
Lecture Notes in Statistics 
Edited by P.Bickel, P. Diggle, S. Feinberg, K. Krickeberg, 
I. Olkin, N. Wermuth, and S. Zerger 

160 



Springer 
New York 
Berlin 
Heidelberg 
Barcelona 
Hong Kong 
London 
Milan 
Paris 
Singapore 
Tokyo 



Tomasz Rychlik 

Projecting Statistical Functionals 

, Springer 



Tomasz Rychlik 
Institute of Mathematics 
Polish Academy of Sciences 
Chopina 12 
87100 Toruil 
Poland 
trychlik@impan.gov.pl 

Library of Congress Cataloging-in-Publication Data 
Rychlik, Tornasz. 

Projecting statistical functionals / Tornasz Rychlik 
p. cm. - (Lecture notes in statistics; 160) 

Includes bibliographical references and index. 
ISBN-13:978-0-387-95239-0 e-ISBN-13:978-1-4612-2094-7 
DOl: 10.10071978-1-4612-2094-7 

I. Statistical functionals. 2. Hilbert space. I. Title. II. Lecture notes in 
statistics (Springer-Verlag); v. 160. 

QA273.6 .R93 2001 
519.2'4-dc21 00-069240 

Printed on acid-free paper. 

C 2001 Springer-Verlag New York, Inc. 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, 
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the 
former are not epecia\ly identified, is not to be taken as a sign that such names, as understood by 
the Trade Marks and Merchandise Marks Act, may be accordingly used freely by anyone. 

Camera-ready copy provided by the author. 

9 8 7 654 3 2 1 

ISBN-13:978-0-387-95239-0 SPIN 10793590 

Springer-Verlag New York Berlin Heidelberg 
A member of BerteismannSpringer Science+Business Media GmbH 



Preface 

About 10 years ago I began studying evaluations of distributions of or­
der statistics from samples with general dependence structure. Analyzing 
in [78] deterministic inequalities for arbitrary linear combinations of order 
statistics expressed in terms of sample moments, I observed that we obtain 
the optimal bounds once we replace the vectors of original coefficients of 
the linear combinations by the respective Euclidean norm projections onto 
the convex cone of vectors with nondecreasing coordinates. I further veri­
fied that various optimal evaluations of order and record statistics, derived 
earlier by use of diverse techniques, may be expressed by means of projec­
tions. In Gajek and Rychlik [32], we formulated for the first time an idea of 
applying projections onto convex cones for determining accurate moment 
bounds on the expectations of order statistics. Also for the first time, we 
presented such evaluations for non parametric families of distributions dif­
ferent from families of arbitrary, symmetric, and nonnegative distributions. 
We realized that this approach makes it possible to evaluate various func­
tionals of great importance in applied probability and statistics in different 
restricted families of distributions. 

The purpose of this monograph is to present the method of using pro­
jections of elements of functional Hilbert spaces onto convex cones for es­
tablishing optimal mean-variance bounds of statistical functionals, and its 
wide range of applications. This is intended for students, researchers, and 
practitioners in probability, statistics, and reliability. Intended as a refer­
ence book it could also be used as a textbook for a specialized course in the 
subject area. Numerous open problems are formulated in the text. I hope 
that they stimulate some readers to undertake research in this direction. 
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The prerequisities are upper-level undergraduate courses in probability 
theory, mathematical statistics, and functional analysis, including an ele­
mentary theory of Hilbert spaces. Certainly, some knowledge of nonpara­
metric statistical inference and reliability theory would be beneficial. It is 
important to become acquainted with the content of Chapter 2 before read­
ing the following ones. Chapters 3 through 6 can be studied independently, 
with some exceptions. Some results of Sections 5.3,5.4, and 5.6 are deduced 
from lemmas contained in Sections 3.2, 3.3, and 4.5, respectively. The re­
sults of Chapter 7 are based on applications of second moment bounds 
presented in Sections 4.1, 4.2, 6.2, and 6.3. 

This work was done with the support of the Polish State Committee for 
Scientific Research (KBN) Grant 2 P03A 014 13. The idea of writing the 
book was suggested by Leslaw Gajek. Besides working together on spe­
cific problems, we carried on comprehensive discussions that enabled us to 
crystallize original vague ideas into a definite plan. As he undertook other 
important obligations, he could not participate in completing the project. 
Some results were obtained in cooperation with Andrzej Okolewski whose 
contribution is gratefully acknowledged. Significant parts of the content 
of this book were presented and discussed during regular Thursday semi­
nars on applied probability held in the Institute of Mathematics of Polish 
Academy of Sciences in Warsaw. Critical remarks and comments of the par­
ticipants had a strong positive impact on the final outcome. The assistance 
of several people made it possible to improve the presentation. Many help­
ful suggestions were provided by John Kimmel, the Executive Editor of the 
Statistics Division at Springer-Verlag, and one of the reviewers. The copy­
editor corrected a number of linguistic and style mistakes. Jan K. Kowalski 
helped to prepare the final Jh.1EX version of the manuscript in camera-ready 
form. It is a pleasure to offer my sincere thanks to them. 

Tomasz Rychlik 
January, 2001 
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1 
Introduction and Notation 

1.1 Introduction 

This work presents a method of using projections of functions onto convex 
cones in Hilbert spaces for determining sharp bounds on values of statistical 
functionals over general and restricted families of distributions, expressed in 
terms of moment parameters of the distributions. The method is based on 
representing the statistical functionals and families of distributions as fixed 
elements and convex cones, respectively, in a common real Hilbert space. 
Then the norm of the projection of the element onto the cone provides the 
optimal bound. The distribution for which the bound is attained is derived 
by a simple transformation of the projection. 

The advantage of the projection method lies in providing definite an­
swers for numerous simply stated but nontrivial problems of theoretical 
and practical importance. The method enables us to optimally evaluate 
various random objects in terms of the first two moments which are the 
most classical parameters describing the population. Natural restrictions on 
the random structure of observations are allowed. Although some results 
presented here were proven earlier by means of specific tools, our unified 
approach provides simpler proofs and indicates mutual relations among 
various evaluations. On the other hand, for numerous problems presented 
in the book, we do not see alternative ways of solving them without refer­
ence to projections. The idea of projections has been effectively exploited 
in various aspects of statistical inference, for instance in the least squares 
and minimum distance estimation. The majority of applications are based 
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on projections onto finite-dimensional linear subspaces. The novelty of our 
approach consists in using solutions of projection problems onto convex 
cones in function spaces for precise evaluations of statistical functionals. 
We illustrate the general idea by an example. 

EXAMPLE 1. Suppose that random variables XI, ... ,Xn are independent 
identically distributed (LLd.) with a common distribution F. We are inter­
ested in evaluating the upper deviation of the expectation of the jth order 
statistic EFXj :n from the population mean P.F = EFX1 in the standard 
deviation units UF = (VarFX1)1/2. We can Write 

EFXj:n - P.F = 11 [F-l(X) - P.F][/;:n(X) - 1] dx, (1.1) 

where 

/;:n(X) = n(; = :)xi-1(1- x)n-j 

is the density function of the jth order statistic from the LLd. standard uni­
form sample. This may be interpreted as the inner product of the centered 
quantile function F-l_P.F with /;:n -1 in the Hilbert space £2([0, 1), dx) of 
the square integrable functions on the unit interval. Applying the Schwarz 
inequality to (1.1), and noting that IIF-l - p.FII = UF, we obtain 

(1.2) 

The equality is attained here if the arguments of the inner product are 
proportional; that is, 

F-1(x) - P.F = a[/;:n(x) -1] (1.3) 

for some a ~ O. All the possible centered quantile functions of distributions 
with a finite variance form the convex cone of nondecreasing functions 
integrating to 0 in £2([0, 1),dx). The cone is further denoted by Co. 

rr j = n, then the right-hand side of (1.3) actually increases, and inte­
grates to O. Therefore bound (1.2) is then tight, and (1.3) enables us to 
determine a (power) distribution that attains the bound (see Gumbel [36], 
and Hartley and David [38]). Otherwise /;:n -1 is not nondecreasing, and 
(1.2) cannot be sharp. 

The most natural idea is to replace /;:n - 1 by the closest element of 
the family of centered quantile functions Co. We call it the projection of 
/;:n - 1 onto CO and denote it by pO(/j:n - 1). The idea does work here 
and in many other problems considered in the monograph. Namely, 

[EFXj:n - P.F]/UF $ B°(j,n) = IlpO(fj:n -1)11 (1.4) 

for all F with u} < 00, and we get the equality in (1.4) if 

F-l(X) - P.F = P°(fj:n -1)(x) E CO, 
UF IIP°(fj:n - 1)11 

(1.5) 
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which defines distribution function F with the extreme normalized expec­
tation of X j :n . If j = 1, then /;:n - 1 is decreasing, and the projection is 
constant 

p°(fj:n - 1) = o. 
Hence we have EFXl :n ~ /JF which is clear by relation X l :n ~ Xl. If 
1 < j < n, then the increasing-decreasing function /;:n - 1 is replaced by 
nondecreasing 

p°(fj:n -1)(x) = /;:n(min{x,a.}) -1, (1.6) 

where a. is a point of increase of /;:n determined by an equation (see 
Moriguti [58]). A detailed construction of (1.6) and verification of (1.4) 
and (1.5) is presented in Section 4.1 (see also Example 2 of Section 2.1). 
This is based on an old general method due to Moriguti based on con­
vex minorants, and (1.6) is actually the derivative of the greatest convex 
minorant of the antiderivative of /;:n - 1. 

For the first time in the context of evaluating statistical functionals, 
however, the notion of projection appeared in Rychlik [78], where some 
deterministic bounds on linear combinations of order statistics in terms 
of sample mean and variance were established. The general idea of using 
projections for sharp evaluations of statistical functionals was formulated in 
Gajek and Rychlik [32]. The most recent review of results is presented in the 
expository paper by Rychlik [86]. In principle, we provide here an exposition 
of recent research: a significant number of papers we refer to have not been 
published yet, and some results have not been presented elsewhere. Since 
this work is entirely devoted to the projection method, we consistently omit 
discussing other approaches and many related results. Therefore references 
to results obtained by different methods are rare and laconic here. It is 
worth pointing out that considering Hilbert spaces and convex cones is 
essential for the method. For instance, the projections of linear statistical 
functionals in V-spaces with p '" 2 do not provide analogous evaluations. 

The structure of the book reHects the purpose of presenting bounds 
on various statistical functionals over different classes of distributions by 
means of the common method based on projections. Fundamental notions 
are introduced in Chapter 2. Some facts of general Hilbert space theory 
taht are applied in our method are collected in Section 2.1. Inner product 
formulae for some functionals with statistic81 interpretations are worked 
out in Section 2.2. In Section 2.3 special classes of distributions of practical 
importance in probability, mathematical statistics, and reliability are char­
acterized by convex cones of respective quantile functions. Some partial 
orders of distributions that are useful in defining the classes are introduced 
there. Consecutive chapters are devoted to specific functionals, and bounds 
on the functionals over various classes are discussed in respective sections. 
Titles of sections refer to families of distributions with intuitive interpreta­
tions. In fact, more general results are presented. We often consider families 
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of distributions related to a fixed general one with respect to partial or­
ders defined in Section 2.3. Some results are specified for specially chosen 
extreme elements of the families, for instance for uniform and exponential 
distributions that generate some classes with natural intuitive properties. 

The main results are presented in Chapters 3 to 7 in a unified way: 
each sharp bound on a fixed functional over a fixed class of distributions 
is explicitly written, together with a formula for the distribution function 
for which the bound is attained. Different bounds for various classes of 
distributions are also compared numerically. Special emphasis is laid on 
construction of projections, the essence of our method. Since in the prob­
lems we study, general methods for constructing projection functions are 
not known, various tools are needed for solving specific problems. Usually 
we first describe the shape of the projections up to several real parameters 
by means of geometric arguments, and then determine the optimal parame­
ters analytically. Some bounds are expressed by complicated formulae that 
should be evaluated by use of subtle tools of numerical analysis. There 
is an apparent intentional contrast between precise formulation of results 
and informal justification. A detailed verification is provided for selected 
problems of bounds on quantiles and order statistics in Chapters 3 and 4, 
respectively. Presented here are the most typical geometric and analytic 
arguments used for determining projections of step and smooth functions. 
The other proofs are merely' sketched and we refer the reader to the orig­
inal papers for complete details. In particular, we omitted formal proofs 
of the results of Chapters 5 and 6, which are also substantially based on 
projecting step and smooth functions, respectively. 

The results presented here are far from being complete. There are still 
many interesting open problems that can be formulated for statistical func­
tionals and families of distributions described here. In the concluding sec­
tions of the chapters some open problems are stated. All of them can be 
reformulated as projection problems onto convex cones. They are more diffi­
cult than standard exercises and problems usually contained in monographs 
with the purpose of enabling the reader to gain a deeper understanding of 
the text. We hope that our problems stimulate readers to undertake re­
search and deliver original and interesting evaluations of statistical func­
tionals by means of projections. There are also other functionals and fami­
lies of distributions that are not studied here and for which the projection 
method would work. Some of them are presented in Chapter 8, where pos­
sible further research directions are indicated. Extending the evaluation 
problems to these functionals and families generate new interesting ques­
tions. In order to solve them, one should possibly develop techniques and 
methods different from ones presented here. 
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1.2 Notation 

We tried to set a unified notation for the whole work. A list of symbols is 
presented below. Only notation used locally is not included there. We gen­
erally preserved standard symbols. However, some other notation may look 
strange at the first glance. For instance, numerous convex cones of nmc­
tions were considered in the text. They were denoted by C with various 
superscripts and subscripts whose meaning is explained in the list below 
(see also Section 2.3). The projection operator onto a given cone is written 
as P with the same upper and lower indices. Moreover, the indices appear 
in the notation of sharp bounds on functionals that are obtained by means 
of projections on specified convex cones. For instance, B°(j, n) calculated 
in Example 1, denotes the sharp mean-variance bound on the expectation 
of the jth order statistic of an independent identically distributed sample 
of size n with arbitrary marginal distribution that has a finite variance. The 
bound is obtained by means of projection pO of a properly chosen functional 
(see Section 2.2) onto the convex cone Co of quantile functions of all distri­
butions with finite variance, centered about the respective mean. Convex 
cones of quantile functions for families of distributions satisfying various 
restrictions and respective projection operators need more sophisticated 
notation. Nevertheless, we tried to introduce the symbols in a coherent 
manner and believe that the reader shall get used to them. 

(1l, (. , .)) 

11·11 
L2([a, d), w(x) dx) 

C¥.,(3, ... 
C¥.*,(3., ••. 

g,h, .. . 
G,H, .. . 

gH(x) 
H(x) 
h(x) 
l(x) 

lA(X) 
x+ 
lxJ 

List of symbols 

(real) Hilbert space with inner product (.,.) 
= (., .)1/2 - norm in (1l, (. ,.)) 

Hilbert space of functions 9 : [a, d) I-t !R 
satisfying t g2(X)W(X) dx < 00 with inner 

a d 
product (g, h) = fa g(x)h(x)w(x) dx 
for a positive weight nmction w(x) 
scalars, parameters of functions 
optimal scalars, parameters of projections 
functions, elements of Hilbert spaces 
antiderivatives of g, h, .. . , respectively 

= g(H(x)) -composition of functions H andg 
greatest convex minorant of H(x) 
(right) derivative of H(x) 
constant function equal to 1 
indicator of A (= 1 on A and 0 elsewhere) 

= max{x,O} - positive part of a number 
= max{k :5 x: kinteger}-floorofa number 
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Th(·) = (h, .) - continuous linear functional on 
a Hilbert space 

ThO/II·11 normalized linear functional 
F(x) marginal distribution function of population 
f(x) density function of F 

.\F(X) = f(x)/[I - F(x)] - failure rate of F 
F-1(x) = sup{y: F(y) ~ x}, 0 ~ x < I, - quantile 

function of F 
F-l(P) quantile of order p, 0 < p < I 
Fh,(x) = [F(x)-F(y)]/[I-F(y)],x ~ y, -distribu-

tion function of X under condition X > y 
I1:..(x) = Fjfl(X + y) = [F(x + y) - F(y)]![I- F(y)], 

x ~ 0, - distribution function of X - Y 
under condition X > y 

Flz(x) = F(x)/F(z), x ~ z, - distribution 
function of X under condition X ~ z 

FI~(x) = [F(x)-F(y)]/[F(z)-F(y)], y~x~z, 
- distribution function of X under condi-
tiony<X~z 

J.I.=J.l.F = f~ F-l(X) dx - mean of F 
m2 =m} = fo [F-l(X)]2 dx - second raw moment of F 

q2 =q} = 2 2 . f F mF - J.l.F - variance 0 

<; = <;F = f; W-1(x) - J.l.FI dx - mean absolute 
deviation of F 

J.l.pO mean of Ffu 
2111 

second raw moment of FI~ mpo 
III M2_M2 = [q} + (J.l.F - y)2]/[I_ F(y)] - pO 
III 

'Pn(F) family of all distributions on ~n with common 
marginal F 

U(x) = x, 0 ~ x ~ I, -standard uniform distribution 
function 

V(x) = 1- exp( -x), x ~ 0, - standard exponential 
distribution function 

W(x) a (distinguished) distribution function 
a=aw (finite) left endpoint of (interval) support of W 
d=dw right endpoint of (interval) support of W 

w(x) density function of W, 
weight function in L2([aw,dw),w(x)dx) 

J.l.w(f3) = Ew(XIX > (3) 
q~(f3) = Varw(XIX > (3) 
itw(f3) = Ew(XIX ~ (3) 
q~(f3) = Varw(XIX ~ (3) 
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fi.W{P) = Ewmin{X,p} 
v?v{P) = Ew[min{X,p}]2 
u?v{P) = Varwmin{X,p} 

11w{a,p) = Ew{X - a) 1 (ti,d) (X) 
1?~{a,p) = Varw{X - a) 1 (ti,d) (X) 

f/w{P) = 11w{P, P) = Ew{X - P)+ 
v?v{P) = Ew[{X _ P)+]2 
J~{P) = 1?~{P,P) = Varw{X - P)+ 
'iJw{P) = Ew{P-X)+ 
t?~{P) = Varw{P - X)+ 

XI, ... ,Xn. ... independent identically distributed (LLd.) 
random variables with distribution function F 

YI, ... ,Yn, ... possibly dependent identically distributed 
random variables with common marginal F 

Xj :n jth order statistic of Xl, .. . , Xn, 1 :5 j :5 n 
Y;:n jth order statistic of YI , .. . , Yn, 1 :5 j :5 n 

Ej=l CjXj :n L-statistic of independent sample 
Ej=l Cj Y;:n L-statistic of dependent sample 

C = (CI, ... ,en) vector of coefficients of L-statistic 
Ln nth occurrence time of (first) record (increase 

in sequence of sample maxima Xj:j, j ~ 1) 
Rn = XLn - nth value of (first) record, 
L~) nth occurrence time of (kth) record (increase 

in sequence of kth greatest order statistics 
Xj+1-k:j, j ~ k), k ~ 1 

~) = XL~.)+1-k:L~.) - nth value of kth record 
/;:n{x) = n(j=Dxj - I {I- x)n-j l[O,lj (x) - density 

function of jth order statistic of LLd. stan-
dard uniform sample of size n, 1 :5 j :5 n, 
expectation functional for Xj:n 

Fj:n{x) = E:=j (:)xk{1 - x)n-k, 0 :5 x :5 1, 

Gj:n{X) 
- distribution function of /;:n{x) 
distribution function of jth order statistic 
of dependent identically distributed sample 
of size n 

Gj:n{x) = (nx + 1- j)l[(j-I)/n,lj{x)/{n + 1- j) - sto-
chastically largest distribution function 
of jth order statistic of dependent sample 
of size n with standard uniform marginal 

gj:n{X) = nl[(j-l)/n,l) {x)/{n + 1 - j) - density func-
tion of Gj:n, expectation functional for Y;:n 
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Gc(x) the greatest convex function satisfying 
G(jjn) ~ ~{=l Ck, 0 ~ j ~ n, 0 ~ x ~ 1 

9c(x) = ~;=l dj l[U-l)/n,j/n) (x) - (right) derivative of 
Gc(x), expectation functional for ~;=l CjYj:n 

fn(x) = [-In(l- x)]nl[O,l)(x)jn! - density function 
of nth value of (first) record of LLd. standard 
uniform sequence, expectation functional of Rn 

Fn(x) = (1 - x) ~;=o[-ln(l - x)J3 jj!, 0 ~ x ~ 1, 
- distribution function of fn(x) 

f~k)(x) = knH[-ln(l - x)]n(l- x)k-1l[o,1)(x)jn! 
- density function of nth value of kth 
record of LLd. standard uniform sequence, 
expectation functional for R~k) 

F~k) (x) (1- x)k ~;=o kj[-ln(l- x)J3 Ii!, 0 ~ x ~ 1, 
- distribution function of f~k) (x) 

~c convex order of distribution functions: F ~c W 
if F-1W(x) is convex on [aw,dw) 

~* star order of distribution functions: F ~* W if 
F-1 W(x) is starshapedj that is, 
F-1W(x)j(x-aw) is nondecreasing on [aw,dw) 

~s s-order of symmetric distribution functions: 
F ~s W if F-1W(x) is convex on [J1.w,dw) 

C/' {g E L2([O, 1), dx): 9 is nondecreasing} -fami-
ly of quantile functions F-1(x) of arbitrary 
distribution functions F(x) with finite variance 

CO = {g E C/' : fol g(x) dx = O} - family of respect-
ive centered quantile functions F-1 (x) - J1.F 

C+ = {g E C/' : g(O) = O} - family of quantile 
functions of life distributions with aF = 0 

cs {g E C/' : g(x) = -g(l - x-)} - family of 
centered quantile functions of symmetric 
distributions 

C- any ofC/',Co,C+,Cs 

Civ = {gW: 9 E C·} C L2([aw,dw),w(x)dx) 
- family of compositions of W(x) with (center-
ed) quantile functions of C· (with aw replaced 
by J1. w in the last case) 

C· 
~c(:~c)w = {g E Civ : 9 is convex (concave) on [aw,dw)} 

- family of compositions of W(x) with (center-
ed) quantile functions of C· for F ~c (~c)W 

C· 
~.(~.)w = {g E Civ : 9 is (anti)starshaped on [aw, dw)} 

- family of compositions of W(x) with (center-
ed) quantile functions of C- for F ~* (~*)W 
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c· = {g E Cw' : 9 is convex (concave) on r"w,dw)} b(:::S.)W lfO 

In particular: 

B = B:(j,n) 

C = C:(j,n) 

D = D:(k,n) 

- family of compositions of symmetric W (x) 
with centered quantile functions of C' for 
symmetric P t. (js)W 

(centered) quantile functions of distributions 
with decreasing (increasing) density 
(centered) quantile functions of distributions 
with decreasing (increasing) density on the 
average 
centered quantile functions of symmetric 
unimodal (U-shaped) distributions 
compositions of V(x) = 1 - exp( -x) with 
(centered) quantile functions of distributions 
with decreasing (increasing) failure rate 
compositions of V(x) = 1- exp( -x) with 
(centered) quantile functions of distributions 
with decreasing (increasing) failure rate on 
the average 
any of above defined convex cones 
projection onto C: 
sharp bound on p-l(P) determined by projec­
tion onto C: 
sharp bound on expectation of Xj:n (indepen­
dent case) determined by projection onto C: 
sharp bound on expectation of }j:n (dependent 
case) determined by projection onto C: 
sharp bound on expectation of ~k) determined 
by projection onto C: 



2 
Basic Notions 

2.1 Elements of Hilbert Space Theory 

We recall here some basic facts about the Hilbert spaces that are used in 
the sequel. They can be found in textbooks on functional analysis (see, e.g., 
Balakrishnan [9]). A pair (1i, (., .)) is called a real inner product space if 
1i is a real linear space and the function (.,.) : 1i x 1i I---t ~, referred to 
further as the inner product, is linear in each argument when the other is 
fixed, symmetric under rearrangement of arguments, and positive if both 
arguments are identical and nonzero. These properties imply the Schwarz 
inequality 

'Vg, hE 1i (g, h) ~ [(g, g)(h, h)]1/2. (2.1) 

This is trivial when either of the arguments is zero. Otherwise we con­
clude (2.1) from the relations 

o ~ (g - ~~:~jh'9 - ~~:~jh) (h,h) = (g,g)(h,h) - (g,h)2. 

This also shows that (2.1) becomes the equality iff 9 = 0, h = 0, or 9 = a:h 
for some a: > o. We use (2.1) for verifying that the function 

h I---t Ilhll = (h,h)1/2 

defines a norm in 1i. H (1i, II ·ID is complete, then (1i, (. ,.)) is called the 
Hilbert space. The Riesz representation theorem asserts that every linear 
continuous functional defined on a Hilbert space can be written as 

Th(g) = (g, h), 9 E 1i, 
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for some h E 1l. By (2.1) again, 11Th I I = Ilhll. One can see that the normal­
ized nonzero functional Th(g)/lIgll, 0 :F 9 E 1l, attains its maximum IIhll 
at 9 = ah with a > O. 

In numerous statistical problems, it is important to maximize a linear 
normalized functional over a convex cone in a Hilbert space. We say that 
C C 1l is a convex cone if f, 9 E C implies that af + f3g E C for arbitrary 
a, f3 ~ o. If h E C, then the solution of our restricted maximization problem 
coincides with that of the general one. Otherwise we show that h should 
be replaced by its projection Ph onto C, that is, the element of C that is 
least distant from h. This can be deduced from the following theorem (cf. 
Balakrishnan [9, Section 1.4]). 

Theorem 1 If h is an arbitrary element of a real Hilbert space 1l and C is 
a closed convex cone in 1l, then there exists a unique projection Ph of h 
onto C that is characterized by two relations 

VgEC (g, h) < (g, Ph), 

(Ph,h) = (Ph,Ph). 

(2.2) 

(2.3) 

This is a refinement of the statement that there is a uniquely defined pro­
jection Ph of arbitrary h E 1l onto a closed convex set C C 1l, and Ph 
satisfies 

v gEe (g, h - Ph) ~ (Ph, h - Ph) (2.4) 

(see Balakrishnan [9, Section 1.4]). The projection is the only point of C 
that satisfies (2.4). 

Observe that for Ph :F 0 relation (2.2) combined with (2.1) gives 

v O:F 9 E C Th(g)/llgll ~ IIPhl1 > O. (2.5) 

Setting 9 = aPh for some positive a and using (2.3), the equality holds 
in (2.5). If Ph = 0 then, due to (2.2), Th is nonpositive on C, and clearly 
Th(Ph) = O. Due to the fundamental significance of Theorem 1 for our 
further considerations, we recall its proof here. 

PROOF OF THEOREM 1. We first show that for every h E 1l there exists 
a unique Ph E C that minimizes distance Ilg - hll over all 9 E C . The claim 
is trivial if h E C. Otherwise there exists a sequence gn E C, n ~ 1, such 
that 

lim IIgn - hll = inf Ilg - hll = D > 0, 
n~oo gEC 

say. For arbitrary two elements of the sequence we have 

Ilgn; h _ gm 2- hl1 2 + Ilgn; h + gm 2- hl1 2 

= ~(lIgn - hW + Ilgm - hW)· (2.6) 
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For arbitrary f > 0, the right-hand side of (2.6) is not greater than D2 + f 
if nand m are large enough. Since (gn + gm)/2 E C, the latter term of the 
left-hand side is not less than D2. Therefore we have 

which, by completeness of 1£ and closedness of C, implies that gn, n ~ 1, 
has a unique limit Ph E C, say. Relations 

Ilign - hll - IIPh - hili::; IIgn - Phil -+ 0, as n -+ 00, 

the former being concluded from the triangle inequality, imply that actually 
IIPh-hll =D. 

Now we verify that (2.4) completely characterizes Ph. For arbitrary gEe 
we define a function Dg on the unit interval [0,1] as 

Dg(O:) = IIh - (1 - o:)Ph - o:gll2 
= IIh - Phll2 + 20:(h - Ph, Ph - g) + 0:2 II Ph _ g1l2. 

We have 

D~(O) = 2(h - Ph,Ph - g), 

D~(o:) 211Ph - gll2 ~ O. 

(2.7) 

(2.8) 

By (2.8), relation (2.4), identical with nonnegativity of (2.7), is the nec­
essary and sufficient condition for the nondecreasing of both D~ and Dg • 

Therefore 

Now we use the fact that C is a convex cone. Plugging 9 = o:Ph into (2.4), 
we obtain 

(0: - 1)(Ph, h - Ph) ::; 0, 0: ~ 0, 

which yields (Ph, h - Ph) = O. This proves (2.3), and in combination 
with (2.4) gives (2.2) • 

Here we concentrate on functionals on Hilbert space £2([a, d), w(x) dx), 
for some -00 < a < d::; +00, w : [a, d) I-t !R+. The space consists of square 
integrable functions on interval [a, d) with a positive weight function w, and 
the inner product is defined by 

(g, h) = ld g(x)h(x)w(x) dx. (2.9) 

Here the Schwarz inequality takes on the form 

d [ d d ]1/2 fa g(x)h(x)w(x) dx::; fa g2(x)w(x) dx fa h2(x)w(x) dx (2.10) 
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Below we present two examples of projections onto convex cones contained 
in L2([a, d), w(x) dx). The former has a simple solution. In the latter, the 
form of projection is more complicated and depends on the weight func­
tion w. 

EXAMPLE 2. Let 

C+ = {h E L2([a,d),w(x)dx): h ~ a}. 

Verifying (2.2) and (2.3) we deduce that 

P+h = h+ = max{h,O} 

is the projection of h onto C+ for every h E 1-£. Also, one can check di­
rectly that h+ is actually the nonnegative function closest to h for arbitrary 
weight w .• 

EXAMPLE 3. Consider the set C~ of all nondecreasing functions in the 
Hilbert space L2([a, d), w(x) dx). We assume that the constant and linear 
functions belong to the space. Then 

W(y) = 111 w(x) dx (2.11) 

is a finite, strictly increasing, and absolutely continuous function. The same 
holds for its well-defined inverse W-l : [0, W(d)) I-t lR+. By finiteness of 

(d (wed) 
(h,l) = 1a h(x)w(x) dx = 10 hW-1(x) dx, (2.12) 

we can define an absolutely continuous function 

Hw(y) = foil hW-1(x) dx, ° ~ y < W(d), (2.13) 

and its greatest convex minorant Hw, with a nondecreasing derivative hw, 
say. 

We prove that h"- defined as h"- = hw W E C~ is the projection of h 
onto C~ by checking (2.2) and (2.3). For the former one, we need the 
following lemma (cf. Marshall and Olkin [55, Proposition A.2.(iii) , p. 444]). 

Lemma 1 If G ~ H are functions of bounded variation on an interval 
[A, D), which are equal at the endpoints, then 

LD g(x) G(dx) ~ LD g(x) H(dx) (2.14) 

holds for every non decreasing function 9 for which both the integrals exist. 
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PROOF (cf. Marshall and Proschan [56]). The statement is easily verified 
for all indicator functions l[y,D)(X), A < y < D. Therefore this is true for 
all positive combinations of the indicator functions, and, by the Lebesgue 
monotone convergence theorem, for arbitrary nonnegative nondecreasing 
functions as well. Therefore the reversed inequality holds for the nonnega­
tive nonincreasing functions. Finally, we represent an arbitrary nondecreas­
ing function as the difference of two nonnegative terms, the nonincreasing 
and nondecreasing ones, and apply the above statements to both parts .• 

Since Hw ~ Hw satisfy the assumptions, for arbitrary 9 E C~ we can 
write 

(g, h) = 
lW (d) 

o gW-1(y)hW-1(y) dy 

= lW (d) 
o gW-1(y) Hw(dy) 

< lW (d) 
o gW-1(y) Hw(dy) 

= lad g(x)h'(x)w(x) dx 

= (g,h,). (2.15) 

In order to derive (2.3), we first thoroughly analyze relations in pairs 
Hw,Hw, and hW-l,hw, and h,h,. Observe that the open set {Hw < 
Hw} is a (possibly empty) union of countably many (at most) disjoint 
open intervals, Ui(W(bi ), W(Ci)), say. The function Hw is linear on each 
interval, and coincides with Hw at the endpoints. Therefore 

and we have 
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Thus the equality holds for the integrals over the whole of the open set 
W-l({Hw < Hw}). For the remaining part W-1({Hw = Hw}) the con­
clusion holds, since Hw = Hw implies that h" = h there. Summing up, 
we have 

(h,h,,) = (h",h,,), 

which is the desired conclusion .• 

The construction of the L2-projection onto the family of monotone func­
tions under uniform weighting was presented in Moriguti [58]. For the gen­
eral case we refer to Rychlik [85]. For simplicity, we treated elements of 
L2-spaces as functions rather than equivalence classes up to almost sure 
equality, and we follow this convention later. For example, h E C+ gener­
ally means almost sure nonnegativity, and monotonicity can be precisely 
defined by comparisons of integrals over the intervals of the same weight. 
In Examples 2 and 3 we were able to determine projections for arbitrary h, 
but there are no general rules for constructing projections onto other con­
vex cones. Then we apply arguments suitable for specific functions h and 
cones. Usually, we first try to describe the shape of the projection in a para­
metric way, and then precisely determine the parameters. We finally note 
that more often the characterization (2.2) and (2.3) is used for determining 
projections of principal interest. In the problems under study we first try to 
find the projection by minimizing the distance of the Hilbert space point, 
representing a functional, to a cone. The solution of the auxiliary problem 
satisfies (2.2) and (2.3) in particular which are needed for estimating values 
of the functional over the cone. 

2.2 Statistical Linear Functionals 

Investigations of statistical procedures treated as functionals on distribu­
tion functions were initialized by von Mises [101]. The general theory is 
presented in Serfling [95] and Prakasa Rao [73]. Here we confine ourselves 
to some statistical functions that can be represented as linear functionals on 
Hilbert spaces. Assume that a random variable X has a distribution func­
tion F, finite mean J.I. = J.l.F, and second raw moment m2 = m}. Changing 
variables, we write 

(2.16) 

(2.17) 

where 
F-1(x) = sup{y: F(y):::; x}, 0:::; x < 1, (2.18) 
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is the right-continuous quantile function of X. We can say that mF is 
the norm of F-l in L2([0, 1), dx), and J.'F = (F-l, I). The family of 
all possible quantile functions is identical to the convex cone of (right­
continuous versions of) nondecreasing functions in L2 ([0, 1), dx). For the 
variance u2 = u~, we have 

Observe that the functions F-l- J.'F form the convex cone of nondecreasing 
functions integrating to O. Our purpose is to determine sharp bounds for 
normalized statistical functionals represented as T(F-l ) /mF and T(F-l -
J.'F)/UF for general and restricted classes of quantile functions. Now we 
present exemplary linear functionals of statistical importance acting on 
quantile functions in L2([0, 1), dx). Considering bounds on narrower classes 
of distributions, it is convenient to transform the quantile functions so that 
other L2-spaces are studied. 

Quantiles F-l(P) of order 0 < p < 1. They characterize distributions by 
describing levels that divide respective populations into subsets contain­
ing desired proportions of elements. Quantiles are often used for defining 
critical levels of tests and interval estimates. In order to evaluate F-l(P) 
in terms of moments, we represent it as a limit of continuous linear L2_ 
functionals 

F-l(P) = lim -I-lq F-l(x) dx = lim (F-l, _I_I(p q»), 
q'"p q - p p q'"p q - p , 

(2.20) 

where IA denotes the indicator function of set A. Precisely, a distribu­
tion function may have nonunique quantiles, and (2.20) defines the upper 
quantile of order p. 

Expectations of order statistics of independent samples. Let Xl' ... ' Xn 
be independent identically distributed random variables with a common 
distribution function F. Then the jth order statistic Xj:n, 1 $ j $ n, is the 
jth smallest value in the sequence Xl' ... ' X n. The respective distribution 
function is 

P(Xj:n $ x) = P(at least j among Xl, ... ,Xn are $ x) 

= ~ (~) Fk(x)[1 - F(x)]n-k 

= Fj:nF(x), (2.21) 

say. Since 

f () F ' ( ) (n -1) j-l( )n- j 1m X = j:n X = n j _ 1 X 1 - X , (2.22) 
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we have 

1+00 

EFXj:n -00 x Fj:nF{dx) 

= 11 F-1 {x)/i:n{X) dx 

= (F- 1 ,/i:n). (2.23) 

Note that Fj:n and /i:n are the distribution and density functions, re­
spectively, of the jth order statistic of the standard uniform Li.d. sam­
ple of size n. Order statistics are directly used for estimating quantiles 
of order j /n and describing the lifetime of the j -out-of-n reliability system 
which contains n independent identical elements and operates until at least 
n + 1 - j of its elements do. We can also study the expectations of linear 
combinations of order statistics (so called L-statistics) 

(2.24) 

which have numerous applications in statistical inference. For example, 
those with Ej=1 Cj = 1 (inchlding the sample mean l/n Ej=1 Xj:n, sample 

median X(n+1)/2:n for odd n, trimmed means l/{n - 2k) Ej~:+1 Xj:n for 

j ~ n/2-1) and ones satisfying E~=1 Cj ~ 0, 1 ~ k ~ n-1, and Ej=1 Cj = 
o (including sample range Xn:n - Xl:n and sample interquartile distance 
X n+1-L n/ 4 J:n - X Ln/ 4 J on) are used for estimating the location and dispersion 
ofthe population, respectively. Moreover, the projection method enables us 
to evaluate precisely uniform convergence rates of estimates for particular 
families of distributions. In the exemplary case of quantile estimation, this 
is possible by analyzing EFXj:n - F-l{j/n) and EF{Xj:n - X kj:kn ) for 
k > 1. For a comprehensive treatment of the theory of order statistics 
we refer the reader to David [22], Arnold et al. [7], and Balakrishnan and 
Rao [12]. The best references for their applications are Balakrishnan and 
Cohen [11], and Balakrishnan and Rao [13]. 

Order statistics of dependent samples. Suppose that Y1 , • •. ,Yn are pos­
sibly dependent identically distributed random variables with a common 
marginal F, and }jon, 1 ~ j ~ n, are the respective order statistics. As in 
the previous case, }j:n may represent the lifetime of an {n + 1 - j)-out­
of-n system of elements with identical failure probability, but here each 
element affects the other ones somehow. It may happen in particular that 
Y1 = ... = Yn , if the damage of a single element causes the immedi­
ate damage of all remaining ones. It was shown in Rychlik [79] that for 



2.2 Statistical Linear Functionals 19 

c = (Cl, ... , cn) E ~n, we have 

(2.25) 

where 'Pn(F) denotes the family of all joint distributions P on ~n with 
identical marginals F, and ge is (the right) derivative of function Ge , being 
the greatest convex one satisfying 

j 

Ge(O) =0, Ge(jln)~LCi, j=I, ... ,n. (2.26) 
i=l 

Formula (2.25) is valid for arbitrary coefficients C1, • •• , Cn, and distribution 
function F with a finite expectation. The supremum is attained for some 
distributions in 'Pn(F). A detailed characterization of the distributions as 
well as arguments leading to (2.25) are presented in Section 5.1. Maximizing 
(2.25) over a family of marginals F, we first determine the F providing the 
extreme value of (F-1, ge), and then take the joint distributions in 'Pn(F) , 
for which the expectation of the L-statistic is actually equal to (F-1, ge) for 
the specified F. By definition, ge is a nondecreasing step function with n-l 
jumps at most, located at some points of the form j In, j = 1, ... ,n - 1. In 
particular, for arbitrary 1 ~ j ~ n, 

sup Eplj:n = 
PeP .. (F) 

n .11 F-1(x) dx 
n + 1 - J . (j-1)/n 

= (F-1, n + ~ _ j l[(j-1)/n,l) ) 

= (F-1 , gj:n), (2.27) 

say (cf. also Caraux and Gascuel [19], Rychlik [76]). One can more easily de­
termine projections of simple step functions presented in (2.25) and (2.27) 
than of polynomials appearing in respective formulae (2.24) and (2.23) for 
the LLd. case. This explains the surprising fact that we have more results 
and of simpler forms for arbitrarily dependent samples than for standard 
independent observations. Note finally that the projection method allows 
us to measure sensitivity of L-statistics upon dependence by evaluating 

(2.28) 

in chosen classes of marginal distributions. These evaluations allow statis­
ticians to choose L-statistics that are robust against violations of indepen­
dence assumptions. 
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Record values. Record values in numerical sequences are ones that exceed 
all the preceding ones. For a random sequence Xi, j ~ 1, record values, 
and respective record occurrence times L n , n ~ 1, are random increasing 
sequences. By convention, we assume 

and further put 

Ln = min{j > Ln- l : Xi > XL,._J, 
Rn = XL,., n ~ 1. 

(2.29) 

(2.30) 

(2.31) 

Due to another convention, the first value of record occurs at time 1 and 
equals Xl. Like extreme order statistics, records are applied in estimating 
strength of materials, predicting natural disasters, sport achievements, and 
the like. They were first studied by Chandler [20]. Comprehensive studies of 
records can be found in Ahsanullah [1] and Arnold et al. [8]. IT observations 
are independent identically distributed and the distribution does not have 
an atom at its right support endpoint, then the sequence of records is 
infinite almost surely. Formulae (2.29), (2.30), and (2.31) are well defined 
for arbitrary original sequences, but we assume further that Xi, j ~ 1, 
are independent and have an identical continuous distribution function F, 
say. It is obvious that if a current value of a record is given, then the 
conditional distribution of the next one is identical with the distribution of 
the parent variable under the condition that it exceeds the actual record 
value. In particular, for records R~ of an i.i.d. sequence xy, j ~ 1, with 
the standard exponential distribution function 

V(x) = 1 - exp( -x), x ~ 0, 

we have 

P(R~+l - R~ > YIR~ = x) P(X[ > Y + xlX[ > x) 
= exp(-y) 

= P(X[ > y) (2.32) 

for arbitrary x, y ~ O. It follows that the record increments R%, Rf -
Rr; , . .. ,R~V - R~ , ... are independent standard exponential random vari­
ables, and Rn has the gamma distribution r(n + 1, 1) with shape parameter 
n + 1 and scale 1. The transformation 

produces an Li.d. sequence with common distribution function F. By strict 
monotonicity, it preserves the record occurrence times. Therefore 

(2.33) 
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and 

with 

EFRn = EvF-1V{R~) 

= (>0 F-1{1 _ e-Z ) xn e-z dx 
10 n! 

= 11 F-1{x)fn{x) dx 

= (F-1,fn) 

fn{x) = [-In{l- x)]n In!, 

which is a desired inner product representation. 

(2.34) 

kth record values. An increasing sequence of record values arises from 
a nondecreasing sequence of sample maxima (Xn :n ), n ~ I, by crossing 
out all repetitions. For arbitrary fixed k, the sequence of kth greatest order 
statistics (Xn+1-k:n), n ~ k, is nondecreasing as well. By analogy, we can 
define occurrence times and values of kth records in the following way 

L(k) 
0 = k, Itok) = X 1:k, (2.35) 

L(k) = min{j > L~k21 : Xj > X L(Io) H-k:L(Io) }, (2.36) n 
n-l n-l 

R(k) 
n = X L~Io)+1_k:L~Io), n~1. (2.37) 

The kth records were introduced by Dziubdziela and Kopocinski [26]. There 
is also another convention of defining kth record occurrence times that 
consists in subtracting k - 1 from L~k) defined in (2.35) and (2.36). This 
implies that we start counting records only when the first k observations 
are carried out. In particular, the first value of the kth record occurs at 
moment 1 then. However, we are concerned with record values here, which 
are not affected by the particular definitions of occurrence times. In contrast 
with standard records, a random variable X L(Io) observed at the kth record 

time L~k) for k ~ 2 does not necessarily become the kth record value 
immediately. Generally, we have 

XL~Io) = XL~Io)+1_i:L~Io) ~ XL~Io)+1_k:L~Io) 
for some 1 ~ i ~ k. Thus it becomes the ith record first and will become the 
kth record when k - i greater values occur in the sequence. A key relation 
that allows us to establish the distribution function of kth records is 

p{R(k) > yIR(k) = x) = [1- F{Y)] k > 
nH n 1 _ F{x) , Y x, (2.38) 

{cf. (2.32)), which means that the distribution of the next value of the kth 
record, when the current one is known, is the same as the distribution of 
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the minimum of k original variables Xj under the condition that they are 
greater than the current record. Relation (2.38) shows that distributions of 
nth values of kth records from the i.i.d. sample with distribution function F 
and standard first records of the i.i.d. sample with distribution function 

F1:kF(x) = 1- [1- F(x)]k 

(Le., that of X 1:k) coincide. Therefore, by (2.34), 

EFR~k) = EV(F1:kF)-lV(R:;) 

= 100 F-1(1 _ e-z/k) xn e-Z dx 
o n! 

= 11 F-1(X)f~k)(x) dx 

= (F-1 ,f~k»), 

where 

k,~ 1, n ~ 0, 

(2.39) 

(2.40) 

is the density function of the nth value of the kth record of the LLd. stan­
dard uniform sequence, and fA1) = fn defined in (2.34). Formula (2.38) is 
true for arbitrary F. However, for the discontinuous F function F-1 F1-;-iV 
is not strictly increasing and may transform a record in the exponential se­
quence into a number equalizing a previous score. Therefore (2.39) is true 
only for continuous F. 

kth lower record values. The consecutive decreasing elements S~k), n ~ 1, 
of the nonincreasing sequence of kth order statistics Xk:i, i ~ k, are called 
kth lower record values. H Xi, i ~ 1, are LLd. standard uniform, so are 
1 - Xi, i ~ 1. If the upper records R~k) occur in the original sequence, 
we observe the lower records S~k) in the latter. H F is continuous, then 
transformation F-1 provides observations with distribution function F, 
and preserves their order. Therefore we have 

S(k) = F-1(1 _ R(k») n n , 

and, by (2.39) and (2.40), 

EFS~k) = 11 F-1(x)fAk)(1 - x) dx 

11 kn+1 
= F-1(x) __ (_lnx)nxk-1 dx. 

o n! 
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Conditional expectations of order statistics. Suppose that the common 
distribution function F of Xl, ... ,Xn is absolutely continuous. Then the 
conditional distribution of Xj:n given that Xi:n = y for some 1 :$ i < j :$ n 
is the same as the distribution of the (j - i)th order statistic obtained from 
a sample of size n - i from a population with distribution function 

D ( ) _ F(x) - F(y) 
.c'11I x-I _ F(y) , x ~ y, 

which is actually the distribution function of Xl provided that Xl > y. 
In fact, order statistics X j :n , 1 :$ j :$ n, of continuous populations form 
Markov chains with respect to j. This means that conditional distribution 
of X j :n when X i1 :n = Yl < ... < Xik:n = Yk, 1 :$ i l < ... < ik < j :$ n, 
depends only on the value of Xik:n. The relations are useful in predicting 
further failures of elements of reliability systems, and in statistical inference 
based on partial (truncated) observations. The proofs, based on the use of 
joint distributions of several order statistics, can be found in Arnold et 
al. [7, Section 2.4]. In particular, we have 

for 1 :$ i l < ... < ik < j :$ n, and 

EF(Xj:nIXi:n = y) 
= EFIIIXj-i:n-i 

= 11 F-l(F(y) + [1 - F(Y)]X)/;-i:n-i(X) dx 

= rl F-l( )f... . (x -F(Y)) l[F(II),l)(X) dx 10 X }-I.n-I 1 - F(y) 1 - F(y) (2.41) 

for 1 :$ i < j :$ n. Similar results are obtained for the reversed conditioning. 
The conditional distribution of the X j :n when Xk:n = z is given for k > j is 
identical with the distribution of the jth order statistic from the sample of 
size k -1 with the common distribution function of Xl under the condition 
that Xl :$ z which equals 

F lz( ) = F(x) x F(z) , x:$ z. 

H both Xi:n = Y and Xk:n = z for i < j < k are known, then the condi­
tional distribution of X j :n coincides with that of Xj-i:k-l-i of the doubly 
truncated population with distribution function 

p,IZ( ) = F(x) - F(y) 
III X F(z) _ F(y) , y < x :$ z 
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(see also Arnold et al. [7, Section 2.4]). Respective analogues of (2.41) are 

EF(Xj:n!Xk:n = z) 
= EFlzXj:k-l 

= 11 F- 1 ( )f·. (~) l[o,F(z»(X) d ° x J.k-l F(z) F(z) x 

EF(Xj:n!Xi:n = y, Xk:n = z) 
= EFI,Xj-i:k-l-i 

III 

(2.42) 

11 -1 ( X - F(y) ) l[F(y),F(z»(X) 
= ° F (X)!i-i:k-l-i F(z) _ F(y) F(z) _ F(y) dx (2.43) 

for i < j < k and y < z. Order statistics of discontinuous populations 
do not have the above-mentioned properties in general. Distribution the­
ory and dependence structure of order statistics from discrete populations 
were thoroughly discussed in Nagaraja [62). Conditional expectations of 
functions of adjacent order statistics for general populations were exam­
ined by Franco and Ruiz [30). 

Conditional expectations of record statistics. We already referred to the 
fact that the distribution of the (m + 1 )st record value in an atomless 
Li.d. sequence Xi, i ~ 1, under the condition that Rm = Y is that of the 
original observation Xi under condition Xi > y. This is actually the record 
value number 0 from the sequence with distribution function Fly. Looking 
for further record values, we can merely confine ourselves to the X s that 
exceed level y. The (m+2)nd record value is the first one among Xs greater 
than y that is also greater than the first Xi exceeding y. In other words, this 
is the first record value from the population with distribution Fly' Arguing 
inductively, we conclude that the distribution of Rn under the condition 
that Rm = y for some m < n is identical with the distribution of the 
(n - m - l)st record value in an LLd. sequence with common distribution 
F truncated on the left at y. Moreover, sequences of record values have 
the Markov structure (see, e.g., Nevzorov and Balakrishnan [64, p. 527)). 
Analogous properties have kth record values for general k. Justifying the 
claim, it suffices to recall the fact that distributions of the kth and first 
record values from distributions F and FuF = 1- (1- F)k, respectively, 
coincide. One can easily check that 

(FUF)IY(x) = [1 - (1- F)k)IY(x) 

= 1- [l-F(X)f 
1- F(y) 

= 1 - [1 - Fly(x))k 
= Fu(Fly)(x). 
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Accordingly, for continuous parent distributions F, 1::; m < n, and k ~ 1, 
we have 

= EFl:kFlyRn-m-1 

= EF R(k) 
III n-m-l 

r1 F-1( )ik) (x - F(Y)) l[F(y),I)(X) d 10 x n-m-l 1 _ F(y) 1 _ F(y) x 

r1 kn- m(1 - x)k-l 
10 F-1(x) (n - m - 1)![1 - F(y)]k 

x [ 
1 - F(Y)] n-m-l 

In 1- x l[F(y),I) (x)dx. (2.44) 

Predictions of further record values are of vital interest in constructing 
protection devices. Reconstruction of previous record values is also possible. 
Nagaraja [61] proved that in the LLd. samples with continuous distribution 
function F, the conditional distribution of Rm under the condition Rn = z 
is identical with the distribution of the mth order statistic from the Li.d. 
sample of size n - 1 ~ m with the distribution function 

p1Z()= V-1F(min{x,z}) 
x V-IF(z)' 

Accordingly, elementary calculations lead us to the linear functional repre­
sentation 

EF(RmIRn = z) 

Epl.Xm :n - 1 

= 11 (pIZ)-1 (x)fm:n-l (x) dx 

r1 -1 ( -In(I-X)) l[o,F(z)) (x) 
= 10 F (x)fm:n-l -In(1 _ F(z)) -(1 _ x) In(1 _ F(z)) dx. 

Analysis of the functional is certainly a challenging task. Franco and Ruiz 
[29] studied conditional expectations of functions of the nearest previous 
record. 

2.3 Restricted Families of Distributions 

We formally define the convex cone of quantile functions considered in the 
previous section as 

C/' = {g E £2([0, 1),dx) : 9 - nondecreasing, right continuous}. (2.45) 
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Right continuity assumption is inessential for problems of L2-projections. 
It is introduced here in order to preserve the consistency with definitions 
of quantile functions, and One can simply replace an arbitrary nondecreas­
ing function by the right continuous version. We regard elements of COnvex 
COnes defined here and statistical functionals as being right continuous. 
Observe that projecting functions onto (2.45) we maximize normalized sta­
tistical functionals in 11F-1 11 = mF units. In order to get more subtle 
evaluations in terms of mean and variance, we should consider the class of 
p-l - J.LF functions defined as 

CO = {g E c/': 11 g(x)dx = O}. (2.46) 

It is also of interest to study life distributions, which, by definition, have 
the left support endpoint at zero, and generate the following family of 
nonnegative quantile functions 

C+ = {g E C/' : g(O) = O}. (2.47) 

In this case we have another pair of location and scale parameters: the left 
endpoint of support a F = 0 and the square root of the second moment m F, 

respectively. 

The family of symmetric distributions (about the respective expectation 
J.L = J.LF) is characterized by equivalent relations 

p(x - J.L) = 1- P(J.L - x-), 
p-1(x)_J.L = -[F-1(I-x-)-J.L]. 

(2.48) 

(2.49) 

It is convenient to study the upper halves of p-1 - J.LF, which form the 
cone 

CS = {g E L2([~, 1), 2dx) : 9 - nondecreasing, 9 (~) = O} , (2.50) 

and extend the functions to the whole unit interval using (2.49). This im­
plies the modification of functionals which consists in symmetrizing them 
about 1/2. Indeed, by (2.49), this yields 

for 

Th (F-1 - J.L) = 11 [F-1(x) - J.L]h(x) dx 

= r1 2[p-1(X) _ J.L]hS(x) dx 
J1/2 

h8 (x) = [h(x) - h(l- x-)]/2. 

Observe that the norm of p-1 - J.LF in L2 ([1/2, 1), 2dx) is aF. 

(2.51) 

(2.52) 
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In various models, existence and monotonicity of the density function 
of the parent distribution F is assumed. H the density is nonincreasing 
(nondecreasing) then F is increasing concave (convex) on its support, and 
F-1 is increasing convex (concave, respectively). We define 

cC u = {g E C/ : 9 - convex}, (2.53) 
_c 

C~u = {g E C/ : 9 - concave}, (2.54) 

with C~ u (C~ u) and C; u (C~ u) denoting intersections of (2.53) «2.54), 
respecti~ely) "Vrith linear-~ubsp~es of functions integrating to ° (vanishing 
at 0, respectively). The apparently awkward notation is justified below. We 
say that F(x) succeeds the standard uniform distribution function 

U(x) = x, ° ~ x ~ 1, 

in the convex order (written as F tc U) if F-1U = F-1 is convex on [0,1). 
The reversed relation F :jc U is defined by the convexity of U-1 F = F on 
the support of F, being equivalent with the concavity of F-1. By conven­
tion, we call distributions satisfying F tc U and F :jc U the decreasing 
and increasing density distributions, respectively. The convex order, de­
fined in van Zwet [100], is a partial order of (absolutely) continuous distri­
bution functions, invariant under location and scale transformations (see 
Dharmadhikari and Joag-dev [25, Theorem 9.1, p. 217]). Therefore we can 
generalize (2.53) and (2.54) as 

C{.,w = {g E L2([aw,dw),w(x)dx) : 9 - nondecreasing 
and convex}, (2.55) 

C~w = {g E L2([aw,dw),w(x)dx) : 9 - nondecreasing 
and concave}, (2.56) 

by taking compositions F-1 W for an arbitrarily fixed distribution func­
tion W with support [a,d) = [aw,dw ), and density w. We also introduce 
convex cones C~cw (C~cw) and C~cw (C~cw) by adding conditions 

ld g(x)w(x) dx = 0, 

g(a) = 0, 

respectively, to definition (2.55) «2.56), respectively). These definitions are 
justified by properties of compositions of F-1 with W. In particular, we 
have 

ld[F-1W(y)]2W(y) dy = 11 [F-1(XW dx < 00, (2.57) 

ld[F-1W(y) - IJ]w(y)dy = 11 [F-1(X) - IJ] dx = 0, (2.58) 

F-1W(a) = F-1(0). (2.59) 
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The families of life distributions being in convex order with exponential 
distribution are studied in reliability theory. Observe that F ~c V implies 
convexity of the hazard junction 

V-l F(x) = -In[l- F(x)], 

and nondecrease of 

Function AF(X), called the failure (hazard) rate, describes the infinitesi­
mal probability of failure at a short period of time following x under the 
condition of surviving until x. Condition F ~c V defines the family of dis­
tributions with increasing failure rate (IFR, for short). Likewise, F tc V 
coincides with nonincrease of AF, and defines the family of decreasing failure 
rate (DFR) distributions. We specify here bounds on statistical functionals 
restricted to IFR and DFR distributions. Since U -<c V, every DFR distri­
bution has a decreasing density, and the increase of density implies that of 
the failure rate. 

van Zwet [100] (see also Lawrence [49]) defined a counterpart ~. of 
convex order for symmetric distributions, and called it s-order. We have 
F ~8 W for F and W symmetric about J.tF and J.tw, respectively, if 
F-lW(x) is concave for x ~ J.tw. This is equivalent with convexity of 
F-l W on the lower half of the support of W, and concavity-convexity 
of W- l F on the support of F. Combining constructions leading to (2.50), 
(2.55), and (2.56), we define the convex cones 

CtcW = {g E L2([J.tw,dw),2w(x)dx) : g(J.tw) = 0, g - nondecreasing, 
convex}, (2.60) 

and C~ w replacing the convexity assumption by concavity in (2.60). It is 
worth-pointing out here that F t. (~.)U define the classes of symmetric 
unimodal (U -shaped) distributions. Multiplying the weight function by 2 (cf. 
also (2.50)) allows us to confine ourselves to L2-spaces defined by means 
of probabilistic measures. Obviously, the constant multiplicator does not 
affect projections. 

The star order ~. of continuous life distributions, introduced in Barlow 
and Proschan [15], is more general partial order than the convex one (see, 
e.g., Dharmadhikari and Joag-dev [25, Theorem 9.1, p. 217]). By definition, 
F ~. W iff W-l F is starshapedj that is, W-l F(x)Jx is nondecreasing on 
the support of F. If F ~* V in particular, then 

AF(X) = -In[l - F(x)] =.!. r AF(Y) dy 
x x 10 (2.61) 
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is nondecreasing, and we can say that P has an increasing failure rate on 
the average (IFRA, for brevity). DFRA life distributions P are defined by 
relation P !:::* V. Also, P ~* (!:::*)U means that 

P(x) =.! r f(y) dy 
x x Jo 

is nondecreasing (nonincreasing, respectively). Accordingly, the relation de­
fines the family of life distributions with increasing (decreasing) density on 
the average: although f may be multimodal, the larger values in [aF, dF) 
are more (less) probable than the smaller ones. The star order is scale in­
variant. In order to make it invariant with respect to translations as well, 
we generalize the definition as follows: P !:::* (~*)W iff aF,aW are finite 
and [F-IW(X) - p-lW(aw)]/(x - aw) is nondecreasing (nonincreasing) 
on [aw, dw). The definition enables to establish mean-variance bounds on 
statistical functionals by projecting them onto convex cones of p-1 W - J.lF 
described by the generalized star relations: 

c~ w _. 

c~ w _. 

= {g E L2([aw,dw),w(x)dx) : g(x), g(x) - g(aw) are 
x-aw 

nondecreasing and 

[dW g(x)w(x) dx = O}, 
Jaw 

{g E L2([aw,dw),w(x)dx) : g(x) isnondecreasing, 

(2.62) 

g(x) - g(aw) is nonincreasing, 
x-aw 

[dW g(x)w(x) dx = O}. (2.63) 
Jaw 

Special emphasis is laid on cases W = U, V. For a detailed treatment of 
stochastic orders and their applications, we refer the reader to monographs 
of Dharmadhikari and Joag-dev [25], and Shaked and Shantikumar [96]. 

We adopt the convention of denoting the projection onto a given convex 
cone by writing P with the same upper and lower indices that appear in 
the notation of the cone. For example, P~ wh denotes the projection of h 
onto C~. w. Although the original quantile functions of restricted families of 
distributions determined by the orders discussed above form convex cones, 
we prefer considering compositions p-l W. The reason is that the latter 
have natural analytic and geometric properties. Our process of determining 
the projection of a given functional consists of choosing an arbitrary start­
ing point in the cone and constructing consecutive approximations improv­
ing the previous ones. We first try to describe the shape of the projection 
function and then calculate optimal parameters. It is therefore essential for 
the first step that we are able to check immediately if a function proposed 
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for an approximation actually belongs to the cone. The only assumption 
appearing in definitions of our cones that cannot be verified at first glance 
is weighted integrability to 0 (see, e.g., (2.46), (2.60), (2.62), and (2.63)). 
One can overcome the problem using the following lemma (cf. Rychlik [87, 
Lemma 1]). 

Lemma 2 Suppose that C is a subset of a real Hilbert space 11. such that 
gEe implies 9 + cgo E C for some go E 11. and all real c. If ho E 11. has 
a projection Pho onto C, then 

(Pho, go) = (ho, go). 

PROOF. For arbitrary fixed gEe and c E lR, IIg+cgo-hoI1 2 is minimized 
by 

eo = eo(g) = (ho - g,go). 
(go,go) 

The projection Pho necessarily has the form 9 + eogo for some gEe, and 
satisfies 

(g + eogo, go) = (ho,go) .• 

Let C~ be any of the above-considered convex cones such that 

ld g(x)w(x) dx = (g,l) = 0 

for all 9 E C~ is assumed. Let C( denote the extension of C~ by dropping the 
integral condition. Note that each C( is translation invariant (i.e., fulfills 
the assumption of Lemma 2 with go = 1). Therefore (h, 1) = 0 implies that 
PI' h E C~ and coincides with p2 h. Otherwise we replace h by 

(h,l) 
ho = h - (1,1/ = h - (h,I), (2.64) 

noting that we confined ourselves to weights generated by probability mea­
sures. Then, by (2.2) and (2.3), 

V 9 E C~ Th(g) = (g,h) = (g,h- (h,I)) = Tho (g) ::; 11P2hollllgll, 
Th(p2ho) = Tho(P2ho) = 11P2ho1l 2 • 

Since (ho,l) = 0, we have ~ho = P!'ho. It follows that it suffices to 
replace functional h by (2.64) and project it onto C(, without bothering 
about the integral condition. In fact, translation invariance of C( yields 

P!'(ho) = P!,(h) - (h,l) 

so that we are reduced to projecting the original h onto C(, and subtracting 
the constant from the result. 
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Another problem that one should be aware of is the existence of pro­
jections and probability distributions attaining bounds on functionals in 
restricted families. Functional representations of expectations of records, 
and conditional expectations of order and record statistics are valid for 
absolutely continuous distributions. Moreover, the families of absolutely 
continuous distributions determined by the convex and star orders form 
convex cones that are not closed. In fact, the cones of absolutely continu­
ous distributions are dense in the respective convex cones defined in this 
section. We project the functionals onto the closed convex cones, and the 
projections are border points of them. In many cases they correspond to 
distributions that are not absolutely continuous, and so do not belong to 
the families under study. Nevertheless, we write down formulae describ­
ing these distributions, because they enable the reader to guess easily the 
forms of absolutely continuous elements of restricted families with values of 
functionals arbitrarily close to optimal bounds. Strictly speaking, the weak 
convergence in the topological sense is sufficient here. However, we can eas­
ily find sequences F;l, k ~ 1, of quantile functions of absolutely continuous 
distributions with assumed properties that tend to the desired limit F-1 , 

say, in the norm of L2([0, 1), dx). Note that, by change of variables, 

Fk-1W ~ F-1W in L 2 ([aw,dw),w(x)dx) 

is equivalent to 
Fk- 1 ~ F-1 in L2([0, l),dx). 

More intuitively, we can express the relation in terms of random variables. 
If Fk, k ~ 1, are distribution functions of a given family, and F generated 
by the projection method does not belong to the family, then Fk, k ~ 1, 
attains in the limit the bound attained by F if 

that is, F;l(X) converges to F-1(X) in the mean square for a standard 
uniform random variable X. 

For instance, (2.53) contains the quantile functions of distributions with 
decreasing density, and, possibly, an atom at the left endpoint ap of sup­
port. Suppose that the solution of the projection problem, dual to a problem 
of evaluating a linear statistical functional over decreasing density distribu­
tions, has an atom. This can be replaced by absolutely continuous (uniform, 
say) components with increasing concentration about ap so that we obtain 
decreasing density distributions with quantile functions tending to that of F 
in L2([0, 1), dx). Moreover, these absolutely continuous approximations can 
be modified so as to preserve desired moments of limiting F. 



3 
Quantiles 

The main results of this chapter come from Rychlik [90]. The bounds for 
quantiles of general distributions were obtained by Moriguti [58]. Those for 
symmetric and symmetric unimodal distributions may also be concluded 
from the Chebyshev and Gauss inequalities, respectively. Vysochanskii and 
Petunin [102] presented a refinement of the Gauss inequality for unimodal 
distributions. Further generalizations can be found in Dharmadhikari and 
Joag-dev [25, Section 1.5]. We also notice that the Markov inequality yields 

F- 1(P) ~ fJ.F 
I-p 

for quantiles of nonnegative random variables. Another implication of the 
Markov inequality is the second moment bound 

-1(p) mF 
F ~ (I _ p)1/2 . 

3.1 General and Symmetric Distributions 

For these two cases, there is no need to think of a quantile value as 
a limit of L2-functionals (cf. (2.20», because we can directly use results 
of Moriguti [58], summarized below. These enable us to analyze integrals 
of monotone functions with respect to arbitrary, not necessarily absolutely 
continuous, distribution functions. 
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Lemma 3 If H : [a, d) t-+ ~ is right continuous and of bounded variation, 
H- denotes its left continuous version, and li is the right derivative of the 
greatest convex minorant fl of H, then 

d d [ d d ]1/2 1 g(x) H(dx) ~ 1 g(x)li(x) dx ~ 1 g2(x) dx l li2 (x) dx (3.1) 

for every nondecreasing function g. 
The former relation in (3.1) becomes an equality iff 9 is constant in every 

interval contained in {fl < min{H,H-n, and right (left) continuous at 
every discontinuity point of H (if any) such that H > H- (H < H-, 
respectively) there. The latter relation in (3.1) becomes an equality iff either 
li = 0 or 9 = ali for a ~ O. 

Also, under assumption H(a) = H-(d), function 9 can be replaced by 
arbitrary translation 9 + c in the middle and last expressions of (3.1), and 
the conditions for equality. 

We tacitly assume that all integrals in (3.1) are well defined and finite. 
Observe that the conditions for the latter equality imply those for the 
former, because fl is linear and li is constant on every interval of the set 
{fl < min{ H, H-}}. The arguments in the proof of Lemma 3 are similar to 
those used in Example 3 of Section 2.2. Since we have a uniform weighting 
here, introducing compositions with the anti derivative is redundant. More­
over, the first step of constructing the derivative li of the greatest convex 
minorant fl of the antiderivative H of the projected function h also may 
be omitted, because in Lemma 3 we start from a distribution function H. 
On the other hand, this is not necessarily continuous here which results in 
a more sophisticated condition for equality in (3.1). 

Theorem 2 (general distributions) For all 0 < p < 1, 

F-1(p) - J.LF ~ (_p_)1/2 
(TF 1- p 

(3.2) 

The equality in (3.2) holds iff F is the two-point distribution valued at 
J.L - [(1 - p)jp]1/2(T and J.L + [Pj(I - p)]1/2(T with probabilities p and 1- p, 
respectively. 

The theorem immediately follows from Lemma 3 by putting 

H(x) = 1[p,1)(x) - U(x) 

with 

li(x) { -1 if o ~ x <p, = ~, if p ~ x < 1, 

Illil12 P 
I-p 

, 
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and 
F-l(X) - J1. h(x) 

a = Ilhll· 
Moriguti [58] also showed that 

F- 1(q) _ F-l(P) (1 1)1/2 
--='------"'--'- < -- + -aF - 1- q p , O<p<q<l. (3.3) 

Special cases of (3.2) and (3.3) for the median and interquartile distance 
yield 

F-1 (~) - J1.F < aF, 

F- 1 (~) _ F- 1 (~) < 23/ 2aF. 

Likewise for symmetric distributions and 1/2 ~ p < 1, we can write 

F- 1 (P) _ J1. < /,1 (F-l(x) - J1.] 1[p,1) (dx) 
1/2 

because 

< /,1 (F-l(X) _ J1.]l[p,l)'(x)dx 
1/2 

< 2-1/ 2 11 1[p,l)'lla 
[2(1 - p)r1/ 2a, (3.4) 

-- x-p 
l[p,I)(X) = 1-P l[p,l) (x) 

is the greatest convex minorant of l[p,I). For p < 1/2 we trivially obtain 

F- 1 (P) - J1.F ~ F- 1 (P) - F- 1 (~) ~ O. 

Theorem 3 (symmetric distributions) We have F-l(P) ~ J1.F for ev­
ery quantile of order p < 1/2. 

For p ~ 1/2, we have 

F-l(P) - J1.F 1 
aF ~ [2(1 _ p)]1/2 ' (3.5) 

with the equality attained in (3.5) for the three-point distribution 

p (X = J1. ± [2(1 :P)]1/2) = 1 - p, 

P(X = J1.) = 2p-l. 

Observe that for p = 1/2 bounds (3.2) and (3.5) coincide, and (3.5) is 
sharper for p > 1/2. 
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3.2 Distributions with Monotone Density and 
Failure Rate 

We start with the problem of evaluating the upper quantiles F-1 (P) for 
all F !:c W. Our auxiliary projection problem is to find a function in 
C( w minimizing the distance to the indicator function of the interval 
[W-1(P), W- 1(q)) for some q > p. The construction is based on the follow­
ing two lemmas. 

Lemma 4 Let 

h = M1[b,c) E L2 ([aw,dw ),w(x)dx) 

for a < b < c ::; d and M > O. Then for every 9 E C( w there exists 
ga.{3 E C( w defined as -

_c 

(3.6) 

for some a :2: 0, 13 ::; b, a(b - 13) < M, such that 

Ilga.{3 - hll ::; IIg - hll· 

The two-parametric class (3.6) consists of nonnegative constants, increasing 
linear functions, and broken lines with two pieces: horizontal and increasing 
ones. 

PROOF OF LEMMA 4. Note first that if g(a) < 0, then g+ = max{g, O} E 
C(w lies closer to h than the original g. If g(a) :2: 0 and g(b) :2: h(b), 
toen h ::; 9 :j:. h and (g,l) > (h, 1). Since IIg + C - hll is minimized in the 
class of translations 9 + C, of a given function 9 by the real C satisfying 
(g + C,l) = (h,l) (cf. Lemma 2), we improve approximation of h by 
adding a negative constant and truncating at level O. 

These modifications lead us to functions satisfying 0 ::; g(a) ::; g(b) < 
h(b). Function 9 = 0 can be replaced by a positive constant. A correction 
of a nonnegative nonzero function 9 E C( w that vanishes at c consists in 
setting 0 in [c, d), and adding a positive cC:nstant. Therefore we can further 
assume that g(c) > 0, and define 

"y = inf{x E (b,c] : g(x) :2: h(x)}. 

We easily check that the function 

g-y(x) = max {gb~ = ~(b) (x - b) + 9(b),0} 

lies between hand g, and can be alternatively parameterized as (3.6) with 
respective restrictions on parameters .• 
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Lemma 5 Let the assumptions of Lemma 4 hold and 

ld w(x) dx = ld h(x)w(x) dx = 1. 

If 
JbC(X - a)w(x) dx l d ( ) ( ) 

fC () ~ x - a w x dx, 
Jb W x dx a 

then p( wh = 1. 
Othe1wise there exists a unique fJ* < b that solves 

(3.7) 

(3.8) 

JbC(X - fJ)w(x) dx J~ax{{3,a}(x - fJ)2w(X) dx 
C = d ~.~ 

Jb w(x) dx Jmax{{3,a}(x - fJ)w(x) dx 

and 

[ d ]-1 
a* = a*(fJ*) = h. (x - fJ*)w(x) dx > 0 (3.10) 

such that 

/' () _ ( _ (x - fJ*)+ Pt,c wh x -a. x-fJ*)+ - d' • 
Jmax{{3.,a}(y - fJ*)w(y) dy 

(3.11) 

Precisely, if relation "~" holds in (3.9) with fJ replaced by a, then fJ* ~ a, 
and (3.11) is linear on [a, d). In the opposite case, fJ* > a and the projection 
is actually a two-piece broken line. 

PROOF. Our purpose is to minimize 

D(a,fJ) = Ilga{3-hW 

= a 2 1d (x - fJ)2w(x) dx 
max{{3,a} 

2a r 1 
- Jbc w(x) dx Jb (x - fJ)w(x) dx + Jbc w(x) dx (3.12) 

with respect to a and fJ. For fixed fJ < b, we easily find optimal 

(fJ) JbC(x - fJ)w(x) dx 
a* = a* = d > 0, 

J: w(x) dx Jmax{{3,a}(x - fJ)2w(x) dx 
(3.13) 

which plugged into (3.12) gives 
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By differentiation, 

dD(a.(j3),j3) 
dj3 

2 fbC(x - j3)w(x) dx 
= 

[fbc w(x) dxJ2 f~ax{/3,a} (x - j3)2w(X) dx 

x [lC w(x) dx rd (x - j3)2w(X) dx 
b lmax{/3,a} 

- rd (x - j3)w(x) dx r (x - j3)w(x) dxl. 1 max{/3,a} 1 b 

Since the factor in the first line is positive, the sign of the derivative is 
identical with that of the last two which is denoted by K(j3). Observe that 

- Ew(X - blX > b)Ew(X - bib < X < c) 
> Varw(XIX > b) > 0 (3.15) 

for a random variable X with distribution function W. Furthermore, 

K'(j3) = rd w(x) dx r (x - j3)w(x) dx 
lmax{/3,a} lb 

- r w(x) dx rd (x - j3)w(x) dx 
lb lmax{/3,a} 

evaluated at j3 = b satisfies 

K'(b) 
d = Ew(Xlb < X < c) - Ew(XIX > b) < O. (3.16) 

fb w(x) dx fbc w(x) dx 

Finally, 

K"(j3) = -w(j3) l c (x - j3)w(x) dx ~ 0 (3.17) 

under the convention that w(j3) = 0 for j3 < aw. By (3.17) and (3.16), 
K'(j3) is constant for j3 < a and nonincreasing to K'(b) < 0 for a ~ j3 < b. 

If K'(a) ~ 0, which means that (3.8) holds, then K'(j3) ~ 0 and K(j3) 
is nonincreasing and, by (3.15), positive for all j3 ~ b. Therefore (3.14) is 
minimized at j3 = -00, which implies that the projection is a constant. 
This amounts to (h,l) = 1, which proves the first assertion. 

If K'(a) > 0, then K(j3) changes its sign once from minus to plus at 
some j3 < b, at which (3.14) is minimized. Equations (3.9) and K(j3) = 0 
are equivalent, and allow us to rewrite (3.13) as (3.10). Note that K(a) 2:: 0 
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implies that the solution to (3.9) satisfies (3 $ a, and that the projection is 
linear. In the opposite case a broken line with break at (3 > a is obtained. 
This proves the final claim of Lemma 5 .• 

Using (3.11) and writing (3 = max{(3.,a}, we obtain 
'-* 

IIPgcwh -IW = IIPSwh112 - 1 

I; (x - (3.)2W(X) dx - [J; (x - (3.)w(x) dX]2 
= -. -. (3.18) [J:. (x - (3.)w(x) dx]2 

P~cwh(x) -1 

IlPgcwh -III 
(x - (3.)+ - I; (y - (3.)w(y) dy 

= {d -. d }1/2' (3.19) 
It!.. (y - (3.)2W(Y) dy - [It!.. (y - (3.)w(y) dy]2 

Letting c ~ b, we reduce the right-hand sides of (3.8) and (3.9) to b - a 
and b - (3, respectively. Analyzing the resulting formulae, we derive bounds 
for quantiles. We introduce some notation before presenting them. For 
a random variable X with distribution function W, and arbitrary (3 E (a, d), 
denote the expectation and variance of X under the condition of exceeding 
level (3 by 

I;xw(x)dx 
= Ew(XIX > (3) = d ' 

1/3 w(x) dx 
J.'w ((3) (3.20) 

= Varw(XIX > (3) 

I; x2w(x)dx - I-''tv((3) 
= I; w(x) dx 

(3.21) 

We also define a distance between the pth quantile and the conditional 
mean in respective standard deviation units 

8 ((3) = W-1(p) - I-'w((3) 
w ow ((3) . (3.22) 

Theorem 4 (P tc W) IfW- 1 (p) $ I-'w, then p-l(p) $ I-'F. 
If J.'w < W-l(p) $ J.'w + u~/(I-'w - aw), then 

p-l(p) - I-'F < r ( ) _ W-1 (p) - I-'w _ uw aw - , 
UF UW 

(3.23) 

and the equality holds for the location-scale transformations of W, that is, 
for 

( X-I-') P(x) = W I-'w + uw-u- . (3.24) 
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Finally, if W-l(P) > J.tw + a'tv/(J.tw - aw), then there exists a unique 
solution (3* = (3*(P) E (aw, W-l(P)) to equation 

[W- 1 (P) - J.tw «(3)][J.tw «(3) - (3] = a'tv«(3), (3.25) 

and 

F-l(P) - J.tF < A = AO (P) = [8'tv«(3*) + W«(3*)] 1/2 (3.26) 
aF - tcW 1- W«(3*) 

The bound in (3.26) is attained by 

F(x) = W ((3* + Utw«(3*) - (3*][1- W«(3*)] (1 + A7)) l[/J_q/A,oo) (x). 
(3.27) 

Distribution function (3.27) has a jump of height W«(3*) < p at the left end­
point, and shares the shape of W on its support. This is a life distribution 
if 

Mean-variance bounds for F !:c U, V are specified in Propositions 1 and 2, 
respectively. 

Proposition 1 (decreasing density) If 0 < p::; 1/2, then F-l(P) ::; J.tF 
holds. 

If 1/2 < p ::; 2/3, then 

F-l~~ - J.tF ::; 2\1'3 (p _ ~) , (3.28) 

which becomes an equality for the uniform distribution on [I' - .;aa, I' + 
.;aa]. 

If 2/3 < p < 1, then 

F-l(P) - J.tF < [ 9p - 5 ] 1/2 (3.29) 
aF - 9(1- p) 

This is an equality for the mixture of the Dirac distribution concentrated at 
I' - 3a[(1 - p)/(9p - 5)]1/2 and the uniform one on [I' - 3a[(l - p)/(9p-
5)]1/2, I' + 3a(3p-1)/[(l- p)(9p- 5)]1/2] with weights 3p - 2 and 3(1- p), 
respectively. 

Proposition 2 (decreasing failure rate) If 0 < p::; 1-e-1 Rl 0.63212, 
then F-l(P) ::; J.tF. 

If 1 - e-1 < p ::; 1 - e-2 Rl 0.86466, then bound 

[F-l(P) - J.tF]/aF ::; -In(l - p) - 1, (3.30) 

is attained by the exponential distribution function with location I' and 
scale a. 
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If 1 - e-2 < p < 1, then for 

'Y = 'Yv(P) = (1 - p)e2 E (0,1), 

we get 
F-1(P) - f,LF < (_2 __ 1)1/2 

O"F - 'Yv(P) 
(3.31) 

This is an equality if F is the combination of an atom at f,L-0"['Y/(2-'Y)]1/2, 
and the exponential distribution with location h(2-'Y)j1/2f,L-'Y0" and scale 0", 
with respective probabilities 1 - 'Y and 'Y. 

We see that bounds (3.29) and (3.31) tend to infinity if p /' 1, and the 
same holds generally for (3.26). It follows from the fact that for b = W-1(P) 
large enough, f3 = f3(b) satisfies 

I; x(x - f3)w(x) dx 
b = -'--d.,-------

1/3 (x - f3)w(x) dx 
(3.32) 

(cf. (3.9) for f3 > a). Therefore b(f3) /' d, as f3 /' d, and the same holds for 
the inverse. Furthermore, 1 - W(f3) ~ 0, whereas the nominator of A~ w 
remains bounded below from zero, as b /' d. _0 

Now we proceed to the class of distributions determined by relation F :-;c 
W. We look for the projection of an indicator function onto cone C( w. 

_0 

Lemma 6 Under the hypotheses of Lemma 4, for every g E C( w there 

exists gOti3'Y E C{o w defined as _0 

(3.33) 

for some a > 0, and a ::; [3 ::; b ::; 'Y ::; c with a(-y - [3) ::; M such that 

PROOF. We start with eliminating all 9 E C~w satisfying g(c) ::; 0. 
Obviously, 9 ::; g+ = max{g,O} ::; h i g+. The first two relations show 
that g+ provides a better approximation. The latter two imply that this 
can be further improved by adding a constant C > ° such that 

(g+ + C, 1) = (h,I). 

We can repeat the truncation and translation operations several times until 
we eventually obtain a function positive at c. 
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Then we assume that g( e) > 0, and separately study three cases: g(b) :5 0, 
g(a) :5 0 < g(b), and g(a) > O. In the first one, we construct the line 
passing through (b,O) and tangent to the graph of gin (b, e], and truncate 
it at level gee). The resulting function has the desired form, runs above 9 
and below h in [a, e), and the reversed relations hold in [e, d). In the second 
case, we take the linear function secant to 9 at (3 E [a, b) satisfying g((3) = 0 
and b. The truncation defined above provides the conclusions of the former 
case. Finally, if g(a) > 0, then it suffices to replace point ((3,0) by (a, 0) in 
the construction of the second case .• 

The function (3.33) is a linear increasing function on the left which 
changes into a constant at point , E [b, e]. It is convenient to reparam­
eterize (3.33) as 

gO:/3'Y(x) = a[min{x,,} - (3] + 1. 

Then for fixed, E [b, e] we minimize the squared distance 

D(a, (3,,) = l d [a(min{x,,} - (3) + 1- h(x)]2w(x)dx (3.34) 

with respect to a and (3. However, this is a simple matter, because (3.34) 
is a convex quadratic function in both arguments. Therefore we have 

Lemma 7 Under the hypotheses of Lemma 5, we have 

p{ wh(x) = a("{Hmin{x,,} - (3("{)] + 1 
-< 

(3.35) 

for some, E [b, e] with 

(3("{) = ld min{x, ,}w(x) dx, (3.36) 

L<min{:Il,'Y}w(:Il)d:ll _ (3( ) 
1< w(:Il)d:ll ' 

a(,) = (3.37) 

In the description of quantile bounds for F ~c W, we use moments of 
right truncated random variables with distribution function W (cf. (3.20) 
to (3.22)): 

= Ew min{X,,} = ld min{x,,}w(x) dx, 

= Varwmin{X,,} 

= l d[min{x,,}]2W(X) dx - ti~("{), 
W-1(P) - tiw(,) 

= 
OW("{) 

(3.38) 

(3.39) 

(3.40) 
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Notice that (3.36) and (3.37) can be expressed as 

fJ("{) = PW('Y) E [aw,'Y), 

( ) Ew(min{X,'Y}IX> b) - PW('Y) 0 
0: 'Y = -2 ( ) > , uw'Y 

respectively. Therefore (3.35) is actually a nondecreasing concave function. 
In order to deduce the optimal bounds on quantiles, we do not need to 
calculate precisely parameter 'Y in Lemma 7, because we merely look for 

g. = limP{ wh E C~ w. 
c'-"b -" -" 

Note that (3.36) and (3.37) tend to fJ(b) = Pw(b), and 

o:(b) = d b - fJ(b) = W-l~~ - Pw(b) (3.41) 
fa min2{x, b}w(x) dx - fJ2(b) uw(b) 

respectively, uniformly in all 'Y E [b, e], and therefore p{ wh tends to 
-" 

g.(x) = o:(b)[min{x, b} - fJ(b)] + 1 (3.42) 

in the L2-norm as e ~ b. The norm 

A~ w(p) = Ilg. - 111 = o:.(b)ow(b) = c5w(b) (3.43) 
-" 

(cf. (3.38) to (3.40), and (3.41), and (3.42» provides the optimal bound. 
Writing 

F-1W(X) - J-tF _ g.(x) -1 _ min{x,b} - Pw(b) 
UF - A~ w(p) - uw(b) 

-" 
(cf. (3.41) to (3.43)), we easily determine the distribution function that has 
a pth quantile at A~ w(p). In conclusion, we get the following reSult. 

-" 
Theorem 5 (F ~c W) Then for arbitrary 0 < p < 1 and b = W-1(p), we 
have 

F-l(p) - J-tF < c5 (b) _ w , 
UF 

(3.44) 

and the equality in (3.44) holds for 

F(x) = { W (Pw(b) + uw(b)7) ' if a:~e < c5w(b), (3.45) 
1, if a:~" ~ c5w(b). 

Formula (3.45) defines the distribution function of an affinely transformed 
random variable with distribution function W right truncated at its pth 
quantile. This becomes a life distribution if 

J-tF = uF[jtw(b) - aw]/uw(b). 
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Bounds (3.44) continuously increase from 0 at p = 0 to (dw - I'w)/o'W 
at p = 1, which is finite if W has a finite support. For large p, these are 
close to respective quantiles of parent W. However, they are positive for all 
quantiles in contrast to negative values of standardized quantiles of small 
orders for all F tc W (including W itself). 

Proposition 3 (increasing density) For arbitrary 0 < p < 1, we have 

F-1(P) _ I'F < (~)1/2 
OF - 4 - 3p 

(3.46) 

Inequality (3.46) becomes an equality for a mixture of the uniform distribu­
tion on the interval [I' - 0.;3(2 - p)/[P(4 - 3p)]1/2, I' + 0[3P/(4 - 3p)j1/2] 
and the degenerate measure concentrated at 1'+0[3P/(4-3P)j1/2 with prob­
abilities p and 1 - p, respectively. 

Proposition 4 (increasing failure rate) For arbitrary 0 < p < 1, we 
have 

F-l (P) - I'F < -In(1 - p) - P (3.47) 
OF - [P(2 - p) + 2(1 - p) In(1 - p)]1/2' 

The equality in (3.47) is attained by the distribution of the random variable 

Y min{X, -In(1 - p) - p} 
- I' + O-::--:-~"---,---'--:--,-,:-;;....:;.,.= 
- [P(2 - p) + 2(1 - p) In(1 - p)]1/2 

for a standard exponentially distributed X. 

3.3 Distributions with Monotone Density and 
Failure Rate on the Average 

First we consider quantile bounds for F t. W for which the projection 
of h = Ml[b,c) onto the family of nondecreasing starshaped functions is 
needed. 

Lemma 8 For h defined in Lemma 4, and for every g E C( w there exists 
ga/3 E C{. w defined as _. 

ga/3(X) = a(x - a)l[b,d) (x) + (3 

for some a, (3 ~ 0, a(b - a) + (3 < M, such that 

Ilga/3 - hll ~ Ilg - hll· 

(3.48) 
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Candidates for projection Pt wh have a constant value (3 E [0, h(b)) in 
[a, b), a jump at b to ga/3(b) <.. h(b), and a linear part in [b, d) that can be 
extended to the left so as to pass through (a, (3) = (a, ga/3 (a)). A constant 
projection (3 is also possible. 

PROOF OF LEMMA 8. The first steps of reasoning are similar to those of 
Lemma 4. If 9 E C{.w, so does g+. Moreover, the latter lies closer to h. If 
g(c) ~ 0, then a zero function better approximates h, and can be further 
improved by constant 1 = (h, 1). If 

g(b) ~ h(b) = max h(x), 
a::;x<d 

then a downward translation of 9 gives a better approximation. Therefore 
we can confine ourselves to functions 9 E C?w such that 0 ~ g(a) ~ 
g(b) < h(b) and g(c) > O. Let "( E (b, c] be tne smallest point at which 9 
exceeds h. Put 

g("() - g(a) 
g')'(x) = g(a) + "( _ a (x - a)1[b,d)(X). (3.49) 

This is the closest function to h in [a, b) among all nondecreasing starshaped 
functions starting from level g(a) ~ O. Moreover, 9 E C{.w implies that 

g(x) ~ g')'(x) ~ h(x), if x E [b,,,(), 
g(x) ~ g')'(x) ~ h(x), if x E ["(,d). 

This gives the desired conclusion, because (3.49) can be easily reparame­
terized as (3.48) .• 

Lemma 9 Let assumptions of Lemma 4 and (3.7) hold. If 

fbC(x - a)w(x) dx ld( ) ( ) d 
rc () ~ x - a w x x, 

Jb W x dx b 

then Pt wh = 1. Otherwise _. 
PSwh(x) = a*(x - a)1[b,d) (x) + (3* 

for a* > 0, 0 ~ (3. < 1 defined by 

fbe(X-a)w(x) dx rd( ) ( ) 
J'e () - Jb X - a w x dx b W x dx 

(3. = 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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PROOF. By Lemma 8, it suffices to minimize the function 

D(a,f3) = Ilga.8 - hl12 

ld [ l[b C) (X) ]2 = a f3 + a(x - a)l[b,d)(X) - Ibc ~(x) dx w(x) dx 

= f32 - 2f3 - It ;) + a2 rd (x - a)2w(x) dx 
b W x dx Jb 

2a [IbC(jb;w~~~~ dx - f31d (x - a)w(x) dX] (3.54) 

with respect to parameters a ~ 0 and 0 ~ f3 < 1/[fbc w(x) dxl. Fixing a, 
we minimize (3.54) at 

f3.(a) = 1 - a ld (x - a)w{x) dx. (3.55) 

Plugging it into (3.54), we obtain 

D(a, P. (an ~ ,,' { 1.' (z - a)'w(x) dx - [1.' (x - a)w(x) dx r} 
- 2a [K(j:-;~~~; dx -l

d 
(x - a)w(x) dx] 

+ 1 -1 (3.56) 
Ibc w(x) dx . 

This is a quadratic function of a, with a positive coefficient of the quadratic 
term. Under the nonnegativity condition, (3.56) is minimized at the max­
imum of 0 and (3.52). If (3.50) holds, then the optimal value is a = 0, 
and, by (3.55), f3 = 1. This proves the first statement. Otherwise (3.56) is 
minimized by (3.52), for which (3.55) coincides with (3.53) .• 

Notice that the denominator of (3.52) is positive by the Schwarz inequal­
ity with Ibd w(x) dx < 1, and so is the numerator if (3.50) does not hold. 
Therefore (3.51) is actually a nondecreasing starshaped function. Observe 
finally that (3.53) is positive, because its numerator, divided by 1 - W(b), 
can be interpreted as 

Ew«X - a)21X > b) - Ew{X - alb < X < c)Ew{X - alX > b) 
> Varw{XIX > b) > O. 

Moreover, by (3.55), f3 < 1 < 1/[f: w{x) dxl, and so (3.53) satisfies both 
constraints deduced from the geometric arguments presented in Lemma 8. 
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By the arguments of Section 2.3, 

Pg.w(h -1) = P{.wh-1. 

This is 0 if (3.50) holds. Otherwise, we have 

JbC(x-a)w(x) dx J,d( ) ( ) 
I.c w(x) dx - b X - a w x dx 

IIPg.wIt-III b 1/2' (3.57) 

{Jbd(X-a)2 w(x)dX - [Jbd(x-a)w(x)dxf} 

p~.wIt(x)-l _ (x-a)I[b,d)(x)-Jbd(y-a)w(y)dy· ( ) 
IIP~. wit-III - { d d 2}1/2' 3.58 

- Jb (y-a)2w(y)dy - [Jb (y-a)w(y)dy] 

Letting c '\t b, and using the notation of Theorem 4, we state its analogue 
for F ~* W. 

Theorem 6 (F ~* W) Using (3.20) and (3.21) with f3 = b = W- 1(P), 
write 

17=17w(a,b) = Ew[(X - a)I[b,d)(X)) 

= ld (x - a)w(x) dx = (1 - p)J.Lw(b), (3.59) 

1J2 =1J~(a, b) = Varw[(X - a)I[b,d) (X)) 

1.' (x-a)'w(x)dx - [I.' (x-a)w(x)dx r (3.60) 

If 17w(a, b) ~b-a, thenF-1(p) ~J.LF. 
Otherwise 

F-1(P)-J.LF AO ()_b-a- 17w (a,b) 
O"F ~ t.w P - 1Jw(a, b) , (3.61) 

and bound (3.61) is attained by 

{ 
0, if 

F(x) = p, if 
W (b - 7] + 1Jx~IJ), if 

x-IJ < _!l. 
iT fJ' 

_!l. < X-IJ < b-a-f/ 
fJ- iT - fJ ' 

X-IJ > b-a-f/ 
iT - fJ • 

(3.62) 

Obviously, A~.w(P) ~ A~cw(P), because F ~c W implies F b W. It 
follows that (3.61) tends to infinity as p /" 1. The main difference between 
(3.27) and (3.62) is that the atom of the latter is distant from the smooth 
part. Special cases of distributions dominating the uniform and exponential 
ones in the star order are presented in Propositions 5 and 6. 
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Proposition 5 (decreasing density on the average ) If we have p ~ 
v'2 - 1 ~ 0.41421, then F-l(P) ~ J1.F. 

Ifp> v'2 -1, then 

F-1 (P) - J1.F < V3(rr + 2p - 1) 
O'F - 8u(P) 

(3.63) 

with 
8~(P) = 12t?~(0,p) = 1 + 6p2 - 4p3 - 3p4. (3.64) 

Relation (3.63) becomes an equality for the mixture of an atom at J1. -
V30'(1- p2)/8u(P) with probability p, and the uniform distribution on [J1. + 
V30'(p2 + 2p - 1)/8u(P), J1. + V30'(1 + p2)/8u(P)] with probability 1 - p. 

Proposition 6 (decreasing failure rate on the average) Letusdeno­
te by Po ~ 0.553567 the unique zero of the strictly increasing function 

vv(P) = p[1 -In(1 - p)]- 1, 0 < p < 1. (3.65) 

If p ~ pO, then F-l(P) ~ J1.F. 
Otherwise 

F-1(P) - J1.F < vv(P) 
O'F - 8v (P) 

(3.66) 

for 

8~(P) = t?~(0, -In(1 - p» = (1 - p)p[1 -In(1 - p)]2 + 1 - p. (3.67) 

Bound (3.66) is sharp. This is attained by F being a combination of the 
jump distribution at J1. - 0'(1 - p)[1 -In(1 - p)]/8v(P) and the exponential 
distribution with location J1. + O'Vv (P)/8v (P) and scale 0'(1 - p)/8v (P). 

Theorem 7 asserts that general bound (3.2) cannot be improved in classes 
of distributions defined by F ~* W. Moreover, we conclude analogous 
results for all F preceding a fixed W in partial order more general than the 
star one, for example the superadditive and Laplace transform orders (see, 
e.g., Shaked and Shantikumar [96]). 

Theorem 7 (F ~* W) If density function w(x) is bounded on a neighbor­
hood of aw, then for arbitrary 0 < p < 1 there exist sequences of absolutely 
continuous distribution functions Fk ~* W with arbitrary common mean J1. 
and variance 0'2 such that 

lim k J1.= ~ p,-1(p)_ ( )1/2 
k-too 0' 1 - p 

In particular, the statement holds for distributions with increasing density 
and failure rate on the average. 
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The claim can be justified by some informal arguments. To fix the ideas, 
we consider the approximation of two-point distribution F defined in The­
orem 2 by Fk ~* U, that is, ones with nondecreasing Fk{x)/{x - ak) on 
respective supports [ak, dk). Note that F is constant beside of its two jumps, 
and the starshaped Fk have to increase at rate 1/{x - ak) at least on their 
supports. However, letting ak -t -00, we relax conditions on the increase 
rate of Fk itself. Accordingly, such Fk can be starshaped and approximate 
well any two-point distribution at and beside jump points. The formal proof 
of Theorem 7 is constructive. It is also possible to provide special construc­
tions of sequences satisfying the statement for specific W with unbounded 
densities about respective left support ends. 

PROOF OF THEOREM 7. Due to Theorem 2 the general bound (3.31) is 
attained by the quantile functions 

F-1(x) = { JLF - (jFJ¥-
JLF + (jFJt!:p 

if 0 ~ x < p, 

if p~x<l. 

Under a change of variables, we have 

1 { i!.l-F- W{x) - JLF _ () _ - p' 
-gp x -(jF ~ 

I-p' 

if a ~ x < b = W-1(P), 

if b ~ x < d. 

(3.68) 
Our proof consists in constructing a sequence gk E C~ w, k -t 00, that 
converges to (3.68) in L2([aw, dw), w(x)dx). For sufficiently large k, we 
define piecewise linear continuous nondecreasing starshaped functions 

Observe that 

k4 (x - a) - k - J ¥-, if a ~ x ~ a + k-3 , 

if a + k-3 ~ X ~ b, 

if b < x < b + b-a 

-J!=1!. p , 

k~ - k - J!=1!. b-a p , 

Jt!:p, 
- - kv'p(l-p) , 

if b + b-a < X < d. 
kv'p(l-p) -

a+k-3 

= 1 [k4 (x - a) - k]2W(X) dx 

+ rb+ Io",:71""-P) [k x - a _ k _ 1 ]2 w(x) dx 
lb b - a Vp(1 - p) 

W (b+ b-a ) - W(b) 
w(x) kv'p(l-p) 

sup -3k + p(l-p) -t 0 
a$x$a+k-3 

< 
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as k --+ 00. The same holds for 

because 

and 

Relations 
[Fk"lW(x) - /l-F]/UF = 91e(X) 

define a sequence of Fie -<* W with common mean /l- and variance u 2 for 
which Fk"l(p) /" Jp/(l- p) .• 

3.4 Symmetric Unimodal Distributions 

Let W be an absolutely continuous distribution function of a symmetric 
random variable. We are interested in evaluating [F-l(P) - /l-F]/UF for all 
symmetric distributions satisfying F tB W. A dual problem is to project 

{ 

_ l!W-l(l_q~.W-l(l_P»(Z) if < 1/2 
hB(x) _ 2 q-p) P, 

- +l!W-l(~'W-l(q»(Z) 'f > 1/2 
2 q p) 1 P _ , 

(3.69) 

for q '\t ponto e:,.cw as defined in (2.60). If p < 1/2, then hB $ O. Its 
projection onto the family of nonnegative functions e+ ::> e:,.cw is P+hB = 
o which actually belongs to e:,. w, and so P:" whB = O. This sequence of 
elaborated arguments leads us-to the trivial c~nclusion 

Otherwise we have 

Lemma 10 Let 

hB = Ml[b,c) E L2 ([J.tw,dw),2w(x)dx) 

for /l-w < b < c $ dw and M > O. Then for every 9 E e:,.cw there exists 
9a{3 E etc w defined as -

9a{3(X) = a(x - (3)+ 

for some a ~ 0, /l-w $ (3 $ b, a(b - (3) < M such that 
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The only difference between the statements of Lemmas 4 and 10 is that 
there is a lower constraint on parameter 13 in the latter. IT b is close to 
f.Lw, the constraint plays a significant role leading to conclusions essentially 
different from those of Lemma 5. 

Lemma 11 If for f.L = f.Lw, we have 

IbC(x - f.L)w(x) dx I:(x - f.L)2w(X) dx 
rc < d ' (3.70) 

Jb w(x) dx - I" (x - f.L)w(x) dx 

then 

P:- w h8 (x) = IbC(y];~ f.L)w(y) dy d X - f.L . (3.71) 
_c 2 b w(y) dy I" (y - f.L)2 w(y) dy 

Otherwise there exists a unique f.L < 13. < b that solves 

IbC(x - f3)w(x) dx I;(x - f3)2w(X) dx 
C = d (3.72) 

Ib w(x) dx I{3 (x - f3)w(x) dx 

(ef, (3.9)) such that 

P:- w h8 (x) = d (x - 13.)+ (3.73) 
_c 2I{3.(y - f3.)w(y) dy 

Under (3.70), we have 

(3.74) 

= (3.75) 

Otherwise 

I;. (x - f3.)2w(x) dx 

[ d ] 2' 
2 I{3.(x - f3.)w(x) dx 

(3.76) 

(x - 13.)+ = 1/2 . 

[2 I;. (y - f3.)2w(y) dy] 
(3.77) 

Letting e ":>I b, recalling (3.20) through (3.22), and introducing 

~w = EwlX - f.Lwl = 2 i d 
(x - f.L)w(x) dx (3.78) 

(the latter under the symmetry assumption), we obtain conclusions similar 
to ones obtained in Theorem 4. 
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Theorem 8 (F ts W) If p $ 1/2 (i.e., W-l(P) $ I'w), then we have 
F-l(P) $ I'F. 

If I'w < W- 1 (P) $ I'w + u'f..,/t;w, then (3.23) holds, with the equality 
attained by (3.24). 

Finally, if W-1 (P) > I'w + u'f..,/t;w, then there exists a unique {3* = 
{3.(P) E (I'w, W- 1(P» solving Equation (3.25) such that 

F-1(P) -I'F < A = AS (P) = { 8'f..,{{3*) + 1 }1/2 (3.79) 
UF - t.w 2[1- W({3.)] 

The equality in (3.79) holds for 

F(x) = { 1- W ({3* - 2[p,w{{3.) - {3:]A7 ), if 7 < 0, (3.80) 
W ({3* + 2[l'w({3*) - {3*]A7 ), if 7 ~ O. 

Symmetric distribution function (3.80) has a jump of height 2W{{3.) -1 < 
2p-l at its center of symmetry. If W-1 (P) = I'w+u'f..,/t;w, then I'w solves 
(3.25), bounds (3.23) and (3.79) are equal, and (3.80) coincides with (3.24). 
Putting W = U, we get 

Proposition 7 (symmetric unimodal distributions) Ifp $ 1/2, then 
F-l(P) $I'F. 

If 1/2 $ p $ 5/6, then 

F-l~~ -I'F $ 2V3 (p _ ~) , (3.81) 

which becomes the equality for the uniform distribution on interval [I' -
vau, I' + vau]. 

If 5/6 $ p < 1, then 

F-1 (P) -I'F < ! (_2_)1/2 
UF - 3 1- p 

(3.82) 

The bound becomes the equality for a mixture of the atom at I' with proba­
bility 6p - 5, and uniform distribution on interval [I' - uh/2(1- p), I' + 
u/J2{1- p)] with probability 6(1- p). 

Observe that (3.82) is 1.5 times less than respective bound (3.5) for sym­
metric distributions. 

In Table 3.1, we numerically compare bounds on standardized quantiles 
[F-l(p) - I'Fl/uF of orders p = 0.05(0.05)0.95 for nine families of distri­
butions: general (G), symmetric (S), and symmetric unimodal (SUN) ones, 
distributions with decreasing density {~O) and failure rate (OFR) , and 
those on the average (OOA and OFRA, respectively), and with increasing 
density (10) and failure rate (IFR). Bounds for distributions with increas­
ing density and failure rate on the average are identical with the general 
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ones. Certainly, the general bounds are merely valid for wider classes of 
life distributions (e.g., NBU, HNBUE and C-class defined in Klefsjo [46]) 
which are generated by more general orders than the star order. On the 
other hand, there are still interesting open problems of accurate bounds on 
quantiles of distributions succeeding a given one in these general orders. 

3.5 Open Problems 

1. What are the bounds on standardized quantiles in families of distribu­
tions defined by relation F ~B W for a fixed symmetric distribution 
function W? Of special interest are the symmetric U -shaped distri­
butions, alternatively defined by F ~B U. 

2. Mean-variance bounds on quantiles of distributions determined by 
F ~* W coincide with general bounds under very mild conditions 
on fixed W. The reason is that without disturbing values of mean, 
variance, and quantile of a given order we are able to choose elements 
of the class with an arbitrarily remote left endpoint of support which 
approximate two-point distributions attaining the general bounds. 
This is impossible if we fix the left endpoint (aF = 0, say) and 
the second raw moment m~. Then we have the problem of evalu­
ating F-l(p)/mF for all life distributions determined by F ~* W 
with a nontrivial solution. Also, still unknown are the bounds on 
F-l(p)/mF for F coming from the classes of 

(a) general distributions, 
(b) distributions succeeding (preceding) fixed W in the convex or­

der, and 
(c) distributions succeeding fixed W in the star order. 

3. Quantile differences F-l(q) - F-l(P), 0 < p < q < 1, are measures 
of population dispersion less sensitive to errors in statistical sam­
pling than the standard deviation UFo Formula (3.3) evaluates the 
ratio [F-l(q) - F-1(P)]/UF for arbitrary F. What are the respective 
bounds if F belongs to the restricted families of 

(a) symmetric distributions, 
(b) distributions determined by relations in the convex order, 

(c) distributions determined by relations in the star order, and 
(d) distributions determined by relations in the s-order? 

Of special interest, especially in symmetric populations, are quantile 
differences for symmetric pairs p and q = 1 - p. 



4 
Order Statistics of Independent 
Samples 

Bounds for expectations of order statistics from general i.i.d. samples, due 
to Moriguti [58], are presented in Section 4.1. Bounds of Sections 4.2 and 4.4 
for populations with decreasing density and failure rate, and symmetric uni­
modal ones, were obtained by Gajek and Rychlik [33]. Results of Section 4.3 
for restricted families determined by the star order come from Rychlik [89]. 
Section 4.5, partially based on Okolewski and Rychlik [65], is devoted to 
the study of quantile estimation bias in various nonparametric families of 
distributions. 

We do not discuss here bounds for the sample maximum and range from 
discrete populations obtained by LOpez-Blazquez [50, 51]. We also merely 
mention sharp inequalities due to Papadatos [69] for the expectations of 
order statistics and their differences of nonnegative samples expressed in 
terms of the population mean. Blom [17] and van Zwet [100] developed 
another method of evaluating the expectations of order statistics from re­
stricted families of distributions defined by means of stochastic orders using 
quantiles of the parent distribution. The method is based on the Jensen in­
equality. Papadatos [67, 68] derived some attainable bounds on the variance 
of order statistics from general and symmetric distributions, respectively, 
measured in the standard deviation units of the parent distribution. Anal­
ogous evaluations for covariances of order statistics are known, but only 
small samples of size n = 2 and 3 were treated (see, e.g., Ma [52] and 
Papadatos [70]). Bounds and approximations for moments of order statis­
tics were reviewed in David [22, Chapter 4], Arnold and Balakrishnan [5, 
Chapters 4,5], and Rychlik [84]. 
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4.1 General and Symmetric Distributions 

The problem of calculating mean-variance bounds on expectations of order 
statistics lies in determining projections of density functions (2.22) onto 
the convex cone (2.46). Observe that 

fn:n(x) = nxn- 1, 0 < x < 1, (4.1) 

is actually nondecreasing, and so p.l' fn:n = fn:n, and P°(fn:n - 1) = 
fn:n - 1. Therefore 

EFXn:n - JLF < Ilf. _ 111 = n - 1 ,..., ( /2)1/2 (4.2) 
UF - n.n (2n _ 1)1/2 n 

with 

F(x) = n- x-JL [ 1 ( 1 )] 
1/(n-1} 

~ 1 + (2n _ 1)1/2 U 

_ (2n - 1)1/2 < X - JL < (2n _ 1)1/2 
n-1 - U - , 

(4.3) 

attaining the bound. Distribution (4.3) is a location-scale transformation 
of a power distribution, and this is uniform for n = 2. The result was 
published independently by Gumbel [36] and Hartley and David [38]. More 
generally, the respective bound for L-statistics 

n n 

EF LCj(Xj:n - JLF)/UF ~ LCj(fj:n -1) (4.4) 
j=l j=l 

is sharp if the argument of the norm is nondecreasing. By differentiation, 

n n-1 
LCjfj:n(x) = n L(Cj+1 - Cj)/;:n-1(X), (4.5) 
j=l j=l 

we conclude that nondecrease of the sequence of coefficients is a sufficient 
condition. This was implicitly exploited by Plackett [72] and Nagaraja [60] 
in calculating optimal bounds for the sample range Xn:n - X1:n and selec­
tion differentials l/k Ej=n+1-k X j:n, respectively. 

In the case of general bounds, the Moriguti [58] projection method should 
be used (cf. Rychlik [84, Theorem 7, p. 121]). Here we confine ourselves 
to single order statistics. Observe first that EFX1:n ~ JLF is implied by 
relation X 1:n ~ Xl. Calculating bounds for nonextreme order statistics 
X j :n , 2 ~ j ~ n - 1, we refer to Moriguti [58, Example 2, p. 111]. We 
first aim at determining p.l' /;:n. Note that /;:n(x) > 0 for 0 < x < 1, and 
increasing-decreasing with the maximum at (j -l)/(n -1). Therefore Fj:n 
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is strictly increasing on [0,1], convex on [0, (j - 1)/(n - 1)], and concave 
on [(j - 1)/(n - 1),1]. The slopes of tangent lines 

la(x) = /i:n(a)(x - a) + Fj:n(a) 

continuously increase for a E [0, (j - 1)/(n - 1)] and so do ,0 (1), ranging 
from ° to 'U-1)/(n-1)(I) > Fj:n(l) = 1. The line 10 • for some 0.* E (0, (j-
1)/(n-l» such that 10 • (1) = 1 becomes a part of the lower convex envelope 
of Fj:n on [0.*,1], and the remaining part coincides with Fj:n. Therefore, 
the greatest convex minorant Fj:n of Fj:n has form 

p. ( ) _ { Fj:n(x), if ° ~ x ~ 0.*, 
3:n X - /i:n(a*)(x - 1) + 1, if 0.* ~ x < 1, 

(4.6) 

for a unique 0.* = a*(j, n) E (0, (j - 1)/(n - 1)) satisfying 

(1 - a*)/i:n(a*) = 1 - Fj:n(a*). (4.7) 

The derivative of (4.6) is 

p/' /i:n(x) = hn(x) = /i:n(min{x,a*}). (4.8) 

Using 

(i~j-2) (m+n-~-j) 

Am(x)/i:n(x) = n '-\m+,;:-~)' fi+j-1:m+n-1(X), (4.9) 

we calculate 

IIhnl12 = lao f;'n(x) dx + (1- a*)f;'n(a*) 

(~-ne:=n 
n enn- i ) F2j-1:2n-1 (0.*) 

+ (1 - a*)f;'n(a*). (4.lO) 

We have thus proven 

Theorem 9 (general distributions) For arbitrary F and j = 1, we 
have EFX1:n ~ J.LF, which is attained by the atom measure at J.LF. 

For 2 ~ j ~ n - 1, inequality 

[EFXj :n - J.LF]/UF ~ B = B°(j,n) = (1lhnW _1)1/2 (4.11) 

is sharp (see (4.7) and (4.10»), and this is attained by the distributionfunc­
tion 

{ ° 71 ~ <_.!. , 'J ". - B' 
F(x) = f:-1 (1 + BZ-I:') il _.!. < Z-I:' < f;,n(a.)-1 

):n ".' ~ B - ". B' 
1 71 Z-I:' > Ji:n(a.)-1 

, 'J ". - B . 

(4.12) 

For j = n, (4.2) is the best bound, attainable by (4.3). 
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Distribution function (4.12) has an absolutely continuous component (in­
verse of a polynomial of degree n - 1), and a jump of height 1 - (}* at 
the right end. With few exceptions, the distribution does not have an ex­
plicit formula. Balakrishnan [10] used a relationship between binomial and 
negative binomial distributions for reducing polynomial equation (4. 7) of 
degree n to one of degree j - 1. This makes possible writing explicit values 
of solutions (}* and bounds B°(j, n) for j = 2,3, n - 2, n - 1. For j = 2 in 
particular (}* = (n _1)-2, and (4.10) amounts to 

_ 2 n 2{n - 1) [ n2n- 3 {n - 2)2n-1] 
Ilh:nll = (2n _ 3){2n _ 1) 1 - (n _ 1)4(n-1) . (4.13) 

In Chapter 7 we need more rough approximations of EFXj:n in mF units. 
Observe that functions p/' /i:n = !j:n for 2 :::; j :::; n -1 and p/' fn:n = fn:n 
vanish at 0, and so coincide with the projections onto C+ C C/'. Therefore, 
we have 

EFXj:n/mF < Ilhnll, 2:::; j:::; n -1, 

EFXn:n/mF < Ilfn:nll = n/(2n - 1)1/2, 

(cf. (4.10) and (4.2), respectively). The bounds are attained by 

F{x) = fj-;~ (lIhnll~), if 0:::; ~ < f(I'ii~~il)' { 
0, if ~:::; 0, 

1 if .L > hn(a.) 
, m - IIhnll' 

for 2 :::; j :::; n - 1, and 

{ 
0, 

F{x) = [(2n _ 1)-1/2~]1/(n-1) , 
1, 

if ~:::; 0, 

if 0:::; ~ < {2n - 1)1/2, 
if ~ ~ (2n - 1)1/2 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

for the sample maximum. Both (4.16) and (4.17) are life distributions. 
Density function hn is decreasing and so projection p/' hn = 1 f/. C+, 
but the constant can be approximated in L2{[0, 1), dx) by functions 

This implies that the trivial bound for the sample minimum 

(4.18) 

is approximated by the sequence of two-point life distributions 
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The problem of determining bounds analogous to (4.11) for symmetric 
parent distributions can be solved by use of the trick of folding the func­
tional about 1/2. Case j = n is the only one for which 

Sj:n(x) = fj:n(x) - /;:n(1 - x) = /;:n(x) - fn+l-j:n(x) (4.20) 

is nondecreasing. Explicit bound 

EFXn:n - J.I. = n r [F-1(X) - J.I.][xn- 1 - (1- X)'~-1] dx 
11/2 

< n [I.;, [ZR-1 - (1- z)R-11' dxt' u/v'2 

= {2(;:~ 1) [1- c:~n _1] r u 

(4.21) 

(cf. (4.2» was obtained by Moriguti [57] through use ofthe Schwarz inequal­
ity. The extreme distributions for which the equality holds have quantile 
functions equal to xn- 1 - (1- x)n-1 up to affine transformations. 

Bounds for general order statistics of symmetric populations are derived 
by projecting differences Sj:n onto the family of nondecreasing functions 
in L2([1/2, 1), 2dx). For this purpose we first analyze variability of the 
differences, using the auxiliary results of Gajek and Rychlik [33, Lemma 3, 
p.167]. 

Lemma 12 Consider the function defined in (4.20) for x E [1/2,1) and 
(n + 1)/2 < j < n. This is nonnegative, and equal to 0 at 1/2 and 1, and 
increasing-decreasing. For j ::; n - 2 function (4.20) is concave-convex if 
j ::; [n + (3n - 5)1/2]/2, and convex-concave-convex othennise. Also, Sn-1:n 
is concave for n ::; 7, and convex-concave for n ~ 8. 

Now we merely apply the first statement of the lemma. Further properties 
are needed in Section 4.4. Observe first that, by symmetry, Sj:n ::; 0 for 
j ::; (n + 1)/2, and so 

EFXj:n - J.I. = f1 [F-1(x) - J.I.]Sj:n(x)dx::; 0, (4.22) 
11/2 

since F-1 - J.l.F ~ 0 on [1/2,1). IT j = (n + 1)/2, then Sj:n = 0, and (4.22) 
becomes the equality for any symmetric F. For (n + 1)/2 < j ::; n - 1, we 
repeat arguments leading to (4.8), and obtain 

p. /;:n(x) = Sj:n(min{X, a.}), 1/2::; x < 1, (4.23) 

for a. E [1/2,1) defined by equation 

(1 - a)[/;:n(a) - fn+l-j:n(a)] = Fn+l-j:n(a) - Fj:n(a) (4.24) 
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(cf. (4.7)). Using (4.9), we calculate 

(2!-2W n - 2i ) 
liPs /i:nW = n '-(2nn if' [F2j-1:2n-1 (a*) + F2n-2jH:2n-1 (a*) 

F2j-1:2n-1 (~) - F2n-2jH:2n-1 (~)] 
(n-1) 2 

2n (~:n~l) [Fn:2n- 1(a*) - ~] 
+ (1- a*)s~:n(a*). (4.25) 

Theorem 10 (symmetric distributions) For 1 ~ j ~ (n + 1)/2, we 
have EFXj:n ~ Jl.F for all symmetric parent distributions of the sample. 
This becomes the equality if either F is the Dirac measure at Jl.F or j = 
(n + 1)/2. 

For (n + 1) /2 < j ~ n - 1, we have 

(4.26) 

defined in (4.24) and (4.25), with the equality for 

{ 
0, 

F(x) = S:-l (2B x -y) 
3:n 17' 

1, 

zf x-y < _ Si:n(O.) 
17 2B' 

if _ Sj:n (0.) < x-y < Sj:n (0.) 
2B - 17 2B' 

if x-y > Sj:n (0.) 
17 - 2B ' 

(4.27) 

(see (4.23) and (4.25)). 
For j = n we have (4.21) which becomes the equality for (4.27) with 

a* = 1 and sn:n(l) = n. 

Distribution (4.27) has a smooth component with two atoms of measure 
1 - a* (= 0 for j = n) at the endpoints of support. 

4.2 Life Distributions with Decreasing Density and 
Failure Rate 

Unlike the problems studied above, we present here bounds in terms of the 
square root of the second raw moment. In fact, except for the scale unit 
we also have a location parameter in the model. This is the population 
minimal value which for the life distributions amounts to o. The problem 
is to evaluate the expected lifetime of (n + 1 - j)-out-of-n systems of inde­
pendent elements whose identical distribution functions satisfy F ~c W for 
some fixed W. The solution is based on determining the projection P:j: wh 

_0 
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of h = h:n W onto the convex cone 

c~ w = {g E L 2 ([aw,dw),w(x)dx) : 9 - nondecreasing, convex, 
_c 

g(aw) = O}. (4.28) 

In the sequel we frequently abstract from the specific form of h and assume 
the following 

h(x), w(x) > 0 for a < x < d, h(a) = 0, 

ld h(x)w(x) dx = ld w(x) dx = 1, 

ld x2w(x) dx < 00, 

h(x) - bounded, h" exists, 

'Va < x < b h'(x),h"(x) > 0, 
'V b < x < c h"(x) < 0 < h'(x), 
'V c < x < d h'(x) < o. 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

However, it is worth pointing out that for the representation h = hn W, 
(4.29) through (4.33) are actually conditions on W, and some of them are 
naturally satisfied. For j =f 1, we have (4.29) and (4.30), and boundedness 
and monotonicity assumptions (with c = d for j = n). An equivalent formu­
lation of (4.31) is finiteness of m~, and existence of h" requires differentia­
bility of density w on (aw,dw). Crucial assumptions are ones describing 
regions of convexity and concavity of h. These were chosen to cover the 
important cases of uniform and exponential weights, without pretending to 
develop a general theory. One can easily check that the assumptions are 
satisfied for 2 ~ j ~ n - 1 and both W = U, V (with a = b in case j = 2), 
and for j = n and W = V with c = d. We point out that for j = 1 the 
trivial bound 

EFX1:n ~ J.tF ~ mF 

is valid for arbitrary F, being attainable for degenerate distributions. In 
the case j = nand W = U, we have 

P:cufn:n = fn:n E C~ u, _ _c 

and so the bound for F tc U is identical with that for general F. 
We now present the solution to the projection problem. Lemma 13 de­

scribes geometrical properties of the projection. This allows us to restrict 
ourselves to continuous functions that are identical with h on the left and 
have linear extensions on the right. 
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Lemma 13 For fixed h satisfying (4.29) through (4.33), set 

{ h(x), if a ~ x ~ p, 
haP(x) = h(P) + a(x - P), if P ~ x < d. (4.34) 

For every 9 E ct w there exists haP E ct w such that 
-< -< 

IlhaP - hll ~ IIg --: hll· 

PROOF. Take an arbitrary nonzero 9 E ct w' Since g(a) = h(a) = 0, it 
makes sense to define -< 

'Y = sup{x E [a, b] : g(x) = h(x)}. 

We now analyze mutual relations between 9 and h in [b, d), where h is first 
concave increasing and then possibly decreasing. 

Suppose first that 9 > h in a right neighborhood of b. Then these cases 
are possible: 

(i) g> h on the whole (b,d), 

(ii) 9 and h are merely tangent in a single possibly degenerate subinterval 
of (b, c), or 

(iii) 9 crosses h at a point 8 E (b, c), say, and either 9 < h holds on (8, d) 
or 9 and h cross each other at a single point A E (8, d). 

In each case we construct modifications gi, i = 1,2,3, of the original 9 that 
have form (4.34) and are less distant from h than g. 

(i) We have g(x) > h(x) for all x E (-y, d). Define 

_ { h(b) + h'(b)(x - b), if a ~ x ~ b, 
h(x) = h(x), if b ~ x ~ c, 

h(c), if c~ x < d. 

We easily see that it is nondecreasing, concave, and it < g. Therefore the 
regions above the graph of 9 and beneath the graph of it are disjoint planar 
sets, and there exists a straight line h(x) separating the sets from each 
other. This line must have a common point, say P E ['Y, b], with h. Then 
g1 = max{h,h} has the desired form. Moreover, IIg1 - hll ~ IIg - hll, 
because h(x) = g1(X) for x E [a,p] and h(x) ~ g1(X) ~ g(x) for x E [P,d). 

(ii) Functions h and 9 ~ h are concave and convex, respectively, in (b, c), 
and have a tangent point there. Accordingly, there exists a line 12 separating 
the curves in the interval. Note that 12 crosses h at some P E h, b), because 
it runs beneath 9 and over the concave part of h, and h('Y) = g(-y). For 
g2 = max{h,12} we easily verify the conclusions of the previous case. 
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(iii) Extend the definition of 6. as follows 

6. = sup{x ~ 0: g(x) :$ h(x)}. 

In the former subcase 6. = d which is possible only if d < 00. Note that 

g(6.) = lim g(x), 
x/11 

h(6.) = lim h(x), 
x/11 

are well defined and finite. Define 

Then we have 

1011(x) = g(o) + g(6.1 = :(0) (x - 0). 

g(x) :$ 1000(x) :$ h(x), if 0:$ x :$ 6., 

h(x) :$ 1011(x) :$ g(x), if 6.:$ x < d, 

(4.35) 

and the latter holds in a left neighborhood of 0, as well. By convexity of g, 
we have 

1011(x) :$ g(x), a:$ x :$ o. 

This relation, combined with g( 'Y) = h( 'Y), implies the existence of (3 E b, oj 
such that 1011 ((3) = h((3) and 1611 ~ h' ((3). Therefore 

(x) - {h(X), if a:$ x :$ (3, 
g3 - 1011(x), if (3:$ x < d, 

is the desired convex nondecreasing modification of g. 

If 9 < h on some right neighborhood of b (and so of 'Y), then there is 
a single point 6. > b at most at which 9 and h cross each other. If there is 
no such 6., we set 6. = d, being finite (cf. Case (iii)). For each y E [a, b), 
define the linear function tangent to h at y as 

Iv(x) = h(y) + h'(y)(x - y). (4.36) 

Notice that the slopes of (4.36) increase, and Yl < Y2 implies IVl < IV2 

on [Y2, d). Function y t-+ Iv(o), y E [a, bJ, is strictly increasing and continu­
ous, and satisfies 

Ib(6.) ~ h(6.) ~ g(6.). 

Moreover, relation 1')'(6.) > h(6.) implies 

l~ = h'(-y) > h(6.1 = ~(-y) ~ g(6.1 = ~('Y) ~ g'('Y+). (4.37) 

If 'Y > a, then, by (4.37), we have h'('Y) < g'(-y-), and h < 9 on a left 
neighborhood of 'Y. Summing up, under condition g(-y+) < h(-y+), three 
cases are possible: 
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(iv) 1'Y(.~) :$ h(~), 

(v) 1'Y(~) > h(~) with "( = a, and 

(vi) ''Y(~) > h(~) with g("(-) > h(,,(-), 

which are considered consecutively in the remainder of the proof. 
(iv) Relations 1'Y(~) :$ h(~) :$ lb(~) imply existence of a a E [,,(, b] for 

which 16(~) = h(~) holds. Then 

g(x) :$ 16(x) :$ h(x), x E [a, ~]. 

If (~, d) "# 0, then the reversed inequalities hold there. Therefore the convex 
nondecreasing function 

g4(X) = max{h(x),16(x)} = h(x)1[a,6) (x) + 16(X)1(6,d) (x) 

is a better approximation of h than g. 
(v) The linear function g5(X) = l'Ya(x) secant to 9 at "( = a and ~ 

(cf. (4.35)) runs between 9 and h in the whole domain [a,d). 
(vi) In this case there exists a E [a,,,() such that g(a) = h(a), and g(x) > 

h(x) for x E (a,,,(). Apply (4.35) again for defining the straight line l.sa. We 
have 

g(x) :$16a(x) :$ h(x), x E ["(,d], 

and 
g(x) :2: 16a(x) :2: h(x), x E [~,d), 

under condition ~ < d (cf. Case (iv)). For x < ,,(, we proceed as in 
Case (iii). We have 

h("(-) < 16a("(-) :$ g("(-), 
16a(a) :$ g(a) = h(a), 

which imply that 16a(ao) = h(ao) for a unique ao E [a,,,(), and 

h(x) < 16a(x) :$ g(x), x E [ao,"(). 

It follows that h'(ao) < l~a' and 

g6(X) = h(x)1[a,6o) (x) + 16a(x)1(60,d)(X) 

is an element of ct w that lies closer to h than the original g. This ends 
the proof. • _c 

Observe that hQfj E ctcw requires a :$ f3 :$ b, and either a :2: h'(f3) > 0 
for f3 > a or a :2: 0 for rr = a. If a = b in particular, then the projection is 
a nondecreasing linear function 

P: wh(x) = a.(x - a) 
_c 
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whose slope 0:. can be easily determined. Note that for fixed {3 E [a, b], 

D(o:,{3) = Ilha,8 - hW = f.ad[o:(X - {3) + h({3) - h(X)]2w(X) dx (4.38) 

is a convex quadratic function of 0:, and under restriction ha,8 E ct w is 
minimized at _c 

&(a) = max{O, 0:. (a)}, 

&({3) = max{h'({3),o:.({3)}, {3 > a, 

with 

(4.39) 
(4.40) 

J;(x - {3)[h(x) - h(,8)]w(x) dx 
0:.({3) = d ,(4.41) 

J,8 (x - {3)2w(x) dx 

being the optimal slope without restrictions. Consecutive reasoning steps 
consist in eliminating {3 > a for which h'({3) > 0:. ({3), and analyzing 
D(o:. ({3), {3) with continuous derivative 

dD (0:. ({3) , {3) 
d{3 

= 2[0:.({3) - h'({3)] f.ad[h(X) - ha.(,8),8(x)]w(x) dx 

= 2K({3)L(,8) , (4.42) 

say. We minimize D (0:. ({3),,8) by determining the set 

/C = {,8 E (a, b) : K({3) ~ O}, 

and analyzing sign changes of L in /C. If /C = (a,l\;] for some I\; E (a, b] 
(which actually holds in special cases W = U, V), then L({3) is positive, 
negative, or negative-positive, with zero at some .oX E /C, and so optimal 
{3. = a, 1\;, and .oX in the respective cases. Specific forms of 

h(x) = !;:n(x) = nBj-l,n-l(X), 

where 

Bk,m(X) = (;)xk(1- x)m-k, 0 ~ k ~ m < 00, 

are the Bernstein polynomials of degree m, enable us to determine final 
forms of P:cu!;:n. Differentiating and integrating the Bernstein polyno­
mials we ontain linear combinations of these polynomials of smaller and 
greater degree, respectively. These operations were applied in defining fac­
tors of (4.42) which coincide with combinations of Bernstein polynomials 
of degree n + 1 up to positive functional multiplicators. The coefficients of 
the combinations depend on j and n. The basic tool in analyzing the sign 
changes of the combinations is the following well-known variation dimin­
ishing property of the Bernstein polynomials proved in Schoenberg [93, p. 
252]). 
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Lemma 14 The number of zeros of a given nonzero combination of Bern­
stein polynomials 

m 

B(x) = L akBk,m(X), x E (0,1), (4.43) 
k=O 

does not exceed the number of sign changes of the sequence ao, ... , am. The 
first and last signs of (4.43) are identical with the signs of the first and last 
nonzero elements of ao, ... , am, respectively. 

This is equivalent to saying that Bk,m, ° $ k $ m, for fixed m form 
a Chebyshev system on [0,1] (see Karlin and Studden [45, Theorem 1.4.1]). 
In addition, differentiation and integration operators defined in (4.41) and 
(4.42), acting on compositions 

h(x) = /i:n V(x) = nBj-l,n-l V(x), 

do not lead beyond the polynomials of degree n in V(x) up to positive 
factors and can be further rewritten as combinations of Bk,n V(x). Therefore 
Lemma 14 is useful in analyzing variability of (4.42) for h(x) = /i:n V(x) 
as well. 

Theorem 11 (decreasing density) If 2 $ i $ min{2(n + 1)/3,n - I}, 
then 

EFXj:n < v'3_i _ 
mF - n+l' 

(4.44) 

which is the equality if F is the uniform distribution on [0, v'3mF]. 
If 2(n + 1)/3 < i $ n - 1, then 

EFXj:n $ B = B~cu(j,n) = U(/i:n)a • .B.II, (4.45) 
mF -

(cf. (4.34)) for 

(2;-2) 2n-2; 
= n '-1 n_n-' F2j-l:2n-l(.8.) + (1- .8.)fI:n(f3.) 

n 

+ (1 - .8.)2a./i:n(.8.) + (1 - .8.)3a~/3, (4.46) 

and .8. = .8.(j,n) being the smaller of the smallest positive zeros of poly­
nomials 
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j (n - j + 3)' = 3 L(j + 1 - k)!k:n+2(X) - (n _ j)! . !;-l:n+2(X) 
k=1 

Ku(x) 

. 3 (n - j + 2)! 
+ (n - J -"2) (n _ j)! hn+2(X), (4.48) 

Lu(x) 
j-l 3j - k 

= L(n+ 1- -2-)!k:n+2(X) 
k=1 

(n - j)(n - j -I)! () (4.49) - 4 j:n+2 X . 

Bound (4.45) is attained by 

!j-;~ (B!n) , if 

£ <0 m - , 
0< £ < f;,,,({3.) 

- m - B ' { 

0, if 

F(x) = R + Bii-f;,,,({3.) zf 
fJ* a. ' 

/;,,,({3.) < £ < /;',,({3.)+a.(I-{3.) 
B -m- B ' 

1, if £ > /;',,({3.)+a.(I-{3.) 
m - B . 

(4.50) 
Finally, for j = n we have (4.15) which becomes the equality for (4.17). 

Theorem 12 (decreasing failure rate) Set 

j 1 
J.tv;,,, = EVXj:n = L n + 1- k' 1 ~ j ~ n. (4.51) 

k=1 

If J.tV;,,, ~ 2, then 
EFXi:n < J.tv;,,, (4.52) 

mF -.../2' 
which becomes the equality for the exponential distribution with the scale 
parameter mF /.../2. 

Otherwise 

(4.53) 

for 

(21-2)(2"-2;) 
= n '-(2"" if' F2j-l:2n-l(')' .. ) 

+ (1-1' .. )[2a~+2a .. hnh' .. )+ !J,n(')''')] , (4.54) 

(4.55) 
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and 'Y. being the minimum of the smallest positive zeros of 

j 

Kv(x) = LI'Vi+1-.,n+l-lofk:n+1(X) 
k=l 

(n - j +2)! 
2 (n _ j)! !i-l:n+1(X) 

+ 2(n - j - ~)(n - j + l)/j,n+1(x), (4.56) 

j 

Lv(x) = L[2 -1'V;+l-lo,n+l_.l!k:n+1(X) 
k=l 
(n + 1- j)/j,n+1(x). (4.57) 

Bound (4.53) is attained by 

i l £ < 0 
{ 

0, 

F(x) = fJ-;~ (Brii) , 
'I m - , 
i l 0 < £ < !;,n(-r.) 
'I - m - B ' 

1 - (1 - 'Y.) exp ( i l £ > !;,n("Y.) 
'I m - B . 

(4.58) 

Formulae (4.45) through (4.47), and (4.53) through (4.55) are concluded 
from (4.34) and (4.41). Moreover, (4.48) and (4.49) as well as (4.56) and 
(4.57) differ from K and L defined in (4.42) by positive functional factors 
common for all j, and original variables are replaced by V (x) in the lat­
ter case. All bounds are achieved by absolutely continuous distributions. 
The left-hand parts of (4.50) and (4.58) are the inverses of polynomials 
equal to /j,n up to scale factors, and cannot be written explicitly. They 
have uniform and exponential right tails, respectively. Bound (4.15) was 
derived directly from the Schwarz inequality. Using the following integral 
approximations of harmonic series 

n+ 1 n + 1/2 
In 1 . < I'V;on < In 1/2 . , n+ -J n+-J 

we deduce that condition 1'V;,n ::; 2 providing bound (4.52) is true for 
j ::; (1 - e-2 )(n + 1/2) and false for j ~ (1 - e-2 )(n + 1). The difference 
between both estimates is (1 - e-2)/2 ~ 0.43233 which implies that for 
given n the condition has to be directly checked for one j at most. Bounds 
of Theorem 12 are tighter than those of Theorem 11, because a narrower 
class of distributions was treated there. This is confirmed by numerical 
comparisons presented in Gajek and Rychlik [33, Table I, p. 162]. 
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4.3 Distributions with Monotone Density and 
Failure Rate on the Average 

The crucial points in calculating mean-variance bounds for EpXj :n for F 
with decreasing density and failure rate on the average lies in deriving pro­
jections p~.u(fj:n -1) and p~. v (fj:n V-I), respectively, onto convex cones 
of nondecreasing starshaped functions that are orthogonal to constants. In 
fact, we consider a more general problem of projecting h = hn W satisfying 
(4.29) to (4.33) onto C( w which gives 

-* 

Note first that 
p( wh(a) E [h(a), h(c». 
-* 

Functions starting from a higher level uniformly majorize h, and contradict 
the statement of Lemma 2. Ones with g(a) < h(a) are eliminated by 

gh(a) = max{g, h(a)} E C{.w' 

Therefore in Lemma 15, describing the shape of projection functions, we 
confine ourselves to functions starting from a range point of h. 

Lemma 15 Define functions 

{ 
h((3), 

hf3a(x) = h(x), 
h(al:::~(f3) (x - a) + h((3) , 

if a ~ x ~ (3, 
if (3 ~ x ~ a, 
if a ~ x < d, 

(4.59) 

for some a =f. a ~ (3 ~ a < c. For every a ~ (3 < c and 9 E C( w satisfying 
g(a) = h((3) there exists a =f. a E [(3, c) such that hf3a E C( ;- and 

-* 

Il hf3a - hll ~ Ilg - hll· (4.60) 

Functions (4.59) are obviously nondecreasing, and constant functions 

hf3f3(x) == h((3), a < (3 < c, 

are also possible here. However, starshapedness is not apparent here. For 
fixed (3 E [a, c), let 

sf3("') -_ h(a) - h((3) , .... a =f. a E [(3, c), 
a-a 

(4.61) 

denote the slopes of lines 

lBA(X) = sf3(a)(x - a) + h((3) (4.62) 
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passing through B = (a, h(fJ)) and points A = (a, h(a)) , fJ $ a < c, of the 
graph of h (cf. the last line of (4.59)). Write 

8a (a) = h'(a) ~ 0 

for completeness. We first prove the following. 

Lemma 16 For every fJ E [a,c) there exists a(fJ) E B(fJ) = [max{fJ,b},c) 
such that (4.61) increases on (fJ,a(fJ)) and decreases on (a(fJ),c). 

In consequence, (4.59) is actually starshaped if a E [fJ,a(fJ)]. Observe that 
a(fJ) is the point where lBA.{,8) is tangent to h and therefore can be deter­
mined by 

h(a) - h(fJ) = h'(a)(a - a). (4.63) 

PROOF OF LEMMA 16. The statement is trivial for fJ = a = b with 
a(fJ) = a. Indeed, by concavity of h on (a, c), for any a < al < a2 < c 
point Al = (al,h(al)) lies above lBA2 (cf. (4.62» and so 8a (al) > 8a (a2)' 

We now claim that 8,8 is increasing-decreasing on B(fJ) if either fJ > a = b 
or fJ ~ a :F b. The proof consists in checking the falsity of the contradiction: 
for every fixed a E B(fJ) there exist al < a < a2, ai E B(fJ) , such that 
8,8(ai) ~ 8,8(a), i = 1,2. IT lBA is tangent to h at a, it runs above all graph 
points A', a :F a' E B(fJ). Accordingly, 8,8(a') < 8,8(a). IT lBA is a secant 
line to the curve, then these cross each other once more in B(fJ) at most. 
IT h - IBA changes its sign from - to + at a, then for all B(fJ) 3 al < a 
we have 

h(al) < lBA(al), 
8,8(al) < 8,8 (a). 

IT the sign changes from + to -, then the analogous relations hold for 
B(fJ) 3 a2 > a. Therefore our claim is actually true. 

By continuity of 8,8, it remains to show that (4.61) is increasing in (fJ, b) 
when a $ fJ < b. Note that 

hh{,8)(X) = max{h(fJ),h(xH 

is convex in (a, b) and strictly convex in (fJ, b). For every fJ $ al < a2 $ b 
point Al lies below lBA2' and hence 8,8(al) < 8,8(a2). This completes the 
proof .• 

PROOF OF LEMMA 15. IT g(a(fJ)) ~ h(a(fJ)), then we can take h,8li{,8). 
Since h(x) < h(fJ) on [a, fJ), we have h < h,8li{,8) $ 9 there, because con­
stant h(fJ) is the smallest nondecreasing function starting from level h(fJ). 
Also, h,8li{,8) = h is the optimal approximation of h on [fJ, a(fJ)]. Finally, 
for x > a(fJ), we have 

h(x) < h(a(fJ)) - h(fJ) (x - a) + h(fJ) < g(x). 
- a(fJ) - a -
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The former inequality holds, because the middle term defines the line that 
is tangent to h at a«(3) and majorizes h. The latter is a consequence of 
the fact that the line is the smallest starshaped function in [a«(3) , d) that 
passes through Band ..4«(3) = (a(.B) , h(a«(3))). The above arguments show 
that hf3ii:(f3) actually satisfies (4.60). 

However, h -:f:. hf3ii:(f3) ~ h and, due to Lemma 2, the approximation can 
be further improved by a downward translation of hf3ii:(f3). We consider the 
case g(a«(3)) < h(a«(3)) now. Define 

0= inf{x > a«(3) : g(x) ~ h(x)}, 

putting 0 = d if 9 < h in (a«(3), d). Take 

lBD(X) = h(01 = ~«(3) (x - a) + h«(3). 

We first prove that lBD < h in (a«(3),o). If (c,o) -:f:. 0, then lBD - h is 
strictly increasing there, and lBD(O) - h(o) ::; O. For x E (a«(3) , min{ c, o}) 
the inequality follows from the strict convexity of IBD - h in the interval, 
and its nonpositivity at the endpoints. Now we check that lBD - h changes 
the sign in (a, a«(3)) once at most. Assume that a is the largest point of 
sign change in (a, a«(3)). Evidently lBD - h is positive and negative on the 
left and right to a, respectively. If a E [b, a «(3)) , then convexity of lBD - h 
implies its positivity in (b, a). This is also positive in (a, b) by its concavity 
there, and nonnegativity at the endpoints. If a E (a, b), it suffices to repeat 
the above argument with b replaced by a. Assume that unique a exists. 
We can write 

lBD(X) = h(a) - h«(3) (x - a) + h«(3). 
a-a 

Since lBD ~ h«(3) , we get a E [(3, a«(3)). Note that in the class of non­
decreasing starshaped functions passing through B = (a, h«(3)) and D = 
(0, g(o)), function lBD is maximal in [a, oj and minimal in [0, d). Therefore 

Also, we have 

g(x) ::; lBD(X) ::; h(x), if x E [a, oj, 
h(x) ::; lBD(X) ::; g(x), if x E [0, d). 

g(x) ::; h«(3) ::; g(x), x E [a, (3]. 

Consequently, hf3a defined as h«(3), h, and IBD in [a, (3j, [(3, aj, and [a, d), 
respectively, lies closer to h than g. Since (3 ::; a < a«(3) , we see that 
hf3a E cC w· 

If (3 ~·a, it may happen that lBD has no sign changes in [a,o). Then 
IBD(a) = h(a) = 0 and lBD < h in (a,o), and lBD > h in (0, d). The 
last relation is a consequence of concavity and ultimate decrease of h. If 
lBD = 0::; h, referring to Lemma 2 we decrease the distance to h by adding 
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a positive constant I~D. H IBD has a positive slope, we can take a line IBD 
running through (8,g(8)) with a slightly smaller slope. Observe that IBD 
lies closer to h than the original one in [a, 8] and [8, d). Both modifications 
lead to linear functions that cross h once at some a < ii«(3). Therefore we 
are in position to apply the construction of the previous paragraph, which 
ends the proof .• 

Below we determine the optimal parameters. For a ~ (3 ~ c and (3 ~ a ~ 
c, a '" a, set 

K(a, (3) = fad [ha.a(x) - h(x)] (x - a)w(x)dx, (4.64) 

L(a, (3) = 1d [ha.a(x) - h(x)] w(x) dx. (4.65) 

Then for a < (3 ~ C write 

k«(3) = K«(3, (3) = !.ad [h«(3) - h(x)] (x - a)w(x) dx, (4.66) 

£«(3) = L«(3, (3) = 1d [h«(3) - h(x)] w(x) dx = h«(3) - 1. (4.67) 

Lemma 17 Let P be the unique zero of (4.67) in ( a, c). If 

k(p) = id [1 - h(x)] (x - a)w(x) dx ~ 0, (4.68) 

then P{. wh = h/J/J = 1. 

Otherwise there exists a unique pair «(3 .. , a .. ), a ~ (3 .. < p, max{(3 .. , b} < 
a .. < c, determined by equations 

K(a,(3) = 0, 

L(a,(3) = 0, 

such that Pt' wh = ha • .a., defined as in (4.59). _. 

(4.69) 

(4.70) 

Since h is strictly increasing from h(a) = 0 to h(c) = suph > 1 (cf. (4.29) 
and (4.30)), p is actually well defined. 

PROOF OF LEMMA 17. By Lemma 15, we should minimize 

D«(3, a) = 1d [h.aa(x) - h(xWw(x) dx 

= 1.a [h«(3) - h(xWw(x) dx 

+ fad[IBA(X) - h(xWw(x) dx (4.71) 
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(cf. (4.61) and (4.62)) with respect to two parameters (3 E [a, c) and a :f; 
0: E [max{(3,b},o((3)) c (a,c). Fixing (3 and differentiating (4.71) with 
respect to 0:, we obtain 

8D((3,0:) 
80: 

= 0:: a [h'(o:) -l~A] id[lBA(X) - h(x)]w(x) dx 

= _2_[h'(0:) -l~A]K((3,o:) (4.72) 
o:-a 

(cf (4.64)). If (3 < 0: < 0((3), then h-lBA changes the sign from - to + at 0: 
and hence the expression in brackets is positive. This vanishes at 0((3), but 
0((3) cannot be optimal, because hf3(i(f3) ;::: h. Analyzing the sign of (4.72), 
it suffices to concentrate on (4.64). We have 

8K((3,0:) _ h'(o:) -l~A Id( _ )2 ()d 0 
J::l - X a wx x>, 
vO: 0: - a 0< 

which implies that (4.72) is the product of a positive function and increasing 
K((3, .). Since the integrand is positive for 0: = 0((3), we have K((3, 0((3)) > 
O. If 0: = (3 > a, then lBA = h((3). It follows that K((3) < 0 as (3 '\.- a and 
K((3) > 0 for (3 /" c. 

We can summarize the behavior of (4.71) as follows. If (3 is small enough 
then (4.72) is negative for 0: close to (3, and changes its sign at an 0:.((3) E 
((3,0((3)) where (4.64) vanishes and the unique minimum of D((3,·) is at­
tained. If (3 ;::: S satisfying K(S) = 0 then (4.72) is positive for all 0: > (3. 
Then D((3,·) is minimized at 0:.((3) = (3 which gives a constant approxi­
mation h{3f3 = h((3). It remains to choose (3 E [a,e) such that ((3,0:*((3)) 
minimizes (4.71), where 0:*((3) > (3 satisfies K((3,o:*((3)) = 0 for (3 < Sand 
0:*((3) = (3 for (3 ;::: S. 

By Lemma 2, a necessary condition for that is 

L((3,o:*((3)) = l d[h{3o<.(f3)(x) - h(x)]w(x) dx = 0 (4.73) 

(cf (4.65)). It is clear that (4.67) strictly increases from negative L(a) to 
positive L(c) = L(c,o:*(c)). We have L($) = 0 if 

hSS = h($) = ld h(x)w(x) dx = 1. 

We show that L((3, 0:* ((3)) is also increasing, when 0:*((3) > (3 is determined 
by (4.69). Consider 
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Plugging 

dL((3, a*((3» 
d(3 

00. ((3) 
d(3 

8K(p,a.(p» 
= 813 

8K(p,a. (13» 
8a. 

= h'((3) f:.(p) [X - a*((3)](x - a)w(x) dx > 0 

[h'(a*((3» -lkA.(p)l f:.(p) (X - a)2w(x) dx 

into (4.74), we obtain 

dL((3, a.((3» 
d(3 = 

h'((3) 

f:.(p) (X - a)2w(x) dx 

x {[p W(X) dx [d (x _ a)2w(x) dx 
ia ia.(p) 

+ ['I. W(X) dx [d (x _ a)2w(x) dx 
ia.(p) ia.(p) 

[ [d (x_a)W(X)dx]2}. 
ia.(p) 

(4.74) 

(4.75) 

The last two lines are positive by the Schwarz inequality and so is the whole 
expression in the curly brackets. Because h' ((3) and the denominator are 
positive as well, the same holds for (4.75). 

We are thus led to the following conclusions. H /J ~ /J then ((3*, a. ((3.» = 
(/J, /J) is the unique pair satisfying necessary condition (4.73) for minimiz­
ing(4.71). This gives the first statement of Lemma 17. To see that /J ~ /J 
coincides with (4.68), we note that (4.66) satisfies 

lim /«((3) < 0 < lim /«((3) 
p'\"a p/,c 
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and 

[('(f3) = h'(f3) id (x - a)w(x) dx > 0. 

Therefore [( is incr~asing and has a sin&.le ze!o at p. The same holds for L 
which vanishes at f3. Hence conditions f3 ~ f3 and (4.68) are equivalent. If 
p < p, then 

L(P) = lim_L(f3,a.(f3» > 0, 
f3/'f3 

and we can make L(f3, a. (f3» smaller by decreasing f3. There is some f3. E 
[a, P) that satisfies (4.73), because the opposite contradicts the existence 
of the solution. Taking a. = a.(f3.), we see that (4.73) and (4.70) are 
identical, and (4.69) holds by the definition of a.(f3.) .• 

Theorem 13 (F t. W) Suppose that the density w of Wand h = hn W 
for some 2 ~ j ~ n satisfy (4.29) through (4.33). 

If for unique P = P(j, n) E (0, (j - 1)/(n - 1» satisfying 

(4.76) 

we have 

fd . [1- hnW(x)](x - a)w(x)dx ~ 0, (4.77) 
lW-l(f3) 

then EFXj:n ~ J1.F for all F b W. 
Otherwise there exists a pair (a., f3.), aw ~ f3. < W-1«j -1)/(n - 1», 

aw < a. E [f3., W-l«j -1)/(n -1))), determined by equations 

hnW(a) - h nW(f3) I d(x _ a)2w(x)dx 
a-a a 

+ id[jj:nW(f3) - hnW(x)](x - a)w(x) dx = 0, (4.78) 

fJ,nW(JJ) [I." w(z)dx+ {W(Z)dx] 

+hnW(a) - hnW (f3) I d(x _ a)w(x)dx 
a-a a 

-Fj:nW(f3) + Fj:nW(a) -1 = 0, (4.79) 

such that 
EFXj:n - J1.F < B = B O (. n) 

0' - ~.w }, F -
(4.80) 
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for 

B2 = (fj:n W(!3.W [1 13• w(x) dx + i~ w(x) dx 1 
(2!-2)(2n-~i) 

+ n 3-(2nn if [F2j-1:2n-1 W(a.) - F2j-1:2n-1 W(!3.)] 

+ 2hnW (!3./j:nW (a.) - hnW (!3.) {d (x _ a)w(x) dx 
a. - a 10:. 

+ [hnW(a.) __ h nW(!3.)] 2 {d (x _ a)2w(x) dx -1. (4.81) 
a. a 10:. 

The equality in (4.80) is attained by 

! 0, 
r-1(Bx-1J + 1) 

F(x)= 3:n q , 

W (a + (0:. -a)[B9+l-hn W(i3.)]) 
hn W(o:.)-hn W(i3.) , 

it X-IJ<_l-hnW(.B.) 
~ q B' 
it _l-li:nW(i3.) < X-IJ 
~ B - q 

< _l-lj:n W(o:.) 
B ' it X-IJ > _ 1-Ij:n W(o:.) 

~ q - B . 

(4.82) 

Thivial bounds identical with general ones for the sample minimum are 
consequences of 

P~.w(h -1) = P: wh -1 = 0 
- -' 

under (4.68), rewritten as (4.77). These apparently hold for small order 
statistics. Equations (4.78) and (4.79) follow from (4.69) and (4.70). Plug­
ging in W = U, V we specify (4.77) to (4.82). 

Proposition 8 (decreasing density on the average) If for given 2 ~ 
j ~ n - 1, and ~ defined in (4.76) 

(4.83) 

holds, then EFXj :n ~ /LF. 

Otherwise there are unique 0 < !3. < ~, !3. < a. < (j - 1) / (n - 1) that 
solve equations 

= 0, (4.84) 

= 0, (4.85) 

and then 

(4.86) 
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for 

The equality in (4.86) holds for the location-scale family of distributions 

F(x) = 

0, 
f :-l(BX-/f + 1) 

1:n u ' 
a.[BT H-/j,n(.8.)] 

Ij,n(a.)-lj,n({3.) , 

1, 

Proposition 9 (decreasing failure rate on the average) If for 2 ~ 
j ~ nand [3 defined in (4.76) we have 

j A 

(1-[3)[1-1n(I-[3)]- L F~+~_t:~) +In(I-[3)Fn+1-j:n([3) ~ 0, (4.89) 
k=l 

then EFXj :n ~ /-LF. 
Otherwise there exist 0< (3. < -In(l- [3), (3. < a. < In(n - 1)/(n - j) 

solving equations 

(a + 2 +~) e-afi,nV(a) - (1 +~) e-afi,nV((3) 

j 1 - L n + 1 _ k Fk:n V(a) - aFj:n V(a) 0, (4.90) 
k=l 

(1- e-{3 - e:a ) fi,nV((3) + (1 +~) e-a fi,nV(a) 

-1 + Fj:n V((3) - Fj:n V(a) = 0, (4.91) 

such that 
EFXj:n - /-LF < B _ BO (. ) 

_ - )-- V ),n , 
UF -' 

(4.92) 

where 
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B2 = (1 - e- f3• + 2a;2e-O:·) [/i:n V(.8.W 

2(2 + a*)a;2e-o:· /i:n V (.8.)/i:n V(a.) 

+ (2 + 2a. + a~)a;2e-a. [/i:n V(a.W - 1 
(2!-2W"-~;) 

+ n '-(2"" iT [F2j-l:2n-l V(.8*) - F2j-l:2n-l V(a*)]. (4.93) 

Bound (4.92) becomes the equality for 

I 0, 
f :-l (B X-J.! + 1) 

F(x) = J:n q , 

1 a.[B9+1-I;,,, V(f3.)] 
- exp (- 1;,,, V(a.)-I;,,, V(f3.) ), 

If X-J.! < _1-1;,,, V(f3.) 
q B' .f _1-/;:" V(f3.) < x-J.! 

B - q < _1-/;:n V(a.) 
B ' 

zf x-J.! > _1-/;:n V(a.) 
q - B • 

(4.94) 

Distribution functions (4.50) and (4.58) are similar to (4.88) and (4.94), 
respectively. The essential difference is that the latter ones have jumps of 
height .8., V (.8.), respectively. If 

[1 - /i:n V(.8*)]aF 
J.LF = BO (.) , tov),n 

(4.95) 

then (4.94) is actually a DFRA life distribution starting at o. 
Under assumptions of Proposition 8, the sample maximum attains gen­

eral bound (4.2), because the density of (4.3) is decreasing. Surprisingly, 
general bounds (4.11) and (4.4) are also attained for arbitrary order statis­
tics from the samples with increasing density on the average. The same 
holds for the distribution of the narrower class of IFRA distributions, and, 
more generally, for families of distributions satisfying F j* W, when con­
ditions (4.29) to (4.33) hold. This is a consequence of the fact that non­
decreasing functions p/' /i:nW, 2 ~ j ~ n (see (4.1) and (4.8)) may be 
approximated in £2([aw,dw),w(x)dx) with any desired accuracy by se­
quences hk' k ~ 1, of antistarshaped nondecreasing functions starting from 
sufficiently low level hk(a). For example, we can take 

where .8k \.t a, and ak are sufficiently large. Alternatively, we can also an­
alyze the norm convergence of hk W- 1 in £2([0,1), dx). For more reasoning 
details we refer the reader to Rychlik [89]. Summarizing, we have 



4.4 Symmetric Unimodal Distributions 79 

Theorem 14 (F:j. W) For 2 $ j $ n -1, h = /;:nW and w = dW/dx 
satisfying (4.29) to (4.33), general bounds (4.11) are attained in the limit by 
sequences of absolutely continuous distribution functions FIc :j. W whose 
quantile functions tend in L2([0,1),dx) to that of (4.12). In particular, 
the general bounds cannot be improved in the classes of distributions with 
increasing density and failure rate on the average. Analogous conclusions 
hold for the sample extremes. 

4.4 Symmetric Unimodal Distributions 

For j $ (n+1)/2, we have EFXj:n $ J.tF for all F !:s U which is guaranteed 
by the symmetry assumption only. Otherwise the bounds for standardized 
expectations of order statistics are nontrivial, because 

EUXj:n - J.tu = V3 (~ - 1) > O. 
au n + 1 

In the case j = n, the equality in (4.21) holds for a symmetric unimodal 
distribution. In the remaining cases (n + 1)/2 < j < n, we obtain the 
optimal bounds by projecting 

Sj:n(x) = /;:n(x) - fn+1-j:n(x), 1/2 $ x < 1, 

onto Ct.2U-l' Applying Lemma 12 for verification of (4.29) through (4.33), 
we are- in a position to describe the shape of projections by means of 
Lemma 13. It immediately follows that for (n + 1)/2 < j $ min{n-
2, [n + (3n - 5)1/2]/2} and j = n - 1 $ 6, the projection is linear, and the 
respective bounds are attained by uniform samples. In fact, the uniform dis­
tributions provide the optimal bounds for a wider range of order statistics. 
The necessary and sufficient conditions are presented in Theorem 15. 

Theorem 15 (symmetric unimodal distributions) For (n + 1)/2 < 
j $ n -1, put 

Kb(x) = Ku(x) - Kii(x), 

LU(x) = Lu(x) - Lu(x), 

(4.96) 

(4.97) 

for 1/2 $ x < 1, where Ku and Lu are defined in (4.48) and (4.49), 
respectively, and Kii and Lu are respective modifications of (4.48) and 
(4.49) that consist in replacing j by n + 1 - j. 

If LlI is positive on a right neighborhood of 1/2, then 

EFXj:n - J.tF < V3 (~ _ 1) 
O'F - n + 1 ' 

(4.98) 

where the equality holds for F uniformly distributed on [J.t - V30', J.t + ..;30']. 
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Otherwise, under notation (4.34) we obtain 

(4.99) 

where 

= 
3j[Fn+2-j:n+1 ((3.) - Fj+1:n+1 ((3.)] 

(1- (3.)3(n + 1) 

3(3.[Fn+l- j:n((3.) - Fj:n((3.)] 3sj:n((3.) (4.101) 
(1 - (3.)3 2(1 - (3.) , 

(3. = min {(3 > ~ : Kt;((3)Lu((3) = 0 } . (4.102) 

The equality in (4.99) is achieved by 

0, 
1 - (3 + Sj,n(,8.) + hB X-/I: 

* 0... £r", q' 

F(x) = 8-:-1 ( '2B x -J!.) 3:n V ~ u ' 

(3 - Sj,n (13.) + VZB x-J!. 
* a... a. IT' 

1, 

zf X-/I: < _ Sj,n (13.)+<>. (1-,8.) 
U - hB ' if _ S;'n(,8.)+<>.(l-,8.) 

hB < x-J!. < _ Sj,n(t3.) 
- U - hB' 

zf - 8;'n(,8.) < x-J!. < Sj,n(,8.) 
hB - u - hB' 

zf Sj,n (13.) < x-J!. 
hB - u < Sj,n (,8.)+<>. (1-,8.) 

- hB ' 
zf x-J!. > 8j,n (,8.)+<>. (1-,8.) 

u - hB 
(4.103) 

Analysis similar to that in the proof of Theorem 11 is applied here. Re­
placing h = /i:n by h = 8j:n = /i:n - fn+1-j:n in (4.38) and (4.42) we write 
D S (a, (3), K 8 ((3), £S ((3), choosing optimal slopes (4.41) for various (3, and 
try to determine (3 E [1/2,b) that minimizes DS(a.((3),(3) under condition 
K8((3) 2:: O. Since K((3) and L((3) of (4.42) are linear operators acting on h, 
we have 
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TABLE 4.1. Sharp uniform mean-variance bounds on expectations of order statis­
tics from independent samples of size 20 for various families of distributions. 

j G S SUN DDA DFRA 
10 0.56881 0 0 0.02526 0 
11 0.64211 0.17773 0.08256 0.19442 0 
12 0.72127 0.50155 0.24742 0.36024 0 
13 0.80855 0.74687 0.41240 0.52453 0.08848 
14 0.90714 0.90447 0.57730 0.69045 0.24189 
15 1.02182 1.00151 0.74232 0.86310 0.41773 
16 1.16054 1.08224 0.90735 1.05096 0.62534 
17 1.33774 1.18095 1.07220 1.26912 0.88206 
18 1.58450 1.32488 1.24648 1.54902 1.22562 
19 1.98814 1.57364 1.54236 1.97731 1.76097 
20 3.04243 2.26455 2.26463 3.04423 3.03006 

with a positive factor M((3) independent of j (see (4.42) and comments 
following Theorem 12). A thorough analysis leads us to the conclusions 
that Ku((3) is +- on (1/2, b), and LfA(3) is either + or -+ on (1/2, c). 
If LU(I/2+) > 0, then (3* = 1/2 is the solution that implies linearity of 
projection and the resulting quantile function. Otherwise optimal (3. > 1/2 
is the smaller of zeros of Ku and Lb. Then 

and (4.100), (4.101), and (4.103) are derived from general formulae by 
elementary calculations. 

Note that (4.103) has a density symmetric about J.LF, a finite support 
with uniform ends, and a (principally infinite) peak at the center. The 
statement of Theorem 15 is weaker than those of Theorems 11 and 12 in 
that we were not able to determine explicitly the pairs (j, n) for which 
L(a) > 0, and the resulting optimal bounds are determined by the minimal 
distributions W in the class with respect to the order. 

In Table 4.1 numerical evaluations of mean-variance bounds are pre­
sented for the jth order statistics, 10 ~ j ~ 20, of i.i.d. samples of size 
n = 20, coming from general (G), symmetric (S), symmetric unimodal 
(SUN) populations, and those with decreasing density and failure rate on 
the average (DDA and DFRA, respectively). For j ~ 9, all bounds are triv­
ial except for the first case. The values of the third column were presented 
in Gajek and Rychlik [33, Table III]. Numerical bounds for the DDA and 
DFRA samples of size 15 can be found in Rychlik [89]. 
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4.5 Bias of Quantile Estimates 

Order statistic Xj:n is the most natural nonparametric estimate of quan­
tile p-l (P) if j I n is close to p, although some more sophisticated smooth 
estimates based on kernels and Bernstein polynomial estimates were also 
constructed (see, e.g., Sheather and Marron [97], Huang and Brill [40], and 
Cheng [21]). If j(n)ln -+ p and p-l(P) is unique, then Xj(n):n -+ p-l(P) 
almost surely. Optimality of order statistics in quantile estimation for finite 
samples under various criteria was proved by Zielinski [103, 105, 106]. Here 
we employ the projection method for gauging the bias EFXj :n - p-l (P) of 
quantile estimation by sample quantiles. For convenience we assume that 
j In = p precisely. We first consider general distribution functions. Since 
both the upper and lower bias deviations are significant here, we present 
the lower bounds for the difference as well. 

Theorem 16 (general distributions) For arbitrary 1 ~ j < n < 00, 

(4.104) 

For j = 2 and n = 3,4,5,6, and 3 ~ j < n < 00, 

EFXj :n - p-l(P) > -B/'(· n ) _ _ Pj:n(P) 
(TF - - ), ,p - (P(1- p)]1/2· (4.105) 

Both (4.104) and (4.105) are attained by the (limiting) two-point distribu­
tion 

For j = 1 < n < 00, 

EFX1:n - p-l(P) > -B = -B/'(1 n ) 
- - - "p, (TF 

(4.107) 

where 
2 n2 (1) n 2 (1) B = 2n _ 1 Pl:2n-l ;;; + n _ 1 Pl:n ;;; . (4.108) 

The equality in (4.107) holds for 

P(x) = 

(4.109) 
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For j = 2 and n ~ 7, we have 

EFX2:n - F-l(P) -B - -B/'(2 ) -----..;;;....;.. ~ _- _ ,n,p, 
O'F 

(4.110) 

where 

B2 = (2n ~ ~t1;~ 1) [F3:2n- 1 (~) - F3:2n- 1 (a*)] 

+ a*#n(a*) + n~ 2Fi,n (~) , (4.111) 

and a. E (l/(n - 1), 2/n) is uniquely defined by 

[(n - 1)2x2 + (n - l)x + 1](1 - x)n-2 = 1. (4.112) 

Bound (4.110) is attained by the distribution function 

it X-J.! < _ hn(a.) 
'J u B' 
if - hn(a.) < z-J.! < _ hn(2/n) 

B - u - B' 
it _ hnJ2/n) < X-J.! < nF2:n]2/n) 
'J l!. - u (n-2)l!. ' 
it X-J.! > nF2:n (2/n) 
'J u - (n 2)l!. 

1 
0, 

f-l(-B~) F( ) 2:n - u ' 
X = ~, 

1, 

(4.113) 

Note that 
B(j,n,p) - B(j,n,p) ~ [P(1- p)tl/2. (4.114) 

Precisely, we have equality in (4.114) under conditions of (4.105), and strict 
inequality holds only in the exceptional cases treated in the last two state­
ments. This implies that the bias oscillation presumably does not depend 
on the sample size, is smaller for the central quantiles, and increases to 
infinity on the tails. The only positive effect of the sample increase is that 
the absolute deviation of the bias decreases to 1/[4p(1 - p)j1/2, because 
Fj:n(P) -+ 1/2 by the de Moivre-Laplace theorem. However, for no quan­
tile the bias oscillation tends to zero. This is obvious, because we take into 
account the distributions with nonunique pth quantiles (estimation prob­
lems in such cases are discussed in Feldman and Tucker [28]). Removing 
such distributions would not help here either, because the rate of conver­
gence of Xj:n to F-1 (P) depends on the slope increase of Fat F-l(P), and 
it is impossible to determine uniform rates without imposing conditions on 
the slope (cf., e.g., Zielmski [104]). In fact, all the bounds of Theorem 16 
are optimal for the class of strictly increasing F. However, the conclusions 
on attainability should be formulated more carefully then. 

The proof of Theorem 16 is based on the representation 
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and Lemma 3. The upper bound (4.104) is the L2-norm of the derivative 
of the greatest convex minorant of Fj :n - 1[p,1), and the centered quantile 
function of (4.106) is proportional to the derivative. Since Fj :n -1[p,1) starts 
from 0, increases on [O,p), jumps down to Fj:n(P) - 1 < 0, increases to ° 
on [p, 1), and is concave on [p, 1), its greatest convex minorant has two linear 
pieces on [O,p] and [p, 1] with slopes -[l-Fj:n(P)]/p and [l-Fj:n(p)]/(l-p), 
respectively. An easy computation leads us to the final claim. 

In order to get the lower bounds it suffices to find the greatest convex mi­
norant for 1[p,1) - Fj:n. Distribution function Fl:n is concave, and therefore 
the greatest convex minorant of 1[p,1) (x) - Fj:n(x) coincides with -Fl:n(X) 
and the straight line F1:n (P)(x -1)/(1- p) on [O,p) and [p, 1), respectively. 
For 2 :5 j < n, the problem is that function 1[p,1) (x) - Fj:n(x) = -Fj:n(x) 
for ° :5 x :5 p = j / n is decreasing concave-convex with the inflection point 
(j - l)/(n - 1) < p. Two cases are possible: either the straight line join­
ing (0, -Fj:n(O)) = (0,0) with (p, -Fj:n(P)) lies entirely below the graph 
of -Fj:n, or the line crosses the graph there. In the former case, the line 
becomes a part of the greatest convex minorant. In the latter one, the mino­
rant consists of the line passing through (0,0), and tangent to the graph at 
a point 0:* E ((j -1)/(n-1),p), and -Fj:n(x) itself on [o:*,p]. In both cases, 
the line passing through (p, -Fj:n(P)) and (1, 1[p,1)(1) - Fj:n(l)) = (1,0) 
is the remaining part of the minorant. The problem of settling which case 
actually holds is equivalent to checking the sign of the expression 

b(j,n) = Fj :n (~) - ~hn (~) . (4.115) 

We have b(j,n) :5 ° in the first case, which leads to (4.105), and (4.108) 
holds otherwise. A thorough study carried out in Okolewski and Rych­
lik [65] shows that (4.115) is positive for j = 2 with n ;::: 7 only. This 
is based on analysis of sign changes of sequences defined as integrals of 
a fixed function with sequences of totally positive functions (see Karlin [43] 
and [44, Chapter 1] for details). We preserved the dual notation j/n and p 
in Theorem 16 on purpose. The reason is that the formulae remain true if 
p ~ jfn as well. For instance, both (4.104) and (4.105) hold for all j, n with ° < p = (j - l)/(n - 1) < 1. In fact, the former is true for all 1 < j < n 
with p ;::: (j - l)/(n - 1) and so is the latter for all 1 < j < n with 
p:5 (j - l)/(n - 1). 

Now we restrict ourselves to the distributions following a given W in the 
convex and star orders. We present the upper bounds only. As above, all 
are true for arbitrary j,n with p ;::: (j - l)/(n - 1). The auxiliary dual 
problem to solve is to maximize the functional 

EFXj:n - F-1(P) 

= lim fl F-1(x) [hn(X) - _1_1[p,q)(X)] dx 
q'"pjo q-p 
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over C~cw and c~. w' For convenience, we replace the constant subtrahend 
in the orackets by a variable one to make the difference constant. This does 
not affect the limit 

EFXj:n - F-1(p) 

= ¥~ld F-1W(x) [hnW(X)I[B,d)\[b,C) (x) 

1-Fj:nW(c) + Fj:nW(b) 1 ()] ()d 
W(c) _ W(b) [b,c) x W X x. (4.117) 

We are interested in projecting hj:n,b,c(x) which denotes the expression in 
the square brackets. 

Lemma 18 Ifh E L2([aw,dw),w(x)dx) is nonnegative on [a,b), negative 
constant on [b, c), and nonnegative nonincreasing on [c, d) for a < b < c < 
d, and 

ld h(x)w(x) dx = 0, (4.118) 

then for every g E c~ w there exists ga/3"Y E c~ w defined as _c _c 

(4.119) 

with a, fJ > 0 and b :::; 'Y :::; c such that 

Function hj:n,b,c is orthogonal to constants and satisfies the other assump­
tions of Lemma 18 if p 2: (j -1)/(n-1). The orthogonality property (4.118) 
is important here: it allows us to restrict assumptions on hj:n,b,c to sign and 
monotonicity conditions. In other lemmas describing the shape of projec­
tions, the concavity, and convexity in some regions play a significant role 
as well. 

PROOF OF LEMMA 18. Since 9 is nondecreasing and integrates to 0, the 
only possible constant function is equal to O. Otherwise we have g(a) < 
0< g(d-). H g(b) 2: 0, then 

g+ = max{g,O} E Cf':w 

lies closer to h, and, by Lemma 2, so does 
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Repetitive application of the procedure allows us to restrict ourselves to 
functions satisfying 0 > g(b) = -{3, say. Similar arguments, with g+ re­
placed by gh(b) = max{g, h(b)} excludes the functions for which g(a) < 
h(b) = infa<z<d h(x). We are therefore in a position to assume 

h(b) ~ g(a) ~ g(b) ~ 0, 

and define 
6 = inf{x~: g(x) ~ h(x)}, (4.120) 

setting 6 = d if d < 00 and g(d-) :5 h(d-). 
If 6 > c, the straight line leo secant to 9 at e and 6 has a positive slope 

g(6) - g(e) 
° = 6 -e) , 

and runs above 9 in [e,6] and below 9 elsewhere. In particular, we have 
g(b) ~ le6(b). It follows that Ic6 crosses the constant function 

at a '"'I E [b, e). We easily see that the broken line 

satisfies 

g(x) ~ gQ{j'Y(a;) ~ hex) if x E (a, b) U (e,6), 

h(x) ~ gcr.8'Y(x) ~ g(x) if x E (b,e) U (6, d), 

which is the desired conclusion. 

(4.121) 

(4.122) 

If 6 = e we replace le6 by the line Ie tangent to 9 at e. It runs beneath g, 
and crosses lb at some '"'I E [b, e). Its truncation at the levellbh) = -{3 has 
form (4.119), and satisfies (4.121) and (4.122) with (e,6) = 0 .• 

Lemma 19 Under the hypotheses and notation of Lemma 18, we have 

P~ wh(x) = gcr • .8.'Y. (x) _c 

for some '"'I. E [b, c), 

Jd (x-'"'I.)h(x)w(x)dx 
0.=0.('"'1.) = 'Y. 2,(4.123) 

J~ (x-'"'I.)2w(x)dx- [J~ (x-'"'I.)w(x)dx] 

{3.={3.h.) = o.h.)ld (x-'"'I.)w(x)dx. (4.124) 
'Y. 
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PROOF. For fixed a", the function 

is minimized with respect to translation parameter (3 at 

(3.(a,,) = l d[a(x-,)l["!,d)(x)-h(X)]W(X)dX 

= a i d (x - ,)w(x) dx 

(cf. (4.124)). Furthermore, for fixed, E [b,c], 

D(a, (3. (a, ,), ,) 

= f.' {h(X) - a [(X - 7)1[,.,) (x) - .t (y -7 )w(y) dy 1 r w(x) <Ix 

is a convex quadratic function in a, with the global minimum at a.(,), 
defined as in (4.123). It is obvious that 

is a continuous function that attains its minimum at some , •. Observe 
that the numerator of the right-hand side of (4.123) is positive. By the 
Schwarz inequality with condition f~ w(x) dx < 1, the denominator is pos­
itive as well. Therefore a.b.) > 0, which together with (4.124) yields 
(3. = (3. (a. b.), ,.) > O. The solution to our minimization problem is 
actually a convex nondecreasing function .• 

If c '\, b, so does , •. For h = hj:n,b,c we have 

and so 

o < -Ic (x - ,.)h(x)w(x) dx 
"Y. 

= 1-Fj:nW (c)+Fj:nW(b)lc( _ ) ()d 
W(c) _ W(b) "Y. x ,. W x x 

< (c - ,.)[1- Fj:nW(c) + Fj:nW(b)]-+ 0 (4.125) 

fbd(X - b)2W(x) dx - [fbd(X - b)w(x) dX] 2' 

= a.(b) ld(X-b)W(X)dX, 
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as c \.t b. We easily see that 

EFXj :n - F-1(P) 

< fad [F-1W(X) - JLFjga:.(b).8.(b)b(X) dx 

Jbd(x - b)hnW(x)w(x) dx (4126) 
1/2 uF , . 

{ Jbd(x - b)2W(x) dx - [Jbd(X _ b)w(x) dX] 2} 
< 

which becomes the equality if 

F-1 W(x) - JLF _ (x - b)I[b,d) (x) - Jbd(X - b)w(x) dx 
UF - 1/2· 

{Jbd(X - b)2W(X) dx - [Jbd(X - b)w(x) dxf} 

Theorem 17 (F tc W) Set 

fj = fjw(b) = Ew(X - b)+ = ld (x - b)w(x) dx, 

fjw;,n (b) = Ew(Xj :n - b)+ 

= ld (x - b)hnW(x)w(x) dx, 

J2 = J~(b) = Varw(X - b)+ 

(4.127) 

(4.128) 

= I.' (x -b)w(x)dx - [I.' (x- b)w(x)dx r· (4.129) 

If (j - 1)/(n - 1) ~ P E (0,1), then for b = W-1(P) 

EFXj :n - F-1(P) < fjw;,n (b) 
UF - Jw(b) , 

and we get the equality here if 

-1 A AX-JL 
F(x) = W(W (P) + 1] + t9-U -)I[tL-U i)/J,+oo) (x). 

Note that 

fjw(b) = 1]w(b, b), 

Jw(b) = t9w(b,b), 

where the right-hand sides were defined in (3.59) and (3.60). 

(4.130) 

(4.131) 
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Proposition 10 (decreasing density) For (j - l)/(n - 1) ~ P E (0,1), 
we have 

EFXj:n - F-l(p) < 2V3nh[1- Fj+l:n+l(P)] - p[l- Fj:n(P)]. (4.132) 
O'F - (1 - p)3/2(1 + 3p)l/2 

Bound (4.132) is attained by the mixture of the atom at J.' - 0'[3(1- p)/(l + 
3p)]1/2 with weight p, and the uniform distribution on [J.t - 0'[3(1- p)/(l + 
3p)Jl/2, J.' + 0'(1 + p){3/[(1 - p)(l + 3p)]P/2] with weight 1 - p. 

Proposition 11 (decreasing failure rate) For (j - l)/(n - 1) ~ P E 
(0,1), the inequality 

EFXj:n - F-1(p) < 1 ~ 1- Fk:n(P) 
O'F - (1 - p2)1/2 L..J n + 1 - k 

k=l 

(4.133) 

is tight and attained by the mixture of the atom at J.' - 0'[(1- p)/(l +p)Jl/2, 
and the exponential distribution with scale parameter 0'/ (1-p2)1/2 starting 
from the atom, with respective weights p and 1 - p. 

For F t. W, the solution has a similar and even simpler form. 

Lemma 20 Under the assumptions of Lemma 18 for every 9 E C~ w there 
exists go:{3 E C~ w defined as _0 

_0 

go:{3(x) = a(x - a)1[c.d) (x) - (3 

with a, (3 > 0 such that 

Ilgo:{3 - hll ~ IIg - hll· 

(4.134) 

PROOF. By arguments analogous to those of Lemma 18, it suffices to 
confine ourselves to the family of starshaped nondecreasing functions 9 
such that g(b) = -(3 for some (3 E [h(b), 0]. For all x ~ b we have 

g(x) ~ -(3 ~ 0 ~ h(x). 

This means that the approximation of h is improved by 

g-{3 = max{g, -(3} E C{.w· 
Recalling (4.120), we define (4.134) with the slope parameter 

a = g(6) + (3 > O. 
6-a 

Then the function (4.134) is the smallest possible one for arguments x E 
(b,6), and the greatest one for x E (6, d) among all starshaped functions 
starting from (a, -(3) and passing through (6,g(6)). We have thus proved 
(4.121) and (4.122), with (4.119) replaced by (4.134), which is precisely the 
assertion of the lemma .• 
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Lemma 21 Under the assumptions of Lemma 18 and notation of Lemma 
20, we have 

for 

Jcd(x - a)2w(x) dx - [t(x - a)w(x) dX] 2' 

t(x - a)h(x)w(x) dx 
(4.135) 

13* = Ct* ld (x - a)w(x) dx. (4.136) 

The proofis similar to that of Lemma 19. We first find the solution (4.136) 
to the minimization problem of 119at3 - hW with respect to 13. Then we 
look for Ct* minimizing 119at3.(a)-y - hll2 and find (4.135), which is positive 
by arguments analogous to those presented in the last part of the proof of 
Lemma 19. 

Taking h(x) = hn W(x) for x ~ c, and passing to the limit, we get 

II 11 - Jbd(x - a)hnW(x)w(x)dx 
9a.t3. - 1/2 ' 

{Jbd(X - a)2w(x) dx - [Jbd(X - a)w(x) dxf} 

(4.137) 

and the normalized function 9a.t3. /119a • .8.11 identical to (3.58). This implies 
that the distribution functions which attain the bounds in Theorem 18, 
and Propositions 12 and 13 coincide with those attaining the bounds of 
Theorem 6, and Propositions 5 and 6, respectively. 

Theorem 18 (P ~* W) Under the notation (3.60), b = W-1(P), and 

TlWj:n (a, b) = Ew(Xj:n - a)I(b,d)(Xj:n) 

= ld (x - a)hnW(x)w(x) dx, (4.138) 

and for (j - l)/(n - 1) ::; p E (0,1) the following inequality is sharp 

EFXj:n - p-1 (P) ::; B~. w(j, n,p) = Tl;i:( (a~~) . 
(J'F - wa, 

(4.139) 

Proposition 12 (decreasing density on the average) If (j -l)/(n-
1) ::; p E (0,1), then the following inequality is sharp 

EFXj:n - p-1(P) -0 < Bt.u(j, n,p) 

= 
2v'3j 1 - Pj+1:n+1 (P) 
n + 1 9u(P) 

(4.140) 
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Proposition 13 (decreasing failure rate on the average) If we have 
(j - l)/(n - 1) $ p E (0,1), then the following inequality is sharp 

EpXj :n - F-l(p) -0 ( ) 
$ Bt.v j,n,p 

Up 

",j l-F.:n(P) I (1 )[1 F (p)] = L.tk=l n+l-k 8;(p)-P - j:n • (4.141) 

Notations 8u(p) and 8v (p) , that appear in (4.140) and (4.141), were defined 
in (3.64) and (3.67), respectively. It is worth pointing out that the upper 
bias deviations in large samples are significantly different for the classes 
of distributions determined by the convex and star orders. To see this, 
suppose that p is fixed and take a sequence of order statistics X j :n , j = 
j(n),n -+ 00, such that p ~ (j -l)/(n -1) -+ p. If F?::c W, then (4.130) 
holds and, since X j :n -+ b = W-l(p) almost surely, (4.128) tends to O. 
On the other hand, (4.129) does not depend on the sample size and is 
positive. In consequence, the bound in (4.130) tends to 0, and so do those 
of (4.132) and (4.133). If F ?::. W, then (4.138) tends to (b- a)/2 > 0, and 
(3.60) remains fixed positive. Therefore the right-hand sides of all (4.139) 
to (4.141) have positive limits. 

Table 4.2 contains values of extreme upper deviations of order statistics 
estimates Xj:n. 1 $ j < n = 20, of quantiles of order p = j In for the fam­
ilies of general (G), decreasing density (~O) and failure rate (OFR), and 
decreasing density, failure rate on the average (OOA and OFRA, respec­
tively). In general populations, the estimates are more stable for the central 
quantiles than for the extreme ones which confirms the theoretical analysis 
of bias oscillation (cf. (4.114». Otherwise the deviations are increasing in j. 
It follows from the fact that all the families are more concentrated on the 
left, and the upper quantiles are more dispersed and thus more difficult to 
be estimated. 

4.6 Open Problems 

1. Natural questions are the mean-variance bounds on expectations of 
single order statistics for populations determined by the convex or­
der. In particular, what are the evaluations for distributions with 
monotone density and failure rate? 

2. General second moment bounds are presented in (4.18), (4.14), and 
(4.15). Analogous results for distributions with decreasing density and 
failure rate can be found in Section 4.2, but the problem is unsolved 
when either density of failure rate is increasing. More generally, we 
ask for the second moment bounds for families of life distributions 
determined by the convex order. Likewise, what are the respective 
bounds for distributions determined by the star order? 
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TABLE 4.2. Sharp uniform variance bounds on upper bias deviations of esti­
mators Xj:20 of pth quantiles, p = j/20, for various families of distributions 
(independent case). 

j G DD DFR DDA DFRA 
1 1.64485 0.05658 0.01795 0.11742 0.03627 
2 1.30582 0.08034 0.02683 0.20820 0.06764 
3 1.13394 0.09763 0.03406 0.28585 0.09838 
4 1.02862 0.11226 0.04069 0.35251 0.12916 
5 0.95804 0.12575 0.04718 0.40974 0.16022 
6 0.90860 0.13894 0.05379 0.45924 0.19170 
7 0.87348 0.15240 0.06075 0.50272 0.22379 
8 0.84894 0.16660 0.06828 0.54180 0.25671 
9 0.83279 0.18203 0.07660 0.57798 0.29076 

10 0.82380 0.19919 0.08603 0.61264 0.32638 
11 0.82139 0.21876 0.09694 0.64709 0.36418 
12 0.82548 0.24158 0.10989 0.68269 0.40502 
13 0.83648 0.26888 0.12569 0.72092 0.45011 
14 0.85539 0.30247 0.14557 0.76365 0.50125 
15 0.88410 0.34523 0.17163 0.81339 0.56122 
16 0.92588 0.40204 0.20756 0.87393 0.63458 
17 0.98657 0.48192 0.26077 0.95145 0.72938 
18 1.07691 0.60355 0.34835 1.05688 0.86128 
19 1.21205 0.80859 0.51815 1.20493 1.06011 
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3. Differences of order statistics, especially the sample range Xn:n -Xl:n 

and quasiranges Xj:n - XnH-j:n, (n + 1)/2 < j < n, are used as 
simple and robust estimates of dispersion of the parent population. 
Spacings Xj:n - Xj-l:n, 2 $ j $ n, represent times between con­
secutive failure times of elements of composite systems. In general 
populations, expectations of sample range and quasiranges were pre­
cisely evaluated by Plackett [72] and Moriguti [58], respectively. The 
former was derived by direct application of the Schwarz inequality. 
For the latter, the greatest convex minorant construction was used. 
In both cases, the bounds are twice as great as those on the jth order 
statistic in the symmetric populations (see (4.21) and (4.24) through 
(4.26)). It is important to find evaluations for differences of order 
statistics, especially the quasiranges and spacings, in the restricted 
families of distributions considered here. 

4. Completely untouched domains of potential interest are bounds on 
most popular L-statistics: trimmed means, some best linear unbiased 
estimates (so called BLUEs) in parametric models, the Gini mean 
difference 2/[n(n -1)] E7=1 (2j - n -l)Xj:n, and many others, both 
in general and restricted families of distributions. 

5. The results of Section 4.5 should be completed by analyzing the bias 
of quantile estimates for dual families of distributions defined by rela­
tions F ~c W and F ~* W. Evaluations of the bias in the symmetric 
populations, with possible additional restrictions, are not known, ei­
ther. Also, some L-statistics can be studied in a further perspective. 
We point out here that in the problems of bias evaluation, the lower 
bounds are of key interest as well. On the other hand, the upper and 
lower bounds on EFXj:n - EFXkj:kn for various k > 1 would provide 
precise evaluations of rates of convergence of quantile estimates over 
different classes of distributions. 

6. The order statistic X j:n is used for estimating F-1(p) if jln is close 
to p. This is justified by strong consistency of the estimates of the 
unique quantiles for which j In -+ p is only needed. H n is fixed and 
jln < p < (j + l)ln, then the (j + l)st order statistic is a possibly 
better candidate. Evaluating EF X j :n - F-l (p) for various j, and given 
n and p, we can find the order statistic whose bias is minimal in 
a given class of distributions, and recommend it as the most bias­
robust estimate of the pth quantile. Therefore it is worth extending 
results of Section 4.5 to the cases p =j:. j In. 



5 
Order Statistics of Dependent 
Observations 

Assume that Y1 , .•. , Yn are possibly dependent and identically distributed. 
Recalling arguments of Rychlik [79), in Section 5.1 we conclude sharp 
bounds (2.25) and (2.27) on expectations of general L-statistics and single 
order statistics, respectively, depending on the common marginal distri­
bution of the observations. Next we apply the projections of functionals 
defined in (2.25) and (2.27) for establishing respective moment bounds 
over general and restricted families of marginals. In Section 5.2 general, 
symmetric, and nonnegative observations are treated, and respective de­
terministic bounds for arbitrary samples are concluded. The results cited 
are from Rychlik [81), but some earlier partial solutions are also mentioned. 
In the remainder of Chapter 5 we confine ourselves to single order statis­
tics. In Section 5.3 we present mean-variance and second moment bounds 
on the expectations of order statistics for families of parent distributions 
related to a given one in the convex order. The mean-variance bounds for 
F ~c W and F jc W are not published elsewhere, except for DFR and 
IFR distributions, given in Rychlik [87). The results for general W and 
W = U (i.e., for the decreasing density distributions) are presented here 
as well. Rychlik [84] established second moment bounds for F ~c (jc)W 
with general W. The decreasing density and failure rate distributions were 
studied in Gajek and Rychlik [32). Analogous results for increasing ones 
come from Rychlik [84]. Section 5.4 deals with mean-variance bounds for 
order statistics based on samples with common marginal distributions be­
ing in a star relation with a fixed one W. For ones determined by the 
exponential W = V, which includes important classes of life distributions 
with monotone failure rate, respective bounds were established in Rych-
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lik [87]. Especially, it was shown that general bounds (5.13) are attained 
by the IFRA distributions. In fact, the claim can be extended to families 
of distributions defined by F j. W for general W. We also write explicitly 
the bounds for F ~. U that have decreasing densities on the average. The 
mean-variance bounds for order statistics with symmetric unimodal and 
U -shaped distributions of parent variables, described in Section 5.5, were 
obtained in Gajek and Rychlik [32] and Rychlik [84], respectively. We call 
a symmetric distribution U -shaped if it has nonincreasing and nondecreas­
ing density on the lower and upper halves of its support. Bias of quantile 
estimation in dependent samples is studied in Section 5.6. Section 5.7 deals 
with the extreme deviation of expected order statistics under violating the 
independence assumption. 

It is worth pointing out that Papadatos [71] established sharp uniform 
bounds on distribution functions of order statistics under the assumption 
that the maxima of the subsamples of a given size have a specified common 
distribution. The special cases were the independent and arbitrarily depen­
dent identically distributed samples discussed in this book. Balakrishnan 
et al. [14] presented the best possible mean-variance bounds on the ex­
pectations of order statistics from the samples taken without replacement 
from finite populations. As the size of a population increases to infinity, the 
bounds reduce to those of the Li.d. samples from arbitrary populations (cf. 
Section 4.1). On the other hand, in the case of exhaustive drawing with­
out replacement, these results coincide with ones for arbitrarily dependent 
samples with arbitrary common marginal distributions, presented in Sec­
tion 5.2, which are actually attained by exhaustive sampling models. For 
some quantile bounds on order statistics of dependent observations and 
respective L-statistics, we refer the reader to Rychlik [84, Section 5]. 

5.1 Dependent Observations with Given Marginal 
Distribution 

Suppose that arbitrarily dependent Y1 , ... , Yn have a fixed common distri­
bution function F with a finite mean JLF. We aim to justify bound (2.25) 
for the expectation of an arbitrary combination of order statistics under all 
possible interdependencies of observations and to specify the conditions of 
its attainability. For the formal proof we refer the reader to Rychlik [79] 
(see also Rychlik [84]). 

First we characterize vectors (G1:n , ... , Gn:n ) of all possible distribution 
functions of order statistics Yi.:n,' .. , Yn:n by relations 

n 

:2: Gj :n = nF, 
j=l 

G1:n ~ G2:n ~ ... ~ Gn :n . 

(5.1) 

(5.2) 
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The former immediately follows from 

n n 

L l(-oo,z) (Yj:n) = L l(-oo,z) (Yj), x E In, (5.3) 
j=l j=l 

by taking expectations of both sides of (5.3). The latter is a consequence 
of relations Y1:n $ Y2:n $ ... $ Yn:n. There are many ways of construct­
ing ordered variables Yj:n, 1 $ j $ n, with distributions satisfying (5.1) 
and (5.2) (the simplest one consists in taking Gi~(X), 1 $ j $ n, for X 
being a standard uniform variable). There are also many ways of construct­
ing random variables Yj, 1 $ j $ n, with identical marginal distribution 
function F, whose order statistics have given distribution functions satis­
fying (5.1) and (5.2) (the simplest one consists in random rearranging Yj:n, 
1 $ j $ n). 

Now we solve the problem of minimizing E~=l CjGj:n(X) for fixed co­
efficients c = (C1, ... , en) of the L-statistic under study and distribution 
functions satisfying (5.1) and (5.2) valued at arbitrary point x. This is 
a linear programming problem that has the solution 

n 

min L cjGj:n(x) = GeF(x) 
j=l 

(5.4) 

for Ge being the greatest convex function on the unit interval satisfying 
(2.26). Recalling Lemma 1, we obtain 

n (00 y (t. C;G',.(dy») Ep LCjYj:n = 
j=l 

< 1+00 

-00 y GeF(dy) 

= 11 F-1(x) Ge(dx) 

= 11 F-1(x)ge(X) dx 

= (F-1,ge), (5.5) 

which is the desired conclusion. 
Analyzing values Gj:n(X), 1 $ j $ n, x E In, for the solutions to (5.4), 

we are able to determine supports and some mutual relations of respective 
order statistics. They depend on properties of function Ge , whose graph 
is a (broken) line with breaks (if any) at some multiplicities of lIn. Let 
o = ko < k1 < ... < k" = n, 1 $ K, $ n, be the sequence of integers such 
that each kiln, 1 $ i $ K, - 1, is a breakpoint of Ge . Let 0 = 10 < It < 
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... < I).. = n, K, ~ >. ~ n, be the sequence of integers for which 

holds. We have 

n 

GcU In) = 2: Ck 

k=1 

{O,n} C K={ki : I~i~K,} 

C C = {li: 1 ~ i ~ >.} 
c {O, ... ,n}. 

Then equality in (5.4) for all x E ~ and some Gj :n satisfying (5.1) and 
(5.2) implies 

P(F-1(ki_dn) ~ Yl j_1+1:n = Ylj:n ~ F-l(kdn)) = 1 (5.6) 

for all 1 ~ i ~ K" and 1 ~ j ~ >. such that ki - 1 ~ lj-l < lj ~ ki. Relation 
C = K uniquely determines the distributions of all order statistics that 
solve (5.4) and attain equality in (5.5). Then 

G-. ( ) _ nF(x) - ki - 1 
3:n X - , 

ki - ki- 1 

for ki - 1 < j ~ ki . If C "I K, there are also other solutions. For instance, 
for the sample mean we have 

Gc(x) = x, 
K = {O,n}, 
C = {O, ... ,n}, 

and (5.6) simply means that each }j:n should belong to the domain of Y1 . 

Indeed, 
1 n 11 Ep- 2:}j:n = F-1(x)dx = J.Lp 
n j=l 0 

for any type of dependence in variables. 
In the special case of single order statistics }j:n, functions Gc and gc 

have the forms 

n+~-j (x_ j : 1)+, 
n 

+ 1 . l[(i-l)/n,l) (x), n -) 

respectively, which implies (2.27). Since here 

K = {O,j -I,n} C C = {O,I, ... ,j -I,n}, 
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relation 
P{Yj-l:n ~ F-1{{j - l)jn) ~ Yj:n = Yn :n ) = 1 (5.7) 

combined with (5.1) and (5.2) are respective conditions for equality. The 
stochastically largest (Le., uniformly smallest) distribution function 

G .. F{ ) = [nF{x) + 1 - j]+ ,.n X + 1 . n -3 

of the jth order statistic is uniquely determined. There are various ways of 
constructing dependent samples with the same marginal distribution and 
the extreme distribution of Yj:n. The simplest one is a random rearrange­
ment of 

Y1:n = ... = Yj-l:n = F-1 e : 1 X) 
< F-1 e: 1) 
< F-1 e : 1 + [1 - j : 1] X) 
= Yj:n = ... = Yn :n 

for some X uniformly distributed on [0,1]. For the sample minimum, (2.27) 
and (5.7) imply the trivial claims EFY1:n ~ J.l.F, becoming the equality 
for identical observations Y1:n = Yn:n = Y1 • Condition (5.7) excludes the 
possibility of constructing an absolutely continuous joint distribution of the 
sample with the stochastically maximal jth order statistic except for the 
sample maximum. 

In the first paper in this field of research Mallows [53] constructed a den­
sity function of the sample with identical uniform marginals that provide 
the maximal expectation of the sample maximum. Lai and Robbins [47] 
extended the construction to arbitrary possibly nonidentical marginal dis­
tributions. Lai and Robbins [48] and Tchen [98] constructed infinite se­
quences of variables with identical and arbitrary distributions, respectively, 
such that all sample maxima are stochastically maximal. Bounds (2.27) for 
general order statistics of identically distributed samples were proved in­
dependently in Caraux and Gascuel [19] and Rychlik [76]. In the former, 
some inequalities for nonidentically distributed observations were presented 
(with conditions for equality established in Rychlik [82]). In the latter, the 
problem of constructing sequences with stochastically extreme order statis­
tics was also discussed. Asymptotic properties of sequences of stochastically 
extreme maxima and other order statistics were studied in Lai and Rob­
bins [48] and Rychlik [77], respectively. 



100 5. Order Statistics of Dependent Observations 

In the rest of this chapter we present tight bounds for expected order and 
L-statistics of dependent samples for various families of marginal distribu­
tions. We also indicate the marginals for which the bounds are attained. 
Formally, in each case one should say that these are attained by the joint 
distributions specified for arbitrary marginals and fixed L-statistics by (5.1) 
and (5.2) with (5.6) (replaced by (5.7) for single order statistics in partic­
ular), and the given marginal. However, we drop repeating the reference to 
the construction of the joint probability and confine ourselves to describing 
the optimal marginal. 

5.2 General and Symmetric Distributions 

We first study the optimal bounds for general L-statistics based on de­
pendent samples with arbitrary common marginal distribution F. For an 
arbitrarily fixed sequence of coefficients c = (C1' ... , cn), we construct func­
tion gc that defines the functional of the expectation of the respective L­
statistic (see (2.25) and (5.5)) by differentiating function Gc determined 
by (2.26). Using the notation of Section 5.1, we have 

n n 

gc(x) = Ldjl[(j-1)/n,j/n)(x) = Ldki1[ki_l/n,k;/n)(X) (5.8) 
j=1 i=1 

for a nondecreasing sequence dj , 1 $ j $ n, with the specified increasing 
subsequence dki' 1 $ i $ /'i, $ n, of distinct values. Precisely, we have 

(5.9) 

_ 1 n n r1 
d=-Ldj =LCj=Gc(l)= 10 gc(x)dx. 

n j=1 j=1 0 

(5.10) 

We claim that the optimal mean-variance bound for the expectation of 
a given L-statistic amounts to the Euclidean norm of the respective vector 
(dj - d:)/n, 1 $ j $ n. 

Theorem 19 (general distributions) Under notation (5.8) to (5.10), 
with Gc defined in (2.26), we have 

[ ]

1/2 

~t~-iP 
3=1 

(5.11) 
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If C = 0, then (5.11) becomes the equality for degenerate distributions. 
Otherwise the equality holds for the ,,-point marginal distribution 

P (y, dk. - ii) ki - ki-1 
1 =J.L+U-- = , C n 

(5.12) 

PROOF. Verification of (5.11) 

n 

Ep L Cj(}j:n - 1') 
j=1 

= 101 F-1 (X)[ge (X) - d] dx 

= 101 [F-1(X) - J.L][ge(X) - d] dx 

< {101 [F-1(X) _ J.L]2dx 101 [ge(X) _ d]2dX} 1/2 

= Cu 

is based on (2.25), (5.10), (2.10), and (5.8). The Schwarz inequality provides 
the sharp bound here, because Be - ii is nondecreasing, and so 

with a = u / C > 0 actually defines a quantile function with the desired 
mean and variance. An elementary algebra enables us to derive the respec­
tive distribution (5.12) .• 

Especially, for the single order statistics we have 

Corollary 1 (general distributions) Inequality 

Ep}j:n-J.LP <C=CO(' n) = ( j-l .)1/2 
Up - J, n + 1- J (5.13) 

is sharp and becomes the equality for the two-point marginal 

( U) j-l P Y1=J.L- C =-;;:-=I-P(Yi=J.L+uC). (5.14) 

Bounds (5.13) for the sample maximum and general j were presented in 
Arnold [2] and Gascuel and Caraux [34], respectively. We proceed now to 
present analogous results for symmetrically distributed random variables. 
Below in Theorem 20 we omit the formal presentation of the distribution 
that attains the bound, because this needs introducing a rather complicated 
notation. 
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Theorem 20 (symmetric distributions) Inequality 

"lj·n-J.LF 8( ) 1" )2 n [n ]1/2 
EF L.J Cj· ~ C c = -2 L.J (dj-dnH- j , 

. (TF n L( J 3=1 j= n+3)/2 

(5.15) 

where L·J denotes the floor of a number, is tight. Equality is attained by 
a unique (up to location-scale tmnsformations) marginal symmetric distri­
bution supported on n points at most whose probabilities are multiplicities 
of l/n. 

PROOF. Inequality (5.15) follows from 

with 

n 1 

EF 2: Cj(lj;n - J.L) = I [F-1(X) - J.Llg~(x) dx 
j=l 1/2 

g~(x) = 

= 

gc(x) - gc(1- x-) 
2 

n 
" dj - dnH- j ( ) L.J 2 1[(j-1)/n,j/n) x , 

j=L(n+3)/2J 

(5.16) 

(5.17) 

1/2 ~ x < 1, and the Schwarz inequality. Note that (5.17) is a nonnegative 
non decreasing piecewise constant function with L(n + 1)/2J values at most. 
Thus its antisymmetric extension onto [0,1/2) is also a nondecreasing step 
function with n values at most and jumps at some points j In, 1 ~ j ~ 
n - 1. The extension coincides with the quantile function of the extreme 
distribution providing equality in (5.15) up to an affine transformation. 
This justifies the latter claim of Theorem 20 .• 

Although the algorithm of determining gc and g~ is simple, we are not able 
to write explicitly respective formulae for general linear combinations of 
order statistics. For the single order statistics, however, we obtain 

gj,n(x) = +n1 .1[max{(j-1)/n,1-(j-1)/n},1) (x), 1/2 ~ x < 1. (5.18) 
n -J 

By an easy computation, we conclude 

Corollary 2 (symmetric distributions) Inequality 

_EF_Y-=.j_:n_-...:..J.L_F C [ n . { j - II}] 1/2 < = . mm ., 
(TF - 2(n + 1 - J) n + 1 - J 

(5.19) 

is sharp and becomes the equality for the three-point marginal distribution 

P(Y1=J.L) = 2Ii-1_!1 (5.20) 
n 2' 

(5.21) 
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Inequality (5.19) and its special case for j = n can be found in Gascuel 
and Caraux [34] and Arnold [2], respectively. Here we merely mention the 
second moment bounds for general L-statistics 

EF t.Cjlj:n < 11 p-1(X)[gc(x)]+ dx 

< II(gc)+llmF 

[~ t,(dj)~] 'l'mF 

and for single order statistics 

EFlj:n ~ ( ~ .)1/2 mF 
n+ -) 

of nonnegative samples. Bounds (5.22) and (5.23) are attained by 

P(Y1 = 0) 

P (Y1 = mF 11(::)+11) 

= kio 
n 

ki - ki-1 
= n 

with io = max{O ~ i ~ K: dki ~ O}, and 

io < i ~ K, 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) P(Y1 = 0) = j: 1 = 1- P (Y1 = [n + ~ _ j f/2 mF) , 

respectively. If dn ~ 0 and so II (gc)+ II = 0, then (5.24) and (5.25) are clearly 
replaced by the Dirac measure at 0. In fact, (5.24) with (5.25), and (5.26) 
are not unique solutions. The second relation in (5.22) shows that p-1 may 
have various forms on [0, kio/n) provided that nonnegativity, nondecrease, 
and moment conditions are not violated (see Rychlik [81] for more details). 

Rychlik [81] (and Arnold [3] for the cases of sample maximum Yn :n and 
range Yn:n - Y1:n) presented more general sharp bounds in terms of cen­
tral absolute moments of various orders based on the HOlder inequality 
instead of the Schwarz one. These are also attainable by discrete marginal 
distributions with probabilities kdn for some integer ki. This form of 
solution allows us to deduce analogous inequalities for deterministic se­
quences. Randomly rearranging a sequence of (not necessarily distinct) 
numbers Y1, ... ,Yn, we obtain a random sequence of dependent identically 
distributed random variables with expectation, second raw moment, vari-
ance 

1 n 
fi = - LYj, 

n j=1 
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respectively, and deterministic order statistics Y1:n $ ... $ Yn:n' Using 
(5.11), (5.15), and (5.22), we conclude optimal bounds 

t Cj (Yj:n - y) < 
j=1 S 

[ ]

1/2 

~tcP;-cP , 
3=1 

(5.27) 

t Cj{Yj:n - y) < 
j=1 S 

[ ]

1/2 

2~ t (dj - dn+1_j)2 , 
j=L(n+3)/2J 

(5.28) 

n L CjYj:n < 
j=1 m 

[ ]

1/2 

~ t,{dj)~ , (5.29) 

for general, symmetric, and nonnegative sequences of numbers, respectively. 
Sharpness of (5.27) is verified by putting Yj = dj , 1 $ j $ n, and with 
reference to (5.12). 

The problem of best deterministic bounds for L-statistics in terms of var­
ious sample parameters has a long history. We confine ourselves to those de­
rived by means of the Schwarz inequality. Samuelson [92] raised and solved 
the problem of how much a single observation can deviate from the sam­
ple mean in the standard deviation units. Samuelson's paper stimulated 
intensive investigations of the problem and its modifications: alternative 
proofs, rediscoveries of earlier results, and extensions. Six different proofs 
were reviewed by Arnold and Balakrishnan [5]. The earliest proofs found 
in the literature were due to Thompson [99] and Scott [94]. We do not at­
tempt to present a complete record of consecutive contributions, referring 
the reader to Arnold [4] for a comprehensive bibliography, and Olkin [66] for 
a recent review, with yet another proof. Scott [94] established the bound 
for deviations of Yn-1:n from the mean in the standard deviation units. 
The bounds for arbitrary order statistics follow directly from Mallows and 
Richter [54], and were explicitly stated by Boyd [18] and Hawkins [39]. Mal­
lows and Richter [54] established the inequalities for selection differentials 
2:1=1 Yi:n/j, and 2::=n+1-k Yi:n/k, and their differences. The respective 
results for Yn:n - Y1:n, Yn-1:n - Y1:n, and the differences of arbitrary or­
der statistics were derived by Nair [63], David et al. [24], and Fahmy and 
Proschan [27] (implicitly in Arnold and Groeneveld [6]), respectively, and 
for the L-statistics with nondecreasing coefficients by David [23]. Bounds 
(5.27) through (5.29) for general L-statistics come from Rychlik [81]. 
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5.3 Distributions with Monotone Density and 
Failure Rate 

Determining mean-variance bounds for F tc W by the projection method, 
we look for the element of C( w least distant from the function 

_c 

n 
h(x) = n + 1 _ j I[U-l)/n,l) W(x) 

n 
+ 1 .1[W-1 ((j-l)/n),dw)(X). n -J 

= 

Applying Lemmas 4 and 5 with b = W-1(U -1)/n) and c = dw, we obtain 
the solution. Note that there are no trivial zero projections and bounds for 
b > aw, because 

EwX < f.Lw(b) = Ew(XIX > b) 

contradicts (3.8). Hence the projection is linear increasing with a possible 
constant left part, and the condition for distinguishing the cases is given in 
the last part of Lemma 5. 

Theorem 21 (F tc W) If for b = W-1«j - 1)/n) we have 

(J'2 

f.Lw(b) :::; f.Lw + w , 
f.Lw-aw 

(5.30) 

then inequality 
EF}j:n - f.LF < f.Lw(b) - f.Lw 

(J'F - (J'w 
(5.31) 

holds true and becomes the equality for 

( X - f.L) F(x) = W f.Lw + (J'w-(J'- . (5.32) 

Otherwise there exists a unique (3* = (3*(j,n) E (aw,b) satisfying equa­
tion 

(J'~({3) = [f.Lw(b) - f.Lw ({3)][f.Lw ({3) - (31 (5.33) 

such that 

(5.34) 

for 

iJw({3) = Ew(X - (3)+ = i d 
(x - (3)w(x) dx, (5.35) 

J~({3) = Varw(X - (3)+ 

= I.' (x - P)'w(x) dx - [I.' (x - P)w(x) dx r (5.36) 
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(cf. (4.127) and (4.129)). Bound (5.34) is attained by 

(

A A X - JL) 
F(x) = W [3* + T}W([3*) + t1w([3*)-u- 1 [/J-"'1iw (,B.)/t1w(,B.),oo) (x). 

(5.37) 

Note that sup EwYj:n = JLw(b) which confirms the first statement of The­
orem 21. Condition (5.30) is certainly satisfied by small order statistics. 
Definitions (5.35) and (5.36) are analogues of (3.59) and (3.60), respec­
tively, valued at ([3, [3). Distribution function (5.37) has a jump of height 
W([3) < (j - 1)/n at JL - ufJ/-D and a density right to the point. 

Proposition 14 (decreasing density) If (j - 1)/n ~ 1/3, then 

(5.38) 

which becomes the equality for F being the uniform distribution function 
on fJ.t - V3u, JL + V3u]. 

Otherwise 
EFYj:n - JLF < ~ (9 j - 9 - n) 1/2 

UF - 3 n+ 1- j , 
(5.39) 

and the equality holds for the mixture of the Dirac distribution at JL -
3u [en + 1 - j)/(9j - 9 - n)]1/2 and the uniform distribution on 

[ 3 (n + 1 - j ) 1/2 3j - 3 + n 1 
JL - u 9j _ 9 _ n ,JL + U [en + 1 - j)(9j - 9 - n)]1/2 

with respective probabilities 3(j - 1)/(2n) - 1/2 and 3(n + 1 - j)/(2n). 

Proposition 15 (decreasing failure rate) If (j - 1)/n ~ 1 - e-1 ~ 
0.63212, then 

EFYj:n - JLF < I n 
n 1 ., 

UF - n+ -J 
(5.40) 

and the equality holds in (5.40) for the exponential distribution with location 
JL - U and scale u. 

Otherwise for 

( j -1) 'Y = 'Yv(j, n) = 1 - -n- e, 

we have 

EFYj:n - JLF < C = d (. ) = [ 2 -1] 1/2 
UF - toV J,n 'Yv(j,n) , (5.41) 

which becomes the equality for 

(5.42) 
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Note that (5.42) is the mixture of the exponential distribution with location 
J.t - ulO and scale ul(-YO), with probability;, and the Dirac measure at 
J.t - u I 0 with probability 1 - ;. This is a D FR life distribution if J.t = u I 0 . 
For small order statistics (5.40) is attained by a life exponential distribution 
with J.t = u. 

JOw we consider analogous bounds for F ~c W. First we try to describe 
P-jcwh for 

h(x) 
n 

= n + 1 _ j l[W-1((j-l)/n),dw) (x) 

1 
1 - W(b) l[b,d)(X). = 

Results of Lemmas 6 and 7 may be applied here. However, setting c = dw 
also results in reduction of the number of parameters of functions that 
are the candidates for being projections. In contrast to the conclusion of 
Lemma 6, the level at which the linear functions are possibly broken is 
specified and coincides with the level of the original h. 

Lemma 22 If h(x) = Ml[b,d)(X), then for every 9 E C~w there exists 
ga/3 E C~ w defined as -

_c 

ga/3(x) = M + amin{x -,8, o} 

for some a ~ ° and ,8 ~ b such that 

Ilga/3 - hll ~ Ilg - hll· 
Lemma 23 Under the assumptions of Lemma 22 and (3.7), we have 

p{wh(x)= d 1 +a.min{x-,8.,O}, (5.43) 
_c fb w(x) dx 

where ,8. > b is the unique solution to the equation 

,8 [lb w(x) dx 111 xw(x) dx - 1b xw(x) dx 111 w(x) dx 1 
= 1b w(x)dx 111 x2w(x)dx -lb xw(x)dx 111 xw(x)dx, (5.44) 

with i3 = min{,8, d}, and 

_ _ f: w(x) dx 
a. - a.(,8.) - d . {/3 d} • (5.45) 

fb w(x) dx famln ., (,8. - x)w(x) dx 
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Precisely, if 

,Q t w(x) dx t X2W(X) dx - t xw(x) dx I: xw(x) dx 
d ~ fJ = a bad a b ' (5.46) Ia w(x) dx Ia xw(x) dx - Ia xw(x) dx 

(Le., the left-hand side of (5.44) is not greater than the right-hand side for 
(3 = d), then (3. = /J, and (5.43) is linear. This may happen if d is finite 
and b is close to d. A probabilistic interpretation of Lemma 23 is given in 
Theorem 22. For a < (3 < d, we define 

fJ.w«(3) = Ew(XIX < (3) = It xw(x) dx , 
It w(x) dx 

(5.47) 

q~«(3) = Varw(XIX < (3) 

= 
It x2w(x)dx - fJ.~«(3) 

(5.48) 
It w(x) dx 

i/ = i/w«(3) = Ew«(3 - X)+ = 113 «(3 - x)w(x) dx, (5.49) 

192 = 19~ «(3) = Varw«(3 - X)+ 

= · [ · r fa «(3-x)2w(x)dx - fa «(3-x)w(x)dx (5.50) 

(cf. (3.20) and (3.21) as well as (5.35) and (5.36». 

Theorem 22 (F ~c W) If for b = W- 1(U - l)jn) 

m~ - fJ.w(b)J.tw < d 
J.tw - fJ.w(b) 

(5.51) 

holds, then there exists a unique (3. E (b, d) satisfying the equation 

q~«(3) = [(J.w«(3) - fJ.w(b)][{3 - fJ.w«(3)] (5.52) 

such that 

EFYj:n - J.tF < C = ~ ( . n) = j - 1 19w«(3.) 
- -<.w}, + 1 . v (R.) O'F - n - } 71w fJ. 

(5.53) 

(cf. (5.33) and (5.34»). The equality in (5.53) holds if 

F(x) = { W ((3. - i/«(3.) + 19«(3.) ~) if ~ < ;f~:~' (5.54) 
1 ;1 :r:-e > 13. 

, IJ IT - "(13.)· 

OthenlJise we have (5.31) which becomes the equality for (5.32). 
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Distribution function (5.54) jumps from W(.8*) > (j -1)/n to 1 at its right 
endpoint. H W = U, both cases are possible. Since dv = +00, the first one 
is only applicable for the IFR distributions. 

Proposition 16 (increasing density) If (j - 1)/n < 2/3, then 

EFlj:n - JLF < [(j - 1)(8n - 9j + 9)]1/2 
UF - 3(n + 1 - j) , 

(5.55) 

which becomes the equality for the combination of the uniform distribution 
on 

[ 4n - 3j + 3 [ 9j - 9 ] 1/2] 
JL - U [(j _ 1)(8n _ 9j + 9)]1/2' JL + U 8n - 9j + 9 ' 

and an atom at the right end of the interval, with respective coefficients 
3(j -1)/(2n) and 1- 3(j -1)/(2n). 

If (j - 1)/n ~ 2/3, then (5.38) holds with the equality for the uniform 
distribution on lJL - J3u, JL + J3u]. 

Proposition 17 (increasing failure rate) For {3* > In[n/(n + 1 - j)] 
defined by the equation 

1 - (1 + {3)e-.8 n + 1 - j n 
.81{3= ·l ln 1· e- - + 3 - n+-3 

(5.56) 

and 
(5.57) 

we have 
EFlj:n - JLF < j - 1 (Jv({3*) (5.58) 

UF - n + 1- j e-.8· -1 + {3*. 

The equality in (5.58) holds if 

{ 
0, 

F(x)= l-exp(-I+e-.8·-(Jz~,,), 

1, 
(5.59) 

This is the exponential distribution with location JL - u(1 - e-fJ.) / (J and 
scale U /(J, right truncated at JL + u(e-.8· -1 + {3*)/8. The jump probability 
is e-fJ •• 

Likewise, for determining respective second moment bounds for life dis­
tributions F tc W and F ~c W, we need to find best approximations 
of 

n 
h(x) = n + 1 _ j 1[(i-1)/n,1) W(x) 
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by nondecreasing convex and concave functions that additionally obey the 
condition of vanishing at aw. We assume here that W is a life distribution 
and aw = O. The respective projections have similar parametric forms 

P:; wh(x) = 
-" 

o:(x - (3)+, 

~ .min{~,1}. n+ -) 0: 

In the first case, under the conditions of the latter statement of Theorem 21, 
the optimal parameter 13 defined in (5.33) is positive which implies that 
PSwh E C~"w provides the solution to our problem. Then we have 

(cf. (5.34) to (5.36)). Otherwise P:; wh is the linear function crossing the 
origin, with the optimal slope and-~orm 

0: .. (0) -
Ibd xw(x) dx JLw(b) 

d d = --2-' Ib w(x) dx fo x 2w(x) dx mw 

fbd xw(x) dx JLw(b) 
d [ d ] 1/2 = mw ' fb w(x) dx fo x2w(x) dx 

respectively. 

Theorem 23 (F !:c W) If for b = W-1«j -1)jn) 

holds true (ef. (5.30)), then 

EFYj:n JLw(b) --<--- , 
mF mw 

(ef. (5.62)), whieh is attained for 

F(x) = W (mw :"F)' 
Otherwise for 13 .. E (0, b) determined by (5.33) with 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

y2 = y~(13 .. ) = Ew[(X - 13 .. )+]2 = ld (x - 13 .. )2w(x) dx (5.65) 
/3. 
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we have 
EF}j:n < VW({3.) 

mF - J.,tW({3.) - (3. ' 

which becomes the equality for 

F(x) = W ({3. + v ~) 1[0,00) (x). 

(5.66) 

(5.67) 

Again, we point out analogies between Theorems 21 and 23. Under equiv­
alent conditions (5.30) and (5.63), we obtain analogous bounds (5.31) and 
(5.64), respectively. In the opposite case, the bounds are determined by 
the same parameter {3. and related by (5.60). Moreover, both the extreme 
distributions (5.37) and (5.67) are location-scale modifications of W with 
identical jump W ({3.) at the left support end. 

Proposition 18 (decreasing density) If (j - l)/n ~ 1/3, then 

EF}j:n ~ J3 (1 + j - 1) , 
mF 2 n 

(5.68) 

where the equality holds if F is the uniform distribution function on the 
interval [0, J3mF]. 

Otherwise 
EF}j:n < ~ 2n ( )

1/2 

mF - 3 n+ 1-j , 
(5.69) 

which becomes the equality for the mixture of the atom at 0 with prob­
ability 3(j - 1)/(2n) - 1/2 and the uniform distribution on the interval 
[0, mF [2n/(n + 1 - j)]1/2] with probability 3(n + 1 - j)/(2n). 

Proposition 19 (decreasing failure rate) If (j - l)/n < 1 - e-1 ~ 
0.63212, then 

EF}j:n < ...!... (In n . + 1) , 
mF - J3 n+ 1-) 

(5.70) 

which is the equality for the exponential life distribution with scale mF/V2. 
Otherwise 

EF}j:n < 2n [ ]
1/2 

mF - (n + 1 - j)e 
(5.71) 

The bound becomes the equality for the mixture of the exponential distribu­
tion with scale mF {n/[2e(n + 1 - j)]}1/2 and zero, with weights [1 - (j -
l)/n]e and 1- [1- (j -l)/n]e, respectively. 

Projection of h = Ml[b,d) for M = n/(n + 1 - j), 0 = aw < b = 
W- 1((j - l)/n) < dw onto ctw, desired for calculating second moment 
bounds for samples with life distributions satisfying F ~c W, is described 
in Lemma 24 (cf. Rychlik [84, Theorem U(b), p. 131]). 
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Lemma 24 Projection of h = Ml[b,d) onto ctw in L2([0, dw), w(x) dx) 
has the form -

ptwh(x) = Mmin{xja*, I}. 

If 

d ld xw(x) dx > ld x2w(x) dx, 

then a* E (b, d) is the unique solution to 

a lOt xw(x) dx = lOt x2w(x) dx. 

Otherwise 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

Under (5.73) the projection is actually a broken line with a break at a* 
that belongs to the domain of h. Then 

IIP~cwh112 = M2 [~~ lOt> x2w(x)dx+ i~ W(X)dX] 

= M2 [ ~* l Ot
< xw(x)dx + i~ W(X)dX] (5.76) 

(5.77) 

say, and 
ptwh(x) 1 . {x } 
IlPtwhll = :y mm a*' 1 . 

(5.78) 

If (5.73) is not true (which is possible for dw < 00 only), then the projection 
is actually linear and satisfies 

ptwh(x) 

IIP~whll _c 

Theorem 24 (F ~c W) If 

x 

2 
n mw d 

n + 1 - j JLw(b) < w 

(5.79) 

(5.80) 

(5.81) 

for b = W-1«j - l)jn), then there exists a unique b < a* < dw solving 

W(a)tLw(a)[a - tLw(a)J = W(a)a~(a) + [(j - l)jnJatLw(b) (5.82) 
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(cf. (5.47) and (5.48») such that for 

;;2 = ;;lv(a.) = Ew(min{X,a.})2 

la • ld = x2w(x) dx + a~ w(x) dx 
o a. 

we have 
EFYj:n < n ;;w(a.) 

mF - n+ 1-j a. 

The equality in (5.84) holds for 

If (5.81) does not hold, then bound 

EFYj:n < JLw(b) 
mF - mw 

is attained by F(x) = W(mwx/mF)' 

....L<~ 
mF D , 
....L>~ 
mF - D' 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

Relation (5.81) is always true for W supported on the whole positive half­
axis. Otherwise this is satisfied for small order statistics. Life distribution 
(5.85) has a finite support with probability mass 1 - W(a.) at the right 
endpoint. Below we specify results for distributions with increasing density 
and failure rate. 

Proposition 20 (increasing density) If (j - 1)/n < 1/../3 R;j 0.57735, 
then 

EFYj:n < n (1_~j-1)1/2 (5.87) 
mF - n + 1 - j ../3 n 

The equality holds for a mixture of the uniform distribution on the interval 
[0,mF/[1- 2(j -1)/(../3n)]1/2] and the Dirac distribution concentrated at 
mF/[1-2(j-1)/( ../3nW/2]1/2 with probabilities ../3(j-1)/n and 1-../3(j-
1)/n, respectively. 

If (j - 1)/n > 1/../3, then sharp bound 

EFYj:n ::; ../3 (1 + j - 1) 
mF 2 n 

(5.88) 

is attained by the uniform distribution on the interval [0, ../3mF]' 

Proposition 21 (increasing failure rate) For a. > In[n/(n + 1 - j)] 
uniquely defined by equation 

!(1 - e-a ) - e-a = (1 _ j - 1) (1 -In n .) (5.89) 
a n n+1-J 
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and 
(5.90) 

we ha1Je 
EFY;:n < n iiv(a.} 

mF - n+1-j a. 
(5.91) 

The equality holds iff 

{ 
0, 

F(z} = 1 - exp (-ii ':F) 
1, 

(5.92) 

which is a combination of a right truncated exponential distribution with 
a pole at the truncation point mFa.jii. 

5.4 Distributions with Monotone Density and 
Failure Rate on the Average 

The results of this section are based on assertions of Lemmas 8 and 9 for 
b = W-l«j - 1}jn} and c = dw. Therefore one can expect some analo­
gies with inequalities for quantiles of order p derived for b = W-1 (P} and 
c \, b. Observe that norm (3.57) depends on c, and the normalized projec­
tion (3.58) does not. It follows that bounds for quantiles and expected order 
statistics substantially differ, but they are attained by the same distribu­
tions when p = (j - 1}jn. Note that condition (3.50) is false for c = dw, 
and there are no trivial bounds EFY;:n $ IJF for j ~ 2. In Theorem 25 and 
Propositions 21 and 22 we omit explicit descriptions of distributions for 
which bounds are attained, and refer the reader to respective assertions in 
Theorem 6 and Propositions 5 and 6 in which p and b should be replaced 
by (j - 1}jn and W- 1«j - 1)jn), respectively. 

Theorem 25 (F!::. W) For 2 $ j $ n < 00, with b = W-l«j - 1)jn}, 
and the notation of (3.20) and (3.60), the following inequality is tight 

EFY;:n -IJF < j - 1 IJw(b) . 
UF - n Dw(a, b} 

(5.93) 

Proposition 22 (decreasing density on the average) For 2 $ j $ 
n < 00, bound 

EFY;:n -IJF < v'3(j - 1)(n: + j - 1} 
UF - n28u(~) 

(5.94) 

(cf. (3.64)) is the best possible. 
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Proposition 23 (decreasing failure rate on the average) For 2 :$ j 
:$ n < 00, bound 

EF}j:n-J-tF < (j-1)(1+.1nn:IT=:1) 
UF - nOv(~) 

(5.95) 

(cf. (3.67)) is the best possible. 

Theorem 26 (F ~* W) For arbitrary continuous distribution function W 
with a finite second moment there exists a sequence Fk ~ .. W, k = 1,2, ... , 
of distribution functions that have densities and finite second moments, and 
satisfy 

1. EFk }j:n - J-tFk (j - 1 ) 1/2 1m sup =. 
k-too PE'P .. (Fk) UFk n + 1 - J 

(5.96) 

In particular, bound (5.96) is sharp for distributions with increasing density 
and failure rate on the average. 

Theorem 26 asserts that general bound (5.13) is attained among F ~ .. W 
under mild assumptions on the maximal element W. The proof consists in 
constructing a sequence of antistarshaped superpositions Fk- 1 W - J-tFIo (with 
F,;IW(aw) \.t -00) that integrate to 0, and tend to 1[W-1((j-l)/n),dw) in 
L2([aw,dw),w(x)dx). Actually, we can prove an analogous claim for arbi­
trary limiting function 2:7=1 djl[w-1((j-l)/n),W-1(jjn» with nondecreas­
ing coefficients dj , 1 :$ j :$ n, which means that general bound (5.11) for 
an arbitrary L-statistic cannot be improved once we restrict the family of 
distributions to any of the form {F: F ~* W}. 

5.5 Symmetric Unimodal and U-Shaped 
Distributions 

Theorem 27 (symmetric unimodal distributions) If 0 < (j-1)/n :$ 
1/3, then 

EF}j:n - J-tF < 2[n(j -1)]1/2 
UF - 3(n + 1- j) . (5.97) 

This becomes the equality if Yl = J-t with probability 1 - 3(j - l)/n and 
is uniformly distributed on [J-t - u[n/(j -1)]1/2,J-t + u[n/(j -1)]1/2] with 
probability 3(j - l)/n. 

If 1/3:$ (j - l)/n :$ 2/3, then 

EF}j:n - J-tF < raj - 1 _ v~ , 
UF n 

(5.98) 

which is the equality iff Y1 is uniformly distributed on [J-t - V3u, J-t + v'3u]. 
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If (j - l)/n > 2/3, then 

EF1j:n - I'F < ~ ( n )1/2 
UF - 3 n + 1- j 

(5.99) 

Here the equality is attained by the miXture of the atom at I' and the uni­
form distribution on [JL - u[n/(n + 1 - jW/2, I' + u[n/(n + 1 - j)]1/2] with 
probabilities 3(j - l)/n - 2 and 3[1 - (j - l)/n], respectively. 

Theorem 28 (symmetric U-shaped distributions) If either (j -l)/n 
< 1/2 - 1/(2v'3) ~ 0.21132 or (j - l)/n > 1/2 + 1/(2v'3) ~ 0.78868 then 
inequality (5.98) holds true with the respective condition for equality. 

For 1/2 - 1/(2v'3) < (j - l)/n < 1/2 + 1/(2v'3) bound 

(5.100) 

is sharp, and this becomes the equality for the combination of uniform dis­
tribution on 

[I' - (1- 4v'31~ - ~D1/2 ,I' + (1- 4v'31~ - ~D1/21 
with probability 2v'31(j - l)/n - 1/21 and two atoms at the ends of the 
interval, with identical probabilities 1/2 - v'31(j - l)/n - 1/21. 

Proofs of Theorems 27 and 28 are based on projecting folded function­
als (5.18) onto convex cones C~c2U-1 and C~c2U-1. Observe that 

B() j-1 B () 
gj:n X = n + 1- jgn+1-j:n x , 

and the same holds for the respective projections and their norms. This 
explains the relation between the bounds in both theorems and the fact 
that the distributions with extreme expectations of jth smallest and largest 
order statistics are identical. We can immediately conclude similar bounds 
for some L-statistics. 

In contrast with the independent case, all the bounds are nontrivial for 
any order statistic except that of the sample minimum. Table 5.1 con­
tains numerical values of mean-variance bounds for order statistics from 
dependent samples of size n = 20 coming from the following families of 
distributions: general (G), symmetric (S), symmetric unimodal (SUN) and 
U-shaped (SUS), distributions with decreasing density and failure rate (DD 
and DFR, respectively), and with decreasing density and failure rate on the 
average (DDA and DFRA, respectively). In fact, all the bounds depend on 
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value (j-1)/n only, because they were derived by means of projecting func­
tions of (j-1)/n. Therefore all estimates for Y;:n hold also true for any Yk:m 
provided that (k - l)/m = (j - l)/n. In particular, the moment bounds 
for the sample medians Yn :2n+1 do not change under increase of the sample 
size. Moreover, one can check that all the bounds for restricted families of 
distributions presented in this chapter increase continuously in (j - l)/n. 
Consequently, Table 5.1 may provide fair approximations of bounds for Yk:m 
from various families of parent distributions with (k-1)/m ~ (j -1)/20 for 
some 2 ::; j ::; 20. Some tables for second moment bounds were presented in 
Gajek and Rychlik [33]. Also, the third column (SUN) of Table 5.1 comes 
from that paper. The numerical results for distributions with monotone fail­
ure rate and monotone failure rate on the average were earlier presented in 
Rychlik [87]. 

5.6 Bias of Quantile Estimates 

As in Section 4.5, we consider the problem of evaluating the bias for esti­
mation of population quantiles p-l(P) by sample quantiles X j:n, with the 
only difference being that dependent observations are possible now. The 
results stated here are valid for (j - l)/n ::; p < 1. The problem of es­
tablishing the upper bounds on the bias in general populations consists in 
finding the derivative of the greatest convex minorant of the nonmonotone 
distribution function 

{ 
0 if o<x< i=l 

, - - n ' na:+1-j . i=l 
Gj:n(x) -l(p,I)(X) = ,(+1-{' If n::; X < p, 

n a:-l if < 1 n+l-j' p _ x < , 

calculating its £2-norm, and the form of the normalized derivative. The 
lower bound amounts to the negative of the upper one for 

p-l(P) + sup Ep(-Xj:n) = r1 P-l(x)(l(p,I) - G_e)(dx), 
PE'P" (F) 10 

where ej is the jth unit vector, and 

G-ei (x) = - min {jx, 1 } 

(cf. (2.25) and (2.26)). Again, we use the Moriguti [58] algorithm based on 
the greatest convex minorant. The final results are shown below. 

Theorem 29 (general distributions) For all (j - l)/n ::; p < 1, we 
have 

(5.101) 
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Q/'(j,n,p) = (_1_ + ~)1/2, 
1-p j-1 

(j/'(j,n,p) = n (1_p)I/2 
n+1-j p 

The upper bound in (5.101) is attained by the two-point marginal distribu­
tion (4.106). The lower one is attained by the three-point distribution 

P (X=~-U [1_P~0P_1)/nr/2) = 

P(X =~) = 

j-1 
n 

j-1 
p-~, 

( [ (j _ l)/n ] 1/2) 
P X = ~+U1_p+ (j -l)/n = 1-p. 

Unlike in the independent case, there is no meaningful evaluation of the 
bias oscillation Q/'(j,n,p) + (j/'(j,n,p). However, 

I!/'(j,n,p) 
C/'(j,n,p) 
-/' 

[ 
j - 1 ] 1/2 1 

= Fj:n(P) p(n + j _ 1 _ np) ~ 2' (5.102) 

n+1-j 1 
= [1 - Fj:n(P)] n(l _ p) ~ 2' 

B (j,n,p) 
(j/'(j,n,p) 

(5.103) 

as j /n ~ p, which means that asymptotic maximal bias is twice as great 
when the independence assumption is violated. 

In order to determine the upper bias deviations for populations with 
Ftc Wand F t. W, we need to project the step functions 

{ 
0 if 0 < x < W- 1 (i=.!.) 

, - n ' 
hj:n,p,q(x) = n+~-j - q':p' if W-l(P) $ x < W-1(q), 

n+l-j' elsewhere, 
(5.104) 

onto the convex cones of nondecreasing convex and nondecreasing star­
shaped functions, respectively, in L2([aw, dw), w(x)dx). Fortunately, func­
tions (5.104) obey the assumptions of Lemmas 18 through 21 which provide 
exact formulae for the projections. As in (4.125), 

o < - r (x - -y.)hj:n,p,q(x)w(x) dx J-y. 
n(l - q + p) + 1 - j r 

= (n + 1 _ j)(q _ p) J-y. (x - -y.)w(x) dx 

< ( )n(l- q + p)+l- j 0 c- -y. 1. ~, n+ -3 
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as q '\t p and c = W- 1 (q),'Y* '\t b = W- 1 (P). It follows that the bound for 
F tc W has the form of (4.126) with hnW(x) replaced by gj:nW(x) = 
n1[b,d)(x)j(n + 1- j). For F t* w, we have (4.137) with hnW replaced 
by gj:n W. In both cases the normalized projection does not depend on the 
specific form of h. Therefore the upper bounds in the dependent case are 
attained by the same marginal distributions that provide the analogous 
bounds for independent observations. Note that the same holds when F is 
general. 

Theorem 30 (F tc W) If (j -l)jn ~ p < 1 and b = W- 1 (P), then, with 
notation (4.127) and (4.129), we have 

EpYj:n - F-1 (P) n 1/w(b) 
--=........::..;.;.;.....--=-'- < A' 

- n + 1 - j 'i?w ( b) 
(5.105) 

Inequality (5.105) is sharp. 

Proposition 24 (decreasing density) If (j - l)jn ~ p < 1, then in­
equality 

EpYj:n - F-1(P) < n (3 -3P) 1/2 
Up - n + 1 - j 1 + 3p 

(5.106) 

is sharp. 

Proposition 25 (decreasing failure rate) If (j - l)jn ~ p < 1, then 
inequality 

EpYj:n- F - 1(p) < n (1_p)1/2 
Up - n + 1 - j 1 + P 

(5.107) 

is sharp. 

Theorem 31 (F t* W) If (j -l)jn ~ p < 1 and b = W- 1 (p), then, with 
notation (3.59) and (3.60), we have 

EpYj:n - F-1(P) -0 ( ) < Ct •w j,n,p 
Up 

n 7]w(a, b) 
= n+1-j'i?w(a,b)" 

Inequality (5.108) is sharp. 

(5.108) 

Proposition 26 (decreasing density on the average) If (j - l)jn ~ 
p < 1, then the following inequality is sharp 

EpYj:n - F-1 (P) -0 ( ) < Ct •v j,n,p 
Up 

= n(l + p) [ 3(1 - p) ] 1/2 5 109 
n + 1 - j 1 + P + 7p2 + 3p3 . (. ) 
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Proposition 27 (decreasing failure rate on the average) If we have 
(j - 1) / n ::::; p < 1, then the following inequality is sharp 

= 

-0 Ct.v(j,n,p) 

{ 1 } 1~ n -p 

n+1-j 1 + p[l-1n(l-p)J2 
(5.110) 

IT j /n -+ p, then bounds (5.105) through (5.107) do not tend to 0, unlike 
the independent case. However, comparing asymptotic values of the upper 
bias deviations for F toO W, U, and V we obtain nontrivial results: 

B~.w(j,n,p) 
-+ 

(b - a) Jbd w(x) dx 
-0 

2 Jbd(x - a)w(x) dx Ct. w(j, n,p) 

W-1 (P) -aw 1 
(5.111) = <-2[J.tW(W-l(P» - awl 2' 

B~.u(j, n,p) 
-+ 

p 
(5.112) 

C~.u(j, n,p) 2(1 + p)' 

B~. v(j, n,p) 
-+ 

-In(l-p) 
(5.113) -0 ) 2[1 -In(l - p)]' Ct.v(j,n,p 

IT p '\, 0, all the limits in (5.111) to (5.113) converge to O. Differentiating the 
first one with respect to b, we check that this is increasing. The limiting 
values of the right-hand sides of (5.112) and (5.113) for p /'" 1 are 1/4 
and 1/2, respectively. We recall (5.103) to point out that the respective 
limits in the general case amount to 1/2 for all p. 

Table 5.2 is the counterpart of Table 4.2 for the dependent case. This 
enables us to compare respective maximal upper bias deviations for finite 
samples of size n = 20. The effect of dependence is actually notable in all 
the families. Just as for the independent samples of general populations, 
the quantile estimation is less precise on the tails. The same concerns the 
dependent samples with decreasing density functions. For the DFR and 
DFRA distributions, the upper bias deviations increase in j and p in com­
mon with the LLd. case. 

5.7 Extreme Effect of Dependence 

The problem we consider here stems from the robust statistics whose do­
main is studying sensitivity of statistical procedures against violations of 
standard assumptions about statistical models. Robustness of L-statistics 
which are popular tools in robust and nonparametric inference was studied 
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TABLE 5.2. Sharp uniform variance bounds on upper bias deviations of estima­
tors lj:20 of pth quantiles, p = i/20, for various families of distributions (depen­
dent case). 

j G DD DFR DDA DFRA 
1 4.35890 1.57425 0.95119 1.71534 0.99748 
2 3.15789 1.51700 0.95214 1.75672 1.04201 
3 2.64497 1.47348 0.95925 1.77758 1.08589 
4 2.35294 1.44088 0.96058 1.78338 1.12918 
5 2.16506 1.41737 0.96825 1.77967 1.17204 
6 2.03670 1.40175 0.97840 1.77127 1.21477 
7 1.94681 1.39329 0.99127 1.76200 1.25780 
8 1.88422 1.39159 1.00716 1.75471 1.30171 
9 1.84257 1.39655 1.02647 1.75159 1.34727 

10 1.81818 1.40836 1.04973 1.75437 1.39544 
11 1.80907 1.42749 1.07763 1.76456 1.44744 
12 1.81444 1.45479 1.11111 1.78373 1.50480 
13 1.83450 1.49150 1.15142 1.81369 1.56953 
14 1.87044 1.53947 1.20024 1.85672 1.64422 
15 1.92450 1.60128 1.25988 1.91583 1.73235 
16 2 1.68034 1.33333 1.99488 1.83837 
17 2.10042 1.78017 1.42374 2.09772 1.96708 
18 2.22222 1.89832 1.52944 2.22108 2.11701 
19 2.29416 1.97386 1.60128 2.29389 2.22208 
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by many authors (we refer merely to monographs of Huber [41] and Hampel 
et al. [37] and references given there). For standard i.i.d. parametric mod­
els, many violations of marginals were studied. Dependence-robustness for 
location models was analyzed in Rychlik [80]. The projection method pro­
vides tools for determining expectation sensitivity of arbitrary L-statistics 
against dependence of observations 

n n 

sup EF LCjlj:n - EF LCjXj:n 
PE'P .. (F) j=1 j=1 

= 11 p-l(X) [Gc(X) - t cj/;:n(x)] dx, 
o 3=1 

(5.114) 

for various families of parent marginals P. 
We present some preliminary results of Rychlik [88], where robustness 

of single order statistics coming from general populations was studied. To 
evaluate robustness of the jth order statistic in standard deviation units, we 
first determine the projection of hj:n = gj:n - /;:n onto Co in L2([O, 1), dx). 
Since hj:n is the difference of density functions, pOhj:n = p? hj:n. Thus we 
are reduced to establishing projections onto the cone of nondecreasing func­
tions that can be determined by means of the greatest convex minorants. 
The solution is trivial for the sample minimum, since 

(5.115) 

is actually increasing and thus p? h1:n = h1:n . Another simple solution 
emerges for the sample maximum. Then 

{ _nxn-l, if 
hn:n(x) = ( 1) f n 1- xn- , i 

0<x<1_1 
- n' 

1_1<x<1 
n - - , 

(5.116) 

has antiderivative 

H (x) -' - - n' { _xn if 0 < x < 1 - 1 
n:n - n(x -1) + 1- xn, if 1- ~ :::; x:::; 1, (5.117) 

which is decreasing on [0, I-lin], increasing on [1- lin, 1], and concave 
on both intervals. Therefore 

and 

{ (1 1 )n-l if 0 1 H - -- x <x<l--
n:n(x) = n (1 - f)n (x -' 1) if 1 = 1 :( x < i' 

n , n - - , 

{ (I 1 t-1 if P?hn:n(x) = -( - r-)n ' 
n1- n , if 

0<x<1_1 
- n' 

1- 1 <x<1. 
n - -

(5.118) 

(5.119) 



124 5. Order Statistics of Dependent Observations 

A deeper analysis is needed for 2 ::; j ::; n - 1. Then hj :n decreases from 0 
at 0 to - /i:n((j -1)/n), jumps up by n/(n+ 1- j), runs down to hj:n((j-
1)/(n - 1)) where /i:n is maximized and eventually increases to hj:n(l) = 
n/(n+ 1- j). It is important to know the sign of hj:n{(j -1)/(n-l)). It can 
be shown that this is negative for small and moderate j, and the proportion 
of js for which this is true increases to 1, as n becomes large. In this case, 
a thorough analysis shows that either Hj:n((j -1)/n) lies above the greatest 
convex minorant which consists the line tangent to H j :n at 0 and some 
s > (j - 1)/(n - 1), and Hj:n itself right to s, or Hj:n((j - 1)/n) spans 
the minorant which has two linear pieces joining at (j -1)/n and coincides 
with Hj:n in the right part. If hj:n((j - 1)/(n - 1)) ~ 0, then the convex 
minor ant has the form analogous to the latter one, with the only difference 
being that the slope of the second linear piece is positive. Analytic forms of 
assumptions and resulting projection are precisely described in Lemma 25. 

Lemma 25 Set 

0< x ::; 1, (5.120) 

. 1 
~ < x < 1. (5.121) n -

If hj:n«j -1)/(n -1)) < 0, then there exist unique r E «j -1)/(n -1), 1) 
such that hj:n(r) = 0 and s E [(j - 1)/(n - 1),r) such that either s = 
(j - 1)/(n -1) if Sj:n((j -1)/(n -1)) ::; hj:n((j -1)/(n -1)) or s is the 
solution to Sj:n(x) = hj:n(x) otherwise. 

If 

( j-l) (j-l) hj:n n _ 1 < 0 and Sj:n(s) ::; Sj:n -n- , (5.122) 

then 

p/' hj:n{x) = {Sj:n(s), II:ff 0::; x < s, 
hj:n(x), s ::; x ::; 1. 

(5.123) 

If 

then there exists a unique t E «j -1)/(n-l), 1) such that Tj:n(t) = hj:n(t), 
and 

if O<x<.i.=l 
- n ' 

if .i.=l<x<t n - -, (5.125) 
if t::; x ::; 1. 
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For the prevailing number of cases, we have (5.122) with s > (j -1)/(n-l). 
Then (5.123) is continuous, and can be written as 

This form is easier to handle in numerical calculations. Function (5.125) 
has the only jump at (j -1)/n. Using projections (5.115), (5.119), (5.123), 
and (5.125), we are in a position to write optimal bounds for the extreme 
dependence effect. 

Theorem 32 (general distributions) Bounds 

EPY1:n - EpX1:n A A(I) n - 1 sup = L..l. = L..l. ,n = ----:-
PEPn(P) ap (2n - 1)1/2 

(5.126) 

are attained by the marginal distribution functions 

F(x) = n- x-p, [1 ( 1 )] 1/(n-1) 

1- -; 1 - (2n _ 1)1/2 -a- , 

-(2n _ 1)1/2 ~ X - P, ~ (2n - 1)1/2. 
a n-l 

(5.127) 

If (5.122) holds for 2 ~ j ~ n - 1, then 

(5.128) 

for 

(5.129) 

Bound (5.128) is attained by 

{ 

0, 

F(x) = ~'~1 (~~) 
3:n u' 

1, 

it X-f,L < Sj:n{S) 
~ u A' 
it Sj:n(S) < X-f,L < ~ 
~ A-U-A' 
it hj:n{s) < X-f,L < n/(nH-j) 
~ A-u- A' 
it X-f,L > n/{nH-j) 
~ u - A 

(5.130) 
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Under conditions (5.124) we have (5.130) with 

n 2 (j -1) ( j - 1) [n ] 2 t12 = j _ 1 Fj:n ~ + t - ~ n + 1 _ j - /i:n{t) 

n2{1- t) 2n 
+ (n + 1 _ j)2 n + 1 _ j [1 - Fj:n{t)] 

2i-2 2 .. -2i) 
+ n ·-1 .. _ .. -· [1 - F2j-l:2n-l (t)]. (5.131) 

The supremum is attained by (5.130) with s, Sj:n(s), and hj:n{s) replaced 
by (j - l)ln, Sj:n«j - l)ln) and hj:n{t), respectively. 

Finally; the bound 

sup 
PE1' .. (F) 

EFYn:n - EFXn:n _ (n - 1)n-l/2 
UF - nn-l (5.132) 

is attained by the two-point marginal distribution concentrated on points 
J.t - ul(n _1)1/2 and J.t + u(n - 1)1/2 with respective probabilities 1- lin 
and lin. 

In the problem of measuring the effect of dependence, it is of vital interest 
to evaluate the lower deviations 

A -(. ) EXj:n - EYj:n 
u. J,n = sup 

PE1' .. (F) UF 

Fortunately, once we consider the class of arbitrary marginals, we can get 
an immediate answer. Indeed, introducing 

1 $ j $ n, with common distribution function 

F-(x) = 1 - F(2J.tF - x-) 

and order statistics 

Xj,n = 2J.tF - Xn+l- j:n 

(with the same notation for Ys), we have 

= 

. f EYj:n - EXj :n 
-In 

FE:Fp UF 

EF-Y';+l-j:n - EF-X;+l_j:n 
sup 

F-E:F UF 
= t1(n + 1- j,n). (5.133) 
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Accordingly, we conclude that the lower bound on the deviation of the ex­
pectation of the jth smallest order statistic under dependence is identical 
with the upper bound on the deviation of the jth largest one. Similar ar­
guments explain the coincidence of (5.126) with the mean-variance bound 
for the maximum in the i.i.d. sample {see (4.2)), and the fact that these 
bounds are attained by distribution functions of variables mutually sym­
metric about J.t (see (4.3) and (5.127)). This is a consequence of relations 

sup EFY1:n - EFX1:n = J.tF - EFX1:n = EF-X:L;'n - J.tF-' (5.134) 
PE'P .. (F) 

In fact, introducing dependence of Xi on J.tF, being necessary in (5.134), 
is redundant in arguing that leads to (5.133). Comparing (5.13) and (5.14) 
for j = n with (5.132) we observe that 

sup EFYn:n - EFXn:n = (1 _ .!.) n-l ":It e-1 Rj 0.36788, (5.135) 
supEFYn:n - J.tF n 

and both the suprema in (5.135), taken over all P E 'Pn{F) are achieved 
by the same distribution function. 

Numerical calculations based on Theorem 32 show that for general margi­
nal distributions central order statistics are more robust under dependence 
than the extreme ones. We can also see that each jth smallest order statistic 
is mOre sensitive than the respective jth greatest one. In fact, Rychlik [88] 
measured dependence-robustness of order statistics in terms of scale pa­
rameters generated by central absolute moments of order 1 ~ p ~ 00. Nu­
merical analysis shows similarity of conclusion for cases p = 1 and p = 2, 
which were presented above. For p = +00 (i.e., for bounded observations), 
the conclusions are diametrically opposite. An interesting fact to note here 
is that (5.135) holds true for the classes of marginal distributions with finite 
pth moment for arbitrary 1 ~ p ~ 00. 

5.8 Open Problems 

1. What are the second moment bounds on order statistics of depen­
dent samples from populations determined by the star order? It is of 
particular interest for F~* W for which the mean-variance bounds 
coincide with the general ones. In the case of life distributions, con­
ditions of attainability require unbounded increase of the second raw 
moments, which seems to be unrealistic in many practical problems. 
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2. From the results for single order statistics we can immediately con­
clude bounds for some L-statistics. For instance, we have 

1 k 

= sup EF k 1 . L ¥i:n 
PE'P,.(F) + - J l=j 

(5.136) 

= sup EF -Y}:n + - L ¥i:n [
j 1 k-1 

PE'P,.(F) n n 1=j+1 

n+l-k ] + n Yk:n, (5.137) 

1 ~ j ~ k ~ n, (cf. (2.25) and (2.26)), and therefore all the bounds 
derived in this chapter for a given jth order statistic coincide with 
the bounds for trimmed and Winsorized means ((5.136) and (5.137), 
respectively) that reject j - 1 smallest observations. Moreover, for 
2 ~ j ~ n, we have 

= 

Therefore we obtain bounds for spacings Y}:n - y}-l:n in standard de­
viation units by multiplying all respective mean-variance bounds for 
single jth order statistics of various families of sample distributions 
by factor n/U - 1). In all these cases, the bounds are attained by 
the same joint distributions. This is not so for the differences of other 
pairs of order statistics. Then, due to (2.25) and (2.26), we have 

sup EF(Y}:n - ¥ion) 
PE'Pn(F) 

= 11 p-1(x) [n + ~ _ j lW-1)/n,1)(X) - T1[O,i/n)(X)] dx 

when 2 ~ i+ 1 < j ~ n. Therefore we should cope with the projections 
of three-valued step functions onto various convex cones. Gajek and 
Rychlik [32] proved that the projection of an n-valued step function 
(which corresponds with general L-statistics of dependent samples of 
size n at least) onto C~cw is a broken line with n pieces at most. We 
suspect a similar conClusion for projections onto other cones deter­
mined by the convex order. However, it is a difficult analytic problem 
to find the best approximations in such large parametric classes. 
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3. Studies of bias in quantile estimation in the independent and depen­
dent samples were carried out for the same families of marginals. 
Formulating unsolved problems in the latter case, we can directly re­
fer to the last two open problems of the previous chapter, where other 
classes of interest were indicated. It seems that projection problems 
may be solved more easily here, because the functional has a simpler 
form. 

4. We have no evaluations of the dependence effect on order statistics 
from restricted families of marginal distributions. For some families 
(e.g., those of symmetric and symmetric unimodal distributions) the 
lower bounds could be deduced from the upper ones. We also deduce 
the lower bounds for distributions with increasing density once we 
find the upper bounds for distributions with decreasing density, and 
vice versa. However, this is not so if we take into account distribu­
tions with monotone failure rate, and many other pairs of mutually 
dual families. We also mention the importance of analogous evalua­
tions ofrobustness against dependence for many popular L-statistics: 
spacings, ranges, trimmed means, and the like. 



6 
Records and kth Records 

In comparison with evaluations of other statistical functionals discussed 
here, investigations for record values are still at a preliminary stage, and 
only a few results are presented now. Examples of Section 6.1 show that 
the range of record values can be arbitrarily large when all types of inter­
dependence among the original variables are admitted. For the case of LLd. 
sequences with general and symmetric distributions, mean-variance bounds 
on standard and kth records, due to Nagaraja [59] and Raqab [74], respec­
tively, are presented in Section 6.2. In Section 6.3 second moment bounds 
for distributions with decreasing density and failure rate are cited from 
Gajek and Okolewski [31]. Finally, we discuss evaluations of Rychlik [83] 
for increments of first records coming from various families of parent dis­
tributions. Note that Raqab [75] derived pth absolute moment bounds on 
expectations of first records in general and symmetric populations based 
on the HOlder inequality. Nagaraja [59] used the Jensen inequality for de­
riving some quantile bounds on expectations of records (see also Arnold 
and Balakrishnan [5, Section 6.2]). Some bounds and approximations can 
be found in Arnold et al. [8, Sections 3.8 and 3.9]. 

6.1 Dependent Identically Distributed 
Observations 

The results of the previous chapter prove that numerous nontrivial in­
equalities can be established for expectations of order statistics under the 
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assumption that all observations have an identical distribution, but they 
are arbitrarily dependent. However, the assumption admits probabilistic 
models with peculiar properties of records. The examples presented be­
low show that stating the problem of bounds for the expectation of record 
values of arbitrarily dependent observations makes no sense. 

In the sequence of identical variables Y1 = Y2 = ... , the primary record 
value flo = Yi can never be improved, and kth records cannot be defined 
for k ~ 2. On the other hand, we can construct a sequence of identically 
distributed variables for which the first record value may be arbitrarily 
large. Precisely, the notion of being arbitrarily large depends here on prop­
erties of distribution F of single observations. If F has an atom at the right 
endpoint of its support dF, then R1 = dF. If dF is finite and F is continu­
ous at dF, then R1 can be arbitrarily close to dF. If dF is infinite, then R1 
may have an arbitrarily large value. The conclusions follow from the next 
theorem. 

Theorem 33 For an arbitrary positive integer n, there exists a sequence 
of standard uniform random variables lj, j ~ 1, for which R1 ~ 1 - lIn. 

The proof is constructive. Combining the construction with transformation 
F-1(lj), j ~ 1, we obtain a sequence of dependent random variables with 
common distribution function F whose first record value satisfies R1 ~ 
F-1(1 - lIn). This is arbitrarily large in the sense described above. 

PROOF. Fix n, and take n random variables Ui, which are uniformly dis­
tributed on intervals [(i-l)/n, i/n], 1 ~ i ~ n. Here Ui may be independent 
or arbitrarily dependent, for example generated for a single uniform random 
variable Uo by means of transformations 

U. _ i-I + Uo . - , 
n 

1 ~ i ~ n . 

Now create n random vectors 

1 ~ i ~ n. (6.1) 

Let (Y1 , •.. , Yn ) coincide with a randomly chosen vector Ui. We easily 
check that lj, 1 ~ j ~ n, are uniformly distributed on [0,1]. Now extend 
the sequence by adding i.i.d. random variables lj, j > n, with the same 
uniform distribution, and independent of (Y1 , .•. , Yn). If (Yi, ... , Yn) = Ui 
for 1 ~ i < n, then L1 = i + 1, and 

R1 = Un E [1 - ~,1] . 
In order to complete the proof we notice that otherwise L1 > nand 

R1 E (Un, 1] C [1 - ~, 1] .• 
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Analogous assertions can be proved for general kth records. It suffices 
to replace single Ui by k-tuples of (independent, say) variables uniformly 
distributed on [(i - l)/n, i/n], 1 :5 i :5 n, generating vectors Ui (see (6.1» 
of length kn. There were some attempts at imposing stronger conditions on 
the dependence structure of observations (e.g., exchangeability in Arnold 
and Balakrishnan [5, Section 6.3], stationary Markov property in Biondini 
and Siddiqui [16]), but they do not lead to representations for which our 
projection method works. In the remainder of this chapter we therefore 
confine ourselves to record values of independent sequences. 

6.2 General and Symmetric Distributions 

Bounds on expectations of kth records for general and symmetric distribu­
tions were analyzed in Raqab [74] by means of Moriguti [58] projection of 
functions (2.40) based on greatest convex minorants. Special cases of first 
records for which (2.40) are convex functions varying from 0 to 00, were 
solved in Nagaraja [59] by use of the Schwarz inequality. For general F, we 
therefore have 

EFRn-ILF {I I f/2 < -1 [-In(1-x)]2n dx-1 rTF (n!)2 0 

= [C) I f/2 : 10 hn(x)dx-1 

= [(~) -lf/2 (6.2) 

n ~ 1, which becomes the equality for an affine transformation of the 
Weibull distribution 

F(x) = 1- exp ( - [n! (1 + nX ~ IL)] lIn) l[p-uID,oo)(X) (6.3) 

with shape parameter l/n and 

Observe that (6.3) has decreasing density and failure rate. 
IT k ~ 2, then (2.40) vanishes at 0 and 1, and increases on [0, V(n/(k -

1»], and ultimately decreases. Analysis similar to that in Section 4.1 yields 

p0(f~k) -1)(x) = p/' f~k)(x) -1 = f~k)(x) -1 

= f~k)(min{x,a*}) -1, 

where a. is uniquely defined in the following theorem. 
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Theorem 34 (general distributions) For given k ~ 2 and n ~ 1, de­
fine u* = u*(k,n) E (0, V(nJ(k -1))) as the solution to 

(1 - x)f~k)(x) = 1- F~k)(x) 
n kj 

= (1 - x)k L -:-d-In(1 - x)]j, (6.4) 
j=O J. 

where f~k)(x) and F~k)(x) are the density function defined in (2.40) and 
the respective distribution function. Then 

(6.5) 

for 

The equality in (6.5) holds for 

(6.7) 

For n = 2,3, Equation (6.4) is solved by 

u*(k,2) = 1 - exp ( - k(k ~ 1)) , 

( 1 + (2k - 1)1/2) 
u*(k,3) = 1 - exp - k(k _ 1) , 

respectively, and then (6.6) has complicated explicit representations. Dis­
tribution function (6.7) has a finite support with a smooth density function, 
and a pole with probability 1 - u* at the right end. 

Analogous second moment bounds have slightly simpler forms 

EFRn < 
mF 

c:) 1/2, n ~ 1, (6.8) 

EFR~k) 
< 

mF 
11!~k)lI, n ~ 1, k ~ 2 (6.9) 
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(cf. (6.6)), and are attained by 

F(x) = 1 - exp ( - [V(2n)! :f/n) l[o,oo)(x), (6.10) 

F(x) = (f~k»)-1(IIfi,k)II~), if 0 $ ~ < f,1~~)i,)' (6.11) { 
0, if ~ $ 0, 

1 if a: > f~k)().) 
, m - IIl~k II ' 

respectively. Both (6.10) and (6.11) define life distributions. Formally, in­
equalities (6.8) and (6.9) hold true for n = 0, and they amount to 1 then. 
They are attained by degenerate random variables concentrated at mF > O. 
Obviously, this can be approximated by life random variables in the mean 
square with an arbitrarily desired accuracy. 

Since 
Sn(x) = fn(x) - fn(l- x), x E [~, 1) , 

is the difference of increasing and decreasing functions with identical values 
at 1/2, this is strictly increasing from 0 to 00. Evaluating expectations of 
the first records in symmetrically distributed sequences we simply use the 
Schwarz inequality 

where 

EFRn - J1.F < /1 [F-1(x) - J1.]Sn(x) dx 
1/2 

< D 8 (I,n)uF = DUF, 

2D2 = /1 s;(x) dx 
1/2 

= C:) -(n~)2 101 
Inn x Inn(1 - x) dx. 

The bound in (6.12) is attained by 

F(x) = S;;1 ( V2D x : J1.) , 

(6.12) 

(6.13) 

(6.14) 

which has a smooth symmetric density with the infinite support and sym­
metry center J1.. 

Raqab [74] also considered kth records in symmetrically distributed pop­
ulations using the greatest convex minorant approach. He proposed numeri­
cal evaluations that substantially improved bounds for general populations 
(6.5) and (6.6), and nonsharp ones derived in Grudzien and Szynal [35] 
based on direct application of the Schwarz inequality. However, Raqab's 
paper lacks a theoretical justification for use of specific constructions of 
the greatest convex minorant and precise description of the scope of appli­
cability. Therefore we do not present details here. 
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6.3 Life Distributions with Decreasing Density and 
Failure Rate 

We now aim at describing the bounds on EFR~k) /mF for the i.i.d. sequences 
with the life distributions with decreasing density and failure rate. There­
fore we need to project (2.40) and their compositions with the exponential 
distribution function 

kn+1 
f~k)V(x) = __ xne-(k-1)z, k ~ 1, n ~ 0, (6.15) 

n! 

onto convex cones cit u and cit v' respectively. We first exclude trivial 
cases. IT n = 0, then _c _c 

EFmk) = EFX1:k :5 /l-F :5 mF 

for arbitrary F. Referring to the projection method, we obtain the same 
conclusion. For n = 0 both (2.40) and (6.15) are nonincreasing concave 
functions. It easily follows that their projections are constants amounting 
to 1 by Lemma 1, with norm 1. We refer to (4.19) for construction of se­
quences that attain the bound in the limit. IT k = 1 and n ~ 1, then both 
(2.40) and (6.15) are convex increasing, and so belong to cit u and cit v' 
respectively. This implies that evaluations of respective exp~ctation ruiIc­
tionals by the Schwarz inequality provide the sharp bounds in both cases 
coinciding with (6.8) valid for arbitrary F. Another way of verifying the 
sharpness of (6.8) in the classes under study consists in checking that dis­
tribution function (6.10) providing equality in (6.8) has decreasing density 
and failure rate. 

In the remaining cases k ~ 2 with n ~ 1 we make use of auxiliary results 
of Section 4.2. First we check that the pairs 

(h(x), w(x)) = (J~k)(x), 1[0,1) (x)), 

(h(x),w(x)) = (J~k)V(x),e-z1[o,oo)(x)) 

obey conditions (4.29) to (4.33). In fact, only verification of (4.33) is non­
trivial here. An easy computation shows that (6.15) is convex increasing on 
(a, b) = (0, (n- Vn)/(k-1)), concave increasing on (b, c) = «n- Vn)/(k-
1),n/(k-1)), and decreasing on (c,d) = (n/(k-1), 00). Note that a = b for 
the first record values. More effort is needed for establishing similar con­
clusions for (2.40). Namely, this is concave increasing on (0, V(l/(k - 1))) 
and decreasing on (V(l/(k - 1)),1) for n = 1 and all k ~ 2. IT n ~ 2 and 
k ~ 2, then f~k) is convex increasing on (0, b), concave increasing on (b, c), 
and decreasing on (c,l) for c = V (n/(k - 1)) and 

{ 
V(n - 1), if k = 2, 

b = V (n(2k-s)+[n2+4n(k-1)(k-2)]1/2) 'f k> 3 
2(k-1)(k-2) ,1 _, 

(6.16) 
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This enables us to apply Lemma 13 to establish the parametric forms of 
projections of f~k) and f~k)V. Since we have no convex increasing pieces 
for n = 1, the projections are then linear. Consecutive reasoning steps 
are similar to those in the proof of bounds on order statistics. The main 
difference is that calculating (4.41) and (4.42) now we do not deal with 
combinations of Bernstein polynomials, but obtain combinations of density 
functions fM.) with the same j and various m. Without going into details, 
we try to convince the reader by presenting formulae for derivatives and 
indefinite integrals of f~k) and f~k)V: 

(fAk»), (x) 
f~1c]l (x) - (k - l)fAk) (x) 

= I-x 

11 fAk)(y)dy = 1 ~ x t f!::)(x), 
m=O 

(fAk)V)'(x) = f~1c]l V(x) - (k - l)fAk)V(x), 

100 f~)V(y) dy 
-z n 

= T L f!::)V(x). 
m=O 

It is possible but unnecessary to replace positive functional coefficients 
in the right-hand sides by more cOniplicated constants with simultaneous 
replacement of k by neighboring integers. Gajek and Okolewski [31] estab­
lished the following variation diminishing property for the combinations of 
density functions of kth record values in the LLd. uniform sequences. 

Lemma 26 For every positive integer j and m, the number of zeros in 
(0,1) of a given nonzero linear combination 

n 

fa(x) = L amfM.)(x), x E (0,1), 
m=O 

does not exceed the number of sign changes of the sequence a = (ao, ... , an). 
The first and the last signs of the sum are identical to the signs of the first 
and last nonzero elements of a, respectively. 

Note that it suffices to prove the claim for combinations of 

·m+1 
g(xjj,m + 1) = fM.)V(x)e- Z = J m! xme-jZ l[o,oo)(x) (6.17) 

which are the density functions of r(j, m + 1) gamma distributions. This 
follows from the fact that for fixed j, the one-parametric family of gamma 
densities g(Xjj, v), v > 0, is strictly totally positive of order ooj that is, for 
every positive integer i, and arbitrary nondecreasing sequences ° < Xl < 
... < Xi, ° < VI < ... < Vi, we have 
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(see, e.g., Karlin [44, Chapter 1]). The variation diminishing property for 
linear combinations of density functions of totally positive families is stated 
in Karlin and Studden [45, Corollary 4.1]. 

A thorough analysis of (4.41) and{4.42) enables us to establish bounds 
described in the following two theorems. We point out apparent analogies 
with Theorems 11 and 12. Here we take into account k ~ 2 and n ~ 1, as 
the remaining cases k = 1 and n = 0 were discussed above. 

Theorem 35 (decreasing density) If (1 + l/kt+l ::; 3, then 

F n <v'3 1- __ E R(k) [( k )n+l] 
mF - k+1' 

(6.18) 

which is the equality if F is the uniform distribution on [0, v'3mF]. 
Otherwise, with notations (4.34) and (4.41), we have 

E R(k) 
F n ::; D = D~cu(k,n) = 11(J~k»o< • .8.II, (6.19) 
mF -

for 

11(J~k»o< • .8.W = k (2k ~ lrn
+l C:)Fi~k-l)(,8*) 

+ (1- ,8.)[f~k)(,8.W + (1- ,8.)2a.f~k){,8.) 
+ {I - ,8.)3a;/3, (6.20) 

(6.21) 

where ,8. < b (the first inflection point of f~k) defined in (6.16») is the 
smaller of the smallest positive zeros of combinations 

Ku{x) = ~~ [1- (k~l)n-m] f::){x) 

(k) () ( 5) (k) ( ) - kfn - 2 x + k - 2 f n - 1 x , (6.22) 
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Lu(x) = ~ ~ [3 (_k_)n-m -1] ,(Ie)(x) 
2k m=O k+ 1 m 

_ (k - l)(k - 2) lie) ( ) 4k(k + 1) n-l X • 
(6.23) 

Inequality (6.19) becomes the equality if 

(6.24) 

Theorem 36 (decreasing failure rate) If n $ 2k - 1, then 

EFmale ) n+ 1 --"--- <--
mF - V2k' 

(6.25) 

which becomes the equality for the exponential distribution with the scale 
parameter mF/V2. 

Otherwise, under notations (4.34) and (4.41), we have 

for 

k (_k _) 2n+l (2n) F.(21e-l) ( ) 
+ 2k - 1 n 2n 'Y. , (6.27) 

n + 1 (Ie) 
= 2k(1 - 'Y.) [1 - Fn+l h'.)] 

V-l h'.) [1 _ p(le) ('Y )] - !,(Ie) ('Y) (6.28) 
2(1 - 'Y.) n· 2 n ., 

where 'Y. < V«n - .fii)/(k - 1)) is the minimum of the smallest positive 
zeros of 

Kv(x) = ~ n - m,(Ie)( ) _ 1- k3 ,(Ie) ( ) 
~ 2k2 m x k2 n-2 X 
m=O 

+ (k - 1)2(2k - 1) ,(Ie) ( ) 
2k2 n-l X , (6.29) 
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L () = ~ 2k-n+m,(k)( )_ (k-1)2,(k) ( ) 
V X L...J 2k2 m X 2k2 n-l X . 

m=O 

(6.30) 

The equality holds in (6.26) if 

{ 
0, if .at. < 0 

m -, (10) 

F(x) = (f~k»-l (D;i) , if O::;;i::; in A-r·) , 

1 - (1 - , .. ) exp ( - D:;_!:Ie)(-y.»), if ;i ~ i~Ie~-r.). 
(6.31) 

We see that the extreme expectations of kth record values are attained by 
the uniform and exponential distributions in Theorems 35 and 36, respec­
tively, if n is small. This is true for n = 1 and all k in particular, which 
is an immediate consequence of the linearity of respective projections im­
plied by lacking a convex piece in the left parts of i1k) (x) and i1k)V(x). 
Distribution functions F$;!) (x) of the jth record values appearing in (6.20), 
(6.21), (6.27), and (6.28) have alternative representations 

F$;!){x) = G(-ln(l- x)jj,m + 1), 

where the right-hand side denotes the gamma distribution functions with 
densities defined in (6.17), composed with the standard exponential quan­
tile function. Absolutely continuous distribution functions (6.24) and (6.31) 
have the same form up to a multiplicative factor on the left, and uniform 
and exponential right tails, respectively. The contributions of the latter 
amount to 1 - 13. and 1 - '*' respectively. 

6.4 Increments of Records 

Here we present some standard deviation bounds on expectations of record 
increments 

EF(Rn - Rn-d = 11 [F-l(X) - #tHin{x) - in-l (x)] dx, n ~ 2. (6.32) 

We omit case n = 1, because estimates for 

EF{RI - Ro) = EFRI - #tF 

were already presented. Properties of functions 

CPn(x) = in(x) - in-l (x) 

= 
[-In(l - x)]n [-In{l - x)]n-l 

n! (n -I)! 

= in-leX) [-In{! -x) -1] n ~2, (6.33) 
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are crucial for determining its projection onto various convex cones. We 
easily check that each CPn integrates to 0, starts from the origin, decreases 
to 

cp(1 _ e-n+l) = _ (n - l)n-1 , 
n! 

and increases to +00 at 1 passing through the horizontal axis at 1 - e-n . 

Its antiderivative «Pn needed for the Moriguti [58] projection, is therefore 
concave decreasing, convex decreasing, and convex increasing in [0,1 -
e-n+l], [1 - e-n+l, 1 - e-n+l], and [1 - e-n, 1], respectively. This vanishes 
at ° and 1, and is negative in the middle. Thus we deduce that its greatest 
convex minorant <I>n is linear in [0, a*] for some a* E [1_e-n+l, 1- e-n+l], 
that is determined by equation 

XCPn(X) = «pn(x) = Fn(x) - Fn-1(X) = fn(x) 

(cf. (6.4)), and coincides with «Pn elsewhere. Finally, 
o -, P CPn(x) = «pn(x) = cpn(max{a*,x}). 

Theorem 37 (general distributions) For n 2:: 2 we have 

EF(Rn - Rn- 1 ) ~ ~ = ~(n), 
O"F 

where 

(6.34) 

(6.35) 

~2(n) = (2n - 2) (1- a*) [2~1 (n~*)j + (1 _ !) (na*)2n-1] (6.36) 
n-l ~ J! n (2n-l)! 

3=0 

for unique a* E (1 - e-n+l, 1 - e-n+l) satisfying equation 

-In(1 - x) = nx. (6.37) 

Equality in (6.35) holds for 

-1 ( x -11-) F(x) = CPn ~-O"- l[I'-O"rpn(a.)/~,oo)(x). (6.38) 

Formula (6.37) is a reduction of (6.34), and 11<I>~112 is rewritten as (6.36). 
We can also show that 

( 2n - 2) 1/2 2n - 1 
~(n) '" n _ 1 '" (mr)1/4' 

which is the rate of increase of the extreme expectation of the (n - l)st 
record value (cf. (6.2)). Distribution (6.38) has jump a* and a density with 
infinite support right to the jump point. Observe that the contribution of 
the smooth component 1- a* < e-n+l is very small. 
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We are able to establish similar bounds for populations with monotone 
density and failure rate functions, once we apply the following observation. 

Lemma 27 Decreasing-increasing functions IPn(x) and 1/Jn(x) = IPn(1 -
e-Z ), n ~ 2, are convex on their intervals of increase. 

PROOF. For 
xn xn- l 

1/Jn(x) = n! - (n - 1)! 

that increases for x ~ n -1, we simply verify the claim by repeated differ­
entiation. Since IPn is the superposition 1/Jn(x) with the increasing convex 
function V-I (x) = -In(1 - x), we have 

IP~(x) = 1/J~V-I(x)[V-I(x)12 + 1/J~ V-I (x)(V-I)"(x) > 0 

for x > 1 - e-n+1, which is the minimum point of IPn. The relation is 
implied by the positivity of all the above components of IP~(x) .• 

Proposition 28 (decreasing density and failure rate) For F tc U 
bound (6.35) is the best possible. 

The conclusion for F tc V follows from V h U. The statement of the 
proposition can be proved by checking that (6.38) has a decreasing density, 
which is equivalent to the convexity of IPn(max{a., x}). Since a. > 1 -
e-n+l , this immediately follows from Lemma 27. 

Proposition 29 (increasing density and failure rate) For F ~c U 

EF(Rn - Rn-l) < V3 
O'F - 2n ' 

(6.39) 

which is the equality for the uniform distribution on an arbitrary interval 
of length 2V30'. 

For every F :::;c V 
EF(Rn - Rn-l) ~ 1, (6.40) 

O'F 

which becomes the equality for the exponential distribution with scale 0'. 

Both assertions are deduced by means of analogous arguments. The cru­
cial steps of the proofs consist in showing that projections of IPn and 1/Jn 
onto the cones of nondecreasing concave functions are linear. By Lemma 2, 
neither IPn (1/Jn) nor the projection can majorize the other. Since both IPn 
and 1/Jn are first decreasing and then strictly convex increasing, every nonde­
creasing concave function may cross either of them at two points at most. 
Taking linear functions that pass through the crossing points improves 
the approximations of IPn and 1/Jn. Standard arguments of the projection 
method lead us to the final conclusions. 
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6.5 Open Problems 

1. An annoying still unsolved problem is to find the bounds on the 
nth values of the kth records in symmetric populations for general n 
and k. The trouble here lies in describing variability of the function 

for 1/2 < x < 1. This is necessary for application of the greatest 
convex minorant construction. Furthermore, we could ask for respec­
tive stricter bounds for symmetric unimodal distributions. Note that 
these are unknown in the case of first records as well. 

2. What are the mean-variance bounds for kth records of Li.d. sam­
ples with decreasing density and failure rate? For distributions with 
increasing density and failure rate neither second moment nor mean­
variance bounds are known. A more general problem consists in estab­
lishing analogous results for distributions preceding and succeeding 
a given one in the convex order. 

3. What are the respective evaluations for the record values coming from 
populations with distributions determined by the star order relations 
with a fixed one? 

4. Results of Section 6.4 should be completed by considering increments 
of kth records R~k) - R~k21 in various classes of parent distributions. 
It is of interest to compare kth record increments for different k. 

5. We have practically no evaluations for the lower records. Generally, 
they cannot be concluded from analogous results determined for the 
upper records. 

6. Establishing bounds on EF(Rn - Xn:n) in various families of distri­
butions we evaluate the rate of increase of the gap between the ele­
ments of nondecreasing sequences of sample maxima and their strictly 
increasing subsequence. Analyzing EF(~k) - X n+1-k:n), we derive 
similar evaluations for the kth largest order statistics. 



7 
Predictions of Order and Record 
Statistics 

In this chapter we evaluate expected increments of future order and record 
statistics in the i.i.d. samples under conditions that some previous values 
are known. These are important for predicting prospective failures in relia­
bility systems and shock models on the grounds of former data. The results 
are based on representations of conditional expectations of order statistics 
and records in terms of unconditional expectations of other ones presented 
in Section 2.2, and evaluations of the latter derived in Sections 4.1, 4.2, 6.2, 
and 6.3. These provide bounds in terms of conditional second moments 

11 [F-l(X) - y]2 dx 
2 _ E ((X _ )21X ) _ _ F_--,l(~y)~~.,.....,.... __ 

mFI~ - F Y > Y - 1 _ F(y) , (7.1) 

where y is the value of a previous observation. We have 

2 < 
Jo1[F-l(x) - y]2 dx 

mpo 
1- F(y) III 

EF(X _y)2 
= 1- F(y) 

= 
u} + (IJ.F - y)2 

1- F(y) 

= M;o =M, 
III 

(7.2) 

say. The equality in (7.2) holds if 

F-1(x) = y, x E [O,F-1(y)]; 
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that is, F has a jump at the left endpoint y of its support. It occurs that the 
optimal constants for bounds expressed in terms of m ~o are identical with 

. III 
those measured in larger units M ~o • These have a more intuitive meaning 

III 
depending on moments and value of the parent distribution at a fixed ob-
servation point, and allow us to determine distributions attaining bounds 
uniquely up to the three mentioned parameters. The former are indepen­
dent of the distribution at points preceding y, and so admit an ambiguity 
in the description of extremal distributions. Therefore we choose represen­
tations of bounds in terms of M ~o -units. Results for general distributions, 

III 
and ones following the uniform and exponential distributions in the convex 
order, are stated in Sections 7.1 and 7.2, respectively. Formal proofs will 
be published in Rychlik [91]. 

7.1 General Distributions 

We first consider predictions of order· statistics. Our aim is to estimate 
expected increments of order statistics Xj:n - Xi:n for some 1 :::; i < j :::; n 
when X i :n = Y is known. By (2.41), 

EF(Xj:n - Xi:nIXi:n = y) = EFIIIXj-i:n-i - Y = EFI~ Xj-i:n-i, (7.3) 

where F is a continuous distribution function with finite mean !JF and 
variance u}, and 

o F(x + y) - F(y) 
1'111(x) = F11I(x + y) = 1 _ F(y) , x ~ 0, (7.4) 

is the distribution function of X - y under the condition that X > y. Set 
F(y) = p. Below we describe the maximal values of (7.3) for all distributions 
with given !JF, UF, and F(y) = p measured in scale units 

Note first that quantile functions of (7.4) 

(7.5) 

form the convex cone C+ of nondecreasing elements of L2 ([0, 1), dx) starting 
from 0. Combining (7.3) and (7.4) with (2.23), and further applying the 
projection method, the Schwarz inequality, and (7.2), we obtain 
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EF(Xj:n - xi:nlxi:n = y) = 11 [F-l(p + (1- p)x) - y]!J-i:n-i(X) dx 

< 11 [F-l (p + (1 - p)x) - Y]!j-i:n-i(X) dx 

< 111t-i:n-illmFo Iy 

< 111t-i:n-i 11M FI~ , (7.6) 

where !j-i:n-i is the projection of !J-i:n-i onto the family of nondecreas­
ing functions derived by means of the greatest convex minorant method. 
The equality in (7.6) holds when p-l(p + (1 - p)x) - Y is proportional to 
It-i:n-i, and equal to zero for arguments z = p + (1 - p)x E [P,1), and 
z E [O,p), respectively. Note that for j = n constructing the projection is 
redundant, because fn-i:n-i is actually increasing. If j = i + 1, the pro­
jection is constant amounting to 1. Explicit representations of bounds are 
described in Theorem 38. 

Theorem 38 (order statistics, general distributions) Sharp bound 

EF(Xi+l:n - Xi:nIXi:n = y) < 1 
MFo -

Iy 

(7.7) 

is attained by the two-point distribution 

P(X = y) = p = 1 - P(X = Y + MFo ). 
Iy 

(7.8) 

For i + 2 ~ j ~ n - 1, we have 

EF(Xj :n - Xi:nIXi:n = y) < 111-·· .11 
M - 3-t:n-" 

FO 
Iy 

(7.9) 

where the optimal constant 111t-i:n-ill is defined in (4.10) with parameter 
0:. = o:.(j - i,n - i) determined by Equation (4.7). The equality in (7.9) 
holds for 

Finally, 

if ~ < 0, 
f ·· .(~) if ° < ~ < J-"n-. 1=1> 

- M Ilfi-i:n-ill' 
f .. . ( .2i.::.2. ) if ~ > J-"n-. 1-p 

M - IIfi-i:n-ili 
(7.10) 

EF(Xn:n - Xi:nIXi:n = y) < n - i 
MFo - (2n - 2i - 1)1/2 

(7.11) 
III 
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holds and becomes the equality for the combination of degenerate and power 
distributions 

F(x)= p+(I-p)[ 1. Z-"]l/(n-i-l) i~ 0< Z-" <v'2n-2i-l { 
0, if z'M" < 0, 

v'2n-21-1 M ' :/ - M =-_:::-;----::-' 
1, if z'M" ~ v'2n - 2i - 1. 

(7.12) 

All the distribution functions (7.8), (7.10), and (7.12) have jumps at y. 
Also, (7.10) has an atom at the right end of its support, and (7.12) does not. 
We emphasize the fact that basic relation (7.3) and, accordingly, issuing 
inequalities (7.7), (7.9), and (7.11) hold true for continuous distributions F. 
They are the best possible, but attainable merely in the limit by continuous 
distributions tending to (7.8), (7.10), and (7.12), respectively, in the sense 
described earlier (see, e.g., the last two paragraphs of Section 2.3). The 
same reservations concern the other results of this chapter. 

We now proceed to records and make use of identity 

EF(R(k) - R(k)IR(k) = y) = EFo R(k) > 
n m m Iv n-m-l> n m, (7.13) 

concluded from (2.44). Since for n = m + 1 we have 

EF(R~~l - R~)IR~) = y) = EFI~ X1:k, 

the evaluations of the first statement of Theorem 38 (see (7.7) and (7.8» 
concerning the conditional expectations of spacings apply to the differences 
of consecutive record values as well. We omit the case in our further con­
siderations. Mimicking arguments applied in (7.6), we obtain 

EF (R~k) - R~) IR~) = y) = 11 [F-l (p + (1 - p)x) - y]J~kJm-l (x) dx 

~ 11 [F-l(p + (1- p)x) - y]~kJm-l (x) dx 

~ lI~kJm-lI1MFI~' (7.14) 

For k = 1, we have ~kJm-l = f~kJm-l which are actually increasing. 
Otherwise the Moriguti [58] construction of nondecreasing approximations 
is necessary. 

Theorem 39 (kth record values, general distributions) For k = 1 
(standard record values), we have 

EF(Rn - RmlRm = y) < (2n -2m - 2) 1/2 

MFo - n-m-l ' 
Iv 

(7.15) 
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which becomes the equality for the mixture of Dirac and Weibull distribu­
tions 

F(X)={P+(l- p)[l-exp (- [v'(2n-2m-2)!7] l/(n-m-l)]} 1[0,00) (7)' 
(7.16) 

If k ~ 2, then 

( (k) (k)1 (k) ) 
EF Rn - Rm m:;, = y < Ilf-(k) II 

M - n-m-l' FO 
Iy 

(7.17) 

where the right-hand side is defined in (6.6) with Q* = Q*(k,n - m - 1) 
coming from (6.4). The equality in (7.17) holds for (7.10) with !i-i:n-i 

(k) replaced by fn-m-l' 

7.2 Distributions with Decreasing Density and 
Failure Rate 

Here we confine ourselves to restricted families of parent distributions de­
fined by relation F tc W with a given W. We first notice that F tc W 
does not entail the same for F1~ which appears in unconditional represen­
tations (7.3) and (7.13) of conditional expectations of the increments. This 
is shown by the following counterexample. 

EXAMPLE 4. Set F(x) = xl / 3 and W(x) = xl / 2 , 0 ~ x ~ 1. Obviously 
F-lW(x) = X 3 / 2 is convex, and so F >-c W. Take now 

FI~/S(x) = 2(x + 1/8)1/3 - 1, 0 ~ x ~ 7/8, 

with the quantile function 

o -1 1 3 1 (F1l/S) (x) = g[(x + 1) - 1 , O~x~1. 

The composition 

has the second derivative 

negative for x E [0,1), which proves F1~/s -<c W .• 
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However, relation P tc W is preserved if we compare F1~ with similar 
modification WI~ for properly chosen z such that W(z) = P(y) = p. Indeed, 
we have 

(7.18) 

whose convexity is implied by that of p-l W(x). Note that the reversed im­
plication is false, because we can extend FI~ and WI~ on the left to y and z, 
respectively, in an arbitrary way. Compositions (7.18) form the convex cone 

+ 2 ( w(z +x) ) CtcWI~ C L [0, dw - z), 1 _ W(z) dx . 

In particular, for uniform W = U, compositions (7.18) have the form 

and 

In the exponential case W = V, we have 

and the identity 

holds for all positive z. 

We are now in a position to formulate the main results of this section. 
We first focus on differences of consecutive order statistics and records. 
Projecting the respective functionals we obtain 

EF(Xi+l:n - Xi:nIXi:n = y) ~ f.lFI~ ~ mFI~ ~ MFI~' 

EF(R~~l - R~)IR~) = y) ~ f.lFI~ ~ mFI~ ~ MFI~ 

(7.19) 

(7.20) 

(cf. (7.1)). Equalities in (7.19) and (7.20) hold if P-l(X) is constant for 
x E [p, 1). Convexity and nondecrease of P-1W(x) impose the single value 
of the quantile function on the whole domain. The conditional expectations 
have a practical sense if y is the only support point of P, and they are equal 
to 0, but all the evaluations are meaningless then. 

Some results of this section can be immediately concluded from the pre­
vious one. For instance, (7.12) is a decreasing density distribution function 
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which implies that (7.11) is the best possible bound for the restricted class. 
In the remaining cases 3 ~ i + 2 ~ j < n we have 

EF(Xj:n - Xi:nIXi:n = y) 

= 11
- P[F-l(x + p) - y]!i-i:n-i (1 ~ p) /'~ p 

~ f1-P[F-l(X + p) - y]P: u!i-i:n-i (-1 x ) 10 _c - p 
dx 

I-p 

< lIP: u!i-i:n-illm~o _c . III 

< lIP: u!i-i:n-iIlM~o. 
_c III 

(7.21) 

The equality is a consequence of (7.3), (7.5), and a change of variables. The 
first inequality follows from (2.2) and relation 

P: U O !i-i:n-i(X) = P: u!i-i:n-i (-1 x ), 
_c Ip _c _ P 

which is implied by the equivalence of claims 

9 (-1-· -) E ct Uo <==> g(.) E c~cu' _ P _c Ip 

and the identity 

11
-

P ~j-i:n-i (1 ~ p) -g (1 ~ p) r 1 ~ p = 11
[!i-i:n-i(x)-g(XWdx. 

The second inequality in (7.21) follows from the Schwarz inequality com­
bined with changes of variables, and (7.2) implies the last one. Equality in 
(7.21) is obtained if 

p,+ f.. . ( z ) 

F-1(x+p)-y 
tcU 3-I:n-t I-p o ~ X < 1, (7.22) = + M~o, IIP>-cu !i-i:n-ill III 

F-1(x) = y, o ~ x <po (7.23) 

Recalling Theorem 11, we can now state the following assertions. 

Theorem 40 (order statistics, decreasing density) If i + 2 ~ j < 
min{(2n + i + 2)/3, n - I}, then 

EF(Xj:n - Xi:nIXi:n = y) < va j - i (7.24) 
M~o - n+l-i' 

III 

which becomes the equality for F being the convex combination of the Dirac 
measure at y and the uniform distribution on [y, y + yaM] with respective 
coefficients p and 1 - p. 
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If (2n + i + 2)/3 < j ~ n - 1, then 

EF(Xj :n - Xi:nIXi:n = y) < II(f····) II M - J-,.n-I 0I.{3. , 
FI~ 

(7.25) 

where the right-hand side is defined by (4.46) with 0. = 0.(13.) and 13. = 
13.(j - i, n - i) uniquely determined by (4.47) through (4.49). Inequality 
(7.25) becomes the equality for 

1
??::::1l. 0 M < , 
o < ??::::1l. < !i-im-.({3.) 

71 - M - IIUj-':n-.)".p.II' 
~J 1;-':n-.({3.) < x-y < 1;-':n-.({3.)+OI.(I-{3.) 

IIUj-':n-.)".p.11 - M - IIUj-':n-.)".p. II ' 
x-y > !j-i:n-i ({3. )+01. (1-{3.) 
M - IIUj-i:n-;}".II.11 ' 

(7.27) 

respectively. 

In the case F ~c V, the projection method is essentially exploited for pre­
dicting sample maxima as well. By arguments similar to ones used in (7.21), 
for i + 2 ~ j ~ n we deduce that 

EF(Xj :n - Xi:nIXi:n = y) 

= 100 [F-l(p + (1 - p)V(x)) - yjli-i:n-i V(x)v(x) dx 

< l°O[F-l(p+ (l-p)V(x)) -yjP~cvli-i:n-N(x)v(x)dx 
< lIP: v/i-i:n-iVIIMFo, (7.28) 

_c Iy 

with the equality valid under conditions 

P:c v Ii-i:n-i V(x) 
= + Mpo, 

I IPtcvli-i:n-NII Iy 
F-1(p+(1-p)V(x)) -y x~O, 

F-1(x) = y, O~x<p 

(cf. (7.22) and (7.23)). Finally, we refer to Theorem 12. 

Theorem 41 (order statistics, decreasing failure rate) Under nota­
tion (4.51), if {LVj-i:n-i ~ 2, then 

(7.29) 
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This becomes the equality if F is the mixture of an atom at y and the 
exponential distribution with location y and scale M/../2, with respective 
coefficients p and 1 - p. 

Otherwise 

(7.30) 

with the nonn and its parameters a. = a.h.) and ,. = ,.(j -i, n - i) 
defined in (4.54) through (4.57). Equality holds in (7.30) for 

(7.31) 

(7.32) 

respectively. 

Note that (7.16) has decreasing density and failure rate. This means that 
general bounds (7.15) are the optimal ones for the predictions of the values 
of the first records from populations with decreasing density and failure 
rate. Therefore it remains to study differences of nonsuccessive values of 
kth records for k ~ 2. In order to obtain desired conclusions, we are reduced 
to replacing !;-i:n-i(X) by f~".lm-l(x) in (7.21) and (7.28), and references 
to Theorems 35 and 36. 

Theorem 42 (kth records, decreasing density) If (l+l/kt-m ::; 3, 
we have 

(7.33) 

which is the equality if F is the mixture of the unifonn distribution on [y, y+ 
JaM] and an atom at y. 

In the opposite case, we have 

defined in (6.20) with parameters a. = a.(/3.) and /3. = /3.(k,n - m -1) 
defined in (6.21) to (6.23). Bound (7.34) is attained by the distribution 
function given in (7.26) and (7.27) with !;-i:n-i replaced by f~".lm-l. 
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Theorem 43 (kth records, decreasing failure rate) If m + 2 ~ n ~ 
m+ 2k, then 

(7.35) 

This is the equality for the combination of the exponential distribution with 
location parameter y and scale M/V2, and an atom at y. 

Otherwise 

( (k) (k)1 (k) ) 
EF Rn - Rm Rm = y < II(f(k) V) -1 II 

M - n-m-l ct. V (-y.) , 
FO 

III 

(7.36) 

where the bound is defined by (6.27), and the parameters 0. = 0.(1'.) and 
1'. = 'Y.(k,n-m-l) are determined from (6.28) to (6.30). Inequality (7.36) 
becomes the equality for F defined in (7.31) and (7.32) with /i-i:n-i replaced 

by f~k}.m-l' 

Distribution functions (7.26), (7.31), and their modifications described in 
Theorems 42 and 43 have unbounded derivatives in the right neighborhoods 
of the left endpoints of their supports. The shape conditions entail unique 
extensions of them to the left: only a jump at y and no mass of the left are 
admitted. This means that the analogous bounds expressed in mFO -units 

III 
are attained by the same distributions only. This is not so in the remaining 
cases. It is worth noticing that bounds (7.24) and (7.33) as well as (7.29) 
and (7.35) are attained by the same elements of families with decreasing 
density and failure rate, respectively. 

7.3 Open Problems 

1. What are the sharp bounds on conditional expectations of increments 
of order and record statistics from populations with increasing density 
and failure rate? More generally, we ask about respective evaluations 
for the families of distributions determined by the convex order rela­
tions with a fixed abstract distribution function W. 

2. Solve the analogous problem for the distributions defined by the star 
order relations. 

3. Applying (2.42) and the projection method makes it possible to re­
cover the conditional of past failures. Similar results for previous 
record values can be established by exploiting the dependence struc­
ture of records. 



7.3 Open Problems 155 

4. One can try to retrieve missing values of order statistics using (2.43). 
However, the problem is that the quantile functions of doubly trun­
cated distributions Ell: do not form a convex cone, and one cannot 
simply use our projection method here. 

5. In contrast to the previous results, all the bounds presented in Chap­
ter 7 are expressed in terms of sophisticated scale units 

MFo = [u} + (J.tF - y)2] 1/2 
Iy I-F(y) 

Is it possible to replace them by simpler and more intuitive ones? 
Certainly, the problem also surpasses the range of direct applications 
of projections onto convex cones. 



8 
Further Research Directions 

In the monograph we mostly focused on the optimal upper bounds, but 
certainly the lower ones are needed for evaluating the actual ranges of the 
functionals over given classes of distributions. Generally, the best upper 
and lower bounds are not symmetric about zero, but the latter can also be 
derived by means of our projection method. To this end we should analyze 
the negatives of the functionals under study. Only the functional corre­
sponding to the order statistics and L-statistics (see (2.27) and (2.25)) in 
the dependent case needs a more subtle transformation. Changing the signs 
of coefficients Cj, 1 ~ i :5 n, in (2.26) results in constructing a functional 
g-e different from -ge. Also, one should realize that generally projecting 
a functional and its negative are different problems that should be solved 
separately by use of specific arguments. With few exceptions they cannot 
be derived one from the other in a simple way. 

Here we confined ourselves to statistical functionals defined for finite 
samples, but various notions of asymptotic statistics are represented in 
that form. As an example we mention the limits 

of sequences of L-statistics 

n n [(i) (i -1)] ~ Cj,nXj:n = ~ h ~ - h -;- Xj:n 
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with coefficients determined by a smooth weight function h. From a prac­
tical point of view, we are interested in uniform bias evaluation for finite 
sample estimates of asymptotic quantities in various classes of distributions. 
In our example, it is to analyze the differences 

An interesting topic of investigation is analyzing functionals of general­
ized order statistics extensively presented in Kamps [42]. The generalized 
order statistics X (j, n, m, k), j = 1, ... n, based on distribution function F 
with real parameters m, k satisfying 

1}j = k + (n - j)(m + 1) ~ 1, 1 $ j $ n, 

have expectations 

1 j. 
EFX(j n m k)= r F-1(x) TIi=l1}, (1_x)l1i-1[1_(1_x)m+1]j-1dx , "10 (j-1)!(m+1) 

for m i: 1, and 

EFX(j, n, -1, k) = 11 F-1(x) g{:\1~ (1 - x)l1i-1[-ln(1 - X)]j-1 dx. 

If m = 0 and k = 1, then X(j, n, m, k) reduce to the standard order statis­
tics Xj:n, 1 $ j $ n, of the independent sample with the common distri­
bution function F. If F is absolutely continuous, k is a positive integer, 
and m = -1, then X(j,n,m,k) do not depend on parameter n, and coin­
cide with values of kth records R~k). For other choices of parameters, the 
generalized order statistics represent observations of some censoring and 
truncation schemes and complex reliability and shock models, for example 
sequential order statistics and Pfeifer's record model in which the failure 
probabilities of surviving elements change at the failure moments of the 
other ones. 

As an example of other classes of distributions that admit our projection 
approach are the distributions determined by the relations of superadditive 
order with a given W. We say that F succeeds W in the superadditive order 
and write F t+ W if F-1 W is superadditivej that is, 

(8.1) 

for positive x and y. The reversed inequality defines F ~+ W. The su­
peradditive order implies the star one and so describes larger classes of 
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distributions. In fact, relation (8.1) is applied for the life distributions and 
should be satisfied for all 0 = aw ~ x + y < dw, but it can be modi­
fied by subtracting F-1W(aw) = F-I(O) from all the terms in (8.1) when 
aw "# O. Especially for W = V, composition 

V-I F(x) = -In[1 - F(x)] 

defines the hazard function of F, and (8.1) describes the new worse than 
used (NWU) distributions. The interpretation of the subadditivity of the 
hazard function is that surviving time x + y by a single device is more 
likely than under replacement by a new one in meantime x. The reversed 
relation defines the new better than used (NBU) distributions. Since mean­
variance bounds presented here for F :5. W cannot be improved in general 
populations, the same holds for the larger classes F:5+ W, and the NBU 
distributions in particular. However, a difficult problem is to determine 
bounds for F !:+ W, because the superadditivity does not allow a natural 
graphical interpretation. Verifying the property of a function at fixed x + y, 
we should study its values at all pairs x and y. Since 

n 
9j:n(X) = + 1 . l[(j-I)/(n,l) (x) n -) 

is superadditive for (j - lIn ~ 1/2, we have the conclusion of Corollary 1 
for the subadditive distribution functions F !:+ U then. We conjecture 
that the bound on quantiles and order statistics of dependent samples of 
the NWU populations are attained by Poisson distributions. 

The method based on the greatest convex minor ants provides the best 
L2-approximations of general functions by monotone ones. This was fruit­
fully exploited in determining sharp mean-variance and second moment 
bounds on various statistical functionals in general and symmetric popu­
lations. For other families of distributions, the projection heavily depends 
on properties of functions being projected. The reason is that there are no 
known procedures which allow us to determine projections of general func­
tions onto corresponding convex cones of quantile functions and their mod­
ifications. What we strongly need here is, for example a general method of 
projecting onto the family of convex functions. It is not clear here whether 
one should try to generalize the Moriguti [58] method of convex minor ants 
for this problem, or develop quite a different approach. 

We obtain usually nons harp bounds on the statistical functionals defined 
in Section 2.2 in terms of 

and IIF-I - JtFllp, p > 1, by using the Holder inequality instead of the 
Schwarz one. These are scale parameters expressed in terms of pth roots 
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of the raw and central absolute moments, respectively, of order p. As we 
mentioned in the Introduction, general LP-projections onto convex cones 
do not allow characterizations similar to (2.2) and (2.3) and, accordingly, 
do not give us optimal bounds in the scale units generated by pth moments. 
However, the L2-projections onto the monotone functions can be modified 
so that we derive sharp evaluations in terms of the above scale parameters. 
Indeed, evaluating a nonzero statistical functional over the class of general 
quantile functions by means of (2.2) and the Holder inequality, we have 

Th(F-1) = 11 F-l(X)h(x) dx 

< 11 F-l(x)h(x) dx 

< IIhllqllF-lllp (8.2) 

with q = pi (p - 1) and h = p.l' h defined by means of the greatest convex 
minorant construction (see Example 3, Section 2.1). The Holder inequality 
becomes the equality if either F-l is zero or 

(8.3) 

for some positive a. In particular, the equality holds for 

(8.4) 

which is actually a quantile function with a desired pth moment, because 
each XP' p > 1, is strictly increasing. Since the intervals on which (8.4) and 
the original h are constant coincide, the former satisfies the conditions of 
Lemma 3 for attaining equality in the second line of (8.2). Summing up, 
we have 

IIF-1I1p (I _ _ 
= Ilxphllp 10 Xph(x)h(x) dx 

= IIhllqllF-lllp 
= _ IIIIF-l ilp -II IIhllq IIXphllp Xph p' 

which proves that (8.4) attains the equality in (8.2) that is actually sharp. 
Obvious modifications lead to sharp bounds for general and symmetric dis­
tributions in terms of IIF-l- JLFllp. An important question is now whether 
L2-projections onto convex cones of functions that obey conditions more 
stringent than monotonicity only admit modifications that provide sharp 
bounds in terms of general pth norms. 
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Finally, it is of interest if projections onto convex sets that are not neces­
sarily convex cones provide meaningful evaluations of functionals. IT so, we 
could significantly extend the class of functionals for which respective eval­
uations hold by adding ones that act directly on the distribution functions, 
densities, and other characteristics of distributions. 
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