signifi cant effect, then other regression functions can be chosen and may 
provide a better fi t for your data. The following methods are possible. Following 
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  Fig. 24.1    Examples of non linear data sets       
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logit (= logistic) or probit ( »   p Ö3 × logit) transformation a linear model is produced. 
Binary and multinomial logistic regression (Chaps.   17    ,   19    , and   21    ), Cox regression 
(Chaps.   17     and   31    ), Poisson regression (Chap.   23    ), Markov modeling (Chap.   17    ), 
and various bivariate and probit regressions not covered in this chapter (Chap.   25    ) 
are examples. SPSS statistical software  ( SPSS  2011  )  provides most of these meth-
ods in its module “Generalized linear methods”. There are examples of datasets 
where we have prior knowledge that they are, defi nitely, linear after a known trans-
formation (Figs.  24.2  and  24.3 ). As a particular caveat we should add here that 
many examples can be given, but beware!!! Most models in biomedicine have 
 considerable residual scatter around the regression line.   
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  Fig. 24.2    Example of non 
linear relationship that is 
linear after log transformation 
(Michaelis-Menten 
relationship between 
substrate concentration and 
enzymatic reaction rate)       
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 For example, if the model applied is the following (e = random variation)

     
x

i iy e e ,β= α +    

then

     ( )i iln y ln( ) x e .≠ α + β +
    

 The smaller the e 
i
  term, the better the fi t of the model applied.  

    3   “Trial and Error” Method, Box Cox Transformation, 
ACE/AVAS Packages 

 If logit or probit transformation does not work, then additional transformation 
 techniques may be helpful. How do you fi nd the best transformations? First, prior 
knowledge about the patterns to be expected is helpful. If this is not available, then 
the “trial and error” method can be recommended, particularly, logarithmically 
transforming either x- or y-axis or both of them (Fig.  24.4 ). 

     ( ) ( ) ( ) ( )log y  vs x,  y vs log x , log y vs log x .
    

 The above methods can be performed by hand (vs = versus), Box Cox trans-
formation  ( Box Cox normality plot  2011  ) , additive regression using ACE        
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  Fig. 24.4    Trial and error methods used to fi nd recognizable data patterns       
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( alternating conditional expectations), and AVAS  ( additive and variance stabilization). 
ACE or AVAS ( 2011  )  packages contain modern non-parametric methods, otherwise 
closely related to the “trial and error” method. They can also be used for the pur-
pose. They are largely empirical techniques to normalize non normal data that can, 
subsequently, be easily modeled, and they are also available in virtually all modern 
software programs.  

    4   Curvilinear Data 

 If the data plot looks, obviously, sinusoidal, then curvilinear regression models 
including polynomial regression and Fourier analysis could be adequate (Chap. 
  16    ). Figure  24.5  gives an example of polynomial models with increasing orders. If 
an adequate fi t is not obtained using these models, non linear regression may be 
possible using multi-exponential modeling with Laplace transformations (Chap. 
  17    ). Non linear mixed effect modeling of two-compartment pharmacokinetic stud-
ies is an example (Fig.  24.6 ). The data plot show that data spread is wide and, so, 
accurate predictions can not be made in the given example. Nonetheless, the 
method is helpful to give an idea about some pharmacokinetic parameters like drug 
plasma half life and distribution volume. Additional explanations are given in the 
Chaps.   16     and   17    .    
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  Fig. 24.5    Example of polynomial regression models to describe the data       
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    5   Spline Modeling 

 If all of the above models do not adequately fi t your data, you may use a method 
called spline regression. It stems from the thin fl exible wooden splines formerly 
used by shipbuilders and car designers to produce smooth shapes (Ferguson  1964 ; 
Birkhof and De Boor  1965  ) . Spline modeling will be, particularly, suitable for 
smoothing data patterns, if the data plot leaves you with no idea of the relationship 
between the y- and x-values. 

 Figure  24.7  gives an example of non linear dataset suitable for spline modeling.  
 Technically, the method of local smoothing, categorizing the x-values is used. It 

means that, if you have no idea about the shape of the relation between the y-values 
and the x-values of a two dimensional data plot, you may try and divide the x-values 
into a (small) number of categories, where  q    -values are the cutt-offs of categories of 
x-values otherwise called the knots of the spline model.

   cat. 1: min  • £  x <  q  
1
   

  cat. 2:  • q  
1
   £  x <  q  

2
   

  . . .  • 
  cat. k:  • q  

k−1
   £  x < max.    
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  Fig. 24.6    Example of non 
linear mixed effect multi-
exponential model to describe 
pharmacokinetic data       
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 Then, estimate y as the mean of all values within each category. Prerequisites and 
primary assumptions include

   the y-value is more or less constant within categories of the x-values,  • 
  categories should have a decent number of observations,  • 
  preferably, category boundaries should have some meaning.    • 

 A linear regression of the categories is possible, but the linear regression lines are 
not necessarily connected (Fig.  24.8 ). Instead of linear regression lines a better fi t 
for the data is provided by separate low-order polynomial regression lines for all of 
the intervals between two subsequent knots, where knots are x-values that connect 
one x-category with a subsequent one. Usually, cubic polynomial regression, other-
wise called third order polynomial regression, is convenient. It has as simplest equa-
tion y = a + b·x 3 . Eventually, the separate lines are joined at the knots.  

 Even with knots as few as 2, cubic regression may provide an adequate fit 
for the data. 

 In computer graphics spline models are popular curves, because of their accu-
racy and capacity to fi t complex data patterns. So far, they are not yet routinely used 
in clinical research for making predictions from response patterns, but this is a mat-
ter of time. Excel provides free cubic spline function software  ( Cubic Spline for 
Excel  2011  ) . The spline model can be checked for its smoothness and fi t using 
lambda-calculus  ( Lambda calculus  2011  ) , and generalized additive models (Hastie 
and Tibshirani  1990 ; Generalized additive model  2011  ) . Unfortunately, multidi-
mensional smoothing using spline modeling is diffi cult. Instead you may perform 
separate procedures for each covariate    (Figs.  24.9  and  24.10 ).    
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    6   Discussion 

 Many tools are available for developing non linear models for characterizing data 
sets and making predictions from them. Sometimes it is diffi cult to choose the 
degree of smoothness of such models:

   polynomial regression: which order?  • 
  spline: how many knots, which locations, lambda?    • 

 Another method is kernel frequency distribution modeling which unless histo-
grams consists of multiple similarly sized Gaussian curves rather than multiple bins 
of different length. In order to perform kernel modeling the bandwidth (span) of the 
Gaussian curves has to be selected which may be a diffi cult but important factor of 
the potential fi t of a particular kernel method. 

 Maybe, the best fi t for many types on non linear data is offered by still another 
novel regression method called LOESS (locally weighted scatter plot smoothing) 
 ( Local regression  2011  ) . This computationally very intensive program. calculates 
the best fi t polynomials from subsets of your data set in order to eventually fi nd out 
the best fi t curve for the overall data set, and is related to Monte Carlo modeling. 

 Irrespective of the smoothing method applied, there are some problems: 
smoothing

   introduces bias,  • 
  and reduces variance.    • 
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  Fig. 24.10    Cubic regression of the data from Fig.  24.7  with increasing numbers of knots       
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 The Akaike information criterion (AIC  2011  )  is a measure of the relative 
goodness of fi t of a mathematical model for describing data patterns. It can be used 
to describe the tradeoff between bias and variance in model construction, and to 
assess the accuracy of the regression model used. However, the AIC, as it is a rela-
tive measure, will not be helpful to confi rm a poor result, if all of the regression 
models fi t the data set equally poorly.  

    7   Conclusions 

 Background:

   The pattern of clinical research data is often non linear. Novel mathematical models 
are being developed for describing those patterns for the benefi t of making predic-
tions from them.    

 Objective:

   This chapter was written to review some of the modern models successfully applied 
for the purpose.    

 Methods and results:

    1.    Logit and probit transformation can sometimes be used to mimick a linear model. 
Binary and multinomial logistic regression, Cox regression, Poisson regression, 
and Markow modeling are examples of logit transformation.  

    2.    Either the x- or y-axis or both of them can be logarithmically transformed. Also 
Box Cox transformation equation and ACE (alternating conditional expecta-
tions) or AVAS (additive and variance stabilization for regression) packages are 
simple empirical methods often successful for linearly remodeling non linear 
data.  

    3.    Data that are, obviously, curvilinear, can, generally, be successfully modeled 
using polynomial regression and bi-exponential modeling.  

    4.    Spline modeling is, particularly, suitable for smoothing data patterns, if the data 
plot leaves you with no idea of the relationship between the y- and x-values.     

 Conclusion:

   One of the important goals of statistical analyses is making inferences, i.e., 
predicting future outcomes from the current data pattern. When a predictor is lin-
early related to an outcome variable, linear regression is a beautiful method for that 
purpose. If not, various ways of non linear are available. Some of them are reviewed 
in this chapter.          
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      Appendix    

 In this appendix the mathematical equations of the non linear models as reviewed 
are given. They are, particularly, helpful for those trying to understand the assumed 
relationships between the dependent and independent variables, but can be disre-
garded by those without affection to maths (ln = natural logarithm).  

 
    

= + + +………1 1 2 2 10 10y a b x b x .b x
   

 linear 

 
    

= + + + +…2 3y a bx cx dx
   

 polynomial 

 
    

= + + +…y a sinus x cosinus x
   

 Fourier 

 
    

= + + +………1 1 2 2 10 10Ln odds a b x b x .b x
   

 logistic 

 
    

= + + +………1 1 2 2 10 10Ln multinomial odds a b x b x .b x
   

 multinomial logistic 

 
    

= + + +………1 1 2 2 10 10Ln hazard a b x b x .b x
   

 Cox 

 
    

= + + +………1 1 2 2 10 10Ln rate a b x b x .b x
   

 Poisson 

 Instead of ln odds (= logit) also probit ( »   p Ö3 x logit) is often used for trans-
forming binomial data.  

 probit 

       = + + +………1 1 2 2 10 10log y a b x b x .b x   logarithmic 
 or 

 
    

= + + +………1 1 2 2 10 10y a b log x b x .b x etc
   

 “trial and error” 

 transformation function of y = (y  l  −1)/ l  with  l  as power 
parameter 

 Box-Cox 

 y = (transformation function −1 ) a + b 
1
  log x 

1
  + b 

2
   x  

2
  + ..  ACE modeling 

 
    

= 1 2 3x x sin xy e etc
   

 AVAS modeling 

 
    

1 1 2 2b x b xy a e e= + +
   

 multi-exponential modeling 

  q  = magnitude of x-value (example)
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     1   Introduction    

 In the preceding chapters only data analyses with a single outcome variable 
(y-variable) have been addressed. Linear, logistic, Cox regressions are examples. If 
these methods included multiple predictors variables (otherwise called exposure 
variables or x-variables), they are sometimes erroneously called multivariate meth-
ods. However, this is not correct, because the term multivariate analysis refers to the 
simultaneous analysis of more than one  outcome  variable. An more adequate term 
for the analysis of multiple predictors variables is “multivariable or multiple 
variables analysis”. 

 In clinical research often multiple outcomes variables are being assessed. For 
example, in a study of the effi cacy of a novel laxative an important outcome may be 
the frequency of stools. However, an improved quality of life score may be consid-
ered another and maybe even more important outcome. In order to assess two out-
comes, simply, two ANOVAs can be performed, but this assessment does not 
account and adjust the possible relationship between the two outcomes. Also the 
type I error is infl ated. Another nice thing about multivariate analyses is that weak 
predictors may not be able to signifi cantly predict a single outcome, but it may sig-
nifi cantly predict two outcomes that point in the same direction. 

 In order to assess the two outcome variables simultaneously an analysis with 
two, rather than a single outcome variable, would be an interesting option for the 
purpose. For continuous outcome variables both path analysis and MANOVA 
(multiple ANOVA) is adequate, for binary outcome variables probit analysis is 
adequate. 

 In the current chapter the following multivariate methods are reviewed:

    1.    path analysis (see also Chap.   20    ),  
    2.    multiple analysis of variance (MANOVA),  
    3.    probit regression modeling.      

    Chapter 25   
 Multivariate    Analysis                 
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    2   Multivariate Regression Analysis Using Path Analysis 

 In a self-controlled study in 35 patients with constitutional constipation the outcome 
variables were improvements of frequency of stools and quality of life scores. The 
predictor variables were compliance with counselling and compliance with drug 
treatment (Var = variable). The data fi le is given underneath.  

 Var 1 (y 
1
 )  Var 2 (y 

2
 )  Var 3 (x 

1
 )  Var 4 (x 

2
 ) 

 Improvement 
frequency stools 

 Improved quality 
life score 

 Compliance 
with drug treatment 

 Compliance with 
counselling 

 24,00  69,00     25,00  8,00 
 30,00  110,00  30,00  13,00 
 25,00  78,00  25,00  15,00 
 35,00  103,00  31,00  14,00 
 39,00  103,00  36,00  9,00 
 30,00  102,00  33,00  10,00 
 27,00  76,00  22,00  8,00 
 14,00  75,00  18,00  5,00 
 39,00  99,00  14,00  13,00 
 42,00  107,00  30,00  15,00 
 41,00  112,00  36,00  11,00 
 38,00  99,00  30,00  11,00 
 39,00  86,00  27,00  12,00 
 37,00  107,00  38,00  10,00 
 47,00  108,00  40,00  15,00 
 30,00  95,00  31,00  13,00 
 36,00  88,00  25,00  12,00 
 12,00  67,00  24,00  4,00 
 26,00  112,00  27,00  10,00 
 20,00  87,00  20,00  8,00 
 43,00  115,00  35,00  16,00 
 31,00  93,00  29,00  15,00 
 40,00  92,00  32,00  14,00 
 31,00  78,00  30,00  7,00 
 36,00  112,00  40,00  12,00 
 21,00  69,00  31,00  6,00 
 44,00  66,00  41,00  19,00 
 11,00  75,00  26,00  5,00 
 27,00  85,00  24,00  8,00 
 24,00  87,00  30,00  9,00 
 40,00  89,00  20,00  15,00 
 32,00  89,00  31,00  7,00 
 10,00  65,00  29,00  6,00 
 37,00  121,00  43,00  14,00 
 19,00  74,00  30,00  7,00 



2912 Multivariate Regression Analysis Using Path Analysis

 A pleasant thing about path analysis is that it can, indeed, be used as an alternative 
approach to multivariate regression, with a result similar to that of the more com-
plex mathematical approach. An example is given above. We assume that compli-
ance with counselling and drug compliance not only affect the effi cacy of the drug 
but also the patients’ quality of life. First, we have to check that the relationship of 
either of the two predictors with the outcome quality of life is signifi cant in the usual 
linear regression model: they were so with p-values of 0.03 and 0.02. Then, a path 
diagram with standardized regression coeffi cients is constructed (Fig.  25.1 ). The 
standardized regression coeffi cients of the residual effects are obtained by taking 
the square root of (1 − r 2 ). The standardized regression coeffi cient of one residual 
effect versus another can be assumed to equal 1.00.  

 We now fi nd the overall correlation between the two outcome variables as 
follows:  

 1. Direct effect of counselling 
  0.72 × 0.31 =   0.22 
 2. Direct effect of non-compliance 
  0.32 × 0.18 =   0.06 
 3. Indirect effect of counseling and non-compliance 
  0.72 × 0.38 × 0.32 + 0.18 × 0.38 × 0.31 =   0.11 
 4. Residual effects 
  1.00 × 0.58 × 0.83 =   0.48 + 

 Total  0.85 

 A path statistic of 0.85 is considerably larger than that of the single outcome 
model: 0.85 versus 0.45 (Chap.   20    , 47.1% larger). Obviously, two outcome variables 
make better use of the predictors in our data than does a single one. An advantage of 
this nonmathematical approach to multivariate regression is that it nicely summa-
rizes all relationships in the model, and it does so in a quantitative way (Fig.  25.1 ).  

0.180.31

0.830.58

0.72 0.32

1.00

0.38Compliance
counselling

compliance drug
treatment 
compliance

Frequency stools Quality of life score

Residual efficacy Residual quality of life

  Fig. 25.1    Decomposition of 
correlation between effi cacy 
laxative and quality of life 
score, all of the correlations 
in the above example were 
statistically signifi cant at 
p < 0.10       
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    3   Multiple Analysis of Variance, First Example 

 The example from the above section will be used once more. We will fi rst assess 
whether compliance with counselling is a signifi cant predictor of both improve-
ment of frequency of stools and improved quality of life. We will use SPSS 17.0 
 ( SPSS     2011  )  for data analysis. Command: Analyze…General Linear Model…
Multivariate…in dialog box multivariate transfer y 

1
  and y 

2
  to dependent variables 

and x 
1
  to the fi xed factors, and…ok. 

 The Table  25.1  shows that even MANOVA can be considered a regression model 
with intercepts and regression coeffi cients. Just like ANOVA it is based on normal 
distributions and homogeneity of the variables. SPSS has checked the assumptions, 
and the results as given indicate that the model is adequate for the data. Generally 
Pillai’s method gives the best robustness and Roy’s the best p-values. We can con-
clude that counselling is a strong predictor of both improvement of stools and 
improved quality of life.  

 In order to fi nd out which of the two outcomes is the most important one, two 
ANOVAs with each of the outcomes separately must be performed. We command: 
Analyze…General Linear Model…Univariate…in dialog box univariate transfer y 

1
  to 

dependent variables and x 
1
  to the fi xed factors, and…ok. Do the same for variable y 

2
 . 

 Compliance with counselling is an important predictor of not only improved 
frequency of stools but also of improved quality of life    (Table  25.2 ).  

 In order to fi nd out whether the compliance of drug treatment is a contributory 
predicting factor in this multivariate model, MANOVA with two predictors and two 
outcomes is performed. Instead of x 

1
  both x 

1
  and x 

2
  are transferred to fi xed factors. 

Table  25.3  shows the results.  
 The Table  25.3  shows that after including a second predictor variable the 

MANOVA is not signifi cant anymore. Probably, the second predictor is a con-
founder of the fi rst one. The analysis of this model stops here.  

   Table 25.1    MANOVA test statistics of the above data. All of the test statistics show that compli-
ance with counselling is a strong predictor of both improvement of frequency of stools and 
improved quality of life   

 Multivariate tests a  

 Effect  Value  F  Hypothesis df  Error df  Sig. 

 Intercept  Pillai’s trace  ,992  1185,131 b   2,000  19,000  ,000 
 Wilks’ lambda  ,008  1185,131 b   2,000  19,000  ,000 
 Hotelling’s trace  124,751  1185,131 b   2,000  19,000  ,000 
 Roy’s largest root  124,751  1185,131 b   2,000  19,000  ,000 

 VAR00004  Pillai’s trace  1,426  3,547  28,000  40,000  ,000 
 Wilks’ lambda  ,067  3,894 b   28,000  38,000  ,000 
 Hotelling’s trace  6,598  4,242  28,000  36,000  ,000 
 Roy’s largest root  5,172  7,389 c   14,000  20,000  ,000 

   a Design: Intercept + VAR00004 
  b Exact statistic 
  c The statistic is an upper bound on F that yields a lower bound on the signifi cance level.  
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   Table 25.2    ANOVAs of the data from Table 25.1. Also in ANOVA compliance with counselling 
is a strong predictor of not only improvement of frequency of stools but also improved quality 
of life   

 Test of between-subjects effects 

 Dependent variable:improv freq stool 

 Source  Type III sum of squares  df  Mean square  F  Sig. 

 Corrected model  2733,005 a   14  195,215  6,033  ,000 
 Intercept  26985,054   1  26985,054  833,944  ,000 
 VAR00004  2733,005  14  195,215  6,033  ,000 
 Error  647,167  20  32,358 
 Total  36521,000  35 
 Corrected total  3380,171  34 

 Tests of between-subjects effects 

 Dependent variable:improv gol 

 Source  Type III sum of squares  df  Mean square  F  Sig. 

 Corrected model  6833,671 b   14  488,119  4,875  ,001 
 Intercept  223864,364   1  223864,364  2235,849  ,000 
 VAR00004  6833,671  14  488,119  4,875  ,001 
 Error  2002,500  20  100,125 
 Total  300129,000  35 
 Corrected total  8836,171  34 

   improv freq stool  improvement of frequency of stools,  improve qol  improved quality of life 
scores 
  a R Squared = ,809 (Adjusted R Squared = ,675) 
  b R Squared = ,733 (Adjusted R Squared = ,615)  

   Table 25.3    MANOVA    of the above data with two predictor (x 
1
  and x 

2
 ) and two outcome variables 

(y 
1
  and y 

2
 )   

 Multivariate tests a  

 Effect  Value  F  Hypothesis df  Error df  Sig. 

 Intercept  Pillai’s trace  1,000  29052,980 b   1,000  1,000  ,004 
 Wilks’ lambda  ,000  29052,980 b   1,000  1,000  ,004 
 Hotelling’s trace  29052,980  29052,980 b   1,000  1,000  ,004 
 Roy’s largest root  29052,980  29052,980 b   1,000  1,000  ,004 

 VAR00004  Pillai’s trace  ,996  27,121 b   10,000  1,000  ,148 
 Wilks’ lambda  ,004  27,121 b   10,000  1,000  ,148 
 Hotelling’s trace  271,209  27,121 b   10,000  1,000  ,148 
 Roy’s largest root  271,209  27,121 b   10,000  1,000  ,148 

 VAR00003  Pillai’s trace  ,995  13,514 b   14,000  1,000  ,210 
 Wilks’ lambda  ,005  13,514 b   14,000  1,000  ,210 
 Hotelling’s trace  189,198  13,514 b   14,000  1,000  ,210 
 Roy’s largest root  189,198  13,514 b   14,000  1,000  ,210 

 VAR00004*
VAR00003 

 Pillai’s trace  ,985  12,884 b   5,000  1,000  ,208 
 Wilks’ lambda  ,015  12,884 b   5,000  1,000  ,208 
 Hotelling’s trace  64,418  12,884 b   5,000  1,000  ,208 
 Roy’s largest root  64,418  12,884 b   5,000  1,000  ,208 

   a Design: Intercept + VAR00004 + VAR00003 + VAR00004 * VAR00003 
  b Exact statistic  
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    4   Multiple Analysis of Variance, Second Example 

 As a second example we use the data from Field  (  2005  )  on the effect of three 
treatment modalities on compulsive behaviour disorder estimated by two scores, a 
thought-score and an action-score (Var = variable).  

 Var 1 (y 
1
 )  Var 2 (x)  Var 3 (y 

2
 ) 

 Action  Treatment  Thought 

 5,00  1,00  14,00 
 5,00  1,00  11,00 
 4,00  1,00  16,00 
 4,00  1,00  13,00 
 5,00  1,00  12,00 
 3,00  1,00  14,00 
 7,00  1,00  12,00 
 6,00  1,00  15,00 
 6,00  1,00  16,00 
 4,00  2,00  14,00 
 4,00  2,00  15,00 
 1,00  2,00  13,00 
 1,00  2,00  14,00 
 4,00  2,00  15,00 
 6,00  2,00  19,00 
 5,00  2,00  13,00 
 5,00  2,00  18,00 
 2,00  2,00  14,00 
 5,00  2,00  17,00 
 4,00  3,00  13,00 
 5,00  3,00  15,00 
 5,00  3,00  14,00 
 4,00  3,00  14,00 
 6,00  3,00  13,00 
 4,00  3,00  20,00 
 7,00  3,00  13,00 
 4,00  3,00  16,00 
 6,00  3,00  14,00 
 5,00  3,00  18,00 

  Command : Analyze…General Linear Model…Multivariate…in dialog box 
multivariate transfer y 

1
  and y 

2
  to dependent variables and x 

1
  to the fi xed factors, 

and…ok. 
 The Pillai test shows that the predictor (treatment modality) has a signifi cant 

effect on both thoughts and actions at p = 0.049. Roy’s test being less robust gives an 
even better p-value of 0.020 (Table  25.4 ).  

 We will use ANOVAs to fi nd out which of the two outcomes are more 
important. 
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 Command: Analyze…General Linear Model…Univariate…in dialog box univariate 
transfer y 

1
  to dependent variables and x to the fi xed factors, and…ok. Do the same 

for variable y 
2
 . 

 Table  25.5  shows that in the ANOVAs nor thoughts nor actions are signifi cant 
outcomes of treatment modality anymore. This would mean that the treatment 
modality is a rather weak predictor of either of the outcomes, and that it is not able 
to signifi cantly predict a single outcome, but that it signifi cantly predicts two 
outcomes pointing into a similar direction.   

   Table 25.4    MANOVA test statistics of the above data. The Pillai test shows that the predictor 
(treatment modality) has a signifi cant effect on both thoughts and actions at p = 0.049. Roy’s test 
being less robust gives an even better p-value of 0.020   

 Multivariate tests a  

 Effect  Value  F  Hypothesis df  Error df  Sig. 

 Intercept  Pillai’s trace  ,983  745,230 b   2,000  26,000  ,000 
 Wilks’ lambda  ,017  745,230 b   2,000  26,000  ,000 
 Hotelling’s trace  57,325  745,230 b   2,000  26,000  ,000 
 Roy’s largest root  57,325  745,230 b   2,000  26,000  ,000 

 VAR00002  Pillai’s trace  ,318  2,557  4,000  54,000  0,49 
 Wilks’ lambda  ,699  2,555 b   4,000  52,000  ,050 
 Hotelling’s trace  ,407  2,546  4,000  50,000  0,51 
 Roy’s largest root  ,335  4,520 c   2,000  27,000  ,020 

   a Design: Intercept + VAR00002 
  b Exact statistic 
  c The statistic is an upper bound on F that yields a lower bound on the signifi cance level  

   Table 25.5    ANOVAs of the data from Table 25.4. In ANOVA nor actions nor thought are signifi -
cant outcomes from the predictor treatment modality   

 ANOVA b  

 Model  Sum of squares  df  Mean square  F  Sig. 

 1  Regression  ,050   1  ,050  ,023  ,881 a  
 Residual  61,417  28  2,193 
 Total  61,467  29 

   a Predictors: (Constant), cog/beh/notreat 
  b Dependent Variable: actions   

 ANOVA b  

 Model  Sum of squares  df  Mean square  F  Sig. 

 1  Regression  12,800   1  12,800  2,785  ,106 a  
 Residual  128,667  28  4,595 
 Total  141,467  29 

   a Predictors: (Constant), cog/beh/notreat 
  b Dependent Variable: thoughts  
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    5   Multivariate Probit Regression 

 For univariate analyses with binary outcome variables logistic regression is 
adequate. A problem with logistic regression with multiple outcome variables is 
that after iteration (= computer program for fi nding the largest log likelihood ratio 
(see Chap.   4    ) for fi tting the data) the results often do not converse, i.e., a best log 
likelihood ratio is not established. This is due to insuffi cient data size, inadequate 
data, or non-quadratic data patterns. A better alternative for that purpose is probit 
modeling. This may sound incomprehensible, but the dependent variable of logistic 
regression (the log odds of responding) is closely related to log probit (probit is the 
z-value corresponding to its area under curve value of the normal distribution). 
It can be shown that log odds of responding = logit  »  ( p  Ö3) × probit. Multivariate 
probit analysis is not available in SPSS and we will use the statistical software of 
the program Stata (STATA 10)  ( Stata  2011  ) . An example is given of the effect of the 
physicians’ age (x) on their inclination to prescribe life style treatments (1) non 
smoking advise (0 = no, 1 = yes) and (2) weight reduction advise (0 = no, 1 = yes), 
(y and z), (Var = variable).  

 Var(x)  Var (y)  Var (z) 

 42.7  0  0 
 47.6  0  0 
 36.4  0  0 
 49.0  0  0 
 49.0  0  1 
 55.3  0  1 
 57.4  0  1 
 63.0  0  1 
 27.3  0  1 
 53.2  1  0 
 54.6  1  0 
 32.9  1  0 

 We can quickly input the data with the commands: 
 Input x y z…input values…end…List…Statistics…binary outcomes…Bivariate 

probit regression…dependent variable 1 y…dependent variable 2 z….independent 
variables x… ok. 

 Table  25.6  shows that physicians’ age is signifi cant predictor of both prescrib-
ing non smoking and weight reduction advise. In order to fi nd out which is the 
most signifi cant outcome, simple logistic regression can be performed using 
physicians’ ages as predictor and the non drug treatments as separate outcomes 
(see Chap.   17    ).   
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    6   Discussion 

 A number of advantages of multivariate analysis instead of multiple univariate anal-
yses are summarized:

    1.    It prevents the type I error from being infl ated.  
    2.    It looks at interactions between dependent variables.  
    3.    It can detect subgroup properties and includes them in the analysis.  
    4.    It can demonstrate otherwise underpowered effects     

 Multivariate analysis should not be used for explorative purposes and data dredg-
ing, but should be based on sound clinical arguments. In this chapter three methods 
are reviewed and explained with examples. 

 A pleasant thing about path analysis (see also Chap.   20    ) is that it can be used as 
a nonmathematical approach to multivariate regression. We should emphasize once 
more that the term multivariate regression is often erroneously applied, when mul-
tiple independent and just a single dependent variable are in the data. Strictly, mul-
tivariate regression regards models with more than a single dependent variable 
(y-variable). The main aim is to quantify reasons for the correlation between two or 
more dependent variables. In the example given the multivariate model of our data 
with two instead of one outcome variables made even better use of the predictors 
than did the single outcome model. 

   Table 25.6    According to the underneath analysis the probit regression shows that indeed physi-
cians’ age is signifi cant predictor of both prescribing non smoking and weight reduction advise   

 STATA 

 Probit var 3 var 2 var 1 
 Fitting comparison equation 1: 
  Iteration 0: log likelihood = −8.3177662 
 Fitting comparison equation 2: 
  Iteration 0: log likelihood = −8.3177662 
  Comparison: log likelihood = −16.635532 
 Fitting full model: 
  Iteration 0: log likelihood = −16.635532 
  Iteration 1: log likelihood = −15.9573 
  Iteration 2: log likelihood = −15.955936 
  Iteration 3: log likelihood = −15.955936 
     

( )
Bivariate probit regression number of observations 12

Wald chi2 2 0.00
=

=

   

     Log likelihood 15.955936 Prob chi2 1.0000= − > =    
 2 log likelihood ratio = 31.911872 
 P < 0.000 
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 If you read articles you will fi nd that it is not uncommon for researchers to 
perform multiple ANOVAs instead of a single MANOVA. There are problems with 
this approach. First you have to perform multiple tests, which means that the risk of 
type I errors is enhanced (see also the Chaps.   8     and   9    ). In the fi rst MANOVA exam-
ple it would therefore be appropriate to perform a Bonferroni adjustment of the 
ANOVAs meaning that the p-values should be doubled. Another problem is that of 
weak outcomes. The second MANOVA example is an example of weak outcomes: 
the MANOVA was statistically signifi cant, while the ANOVAs of the same data 
were not. Another method for post hoc analysis of a positive MANOVA is socalled 
discriminant analysis using normally distributed eigenvectors which assess the cor-
relation of the outcome variables using scatterplots in the form of ellipses   . The 
advantage of this method which is readily provided by SPSS is, that it does not need 
Bonferroni adjustment and gives somewhat more quantitative result about underly-
ing mechanisms than ANOVA does. 

 Multivariate probit regression is a more safe alternative for multivariate logistic 
regression, and it is available in Stata and other software programs. In case of a 
signifi cant multivariate probit regression, post hoc analysis can be performed in the 
usual way by binary logistic models to fi nd out which of the outcome is more 
important.  

    7   Conclusions 

 The term multivariate analysis refers to the simultaneous analysis of more than one 
 outcome  variable. 

 This chapter reviews multivariate methods suitable to analyze data fi les with 
multiple outcome variables 

 For the analysis of continuous outcome variables path analysis and multiple 
analysis of variance (MANOVA) are suitable, for the analysis of binary outcome 
variables probit analysis is recommended. 

 We conclude that multivariate methods have multiple advantages compared to 
univariate methods.

    1.    It prevents the type I error from being infl ated.  
    2.    It looks at interactions between dependent variables.  
    3.    It can detect subgroup properties and includes them in the analysis.  
    4.    It can demonstrate otherwise underpowered effects     

 Multivariate analysis should not be used for explorative purposes and data dredg-
ing, but should be based on sound clinical arguments. In this chapter three methods 
are reviewed and explained with examples.      
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     1   Introduction    

 In 1967 Bhattacharya, a biologist from India, presented a method for identifying 
juvenile-fi sh subgroups from random samples (Bhattacharya  1967  ) . By now this 
test, based on Gaussian curves, has become a key-method for the analysis and sus-
tainability of this important resource in the eco-system, and is recommended by the 
Food and Agricultural Organization of the United Nations Guidelines    (FAO  2011  ) . 
As Gaussian curves are the mainstream not only with fi sh population research, but 
also with clinical data, it is peculiar that, so far, this method has not been widely 
applied in clinical research. When searching Pub Med we only found a few clinical-
laboratory studies (Guerin et al.  1992 ; Watson et al.  1999 ; Pottel et al.  2008 ; 
Baadenhuijsen and Smit  1985  ) , epidemiological (Metz et al.  2002 ; Zhang et al. 
 2004  )  and genetic studies (Miescke and Musea  1994 ; Evans et al.  1983  ) , and not a 
single cardiovascular study. In clinical research data-fi les are, usually, summarized 
by their means and standards deviations (SDs). Standard deviations are a convenient 
way of estimating the spread in your data, but they are only valid if your data can be 
assumed to follow a clock-like Gaussian curve. Under this assumption the 
mean ± 1.96 × SDs covers 95% of the data. Of course, many cardiovascular data 
samples are not perfectly Gaussian-like. Mean and SDs are, therefore, just approxi-
mations. There may be better methods to fi nd the best fi t Gaussian curves for your 
data. Instead of the mean, the mode or median can be used, and instead of histo-
grams consistent of bins, more refi ned Kernel histograms consistent of multiple 
similarly sized small Gaussian curves can be drawn (Metz et al.  2002  ) . Also, distri-
bution-free statistical methods like non-parametric tests can be applied to “quasi-
gaussianize” the data. However, all of these methods massage the data. Bhattacharya 
modeling does not massage the data, but, instead, unmasks Gaussian curves, as truly 
present in the data, and removes outlier frequencies. In clinical research it could be 
used (1) for unmasking normal values of diagnostic tests, (2) for improving the 
p-values of data testing, and (3) for objectively searching subsets in your data. 
The current chapter uses as examples simulated vascular lab scores to investigate 
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the performance of Bhattacharya modeling as compared to standards methods, and 
was written to acquaint the clinical research community with this novel method.  

    2   Unmasking Normal Values 

 Vascular laboratories often defi ne their estimators of peripheral vascular disease 
according to add-up scores of ankle, thigh, calf, and toe pressures. Figure  26.1  upper 
graph and Table  26.1  left two columns give as an example the frequency distribution 
of such scores in La Fontaine stage I patients. Normal values, otherwise called refer-
ence values, customarily present the central 95% of the values obtained from a 
representative reference population. Consequently, 2.5% of the reference popula-
tion will exceed the reference range and 2.5% will be below it. This central 95%, 
otherwise called 95% confi dence interval, is calculated from the equation  

     

95% confidence interval mean 1.96 sd
13.236 1.96 5.600
between 2.260 and 24.212.

= ± ×
= ± × =
=     

 Alternatively to the above standard procedure a Bhattacharya procedure can be 
performed. Table  26.1  shows how it works. We logarithmically transform the fre-
quencies, and then calculate the differences between two subsequent log-frequencies, 
named the delta log values. Figure  26.2  shows a plot of the scores against these delta 

  Fig. 26.1    The frequency distributions of the vascular lab scores of untreated (0,00), and treated 
(1,00) La Fontaine stage I patients. The continuous Gaussian curves are calculated from the 
mean ± standard deviation, the interrupted Gaussian curves from Bhattacharya modeling       
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log values. A straight line with a correlation coeffi cient as high as 1.000 is identi-
fi ed, and the equation of this line is used for unmasking the values of the Gaussian 
curve truly present in these data. 

   y = a + bx  
  a = intercept  
  b = direction coeffi cient    

 This line is used as the fi rst derivative of a Gaussian curve with

     

mean a / b

standard deviation ( 1 / b).

= −
= √ −

    

 This procedure leads to a result different from that of the standard procedure.

     

95% confidence interval mean 1.96 sd
14.700 1.96 7.390
between 0.216 and 29.18 4.

= ± ×
= ± × =
=     

 The Bhattacharya estimate is wider than the standard estimate, and it is not 
obvious from the graph which one will best fi t the data. Figure  26.1  also shows the 
graphs of the standard and Bhattacharya Gaussian curves. When counting the tops 
of the bins cut by either of the curves, it seems that the Bhattacharya curve performs 

   Table 26.1    The frequency 
distribution of the vascular 
lab scores of 244 untreated 
La Fontaine stage I patients 
(treatment 

0
  patients of 

Fig.  26.1 )   

 Score  Frequency  Log  Delta log 

 5  10  1.000 
 6  10  1.000  0.000 
 7  11  1.041  0.041 
 8  12  1.079  0.038 
 9  24  1.380  0.301 
 10  21  1.322  −0.058 
 11  24  1.380  0.058 
 12  21  1.322  −0.058 
 13  21  1.322  0.000 
 14  20  1.301  −0.021 
 15  18  1.255  −0.046 
 16  11  1.041  −0.214 
 17   9  0.954  −0.087 
 18   6  0.778  −0.176 
 19   3  0.477  −0.301 
 20  21  1.322  0.845 
 21   1  0.000  −1.322 
 22  21  1.322  −1.322 

  The log and delta log terms are respectively 
log transformations of the frequencies and 
differences between two subsequent log 
transformations  
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better: 15 cuts versus 9 cuts. And, so, the Bhattacharya 95% confi dence interval 
produces a better data fi t than does the standard 95% confi dence interval as calcu-
lated directly from the mean and standard deviation.  

    3   Improving the p-Values of Data Testing 

 Figure  26.1  gives an example of frequency distributions of untreated and treated 
Fontaine stage I patients with vascular lab scores on the x-axis and “how often” on 
the y-axis. We wish to test whether the treatment is better than no treatment. The 
two sample t-test of these data produced a p-value of 0.051. The non-parametric test 
of the same data (the Mann–Whitney test) produced a p-value of 0.085. In order to 
test with improved sensitivity a t-test of the Bhattacharya Gaussian curves is per-
formed. The fi rst two columns of the Tables  26.1  and  26.2  present the x and y axes 
values of the histograms from Fig.  26.1 . First, the y-axis variable is log transformed. 
Then the differences between two subsequent log transformed y-values are calcu-
lated (delta log terms): 

   0.301−0 = 0.301  
  0.477−0.301 = 0.176  
  0.699−0.477 = 0.222 etc    

 A plot of the vascular lab scores against the delta log terms is drawn, and we 
identify the points that will give you a straight line (Figs.  26.2  and  26.3 ). A straight 
line consistent of delta log terms means the presence of a Gaussian distribution in 
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  Fig. 26.2    The scores from Fig.  26.1   upper graph  plotted against the delta log terms as calculated 
from the frequencies from Fig.  26.1        
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your data. It can be shown that a linear regression analysis of this line serves as the 
fi rst derivative of a Gaussian curve and that it can be used for calculating the char-
acteristics of this Gaussian distribution in a way that is unaffected by other 
distributions.  

 For the treatment 
0
 -data we fi nd

   The correlation coeffi cient R = 0.998  
  The regression equation is given by y = 0.269 – 0.0183 x  
  The mean of our Gaussian distribution is given by −0.2690 /−0.0183 = 14.70  
  De squared standard deviation is given by 1/0.0183 = 54.60  
  The standard deviation (SD) is Ö 54.60 = 7.39.    

   Table 26.2    The frequency 
distribution of the vascular 
lab scores of 331 treated La 
Fontaine stage I patients 
(treatment 

1
  patients of 

Fig.  26.1 )   

 Score  Frequency  Log  Delta log 

 1  1  0.000 
 2  2  0.301  0.301 
 3  3  0.477  0.176 
 4  5  0.699  0.222 
 5  18  1.255  0.556 
 6  12  1.079  −0.176 
 7  13  1.114  0.035 
 8  18  1.255  0.141 
 9  19  1.279  0.024 
 10  20  1.301  0.022 
 11  21  1.322  0.021 
 12  21  1.322  0.000 
 13  23  1.362  0.040 
 14  24  1.380  0.018 
 15  23  1.362  −0.018 
 16  23  1.362  0.000 
 17  15  1.176  −0.186 
 18  15  1.176  0.000 
 19  13  1.114  −0.036 
 20  6  0.778  −0.336 
 21  4  0.602  −0.176 
 22  8  0.903  0.301 
 23  7  0.845  −0.058 
 24  5  0.699  −0.146 
 25  4  0.602  −0.097 
 26  3  0.477  −0.125 
 27  3  0.477  0.000 
 28  2  0.301  −0.176 

  The log and delta log terms are respectively 
log transformations of the frequencies and 
differences between two subsequent log 
transformations  



306 26 Bhattacharya Modeling

 With n = 331, this would mean that the standard error (SE) of the Gaussian 
distribution is

     = √ =SE SD / n 0.406.     

 For the treatment 
1
 -data we fi nd

   The correlation coeffi cient R = 1.000  
  The regression equation is given by y = 1.418−0.137 x  
  The mean of our Gaussian distribution is given by −1.418 /−0.137 = 10.35  
  De squared standard deviation is given by 1/0.137 = 7.299  
  The standard deviation (SD) is Ö 7.299 = 2.77.    

 With n = 244, this would mean that the standard error (SE) of the Gaussian distri-
bution is

     = √ =SE SD / n 0.173     

 An unpaired t-test of these two mean produces a t-value of t-value = (14.70 − 10.35)/
(0.173 2  + 0.406 2 ) = 9.86 which means that the two Gaussian curve are largely 
 different with p = 0.0001.  
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  Fig. 26.3    The scores from Fig.  26.1   lower graph  plotted against the delta log terms as calculated 
from the frequencies from Fig.  26.1        
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    4   Objectively Searching Subsets in the Data 

 Figure  26.4  givens an example of the frequency distributions of vascular lab scores 
of a population of 787 patients at risk of peripheral vascular disease. Overall normal 
values of this population can be calculated from the mean and standard deviation: 

   Normal values = 95% confi dence interval = 24.28 ± 1.96 × 11.68 = between 1.38 and 
47.17.    

 The pattern of the histogram is suggestive of certain subsets in this population. 
Bhattacharya modeling is used for objective searching the subset normal values. 
Table  26.3  left two columns give the scores and frequencies. The frequencies are log 
transformed (third column), and, then, the differences between two subsequent log 
transformed scores are calculated (fourth column). Figure  26.5  show the plot of the 
scores against the delta log terms. Three straight lines are identifi ed. Linear regres-
sion analyses of these lines produces r-values of 0.980, 0.999, and 0.998.  

    1.    The fi rst regression equation is given by

        = −y 0.944 0.078 x      

  The mean of the corresponding Gaussian curve is given by −0.944/−0.137 = 12.10.  
  The squared standard deviation is given by 1/0.078 = 12.82  
  The standard deviation (SD) is Ö 12.82 = 3.58  
  The normal values of this Gaussian curve is 12.10 ± 1.96 × 3.58, and is between 
5.08 and 19.12.     

  Fig. 26.4    The frequency distributions of vascular lab scores of 787 patients at risk of peripheral 
vascular disease. The continuous Gaussian curves are calculated from the mean ± standard 
 deviation, the interrupted Gaussian curves from Bhattacharya modeling       
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    2.    The second regression equation is given by

        = −y 0.692 0.026 x      

  The mean of the corresponding Gaussian curve is given by −0.692/−0.026 = 26.62  
  The squared standard deviation is given by 1/0.026 = 38.46  
  The standard deviation (SD) is Ö 38.46 = 6.20  
  The normal values of this Gaussian curve is 26.62 ± 1.96 × 6.20, and is between 
14.47 and 38.77.     

    3.    The third regression equation is given by

        = −y 2.166 0.048 x      

  The mean of the corresponding Gaussian curve is given by −2.166/−0.048 = 45.13.  
  The squared standard deviation is given by 1/0.048 = 20.83  

   Table 26.3    The frequency 
distribution of the vascular 
lab scores of 787 patients at 
risk of peripheral vascular 
disease (the data of Fig.  26.4 )   

 Score  Frequency  Log  Delta log 

 2  1  0.000  0.000 
 4  5  0.699  0.699 
 6  13  1.114  0.415 
 8  25  1.398  0.284 
 10  37  1.568  0.170 
 12  41  1.613  0.045 
 14  43  1.633  0.020 
 16  50  1.699  −0.018 
 18  48  1.681  −0.111 
 20  37  1.570  0.021 
 22  39  1.591  0.117 
 24  51  1.708  0.000 
 26  51  1.708  −0.009 
 28  50  1.699  −0.027 
 30  47  1.672  −0.049 
 32  42  1.623  −0.146 
 34  30  1.477  −0.176 
 36  28  1.447  −0.030 
 38  16  1.204  −0.243 
 40  20  1.301  0.097 
 42  28  1.447  0.146 
 44  26  1.415  −0.032 
 46  25  1.398  −0.017 
 48  17  1.230  −0.168 
 50  10  1.000  −0.230 
 52  6  0.778  −0.222 

  The log and delta log terms are respectively 
log transformations of the frequencies and 
differences between two subsequent log 
transformations  
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  The standard deviation (SD) is Ö 20.83 = 4.57  
  The normal values of this Gaussian curve is 45.13 ± 1.96 × 4.57, and is between 
36.17 and 54.09.        

 In Fig.  26.4  the above three Gaussian curves are drawn as interrupted curves. 
When there are obviously subsets, to investigators, that is when thing fi rst get very 
excited. A careful investigation of the potential causes has to be accomplished. The 
main focus should be on trying to understand any source of heterogeneity in the 
data. In practice, this may be not be very hard since investigators frequently noticed 
clinical differences already, and it thus becomes relatively easy to fi t the results 
accordingly. Sometimes differences in age groups or genders are involved. 
Sometimes also morbidity stages or comorbidities are involved. In the given situa-
tion it was decided that the three subsets largely represented (1) stage I la Fontaine 
patients, (2) patients with risk factors including smoking, and (3) patients with risk 
factors excluding smoking.  

    5   Discussion 

 The current paper suggests that Bhattacharya modeling not only produces results 
different from those of the standard approach, but also provides additional benefi ts. 
First, it provided a better fi t for the data. Second, a better precision as demonstrated 
by better p-values was obtained. Third, it enabled to better identify certain subgroups 
in the data. 
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  Fig. 26.5    The scores from Fig.  26.4  plotted against the delta log terms as calculated from the 
frequencies from Fig.  26.4        
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 The current paper using simulated examples of vascular lab scores has to be 
confi rmed by larger data, but it suggests that Bhattacharya modeling for clinical 
data analysis tends to perform better than do standards methods. 

 An important condition for the method to be successful is the presence of 
Gaussian distributions in the data. In spite of numerous discussions in the literature 
the conformity of data obtained from patients to a Gaussian distribution is still 
believed to be of fundamental importance (Armitage and Berry  1994 ; Altman  1995 ; 
Feng et al.  1996  ) , and data fi les including over one million values have been used to 
confi rm this belief (Janecki  2008  ) . 

 There are, of course, some problems. The fi rst problem is that current clinical 
research often uses convenience samples from selected hospitals rather than random 
samples. Particularly, cut-off inclusion criteria like age, gender and laboratory value 
limits, raises the risk of non-Gaussian data (see also Chap.   43    ). The Figs.  26.1  and 
 26.2  in Chap.   43     give examples of non-normal data not suitable for Bhattacharya 
modeling. Goodness of fi t tests can be used for checking normality. However, with 
small samples as commonly observed in clinical research these tests have little 
power, and a negative goodness of fi t test does not exclude the possibility of non-
normal data. Also, partly overlapping Gaussian distributions are often present. The 
method becomes invalid when such distributions are too close to one another, 
thereby preventing the recognition of the linear part in the fi rst derivative function. 

 A second problem is that current clinical research often uses convenience 
samples from selected hospitals rather than random samples. Particularly, cut-off 
inclusion criteria like age, gender and laboratory value limits, raises the risk of 
non-Gaussian data. Goodness of fi t tests can be used for checking normality. 
However, with small samples as commonly observed in clinical research these tests 
have little power, and a negative goodness of fi t test does not exclude the possibility 
of non-normal data. 

 Third, the choice of the appropriate straight lines may sometimes be somewhat 
subjective: sometimes in a single interval of scores more than a single straight line 
is possible. For example, in Fig.  26.2  an almost horizontal line can be drawn though 
about six delta log terms. However, only lines with a clearly negative direction coef-
fi cient are suitable for Bhattacharya modeling 

 In spite of the above limitations, we believe that Bhattacharya modeling is a 
welcome help to clinical data analysis, and we recommend that it be used for the 
purpose of (1) unmasking normal values of diagnostic tests, (2) improving p-values 
of testing, and (3) objectively searching subsets in the data. Particularly, when stan-
dard data analyses do not produce the expected levels of sensitivity, Bhattacharya 
modeling is an adequate and more sensitive alternative.  

    6   Conclusions 

 Bhattacharya modeling is a Gaussian method recommended by the Food and 
Agricultural Organization of the United Nations Guidelines for analyzing the eco-
system. It is rarely used in clinical research. The objective of the current chapter was 
to investigate the performance of Bhattacharya modeling for clinical data analysis. 
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 Using as examples vascular lab scores we assessed the performance of the 
Bhattacharya method. SPSS statistical software is used.

    1.    The Bhattacharya method better fi tted the data from a single sample than did the 
usual Gaussian curve derived from the mean and standard deviation with 15 
versus 9 cuts.  

    2.    Bhattacharya models demonstrated a signifi cant difference at p < 0.0001 between 
the data from two parallel-groups, while the usual t-test and Mann–Whitney test 
were insignifi cant at p = 0.051 and 0.085.  

    3.    Bhattacharya modeling of a histogram suggestive of certain subsets identifi ed 
three Gaussian curves.     

 We recommend that Bhattacharya modeling be more often considered in clini-
cal research for the purpose of (1) unmasking normal values of diagnostic tests, 
(2) improving the p-values of data testing, and (3) objectively searching subsets in 
the data.      
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     1   Introduction 

 Some 15 years    ago serious statistical analyses of clinical trials were conducted by 
specialist statisticians using mainframe computers. Nowadays, there is ready access 
to statistical computing using personal computers, and this practice has changed 
boundaries between basic and more advanced statistical methods. Clinical research-
ers, currently, perform basic statistics without professional help from a statistician, 
including t-tests and chi-square tests for two treatment comparisons. Current clinical 
trials often involve more than two treatments or treatment modalities, e.g., dose–
response and dose-fi nding trials, studies comparing multiple drugs from one class with 
different potencies, or different formulas from one drug with various bio-availabilities 
and other pharmacokinetic properties. In such situations small differences in effi ca-
cies are to be expected and we need, particularly, sensitive tests. A standard approach 
to the analysis of such data is multiple groups analysis of variance (ANOVA) and 
multiple groups chi-square tests, but a more sensitive, although so far little used, 
approach may be a trend-analysis. A trend means an association between the order 
of treatment and the magnitude of response. We should add that, within the context 
of a clinical trial, demonstrating trends, generally, provides more convincing evi-
dence of causal treatment effects than do simple comparisons of treatment modalities 
(Kirkwood and Sterne  2003  ) . 

 In the current chapter we review methods for trend-analysis in clinical trials 
that can be used by clinical investigators without the support of a statistician. We 
also demonstrate that trend-tests may be more sensitive to demonstrate statisti-
cally signifi cant treatment effects than do the standard methods for treatment 
comparisons.  

    Chapter 27   
 Trend-Testing                 
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    2   Binary Data, the Chi-Square-Test-for-Trends 

 For trend-analysis of binary data the chi-square-test–for-trends is adequate, although 
similar results can be obtained from logistic regression modeling. However, the 
former test is conceptually more straightforward and mathematically less complex. 
A real data example is given. In a hypertension trial responders were defi ned as 
patients with a blood pressure under 140/90 mmHg. The data (Table  27.1 ) were fi rst 
analyzed using multiple groups chi-square test, and this analysis produced a chi-
square value of 3.872 with two degrees of freedom. According to the chi-square 
table this would mean, that this result is not statistically signifi cant (p = 0.144). We 
have a negative study, that does not enable to conclude anything else than “no treat-
ment differences in these data”. However, if we calculate the odds of responding 
(Table  27.1 ), we fi nd incremental odds from treatment 0 to treatment 2, suggesting 
an association between the order of treatment and the magnitude of response, other-
wise called a trend. The chi-square-test-for-trend can be used for assessment of this 
possible trend. 

     
2

d 10 0 20 1 27 2 74

n 25 0 39 1 42 2 123

(n ) 25 0 39 1 42 4 207

∑ = × + × + × =
∑ = × + × + × =
∑ = × + × + × =    
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( )2 2 2

2 2

O(T O) 57 49
V T (n ) ( n) (106 207 123 ) 16.079
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− ×
= × × ∑ − ∑ = × × − =

× − ×     

 The chi-square-trend is calculated to be U 2 /V = 3.980 with one degree of free-
dom. According to the chi-square table this would mean, that we have a signifi cant 
trend at p < 0.05. There is evidence that the higher the number of the treatment the 
more effi cacious the treatment is. Particularly, if we have clinical arguments, like 
with increasing potencies of otherwise similar treatments, this result provides the 
evidence. Interestingly, the trend-test is signifi cant in spite of a negative overall test 
for differences in the data. Obviously, a trend-test is sometimes more sensitive than 
a standard overall test to fi nd differences in the data. The test is provided by SPSS 
under the commands “Descriptive statistics – crosstabs – statistics – chi-square”. 

   Table 27.1    In a hypertension trial responders were defi ned as patients with a blood pressure under 
140/90 mm Hg   

 Treatment 0  Treatment 1  Treatment 2  Total 

 Number responders (d)  10  20  27   57 (O) 
 Number non-responders  15  19  15   49 
 Total number patients (n)  25  39  42  106 (T) 
 Odds of responding   0.67 (10/15)   1.11 (20/19)   1.80 (27/15) 
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The Linear-by–Linear Association in the table given has 1 degree of freedom and 
provides the chi-square value for trends plus an adequate p-value (see Cleophas and 
Zwinderman  2010  ) .  

    3   Continuous Data, Linear-Regression-Test-for-Trends 

 For trend-analysis    of continuous data linear-regression-modeling ,  is often used. As 
an example a hypertension trial with mean arterial blood pressures (MAPs) as effi -
cacy variable is given (Table  27.2 ).  

 First the data are assessed by an overall test. Multiple groups ANOVA is used for 
that purpose, and provides an F-value of 2.035 with 2 and 27 degrees of freedom. 
This result means that we have a p-value of 0.150, and, thus, no signifi cant difference 
between the three groups of patients. Also, as expected, the largest difference between 
the mean MAP of treatments 1 and 3 are not signifi cant in the unpaired t-test:

     
( )2 2

122 115
t - value 7 / 3.613 1.937

8.08 /10 8.08 /10

−= = =
+

   

(with 20 − 2 = 18 degrees of freedom, 0.05 < p < 0.10.) 
 A linear-regression-test-for-trends using SPSS    statistical software  (  2011  )  pro-

duces the following results. We fi rst enter the data or a data-fi le, e.g., from Excel 
 ( Microsoft’s Excel  2011  ) . Then we command: Statistics; Regression; Linear; 
dependent = MAP values; independent = treatment modality; ok. Table  27.3  
gives the results. The top-table calculates the correlation coeffi cient R and R 2 . 

   Table 27.2    In a hypertension trial mean arterial blood pressures (MAPs) after 
treatment were assessed as effi cacy variable   

 Treatment 1  Treatment 2  Treatment 3 

 Number of patients 

 10  10  10 

 MAP (mmHg)  122  118  115 
 113  109  105 
 131  127  125 
 112  110  106 
 132  126  124 
 114  111  107 
 130  125  123 
 115  118  108 
 129  124  115 
 122  112  122 

 Mean  122  118  115 

 Standard deviation  8.08  7.15  8.08 
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The middle-table gives the result of testing with ANOVA whether R 2  is signifi cantly 
different from 0. If R 2  = 0, the order of the treatment determines the MAPs no way, 
there is no trend. In our situation R 2  = 0.13, and, thus, 13% of the MAP results are 
determined by the differences in treatment modalities: there is a signifi cant trend at 
p = 0.05. The bottom-table from Table  27.3  gives the regression equation that can 
be used to draw the best fi t regression line for the data.  

 In spite of the negative ANOVA- and t-tests for treatment comparisons, there is a 
signifi cant trend in the data. We are able to conclude that the order of the treatments 
is associated with the magnitude of effi cacy. Like in the above example of a binary 
variable, the trend-test was more sensitive than the standard tests to fi nd differences 
in the data.  

    4   Discussion 

 In this chapter only trend-tests for parallel-group data are reviewed. Although not 
commonly used in clinical trials and statistically somewhat more sophisticated, 
trend-tests are also available for repeated measurements in one subject or one group 
of patients. In the case of continuous data a linear mixed-model effect can be used, 
where the subjects are regarded as random variable, and the treatment as fi xed effect 

   Table 27.3    Results of statistical analysis using SPSS software of the data from 
Table  27.2    

 Model summary 

 Model  R  R square  Adjusted R square  Std. error of the estimate 

 1  .361 a   .130  .099  7.64775 

 ANOVA b  

 Model  Sum of squares  df  Mean square  F  Sig. 

 1  Regression  245.000  1  245.000  4.189  .050 a  
 Residual  1637.667  28  58.488 
 Total  1882.667  29 

 Coeffi cients b  

 Model 

 Unstandardized 
coeffi cients 

 Standard 
coeffi cients 

 B  Std. error  Beta  t  Sig. 

 1  (Constant)  125.333  3.694  33.927  .000 
 VAR00001  −3.500  1.710  −.361  −2.047  .050 

  The top-table gives the R-values, the middle-table tests with ANOVA whether R is 
signifi cantly different from 0, the bottom-table provides the regression equation 
  ANOVA  analysis of variance,  df  degree of freedom,  F  F-statistic,  sig . level of signifi -
cance,  R  correlation coeffi cient,  B  regression coeffi cient,  t  t-statistic 
  a Predictors: (Constant), VAR00001 
  b Dependent variable: VAR00002  
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variable. The presence of a signifi cant treatment-by-subjects interaction is, then, 
considered as documented evidence of order-of-treatments-effect or trend. Analyses 
are available in SPSS  (  2011  )  and SAS  (  2011  ) .    Just like with parallel-group data a 
signifi cant trend may be found in spite of a negative overall test for treatment differ-
ences. Repeated measurements with binary data are even less common in clinical 
research, and statistical software for trends is also less generally available, but some 
methods are presented in SAS proc nlmixed  ( SAS  2011  ) . To assess trends of odds 
ratios we can make use of the assumed normal distribution of the regression coef-
fi cients, the b-values. Log likelihood ratio tests with the b-value as variable can be 
used for the purpose. 

 Why is trend-analysis often more sensitive than standard testing? We should add 
that with two treatments a trend-test and a standard test provide identical results. 
This is, because we have equal degrees of freedom. However, with three or more 
treatment modalities the degrees of freedom with a standard analysis rapidly 
increase, while with trend-analysis they do not, giving rise to smaller p-values. 

 The limitations of trend-analysis have to be accounted. First, if there is no trend 
in the data, then the standard method of analysis may be more sensitive than the 
trend-test. So, standard tests should be performed in addition to the trend tests. 
Second, trend-testing assumes a linear trend in response in the data with subsequent 
treatments. This means that, with continuous data the means of the treatment groups 
increase linearly, and with binary data, the odds of responding increase exponen-
tially (or the logarithms of the odds increase linearly). The linear effect is a simpli-
fying assumption that should be checked. With only three categories as dependent 
variable, linearity is easy to check from a graph or even from the tables of the data. 
However, with multiple categories linearity checking is less straightforward, and 
special methods have to be used. Assuming a quadratic relationship between depen-
dent and independent variable, and, then, performing a regression analysis is an 
adequate approach for that purpose, because the quadratic relationship is mathemat-
ically the simplest relationship that comes next to the linear relationship. If a better 
p-value is provided by the quadratic model, then this relationship should be pur-
sued, and the linear relationship has to be abandoned. 

 Clinical researchers, currently, perform basic statistics without professional 
help from a statistician, and current cardiovascular trials often involve more than 
two treatments or treatment modalities. Trend-tests may be more sensitive than 
standard methods for treatments comparisons. A trend means an association 
between the order of treatment and the magnitude of response. The chi-square-
test-for-trends and the linear-regression-test-for-trends are adequate for the 
analysis of parallel-group data. Although not commonly used in clinical trials, 
trend-tests for repeated measurements in one subject or one group of patients 
are available in SPSS  (  2011  ) , SAS  (  2011  ) , and other major statistical software 
programs. 

 Limitations of trend-testing include: (1) trend-testing may be less sensitive than 
standard tests if a trend in the data is lacking, (2) trends may not be linear. We rec-
ommend that trend-testing be included more routinely in clinical trial-protocols in 
order to increase the sensitivity of data analysis of clinical trials.  
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    5   Conclusions 

 Clinical investigators tend to perform basic statistics without professional help from 
a statistician, and current clinical trials often involve more than two treatments or 
treatment modalities. Trend-tests may be more sensitive than standard methods for 
treatments comparisons. This chapter reviews methods for trend-analysis of parallel-
group data from clinical trials.

    1.    A trend means an association between the order of treatment and the magnitude 
of response.  

    2.    The chi-square-test-for-trends and the linear-regression-test-for-trends are ade-
quate for the analysis of parallel-group data.  

    3.    Although not commonly used in cardiovascular trials, trend-tests for repeated 
measurements in one subject or one group of patients are available in SPSS, 
SAS, and other major statistical software programs.  

    4.    Limitations of trend-testing include: (1) trend-tests may be less sensitive than 
standard tests if a trend in the data is lacking, (2) trends may not be linear.  

    5.    We recommend that trend-testing be included more routinely in trial-protocols in 
order to increase the sensitivity of data analysis of clinical trials.          
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     1   Introduction 

 When published, a randomized parallel-group drug trial essentially includes a table 
listing all of the factors, otherwise called baseline characteristics, known possibly 
to infl uence outcome. E.g., in case of heart disease these will probably include 
apart from age and gender, the prevalence in each group of diabetes, hypertension, 
cholesterol levels, smoking history, other cardiovascular comorbidities, and con-
comitant medications. If the prevalence of such factors is similar in the two groups, 
then we can attribute any difference in outcome to the effect of test-treatment over 
reference-treatment. However, if this is not the case, we have a problem which can 
be illustrated by an example. Figure  28.1  shows the results of a study where the 
treatment effects are better in the males than they are in the females. This differ-
ence in effi cacy does not infl uence the overall assessment as long as the numbers 
of males and females in the treatment comparison are equally distributed. If, how-
ever, many females received the new treatment, and many males received the con-
trol treatment, a peculiar effect on the overall data analysis is observed: the overall 
regression line is close to horizontal, giving rise to the erroneous conclusion that 
no difference in effi cacy exists between treatment and control. This phenomenon is 
called confounding, and may have a profound effect on the outcome of a trial. In 
randomized controlled trials confounding is, traditionally, considered to play a 
minor role in the data. The randomization ensures that no covariate of the effi cacy 
variable is associated with the randomized treatment (Cleophas et al.  2006a  ) . 
However, the randomization may fail for one or more variables, making such vari-
ables confounders. Then, adjustment of the effi cacy estimate should be attempted. 
Methods include subclassifi cation (Cochran  1968  ) , regression modeling (Cleophas 
et al.  2006a  ) , and propensity scores (Rosenbaum and Rubin  1983 ; Rubin  1997  ) . 
This chapter reviews these three methods and uses hypothesized and real data 
examples for that purpose.   

    Chapter 28   
 Confounding                    
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    2   First Method for Adjustment of Confounders: 
Subclassifi cation on One Confounder 

 Figure  28.2  gives an example of confounding on one variable, age. In a large data-
base from Canada (Cochran  1968  )  the overall mortality from cigar smoking was 
signifi cantly larger than that from cigarette smoking However, the cigar smokers 
were signifi cantly older, and, therefore, hardly comparable ( mean age 66 versus 
51 years, p < 0.05). How do we assess this inequality of age in the groups. One way 
of assessment is as follows: (1) we divide the population into age subclasses of 
approximately equal size, the younger, middle-ages, and older, then, (2) compare 
mortality per subclass, and, fi nally, (3) calculate a so-called weighted average. 
Figure  28.2  shows that in any of the three subclasses mortality from cigarettes was 
higher than from cigars, but differences were not statistically signifi cant. The higher 
mortality from cigars in the overall assessment was caused by the fact that many 
youngsters smoked cigarettes, while many elderly, obviously, preferred cigars. The 
weighted average is calculated as

     

cigt cig 1 1 cigt cig 2 2 cigt cig 3 3

1 2 3

(R R ) / variance (R R ) / variance (R R ) / variance

1 / variance 1 / variance 1 / variance

− + − + −
+ +    

   where (R 
cigt

  − R 
cig

 ) = difference in mortality rate (R) between cigarette and cigar 
smokers for subclass 1 (the younger), subclass 2 (the middle-ages), and subclass 3 
(the elderly) respectively, variance are the variances of these difference-in-rates. For 
testing the signifi cance of difference between cigarette and cigar smoking of the 
weighted averages a weighted variance is required which is calculated as add-up 
sum of the separate variances. Cochran used, among other examples, the above 
example and reasoned that as long as a reasonable number of persons are in each 

  Fig. 28.1    Effi cacy of control ( 0 ) and test treatment ( 1 ) in a trial where females and males are 
assessed separately. The magnitude of the circles corresponds to the size of the subclass samples       
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subclass this procedure removes up to 90% of the bias due to confounding (Cochran 
 1968  ) . The advantages of subclassifi cation over regression analysis for confounding 
include, fi rst, that empty subclasses in the treatment comparisons are readily visual-
ized, and, second, that subclassifi cation does not rely on a linear or other regression 
model, and is, thus, universally applicable. The problem with subclassifi cation is 
that, with multiple confounders, it is simply impossible to divide the population in 
subclasses. For that purpose multivariable regression analysis is required.   

    3   Second Method for Adjustment of Confounders: 
Regression Modeling 

 Instead of subclassifi cation regression modeling can be applied to adjust a con-
founding variable (Cleophas et al.  2006a  ) . An example is given in Fig.  28.1 . The 
data of a parallel-group study produced a signifi cant difference  

 Mean treatment 0  1.666  standard deviation 0.479 
 Mean treatment 1  2.333  standard deviation 0.479 
 Difference  0.666  standard error 0.214  p < 0.001 

 The same result is obtained using a linear regression model with treatment 
modality on the x-axis and treatment effi cacy on the y-axis. The regression coeffi -
cient is the direction coeffi cient of the regression line and equals 0.666 (standard 
error 0.214), which is equal to the mean treatment effi cacy as obtained in the above 

  Fig. 28.2    Example of subclassifi cation on one confounder (age).  Left graph : overall mortality 
from cigar smoking is signifi cantly larger than that from cigarette smoking;  middle graph : if 
divided into three subclasses, the mortality from cigarettes is larger than that from cigars although 
the differences were not statistically signifi cant;  right graph : a weighted average from the compari-
sons from the middle graph shows that the mortality from cigarettes is signifi cantly larger than 
from cigars       
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usual analysis. From the Fig.  28.1  it is concluded that gender is a confounding 
variable and the data are thus adjusted for gender by adding it as a second dependent 
variable (variable z) to the model. SPSS  (  2011  )  statistical software produces the 
following results after commanding: statistics; regression; linear;  

 r 2   b  se  p-value 

 Unadjusted  0.333  0.666  0.214  <0.001 
 Adjusted  1.000  1.000  0.000  <0.00001 

  where  r  correlation coeffi cient,  b  regression coeffi cient,  se  standard error    

 The adjusted effi cacy estimate b may become smaller or larger than the unad-
justed estimate, depending on the direction of the associations of the confounder 
with the randomized treatment and the effi cacy variable. Let b 

1
  and     *

1b   denote the 
unadjusted and the adjusted effi cacy estimate, and let r 

xz
  and r 

yz
  be the correlations 

of the confounder (z) with the randomized treatment (x) and the effi cacy variable 
(y), then the following will hold:
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*
xz yz 1 1

*
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if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,

if r 0 and r 0 then b b ,
   

Notice the possibility that the unadjusted effi cacy estimate b 
1
  is zero whereas 

the adjusted estimate     *
1b   is unequal to zero: an effi cacy-difference between treat-

ments may be masked by confounding. In clinical trials it is sensible to check the 
balance between treatment groups of all known covariates of the effi cacy vari-
able. In most trials there are many more covariates and one should be careful to 
consider as a confounder a covariate which was not reported in the literature 
before. The advantage of regression analysis compared to subclassifi cation is 
that multiple variables can be added to the model in order to test whether they are 
independent determinants, and thus signifi cant confounders of the dependent 
variable, treatment effi cacy. The power of these tests is a sensitive function of the 
number of patients in the trial. Naturally, there is less opportunity for modeling 
in a small trial than there is in a large trial. There is no general rule about what 
sample sizes are required for sensible regression modeling, but a rule of thumb is 
that at least ten times as many patients are required as the number of covariates 
in the model. If these requirements are not met, the trial rapidly loses power, and 
a different approach is needed. Propensity scores have been recommended for 
that purpose.  
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    4   Third Method for Adjustment of Confounders: 
Propensity Scores 

 The method of propensity scores is relatively new (Rosenbaum and Rubin  1983 ; 
Rubin  1997  ) , but increasingly accepted in observational research, although its theo-
retical properties have not yet been entirely elucidated. Each patient is assigned a 
propensity score, which is his/her probability, based on his/her covariate value, of 
receiving a particular treatment modality. As an example, in a parallel group study 
of 100 versus 100 patients, 63 out of 100 patients in treatment group 1 were older 
than 65, while 76 were so in treatment group 2. The probability of receiving treat-
ment 1 in patients older than 65 years can be calculated to be 63/76 / 37/24 = 0.54. 
This probability equals the odds of treatment 1 with the characteristic/odds of 
treatment 1 without the characteristic, otherwise called the odds ratio (OR) of the 
two. This odds ratio can, then, be applied as measure for adjustment the asymmetric 
prevalence of the patient characteristic between the treatment groups. Two alterna-
tive methods as described in the above sections are available, and propensity score 
are therefore rarely used for that purpose. Things are different when multiple 
confounding variables are in a treatment comparison. Subclassifi cation is, then, 
impossible, and regression modeling gets powerless. 

 Propensity scores including more than 1 covariates can be calculated according 
to the following method (Table  28.1 ). For each patient the odds ratios of the covari-
ates at risk of confounding are calculated. Statistically signifi cant odds ratios are 
assumed to be signifi cant confounders (Table  28.1  upper table), and are, subse-
quently, combined into one propensity per patient in the form of their product of 
multiplication (Table  28.1  lower table). The next step is to divide the patients into 
four or more subclasses dependent on their magnitude of propensity score. Then, 
calculate per subclass mean difference in treatment effect. In order to determine an 
adjusted overall treatment difference between the two treatment groups, a weighted 
average can be calculated using the same weighting procedure as that used with 
subclassifi cation described in one of the previous sections. Figure  28.3  gives the 
results of this procedure. It is observed that the adjusted overall difference is larger 
than the unadjusted overall difference, and unlike the latter the former is statistically 
signifi cantly different from a difference of zero. Obviously, the confounders masked 
a true treatment difference, which is being unmasked by the propensity procedure. 
As an alternative to the subclassifi cation procedure, a regression model comparable 
with the regression, described in the above section, with treatment effi cacy as inde-
pendent, treatment modality as fi rst dependent and propensity score as second 
dependent variable will produce a largely similar result.    
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  Fig. 28.3    A propensity score adjustment for confounding. The patients are divided into four 
quartiles according to the magnitude of their propensity scores. The weighted average (pooled 
treatment difference) is statistically signifi cant different from zero, while the overall treatment 
difference (unadjusted for confounders) was not so       

   Table 28.1    With propensity scores for each patient the odds ratios of the covariates at risk of 
confounding are calculated (odds ratio = odds of treatment 1 with confounder/odds without con-
founder) (upper table). Then the statistically signifi cant odds ratios are assumed to be signifi cant 
confounders and are combined into one propensity score per patient calculated as their product of 
multiplication (lower table)   

 Characteristic at risk of 
confounding 

 Treatment 1  Treatment 2  Odds treatment 1 with 
characteristic/odds without  p-value  n = 100  n = 100 

 1. Age >65 years  63  76  0.54 (63/76 / 37/24)  0.05 
 2. Age <65 years  37  24  1.85 (= 1/OR  

Age >65 years
 )  0.05 

 3. Diabetes  20  33  0.51  0.10 
 4. No diabetes  80  67  1.96  0.10 
 5. Smoker  50  80  0.25  0.10 
 6. No smoker  50  20  4.00  0.10 
 7. Hypertension  60  65  0.81  ns 
 8. No hypertension  40  35  1.23  ns 
 9. Cholesterol  75  78  0.85  ns 
 10. No cholesterol  25  22  1.18  ns 
 11. Renal insuffi ciency  12  14  0.84  ns 
 12. No renal insuffi ciency  88  86  1.31  ns 

 Patient  Old y/n  dm    y/n  Smoker y/n  Propensity score = OR 
1
  × OR 

2
  × OR 

3
  

 1  y  y  n  0.54 × 0.51 × 4 = 1.10 
 2  n  n  n  1.85 × 1.96 × 4 = 14.5 
 3  y  n  n  0.54 × 1.96 × 4 = 3.14 
 4  y  y  y  0.54 × 0.51 × 0.25 = 0.06885 
 5  n  n  y 
 6  y  y  y 
 7 

   OR  odds ratio,  y  yes,  n  no,  ns  not signifi cant 
 p < 0.01 = statistically signifi cant here  
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    5   Discussion 

 In large randomized controlled trials a random imbalance of the covariates is mostly 
negligible. However, with smaller studies it may be substantial. In the latter situa-
tion assessment and adjustment for confounders is a requirement in order to reduce 
a biased assessment of the treatment comparison. In the current paper three methods 
for that purpose are reviewed. 

 We like to discuss the limitations of the three methods for the assessment of 
confounding. The subclassifi cation assessment has the limitation that it can only be 
used for one confounder. With multiple confounders multivariable regression analy-
sis is the method of choice. However, this method is limited by the sample size of 
the trial. We need at least ten times as many patients in our samples than numbers of 
variables in the analysis. This would mean that, with n = 100 in either of two sub-
groups, and the treatment effi cacy and treatment modality as primary variables, we 
have only room for eight additional variables. For studies with binary effi cacy vari-
ables or survival studies other regression models are adequate like multivariable 
logistic or multivariable Cox regression. However, such models often require addi-
tional primary variables like a variable for censored data, and even less room is left 
for additional variables for the purpose of confounding assessments. With multiple 
covariates at risk of confounding, propensity scores is an alternative possibility 
(Rosenbaum and Rubin  1983 ; Rubin  1997  ) . However, also the method of propensity 
scores has major limitations. First, propensity score are entirely based upon odds 
ratios, and odds ratios are relative rather than absolute measures (Sobb et al.  2008  ) . 
E.g., if one patient in treatment group 1 and two patients in treatment group 2 have 
a certain characteristic, the odds of treatment 1 with the characteristic/the odds of 
treatment 1 without the characteristic is 0.5, which is a huge odds ratio (OR) for an 
otherwise insignifi cant covariate. It has been advocated to include in confounding 
assessments any variable that is potentially causally related to the treatment response 
(Cleophas et al.  1996  ) . However, technically, statistically insignifi cant ORs in a pro-
pensity score severely reduce the power of the method, and regression models may 
provide better sensitivity under these circumstances as demonstrated by Soledad 
Cepeda et al in a Monte Carlo simulation study (Soledad Cepeda et al.  2003  ) . 
Second, very large and very small ORs are not reliable predictors of the chance of a 
patient being in a category. If such ORs are included in propensity scores a simu-
lated atmosphere of certainty is created. Nonetheless, propensity scores that account 
the above limitations, and include a sensible series of covariates relevant to the 
treatment comparison according to previous knowledge, can be more reliable than 
multivariable regression modeling for adjustment of covariates, particularly if studies 
are not large. 

 Irrespective of the method of adjustment for confounders, the question is should 
we adjust or not. Wickramaratne and Holford  (  1987  )  gave an example in which 
identical results were obtained whether or not account was taken of the potential 
confounder. The variance estimated from the collapse table (ignoring the con-
founder) was lower than that from the stratifi ed table. They concluded that precision 
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can be lost by unnecessary adjusting for covariates. Studies at risk of this phenomenon 
are of course particularly those with small samples and wide variances in the sub-
groups. In addition, no major differences between the variances of the covariates 
included in the analysis is an important requirement for assessing causal effects as 
attempted in most clinical trials (Hullsiek and Louis  2002  ) . 

 For the assessment of confounding the intention to treat population, unlike the 
completed protocol population, has the advantage that samples are larger. The prob-
lem is that treatment differences may be smaller and precision may be lost. Precision 
may be somewhat improved using the so-called least observation carried forward 
analysis under the assumption that the last observation is the best estimate for the 
missing data (Begg  2000  ) . There are often many candidates for inclusion as covari-
ates, but the choice should be made a priori and specifi ed in the protocol. If sub-
groups are identifi ed post-hoc, the exploratory nature of the subgroups analyses 
should be emphasized and the subgroup issue should be further assessed in subse-
quent independent and prospective data-sets. 

 Sometimes in clinical trials time-concentration relationships of new drugs are 
assessed. These assessments make use of multi-exponential rather linear regression 
models. As no direct methods for the analysis of exponential models are available, 
data have to be transformed and Laplace’s transformations are often used for that 
purpose (Beal and Sheiner  1996  ) . The Laplace transformed relationships are linear 
or quadratic and can be analyzed and adjusted for confounders using linear or poly-
nomial regression analysis. Statistical software for that purpose includes S-plus 
SAS  (  2011  )  and the Non- mem (non-linear mixed effects models) Software 
(Boeckman et al.  1984  ) . 

 We should add that all of the methods described in this paper can not be used for 
the assessment or adjustment of interacting factors. Unlike confounding where all 
of the treatments perform better in one subclass than in the other, interaction shows 
that one treatment outperforms in one subclass while the other treatment does so in 
the other. The presence of interaction can be statistically tested by comparing the 
effect sizes, e.g., by using odds ratios of treatment success in either subclass, or by 
mixed models analysis of variance (Cleophas et al.  2006b  ) .  

    6   Conclusions 

 In large randomized controlled trials the risk of random imbalance of the covariates 
is mostly negligible. However, with smaller studies it may be substantial. In the lat-
ter situation assessment and adjustment for confounders is a requirement in order to 
reduce a biased assessment of the treatment comparison. The objective of this chap-
ter is to review three methods for confounding assessment and adjustment for a 
nonmathematical readership. 

 First method, subclassifi cation: the study population is divided into subclasses 
with the same subclass characteristic, then, treatment effi cacy is assessed per sub-
class, and, fi nally, a weighted average is calculated. 
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 Second method, regression modeling: in a multivariable regression model with 
treatment effi cacy as independent and treatment modality as dependent variable, the 
covariates at risk of confounding are added as additional dependent variables to the 
model. An analysis adjusted for confounders is obtained by removing the covariates 
that are not statistically signifi cant. 

 Third method, propensity scores: each patient is assigned several odds ratios 
(ORs), which are his/her probability, based on his/her covariate value of receiving a 
particular treatment modality. A propensity score per patient is calculated by multi-
plying all of the statistically signifi cant ORs. These propensity scores are, then, 
applied for confounding adjustment using either subclassifi cation or regression 
analysis. 

 The advantages of the fi rst method include that empty subclasses in the treatment 
comparison are readily visualized, and that subclassifi cation does not rely on a lin-
ear or any other regression model. A disadvantage is, that it can only be applied for 
a single confounder at a time. The advantage of the second method is, that multiple 
variables can be included in the model. However, the number of covariates is limited 
by the sample size of the trial. An advantage of the third method is, that it is gener-
ally more reliable and powerful with multiple covariates than regression modeling. 
However, irrelevant covariates and very large/small ORs reduce power and reliability 
of the assessment. The above methods can not be used for the assessment of interac-
tion in the data.      
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     1   Introduction 

 Propensity-scores and propensity-score-matching can be used respectively for 
adjusting covariates in a multiple regression analysis and for stratifi cation/matching 
of asymmetric observational clinical data, and have recently been emphasized by 
Dr. D’Agostino in an invited paper in Circulation as a promising additional tool for 
analyzing such data (D’Agostino  2007  ) . It was fi rst described by Rosenbaum and 
Rubin in 1985 (Rosenbaum and Rubin  1985  ) , as a method for adjusting confound-
ing variables, otherwise called covariates, alternative to the usual subclassifi cation 
and regression methods. In the pas few years its application has been extended to 
so-called propensity-score-matching, a method able to transform asymmetric into 
symmetric data that can be further analyzed like randomized controlled trials. Due 
to the increase of costs for randomized trials, more and more clinical investigators 
turn to observational studies as a method of research. The current chapter was writ-
ten to familiarize the readership of this book with these relatively novel methods.  

    2   Calculation of Propensity-Scores 

 Suppose two parallel groups of 100 patients each are compared. The mean age of 
the treatment-2 group is signifi cantly different from that of treatment-1 group. For 
adjustment of this asymmetry we calculate in the older group the odds of receiving 
the treatment-1:

   Odds of receiving treatment-1 in the older patients =  

      
=number receiving treatment - 1 number receiving treatment - 1

number not receiving treatment - 1 number receiving treatment - 2     
  Odds of receiving treatment-1 in the older = 63/76  

    Chapter 29   
 Propensity Score Matching                    
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  Similarly we calculate the odds of treatment-1 in the younger = 37/24  
  Thus the odds ratio (OR) = 63/76 / 37/24 = 0.54  
  This odds ratio is smaller than 1.00 with p < 0.05.    

 The propensity-score is defi ned as the risk ratio of receiving treatment-1 compared 
to treatment-2 if you are old in this study population =

     ( ) ( )= + = + =Propensity - score OR / 1  OR 0.54 / 1 0.54 0.35
    

 If we use p = 0.10 as criterion for statistical signifi cance, then, in the underneath 
two group comparison, not a single, but multiple signifi cant inequalities of charac-
teristics are demonstrated (ns = not signifi cant).  

 Treatment-1  Treatment-2  Odds treatment-1/odds 
treatment-2 (OR)  p-value  n = 100  n = 100 

 1. Age >65  63  76  0.54 (63/76 / 37/24)  0.05 
 2. Age <65  37  24  1.85 (= OR 

2
  = 1/OR 

1
 )  0.05 

 3. Diabetes  20  33  0.51  0.10 
 4. Not diabetes  80  67  1.96  0.10 
 5. Smoker  50  80  0.25  0.10 
 6. Not smoker  50  20  4.00  0.10 
 7. Hypertension  51  65  0.65  0.05 
 8. Not hypertension  49  35  1.78  0.05 
 9. Cholesterol  61  78  0.44  0.01 
 10. Not cholesterol  39  22  2.27  0.01 
 11. Renal failure  12  14  0.84  ns 
 12. Not renal failure  88  86  1.31  ns 

 Now, we can calculate a combined propensity-score for all of the inequal charac-
teristics by multiplying the signifi cant odds ratios and then calculating from this 
product the combined propensity-score = combined risk ratio (= combined OR   /
(1 + combined OR)), y = yes, n = no, combined OR = OR 

1
  × OR 

3
  × OR 

5
  × OR 

7
  × OR 

9
 .  

 Patient  Old  Diabetes  Smoker  Hypertension  Cholesterol 
 Combined 
OR 

 Combined 
propensity score 

 1  y  y  n  y  y  7.99  0.889 
 2  n  n  n  y  y  105.27  0.991 
 3  y  n  n  y  y  22.80  0.958 
 4  y  y  y  y  y  0.4999  0.333 
 5  n  n  y 
 6  y  y  y 
 7 
 8 

 Each patient has his/her own propensity score based on and adjusted for the 
signifi cantly larger chance of receiving one treatment versus the other. We should 
add that with large data samples and multiple predictors binary logistic regression 
provides a more rapid way of calculating the propensity scores. In the Appendix 
we summarize how it works.  
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    3   Propensity-Scores for Adjusting Covariates 

 The above example is used again. Traditionally, asymmetry between treatment 
groups is adjusted by subclassifi cation or regression analysis. Subclassifi cation 
makes use of the underneath equation to calculate the treatment-effect separately for 
the subgroups −1 and −2 and, then a weighted average.   

     

difference - 1 / variance - 1 difference - 2 / variance - 2

1 / variance - 1 1 / variance - 2

+
+     

 With more than a single confounder regression-analysis is employed where 
y = the dependent variable, generally the treatment effect, and x 

1
  = the treatment 

modality (0 = new treatment, 1 = control treatment), and x 
2
 , x 

3
  etc. are confounders.

     = + + +…1 1 2 2 3 3y b x b x b x     

 If in a treatment comparison the number of confounders is larger than 3 the 
regression method soon becomes powerless, and propensity-scores are an better 
possibility for adjustment. The propensity scores have largely different sizes. 
Usually propensity-score adjustment of confounders is performed by dividing all 
patients into four or more subgroups. Then, the treatment effect is calculated per 
subgroup as shown in Fig.  29.1 , and an overall weighted treatment effect is derived 
from the same weighting procedure as the one applied with subclassifi cation 
described above. In Fig.  29.1  the overall weighted treatment effect is, obviously, 
larger than the unadjusted treatment effect. The weighted treatment effect gives a 
better picture of the real treatment effect, because between-group differences due to 
age, smoking, diabetes etc. have been removed from the treatment comparison.  

  Fig. 29.1    Usually propensity-score adjustment of confounders is performed by dividing all 
patients into four or more subgroups. Then, the treatment effect is calculated per subgroup, and an 
overall pooled treatment effect is calculated using a weighting procedure. The overall pooled treat-
ment effect is, obviously, larger than the unadjusted treatment effect. The pooled treatment effect 
gives a better picture of the real treatment effect, because between-group differences due to age, 
smoking, diabetes etc. have been removed from the treatment comparison       
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 As an alternative approach, the propensity-score can be entered in a multiple 
regression model as a confounding x-variable, and then, an adjusted regression 
analysis can be performed similarly to the on top of this section described regres-
sion analysis for adjusting separate confounders.  

    4   Propensity-Scores for Matching 

 Propensity-scores are sometimes used to make observational data look more like 
randomized controlled trials. The problem with effi cacy assessments of new treat-
ments is that some patients in one of the treatment groups may be older, and, 
therefore, respond differently affecting the overall treatment comparison. With  ran-
domization this difference is, generally, washed out due to the randomization pro-
cess. With observational data this is not so, and propensity-score-matching can be 
used as a method for removing such subgroup effects. In the above study of 200 
patients each patient has his/her own propensity-score. We select for each patient in 
group 1 a patient from group 2 with the same propensity-score. Then we will end up 
sampling two new groups that are entirely symmetric on their subgroup variables, 
and can, thus, be simply analyzed as two groups in a randomized trial. Several 
assessments for matching are possible (Love  2003  ) , including Caliper matching, 
Mahalanobis metric matching, stratifi cation matching (5 quintiles are constructed 
and assessed with bootstraps), and Kernel matching. However, obviously, nearest 
neighbor watching is the simplest of all: in random order the fi rst patient from group 
1 is selected. Then he/she is matched to the patient of group 2 with the nearest 
propensity-score. We continue until there are no longer similar propensity-scores. 
The patients with dissimilar propensity-scores that can not be matched are removed 
from the data. 

 Figure  29.2  displays this method. Both treatment-2 users and treatment-1 users 
without match are removed from the data. In the example two matched groups of 71 
patients each are left for comparison of the treatments. Underneath the patient charac-
teristics (%) of the two treatment groups are summarized both unmatched and matched. 
Although 58 patients did not fi nd an adequate match and had to be removed, the 
remaining two groups of 71 patients seem to be enough for making a sensible com-
parison. It can be observed that after matching the asymmetry has entirely gone.   

 Unmatched (n = 200)  Matched (n = 142) 

 Treatment-1  Treatment-2  p-value  Treatment-1  Treatment-2  p-value 

 Gender  63  76  0.05  70  72  ns 
 Diabetes  37  24  0.10  15  15  ns 
 Smoker  50  80  0.10  26  27  ns 
 Hypertension  51  65  0.05  50  51  ns 
 Cholesterol  61  78  0.01  76  75  ns 
 Renal failure  12  14  ns  16  12  ns 
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 We can now analyze the two groups of 71 patients as though they were two 
randomized groups from a randomized controlled trial, and we can do so, for exam-
ple, using two group t-tests or chi-square tests without need to further account 
confounding anymore.  

    5   Discussion 

 Propensity-scores of observational data have witnessed a tremendous attention in 
recent years, particularly, in cardiovascular research, as a less expensive alternative 
for controlled trials. The fi rst application, propensity-scores for adjusting covari-
ates, is an excellent method to handle data with many confounders for which 
subclassifi cation or regression analysis is impossible. The second application, pro-
pensity-score-matching may, sometimes, be hard to accept, as it generally makes 
the results of the analysis look quite different from the raw data. 

 Also, the approach is rather sophisticated sometimes giving rise to an air of 
uncertainty. 

 Another problem with propensity-scores is the fact, that irrelevant covariates 
although signifi cant, are often included, reducing the power of this procedure. In 
this way a pseudo-certainty is created. Also, the mathematical basis of propensity 

  Fig. 29.2    The nearest neighbor watching method for matching patients with similar propensity 
scores. Each square represents one patient. In random order the fi rst patient from group 1 is 
selected. Then, he/she is matched to the patient of group 2 with the nearest propensity score. We 
continue until there are no longer similar propensity scores. Group 1 is summarized above the 
x-axis, group 2 under it. The patients with dissimilar propensity scores that can not be matched, are 
removed from the analysis       
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methods are not fully recognized. We should add that only statistically signifi cant 
confounders should be included, because insignifi cant differences in clinical 
research are due to chance rather than real effects. 

 We should emphasize that propensity scores are only for confounders, otherwise 
called covariates, but not for interactions between confounders. Many confounders 
in cardiovascular research, if not all, do not only confound, but also interact with 
one another. Propensity-scores do not protect against interactions, a major fl aw of 
the approach. 

 Stratifi cation matching requires a special multivariate fi nal analysis which uses 
multiple dependent variables, a procedure that, generally, enhances the complexity 
of the model and increases the diffi culty to understand what is going on. 

 It may not be correct to state that propensity-scores can make a randomized trial 
from your observational data. The adjustment of the original data can introduce 
new biases, e.g. loss of valuable observations, and increased interaction effects. 
Observational data have their own place in clinical research, because they are more 
adequate than clinical trial data to study unselected groups, to observe unexpected 
adverse effects, and to really show what is going on in clinical practice. 

 We recommend that propensity-scores can be helpful to better estimate the unbi-
ased treatment effect in observational studies. However, in reports both adjusted and 
unadjusted results have to be reported, because the unadjusted data rather than the 
adjusted data picture what will happen with future unadjusted treatment groups in 
real clinical practice.  

    6   Conclusions 

 Propensity-scores and propensity-score-matching can be used respectively for 
adjusting covariates in a multiple regression analysis and for stratifi cation/matching 
of asymmetric observational clinical data, and have received a growing attention in 
recent years, particularly, in clinical research. 

 This chapter was written to familiarize the clinical community with this important 
methodology. 

 An example is used to explain both propensity-based-regression and propensity-
score-matching. 

 Propensity-scores are applied in observational treatment comparisons with 
unequal presence of risk factors in the treatment groups. They can be defi ned as the 
risk ratio of receiving treatment-1 compared to treatment-2 if you are suffering from 
the risk factor, for example, advanced age. Also multiple risk factors can be imple-
mented in an overall propensity-score. Propensity-scores can be used for adjustment 
of the unequally distributed risk factors, and, with multiple risk factors, like com-
monly observed in cardiovascular research, they are better for that purpose than the 
usual subclassifi cation or regression methods. With propensity-score-matching each 
patient in treatment-1 group is matched to the patient of treatment-2 group with the 
nearest propensity-score. After matching of all patients, some patients without 



335Appendix

match are left, and are no further used in the analysis. In this way propensity-score 
makes observational look like the data from a controlled trial, which can be ana-
lyzed in the usual way. 

 Propensity-scores is one of the few methods to handle data with many confound-
ers, and works excellently for that purpose. Limitations are: (1) The methods is 
sometimes hard to accept because the results look entirely different from the raw 
data. (2) The method is rather sophisticated sometimes giving rise to an air of uncer-
tainty. (3) Irrelevant and statistically insignifi cant confounders are often included 
reducing the power of the procedure. (4) Mathematically the method has not been 
entirely recognized. (5) Propensity-score are used for confounding risk factors only, 
they are not used to assess interactions between them.       

      Appendix    

 Binary logistic regression is based on the log-linear equation

     = +ln odds a bx    

where ln means the natural logarithm, odds = the odds of receiving treatment-1, 
a = the intercept, b = the regression coeffi cient, and x = a binary predictor variable, 
for example for old age x = 1, for young age x = 0. 

 Instead of the above equation we can write:   

     

a bx

a b

a

a b a b

odds e

if old,  x 1 odds e

if young,  x 0 odds e

the division sum odds ratio e / e e

+

+

+

=
= =

= =
= = =     

 The odds ratio of treatment-1 compared to treatment-2, if you are old in this 
study population, thus, equals e b . SPSS software (  www.SPSS.com    ) requires to com-
mand binary logistic regression, then enter the treatment modality as dependent 
variable and the age category as independent variable, and analyze (ln = natural 
logarithm). 

 The calculated b for these variables = −0.62

     = = =b
for treatment - 1 vs treatment - 2e antiln b 0.54 OR .     

 In the same way additional predictors can be added to the same model. The soft-
ware program produces a b-value for each x-variable added (b 

1
 , b 

2
 , b 

3
  etc), and the 

outcome variable equals

     
+ + +… = × × …1 2 3b b b

1 2 3e OR OR OR .     

http://www.SPSS.com
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 This result is similar to the that of the pocket calculator method described above, 
and from it the propensity scores can be similarly readily derived.   
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     1   Introduction    

 In pharmaceutical research and development, multiple factors like age, gender, 
comorbidity, concomitant medication, genetic and environmental factors co-
determine the effi cacy of the new treatment. In statistical terms we say they interact 
with the treatment effi cacy. It is impossible to estimate all of these factors. Instead, 
randomized controlled trials are used to ensure that no major imbalances exist 
regarding these factors, and an overall assessment is made. The limitation of this 
approach becomes obvious once the new medicine is applied in practice where ben-
efi ts of new medicines are far less consistent than they are in the trials (Riegelman 
 2005  ) . Despite this limitation, interaction effects, are not routinely assessed in clini-
cal trials, probably because the statistical methods for identifying and integrating 
them into the data have low power. Moreover, if we introduce a large number of 
interaction terms in a regression analysis, the power to demonstrate a statistical 
signifi cance for the primary endpoint will be reduced. Nonetheless, the assessment 
of a small number of interaction terms in clinical research can be an important part 
of the evaluation of new drugs, particularly, if it can be argued that the interaction 
terms make clinically sense. The current chapter gives some important factors that 
may interact with the treatment effi cacy, and proposes some guidelines for imple-
menting an interaction assessment in the analysis of clinical trials, in order to better 
predict the effi cacy/safety of new medicines in future clinical treatment of individual 
patients.  

    2   What Exactly Is Interaction, a Hypothesized Example 

 The aim of clinical trials of new medicines is, generally, to use the estimated effects 
in forecasting the results of applying a new medicine to the general population. For 
that purpose a representative sample of subjects is treated with the new medicine or 

    Chapter 30   
 Interaction                    
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a control medicine. For example, in a parallel group study 400 patients are treated 
as follows:  

 Patients who received 
new medicine (n = 200) 

 Control medicine 
(n = 200)  p-value 

 Successfully treated 
patients 

 130/200 (65%)  110/200 (55%)  <0.01 

 Based on this assessment the best bet about the difference between the two treat-
ment modalities is given by the overall difference between the two treatment groups. 
We can expect that the new medicine performs 10% better than does the control 
medicine. If, however, we include the factor gender into our data, the results look 
slightly different:  

 Patients who received 
new medicine (n = 200) 

 Control medicine 
(n = 200) 

 Accumulated 
data 

 Successfully treated 
females 

 55/100  65/100  120/200 

 Successfully treated 
males 

 75/100  45/100 +  120/200 

 130/200  110/200 

 The above result shows, that, although no difference between females and 
males exists in the accumulated data, the new medicine performs better in the 
males, while the control medicine does so in the females. The adequate interpre-
tation of this result is, if you don’t wish to account gender, then the new medicine 
performs  better, while, if you include only females, the control medicine per-
forms better. The treatment modalities interact with gender. Interaction effects 
usually involve situations like this. It is helpful to display interaction effects 
important to the interpretation of the data in a graph with treatment modality on 
the x-axis and subgroup results on the y-axis. If the lines drawn for each sub-
group are parallel (Fig.  30.1  upper graph), no interaction is in the data. A differ-
ent slope, and, particularly, crossing lines (Fig.  30.1 , lower graph), suggest the 
presence of interaction effects between treatment effi cacy and subgroups, in our 
example  treatment × gender interaction . The new medicine is better in females 
than it is in males.  

 The medical concept of interaction is synonymous to the terms heterogeneity and 
synergism. Interaction must be distinguished from confounding. In a trial with 
interaction effects the parallel groups have similar characteristics. However, there 
are subsets of patients that have an unusually high or low response. With confound-
ing things are different. For whatever reason the randomization has failed, the paral-
lel groups have asymmetric characteristics. For example, in a placebo-controlled 
trial of two parallel-groups asymmetry of age may be a confounder. The control 
group is signifi cantly older than the treatment group, and this can easily explain the 
treatment difference. Particularly, in survival studies differences in baseline age 
may be an important confounder as recently demonstrated by De Craen and 
Westendorp  (  2005  ) .  
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    3   How to Test Interaction Statistically, a Real Data Example 
with a Concomitant Medication as Interacting Factor: 
Incorrect Method 

 In the above example the presence of interaction is suggested. We can statistically 
test whether the difference between new medicine and control is signifi cantly differ-
ent using e.g. a chi-square or an odds ratio test. The tests produce p-values of >0.10 
for the females and <0.001 for the males. It is tempting to state that the difference 
in p-values establishes a difference between the females and the males. P-values are 
composite estimators of not only effect size, but also spread in the data. Differences 
in p-values can arise because of differences in effect sizes or standard errors. 

 The correct approach is to compare directly the effect sizes relative to the stan-
dard errors, e.g. by using the odds ratios of treatment success in either subgroup 
(Table  30.1 ). This procedure produces a p-value between 0.05 and 0.10. Obviously, 
there is a tendency to interaction. However, defi nitive evidence is lacking.   

%
curred.

50

30

10

90

70

50

30

10

0 1

females

treatment modality
0 = control medicine
1 = new medicine

males

females

males

  Fig. 30.1    The effect of 
gender on a treatment 
comparison of two parallel 
groups treated with a new and 
a control medicine.  Upper 
graph : the males respond 
better to both of the treatment 
than do the females, but no 
gender × treatment interaction 
is in the data.  Lower graph : 
the data from the example 
given in the text: there is 
evidence for 
gender × treatment interaction 
because the males respond 
better to the new medicine, 
while the females respond 
better to the control treatment       
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    4   Three Analysis Methods    

 Verapamil  Metoprolol 

 Males 
 52  28 
 48  35 
 43  34 
 50  32 
 43  34 
 44  27 
 46  31 
 46  27 
 43  29 
 49  25 

 464  302  766 
 Females 

 38  43 
 42  34 
 42  33 
 35  42 
 33  41 
 38  37 
 39  37 
 34  40 
 33  36 
 34  35 

 368  378  746 
 832  680 

 As an example we give a study of treatments for paroxysmal atrial fi brillation, 
the number of episodes per patient is the outcome variable. 

   Table 30.1       Difference between females and males in odds ratios of treatment success   

 Standard error  p-value 

 Odds ratio treatment success females 
 0.658  1.336  >0.10 
 Odds ratio treatment success males 
 3.667  1.357  <0.001 
 Difference in odds ratios a  
 5.573  2.563  0.05 < p < 0.10 

   a The difference in odds ratios is calculated by subtracting their logarithmic transformations and 
turning this subtraction sum into its antilogarithmic term  
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 Overall metoprolol seems to perform better. However, this is only true only for 
one subgroup (males). 

    4.1   First Method, t-Test    

 Males  Females 

 Mean 
verapamil

  (SD)  46.4 (3.23866)  36.8 (3.489667) 
 Mean 

metoprolol
  (SD)  30.2 (3.48966) −  37.8 (3.489667) − 

 Difference means (SE)  16.2 (1.50554)  −1.0 (1.5606) 

 Difference of males and females 17.2 (2.166) 
  t-value = 17.2/2.166 = 8 
  p < 0.0001 

 There is a signifi cant difference between the males and females, and, thus, a 
signifi cant interaction between gender and treat-effi cacy.  

    4.2   Second Method, Analysis of Variance (ANOVA) 

 ANOVA Assesses whether the variance due to interaction is large compared to the 
variance due to chance (residual variance), (SS = sum of squares).  

 Verapamil     Metoprolol 
 Males   52   48 

  48   35 
  43 
  50  . 
 ____ +  ____ + 
 464  302    766 

 Females   38  . 
  42  . 
 .  . 
 . 
 .   35 
 ____ +  ____ + 
 368+  378+    746+ 
 832  680  1,512 
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( )+ +… − + + +…
= =

22 2 2

total

52 48 ..35 52 48 35
SS 1,750.4

40    

     

( )+ + +…+…= − =
22 2

treatment by gender

52 48 35464 378
SS 1,327.2

10 40    

     
= − =residual total treatment by genderSS SS SS 423.2

   

     

( ) ( )
22 2

rows gender

52 48 35766 746
SS 10.0 SS

20 40

+ + +…+
= − = =

   

     

( ) ( )
22 2

columns treatment

52 48 35832 680
SS 577.6 SS

20 40

+ + +…+
= − = =

   

     
= − − = − − =interaction treatment by gender rows columnsSS SS SS SS 1,327.2 10.0 577.6 739.6

    

 ANOVA-table (dfs = degrees of freedom, MS = mean square, F = F-statistic)  

 SS  dfs  MS  F  P 
 Rows  10.0  1  10  0.851  ns 
 Columns (treatment)  577.6  1  577.6  49.1  <0.0001 
 Interaction  739.6  1  739.6  62.9  <0.0001 
 Residual  423.2  36  11.76 
 Total 

 In the above analysis both SS 
treatment

  and SS 
interaction

  are compared to the SS 
residual

  . 
Often it is a better approach to use a “random-effects-model”. The SS 

treatment
  is then 

compared to the SS 
interaction

  . A p-value > 0.05 indicates no interaction. Random effects 
models will be discussed in the Chap.   56    .  

    4.3   Third Method, Regression Analysis 

 The y-variable is dependent, the x-variables are independent. 
 y = number of episodes of paroxysmal atrial fi brillation 
 x 

1
  = treat-modality (0 of 1) 

 x 
2
  = gender (0 of 1) 

 Add an additional interaction variable x 
3
  = x 

1
  * x 

2
  (* = sign of multiplication). 

 Perform a multiple linear regression analysis including x 
3
 . 

 Regression-coeffi cients-table (b = regression coeffi cient)  

 b  SE  t  sig 
 Constant  46.40  1.084  42.79  0.00 
 x 

1
   −16.20  1.533  −10.565  0.00 

 x 
2
   −9.60  1.533  −6.261  0.00 

 x 
3
  (interactie)  17.20  2.168  7.932  0.00 
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 The t-value for x 
3
  = 7.932. The F-value for interaction in the above 

ANOVA-model = 62.916. It is interesting to observe that this F-value equals t 2  of the 
regression model. The two approaches are obviously very similar. We should note 
that for random-effects-modeling the SPSS software for linear-regression analyses 
has limited possibilities.   

    5   Using a Regression Model for Testing Interaction, 
Another Real Data Example 

 How do we statistically test for the presence of interaction. Univariate analyses 
comparing subgroups can be used for that purpose. However, the linear regression 
model provides better sensitivity because it suffers less from missing data, and 
enables to analyze all of the data simultaneously. An example is provided by the 
Regress trial, a randomized parallel group trial of 884 patients treated with pravas-
tatin or placebo for 2 years. The data of this study have already been briefl y addressed 
in the Chaps.   12     and   14     (Hays  1998  ) . One of the primary effi cacy variables was the 
decrease of the diameter of the coronary arteries after 2 years of treatment. The 
average decrease was 0.057 mm (standard error (SE) 0.013) in the pravastatin group, 
and it was 0.117 mm (SE 0.015) in the placebo group (t-test: signifi cance of differ-
ence at p < 0.001) (Fig.  30.2 , upper graph); thus the effi cacy estimate b 

1
  was 0.060 

(standard error SE = 0.016). Calcium antagonists had been given to 60% of the 
placebo patients, and to 59% of the pravastatin patients (chi-square: p = 0.84): thus, 
calcium antagonist treatment was not a confounder variable. Also, calcium antago-
nist medication was not associated with a diameter decrease (p = 0.62). In the 
patients who did not receive concomitant calcium antagonist medication, the diam-
eter decreases were 0.097 (SE 0.014) and 0.088 (SE 0.014) in patients receiving 
placebo and pravastatin, respectively (p = 0.71). In patients who did receive calcium 
antagonist medication, the diameter decreases were 0.130 (SE 0.014) and 0.035 (SE 
0.014), respectively (p < 0.001). Thus, pravastatin-effi cacy was, on average, 0.097–
0.088 = 0.009 mm in the patients without calcium antagonist medication, and 0.130–
0.035 = 0.095 in the patients with calcium antagonist medication (Fig.  30.2 , lower 
graph). The two lines cross, suggesting the presence of interaction between pravas-
tatin and calcium antagonists.  

 Before statistically testing this suggested interaction, we have to assess whether 
it makes clinically sense. Atherosclerosis is characterized not only by depots of 
cholesterol but also of calcium in the fatty streaks that consist of foam cells. It does 
make sense to argue that calcium antagonists, although they do not reduce plasma 
calcium, reduce calcium levels in the foam cells, and, thus, benefi cially infl uence 
the process of atherosclerosis, and that interaction with cholesterol lowering treat-
ment is a possibility. 
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 We used the following linear regression model for this test:  

     = + + + +i 1 1i 2 2i 3 3i iy a b x b x b x e     

  where  
  y 

i
  = dependent variable = decrease in coronary artery diameter in the ith patient  

  a = intercept  
  b 

1
 , b 

2
 , and b 

3
  = partial regression coeffi cients for the variables (1) treatment modality, 

(2) calcium antagonist treatment, (3) interaction between (1) and (2)  
  e 

i
  = systematic error in the ith patient    

Decrease coronary artery diameter, means ± SEMS
(mm)

0.13

0.11

0.09

0.07

0.05

0.03

0.01

0.13

0.11

0.09

0.07

0.05

0.03

0.01

0 1

0 1

Yes calcium antagonist

No calcium antagonist

Treatment modality
0 = placebo
1 = pravastin

  Fig. 30.2    The effect of concomitant calcium antagonists on treatment effi cacy of pravastatin 
estimated by the decrease of coronary artery diameter (ca-diameter) after 2 years’ treatment 
(REGRESS data (Jukema et al.  1995  ) ).  Upper graph : pravastatin signifi cantly decreased ca-
diameter compared to placebo.  Lower graph : there is evidence for interaction between calcium 
antagonists and pravastatin, because in the patients receiving no calcium antagonist the benefi t of 
pravastatin was insignifi cant, while it was highly signifi cant in the patients receiving a concomitant 
calcium antagonist       
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 Let x 
1i
  = 1 denote that patient i received pravastatin (x 

1i
  = 0, if not), let x 

2i
  = 1 

denote that patient i received calcium antagonist medication (x 
2i
  = 0, if not), and let 

x 
3i
  = x 

1i
  times x 

2i
 . The estimates were: b 

3
  = 0.085 (SE 0.033), b 

2
  = −0.033 (SE 0.023), 

and b 
1
  = 0.009 (SE 0.026). Notice that b 

1
  changed dramatically by including the 

interaction term x 
3
  in the linear model; this is a general feature of regression models 

with interaction terms: the corresponding main-effects (b 
1
  and b 

2
 ) cannot be inter-

preted independently of the interaction term. Another consequence is that  the  effi -
cacy estimate no longer exists, but several estimates do exist: in our case there are 
different effi cacy-estimates for patients with (b 

1
  + b 

3
  = 0.009 + 0.085 = 0.094) and 

without calcium antagonist medication (b 
1
  = 0.009). This difference was statistically 

signifi cant (interaction test: p = 0.011).  

    6   Analysis of Variance for Testing Interaction, 
Other Real Data Examples 

    6.1   Parallel-Group Study with Treatment × Health Center 
Interaction 

 Current clinical trials of new treatments often include patients from multiple health 
centers, national and international. Differences between centers may affect results. 
We might say these data are at risk of interaction between centers and treatment 
effi cacy. Hays  (  1998  )  described an example: 36 patients were assessed for perfor-
mance after treatment with either placebo, vitamin supply low dose, and high dose. 
Patients were randomly selected in six health centers, six patients per center, and 
every patients was given one treatment at random, and so in each center two patients 
were given one of the three treatments. The Table  30.2  gives an overview of the 
results.  

 The model is y =  m  + a + b + ab + e
   where y = dependent variable, estimate for performance of patients  
      m  = mean result  
     a = fi xed effect of the three treatments  
     b = random effect of health center  
     ab = between treatment and health center effect  
     e = systematic error    

 The computations are (SS = sum of squares)

     
( ) ( )= + + − =�

2
2 2

total

(358.5)
SS 7.8 10.5 123.56

36    

     

+ += − =�2 2 2

ab

(16.5) (19.1) (358.5)
SS 109.03

2 36    

     error total abSS SS SS 123.57 109.  03 14.54= − = − =    
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+ += − =
2 2 2 2

columns

(103.5) (136.0) (119.0) (358.5)
SS 44.04

12 36    

     

+ += − =� 2 2

rows

(61.3) (62.9) (358.5)
SS 6.80

6 36    

     interaction ab rows columnsSS SS SS SS 109.03 6.80 44.04 . 9 58 1= − − = − − =     

 Table  30.3  gives the ANOVA (analysis of variance) table. The F test for interaction 
produces an F-value of 7.19 corresponding with a p-value <0.01 which means that 
the hypothesis of no interaction is rejected. Although there is insuffi cient evidence 
to permit to conclude that there are treatment effects or health center effects, there 
is pretty strong evidence for the presence of interaction effects. There is something 
about the combination of a particular health center with a particular treatment that 
accounts for a signifi cant part of the variability in the data. Thus, between the health 
centers, treatment differences apparently exist. Perhaps the capacity of a treatment 
to produce a certain result in a given patient depends on his/her health center 
background.   

   Table 30.2    Results of three treatments for assessment of performance in 36 patients in six health 
centers, results are given as scores)   

 Treatment  Placebo 
 Vitamin supply 
low dose  High dose  Total 

 Health center 
 1  7.8  11.7  11.1 

 8.7  10.0  12.0 
 16.5  21.7  23.1  61.3 

 2  8.0  9.8  11.3 
 9.2  11.9  10.6 

 17.2  21.7  21.9  60.8 
 3  4.0  11.7  9.8 

 6.9  12.6  10.1 
 10.9  24.3  19.9  55.1 

 4  10.3  7.9  11.4 
 9.4  8.1  10.5 

 19.7  16.0  21.9  57.6 
 5  9.3  8.3  13.0 

 10.6  7.9  11.7 
 19.9  16.2  24.7  60.8 

 6  9.5  8.6  12.2 
 9.8  10.5  12.3 

 19.3  19.1  24.5  62.9 
 Total  103.5  119.0  136.0  358.5 

  Data modifi ed from Hays  (  1998  )  with permission from the editor  
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    6.2   Crossover Study with Treatment × Subjects Interaction 

 In a crossover study different treatments are assessed in one and the same subject. 
Suppose, we have prior arguments to believe that subjects who better respond to one 
treatment, will also do so to another treatment. For example, in trials involving a 
similar class of drugs subjects who respond better to one drug, tend to respond bet-
ter to all of the other drugs from the same class, and those who respond less, will 
respond less to the entire class. For example, patients with angina pectoris, hyper-
tension, arrhythmias, chronic obstructive pulmonary disease, responsive to one 
class of drugs may equally well respond to a different compound from the same 
class. In this situation our interest may focus on the question is there a difference in 
response between different patients, instead or in addition to the question is there an 
overall difference between treatments. If the emphasis is on the differences between 
the subjects, the design is often called a treatments-by-subjects design. An example 
is in Table  30.4 .  

 Twelve patients are given in random order four different antihypertensive drugs 
from the same class. Diastolic blood pressures were used as variable. The statistical 
model with computations are (sd = standard deviation):

    
= + +…… =2 2 2

subjects 1 2 12SS sd sd sd 906
   

     

( ) ( )2 2

treatmentsSS treatment mean 1 grand mean treatment mean 2 grand mean

96.0

= − + −
+… =   

    

( ) ( ) ( )= − = − = +…… − =∑∑ ∑
2

22 2 2 2
totalSS ( ) 49 .40 2,160 / 48 1,232

y
y y y

n    

     × = − − =subjects  treatments total subjects treatmentsSS SS SS SS 230
    

 The layout for this repeated measures situation is given in Table  30.5 . The MS 
(mean square) for treatments divided by the MS for subjects-by-treatments interac-
tion gives an F-ratio of 4.60. If we are using an alpha level of 0.05 for this test, this 
results will be signifi cant. The four treatments appear to be having different effects 

   Table 30.3    ANOVA table of analysis for data of Table  30.2    

 Source  SS  dfs  MS  F 

 Columns  44.04  3 − 1 = 2  22.02  22.02/5.82 = 3.78 
 Rows (centers)  6.80  6 − 1 = 5  1.36  1.68 
 Interaction 

(treatment × center) 
 58.19  10  5.82  5.82/0.81 = 7.19 

 Error  14.54  18 × (2 − 1) = 18  0.81 
 Total  123.57  35 

   SS  sum of squares,  dfs  degrees of freedom,  MS  mean square,  F  test statistic for F test  
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to different subsets in this sample. Note that an overall F test on these data requires 
the SS residual term which is equal to SS subjects – SS treatments. The F-ratio used 
for an overall F test equals MS treatments/MS residual, and would produce an 
entirely different result (see also Chap.   2    ).  

 From the above analysis it can be concluded that an interaction effect exists 
between treatments and patients. Some patients, obviously, respond better or worse 
to the treatments than others. This is probably due to personal factors like genetic 
polymorphisms, societal and/or developmental factors. This repeated measures 
model is particularly convenient in drug development that has to account such fac-
tors when assessing the elimination rate and other pharmacokinetic properties of 
new drugs. Statistical models like these are often called mixed effects models, 
because they are considered to include a fi xed effect (the treatment effect), and a 
random effect (the effect of being in a subset). Mixed effects models will be further 
discussed in Chap.   56    .   

   Table 30.4    Diastolic blood pressures (mmHg) after 4 week treatment with four different treat-
ments in a crossover study of 12 patients   

 Patient  Treatment 1  Treatment 2  Treatment 3  Treatment 4  sd 2  

 1  98  96  98  90  … 
 2  94  92  92  86  … 
 3  92  94  94  88 
 4  94  90  90  90 
 5  96  98  98  96 
 6  94  88  90  92 
 7  82  88  82  80 
 8  92  90  86  90 
 9  86  84  88  80 
 10  94  90  92  90 
 11  92  90  90  94 
 12  90  80  80  80 

 1,104  1,080  1,080  1,056  Add-up sum = 4,320 

   Table 30.5    ANOVA table for the data of Table  30.4    

 Source  SS  dfs  MS  F 

 Subjects  906  12 − 1 = 1 
 Treatments  96  4 − 1 = 3  32  32/7 = 4.60  <0.05 
 Subjects × treatments  230  3 × 11 = 33  7 
 Total  1,232  47 

   SS  sum of squares,  dfs  degrees of freedom,  MS  mean square,  F  test statistic for F test  



3497 Discussion

    7   Discussion 

 Interaction effects in a clinical trial should be distinguished from confounding 
effects. In a trial with interaction effects the treatment groups are generally nicely 
symmetric. However, there are subsets in each treatment group that have an unusu-
ally high or low response. With confounding, things are different. For whatever 
reason the randomization failed, and the treatment groups are different for a clini-
cally relevant factor. For example, in a placebo-controlled trial the two parallel-
groups were asymmetric for age. The control group was signifi cantly older than the 
treatment group, and this could easily explain the treatment difference. More exam-
ples of confounding are given in the Chaps.   12     and   17    . 

 Also interaction effects should be distinguished from carryover effects as com-
monly observed in crossover studies, and sometimes wrongly called treatment by 
period interaction. If in a crossover study the effect of the fi rst period of treatment 
carries on into the second period of treatment, then it may infl uence the response to 
the latter period. More examples of this phenomenon will be given in the Chaps.   28     
and   30    . 

 Clinical trials usually do not include interaction assessments in the protocol. 
Results of such assessments are, therefore, post-hoc, and of an exploratory and 
unconfi rmed nature. Why should they be performed even so? In cardiovascular 
research drug-drug interactions, and effects of comorbidities on drug effi cacies are 
numerous. It is valuable to account at least post-hoc for such mechanisms. Second, 
current clinical trials involve heterogeneous health centers, investigators, and patient 
groups. Accounting these heterogeneities can be helpful to predict individual 
responses in future patients, and to develop prediction rules based on the trial data 
of individuals. Prediction rules like the Framingham risk score may be developed 
using trial data to further identify subjects at risk of having a good or bad drug 
response. 

 Other reasons for interaction assessments include the following. It may be useful 
and reassuring to know that in a positive study the benefi t in subgroups parallels the 
benefi t in the study overall. For example, in a subgroup analysis of the Dietary 
Approach to Stop-Hypertension (DASH) randomized clinical trial the results were 
equivalent in different age, gender, and ethnic groups (Svetkey et al.  1999  ) . Also, it 
may be useful to know if there are in an unexpectedly negative study certain sub-
groups that might be benefi ted or harmed by the treatment. For example, estrogen/
progestin replacement caused cardiovascular benefi t in women with high lipopro-
tein, harm in those with low lipoprotein (Shlipak et al.  2000  ) . 

 We should add that the assessment of interaction, otherwise called heterogeneity, 
is not always wise. In controlled clinical trials a myriad of subgroups can be identi-
fi ed that would qualify for an exploratory examination, and this approach will 
almost certainly produce one or more spuriously signifi cant interactions. Interaction 
terms to be assessed should, therefore, make clinically sense. Demonstrating a sta-
tistically signifi cant interaction between the treatment effect and the fi rst letters the 
patients’ Christian names makes no sense, and pursuing such a fi nding is merely 
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data dredging. We should caution that a “scientifi c” explanation can be found for 
every subgroup results in one afternoon Pubmed search. As stated by Dr. Barrett-
Connor in a commentary on the nine positive interactions demonstrated in a sub-
group analysis of the otherwise negative Heart and Estrogen/progestin Replacement 
Study (HERS) trial, biological plausibility is quite easy to theorize, anyone with 2 h 
and a little imagination can do it (Barrett-Connor  2002  ) . 

 Statistical methods for identifying and integrating interaction terms into the data 
are limited, and have a limited statistical power. Moreover, if we introduce a large 
number of interaction terms in a regression analysis, the statistical power to demon-
strate statistical signifi cance for the primary endpoint will be reduced. Nonetheless, 
the assessment of a small number of interaction terms in clinical research can be an 
important part of the evaluation of new drugs. 

 The issue of testing interaction is different with meta-analyses of clinical trials 
(Chalmers and Altman  1996  ) . The aim of a meta-analysis is to obtain a pooled esti-
mate of a treatment effect rather the study of subgroups. The studies to be included 
in a meta-analysis are often heterogeneous, and protocols, therefore, routinely apply 
a heterogeneity test prior to data pooling. In the presence of a statistically signifi cant 
heterogeneity, an data pooling may be diffi cult to accept, and has as an additional 
problem that confi dence intervals are underestimated, because the extra variability 
between the different trials is ignored. 

 If a statistically signifi cant interaction is demonstrated post hoc, its existence 
should be confi rmed in a novel prospective clinical trial. If a relevant interaction is 
expected prior to the trial, its assessment should be properly included in the trial 
protocol at the planning stage of the trial. Instead of a regression model a factorial 
trial design is suitable for such purposes. 

 Linear regression analyses may provide better precision to test interaction than 
comparison of subgroups (Hays  1998  ) . It is also often more convenient, because it 
enables to analyze all of the data simultaneously. Different regression models may 
be adequate for different types of data, e.g., exponential models are more adequate 
than linear models for risk ratios and mortality data.  

    8   Conclusions 

 In pharmaceutical research and development, multiple factors co-determine the effi -
cacy of the new treatment. In statistical terms we say they interact with the new 
treatment effi cacy. Interaction effects, are not routinely assessed in clinical trials. 
The current paper reviews some important factors that may interact with the treat-
ment effi cacy, and comes to the following recommendations:

    1.    The assessment of a small number of interaction terms is an important part of the 
evaluation of new medicines. Important factors that may interact with the treat-
ment effi cacy are: (a) concomitant drugs and/or comorbidities, (b) health center 
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factors in multicenter trials, (c) subject factors like genetic polymorphisms relat-
ing to the speed of drug metabolism.  

    2.    Interaction terms to be assessed should make clinically sense.  
    3.    Linear regression analyses provide better sensitivity to test interaction than do 

subgroup analyses, because they suffer less from missing data and enable to 
analyze all of the data simultaneously. Exponential regression models are more 
adequate for risk ratios and mortality data.  

    4.    If a relevant interaction is clinically expected, its assessment should be properly 
included in the trial protocol at the planning stage of the trial.  

    5.    If a statistically signifi cant interaction is demonstrated post hoc, its existence 
should be confi rmed in a novel prospective clinical trial. 

 We hope that the examples and recommendations in this chapter be guidelines for 
the analysis of interaction effects in clinical drug trials, in order to better predict the 
effi cacy/safety of new medicines in future clinical treatment of individual patients.          
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     1   Introduction 

 Assessing the effects of health predictors on morbidity/mortality is an important 
objective in clinical research. Usually, the individual patients’ values of a health 
predictor are evaluated at the time of entry in a study, and the fi nal effects on mor-
bidity/mortality are collected years later. Logistic and Cox regression models are 
commonly applied to determine, whether the health predictors signifi cantly contrib-
uted to the risk of events/hazard of deaths etc. The problem with this approach is the 
assumption, that the individual patients’ values of the health predictors do not 
change across time. This may be true for short time observations in simple creatures 
like mosquitoes. However, humans are more complex and creative, and tend to 
change their lifestyles in the course of time. It would mean, for example, that the 
risk of smoking on death cannot be estimated from the numbers of cigarettes at the 
time of entry, if people tend to give up smoking while on trial. Therefore, an ongo-
ing adjustment of the values of risk factors during the time of observation would be 
a more adequate assessment. However, standard statistical methods do not allow for 
such adjustments. In 1996 the group of Abrahamowicz (Cox  1972  )  was the fi rst 
to present a model for time-dependent factor analysis based on the traditional 
Cox regression model (Abrahamowicz et al.  1996  ) . It is now available in SPSS 
(  www.SPSS.com    ) statistical software and other major software programs, but, 
unfortunately, still rarely applied. The current chapter explains the novel model 
using examples from survival studies, and was written to assess the performance of 
the novel method, and to familiarize the clinical research community with this 
important approach for improved survival analysis.  

    Chapter 31   
 Time-Dependent Factor Analysis                    

http://www.SPSS.com
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    2   Cox Regression Without Time-Dependent Predictors 

 Cox regression is immensely popular. It uses exponential models: per time unit the 
same percentage of patients has an event. This exponential model may be adequate 
for survival of mosquitoes, they usually die whenever they collide: in a room full of 
mosquitoes after the 1st day 50% may be alive, after the 2nd day 25%, etc. (Fig.  31.1 ). 
However, human beings are much more complex and creative, and do not usually 
die from collisions. Yet, this exponential model is widely applied for the compari-
son of Kaplan-Meier curves in humans.  

 Cox regression uses an exponential model according to the following equation 
(t = time):

     
−= = tproportion survivors 1 / 2 t 2     

 In true biology: e (= 2.71828) better fi ts data than 2, and k is used as a constant for 
the species:   

     
−= ktproportion survivors e     

 Kaplan-Meier curves are analyzed using this exponential model. Examples of such 
equations are underneath:

     
− −= kt bxproportion survivors e    

x = binary variable (only 0 or 1, 0 means treatment-1, 1 means treatment-2), b = the 
regression coeffi cient   ,

     
−= = ktif x 0,  then the equation turns into proportion survivors e    

     
− −= = kt bif x 1,  then the equation turns into proportion survivors e     

 Figure  31.2  gives an example of two Kaplan Meier curves of groups of patients 
surviving cancer after the start of either treatment-1 or -2. The continuous lines give 
the real data, the dotted lines the curves modeled by the Cox regression program. 

  Fig. 31.1    Exponential curve 
of survival of mosquitoes       
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We are not so much interested in precise pattern of the separate dotted curves, but 
rather in the ratio of the two curves (the relative chance of surviving), which is given 
by: e −kt−b /e −kt  = e –b .  

 Consequently, the relative risk death (the hazard ratio) is given by e b .

     ( ) − −= = b
treatment 2 treatment 1The hazard ratio HR risk death / risk death e .

   

     ( )=eLog HR natural log b.
    

 The software calculates the best fi t b for the given data, if b is signifi cantly >0, 
then the HR (= antilog b) is signifi cantly >1, which indicates a signifi cant difference 
in risk-death between treatment-2 and treatment-1. We use SPSS statistical software 
for analysis. 

 Command: Analyze – survival – Cox regression – time: follow months – status: 
var 2 – defi ne event (1) – Covariates – categorical: treatment – continue – plots – 
survival => − hazard – continue – ok 

 The analysis produces a b-value (regression coeffi cient) of 1.10 with a p-value of 
0.01, which means that treatment modality is a signifi cant predictor of survival: 
treatment-1 is much better than treatment-2 with a hazard ratio of e b  = e 1.10  = 3.00. 
A nice thing with Cox regression is that like with linear and logistic regression 
additional x-variables can be added to the model, for example patient characteristics 
like age, gender, comorbidities etc. 

 A problem with Cox regression is that it is a major simplifi cation of real life. It 
assumes that the ratio of risks of dying in the two groups is constant over time, and 

100

80

60

40

20

0
0
Years

Treatment - 2

Treatment - 1
P

er
ce

nt

2 4 6

  Fig. 31.2    Example of two Kaplan Meier curves of groups of patients surviving cancer after the 
start of either treatment-1 or -2. The  continuous lines  give the real data, the  dotted lines  the curves 
modeled by the Cox regression program       
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that this is also true for various subgroups like different age and sex groups. It is 
inadequate if, for example,

    1.    treatment effect only starts after 1–2 years,  
    2.    treatment effect starts immediately(coronary intervention),  
    3.    unexpected effect starts to interfere (grapht   -versus-host).     

 Why are these situations inadequate? This is, because the value of the treatment 
effect changes over time, and this does not happen in a fashion that is a direct func-
tion of time. Such situations thus call for an approach that adjusts for the time-
dependency. Covariates other than treatment modalities, like elevated LDL 
cholesterol, and hypertension in cardiovascular research or patients’ frailty in oncol-
ogy research are similarly at risk of changing across time, and do, likewise, qualify 
for the underneath alternative approach. In the underneath sections the alternative 
analysis is explained.  

    3   Cox Regression with a Time-Dependent Predictor 

 The level of LDL cholesterol is a strong predictor of cardiovascular survival. However, 
in a survival study virtually no one will die from elevated values in the fi rst decade of 
observation. LDL cholesterol may be, particularly, a killer in the second decade of 
observation. Then, in the third decade those with high levels may all have died, and 
other reasons for dying may occur. In other words the deleterious effect of 10 years 
elevated LDL-cholesterol may be different from that of 20 years. The Cox regression 
model is not appropriate for analyzing the effect of LDL cholesterol on survival, 
because it assumes that the relative hazard of dying is the same in the fi rst, second 
and third decade. Thus, there seems to be a time-dependent disproportional hazard, 
and if you want to analyze such data, an extended Cox regression model allowing for 
non-proportional hazards can be applied, and is available in SPSS (  www.SPSS.com    ) 
statistical software. In the underneath example 60 patients are followed for 30 years 
for the occurrence of a cardiovascular event. Each row represents a patient, the col-
umns are the patient characteristics, otherwise called the variables.  

 Variable    

 1  2  3  4  5  6 

 1,00  1  0  65,00  0,00  2,00 
 1,00  1  0  66,00  0,00  2,00 
 2,00  1  0  73,00  0,00  2,00 
 2,00  1  0  54,00  0,00  2,00 
 2,00  1  0  46,00  0,00  2,00 
 2,00  1  0  37,00  0,00  2,00 
 2,00  1  0  54,00  0,00  2,00 
 2,00  1  0  66,00  0,00  2,00 
 2,00  1  0  44,00  0,00  2,00 

(continued)

http://www.SPSS.com
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 Variable    

 1  2  3  4  5  6 

 3,00  0  0  62,00  0,00  2,00 
 4,00  1  0  57,00  0,00  2,00 
 5,00  1  0  43,00  0,00  2,00 
 6,00  1  0  85,00  0,00  2,00 
 6,00  1  0  46,00  0,00  2,00 
 7,00  1  0  76,00  0,00  2,00 
 9,00  1  0  76,00  0,00  2,00 
 9,00  1  0  65,00  0,00  2,00 
 11,00  1  0  54,00  0,00  1,00 
 12,00  1  0  34,00  0,00  1,00 
 14,00  1  0  45,00  0,00  1,00 
 16,00  1  0  56,00  1,00  1,00 
 17,00  1  0  67,00  1,00  1,00 
 18,00  1  0  86,00  1,00  1,00 
 30,00  1  0  75,00  1,00  2,00 
 30,00  1  0  65,00  1,00  2,00 
 30,00  1  0  54,00  1,00  2,00 
 30,00  1  0  46,00  1,00  2,00 
 30,00  1  0  54,00  1,00  2,00 
 30,00  1  0  75,00  1,00  2,00 
 30,00  1  0  56,00  1,00  2,00 
 30,00  1  1  56,00  1,00  2,00 
 30,00  1  1  53,00  1,00  2,00 
 30,00  1  1  34,00  1,00  2,00 
 30,00  1  1  35,00  1,00  2,00 
 30,00  1  1  37,00  1,00  2,00 
 30,00  1  1  65,00  1,00  2,00 
 30,00  1  1  45,00  1,00  2,00 
 30,00  1  1  66,00  1,00  2,00 
 30,00  1  1  55,00  1,00  2,00 
 30,00  1  1  88,00  1,00  2,00 
 29,00  1  1  67,00  1,00  1,00 
 29,00  1  1  56,00  1,00  1,00 
 29,00  1  1  54,00  1,00  1,00 
 28,00  0  1  57,00  1,00  1,00 
 28,00  1  1  57,00  1,00  1,00 
 28,00  1  1  76,00  1,00  1,00 
 27,00  1  1  67,00  1,00  1,00 
 26,00  1  1  66,00  1,00  1,00 
 24,00  1  1  56,00  1,00  1,00 
 23,00  1  1  66,00  1,00  1,00 
 22,00  1  1  84,00  1,00  1,00 
 22,00  0  1  56,00  1,00  1,00 
 21,00  1  1  46,00  1,00  1,00 
 20,00  1  1  45,00  1,00  1,00 

(continued)

(continued)
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 Variable    

 1  2  3  4  5  6 

 19,00  1  1  76,00  1,00  1,00 
 19,00  1  1  65,00  1,00  1,00 
 18,00  1  1  45,00  1,00  1,00 
 17,00  1  1  76,00  1,00  1,00 
 16,00  1  1  56,00  1,00  1,00 
 16,00  1  1  45,00  1,00  1,00 

 Var 00001 = follow-up period (years) (Var = variable) 
 Var 00002 = event (0 or 1, event or lost for follow-up = censored) 
 Var 00003 = treatment modality (0 = treatment-1, 1 = treatment-2) 
 Var 00004 = age (years) 
 Var 00005 = gender (0 or 1, male or female) 
 Var 00006 = LDL-cholesterol (0 or 1, <3.9 or > = 3.9 mmol/l) 

 First, a usual Cox regression is performed with LDL-cholesterol as predictor of 
survival. 

 Command: Analyze – survival – Cox regression – time: follow months – status: 
var 2 – defi ne event (1) – Covariates – categorical: elevated LDL-cholesterol 
(Var 00006) => categorical variables – continue – plots – survival => – hazard – 
continue – ok 

 The Table  31.1  shows that elevated LDL-cholesterol is not a signifi cant predictor 
of survival with a p-value as large as 0.117 and a hazard ratio of 0.618. In order to 
assess, whether elevated LDL-cholesterol adjusted for time has an effect on sur-
vival, a time-dependent Cox regression will be performed. For that purpose the 
time-dependent covariate is defi ned as a function of both the variable time (called 
“T_” in SPSS) and the LDL-cholesterol-variable, while using the product of the 
two. This product is applied as the “time-dependent” predictor of survival, and a 
usual Cox model is, subsequently, performed (Cov = covariate).  

 Command: Analyze – survival – Cox w/Time–Dep Cov – Compute Time–Dep Cov – 
Time (T_) => in box Expression for T_Cov – add the sign * – add the LDL-
cholesterol variable – model – time: follow months – status: var 00002 – ?: defi ne 
event:1 – continue – T_Cov => in box covariates – ok 

 The Table  31.2  shows that elevated LDL-cholesterol after adjustment for differ-
ences in time is a highly signifi cant predictor of survival. If we look at the actual 
data of the fi le, we will observe that, overall, the LDL-cholesterol variable is not an 
important factor. But, if we look at the blood pressures of the three decades sepa-
rately, then it is observed that something very special is going on: in the fi rst decade 
virtually no one with elevated LDL-cholesterol dies. In the second decade virtually 
everyone with an elevated LDL-cholesterol does: LDL cholesterol seems to be 
particularly a killer in the second decade. Then, in the third decade other reasons for 
dying seem to have occurred.   

(continued)
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   Table 31.1    Result of usual Cox regression using the variable VAR0006 (elevated LDL-cholesterol 
or not) as predictor and survival as outcome   

 Variables in the equation 

 B  SE  Wald  df  Sig.  Exp(B) 

 VAR00006  −,482  ,307  2,462  1  ,117  ,618 

    4   Cox Regression with a Segmented 
Time-Dependent Predictor 

 Some variables may have different values at different time periods. For example, 
elevated blood pressure may be, particularly, harmful not after decades but at the 
very time-point it is highest. The blood pressure is highest in the fi rst and third 
decade of the study. However, in the second decade it is mostly low, because the 
patients were adequately treated at that time. For the analysis we have to use the 
socalled logical expressions. They take the value 1, if the time is true, and 0, if false. 
Using a series of logical expressions, we can create our time-dependent predictor, 
that can, then, be analyzed by the usual Cox model. In the underneath example 60 
patients are followed for 30 years for the occurrence of a cardiovascular event. Each 
row represents again a patient, the columns are the patient characteristics.  

 Var 1  2  3  4  5  6  7 

 1,00  1  65  ,00  135,00  –  – 
 1,00  1  66  ,00  130,00  –  – 
 2,00  1  73  ,00  132,00  –  – 
 2,00  1  54  ,00  134,00  –  – 
 2,00  1  46  ,00  132,00  –  – 
 2,00  1  37  ,00  129,00  –  – 
 2,00  1  54  ,00  130,00  –  – 
 2,00  1  66  ,00  132,00  –  – 
 2,00  1  44  ,00  134,00  –  – 
 3,00  0  62  ,00  129,00  –  – 
 4,00  1  57  ,00  130,00  –  – 
 5,00  1  43  ,00  134,00  –  – 
 6,00  1  85  ,00  140,00  –  – 
 6,00  1  46  ,00  143,00  –  – 
 7,00  1  76  ,00  133,00  –  – 
 9,00  1  76  ,00  134,00  –  – 

   Table 31.2    Result of the time-dependent Cox regression using the variable VAR0006 (elevated 
LDL-cholesterol or not) as a time-dependent predictor and survival as outcome   

 Variables in the equation 

 B  SE  Wald  df  Sig.  Exp(B) 

 T_COV_  −,131  ,033  15,904  1  ,000  ,877 

(continued)
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 Var 1  2  3  4  5  6  7 

 9,00  1  65  ,00  143,00  –  – 
 11,00  1  54  ,00  134,00  110,00  – 
 12,00  1  34  ,00  143,00  111,00  – 
 14,00  1  45  ,00  135,00  110,00  – 
 16,00  1  56  1,00  123,00  103,00  – 
 17,00  1  67  1,00  133,00  107,00  – 
 18,00  1  86  1,00  134,00  108,00  – 
 30,00  1  75  1,00  134,00  102,00  134,00 
 30,00  1  65  1,00  132,00  121,00  126,00 
 30,00  1  54  1,00  154,00  119,00  130,00 
 30,00  1  46  1,00  132,00  110,00  131,00 
 30,00  1  54  1,00  143,00  120,00  132,00 
 30,00  1  75  1,00  123,00  123,00  133,00 
 30,00  1  56  1,00  130,00  124,00  130,00 
 30,00  1  56  1,00  130,00  116,00  129,00 
 30,00  1  53  1,00  134,00  130,00  128,00 
 30,00  1  34  1,00  126,00  110,00  127,00 
 30,00  1  35  1,00  130,00  115,00  133,00 
 30,00  1  37  1,00  132,00  125,00  134,00 
 30,00  1  65  1,00  134,00  124,00  133,00 
 30,00  1  45  1,00  126,00  116,00  132,00 
 30,00  1  66  1,00  132,00  129,00  131,00 
 30,00  1  55  1,00  128,00  111,00  130,00 
 30,00  1  88  1,00  134,00  120,00  132,00 
 29,00  1  67  1,00  126,00  121,00  131,00 
 29,00  1  56  1,00  133,00  122,00  129,00 
 29,00  1  54  1,00  127,00  120,00  128,00 
 28,00  0  57  1,00  132,00  119,00  130,00 
 28,00  1  57  1,00  128,00  118,00  131,00 
 28,00  1  76  1,00  134,00  120,00  132,00 
 27,00  1  67  1,00  132,00  121,00  130,00 
 26,00  1  66  1,00  128,00  119,00  129,00 
 24,00  1  56  1,00  126,00  113,00  128,00 
 23,00  1  66  1,00  130,00  117,00  131,00 
 22,00  1  84  1,00  131,00  117,00  133,00 
 22,00  0  56  1,00  129,00  118,00  132,00 
 21,00  1  46  1,00  129,00  119,00  131,00 
 20,00  1  45  1,00  131,00  110,00  – 
 19,00  1  76  1,00  130,00  111,00  – 
 19,00  1  65  1,00  134,00  112,00  – 
 18,00  1  45  1,00  126,00  113,00  – 
 17,00  1  76  1,00  129,00  114,00  – 
 16,00  1  56  1,00  131,00  106,00  – 
 16,00  1  45  1,00  130,00  110,00  – 

 Var 00001 = follow-up period years (Var = variable) 

(continued)
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 Var 00002 = event (0 or 1, event or lst for follow-up = censored) 
 Var 00003 = age (years) 
 Var 00004 = gender 
 Var 00005 = mean blood pressure in the fi rst decade 
 Var 00006 = mean blood pressure in the second decade 
 Var 00007 = mean blood pressure in the third decade 

 The above data fi le shows that in the second and third decade an increasing 
number of patients have been lost. The following time-dependent covariate has been 
constructed for the analysis of these data (* = sign of multiplication):

    (T _ 1 T _ 11)* Var 5 T _ 11 T _ 21)* Var 6 T _ 21 T _ 31 * Var & ( ) 7& ( &> = < + > = < + > = <    

 This predictor is entered in the usual way with the commands (Cov = covariate): 

 model – time: follow months – status: var 00002 – ?: defi ne event:1 – continue – 
T_Cov => in box covariates – ok 

 The Table  31.3  shows that, indeed, a mean blood pressure after adjustment for 
difference in decades is a signifi cant predictor of survival at p = 0.040, and with a 
hazard ratio of 0.936 per mmHg. In spite of the better blood pressures in the second 
decade, blood pressure is a signifi cant killer in the overall analysis.   

    5   Multiple Cox Regression with a Time-Dependent Predictor 

 Time-dependent predictors can be included in multiple Cox regression analyses 
together with time-independent predictors. The example of Sect.  2  is used once 
more. The data of the effects of two treatments on mortality/morbidity are evalu-
ated using a Cox regression model with treatment modality, Var 00003, as predic-
tor. Table  31.4  shows that treatment modality is a signifi cant predictor of survival: 
the patients with treatment-2 live signifi cantly shorter than those with treatment-1 
with a hazard ratio of 0.524 and a p-value of 0.017. Based on the analysis in the 
above Sect.  3 , we can not exclude that this result is confounded with the time-
dependent predictor LDL-cholesterol. For the assessment of this question a multi-
ple Cox model is used with both treatment modality (Var 00003) and the 
time-dependent LDL-cholesterol (T_Cov) as predictors of survival. Table  31.5  
shows that both variables are highly signifi cant predictors independent of one 
another. A hazard ratio of only 0.226 of one treatment versus the other is observed. 

   Table 31.3    Result of Cox regression with a segmented time-dependent predictor constructed with 
the relevant blood pressures from three decades of the study and survival as outcome   

 Variables in the equation 

 B  SE  Wald  df  Sig.  Exp(B) 

 T_COV_  −,066  ,032  4,238  1  ,040  ,936 
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This result is not only more spectacular but also more precise given the better 
p-value, than that of the unadjusted assessment of the effect of treatment modality. 
Obviously, the time-dependent predictor was a major confounder which has now 
been adjusted.    

    6   Discussion 

 Transient frailty and changes in lifestyle may be time-dependent predictors in log- 
term research. Some readers may fi nd it hard to understand how to code a time-
dependent predictor for Cox regression. Particularly in the SPSS program the term 
T_ is not always well understood. T_ is actually the current time, which is only 
relevant for a case that is of this time. There are, generally, two types of time-
dependent predictors that investigators want to use. One involves multiplying a pre-
dictor by time in order to test the proportional hazard function or fi t a model with 
non-proportional hazards. Compute the time-dependent predictor as: T_*covariate 
(* = sign of multiplication). This produces a new variable which is analyzed like 
with the usual Cox proportional hazard method. 

 The other kind of time-dependent predictor is called the segmented time-dependent 
predictor. It is a predictor where the value may change over time, but not in a fashion 
that is a direct function of time. For example, in the data fi le from Sect.  4  the blood 
pressures change over time, going up and down in a way that is not a consistent 
function of the time. The new predictor is set up so that for each possible time interval 
one of the three period variables will operate. 

 Currently, clinical investigators increasingly perform their own data-analysis 
without the help of a professional statistician. User-friendly software like SPSS is 
available for the purpose. Also, more advanced statistical methods are possible. The 
time-dependent Cox regression is more complicated than the fi xed time-indepen-
dent Cox regression. However, as demonstrated above, it can be readily performed 
by non-mathematicians along the procedures as described above. 

   Table 31.5    Multiple Cox regression with treatment modalities and the time-dependent LDL-
cholesterol predictor as predictor variables and survival as outcome   

 Variables in the equation 

 B  SE  Wald  df  Sig.  Exp(B) 

 VAR00003  −1,488  ,365  16,647  1  ,000  ,226 
 T_COV_  −,092  ,017  29,017  1  ,000  ,912 

   Table 31.4    Simple Cox regression with treatment modality as predictor and survival as outcome   

 Variables in the equation 

 B  SE  Wald  df  Sig.  Exp(B) 

 VAR00003  −,645  ,270  5,713  1  ,017  ,524 
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 We recommend that researchers, particularly those, whose results do not confi rm 
their prior expectations, perform more often the extended Cox regression models, as 
explained in this chapter. 

 We conclude.

    1.    Many predictors of survival change across time, e.g., the effect of smoking, cho-
lesterol, and increased blood pressure in cardiovascular research, and patients’ 
frailty in oncology research.  

    2.    Analytical models for survival analysis adjusting such changes are welcome.  
    3.    The time-dependent and segmented time-dependent predictors are adequate for 

the purpose.  
    4.    The usual multiple Cox regression model can include both time-dependent and 

time-independent predictors.      

    7   Conclusions 

 Individual patients’ predictors of survival may change across time, because people 
may change their lifestyles. Standard statistical methods do not allow adjustments 
for time-dependent predictors. In the past decade time-dependent factor analysis 
has been introduced as a novel approach adequate for the purpose. 

 Using examples from survival studies we assess the performance of the novel 
method. SPSS statistical software is used.

    1.    Cox regression is a major simplifi cation of real life: it assumes that the ratio of 
the risks of dying in parallel groups is constant over time. It is, therefore, inade-
quate to analyze, for example, the effect of elevated LDL cholesterol on survival, 
because the relative hazard of dying is different in the fi rst, second and third 
decade. The time-dependent Cox regression model allowing for non-proportional 
hazards is applied, and provides a better precision than the usual Cox regression 
(p-value 0.117 versus 0.0001).  

    2.    Elevated blood pressure produces the highest risk at the time it is highest. An 
overall analysis of the effect of blood pressure on survival is not signifi cant, but, 
after adjustment for the periods with highest blood pressures using the segmented 
time-dependent Cox regression method, blood pressures is a signifi cant predictor 
of survival (p = 0.04).  

    3.    In a long term therapeutic study treatment modality is a signifi cant predictor of 
survival, but after the inclusion of the time-dependent LDL-cholesterol variable, 
the precision of the estimate improves from a p-value of 0.02 to 0.0001.     

 We conclude:

    1.    Predictors of survival may change across time, e.g., the effect of smoking, cho-
lesterol, and increased blood pressure in cardiovascular research, and patients’ 
frailty in oncology research.  

    2.    Analytical models for survival analysis adjusting such changes are welcome.  



364 31 Time-Dependent Factor Analysis

    3.    The time-dependent and segmented time-dependent predictors are adequate for 
the purpose.  

    4.    The usual  multiple  Cox regression model can include both time-dependent and 
time-independent predictors.          
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     1   Introduction    

 Problems with meta-analyses are frequent: regressions are often nonlinear; effects 
are often multivariate rather than univariate; continuous data frequently have to be 
transformed into binary data for the purpose of comparability; bad studies may be 
included; coverage may be limited; data may not be homogeneous; failure to relate 
data to hypotheses may obscure discrepancies. In spite of these well-recognized 
fl aws, the method of meta-analysis is an invaluable scientifi c activity: Meta-analyses 
establish whether scientifi c fi ndings are consistent and can be generalized across 
populations and treatment variations, or whether fi ndings vary signifi cantly between 
particular subsets. Explicit methods used limit bias and improve reliability and 
accuracy of conclusions, and increase the power and precision of estimates of treat-
ment effects and risk exposures. In the past decade, despite reservations on the part 
of regulatory bodies, the method of meta-analysis has increasingly been employed 
in drug development programs for the purpose of exploration of changes in 
treatment effect over time, integrated summaries of safety and effi cacy of new treat-
ments, integrating existing information, providing data for rational decision making, 
and even prospective planning in drug development. 

 Meta-analyses are increasingly considered an integral part of phase III drug 
research programs for two reasons. First, meta-analysis of existing data instead of an 
unsystematic literature search before starting a phase III drug trial has been document-
edly helpful in defi ning the hypothesis to be tested. Second, although meta-analyses 
are traditionally considered post-hoc analyses that do not test the primary hypotheses 
of the data, they do test hypotheses that are extremely close to the primary ones. It 
may be argued, therefore, that with the established uniform guidelines as proposed by 
Oxman and Guyatt and implemented by the Cochrane Collaborators, probability 
statements are almost as valid as they are in completely randomized controlled trials. 

 Meta-analyses should be conducted under the collective responsibility of experi-
enced clinicians and biostatisticians familiar with relevant mathematical approaches. 
They may still be improved, by a combination of experience and theory, to the point 

    Chapter 32   
 Meta-analysis, Basic Approach                    
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at which fi ndings can be taken as suffi ciently reliable where there is no other analysis 
or confi rmation is available. 

 Meta-analyses depend upon quantity and quality of original research studies as 
reported. Helpful initiatives to both ends include the Unpublished Paper Amnesty 
Movement endorsed by the editors of nearly 100 international journals in September 
1997 which will help to reduce the quantity of unpublished papers, and the 
Consolidated Standards of Reporting Trials (CONSORT) Statement (1997) devel-
oped by high impact journals which is concerned with quality and standardization 
of submitted papers. 

 Meta-analysis can help reduce uncertainty, prevent unnecessary repetition of 
costly research, and shorten the time between research discoveries and clinical 
implementation of effective diagnostic and therapeutic treatments, but it can only do 
so when its results are made available. The continuously updated Cochrane Database 
of Systematic Reviews on the Internet is an excellent example for that purpose. 
Medical journals including specialist journals have a responsibility of their own. So 
much so that they may be able to lead the way for biased experts, who are so con-
vinced of their own biased experience and so little familiar with meta-analysis.  

    2   Examples 

 We have come a long way since psychologists in the early 1970s drew attention to 
the systematic steps needed to minimize biases and random errors in reviews of 
research. For example, we currently have wonderful meta-analyses of pharmaco-
logical treatments for cardiovascular diseases which helped us very much to make 
proper listings of effective treatments (as well as less effective ones). So, now we 
are able to    answer (1) what is best for our patients, (2) how we should distribute our 
resources. For example, for acute myocardial infarction, thrombolytic therapy as 
well as aspirin are highly effective, while lidocaine and calcium channel blockers 
are not so. For secondary prevention myocardial infarction cholesterol-reducing 
therapy were highly effective while other therapies were less so or was even coun-
terproductive, e.g., class I antiarrhythmic agents as demonstrated in Fig.  32.1 .  

 On the x-axis we have odds ratios. Many physicians have diffi culties to under-
stand the meaning of odds ratios. Odds = likelihood = chance = probability = risk that 
an event will occur divided by the chance that it won’t. It can be best explained by 
considering a four cell contingency table.  

 Contingency table 
 Numbers of subjects 
who died 

 Numbers of subjects 
who did not die 

 Test treatment (group 
1
 )  a  b 

 Control treatment (group 
2
 )  c  d 

 The proportion of subjects who died in group 
1
  (or the risk (R) or probability of 

having an effect)

       ( ) ( )p a / a b ,  in group 2 p c / c d ,= = + = +     
  the ratio of a / (a + b) and c / (c + d) is called risk ratio (RR)    
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 Another approach is the odds approach, where a/b and c/d are odds, and their 
ratio is the odds ratio(OR).   In meta-analyses of clinical trials we use ORs as surro-
gate RRs, because, here, a/(a + b) is simply nonsense. 

 For example:  

 Treatment group (n)  Control group (n)  Whole population (n) 

 Sleepiness (n)  32  a   4  b  4,000 
 No sleepiness (n)  24  c  52  d  52,000 

  n = numbers of patients    

 We assume that the control group is just a sample from the population, but its 
ratio, b/d, is that of the population. So, suppose 4 = 4,000, and 52 = 52,000, then the

term     
+
+

a / (a b)

c / (c d)
  suddenly becomes close to the term     =a / b

RR
c / d

  of the population. 

 Currently, even epidemiologists are borrowing from clinical pharmacologists 
and clinical investigators, and they are quite successful in showing the likeliness of 
various epidemiological issues such as the epidemiology of various cardiovascular 
conditions. It should be emphasized that the logic behind meta-analysis is simple 
and straightforward. All it requires, is to stick to the scientifi c methods, that is (1) a 
clearly defi ned prior hypothesis, (2) thorough search of trials, (3) strict inclusion 
criteria for trials, and (4) uniform guidelines for data analysis.  

    3   Clearly Defi ned Hypotheses 

 In Chap.   1     we discussed that drug trials principally address effi cacy and safety of 
new drugs. It is specifi ed in advance – in the statistical analysis plan – what are the 
main outcome variables, and how they should be tested. 

 A meta-analysis is very much similar to a single trial, and similarly to a single 
trial it tests a very small number of primary hypotheses, mostly the hypotheses that 
the new compound is more effi cacious and safe than the reference compound. This 
implies that data dredging is as unacceptable for meta-analyses as it is for separate 
clinical trials.  

Sec Prev MI n= 4,000-20,000 -1994

0,5 1,0 2,0

<0.05
<0.001
<0.0001

<0.05CI I antiarrh
Ca ch bl

Aspirin
anticoagulants
chol reduction

  Fig. 32.1    Pooled results 
(odds ratios = odds of 
infarction in treated subjects/
odds of infarction in controls) 
of secondary prevention trials 
heart infarction       
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    4   Thorough Search of Trials 

 The activity of thoroughly searching-published-research requires a systematic 
procedure. For example, searching medline requires a whole lot of tricks, and has 
to be learned. Unless you already know, you may pick up a checklist for this pur-
pose, similarly to the checklist used by aircraft staff before take off, a nice simile 
used by Dr Oxman from McMasters University, one of the enlightened specialists 
of meta-analyses. A faulty review of trials is as perilous as a faulty aircraft and 
both of them are equally deadly, the former particularly so if we are going to use 
it for making decisions about health care. Search terms will soon put you on the 
right track when searching Medline. SH, e.g., means “subject-heading” which 
is controlled vocabulary; TW means “free-text-word” (searching with a lot    of TWs 
increases sensitivity but reduces specifi city of the search). There are sensitive 
ways to look for RCTs. ADJ is another TW and is more precise than AND. NOT 
means that fi rst and third step are combined and second step is excluded. Use of 
checklists consistent of search terms of controlled vocabulary and frequent use of 
free text words makes things so much easier and overcomes the risk of being 
unsuccessful.  

    5   Strict Inclusion Criteria 

 The third scientifi c rule is strict inclusion criteria. Inclusion criteria are concerned 
with validity of the trials to be included, which means their likeliness of being unbi-
ased. Strict inclusion criteria means that we subsequently only include the valid 
studies. A valid study is an unbiased study, a study that is unlikely to include sys-
tematic errors. The most dangerous errors in reviews are systematic errors other-
wise called biases. Checking validity is thus the most important thing both for doers 
and for users of systematic reviews. Some factors have empirically been shown to 
benefi cially infl uence validity. These factors include: blinding the study; random 
assignment of patients; explicit description of methods; accurate statistics; accurate 
ethics including written informed consent.  

    6   Uniform Data Analysis 

 Statistical analysis is a tool which, when used appropriately, can help us to derive 
meaningful conclusions from the data. And it can help us to avoid analytic errors. 
Statistics should be simple and should test primary hypotheses in the fi rst place. 
Before any analysis or plotting of data can be performed we have to decide what 
kind of data we have. 
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    6.1   Individual Data 

 Primary data of previously published studies are generally not available for use. 
Usually, we have to accept the summary statistics from studies instead. This is of 
course less informative and less precise than a synthesis of primary data but can still 
provide useful information.  

    6.2   Continuous Data, Means and Standard Errors 
of the Mean (SEMs) 

 We just take the mean result of the mean difference of the outcome variable we want 
to meta-analyze and add up. The data can be statistically tested according to unpaired 
t-test of the sum of multiple means:

     

+ + …
= = + + +… −

+ + +…
1 2 3

1 2 3 k2 2 2
1 2 3

mean mean mean
t with degrees of freedom n n n n k

SEM SEM SEM
  

n 
i
  = sample size ith sample, k = number of samples, SEM = standard error of the mean 

 If the standard deviations are very different in size, e.g., if one is twice the other, 
then a more adequate calculation of the pooled standard error is as follows. This 
formula gives greater weight to the pooled SEM the greater the samples.

     

− + − +
= × + +…

+ + −

2 2
1 1 2 2

1 2 1 2

(n 1)SD (n 1)SD ... 1 1
Pooled SEM ( )

n n ... k n n
    

 Similarly, if the samples are very different in size, then a more adequate calcula-
tion of the nominator of t is as follows.

     

⎛ ⎞+ +
⎜ ⎟+ +⎝ ⎠

1 1 2 2

1 2

mean n mean n ...
k

n n ...
     

    6.3   Proportions: Relative Risks (RRs), Odds Ratios (ORs), 
Differences Between Relative Risks (RDs) 

 Probably, 99% of meta-analyses make use of proportions rather than continuous 
data, even if original studies provided predominantly the latter particularly for effi -
cacy data (mean fall in blood pressure etc.). This is so both for effi cacy and safety 
meta-analyses. Sometimes data have to be remodeled from quantitative into binary 
ones for that purpose. 
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 Calculation of point estimates and their variances  

 Contingency table 
 Numbers of patients with 
disease improvement 

 Numbers of patients 
with no improvement  Total 

 Test treatment  a  b  a + b 
 Reference treatment  c  d  c + d 
 Total  a + c  b + d  n 

   Point estimators RR, OR, or RD:   

     

+=
+

a/(a b)
RR

c/(c d)      

     
= a/b

OR
c/d      

     
= −

+ +
a c

RD
(a b) (c d)       

 The data can be statistically tested by use of a chi-square test of the added point 
estimators. 

 Instead of RR and OR we take lnRR and lnOR in order to approximate normality  

     

( )

2

31 2
2 2 2
1 2 3

2 2 2
1 2 3

lnRRlnRR lnRR

s s s
Chi - square degrees of freedom 1 one .

1 1 1

s s s

⎛ ⎞
+ + …⎜ ⎟⎝ ⎠

=
+ + +…

    

  s 2  = variance of point estimate:   

     ( ) ( )= − + + − +2
lnRRs 1 / a 1 / a b 1 / c 1 / c d

     

     = + + +2
lnORs 1 / a 1 / b 1 / c 1 / d      

     ( ) ( )= + + +3 32
RDs ab / a b cd / c d

     
for RD, which does not have so much skewed a distribution, ln-transformation is not 
needed.

     

2

31 2
2 2 2
1 2 3

2 2 2
1 2 3

RDRD RD

s s s
Chi - square

1 1 1

s s s

⎛ ⎞
+ + …⎜ ⎟⎝ ⎠

=
+ + +…

    

 As alternative approach Mantel-Haenszl-summary chi-square can be used: 
 Mantel-Haenszl summary chi-square test: 

    

( )( ) ( )( )
( )( )( )( ) ( )

χ
⎡ ⎤− + + + + +⎣ ⎦=

⎡ ⎤+ + + + + + +⎣ ⎦

∑ ∑
∑

2

i i i i i i i i i2
M - H 3

i i i i i i i i i i i i

a a b a c / a b c d

a b c d a c b d / a b c d
   

 a 
i
 , b 

i
 , c 

i
 , and d 

i
  are the a-value, b-value, c-value, and d-value of the ith sample 
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 This approach has been explained in Chap.   3    . Results of the two approaches 
yield similar results. However, with Mantel-Haenszl the calculation of pooled vari-
ances is rather complex, and a computer program is required. 

 A good starting point with any statistical analysis is plotting the data (Fig.  32.2 ).   

    6.4   Publication Bias 

 This socalled funnel plot of 100 published trials shows on the x-axis the mean result 
of each trial; on the y-axis it shows the numbers of pts involved in each trial. As you 
can see on the left, there is a Christmas-tree or upside-down-funnel-pattern of 
distribution of the results. The smaller the trial, the larger the distribution of results. 
Right graph gives a simulated pattern, suggestive for publication bias: the negative 
trials are not published and thus missing. This cut Christmas-tree can help us suspect 
that there is a considerable publication bias in the meta-analysis.  Publication bias  
can also be statistically tested by rank correlation between variances and odds ratios. 
If small studies with negative results are less likely to be published, rank correlation 
would be high, if not it would be low. This can be assessed by the  Kendall tau test : 

 Normally, the correlation coeffi cient r measures actual results. The Kendall tau-
test basically does the same, but uses ranked data instead of actual data.  

 Trial  A  B  C  D  E  F  G  H  I 

 Ranknumber of size of trial  1  2  3  4  5  6  7  8   9  10 
 Ranknumber of size of mean result  5  3  1  4  2  7  9  6  10   8 

 Lower row add up rank numbers higher than 5, respectively 3, respectively 1, 
respectively 4: we fi nd 5 + 6 + 7 + 5 + 5 + 3 + 1 + 2 + 0 + 0 = 34. 

  Fig. 32.2    This Christmas tree otherwise called funnel plot of 100 published trials shows on the 
x-axis the mean result of each trial; on the y-axis it shows the numbers of pts involved in each trial. 
As you can see on the  left , there is a Christmas-tree or upside- down-funnel-pattern of distribution 
of the results. The smaller the trial, the larger the distribution of results.  Right graph  gives a simu-
lated pattern, suggestive for  publication bias : the negative trials are not published and thus miss-
ing. This cut Christmas-tree can help us suspect that there is a considerable publication bias in the 
meta- analysis       
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 Then lower row add up rank numbers lower than 5, 3, 1, etc.: we fi nd 4 + 2 + 0 + 
1 + 0 + 1 + 2 + 0 + 1 + 0 = 11. 

 The standard error of this result is     − +n(n 1)(2n 5)

18
  , and we assume a normal 

distribution. We can now test this correlation and fi nd

     

( )
( )( )

−
=

− +

34 11
1.968

n n 1 2n 5

18    

which is approximately 1.96 = 2 = the number of SEMs distant from which is  £ 5% 
of the data. And so, the null-hypothesis of no publication bias has to be rejected. 
 Publication bias  can also be tested by calculating the shift of odds ratios caused by 
the addition of unpublished trials e.g. from abstract-reports or proceedings.  

    6.5   Heterogeneity 

 Figure  32.3  gives an example of a meta-analysis with means and 95% confi dence 
intervals (CIs), telling us something about heterogeneity.  

 On the x-axis is the result, on the y-axis are the trials. This example has been 
previously used by Dr Thompson from London School of Hygiene and Tropical 
Medicine. We see the results of 19 trials of endoscopic sclerotherapy for esophageal 

Odds ratio

  Fig. 32.3    Heterogeneous trials, 19 trials of endoscopic intervention vs no intervention for upper 
intestinal bleeding. On the y-axis the individual studies, on the x-axis the results, the sizes of the 
 bullets  correspond to the sizes of the studies (Thompson  1995 , with permission from the editor)       
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varices bleeding: odds ratios less than one represent a benefi cial effect. These trials 
were considerably different in patient-selection, baseline-severity-of-condition, 
sclerotechniques, management-of –bleeding-otherwise, and duration-of-follow-up. 
And so, this is a meta-analysis which is clinically very heterogeneous. Is it also 
statistically heterogeneous? For that purpose we test whether there is a greater vari-
ation between the results of the trials than is compatible with the play of chance, 
simply using a chi-square test. In so doing, we fi nd  c  2  = 43 for 19 − 1 = 18 degrees of 
freedom (dfs). The p value is <001 giving substantial evidence for statistical hetero-
geneity. For the interpretation of such tests it is useful to know that a  c  2  statistic has 
on average a value equal to the degrees of freedom, so a result of  c  2  = 18 with 18 dfs 
would give no evidence for heterogeneity, values much larger such as here observed 
do so for the opposite. 

 With very few studies in the meta-analysis, or with small studies, the fi xed model 
approach has little power, and is susceptible to type II errors of not fi nding hetero-
geneity which may actually be in the data. A little bit better power is then provided 
by the random effect model of Dersimonian and Laird, which assumes an additional 
variable. The variable s 

between trials
  is added to the model, meaning the size of variance 

between the trials. The fi xed model for testing the presence of heterogeneity of 
ordinal data is demonstrated underneath. For continuous data multiple group analy-
sis of variance (ANOVA) may be used.   

    Fixed effect model (Cochran-Q test)   
  This test for homogeneity (k-1 degrees of freedom) is based on the Cochran-Q test 
(see Chap.   3     Sect.   5    , for further explanation of this test).       

     

χ

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦= + + −
+ + +

2

31 2
2 2 222 2
1 2 32 31 2

2 2 2
1 2 3

2 2 2
1 2 3

RDRD RD

s s sRDRD RD
...

1 1 1s s s ...
s s s      

   Random effect model (DerSimonian and Laird)   
  This test for heterogeneity is identical, except for variances s 2  which are replaced 
with    

     
( )2 2

between trialss s .+
     

 Example of random effect model analysis 

 Trial 

 Test treatment  Reference treatment 

 Death  Survivors  Death  Survivors 

 1  1  24  5  20 
 2  5  95  15  85 
 3  25  475  50  450 

 In the above example, the test for heterogeneity fi xed effect model provides 
 c  2  = 1.15 with dfs 3–1 = 2, while the test with the random effect model provides a 
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  Fig. 32.4    Age is a determinant of illness, but in the  right graph  the risk difference is heterogeneous 
because it increases with age       

 c  2  = 1.29 with dfs equally 2, both lower than 2. The between-trial variance s  
between trials

  2   
is thus accepted to be not signifi cantly different from zero and so are the weights of 
the two models. Heterogeneity can be neglected. With the simple example given, 
the two approaches to test homogeneity raise similar results (the null hypothesis is 
tested that studies are equal). And so, between-trial variance s  

between trials
  2   is accepted 

to be zero and the results of the two models are equal. 
 Heterogeneity can be neglected in this example. 

    6.5.1   Heterogeneity and Sub-group Analysis 

 When there is heterogeneity, to analists    of systematic reviews, that’s when things 
fi rst get really exciting. A careful investigation of the potential cause of heterogene-
ity has to be accomplished. The main focus then should be on trying to understand 
any sources of heterogeneity in the data. In practice, this may be less hard to assess 
since the doers have frequently noticed clinical differences already, and it thus 
becomes relatively easy to test the data accordingly. Figure  32.4  below shows how 
age e.g. is a determinant of illness, but in the right graph the risk difference is 
heterogeneous because it increases with age.  

 Except age, outliers may give an important clue about the cause of heterogeneity. 
 Figure  32.5  shows the relation between cholesterol and coronary heart disease. 

The two outliers on top were the main cause for heterogeneity in the data: one study 
was different because it achieved a very small reduction of cholesterol; the other 
was a very short-term study.  

 Still other causes of heterogeneity may be involved. 33 Studies of cholesterol and 
risk of carcinomas showed that heterogeneity was huge. When the trials were divided 
according to social class, the effect in the lowest class was 4–5 times those of the 
middle and upper class, explaining everything about this heterogeneous result. 

 We should, of course, warn of the danger of overinterpretation of heterogeneity. 
Heterogeneity may occur by chance. This is particularly an important possibility to 
consider when no clinical explanation is found. Also, we should warn that a great deal 
of uniformity among the results of independently performed studies is not necessarily 
good; it can suggest consistency-in-bias rather than consistency-in-real-effects.   
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    6.6   Robustness 

 Sensitivity or robustness of a meta-analysis is one last important aspect to be 
addressed in the analysis of the data. When talking of strict inclusion criteria, we 
discussed studies with lower levels of validity, as assessed by factors such as blind-
ing, random assignments, accurate and explicit description of results and statistics. 
It may be worthwhile not to completely reject the studies with lower methodology. 
They can be used for assessing another characteristic of meta-analyses, namely its 
sensitivity. 

 This left upper graph (Fig.  32.6 ) gives an example of how the pooled data of 
three high-quality-studies provide a smaller result, than do four studies-of- 
borderline-quality. The summary result is mainly determined by the borderline-
quality-studies, as is also shown in the cumulative-right-upper -graph. When 
studies are ordered according to their being blinded or not as shown in the lower 
graph, differences may be large or may be not so. In studies using objective vari-
ables, e.g., blood pressures, heart rates, blinding is not so important than in stud-
ies using subjective variables (pain scores etc.). In this particular example 
differences were negligible. So, in conclusion, when examining the infl uence of 
various inclusion criteria on the overall odds ratios, we may come to conclude 
that the criteria themselves are an important factor in determining the summary 
result. We say in that case that the meta-analysis lacks robustness (otherwise 
called sensitivity or precision of point estimates). Interpretation then has to be 
cautious, pooling may have to be left out altogether. Just leaving out trials at this 
stage of the meta-analysis is inappropriate either, because it would introduce bias 
similar to publication-bias or bias-introduced-by-not-complying-with-the-intention-
to-treat-principle.    

  Fig. 32.5    The relation between cholesterol and coronary heart disease. The two outliers on top 
were the main cause for heterogeneity in the data, the sizes of the  bullets  correspond to the sizes 
of the studies (Shipley et al.  1991 , with permission from the editor)       
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    7   Discussion, Where Are We Now? 

 Several recent publications were critical of the method of meta-analysis: e.g., 
Chalmers and Lau in JAMA 1996 and Lelorier in NEJM 1997 concluded that meta-
analyses did not accurately predict the outcomes of subsequent large trials. Colditz 
and Berlin JAMA 1999 concluded that meta-analyses were not or at least not-yet 
good enough to identify adverse drug reactions. Why so? Probably, the answer is 
(1) trials must get better, and (2) publication bias must disappear altogether. There 
are several important initiatives being taken at this very moment that may be helpful 
to this aim. In May 1998 editors of 70 journals have endorsed the Consolidated- 
Standards-of-Reporting-Trials-Statement (the CONSORT-Statement) developed by 
JAMA, BMJ, Lancet, and Annals-of-Intern-Med in an effort to standardize the way 
trials are reported, with special-emphasis on the-intention-to-treat-principle in order 
to reduce treatment-related selection-bias. For investigators, <reporting > according 
to such standards will become much easier, and will even become a non-issue if 
requirements as requested by CONSORT are met. This initiative may have important 

  Fig. 32.6    The  left upper graph  gives an example of how the pooled data of three high-quality-
studies provide a smaller result, than do four studies-of-borderline-quality. The summary result is 
mainly determined by the borderline-quality-studies, as is also shown in the cumulative- right-
upper -graph . When studies are ordered according to their being blinded or not as shown in the 
 lower graph , differences may be large or may be not so. In studies using objective variables, e.g., 
blood pressures, heart rates, blinding is not so important than in studies using subjective variables 
(pain scores etc.). In this particular example differences were negligible       
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potential to improve the level of validity of trials and thus facilitate their suitability 
for meta-analyses. Another important milestone is the initiative of the Unpublished-
Paper-Amnesty-Movement. In September 1997 the editors of nearly 100 interna-
tional journals invited investigators to submit unpublished study data in the form of 
unreported-trial-registration-forms. Submitted materials are routinely made avail-
able to the world through listing the trial-details on the journals’ web sites, in addi-
tion to other ways. The International-Committee-of-Medical-Editors and the 
World-Association-of-Medical-Editors are currently helping these initiatives by 
standardizing the peer review system and training referees. 

 Where do we go? We go for the aim of meta-analyses being accepted as gold 
standard for:

    1.    Reporting randomized experimental research.  
    2.    Setting the stage for the development of new drugs.  
    3.    Determination of individual therapies.  
    4.    Leading the way for regulatory organs.  
    5.    Maybe soon even epidemiological research.     

 We will only accomplish these efforts if we stick to the scientifi c method, which 
we summed up for you earlier. However, today many meta-analyses are presented 
or published, that do not follow these simple scientifi c principles, and that just leave 
out validity assessment of trials included, or tests for heterogeneity and publication 
bias. Both journal editors and readers of meta-analyses must be critical and alert 
since a fl awed meta-analysis of unreliable and biased material is deadly, not only to 
research but also to health care. The above guidelines enable not only to perform 
meta-analyses but also to identify fl awed meta-analyses, and, more importantly, to 
identify and appreciate well-performed meta-analyses.  

    8   Conclusions 

 The scientifi c methods governing the practice of meta-analysis include (1) a clearly 
defi ned prior hypothesis, (2) a thorough search of trials, (3) strict inclusion criteria, 
and (4) a uniform data analysis. In the statistical analysis of the meta-data three pitfalls 
have to be accounted: (1) publication bias, (2) heterogeneity, (3) lack of robustness.      
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     1   Introduction    

 In 1982 thrombolytic therapy for acute coronary syndromes was controversial. In a 
meta-analysis of seven trials Stampfer et al. found a reduced risk of mortality of 
0.80 (95% confi dence interval 0.68–0.95). These fi ndings (Stampfer et al.  1982  )  
were not accepted by cardiologists until 1986, when a large clinical trial confi rmed 
the conclusions (Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto 
Miocardico (GISSI)  1986  ) , and streptokinase became widely applied. 

 Meta-analyses can be defi ned as systematic reviews with pooled data. 
Traditionally, they are post-hoc analyses. However, probability statements may be 
more valid, than they usually are with post-hoc studies, particularly if performed on 
outcomes that were primary outcomes in the original trials. Problems with pooling 
are frequent: correlations are often nonlinear (Glass and Smith  1979  ) ; effects are 
often multifactorial rather than unifactorial (Fleiss and Gross  1991  ) ; continuous 
data frequently have to be transformed into binary data for the purpose of compara-
bility (Stein  1998  ) ; poor studies may be included and coverage may be limited 
(Zhou et al.  2003  ) ; data may not be homogeneous and may fail to relate to hypoth-
eses (Turnbul  2003  ) . In spite of these problems, the methods of meta-analysis are an 
invaluable scientifi c activity: they establish whether scientifi c fi ndings are consis-
tent (Cook et al.  1998  ) , and can be generalized across populations and treatment 
variations (Straus and Sackett  1998  ) , and whether fi ndings vary between subgroups 
(Bero et al.  1998  ) . The methods also limit bias, improve reliability and accuracy of 
conclusions (Jones  1995  ) , and increase the power and precision of treatment effects 
and risk exposures (Zhou et al.  2003  ) . 

 The objective of this chapter is to review statistical procedures for the meta-
analysis of clinical research. The Google data base system provides 659,000 refer-
ences on the methods of meta-analysis, and refers to hundreds of books of up to 600 
pages (Hunter and Schmidt  2004  ) , illustrating the complexity of this subject. The 
basic statistical analysis of meta-analyses is, however, not complex, if the basic 
scientifi c methods are met (Cleophas  2006  ) . We fi rst will review the scientifi c 
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methods, and, then, introduce the statistical analysis, including the analysis of 
potential pitfalls. Finally, we will cover some new developments.  

    2   Four Scientifi c Rules 

 The logic behind meta-analyses is simple and straightforward. What it requires, is to 
stick to scientifi c methods, largely similar to those required for clinical trials. They 
can be summarized: (1) a clearly defi ned prior hypothesis, (2) thorough search of 
trials, (3) strict inclusion criteria, and (4) uniform data analysis (Cleophas  2006  ) . 

    2.1   Clearly Defi ned Hypothesis 

 Clinical trials address effi cacy and safety of new drugs or interventions. It is speci-
fi ed in advance what are the main outcome variables, and how they should be tested. 
A meta-analysis is very much similar to a single trial, and, similarly to a single trial, 
it tests a very small number of primary hypotheses, mostly that the new compound 
or intervention is more effi cacious and safe than the reference compound or 
intervention.  

    2.2   Thorough Search of Trials 

 The activity of thoroughly searching-published-research requires a systematic pro-
cedure, and has to be learned. You may pick up a checklist for this purpose, simi-
larly to the checklist used by aircraft staff before take off, a nice simile used by 
Oxman and Guyatt  (  1988  ) . A faulty review of trials is as perilous as a faulty aircraft 
and both of them are equally deadly, particularly so if we are going to use it for mak-
ing decisions about health care. For a systematic review Medline (Greenhalgh  1997  )  
is not enough, and other data bases have to be searched, e.g., EMBASE-Excerpta 
Medica (Lefebvre and McDonald  1996  )  and the Cochrane Library  (  2011  ) .  

    2.3   Strict Inclusion Criteria 

 Inclusion criteria are concerned with the levels of validity, otherwise called quality 
criteria, of the trials to be included. Strict inclusion criteria means that we will, sub-
sequently, only include the valid studies. Some factors have empirically been shown 
to benefi cially infl uence validity. These factors include: blinding the study; random 
assignment of patients; explicit description of methods; accurate statistics; accurate 
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ethics including written informed consent. We should add that the inclusion of 
unpublished studies may reduce the magnitude of publication bias, an issue which 
will be discussed in the Sect.  4 .  

    2.4   Uniform Data Analysis 

 Statistical analysis is a tool which helps to derive meaningful conclusions from the 
data, and to avoid analytic errors. Statistics should be simple and test primary 
hypotheses in the fi rst place. Prior to any analysis or data plots, we have to decide 
what kind of data we have.   

    3   General Framework of Meta-analysis 

 In general, meta-analysis refers to statistical analysis of the results of different stud-
ies. The simplest analysis is to calculate an average, and in a meta-analysis a 
weighted average is computed. Consider a meta-analysis of k different clinical tri-
als, and let x 
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the variance  s  2  of the true effects of the compound between k different studies:
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 If all k studies have the same true quantitative effect,  s  2  = 0 and the weighted 
average effect is called a  fi xed-effect  estimate. If the true effects of the compound 
vary between studies,  s  2  > 0 and the weighted average effect is called a  random-
effects  estimate. For the fi xed-effect estimate (i.e.  s  2  = 0) the calculations are quite 
simple, for the random-effects estimate the calculations are more complex, but 
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available in computer packages  ( SAS  2011 ; SPSS Statistical Software  2011 ; 
Cochrane Revman  2011 ; Stata statistical software for professionals  2011 ; 
Comprehensive Meta-analysis, by Biostat  2011  ) . 

 Depending on the type of outcome variable, the summary statistics x 
1
 , x 

2
 , …, x 

k
  

have different forms.

    1.     Continuous data  
   Continuous data are summarized with means and standard deviations; mean 

1i
  

and SD 
1i
  in the placebo-group, and mean 

2i
  and SD 

2i
  in the active-treatment group 

of trial i. The summary statistic equals x 
i
  = mean 

1i
  − mean 

2i
  and 
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  are the sample sizes of the two treatments. 

   If a trial compares two treatments in the same patients, the summary statistic is 
x 

i
  = mean 

1i
  − mean 

2i
 , where mean 

1i
  and mean 

2i
  are the means of the two treatments, and 
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  , where  r  is the correlation between the

outcomes in the two treatments. 
   If the distribution of the outcomes is very skewed, it is more useful to summarize 

the outcomes with medians than means.  
    2.     Binary data  
   Binary data are summarized as proportions of patients with a positive outcome in the 

treatment arms, denoted by p 
i1
  and p 

i2
 . Three different summary statistics are used:

   (a)    Risk-difference. 
  The summary statistic of trial i equals x i  = p 

1i
  − p 

2i
 , the standard error equals 
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 the two treatments of trial i.  
   (b)    Relative Risk. 
  The summary statistic of trial i equals the ratio of the two proportions, but its 

distribution is often very skewed. Therefore, we prefer to analyze the natural 
logarithm of the relative risk, ln(RR). The summary statistic thus equals

 x 
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 ),and the standard error equals     ( ) − −
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   (c)    Odds Ratio. 
  The summary statistic of trial i equals the ratio of the odds, but since the odds 

ratio is strictly positive, we again prefer to analyze the natural logarithm of

 the odds ratio. Thus the summary statistic equals     
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
1 1

i
2 2

/ (1 )
x ln

/ (1 )
i i

i i

p p

p p
  , 

and the standard error equals 

    ( )= + + +
− −i

1 1 1 1 2 2 2 2

1 1 1 1
se x

(1 ) (1 )i i i i i i i in p n p n p n p
  .  



3834 Pitfalls of Data Analysis

   (d)    Other methods. 
  The Mantel-Haenszel method has been developed for the stratifi ed analysis 

of odds ratios, and has been extended to the stratifi ed analysis of risk ratios 
and risk differences (Greenland and Robins  1985  ) . Like the general model a 
weighted average effect is calculated. For the calculation of combined odds 
ratios Peto’s method is also often used (Yusuf et al.  1985  ) . It applies a way to 
calculate odds ratios which may cause under- or overestimation of extreme 
values like odds ratios <0.2 or >5.0. 

   Sometimes valuable information can be obtained from crossover studies, 
and, if the paired nature of the data are taken into account, such data can be 
included in a meta-analysis. The Cochrane Library CD-ROM provides the 
Generic inverse variance method for that purpose  ( Cochrane Library  2011  ) .      

    3.     Survival data  
 Survival trials are summarized with Kaplan-Meier curves, and the difference 

between the survival in two treatment arms is quantifi ed with the log (hazard ratio) 
calculated from the Cox regression model. To test whether the weighted average is

signifi cantly different from 0.0, a chi-square test is used:      χ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2

2

( )
w

w

X

se X
  with

one degree of freedom. A calculated  c  2 -value larger than 3.841, indicates that the 
pooled average is signifi cantly different from 0.0 at p < 0.05, and, thus, that a signifi cant 
different exists between the test and reference treatments. The Generic inverse variance 
method is also possible for the analysis of hazard ratios  ( Cochrane Library  2011  ) .      

    4   Pitfalls of Data Analysis 

 Meta-analyses will suffer from any bias that the individual studies included suffer 
from, including incorrect and incomplete data. Two publications underline these 
problems: (1) out of 49 recently published studies, 83% of the unrandomized and 
25% of the randomized studies were partly refuted soon after publication (Ioannides 
 2005  ) ; (2) out of 519 recently published trials 20% selectively reported positive 
results, and reported negative results incompletely (Chan and Altman  2005  ) . Three 
common pitfalls of meta-analyses are listed underneath. 

    4.1   Publication Bias 

 A good starting point with any statistical analysis is plotting the data (Fig.   32.2    , 
Chap.   32    ). A Christmas tree (Cleophas  2006  )  or upside-down-funnel-pattern of dis-
tribution of the results of 100 published trials shows on the x-axis the mean result of 
each trial, on the y-axis the sample size of the trials. The smaller the trial, the wider 
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the distribution of results. The right graph gives a simulated pattern, suggestive of 
publication bias: the negative trials are not published and thus missing. This cut 
Christmas-tree can help suspect that there is  publication bias  in the meta-analysis. 
Publication bias can be tested by calculating the shift of odds ratios caused by the 
addition of unpublished trials from abstract-reports or proceedings (Chalmers and 
Altman  1995  ) .  

    4.2   Heterogeneity 

 In order to visually assess heterogeneity between studies several types of plots are 
proposed, including forest plots, radial and L’ Abbe plots  ( National Council of 
Social Studies  2011  ) . The forest plot of Fig.   32.3     in Chap.   32     gives an example 
used by Thompson  (  1995  )  of a meta-analysis with odds ratios and 95% confi -
dence intervals (CIs), telling something about heterogeneity. On the x-axis are the 
results, on the y-axis the trials. We see the results of 19 trials of endoscopic inter-
vention vs no intervention for upper intestinal bleeding: odds ratios less than one 
represent a benefi cial effect. These trials were considerably different in patient-
selection, baseline-severity-of-condition, endoscopic-techniques, management-
of-bleeding-otherwise, and duration-of-follow-up. And so, this is a meta-analysis 
which is, clinically, very heterogeneous. Is it also statistically heterogeneous? For 
that purpose we may use a fi xed-effect model which tests whether there is a greater 
variation between the results of the trials than is compatible with the play of 
chance, using a chi-square test. The null-hypothesis is that all studies have the 
same true odds ratio, and that the observed odds ratios vary only due to sampling 
variation in each study. The alternative hypothesis is that the variation of the 
observed odds ratio is also due to systematic differences in true odds ratios 
between studies. The Cochran Q test with the Q statistic is used to test the above 
null hypothesis with summary statistics x 

i
  and weights w 

i
 :
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= − −∑ 2

1

Q ( ) with k 1 degrees of freedom.
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i i w
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 We fi nd Q = 43 for 19 − 1 = 18 degrees of freedom (dfs) for the example of the 
endoscopic intervention. The p-value is <0.001 giving substantial evidence for 
statistical heterogeneity. For the interpretation it is useful to know that, when the 
null-hypothesis is true, a Q statistic has on average a value close to the degrees of 
freedom, and increases with increasing degrees of freedom. So, a result of Q = 18 
with 18 dfs would give no evidence for heterogeneity, values much larger such do 
so for the opposite. 

 If the above test is positive, it is common to also calculate a random-effects 
estimate of the weighted average, as suggested by Dersimonian and Laird  (  1986  ) . 
We should add that, in most situations, the use of the random-effects model will lead 
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to wider confi dence intervals and a lower chance to call a difference statistically 
signifi cant. A disadvantage of the random-effects analysis is that small and large 
studies are given almost similar weights (Berlin et al.  1989  ) . Complementary to the 
Q-statistic, the amount of heterogeneity between studies is often quantifi ed with the 
I 2 -statistic (Higgins and Thompson  2002  ) 

     
( )⎡ ⎤= − −⎣ ⎦

2I 100%* Q k 1 / Q
   

which is interpreted as the proportion of total variation in study estimates due to 
heterogeneity rather than sampling error. Fifty percent is often used as a cut-off for 
heterogeneity.  

    4.3   Investigating the Cause for Heterogeneity 

 When there is heterogeneity, careful investigation of the potential cause has to be 
accomplished. The main focus should be trying to understand any sources of het-
erogeneity in the data. In practice, it may be less hard to assess since the do-ers 
already have noticed clinical differences, and it, thus, becomes easy to test the 
data accordingly. The general approach is to quantify the association between the 
outcomes and characteristics of the different trials. Not only patient-characteristics, 
but also trial-quality-characteristics such the use of blinding, randomization, and 
placebo-controls have to be considered. Scatterplots are helpful to investigating 
the association between outcome and a covariate, but these must be inspected 
carefully because differences in trial sample-sizes may distort the existence of 
association, and meta-regression techniques may be needed to investigate 
associations. 

 Outliers may also give a clue about the cause of heterogeneity. Figure   32.5     in 
Chap.   32     shows the relation between cholesterol and coronary heart disease 
(Shipley et al.  1991  ) . The two outliers on top were the main cause for heterogeneity 
in the data. 

 Still other causes for heterogeneity may be involved. As an example, 33 studies 
of cholesterol and the risk of carcinomas showed that heterogeneity was huge (Khan 
et al.  1996  ) . When the trials were divided according to social class, the effect in the 
lowest class was 4–5 times those of the middle and upper class, explaining every-
thing about this heterogeneous result. 

 There is some danger of over-interpretation of heterogeneity. Heterogeneity may 
occur by chance, and will almost certainly be found with large meta-analyses involv-
ing many and large studies. This is particularly an important possibility when no 
clinical explanation is found, or when the heterogeneity is clinically irrelevant. 
Also, we should warn that a great deal of uniformity among the results of indepen-
dently performed studies is not necessarily good; it can indicate consistency-in-bias 
rather than consistency-in-real-effects as suggested by Riegelman  (  2005  ) .  
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    4.4   Lack of Robustness 

 Sensitivity or robustness of a meta-analysis is one last aspect to be addressed. When 
talking of strict inclusion criteria, we discussed studies with lower levels of validity. 
It may be worthwhile not to completely reject the studies with lower methodology 
(Khan et al.  1996  ) . They can be used for assessing sensitivity. 

 The left graph of Fig.  33.1  gives an example of how the pooled data of three 
high-quality-studies provide a smaller result, than do four studies-of-borderline-
quality. The summary result is mainly determined by the borderline-quality-studies. 
When studies are ordered according to their being blinded as shown in the right 
graph, differences may be large or not. In studies using objective variables, for 
example blood pressures or heart rates, blinding is not as important as it is in studies 
using subjective variables (pain scores etc.). In this particular example differences 
were negligible. When examining the infl uence of various inclusion criteria on the 
overall odds ratios, we have to conclude that the criteria themselves are an important 
factor in determining the summary result. In that case the meta-analysis lacks 
robustness. Interpretation has to be cautious, and pooling may have to be left out 
altogether. Just leaving out trials at this stage of the meta-analysis is inappropriate 
either, because it would introduce bias similar to publication-bias or bias-introduced-
by-not-complying-with-the-intention-to-treat-principle.    

    5   New Developments 

 Software programs for the analysis of meta-data are provided by SAS  (  2011  ) , the 
Cochrane Revman  (  2011  ) , S-plus  (  2011  ) , StatsDirect  (  2011  ) , StatXact  (  2011  ) , True 
Epistat  (  2011  ) . Most of these programs are expensive, but common procedures are 
available through Microsoft’s Excel and in Excel-add-ins  (  2011  ) , while many web-
sites offer online statistical analyses for free, including BUGS  (  2011  )  and R  (  2011  ) . 

  Fig. 33.1     Left graph : three high-quality-studies provide a smaller result, than do four studies-
of-borderline-quality; the summary result is mainly determined by the borderline-quality-studies. 
 Right graph : when studies using objective variables are ordered according to their being blinded, 
differences may not be large       
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Leandro’s software program (Leandro  2005  )  visualizes heterogeneity directly from 
a computer graph based on Galbraith  (  1988  )  plots. 

 New statistical methods are being developed. Boekholdt et al.  (  2005  ) . showed 
that observational studies and clinical trials can be simultaneously included in a 
meta-analysis. Van Houwelingen et al.  (  2002  ) . assessed heterogeneity with multi-
variate methods for bivariate and multivariate outcome parameters. If trials directly 
comparing the treatments under study are not available, indirect comparisons with a 
common comparator may be used (Glenny et al.  2005  ) . A method like leave-one-out 
cross-validation is a standard sensitivity technique for such purpose. Lumley  (  2002  )  
developed network meta-analysis to compare competing treatments not directly 
compared in trials. Terrin et al.  (  2003  )  and Tang and Liu  (  2000  )  recently demon-
strated that an asymmetric Christmas tree is only related to publication bias if the 
trials included are homogeneous, and that registries are a good alternative approach. 
In recent years the method of meta-regression brought new insights (Schmid et al. 
 2004 ; Higgins and Thompson  2004  ) . For example, it showed that group-level 
instead of patient-level analyses easily fails to detect heterogeneities between indi-
vidual patients, otherwise called ecological biases. Robustness is hard to assess if 
low quality studies are lacking. Casas et al.  (  2004  )  showed that it can be assessed by 
evaluating the extent to which different variables contribute to the variability 
between the studies. It can also be assessed using cumulative meta-analysis (Lau 
et al.  1995  ) , while quality measures can be adjusted for in meta-regression. 

 Meta-analyses including few studies, e.g., 3 or 4, have little power to test the 
pitfalls. In contrast, meta-analyses including many studies may have so much power 
that they demonstrate small pitfalls, that are not clinically relevant. For example, a 
meta-analysis of 43 angiotensin blocker studies (Conlin et al.  2000  )  found 95% 
confi dence intervals of the heterogeneity and publication bias effects were not wider 
than 5% of the treatment effects. Another reason why the pitfalls receive less atten-
tion today than 5 years ago is, that an increasing part of the current meta-analyses 
are performed in the form of working papers of an explorative nature, where the 
primary question is not a result representative for the entire population, but rather 
the estimates of the treatment effects in subgroups and interactions. These meta-
analyses contain many details, and look a bit like working papers of technological 
evaluations as produced by physicists. The trend to increasingly publish detailed 
data, rather than study reports as allowed by journals, is enhanced by the Internet, 
which enables to register many more data than do medical journals. 

 Meta-analyses were ‘invented’ in the early 1970s by psychologists, but pooling 
study results extends back to the early 1900s by statisticians such as Karl Pearson, 
and Ronald Fisher. In the fi rst years pooling of the data was often impossible due to 
heterogeneity of the studies. However, after 1995 trials became more homogeneous. 
In the late 1990s several publications concluded that meta-analyses did not accu-
rately predict treatment (LeLorier et al.  1997 ; Temple  1999  )  and adverse effects 
(Brewer and Colditz  1999  ) . The pitfalls were held responsible. Initiatives against 
them include (1) the Consolidated-Standards-of-Reporting-Trials-Movement 
(CONSORT), (2) the Unpublished-Paper-Amnesty-Movement of the English jour-
nals, and (3) the World Association of Medical Editors’ initiative to standardize the 
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peer review system. Guidelines/checklists for reporting meta-analyses were 
published like QUOROM (Quality of Reporting of Meta-analyses) and MOOSE 
(Meta-analysis Of Observational Studies in Epidemiology).  

    6   Conclusions 

 Meta-analysis is important in clinical research, because it establishes whether scien-
tifi c fi ndings are consistent, and can be generalized across populations. The statisti-
cal analysis consists of the computation of weighted averages of study characteristics 
and their standard errors. Common pitfalls of data-analysis are (1) publication bias, 
(2) heterogeneity, (3) lack of robustness. New developments in the statistical analy-
sis include (1) new software easy to use, (2) new arithmetical methods that facilitate 
the assessment of heterogeneity and comparability of studies, (3) a current trend 
towards more extensive data reporting including multiple subgroup and interaction 
analyses. Meta-analyses are governed by the traditional rules for scientifi c research, 
and the pitfalls are, particularly, relevant to hypothesis-driven meta-analyses, but 
less so to current working papers with emphasis on entire data coverage.      
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     1   Introduction 

 The previous two chapters showed that pooling a meta-analysis of separate studies 
is pretty meaningless, if the results are signifi cantly heterogeneous across studies. 
Instead, a careful investigation of the potential causes of heterogeneity has to be 
accomplished. Differences in age groups, co-morbidities, co-medications, gender 
differences and other characteristics are common causes. Subgroup comparisons 
are commonly applied for the purpose. However, in the past few years multiple 
regression analysis has been increasingly used as an alternative approach. The main 
study outcome is the dependent variable and the potential causes of heterogeneity 
are the independent variables. Advantages of this method include that the effects of 
multiple factors can be studied simultaneously, and that confounders and interacting-
factors can be adjusted (see also the Chaps.   28     and   30    ). In the present chapter an 
example was used of a recently published meta-analysis from our group (Atiqi 
et al.  2009  ) .  

    2   An Example of a Heterogeneous Meta-analysis 

 Table  34.1  shows the individual studies included in a meta-analysis of 20 studies on 
adverse drug admissions (ADEs) (Atiqi et al.  2009  ) . The pooled result of the 20 
studies as included in the meta-analysis provided an overall percentage of ADEs of 
5.4% (5.0–5.8). However, the meaning of this pooled result was limited due to a 
signifi cant heterogeneity between the individual studies: both the fi xed effects and 
random effects tests for heterogeneity were highly signifi cant (both p < 0.001, 
I 2  > 90%, see also previous two chapters for explanation of the terms).  

 In order to explore the cause for this heterogeneity the studies of elderly were 
analyzed separately. The pooled percentages for the elderly (Table  34.2 : studies 
1–3, 6, 16, 17) was 4.8% (3.4–5.2) and for the studies on younger patients 

    Chapter 34   
 Meta-regression                    
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   Table 34.1    Recent studies on patients admitted to hospital due to adverse drug effect   

 Study  Study size 
 Percentage of all 
admissions 

 95% confi dence 
intervals 

 1.  Mannesse et al. (2000   )  106  21.0%  13.0–29.0% 
 2.  Malhotra et al. (2001)  578  14.4%  11.5–17.3% 
 3.  Chan et al. (2001)  240  30.4%  24.5–36.3% 
 4.  Olivier et al. (2002)  671  6.1%  4.3–7.9% 
 5.  Mjorndal et al. (2002)  681  12.0%  9.5–14.5% 
 6.  Onder et al. (2002)  28,411  3.4%  3.2–3.6% 
 7.  Koh et al. (2003)  347  6.6%  4.0–9.2% 
 8.  Easton–Carter et al. (2003)  8,601  3.3%  2.9–3.7% 
 9.  Dormann et al. (2003)  915  4.9%  4.9–14.3% 
 10. Peyriere et al. (2003)  156  9.6%  4.9–14.3% 
 11. Howard et al   . (2004)  4,093  6.5%  5.7–7.3% 
 12. Pirmohamed et al. (2004)  18,820  6.5%  6.2–6.8% 
 13. Hardmeier et al. (2004)  6,383  4.1%  3.6–4.6% 
 14. Easton et al. (2004)  2,933  4.3%  3.6–5.0% 
 15. Capuano et al. (2004)  480  3.5%  1.9–5.1% 
 16. Caamano et al. (2005)  19,070  4.3%  3.7–4.6% 
 17. Yee et al. (2005)  2,169  12.6%  11.2–14.0% 
 18. Baena et al. (2006)  2,261  33.2%  31.2–35.2% 
 19. Leendertse et al. (2006)  12,793  5.6%  5.2–6.0% 
 20. Van der Hooft et al. (2008)  355  5.1%  2.8–7.4% 
 Pooled  113,203  5.4%  5.0–5.8% 

   Table 34.2    Data fi le for a meta-regression   

 Study no  % ADEs  Study magnitude  Clinicians’ study yes = 1  Elderly study yes = 1 

 1  21.00  106.00  1.00  1.00 
 2  14.40  578.00  1.00  1.00 
 3  30.40  240.00  1.00  1.00 
 4  6.10  671.00  0.00  0.00 
 5  12.00  681.00  0.00  0.00 
 6  3.40  28,411.00  1.00  0.00 
 7  6.60  347.00  0.00  0.00 
 8  3.30  8,601.00  0.00  0.00 
 9  4.90  915.00  0.00  0.00 
 10  9.60  156.00  0.00  0.00 
 11  6.50  4,093.00  0.00  0.00 
 12  6.50  18,820.00  0.00  0.00 
 13  4.10  6,383.00  0.00  0.00 
 14  4.30  2,933.00  0.00  0.00 
 15  3.50  480.00  0.00  0.00 
 16  4.30  19,070.00  1.00  0.00 
 17  12.60  2,169.00  1.00  0.00 
 18  33.20  2,261.00  0.00  1.00 
 19  5.60  12,793.00  0.00  0.00 
 20  5.10  355.00  0.00  0.00 

   ADEs  admissions due to adverse drug effects  
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(remainder of studies) 3.5% (95% confi dence interval 3.1–3.9). Although the 
percentage ADEs in elderly patients tended to be larger than that in the younger 
(0.05 < p < 0.1), the overall percentage of 5.4% was not signifi cantly smaller than the 
percentage of ADEs in the elderly, which suggests that age was not an important 
cause for heterogeneity in these studies.  

 We also assessed the studies for type-of-research-group. Because medical arti-
cles are often co-authored by specialists from different disciplines and/or guest-
authors, we decided to name the type-of-research-group after the type of department 
of the fi rst two authors. Table  34.3  shows that in the studies performed by clinicians 
(studies 1, 2, 3, and 18) the percentages ADEs were much higher (pooled data 
29.2%, 26.4–32.0) than those of the other studies (pooled data 4.8%, 4.1–5.5). A 
careful further examination of these data revealed that the difference between the 
type of research groups was associated with a signifi cant difference in magnitude of 
the studies: the four clinicians’ studies had a mean sample size of 796 (740–852), 
while the remainder of the studies averaged at 6,680 (6,516–6,844) patients per 
study, different at p < 0.001. This effect was ascribed to the presence of publication 
bias in this meta-analysis (small studies with small results were under-published).  

 In order to simultaneously assess the effects of study-magnitude, patients’ age, 
and type-of- research-group a multiple linear regression was, subsequently, per-
formed (Table  34.4 ). After adjustment for patients’ age and type-of-research-group 
the study-magnitude was no signifi cant predictor of study effect anymore. In contrast, 
the type-of-research-group was the single and highly signifi cant predictor of 
study result.   

   Table 34.3    Assessment of studies for type of department   

 Study number 

 1. Dept Geriatrics, Erasmus University Hospital Rotterdam, Netherlands 
 2. Dept Internal Medicine, Chandigarh, India 
 3. Dept Medicine, Hobart General Hospital, Hobart, Australia 
 4. Dept Clinical Pharmacology, Umea University Hospital, Sweden, 
 5. Center Gerontology and health Care Research Brown University Providence, USA 
 6. Non-communicable Disease Epidemiology Unit London School of Hygiene 
 7. Department of Pharmacy National University of Singapore, Singapore 
 8. Faculty of Pharmacy University of Sydney, Australia 
 9. Dept Experimental and Clinical Pharmacology and Toxicology, University Erlangen 
 10. Lab Clinical Pharmacy University Montpellier France 
 11. School of Community Health Sciences, University Nottingham, UK 
 12. Dept Pharmacology University of Liverpool UK 
 13. Dept Clinical Pharmacy University Zurich Switzerland 
 14. Faculty of Pharmacy University of Sydney, Australia 
 15. Centre for Pharmacoepidemics and Pharmacosurveillance, Second University of Naples 
 16. Dept Epidemiology and Public Health Santiago de Compostella University, Spain 
 17. Clinical Pharmacist, Drug Information, Blue Shield of California, San Francisco 
 18. Emergency department, University Hospital, Granada, Spain 
 19. Department of Pharmacoepidemiology University Utrecht, Netherlands 
 20. Pharmacoepidemiology Unit Erasmus University Rotterdam, Netherlands 
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    3   Discussion 

 An important hypothesis of the above example study was, that the real burden of 
ADEs in present health care may be best assessed by clinicians who have to make a 
diagnosis and are, subsequently, in charge for starting a treatment. Indeed, the studies 
performed by clinicians produced much larger percentages of ADE admissions. 
This effect was accompanied by the fi nding that the clinicians’ studies were signifi -
cantly smaller than the remainder of the studies. According to the meta-regression 
the larger percentages ADEs in the clinicians’ studies could not be explained by the 
magnitude of the studies: the type-of-research-group remained the single highly 
signifi cant predictor of study results after adjustment for difference in study-magnitudes. 
And, so, the type of study group could be held largely responsible for the clinical 
heterogeneity observed. Meta-regression can be considered as an extension to sub-
group analyses, and in principle allows the effects of multiple factors to be investi-
gated simultaneously. We should add that mostly the numbers of studies are small 
and, therefore, do not allow for inclusion of more than 2 or 3 variables. Like with 
usual testing meta-analysis for heterogeneity, both a fi xed effects and a random 
effects meta-regression is possible. The Stata software program offers it in “metareg 
macro”  ( Meta-regression  2011  ) . Limitations of meta-regressions have to be men-
tioned. They include problems associated with looking at irrelevant characteristics 
of participants, power loss associated with the inclusion of multiple variables, 
increased risks of type I errors due to multiple testing, little availability of software 
to date (Stanley and Jarrell  1989 ; Higgins and Beyene  2011  ) . 

 Due to the omnipresent computer the use of arithmetically increasingly complex 
methods has expanded tremendously. The fi eld of statistics has now great diffi culty 
with fi nding adequate names for its novel methods. Often a name represents various 
methods like, e.g. the term “mixed model” is used both for mixed effects models 
(Chap.   56    ) and mixed linear models (Chap.   55    ), although the two methods are entirely 
different. A similar phenomenon is observed with the term “meta-regression”. 

   Table 34.4    SPSS (  www.spss.com    ) multiple linear meta-regression table with study result 
(percentage ADEs) as dependent variable and study-magnitude, patients’ age, and type-of-
research-group as independent variables   

 Covariate 

 Unstandardized coeffi cients  Standardized coeffi cients 

 B  Std error  Beta  t  sig. 

 Constant  6.92  1.45  4.76  0.000 
 Study magnitude  −7.7.e-0.05  0.00  −0.071  −0.50  0.62 
 Patients’ age  −1.39  2.89  −0.075  −0.48  0.64 
 Type research group  18.93  3.36  0.89  5.64  0.000 

  After adjustment for patients’ age and type-of-research-group the study-magnitude is no signifi cant 
predictor of study effect anymore. In contrast, the type-of-research-group is the single highly-
signifi cant predictor of the study result 
 Dependent variable: study result 
  std error  standard error,  t  t-value,  sig.  level of signifi cance  

http://www.spss.com
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Although usually applied to name the regression of a meta-analysis, it is currently 
also sometimes used to name the meta-analysis of regression analyses. Like with 
meta-analysis of means of studies, the main results of regression analyses may be 
pooled in order to improve the power of testing. In Table  34.5  an example is given. 
The B-value behaves like a mean value and can be considered to follow a t-distribution. 
Pooling can be performed as explained in Chap.   32    , Sect.   6       . If the magnitudes of the 
standard deviations or the B-values are very different across studies a more adequate 
calculation of the t-values should be performed (Chap.   32    , Sect.   6    ). It can be observed 
in the Table  34.5  that, indeed, the pooled result of the three regression studies 
produced a much better t- and p-value than did the separate studies.   

    4   Conclusions 

 In the past few years multiple regression analysis has been increasingly used as an 
approach alternative to subgroup analysis to assess heterogeneity in meta-analyses. 
This chapter was written to explain how it works. In a real data example of a pub-
lished heterogenous meta-analysis of 20 studies on adverse drug effect admissions 
(ADEs) the main study outcome was the dependent variable and the potential causes 
of heterogeneity were the independent variables. 

 The following observations were made.

    1.    A difference in age and difference in type of research group was largely held 
responsible for the heterogeneity observed, 0.05 < p < 0.10 and p < 0.0001.  

    2.    It was also observed that the magnitudes of the clinicians’ studies were much 
smaller than those of the rest, p < 0.001, and it could, therefore, not be excluded 
that the type of study group rather than the study magnitude was responsible for 
the heterogeneity.  

    3.    Multiple linear regression with numbers of ADEs as outcome and age, type of 
study group, and magnitude of study as exposure variable showed, indeed, that 
the larger percentages ADEs in the clinicians’ studies could not be explained by 
the magnitude of the studies: the type-of-research-group remained the single 
highly signifi cant predictor of study results after adjustment for difference in 
study-magnitudes, p < 0.0001.     

   Table 34.5    Meta-analysis of regression analyses is different from regression analysis of a 
meta-analysis: an example of the former   

 Study no.  B  SE  n  dfs  t  p 

 1  1.5  0.8  20  19  1.875  0.076 
 2  1.7  0.9  20  19  1.888  0.074 
 3  1.9  1.0  20  19  1.900  0.073 
 Pooled result  5.1  1.6  60  57  3.259  0.002 

  Pooled t-value is calculated according to     ( ) ( )2 2 2
1 2 3 1 2 3B B B / SE SE SE+ + √ + +    

  B  regression coeffi cient,  SE  standard error,  n  sample size,  t  t-value,  p  p-value  
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 We conclude that the advantages of meta-regression compared to simple 
subgroups comparisons for the assessment of heterogeneity include that (1) the 
effects of multiple factors can be studied simultaneously, and that (2) confounders 
and interacting-factors can be adjusted. The most important variable responsible for 
the heterogeneity can be readily identifi ed. Problems, of course, include the increased 
risks of type I errors and power loss with small meta-analyses.      
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     1   Introduction 

 Crossover studies with continuous variables are routinely used in clinical drug 
research: for example, no less than 22% of the double-blind placebo-controlled 
hypertension trials in 1993 were accordingly designed (Niemeyer et al.  1998  ) . 
A major advantage of the crossover design is that it eliminates between-subject 
variability of symptoms. However, problems include the occurrence of carryover 
effect, sometimes called treatment-by-period interaction (see also Chap.   30    ): if the 
effect of the fi rst period carries on into the next one, then it may infl uence the 
response to the latter period. Second, the possibility of time effects due to external 
factors such as the change of the seasons has to be taken into account in lengthy 
crossover studies. Third, negative correlations between drug responses, although 
recently recognized in clinical pharmacology, is an important possibility not consid-
ered in the design and analysis of clinical trials so far. Many crossover studies may 
have a positive correlation-between-drug-response, not only because treatments in 
a given comparison are frequently from the same class of drugs, but also because 
one subject is used for comparisons of two treatments. Still, in treatment comparisons 
of completely different treatments patients may fall into different populations, those 
who respond better to the test-treatment and those who do so to the reference-
treatment. This phenomenon has already lead to treatment protocols based on indi-
vidualized rather than stepped care (Scheffé  1959  ) . Power analyses for crossover 
studies with continuous variables so far only accounted for the possibility of approx-
imately zero levels of correlations (Cleophas  1993 ; Willan and Pater  1986 ; Freeman 
 1989 ; Fleiss  1989 ; Senn  1994 ; Grieve  1994  ) . While considering different levels of 
correlation, we recently demonstrated (Cleophas and Van Lier  1996  )  that the cross-
over design with binary variables is a powerful means of determining the effi cacy 
of new drugs in spite of such factors as carryover effects. Crossover trials with 
continuous variables, however, have not yet been similarly studied. 
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 In the current chapter while taking both positive and negative correlations into 
account we drew power curves of hypothesized crossover studies with different 
amounts of treatment effect, carryover effect and time effect.  

    2   Mathematical Model 

 According to Scheffé (Nies and Spielberg  1996  )  the notion for a simple two-period 
two-group crossover study is  

 Group 

 Period 1  Period 2 

 Treatment  Mean effect  Treatment  Mean effect 

 1 (n 
1
 )  1  y 

1.1
   2  y 

1.2
  

 2 (n 
2
 )  2  y 

2.1
   1  y 

2.2
  

  where y 
ijk

  = the response in the jth patient in the ith group in the kth period. We 
assume that n 

1
  = n 

2
  = n and that we have normal distributions or t-distributions. 

y 
i.k

  = ∑ y 
ijk

 /n. 
 Treatment, carryover and time effects are assessed according to Grizzle  (  1965  ) . 

To test treatment effect  j  the sum of the results of treatment 1 is compared with the 
treatment 2 results (y 

1.1
  + y 

2.2
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1.2
  + y 

2.1
 ). To trace carryover effect ( l ) the sum 
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2.2
 ). To trace time effect ( p ) the sum of the results in period 1 is compared with 

the period 2 results (y 
1.1

  + y 
2.1

  versus y 
1.2

  + y 
2.2

 ). 
 The null-hypotheses that  j ,  l , and  p  are zero
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2.1 2.2 1.1 1.2

1.1 2.1 1.2 2.2

y y y y 0

y y y y 0

y y y y 0

⎡ ⎤+ − + =⎣ ⎦
⎡ ⎤+ − + =⎣ ⎦
⎡ ⎤+ − + =⎣ ⎦

ϕ

λ

π
   

should be slightly remodeled into paired comparisons, because otherwise calcula-
tions cannot be appropriately accomplished.

     

( ) ( )
( ) ( )
( ) ( )

1.1 1.2 2.1 2.2

2.1 2.2 1.1 1.2

1.1 1.2 2.1 2.2

y y y y 0

y y y y 0

y y y y 0

⎡ ⎤− − − =⎣ ⎦
⎡ ⎤+ − + =⎣ ⎦
⎡ ⎤− + − =⎣ ⎦

ϕ

λ

π
    

 In this way 2 × 2 paired cells can be adequately added or subtracted in a cell by 
cell manner.  
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    3   Hypothesis Testing 

 These null hypotheses can be tested, for example, by paired t-statistic or repeated 
measures analysis of variance (ANOVA). The larger the extent to which the t or F 
value of our distribution differs from zero, the more sensitivity the statistical 
approach does provide.

     
( )= d

t or repeated measures ANOVA,  F value
SE    

where d is  j ,  l , or  p , and SE is their standard error. 
 SE is calculated by use of the standard formulas for the variance (√ s  2 /n) of paired 

and unpaired sums and differences.

     

2 2 2
paired sums 1 2 1 2

2 2 2
paired differences 1 2 1 2

2 2 2
unpaired sums 1 2

2 2 2
unpaired differences 1 2

2

2

= + +

= + −

= +

= +

σ σ σ ρσ σ

σ σ σ ρσ σ

σ σ σ

σ σ σ
    

 If we assume that  s  =  s  
Y1.1

  =  s  
Y1.2

  =  s  
Y2.1

  =  s  
Y2.2

  = standard deviation of the samples 
in each of the cells, and that  r  =  r  

Y1.1 vs Y1.2
  =  r  

Y2.1 vs Y2.2
  = correlation coeffi cient 

between the samples of each of the two paired cells, then

     

( )( )
( )( )
( )( )

2 2

2 2

2 2

2 2 1

2 2 1

2 2 1

= −

= +

= −

ϕ

λ

π

σ σ ρ

σ σ ρ

σ σ ρ
    

 Because n 
1
  = n 

2
  = n, we now can calculate the SEs as follows:

     

2
2 1 1 4 (1 p)

SE 4 (1 p)
2n 2n nj

s
s

−⎛ ⎞= − + =⎜ ⎟⎝ ⎠
   

and accordingly

     

24 (1 p)
SE

nl
s +

=
   

     

24 (1 p)
SE

np
s −

=
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 Suppose  l  =  j  and  r  = 0, then t 
 l 
  = t 

 j 
 . In this situation the sensitivity to test carry-

over and treatment effect are equal.

     

If and 0 then t t

If and 0 then t t

= > <

= < >
λ ϕ

λ ϕ

λ ϕ ρ

λ ϕ ρ
    

 So, the sensitivity of testing is largely dependent on the correlation between 
treatment modalities  r . Whenever  r  > 0 we soon will have a much larger t-value, 
and, thus, better sensitivity to test treatment effect than carryover effect of similar 
size. We should add that in practice  s  

Y1.2
  may be somewhat larger than  s  

Y1.1
 , because 

the larger the data the larger the variances. If, e.g.,  s  
Y1.2

  is 10% larger than  s  
Y1.1

 ,  r  
will change from 0.00 to 0.05. So, in this situation the level of positive correlation 
required tends to rise. 

 Time effect ( p ) is generally considered to infl uence one treatment similarly to the 
other, and its infl uence on the size of the treatment difference is, thus, negligible.  

 Group 

 Period 1  Period 2 

 Treatment  Mean response  Treatment  Mean response 

 1  1  y 
1.1

   2  y 
1.2

  + ½ p  
 2  2  y 

2.1
   1  y 

2.2
  + ½ p  

 Under the assumption  j  = 0 we have

     

1 1
2 21.1 1.2 2.1 2.2

1.1 1.2 2.1 2.2

(y y ) (y y )

y y y y

= − − π − − −
− +−

π
=

ϕ

    

 Although time or period effects may introduce extra variance in the study, the 
crossover design in a way adjusts for time effects, and some even believe that time 
effects do not have to be taken into account in the routine analysis of crossover 
studies, unless there is a clinical interest to know (Senn  1994  ) .  

    4   Statistical Power of Testing 

 Figure  35.1  gives an example of a t-distribution (H 
1
 ) and its null hypothesis of no 

effect (H 
0
 ).  a  = % chance of erroneously rejecting this null hypothesis (usually taken 

as 5%), and  b  = % chance of erroneously accepting this null hypothesis. Statistical 
power is defi ned as (1 −  b ) × 100%. Statistical power can be approximated from the 
equation (prob = probability):

     
( )1POWER 1 1 prob Z t t£⎡ ⎤= − β = − −⎣ ⎦    
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where Z represents the standardized value for the differences between mean and 
zero and t 1  represents the upper critical value of t for the given degrees of freedom 
and  a  has been specifi ed ( a  = 0.05).  

 Suppose we have a crossover study with n = 10 per group, because this is a size 
frequently used in such studies, and with  j  =  s  = standard deviation of the samples 
in each cell, because this is frequently approximately so. Then increasing amounts 
of  l  are added with  s  

 l 
  =  l . The infl uence of this procedure on the statistical power 

of testing  l  and  j  are then assessed. The amounts of  l  are expressed as  l / j  ratios. 
Power graphs are calculated for three different levels of correlation-between-drug-
response ( r  ≅ −1;  r  ≅ 0;  r  ≅ +1). 

 Figure  35.2  shows the results. First, there are three power curves of treatment 
effect for the three levels of correlation. As  l / j  increases, all three gradually come 
down. The negative correlation curve is the fi rst to do so. Consequently, this situation 
has generally little power of rightly coming to the right conclusion. At  l / j  = 1.0, 
when treatment effect is equal to carryover effect, there is less than 30% power left. 
It means we have a more than 70% chance that treatment effect is erroneously 
unobserved in this study. Considering that a power of approximately 80% is required 
for reliable testing, we cannot test carryover here in a sensitive manner. The zero 
and positive correlation situations provide essentially better power.  

 There are also three power curves of carryover effect for three correlation levels. 
The negative correlation curve provides essentially better power than the zero and 
positive correlation curves do. This example shows that strong positive correlations 
leave little power to test carryover effect. It also shows that strong negative correlations 
produce excessive power to test carryover effect. 

2.101

-3 -2 -1 0 1 2 3 4 5
SEMs

H0

H1

  Fig. 35.1    Example of a t-distribution ( H  
 1 
 ) and its null hypothesis ( H  

 0 
 )   a   % chance of erroneously 

rejecting this null hypothesis (usually taken as 5%),   b   % chance of erroneously accepting this null 
hypothesis. Statistical power is defi ned as (1 −  b ) × 100%       
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 The amounts of time effect are generally assumed to infl uence the two treatment 
groups similarly, and it, therefore, may hardly infl uence the treat comparison. 
Suppose in the above example time effect ( p ) instead of carryover effect ( l ) is added 
in increasing amounts with  s  

 p 
  =  p . 

 Figure  35.3  shows the infl uence of increasing ratios  p / j  on the statistical power 
of testing  p  and  j . First, small time effects unlike carryover effects hardly infl uence 

λ/ϕ

λ
ϕ

  Fig. 35.2    Statistical power 
of testing carryover effect 
( slope upwards ) and 
treatment effect ( slope 
downwards );   l   carryover 
effect,   j   treatment effect,   r   
correlation coeffi cient 
(_________________  r  ≅ −1; 
__ __ __ __ __ __ __     r  ≅ 0; 
--------------------------   r  ≅ +1)       

p/j

j
p

  Fig. 35.3    Statistical power 
of testing time effect ( slope 
upwards ) and treatment effect 
( slope downwards )   p   time 
effect,   j   treatment effect,   r   
correlation coeffi cient 
(_________________  r  ≅ −1; 
__ __ __ __ __ __ __     r  ≅ 0; 
--------------------------   r  ≅ +1)       
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nor the amount nor the statistical power of testing treatment effect. Also the power 
of demonstrating time effect is largely dependent on the level of correlation-
between-drug-response: with a negative correlation we have little power to demon-
strate time-effect. In contrast, with a positive correlation we have a lot of power to 
do so.  

 We conclude that the level of correlation-between-drug-response is a major 
determinant of not only the power of demonstrating treatment effect but also that of 
time effect in the current approach.  

    5   Discussion 

 The crossover design for treatment comparisons with continuous variables provides 
approximately equal statistical power to test carryover, time, and treatment effects 
when between-treatment correlation is not strong positive/negative. For example, in 
the hypothesized crossover situation from our example the statistical power to dem-
onstrate similarly-sized treatment and carryover, or treatment and time effects is 
approximately 80% (as demonstrated in the above fi gures), which is generally con-
sidered to be an acceptable level for reliable testing. However, whenever the correla-
tion coeffi cient is >0, we will soon have better sensitivity to test treatment than 
carryover or time effect of similar size. Inversely, whenever it is <0, we will soon 
have better sensitivity to demonstrate the latter two rather than the former. 

 We should add that calculations are made under the assumption that either 
carryover or time effect are in the study. If both effects are simultaneously in the 
study, variances have to be added up and powers will be somewhat smaller. The 
assumption does not invalidate the overall conclusion of the procedure as it 
produces the largest powers for the given data. 

    5.1   Analysis of Covariance (ANCOVA) 

 Analysis of covariance is used if two x-variables are dependent on one another. 
 When F-tests are used instead of t-tests, the sensitivity of testing can be some-

what improved by analysis of covariance (ANCOVA) according to

   adjusted SS 
treatment

  between groups =  
  unadjusted SS 

treatment
  between groups +  

  (SP within groups) 2 /SS 
carryover

  within groups −  
  (SP total) 2 /SS 

carryover
  total   

   adjusted SS within groups = unadjusted SS within groups −  
  (SP within groups) 2 /SS 

carryover
  within groups 

  where SS = sum of squares, and SP = sum of products of 
treatment by carryover effects 
(treatment effect × carryover effect). 
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 Computation can be found, e.g., in Hays’ textbook Statistics  ( SPSS for Windows 
 2011  ) , and can be readily made by statistical packages, e.g., SPSS (Hays  1988  )  
under the subprogram “ANOVA”. 

 In this way, power of testing may improve by a few percentages. However, this 
method of adjustment can be used only when correlations are not strong + or −, and 
when n is at least 20 or more, which is not so in many crossover studies. Also the 
method only adjusts statistical sensitivity, but not amounts of treatment, carryover 
or time effects, and so its usefulness is limited. 

 Although the analysis uses multiple comparisons testing, the p-values do not 
have to be multiplied by the number of tests, because although the chance of a posi-
tive test increases, the chance of e.g., a positive test for carryover does not as it is 
only tested once. 

 The current chapter stresses the major impact of correlation level between treat-
ment comparison, and particularly the phenomenon of negative correlations. This 
phenomenon is only shortly being recognized and may have fl awed many trials so 
far. In a trial the test treatment is frequently a slight modifi cation of the reference 
treatment or is equivalent to it with addition of just a new component. In this situa-
tion there is obviously a positive correlation between responses to test and reference 
treatments. However, completely new classes of drugs are continually being devel-
oped and are tested against established classes of drugs. With the comparison of 
drugs from completely different classes patients may fall into different populations: 
those who respond better to one class and those who do so to the other class. For 
example, patients with angina pectoris unresponsive to calcium channel blockers or 
nitrates may respond very well to beta blockers. Also hypertension, cardiac arrhyth-
mias, chronic obstructive pulmonary disease are conditions where a non-response is 
frequently associated with an excellent response to a completely different com-
pound. These are situations where a crossover study may give rise to a strong nega-
tive correlation. It would mean that a crossover design for the comparisons of 
treatment from completely different classes of drugs is endangered of being fl awed 
and that such comparisons had better be assessed in the form of a parallel group 
comparison which evens out within subject variability.   

    6   Conclusion 

 Background: The crossover design is a sensitive means of determining the effi cacy 
of new drugs because it eliminates between subject-variability. However, when the 
response in the fi rst period carries on into the second (carryover effects) or when 
time factors can not be kept constant in a lengthy crossover (time effects), the statis-
tical power of testing may be jeopardized. We recently demonstrated that the cross-
over design with binary variables is a powerful method in spite of such factors as 
carryover effects (Cleophas and Van Lier  1996  ) . Power analysis of crossover trials 
with continuous variables has not been widely published. 
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 Objective: Using the Grizzle model for the assessment of treatment effect, 
carryover effect and time effect, we drew power curves of hypothesized crossover 
studies with different levels of correlation between drug responses. 

 Results: We demonstrate that the sensitivity of testing is largely dependent on the 
levels of correlation between drug response. Whenever the correlation coeffi cient is 
>0, we soon will have better sensitivity to test treatment effect than carryover effect 
or time effect of similar size. Whenever levels of correlation are not strong positive 
or negative the statistical power to demonstrate similarly-sized treatment and 
carryover effect, or treatment and time effect is approximately 80%, which is an 
acceptable level for reliable testing. 

 Conclusions: The crossover design is a powerful method for assessing positively 
correlated treatment comparisons, despite the risk of carryover and time effects.      
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     1   Introduction    

 The crossover design is widely used in clinical research especially in the case of a 
limited number of patients. The main advantage of within-patient over between-
patient comparisons is that between-subject variability is not used in the compari-
sons. However, a prerequisite is that the order of the treatments does not infl uence 
the outcome of the treatment. If the effect of the treatment administered in the fi rst 
period    carries on into the second period, then it may infl uence the measured response 
in the second period. This essentially means that only symptomatic treatments qualify 
for crossover comparisons and curative treatments do not. However, symptomatic 
treatments frequently have small curative effects, e.g., wound healing by vasodila-
tors or, more recently, cardiac remodelling by after load reduction. The treatment 
group that is treated with the effective compound fi rst and with the less effective 
compound or placebo second is frequently biased by carryover effect from the fi rst 
period into the second, whereas the alternative group that is treated in the reverse 
order is not so (Cleophas  1995  ) . For example, of 73 recently published crossovers 
only six reported the data of the separate periods. In fi ve of them (83%) this very 
type of carryover effect was demonstrable. Such a mechanism may cause a severe 
underestimation of the treatment results (Cleophas  1990  )  and this possibility should, 
therefore, be assessed in the analysis. Most of the reports on the subject of order 
effects so far have addressed crossover studies with a quantitative rather than binary 
response (Brown  1980 ; Barker et al.  1982 ; Louis et al.  1984 ; Willan and Pater  1986 ; 
Packer  1989 ; Fleiss  1989 ; Freeman  1989 ; Senn  1993  ) . Although Hills and Armitage 
( and  1979  )  in an overview of methods in crossover clinical trials mentioned the 
tests of Gart  (  1969  )  and Prescott  (  1981  )  for crossover trials with a binary response 
and Fidler  (  1984  )  presented a model, little attention has been paid to this kind of 
trials. A binary response is different from a quantitative in that it generally does not 
answer what exactly can be expected in an individual. Rather it addresses whether 
or not a particular result has a predictive value, which one of two treatments is better, 
or whether there is a treatment effect in the data. One might contend, therefore, that 

    Chapter 36   
 Crossover Studies with Binary Responses                    
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some undervaluation of a difference in binary data is not that important as long as it 
does not cause a type II error of fi nding no difference were there is one. The main 
issue of the present chapter is the question whether in a crossover trial with a binary 
response a signifi cant carryover effect does leave enough power in the data to dem-
onstrate a treatment effect.  

    2   Assessment of Carryover and Treatment Effect 

 In a crossover trial with two treatments and two periods the patients are randomized 
into two symmetric groups that are treated with treatments A and B in a different 
order (Table  36.1 ). If groups are symmetric and the results are not infl uenced by the 
order of the treatments, the probabilities of treatment success in group I and II 
should be virtually the same in each period for each treatment: p 

A
  being the proba-

bility of treatment success from treatment A, p 
B
  from treatment B (Table  36.1 ).  

 The group that is treated with the less effective treatment or placebo after the 
more effective is endangered of being biased by carryover effect from the fi rst period 
into the second. 

 Suppose treatment A is far less effective than B (Table  36.1 ). Then, if in Group 
II treatment B has a carryover effect on the outcome of treatment A, the probability 
of treatment success changes from p 

B
  into p 

C
 . To detect a carryover effect we com-

pare the outcomes of treatment A in Group I to those in group II: p 
A
  versus p 

C
 , an 

unpaired comparison. The amount of carryover effect in group II is considered to 
be the difference between p 

C
  and p 

A
 . Carryover effect in Group I (ineffective treat-

ment period prior to effective) is assumed to be negligible. Time effect is assumed 
to be negligible as well, because we study stable disease only. It thus seems that 
neither a test for carryover effect in Group I, nor a test for time effects needs to be 
included in our assessment. Treatment effect is assessed by taking the two groups 
together after which all of the outcomes of the treatments A are compared with 
those of the treatments B in a paired comparison. The assumption that carryover 
effect is negligible implies that the test for carryover effect uses only half of the 
available data and might therefore be expected to be less sensitive. However, sen-
sitivity not only depends on sample size but also on the size of differences and their 
variances.  

   Table 36.1    Example of a crossover design with a binary response   

 Group 

 Period I  Period II 

 Treatment 
 Probability of 
treatment success  Treatment 

 Probability of 
treatment success 

 I  p 
A
   B  p 

B
  

 II  p 
B
   A  p  

A
  a   

   a If in Group II treatment B has a carryover effect on the outcome of treatment A, p 
A
  changes to p 

C
 . 

If P 
B
  = p 

C
 , carryover effect is maximal  
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    3   Statistical Model for Testing Treatment 
and Carryover Effects 

 We assume an unidirectional assessment where p is between 0.0 (no symptoms 
anymore) and 1.0 (=100% remains symptomatic in spite of treatment). When carryover 
effect is in the data, p 

A
  in Group II turns into p 

C
  (Table  36.1 ). The difference between 

p 
C
  and p 

A
  is considered to be the amount of carryover effect in the data. Fisher exact 

test, as explained in Chap.   3    , is used for testing whether p 
C
  is signifi cantly different 

from p 
A
 . With the program of Bavry  (  1988  )  those values of p 

C
  are determined that 

should yield a signifi cant carryover effect in 80% of the trials (i.e. the power equals 
80%). The number of patients in both groups is chosen between 10 and 25, because 
many crossover trials have 20–50 patients. These values of p 

C
  are then used for 

determining whether in crossover trials with signifi cant carryover effect and a binary 
response enough power is left in the data for demonstrating a signifi cant treatment 
effect. 

 For testing the treatment effect all of the data of the treatment A are taken together 
and compared with those of the treatments B. The power of this test depends not 
only on the probabilities p 

A
  and p 

B
 , but also on the correlation between the treatment 

responses. This correlation is expressed as  r  = p 
A/B

  − p 
A
 , where p 

A/B
  is the probability 

of a treatment success with A, given that treatment B was successful. When  r  = 0, 
treatments A and B act independently. When p 

B
  equals p 

C
 , this would mean that 

carryover effect in group II is not only signifi cant but also maximal given the amount 
of treatment effect. Considering this situation of maximal carryover effect, we 
calculate the power of detecting treatment effects. The power of McNemar’s test 
with p 

B
  being equal to p 

C
  and with various values of p 

A
  was calculated according to 

Bavry  (  1988  )  .  

    4   Results 

    4.1   Calculation of p 
C
  Values Just Yielding a Signifi cant 

Test for Carryover Effect 

 For various numbers of patients and various values of p 
Ac

  (the probability of success 
with treatment A in period I, Table  36.1 ), the p 

C
  values (the probability of success 

with treatment A in period II) are calculated that with a power of 80% will give a 
signifi cant test for carryover effect (p 

A
  versus p 

C
 ,  a  = 0.05). 

 Table  36.2  shows that carryover effects (difference between p 
A
  and p 

C
 ) as large 

as 0.60, 0.50, 0.40 and 0.35 are required for a signifi cant test. For  a  = 0.01, these 
values are about 0.70, 0.60, 0.50 and 0.45. Using these p 

C
  values, we then calculated 

the probability of detecting a treatment effect (i.e. power of testing treatment effect). 
We report minimal values of power only, i.e., the situation where p 

B
  = p 

C
 . Whenever 

p 
B
  < p 

C
 , we would have even better power of testing treatment effect.   



410 36 Crossover Studies with Binary Responses

    4.2   Power of Paired Comparison for Treatment Effect 

 When the result of treatment B (p 
B
 ) is taken equal to the maximal values of p 

C
  and 

treatments A and B act independently ( r  = 0), the probability of detecting a treat-
ment effect (i.e. the power) in the crossover situation with n between 20 and 50 is 
always more than 94% (Table  36.2 ). Usually, however, treatments A and B do not 
act independently. With a negative correlation between the two treatments modali-
ties power is lost, with a positive correlation it is augmented. Table  36.3  shows 
power values adjusted for different levels of  r . With negative levels of  r  and 
20 patients the power for detecting a treatment difference is not less than 74% 
which is about as large as that chosen for the test on carryover effect (80%). When 
more patients are admitted to the trial this value will be about 90%.    

    5   Examples 

 Suppose we have a negative crossover where probability of treatment success group 
II p 

C
  (Table  36.4 ) may have changed from 0.8 into 0.2 due to carryover effect from 

the effective treatment B into the second period. Fisher exact test for demonstrating 
a carryover effect (p 

A
  versus p 

C
 ) is calculated according to

    

10!10!10!10!
Point probability for carryover effect 0.011

20! 2!8! 2!8!
= =

   
    = + + =Cumulative tail probability 0.011 0.003 0.007 0.021    and is thus signifi cant 
at an  a  = 0.021 level.  

   Table 36.2    Power to demonstrate a treatment effect in spite of the presence of a signifi cant 
carryover effect   

 p 
A
  

 Total number of patients 

 2 × 10  2 × 15  2 × 20  2 × 25 

 0.10 
 0.20 
 0.30  98 (0.02) 
 0.40  96 (0.02)  97 (0.05)  96 (0.08) 
 0.50  97 (0.06)  96 (0.11)  96 (0.14) 
 0.60  97 a  (0.04) b   98 (0.11)  96 (0.18)  95 (0.23) 
 0.70  96 (0.11)  97 (0.20)  97 (0.26)  94 (0.33) 
 0.80  96 (0.20)  97 (0.30)  97 (0.37)  96 (0.43) 
 0.90  96 (0.31)  97 (0.43)  96 (0.47)  96 (0.52) 

   a  Power (%) of McNemar’s test for treatment effect ( a  = 0.05,  r  = 0) 
  b  p 

C
  value just yielding a signifi cant test for carryover effect ( a  = 0.05, power = 80%)  
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 If we perform a similar unpaired analysis of the fi rst period for demonstrating a 
treatment effect we likewise obtain a signifi cant test at  a  = 0.021 level. Suppose 
carryover effect would be smaller, e.g., p 

A
  = 0.8, p 

B
  = 0.0, p 

C
  = 0.2. Then the test for 

treatment effect would yield an even better result:

    

29!8!10!10!
Point probability for carryover effect 0.004

20! 2!8!10! 0!
= =

   

    = + + =Cumulative tail probability 0.004 0.001 0.003 0.008.     

   Table 36.3    Power (%) to demonstrate a treatment effect in spite of the presence of a signifi cant 
carryover effect   

  r  

 Total number of patients 

 2 × 10  2 × 15  2 × 20  2 × 25 

  a   
1
  a   = 0.05  −0.20  89  94  96  95 

  a  
2
  = 0.05  −0.10  92  96  97  97 

 0  96  96  96  94 
 0.10  98  97  98  99 
 0.20  98  98  99  99 

  a  
1
  = 0.01  −0.20  95  99  94  99 

  a  
2
  = 0.01  −0.10  97  100  99  99 

 0  99  99  99  99 
 0.10  100  100  100  100 
 0.20  100  100  100  100 

  a  
1
  = 0.10  −0.20  74  84  89  88 

  a  
2
  = 0.05  −0.10  79  91  92  90 

 0  85  90  89  88 
 0.10  89  95  95  94 
 0.20  95  94  97  97 

  a  
1
  = 0.05  −0.20  75  87  90  90 

  a  
2
  = 0.01  −0.10  81  92  92  93 

 0  88  90  90  89 
 0.10  92  93  95  96 
 0.20  96  96  98  98 

   a  a  
1
  level of signifi cance of test for carryover effect 

  a  
2
  level of signifi cance of test for treatment effect 

  r  level of correlation between treatments A and B  

   Table 36.4    Example   

 Group 

 Period I  Period II 

 Treatment 
 Probability of 
treatment success  Treatment 

 Probability of 
treatment success 

 I (n = 10)  A  p 
A
  = 0.8  B  p 

B
  = 0.2 

 II (n = 10)  B  p 
B
  = 0.2  A  p 

C
  = 0.2 
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 So, in crossovers with a binary response and a negative result, it does make sense 
to test for carryover effect by comparing the two periods with the less effective treat-
ment modalities. If a signifi cant test is demonstrated, we obviously will fi nd a sig-
nifi cant difference at a similar or even lower level of signifi cance when taking the 
fi rst period for estimating the difference between treatment A and B. Thus, it would 
seem appropriate for our purpose to disregard the data of the second period in this 
particular situation (although the second period might still provide interesting 
information).  

    6   Discussion 

 The power of crossover studies is frequently reduced by carryover effect. This is 
particularly so when a group that is treated with an effective treatment fi rst, is then 
treated with an ineffective treatment or placebo second. In studies with a quantita-
tive response this very effect may cause severe underestimation of the treatment 
effect (Cleophas  1995  ) . Studies with a binary response are, however, different from 
studies with a quantitative response in that they are mostly designed to answer 
whether a treatment has any effect rather than what size such effect does have. One 
might contend, therefore, that underestimation in such studies is not that important 
as long as the null hypothesis of no treatment effect doesn’t have to be erroneously 
accepted. We demonstrate that in crossovers with a binary response and signifi cant 
carryover effect the power of testing the treatment effect remains substantial even 
so. This would imply that routinely testing for carryover effects in such studies is 
not necessary as long as the result of the treatment comparison is positive. When a 
study is negative it does make sense, however, to test for carryover effect by com-
paring p 

A
  versus p 

C
  (Table  36.1 ). 

 When p 
A
  is signifi cantly different from p 

C
 , we assume that there is carryover 

effect in group II. In this situation a parallel-group analysis of period I (p 
A
  versus p 

B
 ) 

can effectively be used for the purpose of demonstrating a treatment effect. It will 
provide a signifi cant difference at the same or even a lower level of signifi cance than 
the test for carryover effect. This is so, because when carryover effect is maximal, 
p 

B
  equals p 

C
 . The difference between p 

B
  and p 

A
  will, therefore, be at least as large as 

the difference between p 
C
  and p 

A
  but probably larger. Therefore, no further test for 

treatment effect seems to be required for our purpose and it seems appropriate that 
the results of the second period be disregarded. 

 Considering that the problem of carryover effects infl uence in crossover trials 
with a binary response may not be too hard to handle, we may as well shift our 
standard of choosing this particular trial design somewhat, and make use of its addi-
tional advantages more frequently. The design is, e.g., particularly powerful for the 
study of rapid relief of symptoms in chronic disease where the long-term condition 
of the patient remains fairly stable (Cleophas and Tavenier  1995  ) . This is so, because 
between-subject variability is not used in a within-subject comparison. Also, we can 
make use of positive correlations between the treatment modalities tested, because 
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the statistical power of testing treatment comparisons with a positive correlation can 
be largely enhanced by within-subject comparisons (Cleophas and Tavenier  1994  ) . 
Furthermore, none of the patients in the trial has to be treated throughout the trial 
with a less adequate dose or placebo, which is why a crossover raises usually less 
ethical problems than does a parallel-group study where one group is treated with a 
placebo or less adequate dosage throughout the trial. Also, we have the advantage 
that patients can express their own opinions about which of the treatments they 
personally prefer. This is especially important with subjective variables, such as 
pain scores. 

 Furthermore, not so large a group is required because of within-subject compari-
sons, which facilitates the recruitment procedure and reduces costs. Finally, double-
blinding cannot be effectively executed in self-controlled studies without some kind 
of crossover design. 

 In summary:

    1.    Crossover studies with a binary response and positive results do not have to be 
tested for carryover effects.  

    2.    If such studies have a negative result, testing for carryover effect does make 
sense.  

    3.    If a carryover effect is demonstrated, the treatment results should be analyzed in 
the form of a parallel-group study of the fi rst period.      

    7   Conclusions 

 The two-period crossover trial has the evident advantage that by the use of within-
patients comparisons, the usually larger between-patient variability is not used as a 
measuring stick to compare treatments. However, a prerequisite is that the order of the 
treatments does not substantially infl uence the outcome of the treatment. Crossover 
studies with a binary response (such as yes/no or present/absent), although widely 
used for initial screening of new compounds, have not previously been studied for 
such order effects. In the present chapter we use a mathematical model based on stan-
dard statistical tests to study to what extent such order effects, otherwise called car-
ryover effects, may reduce the power of detecting a treatment effect. We come to the 
conclusion that in spite of large carryover effects the crossover study with a binary 
response remains a powerful method and that testing for carryover effects makes sense 
only if the null-hypothesis of no treatment effect cannot be rejected.      
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     1   Introduction 

 So many unpredictable variables often play a role in clinical trials of new medical 
treatments that a trial without controls has become almost unconceivable. Usually, 
a parallel-group design is used: with every patient given a new therapy, a control 
patient is given standard therapy or a placebo. For the study of reversible treatments 
of chronic stable conditions with responses that can be measured on relatively short 
notice a cross-over design can be chosen: a single patient receives both new therapy 
and a standard therapy or placebo. Of course, we have to be fairly sure that carry-
over effects of one treatment period carrying on into the other or time effects are 
negligible. But then the cross-over design has the advantage that it eliminates 
between-subject variability of symptoms in a treatment comparison. And this makes 
the design sensitive, particularly with conditions where between-subject variability 
is notoriously large, e.g., angina pectoris and many other pain syndromes. 

 In 1965 the biostatistician James Grizzle  (  1965  )  gave uniform guidelines for the 
cross-over design, and it was he who fi rst recognized the problem of negative cor-
relations between treatment responses that may endanger the validity of the cross-
over design. In his example two completely different treatments (A = ferrous sulphate 
and B = folic acid) were tested for their abilities to increase hemoglobin (Fig.  37.1 ). 
Obviously, there was an inverse correlation between the two treatments: ferrous 
sulphate was only benefi cial when folic acid was not, and so was folic acid when 
ferrous sulphate was not. Although the mean result of ferrous sulphate treatment 
was 1.7 mmol different from that of folic acid which is quite a difference, it did not 
reach statistical signifi cance (p = 0.12). This was probably due to the signifi cant 
negative correlation in the treatment comparison. How a negative correlation reduces 
the sensitivity of a paired comparison can be explained as follows: 

   t = mean result/pooled SEM.  
  where pooled SEM = pooled standard error of the mean   

    Chapter 37   
 Cross-Over Trials Should Not Be Used to Test 
Treatments with Different Chemical Class                   
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   the formula for pooled SEM is:  
  (pooled SEM) 2  = SEM  

1
  2   + SEM  

2
  2   − 2 r SEM 

1
 .SEM 

2
    

   where SEM 
1
  and SEM 

2
  are standard errors of the mean of separate treatments  

  and r = correlation coeffi cient.   

   When we assume SEM 
1
  = SEM 

2
  = SEM, then  

  (pooled SEM) 2  = (1 − r) 2 SEM 2    

   If r would have been 0 instead of –0.49 (Fig.  37.1 ) the t-value of this comparison 
would have been     − = =(1 r) 1.49 1.225   larger than the present t-value and the 
treatment comparison would have reached statistical signifi cance.    

 We currently are aware that ferrous sulphate and folic acid are treatments with a 
totally different chemical class/mode of action. And so, although both of the com-
pounds improve hemoglobin, certainly nobody nowadays would use the compounds 
in a treatment comparison anymore. However, we continue to compare many other 
treatments from different classes of drugs all the time, even if we know that their 
mode of action is totally different, e.g., beta-blockers are compared with calcium 
channel blockers or nitrates for the treatment of angina pectoris. Compounds from 
different chemical classes are compared for the treatment of hypertension, Raynaud’s 
phenomenon, cardiac arrhythmias, chronic obstructive pulmonary disease and many 
more conditions. 

  Fig. 37.1    Two completely different treatments (A = ferrous sulphate and B = folic acid) were 
tested for their abilities to increase hemoglobin. There was an inverse correlation between the two 
treatments: ferrous sulphate was only benefi cial when folic acid was not, and so was folic acid 
when ferrous sulphate was not. Although the mean result of ferrous sulphate treatment was 
1.7 mmol different from that of folic acid, the difference did not reach statistical signifi cance 
(p = 0.12). This was probably due to the negative correlation in the treatment comparison 
(Grizzle  1965  )        
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 The current chapter shows that it is not correct to use a cross-over design for testing 
such kind of treatment comparisons because of the risk of negative correlations 
between treatment responses, and thus of a fl awed study. We will test this hypothe-
sis in a non-mathematical way by giving examples in which a cross-over design 
should NOT have been used. Also, we will estimate the size of the problem by 
reviewing hypertension trials published for their design in relation to the type of 
treatment comparison. A more mathematical approach of the problems of negative 
correlations can be found elsewhere (Cleophas  1999  ) .  

    2   Examples from the Literature in Which Cross-Over Trials 
Are Correctly Used 

 Cross-over trials generally have a strong positive correlation between treatment 
responses for two reasons. First, this is so, because one subject is used to the com-
parison of two treatments. Second, in controlled clinical trials the new treatment 
may be a slight modifi cation of the standard or be equivalent to it with the addition 
of a new component. In this situation there is a positive correlation between the 
response to the new treatment and the standard treatment: treatment 1 performs 
highly when treatment 2 does so. 

 Table  37.1  gives seven examples of cross-over studies where compounds from 
the same chemical class/mode of action are compared. For example, two beta-
adrenergic agonists, two calcium channel blockers, two beta-blockers, two different 
dosages of the same compound are compared. Such comparisons should have a 
strong positive correlation, and the table shows that this is so. Correlation coeffi -
cients calculated from the data were consistently positive. These studies were appro-
priately performed in the form of a cross-over study. The cross-over design provided 
extra sensitivity by accounting for the positive correlation. A parallel-group study 
would have lacked the extra sensitivity.   

    3   Examples from the Literature in Which 
Cross-Over Trials Should Not Have Been Used 

 In trials with completely different treatments patients tend to fall apart into different 
populations: those who respond better to treatment 1 and those who do so to treat-
ment 2. For example, patients with angina pectoris irresponsive to beta-blockers 
may respond either to calcium channel blockers or nitrates. Also, hypertension, 
Raynaud’s phenomenon, different types of cardiac arrhythmias and chronic obstructive 
pulmonary disease are known to be conditions where a non-response to a particular 
compound is frequently associated with an excellent response to a completely 
different compound. These are examples of situations in which a strong negative 
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correlation may exist. This may be even so with self-controlled studies that other-
wise are more likely to have a positive correlation because one subject is used to the 
comparison of two treatments. As demonstrated above the problem with negative 
correlations in a cross-over study is lack of sensitivity: the pooled SEM is approxi-
mately     −(1 r)   times larger with a negative correlation than it would have been 
with a zero correlation (parallel-group study), and this reduces the probability level 
of testing, and, thus, produces erroneously negative studies. The examples in 
Table  37.2  show that the problem can be readily detected in the literature. All of 
these studies were negative, and this was presumably so because of the negative 
correlation coeffi cient between treatment responses. Had they been performed in 
the form of a parallel-group study, most of them probably would have had a statisti-
cally signifi cant effect. At least, when we tested the studies as though they were 
unpaired, in most of them p-values of 0.05 or less were obtained.   

   Table 37.1    Examples from the literature in which cross-over trials are correctly used   

 Treatment 
 Effi cacy a  
(mean ± SEM)  p-value 

 Correlation 
coeffi cient b  

 1.  Angiology 1985; 
36:219–226 

 Beta-adrenergic agonist  22.7 ± 0.5  <0.01  r = +0.56 

 n = 12  Alpha-adrenergic 
antagonist with beta-
agonistic property 

 27.7 ± 1.0 

 2.  Lancet 1986; ii: 189–192  Platelet activating factor  −1.5 ± 1.0  <0.001  r = +0.66 
 n = 6  Its precursor  +0.2 ± 1.0 

 3.  Lancet 1986; ii: 740–741  Cholesterol lowering 
drug A 

 42 ± 12  <0.05  r = +0.20 

 n = 7  Cholesterol lowering 
drug B 

 50 ± 12 

 4.  Lancet 1987; i: 647–652  High alcohol intake  143 ± 5  <0.01  r = +0.41 
 n = 40  Low alcohol intake  137 ± 5 

 5.  Lancet 1987; ii: 650–653  Atenolol  74.3 ± 4.5 c   <0.01  r = +0.39 
 n = 20  Labetalol  79.9 ± 7.2 

 6.  Br Heart J 1993; 
70:252–258 

 Gallopamil  29.9 ± 11.0  <0.0001  r = +0.56 

 n = 18  Nifedipine  49.7 ± 26.8 
 7.  Int J Clin Pharmacol Ther 

1997; 35:514–518 
 Amlodipine  1.58 ± 0.32  <0.001  r = +0.65 

 n = 8  Felodipine  4.43 ± 1.86 

   a  Denotes in study 1 fi nger temperature after fi nger cooling (°C), study 2 bronchial responsiveness 
to methacholine (doubling dilutions), in study 3 plasma level of HDL-cholesterol (mg/dl), in study 
4 systolic blood pressure (mmHg), in study 5 heart rate (beats/min), in study 6 QRS voltage (% of 
standardized maximum), in study 7 peak-trough ratio 
  b  Correlation coeffi cient (r) was calculated using t-statistic: p-values were turned into t-values after 
adjustment for the degrees of freedom, and r was calculated using the formula for the pooled 
standard error of the mean (SEM): (pooled SEM) 2  = SEM  

1
  2   + SEM  

2
  2   − 2 r SEM 

1
 .SEM 

2
  

  c  For the paired analysis two-sided ANOVA was used which for two groups of paired data yields 
the same results as a paired t - test, however  
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    4   Estimate of the Size of the Problem 
by Review of Hypertension Trials Published 

 The above examples indicate the existence of a potential problem with negative 
correlations in cross-over trials. However, they do not answer how prevalent the 
problem is. In order to address this question we assessed the double blind random-
ized hypertension trials listed in Cardiology Dialogue (Rapid Literature Service 
 1994  ) . Hypertension treatments frequently have pharmacologically completely dif-
ferent modes of action: diuretics reduce blood pressure by volume depletion, beta-
blockers and calcium channel blockers/angiotensin converting enzyme inhibitors do 
so by reducing cardiac output and peripheral resistance respectively. Of 73 random-
ized controlled trials (Table  37.3 ) a signifi cantly smaller percentage of cross-over 

   Table 37.2    Examples from the literature in which cross-over trials should NOT have been used   

 Treatment 
 Effi cacy a  
(mean ± SEM)  p-value 

 Correlation 
coeffi cient b  

 1.  Lancet 1986; i:997–1001  NSAID with renal  127 ± 3  n.s.  r = −0.29 
 NSAID without renal 

prostaglandin 
synthesis 

 131 ± 3  n = 20 

 2.  N Engl J Med 1986; 
314:1280–1286 

 Tolazolin  140 ± 34  n.s.  r = −0.30 

 n = 12  Insulin  112 ± 15 
 3.  N Engl J Med 1986; 

315:735–739 
 Beta-adrenergic agonist  42 ± 18  n.s.  r = −0.30 

 n = 11  Anticholinergic agent  25 ± 14 
 4.  Br J Clin Pharmacol 1991; 

31:305–312 
 Xamoterol  80.1 ± 2.6  n.s.  r = −0.25 

 n = 38  Enalapril  75.1 ± 1.6 
 5.  Br J Clin Pharmacol 1991; 

32:758–760 
 Nitroprusside  13 ± 5  n.s.  r = −0.42 

 n = 6  Bradykinine  91 ± 2 
 6.  Curr Ther Res 1991; 

49:340–350 
 Nifedipine  14.0 ± 3.6  n.s.  r = −0.46 

 n = 42  Captopril  6.7 ± 2.1 
 7.  Eur J Gastroenterol Hepat 

1993; 5:627–629 
 Atenolol  3.9 ± 0.2  n.s.  r = −0.70 

 n = 18  Nifedipine  2.9 ± 0.3 

   SEM  standard error of the mean,  n.s.  not signifi cant 
  a Denotes in study 1 systolic blood pressure (mmHg), in study 2 plasma glucose level (mg/dl), in 
study 3 forced expiratory volume in one second (% change from baseline), in study 4 diastolic 
blood pressure (mmHg), in study 5 plasma ureum (mmol/l), in study 6 fall in mean blood pressure 
(mmHg), in study 7 oesophageal sphincter pressure (mmHg) 
  b Correlation coeffi cient (r) was calculated using t-statistic: p-values were turned into t-values for 
the degrees of freedom, and r was calculated using the formula for the pooled standard error of the 
mean (SEM): (pooled SEM) 2  = SEM  

1
  2   + SEM  

2
  2   − 2 r SEM 

1
 ·SEM 

2
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than of parallel-group studies compared treatments with a totally different chemical 
class/mode of action (for example, diuretic versus vasodilator, or beta-blocker ver-
sus vasodilator etc., 27 versus 72%, P < 0.001). Apparently, the scientifi c commu-
nity has some intuition of doing the right thing at the right time: in 73% of the cases 
the cross-over design was correctly used. Nonetheless, in 4 (27%) of the cases this 
was not so. Two of these studies were not able to reject the null-hypothesis of no 
effect and the other two would probably have been more sensitive, had they been 
performed in the form of a parallel-group study.   

   Table 37.3    Double blind randomized hypertension trials listed in the 1994 volume of Cardiology 
Dialogue (Nies and Spielberg  1996  )    

 Parallel-group studies  Cross-over studies 

 N 
 Different 
treatments (%)  N 

 Different 
treatments (%) 

 Am J Cardiol  3  2  2  1 
 J Am Coll Cardiol  1  0 
 Am J Hypertens  7  5  1  0 
 Curr Ther Res  5  2  1  0 
 Clin Med  1  0 
 NEJM  2  0 
 Clin Exp Hypertens  1  0  2  0 
 J Human Hypertens  7  6  2  0 
 Br J Clin Pharmacol  3  3  1  1 
 Cardiovasc Drug Ther  1  1 
 Clin Lab Invest  1  1 
 Herz Kreislauf  2  1 
 Zeitschr Kardiol  1  1 
 J Cardiovasc Pharmacol  4  3 
 J Clin Pharmacol  3  2  1  0 
 Clin Ther  1  0 
 Clin Pharmacol Ther  2  2 
 Cardiol  4  3 
 J Int Med  1  1 
 Eur J Clin Pharmacol  1  1 
 Hypertens  1  1 
 Arch Int Med  1  1 
 B J Clin Pract  1  1 
 Clin Pharmacol Res  1  1 
 JAMA  1  1 
 Postgrad Med  1  1 
 Drug Invest  1  0 

 Total numbers  53  38 (72%)  15  4 (27%) 
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    5   Discussion 

 The current chapter shows that clinical trials comparing treatments with a totally 
different chemical class/mode of action are at risk of negative correlation between 
treatment responses. Such negative correlations have to be added to the standard 
errors in a cross-over trial, thus reducing the sensitivity of testing differences, mak-
ing the design a fl awed method for evaluating new treatments. The examples sug-
gest that the phenomenon of negative correlations is not uncommon in practice, and 
that it should be taken into account when planning drug research. 

 The mechanism of between-group disparities in drug response is currently being 
recognized in clinical pharmacology, and is, in fact, the main reason that in treat-
ment protocols the principle of stepped care is being replaced by individualized care 
(Nies and Spielberg  1996  ) . However, when it comes to research, clinicians and clin-
ical pharmacologists are still unfamiliar with the problems this issue raises and vir-
tually never take account of it. The recognition of between-group disparities in drug 
response also implies that negative correlations in a treatment comparison are rou-
tinely tested, and that a cross-over design is not always appropriate. 

 So far, statisticians have assumed that a negative correlation in cross-over studies 
was virtually non-existent, because one subject is used for comparison of two treat-
ments. For example, Grieve recently stated one should not contemplate a cross-over 
design if there is any likelihood of correlation not being positive (Grieve  1994  ) . The 
examples in the current paper show, however, that with completely different treat-
ments, the risk of a negative correlation is a real possibility, and that it does give rise 
to erroneously negative studies. It makes sense, therefore, to restate Grieve’s state-
ment as follows: one should not contemplate a cross-over design if treatments with 
a totally different chemical class/mode of action are to be compared. 

 At the same time, however, we should admit that the cross-over design is very 
sensitive for comparing treatments of one class and presumably one mode of action. 
The positive correlation in such treatment comparisons adds sensitivity, similarly to 
the way it reduces sensitivity with negative correlations: the pooled SEM is approxi-
mately     −(1 r)   times smaller with positive correlation than it would have been 
with a zero correlation (parallel-group study), and this increases the probability 
level of testing accordingly. This means that the cross-over is a very sensitive method 
for evaluating studies with presumable positive correlation between treatment 
responses, and that there is, thus, room left for this study design in drug research.  

    6   Conclusions 

 Comparisons of treatments with totally different chemical class/mode of action are 
at risk of a negative correlation between treatment responses: patients tend to fall 
apart into different populations, those who respond better to treatment 1 and those 
who do so to treatment 2. The cross-over design is fl awed when this phenomenon 



422 37 Cross-Over Trials and Treatments with Different Chemical Class

takes place. The objective of this chapter was to assess whether this fl aw is prevalent 
in the literature. 

 Fourteen randomized controlled cross-over studies were assessed for correlation 
levels in relation to their type of treatment comparison. Correlation coeffi cient (r) 
was calculated using T-statistic: P-values were turned into T-values for the degrees 
of freedom, and r was calculated using the formula for the pooled standard error of 
the mean (SEM): (pooled SEM) 2  = SEM  

1
  2   + SEM  

2
  2   − 2 r SEM 

1
 .SEM 

2
 . Randomized 

controlled hypertension trials of 1994 were listed for study design in relation to type 
of treatment comparison. 

 Cross-over studies comparing treatments with a totally different chemical class/
mode of action were frequently negative, and this was, obviously, due to their nega-
tive correlation between treatment responses. Cross-over studies comparing similar 
treatments had frequently a positive correlation, and this added extra sensitivity to 
the treatment comparison. Twenty-seven percent of the cross-over hypertension 
studies compared completely different treatments, and these studies should, there-
fore, not have been performed in the form of a cross-over study. 

 Cross-over trials lack sensitivity to test one treatment against another treatment 
with a totally different chemical class/mode of action, and should, therefore, not be 
used for that purpose. In contrast, they are, particularly, sensitive to compare treat-
ments from one chemical class/with one mode of action. It is hoped that this chapter 
affects the design of future crossover trials.      
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     1   Introduction 

 Less than 10 years ago the scientifi c community believed that quality of life (QOL) 
was part of the art of medicine rather than the science of medicine. In the past few 
years index methods have been developed and have proven to be sensitive and 
specifi c to assess patients’ health status not only on a physical, but also on a psycho-
logical and social base. We increasingly witness that QOL is implemented in the 
scientifi c evaluation of medicine. However, major problems with QOL assessments 
so far, include the contributing factor patients’ opinion, which is very subjective 
and, therefore, scientifi cally diffi cult to handle, and, second, the low sensitivity of 
QOL-questionnaires to refl ect true changes in QOL. The Dutch Mononitrate Quality 
Of Life (DUMQOL) Study Group has recently addressed both problems. In their 
hands, the patients’ opinion was a consistent and statistically independent determi-
nant of QOL in patients with angina pectoris. The problem of low sensitivity of 
QOL-assessments could be improved by replacing the absolute score-scales with 
relative ones, using for that purpose odds ratios of scores. The current chapter 
reviews the main results of this so far only partly published research (Frieswijk et al. 
 2000 ; Zwinderman et al.  1999  )  from the Netherlands.  

    2   Some Terminology    

 QOL battery  A questionnaire large enough to adequately address important 
domains of QOL. 

 Domains of QOL  Physical, psychological, and social areas of health seen distinct 
and important to a person’s perception of QOL. 

    Chapter 38   
 Quality-Of-Life Assessments in Clinical Trials                    

(continued)
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 Items  Items, otherwise called questions, constitute a domain, e.g., the 
DUMQOL-questionnaire for angina pectoris, consists of 
respectively 8, 7, and 4 questions to assess the domains (1) 
mobility, (2) somatic symptoms, and (3) psychological 
distress. 

 Absolute score scales  For every item the individual response is scored on a (linear) 
scale. Mean of scores a group of patients are calculated. Mean 
domain scores are calculated as overall means of the latter 
mean scores. 

 Relative score scales  The same procedure. However, results are reported in the form of 
odds ratios. 

 Odds ratios  Mean of the domain scores in patients with a particular character-
istic/mean of the domain scores in patients without this 
particular characteristic. 

 Validated QOL batteries  This is controversial. QOL batteries are diagnostic tests, and 
validation of any diagnostic test is hard to accomplish without 
a gold standard for comparison. Surrogate validation is 
sometimes used: actual QOL scores are compared with scores 
expected based on levels of morbidity. 

 Internal consistency 
of domain items 

 There should be a strong correlation between the answers given to 
questions within one domain: all of questions should 
approximately predict one and the same thing. The level of 
correlation is expressed as Cronbach’s alpha: 0 means poor, 1 
perfect relationship. 

 Cronbach’s alpha 
 

    

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑
2
i
2
T

sk
alpha · 1

(k 1) s    
 k   = number of items 
     

2
is    = variance of ith item 

     2
Ts    =  variance of total score obtained by summing up all of the 

items 
 Multicollinearity  There should not be a too strong correlation between different 

domain scores because different domains different areas of 
QOL. A Pearson’s correlation >0.90 means the presence of 
multicollinearity and, thus, of a fl awed multiple regression 
analysis. 

 Pearson’s correlation 
coeffi cient (r)    

 

    

− −=
− −

∑
∑ ∑2 2

(x x)(y y)
r

(x x) (y y)    
 Sensitivity of QOL 

assessment 
 Sensitivity or precision means ability of the measurement to 

refl ect true changes in QOL. 
 QOL estimator  Mean (or pooled) result of the data from a single domain. 
 Index methods  Index methods combine the results of various domains of a QOL 

battery to provide an index for overall QOL. 

(continued)
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    3   Defi ning QOL in a Subjective or Objective Way? 

 In 1992 Brazier et al  (  1992  )  validated the Short Form (SF)-36 health survey ques-
tionnaire of Stewart et al.  (  1988  ) , a self-administered questionnaire, addressing any 
aspects that, according to the designer, might be important to the patients’ QOL. 
However, at each item in the questionnaire, the question “is it important to you?” 
was missing. In 1994 Gill and Feinstein  (  1994  )  in their “Critical appraisal of quality 
of life assessments” emphasized that, from their personal experience in patient care, 
they believed that QOL, rather than a description of health status, should describe 
the way patients perceive their health status. One year later Marquis et al  (  1995  )  
designed a questionnaire for patients with angina pectoris based on psychological 
factors, in addition to clinical symptoms, and concluded that the former is probably 
a better predictor of QOL than the latter. In subsequent years QOL assessments 
increasingly allowed for patients giving their own opinion, in addition to patients 
answering questions about health status. However, the latter was consistently given 
more weight than the former. For example, Testa and Simonson  (  1996  )  allowed for 
one such question out of six questions in each QOL-domain giving the question just 
about 1/6 of the total weight in various domains. The problem with the subjective 
approach to QOL, as recently pointed out by Thompson et al  (  1998  ) , is that it is 
diffi cult to match with the accepted rule that scientifi c data should be objective. In 
addition, the patients’ opinion may be a variable so unpredictable, that it cannot be 
applied as a reliable measure for clinical assessment of groups of patients. So far, 
the concept that the patients’opinion is a relevant variable in the assessment of QOL 
has never been proven to be true. In order to test this issue the DUMQOL Study 
Group has recently completed some relevant research.  

    4   The Patients’ Opinion Is an Important 
Independent-Contributor to QOL 

 The DUMQOL Study Group used the validated form of Stewart’s SF-36 
Questionnaire for the purpose of scoring QOL (Stewart et al.  1988  ) , and the 
DUMQOL-50 questionnaire for scoring psychological distress and health status 
according to the patients’ judgment (Niemeyer et al.  1997  ) . The patients’ opinion 
(patients were requested to estimate the overall amount of his/her QOL as compared 
to patients they knew with a similar condition) and health status according to the 
physicians’ judgement (the physician was requested to estimate the patients’ health 
status) were scored like the others on 5 point-scales. Internal consistency and retreat-
ment reliability of the test-battery was adequate with Cronbach’s alpha 0.66. 
Table  38.1  shows the results from a cohort of 82 outpatient-clinic patients with 
stable angina pectoris. Obviously, QOL was strongly associated with the patients’ 
opinion. In none of the comparisons were adjustment for multicollinearity required 
(Pearson’s correlation coeffi cient >0.9). Table  38.2  shows that psychological 
distress was the most important contributor to QOL. Also, the patients’ opinion 
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signifi cantly contributed to QOL. Physical health status according to the patients’ 
judgment only made a borderline contribution, while the physicians’ judgment was 
not associated with QOL at all. These data strongly support the relevance of the 
patients’ opinion as an important independent-contributor to QOL.    

    5   Lack of Sensitivity of QOL-Assessments 

 Sensitivity defi ned as ability of the measurement to refl ect true changes in QOL is 
frequently poor in QOL assessments (Ware et al.  1993  ) . A well-established problem 
with QOL scales is their inconsistent relationship between ranges of response and 
true changes in QOL (Testa and Simonson  1996  ) . A good example of this problem 
is the physical scale of the SF-36 questionnaire. It ranges from 0 to 100 points. 
However, while healthy youngsters may score as high as 95 and topsporters even 
100, 60 year-old subjects usually score no better than 20. A patient with angina 
pectoris may score 5 points. If he would score 10, instead of 5, after the allowance 
for sublingual nitrates ad libitum, this improvement would equal 5% on the absolute 
scale of 100 points, which does not seem to be very much. However, on a relative 
scale this score of 10 points is 100% better than a score of 5 points, and, in terms of 
improvement of QOL, this difference on the SF-36-scale between 5 and 10 points 
does mean a world of difference. It, for example, means the difference between a 

   Table 38.1    Correlation matrix to assess multicollinearity in the data, Pearson’s correlation 
coeffi cient are given (r)   

 Patients’ 
opinion 

 Psychological 
distress 

 Health status 
patients’ judgment 

 Health status 
physicians’ 
judgment 

 Psychological distress  0.35 
 Health status patients’ judgment  0.36  0.30 
 Health status physicians’ 

judgment 
 0.42  0.41  0.48 

 Quality of life  0.42  0.58  0.43  0.27 

  R < 0.20 weak correlation; 0.20 < r < 0.40 moderate correlation; r > 0.40 strong correlation  

   Table 38.2    Stepwise multiple regression analysis of the associations of various (dependent) 
predictors on QOL in patients with angina pectoris   

 Beta  t  p-value 

 Psychological distress  0.43  4.22  0.000 
 Patients’ opinion  0.22  2.19  0.032 
 Health status (patients’ judgment)  0.19  1.88  0.071 
 Health status (physicians’ judgment)  0.11  0.16  0.872 

   beta  standardized partial correlation coeffi cient  
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largely dependent and independent way of life. In this example the low score on the 
absolute-scale masks important and meaningful changes in QOL. The DUMQOL 
Study Group took issue with this well-recognized but unsolved phenomenon and 
performed an odds ratio analysis of patient characteristics in a cohort of 1,350 
patients with stable angina pectoris. They showed that this approach provided 
increased precision to estimate effects on QOL estimators.  

    6   Odds Ratio Analysis of Effects of Patient Characteristics 
on QOL Data Provides Increased Precision 

 Table  38.3  gives an overview of effects of patient characteristics on QOL estimators 
in 1,350 patients with stable angina pectoris. Results are presented as odds ratios. 
The odds ratio presents the relative risk of QOL diffi culties and is defi ned as the 
ratio between mean domain score of patients with a particular characteristic and that 
of patients without this particular characteristic.  

 The procedure readily identifi es categories of patients that, obviously, have poor 
QOL scores. For example,

    1.    Increased QOL-diffi culties were observed in patients with advanced New York 
Heart Association (NYHA) anginal class: the higher the anginal class the larger 
the risk of mobility diffi culties, pain, chest pain, anginal pain, and distress.  

    2.    The risk of mobility diffi culties was increased in patients with diabetes mellitus, 
arrhythmias, and peripheral vascular diseases.  

    3.    Patients using sublingual nitrates (and thus presumably very symptomatic) 
reported more (severe) mobility diffi culties, pain, chest pain, and psychological 
distress.  

    4.    Female patients reported more (severe) mobility diffi culties, pain, anginal pain, 
and distress than their male counterparts.  

    5.    The risk of mobility diffi culties increased with age, but, in contrast, elderly 
patients reported less pain, anginal pain, and distress.     

 The above categories of patients are, obviously, very symptomatic and should, 
therefore, particularly benefi t from treatments. The benefi cial effects of treatments 
in patients with particular characteristics can be predicted according to the 
following procedure:

    1.    Odds Ratio 
active treatment/placebo

  = mean domain score in patients on active treatment/
mean domain score in patients on placebo.  

    2.    Odds Ratio 
characteristic/no characteristic

  = mean domain score in patients with particular 
characteristic/mean domain score in patients without this particular 
characteristic. 
 The relative risk of scoring in patients with a particular characteristic if they used 

active treatment can be estimated and calculated according to:  
    3.    Odds Ratio 

characteristic/no characteristic
  × Odds Ratio 

active treatment/placebo
 .     
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4297 Discussion

 Along this line the odds ratio approach to QOL-assessments can be helpful to 
estimate the effects of cardiovascular drugs on quality of life in different categories 
of patients with increased precision.  

    7   Discussion 

 The medical community is, obviously, attracted to the concept that QOL assess-
ments should pay particular attention to the individual, but, at the same time, it 
believes in the usefulness of a scientifi c method to measure QOL (Albert et al. 
 1998  ) . Usually, the objective of a study is not to fi nd the greatest good for a single 
person but the greatest good for the entire population, moving from an individual 
perspective to a societal one. Even for quality-of-life measurements, only large 
clinical studies designed and conducted with rigorous statistical standards allow for 
a hypothesis to be tested and to offer useful results. Using the patients’ opinion as 
measurement-instrument raises a major problem within this context. The general 
concept of medical measurements is that measurement-instruments remain constant 
irrespective of who is using them: a thermometer remains the same whoever’s mouth 
it is placed in. With the patients’ opinion this is not so. Rather than true ability, 
perceived functional ability and willingness to complain is assessed. An assessment 
tool to refl ect the viewpoint of patients is, obviously, a major challenge. Although 
the medical community expresses sympathy with the latter concept, it expresses 
doubt about scientifi c value and even questions whether the patients’ opinion is part 
of medicine at all (Testa and Simonson  1996 ; Thompson et al.  1998 ; Albert et al. 
 1998  ) . The recent research from the DUMQOL Group shows that the patients’ 
opinion in a standardized way, produces data that are suffi ciently homogeneous to 
enable a sensitive statistical analysis. These data strongly support the relevance of 
the patients’ opinion as an independent contributing factor to QOL. This variable 
should, therefore, be adequately implemented in future QOL assessments. 

 A second problem with current QOL-batteries is the inconsistent relationship 
between ranges of response and true changes in QOL-assessments. This is mainly 
due to very low (and very high) scores on the absolute-scale, masking important and 
meaningful changes in QOL. The DUMQOL Study Group showed that this 
problem can be adequately met by the use of relative rather than absolute scores, 
and it used for that purpose an odds ratio-approach of QOL scores. This approach 
provided increased precision to estimate effects on QOL estimators. An additional 
advantage of the latter approach is that odds ratios are well understood and much in 
use in the medical community, and that (those) results from QOL research can, 
therefore, be more easily communicated through odds ratios than through the com-
parison of absolute scores. For example, “the odds ratio of (severe) mobility 
diffi culties for mononitrate therapy in patients with stable angina is 0.83 (p < 0.001)” 
is better understood than “the mean mobility diffi culties score decreased from 
1.10 to 1.06 on a scale from 0 to 4 (p = 0.007)”. 
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 We conclude that recent QOL-research from the DUMQOL Study Group allows 
for some relevant conclusions, pertinent to both clinical practice and clinical 
research. QOL should be assessed in a subjective rather than objective way, because 
the patients’ opinion is an important independent contributor to QOL. The com-
parison of absolute QOL-scores lacks sensitivity to truly estimate QOL. For that 
purpose the odds ratio approach of QOL scores provides increased precision to 
estimate QOL.  

    8   Conclusions 

 Two major issues in quality of life (QOL) research include the patients’ opinion as 
a contributing factor in QOL-assessments, and the lack of sensitivity of QOL-
assessments. The objective of this chapter was to review results from recent research 
by the Dutch Mononitrate Quality Of Life (DUMQOL) Study Group relevant to 
these issues. 

 Using a test-battery including Stewart’s Short Form (SF)-36 Questionnaire and 
the DUMQOL-50 questionnaire, the DUMQOL Study Group tested the hypothesis 
that the patients’ opinion might be an independent determinant of QOL and per-
formed for that purpose a stepwise multiple regression analysis of data from 82 
outpatient clinic patients with stable angina pectoris. Psychological distress was the 
most important contributor to QOL (beta 0.43, P < 0.0001). Also, the patients’ opin-
ion signifi cantly contributed to QOL (beta 0.22, p = 0.032). Physical health status 
according to the patients’ judgment only made a borderline contribution (beta 0.19, 
P = 0.71), while the physicians’ judgment was not associated with QOL at all (beta 
0.11, P = 0.87). Using an Odds ratio approach of QOL scores in 1,350 outpatient 
clinic patients with stable angina pectoris the DUMQOL Study Group assessed the 
question that relative scores might provide increased precision to estimate the effects 
of patient characteristics on QOL data. Increased QOL diffi culties were observed in 
New York Heart Association Angina Class (NYHA) III-IV patients, in patients with 
comorbidity, as well as in females and elderly patients. Odds ratios can be used in 
these categories to predict the benefi t from treatments. We conclude that recent 
QOL-research of the DUMQOL Study Group allows for conclusions relevant to 
clinical practice. QOL should be defi ned in a subjective rather than objective way. 
The patients’ opinion is an important independent contributor to QOL. The com-
parison of absolute QOL-scores lacks sensitivity to truly estimate QOL. The odds 
ratio approach of QOL scores provides increased precision to estimate QOL.      
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     1   Introduction 

 Item response models are applied for analyzing item scores of psychological and 
intelligence tests, and they are based on exponential relationships between the psy-
chological traits and the item responses (Baker and Kim  2004 ; De Boeck and Wilson 
 2004  ) . Items are usually questions with “yes” or “no” answers. Item response mod-
els were invented by Georg Rasch, a mathematician from Copenhagen who was 
unable to fi nd work in his discipline in the 30ths and turned to work as a psychome-
trician (Rasch  1980  ) . These models are, currently, the basis for modern psychological 
testing including computer-assisted adaptive testing (Van der Linden and Veldkamp 
 2004  ) . Advantages compared to classical linear testing include fi rst that item 
response models do not use reliability as a measure of their applicability, but instead 
use formal goodness of fi t tests (Zwinderman  1991  ) . Second, the scale does not 
need to be of an interval nature. As a consequence the effects of covariates can be 
analyzed and reported with odds ratios, independently of the item format and popu-
lation averages. Ceiling effects are, therefore, much less of a problem than they are 
with classical linear methods (Fischer  1974  ) . 

 Our group (Zwinderman et al.  1998  )  and the group of Dr. Kessler and Mrocek 
 (  1995  )  were the fi rst to apply item response modeling to quality of life assessments. 
Like psychometric properties quality of life is a multidimensional construct and is 
often investigated in homogeneous populations. Both aspects are a direct threat to 
the reliability, because reliability is a direct function of the dimensionality of the 
item pool and of the variance of the true score in the population. Indeed, item 
response modeling may be suitable for quality of life analyses, although not widely 
used so far (Uttaro and Lehman  1999 ; Douglas  1999 ; Reeve et al.  2007 ; Teresi and 
Fleishman  2007 ; Cook et al.  2007  ) . But this may be a matter of time. Quality of life 
(QOL) research is still in its infancy, and modern QOL batteries provide better 
validity and reliability (Cleophas et al.  2009a  ) , making it better suitable for methods 
like item response modeling. 

    Chapter 39   
 Item Response Modeling                    
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 Not only quality of life, but also current clinical diagnostic batteries are increasingly 
multidimensional, particularly, in clinical research like diagnostic test batteries in 
the vascular laboratory or catheterization laboratory: multiple tests are often used to 
assess the presence of a single disease or disease severity. To date item response 
modeling has not yet been applied in this fi eld. The current chapter is the fi rst effort 
for that purpose, and was also written to explain the principles of item response 
modeling to the readership of clinical investigators. Data examples are given of both 
a quality of life assessment and a diagnostic test battery in the vascular laboratory.  

    2   Item Response Modeling, Principles 

 With psychometric item response modeling the data of a test sample are exponen-
tially modeled according to:

   Probability of responding to an item (yes/no) = e (ability level of patient) − (diffi culty level of item) .
   This equation can also be described as:  
  Log odds of responding to an item (yes/no) =  
  (ability level of patient) − (diffi culty level of item).     

  Multiple items in a single test can be simply added up:

   Probability of responding to a set of items (yes/no) =  
   S  e (ability levels of patients) − (diffi culty levels of items) .  
  Log odds of responding to a set of items (yes/no) =  
   S  (ability levels of patients) − (diffi culty levels of items).       

 Software is used to calculate the best fi t ability parameters, otherwise called 
latent traits, and the best fi t diffi culty parameters for the data given. Then, based on 
these parameters, just like with logistic models for making predictions from risk 
factor profi les, predictions can be made about individual levels of intellectual and 
psychological abilities (Baker and Kim  2004 ; De Boeck and Wilson  2004 ; Rasch 
 1980 ; Van der Linden and Veldkamp  2004 ; Zwinderman  1991 ; Fischer  1974  ) . 
Similarly, predictions about levels of quality of life (Zwinderman et al.  1998 ; Kessler 
and Mrocek  1995  )  and, maybe also, severity of clinical diseases can respectively be 
made with quality of life data and diagnostic laboratory data. 

 For analysis the data are fi tted within the standard Gaussian distribution. A problem 
is that item response modeling is not available in standard statistical software. 
However, for dichotomous items plenty software is commercially and freely available, 
Egret (Anonymous  1991  ) , RSP (Glas and Ellis  1993  ) , OPLM (Verhelst  1993  ) , and 
Free Software LTA (Uebersax  2006  ) . For polytomous items such software is rapidly 
being developed  ( Conquest Generalized Item Response Modeling Software  2011 ; 
Full Lifecycle Unifi ed Modeling Language Modeling Software  2011  ) . For Windows 
BILOG-MG and MULTILOG are available  ( Item Response Modeling with BILOG 
MG and MULTILOG for Windows  2011  ) . All of the above software can handle 
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large data fi les, the numbers of items to be scored are now only limited by the 
memory capacities of the hardware. 

 In the current paper, we choose to use the Free Software LTA (latent trait analysis) -2 
(with binary items) of John Uebersax  (  2006  ) . 

 The interesting things about item response modeling are

    1.    that they are more realistic than classical methods: e.g., with a classical model 
the data would produce a quality of life between 0% and 100% while patients 
with a quality of life of 0% and 100% in reality do not exist; in contrast, with 
item response modeling quality of life levels are expressed as distances from an 
average level;  

    2.    that they are more fl exible and precise, and, therefore, more suitable for making 
predictions about individual patients, for example, a set of fi ve items will give 
fi ve levels of quality of life or severity of disease in the usual classical model, 
with item response modeling it will give 32 levels.     

 The following type of data are suitable for item response modeling. A sub-
domain of mental depression after a myocardial event is assessed with fi ve items 
(answer yes/no): (1) not hopeful, (2) blue feeling, (3) tired in the morning, (4) worrier, 
(5) not talking. If we review the answers, we may observe that, for example, the 
items (4) and (5) are less often confi rmed by our test sample subjects than the other 
three items. They may, therefore, be expressions of a more severe level of depres-
sion. Item response models, unlike the classical models for psychometric assess-
ments, account for and make use of the different levels of severity of items in a test 
battery. By doing so they change largely qualitative data into fairly accurate quanti-
tative data. They use for that purpose the (slight) differences between individual 
patients in response pattern to a set of items. 

 The results of the item response model are fi tted to a standard normal Gaussian 
curve. Both the chi-square goodness of fi t and the Kolmogorov-Smirnov (KS) good-
ness of fi t test can be used to assess how closely the results actually follow the 
Gaussian curve, respectively using a signifi cant chi-square value (Cleophas et al. 
 2009b  )  and using the largest cumulative difference between observed and expected 
frequencies according to the KS table (Cleophas et al.  2009c  ) , as criteria for ade-
quacy of the model for making predictions.  

    3   Quality Of Life Assessment 

 As an example we will now analyze the fi ve-item of a mobility-domain of a quality 
of life battery for patients with coronary artery disease in a group of 1,000 patients. 
Instead of fi ve many more items can be included. However, for the purpose of the 
simplicity we will again use fi ve items: the domain mobility in a quality of life bat-
tery was assessed by answering “yes or no” to experienced diffi culty (1) while 
climbing stair, (2) on short distances, (3) on long distances, (4) on light household 
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work, (5) on heavy household work. In Table  39.1  the data of 1,000 patients are 
summarized. These data can be fi tted into a standard normal Gaussian frequency 
distribution curve (Fig.  39.1 ). From the Fig.  39.1  it can be seen that the items used 
here are more adequate for demonstrating low quality of life than they are for dem-
onstrating high quality of life, but, nonetheless, an entire Gaussian distribution can 
be extrapolated from the data given. The lack of histogram bars on the right side of 
the Gaussian curve suggests that more high quality of life items in the questionnaire 
would be welcome in order to improve the fi t of the histogram into the Gaussian 
curve. Yet it is interesting to observe that, even with a limited set of items, already 
a fairly accurate frequency distribution pattern of all quality of life levels of the 
population is obtained.   

   Table 39.1    A summary of a 
5-item mobility-domain 
quality of life data of 1,000 
anginal patients   

 No. response 
pattern 

 Response pattern 
(1 = yes, 2 = no) 
to items 1–5 

 Observed 
frequencies 

 1.  11111  4 
 2.  11112  7 
 3.  11121  3 
 4.  11122  12 
 5.  11211  2 
 6.  11212  2 
 7.  11221  4 
 8.  11222  5 
 9.  12111  2 
 10.  12112  9 
 11.  12121  1 
 12.  12122  17 
 13.  12211  1 
 14.  12212  4 
 15.  12221  3 
 16.  12222  16 
 17.  21111  11 
 18.  21112  30 
 19.  21121  15 
 20.  21122  21 
 21.  21211  4 
 22.  21212  29 
 23.  21221  16 
 24.  21222  81 
 25.  22111  17 
 26.  22112  57 
 27.  22121  22 
 28.  22122  174 
 29.  22211  12 
 30.  22212  62 
 31.  22221  29 
 32.  22222  263 

 1,000 
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 The LTA-2 software program is used (Uebersax  2006  ) . We enter the data fi le and 
command: Gaussian error model for IRF shape, chi-square goodness of fi t for Fit 
Statistics, then Frequency table, and, fi nally, EAP score table. The software pro-
gram calculates the quality of life scores of the different response patterns as EAP 
(expected ability a posteriori) scores. These scores can be considered as the z-values 
of a normal Gaussian curve, meaning that the associated areas under curve of the 
Gaussian curve is an estimate of the level of quality of life. 

 There is, approximately,

   a 50% quality of life level with an EAP score of 0,  
  a 35% QOL level with an EAP score of −1 (standard deviations),  
  a 2.5% QOL level with an EAP score    of −2  
  a 85% QOL level with an EAP score of +1  
  a 97.5% QOL level with an EAP score of +2    

 In Table  39.2  the EAP scores per response pattern is given as well as the AUC 
(= quality of life level) values as calculated by the software program are given. In 
the fourth column the classical score is given ranging from 0 (no yes answers) to 5 
(5 yes answers).  

 It can be observed, that, unlike the classical scores, running from 0% to 100%, 
the item scores are more precise and vary from 3.4% to 74.5% with an overall mean 
score, by defi nition, of 50%. The item response model produced an adequate fi t for 
the data as demonstrated by chi-square goodness of fi t values/degrees of freedom of 
0.86. What is even more important, is, that we have 32 different QOL scores instead 
of no more than fi ve as observed with the classical score method. With six items the 
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  Fig. 39.1    Frequency distribution of response patterns to a 5 item mobility domain of a quality of 
life battery in 1,000 patients with coronary artery disease. The lack of histogram bars on the  right 
side  of the Gaussian curve suggests that more high quality of life items in the questionnaire would 
be welcome in order to improve the fi t of the histogram into the Gaussian curve. Yet it is interesting 
to observe that even with a limited set of items already a fairly accurate frequency distribution pat-
tern of all quality of life levels of the population is obtained       
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numbers of scores would even rise to 64. The interpretation is: the higher the score, 
the better the quality of life.  

    4   Clinical and Laboratory Diagnostic-Testing 

 So far item response modeling has not been used clinical diagnostic procedures. 
Suppose that instead of fi ve items predicting about quality of life to be answered with 
a yes or no, we have fi ve vascular-laboratory tests predicting about the presence of 

   Table 39.2    Results of the item response analysis of the data from Table  39.1    

 No. response 
pattern 

 Response pattern 
(1 = yes, 2 = no) 
to items 1–5 

 EAP scores 
(SDs) 

 AUCs (QOL 
levels) (%) 

 Classical 
scores (0–5) 

 1.  11111  −1.8315  3.4  0 
 2.  11112  −1.4425  7.5  1 
 3.  11121  −1.4153  7.8  1 
 4.  11122  −1.0916  15.4  2 
 5.  11211  −1.2578  10.4  1 
 6.  11212  −0.8784  18.9  2 
 7.  11221  −0.8600  19.4  2 
 8.  11222  −0.4596  32.3  3 
 9.  12111  −1.3872  8.2  1 
 10.  12112  −0.9946  16.1  2 
 11.  12121  −0.9740  16.6  2 
 12.  12122  −0.5642  28.8  3 
 13.  12211  −0.8377  20.1  2 
 14.  12212  −0.4389  33.0  3 
 15.  12221  −0.4247  33.4  3 
 16.  12222  0.0074  50.4  4 
 17.  21111  −1.3501  8.9  1 
 18.  21112  −0.9381  17.4  2 
 19.  21121  −0.9172  17.9  2 
 20.  21122  −0.4866  31.2  3 
 21.  21211  −0.7771  21.8  2 
 22.  21212  −0.3581  35.9  3 
 23.  21221  −0.3439  36.7  3 
 24.  21222  0.1120  54.4  4 
 25.  22111  −0.8925  18.7  2 
 26.  22112  −0.4641  32.3  3 
 27.  22121  −0.4484  32.6  3 
 28.  22122  0.0122  50.4  4 
 29.  22211  −0.3231  37.5  3 
 30.  22212  0.1322  55.2  4 
 31.  22221  0.1433  55.6  4 
 32.  22222  0.6568  74.5  5 

   EAP  expected ability a posteriori,  QOL  quality of life  
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peripheral vascular disease, for example (1) an ankle pressure < brachial pressure, 
(2) a reduction of ankle pressure after 5 min treadmill >25%, (3) a proximal thigh 
pressure >35 mmHg below brachial, (4) segmental pressures (thigh, calf, ankle) 
>20 mmHg difference, and (5) a toe pressure <35% different from brachial. Similarly 
to the above sample, response patterns can be obtained from a data fi le of patients in 
analysis for peripheral vascular disease. The classical and item response scores from 
the response patterns tell us something about the expected magnitude of the vascular 
disease, but the item response model performs better than the classical score, because 
the classical score only gives the numbers of positive tests as estimators, while the 
item response model gives 32 levels injury. The larger the score, the more severe the 
disease. In 1,350 patients the predictors were measured. The data fi le was entered in 
the above LTA-2 analysis program (Uebersax  2006  ) . In Table  39.3  the results of the 
analysis is given. The areas under the curve present the item response scores. They 
run from 9.9% to 83.5%. For each response pattern a separate score is produced by 
the analysis. The item response model produced an adequate fi t for the data as dem-
onstrated by chi-square goodness of fi t values/degrees of freedom of 0.64.  

 When using the above item response scores and classical scores in simulated tri-
als, it is observed, as expected, that the item response score method provides a much 
better sensitivity to demonstrate signifi cant effects than does the classical score 
method (Table  39.4 ). This is so both with parallel-group and crossover designs.   

    5   Discussion 

 Do we have to assess item response models for reliability/validity? In the above 
laboratory test example the items were based on add-up sums of previously vali-
dated predictors. However, otherwise, they are used here in a somewhat different 
context, and psychological and quality of life items are generally not based on pre-
viously validated predictors. An important advantage of item response models is 
that they, strictly, do not require parallel tests for such purposes. This is, because the 
data are internally “sort of” tested for reliability:

    1.    ability levels of patients are tested against diffi culty levels of items,  
    2.    quality of life levels of patients are tested against quality of life levels of the 

items,  
    3.    health levels of patients are tested against the health predicting levels of the 

items.     

 Yet both patient-levels and item-levels are unknown, but they have a meaningful 
interaction, and this interaction is mainly measured with item response modeling. 

 A problem is, of course, that the data should fi t the Gaussian distribution, but 
various goodness of fi t tests are available for that purpose. The software program 
applied in the above example makes by default use of chi-square goodness of fi t 
tests, and the analysis does not proceed if an adequate goodness of fi t is not 
obtained. 
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 Logistic models for predicting risk factors, based on exponential relationships 
between the predictor and the outcome, have been demonstrated to provide an ade-
quate fi t for risk profi ling in clinical disease and other fi elds, and seems to better fi t 
data than does linear modeling. The same may be true with binary quality of life and 
diagnostic laboratory data. However, more studies are required. Yet, we believe that 
item response modeling has great potential for improving the accuracy and preci-
sion of quality of life and laboratory research. 

   Table 39.3    Results of item response analysis of 5 laboratory predictors of peripheral vascular 
disease in 1,350 patients   

 No. response 
pattern 

 Response pattern 
(1 = yes, 2 = no) 
to items 1–5 

 EAP scores 
(SDs) 

 AUCs (severity 
of disease 
levels) (%) 

 Classical 
scores (0–5) 

 1.  11111  −1.97  12.4  0 
 2.  11112  −1.61  15.4  1 
 3.  11121  −2.04  12.1  1 
 4.  11122  −1.55  16.1  2 
 5.  11211  −1.73  14.2  1 
 6.  11212  −1.35  18.9  2 
 7.  11221  −0.85  19.1  2 
 8.  11222  −0.46  32.3  3 
 9.  12111  −1.55  16.1  1 
 10.  12112  −1.34  9.9  2 
 11.  12121  −0.80  21.1  2 
 12.  12122  −0.74  23.0  3 
 13.  12211  −0.61  27.2  2 
 14.  12212  −0.44  33.0  3 
 15.  12221  −0.51  33.4  3 
 16.  12222  −1.55  16.1  4 
 17.  21111  −0.56  28.9  1 
 18.  21112  −0.35  36.2  2 
 19.  21121  −0.31  37.9  2 
 20.  21122  0.00  50.2  3 
 21.  21211  0.00  50.1  2 
 22.  21212  −0.05  48.1  3 
 23.  21221  0.23  59.1  3 
 24.  21222  0.26  60.0  4 
 25.  22111  0.47  68.2  2 
 26.  22112  0.06  52.3  3 
 27.  22121  0.60  72.6  3 
 28.  22122  0.01  50.4  4 
 29.  22211  −0.32  37.5  3 
 30.  22212  0.69  75.3  4 
 31.  22221  0.73  76.6  4 
 32.  22222  0.97  83.5  5 

   EAP  expected ability a posteriori,  AUC  area under the curve of Standard Gaussian curve, an esti-
mate of the severity of a disease  
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 What is even more important, it does enable to make more exact estimations in 
individual patients than classical methods do. Also, being more precise and sensi-
tive, it should be more so to estimate patients that have missing data. 

 We should discuss some limitation of the novel approach. Unlike the classical 
methods item response modeling is an invariant method, which means that each 

   Table 39.4    When using the item response scores and classical scores from Table  39.3  in simulated 
trials, it is observed, as expected, that the item response score method provides a much better sen-
sitivity to demonstrate signifi cant effects than does the classical score method. This is so both with 
parallel-group and crossover designs   

 Parallel-group study 

 Item response scores  Classical scores 

 Group 1  Group 2  Group 1  Group 2 

 16.1  33.4  2  3 
 18.9  28.9  2  1 
 32.3  36.2  3  2 
 9.9  50.2  2  3 

 23.0  48.1  3  3 
 33.0  60.0  4  4 
 16.1  52.3  4  3 
 36.2  50.4  2  4 
 50.2  75.3  3  4 
 48.1  83.5  3  5 

 Mean scores  28.38  51.83  2.7  3.2 
 Standard deviation  13.843  17.477  0.6749  1.1353 

 Mean difference  23.45  0.50 
 Standard error  7.05  0.42 

 t-value = 3.1  t-value = 1.19 
 p < 0.01  Not signifi cant 

 Crossover study 

 Patient no  Item response  Scores  Differences  Classical  Scores  Differences 

 1.  16.1  33.4  −17.3  2  3  −1 
 2.  18.9  28.9  −10.0  2  1  1 
 3.  32.3  36.2  −3.9  3  2  1 
 4.  9.9  50.2  −40.3  2  3  −1 
 5.  23.0  48.1  −25.1  3  3  0 
 6.  33.0  60.0  −27.0  3  4  −1 
 7.  16.1  52.3  −36.2  4  3  1 
 8.  36.2  50.4  −14.2  2  4  −2 
 9.  50.2  75.3  −25.2  3  4  −1 
 10.  48.1  83.5  −35.4  3  5  −2 

 Mean difference  −23.46  −0.7 
 Standard error  3.79  0.9 

 t-value = 6.19  t-value = 0.78 
 p < 0.002  Not signifi cant 
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item is applied as point estimate without variance. This explains part of the sensitivity 
of the method, but at the same time means that some dispersion in the data is at risk 
of being underestimated. However, invariant tests are common in physics, and have 
received increasing attention in clinical research. For example, Fisher exact tests 
and log likelihood ratio tests are of this kind. In addition, with item response model-
ing it may be, particularly, justifi ed not to include variance, calculated as (squared) 
distances from mean scores, because the individual data are scored against a con-
tinuum of scores. 

 We hope that this brief introduction will stimulate clinical investigators to pay 
more attention to the possibilities item response modeling offers.  

    6   Conclusions 

 Item response models using exponential modeling are more sensitive than classical 
linear methods for making predictions from psychological questionnaires. This 
chapter is to assess whether they can also be used for making predictions from qual-
ity of life questionnaires and clinical and laboratory diagnostic-tests. 

 Of 1,000 anginal patients assessed for quality of life and 1,350 patients assessed 
for peripheral vascular disease with diagnostic laboratory tests items response mod-
eling was applied using the Latent Trait Analysis program-2 of Uebersax. 

 The 32 different response patterns obtained from test batteries of 5 items pro-
duced 32 different quality of life scores ranging from 3.4% to 74.5% and 32 differ-
ent levels peripheral vascular disease ranging from 9.9% to 83.5% with overall 
mean scores, by defi nition, of 50%, while the classical method for analysis only 
produced the discrete scores 0–5. The item response models produced an adequate 
fi t for the data as demonstrated by chi-square goodness of fi t values/degrees of free-
dom of 0.86 and 0.64. 

 We conclude:

    1.    Quality of life assessments and diagnostic tests can be analyzed through item 
response modeling, and provide more sensitivity than do classical linear 
models.  

    2.    Item response modeling can change largely qualitative data into fairly accurate 
quantitative data, and can, even with limited sets of items, produce fairly accu-
rate frequency distribution patterns of quality of life, severity of disease, and 
other latent traits.          

   References 

   Anonymous (1991) Egret manual. Statistics and Epidemiology Research Computing. University 
of Seattle, Seattle  

    Baker FB, Kim SH (2004) Item response theory: parameter estimation techniques. Marcel Dekker, 
New York  



443References

    Cleophas TJ, Zwinderman AH, Cleophas TF, Cleophas EP (2009a) Lack of sensitivity of quality 
of life (QOL) assessments. In: Statistics applied to clinical trials, 4th edn. Springer, Dordrecht, 
pp 323–329  

    Cleophas TJ, Zwinderman AH, Cleophas TF, Cleophas EP (2009b) Method 1: the chi-square 
goodness of fi t test. In: Statistics applied to clinical trials, 4th edn. Springer, Dordrecht, pp 
356–357  

    Cleophas TJ, Zwinderman AH, Cleophas TF, Cleophas EP (2009c) Method 2: the Kolmogorov-
Smirnov goodness of fi t test. In: Statistics applied to clinical trials, 4th edn. Springer, Dordrecht, 
pp 357–359  

      Conquest Generalized Item Response Modeling Software.   www.rasch.org/rmt/rmt133o.htm    . 
Accessed 15 Dec 2011  

    Cook KF, Teal CR, Bjorner JB, Celia D et al (2007) Item response theory health data analysis 
project: an overview and summary. Qual Life Res 16(s1):121–132  

    De Boeck P, Wilson M (2004) Explanatory item response models. A generalized linear and non-
linear approach. Springer, New York  

    Douglas JA (1999) Item response models for longitudinal quality of life data in clinical trials. Stat 
Med 18:2917–2931  

    Fischer GH (1974) Einfuhrung in die Theorie psychologischer Tests. Huber, Bern  
   Full Lifecycle Unifi ed Modeling Language Modeling Software.   www.sparxsystems.eu/?gclid    . 

Accessed 15 Dec 2011  
   Glas CA, Ellis J (1993) Rasch Scaling Program (RSP) I.E.C. University of Groningen, 

Groningen  
   Item Response Modeling with BILOG-MG and MULTILOG for Windows.   www.eric.ed.gov/

ERICWebPortal/custom/portlets/recorDetails/detailminii.jsp    . Accessed 15 Dec 2011  
    Kessler RC, Mrocek DK (1995) Measuring the effects of medical interventions. Med Care 

33:109–119  
   Rasch G (1980) Probabilistic models from intelligence and attainment tests, expanded edn. The 

University of Chicago Press, Chicago  
    Reeve BB, Hays RD, Chang CH, Perfetto E (2007) Applying item response theory to health out-

comes. Qual Life Res 16(s1):1–3  
       Teresi JA, Fleishman JA (2007) Differential item functioning and health. Qual Life Res 

16(s1):33–42  
   Uebersax J (2006) Free Software LTA (latent trait analysis) -2 (with binary items).   www.john-

uebersax.com/stat/Ital.htm    . Accessed 15 Dec 2011  
    Uttaro T, Lehman A (1999) Graded response modeling of the quality of life interview. Program 

Plan 22:41–52  
    Van der Linden WJ, Veldkamp BP (2004) Constraining item exposure in computer adaptive testing 

with shadow tests. J Educ Behav Stat 29:273–291  
   Verhelst ND (1993) One parameter Logistic Model (OPLM). CITO, Arnhem  
    Zwinderman AH (1991) A generalized Rasch model with manifest predictors. Psychometrika 

33:AS 109–AS 119  
   Zwinderman AH, Niemeijer MG, Kleinjans HA, Cleophas TJ (1998) Application of item response 

modeling for quality of life assessment. In: Kuhlmann J, Mrozikiewicz A (eds) Clinical 
Pharmacology, vol 16. What should a clinical pharmacologist know to start a clinical trial 
(phase I and II). Zuckschwerd Verlag, Munich, pp 48–55      

http://www.rasch.org/rmt/rmt133o.htm
http://www.sparxsystems.eu/?gclid
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recorDetails/detailminii.jsp
http://www.eric.ed.gov/ERICWebPortal/custom/portlets/recorDetails/detailminii.jsp
http://www.john-uebersax.com/stat/Ital.htm
http://www.john-uebersax.com/stat/Ital.htm


445T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 
DOI 10.1007/978-94-007-2863-9_40, © Springer Science+Business Media B.V. 2012

     1   Introduction 

 In 1860, the benchmark experiments of the monk Gregor Mendel led him to propose 
the existence of genes. The results of Mendel’s pea data were astoundingly close to 
those predicted by his theory. When we recently looked into Mendel’s pea data and 
performed a chi-square test, we had to conclude the chi-square value was too small 
not to reject the null-hypothesis. This would mean that Mendel’s reported data were 
so close to what he expected that we could only conclude that he had somewhat 
fudged the data (Table  40.1 ).  

 Though Mendel may have somewhat fudged some of his data, he started a novel 
science that now 140 years later is the largest growing fi eld in biomedicine. This 
novel science, although in its fi rst steps, already has a major impact on the life of all 
of us. For example, obtaining enough drugs, like insulin and many others, to treat 
illnesses worldwide was a problem that has been solved by recombinant DNA tech-
nology which enabled through genetic engineering of bacteria or yeasts the large 
scale production of various pharmaceutical compounds. The science of genes, often 
called genomics, is vast, and this chapter only briefl y mentions a few statistical 
techniques developed for processing data of genetic research. We will start with the 
explanation of a few terms typically used in genomics.  

    Chapter 40   
 Statistical Analysis of Genetic Data                    
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    2   Some Terminology    

 Bayes’ Theorem (Table  40.2 )  Posterior odds = likelihood ratio × prior odds This approach is 
required for making predictions from genetic data. 
Although the general concept of including prior evidence 
in the statistical analysis of clinical trial data is appealing, 
this concept should not be applied in usual null-hypothesis 
testing, because we would have to violate the main 
assumption of null-hypothesis testing that H 

0
  and H 

1
  have 

the same frequency distribution. 
 Posterior odds (Table  40.2 )  Prior odds adjusted for likelihood ratio. 
 Prior odds (Table  40.2 )  Prior probability of being a carrier/prior probability of being 

no carrier. 
 Likelihood ratio (Table  40.2 )  Probability for carriers of having healthy offspring/probability 

for non-carrier of having healthy offspring. 
 Genetic linkage  When two genes or DNA sequences are located near each 

other on the same chromosome, they are linked. When 
they are not close, crossing over occurs frequently. 
However, when they are close they tend to be inherited 
together. Genetic linkage is useful in genetic diagnosis and 
mapping because once you know that the disease gene is 
linked to a particular DNA sequence that is close, the latter 
can be used as a marker to identify the disease gene 
indirectly. Bayes’ Theorem can be used to combine 
experimental data with prior linkage probabilities as 
established. 

 Autosomal  Not x- or y-chromosome linked. 
 Heterosomal  X- or y-chromosome linked. 
 Dominant gene  Gene that is expressed in the phenotype. 
 Recessive gene  Gene that is expressed in the phenotype only if it is present in 

two complementary chromosomes. 
 Haplotype  Group of genetic markers linked together on a single 

chromosome, such as a group of DNA-sequences. 

   Table 40.1    Chi-square-
distribution not only has a 
right but also a left tail   

 Phenotype  A  a 

 B  AB 27  aB 271 
 b  Ab 9  ab 93 

  We reject the null-hypothesis of no difference with 1 degree 
of freedom if chi-square is larger than 3.84 or smaller than 
0.004. In Mendel’s data frequently very small chi-squares 
can be observed, as e.g., in the above example where it is as 
small as 0.0039. This means that the chi-square is too small 
not to reject the null-hypothesis. The results are closer to 
what can be expected than compatible with the assumption 
of a normal distribution. The obvious explanation is that 
Mendel somewhat mispresented his data  

(continued)
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 Haploid genome  Chromosomes of haploid cell (23 chromosomes, 50,000–
100,000 genes). 

 Diploid cell  Cell with 46 chromosomes. 
 Chromosome  2,000–5,000 genes. 
 Chromosomal microband  50–100 genes. 
 Gene  1.5–2,000·10 3  base-pairs. 
 Genomic medicine  Use of genotypic analysis to enhance quality of care. 
 Complex disease traits  Multifactorial diseases where multiple genes and non-genetic 

factors interact. 
 Allele  Gene derived from one parent. 
 Homozygous  Having identical alleles. 
 Heterozygous  Having different alleles. 
 DNA- cloning  Isolation of DNA fragments and their insertion into the 

nucleic acid from another biologic vector for 
manipulation. 

 DNA probe  Cloned DNA fragment used for diagnostic or therapeutic 
purpose. 

 Hybridization of single 
stranded DNA 

 Double-stranded DNA is dissociated into single -stranded, 
which can then be used to detect complementary strands. 

 Blotting procedures  Southern, Northern, Immuno-, Western blotting are all 
procedures to hybridize target DNA in solution to known 
DNA-sequences fi xed on a membrane support. 

 Polymerase chain reaction  Oligonucleotide of known nucleic acid sequence is incubated 
with the target DNA and then amplifi ed with DNA 
polymerase. 

 DNA chips  Arrays of oligonucleotides on miniature supports developed 
for the analysis of unknown DNA sequences, taking 
advantage of the complementary nature of nucleic acid 
interaction. 

 Mutations  Changes in DNA either heritable or obtained. 
 Introns  Non-coding regions of the gene. 
 Exons  Coding regions of the gene. 
 Single gene disorders  One gene plays a predominant role in determining disease. 
 Genotype  Chemical structure of a gene. 
 Phenotype  Clinical characteristics of a gene. 
 Gene expression  Regulation of gene function is mediated at a transcriptional 

level through helix-turn-helix proteins and at a posttran-
scriptional level through various hormones, autacoids and 
many more factors. 

    3   Genetics, Genomics, Proteonomics, Data Mining 

 In the past two or three decades the role of genetic determinants have increased 
enormously in biomedical research. Of several monogenetic diseases the genetic 
foundation has been clarifi ed almost completely (e.g. Huntington’s disease), and of 
others the contribution of many genetic markers has been proved: for instance the 

(continued)
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brca 1 and 2 genes in breast cancer (Cornelisse et al.  1996  ) , and the mismatch gene 
mutations in coloncarcinoma (Wijnen et al.  1998  ) . Simultaneously, the human 
genome project has been the catalyst for the development of several high-throughput 
technologies that have made it possible to map and sequence complex genomes. 
These technologies are used, and will be used increasingly in clinical trials for many 
purposes but predominantly to identify genetic variants, and differentially expressed 
genes that are associated with better or worse clinical effi cacy in clinical trials. In 
addition, the proteins associated with these genes are being investigated to disen-
tangle their roles in the biochemical and physiological pathways of the disease and 
the treatment that is being studied. Together these technologies are called (high-
throughput) genetics, genomics, and proteomics. 

 The technological advancements have made it possible to measure thousands of 
genes/proteins of a single patient simultaneously, and the possibility to evaluate the 
role of each gene/protein in differentiating between e.g. responders and non-
responders to therapy. This has increased the statistical problem of multiple testing 
hugely, but also has stimulated research into statistical methods to deal with it. In 
addition methods have been developed to consider the role of clusters of genes. In 
this chapter we will describe a number of these new techniques for the analysis of 
high throughput genetic data, and for the analysis of gene-expression data. We 
restrict the discussion to data that are typically sampled in clinical trials including 
unrelated individuals only. Familial data are extremely important to investigate 
genetic associations: their clustered structure requires dedicated statistical tech-
niques but these fall outside the scope of this chapter.  

    4   Genomics 

 In the mid-1970s, molecular biologists developed molecular cloning and DNA 
sequencing. Automated DNA sequencing and the invention of the polymerase chain 
reaction (PCR) made it possible to sequence the entire human genome. This has 

   Table 40.2    Bayes’ Theorem, an important approach for the analysis of genetic data: example   

 Based on historical data the chance for girls in a particular family of being carrier for the 
hemophilia A gene is 50%. Those who are carrier will have a chance of ½ × ½ = ¼ = 25% that 
two sons are healthy. Those who are no carriers will have a 100% chance of two healthy sons. 
This would mean that a girl from this population who had two healthy sons is 500/125 = 4 
times more likely to be no carrier than to be carrier. In terms of Bayes’ Theorem: 

 Posterior odds = prior odds × likelihood ratio. 
 Prior probability of being carrier = 50% 
 Prior odds = 50: 50 = 1.0 
 Likelihood ratio = probability for carrier of having two healthy sons/probability for non-carrier of 

having two healthy sons = 25%/100% = 0.25 posterior odds = 1.0 times 0.25 = 25% or 1 in 4: 

 if you saw many girls from this family you would see one carrier for every four non-carriers. 

 Mothers with two sons who are:  Carrier n = 500  No carrier n = 500 

 Two sons healthy  n = 125  n = 500 
 Two sons not healthy  n = 375  n = 0 
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  Fig. 40.1    Example of microarray of different expression of about 500 genes in tumour tissue of a 
single patient       

lead to the development of microarrays, sometimes known as DNA-chip technology. 
Microarrays are ordered sets of DNA molecules of known sequence. Usually rect-
angular, they can consist of a few hundred to thousands of sets. Each individual 
feature goes on the array at a precisely defi ned location on the substrate, and there-
after, labeled cDNA from a test and a reference RNA sample are pooled and co-
hybridized. Labeling can be done in several ways, but is usually done with different 
fl uorescently labeled nucleotides (usually Cy5-dCTP for reference, and Cy3-dCTP 
for test RNA). After stimulation, the expression of these genes can be measured. 
This involves quantifying the test and reference signals of each fl uorophore for each 
element on the array, traditionally by confocal laser scanning. The ratio of the test 
and reference signals is commonly used to indicate whether genes have differential 
expression. Many resources are available on the web concerning the production of 
microarrays, and about designing microarray experiments (e.g.:   123genomics.
homestead.com    ). A useful textbook is that of Jordan  (  2001  ) . 

 An example of a microarray is given in Fig.  40.1 . This concerns the differential 
expression of about 500 genes in tumour tissue of a single patient with gastric 
tumour.  

 Each spot in this chip represents a different gene, and the ratio of the two fl uores-
cent dyes indicates whether the genes are over-expressed (dark) or under-expressed 
(pale) in the tumor tissue with respect to normal tissue. The transformation of the 
image into gene expression numbers is not trivial: the spots have to be identifi ed on 
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the chip, their boundaries defi ned, the fl uorescence intensity measured, and compared 
to the background intensity. Usually this ‘image processing’ is done automatically 
by the image analysis software, but sometimes laborious manual adjustments are 
necessary. One of the most popular systems for image analysis is ScanAlyze 
(  http://rana.stanford.edu/software    ). 

 After the image analysis, differential expression is measured by a so-called nor-
malized ratio of the two fl uorescence signals, normalized to several experimental 
factors. The normalized ratios of the array in Fig.  40.1  are given in Fig.  40.2 . On the 
x-axis are given the 500 genes, and on the y-axis is given the normalized ratio of 
each gene.  

 It is obvious that most genes have a ratio around unity, but three or four genes are 
highly over-expressed with ratios above two. It is typically assumed that ratios 
larger than 1.5 or 2.0 are indicative of a signifi cant change in gene expression. These 
estimates are very crude, however, because the reliability of ratios depends on the 
two absolute intensities. On statistical grounds, moreover, we would expect a num-
ber of genes to show differential expression purely by chance (Claverie  2001  ) . 

 One way of circumventing the multiple testing problem here, is to use a mixture 
model (McLachlan  2001  ) . Usually, it is assumed that the sample of ratios consists 
of subgroups of genes with normal, under-, and over-expression. In each subgroup, 
the ratios are mostly assumed to be normally distributed. When the sample is large 
enough, the percentage of normal, under-, and over-expressed genes, and associ-
ated mean ratios and standard deviations can be estimated from the data. This can 
be done with the logarithmically transformed ratios. The histogram of the log-
transformed ratios in Fig.  40.2  is given in Fig.  40.3 , together with the three esti-
mated normal distributions. In this model the probability of each gene of being 
over- of under-expressed can be calculated using Bayes’ theorem.  

 Although under-expressed genes could not be identifi ed in this case, over-expressed 
genes were clearly seen, represented by the second mode to the right. Actually it was 
estimated that 14% of the genes showed over-expression, corresponding with ratios 
larger than 1.3. 
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  Fig. 40.2    Normalized ratios of the array from Fig.  40.1        
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  Fig. 40.3    The histogram of the log-transformed ratios from Fig.  40.2 , calculated according to 
Bayes’ Theorem       

 Above is illustrated how to look at the data of a single microarray. For the analysis 
of a set of microarrays several different approaches are used. Two distinctions can 
be used: supervised or unsupervised data analysis, and hypotheses-driven or data-
mining. For supervised data analysis additional data must be available to which the 
expression data can be related. In clinical trials a major question is often how 
responders and non-responders can be distinguished. Relating such response data to 
expression data can be done using well known techniques such as discriminant-
analysis, or logistic regression. Since there may be hundreds or thousands of expres-
sion variables, one must be careful in applying these techniques, and cross-validation 
is often extremely useful (Alizadeh et al.  2000  ) . Unsupervised data analysis is usu-
ally done by cluster analysis or principal component analysis to fi nd groups of co-
regulated genes or related samples. These techniques are often applied without 
specifi c prior knowledge on which genes are involved in which case the analysis is 
a kind of data-mining. An example of a hypothesis driven analysis is to pick a 
potential interesting gene, and then fi nd a group of similar or anti-correlated expres-
sion profi les. 

 Cluster-analysis is the most popular method currently used as the fi rst step in 
gene expression analysis. Several variants have been developed: hierarchical (Eisen 
et al.  1998  ) , and k-means (Tavazoie et al.  1999  )  clustering, self-organizing maps 
(Tamayo et al.  1999  ) , and gene-shaving (Tibshirani et al.  1999  ) , and there are many 
more. All aim at fi nding groups of genes with similar properties. These techniques 
can be viewed as a dimensionality reduction technique, since the many thousands of 
genes are reduced to a few groups of similarly behaving genes. Again many tools 
are available on the web, and a useful site to start searching is:   www.microarray.org    . 
We used Michael Eisen’s package (Eisen et al.  1998  )  to cluster the expression data 
of 18 patients with gastric cancer. The typical output of a hierarchical clustering 
analysis is given in Fig.  40.4 . This is a dendogram illustrating the similarities 

 

http://www.microarray.org


452 40 Statistical Analysis of Genetic Data

between patients, a similar graph can be obtained illustrating similarities between 
genes. In the present case one might conclude that patients 2, 6, 5, 7, 3, 13, 9, 10, 1 
and 8 form a cluster, and patients 14, 15, 4, 11, 16, 17, 12, and 18 another cluster. 
But identifying more clusters may be meaningful too.  

 In a K-means cluster analysis the number of clusters must be specifi ed a priori. 
When we specify two clusters, the same solution is found as above. 

 The above results illustrate that many subjective decisions need to be made in a 
cluster analysis, and such analysis cannot be regarded as hypothesis-driven; the 
primary output of a cluster analysis are new hypotheses concerning differential 
expressions.  

    5   Conclusions 

 Although high throughput methods are still relatively expensive, and are not used 
routinely in clinical trials, these methods undoubtedly will be used more often in the 
future. Their promise of identifying subgroups of patients with varying drug 
response is of major importance and is a major topic of pharmaco-genomics. In 
addition, differential expression profi les, and proteomics are of major importance of 
identifying new pathways for targeting new drugs. More sophisticated statistical 
methods are required, and will be developed.      

Rescaled Distance Cluster Combine

C A S E
Label Num

2

0 5 10 15 20 25

6
5
7
3

13
9

10
1
8

14
15
4

11
16
17
12
18

  Fig. 40.4    The typical hierarchical clustering analysis of the expression data of 18 patients with 
gastric cancer       

 



453References

   References 

    Alizadeh AA et al (2000) Distinct types of diffuse large B-cell lymphoma identifi ed by gene 
expression profi ling. Nature 403:503–511  

    Claverie JM (2001) Computational methods for the identifi cation of differential and coordinated 
gene expression. Hum Mol Genet 8(10):1821–1832  

    Cornelisse CJ, Cornelis RS, Devilee P (1996) Genes responsible for familial breast cancer. Pathol 
Res Pract 192(7):684–693  

    Eisen M et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl 
Acad Sci USA 95:14863–14867  

    Jordan B (ed) (2001) DNA microarrays: gene expression applications. Springer, Berlin  
   McLachlan G (2001) Mixture.model clustering of microarray expression data. Australian 

Biometrics and New Zealand Statistical Association Joint Conference. Christchurch, New 
Zealand  

    Tamayo P et al (1999) Interpreting patterns of gene-expression with self-organizing maps. Proc 
Natl Acad Sci USA 96:2907–2912  

    Tavazoie S et al (1999) Systematic determination of genetic network architecture. Nat Genet 
22:281–285  

   Tibshirani R et al (1999) Clustering methods for the analysis of DNA microarray data. Technical 
report. Stanford University, Dept of Statistics, Stanford  

    Wijnen JT, Vasen HF, Khan PM, Zwinderman AH, van der Klift H, Mulder A, Tops C, Moller P, 
Fodde R (1998) Clinical fi ndings with implications for genetic testing in families with cluster-
ing of colorectal cancer. N Engl J Med 339(8):511–518      



455T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 
DOI 10.1007/978-94-007-2863-9_41, © Springer Science+Business Media B.V. 2012

     1   Introduction 

 Samples of clinical data are frequently assessed through three variables:

   The mean result of the data.  
  The spread or variability of the data.  
  The sample size.    

 Generally, we are primarily interested in the fi rst variable, but mean or propor-
tion does not tell the whole story, and the spread of the data may be more relevant. 
For example, when studying how two drugs reach various organs, the mean level 
may be the same for both, but one drug may be more variable than the other. In some 
cases, too little and, in other cases, dangerously high levels get through. The Chi-
square-distribution, unlike the normal distribution, is used for the assessment of 
such variabilities. Clinical scientists although they are generally familiar with the 
concept of null-hypothesis-testing of normally distributed data, have diffi culties to 
understand the null-hypothesis testing of Chi-square-distributed data, and do not 
know how closely Chi-square is related to the normal-distribution or the 
T-distribution. The Chi-square-distribution has a relatively young history. It has 
been invented by K. Pearson  (  1900  )  100 years ago, 300 years after the invention of 
the normal-distribution (A. de Moivre 1667–1754). The Chi-square-distribution and 
its extensions have become the basis of modern statistics and have provided statisti-
cians with a relatively simple device to analyze complex data, including multiple 
groups and multivariable variables analyses. The present chapter was written for 
clinical investigators/scientists in order to better understand the relation between 
normal and chi-square distribution, and how they are being applied for the purpose 
of null-hypothesis testing.  

    Chapter 41   
 Relationship Among Statistical Distributions                    
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    2   Variances 

 Repeated observations exhibit a central tendency, the mean, but, in addition, exhibit 
spread or dispersion, the tendency to depart from central tendency. If measurement 
of central tendency is thought of as good bets, then measures of spread represent the 
poorness of central tendency otherwise called deviation or error. The larger such 
deviations are, the more do cases differ from each other and the more spread does 
the distribution show. What we need is an index to refl ect this spread or variability. 
First of all, why not simply take the average of the deviations (d-values) about the 
mean as measure of variability:

     ( )Σ =d / n  where n sample size.
    

 This, however, will not work, because when we add up negative and positive 
departures from the mean, our overall variance will equal zero. A device to get 
around this diffi culty is to take the square of each deviation:

     ( )Σ 2d / n  is defined the variance of n observations.
    

  S  (d/n), although it can not be used as index to refl ex variability, can be readily 
used to defi ne the mean of a sample of repeated observations, if the size of observa-
tions is taken as distance from zero rather than mean. Suddenly, means and vari-
ances look a lot the same, and it is no surprise that statistical curves and tables used 
to assess either of them are closely related. A Chi-square-distribution is nothing else 
than the distribution of square values of a normal-distribution. Null-hypothesis-
testing-of-variances is much similar to null-hypothesis-testing-of-means. With the 
latter we reject the null-hypothesis of no effect if our mean is more than 1.96 SEMs 
(standard errors of the mean) distant from zero. With the latter we reject the null-
hypothesis of no effect if our standardized variance is more than 1.96 2  SEMs 2  dis-
tant from zero. Because variances are squared and, thus, non-negative values, the 
Chi-square approach can be extended to test hypotheses about many samples. When 
variances or add-up variances of many samples are larger than allowed for by the 
Chi-square-distribution-graphs, we reject the probability that our results are from 
normal distributions, and conclude that our results are signifi cantly different from 
zero. The Chi-square test is not only adequate to test multiple samples simultane-
ously, but is also the basis of analysis of variance (ANOVA).  

    3   The Normal Distribution 

 The normal distribution curve can be drawn from the formula below.

     π
− −=

2 2( ) /2

2

1
( )

2

x m sf x e
s    

where s = standard deviation and m = mean value. 
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 Repeated observations in nature do not precisely follow this single mathematical 
formula, and may even follow largely different patterns. The formula is just an 
approximation. And so, it is remarkable that the approach works in practice, although 
the p-values obtained from it are sometimes given inappropriate emphasis. We 
should not forget that a p-value of <0.001 does not mean that we have proven some-
thing for the entire population, but rather that we have proven something on the 
understanding that our data follow a normal distribution and that our data are repre-
sentative for the entire population. Frequently, the results as provided by clinical 
trials are much better than those observed in general practice, because the popula-
tion follows a different frequency distribution or because the enrollees in a trial are 
selected groups not representative for the entire population. We wish that more often 
these possibilities would be accounted by the advocates of evidence-based medi-
cine. If we are willing to accept the above limitations, the normal distribution can be 
used to try and make predictions, with the understanding that statistical testing can-
not give certainties, only chances. How was the normal distribution invented? At 
fi rst, investigators described their data in the form of histograms (Fig.  41.1  upper 
graph: on the x-axis the individual data and on the y-axis how often).  
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  Fig. 41.1     Upper graph  shows histogram: on the x-axis we have the individual data and on the 
y-axis we have “how often” (the mean value is observed most frequently, while the bars on both 
side of the mean gradually grew shorter).  Lower graph  shows normal distribution: the bars on the 
y-axis have been replaced with a continuous line, it is now impossible to read from the graph how 
many patients had a particular outcome. Instead, we infer that the total area under the curve ( AUC ) 
represents 100% of our data, AUC left from the mean represents 50%, left from −1 SD (standard 
deviation) approximately 15% of the data, and left from −2 SDs approximately 2.5% of the data. 
This curve although suitable for describing a sample of repeated observations, is not yet adequate 
for testing statistical hypotheses       
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 Often, the mean value is observed most frequently, while the bars on both side of 
the mean gradually grow shorter. From this histogram to a normal distribution curve 
is a short step (Fig.  41.1  lower graph). The bars on the y-axis have been replaced by 
a continuous line. It is now impossible to read from the graph how many patients 
had a particular outcome. Instead, relevant inferences can be made: the total area 
under the curve (AUC) presents 100% of our data, AUC left from the mean presents 
50%, left from −1 SD (standard deviation) approximately 15% of the data, and left 
from −2 SDs approximately 2.5% of the data. This curve although suitable for 
describing a sample of repeated observations, is not yet adequate for testing statisti-
cal hypotheses. For that purpose, a narrow normal curve is required (Fig.  41.2 ).  

 The narrow and wide curve from Fig.  41.2  are both based on the same data, but have 
different meaning. The wide (with SDs on the x-axis) one summarizes the data of our 
trial, the narrow one (with SEMs (standard errors of the mean) on the x-axis) summa-
rizes the means of many trials similar to ours. This may be diffi cult to understand, but 
our sample is representative, and it is easy to conceive that the distributions of means 
of many similar samples from the same population will be narrower and have fewer 
outliers than the distribution of the actual data. This concept is relevant, because we 
want to use it for making predictions from our data to the entire population. 

 We should add here that there is only a small difference between the normal and 
the t-distribution. The latter is a bit wider with small numbers. The chi-square dis-
tribution makes no difference between normally and t-like distributed data.  

    4   Null-Hypothesis Testing with the Normal or t-Distribution 

 What does “null-hypothesis” mean: we hypothesize that if the result of our trial is 
not different from zero, we have a negative trial. What does the null-hypothesis look 
like in graph? Figure  41.3  shows H 

1
 , the graph based on the data of our trial with 

SEMs on the x-axis (z-axis), and H 
0
 , the same graph with a mean of 0.  
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  Fig. 41.2    Narrow and wide 
normal curve: the wide one 
summarizes the data of our 
trial, the narrow one 
summarizes the means of 
many trials similar to our trial       
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 Now we make a giant leap from our data to the entire population, and we can do 
so, because we assume, that our data are representative for the entire population. 
H 

1
  is also the summary of the means of many trials similar to our trial. If we 

repeated the trial, differences would be small and the summary would look alike. 
H 

0
  is also the summary of the means of many trials similar to our trial, but with an 

overall effect of 0. Our mean is not 0, but 2.9. Still it could be an outlier of may 
studies with an overall effect of 0. So, think from now on of H 

0
  as distribution of 

the means of many trials with overall effect 0. If hypothesis 0 is true, then the mean 
of our study is part of H 

0
 . We can not prove this, but we can calculate the chance/

probability of this possibility. A mean result of 2.9 is far distant from 0. Suppose it 
belongs to H 

0
 . Only 5% of the H 

0
 -trials are more than 2.1 SEMs distant from 0, 

because the AUC of H 
0
  = 5%. Thus, the chance that it belongs to H 

0
  is less than 5%. 

We reject the null-hypothesis of no effect concluding that there is less than 5% 
chance to fi nd this result. In usual terms, we reject the null-hypothesis of no effect 
at p <0.05 or <5%.  

    5   Relationship Between the Normal Distribution 
and Chi-Square Distribution, Null-Hypothesis 
Testing with Chi-Square Distribution 

 The upper graph of Fig.  41.4  shows a normal distribution, on the x-axis individual 
data expressed as distances from the mean, and on the y-axis “how often” the indi-
vidual data are being observed. The lower graph of Fig.  41.4  shows what happens 
of the x-values of this normal distribution is squared. We get no negative x-values 
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  Fig. 41.3     H  
 1 
  is the graph based on the data of our trial with SEMs on the x-axis (z-axis), and  H  

 0 
  

is the same graph with mean 0 (mean ± SEM = 0 ± 1)       
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anymore, and the x-values 0 and 1 give rise to y-values twice the size, while the 
new curve is skewed to the right: the new curve is what we call a chi-square curve. 
The upper curve is used to test the null-hypothesis that the mean result of our trial 
is signifi cantly different from zero, the lower one to test that our variance is signifi -
cantly different from zero.  

 Figure  41.5  shows how things work in practice. The upper graph gives on the 
x-axis the possible mean result or our trial expressed in units of SEMs, otherwise 
called z-value, or, with t-test, t-value. On the y-axis we “how often this result will 
be obtained”. If our mean result is more than approximately 2 SEMs (or with 
normal distribution precisely 1.96 SEMs) distant from zero, this will happen in 
5% of the cases, because the AUC right from 1.96 SEMs is 5%. If more than 2.58 
distant from zero, this will happen in 1% of the cases. With a result that far from 

  Fig. 41.4     Upper graph  shows a normal distribution.  Lower graph  shows what happens if the 
x-values of this normal-like-curve are squared. The normal-curve changes into a Chi-square-
curve       
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zero we reject the null-hypothesis that our result is not different from 0, and 
conclude that, obviously, our data are signifi cantly different from 0, at p <5% or 1% 
(<0.05 or <0.01).  

 Figure  41.5  lower graph gives a draft of the possible variances of our trial. On the 
x-axis we have the variance of our trial expressed in units (SEMs) 2 , otherwise called 
z 2 -values. On the y-axis we have again “how often this variance will be obtained”. 
For example, if our variance is more than 1.96 2  SEMs 2  distant from zero, this will 
happen in less than 5% of the cases. This is so, because the AUC right from z 2  = 1.96 2  
is 5% of the total AUC of 100%. If our variance is more than z 2  = 2.58 2  distant from 
zero, this chance is 1%. We reject the null-hypothesis that our variance is not signifi -
cantly different from 0 and we do so at a probability of 1% (p < 0.01).  

  Fig. 41.5     Upper graph  gives the x-values, otherwise called z-values, of a null-hypothesis of a real 
normal-distribution.  Lower graph  shows what happens when z-values are squared. The z-distribu-
tion turns into a non-negative Chi-square-distribution.  Upper graph : with z >1.96 the  right-end  
AUC <5%;  lower graph : with z 2  >(1.96) 2  the  right-end  AUC <5%       
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    6   Examples of Data Where Variance Is More 
Important Than Mean 

 The effects on circadian glucose levels of slow-release-insulin and acute-release-
insulin are different. The mean glucose-level is the same for both treatment formu-
las, but the latter formula produces more low and high glucose levels. Spread or 
variance of the data is a more important determinant of treatment effect than is the 
mean glucose value. 

 A pill producing device is approved only if it will produce pills with a SD not 
larger than e.g. 6 mg. Rather than mean the variance of a test-sample is required to 
test the device. 

 People on selective serotonin reuptake inhibitors (SSRIs) may not only show a 
lower average of performance, but also a higher variability in performance relative 
to their counterparts. Variance, in addition to average of performance is required to 
allow for predictions on performances. 

 The variability in stay-days in hospital is more relevant than the mean stay-days, 
because greater variability is accompanied with a more demanding type of care. 

 Why should we statistically test such questions anyway? Or why not simply 
calculate the mean result and standard deviation of a sample of data, and, then, 
check if the SD is within a predefi ned area. We, subsequently, accept this as suffi -
cient probability to make further predictions about future observations. However, by 
doing so we will never know the size of this probability. A statistical test rejects the 
null-hypothesis of no difference from 0 at a 5% or lower level of probability, and 
this procedure is widely valued as a powerful aid to erroneous conclusions. A more 
extensive overview of current routine methods to assess variability of data samples 
is given in Chap.   26    .  

    7   Chi-Square Can Be Used for Multiple Samples of Data 

    7.1   Contingency Tables 

 The simplest extension of the chi-square test is the analysis of a two-by-two contin-
gency table. With contingency tables we want to test whether two groups of binary 
data (yes/no data) are signifi cantly different from one another. We have 4 cells ((1) 
group-1 yes, (2) group-1 no, (3) group-2 yes, (4) group-2 no). The null-hypothesis 
is tested by adding up:

     

( ) ( ) ( ) ( )2 2 2 2

cell 1 cell 2 cell 3 cell 4

cell 1 cell 2 cell 3 cell 4

O E O E O E O E
chi - square

E E E E

− − − −
= + + +
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where O means observed numbers, and E means expected numbers per cell if no 
difference between the two groups is true (the null-hypothesis). The E-value in the 
denominator standardizes the test-statistic.  

    7.2   Pooling Relative Risks or Odds Ratios in a Meta-analysis 
of Multiple Trials 

 In meta-analyses the results of the individual trials are pooled in order to provide a 
more powerful assessment. Chi-square-statistic is adequate for testing a pooled 
result. The natural logarithms are used to approximate normality.

     

⎛ ⎞
+ + …⎜ ⎟

⎝ ⎠=
+ + +…

2

31 2
2 2 2
1 2 3

2 2 2
1 2 3

lnRRlnRR lnRR

s s s
Chi - square

1 1 1

s s s    

where RR means relative risk and s means SD of this relative risk per sample. The 
1/s 2 -term in the denominator takes care that a weighted average is calculated.  

    7.3   Analysis of Variance (ANOVA) 

 Unlike the normal-test or the t-test, the Chi-square-test can be extended to testing 
more than one sample of data simultaneously. Variances are non-negative values, 
and they can simply be added up. This is, actually, the way variance is defi ned, the 
add-up sum of squared distances from the mean. Any subsequent sample of data, if 
from a normal distribution or t-distribution can be simply added up to the fi rst sam-
ple and the add-up sum can be analyzed simultaneously. And, so, with little more 
effort than demonstrated for 1 sample of data, multiple samples can be added to the 
model in order to test the null-hypothesis of no difference from zero. This is possi-
ble both for samples of continuous data and proportional data, including percent-
ages, proportions, odds ratios, risk ratios etc. The only difference is the breadth of 
the chi-square curve: it gets wider and wider the more samples or the more propor-
tions we add (Fig.  41.6 ).  

 A further extension of the use of the Chi-square-statistic is ANOVA. ANOVA 
makes use of the division-sum of two Chi-square-distributions. This division-sum, 
indeed, looks much like a usual Chi-square-distribution, as shown for example in 
Fig.  41.7 .  
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  Fig. 41.6    The general form of the Chi-square distributions for larger samples of data       

5% 1%

dfs 4 and 20

F6543

2.87

20 1

4.43

  Fig. 41.7    Example of an F-distribution making use of the division-sum of two Chi-square-
distributions with 4 and 20 degrees of freedom (dfs)       
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 For example, ANOVA with k groups works as follows:  
     Total variation

Between-group-variation within-group-variation

    

 Variations are expressed as sums of squares (SS) and can be added up to obtain the total 
variation. 

 We assess whether between-group-variation is large compared to within-group-variation. 
 Group  n patients  mean  sd 
 1  –  –  – 
 2  –  –  – 
 3  –  –  – 

 … 

 k 

     ( )Grand mean mean 1 2 3 ..k / k= + + +
   

     
( ) ( )2 2

between groups 1 1 2 2SS n mean grand mean n mean grand mean= − + − +…
   

     
( )( ) ( )( )2 2

within groups 1 1 2 2SS n 1 sd n 1 sd= − + − +…
   

     

*
between groups

within groups

SS / dfs
F test - statistic

SS / dfs
= =

   
  * dfs means degrees of freedom (for SS between groups dfs = k − 1, for SS within groups 

dfs = n 
1
  + n 

2
  + n 

3
  + ..n 

k
  − k). 

 The F-table gives p-value. 

    8   Discussion 

 The current chapter is not a cook-book-like instruction for the use of various statistical 
methods. It only briefl y examines the connection between the Chi-square-distribution 
and other important statistical distributions. They form the basis of all statistical 
inferences, which are given so much emphasis in today’s clinical medicine. The 
Chi-square-distribution is directly derived from the normal-distribution. The 
F-distribution is directly derived from the Chi-square distribution. Over and over 
again, these distributions have shown their utility in the solution of problems in 
statistical inference. However, none of these distributions is empirical in the sense 
that someone has taken a large number of samples and found that the sample values 
actually follow the same mathematical function. Of course, nature does not follow 
a single mathematical function. The function is an approximation, but it performs 
well and has proven to be helpful in making clinical predictions. The distribution is 
also based on assumptions, and, like other theory-based assessments, deals with 
“if-then” statements. That is why the assumptions about representative samples and 
normal-distribution in our sample are so important. If we apply the theory of statistics 
for making inferences from samples, we cannot expect this theory to provide us 
with adequate answers unless conditions specifi ed in the theory hold true. 
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 Apart from the general requirement of random sampling of independent observations, 
the most usual assumption made is that the population-distribution is normal. The 
Chi-square, the t -, and the F -distributions all rest upon this assumption. The nor-
mal-distribution can be considered the “parent” distribution to the others. Similarly, 
there are close connections between the F-distribution and both the normal- and the 
Chi-square-distributions. Basically, the F-statistic is the ratio of two independent 
Chi-square-statistics, each of which characterized by its own degrees of freedom. 
Since a Chi-square-statistic is defi ned in terms of a normal-distribution, the 
F-distribution also rests upon the same assumptions, albeit of two (or more than 
two) normal-distributions. The Chi-square-distribution focused on in this paper is, 
thus, just another approach of the bell-shape-like normal distribution and is also the 
basic element of the F-distribution. Having some idea of the interrelations of these 
distributions will be of help in understanding how the Chi-square is used to test a 
hypothesis-of-variance, and how the F-distribution is used to test a hypothesis-
about-several-variances. 

 We conclude that the Chi-square-distribution and its extensions have become the 
basis of modern statistics and have provided clinical scientists with a relatively sim-
ple device to analyze complex data, including multiple groups/multiple variances. 
The present chapter was written for clinical investigators/scientists in order to better 
understand benefi ts and limitations of Chi-square-statistic and its many extensions 
for the analysis of experimental clinical data.  

    9   Conclusions 

 Statistical analyses of clinical data are increasingly complex. They often involve 
multiple groups and measures. Such data can not be assessed simply by differences 
between means but rather by comparing variances. The objective of this chapter was 
to focus on the Chi-square ( c  2 )-test as a method to assess variances and test differ-
ences between variances. To give examples of clinical data where the emphasis is on 
variance. To assess interrelation between Chi-square and other statistical methods 
like normal-test (Z-test), T-test and Analysis-Of-Variance (ANOVA). 

 A Chi-square-distribution is nothing else than the distribution of square values of 
a normal-distribution. Null-hypothesis-testing-of-variances is much similar to null-
hypothesis-testing-of-means. With the latter we reject the null-hypothesis of no 
effect if our mean is more than 1.96 SEMs (standard errors of the mean) distant 
from zero. With the latter we reject the null-hypothesis of no effect if our standard-
ized variance is more than 1.96  2  SEMs 2  distant from zero. Because variances are 
squared and, thus, non-negative values, the Chi-square approach can be extended to 
test hypotheses about many samples. When variances or add-up variances of many 
samples are larger than allowed for by the Chi-square-distribution-graphs, we reject 
the probability that our results are from normal distributions, and conclude that our 
results are signifi cantly different from zero. The Chi-square test is not only adequate 
to test multiple samples simultaneously, but is also the basis of ANOVA. 
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 We conclude that the Chi-square-distribution focused on in this chapter is just 
another approach of the bell-shape-like normal-distribution and is also the basic 
element of the F-distribution as used in ANOVA. Having some idea about interrela-
tions between these distributions will be of help in understanding benefi ts and limi-
tations of Chi-square-statistic and its many extensions for the analysis of experimental 
clinical data.      
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     1   Introduction    

 As it comes to well-balanced random sampling of representative experimental data, 
nature will be helpful to provide researchers with results that comply with the ran-
dom property. It means that such data closely follow statistical frequency distribu-
tions. We continually make use of these statistical frequency distributions for 
analyzing the data and making predictions from them. However, we, virtually, never 
assess how close to the expected frequency distributions the data actually are. 
Unrandomness of the data may be one of the reasons for the lack of homogeneity in 
current research, and may jeopardize the scientifi c validity of research data (Cleophas 
 2004a,   b ; Cleophas and Cleophas  2001  ) . Statistical tests used for the analysis of 
clinical trials assume that the observations represent a sample drawn at random 
from a target population. It means that any member of the population is as likely to 
be selected for the sampled group as the other. An objective procedure is required to 
achieve randomization. When other criteria are used to permit investigators to infl u-
ence the selection of subjects, one can no longer conclude that the observed effects 
are due to the treatment rather than biases introduced by the process of selection. 
Also, when the randomization assumption is not satisfi ed, the logic underlying the 
distributions of the test statistics used to estimate that the observed effects are due 
to chance rather than treatment effect fails, and the resulting p-values are meaning-
less. Important causes for unrandomness in clinical trials include extreme exclusion 
criteria (Furberg  2002  )  and inappropriate data cleaning (Cleophas  2004a  ) . 

 In the present chapter we review some methods to assess clinical data for their 
compliance with the random property.  

    Chapter 42   
 Testing Clinical Trials for Randomness                    
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    2   Individual Data Available 

 If the individual data from a clinical trial are available, there are two methods to 
assess the data for their compliance with the random property, the chi-square good-
ness of fi t and the Kolmogorov-Smirnov goodness of fi t tests. Both tests are based 
on the assumption that differences between observed and expected experimental 
data follow normal distributions. The two tests raise similar results. If both of them 
are positive, the presence of unrandomness in the data can be assumed with confi -
dence, and effi cacy analysis of the data will be a problem. The tests can be used with 
any kind of random data like continuous data, proportions or frequencies. In this 
section two examples of continuous data will be given, in the next section an example 
of frequencies will be given. Also, we briefl y address randomness of survival data, 
which are increasingly used as primary endpoint variable, e.g., of the 2003 volume 
362 of the Lancet in 48% of the randomized trials published. 

    2.1   Method 1: The Chi-Square Goodness of Fit Test 

 In random populations body-weights follow a normal distribution. Is this also true 
for the body-weights of a group of patients treated with a weight reducing com-
pound? The example is modifi ed from Levin and Rubin with permission from the 
editor (Levin and Rubin  1998  ) .  

 Individual weight (kg) 

 85  57  60  81  89  63  52  65  77  64 
 89  86  90  60  57  61  95  78  66  92 
 50  56  95  60  82  55  61  81  61  53 
 63  75  50  98  63  77  50  62  79  69 
 76  66  97  67  54  93  70  80  67  73 

 The area under the curve (AUC) of a normal distribution curve is divided into 
fi ve equiprobable intervals of 20% each, we expect approximately 10 patients per 
interval. From the data a mean and standard deviation (sd) of 71 and 15 kg are cal-
culated. Figure  42.1  shows that the standardized cut-off results (z-values) for the 
fi ve intervals are −0.84, −0.25, 0.25 and 0.84. The real cut-off results are calculated 
according to

     

−= = unstandardized result  mean result
z standardized result

sd    

and are given below (pts = patients).   
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 Intervals (kgs)  -¥  58.40  67.25  74.25  83.60  ¥ 
 As they are equiprobable, 

we expect per interval: 
 10 pts  10 pts  10 pts  10 pts  10 pts 

 We do, however, observe 
the following numbers: 

 10 pts  16 pts   3 pts  10 pts  11 pts 

 The chi-square value is calculated according to

     

( )−
=∑

2
observed number expected number

8.6
expected number    

This chi-square value means that for the given degrees of freedom of 5 − 1 = 4 
(there are fi ve different intervals) the null-hypothesis of no-difference-between-
observed-and-expected can not be rejected. However, our p-value is <0.10, and, so, 
there is a trend of a difference. The data may not be entirely normal, as expected. 
This may be due to lack of randomness.  

    2.2   Method 2: The Kolmogorov-Smirnov Goodness of Fit Test 

 In random populations plasma cholesterol levels follow a normal distribution. Is this 
also true for the plasma cholesterol levels of the underneath patients treated with a 
cholesterol reducing compound? This example is also modifi ed from Levin and 
Rubin with permission from the editor (Levin and Rubin  1998  ) .  

 Cholesterol (mmol/l)  <4.01  4.01–5.87  5.87–7.73  7.73–9.59  >9.59 

 Numbers of pts  13  158  437  122  20 

 The cut-off results for the fi ve intervals must be standardized to fi nd the expected 
normal distribution for these data according to

     

unstandardized result mean result
z standardized cut-off result

sd.

−
= =

    

  Fig. 42.1    The standardized 
cut-off results (z-values) for 
the fi ve intervals with an 
AUC of 20% are −0.84, 
−0.25, 0.25, and 0.84 ( AUC  
area under the curve)       
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 With a calculated mean (sd) of 6.80 (1.24) we fi nd −2.25, −0.75, 0.75 and 2.25. 
Figure  42.2  gives the distribution graph plus AUCs. With 750 cholesterol-values in 
total the expected frequencies of cholesterol-values in the subsequent intervals are

     

12.2 750 9.2

21.4 750 160.8

54.7 750 410.1

21.4 750 160.8

12.2 750 9.2

× =
× =
× =
× =
× =      

 The observed and expected frequencies are, then, listed cumulatively 
(cumul = cumulative):  

 Frequency 
observed  Cumul 

 Relative 
(cumul/750)  Expected  Cumul 

 Relative 
(cumul/750) 

 Cumul 
observed-expected 

 13  13  0.0173  9.1  9.1  0.0122  0.0051 
 158  171  0.2280  160.9  170.0  0.2266  0.0014 
 437  608  0.8107  410.1  580.1  0.7734  0.0373 
 122  730  0.9733  160.8  740.9  0.9878  0.0145 
 20  750  1.000  9.1  750  1.000  0.0000 

 According to the Kolmogorov-Smirnov table (Table  42.1 ) the largest cumulative 
difference between observed and expected should be smaller than 
    √ = =1.36 / n 1.36 / 750 0.0497   , while we fi nd 0.0373. This means that these data 
are well normally distributed. We should add that a positive Kolmogorov-Smirnov 
test not only indicates that normal testing is not warranted, but also that rank testing 
(see also Chap.   23     and the next chapter) is not to be recommended, as Kolmogorow-
Smirnov tests are based on a normal distribution of the data after cumulative rank-
ing of the data.   

    2.3   Randomness of Survival Data 

 Cox regression is routinely used for the analysis of survival data. It assumes that 
randomly sampled human beings survive according to an exponential pattern. The 
presence of an exponential pattern can be confi rmed by logarithmic transformation. 

  Fig. 42.2    The standardized 
cut-off results (z-values) for 
the fi ve intervals are 
calculated to be −2.25, 
−0.75, 0.75, and 2.25. 
Corresponding AUCs are 
given in the graph ( AUC  area 
under the curve)       
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If the transformed data are signifi cantly different from a line, the exponential 
relationship can be rejected. Figure  42.3  shows the survivals of 240 patients with 
small cell carcinomas, and Fig.  42.4  shows the natural logarithms of these survivals. 
From Fig.  42.4  it can be observed that logarithmic transformation of the numbers of 
patients alive readily produces a close to linear pattern. A Pearson’s correlation 
coeffi cient of these data at p < 0.0001 confi rms that these data are closer to a line 
than could happen by chance. We can conclude that these survival data are compat-
ible with a sample drawn at random.     

    3   Individual Data Not Available 

    3.1   Studies with Single Endpoints 

 If the actual data from the research are not available like in most clinical reports, it 
is harder to assess randomness of the data. However, it is not impossible to do so. 
Some criteria for assessing main endpoint results of published studies for such 

   Table 42.1    Critical values of the Kolmogorov-Smirnov goodness of fi t test   

 Sample 
size (n) 

 Level of statistical signifi cance for maximum difference 
between cumulative observed and expected frequency 

 n  0.20  0.15  0.10  0.05  0.01 

 1  0.900  0.925  0.950  0.975  0.995 
 2  0.684  0.726  0.776  0.842  0.929 
 3  0.565  0.597  0.642  0.708  0.828 
 4  0.494  0.525  0.564  0.624  0.733 
 5  0.446  0.474  0.510  0.565  0.669 
 6  0.410  0.436  0.470  0.521  0.618 
 7  0.381  0.405  0.438  0.486  0.577 
 8  0.358  0.381  0.411  0.457  0.543 
 9  0.339  0.360  0.388  0.432  0.514 
 10  0.322  0.342  0.368  0.410  0.490 
 11  0.307  0.326  0.352  0.391  0.468 
 12  0.295  0.313  0.338  0.375  0.450 
 13  0.284  0.302  0.325  0.361  0.463 
 14  0.274  0.292  0.314  0.349  0.418 
 15  0.266  0.283  0.304  0.338  0.404 
 16  0.258  0.274  0.295  0.328  0.392 
 17  0.250  0.266  0.286  0.318  0.381 
 18  0.244  0.259  0.278  0.309  0.371 
 19  0.237  0.252  0.272  0.301  0.363 
 20  0.231  0.246  0.264  0.294  0.356 
 25  0.21  0.22  0.24  0.27  0.32 
 30  0.19  0.20  0.22  0.24  0.29 
 35  0.18  0.19  0.21  0.23  0.27 
 Over 35  1.07  1.14  1.22  1.36  1.63 

 Ön  Ön  Ön  Ön  Ön 
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  Fig. 42.3    Survivals of 240 
random patients with small 
cell carcinomas       

  Fig. 42.4    The logarithmic 
transformation of the 
numbers of patients from 
Fig.  42.3  produces a close to 
linear pattern       
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purpose have been recently proposed by us (Cleophas  2004a,   b  ) , and have already 
been addressed in Chap.   10    .

    1.    An observed p-value of <0.0001 in a clinical trial. 
 In statistics, a generally accepted concept is “the smaller the p-value, the better 
reliable the results”. This is not entirely true with current randomized controlled 
trials. First, randomized controlled trials are designed to test small differences. 
A randomized controlled trial with major differences between old and new treat-
ment is unethical because half of the patients have been given an inferior treat-
ment. Second, they are designed to confi rm prior evidence. For that purpose, their 
sample size is carefully calculated. Not only too small, but also too large a sample 
size is considered unethical and unscientifi c, because negative studies have to be 
repeated and a potentially inferior treatment should not be given to too many 
patients. Often in a study the statistical power is set at 80%. An expected power of 
80% means a <10% chance of a p-value <0.0001 with normally distributed data 
(Hung et al.  1997  )  and a <5% chance of a p-value <0.0001 with t-distributed data 
and samples sizes under 50, (as often observed in, e.g., oncology trials).  

    2.    An observed p-value of >95% in a clinical trial. 
 P-values are generally used as a cut-off levels to indicate the chance of a differ-
ence from H 

0
  (the null-hypothesis-of-no-effect) in our data. The larger the p-value 

the smaller the chance of a difference from H 
0
 . A p-value of 1.00 means 0% 

chance of a difference, while a p-value of 0.95 means a chance of a difference 
close to 0%. A p-value of >0.95 literally means that we have >95% chance of 
fi nding a result less close to H 

0
 , which means a chance of <(1–0.95), i.e., <0.05 

of fi nding a result this close or closer. Using the traditional 5% decision level, 
this would mean, that we have a strong argument that such data are closer to H 

0
  

than compatible with random sampling.  
    3.    An observed standard deviation (sd) <50% the sd expected from prior population 

data. From population data we can be pretty sure about sds to be expected. For 
example, the sds of blood pressures are close to 10% of their means, meaning 
that for a mean systolic blood pressures of 150 mmHg the expected sd is close to 
15 mmHg, for a mean diastolic blood pressure of 100 mmHg the expected sd is 
close to 10 mmHg. If such sds can be assumed to follow a normal distribution, 
we will have <5% chance of fi nding sds <7.5 and <5 mmHg respectively.  

    4.    An observed standard deviation (sd) >150% the sd expected from prior popula-
tion data. With sds close to 10% of their means, we, likewise, will have <5% 
chance of fi nding sds >150% the size of the sds expected from population data.      

    3.2   Studies with Multiple Endpoints 

 A simple method to check the accuracy of multiple endpoints is to examine the 
distribution of the fi nal digits of the results, using the chi-square goodness of fi t test. 
In a clinical trial of cholesterol lowering treatment the results were presented mainly 
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in the form of relative risks (RR = risk of mortality during treatment/risk of mortality 
during control). In total 96 RRs were presented with many of them showing a 9 or 
1 as fi nal digit. For example, RRs of 0.99, 0.89, 1.01, and 1.11 etc were often 
reported. The accuracy of the multiple endpoints is checked according to 
Table  42.2 .  

 If there were no tendencies to record only whole RRs, we would expect equal 
numbers of 0s, 1s, 2s,….9s for the fi nal digit, that is 9.6 of each. The agreement 
between the observed and expected digits is, then, tested according to

     

( )−
= = −∑

2
observed expected

Chi - square 199.7 for 10 1 degrees of freedom
expected    

(there are 10 different frequencies). For the given degrees of freedom a chi-square 
value >27.88 means that the null-hypothesis of no-difference-between-observed-and-
expected can rejected at a p-value <0.001. The distribution of the fi nal digits of the 
RRs in this study does not follow a random pattern. The presence of unrandomness 
in these results can be assumed with confi dence, and jeopardizes the validity of 
this study.   

    4   Discussion 

 This chapter gives some simple statistical methods to assess trial data for their com-
pliance with the random property. We should add that distribution-free statistical 
tests that are less dependent on random distributions, are available, but, in practice, 
they are used far less frequently than normal tests. Also, with slight departures from 
the normal distribution, normal tests are used even so. The same applies to the analy-
sis of unrandomized studies: for their statistical analysis the same statistical tests are 

   Table 42.2    Multiple risk ratios as reported in a “statin” paper   

 Final digit or RR  Observed frequency  Expected frequency 

 
    

( )2
observed expected

expected

−∑    

 0  24  9.6  21.6 
 1  39  9.6  90.0 
 2  3  9.6  4.5 
 3  0  9.6  9.6 
 4  0  9.6  9.6 
 5  0  9.6  9.6 
 6  0  9.6  9.6 
 7  1  9.6  7.7 
 8  2  9.6  6.0 
 9  27  9.6  31.5 
 Total  96  96.0  199.7 
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applied as those applied for randomized studies, although this, at the same time, is 
one of the main limitations of this kind of research. The issue of the current chapter 
is not the statistical analysis of unrandom data but rather the detection of it. 

 Regarding the studies with multiple endpoints, the problem is often a depen-
dency of the endpoints in which case the presented method for the assessment of 
unrandomness is not adequate. For example endpoints like deaths, metastases, local 
relapses, etc in an oncology trial cannot be considered entirely independent. 
However, if the initial digits of the results are equally distributed, like, e.g., RRs 
1.1/2.1/3.1/4.1/5.1, then little dependency is to be expected, and the presented 
method can be properly performed. 

 Important causes for unrandomness in clinical trials include extreme exclusion 
criteria (Furberg  2002  )  and inappropriate data cleaning (Cleophas  2004a  ) . The fi rst 
cause can be illustrated by the study of Kaariainen et al  (  1991  )  comparing the effect 
of strict and loose inclusion criteria on treatment results in 397 patients hospitalized 
for gastric ulcers. While under the loose inclusion criteria virtually none of patients 
had to be excluded, 71% of them had to be excluded under the strict inclusion crite-
ria. Major complications of treatment occurred in 71 out of the 397 patients with the 
loose , in only two out of 115 patients with the strict inclusion criteria. These two 
major complications can hardly be considered representative results from a sample 
drawn at random from the target population. The second cause can be illustrated by 
Mendel’s pea data. In 1860 Gregor Mendel performed randomized trials “avant la 
lettre” by using a selective samples of peas with different phenotypes. When we 
recently looked into Mendel’s pea data, and performed a chi-square test, we had to 
conclude that the chi-square value was too small not to reject the null hypothesis 
(P > 0.99) (Cleophas and Cleophas  2001  ) . This means that Mendel’s reported data 
were so close to what he expected that we could only conclude that he somewhat 
misrepresented the data. 

 The current chapter is an effort to provide the scientifi c community with some 
simple methods to assess randomness of experimental data. These methods are rou-
tinely used in accountancy statistics for assessing the possibility of fi nancial fraud, 
but they cannot be found in most textbooks of medical statistics. 

 Evidence-based medicine is under pressure due to the confl icting results of recent 
trials producing different answers to similar questions (Julius  2003 ; Cleophas and 
Cleophas  2003  ) . Many causes are mentioned. As long as the possibility of unran-
dom data has not been addressed, this very possibility cannot be excluded as poten-
tial cause for the obvious lack of homogeneity in current research.  

    5   Conclusions 

 Well-balanced randomly sampled representative experimental data comply with 
the random property meaning that they follow statistical frequency distributions. 
We continually make use of these frequency distributions to analyze the data, but 
virtually never assess how close to the expected frequency distributions the data 
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actually are. Unrandom data may be one of the reasons for the lack of homogeneity 
in the results from current research. The objective of this chapter was to propose 
some methods for routinely assessing clinical data for their compliance with the 
random property. 

 If the individual data from the trial are available, the chi-square goodness of fi t 
and the Kolmogorov-Smirnov (KS) goodness of fi t tests can be applied (both tests 
yield similar results and can be applied with any kind of data including continuous 
data, proportions, or frequencies), for survival data logarithmic transformation can 
be applied. It is wise to fi rst perform a chi-square goodness of fi t test. If positive, 
normal tests for data analysis will not be adequate. A subsequent KS test may be 
negative, and if so, rank testing will be no problem. If the individual data from the 
trial are not available, the following criteria may be used: observed p-values between 
0.0001 and 0.95, observed standard deviations (sds) between 50% and 150% of the 
sd expected from population data. With multiple endpoints, the distribution of the 
fi nal digits of the results may be examined using a chi-square goodness of fi t test. In 
the current chapter some simple statistical tests and criteria are given to assess ran-
domized clinical trials for their compliance with the random property.      
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     1   Introduction 

 Current clinical trials do not use random samples anymore. Instead, they use conve-
nience samples from selected hospitals, including only patients with strict charac-
teristics, like cut-off laboratory values. This practice, although it improves the 
precision of the treatment comparison, raises the risk of non-normal data. This is a 
problem since the assumption of normality underlies many statistical tests. If this 
assumption is not satisfi ed, the logic underlying the distributions of the test statistics 
used to estimate whether the observed effects are due to chance rather than treat-
ment effect, fails, and, consequently, the resulting p-values are meaningless. 
Evidence-based medicine is under pressure due to the heterogeneity of current trials 
(Cleophas  2004 ; Furberg  2002 ; Kaaraininen et al.  1991 ; Cleophas and Cleophas 
 2003  ) . The possibility of non-normal data cannot be excluded as a contributing 
cause for this. The current chapter reviews and describes for a non-mathematical 
readership methods to assess data for compliance with normality, and summarizes 
solutions for the analysis of non-normal data.  

    2   Non-normal Sampling Distributions, Giving Rise 
to Non-normal Data 

 Figure  43.1  gives an example of sampling distributions of patients with heterozy-
gous hypercholesterolemia. If all of the patients who genetically qualify are included, 
we will obtain an entirely normal frequency distribution of the individual LDL-
cholesterol values. If, however, only patients with an LDL-cholesterol  £ 5.7 or 
>3.4 mmol/l or between 3.4 and 5.7 mmol/l are included  ( Anonymous  2011  ) , we 
will obtain non-normal distributions as shown in the Fig.  43.1 . Figure  43.2  gives an 
example of patients with constitutional constipation before and after treatment with 
a laxative (Cleophas et al.  2006  ) . Only patients with <3 stools per week were 

    Chapter 43   
 Clinical Trials Do Not Use Random 
Samples Anymore                    



  Fig. 43.1    Sampling distributions of patients with heterozygous hypercholesterolemia with on the 
x-axis individual results and on the y = axis “how often”: ( 1 ) all of the patients that genetically 
qualify are included; ( 2 ) patients with an LDL-cholesterol  £ 5.6 included; ( 3 ) patients with LDL-
cholesterol >3.4 mmol/l included; ( 4 ) only patients with LDL-cholesterol between 3.4 and 
5.6 mmol/l    included       

  Fig. 43.2    Frequency distributions of patients with constitutional constipation before and after 
treatment with a laxative. Only patients with <3 stools per week were included       
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included. The Fig.  43.2  shows how a skewed sampling distribution may give rise to 
a non-normal trial result. This, obviously, happens not only to control groups and 
comparisons versus baseline, but also to active treatment groups, probably, due to 
the positive correlation between repeated observations in one subject.    

    3   Testing the Assumption of Normality 

 In trials with a single endpoint the chi-square goodness of fi t test as discussed in 
Chap.   42     can be applied. In case of multiple endpoints a simple method to check the 
normality of multiple endpoints is to examine the distribution of the fi nal digits of 
the results, also using the chi-square goodness of fi t test. The example was modifi ed 
from Kirkwood and Stern with permission from the editor  (  2003  ) . In a clinical trial 
of cholesterol lowering treatment the results were presented mainly in the form of 
relative risks (RR = risk of mortality during treatment/risk of mortality during con-
trol). In total 96 RRs were presented with many of them showing a 9 or 1 as fi nal 
digit. For example, RRs of 0.99, 0.89, 1.01, and 1.11 etc. were often reported. 

 The accuracy of multiple endpoints is checked as follows:  

 Final digit 
of RR 

 Observed 
frequency 

 Expected 
frequency 

 
    

( )2
observed expected

expected

−∑    

 0  24  9.6  21.6 
 1  39  9.6  90.0 
 2  3  9.6  4.5 
 3  0  9.6  9.6 
 4  0  9.6  9.6 
 5  0  9.6  9.6 
 6  0  9.6  9.6 
 7  1  9.6  7.7 
 8  2  9.6  6.0 
 9  27  9.6  31.5 
 Total  96  96.0  199.7 

 If there were no tendencies to record only whole RRs, we would expect equal 
numbers of 0s, 1s, 2s,…9s for the fi nal digit, that is 9.6 of each. The agreement 
between the observed and expected digits is, then, tested according to

    
( )−

= =∑
2

observed expected
chi - square 199.7

expected
   for 10 − 1 degrees of freedom 

(there are 10 different frequencies). For the given degrees of freedom a chi-square 
value >27.88 means that the null-hypothesis of no-difference-between-observed-
and-expected can rejected at a p-value < 0.001. The distribution of the fi nal digits of 
the RRs in this study does not follow a normal pattern. The presence of unrandom-
ness in these results can be assumed, and jeopardizes the validity of this study.  
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    4   What to Do in case of Non-normality 

 If the data are not normally distributed, they may be given ranknumbers and these 
ranknumbers often tend to look like normal distributions. For their analysis rank-
sum tests have been developed, including the Mann-Whitney’s and the Wilcoxon’s 
tests. In order to assess whether the data are suitable for rank-testing a special 
goodness of fi t test is available, the Kolmogorov-Smirnov test, as discussed in 
Chap.   42    . 

 Also confi dence intervals based on percentiles can be used if rank-testing is not 
warranted. Confi dence intervals can be derived from the data without prior assump-
tion about the type of distribution. The simplest way to do so is to take the range 
within which 95% of all possible outcomes lie. Medians rather than means should 
be used for calculation, because these data are skewed. The underneath method is 
correct for fi nding the 95% confi dence interval of a difference between medians.  

 Group 1  Group 2 

 3.99  3.18 
 3.79  2.84 
 3.60  2.90 
 3.73  3.27 
 3.21  3.85 
 3.60  3.52 
 4.08  3.23 
 3.61  2.76 
 3.81  3.60 

 Median 
 3.73  3.23 

 Difference in medians 
 0.50 

 All possible differences between the two groups (9 × 9 = 81) lie between −0.64 
and 1.24. After exclusion of 2.5% of the lowest and 2.5% of the highest differences, 
we will obtain a range containing 95% of the differences. This 95% confi dence 
interval is between −0.25 and 1.15. This interval includes the value 0, which means 
that the difference between the two groups is not signifi cantly different from 0 
(p > 0.05). 

 A largely similar but more sophisticated method to obtain confi dence intervals 
from your data is the bootstrap method (Levin and Rubin  1998 ; Carpenter and 
Bithell  2000  ) . Bootstrapping, otherwise called jack-knifi ng, is a data based simula-
tion process for statistical inference. The basic idea is sampling with replacement in 
order to produce random samples from the original data. The procedure is illustrated 
underneath for two bootstrap samples. In the fi rst bootstrap sample observation 1 
was picked up twice, while observations 2 and 4 were not picked. We repeat this 
procedure a large number of times, and record the difference in medians of each 
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bootstrap sample. To derive confi dence intervals, at least n 
group

   
1
  × n 

group
   
2
  = 9 × 9 = 81 

bootstraps are required. To calculate the confi dence intervals the percentile method 
like described above can be used. In this example a 95% confi dence interval between 
−0.12 and 1.09 was obtained, again not signifi cantly different from 0.  

 Original data  Bootstrap 1  Bootstrap 2 

 Group 1  Group 2  Group 1  Group 2  Group 1  Group 2 

 1.  3.99  10.  3.18  1.  3.99  10.  3.18  1.  3.99  10.  3.18 
 2.  3.79  11.  2.84  1.  3.99  10.  3.18  2.  3.79  11.  2.84 
 3.  3.60  12.  2.90  3.  3.60  12.  2.90  2.  3.79  12.  2.90 
 4.  3.73  13.  3.27  5.  3.21  14.  3.85  2.  3.79  12.  2.90 
 5.  3.21  14.  3.85  6.  3.60  15.  3.52  4.  3.73  14.  3.85 
 6.  3.60  15.  3.52  8.  3.61  15.  3.52  5.  3.21  15.  3.52 
 7.  4.08  16.  3.23  8.  3.61  15.  3.52  7.  4.08  16.  3.23 
 8.  3.61  17.  2.76  9.  3.81  16.  3.23  7.  4.08  18.  3.60 
 9.  3.81  18.  3.60  9.  3.81  17.  2.76  8.  3.61  18.  3.60 

 Median group 1 = 3.73  Median group 1 = 3.61  Median group 1 = 3.79 
 Median group 2 = 3.23  Median group 2 = 3.23  Median group 2 = 3.23 
 Difference medians = 0.50  Difference medians = 0.38  Difference medians = 0.55 

    5   Discussion 

 Current clinical trials do not, usually, use random samples, but rather convenience 
samples from selected hospitals, including only patients with strict characteristics, 
like cut-off laboratory values. This practice raises the risk of non-normal data. The 
assumption of normality underlies many statistical tests, including, among other 
tests, normal-, t-, chi-square-tests, analysis of variance, and regression analyses. 
With slight departures from the normal distribution, these tests can be used even 
so. They should not be used, however, if the chi-square goodness of fi t is signifi -
cant. Rank-testing is, then, an adequate alternative. But, sometimes, distributions 
do not allow for this approach either. This can be checked by the Kolmogorov-
Smirnov test. If the latter test is also positive, rank-testing is not warranted, and 
confi dence intervals can be derived from the data without prior assumption about 
the type of frequency distribution. This can be done by calculating the range within 
which 95% of all possible outcomes. We should add that medians, instead of 
means, are recommended for calculation, because the data are skewed. Another 
popular method for this purpose is bootstrapping, which resamples at random from 
the study’s own data. The basic idea is simple: if we take repeated samples from 
the data themselves, we will mimick the way the data were sampled from the popu-
lation in the way it should, namely at random. Although the theoretical properties 
of bootstrapping have not been well-understood, practical performance of this 
resampling method has been demonstrated in a number of simulation studies (Efron 
and Tibshirani  1993  ) . 
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 The current paper is just an introduction, and many aspects are not covered. 
SPSS  (  2011  )  uses, instead of the chi-square goodness of fi t test, the Shapiro-Wilk 
(Royston  1993  )  test, which is mathematically more complicated, but performs oth-
erwise largely similarly. We should add that, in clinical research, some data are, 
traditionally, non-normal, but have been recognized to follow a normal distribution 
after transformation. This is true for risk ratios, odds ratios, and hazard ratios that 
are analyzed after logarithmic transformations by simple normality tests. The fi nal 
results can, then, be retrieved by taking the antilog term of the obtained result. 

 Well-balanced randomly sampled representative experimental data often comply 
with the so-called random property meaning that they follow normal or close to 
normal frequency distributions. We continually make use of these frequency distri-
butions to analyze the data, but virtually never assess how close to the expected 
frequency distributions the data actually are. Unrandom data due to convenience 
sampling and extreme inclusion criteria may be one of the reasons for the lack of 
homogeneity in current research. We strongly believe that normality statistics, 
although the mainstay of statistical analysis for centuries, will rapidly be replaced 
with non-normal testing as the awareness of non-normal sampling distributions 
grows. Moreover, confi dence intervals from data without prior assessment of fre-
quency distributions are, currently, more easy to obtain than in the past, because 
computers can produce hundreds of random numbers from any set of experimental 
data within seconds. For example, with the function RANDBETWEEN, after giv-
ing the data ranknumbers, the EXCEL program  (EXCEL   2011  )  can produce many 
random samples from any given population as well as their characteristics like 
medians, ranges, percentiles. We hope that this paper will strengthen the awareness 
of non-normal sampling distributions, and affect the design and analysis of future 
clinical trials.  

    6   Conclusions 

 Current clinical trials do not use random samples, but, instead, convenience samples. 
This raises the risk of non-normal data. This chapter reviews and describes for a 
non-mathematical readership common methods for testing the normal property, as 
well as methods for analyzing the data in case of non-normality. 

 With slight departures from the normal distribution, normality tests can be used 
even so. They include, among other tests, the normal-, t-, chi-square-tests, analysis of 
variance, and regression analyses. They should not be used, if the chi-square good-
ness of fi t is signifi cant. Rank-testing is, then, an alternative, but, sometimes, distribu-
tions do not allow for this approach either. This can be checked by the 
Kolmogorov-Smirnov test. If the latter test is also positive, rank-testing is not war-
ranted, and confi dence intervals can be derived from the data without prior assump-
tion about the type of frequency distribution. This can be done by calculating the 
range within which 95% of all possible outcomes lie. Another popular method for this 
purpose is bootstrapping, which resamples at random from the study’s own data. 
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                  1   Introduction    

 In clinical studies, effi cacies of new treatments are usually assessed by comparing 
averages of new treatment results versus control or placebo. However, averages do 
not tell the whole story, and the spread of the data may be more relevant. For example, 
when we assess how a drug reaches various organs, variability of drug concentra-
tions is important, as in some cases too little and in other cases dangerously high 
levels get through. Also, for the assessment of the pharmacological response to a 
drug, variabilities may be important. For example, the effects on circadian glucose 
levels in patients with diabetes mellitus of a slow-release-insulin and acute-
release-insulin formula are different. The latter formula is likely to produce more 
low and high glucose levels than the former formula. Spread or variability of the data 
is a determinant of diabetic control, and predictor of hypoglycaemic/hyperglycemic 
events. As an example, in a parallel-group study of n = 200 the former and latter 
formulas produced mean glucoses of 7.9 and 7.1 mmol/l, while standard deviations 
were 4.2 and 8.4 mmol/l respectively. This suggests that, although the slow-release 
formula did not produce a better mean glucose level, it did produce a smaller spread 
in the data. How do we test these kinds of data. Clinical investigators, although they 
are generally familiar with testing differences between averages, have diffi culties 
testing differences between variabilities. The current chapter gives examples of situ-
ations where variability is more relevant than averages. It also gives simple statistical 
methods for testing such data. Statistical tests comparing mean values instead of 
variabilities are relatively simple and are one method everyone seems to learn. It is a 
service to the readership of this book to put more emphasis on variability.  

    Chapter 44   
 Clinical Data Where Variability Is More 
Important Than Averages       
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    2   Examples 

    2.1   Testing Drugs with Small Therapeutic Indices 

 Aminoglycosides like gentamicin and tobramicin are highly effi caceous against 
gram-negative bacilli, even pseudomonas. However, their therapeutic indices are 
small, and, particularly, irreversible nephrotoxicity requires careful monitoring of 
high plasma levels, while low levels lack therapeutic effi cacy (Chambers and 
Sande  1996  ) . For effi cacy/safety assessments of such compounds, in addition to 
monitoring too high and too low averages, monitoring variability of plasma levels 
is relevant.  

    2.2   Testing Variability in Drug Response 

 In patients with hypertension the effects on circadian blood pressure levels of 
blood pressure lowering agents from different classes are different. For example, 
unlike beta-blockers, calcium channel blockers and angiotensin converting 
enzyme inhibitors amplifi ed amplitudes of circadian blood pressure rhythms 
(Cleophas et al.  1998  ) . Spread or variability of the data is a determinant of hyper-
tensive control, and predictor of cardiovascular risks (Neutel and Smith  1997  ) . 
Particularly, for the assessment of ambulatory blood pressure measurements vari-
ability in the data is important.  

    2.3   Assessing Pill Diameters or Pill Weights 

 A pill producing device is approved only if it will produce pill diameters with a 
standard deviation (SD) not larger than, e.g., 7 mm. Rather than the average diam-
eter, the variability of the diameters is required for testing the appropriateness of 
this device.  

    2.4   Comparing Different Patient Groups for Variability in Patient 
Characteristics 

 Anxious people may not only show a lower average of performance, but also a 
higher variability in performance relative to their non-anxious counterparts. 
Variability assessment is required to allow for predictions on performances.  
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    2.5   Assessing the Variability in Duration of Clinical Treatments 

 For hospital managers the variability in stay-days in hospital is more relevant than 
the mean stay-days, because greater variability is accompanied with a more demanding 
type of care.  

    2.6   Finding the Best Method for Patient Assessments 

 A clinician needs to know whether variability in rectal temperature is larger than 
variability in oral temperature in order to choose the method with the smaller 
variability. 

 Various fi elds of research, particularly in clinical pharmacology, make use of test 
procedures that, implicitly, address the variability in the data. For example, bioavail-
ability studies consider variability through individual and population bioequiva-
lence instead of just averages (Hauck and Anderson  1984 ; Tothfalusi and Endrenyl 
 2001  ) . For the assessment of diagnostic estimators, repeatability tests and receiver 
operating (ROC) curves are applied (Almirall et al.  2004  ) . Mann–Whitney tests for 
repeated measures consider whether treatment A is better than B (Petrie and Sabin 
 2000  ) . However, none of such studies are especially designed to test variability. The 
current chapter reviews statistical methods especially designed for such purpose.   

    3   An Index for Variability in the Data 

 Repeated observations exhibit a central tendency, the mean, but, in addition, exhibit 
spread or dispersion, the tendency to depart from the mean. If measurement of cen-
tral tendency is thought of as good bets, then measures of spread represent the poor-
ness of central tendency, otherwise called deviation or error. The larger such 
deviations are, the more do cases differ from each other and the more spread does 
the distribution show. For the assessment of spread in the data we need an index to 
refl ect variability. First of all, why not simply express variability as the departures 
of the individual data from the mean value. This, however, will not work, because 
the data will produce both negative and positive departures from the mean, and the 
overall variability will approach zero. A device to get around this diffi culty is to take 
the add-up sum of the squares of deviations from the mean, and divide by n − 1 
(n = sample size):

     

( ) ( ) ( )− + − + − +…
−

2 2 2
datum 1 mean datum 2 mean datum 3 mean

n 1     
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 This formula presents the variance of n observations, and is widely used for the 
assessment of variability in a sample of data. The use of “n − 1” instead of “n” for 
denominator is related to the so-called degrees of freedom. Variances can be 
applied to assess data like those given in the above examples. The following tests 
are adequate for such purpose: the chi-square test for a single sample, the F-test 
for two samples, and the Bartlett’s or Levene’s tests for three or more samples. 
Additional methods for analyzing variability include (1) comparisons of confi -
dence intervals, and (2) testing confi dence intervals against prior defi ned intervals 
of therapeutic tolerance or equivalence. We should add that the variance is only 
one way to measure variability. Median absolute deviation (MAD) is another 
method not uncommonly used for pharmaceutical applications. It is found by tak-
ing the absolute difference of each datum from the sample median, and, then, 
taking the median of the total number of values. MADs will not be further dis-
cussed in this chapter.  

    4   How to Analyze Variability, One Sample 

    4.1    c  2  Test 

 For testing whether the standard deviation (or variance) of a sample is signifi cantly 
different from the standard deviation (or variance) to be expected the chi-square test 
is adequate. The chi-square test is closely related to the normal test or the t-test. The 
main difference is the use of squared values in the former. The underneath formula 
is used to calculate the chi-square value

       

2
2

2

(n 1)·s

s
−=χ

  

for n − 1 degrees of freedom  
  (n = sample size, s = standard deviation, s  2  = variance sample,  s  = expected stan-
dard deviation,  s   2  = expected variance).    

 For example, in an ongoing quality control produced tablets are monitored for con-
sistency in size. Samples of 50 tablets are only approved if the sample size standard 
deviation value is less than 0.7 mm. A 50 tablet sample has a standard deviation of 
0.9 mm.

     ( )χ = − =2 2 250 1 0.9 / 0.7 81
    

 The chi-square table shows that, for 50 − 1 = 49 degrees of freedom, we fi nd a 
p-value < 0.01 (one-sided test). This sample’s standard deviation is signifi cantly 
larger than that required. This means that this sample cannot be approved.  
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    4.2   Confi dence Interval 

 Instead of, or in addition to, the above chi-square test a confi dence interval can be 
calculated. It can be more relevant than, simply, the above test, and it is considered 
good statistical practice to provide a confi dence interval to accompany any esti-
mates. The underneath formulas are used for calculation.

       

− −(n 1) (n 1)
s  and s

b a     

  n = sample size, s = standard deviation  
  b = cut-off value of left tail of  c  2  – distribution for given  a  and degrees of 
freedom  
  a = cut-off value of right tail of  c  2  – distribution for given  a  and given degrees of 
freedom  
   a  = type I error    

 We use the above example, with a requested standard deviation (s) of 7 mm and 
observed s of 9 mm, to calculate 90% confi dence interval ( a  = 10%). As the sample 
size = n = 50, the degrees of freedom is n − 1 = 49. The cut-off values, b and a, can be 
found in the left and right tail  c  2  tables, respectively available in Chap.   12    , Table 
  12.2    , and the Appendix, and the literature (Cleophas  2005  ) .

     

− = × = × =(n 1) 49
s 9 9 1.14 mm 10.26

b 37.69    

     

− = × = × =(n 1) 49
s 9 9 0.88 mm 7.92

a 63.17     

 The 90% confi dence interval is, thus, between 7.9 and 10.3 mm, and it does not 
cross the required standard deviation of 7 mm. The device is not approved.  

    4.3   Equivalence Test 

 A limitation of the above methods is that a statistical difference is assumed based on 
normal standard deviations. To clinical pharmacologists a more appealing approach 
might be an equivalence test which uses prior defi ned boundaries of equivalence, 
and, subsequently, tests whether the 90 or 95% confi dence intervals of a sample are 
within these boundaries. If entirely within, we accept equivalence, if partly within 
we are unsure, if entirely without, we conclude lack of equivalence. Furthermore, 
what is nice about equivalence intervals, is, that both mean and variability informa-
tion are incorporated. Basic references are the guidelines given by Schuirmann and 
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Hahn (Schuirmann  1987 ; Hahn and Meeker  1991  ) . As an example, the boundaries 
for demonstrating equivalence of the diameters of a pill could be set between 9.0 
and 11.0 mm. A pill producing device produces a sample with a mean diameter of 
9.8 mm and 90% confi dence intervals of ± 0.7 mm. This would mean that the confi -
dence intervals are between 9.1 and 10.5 mm, and that they are, thus, entirely within 
the set boundary of equivalence. We can state that we are 90% confi dent that at least 
90% of the values lie between 9.1 and 10.5 mm (type I error 10%). According to this 
analysis, the pill producing device can be approved.   

    5   How to Analyze Variability, Two Samples 

    5.1   F Test 

 F tests can be applied to test if variability of two samples is signifi cantly different. 
The division sum of the samples’ variances (larger variance/smaller variance) is 
used for the analysis. For example, two formulas of gentamicin produce the follow-
ing standard deviations of plasma concentrations:  

 Patients (n) 
 Standard deviation 
(s) ( m g/l) 

 Formula-A  10  3.0 
 Formula-B  15  2.0 

     − −= = = =2 2 2 2
Formula A Formula BF s / s 3.0 / 2.0 9 / 4 2.25    

with degrees of freedom (dfs) for formula-A 10 − 1 = 9 and for formula-B 
15 − 1 = 14. 

 The F-table shows that an F-value of at least 3.01 is required not to reject the 
null-hypothesis. Our F-value is 2.25 and, so, the p-value is >0.05. No signifi cant 
difference between the two formulas can be demonstrated. This F-test is available in 
Excel. Approximate F-values can also be found in the F-table, Appendix.  

    5.2   Confi dence Interval 

 Also for two samples the calculation of confi dence intervals is possible. It will help 
to assess to what extent the two formulations actually have similar variances or 
whether the confi dence interval is wide and, thus, the relationship of the two variances 
is really not known. The formulas for calculation are given.

     ( )1 / cut-off F-value calculated F-value and×
   

     ( )cut-off F-value calculated F-value×
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   Cut-off F-value = F-value of F-table for given  a  and degrees of freedom  
   a  = type I error    

 We calculate the 90% confi dence interval from the above two sample example.

     ( )1 / cut-off F-value calculated F-value 1 / 3.01 2.25 0.75 and× = × =
   

     ( )cut-off F-value calculated F-value 3.01 2.25 6.75× = × =
    

 The 90% confi dence interval for this ratio of variances is between 0.75 and 6.75. 
This interval crosses the cut-off F-value of 3.01. So, the result is not signifi cantly 
different from 3.01. We conclude that no signifi cant difference between the two 
formulations is demonstrated.  

    5.3   Equivalence Test 

 An equivalence test of two variances works largely similar to that of a single vari-
ance. We need to defi ne a prior boundary of equivalence, and then, test whether our 
confi dence interval is entirely within. A problem with ratios of variances is that they 
often have very large confi dence intervals. Ratios of variances are, therefore, not 
very sensitive to test equivalence. Instead, we can defi ne a prior overall boundary of 
equivalence and, then, test whether either of the two variances is within. For exam-
ple, in the above two variances example the boundary of equivalence of plasma 
concentration of gentamicin for 90% confi dence intervals had been set between 3.0 
and 7.0  m g/l. The mean plasma concentrations were 4.0 for formula-A and 4.5  m g/l 
for formula-B.  

 Patients (n) 
 Standard deviation 
(s) ( m g/l)  Mean ( m g/l)  Standard error 

 90% confi dence 
interval 

 Formula-A 10  3.0  4.0  0.9  2.5–5.5 
 Formula-B 15  2.0  4.5  0.6  3.5–5.5 

 As the 90% confi dence interval for formula-A is not entirely within the set 
boundary, the criterion of equivalence is not entirely met. Based on this analysis, 
equivalence of the two formulas cannot be confi rmed.   

    6   How to Analyze Variability, Three or More Samples 

    6.1   Bartlett’s Test 

 Bartlett’s test can be applied for comparing variances of three samples

       
( ) ( ) ( )χ ⎡ ⎤= + + − − − + − + −⎣ ⎦

2 2 2 2 2
1 2 3 1 1 2 2 3 3(n n n 3)ln s n 1 ln s n 1 ln s n 1 ln s
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  where n 
1
  = size sample 1

       2
1s    = variance sample 1

        

− + − + −
= = =

+ + −

2 2 2
2 1 1 2 2 3 3

1 2 3

(n 1)s (n 1)s (n 1)s
s pooled variance

n n n 3     

  ln = natural logarithm       

 As an example, blood glucose variabilities are assessed in a parallel-group study 
of three insulin treatment regimens. For that purpose three different groups of 
patients are treated with different insulin regimens. Variabilities of blood glucose 
levels are estimated by group-variances:  

 Group size (n)  Variance [(mmol/l) 2 ] 

 Group 1  100  8.0 
 Group 2  100  14.0 
 Group 3  100  18.0 

     

× + × + ×= =99 8.0 99 14.0 99 18.0
Pooled variance 13.333

297    

     

2 297 ln13.333 99 ln8.0 99 ln14.0 99 ln18.0

297 2.58776 99 2.079 99 2.639 99 2.890

768.58 753.19 15.37

= × − × − × − ×
= × − × − × − ×
= − =

χ

    

 We have three separate groups, and, so, 3 − 1 = 2 degrees of freedom. The chi-
square table shows that a signifi cant difference between the three variances is dem-
onstrated at p < 0.001. If the three groups are representative comparable samples, we 
may conclude that these three insulin regimens do not produce the same spread of 
glucose levels. In this study of parallel groups, variability in the data is assessed by 
comparison of between-subject variability. Other studies assess variability in the 
data by repeated measures within one subject.  

    6.2   Levene’s Test 

 An alternative to the Bartlett’s test is the Levene’s test. The Levene’s test is less 
sensitive than the Bartlett’s test to departures from normality. If there is a strong 
evidence that the data do in fact come from a normal, or nearly normal, distribution, 
then Bartlett’s test has a better performance. Both tests can be used for comparison 
of more than two variances. However, we should add that assessing signifi cance of 
differences between more than two variances is, generally, not so relevant in clinical 
comparisons. In practice, clinical investigators are mostly interested in differences 
between two samples/groups rather than multiple samples/groups.   
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    7   Discussion 

 For all tests discussed above we need to emphasize that the data come from a normal 
distribution. The tests can be quite misleading if applied to non-normal data. It 
would be good practice to look at the distribution of the data fi rst, for example by 
drawing histograms or box plots, and to transform if needed. Also, non-parametric 
tests are available for the analysis of variances of non-normal data, for example the 
Kendall’s test for the variance of ranks (Kendall and Stuart  1963 ; Siegel  1956 ; 
Tukey  1977  ) . 

 In the current paper eight statistical methods are described for comparing vari-
ances of studies where the emphasis is on variability in the data. Clinical examples 
are given. The assessment of variability is, particularly, important in studies of med-
icines with a small therapeutic index. Table  44.1  gives an overview of such medi-
cines, commonly used in practice. Their therapeutic ranges have been defi ned, and 
it is a prerequisite of many of them that peak and trough concentrations are carefully 
monitored in order to reduce toxicities and improve therapeutic effi cacies. The 
development of such therapeutic ranges can benefi t from variance-testing. For other 
medicines therapeutic indices may not be small, while plasma concentrations are 
not readily available. Instead of dose-concentration relationships, dose–response 
relationships are, then, studied in order to determine the best therapeutic regimens. 
This approach uses dose–response curves, and is based on the assumption that the 
mean response of many tests can be used for making predictions for the entire popu-
lation. However, dose–response relationships may differ between individuals, and 
may depend on determinants like body mass, kidney function, underlying diseases, 
and other factors hard to control. Moreover, for the treatment of diseases like diabe-
tes mellitus, hypercholesterolemia, hypertension etc., we are often more interested 
in the range of responses than we are in the mean response. Also for the study of 
such data variance-testing would, therefore, be in place.  

 Samples of observations are unpaired, if every patient is tested once, or paired, if 
every patient is tested repeatedly. In the case of repeated testing special statistical 
procedures have to be performed to adjust for correlations between paired observa-
tions. This is, particularly, required when analyzing averages, but less so when ana-
lyzing variances. Correlation levels little infl uence the comparison of variances, 
and, so, similar tests for the comparison of variances can be adequately used both 
for paired and for unpaired variances. 

   Table 44.1    Drugs with small therapeutic indices   

 1. Antibacterial agents  Gentamicin, vancomicin, tobramicin 

 2. Drugs for seizure disorders  Carbamazepine, phenytoine, phenobarbital, valproate 

 3. Cardiovascular and pulmonary 
drugs 

 Digoxin, theophylline, caffeine 

 4. Antidepressant drugs  Amitryptiline, nortriptyline, imipramine,clomipramine,mapr
otiline 

 5. Neuroleptic drugs  Clozapine 
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 In conclusion, in clinical studies variability of the data may be a determinant 
more important than just averages. The current chapter provides eight straightfor-
ward methods to assess normally distributed data for variances, that can be readily 
used. The chi-square test for one sample and the F-test for two samples are available 
in Excel. The Bartlett’s and Levene’s test can be used for multiple variances, and are 
not in Excel, but can be found in statistical software programs. For the readers’ 
convenience a reference is given  ( Anonymous  2011  ) . Also, references are given for 
methods to analyze variances from non-normal data (Kendall and Stuart  1963 ; 
Siegel  1956 ; Tukey  1977  ) .  

    8   Conclusions 

 Clinical investigators, although they are generally familiar with testing differences 
between averages, have diffi culty testing differences between variabilities. The 
objective of this chapter was to give examples of situations where variability is more 
relevant than averages. Also to give simple methods for testing such data. 

 Examples include: (1) testing drugs with small therapeutic indices, (2) testing 
variability in drug response, (3) assessing pill diameters or pill weights, (4) compar-
ing patient groups for variability in patient characteristics, (5) assessing the vari-
ability in duration of clinical treatments, (6) fi nding the best method for patient 
assessments. Various fi elds of research, particularly in clinical pharmacology, make 
use of test procedures that, implicitly, address the variability in the data. Tests espe-
cially designed for testing variabilities in the data include chi-square tests for one 
sample, F-tests for two samples, and Bartlett’s or Levene’s tests for three or more 
samples. Additional methods include (1) comparisons of confi dence intervals, and 
(2) testing confi dence intervals against prior defi ned intervals of therapeutic toler-
ance or equivalence. Many of these tests are available in Excel, and other statistical 
software programs, one of which is given. 

 We conclude that for the analysis of clinical data the variability of the data is 
often more important than the averages. Eight simple methods for assessment are 
described. It is a service to the readership of this book to put more emphasis on 
variability.      
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                  1   Introduction    

 Poor reproducibility of diagnostic criteria is seldom acknowledged as a cause for 
low precision in clinical research. Also very few clinical reports communicate the 
levels of reproducibility of the diagnostic criteria they use. For example, of 11–13 
original research papers published per issue in the ten last 2004 issues of the journal 
Circulation, none did, and of 5–6 original research papers published per issue in the 
ten last 2004 issues of the Journal of the American Association only 1 out of 12 did. 
These papers involved quality of life assessments, which are, notoriously, poorly 
reproducible. Instead, many reports used the averages of multiple measurements in 
order to improve the precision of the instruments used without further comment on 
reproducibility. For example, means of three blood pressure measurements, means 
of three cardiac cycles, average results of morphometric cell studies from two exam-
iners, means of fi ve random fi elds for cytogenetic studies were reported. Poor repro-
ducibility of diagnostic criteria is, obviously, a recognized but rarely tested problem 
in clinical research. Evidence-based medicine is under pressure due to the poor 
reproducibility of clinical trials (Julius  2003 ; Cleophas and Cleophas  2003  ) . As 
long as the possibility of poorly reproducible diagnostic criteria has not been sys-
tematically addressed, this very possibility cannot be excluded as a contributing 
cause for this. The current chapter reviews simple methods for routine assessment 
of reproducibility of diagnostic criteria/tests. These tests can answer questions like 
(1) do two techniques used to measure a particular variable, in otherwise identical 
circumstances, produce the same results, (2) does a single observer obtain the same 
results when he/she takes repeated measurements in identical circumstances, (3) do 
two observers using the same method of measurement obtain the same result.  

    Chapter 45   
 Testing Reproducibility       
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    2   Testing Reproducibility of Quantitative 
Data (Continuous Data) 

    2.1   Method 1, Duplicate Standard Deviations (Duplicate SDs) 

 Reproducibility of quantitative data can be assessed by duplicate standard devia-
tions. They make use of the differences between two paired observations. For example, 
ten patients are tested twice for their cholesterol-levels (mmol/l), (Fig.  45.1 ).   

 Patient  Test-1  Test-2  Difference (d)  d 2  

 1  5.4  5.5  −0.1  0.01 
 2  5.5  5.4  0.1  0.01 
 3  4.6  4.3  0.3  0.09 
 4  5.3  5.3  0.0  0.0 
 5  4.4  4.5  −0.1  0.01 
 6  5.5  5.4  0.1  0.01 
 7  6.6  6.4  0.2  0.02 
 8  5.4  5.6  −0.2  0.04 
 9  4.7  4.3  0.4  0.16 
 10  7.3  5.7  1.6  2.56 

 Mean  5.47  5.24  0.23  0.291 
 sd  0.892  0.677 

 Duplicate standard deviation =     
2d1 1 0.291 0.3814mmol/l2 2n

= × =∑   

   d = differences between fi rst and second measurements  
  n = sample size   

     

[ ]

duplicate standard deviation
Relative duplicate standard deviation

overall mean of data
0.3814 / (5.47 5.24) / 2

0.0726 7.3%

=

= +
= =      

    2.2   Method 2, Repeatability Coeffi cients 

 Repeatability coeffi cients equally make use of the differences between two paired 
observations. 

 The repeatability coeffi cient = 2 standard deviations (sds) of paired differences   

     

( )−
= =

−∑
2

d d
2 1.03

n 1    
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   d = differences between fi rst and second measurements    
    d    = mean difference between fi rst and second measurements  
  n = sample size    

 The advantage of the repeatability coeffi cient is that 95% limits of agreement can 
be calculated from it. These are between     d    ± 2 sds = 0.23 ± 1.03 = between −0.80 
and 1.26. Under the assumption of a normal distribution we can expect 95% of the 
data to lie between these limits (Fig.  45.2 ).   

    2.3   Method 3, Intraclass Correlation Coeffi cients (ICCS) 

 Conceptually more complex is the calculation of intraclass correlation coeffi cients 
(ICCs) for assessment of between-test agreement. It assesses reproducibility 
between repeated measures within one subject by comparing the variability between 
the repeated measures with the total variability in the data (Shrout and Fleiss  1979  ) . 
The formula is given by:

     

2

2 2

sd  between subjects
Intraclass correlation coefficient (ICC) 

sd  between subjects sd  within subjects
=

+     

 The ICC ranges from 0 to 1, and it refl ects the strength of association between 
the fi rst and second test. If it equals zero, no reproducibility can be expected. If 1, 
then reproducibility is 100%. The ICC is otherwise called  proportion of variance  or 
 correlation ratio . If you are using SPSS  (  2011  )  to analyze the data, there is an easy 

Plasma cholesterol (mmol/l)

Test 1 Test 2

7

6

5

4

  Fig. 45.1    Ten patients are 
tested twice for their plasma 
cholesterol levels       
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way to calculate the coeffi cient, which, additionally, provides you with a confi dence 
interval and a p-value. A signifi cant p-value is to be interpreted in terms of a propor-
tion of total variance responsible for between-measurement variation signifi cantly 
greater than 0. First command: Analyze/Scale/Reliability analysis. The dialog box 
allows you to include the two variables (results test-1 and results test-2). Next click 
the statistics box, and select the intraclass correlation coeffi cient, Model: one-way 
random, continue. The results for the above example are listed underneath:

   Intraclass correlation coeffi cient = 0.7687  
  95% confi dence intervals between 0.3386 and 0.9361  
  p-value 0.002  
  proportion of total variance responsible for between test  
  variability = 77%.    

 ICCs can also be used for more than two repeated measures.   

    3   Testing Reproducibility of Qualitative Data 
(Proportions and Scores) 

    3.1   Cohen’s Kappas 

 We use the example used by the Colorado Education Geography Center  ( Anonymous 
 2011  ) . Suppose two observers assess the same patients for congenital heart disease, 
using Perloff’s classifi cation A–E  (  1991  ) , and we wish to evaluate the extent to 
which they agree.  

Difference between plasma
cholesterol Test 1 and Test 2 (mmol/l)

1.0

0.5

0

-0.5

-1.0 1 2

patient number

3 4 5 6 7 8 9 10

  Fig. 45.2    Differences 
between fi rst and second test 
for plasma cholesterol in the 
ten patients from Fig.  45.1 . 
Nine of these ten patients 
have their differences within 
the 95% limits of agreement 
( two horizontal lines )       
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 Observer 1 
 A  B  C  D  E  Total 

 Observer 2  A   2   0  2  0  0  4 
 B  0   1   0  0  0  1 
 C  1  0   1   0  0  2 
 D  0  0  0   2   1  3 
 E  0  0  0  0   6   6 
 Total  3  1  3  2  7  16 (N) 

 We present the results in a two-way contingency table of frequencies. The fre-
quencies with which the observers agree are shown along the diagonal of the table 
(fat print). Note that all observations would be in the diagonal if they were perfectly 
matched. Then calculate the q-values, where q = the number of cases expected in the 
diagonal cells by chance.

   q = n 
row

  × n 
column

 /N  
  A = 4 × 3/16 = 0.75  
  B = 1 × 1/16 = 0.0625  
  C = 2 × 3/16 = 0.375  
  D = 3 × 2/16 = 0.375  
  E = 6 × 7/16 = 2.625  
  q total = 4.1875 = 4.2    

 Then calculate kappa:

   kappa = (d − q)/(N − q)  
  d = 12 (the diagonal total of cells = 2 + 1 + 1 + 2 + 6 = 12)  
  N = total of columns or rows which should be equal  
  kappa = (12 − 4.2)/(16 − 4.2) = 0.66.    

 The closer the kappa is to 1.0, the better the agreement between the observers:

   Poor if k < 0.20     
  Fair 0.21 < k < .040  
  Moderate 0.41 < k < 0.60  
  Substantial 0.61 < k < 0.80  
  Good k > 0.80.      

    4   Incorrect Methods to Assess Reproducibility 

    4.1   Testing the Signifi cance of Difference Between 
Two or More Sets of Repeated Measures 

 Instead of the repeatability coeffi cients or duplicate standard deviations, some-
times the signifi cance of differences between two means or two proportions is 
used as method to assess reproducibility. For that purpose paired t-tests or 
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McNemar’s tests are used. For more than two sets of repeated measures tests like 
the repeated-measures-analysis-of-variance or Friedman’s tests are adequate. As an 
example, the signifi cance of difference between the above two columns of cholesterol 
values are calculated as follows (sd = standard deviation, se = standard error):

   mean difference ± sd = 0.23 ± 0.5165  
  mean difference ± se = 0.23 ± 0.1633  
  t-value = 0.23/0.1633 = 1.41  
  according to the t-table p > 0.05    

 This means that no signifi cant difference between the fi rst and second set of 
measurements is observed. This can not be taken equal to evidence of reproducibil-
ity. With small samples no evidence of a signifi cant difference does not necessarily 
imply the presence of reproducibility. Yet, a test to preclude a signifi cant difference 
is relevant within the context of reproducibility statistics, because it establishes the 
presence of a systematic difference. We are dealing with a biased assessment if we 
want to test the null-hypothesis of reproducibility.  

    4.2   Calculating the Level of Correlation Between 
Two Sets of Repeated Measures 

 If you plot the results from the fi rst occasion against those from the second occa-
sion, and calculate a Pearson’s regression coeffi cient, a high level of correlation 
does not necessarily indicate a great reproducibility. For testing reproducibility we 
are not really interested in whether the points lie on a straight line. Rather we want 
to know whether they conform to the 45° line, which is the line of equality. This will 
not be established if we test the null-hypothesis that the correlation is zero.   

    5   Additional Real Data Examples 

    5.1   Reproducibility of Ambulatory Blood Pressure 
Measurements (ABPM) 

 Ambulatory blood pressure measurements (ABPM) are, notoriously, poorly repro-
ducible. Polynomial curves of ABPM data may be better reproducible than the 
actual data. Figure  45.3  gives an example of data (Cleophas et al.  2001  ) . Mean sys-
tolic ABPM blood pressures of ten untreated patients with mild hypertension ands 
their sds were recorded twice 1 week in-between. Figs  45.2  and  45.3  give 7th order 
polynomes of these data. Table  45.1  shows the results of the reproducibility assess-
ment. Both duplicate sds and ICCs were used. Duplicate sds of means versus zero 
and versus grand mean were 15.9 and 7.2 mmHg, while of polynomes they were 
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  Fig. 45.3    Mean values of 
ambulatory blood pressure 
data of ten untreated patients 
with mild hypertension and 
their sds, recorded twice, 
1 week in-between       

   Table 45.1    Twenty four hour ambulatory blood pressure measurements in a group of ten patients 
with untreated mild hypertension tested twice: reproducibility of means of population   

 Mean values 
variations vs zero 

 Mean values 
variations vs 
grand mean  Polynomes 

 Means (mmHg) (test 1/test 2)  153.1/155.4  153.1/155.4  – 
 Standard deviation (sd) (mmHg) 

(test 1/test 2) 
 21.9/21.1  15.7/13.8  – 

 95% CIs a  (mmHg) (test 1/test 2)  139.4–166.8/
142.2–168.6 

 143.3–163.9/
146.8–164.0 

 – 

 Differences between means 
(sd) (mmHg) 

 −2.4 (22.4)  −2.3 (10.5)  – 

 P values differences between 
results tests 1 and 2 

 0.61  0.51  0.44 

 Duplicate sds (mmHg)  15.9  7.2  1.86 
 Relative Duplicate sds b  (%)  66  31  7 
 Intra-class correlations (ICCs)  0.46  0.75  0.986 
 95% CIs  0.35–0.55  0.26–0.93  0.972–0.999 
 Proportion total variance 

responsible for between-
patient variance (%) 

 46  75  99 

 95% CIs (%)  35–55  26–93  97–100 

   a  CIs  confi dence intervals 
  b Calculated as 100% × [Duplicate sd/(overall mean − 130 mmHg)]  

only 1.86 mmHg (differences in Duplicate sds signifi cant at a P < 0.001 level). ICCs 
of means versus zero and versus grand mean were 0.46 and 0.75, while of poly-
nomes they were 0.986 (differences in levels of correlation signifi cant at a P < 0.001). 
Obviously, polynomes of ABPM data of means of populations produce signifi cantly 
better reproducibility than do the actual data (Figs.  45.4  and  45.5    ).      
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    5.2   Two Different Techniques to Measure the Presence 
of Hypertension 

 Two different techniques are used in one group of patients to measure the presence 
of hypertension, namely (1) ambulatory blood pressure equipments and (2) self-
assessed sphygmomanometers. Circumstances are, otherwise, identical.  

 Ambulatory equipment 

 Yes  No 

 Sphygmomanometer  Yes  184 (a)  54 (b)  218 (a + b) 
 No  14 (c)  63 (d)  77 (c + d) 

 198 (a + c)  117 (b + d)  315 (a + b + c + d) 

 We calculate kappa according to:

   expected value for cell (a) =     + × =184 14
218 137

315
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  expected value for cell (d) =     
+ × =54 63

218 81
315

    

  kappa =     

+ +−
=

+−

(218 77) (137 81)
315 315 0.795

137 81
1

315

      

 This would mean that we have a substantial level of agreement between the two 
techniques. However, McNemar’s test shows a signifi cant difference at p < 0.01 
between the two techniques indicating that a systematic difference exists, and that 
the reproducibility assessment is thus biased. The circumstances are not entirely 
identical.   

    6   Discussion 

 Any research profi ts from a reproducible challenge test to enhance sensitivity of the 
trial, and from a good interobserver agreement. The current paper gives some rela-
tively simple methods for assessment. Reproducibility assessments are rarely com-
municated in research papers and this may contribute to the low reproducibility of 
clinical trials. We expected that reproducibility testing would, at least, be a standard 
procedure in clinical chemistry studies where a close to 100% reproducibility is 
generally required. However, even in a journal like the Journal of the International 
Federation of Clinical Chemistry and Laboratory Medicine out of 17 original papers 
communicating novel chemistry methods none communicated reproducibility 
assessments except for one study (Imbert-Bismut et al.  2004  ) . Ironically, this very 
study reported two incorrect methods for that purpose, namely the assessment of 
signifi cant differences between repeated measures, and the calculation of Pearson’s 
correlation levels. 

 A more general explanation for the underreporting of reproducibility assess-
ments in research communications is that the scientifi c community although devoted 
to the study of disease management, is little motivated to devote its energies to 
assessing the reproducibility of the diagnostic procedures required for the very 
study of disease management. Clinical investigators favor the latter to the former. 
Also the former gives no clear-cut career path, while the latter more often does so. 
And there are the injections from the pharmaceutical industry. To counterbalance 
this is a challenge for governments and university staffs. 

 We should add that textbooks of medical statistics rarely cover the subject of 
reproducibility testing: in only one of the 23 currently best sold textbooks for medi-
cal statistics the subject is briefl y addressed (Petrie and Sabin  2000  ) . 

 We conclude that poor reproducibility of diagnostic criteria/tests is, obviously, a 
well- recognized but rarely tested problem in clinical research. The current review 
of simple tests for reproducibility may be of some help to investigators.  
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    7   Conclusions 

 Virtually no clinical papers communicate the levels of reproducibility of the 
diagnostic criteria/tests they use. Poor reproducibility cannot be excluded as a 
contributing cause for the poor reproducibility of clinical trials. The objective of 
this chapter was to review simple methods for reproducibility assessment of 
diagnostic criteria/tests. 

 Reproducibility of quantitative data can be estimated by (1) duplicate standard 
deviations, (2) repeatability coeffi cients, (3) intraclass correlation coeffi cients. For 
qualitative data Cohen’s kappas are adequate. Incorrect methods include the test for 
a signifi cant difference between repeated measures, and the calculation of levels of 
correlation between repeated measures. 

 Four adequate and two incorrect methods for reproducibility assessment of diag-
nostic criteria/tests are reviewed. These tests can also be used for more complex 
data like polynomial models of ambulatory blood pressure measurements. They 
may be of some help to investigators.      
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     1   Introduction 

 Clinical trials of disease management require accurate tests for making a 
diagnosis/patient follow-up. Whatever test, screening, laboratory or physical, 
investigators involved need to know how good it is. The goodness of a diagnostic 
test is a complex question that is usually estimated according to three criteria: (1) its 
reproducibility, (2) precision, and (3) validity. Reproducibility is synonymous to 
reliability, and is, generally, assessed by the size of differences between duplicate 
measures. Precision of a test is synonymous to the spread in the test results, and 
can be estimated, e.g., by standard deviations/standard errors. Validity is synony-
mous to accuracy, and can be defi ned as a test’s ability to show which individuals 
have the disease in question and which do not. Unlike the fi rst two criteria, the third 
is hard to quantify, fi rst, because it is generally assessed by two estimators rather 
than one, namely sensitivity and specifi city defi ned as the chance of a true positive 
and true negative test respectively. A second problem is, that these two estimators 
are severely dependent on one another. If one is high, the other is, as a rule, low, 
vice versa. Due to this mechanism it is diffi cult to fi nd the most accurate diagnostic 
test for a given disease. In this chapter we review the current dual approach to 
accuracy and propose that it be replaced with a new method, called the overall 
accuracy level. The main advantage of this new method is that it tells you exactly 
how much information is given by the test under assessment. It, thus, enables you 
to determine the most accurate qualitative tests for making a diagnosis, and can 
also be used to determine the most accurate threshold for positive qualitative tests 
with results on a continuous scale.  

    Chapter 46   
 Validating Qualitative Diagnostic Tests                    
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    2   Overall Accuracy of a Qualitative Diagnostic Test 

 A test that provides a defi nitive diagnosis, otherwise called a gold standard test, is 
100% accurate. But this test may be too expensive, impractical or simply impossible. 
Instead, inexpensive but less accurate screening tests, depending on the presence of 
a marker, are used. Prior to implementation, such tests must be assessed for level of 
accuracy against the gold standard test. Generally, such tests produce a yes/no result, 
and are, therefore, called qualitative tests, e.g., the presence of a positive blood cul-
ture test, a positive antinuclear antibody test, a positive leuco-esterase urine test, and 
many more. In order to assess accuracy of such tests, the overall accuracy level can 
be calculated from a representative sample of patients in whom the gold-standard 
result is known (Table  46.1 ).  

 The magnitude of the overall accuracy level in the example from Table  46.1  is 
83.9%, which is between that of the sensitivity and specifi city, 85.7% and 80%, but 
closer to the former than the latter. This is due to the larger number of patients with 
the disease than those without the disease. Obviously, the overall accuracy level, 
unlike sensitivity and specifi city, adjusts for differences in numbers of patients with 
and without the disease as generally observed in a representative sample of patients. 
The overall accuracy level can be interpreted as the amount of information given by 
the test relative to the gold standard test: if the gold standard test provides 100% of 
information, the test will provide 83.9% of that information. An overall accuracy of 
50% or less indicates that the information is not different from the information pro-
vided by mere guessing. Flipping a coin would do the job just as well as does this 
test. An example of a new test without information is given in Table  46.2 . This new 
test has a specifi city of only 20%, but a sensitivity of 60%, and so the investigators 
may conclude that it is appropriate to approve this new test, because it provides a 

   Table 46.1    Calculation of sensitivity, specifi city, and overall accuracy level of qualitative test 
from a sample of patients   

 Disease  Yes (n)  No (n) 

 Positive test  Yes (n)  180 a  20 b 
 Positive test  No (n)   30 c  80 d 

 n = number of patients 
 a = number of true positive patients 
 b = number of false positive patients 
 c = number of false negative patients 
 d = number of true negative patients 
     ( )Sensitivity of the above test a / a c 180 / 210 85.7%= + = =   
     ( )Specificity of the above test d / b d 80 /100 80%= + = =    

     ( ) ( )Overall accuracy level a d / a b c d 260 / 310 83.9%= + + + + = =    
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correct diagnosis in 60% of the patients who have the disease. However, given the 
overall accuracy of only 43.8% this diagnostic test does not provide more informa-
tion than mere guessing or tossing a coin, and should not be approved.   

    3   Perfect and Imperfect Qualitative Diagnostic Tests 

 Qualitative diagnostic tests may produce results on a continuous scale, and the 
results of such tests can be displayed by two Gaussian curves (under the assumption 
that the data follow normal distributions), rather than simply by a two by two table. 
Figure  46.1  is an example of a perfect fi t diagnostic test. The two curves show the 
frequency distribution with on the x-axis the individual patient results and on the 
y-axis “how often”. The total areas under the curve of the two curves represent all 
of the patients, left graph those without the disease, and right graph those with the 
disease. The curves do not overlap. The test seems to be a perfect predictor for 
presence or absence of disease.  

 In Fig.  46.2  the situation is less than perfect, the two curves overlap, and, it is not 
obvious from the graphs where to draw the line between a positive and negative 
result. The decision made is shown as the vertical line. False positives/negatives are 
shown in the shaded areas under the curves. The above two examples are simplifi ed, 
because they assume that in a random sample the total numbers of true positives and 
true negatives are equal in size, and have the same spread. In practice the numbers 
of patients with and without disease in a random sample have different sizes and 
spread, and this should be recognized in the distribution curves, complicating the 
assessment a little bit (Fig.  46.3 ).   

 The left and right graph are calculated from the mean erythrocyte sedimentation 
rate value and standard deviation of a random sample of patients with and without 
pneumonia. The areas under the curve represent 100% of either of the two groups. 
In order to assess accuracy of erythrocyte sedimentation rate as qualitative diagnos-
tic test for pneumonia it is convenient to defi ne a test positive if less than 2.5% of 
the true negative patients are negative in the test. Using this 2.5% as a threshold, the 

   Table 46.2    Qualitative test providing no more information than mere guessing or tossing a coin   

 Disease  Yes (n)  No (n) 

 Positive test  Yes  60 a  50 b 
 Positive test  No  40 c  10 d 

 n = number of patients 
 a = number of true positive patients 
 b = number of false positive patients 
 c = number of false negative patients 
 d = number of true negative patients 
     ( )Sensitivity of the above test a / a c 60%= + =    
     ( )Specificity of the above test d / b d 20%= + =    
     ( ) ( )Overall accuracy level a d / a b c d 70 /160 43.8%= + + + + = =    
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results from Fig.  46.3  can now also be displayed in the form of a two by two table 
(Table  46.3 ). Sensitivity, specifi city, and overall accuracy are calculated 
(Table  46.3 ).   

    4   Determining the Most Accurate Threshold for Positive 
Qualitative Tests 

 We would like to have a sensitivity and specifi city close to 1 (100%), and thus an 
overall accuracy equally close to 1 (100%). However, in practice most diagnostic 
tests are far from perfect, and produce false positive and false negative results. 

  Fig. 46.2    Example of a less than perfect fi t qualitative diagnostic test. The  two curves  show the 
frequency distributions with on the x-axis the individual patient results, and on the y-axis “how 
often”. The patients with and without the disease overlap       

  Fig. 46.1    Example of a perfect fi t qualitative diagnostic test. The  two curves  show the frequency 
distributions with on the x-axis the individual patient results, and on the y-axis “how often”. The 
patients with and without the disease do not overlap       
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We can increase sensitivity by moving the vertical decision line between a positive 
and negative test (Fig.  46.3 ) to the left, and we can increase specifi city by moving it 
in the opposite direction. Moving the above threshold further to the right would be 
appropriate, e.g., for an incurable deadly disease. You want to avoid false positives 
(cell b), meaning telling a healthy person he/she will die soon, while false negatives 
(cell c) aren’t so bad since you can’t treat the disease anyway. If, instead the test 
would serve for a disease fatal if untreated but completely treatable, it should provide 

  Fig. 46.3    Example of frequency distributions of erythrocyte sedimentation rate values in 200 
patients with and 300 patients without pneumonia. On the x-axis are the individual erythrocyte 
sedimentation rate values of the normals and the diseased patients, and the areas under the curve 
represent 100% of either of the two groups. It is not obvious from the graphs where to draw the line 
between a positive and negative test: the decision made is shown by the  vertical line        

   Table 46.3    Sensitivity, specifi city, and overall accuracy level of qualitative test using the 2.5% 
threshold for true negative patients (Fig.  46.3 )   

 Disease  Yes (n 
1
  = 300)  No (n 

2
  = 200) 

 Positive test  Yes (%)  74% a   2.5% b 
 Positive test  No (%)  26% c  97.5% d 

 n = number of patients 
 a = number of true positive patients 
 b = number of false positive patients 
 c = number of false negative patients 
 d = number of true negative patients 
    ( )= + =Sensitivity of the above test a / a c 74%    
     ( )= + =Specificity of the above test d / b d 97.5%.    
    ( ) ( )⎡ ⎤ ⎡ ⎤= + + + =⎣ ⎦ ⎣ ⎦1 1 2 2 1 2Overall accuracy level 74 n / n n 97.5 n / n n 8  3.4%.    
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a sensitivity better than 74%, even at the expense of a lower specifi city. False-
negative would be awful, as it means missing a case of a treatable fatal disease. For 
that purpose the threshold of such a test is set far more to the left (Fig.  46.4 ).  

 Sensitivity, specifi city, and overall accuracy level can now be calculated 
(Table  46.4 ).   

     

( )
( )
( )( ) ( )( )1 1 2 2 1 2

Sensitivity of the above test a / a c 97.5%

Specificity of the above test d / b d 77%

Overall accuracy level 97.5 n / n n 77 n / n n 89.3%

= + =

= + =

= + + + =
     

 There are, of course, many diseases that do not belong to one of the two extremes 
described above. Also, there may be additional arguments for choosing a particular 
threshold. E.g., in non-mortality trials false negative tests, generally, carry the risk 
of enhanced morbidity, such as vision loss due to persistent glaucoma, hearing loss 
due to recurrent otitis etc. However, such risks may be small if repeat tests are 
performed in time. Also, false positive tests create here patient anxiety and costs. In 
situations like this, false positive tests are considered as important as false negative. 
Therefore, we might as well search for the threshold providing the best overall accu-
racy from our test. This is usually done by considering several cut-off points that 
give a unique pair of values for sensitivity and specifi city, thus comparing the 
probabilities of a positive test in those with and those without the disease. A curve 
with “1-specifi city” (= proportion of false positive tests) on the x-axis and sensitivity 

  Fig. 46.4    Example of the frequency distributions of erythrocyte sedimentation rate values in 200 
patients with and 300 patients without pneumonia. On the x-axis are the individual erythrocyte 
sedimentation rate values of the normals and the diseased patients, and the areas under the curve 
represent 100% of either of the two groups. It is not obvious from the graphs where to draw the line 
between a positive and negative test: the decision made is shown as the  vertical line        
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(= proportion of true positive tests) on the y-axis facilitates to choose cut-off levels 
with relatively high sensitivity/specifi city. The continuous curve of Fig.  46.5 , other-
wise called a ROC (receiver operating characteristic) curve, is an example.  

 It shows the relationship between sensitivities and specifi cities of the erythrocyte 
sedimentation rate as a diagnostic test for the presence of pneumonia. The curve 
suggests that a relatively high sensitivity/specifi city is obtained for the 83% 
sensitivity/38% “1-specifi city”. However, in many ROC curves more than a single 
cut-off value with relatively high sensitivity/specifi city are observed, and it may, 
therefore, be diffi cult to choose the most accurate cut-off level from such curves. 
Also, ROC curves use sensitivity and specifi city only, which means that they do not 
account for differences between the numbers of patients with and without the 
disease. These problems can be prevented by plotting, instead of the sensitivity, the 
overall accuracy level against “1-specifi city”. This is shown by the interrupted curve 

   Table 46.4    Calculation of sensitivity, specifi city, and overall accuracy level of a qualitative test 
where the threshold is set according to Fig.  46.4    

 Disease  Yes (n 
1
  = 300)  No (n 

2
  = 200) 

 Positive test  Yes (%)  97.5% a  23% b 
 Positive test  No (%)   2.5% c  77% d 

 n 
x
  = number of patients 

 a = % true positive patients 
 b = % false positive patients 
 c = % false negative patients 
 d = % true negative patients 

  Fig. 46.5    The ROC (receiver operating characteristic) curve ( continuous curve ) of erythrocyte 
sedimentation rate values of patients with pneumonia plots the sensitivity values (true positives) 
against the “1-specifi city” values (false positives). The accuracy “ROC” curve ( interrupted curve ) 
plots the overall accuracy values against the “1-specifi city” values (false positives)       
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of Fig.  46.5 . This accuracy “ROC” curve will unequivocally identify the cut-off 
threshold with the single best overall accuracy level. 

 ROC curves are only briefl y addressed in this text. Details are beyond the scope 
of this chapter, but some advantages of accuracy “ROC” curves compared to the 
classic ROC curves are mentioned. In addition to ROC curves, accuracy is some-
times assessed by measure of concordance, the optimism corrected c-statistic of 
Young  ( Anonymous  2011  ) . It is identical to the AUC (area under the curve) of the 
ROC curve, and varies between 0.5 and 1.0. The larger the AUC, the better the 
accuracy.  

    5   Discussion 

 Another approach to accuracy of diagnostic tests are the positive and negative predic-
tive values and likelihood ratios, the calculation of which is shown in Table  46.5 .  

 Just like the overall accuracy level, these estimators adjust for numbers of differ-
ences in patients with and without the disease, but they do not answer what proportion 
of patients has a correct test. 

 Riegelman  (  2005  ) , recently, proposed another method for assessing accuracy of 
a qualitative diagnostic test, which he called the discriminant ability, defi ned as

     ( )+sensitivity specificity / 2.
    

 Although this method avoids the dual approach to accuracy, it wrongly assumes 
equal importance and equal prevalence of sensitivity and specifi city, and does 
neither answer what proportion of the patients has a correct test. 

 We should add that sensitivity, specifi city and overall accuracy level are usually 
expressed as percentages. As with all estimates in clinical trials, we should calculate 
confi dence intervals of these estimates in order to quantify the level of uncertainty 
involved in our results (see Chap.   47    ). 

 The advantage of the overall accuracy approach described in this chapter com-
pared to the dual sensitivity/specifi city approach is that it enables to determine not 
only the most accurate qualitative tests for making given diagnoses, but also the 
most accurate thresholds for positive qualitative tests with results on a continuous 
scale. The method is less adequate for the assessment of diagnostic tests for extreme 
disease like incurable deadly diseases and treatable but untreated deadly diseases 

   Table 46.5    The calculation of positive and negative predictive values, and of likelihood ratios   

 Disease  Yes (n)  No (n) 

 Positive test  Yes  a  b 
 Positive test  No  c  d 

 n = number of patients 
 Positive predictive value = a/(a + b) 
 Negative predictive value = d/(c + d) 
 Likelihood ratio for positive result = a/(a + c)/d/(b + d) 
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for which diagnostic tests with either optimal sensitivity or optimal specifi city are 
required. 

 For determining the most accurate threshold for a qualitative test we recommend 
to replace a ROC curve with an accuracy “ROC” curve, because the latter unlike the 
former accounts for possible differences in a random sample between the numbers 
of patients with and without the disease. 

 The overall accuracy level has four advantages compared to the sensitivity/
specifi city levels. It (1) adjusts for differences between numbers of patients with 
and without the disease, (2) is able to readily identify tests that give no information 
at all, (3) provides the amount of information given by the test relative to the gold 
standard test, (4) enables to draw ROC curves adjusted for the differences between 
numbers of patients with and without the disease.  

    6   Conclusions 

 Clinical trials of disease management require accurate tests for making a diagnosis/
patient follow-up. Currently, accuracy of qualitative diagnostic tests is hard to quan-
tify, because it is generally assessed by two estimators, sensitivity and specifi city, 
that are severely dependent on one another. If one estimator is high, the other is, as 
a rule, low. 

 The objective of this chapter was to review the current dual approach to accuracy, 
and to propose that it be replaced with a new method, called the overall accuracy 
level. 

 The overall accuracy level is defi ned as the proportion of test results that are 
correct. Usage of this level, unlike sensitivity and specifi city levels, enables (1) to 
adjust for differences between numbers of patients with and without the disease, 
(2) to readily identify tests that give no information at all, (3) to provide the entire 
amount of information given by the test relative to the gold standard test, (4) to draw 
receiver operating characteristic (ROC) curves adjusted for the differences between 
numbers of patients with and without the disease. The method is less adequate for 
the assessment of qualitative diagnostic tests for extreme diseases like incurable 
deadly diseases and treatable but untreated deadly diseases for which diagnostic 
tests with either optimal sensitivity or optimal specifi city are required. 

 Due to the dual sensitivity/specifi city approach to accuracy of qualitative 
diagnostic tests it is, currently, diffi cult to fi nd the most accurate diagnostic test for 
a given disease. The overall accuracy level is more appropriate to that aim.      
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                  1   Introduction 

 In clinical research gold standard tests for making a diagnosis are often laborious 
and sometimes impossible. Instead, simple and non-invasive tests are often used. 
A problem is that these tests have limited sensitivities and specifi cities. Levels 
around 50% means that no more information is given than fl ipping a coin. Levels 
substantially higher than 50% are commonly accepted as documented proof, that 
the diagnostic test is valid. However, sensitivity/specifi city are estimates from 
experimental samples, and scientifi c rigor recommends that with experimental sampling 
amounts of uncertainty be included. Although the STARD (Standards for Reporting 
Diagnostic Accuracy) working party recently advised “to include in the estimates of 
diagnostic accuracy adequate measures of uncertainty, e.g., 95%-confi dence intervals” 
(Bossuyt et al.  2003  )  , so far uncertainty is virtually never assessed in sensitivity/
specifi city evaluations of clinical diagnostic tests. This is a pity, because calculated 
levels of uncertainty can be used for statistically testing whether the sensitivity/
specifi city is signifi cantly larger than 50%. The present chapter uses examples to 
describe (1) simple methods for calculating standard errors and 95% confi dence 
intervals, and (2) how they can be employed for statistical testing whether the new 
test is valid. We do hope that this chapter will stimulate clinical investigators to 
more often assess the uncertainty of the diagnostic tests they apply.  

    2   Example 1 

 Two hundred patients are evaluated to determine the sensitivity/specifi city of B-type 
Natriuretic Peptide (BNP) for making a diagnosis of heart failure.  

    Chapter 47   
 Uncertainty of Qualitative Diagnostic Tests       
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 Heart failure (n) 

 Yes  No 

 Result diagnostic test  Positive  70 (a)  35 (b) 
 Negative  30 (c)  65 (d) 

 The sensitivity (a/(a + c)) and specifi city (d/(b + d)) are calculated to be 0.70 and 
0.65 respectively (70% and 65%). In order for these estimates to be signifi cantly 
larger than 50% their 95% confi dence interval should not cross the 50% boundary. 

 The standard errors are calculated according to the equations given in  Appendix 
1 . For sensitivity the standard error is 0.0458, for specifi city 0.0477. Under the 
assumption of Gaussian curve distributions in the data the 95% confi dence intervals 
of the sensitivity and specifi city can be calculated using the equations   

     

95%confidence interval of the sensitivity 0.70 1.96 0.0458

    “             “         “                  specificity 0.65 1.96 0.0477.

= ± ×
= ± ×     

 This means that the 95% confi dence interval of the sensitivity is between 61% 
and 79%, for specifi city it is between 56% and 74%. These results do not cross the 
50% boundary and fall, thus, entirely within the boundary of validity. The diagnos-
tic test can be accepted as being valid.  

    3   Example 2 

 Dimer tests have been widely used as screening tests for lung embolias.  

 Lung embolia (n) 

 Yes  No 

 Dimer test  Positive  2 (a)   18 (b) 
 Negative  1 (c)  182 (d) 

 The sensitivity (a/(a + c)) and specifi city (d/(b + d)) are calculated to be 0.666 and 
0.911 respectively (67% and 91%). In order for these estimates to be signifi cantly 
larger than 50% the 95% confi dence interval of them should again not cross the 50% 
boundary. 

 The standard errors as calculated according to the equations given in  Appendix 
1 , are for sensitivity 3.672, for specifi city 0.286. Under the assumption of Gaussian 
curve distributions the 95% confi dence intervals of the sensitivity and specifi city are 
calculated using the equations

     

95% confidence interval of the sensitivity 0.67 1.96 3.672

    “             “         “                   specificity 0.91 1.96 0.286.

= ± ×
= ± ×     
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 The 95% confi dence interval of the sensitivity is between −5.4 and +7.8. The 
95% confi dence interval of the specifi city can be similarly calculated, and is between 
0.35 and 1.47. These intervals are very wide and do not at all fall within the bound-
aries of 0.5–1.0 (50–100%). Validity of this test is, therefore, not really demon-
strated. The appropriate conclusion of this evaluation should be: based on this 
evaluation the diagnostic cannot be accepted as being valid in spite of a sensitivity 
and specifi city of respectively 67% and 91%.  

    4   Example 3 

 A disadvantage of the sensitivity/specifi city approach to validation is that it is dual 
and that the two estimates are severely dependent on one another. Instead, overall-
validity is sometimes used. It is defi ned as the diagnostic test’s ability to show which 
individuals have a true test either positive or negative ((a + d)/(a + b + c + d) where the 
letters indicate the numbers of patients in the four cells as demonstrated above). 

 As an example, for approval of C-reactive protein as a marker for a cardiovascu-
lar event a boundary of overall-validity is specifi ed in the study protocol as being at 
least 85%. The 95% confi dence interval of the overall validity level can be calcu-
lated from the data. If the confi dence interval falls entirely within the specifi ed 
boundary, overall validity is demonstrated. 

 The results are given underneath:

   sensitivity = 80% with a standard error = 2%,  
  specifi city = 90% with a standard error = 1%,  
  prevalence = 10% with a standard error = 3%.    

 With this information we can calculate the overall-validity using the method 
described in  Appendix 2 . The overall-validity equals 0.89 (89%), while its squared 
standard error, otherwise called variance, equals 0.000337. 

 The standard error of the overall-validity is, thus, the square root of its variance, 
and equals 0.01836 (1.836%). An overall-validity of 89% with a standard error of 
1.836% means that the 95% confi dence interval is between 0.89 − (1.96 × 0.01836) 
and 0.89 + (1.96 × 0.01836), and is thus between 85.4% and 92.6%. This interval 
falls entirely between the specifi ed interval of validity of at least 85%. The overall-
validity of this diagnostic test has been demonstrated.  

    5   Example 4 

 A methionine loading test is applied to assess cystathione-beta-synthase defi ciency, 
an inborn error of metabolism causing homocystinuria. The gold standard test is the 
measurement of the intracellular lacking enzyme, a laborious method.  
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 Cystathione 
synthase 
defi ciency (n) 

 Yes  No 

 Methionine loading test  Yes  18 (a)  17 (b) 
 No   2 (c)  31 (d) 

 In this evaluation the sensitivity and specifi city were adequate (0.90 and 0.65 
respectively). However, in the protocol the investigators pre-specifi ed their bound-
ary of overall-validity between 0.5 and 1.0 (50% and 100%). For assessment of 
uncertainty and statistical testing the method of  Appendix 2  was applied. Overall-
validity equalled 0.7205, its standard error 0.1355. The 95% confi dence intervals of 
the overall-validity were calculated to be between 0.7205 ± (1.96 × 0.1355) and is, 
thus, between 0.45 and 0.99. This confi dence interval is wide, and does not entirely 
fall within the pre-specifi ed boundaries. According to the presented assessment the 
validity of this test could not be confi rmed. With larger samples this validation-
procedure might have been more successful.  

    6   Discussion 

 The accuracy of cardiovascular diagnostic tests is often assessed by sensitivity, 
specifi city, and sometimes by overall-validity, but the precision of these point esti-
mates is rarely taken into account. Low precision means that the 95% confi dence 
interval of them is wide, and, thus, that the diagnostic tests can not be reliably used 
for making predictions. In this paper it is shown that, by calculating the standard 
error of the diagnostic test, its precision can be assessed. From the standard errors 
95% confi dence can be calculated. If the 95% confi dence intervals of the standard 
error fall entirely within pre-defi ned boundaries, the diagnostic test can be accepted 
as being valid. If not, the test should be rejected. 

 We should add that the sample size is, of course, a major determinant of the con-
fi dence intervals. For example, according to the above methods the 95% confi dence 
intervals of the proportion of true positives (sensitivity) with:

   n = 10 is between 0.410 and 0.990  
  n = 100 is between 0.610 and 0.790  
  n = 1,000 is between 0.671 and 0.729.    

 The validation samples should, therefore, largely match the sample sizes of the 
future clinical trials using the diagnostic test under study. If the size of your valida-
tion sample n = 100, then this diagnostic test is probably not adequately sensitive/
specifi c for a clinical trial including a sample size of n = 10. In contrast, if clinical 
trials include many more patients than included in the validity assessment of their 
diagnostic tests, then the confi dence intervals are underestimated, and the diagnostic 
test will perform even better than predicted by the calculated confi dence intervals. 
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 We conclude that adequate diagnostic tests are vital for the multitude of 
cardiovascular intervention studies of new therapies. For validation of diagnostic 
tests sensitivity/specifi city/overall-validity are calculated. This practice is incom-
plete, because the number of true positives and true negatives in your assessment are 
estimates from experimental samples, and scientifi c rigor requires that with any 
estimate in clinical research standard errors/confi dence intervals have to be included 
in order to quantify the level of uncertainty in your data. We provide simple meth-
ods for such purpose, and do hope that they be implied in future validation studies 
of cardiovascular diagnostic tests.  

    7   Conclusion 

 In clinical research simple and non-invasive tests are often used instead of the gold 
standard tests for making diagnoses. Because the sensitivity/specifi city of the sim-
ple tests are limited, their magnitude is routinely accounted in validation proce-
dures. These measures of validity are estimates from experimental samples, and 
their precision, otherwise called certainty, is rarely assessed. This chapter gives 
simple methods for establishing their uncertainty. 

 As with other estimates in clinical research the standard errors of the sensitivity 
and specifi city can be calculated in order to quantify their uncertainty. From these 
standard errors confi dence intervals can be calculated. In the study protocol valida-
tion boundaries of the confi dence intervals should be pre-specifi ed. Only, if the 
confi dence intervals fall entirely within these validation boundaries, validity is dem-
onstrated. We recommend that the lower level of the validation boundaries should 
never be set below 50%, because a sensitivity and specifi city close to 50% gives no 
more information than tossing a coin. 

 An effort should be made to assess uncertainty of the sensitivity and specifi city 
of diagnostic tests before accepting them for general use. Simple methods for that 
purpose are given.       

      Appendix 1    

 For the calculation of the standard errors (SEs) of sensitivity, specifi city and overall-
validity we make use of the Gaussian curve assumption in the data.  

 Defi nitive 
diagnosis (n) 

 Yes  No 

 Result diagnostic test  Yes  a  b 
 No  c  d 
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 Sensitivity = a/(a + c) = proportion true positives 
 Specifi city = d/(b + d) = proportion true negatives 
 1-specifi city = b/(b + d) 
 Proportion of patients with a defi nitive diagnosis = (a + c)/(a + b + c + d) 
 Overall validity = (a + d)/(a + b + c + d) 

 In order to make predictions from these estimates of validity their standard devi-
ations/errors are required. The standard deviation/error (SD/SE) of a proportion can 
be calculated.

     

( )
( )

SD p 1 p where p proportion.

SE p 1 p / n where n sample size

= √ − =

⎡ ⎤= √ − =⎣ ⎦    

where p equals a/(a + c) for the sensitivity. Using the above equations    the standard 
errors can be readily obtained.

     

( )
( )
( )

( )( ) ( )

3

sensitivity

3

specificity

3

1 specificity

3

proportion of patients with a definitive diagnosis

SE ac / a c

SE db / d b

SE db / d b

SE a b c d / a b c d

−

= √ +

= √ +

= √ +

= √ + + + + +
     

      Appendix 2 

 The equation of the SE of the overall-validity is less straightforward, but can be 
obtained using the Bayes’ rule (Berger and Bernerdo  1989  )  and the delta method 
 ( Anonymous  2011  ) . The calculations are given for the purpose of completeness 
(Var = variance = square root of the standard error; prevalence = proportion of patients 
with a defi nitive diagnosis).

     ( )= × + × −Overall - validity sensitivity prevalence specificity 1 prevalence
    

 In order to calculate the standard error (SE), we make use of the equation 
(Var = variance, Cov = covariance)

     ( ) ( ) ( ) ( )+ = + +Var X Y Var X Var Y 2 Cov X,Y
    

 If X = sensitivity × prevalence, and Y = specificity × (1 − prevalence), then 
the equations can be combined to obtain an equation for the variance of the 
overall-validity (sens = sensitivity, spec = specificity, prev = prevalence)

     × × − × × −= + +overall - validity sens  prev spec (1 prev) sens prev, spec (1 prev)Var Var Var 2 Cov
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 The variance of X + Y may according to the delta-method  (Anonymous   2011  )  be 
approached from:

     ( ) ( ) ( )= +2 2Var X + Y Y Var X X Var Y
    

 By combining the equations we will end up fi nding:

     ( ) ( )−= × + − × + − ×2 22
overall - validity sens 1 spec prevVar prev Var 1 prev Var sens spec Var

    

 The delta-method describes the variance of natural logarithm (ln) (X) as Var 
(ln(x)) = Var(x)/x 2 . The approach is suffi ciently accurate if the standard errors of 
prevalence, sensitivity and specifi city are small, which is true if samples are not too 
small. We should add that the delta method is very helpful for the statistical assess-
ment of complex functions like those of standard errors. Second derivatives of 
parabolas with values similar to those of the complex functions are used to fi nd the 
best fi t parabolas (second order polynomes). Parabolas are easy, and produce a 
good fi t of such complex functions. This methodology has developed tremen-
dously, and terms commonly used for it are the quadratic approximation, eigenvec-
tors, and the delta-method.   
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     1   Introduction 

 In the past few years many novel diagnostic methods have been developed, including 
multi-slice computer tomography, magnetic resonance, positive emission tomogra-
phy and many more methods. Studies evaluating their respective sensitivities and 
specifi cities have been published, and meta-analyses of these studies can now be 
performed in order to establish whether the fi ndings are consistent and can be gen-
eralized across populations and morbidity/treatment variations. Sensitivity and 
specifi city are estimators of accuracy of diagnostic methods as explained in the 
underneath diagram.  

 Gold standard test  Positive  Negative 

 Diagnostic test  Positive  TP  FP 
 Negative  FN  TN 

 TP = number of true positive, FP of false positive, FN of false negative, and TN 
of true negative patients in a study.

     

( ) ( )
( ) ( )

= = +

= = +

Sensitivity true positive rate TPR TP / TP FN

Specificity true negative rate TNR TN / TN FP .    

     

( ) ( ) ( )
( )

− = + + − +

= + =

1 Specificity TN FP / TN FP TN / TN FP

FP / TN FP FPR     

 An intuitive approach to meta-analysis of diagnostic studies is to pool the odds 
of sensitivity (= TPR/(1 − TPR) and that of specifi city (= TNR/(1 − TNR) of the 
separate studies. Sensitivities and specifi cities are, however, dependent on one 
another, and, in addition, in a non-linear manner as shown in the summary receiver 
operated characteristic (ROC) curve from Fig.  48.1 . In order to account for these 
problems Moses and Wittemberg proposed diagnostic odds ratios of the sensitivities 
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versus the specifi cities (DORs) (Moses et al.  1993  ) . In recent years this approach 
has been increasingly pursued (Hasselblad and Hedges  1995 ; Irwig et al.  1995 ; 
Walter  2002 ; Glas et al.  2003 ; Bipat et al.  2003  ) . The current chapter using the 
results of a previously published review of diagnostic studies (Scheidler et al.  1997  )  
as an example, reviews advantages and disadvantages of this novel method and 
discusses alternative possibilities.   

    2   Diagnostic Odds Ratios (DORS) 

 The accuracy of a diagnostic test is usually summarized by two statistics: the true-
positive-rate (TPR) or sensitivity, and the true-negative-rate (TNR) or specifi city. 
They are often used to draw ROC curves (Fig.  48.1 ). Instead of the dual approach of 
sensitivity and specifi city, accuracy can also be summarized by the diagnostic odds 
ratio (DOR):

     

−=
−

/ (1 )
DOR

(1 ) /

sensitivity sensitivity

specificity specificity    

The DOR is an interesting term, since it compares the odds of true positive patients 
with that of false positives, and, thus, summarizes the overall accuracy of a diagnostic test. 

  Fig. 48.1    Example of a summary receiver-operated-characteristic (ROC) curve, the proportion of 
true positive patients (= sensitivity) is drawn against the proportion of false positive patients 
(= 1 − specifi city) using the results of multiple studies.  Sens  sensitivity,  1 − spec  1 − specifi city. 
With many diagnostic tests, tests results do not necessarily fall into one of two categories, but 
rather into categories with more or less confi dence in the presence of a disease       
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A problem is, that, like any odds ratio, it does not follow a Gaussian distribution, and 
a logarithmic transformation is required. For analysis a linear regression of the ln 
(DOR) on the statistic S is often applied.

     
( ) ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

ln DOR ln ln and
1 1

TPR FPR

TPR FPR    

     

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
S ln ln

1 1

TPR FPR

TPR FPR    

where TPR and FPR are the true and false positive rates and ln means the natural 
logarithm. The linear regression analysis is simply fi tting a straigt line: ln 
(DOR) = a + b.S. Ln (DOR) is the dependent and S the independent variable. 
Although this is not obvious from the model as given, this method is often success-
ful in producing a rather close linear fi t for the data. The a-value is the intercept and 
the b-value the regression coeffi cient. If sensitivity equals specifi city, then 
TPR = TNR = 1 − FPR and S reduces to 0. And so, the magnitude of the ln (DOR) at 
that point equals the a-value. The DOR can be calculated by back-log-transforming 
the calculated intercept. 

 As an example, the results of a previously published review of 44 diagnostic 
studies (Scheidler et al.  1997  )  of imaging techniques for lymph node metastases are 
used (Tables  48.1 ,  48.2 ,  48.3 ). For example, the ln(DOR) and S-values as calculated 
from the lymphangiography-studies are entered into the SPSS software program. 

   Table 48.1    Example of 
meta-analysis of 17 
diagnostic studies of 
lymphangiography for 
assessment of lymph node 
metastases   

 Study No.  tp  fp  fn  tn 

 1.  0  1  6  17 
 2.  12  3  3  7 
 3.  4  1  2  13 
 4.  10  4  3  25 
 5.  3  1  4  12 
 6.  9  3  3  29 
 7.  20  4  8  31 
 8.  17  5  7  21 
 9.  2  0  9  32 
 10.  3  1  9  38 
 11.  1  1  2  18 
 12.  5  2  2  61 
 13.  21  8  40  184 
 14.  4  3  9  42 
 15.  0  0  5  15 
 16.  7  11  22  158 
 17.  3  3  2  29 

   tp  true positive,  fp  false positive,  fn  
false negative,  tn  true negative  
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We command statistics; regression; linear. The program produces an a-value of 2.09 
(standard error (SE) = 0.35). The diagnostic odds ratio at the point S = 0 is then found 
by taking invert natural logarithm of 2.09 = 8.08 (SE = 1.35). A summary of the 
results of the regression analyses are in Table  48.4 . The magnitude of DORs at S = 0 
can be used to estimate the level of overall accuracy of the diagnostic method. 
Table  48.4  shows that MRI imaging is signifi cantly more accurate than the other 
two methods of cardiac imaging at p < 0.001.      

   Table 48.2    Example of 
meta-analysis of 17 
diagnostic studies of 
computerized tomography 
( CT ) imaging of lymph nodes 
metastases   

 Study No.  tp  fp  fn  tn 

 1.  19  1  10  81 
 2.  8  9  2  13 
 3.  41  1  12  49 
 4.  5  1  2  18 
 5.  45  58  32  165 
 6.  8  6  2  32 
 7.  5  8  1  7 
 8.  15  17  11  52 
 9.  16  11  8  24 
 10.  4  8  2  25 
 11.  4  12  10  70 
 12.  10  4  4  55 
 13.  2  5  6  23 
 14.  7  10  7  30 
 15.  4  50  12  135 
 16.  8  3  1  37 
 17  4  3  0  14 

   tp  true positive,  fp  false positive,  fn  
false negative,  tn  true negative  

   Table 48.3    Example of 
meta-analysis of ten 
diagnostic studies of 
magnetic resonance imaging 
( MRI ) of lymph node 
metastases   

 Study no.  tp  fp  fn  tn 

 1.  9  2  2  41 
 2.  3  6  5  32 
 3.  3  2  1  16 
 4.  3  1  12  44 
 5.  0  0  5  15 
 6.  7  2  22  167 
 7.  12  4  4  29 
 8.  23  5  14  230 
 9.  8  5  5  53 
 10.  16  2  2  22 

   tp  true positive,  fp  false positive,  fn  
false negative,  tn  true negative  
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    3   Constructing Summary ROC Curves 

 The results of the separate studies are, thus, used to calculate the best fi t a and b for 
the data. Subsequently, the underneath equation is adequate to construct the best fi t 
summary ROC curve from the a- and b-values:

     

( )
( )( ) 11 b 1 b

a 1 b 1 FPR
TPR 1 e

FPR

−+ −
− −

⎡ ⎤−⎛ ⎞= +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦     

 We enter the equation into Maple 9.5 software program for making graphs and fi ll 
out the a- and b-values. Then the software program produces the best fi t ROC curves 
for the three diagnostic methods (Fig.  48.2 ). The curve closest to the top of the y-axis 
provides the best overall accuracy. A diagonal line from the top of the y-axis to the 
right end of the x-axis would contain all points on the summary ROC curves where 
sensitivity equals specifi city, and thus S = 0. Along this diagonal line the distance 
from the MRI curve would be shorter than that of the other curves, indicating a better 
accuracy of this diagnostic method. This is supported by a signifi cantly larger DOR 
at p < 0.001 as shown in Table  48.4  and discussed in the above section. The distances 
from the top of the y-axis to the MR/CT/lymphangiography summary ROC curves 
can be calculated using Pythagoras’ equation for rectangular triangles, 

   √ [(1 − sensitivity) 2  + (1 − specifi city) 2 ], and equals:  
  for the MR curv (0.18 2  + 0.18 

2
 ) = 0.25,     

  for the CT curv √(0.22 2  + 0.22 2 ) = 0.31,  
  for the lymphangiography curv √(0.26 2  + 0.26 2 ) = 0.37.     

    4   Discussion 

 The paper shows that diagnostic odds ratios (DORs) can be readily implemented in 
the meta-analyses of diagnostic research. An advantage of the DOR approach is that 
it accounts the special correlation between sensitivities and specifi cities of studies 
included. Another advantage is that it takes account of the heterogeneity between 

   Table 48.4    Intercepts (a-values) and slopes (b-values) of the linear regression lines of the DORs 
of the three diagnostic modalities from Tables  48.1 ,  48.2  and  48.3    

 Diagnostic modality 
 Intercept (SE) 
(a-value) 

 Regression (SE) 
coeffi cient (b-value)  DOR at S = 0 (SE) (p-values) 

 Lymphangiography  2.09 (0.30)  −0.35 (0.20)  8.08 (1.35) (<0.001 vs CT and MRI) 
 CT  2.84 (0.44)   0.23 (0.14)  17.16 (1.55) (<0.001 vs MRI and 

lymphangiography) 
 MRI  3.51 (0.56)   0.25 (0.17)  33.45 (1.75) (<0.001 vs CT and 

Lymphangiography) 
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studies with respect to the different thresholds chosen by the investigators in the 
original studies: for particular reasons some investigators prefer large sensitivity 
and accept low specifi city, while others prefer the reverse. These differences pro-
duce heterogeneity in DOR between studies, but that is taken into consideration by 
regression of ln(DOR) on S. A subsequent advantage is that it is easy to extend the 
model with covariates representing between-study differences in design. But this 
advantage is limited because in the summary ROC model these covariates are 
supposed to affect sensitivity and specifi city in a similar manner, which need not be 
the case. 

 Some limitations have to be mentioned. First, as the outcome parameter is a sum-
mary estimate of both sensitivity and specifi city, no summary estimates of sensitivity 
or specifi city are available. Second, the magnitude of the studies included in the 
meta-analyses is not taken into account in the summary ROC method: it is impos-
sible to weigh the true positives and false positives of the studies separately (Reitsma 
et al.  2005  ) . However, it is common to report sensitivity and specifi city from 
diagnostic studies without accounting the size of the sample from which they were 
calculated (Levin et al.  2008  ) . 

 Other commonly used test indicators for diagnostic tests include positive predictive 
values, likelihood ratios, Youden’s indexes. They are, in theory, useful for diagnostic 

  Fig. 48.2    The summary ROC curves for the three diagnostic modalities. A diagonal line drawn 
from the  top  of the y-axis to the  right  end of the x-axis contains the points of summary ROC curves 
where sensitivity equals specifi city, and thus S = 0. Along this diagonal line the distance of the MRI 
curve to the  top  of the y-axis is shorter than that of the other curves, indicating a better accuracy of 
this diagnostic method. This is supported by a signifi cantly larger DOR at p < 0.001 (Table  48.4 ). 
 Sens  sensitivity,  1 − spec  1 − specifi city       
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meta-analyses, particularly from a bayesian perspective. However, they are rarely 
used, because they are not practical from a statistical viewpoint due to numerical 
and ceiling problems (Cleophas et al.  2007  ) . 

 As an alternative, multivariate methods for pooling the meta-data accounting 
sensitivities and specifi cities, can be used. For example, multivariate methods like 
multivariate analysis of variance (MANOVA) with sensitivity and specifi city as out-
come variables and different diagnostic modalities as predictor variable can produce 
results similar to those of the DOR method, and, in addition, produce sensitivities 
and specifi cities separately and, at the same time, adjusted for their interaction 
(Reitsma et al.  2005  ) . A limitation with this approach is, that, again, the magnitude 
of the separate studies is not accounted, and that the numbers of studies included in 
the meta-analyses is often too small for reliable testing. A rule of thumb is that at 
least 10 studies per variable are required for multivariate analyses. 

 We should add, that, like with therapeutic meta-analyses, it is appropriate to 
account scientifi c rules including in any meta-analysis of diagnostic studies a thor-
ough search of the literature, strict inclusion criteria and an assessment of the usual 
pitfalls of meta-analyses including publication bias, clinical heterogeneity, and lack 
of robustness (Cleophas and Zwinderman  2007  ) .  

    5   Conclusions 

 Diagnostic reviews often include the sensitivity/specifi city results of individual 
studies. A problem occurs when these data are pooled, because the correlation 
between sensitivity and specifi city is generally strong negative, causing overestima-
tion of the pooled results. The diagnostic odds ratio, defi ned as the odds of true posi-
tives versus that of false positives, may avoid this problem. This chapter reviews 
advantages and limitations of the diagnostic odds ratios (DORs). 

 A systematic review of 44 previously published diagnostic studies is used as an 
example. 

 DORs can be readily implemented in diagnostic research. Advantages include 
(1) that they adjust for the negative and curvilinear correlations between sensitivi-
ties and specifi cities, (2) that they take account of the heterogeneity between studies 
with respect to the different thresholds chosen by the investigators in the original 
studies, and (3) it is easy to extend the model with covariates representing between-
study differences in design. 

 Limitations include (1) that the outcome parameter is a summary estimate of 
both sensitivity and specifi city, and (2), that the magnitude of the studies included is 
not taken into account. 

 We conclude that reported sensitivities and specifi cities of different studies 
assessing similar diagnostic tests are not only negatively correlated, but also in a 
curvilinear manner. It is appropriate to take this negative curvilinear correlation into 
account in the data pooling of such meta-analyses. Diagnostic odds ratios can be 
applied for that purpose.      
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     1   Introduction 

 Clinical trials require adequate tests for making a diagnosis, and patient follow up. 
Whatever test, investigators need to know how good the test is. The performance of 
quantitative diagnostic tests, can be estimated from linear regression with the diag-
nostic result as predictor (independent) variable and the severities of disease as out-
come (dependent) variable: the closer the outcome is to the best fi t regression line 
the better the test is with a perfect test if R-square (the squared regression coeffi -
cient) equals 1. However, unfortunately, in clinical research many diagnostic tests 
have  qualitative  rather than quantitative outcome variables, e.g., a clinical event/
disease or not, and linear regression is not applicable for judging the goodness of 
such tests. Instead, sensitivity (chance of a true positive test) and specifi city (chance 
of a true negative test) are usually calculated, but the problem is that these two esti-
mators are inversely correlated, and that multiple thresholds for the defi nition of a 
positive test can be given. Figure  49.1  shows the frequency distributions of patients 
without (left half) and with the disease (right half) with on the x-axis the individual 
patient results and on the y-axis “how often observed”.  

 With the threshold given by the vertical dotted line, we have here a perfect test, 
because the patients with and without disease do not overlap. However, this situa-
tion virtually never occurs in practice, and, generally, we will witness the situation 
of Fig.  49.2 : the patients with and without the disease overlap, producing partly 
false positive and false negative results. The black and grey areas under the curve 
show the proportions of false positive and false negative patients. 

     

( )
( )

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

Sensitivity true positives / false positive plus true positives

Specificity true negatives / false negatives plus true negatives .
    

 If you move the threshold indicated by the vertical dotted line in Fig.  49.2 , you 
can observe, that, if one is high, the other, as a rule, is low, vice versa. A nice method 
for determining the relationship between different sensitivities and specifi cities is 
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the ROC (receiver operated characteristic) curve with sensitivity on the y-axis and 
1-specifi city on the x-axis (Green and Swets  1966  ) . A relatively new method is the 
smooth ROC-curve in which tests are no longer supposed to fall into one of two 
categories but, rather, into multiple categories with more or less confi dence 
(Fig.  49.3 ) (Zou et al.  1997  ) . The closer this smooth ROC curve approaches the top 
of the y-axis, the better the diagnostic test will be with an optimal area under curve 
of 1.0. In contrast, if the area under the curve is close to the 45 degree diagonal line, 
the area under the curve is close to 0.5, and the test is very poor. The area under 
curve of the smooth ROC curve is currently applied as an estimate of the goodness 
of a qualitative diagnostic test in a way similar to the R-square value for the quantitative 

  Fig. 49.1    Example of a perfect qualitative diagnostic test. The two frequency distributions of the 
patients without ( left half ) and with the disease ( right half ) have on the x-axis the individual patient 
results, and on the y-axis “how often observed”. The curves do not overlap       

  Fig. 49.2    Example of a less than perfect qualitative diagnostic test. The two curves show the 
frequency distributions of the patients without ( left curve ) and with disease ( right curve ). On the 
x-axis are the individual patient results, and on the y-axis “how often observed”. The patient with 
and without the disease overlap. The vertical dotted line is the threshold chosen to distinguish 
between a negative and positive test       
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diagnostic tests. However, the area under curve method, nowadays commonly called 
the c-statistic (concordance-statistic), has limitations as summarized by Cook 
 (  2007  ) : (1) the increase of area under the curve to judge a new (and better) diagnostic 
test is very small if the standard test already produced a large area under the curve, 
as commonly observed, and (2) the c-statistic assesses relative risk levels instead of 
absolute ones, while, in practice, the absolute risk levels are often more important.  

  Fig. 49.3    A relatively new method is the smooth ROC-curve in which tests are no longer 
supposed to fall into one of two categories but, rather, into multiple categories with more or less 
confi dence. The closer this smooth ROC curve approaches the top of the y-axis, the better preci-
sion the diagnostic test will provide with an optimal area under curve of 1.0 ( sens  sensitivity,  spec  
specifi city)       
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 Logistic regression with the odds of disease as outcome (dependent) variable and 
the test-scores as covariate (independent variable) could be used as an alternative 
method to model data fi les. The following reasoning can be used here. If we move 
the threshold for a positive test (Fig.  49.2 ) to the right, then the proportion of false 
positives will decrease. The steeper the logistic regression line, the faster this will 
happen. In contrast, if we move the threshold to the left, then the proportion of false 
negatives will decrease. The steeper the logistic regression line, the faster also this 
will happen. This would mean the steeper the logistic regression line, the fewer false 
positives and false negatives, and thus the better the diagnostic test. A pleasant 
aspect of this approach is that absolute instead of relative risks are measured. The 
current chapter uses as examples vascular lab scores to investigate the performance 
of logistic regression as compared to the current c-statistic.  

    2   The Performance of c-Statistics 

 Figure  49.4  shows the histograms of vascular lab scores in patients with peripheral 
vascular disease and healthy controls. The fi gure shows that the test is not perfect at 
all with considerable overlap between the patients with and without vascular 

  Fig. 49.4    Frequency distributions of a non-invasive test for the diagnosis of peripheral vascular 
disease (.00 = no disease; 1.00 = disease)       
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disease. Figure  49.5  shows the result of a modifi ed and, possibly, improved test 
performed in patient group with similar characteristics. Again the test is not perfect, 
but the patterns of the curves have slightly changed. We can not observe from the 
fi gures which of the two tests is the best one. In order to fi nd out c-statistic is 
performed.   

 SPSS 17.0 is used to calculate the c-statistic  (SPSS   2011     ) . 
 We command: Analyze….ROC curve….Test variable score….State variable 
disease…..value of state variable 1….ROC curve….standard error….OK. 

 The Figs.  49.6  and  49.7  give the ROC curves of the data from the Figs.  49.4  and 
 49.5  respectively. The software program produces area under the ROC curve values 
of respectively  

   0.954 and 0.969     
  with standard errors of 0.007 and 0.005.  
  The pooled standard error equal √(0.007 2  + 0.004 2  ) = 0.0086.  
  The mean difference of the AUCs = 0.969 − 0.954 = 0.015.   

   The t-test produces a t-value of  
  0.015/0.0086 = 1.74.  
  This corresponds with a p-value of 0.08,  
  which is larger than 0.05.    

  Fig. 49.5    Frequency distributions of a modifi ed version of the test from Fig.  49.4  performed in a 
age-, sex-, and risk-factor-matched group (.00 = no disease; 1.00 = disease)       
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 This means that no signifi cant difference between the two tests is demonstrated. 
C-statistic may underestimate the true difference between two smooth ROC curves 
due to the phenomenon of overfi tting. For adjustment bootstrap sampling was used 
and this reduced the standard error to 0.0081. The adjusted t-value of 1.85 still did 
not produce a signifi cant difference between the two tests with a p-value of 0.065.  

  Fig. 49.6    The space of the 
area under the curve, 
otherwise called ROC space, 
of the data from Fig.  49.4  is 
calculated by the software to 
be 0.954 (= 95.4%)       

  Fig. 49.7    The space of the 
area under the curve of the 
data from Fig.  49.5  is 
calculated by the software to 
be 0.969 (= 96.9%)       
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    3   The Performance of Logistic Regression 

 Instead of the c-statistic logistic regression can be used to assess the performance of 
the new test compared to the standard test. For that purpose we use a model similar 
to the linear regression model used for assessing the goodness of quantitative diag-
nostic tests. However, because the outcome (dependent) variable is a binary rather 
than continuous variable, logistic regression instead of linear regression has to be 
applied. 

 Again SPSS 17.0 is used  (SPSS   2011  ) . 

 We command: regression…binary logistic…. Dependent variable disease…covariate 
score…ok. 

 The best fi t regression equation for test 1 is given underneath:
   log odds of having the disease = −9.20 + 0.45 times the score    

 The best fi t regression equation for test 2 is below:
   log odds of having the disease = −9.31 + 0.58 times the score.    

 Both regression equations produce highly signifi cant regression coeffi cients with 
standard errors of respectively 0.04 and 0.05 and p-values of <0.0001. The two 
regression coeffi cients is tested for signifi cance of difference using the z – test:

   z = (0.58 − 0.45) / Ö(0.04 2  + 0.05 2  ) = 0.13 / 0.064 = 2.03,  
  which corresponds with a p-value of 0.04.    

 Obviously, test 2 produces a signifi cantly steeper regression model, which means 
that it is a better predictor of the risk of disease than test 1. We can, additionally, 
calculate the odds ratios of test 2 versus test 1. The odds of disease with test 1 equals 
e 0.45  = 1.57, and with test 2 it equals e 0.58  = 1.79. The odds ratio = 1.79/1.57 = 1.14, 
meaning that the second test produces about a 1.14 times better chance of rightly 
predicting the disease than test 1 does.  

    4   Discussion 

 Comparing logistic regression coeffi cients between samples is not straightforward 
and is currently the subject of much discussion in the statistical literature as sum-
marized in the recent article of Karlson et al.  (  2011  ) . With quantitative diagnostic 
tests each individual score is associated with a single most probable severity of a 
disease. With qualitative diagnostic tests, however, each individual score is associ-
ated with four different possible outcomes: a false positive or negative outcome, a 
true positive or negative outcome. The meaning of the b-values of logistic equations 
is entirely different from those of linear equations. With the linear regression equa-
tion y = bx the b-value estimates the ratio y/x. With logistic regression things are 
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much more complex: it estimates log odds ratio of having a disease versus having 
no disease. This complex relationship is the main reason, that, so far, logistic regression 
has not been applied for assessing the performance of qualitative diagnostic tests, 
and that methods like c-statistic have been developed. The current paper shows that 
after redefi nition of the term performance in terms of “odds ratio of having disease 
versus having no disease” logistic regression can adequately be used for perfor-
mance assessments. 

 The current paper not only is the fi rst one to show that logistic regression can be 
conveniently applied for assessing the performance of qualitative diagnostic tests, 
but also suggests that the method is better than c-statistic for that purpose. 

 Also longitudinal diagnostic tests can be assessed in this way. However, instead 
of logistic models Cox proportional hazard models are required. Log hazard instead 
of log odds and the corresponding regression coeffi cients, the b-values, will have 
to be used. 

 Recently, Pencina et al.  (  2008  )  proposed the method of reclassifi cation as another 
alternative to c-statistic. This method uses logistic models like the ones described in 
this paper to fi nd cut-off test-scores for predicting classes with different risk risks of 
disease. Hosmer-Lemeshow tests are used for comparing partitioned areas under the 
curves of different data samples. The problem with this method is that, unlike the 
method reviewed in this paper, it must be applied with paired data samples, which 
may be hard to obtain with large datasets required for meaningful assessment of 
small differences between two largely similar diagnostic tests. 

 Additional advantages of the logistic model compared to c-statistic have to be 
mentioned:

    1.    Absolute rather than relative risks of disease are assessed. The c-statistic uses 
sensitivities and specifi cities which are relative risks of being truly positive and 
truly negative, while logistic regression uses the absolute scores ad predictor of 
disease.  

    2.    A limitation of c-statistic is the following. The increase of area under the curve, 
to judge a new (and better) diagnostic test is very small if the standard test already 
produced a large area under the curve, as commonly observed.     

 For performance assessment of quantitative diagnostic tests linear regression is 
adequate. The current paper shows that for performance assessment of qualitative 
diagnostic tests logistic regression is adequate, and seems to provide a better result 
than does the current c-statistics. 

    4.1   Conclusions 

 Logistic regression with presence of disease as outcome and scores as predictor 
variable is better than c-statistic for the purpose of comparing the performance of 
qualitative diagnostic tests. This fi nding may be relevant to future diagnostic 
research.   
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    5   Conclusions 

 Qualitative diagnostic tests commonly produce false positive and false negative 
results. Smooth ROC (receiver operated characteristic) curves are used for assessing 
the performance of a new against a standard test. This method, called c-statistic 
(concordance statistic) has limitations. This chapter was written to assess whether 
logistic regression with the odds of disease as outcome and the test scores as covariate 
can be used as an alternative approach. Also, to compare the goodness of either of 
the two methods. 

 Using as examples vascular lab scores we assessed the performance of logistic 
regression as compared to c-statistic. 

 The c-statistic produced AUCs (areas under the curve) of respectively 0.954 and 
0.969 (standard errors 0.007 and 0.005), means difference 0.015 with a pooled stan-
dard error of 0.0086. This meant that the new test was not signifi cantly different 
from the standard test at p = 0.08. Logistic regression of these data with presence of 
disease as dependent and vascular lab scores as independent variable produced 
regression coeffi cients of 0.45 and 0.58 with standard errors of respectively 0.04 
and 0.05. This meant that the new test was a signifi cantly better predictor of disease 
than the standard test at p = 0.04. 

 We conclude that logistic regression with presence of disease as dependent and 
test scores as independent variable was better than c-statistic for assessing qualitative 
diagnostic tests. This may be relevant to future diagnostic research.      
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     1   Introduction 

 Clinical research is impossible without valid diagnostic tests. The methods for 
validating  qualitative  diagnostic tests include sensitivity/specifi city assessments 
and ROC (receiver operated characteristic) curves, and are generally accepted (Reid 
et al.  1995 ; Anonymous,  2011 ; Bossuyt et al.  2003 ; Delong and Delong  1988  ) . 
In contrast, the methods for validating  quantitative  diagnostic tests have not been 
agreed upon by the scientifi c community (Delong and Delong  1988  ) . This chapter, 
using real data examples, reviews the advantages and disadvantages of various 
methods that could be used for that purpose.  

    2   Linear Regression Testing a Signifi cant Correlation 
Between the New Test and the Control Test 

 Regression methods are often used for that purpose, particularly, linear regression 
using a signifi cant correlation as criterion for validation. In Fig.  50.1  an example is 
given. A positive correlation seems to exist between the new-test- and control-test-
data given by the x-axis-data and the y-axis-data. We can draw a best fi t regression 
line according to the equation

     = +y a bx      

 For every x-axis-datum this line provides the best predictable y-axis-datum. The 
b-value is the regression coeffi cient (= direction coeffi cient), “a” the intercept, 
which is the place where the line crosses the y-axis. The values “a” and “b” from the 
equation y = a + bx can be calculated   :

    Chapter 50   
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− −= =
−

∑
∑ 2

(x x)(y y)
b regression coefficient

(x x)     

 This equation is often described in a condensed way as 
 b = SP xy/SS x (SP xy = sum of products of x- and y-data, SS x = sum of squared 

x-data) 
 a = intercept =     −y bx   . 
 Another important term for regression analyses is the r-value, the correlation 

coeffi cient,

     

− −= =
− −

∑
∑ ∑2 2

(x x)(y y)
r correlation coefficient

(x x) (y y)
    

 The term r gives the measure for strength of association between the x-data 
and the y-data. The stronger the association, the better the x-data predict the y-data. 
It varies from −1 to +1, r = 0 means no association at all, r = −1 or = +1 means 100% 
association (we can predict the y-values from the given x-values with 100% 
certainty). 

 The term r 2  is often more convenient, because it varies from 0 to +1. The r 2 -value 
is used as a measure of the percentage certainty that has been obtained by the linear 
regression model. For example, an r 2 -value of 0.36 means that we can predict the 
y-data with 36% certainty, if we know the corresponding x-data. 

  Fig. 50.1    Validity assessment with a linear regression model. The regression equation is given by 
y = a + bx = 8.647 + 2.065x (a = intercept, b = regression coeffi cient, p < 0.0001). The x-axis-data, 
ultrasound estimates, are a very signifi cant predictor of the y-axis-data, the electromagnetic 
measurements. However, the prediction, despite the high level of statistical signifi cance, is very 
imprecise. For example, if x = 6, then y may be 10 or 21, if x = 7, y may be 19, 31 or 32       
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 For statistical testing of linear regression lines we test with the Student’s t-test 
whether the b-value is signifi cantly larger than zero or with analysis of variance 
whether the r 2 -value is signifi cantly larger than zero. These tests are laborious, and, 
therefore, currently routinely performed by statistical software. For example, SPSS 
statistical software requires after entering the data the commands: statistics; regres-
sion; linear. In the given example (Fig.  50.1 ) the b-value is calculated to be 2.065 
with a standard error of 0.276 and a t-value of 7.491, meaning that it is , indeed, 
signifi cantly larger than zero at p < 0.0001, and that there is, thus, a strong signifi -
cant association between the new-test-data and the control-test-data. Also the 
r 2 -value of 0.63 as calculated is signifi cantly larger than 0 at p < 0.0001. Both results, 
thus, indicate that a signifi cant association exists between the x-data and the 
corresponding y-data. This means that the data are signifi cantly closer to the regres-
sion line than could happen by chance. However, it does not mean that they are all 
situated exactly on the regression line. As can be observed in the Fig.  50.1 , if, for 
example, x = 6 then y may be 10 or 21, if x = 7 then y may be 19, 31 or 32. Actually, 
given the r 2 -value of 0.63, we may conclude that any particular x-datum can predict 
the corresponding y-datum only by 63%, while 37% remains uncertain. This percentage 
of uncertainty is rather large for accurate diagnostic tests. We have to conclude that 
the usual method for testing the strength of association between the x-data and 
y-data in a linear regression model, although widely applied for validating quantitative 
diagnostic tests, seems to be inaccurate. Obviously, stricter criteria have to be 
applied for validation.  

    3   Linear Regression Testing the Hypotheses 
That the a-Value = 0.000 and the b-Value = 1.000 

 A stricter method to test the association between the new-test-data (the x-data) and 
the control-test-data (y-values) was given by Barnett  (  1969  ) . First, from the above 
equation y = a + bx it is tested whether the b-value is signifi cantly different from zero 
like described above. Then, the hypothesis is tested that the a-value = 0.000 and the 
b-value = 1.000. As an example the graph from Fig.  50.1  is used once more. We 
need the b-value (or a-value) ± 1.96 times its standard error to calculate the 95% 
confi dence intervals of b and a. 

    If the 95% confi dence interval of the b-value (2.065 ± 1.96 × 0.276) contains 
1.000, 

             and the a-value (8.647 ± 1.96 × 3.132) contains 
0.000, 

               => then validity can be accepted. 
 Here: the 95% confi dence interval of the b-value is between 1.513 and 2.617, 
             and of the a-value is between 2.383 and 14.911, 
               => the test can not be validated. 
 In the example of Fig.  50.2  the data are close to the “b = 1.000 and a = 0.000 line”, 

otherwise called the identity line.  
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    The 95% confi dence interval of the b-value is between 0.917 ± 1.96 × 0.083, 
                   is between 0.751 and 1.083, 
 and it, thus, contains the number 1.000. 
 The 95% confi dence interval of the a-value is between 39.340 ± 1.96 × 38.704, 
                   is between −38.068 and 116.748, 
 and it, thus, contains the number 0.000. 

 The diagnostic test of Fig.  50.2  is validated. If the hypothesis that a = 0.000 and 
b = 1.000 can not be confi rmed, and the b-value is signifi cantly larger than 0, then 
the underneath method can be applied for validation. A b-value signifi cantly smaller 
than 1.000 is an indicator for a diagnostic test that systematically overestimates the 
gold standard test, and signifi cantly larger than 1.000 it is so for a diagnostic test 
that systematically underestimates the gold standard test.  

    4   Linear Regression Using a Squared Correlation Coeffi cient 
(r 2 -Value) of >0.95 

 The previous method assumes that the best fi t linear regression equation for the 
diagnostic test is y = x. A diagnostic test with the best fi t equation y = a + bx, rather 
than y = x like in the example from Fig.  50.1  is not necessarily useless, and could be 
approved as a valid test if it is precise, that means if the x-data precisely predict the 
 (y − a)/b- data  rather than the y-data. If we apply such a test, the result of the x-data 
will, of course, have to be transformed into  a + bx  to fi nd the y-data. Validation is 
accomplished by determining whether the regression line precisely predicts the 

  Fig. 50.2    Angiographic 
cardiac volumes (liters) used 
to predict cast cardiac 
volumes (liters)       
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control test from the new test, and we recommend to use for that purpose as 
criterion a squared correlation-coeffi cient r 2  > 95%. This can be calculated from

     ( )=2 2r SP xy / SSx·SSy .
    

 In the example from Fig.  50.1  r 2  = 63%, much smaller than 95%, and, so, the 
results can not be validated. In the literature often the term  intraclass correlation  is 
applied instead of the r 2 -value, but its meaning is the same.

     
= =

+

2SS regression SP xy / SSx
Intraclass correlation .

SS regression SS residual SSy     

 A largely similar approach is given by the calculation of the  relative residual 
variance  of the linear regression. The relative residual variance is calculated from 
the add-up sum of the least squared distances from the regression line (Fig.  50.3 ) 
and is equal to (1 − r 2 ). The larger it is, the poorer the validity of the test. A residual 
variance smaller than 5% is adequate for validation. 

     
=

+
SS residual

Relative residual variance
SS regression SS residual    

     ( )= − 2SS residual SSy  SP xy / SSx
   

 

    

( ) ( ) ( )
2 2

2
SSy  SP xy / SSx SP xy / SSxSSy

Relative residual variance 1 r
SSy SSy SSy

37% in the example from Fig.1.

−
= = − = −

=    

  Fig. 50.3    The relative 
residual variance is calculated 
from the add-up sum of the 
least squared distances from 
the points to the regression 
line       
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 The levels 95% and 5% are, of course, arbitrarily chosen. However, they are 
consistent with the cut-off for type I errors as commonly chosen in clinical research. 

 When using the linear model for testing validity, it is recommended to test the 
linear hypothesis, i.e. to test that the relationship between the new-test-data and 
control-test-data are, indeed, linear, rather than curvilinear. This can be done by 
testing the hypothesis that a second order correlation exists between the x- and 
y-data. For that purpose the equation y = a + bx 2  is used. If the data are modeled 
according to this equation and the b-value is signifi cantly larger than the b-value of 
the linear model y = a + bx, then the linear model has to be rejected, and the data 
should be modelled according to a second order relationship between the new-test-
values (x-values) and the control-test-values (y-values). If a log linear relationship 
between the diagnostic test and the gold standard test better fi ts the data than a linear 
relationship, then a so-called pseudo-R2 or R2-like measure instead of r 2  value can 
be calculated (Hoetker  2007  ) .  

    5   Alternative Methods 

 All of the methods discussed so far assume uncertainty in the new test, but not in the 
control test. Two assessments, that assume uncertainty of both the new-test- and the 
control-test-data, are the paired Student’s t-test and the Altman-Bland plot or 
method. The fi rst uses the average difference between the new-test-values and the 
old-test-values as estimate of bias, and the standard error of the mean difference as 
estimate of precision (McGee et al.  2007  ) . The second (Bland and Altman  1986  )  
uses the spread of the subtraction sums of the new-test- and old-test-data and their 
standard deviation. If 95% of the subtraction sums fall within the limits of agree-
ments, as calculated by the mean differences ±1.96 times its standard deviation, 
then the test is validated. It may, generally, be perfectly all right to assume no 
uncertainty in the control test, particularly, if it is the gold standard test, for which 
there is no better alternative. The gold standard test, then, simply produces the truth. 
In this situation the additional amount of uncertainty assumed in the control test 
causes loss of sensitivity of testing. Even if the control test is not 100% accurate, we 
are, generally, merely interested in the validation against the control test, no matter 
its accuracy. A second problem with the above two methods is that, unlike linear 
regression, they assume Gaussian-like sampling distributions of the subsequent 
x- and y-values. This assumption is not always appropriate, since the data are, 
generally, not randomly sampled, but obtained from selected groups. 

 If we want to account the uncertainty of a control test, which is not a gold stan-
dard test, then a better approach will be to test both the new and the control test 
against the gold standard test. This will unmask which of the two tests performs 
better. In the situation where there is no certain gold standard test and where it is 
decided to account uncertainty of the control test to be used, Deming (Linnet  1998  )  
and Passing-Bablok (Passing and Bablok  1983  )  regression are sometimes used 
instead. They are methods based on linear regression and mathematically more 
complex than simple linear regression. Deming regression, just like the paired t-test 
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and the Altman-Bland plot, assumes normal distributions of the subsequent x- and 
y-data. In contrast, Passing-Bablok regression does not. It is a non-parametric 
method using the Kendall’s rank-correlation test to assess the above-described 
hypotheses that b = 1.000, and a = 0.000. First, one should produce a ranked sequence 
of all possible slope-values between two x and two y-values (Sij values). We, then, 
compare the Sij values >1 with those <1, and test whether there is a signifi cant dif-
ference using Kendall’s standard error equation, SE (standard error) = √ n(n − 1) 
(2n + 5) /18 with n = number of paired values. If, after continuity correction (add −1 
to the difference as calculated), the SE is smaller than half the size of the calculated 
difference, then the b-value is not signifi cantly different from 1.000. The a-value is 
calculated from the medians of x and y using the calculated b, its SE from the upper 
and lower limit of the confi dence intervals of the b-value. The method is laborious, 
particularly, with large samples, but available through S-plus, Analyse-it, EP 
Evaluator, and MedCalc and other software programs.  

    6   Discussion 

 Simple linear regression testing the presence of a signifi cant correlation between the 
new-test-data (x-axis-data) and the control-test-data (y-axis-data) is not accurate for 
testing the validity of a novel quantitative diagnostic test. Accurate methods using 
linear regression include the following.

    1.    From y = a + bx, test the hypothesis that b is statistically signifi cantly larger than 
zero, than test the hypothesis that b = 1.000 and a = 0.000.  

    2.    If “the b = 1.000 and a = 0.000 hypothesis” cannot be confi rmed, then use as 
criterion for validation a squared correlation-coeffi cient r 2  or intraclass correla-
tion of >95%, or a relative residual variance of <5%. If the new test is validated 
this way, then the predicted control-test-values are calculated from the equation 
y = a + bx.     

 Altman-Bland plots, paired t-tests, Deming regression and Passing-Bablok 
regression assume uncertainty of both the new test and the control test. This is rarely 
a condition for validation, and carries the risk of unneeded loss of sensitivity of test-
ing. However, if there is no gold standard test and it is decided to account the uncer-
tainty of the control test, then Passing-Bablok regression is the only method adequate 
for non-normal data as often present in practice. 

 When using a data plot with one test on the x- and one on the y-axis, sometimes 
non-linear or curvilinear or exponential patterns can occur. The diagnostic test may, 
then, be useful even so. But, we will fi rst have to fi nd the best fi t equation for the 
data, which is generally the equation producing the largest regression coeffi cient, 
and may, for example, look like y = log x, y = a + bx 2  and many more forms. Such a 
test can be approved as valid, if it is a precise predictor of the control test, even if the 
x-data do not predict y, but rather something like antilog y or √ [(y − a)/b]. In practice, 
however, linear relationships are the most common pattern observed with quantitative 
diagnostic tests.  



552 50 Validating Quantitative Diagnostic Tests

    7   Conclusions 

 Clinical research is impossible without valid diagnostic tests. The methods for 
validating  quantitative  diagnostic tests have not been agreed upon by the scientifi c 
community. This chapter reviews the advantages and disadvantages of methods that 
could be used for that purpose. Using real data examples we review seven possible 
methods. 

 Simple linear regression testing the presence of a signifi cant correlation between 
the new-test-data (x-axis-data) and the control-test-data (y-axis-data) is not accurate 
for testing the validity of a novel quantitative diagnostic test. Accurate methods 
using linear regression include the following. First, from y = a + bx, test the hypothesis 
that b is statistically signifi cantly larger than zero, than test the hypothesis that 
b = 1.000 and a = 0.000. Second, if “the b = 1.000 and a = 0.000 hypothesis” cannot 
be confi rmed, then use as criterion for validation a squared correlation-coeffi cient r 2  
or intraclass correlation of >95%, or a relative residual variance of <5%. If the new 
test is validated this way, then the predicted control-test-values are calculated from 
the equation y = a + bx. 

 The above three methods assume uncertainty of the new-test-data, but not of the 
control-test-data. Deming regression, Passing-Bablok regression, paired Student’s 
t-tests, and Altman-Bland plots assume uncertainty of both the new test and the 
control test. This is rarely a condition for validation, and carries the risk of unneeded 
loss of sensitivity of testing. However, if the control test is not the gold standard test 
and it is decided to account the uncertainty of the control test, then Passing-Bablok 
regression is the only method that adjusts for non-normal data as frequently observed 
in practice. 

 More information on accuracy assessments of quantitative diagnostic tests is 
given by the CLSI protocols published by the Clinical and Laboratory Standards 
Institute, particularly the protocols EP9 and EP14  ( Guidelines for global application 
developed by the Clinical and Laboratory Standards Institute  2011  ) .      
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                  1   Introduction    

 Clinical studies are impossible without adequate diagnostic tests, and diagnostic 
tests can, therefore, be considered the real basis of evidence-based medicine. In 
1995 Reid et al.  (  1995  )  stated after a search of 1,302 diagnostic studies that most 
diagnostic tests are inadequately appraised. Efforts to improve the quality of diag-
nostic tests are given by initiatives like those of the CONSORT (Consolidated 
Standard Randomized Trials)  (Anonymous,   2011  )  movement and the STARD 
(Standards for Reporting Diagnostic Accuracy) (Bossuyt et al.  2003  )  group launching 
quality criteria statements for diagnostic tests in 2002 and 2003. In spite of such 
initiatives the evaluation of diagnostic tests prior to implementation in research 
programs, continues to be lacking (Morgan et al.  2007  ) . A diagnostic test can be 
either qualitative, e.g., the presence of an elevated erythrocyte sedimentation rate 
to demonstrate pneumonia, or quantitative, e.g., the ultrasound fl ow velocity to 
estimate the invasive electromagnetic fl ow velocity. For both qualitative and quan-
titative diagnostic tests three determinants of validity have been recommended by 
working parties:

   Assess accuracy: the test shows who has the disease and how severe it is.  
  Assess reproducibility: when a subject is tested twice, the second test produces 
the same result as the fi rst test.  
  Assess precision: there is a small spread in a random sample of test results.    

 The methods of assessment have, however, not been defi ned so far. The current 
chapter reviews correct and incorrect methods and new developments.  

    Chapter 51   
 Summary of Validation Procedures 
for Diagnostic Tests       
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    2   Qualitative Diagnostic Tests 

    2.1   Accuracy 

 Assessing accuracy is probably most important. Accuracy is synonymous to valid-
ity, and can here be defi ned as a test’s ability to show which individuals have the 
disease and which do not. It is, generally, assessed by sensitivity and specifi city, 
defi ned as the chance of a true positive and true negative test respectively. 

 How do we calculate accuracy  

 Disease  Yes (n)  No (n) 

 Positive test  a  b 
 Negative test  c  d 

 n = number of patient 
 a = number of true positive patients 
 b = false positive patients 
 c = false negative patients 
 d = true negative patients 

 Sensitivity of the above test = a/(a + c) 
 Specifi city = d/(b + d) 
 In addition to sensitivity and specifi city sometimes overall accuracy is 

given 
 Overall accuracy = (a + d)/(a + b + c + d) 

 It is important to realize that a sensitivity/specifi city close to 50% gives no more 
information than does fl ipping a coin, and that such a result is not a basis for valida-
tion. Often qualitative diagnostic tests have multiple sensitivities/specifi cities 
dependent on normal values used. In the example of the Figs. 46.3 and 46.4 in Chap. 
  46     the erythrocyte sedimentation rate (ESR) is used as an estimator of pneumonia 
with chest x-ray as gold standard test. The sample population consists of two 
Gaussian distributions of patients, one with and the other without pneumonia. 

 Figure 46.1 in Chap.   46     shows that, if a normal value of the ESR is defi ned 
as < 43 mm, many healthy subjects are rightly diagnosed. However, many diseased 
are missed. The test, thus, produces a high specifi city, but low sensitivity: we have 
many false negatives. If, in contrast, an ESR of >32 mm is used as level between 
health and disease (Fig. 46.2, Chap.   46    ), then we do not miss many diseased, but we 
will misdiagnose many healthy subjects. Our test will have a low specifi city: we will 
have many false positives. The question is what normal ESR value is best in order 
to miss as few diagnoses as possible, and obtain both a high sensitivity and high 
specifi city. ROC (receiver operating) curves are helpful for fi nding both (Fig.  51.1 ). 
First, we calculate for several tentative normal values sensitivity/specifi city. Then, 
we draw a curve with sensitivities on the y-axis and specifi cities or 1-specifi cities 
(producing a somewhat prettier curve) on the x-axis. A perfect test reaches the top 
of the y-axis where both sensitivity and 1-specifi city are 100%. The given example 
does not produce a perfect test, but we can readily observe from the graph that an 
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ESR of 38 mm produces the shortest distance to the top of the y-axis. If you want 
proof, you may wish to measure the distance between the top of the y-axis and the 
curve or calculate it using rectangular triangles and Pythagoras’ equation.  

 ROC curves are very popular, but have some limitations. First, sometimes more 
than 1 shortest distance to the top of the y-axis is observed. Second, ROC curves 
close to the diagonal provide no more information than tossing a coin (overall accu-
racy is only 50%). Third, often two different diagnostic tests are compared for iden-
tifying the better of the two using areas under the curve of the ROC curves. 
A problem is, that such ROC curves often cross, which means, that a diagnostic test 
may perform better in one interval, worse in another.  

    2.2   Reproducibility 

 Cohen’s kappas are used for assessing reproducibility of qualitative diagnostic tests. 
As an example 30 patients are assessed twice for a positive test for brain natriuretic 
peptide for a diagnosis of heart failure.  

 1st time positive test 

 Yes  No 
 2nd time positive test  Yes  10   5  15 

 No   4  11  15 
 14  16  30 

 It can be demonstrated that, if the test were not reproducible at all,

     

( )
( )

you would find 14 15 / 30 7 twice yes

and 16 15 / 30 8 twice no

15 twice the same.

In fact,  we do find 21 twice the same.

× = ×

× = × +
×
×     

  Fig. 51.1    The ROC (receiver 
operating characteristic) 
curve of the erythrocyte 
sedimentation rate ( ESR ) 
values of the patients with 
pneumonia from the 
Figs.  51.1  and  51.2  plot the 
sensitivity values against the 
“1-specifi city”values ( sens  
sensitivity,  spec  specifi city)       
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 The kappa estimator is calculated according to:

     

− −= = =
− −

observed minimal 21 15
Kappa 0.4

maximal minimal 30 15     

 The result is interpreted as follows: a kappa value of 0 means a very poor 
reproducibility, a value of 1 an excellent reproducibility. In our example the repro-
ducibility is moderate.  

    2.3   Precision 

 The STARD (standards for reporting diagnostic accuracy) working party (Barnett 
 1969  )  has proposed to include a “measure of uncertainty” in any validation proce-
dure. Standard deviations/errors (SDs/SEs) can be used for that purpose.  

 Disease  Yes (n)  No (n) 

 Positive test  a  b 
 Negative test  c  d 

     

( )
( )

( ) ( )

3

sensitivity

3

specificity

2 22
overall accuracy sensitivity 1 specificity

prev

SE ac / a c

SE db / d b

SE prev var 1 prev var sens spec

var

−

= √ +

= √ +

= √ × + − × + −

×
   

where prev = prevalence = (a + d)/(a + b + c + d) and var = variance = SD 2 . 
 A small sensitivity with a relatively wide spread, for example, a sensitivity of 

55% with a SE 
sensitivity

  larger than 2.5% means that the sensitivity is not signifi cantly 
different from 50%, a result that does not give more information than tossing a coin. 
This diagnostic test is not adequately precise for validation. Many diagnostic tests 
have been erroneously validated in the past based on sensitivities/specifi cities higher 
than 50%, without assessment for uncertainty (see Chap.   47    ).   

    3   Quantitative Diagnostic Tests 

    3.1   Accuracy 

 Linear regression with the gold standard test as dependent and the new diagnostic 
test as independent variable (respectively y- and x-variable) is very popular for 
assessing accuracy of quantitative diagnostic tests. If a statistically signifi cant 
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association between y and x is established, this is generally considered suffi cient 
evidence for validation. This approach is incorrect. For example, in Fig.  51.2  an 
example is given where fl ow velocity (mm/s) as estimated by ultrasound is used to 
predict the standard electromagnetic measurements (mm/s). The regression equa-
tion calculated from the SPSS Statistical Software program is given by 
y = a + bx = 8.647 + 2.065 x (a = intercept, b = regression coeffi cient). The standard 
error of the regression coeffi cient b = Se 

b
  = 0.276. This means that the 

t-value = 2.065/0.276, equaling 7.491, and the p-value is thus <0.0001. The x-vari-
able, ultrasound estimate, is a very signifi cant predictor of the y-variable, the elec-
tromagnetic measurement. However, the graph shows that the prediction despite the 
high level of statistical signifi cance, is very imprecise. For example, if x = 6, then y 
may be 10 or 21, if x = 7, y may be 19, 31 or 32. A signifi cant correlation is, thus, 
not good enough to validate a quantitative diagnostic test. A more adequate 
method for validation was given by Barnett  (  1969  ) . Test the hypotheses a = 0.000, and 
b = 1.000. If the 95% confi dence intervals of the calculated a and b include the num-
bers 0.000 and 1.000 respectively, then the test can be accepted as validated. Confi dence 
intervals can be calculated several ways, but here we use the Gaussian approach: 

        ( )= ± ± ×a95% confidence interval of a a 2 Se 8.647 2 3.132     
      ( )= ± ± ×b95% confidence interval of b b 2 Se 2.065 2 0.276     
  a ± 2 Se 

a
  = between 2.383 and 14.911.  

  b ± 2 Se 
b
  = between 1.513 and 2.617    

 The numbers 0.000 and 1.000 are not included in the 95% confi dence intervals. 
No validity has been established. 

  Fig. 51.2    Accuracy assessment with a linear regression model. The regression equation is given 
by y = a + bx = 8.647 + 2.065 x (a = intercept, b = regression coeffi cient, p < 0.0001). The x-variable, 
ultrasound estimate, is a very signifi cant predictor of the y-variable, the electromagnetic measure-
ment. However, the prediction, despite the high level of statistical signifi cance, is very imprecise. 
For example, if x = 6, then y may be 10 or 21, if x = 7, y may be 19, 31 or 32       



560 51 Summary of Validation Procedures

 Another example is given in Fig.  51.3 . Angiographic cardiac volumes (liters) are 
used to predict cast cardiac volumes (liters). When testing the hypotheses a = 0.000 
and b = 1.000, SPSS will produce the following results.
        = ± = ± ×a95% confidence intervals of a a 2 Se 39.340 2 38.704     
      = ± = ± ×b95% confidence intervals of b b 2 Se 0.917 2 0.083     
  a ± 2 Se 

a
  = between −38.068 and 116.748  

  b ± 2 Se 
b
  = between 0.751 and 1.083    

 The 95% confi dence intervals include 0.000 and 1.000 respectively. The diag-
nostic can be accepted as validated.  

    3.2   Reproducibility 

 Reproducibility is often calculated incorrectly. The fi rst commonly used incorrect 
method is given in the example underneath. The individual differences between test 
1 and 2 per patient are calculated. If the mean difference is small, it is concluded 
that the test is well reproducible.  

 Patient no  Test 1  Test 2  Difference 

 1  1  11  −10 
 2  10  0  10 
 3  2  11  −9 
 4  12  2  10 
 5  11  1  10 
 6  1  12  −11 

 Mean difference  0 

  Fig. 51.3    Angiographic 
cardiac volumes (liters) used 
to predict cast cardiac 
volumes (liters)       
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 As can be observed from the above example of fl ow velocities (mm/s), the mean 
difference between test 1 and test 2 is zero. Yet, the tests are very poorly reproduc-
ible, because the range of differences is no less than 21 (differences vary from −11 
to +10) mm/s. 

 The second commonly used incorrect method is the following. A regression line 
is drawn with test 1 data on x-axis and test data on y-axis. If the data are close to the 
line, it is concluded that reproducibility is good. There are two problems with this 
approach. First, testing twice introduces a regression to the mean phenomenon: 
patients scoring low the fi rst time, have a better chance of scoring higher next time 
vice versa. A second problem is that only good reproducibility is an adequate con-
clusion if the direction coeffi cient of the regression line has a direction of 45°. 

 The correct methods for assessing reproducibility with quantitative diagnostic 
tests are summarized.

    1.    Duplicate standard deviation  
    2.    Repeatability coeffi cient  
    3.    Intraclass correlation    

    1.     Duplicate standard deviation (SD)  
 The duplicate standard deviation is used in the underneath example.  

 Patient no  Test 1  Test 2  Difference (d)  (difference) 2  

 1  1  11  −10  100 
 2  10  0  10  100 
 3  2  11  −9   81 
 4  12  2  10  100 
 5  11  1  10  100 
 6  1  12  −11  121 
 Average  6.17  6.17  0  100.3 

     
21

2 d / n =Duplicate SD (1 / 2 100.3) 7.0 8= √ √ × =∑    

     
= × = × =duplicate SD 7.08

Duplicate SD % 100% 100% 115%
overall mean 6.17     

 An adequate reproducibility corresponds to a duplicate SD of 10–20%.  
    2.     Repeatability coeffi cient  

 The repeatability coeffi cient is applied in the underneath example.  

 Patient no  Test 1  Test 2  Difference 

 1  1  11  −10 
 2  10  0  10 
 3  2  11  −9 
 4  12  2  10 
 5  11  1  10 
 6  1  12  −11 
 Mean  6.17  6.17  0 
 Standard deviation (SD)  10.97 
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 The repeatability coeffi cient = mean difference ± 2 SD  
difference

  = 0 ± 21.95 
  The interpretation is as follows. A repeatability coeffi cient must be < than the 
largest measured difference between test 1 and test 2.  

    3.     Intraclass correlation  
  The intraclass correlation is applied in this example (SD = standard deviation, 
SS = sum of squares).  

 Patient  Test 1  Test 2  Average  SD 2  

 1  1  11  6  50 
 2  10  0  5  50 
 3  2  11  6.5  40.5 
 4  12  2  7  32 
 5  11  1  6  50 
 6  1  12  6.5  60.5 
 Mean  6.17  6.17 
 Overall mean  6.17 

     

( ) ( )2 2

between subjectsSS mean subject 1 grand mean mean subject 2 grand mean

3.0134

= − + −

+…… =    

     
= + + + +… =2 2 2 2

within subjects 1 2 3 4SS SD SD SD SD 283
    

 The intraclass correlation (ICC) is given be the equation =

     

= −
+

between subjects

between subjects within subjects

SS
0 1

SS SS
    

 If SS 
between

  = 0, then the test will be poorly reproducible; if SS 
within

  = 0, then the test 
will be excellently reproducible. Here the intraclass correlation = 0.01051, and, so, 
the test is very poorly reproducible.      

    3.3   Precision 

 A good precision can be interpreted as a small spread in the data, for example, 
estimated by a small SD or SE (standard error). If the spread in a data sample is 
wide, some legitimate statistical methods are available to reduce the size of the SDs/
SEs, such as data modeling (massage) using multiple regression or logarithmic 
transformation, exponential modeling, polynomial modeling or other methods. 
Figure  51.4  gives an example of data modeled using a multiple linear regression 
model. On the x-axis the baseline Ldl-cholesterol levels of the patients in a cholesterol-
study are given, on the y-axis the decreases of Ldl-cholesterol after treatment is 
given. The upper graph gives the results without, the lower with modeling. It can be 
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observed in the fi gure that the treatment effi cacy given by the b-values is unchanged, 
but that the spread in the data given by the SEs is smaller with the multiple linear 
regression models.  

 Another example is in Fig.  51.5  showing the ambulatory blood pressure mea-
surements (ABPMs) of ten subjects; both means and SDs and 7th order polynomial 

  Fig. 51.4    Example of data modeling for increasing precision using a multiple linear regression 
model. On the x-axis the baseline Ldl-cholesterol level of the patients in a cholesterol-study are 
given, on the y-axis the decrease of Ldl-cholesterol after treatment is given. The  upper graph  gives 
the results without, the lower with modeling. It can be observed in the fi gure that the treatment 
effi cacy given by the b-values are similar but that the SEs are smaller in the  modeled graph , and so 
this modeling produced a better precision       
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regression models of the data are drawn. The SPSS program calculates the spread in 
the data using either of the two methods. The    Pooled SD of the means equals 
17 mmHg. The SD of the polynomial model is much smaller and equals 7 mmHg. 
Obviously, this curvilinear regression model provides a better precision, and is, 
therefore, a more precise model for analyzing the effects on the ABPM recordings 
of different blood pressure reducing therapies than simply using the averages and 
their SDs.   

    4   Additional Methods 

 Three relatively new methods for the accuracy assessment of diagnostic tests are 
available.

    1.     Continuous receiver operated characteristic (ROC) curves  (Delong and Delong 
 1988 ; Hanley and McNeil  1982  )  

 In the use of many diagnostic tests, test results do not necessarily fall into one 
of two categories, but rather into categories with more or less confi dence in the 
presence of disease (Fig.  51.6 ). While using multiple thresholds for making a 
diagnosis, a continuous ROC curve can be obtained (Fig.  51.7 ). The closer this 

  Fig. 51.5    Ambulatory blood pressure measurements (ABPMs) of ten subjects; both means and 
SDs and 7th order polynomial regression models of the data are drawn. The SPSS program calcu-
lates the spread in the data using either of the two methods. The pooled SD of the ABPM values 
using the means equals 17 mmHg (pooled departure from all means). The SD of the polynomial 
model is much smaller and equals 7 mmHg (pooled departure from the polynomial curve). 
Obviously, this curvilinear regression model provides a much better precision, and is, therefore, a 
more precise model for analyzing the differences between the ABPM recordings of different blood 
pressure reducing therapies than simply the use of averages and their SDs       
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ROC curve approaches the top of the y-axis, the better accuracy the diagnostic 
test will provide with an optimal AUC of 1.0. In contrast, if the ROC curve is 
close to the 45° diagonal line, the AUC is close to 0.5, and the test is very inac-
curate. The simplest method for calculating the AUC is summing the areas of 
the trapezoids formed by the curve and the x-axis. Various statistical software 
programs including SPSS can be used to calculate the area under the curve of 
continuous ROC curves, otherwise called c-statistics (concordance statistics) 
(Chap.   49    ). It is used to estimate the performance of qualitative diagnostic tests. 
However, as demonstrated in Chap.   49     simply binary logistic regression with the 
odds of disease as outcome and the test score as independent variable can be 
equally well used for the purpose.    

  Fig. 51.6    Diagnostic test where results do not fall into one of two categories but rather into 
categories with more or less confi dence       

  Fig. 51.7    Continuous 
receiver operated 
characteristic ( ROC ) curve       
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    2.     Intraclass correlation (ICC) for agreement with the gold standard test  (Lee 
et al.  1989  )  

 The Intraclass correlation has recently been used not only for assessing repro-
ducibility of diagnostic tests, but also as an alternative method for accuracy 
assessments. It is given by the equation (SS = sum of squares)

     

=
+

between techniques

between techniques within techniques

SS
ICC .

SS SS
    

   The interpretation is similar to that of the intraclass correlation method for repro-
ducibility assessment as explained above. It can be demonstrated that this method 
is less sensitive in demonstrating disagreement between the diagnostic test and 
the gold standard test than the previously mentioned methods. Also the Bland-
Altman method, which will be discussed next, performs better.  

    3.     Bland-Altman method  (Bland & Altman  1995  )  
 Bland and Altman recommended the following approach. Calculate the indi-

vidual differences between the diagnostic test results and the gold standard test 
results and, subsequently, the standard deviation of these differences. If this standard 
deviation is less than or equal to the standard deviation of the both the diagnostic 
test results and the gold standard test results, then the two difference tests are 
exchangeable and, therefore, equivalent. The diagnostic test is, then, accurate.      

    5   Discussion 

 The current chapter gives some relatively simple methods for assessment. Validity 
assessments of diagnostic tests are rarely communicated in research papers and this 
may contribute to the low reproducibility of clinical trials. We expected that valida-
tion would, at least, be a standard procedure in clinical chemistry studies where a 
close to 100% accuracy/reproducibility is not unusual. However, even in a journal 
like the Journal of the International Federation of Clinical Chemistry and Laboratory 
Medicine out of 17 original papers publishing novel chemistry methods in 2006 
none of the papers communicated validity assessments except for one study (Imburt-
Bismut et al.  2004  ) . Ironically, this very study reported two incorrect methods for 
assessing reproducibility, namely the assessment of signifi cant differences between 
repeated measures, and the calculation of Pearson’s correlation levels. 

 A more general explanation for the underreporting of validation procedures for 
diagnostic tests in research communications is that the scientifi c community 
although devoted to the study of disease management, is little motivated to devote 
its energies to assessing the validity of the diagnostic procedures required for the 
very study of disease management. Clinical investigators favor the latter to the former. 
Also the former gives no clear-cut career path, while the latter more often does so. 
And there is the injections from the pharmaceutical industry. To counterbalance this 
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is a challenge for governments and university staffs. Correct methods for validation 
of both quantitative and qualitative diagnostic methods are summarized in 
Table  51.1 .   

    6   Conclusions 

 Clinical developments of new treatments are impossible without adequate diagnostic 
tests. Several working parties including the Consolidated Standard Randomized 
Trials (CONSORT) movement and the Standard for Reporting Diagnostic Accuracy 
(STARD) group have launched quality criteria for diagnostic tests. Particularly, 
accuracy-, reproducibility- and precision-assessments have been recommended, but 
methods of assessment have not been defi ned so far. 

 This chapter summarizes correct and incorrect methods and new developments 
for that purpose. 

 A diagnostic test can be either qualitative like the presence of an elevated eryth-
rocyte sedimentation rate to demonstrate pneumonia, or quantitative like ultrasound 
fl ow velocity to estimate invasive electromagnetic fl ow velocity. 

 Qualitative diagnostic tests can be assessed for:

        – accuracy  using sensitivity/specifi city/overall accuracy, and receiver operated 
(ROC) curves,  
    – reproducibility  using Cohen’s kappas,  
    – precision  using confi dence intervals of sensitivity/specifi city/overall accuracy.    

 Quantitative diagnostics tests can be assessed for

        – accuracy  using a linear regression line (y = a + bx) and testing a = 0.00/b = 1.00,  

   Table 51.1    Summary of correct methods for validation of both quantitative and qualitative 
diagnostic tests   

 Accuracy  Reproducibility  Precision 

 Qualitative diagnostic test 
 Sensitivity  Kappas  Confi dence intervals 
 Specifi city 
 Overall accuracy 
 ROC curves 
 Logistic regression 
 Quantitative diagnostic test 
 Barnett’s test  Duplicate standard deviation  Confi dence intervals 
 Intraclass correlation vs gold test  Repeatability coeffi cient 
 Bland-Altman test  Intraclass correlation vs duplicate 

test 
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    – reproducibility  using duplicate standard errors, repeatability coeffi cients or 
intraclass correlations,  
    – precision  by calculating confi dence intervals. Improved confi dence intervals can 
be obtained by data modeling.    

 A signifi cant linear correlation between the diagnostic test and the gold standard 
test does not correctly indicate adequate accuracy. A small mean difference between 
repeated measures or a signifi cant linear relationship between repeated measures 
does not indicate adequate reproducibility. 

 New developments include continuous ROC curves, intraclass correlations, 
and Bland-Altman agreement tests for the accuracy assessments of quantitative 
diagnostic tests.      
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     1   Introduction 

 Clinical trials are often constructed with surrogate endpoints for practical or cost 
considerations, for example, lipid levels as a surrogate for arteriosclerosis, arrhyth-
mias for coronary artery disease, and cervical smears for tubal infections (Pratt and 
Moye  1995 ; Canner et al.  1986 ; Riggs et al.  1990 ; Fleming and DeMets  1996 ; 
Boissel and Hc  1992  ) . Such trials make inferences from surrogate observations 
about the effect of treatments on the supposed true endpoints without accounting the 
strength of association between the surrogate and true endpoints. The main problem 
with this practice is that the surrogate endpoint may lack suffi cient validity to pre-
dict the true endpoint, giving rise to misleading trial results. The International 
Conference of Harmonisation (ICH) Guideline E9 Statistics Principles for Clinical 
Trials (Philips and Haudiquet  2003  )  recommends that, for the approval of a surro-
gate marker, (1) a statistical relationship with the true endpoint in observational 
studies be demonstrated, (2) evidence be given from clinical trials that treatment 
effects on the surrogate correspond to those on the true clinical endpoint, and (3) the 
surrogate marker like a diagnostic test be tested for sensitivity and specifi city to 
predict the true endpoint. There is, thus, considerable consensus to routinely assess 
the accuracy of surrogate markers, but not specifi cally how to do so. Problems with 
the current sensitivity-specifi city approach to validity is, that it is dual and that an 
overall level of validity is, therefore, hard to give (Cleophas  2005  ) . Also, it can be 
used for binary (yes/no) endpoints only. As an alternative, regression-models have 
been proposed (Philips and Haudiquet  2003 ; Chen et al.  2003  ) . However, a correla-
tion of borderline statistical signifi cance between the surrogate and the true end-
point is not enough to indicate that the surrogate is an accurate predictor. The current 
chapter underscores the need for accuracy assessment of surrogate endpoints by 
comparing the required sample sizes of trials with and without surrogate endpoints, 
and describes two novel procedures for assessment. The fi rst makes use of an overall 
level of accuracy with confi dence intervals and a prespecifi ed boundary of accuracy. 
The second uses a regression model that accounts both the association between the 
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surrogate and the true endpoint, and the association between either of these 
variables and the treatments to be tested.  

    2   Some Terminology    

 Surrogate marker/
endpoint/test 

 Laboratory measurement or physical sign used as a substitute for a 
clinically meaningful endpoint that measure directly how a 
patient feels, functions, or survives, otherwise called the true 
endpoint. 

 Validity of a surrogate 
test 

 The surrogate test’s ability to show which individuals have a true test 
either positive or negative. We sometimes use the term overall 
validity to emphasize that the approach is different from 
assessing sensitivity and specifi city separately. 

 Sensitivity  Chance of a true positive surrogate test. 
 Specifi city  Chance of a true negative surrogate test. 
 Odds ratio (OR)  Odds of the clinically meaningful endpoint in the treatment group/

odds of it in the control group. 
 Alpha ( a )  Type I error, chance of fi nding a difference where there is none. 
 Beta ( b )  Type II error, chance of fi nding no difference where there is one. 
 Null-hypothesis  The study is negative, the treatment does not work. The null-hypothesis 

of no treatment effect is rejected when the difference from a zero 
effect is signifi cant. 

 Variance  Estimate of spread or precision in the data. 
 Variance of proportion p = p (1 − p) 

 Standard error (SE)  √(variance/n), where n = sample size. 
 Confi dence interval (CI)  It covers a percentage of the results that can be expected if the study 

would be repeated many times. For example, 95% CI between an 
OR of 1.10 and 1.86 means that 95% of many similar studies 
would produce an OR between 1.10 and 1.86. 

 95%CI of a proportion be calculated according to: proportion 
±1.96*SE 

proportion
 , where * is the sign of multiplication. 

 Prespecifi ed boundary of 
validity 

 It is often chosen on clinical grounds, and covers the range of results 
that are accepted by the investigators as suffi ciently valid to use 
the surrogate test for its purpose. Currently, it is considered good 
statistical practice to defi ne a prespecifi ed boundary of your 
expected validity, and, then, test whether the confi dence interval 
of your calculated level of validity falls entirely within the 
prespecifi ed boundary. If so, you accept, if not you reject the 
presence of validity. 

 Dependent variable  y-variable in a regression analysis. 
 Independent variable  x-variable in a regression analysis. 
 Correlation coeffi cient 

squared (r 2 ) 
 Estimate of strength of association between paired observations. If 

r 2  = 0, there is no association, if r 2  = 1, there is 100% association. 
If r 2  = 0.5, there is 50% association. One variable determines the 
other by 50%, and there is 50% uncertainty. The r 2 value expresses 
the proportion of variability in the y-variable determined by the 
variability in the x-variable. 

 Regression coeffi cient (b)  Estimate of strength of association between paired observations 
particularly used in the case of multiple regression. 
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    3   Surrogate Endpoints and the Calculation of the Required 
Sample Size in a Trial 

 The validity or accuracy of a surrogate marker can be expressed in terms of sensitivity 
and specifi city to predict the true endpoint, e.g. healings.  

 Healings  Non-healings 

 New treatment (group1)  170 (E)  140 (F) 
 Control treatment (group 2)  190 (G)  230 (H) 

odds of healing E/F and G/H,

     

( )
( ) ( )

odds ratio OR E / F / G / H

170 /140 / 190 / 230 1.47.

=

= =     

 Figure  52.1  shows that a true endpoint test for the assessment of the above data 
has a 95% confi dence interval between 1.09 and 1.99, and that it can reject the null-
hypothesis of no difference between the two treatments at P < 0.02. If a surrogate 
test for the assessment of the same data has a sensitivity of 80% and specifi city of 
100%, the OR will diminish, because the observed numbers of healings will fall by 
20%, and those of the non-healings will rise correspondingly (OR = 1.38; 95% con-
fi dence interval 1.10–1.86, P = 0.05). If it has a sensitivity of 80% and specifi city of 
only 90%, the OR can be calculated to further fall to 1.31 (95% confi dence interval 
−0.029–1.77, p = 0.10), and a signifi cance of difference between the two treatments 
can no longer be demonstrated (Fig.  52.1 ). Obviously, with surrogate markers 
rapidly less certainty is provided to estimate the chance of healing or no-healing. 
In order to maintain a close to true endpoint level of certainty the sample size will 
have to be increased.  

  Fig. 52.1    Effect of sensitivity and specifi city levels on odds ratios and their 95% confi dence 
intervals (odds ratio = odds of healing of the new treatment/odds of healing of the control 
treatment)       
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 The effect on sample size requirement of a reduced sensitivity or specifi city is 
illustrated in the underneath hypothesized example. 

 In a parallel study 10% healings are expected in group 1, and    20% healings in 
group 2. 

 The required sample size can be calculated according to:

     

( ) ( )
( )

1 1 2 2*
2

1 2

p 1 p p 1 p
required sample size power index subjects per group

p p

195 subjects per group

− + −
=

−

=    

p 
1
  = expected proportion of healings in group 1, p 

2
  = expected proportion of healings 

in group 2, power index for  a  = 0.05 and  b  = 0.20 equals 7.8, * = the sign of 
multiplication. 

 If the surrogate test provides 80% sensitivity, then in group 1 not 10% but 
80% × 10% = 8% healings will be observed, in group 2 not 20% but 80% × 20% = 16%. 
The required sample size will rise to: 

             = 254 subjects per group. 

 If sensitivity = 80% and specifi city = 90%, it can be similarly calculated that the 
required sample size will further rise to no less than: 

             = 515 subjects per group. 

 In trials using surrogate endpoints the sample size has to be based not only on the 
expected treatment effi cacy but also on the validity of the surrogate marker used. 
We will now describe two procedures that can be readily applied for validating the 
surrogate marker. The fi rst is adequate for binary variables, the second both for 
continuous and binary variables. The fi rst can also be chosen after the assignment of 
continuous data to binary ones.  

    4   Validating Surrogate Markers 
Using 95% Confi dence Intervals 

 The validity of a surrogate marker can, like a diagnostic test, be assessed by sensi-
tivity and specifi city to predict the true endpoint. In addition to this dual approach 
to accuracy, an overall validity can be calculated as illustrated below.  

 Observed surrogate endpoint (n) 

 Yes  No 
 Observed true endpoint  Yes  a  b 

 No  c  d 

 Sensitivity = a/(a + c) 
 Specifi city = d/(b + d) 
 1-specifi city = b/(b + d) 
 Prevalence of true endpoint = (a + b)/(a + b + c + d) 
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 The variance of sensitivity is given by ac/(a + c) 3 . 
 For the specifi city the variance = db/(d + b) 3 . 
 Also for 1-specifi city the variance = db/(d + b) 3  
 For the prevalence of the true endpoint the variance = (a + b)(c + d)/(a + b + c + d) 3  
 Overall validity = sensitivity * prevalence + specifi city * (1-prevalence). 
 * = the sign of multiplication. 

 For approval of a surrogate marker a boundary of validity is prespecifi ed in the 
study protocol, e.g., 85% < validity < 100%, and a confi dence interval of the overall 
validity level is calculated. If the confi dence interval falls entirely between the pre-
specifi ed boundary, validity is demonstrated. For example, the true endpoint is a 
cardiovascular event, the surrogate endpoint is an elevated C-reactive protein level, 
currently a widely used marker for cardiovascular disease. 

 For the calculation of the confi dence intervals standard errors (SEs) are required. 
In order to calculate the standard error (SE) (= √ (variance)) of the overall validity, 
we make use of the formula:

     ( ) ( ) ( ) ( )+ = + +Var X Y Var X Var Y 2 Cov X,Y .
   

     

( ) ( ) ( ) ( )
( )( )

Var overall validity Var sens* prev Var spec * 1 prev

2Cov sens* prev,spec* 1 prev .

= + −

+ −
   

Var = variance; sens = sensitivity; spec = specifi city; prev = prevalence; cov = covariance. 
 The variance of X*Y may be approached from

     ( ) ( ) ( )= +2 2Var X * Y Y Var X X Var Y .
    

 Using this formula we will end up fi nding:

     

( ) ( ) ( ) ( )
( ) ( )

22

2

Var overall validity prev * Var sens 1 prev * Var 1 spec

sens spec * Var prev .

= + − −

+ −     

 If, e.g., 

 sensitivity = 80% with SE = 2%, 
 specifi city = 90% with SE = 1%, 
 prevalence =10% with SE = 3%, 

 then we can calculate:

     ( ) ( )= + − =overall validity 0.8* 0.1 0.9 * 1 0.1 0.89
   

and

     

( ) ( ) ( )2 22 2 2 2Var overall validity 0.1 * 0.02 1 0.1 * 0.02 0.8 0.9 * 0.03

0.000337.

= + − + −
=     
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 The SE of the overall validity is the square root of the variance, and equals 
0.018356 = 1.8356%. 

 This approach makes use of the so-called delta-method which describes the 
variance of natural logarithm (ln) (X) as Var(ln(x)) = Var(x)/x 2 . The approach is suf-
fi ciently accurate if the standard errors of prev, sens and spec are small which is true 
if samples are large. 

 An overall validity of 89% with SE 1.8356% means that the 95% confi dence 
interval is between

     

0.89 1.96* 0.018356 and

0.89 1.96* 0.018356,

−
+    

and is thus between 85.4 and 92.6%. This interval falls entirely between the pre-
specifi ed interval of validity of 85% < validity < 100%. This surrogate endpoint is, 
thus, validated.  

    5   Validating Surrogate Endpoints Using Regression Modeling 

 Table  52.1  shows the total and LDL cholesterol levels being used as tentative sur-
rogate endpoints for coronary artery diameter. For the validation of the two surro-
gate endpoints the following linear model is used: 

     = + +1 1 2 2y a b x b x     

 y = true endpoint, 
 x 

1
  = treatment modality (0 = placebo, active treatment = 1) 

 x 
2
  = surrogate endpoint

     = + 1 1y a b x     

 r 2  of this equation = proportion variability in y explained by x 
1
 

     = + +1 1 2 2y a b x b x     

 r 2  of this equation = proportion variability in y explained by x 
1
  and x 

2
 . 

 The subtraction sum of the two r 2 -values = proportion variability y explained by 
the surrogate endpoint x 

2
 ; the larger the subtraction sum the better the surrogate 

endpoint. Table  52.2  gives a summary of the calculations. Both LDL-cholesterol 
and total cholesterol levels are signifi cant predictors of the true endpoint in the mul-
tiple regression model with respectively b = 0.891, se = 0.003, p = <0.0001 and 
b = 0.685, se = 0.018, p < 0.0001. However, the subtraction sum of the r 2 -values is 
0.75 − 0.25 = 0.50 for total cholesterol and 0.98 − 0.25 = 0.73 for LDL-cholesterol. If 
the surrogate endpoint is made the dependent variable instead of the true endpoint, 
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then LDL-cholesterol performs better than does total cholesterol. For LDL-
cholesterol r 2  = 0.20, p-values <0.01, power approximately 80%; for total cholesterol 
r 2  = 0.04, p = 0.226.  

 We can conclude that in order to establish a powerful correlation between treatment 
modality and a surrogate endpoint (p < 0.01, power > 80%), the proportion variability 
in y explained by the surrogate endpoint should be close to 70% or more for 
accurate predictions. 

   Table 52.1    Total cholesterol and LDL-cholesterol levels are used as tentative surrogate endpoints 
for coronary artery diameter   

 Pt no.  Cor art (mm)  Treat  Tchol (mmol/l)  LDLchol (mmol/l) 

 1  24  0  4.0  2.4 
 2  30  0  6.5  3.2 
 3  25  0  7.5  2.4 
 4  35  1  5.0  3.6 
 5  39  1  4.5  3.8 
 6  30  0  5.0  3.0 
 7  27  0  4.0  2.6 
 8  14  0  2.5  1.6 
 9  39  1  6.5  4.0 
 10  42  1  7.5  4.2 
 11  41  1  5.5  4.0 
 12  38  1  5.5  3.8 
 13  39  1  6.0  3.6 
 14  37  1  5.0  3.4 
 15  47  1  9.0  4.8 
 16  30  0  6.5  2.8 
 17  36  1  6.0  3.8 
 18  12  0  2.0  1.0 
 19  26  0  5.0  2.8 
 20  20  1  4.0  2.0 
 21  43  0  8.0  4.4 
 22  31  0  7.5  3.0 
 23  40  1  7.0  3.8 
 24  31  0  3.5  3.2 
 25  36  1  6.0  3.4 
 26  21  0  3.0  2.0 
 27  44  0  9.5  4.6 
 28  11  1  2.5  1.0 
 29  27  0  4.0  2.6 
 30  24  0  4.5  2.6 
 31  40  1  7.5  3.8 
 32  32  1  3.5  3.4 
 33  10  0  3.0  0.8 
 34  37  1  7.0  3.2 
 35  19  0  3.5  2.0 

   Pt no.  patient number,  Cor art  coronary artery diameter,  Treat  treatment modality (0 = placebo. 
1 = active treatment),  Tchol  total cholesterol level,  LDLchol  LDL-cholesterol level  
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 A wrong method is to accept as a valid result a surrogate endpoint that is a 
signifi cant determinant of the true endpoint but not of the treatment modality. 

 We should add that different regression models are more convenient for different 
data like logistic regression models for odds ratios and Cox regression for survival 
data, but that the approach, otherwise, is similar.  

    6   Discussion 

 In trials using surrogate endpoints the sample sizes have to be based not only on the 
expected treatment effi cacy but also on the validity of the surrogate marker used. 
A method for calculating adjusted samples sizes is given. 

 Binary surrogate endpoints can be validated by calculating sensitivity and 
specifi city to predict the true endpoint. However, overall validity is hard to quan-
tify using this dual approach. Instead, an overall validity can be expressed by the 
proportion of patients that have a true surrogate test, either positive or negative, 
which we called the overall validity level. Still other approaches to the validity of 
surrogate tests are the so-called positive and negative predictive values and likeli-
hood ratios. Just like the overall validity level, these estimators adjust for numbers 
of differences in patients with and without the true endpoint, but unlike the overall 
validity level they do not answer what proportion of patients has a correct test. 
Riegelman  (  2005  ) , recently, proposed as method for assessing validity of diagnos-
tic tests the discriminant ability, defi ned as (sensitivity + specifi city)/2. Although 
this method avoids the dual approach to validity, it wrongly assumes equal importance 

   Table 52.2    Analysis of associations between true endpoint, treatment modality and surrogate 
endpoints from Fig.  52.1    

 r 2 -value  F-value  p-value 

 True vs treat  0.250  10.9  0.002 
 LDL-chol vs treat  0.202  8.3  0.007 
 Tchol vs treat  0.044  105  0.266 
 True vs LDL-chol  0.970  1052.9  0.000 
 True vs Tchol  0.630  56.1  0.000 

 b-value  standard error  p-value  r 2  

 True vs treat and LDL-chol  treat  0.0135  0.006  0.032  0.98 
 LDL-chol  0.891  0.003  0.000 

 True vs treat and Tchol  treat  0.375  0.005  0.000  0.75 
 Tchol  0.685  0.018  0.001 

   True  true endpoint,  treat  treatment modality (0 or 1 for placebo and active treatment),  LDL-chol  
surrogate endpoint LDL-cholesterol level,  Tchol  surrogate endpoint total cholesterol level,  r   2   
Pearson’s correlation coeffi cient squared,  b  regression coeffi cient  
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and equal prevalence of true positive and true negatives, and does neither answer 
what proportion of the patients has a correct test. We, therefore, decided to use an 
overall validity level, expressed as the percentage of patients with a true surro-
gate test, either positive or negative. We calculated confi dence intervals of this 
estimate in order to quantify the level of uncertainty involved in the trial results. 
If the 95% confi dence interval of the data is entirely within a previously set inter-
val of validity, then the surrogate marker can be validated for use in subsequent 
trials. 

 In case of continuous surrogate tests regression models are adequate for testing 
validity. Not only the association between surrogate and true endpoint must be 
accounted, but also the associations between either of these variables and the treat-
ment modality to be tested. Interaction assessments are not necessary, if there are no 
clinical arguments for the presence of interaction. A surrogate test can be validated 
only, if the proportion of variability in the surrogate endpoint explains the true end-
point by 70% or more, because the power of the surrogate endpoint to determine the 
treatment effect is then about 80%. A wrong conclusion would be to accept ade-
quate validity if the surrogate test is an independent determinant of the true endpoint 
but not of the treatment modality. 

 Validating surrogate endpoints can only be done in a trial where a suffi cient 
number of patients reaches both the surrogate and the true endpoint. With mor-
tality or major cardiovascular events as true endpoint large randomized trials 
with long term follow-up are needed for that purpose. Chen et al.  (  2003  )  pro-
posed as an alternative a semi-large study with a validation and non-validation 
set of patients, but this approach is not really different from two separate studies 
in a single framework. Another interesting alternative was recently proposed by 
Kassaï et al. They meta-analyzed multiple small studies, but their effort was lim-
ited by its post-hoc nature and the heterogeneity of the studies included (Kassaï 
et al.  2005  ) . 

 If the required sample size or length of follow-up cannot be accomplished, then 
validity testing of surrogates for true endpoints will be impossible. We will have to 
look for alternative research methods like looking for intermediate endpoints such 
as morbidity instead of mortality. We should add that there are additional problems 
with a true endpoint like mortality: (1) for estimating the effects of preventive 
medicine that is begun when subjects are middle-aged this endpoint will be statisti-
cally weak, because at such ages the background noise of mortality due to other 
conditions associated with senescence is high, (2) to individual patients low mor-
bidity and high quality of life, generally, means more than does a few additional 
years of survival. Fortunately, in other research the true endpoint is very well pos-
sible, and the surrogate endpoint is pursued because of practical and costs consid-
erations. This applies, e.g., to the example described in the above section. This 
paper was, particularly, written for the latter purpose. It is to be hoped that the 
paper will affect the validity of future clinical trials constructed with surrogate 
endpoints.  
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    7   Conclusions 

 The International Conference of Harmonisation (ICH) Guideline E9 Statistics 
Principles for Clinical Trials recommends that surrogate endpoints in clinical trials 
be validated using either (1) the sensitivity-specifi city approach or (2) regression 
analysis. The problem with (1) is that an overall level of validity is hard to give, and 
with (2) that a signifi cant correlation between the surrogate and true endpoint is not 
enough to indicate that the surrogate is a valid predictor. This chapter provides for a 
nonmathematical readership procedures that avoid the above two problems. 

 (1) Instead of the sensitivity-specifi city approach we used an overall validity 
level, expressed as the percentage of patients with a true surrogate test, either posi-
tive or negative. We calculated confi dence intervals of this estimate, and assessed 
whether they were entirely within the prespecifi ed interval of validity. If so, the 
surrogate marker was validated for use in subsequent trials. (2) For validating con-
tinuous surrogate variables, regression analysis was used, accounting both the cor-
relation between the surrogate and true endpoints,  and  the associations between 
these two variables and the treatment modalities to be tested. If the proportion of 
variability in the surrogate endpoint explained the true endpoint by 70% or more, 
the surrogate test was validated. A wrong conclusion would be here to accept validity 
if the surrogate endpoint was an independent determinant of the true endpoint, but 
not of the treatment modality. It is to be hoped that this chapter will affect the validity 
of future clinical trials constructed with surrogate endpoints.      
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     1   Introduction 

 One of the most important and original applications of binary partitioning was to 
develop data-based decision cut-off levels that can assist physicians in diagnosing 
patients potentially suffering heart attacks (Wasson et al.  1985  ) . Traditionally, the 
physicians made decisions based on their clinical experience. Also, laboratories 
developed diagnostic tests with normal values based on rather intuitive grounds. 
Classifi cations based on representative historical data has the advantage of added 
empirical information from large numbers of patients. This is, particularly, impor-
tant if symptoms, signs and diagnostic procedures give rise to a substantial number 
of false positive and false negative results as often observed in clinical practice. The 
main purpose of the data-based methods is to reduce the latter number. The book by 
Breiman et al.  (  1984  )  on classifi cation and regression trees is a milestone on binary 
partitioning and closely related cut-off decision trees, otherwise called CART (clas-
sifi cation and regression) trees. The associated CART program has become a com-
mercial software (  www.salford-systems.com    ), but simple partitions and decision 
trees can also be performed on a pocket calculator. This chapter was written to 
familiarize the research community with this important methodology for improving 
the diagnostic accuracy of clinical decision trees.  

    2   Example 

 Several vascular labs have defi ned their estimators for peripheral vascular disease as 
shown underneath (Jaff and Dorros  1998  ) .  

    Chapter 53   
 Binary Partitioning                    
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 1.    Ankle blood pressure  > brachial blood pressure 
 2.    Ankle pressure after 5 min treadmill  >20% reduction from baseline 
 3.    Proximal thigh pressure  >30 mmHg above brachial pressure 
 4.    Segmental pressures (thigh, calf, ankle)  <20 mmHg difference between 2 levels 
 5.    Toe pressure  <40% different from brachial pressure. 

 Considering the rounded pattern of the above “normal” values for predicting the 
presence of vascular disease, we may assume that the values as given are based on 
empiricism and agreement rather than calculated averages, but we can do better. 
Although the accumulated evidence of the assessment may give rise to a sensitivity 
close to 95% and a specifi city close to 95%, both sensitivity and specifi city may 
increase to 98 or 99% if we fi ne-tune the cut-off levels of the contributory estimators 
using representative historical data. 

 For that purpose a representative sample of patients has to be assessed against a 
golden standard, i.e., angiography in the given example. The entire sample can be 
split into patients with a higher and those with an equal or lower ankle blood 
pressure than their brachial blood pressure, because we know that this is a major 
symptom of vascular disease. The procedure of splitting is less straightforward, if 
the estimators are quantitative and multiple cut-off levels are possible like the above 
no. 2–5 estimators show.  

    3   ROC (Receiver Operating Characteristic) 
Method for Finding the Best Cut-Off Level 

 A hypothesized example of a cut-off level is given in Fig.  53.1 . If a fall of ankle 
blood pressure after 5 min treadmill exercise of >26% is used as threshold for a 
positive test, then the number of patients with a true positive test are “a”, true nega-
tive “b”, false positive “c”, and false negative “d”. The ratio “a/(a + c)” is called the 
sensitivity of the test, the ratio “b/(d + b)” the specifi city of the test.  

 Underneath, an overview is given of the calculated sensitivities and specifi cities 
if different cut-off levels are applied.  

 Cut-off level  Sensitivity  Specifi city 

 22%  1.000  0.723 
 23%  0.997  0.701 
 24%  0.990  0.855 
 25%  0.980  0.908 
  26%    0.960    0.950  
 27%  0.940  0.972 
 28%  0.910  0.986 
 29%  0.860  0.993 
 30%  0.800  1.000 
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 We would like to have a sensitivity and specifi city close to 100%. However, in 
practice most diagnostic tests are far from perfect and produce false positive and 
false negative effects. With qualitative tests there is little we can do. With quantita-
tive tests we can increase the sensitivity by moving the vertical decision line between 
a positive and negative test to the left (Fig.  53.1 ), and we can increase specifi city by 
moving it in the opposite direction. Figure  53.2  shows the relationship between sen-
sitivities and specifi cities. The curve suggests a high sensitivity and at the same time 
high specifi city, if 26% or 27% are used as cut-off levels for a positive test. The best 
cut-off level is obtained if the distance from the curve at that point to the top of the 
y-axis is closest. The 26% cut-off level can be calculated to provide the closest 
distance: Pythagoras’s equation for right angular triangles shows a distance of 
√ (3 2  + 5 2 ) = √ 41 which is closer than the shortest distance next to it √ (6 2  + 3 2 ) = √ 45. 
This result is, thus, a better predictor for vascular disease than the value of 20% as 
previously agreed in the vascular laboratory on intuitive grounds (Jaff and Dorros 
 1998  ) . In this manner the ROC method can be used for determining the best cut-off 
level to be included in a decision tree of diagnostic procedures like the above one.  

  Fig. 53.1    Histogram of a patients’ sample assessed for peripheral vascular disease; “a” summa-
rizes the patients with a positive test and the presence of disease, “b” the patients with a negative 
test and the absence of disease, “c” and “d” are the false positive and false negative patients respec-
tively, if 26 is used as a cut-off value between a positive and a negative test       
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 The problem with ROC method is that the sample sizes of the positive and 
negative tests are not taken into account, reducing the power of this approach. This 
is, particularly, a problem if the numbers of positive and negative tests are largely 
different in size. The entropy method is helpful in this situation.  

    4   Entropy Method for Finding the Best Cut-Off Level 

 The entropy method has an interesting history. It received its name, because it 
makes use of an equation that was formerly applied in science to estimate the 
amount of energy loss in thermodynamics, but, otherwise, has no connection with 
its application to science. A pleasant thing about this method is that, unlike the 
ROC method, the result can be easily adjusted for magnitude of the samples. This 
is also the reason that the result of the ROC method often slightly differs from that 
of the entropy method. 

 In entropy-method-terminology the entire sample of patients (Fig.  53.1 ) is called 
the parent node, which can, subsequently, be repeatedly split, partitioned if you will, 
into binary internal nodes. Mostly, internal nodes contain false positive or negative 
patients, and are, thus, somewhat impure. The magnitude of their impurity is 
assessed by the log likelihood method, previously explained (Cleophas et al.  2007  ) . 
Impurity equals the maximum log likelihood of the y-axis-variable by assuming that 
the x-axis-variable follows a Gaussian (i.e. binomial) distribution and is expressed 

  Fig. 53.2    ROC curve of threshold values of positive tests for vascular disease based on the% ankle 
blood pressure reduction after 5 min treadmill. The shortest distance to the top of the y-axis, and, 
thus, the best predictive test is obtained with 26% blood pressure reduction as cut-off value       
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in units, sometimes called bits (a short-cut for “binary digits”). All this sounds rather 
complex, but it works smoothly   .

     

r

l

The x axis variable for the right node x = a/(a b),

The x axis variable for the left node x d/(d c).

− = +
− = = +     

 If the impurity equals 1.0 bits, then it is maximal, if it equals 0.0, then it is 
minimal.

     

Impurity node either right or left x ln x (1 x) ln(1 x),

where ln means natural logarithm.

= − − − −

    

 The impurities of the right and left node are calculated separately. Then, a 
weighted overall impurity of each cut-off level situation is calculated according to 
(* = sign of multiplication):   

     

Weighted impurity cut-off

[(a b)/(a b c d)* impurity-right-node]

[(d c)/(a b c d)* impurity-left-node].

=
+ + + + +
+ + + +     

 Underneath, an overview is given of the calculated impurities at the different cut-
off levels. The cut-off percentage of 27 gives the smallest weighted impurity, and is, 
thus, a better predictor for vascular disease than the value of 20% as previously 
agreed on intuitive grounds (Wasson et al.  1985  ) .  

 Cut-off  Impurity right node  Impurity left node  Impurity weighted 

 22%  0.5137  0.0000  0.3180 
 23%  0.4392  0.0559  0.3063 
 24%  0.4053  0.0982  0.2766 
 25%  0.3468  0.1352  0.2711 
 26%  0.1988  0.1688  0.1897 
  27%    0.1352    0.2268    0.1830  
 28%  0.0559  0.3025  0.1850 
 29%  0.0559  0.3850  0.2375 
 30%  0.0000  0.4690  0.2748 

 Also, it should be a better predictor of vascular disease than the 26% value as 
established by the ROC method, because, unlike the ROC method, the entropy 
method takes into account and adjusts the differences in sample sizes of the 
nodes.  

    5   Discussion 

 The best cut-off level for making optimal predictions from diagnostic tests can 
be calculated from the ROC and entropy methods. The next step is, of course, to 
include multiple tests in order to further increase accuracy of making predictions. 
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Decision trees can help making rapid clinical decisions, and these decisions are more 
accurate if they are based on calculation instead of intuition. The cut-off levels used 
in the example of this paper could, after the decision tree procedure, look somewhat 
like the levels shown below with accompanying sensitivities/specifi cities of 99% 
instead of 95%.          

Root node with all patients 

Ankle pressure > brachial pressure <brachial pressure

Ankle pressure after 5 min treadmill > 27 % reduction < 27% reduction 

Proximal thigh pressure > 36 m mHg above brachial     < 36 mmHg above brachial  

Segmental pressures < 18 mm Hg difference     >18 mm Hg difference

Toe pressure < 33% different from brachial            >33 mmHg.

 We should add that, in addition to mathematical arguments, there may be 
clinical arguments for setting the cut-off levels for sensitivity and specifi city. 
For example, for incurable deadly diseases, you may want to avoid false posi-
tives, meaning telling a healthy person he/she will die soon, while false nega-
tives are not so bad since you can not treat the condition anyway. If, instead, the 
test would serve as a fi rst screening for a fatal condition if untreated but com-
pletely treatable, it should provide a better sensitivity even at the expense of a 
lower specifi city. 

 We conclude that the binary partition and its closely related decision trees may 
become one of the standard analytic choices in clinical disease, but they likely com-
plement rather than replace the classic statistical methods. For assessing the level of 
statistical signifi cance of assumed differences and effects the classic statistical 
methods are more suitable.  

    6   Conclusions 

 Binary partitioning can assist physicians in diagnosing patients potentially suffering 
heart attacks and other clinical conditions. Traditionally, the physicians made deci-
sions based on their clinical experience. Classifi cations based on representative his-
torical data has the advantage of added empirical information from large numbers 
of patients. This chapter is to familiarize the research community with this impor-
tant methodology for improving the diagnostic accuracy of prognostic cardiovascu-
lar decision analysis. 

 An example is used to explain The ROC (receiver operating characteristic) and 
entropy methods for simple partitions. 

 ROC curves are used for fi nding the best cut-off levels in a decision tree of diag-
nostic procedures. The problem with ROC curves is that the sample sizes of the 



585References

positive and negative tests are not taken into account, reducing the power of this 
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               1   Introduction 

 Repeated measures of the same kind, like, for example, blood pressures obtained 
from a single subject at subsequent times, are    different from single measures of 
separate subjects, because repeated measures in a single subject are generally more 
similar to one another than those obtained from entirely different subjects, and 
 statistical analyses have to take this difference into account. For that purpose there 
are paired and unpaired t-tests, repeated and non-repeated measures analysis of 
variance (ANOVA) (Chaps.   1     and   2    ), paired and unpaired tests for binary data 
(Chap.   3    ), and paired and unpaired non-parametric tests (Chap.   2    ). Paired data or 
repeated measures means that multiple observations are performed in a single sub-
ject with the advantage that less subjects are required for answering a scientifi c 
question. A special type of repeated measures are longitudinal data including times 
series and survival data. They have been discussed in the Chaps.   16     and   43    . 

 The most important reason for writing this chapter is the fact that repeated mea-
sures are frequently analyzed inappropriately. A linear regression or unpaired t-test 
or non-repeated measures ANOVA using repeated values does not take into account 
the repeated nature of the data, and, is therefore, likely to overestimate the magni-
tude of differences in the data. For example, drug-elimination curves (Benet et al. 
 1997  )  and R2-like models (Hoetker  2007  )  for predicting probabilities of events are 
usually assessed with linear regression in spite of the repeated measures character 
of the data. 

 The current chapter reviews methods for repeated measures of continuous data. 
Particular attention will be given to (1) summary measures and (2) repeated mea-
sures ANOVA with and (3) without between-subjects covariates.  

    Chapter 54   
 Methods for Repeated Measures Analysis       



588 54 Repeated Measures

    2   Summary Measures 

 It is appropriate when possible to use a summary estimate of repeated data. For 
example, the area under the curve of drug concentration-time curves is used in clini-
cal pharmacology as an estimate of bioavailability of a drug. Also, maximal values, 
mean values, changes from baseline are applied. The disadvantage of these mea-
sures is, that they do not use the data fully, because they use summary measures 
instead, and, therefore, may lose precision, but, otherwise, they are unbiased, and 
can be used perfectly well.  

    3   Repeated Measures ANOVA Without 
Between-Subjects Covariates 

 Summary measures are impossible if we want to assess the differences between the 
separate measures. 

 The study in Table  54.1  shows that a repeated measure ANOVA can be per-
formed in a sample size as small as four subjects. The study compares the effects of 
three different treatments to reduce vascular resistance and contains only 12 data. 
A condensed version of this example was already presented in Benet et al. ( 1997  ) .    

     

within subj
2 2

treatment

residual within subject treatment

SS 147.95 77.05
SS (17.58 11.63) (7.73 11.63)
SS SS SS

= + +…
= − + − +…

= −
    

 We use SPSS statistical software: command: analyze; general linear model; 
repeated measurements. 

 Mauchly’s test of sphericity chi-square = 2.07, 2 dfs, p = 0.355. No inequality of 
variance is in the data.  

 SS  dfs  Mean square  F  p-value 

 Within subject  127.2  1  127.2  127.2/7.0 = 18.2  0.024 
 Residual   20.964  3   7.0 

   SS  sum of squares,  dfs  degrees of freedom    

   Table 54.1    Repeated measures ANOVA, effects of three treatments on vascular resistance (blood 
pressure/cardiac output)   

 Subject  Treatment 1  Treatment 2  Treatment 3  SD 2  

 1  22.2  5.4  10.6  147.95 
 2  17.0  6.3  6.2  77.05 
 3  14.1  8.5  9.3  18.35 
 4  17.0  10.7  12.3  21.4 
 Treatment mean  17.58  7.73  9.60 

 Grand mean = 11.63 
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 According to the data-analysis there is a signifi cant difference between the three 
treatments with F = 18.2 and p = 0.024. In order to assess the appropriateness of the 
linear assumption of the model a quadratic relationship between indicator and out-
come variables is assessed, but the F-value and, thus, the p-value was smaller (11.01 
and p = 0.045), and, so the linear assumption seems to be appropriate. Between sub-
jects differences are assumed not to infl uence the treatment-comparisons, and are, 
therefore, not taken into account in the data analysis.  

    4   Repeated Measures ANOVA with Between-Subjects Covariates 

 In the study of Table  54.2  an example is given of a study where both repeated and 
non-repeated factors are combined. Three treatment modalities for the treatment of 
exercise tachycardias are assessed in both male and female subjects of different age 
classes, 20–30, 30–40, and 40–60 years of age. The variable 1 gives the age class 
(respectively 1, 2, and 3). The variable 5 gives the genders (respectively 1 and 2).  

 SPSS statistical software  (  2000  ) : command: analyze; general linear model; 
repeated measurements. 

 Mauchly’s test of sphericity chi-square = 30.7, 2 dfs, p < 0.0001. Inequality of 
variance in the data cannot be excluded. 

 Therefore, the Greenhouse-Geisser adjustment is used.  

 SS  dfs  Mean square  F  p-value 

 1.    Within-subjects  281,916.3  1.35  208,537.9  2,814.9  0.000 
 2.    VAR 1 (age class)  4,681.0  2  2,340.5  3.045  0.057 
 3.    VAR 5 (gender)  26,373.0  1  26,373.0  34.3  0.000 
 4.    VAR 1 × VAR 5  2,155.4  2  1,077.7  1.402  0.256 
 5.    Within-subjects × VAR 1  241.7  2.70  89.4  1.206  0.313 
 6.    Within-subjects × VAR 5  1,034.8  1.35  765.4  10.332  0.001 
 7.     Within-subjects x VAR 

1 × VAR 5 
 1,481.9  2.70  548.1  7.398  0.000 

   SS  sum of squares,  dfs  degrees of freedom    

 The variables 2, 3, and 4 give the exercise heart rate during treatment with respec-
tively high dose, low dose and very low dose beta-blocker in beats/min. The study 
tries to answer seven research questions:

    1.    Does treatment modality infl uence exercise heart rate?  
    2.    Do subjects from different age classes have different heart rates?  
    3.    Do males have different heart rates from females?  
    4.    Does the pattern of differences between pulse rates for the age class groups 

change between the genders?  
    5.    Does the pattern of differences between pulse rates    for the age class groups 

change between the treatment modalities?  
    6.    Does the pattern of differences between pulse rates for genders change between 

the treatment modalities?  



590 54 Repeated Measures

   Table 54.2    Repeated measures ANOVA with between-subjects covariates, data-fi le of 54 
subjects, the variables are explained in the text   

 Subject  VAR 1  VAR 2  VAR 3  VAR 4  VAR 5 

 1.  1,00  112,00  166,00  215,00  1,00 
 2.  1,00  111,00  166,00  225,00  1,00 
 3.  1,00  89,00  132,00  189,00  1,00 
 4.  1,00  95,00  134,00  186,00  2,00 
 5.  1,00  66,00  109,00  150,00  2,00 
 6.  1,00  69,00  119,00  177,00  2,00 
 7.  2,00  125,00  177,00  241,00  1,00 
 8.  2,00  85,00  117,00  186,00  1,00 
 9.  2,00  97,00  137,00  185,00  1,00 
 10.  2,00  93,00  151,00  217,00  2,00 
 11.  2,00  77,00  122,00  178,00  2,00 
 12.  2,00  78,00  119,00  173,00  2,00 
 13.  3,00  81,00  134,00  205,00  1,00 
 14.  3,00  88,00  133,00  180,00  1,00 
 15.  3,00  88,00  157,00  224,00  1,00 
 16.  3,00  58,00  99,00  131,00  2,00 
 17.  3,00  85,00  132,00  186,00  2,00 
 18.  3,00  78,00  110,00  164,00  2,00 
 19.  1,00  112,00  166,00  215,00  1,00 
 20.  1,00  111,00  166,00  225,00  1,00 
 21.  1,00  89,00  132,00  189,00  1,00 
 22.  1,00  95,00  134,00  186,00  2,00 
 23.  1,00  66,00  109,00  150,00  2,00 
 24.  1,00  69,00  119,00  177,00  2,00 
 25.  2,00  125,00  177,00  241,00  1,00 
 26.  2,00  85,00  117,00  186,00  1,00 
 27.  2,00  97,00  137,00  185,00  1,00 
 28.  2,00  93,00  151,00  217,00  2,00 
 29.  2,00  77,00  122,00  178,00  2,00 
 30.  2,00  78,00  119,00  173,00  2,00 
 31.  3,00  81,00  134,00  205,00  1,00 
 32.  3,00  88,00  133,00  180,00  1,00 
 33.  3,00  88,00  157,00  224,00  1,00 
 34.  3,00  58,00  99,00  131,00  2,00 
 35.  3,00  85,00  132,00  186,00  2,00 
 36.  3,00  78,00  110,00  164,00  2,00 
 37.  1,00  112,00  166,00  215,00  1,00 
 38.  1,00  111,00  166,00  225,00  1,00 
 39.  1,00  89,00  132,00  189,00  1,00 
 40.  1,00  95,00  134,00  186,00  2,00 
 41.  1,00  66,00  109,00  150,00  2,00 
 42.  1,00  69,00  119,00  177,00  2,00 
 43.  2,00  125,00  177,00  241,00  1,00 
 44.  2,00  85,00  117,00  186,00  1,00 
 45.  2,00  97,00  137,00  185,00  1,00 

(continued)
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    7.    Does the pattern of differences between pulse rates for treatment modalities 
change in a subgroup with a particular gender and age class?     

 The above research questions given in research terms are the following:

    1.    Is there a within-subjects main effect?  
    2.    Is there    a between-subjects main gender effect?  
    3.    Is there a between-subjects main age class effect?  
    4.    Is there a between-subjects interaction  
   5–7.    Is there a within-subjects by between-subjects interaction effect?     

 Because the test for non-equality of the variances can not be rejected, the usual 
ANOVA-model is inappropriate. Either an adjusted ANOVA, e.g., Greenhouse-
Geisser adjusted univariate repeated measures ANOVA, or Multivariate Analysis of 
Variance (MANOVA) has to be applied. MANOVA is, conceptually, different, because 
it assumes multiple outcome variables instead of a single-one-with-multiple-levels. 
SPSS produces an analysis of both approaches. In our example the results of the two 
were virtually the same. According to the data-analysis there was a  signifi cant dif-
ference between the three treatments with F = 2814.9 and p = 0.000. In order to 
assess the appropriateness of the linear assumption of the model a quadratic rela-
tionship between indicator and outcome variables, but the F-value and thus p-value 
were smaller, and, so the linear assumption seems appropriate. 

 It can be hard to interpret the results of interactions. For example, the above 7th 
question is confi rmed: there is a signifi cant interaction between treatment modality 
and gender and age class. Averages of the subgroups can be examined in order to 
understand what is going on (Fig.  54.1 ). The Fig.  54.1  shows that gender differences 
do not remain the same but    seem to increase with subsequent treatment modalities. 
There is, obviously, interaction between treatment modality and gender. However, 
this is only true in the younger, but not in the older age classes.  

 Generally, a signifi cant interaction is a disaster for a comparative study of differ-
ent treatment modalities, because an overall comparison of the treatment modalities 
becomes meaningless. In the given example the magnitude of the interaction is 
 limited, and an overall treatment differences can still be observed (Fig.  54.1 ). The 
overall result can be reported, at least, in a qualitative manner.  

 Subject  VAR 1  VAR 2  VAR 3  VAR 4  VAR 5 

 46.  2,00  93,00  151,00  217,00  2,00 
 47.  2,00  77,00  122,00  178,00  2,00 
 48.  2,00  78,00  119,00  173,00  2,00 
 49.  3,00  81,00  134,00  205,00  1,00 
 50.  3,00  88,00  133,00  180,00  1,00 
 51.  3,00  88,00  157,00  224,00  1,00 
 52.  3,00  58,00  99,00  131,00  2,00 
 53.  3,00  85,00  132,00  186,00  2,00 
 54.  3,00  78,00  110,00  164,00  2,00 

  The SPSS fi le uses commas instead of dots 
  VAR  variable  

Table 54.2 (continued)
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    5   Conclusions 

     1.    Repeated measures in a single subject are generally more similar to one another 
than data obtained from entirely different subjects, and statistical analyses have 
to take this into account.  

    2.    It is appropriate when possible to use a summary estimate if the repeated data. 
For example, the area under the curve of drug time-concentration and time-effi -
cacy curves, maximal values, mean values, change from baseline.  

    3.    In parallel-group studies the level of statistical signifi cance of between-subjects 
differences is usually assessed. In repeated measures within-subjects differences 
are usually assessed for that purpose. The general linear model available in SAS, 
SPSS and other statistical software programs provides repeated measures 
ANOVA appropriate for that purpose.  

    4.    Repeated measures ANOVA can also adequately include subgroup factors like 
gender differences and age class differences into the analysis.  

    5.    Like any type of ANOVA equality of variances and linearity in the data have to 
be checked. Most software programs routinely do so, and present alternative 
approaches in case these requirements can not be satisfi ed.          
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                  1   Introduction 

 In current clinical research repeated measures in a single subject are common. The 
problem with repeated measures is that they are more close to one another than 
unrepeated measures. If this is not taken into account, then data analysis will lose 
power. The classical general linear analysis of variance (ANOVA) model for the 
analysis of such data has been recently supplemented by a novel method, mixed 
linear modeling. Mixed modeling was fi rst described by Henderson et al.  (  1959  )  in 
the early 1960s as a linear model for making predictions from longitudinal observa-
tions in a single subject. It fi rst became popular in the early 1990s by the work of 
Robinson  (  1991  )  and McLean et al.  (  1991  )  who improved the model by presenting 
consistent analysis procedures. In the past decade user-friendly statistical software 
programs like SAS  (  2011  )  and SPSS  (  2011  )  have enabled the application of mixed 
models even by clinical investigators with limited statistical background. 

 With mixed models repeated measures  within  subjects receive fewer degrees of 
freedom than they do with the classical general linear model, because they are 
nested in a separate layer or subspace. In this way better sensitivity is left in the 
model to demonstrate differences  between  subjects. Therefore, if the main aim of 
your research is to demonstrate differences  between  subjects, then the mixed model 
should be more sensitive. However, the two methods should be equivalent if the 
main aim of your research is to demonstrate differences between repeated measures, 
for example different treatment modalities in a single subject. A limitation of the 
mixed model is that it includes additional variances, and is, therefore, more com-
plex. More complex statistical models are, ipso facto, more at risk of power loss, 
particularly, with small data. 

 The current chapter uses examples to demonstrate how the mixed model per-
forms in practice. The examples show that the mixed model, unlike the general 
linear, produced a very signifi cant effect in a parallel-group study with repeated 

    Chapter 55   
 Mixed Linear Models for Repeated Measures       
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measures, and that the two models were approximately equivalent for analyzing a 
crossover study with three treatment modalities. We hope this explanatory chapter 
will be helpful to researchers assessing repeated measures.  

    2   A Placebo-Controlled Parallel Group Study 
of Cholesterol Treatment 

 A placebo-controlled parallel group study cholesterol is used as fi rst example. 
Each patient is measured for HDL-cholesterol level for 5 weeks once a week. 
Table  55.1  gives the data fi le. A signifi cant difference between the two treatments 
is expected. The graph of the summaries of the data (Fig.  55.1 ) shows, indeed, that 
already after 2 weeks the treatment-1 group (active treatment group) starts to per-
form better than the treatment-0 group (placebo-group). Multiple unpaired t-tests of 
treatment-0 versus treatment-1 demonstrate signifi cant differences with p-values as 
small as 0.08 at the weeks 3, 4 and 5 (analysis not shown). However, this analysis 
is not entirely appropriate, because it does not take the repeated nature of the data 
into account. A repeated measurements analysis of variance using the classical 

   Table 55.1    Two parallel groups of ten patients are assessed fi ve times for their HDL-cholesterol   

 Patient no  Week 1  Week 2  Week 3  Week 4  Week 5 
 Treatment 
modality 

 1  1,66  1,62  1,57  1,52  1,50  0,00 
 2  1,69  1,71  1,60  1,55  1,56  0,00 
 3  1,92  1,94  1,83  1,78  1,79  0,00 
 4  1,95  1,97  1,86  1,81  1,82  0,00 
 5  1,98  2,00  1,89  1,84  1,85  0,00 
 6  2,01  2,03  1,92  1,87  1,88  0,00 
 7  2,04  2,06  1,95  1,90  1,91  0,00 
 8  2,07  2,09  1,98  1,93  1,94  0,00 
 9  2,30  2,32  2,21  2,16  2,17  0,00 
 10  2,36  2,35  2,26  2,23  2,20  0,00 
 11  1,57  1,82  1,83  1,83  1,82  1,00 
 12  1,60  1,85  1,89  1,89  1,85  1,00 
 13  1,83  2,08  2,12  2,12  2,08  1,00 
 14  1,86  2,11  2,16  2,15  2,11  1,00 
 15  2,80  2,14  2,19  2,18  2,14  1,00 
 16  1,92  2,17  2,22  2,21  2,17  1,00 
 17  1,95  2,20  2,25  2,24  2,20  1,00 
 18  1,98  2,23  2,28  2,27  2,24  1,00 
 19  2,21  2,46  2,57  2,51  2,48  1,00 
 20  2,34  2,51  2,55  2,55  2,52  1,00 

  SPSS uses commas instead of dots 
 Treatment modality 0 = placebo, 1 = active treatment  
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general linear model is performed (full factorial design). SPSS statistical software 
is used  (  2011  ) .   
 We command: 

 Analyze – General linear model – Repeated Measurements – Defi ne factors – 
Within-subjects factor names: week – number levels: 5 – add – Defi ne – enter week 
1, 2, 3, 4, 5 in box: “Within-subjects Variables” – enter treatment in box between-
subjects covariates – ok. 

 The above Table  55.2  gives the results. As the test for sphericity (equal stan-
dard errors) had to be rejected (not shown), sphericity could not be assumed, 
and the Huynh-Feldt test was the next best for demonstrating a difference 
between the repeated measures (Table  55.2 : source week). With p = 0.115 no 
significant difference between the repeated measures could be demonstrated 
(upper part of Table  55.2 ). The subsequent between-subjects comparison of the 
two treatments showed a borderline effect with p-value of 0.048 (lower part of 
Table  55.2 ).  

 As an alternative a mixed linear model is applied using the same version of SPSS. 
For that purpose the data fi le has to be adapted. Every week must be given a separate 
row (Table  55.3 ).  

  Fig. 55.1    Two parallel groups treated for hypercholesterolemia for 5 weeks (0,00 = placebo 
treatment; 1,00 = active treatment) (Treatment outcome (HDL-cholesterol level, mmol/l) Week of 
treatment (1–5))       
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   Table 55.2    Repeated measures ANOVA using the classical general linear model for the analysis 
of the data from Table  55.1 . As the test for sphericity was rejected (not shown), sphericity could 
not be assumed, and the Huynh-Feldt test was the next best for demonstrating a difference between 
the repeated measures (source: week). With p = 0.115 no signifi cant difference between the repeated 
measures was demonstrated ( upper table ). The subsequent between-subjects comparison showed 
a borderline effect with p-value of 0.048 ( lower table )   

 Tests of with-subjects effects 

 Measure: MEASURE_1 

 Source 
 Type III sum 
of squares  df  Mean square  F  Sig. 

 Week  Sphericity assumed  ,089  4  ,022  2,692  ,038 
 Greenhouse-Geisser  ,089  1,022  ,087  2,692  ,117 
 Huynh-Feldt  ,089  1,086  ,082  2,692  ,115 
 Lower-bound  ,089  1,000  ,089  2,692  ,118 

 Week*treatment  Sphericity assumed  ,380  4  ,095  11,460  ,000 
 Greenhouse-Geisser  ,380  1,022  ,372  11,460  ,003 
 Huynh-Feldt  ,380  1,086  ,350  11,460  ,003 
 Lower-bound  ,380  1,000  ,380  11,460  ,003 

 Error (week)  Sphericity assumed  ,597  72  ,008 
 Greenhouse-Geisser  ,597  18,396  ,032 
 Huynh-Feldt  ,597  19,550  ,031 
 Lower-bound  ,597  18,000  ,033 

 Tests of between-subjects effects 

 Measure: MEASURE_1 

 Transformed variable: average 

 Source 
 Type III sum 
of squares  df  Mean square  F  Sig. 

 Intercept  414,530  1,1,18  414,530  1573,798  ,000 
 Treatment  1,188  1,188  4,511  ,048 
 Error  4,741  ,263 

 We command: 
 Analyze – mixed models – linear – specify subjects and repeated – variable 1 – 

continue – linear mixed model – dependent: variable 3 – factors: variable 2, variable 
4 – fi xed – build nested term – variable 4 – add – variable 2 – add – variable 2 build 
term by* variable 4 – variable 4 * variable 2 – add – continue – ok (* = sign of 
multiplication). 

 Table  55.4  gives the results. With the mixed model analysis the treatment modal-
ity has become a very signifi cant predictor of treatment outcome with p < 0.0001. 
This result is in agreement with our prior expectation, and it is also more similar to 
the above unpaired t-tests than the general linear model is.  

 We can now conclude that, after adjustment for the repeated nature of the data, 
there is a very signifi cant difference between the effect of the placebo and the active 
treatment on HDL cholesterol a p < 0.0001.  
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   Table 55.3    The data from 
Table  55.1  adapted for mixed 
linear modeling, each patient 
is now included fi ve times 
(fi ve rows)   

(continued)

 1  2  3  4 

 Patient  Week  Outcome  Treatment 

 1,00  1,00  1,66  ,00 
 1,00  2,00  1,62  ,00 
 1,00  3,00  1,57  ,00 
 1,00  4,00  1,52  ,00 
 1,00  5,00  1,50  ,00 
 2,00  1,00  1,69  ,00 
 2,00  2,00  1,71  ,00 
 2,00  3,00  1,60  ,00 
 2,00  4,00  1,55  ,00 
 2,00  5,00  1,56  ,00 
 3,00  1,00  1,92  ,00 
 3,00  2,00  1,94  ,00 
 3,00  3,00  1,83  ,00 
 3,00  4,00  1,78  ,00 
 3,00  5,00  1,79  ,00 
 4,00  1,00  1,95  ,00 
 4,00  2,00  1,97  ,00 
 4,00  3,00  1,86  ,00 
 4,00  4,00  1,81  ,00 
 4,00  5,00  1,82  ,00 
 5,00  1,00  1,98  ,00 
 5,00  2,00  2,00  ,00 
 5,00  3,00  1,89  ,00 
 5,00  4,00  1,84  ,00 
 5,00  5,00  1,85  ,00 
 6,00  1,00  2,01  ,00 
 6,00  2,00  2,03  ,00 
 6,00  3,00  1,92  ,00 
 6,00  4,00  1,87  ,00 
 6,00  5,00  1,88  ,00 
 7,00  1,00  2,04  ,00 
 7,00  2,00  2,06  ,00 
 7,00  3,00  1,95  ,00 
 7,00  4,00  1,90  ,00 
 7,00  5,00  1,91  ,00 
 8,00  1,00  2,07  ,00 
 8,00  2,00  2,09  ,00 
 8,00  3,00  1,98  ,00 
 8,00  4,00  1,93  ,00 
 8,00  5,00  1,94  ,00 
 9,00  1,00  2,30  ,00 
 9,00  2,00  2,32  ,00 
 9,00  3,00  2,21  ,00 
 9,00  4,00  2,16  ,00 
 9,00  5,00  2,17  ,00 
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(continued)

Table 55.3 (continued)  1  2  3  4 

 Patient  Week  Outcome  Treatment 

 10,00  1,00  2,36  ,00 
 10,00  2,00  2,35  ,00 
 10,00  3,00  2,26  ,00 
 10,00  4,00  2,23  ,00 
 10,00  5,00  2,20  ,00 
 11,00  1,00  1,57  1,00 
 11,00  2,00  1,82  1,00 
 11,00  3,00  1,83  1,00 
 11,00  4,00  1,83  1,00 
 11,00  5,00  1,82  1,00 
 12,00  1,00  1,60  1,00 
 12,00  2,00  1,85  1,00 
 12,00  3,00  1,89  1,00 
 12,00  4,00  1,89  1,00 
 12,00  5,00  1,85  1,00 
 13,00  1,00  1,83  1,00 
 13,00  2,00  2,08  1,00 
 13,00  3,00  2,12  1,00 
 13,00  4,00  2,12  1,00 
 13,00  5,00  2,08  1,00 
 14,00  1,00  1,86  1,00 
 14,00  2,00  2,11  1,00 
 14,00  3,00  2,16  1,00 
 14,00  4,00  2,15  1,00 
 14,00  5,00  2,11  1,00 
 15,00  1,00  2,80  1,00 
 15,00  2,00  2,14  1,00 
 15,00  3,00  2,19  1,00 
 15,00  4,00  2,18  1,00 
 15,00  5,00  2,14  1,00 
 16,00  1,00  1,92  1,00 
 16,00  2,00  2,17  1,00 
 16,00  3,00  2,22  1,00 
 16,00  4,00  2,21  1,00 
 16,00  5,00  2,17  1,00 
 17,00  1,00  1,95  1,00 
 17,00  2,00  2,20  1,00 
 17,00  3,00  2,25  1,00 
 17,00  4,00  2,24  1,00 
 17,00  5,00  2,20  1,00 
 18,00  1,00  1,98  1,00 
 18,00  2,00  2,23  1,00 
 18,00  3,00  2,28  1,00 
 18,00  4,00  2,27  1,00 
 18,00  5,00  2,24  1,00 
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    3   A Three Treatment Crossover Study of the Effect 
of Sleeping Pills on Hours of Sleep 

 A three treatment crossover study of the effect of sleeping pills on hours of sleep is 
used as a second example. Table  55.5  gives the data fi le. Ten patients are given three 
different sleeping pills in a randomized double-blind fashion. The hours of sleep 
after treatment are the outcome variable. A signifi cant difference between the three 
treatment outcomes is expected. Figure  55.2  is a graph of the summaries of the 
treatment effects. The third treatment seems to perform signifi cantly worse than the 
other two treatments as indicated by the error bars giving 95% confi dence intervals 
of the means. However, this conclusion is not entirely appropriate, because it does 
not take the repeated nature of the data into account.   
 We command: 

 Analyze – General linear model – Repeated Measurements – Defi ne factors – 
Within-subjects factor names: treatment – number levels: 3 – add – Defi ne – enter 

Table 55.3 (continued)  1  2  3  4 

 Patient  Week  Outcome  Treatment 

 19,00  1,00  2,21  1,00 
 19,00  2,00  2,46  1,00 
 19,00  3,00  2,57  1,00 
 19,00  4,00  2,51  1,00 
 19,00  5,00  2,48  1,00 
 20,00  1,00  2,34  1,00 
 20,00  2,00  2,51  1,00 
 20,00  3,00  2,55  1,00 
 20,00  4,00  2,55  1,00 
 20,00  5,00  2,52  1,00 

  SPSS uses commas instead of dots 
 1 = patient number, 2 = week of treatment (1–5), 3 = out-
come (HDL cholesterol), 4 = treatment modality (0 or 1).  

   Table 55.4    Mixed model analysis of the data from Table  55.2  with treatment 
modality and week of treatment as predictors, and treatment outcome as dependent 
variable. The treatment modality is a very signifi cant predictor of treatment 
outcome   

 Type III tests of fi xed effects a  

 Source  Numerator df  Denominator df  F  Sig. 

 Intercept  1  76,570  6988,626  ,000 
 Week  4  31,149  ,384  ,818 
 Treatment  1  76,570  20,030  ,000 
 Week * treatment  4  31,149  1,337  ,278 

   a Dependent variable: outcome  
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   Table 55.5    A single group is assessed for three different treatments (hours of sleep) in a crossover 
fashion, age and gender are in the columns fi ve and six      

 Patient no  Treatment 1  Treatment 2  Treatment 3  Age  Gender 

 1  6,10  6,80  5,20  55,00  0,00 
 2  7,00  7,00  7,90  65,00  0,00 
 3  8,20  9,00  3,90  74,00  0,00 
 4  7,60  7,80  4,70  56,00  1,00 
 5  6,50  6,60  5,30  44,00  1,00 
 6  8,40  8,00  5,40  49,00  1,00 
 7  6,90  7,30  4,20  53,00  0,00 
 8  6,70  7,00  6,10  76,00  0,00 
 9  7,40  7,50  3,80  67,00  1,00 
 10  5,80  5,80  6,30  66,00  1,00 

  SPSS uses commas instead of dots  

  Fig. 55.2    Crossover study of the effect on hours of sleep of three sleeping pills in a single group 
of patients (Treatment outcome (hours of sleep/night) treatment modality (1–3))       

treatment 1, 2, 3 in box: “Within-subjects Variables” – enter gender in box between-
subjects covariates – ok. 

 Table  55.6  gives the results. As the test for sphericity (equal standard errors) had 
to be rejected again (not shown), sphericity could not be assumed, and the Huynh-
Feldt test was the next best for demonstrating a difference between the repeated 
measures (Table  55.6 : source treatment). With p = 0.010 a very signifi cant difference 
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   Table 55.6    Repeated measures ANOVA using the classical general linear model for the analysis 
of the data from Table  55.5 . As the test for sphericity was rejected (not shown), sphericity could 
not be assumed, and the Huynh-Feldt test was the next best for demonstrating a difference between 
the repeated measures (source: treat number). A signifi cant difference between the repeated mea-
sures was demonstrated with p = 0.010 ( upper table ). The subsequent between-subjects compari-
son did not show a signifi cant effect of gender with p-value of 0.65 ( lower table )   

 Tests of with-subjects effects 

 Measure: MEASURE_1 

 Source 
 Type III sum 
of squares  df  Mean square  F  Sig. 

 Treatment  Sphericity assumed  24,056  2  12,028  9,642  ,002 
 Greenhouse-Geisser  24,056  1,024  23,494  9,642  ,014 
 Huynh-Feldt  24,056  1,181  20,369  9,642  ,010 
 Lower-bound  24,056  1,000  24,056  9,642  ,015 

 Treatment * gender  Sphericity assumed  ,392  2  ,196  ,157  ,856 
 Greenhouse-Geisser  ,392  1,024  ,383  ,157  ,708 
 Huynh-Feldt  ,392  1,181  ,332  ,157  ,742 
 Lower-bound  ,392  1,000  ,392  ,157  ,702 

 Error (treatment)  Sphericity assumed  19,959  16  1,247 
 Greenhouse-Geisser  19,959  8,191  2,437 
 Huynh-Feldt  19,959  9,448  2,112 
 Lower-bound  19,959  8,000  2,495 

 Tests of between-subjects effects 

 Measure: MEASURE_1 

 Transformed variable: average 

 Source  Type III sum of 
squares 

 df  Mean square  F  Sig. 

 Intercept  1283,148  1  1283,148  1472,063  ,000 
 Gender  ,192  1  ,192  ,220  ,651 
 Error  6,973  8  ,872 

between the repeated measures, the treatments, could be demonstrated (upper part 
of Table  55.2 ). The subsequent between-subjects comparison of the two genders did 
not produces a signifi cantly different effect of the genders on the treatment outcome 
with a p-value of 0.65 (lower part of Table  55.6 ).  

 As an alternative a mixed linear model is applied using the same version of SPSS. 
For that purpose the data fi le has to be adapted. Each treatment (3) must be given a 
separate row. Table  55.7  gives the adapted data fi le made adequate for mixed linear 
modeling.  
 We command: 

 Analyze – mixed models – linear – specify subjects and repeated – variable 1 – 
continue – linear mixed model – dependent: variable 3 – factors: variable 2, variable 
4 – fi xed – build nested term – variable 4 – add – variable 2 – add – variable 2 build 
term by* variable 4 – variable 4 * variable 2 – add – continue – ok (* = sign of 
multiplication). 
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 Table  55.8  gives the results. With the mixed model analysis the treatment number 
is a very signifi cant predictor of treatment outcome with p = 0.005. This result is in 
agreement with our prior expectation, and it is also rather similar to the above gen-
eral linear model analysis (p = 0.010).  

 We can now conclude that after adjustment for the repeated nature of the data 
there is a signifi cantly different effect of the three treatment modalities on the hours 
of sleep with a p-value of 0.005.  

   Table 55.7    The data from 
Table  55.5  adapted for mixed 
linear modeling, each patient 
is included three times (three 
rows)   

 Variable 

 1  2  3  4 

 1,00  1,00  6,10  0,00 
 1,00  2,00  6,80  0,00 
 1,00  3,00  5,20  0,00 
 2,00  1,00  7,00  0,00 
 2,00  2,00  7,00  0,00 
 2,00  3,00  7,90  0,00 
 3,00  1,00  8,20  0,00 
 3,00  2,00  9,00  0,00 
 3,00  3,00  3,90  0,00 
 4,00  1,00  7,60  1,00 
 4,00  2,00  7,80  1,00 
 4,00  3,00  4,70  1,00 
 5,00  1,00  6,50  1,00 
 5,00  2,00  6,60  1,00 
 5,00  3,00  5,30  1,00 
 6,00  1,00  8,40  1,00 
 6,00  2,00  8,00  1,00 
 6,00  3,00  5,40  1,00 
 7,00  1,00  6,90  0,00 
 7,00  2,00  7,30  0,00 
 7,00  3,00  4,20  0,00 
 8,00  1,00  6,70  0,00 
 8,00  2,00  7,00  0,00 
 8,00  3,00  6,10  0,00 
 9,00  1,00  7,40  1,00 
 9,00  2,00  7,50  1,00 
 9,00  3,00  3,80  1,00 
 10,00  1,00  5,80  1,00 
 10,00  2,00  5,80  1,00 
 10,00  3,00  6,30  1,00 

  SPSS uses commas instead of dots 
 1 = patient number, 2 = treatment number, 
3 = outcome, 4 = gender  
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    4   Discussion 

 The examples given in the current report confi rm the primary hypothesis of this 
paper. In the fi rst example the aim of the research was to demonstrate a differ-
ence between the two treatment modalities given to two parallel groups of 
patients, while the differences between the repeated measures in a single patient 
was less important. Indeed, the mixed model produced a much better result than 
did the general linear model with overall p-values of <0.0001 versus only 0.048 
for treatment effect. In the second example the main aim was to demonstrate a 
signifi cant difference between the repeated measures in a single patient. The 
general linear model produced a signifi cant p-value at 0.010, compared to a much 
similar p-value of 0.005 in the mixed model. Mixed models do, indeed, seem to 
produce better sensitivity of testing, when there are small within-subject differences 
and large-between subject-differences. 

 As indicated in the introduction, a disadvantages of the novel model is, that it is 
more complex, and, therefore, may require a larger sample size than the general 
linear model. Yet, as demonstrated in the examples, it may perform well even with 
samples as small as 10–20, that is, if the model being used is not too complex. 

 Apart from the advantage that it can sometimes handle between-subject differ-
ences with more sensitivity, it may provide a number of additional advantages 
including:

    1.    the general linear model will drop cases with missing entirely, whereas the mixed 
model can include incomplete cases in the analysis;  

    2.    the general linear model assumes that all subjects are measured at the same point 
of time, whereas the mixed model allows subjects to be measured at different 
points of time;  

    3.    the general linear model requires subjects to have equal numbers of repeated   
      measurements, whereas the mixed model allows unequal repetitions;  

    4.    the presence of sphericity (equal standard errors) is not a requirement of the 
mixed models.     

   Table 55.8    Mixed model analysis of the data from Table  55.6  with treatment number as predictor, 
and treatment outcome as dependent variable. The treatment number is a very signifi cant predictor 
of the treatment outcome   

 Type III tests of fi xed effects a  

 Source  Numerator df  Denominator df  F  Sig. 

 Intercept  1  17,574  1143,456  ,000 
 Gender  1  17,574  ,171  ,684 
 Treatment number  2  11,628  8,470  ,005 
 Treatment number * gender  2  11,628  ,202  ,820 
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 We conclude that the mixed model is a welcome supplement to the commonly-
used general linear models for the overall analysis of studies with repeated measures. 
Unfortunately, although widely discussed in methodology papers (Milliken and 
Johnson  1992 ; West et al.  2007 ; Breslow and Clayton  1993 ; Engel and Keen  1994 ; 
Littell et al.  1996  ) , the mixed model is little used by clinical researchers in practice 
so far. This may be due to its obvious complexity. Yet, the current paper shows that 
with modern user-friendly statistical software its use is straightforward, and its soft-
ware commands are no more complex than they are with standard methods for data 
analysis. We do hope that this paper will encourage clinical researchers to more 
often make use of the benefi ts of the mixed model.

We have to add that current statistical terminology is somewhat chaotic. Alternative 
terms used to express mixed linear model methodologies include: hierarchical linear 
model, cluster analysis, multidimensional scaling, nearest neighbor search, structural 
data analysis, latent class analysis, data mining, data stream clustering, adjusted 
mutual information.  

    5   Conclusion 

 In current clinical research repeated measures in a single subject are common. The 
problem with repeated measures is, that they are more close to one another than 
unrepeated measures. If this is not taken into account, then data analysis will lose 
power. In the past decade user-friendly statistical software programs like SAS and 
SPSS have enabled the application of mixed models as an alternative to the classical 
general linear model for repeated measures with, sometimes, better sensitivity. This 
chapter assesses whether in studies with repeated measures, designed to test 
between-subject differences, the mixed model performs better than does the general 
linear model. 

 In a parallel group study of cholesterol reducing treatments with fi ve evaluations 
per patient, the mixed model performed much better than did the general linear 
model with p-values of respectively 0.0001 and 0.048. In a crossover study of three 
treatments for sleeplessness the mixed model and general linear model produced 
similarly well with p-values of 0.005 and 0.010. 

 We conclude that mixed models do, indeed, seem to produce better sensitivity of 
testing, when there are small within-subject differences and large-between subject-
differences, and when the main objective of your research is to demonstrate between- 
rather than within-subject differences. 

 The novel mixed model may be more complex. Yet, with modern user-friendly 
statistical software its use is straightforward, and its software-commands are no 
more complex than they are with standard methods. We hope that this chapter will 
encourage clinical researchers to more often make use of its benefi ts.      
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                  1   Introduction 

 In clinical trials it is common to assume a fi xed effects research model. This means 
that the patients selected for a specifi c treatment are assumed to be homogeneous 
and have the same true quantitative effect and that the differences observed are 
residual, meaning that they are caused by inherent variability in biological pro-
cesses, rather than some hidden subgroup property. If, however, we have reasons to 
believe that certain patients due to co-morbidity, co-medication, age or other factors 
will respond differently from others, then the spread in the data is caused not only 
by the residual effect but also by between patient differences due to some subgroup 
property. It may even be safe to routinely treat any patient effect as a random effect, 
unless there are good arguments no to do so. Random effects research models 
require a statistical approach different from that of fi xed effects models (Anonymous 
 2006 ; Campbell  2006 ; Gao  2003  ) . 

 With the fi xed effects model the treatment differences are tested against the 
residual error, otherwise called the standard error. With the random effects models 
the treatment effects may be infl uenced not only by the residual effect but also by 
some unexpected, otherwise called random, factor, and so the treatment should no 
longer be tested against the residual effect. Because both residual and random effect 
constitute a much larger amount of uncertainty in the data, the treatment effect has 
to be tested against both of them  (Anonymous   2011a ; Anonymous  2011b  ) . 

 Random effects models have been used in several studies recently published 
(Brier and Aronoff  1996 ; Dalla Costa et al.  1997 ; Mahmood  2003 ; Meibohm and 
Derendorf  1997 ; Lima et al.  2005 ; Lotsch et al.  2004 ; Mueck et al.  2007  ) . They are 
a very interesting class of models, but even a partial understanding is fairly diffi cult 
to achieve. This chapter was written to explain random effects models in analysis of 
variance and to give examples of studies qualifying for them.  

    Chapter 56   
 Advanced Analysis of Variance, Random Effects 
and Mixed Effects Models       
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    2   Example 1, a Simple Example of a Random Effects Model 

 In a particular study the data may be different from one assessing doctor to the 
other due to differences in personality, education, or other doctor-factors. The 
example in 

 The computations are:

     

( )2
2

2 2 (240.8)
SS total ( ) 1,455.94 6.32

40

y
y y y

n
= − = − = − =

∑∑ ∑
   

     

+= − =
2 2 2(44.0) ...(49.3) (240.8)

SS between 3.48
8 40    

     SS within SS total SS between 6.32 3.48 2.84.= − = − =     

 Notice that the SS within is calculated differently from the usual way (e.g., pages 
26 and 32   ).  

 Source  SS  df  MS  F  p-value 

 Between assessors  3.48  5 − 1 = 4  0.87  0.87/0.08 = 10.72  <0.01 
 Within assessors  2.84  40 − 5 = 35  0.08 

   SS  sum of squares,  df  degree of freedom,  MS  mean square,  F  test statistic for F-test    

 Table  56.1  gives the data of the above study where a random sample of fi ve doctors 
assess eight different patients each. The data consist of individual health scores per 
patient. This example was modifi ed from an example used by Hays  (  1988  ) .  

 The scientifi c question is: “are the differences between the doctors larger than 
could happen by chance”. We have no prior theory that one or two particular assess-
ing doctors will produce higher health scores than the rest, but rather expect that in 
the population of assessing doctors at large there may be heterogeneity for whatever 
reason. This means that a random effects model applies to this situation. We test 
whether between doctor variability compared to within doctor variability is large. 
On top of this page are the results of the analysis. For 4 and 35 degrees of freedom 
the F-test exceeds the F of 3.25, and the hypothesis of no difference between the 
doctors is rejected. Indeed, there is a signifi cant difference between the doctors. 
More in general the conclusion of this result should be that we can expect differ-
ences within any random sample of assessing doctors. 

 The calculations for a fi xed effects model analysis of these data would produce 
the same result. The inference from it would, however, be entirely different: we 
would conclude that while we do not know anything about the population of assess-
ing doctors at large, we defi nitely found a signifi cant difference within this particu-
lar set of assessing doctors. It should be emphasized that the calculations for a fi xed 
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effect and a random effect are similar, but the interpretation is different. The choice 
between the fi xed and random effect model is dependent on the statistical question. 
Both situations may be encountered in real life.  

    3   Example 2, A Random Interaction Effect Between Study 
and Treatment Effi cacy 

 In clinical trials the observed differences between treatment modalities are com-
pared to the differences caused by residual effects otherwise called noise. In studies 
with unexpected subgroup effects, this method is not appropriate and the increased 
variability in the data due to the subgroup effect has to be accounted. Random 
effects models are adequate for that purpose. An example is given underneath. 

 The computations are:

     

2
2 2 2 (52 48 35)

SS total 52 48 35 1,750.4
40

+ + +…
= + +… − =

   

     

2 2 2464 378 (52 48 35)
SS treat by study 1,327.2

10 40

+… + + +…
= − =

   

     = − =SS residual SS total SS treat by study 423.2    

     

2 2 2766 746 (52 48 35)
SS rows 10.0 ( SS gender)

20 40

+ + + +…
= − = =

   

     

2 2 2832 680 (52 48 35)
SS columns 577.6 ( SS treatment)

20 40

+ + + +…
= − = =

   

   Table 56.1    Example 1, a simple example of a random effects model   

 Assessing 
doctor no  1  2  3  4  5 

 Patient  5.8  6.0  6.3  6.4  5.7 
 5.1  6.1  5.5  6.4  5.9 
 5.7  6.6  5.7  6.5  6.5 
 5.9  6.5  6.0  6.1  6.3 
 5.6  5.9  6.1  6.6  6.2 
 5.4  5.9  6.2  5.9  6.4 
 5.3  6.4  5.8  6.7  6.0 
 5.2  6.3  5.6  6.0  6.3 + 

 44.0  49.7  47.2  50.6  49.3  Add-up sum = 240.8 
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SS interaction SS treat by study SS rows SS columns

1327.2 10.0 577.6 739.6

= − −
= − − =      

 Source  SS  df  MS  F  p-value 

 Fixed effects analysis of variance 
 Rows (study effect)  10.0  1 
 Columns (treatment effect)  577.6  1  577.6  577.6/11.76 = 49.1  <0.0001 
 Interaction  739.6  1  739.6  739.6/11.76 = 62.9  <0.0001 
 Residual  423.2  36   11.76 

 Total 

 Random effects analysis of variance 
 Rows (study effect)  10.0  1 
 Columns (treatment effect)  577.6  1  577.6  577.6/739.6 = 0.781  ns 
 Interaction  739.6  1  739.6  739.6/11.76 = 62.9  <0.0001 
 Residual  423.2  36   11.76 

 Total 

   SS  sum of squares,  df  degree of freedom,  MS  mean square,  F  test statistic for F-test,  ns  not 
signifi cant    

 The effects of two compounds on the numbers of episodes of paroxysmal atrial 
fi brillation is assessed in two rather similar parallel-group trials of 20 patients each. 
For the purpose of power the two studies are analyzed simultaneously. The data are 
given in Table  56.2 . Overall metoprolol scores better than verapamil, but this is only 
true for the patients in study-1. There seems to be interaction between the study 
number and the treatment effi cacy. The data are entered in the SPSS Software pro-
gram  (  2011  )  commanding: statistics, general linear model, univariate. Choose as 
dependent variable numbers of episodes of paroxysmal atrial fi brillation, and as 
independent variables (1) treatment modality and (2) study number. The software 
program enables to treat the independent variables either as fi xed or random variable. 
On top of this page   are the results of the two assessments. If study-number is treated 
as a fi xed effects variable, both treatment effect and interaction effect are compared 
to the residual effect. With 1 and 36 degrees of freedom the F-tests exceed the F of 
5.57. Both a signifi cant treatment effect and interaction effect is in the data. If treat-
ments have different effi cacies across studies, then an overall effect is not relevant 
anymore since the treatment effects cannot be interpreted independently of the inter-
action effect. The treatment effi cacy of the treatment modalities is determined not 
only by the treatment modality but also by the study number. The information given 
by the random effect model is more adequate. The interaction effect is compared to 
the residual effect. With 1 and 36 degrees of freedom the F-test exceeds the F of 5.57. 
Subsequently, the treatment effect is compared not to the residual effect but rather to 
the interaction effect. With 1 and 1 degrees of freedom an F-value of 648 is required. 
The hypothesis of no treatment effect cannot be rejected. Thus, a signifi cant interac-
tion exists and the overall treatment effi cacy is not signifi cant anymore. This result is 
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obtained because the difference in the data due to different treatments is not com-
pared with the residual differences but rather with the differences due to the interac-
tion (which in this model includes the residual differences).   

    4   Example 3, A Random Interaction Effect Between Health 
Center and Treatment Effi cacy 

 The computations are:

     

2
2 2 (342)

SS total 4 13 245
36

= +…+ − =
   

     

2 2 210 27 (342)
SS treatment by center 224

2 36

+…+
= − =

   

     

SS error SS total SS ab

245 224 21

= −
= − =    

   Table 56.2    Example 2, a 
random interaction effect 
between the study number 
and treatment effi cacy   

 Verapamil  Metoprolol 

 Study 1  52  28 
 48  35 
 43  34 
 50  32 
 43  34 
 44  27 
 46  31 
 46  27 
 43  29 
 49  25 

 464  302  766 
 Study 2  38  43 

 42  34 
 42  33 
 35  42 
 33  41 
 38  37 
 39  37 
 34  40 
 33  36 
 34  35 

 368  378  746 
 832  680 



612 56 Advanced Analysis of Variance

     

+ += − =
2 2 2 299 105 138 342

SS columns 73.5
12 36    

     

+…+= − =
2 249 65 342

SS rows 30.67
6 36    

     

SS interaction SS treat by center SS rows SS columns

224 30.67 73.5 119.8

= − −
= − − =      

 Source  SS  df  MS  F  p-value 

 Fixed effects analysis of variance 
 Rows (center effect)  30.67  6 − 1 = 5 
 Columns (treatment effect)  73.5  3 − 2 = 1  36.75  36.75/1.17 = 31.49  <0.0001 
 Interaction (treatment × center)  119.8  2 × 5 = 10  11.98  11.98/1.17 = 10.24  <0.0001 
 Residual  21  18 × (2–1) = 18  1.17 

 Total  245  35 

 Random effects analysis of variance 
 Rows (center effect)  30.67  6 − 1 = 5 
 Columns (treatment effect)  73.5  3 − 2 = 1  36.75  36.75/11.98 = 3.07  ns 
 Interaction (treatment × center)  119.8  2 × 5 = 10  11.98  11.98/1.17 = 10.24  <0.0001 
 Residual  21  18 × (2–1) = 18  1.17 

 Total  245  35 

   SS  sum of squares,  df  degrees of freedom,  MS  mean square,  F  test statistic for F-test,  ns  not 
signifi cant    

 The effect of three compounds on the frequency of anginal attacks in patients 
with stable angina pectoris is assessed in a three group parallel-group study 
(Table  56.3 ). Current clinical trials of new treatments often include patients from 
multiple health centers, national or international. Differences between centers may 
affect local results. We might say these data are at risk of interaction between cen-
ters and treatment effi cacy. Patients were randomly selected in six health centers, 
six patients per center, and every patient was given one treatment at random, and so 
in each center two patients were given one of the three treatments.  

 When looking into the data we observe something special and unexpected. 
Metoprolol performs well in groups 4–6, i.e., better than in groups 1–3, and better 
than verapamil. This is unexpected, and may be due to interaction between the effi -
cacy of treatment and the presence of particular health centers. There may be some-
thing about the combination of a particular health center with a particular treatment 
that accounts for differences in the data. For the analysis, as given on top of this page  , 
SPSS statistical software  (  2011  )  is used again using the commands: statistics, gen-
eral linear model, univariate. The numbers of anginal attacks are the dependent vari-
able, dependent variables are (1) treatment modalities and (2) health center. If health 
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   Table 56.3    Example 3, a random interaction effect between the health center and 
treatment effi cacy   

 Treatment  Verapamil  Metoprolol 
 Isosorbide 
mononitrate 

 Total number 
of attacks 
per patient 

 Health center 
 1  4  10  10 

 6  9  10 + 
 10  19  20  49 

 2  5  9  11 
 7  11  10 + 

 12  20  21  53 

 3  4  11  10 
 7  12  13 + 

 11  23  23  57 

 4  9  6  11 
 10  8  11 + 
 19  14  22  55 

 5  12  7  12 
 12  7  13 + 
 24  14  25  63 

 6  11  7  14 
 12  8  13 + 
 23  15  27  65 

 Total  99  105  138  342 

center is treated as a fi xed effect variable, again both treatment effect and interaction 
effect are compared to the residual effect. With respectively 2 vs 18 and 10 vs 18 
degrees of freedom the F-values of 4.46 and 2.77 are exceeded. Both a signifi cant 
treatment effect and interaction effect is in the data. In multiple health centers we 
may have multiple treatment effects. The random effects method is more appropri-
ate. With health center as random independent variable the analysis shows that with 
10 vs 18 degrees of freedom the F-value of 2.77 is exceeded. A signifi cant interac-
tion exists. Subsequently, the treatment effect is tested against the interaction effect. 
With 2 and 10 degrees of freedom an F of 5.46 is required for signifi cance, so that 
the hypothesis of no treatment effect cannot be rejected. The overall treatment effi -
cacy is not signifi cant anymore. This result is, like in the above example, obtained, 
because the difference in the data due to different treatments is not compared with 
the residual differences but rather with the differences due to the interaction. The 
following inference is adequate. Within the health centers, treatment differences 
apparently exist. Perhaps the capacity of a treatment to produce a certain result in a 
given patient depends on his/her health center background. Explanations include 
environmental factors like social and ethnic factors, investigator factors.  
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    5   Example 4, a Random Effects Model for Post-hoc 
Analysis of Negative Crossover Trials    

 Source  SS  df  MS  F  p-value 

 Fixed effects analysis of variance 
 Between-patients  81.4  12 − 1 = 11 
 Within-patients  226.6  3 × 12 = 36  6.29 
 Treatment  24.0  4 − 1 = 3  8  8/6.14 = 1.30  ns 
 Residual  202.6  3 × 11 = 33  6.14 

 Total  308.0  47 

 Random effects analysis of variance 
 Within-patients  226.6  12 − 1 = 11 
 Treatment  24.0  4 − 1 = 3  8  8/1.74 = 4.60  <0.05 
 Subjects × treatments  57.5  3 × 11 = 33  1.74 

 Total  308.0  47 

   SS  sum of squares,  df  degrees of freedom,  MS  mean square,  F  test statistic for F-test,  sd  standard 
deviation,  ns  not signifi cant    

 In a crossover study different treatments are assessed in one and the same 
subject. An example of four treatments is given in Table  56.4 . This example was 
also modifi ed from an example used by Hays  (  1988  ) . A real difference between 
the treatments is expected and this is tested by comparing the observed differ-
ences between the treatment with the residual error, estimated from the subtrac-
tion of the sum of squares (SS) within-patients minus the SS treatment. 
Obviously, none of the treatments produced an effect signifi cantly different 
from that of another treatment. If a difference is not established like in this 
example, this may be due to random subgroup effects. In some patients one or 
more treatments may outperform the others, while in other patients other treat-
ments may do so.  

 Because the study result was, thus, negative, we perform a post-hoc random 
effects analysis, testing treatment effect against treatments x patients interaction 
(  SPSS statistical software  (  2011  ) ; command: mixed model, linear). This assess-
ment shows that the four treatments appear to be having different effects to dif-
ferent subsets. Some patients seem to respond better than the others to one or 
more treatments. This may due to personal factors like a genetic characteristic, a 
societal and/or developmental factor etc. Note that, although in the fi rst analysis 
the SS within-patients has 36 degrees of freedom [number of patients × (number 
of treatment modalities − 1)], in the second analysis it only has 11 degrees of 
freedom (number of patients − 1). This is, because in the latter analysis the fac-
tors defi ning the treatment effects are considered to be fi xed, while the subjects 
are viewed as randomly sampled.  
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    6   Discussion 

 In this chapter research models are discussed that account for variables with random 
rather than fi xed effects. These models are often called type 2 models if they include 
random exposure variables and type 3 models if they include both fi xed and random 
exposure variables. For example, the example 1 in this chapter gives a type 2 model 
while the last three examples are type 3 models, otherwise called mixed effects 
models. Another example of mixed effects models is the non-linear mixed effects 
(non-mem) modeling, increasingly for the development of pharmacokinetic param-
eters (Dalla Costa et al.  1997 ; Meibohm and Derendorf  1997 ; Lotsch et al.  2004 ; 
Mueck et al.  2007 ; Boeckman et al.  1992  ) . It is a program for nonlinear regression 
modeling that makes use of analysis of variance methods similar to those described 
in this chapter. 

 The work-up of the advanced research models is sometimes largely the same as 
that of simple research models. But, inferences made are quite different. All infer-
ences made under the simple model mostly concern means and differences between 
means. In contrast, the inferences made using advanced models deal with variances, 
and involve small differences between subsets of patients or between individual 
patients. This type of analysis of variance answers questions like: do differences 
between assessors, between classrooms, between institutions, or between subjects 
contribute to the overall variability in the data? 

 We should consider some limitations of the methods. If the experimenter chooses 
the wrong model, he/she may suffer from a loss of power. Also the standards of 
homogeneity/heterogeneity in the data must be taken seriously. The patients in the 
subsets should not be sort of alike, rather they should be exactly alike on the 

   Table 56.4    Example 4, a random effects model for crossover trials   

 Patient no.  Treatment 1  Treatment 2  Treatment 3  Treatment 4  sd 2  

 1  49  48  49  45 
 2  47  46  46  43 
 3  46  47  47  44 
 4  47  45  45  45 
 5  48  49  49  48 
 6  47  44  45  46 
 7  41  44  41  40 
 8  46  45  43  45 
 9  43  41  44  40 
 10  47  45  46  45 
 11  46  45  45  42 
 12  45  40  40  40 

 552  540  540  528  Add-up sum = 2,160 
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variable to be assessed. Often this assumption can not be adequately met, raising the 
risk of a biased interpretation of the data. 

 The random effects research models enable to assess the entire sample for the 
presence of possible differences between subgroups without need to, actually, split 
the data into subgroups. This very point is a major argument in their favor. Also they 
are, of course, more appropriate if variables can be assumed to be random rather 
than fi xed. A potential disadvantage is that the sensitivity to detect a signifi cant 
difference in the data is generally somewhat reduced as explained in this paper. 
However, the reduction of sensitivity should not be regarded as a disadvantage, but 
rather an advantage, since the chance to make a correct conclusion is increased. 
Data should be analyzed according to the correct procedure, not according to the 
procedure that gives the largest chance to demonstrate a signifi cant difference. 

 Only the simplest examples have been given in the present paper. The Internet 
provides an overwhelming body of information on the advanced research models 
including the type 2 and 3 research models as discussed here. For example, the 
Google data system provides 495,000 references for explanatory texts on this 
subject. This illustrates the enormous attention currently given to these upcoming 
techniques. Yet in clinical research these models are little known. We hope that this 
chapter will stimulate clinical investigators to more often apply them.  

    7   Conclusions 

 In clinical trials a fi xed effects research model assumes that the patients selected for 
a specifi c treatment have the same true quantitative effect and that the differences 
observed are residual error. If, however, we have reasons to believe that certain 
patients respond differently from others, then the spread in the data is caused not 
only by the residual error but also by between patient differences. The latter situa-
tion requires a random effects model. This chapter explains random effects models 
in analysis of variance and to give examples of studies qualifying for them.

    1.    If in a particular study the data are believed to be different from one assessing 
doctor to the other, and if we have no prior theory that one or two assessing 
doctors produced the highest scores, but rather expect there may be heterogene-
ity in the population of doctors at large, then a random effect model will be 
appropriate. For that purpose between doctor variability is compared to within 
doctor variability.  

    2.    If the data of two separate studies of the same new treatment are analyzed simul-
taneously, it will be safe to consider an interaction effect between the study 
number and treatment effi cacy. If the interaction is signifi cant, a random effects 
model with the study number as random variable, will be adequate. For that pur-
pose the treatment effect is tested against the interaction effect.  

    3.    In a multi-center study the data are at risk of interaction between centers and 
treatment effi cacy. If this interaction is signifi cant, a random effects model with 
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the health center as random variable, will be adequate. The treatment effect is 
tested not against residual but against the interaction.  

    4.    If in a crossover study a treatment difference is not observed, this may be due to 
random subgroup effects. A post-hoc random effects model, with patients effect 
as random variable, testing the treatment effect against treatments x patients 
interaction, will be appropriate.     

 Random effects research models enable the assessment of an entire sample of 
data for subgroup differences without need to split the data into subgroups. Clinical 
investigators are generally hardly aware of this possibility and, therefore, wrongly 
assess random effects as fi xed effects leading to a biased interpretation of the data.      
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                  1   Introduction 

 For more than a century statistical tests based on Gaussian curves have been applied 
in clinical research, like t-tests, chi-square tests, analysis of variance and most 
regression analyses methods. Current clinical trials often make use of convenience 
samples and small samples that do not follow Gaussian curves. This raises the risk 
of false negative results (Zwinderman et al.  2006  ) . Alternatively, samples can be 
analyzed using the Monte Carlo method. Basically, the Monte Carlo method uses 
random numbers from your own study rather than assumed Gaussian curves to 
assess the data. It was invented by the physicist Stanislaw Ulam and Ulam  (  1949  )  in 
the post-world-war-II era, and was called by him after the city of the roulette, 
because roulette is a simple generator of random numbers. The Monte Carlo method 
is, actually, very general: all it requires is the use of random numbers. It allows you 
to examine complex issues more easily than advanced mathematical methods, 
including integrals and matrix algebra. It is currently found in everything from eco-
nomics to regulating fl ow of traffi c to quantum mechanics. In clinical research the 
Monte Carlo method has been recently applied, for example, for the analysis of 
brachytherapy data (Vieira et al.  2002  ) , computer tomographic images (Haidekker 
 2005  ) , pharmacological data (Upton and Ludbrook  2005  ) , and observational data 
(Nijhuis et al.  2006  ) . Overall, however, the Monte Carlo method is little used in 
clinical research. This is a pity given the great potential of this relatively new 
method. This chapter was written to elucidate its principle and gives some real data-
examples for a non-mathematical readership. The body of ongoing clinical research 
is huge, and clinical investigators tend to perform basic statistics without the help 
from a statistician. This chapter was written for their benefi t. It is to be hoped that 
the chapter will stimulate them to use the Monte Carlo method more often, particu-
larly in case of convenience samples and small samples.  

    Chapter 57   
 Monte Carlo Methods for Data Analysis          
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    2   Principles of the Monte Carlo Method Explained 
from a Dartboard to Assess the Size of  P  

 The basics of the Monte Carlo method was explained by Woller  (  1996  )  using a 
dartboard for the purpose of assessing the size of  p . Figure  57.1  simply pictures one 
quadrant of a circle. We assume that a very poor dart player throwing darts at it 
produces the same result as that obtained by throwing darts randomly at the fi gure. 
In this case the number of darts in the circle quadrant is proportional to the area of 
that part of the Figure. This would mean:

 number darts in circle quadrant/total number darts = area circle quadrant/total 
area of graph. 

 High school geometry told us (r = radius of circle):

     
2 21 1

4 4area circle quadrant / total area of graph r /r .= π = π     

 If at random a dart lands somewhere inside the graph, the ratio of hits in the circle 
quadrant will be one-fourth the value of  p . Throwing many darts can thus be used as 
a method to assess the size of  p .

     

4 (area circle quadrant / total area of graph)

4 (number darts in circle quadrant / total number darts)

π = ×
= ×     

 However, if you actually use this type of experiment for the assessment of  p , you 
will observe that it will take a large number of throws to obtain a reliable value of 
 p … well over 1,000. Yet, it is a straightforward alternative to the advanced mathe-
matical methods commonly used to solve the problem. In clinical data analysis the 
Monte Carlo method can serve a similar purpose.  

  Fig. 57.1    A very poor dart 
player is assumed to have 
equal chances of throwing 
darts inside and outside the 
circle area, a situation which 
simulates throwing darts 
randomly ( r  radius of the 
dartboard)  (StatsDirect   2011 , 
with permission from the 
author)       
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    3   The Monte Carlo Method for Analyzing Continuous Data 

 Table  57.1  gives an example of a parallel-group study assessing the effect of two 
cholesterol-reducing treatments on low density lipoprotein (LDL)-cholesterol. Small 
samples like those given here often do not follow a Gaussian curve. Non-parametric 
testing can restore a Gaussian curve. However, sometimes it is not good enough. 
SPSS Software  (  2011  )  is helpful. In the main box for two-samples-non-parametric 
testing the possibility of a test for the adequacy of non-parametric testing is given: 
the Kolmogorov-Smirnov (KS) test. If you click the KS test and then ok, a p-value 
of 0.037 is given, indicating that the KS test is positive and that non-parametric 
testing is, indeed, not good enough. If we, subsequently, click “exact” in the main 
dialog box, another dialog box will occur. It gives you the possibility to use either an 
exact test or the Monte Carlo method. Exact tests make use of rank numbers, i.e., all 
individual results are given a rank-number in ascending order, and these ranks are 
added up to determine the exact chance of fi nding an overall result in your data. The 
problem with rank testing is that it rapidly runs into numerical problems that even 
modern computers have diffi culty to solve. SPSS statistical software is helpful 
regarding this problem. When clicking “exact” for the second time, the program will 
highlight the text “exact method will be used instead of Monte Carlo when computa-
tional limits allow”. You should set your computational time limits, e.g. 5 or 10 min, 
and the program will automatically use the Monte Carlo method if your requested 
time limits can not be met. In our particular example, the exact test required only 
2 min and produced a p-value of 0.010 while the Monte Carlo method took less than 
a few seconds and produced a p-value of 0.011, virtually the same.  

 For the continuous data as given in this example a special type of Monte 
Carlo method is used, called the bootstrap method (Efron and Tibshirani  1993  ) . 
The name bootstrap derives from the saying “pull yourself up by your boot-
straps” meaning that you can continue what you are doing but in a much faster 
way. It works essentially as follows. A patient is randomly picked up from the 
given samples while replacing the picked-up patient so that the sample from 
which to choose remains unchanged. In mathematical terms this method of sam-
pling is called “sampling with replacement”. By doing so, we can produce ran-
dom samples from the original data. 

 The procedure is illustrated in Table  57.1 . In the fi rst random sample observation-1 
was picked up twice, while the observations no 2 and 4 were not. We repeat the 
procedure a large number of times, and record the difference between medians every 
time. To derive reliable confi dence intervals, at least 1,000 repetitions are required. 
Medians rather than means are used, because with extreme high (or low) values the 
mean value is less representative of the data average than the median. The null 
hypothesis is, that no real difference exists between the data from group 1 and 2. 
This null hypothesis is rejected if the median of group 1 is larger than that of group 
2 at least 95% of the times. All of the 1,000 differences between the medians as 
calculated from the bootstraps lay between −0.12 and 1.09, while 98.9% of the dif-
ferences lay between 0.00 and 0.844. In this example the bootstrap medians from 
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group1 are indeed larger than those from group 2 over 95% of the times. We, therefore, 
reject the null hypothesis at p < (1 − 0.95) or p < 0.05. There is a signifi cant differ-
ence between the groups at p < 0.05 (p = 0.011 to be precise).  

    4   The Monte Carlo Method for Analyzing Proportional Data 

 Table  57.2  gives an example of a population-based cohort study assessing the effect 
of a prophylactic treatment on the number of cardiac events. For proportional data, 
including fractions and percentages, the chi-square test is a standard method of 
analysis. The data are usually displayed in 2 × 2 contingency tables (Table  57.2 ). 
However, the cells of a 2 × 2 contingency table must not be too small, 5–10 patients 
are required in each of its four cells. If smaller, the Fisher’s exact test is an alterna-
tive, but with proportions from large groups computational problems will rapidly 
arise, because it uses faculties: “995 faculty” = 995 ! = 995 × 994 × 993 × 992 × 991 
…etc. These kinds of calculations are time-consuming even for modern computers. 
The SPSS program is helpful again. If you click “exact” in the main dialog box, then 
another dialog box will occur. You should set your computational time limits, e.g. 
5 min, and the program will automatically use the Monte Carlo method if your 
requested time limits will exceed.  

 The Monte Carlo method to calculate is, then, less labour-intensive, and works 
essentially as follows. The question is answered: are the observed cells signifi -
cantly different from the cells expected from the population data base. If the pro-
portion of patients-with-event in the target population can be expected to be 10 out 
of 1,000, then the ratio 10:1,000 will be observed most frequently when randomly 
sampling from such a target population. How great is the chance of fi nding a ratio 
5:1,000 if 10:1,000 is to be expected. This chance will be small. We can randomly 

   Table 57.1    The bootstrap method is a data based simulation process for statistical inference. The 
basic idea is randomly picking up a patient from a given sample while replacing the picked-up 
patient so that the sample from which to choose remains unchanged   

 Original data 

 LDL-cholesterol (mmol/l)  Bootstrap 1  Bootstrap 2 

 Group1  Group 2  Group1  Group 2  Group 1  Group 2 

 1.  3.99  10.  3.18  1.  3.99  10.  3.18  1.  3.99  10.  3.18 
 2.  3.79  11.  2.84  1.  3.99  10.  3.18  2.  3.79  11.  2.84 
 3.  3.60  12.  2.90  3.  3.60  12.  2.90  2.  3.79  12.  2.90 
 4.  3.73  13.  3.27  5.  3.21  14.  3.85  2.  3.79  12.  2.90 
 5.  3.21  14.  3.85  6.  3.60  15.  3.52  4.  3.73  14.  3.85 
 6.  3.60  15.  3.52  8.  3.61  15.  3.52  5.  3.21  15.  3.52 
 7.  4.08  16.  3.23  8.  3.61  15.  3.52  7.  4.08  16.  3.23 
 8.  3.61  17.  2.76  9.  3.81  16.  3.23  7.  4.08  18.  3.60 
 9.  3.81  18.  3.60  9.  3.81  17.  2.76  8.  3.61  18.  3.60 

 Median group 1 = 3.73  Median group 1 = 3.61  Median group 1 = 3.79 
 Median group 2 = 3.23  Median group 2 = 3.23  Median group 2 = 3.23 
 Difference medians = 0.50  Difference medians = 0.38  Difference medians = 0.55 
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pick up a patient 1,000 times from a sample of 1,000, 10 of which have the code 
“event”, and 990 of which have the code “no-event”, while replacing the picked-up 
patient, so that the sample from which to choose remains unchanged (sampling 
with replacement).  

 Patients with 
an event 

 The fi rst 1,000 patients chosen produced 
the following result 

 9 

 Second 1,000 patients  10 
 Third 1,000 patients  8 
 …..  4 
 ….  … 
 .....  … 
 Thousandth 1,000 patients  12 

 The null hypothesis is, that the difference between observed and expected is due 
to chance rather than a statistically signifi cant effect. This null hypothesis is rejected 
at p < 0.05 if in 95% of the times the expected number of patients with an event is 
larger than the observed number 5. In this example all of the 1,000 pick-up proce-
dures produced results between 4 and 16, while 95% of them were between 6 and 
14, which is consistently larger than the observed number 5. We can, therefore, 
reject the null hypothesis at p < 0.05.  

    5   Discussion 

 The Monte Carlo method is a scientifi cally safe alternative approach to data analy-
sis. It, essentially, derives confi dence intervals from the data without prior assess-
ment of the type of frequency distribution. Other advantages of this method 
include:

   It does not require equal standard deviations of groups in paired or parallel-group  –
treatment comparisons.  
  It is often less time-consuming than exact methods.     –

   Table 57.2    2 × 2 contingency table of a population-based cohort 
study assessing the effect of a prophylactive treatment on the 
numbers of cardiac events   

 Proportion 
 Patients with 
an event 

 Patients without 
an event 

 Observed 5/1,000  Cell 1   5  Cell 2  955 
 Expected from target 

population 10/1,000 
 Cell 3  10  Cell 4  990 
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 Disadvantages include:

   Although less laborious than many standard methods, it is still rather laborious  –
without a computer.  
  Samples must not be very small. With a sample of say four, there are only 16  –
distinct re-samplings equally likely. The median of such a sample will take one 
of the four sample values. This is not a very strong basis for constructing a 95% 
confi dence interval. The above examples show that rather small samples are gen-
erally no problem. The p-value produced by the Monte Carlo method in the fi rst 
study comparing 9 versus 9 patients was only slightly larger than the p-value 
produced by the exact test, with p-values of 0.011 and 0.010 respectively.    

 Nowadays Monte Carlo methods can be carried out with computer programs for 
statistical analyses, like SPSS, S-plus, StatsDirect, StatXact, SAS etc.  (SPSS   2011 ; 
S-plus  2011 ; StatsDirect  2011 ; StatXact  2011 ; True Epistat  2011 ; BUGS y 
WinBUGS  2011 ; R  2011 ; SAS  2011  ) . The current paper gives only the simplest 
examples of the Monte Carlo method for the analysis of clinical data. Several books 
have been written providing more complex models (Gardner and Altman  2000 ; 
Shao and Tu  1995 ; Fishman  1996  ) . However, all of the models are based on the 
same simple principle. We do hope that this paper will strengthen the awareness the 
great potential of the Monte Carlo method for the analysis of research data.  

    6   Conclusions 

 For more than a century statistical tests based on Gaussian curves have been applied 
in clinical research. Current clinical trials often make use of convenience samples 
and small samples that do not follow Gaussian curves. This raises the risk of false 
negative results. This chapter elucidates the Monte Carlo method as an alternative 
method for the assessment of such data. 

 The Monte Carlo method derives confi dence intervals from the data without 
prior assumption about the presence of Gaussian curves in the data. For 2-parallel-
groups studies with continuous data the basic idea is to produce multiple random 
samples from your own 2 parallel groups. If in at least 95% of these random samples 
the fi rst group scores better than the second, then a statistically signifi cant differ-
ence between the two groups will be accepted at p < 0.05. 

 Also for population-based cohort studies with proportional data multiple random 
samples can be produced from your own observed data. If in at least 95% of these 
random samples the expected proportion exceeds the observed proportion, then a 
statistically signifi cant difference between the observed and expected data will be 
accepted at p < 0.05. 

 Advantages of the Monte Carlo method include:

   It does not depend upon Gaussian curves.   –
  It is less time-consuming than many standard methods.     –
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 A disadvantages is that, although less time-consuming than many standard 
methods, it is still rather laborious without a computer. We do hope that this chapter 
will strengthen the awareness of the Monte Carlo method as an often more reliable 
alternative for analysis of clinical research.      
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                  1   Introduction 

 Artifi cial intelligence is an engineering method that simulates the structures and 
operating principles of the human brain. Much is unknown of how the brain trains 
itself to process information, but we do know that brain cells, called neurons, can be 
activated to send an electric signal through long thin stands called axons. At the end 
of the axon a structure called the synapse connects the axon with a connected neuron, 
and provides it with excitatory/inhibitory imput or when the signal is too weak no 
imput at all. Learning processes in the brain is thought to take place by repeated simi-
lar electric signals at similar places giving rise to similar outcomes observed by the 
brain. This principle can be modeled by artifi cial neural networks software using 
observed variables as artifi cial signals. Software is available in SPSS, MATLAB and 
so forth: in the current paper SPSS version 17.0, with neural network add-on has 
been applied (  WWW.SPSS.COM    ). Artifi cial neural networks are different from tra-
ditional statistics that usually assumes Gaussian curve distributions for making pre-
dictions from the data. In practice the data, sometimes, do not follow Gaussian 
distributions, and, for that purpose, distribution-free methods, like non-parametric 
tests and Monte Carlo methods, have been developed. The artifi cial neural network 
is another distribution-free method based on layers of artifi cial neurons that trans-
duce imputed information. It has been recognized to have a number of advantages 
including the possibility to process imperfect data, and complex non linear data 
(Stergiou and Siganos  2004  ) . The current chapter reviews the principles, procedures, 
and limitations of BP artifi cial neural networks for a non-mathematical readership.  

    2   Historical Background 

 Artifi cial intelligence was fi rst proposed by the group of neurophysiologist 
McCulloch in the 1950s (Andrew  2004  ) . Initially, it was merely to explore and 
simulate informational processing of the human brain. In the 1960s Rosenblatt  (  1962  )  

    Chapter 58   
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developed a three-layer perceptron model (Fig.  58.1 ), that, with the help of a 
traditional digital computer system, was capable to process experimental data sam-
ples. In the mid-1970s Minsky  (  1974  )  showed that models with more than three 
layers were generally required to perform with the precision of current multiple 
regression models. Particularly, perceptrons with learning samples, otherwise 
called back propagation (BP) models (Rumbelhart et al.  1986  ) , have been success-
ful in the past two decades, and have been applied for various purposes including 
sales forecasting, process control, and target marketing (Stergiou and Siganos 
 2004  ) . Also in clinical research it has been increasingly applied. In oncology 
research it has been used for diagnostic purposes (Simpson et al.  1995 ; Naguib 
et al.  1996 ; Sherman et al.  1997 ; Mango and Valente  1998 ; Doornewaard et al. 
 1999 ; Prismatic Project Management Team  1999 ; Finne et al.  2000 ; Gamito et al. 
 2000  )  and survival analysis (Bugliosi et al.  1994 ; Kothari et al.  1996 ; Glas and 
Reddick  1998 ; Bryce et al.  1998  ) , in critical care medicine for patient monitoring 
(Stock et al.  1994 ; Si et al.  1998 ; Zernikow et al.  1998 ; Zernikow et al.  1999 ; 
Eftekbar et al.  2005  ) , and in cardiovascular medicine for making diagnoses, includ-
ing the presence of myocardial infarction (Selker et al.  1995 ; Baxt and Skora  1996 ; 
Ellenius et al.  1997  )  and coronary artery disease (Goodenday et al.  1997 ; Polak 
et al.  1997 ; Lindahl et al.  2000  ) , and cardiovascular risk predictions (Patil and 
Smith  2009  ) .   

    3   The Back Propagation (BP) Neural Network: The Computer 
Teaches Itself to Make Predictions 

 The BP neural networks software include one imput layer, one or more hidden 
layers and one output layer. Each layer consists of various artifi cial neurons tak-
ing on two phases: activity or inactivity. Figure  58.1  gives a simple example with 
a single hidden layer. Each neuron in the imput layer after having received a signal 

  Fig. 58.1    A simple three-layer neural network: each layer of neurons after having received a 
signal beyond some threshold propagates it forward to the next layer       
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beyond some threshold propagates it forward to the next layer. This process will 
not stop until the signal reaches the output layer sending out the processed signal. 
The magnitude of the imput values and output values is determined by the struc-
ture and functioning of the network. The network is also provided with previously 
observed outcome data, the socalled learning sample. The computer will fi nd, by 
modifying the weights for all signal-transfers, an outcome as close to the observed 
outcome as possible. In other words, the neural network tries to fi nd the best-fi t 
outcome for making predictions about the observed outcome data from the 
imputed data, in a way, similar to regression models. However, unlike regression 
models no Gaussian distribution models are required, but rather weighted signal-
transfers from one layer to another. The Tables  58.1  and  58.2  give examples of 
weights matrices of imputed signals in the fi rst and second hidden layer of a real 
data example which will be used in the next section. For fi nding the best-fi t 
weights the computer uses a technique called iteration or bootstrapping, which 
means it makes maximally 2,000 guesses, depending on the setting when running 
the neural network, and then picks out the combination of guesses with the best-
fi t. The output activity is determined by all imput activities times their weights, 
and, subsequently, the various hidden layer activities times their weights. The BP 
principle is, that all imput produces error. Error is assessed, in the usual way, by 
taking the sums of squared difference from the means of the observed variables. 
The result with the smallest error is the one with the best-fi t. At present, there is 
no matured theory on how to select the numbers of artifi cial neurons and hidden 
layers. The precision of the neural network is improved by feedback signaling 
(negative weights in the matrices).    

   Table 58.1    Part of weights matrix of transferred signals to the fi rst hidden layer   

 −0.040  0.370  0.117  0.066  −0.082  −0.227  0.36  −0.321 
 −0.288  0.070  0.178  −0.190  −0.275  0.283  −0.467  0.032 
 −0.128  −0.052  −0.305  −0.237  0.442  0.350  0.077  −0.378 
 −0.585  −0.247  0.271  −0.045  −0.213  0.272  0.403  0.383 

 0.248  −0.221  −0.149  0.152  −0.012  0.204  −0.233  −0.007 
 −0.108  −0.338  0.523  −0.046  −0.321  0.309  0.433  −0.068 

 0.068  0.142  −0.346  0.014  −0.154  −0.052  −0.048  0.160 

   Table 58.2    Part of weights matrix of transferred signals to the second 
hidden layer   

 −0.148  0.602  −0.571  −0.207  0.256  −0.495 
 0.098  0.684  −0.559  −0.731  1.364  0.097 
 0.336  −0.541  0.505  −0.241  0.632  −0.188 

 −0.287  −0.108  0.186  0.124  −0.458  −0.215 
 0.710  −0.002  −0.387  −0.301  0.735  −0.500 
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    4   A Real Data Example 

 Body surface area is a better indicator for metabolic body mass than body weight, 
because it is less affected by adipose mass. In laboratory medicine it is used for adjust-
ing oxygen, CO 

2
  transport parameters, blood volumes, urine creatinine clearance, pro-

tein/creatinine ratios and other parameters. The predicting factors of body surface 
consist of gender, age, weight and height. The body surfaces of 90 persons (Table  58.3 ) 
were calculated using direct photometric measurements (Mitchell et al.  1971  ) .  

 The Fig.  58.2  shows the nonlinear relationship between the weights, heights, and 
measured body surfaces. Using SPSS 17.0 with the neural network add-on module, 
we assess whether a neural network with two hidden layers would be able to ade-
quately predict the measured body surfaces, and whether it would perform better 
than the Haycock equation (* = sign of multiplication) (Haycock et al.  1978  )  : 

     = 0.3964 0.5378body surface 0.024265* height * weight .     

 The data fi le consists of a row for each person with different factors and one 
dependent variable, the measured body surface (Table  58.3 ). We command: neural 
networks; multilayer perceptron. Select the dependent variable, the measured body 
surface, factors, body height and weight, and covariates, age and gender, in the main 
dialog box. Here are also various dialog boxes that can be assessed from the main 
dialog box:

    1.    the dialog box partitioning: set the training sample (70), test sample (20)  
    2.    the dialog box    architecture: set the numbers of hidden layers (2)  
    3.    the dialog box activation function: click hyperbolic tangens  
    4.    the dialog box output: click diagrams, descriptions, synaptic weights  
    5.    the dialog box training: maximal time for calculations 15 min, maximal numbers 

of iterations 2,000.     

 Then press ok, and synaptic weights and body surfaces predicted by the neural 
network are displayed as well as the smallest error. The results are in Table  58.3 . 
Also, the values obtained from the Haycock equation are included in the table. 

 Both the predicted values from the neural network and from the Haycock equa-
tion are close to the measured values. When performing a linear regression with 
neural network as predictor, the r-square value was 0.983, while the Haycock pro-
duced an r-square value of 0.995. 

 In order to assess the robustness of the neural network result, smaller training 
samples, fewer iterations and a single hidden layer were assessed, but all of these 
changes produced smaller r-square values indicating less precision. Models with 
more than two hidden layers were not assessed, because the SPSS software add-on 
program does not allow for these models. 

 Considering the usual requirement for accurate diagnostic testing (Atiqi et al. 
 2009  )  of r-square values larger than 0.95, we have to conclude that both methods 
perform adequately, although the Haycock model was slightly better. The example 
still illustrates the potential of the neural network as an exact technique for predicting 
body surfaces.  
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   Table 58.3    Ninety persons’ physical measurements and body surfaces (one row is one person) 
predicted by mathematical equation and the best-fi t result from a two hidden layer neural network. 
The    best-fi t result as presented had an error as small as 0.0035 obtained after maximally 2,000 
iterations   

 Gender  Age  Weight  Height 
 Body surface 
measured 

 Predicted 
from equation 

 Predicted 
from neural 
network 

 Var 1  Var 2  Var 3  Var 4  Var 5 

 1,00  13,00  30,50  138,50  10072,90  10770,00  10129,64 
 0,00  5,00  15,00  101,00  6189,00  6490,00  6307,14 
 0,00  0,00  2,50  51,50  1906,20  1890,00  2565,16 
 1,00  11,00  30,00  141,00  10290,60  10750,00  10598,32 
 1,00  15,00  40,50  154,00  13221,60  13080,00  13688,06 
 0,00  11,00  27,00  136,00  9654,50  10001,00  9682,47 
 0,00  5,00  15,00  106,00  6768,20  6610,00  6758,45 
 1,00  5,00  15,00  103,00  6194,10  6540,00  6533,28 
 1,00  3,00  13,50  96,00  5830,20  6010,00  6096,53 
 0,00  13,00  36,00  150,00  11759,00  12150,00  11788,01 
 0,00  3,00  12,00  92,00  5299,40  5540,00  5350,63 
 1,00  0,00  2,50  51,00  2094,50  1890,00  2342,85 
 0,00  7,00  19,00  121,00  7490,80  7910,00  7815,05 
 1,00  13,00  28,00  130,50  9521,70  10040,00  9505,63 
 1,00  0,00  3,00  54,00  2446,20  2130,00  2696,17 
 0,00  0,00  3,00  51,00  1632,50  2080,00  2345,39 
 0,00  7,00  21,00  123,00  7958,80  8400,00  7207,74 
 1,00  11,00  31,00  139,00  10580,80  10880,00  8705,10 
 1,00  7,00  24,50  122,50  8756,10  9120,00  7978.52 
 1,00  11,00  26,00  133,00  9573,00  9720,00  9641,04 
 0,00  9,00  24,50  130,00  9028,00  9330,00  9003,97 
 1,00  9,00  25,00  124,00  8854,50  9260,00  8804,45 
 1,00  0,00  2,25  50,50  1928,40  1780,00  2655,69 
 0,00  11,00  27,00  129,00  9203,10  9800,00  9982,77 
 0,00  0,00  2,25  53,00  2200,20  1810,00  2582,61 
 0,00  5,00  16,00  105,00  6785,10  6820,00  7017,29 
 0,00  9,00  30,00  133,00  10120,80  10500,00  9762,62 
 0,00  13,00  34,00  148,00  11397,30  11720,00  12063,78 
 1,00  3,00  16,00  99,00  6410,60  6660,00  6370,21 
 1,00  3,00  11,00  92,00  5283,30  5290,00  5372,90 
 0,00  9,00  23,00  126,00  8693,50  8910,00  8450,32 
 1,00  13,00  30,00  138,00  9626,10  10660,00  11196,58 
 1,00  9,00  29,00  138,00  10178,70  10460,00  10445,87 
 1,00  1,00  8,00  76,00  4134,50  4130,00  3952,50 
 0,00  15,00  42,00  165,00  13019,50  13710,00  13056,80 
 1,00  15,00  40,00  151,00  12297,10  12890,00  12094,26 
 1,00  1,00  9,00  80,00  4078,40  4490,00  4520,18 
 1,00  7,00  22,00  123,00  8651,10  8620,00  8423,78 
 0,00  1,00  9,50  77,00  4246,10  4560,00  3750,54 

(continued)
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Table 58.3 (continued)

 Gender  Age  Weight  Height 
 Body surface 
measured 

 Predicted 
from equation 

 Predicted 
from neural 
network 

 Var 1  Var 2  Var 3  Var 4  Var 5 

 1,00  7,00  25,00  125,00  8754,40  9290,00  8398,58 
 1,00  13,00  36,00  143,00  11282,40  11920,00  11104,75 
 1,00  3,00  15,00  94,00  6101,60  6300,00  6210,85 
 0,00  0,00  3,00  51,00  1850,30  2080,00  2345,39 
 0,00  1,00  9,00  74,00  3358,50  4360,00  3788,70 
 0,00  1,00  7,50  73,00  3809,70  3930,00  3800,02 
 0,00  15,00  43,00  152,00  12998,70  13440,00  13353,48 
 0,00  13,00  27,50  139,00  9569,10  10200,00  9395,76 
 0,00  3,00  12,00  91,00  5358,40  5520,00  6090,37 
 0,00  15,00  40,50  153,00  12627,40  13050,00  12622,94 
 1,00  5,00  15,00  100,00  6364,50  6460,00  6269,19 
 1,00  1,00  9,00  80,00  4380,80  4490,00  4520,18 
 1,00  5,00  16,50  112,00  7256,40  7110,00  7430,72 
 0,00  3,00  12,50  91,00  5291,50  5640,00  5487,65 
 1,00  0,00  3,50  56,50  2506,70  2360,00  3065,52 
 0,00  1,00  10,00  77,00  4180,40  4680,00  3914,55 
 1,00  9,00  25,00  126,00  8813,70  9320,00  8127,39 
 1,00  9,00  33,00  138,00  11055,40  11220,00  10561,80 
 1,00  5,00  16,00  108,00  6988,00  6900,00  6413,58 
 0,00  11,00  29,00  127,00  9969,80  10130,00  9471,79 
 0,00  7,00  20,00  114,00  7432,80  7940,00  7299,95 
 0,00  1,00  7,50  77,00  3934,00  4010,00  4042,95 
 1,00  11,00  29,50  134,50  9970,50  10450,00  10408,70 
 0,00  5,00  15,00  101,00  6225,70  6490,00  6307,14 
 0,00  3,00  13,00  91,00  5601,70  5760,00  5623,51 
 0,00  5,00  15,00  98,00  6163,70  6410,00  6296,79 
 1,00  15,00  45,00  157,00  13426,70  13950,00  13877,81 
 1,00  7,00  21,00  120,00  8249,20  8320,00  8445,74 
 0,00  9,00  23,00  127,00  8875,80  8940,00  9023,25 
 0,00  7,00  17,00  104,00  6873,50  7020,00  6935,27 
 1,00  15,00  43,50  150,00  13082,80  13450,00  13508,38 
 1,00  15,00  50,00  168,00  14832,00  15160,00  13541,31 
 0,00  7,00  18,00  114,00  7071,80  7510,00  7161,82 
 1,00  3,00  14,00  97,00  6013,60  6150,00  6200,79 
 1,00  7,00  20,00  119,00  7876,40  8080,00  7606,17 
 0,00  0,00  3,00  54,00  2117,30  2130,00  2559,28 
 1,00  1,00  9,50  74,00  4314,20  4490,00  4531,14 
 0,00  15,00  44,00  163,00  13480,90  13990,00  13612,74 
 0,00  11,00  32,00  140,00  10583,80  11100,00  10401,88 
 1,00  0,00  3,00  52,00  2121,00  2100,00  2337,69 

(continued)
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    5   Discussion 

 In our example of 90 persons a four layer BP neural network accurately predicted 
body surface though not as exact as did the usual mathematical equation. Similar 
results were recently observed by Eftekbar et al.  (  2005  ) : neural network predicted 
head trauma mortality accurately, but not as exact as logistic models. Neural net-
works were sometimes better than alternative procedures. For example, in 331 
adults with chest pain for making a diagnosis of acute infarction than were the 

 Gender  Age  Weight  Height 
 Body surface 
measured 

 Predicted 
from equation 

 Predicted 
from neural 
network 

 Var 1  Var 2  Var 3  Var 4  Var 5 

 0,00  11,00  29,00  141,00  10135,30  10550,00  10291,93 
 0,00  3,00  15,00  94,00  6074,90  6300,00  6440,60 
 0,00  13,00  44,00  140,00  13020,30  13170,00  12521,73 
 1,00  5,00  15,50  105,00  6406,50  6700,00  6532,15 
 1,00  9,00  22,00  126,00  8267,00  8700,00  8056,85 
 0,00  15,00  40,00  159,50  12769,70  13170,00  12994,08 
 1,00  1,00  9,50  76,00  3845,90  4530,00  4240,36 
 0,00  13,00  32,00  144,00  10822,10  11220,00  10964,35 
 1,00  13,00  40,00  151,00  12519,90  12890,00  12045,33 
 0,00  9,00  22,00  124,00  8586,10  8650,00  8411,62 
 1,00  11,00  31,00  135,00  10120,60  10750,00  9934,60 

  Var means variable  

Table 58.3 (continued)

  Fig. 58.2     VAR00003  weight,  VAR00004  height,  VAR00005  measured body surface. The three 
dimensional scatter plot shows the nonlinear relationship between the variables       
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attending emergency room physicians (sensitivity and specifi city 97% and 96% 
versus 78% and 85%) (Baxt and Skora  1996  ) . Also, in 1,107 patients BP neural 
networks was more sensitive to detect anterior and inferior infarctions than conven-
tional automated electrocardiogram interpretation (81% and 78% versus 68 and 
66%) (Heden et al.  1994  ) . Nowadays, intelligent computing techniques, mimicking 
the brain, receive a great deal of attention from the scientifi c world: e.g., the Google 
database system gives approximately 10 million hits for the search term “artifi cial 
intelligence”. Yet, many questions are unanswered. For example, artifi cial intelli-
gence does not possess human brain-characteristics like tolerance, robustness, and 
levels of consciousness. Also, methods that are more prone to generalization, such 
as the BP based neural network techniques and their computational systems are 
generally unable to provide a defi nite explication of the outcome, sometimes leading 
to incorrect conclusions, and, if used for the classifi cations of single cases, to 
questionable results. 

 We should add that data driven analyses are, generally, not a sound basis for 
scientifi c research, and a major source of misunderstandings due to results based on 
chance rather than true effects. Neural network by its very nature of black box mod-
eling is at risk of being abused for that purpose. When applied for clinical research, 
particularly diagnostic research, it should be based on appropriate prior hypotheses 
and prior knowledge. Fortunately, this has been recognized and emphasized by 
several investigators (Redding et al.  1993 ; Sperduti and Starita  1993 ; Wnek and 
Michalski  1994 ; Lytton  2002  ) . 

 Regarding the potential users of neural network methods, we believe that, despite 
the requirement of basic statistical knowledge, current user-friendly statistical soft-
ware like the SPSS add-on module “Neural Network” (  WWW.SPSS.COM    ) can be 
used by clinical and laboratory investigators without the help of a statistician. After 
all, those who invented artifi cial intelligence were neurologists and neurophysiolo-
gists, rather than statisticians (Stergiou and Siganos  2004  ) . 

 Although artifi cial intelligence may  approximately  correspond to the intelligence 
of human beings, it is, probably, also largely different from the brain, and should, 
currently, be interpreted as just another non-Gaussian method for data assessment. 
Moreover, its mathematical basis is not fully recognized. Also, traditional statistical 
methods like regression methods have to be added for testing its accuracy against 
alternative methods. Nonetheless, it has great potential through its ability to learn by 
example instead of learning by theory, making it very fl exible and powerful.  

    6   Conclusions 

 Back propagation (BP) artifi cial neural networks is a distribution-free method for 
data-analysis based on layers of artifi cial neurons that transduce imputed informa-
tion. It has been recognized to have a number of advantages compared to traditional 

http://WWW.SPSS.COM
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methods including the possibility to process imperfect data, and complex nonlinear 
data. This chapter reviews the principles, procedures, and limitations of BP artifi cial 
neural networks for a non-mathematical readership 

 A real data sample of 90 persons’ weights, heights and measured body surfaces 
was used as an example. SPSS 17.0 with neural network add-on was used for the 
analysis. The predicted body surfaces from a two hidden layer BP neural network 
were compared to the body surfaces calculated by the Haycock equation. Both the 
predicted values from the neural network and from the Haycock equation were close 
to the measured values. A linear regression analysis with neural network as predic-
tor produced an r-square value of 0.983, while the Haycock equation produced a 
value of 0.995 (r-square >0.95 is a criterion for accurate diagnostic-testing). 

 BP neural networks may, sometimes, predict clinical diagnoses with accuracies 
similar to those of other methods. However, traditional statistical procedures like 
regression analyses have to be added for testing their accuracies against alternative 
methods. Nonetheless, BP neural networks has great potential through its ability to 
learn by example instead of learning by theory.      
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     1   Introduction    

 Lofti Zadeh, professor of science at Berkeley, published in 1964 the concept of 
fuzzy truths, as answers that may be “yes” at one time and “no” at the other, or that 
may be partially true and partially untrue (Zadeh  1965  ) . He developed an analytical 
model based on this concept. When you think of real life, you can imagine many 
things that are not entirely certain, and it is remarkable, therefore, that it took over 
20 years before this analytical model became successfully implemented in science 
(Zadeh  1965  ) . Nowadays Tokyo subway traffi c uses fuzzy logic running and braking 
systems, and Maserati sportscars have a fuzzy logic automatic transmission with 
one position for forward instead of the usual three or four, and with much better 
performance (Hirota  1993 ). 

 In the fi eld of medicine fuzzy logic is little used in spite of the, typically, uncer-
tain character of this branch of science. When searching for published papers we 
found a few papers on diagnostic imaging (Fournier et al.  2003  )  and clinical deci-
sion analysis (Catto et al.  2003 ; Bates and Young  2003 ; Caudrelier et al.  2004  ) . In 
clinical pharmacology fuzzy logic has been applied for pharmacological treatment 
decision analyses (Naranjo et al.  1997 ; Helgason and Jobe  2005 ; Helgason  2004  ) , 
and structure-activity modeling (Russo and Santagati  1998  ) . However, we found no 
papers on fuzzy logic and pharmacodynamic modeling. Often the basic molecular 
mode of action of a drug is unknown, and pharmacodynamics is, then, used as a 
surrogate for studying the pharmacological response to a drug of the body. By its 
very nature pharmacodynamics can be argued to be particularly fuzzy. For example, 
the answer to the question “does a patient respond or not to a particular thiopental 
induction dose”, or questions like “does propranolol cause the same effects at the 
same time in the same subject or not” are typically questions of a fuzzy nature, and 
might, thus, benefi t from an analysis based on fuzzy logic. 

 In the present chapter we study whether fuzzy logic can improve the precision of 
predictive models for pharmacodynamic data, i.e., models that better fi t the observed 
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data, and, thus, better predict future data. We hope that the examples given will 
stimulate researchers analyzing pharmacodynamic data to more often apply fuzzy 
methodologies.  

    2   Some Fuzzy Terminology 

     Universal space.  
 Defi ned range of input values, defi ned range of output values.  

   Fuzzy memberships.  
 The universal spaces are divided into equally sized parts called membership 
functions  

   Linguistic membership names.  
 Each fuzzy membership is given a name, otherwise called linguistic term.  

   Triangular fuzzy sets.  
 A common way of drawing the membership function with on the x-axis the input 
values, on the y-axis the membership grade for each input    value.  

   Fuzzy plots.  
 Graphs summarizing the fuzzy memberships of (for example) the input values 
(Fig.  59.2  upper graph).  

   Linguistic rules.  
 The relationships between the fuzzy memberships of the input data and those of the 
output data (the method of calculation is shown in the underneath examples).     

    3   First Example, Dose–Response Effects of Thiopental 
on Numbers of Responders 

 We will use as an example the quantal pharmacodynamic effects of different induc-
tion dosages of thiopental on numbers of responding subjects (Table  59.1 , left two 
columns). It is usually not possible to know what type of statistical distribution the 
experiment is likely to follow, sometimes Gaussian, sometimes very skewed. A 
pleasant aspect of fuzzy modeling is that it can be applied with any type of statistical 
distribution and that it is particularly suitable for uncommon and unexpected non 
linear relationships. Quantal response data are often presented in the literature as 
S-shape dose-cumulative response curves with the dose plotted on a logarithmic 
scale, where the log transformation has an empirical basis. We will, therefore, use a 
logarithmic regression model. SPSS Statistical Software 17.0  (     2011  )  is used for 
analysis.  
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 Command: Analyze…regression…curve estimation…dependent variable: data second 
column…independent variable: data fi rst column…logarithmic…ok. 

 The analysis produces a moderate fi t of the data (Fig.  59.1  upper curve) with an 
r-square value of 0.555 (F-value 8.74, p-value 0.024).  

 We, subsequently, fuzzy-model the input and output relationships (Fig.  59.2 ).  
 First of all, we create linguistic rules for the input and output data. 
 For that purpose we divide the universal space of the input variable into fuzzy 
memberships with linguistic membership names:

   input -zero, -small, -medium, -big, -superbig .    
 Then we do the same for the output variable:

   output- zero, -small, -medium, -big .    
 Subsequently, we create linguistic rules. 
 Figure  59.2  shows that input- zero  consists of the values 1 and 1.5.

   The value 1 (100% membership) has 4 as outcome value (100% membership of 
output- zero ).  

  The value 1.5 (50% membership) has 5 as outcome value (75% membership of 
output- zero,  25% of output -small ).    

 The input- zero  produces 100% × 100% + 50% × 75% = 137.5% membership to 
output- zero , and 50% × 25% = 12.5% membership to output- small , and so, output-
 zero  is the most important output contributor here, and we forget about the small 
contribution of output- small . 

 Input- small  is more complex ,  it consists of the values 1.5, and 2.0, and 2.5.

   The value 1.5 (50% membership) has 5 as outcome value (75% membership of 
output- zero,  25% membership of output -small ).  

  The value 2.0 (100% membership) has 6 as outcome value (50% membership of 
outcome- zero , and 50% membership of output- small ).  

   Table 59.1    Quantal pharmacodynamic effects of different induction dosages of thiopental on 
numbers of responding subjects   

 Input values  Output values  Fuzzy-modeled output 

 Induction dosage of thiopental 
(mg/kg)  Numbers of responders (n) 

 Numbers of 
responders (n) 

 1  4  4 
 1.5  5  5 
 2  6  8 
 2.5  9  10 
 3  12  12 
 3.5  17  14 
 4  17  16 
 4.5  12  14 
 5  9  12 
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  The value 2.5 (50% membership) has 9 as outcome value (75% membership of 
output- small  and 25% of output- medium ).    

 The input- small  produces 50% × 75% +100% × 50% = 87.5% membership to output-
 zero , 50% × 25% + 100% × 50% + 50% × 75% = 100% membership to output- small , 

  Fig. 59.1    Pharmacodynamic 
relationship between 
induction dose of thiopental 
(x-axis, mg/kg) and number 
of responders (y-axis). The 
un-modeled curve ( upper 
curve ) fi ts the data less well 
than does the modeled ( lower 
curve ) with r-square values of 
0.555 (F-value = 8.74), and 
0.852 (F-value = 40.34) 
respectively       
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and 50% × 25% = 12.5% membership to output- medium . And so, the output- small  is 
the most important contributor here, and we forget about the other two. 

 For the other input memberships similar linguistic rules are determined:

   Input- medium  → output- medium   
  Input- big  → output- big   
  Input- superbig  → output- medium     

 We are, particularly interested in the modeling capacity of fuzzy logic in order to 
improve the precision of pharmacodynamic modeling. 

 The modeled output value of input value 1 is found as follows. 
 Value 1 is 100% member of input- zero , meaning that according to the above linguistic 

rules it is also associated with a 100% membership of output- zero  corresponding 
with a value of 4. 

 Value 1.5 is 50% member of input- zero  and 50% input- small . This means it is 50% 
associated with the output- zero  and – small  corresponding with values of 
50% × (4 + 8) = 6. 
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  Fig. 59.2    Fuzzy plots summarizing the fuzzy memberships of the input values ( upper graph ) and 
output values ( lower graph ) from the thiopental data (Table  59.1  and Fig.  59.1 )       
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 For all of the input values modeled output values can be found in this way. 
Table  59.1  right column shows the results. We perform a logarithmic regression on 
the fuzzy-modeled outcome data similar to that for the un-modeled output values. 
The fuzzy-modeled output data provided a much better fi t than did the un-modeled 
output values (Fig.  59.2 , lower curve) with an r-square value of 0.852 (F-value = 40.34) 
as compared to 0.555 (F-value 8.74) for the un-modeled output data.  

    4   Second Example, Time-Response Effect of Propranolol 
on Peripheral Arterial Flow 

 The pharmacodynamic effect of a single oral dose of 120 mg of propranolol on 
peripheral arterial is used as a second example (Table  59.2  left two columns). The 
magnitude of the pharmacodynamic response is estimated as absolute change of 
fore arm fl ow using a venous occlusion plethysmograph. Like with quantal dose 
response curves it is, usually, impossible to know what statistical distribution the 
curves are likely to follow. This is no problem for fuzzy modeling. But we use a 
quadratic regression model (second order model), because it is the simplest model 
after the linear model and fi ts many nonlinear data. SPSS Statistical Software 17.0 
 (  2010  )  is used for analysis.  

 Command: Analyze…regression…curve estimation…dependent variable: data 
second column…independent variable: data fi rst column…quadratic…ok. 

 The analysis produces a good fi t of the data (Fig.  59.3  upper graph) with an r-square 
value as large as 0.977 with an F-value of 168.  

   Table 59.2    Time-response effect of single oral dose of 120 mg propranolol on peripheral arterial 
fl ow   

 Input values  Output values  Fuzzy-modeled output 

 Hours after oral administration 
of 120 mg propranolol 

 Peripheral arterial fl ow 
(ml/100 ml tissue/min) 

 Peripheral arterial fl ow 
(ml/100 ml tissue/min) 

 1  20  20 
 2  12  14 
 3  9  8 
 4  6  6 
 5  5  4 
 6  4  4 
 7  5  4 
 8  6  6 
 9  9  8 
 10  12  14 
 11  20  20 
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 We, subsequently, fuzzy-model the input and output relationships. 
 First of all, we create linguistic rules for the input and output data. 
 For that purpose we divide the universal space of the input variable into fuzzy 
memberships with linguistic membership names:

   input- null, -zero, -small, -medium, -big, -superbig .    

  Fig. 59.3    Pharmacodynamic relationship between the time after oral administration of 120 mg of 
propranolol (x-axis, hours) and absolute change in fore arm fl ow (y-axis, ml/100 ml tissue/min). 
The un-modeled curve (upper curve) fi ts the data slightly less well than does the modeled (lower 
curve) with r-square values of 0.977 (F-value = 168), and 0.990 (F-value = 416) respectively       
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 Then we do the same for the output variable:
   output- zero, -small, -medium, -big, -superbig .    

 Subsequently, we will create linguistic rules. 

 Input- null  consists of the values 1 and 2 (Fig.  59.4 ). 

   The value 1 (100% membership) has 20 as outcome value (100% membership of 
output- superbig )  

  The value 2 (50% membership) has 12 as outcome value (100% membership of 
output- medium ).    

 The input- null  produces 100% × 100% = 100% membership to output- superbig , 
50% × 100% = 50% membership to output- medium . And so, output- superbig  is the 
most important contributor here, we forget about the other one. 
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  Fig. 59.4    Fuzzy plots summarizing the fuzzy memberships of the input values ( upper graph ) and 
output values ( lower graph ) from the propranolol data (Table  59.2  and Fig.  59.3 )       
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 Input- zero  consists of the values 2,3,4.

   The value 2 (50% membership) has 12 as outcome value (100% membership of 
output- medium ).  

  The value 3 (100% membership) has 9 as outcome value (75% membership of out-
come- small , and 25% membership of output- medium ).  

  The value 4 (50% membership) has 6 as outcome value (50% membership of out-
put- small  and 50% of output- zero ).    

 The input- zero  produces 50% × 100% +100% × 25% = 125% membership to output-
 medium , 100% × 75% + 50% × 50% = 100% membership to output- small , and 
50% × 50% = 25% membership to output- zero . And so, output- medium  is the most 
important contributor here, and we forget about the other two. 

 For the other input memberships similar linguistic rules are determined:

   Input- small  → output- zero   
  Input- medium  → output- zero   
  Input- big  → output- small   
  Input- superbig  → output- superbig     

 We are, particularly, interested in the modeling capacity of fuzzy logic in order to 
improve the precision of pharmacodynamic modeling. 

 The modeled output value of input value 1 is found as follows. 
 Value 1 is 100% member of input- null , meaning that according to the above linguistic 

rules it is also associated with a 100% membership of output- superbig  corre-
sponding with a value of 20. 

 Value 2 is 50% member of input- null  and 50% input- zero . This means it is 50% 
associated with the output- superbig  and – small  corresponding with values of 
50% × (8 + 20) = 14. 

 For all of the input values modeled output values can be found in this way. Table  59.2  
right column shows the results. When performing a quadratic regression on the fuzzy-
modeled outcome data similar to that shown above, the fuzzy-modeled output values 
provided a better fi t than did the un-modeled output values (Fig.  59.3 , upper and lower 
curves) with r-square values of 0.990 (F-value = 416) and 0.977 (F-value = 168).  

    5   Discussion 

 Biological processes are full of variations. Statistical analyses do not provide certainties, 
only chances, particularly, the chances that prior hypotheses are true or untrue. 
Fuzzy statistics is different from conventional statistical methods, because it does 
not asses the chance of entire truths, but, rather, the presence of partial truths. The 
advantage of fuzzy statistics compared to conventional statistics is that it can answer 
questions to which the answers are “yes” and “no” at different times, or partly “yes” 
and “no” at the same time. Additional advantages are that it can be used to match 
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any set of in- and output data, including incomplete and imprecise data, and nonlinear 
functions of unknown complexity as sometimes observed with pharmacodynamic 
data. The current paper suggests, indeed, that fuzzy logic may better fi t and, thus, 
better predict pharmacodynamic data than conventional methods. 

 We have only shown the simplest method of fuzzy modeling with a single input 
and a single output variable. Just like with multiple regression, multiple input vari-
ables are possible, and are capable of adequately modeling complex chemical and 
engineering processes (Ross  2004  ) . To date, complex fuzzy models are rarely 
applied in medicine, but one recent clinical study successfully used 10 input vari-
ables including sex, age, smoking, and clinical grade, to predict tumor relapse time 
(Catto et al.  2003  ) . The problem is that such calculations soon get very complex and 
can not be carried out on a pocket calculator like in our examples. Statistical soft-
ware is required. Fuzzy logic is not yet widely available in statistical software pro-
grams, and it is not in SPSS ( 2011  )  or SAS ( 2011  ) , but several user-friendly programs 
do exist (FuzzyLogic  2011 ; Fuzzy logic  2011 ; Defuzzifi cation methods  2011  ) . 

 We conclude.

    1.    Fuzzy logic is different from conventional statistical methods, because it does 
not asses the chance of entire truths but rather the presence of partial truths.  

    2.    The advantage of fuzzy statistics compared to conventional statistics is that it can 
answer questions to which the answers are “yes” and “no” at different times, or 
partly “yes” and “no” at the same time.  

    3.    Additional advantages are that it can be used to match any set of in- and output 
data, including incomplete and imprecise data, and nonlinear functions of 
unknown complexity as sometimes observed with pharmacodynamic data.  

    4.    Fuzzy modeling may better than conventional statistical methods fi t and predict 
quantal dose response and time response data.     

 We hope that the examples given will stimulate researchers analyzing pharmaco-
dynamic data to more often apply fuzzy methodologies.  

    6   Conclusions 

 Fuzzy logic can handle questions to which the answers may be “yes” at one time 
and “no” at the other, or may be partially true and untrue. Pharmacodynamic data 
deal with questions like “does a patient respond to a particular drug dose or not”, or 
“does a drug cause the same effects at the same time in the same subject or not”. 
Such questions are typically of a fuzzy nature, and might, therefore, benefi t from an 
analysis based on fuzzy logic. This chapter assesses whether fuzzy logic can improve 
the precision of predictive models for pharmacodynamic data.

    1.    The quantal pharmacodynamic effects of different induction dosages of thiopental 
on numbers of responding subjects was used as the fi rst example. Regression 
analysis of the fuzzy-modeled outcome data on the input data provided a much 
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better fi t than did the un-modeled output values with r-square values of 0.852 
(F-value = 40.34) and 0.555 (F-value 8.74) respectively.  

    2.    The time-response effect propranolol on peripheral arterial fl ow was used as a 
second example. Regression analysis of the fuzzy-modeled outcome data on the 
input data provided a better fi t than did the un-modeled output values with 
r-square values of 0.990 (F-value = 416) and 0.977 (F-value = 168) respectively.     

 We conclude that fuzzy modeling may better than conventional statistical methods 
fi t and predict pharmacodynamic data, like, for example, quantal dose response and 
time response data. This may be relevant to future pharmacodynamic research.      
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     1   Introduction    

 Physicians’ daily life largely consists of routine, with little need for discussion. 
However, there are questions physicians simply do not know the answer of. Some 
will look for the opinions of their colleagues or the experts in the fi eld. Others will 
try and fi nd a way out by guessing what might be the best solution. The benefi t of 
the doubt doctrine (Ordronaux  1869  )  is often used as a justifi cation for unproven 
treatment decisions, and, if things went wrong, another justifi cation is the expression: 
clinical medicine is an error-ridden activity (Paget  1990  ) . So far, few physicians 
have followed a different approach, the scientifi c method. The scientifi c method is, 
in a nutshell: reformulate your question into a hypothesis and try to test this hypothesis 
against control observations. In clinical settings this approach is not impossible, but 
rarely applied by physicians, despite their lengthy education in evidence based 
medicine, which is almost entirely based on the scientifi c method. This chapter was 
written to give simple examples of how the scientifi c method can be implied in a 
physician’s daily life, and to explain its advantages and limitations. We do hope that 
this chapter will stimulate physicians to more often apply the scientifi c method for 
a better outline of their patients’ best possible treatment options.  

    2   Example of Unanswered Questions of a Physician 
During a Single Busy Day 

 We assumed the numbers of unanswered questions in the physicians’ daily life 
would be large. But just to get of impression, one of the authors of this paper (TC) 
recorded all of the unanswered answers he asked himself during a single busy day. 
Excluding the questions with uncertain but generally accepted answers, he included 
nine questions. 

    Chapter 60   
 Physicians’ Daily Life 
and the Scientifi c Method                 
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 During the hospital rounds 8.00–12.00 h.

    1.    Do I continue, stop or change antibiotics with fever relapse after 7 days 
treatment?  

    2.    Do I prescribe a secondary prevention of a venous thrombosis for 3, 6 months or 
permanently?  

    3.    Should I stop anticoagulant treatment or continue with a hemorrhagic complica-
tion in a patient with an acute lung embolia?  

    4.    Is the rise in falling out of bed lately real or due to chance?  
    5.    Do I perform a liver biopsy or wait and see with liver function disturbance without 

obvious cause?     

 During the outpatient clinic 13.00–17.00 h.

    6.    Do I prescribe aspirin, hydroxy-carbamide or wait and see in a patient with a 
thrombocytosis of 800 × 10 12 /l over 6 months?  

    7.    Are fundic gland polyps much more common in females than in males?     

 During the staff meeting 17.00–18.00 h

    8.    Is the large number of physicians with burn out due to chance or the result of a 
local problem?  

    9.    Is the rise in patients’ letters of complaints a chance effect or a real effect to 
worry about?     

 Many of the above questions did not qualify for a simple statistical assessment, 
but others did. The actual assessments, that were very clarifying for our purposes, 
are given underneath.  

    3   How the Scientifi c Method Can Be Implied 
in a Physician’s Daily Life 

    3.1   Falling Out of Bed 

 Falling out of bed is the prime cause of injury in hospitalized patients, and the 
prevention of it is a high priority and criterion for quality care (Lambert  1992 ; 
Anonymous  2001  ) . If more patients fall out of bed than expected, a hospital 
department will put much energy in fi nding the cause and providing better pre-
vention. If, however, the scores tend to rise, another approach is to fi rst assess 
whether or not the rise is due to chance, because daily life is full of variations. To 
do so the numbers of events observed is compared the numbers of event in a 
sister department. The pocket calculator method is a straightforward method for 
that purpose.  
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 Patients with fall out of bed  Patients without 
 Department 1  16 (a)  26 (b)  42 (a + b) 
 Department 2   5 (c)  30 (d)  35 (c + d) 

 21 (a + c)  56 (b + d)  77 (a + b + c + d) 

 Pocket calculator method:

     

− + + += =
+ + + +

2(ad bc)  (a b c d)
chi - square 5.456.

(a b)(c d)(b d)(a c)     

 If the chi-square value is larger than 3.841, then a statistically signifi cant differ-
ence between the two departments will be accepted at p < 0.05. This would mean that 
in this example, indeed, the difference is larger than could be expected by chance and 
that a further examination of the measures to prevent fall out of bed is warranted.  

    3.2   Evaluation of Fundic Gland Polyps 

 A physician has the impression that fundic gland polyps, an otherwise rather benign 
condition, are more common in females than it is in males. Instead of reporting this 
subjective fi nding, he decides to follow the next 2 months every patient in his 
program.  

 Patients with fundic gland polyps  Patients without 
 Females  15 (a)  20 (b)  35 (a + b) 
 Males  15 (c)   5 (d )   20 (c + d) 

 30 (a + c)  25 (b + d)  55 (a + b + c + d) 

 Pocket calculator method:

     

2(ad bc)  (a b c d)
chi - square 5.304

(a b)(c d)(b d)(a c)

− + + +
= =

+ + + +     

 The calculated chi-square value is again larger than 3.841. The difference 
between males and females is signifi cant at p < 0.05. We can be for about 95% sure 
that the difference between the genders is real and not due to chance. The physician 
can report to his colleagues that the difference in genders is to be taken into account 
in future work-ups.  

    3.3   Physicians with a Burn-Out 

 Two partnerships of specialists have the intention to associate. However, during 
meetings, it was communicated that in one of the two partnerships there were three 
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specialists with burn-out. The meeting decided not to consider this as chance fi nding, 
but requested a statistical analysis of this fi nding under the assumption that unknown 
factors in partnership 1 may place these specialists at an increased risk of obtaining 
a burn-out.  

 Physicians with burn out  Without burn out 
 Partnership 1  3 (a)   7 (b)  10 (a + b) 
 Partnership 2  0 (c)  10 (d)  10 (c + d) 

 3 (a + c)  17 (b + d)  20 (a + b + c + d) 

 Pocket calculator method

     

− + + + − ×= = = =
+ + + × × × ��

2(ad bc)  (a b c d) (30 0)2(20) 900 20
chi - square 3.6

(a + b)(c d)(b d)(a c) 10 10 17 3     

 The chi-square value was between 2.706 and 3.841. This means that no signifi cant 
difference between the two partnerships exists, but there is a trend to a difference at 
p < 0.10. This was communicated back to the meeting and it was decided to disre-
gard the trend. Ten years later no further case of burn-out had been observed.  

    3.4   Patients’ Letters of Complaints 

 In a hospital the number of patients’ letters of complaints was twice the number in 
the period before. The management was deeply worried and issued an in-depth 
analysis of possible causes. One junior manager recommended that prior to this 
laborious exercise it might be wise to fi rst test whether the increase might be due to 
chance rather than a real effect.  

 Patients with letter of complaints  Patients without 
 Year 2006  10 (a)  1,000 (b)  1,010 (a + b) 
 Year 2005   5 (c)  1,000 (d)  1,005 (c + d) 

 15 (a + c)  2,000 (b + d)  2,015 (a + b + c + d) 

     

− + + += =
+ + +

2(ad bc)  (a b c d)
chi - square 1.64..

(a + b)(c d)(b d)(a c)     

 The chi-square was smaller than 2.706, and so the difference could not be 
ascribed to any effect to worry about but rather to chance. No further analysis of the 
differences between 2006 and 2005 were performed. 

 There are of course many questions in physicians’ daily life that are less 
straightforward and cannot be readily answered with a pocket calculator. For example, 
the effects of subgroups and other covariates in a patient group will require t-tests, 
analyses of variance, likelihood ratio tests, and regression models. Fortunately, in 
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the past 15 years user-friendly statistical software  (SPSS   2011    ; S plus  2011 ; 
StatsDirect  2011 ; StatXact  2011 ; True Epistat  2011 ; BUGS y WinBUGS  2011 ; SAS 
 2011 ; Cleophas et al.  2002  )  and self-assessment programs    (Cleophas et al.  2002 ) 
have been developed that can help answering complex questions. Nowadays, many 
clinical investigators already use them without the help of a statistician. However, 
we as authors of this paper are not aware of any physician who is not involved in a 
research program and still assesses his/her every-day questions in the way illus-
trated in the above examples.   

    4   Discussion 

 Since the era of Hippocrates, 500 years BC, physicians have had an ethical obligation 
not only to provide the best possible care for their patients but also to enhance health 
to the entire population. Statistical tests have been recognized to produce the best 
evidence you can get from your data, and physicians applying them thus serve their 
population in the best possible way. A second point is that most practicing physi-
cians are not avid readers of clinical trials. The information of new treatments is, 
instead, often brought to them by the media, the pharmaceutical industry and even 
the patients. This is not necessarily a criticism of well-trained and hard-working 
doctors. The problem is that the language of the published reports is such that physi-
cians are almost as lost as a layperson, particularly, when it comes to the core sec-
tions of the report, the statistical analysis and result sections. It follows that either 
the results are accepted with too little of scepticism or rejected with too much of it. 
Particularly, the former may take place if a pharmaceutical representative commu-
nicates overstated the benefi ts and understated the risks. Being actively involved in 
the scientifi c method is a strong antidote against these hazards. Also, physicians 
start better reading the published clinical research and understanding its strengths 
and limitations, and, most important, its implications to health. 

 Do we have guarantees that the result is true if statistically signifi cant. No, but it 
is the best evidence from your data you can get. There is, of course, the chance of 
type I errors of fi nding an effect which is a non-effect. This chance is particularly 
large with multiple testing. Then there is the chance of a type II error of fi nding no 
effect where there is one. This chance is particularly large with small samples. 
Third, you may be mistaking because you can not predict with full confi dence if 
your target population is older, younger, from a different gender, or from any other 
sampling distribution than that of your test sample. But there are more limitations 
with the application of the scientifi c method. Hard-working doctors tend to have a 
full agenda, and, usually, do not have the leisure to write a study protocol, and 
rewrite it several times as required by their institutions’ ethic committees, and fi nd 
it hard to complete an entire informed consent procedure. Instead, many study protocols, 
particularly, those of observational studies, do not necessarily require ethic approval 
and written informed consent. None of the examples given needed the latter. A sub-
sequent limitation is the limited validity of the chi-square test with samples smaller 
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than 5. A fi nal limitation is the possible damage in the patient-doctor relationship 
sometimes attributed to scientifi c activities in a daily practice. Indeed, many patients 
may expect from their doctor a more personal relationship based on thrust and sym-
pathy, and in addition the best possible treatment. Telling a patient of the risks of 
being in a placebo-control group and thus receiving nothing for his condition is not 
a typical basis for thrust. We should add that observational studies in this context are 
more patient-friendly than clinical trials. At least in observational studies patients 
are not recruited for a randomized treatment, but rather treated following their 
voluntary clinical visits.  

    5   Conclusions 

 So far, few physicians have followed the scientifi c method for answering practical 
questions they simply do not know the answer of. The scientifi c method is, in a 
nutshell: reformulate your question into a hypothesis and try to test this hypothesis 
against control observations. This chapter gives simple examples of how the scien-
tifi c method can be implied in a physician’s daily life. 

 Of nine unanswered daily questions, four qualifi ed for simple statistical assess-
ments, which were very clarifying for the physicians involved. Additional advan-
tages of the scientifi c method include: (1) since the scientifi c method has been 
recognized to produce the best evidence you can get from your observations, physi-
cians applying it serve their population in the best possible way; (2) being actively 
involved in the scientifi c method is a strong antidote against the hazards of accept-
ing published studies from others with too little of scepticism or rejecting them with 
too much of it. 

 Limitations of the scientifi c method include: (1) type I and II errors; (2) misinter-
pretations due to different frequency distributions, (3) lack of leisure time on the 
part of the physicians to write a study protocol, (4) the risk of a damaged patient-
doctor relationship.      
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     1   Introduction    

 In the past two decades incidents in clinical care are increasingly analyzed in a 
systematic manner in order to establish organisational, technical and human causal 
factors responsible. Initially experts tended to look for an event directly preceding 
the incident, and, subsequently, declared it as the most probable cause. Meanwhile, 
this method has been largely superseded, because experts often disagreed, and came 
to the insight that many incidents are caused by a cascade of events. For example, a 
fatal hemorrhage in hospital can, doubtlessly, be caused by an overdose of antico-
agulant treatment, but in many situations more factors are possible, including a 
weakened patient’s condition, an operational error, concomitant morbidities and 
medications, a wrong dosage time, a wrong laboratory test, a fl awed treatment such 
as a delayed transfusion policy etc. 

 The PRISMA (Prevention and Recovery System for Monitoring and Analysis) 
(  www.medsight.nl    ) -, CIA (Critical Incident Analysis) (  www.healthsystem.virginia.
edu/Internet/ciag/    ) -, CIT (Critical Incident Technique) (  www.en.wikipedia.org/
wiki/Critical_Incident_Technique    ) -, TRIPOD (method based on the so-called tripod-
theory that looks at underlying organisational factors) (  www.tripodsolutions.net    ) – 
methods are modern approaches to incident – analysis, generally providing seven 
or more usable causes for explaining a single incident. Health facilities routinely 
use them in their struggle for improved health care quality, and are, in this way, able 
to adjust treatment protocols and treatment policies for the obtained results from 
such incident – analyses. This could mean in the given example: in future a lower 
dosage of anticoagulant treatment, only in patients without co – morbidities, no 
more operation of the same kind or, alternatively, an operation of a more safe 
type, another dosage time of medication, double-checks on laboratory errors, rewrit-
ing treatment protocols etc. It is clear that each one of these measures, however 
well-intentioned, can also lead to deleterious effects. For, lower dosages will lead to 
more morbidity, thromboses in the given example, other operations will lead to new 
complications, double checks will lead to overburdening and loss of sight on the 
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part of the health professionals, and, subsequently, to new human errors etc. It is 
remarkable that the above – mentioned methods of incident – analysis ignore 
categorically the so-called scientifi c method, which, otherwise, is quite well used 
for health care questions for which there is no simple answer. The scientifi c method 
consists, in a nutshell, of reformulating your question into a hypothesis, and, 
subsequently, trying to test this hypothesis against control observations     (Anonymous 
  2011  ) . It is unclear to the writers of this chapter why the scientifi c method has 
been systematically ignored in incident – analysis. This was the most important 
reason for writing this chapter.  

    2   The Scientifi c Method in Incident-Analysis 

 As an example we will use the case of the fatal hemorrhage in a hospital during an 
observational period of 1 year. In case of a fatal hemorrhage the physician in charge 
of the analysis will fi rst make an inventory of how many fatal hemorrhages of the 
same kind have occurred in the period of 1 year. The number seems to be ten. 

 The null – hypothesis is that 0 hemorrhages will occur per year, and the question 
is whether 10 is signifi cantly more than 0. A one – sample – z – test is used for that 
purpose: z = 10/√10 = 3.16. This z – value is larger than 3.080. It means that the 
p – value is <0.002, and that the number 10 is, thus, much larger than a number that 
could occur by accident. Here an avoidable error could very well be responsible. 
However, a null – hypothesis of 0 hemorrhages is probably not correct, because a 
year without fatal hemorrhages, actually, never happens, not even if health care 
quality was optimal. Therefore, we will compare the number of fatal hemorrhages 
in the given year with that of the year before. There were fi ve fatal hemorrhages 
then. The z – test produces the following result: z = (10 − 5)/√(10 + 5) = 1.29 This 
result is not statistically signifi cant, because z is <1.96. 

 We can, however, question whether both years are representative for a longer period 
of time. Epidemiological data have established that an incident-reduction of 70% is 
possible with optimal quality health care. We test whether 10 is signifi cantly different 
from (10 − (70%) × 10) = 3. The z-test now shows that z = (10 − 3)/√(10 + 3) = 1.94, 
which is just below the value of 1.96. It means that here also no signifi cant effect has 
been demonstrated. 

 A more sensitive mode of testing will be obtained, if we take into account the 
entire number of admissions per year. In the given hospital there were 10,000 admis-
sions in either of the 2 years. A chi-square test can now be performed according to 
the 2 × 2 contingency table in Table  61.1 . With one degree of freedom this value 
ought to have been at least 3.84 in order to demonstrate whether a signifi cant 
difference is in the data. And, so, again there is no signifi cant difference between 
the 2 years.  

 Finally, a log – likelihood – ratio – test is performed, a test which falls into the 
category of exact – tests, and is, therefore, still somewhat more sensitive. The result 
is in Table  61.2 . It is close to 3.84, but still somewhat smaller. Also this test shows 
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no signifi cant difference between the frequencies of deadly fatal hemorrhages in the 
2 years of observation. Based on the above analyses the conclusion is justifi ed, that 
the hemorrhages are more due to random factors than avoidable ones. Biological 
processes are full of variations, and fatal events can occur sporadically without an 
avoidable or blameable causal factor. This would mean a great chance that a pro-
found investigation of possibly responsible mechanisms will reveal nothing, and 
that changes in future treatment protocols and policies do not seem to be 
warranted.  

 The analyst in charge takes the decision to perform one last test, making use of 
epidemiological data that have shown that with optimal health care quality in a 
facility similar to ours we may accept with 95% confi dence that the number of fatal 
hemorrhages will remain below 17 per 10,000 admissions. With 10 deadly bleed-
ings the 95% confi dence interval can be calculated to be 10 ± 6.20, and, thus, between 
3.80 and 16.2. This result is just under 17. Also from this analysis it can be con-
cluded that a profound research of the fatal hemorrhages is not warranted. The number 
of hemorrhages falls under the boundary of optimal quality care.  

    3   Discussion 

 It is not obvious to the writers of this chapter, why, so far, the scientifi c method has 
not been applied in incident – analysis of health care. Maybe that the very sophisti-
cated PRISMA method originated from the petrochemical industry and propagated 
in health care circles, for example by former SHELL president Rein Willems was 

   Table 61.1    Rates of fatal hemorrhages in a hospital during 2 subsequent years of observation   

 Year 1  Year 2 

 Number fatal hemorrhages  10  5 
 Number control patients  9,990  9,995 

 

    

( ) ( )2
10 9995 5 9990 20000

Chi - square 1.62
10 9990 5 9995

× + ×
= =

× + ×    

  According to the chi-square statistic <3.84 the difference in rates is not signifi cant  

   Table 61.2    Log – likelihood – ratio – test of the data from Table  61.1 . Also this test is not signifi cant 
with a chi-square value smaller than 3.84   

 

    

10 / 9990 1 10 / 9990
Log likelihood - ratio 5 log 9995log

5 / 9995 1 5 / 9995

3.468200 5.008856 1.540656

−⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠−
= − = −    

           Chi square 2 log likelihood - ratio 3.0813− = − − =    

   log  natural logarithm  



662 61 Scientifi c Method

thought – provoking to the extent that health professionals started to think statistical 
analysis to be superfl uous (Anonymous  2006  ) . Of course, if you are working with 
extremely infl ammable compounds, safety is a goal where priorities are evident, and 
an untested system of incident prevention can be justifi ed. If the causal factors are 
obvious, then a statistical test is not required anymore. In health care terms, you do 
not have to statistically prove that penicillin can cure a pneumonia. Many health 
care effects in human beings are, however, small and multi – causal. Therefore, 
statistical testing is the method par excellence to demonstrate small effects and con-
comitant effects. For the evaluation of therapeutic modalities this way of testing is 
currently considered an essential fi rst step. We do not see why this evidence – based 
method can not be equally applied with incident – analysis in health care. 

 Moreover, there is a very dark side to the untested use of various recently devel-
oped methods for incident-analysis. Mostly this incident – analysis will lead to more 
complex procedures at work with as many or even larger chances of incidents and 
lack of safety, the risk that people drop out, make new mistakes, procedures become 
more time – consuming and expensive. 

 We have to mention the limitations of the scientifi c method. A negative test may 
be due to a type II error as a consequence of lack of power. Also confounding and 
interaction may give rise to false positive and negative tests. Nonetheless, the scientifi c 
method, in spite of limitations of its own, can be helpful in giving a clue to which 
incidents are based on randomness and which ones are not. 

 The latter category, subsequently, deserves all attention, and a profound study 
and measures being taken for improvement. In this manner high quality health care 
can progress in a way largely parallel to the way that has been successfully applied 
in evidence – based medicine. In conclusion, we recommend that the scientifi c 
method be applied in incident – analysis.  

    4   Conclusions 

 Incidents in clinical care are analyzed in a systematic manner in order to establish 
organisational, technical and human causal factors responsible. The PRISMA 
(Prevention and Recovery System for Monitoring and Analysis) and other software 
programs are modern approaches, and produce seven or more usable causes for 
explaining single incidents. These methods ignore the so – called scientifi c method, 
which is well – used for other health care questions. This chapter reviews examples 
of how the scientifi c method can be implemented in incident – analysis. 

 Using the case of a fatal hemorrhage in hospital we demonstrate that the following 
tests can be used:

   z – tests, chi - square tests, log likelihood ratio tests, and confi dence intervals against 
established boundaries of high quality health care.    

 We conclude that there is a dark side to the untested use of current methods for 
incident – analysis. Mostly, it will lead to more complex procedures at work with at 
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least similar chance of incidents, lack of safety, the risk of overburdening people 
causing new mistakes, procedures becoming more time – consuming and expensive. 
We recommend that the scientifi c method be applied in incident – analysis.      
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     1   Introduction    

 One of the fl aws of modern statistics is that it can produce statistically signifi cant 
results even if treatment effects are very small. For example, a sub-analysis of the 
SOLVD study (Yusuf et al.  1992  )  found symptoms of angina pectoris in 85.3% of 
the patients on enalapril and in 82.5% of the patients on placebo, difference statisti-
cally signifi cant at p < 0.01. In a situation like this one has to question about the 
clinical relevance of the small difference. Another problem of clinical trials is that 
the statistics is increasingly complex, and that clinicians are at a loss to understand 
it. This is not, necessarily, a criticism of well-trained and hard-working doctors, but 
it does have a very dark side. Studies are, generally, accepted if the magic p-values 
are <0.05, and the disappointment about the small benefi t to individual patients 
comes later. The problem is that a p-value of 0.05 means that the power of fi nding a 
true positive effect is only 50%, and, more important, the chance of not fi nding it is 
equally 50%. Such a result is hardly acceptable for reliable testing. 

 The objectives of the current chapter were (1) to give some examples of studies 
that have been published as unequivocally positive studies, although the treatment 
effects were substantially smaller than they were expected to be, (2) to introduce 
superiority-testing as a novel statistical approach avoiding the risk of statistically 
signifi cant but clinically irrelevant results. Superiority-testing defi nes a priori in 
the protocol clinically relevant boundaries of superiority of the new treatment. If 
the 95% confi dence interval of the study result is entirely within the boundary, 
then superiority is accepted, and we do not have to worry about the p-values 
anymore.  

    Chapter 62   
 Clinical    Trials: Superiority-Testing                 
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    2   Examples of Studies Not Meeting Their Expected Powers 

 The Lancet publishes benchmark research. We extracted from recent volumes of the 
Lancet six original articles of controlled clinical trials that were reported as being 
positive studies, although they did not meet their expected power. The studies pro-
duced only 53–83% of the statistical power expected, while the new treatments 
produced only 46–86% of the magnitude of response expected (Table  62.1 ). For 
example, in the PROSPER study (Shepherd et al.  2002  )  the new treatment only 
produced half the benefi t that was expected (10% instead of 20% relative reduction 
in events). In the Andrews study (Andrews et al.  2004  )  the new treatment produced 
less than half the benefi t expected (an average of 1.6 instead of 3.5 months of sur-
vival). These results, although statistically signifi cant at the p < 0.05 level, may not 
unequivocally demonstrate clinical superiority, and may not be good enough for 
accepting the new treatment for general use.   

   Table 62.1    Discrepancies between expected and observed statistical powers and treatment effi cacies 
of six controlled clinical trials recently published in the Lancet   

 Study observ 
 Sample 
size  Comparison 

 Expect/observ 
power (%) 

 Expect/observ 
effect size 

 Observ 
p-value 

 1. PPP study 
(Collaborative 
Group of Primary 
Prevention 
Project  2001  )  

 4,495  Aspirin vs placebo  90/48  From 5.4% to 
2.9%/absolute 
risk reduction 
from 2.8% to 
2.0% 

 0.055 a  

 2. Staedke et al. 
 (  2001  )  

 400  Amiodiaquine vs 
sulfadioxine-
pyrimethamine 

 80/66  15%/7% absolute 
reduction 
treatment 
failures 

 0.023 b  

 3. PROSPER 
(Shepherd et al. 
 2002  )  

 5,804  Statin vs placebo  92/73  20%/10% relative 
reduction 
events 

 0.015 

 4. ESTEEM 
(Wallenstein 
et al.  2003  )  

 1,883  Ximelagatran vs 
warfarin 

 80/56  27%/22% relative 
reduction 
events 

 0.036 

 5. Jochan et al. 
 (  2004  )  

 379  Adjuvant chemother 
vs no 

 90/63  2.10/1.58 hazard 
ratios 

 0.020 

 6. Andrews et al. 
 (  2004  )  

 333  Stereotactic 
radiosurgery 
vs no 

 80/53  3.5/1.6 months of 
survival 

 0.040 

   vs  versus,  expect  expected;  observ  observed,  chemother  chemotherapy 
  a composite endpoint, this study was yet reported as a positive study, because separate endpoints 
were signifi cant at 0.035–0.049    
  b the largest difference of the three main endpoints, the other two were not signifi cant  
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    3   How to Assess Clinical Superiority 

 The PROSPER study (Shepherd et al.  2002  )  included 5,804 patients to test whether 
in elderly pravastatin performed better than placebo in preventing cardiovascular 
morbidity/mortality. The sample size in this study was based on an expected statistical 
power of 92% to observe a relative reduction of events of 20% (absolute reduction 
of 3.2%) with an absolute risk of events of 16% at baseline. Statistical power can be 
best described as the chance of fi nding a signifi cant effect in your data, if there is a 
real effect. It means that the expected chance that any real effect in the data is not 
detected (the type II error) is only 8%. However, it turned out that the relative reduc-
tion in events was only 10% (absolute reduction 1.6%). 

 Figures  62.1 ,  62.2 , and  62.3  give the relationships between statistical power, 
p-values, and t-values (two-sided t-tests with samples sizes >200). The curves are 
approximately similar to the curves for the z-test (the test for normal distributions). 
T-values can be best interpreted as standardized measures of treatment effi cacy; 
t-values larger than approximately 2 SEMs (standard errors of the mean) indicate 
that there is a signifi cant effect at p < 0.05 in the data. From the Figs.  62.1 ,  62.2 , and 
 62.3  it can be extrapolated that the main endpoint result of the PROSPER study cor-
responded with a power of only 73%, instead of 92%, and, consequently, a type II 
error of 27% instead of the expected 8%. In spite of this disappointing result, the 
study reported that an unequivocal superiority of the new treatment had been dem-
onstrated. However, the risk reduction observed was only half that expected, and the 
chance of a type II error of fi nding no difference next time, was 3.4 times that 
expected. This may not be good enough a result for implementing the new treat-
ment, particularly not, if potential adverse effects of the new treatment are taken 
into account.    

 Traditionally, in clinical trials a signifi cant effi cacy of a new treatment is accepted 
if the null-hypothesis of no treatment effect is rejected at p = 0.05, corresponding 
with a type II error of no less than 50%. This would mean for the PROSPER study 
a relative risk reduction of only approximately 5% (absolute risk reduction of 0.7%), 
which is not what one would call an impressive result. Instead of a p-value of 0.05 
as cut-off criterion for demonstrating superiority a stricter criterion seems to be 
welcome. For that purpose an approach similar to that of equivalence-testing and 
non-inferiority-testing may be applied (Fig.  62.4 , upper two graphs). With equiva-
lence/non-inferiority -testing we have prior arguments to assume little difference 
between the new treatment and control treatment, and we are more interested in 
similarity and non-inferiority of the new treatment versus control than in a statisti-
cally signifi cant difference between the new treatment and control. A boundary of 
similarity or non-inferiority is a priori defi ned in the protocol. If the 95% confi dence 
interval of the study turns out to be entirely within these boundaries, then similarity 
or non-inferiority is accepted.  
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 Also for superiority-testing a prior boundary of superiority has to be defi ned in 
the study protocol. For example, a boundary producing 10% less the power of the 
study’s expected power could be chosen. Figure  62.5  shows what will happen if this 
boundary is applied in the PROSPER study. The 95% confi dence interval of the 
PROSPER study crosses this boundary and this means that the study is be unable to 
demonstrate superiority, and that the result is, therefore, negative.   

  Fig. 62.1    The relationship between power and p-values (two sided  t -test with samples sizes >200). 
The curve is approximately similar to the curve for the z-test (normal distribution)       
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    4   Discussion 

 Routinely replacing the assessment of p-values with superiority testing in comparative 
trials will have some advantages:

    1.    Studies with large type II errors will no longer be interpreted as positive studies, 
because small and irrelevant treatment effi cacies, producing large type II errors, 
will no longer meet the criterion of superiority.  

    2.    The general incentive to produce as small a p-value as possible, even if the study 
effect is very small will be gone. Specifi c methods for producing small p-values 
have been developed. They include the use of very large samples and composite 

  Fig. 62.2    The relationship between p-values and t-values (two sided  t -test with samples sizes >200). 
The curve is approximately similar to the curve for the z-test (normal distribution)       
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endpoints. Very large samples will almost certainly show a statistically signifi cant 
difference in the data, but this difference will be questionably clinically relevant. 
Composite endpoints produce small p-values, but are frequently complicated by 
large gradients in importance to patients result in misleading impressions of the 
impact of treatment (Ferreira-Gonzalea et al.  2007  ) . With superiority-testing as 
introduced in this paper, the p-values are no longer the criterion for a positive 
study.  

    3.    P-values are, traditionally, applied for testing the null-hypotheses of no effect in 
the data. However, in current clinical trials the issue is not  any  effect in the data, 
but rather a  clinically relevant  effect or not. This latter question can never be 
answered by null-hypothesis testing, and requires a different approach. For that 
purpose clinical relevance has to be quantitatively defi ned, e.g. in the form 
boundaries of superiority, as introduced in the present paper.     

  Fig. 62.3    The relationship between power and t-values (two sided  t -test with samples sizes >200). 
The curve is approximately similar to the curve for the z-test (normal distribution)       
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 We come to some important recommendations in this study. We recommend that 
investigators consider replacing testing null-hypotheses of comparative clinical trials 
with testing a priori defi ned boundaries of clinical superiority of new treatments. A 
similar approach is already common in equivalence-studies and non-inferiority-
studies, but could very well be applied to the “normal” comparative studies usually 

  Fig. 62.4    Examples of equivalence, non-inferiority- and superiority studies: any 95% confi dence 
interval ( C.I. ) that does not cross the pre-specifi ed range of equivalence, inferiority, or superiority 
as indicated by the D boundaries presents the presence of equivalence, non-inferiority, or superior-
ity respectively       

  Fig. 62.5    The 95% confi dence interval ( C.I. ) of the PROSPER study crosses the D boundary. 
With the given D boundary this study is unable to demonstrate superiority       
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performed for establishing the clinical superiority of one treatment over another. 
Nowadays, too many borderline signifi cant studies are being reported as convinc-
ingly positive studies. This is a misleading practice as it produces overestimated 
expectations from new treatments (Horng and Grudy  2003 ; Fetting et al.  1990 ; 
Anonymous  1995  ) . Superiority-testing, as introduced in this paper, is a simple 
method to avoid this problem.  

    5   Conclusions 

 One of the fl aws of modern statistics is that it can produce statistically signifi cant 
results even if treatment effects are very small. The objective of the current chapter 
was (1) To give some examples of studies that have been published as unequivocally 
positive studies, although the treatment effects were substantially smaller than they 
were expected to be. (2) To introduce superiority-testing as a novel statistical 
approach avoiding the risk of statistically signifi cant but clinically irrelevant 
results. 

 We extracted from recent volumes of the Lancet six original articles of controlled 
clinical trials that were reported as being positive studies, although they did not 
meet their expected power. The studies produced only 53–83% of the statistical 
power expected, while the new treatments produced only 46–86% of the magnitude 
of response expected. Instead of a p-value of 0.05 as cut-off criterion for demon-
strating superiority a stricter criterion seems to be welcome. For that purpose, simi-
lar to equivalence-testing and non-inferiority-testing, prior boundaries of superiority 
have to be defi ned in the protocol. If the 95% interval of the study turns out to be 
entirely within these boundaries, then superiority is accepted. 

 Nowadays, too many borderline signifi cant studies are being reported as con-
vincingly positive studies. This is a misleading practice, as it produces overesti-
mated expectations from new treatments. Superiority-testing, as introduced in this 
paper, is a simple method to avoid this problem.      

   References 

    Andrews DW, Scott CB, Speranto PW et al (2004) Whole brain irradiation therapy with or without 
stereotactic radiosurgery boost for patients with 1–3 brain metastases. Lancet 363:1665–1672  

    Anonymous (1995) Patients’ demands for prescriptions in primary care. Br Med J 310:1084–1085  
    Collaborative Group of Primary Prevention Project (2001) Low dose aspirin and vitamin E in 

people at cardiovascular risk: a randomised trial in general practice. Lancet 357:89–95  
    Ferreira-Gonzalea I, Busse JW, Heels-Ansdell D et al (2007) Problems with use of composite end 

points in cardiovascular trials: systematic review of randomised controlled trials. BMJ 
334:786–788  

    Fetting JH, Siminoff CA, Piantadosi S et al (1990) Effects of patients’ expectations of benefi t with 
standard breast cancer adjuvant therapy on participants in clinical trials. J Oncol 8:1476–1482  

    Horng S, Grudy C (2003) Misunderstanding of clinical research. Ethics Hum Res 25:11–16  



673References

    Jochan D, Richter A, Hofmann L et al (2004) Adjuvant autologous renal tumour cell vaccine and 
risk of tumor progression in patients with renal cell carcinoma. Lancet 362:594–599  

   Shepherd J, Blauw GJ, Murphy MB, et al, on behalf of the PROSPER study group (2002) 
Pravastatin in elderly individuals at risk of vascular disease: a randomised trial. Lancet 
360:1623–1630  

    Staedke SG, Kanga MR, Dorsey G et al (2001) Amiodaquine, sulfadioxone/pyrimethamine and 
combination therapy for treatment of falciparum malaria in Kampala, Uganda: a randomised 
trial. Lancet 358:368–374  

   Wallenstein L, Wilcox RG, Weaver WD, et al, for the ESTEEM investigators (2003) Oral ximela-
gatran for secondary prophylaxis after myocardial infarction. Lancet 362:789–797  

    Yusuf S, Pepine CJ, Garces C et al (1992) Effect of enalapril on myocardial infarction and angina 
pectoris in patients with low ejection fraction. Lancet 340:1173–1178      



675T.J. Cleophas and A.H. Zwinderman, Statistics Applied to Clinical Studies, 
DOI 10.1007/978-94-007-2863-9_63, © Springer Science+Business Media B.V. 2012

     1   Introduction       

 Traditionally, noninferiority studies have been designed to demonstrate that the 
effi cacy of a new compound is not inferior to a standard compound documentedly 
effi cacious. A major argument for performing noninferiority studies is, that a direct 
comparison versus placebo of the new compound is less ethical with an effi cacious 
standard treatment already available, because half of the patients in such a trial is 
given an inferior treatment. The solution is given by a direct comparison of the new 
versus standard treatment. However, the comparison versus standard is at risk of 
establishing little difference, and, thus, a negative result. Non-inferiority studies are 
based on arbitrary margins of noninferiority. Generally, there are three possibilities 
(Fig.  63.1 ): (1) noninferiority is demonstrated, (2) it is uncertain, or (3) it is excluded, 
if the 95% confi dence interval of a study is respectively (1) entirely on the right side 
of the margin of noninferiority, (2) crosses the margin, (3) is entirely left from the 
margin. The margin of noninferiority is of a rather subjective nature, and, usually, 
defi ned by expert investigators as the margin of undisputed clinical relevance 
 (Mercola   2011 ; Snapinn  2000  ) . From Fig.  63.1  it can be easily perceived that inves-
tigators benefi t from wide margins, increasing the chance of a positive study, and 
that, with  very  wide margins, it becomes virtually impossible to reject noninferiority. 
Scientists  (Mercola   2011 ; Snapinn  2000  ) , statisticians (Hung and Wang  2004 ; 
Pocock  2003 ; Allen and Seaman  2007  ) , and regulatory agencies (Anonymous 
 2011a,b  )  have expressed their worries about this practice. Recently, the EMEA 
(European Medicines Agency) has declared that noninferiority trials will not be 
accepted as proof of effi cacy in Alzheimer’s and Parkinson’s trials, while the FDA 
(Food & Drug Administration) formally rejected the use of noninferiority trials in 
the development of antimicrobial drugs for chronic bronchitis (Anonymous 
 2011b  ) .  

    Chapter 63   
 Noninferiority Testing                 
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 In the past 4 years recommendations have been given regarding margins based 
on counted criteria rather than experts’ view (Anonymous  2011a  ) . Also the require-
ment of including various null-hypothesis tests and tests against historical placebo 
data have been proposed (Kaul and Diamond  2006 ; Piaggio et al.  2006  ) . The current 
chapter reviews proposals, and shows, using data examples, how they can be readily 
included in the study protocol and data-analysis.  

    2   A Novel Approach 

    2.1   Basing the Margins of Noninferiority on Counted Criteria 

 The reason for performing a noninferiority trial is, that comparison versus placebo 
is less ethical, if alternative effi cacious products are known. The EMEA guidelines 
for noninferiority margins recommends that margins of noninferiority be con-
structed with the help of the summaries of the information known about the relative 
effi cacy of these known products (Anonymous  2011a  ) . As an alternative approach 
the EMEA recommends to survey practitioners on the range of differences that they 
consider to be important, and choose the margin based on a summary statistic of 
their responses (Anonymous  2011b  ) . Some fl exibility is useful and can be included. 
For example, in the situation where a test product is anticipated to have a safety 
advantage over the reference product, a larger margin could be justifi ed, as some 
loss of effi cacy might be accepted in exchange for the safety benefi t. Other circum-
stances which may warrant such consideration include a more convenient route of 
administration, more convenient posology, advantages on secondary endpoints etc.  

study 1
95% confidence interval of study

study 2
95% confidence interval of study

study 3
95% confidence interval of study

margin of noninferiority
z-axis (SEMs)

Non-inferiority

Uncertain

Inferiority

  Fig. 63.1    Traditional results of noninferiority trials       
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    2.2   Testing the Presence of Both Noninferiority 
and a Signifi cant Difference from Zero 

 The result of a clinical trial is often expressed as its t-value or, with qualitative data, 
its z-value.

   t = (mean result)/SEM,  
  z = (proportion of responders)/SEM,  
  SEM = standard error of the mean result or of the proportion of responders.    

 The unit of t- values is not mmol/l, or mg, etc, but rather SEM-units. SEM-units 
are often called standardized results of studies, and can be obtained by dividing the 
mean result by its standard error. 

 For example, a mean result of 2.4 mmol/l with an SEM of 1.2 mmol/l would 
produce a t-value of 2.4/1.2 = 2.0 SEM-units   .

     

A t - value 2.0 or 2.0 SEM - units indicates a result distant from zero at p 0.05

A t - value 2.6 or 2.6 SEM - units indicates a result distant from zero at p 0.01

A t - value 3.1or 3.1 SEM - units i

> < − <
> < − <
> < − ndicates a result distant from zero at p 0.002.<    

 A t- or z-value >2.0 or < −2.0 SEM-units also indicates that the 95% confi dence 
interval of the trial does not cross zero on the x-axis (in statistics often called z-axis), 
because this 95% confi dence interval is >2 ± 2 SEM-units or < −2 ± 2 SEM-units 
(Fig.  63.2 ).  

 This means that in the given example noninferiority based on the defi ned margin 
is demonstrated, but at the same time the new treatment is signifi cantly worse than 
the standard treatment at p < 0.05. The meaning of noninferiority in the given situa-
tion has become very limited. The CONSORT Group (Consolidated Standards of 

study 1
95% confidence interval of study

study 2
95% confidence interval of study

study 3
95% confidence interval of study

margin of noninferiority
z-axis (SEMs)

0

Non- inferiority

Uncertain

Inferiority

  Fig. 63.2    In study 3 the presence of both noninferiority and a signifi cant difference from zero is 
observed       
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Reporting Trials) (Kaul and Diamond  2006  )  advised that, although this peculiar 
situation may not occur often, it is a real risk with wide margins of noninferiority.  

    2.3   Testing the New Treatment Versus Historical Placebo Data 

 Kaul and Diamond (Kim  1997  )  recently proposed that placebo-controlled data of 
the standard treatment be added to any noninferiority trial, because a standard treat-
ment without documented proof of superiority against placebo is not an adequate 
control treatment in a noninferiority study. Here we describe a novel method that 
includes historical placebo data in the analysis, and provides a good estimate of the 
new treatment compared to placebo. 

 If a controlled trial of a standard treatment versus placebo produces a t- or z-value 
of 3.0 SEM-units, and an equally large trial with a new treatment versus a standard 
treatment produces a t- or z-value of say 0.5 SEM-units, then 3 + 0.5 = 3.5 SEM-
units gives a good estimate of the comparison of the new treatment versus placebo. 
Or in summary:

     

Standard placebo 3 SEM - units (1)

New standard 0.5 SEM - units (2)

(1) (2) 3.5 SEM - units

− =
− =

+ =     

 Table  63.1  gives an overview of possible results of comparisons of the new 
treatment versus placebo using the above method. If the t-value of placebo versus 
standard treatment is very large, then even poorly performing new compounds may 
be signifi cantly better than placebo. If the t-value of placebo versus standard treat-
ment is small, then the new compound will not easily perform better than placebo. 
If a noninferiority study is unable to demonstrate that, according to the above 
procedure, the new treatment is better than placebo, then the meaning of the nonin-
feriority is very limited. The margin of noninferiority has probably been chosen too 
wide. We have to add here that the characteristics of the historical data should 
approximately match those of the new data, and that this information should be 
included in the report.   

    2.4   Including Prior Sample Size Calculations and p-Values 

 Usually, the results of noninferiority trials are reported as positive, uncertain, or 
negative (Fig.  63.1 ). Instead, just like with traditional trials methods for calculating 
p-values and prior sample sizes can be added to the protocol (Kim  1997  ) . They are 
helpful to prevent lack of power, and to demonstrate the precision of the result. 
The following procedures can be followed. If in a noninferiority cholesterol study 
the expected difference between the new and standard treatment is, for example, 



6793 Examples

1.0 mmol/l with a standard deviation of 12 mmol/l, then we can determine the 
required sample size according to the underneath equation.

     ( ) ( )α β+ −2 2
n = Z Z * SD / (D mean

   

     

( )2
Z Z power index 7.8 with type I error 5%,  

and type II error 80%,

+ = = = =
= =

α β α
β    

   D = margin of noninferiority,  
  *  = sign of multiplication.    

 With a defi ned D-value of −4 mmol/l,

     ( )= − − =2
n 7.8* 12 / ( 4 1) 45 patients per group.

   

     

( )
( ) ( )
( ) ( )

The above study would provide a t value D mean / SEM

D mean / SD / n

4 1 / 12 / 45

2.8 SEM - units,

− = −

= − √

= − − √

= −    

corresponding with a p-value of 0.005. Noninferiority is demonstrated with a 
p-value of 0.005.   

    3   Examples 

 In the underneath examples we assess noninferiority using three steps.

    1.    The 95% confi dence interval is tested against the set margin.  
    2.    The null-hypothesis of no difference between new and standard is tested.  
    3.    The null-hypothesis of no difference between new and a placebo is tested.     

   Table 63.1    If the t-value of standard treatment versus placebo is very large, then even poorly 
performing new compounds may perform signifi cantly better than placebo. If the t-value of stan-
dard treatment versus placebo is small, then the new compound will less easily outperform placebo   

 Mean diff    P      P 

 New vs stand 
(SEM-units) 

 Stand vs 
placebo  New vs placebo  New vs stand 

 Stand vs 
placebo  New vs placebo 

 −2  +4  2  S  −2  +2  0  NS 
 −1  +4  3  S  −1  +2  1  NS 
 0  +4  4  S  0  +2  2  S 
 +1  +4  5  S  +1  +2  3  S 
 +2  +4  6  S  +2  +2  4  S 

   NS  not statistically signifi cant,  S  statistically signifi cant,  stand  standard treatment,  new  new 
treatment,  vs  versus,  diff  difference,  P  p-value  
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    3.1   Example 1 

 Two inhalers “New” and “Standard” used for the relief of asthma attacks were com-
pared in a non-inferiority study using morning peak expiratory fl ow rate (l/min) as 
the primary measurement. The margin of noninferiority was set at −15 l/min. The 
results of the trial were as follows: 

 Mean morning peak expiratory fl ow on treatment:

   New = 420 ml/min (150 patients)  
  Standard = 416 ml/min (150 patients)  
  Mean difference between new and standard = 4 ml/min.  
  Estimated standard error of the mean of the difference, SEM = 5 ml/min.   

    1.    The distance of the mean difference from the margin = −15 −4 = −19 ml/
min = −19/5 SEM-units = −3.8 SEM-units. A t-value of −3.8 SEMs-units corre-
sponds to a p-value of 0.0001. Non-inferiority is demonstrated with a p-level as 
low as 0.0001.  

    2.    A mean result of 4 ml/min = 4/5 = 0.8 SEM-units. The 95% confi dence interval of 
this mean result 0.8 ± 2 SEM-units is between −1.2 and +2.8 SEM-units, and 
does not cross the 0 value on the z -axis, and, so, the mean difference between 
standard and new is not signifi cantly different from zero.  

    3.    A similarly sized placebo-controlled trial of the standard treatment versus 
placebo produces a t-value of 3.0 SEM-units. The comparison of the new treat-
ment versus placebo equals 3.0 + 0.8 = 3.8 SEM-units. The new treatment is, thus, 
signifi cantly better than placebo at t = 3.8 SEM-units, corresponding with a 
p-value of 0.0001.     

 Both the lack of a signifi cant difference between standard and new, and the sig-
nifi cant difference between new and placebo support the presence of noninferiority 
of the new treatment versus the standard treatment.  

    3.2   Example 2 

 A sleeping pill parallel study compares in 236 patients the numbers of sleeping 
hours of two compounds. Based on prior studies a margin of noninferiority of −6.4 h 
was defi ned. The mean difference between the new and standard treatment was 
−3.3 h, with an estimated standard error of 1.5 h.

    1.    The distance of the mean difference from the boundary = −6.4 + 3.3 h = −3.1 h 
= −3.1/1.5 SEM-units = −2.05 SEM-units. A t-value of −2.05 SEMs-units corre-
sponds to a p-value of 0.04. Non-inferiority is demonstrated with a p = 0.04.  

    2.    A mean difference of −3.3 h = −3.3/1.5 = −2.2 SEM-units. The 95% confi dence 
interval of this mean result −2.2 ± 2 SEM-units is between −4.2 and −0.2 SEM-units, 
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and does not cross the 0 value on the z-axis, and, so, the mean difference between 
standard and new is signifi cantly different from zero. The new treatment, although 
noninferior according to the set margin, performs at the same time signifi cantly 
worse than standard treatment.  

    3.    A similarly sized placebo-controlled trial of the standard treatment versus pla-
cebo produces a t-value of 4.5 SEM-units. The comparison of the new treatment 
versus placebo equals −2.2 + 4.5 SEM-units = 2.3 SEM-units. The new treatment 
is, thus, signifi cantly better than placebo at t = 2.3 SEM-units, corresponding 
with a p - value of 0.021.     

 The presence of noninferiority is supported by the signifi cant superiority of the 
new compound against placebo. However, the signifi cantly worse performance 
against the standard treatment undermines these fi ndings. We have to admit that the 
margin of noninferiority in this example was taken very wide: −6.4 h equals −4.26 
SEM-units, and was based on arbitrary criteria rather than summary statistics of 
published data.  

    3.3   Example 3 

 In a hypertension of two groups of 100 patients each a new antihypertensive drug is 
compared to a standard treatment. A margin of noninferiority of −24 mmHg is set a 
priori. The mean difference between the new and standard treatment = −4.5 mmHg, 
with an estimated standard error of 9 mmHg.

    1.    The distance of the mean difference from the boundary = −24 + 4.5 mmHg 
= −19.5 mmHg = 19.5/9 = 2.2 SEM-units. A t-value of 2.2 corresponds with a 
p-value of 0.028. Non-inferiority is demonstrated at p = 0.028.  

    2.    A mean difference of −4.5 mmHg = −4.5/9 = −0.5 SEM-units. The 95% con-
fi dence interval of this mean result −0.5 ± 2 SEM-units is between −2.5 and 
1.5 SEM-units, and does cross the 0 value on the z-axis, and so the mean dif-
ference between standard and new is not signifi cantly different from zero. 
The new treatment is noninferior according to the set margin, and at the 
same time not signifi cantly worse than the standard treatment supporting its 
noninferiority.  

    3.    A similarly sized placebo-controlled trial of the standard treatment versus pla-
cebo produces a t-value of 2.3 SEM-units. The comparison of the new treatment 
versus placebo equals −0.5 + 2.3 = 1.8 SEM-units. The new treatment is, thus, not 
signifi cantly better than placebo.     

 The presence of noninferiority is supported the lack of a signifi cant difference 
between new and standard. However, these fi ndings are undermined by the lacking 
superiority of the new compound against placebo.  
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    3.4   Example 4 

 In a cholesterol study of two groups of 80 patients each a new compound is 
compared to a standard treatment. A margin of −1.4 mmol/l is set a priori. The mean 
difference between the new and standard treatment = −0.63 mmol/l, with an 
estimated standard error of 0.30 mmol/l.

    1.    The distance of the mean difference from the boundary = −1.4 + 0.63 mmol/l 
= −0.77 mmol/l = −0.77/0.3 = 2.57 SEM-units. A t-value of 2.57 corresponds with 
a p-value of 0.01. Non-inferiority is demonstrated at p = 0.01.  

    2.    A mean difference of -.63 mmol/l = −0.63/0.30 = −2.1 SEM-units. The 95% con-
fi dence interval of this mean result −2.1 ± 2 SEM-units is between −4.1 and −0.1 
SEM-units, and does not cross the 0 value on the z-axis, and so the mean differ-
ence between standard and new is signifi cantly different from zero. The new 
treatment is noninferior according to the set margin, but at the same time signifi -
cant worse than the standard treatment which does not support its noninferiority.  

    3.    A similarly sized placebo-controlled trial of the standard treatment versus placebo 
produces a t-value of 2.4 SEM-units. The comparison of the new treatment 
versus placebo equals −0.63 + 2.4 = 1.77 SEM-units. The new treatment is, thus, 
not signifi cantly better than placebo.     

 The presence of noninferiority is undermined both by the signifi cant difference 
between new and standard and by the lack of effi cacy of the new treatment against 
placebo. Also in this example the margin of noninferiority was taken very wide: 
−1.4 mmol/l = −4.7 SEM-units. It was again based on arbitrary criteria rather than 
summary statistics of published data.   

    4   Discussion 

 We propose that current arbitrary margins of noninferiority, based on clinical argu-
ments, be replaced with methods of assessment based on statistical reasoning. It not 
only provides more precise results as demonstrated in the examples, but also helps 
to prevent expert investigators from being seduced into producing too wide margins. 
The following procedures are recommended: (1) basing the margin of noninferiority 
on counted rather than arbitrary criteria, (2) null-hypothesis tests of no difference 
between the new and standard treatment, and (3) null-hypothesis tests of no differ-
ence between the new treatment and a placebo. A summary of the procedures proposed 
and an example designed and analyzed according to the novel procedures are given 
in the Tables  63.2  and  63.3  respectively.   

 Some additional special points of noninferiority studies should be mentioned. 
A comparative trial is valid when it is blinded, randomized, explicit, accurate 
statistically and ethically. The same is true for a noninferiority trial. However, a 
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problem arises with the intention to treat analysis. Intention to treat patients are 
analyzed according to their randomized treatment irrespective of whether they actu-
ally received the treatment. The argument is that it mirrors what will happen when 
a treatment is used in practice. In a comparative parallel group study the inclusion 
of protocol violators in the analysis tend to make the results of the two treatments 
more similar. In a noninferiority study this effect may bias the study towards a positive 
result, being the demonstration of noninferiority. A possibility is to carry out both 
intention-to-treat-analysis and completed-protocol-analysis. If no difference is 
demonstrated, we conclude that the study’s data are robust (otherwise called sensi-
tive, otherwise called precise), and that the protocol-analysis did not introduce 
major sloppiness into the data. Sometimes, effi cacy and safety endpoints are ana-
lyzed differently: the former according to the protocol analysis simply because 
important endpoint variables are missing in the population that leaves the study 
early, and intention to treat analysis for the latter, because safety variables frequently 
include items such as side effects, drop-offs, morbidity and mortality during trial. 
Either endpoint can of course be assessed in a noninferiority trial, but we must con-
sider that an intention to treat analysis may bias the noninferiority principle towards 
overestimation of the chance of noninferiority. 

 Another special point to be considered is that crossover studies of different com-
pounds may have a negative correlation between the treatments (Cleophas  2000  ) , 
and this causes loss of sensitivity of demonstrating noninferiority. Fortunately, most 
crossover studies have a positive correlation, and, so, the crossover design is generally 
quite sensitive to assess equivalence. 

   Table    63.2    Summary of the proposed novel approach to noninferiority testing, including the 
construct of the noninferiority margin   

 A. Basing margins of noninferiority on counted rather than arbitrary criteria 
 1. Construct the margin of noninferiority with the help of the summary of the published data 

of these products (alternatively construct it with the help of the summary statistic of the 
responses to a survey on the range of differences considered to be important by 
practitioners) 

 2. Determine a priori the sample size with the help of the equation 
 

    
( ) ( )( )22

n Z Z * SD / D mean ,= + −α β
   

  where (Z a  + Z b ) 2  = powerindex, D = margin of noninferiority, * = sign of multiplication 
 3. Calculate a p-value for the level of noninferiority according to the equation 

 
    

( )t - value D mean / SEM,= −
   

  where SEM = standard error of the mean 
 B. Test the null-hypothesis of no difference between the new and standard treatment 
 C. Test the null-hypothesis tests of no difference between the new treatment and a placebo. The 

placebo result must be obtained from adequate historical data 

 Noninferiority studies should be reported together with the p-values as calculated above (A3). 
Unequivocal noninferiority is demonstrated only if the p-value is <0.05 (A3), and if the p-value 
for the difference between new and standard is >0.05 (B), and the p-value for the difference 
between new and a placebo is <0.05 (C) 
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 Non-inferiority testing according to the procedure proposed in this paper can 
also be included in traditional effi cacy analyses of treatment comparisons. It may 
help solving important future clinical issues like the one in the next example. The 
treatment of hypertension is believed to follow a J-shape curve, where overtreat-
ment produces increased rather than reduced mortality/morbidity. A different the-
ory would tell you that the more intensive the therapy the better the result. This 
latter theory was tested in the HOT trial (Hansson et al.  1998  ) , but could not be 

   Table 63.3    Example of a non-inferiority study designed and analyzed according to the novel 
approach proposed   

 Two parallel-groups of patients with rheumatoid arthritis are treated with either a standard or a 
new nonsteroidal anti-infl ammatory drug (NSAID). The reduction of gamma globuline levels 
(g/l) after treatment was used as the primary estimate of treatment success 
 A. Determination of the margin of noninferiority, the required sample, and the p-value of the 

study result 
 1. The left boundaries of the 95% confi dence intervals of previously published studies of the 

Standard NSAID versus various alternative NSAIDS were never lower than −8 g/l. And, 
so, the margin was set at −8 g/l 

 2. Based on a pilot-study with the novel compound the expected mean difference was 0 g/l 
with an expected standard deviation of 32 g/l. This would mean a required sample size of 

 
    

( )( )2
n power index * SD / margin mean= −

   
 

    
( )( ) ( )2

n 7.8* 32 / 8 0 125 patients per group. * sign of multiplication .= − − = =
   

 A power index of 7.8 takes care that noninferiority is demonstrated with a power of about 
80% in this study 

 3. The mean difference between the new and standard NSAID was calculated to be 3.0 g/l 
 With an SEM of 4.6 g/l. This meant that the t-value of the study equalled 

 
    ( ) ( )t margin mean / SEM 8 3 / 4.6 2.39 SEM units.= − = − − = − −

   
 This t-value corresponds with a p-value of 0.017. Non-inferiority is demonstrated at 

p = 0.017 
 B. Testing the signifi cance of difference between the new and the standard treatment 

 The mean difference between the new and standard treatment equalled 3.0 g/l with a SEM of 
4.6 g/l. The 95% confi dence of this result is 3.0 ± 2*4.6, and is between −6.2 and 12.2 g/l 
(* = sign of multiplication). This interval does cross the zero value on the z-axis, which means 
no signifi cant difference from zero (p > 0.05) 

 C. Testing the signifi cance of difference between the new treatment and placebo 
 A similarly sized published trial of the standard treatment versus placebo produced a t-value 
of 2.83, and, thus a p-value of 0.0047. The t-value of the current equals 3.0/4.6 = 0.65 
SEM-units.   The add-up sum 2.83 + 0.65 = 3.48 is a good estimate of the comparison of the 
new treatment versus placebo. A t-value of 3.48 corresponds with a p-value of 0.0005. The 
would mean that the new treatment is signifi cantly better than placebo at p = 0.0005 

 We conclude that (1) noninferiority is demonstrated at p = 0.017, that (2) a signifi cant difference 
between the new and standard treatment is rejected at p > 0.05, and that (3) the new treatment is 
signifi cantly better than placebo at p = 0.0005. Non-inferiority has, thus, been unequivocally 
demonstrated in this study 
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confi rmed: high dosage antihypertensive therapy was not signifi cantly better than 
medium-dosage therapy. Probably it was not worse either, however, unfortunately, 
this was not tested in the report. The study would defi nitely have been powerful to 
test this question, and, moreover, it would have solved a major so far unsolved 
discussion. 

 An additional advantage of routinely testing noninferiority according to the 
above procedure, is, that it helps preventing well-designed studies from going down 
in history as just “negative” studies that did not prove anything and are more likely 
not to be published, leading to unnecessary and costly repetition of research. If such 
“negative” studies are capable of rejecting the chance of inferiority, they may be 
reconsidered as a study that is not completely negative and may be rightly given 
better priority for being published. 

 We conclude that expert investigators traditionally set arbitrary margin of 
noninferiority based on clinical arguments, and benefi t from wide margins. As an alter-
native and more meaningful approach to noninferiority testing we propose to use

    1.    margins of noninferiority based on counted rather than arbitrary criteria,  
    2.    null-hypothesis tests of no difference between the new and standard treatment,  
    3.    null-hypothesis tests of no difference between the new treatment and a placebo.      

    5   Conclusions 

 Noninferiority trials have been criticized for their wide margins of noninferiority, 
making it virtually impossible to reject noninferiority. Recommendations have been 
given to replace the practice of arbitrarily set margins. This chapter reviews various 
alternative methods of assessment based on statistical reasoning. 

 Four examples are given.

    1.    In a 300 patient parallel-group study of two inhalers for asthma noninferiority 
was demonstrated at p = 0.0001. This result was supported by both the lack of a 
signifi cant difference between the standard and new inhaler, and the presence of 
a signifi cant difference between the new inhaler and a placebo at p = 0.0001.  

    2.    In a 236 patient parallel-group sleeping pill study noninferiority was demon-
strated at p = 0.04. The presence of noninferiority was supported by a signifi cant 
superiority of the new compound against a placebo at p = 0.021. However, the 
signifi cantly worse performance against the standard treatment undermined 
these fi ndings.  

    3.    In a 200 patient hypertension study of two treatment groups noninferiority was 
demonstrated at p = 0.028. The presence of noninferiority was supported by the 
lack of a signifi cant difference between the new and the standard treatment. 
However, these fi ndings were undermined by the lacking superiority of the new 
compound against a placebo.  

    4.    In a 160 patients parallel-group cholesterol study noninferiority was demon-
strated at p = 0.01.     
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 The presence of noninferiority was undermined both by the signifi cant difference 
between the new and the standard treatment, and by the lack of effi cacy of the new 
treatment against a placebo. 

 We conclude that expert investigators traditionally set arbitrary margin of nonin-
feriority based on clinical arguments, and that they benefi t from wide margins. As 
an alternative and more meaningful approach to noninferiority testing we propose 
to use

    1.    margins based on counted rather than arbitrary criteria,  
    2.    null-hypothesis tests between the new and standard treatment,  
    3.    null-hypothesis tests between the new treatment and a placebo.          
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     1   Introduction    

 Time series often appear as a sequence of unpaired or paired data observed through 
time. Examples include the incidence of nosocomial infection in a hospital, course 
of analgesia during surgery, seasonal variations in hospital admissions, waveform of 
electroencephalogram potentials, analysis of ambulatory blood pressures, the course 
of any disease through time. In fact, time series are encountered in virtually every fi eld 
of medicine. The analysis of time series traditionally focuses on the identifi cation of 
patterns, and the prediction of future observations. Unlike Kaplan-Meier methodol-
ogy which assesses the time to a single event in a group of patients, time series deals 
with multiple repeated observations and/or events either paired or unpaired. 

 Four specifi c questions are most often assessed.

    1.    Is there a trend in the magnitude or frequency of events through time.  
    2.    Are there cyclic patterns in the long term data?  
    3.    Is an event correlated with other events in time?  
    4.    Is there a point in time at which a pattern changes?     

 The fi rst question has already been addressed in Chap.   27    : for binary data a chi-
square trend test, for continuous data linear regression is available. Both tests will 
be more sensitive than standard chi-square or t-tests if a trend is in the data, because 
they only have one degree of freedom. 

 The current chapter addresses cyclic patterns in longitudinal data that can be ana-
lyzed using auto correlation. Second, it addresses whether two variables that are related 
at the start of the observation remain related through time. Third, whether change points 
can be identifi ed, which is a particularly important issue with time series. 

 In this chapter we will also briefl y address modern computationally intensive 
methods like ARMA (autoregressive moving averages) and wavelet analysis, and, 
fi nally, we will underscore that smoothing is helpful with wild patterns in the data, 
and how it can be done.  

    Chapter 64   
 Time Series                 
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    2   Autocorrelation 

 A correlation coeffi cient r is a measure of the correlation between two correlated 
data sets. This has been explained, for example, in Chap.   14    . It varies between −1 
and +1, and it equals the cross product of the deviations of observations from their 
means. If the correlated data sets are not taken at a point of time but instead taken 
sequentially through time, then the correlation between them is termed  serial cor-
relation . A serial correlation in which the second of the matching set is a repeat of 
the fi rst is called an  autocorrelation . If the second is a different variable, then the 
serial correlation is a  cross correlation . The method of autocorrelation tells us 
whether a single variable such as disease severity is seasonal. 

 Observations through time may be correlated with themselves. A set of observa-
tions through time is taken as the fi rst set, and the same set is taken as the second, 
except in a lagged form (Fig.  64.1 ).   

 Original series  First-order pairs  Second-order pairs 

 1  1 4  1 6 
 4  4 6  4 3 
 6  6 3  6 5 
 3  3 5  3 2 
 5  5 2  5 7 
 2  2 7 
 7 

 If the autocorrelation coeffi cient retreats from 1.00 as the lag increases and then 
returns to nearly 1.00, then we know that we have a periodically recurring disease. 
If that lag is 12 months, then the disease will be seasonal. A plot of autocorrelation 
depending on lag is termed a correlogram. Periodicities in a time series can be seen 
easily in a correlogram as the time values at which the autocorrelation coeffi cient 
approached 1.00.  

    3   Cross Correlation 

 The method of cross correlation tells us whether two variables are related through 
time. For example, the correlation of infant malaria between malaria-free and 
infected mothers are followed for 2 years. The study should tell us how close the 
two variables (malaria-free and infected mothers) are through time. The correlation 
is based on the difference between them, not on their behavior through time. Thus, 
if they both rise or fall together, the correlation is high even though the pattern may 
not be simple. Serial correlations can also be calculated with one of the sets lagged 
behind the other. The severity of a disease having a 2 week incubation period can be 
correlated with the symptoms observed during exposure to the infection. By varying 
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the lag we may even be able to fi nd the incubation period. Also, by knowing the 
incubation period, fi nding lagged cross correlations may be helpful to identify 
severity of exposure. 

 Another example of cross correlation with lag is given. A group of people who 
recently traveled in a tropical country contract a new type of viral disease. The dates 
of visits and symptom onset are correlated with various lags. The lag that provides 
the largest cross correlation coeffi cient estimates the average incubation time. These 
examples are given by Riffenburgh  (  1999  ) .  

    4   Change Points 

 A very important issue with time series is the establishment of change points. 
A change point indicates that a difference in the pattern of the time series has occurred. 
Various methods for assessment are available but most of them are very complex. 
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  Fig. 64.1    An example of lagged scatter plots of different disease severity scores       
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One simple method is called “moving the F-value”, and it works very well. It will 
be briefl y discussed. 

 Variances of samples moving along the timeline are calculated, and then divided 
by its baseline variance. In this way changing F-values are created. A critical F-value 
is defi ned, and once the time series passes this critical F-value, we will conclude that 
a serious change point has been reached.  

 Observation  Correlation  Moving F-value  Moving F 

 323  0.9104  …  … 
 324  0.9111  …  … 
 …  …  …  … 
 331  0 l.9172  …  1.605 
 332  0.9183  …  1.749 
 333  0.9196  0.001398  1.912 
 334  0.9210  0.001601  2.190 
 335  0.9225  0.001826  2.498 
 336  0.9242  …  … 
 ….  …  …  … 
 343  0.9412  …  … 
 344  0.9443  …  … 

 In the above example the critical F-value was 2.20. The statistic crosses the line 
at observation no 335, which is taken as the point of change from a rather horizontal 
pattern of observations to a more sloped one.  

    5   Discussion 

 Some time series contain wild patterns of values, and very often a potential pattern 
of sequences is obscured by the wide variability of the data. A potential pattern can, 
then, be better discerned if the variability about the data is reduced, otherwise called 
smoothed. Smoothing is not needed with very small samples, because here no pat-
terns can be detected anyway. However with large samples smoothing is useful and 
smoothed data can, subsequently, be further tested with the methods as reviewed 
above. Many methods for smoothing exist, including convolution fi lters using 
moved averages, recursive fi lters using autoregression, exponential smoothing as 
used in SPSS  (  2011     ) , kernel regression (Chap.   24    ), and splines (Chap.   24    ) etc. 
However, simpler methods of smoothing are useful and an example is given. The 
underneath fi gures show a wild pattern of data from a time series. Simply, taking the 
median of every subsequent seven values gives an idea of a slightly increasing trend. 
If instead the mean values of every subsequent 50 values are given, an even better 
pattern of the rising pattern of the data is suggested. Performing a regression analysis 
of the second order with the mean values as independent variable provided a very 
good fi t of these data with a p-value as small as 0.001 (Fig.  64.2    ).  

 As with much of statistics more sophisticated methods accounting effects of 
potential biases are, generally, available. One example is the ARMA (autoregressive 
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moving average) method, a combination of the MA (moving averages) and AR 
(autoregressive) models, providing better fi t for some data sets, but at the same time 
at risk of power loss if for one reason or another the data do not fi t well. Also the 
wavelet theory for describing time series is a relevant though computationally inten-
sive method. It assesses brief oscillations like seismographic and heart monitor dis-
plays, but also audio and image signals. The software program S-plus  (  2011  )  
provides the module Discrete Wavelet Transform which can be and has been 
used for purpose like blood pressure, heart rate and ECG analyses, DNA analyses, 
protein analyses, climatology, general signal processing, image processing etc. 
Terminology includes mother wavelets (i.e. the wavelet functions) and the father 
wavelets (i.e. the scaling functions) (Fig.  64.3 ).   

  Fig. 64.2     Upper graph  gives a wild pattern of data from a time series. Simply, taking the medians 
( thin line lower graph ) of every subsequent seven values gives an idea of a slightly increasing 
trend. If instead the mean values of every subsequent 50 values are given ( fat line lower graph ), an 
even better pattern of the rising pattern of the data is suggested (From Riffenburgh  (  1999  ) , with 
permission from the editor)       
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    6   Conclusions 

     Background:     Time series often appear as a sequence of unpaired or paired data 
observed through time, and are encountered in virtually every fi eld of medicine.     

   Objectives:     To address cyclic patterns in longitudinal data that can be analyzed 
using auto correlation. Second, to address how two variables that are related at the 
start of the observation can be assessed through time. To address how change points 
in time series can be identifi ed.     

   Results: 

    1.    If the correlated data sets are not taken at a point of time but instead taken sequen-
tially through time, then the correlation between them is termed  serial correlation . 
A serial correlation in which the second of the matching set is a repeat of the fi rst 
is called an  autocorrelation .  

    2.    If the second is a different variable, then the serial correlation is a  cross 
correlation .  

    3.    “Moving the F-value” establishes change points in time series.  
    4.    With time series data smoothing is useful and smoothed data can, subsequently, 

be further used for testing the data.  
    5.    The ARMA (autoregressive moving average) method is a sophisticated method 

for better fi t of some types of time series.  
    6.    The wavelet theory enables to assess quantitatively time series consisting of 

oscillation patterns.      

   Conclusions:     The analysis of time series focuses on the identifi cation of data pat-
terns and the prediction of future observations, and is an increasingly important 
subject in the fi eld of clinical data analysis.            

−1−2 1
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2 3
t

coiflet phi of order 2

1.5

0.5

  Fig. 64.3    Example of a 
wavelet function consisting 
of the sum of father and 
mother wavelets instead of a 
sum of sines and cosines like 
with Fourier analysis       
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     1   Introduction    

 In observational studies odds ratios (ORs) and multiple regressions models are com-
monly used for respectively the surrogate measurements of relative risks and the 
assessments of independent risk factors. In clinical trials both of them can be used 
for different purposes. Odds ratios unlike chi-square tests provide a direct insight in 
the strength of the relationship: odds ratios describe the probability that patients 
with a certain treatment will have the event compared to those without. Multiple 
regression models can reduce the data spread due to certain patient characteristics 
like differences in baseline values, and thus, improve the precision of the treatment 
comparison. Despite these advantages these methods are not routinely used for the 
evaluation of clinical trials. The current chapter was written (1) to emphasize the 
great potential of odds ratios and multiple regression models in clinical trials, (2) to 
illustrate the ease of use, and (3) to familiarize the non-mathematical readership of 
this book with these important methods for clinical trials.  

    2   Understanding Odds Ratios (ORs   ) 

 As stated recently by Guyatt and Rennie, while clinicians have an intuitive under-
standing of risks and even risk ratios, and gamblers of odds, no one, with the pos-
sible exception of a few statisticians, intuitively understands ORs (Guyatt and 
Rennie  2001  ) . The clinical perception of ORs may be diffi cult. Yet, they have 
obtained an important place in observational research, particularly, unmatched 
case-control studies. Because, in such studies, patients are selected on the basis of 
their disease, and controls are just a small sample from the target population, it is 
impossible to calculate either the absolute or the relative risk of a disease. Instead,

    Chapter 65   
 Odds Ratios and Multiple Regression Models, 
Why and How to Use Them                 
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= the odds of a disease in a group exposed to a risk factor

the OR
the odds of the same disease in a group unexposed to the risk factor    

can be used as a surrogate measure for the relative risk of disease. ORs can, how-
ever, also be used for different purposes. In clinical trials, particularly, those using 
events as endpoints like cardiovascular trials, ORs can be used as an alternative to 
the traditional  c  2  – test for assessing patients with versus without an event. Apart 
from the p-values,  c  2  – tests do not provide an insight in the strength of the relation-
ship. Instead, ORs measure the magnitude of association, and, in addition, describe 
the probability that people with a certain treatment will have the event compared to 
people without the treatment. Despite this advantage ORs are not routinely used for 
the evaluation of clinical trials. 

    2.1   Odds Ratios (ORs) as an Alternative Method to  c   2 -Tests 
for the Analysis of Binary Data 

 The odds is the probability that an event happens divided by the chance that it does 
not so.  

 Event  Yes  No (numbers of patients) 

 Treatment-1  p  q 
 Treatment-2  r  s 

 With treatment-1 the probability or risk of an event can be described by p/(p + q), 
with treatment-2 by r/(r + s), the ratio of p/(p + q) and r/(r + s) = risk ratio (RR). 

 The odds of an event from treatment-1 is different. It equals p/q, and the ratio of 
two odds, p/q and r/s is called the odds ratio (OR). In case-control studies ORs are 
used as a surrogate measure for RRs, because p/(p + q) in such studies is, simply, 
nonsense. Let us assume:  

 Event-group  No-event-group 
 Target population 
(numbers of patients) 

 Risk factor (treatment)  32 (p)   4(q)   4,000 
 No risk factor (no treatment)  24 (r) +  52 (s) +  52,000 

 56  56 

 The risk factor could be a treatment. The no-event-group group is just a random 
sample from the target population, but the ratio r/s is that of target population. 
Suppose 4 = 4,000 and 52 = 52,000, then the magnitude of

     

p / (p q) p / q
is suddenly close to

r / (r s) r / s

+
+   

.
  

 This means that the OR in this situation is a good approximation of the RR of the 
target population. In clinical trials things are different. Both ORs and RRs can be 



6972 Understanding Odds Ratios (ORs)

meaningfully used. An OR or RR of 1.0 indicates no difference between treatment-1 
and -2. The more distant from 1.0, the larger the difference between the two treat-
ments where the OR is always more distant than the RR. An advantage of the RR is 
that it truly refl ects the magnitude of the increased risk, e.g., a risk of ½ in group-1 
and ¼ in group-2 produces a RR of ½/¼ = 2, a twice increased risk. The OR of these 
data produces the result 1/(1/3) = 3, a three times increased odds ratio, which is 
clinically somewhat more diffi cult to understand. However an increased OR can 
still be interpreted as an increased probability of events in patients with the treat-
ment compared to those without the treatment. For clinical trials advantages of the 
ORs compared to the RRs include:

    1.    ORs can be used as an alternative to the widely used  c  2  – tests for analyzing 2 × 2 
contingency tables, while RRs can not because they use different cells (Bland 
and Altman  2000  ) .  

    2.    Statistical software uses rarely RRs, and mainly ORs.  ( BUGS    y WinBUGS  2011 ; 
S plus  2011 ; Stata  2011 ; StatsDirect  2011 ; StatXact  2011 ; True Epistat  2011 ; 
SAS  2011 ; SPSS Statistical Software  2011  )   

    3.    Computations using RRs are less sensitive than those using ORs. This is due to 
ceiling problems, risks run from 0 to 1, odds from 0 to infi nity (Zwinderman 
et al.  1998  ) .  

    4.    Unlike RRs, ORs are the basis of modern methods like meta-analyses of 
clinical trials (Zwinderman  2006  ) , propensity scores for assessment of con-
founding (Cleophas and Zwinderman  2007  ) , logistic regression for subgroup 
analysis (Rubin  1997  ) , Cox regression for proportional hazard ratios 
(Cleophas  2005  )  etc.      

    2.2   How to Analyze Odds Ratios (ORs) 

 If we take many samples from a target population, the mean results of those samples 
usually follow a normal frequency distribution, meaning that the value in the middle 
will be observed most frequently and the more distant from the middle the less fre-
quently a value will be observed. For example, we will have only 5% chance to fi nd 
a result more than 2 standard errors (SEs) (or more precisely 1.96 SEs) distant from 
the middle. The same is true with proportional data. Many statistical tests make use 
of the normal distribution to make predictions. Figure  65.1  shows, e.g., how the 
normal distribution theorem is used to reject the null-hypothesis of no difference 
from zero.  

 A problem with ORs is that they are not normally distributed. And so, the above 
approach to making predictions cannot be applied. Figure  65.2  upper graph shows 
how skewed the frequency distribution of ORs, actually, can be. Suppose the OR of 
a representative sample is 0.25. Then it can be demonstrated that the chance of fi nding 
a lower or higher OR the next time are far from equal (Fig.  65.2  upper graph). 
Chances can be expressed in the form of 95% confi dence intervals which are for the 
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H1

H0

SEs
543210

PROBABILITY
DISTRIBUTION

−2 −1−3

  Fig. 65.1    H
1
 = graph based on the data of a sample with standard errors distant from zero (SEs) as 

unit on the x-axis. H
0
 = same graph with a mean value of 0. We make a giant leap from the sample 

to the entire population, and we can do so because the sample is assumed to be representative for 
the entire population. H

1
 = also the summary of the means of many samples similar to our sample. 

H
0
 = also the summary of the means of many samples similar to our sample, but with an overall 

effect of 0. Our mean not 0 but 2.9. Still it could be an outlier of many samples with an overall 
effect of 0. If H

0
 is true, then our sample is an outlier. We can’t prove, but calculate the chance/

probability of this possibility. A mean result of 2.9 SEs is far distant from 0: suppose it belongs to 
H

0
. Only 5% of H

0
 trials >2.0 SEs distant 0. The chance that it belongs to H

0
 is thus <5%. We 

conclude that we have <5% chance to fi nd this result, and, therefore, reject this small chance       

  Fig. 65.2     Upper graph : frequency distribution of an OR of 0.25 with 95% confi dence interval; 
 lower graph  logarithmic transformation of the  upper graph        
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given example between 0.055 and 1.14. With an OR of 1.803 the 95% confi dence 
interval is between 1.11 and 2.92 (Fig.  65.3  upper graph). The frequency distribu-
tions are not symmetrical around the observed sample OR. This asymmetry is, espe-
cially, noticeable when the sample OR is low (Fig.  65.2  upper graph). Statisticians 
were very happy to observe that something wonderful happened when on the x-axis 
of the frequency distribution curve the OR was replaced with the logarithm of the 
OR (log OR). A close to normal distribution was observed (Figs.  65.2  and  65.3  
lower graphs). This means that the log OR can be used for testing ORs. We should 
add that throughout the text the term log indicates the natural logarithm (logarithm 
with base e).   

 As explained in Fig.  65.1 , if the log OR is more than 2 SEs distant from a log OR 
of 0, the null-hypothesis of no difference from 0 is rejected. Our result is, then, sig-
nifi cantly different from 0 at p <0.05.  

 Event  Yes  No (numbers of patients) 

 Treatment-1  p  q 
 Treatment-2  r  s 

  Fig. 65.3     Upper graph : frequency distribution of an OR of 1.803 with 95% confi dence interval; 
 lower graph  logarithmic transformation of the  upper graph        
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   If OR (= p/q/r/s) = 1, then no difference exists between treatment-1 and -2.  
  If OR = 1, then log OR = 0.    

 With normal distributions, if a mean result is >2 SEs distant from 0, it will be 
signifi cantly different from 0 at p < 0.05. Also, if log OR is >2 SEs distant from 0, it 
will be signifi cantly different from 0 at p < 0.05. 

 Examples     

 Study 1   < --.-- >
< --.-- >

< --.-- >

     log OR >2SEs distant from 0 → p < 0.05 
 Study 1  log OR >2SEs distant from 0 → p < 0.05 
 Study 1  log OR >2SEs distant from 0 → p < 0.05 

 Log OR = 0 (OR = 1.0) 

 In order to proceed we need to know the standard errors of the log odds ratios. 
For the calculation of a standard error of the log odds ratios a mathematical trick 
called the quadratic approximation  ( Anonymous  2011  )  has to be used. Most func-
tions f(x) can be represented by a power series near some point a:

    = + − + − + ……2
0 1 2 3f (x) c c (x a) c (x a) c   

   where c 
0
 , c 

1
 , c 

3
 ….. are constants.    

 If we put x = a in the equation, then all terms after the fi rst are 0, and f (a) = c 
0
 . 

 If we differentiate the equation, then we have   

  f c = (x)ا
1 
+ 2c

2
(x − a) + 3c

3
(x − a)2.....     

 If we put again x = a, then f  1  (a) = c 
1
  

 If we take the second differentiation, we have

    f 2c = (x)اا
2 
+ 6c

3
(x − a) + 12c

4
.....  

    f 2c = (a)اا
2 
orc

2 
= f    .2/(a)اا

 As the right end terms of the equation soon will be very small, we can stop right 
here and neglect these terms. This means that f(x) can be described as

     f(x) = f (a) + f f + (x–a) (a)ا
اا

–
2 

(a)—(x–a) 2     

 Even f (a) + f  .is a good approximation of f (x) (x − a) (a)  ا 
 This quadratic approximation formula can be conveniently used to develop a 

 formula for the standard errors of odds ratios as follows:

       log (x) = log (a) + (x − a) logا (a)    

  log ا  (a) denotes the fi rst derivative of log(a), the slope of the graph of log(a) 
against a which equals 1/a.    

 Adding or subtracting a constant to a variable leaves its standard error unchanged 
and multiplying by a constant has the effect of multiplying the standard error by that 
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constant. Applying these rules under the assumption that the variable x is close to 
(a) we can further deduce:

     
= se x

se log (x)
x     

 If the variable is an odds, we can calculate the standard error of the log odds 
according to

     
= se odds

se log (odds)
odds      

 Number responders  Non-responders 

 Treatment-0  p  q 
 Treatment-1  r  s 

 If in an experiment of (p + q) patients there are p responders to a treatment, the 
odds of responding is p/q. The standard error of the odds is given by the formula se

     
⎡ ⎤= √ +⎣ ⎦

3odds p(p q) / q .
    

 We can now readily calculate the standard error of the log (odds).

     
( )

⎡ ⎤√ +⎣ ⎦= = = √ +
3p(p q) / qse odds

Se log (odds) 1 / p 1 / q .
odds p / q     

 More relevant to us than the standard error of an odds is the standard error of 
an OR. 

 The odds of responding in treatment-group-0 is p/q, in treatment-group-1 it is r/s. 
The standard error of the log (OR) is given by the formula √(1/p + 1/q + 1/r + 1/s).  

    2.3   Real Data Examples of Simple OR Analyses 

 The fi rst example given is from the data in Fig.  65.2  left side.  

 Event  Yes  No (numbers of patients) 

 Treatment-1   5 (p)  10 (q) 
 Treatment-2  10 (r)   5 (s) 

     = =OR p / q / r / s 0.25,    

     = −log OR 1.3863,    
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( )SEM log OR 1 / p 1 / q 1 / r 1 / s 0.7746,

log OR 2 SEMs 1.3863 1.5182,

between 2.905 and 0.132.

= √ + + + =

± = − ±
= −     

 Now turn the log numbers into real numbers by the antilog button of the pocket 
calculator.

     = between 0.055 en 1.14.     

 This result “crosses” 1.0, and, so, it is not signifi cantly different from 1.0. 
 The second example given is from Fig.  65.3  right side.  

 Event  Yes  No (numbers of patients) 

 Treatment-1   77  62 
 Treatment-2  103  46 

     

( )

OR 103 / 46 / 77 / 62 2.239 /1.242 1.803,

log OR 0.589,

SEM log OR 1 /103 1 / 46 1 / 77 1 / 62 0.245,

log OR 2 SEMs 0.589 2(0.245),

0.589 0.482,

between 0.107 and 1.071.

= = =
=

= √ + + + =

± = ±
= ±
=     

 Turn    the log numbers into real numbers by the antilog button of the pocket 
calculator.

     

between 1.11 and 2.92,

significantly different from 1.0.

=

    

 The p-value of this difference can be calculated using the t-test. 
 t = log OR/SEM = 0.589/0.245 = 2.4082, which according to the t-table means a 

p-value <0.02.  

    2.4   Real Data Examples of Advanced OR Analyses 

 Odds ratios are also the basis of many modern methods like various logistic regres-
sion models used to adjust for subgroup analyses. A simple example of a logistic 
model is given.  

 Responders  Non-responders 

 New treatment (group-1)  17 (p)  4 (q) 
 Control treatment (group-2)  19 (r)  28 (s) 
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 The odds of responding are p/q and r/s,

     

( ) ( ) ( )odds ratio OR p / q / r / s

odds of responding group 1

odds of responding group 2

=
−

=
−     

 As there is a linear relationship between treatment modality and log odds of 
responding, we use a loglinear regression model called binary logistic regression 
instead of a linear regression model.

     

The linear regression model y a bx
is transformed into : log odds a bx.

= +
= +     

 Log odds is the dependent variable, and x is the independent variable (treatment 
modality: 1 if the patient is given the new treatment, 0 if control).

     

a  bx

a  b

a

a  b

Instead of log odds a bx
we can describe the equation as odds e ,
if new treatment,  then x 1,  and odds e ,
if control treatment,  then x 0,  and odds e
the ratio of two treatments odds ratio e / e

+

+

+

= +
=

= =
= =

= a be .=     

 Software calculates the best b for given data,

   if b = 0, then e b  = OR = 1,  
  if b signifi cantly > 0, then the OR signifi cantly > 1, and there is a signifi cant difference 
between the new treatment and control.    

 The results are  

 Coeffi cients  SEM  t  p 

 a  −1.95  0.53  …..  ….. 
 b    1.83  0.63  2.9  0.004 

 We can conclude that b = signifi cantly different from 0, and that there is, thus, a 
signifi cant difference between new treatment and control, the odds of cure is 
e 1.83  = 6.2339 times greater in the treatment group than it is in the control group. 

 The logistic model can adjust for subgroups as demonstrated underneath:  

 Responders  Non-responders  Responders  Non-responders 

 >50 years  <50 years 

 Group-1 (new treatment)  4  12  13   2 
 Group-2 (control treatment)  9  16  10  12 
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 Software calculates best fi t b- and a-values for data:  

 Coeffi cients  SEM  t  p 

 a > 50  −2.37  0.65 
 a < 50  −1.54  0.59 
 b > 50    1.83  0.67  2.7..  0.007 
 b < 50    1.83  0.67  2.7..  0.007 

 We can conclude here that the b-values are identical and both signifi cantly different 
from 0. There is, thus, a signifi cant difference between the new and control treat-
ment also after age-class adjustment. In both subgroups the new treatment is better 
than control, which strengthens the earlier conclusions from these data.   

    3   Multiple Regression Models to Reduce the Spread 
in the Data 

 Small precision results in lack of power to reject null hypotheses and wide 
confidence intervals for parameter estimates. Certain patient characteristics in ran-
domized controlled trials may cause spread in the data even if the characteristics are 
equally distributed among the treatment groups and do not interact with the treat-
ment modalities. As an example, sulfonurea-compounds are effi cacious for the 
treatment of diabetes type II. In a parallel-group clinical trial 36 patients with dia-
betes type II were treated with a potent (glibencamide) and a non-potent sulfonurea-
compound (tolbutamide). Effi cacy of treatment was assessed by fasting glucose. In the 
glibencamide group fasting glucose after treatment was 7.50 with standard devia-
tion 2.01 mmol/l, in the tolbutamide group 8.50 with standard error 1.76 mmol/l. 
The difference in effi cacy equals 8.50–7.50 = 1.00 mmol/l glucose with a pooled 
standard error of 0.94 mmol/l. According to the unpaired t-test this difference was 
not signifi cant (p > 0.05). These data can also be assessed by a linear regression 
model with on the x-axis the treatment modality (0 = glibencamide; 1 = tolbutamide), 
and on the y-axis treatment effi cacy (fasting glucose), (Fig.  65.4 , left graph). The 
regression coeffi cient (direction coeffi cient) of the regression line equals 
b = 1.00 mmol/l with standard error 0.94 mmol/l, p > 0.05: exactly the same result as 
that obtained by an unpaired t-test. However, the regression model enables to add 
a second variable: the presence of beta-cell failure defi ned as a fasting glucose 
>8.0 mmol/l. After adjustment for this second variable the treatment effi cacy b 
was unchanged (1.00 mmol/l), but standard errors fell from 0.94 to 0.53 mmol/l, 
with a signifi cance of difference between the two treatment modalities at p < 0.05 
(Fig.  65.4 , right graph). This initial lack of precision was not caused by confound-
ing, because in either subgroup the number of patients receiving glibencamide 
was similar to that receiving tolbutamide. Also interaction could not explain the 
lack of precision, because the difference in treatment effi cacy in the two sub-
groups was similar. By appropriate data modeling some of the variability is 
removed from the data, and a more precise data comparison is produced. So far, 
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  Fig. 65.4    Mean fasting glucose levels and standard deviations of a parallel-group study of two 
treatments for diabetes type II.  Left graph : linear regression of overall data.  Right graph : the same 
analysis after adjustment for the presence of beta cell failure or not (fasting glucose >8 mmol/l)       

data modeling has not been emphasized in the analysis of prospective randomized 
clinical trials, and special statistical techniques need to be applied including the 
transformation of parallel-group data into regression data and the addition of 
covariates to the models (Cleophas  2003,   2005  ) . We should emphasize that low 
precision in a clinical trial may be caused by a biased study due to the presence of 
confounding or interacting variables. Adjusting such variables will, of course, 
improve precision. In the present chapter we demonstrate that some covariates 
even if they are no confounding or interacting variables, may contribute to increas-
ing precision of the data analysis.  

    3.1   A Linear Regression Model for Increasing Precision 

 The underneath data present a parallel-group trial comparing effi cacy of a new laxative 
versus control laxative.  

 Patient no 
 Treatment modality 
(new = 0, control = 1) 

 Response = stool frequency 
after treatment (4 week stools) 

 Baseline stool frequency 
(4 week stools) 

 1  0  24  8 
 2  0  30  13 
 3  0  25  15 
 4  1  35  10 
 5  1  39  9 
 6  0  30  10 

(continued)
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 Patient no 
 Treatment modality 
(new = 0, control = 1) 

 Response = stool frequency 
after treatment (4 week stools) 

 Baseline stool frequency 
(4 week stools) 

 7  0  27  8 
 8  0  14  5 
 9  1  39  13 
 10  1  42  15 
 11  1  41  11 
 12  1  38  11 
 13  1  39  12 
 14  1  37  10 
 15  1  47  18 
 16  0  30  13 
 17  1  36  12 
 18  0  12  4 
 19  0  26  10 
 20  1  20  8 
 21  0  43  16 
 22  0  31  15 
 23  1  40  14 
 24  0  31  7 
 25  1  36  12 
 26  0  21  6 
 27  0  44  19 
 28  1  11  5 
 29  0  27  8 
 30  0  24  9 
 31  1  40  15 
 32  1  32  7 
 33  0  10  6 
 34  1  37  14 
 35  0  19  7 

   SPSS statistical software is used for analysis  ( SPSS Statistical Software  2011  ) .  
  First, enter the data or a data-fi le, e.g., from Excel  ( Excel by Windows  2011  ) .  
  Then command: statistics; regression; linear.    

 The underneath results are presented. 
 The mean difference in response between new treatment and control = 9.824 stools 
per 4 weeks (se = standard error = 2.965). The t-test produces a t-value of 
9.824/2.965 = 3.313, and the t-table gives a p-value of <0.01. 
 A linear regression according to

   y = a + bx  
  with y = response and x = treatment modalities (0 = new treatment, 1 = control),  
  a = intercept, and b = regression coeffi cient,   

(continued)
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produces a similar result

   b = 9.824  
  se  

b
  = 2.965  

  t = 3.313  
   p-value = 0.020   
  95% confi dence interval 4.013–15.635.    

 Improved precision of this data analysis is a possibility if we extend the regression 
model by including a second explanatory-variable = baseline stool frequency accord-
ing to

   y = a + b 
1
  x 

1
  + b 

2
  x 

2
   

  with x 
1
  = treatment modalities (0 = new treatment, 1 = control),  

  x 
2
  = baseline stool frequencies, and b-values are partial regression coeffi cients.    

 This produces the following results

   b 
1
  = 6.852  

  se  
b1

  = 1.792  
  t = 3.823  
   p-value = 0.001   
  95% confi dence intervals 3.340–10.364.    

 Now, the 95% confi dence interval for the treatment effect is substantially narrower 
than the previously presented confi dence interval. So, by adjusting for the baseline 
stool frequencies an improved precision is obtained as demonstrated by a smaller con-
fi dence interval, a larger t-value, and a smaller p-value. We should of course answer the 
questions: is baseline stool a (1) confounding or (2) interacting variable. For answering 
question (1) we perform a simple linear regression analysis of the variables x 

1
  versus x 

2
  

which shows that the two variables are independent of one another (p > 0.05). X 
2
  is, 

thus, not a confounding variable. For answering question (2) a multiple linear regres-
sion is used with x 

1
 , x 

2
  and x 

3
  as interacting variable given by x 

1
 ·x 

2
  (x 

1
  times x 

2
 ).This 

analysis shows that x 
3
  is not a signifi cant determinant of treatment response (p > 0.05). 

There is, thus, no interaction between the two independent variables in the model. This 
means that increased precision to predict treatment response is obtained by includ-
ing the baseline stool into the model, and that this model is otherwise unbiased by 
confounding or interaction (more examples are given in Chap.   18    ).  

    3.2   A Logistic Regression Model for Increasing Precision 

 Consider the underneath two by two contingency table.  

 Numbers responders  Numbers non-responders 

 Treatment 1  30 a  45 b 
 Treatment 2  45 c  30 d 
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 The odds-ratio-of-responding equals a/b/c/d = 30/45/45/30 = 0.444. The natural 
logarithmic (ln) transformation of this odds ratio equals −0.8110. The approximate 
standard error of this logarithmic transformation is given by

     ( ) ( )√ + + + = √ + + + =1 / a 1 / b 1 / c 1 / d 1 / 30 1 / 45 /1 / 30 1 / 45 0.333.
    

 A t-test of these data produces a t-value of 0.8110/0.333 = 2.435. According to 
the t-table this odds-ratio is signifi cantly different from an odds ratio of 1.0 with a 
p-value of 0.015. 
 Logistic regression according to the model

   ln odds-of-responding = a + bx  
  with x = treatment modality (0 or 1),  
  a = intercept, and b = regression coeffi cient,   

produces the same result. 
 SPSS statistical software is again used to calculate the best b-values for the data 
given.

   First enter the data or an Excel data fi le.  
  The command: statistics; regression; binary logistic.  
  The underneath results are presented.

   b = 0.8110  
  se  

b
  = 0.333  

  odds ratio of responding to treatment 1/treatment 2 = 2.250 with 95% confi -
dence interval 1.613–3.139,  
   p-value = 0.015.         

 Over 50 years  Under 50 years 

 Responders  Non-responders  Responders  Non-responders 

 Treatment 1  18  20  12  25 
 Treatment 2  31   8  14  22 

 Improved precision of the statistical analysis is a possibility if we control for age 
groups using the underneath multiple logistic regression model

   ln odds-of-responding = a + b 
1
  x 

1
  + b 

2
  x 

2
   

  with x 
1
  = treatment modalities (0 = treatment 1, 1 = treatment 2)  

  x 
2
  = age classes (0 = < 50 years, 1 = > 50 years)  

  b-values are regression coeffi cients.    

 The following results are obtained:

   b 
1
  = 0.867  

  se 
b1

  = 0.350  
  odds ratio of responding to treatment 1/treatment 2 = 2.380 with 95% confi dence 

interval 1.677–3.377,  
   p-value = 0.012.     
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 After adjustment for age class improved precision to test the effi cacy of treat-
ment has been obtained as demonstrated by a smaller p-value. Is this increased 
precision due to unmasked confounding or interaction? For answering these ques-
tions we perform a simple binary logistic regression of the variables x 

1
  versus x 

2
  

which shows that the two variables are independent of one another (p > 0.05). X 
2
  is 

not a confounding variable. A multiple binary logistic regression is used with x 
1
 , x 

2
  

and x 
3
  as interacting variable given by x 

1
 ·x 

2
  (x 

1
  times x 

2
 ).This analysis shows that x 

3
  

is not a signifi cant determinant of treatment response (p > 0.05). There is, thus, no 
interaction between the two independent variables in the model. This means 
increased precision to predict treatment response has been obtained by including the 
age-category as covariate into the model, and that, like the previous example, it is 
unbiased by confounding or interaction.   

    4   Discussion 

 Advantages of the ORs compared to the RRs include (1) that, unlike RRs, they can 
be used as an alternative to the widely used  c  2  – tests for analyzing binary data in 
clinical trials, (2) that software for ORs is widely available, (3) that unlike RRs, ORs 
do not suffer from ceiling problems, and (4) that they are the basis of many modern 
methods like logistic regression, and Cox regression. An advantage of ORs com-
pared to the traditional  c  2  – tests is that ORs provide, in addition to p-values, a direct 
insight in the strength of the relationship: odds ratios describe the probability that 
people with a certain treatment will have the event compared to people without the 
treatment. 

 For the analysis of ORs the logarithms of the ORs should be used. Data results 
are obtained by turning the logarithmic numbers into real numbers by using their 
antilogarithms. 

 A limitation of the ORs is that, although they adequately present the relative 
benefi ts of a treatment compared to control, they do not tell us anything about the 
absolute benefi ts. For that purpose information about baseline risks or likelihoods 
are required. For example, with an odds ratio of cure of treated versus baseline of 5, 
and a baseline likelihood of cure of 10 out of 1,000 patients, the number of cured 
will increase to approximately 50 out of 1,000, with a baseline of 100 out of 1,000 
patients, it will do so to approximately 500 out of 1,000. 

 ORs, despite a fairly complex mathematical background, are easy to use, even 
for non-mathematicians, and they are the basis of many modern methods for analyz-
ing clinical data including multivariable methods. 

 Multiple regression analysis of confounding variables, although routinely used 
in retrospective observational studies, is not emphasized in prospective studies like 
randomized clinical trials (RCTs). The randomization process ensures that differ-
ences in potential confounders are the result of chance. If differences are statisti-
cally signifi cant, multiple regression analysis can be used for adjustment. Multiple 
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regression can, also, be used in prospective studies for a different purpose. Certain 
patient characteristics in RCTs may cause substantial spread in the data even if they 
are equally distributed. Including such data in the effi cacy analysis may increase 
precision and power in the data analysis. When the dependent variable is a change 
score, as in the fi rst example, the baseline level is the fi rst candidate to be consid-
ered, because it is almost certainly associated with the change score. When the 
dependent variable is an odds ratio, like in the second example, gender or age-cate-
gory are adequate candidates. 

 We should emphasize that it has to be decided prior to the trial and stated explic-
itly in the trial protocol whether a regression model will be applied, because post hoc 
decisions regarding regression modeling like any other post hoc change in the raises 
the risk of statistical bias due to multiple testing. Naturally, there is less opportunity 
for modeling in a small trial than in a large trial. There is no general rule about which 
sample sizes are required for sensible regression modeling, but one rule-of-thumb is 
that at least ten times as many patients are required as the number of variables in the 
model. This would mean that a data set of at least 30 is required if we wish to include 
a single covariate in the model for the purpose of improving precision. With every 
additional covariate in the model an extra regression weight must be estimated, which 
rapidly leads to a decreased rather than improved precision. 

 Regression analysis can be adequately used for improving precision of effi cacy 
analysis. Application of these models is very easy since many computer programs 
are available. For a successful application the fi t of the regression models should, 
however, always be checked for example by scatter plots, or in case of doubt by 
goodness of fi ts tests, and the covariate selection should be sparse. 

 We do hope that this chapter will stimulate clinical investigators to use odds 
ratios and multiple regression models more often.  

    5   Conclusions 

 Odds ratios (ORs) unlike  c  2  – tests provide a direct insight in the strength of the 
relationship between treatment modalities and treatment effects. Multiple regres-
sion models can reduce the data spread due to certain patient characteristics, and 
thus, improve the precision of the treatment comparison. Despite these advantages 
the use of these methods in clinical trials is relatively uncommon. 

 This chapter (1) emphasizes the great potential of odds ratios and multiple regression 
models as a basis of modern methods, (2) illustrates their ease of use, and (3) familiar-
izes the non-mathematical scientifi c community with these important methods. 

 Advantages of the ORs are multiple:

    1.    They describe the probability that people with a certain treatment will have an 
event compared to people without the treatment, and are, therefore, a welcome 
alternative to the widely used  c  2  – tests for analyzing binary data in clinical trials.  

    2.    Statistical software of ORs is widely available.  
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    3.    Computations using risk ratios (RRs) are less sensitive than those using ORs.  
    4.    ORs are the basis for modern methods like meta-analyses, propensity scores, 

logistic regression, Cox regression etc.     

 For analysis logarithms of the ORs have to be used, results are obtained by cal-
culating antilogarithms. A limitation of the ORs is that they present relative benefi ts 
but not absolute benefi ts. ORs, despite a fairly complex mathematical background, 
are easy to use, even for non-mathematicians. 

 Both linear and logistic regression models can be adequately applied for the 
purpose of improving precision of parameter estimates like treatment effects. We 
caution that, although application of these models is very easy with computer pro-
grams widely available, the fi t of the regression models should always be carefully 
checked, and the covariate selection should be carefully considered and sparse. 

 We do hope that this chapter will stimulate clinical investigators to use odds 
ratios and multiple regression models more often.      
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     1   Introduction    

 Because biological processes are full of variations, statistics can not give you 
certainties, but only chances. What kind of chances? Basically, the chances that 
prior hypotheses are true or untrue. The human brain excels in making hypotheses. 
We make hypotheses all the time, but they may be untrue. For example, when you 
were a kid, you thought that only girls could become doctors, because your family 
doctor was a girl. Later on this hypothesis appeared to be untrue. In clinical 
medicine we currently emphasize that hypotheses may be equally untrue and must 
be assessed prospectively with hard data. That’s where statistics comes in, and that 
is where at the same time many a clinician starts to become nervous, loses his/her 
self-confi dence, and is more than willing to leave his/her data to the statistical 
consultant who subsequently runs the data through a whole series of statistical tests 
of SAS  ( SAS Statistical Software  2011  )  or SPSS  ( SPSS Statistical Software  2011  )  
or comparable statistical computer software to see if there are any signifi cances. 
The current chapter was written to emphasize that the above scenario of analyzing 
clinical trial data is bad practice and frequently kills the data, and that biostatistics 
can do more for you than provide you with a host of irrelevant p-values.  

    2   Statistics Is Fun Because It Proves Your Hypothesis 
Was Right 

 Statistics is fun, particularly, for the clinical investigator. It is not mathematics, but a 
discipline at the interface of biology and mathematics. This means that maths is used 
to answer the biological questions. The scenario as described above does not answer 
reasonable biological questions. It is called data dredging and is the source of a lot of 

    Chapter 66   
 Statistics Is No “Bloodless” Algebra                 
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misinterpretations in clinical medicine. A statistical analysis should be confi ned to 
testing of the prior hypotheses. The problem with multiple statistical tests can be 
explained by gambling 20 times with a chance of success of 5%. You can be sure that 
after the game you will get (1 − 0.05) 20  = (0.95) 20  = 0.36 = 36% chance to win a prize. 
This result is, however, not based on any signifi cant effect but rather on the play of 
chance. Now, don’t let it happen to your trial. Also, a statistical result that does not 
confi rm your prior belief, don’t trust it. Make sure that the simplest univariate tests 
are used for your prospective trial data, because they are adequate and provide the 
best power. Fancy multivariate procedures are not in place to answer your prior 
hypotheses. Statistics is fun, because it generally confi rms or largely confi rms your 
prior hypotheses, which is appropriate because they were based on sound clinical 
arguments. If they don’t, this is peculiar and should make you anxious to fi nd out 
why so: imperfections within the design or execution of the trial? (Cleophas  1999  )  
It is fun to prove your hypothesis was right, or to fi nd out what you did overlook. 
Another fun thing with statistics, although completely different and by far not so 
important, is the method of secondary analyses: it does not prove anything, but it is 
kind of sports and gives you new and sound ideas for further research.  

    3   Statistical Principles Can Help to Improve 
the Quality of the Trial 

 Over the past decades, the randomized controlled trial has entered an era of continu-
ous improvement and has gradually become accepted as the most effective way of 
determining the relative effi cacy and toxicity of a new therapy, because it controls 
for placebo and time effects. However, even sensitive and properly designed and 
executed trials do not always confi rm hypotheses to be tested, and conclusions are 
not always confi rmed by subsequent trials. Although the former may be due to 
wrong hypotheses, the latter is likely to be due to the presence of certain imperfec-
tions within the design and execution, and analysis of the trial itself. Such principles 
could include (Cleophas and Zwinderman  2000  ) : (1) giving every effort to avoid 
asymmetries in the treatment groups (Chap.   1    , stratifi cation issues), (2) emphasis on 
statistical power rather than just null-hypothesis testing (Chap.   5    ), (3) assessing 
asymmetries of outcome variables in order to determine the most important deter-
minants of clinical benefi t (Chap.   17    ), (4) accounting routinely for Type III errors of 
mistakenly believing that an inferior treatment is superior (Chap.   5    ), (5) routinely 
weighing the odds of benefi ts against the odds of risks of new treatments.  

    4   Statistics Can Provide Worthwhile Extras to Your Research 

 The classical two-parallel-groups design for clinical drug trials is a rather dull 
activity and is, essentially, unable to answer many current scientifi c questions. Also, 
it is laborious, and in the clinical setting sometimes ethically or fi nancially impossible. 



7155 Statistics Is Not Like Algebra Bloodless

Examples of what the classical clinical trial design cannot manage: (1) assess 
multimodal therapies, (2) account historical data, (3) safeguard ethics and effi cacy 
during the course of long-term trials, (4) study drugs, before well-established toxicity 
information is available, (5) account the possibility of therapeutic equivalence 
between test and reference treatment, (6) study multiple treatments in one trial, 
(7) adjust change scores for baseline levels. Alternative designs for such purposes: 
(1) factorial designs (Chap.   1    ) (Farewell and Dángio  1981  ) , (2) historical controls 
designs (Chap.   1    ) (Sacks et al.  1982  ) , (3) group-sequential interim analysis designs 
(Chap.   6    ) (Pocock  1988  ) , (4) sequential designs for continuous monitoring (Chap. 
  6    ) (Whitehead  1998  ) , (5) therapeutic equivalence designs (Chap.   4    ), (6) multiple 
crossover-periods/multiple parallel-groups designs (Lauter  1996  ) , (7) increased 
precision designs through multivariable adjustment (Chap.   18    ). There is, of course, 
the increased risks of type I/II errors, and the possible loss of some of the validity 
criteria with the novel designs. However, provided that such possibilities are 
adequately accounted for in the design stage of the trial, the novel designs are 
acceptedly valid, and offer relevant scientifi c, ethical, and fi nancial extras.  

    5   Statistics Is Not Like Algebra Bloodless 

 Statistics is not like algebra bloodless, and requires a lot of biological thinking and 
just a little bit of mathematics. For example, mathematically we need representative 
sample sizes to make meaningful inferences about the whole population. Yet, from 
a biological point of view, this is less true: the fi rst datum encountered in a clinical 
situation of complete ignorance provides the greatest amount of information from 
any one datum an investigator will encounter. For example, consider a new disease 
for which there is no knowledge whatsoever about the order of magnitude of time of 
exposure, time of incubation, time of appearance of subsequent symptoms. The fi rst 
patient for whom we know such data provides a great deal of information. 

 Another example of biological rather than mathematical thinking involves the 
issue of making the test parameters alpha and beta fl exible. They are mostly set at 
respectively 5% and 20%. A 20% beta is, however, larger than is appropriate in 
many cases. For example, when the false positive is worse for the patient than the 
false negative, as in case of testing a drug for non-life threatening illness with the 
drug having severe side effects, the 5% and 20% choices for alpha and beta are 
reasonable. However, in testing treatment for cancer, the rate of false negatives is 
worse for the patient, and so, the ratio beta/alpha should be reduced. 

 A third example of biological thinking is the inclusion of a “safety factor” when 
estimating prior to a trial the sample size required. Usually the required sample size 
is calculated from a pilot study or from results quoted in the literature. However, 
these data are not the actual data from our study, and not using the real data may 
introduce an error. Also, the data as used for sample size calculation are subject to 
randomness error. Due to such errors the alpha and beta errors upon which our 
sample size is based may be larger than we thought. Because of these possibilities 
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we should add a “safety factor” to the sample size as calculated, and make our 
sample size somewhat larger than the calculated one, e.g., 10% larger. This is more 
important, the more uneasy we are about the ultimate result of the study being in 
agreement with the estimate used for sample size calculation.  

    6   Statistics Can Turn Art into Science 

 Traditionally, the science of medicine is considered to be based on experimental 
evidence, while the art of science is supposed to be based on trust, sympathy, the 
threatened patient, and other things that no one would believe that could ever be 
estimated by statistical methods. It is true that factors, of psychosocial and personal 
nature, are diffi cult to measure, but it is not impossible to do so. At fi rst, quality of 
life assessments were based on the amount of primary symptoms, e.g., pain scores 
etc. Increasingly it is recognized that it should be based on factors like feeling of 
well-being, social performance. Along this line of development, the art of medicine 
is more and more turned into science, e.g., with modern quality of life assessments 
addressing general feeling of well-being, physical activity domains etc. Statistical 
analyses can be readily performed on validated quality of life indices or any other 
measurements of effectiveness as developed (Chap.   38    ). It follows that this development 
is going to accomplish something that was only shortly believed to be impossible: 
turning the art of medicine into the science of medicine.  

    7   Statistics for Support Rather Than Illumination? 

 In 1948 the fi rst randomized controlled trial was published (Medical Research 
Council  1948  ) . Until then, observations had been largely uncontrolled. Initially, 
trials frequently did not confi rm hypotheses to be tested. This phenomenon was 
attributed to little sensitivity due to small samples, as well as inappropriate hypoth-
eses based on biased prior trials. Additional fl aws were being recognized and, 
subsequently better accounted for: carryover effects due to insuffi cient washout 
from previous treatments, time effects due to external factors and the natural history 
of conditions being studied, bias due to asymmetry between treatment groups, lack 
of sensitivity due to a negative correlation between treatment responses etc. 
Currently, due to the complexity of trials, clinicians increasingly leave the thinking 
to statisticians, a practice which is essentially wrong and produces fl awed research, 
because bio-research requires a lot of biological thinking and no more than a bit of 
statistics. Moreover, a statistician can do much more for you than provide you with 
a host of irrelevant p-values, but he/she can only do so, if you intuitively know what 
statistics can and what it cannot answer. Like Professor M. Hills, the famous statisti-
cian of London, used to say, clinicians often use statistics as a drunk uses a lantern 
standard, for support rather than illumination. Illumination can be obtained by 
exploring your clinical intuition against a mathematical background.  
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    8   Statistics Can Help the Clinician to Better Understand 
Limitations and Benefi ts of Current Research 

 Medical literature is currently snowed under with mortality trials, showing invariably 
a highly signifi cant 10–30% relative increase in survival. Mortality is considered 
an important endpoint, and this may be so. Yet, a relative increase in survival of 
10–30% generally means in absolute terms an increase of no more than 1–2%. 
Mortality is an insensitive variable of the effects of preventive medicine that is 
begun when subjects are middle-aged. At such ages the background noise associ-
ated with senescence becomes high. The endpoints better be reduction in morbidity 
so far. In addition, many clinicians know that patients would prefer assessment of 
quality of life and reduced morbidity rather than 1–2% increased survival in return 
for long term drug treatment with considerable side effects. Relative risk reduc-
tions are frequently overinterpreted by clinicians in terms of absolute risk reduc-
tions. And so are underpowered p-values: a p-value of 0.05 after all means the 
chance of a type II error of 50%. 

 On the other hand, statistics can do a lot more for clinicians than calculating 
p-values and relative risk reductions. Multivariable analyses can be used not only 
for exploring new ideas, but also for increasing precision of point estimates in a 
trial. Benefi t/risk analyses of trial data are helpful to provide relevant arguments for 
clinical decision making, and they are particularly so when their ratios are assessed 
quantitatively. Statistics can provide us with wonderful meta-analyses of indepen-
dent trials to fi nd out whether scientifi c fi ndings are consistent and can be general-
ized across populations.  

    9   Limitations of Statistics 

 Of course, we should avoid giving a non-stop laudatio of statistics only. It is time 
that we added a few remarks on its limitations and possible disadvantages in order 
to express a more balanced opinion. Statistics is at the interface of mathematics and 
biology. Therefore, it gives no certainties, only chances. What chances? For 
example, chances that hypotheses are true or untrue. We generally reject the null-
hypothesis of no effect at p < 0.05. However, p = 0.05 means 5% chance of a type I 
error of fi nding a difference where there is none, and 50% chance of a type II error 
of fi nding no difference where there is one. It pictures pretty well how limited 
statistical inferences can be. In addition to the risks of type I and type II errors, there 
is the issue of little clinical relevance in spite of statistically signifi cant fi ndings. 
A subanalysis of the SOLVD study (Yusuf et al.  1992  )  found no symptoms of 
angina pectoris in 85.3% of the patients on enalapril and in 82.5% of the patients on 
placebo (difference statistically signifi cant at p < 0.001). In situations like this, one 
has to wonder about the clinical relevance of the small difference. This is even more 
so when one considers that an active compound generally causes more side-effects 
than does a placebo. Finally, we have to consider the point of bias. Arguments have 
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been raised that controlled clinical trials although they adjust for placebo effects and 
time effects, are still quite vulnerable to other biases, e.g., psychological biases and 
selection biases. In clinical trials, as opposed to regular patient care, patients are 
generally highly compliant; their high compliance is an important reason for partici-
pating in the trials in the fi rst place. They have a positive attitude towards the trial 
and anticipate personal benefi t from it, a mechanism which is known as the 
Hawthorne effect (Campbell et al.  1995  ) . Alternatively, patients selected for a trial 
often refuse to comply with randomization which may render unrepresentative 
samples (Cleophas  1997  ) . Statistics has great diffi culty in handling such effects and 
is, essentially, unable to make sense of unrepresentative samples. Not being familiar 
with statistics raises a two-way risk: you’re not only missing the benefi t of it but also 
fail to adequately recognize the limitations of it.  

    10   Conclusions 

     1.    Statistics is fun for the clinical investigator because it generally confi rms or l 
largely confi rms his/her prior hypotheses.  

    2.    Accounting some simple statistical principles can help the clinical investigator 
reduce imperfections in the design and execution of clinical trials.  

    3.    For the clinical investigator getting a good command of non-classical study 
designs can provide worthwhile extras to his/her research.  

    4.    Statistics is not like algebra, because it requires a lot of biological thinking and 
just a little bit of mathematics.  

    5.    Statistical analyses can be readily performed on such modern quality of life 
assessments like general feeling of well-being, physical activity domains, 
psychosocial performance etc.  

    6.    Along this line the art of medicine is more and more being turned into scientifi c 
evidence.  

    7.    Statistics can do a lot for the clinical investigator if he/she intuitively knows 
what statistics can and what it cannot answer.  

    8.    Statistics can help clinical investigators to interpret more adequately limitations 
as well as benefi ts of current clinical research.  

    9.    Statistics has, of course, limitations of its own. It can not give certainties, only 
chances.  

    10.    Statistical signifi cance does not automatically indicate clinical relevance. 
Statistical methods can not test every possible source of bias in a trial.     

 Not being familiar with statistics raises a two-way risk: you’re not only miss-
ing the benefi t of it but also fail to adequately recognize its limitations. We hope 
that this book will be an incentive for readers to improve their statistical skills in 
order to better understand the statistical data as published in the literature and to 
be able to take better care of their own experimental data.      
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     1   Introduction    

 The controlled clinical trial, the gold standard for drug development, is in jeopardy. 
The pharmaceutical industry rapidly expands it’s commend over clinical trials. 
Scientifi c rigor requires independence and objectivity. Safeguarding such criteria is 
hard with industrial sponsors, benefi ting from favorable results, virtually completely 
in control. The recent Good Clinical Practice Criteria adopted by the European 
Community (Anonymous  1997  )  were not helpful, and even confi rmed the right of 
the pharmaceutical industry to keep everything under control. Except for the require-
ment that the trial protocol should be approved by an external protocol review board, 
little further external monitoring of the trial is required in Europe today. The present 
chapter was written to review fl awed procedures jeopardizing the credibility of 
current clinical trials, and to look for possible solutions to the dilemma between 
sponsored industry and scientifi c independence.  

    2   The Randomized Controlled Clinical Trial 
as the Gold Standard 

 Controlled clinical trials began in the UK with James Lind, on H.M.S. Salisbury, a 
royal Frigate, by the end of the 18th century. However, in 1948 the fi rst randomized 
controlled trial was actually published by the English Medical Research Council in 
the British Medical Journal (Medical Research Council  1948  ) . Until then, published 
observations had been uncontrolled. Initially, trials frequently did not confi rm 
hypotheses to be tested. This phenomenon was attributed to little sensitivity due to 
small samples, as well as inappropriate hypotheses based on biased prior trials. 
Additional fl aws were being recognized and, subsequently were better accounted 

    Chapter 67   
 Bias Due to Confl icts of Interests, 
Some Guidelines                 
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for: carryover effects due to insuffi cient washout from previous treatments, time 
effects due to external factors and the natural history of the condition under study, 
bias due to asymmetry between treatment groups, lack of sensitivity due to a nega-
tive correlation between treatment responses etc. Such fl aws mainly of a technical 
nature have been largely implemented and lead to trials after 1970 being of signifi -
cantly better quality than before. And so, the randomized clinical trial has gradually 
become accepted as the most effective way of determining the relative effi cacy and 
toxicity of new drug therapies. High quality criteria for clinical trials include clearly 
defi ned hypotheses, explicit description of methods, uniform data analysis, but, 
most of all, a valid design. A valid design means that the trial should be made 
independent, objective, balanced, blinded, controlled, with objective measurements. 
Any research but, certainly, industrially-sponsored drug research where sponsors 
benefi t from favorable results, benefi ts from valid designs.  

    3   Need for Circumspection Recognized 

 The past decade focused, in addition to technical aspects, on the need for circum-
spection in planning and conducting clinical trials (Cleophas et al.  2002  ) . As a 
consequence, prior to approval, clinical trial protocols started to be routinely 
scrutinized by different circumstantial organs, including ethic committees, institutional 
and federal review boards, national and international scientifi c organizations, and 
monitoring committees charged with conducting interim analyses. And so things 
seems to be developing just fi ne until something else emerged, the rapidly expand-
ing commend of the pharmaceutical industry over clinical trials. Scientifi c rigor 
requires independence and objectivity of clinical research, and safeguarding such 
principles is hard with sponsors virtually completely in control.  

    4   The Expanding Commend of the Pharmaceutical Industry 
Over Clinical Trials 

 Today megatrials are being performed costing billions of dollars paid by the indus-
try. Clinical research has become fragmented among many sites, and the control of 
clinical data often lies exclusively in the trial sponsor’s hands (Montaner et al. 
 2001  ) . A serious issue to consider here is adherence to scientifi c criteria like objec-
tivity, and validity criteria like blindness during the analysis phase. In the USA, the 
FDA audits ongoing registered trials for scientifi c validity. However, even on-site-
audits can hardly be considered capable of controlling each stage of the trial. Not 
any audits are provided by the FDA’s European counterparts. Instead, in 1991, the 
European Community endorsed the Good Clinical Practice (GCP) criteria devel-
oped (Anonymous  1997  )  as a collaborative effort of governments, industries, and 
the profession. For each of the contributing parties benefi ts are different. Governments 
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are interested in uniform guidelines and uniform legislation. For the profession the 
main incentives are scientifi c progress, and the adherence to scientifi c and validity 
criteria. In contrast, for the pharmaceutical industry a major incentive is its com-
mercial interest. And so, the criteria are, obviously, a compromise. Scientifi c criteria 
like clearly defi ned prior hypotheses, explicit description of methods, uniform data 
analyses are broadly stated in the guidelines given (Anonymous  1997  ) . However, 
scientifi c criteria like instruments to control independence and objectivity of 
research are not included. Validity criteria like control groups and blinding are rec-
ognized, but requirements like specialized monitoring teams consistent of a group 
of external independent investigators guiding such criteria, and charged with interim 
analysis and stopping rules are not mentioned. And so, the implementation of the 
Good Clinical Practice Criteria is not helpful for the purpose of safeguarding scien-
tifi c independence. Instead, they confi rmed the right of the pharmaceutical industry 
to keep everything under control.  

    5   Flawed Procedures Jeopardizing Current Clinical Trials 

 Flawed procedures jeopardizing current clinical trials are listed in Table  67.1 . 
Industries, at least in Europe, are allowed to choose their own independent protocol 
review board prior to approval. Frequently, a pharmaceutical company chooses one-
and-the-same-board for all of its (multicenter) studies. The independent protocol 
review board may approve protocols, even if the research is beyond its scope of 
expertise, for example, specialized protocols like oncology-protocols without an 
oncologist among its members. Once the protocol is approved, little further external 
review is required in Europe today. Due to recent European Community Regulations, 
health facilities hosting multicenter trials are requested to refrain from scientifi c or 
ethic assessment. Their local committees may assess local logistic aspects of the 
trial but no more than that. And so, the once so important role of local committees 

   Table 67.1    Flawed procedures jeopardizing current clinical trials   

 1. Pharmaceutical industries, at least in Europe, are allowed to choose their own independent 
review board prior to approval 

 2. The independent protocol review board approves protocol even if the research is beyond 
the scope of its expertise 

 3. Health facilities hosting multicenter research are requested to refrain from ethic or 
scientifi c assessment after approval by the independent review board 

 4. Trial monitors are often employees of pharmaceutical industry 
 5. Data control is predominantly in the hands of the sponsor 
 6. Interim analyses are rarely performed by independent groups 
 7. The scientifi c committee of a trial consists largely of guests (names of prominent physicians 

attached to the study) and graphters (for the purpose of giving the work more impact) 
 8. The analysis and report is produced by  ghosts  (clinical associates at the pharmaceutical 

companies) and is after a brief review co-signed by the  guests  and  graphters  
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to improve the objectivity of sponsored research is minimized. Another problem 
with the objectivity of industrially-sponsored clinical trials is the fact that the trial 
monitors are often employees of the pharmaceutical industry. Furthermore, data 
control is predominantly in the hands of the sponsor. Interim analyses are rarely 
performed by independent groups. The scientifi c committee of the trial consists 
largely of prominent but otherwise uninvolved physicians attached to the study, the 
so-called  guests . Analysis and report of the trial is generally produced by clinical 
associates at the pharmaceutical companies, the  ghosts , and, after a brief review, 
co-signed by prominent physicians attached to the study the so-called  graphters .   

    6   The Good News 

 The Helsinki guidelines rewritten in the year 2000 have been criticized (Diamant 
 2002  )  for its incompleteness regarding several ethical issues, e.g., those involving 
developing countries. However, these independently written guidelines also included 
important improvements. For the fi rst time the issue of confl ict of interests has been 
assessed in at least fi ve paragraphs. Good news is also the American FDA’s initia-
tive to start auditing sponsored trials on site. In May 1998 editors of 70 major 
journals have endorsed the Consolidated Standards of Reporting Trials Statement 
(CONSORT) in an attempt to standardize the way trials are conducted, analyzed 
and reported. The same year, the Cochrane Collaborators together with the British 
journals The Lancet and The British Medical Journal have launched the “Unpublished 
Paper Amnesty Movement”, in an attempt to reduce publication bias. There is also 
good news from the basis. For example, in 30 hospitals in the Netherlands local 
ethic committees, endorsed by the Netherlands Association of Hospitals, have 
declared that they will not give up scrutinizing sponsored research despite approval 
by the independent protocol review board. 

 In our educational hospital house offi cers are particularly critical of the results of 
industrially-sponsored research even if it is in the Lancet or the New England 
Journal of Medicine, and they are more reluctant to accept results not fi tting in their 
prior concept of pathophysiology, if the results are from industrially-sponsored 
research. Examples include: ACE-inhibitors for normotensive subjects at risk for 
cardiovascular disease (HOPE Study (Sleight et al.  2001  ) ), antihypertensive drugs 
for secondary secondary prevention of stroke in elderly subjects (PROGRESS Study 
(PROGRESS Collaborative Group  2001  ) ), beta-blockers for heart failure (many 
sponsored studies, but none of them demonstrating an unequivocal improvement of 
cardiac performance (Meyer and Cleophas  2001  ) ), cholesterol-lowering treatment 
for patients at risk of cardiovascular disease but normal LDL-cholesterol levels 
(Heart Protection Study), hypoglycemic drugs for prediabetics (NAVIGATOR 
Study). As a matter of fact, all of the above studies are based on not so sensitive 
univariable analyses. When we recently performed a multivariable analysis of a 
secondary prevention study with statins, we could demonstrate that patients with 
normal LDL-cholesterol levels did not benefi t (Cleophas and Zwinderman  2003  ) .  
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    7   Further Solutions to the Dilemma Between Sponsored 
Research and the Independence of Science 

 After more than 50 years of continuous improvement, the controlled clinical trial 
has become the most effective way of determining the relative effi cacy and toxicity 
of new drug therapies. This gold standard is, however, in jeopardy due to the 
expanding commend of the pharmaceutical industry. Mega-trials are not only paid 
for by the industry but also designed, carried-out, and analyzed by the industry. 
Because objectivity is at stake when industrial money mixes with the profession 
(Relman et al.  2001  )  it has been recently suggested to separate scientifi c research 
and the pharmaceutical industry. However, separation may not be necessary, and 
might be counterproductive to the progress of medicine. After all, pharmaceutical 
industry has deserved substantial credits for developing important medicines, while 
other bodies including governments have not been able to develop medicines in the 
past 40 years, with the exception of one or two vaccines. Also, separation would 
mean that economic incentives are lost not only on the part of the industry but also 
on the part of the profession while both are currently doing well in the progress of 
medicine. Money  was  and  is  a major motive to stimulate scientifi c progress. Without 
economic incentives from industry there may soon be few clinical trials. 
Circumspection from independent observers during each stage of the trial has been 
recognized as an alternative for increasing objectivity of research and preventing 
bias (Cleophas et al.  2002  ) . In addition, tight control of study data, analysis, and 
interpretation by the commercial sponsor is undesirable. It not only raises the risk 
of biased interpretation, but also limits the opportunities for the scientifi c commu-
nity to use the data for secondary analyses needed for future research (Montaner 
et al.  2001  ) . If the pharmaceutical industry allows the profession to more actively 
participate in different stages of the trial, scientifi c research will be better served, 
and reasonable biological questions will be better answered. First on the agenda 
will have to be the criteria for adequate circumspection (Table  67.2 ). Because the 
profession will be more convinced of its objective character, this allowance will 
not be counterproductive to the sales. Scientifi c research will be exciting again, 
confi rming prior hypotheses, and giving new and sound ideas for further research.   

   Table 67.2    Criteria for adequate circumspection   

 1. Disclosure of confl ict of interests and the nature of it from each party involved 
 2. Independent ethical and scientifi c assessment of the protocol 
 3. Independent monitoring of the conduct of the trial 
 4. Independent monitoring of data management 
 5. Independent monitoring of statistical analysis including the cleaning-up of the data 
 6. The requirement to publish even if data do not fi t in the commercial interest of the sponsor 
 7. Requirement that interim analyses be performed by an independent group 
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    8   Conclusions 

 The controlled clinical trial, the gold standard for clinical research, is in jeopardy. 
The pharmaceutical industry rapidly expands its commend over clinical trials. 
Scientifi c rigor requires independence and objectivity. Safeguarding such criteria is 
hard with industrial sponsors, benefi ting from favorable results, virtually completely 
in control. The objective of this chapter was to review fl awed procedures jeopardiz-
ing the credibility of trials, and to look for possible solutions to the dilemma between 
sponsored industry and scientifi c independence. 

 Flawed procedures jeopardizing current clinical trials could be listed as follows. 
Industries, at least in Europe, are allowed to choose their own independent protocol 
review board prior to approval. The independent protocol review board approves 
protocols even if the research is beyond the scope of its expertise. Health facilities 
hosting multicenter trials are requested to refrain from scientifi c or ethic assessment 
of the trial. Trial monitors are often employees of industry. Data control is predomi-
nantly in the hands of the sponsor. Interim analyses are rarely performed by indepen-
dent groups. The scientifi c committee of the trial consists largely of prominent but 
otherwise uninvolved physicians attached to the study. Analysis and report of the 
trial is generally provided by clinical associates at the pharmaceutical companies 
and, after a brief review, co-signed by prominent physicians attached to the study. 

 Possible solutions to the dilemma between sponsored industry and scientifi c 
independence could include the following. Circumspection from independent 
observers during each stage of the trial is desirable. In contrast, tight control of 
study data, analysis, and interpretation by the commercial sponsor is not desirable. 
If, instead, pharmaceutical industry allows the profession to more actively partici-
pate in different stages of the trial, scientifi c research will be better served, reason-
able biological questions will be better answered, and, because the profession will 
be more convinced of the objective character of the research, it will not be counter-
productive to the sales.      
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      T-Table   

 v   Q  =  0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

 2Q =  0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  1   0.325  1. 000  3.078  6.314  12.706  31.821  63.657  318.31 
  2   .289  0.816  1.886  2.920  4.303  6.965  9.925  22.326 
  3   .277  .765  1.638  2.353  3.182  4.547  5.841  10.213 
  4   .171  .741  1.533  2.132  2.776  3.747  4.604  7.173 

  5   0.267  0.727  1.476  2.015  2.571  3.365  4.032  5.893 
  6   .265  .718  1.440  1.943  2.447  3.143  3.707  5.208 
  7   .263  .711  1.415  1.895  2.365  2.998  3.499  4.785 
  8   .262  .706  1.397  1.860  2.306  2.896  3.355  4.501 
  9   .261  .703  1.383  1.833  2.262  2.821  3.250  4.297 

  10   0.261  0.700  1.372  1.812  2.228  2.764  3.169  4.144 
  11   .269  .697  1.363  1.796  2.201  2.718  3.106  4.025 
  12   .269  .695  1.356  1.782  2.179  2.681  3.055  3.930 
  13   .259  .694  1.350  1.771  2.160  2.650  3.012  3.852 
  14   .258  .692  1.345  1.761  2.145  2.624  2.977  3.787 

  15   0.258  0.691  1.341  1.753  2.131  2.602  2.947  3.733 
  16   .258  .690  1.337  1.746  2.120  2.583  2.921  3.686 
  17   .257  .689  1.333  1.740  2.110  2.567  2.898  3.646 
  18   .257  .688  1.330  1.734  2.101  2.552  2.878  3.610 
  19   .257  .688  1.328  1.729  2.093  2.539  2.861  3.579 

  20   0.257  0.687  1.325  1.725  2.086  2.528  2.845  3.552 
  21   .257  .686  1.323  1.721  2.080  2.518  2.831  3.527 
  22   .256  .686  1.321  1.717  2.074  2.508  2.819  3.505 
  23   .256  .685  1.319  1.714  2.069  2.600  2.807  3.485 
  24   .256  .685  1.318  1.711  2.064  2.492  2.797  3.467 

  25   0.256  0.684  1,316  1.708  2.060  2.485  2.787  3.450 
  26   .256  .654  1,315  1.706  2.056  2.479  2.779  3.435 
  27   .256  .684  1,314  1.701  2.052  2.473  2.771  3.421 
  28   .256  .683  1,313  1.701  2.048  2.467  2.763  3.408 
  29   .256  .683  1.311  1.699  2.045  2.462  2.756  3.396 

                      Appendix 

(continued)



 v   Q  =  0.4    0.25    0.1    0.05    0.025    0.01    0.005    0.001  

 2Q =  0.8    0.5    0.2    0.1    0.05    0.02    0.01    0.002  

  30   0.256  0.683  1.310  1.697  2.042  2.457  2.750  3.385 
  40   .255  .681  1.303  1.684  2.021  2.423  2.704  3.307 
  60   .254  .679  1.296  1.671  2.000  2.390  2.660  3.232 
  120   .254  .677  1.289  1.658  1.950  2.358  2.617  3.160 
  ∞   .253  .674  1.282  1.645  1.960  2.326  2.576  3.090 

  v = degrees of freedom for t-variable, Q = area under the curve right from the corresponding 
t-value, 2Q tests both right and left end of the total area under the curve    
       Unpaired non-parametric test: Mann-Whitney test   

T-Table (continued)

    Chi-square distribution   

 Two-tailed  P -value 

  df   0.10  0.05  0.01  0.001 

 1  2.706  3.841  6.635  10.827 
 2  4.605  5.991  9.210  13.815 
 3  6.251  7.815  11.345  16.266 
 4  7.779  9.488  13.277  18.466 
 5  9.236  11.070  15.086  20.515 
 6  10.645  12.592  16.812  22.457 
 7  12.017  14.067  18.475  24.321 
 8  13.362  15.507  20.090  26.124 
 9  14.684  16.919  21.666  27.877 
 10  15.987  18.307  23.209  29.588 

 11  17.275  19.675  24.725  31.264 
 12  18.549  21.026  26.217  32.909 
 13  19.812  22.362  27.688  34.527 
 14  21.064  23.685  29.141  36.124 
 15  22.307  24.996  30.578  37.698 
 16  23.542  26.296  32.000  39.252 
 17  24.769  27.587  33.409  40.791 
 18  25.989  28.869  34.805  42.312 
 19  27.204  30.144  36.191  43.819 
 20  28.412  31.410  37.566  45.314 

 21  29.615  32.671  38.932  46.796 
 22  30.813  33.924  40.289  48.268 
 23  32.007  35.172  41.638  49.728 
 24  33.196  36.415  42.980  51.179 
 25  34.382  37.652  44.314  52.619 
 26  35.563  38.885  45.642  54.051 
 27  36.741  40.113  46.963  55.475 
 28  37.916  41.337  48.278  56.892 
 29  39.087  42.557  49.588  58.301 
 30  40.256  43.773  50.892  59.702 
 40  51.805  55.758  63.691  73.403 
 50  63.167  67.505  76.154  86.660 
 60  74.397  79.082  88.379  99.608 
 70  85.527  90.531  100.43  112.32 
 80  96.578  101.88  112.33  124.84 
 90  107.57  113.15  124.12  137.21 
 100  118.50  124.34  135.81  149.45 
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 P < 0.01 levels 

 n 
1
→   2  3  4  5  6  7  8  9  10  11  12  13  14  15 

 n 
2
 ↓ 

 4  10 
 5   6  11  17 
 6   7  12  18  26 
 7   7  13  20  27  36 
 8  3   8  14  21  29  38  49 
 9  3   8  15  22  31  40  51  63 
 10  3   9  15  23  32  42  53  65   78 
 11  4   9  16  24  34  44  55  68   81   96 
 12  4  10  17  26  35  46  58  71   85   99  115 
 13  4  10  18  27  37  48  60  73   88  103  119  137 
 14  4  11  19  28  38  50  63  76   91  106  123  141  160 
 15  4  11  20  29  40  52  65  79   94  110  127  145  164  185 
 16  4  12  21  31  42  54  67  82   97  114  131  150  169 
 17  5  12  21  32  43  56  70  84  100  117  135  154 
 18  5  13  22  33  45  58  72  87  103  121  139 
 19  5  13  23  34  46  60  74  90  107  124 
 20  5  14  24  35  48  62  77  93  110 
 21  6  14  25  37  50  64  79  95 
 22  6  15  26  38  51  66  82 
 23  6  15  27  39  53  68 
 24  6  16  28  40  55 
 25  6  16  28  42 
 26  7  17  29 
 27  7  17 
 28  7 

  Table uses difference of added up rank numbers between group 1 and group 2   
     Unpaired non-parametric test: Mann-Whitney test   

    Paired non-parametric test: Wilcoxon 
signed rank test, the table uses smaller of 
the two rank numbers   

 N pairs  P < 0.05  P < 0.01 

 7   2  0 
 8   2  0 
 9   6  2 
 10   8  3 
 11  11  5 
 12  14  7 
 13  17  10 
 14  21  13 
 15  25  16 
 16  30  19 
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 P < 0.05 levels 

 n 
1 
→   2  3  4  5  6  7  8  9  10  11  12  13  14  15 

 n 
2
 ↓ 

 5  15 
 6  10  16  23 
 7  10  17  24  32 
 8  11  17  25  34  43 
 9  6  11  18  26  35  45  56 
 10  6  12  19  27  37  47  58  71 
 11  6  12  20  28  38  49  61  74  87 
 12  7  13  21  30  40  51  63  76  90  106 
 13  7  14  22  31  41  53  65  79  93  109  125 
 14  7  14  22  32  43  54  67  81  96  112  129  147 
 15  8  15  23  33  44  56  70  84  99  115  133  151  171 
 16  8  15  24  34  46  58  72  86  102  119  137  155 
 17  8  16  25  36  47  60  74  89  105  122  140 
 18  8  16  26  37  49  62  76  92  108  125 
 19  3  9  17  27  38  50  64  78  94  111 
 20  3  9  18  28  39  52  66  81  97 
 21  3  9  18  29  40  53  68  83 
 22  3  10  19  29  42  55  70 
 23  3  10  19  30  43  57 
 24  3  10  20  31  44 
 25  3  11  20  32 
 26  3  11  21 
 27  4  11 
 28  4 

  Table uses difference of added up rank numbers between group 1 and group 2            
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  A 
  Accuracy of diagnostic tests , 509–518, 

545–552, 555–568   
  Accuracy ROC curves , 516   
  Advanced analysis of variance (ANOVA) , 

607–617  
 repeated measurements experiments , 

587–592, 615  
 type II ANOVA, random 

effects models , 615  
 type III ANOVA, mixed effects models , 615   

  Adjusted mutual information , 604   
  AIC (Akaike information criterion) , 286   
  Alpha, type I error , 80, 713   
  Alternative hypothesis, hypothesis-1 , 120   
  Altman-Bland method or plot , 550   
  Analysis of covariance (ANCOVA) , 402, 591   
  Analysis of variance (ANOVA) , 8, 24, 38, 466  

 balanced / unbalanced , 27  
 one-way / two-way , 27  
 with / without replication , 27   

  Artifi cial intelligence , 627–635  
 activity and inactivity phases , 628  
 artifi cial neural networks , 627  
 back propagation , 627  
 best fi t outcome , 628  
 bootstrapping , 628  
 commands on SPSS , 630  
 distribution free method , 627  
 hidden layers , 629  
 iteration , 628  
 layers of artifi cial neurons , 627  
 layers of neurons , 627  
 multilayer perceptron , 630  
 negative weights in matrices , 629  
 non linear data , 627  
 propagation of signals , 628  

 signal-transfers , 628  
 SPSS add-on module , 634  
 three-layer perceptron model , 628  
 transduction of imputed information , 627  
 weighted signal transfers from one layer 

to another , 628   
  Average , 34    

  B 
  Bartlett’s test , 494   
  Bavry’s program , 409   
  Bayes’ rule , 524   
  Bayes’ theorem , 450   
  Benefi t-risk analyses , 717   
  Beta, type II error , 77, 679   
  Between-group variance , 7   
  Bhattacharya modeling , 301–311  

 Bhattacharya Gaussian curves , 303  
 delta log values , 302  
 fi rst derivative of Gaussian curve , 303  
 Food and agricultural organization , 301  
 kernel histograms , 301  
 quasi-gaussianizing , 301  
 subset analysis , 310  
 unmasking Gaussian curves , 301   

  Bias 1 , 470   
  Binary data , 8, 52–53, 317   
  Binary partitioning , 579–584  

 binary digits , 583  
 CART (classifi cation 

and regression trees) , 579  
 classifi cation and regression trees , 579  
 cut-off decision trees , 579  
 entropy method , 582  
 magnitude of impurity , 582  
 weighted impurity cut-off , 583   

             Index 
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  Binomial distribution , 8, 42   
  Bioavailability , 588   
  Bioequivalence , 70–71, 489, 492   
  Bland-Altman plot or method , 566   
  Bonferroni inequality , 2, 144   
  Bonferroni t-test , 31   
  Bootstrap , 332   
  Box-Cox algorithm , 184    

  C 
  Carryover effect , 405, 415   
  Categorical data , 243–252  

 categorical variables , 243  
 cohort study , 248  
 dummy variables , 251  
 multinomial logistic regression , 251  
 ordered logistic regression , 251  
 process of recoding , 251   

  Censored data , 54   
  Central tendency , 489   
  Chi-square curves left end , 123, 141–142   
  Chi-square curves right end , 123   
  Chi-square distribution , 460   
  Chi-square goodness of fi t test , 460   
  Chi-square Mc Nemar’s test , 51   
  Chi-square test for multiple tables , 46, 490   
  Cigetivectors , 525   
  Cluster analysis , 604   
  Complex functions , 525   
  Confi dence intervals (95%) , 6, 41, 

455–467  
 of chi-square distributions , 466  
 of F distributions , 466   

  Confl icts of interests , 721–726   
  CONSORT (Consolidated standards of 

reporting trials) , 377, 387   
  Contingency table , 8   
  Continuous data , 8   
  Controlled clinical trials , 721–722   
  Correlation coeffi cient (r) , 162–168   
  Correlation matrix , 173   
  Correlation ratio , 502   
  Covariate (concomitant variable) , 182   
  Cox regression, Cox proportional hazard 

model , 209–212   
  Cronbach’s alpha , 424, 426   
  Crossover studies with binary responses , 

407–413  
 assessment of carryover and treatment 

effect , 408  
 examples , 410–412  
 results , 409–410  
 statistical model for testing treatment and 

carryover effects , 409   

  Crossover studies with continuous variables , 
397–405  

 hypothesis testing , 399–400  
 mathematical model , 398  
 statistical power of testing , 400–403   

  C-statistic vs. logistic regression , 516, 
535–543  

 concordance-(c-) statistic , 535–543  
 logistic regression for assessing qualitative 

tests , 543  
 smooth ROC curves , 540   

  Cumulative tail probability , 410   
  Curvilinear regression , 187–196  

 Fourier modeling , 195  
 methods, statistical models , 188–190  
 polynomial modeling , 195  
 results , 190–194    

  D 
  Data cleaning , 119  

 deleting the errors , 119  
 maintaining the outliers , 119   

  Data dispersion , 149–158  
 data without measure of dispersion , 150  
 overdispersion , 155   

  Data dredging , 713   
  Data mining , 451, 604   
  Data stream clustering , 604   
  Delta-method , 524, 525   
  Dependent variable , 174, 178, 205   
  Dersimonian and Laird model for 

heterogeneity , 373   
  Diagnostic meta-analyses , 527–533   
  Diagnostic tests.    See  Qualitative diagnostic 

tests; Quantitative diagnostic tests  
  Direction coeffi cient , 209   
  Discriminant ability , 516   
  Disease Activity Scale (DAS) of Fuchs , 115   
  Dose concentration relationships , 495   
  Dose response relationships , 495   
  Dunnett method , 107   
  Duplicate standard deviations , 188, 508   
  Durbin-Watson test , 184    

  E 
  Effi cacy data , 15–38  

 null-hypothesis testing 
of complex data , 27  

 null-hypothesis testing of 3 or more paired 
samples , 21–22  

 null hypothesis testing of three or more 
unpaired samples , 21–22  

 overview , 15–16  
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 paired data with a negative correlation , 
28–33  

 the principle of testing statistical 
signifi cance , 16–18  

 rank testing , 33–35  
 rank testing for 3 or more samples , 

36–38  
 three methods to test statistically a paired 

sample , 22–25  
 unpaired t-test , 19–21   

  Equiprobable intervals , 470   
  Equivalence testing , 69–75  

 equivalence testing, a new gold standard? , 
72–73  

 overview of possibilities with equivalence 
testing , 70–71  

 validity of equivalence trials , 73   
  Ethical issues , 721–726   
  E-value , 128   
  Evidence-based medicine , 499   
  Excel fi les , 164   
  Exploratory analyses , 173–174, 363   
  Exponential regression models , 351   
  Extreme exclusion criteria , 477    

  F 
  False positive / negatives , 535   
  False positive trials , 103–107  

 adjusted p-values , 105–106  
 Bonferroni tests , 103–106  
 composite endpoint procedures , 106  
 least signifi cant difference test , 105  
 pragmatic solutions , 107   

  F-distribution , 464–467   
  Fisher-exact test , 61   
  Fixed effect model for heterogeneity , 374, 384   
  Flipping a coin , 152   
  Food and Drug Administration (FDA) , 722   
  Fourier analysis , 187   
  Frailty , 363   
  Friedman test , 36–37   
  F test , 348 .    See also  Analysis of variance 

(ANOVA)  
  Funnel plot , 371   
  Fuzzy logic , 639–649  

 dose-response effects , 640–644  
 fuzzy memberships , 641  
 fuzzy methodologies , 648  
 fuzzy modeling , 648  
 fuzzy plots , 640  
 fuzzy statistics , 647  
 fuzzy truths , 639  
 linguistic membership names , 641  
 linguistic rules , 640  

 time-response effects , 644–647  
 triangular fuzzy sets , 640  
 universal space , 640    

  G 
  Gaussian curve , 4   
  Genetic data , 445–452  

 data mining , 447–448  
 genetics , 447–448  
 genomics , 448–452  
 proteonomics , 447–448  
 terminology , 446–447   

  Ghost, guest and graphter writers , 
721–726   

  Good clinical practice criteria , 721–726   
  Goodness of fi t , 195, 471–472   
  Grizzle model for assessment 

of crossover , 405    

  H 
  Haplotype , 446   
  Harvard Graphics , 190   
  Hawthorne effect , 718   
  Hazard ratio , 210–212   
  Helsinki Declaration , 721–726   
  Heterogeneity , 372–376, 384–385   
  Heteroscedasticity , 165   
  Hierarchical cluster analysis , 447–448   
  Hierarchical liner model , 604   
  High quality criteria for studies , 376   
  Histogram , 4   
  Hochberg´s procedure , 106   
  Homogeneity , 369–377, 381   
  Homoscedasticity , 176, 179   
  Honestly signifi cant difference 

(HSD) , 106   
  Hosmer-Lemeshow test , 184   
  Hotelling’s T-square , 116   
  Hung’s model , 135   
  Hypothesis, data, stratifi cation , 1–14  

 different types of data: continuous data , 
3–8  

 different types of data: correlation 
coeffi cient , 10–12  

 different types of data: proportions, 
percentages and contingency table , 8–10  

 factorial designs , 13–14  
 general considerations , 1–2  
 randomized  versus  historical controls , 13  
 stratifi cation issues , 12–13  
 two main hypotheses in drug trials: 

effi cacy and safety , 2–3   
  Hypothesis-driven data analysis , 452    
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  I 
  ICC.    See  Intraclass correlation  
  Incidence analysis and scientifi c method , 

659–663  
 chi-square test , 660  
 CIA (Critical incident analysis) , 659  
 CIT (Critical incident technique) , 659  
 95 % confi dence intervals , 661  
 log likelihood ratio test , 661  
 PRISMA (Prevention and recovery system 

for monitoring and analysis) , 659  
 TRIPOD (method based 

on tripod theory) , 659  
 z-test , 660   

  Independent review board , 723   
  Independent variable , 175, 179, 208   
  Indicator variable , 178   
  Inferiority testing , 91–93   
  Intention to treat analysis , 73   
  Interaction , 337–351  

 analysis of variance , 341–342  
 defi nitions , 337  
 incorrect methods for testing , 339–340  
 regression modeling , 343–345  
 t-tests , 339   

  Interaction effects , 337–351   
  Interaction terms , 337–351   
  Interim analyses , 95–101  

 continuous sequential statistical 
techniques , 99–101  

 group-sequential design of interim 
analysis , 99  

 interim analysis , 96–99  
 monitoring , 95–96   

  Intraclass correlation coeffi cient , 
503, 568   

  Intraclass correlations , 503, 568 .  
 See also  Cronbach’s alpha  

  I 2  statistic , 385   
  Item response modeling , 433–442  

 BILOG-MG software , 434  
 ceiling effects , 433  
 clinical and laboratory testing , 

438–439  
 computer assisted adaptive testing , 433  
 Egret software , 434  
 expected ability a posteriori (EAP) , 437  
 latent trait analysis (LTA)-2 , 435  
 LTA software , 434  
 MULTILOG software , 434  
 OPLM software , 434  
 quality of life assessment , 435–438  
 Rasch models , 433  
 RSP software , 434    

  K 
  Kaplan Meier curves , 55–56, 

210–211   
  Kappa , 502–503, 567   
  Katz´s method , 9   
  Kendall Tau test , 365–378, 551   
  Kernel regression , 690   
  Kolmogorov-Smirnov test , 471–472   
  Kruskall-Wallis test , 37–38    

  L 
  Laplace transformations , 213–215   
  Latent class analysis , 604   
  Least signifi cance difference (LSD) procedure , 

105, 109–116   
  Levene’s test , 494   
  Left and c2 table , 123, 134   
  Likelihood ratio , 61–68, 183, 446   
  Linear regression principles , 161–185, 

199–203  
 another real data example of multiple 

linear regression , 173–174  
 more on paired observations , 

162–164  
 multiple linear regression , 166–168  
 multiple variables analyses , 176  
 multivariate analyses , 176  
 univariate analyses , 176  
 using statistical software for simple linear 

regression , 164–166   
  Logarithmic transformation, log-transformed 

ratios , 12, 59–60   
  Logistic regression , 199–218, 227–231  

 pseudo-R2 measures , 207  
 R2-like measures , 207   

  Log likelihood ratio tests , 61–68  
 normal approximations , 62–64  
 numerical problems , 61–62  
 quadratic approximation , 64–66   

  Log rank test , 56    

  M 
  Mann-Whitney test , 15, 34, 35, 37   
  Mantel-Haenszl summary, chi-square test , 

55–56   
  Markov models , 212–213   
  Markov predictors , 153–154   
  McNemar’s odds ratio , 59   
  McNemar’s test , 51–53   
  Mean , 3   
  Measure of concordance , 516   
  Median absolute deviation (MAD) , 490   



739Index

  Medline database , 368   
  Mendelian experiment , 133   
  Meta-analysis , 365–388  

 clearly defi ned hypotheses , 367–368  
 discussion, where are we now? , 377–378  
 examples , 366–367  
 new developments , 386–388  
 pitfalls , 383–386  
 scientifi c framework , 381–383  
 strict inclusion criteria , 368  
 thorough search of trials , 368  
 uniform data analysis , 369–377   

  Meta-analysis of diagnostic tests , 527–533   
  Meta-analysis of regression data , 391–396   
  Meta-regression , 391–396  

 heterogeneous meta-analyses , 391–394  
 multiple linear meta-regression , 394   

  Microarrays , 449, 451   
  Microarrays, normalized ratios of , 450   
  Minimization , 12–13   
  Missing data , 253–265  

 closest neighbour observed , 253, 254  
 hot deck imputation , 257  
 imputation of missing data , 254  
 LOCF (last observation 

carried forward) , 259  
 means imputated , 261  
 module Missing Value Analysis 

SPSS , 258  
 multiple imputations , 261–265  
 regression-substitution , 254–255   

  Mixed effects models , 607–615   
  Mixed linear models for repeated measures , 

593–604  
 build nested terms , 596, 601  
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